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1 Introduction  

In this thesis, we will consider about mathematical models and algorithms for multi-armed 

bandit problems and especially for the contextual bandits. Contextual bandits belong to the 

field of reinforcement learning and in such a problem, the algorithm has to make decisions 

about the choice of actions based on contexts, which include information about the current 

state of the environment and possibly previous information collected. The goal of the 

algorithm is to learn a policy that, over time, will select actions with the greatest potential 

payoff. To achieve this, the learner uses different exploration-exploitation strategies that 

balance the trade-off between exploring new arms to collect new information and exploiting 

what is already known.  

The structure of the thesis is as follows:   

In chapter 2, we make an introduction to bandit problems by giving basic definitions 

(learner, environment, regret, etc), some explanatory notes and examples in order to make 

more concrete these ideas. We also mention some key applications of these problems, such 

as A/B Testing, advertisement placement, network routing, etc.  

The next chapter refers to stochastic bandits, indicating their structure and a couple of 

algorithms, like ETC, UCB, Epsilon-greedy. Furthermore, there are theorems, which give 

important results about the bounds that the regret satisfies.  

The chapter 4 refers to adversarial bandits, another main category of bandit problems. We 

present theorems, algorithms (Exp3), notes and examples, as previously. In addition, we 

record the similarities and differences of stochastic and adversarial environments.   

In the next chapter, we analyze the contextual bandits, which are our main topic of the 

thesis. Firstly, we divide these problems into adversarial and stochastic and for each 

category we mention the basic algorithms and their results, Exp4 and LinUCB respectively. 

We give more attention to the LinUCB algorithm, which is actually the UCB algorithm applied 

to linear bandits.   

In chapter 6, we present the Thompson Sampling algorithm. We give an example, in which 

we apply this algorithm to Bernoulli bandits with two arms, as Thompson initially did. Then, 
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we restrict the algorithm to contextual bandits and for the different cases we modify the 

pseudo-code and extract the corresponding results.  

In the last chapter, we simulate in R-code an example of implementing, not only the 

Thompson Sampling algorithm for a Bernoulli bandit problem with two arms, but also the 

LinUCB algorithm, with the same data. The codes are shown in appendix. 

 

2  Introduction to Bandit Problems 

In 1933, William R. Thompson introduced a concept known as bandit problems through an 

article published in Biometrika. Thompson's primary focus was on medical trials and the 

ethical concerns associated with conducting trials without adapting the treatment 

allocations in response to the drug's varying effectiveness. The term “bandit problems” 

emerged later in the 1950s when Frederick Mosteller and Robert Bush conducted 

experiments on mice and humans to explore animal learning. In these experiments, mice 

were faced with the task of choosing between left and right directions in a T-shaped maze, 

uncertain of which end would lead to food (figure 1). To replicate this learning scenario in 

humans, a machine called a “two-armed bandit” was created. This machine allowed humans 

to choose between pulling the left or right arm, with each arm yielding a random payout, the 

distribution of which remained unknown to the player (figure 2). The name “two-armed 

bandit” was inspired by the term “one-armed bandit”, an old-fashioned reference to a lever-

operated slot machine, with “bandit” alluding to the notion of money being taken away. 

 

  

Figure 1: Mouse learning a T-maze                         Figure 2: Two-armed bandit 

 

There are many reasons to care about bandit problems. Decision-making with uncertainty is 

a challenge we all face, and bandits provide a simple model of this dilemma. Bandit 
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problems also have practical applications. Major tech companies use bandit algorithms for 

configuring web interfaces, where applications include news recommendation, dynamic 

pricing and ad placement. A bandit algorithm plays a role in Monte Carlo Tree Search, an 

algorithm made famous by the recent success of AlphaGo. 

  

2.1    The Language of Bandits 

A bandit problem is a sequential game between a learner and an environment. The game is 

played over 𝑛 rounds, where 𝑛 is a positive natural number called the horizon. In each 

round 𝑡 ∈ {1, … , 𝑛}, the learner first chooses an action 𝐴𝑡  from a given set 𝒜, and the 

environment then reveals a reward 𝑋𝑡 ∈ ℝ. Actions are often also called “arms”. We talk 

about 𝑘-armed bandits when the number of actions is 𝑘, and about multi-armed bandits 

when the number of arms is at least two. There are also one-armed bandits, which are really 

two-armed bandits where the pay-off of one of the arms is a known fixed deterministic 

number. 

Every action 𝐴𝑡  should only depend on the history ℋ𝑡−1 = (𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1). In the 

context of interactions between a learner and an environment, a policy can be understood 

as a function that maps histories to actions: “The learner utilizes this policy to make 

decisions on how to interact with the environment. On the other hand, the environment can 

be seen as a function that maps history sequences, which culminate in specific actions, to 

corresponding rewards”. The most common objective of the learner is to choose actions that 

lead to the largest possible cumulative reward over all 𝑛 rounds, which is equal to ∑ 𝑋𝑡
𝑛
𝑡=1 . 

The challenge in bandit problems is that the environment is unknown to the learner, who 

only knows that the true environment lies in some set ℰ called the environment class. 

 

Definition 1: The regret of the learner relative to a policy 𝜋 is the difference between the 

total expected reward using policy 𝜋 for 𝑛 rounds and the total expected reward collected 

under complete information over 𝑛 rounds. The regret relative to a set of policies 𝛱 is the 

maximum regret relative to any policy 𝜋 ∈ 𝛱 in the set. The set 𝛱 is often called the 

competitor class.  

 

Note: We usually measure the regret relative to a set of policies 𝛱 that is large enough to 

include the optimal policy for all environments in ℰ. In this case, the regret measures the 

loss suffered by the learner relative to the optimal policy. 
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For a fixed policy and competitor class, the regret depends on the environment. 

The environments where the regret is large are those where the learner is behaving worse. 

The ideal case is that the regret should be small for all environments (A large environment 

class corresponds to less knowledge by the learner). The worst-case regret is the maximum 

regret over all possible environments. 

 

Example:  

Suppose the action set is 𝒜 = {1, . . . , 𝑘}. An environment is called a stochastic Bernoulli 

bandit if the reward 𝑋𝑡 ∈ {0,1} is binary valued and there exists a vector 𝜇 ∈  [0,1]k such 

that the probability that 𝑋𝑡 = 1 given the learner chose action 𝐴𝑡 = 𝛼 is 𝜇𝛼. The class of 

stochastic Bernoulli bandits is the set of all such bandits, which are characterized by their 

mean vectors. The optimal policy under complete information is to play the fixed 

action 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝒜  𝜇𝛼. For this problem the natural competitor class is the set of 𝑘 

constant polices 𝛱 = {𝜋1, . . . , 𝜋𝜅}  where 𝜋𝑖  chooses action 𝑖 in every round. The regret over 

𝑛 rounds becomes:   

𝑅𝑛 = 𝑛 max
𝑎∈𝒜

𝜇𝛼 − 𝔼 [∑ 𝑋𝑡

𝑛

𝑡=1

] 

 

Note: 1) One straightforward problem scenario is that of stochastic stationary bandits. In 

this particular setting, the environment is constrained to produce rewards for each action 

based on a distribution unique to that action. Importantly, these reward distributions are 

independent of prior action choices and rewards. The environment class described in the 

previous example adheres to these conditions, but there are other possibilities as well. For 

example, instead of a Bernoulli distribution, the rewards could follow a Gaussian 

distribution. While this difference may seem large, it does not fundamentally alter the 

nature of the problem. A more drastic change is to assume the action set 𝒜 is a subset of 

ℝ𝑑 and that the mean reward for choosing some action 𝛼 ∈ 𝒜 follows a linear model, 𝑋𝑡 =

< 𝑎, 𝜃 > +𝜂𝑡  for 𝜃 ∈  ℝ𝑑   and 𝜂𝑡  a standard Gaussian (zero mean, unit variance). The 

unknown quantity in this case is 𝜃 and the environment class corresponding its possible 

values (ℰ = ℝ𝑑). 

 

2) Another idea is to drop all assumptions on how the rewards are generated, except that 
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they are chosen without knowledge of the learner’s actions and lie in a bounded set. In this 

case, the setting is called adversarial bandits. The trick is to restrict the competitor class. We 

usually choose 𝛱 to be the set of constant policies. By defining the regret in this way, the 

stationarity assumption is transformed to the definition of regret rather than constraining 

the environment.  

 

3) Of course, except of the two previous situations there exist other cases. Sometimes we 

consider the case where the rewards are stochastic, but not stationary or may analyze the 

robustness of an algorithm for stochastic bandits to small adversarial perturbations. 

 

4) Limitations of Bandit Framework: One of the features of all bandit problems is that the 

learner never needs to plan for the future. More precisely, problems with the assumption 

that the learner’s available choices and rewards tomorrow are not affected by their 

decisions today fall into the realm of reinforcement learning. Another limitation of the 

bandit framework is the assumption that the learner observes the reward in every round. 

The setting where the reward is not observed is called partial monitoring.   

 

2.2 Applications 

i) A/B Testing  

A/B testing (also known as split testing or bucket testing) is a methodology for comparing 

two versions of a webpage or app against each other to determine which one performs 

better. A/B testing is essentially an experiment where two or more variants of a page are 

shown to users at random, and statistical analysis is used to determine which variation 

performs better for a given conversion goal. For example, the designers of a company 

website are trying to decide whether the “buy it now” button should be placed at the top of 

the product page or at the bottom. 

One way to apply bandits to this problem is to view the two versions of the site as actions. 

Each time 𝑡 a user makes a request, a bandit algorithm is used to choose an action 𝐴𝑡 ∈

𝒜 = {𝑠𝑖𝑡𝑒𝐴, 𝑠𝑖𝑡𝑒𝐵}, and the reward is 𝑋𝑡 = 1 if the user purchases the product and 𝑋𝑡 = 0 

otherwise. 

  

 

https://www.optimizely.com/optimization-glossary/split-testing/
https://www.optimizely.com/optimization-glossary/bucket-testing/
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ii) Advertisement Placement 

Advertisement placement means the group of units that specify the areas on the website 

where advertisers can place. Ad placement criteria include the size, type, and location of the 

ads. One way to face this is to view it as a multi-armed bandit problem, where in each round 

a policy chooses an action 𝐴𝑡 ∈ 𝒜 = {all available adverts}, and the reward 𝑋𝑡 = 1 if the 

user clicked on the advert and 𝑋𝑡 = 0 otherwise. This might work for specialized websites, 

where the advertisements are likely to be appropriate. But for companies, like Amazon, 

advertising should be targeted. Clearly, an algorithm should take into account previous 

purchases. This might mean clustering users and implementing a separate bandit algorithm 

for each cluster. For example, a user that recently purchased a boxing bag is more likely to 

buy boxing gloves than another user. Also, other metrics such as user satisfaction, diversity, 

freshness and fairness, just to mention a few, are important too. 

 

iii) Recommendation Services 

Netflix needs to choose which movies to display on each user’s “browse” page. Similar to 

placing advertisements, users visit the page one after another, and the success of the 

selection can be measured based on whether the user watches a movie and rates it 

positively. However, there are some difficulties. Netflix presents a vast list of movies, leading 

to a large number of possible actions. Moreover, each user is unique and only watches a few 

movies, so the algorithm's choices influence the available data. 

 

iv) Network Routing 

Routing is the process of path selection in any network. A computer network is made of 

many machines, called nodes, and paths or links that connect those nodes. Communication 

between two nodes in an interconnected network can take place through many different 

paths. Routing is the process of selecting the best path using some predetermined rules. In 

this problem, the learner receives the start/end destinations for a packet of data in each 

round. The set of actions is the set of all paths starting and ending at the appropriate points 

on some known graph. The feedback in this case is the time it takes for the packet to be 

received at its destination, and the reward is the negative of this value. 
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v) Dynamic Pricing  

In a dynamic pricing scenario, a company aims to find the best price for a product. Users 

arrive one by one, and the learning algorithm sets the price. A user will buy the product only 

if the price is lower than their personal value for it. However, the algorithm never directly 

observes the user's value; it only receives a binary signal indicating whether the price was 

too low/too high for the user. 

 

vi) Waiting Problems 

In these problems, the challenge is to devise a policy for choosing, for example, how long to 

wait at the bus stop before giving up and walking to minimize the time to get to the 

workplace or deciding the amount of inactivity required before putting a hard drive into 

sleep mode or powering off a car engine at traffic lights. The statistical part concerns 

estimating the cumulative distribution function of the bus arrival times from data. 

 

vii) Tree Search 

The UCT (Upper Confidence bounds applied to Trees) algorithm is a tree search algorithm 

commonly used in perfect-information game-playing algorithms. The idea is to build a search 

tree where in each iteration the algorithm takes three steps: (a) chooses a path from the 

root to a leaf, (b) expands the leaf, if possible, (c) performs a Monte Carlo roll-out to the end 

of the game. The contribution of a bandit algorithm is in selecting the path from the root to 

the leaves. At each node in the tree, a bandit algorithm is used to select the child based on 

the series of rewards observed through that node so far. 

 

3 Stochastic Bandits 

3.1 Introduction 

Stochastic bandits are a class of online learning problems where a decision maker or a 

learner has to repeatedly choose actions from a set of available options, also known as arms, 

and receive rewards that depend on the selected action. In contrast to traditional multi-
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armed bandits, where the rewards are deterministic, stochastic bandits assume that the 

rewards are drawn from some unknown probability distributions associated with each arm. 

The objective of the learner is to maximize the cumulative reward over a finite or infinite 

time horizon by learning the optimal arm selection strategy through trial and error. To 

achieve this objective, the learner uses various exploration-exploitation strategies that 

balance the trade-off between exploring new arms to learn their reward distributions and 

exploiting the already learned information to select the arms with the highest expected 

rewards. 

Stochastic bandits have numerous applications in various fields, including recommendation 

systems, online advertising, clinical trials, and finance. The problem of designing efficient 

algorithms for stochastic bandits is an active research area in machine learning and 

optimization, and has led to the development of a variety of algorithms with different trade-

offs between computational complexity, regret bounds, and practical performance. 

 

3.1.1    Core Assumptions 

A stochastic bandit is a collection of distributions 𝑣 = (𝑃𝑎: 𝛼 ∈ 𝒜), where 𝒜 is the set of 

available actions. In each round 𝑡 ∈ {1, . . . , 𝑛}, the learner chooses an action 𝐴𝑡 ∈ 𝒜, which 

is fed to the environment. The environment then samples a reward 𝑋𝑡 ∈ ℝ from distribution 

𝑃𝐴𝑡
 and reveals 𝑋𝑡 to the learner. The interaction between the learner and environment 

induces a probability measure on the sequence of outcomes 𝐴1, 𝑋1, . . . , 𝐴𝑛, 𝑋𝑛. Usually the 

horizon 𝑛 is finite, but sometimes we allow the interaction to continue indefinitely (𝑛 = ∞). 

The sequence of outcomes should satisfy the following assumptions: 

(a) The conditional distribution of reward 𝑋𝑡 given 𝐴1, 𝑋1, . . . , 𝐴𝑡−1, 𝑋𝑡−1, 𝐴𝑡 is 𝑃𝐴𝑡
, which 

captures the intuition that the environment samples 𝑋𝑡 from 𝑃𝐴𝑡
 in round 𝑡. 

(b) The law of action 𝐴𝑡  given 𝐴1, 𝑋1, . . . , 𝐴𝑡−1, 𝑋𝑡−1 is 𝜋𝑡(· |𝐴1, 𝑋1, . . . , 𝐴𝑡−1 , 𝑋𝑡−1), where 

𝜋1, 𝜋2 , . . . is a sequence of probability kernels that characterize the learner. The most 

important element of this assumption is the intuitive fact that the learner cannot use the 

future observations in current decisions.  
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3.1.2    Knowledge and Environment Classes 

As mentioned, the learner’s goal is to maximize the cumulative reward 𝑆𝑛 = ∑ 𝑋𝑡
n
t=1 . 

However, very often the learner does not know ahead of time how many rounds are to be 

played. Even if the horizon is known in advance and we commit to maximizing the expected 

value of 𝑆𝑛, there is still the problem that the bandit instance 𝑣 = (𝑃𝑎: 𝛼 ∈ 𝒜) is unknown. 

A policy that maximizes the expectation of 𝑆𝑛 for one bandit instance may behave quite 

badly on another. The learner usually has partial information about 𝑣, which we represent 

by defining a set of bandits ℰ for which 𝑣 ∈ ℰ is guaranteed. The set ℰ is called the 

environment class, which is distinguished between structured and unstructured bandits. 

 

 Unstructured Bandits 

An environment class ℰ is unstructured if 𝒜 is finite and there exist sets of distribution 𝑀𝑎  

for each 𝑎 ∈ 𝒜 such that: ℰ = {𝑣 = (𝑃𝑎: 𝑎 ∈ 𝒜): 𝑃𝑎 ∈ 𝑀𝑎 , ∀𝑎 ∈ 𝒜}. 

  

Note: 1) Some examples of unstructured bandits are presented in the table. 

 

2) The Bernoulli, Gaussian, and uniform distributions are frequently utilized as examples to 

demonstrate specific characteristics of learning in stochastic bandit problems. In these 

problems, a bandit scenario is often referred to as a “distribution bandit”, with the term 

“distribution” being replaced by the actual underlying distribution from which the pay-offs 

are sampled (Gaussian bandit, Bernoulli bandit, or subgaussian bandit). Additionally, we can 

refer to “bandits with 𝑋”, where “𝑋” represents a particular property of the underlying 

distribution from which the pay-offs are sampled. For example, bandits with finite variance 
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refer to the bandit environment where the learner's prior knowledge indicates that all pay-

off distributions have finite variances. 

 

3) Some environment classes, like Bernoulli bandits, are parametric, while others are non-

parametric, like subgaussian bandits. The distinction is the number of degrees of freedom 

needed to describe an element of an environment class. When the number of degrees of 

freedom is finite, it is parametric, otherwise it is non-parametric. Furthermore, some 

environment classes are subsets of others. For example, Bernoulli bandits are a special case 

of bandits with finite variance or bandits with bounded support. 

 

 Structured Bandits 

Environment classes that are not unstructured are called structured. A significant feature of 

structured bandits is that the learner can often obtain information about some actions while 

never playing them. The following examples illustrate the flexibility of these problems. 

 

Example 1: Let 𝒜 = {1,2} and ℰ = {(𝐵(𝜃), 𝛣(1 − 𝜃)): 𝜃 ∈ [0,1]}. The learner does not 

know the mean of either arm, but can learn the mean of both arms by playing just one. The 

difficulty of learning in this problem is changed by the knowledge of this structure. 

 

Example 2(Stochastic linear bandit): Let 𝒜 ⊂ ℝ𝑑,𝜃 ∈ ℝ𝑑 , 𝑣𝜃 = (𝑁(< 𝑎, 𝜃 > ,1): 𝑎 ∈ 𝒜) 

and ℰ = {𝑣𝜃: 𝜃 ∈ ℝ𝑑}. The reward of an action is Gaussian, and its mean is given by the 

inner product between the action and some unknown parameter. Notice that even if 𝒜 is 

extremely large, the learner can deduce the true environment by playing just 𝑑 actions that 

span ℝ𝑑. 

  

3.1.3    The  Regret 

Let 𝑣 = (𝑃𝑎: 𝑎 ∈ 𝒜) be a stochastic bandit and define μα(𝑣) = ∫ xdP𝛼(x)
∞

−∞
. Then let 

𝜇∗(𝑣) = 𝑚𝑎𝑥𝑎∈𝒜𝜇𝛼(𝑣) be the largest mean of all arms. The regret of policy 𝜋 on bandit 

instance ν is 𝑅𝑛(𝜋, 𝑣) = 𝑛𝜇∗(𝑣) − 𝔼[∑ 𝑋𝑡]𝑛
𝑡=1 , where the expectation is taken with respect 
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to the probability measure on outcomes induced by the interaction of 𝜋 and 𝑣. Minimizing 

the regret is equivalent to maximizing the expectation of 𝑆𝑛. 

The regret is always non-negative, and for every bandit 𝑣, there exists a policy 𝜋 for which 

the regret is zero (the best possible outcome), i.e., 𝑅𝑛(𝜋, 𝑣)  ≥ 0, for all policies 𝜋 and the 

policy choosing 𝐴𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝜇𝛼 for all 𝑡 satisfies  𝑅𝑛(𝜋, 𝑣) = 0. If  𝑅𝑛(𝜋, 𝑣) = 0 for some 

policy 𝜋, then ℙ(𝜇𝛢𝑡
= 𝜇∗) = 1 for all 𝑡 ∈ [𝑛], which means achieving zero is possible if and 

only if the learner knows which bandit it is facing or at least what is the optimal arm. 

There is another candidate objective called the Bayesian regret. If 𝒬 is a prior probability 

measure on ℰ (which must be equipped with a 𝜎-algebra ℱ), then the Bayesian regret is the 

average of the regret with respect to the prior 𝒬 ,𝐵𝑅𝑛(𝜋, 𝒬) = ∫ 𝑅𝑛(𝜋, 𝑣)𝑑𝒬(𝑣)
ℰ

, which is 

only defined by assuming that the regret is a measurable function with respect to ℱ. An 

advantage of the Bayesian approach is that the problem of finding a policy that minimizes 

the Bayesian regret is just an optimization problem, although generally very difficult. 

 

3.2 Stochastic Bandits with Finitely Many Arms 

3.2.1 The Explore-Then-Commit(ETC) Algorithm And 

Regret Analysis 

The ETC algorithm is characterized by the number of times it explores each arm, denoted by 

a natural number 𝑚. Because there are 𝑘 actions, the algorithm will explore for 𝑚𝑘 rounds 

before choosing a single action for the remaining rounds. Let �̂�𝑖(𝑡) be the average reward 

received from arm 𝑖 after round 𝑡, �̂�𝑖(𝑡)  =
1

𝑇𝑖(𝑡)
∑ 𝕀{𝐴𝑠 = 𝑖}𝑋𝑠

𝑡

𝑠=1
 , where 𝑇𝑖(𝑡) =

∑ 𝕀{𝐴𝑠 = 𝑖}𝑋𝑠
𝑡

𝑠=1
 is the number of times action 𝑖 has been played after round 𝑡. The ETC 

policy is given below: 

Step 1: Input 𝑚 

Step 2: In round 𝑡 choose action 𝐴𝑡 = {
(𝑡 𝑚𝑜𝑑 𝑘) + 1, 𝑖𝑓 𝑡 ≤ 𝑚𝑘

𝑎𝑟𝑔𝑚𝑎𝑥𝑖�̂�𝑖(𝑚𝑘), 𝑖𝑓 𝑡 > 𝑚𝑘
 

 

Theorem 1: 

According to Tor Lattimore and Csaba Szepesvari, when ETC is interacting with any 1-

subgaussian bandit and 1 ≤ m ≤
n

k
:  
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𝑅𝑛 ≤ 𝑚 ∑ 𝛥𝑖

𝑘

𝑖=1

+ (𝑛 − 𝑚𝑘) ∑ 𝛥𝑖𝑒𝑥𝑝(−
𝑚𝛥𝑖

2

4
)

𝑘

𝑖=1

 

 

Note: 1) Let 𝑣 = (𝑃𝑎: 𝑎 ∈ 𝐴) be a stochastic bandit. We define 𝛥𝛼(𝜈) = 𝜇∗(𝑣) − 𝜇𝛼(𝑣), 

which is called the suboptimality gap or action gap or immediate regret of action 𝑎. 

 

2) Definition 2: A random variable 𝑋 is σ-subgaussian if for all 𝜆 ∈ ℝ , it holds 

that 𝔼[𝑒𝑥𝑝(𝜆𝑋)] ≤ 𝑒𝑥𝑝 (
𝜆2𝜎2

2
). 

 

3) (Regret decomposition lemma) For any policy 𝜋 and stochastic bandit environment 𝑣 

with 𝒜 finite and horizon 𝑛 ∈ ℕ, the regret 𝑅𝑛  of policy 𝜋 in 𝑣 satisfies: 𝑅𝑛 =

∑ 𝛥𝑎𝔼𝑎∈𝒜 [𝑇𝑎(𝑛)]. This tells us that to keep the regret small, the learner should try to 

minimize the weighted sum of expected action counts, where the weights are the respective 

suboptimality gaps. 

 

4) The bound in the previous Theorem illustrates the trade-off between exploration and 

exploitation. i) If 𝑚 is large, then the policy explores for too long, and the first term will be 

large. ii) If 𝑚 is too small, then the probability that the algorithm commits to the wrong arm 

will grow, and the second term becomes large. The question is how to choose 𝑚.   

 

Example:  

Assume that 𝑘 = 2 and that the first arm is optimal so that 𝛥1 = 0 and 𝛥 = 𝛥2. Then the 

bound simplifies to: 𝑅𝑛 ≤ 𝑚𝛥 + (𝑛 − 2𝑚)𝛥 exp (−
𝑚𝛥2

4
) ≤ 𝑚𝛥 + 𝑛𝛥 exp (−

𝑚𝛥2

4
) 

For large 𝑛 the quantity on the right-hand side is minimized up to a possible rounding error 

by 𝑚 = 𝑚𝑎𝑥 {1, ⌈
4

𝛥2 log (
𝑛𝛥2

4
)⌉} and for this choice and any 𝑛, the regret is bounded by 𝑅𝑛 ≤

𝑚𝑖𝑛 {𝑛𝛥, 𝛥 +
4

𝛥
(1 + 𝑚𝑎𝑥 {0, log (

𝑛𝛥2

4
)})}. Bounds like this are called 

gap/problem/distribution/instance dependent. The bound is close to optimal, but there is a 

caveat. The choice of 𝑚 that defines the policy and leads to this bound depends on both the 

suboptimality gap and the horizon. While the horizon is sometimes known in advance, it is 

seldom reasonable to assume knowledge of the suboptimality gap.  
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5) It is proven that the previous relation can also be written as: 𝑅𝑛 ≤ 𝛥 + 𝐶√𝑛, where 𝐶 > 0 

is a universal constant. Sometimes, is often assumed that 𝛥 ≤ 1 and thus 𝑅𝑛 ≤ 1 + 𝐶√𝑛 . 

Bounds of this type are called worst-case, problem free or problem independent. The 

reason is that the bound only depends on the horizon and class of bandits for which the 

algorithm is designed, and not the specific instance within that class. Because the 

suboptimality gap does not appear, bounds like this are sometimes called gap-free. Note 

that without the condition 𝛥 ≤  1, the worst-case bound for ETC is infinite. 

 

6) i) Epsilon-greedy algorithm: is a randomized analog of ETC with the only difference that 

exploration is spread more uniformly over time. This algorithm depends on a sequence of 

parameters 𝜀1, 𝜀2, … . First, it chooses each arm once and subsequently chooses 

{
𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖�̂�𝑖(𝑡 − 1), with probability 1 − 𝜀𝑡

an arm uniformly at random, otherwise
 [6]  

 

ii) Elimination Algorithm: A simple way to generalize the ETC policy to multiple arms and 

overcome the problem of tuning the commitment time is to use an elimination algorithm. 

The algorithm operates in phases and maintains an active set of arms that could be optimal.   

Step 1: Input k and sequence (𝑚𝑙)𝑙 

Step 2: 𝐴1 = {1,2, … , 𝑘} 

Step 3: For 𝑙 = 1,2,3 … do  

a) Choose each arm 𝑖 ∈ 𝐴𝑙  exactly 𝑚𝑙  times            

b)  Let �̂�𝑖,𝑙  be the average reward for arm 𝑖 from this phase only 

c)  Update active set: 𝐴𝑙+1 = {𝑖: �̂�𝑖,𝑙 + 2−𝑙 ≥ 𝑚𝑎𝑥𝑗∈𝐴𝑙
�̂�𝑗,𝑙} 

Step 4: End for 

 

3.2.2    The Upper Confidence Bound Algorithm 

The UCB algorithm is based on the principle of optimism in the face of uncertainty, which 

states that one should act as if the environment is as nice as plausibly possible. For bandits, 

the optimism principle means using the data observed so far to assign to each arm a value, 

called the upper confidence bound that with high probability is an overestimate of the 

unknown mean. Comparatively with ETC, this algorithm does not depend on advance 
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knowledge of the suboptimality gap, but on the horizon 𝑛 and behaves well where there are 

more than two arms. [1] 

 

Let (𝑋𝑡)𝑡=1
𝑛  be a sequence of independent 1-subgaussian random variables with mean 𝜇 

and �̂� =
1

𝑛
∑ 𝑋𝑡

𝑛
𝑡=1 . A version of UCB algorithm, which takes as input the number of arms and 

the error probability 𝛿, is given below: 

Step 1: Input 𝑘 and 𝛿 

Step 2: For 𝑡 ∈ 1, … , 𝑛 do 

a) Compute 𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿) = {

∞ ,        𝑖𝑓 𝑇𝑖(𝑡 − 1) = 0

�̂�𝑖(𝑡 − 1) + √
2log(1

𝛿⁄ ) 

𝑇𝑖(𝑡−1)
, otherwise

 

b) Choose action 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿) 

c) Observe reward 𝑋𝑡 and update upper confidence bound 

Step 3: End for 

 

Definition 3: The value inside the 𝑎𝑟𝑔𝑚𝑎𝑥 is called the index of arm 𝑖. The index is the sum 

of the empirical mean of rewards experienced so far and the exploration bonus, which is 

also known as the confidence width. 

 

Observation: After the initial period where the algorithm chooses each action once, action 𝑖 

can only be chosen if its index is higher than that of an optimal arm. This can only happen if: 

(a) The index of action 𝑖 is larger than the true mean of a specific optimal arm. 

(b) The index of a specific optimal arm is smaller than its true mean. 

Considering that the index of any arm typically serves as an upper bound for its mean with 

high probability, we can reasonably expect that the index of the optimal arm will not be 

below its mean. Additionally, if the suboptimal arm 𝑖 is played sufficiently frequently, its 

exploration bonus decreases, and the empirical estimate of its mean converges to the true 

value. Consequently, this imposes an upper limit on the expected total number of 

occurrences when the index of the suboptimal arm remains above the mean of the optimal 

arm. 

 

Note: At the start of round 𝑡 the first arm has been played much more frequently than the 

rest. Because it has been played so often, we expect that �̂�1(𝑡 − 1)  ≈  𝜇1.  The learner can 

be reasonably certain that arm 𝑖 is worse than arm 1 if: 
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�̂�𝑖(𝑡 − 1) + √
2log(1

𝛿⁄ ) 

𝑇𝑖(𝑡−1)
≤  𝜇1 ≈  �̂�1(𝑡 − 1) + √

2log(1
𝛿⁄ ) 

𝑇1(𝑡−1)
, where 𝛿 is called the confidence 

level and quantifies the degree of certainty. This means that choosing the arm with the 

largest upper confidence bound leads to a situation where arms are only chosen if their true 

mean could reasonably be larger than those of arms that have been played often. The 

confidence level should be small to ensure optimism with high probability, but not so large 

that suboptimal arms are explored excessively. 

  

Theorem 2: 

1) Consider UCB, as shown in previous algorithm, on a stochastic 𝑘-armed 1-subgaussian 

bandit problem. For any horizon 𝑛, if 𝛿 =  1/𝑛2, then: 𝑅𝑛 ≤ 3 ∑ 𝛥𝑖 + ∑
16log (𝑛)

𝛥𝑖
𝑖:𝛥𝑖>0

𝑘
𝑖=1 . 

 

2) If 𝛿 = 1 𝑛2⁄  , then the regret of UCB, as defined in previous algorithm, on any 𝑣 ∈ ℰ𝑆𝐺
𝑘 (1) 

environment, is bounded by: 𝑅𝑛 ≤ 8√𝑛𝑘log(𝑛) + 3 ∑ 𝛥𝑖
𝑘
𝑖=1  . This result is close to optimal. 

[1] 

 

3.2.3    The UCB Algorithm: Asymptotic Optimality 

Step 1: Input 𝑘  

Step 2: Choose each arm once 

Step 3: Subsequently choose 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (�̂�𝑖(𝑡 − 1) + √
2log𝑓(𝑡)

𝑇𝑖(𝑡−1)
),  

where 𝑓(𝑡) = 1 + 𝑡log2(𝑡) 

 

Note: This algorithm differs from the one mentioned in the previous sector only by the 

choice of the confidence level, the choice of which is dictated by the analysis of its regret. 

 

Theorem 3: 

According to Tor Lattimore and Csaba Szepesvari, for any 1-subgaussian bandit, the regret of 

the previous algorithm satisfies: 
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𝑅𝑛 ≤ ∑ 𝑖𝑛𝑓𝜀∈(0,𝛥𝑖)𝛥𝑖 (1 +
5

𝜀2
+

2(log𝑓(𝑛) + √𝜋log𝑓(𝑛) + 1

(𝛥𝑖 − 𝜀)2
)

𝑖:𝛥𝑖>0

 

Furthermore, by choosing 𝜀 = log−1
4⁄ (𝑛) and taking the limit as 𝑛 tends to infinity, we take 

that: limsupn→∞
Rn

log(n)
≤ ∑

2

Δi
i:Δi>0 . Choosing 𝜀 =

𝛥𝑖
2

⁄  inside the sum shows that: 

𝑅𝑛 ≤ ∑ (𝛥𝑖 +
1

𝛥𝑖
(8log𝑓(𝑛) + 8√𝜋log𝑓(𝑛) + 28))

𝑖:𝛥𝑖>0

 

Even more precisely, there exists some universal constant 𝐶 > 0 such that: 

𝑅𝑛 ≤ 𝐶 ∑ (𝛥𝑖 +
log (𝑛)

𝛥𝑖
)

𝑖:𝛥𝑖>0

 

which leads to a worst-case bound of:  

𝑅𝑛 ≤ 𝐶 ∑ 𝛥𝑖

𝑘

𝑖=1
+ 2√𝐶𝑛𝑘log(𝑛) 

 

Note: The dominant terms in the two results have the same order, but the gain here is that 

in this result the leading constant, governing the asymptotic rate of growth of regret, is 

smaller.  

 

3.2.4    Lower Bounds 

In stochastic bandits, lower bounds refer to the minimum number of samples required to 

achieve a certain level of accuracy in estimating the mean reward of a given arm in a multi-

armed bandit problem. Specifically, the lower bounds provide a theoretical guarantee on the 

performance of any algorithm used to solve the problem. These bounds can be established 

using information-theoretic arguments, which take into account the amount of information 

contained in the rewards obtained from the arms. 

Lower bounds in stochastic bandits are useful because they give a fundamental limit on the 

performance of any algorithm, and can be used to assess the effectiveness of proposed 

algorithms. In particular, any algorithm that achieves a performance equal to the established 

lower bound is considered to be optimal. They can be derived using various techniques such 

as information theory, statistical learning theory, and Bayesian analysis. The specific 
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technique used depends on the assumptions made about the distribution of rewards and 

the algorithm being considered. 

 

Definition 4: The worst-case regret of a policy 𝜋 on a set of stochastic bandit environments 

ℰ is 𝑅𝑛(𝜋, ℰ) = 𝑠𝑢𝑝𝑣∈ℰ𝑅𝑛(𝜋, 𝑣).  Let 𝛱 be the set of all policies. The minimax regret is: 

𝑅𝑛
∗ (ℰ) = 𝑖𝑛𝑓𝜋∈𝛱𝑅𝑛(𝜋, ℰ) = 𝑖𝑛𝑓𝜋∈𝛱𝑠𝑢𝑝𝑣∈ℰ𝑅𝑛(𝜋, 𝑣) 

A policy is called minimax optimal for ℰ if 𝑅𝑛(𝜋, ℰ) = 𝑅𝑛
∗ (ℰ) . The value 𝑅𝑛

∗ (ℰ) is of interest 

by itself. A small value of 𝑅𝑛
∗ (ℰ) indicates that the underlying bandit problem is less 

challenging in the worst-case sense.  Minimax optimality is not a property of a policy alone. 

It is a property of a policy together with a set of environments and a horizon. 

 

Note: 1) A policy is minimax optimal up to constant factors for finite-armed 1-subgaussian 

bandits with suboptimality gaps in [0, 1], when there exists a 𝐶 > 0 such that: 

𝑅𝑛(𝜋, ℰ𝑘)

𝑅𝑛
∗ (ℰ𝑘)

≤ 𝐶, for all 𝑘 and 𝑛 

where ℰ𝑘 is the set of 𝑘-armed 1-subgaussian bandits with suboptimality gaps in [0, 1]. 

 

2) Main Ideas Underlying Minimax Lower Bounds: 

Minimax lower bounds are a fundamental concept in the theory of algorithms and 

complexity. These bounds provide a theoretical guarantee on the minimum amount of 

resources (such as time, space, or samples) required to solve a given problem, regardless of 

the algorithm used. The main idea underlying minimax lower bounds is to consider the 

worst-case scenario for any algorithm solving the problem. That is, the bounds assume that 

an adversary is trying to make the algorithm fail by carefully selecting the input data to be as 

difficult as possible. More specifically, the minimax lower bound provides a guarantee on the 

best possible performance that any algorithm can achieve when facing the worst possible 

input data. This guarantee is expressed in terms of the resources required to achieve a 

certain level of performance, such as the number of comparisons or the number of samples 

required to estimate a parameter. The minimax lower bound is established by constructing 

an adversary that selects the input data to be as difficult as possible, and then showing that 

any algorithm that solves the problem using fewer resources than the lower bound will fail 
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on at least one instance of the problem. The lower bound is then the minimum amount of 

resources required achieving a certain level of performance on all possible input data. The 

minimax lower bound is an important concept in the analysis of algorithms and complexity 

because it provides a rigorous benchmark against which the performance of any algorithm 

can be measured. It also provides insights into the inherent difficulty of a problem, and can 

guide the design of algorithms that are provably optimal in terms of their resource usage. [1] 

 

Figure: Given a policy and one environment, the evil antagonist picks another environment 

so that the policy will suffer a large regret in at least one environment. 

 

Theorem 4: 

Let 𝑣μ be the Gaussian bandit for which the ith arm has reward distribution 𝒩(μi, 1), k > 1 

and 𝑛 ≥ 𝑘 − 1. Then, for any policy 𝜋, there exists a mean vector 𝜇 ∈  [0, 1]𝑘 such that: 

𝑅𝑛(𝜋, 𝑣𝜇) ≥
1

27
√(𝑘 − 1)𝑛 

Since 𝑣𝜇 ∈ ℰ𝛮
𝜅 (1), it follows that the minimax regret for ℰ𝛮

𝜅 (1) is lower-bounded by the 

right-hand side of the above display as soon as 𝑛 ≥ 𝑘 − 1: 

𝑅𝑛
∗ (ℰ𝛮

𝜅 (1)) ≥
1

27
√(𝑘 − 1)𝑛 

[1]  

 

Definition 5: The random pseudo-regret is: �̅�𝑛 = ∑ 𝑇𝑖 (𝑛)𝛥𝑖
𝑘
𝑖=1  

 

Theorem 5 (High-Probability Lower Bounds):  

Let 𝑛 ≥ 1 and 𝑘 ≥ 2 and 𝐵 > 0 and 𝜋 be a policy such that for any 𝑣 ∈ ℰ𝑘 , 
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𝑅𝑛(𝜋, 𝑣) ≤ 𝐵√(𝑘 − 1)𝑛 

Let 𝛿 ∈ (0,1). Then there exists a bandit 𝑣 in ℰ𝑘 such that: 

ℙ (�̅�𝑛(𝜋, 𝑣) ≥
1

4
𝑚𝑖𝑛 {𝑛,

1

𝐵
√(𝑘 − 1)𝑛log (

1

4𝛿
)}) ≥ 𝛿 

[1] 

  

Corollary:  

1) Let 𝑛 ≥ 1 and 𝑘 ≥ 2. Then, for any policy 𝜋 and 𝛿 ∈ (0,1) such that  

𝑛𝛿 ≤ √𝑛(𝑘 − 1)𝑙𝑜𝑔 (
1

4𝛿
) 

there exists a bandit problem 𝑣 ∈ ℰ𝑘 such that: 

ℙ (�̅�𝑛(𝜋, 𝑣) ≥
1

4
𝑚𝑖𝑛 {𝑛, √

𝑛(𝑘 − 1)

2
𝑙𝑜𝑔 (

1

4𝛿
)}) ≥ 𝛿 

 

2) Let 𝑘 ≥ 2 and 𝑝 ∈ (0,1) and 𝐵 > 0. Then, there does not exist a policy 𝜋 such that for 

all 𝑛 ≥ 1, 𝛿 ∈ (0,1) and 𝑣 ∈ ℰ𝑘 , 

ℙ (�̅�𝑛(𝜋, 𝑣) ≥ 𝐵√(𝑘 − 1)𝑛log𝑝 (
1

𝛿
)) < 𝛿 

 

4 Adversarial Bandits 

4.1 Abstract 

Adversarial bandits is a class of online decision-making problems where a learner, or 

decision-maker, must repeatedly choose one of several actions while facing an adversary 

who can dynamically manipulate the rewards associated with each action. This problem 

arises in many real-world applications, such as online advertising, recommendation systems, 

and cybersecurity. 
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The goal of the learner is to maximize its total reward over a finite time horizon, despite the 

adversary's attempts to minimize it. The key challenge in adversarial bandits is to balance 

the exploration of different actions to learn their rewards with the exploitation of actions 

that appear to be rewarding based on the agent's past experience. To address this challenge, 

various algorithms have been developed that use a combination of exploration and 

exploitation strategies to learn the rewards of the actions over time. These algorithms 

typically employ techniques such as optimism in the face of uncertainty, regret 

minimization, and exploration based on the principle of optimism under uncertainty. 

 

4.1.1    Adversarial Bandit Environments 

Let 𝑘 > 1 be the number of arms. A 𝒌-armed adversarial bandit is an arbitrary sequence of 

reward vectors (𝑥𝑡)𝑡=1
𝑛 , where 𝑥𝑡 ∈ [0,1]𝑘 .In each round, the learner chooses a distribution 

over the actions 𝑃𝑡 ∈ 𝑃𝑘−1. Then the action 𝐴𝑡 ∈ [𝑘] is sampled from 𝑃𝑡, and the learner 

receives reward 𝑥𝑡𝐴𝑡
. 

A policy in this setting is a function 𝜋: ([𝑘] × [0,1]) → 𝑃𝑘−1 mapping history sequences to 

distributions over actions (regardless of measurability). The performance of a policy 𝜋 in 

environment 𝑥 is measured by the expected regret, which is the expected loss in revenue of 

the policy relative to the best fixed action in hindsight. 

𝑅𝑛(𝜋, 𝑥) = max
𝑖∈[𝑘]

∑ 𝑥𝑡𝑖

𝑛

𝑡=1

− 𝔼 [∑ 𝑥𝑡𝐴𝑡

𝑛

𝑡=1

] 

The worst-case regret over all environments is: 𝑅𝑛
∗ (𝜋) = 𝑠𝑢𝑝𝑥∈[0,1]𝑛×𝑘𝑅𝑛(𝜋, 𝑥). 

 

4.1.2 Similarities-Differences between Stochastic and 

Adversarial Environments 

Stochastic and adversarial environments are two different types of environments that a 

learner can encounter in the context of decision-making problems. One key difference 

between stochastic and adversarial environments is the source of uncertainty. In a 

stochastic environment, the uncertainty arises from the randomness or probabilistic nature 

of the environment. For example, in a game of dice, the outcome of each roll is determined 

randomly, and the agent cannot predict it with certainty. In contrast, in an adversarial 

environment, the uncertainty arises from the actions of an adversary who actively tries to 
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manipulate the outcomes to its advantage. For example, in a game of chess, the opponent 

may make moves to try to undermine the agent's strategy. Another difference between 

stochastic and adversarial environments is the nature of the information available to the 

agent. In a stochastic environment, the agent typically has access to some probabilistic 

information about the environment, such as the probabilities of different outcomes. In 

contrast, in an adversarial environment, the agent may have very limited information about 

the adversary's actions and intentions. 

Despite these differences, there are also some similarities. In both cases, the learner must 

make decisions under uncertainty and must balance the trade-off between exploration and 

exploitation to maximize its expected reward. Moreover, in both cases, the learner can use 

some form of learning to improve its decision-making over time. 

 

4.1.3    Importance-Weighted Estimators 

Definition 6: A key ingredient of all adversarial bandit algorithms is a mechanism for 

estimating the reward of unplayed arms. Recall that 𝑃𝑡 is the conditional distribution of the 

action played in round 𝑡, and so for 𝑖 ∈ [𝑘],  𝑃𝑡𝑖 = ℙ(𝐴𝑡 = 𝑖|𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1). 

The importance-weighted estimator of 𝑥𝑡𝑖 is: 

�̂�𝑡𝑖 =
𝕀{𝐴𝑡 = 𝑖}𝑋𝑡

𝑃𝑡𝑖
 (I) 

An alternative estimator is �̂�𝑡𝑖 = 1 −
𝕀{𝐴𝑡=𝑖}

𝑃𝑡𝑖
(1 − 𝑋𝑡). Rewriting the formula in terms of 

𝑦𝑡𝑖 = 1 − 𝑥𝑡𝑖  and 𝑌𝑡 = 1 − 𝑋𝑡 and �̂�𝑡𝑖 = 1 − �̂�𝑡𝑖 leads to: 

�̂�𝑡𝑖 =
𝕀{𝐴𝑡 = 𝑖}𝑌𝑡

𝑃𝑡𝑖
 (II) 

This is the same as the previous formula except that 𝑌𝑡  has replaced 𝑋𝑡. The terms 𝑦𝑡𝑖, 𝑌𝑡 , �̂�𝑡𝑖  

should be interpreted as losses. The estimator in last equation is called the loss-based 

importance-weighted estimator. 

 

Note: Let 𝔼[∙] = 𝔼[∙ |𝐴1, 𝑋1, … , 𝐴𝑡 , 𝑋𝑡] denote the conditional expectation given the history 

up to time  𝑡. The conditional mean of �̂�𝑡𝑖 satisfies 𝔼𝑡−1[�̂�𝑡𝑖] = 𝔼𝑡−1 [
𝐴𝑡𝑖

𝑃𝑡𝑖
𝑥𝑡𝑖] =

𝑥𝑡𝑖

𝑃𝑡𝑖
𝔼𝑡−1[𝐴𝑡𝑖] =

𝑥𝑡𝑖

𝑃𝑡𝑖
𝑃𝑡𝑖 = 𝑥𝑡𝑖  , which means that �̂�𝑡𝑖 is an unbiased estimate of 𝑥𝑡𝑖 
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conditioned on the history observed after 𝑡 − 1 rounds. The estimator in equation (II) is still 

unbiased.  

The conditional variance of �̂�𝑡𝑖 satisfies:  𝕍𝑡−1[�̂�𝑡𝑖] =  𝔼𝑡−1[�̂�𝑡𝑖
2 ] − 𝑥𝑡𝑖

2 = 𝔼𝑡−1 [
𝐴𝑡𝑖

𝑃𝑡𝑖
2 𝑥𝑡𝑖

2] −

𝑥𝑡𝑖
2 =

𝑥𝑡𝑖
2(1−𝑃𝑡𝑖)

𝑃𝑡𝑖
.The conditional variance of �̂�𝑡𝑖  satisfies: 𝕍𝑡−1[�̂�𝑡𝑖] =

𝑦𝑡𝑖
2(1−𝑃𝑡𝑖)

𝑃𝑡𝑖
. The only 

difference is that the variance depends on 𝑦𝑡𝑖
2 rather than 𝑥𝑡𝑖

2. Which is better depends on 

the rewards for arm 𝑖, with smaller rewards suggesting the superiority of the first estimator 

and larger rewards (or small losses) suggesting the superiority of the second estimator. 

 

4.2 The Exp3 Algorithm 

Let Ŝti = ∑ X̂si
t
s=1  be the total estimated reward by the end of round 𝑡, where X̂si = 1 −

𝕀{𝐴𝑠=𝑖}

𝑃𝑠𝑖
(1 − 𝑋𝑠).   . It seems natural to play actions with larger estimated reward with higher 

probability. While there are many ways to map Ŝti into probabilities, a simple and popular 

choice is called exponential weighting, which for tuning parameter 𝜂 > 0 sets: 

𝑃𝑡𝑖 =
exp (𝜂�̂�𝑡−1,𝑖)

∑ exp (𝜂�̂�𝑡−1,𝑗)𝑘
𝑗=1

 

The parameter 𝜂 is called learning rate. When the learning rate is large, 𝑃𝑡 concentrates 

about the arm with the largest estimated reward and the resulting algorithm exploits 

aggressively. For small learning rates, 𝑃𝑡 is more uniform, and the algorithm explores more 

frequently. Note that as 𝑃𝑡 concentrates, the variance of the importance-weighted 

estimators for poorly performing arms increases dramatically. The Exp3 algorithm is given 

below: 

Step 1: Input 𝑛, 𝑘, 𝜂 

Step 2: Set �̂�0𝑖 = 0 for all 𝑖 

Step 3: For 𝑡 = 1, … , 𝑛 do 

a) Calculate the sampling distribution 𝑃𝑡: 𝑃𝑡𝑖 =
exp[𝜂�̂�𝑡−1,𝑖]

∑ exp[𝜂�̂�𝑡−1,𝑗]k
j=1

 

b) Sample 𝐴𝑡~𝑃𝑡 and observe reward 𝑋𝑡 

c) Calculate �̂�𝑡𝑖: �̂�𝑡𝑖 = �̂�𝑡−1,𝑖 + 1 −
𝕀{𝐴𝑡=𝑖}(1−𝑋𝑡)

𝑃𝑡𝑖
 

Step 4: End for 
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4.2.1    Regret Analysis 

Theorem 6: 

Let 𝑥 ∈ [0,1]𝑛×𝑘 and 𝜋 be the policy of Exp3 with learning rate 𝜂 = √log (𝑘) (𝑛𝑘)⁄ . Then, 

𝑅𝑛(𝜋, 𝑥) ≤ 2√𝑛𝑘log(𝑘) 

 

Theorem 7: 

Let 𝑥 ∈ [0,1]𝑛×𝑘 be an adversarial bandit and π be the policy of Exp3 with learning rate 𝜂 =

√2 log(𝑘) (𝑛𝑘)⁄ . Then, 

𝑅𝑛(𝜋, 𝑥) ≤ √2𝑛𝑘log (𝑘) 

 

Note: The second theorem is an improved version of the first, for which the regret is smaller 

by a factor of √2. The algorithm is unchanged except for a slightly increased learning rate. 

[1] 

 

4.2.2    The Exp3-IX Algorithm And Regret Analysis 

The objective of this chapter is to modify Exp3 so that the regret stays small in expectation 

and is simultaneously well concentrated about its mean. Such results are called high-

probability bounds. The poor behavior of Exp3 occurs because the variance of the 

importance-weighted estimators can become very large. In this chapter we modify the 

reward estimates to control the variance at the price of introducing some bias. Let 𝛾 > 0 be 

a small constant to be chosen later and define the biased estimator: �̂�𝑡𝑖 =
𝕀{𝐴𝑡=𝑖}𝑌𝑡

𝑃𝑡𝑖+𝛾
 (3) . As 𝛾 

increases, the predictable variance decreases, but the bias increases.  

When equation (3) is used in the exponential update in Exp3, the resulting algorithm is 

called Exp3-IX. The suffix “𝐼𝑋” stands for implicit exploration.  

Since small losses correspond to large rewards, the estimator is optimistically biased. The 

effect is a smoothing of 𝑃𝑡 so that actions with large losses for which Exp3 would assign 

negligible probability are still chosen occasionally. In fact, the smaller is 𝑃𝑡𝑖, the larger the 

bias is. As a result, Exp3-IX will explore more than the standard Exp3 algorithm. The Exp-IX 

algorithm is given below: 
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Step 1: Input 𝑛, 𝑘, 𝜂, 𝛾 

Step 2: Set �̂�0𝑖 = 0 for all 𝑖, where �̂�𝑛𝑖 = ∑ �̂�𝑡𝑖
𝑛
𝑡=1  

Step 3: For 𝑡 = 1, … , 𝑛 do 

a) Calculate the sampling distribution 𝑃𝑡:  𝑃𝑡𝑖 =
𝑒𝑥𝑝(−𝜂�̂�𝑡−1,𝑖)

∑ 𝑒𝑥𝑝(−𝜂�̂�𝑡−1,𝑗)𝑘
𝑗=1

 

b) Sample 𝐴𝑡~𝑃𝑡 and observe reward 𝑋𝑡 

c) Calculate �̂�𝑡𝑖 = �̂�𝑡−1,𝑖 +
𝕀{𝐴𝑡=𝑖}(1−𝑋𝑡)

𝑃𝑡𝑖+𝛾
 

Step 4: End for 

 

Theorem 8: 

Let 𝛿 ∈ (0,1) and define 𝜂1 = √
2log (𝑘+1)

𝑛𝑘
  and 𝜂2 = √log(k)+ log(

k+1

δ
)

nk
  and �̂�𝑛 =

max
𝑎∈𝒜

∑ (𝑦𝑡𝐴𝑡
− 𝑦𝑡𝑎)𝑛

𝑡=1 . 

1) If Exp3-IX is run with parameters 𝜂 = 𝜂1 and 𝛾 =
𝜂

2⁄ , then: 

ℙ (�̂�𝑛 ≥ √8𝑛𝑘log(𝑘 + 1) + √
𝑛𝑘

2log (𝑘 + 1)
log (

1

𝛿
) + log (

𝑘 + 1

𝛿
)) ≤ 𝛿 

 

2) If Exp3-IX is run with parameters 𝜂 = 𝜂2 and 𝛾 =
𝜂

2⁄ , then: 

ℙ (�̂�𝑛 ≥ 2√𝑛𝑘(2 log(𝑘 + 1) + log(1 𝛿⁄ ) + log (
𝑘 + 1

𝛿
)) ≤ 𝛿 

 

Note: The value of 𝜂1 is independent of 𝛿, which means that using this choice of learning 

rate leads to a single algorithm with a high-probability bound for all 𝛿. On the other hand, 𝜂2 

does depend on 𝛿, so the user must choose a confidence level from the beginning. The 

advantage is that the bound is improved, but only for the specified confidence level.  
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5 Contextual Bandits 

5.1 Abstract 

Contextual bandits are a type of online learning algorithm that aims to balance the 

exploration-exploitation tradeoff in decision-making problems. In a contextual bandit 

setting, the learning agent is presented with a set of contexts, or features that describe the 

state of the environment, and must select an action to take based on those features. Unlike 

traditional bandit algorithms, which assume that the environment remains stationary and 

the learner can sample actions from a fixed set of alternatives, contextual bandits must 

adapt to changing environments and select actions from a potentially infinite set of 

alternatives. The goal of the contextual bandit algorithm is to maximize the cumulative 

reward obtained over time, while also minimizing the regret of not selecting the optimal 

action. To achieve this, the algorithm must balance the need to gather new information with 

the desire to use what is already known. 

 

5.1.1    Contextual Bandits: One Bandit Per Context 

While contextual bandits can be studied in both the adversarial and stochastic frameworks, 

in this section we focus on the 𝑘-armed adversarial model. The interaction protocol is given 

below: 

Step 1: Adversary secretly chooses rewards (𝑥𝑡)𝑡=1
𝑛  with 𝑥𝑡 ∈ [0,1]𝑘 

Step 2: Adversary secretly chooses contexts (𝑐𝑡)𝑡=1
𝑛  with 𝑐𝑡 ∈ 𝒞 

Step 3: For rounds 𝑡 = 1, … , 𝑛: 

a) Learner observes context 𝑐𝑡 ∈ 𝒞, where 𝒞 is an arbitrary fixed set of contexts 

b) Learner selects distribution 𝑃𝑡 ∈ 𝑃𝑘−1 and samples 𝐴𝑡  from 𝑃𝑡 

c) Learner observes reward 𝑋𝑡 = 𝑥𝑡𝐴𝑡
 

 

A natural way to define the regret is to compare the rewards collected by the learner with 

the rewards collected by the best context-dependent policy in hindsight: 

𝑅𝑛 = 𝔼 [∑ max
𝑖∈[𝑘]

∑ (𝑥𝑡𝑖 − 𝑋𝑡)

𝑡∈[𝑛]:𝑐𝑡=𝑐𝑐∈𝒞

] 
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If the set of possible contexts is finite, then a simple approach is to use a separate instance 

of Exp3 for each context. Let: 

𝑅𝑛𝑐 = 𝔼 [max
𝑖∈[𝑘]

∑ (𝑥𝑡𝑖 − 𝑋𝑡)

𝑡∈[𝑛]:𝑐𝑡=𝑐

] 

be the regret due to context 𝑐 ∈ 𝒞. Combining these equations we conclude to: 

𝑅𝑛 = ∑ 𝑅𝑛𝑐

𝑐∈𝒞

≤ 2 ∑ √𝑘log(𝑘) ∑ 𝕀{𝑐𝑡 = 𝑐}

𝑛

𝑡=1𝑐∈𝒞

 

where the sum inside the square root counts the number of times context 𝑐 ∈ 𝒞 is observed 

and the magnitude of the right-hand side depends on the distribution of observed contexts. 

 

5.1.2    Bandits with Expert Advice 

Provided that the context set 𝒞 is extensive, it is usually not a good idea to use a single 

bandit algorithm per context, unless there is an enormous amount of data available. 

However, in practice, the context space is often not just vast but structured, such as in the 

case of a movie recommendation system, where user demographics and movie genres 

provide some structure that can be exploited to improve the efficiency of the bandit 

algorithm. 

The bandits with expert advice setting is a 𝑘-armed adversarial bandit, but with 𝑀 experts 

making recommendations to the learner. At the beginning of each round, the experts 

announce their predictions about which actions are the most promising. The experts report 

a probability distribution over the actions. The interpretation is that the expert, if the 

decision were left to them, would choose the action for the round at random from the 

probability distribution it reported. 

The predictions of the 𝑀 experts in round 𝑡 are represented by a matrix 𝐸(𝑡) ∈ [0,1]𝑀×𝑘, 

where the 𝑚-th row 𝐸𝑚
(𝑡)

 is a probability vector over [𝑚] representing the recommendations 

of expert 𝑚 in round 𝑡. The interaction protocol is given below: 

Step 1: Adversary secretly chooses rewards 𝑥 ∈ [0,1]𝑛×𝑘 

Step 2: Experts secretly choose predictions 𝐸(1), … , 𝐸(𝑛) 

Step 3: For rounds 𝑡 = 1, … , 𝑛: 
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a) Learner observes predictions of all experts, 𝐸(𝑡) ∈ [0,1]𝑀×𝑘 

b) Learner selects a distribution 𝑃𝑡 ∈ 𝑃𝑘−1 

c) Action 𝐴𝑡  is sampled from 𝑃𝑡 and the reward is  𝑋𝑡 = 𝑥𝑡𝐴𝑡
 

 

5.1.3    The Exp4 Algorithm And Regret Analysis 

The number 4 in Exp4 is not just an increased version number, but indicates the four e’s in 

the long name of the algorithm, which is exponential weighting for exploration and 

exploitation with experts. The pseudocode of Exp4 is given below:  

Step 1: Input 𝑛, 𝑘, 𝑀, 𝜂, 𝛾 

Step 2: Set 𝑄1 = (1 𝑀⁄ , … , 1 𝑀⁄ ) ∈ [0,1]1×𝑀 (a row vector)  

Step 3: For rounds 𝑡 = 1, … , 𝑛 do 

a) Receive advice 𝐸(𝑡) 

b) Choose the action 𝐴𝑡~𝑃𝑡 , where 𝑃𝑡 = 𝑄𝑡𝐸(𝑡) 

c) Receive the reward 𝑋𝑡 = 𝑥𝑡𝐴𝑡
 

d) Estimate the action rewards: �̂�𝑡𝑖 = 1 − (1 − 𝑋𝑡)
𝕀{𝐴𝑡=𝑖}

𝑃𝑡𝑖+𝛾
 

e) Propagate the rewards to the experts: �̃�𝑡 = 𝐸(𝑡)�̂�𝑡 

f) Update the distribution 𝑄𝑡 using the exponential  weighting:  

𝑄𝑡+1,𝑖 =
exp (𝜂�̃�𝑡𝑖)𝑄𝑡𝑖

∑ exp (𝜂�̃�𝑡𝑗)𝑄𝑡𝑗𝑗

 for all 𝑖 ∈ [𝑀] 

Step 4: End for 

 

The regret measures the cumulative rewards collected by the learner relative to the best 

expert in hindsight: 

𝑅𝑛 = 𝔼 [ max
𝑚∈[𝑀]

∑ 𝐸𝑚
(𝑡)

𝑥𝑡

𝑛

𝑡=1

− ∑ 𝑋𝑡

𝑛

𝑡=1

] 

 

Theorem 9: 

Let γ =  0 and 𝜂 = √2log (𝑀) (𝑛𝑘)⁄  denote by 𝑅𝑛  the expected regret of Exp4 after 𝑛 

rounds. Then, 𝑅𝑛 ≤ √2𝑛𝑘log(𝑀). 
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Note: This is the same bound we derived using an independent copy of Exp3 for each 

context.  

 

Theorem 10: 

Assume the same conditions as the previous theorem, except let 𝜂𝑡 = √log(𝑀) 𝐸𝑡
∗⁄ , 

where 𝐸𝑡
∗ = ∑ ∑ max

𝑚∈[𝑀]
𝐸𝑚𝑖

(𝑠)𝑘
𝑖=1

𝑡
𝑠=1 , which shows if the experts have a high degree of 

agreement. Then there exists a universal constant 𝐶 > 0 such that: 

𝑅𝑛 ≤ 𝐶√𝐸𝑛
∗ log(𝑀) 

 

Note: The bound tells us that Exp4 with the suggested learning rate is able to adapt to 

degree of disagreement between the experts, which seems like quite an encouraging result. 

As a further benefit, the learning rate does not depend on the horizon.  

 

5.2 Stochastic Contextual Bandits 

At the beginning of round 𝑡, the learner observes a context 𝐶𝑡 ∈ 𝒞, which may be random or 

not. Having observed the context, the learner chooses their action  𝐴𝑡 ∈ [𝑘] based on the 

information available. So far everything is the same as the adversarial setting. The difference 

comes from the assumption that the reward  𝑋𝑡 satisfies 𝑋𝑡 = 𝑟(𝐶𝑡 , 𝐴𝑡) + 𝜂𝑡, where 𝑟: 𝒞 ×

[𝑘] → ℝ is called the reward function and 𝜂𝑡  is the noise, which we will assume is 

conditionally 1-subgaussian. 

If r was given, then the action in round t with the largest expected return is At
∗ ∈

arg max
a∈[k]

r(Ct, a). Notice that this action is now a random variable because it depends on the 

context 𝐶𝑡 . The loss due to the lack of knowledge of 𝑟 makes the learner incur the regret, 

𝑅𝑛 = 𝔼 [∑ max
𝑎∈[𝑘]

r(Ct, a) − ∑ Xt

n

t=1

𝑛

𝑡=1

] 

In stochastic linear bandits, the definition of regret assumes that the learner's actions do not 

significantly affect the subsequent contexts. However, in some practical scenarios, the 

context may depend on the learner's previous actions. In such cases, the definition of regret 

may not accurately reflect the learner's performance. To overcome this issue, a more 

general framework such as the contextual bandit framework can be used, which allows the 
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learner to select an action based on the context and receive a reward that depends on both 

the chosen action and the context. This approach can handle the dependence between the 

contexts and the actions more effectively than the traditional stochastic linear bandit 

framework.  

 

Definition 7: A simple assumption to capture further information about the dependence of 

rewards on context is to assume that the learner has access to a map 𝜓: 𝒞 × [𝑘] → ℝ𝑑, and 

for an unknown parameter vector 𝜃∗ ∈ ℝ𝑑 , it holds that: 𝑟(𝑐, 𝑎) = 〈𝜃∗, 𝜓(𝑐, 𝑎)〉, for all 

(𝑐, 𝑎) ∈ 𝒞 × [𝑘] . The map 𝜓 is called feature map. The subspace 𝛹 spanned by the feature 

vectors {𝜓(𝑐, 𝑎)}𝑐,𝑎 in ℝ𝑑 is called the feature space. 

 

Note: To understand the concept of feature maps, let's consider an example of a website 

selling books. The context in this scenario is the website visitor, the actions are the 

recommended books, and the reward is the revenue generated from the sale of a book. In 

order to make a recommendation to the visitor, we need to understand their interests and 

preferences, as well as the domain and topic of the books. One way to represent this 

information is through feature maps. Feature maps are a way to transform the input data (in 

this case, information about the visitor and the books) into a set of features that can be used 

to make predictions. For example, we could use indicator variables to represent the visitor's 

interests and preferences, as well as the domain and topic of the books. These indicator 

variables would be combined to create a feature map that captures the relevant information 

for making book recommendations. [1] 

  

5.3 Contextual Bandits with Linear Payoff Functions 

Contextual bandits with linear payoff functions refer to a class of reinforcement learning 

problems where an agent must make decisions based on contextual information to 

maximize some linear reward function. In this setting, the agent receives a set of features 

that describe the current state of the environment and must select an action from a set of 

available actions. The goal of the agent is to learn a policy that maps the contextual features 

to actions that maximize the expected reward. 
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The challenge in contextual bandits with linear payoff functions is to balance the exploration 

of the environment to learn about the true reward function and the exploitation of the 

current knowledge to maximize immediate rewards. To address this challenge, various 

algorithms have been developed, including the contextual linear bandit (CLB) algorithm and 

the LinUCB algorithm. Both algorithms use a linear regression model to estimate the 

expected payoff for each action based on contextual features, and they differ in the way 

they incorporate exploration into the decision-making process. 

 

5.3.1    The LinUCB Algorithm  

In round 𝑡, the learner is given the decision set 𝒜𝑡 ⊂ ℝ𝑑, from which it chooses an action 

𝐴𝑡 ∈  𝒜𝑡 and receives reward 𝑋𝑡 = 〈𝜃∗, 𝐴𝑡〉 where 𝜂𝑡  is 1-subgaussian given 

𝒜1, 𝐴1, 𝑋1, … , 𝒜𝑡−1, 𝐴𝑡−1, 𝑋𝑡−1, 𝒜𝑡  and 𝐴𝑡 . The random pseudo-regret and regret are 

defined by: �̂�𝑛 = ∑ max
𝑎∈𝒜𝑡

〈𝜃∗, 𝑎 − 𝐴𝑡〉𝑛
𝑡=1  and 𝑅𝑛 = 𝔼[�̂�𝑛] = 𝔼 [∑ max

𝑎∈𝒜𝑡

〈𝜃∗, 𝑎〉𝑛
𝑡=1 − ∑ 𝑋𝑡

𝑛
𝑡=1 ].  

The first step is to construct a confidence set 𝒞𝑡 ⊂ ℝ𝑑 based on (𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1) that 

contains the unknown parameter vector 𝜃∗ with high probability. For any given action 𝑎 ∈

ℝ𝑑, let 𝑈𝐶𝐵𝑡(𝑎) = max
𝜃∈𝒞𝑡

〈𝜃, 𝑎〉 be an upper bound on the mean pay-off 〈𝜃∗, 𝑎〉 of 𝑎. The UCB 

algorithm that uses the confidence set 𝒞𝑡 at time 𝑡 then selects: 

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

𝑈𝐶𝐵𝑡(𝑎) 

UCB applied to linear bandits is known by various names, such as LinRel (linear 

reinforcement learning), LinUCB and OFUL (optimism in the face of uncertainty for linear 

bandits).  

To apply the concept of UCB, we require a method to estimate the unknown quantity, 

represented by 𝜃∗. There are various approaches one could take to obtain such an estimate. 

Currently, we are utilizing the regularized least-squares estimator, which is: 

𝜃𝑡 = 𝑎𝑟𝑔 min
𝜃∈ℝ𝑑

(∑(𝑋𝑠 − 〈𝜃, 𝐴𝑠〉)2 + 𝜆‖𝜃‖2
2

𝑡

𝑠=1

) 

where 𝜆 ≥ 0 is called the penalty factor. The solution to this equation is obtained easily by 

differentiation and is:  
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𝜃𝑡 = 𝑉𝑡
−1 ∑ 𝐴𝑠𝑋𝑠

𝑡

𝑠=1

 

where (𝑉𝑡)𝑡 are 𝑑 × 𝑑 matrices given by: 

𝑉0 = 𝜆𝐼 and Vt = V0 + ∑ AsAs
⊺

t

s=1

 

So 𝜃𝑡  is an estimate of 𝜃∗, which makes it natural to choose 𝒞𝑡 to be centered at 𝜃𝑡−1. Thus, 

the confidence set 𝒞𝑡 satisfies: 

𝒞𝑡 ⊆ ℰ𝑡 = {𝜃 ∈ ℝ𝑑 : ‖𝜃 − 𝜃𝑡−1‖
𝑉𝑡−1

2
≤ 𝛽𝑡} (1) 

where (𝛽𝑡)𝑡 is an increasing sequence of constants with 𝛽1 ≥ 1. The set ℰ𝑡 is an ellipsoid 

centered at 𝜃𝑡−1 and with principle axis being the eigenvectors of 𝑉𝑡 with corresponding 

lengths being the reciprocal of the eigenvalues. Notice that as 𝑡 grows, the matrix 𝑉𝑡 has 

increasing eigenvalues, which means the volume of the ellipse is also shrinking. 

 

Computation:  

The computation of 𝐴𝑡  can also be written as: 

(𝐴𝑡 , 𝜃𝑡) = 𝑎𝑟𝑔 max
(𝑎,𝜃)∈𝒜𝑡×𝒞𝑡

〈𝜃, 𝑎〉 (2) 

This is a bilinear optimization problem over the set 𝒜𝑡×𝒞𝑡. In general, not much can be said 

about the computational efficiency of solving this problem. There are two notable special 

cases, however. 

(a)  Suppose that 𝑎(𝜃) = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

〈𝜃, 𝑎〉 can be computed efficiently for any 𝜃 and that 𝒞𝑡 =

co(𝜑1, … , 𝜑𝑚) is the convex hull of a finite set. Then 𝐴𝑡  can be computed by finding 

𝑎(𝜑1), … , 𝑎(𝜑𝑚) and choosing 𝐴𝑡 = 𝑎(𝜑𝑖), where 𝑖 maximizes 〈𝜑𝑖 , 𝑎(𝜑𝑖)〉. 

(b) Assume that 𝒞𝑡 = ℰ𝑡  is the ellipsoid given in Eq. (1) and 𝒜𝑡 is a small finite set. Then the 

action 𝐴𝑡  from Eq. (2) can be found using: 

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

〈𝜃𝑡−1, 𝑎〉 + √𝛽𝑡‖𝑎‖𝑉𝑡−1
−1  
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which may be solved by simply iterating over the arms and calculating the term inside the 

𝑎𝑟𝑔𝑚𝑎𝑥. The term 〈𝜃𝑡−1 , 𝑎〉 may be interpreted as an empirical estimate of the reward from 

choosing action 𝑎, and √𝛽𝑡‖𝑎‖𝑉𝑡−1
−1  is a bonus term that ensures sufficient exploration. 

 

Let 𝛽𝑡(𝛿) = 𝜆 + √2 log(1
𝛿⁄ ) + 𝑑 log (1 +

𝑡

𝜆𝑑
) [2]. The confidence ellipsoid is defined as: 

𝒞𝑡(𝛿) = {𝜃 ∈ ℝ𝑑 : ‖𝜃 − 𝜃𝑡‖
𝑉𝑡−1

≤ 𝛽𝑡−1(𝛿)} 

With this choice of confidence ellipsoid the previous optimization problem is equivalent to 

maximizing: 

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

(𝑎⊺�̂�𝑡 + 𝛽𝑡−1(𝛿)‖𝑎‖𝑉𝑡−1
−1 ) 

 

The LinUCB algorithm is given below:  

Step 1: Input probability 𝛿, dimension 𝑑, regularization 𝜆  

Step 2:  𝑏 = 0ℝ𝑑 , 𝑉 = 𝜆𝕀𝑑 , 𝜃 = 0ℝ𝑑  

Step 3: For 𝑡 ≥ 1 do 

a) Receive 𝒜𝑡 

b) Compute 𝛽𝑡−1(𝛿) = 𝜆 + √2 log(1
𝛿⁄ ) + 𝑑 log (1 +

𝑡−1

𝜆𝑑
) 

c) For 𝑎 ∈ 𝒜𝑡 do 

i) Compute 𝑈𝐶𝐵(𝑎) = 𝑎⊺𝜃 + 𝛽𝑡−1√𝑎⊺𝑉−1𝑎 

ii) 𝐴𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎(𝑈𝐶𝐵(𝑎)) 

iii) Play action 𝐴𝑡  and receive reward 𝑋𝑡 

iv) Update phase: 𝑉 = 𝑉 + 𝐴𝑡𝐴𝑡
⊺, 𝑏 = 𝑏 + 𝑋𝑡𝐴𝑡, 𝜃 = 𝑉−1𝑏 

 

5.3.2    Regret Analysis  

Theorem 11: 

Under the assumptions of the algorithm, with probability 1 − 𝛿 the regret of LinUCB 

satisfies: 
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𝑅𝑇 ≤ √𝑑𝑇√8𝛽𝑇(𝛿) log (1 +
𝑇𝐿2

𝜆𝑑
) 

 

Assumption: The following hold: 

a) 1 ≤ 𝛽1 ≤ 𝛽2 ≤ ⋯ 𝛽𝑛 

b) max
𝑡∈[𝑛]

𝑠𝑢𝑝𝑎,𝑏∈𝒜𝑡
〈𝜃∗, 𝑎 − 𝑏〉 ≤ 1 

c) ‖𝑎‖2 ≤ 𝐿 for all 𝑎 ∈ ⋃ 𝒜𝑡
𝑛
𝑡=1  

d) There exists a 𝛿 ∈ (0, 1) such that with probability 1 − 𝛿, for all 𝑡 ∈ [𝑛], 𝜃∗ ∈ 𝒞𝑡 where 𝒞𝑡 

satisfies Eq. (1). 

 

Theorem 12: 

Under the conditions of the assumption with probability 1 − 𝛿, the regret of LinUCB 

satisfies: 

�̂�𝑛 ≤ √8𝑛𝛽𝑛log (
𝑑𝑒𝑡𝑉𝑛

𝑑𝑒𝑡𝑉0
) ≤ √8𝑑𝑛𝛽𝑛log (

𝑑𝜆 + 𝑛𝐿2

𝑑𝜆
) 

 

Note: The bound given in previous theorem is essentially a worst-case style of bound, with 

little dependence on the parameter 𝜃∗ or the geometry of the action set. In the worst-case, 

the upper bound is tight up to logarithmic factors. [4] 

 

Corollary:  

Under the conditions of the assumption, the expected regret of LinUCB with 𝛿 = 1
𝑛⁄  

satisfies: 

𝑅𝑛 ≤ 𝐶𝑑√𝑛log (𝑛𝐿) 

where 𝐶 > 0 is a suitably large universal constant. 

 

Theorem 13: 
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Let 𝛿 ∈ (0,1). Then, with probability at least 1 − 𝛿, it holds that for all 𝑡 ∈ ℕ, 

‖𝜃𝑡 − 𝜃∗‖
𝑉𝑡(𝜆)

< √𝜆‖𝜃∗‖2 + √2 log (
1

𝛿
) + log (

𝑑𝑒𝑡𝑉𝑡(𝜆)

𝜆𝑑
) 

Furthermore, if ‖𝜃∗‖2 ≤ 𝑚2, then ℙ(exists 𝑡 ∈ ℕ+: 𝜃∗ ∉ 𝒞𝑡) ≤ 𝛿 with, 

𝒞𝑡 = {𝜃 ∈ ℝ𝑑: ‖𝜃𝑡−1 − 𝜃‖
𝑉𝑡−1(𝜆)

< 𝑚2√𝜆 + √2 log (
1

𝛿
) + log (

𝑑𝑒𝑡𝑉𝑡−1(𝜆)

𝜆𝑑
)} 

 

Note: The choice of 𝛽𝑛 may be: √𝛽𝑛 = 𝑚2√𝜆 + √2 log (
1

𝛿
) + 𝑑 log (

𝑑𝜆+𝑛𝐿2

𝑑𝜆
). Empirically, 

the choice of 𝛽𝑛 in the theorem is never worse than the upper value, and sometimes better, 

typically by a modest amount. [8] 

 

5.3.3    Lower Bound 

Theorem 14 (Hypercube): 

Let 𝒜 = [−1, 1]𝑑  and 𝛩 = {−𝑛−1 2⁄ , 𝑛−1 2⁄ }
𝑑

. Then, for any policy, there exists a vector 𝜃 ∈

𝛩 such that: 

𝑅𝑛(𝒜, 𝜃) ≥
exp (−2)

8
𝑑√𝑛 

 

Note: Except for logarithmic factors, this shows that the LinUCB algorithm is near optimal for 

this action set. The same works when 𝒜 = {−1,1}𝑑 is restricted to the corners of the 

hypercube, which is a finite-armed linear bandit. 

 

Theorem 15 (Unit Ball): 

Assume 𝑑 ≤ 2𝑛 and let 𝒜 = {𝑥 ∈ ℝ𝑑: ‖𝑥‖2 ≤ 1}. Then there exists a parameter vector 𝜃 ∈

ℝ𝑑 with ‖𝜃‖2
2 = 𝑑2 (48𝑛)⁄  such that: 

𝑅𝑛(𝒜, 𝜃) ≥ 𝑑√𝑛 (16√3)⁄  
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Note: When the action set is the unit ball, determining the lower bound for minimax regret 

poses a greater challenge compared to the hypercube. Unlike the hypercube, where the 

actions taken in one dimension do not limit choices in other dimensions due to its product 

structure, the unit ball operates differently. In the unit ball, actions taken in one dimension 

impose constraints on choices in other dimensions, making the analysis more complex.  

  

 

6   Thompson Sampling 

Thompson sampling is a decision-making algorithm that works by choosing a prior 

distribution over a set of possible scenarios, or “bandit environments”. In each round, the 

algorithm samples an environment from the posterior distribution and selects the optimal 

action for that environment. Initially, Thompson only applied this approach to simple 

scenarios, such as Bernoulli bandits with two arms, and relied on hand calculations to 

demonstrate its effectiveness. However, recent advances have expanded the approach to a 

wider range of scenarios and theoretical guarantees now demonstrate that the algorithm is 

often near-optimal. [15] 

The key to Thompson sampling is the randomization it introduces through sampling from the 

posterior distribution. If the posterior distribution is not well-concentrated, the algorithm is 

more likely to explore different options. As more data is collected, the posterior distribution 

becomes more concentrated, and exploration is reduced. Overall, Thompson sampling is a 

practical and effective algorithm for decision-making in uncertain environments. The 

algorithm's exploration rate is adjusted dynamically through the posterior distribution, and it 

can be used in a wide range of scenarios, making it an important tool for many real-world 

applications.  

 

Example (Bernoulli-Bandit Thompson Sampling): 

The Bernoulli-Bandit T.S. problem is a multi-armed bandit problem where there are a total 

of 𝑘 actions. Each action, when played, yields either a success (which gives reward 1) or a 

failure (which gives reward 0) with certain probability, i.e. the reward of each arm follows an 

independent Bernoulli distribution. The success probabilities for all arms are unknown to the 
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agent, but are fixed over time. The goal is to maximize the cumulative number of successes 

over 𝑇 periods, with 𝑇 >  𝑘. We define: 𝑁𝑖(𝑡) (denotes the number of pulls of arm 𝑖 up to 

time 𝑡 − 1), 𝑆𝑖(𝑡) (denotes the number of successful pulls of arm 𝑖 up to time 𝑡 − 1), 𝐹𝑖(𝑡) 

(denotes the number of failed pulls of arm 𝑖 up to time 𝑡 − 1), 𝑖(𝑡) (denotes the arm played 

at 𝑡) and 𝑟𝑖(𝑡) (denotes the reward of arm 𝑖 at time 𝑡). So we always have 𝑁𝑖(𝑡) = 𝑆𝑖(𝑡) +

𝐹𝑖(𝑡). The Bernoulli-Bandit Thompson Sampling algorithm is given below: 

Step 1: (Initialization) for each arm 𝑖 ∈ [𝑘], set 𝑆𝑖 = 0, 𝐹𝑖 = 0 

Step 2: For 𝑡 = 1, … , 𝑇 do 

a) for each arm 𝑖 do 

sample 𝜃𝑖(𝑡)~𝐵𝑒𝑡𝑎(𝑆𝑖 + 1, 𝐹𝑖 + 1) 

end  

b) Play arm 𝑖(𝑡): = 𝑎𝑟𝑔 max
𝑗

𝜃𝑗(𝑡) 

c) Observe reward 𝑟𝑖(𝑡) 

d) If 𝑟𝑖(𝑡) = 1 then 

𝑆𝑖(𝑡) = 𝑆𝑖(𝑡) + 1  

else 

𝐹𝑖(𝑡) = 𝐹𝑖(𝑡) + 1  

end 

Step 3: End for 

The reason to use Beta distribution for Bernoulli rewards is that the beta distribution is a 

conjugate prior for the Bernoulli distribution: if the prior is a 𝐵𝑒𝑡𝑎(𝑎, 𝛽) distribution, then 

after observing a Bernoulli trial, the posterior distribution is 𝐵𝑒𝑡𝑎(𝑎 + 1, 𝛽) if the trial is a 

success or 𝐵𝑒𝑡𝑎(𝑎, 𝛽 + 1) if the trial is a failure. The reason that we have 1 added to both 

parameters of Beta distribution is that when 𝑆𝑖(𝑡) = 𝐹𝑖(𝑡) = 0, the distribution 𝐵𝑒𝑡𝑎(1,1)  

is uniform. It's natural to have a uniform prior. [11] 

 

6.1 T.S. for Contextual Bandits with Linear Payoffs  

Problem Settings: 

There are 𝑁 arms. At time 𝑡 = 1,2, …, a context vector 𝑏𝑖(𝑡) ∈ ℝ𝑑 , is revealed for every 

arm 𝑖. These context vectors are chosen by an adversary in an adaptive manner after 

observing the arms played and their rewards up to time 𝑡 − 1, i.e. ℋ𝑡−1, 

ℋ𝑡−1 = {𝑎(𝜏), 𝑟𝑎(𝜏)(𝜏), 𝑏𝑖(𝜏), 𝑖 = 1, … , 𝑁, 𝜏 = 1, … , 𝑡 − 1} 
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where 𝑎(𝜏) denotes the arm played at time 𝜏. Given 𝑏𝑖(𝑡), the reward for arm 𝑖 at time 𝑡 is 

generated from an unknown distribution with mean 𝑏𝑖(𝑡)⊺𝜇, where 𝜇 ∈ ℝ𝑑  is a fixed but 

unknown parameter. 

𝔼[𝑟𝑖(𝑡)|{𝑏𝑖(𝑡)}𝑡=1
𝑁 , ℋ𝑡−1] = 𝔼[𝑟𝑖(𝑡)|𝑏𝑖(𝑡)] = 𝑏𝑖(𝑡)⊺𝜇 

An algorithm for the contextual bandit problem needs to choose, at every time 𝑡, an arm 

𝑎(𝑡) to play, using history ℋ𝑡−1 and current contexts 𝑏𝑖(𝑡), 𝑖 = 1, … , 𝑁. Let 𝑎∗(𝑡) denote 

the optimal arm at time 𝑡, i.e. 𝑎∗(𝑡) = 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺𝜇. And let 𝛥𝑖(𝑡) be the difference 

between the mean rewards of the optimal arm and of arm 𝑖 at time 𝑡, i.e. 

𝛥𝑖(𝑡) = 𝑏𝑎∗(𝑡)(𝑡)⊺𝜇 − 𝑏𝑖(𝑡)⊺𝜇 

Then the regret at time 𝑡 is defined as: 

regret(𝑡) = 𝛥𝑎(𝑡)(𝑡) 

Τhe objective is to minimize the total regret ℛ(𝑇) = ∑ regret(𝑡)𝑇
𝑡=1  in time 𝑇. The time 

horizon 𝑇 is finite but possibly unknown. We assume that 𝜂𝑖,𝑡 = 𝑟𝑖(𝑡) − 𝑏𝑖(𝑡)⊺𝜇 is 

conditionally 𝑅-subgaussian for a constant 𝑅 ≥ 0. We also assume that ‖𝑏𝑖(𝑡)‖2 ≤

1, ‖𝜇‖2 ≤ 1 𝑎𝑛𝑑 𝛥𝑖(𝑡) ≤ 1for all 𝑖, 𝑡. 

 

Thompson Sampling Algorithm: 

We use Gaussian likelihood function and Gaussian prior to design a version of Thompson 

Sampling algorithm. More precisely, suppose that the likelihood of reward 𝑟𝑖(𝑡) at time 𝑡, 

given context 𝑏𝑖(𝑡) and parameter 𝜇, were given by the pdf of Gaussian 

distribution 𝒩(𝑏𝑖(𝑡)⊺𝜇, 𝑣2). Here, 𝑣 = ℛ√
24

𝜀
𝑑𝑙𝑛 (

1

𝛿
), with 𝜀 ∈ (0,1) which parameterizes 

this algorithm. Let 

𝐵(𝑡) = 𝐼𝑑 + ∑ 𝑏𝑎(𝜏)(𝜏)

𝑡−1

𝜏=1

𝑏𝑎(𝜏)(𝜏)⊺ 

�̂�(𝑡) = 𝐵(𝑡)−1 (∑ 𝑏𝑎(𝜏)(𝜏)

𝑡−1

𝜏=1

𝑟𝑎(𝜏)(𝜏)) 

Then, if the prior for 𝜇 at time 𝑡 is given by 𝒩(�̂�(𝑡), 𝑣2𝐵(𝑡)−1), it is easy to compute the 

posterior distribution at time 𝑡 + 1, 
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Pr (�̃�|𝑟𝑖(𝑡)) ∝ Pr (𝑟𝑖(𝑡)|�̃�) Pr (�̃�)

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(𝑟𝑖(𝑡) − �̃�⊺𝑏𝑖(𝑡))

2
+ (�̃� − �̂�(𝑡))

⊺
𝐵(𝑡)(�̃� − �̂�(𝑡))}

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(𝑟𝑖(𝑡)2 + �̃�⊺𝑏𝑖(𝑡)𝑏𝑖(𝑡)⊺�̃� + �̃�⊺𝐵(𝑡)�̃� − 2�̃�⊺𝑏𝑖(𝑡)𝑟𝑖(𝑡)

− 2�̃�⊺𝐵(𝑡)�̂�(𝑡))} ∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(�̃�⊺𝐵(𝑡 + 1)�̃� − 2�̃�⊺𝐵(𝑡 + 1)�̂�(𝑡 + 1))}

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(�̃� − �̂�(𝑡 + 1))

⊺
𝐵(𝑡 + 1)(�̃� − �̂�(𝑡 + 1))} 

as 𝒩(�̂�(𝑡 + 1), 𝑣2𝐵(𝑡 + 1)−1). At every time step 𝑡, we will generate a sample �̃�(𝑡) from 

the distribution 𝒩(�̂�(𝑡), 𝑣2𝐵(𝑡)−1) and play the arm 𝑖 that maximizes 𝑏𝑖(𝑡)⊺�̃�(𝑡). The 

Thompson Sampling algorithm for contextual bandits is given below:  

Step 1: Set 𝐵 = 𝐼𝑑 , �̂� = 0𝑑 , 𝑓 = 0𝑑  

Step 2: For all 𝑡 = 1,2, …, do 

a) Sample �̃�(𝑡) from distribution 𝒩(�̂�, 𝑣2𝐵−1) 

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

 𝑏𝑖(𝑡)⊺�̃�(𝑡) and observe reward 𝑟𝑡 

c) Update 𝐵 = 𝐵 + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓 = 𝑓 + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡,  �̂� = 𝐵−1𝑓 

Step 3: End for 

Every step 𝑡 of the algorithm consists of generating a 𝑑-dimensional sample �̃�(𝑡) from a 

multivariate Gaussian distribution, and solving the problem 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺�̃�(𝑡). Therefore, 

even if the number of arms 𝑁 is large (or infinite), the above algorithm is efficient as long as 

the problem 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺�̃�(𝑡) is efficiently solvable. [3] 

 

6.2 Regret Analysis 

Theorem 16: 

The total regret in time 𝑇 for Thompson Sampling for stochastic contextual bandit problem 

with linear payoff function, with probability 1 − 𝛿 satisfies: 

ℛ(𝑇) ≤ 𝐶
𝑑2

𝜀
√𝑇1+𝜀 (ln(Td)ln

1

δ
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1) 

where 𝐶 > 0 is a universal constant and 𝜀 is a parameter used by Thompson Sampling 

algorithm. [12] 
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Remark: 1) The parameter 𝜀 can be chosen to be any constant in (0,1). If 𝑇 is known, one 

could choose 𝜀 =
1

ln 𝑇
, to get: ℛ(𝑇) ≤ 𝐶𝑑2√𝑇, where 𝐶 > 0 a universal constant. 

 

2) Our regret bound in theorem does not depend on 𝑁, and is applicable to the case of 

infinite arms.  

 

Now we state two additional results. The first one is for the setting where each of the 𝑁 

arms is associated with a different 𝑑-dimensional parameter 𝜇𝑖 ∈ ℝ𝑑, so that the mean 

reward for arm 𝑖 at time 𝑡 is 𝑏𝑖(𝑡)⊺𝜇𝑖. For this setting Thompson Sampling will maintain a 

separate posterior distribution for each arm 𝑖 and will only update them whenever 𝑖 is 

chosen to be played. At every time step 𝑡, instead of a single sample �̃�(𝑡), N independent 

samples will have to be generated: �̃�𝑖(𝑡) for each arm 𝑖. We appropriately modify some of 

the previous definitions: 

𝐵𝑖(𝑡) = 𝐼𝑑 + ∑ 𝑏𝑖(𝜏)

𝑡−1

𝜏=1:𝑎(𝜏)=𝑖

𝑏𝑖(𝜏)⊺ 

�̂�𝑖(𝑡) = 𝐵𝑖(𝑡)−1 ( ∑ 𝑏𝑖(𝜏)

𝑡−1

𝜏=1:𝑎(𝜏)=𝑖

𝑟𝑖(𝜏)) 

The posterior distribution for each arm 𝑖 at time 𝑡 will 

be 𝒩(𝑏𝑖(𝑡)⊺�̂�𝑖(𝑡), 𝑣2𝑏𝑖(𝑡)⊺𝐵𝑖(𝑡)−1𝑏𝑖(𝑡)). And, the Thompson Sampling algorithm is now 

stated as follows: 

Step 1: Set 𝐵𝑖 = 𝐼𝑑 , �̂�𝑖 = 0𝑑 , 𝑓𝑖 = 0𝑑 , 𝑖 = 1, … , 𝑁 

Step 2: For all 𝑡 = 1,2, …, do 

a) For each arm 𝑖 = 1, … , 𝑁, sample 𝜃𝑖(𝑡) independently from the posterior distribution  

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

𝜃𝑖(𝑡) and observe reward 𝑟𝑡 

c) Update 𝐵𝑎(𝑡) = 𝐵𝑎(𝑡) + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓𝑎(𝑡) = 𝑓𝑎(𝑡) + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡 , �̂�𝑎(𝑡) = 𝐵𝑎(𝑡)
−1𝑓𝑎(𝑡) 

Step 3: End for 

The optimal arm 𝑎∗(𝑡) is now the arm that maximizes 𝑏𝑖(𝑡)⊺𝜇𝑖, and the regret at time 𝑡 is 

defined as: 

regret(𝑡) = 𝑏𝑎∗(𝑡)(𝑡)⊺𝜇𝑎∗(𝑡) − 𝑏𝑎(𝑡)(𝑡)⊺𝜇𝑎(𝑡) 
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Theorem 17: 

For this setting, with probability 1 − 𝛿, the total regret in time 𝑇 for Thompson Sampling 

satisfies: 

ℛ(𝑇) ≤ 𝐶𝑑√
𝑁𝑇1+𝜀 ln 𝑁

𝜀
(ln 𝑇 ln

1

𝛿
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1) 

where 𝐶 > 0 a is a universal constant. 

 

Note: Unlike first theorem, the second one has dependence on 𝑁 in its regret bound, which 

is reasonable since this theorem deals with a setting where there are 𝑁 different parameters 

to learn. However, the bound in last theorem has a better dependence on 𝑑. This 

improvement results from the independence of 𝜃𝑖(𝑡) = 𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡) in the algorithm for this 

setting. On the other hand in the algorithm, a single �̃�(𝑡) is generated, and thus 𝜃𝑖(𝑡) =

𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡) are not independent. 

 

Considering the note, we modify the algorithm for the single parameter setting by entailing 

the 𝜃𝑖(𝑡)’s to be independently generated, each with marginal distribution 𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡). The 

arm with the highest value of 𝜃𝑖(𝑡) is played at time 𝑡. Although, this modified algorithm 

could be inefficient compared to the first algorithm if 𝑁 is large compared to 𝑑, the better 

dependence on 𝑑 in regret bounds could be useful if 𝑑 is large. The modified Thompson 

Sampling algorithm is given below: 

Step 1: Set 𝐵 = 𝐼𝑑 , �̂� = 0𝑑 , 𝑓 = 0𝑑  

Step 2: For all 𝑡 = 1,2, …, do 

a) For each arm 𝑖 = 1, … , 𝑁, sample 𝜃𝑖(𝑡) from distribution 𝒩(𝑏𝑖(𝑡)⊺�̂�, 𝑣2𝑏𝑖(𝑡)⊺𝐵−1𝑏𝑖(𝑡)) 

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

𝜃𝑖(𝑡) and observe reward 𝑟𝑡 

c) Update 𝐵 = 𝐵 + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓 = 𝑓 + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡,  �̂� = 𝐵−1𝑓 

Step 3: End for 

 

Theorem 18: 
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For the modified algorithm in single parameter setting, with probability 1 − 𝛿 the total 

regret in time 𝑇 satisfies: 

ℛ(𝑇) ≤ 𝐶𝑑√
𝑇1+𝜀 ln 𝑁

𝜀
(ln 𝑇 ln

1

𝛿
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1) 

where 𝐶 > 0 is a universal constant. 

 

7   Simulation 

To make all these more concrete, we give an example of implementing the Thompson 

Sampling algorithm for a Bernoulli bandit problem with two arms in 𝑅-code, which is 

presented in appendix 1. To better understand it, a detailed explanation is given below: 

We start by loading the necessary package “MASS”, which contains the “rbeta” function 

used for sampling from the beta distribution. The “simulate_bandit” function takes a success 

probability “p” and returns a binary outcome (0 or 1) based on a Bernoulli distribution. 

The “thompson_sampling” function implements the Thompson Sampling algorithm. It takes 

two arguments: “n_arms” (the number of arms in the bandit) and “n_trials” (the number of 

trials to run the algorithm). Inside the function, we initialize two variables: “arm_success” 

and “arm_failures” to keep track of the number of successes and failures for each arm. 

For each trial, we sample success probabilities for each arm using the beta distribution with 

parameters ‘(“arm_success” + 1, “arm_failures” + 1)’. These parameters represent the 

number of successes and failures observed for each arm plus a pseudo-count of 1 to ensure 

exploration. The “rbeta” function is used to generate random samples from the beta 

distribution. 

Next, we select the arm with the highest sample by finding the index of the maximum value 

in “arm_samples”. We then simulate a reward for the chosen arm using the 

“simulate_bandit” function, which takes the true success probabilities “p” and returns a 

binary reward (0 or 1) based on the Bernoulli distribution. 

Finally, we update the arm success/failure counts based on the observed reward. If the 

reward is 1, we increment the success count for the chosen arm; otherwise, we increment 

the failure count. After running the Thompson Sampling algorithm for the specified number 
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of trials, we return the estimated success probabilities for each arm by dividing the success 

count by the total count (successes + failures). 

In the main code, we set the number of arms (“n_arms”) to 2 and the number of trials 

(“n_trials”) to 1000. We also define the true success probabilities of the arms (“p”) as “c (0.3, 

0.5)”. 

We then run the Thompson Sampling algorithm 100 times by calling the 

“thompson_sampling” function inside the “replicate” function. This allows us to obtain an 

average estimate of the arm success probabilities across multiple runs. 

Finally, we print the estimated success probabilities for each arm by calculating the mean of 

the results matrix for each arm separately. 

 

Now, we are using the LinUCB algorithm in the same example. The 𝑅-code is shown in 

appendix 2. More specifically, in this implementation, we define the “simulate_bandit” 

function, which is the same as before. The “lin_ucb function” implements the LinUCB 

algorithm. It takes three arguments: “n_arms” (the number of arms in the bandit), “n_trials” 

(the number of trials to run the algorithm), and “alpha” (the exploration parameter). Inside 

the function, we initialize variables to keep track of the number of successes, failures, 

counts, and rewards for each arm. We also initialize the UCB values for each arm to the 

specified “alpha”. For each trial, we select the arm with the highest UCB value using the 

“which.max” function. 

We then simulate a reward for the chosen arm using the “simulate_bandit” function, which 

takes the true success probabilities “p” and returns a binary reward (0 or 1) based on the 

Bernoulli distribution. Next, we update the arm success/failure counts and rewards based on 

the observed reward. We also increment the arm count. 

After that, we update the UCB values for all arms. For arms that have been pulled at least 

once (“arm_counts [arm]> 0”), we calculate the mean reward and an exploration term 

based on the exploration parameter “alpha” and the logarithm of the current trial number 

“t”. The UCB value for an arm is the sum of the mean reward and the exploration term. 
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After running the LinUCB algorithm for the specified number of trials, we return the 

estimated success probabilities for each arm by dividing the success count by the total count 

(successes + failures). 

In the main code, we set the number of arms (“n_arms”) to 2, the number of trials 

(“n_trials”) to 1000, and the exploration parameter (“alpha”) to 2.0. We then run the LinUCB 

algorithm 100 times by calling the “lin_ucb” function inside the “replicate” function. This 

allows us to obtain an average estimate of the arm success probabilities across multiple 

runs. 

Finally, we print the estimated success probabilities for each arm by calculating the mean of 

the results matrix for each arm separately. 

  

Appendix 

1) # Required packages 

library(MASS) 

# Function to simulate Bernoulli bandit 

simulate_bandit ← function (p) { 

    return (rbinom (1, 1, p)) 

} 

# Thompson Sampling function 

thompson_sampling ← function (n_arms, n_trials) { 

    # Initialize variables 

    arm_success ← numeric (n_arms) 

    arm_failures ← numeric (n_arms)  

    for (t in 1:n_trials) { 

        # Sample success probabilities for each arm 

        arm_samples ← rbeta(n_arms, arm_success + 1, arm_failures + 1) 

        # Select arm with highest sample 

        chosen_arm ← which.max (arm_samples) 
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        # Simulate reward for chosen arm 

        reward ← simulate_bandit (p [chosen_arm])     

        # Update arm success/failure counts 

        if (reward == 1) { 

           arm_success [chosen_arm] ← arm_success [chosen_arm] + 1 

        } else { 

           arm_failures [chosen_arm] ← arm_failures [chosen_arm] + 1 

        } 

    } 

    # Return arm success probabilities 

    return (arm_success / (arm_success + arm_failures)) 

} 

# Number of arms 

n_arms ← 2 

# Number of trials 

n_trials ← 1000 

# Run Thompson Sampling 

p ← c (0.3, 0.5) # True success probabilities of arms 

results ← replicate (100, thompson_sampling (n_arms, n_trials)) 

# Print arm success probabilities 

for (arm in 1:n_arms) { 

    cat (paste ("Arm", arm, "success probability:", mean(results[arm, ]), "\n")) 

} 

 

2) # Function to simulate Bernoulli bandit 

simulate_bandit ← function (p) { 

   return (rbinom (1, 1, p)) 

} 

# LinUCB function 

lin_ucb ← function (n_arms, n_trials, alpha) { 
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  # Initialize variables 

  arm_success ← numeric(n_arms) 

  arm_failures ← numeric(n_arms) 

  arm_counts ← numeric(n_arms) 

  arm_rewards ← numeric(n_arms) 

  arm_UCB ← rep(alpha, n_arms)  

  for (t in 1:n_trials) { 

      # Select arm with highest UCB 

      chosen_arm ← which.max(arm_UCB) 

      # Simulate reward for chosen arm 

      reward ← simulate_bandit (p [chosen_arm]) 

      # Update arm success/failure counts and rewards 

      if (reward == 1) { 

         arm_success [chosen_arm] ← arm_success [chosen_arm] + 1 

      } else { 

         arm_failures [chosen_arm] ← arm_failures [chosen_arm] + 1 

      } 

      arm_counts [chosen_arm] ← arm_counts [chosen_arm] + 1 

      arm_rewards [chosen_arm] ← arm_rewards [chosen_arm] + reward 

      # Update UCB values for all arms 

      for (arm in 1:n_arms) { 

          if (arm_counts [arm] > 0) { 

             mean_reward ← arm_rewards [arm] / arm_counts [arm] 

             exploration_term ← sqrt (alpha * log (t) / arm_counts [arm]) 

             arm_UCB [arm] ← mean_reward + exploration_term 

          } 

      } 

  } 

# Return arm success probabilities 

return (arm_success / (arm_success + arm_failures)) 

} 
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# Number of arms 

n_arms ← 2 

# Number of trials 

n_trials ← 1000 

# Exploration parameter 

alpha ← 2.0 

# Run LinUCB 

p ← c (0.3, 0.5) # True success probabilities of arms 

results ← replicate (100, lin_ucb (n_arms, n_trials, alpha)) 

# Print arm success probabilities 

for (arm in 1:n_arms) { 

    cat (paste ("Arm", arm, "success probability:", mean(results[arm, ]), "\n")) 

} 
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