
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

Data Science and Information Technologies

SPECIALIZATION

Big Data and Artificial Intelligence

MASTER’S THESIS

QPSeeker - An efficient Neural Planner combining both
data and queries through Variational Inference

Christos T. Tsapelas

ATHENS

June 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

Επιστήμη Δεδομένων και Τεχνολογίες Πληροφορίας

ΕΙΔΙΚΕΥΣΗ

Μεγάλα Δεδομένα και Τεχνητή Νοημοσύνη

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

QPSeeker - Νευρωνικός Βελτιστοποιητής, βασισμένος
στα ερωτήματα και στα δεδομένα, χρησιμοποιώντας

συμπερασματολογία μέσω μεταβλητών

Χρήστος Θ. Τσαπέλας

ΑΘΗΝΑ

Ιούνιος 2023

Master’s Thesis

QPSeeker - An efficient Neural Planner combining both data and queries through

Variational Inference

Christos T. Tsapelas

S.N.: DS1200018

SUPERVISORS:

Georgia Koutrika, Research Director, Athena Research and Innovation Center

EXAMINATION COMMITTEE:

Georgia Koutrika, Research Director, Athena Research and Innovation Center

Yannis Ioannidis, Professor, National and Kapodistrian University of Athens

Timoleon Sellis, Research Director, Archimedes Research Unit on AI, Data Science and

Algorithms

June 2023

Διπλωματική Εργασία

QPSeeker - Νευρωνικός Βελτιστοποιητής, βασισμένος στα ερωτήματα και στα δεδομένα,

χρησιμοποιώντας συμπερασματολογία μέσω μεταβλητών

Χρήστος Θ. Τσαπέλας

Α.Μ.: DS1200018

ΕΠΙΒΛΕΠΟΝΤΕΣ:

Γεωργία Κούτρικα, Διευθύντρια Έρευνας, Κέντρο Έρευνας και Καινοτομίας, ”ΑΘΗΝΑ”

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Γεωργία Κούτρικα, Διευθύντρια Έρευνας, Κέντρο Έρευνας και Καινοτομίας, ”ΑΘΗΝΑ”

Γιάννης Ιωαννίδης, Καθηγητής, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τιμολέων Σελλής , Διευθυντής Έρευνας, Μονάδα ”ΑΡΧΙΜΗΔΗΣ”, Κέντρο Έρευνας στην

Τεχνητή Νοημοσύνη, την Επιστήμη Δεδομένων και τους Αλγορίθμους , Ερευνητικό Κέντρο

Αθηνά

Ιούνιος 2023

ABSTRACT

Query optimization is a well-studied problem in the database community. Recently, deep

learning methods have been applied either to assist the query optimizer on measures

like cardinality estimation, computational cost prediction and query execution time predic-

tion or implementing neural-based optimizers from scratch. Despite the promising results,

very few tackle multiple aspects of the optimizer at the same time or combine both the

underlying data and a query workload. QPSeeker takes a step towards a neural database

planner, encoding first the information provided from the workload and second the under-

lying tables, using the power of special-designed language models for tabular data. Next,

it applies a special form of attention to combine these two sources to approximate the

distributions of cardinalities, costs and execution times of possible query plans. At infer-

ence, when a query is submitted to the database, QPSeeker uses its learned cost model

and traverses the query plan space using Monte Carlo Tree Search to provide the best

execution plan for the query.

SUBJECT AREA: Query Optimization

KEYWORDS: machine learning, multi-modal cross-attention, variational inference,

cardinality estimation, cost estimation, query latency prediction

ΠΕΡΙΛΗΨΗ

Η βελτιστοποίηση ερωτημάτων έχει μελετηθεί εκτενώς από την κοινότητα των βάσεων

δεδομέων. Πρόσφατα, μέθοδοι βαθειάς μηχανικής μάθησης έχουν εφαρμοστεί με τέτοιο

τρόπο ώστε είτε να υποβοηθήσουν το βελτιστοποιητή του συστήματος βάσης δεδομένων

στον υπολογισμό ποσοτήτων όπως, εκτίμηση πληθικότητας, πρόβλεψη υπολογιστικού

κόστους και πρόβλεψη χρόνου εκτέλεσης ενός ερωτήματος, είτε στην κατασκευή βελτιστο-

ποιητών με τη χρήση νευρωνικών δικτύων από το μηδέν. Παρά τα υποσχόμενα αποτελέ-

σματα, λίγες μέθοδοι αντιμετωπίζουν όλες τις προκλήσεις που αντιμετωπίζει ένας βελτιστο-

ποιητής στην πράξη ή συνδυαζούν και τα δεδομένα του συστήματος βάσης δεδομένων και

τα ίδια τα ερωτήματα. O QPSeeker κάνει ένα βήμα προς την κατεύθυνση των βελτιστοποι-

ητών βασισμένων σε αρχιτεκτονικές νευρωνικών δικτύων, κωδικοποιώντας αρχικά την

πληροφορία που παρέχεται από τo σύνολο των ερωτημάτων προς εκτέλεση και για την

κωδικοποίηση τωνπινάκων της υπάρχουσας βάσης, όπως επίσης χρησιμοποιεί τη δύναμη

ειδικών προεκπαιδευμένων γλωσσικών μοντέλων, ειδικά σχεδιασμένων για τον χειρισμό

πινακοειδών δεδομένων. Στη συνέχεια, εφαρμόζει και υπολογίζει μια ειδική μορφή του

μηχανισμού προσοχής, προκειμένου να συνδυάσει τις δύο πηγές εισόδου με σκοπό να

κάνει εκτίμηση των κατανομών των πληθικωτήτων, κόστους και χρόνου εκτέλεσης των

δυνατών πλάνων εκτέλσης. Κατά την επεξεργασία ενός νέου ερωτήμάτος στο σύστημα

της βάσης, ο QPSeeker, εξερευνά το χώρο καταστάσεων όλων των πιθανών πλάνων

εκτέλεσης με τον αλγόριθμο Monte Carlo Tree Search κάνοντας χρήση του μοντέλου

κόστους που διαμορφώθηκε κατά την εκπαίδευσή του, προκειμένου ναπαρέχει το καλύτερο

πλάνο εκτέλεσης για το ερώτημα αυτό.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βελτιστοποίηση Ερωτημάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: μηχανική μάθηση, πολυτροπική προσοχή, συμπερασματολογια μέσω

μεταβλητών, εκτίμηση πληθικότητας, εκτίμηση υπολογιστικού κόστους,

εκτίμηση χρόνου εκτέλεσης ερωτήματος

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to Dr. Georgia Koutrika, Research Director

at Athena Research Center, for the excellent guidance and persistent support. I would

also like to thank my family and friends for the love and support they have provided me

throughout this work.

CONTENTS

1 INTRODUCTION 12

1.1 Overview. 13

1.2 Contributions. 15

2 RELATED WORK 17

2.1 Learned Cardinality Estimation . 17

2.2 Learning Join Orders . 17

2.3 Learning Cost Estimation . 18

2.4 Comparison . 18

3 THE PROPOSED FRAMEWORK 20

3.1 Problem Statement . 20

3.2 QPSeeker Pipeline . 20

4 QEPS Encoding 23

4.1 Query Encoding . 23

4.2 Query Plan Encoding . 24

4.2.1 TaBERT - Table Data Representation . 26

4.3 Attending the queries to the query plans . 27

4.4 Cost Modeler . 28

4.4.1 Forcing structure into the latent space. 30

5 Training Loop & Inference 32

5.1 Query Plan set selection . 32

5.2 PgCuckoo - Forcing Execution Plans to Postgres . 33

5.3 Inference - Monte Carlo Tree Search . 34

6 EXPERIMENTS 36

6.1 Workload Analysis . 36

6.2 Setup . 37

6.2.1 Competitors . 37

6.2.2 Hyperparameters. 38

6.2.3 Training Setup . 39

6.3 Cost Model Performance . 40

6.3.1 Parameter β effect. 40

6.3.2 Cost Estimation. 41

6.3.3 Cardinality Estimation. 41

6.3.4 Execution Time Prediction. 42

6.4 Query Optimization . 42

6.4.1 Queries executed through time . 43

6.4.2 JOB comparison . 44

6.5 Discussion . 44

7 CONCLUSIONS 52

References 55

LIST OF FIGURES

Figure 1: QPSeeker’s architecture. With teal are coloured all the neural-based

modules of QPSeeker. The relations and joins present in the query

are passed through their corresponding MLPs forming the query em-

bedding. TaBERT provides the encodings for base relations, serving

as input to Plan Encoder’s leaves. Each node in the plan is encoded

by an LSTM cell. The output of each plan node is stacked and QPAt-

tention is calculated scoring which nodes have the most impact on

the query. Finally, the Cost Modeler (VAE) estimates the cadinality,

cost and runtime of the (query, plan) pair. 21

Figure 2: Plan Tree Encoding . 25

Figure 3: Attention between the query embedding and the plan nodes’ embed-

dings. 28

Figure 4: VAE’s architecture. The latent space z formulates a mixture of unit-

variance Gaussians . 29

Figure 5: t-SNE projection of Cost Modeler’s (VAE) latent space on JOB. The

colour codes indicate query plan samples produced from the same

query tempalate. 30

Figure 6: PgCuckoo workflow. PgCuckoo translates the query plan provided

into algebraic code ready for immediate execution from the executor. 34

Figure 7: Evaluation workloads distributions . 37

Figure 8: JOB (left), Synthetic (middle), Stack (right) relations (upper) and joins

(lower) distributions . 38

Figure 9: JOB (left) and Synthetic (right) workload coverage. 39

Figure 10: Number of queries completed through time. 42

Figure 11: Query Runtimes margins of Bao (blue) and PostgreSQL (orange)

compared with PostgreSQL on JOB (lower is better). 43

LIST OF TABLES

Table 1: Evaluation workloads, queries and plan generation process. Light and

Extended versions of JOB were used only for evaluation. 36

Table 2: QPSeeker Cost Model Cardinality predictions for different values of β . 46

Table 3: QPSeeker Cost Model Cost predictions for different values of β 47

Table 4: QPSeeker Cost Model Runtime predictions for different values of β . . 48

Table 5: Cost Estimation Q-Error percentiles . 49

Table 6: Cardinality Estimation Q-Error percentiles 50

Table 7: Execution Time Estimation Q-Error percentiles 51

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

1. INTRODUCTION

Cost-based query optimization is the process where a database system determines the

optimal execution plan for a query. Cardinality estimation, join order selection and com-

putational cost estimation of a (sub)plan highly affect the decisions of the planner during

the construction of the execution plan. Even though most databases use hand-crafted

heuristics, which encompass many years of research, they do not scale well to modern

analytical workloads. Towards this direction, recent efforts have turned their attention to

deep neural networks and aim at substituting traditional components of the planner with

neural approximators [13, 19, 25]. Despite the promising results of previous efforts, we

observe three aspects of the optimization process that most state-of-the-art methods do

not tackle in their entirety:

− Optimization based either only on data or queries. Most approaches address query

optimization from a workload-driven point of view [9,19,36]. There are also efforts focusing

on data distribution approximation, mostly for the cardinality/selectivity estimation problem

[5, 25], taking into account only the underlying data. We observe that a traditional query

optimizer calculates and internally stores statistics regarding the underlying data, which

are used for the cost estimation of a plan operator, while it uses the information provided

from the workload for query caching or optimization of similar queries, in other words it

leverages information from both data and the queries. We believe a ML-based optimizer

should follow this approach too.

− Optimization of a single task during query planning. When a query is posed to the

database system, a traditional query optimizer must estimate the selectivities of the query

filters, the cardinalities of join operators, and form an optimal join ordering for the query.

Very fewML-based methods tackle the aforementioned set of tasks at once [6], while most

focus either only on cardinality estimation [27], query latency estimation [36] or join order

selection [34] by trying either to approximate the data distributions or come up with rich

query representations. All these tasks are mutually dependent, hence optimizing only for

one makes the process inefficient.

− Training on only one plan of the query plan space per query provided by the DB opti-

mizer. The proposed methods tackling the join ordering problem or taking into considera-

tion the execution plan of the query for a particular task, rely heavily on the execution plan

provided by the database optimizer and do not traverse the query plan space at all. This

C. Tsapelas 12

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

has as a consequence the biases being present in the optimizer’s logic to form a biased

dataset and get transferred into the model’s weights. As shown in [4], a neural network

has the tendency to amplify the biases present in the training set. In query optimization,

and especially in production environments, this side effect can have catastrophic results.

Motivated from the above limitations, we proposeQPSeeker (Query Plan Seeker), a novel

end-to-end neural database planner that (a) simultaneously learns to perform all basic

tasks of a traditional optimizer, such as join order selection, cardinality/selectivity esti-

mation and execution time prediction, (b) leverages queries and data for training and in-

ference purposes, (c) samples the query space of each training query to generate an

enriched training set, and (d) uses its rich learned model for query planning.

1.1 Overview.

In QPSeeker’s core is amodel that learns to approximate the distributions of the cardinality,

computational cost and runtime of the plans in the workload. Our approach assumes that

queries with similar characteristics (e.g., number of tables, number of joins, filters applied,

etc.) and complexity in terms of execution time will be close to each other in a latent

space, and we use variational inference to learn this space. Hence, at the heart of our

system lies a Variational Autoencoder (VAE) [12], whose latent space is enforced to follow

a Gaussian structure, where each latent dimension represents a latent feature of the data.

At the end of training, similar queries and, particularly, similar query execution plans will

fall close to each other in the learned latent space.

To jointly learn from both data and queries, information about data and data distributions is

used for training, along with features extracted from the query. We address several chal-

lenges. One challenge is to capture the data distributions from the table data and provide

a rich representation for further processing. Moreover, the query/plan representations in-

side the system play an important role in order to give the model the ability to capture the

correlations between the query, its complexity, and the data. Furthermore, one important

question is how we associate the query and the execution plan we are investigating. For

this purpose, our approach comprises the following novel components.

First, for the representation of table data in themodel, we choose TaBERT [33], a language

model for tabular data. TaBERT is trained on millions of tables from the WDC corpus [16]

and learns much richer data representations than creating database table embeddings

C. Tsapelas 13

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

from scratch. Moreover, the pretraining tasks applied to TaBERT, i.e., the datatype and

cell value prediction, help TaBERT to learn information about table data distributions.

Second, QPSeeker extracts the sets of relations, joins and predicates from the query (as

in [13]), and subsequently learns the mapping between these three sets and the query

plan statistics. In this way, its model has the ability to capture the distributions of vari-

ous instances of the above sets (in terms of which elements are present) paired with the

particular physical operators in the query plan.

Third, QPSeeker employs a rich, tree-like, query plan representation that: (a) captures

data distributions using TaBERT ; (b) encodes each node in the plan using information

about this node (including the relations involved, the physical operation, and the contextual

representation of the table data) as well as the impact of the previous operations in the

subplan; and (c) computes an embedding vector that contains the prediction of the values

for the cardinality, cost, and runtime for each node, as well as a data vector that captures

the impact of the node’s children.

Fourth, we observe that each plan node does not have the same impact on the final runtime

of the query and its computational cost differs from the cost of the other nodes in the

plan. For example, an early decision of the planner for an Index Scan over a table, which

may seem promising at early stages, may lead to bad paths (join orderings). Therefore,

QPSeeker associates a query and a plan by considering the impact of each plan node

on the query estimations through a cross-attention mechanism. In particular, we apply

attention between the query embedding vector and the embedding vector of each node in

the plan, in order to score which nodes have the most impact on the final estimations.

For training, we generate sample plans for each query instead of relying on a single,

‘best’, plan provided by the DB optimizer. In this way, we “mimick” a traditional optimizer

that traverses the plan space for a given query and estimates the query execution cost and

runtime along with the cardinalities of the intermediate results. For each query, we create

samples from the plan space, by considering different join orderings and different methods

for the operators of the query. The rationale for sampling the plan space is that the DB

optimizer relies on internal statistics and formulas to make its estimations and come up

with the best plan. However, if we just rely on this plan to train our optimizer, we will not

be able to acquire such broad knowledge. Furthermore, we have the choice either to user

the internal cost model of the DBMS or to use a user-defined one to generate the training

C. Tsapelas 14

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

data. Using sampling coupled with variational inference allows us to train our model not

to directly learn a mapping of the workload to the target values, but to approximate the

distributions of the cardinality, computational cost and runtime of the execution plans per

query in the workload.

At inference, we use Monte Carlo Tree Search [14] along with our learned cost model,

which combines information from both the data and the query, to traverse the query plan

space.

1.2 Contributions.

The contributions of this thesis are:

• We introduce QPSeeker, a novel neural planner that simultaneously learns to perform

all basic tasks of a traditional optimizer, such as join ordering, cardinality/selectivity

estimation and execution time prediction.

• We cast our learning problem to a variational inference problem. We train our VAE-

based model to approximate the distributions of the cardinality, computational cost

and runtimes of the execution plans. Our model can capture hidden commonalities

between the queries and the data into a latent space.

• We leverage both data and queries. We employ a rich query plan representation that

captures the correlations between the query, its complexity, and the data. For the

representation of table data, we choose TaBERT that captures the data distributions

and provides a rich data representation.

• We calculate the impact each plan node has on the query’s estimations through an

attention mechanism.

• For training, we generate sample plans from the query space of each training query to

generate an enriched training set. In this way, we train our model not to directly learn

a mapping of a workload to the target values, but to approximate the distributions of

the cardinality, computational cost and runtime of the execution plans per query in the

workload.

• At inference, we use the learnt model and Monte Carlo Tree Search for query planning.

• We present our detailed experimental results. Our experiments show that QPSeeker

achieves being an all-in-one planner that performs all tasks of a query optimizer in

C. Tsapelas 15

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

an effective way outperforming competitors. Especially, for complex queries, it out-

performs PostgreSQL. Furthermore, it learns better using complex workloads, and it

shows excellent adaptability to different workloads, where competitors cannot cope.

C. Tsapelas 16

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

2. RELATED WORK

In the last years, there has been significant efforts into the integration of machine learning

models into query optimizers.

2.1 Learned Cardinality Estimation

For the regression problems of cardinality and selectivity estimation, many (un)supervised

methods have been proposed. MSCN [13] is a supervised method that uses set extrac-

tion of the basic elements (relations, joins and predicates) from each query. Following

the same rationale, a new heuristic metric called Plan-Error is proposed for cost-guided

cardinality estimation [26]. These approaches neglect the presence of the underlying data

and their effect on query performance.

There are approaches that try to capture the underlying data. Flow-Loss [25] defines

another metric, where the query plan is formulated as an electric circuit and the model

estimates the cheapest path. DQM [5] faces the cardinality estimation task as both (un-

)supervised problem, by estimating distribution densities. Naru [32] and its predecessor,

UAE [29], use autoregressive models to approximate joint distributions over the database

tables. NeuroCard [31] estimated the cardinalities over extracted samples from full outer

joins of the database tables. DeepDB [8] introduced relational sum product networks,

which are tree-structured to capture the data distributions using several local PDFs, and

as we go up the tree, each node stores cumulative PDFs. These approaches can ap-

proximate quite accurately the table distributions for a small number of joins, but they do

not scale well for many joins. FLAT [38] uses another type of network, called factorize-

sum-split-product network (FSPN), to capture the underlying data calculating the level of

dependency of column via conditional factorization. Finally, Fauce [18] introduced amodel

incorporating uncertainty in its predictions.

2.2 Learning Join Orders

Another line of research has used reinforcement learning (RL) to find plans with low cost

(e.g., [15], ReJOIN [21]). Neo [20] proposes a learnable query optimizer which incremen-

tally searches and builds the physical query plan. Despite the significant training time,

C. Tsapelas 17

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

the produced query plans were very competitive compared to the plans of a commercial

optimizer. Neo also introduced the formulation of the query plan as a Tree-Convolution,

also used in Bao [19]. Bao uses RL to learn hints at the plan operator level to advise the

Postgres query optimizer. Bao’s approach was adopted to shrink the very large search

space of the SCOPE optimizer [2] to make it work in a cloud environment [24]. RTOS [35]

introduced a Tree-LSTM structure used with Q-Learning to tackle the join order selection

task, but also needed large number of episodes to achieve comparable results. Balsa [30]

used RL to produce query plans by applying query plans to Postgres and evaluating its

choices by trial and error.

2.3 Learning Cost Estimation

Plan cost estimation is a critical task of query optimization. E2E-Cost [27] andQPPNet [22]

featurize the physical query plan as a tree and propose to train a regression model to pre-

dict the cost of a physical plan. E2E-Cost mimics the tree-structure of the query plan into

a Tree-LSTM model. Moreover, it introduced a new approach to create a neural repre-

sentation keeping the logical semantics of a predicate as well as a new method to create

embeddings for string values. QPPNet also follows the tree structure of the plan, associat-

ing each plan operator to a small MLP. It proposed a plan-structured deep neural network,

i.e., a neural network model specifically designed to predict the latency of query execution

plans by dynamically assembling neural units in a network isomorphic to a given query

plan. Zero-Shot [6] aims at generalizing learned cost estimation to unseen databases. In

contrast to workload-driven approaches, zero-shot cost models suggests a new learning

paradigm based on pre-trained cost models.

2.4 Comparison

QPSeeker is an end-to-end neural-based database planner that can perform all tasks of

a traditional optimizer, i.e., join order selection, cardinality/selectivity estimation, cost and

execution time prediction (while most approaches focus on a single task). Furthermore,

existing approaches are haunted by complex designs and significant training times. For

example, Neo [20] reported 24h for training, while QPPNet [22] used a network of 8 layers,

each additional hidden layer adding on the order of 214 additional weights, that did not

C. Tsapelas 18

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

converge until epoch 1000 (28 hours). Thanks to leveraging Variarional Inference [1]

boosted by a language model (TaBERT), our QPSeeker is considerably leaner, just 14.4M

parameters in total, and can be trained in a short time, (less than 1h) as we will see in the

experiments, making it the first viable solution that brings deep learning inside the query

optimizer.

Furthermore, most approaches do not leverage both the queries and the data. E2ECost

[27] includes a small sample from each table in the encoding similar to [13]. QPSeeker

combines information from the queries and the data. It employs a rich query plan rep-

resentation approach that (a) captures data distributions using TaBERT [33], a language

model suited for tabular data, and (b) uses attention to weigh in the impact of each query

plan node on the query estimations. Note that recent works have focused on query plan

representations. For example, QueryFormer [37] proposes a different scheme based on

Transformers that integrates histograms obtained from database systems into query plan

encoding.

C. Tsapelas 19

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

3. THE PROPOSED FRAMEWORK

3.1 Problem Statement

Given a query, the goal of the planner is to come up with a good execution plan. An ex-

ecution plan is represented as a tree whose internal nodes are operators and its leaves

correspond to the input tables of the query. During query planning, the accurate estima-

tions of cardinalities, costs, and runtimes of the execution plan nodes give the ability to

the optimizer to build good plans.

We consider a workload W of query and execution plan pairs (QEPs), where each QEP

is characterized by its cardinality, computational cost, and runtime. We aim to construct

a model, which associates the table data with the physical operations in the plan to pre-

dict the resulting cardinalities, computational costs and runtimes for W , and further to

approximate the data distributions and the cardinality, computational cost and runtime

distributions from the available workload, and make predictions for unseen queries. Dur-

ing inference, when a query is posed to the database system, QPSeeker uses the trained

model and traverses the query plan space to evaluate candidate plans and suggest the

one to be executed.

3.2 QPSeeker Pipeline

We provide an overview of QPSeeker’s pipeline (Figure 1). A query, execution planQEPs,

and the data are the input. The Parser parses the query and extracts the relations, the

joins and the predicates in the WHERE clause. The relations and joins are one-hot en-

coded based on the database schema and these encodings are passed to the Query

Encoder to build the query embedding vector.

Based on the relations, joins and filters of the query, the Plan Encoder encodes each

physical operator in the query plan and computes the values of the plan in a bottom-up

fashion. Each plan node takes as input (a) the sum of one-hot encodings of the rela-

tions being present at each level of the subplan, (b) the physical operation applied also in

one-hot encoding, and (c) the contextual representation of the table data extracted from

TaBERT. The output of each node is an embedding vector, where the last dimensions are

the estimations about the cardinality, cost and latency of the plan at this level. The root

C. Tsapelas 20

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Query Parser

query

Q

K

VC
ro
ss
-A
tte

nt
io
n
H
ea

d

h

Concat

Linear

Cross-Attention

QPAttention

Relations

MLP

Relations Set

Average

Pooling

Joins

MLP

Joins Set

Average

Pooling

Concat

Query Encoder

Query embedding

Join

Join Scan

Scan Join

Query Plan Encoder
Plan Nodes

embeddings

TaBERT

DB

Cost

ModelerLi
ne

arcardest
costest

runtimeest

relations & joins set relations, filters & joins set

tables contextual

representations

estimations after

cross-attention

Figure 1: QPSeeker’s architecture. With teal are coloured all the neural-based modules of

QPSeeker. The relations and joins present in the query are passed through their corresponding

MLPs forming the query embedding. TaBERT provides the encodings for base relations, serving as

input to Plan Encoder’s leaves. Each node in the plan is encoded by an LSTM cell. The output of

each plan node is stacked and QPAttention is calculated scoring which nodes have the most

impact on the query. Finally, the Cost Modeler (VAE) estimates the cadinality, cost and runtime of

the (query, plan) pair.

C. Tsapelas 21

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

node holds these values for the entire plan.

Next, we combine the outputs of the Query Encoder and Plan Encoder, i.e., the query and

the plan embedding vectors, using attention (QPAttention) to score which nodes of the plan

affect themost the given query, followed by a dense layer, with output size equal to the sum

of the query and plan embedding vectors. Finally, the result of the attention mechanism

is fed to the cost modeler, a Variational Auto-Encoder that makes the predictions for the

given query as an output vector, similar to the Plan Encoder’s output, with the last three

dimensions being the estimates for the cardinality, cost and latency of the query plan for

the given query.

During the training phase, we follow the encoding process discussed above for the table

data, queries and execution plans, and we train QPSeeker using the QEPs in a workload

W . We use two different schemes regarding the derivation process of the execution plans:

(a) one plan per query, suggested by the DB optimizer, and (b) sampling plans from the

plan space of a query. (More details for each method in Section 5.)

On inference, when a query is posed to the system, QPSeeker uses its learned model

to traverse the query plan space, using Monte Carlo Tree Search (MCTS). Initially, we

construct the join graph from the query and then, the algorithm constructs candidate exe-

cution plans starting from base relations and until all joins are applied. At each step, a plan

operation is chosen to be applied and based on the decision, MCTS randomly generates

the next plan operators, until the plan is completed. We evaluate the simulated plan with

QPSeeker’s model and update the rewards of each node in the plan, if is the best plan

found so far. More details in Section 5.3.

C. Tsapelas 22

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

4. QEPS ENCODING

In this section, we describe the encoding for a QEP . We begin with the query encoding

followed by the encoding of the execution plan. Given the two encodings, we describe

how we associate them through QPAttention. Finally, we provide an illustration of our

variational inference model, serving as the basis of our cost modeler, to approximate the

statistics for the set of QEPs in the workload W and its utilization through a variational

autoencoder.

Query Parsing. From each query, we extract three sets: (a) the set T q of query relations,

(b) the set Jq of joins, and (c) the set P q of conditions over the database relations. The

sets T q and Jq are passed to the query encoder, while T q, Jq and P q are passed to the

query plan encoder for further processing.

4.1 Query Encoding

The query encoder is responsible for providing a rich representation of the query. Its output

will be used to compute the association between the query and the execution plan.

We follow the feature extraction process described in [13]. Each relation in T q is mapped

to a one-hot vector of size N , where N is the number of database relations. Similarly,

each join in Jq is transformed into a one-hot vector with length M equal to the number of

all possible joins in the database. Subsequently, we transform each set of vectors into a

fixed-size input for further processing. We map T q and Jq to two fixed size arrays, NxN

and MxM , respectively. The NxN (MxM resp.) array contains all the one-hot vectors

for T q (Jq, resp.) at the first rows and the rest are all zeros.

We feed each matrix, along with a column vector that serves as mask to filter the non-zero

rows, into a feed forward network with five hidden layers (i.e., a Multi-layer Perceptron,

MLP). Finally, the encoder applies mean pooling among the elements of each set to derive

one representation for each set and concatenates the two representations to form the

query embedding vector.

C. Tsapelas 23

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

4.2 Query Plan Encoding

The goal of the plan encoder is to capture the result of the interactions of the physical

operators over the database tables learning from the operators and the structure of each

query plan. In this way, the model can learn, for example, the cost of applying a Hash Join

over two tables, where the outer table is accessed via an index.

Generally, the performance of each plan operator is highly correlated with that of its chil-

dren in the execution plan. During the flow of computation performed inside the plan en-

coder, we wish to capture this interaction between the nodes at the operator level. Hence,

at each node, we compute an embedding vector that contains the prediction of the values

for the cardinality, cost, and runtime for this node, as well as the interaction between the

nodes. To capture the correlations between the nodes, we need somehow to inform the

parent about the output of its children. Hence, apart from the current state of the subplan,

which will be discussed shortly in node input, each node in the plan encoder passes its

output to its parent.

Figure 2 depicts our plan tree encoding. Plan Encoder assembles the plan operators in a

tree, having the same tree structure as the execution plan provided by the optimizer.

Node Encoding. A query plan consists of two types of nodes: (a) the leaf nodes that

correspond to the scan operations over the base tables of the database, and (b) the in-

termediate nodes that correspond to the join operations. In our configuration, each plan

node is modeled as an LSTM cell [10]. Similar to the query plans produced by a database

system, where each node in a plan is affected only by its children, the input of each LSTM

cell can come only from its children. Additionally, the architecture of the LSTM cell suits

very well the query plan encoding process, as it can capture useful information over long

sequences (its inputs) and decide which information from its ancestors is useful and which

not.

Node Output. Each node of the plan outputs a vector (of size 1500) that contains useful

information about the interactions of the operators in the query plan. An example vector

is seen at the output of the root node in Figure 2. In our formulation, we force from the

Variational AutoEncoder output the last three dimensions of this vector to be the estima-

tions of the cardinality, cost, latency of the node in the plan. The remaining dimensions

comprise a data vector that captures the interactions between the nodes of the (sub-)plan

under this node. As estimates for the whole query plan, we consider the output of the root

C. Tsapelas 24

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 2: Plan Tree Encoding

node of the plan.

Node Input. The input of a node is a fixed size (2048) vector that combines different types

of information. On the right side of Figure 2, we see the input of a leaf node, and on the left

side, we see the input of an intermediate node. They essentially share a similar structure

but they also have some differences as we explain below.

The input of a leaf is the concatenation of the following vectors (looking at the example

vector from right to left):

a. Estimations for the cardinality, cost and runtime for the operation of this node. For a

given query plan, we use EXPLAIN to get this information from the DB optimizer.

b. The physical operator applied to this node in one-hot encoding.

c. The representation of the data processed. If there is a filter in the set P q of predi-

cates over a column of the table, we take the representation of this column filtered

based on the query predicate, otherwise the table representation. In both cases, the

representation is provided by TaBERT, as we explain below.

d. The table accessed in this leaf node in one-hot encoding.

e. Zeros for padding. The input of each node consists of two parts. One part comes

from its children nodes and one concerns the operation of the node per se. Since leaf

nodes do not have children, they only encode information regarding the node and the

first part is padded with zeros to tell the plan encoder that there are no children for this

operator of the plan, hence there is no information from a predecessor node to affect

the node.

The input of a non-leaf node is the concatenation of the:

C. Tsapelas 25

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

a. Estimations for the cardinality, cost and runtime for the operation of this node. These

are computed by mean pooling the last three dimensions of the output vectors of the

node’s children.

b. The physical operator applied to the node in one-hot encoding.

c. The representation of the data processed, which comes from the result of mean pooling

over the output from the [CLS] token of each joined relation. This token has a special

functionality as it holds information over the entire table. More details about the [CLS]

token are provided below.

d. The relation encoding is the sum of one-hot vectors of all relations joined up to this

level of the plan. Providing this encoding to the LSTM cell, we inform the plan which

relationships are present in the subplan and which are not.

e. The information about the interaction between the children and parent. Instead of

zeros in leaf nodes indicating the absence of an ancestor, we desire that features from

children nodes are passed up the tree. Hence, we provide also the result of mean

pooling from the data vectors of the node’s children.

4.2.1 TaBERT - Table Data Representation

While the query and the plan representations are crucial, the representation of the table

data and their distributions are also very important. One approach would be to create

embedding vectors from scratch for each database like Neo [20] and TLSTM [27], but

such a strategy has limitations if the table data changes, because the model has to be

retrained again. To override the above restrictions, we reap the benefits of transfer learn-

ing properties found in large pretrained language models. TaBERT [33] is a special case

of BERT [3] for tabular data, and provides much richer and robust tabular data represen-

tation, unbounded from the strict assumptions regarding their datatypes and their prior

distributions as in a RDBMS.

We use TaBERT as follows: for each QEP in the workload, it tokenizes the columns

of the table, and for each column, it creates (name, datatype, value) triplets separated

by a special symbol. Each value is extracted from the top-K rows of the table with the

biggest n-gram overlap with the query. Then, these triplets are concatenated with the

query and served as input to a BERT model. After the initial BERT encoding, TaBERT

needs to gather the information from all row-level encodings into one vector containing

C. Tsapelas 26

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

an output for each column. Consequently, it calculates cell-wise attention over all rows,

called vertical attention. Each cell contains the output of TaBERT for each column in the

table. Finally, as in language modeling, where the [CLS] special token at the start of each

sentence holds information about the whole sentence, similarly this token in the output of

TaBERT holds information for the whole table.

TaBERT is trained on Masked Column Prediction (MCP) and Cell Value Recovery (CVR)

objectives. The former encourages the model to recover the name and the datatype of the

masked column from its contexts, hence learning, in this way, the correlation between the

masked column and the other columns in the table. With this task, we can pass to our plan

encoder information about the datatype of a column. The latter objective encourages the

model to predict the values of the masked columns. More precisely, after column masking

and the extraction of top-K rows from the table, TaBERT is tasked to predict the values of

the masked cells. In this way, TaBERT captures information about the column distribution,

along with its context within the rows. The developers provide three different models for

K = [1, 2, 3]. With the use of TaBERT, this information is also inferred in QPSeeker’s plan

encoder.

Hence, for each condition in P q and relation present in the query, we use the latent rep-

resentation extracted from TaBERT by passing the query and the corresponding table

where the condition applies to. We extract the representation of the respective column in

the condition and the table representation to be used in the inputs of the plan encoder as

described earlier. The table representation is extracted for all tables in the query, through

the [CLS] token.

4.3 Attending the queries to the query plans

When the plan encoding phase is finished, QPSeeker combines the query embedding

vector and the plan embedding vector into one embedding vector, as shown in Figure

3. However, the simple approach of concatenating these two vectors into one common

vector does not have any semantic value, as they represent two different sources, i.e., the

query and the query plan along with table data. Instead, we apply cross-attention inspired

by the Perceiver architecture [11]. Furthermore, we observe that each node does not

have the same impact on the plan in terms of the execution time and computational cost

for the complete plan. For example, the selection of Sequential Scan instead of the use

C. Tsapelas 27

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 3: Attention between the query embedding and the plan nodes’ embeddings.

of an index over a large table with a high selective filter affects more the final execution

time of the plan. Or the selection of an operator requiring more memory and hence more

computational cost, like a Hash Join, will have a higher value for its cost, than an Index

Scan. Therefore, we desire to give a score to each plan node and measure which nodes

in the plan have the higher impact on the final estimations. To this direction, we make use

of cross-attention between the query and the output of each node in the plan.

4.4 Cost Modeler

So far, we have encoded the query, the table data associated with the query plan, and

for each QEP , we have calculated how the plan is associated with the query by weighing

in the impact of each plan node on the estimations for the query through an attention

mechanism. However, for each query, the space of possible plans is huge, and each plan

has different execution time and computational cost. Our goal is to capture the distributions

of the cardinalities, costs and execution times for the plans in the space of a query, and to

be able to generalise for the entire workload.

For this purpose, at the heart of QPSeeker lies a variational autoencoder, acting as the

cost modeler. The objective of the cost modeler is not only to approximate the target

distributions but also to be able to generalise on unseen queries, by providing accurate

estimates for each plan node statistics, and consequently, for a whole execution plan

suggested by QPSeeker, through variational inference [1]. Our belief is that execution

plans with analogous complexity, in terms of runtime and execution cost, or with similar

characteristics, such as relations and filters applied, if projected to a structured latent

space, will have representations close to each other, depicting these similarities. The use

C. Tsapelas 28

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Encoder

Q
PA

tte
nt
io
n

µ1

..

µk

σk

..

σ1

µ

σ

sample

D
ec
od

er

R
ec
on

st
ru
ct
io
n

Figure 4: VAE’s architecture. The latent space z formulates a mixture of unit-variance Gaussians

of the VAE aims at the formulation of such a latent space, through its functionality.

More precisely, our approach for the Cost Modeler is based on the following framework:

Given a setW of observed variables, i.e., in our case, a workloadW ofQEPs, where each

QEP is characterized by its cardinality, cost, and runtime, infer a latent variable z, which

generates the initial observations. The described conditional probabilty can be written as:

p(z|W) =
p(W |z)p(z)

p(W)

where the density of workload W can be computed as:

p(W) =

∫
p(z|W)p(z) dz

As we observe, the calculation of the density function for our workload W demands the

computation of p(z), which we do not have access to, as it is a latent variable, hence the

above integral is intractable. Despite the intractabilty of the integral, we can approximate

the above value by applying variational inference [1].

In variational inference, we specify a family of densities over latent variable z, with the

purpose to find the best candidate approximation to the exact conditional. Hence, let

q(z|W) be the approximation of the latent variable generating the values for cardinalities,

costs and runtimes for the QEPs in our given workloadW . Since we want to find the best

candidate to approximate the latent variable, the optimization problem is to minimize the

error between the latent and our approximation. Since both values are density functions,

our goal is to minimize the Kullback-Leibler (KL) diveregence, which can be written as

C. Tsapelas 29

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 5: t-SNE projection of Cost Modeler’s (VAE) latent space on JOB. The colour codes indicate

query plan samples produced from the same query tempalate.

follows:

KLmin(q(z|W), p(z|W)) (4.4.1)

All we need is to specify the form of the latent variable.

4.4.1 Forcing structure into the latent space.

VAE implements the previously described model. It consists of three parts: (a) the en-

coder, encoding the input into the latent space, (b) the sampler, sampling from the latent

distribution, and (c) the decoder, which receives the sample from the latent and decodes

it to the initial input.

Initially, the encoder receives the result of QPAttention and encodes it into a latent space,

serving as the p(W |z) in our framework. Then, the sampler samples a data point from this

latent distribution, and finally, the decoder receives this vector from this distribution and

outputs the reconstructed vector, serving as the approximation q(z|W) in our framework.

Finally, the reconstructed vector is passed into a linear layer, to get the estimates for a

particular QEP.

C. Tsapelas 30

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

As described above, in order for VAE to conform with our described framework, its latent

space must describe a distribution, thus it is forced to have a structure. QPSeeker forces

this structure to be a mixture of unit-variance univariate Gaussians, and the latent space

represents the parameters of the distributions mixture. The first half represents the mean

and the other half the variance of the latent distributions, as shown in Figure 4. Finally,

during training, QPSeeker minimizes: a) the reconstruction loss of QPAttetion and the KL

divergence described in equation 4.4 and b) the mean squared error (MSE) between the

true values of QEPs and QPSeeker estimates. The loss can be written as:

QPSeekerloss = ||x− x̂||2 + β ∗KL[N(µi, σi), N(0, 1)] (4.4.2)

where x are the estimates of QPSeeker and x̂ the true values of a particular QEP. For

β > 1, we emphasize on the KL, encouraging QPSeeker to learn broader distributions.

More on the effect of β in the experiments section.

Figure 5 shows how QPSeeker has organized its latent space for QEPS produced by

sampling from JOB. We used t-SNE [28] method to project the 32 latent features into 2-

d plane. The color codes indicate that these QEPs have been produced from the same

query template. QPSeeker has organized its latent space, not only in a way that query

plan samples from the same query template are close to each other, but also samples

from different queries.

C. Tsapelas 31

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

5. TRAINING LOOP & INFERENCE

In this section, we describe the training loop of QPSeeker. We train under two settings: (a)

for each query, we use the query plan provided by the DB optimizer, and (b) we enumerate

the query plan space and extract a sample for training (Section 5.1). In all cases, the

first step is the extraction of the query representation as described in Section 4.1. Then,

we encode each execution plan as described in Section 4.2, and we apply the cross-

attention mechanism showed in Section 4.3 to create the input for the cost modeler. For

the reconstruction loss, we inject the last three dimensions of the output vector of the

variatonal autoencoder with the true values extracted from the execution of the query

plans in Postgres. In this way, we force the cost modeler to learn the true values of the

distributions for the cardinalities, costs and latencies of the query plans.

5.1 Query Plan set selection

In this section, we describe our approach for generating training data from samples of the

query plan space. In order to learn the distributions of the cardinalities, costs and execu-

tion times of the query plans set, the naive approach is to enumerate the query plan space

per query and construct all possible query plans per query. As the number of relations and

joins increases, the plan space is growing exponentially and the time to enumerate and

execute all these plans is prohibitive. Hence, from the query graph, we enumerate all

the possible join orderings. We transform each join order into the corresponding binary

left-depth query plan tree, and we randomly select an operation from Postgres for each

node of the plan. All leaf nodes refer to table scans and all intermediate nodes are the

joins operations between two tables. For each plan we construct, we calculate their corre-

sponding measures, by a simple yet effective user-defined cost model, then we sort them

based on the cost and pick the first 15% as the query plan set for a particular query. Our

cost model is defined below:

1. Seq Scan = tbl_blocks / block_size +

tbl_rows * cpu_tuple_cost

2. Index Scan = index_height +

index_leaf_pages / 2 * cpu_tuple_cost

C. Tsapelas 32

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

3. BitmapIndexScan = index_height *

random_page_cost + log(tbl_blocks / block_size)

4. Merge Join = |relA| * log(|relA|) +

|relB| * log(|relB|) + |relA| + |relB|

5. HashJoin = |relA| + 2 * |relB|

6. NestedLoops = |relA| * relB_blocks + relB_blocks

Finally, all produced query plans are submitted to Postgres for execution. In order to inject

our plan in the optimizer, we use the PgCuckoo [9] extension with some modifications,

which forces the optimizer to use our hand-crafted query plan at runtime. Moreover, we

use the EXPLAIN ANALYZE functionality of the database system to get the statistics from

the execution of our plan. In order to reduce the range of values among all the plans

in the query workload, making the predictions for QPSeeker easier, we apply Min-Max

scaling on the cardinalities of the queries, their execution times and the cost per physical

node in the plans. We also apply the same process for the intermediate cardinalities of all

subplans.

5.2 PgCuckoo - Forcing Execution Plans to Postgres

For both training and inference, QPSeeker needs to specify the query plan to be executed

from Postgres’ optimizer. To do so, we initially used the pg_hint_plan extension of Post-

gres, used by many similar systems like QPseeker, which need to take control of planner

decisions for query execution. By specifying ”hints” to the optimizer, provided as comment

in the query, the user can tweak the optimizer specifying the scan and join methods, as

well as the join ordering of the tables within the query.

Despite the extend use of pg_hint_plan extension by the research community, we decided

that this tool does not fit our needs, as the final plan executed by Postgres does not always

correspondswith the hints provided, especially during the creation of training samples from

the query plan space. We observed that for the queries where the cost estimation exceeds

a specific limit (2000000000 computational units) the planner ignores the given hints and

continues the planning of the query using its internal functionality.

To overcome the above behavior and make sure that the execution plan will be executed

C. Tsapelas 33

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 6: PgCuckoo workflow. PgCuckoo translates the query plan provided into algebraic code

ready for immediate execution from the executor.

as expected, we make use of PgCuckoo [9] a Haskell based library which communicates

directly with Postgres executor module for immediate execution. PgCuckoo works as an

external code generator, where the external application makes use of the provided library

and then its translated into algebraic code in the form of plan trees. This code is executed

from the Executor.

In our framework, we have created a plan rewriter, where the produced plan fromQPSeeker

is rewritten, follwing the PgCuckoo’s Haskell library format. Then, our plan is compiled into

algebraic code used by Postgres executor. In this way, we are able to control the plan

generation granularity at plan-operator level. This process is used for both the generation

of plans through sampling using our user-defined cost model for training, as well as the

plans produced during inference.

5.3 Inference - Monte Carlo Tree Search

After training the cost model of QPSeeker, the planner can be used for planning new

queries. As mentioned before, as the number of relations increases, the number of pos-

sible execution plans grows exponentially making the plan space intractable. In order to

traverse the search space fast and find a good execution plan, we use the Monte Carlo

Tree Search (MCTS) [14] algorithm. In its basis, MCTS uses randomness to select the

next plan operator using sampling, thus it can estimate a near optimal action in current

C. Tsapelas 34

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

state with low computation effort. Moreover, the fact that it chooses the best action based

on long-term rewards, makes it very appealing for the query plan decision. We use vanilla

MCTS to traverse the query plan space in a bottom-up fashion. We start from base re-

lations and apply one join at a time until all relations are present in the final plan. As a

reward function, we use the UCT formula:

ri
ni

+ C

√
lnt

ni

(5.3.1)

where for the i-th node, ri is its reward and calculates how many times the node is present

in the best plan so far during the simulations. Next, ni is the number of rollouts, t is the

number of rollouts of the parent node, and C is the exploration coefficient parameter, rang-

ing between [0, 1]. For the evaluation of each plan node, we use QPSeeker’s internal cost

model, and finally, the best plan is considered the execution plan with the least estimated

execution time. The reward for each node being present in the best plan discovered so

far in the simulation is one unit. For each query, we set a planning time cut-off of 200ms

and if the agent has not finished traversing the space in this time budget, we select the

best plan found so far. MCTS consists of four steps:

1. Selection. Based on the current state of the selected subplan, the agent chooses the

new plan operator in the plan with highest value, based on our policy, forming the new

state of the plan.

2. Expansion. The agent generates all possible nodes of the query plan, based on the

previously selected action in the plan.

3. Rollout. We start a simulation from the current state of the plan by randomly selecting

the next operator to be applied, until the plan is complete.

4. Backpropagation. Based on the played simulation, we estimate the execution time of

the simulated plan using QPSeeker’s cost model and update the rewards.

C. Tsapelas 35

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

6. EXPERIMENTS

In this section, we perform a brief analysis of available workloads and next, we describe

our experimental setup. Initially, we evaluate the ability of QPSeeker to approximate the

distribution of QEPs for each evaluation workload and we provide Q-Error percentiles on

each instance. Q-Error [23] essentially measures the deviation between the predicted

and true value, in orders of magnitude. Next, using the best instance per workload, we

compare QPSeeker’s cost model with state-of-the-art systems per task and report again

Q-Error percentiles. More in Section 6.3.

Finally, we evaluate the performance of our cost model, by executing JOBwith query plans

produced by a cost model trained on a completely different workload, like Synthetic. More

in Section 6.4.

Table 1: Evaluation workloads, queries and plan generation process.

Light and Extended versions of JOB were used only for evaluation.

Workload Queries QEPs Plan Source Database

Synthetic 100K 100K DB optimizer IMDB

JOB 113 50K sampling IMDB

Stack 6.2K 6.2K DB optimizer Stack

JOB-Light 70 70 - IMDB

JOB-Ext. 24 24 - IMDB

6.1 Workload Analysis

We evaluated QPSeeker using 5 different workloads (Table 1).

1. The Synthetic used in MSCN [13]. This workload consists of 100k queries with 0-2

joins per query.

2. The Stack workload used in Bao [19], which contains over 18 million questions and

answers from StackExchange webistes. The workload consists of 6.2K queries.

3. The JOB workload is an augmentation of the Join Order Benchmark [17]. For each

query, we extract sample plans from the query plan space of each query, as described

C. Tsapelas 36

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 7: Evaluation workloads distributions

in Section 5.1, resulting to 50k QEPs.

4. The JOB-Light and JOB-Ext which are variations of JOB following a completely differ-

ent distributions. These two workloads are used only on inference.

Next, we provide an analysis of the target values in the evaluation workloads. In Figure 7

we demonstrate the distributions of cardinality, cost and execution time of the queries per

workload.

In Figure 8 we provide a small analysis of relations and joins distributions per workload.

Synthetic consists of queries with up to 2 joins, while Stack and JOB contain more complex

and show bigger variety in terms of number of joins.

The first one is IMDB, a common database used for evaluation for systems like QPSeeker

and is about cinematic movies and actors participating in them, with total size 3.5Gb.

Stack database, along with its respective workload, is created by the authors of Bao,

containing over 18 million questions and answers from StackExchange websites, from

the past 10 years. This database is significantly larger than IMDB with total size 270Gb.

6.2 Setup

6.2.1 Competitors

We first compare QPSeeker’s cost model predictions against dedicated systems on each

task. Then we compare the query plans produced by QPSeeker with two other optimizers:

1. Cost Model performance

• Cost Estimation. We compare our predictions on plan costs with Zero-shot Cost Esti-

mator [7]. It is a db-agnostic cost estimator using features extracted from the execution

C. Tsapelas 37

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 8: JOB (left), Synthetic (middle), Stack (right) relations (upper) and joins (lower)

distributions

plan which are common across different databases. We train Zero-Shot Cost Estimator

over the databases/workloads provided by the authors and we use QPSeeker work-

loads/databases as inference.

• Cardinality Estimation. We compare our query cardinality predictions with MSCN [13].

It is a cardinality estimator using the relation, join and filter sets present in the query.

We transformed our input workloads to be suitable for input to MSCN.

• Runtime Prediction. We compare QPSeeker’s runtime predictions with QPPNet [22],

which is a plan-based runtime estimator. It constructs a network similar to the tree

structure of the execution plan, assigning a different MLP for each plan operator. We

extended their dataset creation process to include QPSeeker workloads.

2. Query Optimization We use PostgreSQL as our baseline system. Furthermore, we

use Bao [19], which is a RL-based optimizer providing hints to PostgreSQL planner to

deactivate certain plan operators per query. We trained Bao, by letting it to gain experience

through the execution of the training set of QPSeeker. Then, we use Bao as an advisor

for the execution of the evaluation set.

6.2.2 Hyperparameters.

The output size for the relations and joins MLP in Query Encoder is 256 each, resulting

in a 512-dimensional vector. The hidden layer size of each MLP is 256. The output size

C. Tsapelas 38

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 9: JOB (left) and Synthetic (right) workload coverage.

of each plan node in Plan Encoder is equal to 950 and we extract the hidden state of the

LSTM cell for each plan node. The Cross-Attentionmechanism has h = 4 attention heads

with size 256. The output of each head is concatenated and given as input to a linear

layer with output size equal to the sum of the two MLPs from the Query Encoder and the

output from the Plan Encoder. For the VAE, both the encoder and the decoder are feed

forward networks consisting of 5 hidden layers each. The output of each hidden layer is

cut down to the half and doubled in the decoder case similarly. We tested various sizes

for all components of the architecture, where the increase of parameters in the model did

not result in significant boost in predictions accuracy. We set the latent space of VAE to

represent 32 latent features. For TaBERT, we extract the representation of the tuple with

the highest n-gram overlap with the query, hence we set K = 1. The authors implemented

instances for K ∈ [1, 2, 3]. We did not observe any significant difference in prediction

accuracy, but higher numbers of K have a noticeable impact on computation cost and

response time from TaBERT. For each model instance, we set the batch size equal to 16

with learning rate to 0.001.

6.2.3 Training Setup

In all training setups, we split the available workload into 80% - 20% training and evalua-

tion QEPs sets, respectively. Especially, in the JOB training setup, where the query plans

are sampled, we split the available QEPs at query level, thus we evaluate QPSeeker on

C. Tsapelas 39

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

queries never seen before. We experiment with the effect of β parameter on QPSeeker’s

distribution approximation (Formula (4.4.2)). For each workload, we train 3 instances of

QPSeeker with β values in [100, 200, 300]. The β values, were extracted after monitoring

the gradients of the network and the values between the KL divergence and the recon-

struction loss. For inference, we set the exploration parameter C = 0.5.

6.3 Cost Model Performance

First, we report Q-Error percentiles for cardinality, cost and runtime prediction of QPSeeker

for diferrent values of parameter β. Next, we use the best instance per workload, based on

predicted runtime, and compare Q-Error percentiles with each competitor on all workloads.

6.3.1 Parameter β effect.

Tables [2, 3, 4] show the performance of our model compared with true values for each

quantity. For each workload, we highlight the model instance with the best performance

regarding the runtime prediction, as this prediction is used during inference as the scor-

ing model for MCTS. Generally, we observe that, in both JOB and Stack workloads, the

smallest value of β = 100, has the best results, while for Synthetic, it is close to QPSeeker

instance with β = 200. This result can be explained from the formulation of our loss func-

tion. Keeping the value of β low, favors the reconstruction loss, in other words focuses

more on correct predictions, making QPSeeker to be more strict to its predictions.

Among datasets, we observeQPSeeker adapts really well on the ”complex” workloads, but

it falls short on the ”easy one” (i.e., the Synthetic). This difference between the Synthetic

and the other two workloads comes from the fact that the input to the Query Encoder on the

former case is much more sparse than the latter ones. A large subset of Synthetic queries

involve only one table. For these queries, the Relations MLP gets a matrix containing the

one-hot encoding in only one cell and the rest of the NxN input contains zeros while the

Joins MLP gets as input a matrix fulled with zeros.

This observation also gives us food for thought regarding how to train a neural model. A

workload like Synthetic that contains very simple queries may not help a neural model

acquire good knowledge of the complexity of the underlying schema and hence the query

complexity. This is an interesting research direction.

C. Tsapelas 40

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

6.3.2 Cost Estimation.

For the Zero-Shot model, we had to extend its parser to be compatible with our workload

format. We performed the evaluation suggested and implemented by the authors. We

trained Zero-shot model on 19 different databases and 77 workloads (approximately 3

per database), the same used by the authors. All hyperparameters remained unchanged

and we trained the model with the default setup proposed by the authors. The evaluation

results are shown in Table 5.

First, we observe that for Synthetic workload, PostgreSQL gave significantly better pre-

dictions from the other two competitors. Next, Zero-Shot outperformed QPSeeker on JOB

and achieved the best results among all systems. Finally, QPSeeker very well on Stack

and outperformed by orders of magnitude both systems. These results are very interest-

ing, as each competitor is better at exactly one workload. By an analysis of the workloads,

we observe QPSeeker could not capture the complex distributions of the first two work-

loads, as they form distributions with more than two modes.

6.3.3 Cardinality Estimation.

For cardinality estimation, we compare our system against MSCN. For each workload,

we train it with the default setup suggested by the authors. For MSCN to be compatible

with Stack and JOB workloads, we had to remove any alphanumerical filters per query,

as it accepts only numerical ones. The results of our evaluation are shown in Table 6.

On Synthetic workload, MSCN gives better results, as expected and is accurate until the

90th percentile. Next, on JOB, we observe QPSeeker to provide the best estimates, while

MSCN seems to be unable to adapt to this workload from the 50th percentile and above.

Finally, on Stack workload, QPSeeker provides decent estimates for half of the queries,

while both systems perform close to each other as we go to the 99th percentile. Inter-

estingly, on both complex workloads, QPSeeker outperforms PostgreSQL, with the latter

having the worst performance among all three on Stack. Both Stack and JOB have com-

plex queries with many joins, where PostgreSQL makes bad estimations.

C. Tsapelas 41

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 10: Number of queries completed through time.

6.3.4 Execution Time Prediction.

For runtime prediction of queries, we compare our system with QPPNet. Despite QPP-

Net’s small size (approx. 4.5 MB), its complexity and the fact that each neural unit needs

an optimizer separately makes the training process to be prohibitive for real-life scenar-

ios. The results of our evaluation are shown in Table 7. QPSeeker shows that it can learn

better when trained on complex workloads such as JOB and Stack. For JOB, QPSeeker

provides accurate estimates up to the 90th percentile, while the value 7.02 on the 99th

percentile is very satisfying. On the other hand, QPPNet manages to adapt for the ma-

jority of the queries but not close to QPSeeker’s performance. Finally, on Stack workload

both competitors are very competitive with each other, with QPSeeker achieving to pro-

vide better results for the vast majority of the queries. Again, we observe that PostgreSQL

does not cope well with the complex workloads.

6.4 Query Optimization

In this section, we evaluate the performance of query plans produced by QPSeeker in

comparison with PostgreSQL and Bao on two available workloads, Stack and JOB, along

with its variants (light and extended). For Stack, QPSeeker and Bao were both trained

and tested on query sets coming from the same workload. As mentioned in the training

setup, test queries are never seen during training. For JOB workload and its variations,

we wish to test how well QPSeeker adapts to query workloads having completely different

C. Tsapelas 42

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Figure 11: Query Runtimes margins of Bao (blue) and PostgreSQL (orange) compared with

PostgreSQL on JOB (lower is better).

distributions. To do so, we train QPSeeker on Synthetic workload and test the query plans

provided for all instances of JOB. As shown in Figure 8, Synthetic is a simple workload

which covers a small subset of database tables. For fair comparison, we use the instance

of Bao trained on the same training set with QPSeeker. Moreover, we provide results on

two variations of JOB, the extended and the light version.

Figure 10 showcases the execution of each workload per system. Finally, in Figure 11 we

compare Bao and QPSeeker with PostgreSQL and check if there is any speed-up for all

113 queries in the workload.

6.4.1 Queries executed through time

In Figure 10, we demonstrate the number of queries executed during execution per work-

load.

For Stack and JOBworkloads, QPSeeker is very close with PostgreSQL, having very small

variance in query runtime, while in the extended version manages to outperform all com-

petitors. On the other hand, QPSeeker had the worst performance in JOB-Light, by a large

margin. This result produced by large regressions on two memory-demanding queries in

the workload. Generally, Bao did not manage to adapt to any new workloads having the

worst performance except JOB-Light, where it needs the double time in comparison with

PostgreSQL to execute it.

C. Tsapelas 43

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

6.4.2 JOB comparison

In Figure 11, we showcase the margin between the runtimes of QPSeeker and Bao plans,

when trained on Synthetic workload, compared with PostgreSQL on JOB. We want to

check if there is any speed-up for all 113 queries in the workload.

First, we observe that Bao could not adapt to the new workload and provides a worst

execution plan for the majority of the queries. In total, Bao was a minute slower than

PostgreSQL across all queries in JOB, providing a better plan only on two queries. On

the other hand, QPseeker is on par with PostgreSQL for the majority of the workload,

performing better on some queries, and only being worse on 4 queries. This result is very

encouraging, as the majority of tables being present in JOB queries, are not present in

Synthetic ones. Thus, QPSeeker not only performed well on queries never seen before,

but adapted also on parts of the database that were never seen during training phase.

6.5 Discussion

Wemake the following observations that touch upon performance, training workloads, and

research directions.

• QPSeeker can approximate quite well query cardinalities and runtimes outperforming

dedicated competitors and PostgreSQL, while for cost, it could not capture complex

distributions well (which points to a possible direction for future work).

• QPSeeker is an all-in-one planner that performs all tasks of a query optimizer with the

ultimate goal being query planning. Putting all together, we have a neural planner that

does all tasks by itself, and manages to perform well for query planning (outperforming

Bao).

• Furthermore, training on one workload and evaluating on a different one, we saw that

QPSeeker can be as good as PostgreSQL, while Bao could not adapt to the new

workload.

• QPSeeker learns better using complex workloads. A workload like Synthetic that con-

tains very simple queries may not help a neural model acquire good knowledge of the

complexity of the underlying schema and the queries. Designing appropriate training

sets for neural models for databases is required.

C. Tsapelas 44

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

• QPSeeker outperforms PostgreSQL (and competitors) in complex queries. That high-

lights a possible direction towards hybrid optimizers where a neural planner kicks in

for complex queries where traditional optimizers have trouble handling.

C. Tsapelas 45

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 2: QPSeeker Cost Model Cardinality predictions for different values of β

Cardinality

Dataset Perc β = 100 β = 200 β = 300

Synthetic

25% 5.98 4.81 5.40

50% 23.72 18.49 21.02

75% 164.66 134.20 148.35

90% 1440.46 1712.01 1477.18

95% 7332.00 7736.28 9047.75

99% 9268.34 10 025.61 1148.05

max 9847.69 11 089.92 1219.79

mean 561.85 749.27 804.38

std 3196.24 3571.49 3893.63

JOB

25% 1.24 3.29 4.68

50% 2.40 5.79 6.23

75% 37.52 45.27 58.72

90% 77.25 95.08 100.39

95% 1563.37 2137.53 2267.75

99% 1570.83 2275.12 2285.32

max 1590.41 2405.09 2349.83

mean 157.16 208.99 183.71

std 435.31 596.74 567.28

Stack

25% 3.12 3.35 3.24

50% 10.85 10.68 10.95

75% 48.68 48.03 49.43

90% 268.71 275.21 253.63

95% 471.00 577.00 499.00

99% 1031.86 842.3 973.96

max 5701.26 4653.89 5381.35

mean 90.78 89.15 89.94

std 302.53 264.69 289.82

C. Tsapelas 46

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 3: QPSeeker Cost Model Cost predictions for different values of β

Cost

Dataset Perc β = 100 β = 200 β = 300

Synthetic

25% 2.28 1.74 2.16

50% 5.31 4.20 5.115

75% 11.99 9.84 11.79

90% 30.75 40.86 31.82

95% 2580.73 3654.32 2753.45

99% 3742.72 5299.70 3993.21

max 6695.70 9481.13 7143.81

mean 197.32 276.32 209.96

std 827.55 1172.52 883.07

JOB

25% 14.60 11.12 10.34

50% 122.56 160.80 94.62

75% 122.58 160.80 100.69

90% 122.66 160.90 150.51

95% 407.87 314.62 297.73

99% 980.30 747.23 802.18

max 5886.41 5249.20 5189.71

mean 272.47 333.86 297.37

std 1734.80 1362.93 1396.26

Stack

25% 1.10 1.29 1.30

50% 1.16 1.48 1.56

75% 1.42 1.64 1.70

90% 1.52 1.93 1.96

95% 1.66 2.37 2.85

99% 147.81 246.28 250.31

max 291.42 485.56 481.45

mean 4.79 7.43 7.89

std 12.29 37.24 35.23

C. Tsapelas 47

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 4: QPSeeker Cost Model Runtime predictions for different values of β

Runtime

Dataset Perc β = 100 β = 200 β = 300

Synthetic

25% 2.31 1.88 2.28

50% 4.20 3.79 4.15

75% 11.97 10.75 11.83

90% 58.35 71.87 58.389

95% 243.23 323.01 248.76

99% 302.49 401.70 309.37

max 433.69 575.93 443.56

mean 28.72 35.39 29.15

std 69.24 92.47 70.84

JOB

25% 1.44 1.45 1.62

50% 1.97 2.05 2.12

75% 3.00 3.47 3.15

90% 7.02 5.75 5.31

95% 14.83 14.73 13.96

99% 48.31 59.41 64.37

max 969.13 1016.20 1103.21

mean 5.43 5.41 5.29

std 24.28 25.25 27.89

Stack

25% 1.52 1.50 1.56

50% 2.76 2.77 2.91

75% 6.02 5.81 6.60

90% 17.44 15.51 19.59

95% 39.07 37.13 37.81

99% 125.65 142.21 109.42

max 255.92 222.11 316.92

mean 8.96 9.02 9.23

std 22.05 22.76 22.76

C. Tsapelas 48

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 5: Cost Estimation Q-Error percentiles

W Perc QPSeeker Zero-shot PostgreSQL

Synthetic

25% 1.74 1.32 2.56

50% 4.20 1.83 4.71

75% 9.84 4.12 9.59

90% 40.86 26.28 18.06

95% 3654.32 106.51 30.28

99% 5299.70 282.174 115.34

max 9481.13 724.54 116 009.00

mean 276.32 15.86 13.60

std 1172.52 49.54 522.61

JOB

25% 14.60 1.56 5.70

50% 122.56 2.75 13.56

75% 122.58 6.00 74.95

90% 122.66 11.86 401.91

95% 407.87 20.58 1316.60

99% 980.30 46.16 2961.72

max 5886.41 9185.76 2961.72

mean 272.47 8.92 184.18

std 1734.8 139.39 559.03

Stack

25% 1.10 1.58 212.58

50% 1.16 2.52 596.91

75% 1.42 4.90 1901.63

90% 1.52 175.74 6050.96

95% 1.66 175.73 12 247.22

99% 147.81 1817.71 38 145.16

max 291.42 3351.50 194 529.21

mean 4.79 46.75 2807.72

std 12.29 246.57 8395.04

C. Tsapelas 49

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 6: Cardinality Estimation Q-Error percentiles

W Perc QPSeeker MSCN PostgreSQL

Synthetic

25% 4.81 1.07 1.22

50% 18.49 1.22 2.07

75% 134.20 1.64 4.82

90% 1712.01 3.80 13.00

95% 7736.28 7.96 27.52

99% 10 025.61 31.59 154.66

max 11 089.33 1697.75 293 047.00

mean 749.27 3.09 44.97

std 3571.49 25.34 2042.65

JOB

25% 1.24 2.81 5.92

50% 2.40 10.42 30.46

75% 37.52 57.51 309.50

90% 77.25 634.92 1570.66

95% 1563.37 2128.60 3473.50

99% 1570.83 26 089.85 13 077.50

max 1590.41 68 185.00 13 637.00

mean 157.16 1377.37 751.77

std 435.31 7879.18 2294.43

Stack

25% 3.12 1.75 23.00

50% 10.85 3.71 257.00

75% 48.68 11.87 2674.33

90% 268.71 58.40 15 015.50

95% 471.00 216.98 37 465.50

99% 1031.86 940.38 275 255.55

max 5701.26 263 309.14 3 751 326.50

mean 90.78 131.25 12 030.30

std 302.53 3990.69 79 522.75

C. Tsapelas 50

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

Table 7: Execution Time Estimation Q-Error percentiles

W Perc QPSeeker QPPNet PostgreSQL

Synthetic

25% 1.88 1.17 1.2

50% 3.79 1.41 1.68

75% 10.75 2.14 2.76

90% 71.87 8.57 5.36

95% 323.01 17.35 13.03

99% 401.70 633.14 356.34

max 575.93 2168.15 82 166.00

mean 35.39 18.06 18.17

std 92.47 115.13 514.05

JOB

25% 1.44 3.38 18.15

50% 1.97 8.89 116.98

75% 3.00 31.28 882.83

90% 7.02 181.13 47 392.97

95% 14.83 575.79 297 577.39

99% 48.31 2682.05 3 646 587.51

max 969.13 114 386.67 36 253 773.41

mean 5.43 225.95 106 542.84

std 24.28 2165.01 624 869.24

Stack

25% 1.52 2.00 1.03

50% 2.76 3.99 1.17

75% 6.02 8.31 1.71

90% 17.44 19.09 4.18

95% 39.07 31.50 4521.73

99% 125.65 70.04 103 700.91

max 255.92 193.29 9 451 025.74

mean 8.96 8.50 28 103.29

std 22.05 14.97 363 394.66

C. Tsapelas 51

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

7. CONCLUSIONS

This work introduced QPSeeker, a novel database planner that combines the database

data along with queries, to simultaneously learn to perform all basic tasks of a traditional

optimizer, i.e., estimate the running time, computational cost and cardinality of a query,

using variational inference, and it uses its rich learned model for query planning.

We showed that QPSeeker organizes its latent space in a way, where QEPs generated

not only from the same but also from different queries, have latent representations close

to each other. Moreover, we showed the formulation of such a cost model can provide

good estimates for the majority of queries in the workload and β parameter significantly

affects the final results. QPSeeker’s cost model is effective and outperforms many times

its competitors, especially on the more complex workloads, rather than the simple one.

Finally, we showed that QPSeeker can achieve comparable or better performance, on

complex workloads, like JOB and its variations, even when trained on a non-complex

workload which can be easily constructed, like Synthetic. Our work opens up several

interesting research directions, including work on hybrid optimizers and benchmarks.

C. Tsapelas 52

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

REFERENCES

[1] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians.

Journal of the American Statistical Association, 112(518):859–877, apr 2017.

[2] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, SimonWeaver, and Jingren

Zhou. Scope: easy and efficient parallel processing of massive data sets. Proc. VLDB Endow., 1:1265–

1276, 2008.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding, 2018.

[4] Melissa Hall, Laurens van der Maaten, Laura Gustafson, and Aaron Adcock. A systematic study of bias

amplification, 2022.

[5] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das.

Multi-attribute selectivity estimation using deep learning, 2019.

[6] Benjamin Hilprecht and Carsten Binnig. Zero-shot cost models for out-of-the-box learned cost prediction.

Proc. VLDB Endow., 15(11):2361–2374, 2022.

[7] Benjamin Hilprecht and Carsten Binnig. Zero-shot cost models for out-of-the-box learned cost prediction,

2022.

[8] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten

Binnig. Deepdb: Learn from data, not from queries! Proc. VLDB Endow., 13(7):992–1005, mar 2020.

[9] Denis Hirn and Torsten Grust. Pgcuckoo: Laying plan eggs in postgresql’s nest. In Proceedings of the

2019 International Conference on Management of Data, SIGMOD ’19, page 1929–1932, New York, NY,

USA, 2019. Association for Computing Machinery.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997.

[11] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.

Perceiver: General perception with iterative attention, 2021.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[13] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper. Learned

cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

[14] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. volume 2006, pages

282–293, 09 2006.

[15] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and Ion Stoica. Learning to

optimize join queries with deep reinforcement learning. ArXiv, abs/1808.03196, 2018.

C. Tsapelas 53

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

[16] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A large public corpus of web

tables containing time and context metadata. In Proceedings of the 25th International Conference Com-

panion onWorld WideWeb, WWW ’16 Companion, page 75–76, Republic and Canton of Geneva, CHE,

2016. International World Wide Web Conferences Steering Committee.

[17] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

How Good Are Query Optimizers, Really? Proc. VLDB Endow., 9(3):204–215, November 2015.

[18] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. Fauce: Fast and accurate deep ensembles with

uncertainty for cardinality estimation. Proc. VLDB Endow., 14(11):1950–1963, jul 2021.

[19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska.

Bao: Making Learned Query Optimization Practical, page 1275–1288. Association for Computing Ma-

chinery, New York, NY, USA, 2021.

[20] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Pa-

paemmanouil, and Nesime Tatbul. Neo: A learned query optimizer. Proc. VLDB Endow., 12(11):1705–

1718, jul 2019.

[21] Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order enumeration. In

Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data

Management, aiDM’18, New York, NY, USA, 2018. Association for Computing Machinery.

[22] Ryan Marcus and Olga Papaemmanouil. Plan-structured deep neural network models for query per-

formance prediction. Proc. VLDB Endow., 12(11):1733–1746, jul 2019.

[23] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by bounding the

impact of cardinality estimation errors. Proc. VLDB Endow., 2(1):982–993, aug 2009.

[24] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska, Marc Friedman,

and Alekh Jindal. Steering query optimizers: A practical take on big data workloads. In Proceedings of

the 2021 International Conference on Management of Data, SIGMOD ’21, page 2557–2569, New York,

NY, USA, 2021. Association for Computing Machinery.

[25] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Moham-

mad Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proc. VLDB Endow., 14(11):2019–

2032, jul 2021.

[26] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh.

Cost-guided cardinality estimation: Focus where it matters. 2020 IEEE 36th International Conference

on Data Engineering Workshops (ICDEW), pages 154–157, 2020.

[27] Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. Proc. VLDB Endow., 13(3):307–

319, nov 2019.

[28] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008.

C. Tsapelas 54

QPSeeker - An efficient Neural Planner combining both data and queries through Variational Inference

[29] Peizhi Wu and Gao Cong. A unified deep model of learning from both data and queries for cardinality

estimation. In Proceedings of the 2021 International Conference on Management of Data, pages 2009–

2022, 2021.

[30] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. Balsa:

Learning a query optimizer without expert demonstrations. In Proceedings of the 2022 International

Conference on Management of Data. ACM, jun 2022.

[31] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. Neuro-

Card: One cardinality estimator for all tables. volume 14, pages 61–73. VLDB Endowment, 2021.

[32] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel,

Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep unsupervised cardinality estimation. vol-

ume 13, pages 279–292. VLDB Endowment, 2019.

[33] Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. TaBERT: Pretraining for joint

understanding of textual and tabular data. In Annual Conference of the Association for Computational

Linguistics (ACL), July 2020.

[34] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. Reinforcement learning with tree-lstm for

join order selection. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages

1297–1308, 2020.

[35] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. Reinforcement learning with tree-lstm for join

order selection. 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 1297–

1308, 2020.

[36] Ji Zhang. Alphajoin: Join order selection à la alphago. In PhD@VLDB, 2020.

[37] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. Queryformer: A tree transformer model for

query plan representation. Proc. VLDB Endow., 15(8):1658–1670, 2022.

[38] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, and

Bin Cui. Flat: Fast, lightweight and accurate method for cardinality estimation. Proc. VLDB Endow.,

14(9):1489–1502, may 2021.

C. Tsapelas 55

	Contents
	INTRODUCTION
	Overview.
	Contributions.

	RELATED WORK
	Learned Cardinality Estimation
	Learning Join Orders
	Learning Cost Estimation
	Comparison

	THE PROPOSED FRAMEWORK
	Problem Statement
	QPSeeker Pipeline

	QEPS Encoding
	Query Encoding
	Query Plan Encoding
	TaBERT - Table Data Representation

	Attending the queries to the query plans
	Cost Modeler
	Forcing structure into the latent space.

	Training Loop & Inference
	Query Plan set selection
	PgCuckoo - Forcing Execution Plans to Postgres
	Inference - Monte Carlo Tree Search

	EXPERIMENTS
	Workload Analysis
	Setup
	Competitors
	Hyperparameters.
	Training Setup

	Cost Model Performance
	Parameter effect.
	Cost Estimation.
	Cardinality Estimation.
	Execution Time Prediction.

	Query Optimization
	Queries executed through time
	JOB comparison

	Discussion

	CONCLUSIONS
	References

