
1

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Master Thesis

Mathematical Models and Algorithms for Contextual Multi-armed

Bandit Problems

Author: Supervisor:

Dimitrios ZACHARIS Prof. Apostolos BURNETAS

A thesis submitted in partial fulfillment of the requirements for the degree of

M.Sc in Statistics and Operational research

in the

Faculty of Science,

Department of Mathematics

Athens, September 2023

2

Η παρούσα Διπλωματική Εργασία εκπονήθηκε στα πλαίσια των σπουδών για

την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης «Στατιστική και

Επιχειρησιακή Έρευνα»

που απονέμει το

 Τμήμα Μαθηματικών

 του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την………………………. από Εξεταστική Επιτροπή

Αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. Απόστολος Μπουρνέτας(Επιβλέπων Καθηγητής) Καθηγητής ………….......

2. Παναγιώτη Μερτικόπουλο Καθηγητής ……………...

3. Αντώνιο Οικονόμου Καθηγητής ……..………

3

Acknowledgements

First of all, I would like to thank my thesis supervisor, Professor Apostolos

Burnetas, for his guidance through each stage of the process, for all his help and

advice, and for inspiring my interest in the field of artificial neural networks and

optimization.

In addition, I would like to express my deepest appreciation to my examination

committee, Professor Antonis Economou and Professor Panagiotis

Mertikopoulos, for their insightful comments and suggestions.

Finally, I would like to express my gratitude to my family and friends for all their

encouragement and support during my studies.

4

Contents

1 Introduction…………………………………………………………………………............................6

2 Introduction to Bandit Problems….………………………………………………………… 7

 2.1 The Language of Bandits ………………………………………………………………….... 8

 2.2 Applications …………………………………………………………………………………….. 10

3 Stochastic Bandits ………………………………………………………………………………… 12

 3.1 Introduction ... 12

 3.1.1 Core Assumptions ……………………………………………………………….……… 13

 3.1.2 Knowledge and Environment Classes ……………………………………… 14

 3.1.3 The Regret ……………………………………………………………………………….. 15

 3.2 Stochastic Bandits with Finitely Many Arms …………………………………. 16

 3.2.1 The Explore-Then-Commit Algorithm and Regret Analysis ……... 16

 3.2.2 The Upper Confidence Bound Algorithm ………………………………… 18

 3.2.3 The UCB Algorithm: Asymptotic Optimality ……………………………… 20

 3.2.4 Lower Bounds …………………………………………………………………………….. 21

4 Adversarial Bandits …………………………………………………………………………….. 24

 4.1 Abstract …………………………………………………………………………………………. 24

 4.1.1 Adversarial Bandit Environment …………………………………………… 25

 4.1.2 Similarities and Differences between Stochastic and Adversarial

Environments ………………………………………………………………………………………… 25

 4.1.3 Importance-Weighted Estimators …………………………………………. 26

 4.2 The Exp3 Algorithm ……………………………………………………………………… 27

 4.2.1 Regret Analysis ………………………………………………………………………….. 28

 4.2.2 The Exp3-IX Algorithm and Regret Analysis …………………………… 28

5 Contextual Bandits ……………………………………………………………………….………. 30

 5.1 Abstract ……………………………………………………………….................................. 30

 5.1.1 Contextual Bandits: One Bandit Per Context ……………………………... 30

 5.1.2 Bandits With Expert Advice ………………………………………………..……… 31

 5.1.3 The Exp4 Algorithm and Regret Analysis ……………...…………………… 32

 5.2 Stochastic Contextual Bandits …………………………………………………………. 33

5

 5.3 Contextual Bandits with Linear Payoff Functions ………………………… 34

 5.3.1 The LinUCB Algorithm ………………………………………………………………... 35

 5.3.2 Regret Analysis ………………………………………………………………………...… 37

 5.3.3 Lower Bound ……………………………………………………………………………… 39

6 Thompson Sampling …………………………………………………………………………….. 40

 6.1 Thompson Sampling for Contextual Bandits with Linear Payoffs ..… 41

 6.2 Regret Analysis ... 43

7 Simulation …………………………………………………………………………………………….. 46

8 Appendix ………………………………………………………………………………………………. 48

9 References ……………………………………………………………………………………………. 51

6

1 Introduction

In this thesis, we will consider about mathematical models and algorithms for multi-armed

bandit problems and especially for the contextual bandits. Contextual bandits belong to the

field of reinforcement learning and in such a problem, the algorithm has to make decisions

about the choice of actions based on contexts, which include information about the current

state of the environment and possibly previous information collected. The goal of the

algorithm is to learn a policy that, over time, will select actions with the greatest potential

payoff. To achieve this, the learner uses different exploration-exploitation strategies that

balance the trade-off between exploring new arms to collect new information and exploiting

what is already known.

The structure of the thesis is as follows:

In chapter 2, we make an introduction to bandit problems by giving basic definitions

(learner, environment, regret, etc), some explanatory notes and examples in order to make

more concrete these ideas. We also mention some key applications of these problems, such

as A/B Testing, advertisement placement, network routing, etc.

The next chapter refers to stochastic bandits, indicating their structure and a couple of

algorithms, like ETC, UCB, Epsilon-greedy. Furthermore, there are theorems, which give

important results about the bounds that the regret satisfies.

The chapter 4 refers to adversarial bandits, another main category of bandit problems. We

present theorems, algorithms (Exp3), notes and examples, as previously. In addition, we

record the similarities and differences of stochastic and adversarial environments.

In the next chapter, we analyze the contextual bandits, which are our main topic of the

thesis. Firstly, we divide these problems into adversarial and stochastic and for each

category we mention the basic algorithms and their results, Exp4 and LinUCB respectively.

We give more attention to the LinUCB algorithm, which is actually the UCB algorithm applied

to linear bandits.

In chapter 6, we present the Thompson Sampling algorithm. We give an example, in which

we apply this algorithm to Bernoulli bandits with two arms, as Thompson initially did. Then,

7

we restrict the algorithm to contextual bandits and for the different cases we modify the

pseudo-code and extract the corresponding results.

In the last chapter, we simulate in R-code an example of implementing, not only the

Thompson Sampling algorithm for a Bernoulli bandit problem with two arms, but also the

LinUCB algorithm, with the same data. The codes are shown in appendix.

2 Introduction to Bandit Problems

In 1933, William R. Thompson introduced a concept known as bandit problems through an

article published in Biometrika. Thompson's primary focus was on medical trials and the

ethical concerns associated with conducting trials without adapting the treatment

allocations in response to the drug's varying effectiveness. The term “bandit problems”

emerged later in the 1950s when Frederick Mosteller and Robert Bush conducted

experiments on mice and humans to explore animal learning. In these experiments, mice

were faced with the task of choosing between left and right directions in a T-shaped maze,

uncertain of which end would lead to food (figure 1). To replicate this learning scenario in

humans, a machine called a “two-armed bandit” was created. This machine allowed humans

to choose between pulling the left or right arm, with each arm yielding a random payout, the

distribution of which remained unknown to the player (figure 2). The name “two-armed

bandit” was inspired by the term “one-armed bandit”, an old-fashioned reference to a lever-

operated slot machine, with “bandit” alluding to the notion of money being taken away.

Figure 1: Mouse learning a T-maze Figure 2: Two-armed bandit

There are many reasons to care about bandit problems. Decision-making with uncertainty is

a challenge we all face, and bandits provide a simple model of this dilemma. Bandit

8

problems also have practical applications. Major tech companies use bandit algorithms for

configuring web interfaces, where applications include news recommendation, dynamic

pricing and ad placement. A bandit algorithm plays a role in Monte Carlo Tree Search, an

algorithm made famous by the recent success of AlphaGo.

2.1 The Language of Bandits

A bandit problem is a sequential game between a learner and an environment. The game is

played over 𝑛 rounds, where 𝑛 is a positive natural number called the horizon. In each

round 𝑡 ∈ {1, … , 𝑛}, the learner first chooses an action 𝐴𝑡 from a given set 𝒜, and the

environment then reveals a reward 𝑋𝑡 ∈ ℝ. Actions are often also called “arms”. We talk

about 𝑘-armed bandits when the number of actions is 𝑘, and about multi-armed bandits

when the number of arms is at least two. There are also one-armed bandits, which are really

two-armed bandits where the pay-off of one of the arms is a known fixed deterministic

number.

Every action 𝐴𝑡 should only depend on the history ℋ𝑡−1 = (𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1). In the

context of interactions between a learner and an environment, a policy can be understood

as a function that maps histories to actions: “The learner utilizes this policy to make

decisions on how to interact with the environment. On the other hand, the environment can

be seen as a function that maps history sequences, which culminate in specific actions, to

corresponding rewards”. The most common objective of the learner is to choose actions that

lead to the largest possible cumulative reward over all 𝑛 rounds, which is equal to ∑ 𝑋𝑡
𝑛
𝑡=1 .

The challenge in bandit problems is that the environment is unknown to the learner, who

only knows that the true environment lies in some set ℰ called the environment class.

Definition 1: The regret of the learner relative to a policy 𝜋 is the difference between the

total expected reward using policy 𝜋 for 𝑛 rounds and the total expected reward collected

under complete information over 𝑛 rounds. The regret relative to a set of policies 𝛱 is the

maximum regret relative to any policy 𝜋 ∈ 𝛱 in the set. The set 𝛱 is often called the

competitor class.

Note: We usually measure the regret relative to a set of policies 𝛱 that is large enough to

include the optimal policy for all environments in ℰ. In this case, the regret measures the

loss suffered by the learner relative to the optimal policy.

9

For a fixed policy and competitor class, the regret depends on the environment.

The environments where the regret is large are those where the learner is behaving worse.

The ideal case is that the regret should be small for all environments (A large environment

class corresponds to less knowledge by the learner). The worst-case regret is the maximum

regret over all possible environments.

Example:

Suppose the action set is 𝒜 = {1, . . . , 𝑘}. An environment is called a stochastic Bernoulli

bandit if the reward 𝑋𝑡 ∈ {0,1} is binary valued and there exists a vector 𝜇 ∈ [0,1]k such

that the probability that 𝑋𝑡 = 1 given the learner chose action 𝐴𝑡 = 𝛼 is 𝜇𝛼. The class of

stochastic Bernoulli bandits is the set of all such bandits, which are characterized by their

mean vectors. The optimal policy under complete information is to play the fixed

action 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝒜 𝜇𝛼. For this problem the natural competitor class is the set of 𝑘

constant polices 𝛱 = {𝜋1, . . . , 𝜋𝜅} where 𝜋𝑖 chooses action 𝑖 in every round. The regret over

𝑛 rounds becomes:

𝑅𝑛 = 𝑛 max
𝑎∈𝒜

𝜇𝛼 − 𝔼 [∑ 𝑋𝑡

𝑛

𝑡=1

]

Note: 1) One straightforward problem scenario is that of stochastic stationary bandits. In

this particular setting, the environment is constrained to produce rewards for each action

based on a distribution unique to that action. Importantly, these reward distributions are

independent of prior action choices and rewards. The environment class described in the

previous example adheres to these conditions, but there are other possibilities as well. For

example, instead of a Bernoulli distribution, the rewards could follow a Gaussian

distribution. While this difference may seem large, it does not fundamentally alter the

nature of the problem. A more drastic change is to assume the action set 𝒜 is a subset of

ℝ𝑑 and that the mean reward for choosing some action 𝛼 ∈ 𝒜 follows a linear model, 𝑋𝑡 =

< 𝑎, 𝜃 > +𝜂𝑡 for 𝜃 ∈ ℝ𝑑 and 𝜂𝑡 a standard Gaussian (zero mean, unit variance). The

unknown quantity in this case is 𝜃 and the environment class corresponding its possible

values (ℰ = ℝ𝑑).

2) Another idea is to drop all assumptions on how the rewards are generated, except that

10

they are chosen without knowledge of the learner’s actions and lie in a bounded set. In this

case, the setting is called adversarial bandits. The trick is to restrict the competitor class. We

usually choose 𝛱 to be the set of constant policies. By defining the regret in this way, the

stationarity assumption is transformed to the definition of regret rather than constraining

the environment.

3) Of course, except of the two previous situations there exist other cases. Sometimes we

consider the case where the rewards are stochastic, but not stationary or may analyze the

robustness of an algorithm for stochastic bandits to small adversarial perturbations.

4) Limitations of Bandit Framework: One of the features of all bandit problems is that the

learner never needs to plan for the future. More precisely, problems with the assumption

that the learner’s available choices and rewards tomorrow are not affected by their

decisions today fall into the realm of reinforcement learning. Another limitation of the

bandit framework is the assumption that the learner observes the reward in every round.

The setting where the reward is not observed is called partial monitoring.

2.2 Applications

i) A/B Testing

A/B testing (also known as split testing or bucket testing) is a methodology for comparing

two versions of a webpage or app against each other to determine which one performs

better. A/B testing is essentially an experiment where two or more variants of a page are

shown to users at random, and statistical analysis is used to determine which variation

performs better for a given conversion goal. For example, the designers of a company

website are trying to decide whether the “buy it now” button should be placed at the top of

the product page or at the bottom.

One way to apply bandits to this problem is to view the two versions of the site as actions.

Each time 𝑡 a user makes a request, a bandit algorithm is used to choose an action 𝐴𝑡 ∈

𝒜 = {𝑠𝑖𝑡𝑒𝐴, 𝑠𝑖𝑡𝑒𝐵}, and the reward is 𝑋𝑡 = 1 if the user purchases the product and 𝑋𝑡 = 0

otherwise.

https://www.optimizely.com/optimization-glossary/split-testing/
https://www.optimizely.com/optimization-glossary/bucket-testing/

11

ii) Advertisement Placement

Advertisement placement means the group of units that specify the areas on the website

where advertisers can place. Ad placement criteria include the size, type, and location of the

ads. One way to face this is to view it as a multi-armed bandit problem, where in each round

a policy chooses an action 𝐴𝑡 ∈ 𝒜 = {all available adverts}, and the reward 𝑋𝑡 = 1 if the

user clicked on the advert and 𝑋𝑡 = 0 otherwise. This might work for specialized websites,

where the advertisements are likely to be appropriate. But for companies, like Amazon,

advertising should be targeted. Clearly, an algorithm should take into account previous

purchases. This might mean clustering users and implementing a separate bandit algorithm

for each cluster. For example, a user that recently purchased a boxing bag is more likely to

buy boxing gloves than another user. Also, other metrics such as user satisfaction, diversity,

freshness and fairness, just to mention a few, are important too.

iii) Recommendation Services

Netflix needs to choose which movies to display on each user’s “browse” page. Similar to

placing advertisements, users visit the page one after another, and the success of the

selection can be measured based on whether the user watches a movie and rates it

positively. However, there are some difficulties. Netflix presents a vast list of movies, leading

to a large number of possible actions. Moreover, each user is unique and only watches a few

movies, so the algorithm's choices influence the available data.

iv) Network Routing

Routing is the process of path selection in any network. A computer network is made of

many machines, called nodes, and paths or links that connect those nodes. Communication

between two nodes in an interconnected network can take place through many different

paths. Routing is the process of selecting the best path using some predetermined rules. In

this problem, the learner receives the start/end destinations for a packet of data in each

round. The set of actions is the set of all paths starting and ending at the appropriate points

on some known graph. The feedback in this case is the time it takes for the packet to be

received at its destination, and the reward is the negative of this value.

12

v) Dynamic Pricing

In a dynamic pricing scenario, a company aims to find the best price for a product. Users

arrive one by one, and the learning algorithm sets the price. A user will buy the product only

if the price is lower than their personal value for it. However, the algorithm never directly

observes the user's value; it only receives a binary signal indicating whether the price was

too low/too high for the user.

vi) Waiting Problems

In these problems, the challenge is to devise a policy for choosing, for example, how long to

wait at the bus stop before giving up and walking to minimize the time to get to the

workplace or deciding the amount of inactivity required before putting a hard drive into

sleep mode or powering off a car engine at traffic lights. The statistical part concerns

estimating the cumulative distribution function of the bus arrival times from data.

vii) Tree Search

The UCT (Upper Confidence bounds applied to Trees) algorithm is a tree search algorithm

commonly used in perfect-information game-playing algorithms. The idea is to build a search

tree where in each iteration the algorithm takes three steps: (a) chooses a path from the

root to a leaf, (b) expands the leaf, if possible, (c) performs a Monte Carlo roll-out to the end

of the game. The contribution of a bandit algorithm is in selecting the path from the root to

the leaves. At each node in the tree, a bandit algorithm is used to select the child based on

the series of rewards observed through that node so far.

3 Stochastic Bandits

3.1 Introduction

Stochastic bandits are a class of online learning problems where a decision maker or a

learner has to repeatedly choose actions from a set of available options, also known as arms,

and receive rewards that depend on the selected action. In contrast to traditional multi-

13

armed bandits, where the rewards are deterministic, stochastic bandits assume that the

rewards are drawn from some unknown probability distributions associated with each arm.

The objective of the learner is to maximize the cumulative reward over a finite or infinite

time horizon by learning the optimal arm selection strategy through trial and error. To

achieve this objective, the learner uses various exploration-exploitation strategies that

balance the trade-off between exploring new arms to learn their reward distributions and

exploiting the already learned information to select the arms with the highest expected

rewards.

Stochastic bandits have numerous applications in various fields, including recommendation

systems, online advertising, clinical trials, and finance. The problem of designing efficient

algorithms for stochastic bandits is an active research area in machine learning and

optimization, and has led to the development of a variety of algorithms with different trade-

offs between computational complexity, regret bounds, and practical performance.

3.1.1 Core Assumptions

A stochastic bandit is a collection of distributions 𝑣 = (𝑃𝑎: 𝛼 ∈ 𝒜), where 𝒜 is the set of

available actions. In each round 𝑡 ∈ {1, . . . , 𝑛}, the learner chooses an action 𝐴𝑡 ∈ 𝒜, which

is fed to the environment. The environment then samples a reward 𝑋𝑡 ∈ ℝ from distribution

𝑃𝐴𝑡
 and reveals 𝑋𝑡 to the learner. The interaction between the learner and environment

induces a probability measure on the sequence of outcomes 𝐴1, 𝑋1, . . . , 𝐴𝑛, 𝑋𝑛. Usually the

horizon 𝑛 is finite, but sometimes we allow the interaction to continue indefinitely (𝑛 = ∞).

The sequence of outcomes should satisfy the following assumptions:

(a) The conditional distribution of reward 𝑋𝑡 given 𝐴1, 𝑋1, . . . , 𝐴𝑡−1, 𝑋𝑡−1, 𝐴𝑡 is 𝑃𝐴𝑡
, which

captures the intuition that the environment samples 𝑋𝑡 from 𝑃𝐴𝑡
 in round 𝑡.

(b) The law of action 𝐴𝑡 given 𝐴1, 𝑋1, . . . , 𝐴𝑡−1, 𝑋𝑡−1 is 𝜋𝑡(· |𝐴1, 𝑋1, . . . , 𝐴𝑡−1 , 𝑋𝑡−1), where

𝜋1, 𝜋2 , . . . is a sequence of probability kernels that characterize the learner. The most

important element of this assumption is the intuitive fact that the learner cannot use the

future observations in current decisions.

14

3.1.2 Knowledge and Environment Classes

As mentioned, the learner’s goal is to maximize the cumulative reward 𝑆𝑛 = ∑ 𝑋𝑡
n
t=1 .

However, very often the learner does not know ahead of time how many rounds are to be

played. Even if the horizon is known in advance and we commit to maximizing the expected

value of 𝑆𝑛, there is still the problem that the bandit instance 𝑣 = (𝑃𝑎: 𝛼 ∈ 𝒜) is unknown.

A policy that maximizes the expectation of 𝑆𝑛 for one bandit instance may behave quite

badly on another. The learner usually has partial information about 𝑣, which we represent

by defining a set of bandits ℰ for which 𝑣 ∈ ℰ is guaranteed. The set ℰ is called the

environment class, which is distinguished between structured and unstructured bandits.

 Unstructured Bandits

An environment class ℰ is unstructured if 𝒜 is finite and there exist sets of distribution 𝑀𝑎

for each 𝑎 ∈ 𝒜 such that: ℰ = {𝑣 = (𝑃𝑎: 𝑎 ∈ 𝒜): 𝑃𝑎 ∈ 𝑀𝑎 , ∀𝑎 ∈ 𝒜}.

Note: 1) Some examples of unstructured bandits are presented in the table.

2) The Bernoulli, Gaussian, and uniform distributions are frequently utilized as examples to

demonstrate specific characteristics of learning in stochastic bandit problems. In these

problems, a bandit scenario is often referred to as a “distribution bandit”, with the term

“distribution” being replaced by the actual underlying distribution from which the pay-offs

are sampled (Gaussian bandit, Bernoulli bandit, or subgaussian bandit). Additionally, we can

refer to “bandits with 𝑋”, where “𝑋” represents a particular property of the underlying

distribution from which the pay-offs are sampled. For example, bandits with finite variance

15

refer to the bandit environment where the learner's prior knowledge indicates that all pay-

off distributions have finite variances.

3) Some environment classes, like Bernoulli bandits, are parametric, while others are non-

parametric, like subgaussian bandits. The distinction is the number of degrees of freedom

needed to describe an element of an environment class. When the number of degrees of

freedom is finite, it is parametric, otherwise it is non-parametric. Furthermore, some

environment classes are subsets of others. For example, Bernoulli bandits are a special case

of bandits with finite variance or bandits with bounded support.

 Structured Bandits

Environment classes that are not unstructured are called structured. A significant feature of

structured bandits is that the learner can often obtain information about some actions while

never playing them. The following examples illustrate the flexibility of these problems.

Example 1: Let 𝒜 = {1,2} and ℰ = {(𝐵(𝜃), 𝛣(1 − 𝜃)): 𝜃 ∈ [0,1]}. The learner does not

know the mean of either arm, but can learn the mean of both arms by playing just one. The

difficulty of learning in this problem is changed by the knowledge of this structure.

Example 2(Stochastic linear bandit): Let 𝒜 ⊂ ℝ𝑑,𝜃 ∈ ℝ𝑑 , 𝑣𝜃 = (𝑁(< 𝑎, 𝜃 > ,1): 𝑎 ∈ 𝒜)

and ℰ = {𝑣𝜃: 𝜃 ∈ ℝ𝑑}. The reward of an action is Gaussian, and its mean is given by the

inner product between the action and some unknown parameter. Notice that even if 𝒜 is

extremely large, the learner can deduce the true environment by playing just 𝑑 actions that

span ℝ𝑑.

3.1.3 The Regret

Let 𝑣 = (𝑃𝑎: 𝑎 ∈ 𝒜) be a stochastic bandit and define μα(𝑣) = ∫ xdP𝛼(x)
∞

−∞
. Then let

𝜇∗(𝑣) = 𝑚𝑎𝑥𝑎∈𝒜𝜇𝛼(𝑣) be the largest mean of all arms. The regret of policy 𝜋 on bandit

instance ν is 𝑅𝑛(𝜋, 𝑣) = 𝑛𝜇∗(𝑣) − 𝔼[∑ 𝑋𝑡]𝑛
𝑡=1 , where the expectation is taken with respect

16

to the probability measure on outcomes induced by the interaction of 𝜋 and 𝑣. Minimizing

the regret is equivalent to maximizing the expectation of 𝑆𝑛.

The regret is always non-negative, and for every bandit 𝑣, there exists a policy 𝜋 for which

the regret is zero (the best possible outcome), i.e., 𝑅𝑛(𝜋, 𝑣) ≥ 0, for all policies 𝜋 and the

policy choosing 𝐴𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝜇𝛼 for all 𝑡 satisfies 𝑅𝑛(𝜋, 𝑣) = 0. If 𝑅𝑛(𝜋, 𝑣) = 0 for some

policy 𝜋, then ℙ(𝜇𝛢𝑡
= 𝜇∗) = 1 for all 𝑡 ∈ [𝑛], which means achieving zero is possible if and

only if the learner knows which bandit it is facing or at least what is the optimal arm.

There is another candidate objective called the Bayesian regret. If 𝒬 is a prior probability

measure on ℰ (which must be equipped with a 𝜎-algebra ℱ), then the Bayesian regret is the

average of the regret with respect to the prior 𝒬 ,𝐵𝑅𝑛(𝜋, 𝒬) = ∫ 𝑅𝑛(𝜋, 𝑣)𝑑𝒬(𝑣)
ℰ

, which is

only defined by assuming that the regret is a measurable function with respect to ℱ. An

advantage of the Bayesian approach is that the problem of finding a policy that minimizes

the Bayesian regret is just an optimization problem, although generally very difficult.

3.2 Stochastic Bandits with Finitely Many Arms

3.2.1 The Explore-Then-Commit(ETC) Algorithm And

Regret Analysis

The ETC algorithm is characterized by the number of times it explores each arm, denoted by

a natural number 𝑚. Because there are 𝑘 actions, the algorithm will explore for 𝑚𝑘 rounds

before choosing a single action for the remaining rounds. Let �̂�𝑖(𝑡) be the average reward

received from arm 𝑖 after round 𝑡, �̂�𝑖(𝑡) =
1

𝑇𝑖(𝑡)
∑ 𝕀{𝐴𝑠 = 𝑖}𝑋𝑠

𝑡

𝑠=1
 , where 𝑇𝑖(𝑡) =

∑ 𝕀{𝐴𝑠 = 𝑖}𝑋𝑠
𝑡

𝑠=1
 is the number of times action 𝑖 has been played after round 𝑡. The ETC

policy is given below:

Step 1: Input 𝑚

Step 2: In round 𝑡 choose action 𝐴𝑡 = {
(𝑡 𝑚𝑜𝑑 𝑘) + 1, 𝑖𝑓 𝑡 ≤ 𝑚𝑘

𝑎𝑟𝑔𝑚𝑎𝑥𝑖�̂�𝑖(𝑚𝑘), 𝑖𝑓 𝑡 > 𝑚𝑘

Theorem 1:

According to Tor Lattimore and Csaba Szepesvari, when ETC is interacting with any 1-

subgaussian bandit and 1 ≤ m ≤
n

k
:

17

𝑅𝑛 ≤ 𝑚 ∑ 𝛥𝑖

𝑘

𝑖=1

+ (𝑛 − 𝑚𝑘) ∑ 𝛥𝑖𝑒𝑥𝑝(−
𝑚𝛥𝑖

2

4
)

𝑘

𝑖=1

Note: 1) Let 𝑣 = (𝑃𝑎: 𝑎 ∈ 𝐴) be a stochastic bandit. We define 𝛥𝛼(𝜈) = 𝜇∗(𝑣) − 𝜇𝛼(𝑣),

which is called the suboptimality gap or action gap or immediate regret of action 𝑎.

2) Definition 2: A random variable 𝑋 is σ-subgaussian if for all 𝜆 ∈ ℝ , it holds

that 𝔼[𝑒𝑥𝑝(𝜆𝑋)] ≤ 𝑒𝑥𝑝 (
𝜆2𝜎2

2
).

3) (Regret decomposition lemma) For any policy 𝜋 and stochastic bandit environment 𝑣

with 𝒜 finite and horizon 𝑛 ∈ ℕ, the regret 𝑅𝑛 of policy 𝜋 in 𝑣 satisfies: 𝑅𝑛 =

∑ 𝛥𝑎𝔼𝑎∈𝒜 [𝑇𝑎(𝑛)]. This tells us that to keep the regret small, the learner should try to

minimize the weighted sum of expected action counts, where the weights are the respective

suboptimality gaps.

4) The bound in the previous Theorem illustrates the trade-off between exploration and

exploitation. i) If 𝑚 is large, then the policy explores for too long, and the first term will be

large. ii) If 𝑚 is too small, then the probability that the algorithm commits to the wrong arm

will grow, and the second term becomes large. The question is how to choose 𝑚.

Example:

Assume that 𝑘 = 2 and that the first arm is optimal so that 𝛥1 = 0 and 𝛥 = 𝛥2. Then the

bound simplifies to: 𝑅𝑛 ≤ 𝑚𝛥 + (𝑛 − 2𝑚)𝛥 exp (−
𝑚𝛥2

4
) ≤ 𝑚𝛥 + 𝑛𝛥 exp (−

𝑚𝛥2

4
)

For large 𝑛 the quantity on the right-hand side is minimized up to a possible rounding error

by 𝑚 = 𝑚𝑎𝑥 {1, ⌈
4

𝛥2 log (
𝑛𝛥2

4
)⌉} and for this choice and any 𝑛, the regret is bounded by 𝑅𝑛 ≤

𝑚𝑖𝑛 {𝑛𝛥, 𝛥 +
4

𝛥
(1 + 𝑚𝑎𝑥 {0, log (

𝑛𝛥2

4
)})}. Bounds like this are called

gap/problem/distribution/instance dependent. The bound is close to optimal, but there is a

caveat. The choice of 𝑚 that defines the policy and leads to this bound depends on both the

suboptimality gap and the horizon. While the horizon is sometimes known in advance, it is

seldom reasonable to assume knowledge of the suboptimality gap.

18

5) It is proven that the previous relation can also be written as: 𝑅𝑛 ≤ 𝛥 + 𝐶√𝑛, where 𝐶 > 0

is a universal constant. Sometimes, is often assumed that 𝛥 ≤ 1 and thus 𝑅𝑛 ≤ 1 + 𝐶√𝑛 .

Bounds of this type are called worst-case, problem free or problem independent. The

reason is that the bound only depends on the horizon and class of bandits for which the

algorithm is designed, and not the specific instance within that class. Because the

suboptimality gap does not appear, bounds like this are sometimes called gap-free. Note

that without the condition 𝛥 ≤ 1, the worst-case bound for ETC is infinite.

6) i) Epsilon-greedy algorithm: is a randomized analog of ETC with the only difference that

exploration is spread more uniformly over time. This algorithm depends on a sequence of

parameters 𝜀1, 𝜀2, … . First, it chooses each arm once and subsequently chooses

{
𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖�̂�𝑖(𝑡 − 1), with probability 1 − 𝜀𝑡

an arm uniformly at random, otherwise
 [6]

ii) Elimination Algorithm: A simple way to generalize the ETC policy to multiple arms and

overcome the problem of tuning the commitment time is to use an elimination algorithm.

The algorithm operates in phases and maintains an active set of arms that could be optimal.

Step 1: Input k and sequence (𝑚𝑙)𝑙

Step 2: 𝐴1 = {1,2, … , 𝑘}

Step 3: For 𝑙 = 1,2,3 … do

a) Choose each arm 𝑖 ∈ 𝐴𝑙 exactly 𝑚𝑙 times

b) Let �̂�𝑖,𝑙 be the average reward for arm 𝑖 from this phase only

c) Update active set: 𝐴𝑙+1 = {𝑖: �̂�𝑖,𝑙 + 2−𝑙 ≥ 𝑚𝑎𝑥𝑗∈𝐴𝑙
�̂�𝑗,𝑙}

Step 4: End for

3.2.2 The Upper Confidence Bound Algorithm

The UCB algorithm is based on the principle of optimism in the face of uncertainty, which

states that one should act as if the environment is as nice as plausibly possible. For bandits,

the optimism principle means using the data observed so far to assign to each arm a value,

called the upper confidence bound that with high probability is an overestimate of the

unknown mean. Comparatively with ETC, this algorithm does not depend on advance

19

knowledge of the suboptimality gap, but on the horizon 𝑛 and behaves well where there are

more than two arms. [1]

Let (𝑋𝑡)𝑡=1
𝑛 be a sequence of independent 1-subgaussian random variables with mean 𝜇

and �̂� =
1

𝑛
∑ 𝑋𝑡

𝑛
𝑡=1 . A version of UCB algorithm, which takes as input the number of arms and

the error probability 𝛿, is given below:

Step 1: Input 𝑘 and 𝛿

Step 2: For 𝑡 ∈ 1, … , 𝑛 do

a) Compute 𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿) = {

∞ , 𝑖𝑓 𝑇𝑖(𝑡 − 1) = 0

�̂�𝑖(𝑡 − 1) + √
2log(1

𝛿⁄)

𝑇𝑖(𝑡−1)
, otherwise

b) Choose action 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿)

c) Observe reward 𝑋𝑡 and update upper confidence bound

Step 3: End for

Definition 3: The value inside the 𝑎𝑟𝑔𝑚𝑎𝑥 is called the index of arm 𝑖. The index is the sum

of the empirical mean of rewards experienced so far and the exploration bonus, which is

also known as the confidence width.

Observation: After the initial period where the algorithm chooses each action once, action 𝑖

can only be chosen if its index is higher than that of an optimal arm. This can only happen if:

(a) The index of action 𝑖 is larger than the true mean of a specific optimal arm.

(b) The index of a specific optimal arm is smaller than its true mean.

Considering that the index of any arm typically serves as an upper bound for its mean with

high probability, we can reasonably expect that the index of the optimal arm will not be

below its mean. Additionally, if the suboptimal arm 𝑖 is played sufficiently frequently, its

exploration bonus decreases, and the empirical estimate of its mean converges to the true

value. Consequently, this imposes an upper limit on the expected total number of

occurrences when the index of the suboptimal arm remains above the mean of the optimal

arm.

Note: At the start of round 𝑡 the first arm has been played much more frequently than the

rest. Because it has been played so often, we expect that �̂�1(𝑡 − 1) ≈ 𝜇1. The learner can

be reasonably certain that arm 𝑖 is worse than arm 1 if:

20

�̂�𝑖(𝑡 − 1) + √
2log(1

𝛿⁄)

𝑇𝑖(𝑡−1)
≤ 𝜇1 ≈ �̂�1(𝑡 − 1) + √

2log(1
𝛿⁄)

𝑇1(𝑡−1)
, where 𝛿 is called the confidence

level and quantifies the degree of certainty. This means that choosing the arm with the

largest upper confidence bound leads to a situation where arms are only chosen if their true

mean could reasonably be larger than those of arms that have been played often. The

confidence level should be small to ensure optimism with high probability, but not so large

that suboptimal arms are explored excessively.

Theorem 2:

1) Consider UCB, as shown in previous algorithm, on a stochastic 𝑘-armed 1-subgaussian

bandit problem. For any horizon 𝑛, if 𝛿 = 1/𝑛2, then: 𝑅𝑛 ≤ 3 ∑ 𝛥𝑖 + ∑
16log (𝑛)

𝛥𝑖
𝑖:𝛥𝑖>0

𝑘
𝑖=1 .

2) If 𝛿 = 1 𝑛2⁄ , then the regret of UCB, as defined in previous algorithm, on any 𝑣 ∈ ℰ𝑆𝐺
𝑘 (1)

environment, is bounded by: 𝑅𝑛 ≤ 8√𝑛𝑘log(𝑛) + 3 ∑ 𝛥𝑖
𝑘
𝑖=1 . This result is close to optimal.

[1]

3.2.3 The UCB Algorithm: Asymptotic Optimality

Step 1: Input 𝑘

Step 2: Choose each arm once

Step 3: Subsequently choose 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (�̂�𝑖(𝑡 − 1) + √
2log𝑓(𝑡)

𝑇𝑖(𝑡−1)
),

where 𝑓(𝑡) = 1 + 𝑡log2(𝑡)

Note: This algorithm differs from the one mentioned in the previous sector only by the

choice of the confidence level, the choice of which is dictated by the analysis of its regret.

Theorem 3:

According to Tor Lattimore and Csaba Szepesvari, for any 1-subgaussian bandit, the regret of

the previous algorithm satisfies:

21

𝑅𝑛 ≤ ∑ 𝑖𝑛𝑓𝜀∈(0,𝛥𝑖)𝛥𝑖 (1 +
5

𝜀2
+

2(log𝑓(𝑛) + √𝜋log𝑓(𝑛) + 1

(𝛥𝑖 − 𝜀)2
)

𝑖:𝛥𝑖>0

Furthermore, by choosing 𝜀 = log−1
4⁄ (𝑛) and taking the limit as 𝑛 tends to infinity, we take

that: limsupn→∞
Rn

log(n)
≤ ∑

2

Δi
i:Δi>0 . Choosing 𝜀 =

𝛥𝑖
2

⁄ inside the sum shows that:

𝑅𝑛 ≤ ∑ (𝛥𝑖 +
1

𝛥𝑖
(8log𝑓(𝑛) + 8√𝜋log𝑓(𝑛) + 28))

𝑖:𝛥𝑖>0

Even more precisely, there exists some universal constant 𝐶 > 0 such that:

𝑅𝑛 ≤ 𝐶 ∑ (𝛥𝑖 +
log (𝑛)

𝛥𝑖
)

𝑖:𝛥𝑖>0

which leads to a worst-case bound of:

𝑅𝑛 ≤ 𝐶 ∑ 𝛥𝑖

𝑘

𝑖=1
+ 2√𝐶𝑛𝑘log(𝑛)

Note: The dominant terms in the two results have the same order, but the gain here is that

in this result the leading constant, governing the asymptotic rate of growth of regret, is

smaller.

3.2.4 Lower Bounds

In stochastic bandits, lower bounds refer to the minimum number of samples required to

achieve a certain level of accuracy in estimating the mean reward of a given arm in a multi-

armed bandit problem. Specifically, the lower bounds provide a theoretical guarantee on the

performance of any algorithm used to solve the problem. These bounds can be established

using information-theoretic arguments, which take into account the amount of information

contained in the rewards obtained from the arms.

Lower bounds in stochastic bandits are useful because they give a fundamental limit on the

performance of any algorithm, and can be used to assess the effectiveness of proposed

algorithms. In particular, any algorithm that achieves a performance equal to the established

lower bound is considered to be optimal. They can be derived using various techniques such

as information theory, statistical learning theory, and Bayesian analysis. The specific

22

technique used depends on the assumptions made about the distribution of rewards and

the algorithm being considered.

Definition 4: The worst-case regret of a policy 𝜋 on a set of stochastic bandit environments

ℰ is 𝑅𝑛(𝜋, ℰ) = 𝑠𝑢𝑝𝑣∈ℰ𝑅𝑛(𝜋, 𝑣). Let 𝛱 be the set of all policies. The minimax regret is:

𝑅𝑛
∗ (ℰ) = 𝑖𝑛𝑓𝜋∈𝛱𝑅𝑛(𝜋, ℰ) = 𝑖𝑛𝑓𝜋∈𝛱𝑠𝑢𝑝𝑣∈ℰ𝑅𝑛(𝜋, 𝑣)

A policy is called minimax optimal for ℰ if 𝑅𝑛(𝜋, ℰ) = 𝑅𝑛
∗ (ℰ) . The value 𝑅𝑛

∗ (ℰ) is of interest

by itself. A small value of 𝑅𝑛
∗ (ℰ) indicates that the underlying bandit problem is less

challenging in the worst-case sense. Minimax optimality is not a property of a policy alone.

It is a property of a policy together with a set of environments and a horizon.

Note: 1) A policy is minimax optimal up to constant factors for finite-armed 1-subgaussian

bandits with suboptimality gaps in [0, 1], when there exists a 𝐶 > 0 such that:

𝑅𝑛(𝜋, ℰ𝑘)

𝑅𝑛
∗ (ℰ𝑘)

≤ 𝐶, for all 𝑘 and 𝑛

where ℰ𝑘 is the set of 𝑘-armed 1-subgaussian bandits with suboptimality gaps in [0, 1].

2) Main Ideas Underlying Minimax Lower Bounds:

Minimax lower bounds are a fundamental concept in the theory of algorithms and

complexity. These bounds provide a theoretical guarantee on the minimum amount of

resources (such as time, space, or samples) required to solve a given problem, regardless of

the algorithm used. The main idea underlying minimax lower bounds is to consider the

worst-case scenario for any algorithm solving the problem. That is, the bounds assume that

an adversary is trying to make the algorithm fail by carefully selecting the input data to be as

difficult as possible. More specifically, the minimax lower bound provides a guarantee on the

best possible performance that any algorithm can achieve when facing the worst possible

input data. This guarantee is expressed in terms of the resources required to achieve a

certain level of performance, such as the number of comparisons or the number of samples

required to estimate a parameter. The minimax lower bound is established by constructing

an adversary that selects the input data to be as difficult as possible, and then showing that

any algorithm that solves the problem using fewer resources than the lower bound will fail

23

on at least one instance of the problem. The lower bound is then the minimum amount of

resources required achieving a certain level of performance on all possible input data. The

minimax lower bound is an important concept in the analysis of algorithms and complexity

because it provides a rigorous benchmark against which the performance of any algorithm

can be measured. It also provides insights into the inherent difficulty of a problem, and can

guide the design of algorithms that are provably optimal in terms of their resource usage. [1]

Figure: Given a policy and one environment, the evil antagonist picks another environment

so that the policy will suffer a large regret in at least one environment.

Theorem 4:

Let 𝑣μ be the Gaussian bandit for which the ith arm has reward distribution 𝒩(μi, 1), k > 1

and 𝑛 ≥ 𝑘 − 1. Then, for any policy 𝜋, there exists a mean vector 𝜇 ∈ [0, 1]𝑘 such that:

𝑅𝑛(𝜋, 𝑣𝜇) ≥
1

27
√(𝑘 − 1)𝑛

Since 𝑣𝜇 ∈ ℰ𝛮
𝜅 (1), it follows that the minimax regret for ℰ𝛮

𝜅 (1) is lower-bounded by the

right-hand side of the above display as soon as 𝑛 ≥ 𝑘 − 1:

𝑅𝑛
∗ (ℰ𝛮

𝜅 (1)) ≥
1

27
√(𝑘 − 1)𝑛

[1]

Definition 5: The random pseudo-regret is: �̅�𝑛 = ∑ 𝑇𝑖 (𝑛)𝛥𝑖
𝑘
𝑖=1

Theorem 5 (High-Probability Lower Bounds):

Let 𝑛 ≥ 1 and 𝑘 ≥ 2 and 𝐵 > 0 and 𝜋 be a policy such that for any 𝑣 ∈ ℰ𝑘 ,

24

𝑅𝑛(𝜋, 𝑣) ≤ 𝐵√(𝑘 − 1)𝑛

Let 𝛿 ∈ (0,1). Then there exists a bandit 𝑣 in ℰ𝑘 such that:

ℙ (�̅�𝑛(𝜋, 𝑣) ≥
1

4
𝑚𝑖𝑛 {𝑛,

1

𝐵
√(𝑘 − 1)𝑛log (

1

4𝛿
)}) ≥ 𝛿

[1]

Corollary:

1) Let 𝑛 ≥ 1 and 𝑘 ≥ 2. Then, for any policy 𝜋 and 𝛿 ∈ (0,1) such that

𝑛𝛿 ≤ √𝑛(𝑘 − 1)𝑙𝑜𝑔 (
1

4𝛿
)

there exists a bandit problem 𝑣 ∈ ℰ𝑘 such that:

ℙ (�̅�𝑛(𝜋, 𝑣) ≥
1

4
𝑚𝑖𝑛 {𝑛, √

𝑛(𝑘 − 1)

2
𝑙𝑜𝑔 (

1

4𝛿
)}) ≥ 𝛿

2) Let 𝑘 ≥ 2 and 𝑝 ∈ (0,1) and 𝐵 > 0. Then, there does not exist a policy 𝜋 such that for

all 𝑛 ≥ 1, 𝛿 ∈ (0,1) and 𝑣 ∈ ℰ𝑘 ,

ℙ (�̅�𝑛(𝜋, 𝑣) ≥ 𝐵√(𝑘 − 1)𝑛log𝑝 (
1

𝛿
)) < 𝛿

4 Adversarial Bandits

4.1 Abstract

Adversarial bandits is a class of online decision-making problems where a learner, or

decision-maker, must repeatedly choose one of several actions while facing an adversary

who can dynamically manipulate the rewards associated with each action. This problem

arises in many real-world applications, such as online advertising, recommendation systems,

and cybersecurity.

25

The goal of the learner is to maximize its total reward over a finite time horizon, despite the

adversary's attempts to minimize it. The key challenge in adversarial bandits is to balance

the exploration of different actions to learn their rewards with the exploitation of actions

that appear to be rewarding based on the agent's past experience. To address this challenge,

various algorithms have been developed that use a combination of exploration and

exploitation strategies to learn the rewards of the actions over time. These algorithms

typically employ techniques such as optimism in the face of uncertainty, regret

minimization, and exploration based on the principle of optimism under uncertainty.

4.1.1 Adversarial Bandit Environments

Let 𝑘 > 1 be the number of arms. A 𝒌-armed adversarial bandit is an arbitrary sequence of

reward vectors (𝑥𝑡)𝑡=1
𝑛 , where 𝑥𝑡 ∈ [0,1]𝑘 .In each round, the learner chooses a distribution

over the actions 𝑃𝑡 ∈ 𝑃𝑘−1. Then the action 𝐴𝑡 ∈ [𝑘] is sampled from 𝑃𝑡, and the learner

receives reward 𝑥𝑡𝐴𝑡
.

A policy in this setting is a function 𝜋: ([𝑘] × [0,1]) → 𝑃𝑘−1 mapping history sequences to

distributions over actions (regardless of measurability). The performance of a policy 𝜋 in

environment 𝑥 is measured by the expected regret, which is the expected loss in revenue of

the policy relative to the best fixed action in hindsight.

𝑅𝑛(𝜋, 𝑥) = max
𝑖∈[𝑘]

∑ 𝑥𝑡𝑖

𝑛

𝑡=1

− 𝔼 [∑ 𝑥𝑡𝐴𝑡

𝑛

𝑡=1

]

The worst-case regret over all environments is: 𝑅𝑛
∗ (𝜋) = 𝑠𝑢𝑝𝑥∈[0,1]𝑛×𝑘𝑅𝑛(𝜋, 𝑥).

4.1.2 Similarities-Differences between Stochastic and

Adversarial Environments

Stochastic and adversarial environments are two different types of environments that a

learner can encounter in the context of decision-making problems. One key difference

between stochastic and adversarial environments is the source of uncertainty. In a

stochastic environment, the uncertainty arises from the randomness or probabilistic nature

of the environment. For example, in a game of dice, the outcome of each roll is determined

randomly, and the agent cannot predict it with certainty. In contrast, in an adversarial

environment, the uncertainty arises from the actions of an adversary who actively tries to

26

manipulate the outcomes to its advantage. For example, in a game of chess, the opponent

may make moves to try to undermine the agent's strategy. Another difference between

stochastic and adversarial environments is the nature of the information available to the

agent. In a stochastic environment, the agent typically has access to some probabilistic

information about the environment, such as the probabilities of different outcomes. In

contrast, in an adversarial environment, the agent may have very limited information about

the adversary's actions and intentions.

Despite these differences, there are also some similarities. In both cases, the learner must

make decisions under uncertainty and must balance the trade-off between exploration and

exploitation to maximize its expected reward. Moreover, in both cases, the learner can use

some form of learning to improve its decision-making over time.

4.1.3 Importance-Weighted Estimators

Definition 6: A key ingredient of all adversarial bandit algorithms is a mechanism for

estimating the reward of unplayed arms. Recall that 𝑃𝑡 is the conditional distribution of the

action played in round 𝑡, and so for 𝑖 ∈ [𝑘], 𝑃𝑡𝑖 = ℙ(𝐴𝑡 = 𝑖|𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1).

The importance-weighted estimator of 𝑥𝑡𝑖 is:

�̂�𝑡𝑖 =
𝕀{𝐴𝑡 = 𝑖}𝑋𝑡

𝑃𝑡𝑖
 (I)

An alternative estimator is �̂�𝑡𝑖 = 1 −
𝕀{𝐴𝑡=𝑖}

𝑃𝑡𝑖
(1 − 𝑋𝑡). Rewriting the formula in terms of

𝑦𝑡𝑖 = 1 − 𝑥𝑡𝑖 and 𝑌𝑡 = 1 − 𝑋𝑡 and �̂�𝑡𝑖 = 1 − �̂�𝑡𝑖 leads to:

�̂�𝑡𝑖 =
𝕀{𝐴𝑡 = 𝑖}𝑌𝑡

𝑃𝑡𝑖
 (II)

This is the same as the previous formula except that 𝑌𝑡 has replaced 𝑋𝑡. The terms 𝑦𝑡𝑖, 𝑌𝑡 , �̂�𝑡𝑖

should be interpreted as losses. The estimator in last equation is called the loss-based

importance-weighted estimator.

Note: Let 𝔼[∙] = 𝔼[∙ |𝐴1, 𝑋1, … , 𝐴𝑡 , 𝑋𝑡] denote the conditional expectation given the history

up to time 𝑡. The conditional mean of �̂�𝑡𝑖 satisfies 𝔼𝑡−1[�̂�𝑡𝑖] = 𝔼𝑡−1 [
𝐴𝑡𝑖

𝑃𝑡𝑖
𝑥𝑡𝑖] =

𝑥𝑡𝑖

𝑃𝑡𝑖
𝔼𝑡−1[𝐴𝑡𝑖] =

𝑥𝑡𝑖

𝑃𝑡𝑖
𝑃𝑡𝑖 = 𝑥𝑡𝑖 , which means that �̂�𝑡𝑖 is an unbiased estimate of 𝑥𝑡𝑖

27

conditioned on the history observed after 𝑡 − 1 rounds. The estimator in equation (II) is still

unbiased.

The conditional variance of �̂�𝑡𝑖 satisfies: 𝕍𝑡−1[�̂�𝑡𝑖] = 𝔼𝑡−1[�̂�𝑡𝑖
2] − 𝑥𝑡𝑖

2 = 𝔼𝑡−1 [
𝐴𝑡𝑖

𝑃𝑡𝑖
2 𝑥𝑡𝑖

2] −

𝑥𝑡𝑖
2 =

𝑥𝑡𝑖
2(1−𝑃𝑡𝑖)

𝑃𝑡𝑖
.The conditional variance of �̂�𝑡𝑖 satisfies: 𝕍𝑡−1[�̂�𝑡𝑖] =

𝑦𝑡𝑖
2(1−𝑃𝑡𝑖)

𝑃𝑡𝑖
. The only

difference is that the variance depends on 𝑦𝑡𝑖
2 rather than 𝑥𝑡𝑖

2. Which is better depends on

the rewards for arm 𝑖, with smaller rewards suggesting the superiority of the first estimator

and larger rewards (or small losses) suggesting the superiority of the second estimator.

4.2 The Exp3 Algorithm

Let Ŝti = ∑ X̂si
t
s=1 be the total estimated reward by the end of round 𝑡, where X̂si = 1 −

𝕀{𝐴𝑠=𝑖}

𝑃𝑠𝑖
(1 − 𝑋𝑠). . It seems natural to play actions with larger estimated reward with higher

probability. While there are many ways to map Ŝti into probabilities, a simple and popular

choice is called exponential weighting, which for tuning parameter 𝜂 > 0 sets:

𝑃𝑡𝑖 =
exp (𝜂�̂�𝑡−1,𝑖)

∑ exp (𝜂�̂�𝑡−1,𝑗)𝑘
𝑗=1

The parameter 𝜂 is called learning rate. When the learning rate is large, 𝑃𝑡 concentrates

about the arm with the largest estimated reward and the resulting algorithm exploits

aggressively. For small learning rates, 𝑃𝑡 is more uniform, and the algorithm explores more

frequently. Note that as 𝑃𝑡 concentrates, the variance of the importance-weighted

estimators for poorly performing arms increases dramatically. The Exp3 algorithm is given

below:

Step 1: Input 𝑛, 𝑘, 𝜂

Step 2: Set �̂�0𝑖 = 0 for all 𝑖

Step 3: For 𝑡 = 1, … , 𝑛 do

a) Calculate the sampling distribution 𝑃𝑡: 𝑃𝑡𝑖 =
exp[𝜂�̂�𝑡−1,𝑖]

∑ exp[𝜂�̂�𝑡−1,𝑗]k
j=1

b) Sample 𝐴𝑡~𝑃𝑡 and observe reward 𝑋𝑡

c) Calculate �̂�𝑡𝑖: �̂�𝑡𝑖 = �̂�𝑡−1,𝑖 + 1 −
𝕀{𝐴𝑡=𝑖}(1−𝑋𝑡)

𝑃𝑡𝑖

Step 4: End for

28

4.2.1 Regret Analysis

Theorem 6:

Let 𝑥 ∈ [0,1]𝑛×𝑘 and 𝜋 be the policy of Exp3 with learning rate 𝜂 = √log (𝑘) (𝑛𝑘)⁄ . Then,

𝑅𝑛(𝜋, 𝑥) ≤ 2√𝑛𝑘log(𝑘)

Theorem 7:

Let 𝑥 ∈ [0,1]𝑛×𝑘 be an adversarial bandit and π be the policy of Exp3 with learning rate 𝜂 =

√2 log(𝑘) (𝑛𝑘)⁄ . Then,

𝑅𝑛(𝜋, 𝑥) ≤ √2𝑛𝑘log (𝑘)

Note: The second theorem is an improved version of the first, for which the regret is smaller

by a factor of √2. The algorithm is unchanged except for a slightly increased learning rate.

[1]

4.2.2 The Exp3-IX Algorithm And Regret Analysis

The objective of this chapter is to modify Exp3 so that the regret stays small in expectation

and is simultaneously well concentrated about its mean. Such results are called high-

probability bounds. The poor behavior of Exp3 occurs because the variance of the

importance-weighted estimators can become very large. In this chapter we modify the

reward estimates to control the variance at the price of introducing some bias. Let 𝛾 > 0 be

a small constant to be chosen later and define the biased estimator: �̂�𝑡𝑖 =
𝕀{𝐴𝑡=𝑖}𝑌𝑡

𝑃𝑡𝑖+𝛾
 (3) . As 𝛾

increases, the predictable variance decreases, but the bias increases.

When equation (3) is used in the exponential update in Exp3, the resulting algorithm is

called Exp3-IX. The suffix “𝐼𝑋” stands for implicit exploration.

Since small losses correspond to large rewards, the estimator is optimistically biased. The

effect is a smoothing of 𝑃𝑡 so that actions with large losses for which Exp3 would assign

negligible probability are still chosen occasionally. In fact, the smaller is 𝑃𝑡𝑖, the larger the

bias is. As a result, Exp3-IX will explore more than the standard Exp3 algorithm. The Exp-IX

algorithm is given below:

29

Step 1: Input 𝑛, 𝑘, 𝜂, 𝛾

Step 2: Set �̂�0𝑖 = 0 for all 𝑖, where �̂�𝑛𝑖 = ∑ �̂�𝑡𝑖
𝑛
𝑡=1

Step 3: For 𝑡 = 1, … , 𝑛 do

a) Calculate the sampling distribution 𝑃𝑡: 𝑃𝑡𝑖 =
𝑒𝑥𝑝(−𝜂�̂�𝑡−1,𝑖)

∑ 𝑒𝑥𝑝(−𝜂�̂�𝑡−1,𝑗)𝑘
𝑗=1

b) Sample 𝐴𝑡~𝑃𝑡 and observe reward 𝑋𝑡

c) Calculate �̂�𝑡𝑖 = �̂�𝑡−1,𝑖 +
𝕀{𝐴𝑡=𝑖}(1−𝑋𝑡)

𝑃𝑡𝑖+𝛾

Step 4: End for

Theorem 8:

Let 𝛿 ∈ (0,1) and define 𝜂1 = √
2log (𝑘+1)

𝑛𝑘
 and 𝜂2 = √log(k)+ log(

k+1

δ
)

nk
 and �̂�𝑛 =

max
𝑎∈𝒜

∑ (𝑦𝑡𝐴𝑡
− 𝑦𝑡𝑎)𝑛

𝑡=1 .

1) If Exp3-IX is run with parameters 𝜂 = 𝜂1 and 𝛾 =
𝜂

2⁄ , then:

ℙ (�̂�𝑛 ≥ √8𝑛𝑘log(𝑘 + 1) + √
𝑛𝑘

2log (𝑘 + 1)
log (

1

𝛿
) + log (

𝑘 + 1

𝛿
)) ≤ 𝛿

2) If Exp3-IX is run with parameters 𝜂 = 𝜂2 and 𝛾 =
𝜂

2⁄ , then:

ℙ (�̂�𝑛 ≥ 2√𝑛𝑘(2 log(𝑘 + 1) + log(1 𝛿⁄) + log (
𝑘 + 1

𝛿
)) ≤ 𝛿

Note: The value of 𝜂1 is independent of 𝛿, which means that using this choice of learning

rate leads to a single algorithm with a high-probability bound for all 𝛿. On the other hand, 𝜂2

does depend on 𝛿, so the user must choose a confidence level from the beginning. The

advantage is that the bound is improved, but only for the specified confidence level.

30

5 Contextual Bandits

5.1 Abstract

Contextual bandits are a type of online learning algorithm that aims to balance the

exploration-exploitation tradeoff in decision-making problems. In a contextual bandit

setting, the learning agent is presented with a set of contexts, or features that describe the

state of the environment, and must select an action to take based on those features. Unlike

traditional bandit algorithms, which assume that the environment remains stationary and

the learner can sample actions from a fixed set of alternatives, contextual bandits must

adapt to changing environments and select actions from a potentially infinite set of

alternatives. The goal of the contextual bandit algorithm is to maximize the cumulative

reward obtained over time, while also minimizing the regret of not selecting the optimal

action. To achieve this, the algorithm must balance the need to gather new information with

the desire to use what is already known.

5.1.1 Contextual Bandits: One Bandit Per Context

While contextual bandits can be studied in both the adversarial and stochastic frameworks,

in this section we focus on the 𝑘-armed adversarial model. The interaction protocol is given

below:

Step 1: Adversary secretly chooses rewards (𝑥𝑡)𝑡=1
𝑛 with 𝑥𝑡 ∈ [0,1]𝑘

Step 2: Adversary secretly chooses contexts (𝑐𝑡)𝑡=1
𝑛 with 𝑐𝑡 ∈ 𝒞

Step 3: For rounds 𝑡 = 1, … , 𝑛:

a) Learner observes context 𝑐𝑡 ∈ 𝒞, where 𝒞 is an arbitrary fixed set of contexts

b) Learner selects distribution 𝑃𝑡 ∈ 𝑃𝑘−1 and samples 𝐴𝑡 from 𝑃𝑡

c) Learner observes reward 𝑋𝑡 = 𝑥𝑡𝐴𝑡

A natural way to define the regret is to compare the rewards collected by the learner with

the rewards collected by the best context-dependent policy in hindsight:

𝑅𝑛 = 𝔼 [∑ max
𝑖∈[𝑘]

∑ (𝑥𝑡𝑖 − 𝑋𝑡)

𝑡∈[𝑛]:𝑐𝑡=𝑐𝑐∈𝒞

]

31

If the set of possible contexts is finite, then a simple approach is to use a separate instance

of Exp3 for each context. Let:

𝑅𝑛𝑐 = 𝔼 [max
𝑖∈[𝑘]

∑ (𝑥𝑡𝑖 − 𝑋𝑡)

𝑡∈[𝑛]:𝑐𝑡=𝑐

]

be the regret due to context 𝑐 ∈ 𝒞. Combining these equations we conclude to:

𝑅𝑛 = ∑ 𝑅𝑛𝑐

𝑐∈𝒞

≤ 2 ∑ √𝑘log(𝑘) ∑ 𝕀{𝑐𝑡 = 𝑐}

𝑛

𝑡=1𝑐∈𝒞

where the sum inside the square root counts the number of times context 𝑐 ∈ 𝒞 is observed

and the magnitude of the right-hand side depends on the distribution of observed contexts.

5.1.2 Bandits with Expert Advice

Provided that the context set 𝒞 is extensive, it is usually not a good idea to use a single

bandit algorithm per context, unless there is an enormous amount of data available.

However, in practice, the context space is often not just vast but structured, such as in the

case of a movie recommendation system, where user demographics and movie genres

provide some structure that can be exploited to improve the efficiency of the bandit

algorithm.

The bandits with expert advice setting is a 𝑘-armed adversarial bandit, but with 𝑀 experts

making recommendations to the learner. At the beginning of each round, the experts

announce their predictions about which actions are the most promising. The experts report

a probability distribution over the actions. The interpretation is that the expert, if the

decision were left to them, would choose the action for the round at random from the

probability distribution it reported.

The predictions of the 𝑀 experts in round 𝑡 are represented by a matrix 𝐸(𝑡) ∈ [0,1]𝑀×𝑘,

where the 𝑚-th row 𝐸𝑚
(𝑡)

 is a probability vector over [𝑚] representing the recommendations

of expert 𝑚 in round 𝑡. The interaction protocol is given below:

Step 1: Adversary secretly chooses rewards 𝑥 ∈ [0,1]𝑛×𝑘

Step 2: Experts secretly choose predictions 𝐸(1), … , 𝐸(𝑛)

Step 3: For rounds 𝑡 = 1, … , 𝑛:

32

a) Learner observes predictions of all experts, 𝐸(𝑡) ∈ [0,1]𝑀×𝑘

b) Learner selects a distribution 𝑃𝑡 ∈ 𝑃𝑘−1

c) Action 𝐴𝑡 is sampled from 𝑃𝑡 and the reward is 𝑋𝑡 = 𝑥𝑡𝐴𝑡

5.1.3 The Exp4 Algorithm And Regret Analysis

The number 4 in Exp4 is not just an increased version number, but indicates the four e’s in

the long name of the algorithm, which is exponential weighting for exploration and

exploitation with experts. The pseudocode of Exp4 is given below:

Step 1: Input 𝑛, 𝑘, 𝑀, 𝜂, 𝛾

Step 2: Set 𝑄1 = (1 𝑀⁄ , … , 1 𝑀⁄) ∈ [0,1]1×𝑀 (a row vector)

Step 3: For rounds 𝑡 = 1, … , 𝑛 do

a) Receive advice 𝐸(𝑡)

b) Choose the action 𝐴𝑡~𝑃𝑡 , where 𝑃𝑡 = 𝑄𝑡𝐸(𝑡)

c) Receive the reward 𝑋𝑡 = 𝑥𝑡𝐴𝑡

d) Estimate the action rewards: �̂�𝑡𝑖 = 1 − (1 − 𝑋𝑡)
𝕀{𝐴𝑡=𝑖}

𝑃𝑡𝑖+𝛾

e) Propagate the rewards to the experts: �̃�𝑡 = 𝐸(𝑡)�̂�𝑡

f) Update the distribution 𝑄𝑡 using the exponential weighting:

𝑄𝑡+1,𝑖 =
exp (𝜂�̃�𝑡𝑖)𝑄𝑡𝑖

∑ exp (𝜂�̃�𝑡𝑗)𝑄𝑡𝑗𝑗

 for all 𝑖 ∈ [𝑀]

Step 4: End for

The regret measures the cumulative rewards collected by the learner relative to the best

expert in hindsight:

𝑅𝑛 = 𝔼 [max
𝑚∈[𝑀]

∑ 𝐸𝑚
(𝑡)

𝑥𝑡

𝑛

𝑡=1

− ∑ 𝑋𝑡

𝑛

𝑡=1

]

Theorem 9:

Let γ = 0 and 𝜂 = √2log (𝑀) (𝑛𝑘)⁄ denote by 𝑅𝑛 the expected regret of Exp4 after 𝑛

rounds. Then, 𝑅𝑛 ≤ √2𝑛𝑘log(𝑀).

33

Note: This is the same bound we derived using an independent copy of Exp3 for each

context.

Theorem 10:

Assume the same conditions as the previous theorem, except let 𝜂𝑡 = √log(𝑀) 𝐸𝑡
∗⁄ ,

where 𝐸𝑡
∗ = ∑ ∑ max

𝑚∈[𝑀]
𝐸𝑚𝑖

(𝑠)𝑘
𝑖=1

𝑡
𝑠=1 , which shows if the experts have a high degree of

agreement. Then there exists a universal constant 𝐶 > 0 such that:

𝑅𝑛 ≤ 𝐶√𝐸𝑛
∗ log(𝑀)

Note: The bound tells us that Exp4 with the suggested learning rate is able to adapt to

degree of disagreement between the experts, which seems like quite an encouraging result.

As a further benefit, the learning rate does not depend on the horizon.

5.2 Stochastic Contextual Bandits

At the beginning of round 𝑡, the learner observes a context 𝐶𝑡 ∈ 𝒞, which may be random or

not. Having observed the context, the learner chooses their action 𝐴𝑡 ∈ [𝑘] based on the

information available. So far everything is the same as the adversarial setting. The difference

comes from the assumption that the reward 𝑋𝑡 satisfies 𝑋𝑡 = 𝑟(𝐶𝑡 , 𝐴𝑡) + 𝜂𝑡, where 𝑟: 𝒞 ×

[𝑘] → ℝ is called the reward function and 𝜂𝑡 is the noise, which we will assume is

conditionally 1-subgaussian.

If r was given, then the action in round t with the largest expected return is At
∗ ∈

arg max
a∈[k]

r(Ct, a). Notice that this action is now a random variable because it depends on the

context 𝐶𝑡 . The loss due to the lack of knowledge of 𝑟 makes the learner incur the regret,

𝑅𝑛 = 𝔼 [∑ max
𝑎∈[𝑘]

r(Ct, a) − ∑ Xt

n

t=1

𝑛

𝑡=1

]

In stochastic linear bandits, the definition of regret assumes that the learner's actions do not

significantly affect the subsequent contexts. However, in some practical scenarios, the

context may depend on the learner's previous actions. In such cases, the definition of regret

may not accurately reflect the learner's performance. To overcome this issue, a more

general framework such as the contextual bandit framework can be used, which allows the

34

learner to select an action based on the context and receive a reward that depends on both

the chosen action and the context. This approach can handle the dependence between the

contexts and the actions more effectively than the traditional stochastic linear bandit

framework.

Definition 7: A simple assumption to capture further information about the dependence of

rewards on context is to assume that the learner has access to a map 𝜓: 𝒞 × [𝑘] → ℝ𝑑, and

for an unknown parameter vector 𝜃∗ ∈ ℝ𝑑 , it holds that: 𝑟(𝑐, 𝑎) = 〈𝜃∗, 𝜓(𝑐, 𝑎)〉, for all

(𝑐, 𝑎) ∈ 𝒞 × [𝑘] . The map 𝜓 is called feature map. The subspace 𝛹 spanned by the feature

vectors {𝜓(𝑐, 𝑎)}𝑐,𝑎 in ℝ𝑑 is called the feature space.

Note: To understand the concept of feature maps, let's consider an example of a website

selling books. The context in this scenario is the website visitor, the actions are the

recommended books, and the reward is the revenue generated from the sale of a book. In

order to make a recommendation to the visitor, we need to understand their interests and

preferences, as well as the domain and topic of the books. One way to represent this

information is through feature maps. Feature maps are a way to transform the input data (in

this case, information about the visitor and the books) into a set of features that can be used

to make predictions. For example, we could use indicator variables to represent the visitor's

interests and preferences, as well as the domain and topic of the books. These indicator

variables would be combined to create a feature map that captures the relevant information

for making book recommendations. [1]

5.3 Contextual Bandits with Linear Payoff Functions

Contextual bandits with linear payoff functions refer to a class of reinforcement learning

problems where an agent must make decisions based on contextual information to

maximize some linear reward function. In this setting, the agent receives a set of features

that describe the current state of the environment and must select an action from a set of

available actions. The goal of the agent is to learn a policy that maps the contextual features

to actions that maximize the expected reward.

35

The challenge in contextual bandits with linear payoff functions is to balance the exploration

of the environment to learn about the true reward function and the exploitation of the

current knowledge to maximize immediate rewards. To address this challenge, various

algorithms have been developed, including the contextual linear bandit (CLB) algorithm and

the LinUCB algorithm. Both algorithms use a linear regression model to estimate the

expected payoff for each action based on contextual features, and they differ in the way

they incorporate exploration into the decision-making process.

5.3.1 The LinUCB Algorithm

In round 𝑡, the learner is given the decision set 𝒜𝑡 ⊂ ℝ𝑑, from which it chooses an action

𝐴𝑡 ∈ 𝒜𝑡 and receives reward 𝑋𝑡 = 〈𝜃∗, 𝐴𝑡〉 where 𝜂𝑡 is 1-subgaussian given

𝒜1, 𝐴1, 𝑋1, … , 𝒜𝑡−1, 𝐴𝑡−1, 𝑋𝑡−1, 𝒜𝑡 and 𝐴𝑡 . The random pseudo-regret and regret are

defined by: �̂�𝑛 = ∑ max
𝑎∈𝒜𝑡

〈𝜃∗, 𝑎 − 𝐴𝑡〉𝑛
𝑡=1 and 𝑅𝑛 = 𝔼[�̂�𝑛] = 𝔼 [∑ max

𝑎∈𝒜𝑡

〈𝜃∗, 𝑎〉𝑛
𝑡=1 − ∑ 𝑋𝑡

𝑛
𝑡=1].

The first step is to construct a confidence set 𝒞𝑡 ⊂ ℝ𝑑 based on (𝐴1, 𝑋1, … , 𝐴𝑡−1, 𝑋𝑡−1) that

contains the unknown parameter vector 𝜃∗ with high probability. For any given action 𝑎 ∈

ℝ𝑑, let 𝑈𝐶𝐵𝑡(𝑎) = max
𝜃∈𝒞𝑡

〈𝜃, 𝑎〉 be an upper bound on the mean pay-off 〈𝜃∗, 𝑎〉 of 𝑎. The UCB

algorithm that uses the confidence set 𝒞𝑡 at time 𝑡 then selects:

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

𝑈𝐶𝐵𝑡(𝑎)

UCB applied to linear bandits is known by various names, such as LinRel (linear

reinforcement learning), LinUCB and OFUL (optimism in the face of uncertainty for linear

bandits).

To apply the concept of UCB, we require a method to estimate the unknown quantity,

represented by 𝜃∗. There are various approaches one could take to obtain such an estimate.

Currently, we are utilizing the regularized least-squares estimator, which is:

𝜃𝑡 = 𝑎𝑟𝑔 min
𝜃∈ℝ𝑑

(∑(𝑋𝑠 − 〈𝜃, 𝐴𝑠〉)2 + 𝜆‖𝜃‖2
2

𝑡

𝑠=1

)

where 𝜆 ≥ 0 is called the penalty factor. The solution to this equation is obtained easily by

differentiation and is:

36

𝜃𝑡 = 𝑉𝑡
−1 ∑ 𝐴𝑠𝑋𝑠

𝑡

𝑠=1

where (𝑉𝑡)𝑡 are 𝑑 × 𝑑 matrices given by:

𝑉0 = 𝜆𝐼 and Vt = V0 + ∑ AsAs
⊺

t

s=1

So 𝜃𝑡 is an estimate of 𝜃∗, which makes it natural to choose 𝒞𝑡 to be centered at 𝜃𝑡−1. Thus,

the confidence set 𝒞𝑡 satisfies:

𝒞𝑡 ⊆ ℰ𝑡 = {𝜃 ∈ ℝ𝑑 : ‖𝜃 − 𝜃𝑡−1‖
𝑉𝑡−1

2
≤ 𝛽𝑡} (1)

where (𝛽𝑡)𝑡 is an increasing sequence of constants with 𝛽1 ≥ 1. The set ℰ𝑡 is an ellipsoid

centered at 𝜃𝑡−1 and with principle axis being the eigenvectors of 𝑉𝑡 with corresponding

lengths being the reciprocal of the eigenvalues. Notice that as 𝑡 grows, the matrix 𝑉𝑡 has

increasing eigenvalues, which means the volume of the ellipse is also shrinking.

Computation:

The computation of 𝐴𝑡 can also be written as:

(𝐴𝑡 , 𝜃𝑡) = 𝑎𝑟𝑔 max
(𝑎,𝜃)∈𝒜𝑡×𝒞𝑡

〈𝜃, 𝑎〉 (2)

This is a bilinear optimization problem over the set 𝒜𝑡×𝒞𝑡. In general, not much can be said

about the computational efficiency of solving this problem. There are two notable special

cases, however.

(a) Suppose that 𝑎(𝜃) = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

〈𝜃, 𝑎〉 can be computed efficiently for any 𝜃 and that 𝒞𝑡 =

co(𝜑1, … , 𝜑𝑚) is the convex hull of a finite set. Then 𝐴𝑡 can be computed by finding

𝑎(𝜑1), … , 𝑎(𝜑𝑚) and choosing 𝐴𝑡 = 𝑎(𝜑𝑖), where 𝑖 maximizes 〈𝜑𝑖 , 𝑎(𝜑𝑖)〉.

(b) Assume that 𝒞𝑡 = ℰ𝑡 is the ellipsoid given in Eq. (1) and 𝒜𝑡 is a small finite set. Then the

action 𝐴𝑡 from Eq. (2) can be found using:

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

〈𝜃𝑡−1, 𝑎〉 + √𝛽𝑡‖𝑎‖𝑉𝑡−1
−1

37

which may be solved by simply iterating over the arms and calculating the term inside the

𝑎𝑟𝑔𝑚𝑎𝑥. The term 〈𝜃𝑡−1 , 𝑎〉 may be interpreted as an empirical estimate of the reward from

choosing action 𝑎, and √𝛽𝑡‖𝑎‖𝑉𝑡−1
−1 is a bonus term that ensures sufficient exploration.

Let 𝛽𝑡(𝛿) = 𝜆 + √2 log(1
𝛿⁄) + 𝑑 log (1 +

𝑡

𝜆𝑑
) [2]. The confidence ellipsoid is defined as:

𝒞𝑡(𝛿) = {𝜃 ∈ ℝ𝑑 : ‖𝜃 − 𝜃𝑡‖
𝑉𝑡−1

≤ 𝛽𝑡−1(𝛿)}

With this choice of confidence ellipsoid the previous optimization problem is equivalent to

maximizing:

𝐴𝑡 = 𝑎𝑟𝑔 max
𝑎∈𝒜𝑡

(𝑎⊺�̂�𝑡 + 𝛽𝑡−1(𝛿)‖𝑎‖𝑉𝑡−1
−1)

The LinUCB algorithm is given below:

Step 1: Input probability 𝛿, dimension 𝑑, regularization 𝜆

Step 2: 𝑏 = 0ℝ𝑑 , 𝑉 = 𝜆𝕀𝑑 , 𝜃 = 0ℝ𝑑

Step 3: For 𝑡 ≥ 1 do

a) Receive 𝒜𝑡

b) Compute 𝛽𝑡−1(𝛿) = 𝜆 + √2 log(1
𝛿⁄) + 𝑑 log (1 +

𝑡−1

𝜆𝑑
)

c) For 𝑎 ∈ 𝒜𝑡 do

i) Compute 𝑈𝐶𝐵(𝑎) = 𝑎⊺𝜃 + 𝛽𝑡−1√𝑎⊺𝑉−1𝑎

ii) 𝐴𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎(𝑈𝐶𝐵(𝑎))

iii) Play action 𝐴𝑡 and receive reward 𝑋𝑡

iv) Update phase: 𝑉 = 𝑉 + 𝐴𝑡𝐴𝑡
⊺, 𝑏 = 𝑏 + 𝑋𝑡𝐴𝑡, 𝜃 = 𝑉−1𝑏

5.3.2 Regret Analysis

Theorem 11:

Under the assumptions of the algorithm, with probability 1 − 𝛿 the regret of LinUCB

satisfies:

38

𝑅𝑇 ≤ √𝑑𝑇√8𝛽𝑇(𝛿) log (1 +
𝑇𝐿2

𝜆𝑑
)

Assumption: The following hold:

a) 1 ≤ 𝛽1 ≤ 𝛽2 ≤ ⋯ 𝛽𝑛

b) max
𝑡∈[𝑛]

𝑠𝑢𝑝𝑎,𝑏∈𝒜𝑡
〈𝜃∗, 𝑎 − 𝑏〉 ≤ 1

c) ‖𝑎‖2 ≤ 𝐿 for all 𝑎 ∈ ⋃ 𝒜𝑡
𝑛
𝑡=1

d) There exists a 𝛿 ∈ (0, 1) such that with probability 1 − 𝛿, for all 𝑡 ∈ [𝑛], 𝜃∗ ∈ 𝒞𝑡 where 𝒞𝑡

satisfies Eq. (1).

Theorem 12:

Under the conditions of the assumption with probability 1 − 𝛿, the regret of LinUCB

satisfies:

�̂�𝑛 ≤ √8𝑛𝛽𝑛log (
𝑑𝑒𝑡𝑉𝑛

𝑑𝑒𝑡𝑉0
) ≤ √8𝑑𝑛𝛽𝑛log (

𝑑𝜆 + 𝑛𝐿2

𝑑𝜆
)

Note: The bound given in previous theorem is essentially a worst-case style of bound, with

little dependence on the parameter 𝜃∗ or the geometry of the action set. In the worst-case,

the upper bound is tight up to logarithmic factors. [4]

Corollary:

Under the conditions of the assumption, the expected regret of LinUCB with 𝛿 = 1
𝑛⁄

satisfies:

𝑅𝑛 ≤ 𝐶𝑑√𝑛log (𝑛𝐿)

where 𝐶 > 0 is a suitably large universal constant.

Theorem 13:

39

Let 𝛿 ∈ (0,1). Then, with probability at least 1 − 𝛿, it holds that for all 𝑡 ∈ ℕ,

‖𝜃𝑡 − 𝜃∗‖
𝑉𝑡(𝜆)

< √𝜆‖𝜃∗‖2 + √2 log (
1

𝛿
) + log (

𝑑𝑒𝑡𝑉𝑡(𝜆)

𝜆𝑑
)

Furthermore, if ‖𝜃∗‖2 ≤ 𝑚2, then ℙ(exists 𝑡 ∈ ℕ+: 𝜃∗ ∉ 𝒞𝑡) ≤ 𝛿 with,

𝒞𝑡 = {𝜃 ∈ ℝ𝑑: ‖𝜃𝑡−1 − 𝜃‖
𝑉𝑡−1(𝜆)

< 𝑚2√𝜆 + √2 log (
1

𝛿
) + log (

𝑑𝑒𝑡𝑉𝑡−1(𝜆)

𝜆𝑑
)}

Note: The choice of 𝛽𝑛 may be: √𝛽𝑛 = 𝑚2√𝜆 + √2 log (
1

𝛿
) + 𝑑 log (

𝑑𝜆+𝑛𝐿2

𝑑𝜆
). Empirically,

the choice of 𝛽𝑛 in the theorem is never worse than the upper value, and sometimes better,

typically by a modest amount. [8]

5.3.3 Lower Bound

Theorem 14 (Hypercube):

Let 𝒜 = [−1, 1]𝑑 and 𝛩 = {−𝑛−1 2⁄ , 𝑛−1 2⁄ }
𝑑

. Then, for any policy, there exists a vector 𝜃 ∈

𝛩 such that:

𝑅𝑛(𝒜, 𝜃) ≥
exp (−2)

8
𝑑√𝑛

Note: Except for logarithmic factors, this shows that the LinUCB algorithm is near optimal for

this action set. The same works when 𝒜 = {−1,1}𝑑 is restricted to the corners of the

hypercube, which is a finite-armed linear bandit.

Theorem 15 (Unit Ball):

Assume 𝑑 ≤ 2𝑛 and let 𝒜 = {𝑥 ∈ ℝ𝑑: ‖𝑥‖2 ≤ 1}. Then there exists a parameter vector 𝜃 ∈

ℝ𝑑 with ‖𝜃‖2
2 = 𝑑2 (48𝑛)⁄ such that:

𝑅𝑛(𝒜, 𝜃) ≥ 𝑑√𝑛 (16√3)⁄

40

Note: When the action set is the unit ball, determining the lower bound for minimax regret

poses a greater challenge compared to the hypercube. Unlike the hypercube, where the

actions taken in one dimension do not limit choices in other dimensions due to its product

structure, the unit ball operates differently. In the unit ball, actions taken in one dimension

impose constraints on choices in other dimensions, making the analysis more complex.

6 Thompson Sampling

Thompson sampling is a decision-making algorithm that works by choosing a prior

distribution over a set of possible scenarios, or “bandit environments”. In each round, the

algorithm samples an environment from the posterior distribution and selects the optimal

action for that environment. Initially, Thompson only applied this approach to simple

scenarios, such as Bernoulli bandits with two arms, and relied on hand calculations to

demonstrate its effectiveness. However, recent advances have expanded the approach to a

wider range of scenarios and theoretical guarantees now demonstrate that the algorithm is

often near-optimal. [15]

The key to Thompson sampling is the randomization it introduces through sampling from the

posterior distribution. If the posterior distribution is not well-concentrated, the algorithm is

more likely to explore different options. As more data is collected, the posterior distribution

becomes more concentrated, and exploration is reduced. Overall, Thompson sampling is a

practical and effective algorithm for decision-making in uncertain environments. The

algorithm's exploration rate is adjusted dynamically through the posterior distribution, and it

can be used in a wide range of scenarios, making it an important tool for many real-world

applications.

Example (Bernoulli-Bandit Thompson Sampling):

The Bernoulli-Bandit T.S. problem is a multi-armed bandit problem where there are a total

of 𝑘 actions. Each action, when played, yields either a success (which gives reward 1) or a

failure (which gives reward 0) with certain probability, i.e. the reward of each arm follows an

independent Bernoulli distribution. The success probabilities for all arms are unknown to the

41

agent, but are fixed over time. The goal is to maximize the cumulative number of successes

over 𝑇 periods, with 𝑇 > 𝑘. We define: 𝑁𝑖(𝑡) (denotes the number of pulls of arm 𝑖 up to

time 𝑡 − 1), 𝑆𝑖(𝑡) (denotes the number of successful pulls of arm 𝑖 up to time 𝑡 − 1), 𝐹𝑖(𝑡)

(denotes the number of failed pulls of arm 𝑖 up to time 𝑡 − 1), 𝑖(𝑡) (denotes the arm played

at 𝑡) and 𝑟𝑖(𝑡) (denotes the reward of arm 𝑖 at time 𝑡). So we always have 𝑁𝑖(𝑡) = 𝑆𝑖(𝑡) +

𝐹𝑖(𝑡). The Bernoulli-Bandit Thompson Sampling algorithm is given below:

Step 1: (Initialization) for each arm 𝑖 ∈ [𝑘], set 𝑆𝑖 = 0, 𝐹𝑖 = 0

Step 2: For 𝑡 = 1, … , 𝑇 do

a) for each arm 𝑖 do

sample 𝜃𝑖(𝑡)~𝐵𝑒𝑡𝑎(𝑆𝑖 + 1, 𝐹𝑖 + 1)

end

b) Play arm 𝑖(𝑡): = 𝑎𝑟𝑔 max
𝑗

𝜃𝑗(𝑡)

c) Observe reward 𝑟𝑖(𝑡)

d) If 𝑟𝑖(𝑡) = 1 then

𝑆𝑖(𝑡) = 𝑆𝑖(𝑡) + 1

else

𝐹𝑖(𝑡) = 𝐹𝑖(𝑡) + 1

end

Step 3: End for

The reason to use Beta distribution for Bernoulli rewards is that the beta distribution is a

conjugate prior for the Bernoulli distribution: if the prior is a 𝐵𝑒𝑡𝑎(𝑎, 𝛽) distribution, then

after observing a Bernoulli trial, the posterior distribution is 𝐵𝑒𝑡𝑎(𝑎 + 1, 𝛽) if the trial is a

success or 𝐵𝑒𝑡𝑎(𝑎, 𝛽 + 1) if the trial is a failure. The reason that we have 1 added to both

parameters of Beta distribution is that when 𝑆𝑖(𝑡) = 𝐹𝑖(𝑡) = 0, the distribution 𝐵𝑒𝑡𝑎(1,1)

is uniform. It's natural to have a uniform prior. [11]

6.1 T.S. for Contextual Bandits with Linear Payoffs

Problem Settings:

There are 𝑁 arms. At time 𝑡 = 1,2, …, a context vector 𝑏𝑖(𝑡) ∈ ℝ𝑑 , is revealed for every

arm 𝑖. These context vectors are chosen by an adversary in an adaptive manner after

observing the arms played and their rewards up to time 𝑡 − 1, i.e. ℋ𝑡−1,

ℋ𝑡−1 = {𝑎(𝜏), 𝑟𝑎(𝜏)(𝜏), 𝑏𝑖(𝜏), 𝑖 = 1, … , 𝑁, 𝜏 = 1, … , 𝑡 − 1}

42

where 𝑎(𝜏) denotes the arm played at time 𝜏. Given 𝑏𝑖(𝑡), the reward for arm 𝑖 at time 𝑡 is

generated from an unknown distribution with mean 𝑏𝑖(𝑡)⊺𝜇, where 𝜇 ∈ ℝ𝑑 is a fixed but

unknown parameter.

𝔼[𝑟𝑖(𝑡)|{𝑏𝑖(𝑡)}𝑡=1
𝑁 , ℋ𝑡−1] = 𝔼[𝑟𝑖(𝑡)|𝑏𝑖(𝑡)] = 𝑏𝑖(𝑡)⊺𝜇

An algorithm for the contextual bandit problem needs to choose, at every time 𝑡, an arm

𝑎(𝑡) to play, using history ℋ𝑡−1 and current contexts 𝑏𝑖(𝑡), 𝑖 = 1, … , 𝑁. Let 𝑎∗(𝑡) denote

the optimal arm at time 𝑡, i.e. 𝑎∗(𝑡) = 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺𝜇. And let 𝛥𝑖(𝑡) be the difference

between the mean rewards of the optimal arm and of arm 𝑖 at time 𝑡, i.e.

𝛥𝑖(𝑡) = 𝑏𝑎∗(𝑡)(𝑡)⊺𝜇 − 𝑏𝑖(𝑡)⊺𝜇

Then the regret at time 𝑡 is defined as:

regret(𝑡) = 𝛥𝑎(𝑡)(𝑡)

Τhe objective is to minimize the total regret ℛ(𝑇) = ∑ regret(𝑡)𝑇
𝑡=1 in time 𝑇. The time

horizon 𝑇 is finite but possibly unknown. We assume that 𝜂𝑖,𝑡 = 𝑟𝑖(𝑡) − 𝑏𝑖(𝑡)⊺𝜇 is

conditionally 𝑅-subgaussian for a constant 𝑅 ≥ 0. We also assume that ‖𝑏𝑖(𝑡)‖2 ≤

1, ‖𝜇‖2 ≤ 1 𝑎𝑛𝑑 𝛥𝑖(𝑡) ≤ 1for all 𝑖, 𝑡.

Thompson Sampling Algorithm:

We use Gaussian likelihood function and Gaussian prior to design a version of Thompson

Sampling algorithm. More precisely, suppose that the likelihood of reward 𝑟𝑖(𝑡) at time 𝑡,

given context 𝑏𝑖(𝑡) and parameter 𝜇, were given by the pdf of Gaussian

distribution 𝒩(𝑏𝑖(𝑡)⊺𝜇, 𝑣2). Here, 𝑣 = ℛ√
24

𝜀
𝑑𝑙𝑛 (

1

𝛿
), with 𝜀 ∈ (0,1) which parameterizes

this algorithm. Let

𝐵(𝑡) = 𝐼𝑑 + ∑ 𝑏𝑎(𝜏)(𝜏)

𝑡−1

𝜏=1

𝑏𝑎(𝜏)(𝜏)⊺

�̂�(𝑡) = 𝐵(𝑡)−1 (∑ 𝑏𝑎(𝜏)(𝜏)

𝑡−1

𝜏=1

𝑟𝑎(𝜏)(𝜏))

Then, if the prior for 𝜇 at time 𝑡 is given by 𝒩(�̂�(𝑡), 𝑣2𝐵(𝑡)−1), it is easy to compute the

posterior distribution at time 𝑡 + 1,

43

Pr (�̃�|𝑟𝑖(𝑡)) ∝ Pr (𝑟𝑖(𝑡)|�̃�) Pr (�̃�)

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(𝑟𝑖(𝑡) − �̃�⊺𝑏𝑖(𝑡))

2
+ (�̃� − �̂�(𝑡))

⊺
𝐵(𝑡)(�̃� − �̂�(𝑡))}

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(𝑟𝑖(𝑡)2 + �̃�⊺𝑏𝑖(𝑡)𝑏𝑖(𝑡)⊺�̃� + �̃�⊺𝐵(𝑡)�̃� − 2�̃�⊺𝑏𝑖(𝑡)𝑟𝑖(𝑡)

− 2�̃�⊺𝐵(𝑡)�̂�(𝑡))} ∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(�̃�⊺𝐵(𝑡 + 1)�̃� − 2�̃�⊺𝐵(𝑡 + 1)�̂�(𝑡 + 1))}

∝ 𝑒𝑥𝑝 {−
1

2𝑣2
(�̃� − �̂�(𝑡 + 1))

⊺
𝐵(𝑡 + 1)(�̃� − �̂�(𝑡 + 1))}

as 𝒩(�̂�(𝑡 + 1), 𝑣2𝐵(𝑡 + 1)−1). At every time step 𝑡, we will generate a sample �̃�(𝑡) from

the distribution 𝒩(�̂�(𝑡), 𝑣2𝐵(𝑡)−1) and play the arm 𝑖 that maximizes 𝑏𝑖(𝑡)⊺�̃�(𝑡). The

Thompson Sampling algorithm for contextual bandits is given below:

Step 1: Set 𝐵 = 𝐼𝑑 , �̂� = 0𝑑 , 𝑓 = 0𝑑

Step 2: For all 𝑡 = 1,2, …, do

a) Sample �̃�(𝑡) from distribution 𝒩(�̂�, 𝑣2𝐵−1)

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

 𝑏𝑖(𝑡)⊺�̃�(𝑡) and observe reward 𝑟𝑡

c) Update 𝐵 = 𝐵 + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓 = 𝑓 + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡, �̂� = 𝐵−1𝑓

Step 3: End for

Every step 𝑡 of the algorithm consists of generating a 𝑑-dimensional sample �̃�(𝑡) from a

multivariate Gaussian distribution, and solving the problem 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺�̃�(𝑡). Therefore,

even if the number of arms 𝑁 is large (or infinite), the above algorithm is efficient as long as

the problem 𝑎𝑟𝑔 max
𝑖

𝑏𝑖(𝑡)⊺�̃�(𝑡) is efficiently solvable. [3]

6.2 Regret Analysis

Theorem 16:

The total regret in time 𝑇 for Thompson Sampling for stochastic contextual bandit problem

with linear payoff function, with probability 1 − 𝛿 satisfies:

ℛ(𝑇) ≤ 𝐶
𝑑2

𝜀
√𝑇1+𝜀 (ln(Td)ln

1

δ
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1)

where 𝐶 > 0 is a universal constant and 𝜀 is a parameter used by Thompson Sampling

algorithm. [12]

44

Remark: 1) The parameter 𝜀 can be chosen to be any constant in (0,1). If 𝑇 is known, one

could choose 𝜀 =
1

ln 𝑇
, to get: ℛ(𝑇) ≤ 𝐶𝑑2√𝑇, where 𝐶 > 0 a universal constant.

2) Our regret bound in theorem does not depend on 𝑁, and is applicable to the case of

infinite arms.

Now we state two additional results. The first one is for the setting where each of the 𝑁

arms is associated with a different 𝑑-dimensional parameter 𝜇𝑖 ∈ ℝ𝑑, so that the mean

reward for arm 𝑖 at time 𝑡 is 𝑏𝑖(𝑡)⊺𝜇𝑖. For this setting Thompson Sampling will maintain a

separate posterior distribution for each arm 𝑖 and will only update them whenever 𝑖 is

chosen to be played. At every time step 𝑡, instead of a single sample �̃�(𝑡), N independent

samples will have to be generated: �̃�𝑖(𝑡) for each arm 𝑖. We appropriately modify some of

the previous definitions:

𝐵𝑖(𝑡) = 𝐼𝑑 + ∑ 𝑏𝑖(𝜏)

𝑡−1

𝜏=1:𝑎(𝜏)=𝑖

𝑏𝑖(𝜏)⊺

�̂�𝑖(𝑡) = 𝐵𝑖(𝑡)−1 (∑ 𝑏𝑖(𝜏)

𝑡−1

𝜏=1:𝑎(𝜏)=𝑖

𝑟𝑖(𝜏))

The posterior distribution for each arm 𝑖 at time 𝑡 will

be 𝒩(𝑏𝑖(𝑡)⊺�̂�𝑖(𝑡), 𝑣2𝑏𝑖(𝑡)⊺𝐵𝑖(𝑡)−1𝑏𝑖(𝑡)). And, the Thompson Sampling algorithm is now

stated as follows:

Step 1: Set 𝐵𝑖 = 𝐼𝑑 , �̂�𝑖 = 0𝑑 , 𝑓𝑖 = 0𝑑 , 𝑖 = 1, … , 𝑁

Step 2: For all 𝑡 = 1,2, …, do

a) For each arm 𝑖 = 1, … , 𝑁, sample 𝜃𝑖(𝑡) independently from the posterior distribution

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

𝜃𝑖(𝑡) and observe reward 𝑟𝑡

c) Update 𝐵𝑎(𝑡) = 𝐵𝑎(𝑡) + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓𝑎(𝑡) = 𝑓𝑎(𝑡) + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡 , �̂�𝑎(𝑡) = 𝐵𝑎(𝑡)
−1𝑓𝑎(𝑡)

Step 3: End for

The optimal arm 𝑎∗(𝑡) is now the arm that maximizes 𝑏𝑖(𝑡)⊺𝜇𝑖, and the regret at time 𝑡 is

defined as:

regret(𝑡) = 𝑏𝑎∗(𝑡)(𝑡)⊺𝜇𝑎∗(𝑡) − 𝑏𝑎(𝑡)(𝑡)⊺𝜇𝑎(𝑡)

45

Theorem 17:

For this setting, with probability 1 − 𝛿, the total regret in time 𝑇 for Thompson Sampling

satisfies:

ℛ(𝑇) ≤ 𝐶𝑑√
𝑁𝑇1+𝜀 ln 𝑁

𝜀
(ln 𝑇 ln

1

𝛿
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1)

where 𝐶 > 0 a is a universal constant.

Note: Unlike first theorem, the second one has dependence on 𝑁 in its regret bound, which

is reasonable since this theorem deals with a setting where there are 𝑁 different parameters

to learn. However, the bound in last theorem has a better dependence on 𝑑. This

improvement results from the independence of 𝜃𝑖(𝑡) = 𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡) in the algorithm for this

setting. On the other hand in the algorithm, a single �̃�(𝑡) is generated, and thus 𝜃𝑖(𝑡) =

𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡) are not independent.

Considering the note, we modify the algorithm for the single parameter setting by entailing

the 𝜃𝑖(𝑡)’s to be independently generated, each with marginal distribution 𝑏𝑖(𝑡)⊺�̃�𝑖(𝑡). The

arm with the highest value of 𝜃𝑖(𝑡) is played at time 𝑡. Although, this modified algorithm

could be inefficient compared to the first algorithm if 𝑁 is large compared to 𝑑, the better

dependence on 𝑑 in regret bounds could be useful if 𝑑 is large. The modified Thompson

Sampling algorithm is given below:

Step 1: Set 𝐵 = 𝐼𝑑 , �̂� = 0𝑑 , 𝑓 = 0𝑑

Step 2: For all 𝑡 = 1,2, …, do

a) For each arm 𝑖 = 1, … , 𝑁, sample 𝜃𝑖(𝑡) from distribution 𝒩(𝑏𝑖(𝑡)⊺�̂�, 𝑣2𝑏𝑖(𝑡)⊺𝐵−1𝑏𝑖(𝑡))

b) Play arm 𝑎(𝑡) ≔ 𝑎𝑟𝑔 max
𝑖

𝜃𝑖(𝑡) and observe reward 𝑟𝑡

c) Update 𝐵 = 𝐵 + 𝑏𝑎(𝑡)(𝑡)𝑏𝑎(𝑡)(𝑡)⊺, 𝑓 = 𝑓 + 𝑏𝑎(𝑡)(𝑡)𝑟𝑡, �̂� = 𝐵−1𝑓

Step 3: End for

Theorem 18:

46

For the modified algorithm in single parameter setting, with probability 1 − 𝛿 the total

regret in time 𝑇 satisfies:

ℛ(𝑇) ≤ 𝐶𝑑√
𝑇1+𝜀 ln 𝑁

𝜀
(ln 𝑇 ln

1

𝛿
) , for all 𝜀 ∈ (0,1), 𝛿 ∈ (0,1)

where 𝐶 > 0 is a universal constant.

7 Simulation

To make all these more concrete, we give an example of implementing the Thompson

Sampling algorithm for a Bernoulli bandit problem with two arms in 𝑅-code, which is

presented in appendix 1. To better understand it, a detailed explanation is given below:

We start by loading the necessary package “MASS”, which contains the “rbeta” function

used for sampling from the beta distribution. The “simulate_bandit” function takes a success

probability “p” and returns a binary outcome (0 or 1) based on a Bernoulli distribution.

The “thompson_sampling” function implements the Thompson Sampling algorithm. It takes

two arguments: “n_arms” (the number of arms in the bandit) and “n_trials” (the number of

trials to run the algorithm). Inside the function, we initialize two variables: “arm_success”

and “arm_failures” to keep track of the number of successes and failures for each arm.

For each trial, we sample success probabilities for each arm using the beta distribution with

parameters ‘(“arm_success” + 1, “arm_failures” + 1)’. These parameters represent the

number of successes and failures observed for each arm plus a pseudo-count of 1 to ensure

exploration. The “rbeta” function is used to generate random samples from the beta

distribution.

Next, we select the arm with the highest sample by finding the index of the maximum value

in “arm_samples”. We then simulate a reward for the chosen arm using the

“simulate_bandit” function, which takes the true success probabilities “p” and returns a

binary reward (0 or 1) based on the Bernoulli distribution.

Finally, we update the arm success/failure counts based on the observed reward. If the

reward is 1, we increment the success count for the chosen arm; otherwise, we increment

the failure count. After running the Thompson Sampling algorithm for the specified number

47

of trials, we return the estimated success probabilities for each arm by dividing the success

count by the total count (successes + failures).

In the main code, we set the number of arms (“n_arms”) to 2 and the number of trials

(“n_trials”) to 1000. We also define the true success probabilities of the arms (“p”) as “c (0.3,

0.5)”.

We then run the Thompson Sampling algorithm 100 times by calling the

“thompson_sampling” function inside the “replicate” function. This allows us to obtain an

average estimate of the arm success probabilities across multiple runs.

Finally, we print the estimated success probabilities for each arm by calculating the mean of

the results matrix for each arm separately.

Now, we are using the LinUCB algorithm in the same example. The 𝑅-code is shown in

appendix 2. More specifically, in this implementation, we define the “simulate_bandit”

function, which is the same as before. The “lin_ucb function” implements the LinUCB

algorithm. It takes three arguments: “n_arms” (the number of arms in the bandit), “n_trials”

(the number of trials to run the algorithm), and “alpha” (the exploration parameter). Inside

the function, we initialize variables to keep track of the number of successes, failures,

counts, and rewards for each arm. We also initialize the UCB values for each arm to the

specified “alpha”. For each trial, we select the arm with the highest UCB value using the

“which.max” function.

We then simulate a reward for the chosen arm using the “simulate_bandit” function, which

takes the true success probabilities “p” and returns a binary reward (0 or 1) based on the

Bernoulli distribution. Next, we update the arm success/failure counts and rewards based on

the observed reward. We also increment the arm count.

After that, we update the UCB values for all arms. For arms that have been pulled at least

once (“arm_counts [arm]> 0”), we calculate the mean reward and an exploration term

based on the exploration parameter “alpha” and the logarithm of the current trial number

“t”. The UCB value for an arm is the sum of the mean reward and the exploration term.

48

After running the LinUCB algorithm for the specified number of trials, we return the

estimated success probabilities for each arm by dividing the success count by the total count

(successes + failures).

In the main code, we set the number of arms (“n_arms”) to 2, the number of trials

(“n_trials”) to 1000, and the exploration parameter (“alpha”) to 2.0. We then run the LinUCB

algorithm 100 times by calling the “lin_ucb” function inside the “replicate” function. This

allows us to obtain an average estimate of the arm success probabilities across multiple

runs.

Finally, we print the estimated success probabilities for each arm by calculating the mean of

the results matrix for each arm separately.

Appendix

1) # Required packages

library(MASS)

Function to simulate Bernoulli bandit

simulate_bandit ← function (p) {

 return (rbinom (1, 1, p))

}

Thompson Sampling function

thompson_sampling ← function (n_arms, n_trials) {

 # Initialize variables

 arm_success ← numeric (n_arms)

 arm_failures ← numeric (n_arms)

 for (t in 1:n_trials) {

 # Sample success probabilities for each arm

 arm_samples ← rbeta(n_arms, arm_success + 1, arm_failures + 1)

 # Select arm with highest sample

 chosen_arm ← which.max (arm_samples)

49

 # Simulate reward for chosen arm

 reward ← simulate_bandit (p [chosen_arm])

 # Update arm success/failure counts

 if (reward == 1) {

 arm_success [chosen_arm] ← arm_success [chosen_arm] + 1

 } else {

 arm_failures [chosen_arm] ← arm_failures [chosen_arm] + 1

 }

 }

 # Return arm success probabilities

 return (arm_success / (arm_success + arm_failures))

}

Number of arms

n_arms ← 2

Number of trials

n_trials ← 1000

Run Thompson Sampling

p ← c (0.3, 0.5) # True success probabilities of arms

results ← replicate (100, thompson_sampling (n_arms, n_trials))

Print arm success probabilities

for (arm in 1:n_arms) {

 cat (paste ("Arm", arm, "success probability:", mean(results[arm,]), "\n"))

}

2) # Function to simulate Bernoulli bandit

simulate_bandit ← function (p) {

 return (rbinom (1, 1, p))

}

LinUCB function

lin_ucb ← function (n_arms, n_trials, alpha) {

50

 # Initialize variables

 arm_success ← numeric(n_arms)

 arm_failures ← numeric(n_arms)

 arm_counts ← numeric(n_arms)

 arm_rewards ← numeric(n_arms)

 arm_UCB ← rep(alpha, n_arms)

 for (t in 1:n_trials) {

 # Select arm with highest UCB

 chosen_arm ← which.max(arm_UCB)

 # Simulate reward for chosen arm

 reward ← simulate_bandit (p [chosen_arm])

 # Update arm success/failure counts and rewards

 if (reward == 1) {

 arm_success [chosen_arm] ← arm_success [chosen_arm] + 1

 } else {

 arm_failures [chosen_arm] ← arm_failures [chosen_arm] + 1

 }

 arm_counts [chosen_arm] ← arm_counts [chosen_arm] + 1

 arm_rewards [chosen_arm] ← arm_rewards [chosen_arm] + reward

 # Update UCB values for all arms

 for (arm in 1:n_arms) {

 if (arm_counts [arm] > 0) {

 mean_reward ← arm_rewards [arm] / arm_counts [arm]

 exploration_term ← sqrt (alpha * log (t) / arm_counts [arm])

 arm_UCB [arm] ← mean_reward + exploration_term

 }

 }

 }

Return arm success probabilities

return (arm_success / (arm_success + arm_failures))

}

51

Number of arms

n_arms ← 2

Number of trials

n_trials ← 1000

Exploration parameter

alpha ← 2.0

Run LinUCB

p ← c (0.3, 0.5) # True success probabilities of arms

results ← replicate (100, lin_ucb (n_arms, n_trials, alpha))

Print arm success probabilities

for (arm in 1:n_arms) {

 cat (paste ("Arm", arm, "success probability:", mean(results[arm,]), "\n"))

}

References

[1] Tor Lattimore and Casba Szepesvari, “Bandit Algorithms”, Cambridge University Press,

2020.

[2] Yoan Russac. “Introduction to Linear Bandits”, ENS Paris, 2019.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&v

ed=0CAIQw7AJahcKEwiIsNK-

87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk

%2Ftalk1-

ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=16862184

84468248

[3] Shipra Agrawal and Navin Goyal, “Thompson Sampling for Contextual Bandits with Linear

Payoffs”, Proceedings of Machine Learning Research (PMLR) 28(3):127-135, 2013.

[4] Wei Chu, Lihong Li and Lev Reyzin and Robert E. Schapire, “Contextual Bandits with

Linear Payoff Functions”, PMLR 15:208-214, 2011.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwiIsNK-87D_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.yoanrussac.com%2Fen%2Ftalk%2Ftalk1-ens%2Fintro_linear_bandits.pdf&psig=AOvVaw2qVagBgWEsm9LUpjBUR3rT&ust=1686218484468248

52

[5] Chi Jin, Zhuoran Yang, Zhaoran Wang and Michael I. Jordan, “Provably Efficient

Reinforcement Learning with Linear Function Approximation”, PMLR 125:1-7, 2020.

[6] Alexander Slivkins, “Introduction to Multi-Armed Bandits”, Foundations and Trends in

Machine Learning, Vol. 12:No.1-2, pp 1-286.

http://dx.doi.org/10.1561/2200000068

[7] Li, Lihong, et al. “A Contextual Bandit Approach to Personalized News Article

Recommendation”, Proceedings of the 19th International Conference on World Wide Web,

ACM, 2010.

[8] Yasin Abbasi-Yadkori, David Pal and Casba Szepesvari, “Improved Algorithms for Linear

Stochastic Bandits”, Advances in Neural Information Processing Systems 24, 2011.

[9] Kevin Jamieson, “Linear bandits”, February 2018.

https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture9/lecture9pdf

[10] Alekh Agarwal, “Exploration in Contextual Bandits”, October 2017.

http://alekhagarwal.net/bandits_and_rl/exploration.pdf

[11] Shipra Agrawal and Navin Goyal, “Analysis of Thompson Sampling for the multi-armed

bandit problem”. JMLR Workshop and Conference Proceedings 23:39.1-39.26, 2012.

[12] Shipra Agrawal and Navin Goyal, “Further optimal regret bounds for Thompson

Sampling”, Proceedings of the 16th International Conference on Artificial Intelligence and

Statistics, PMLR 31:99-107, 2013.

[13] Aditya Gopalan, Shie Mannor, and Yishay Mansour, “Thompson sampling for complex

online problems”, PMLR, 2014.

[14] Branislav Kveton, Csaba Szepesvari, Sharan Vaswani, Zheng Wen, Tor Lattimore, and

Mohammad Ghavamzadeh, “Garbage in, reward out: Bootstrapping exploration in multi-

armed bandits”, PMLR, 2019.

[15] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen, “A

tutorial on Thompson Sampling”, 2017.

http://alekhagarwal.net/bandits_and_rl/

	i) A/B Testing
	ii) Advertisement Placement
	3 Stochastic Bandits
	Definition 5: The random pseudo-regret is: ,,𝑅.-𝑛.=,𝑖=1-𝑘-,𝑇-𝑖.(𝑛),𝛥-𝑖..
	ℙ,,,𝑅.-𝑛.(𝜋,𝑣)≥,1-4.𝑚𝑖𝑛,𝑛,,,𝑛,𝑘−1.-2..𝑙𝑜𝑔,,1-4𝛿....≥𝛿
	4 Adversarial Bandits
	ℙ,,,𝑅.-𝑛.≥2,𝑛𝑘(2,log-,𝑘+1.+,log-,,1-𝛿.....+,log-,,𝑘+1-𝛿....≤𝛿
	5 Contextual Bandits

