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ABSTRACT

Query optimization is a well-studied problem in the database community. Recently, deep
learning methods have been applied either to assist the query optimizer on measures
like cardinality estimation, computational cost prediction and query execution time predic-
tion or implementing neural-based optimizers from scratch. Despite the promising results,
very few tackle multiple aspects of the optimizer at the same time or combine both the
underlying data and a query workload. QPSeeker takes a step towards a neural database
planner, encoding first the information provided from the workload and second the under-
lying tables, using the power of special-designed language models for tabular data. Next,
it applies a special form of attention to combine these two sources to approximate the
distributions of cardinalities, costs and execution times of possible query plans. At infer-
ence, when a query is submitted to the database, QPSeeker uses its learned cost model
and traverses the query plan space using Monte Carlo Tree Search to provide the best

execution plan for the query.

SUBJECT AREA: Query Optimization

KEYWORDS: machine learning, multi-modal cross-attention, variational inference,

cardinality estimation, cost estimation, query latency prediction



NEPIAHWH

H BeAtioTommoinon epwTnUATWY €XEl JEAETNOEI EKTEVWG aTTO TNV KOIVOTNTA TWV BAcEwv
dedopéwyv. Mpdogara, péBodol BaBeIdg pnxavikng pAnong £Xouv EQAPUOOTEI JE TETOIO
TPOTTO WOTE €iTE VA UTTORONBACOUV TO BEATIOTOTTOINTIA TOU CUCTHHATOG BACNG BEDOUEVWV
OTOV UTTOAOYIOUO TTOOOTATWYV OTTWG, EKTINNON TTANBIKOTNTAG, TTPOPRAEWN UTTOAOYIOTIKOU
KOOTOUG KaI TIPOBAEWN XPOVOU EKTEAEONG EVOG EPWTANATOG, EITE OTNV KATAOKEUH BEATIOTO-
TTOINTWV HE TN XPON VEUPWVIKWY BIKTUWV a1Td TO uNdEV. MNapd Ta UTTOOXOUEVA ATTOTEAE-
oparta, Aiyeg uEBodoI avTINETWTTICOUV OAEG TIG TIPOKAACEIG TTOU QVTIMETWTTICEI Evag BEATIOTO-
TToINTAG oTnV TTPA&EN 1 cuvduadoUv Kal Ta dedoUEVA TOU CUCTANATOS BACNS OEBONEVWV KAl
Ta idla Ta epwtipata. O QPSeeker kdvel éva Bripa TTpog TNV KATEUBUVON TwV BEATIOTOTTOI-
NTWV BACICPEVWY O€ APXITEKTOVIKEG VEUPWVIKWY DIKTUWY, KWOIKOTTOIWVTAG apXIK& Tnv
TTANPOQPOPIa TTOU TTAPEXETAI ATTO TO OUVOAO TWV EPWTNUATWY TTPOG EKTEAEON KAl IO TAV
KWOIKOTTOINGN TWV TTIVAKWY TNG UTTAPYXOUOC G BACNG, OTTWG ETTIONG XPNOIKOTTOIE TN dUvaun
EIOIKWYV TTPOEKTTAUOEUMEVWV YAWOTIKWY POVTEAWY, EI0IKA OXEDIOOUEVWY YIA TOV XEIPIOUO
TNIVOKOEIOWY OEOOUEVWV. 2TN OUVEXEID, EQAPPOCEl KAl UTTOAOYICEI MIa 101K JOP®H TOU
MNXOVIOUOU TTPOCOXNG, TTPOKEINEVOU va ouvdudaoel TIG OUO TTNYEG 10000V e OKOTTO va
KAVEl EKTIUNOTN TWV KOTAVOUWY TWV TTANBIKWTATWY, KOOTOUG Kal XPOVOU EKTEAEONG TWV
duvatwyv TTAAvwyY ekTEAONG. Katd Tnv emmegepyacia evog véou EPWTHNATOG OTO CUCTANA
NG Baong, o QPSeeker, €gepeuvd TO XWPO KATAOTACEWY OAWV TwV TTBAVWV TTAAVWV
EKTEAEONG ME TOV OAyOpIBuo Monte Carlo Tree Search kdvovtag xprion Tou PovTéAou
KOOTOUG TTOU DIOOP@PWONKE KATA TNV EKTTAIOEUCT] TOU, TIPOKEIPEVOU VA TTOPEXEI TO KAAUTEPO

TTAQVO EKTEAEONG YIA TO EPWTNMA AUTO.

OEMATIKH NMEPIOXH: BeAtioTotroinon EpwtnudaTtwy

AEZEIZ KAEIAIA: pnxavikr] udénon, TTOAUTPOTTIKA TTPOCOXH, CUMTTEPACUATOAOYIO HECW
METABANTWY, EKTiMNON TTANBIKATNTAG, EKTINON UTTOAOYIOTIKOU KOGTOUG,

EKTIUNON XPOVOU EKTEAEONG EPWTAHATOG
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1. INTRODUCTION

Cost-based query optimization is the process where a database system determines the
optimal execution plan for a query. Cardinality estimation, join order selection and com-
putational cost estimation of a (sub)plan highly affect the decisions of the planner during
the construction of the execution plan. Even though most databases use hand-crafted
heuristics, which encompass many years of research, they do not scale well to modern
analytical workloads. Towards this direction, recent efforts have turned their attention to
deep neural networks and aim at substituting traditional components of the planner with
neural approximators [13, 19, 25]. Despite the promising results of previous efforts, we
observe three aspects of the optimization process that most state-of-the-art methods do

not tackle in their entirety:

— Optimization based either only on data or queries. Most approaches address query
optimization from a workload-driven point of view [9,19,36]. There are also efforts focusing
on data distribution approximation, mostly for the cardinality/selectivity estimation problem
[5, 25], taking into account only the underlying data. We observe that a traditional query
optimizer calculates and internally stores statistics regarding the underlying data, which
are used for the cost estimation of a plan operator, while it uses the information provided
from the workload for query caching or optimization of similar queries, in other words it
leverages information from both data and the queries. We believe a ML-based optimizer

should follow this approach too.

— Optimization of a single task during query planning. When a query is posed to the
database system, a traditional query optimizer must estimate the selectivities of the query
filters, the cardinalities of join operators, and form an optimal join ordering for the query.
Very few ML-based methods tackle the aforementioned set of tasks at once [6], while most
focus either only on cardinality estimation [27], query latency estimation [36] or join order
selection [34] by trying either to approximate the data distributions or come up with rich
query representations. All these tasks are mutually dependent, hence optimizing only for

one makes the process inefficient.

— Training on only one plan of the query plan space per query provided by the DB opti-
mizer. The proposed methods tackling the join ordering problem or taking into considera-
tion the execution plan of the query for a particular task, rely heavily on the execution plan
provided by the database optimizer and do not traverse the query plan space at all. This

C. Tsapelas 12
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has as a consequence the biases being present in the optimizer’s logic to form a biased
dataset and get transferred into the model’s weights. As shown in [4], a neural network
has the tendency to amplify the biases present in the training set. In query optimization,

and especially in production environments, this side effect can have catastrophic results.

Motivated from the above limitations, we propose QPSeeker (Query Plan Seeker), a novel
end-to-end neural database planner that (a) simultaneously learns to perform all basic
tasks of a traditional optimizer, such as join order selection, cardinality/selectivity esti-
mation and execution time prediction, (b) leverages queries and data for training and in-
ference purposes, (c¢) samples the query space of each training query to generate an

enriched training set, and (d) uses its rich learned model for query planning.

1.1 Overview.

In QPSeeker’s core is a model that learns to approximate the distributions of the cardinality,
computational cost and runtime of the plans in the workload. Our approach assumes that
queries with similar characteristics (e.g., number of tables, number of joins, filters applied,
etc.) and complexity in terms of execution time will be close to each other in a latent
space, and we use variational inference to learn this space. Hence, at the heart of our
system lies a Variational Autoencoder (VAE) [12], whose latent space is enforced to follow
a Gaussian structure, where each latent dimension represents a latent feature of the data.
At the end of training, similar queries and, particularly, similar query execution plans will

fall close to each other in the learned latent space.

To jointly learn from both data and queries, information about data and data distributions is
used for training, along with features extracted from the query. We address several chal-
lenges. One challenge is to capture the data distributions from the table data and provide
a rich representation for further processing. Moreover, the query/plan representations in-
side the system play an important role in order to give the model the ability to capture the
correlations between the query, its complexity, and the data. Furthermore, one important
question is how we associate the query and the execution plan we are investigating. For

this purpose, our approach comprises the following novel components.

First, for the representation of table data in the model, we choose TaBERT [33], a language
model for tabular data. TaBERT is trained on millions of tables from the WDC corpus [16]
and learns much richer data representations than creating database table embeddings

C. Tsapelas 13
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from scratch. Moreover, the pretraining tasks applied to TaBERT, i.e., the datatype and

cell value prediction, help TaBERT to learn information about table data distributions.

Second, QPSeeker extracts the sets of relations, joins and predicates from the query (as
in [13]), and subsequently learns the mapping between these three sets and the query
plan statistics. In this way, its model has the ability to capture the distributions of vari-
ous instances of the above sets (in terms of which elements are present) paired with the

particular physical operators in the query plan.

Third, QPSeeker employs a rich, tree-like, query plan representation that: (a) captures
data distributions using TaBERT; (b) encodes each node in the plan using information
about this node (including the relations involved, the physical operation, and the contextual
representation of the table data) as well as the impact of the previous operations in the
subplan; and (c¢) computes an embedding vector that contains the prediction of the values
for the cardinality, cost, and runtime for each node, as well as a data vector that captures

the impact of the node’s children.

Fourth, we observe that each plan node does not have the same impact on the final runtime
of the query and its computational cost differs from the cost of the other nodes in the
plan. For example, an early decision of the planner for an Index Scan over a table, which
may seem promising at early stages, may lead to bad paths (join orderings). Therefore,
QPSeeker associates a query and a plan by considering the impact of each plan node
on the query estimations through a cross-attention mechanism. In particular, we apply
attention between the query embedding vector and the embedding vector of each node in

the plan, in order to score which nodes have the most impact on the final estimations.

For training, we generate sample plans for each query instead of relying on a single,
‘best’, plan provided by the DB optimizer. In this way, we “mimick” a traditional optimizer
that traverses the plan space for a given query and estimates the query execution cost and
runtime along with the cardinalities of the intermediate results. For each query, we create
samples from the plan space, by considering different join orderings and different methods
for the operators of the query. The rationale for sampling the plan space is that the DB
optimizer relies on internal statistics and formulas to make its estimations and come up
with the best plan. However, if we just rely on this plan to train our optimizer, we will not
be able to acquire such broad knowledge. Furthermore, we have the choice either to user

the internal cost model of the DBMS or to use a user-defined one to generate the training

C. Tsapelas 14
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data. Using sampling coupled with variational inference allows us to train our model not
to directly learn a mapping of the workload to the target values, but to approximate the
distributions of the cardinality, computational cost and runtime of the execution plans per

query in the workload.

At inference, we use Monte Carlo Tree Search [14] along with our learned cost model,
which combines information from both the data and the query, to traverse the query plan

space.

1.2 Contributions.

The contributions of this thesis are:

e We introduce QPSeeker, a novel neural planner that simultaneously learns to perform
all basic tasks of a traditional optimizer, such as join ordering, cardinality/selectivity

estimation and execution time prediction.

e We cast our learning problem to a variational inference problem. We train our VAE-
based model to approximate the distributions of the cardinality, computational cost
and runtimes of the execution plans. Our model can capture hidden commonalities

between the queries and the data into a latent space.

e We leverage both data and queries. We employ a rich query plan representation that
captures the correlations between the query, its complexity, and the data. For the
representation of table data, we choose TaBERT that captures the data distributions

and provides a rich data representation.

e We calculate the impact each plan node has on the query’s estimations through an

attention mechanism.

e For training, we generate sample plans from the query space of each training query to
generate an enriched training set. In this way, we train our model not to directly learn
a mapping of a workload to the target values, but to approximate the distributions of
the cardinality, computational cost and runtime of the execution plans per query in the

workload.
e Atinference, we use the learnt model and Monte Carlo Tree Search for query planning.
e We present our detailed experimental results. Our experiments show that QPSeeker

achieves being an all-in-one planner that performs all tasks of a query optimizer in

C. Tsapelas 15
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an effective way outperforming competitors. Especially, for complex queries, it out-
performs PostgreSQL. Furthermore, it learns better using complex workloads, and it

shows excellent adaptability to different workloads, where competitors cannot cope.

C. Tsapelas 16
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2. RELATED WORK

In the last years, there has been significant efforts into the integration of machine learning

models into query optimizers.

2.1 Learned Cardinality Estimation

For the regression problems of cardinality and selectivity estimation, many (un)supervised
methods have been proposed. MSCN [13] is a supervised method that uses set extrac-
tion of the basic elements (relations, joins and predicates) from each query. Following
the same rationale, a new heuristic metric called Plan-Error is proposed for cost-guided
cardinality estimation [26]. These approaches neglect the presence of the underlying data

and their effect on query performance.

There are approaches that try to capture the underlying data. Flow-Loss [25] defines
another metric, where the query plan is formulated as an electric circuit and the model
estimates the cheapest path. DQM [5] faces the cardinality estimation task as both (un-
)supervised problem, by estimating distribution densities. Naru [32] and its predecessor,
UAE [29], use autoregressive models to approximate joint distributions over the database
tables. NeuroCard [31] estimated the cardinalities over extracted samples from full outer
joins of the database tables. DeepDB [8] introduced relational sum product networks,
which are tree-structured to capture the data distributions using several local PDFs, and
as we go up the tree, each node stores cumulative PDFs. These approaches can ap-
proximate quite accurately the table distributions for a small number of joins, but they do
not scale well for many joins. FLAT [38] uses another type of network, called factorize-
sum-split-product network (FSPN), to capture the underlying data calculating the level of
dependency of column via conditional factorization. Finally, Fauce [18] introduced a model

incorporating uncertainty in its predictions.

2.2 Learning Join Orders

Another line of research has used reinforcement learning (RL) to find plans with low cost
(e.g., [15], ReJOIN [21]). Neo [20] proposes a learnable query optimizer which incremen-

tally searches and builds the physical query plan. Despite the significant training time,

C. Tsapelas 17
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the produced query plans were very competitive compared to the plans of a commercial
optimizer. Neo also introduced the formulation of the query plan as a Tree-Convolution,
also used in Bao [19]. Bao uses RL to learn hints at the plan operator level to advise the
Postgres query optimizer. Bao’s approach was adopted to shrink the very large search
space of the SCOPE optimizer [2] to make it work in a cloud environment [24]. RTOS [35]
introduced a Tree-LSTM structure used with Q-Learning to tackle the join order selection
task, but also needed large number of episodes to achieve comparable results. Balsa [30]
used RL to produce query plans by applying query plans to Postgres and evaluating its

choices by trial and error.

2.3 Learning Cost Estimation

Plan cost estimation is a critical task of query optimization. E2E-Cost [27] and QPPNet [22]
featurize the physical query plan as a tree and propose to train a regression model to pre-
dict the cost of a physical plan. E2E-Cost mimics the tree-structure of the query plan into
a Tree-LSTM model. Moreover, it introduced a new approach to create a neural repre-
sentation keeping the logical semantics of a predicate as well as a new method to create
embeddings for string values. QPPNet also follows the tree structure of the plan, associat-
ing each plan operator to a small MLP. It proposed a plan-structured deep neural network,
i.e., a neural network model specifically designed to predict the latency of query execution
plans by dynamically assembling neural units in a network isomorphic to a given query
plan. Zero-Shot [6] aims at generalizing learned cost estimation to unseen databases. In
contrast to workload-driven approaches, zero-shot cost models suggests a new learning

paradigm based on pre-trained cost models.

2.4 Comparison

QPSeeker is an end-to-end neural-based database planner that can perform all tasks of
a traditional optimizer, i.e., join order selection, cardinality/selectivity estimation, cost and
execution time prediction (while most approaches focus on a single task). Furthermore,
existing approaches are haunted by complex designs and significant training times. For
example, Neo [20] reported 24h for training, while QPPNet [22] used a network of 8 layers,

each additional hidden layer adding on the order of 2! additional weights, that did not
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converge until epoch 1000 (28 hours). Thanks to leveraging Variarional Inference [1]
boosted by a language model (TaBERT), our QPSeeker is considerably leaner, just 14.4M
parameters in total, and can be trained in a short time, (less than 1h) as we will see in the
experiments, making it the first viable solution that brings deep learning inside the query

optimizer.

Furthermore, most approaches do not leverage both the queries and the data. E2ECost
[27] includes a small sample from each table in the encoding similar to [13]. QPSeeker
combines information from the queries and the data. It employs a rich query plan rep-
resentation approach that (a) captures data distributions using TaBERT [33], a language
model suited for tabular data, and (b) uses attention to weigh in the impact of each query
plan node on the query estimations. Note that recent works have focused on query plan
representations. For example, QueryFormer [37] proposes a different scheme based on
Transformers that integrates histograms obtained from database systems into query plan

encoding.
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3. THE PROPOSED FRAMEWORK

3.1 Problem Statement

Given a query, the goal of the planner is to come up with a good execution plan. An ex-
ecution plan is represented as a tree whose internal nodes are operators and its leaves
correspond to the input tables of the query. During query planning, the accurate estima-
tions of cardinalities, costs, and runtimes of the execution plan nodes give the ability to

the optimizer to build good plans.

We consider a workload W of query and execution plan pairs (QFE Ps), where each QEP
is characterized by its cardinality, computational cost, and runtime. We aim to construct
a model, which associates the table data with the physical operations in the plan to pre-
dict the resulting cardinalities, computational costs and runtimes for 1, and further to
approximate the data distributions and the cardinality, computational cost and runtime
distributions from the available workload, and make predictions for unseen queries. Dur-
ing inference, when a query is posed to the database system, QPSeeker uses the trained
model and traverses the query plan space to evaluate candidate plans and suggest the

one to be executed.

3.2 QPSeeker Pipeline

We provide an overview of QPSeeker’s pipeline (Figure 1). A query, execution plan QFE P,
and the data are the input. The Parser parses the query and extracts the relations, the
joins and the predicates in the WHERE clause. The relations and joins are one-hot en-
coded based on the database schema and these encodings are passed to the Query

Encoder to build the query embedding vector.

Based on the relations, joins and filters of the query, the Plan Encoder encodes each
physical operator in the query plan and computes the values of the plan in a bottom-up
fashion. Each plan node takes as input (a) the sum of one-hot encodings of the rela-
tions being present at each level of the subplan, (b) the physical operation applied also in
one-hot encoding, and (c) the contextual representation of the table data extracted from
TaBERT. The output of each node is an embedding vector, where the last dimensions are

the estimations about the cardinality, cost and latency of the plan at this level. The root
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Figure 1: QPSeeker’s architecture. With teal are coloured all the neural-based modules of
QPSeeker. The relations and joins present in the query are passed through their corresponding
MLPs forming the query embedding. TaBERT provides the encodings for base relations, serving as
input to Plan Encoder’s leaves. Each node in the plan is encoded by an LSTM cell. The output of
each plan node is stacked and QPAttention is calculated scoring which nodes have the most
impact on the query. Finally, the Cost Modeler (VAE) estimates the cadinality, cost and runtime of

the (query, plan) pair.
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node holds these values for the entire plan.

Next, we combine the outputs of the Query Encoder and Plan Encoder, i.e., the query and
the plan embedding vectors, using attention (QPAttention) to score which nodes of the plan
affect the most the given query, followed by a dense layer, with output size equal to the sum
of the query and plan embedding vectors. Finally, the result of the attention mechanism
is fed to the cost modeler, a Variational Auto-Encoder that makes the predictions for the
given query as an output vector, similar to the Plan Encoder’s output, with the last three
dimensions being the estimates for the cardinality, cost and latency of the query plan for

the given query.

During the training phase, we follow the encoding process discussed above for the table
data, queries and execution plans, and we train QPSeeker using the Q E Ps in a workload
W. We use two different schemes regarding the derivation process of the execution plans:
(a) one plan per query, suggested by the DB optimizer, and (b) sampling plans from the

plan space of a query. (More details for each method in Section 5.)

On inference, when a query is posed to the system, QPSeeker uses its learned model
to traverse the query plan space, using Monte Carlo Tree Search (MCTS). Initially, we
construct the join graph from the query and then, the algorithm constructs candidate exe-
cution plans starting from base relations and until all joins are applied. At each step, a plan
operation is chosen to be applied and based on the decision, MCTS randomly generates
the next plan operators, until the plan is completed. We evaluate the simulated plan with
QPSeeker’s model and update the rewards of each node in the plan, if is the best plan

found so far. More details in Section 5.3.
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4. QEPS ENCODING

In this section, we describe the encoding for a Q EP. We begin with the query encoding
followed by the encoding of the execution plan. Given the two encodings, we describe
how we associate them through QPAfttention. Finally, we provide an illustration of our
variational inference model, serving as the basis of our cost modeler, to approximate the
statistics for the set of QEPs in the workload W and its utilization through a variational

autoencoder.

Query Parsing. From each query, we extract three sets: (a) the set Ty of query relations,
(b) the set J, of joins, and (c) the set P, of conditions over the database relations. The
sets Ty and J, are passed to the query encoder, while Ty, J4 and P, are passed to the

query plan encoder for further processing.

41 Query Encoding

The query encoder is responsible for providing a rich representation of the query. Its output

will be used to compute the association between the query and the execution plan.

We follow the feature extraction process described in [13]. Each relation in 7'y is mapped
to a one-hot vector of size N, where N is the number of database relations. Similarly,
each join in J is transformed into a one-hot vector with length A/ equal to the number of
all possible joins in the database. Subsequently, we transform each set of vectors into a
fixed-size input for further processing. We map 7'q and J, to two fixed size arrays, Nz N
and MxM, respectively. The Nz N (MxzM resp.) array contains all the one-hot vectors

for T'q (J4, resp.) at the first rows and the rest are all zeros.

We feed each matrix, along with a column vector that serves as mask to filter the non-zero
rows, into a feed forward network with five hidden layers (i.e., a Multi-layer Perceptron,
MLP). Finally, the encoder applies mean pooling among the elements of each set to derive
one representation for each set and concatenates the two representations to form the

query embedding vector.
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4.2 Query Plan Encoding

The goal of the plan encoder is to capture the result of the interactions of the physical
operators over the database tables learning from the operators and the structure of each
query plan. In this way, the model can learn, for example, the cost of applying a Hash Join

over two tables, where the outer table is accessed via an index.

Generally, the performance of each plan operator is highly correlated with that of its chil-
dren in the execution plan. During the flow of computation performed inside the plan en-
coder, we wish to capture this interaction between the nodes at the operator level. Hence,
at each node, we compute an embedding vector that contains the prediction of the values
for the cardinality, cost, and runtime for this node, as well as the interaction between the
nodes. To capture the correlations between the nodes, we need somehow to inform the
parent about the output of its children. Hence, apart from the current state of the subplan,
which will be discussed shortly in node input, each node in the plan encoder passes its

output to its parent.

Figure 2 depicts our plan tree encoding. Plan Encoder assembles the plan operators in a

tree, having the same tree structure as the execution plan provided by the optimizer.

Node Encoding. A query plan consists of two types of nodes: (a) the leaf nodes that
correspond to the scan operations over the base tables of the database, and (b) the in-
termediate nodes that correspond to the join operations. In our configuration, each plan
node is modeled as an LSTM cell [10]. Similar to the query plans produced by a database
system, where each node in a plan is affected only by its children, the input of each LSTM
cell can come only from its children. Additionally, the architecture of the LSTM cell suits
very well the query plan encoding process, as it can capture useful information over long
sequences (its inputs) and decide which information from its ancestors is useful and which

not.

Node Output. Each node of the plan outputs a vector (of size 1500) that contains useful
information about the interactions of the operators in the query plan. An example vector
is seen at the output of the root node in Figure 2. In our formulation, we force from the
Variational AutoEncoder output the last three dimensions of this vector to be the estima-
tions of the cardinality, cost, latency of the node in the plan. The remaining dimensions
comprise a data vector that captures the interactions between the nodes of the (sub-)plan
under this node. As estimates for the whole query plan, we consider the output of the root
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Figure 2: Plan Tree Encoding

node of the plan.

Node Input. The input of a node is a fixed size (2048) vector that combines different types

of information. On the right side of Figure 2, we see the input of a leaf node, and on the left

side, we see the input of an intermediate node. They essentially share a similar structure

but they also have some differences as we explain below.

The input of a leaf is the concatenation of the following vectors (looking at the example

vector from right to left):

a.

Estimations for the cardinality, cost and runtime for the operation of this node. For a

given query plan, we use EXPLAIN to get this information from the DB optimizer.

. The physical operator applied to this node in one-hot encoding.

The representation of the data processed. If there is a filter in the set P of predi-
cates over a column of the table, we take the representation of this column filtered
based on the query predicate, otherwise the table representation. In both cases, the

representation is provided by TaBERT, as we explain below.

. The table accessed in this leaf node in one-hot encoding.

. Zeros for padding. The input of each node consists of two parts. One part comes

from its children nodes and one concerns the operation of the node per se. Since leaf
nodes do not have children, they only encode information regarding the node and the
first part is padded with zeros to tell the plan encoder that there are no children for this
operator of the plan, hence there is no information from a predecessor node to affect

the node.

The input of a non-leaf node is the concatenation of the:
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a. Estimations for the cardinality, cost and runtime for the operation of this node. These
are computed by mean pooling the last three dimensions of the output vectors of the

node’s children.
b. The physical operator applied to the node in one-hot encoding.

c. Therepresentation of the data processed, which comes from the result of mean pooling
over the output from the [CLS] token of each joined relation. This token has a special
functionality as it holds information over the entire table. More details about the [CLS]

token are provided below.

d. The relation encoding is the sum of one-hot vectors of all relations joined up to this
level of the plan. Providing this encoding to the LSTM cell, we inform the plan which

relationships are present in the subplan and which are not.

e. The information about the interaction between the children and parent. Instead of
zeros in leaf nodes indicating the absence of an ancestor, we desire that features from
children nodes are passed up the tree. Hence, we provide also the result of mean

pooling from the data vectors of the node’s children.

4.2.1 TaBERT - Table Data Representation

While the query and the plan representations are crucial, the representation of the table
data and their distributions are also very important. One approach would be to create
embedding vectors from scratch for each database like Neo [20] and TLSTM [27], but
such a strategy has limitations if the table data changes, because the model has to be
retrained again. To override the above restrictions, we reap the benefits of transfer learn-
ing properties found in large pretrained language models. TaBERT [33] is a special case
of BERT [3] for tabular data, and provides much richer and robust tabular data represen-
tation, unbounded from the strict assumptions regarding their datatypes and their prior
distributions as in a RDBMS.

We use TaBERT as follows: for each QEP in the workload, it tokenizes the columns
of the table, and for each column, it creates (name, datatype, value) triplets separated
by a special symbol. Each value is extracted from the top-K rows of the table with the
biggest n-gram overlap with the query. Then, these triplets are concatenated with the
query and served as input to a BERT model. After the initial BERT encoding, TaBERT

needs to gather the information from all row-level encodings into one vector containing
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an output for each column. Consequently, it calculates cell-wise attention over all rows,
called vertical attention. Each cell contains the output of TaBERT for each column in the
table. Finally, as in language modeling, where the [CLS] special token at the start of each
sentence holds information about the whole sentence, similarly this token in the output of
TaBERT holds information for the whole table.

TaBERT is trained on Masked Column Prediction (MCP) and Cell Value Recovery (CVR)
objectives. The former encourages the model to recover the name and the datatype of the
masked column from its contexts, hence learning, in this way, the correlation between the
masked column and the other columns in the table. With this task, we can pass to our plan
encoder information about the datatype of a column. The latter objective encourages the
model to predict the values of the masked columns. More precisely, after column masking
and the extraction of top-K rows from the table, TaBERT is tasked to predict the values of
the masked cells. In this way, TaBERT captures information about the column distribution,
along with its context within the rows. The developers provide three different models for
K =[1,2,3]. With the use of TaBERT, this information is also inferred in QPSeeker’s plan

encoder.

Hence, for each condition in P4 and relation present in the query, we use the latent rep-
resentation extracted from TaBERT by passing the query and the corresponding table
where the condition applies to. We extract the representation of the respective column in
the condition and the table representation to be used in the inputs of the plan encoder as
described earlier. The table representation is extracted for all tables in the query, through
the [CLS] token.

4.3 Attending the queries to the query plans

When the plan encoding phase is finished, QPSeeker combines the query embedding
vector and the plan embedding vector into one embedding vector, as shown in Figure
3. However, the simple approach of concatenating these two vectors into one common
vector does not have any semantic value, as they represent two different sources, i.e., the
query and the query plan along with table data. Instead, we apply cross-attention inspired
by the Perceiver architecture [11]. Furthermore, we observe that each node does not
have the same impact on the plan in terms of the execution time and computational cost

for the complete plan. For example, the selection of Sequential Scan instead of the use
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Figure 3: Attention between the query embedding and the plan nodes’ embeddings.

of an index over a large table with a high selective filter affects more the final execution
time of the plan. Or the selection of an operator requiring more memory and hence more
computational cost, like a Hash Join, will have a higher value for its cost, than an Index
Scan. Therefore, we desire to give a score to each plan node and measure which nodes
in the plan have the higher impact on the final estimations. To this direction, we make use

of cross-attention between the query and the output of each node in the plan.

4.4 Cost Modeler

So far, we have encoded the query, the table data associated with the query plan, and
for each QFE P, we have calculated how the plan is associated with the query by weighing
in the impact of each plan node on the estimations for the query through an attention
mechanism. However, for each query, the space of possible plans is huge, and each plan
has different execution time and computational cost. Our goal is to capture the distributions
of the cardinalities, costs and execution times for the plans in the space of a query, and to

be able to generalise for the entire workload.

For this purpose, at the heart of QPSeeker lies a variational autoencoder, acting as the
cost modeler. The objective of the cost modeler is not only to approximate the target
distributions but also to be able to generalise on unseen queries, by providing accurate
estimates for each plan node statistics, and consequently, for a whole execution plan
suggested by QPSeeker, through variational inference [1]. Our belief is that execution
plans with analogous complexity, in terms of runtime and execution cost, or with similar
characteristics, such as relations and filters applied, if projected to a structured latent

space, will have representations close to each other, depicting these similarities. The use
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Figure 4: VAE’s architecture. The latent space > formulates a mixture of unit-variance Gaussians

of the VAE aims at the formulation of such a latent space, through its functionality.

More precisely, our approach for the Cost Modeler is based on the following framework:
Given a set IV of observed variables, i.e., in our case, a workload W of Q E'Ps, where each
QEP is characterized by its cardinality, cost, and runtime, infer a latent variable z, which

generates the initial observations. The described conditional probabilty can be written as:

p(z|W) =

~—

where the density of workload W can be computed as:
pV) = [ bW )o() d:

As we observe, the calculation of the density function for our workload 1/ demands the
computation of p(z), which we do not have access to, as it is a latent variable, hence the
above integral is intractable. Despite the intractabilty of the integral, we can approximate

the above value by applying variational inference [1].

In variational inference, we specify a family of densities over latent variable z, with the
purpose to find the best candidate approximation to the exact conditional. Hence, let
q(z|W) be the approximation of the latent variable generating the values for cardinalities,
costs and runtimes for the QQ £ Ps in our given workload 1. Since we want to find the best
candidate to approximate the latent variable, the optimization problem is to minimize the
error between the latent and our approximation. Since both values are density functions,

our goal is to minimize the Kullback-Leibler (KL) diveregence, which can be written as
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Figure 5: t-SNE projection of Cost Modeler’s (VAE) latent space on JOB. The colour codes indicate

query plan samples produced from the same query tempalate.

follows:

K Lunin(q(=| W), p(=| W) (4.4.1)

All we need is to specify the form of the latent variable.

441 Forcing structure into the latent space.

VAE implements the previously described model. It consists of three parts: (a) the en-
coder, encoding the input into the latent space, (b) the sampler, sampling from the latent
distribution, and (c) the decoder, which receives the sample from the latent and decodes

it to the initial input.

Initially, the encoder receives the result of QPAttention and encodes it into a latent space,
serving as the p(W|z) in our framework. Then, the sampler samples a data point from this
latent distribution, and finally, the decoder receives this vector from this distribution and
outputs the reconstructed vector, serving as the approximation ¢(z|1V) in our framework.
Finally, the reconstructed vector is passed into a linear layer, to get the estimates for a
particular QEP.
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As described above, in order for VAE to conform with our described framework, its latent
space must describe a distribution, thus it is forced to have a structure. QPSeeker forces
this structure to be a mixture of unit-variance univariate Gaussians, and the latent space
represents the parameters of the distributions mixture. The first half represents the mean
and the other half the variance of the latent distributions, as shown in Figure 4. Finally,
during training, QPSeeker minimizes: a) the reconstruction loss of QPAttetion and the KL
divergence described in equation 4.4 and b) the mean squared error (MSE) between the

true values of QEPs and QPSeeker estimates. The loss can be written as:

QPSeekerioss = ||z — #||* + B * KL[N(us,04), N(0,1)] (4.4.2)

where z are the estimates of QPSeeker and z the true values of a particular QEP. For
B > 1, we emphasize on the KL, encouraging QPSeeker to learn broader distributions.

More on the effect of 5 in the experiments section.

Figure 5 shows how QPSeeker has organized its latent space for QEPS produced by
sampling from JOB. We used t-SNE [28] method to project the 32 latent features into 2-
d plane. The color codes indicate that these QEPs have been produced from the same
query template. QPSeeker has organized its latent space, not only in a way that query
plan samples from the same query template are close to each other, but also samples

from different queries.
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5. TRAINING LOOP & INFERENCE

In this section, we describe the training loop of QPSeeker. We train under two settings: (a)
for each query, we use the query plan provided by the DB optimizer, and (b) we enumerate
the query plan space and extract a sample for training (Section 5.1). In all cases, the
first step is the extraction of the query representation as described in Section 4.1. Then,
we encode each execution plan as described in Section 4.2, and we apply the cross-
attention mechanism showed in Section 4.3 to create the input for the cost modeler. For
the reconstruction loss, we inject the last three dimensions of the output vector of the
variatonal autoencoder with the true values extracted from the execution of the query
plans in Postgres. In this way, we force the cost modeler to learn the true values of the

distributions for the cardinalities, costs and latencies of the query plans.

5.1 Query Plan set selection

In this section, we describe our approach for generating training data from samples of the
query plan space. In order to learn the distributions of the cardinalities, costs and execu-
tion times of the query plans set, the naive approach is to enumerate the query plan space
per query and construct all possible query plans per query. As the number of relations and
joins increases, the plan space is growing exponentially and the time to enumerate and
execute all these plans is prohibitive. Hence, from the query graph, we enumerate all
the possible join orderings. We transform each join order into the corresponding binary
left-depth query plan tree, and we randomly select an operation from Postgres for each
node of the plan. All leaf nodes refer to table scans and all intermediate nodes are the
joins operations between two tables. For each plan we construct, we calculate their corre-
sponding measures, by a simple yet effective user-defined cost model, then we sort them
based on the cost and pick the first 15% as the query plan set for a particular query. Our

cost model is defined below:

1. Seq Scan = tbl_blocks / block_size +

tbl_rows * cpu_tuple_cost

2. 1Index Scan = index_height +

index_leaf_pages / 2 * cpu_tuple_cost
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3. BitmapIndexScan = index_height *

random_page_cost + log(tbl_blocks / block_size)

4. Merge Join = |relA| * log(lrelAl|) +

|lrelB| * log(lrelBl|) + |relAl + |relB|
5. HashJoin = |relA| + 2 * |relB]
6. NestedLoops = |relA| * relB_blocks + relB_blocks

Finally, all produced query plans are submitted to Postgres for execution. In order to inject
our plan in the optimizer, we use the PgCuckoo [9] extension with some modifications,
which forces the optimizer to use our hand-crafted query plan at runtime. Moreover, we
use the EXPLAIN ANALYZE functionality of the database system to get the statistics from
the execution of our plan. In order to reduce the range of values among all the plans
in the query workload, making the predictions for QPSeeker easier, we apply Min-Max
scaling on the cardinalities of the queries, their execution times and the cost per physical
node in the plans. We also apply the same process for the intermediate cardinalities of all

subplans.

5.2 PgCuckoo - Forcing Execution Plans to Postgres

For both training and inference, QPSeeker needs to specify the query plan to be executed
from Postgres’ optimizer. To do so, we initially used the pg_hint_plan extension of Post-
gres, used by many similar systems like QPseeker, which need to take control of planner
decisions for query execution. By specifying "hints” to the optimizer, provided as comment
in the query, the user can tweak the optimizer specifying the scan and join methods, as

well as the join ordering of the tables within the query.

Despite the extend use of pg_hint_plan extension by the research community, we decided
that this tool does not fit our needs, as the final plan executed by Postgres does not always
corresponds with the hints provided, especially during the creation of training samples from
the query plan space. We observed that for the queries where the cost estimation exceeds
a specific limit (2000000000 computational units) the planner ignores the given hints and

continues the planning of the query using its internal functionality.

To overcome the above behavior and make sure that the execution plan will be executed
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Figure 6: PgCuckoo workflow. PgCuckoo translates the query plan provided into algebraic code

ready for immediate execution from the executor.

as expected, we make use of PgCuckoo [9] a Haskell based library which communicates
directly with Postgres executor module for immediate execution. PgCuckoo works as an
external code generator, where the external application makes use of the provided library
and then its translated into algebraic code in the form of plan trees. This code is executed

from the Executor.

In our framework, we have created a plan rewriter, where the produced plan from QPSeeker
is rewritten, follwing the PgCuckoo’s Haskell library format. Then, our plan is compiled into
algebraic code used by Postgres executor. In this way, we are able to control the plan
generation granularity at plan-operator level. This process is used for both the generation
of plans through sampling using our user-defined cost model for training, as well as the

plans produced during inference.

5.3 Inference - Monte Carlo Tree Search

After training the cost model of QPSeeker, the planner can be used for planning new
queries. As mentioned before, as the number of relations increases, the number of pos-
sible execution plans grows exponentially making the plan space intractable. In order to
traverse the search space fast and find a good execution plan, we use the Monte Carlo
Tree Search (MCTS) [14] algorithm. In its basis, MCTS uses randomness to select the

next plan operator using sampling, thus it can estimate a near optimal action in current
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state with low computation effort. Moreover, the fact that it chooses the best action based
on long-term rewards, makes it very appealing for the query plan decision. We use vanilla
MCTS to traverse the query plan space in a bottom-up fashion. We start from base re-
lations and apply one join at a time until all relations are present in the final plan. As a

reward function, we use the UCT formula:

—+Cy— (5.3.1)

where for the i-th node, r; is its reward and calculates how many times the node is present
in the best plan so far during the simulations. Next, n; is the number of rollouts, ¢ is the
number of rollouts of the parent node, and C is the exploration coefficient parameter, rang-
ing between [0, 1]. For the evaluation of each plan node, we use QPSeeker’s internal cost
model, and finally, the best plan is considered the execution plan with the least estimated
execution time. The reward for each node being present in the best plan discovered so
far in the simulation is one unit. For each query, we set a planning time cut-off of 200ms
and if the agent has not finished traversing the space in this time budget, we select the

best plan found so far. MCTS consists of four steps:

1. Selection. Based on the current state of the selected subplan, the agent chooses the
new plan operator in the plan with highest value, based on our policy, forming the new

state of the plan.

2. Expansion. The agent generates all possible nodes of the query plan, based on the

previously selected action in the plan.

3. Rollout. We start a simulation from the current state of the plan by randomly selecting

the next operator to be applied, until the plan is complete.

4. Backpropagation. Based on the played simulation, we estimate the execution time of

the simulated plan using QPSeeker’s cost model and update the rewards.
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6. EXPERIMENTS

In this section, we perform a brief analysis of available workloads and next, we describe
our experimental setup. Initially, we evaluate the ability of QPSeeker to approximate the
distribution of () £ Ps for each evaluation workload and we provide Q-Error percentiles on
each instance. Q-Error [23] essentially measures the deviation between the predicted
and true value, in orders of magnitude. Next, using the best instance per workload, we
compare QPSeeker’s cost model with state-of-the-art systems per task and report again

Q-Error percentiles. More in Section 6.3.

Finally, we evaluate the performance of our cost model, by executing JOB with query plans
produced by a cost model trained on a completely different workload, like Synthetic. More
in Section 6.4.

Table 1: Evaluation workloads, queries and plan generation process.

Light and Extended versions of JOB were used only for evaluation.

Workload Queries QEPs Plan Source Database
Synthetic 100K 100K DB optimizer IMDB
JOB 113 50K sampling IMDB
Stack 6.2K 6.2K DB optimizer Stack
JOB-Light 70 70 - IMDB
JOB-Ext. 24 24 - IMDB

6.1 Workload Analysis

We evaluated QPSeeker using 5 different workloads (Table 1).

1. The Synthetic used in MSCN [13]. This workload consists of 100k queries with 0-2
joins per query.

2. The Stack workload used in Bao [19], which contains over 18 million questions and
answers from StackExchange webistes. The workload consists of 6.2K queries.

3. The JOB workload is an augmentation of the Join Order Benchmark [17]. For each

query, we extract sample plans from the query plan space of each query, as described
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QPSeeker workloads distributions
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Figure 7: Evaluation workloads distributions

in Section 5.1, resulting to 50k QEPs.

4. The JOB-Light and JOB-Ext which are variations of JOB following a completely differ-

ent distributions. These two workloads are used only on inference.

Next, we provide an analysis of the target values in the evaluation workloads. In Figure 7
we demonstrate the distributions of cardinality, cost and execution time of the queries per

workload.

In Figure 8 we provide a small analysis of relations and joins distributions per workload.
Synthetic consists of queries with up to 2 joins, while Stack and JOB contain more complex

and show bigger variety in terms of number of joins.

The first one is IMDB, a common database used for evaluation for systems like QPSeeker

and is about cinematic movies and actors participating in them, with total size 3.5Gb.

Stack database, along with its respective workload, is created by the authors of Bao,
containing over 18 million questions and answers from StackExchange websites, from

the past 10 years. This database is significantly larger than IMDB with total size 270Gb.

6.2 Setup

6.2.1 Competitors

We first compare QPSeeker’s cost model predictions against dedicated systems on each

task. Then we compare the query plans produced by QPSeeker with two other optimizers:
1. Cost Model performance

e Cost Estimation. We compare our predictions on plan costs with Zero-shot Cost Esti-

mator [7]. Itis a db-agnostic cost estimator using features extracted from the execution
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Figure 8: JOB (left), Synthetic (middle), Stack (right) relations (upper) and joins (lower)

distributions

plan which are common across different databases. We train Zero-Shot Cost Estimator
over the databases/workloads provided by the authors and we use QPSeeker work-

loads/databases as inference.

e Cardinality Estimation. We compare our query cardinality predictions with MSCN [13].

It is a cardinality estimator using the relation, join and filter sets present in the query.

We transformed our input workloads to be suitable for input to MSCN.

e Runtime Prediction. We compare QPSeeker’s runtime predictions with QPPNet [22],

which is a plan-based runtime estimator. It constructs a network similar to the tree
structure of the execution plan, assigning a different MLP for each plan operator. We

extended their dataset creation process to include QPSeeker workloads.

Query Optimization We use PostgreSQL as our baseline system. Furthermore, we

use Bao [19], which is a RL-based optimizer providing hints to PostgreSQL planner to

deactivate certain plan operators per query. We trained Bao, by letting it to gain experience

through the execution of the training set of QPSeeker. Then, we use Bao as an advisor

for the execution of the evaluation set.

6

.2.2 Hyperparameters.

The output size for the relations and joins MLP in Query Encoder is 256 each, resulting

in a 512-dimensional vector. The hidden layer size of each MLP is 256. The output size

C.

Tsapelas 38



QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

5_cast_type
nplete_cast - 70000
npany_type
link_type
kind_type ~- 60000 account
info_type 28434

pany_name PAGEE]

keyword

6000
answer

50000 post_link 5000

role_type badge

aka_name 40000 ) 4000
movie_link site

aka_title
Jie_info_idx

so_user 3000
30000

_companies tag
ie_keyword

20323
char_name 4473

title 34849
person_info 1408
movie_info 19265

JOB Coverage Synthetic Coverage

question 2000
20000

tag_question

— 1000
comment 700

10000

22353 Occurence

34213

Figure 9: JOB (left) and Synthetic (right) workload coverage.

of each plan node in Plan Encoder is equal to 950 and we extract the hidden state of the
LSTM cell for each plan node. The Cross-Attention mechanism has h = 4 attention heads
with size 256. The output of each head is concatenated and given as input to a linear
layer with output size equal to the sum of the two MLPs from the Query Encoder and the
output from the Plan Encoder. For the VAE, both the encoder and the decoder are feed
forward networks consisting of 5 hidden layers each. The output of each hidden layer is
cut down to the half and doubled in the decoder case similarly. We tested various sizes
for all components of the architecture, where the increase of parameters in the model did
not result in significant boost in predictions accuracy. We set the latent space of VAE to
represent 32 latent features. For TaBERT, we extract the representation of the tuple with
the highest n-gram overlap with the query, hence we set K = 1. The authors implemented
instances for K € [1,2,3]. We did not observe any significant difference in prediction
accuracy, but higher numbers of K have a noticeable impact on computation cost and
response time from TaBERT. For each model instance, we set the batch size equal to 16

with learning rate to 0.001.

6.2.3 Training Setup

In all training setups, we split the available workload into 80% - 20% training and evalua-
tion QE Ps sets, respectively. Especially, in the JOB training setup, where the query plans

are sampled, we split the available QF Ps at query level, thus we evaluate QPSeeker on
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queries never seen before. We experiment with the effect of 5 parameter on QPSeeker’s
distribution approximation (Formula (4.4.2)). For each workload, we train 3 instances of
QPSeeker with g values in [100, 200, 300]. The /3 values, were extracted after monitoring
the gradients of the network and the values between the KL divergence and the recon-

struction loss. For inference, we set the exploration parameter C' = 0.5.

6.3 Cost Model Performance

First, we report Q-Error percentiles for cardinality, cost and runtime prediction of QPSeeker
for diferrent values of parameter 5. Next, we use the best instance per workload, based on

predicted runtime, and compare Q-Error percentiles with each competitor on all workloads.

6.3.1 Parameter j effect.

Tables [2, 3, 4] show the performance of our model compared with true values for each
quantity. For each workload, we highlight the model instance with the best performance
regarding the runtime prediction, as this prediction is used during inference as the scor-
ing model for MCTS. Generally, we observe that, in both JOB and Stack workloads, the
smallest value of 5 = 100, has the best results, while for Synthetic, it is close to QPSeeker
instance with 5 = 200. This result can be explained from the formulation of our loss func-
tion. Keeping the value of 5 low, favors the reconstruction loss, in other words focuses

more on correct predictions, making QPSeeker to be more strict to its predictions.

Among datasets, we observe QPSeeker adapts really well on the "complex” workloads, but
it falls short on the "easy one” (i.e., the Synthetic). This difference between the Synthetic
and the other two workloads comes from the fact that the input to the Query Encoder on the
former case is much more sparse than the latter ones. A large subset of Synthetic queries
involve only one table. For these queries, the Relations MLP gets a matrix containing the
one-hot encoding in only one cell and the rest of the Nz /V input contains zeros while the

Joins MLP gets as input a matrix fulled with zeros.

This observation also gives us food for thought regarding how to train a neural model. A
workload like Synthetic that contains very simple queries may not help a neural model
acquire good knowledge of the complexity of the underlying schema and hence the query

complexity. This is an interesting research direction.
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6.3.2 Cost Estimation.

For the Zero-Shot model, we had to extend its parser to be compatible with our workload
format. We performed the evaluation suggested and implemented by the authors. We
trained Zero-shot model on 19 different databases and 77 workloads (approximately 3
per database), the same used by the authors. All hyperparameters remained unchanged
and we trained the model with the default setup proposed by the authors. The evaluation

results are shown in Table 5.

First, we observe that for Synthetic workload, PostgreSQL gave significantly better pre-
dictions from the other two competitors. Next, Zero-Shot outperformed QPSeeker on JOB
and achieved the best results among all systems. Finally, QPSeeker very well on Stack
and outperformed by orders of magnitude both systems. These results are very interest-
ing, as each competitor is better at exactly one workload. By an analysis of the workloads,
we observe QPSeeker could not capture the complex distributions of the first two work-

loads, as they form distributions with more than two modes.

6.3.3 Cardinality Estimation.

For cardinality estimation, we compare our system against MSCN. For each workload,
we train it with the default setup suggested by the authors. For MSCN to be compatible
with Stack and JOB workloads, we had to remove any alphanumerical filters per query,
as it accepts only numerical ones. The results of our evaluation are shown in Table 6.
On Synthetic workload, MSCN gives better results, as expected and is accurate until the
90th percentile. Next, on JOB, we observe QPSeeker to provide the best estimates, while
MSCN seems to be unable to adapt to this workload from the 50t/ percentile and above.
Finally, on Stack workload, QPSeeker provides decent estimates for half of the queries,
while both systems perform close to each other as we go to the 99th percentile. Inter-
estingly, on both complex workloads, QPSeeker outperforms PostgreSQL, with the latter
having the worst performance among all three on Stack. Both Stack and JOB have com-

plex queries with many joins, where PostgreSQL makes bad estimations.
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Figure 10: Number of queries completed through time.

6.3.4 Execution Time Prediction.

For runtime prediction of queries, we compare our system with QPPNet. Despite QPP-
Net’'s small size (approx. 4.5 MB), its complexity and the fact that each neural unit needs
an optimizer separately makes the training process to be prohibitive for real-life scenar-
ios. The results of our evaluation are shown in Table 7. QPSeeker shows that it can learn
better when trained on complex workloads such as JOB and Stack. For JOB, QPSeeker
provides accurate estimates up to the 90th percentile, while the value 7.02 on the 99th
percentile is very satisfying. On the other hand, QPPNet manages to adapt for the ma-
jority of the queries but not close to QPSeeker’s performance. Finally, on Stack workload
both competitors are very competitive with each other, with QPSeeker achieving to pro-
vide better results for the vast majority of the queries. Again, we observe that PostgreSQL

does not cope well with the complex workloads.

6.4 Query Optimization

In this section, we evaluate the performance of query plans produced by QPSeeker in
comparison with PostgreSQL and Bao on two available workloads, Stack and JOB, along
with its variants (light and extended). For Stack, QPSeeker and Bao were both trained
and tested on query sets coming from the same workload. As mentioned in the training
setup, test queries are never seen during training. For JOB workload and its variations,

we wish to test how well QPSeeker adapts to query workloads having completely different
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Comparison of QPSeeker and Bao against PostgreSQL
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Figure 11: Query Runtimes margins of Bao (blue) and PostgreSQL (orange) compared with

PostgreSQL on JOB (lower is better).

distributions. To do so, we train QPSeeker on Synthetic workload and test the query plans
provided for all instances of JOB. As shown in Figure 8, Synthetic is a simple workload
which covers a small subset of database tables. For fair comparison, we use the instance
of Bao trained on the same training set with QPSeeker. Moreover, we provide results on

two variations of JOB, the extended and the light version.

Figure 10 showcases the execution of each workload per system. Finally, in Figure 11 we
compare Bao and QPSeeker with PostgreSQL and check if there is any speed-up for all

113 queries in the workload.

6.4.1 Queries executed through time

In Figure 10, we demonstrate the number of queries executed during execution per work-

load.

For Stack and JOB workloads, QPSeeker is very close with PostgreSQL, having very small
variance in query runtime, while in the extended version manages to outperform all com-
petitors. On the other hand, QPSeeker had the worst performance in JOB-Light, by a large
margin. This result produced by large regressions on two memory-demanding queries in
the workload. Generally, Bao did not manage to adapt to any new workloads having the
worst performance except JOB-Light, where it needs the double time in comparison with

PostgreSQL to execute it.
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6.4.2 JOB comparison

In Figure 11, we showcase the margin between the runtimes of QPSeeker and Bao plans,
when trained on Synthetic workload, compared with PostgreSQL on JOB. We want to

check if there is any speed-up for all 113 queries in the workload.

First, we observe that Bao could not adapt to the new workload and provides a worst
execution plan for the majority of the queries. In total, Bao was a minute slower than
PostgreSQL across all queries in JOB, providing a better plan only on two queries. On
the other hand, QPseeker is on par with PostgreSQL for the maijority of the workload,
performing better on some queries, and only being worse on 4 queries. This result is very
encouraging, as the majority of tables being present in JOB queries, are not present in
Synthetic ones. Thus, QPSeeker not only performed well on queries never seen before,

but adapted also on parts of the database that were never seen during training phase.

6.5 Discussion

We make the following observations that touch upon performance, training workloads, and

research directions.

o QPSeeker can approximate quite well query cardinalities and runtimes outperforming
dedicated competitors and PostgreSQL, while for cost, it could not capture complex

distributions well (which points to a possible direction for future work).

e QPSeeker is an all-in-one planner that performs all tasks of a query optimizer with the
ultimate goal being query planning. Putting all together, we have a neural planner that
does all tasks by itself, and manages to perform well for query planning (outperforming
Bao).

e Furthermore, training on one workload and evaluating on a different one, we saw that

QPSeeker can be as good as PostgreSQL, while Bao could not adapt to the new
workload.

o QPSeeker learns better using complex workloads. A workload like Synthetic that con-
tains very simple queries may not help a neural model acquire good knowledge of the
complexity of the underlying schema and the queries. Designing appropriate training

sets for neural models for databases is required.
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e QPSeeker outperforms PostgreSQL (and competitors) in complex queries. That high-
lights a possible direction towards hybrid optimizers where a neural planner kicks in

for complex queries where traditional optimizers have trouble handling.
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Table 2: QPSeeker Cost Model Cardinality predictions for different values of 3

Cardinality
Dataset Perc £ =100 [ =200 [ =300
25% 5.98 4.81 5.40
50% 23.72 18.49 21.02
75% 164.66 134.20 148.35
Synthetic 90% 1440.46 1712.01 1477.18
95% 7332.00  7736.28  9047.75
99% 9268.34 10025.61 1148.05
max 9847.69 11089.92 1219.79
mean 561.85 749.27 804.38
std 3196.24  3571.49  3893.63
25% 1.24 3.29 4.68
50% 2.40 5.79 6.23
75% 37.52 45.27 58.72
JOB 90% 77.25 95.08 100.39
95% 1563.37  2137.53  2267.75
99% 1570.83 2275.12 2285.32
max 1590.41 2405.09  2349.83
mean 157.16 208.99 183.71
std 435.31 596.74 567.28
25% 3.12 3.35 3.24
50% 10.85 10.68 10.95
75% 48.68 48.03 49.43
Stack 90% 268.71 275.21 253.63
95% 471.00 577.00 499.00
99% 1031.86 842.3 973.96
max 5701.26  4653.89  5381.35
mean 90.78 89.15 89.94
std 302.53 264.69 289.82
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Table 3: QPSeeker Cost Model Cost predictions for different values of 5

Cost
Dataset Perc £ =100 [ =200 [ =300
25% 2.28 1.74 2.16
50% 5.31 4.20 5.115
75% 11.99 9.84 11.79
Synthetic 90% 30.75 40.86 31.82
95% 2580.73  3654.32  2753.45
99% 3742.72  5299.70  3993.21
max 6695.70  9481.13  7143.81
mean 197.32 276.32 209.96
std 827.55 1172.52 883.07
25% 14.60 11.12 10.34
50% 122.56 160.80 94.62
75% 122.58 160.80 100.69
JOB 90% 122.66 160.90 150.51
95% 407.87 314.62 297.73
99% 980.30 747.23 802.18
max 5886.41 5249.20  5189.71
mean 272.47 333.86 297.37
std 1734.80 1362.93 1396.26
25% 1.10 1.29 1.30
50% 1.16 1.48 1.56
75% 1.42 1.64 1.70
Stack 90% 1.52 1.93 1.96
95% 1.66 2.37 2.85
99% 147.81 246.28 250.31
max 291.42 485.56 481.45
mean 4.79 7.43 7.89
std 12.29 37.24 35.23
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Table 4: QPSeeker Cost Model Runtime predictions for different values of 5

Runtime
Dataset Perc £ =100 [ =200 [ =300
25% 2.31 1.88 2.28
50% 4.20 3.79 4.15
75% 11.97  10.75 11.83
Synthetic 90% 58.35 71.87 58.389
95% 243.23  323.01 248.76
99% 302.49 401.70 309.37
max 433.69 575.93 443.56
mean 28.72  35.39 29.15
std 69.24  92.47 70.84
25% 1.44 1.45 1.62
50% 1.97 2.05 2.12
75% 3.00 3.47 3.15
JOB 90% 7.02 5.75 5.31
95% 14.83 14.73 13.96
99% 48.31 59.41 64.37
max 969.13 1016.20 1103.21
mean 5.43 5.41 5.29
std 24.28 25.25 27.89
25% 1.52 1.50 1.56
50% 2.76 2.77 2.91
75% 6.02 5.81 6.60
Stack 90% 17.44 15.51 19.59
95% 39.07 37.13 37.81
99% 125.65 142.21 109.42
max 255.92 22211 316.92
mean 8.96 9.02 9.23
std 22.05 22.76 22.76
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C. Tsapelas

Table 5: Cost Estimation Q-Error percentiles

w Perc QPSeeker Zero-shot  PostgreSQL
25% 1.74 1.32 2.56
50% 4.20 1.83 4.71
75% 9.84 4.12 9.59
90% 40.86 26.28 18.06
95% 3654.32 106.51 30.28
99% 5299.70 282.174 115.34
Synthetic
max 9481.13 724.54 116 009.00
mean 276.32 15.86 13.60
std 1172.52 49.54 522.61
25% 14.60 1.56 5.70
50% 122.56 2.75 13.56
75% 122.58 6.00 74.95
90% 122.66 11.86 401.91
95% 407.87 20.58 1316.60
99% 980.30 46.16 2961.72
JOB
max 5886.41 9185.76 2961.72
mean 272.47 8.92 184.18
std 1734.8 139.39 559.03
25% 1.10 1.58 212.58
50% 1.16 2.52 596.91
75% 1.42 4.90 1901.63
90% 1.52 175.74 6050.96
95% 1.66 175.73 12247.22
99% 147.81 1817.71 38145.16
Stack
max 291.42 3351.50 194 529.21
mean 4.79 46.75 2807.72
std 12.29 246.57 8395.04
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C. Tsapelas

Table 6: Cardinality Estimation Q-Error percentiles

w Perc QPSeeker MSCN PostgreSQL
25% 4.81 1.07 1.22
50% 18.49 1.22 2.07
75% 134.20 1.64 4.82
90% 1712.01 3.80 13.00
95% 7736.28 7.96 27.52
Synthetic 99% 10025.61 31.59 154.66
max 11089.33 1697.75 293047.00
mean 749.27 3.09 44.97
std 3571.49 25.34 2042.65
25% 1.24 2.81 5.92
50% 2.40 10.42 30.46
75% 37.52 57.51 309.50
90% 77.25 634.92 1570.66
95% 1563.37 2128.60 3473.50
JOB 99% 1570.83 26 089.85 13077.50
max 1590.41 68 185.00 13637.00
mean 157.16 1377.37 751.77
std 435.31 7879.18 2294.43
25% 3.12 1.75 23.00
50% 10.85 3.71 257.00
75% 48.68 11.87 2674.33
90% 268.71 58.40 15015.50
95% 471.00 216.98 37465.50
Stack 99% 1031.86 940.38 275255.55
max 5701.26 263309.14  3751326.50
mean 90.78 131.25 12030.30
std 302.53 3990.69 79522.75
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C. Tsapelas

Table 7: Execution Time Estimation Q-Error percentiles

w Perc QPSeeker QPPNet PostgreSQL
25% 1.88 1.17 1.2
50% 3.79 1.41 1.68
75% 10.75 2.14 2.76
90% 71.87 8.57 5.36
95% 323.01 17.35 13.03
Synthetic 99% 401.70 633.14 356.34
max 575.93 2168.15 82166.00
mean 35.39 18.06 18.17
std 92.47 115.13 514.05
25% 1.44 3.38 18.15
50% 1.97 8.89 116.98
75% 3.00 31.28 882.83
90% 7.02 181.13 47392.97
95% 14.83 575.79 297577.39
JOB 99% 48.31 2682.05 3646 587.51
max 969.13 114 386.67 36253 773.41
mean 5.43 225.95 106 542.84
std 24.28 2165.01 624 869.24
25% 1.52 2.00 1.03
50% 2.76 3.99 1.17
75% 6.02 8.31 1.71
90% 17.44 19.09 4.18
95% 39.07 31.50 4521.73
Stack 99% 125.65 70.04 103700.91
max 255.92 193.29  9451025.74
mean 8.96 8.50 28103.29
std 22.05 14.97 363 394.66
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7. CONCLUSIONS

This work introduced QPSeeker, a novel database planner that combines the database
data along with queries, to simultaneously learn to perform all basic tasks of a traditional
optimizer, i.e., estimate the running time, computational cost and cardinality of a query,

using variational inference, and it uses its rich learned model for query planning.

We showed that QPSeeker organizes its latent space in a way, where QEPs generated
not only from the same but also from different queries, have latent representations close
to each other. Moreover, we showed the formulation of such a cost model can provide
good estimates for the majority of queries in the workload and g parameter significantly
affects the final results. QPSeeker’s cost model is effective and outperforms many times
its competitors, especially on the more complex workloads, rather than the simple one.
Finally, we showed that QPSeeker can achieve comparable or better performance, on
complex workloads, like JOB and its variations, even when trained on a non-complex
workload which can be easily constructed, like Synthetic. Our work opens up several

interesting research directions, including work on hybrid optimizers and benchmarks.
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