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In this thesis we will study seismic coda waves (S coda), created by strong 

seismic events in central Greece. Wave surges are interpreted as scattered 

seismic waves created by heterogeneities within the Earth, i.e. fault lines, crack 

structures, micro cracks, speed and/or density limits/anomalies, etc. Due to the 

nature and complexity of the path of the coda waves we will use non-Extensive 

Statistical Physics (NESP) to study the probability density functions (probability 

density functions or pdfs) of the coda seismic wave flows. The purpose of the 

analysis is to show that the time series describing the fluctuations in the seismic 

coda waves diverge from the Gaussian description and their corresponding 

probability density functions could be adequately described by the q-Gaussian 

distribution. An attempt will be made to interpret the results based on the 

theory of coda wave generation as described in a series of work by Sato and 

collaborators on the form of coda waves that creates a scattering distribution 

that follows an asymptotic force law. 
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Προσβολή πνευματικής ιδιοκτησίας θεωρείται η ολική ή η μερική αναπαραγωγή του έργου άλλου 

προσώπου ή η παρουσίαση του έργου κάποιου άλλου ως προσωπικού του γράφοντος. Το Τμήμα 

Γεωλογίας και Γεωπεριβάλλοντος λαμβάνει πολύ σοβαρά υπόψη και καταδικάζει την προσφυγή σε 

τέτοιου είδους πρακτικές από τους Μεταπτυχιακούς Φοιτητές. Σε περιπτώσεις πρόδηλης ή εκ 

προθέσεως προσβολής πνευματικής ιδιοκτησίας, τα αρμόδια όργανα του Τμήματος δύνανται να 

επιβάλουν ως κύρωση έως και την οριστική διαγραφή από το ΠΜΣ. Κατά την εκπόνηση, υποβολή, 

εξέταση και δημοσίευση της Διπλωματικής Εργασίας Ειδίκευσης οι Μεταπτυχιακοί Φοιτητές 

οφείλουν να τηρούν τις ακόλουθες κατευθυντήριεςοδηγίες: 

1. Η Διπλωματική Εργασία Ειδίκευσης πρέπει να αποτελεί έργο του υποβάλλοντος αυτήνφοιτητή. 

2. Η αντιγραφή ή η παράφραση έργου τρίτου προσώπου αποτελεί προσβολή πνευματικής ιδιοκτησίας και συνιστά 
σοβαρό αδίκημα. Στο αδίκημα αυτό περιλαμβάνεται τόσο η προσβολή πνευματικής ιδιοκτησίας άλλου φοιτητή όσο 
και η αντιγραφή από δημοσιευμένες πηγές, όπως βιβλία, εισηγήσεις ή επιστημονικά άρθρα. Το υλικό που συνιστά 
αντικείμενο λογοκλοπής μπορεί να προέρχεται από οποιαδήποτε πηγή. Η αντιγραφή ή χρήση υλικού προερχόμενου 
από το διαδίκτυο ή από ηλεκτρονική εγκυκλοπαίδεια είναι εξίσου σοβαρή με τη χρήση υλικού προερχόμενου από 
τυπωμένη πηγή ή βάσηδεδομένων. 

3. Η χρήση αποσπασμάτων από το έργο τρίτων είναι αποδεκτή εφόσον, αναφέρεται η πηγή του σχετικού 
αποσπάσματος. Σε περίπτωση αυτολεξί μεταφοράς αποσπάσματος από το έργο άλλου, η χρήση εισαγωγικών ή 
σχετικής υποσημείωσης είναι απαραίτητη, ούτως ώστε η πηγή του αποσπάσματος νααναγνωρίζεται. 

4. Η παράφραση κειμένου, αποτελεί προσβολή πνευματικήςιδιοκτησίας. 

5. Οι πηγές των αποσπασμάτων που χρησιμοποιούνται θα πρέπει να καταγράφονται πλήρως σε πίνακα βιβλιογραφίας 
στο τέλος τηςεργασίας. 

6. Η προσβολή πνευματικής ιδιοκτησίας επισύρει την επιβολή κυρώσεων. Κατά την απόφαση επί των ενδεδειγμένων 
κυρώσεων, τα αρμόδια όργανα του Τμήματος θα λαμβάνουν υπόψη παράγοντες όπως το εύρος και το μέγεθος του 
τμήματος της εργασίας που οφείλεται σε προσβολή πνευματικής ιδιοκτησίας. Οι κυρώσεις θα επιβάλλονται σύμφωνα 
με το Άρθρο 7 Παράγραφος 7 του ΚανονισμούΣπουδών. 
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Abstract 

In this thesis we will study seismic coda waves (S coda), created by strong seismic events in 

central Greece. S coda waves are interpreted as scattered seismic waves created 

byheterogeneities within the Earth, i.e. fault lines, crack structures, micro cracks, speed and/or 

density variations/anomalies, etc. Due to the nature and complexity of the path of the coda 

waves we will use non-Extensive Statistical Physics (NESP) to study the probability density 

functions (probability density functions or pdfs) of the S coda seismic wave. The purpose of the 

analysis is to show that the time series describing the fluctuations in the seismic coda waves 

diverge from the Gaussian description and their corresponding probability density functions 

could be adequately described by the q-Gaussian distribution. An attempt will be made to 

interpret the results based on the theory of coda wave generation as described in a series of 

work by Sato and collaborators on the form of coda waves that creates a scattering distribution 

that follows an asymptotic power law. 

 

Keywords: S coda, earthquake, heterogeneities, distribution, scaterring  

 

Περίληψη 

 
Στην παρούσα διατριβή θα μελετήσουμε σεισμικά κύματα ουράς (S coda), που έχουν 

δημιουργηθεί από ισχυρά σεισμικά γεγονότα στην κεντρική Ελλάδα. Τα κύματα ουράς 

ερμηνεύονται ως σκεδασμένα σεισμικά κύματα που δημιουργούνται από ετερογένειες εντός 

της Γης, δηλαδή από ρήγματα, δομές ρωγμών, μικρορωγμές, μεταβολές ταχύτητας ή/και 

πυκνότητας/ανωμαλίες κ. λπ. Λόγω της φύσης και της πολυπλοκότητας της διαδρομής των 

κυμάτων coda θα χρησιμοποιήσουμε την μην εκτατική στατιστική φυσική (Non-Extensive 

Statistical Physics, NESP) για να μελετήσουμε τις συναρτήσεις πυκνότητας πιθανότητας 

(probability density functions or pdfs) των μεταβολών (fluctuations) των σεισμικών κυμάτων 

ουράς. Ο σκοπός της ανάλυσης είναι να δείξει ότι οι χρονοσειρές που περιγράφουν τις 

μεταβολές (fluctuations) στα σεισμικά κύματα ουράς αποκλίνουν από την Gaussian περιγραφή 

και οι αντίστοιχες συναρτήσεις πυκνότητας πιθανότητας τους θα μπορούσαν επαρκώς να 

περιγραφούν από την κατανομή q-Gaussian. Θα δοθεί μια προσπάθεια ερμηνείας των 

αποτελεσμάτων με βάση τη θεωρία για την δημιουργία των κυμάτων ουράς όπως έχει 

περιγραφεί σε σειρά εργασιών του Sato και συνεργατών για τη μορφή των κυμάτων ουράς 

που δημιουργεί μια κατανομή σκεδαστών που ακολουθεί ασυμπτωτικό νόμο δύναμης. 

 

Λέξεις κλειδιά: κύματα ουράς, σεισμός, ετερογένειες, κατανομή, σκεδασμός 
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1. Introduction 

In seismology the seismic waves that are caused either by earthquakes or by manmade sources 

are used in order to study the structure of the earth. After studies that have been done over 

the years, the theory that has prevailed is that the earth consists of a sequence of horizontal 

layers that have different elastic properties. This is a consideration that is dominant in the 

classical seismology, along with the fact that this structure is determined by the travel-time 

readings of body waves and the dispersion of surface waves. Classical seismic methods have 

also characterized three dimensional heterogeneities with a scale larger than the predominant 

seismic wavelength, by using travel-time data with velocity tomography. Thus, there are 

classical methods which can be used in order to model complicated structures, such as 

explaining many features of complex waveforms. Those methods are using forward and inverse 

waveforms for deterministic models. 

However, it was observed in seismograms of local earthquakes that after the S waves, there 

were some continuous wave trains, which could not be explained by the determinist models of 

classical seismology. Those waves are named ‘coda waves’ and after observations they seem to 

be incoherent, with random sizes and contrasts of physical properties. They occur after 

scattering in randomly distributed inhomogeneities in the earth’s medium. Each heterogeneity 

has a characteristic scale which is very important for the waves, but it is not much longer than 

the wavelength, as most of the times it has the same scale with it. Τhere was found strong 

random fluctuations in seismic velocity and density having short wavelengths in well logs of 

boreholes drilled even in old crystalline rocks located in stable tectonic environments. Those 

observations have led us to believe that the earth is a random medium with a broad spectrum 

of spatial velocity fluctuations and the resulting importance of seismic wave scattering. After 

these depictions of the earth, there were investigations that could connect the seismogram 

envelops and the spectral structure of the random inhomogeneity in the earth. At first 

scientists tried to find the connection by phenomenological description of the scattering 

process. After some observations, theoretical studies have been proposed, which use 

perturbation methods, the parabolic approximation, the phase screen method, and another 

phenomenological method known as the Radiative transfer theory. After this method was 

proposed and applied, the scattering process of the seismic waves has been described in the 

inhomogeneous earth and a detailed characterization of the statistical properties of the 

inhomogeneity has been able to be made. 

 

1.1 Lithosphere’s inhomogeneity 

Before defining coda waves and how we can obtain useful information about the scattering 

process through the Radiative transfer theory, we will refer to the earth’s structure. It is known 

that the first 100 km under the surface is the so called lithosphere. This region is solid and the 

velocity at this part is low. The thickness of the lithosphere is not the same and has many 

variations from place to place, as it is connected to the tectonic setting. In this study when we 

refer to the term lithosphere, we mean the crust and the upper mantle. At the base of the crust 

there is the Mohorovicic discontinuity or Moho (Mohorovicic 1909) and in the mid-crust there 

is another discontinuity, the Conrad. There have been many studies after the Moho has been 

discovered, most of them using layered models. Those studies have led to the belief that the 

Moho is not only a simple discontinuity, but it really works as a transition zone, as it consists of 
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many segments of small reflectors. As far as the crust is concerned, the use of the regional 

velocity tomography has shown that the crust is heterogeneous on scales from a few meters to 

a few tens of kilometers in many regions of the world.  

Apart from investigating the earth’s heterogeneity by using the coda waves and the scattering 

process, there are also other ways that can be used in order to study and identify the earth’s 

medium and its characteristics. In geology, the measurements include mineralogical 

composition and grain size distribution. Geology is based on the observation of the surface, 

since rock samples that originate from within the earth are being studied, in order to obtain 

any signs that will declare heterogeneity. Those rocks are mostly being found after the eruption 

of volcanoes and they offer geochemical and geological evidence of heterogeneity within the 

earth. Also, rocks are being found in boreholes and they present wide variation and rapid 

changes in chemical composition with depth. However, as rock samples are being involved, 

those methods are being affected by the evolution of the rock. Inhomogeneity of the 

lithosphere is partially being caused by tectonical processes associated with plate tectonics 

such as folding, faulting, and large scale crustal movements.  

On the other hand, geophysical research is based on measurements of physical properties, 

such as seismic velocities and density of rocks. The physical properties of rocks cannot only be 

controlled by the mineral composition, as, after measurements that were made in wells, show 

correlation and lack of correlation with chemical composition of the rocks. Elastic properties 

within the lithosphere are revealed to indicate wide spatial variation, after the realization of 

deterministic seismic studies. In those studies, lithosphere’s small scale heterogeneities are 

revealed to exist by the scattering of seismic waves with high frequency. 

 

1.2 Geological processes that reveal heterogeneity 

As we have mentioned above, the lithosphere presents inhomogeneities which are being 

revealed to us by different methods. A very popular method that is used in order to identify the 

heterogeneity is by studying the various types of the rocks. Seismic velocities are different for 

each rock type. Since rocks have crystals whose sizes vary from fractions of mm to a few cm in 

scale, they can be very helpful for the numerous scales of the earth’s heterogeneities. The 

mineral’s properties that create the rocks in the crust are very different from one another, thus 

the abundance of each mineral in a rock’s configuration can influence its elastic properties.  

Significant role to the earth’s geology and to its study play the fractures. They have various 

sizes that can be from submicroscopic to many tens of meters. They influence the rock’s elastic 

properties, as their spatial variation in size and content can affect more the elastic properties 

of a crystal rock than the mineral composition. The presence of a fracture has also effect on the 

velocity of the P and S waves. The velocity of P waves is more sensitive to the presence of fluids 

in a fracture comparing to the velocity of the S waves. This happens as fluids transmit 

compressional waves but not shear waves. 

Another significant fact in understanding the inhomogeneities of the earth is anisotropy of rock 

properties. It has variation according to location and increases rock inhomogeneity. Fractures 

can also lead to anisotropy of the elastic properties of the bulk rock. Some fractures have an 

alignment as a function of orientation that is the result of the way their formation was made or 

due to the variation of a stress magnitude and that is the reason some cracks are open and 
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some others are closed. The layering of rocks is another anisotropy type and it is found in many 

sedimentary formations. As it is known the layering is being rotated by tectonic processes, thus 

the horizontal and vertical directions are not aligned with the preferential orientation of fast 

and slow directions of anisotropic media.  

Since we discuss about geological processes, we could not proceed without referring to the 

intrusions of magma. Those intrusions into country rock that was already there, led to the 

creation of dicks and sills that have different composition from the country rock. The size of 

those dicks and sills can be as small as a few mm wide and this leads to a spatial variation that 

is quick in rock properties. In volcanic regions, the rock properties have multiple variations 

created by the different composition of the magma that was erupted at different stages of a 

volcano’s life. The variations of the rock properties can be on a large scale from a few meters to 

a few kilometers. In multiple tectonic provinces the variation is over tens to hundreds of 

kilometers. For example, in the Western U.S.A. the Cascade range is mostly created from young 

volcanic rocks, while in the central U.S.A. there are mainly old Precambrian rocks. The elastic 

properties in those two areas are dramatically different.  

Magmatic processes have created a large part of the crust. There are some large silicic 

batholiths, like in Sierra Nevada, U.S.A. that constitute the intrusive remains of eroded away 

volcanic complexes. Geochemists insist that silicic rocks that intrude into the shallow crust and 

erupt at volcanoes were formed either by the transfer of heat from intruded iron-rich mantle 

rocks to silicic rocks in the deep crust or by fractionation of iron-rich rocks that intrude into the 

lower crust from the mantle. In both cases, high velocity material will remain within the silicic 

crust. The high density material’s velocity can be as high as 7.5 km/s (Fountain and Christensen 

1989). If there is heat transfer from mantle-derived magmas, the velocity of the resulting 

magmas could be 7.0 km/s. As a result, the process of the intrusion causes heterogeneity in the 

earth’s crust.  

Sedimentary formations have a hugeimportance, as the sedimentary rocks contain the majority 

of the world’s hydrocarbons. Heterogeneity in those formations created by sedimentation has 

many causes, as there are variations in the cementing rocks together, as well as in porosity and 

pore fluids, the source rocks that the sediments were formed from have changed and there is 

influence by the tectonic processes that act on the rocks after deposition. Heterogeneity in 

sedimentary rocks has been extensively studied by seismic imaging of various types, borehole 

logging and geological characterization that was held for the exploration and development of 

hydrocarbon resources. 

There are also other geological processes that have an impact on the inhomogeneity of the 

lithosphere, such as erosion and metamorphism that transport rocks or change their character 

in place. Faulting and folding, are included in the tectonic processes that move relative rocks to 

one another and create heterogeneity. Lithospheric plates and their large scale movements 

contribute to common origin rock’s distribution over a wide range. Lastly, different types of 

rocks came into contact by the collision of tectonic plates at plate boundaries, such as 

subduction zones or collision zones.  
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1.2 Fractal nature of the inhomogeneities 

As discussed, the inhomogeneities of the earth medium have been showing a fractal nature. 

More specific to that is the relation between the fractal dimension of the 3D inhomogeneities 

of the earth and that of the fault surfaces that has been studied by the scattering of the seismic 

waves. In order to proceed with the measurement of the heterogeneity spectrum of a random 

medium, there have been introduced two methods. The first method is the coda excitation 

spectrum method, and the second one is the method of measuring the frequency dependence 

of scattering attenuation. The heterogeneity spectrum of the medium can lead us to the fractal 

dimension. The first method of the coda excitation has been applied to data that have been 

taken from the Hindu-Kush mountain in Asia. The observed coda excitation spectra for 

frequencies between 1-25 Hz, in accordance with the frequency dependence of scattering 

attenuation, we come to the conclusion that the lithospheres’ inhomogeneities are multiple 

scaled and can be modeled as a bandlimited fractal random medium (BLFRM) with an outer 

scale of about 1 km. 

'Fractal' is a term coined by Mandelbrot to denote a mathematical set or a concrete object 

whose form is extremely irregular and/or fragmented at all scales' (MANDELBROa" 1977, p. 

294). Fractal is a geometrical description of objects having self-similar hierarchical structure 

down to arbitrarily small scales. Mathematically a fractal set is defined as a set whose 

Hausdorff - Besicovitch dimension is greater than its topological dimension. As a mathematical 

object, a fractal is an idealization and simplification of a variety of highly irregular but self 

similar natural phenomena. All real objects or process in the nature consist of a maximum 

scale, that can is the outer scale, and a minimum scale, that is the inner scale. Therefore all 

fractals in nature are bandlimited. Whether the fractal is bandlimited or not, is of no 

importance if the scale range of the observations is within the scale range of a bandlimited 

fractal. Then the object that is observed can be treated as a fractal.  

For the propagation of the wave we assume that the medium is random, continuous and 

differentiable. We make this speculation, in order to be able to set up a system of differential 

equations for acoustic or elastic vibrations in the medium. So, we consider that the 

inhomogeneities or irregularities of the medium have a minimum scale, thus the inner scale. 

Therefore, the medium can be treated as a bandlimited fractal random medium. If the length 

of the waves that we test is larger than the inner scale and smaller than the outer scale of the 

bandlimited fractal medium, then we say that the propagation of the wave is in the fractal 

regime. If the shortest wavelength of the studying waves is longer than the length of the outer 

scale heterogeneities of the medium we say that the wave propagation is in the Rayleigh 

regime. Additionally, if the longest wavelength of the observed waves is shorter than the 

length of the inner scale, we say that the propagation of the wave is in the short wave regime. 

Rayleigh or short wave regime can never be reached for ideal fractal medium.  

On the other hand the fractal regime of wave propagation and scattering is interesting, as the 

fractal’s mathematical treatment can be used for the simplicity of the study and it can also 

advance it. Diffractals we call the waves that have been diffracted in the fractal regime, as the 

name given by Berry (1979) suggests. From the diffraction of the diffractals, we have obtained 

statistical properties of waves passing through a one-dimensional random phase screen or 

from the reflection by a fractal random surface. So, the bandlimited fractal random medium 

has proved to be useful for modeling multi scale media that are inhomogeneous and similar to 
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one another. We can determine its fractal dimension by measuring the inhomogeneity 

spectrum, which we obtain from experiments on wave scattering. 

 

2. Coda Waves 

2.1 Definition of Coda waves 

In seismology the coda waves are defined as waves that occur after backscattering in the 

numerous heterogeneities distributed in the earth. After an earthquake happens, the first 

waves to observe are the P and S waves. There are also other surface waves that follow them, 

but all those waves propagate away from the seismic source. Nonetheless, the area around the 

source of the earthquake is still vibrating. This motion of the ground around the earthquake’s 

source has a slow decay rate, leaving a tail following the passage of the P and S waves. Those 

continuous wave trains we call coda waves.  

Historically, the first who not only just noticed, but also paid attention and showed interest in 

those continuous wave trains in the tail portion of the seismograms in local earthquakes, was 

Aki (1969). Aki named those random signals coda waves. They have envelope amplitudes that 

decrease as the lapse time increases. The lapse time is measured from the origin time of the 

earthquake. Rautian and Khalturin (1978) observed that the envelopes of coda waves that 

originate from local earthquakes have a steady decay and there are independent from the 

epicentral distance and they are only dependent from the lapse time. 

If we go back to the first seismograms, we will understand that they were used in order to 

record the first arrival and locate the earthquake. The regional networks that the seismograms 

were located relied on analog transmission from stations over phone lines and radio links, the 

recordings had a limited dynamic range.  

Due to the analog transmission that caused the limited dynamic range, the stations should be 

working in high-gain, in order to have the ability to record the P waves that are the first 

arriving. Working in high-gain, resulted in clipping the early part of the seismogram. Thus, the 

analysis of seismograms was first developed on working on seismograms that their first part 

was clipped, especially in large earthquakes. So the analysis of the coda waves at first was 

based in those small dynamic range networks and it focused on obtaining information about 

the seismic source and the medium of the earth.  

As the years passed, the seismic network became digital and it allowed the increase of the 

dynamic range. This, in combination with the placement of the seismograms in boreholes, 

where the noise of the ambience was significantly reduced compared to that on the surface of 

the ground, led to recording seismogram envelopes, both with their maximum amplitude part 

and their last part, where the coda appear, in order to model the heterogeneities of the earth’s 

medium. The frequencies used were between 1-30 Hz. Since the coda are not regular plain 

waves originated from the epicenter, but are composed of scattered waves coming from all 

directions, the theoretical and deterministic studies are not suitable for them. After 1970, the 

study of the coda waves started being based on the single scattering approximation, which has 

been used to the explanation of three component seismogram envelopes characteristics. 
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2.2 Composition and frequency characteristics of Coda waves 

There are P and S coda waves, that as the name suggests are the result of the P waves and S 

waves scattering to earth inhomogeneities. P coda waves are the ones to be seen first in 

seismograms and S coda waves, are sometimes twice the travel time of P waves. After analysis 

on the spectral ratios of P and S coda waves, it has been observed that the S coda waves have 

similar frequency content to those of S waves rather than P waves. This means that S coda 

waves are mainly composed of scattered S waves. 

The excitation of S coda waves constitutes evidence that there is indeed random 

inhomogeneity in the lithosphere. Aki and Chouet (1975) were the first to collect the 

characteristics of high frequency S coda waves of local earthquakes. Those characteristics are 

the following. At first if we compare the spectral contents of the later portions of S coda of 

local earthquakes, but from different stations, we will realize that it is the same. A reliable 

measure of the magnitude if an earthquake is the total duration of a seismogram, that is it 

defined as the length of time from the appearance of the P waves to the time when the 

amplitude of the coda is the same level of microseisms. If we have records of local earthquakes 

within a certain region, the S coda bandpass filtered traces we obtain from them have a 

common envelope shape and its time is independent from the epicentral distance. The coda 

amplitudes have a temporal decay that is independent of the earthquake’s magnitude at least 

for ML<6. However, the S coda amplitude is affected by the local geology of the recording site. 

Aki and Tsujiura (1959) after proceeding with array measurements have shown that S coda are 

not just regular plane waves originated from the epicenter. Observations in boreholes and at 

sites with different rock types have led to the fact that S coda waves and direct S waves have 

the same site amplification factor which confirms that S coda waves are composed of scattered 

S waves. Also, there have been indentified S coda waves, even on seismograms that were 

recorder at the bottom of deep boreholes drilled in hard rock beneath soft deposits. The 

meaning of this is that S coda waves are not dominated by near surface scattering.  

The last few years the studies that have been performed approach the S coda waves in more 

detail based on higher quality digital seismic wave data. Spudich and Bostwick (1987) proposed 

an array analysis technique with using data obtained at a station from an earthquake cluster. 

After analyzing the S coda waves they came to the result that those S coda waves before 1.5-2 

times the S wave travel time are caused by multiple scattering close to the recording site or by 

small angle forward multiple scattering along the ray path of direct waves since these waves 

arrive to the seismic array, which is actually the earthquake cluster, from almost the same 

direction as direct waves.  

The later part of coda waves is composed of S waves incoherently arriving from scatterers 

distributed in all directions. Su et al. (1991), compared the amplitude of the decay of coda 

waves originated from quarry blasts with that of earthquakes. He observed that in the later 

part of coda waves, the decay rate was similar. The amplitudes of those coda waves from 

quarry blasts are affected by surface waves in the early part of the record at lower frequencies, 

only for this contribution to disappear while lapse time is increasing. Following this result, a 

quarry blast-earthquake discrimination method has been proposed in order to analyze the rate 

of the decay of the early part of coda waves at lower frequencies. It is generally believed that 

the radiated source energy from quarry blast is not dominated by S wave energy, but by P wave 

energy. Therefore, the decay of S coda of quarry blasts is similar to that of earthquakes, and 
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that fact suggests that P to S converted energy strongly contributes to the energy of the S coda 

part.  

Studies have been also performed on P coda waves as well. It seems that those waves also 

arrive to the station from various directions. P wave scattering occurs in very close proximity to 

the array that is not strong developed. Nikoraev and Troitskiy (1987), after studying P-coda 

waves, observed that they contain coherent phases continuously arriving at therecording sites 

from specific scatterers. They showed that coherent signals found in P coda waves arrived at 

stations from the upper mantle scatterers at a depth of about 116 km. 

P coda wave data obtained from quarry blasts have been studied and the result has shown 

that the frequency wave number spectral analysis that P coda waves at 2.4 Hz propagate from 

the direction of a hypocenter with a diversified phase velocity.  

Kuwahara et al. (1992) obtained similar results for P coda waves at 2.5 Hz by applying a 

semblance analysis to small aperture array data of explosions. However, it has been shown that 

P-coda waves at frequencies higher than 5 Hz arrive various directions. Kuwahara et al. (1990, 

1991) also applied the semblance analysis technique to P coda waves from regional 

earthquakes and came to the conclusion that the arrival direction of P-coda waves is restricted 

to a narrow range centered on the direction of the direct wave. Scherbaum et al. (1991) 

obtained similar characteristics of P coda waves from a slowness analysis. There have been 

suggested three possibilities for the generation of P coda waves, by the results mentioned: P 

coda waves are composed of P to P, P to S or S to P scattered energy around a direct wave 

path. Essentially, the radiated S wave energy is much larger than P wave energy from a double 

couple source. Moreover, it is considered that S to P wave scattering becomes strong for 

regional distance earthquakes compared with teleseismic ones, because the contribution of 

teleseismic S-P converted energy to the early P coda part is weak due to propagation through 

the mantle, which is considered to be relatively uniform. P-S converted waves dominate in the 

P coda part for teleseismic events. To the contrary, S-P converted waves greatly contribute to 

the P-coda waves of regional earthquakes. 

Matsumoto and Hasegawa (1989, 1991), took the data from a controlled P wave source, like an 

airgun and came to the conclusion that the amplitude of P waves is independent of the 

hypocentral distance. The amplification factors that are used among the stations correlate well 

to the amplitudes of P waves in the records of distant earthquakes. Those results lead us to the 

fact that the energy from coda waves is distributed uniformly in the earth, thus beneath the 

stations too, and the site factors can be corrected by their amplitudes, if we have a P wave 

source. Another fact that we obtain from those measurements is that there has to be a convert 

from P to S energy which has a peak at the arrival time of S wave we have calculated. Sato 

(1997) has predicted this appearance of the energy peak. Besides him, many other researchers 

have studied the coda waves and have managed to understand them and come to some 

conclusions about them. However, some problems remain, such as the quantity of the energy 

that converts from P to S and from S to P scattered waves. 

 

2.3 Duration of Coda waves 

Coda wave duration was initially determined by the sample point in time domain, where the 

decay of the amplitude starts to behave non-exponentially. Later, a more quantitative 
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approach was used, as the travel time between the origin time and the S phase onset was 

being measured. After we multiply this duration by a factor of two or in some cases by a factor 

of three, it is considered to be the start point of the coda wave. We consider the end of the 

coda wave duration to be set by the user, when the signal to noise radio reaches the value that 

the user has set, which is normally between 1 and 3. This specific value is not being set 

randomly. In order to set the value, the local geotectonic regime, the background noise and 

any kind of in-situ physical site properties need to be taken into consideration. 

The duration of the coda waves has also been found to be related with the magnitude of the 

earthquake. However, for earthquakes of small magnitude, the length of the coda waves 

cannot be considered as a stable estimation, due to the fact that the measurement of 

backscattered energy from large distances is not possible to be made (Aki and Chouet 1975). 

However, if the case is ideal and e the coda waves envelope is characterized with monotonic 

decay, and seismic stations are located upon bedrock with little to none sedimentary cap, there 

could be an empirical relation as an index of a coda wave duration.   

 

2.4 The decay rate of Coda attenuation 

There is evidence that the origin of coda waves is connected with the lateral heterogeneities  in 

the interior of the earth, as close to the surface the scatterers show high density and this 

density decreases with not only with depth but also to the consequences of the overall tectonic 

dynamics. Attenuation is a physical process which refers to the rate that the seismic amplitude 

and energy content decays and is associated with the processes of multiple scattering and 

intrinsic phenomena, as the intrinsic attenuation due to the transversion of elastic energy into 

heat and other forms of energy. The physical procedure of the scattering of a seismic 

wavefront is the result of the existence of irregularities, discontinuities, fractures, faults, 

fissures, microcracks and a variety of randomly distributed scatterers, within the rigid layer of 

the lithosphere, as well as of the fluctuations of the elastic properties of the Earth’s materials. 

On the other hand, another effect that contributes to the attenuation mechanics is the 

absorption effect, which is connected with the anelastic properties of the Earth’s interior. 

There can be also other phenomena that contribute to the absorption of seismic energy, such 

as fluid migrations and energy viscous dissipation in a wider area of fissile materials and crack 

like structures.   

 

3. Parameters 

As it can be easily understood, there should be some parameters that explain and define the S 

coda waves. Two of them are the total scattering coefficient g0 and S coda attenuation  

Qc
-1 that have been measured in many regions and they have been compared with 

seismotectonic settings. The parameter Qc
-1 of S-coda attenuation describes how the S coda 

envelope decays exponential, while the lapse time increases, after the geometrical decay has 

been corrected. The total scattering coefficient g0 is used to describe how the power of the 

scattering per unit volume. It has been observed that the prices of those parameters are 

slightly different when they refer to a large earthquake (e.g. Gusev and Lemzikov 1985; Jin and 

Aki 1986).  
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3.1 Frequency dependence of S wave attenuation Qs
-1 

As a result of the energy conservation, due to the excitation of coda waves in scattering media, 

there is a loss of energy at the direct wave, as the distance of propagation is increasing. Until 

the 1970s, there was not enough knowledge of how and whether there was contribution by 

the energy loss due to scattering, to the attenuation of the amplitude of the seismic wave with 

travel distance. On the other hand, there was the belief that the dominant process was the 

intrinsic absorption and was considered also to be frequency independent. Thus, the frequency 

dependence of S wave attenuation QS
-1 has been introduced. This parameter was first 

measured in the USA and in Japan, where the seismic networks are dense and the purpose of 

their construction was to record microearthquakes. When we have frequencies higher than 1 

Hz and they keep increasing, the frequency dependence QS
-1 decreases. After measurements 

on low frequency attenuation on surface waves Aki (1980a) proposed that QS
-1 has a peak 

frequency around 0.5 HZ. If we take as granted that attenuation has as a dominant mechanism 

the scattering, the ordinary stochastic field theory for wave propagation through random 

media is not capable of explaining the observed frequency dependence, as this theory predicts 

that scattering attenuation increases with frequency. For this reason, some improvements 

were made at the stochastic theory, in order to become more realistic concerning the 

measurements of amplitude attenuation. There were two improvements made. The first one, 

proposed by Wu (1982), was to calculate the loss caused from scattering, only from scattered 

waves with scattering angles larger than 900. The second one was to subtract the travel time 

fluctuation caused by the slowly varying velocity fluctuation before using thestochastic 

averaging procedure in the mean field theory (Sato 1982a). These improvements have an 

impact on the scattering, as they propose that scattering has a peak and then decreases with 

frequency on both sides. In addition, those models in combination with the observed frequency 

dependence of QS
-1 were the base for studying the spectral structure of the random 

inhomogeneity.  

 

3.2 Spatial variation of Qc
-1 

The value of Qc
-1 has been measured in many regions around the world and it constitutes a 

parameter that is well connected with the tectonic activity. In general, high values of Qc
-1 have 

been measured in regions with high seismic activity. What is important to mention about the 

values of Qc
-1 is that those values obtained by different regions cannot be compared as they 

depend on the hypocenter’s location and the lapse time window they were estimated.In 

general, the values of Qc
-1 are smaller for large time windows. We also cannot be aware if those 

values are more affected by multiple scattering, by the depth of by the scattering coefficient. 

Spatial correlation between Qc
-1 and lapse time window was studied by Peng (1989) in order to 

estimate Qc
-1. There is a function of Qc

-1 of a spatial auto correlation and it is estimated from a 

map, where Qc
-1 is in the middle of the epicenter and the station and is considered as an 

average in a small area.  

Several researchers have studied the Qc
-1 and its values, as it is believed that it is connected 

with the lapse time window. The two dimensional Qc
-1 structure was estimated by Matsumoto 

and Hasegawa (1989) from a method that was spatial weighting and averaging for grip points 

that were spatially distributed. They used a time window where the minimum travel time of 

the waves that are scattered from scatterers at a depth of 60 km, was the end time. 
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Gagnepain-Beyneix (1987), made their measurements in the western Pyrenea, using a 

frequency range of 4-20 Hz and data from local earthquakes, in order to set the  depth 

dependence of Qc
-1. The same procedure was used by Kanao and Ito (1990) in the Kinki district 

of Japan and by Kosuga (1992) in Nagano Prefecture. All those surveys had in common that 

they set the depth distribution with the assumption that the energy originated from coda is 

mostly composed of scattered waves travelling in the vertical direction. In addition, the 

dependence of Qc
-1 with lapse time is not due to multiple scattering.   

 

3.3 Isotropic scattering coefficient giso 

Another parameter that is widely used in the study of the in homogeneities of the earth and as 

a result in the model we will analyze below is the isotropic scattering coefficient giso. The 

isotropic scattering coefficient of the heterogeneous solid earth has been measured in many 

different regions such us the lower and upper mantle, the crust, volcanoes, sediments, mines 

and rock samples. Recent reviews have shown that the transport scattering coefficient 

increases with frequency, which explains the observed isotropic scattering coefficients for a 

wide range of frequencies. Meanwhile, it has been noticed that some isotropic scattering 

coefficients show unusual behavior. There are measurements that show the isotropic 

scattering coefficient increasing as the depth decreases in the crust and the upper mantle of 

the earth and the moon. The isotropic scattering coefficients beneath volcanoes are larger than 

those in the lithosphere and those in a sandstone sample with a large porosity are larger than 

those in a gabbro sample with little porosity. These differences observed in the isotropic 

scattering coefficient suggest possible scattering contribution of pores and cracks widely 

distributed in addition to the scattering by random velocity fluctuations.  

 

4. Measurement models 

As it is mentioned above, the seismic coda waves are the result of the body waves that have 

been scattered in the heterogeneities of the earth. We may also define the whole train wave 

that follows the P and S waves as the “coda wave”. The part of the coda waves that has been 

mostly studied is that part that is the result of the scattered S waves of small local earthquakes. 

The latter part of the coda waves is being created by backward scattering and is independent of 

the asymmetry of the radiation of the source. On the contrary, if we wish to study the early 

part of the coda wave, we need to take into consideration the angular dependence of 

scattering and the pattern of the source’s radiation.  

In order to explain the temporal and the spatial changes of the energy density of the coda 

waves, there have been two models proposed. The first model is the single isotropic scattering 

and the second one is a diffusion model. Those two models have in common the assumption 

that the scattering is isotropic, the distribution of the scatterers is homogenous, isotropic and 

random, and the radiation of the source is spherical, while there is no conversion. The major 

difference the two models have, relates to the mean free time. The diffusion model is based on 

multiple scattering process, thus the mean free time is considerably shorter than the lapse 

time. On the other hand, the single isotropic scattering model is based, according to its name, 

on a single scattering process. This leads to the assumption that the hypocentral distance and 
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the lapse time measured from the earthquake origin time are shorter than the mean free path 

and the mean free time, respectively. 

It is easy to understand that if we restrict the study of the coda waves in the case that the 

mean free time is longer than the lapse time, then the single scattering model will be used. The 

assumptions of spherical radiation of the source and isotropic scattering are simple and 

appropriate for analytical calculation. However, they are not appropriate for studying in the 

real earth the scattering process and the energy radiation that is caused be earthquakes. For 

this reason, researchers have tried to make the single isotropic model more realistic. There are 

four ways that this can be achieved. First is isotropic to non-isotropic scattering, second 

spherical to non-spherical source radiation, third including conversion scattering between S 

and P waves and fourth homogeneous to inhomogeneous distribution of scatterers. 

There have been many studies of the angular dependence of scattering for various types of 

inclusions and random fluctuations of the velocity structure. The scattering can be isotropic 

only when the length of the wave is essentially longer than the characteristic length of the 

scatterer. The degree of scattering anisotropy usually depends on the frequency of seismic 

waves. As it is known, seismic waves are radiated by a shear dislocation and the pattern of the 

radiation that is created is not even close to a spherical symmetry. Another important thing to 

inhomogeneous elastic media is the conversion scattering between the P and S waves. The 

effect of this conversion of the P and S waves has been studied for some particular kinds of 

inclusions and randomness to a two layer structure in order to help with the explanation of the 

coda waves of the moon.  

 

4.1 Single Scattering Model 

We will now discuss the energy density of coda waves according to an observer located, along 

with a hypocenter at the origin and on the z axis. The distance between the hypocenter and the 

observer is r, as illustrated in the picture below. We assume that the coordinate vector of a 

scatterer, that is point like, is x and r is that of the observer. The distance between the scatterer 

and the hypocenter is r1 = |x| and the distance between the scatterer and the observer is r2 = 

|r – x|.  

 

 

 

Figure 4.1.1 Geometry of a 

hypocenter, an observer and a 

scatterer  

 

 

If we choose to use the spherical polar coordinate system, the polar coordinates (r1, θ, φ,) will 

represent the scatterer. We call θ and φ radiation angles. W denotes the total energy radiated, 

while R (θ, φ) denotes the radiation partner and in the case of spherical source radiation R (θ, 

φ) =1. If we measure the lapse time from the origin time of the earthquake, we can write as 
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W(4π)-1R (θ, φ) δ (t) the energy spread from a source to the direction (θ,φ), within a unit solid 

angle. The function R is normalized as (4π)-1∫R (θ, φ) dΩ=1, where dΩ is an infinite solid angle 

element. 

In the meantime, we use the symbol ψ to represent a scattering angle of a propagation 

direction, of a direct and a scattered wave. The direct wave is given by vector x and the 

scattered wave is given by the vector r - x, as shown in the above picture. Of course, we 

suppose that the scattering is axially symmetrical around propagation direction of direct wave. 

The scattering that follows every scatterer is characterized by dσ (ψ)/dΩ that is called 

differential scattering cross section, where dσ (ψ) gives energy per unit time of waves scattered 

into an infinitesimal solid angled Ω to a direction ψ per unit energy flux density of the incident 

direct plane wave.  

For all the above we assume that the distribution of scatterers is homogeneous, isotropic and 

random in a three dimensional medium. This medium has a density number n. The random 

distribution has a result of mutual incoherency of waves scattered by different scatterers, thus 

we can sum up the energy density that comes from the scattered waves at the observer. We 

come up with the result of the energy density by dividing the energy flux density by the wave 

velocity V for each scattered wave. Summation over distributing scatterers is substituted by an 

integral over a three-dimensional space. 

 

4.2 Single Backscattering Model for a common source and receiver location 

We have already explained that the coda waves are being scattered in the earth’s medium 

multiple times, until they reach to us. We suppose that the distribution of the scatterers is 

fractally homogeneous, with the fractal dimension being three, in a three dimension medium. 

If the scattering is taking place in a sphere of radius r, then the number of the scatterers is 

proportional to rD. Since we have multiple scattering, the decay of the energy density of the k 

order scattering is given by [(D - 2)k -- 3] power of lapse time. There are three different options 

for the type of scattering happening in the lithosphere, depending on the fractal dimension. 

When the fractal dimension is D=3, the distribution of the scatterers is uniform. When we have 

2 < D ≤ 3, there is multiple scattering occurring with order k≥2, that dominates over the single 

scattering with order k=1 at long lapse time. When D=2, the decay of energy density is 

according to the - 3rd power of lapse time. Thus, we conclude that the single scattering model 

survives on condition D<2, that the single scattering dominates over the multiple scattering, 

even on long lapse time.  

When we are on a three dimensional infinity space and we are working on point like isotropic 

scatterers in a homogenous distribution and the spherical radiation from the hypocenter, the 

energy density for scattered waves at the hypocenter at lapse time t, can be calculated as 

power series of scattering cross-section σ:  

Es(t) = W [nσ/(2πV2t2) + π(nσ2)/(16Vt) + …Ck (nσ)k(Vt)k-3 +…]                                                       (4.2.1) 

The parameters are the following: W, the radiated energy; n, the number density of scatterers 

being constant; V, wave velocity; C~, the coefficient of the k power of σ (cf, KOPNICHEV, 1977; 

GAO et al., 1983). The first term originally obtained by AKI and CHOUET (1975) is called the 

single scattering model for the coda excitation. The power of the lapse time for the k order 
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multiple scattering is k-3. Thus, we believe that the terms k≥2 of multiple scattering are 

stronger than the singe scattering of the order k=1, as lapse time increases. We should now 

search of the parameters that determine the power of the lapse time and if this theory of the 

single scattering model is valid at long lapse time.  

As we already know, the high frequency coda waves are mainly composed of S scattered waves 

(AKI and CHOUET, 1975) and this means that the geometrical spreading of the seismic energy is 

inversely proportional to the second power of distance. If we follow the global density of 

matter in Astronomy and the mass is proportional to rD, then the global density is proportional 

to rD-3, where D is of course the fractal dimension. The spatial distribution of the earthquake 

epicenters with D = 1.0~ 1.6 in two dimensional space, have stochastic self similarities 

(SADOVSKIY et al., 1984; KAGAN and KNOPOFF, 1980). In addition, the distribution of acoustic 

emission hypocenters in a rock sample under a uniaxial loading has a fractal structure with D = 

2.25 ~ 2.75 for granite (HIRATA et al., 1987a) and D = 1.47 ~ 2.0 for andesite (HIRATA et al., 

1987b). It has been also reported that in France there is a decrease of Qc
-1 with the depth, 

which it is not necessarily referring to the fractal structure, but it is related to the non-uniform 

distribution of scatterers. Thus, we can say that we possess a few observations for the constant 

number density of scatterers and all this can lead us to conclude that the distribution of 

scatterers, such as cracks and inclusions of various kinds, is not uniform but fractally 

homogeneous in the lithosphere. 

For fractal homogeneity, we can assume that the number density of scatterers at coordinate x 

is not constant, but it is a function of distance r = |x| from the origin asn(r) =F.rD-3, where the 

dimension of coefficient F, [F] = L-D andL is the dimension of length. The number of scatterers 

n(r) in a sphere of radius r is 

n(r) = ∫ 𝑛(𝑟)4𝜋𝑟2𝑑𝑟
𝑟

0
 = (

4𝜋𝐹

𝐷
)rD                                                                                                       (4.2.2) 

The wave energy is supposed to be spherically radiated from the source. Following this 

assumption, the single scattering energy density from the origin is given by  

𝐸1
𝑆(t) = Wσ∬ ∫ 𝑑3𝑥 [

𝑛(𝑟)

(4𝜋𝑟2)2 𝛿(𝑉𝑡 − 2𝑟)]
∞

−∞
 =

𝑊𝜎𝐹

𝜋2𝐷−2(𝑉𝑡)5−𝐷 oc W(σF)1(Vt)D-5                                            (4.2.3) 

If we use [(D - 2)k -- 3] we will find the power of lapse to be -2 forD=3,-3 for D=2 and -4 for D=1.   

If we have double scattering energy density k=2 with the scatterers located the first at x1 and 

the second at x2, we have the function  
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𝑛
𝑉𝑡𝑦

2

𝑦(2−𝑧−𝑦)
}

1

1−𝑧
 ={

𝑊(𝜎𝐹)2

𝜋4𝐷−2(𝑉𝑡)7−2𝐷}· ∫ 𝑑𝑧(𝑧𝐷−41

0
)·∫ 𝑑𝑦

𝑦𝐷−4

2−𝑧−𝑦

1

1−𝑧
        (4.2.4) 

where r1 = |x1| and r2 = |x2| and r1,2 = |x1- x2|. 

In general, we can write the energy density of a k order scattering as a multiple integral as  

𝐸𝑘
𝑆(𝑡) = Wσk∬ ∫ 𝑑3𝑥1

∞

−∞
𝑛(𝑟1) ∬ ∫ 𝑑3𝑥2

∞

−∞
𝑛(𝑟2) … ∬ ∫ 𝑑3𝑥𝑘

∞

−∞
𝑛(𝑟𝑘)· 
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δ(Vt - r1 - r1.2 …- rk-1- rk) ·{(4𝜋)−𝑘−1 · 𝑟1
−2 · 𝑟1.2

−2 · 𝑟2.3
−2 … · 𝑟𝑘−1

−2 · 𝑟𝑘
−2}                           (4.2.5) 

where r1=|x1|, rk=|xk| and ri-1,I =|xi-1 – xi| for i=2,…,k  

The total scattering energy density at the origin is written as a sum: ES(t) = ∑ 𝐸𝑘
𝑆∞

𝑘=1 (𝑡)    (4.2.6) 

As said previously, when 2<D≤3 the multiple scattering of order k≥2 is stronger and dominates 

over the single scattering with order k=1 at long lapse time. For D=2, the energy density of 

every order has a decay of -3rd power of lapse time. Thus, when we have the condition of D<2, 

the decay gradient for the single scattering energy has the smallest price of all. So, in the case 

of D<2, the single scattering dominates over the multiple scattering at long lapse time.  

An important thing we have to note here is that we have not taken into account that there 

could be scattering energy loss. We are not able to assure about the energy conservation of the 

sum of the scattered and the direct wave energy density. Only in the case of single scattering, 

energy conservation was proven (SATO, 1977, Appendix B). We should also add that AKI and 

CHOUET (1975), as they assumed the distribution of the scatterers’ density was a constant 

number, they interpreted that the power of lapse time for the geometrical factor depends on 

whether the coda waves are composed of scattered body waves or scattered surface waves. 

Since we follow the determination that coda waves are the outcome of scattered body waves, 

the power of lapse time for the geometrical factor is deeply affected by the fractal dimension D 

of the scatterers’ distribution in three dimensional space.     

As a conclusion, Wu and AKI (1985) studied the fractal nature of the lithosphere as an 

inhomogeneous elastic medium from the spectral structure of coda excitation strength and 

scattering attenuation. It is left to examine whether the structure of the scatterers’ distribution 

in the lithosphere is indeed fractal and also the regional differences and the frequency 

dependences of the power of lapse time. We should examine theoretically the scattering 

attenuation in fractal structure and observationally the change in scattering attenuation with 

travel distance, as in the case of a small fractal dimension we expect decreasing of scattering 

attenuation with distance.  

 

4.3 Single Isotropic Scattering Model for general source and receiver locations 

Now, we will try to calculate the spatiotemporal change in the single scattering energy density 

at a receiver locate in a position x which has a distance r from a point source at the origin in 

case of isotropic scattering.  

First we will proceed with the 3 dimensional space. The scattering is isotropic, the radiation of 

total energy W from the source to the origin is spherical, the scatterer is located in a position z 

and the receiver is located in a position x. The energy-flux density is given by  

𝑊

4𝜋𝑟1
2 𝛿 (𝑡 −

𝑟1+𝑟2

𝑉0
)

1

𝑟2
2 ·

𝜎0

4𝜋
                                                                                                                  (4.3.1)    

where r1=|z| is the distance from the source to the scatterers and r2=|x-z| is the distance from 

the scatterer to the receiver.  If we divide by V0 and then multiply the equation 4.3.1 with the 

number density of scatterers n, the energy density will be given by the following 

E1(x,t) = ∑
𝑊

4𝜋𝑟1
2 𝛿 (𝑡 −

𝑟1+𝑟2

𝑉0
)

1

𝑟2
2 ·

𝜎0

4𝜋

1

𝑉0
 = 

𝑊𝑔0

(4𝜋)2 ∭
𝛿(𝑟1+𝑟2−𝑉0𝑡)

𝑟1
2𝑟2

2

∞

−∞
 dz                                          (4.3.2) 
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where g0 = nσ0.  

Since we have placed the source and the receiver at a distance r on the third axis, we shall 

integrate the above equation 4.3.2 by inserting thespheroidal coordinates (w, v, φ). We see the 

geometry in the following figure.  

 

Figure 4.3.1 

Geometry of the 

single scattering 

process at a 

spherical 

coordinate system 

 

 

 

 

 

The spheroidal coordinates (w, v, φ) are associated with the axis z by the following equations: 

z1 = 
𝑟

2
√(𝜈2 − 1)(1 − 𝑤2) cosφ 

z2 = 
𝑟

2
√(𝜈2 − 1)(1 − 𝑤2) sinφ 

z3 =
𝑟

2
(1+νw)                                                                                                                                           (4.3.3) 

We will remind that r≡|x| is the distance between the source and the receiver which are 

chosen focused on the spheroidal coordinates. The ranges of the coordinate are 1≤ν< ∞,  

-1≤w≤1 and 0≤ 𝜑 < 2𝜋. The receiver and the source locations are given by w = -1 and ν=1 

and w =1 and ν=1 respectively. In addition, we also note that 

r1≡ √𝑧1
2 + 𝑧2

2 + 𝑧3
2 = 

1

2
r(ν+w)  

r2 ≡ √𝑧1
2 + 𝑧2

2 + (𝑧3 − 𝑟)2 = 
1

2
r(ν-w)                                                                                                    (4.3.4) 

As far as the volume element is concerned, it is infinitesimal and it is given by  

dz = |
𝜕(𝑧1,𝑧2,𝑧2)

𝜕(𝑤,𝜈,𝜑)
| dνdwdφ = (

𝑟

2
)

3
 (𝜈2 − 𝑤2) dνdwdφ = 

𝑟·𝑟1·𝑟2

2
dνdwdφ                                            (4.3.5) 

In figure 4,3,1, there are also ψ and θ, which are the scattering angle and the radiation angle 

respectively. Those are defined by the equations 

ψ =  cos-1𝑟2−𝑟1
2−𝑟2

2

2𝑟1𝑟2
 = cos-12−𝜈2−𝑤2

𝜈2−𝑤2                                                                                                          (4.3.6) 

θ = cos-1𝑧3

𝑟1
 = cos-11+𝜈𝑤

𝜈+𝑤
                                                                                                                            (4.3.7) 
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If we have a given lapse time t and the velocity is given by v = 
𝑉0𝑡

𝑟
 over the spheroidal surface 

(Sato 1977a) the integral 4.3.2 can be written: 

E1(x,t) = 
𝑊𝑔0

(4𝜋)2 ∫ 𝑑𝜑
2𝜋

0 ∫ 𝑑𝑣
∞

1 ∫ 𝑑𝑤
1

−1
(

𝑟

2
)

3
(v2-w2) 

𝛿(
𝑣−𝑉0𝑡

𝑟
)

𝑟(
𝑟

2
)

4
(𝑣2−𝑤2)2

 = 
𝑊𝑔0

4𝜋𝑟2 ∫ 𝑑𝑣
∞

1
·δ(𝑣 −

𝑉0𝑡

𝑟
) ∫ 𝑑𝑤

1

𝑣2−𝑤2

1

−1
 = 

𝑊𝑔0

4𝜋𝑟2  𝐾 (
𝑉0𝑡

𝑟
)H(V0t-r)                                                           (4.3.8) 

Thus, a new function has been introduced: 

K(v) = ∫ 𝑑𝑤
1

𝑣2−𝑤2

1

−1
 = 

2

𝑣
 tanh-11

𝑣
 = {

1

𝑣
𝑙𝑛

𝑣+1 

𝑣−1
    𝑓𝑜𝑟 𝑣 > 1 

2

𝑣2              𝑓𝑜𝑟 𝑣 ≫ 1
                                                                (4.3.9) 

where tanh-1x ≡
1

2
 ln 

1+𝑥

1−𝑥
   for |x|<1. This K(v) function diverges logarithmically as v→ 1+ and 

decays according to the inverse square of v with increasing v. The asymptotic time dependence of 

singly scattered energy density is given by 

E1(x,t) ≈
𝑊𝑔0

2𝜋𝑉0
2𝑡2   for V0t >> r                                                                                                              (4.3.10) 

For the case of two dimensional space, Kopnichev (1975) derived the energy density for isotropic 

scattering, in order for the surface wave scattering to be studied. If there is a receiver located at x 

and the source is located at the origin, for impulsive circular radiation W, the singly scattered 

energy density is given by the following: 

E1(x,t) = 
𝑊𝑔0

2𝜋𝑟
·

𝐻(𝑉0𝑡−𝑟)

√(
𝑉0𝑡

𝑟
)

2
−1

≈
𝑊𝑔0

2𝜋𝑉0𝑡
    for V0t>>r                                                                                      (4.3.11) 

where again r=|x|. The energy density diverges at the direct arrival time and decreases with the 

inverse power of lapse time near the source location. 

 

4.4 Diffusion Model 

The integral ∭ 𝐸1∞

−∞
(𝑥, 𝑡)𝑑𝑥 = 𝑊𝑔0𝑉0𝑡  shows the single scattering energy and shows a 

monotonously increase while the lapse time also increases. Since we have the total energy 

conservation happening and we have to maintain it, we will multiply by the exponential 

scattering attenuation 𝑒−𝑔0𝑉0𝑡 to account for the loss of energy, since the loss of energy is 

happening due to scattering by the direct energy propagation term. In addition, as in large lapse 

times multiple scattering is dominant over single scattering, if we have a large lapse time we can 

assume that the direct energy is being reduced and at the same time the multiple scattering 

creates a smooth spatial distribution of energy density. It can explain a medium’s distribution 

that is homogeneous and isotropic, the scatterers are also isotropic and the energy W is radiated 

spherically from a source located at the origin and is delta function in time. The following 

diffusion function can well describe the strong process of the multiple scattering 

(𝜕1 − 𝐷𝛥) E(x,t) = Wδ(x)δ(t)                                                                                                                 (4.4.1) 

where diffusivity is D = 
𝑉0

3𝑔0
 = 

𝑉0𝑙

3
. The analytical for equation 4.4.1 is the following and is called the 

diffusion solution 
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ED(x,t) = 
𝑊

(4𝜋𝐷𝑡)
3
2

𝑒−
𝑟2

4𝐷𝑡 H(t) oc𝑡−
3

2    for r=0                                                                                          (4.4.2) 

Energy density decreases with the – 1.5th power of lapse time near the source location, which is 

slower than that of the single scattering model. As we said, we also have to satisfy the 

conservation of the total energy and it is given by the spatial integral of the energy density  

∭ 𝐸𝐷(𝑥, 𝑡)𝑑𝑥 = 
∞

−∞
W                                                                                                                           (4.4.3) 

For the intrinsic attenuation Qc
-1 at an angular frequency ω, we can write the function 4.4.2 as: 

ED(x,t) = 
𝑊

(4𝜋𝐷𝑡)
3
2

 H(t) 𝑒−
𝑟2

4𝐷𝑡
−𝑄𝑐

−1𝜔𝑡                                                                                                        (4.4.4) 

This model has great and effective use in the analysis of late code of earthquakes, as well as of 

coda of lunar earthquakes.   

 

4.5 Energy-Flux Model 

This model was proposed by Frankel and Clayton (1986) that in randomly inhomogeneous media 

used 2D finite difference (FD) simulations of wave propagations and managed to investigate the 

excitation of coda waves in numerical way. The numerical simulations’ results showed that the 

waves being scattered from the direct wave spread all over the space that is behind the 

wavefront, quickly. Frankel and Wennerberg (1987), in order to measure the energy density that 

distributes spatiotemporally proposed a model that is phenomenological. The observations 

recorded by seismograph envelopes at different distances should be in consistency with the 

proposed model. Those seismogram envelopes approach asymptotically a decay curve and are 

consistent with the amplitude of the coda waves that are recorded in large lapse times and in the 

space behind the S wavefront.  

In 1987 Frankel and Wennerberg assumed that if the total energy W is radiated spherically from 

the source to the origin, then the scattering has an impact on the distribution of the coda energy 

density, which is symbolized EEF(x,t) , as the distribution is spatially uniform within a spherical 

volume of radius V0t. The scattering attenuation has an exponential decay rate of  

eSc Q-1ω and along with the lapse time increasing, they cause decrease of the direct energy. The 

model has a strict discrimination between scattered and direct waves. If in this model we are 

studying there is no intrinsic absorption, then we have conservation of the energy density at 

angular frequency ω that is written  

We-Sc Q-1ωt + 
4𝜋

3
 (V0t)3 EEF(x,t) = W   for V0t > r  and r=|x|                                                                (4.5.1) 

On this equation, the left part refers to energy that comes from the direct wave, while the right 

part refers to the energy coming from the scattered wave within a volume and behind the direct 

wavefront. Thus, the energy density after all is written  

EEF (x,t) = 
3𝑊(1−𝑒−𝑆𝑐𝑄−1𝜔𝑡)

4𝜋(𝑉0𝑡)3  H (𝑡 −
𝑟

𝑉0
)≈

3𝑊𝜔𝑆𝑐𝑄−1

4𝜋𝑉0
3𝑡2  H (𝑡 −

𝑟

𝑉0
)     for    ScQ-1ωt <<1                          (4.5.2) 
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At small lapse times, the energy density decreases with the inverse square of lapse time in 

agreement with the single backscattering model solution. The duration of the source is the one 

that affects the direct wave energy density at the wavefront.  

If we insert intrinsic absorption IQ-1, then we can modify the equation 4.5.2 as: 

EEF(x,t) = 
3𝑊(1−𝑒−𝑆𝑐𝑄−1𝜔𝑡)𝑒−𝐼𝑄−1𝜔𝑡

4𝜋(𝑉0𝑡)3  H (𝑡 −  
𝑟

𝑉0
)                                                                                    (4.5.3) 

It was pointed out by Frankel and Wennerberg (1987), that the Qc
-1, which is the 

phenomenological exponential decay factor of coda amplitude is not a a simple combination of 

scattering and intrinsic attenuation, but is closer to the IQ-1 than the ScQ-1.   

 

5. Radiative Transfer Theory 

5.1 Introduction in Radiative Transfer Theory 

This study is about how we can obtain useful information of the Earth’s heterogeneities, by 

studying coda waves and how their amplitude decreases with the travel time.   

Coda waves, as it has been mentioned above, are short period seismic waves that are created 

by an earthquake source and after they are scattered by heterogeneities in the earth and 

distributed in the earth medium. Its characteristic is that although their faces are complex, they 

have smooth and systematic amplitude envelope at a given central frequency. The ballistic 

term amplitude decay with travel time and the coda amplitude decay with lapse time are 

measured from the earthquake. 

As for the power law characteristics, there is another way to explain what we observe. It has 

been proposed a concept of a fractal distribution of points, which means that the number 

density of origin time is enough to describe very sufficiently the medium heterogeneities and 

absorption properties.  

For the study of the distribution of the small-scale heterogeneities, the Radiative transfer 

theory has been used. However, the conventional theory supports that the scattered waves 

seen on seismograms are the outcome of scatterers that are uniformly distributed in the Earth. 

In order to explain their characteristics, as the ballistic term and the coda wave amplitude 

decreases with time, we will use the Radiative transfer theory of a distribution of isotropic 

scatterers and intrinsic absorbers with fractal dimension. This fractal dimension should be D≤3 

in the 3D space. 

There are many structures that are fractal-like and can be created by many ways such as 

fracturing, diffusion, aggregation and dissolution. Many faults, crack systems, surfaces with 

fragmentations and stratification have fractal structures. Fractals have been used to describe 

cracks in rocks as well as shear zones and fault systems. As fractals can be also assumed 

inhomogeneities in the earth, there is a relation between the 3D inhomogeneities in the earth 

and that of the fault surfaces.  

The Radiative transfer theory has been used to synthesize seismogram envelopes in short 

periods. The conventional theory is based on a distribution of scatterers which is random and 

homogeneous in space and is characterized by the volume independent scattering coefficient 
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gs0. In case of no intrinsic absorption, at large lapse times measured from the earthquake origin 

time, it leads to the -1.5th power of lapse time for the energy density of coda waves, which 

corresponds to the mean square (MS) coda envelope.  

The ballistic term peak amplitude, as it often takes the maximum amplitude, decreases 

according to an inverse power of travel distance, the travel time of the wave. We usually use 

this decay of the amplitude according to travel time to determinate the magnitude of the 

earthquake. If we use the conventional single scattering model on coda, which predicts the 

mean square coda amplitude, we can measure the attenuation of coda. Measures that have 

been done around the world show that the coda attenuation decreases when the lapse time 

increases. Those measurements also imply that when the depth increases, the intrinsic 

absorption decreases. Also, after making the logarithm of coda amplitude against lapse time, 

we have concluded that the decay of coda amplitude can be represented by power law decay. 

The power law decay of the amplitude by the scattering coefficient decreases with depth. The 

most important thing that we focus on after those measurements is the power law 

characteristics of the ballistic and coda wave amplitude increases with time, even though we 

have noticed there is some scatter in the reported power values in relation with lapse time. 

The method that was used traditionally in order to build up the structure of the earth medium 

was to suppose the velocity’s variation of depth, the intrinsic attenuation and the strength of 

the scattering. However, we have now proposed a new way to suppose what exists underneath 

the surface. Since we expect a fractal structure behind distributed points depends on the size 

of a sampled volume. If we have a sphere of radius r and we are in a 3D space, then the 

number of points is proportional to rD-3 , where D is the fractal dimension. If the fractal 

dimension D is equal to the Euclidean dimension of the space, then the distribution is 

homogenous. If the fractal dimension is smaller than the Euclidean dimension of space, this 

parameter characterizes the clustering nature of points.  

There have also been studies that use the hypocenters of microearthquakes as a distribution of 

cracks that have various sizes. Those cracks and cavities are believed to cause the scattering 

and there have been theoretical studies around that. Yamashita (1990), while he was trying to 

explain the observed frequency dependence of QS
-1 for S waves, proposed randomly oriented 

cracks characterized by a power law size distribution. Benites (1997) studied scattering by a 

cluster of many cavities, Murai (1995) studied scattering not by one but by several clusters with 

thin cracks, while Robertson the same year reported D≈1.82-2.01 for the microearthquake 

hypocenter distribution in southern California. Hirata and Imoto (1991) had analyzed the 

hypocenter distribution in Kanto Japan and their estimation about the dimension was D≈2.2 for 

the distance range from 1 to 10 km. A decade later, Nogushi (2001) used another method at 

the same area and estimated D≈2.3 for the distance range from 10 to 100 km. The region 

beneath the area studied is heterogeneous and as the Pacific and Philippine plates collide and 

subduct under the North American plate. All those studies lead us to believe that there is a 

fractal distribution of scatterers and absorbers in the earth medium with a dimension smaller 

than the Euclidean one.  

Sato (1988) proposed a mathematical model that is applied in a 3D medium and for the power 

law decay of amplitude with travel distance through a fractal distribution of 

absorbers/scatterers. This model was applied by Godano et al. (1994) in the areas of Italy and 

New Mexico to short period seismic data and he concluded that the range of D is between 2 

and 3. Rastogi & Scheucher (1990) observed the above results in the atmosphere, as from 
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some atmospheric radar experiments, they studied back scattered radio-coda waves by a 

fractal distribution of meteorological turbulences. Another formulation of this theory was on a 

fractal distribution of isotropic scatterers by Sato & Fehler (1998, p. 186). However, their 

research was focusing on the spatial distribution that occurred on the energy density of coda 

waves by the inhomogeneities and the intrinsic absorption was left aside.    

We are about to present a formulation of the Radiative transfer theory for the propagation of 

energy density through a fractal distribution of isotropic scatterers and intrinsic absorbers. If 

we proceed with solving it for the instant spherical radiation from a point source, we examine 

the space time distribution of the synthesized energy density. We will show that this model for 

D≤2 well predicts a power law decay of the ballistic and coda wave amplitudes with time.  

 

5.2 Application of the Radiative Transfer Theory 

In the previous chapters, we have made an introduction to the theory that we will use, in order 

to analyze our data and come to the results. The distribution of scatterers we will be using, is 

fractally random and homogeneous, and consists of isotropic scatterers and intrinsic absorbers. 

Their fractal dimension should be D≤3, in a 3 dimensional space.  

If we suppose that we have a sphere of radius r, the number density of scatterers or absorbers 

is proportional to rD-3 for a distance r>>rc, which is constant for r<<rc, where rc is the corner 

distance. The purpose of the corner distance is to avoid divergence at a small r. The fractal 

dimension can be between D=1 and D=3. In the case of D=3, the distribution is the 

conventional uniform one. In the case of D=2, which is the one we are studying, we will figure 

out that the mean square amplitude of coda waves decreases according to a power of lapse 

time measured from the origin time and the mean square amplitude of the ballistic wave 

decreases according to a power of travel time. The powers of lapse and travel time are both 

controlled by the scattering coefficient, intrinsic absorption coefficient and corner distance. In 

the last case of D=1, the mean square amplitude of the of the ballistic wave decays according 

to the inverse square of time, when the decay of the coda energy is much faster.  

Another important parameter we can measure regarding the coda waves, when the 

conventional single scattering model is applied to them is the coda attenuation Qc
-1. It has been 

shown that at an angular frequency ω, the mean square amplitude decreases according to t-

2exp [Qc
-1ωt] (e.g. Aki &Chouet 1975; Sato 1977). Observations have shown that the coda 

attenuation Qc
-1 decreases as the lapse time increases (Rautian & Khalturin 1978; Roecker et al. 

1982; Kosuga 1992). This phenomenon has been compared to the decrease of the intrinsic 

absorption with the increasing of the depth. Later, Gusev (1995) proposed that the coda 

amplitude decay can be represented by power law decay. He came to this conclusion, as he 

plotted the logarithm of coda amplitude against that of lapse time.  

After the data of local earthquakes in the former Soviet Union, he reported that at a 1.3 Hz 

band for a wide lapse time range, their mean square amplitudes decay according to the 4–6th 

inverse power of lapse time. From the analysis of IRIS (Incorporated Research Institutions for 

Seismology) data, Lee & Sato (2006) observed that at a 1 Hz band the mean square amplitude 

decays according to the 6–10th inverse power of lapse time. At these observations there is 

some scatter happening, which is related with lapse time ranges, however we focus on the 
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alteration of the power law characteristics of the ballistic and coda wave amplitudes with the 

increase of the time.  

 

5.3 Fractal distribution of scatterers and absorbers 

Regarding the implement of the Radiative transfer theory, we will now present the equations 

and the process we followed in order to find the results that will be shown next. We have 

already explained that in the conventional radiative transfer theory, the distribution both of 

the intrinsic absorbers and the isotropic scatterers is random and homogenous (Sato 1977; 

Hoshiba 1991; Zeng et al. 1991). When we are in a Euclidian dimension of space and more 

specific in a 3D space, the number density of scatterers is independent of volume size. If there 

is a sphere in this 3D space, that its radius is r, then the number of the scatterers is 

proportional to r3, where 3 is the number of the space. However, we don’t study the 

distribution in a Euclidian dimension, we are studying the distribution of scatterers, which are 

isotropic, in a fractal distribution that is random and homogeneous with fractal dimension D in 

a 3D space. Thus, if we are again in a sphere radius r, the total number of the scatterers will 

now be proportional to rD and the number density will be proportional to rD-3, where D can be 

any value less or equal to 3, so D≤3. Since the fractal dimension we are working on is supposed 

to be homogeneous, we can consider any point of the radius to be its center.  

We first mathematically define a function of r:  

f(r) = 
1

√1+(
𝑟

𝑟𝑐
)2

3−𝐷 ≈{(
1   𝑓𝑜𝑟 𝑟 ≪ 𝑟𝑐

𝑟𝑐

𝑟

)3-D,for r>>rc                                                                                                                        (5.3.1) 

where rc is the corner distance and it is introduced in order to avoid divergence at r=0. This 

function f(r) shows the power law decay at large distances and the corner distance rc is the 

lower bound of the fractal structure. In the power law range, rc gives the absolute value of the 

f(r) function. We will also introduce some other coefficients, in order to better describe the 

function, as well as the scattering process. We have the scattering cross-section σs0, the total 

scattering coefficient gs(r), the total scattering coefficient gs0 for r<<rc and we will define by 

those the number density function of isotropic scatterers ns(r): 

ns(r)≡ns0f(r)               (5.3.2) 

gs(r)≡gs0f(r)=σs0ns0f(r) (5.3.3) 

gs0=σs0ns0                                                                                                                                                                                                                                 (5.3.4) 

The ns(r) and fs(r) show differences depending on the distance. For distances shorter than the 

corner distance rc they are uniform but for distances larger than rc they are fractal with a fractal 

dimension D.  

Since we have defined the coefficients for the isotropic scatterers, we will now do the same for 

the intrinsic absorbers. We will use the same function f(r) and we have the coefficient gi(r), 

which is the intrinsic absorption coefficient and bi0 which is the ratio of intrinsic absorption 

coefficient to scattering coefficient. 

gi(r)=gi0f(r)=σi0ni0f(r)=bi0gs(r)                                                                                                           (5.3.5) 

bi0=gi0/gs0                                                                                                                                            (5.3.6) 
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We will also define B0 as the seismic albedo that is the ratio of scattering coefficient to the sum 

of scattering and intrinsic absorption coefficients. 

B0=gs0/(gs0+gi0)=1/(1+ bi0)                                                                                                                (5.3.7) 

In the following figure, we can examine how the function f(r) changes for different fractal 

dimensions. We will set the corner distance rc=1 and we will study the region between 

0.1≤r≤100 for the fractal dimensions D=1, D=1.5, D=2, D=2.5 and D=3. 

 

As it is seen from the figure, for the fractal dimension D=3 the price of the function f(r) is steady at 10, and is independent of the 

price of the distance r and corner distance rc. For the other dimensions D=1, D=1.5, D=2 and D=2.5, the prices begin to decrease 

steeper as we are closer to D=1 and smoother as we get closer to D=3. 

 

 

 

 

 

 

 

 

Figure 5.3.1 Plot of f(r) against r/rc for various D values, where rc is the corner distance 

 

As it is seen from the figure, for the fractal dimension D=3 the price of the function f(r) is 

steady at 10, and is independent of the price of the distance r and corner distance rc. For the 

other dimensions D=1, D=1.5, D=2 and D=2.5, the prices begin to decrease steeper as we are 

closer to D=1 and smoother as we get closer to D=3.  

 

5.4 Equations in Radiative Transfer Theory 

One of the most important things to measure after the scattering of seismic waves in the 

fractal medium, is the propagation of the energy density E(x,t), where x is the position vector. 

The following figure 5.4.1 shows the propagation of the energy density from the source to 

various directions. We consider that the vectors x1, x2, x3 depict the different directions of the 

energy propagation and the vector x is the one depicting the position of the observer, thus it is 

the position that we make the measurements. If we consider that x’ is the point that the last 

scattering occurred, we will take into consideration the distance |x-x’| for the following 

equation: 

𝐸(𝑥, 𝑡) = 𝑊𝐺(𝑥, 𝑡) + 𝑉𝜎𝑠0𝑛𝑠0 ∫ ∭ 𝐺(𝑥 − 𝑥′, 𝑡 − 𝑡′)𝑥𝑓(|𝑥 − 𝑥′|)𝐸(𝑥′, 𝑡′)𝑑𝑥′𝑑𝑡′
∞

−∞
         (5.4.1) 

where V0 is the background velocity and ns0f|x-x’| the number density of the isotropic 

scatterers that we find in the distance |x-x’|.    
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Figure 5.4.1 Geometry of the scattering process 

for spherical radiation from the source at the 

origin. 

 

 

 

 

Now, if we wish to define the ballistic term, we have to take into consideration, in order to 

proceed with an equation, the geometrical factor, causality, scattering and intrinsic loss term. 

We have the following, where r=|x|: 

G(x,t)=
1

4𝜋𝑉0𝑟2 𝛿 (𝑡 −
𝑟

𝑣0
) 𝑒−𝑈(𝑟)                                                                                                         (5.4.2) 

The function U(r) on the exponent of the previous equation is given by a line integral along the 

ray and we can use Gauss’s hypergeometric function 2F1 on it. 

U(r)=∫ [𝑔𝑠(𝑟′) + 𝑔𝑖(𝑟′)]
𝑟

0
𝑑𝑟′ = (σs0+σi0)ns0∫ 𝑓(𝑟′)𝑑𝑟′

𝑟

0
 = (1+bi0)gs0∫ [1 + (

𝑟′

𝑟𝑐
)

2
]

𝐷−3

2𝑟

0
dr’= 

(1+bi0) gs0 r
1

2
∫ 𝑡−1/2 [1 − 𝑡 (−

𝑟2

𝑟𝑐
2)]

−
3−𝐷

21

0
dt’ = (1+bi0) gs0r 2F1(

3−𝐷

2
,

1

2
;  

3

2
;  −

𝑟2

𝑟𝑐
2)                         (5.4.3) 

In this equation we have used the transform r’= r√𝑡 (Gradshteyn & Ryzhik 2007, p. 1005) and in 

differential form it is written: 

𝑑𝑈(𝑟)

𝑑𝑟
=gs(r) + gi(r) = (1+bi0) gs0 f(r)                                                                                                    (5.4.4) 

After defining the above equations, we will now move them in the Fourier space. If we suppose 

that   GF(x,t) = G(x,t)f(|x|)                                                                                                                    (5.4.5) 

then we can write the integral equation 5.4.1 accordingly as 

E(x,t) = WG(x,t) +V0gs0∫ ∭ 𝐺𝐹(𝑥 − 𝑥′, 𝑡 − 𝑡′)𝑥𝐸(𝑥′, 𝑡′)𝑑𝑥′𝑑𝑡′
∞

−∞
                                               (5.4.6) 

 

The above equation 5.4.6 in the Fourier domain it is written as: 

𝐸̂̃(k,ω) =
𝑊𝐺̂̃(𝑘,𝜔)

1−𝑉0𝑔𝑠0𝐺̂̃𝐹(𝑘,𝜔)
                                                                                                                       (5.4.7) 

 

We should mention that the tilde and the over hat mean the Fourier transform with respect to 

space and time coordinates, respectively. If we perform on 5.4.7 the integral over time and 

solid angle we will obtain the following: 
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𝐺̂̃(k,ω)=  ∫ ∭ 𝐺(𝑥, 𝑡)𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡𝑑𝑥𝑑𝑡
∞

−∞
 = 

1

𝑉0
∫ 𝑒−𝑈(𝑟)+𝑖𝜔𝑟/𝑉0

∞

0

sin 𝑘𝑟

𝑘𝑟
𝑑𝑟                                    (5.4.8) 

 

𝐺̂̃𝐹(𝑘, 𝜔)=
1

𝑉0
∫ 𝑓(𝑟)𝑒−𝑈(𝑟)+𝑖𝜔𝑟/𝑉0

∞

0

sin 𝑘𝑟

𝑘𝑟
𝑑𝑟                                                                                   (5.4.9) 

In order to continue, we an inverse Fourier transform will be used and the integral equation of 

the energy density will be getting 

E(r,t) = 
1

(2𝜋)4 ∫ ∭ ′
∞

−∞
𝐸̂̃(k,ω)𝑒−𝑖𝑘𝑥−𝑖𝜔𝑡  dkdω =  

1

2𝜋
∫ 𝑑𝜔𝑒−𝑖𝜔𝑡∞

−∞

1

2𝜋2𝑟
∫ 𝑑𝑘𝑘 𝑠𝑖𝑛𝑘𝑟

∞

0
𝐸̂̃(k,ω)                                                                                    (5.4.10) 

 

5.5 Method of Coda normalization 

The idea of coda normalization is based on the necessity to make the assessment of seismic risk 

more accurate. In order to achieve that, it is needed to take into consideration the parameter’s 

frequency dependence. We have to quantify the seismic source radiation, the effects of the 

propagation and the receiver site amplification. This is usually achieved by eliminating the two 

of them, so that the one that we wish to study is being left alone and we can evaluate it in 

more detail. The seismic source radiation estimations are more important than the others for 

quantifying the size of earthquakes and explosions. The effects of the propagation include the 

influence of the deterministic velocity structure, among other effects, as the attenuation along 

the source receiver path. The amplification of the receiver site is being influenced by the 

geology of the near surface that can alter the recorded waveform’s character only near the 

place of the recording. Near surface geology can cause other influences too, such as 

reverberation, local amplification of signal or even add more complexity in the waveform, that 

cannot be modeled deterministically from information that are available at the moment. In 

order to make the measurements more accurate, building codes is needed to be established, in 

order to estimate which areas are being more affected by seismic hazards. For establishing 

these codes, there have to be reliable estimates of the relative ground motion in seismically 

active zone as a function of spatial location. Since those estimate’s purpose is to be aware of 

the areas with more seismic phenomena, in order to provoke hazards and be prepared, they 

will be more helpful, if they can be given as a function of frequency, as the buildings respond to 

the ground motion according to frequency.  

The method of coda normalization is based on the uniform distribution of seismic energy at a 

certain lapse time, normally for long lapse times, in some volume that is around the source. 

Some empirical observations have indicated that from records of regional seismic networks, 

the length of the seismogram is proportional to the magnitude of the event. In addition, for 

some local earthquakes recorder at times greater than almost twice the travel time of an S 

wave from a source to a receiver, the seismograms with bandpass filter have an envelope 

shape that is common and is independent of the distance between the source and the receiver. 

However, the envelope’s maximum amplitude varies according to the size of the source and 

the recording amplification of the site. Its primary use is to give us the opportunity to estimate 

the difference of site amplification factors as a function of frequency, to remove differences in 

source spectral characteristics and to use data from only a single station in order to measure 

attenuation.  
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5.6 Equations in the non-dimensional form 

Since we have represented the equations that are used in order to explain the energy density 

and its propagation, we will now represent those equations by using normalized quantities, in 

order to understand the theoretical solutions. We will normalize length, time and all the 

quantities that are related to W, gs0 and V0. The normalized quantities will be 

𝑡̅=V0gs0t,     𝑥̅= gs0x,   Ḡ = 
𝐺

𝑔𝑠0
3,   ḠF = 

𝐺𝐹

𝑔𝑠0
3,   Ē = 

𝐸

𝑊𝑔𝑠0
3,   𝑟𝑐̅ = gs0rc = 

𝑟𝑐

𝑔𝑠0
−1                                      (5.6.1) 

As we have now the quantities in the normalized form, the Radiative transfer equation for the 

normalized energy density will be: 

𝐸̅(𝑥̅,𝑡̅) = 𝐺̅(𝑥̅,𝑡̅)∫ ∭ 𝐺̅𝐹
∞

−∞
(𝑥̅-𝑥̅’, 𝑡̅-𝑡̅’)𝐸̅(𝑥̅’, 𝑡̅’)d𝑥̅’d𝑡̅’                                                                      (5.6.2) 

We should also mention: 

𝐺̅(𝑥̅,𝑡̅) = 
1

4𝜋𝑟̅2δ(𝑡̅-𝑟̅)𝑒−𝑈(𝑟̅)                                                                                                                   (5.6.3) 

𝐺̅𝐹(𝑥̅,𝑡̅) = 𝐺̅(𝑥̅,𝑡̅)f(𝑟̅)                                                                                                                             (5.6.4) 

U(𝑟̅) = (1+bi0) ∫ 𝑓(𝑟̅
𝑟̅

0
)𝑑𝑟̅’ = (1+bi0)𝑟̅2F1[

3−𝐷

2
,

1

2
;

3

2
;  − (

𝑟̅

𝑟̅𝑐
)

2
]                                                         (5.6.5) 

 

Ιn figure 5.6.1 that we see below, for 𝑟̅>>𝑟̅c the function is curved for D<2 and as it approaches 

to D=2 it becomes a straight line. As the fractal dimension approaches to D=1, the curve is 

becoming a straight line for large distances.     

Figure 5.6.1 Plots of 𝑒−𝑈(𝑟̅) against normalized travel distance 𝑟̅=𝑡̅ for various fractal dimensions, where 𝑟̅c=1 and 

bi0=0 
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5.7 The ballistic term 

In this section we will study the ballistic term and especially how it decays with travel time. In 

function 5.4.2 that we defined previously, we used the delta function to present the 

propagator of the ballistic energy. With the use of equation 5.4.2 the distance dependence of 

the energy density of the ballistic term is 
𝑊𝑒−𝑈(𝑟)

4𝜋𝑟2𝑉0
δ(

𝑡−𝑟

𝑉
).                                                           (5.7.1) 

If we choose a short duration distance from the source compared to the traveltime, which we 

will symbolize 𝑇̅w<<1, in this time window of the length 𝑇̅w with r=V0t, the ballistic energy 

density will be
𝑊𝑒−𝑈(𝑟)

 4𝜋𝑟2𝑉0𝑇𝑤
.                                                                                                                     (5.7.2) 

In the specific case of D=3 the energy density if the ballistic term is: 

𝐸0(r=V0t) = 
𝑊𝑒−(1+𝑏𝑖0)𝑔𝑠0𝑉0𝑡

4𝜋𝑇𝑤𝑉0
3𝑡2                                                                                                                 (5.7.3) 

If the fractal dimension is D=2, we can approximately define that 

U(r) ≈ (1+bi0)gs0rcln (
2𝑟

𝑟𝑐
) for r>>rc                                                                                                                                                               (5.7.4) 

as2F1 (
1

2
,

1

2
,

3

2
;  −𝑧2)= 

𝑠𝑖𝑛ℎ−1𝑧

𝑧
 = 

[ln (𝑧+√1+𝑧2)]

𝑧
 ≈

𝑙𝑛2𝑧

𝑧
 for z>>1         

For r=V0t w have E0(r=V0t) = 
𝑊

𝜋𝑇𝑤𝑟𝑐
2𝑉0

(
𝑟𝑐

2𝑉0𝑡
)

2+(1+𝑏𝑖0)𝑔𝑠0𝑟𝑐
                                                             (5.7.5) 

where the inverse power of traveltime is larger than 2 and it depends on the scattering, the 

absorption and the corner distance.                  

If now the fractal dimension is D=1, and 2F1 (1 ,
1

2
,

3

2
;  −𝑧2)= 

𝑡𝑎𝑛−1𝑧

𝑧
≈ 

𝜋

2𝑧
 for z>>1 then 

U(r)≈(1+bi0)πgs0rc for r>>rc which leads to the traveltime’s inverse square  

 

E0(r=V0t) = 
𝑊𝑒−(1+𝑏𝑖0)𝜋𝑔𝑠0𝑟𝑐

4𝜋𝑇𝑤𝑉0
3𝛵2                                                                                                                   (5.7.6)  

If we are about to measure the ballistic energy in the non-dimensional form, again at a time 

window 𝑇̅w<<𝑡̅ and for 𝑟̅>>𝑟̅c we will have the energy density 

𝐸̅0(r=V0t) = 
𝑒−(1+𝑏𝑖0)𝑡̅

4𝜋𝑇̅𝑤𝑡̅2
for D=3                                                                                                              (5.7.7) 

                = 
1

𝜋𝑇̅𝑤𝑟̅𝑐
2 (

𝑟̅𝑐

2𝑡̅
)

2+(1+𝑏𝑖0)𝑟̅𝑐
   for D=2                                                                                      (5.7.8) 

                = 
𝑒−(1+𝑏𝑖0)𝜋𝑟̅𝑐

4𝜋𝑇̅𝑤𝑡̅2
for D=1                                                                                                            (5.7.9) 

In the following figure 5.7.1, we see log-log plots of the normalized ballistic energy density 

𝐸̅0(𝑡̅) for various D values. It is obvious that the decay of the ballistic energy density is affected 

by the fractal dimension, thus fractal dimension is the most important parameter for the 

amplitude decay of the ballistic term with travel distance. When D≤2, the curve of the decay is 

almost straight, while as we move to D=3, the curve becomes stepper. The case of D=2, is 

special, as the curve of decay is affected by scattering, corner distance and intrinsic absorption.  
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Figure 5.7.1 Plot of the normalized ballistic energy density 𝐸̅0(𝑡̅) in time window 𝑇̅w against normalized travel 

distance 𝑟̅ =𝑡̅ for various fractal dimensions, where 𝑟̅c =𝑇̅w =1 and bi0=0. 

 

The next figure 5.7.2, refers to the special case of fractal dimension D=2, for various values of 

bi0 of the normalized ballistic energy density 𝐸̅0(𝑡̅) in a time window 𝑇̅w=1 and corner distance 

𝑟̅c=1. The conclusion is that as the intrinsic absorption increases according to the inverse power 

of 2+(1+bi0) 𝑟̅ c, the decay gradient becomes steeper.  
 

 

Figure 5.7.2 Plot of the normalized ballistic energy density in the time window 𝑇̅w against normalized travel distance 

𝑟̅ = 𝑡̅ for various intrinsic absorption parameter for the fractal dimension D=2, where 𝑟̅c =𝑇̅w =1 
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6. Statistical Analysis 

In the present study, we focus on the dynamical evolution through the natural processes of the 

area of central Greece, by instrumental seismological observations. Thus, it is necessary to 

understand the connection between the basic concepts of statistics with the wider study of 

seismology, along with the transition from statistical mechanics to the generalized framework 

of non-extensive statistical mechanics-physics (NESM theory). 

 

6.1 Introduction to statistical parameters 

In statistics, when we are working with population and sample data, there are two different 

ways to approach the result. In order for each data point to be well determined, the whole 

population must be given. If we are working on a sample of the whole population, each data 

point is an approximation of the population parameter. As a result, all formulas are 

algebraically adjusted to reflect this statistical issue. 

The parameters that are used in the statistics and provide us with numerical information about 

the distribution of the dataset we are working on are the mode, median, mean, range, variance 

and standard deviation. The parameters of range, variance and standard deviation provide 

measurements of spread, while the parameters of the mode, median and mean refer to the 

central tendency. In order to be more specific, the mode refers to the data value that is 

presented most frequently, the median refers to the value that is positioned in the middle of 

the given ordered dataset and the mean is referred to the arithmetic average, while the range 

can be calculated as the difference between the maximum and the minimum value. The 

variance measures the dispersion around the mean value. Population variance, denoted as σ2 , 

is given by the equation: 

σ2 = 
∑ (𝑥𝑖−𝜇)2𝛮

𝑖=1

𝛮
                                                                                                                                     (6.1.1)               

where N and μ refer to the total number of observations.  

The sample variance, which is denoted by s2 is given by the equation:  

S2 =
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
                                                                                                                                      (6.1.2) 

where n and 𝑥̅ refer to sample observations.  

Since there are two types of variance, population and sample, there are also population and 

sample standard deviation. Those two are given by the square root of the population variance 

and square root of the sample variance respectively.  

The equation for the standard deviation is: 

s= √
∑(𝑥𝑖−𝑥̅)2

𝑛−1
                                                                                                                                         (6.1.3) 
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6.2 Gaussian (Normal) distribution 

The Gaussian distribution is also called the ‘’bell shaped curve’’, due to its symmetric curve, 

which means that is symmetrical about the mean. In this distribution, the relative probability of 

an independent variable, which variable is always centered on the average value, is 

represented by the y axis. The standard deviation defines any curve’s width. When the shape of 

the curve bell is narrow, then the value of the standard deviation is small. When the shape of 

the curve bell is wide, then its value is big. Lastly, the centered curve bell refers to a normal 

distribution.   

Figure 6.2.1 The three different types of normal distribution, depicted with different colors. The green line, which 

has a wide curve, refers to a distribution with mean value equal to -4 and standard deviation 2. The blue line refers 

to a normal distribution with mean value 0 and standard deviation 1 and the red line, which is a narrow curve, refers 

to a distribution with a mean value of 4 and standard deviation equal to 0.5.  

The normal distribution is being depicted in the behavior of many physical phenomena. This is 

a result of the central limit theorem and of the normal distribution of the mean values, no 

matter how many measurements are being conducted. Also, even other means that were 

calculated from samples which were taken from a specific distribution are normally distributed.  

The mean’s normal distribution can be also used to conduct the student’s test to find a 

potential difference between the means between two samples, to make confidence intervals 

and ANOVA (analysis of variance) in order to find differences among three or more samples.  

In the theory of probability, the Gaussian distribution, which is also known as normal or 

Laplace-Gaussian distribution, is a type of a continuous probability distribution and has the 

equation:  

f(x) = 
1

𝜎√2𝜋
𝑒

−
1

2
(

𝜒−𝜇

𝜎
)

2

                                                                                                                           (6.2.1)     

where μis the mean, median and mode of the distribution and σ represents the standard 

deviation.  

A random variable can have a specific value of xi or exist within an interval of dx. The 

probability of those is given by the functions of the random variable X. There are two cases: the 

discrete and continuous case. For the discrete case the function is: 

fx(xi) = P (X=xi)                                                                                                                                      (6.2.2) 
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with fx(xi)≥0                                                                                                                                          (6.2.3) 

and ∑ 𝑓𝑥𝑥𝑖 = 1𝑚
𝑖=1                                                                                                                                (6.2.4) 

The above function is known as as probability mass function.  

For the continuous case, the function is known as probability density function and the 

conditions are: 

fx(x) ≥ 0                                                                                                                                                 (6.2.5) 

and ∫ 𝑓𝑥(𝑥)𝑑𝑥
∞

−∞
= 1                                                                                                                         (6.2.6) 

The cumulative distribution function Fx(x) can determine a random variable’s X probability 

distribution. That indicates the probability of the random variable X to get equal or smaller 

values to a specific x value. For the case of a discrete variable X we have:  

Fx(xi)= P(X≤xi) = ∑ 𝑓𝑥(𝑥)𝑥≤𝑥𝑖
                                                                                                               (6.2.7) 

For the case of a continuous random variable X we have: 

Fx(x) =P(X≤ 𝑥)= ∫ 𝑓𝑥𝑢𝑑𝑢
∞

−∞
                                                                                                               (6.2.8) 

A characteristic of the normal distribution is that is universally unimodal. It is fully 

characterized by the parameters μand σand its curve is symmetric around the mean value. 

Another characteristic of the normal distribution that is universal is that within one standard 

deviation away from the mean value, 68% is approximately the area covered. For two standard 

deviations, within this range, the covered area is about 95%. Within three standard deviations, 

the percentage of the covered area is 99.7%. If course we can continue increasing the range of 

standard deviation along with the covered area respectively. As it is known, the normal 

distribution never touches the x-axis, thus it will continue to infinity with an arbitrary standard 

deviation. In this case, the probability of the existence of outlier data point will end up close to 

zero, which is not happening in many natural systems.  

 

6.3 Measures of Skewness and Kurtosis 

When we need to analyze data, we need first to understand the shape of data, in order to 

observe where the most information lies and analyze the outliers. Thus, it is crucial to make a 

reference to the importance of skewness and kurtosis in statistics.  

Skewness is a measure that is commonly used in statistics and characterizes the asymmetry of 

any unimodal curve and the distribution of data. It is given by the following relation:  

Sk =  
1

𝑛
∑ (𝑥𝑖−𝑥̅)3𝑛

𝑖=1

√
1

𝑛−1
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

3                                                                                                                          (6.3.1) 

The direction of the skew reflects on which side the tails are leaning to, thus it can be also 

abstract, since it does not show the side that the line is leaning to. It is considered to be the 

degree of distortion, as it is deviating from the normal distribution’s initial, symmetrical bell-
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like curve and it also differentiates the outliers on the right side as a function to the left tail and 

on the left side as a function to the right tail respectively. 

In the following figure 6.3.1, we can see the three cases of skewness. To the left, we have the 

case of the positive or right skewness. The tail on the right is either fatter or longer. In this case 

the mean value is bigger than the median and at the peak of the distribution the mode is 

located. The central distribution is a symmetrical one with ideal symmetrical tails. To the right 

side, we have a negative or left skewness, where the tail on the left is fatter or longer. 

Figure 6.3.1 The three different types of skewness. 

Moving to the kurtosis, we should firstly refer that it determines the heaviness of the 

distribution tails. It constitutes a mean to measure the behaviorof flatness of any given 

distribution, while taking into consideration the extreme values within the tails. In kurtosis, we 

observe three different types. At a normal distribution, the kurtosis is called Mesokurtic curve. 

When we have a distribution that is lower peaked than Mesokurtic and has shorter tails, the 

kurtosis is called Platykurtic curve. Lastly, when the peak is higher than Mesokurtic, the kurtosis 

is called Leptokurtic curve. Kurtosis is given by the following relation:  

Ku = 

∑ (𝑌𝑖−𝑌̅)
4𝑁

𝑖=1
𝑁

√
1

𝑛−1
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

4                                                                                                                           (6.3.2) 

 

6.4 Power law in nature 

Power law is a distribution that is applied in many scientific areas, such as physical, chemical, 

social as well as biological phenomena. It has been observed that many irrelevant phenomena 

have similar statistical behavior. Among those phenomena are the frequency of words we use 

in our lifetime (oral and written), similarity of protein structure sequences, gamma-ray 

intensity of solar flares, city populations, the scale (diameter) distribution of Lunar craters, 

normal immune receptors, forage pattern in many different species, predator strategies, road 

and websites traffic, engaging neural patterns, the loss of souls in wars, the frequency at which 

our complex structured brain forgets, citation number of academic researches, the popularity 

of opening chess strategiesand of course in earthquake magnitudes and the dissipated release 

of energy.  
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Those systems might be natural or human made and sometimes they can even be biased, 

however they present every time the power law behavior. George Kingsley Zipf was the first 

who introduced this characteristic. His distribution, which is named after him, Zipf distribution, 

is related to the discrete power law Pareto distribution and the Riemann zeta distribution. The 

first one, Pareto distribution, which is also known as power law distribution is given by the 

following relation:  

Pr(X>x) = 𝐹̅(𝑥) = (
𝑥𝑚𝑖𝑛

𝑥
)

𝑎
    when x ≥ 𝑥𝑚𝑖𝑛                                                                                    (6.4.1) 

 

6.5 Power law in seismology 

Power law distribution is also being noticed in seismology. At an earthquake population, if we 

apply the empirical Gutenberg and Richter (G-R distribution) scaling relation, a power law 

behavior will be indicated, as we can see in the equation below: 

logN (N>M) = a – bM                                                                                                                         (6.4.2) 

where N (N> 𝑀) is the sum of all the earthquakes with magnitude equal or greater than M, 

while the value of a indicates the total seismicity rate of the region that is being investigated. 

The -a- value is associated as the intersection of the linear regression model with y-axis (log N). 

The b value is a parameter that shows the proportion of small to large earthquake events. The 

equation that follows gives the maximum likelihood solution of the b value:  

b = 1/log(10)(𝑀̅ − 𝑀𝑐)                                                                                                                       (6.4.3) 

where 𝑀̅  is the mean magnitude that has been observed and Mc is the completeness 

magnitude. The equation below represents the generalization form:  

logN > 𝑚 = logN + (
2−𝑞

1−𝑞
) log [1 − (

1−𝑞

2−𝑞
) (

102𝑚

𝑎
2

3⁄
)]                                                                       (6.4.4) 

where N is as said before, the total number of events, q is the non extensivity parameter and a 

is a proportional constant. Thus, the equivalent power law expression of the G–R distribution 

is:  

N (> 𝑀) =  10𝑎−𝑏𝑀                                                                                                                           (6.4.5) 

The result is that the Gutenberg and Richter law indicates a dependence of power law between 

the magnitude and the number of earthquakes. Gutenberg and Richter law in terms of energy 

can be written as: 

N (> 𝐸) ~ 𝐸−𝛽−1                                                                                                                                (6.4.6) 

The parameter β has been calculated and was found to be the 2/3 of the b value. This equation 

is an expression of the magnitude and the seismic energy distribution. Also, the seismic energy 

expressed with the seismic moment, is related to the surface fault area and the equation is the 

following:  

M0 = μΔΑ                                                                                                                                               (6.4.7) 
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In the above equation, the M0 is the seismic moment, μ represents the shear modulus or the 

rigidity, Δ expresses the average relative slip of the fault plane and A is the fault’s surface area. 

Those equations have a physical approach, which implies that if we have a number of seismic 

events, that their rupture surfaces are bigger than a specific size A, then the population of 

those events is power law dependent with that area. This mentioned dependence displays that 

the law of Gutenberg and Richter shows a behavior of fractal distribution. 

An indication of the scale invariant property is the fact that both the fault structures and fault 

distributions depict self-similarity. This scale invariance, however, is restrained into a narrow 

range of scales, which is finite. That range of scales is connected strongly with the size of the 

volume under stressed. Therefore, the evolution of fault – population is dynamical and shows a 

transition from behavior of power law and fractal, without losing the memory property to 

exponential behavior and memory-lessness. The non – linearity arises as a function of the 

accumulated stress. In this evolution and transition, the faults can be large scaled or even 

fractures and microcracks. The behavior of exponential and power law is expressed by the 

relations: 

N(> 𝐿) = 𝐴𝐿−𝐷  and                                                                                                                          (6.4.8) 

N(> 𝐿 ) = 𝐴𝑒
(

−𝐿

𝐿0
)
                                                                                                                                (6.4.9) 

In both of them N represents the number of liner faults that have a size bigger than L, D is the 

power law exponent and A represents the scaling constant. At the relation 6.4.9, L0 represents 

a specific length.  

Moreover, the attenuation of the amplitude of the coda waves decreases as a power law 

function, as coda waves show that that the time lapse depends on the origin time. This coda 

wave amplitude attenuation exhibits a power law behavior, which is the result of the scattering 

coefficient decreasing with depth. The dependence of the amplitude decay of coda waves with 

frequency can be explained by the scatterers’ power law sized distribution. These properties 

have been originated by observational methods and constitute indications that nonlinear 

dynamical procedures are taking place throughout the evolution of earthquakes phenomena.  

 

7. Entropy and statistical mechanics 

7.1 Introduction 

Entropy is a scientific concept that is often used for the measurement of disorder, randomness, 

or uncertainty. It was first recognized in classical thermodynamics; however, it is now used in 

different fields, as the microscopic description of nature, and in many more applications in the 

fields of physics and chemistry. According to Boltzmann, entropy can be defined as the number 

of the possible arrangements, on microscopic level, of individual atoms and molecules of a 

system that are in accordance with the macroscopic condition of the system. With this 

definition of entropy, he introduced a new field of thermodynamics, named statistical 

mechanics, with the concept of statistical disorder and probability distributions. 

Statistical mechanics can be described as a mean used to understand and explain the 

dynamical evolution of complex systems. According to it, every set of properties, which are 
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large scale, has a configuration of particles. Every probable configuration of those particles that 

can result those properties has the same probability. Configuration as a term, is to define the 

exact arrangement of any physical characteristic, for example velocity, position and 

momentum spin of the microscopic particles. We call microstates, every possible distributed 

configurations of energy. We call macrostates, a combination of large scale macroscopic 

properties. The combination of the macroscopic properties is defined by the properties of 

thermodynamics, such as temperature, pressure and volume. As a result of all the above, most 

of the times for every potential microstate configuration that statistically comes as a result of a 

specific macrostate configuration, there is the same probability to be observed.  

The second law of thermodynamics explains why it is inevitable for every system to maximize 

its entropy and why that is fundamental in statistical mechanics. Specifically, entropy is 

associated with the second law of thermodynamics in the way the particles are distributed 

under the laws of motion. Thus, entropy is able to give an explanation of a system’s 

thermodynamic behavior, as the motion of individual particles can give a summed up result, 

according to Newton’s motion laws.  

Newton’s second law is given by the well known equation: 

F = ma                                                                                                                                                    (7.1.1) 

Also, Newton’s law of universal gravitation is given by the below relation: 

FG = -
𝐺𝑚1𝑚2

𝑟2 𝑟̂                                                                                                                                        (7.1.2) 

The Schrödinger equation is alinear partial differential function that represents the quantum 

wave function and is given by the following relation:  

iℏ
𝜕

𝜕𝑡
𝛹 =  

−ℏ2

2𝑚
∇2𝛹                                                                                                                              (7.1.3) 

where Ψ represents the value of the wave function throughout space and time, the constant i 

is the imaginary unit, and ℏ is the reduced Planck constant. 

In the 3D dimensional space the complex number ∇2𝛹 at each point is given by the equation: 

∇2𝛹 =  
𝜕2𝛹

𝜕𝛸2  + 
𝜕2𝛹

𝜕𝑦2  + 
𝜕2𝛹

𝜕𝑧2                                                                                                                      (7.1.4) 

All subatomic particles have an inherently probabilistic behavior; however, the relation 7.1.3 

does not lie in probabilities. The wave function evolves and changes in a deterministic way and 

determines the probability of every possible observation. After all this behavior cannot present 

the way the energy scatters and diffuses in space time.  

Thus, we can suggest that entropy can be used to measure each energy configuration’s 

probability and can be instinctively used as a measurement of the energy distribution. When 

we detect concentrated energy, then the entropy is low. On the other hand, when the energy is 

distributed to the maximum, entropy it detected in high amount. The best way to understand 

the definition of entropy and its consequences, is be giving an example of a dynamical system 

that changes in time. For example, energy distribution in the earth’s medium is being triggered 

by an earthquake. The energy that emerges from the earthquake is being continuously 

transferred between bonds, due to the propagation of the P and S body waves, through the 
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materials of the earth, via the crystal lattice and atomic bonds. So, its configuration is 

constantly changing, as the energy’s transfer continues. The probability that is most likely to 

happen, is the dispersion of the energy distribution, due to the scattered microstates, that 

leads to higher entropy for the system. As a result, higher entropy is more likely to happen 

statistically in a large scale system.  

The aftershock sequence that follows a seismic event presents a spatial distribution that can 

assist in understanding the concepts of microstate and macrostate. The seismic events 

recorded either follow a random spatially distribution or a fractal like geometry. The microstate 

of the system is represented by individual events of the aftershock sequence that take place 

and the macro state of the system is represented by the density of thespatial cumulative 

number of event distribution. Thus, if we consider all the random possible configuration of 

seismicity, the potential macro states and microstates should correspond to each other, while 

any clustered distribution that does not follow existing or preexisting tectonic features, like 

seismicity which is narrow scattered, should not. This results to high entropy distributed 

hypocenters within the rupture area.  

Statistics is the mean by which we can better understand and gain a better overview of the 

observable microstates of an existing system. Each physical system’s normal outcome is that 

the majority of any possible microstate distribution will leave the system very close to a single 

macro-state, the state of thermal equilibrium. The microstate is well defined by the fact of how 

the energy is distributed through phase space, instead on focusing on the distribution of the 

particle in the three dimensional space. As a result, in a given system its thermodynamic 

properties are defined by the average distribution of particles in phase space.  

 

7.2 Boltzmann Gibbs statistical mechanics 

When we examine a system which is large in size, we observe a transform of the small scale 

exact states to large scale average states. This happens by assigning probabilities to the system 

being in different states. Founder of the statistical mechanics is Ludwig Boltzmann, who 

introduced a different approach of thermodynamics, instead of what was believed until then. 

The relation between the macroscopic and microscopic states is displayed by entropy, which is 

based on the second law of thermodynamics. Entropy is given by the following equation:  

S = -k ∑ 𝑝𝑖 log 𝑝𝑖𝑖                                                                                                                                  (7.2.1) 

The pi represents the state probabilities and is 0≤ 𝑝 ≤, the S is their sum and k is a positive 

constant, which is known as the Boltzmann’s constant in the field of thermodynamics  

(KB=1.38*10-23 J/k). The equation 7.2.1 is the Boltzmann’s Gibb’s entropy SBG.  

If all probabilities pi are equal, which means:  

pi = 
1

𝑊
 , ∀𝑖                                                                                                                                              (7.2.2) 

the relation 7.2.1 is as follows: 

S = k ln 𝑊                                                                                                                                              (7.2.3) 

 

This relation of entropy is used in the case of a given system, where the probability of all the 

microstates is equal to happen and as the microstates increase, the entropy will be higher.  
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In the case of a continuous variable x, the relation 7.2.1 will be:  

S = - k∫ 𝑝(𝑥)𝑑𝑥
∞

0
 = 1                                                                                                                           (7.2.4) 

The most likely macroscopic state can be retrieved by the maximization of entropy, subject to 

the normalization of p(x) constraints:  

∫ 𝑝(𝑥)𝑑𝑥 = 1
∞

0
                                                                                                                                   (7.2.5) 

The following relation dives us the average x value: 

〈𝑥〉 = ∫ 𝑥𝑝(𝑥)𝑑𝑥
∞

0
                                                                                                                               (7.2.6) 

If we use the Lagrange multiplier method along with the previous defined constraints, the 

probability that maximizes the Boltzmann’s Gibb’s, takes the following form, which is the 

Boltzmann distribution: 

p(x) = 
𝑒−𝛽𝑥

∫ 𝑒−𝛽𝑥𝑑𝑥
∞

0

                                                                                                                                    (7.2.7) 

where 𝑒−𝛽𝑥 is the Boltzmann factor and β represents the Lagrange multiplier. 

If we have two independent sub systems A and B along with its states, represented as WA and 

WB, and we combine them in a way that their conjugated probabilities satisfy the below 

relation, the entropy SBG is called addictive.  

𝑝𝑖𝑗
𝐴+𝐵 = 𝑝𝑖

𝐴𝑝𝑗
𝐵,   ∀𝑖, 𝑗                                                                                                                            (7.2.8) 

The entropy SBG can be mathematically expressed by the relations below:  

SBG (A + B) = -k ∑ ∑ 𝑝𝑖𝑗
𝐴+𝐵 ln 𝑝𝑖𝑗

𝐴+𝐵𝑊𝐵
𝑗=1

𝑊𝐴
𝑖=1                                                                                          (7.2.9) 

SBG (A) = - k ∑ 𝑝𝑖
𝐴𝑊𝐴

𝑖=1 ln 𝑝𝑖
𝐴                                                                                                                (7.2.10) 

SBG (B) = -k ∑ 𝑝𝑗
𝐵𝑊𝐵

𝑗=1 ln 𝑝𝑗
𝐵                                                                                                                   (7.2.11) 

The Boltzmann-Gibbs classical statistical mechanics is based on the entropy of Boltzmann–Gibbs, 

and from the classical Boltzmann-Gibbs statistical mechanics the Boltzmann distribution emerges 

for the case of thermal equilibrium. Thus, for statistical mechanics, the Boltzmann-Gibbs entropy 

and distribution constitute guidelines for plenty of procedures, as well as natural phenomena.   

SBG entropy has an important property that is the non – negativity. From an assumption of a 

specific probability then we can conclude to the assumption:  

lim
𝑥→0

(𝑥 ln 𝑥) = 0                                                                                                                            (7.2.12)       

SBG = -k 〈ln 𝑝𝑖〉 = kln 〈
1

𝑝𝑖
〉                                                                                                                   (7.2.13) 

The ln 𝑝𝑖  and ln (
1

𝑝𝑖
) represent the mean value of the under examination probabilities. 

As we said the entropy has the important property of non – negativity. It is always positive since: 
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ln (
1

𝑝𝑖
) > 0, ∀𝑖                                                                                                                                   (7.2.14) 

The entropy is being maximized by the SBG, which will reach its maximum state when:  

𝑆𝐵𝐺({𝑝𝑖′′} > 𝜆𝑆𝐵𝐺({𝑝𝑖} + (1 – λ)𝑆𝐵𝐺({𝑝𝑖′}                                                                                    (7.2.15) 

In order for this to be functioning, the set 𝑝𝑖
′′ has the following property: 

𝑝𝑖
′′ = 𝜆𝑝𝑖 +  (1 − 𝜆)𝑝𝑖′∀𝑖𝑎𝑛𝑑 0 < 𝜆 < 1                                                                                    (7.2.16) 

The 𝑝𝑖and 𝑝𝑖′ are given set of probabilities, connected with a system of W state. The 7.2.16 

relationoccurs from the second law of thermodynamics and indicates that the entropy gains its 

maximum value, when the studied system is under equilibrium.  

The Boltzmann Gibbs entropy is considered extensive, when the limit below exists: 

lim
𝑁→∞

𝑋(𝑁)

𝑁
                                                                                                                                                                                                                    (7.2.17) 

with X(N) ∝ 𝑁(𝑁 → ∞)                                                                                                                  (7.2.18) 

In the above equation, X is a physical quantity and is proportional to the system size. In the 

case that the elements of a system are not associated with each other, the entropy 

ofBoltzmann – Gibbs is considered as extensive, thus we have: 

𝑆𝐵𝐺(𝑁) ∝ 𝑁                                                                                                                                       (7.2.19) 

with 0< lim
𝑁→∞

𝑆𝐵𝐺 (𝑁)

𝑁
< ∞                                                                                                         (7.2.20)    

 

7.3 The q – Functions 

Previously, we spoke and explained the case of a system that its elements are not correlated. 

Now, we will study and explain the opposite case, where the elements of the system we 

examine are strongly correlated, such as long range interaction, long memory etc. In this case, 

we cannot characterize the entropy as extensive. In addition, the Boltzmann-Gibbs entropy is 

not valid for system with correlated elements, thus it is not a universal form. Since there are 

different data that apply in that case, we will expand the 𝑆𝐵𝐺 and we will have the following 

differential equations, along with their solution of f(x): 

𝑑𝑦

𝑑𝑥
= 0, y(0) = 1, y=1                                                                                                                           (7.3.1) 

𝑑𝑦

𝑑𝑥
= 1, y(0) = 1, y = 1 + x                                                                                                                   (7.3.2) 

𝑑𝑦

𝑑𝑥
= 𝑦, y(0) = 1, y = 𝑒𝑥                                                                                                                       (7.3.3) 

The q – parameter is the result of the combination of those three differential equations, 7.3.1, 

7.3.2 and 7.3.3, taking into consideration the concept of linearity.  

The following relation is a mathematical approach of the Cauchy problem: 

𝑑𝑦

𝑑𝑥
=  𝑦𝑞 , y(0) = 1                                                                                                                                (7.3.4) 
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In the above relation 7.3.4, in the case of q ≠ 1, there is the following analytical solution: 

𝑑𝑦

𝑑𝑥
=  𝑦𝑞 ⟺

𝑑𝑦

𝑦𝑞 = dx ⟺ ∫ (
1

𝑦𝑞) dy = ∫ 𝑑𝑥 + 𝑐 ⟺ ∫ 𝑦−𝑞𝑑𝑦 = x + c ⟺ 

1

1−𝑞
∫(1 − 𝑞)𝑦−𝑞𝑑𝑦 = 𝑥 + 𝑐 ⟺

𝑦1−𝑞

1−𝑞
 = x + c ⟺ 𝑦1−𝑞 = (1 − 𝑞)(𝑥 + 𝑐) ⟺ 

𝑦(𝑥) =  [(1 − 𝑞)(𝑥 + 𝑐) ]
1

1−𝑞 

If we assume y(0) = 1, we have: 

[(1 − 𝑞)𝑐]
1

1−𝑞 = 1 ⟺ (1 − 𝑞)𝑐 = 1 ⟺ c = 
1

1−𝑞
                                                                               (7.3.5) 

Thus, since c = 
1

1−𝑞
the solution for the equation 7.3.4 is: 

y(x) = [1 + (1 − 𝑞)𝑥]
1

1−𝑞,    y(0) = 1,    q ∈ ℝ,    q ≠ 1                                                                   (7.3.6) 

These functions, after an analyzation of their properties can lead to the well known functions 

of q – exponential, q – logarithmic and q – gaussian. 

First, we will analyze the q – exponential parameter. In order to proceed we will assume that 

the limit of the q index tends to 1, and with the function of 7.3.6, the equation 7.3.4 will be 

analyzed as following:  

lim
𝑞→1

𝑒𝑞
𝑥 = lim

𝑞→1
[1 + (1 − 𝑞)𝑥]

1

1−𝑞 = lim
𝑞→1

𝑒ln[1+(1−𝑞)𝑥]
1

1−𝑞
 = lim

𝑞→1
𝑒(1−𝑞)−1 ln[1+(1−𝑞)𝑥] = 

𝑒
[lim

𝑞→1
(1−𝑞)−1 ln(1+(1−𝑞)𝑥)]

 = 𝑒
[lim

𝑞→1

ln(1+(1−𝑞)𝑥)

1−𝑞
]
 = 𝑒

[lim
𝑞→1

𝑑
𝑑𝑞

ln(1+(1−𝑞)𝑥)

𝑑
𝑑𝑞

1−𝑞
]

 = 𝑒
[lim

𝑞→1

[
1

1+(1−𝑞)𝑥
]

𝑑
𝑑𝑞

[1+(1−𝑞)𝑥]

−1
]

 = 

𝑒
(lim

𝑞→1
−

𝑥

−1
)
 = 𝑒

lim
𝑞→1

𝑥
 = 𝑒𝑥 

Hence, for the case of q→ 1 we have:  

𝑒𝑞
𝑥 = 𝑒1

𝑥 = 𝑒𝑥                                                                                                                                        (7.3.7) 

The q – exponential class is being represented by this type of functions 𝑒𝑞
𝑥 and a unique  

q – exponential function is given for every single value of q. Moreover, the probability density 

function can describe the q – exponential distribution, as below: 

p(x) = 𝑝0 [1 − (1 − 𝑞)
𝑥

𝑥0
]

1

1−𝑞                                                                                                             (7.3.8) 

The relation 7.3.8 will take the simple form of the exponential distribution, for the case of q→

1, as when the limit is q→ 1, the q – exponential function takes the form of the exponential 

function.  

The inverse solution of equation 7.3.6 emerges the q-logarithmic functions class. We assume 

the relation: 

y = [1 + (1 − 𝑞)𝑥]
1

1−𝑞 ⟺ 𝑦1−𝑞 = 1 + (1 − 𝑞)𝑥 ⟺x = 
𝑦(1−𝑞)−1 

1−𝑞
                                                 (7.3.9) 
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the inverse of the equation 7.3.6 will be: 

𝑦−1(𝑥) = 
𝑥1−𝑞−1 

1−𝑞
≡ ln𝑞 𝑥,   where x > 0 and q ∈  ℝ                                                                  (7.3.10) 

Moving with the analyzation of the case q → 1, the inverse we get for 𝑒𝑞
𝑥 is as follows: 

lim
𝑞→1

ln𝑞 𝑥  = lim
𝑞→1

𝑥1−𝑞 −1

1−𝑞
 = lim

𝑞→1

𝑒ln 𝑥1−𝑞
−1

1−𝑞
 = lim

𝑞→1

(𝑒ln 𝑥1−𝑞
−1) ln 𝑥

(1−𝑞) ln 𝑥
 = ln 𝑥 [lim

𝑞→1

(𝑒ln 𝑥1−𝑞
−1)

(1−𝑞) ln 𝑥
]  = 

ln 𝑥 [lim
𝑞→1

𝑑

𝑑𝑞
(𝑒ln 𝑥1−𝑞

−1)

𝑑

𝑑𝑞
(1−𝑞) ln 𝑥

]  = ln 𝑥 [lim
𝑞→1

−(1−𝑞) ln 𝑥𝑒1−𝑞 ln 𝑥

− ln 𝑥
]  = ln 𝑥 [lim

𝑞→1
(1 − 𝑞)𝑒ln 𝑥1−𝑞

]  = ln 𝑥,       

where x> 0  and ln1 𝑥 = ln 𝑥 

The q – logarithm  function is non-additive because of the mixing terms that appear in the case 

of summation of two independent q – logarithms of A and B terms.This property is called 

pseudo – additivity.  

𝑙𝑛𝑞𝑥𝐴𝑥𝐵= 𝑙𝑛𝑞𝑥𝐴 + 𝑙𝑛𝑞𝑥𝐵 + (𝑙𝑛𝑞𝑥𝐴𝑙𝑛𝑞𝑥𝐵)                                                                                     (7.3.11) 

 

7.4 Non-extensive statistical mechanics 

Classical thermodynamics and the kinetic theory of gases, where the only fields that entropy 

and the associated field of statistical mechanics were used exclusively at the beginning. As the 

years passed, it expanded to other scientific fields, in order to obtain the least biased 

probability distribution from limited information. The collective properties of earthquakes or 

fault populations seem to correspond well to the empirical laws, where simple forms are used, 

after scientific research. If in these two specific fields of earthquake and fault population we 

apply the theory of statistical mechanics, the approach will be considered as the link between 

the micro cracking and fracturing that is experienced in the upper, rigid crust, to the genesis of 

a significant earthquake event that is expressed by a fault rupture.  

There are certain complex seismological dynamic processes, which have been explained by a 

generalized form and use of the non extensive statistical physics based on the concept of 

entropy. Those seismological processes can be the change of local scattering evolution by 

analyzing coda waves and seismic noise of seismographic stream records. It can also be used in 

a more general form, in order for the macroscopic configuration of the seismological 

occurrences to be estimated by the specification of the relevant microscopic components and 

their interactions. Such seismological occurrences are earthquakes, evolution of faulting, time 

intervals of aftershock sequences, time domain samples increment etc. In such complex 

systems, the occurrence of an individual constituent is strongly correlated with the state and 

the occurrence of some other micro-constituent. 

The statistical mechanics of Boltzmann-Gibbs is well suited for physical systems, that have the 

characteristics of presenting interactions of short range and their memory is also short. Such 

physical systems with these characteristics where found in Markovian chain processes. On the 

other hand, the Boltzmann-Gibbs-Shannonapproach is not that functional when used in 

physical systems with macroscopic behavior and weak chaotic dynamics. These systems follow 

distributions with asymptotic power law behavior, that present long memory along with heavy 
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tails and long range interactions, enhanced by multi-fractal geometries. This behavior of those 

physical systems violates essential properties of the Boltzmann’s Gibb’s distribution.  

What we call heavy tail distributions, are distributions with a tail heavier than a tail of an                                                                     

exponential distribution. They exhibit relatively many high valued outliers, and there are three 

categories of them, fat tailed, long tailed and sub exponential distribution. Known distributions 

that present heavy tails are cauchy, log normal, Pareto, Zipf and Students t-distributions.  

The non extensive statistical mechanics, known as NESM, is a generalized framework proposed 

by Tsallis, which is used in order to achieve the statistical mechanics description of such 

systems. Non extensive statistical mechanics has the advantage of taking into account the 

correlations of all scales between the elements of a system. To quantify the non-extensivity, 

the concept of entropy is used to infer the least biased distribution via the concept of 

maximum entropy principle.  

The non-additive entropy Sq is central for the non extensive statistical mechanics and for 

discrete cases is given by the relation:  

𝑆𝑞 = 𝑘
1− ∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞−1
                                                                                                                                  (7.4.1)            

where q ∈  ℝ 

W represents the number of microscopic configurations, k is a positive constant, which we 

assume it is the Boltzmann’s constant, and q represents the entropic index.  

Taking into consideration the relation of non-addictive entropy below:  

𝑆𝑞 = kl𝑛𝑞 (
1

𝑝𝑖
)                                                                                                                                       (7.4.2)            

Along with the equation of q logarithmic as we presented at the relation 7.3.10: 

𝑦−1(𝑥) = 
𝑥1−𝑞−1 

1−𝑞
≡ ln𝑞 𝑥,   where x > 0 and q ∈  ℝ 

we get the relation below:  

l𝑛𝑞𝑝𝑖 = 
𝑝𝑖

1−𝑞
−1

1−𝑞
⟺ l𝑛𝑞 (

1

𝑝𝑖
) = 

(
1

𝑝𝑖
)

1−𝑞

−1

1−𝑞
 = 

(
1

𝑝
𝑖
1−𝑞−1)

1−𝑞
 = 

(
1−𝑝

𝑖
1−𝑞

𝑝
𝑖
1−𝑞 )

1−𝑞
                                                       (7.4.3) 

and finally we have  

l𝑛𝑞 (
1

𝑝𝑖
) = 

1−𝑝𝑖
1−𝑞

(1−𝑞)𝑝𝑖
1−𝑞                                                                                                                             (7.4.4) 

Now, in the equation 7.4.3 we replace the equation 7.4.4 and after we impose the 

normalization constraint: 

∑ 𝑝𝑖
𝑊
𝑖=1  = 1                                                                                                                                            (7.4.5) 

 we retrieve the equation: 
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𝑆𝑞 = k(𝑙𝑛𝑞
1

𝑝𝑖
) = k ∑

𝑙𝑛𝑞(
1

𝑝𝑖
)

𝑝𝑖

𝑊
𝑖=1  = k ∑

1

𝑝𝑖

𝑊
𝑖=1 (

1−𝑝𝑖
1−𝑞

(1−𝑞)𝑝
𝑖
1−𝑞) = k ∑ (

1−𝑝𝑖
1−𝑞

(1−𝑞)𝑝𝑖
−𝑞)𝑊

𝑖=1  =  

k (
1

1−𝑞
) ∑

1−𝑝𝑖
1−𝑞

𝑝𝑖
−𝑞

𝑊
𝑖=1  = k (

1

1−𝑞
) ∑ 𝑝𝑖

𝑞𝑊
𝑖=1 (1 − 𝑝𝑖

1−𝑞
) = k (

1

1−𝑞
) ∑ (𝑝𝑖

𝑞
− 𝑝𝑖)𝑊

𝑖=1  =  

k (
1

1−𝑞
) (∑ 𝑝𝑖

𝑞
− ∑ 𝑝𝑖

𝑊
𝑖=1

𝑊
𝑖=1 ) =  

k (
1

1−𝑞
) ∑ 𝑝𝑖

𝑞𝑊
𝑖=1 -1                                                                                                                                (7.4.6) 

Thus, the equation 7.4.6 is equivalent to the entropy of Tsallis, as shown in the relation below: 

𝑆𝑞 = k 
1−∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞−1
                                                                                                                                     (7.4.7) 

The equation of the 𝑆𝑞 for continuous variables is given by: 

𝑆𝑞[𝑝] = k 
1

𝑞−1
(1 − ∫ 𝑝(𝑥)𝑞𝑑𝑥)                                                                                                         (7.4.8) 

This form represents the case of the ordinary SBG when the limit is li𝑚𝑞→1, which means the 

generalized framework of the classical Boltzmann-Gibbs entropy of statistical mechanics. If we 

apply the limit li𝑚𝑞→1, when the q approaches the value of 1 to the relation 7.4.7, we have the 

following: 

lim
𝑞→1

𝑆𝑞 = lim
𝑞→1

𝑘
1−∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞−1
 = k lim

𝑞→1

1−∑ 𝑝𝑖
𝑞𝑊

𝑖=1

𝑞−1
 = k lim

𝑞→1

1−∑ 𝑝𝑖𝑝𝑖
𝑞−1𝑊

𝑖=1

𝑞−1
 = k lim

𝑞→1

1−∑ 𝑝𝑖𝑒(𝑞−1) ln 𝑝𝑖𝑊
𝑖=1

𝑞−1
                                                                                                                    

(7.4.9) 

If we apply at 𝑒(𝑞−1) ln 𝑝𝑖  an expansion of Taylor series we have: 

𝑒(𝑞−1) ln 𝑝𝑖  = ∑
(𝑞−1)𝑛𝑙𝑛𝑛𝑝𝑖

𝑛!
∞
𝑛=0                                                                                                          (7.4.10) 

For the case of n = 0 we get: 

𝑒(𝑞−1) ln 𝑝𝑖  = 
(𝑞−1)0𝑙𝑛0𝑝𝑖

0!
 + 

(𝑞−1)1𝑙𝑛1𝑝𝑖

1!
 + 0 (l𝑛𝑛𝑝𝑖) = ∑ (

𝑞 − 1
𝑛

)∞
𝑛=0 (𝑝𝑖 − 1)𝑛                          (7.4.11) 

With the implement of equation 7.4.11 on 7.4.10 we have: 

𝑒(𝑞−1) ln 𝑝𝑖 ≈  1 + (q – 1) ln 𝑝𝑖  = lim
𝑞→1

𝑆𝑞 ≈  k lim
𝑞→1

1−∑ 𝑝𝑖[1+(𝑞−1) ln 𝑝𝑖]𝑊
𝑖=1

𝑞−1
 =  

k lim
𝑞→1

1−∑ 𝑝𝑖+∑ (𝑞−1)𝑝𝑖 ln 𝑝𝑖
𝑊
𝑖=1

𝑊
𝑖=1

𝑞−1
 = k lim

𝑞→1

(𝑞−1) ∑ 𝑝𝑖 ln 𝑝𝑖
𝑊
𝑖=1

𝑞−1
 = k lim

𝑞→1
∑ 𝑝𝑖 ln 𝑝𝑖

𝑊
𝑖=1  =  

k ∑ 𝑝𝑖 ln 𝑝𝑖
𝑊
𝑖=1  = k 

𝑆𝐵𝐺

𝑘𝐵
                                                                                                                        (7.4.12) 

From the relation that we have analyzed above, we can clearly express that the Boltzmann-

Gibbs entropy and the generalized form of Tsallis entropy are equivalent to each other, in the 

case of li𝑚𝑞→1 and k = kB.  

The potential cases for the entropic index q are three. The first one, which is called super – 

additivity, is when q< 1. The second case, which is the one that retrieves the Boltzmann-Gibbs 

entropy, is called additivity and is recovered when q =1. This case is actually the limit of the q 

index as it approaches the value 1 (li𝑚𝑞→1). The third case is called sub – additivity and 

emerges when q> 1. Even though that Boltzmann – Gibbs entropy and Tsallis entropy have the 
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majority of the properties the same, Tsallis q entropy is non – additive, while Boltzmann-Gibbs 

entropy is additive. 

𝑆𝐵𝐺 = (A + B) = 𝑆𝐵𝐺(A) + 𝑆𝐵𝐺(B)                                                                                                      (7.4.13) 

This behavior introduces the non-additivity concept for the NESM theory. The main difference 

between 𝑆𝐵𝐺 and Sq entropy is generated by the concept that instead of summing the entropy 

of the two probabilistically independent subsystems, A and b, to obtain the total entropy of the 

main system (A, B), the non-additive entropy approaches the main system entropy via the 

formula of: 

𝑆𝑞(𝐴+𝐵)

𝑘
 = 

𝑆𝑞(𝐴)

𝑘
 + 

𝑆𝑞(𝐵)

𝑘
 + (1 – q) 

𝑆𝑞(𝐴)

𝑘

𝑆𝑞(𝐵)

𝑘
                                                                                     (7.4.14) 

Tsallis (1998) was the one who first introduced that the generalized framework of Boltzmann – 

Gibbsof statistical mechanics initiates bias in probabilities. This concept of Tsallis was 

influenced by multifractality physics.  

We retrieve the conditions below by taking into consideration the maximization of 𝑆𝑞: 

∫ 𝑝(𝑥)𝑑𝑥 =1                                                                                                                                       (7.4.15) 

and 

∫ 𝑝𝑞(𝑥)U(x)dx = 𝑈𝑞                                                                                                                           (7.4.16) 

The 𝑝𝑞 is given by the equation below: 

𝑝𝑞(𝑥) =  
𝑝𝑞(𝑥)

∫ 𝑝𝑞(𝑥)𝑑𝑥
                                                                                                                             (7.4.17) 

The value 𝑝𝑞represents the escort probability; the system under examination is represented by 

the function U(x) and 𝑈𝑞 represents the q – average.  

The escort distribution is a simple parameter deformation of the original distribution and is the 

result of the maximum entropy theory, which is applied between the uniform distribution and 

the one under examination.  

Complex systems have mandatory and critical existence of custom long tailed probability 

distribution. A custom made probability distribution has an essential role due to distributions 

that can be either a sequence of escort distributions or a generalized one. Those two last types 

of distributions are considered to be useful, as they are in accordance with the conditions of 

the respective statistical analysis and can be successfully applied into complex and anomalous 

statistical physics.  

The escort distribution procedure can also be considered as a fundamental approach of giving 

suitable weight for individual fat tailed constituents. The mentioned approach is assigned to 

the multi-fractal attributes of nonlinear dynamic systems. In the case of a parabolic function, 

the U(x) is given by: 

U(x) = 𝑥2                                                                                                                                             (7.4.18) 

In the relation above the 𝑈𝑞 as presented in the formula 7.4.16, behaves as a fluctuation 

intensity index.If we implement the method ofLagrange Multipliersto the relation 7.4.8 the 



 

49 
 

outcome will be the probability distribution function and under the constraints of the relations 

7.4.15 and 7.4.16, we will have the relation: 

p(x) = 
1

𝑍𝑞(𝐵)
[1 + 𝐵(𝑞 − 1)𝑈(𝑥)]

−
1

𝑞−1  where q> 1                                                                     (7.4.19) 

The 𝑍𝑞 is given by: 

𝑍𝑞(B) = [𝐵(𝑞 − 1)]−
1

2

𝛤
1

2
𝛤(

1

𝑞−1
,
1

2
)

𝛤(
1

𝑞−1
)

                                                                                                      (7.4.20) 

The above equation is known as a generalized q – partition function and Γ is a gamma function. 

It is considered as a generalized canonical distribution under the frame of Tsallis statistics. 

In the case of a parabolic function and the relation 7.4.18 the distribution becomes: 

p(x) = 
1

𝑍𝑞(𝐵)
[1 + 𝐵(𝑞 − 1)𝑞2]

−
1

𝑞−1                                                                                                 (7.4.21)      

The formulation 7.4.21 is the famous q – Gaussian distribution, which in the specific case of 

li𝑚𝑞→1 it becomes a normal Gaussian distribution. 

 

8. Area of study and data selection 

8.1 Geological background 

The data are about to be studies in this paper, were obtained by local earthquakes that 

occurred in the area of central Greece. In order to have a better understanding on the results 

that are going to come up, we must take in mind the geotectonic setting of the studying area.  

As it is known, central Greece is part of the Greek peninsula, more specific of its continental, 

massif part, thus it is on the Aegean microplate, which is the most seismically active area of 

Europe, and of the Mediterranean as well. The Aegean continental crust is located between the 

North Anatolian fault’s extension to the west, which is found at the north of the Aegean 

continental crust, and the Hellenic Trench, which is found at the west and south of it. Central 

Greece, in general, is found in the back arc part of the Hellenic Arc and since the early Miocene 

has experienced extension. Due to this constant extension, many grabens have been 

formatted. Some of those grabens that have been created in the central Greece are the gulfs of 

Maliakos, Korinthiakos, North and South Evoikos, and also the graben of Sperchios River. Those 

grabens are located between the right-lateral Cephalonia Transform Fault (CTF) and the North 

Aegean Trough (NAT). The North Aegean Trough is a west oriented prolongation of the right-

lateral strike-slip North Anatolian Fault (NAF).  

So, one very important graben, for the area we are studying, is the fault system of Sperchios 

River. This fault system can be divided in two parts; the one is in the west and is the Sperchios-

Ipati fault zone and the other is in the east ad is the Kamena Vourla-Arkitsa fault zone. The fault 

zone of Sperchios-Ipati has a south border of the Quaternary narrow valley of the Sperchios 

River and the fault zone of Kamena Vourla-Arkitsa has a south border of the Maliakos Basin, 

which has a width of 12 km and is bounded from faults. This Basin has been filled with Neogene 

sediments prior to the Quaternary ones (Galanakis 1997). 
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Figure 8.1.1 A map of the main 

structural features and the 

focal mechanisms of the 

earthquakes that have 

happened the last decades. The 

arrows show the different 

kinematics (contractional, 

strike-slip and extensional). CTF 

= Cephalonia Transform Fault, 

NAT = North Aegean Trough, 

NAF = North Anatolian Fault, 

SpB = Sporades Basin 

 

 

 

 

 

In the southern Thessaly, the 80 km southern Thessaly fault zone is found. It is consisted by 

ENE–WSWstriking steeply dipping faults. It can also be divided in two parts (Mountrakis et al. 

1993a); the western part, which is consisted by normal faults that dip towards the north and is 

limiting the Thessaly Basin and the eastern part, which is consisted by the fault of Nea Aghialos, 

that is seismically active, dips towards the south and is the limit of the Almyros Basin and 

Pagasitikos Gulf. 

 

8.2 Seismic Data Selection 

Following the previous theory, we will now proceed with the selection of the data that are 

going to be used and their analysis. They are 200 S coda waveforms within the frequency range 

1-30Hz and with magnitude range between 3.1 and 5.2. Those events took place during the 

period from 01-01-2010 to 30-12-2019 and were recorder by a station in Athens, which belongs 

to the National Observatory of Athens Network (HL), part of the Hellenic Unified Seismic 

Network (HUSN). The station is located in Athens and it code name is “ATH_HL”. The 

geographical coordinates of the station are 37.97384°N and 23.71767°E and its elevation 

reaches the 93m. The station is equipped with a STS-2 High-Gain broadband-seismometer and 

a DR24-SC datalogger with sampling frequency Fs = 100 Hz. 

Below there is a list of the seismic events used, along with their origin time, their latitude and 

longitude, their depth, their magnitude and the area of their location. They are sorted from the 

one with the biggest magnitude to the one with the smallest.  
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Table 8.2.1. List of the 200 seismic events, with origin time, latitude, longitude, depth, magnitude and location.  

Origin Time (GMT)            Latitude    Longitude Depth (km)Magnitude            Location 

2014-11-17T23:05:55.000000Z 38.64 23.4 24 5.2 26.2 km NW of Chalkida 

2014-11-17T23:09:03.000000Z 38.64 23.41 23 5.2 25.6 km NW of Chalkida 

2010-03-09T02:55:00.000000Z 38.87 23.65 22 5.1 36.0 km SSE of Skiathos 

2010-07-16T18:53:10.000000Z 39.32 24.02 34 5.1 49.3 km ENE of Skiathos 

2012-09-22T03:52:24.000000Z 38.09 22.74 25 4.9 23.9 km NW of Korinthos 

2013-09-16T15:01:14.000000Z 38.72 22.74 17 4.9 23.8 km WNW of Atalanti 

2014-04-30T04:03:32.000000Z 38.23 25.13 32 4.9 47.4 km NNE of Andros 

2013-11-12T18:09:28.000000Z 38.92 23.1 17 4.8 31.2 km NNE of Atalanti 

2013-08-07T13:44:32.000000Z 38.69 22.66 15 4.7 29.8 km W of Atalanti 

2013-08-09T13:10:10.000000Z 38.69 22.65 17 4.7 30.0 km SE of Lamia 

2014-06-27T16:14:27.000000Z 38.24 25.13 30 4.7 48.4 km NNE of Andros 

2012-10-26T23:16:44.000000Z 38.96 22.91 26 4.6 35.2 km NNW of Atalanti 

2010-07-17T02:30:35.000000Z 39.33 24.02 34 4.5 49.7 km ENE of Skiathos 

2013-09-16T14:42:39.000000Z 38.7 22.73 20 4.5 24.0 km WNW of Atalanti 

2014-02-01T08:14:03.000000Z 38.7 22.75 18 4.5 22.3 km WNW of Atalanti 

2011-02-22T20:37:02.000000Z 38.86 24.95 37 4.4 33.9 km E of Skyros 

2013-09-20T02:05:18.000000Z 38.18 23.13 23 4.4 32.0 km NNE of Korinthos 

2013-11-27T14:21:15.000000Z 37.33 23.01 25 4.4 22.6 km NE of Leonidhion 

2014-06-06T12:21:03.000000Z 39.17 23.71 23 4.4 19.5 km E of Skiathos 

2014-07-11T09:46:04.000000Z 38.45 23.71 26 4.4 9.7 km E of Chalkida 

2014-10-04T00:12:01.000000Z 37.41 22.2 20 4.4 19.3 km SW of Tripolis 

2015-10-27T01:25:51.000000Z 38.92 24.33 25 4.4 20.2 km W of Skyros 

2017-03-24T04:24:30.000000Z 37.5705 23.8847 165 4.4 47.8 km SSE of Athens 

2010-08-29T00:51:57.000000Z 38.66 23.38 22 4.3 29.0 km NW of Chalkida 

2010-09-02T03:53:04.000000Z 38.22 23.17 26 4.3 35.2 km SE of Levadhia 

2010-10-09T19:04:49.000000Z 38.15 22.72 20 4.3 30.0 km NW of Korinthos 

2011-08-21T06:14:18.000000Z 37.63 23.32 115 4.3 45.8 km E of Nafplio 

2012-06-28T13:11:29.000000Z 39.01 23.17 25 4.3 32.2 km WSW of Skiathos 

2013-04-28T16:31:04.000000Z 37.45 22.7 61 4.3 15.8 km SW of Nafplio 

2013-06-04T01:56:53.000000Z 37.98 24.01 24 4.3 24.3 km E of Athens 

2014-02-06T07:58:26.000000Z 38.71 22.77 22 4.3 20.9 km WNW of Atalanti 

2014-05-20T23:30:44.000000Z 39.53 24.2 30 4.3 73.7 km ENE of Skiathos 

2019-07-19T12:11:54.000000Z 38.0956 23.5808 15 4.3 18.3 km NW of Athens 

2010-05-11T07:03:36.000000Z 38.62 23.77 24 4.2 22.9 km NE of Chalkida 

2012-02-17T08:05:04.000000Z 37.87 23.02 17 4.2 10.8 km SE of Korinthos 

2013-04-28T04:49:55.000000Z 38.26 22.25 55 4.2 14.7 km E of Aegion 

2013-11-22T15:12:03.000000Z 39.05 22.41 21 4.2 16.8 km N of Lamia 

2016-06-11T08:29:45.000000Z 39.23 23.73 15 4.2 22.4 km ENE of Skiathos 

2019-11-29T20:46:40.000000Z 39.0482 22.3178 77 4.2 19.3 km NNW of Lamia 

2010-04-04T22:05:56.000000Z 38.42 22.32 17 4.1 12.6 km SSW of Amfissa 

2010-06-27T13:10:09.000000Z 37.52 22.94 79 4.1 12.6 km ESE of Nafplio 

2011-09-06T04:14:13.000000Z 37.88 23.1 104 4.1 16.1 km ESE of Korinthos 

2012-08-02T10:30:39.000000Z 39.27 23.72 25 4.1 23.4 km ENE of Skiathos 

2012-08-06T15:22:11.000000Z 38.75 24.83 29 4.1 28.8 km SE of Skyros 

2012-12-09T01:23:05.000000Z 37.93 22.59 24 4.1 30.0 km W of Korinthos 

2014-05-10T03:04:50.000000Z 38.42 22.46 20 4.1 13.9 km SSE of Amfissa 
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2014-12-19T22:40:32.000000Z 39.33 22.62 19 4.1 28.3 km W of Volos 

2015-04-13T03:49:02.000000Z 39.13 24.46 17 4.1 26.6 km NNW of Skyros 

2019-12-11T02:29:27.000000Z 37.5504 24.0079 142 4.1 53.9 km SSE of Athens 

2011-07-14T08:41:55.000000Z 37.83 22.62 82 4 29.9 km WSW of Korinthos 
2013-01-30T04:27:25.000000Z 38.78 23.37 22 4 35.2 km ENE of Atalanti 

2016-09-16T06:55:13.000000Z 38.89 23.33 25 4 33.5 km SSW of Skiathos 

2016-09-29T01:17:36.000000Z 39.53 24.1 30 4 66.7 km NE of Skiathos 

2011-04-22T01:20:24.000000Z 38.37 23.62 23 3.9 10.6 km S of Chalkida 

2012-09-24T19:18:37.000000Z 39.03 23.16 23 3.9 31.8 km WSW of Skiathos 

2013-09-17T05:46:52.000000Z 38.72 22.77 17 3.9 21.3 km WNW of Atalanti 

2013-11-04T22:09:17.000000Z 38.91 23.1 23 3.9 30.1 km NNE of Atalanti 

2014-09-29T08:15:07.000000Z 39.31 24.04 32 3.9 50.5 km ENE of Skiathos 

2014-11-18T01:13:47.000000Z 38.64 23.41 23 3.9 25.6 km NW of Chalkida 

2014-11-19T00:37:26.000000Z 38.64 23.42 24 3.9 25.1 km NW of Chalkida 

2014-12-31T04:49:58.000000Z 38.19 22.51 20 3.9 38.0 km E of Aegion 

2015-11-17T03:00:09.000000Z 39.51 24.07 43 3.9 63.3 km NE of Skiathos 

2016-05-20T20:00:20.000000Z 38.59 24.47 15 3.9 35.9 km SSW of Skyros 

2018-01-19T10:10:07.000000Z 37.5118 23.7805 137 3.9 52.6 km S of Athens 

2010-03-12T03:34:37.000000Z 38.12 22.63 20 3.8 33.3 km NW of Korinthos 

2011-01-17T22:27:10.000000Z 38.78 23.45 23 3.8 37.5 km NNW of Chalkida 

2011-02-09T08:13:10.000000Z 38.63 22.49 21 3.8 15.5 km NE of Amfissa 

2011-05-19T09:05:38.000000Z 38.43 23.86 24 3.8 23.0 km E of Chalkida 

2012-08-25T06:17:44.000000Z 38.89 23.22 25 3.8 32.7 km NE of Atalanti 

2014-05-13T01:24:10.000000Z 38.24 25.13 32 3.8 48.4 km NNE of Andros 

2014-05-27T11:21:30.000000Z 37.54 22.86 78 3.8 5.3 km ESE of Nafplio 

2014-11-17T23:40:36.000000Z 38.65 23.37 21 3.8 28.8 km NW of Chalkida 

2016-04-09T01:36:11.000000Z 38.63 24.45 26 3.8 32.0 km SSW of Skyros 

2016-05-09T17:29:19.000000Z 38.85 23.62 19 3.8 37.1 km SSE of Skiathos 

2016-05-09T22:57:01.000000Z 39.14 24.15 15 3.8 44.3 km NW of Skyros 

2018-12-23T22:34:10.000000Z 37.3258 23.945 28 3.8 50.4 km WNW of Seriphos 

2019-11-24T18:34:57.000000Z 39.4579 24.0852 15 3.8 61.1 km ENE of Skiathos 

2011-01-11T15:46:45.000000Z 38.75 22.2 23 3.7 26.2 km SW of Lamia 

2011-02-13T00:17:22.000000Z 38.71 22.81 17 3.7 17.7 km WNW of Atalanti 

2011-09-12T14:29:22.000000Z 38.72 23.39 21 3.7 33.8 km NNW of Chalkida 

2013-03-13T23:09:01.000000Z 39.19 23.47 15 3.7 2.8 km NNW of Skiathos 

2014-04-28T03:49:50.000000Z 38.69 22.81 23 3.7 17.0 km WNW of Atalanti 

2014-06-28T19:09:47.000000Z 37.46 22.85 20 3.7 12.1 km SSE of Nafplio 

2014-10-30T06:09:08.000000Z 38.14 22.63 15 3.7 34.7 km NW of Korinthos 

2014-11-05T20:51:39.000000Z 39.14 24.19 25 3.7 41.5 km NW of Skyros 

2014-11-15T08:11:31.000000Z 38.99 23.7 24 3.7 27.1 km SE of Skiathos 

2014-11-18T00:53:59.000000Z 38.63 23.43 23 3.7 23.7 km NW of Chalkida 

2014-12-14T08:16:33.000000Z 38.62 22.88 18 3.7 10.9 km WSW of Atalanti 

2015-03-09T03:24:41.000000Z 39.31 24.02 16 3.7 48.9 km ENE of Skiathos 

2016-07-28T16:17:29.000000Z 38.17 22.94 15 3.7 25.8 km N of Korinthos 

2010-03-11T09:54:08.000000Z 38.12 23.26 21 3.6 35.1 km NE of Korinthos 

2010-05-12T06:59:22.000000Z 38.62 23.78 25 3.6 23.4 km NE of Chalkida 

2010-07-28T13:55:27.000000Z 37.47 23.32 29 3.6 46.4 km ESE of Nafplio 

2010-09-06T19:20:42.000000Z 37.59 22.61 56 3.6 17.7 km W of Nafplio 

2010-10-28T04:04:46.000000Z 38.36 22.25 20 3.6 19.2 km NE of Aegion 
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2010-12-14T13:58:52.000000Z 38.06 22.78 19 3.6 19.0 km NW of Korinthos 

2011-01-31T17:23:13.000000Z 37.87 22.7 26 3.6 21.7 km WSW of Korinthos 

2012-08-16T21:22:53.000000Z 38.28 22.55 24 3.6 31.3 km SSE of Amfissa 

2013-09-08T06:22:10.000000Z 38.59 23.76 23 3.6 19.8 km NE of Chalkida 

2014-02-12T07:41:00.000000Z 37.93 22.6 16 3.6 29.1 km W of Korinthos 

2014-06-09T22:02:57.000000Z 39.17 23.75 24 3.6 23.0 km E of Skiathos 

2014-07-30T00:55:04.000000Z 38.04 24.12 19 3.6 34.5 km E of Athens 

2016-07-26T16:59:47.000000Z 37.63 23.5 15 3.6 44.3 km SSW of Athens 

2016-08-26T07:47:24.000000Z 38.6 24.47 21 3.6 34.8 km SSW of Skyros 

2017-06-23T22:26:17.000000Z 38.4549 23.53 17 3.6 6.1 km W of Chalkida 

2019-08-03T17:17:09.000000Z 38.1404 22.7019 15 3.6 30.2 km NW of Korinthos 

2010-06-05T05:12:40.000000Z 38.13 23.18 18 3.5 30.5 km NE of Korinthos 

2010-06-16T15:11:21.000000Z 37.41 23.58 28 3.5 65.2 km SSW of Athens 

2011-03-07T17:10:53.000000Z 38.25 22.55 15 3.5 34.2 km SSE of Amfissa 

2011-08-16T20:22:22.000000Z 38.15 22.71 22 3.5 30.6 km NW of Korinthos 

2011-10-24T09:24:37.000000Z 37.61 23.51 27 3.5 45.9 km SSW of Athens 

2011-11-20T22:14:14.000000Z 38.17 22.56 21 3.5 40.2 km SW of Levadhia 

2013-06-11T19:36:16.000000Z 38.17 23.23 23 3.5 36.7 km NE of Korinthos 

2013-10-27T13:53:37.000000Z 38.64 23.61 22 3.5 19.6 km N of Chalkida 

2013-12-22T18:04:02.000000Z 37.85 22.76 27 3.5 18.0 km WSW of Korinthos 

2014-04-10T17:40:44.000000Z 37.93 22.61 24 3.5 28.3 km W of Korinthos 

2014-11-17T23:18:45.000000Z 38.66 23.4 23 3.5 27.9 km NW of Chalkida 

2014-11-20T16:26:22.000000Z 38.65 23.36 24 3.5 29.4 km NW of Chalkida 

2015-06-09T02:31:27.000000Z 38.63 23.4 16 3.5 25.4 km NW of Chalkida 

2015-06-09T03:04:41.000000Z 38.63 23.42 15 3.5 24.2 km NW of Chalkida 

2016-05-28T21:00:10.000000Z 37.57 23.57 16 3.5 48.1 km SSW of Athens 

2016-06-03T01:28:49.000000Z 38.62 24.45 16 3.5 33.1 km SSW of Skyros 

2019-07-19T11:42:19.000000Z 38.1248 23.5158 16 3.5 24.7 km NW of Athens 

2010-08-27T11:23:20.000000Z 37.86 22.98 19 3.4 9.6 km SSE of Korinthos 

2010-09-21T08:02:11.000000Z 38.15 23.32 24 3.4 40.7 km WNW of Athens 

2010-12-12T08:19:31.000000Z 38.11 23.55 18 3.4 21.4 km NW of Athens 

2011-06-26T06:31:10.000000Z 38.88 23.69 22 3.4 36.5 km SSE of Skiathos 

2011-12-01T01:17:43.000000Z 38.76 23.44 25 3.4 35.8 km NNW of Chalkida 

2013-08-15T01:03:30.000000Z 38.7 22.67 19 3.4 29.1 km W of Atalanti 

2013-12-21T05:50:39.000000Z 38.23 22.21 50 3.4 11.4 km E of Aegion 

2014-02-28T22:13:54.000000Z 38.2 22.53 21 3.4 38.6 km SSE of Amfissa 

2014-03-30T20:31:03.000000Z 37.58 23.45 20 3.4 51.3 km SSW of Athens 

2014-11-18T01:16:19.000000Z 38.63 23.4 19 3.4 25.4 km NW of Chalkida 

2014-11-18T03:18:49.000000Z 38.64 23.41 23 3.4 25.6 km NW of Chalkida 

2014-11-18T23:44:40.000000Z 38.64 23.36 21 3.4 28.6 km NW of Chalkida 

2015-10-27T01:52:29.000000Z 38.94 24.3 16 3.4 23.1 km W of Skyros 

2016-01-14T00:27:57.000000Z 38.95 24.08 16 3.4 42.1 km W of Skyros 

2016-02-06T02:23:31.000000Z 38.42 23.99 26 3.4 34.4 km E of Chalkida 

2016-08-22T13:24:10.000000Z 38.33 24.06 15 3.4 42.8 km ESE of Chalkida 

2016-09-09T14:07:49.000000Z 37.57 23.58 17 3.4 47.9 km SSW of Athens 

2017-06-04T00:07:21.000000Z 38.1495 24.0802 20 3.4 35.5 km ENE of Athens 

2017-09-02T04:21:05.000000Z 38.4229 23.5107 23 3.4 9.0 km WSW of Chalkida 

2017-10-29T20:35:32.000000Z 37.5146 22.6611 30 3.4 14.0 km WSW of Nafplio 

2012-03-15T23:47:48.000000Z 38.14 22.67 20 3.3 32.1 km NW of Korinthos 
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2012-04-14T20:19:18.000000Z 38.11 22.71 15 3.3 27.3 km NW of Korinthos 

2012-09-30T05:19:37.000000Z 38.1 22.7 15 3.3 27.2 km NW of Korinthos 

2013-09-26T00:49:53.000000Z 38.44 23.81 24 3.3 18.5 km E of Chalkida 

2013-12-26T13:51:58.000000Z 38.6 23.95 28 3.3 34.1 km ENE of Chalkida 

2014-01-13T03:08:12.000000Z 38.86 23.39 24 3.3 35.0 km SSW of Skiathos 

2014-06-23T01:47:01.000000Z 38.69 23.56 15 3.3 25.4 km N of Chalkida 

2014-11-18T00:35:38.000000Z 38.65 23.41 21 3.3 26.5 km NW of Chalkida 

2014-11-18T00:47:48.000000Z 38.66 23.41 24 3.3 27.4 km NW of Chalkida 

2015-05-06T19:05:01.000000Z 38.43 23.9 17 3.3 26.4 km E of Chalkida 

2015-06-10T18:46:41.000000Z 38.66 23.42 17 3.3 26.8 km NW of Chalkida 

2016-06-23T12:10:57.000000Z 38.16 22.68 16 3.3 33.1 km NW of Korinthos 

2016-07-04T05:42:46.000000Z 37.54 23.63 16 3.3 50.1 km S of Athens 

2016-09-07T09:34:15.000000Z 38.4 23.92 18 3.3 28.8 km ESE of Chalkida 

2019-10-01T01:23:57.000000Z 39.521 23.5826 17 3.3 40.3 km NNE of Skiathos 

2011-05-29T22:23:19.000000Z 38.16 23.95 18 3.2 27.3 km NE of Athens 

2011-08-05T05:49:59.000000Z 38.72 23.71 25 3.2 30.1 km NNE of Chalkida 

2012-09-30T02:41:34.000000Z 38.11 22.7 20 3.2 27.9 km NW of Korinthos 

2013-07-27T06:46:52.000000Z 38.6 23.94 28 3.2 33.3 km ENE of Chalkida 

2013-11-15T18:11:03.000000Z 37.54 22.9 76 3.2 8.6 km ESE of Nafplio 

2014-10-11T01:53:35.000000Z 37.88 22.55 19 3.2 34.1 km W of Korinthos 

2014-10-21T17:46:25.000000Z 38.59 22.99 23 3.2 6.8 km S of Atalanti 

2014-11-19T16:32:28.000000Z 38.65 23.42 24 3.2 25.9 km NW of Chalkida 

2015-05-06T18:05:31.000000Z 38.43 23.9 16 3.2 26.4 km E of Chalkida 

2015-11-05T14:27:53.000000Z 38.62 24.46 24 3.2 32.8 km SSW of Skyros 

2016-03-31T04:43:29.000000Z 37.54 23.57 21 3.2 51.3 km SSW of Athens 

2016-05-04T23:03:37.000000Z 37.53 23.58 15 3.2 52.2 km SSW of Athens 

2016-07-02T23:46:09.000000Z 37.55 23.59 15 3.2 49.8 km SSW of Athens 

2016-10-29T11:52:42.000000Z 38.91 23.92 26 3.2 47.3 km SE of Skiathos 

2017-05-10T12:44:01.000000Z 38.7763 23.358 25 3.2 34.1 km ENE of Atalanti 

2010-03-24T20:15:18.000000Z 38.87 23.63 21 3.1 35.3 km SSE of Skiathos 

2010-05-15T12:10:02.000000Z 38.13 23.17 19 3.1 29.8 km NE of Korinthos 

2011-01-28T01:36:06.000000Z 38.21 23.16 17 3.1 35.3 km SE of Levadhia 

2011-05-20T23:36:21.000000Z 38.44 23.88 24 3.1 24.6 km E of Chalkida 

2011-05-24T10:27:50.000000Z 37.88 22.98 16 3.1 7.7 km SSE of Korinthos 

2011-09-13T02:13:33.000000Z 38.72 23.38 22 3.1 33.9 km ENE of Atalanti 

2011-11-06T07:38:21.000000Z 39.1 23.28 22 3.1 19.0 km WSW of Skiathos 

2012-01-18T17:53:18.000000Z 37.72 23.04 24 3.1 26.0 km SSE of Korinthos 

2012-02-20T00:51:46.000000Z 38.19 24.1 21 3.1 39.5 km NE of Athens 

2012-05-16T00:00:01.000000Z 37.81 22.91 22 3.1 14.3 km S of Korinthos 

2013-06-25T20:25:24.000000Z 38.17 23.22 15 3.1 36.1 km NE of Korinthos 

2013-09-08T06:28:10.000000Z 38.61 23.76 24 3.1 21.4 km NE of Chalkida 

2013-11-08T20:01:57.000000Z 38.65 24.61 26 3.1 28.6 km S of Skyros 

2014-08-11T00:25:29.000000Z 38.41 22.5 19 3.1 16.9 km SE of Amfissa 

2014-11-18T01:19:37.000000Z 38.65 23.41 25 3.1 26.5 km NW of Chalkida 

2014-11-21T10:37:59.000000Z 38.66 23.39 25 3.1 28.4 km NW of Chalkida 

2015-06-06T00:40:19.000000Z 38.79 23.46 15 3.1 38.3 km NNW of Chalkida 

2015-07-23T16:05:50.000000Z 38.6 23.42 15 3.1 21.8 km NW of Chalkida 

2016-01-21T03:14:49.000000Z 37.51 22.62 76 3.1 17.6 km WSW of Nafplio 

2016-03-19T08:17:32.000000Z 37.52 23.61 18 3.1 52.6 km SSW of Athens 
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2016-04-22T13:33:20.000000Z 37.54 23.6 19 3.1 50.7 km SSW of Athens 

2016-05-28T20:18:58.000000Z 37.56 23.57 15 3.1 49.2 km SSW of Athens 

2016-07-06T16:26:12.000000Z 37.55 23.6 15 3.1 49.6 km SSW of Athens 

2017-05-18T08:14:16.000000Z 38.0013 23.9545 17 3.1 19.5 km E of Athens 

2017-06-06T08:01:33.000000Z 38.4808 23.3872 20 3.1 18.6 km W of Chalkida 

2018-08-23T02:30:42.000000Z 37.5758 22.626 64 3.1 16.1 km W of Nafplio 

2019-07-15T20:28:24.000000Z 37.9047 22.6447 16 3.1 25.5 km W of Korinthos 

2014-11-17T23:05:55.000000Z 38,64 23,4 24 5,2 26.2 km NW of Chalkida 

2014-11-17T23:09:03.000000Z 38,64 23,41 23 5,2 25.6 km NW of Chalkida 

2010-03-09T02:55:00.000000Z 38,87 23,65 22 5,1 36.0 km SSE of Skiathos 

2010-07-16T18:53:10.000000Z 39,32 24,02 34 5,1 49.3 km ENE of Skiathos 

2012-09-22T03:52:24.000000Z 38,09 22,74 25 4,9 23.9 km NW of Korinthos 

2013-09-16T15:01:14.000000Z 38,72 22,74 17 4,9 23.8 km WNW of Atalanti 

2014-04-30T04:03:32.000000Z 38,23 25,13 32 4,9 47.4 km NNE of Andros 

2013-11-12T18:09:28.000000Z 38,92 23,1 17 4,8 31.2 km NNE of Atalanti 

2013-08-07T13:44:32.000000Z 38,69 22,66 15 4,7 29.8 km W of Atalanti 

2013-08-09T13:10:10.000000Z 38,69 22,65 17 4,7 30.0 km SE of Lamia 

2014-06-27T16:14:27.000000Z 38,24 25,13 30 4,7 48.4 km NNE of Andros 

2012-10-26T23:16:44.000000Z 38,96 22,91 26 4,6 35.2 km NNW of Atalanti 

2010-07-17T02:30:35.000000Z 39,33 24,02 34 4,5 49.7 km ENE of Skiathos 

2013-09-16T14:42:39.000000Z 38,7 22,73 20 4,5 24.0 km WNW of Atalanti 

2014-02-01T08:14:03.000000Z 38,7 22,75 18 4,5 22.3 km WNW of Atalanti 

2011-02-22T20:37:02.000000Z 38,86 24,95 37 4,4 33.9 km E of Skyros 

2013-09-20T02:05:18.000000Z 38,18 23,13 23 4,4 32.0 km NNE of Korinthos 

2013-11-27T14:21:15.000000Z 37,33 23,01 25 4,4 22.6 km NE of Leonidhion 

2014-06-06T12:21:03.000000Z 39,17 23,71 23 4,4 19.5 km E of Skiathos 

2014-07-11T09:46:04.000000Z 38,45 23,71 26 4,4 9.7 km E of Chalkida 

2014-10-04T00:12:01.000000Z 37,41 22,2 20 4,4 19.3 km SW of Tripolis 

2015-10-27T01:25:51.000000Z 38,92 24,33 25 4,4 20.2 km W of Skyros 

2017-03-24T04:24:30.000000Z 37,5705 23,8847 165 4,4 47.8 km SSE of Athens 

2010-08-29T00:51:57.000000Z 38,66 23,38 22 4,3 29.0 km NW of Chalkida 

2010-09-02T03:53:04.000000Z 38,22 23,17 26 4,3 35.2 km SE of Levadhia 

2010-10-09T19:04:49.000000Z 38,15 22,72 20 4,3 30.0 km NW of Korinthos 

2011-08-21T06:14:18.000000Z 37,63 23,32 115 4,3 45.8 km E of Nafplio 

2012-06-28T13:11:29.000000Z 39,01 23,17 25 4,3 32.2 km WSW of Skiathos 

2013-04-28T16:31:04.000000Z 37,45 22,7 61 4,3 15.8 km SW of Nafplio 

2013-06-04T01:56:53.000000Z 37,98 24,01 24 4,3 24.3 km E of Athens 

2014-02-06T07:58:26.000000Z 38,71 22,77 22 4,3 20.9 km WNW of Atalanti 

2014-05-20T23:30:44.000000Z 39,53 24,2 30 4,3 73.7 km ENE of Skiathos 

2019-07-19T12:11:54.000000Z 38,0956 23,5808 15 4,3 18.3 km NW of Athens 

2010-05-11T07:03:36.000000Z 38,62 23,77 24 4,2 22.9 km NE of Chalkida 

2012-02-17T08:05:04.000000Z 37,87 23,02 17 4,2 10.8 km SE of Korinthos 

2013-04-28T04:49:55.000000Z 38,26 22,25 55 4,2 14.7 km E of Aegion 

2013-11-22T15:12:03.000000Z 39,05 22,41 21 4,2 16.8 km N of Lamia 

2013-12-11T13:00:53.000000Z 39,01 22,29 21 4,2 17.4 km NW of Lamia 

2014-05-06T02:00:00.000000Z 39,35 23,88 29 4,2 39.8 km ENE of Skiathos 

2016-06-11T08:29:45.000000Z 39,23 23,73 15 4,2 22.4 km ENE of Skiathos 

2019-11-29T20:46:40.000000Z 39,0482 22,3178 77 4,2 19.3 km NNW of Lamia 

2010-04-04T22:05:56.000000Z 38,42 22,32 17 4,1 12.6 km SSW of Amfissa 
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2010-06-27T13:10:09.000000Z 37,52 22,94 79 4,1 12.6 km ESE of Nafplio 

2011-09-06T04:14:13.000000Z 37,88 23,1 104 4,1 16.1 km ESE of Korinthos 

2012-08-02T10:30:39.000000Z 39,27 23,72 25 4,1 23.4 km ENE of Skiathos 

2012-08-06T15:22:11.000000Z 38,75 24,83 29 4,1 28.8 km SE of Skyros 

2012-12-03T21:40:15.000000Z 39,53 23,51 27 4,1 40.5 km N of Skiathos 

2012-12-09T01:23:05.000000Z 37,93 22,59 24 4,1 30.0 km W of Korinthos 

2014-05-10T03:04:50.000000Z 38,42 22,46 20 4,1 13.9 km SSE of Amfissa 

2014-12-19T22:40:32.000000Z 39,33 22,62 19 4,1 28.3 km W of Volos 

2015-04-13T03:49:02.000000Z 39,13 24,46 17 4,1 26.6 km NNW of Skyros 

2016-08-26T13:37:32.000000Z 38,57 24,51 17 4,1 37.4 km S of Skyros 

2019-12-11T02:29:27.000000Z 37,5504 24,0079 142 4,1 53.9 km SSE of Athens 

2011-07-14T08:41:55.000000Z 37,83 22,62 82 4 29.9 km WSW of Korinthos 

2013-01-30T04:27:25.000000Z 38,78 23,37 22 4 35.2 km ENE of Atalanti 

2016-09-16T06:55:13.000000Z 38,89 23,33 25 4 33.5 km SSW of Skiathos 

2016-09-29T01:17:36.000000Z 39,53 24,1 30 4 66.7 km NE of Skiathos 

2018-12-11T04:11:43.000000Z 39,5152 24,249 41 4 73.1 km NNW of Skyros 

2010-03-12T07:23:27.000000Z 37,76 22,76 80 3,9 22.2 km N of Nafplio 

2010-03-20T20:24:48.000000Z 39,53 23,47 28 3,9 40.4 km N of Skiathos 

2011-04-22T01:20:24.000000Z 38,37 23,62 23 3,9 10.6 km S of Chalkida 

2011-11-29T16:55:57.000000Z 37,56 24,05 161 3,9 54.7 km SSE of Athens 

2012-09-24T19:18:37.000000Z 39,03 23,16 23 3,9 31.8 km WSW of Skiathos 

2013-09-17T05:46:52.000000Z 38,72 22,77 17 3,9 21.3 km WNW of Atalanti 

2013-11-04T22:09:17.000000Z 38,91 23,1 23 3,9 30.1 km NNE of Atalanti 

2014-09-29T08:15:07.000000Z 39,31 24,04 32 3,9 50.5 km ENE of Skiathos 

2014-11-18T01:13:47.000000Z 38,64 23,41 23 3,9 25.6 km NW of Chalkida 

2014-11-19T00:37:26.000000Z 38,64 23,42 24 3,9 25.1 km NW of Chalkida 

2014-12-07T12:59:53.000000Z 39,35 22,63 18 3,9 27.2 km W of Volos 

2014-12-31T04:49:58.000000Z 38,19 22,51 20 3,9 38.0 km E of Aegion 

2015-11-17T03:00:09.000000Z 39,51 24,07 43 3,9 63.3 km NE of Skiathos 

2016-05-20T08:45:33.000000Z 39,27 22,93 15 3,9 10.8 km S of Volos 

2016-05-20T20:00:20.000000Z 38,59 24,47 15 3,9 35.9 km SSW of Skyros 

2018-01-19T10:10:07.000000Z 37,5118 23,7805 137 3,9 52.6 km S of Athens 

2019-10-14T09:24:32.000000Z 38,167 22,657 18 3,9 35.1 km NW of Korinthos 

2010-03-12T03:34:37.000000Z 38,12 22,63 20 3,8 33.3 km NW of Korinthos 

2010-07-05T08:37:58.000000Z 38,86 23,6 24 3,8 35.6 km SSE of Skiathos 

2010-07-18T05:00:19.000000Z 39,32 24,02 29 3,8 49.3 km ENE of Skiathos 

2011-01-17T22:27:10.000000Z 38,78 23,45 23 3,8 37.5 km NNW of Chalkida 

2011-01-20T11:39:36.000000Z 39,55 23,51 25 3,8 42.7 km N of Skiathos 

2011-01-23T13:06:34.000000Z 39,54 23,5 29 3,8 41.5 km N of Skiathos 

2011-02-09T08:13:10.000000Z 38,63 22,49 21 3,8 15.5 km NE of Amfissa 

2011-05-19T09:05:38.000000Z 38,43 23,86 24 3,8 23.0 km E of Chalkida 

2011-07-12T08:00:14.000000Z 39,39 24 27 3,8 50.9 km ENE of Skiathos 

2011-10-04T06:12:13.000000Z 37,33 23,28 96 3,8 41.7 km ENE of Leonidhion 

2012-08-25T06:17:44.000000Z 38,89 23,22 25 3,8 32.7 km NE of Atalanti 

2012-12-04T09:41:14.000000Z 39,53 23,52 28 3,8 40.5 km N of Skiathos 

2013-08-14T17:12:57.000000Z 38,7 22,66 19 3,8 29.7 km SE of Lamia 

2014-05-13T01:24:10.000000Z 38,24 25,13 32 3,8 48.4 km NNE of Andros 

2014-05-27T11:21:30.000000Z 37,54 22,86 78 3,8 5.3 km ESE of Nafplio 

2014-07-11T10:47:01.000000Z 38,45 23,71 25 3,8 9.7 km E of Chalkida 
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2014-09-03T09:40:48.000000Z 38,61 24,53 27 3,8 32.8 km S of Skyros 

2014-11-17T23:13:29.000000Z 38,65 23,45 24 3,8 24.5 km NNW of Chalkida 

2014-11-17T23:40:36.000000Z 38,65 23,37 21 3,8 28.8 km NW of Chalkida 

2016-04-09T01:36:11.000000Z 38,63 24,45 26 3,8 32.0 km SSW of Skyros 

2016-05-09T17:29:19.000000Z 38,85 23,62 19 3,8 37.1 km SSE of Skiathos 

2016-05-09T22:57:01.000000Z 39,14 24,15 15 3,8 44.3 km NW of Skyros 

2018-12-16T19:21:58.000000Z 39,5338 24,283 17 3,8 74.1 km NNW of Skyros 

2018-12-23T22:34:10.000000Z 37,3258 23,945 28 3,8 50.4 km WNW of Seriphos 

2019-03-14T10:37:09.000000Z 39,5215 24,1113 15 3,8 66.9 km NE of Skiathos 

2019-11-24T18:34:57.000000Z 39,4579 24,0852 15 3,8 61.1 km ENE of Skiathos 

2011-01-11T15:46:45.000000Z 38,75 22,2 23 3,7 26.2 km SW of Lamia 

2011-02-13T00:17:22.000000Z 38,71 22,81 17 3,7 17.7 km WNW of Atalanti 

2011-09-12T14:29:22.000000Z 38,72 23,39 21 3,7 33.8 km NNW of Chalkida 

2012-01-05T20:25:49.000000Z 38,99 22,26 22 3,7 18.0 km NW of Lamia 

2013-03-13T23:09:01.000000Z 39,19 23,47 15 3,7 2.8 km NNW of Skiathos 

2013-08-10T07:09:33.000000Z 38,7 22,67 18 3,7 29.1 km W of Atalanti 

2014-04-17T07:04:04.000000Z 38,42 22,47 15 3,7 14.4 km SE of Amfissa 

2014-04-28T03:49:50.000000Z 38,69 22,81 23 3,7 17.0 km WNW of Atalanti 

2014-06-28T19:09:47.000000Z 37,46 22,85 20 3,7 12.1 km SSE of Nafplio 

2014-10-30T06:09:08.000000Z 38,14 22,63 15 3,7 34.7 km NW of Korinthos 

2014-11-05T20:51:39.000000Z 39,14 24,19 25 3,7 41.5 km NW of Skyros 

2014-11-15T08:11:31.000000Z 38,99 23,7 24 3,7 27.1 km SE of Skiathos 

2014-11-18T00:53:59.000000Z 38,63 23,43 23 3,7 23.7 km NW of Chalkida 

2014-12-14T08:16:33.000000Z 38,62 22,88 18 3,7 10.9 km WSW of Atalanti 

2015-03-09T03:24:41.000000Z 39,31 24,02 16 3,7 48.9 km ENE of Skiathos 

2015-07-02T13:15:29.000000Z 39,51 24,22 44 3,7 73.6 km NNW of Skyros 

2016-07-28T16:17:29.000000Z 38,17 22,94 15 3,7 25.8 km N of Korinthos 

2016-08-26T17:23:37.000000Z 39,28 22,94 24 3,7 9.7 km S of Volos 

2010-03-11T09:54:08.000000Z 38,12 23,26 21 3,6 35.1 km NE of Korinthos 

2010-04-15T18:51:43.000000Z 38,81 23,43 20 3,6 39.9 km S of Skiathos 

2010-05-12T06:59:22.000000Z 38,62 23,78 25 3,6 23.4 km NE of Chalkida 

2010-07-28T13:55:27.000000Z 37,47 23,32 29 3,6 46.4 km ESE of Nafplio 

2010-08-03T00:07:37.000000Z 38,73 22,54 21 3,6 21.0 km SSE of Lamia 

2010-09-06T19:20:42.000000Z 37,59 22,61 56 3,6 17.7 km W of Nafplio 

2010-10-28T04:04:46.000000Z 38,36 22,25 20 3,6 19.2 km NE of Aegion 

2010-12-14T13:58:52.000000Z 38,06 22,78 19 3,6 19.0 km NW of Korinthos 

2011-01-31T17:23:13.000000Z 37,87 22,7 26 3,6 21.7 km WSW of Korinthos 

2012-02-13T09:40:42.000000Z 38,88 24,14 26 3,6 36.7 km W of Skyros 

2012-08-16T21:22:53.000000Z 38,28 22,55 24 3,6 31.3 km SSE of Amfissa 

2013-08-07T10:02:33.000000Z 38,68 22,65 18 3,6 29.6 km NE of Amfissa 

2013-09-08T06:22:10.000000Z 38,59 23,76 23 3,6 19.8 km NE of Chalkida 

2014-02-07T06:59:59.000000Z 38,7 22,78 18 3,6 19.8 km WNW of Atalanti 

2014-02-12T07:41:00.000000Z 37,93 22,6 16 3,6 29.1 km W of Korinthos 

2014-06-09T22:02:57.000000Z 39,17 23,75 24 3,6 23.0 km E of Skiathos 

2014-07-30T00:55:04.000000Z 38,04 24,12 19 3,6 34.5 km E of Athens 

2014-09-18T07:24:25.000000Z 37,7 23,09 25 3,6 29.1 km ENE of Nafplio 

2016-07-26T16:59:47.000000Z 37,63 23,5 15 3,6 44.3 km SSW of Athens 

2016-08-26T07:47:24.000000Z 38,6 24,47 21 3,6 34.8 km SSW of Skyros 

2017-06-23T22:26:17.000000Z 38,4549 23,53 17 3,6 6.1 km W of Chalkida 
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2018-12-11T04:01:21.000000Z 39,5293 24,2372 35 3,6 75.0 km NNW of Skyros 

2018-12-18T16:29:08.000000Z 39,5654 24,2725 15 3,6 76.1 km S of Kariai 

2019-02-26T14:31:17.000000Z 38,1885 23,4521 20 3,6 33.2 km SSW of Chalkida 

2019-08-03T17:17:09.000000Z 38,1404 22,7019 15 3,6 30.2 km NW of Korinthos 

2010-04-30T21:47:55.000000Z 38,88 23,62 22 3,5 34.0 km SSE of Skiathos 

2010-05-13T21:49:45.000000Z 38,61 23,63 23 3,5 16.5 km N of Chalkida 

2010-06-05T05:12:40.000000Z 38,13 23,18 18 3,5 30.5 km NE of Korinthos 

2010-06-16T15:11:21.000000Z 37,41 23,58 28 3,5 65.2 km SSW of Athens 

2010-11-09T12:04:59.000000Z 38,67 23,31 24 3,5 27.1 km E of Atalanti 

2010-12-21T21:52:14.000000Z 39,23 23,55 24 3,5 9.1 km NE of Skiathos 

2011-01-30T09:32:38.000000Z 37,86 23,1 18 3,5 17.1 km ESE of Korinthos 

2011-02-24T03:48:52.000000Z 39,56 23,45 26 3,5 43.8 km N of Skiathos 

2011-03-07T17:10:53.000000Z 38,25 22,55 15 3,5 34.2 km SSE of Amfissa 

2011-07-08T10:13:23.000000Z 39,47 23,73 29 3,5 39.8 km NNE of Skiathos 

2011-08-16T20:22:22.000000Z 38,15 22,71 22 3,5 30.6 km NW of Korinthos 

2011-08-18T09:47:40.000000Z 38,91 24,15 27 3,5 35.7 km W of Skyros 

2011-10-24T09:24:37.000000Z 37,61 23,51 27 3,5 45.9 km SSW of Athens 

2011-11-03T13:06:33.000000Z 39,1 23,29 22 3,5 18.2 km WSW of Skiathos 

2011-11-20T22:14:14.000000Z 38,17 22,56 21 3,5 40.2 km SW of Levadhia 

2012-01-18T19:49:23.000000Z 38,95 22,46 24 3,5 6.0 km NNE of Lamia 

2013-06-11T19:36:16.000000Z 38,17 23,23 23 3,5 36.7 km NE of Korinthos 

2013-10-27T13:53:37.000000Z 38,64 23,61 22 3,5 19.6 km N of Chalkida 

2013-11-13T06:50:23.000000Z 38,92 23,1 21 3,5 31.2 km NNE of Atalanti 

2013-12-22T18:04:02.000000Z 37,85 22,76 27 3,5 18.0 km WSW of Korinthos 

2014-03-17T17:40:53.000000Z 39,16 22,37 92 3,5 29.4 km N of Lamia 

2014-04-04T05:00:01.000000Z 39,02 23,39 24 3,5 18.2 km SSW of Skiathos 

2014-04-10T17:40:44.000000Z 37,93 22,61 24 3,5 28.3 km W of Korinthos 

2014-06-27T16:44:38.000000Z 38,24 25,13 32 3,5 48.4 km NNE of Andros 

2014-11-17T23:18:45.000000Z 38,66 23,4 23 3,5 27.9 km NW of Chalkida 

2014-11-18T00:18:27.000000Z 38,65 23,41 21 3,5 26.5 km NW of Chalkida 

2014-11-19T19:54:08.000000Z 38,64 23,43 23 3,5 24.5 km NW of Chalkida 

2014-11-20T16:26:22.000000Z 38,65 23,36 24 3,5 29.4 km NW of Chalkida 

2015-06-09T02:31:27.000000Z 38,63 23,4 16 3,5 25.4 km NW of Chalkida 

2015-06-09T03:04:41.000000Z 38,63 23,42 15 3,5 24.2 km NW of Chalkida 

2015-06-09T06:51:04.000000Z 38,6 23,44 15 3,5 20.6 km NW of Chalkida 

2015-11-10T06:53:47.000000Z 39,39 23,95 32 3,5 47.2 km ENE of Skiathos 

2016-02-25T12:06:09.000000Z 39,21 22,32 22 3,5 35.8 km NNW of Lamia 

2016-04-07T05:56:22.000000Z 38,65 22,5 80 3,5 17.7 km NE of Amfissa 

2016-05-28T21:00:10.000000Z 37,57 23,57 16 3,5 48.1 km SSW of Athens 

2016-06-03T01:28:49.000000Z 38,62 24,45 16 3,5 33.1 km SSW of Skyros 

2019-07-19T11:42:19.000000Z 38,1248 23,5158 16 3,5 24.7 km NW of Athens 

2010-04-10T11:03:28.000000Z 38,43 22,29 16 3,4 12.8 km SW of Amfissa 

2010-08-05T13:37:26.000000Z 39,32 24,02 28 3,4 49.3 km ENE of Skiathos 

2010-08-26T09:09:48.000000Z 39,53 23,47 30 3,4 40.4 km N of Skiathos 

2010-08-27T11:23:20.000000Z 37,86 22,98 19 3,4 9.6 km SSE of Korinthos 

2010-09-21T08:02:11.000000Z 38,15 23,32 24 3,4 40.7 km WNW of Athens 

2010-12-12T08:19:31.000000Z 38,11 23,55 18 3,4 21.4 km NW of Athens 

2011-03-26T08:21:43.000000Z 39,32 24,02 29 3,4 49.3 km ENE of Skiathos 

2011-04-21T05:17:25.000000Z 38,76 22,21 23 3,4 24.8 km SW of Lamia 
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2011-06-26T06:31:10.000000Z 38,88 23,69 22 3,4 36.5 km SSE of Skiathos 

2011-12-01T01:17:43.000000Z 38,76 23,44 25 3,4 35.8 km NNW of Chalkida 

2011-12-08T20:59:34.000000Z 38,08 23,53 20 3,4 20.8 km WNW of Athens 

2012-10-20T23:28:49.000000Z 38,82 24,91 32 3,4 31.5 km ESE of Skyros 

2013-03-06T14:55:34.000000Z 38,75 23,92 27 3,4 42.3 km NE of Chalkida 

2013-05-31T16:18:00.000000Z 37,36 23,17 18 3,4 35.1 km NE of Leonidhion 

2013-08-15T01:03:30.000000Z 38,7 22,67 19 3,4 29.1 km W of Atalanti 

2013-12-21T05:50:39.000000Z 38,23 22,21 50 3,4 11.4 km E of Aegion 

2014-01-25T19:13:39.000000Z 38,37 22,27 16 3,4 19.4 km SSW of Amfissa 

2014-02-28T22:13:54.000000Z 38,2 22,53 21 3,4 38.6 km SSE of Amfissa 

2014-03-30T20:31:03.000000Z 37,58 23,45 20 3,4 51.3 km SSW of Athens 

 

After the selection of the seismic events that are going to be used, we are processing them 

with the program of SeisComplex, which is based on matlab and is made for editing waveforms. 

The feature that we want to study and understand its variations is the q – Gaussian 

distribution, which is dependent on the value of the q index.  

In the following figures we may find the results from editing some of the coda waveforms, 

along with their characteristics, which will be their origin time at GTM, their latitude and 

longitude, their depth, their magnitude (ML) and the area of their location. The rest of them 

will be found in the appendix B.  

 

In figure 8.2.1 the time origin of the earthquake is 17/11/2014 at 23:05:55, latitude 38.64, 

longitude 23.4, depth 24 km, magnitude 5.2 at 26.2 km NW of Chalkida. The value of the index 

q is 1.8.  

Figure 8.2.1.  
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In figure 8.2.2 the time origin of the earthquake is 17/11/2014 at 23:09:03, latitude 38.64, 

longitude 23.41, depth 23 km, magnitude 5.2 at 25.6 km NW of Chalkida, following the 

previous seismic event. The value of the index q is 1.8.  

Figure 8.2.2 

 

In figure 8.2.3 the time origin of the earthquake is 09/03/2010 at 02:55:00, latitude 38.87, 

longitude 23.65, depth 22 km, magnitude 5.1 at 36.0 km SSE of Skiathos. The value of the index 

q is 1.6.  

Figure 8.2.3 
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In figure 8.2.4 the time origin of the earthquake is 16/07/2010 at 18:53:10, latitude 39.32, 

longitude 24.02, depth 34 km, magnitude 5.1 at49.3 km ENE of Skiathos. The value of the index 

q is 1.72.  

Figure 8.2.4 

 

In figure 8.2.5 the time origin of the earthquake is 22/09/2012 at 03:52:24, latitude 38.09, 

longitude 22.74, depth 25 km, magnitude 4.9 at23.9 km NW of Korinthos. The value of the 

index q is 1.8.  

Figure 8.2.5 
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In figure 8.2.6 the time origin of the earthquake is 30/04/2014 at 04:03:32, latitude 38.23, 

longitude 25.13, depth 32 km, magnitude 4.9 at 47.4 km NNE of Andros. The value of the index 

q is 1.8.  

Figure 8.2.6 

 

In figure 8.2.7 the time origin of the earthquake is 26/10/2012 at 23:16:44, latitude 38.96, 

longitude 22.91, depth 26 km, magnitude 4.6 at 35.2 km NNW of Atalanti. The value of the 

index q is 1.72.  

Figure 8.2.7 
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In figure 8.2.8 the time origin of the earthquake is 17/07/2010 at 02:30:35, latitude 39.33, 

longitude 24.02, depth 34 km, magnitude 4.5 at 49.7 km ENE of Skiathos. The value of the 

index q is 1.82.  

Figure 8.2.8 

 

In figure 8.2.9 the time origin of the earthquake is 20/09/2013 at 02:05:18, latitude 38.18, 

longitude 23.13, depth 23 km, magnitude 4.4 at 32.0 km NNE of Korinthos. The value of the 

index q is 1.8.  

Figure 8.2.9 
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In figure 8.2.10 the time origin of the earthquake is 27/11/2013 at 14:21:15, latitude 37.33, 

longitude 23.01, depth 25 km, magnitude 4.4 at 22.6 km NE of Leonidhion. The value of the 

index q is 1.8.  

Figure 8.2.10 

 

9. Discussion and conclusions 

After the previous studies that we have presented, we will make some conclusions based on 

them. The recent theoretical studies which have been applied to Radiative energy transfer 

theory in a medium with uniformly distributed scatterers have made clearer the process of 

multiple isotropic scattering. Although the experimental study of Matsunami (1991) supports 

this theory, there are many limitations on isotropic scattering and homogenous distribution of 

scatterers that have come from the observations. Sato has created a theory of strong forward 

scattering that is opposite the isotropic scattering. Scherbaum and Sato (1991) proposed a full 

seismogram envelope inversion method based on this theory. This method does not take into 

consideration the effects of inhomogeneity of scatterer distribution, radiation pattern and 

wave conversion. Frankel and Clayton (1986) and Gusev and Abubakirov (1987) have many 

theories and approaches for anisotropic multiple scattering. A multiple scattering model has 

been developed by Sato according to the P to S and S to P-wave mode conversions. In addition 

he has also developed a multiple scattering model according to anisotropic scattering. Both 

models are based on the energy transfer theory. 

In order to clear the composition of coda, array analyses using high quality digital data have 

been used. Those studies had the intension to understand the effects of P-S and S-P 

conversions, scatterers’ distribution and topographic relief using the coda wave composition. 

Analyses of P-coda waves are useful to evaluate the contribution of conversion scattering to 

the total scattering. If P coda waves are mainly composed of S-P scattered waves, the 

conversion rate of S-P scattered waves estimated from P coda waves may become an indicator 
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of S wave velocity perturbation. Three component array observations and detailed analyses are 

very important for the above purposes.  

For the second part of this thesis, we used S coda waveforms from seismic events that took 

place in central Greece, within the frequency range 1-30Hz and with magnitude range between 

3.1 and 5.2. The time period of those seismic events was from 01-01-2010 to 30-12-2019 and 

were recorder by a station in Athens. After analyzing the S- coda waveforms with the method 

of non-extensive statistical mechanics, using the SeisComplex program,  we can see from the 

figures 8.2.1 to 8.2.200 that the value of the q index is not far from the value of 1.8. This leads 

us to the conclusion that the time series describing the fluctuations in the seismic coda waves 

diverge from the Gaussian description and their corresponding probability density functions 

could be adequately described by the q-Gaussian distribution.   
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Appendix A 

 

Function f(r) 

function f1 = f_r_1(r,r_c,D) 
  % H function douleuei kai me orismata eisodou - dianusmata timwn: 
  f1=1./(((sqrt(1+(r./r_c).^2))).^(3-D)); 
end 
 
Function G(x,t) 
 
function Gxt = G_x_t(x_vector3,t,d,V0,U1) 
   r=norm(x_vector3); % r=|x|, opws leei i thewria 
   Gxt=(1/(4*pi*V0*r^2))*d*(t-r/V0)*exp(-U1);  
end 
 
Function U(r) 
 
function U1 = U_r_1(r,r_c,D,b_i_0,g_s_0) 
   % Sto script tha einai r=|x| (opws leei i thewria) 
   U1=(1+b_i_0)*g_s_0*r*hypergeom([(3-D)/2,1/2],3/2,-r^2/r_c^2);  % hypergeom([a,b],c,z) is 
the Gauss hypergeometric function 2F1(a,b;c;z) 
end 
 
Function GF(x,t) 
 
function GFxt = G_F_x_t(x_vector3,t,d,V0,U1,f1) 
   r=norm(x_vector3); % r=|x|, opws leei i thewria 
   GFxt=((1/(4*pi*V0*r^2))*d*(t-r/V0)*exp(-U1))   *f1;  
end 

 

Function𝑬̂̃(k,ω) 

 
function [Ehatkw,Ehatkw_no1] = E_hat_k_w(V0,b_i_0,g_s_0,D,r_c,W)  
 
  % H en logw function epistrefei 2 orismata: 1) ton tupo, dil tin sunartisi Ehatkw(k,w) kai,  
  % 2) tin timi tis sunartisis autis gia sugkekrimena k kai w pou eisagei 
  % o xristis (edw, oxi sto script) 
 
  syms r_var 
  syms k 
  syms w 
 
 
  expr1=exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-D)/2,1/2],3/2,-r_var^2/r_c^2))) + 
((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
  Ghatkw=(1/V0)* int(expr1,r_var,[0,Inf]) ; 
  expr2=(1./(((sqrt(1+(r_var/r_c).^2))).^(3-D)))   * exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-
D)/2,1/2],3/2,-r_var^2/r_c^2))) + ((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
  GFhatkw=(1/V0)* int(expr2,r_var,[0,Inf]) ; 
  Ehatkw = (W*Ghatkw)/(1-V0*g_s_0*GFhatkw); 
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  syms Ghatkw_no(k,w) 
 
   Ghatkw_no(k,w)=Ghatkw; 
 
   % Specific value (for specific k, w): 
   condition=false; 
   while condition==false 
       k_no=input('Eisagete k number: '); 
       if k_no>=0 % Prepei k_no>=0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi k number (megaluteri /isi tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   condition=false; 
   while condition==false 
       w_no=input('Eisagete w number : '); 
       if w_no>0 % Prepei w_no>0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi w number (megaluteri tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   Ghatkw_no1=Ghatkw_no(k_no,w_no); % Ghatkw_no1=Ghatkw_no(1,2); 
 
 syms GFhatkw_no(k,w) 
 
   GFhatkw_no(k,w)=GFhatkw; 
 
   GFhatkw_no1=GFhatkw_no(k_no,w_no); % Ghatkw_no1=Ghatkw_no(1,2); 
 
   Ehatkw_no1=(W*Ghatkw_no1)/(1-V0*g_s_0*GFhatkw_no1); 
 
 
end 
 

Function 𝑮̂̃(k,ω) 
 
function [Ghatkw,Ghatkw_no1] = G_hat_k_w(V0,b_i_0,g_s_0,D,r_c)    
 
   % H en logw function epistrefei 2 orismata: 1) ton tupo, dil tin sunartisi Ghatkw(k,w) kai,  
   % 2) tin timi tis sunartisis autis gia sugkekrimena k kai w pou eisagei 
   % o xristis (edw, oxi sto script) 
 
 
   % Ypologismos definite integral: 
   syms r_var 
   syms k  
   syms w  
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   expr=exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-D)/2,1/2],3/2,-r_var^2/r_c^2))) + 
((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var)));  % expr=b*r_var^2+r_var*k*w*b;    
   Ghatkw= (1/V0)* int(expr,r_var,[0,Inf]);     
 
   syms Ghatkw_no(k,w) 
 
   Ghatkw_no(k,w)=Ghatkw; 
 
   % Specific value (for specific k, w): 
   condition=false; 
   while condition==false 
       k_no=input('Eisagete k number: '); 
       if k_no>=0 % Prepei k_no>=0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi k number (megaluteri / isi tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   condition=false; 
   while condition==false 
       w_no=input('Eisagete w number : '); 
       if w_no>0 % Prepei w_no>0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi w number (megaluteri tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   Ghatkw_no1=Ghatkw_no(k_no,w_no);  
 
 
end 
 

Function 𝑮̂̃𝑭(𝒌, 𝝎) 
 
function [GFhatkw,GFhatkw_no1] = G_F_hat_k_w(V0,b_i_0,g_s_0,D,r_c) % 
G_F_hat_k_w(k,w,V0,b_i_0,g_s_0,D,r_c) 
 
   % H en logw function epistrefei 2 orismata: 1) ton tupo, dil tin sunartisi GFhatkw(k,w) kai,  
   % 2) tin timi tis sunartisis autis gia sugkekrimena k kai w pou eisagei 
   % o xristis (edw, oxi sto script) 
 
 
   % Ypologismos definite integral: 
   syms r_var 
   syms k  
   syms w  
 
   expr=(1./(((sqrt(1+(r_var/r_c).^2))).^(3-D)))   * exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-
D)/2,1/2],3/2,-r_var^2/r_c^2))) + ((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var)));  
   GFhatkw=(1/V0)* int(expr,r_var,[0,Inf]) ; 
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   syms GFhatkw_no(k,w) 
 
   GFhatkw_no(k,w)=GFhatkw; 
 
   % Specific value (for specific k, w): 
   condition=false; 
   while condition==false 
       k_no=input('Eisagete k number: '); 
       if k_no>=0 % Prepei k_no>=0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi k number (megaluteri / isi tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   condition=false; 
   while condition==false 
       w_no=input('Eisagete w number : '); 
       if w_no>0 % Prepei w_no>0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi w number (megaluteri tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   GFhatkw_no1=GFhatkw_no(k_no,w_no);  
 
end 
 
Function E(r,t)  
 
function [Ert,Ert_no1] = E_r_t(V0,b_i_0,g_s_0,D,r_c,W) 
 
  % H en logw function epistrefei 2 orismata: 1) ton tupo, dil tin sunartisi Ert(r,t) kai,  
  % 2) tin timi tis sunartisis autis gia sugkekrimena r kai t pou eisagei 
  % o xristis (edw, oxi sto script - - alla mporei na epanalabei ta r, t pou briskontai sto C.W. so 
far) 
 
  syms r_var 
  syms k 
  syms w 
 
  syms r 
  syms t 
 
 
  expr1=exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-D)/2,1/2],3/2,-r_var^2/r_c^2))) + 
((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
  Ghatkw=(1/V0)* int(expr1,r_var,[0,Inf]) ; 
  expr2=(1./(((sqrt(1+(r_var/r_c).^2))).^(3-D)))   * exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-
D)/2,1/2],3/2,-r_var^2/r_c^2))) + ((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
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  GFhatkw=(1/V0)* int(expr2,r_var,[0,Inf]) ; 
  Ehatkw = (W*Ghatkw)/(1-V0*g_s_0*GFhatkw); 
 
 
  % Sto dia tauta: 
  expr3=k*sin(k*r)*Ehatkw; 
  I1_function_of_omega_and_r=int(expr3,k,[0,Inf]); 
  expr4= exp(-1i*w*t)* (1/(2*pi^2*r))* I1_function_of_omega_and_r; 
  Ert=(1/(2*pi))*int(expr4,w,[-Inf,Inf]); 
 
 
  syms Ert_no(r,t) 
  Ert_no(r,t)=Ert; 
 
   % Specific value (for specific r, t): 
   condition=false; 
   while condition==false 
       r_no=input('Eisagete r number: '); 
       if r_no>0 % Prepei r_no>0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi r number (megaluteri tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
   condition=false; 
   while condition==false 
       t_no=input('Eisagete t number : '); 
       if t_no>0 % Prepei t_no>0  
          condition=true; 
       else  
          disp('PROSOXH: eisagete apodekti timi t number (megaluteri tou 0) ! ') 
          disp(' ') 
       end 
   end 
 
  Ert_no1=Ert_no(r_no,t_no);  
 
end 
 
Function 𝒕̅ 
 
function t_normalized = t_normal(V0,g_s_0,t) 
   t_normalized=V0*g_s_0*t; 
end 
 
Function 𝒙̅ 
 
function x_normalized = x_normal(g_s_0,x_vector) 
   x_normalized=g_s_0*x_vector; 
end 
Function 𝑮̅ 
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function G_normalized = G_normal(x_vector3,t,d,V0,U1,g_s_0) 
 
   r=norm(x_vector3); % r=|x|, opws leei i thewria 
   Gxt=(1/(4*pi*V0*r^2))*d*(t-r/V0)*exp(-U1);  
   G_normalized = Gxt/g_s_0^3; 
   %end 
end 
Function 𝑮̅𝑭 
 
function G_F_normalized = G_F_normal(x_vector3,t,d,V0,U1,f1,g_s_0) 
 
   r=norm(x_vector3); % r=|x|, opws leei i thewria 
   GFxt=((1/(4*pi*V0*r^2))*d*(t-r/V0)*exp(-U1))   *f1;  
   G_F_normalized = GFxt/g_s_0^3; 
 
end 
 
Function 𝑬̅ 
 
function E_normalized = E_normal(V0,b_i_0,g_s_0,D,r_c,W) 
 
  syms r_var 
  syms k 
  syms w 
 
  syms r 
  syms t 
 
 
  expr1=exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-D)/2,1/2],3/2,-r_var^2/r_c^2))) + 
((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
  Ghatkw=(1/V0)* int(expr1,r_var,[0,Inf]) ; 
  expr2=(1./(((sqrt(1+(r_var/r_c).^2))).^(3-D)))   * exp(-((1+b_i_0)*g_s_0*r_var*hypergeom([(3-
D)/2,1/2],3/2,-r_var^2/r_c^2))) + ((1i*w*r_var/V0)*(sin(k*r_var)/(k*r_var))); 
  GFhatkw=(1/V0)* int(expr2,r_var,[0,Inf]) ; 
  Ehatkw = (W*Ghatkw)/(1-V0*g_s_0*GFhatkw); 
 
  expr3=k*sin(k*r)*Ehatkw; 
  I1_function_of_omega_and_r=int(expr3,k,[0,Inf]); 
  expr4= exp(-1i*w*t)* (1/(2*pi^2*r))* I1_function_of_omega_and_r; 
  Ert=(1/(2*pi))*int(expr4,w,[-Inf,Inf]); 
 
 
  % Twra: 
  E_normalized=Ert/(W*g_s_0^3); 
 
 
end 
 
Function 𝒓̅𝒄 
 
function r_c_normalized = r_c_normal(g_s_0,r_c) 
   r_c_normalized=g_s_0*r_c; 
end 
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Function 𝑮̅(𝒙̅, 𝒕̅)  
 
function G_normalized_function = 
G_normal_function(t_normalized,r_normalized,d,r_c_normalized,D,b_i_0) 
   U2=(1+b_i_0)*r_normalized*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized)^2)); 
   G_normalized_function=(1/(4*pi*r_normalized^2))*d*(t_normalized-r_normalized)*exp(-
U2);  
end 
 
%function U2 = U_r_2(r_normalized,r_c_normalized,D,b_i_0) 
%   U2=(1+b_i_0)*r_normalized*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized)^2));  % hypergeom([a,b],c,z) is the Gauss hypergeometric 
function 2F1(a,b;c;z) 
%end 
 
Function 𝑮̅𝑭(𝒙̅, 𝒕̅) 
 
function G_F_normalized_function = 
G_F_normal_function(t_normalized,r_normalized,d,r_c_normalized,D,b_i_0) 
   U2=(1+b_i_0)*r_normalized*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized)^2)); 
   G_normalized_function=(1/(4*pi*r_normalized^2))*d*(t_normalized-r_normalized)*exp(-
U2); % EIPAME STO SCRIPT: EBALA OTI TO delta einai noumero - - 
   G_F_normalized_function=G_normalized_function* 
1./(((sqrt(1+(r_normalized./r_c_normalized).^2))).^(3-D));% swstos o tupos ??: r_c_normalized 
h' r_c ?? 
end 
 
%function U2 = U_r_2(r_normalized,r_c_normalized,D,b_i_0) 
%   U2=(1+b_i_0)*r_normalized*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized)^2));  % hypergeom([a,b],c,z) is the Gauss hypergeometric 
function 2F1(a,b;c;z) 
%end 
 
%function f1 = f_r_1(r,r_c,D) 
  % H function douleuei kai me orismata eisodou - dianusmata timwn: 
 % f1=1./(((sqrt(1+(r./r_c).^2))).^(3-D)); 
%end 
 
Function U(𝒓̅) 
 
function U2 = U_r_2(r_normalized,r_c_normalized,D,b_i_0) 
   U2=(1+b_i_0)*r_normalized*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized)^2));  % hypergeom([a,b],c,z) is the Gauss hypergeometric 
function 2F1(a,b;c;z) 
end 
 

Function 𝒆−𝑼(𝒓̅) 
 
function e_U2 = e_U_r_2(r_normalized,r_c_normalized,D,b_i_0) 
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   e_U2=exp(-((1+b_i_0).*r_normalized.*hypergeom([(3-D)/2,1/2],3/2,-
((r_normalized/r_c_normalized).^2))));  % hypergeom([a,b],c,z) is the Gauss hypergeometric 
function 2F1(a,b;c;z) 
end 
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Appendix B 
 

In figure 8.2.11 the time origin of the earthquake is 16/09/2013 at 15:01:14, latitude 38.72, 

longitude 22.74, depth 17 km, magnitude 4.9 at 23.8 km WNW of Atalanti. The value of the 

index q is 1.61.  

Figure 8.2.11 

 

In figure 8.2.12 the time origin of the earthquake is 12/11/2013 at 18:09:28, latitude 38.92, 

longitude 23.1, depth 17 km, magnitude 4.8 at 31.2 km NNE of Atalanti. The value of the index 

q is 1.58.  

Figure 8.2.12 
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In figure 8.2.13 the time origin of the earthquake is 07/08/2013 at 13:44:32, latitude 38.69, 

longitude 22.66, depth 15 km, magnitude 4.7 at 29.8 km W of Atalanti. The value of the index q 

is 1.59.  

Figure 8.2.13 

 

In figure 8.2.14 the time origin of the earthquake is 09/08/2013 at 13:10:10, latitude 38.69, 

longitude 22.65, depth 17 km, magnitude 4.7 at 30.0 km SE of Lamia. The value of the index q is 

1.59.  

Figure 8.2.14 
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In figure 8.2.15 the time origin of the earthquake is 27/06/2014 at 16:14:27, latitude 38.24, 

longitude 25.13, depth 30 km, magnitude 4.7 at 48.4 km NNE of Andros. The value of the index 

q is 1.61.  

Figure 8.2.15 

 

In figure 8.2.16 the time origin of the earthquake is 16/09/2013 at 14:42:39, latitude 38.7, 

longitude 22.73, depth 20 km, magnitude 4.5 at 24.0 km WNW of Atalanti. The value of the 

index q is 1.71.  

Figure 8.2.16 
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In figure 8.2.17 the time origin of the earthquake is 01/02/2014 at 08:14:03, latitude 38.7, 

longitude 22.75, depth 18 km, magnitude 4.5 at 22.3 km WNW of Atalanti. The value of the 

index q is 1.62.  

Figure 8.2.17 

 

In figure 8.2.18 the time origin of the earthquake is 22/02/2011 at 20:37:02, latitude 38.86, 

longitude 24.95, depth 37 km, magnitude 4.4 at 33.9 km E of Skyros. The value of the index q is 

1.73.  

Figure 8.2.18 
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In figure 8.2.19 the time origin of the earthquake is 06/06/2014 at 12:21:03, latitude 39.17, 

longitude 23.71, depth 23 km, magnitude 4.4 at 19.5 km E of Skiathos. The value of the index q 

is 1.47.  

Figure 8.2.19 

 

In figure 8.2.20 the time origin of the earthquake is 11/07/2014 at 09:46:04, latitude 38.45, 

longitude 23.71, depth 26 km, magnitude 4.4 at 9.7 km E of Chalkida. The value of the index q 

is 1.53. 

Figure 8.2.20 
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In figure 8.2.21 the time origin of the earthquake is 04/10/2014 at 00:12:01, latitude 37.41, 

longitude 22.2, depth 20 km, magnitude 4.4 at 19.3 km SW of Tripolis. The value of the index q 

is 1.78. 

Figure 8.2.21 

 

In figure 8.2.22 the time origin of the earthquake is 27/10/2015 at 01:25:51, latitude 38.92, 

longitude 24.33, depth 25 km, magnitude 4.4 at 20.2 km W of Skyros. The value of the index q 

is 1.57. 

Figure 8.2.22 
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In figure 8.2.23 the time origin of the earthquake is 24/03/2017 at 04:24:30, latitude 37.5705, 

longitude 23.8847, depth 165 km, magnitude 4.4 at 47.8 km SSE of Athens. The value of the 

index q is 1.61. 

Figure 8.2.23 

 

In figure 8.2.24 the time origin of the earthquake is 29/08/2010 at 00:51:57, latitude 38.66, 

longitude 23.38, depth 22 km, magnitude 4.3 at 29.0 km NW of Chalkida. The value of the index 

q is 1.56. 

Figure 8.2.24 



 

81 
 

In figure 8.2.25 the time origin of the earthquake is 02/09/2010 at 03:53:04, latitude 38.22, 

longitude 23.17, depth 26 km, magnitude 4.3 at 35.2 km SE of Levadhia. The value of the index 

q is 1.8. 

Figure 8.2.25 

 

In figure 8.2.26 the time origin of the earthquake is 09/10/2010 at 19:04:49, latitude 38.15, 

longitude 22.72, depth 20 km, magnitude 4.3 at 30.0 km NW of Korinthos. The value of the 

index q is 1.52. 

Figure 8.2.26 
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In figure 8.2.27 the time origin of the earthquake is 21/08/2011 at 06:14:18, latitude 37.63, 

longitude 23.32, depth 115 km, magnitude 4.3 at 45.8 km E of Nafplio. The value of the index q 

is 1.56. 

Figure 8.2.27 

 

In figure 8.2.28 the time origin of the earthquake is 28/06/2012 at 13:11:29, latitude 39.01, 

longitude 23.17, depth 25 km, magnitude 4.3 at 32.2 km WSW of Skiathos. The value of the 

index q is 1.6. 

Figure 8.2.28 
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In figure 8.2.29 the time origin of the earthquake is 28/04/2013 at 16:31:04, latitude 37.45, 

longitude 22.7, depth 61 km, magnitude 4.3 at 15.8 km SW of Nafplio. The value of the index q 

is 1.59. 

Figure 8.2.29 

 

In figure 8.2.30 the time origin of the earthquake is 04/06/2013 at 01:56:53, latitude 37.98, 

longitude 24.01, depth 24 km, magnitude 4.3 at 24.3 km E of Athens. The value of the index q is 

1.86. 

Figure 8.2.30 
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In figure 8.2.31 the time origin of the earthquake is 06/02/2014 at 07:58:26, latitude 38.71, 

longitude 22.77, depth 22 km, magnitude 4.3 at 20.9 km WNW of Atalanti. The value of the 

index q is 1.73. 

Figure 8.2.31 

 

In figure 8.2.32 the time origin of the earthquake is 20/05/2014 at 23:30:44, latitude 39.53, 

longitude 24.2, depth 30 km, magnitude 4.3 at 73.7 km ENE of Skiathos. The value of the index 

q is 2.14. 

Figure 8.2.32 
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In figure 8.2.33 the time origin of the earthquake is 19/07/2019 at 23:30:44, latitude 38.0956, 

longitude 23.5808, depth 15 km, magnitude 4.3 at 18.3 km NW of Athens. The value of the 

index q is 1.91. 

Figure 8.2.33 

 

In figure 8.2.34 the time origin of the earthquake is 11/05/2010 at 07:03:36, latitude 38.62, 

longitude 23.77, depth 24 km, magnitude 4.2 at 22.9 km NE of Chalkida. The value of the index 

q is 1.61. 

Figure 8.2.34 
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In figure 8.2.35 the time origin of the earthquake is 17/02/2012 at 08:05:04, latitude 37.87, 

longitude 23.02, depth 17 km, magnitude 4.2 at 10.8 km SE of Korinthos. The value of the index 

q is 1.89. 

Figure 8.2.35 

 

In figure 8.2.36 the time origin of the earthquake is 28/04/2013 at 04:49:55, latitude 38.26, 

longitude 22.25, depth 55 km, magnitude 4.2 at 14.7 km E of Aegion. The value of the index q is 

1.55. 

Figure 8.2.36 
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In figure 8.2.37 the time origin of the earthquake is 22/11/2013 at 15:12:03, latitude 39.05, 

longitude 22.41, depth 21 km, magnitude 4.2 at 16.8 km N of Lamia. The value of the index q is 

1.78. 

Figure 8.2.37 

 

In figure 8.2.38 the time origin of the earthquake is 11/06/2016 at 08:29:45, latitude 39.23, 

longitude 23.73, depth 15 km, magnitude 4.2 at 22.4 km ENE of Skiathos. The value of the 

index q is 1.76. 

Figure 8.2.38 



 

88 
 

In figure 8.2.39 the time origin of the earthquake is 29/11/2019 at 20:46:40, latitude 39.0482, 

longitude 22.3178, depth 77 km, magnitude 4.2 at 19.3 km NNW of Lamia. The value of the 

index q is 1.65. 

Figure 8.2.39 

 

In figure 8.2.40 the time origin of the earthquake is 04/04/2010 at 22:05:56, latitude 38.42, 

longitude 22.32, depth 17 km, magnitude 4.1 at 12.6 km SSW of Amfissa. The value of the index 

q is 1.74. 

Figure 8.2.40 
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In figure 8.2.41 the time origin of the earthquake is 27/06/2010 at 13:10:09, latitude 37.52, 

longitude 22.94, depth 79 km, magnitude 4.1 at 12.6 km ESE of Nafplio. The value of the index 

q is 1.63. 

Figure 8.2.41 

 

In figure 8.2.42 the time origin of the earthquake is 06/09/2011 at 04:14:13, latitude 37.88, 

longitude 23.1, depth 104 km, magnitude 4.1 at 16.1 km ESE of Korinthos. The value of the 

index q is 1.8. 

Figure 8.2.42 
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In figure 8.2.43 the time origin of the earthquake is 02/08/2012 at 10:30:39, latitude 39.27, 

longitude 23.72, depth 25 km, magnitude 4.1 at 23.4 km ENE of Skiathos. The value of the 

index q is 1.51. 

Figure 8.2.43 

 

In figure 8.2.44 the time origin of the earthquake is 06/08/2012 at 15:22:11, latitude 38.75, 

longitude 24.83, depth 29 km, magnitude 4.1 at 28.8 km SE of Skyros. The value of the index q 

is 1.8. 

Figure 8.2.44 
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In figure 8.2.45 the time origin of the earthquake is 09/12/2012 at 01:23:05, latitude 37.93, 

longitude 22.59, depth 24 km, magnitude 4.1 at 30.0 km W of Korinthos. The value of the index 

q is 1.73. 

Figure 8.2.45 

 

In figure 8.2.46 the time origin of the earthquake is 10/05/2014 at 03:04:50, latitude 38.42, 

longitude 22.46, depth 20 km, magnitude 4.1 at 13.9 km SSE of Amfissa. The value of the index 

q is 1.67. 

Figure 8.2.46 
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In figure 8.2.47 the time origin of the earthquake is 19/12/2014 at 22:40:32, latitude 39.33, 

longitude 22.62, depth 19 km, magnitude 4.1 at 28.3 km W of Volos. The value of the index q is 

1.69. 

Figure 8.2.47 

 

In figure 8.2.48 the time origin of the earthquake is 13/04/2015 at 03:49:02, latitude 39.13, 

longitude 24.46, depth 17 km, magnitude 4.1 at 26.6 km NNW of Skyros. The value of the index 

q is 1.68. 

Figure 8.2.48 
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In figure 8.2.49 the time origin of the earthquake is 11/12/2019 at 02:29:27, latitude 37.5504, 

longitude 24.0079, depth 142 km, magnitude 4.1 at 53.9 km SSE of Athens. The value of the 

index q is 1.8. 

Figure 8.2.49 

 

In figure 8.2.50 the time origin of the earthquake is 14/07/2011 at 08:41:55, latitude 37.83, 

longitude 22.62, depth 82 km, magnitude 4 at 29.9 km WSW of Korinthos. The value of the 

index q is 1.45. 

Figure 8.2.50 
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In figure 8.2.51 the time origin of the earthquake is 30/01/2013 at 04:27:25, latitude 38.78, 

longitude 23.37, depth 22 km, magnitude 4 at 35.2 km ENE of Atalanti. The value of the index q 

is 1.8. 

Figure 8.2.51 

 

In figure 8.2.52 the time origin of the earthquake is 16/09/2016 at 06:55:13, latitude 38.89, 

longitude 23.33, depth 25 km, magnitude 4 at 33.5 km SSW of Skiathos. The value of the index 

q is 1.82. 

Figure 8.2.52 
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In figure 8.2.53 the time origin of the earthquake is 29/09/2016 at 01:17:36, latitude 39.53, 

longitude 24.1, depth 30 km, magnitude 4 at 66.7 km NE of Skiathos. The value of the index q is 

1.59. 

Figure 8.2.53 

 

In figure 8.2.54 the time origin of the earthquake is 22/04/2011 at 01:20:24, latitude 38.37, 

longitude 23.62, depth 23 km, magnitude 3.9 at 10.6 km S of Chalkida. The value of the index q 

is 1.7. 

Figure 8.2.54 
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In figure 8.2.55 the time origin of the earthquake is 24/09/2012 at 19:18:37, latitude 39.03, 

longitude 23.16, depth 23 km, magnitude 3.9 at 31.8 km WSW of Skiathos. The value of the 

index q is 1.5. 

Figure 8.2.55 

 

In figure 8.2.56 the time origin of the earthquake is 17/09/2013 at 05:46:52, latitude 38.72, 

longitude 22.77, depth 17 km, magnitude 3.9 at 21.3 km WNW of Atalanti. The value of the 

index q is 1.79. 

Figure 8.2.56 
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In figure 8.2.57 the time origin of the earthquake is 04/11/2013 at 22:09:17, latitude 38.91, 

longitude 23.1, depth 23km, magnitude 3.9 at 30.1 km NNE of Atalanti. The value of the index q 

is 1.57. 

Figure 8.2.57 

 

In figure 8.2.58 the time origin of the earthquake is 29/09/2014 at 08:15:07, latitude 39.31, 

longitude 24.04, depth 32km, magnitude 3.9 at 50.5 km ENE of Skiathos. The value of the index 

q is 1.43. 

Figure 8.2.58 
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In figure 8.2.59 the time origin of the earthquake is 18/11/2014 at 01:13:47, latitude 38.64, 

longitude 23.41, depth 23km, magnitude 3.9 at 25.6 km NW of Chalkida.The value of the index 

q is 1.52. 

Figure 8.2.59 

 

In figure 8.2.60 the time origin of the earthquake is 19/11/2014 at 00:37:26, latitude 38.64, 

longitude 23.42, depth 24km, magnitude 3.9 at 25.1 km NW of Chalkida. The value of the index 

q is 1.8. 

Figure 8.2.60 
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In figure 8.2.61 the time origin of the earthquake is 31/12/2014 at 04:49:58, latitude 38.19, 

longitude 22.51, depth 20km, magnitude 3.9 at 38.0 km E of Aegion. The value of the index q is 

1.48. 

Figure 8.2.61 

 

In figure 8.2.62 the time origin of the earthquake is 17/11/2015 at 03:00:09, latitude 39.51, 

longitude 24.07, depth 43km, magnitude 3.9 at 63.3 km NE of Skiathos. The value of the index 

q is 1.8. 

Figure 8.2.62 
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In figure 8.2.63 the time origin of the earthquake is 20/05/2016 at 20:00:20, latitude 38.59, 

longitude 24.47, depth 15km, magnitude 3.9 at 5.9 km SSW of Skyros. The value of the index q 

is 1.98. 

Figure 8.2.63 

 

In figure 8.2.64 the time origin of the earthquake is 19/01/2018 at 10:10:07, latitude 37.5118, 

longitude 23.7805, depth 137km, magnitude 3.9 at 52.6 km S of Athens. The value of the index 

q is 1.96. 

Figure 8.2.64 
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In figure 8.2.65 the time origin of the earthquake is 12/03/2010 at 03:34:37, latitude 38.12, 

longitude 22.63, depth 20km, magnitude 3.8 at 33.3 km NW of Korinthos. The value of the 

index q is 1.72. 

Figure 8.2.65 

 

In figure 8.2.66 the time origin of the earthquake is 17/01/2011 at 22:27:10, latitude 38.78, 

longitude 23.45, depth 23km, magnitude 3.8 at 37.5 km NNW of Chalkida. The value of the 

index q is 1.61. 

Figure 8.2.66 
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In figure 8.2.67 the time origin of the earthquake is 09/02/2011 at 08:13:10, latitude 38.63, 

longitude 22.49, depth 21km, magnitude 3.8 at 15.5 km NE of Amfissa. The value of the index q 

is 1.94. 

Figure 8.2.67 

 

In figure 8.2.68 the time origin of the earthquake is 19/05/2011 at 09:05:38, latitude 38.43, 

longitude 23.86, depth 24km, magnitude 3.8 at 23.0 km E of Chalkida. The value of the index q 

is 1.75. 

Figure 8.2.68 
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In figure 8.2.69 the time origin of the earthquake is 25/08/2012at 06:17:44, latitude 38.89, 

longitude 23.22, depth 25km, magnitude 3.8 at 32.7 km NE of Atalanti. The value of the index q 

is 1.75. 

Figure 8.2.69 

 

In figure 8.2.70 the time origin of the earthquake is 13/05/2014 at 01:24:10, latitude 38.24, 

longitude 25.13, depth 32km, magnitude 3.8 at 48.4 km NNE of Andros. The value of the index 

q is 1.51. 

Figure 8.2.70 
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In figure 8.2.71 the time origin of the earthquake is 27/05/2014 at 11:21:30, latitude 37.54, 

longitude 22.86, depth 78km, magnitude 3.8 at 5.3 km ESE of Nafplio. The value of the index q 

is 1.61. 

Figure 8.2.71 

 

In figure 8.2.72 the time origin of the earthquake is 17/11/2014 at 23:40:36, latitude 38.65, 

longitude 23.37, depth 21 km, magnitude 3.8 at 28.8 km NW of Chalkida. The value of the index 

q is 1.6. 

Figure 8.2.72 
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In figure 8.2.73 the time origin of the earthquake is 09/04/2016 at 01:36:11, latitude 38.63, 

longitude 24.45, depth 26km, magnitude 3.8 at 32.0 km SSW of Skyros. The value of the index q 

is 1.8. 

Figure 8.2.73 

 

In figure 8.2.74 the time origin of the earthquake is 09/05/2016 at 17:29:19, latitude 38.85, 

longitude 23.62, depth 19km, magnitude 3.8 at 37.1 km SSE of Skiathos. The value of the index 

q is 1.74. 

Figure 8.2.74 
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In figure 8.2.75 the time origin of the earthquake is 09/05/2016 at 22:57:01, latitude 39.14, 

longitude 24.15, depth 15km, magnitude 3.8 at 44.3 km NW of Skyros. The value of the index q 

is 1.74. 

Figure 8.2.75 

 

In figure 8.2.76 the time origin of the earthquake is 23/12/2018 at 22:34:10, latitude 37.3258, 

longitude 23.945, depth 28km, magnitude 3.8 at 50.4 km WNW of Seriphos. The value of the 

index q is 1.51. 

Figure 8.2.76 
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In figure 8.2.77 the time origin of the earthquake is 24/11/2019 at 18:34:57, latitude 39.4579, 

longitude 24.0852, depth 15km, magnitude 3.8 at 61.1 km ENE of Skiathos. The value of the 

index q is 1.6. 

Figure 8.2.77 

 

In figure 8.2.78 the time origin of the earthquake is 11/01/2011 at 15:46:45, latitude 38.75, 

longitude 22.2, depth 23km, magnitude 3.7 at 26.2 km SW of Lamia. The value of the index q is 

1.3. 

Figure 8.2.78 
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In figure 8.2.79 the time origin of the earthquake is 13/02/2011 at 00:17:22, latitude 38.71, 

longitude 22.81, depth 17km, magnitude 3.7 at 17.7 km WNW of Atalanti. The value of the 

index q is 1.69. 

Figure 8.2.79 

 

In figure 8.2.80 the time origin of the earthquake is 12/09/2011 at 14:29:22, latitude 38.72, 

longitude 23.39, depth 21km, magnitude 3.7 at 33.8 km NNW of Chalkida. The value of the 

index q is 1.55. 

Figure 8.2.80 
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In figure 8.2.81 the time origin of the earthquake is 13/03/2013 at 23:09:01, latitude 39.19, 

longitude 23.47, depth 15km, magnitude 3.7 at 2.8 km NNW of Skiathos. The value of the index 

q is 1.6. 

Figure 8.2.81 

 

In figure 8.2.82 the time origin of the earthquake is 28/04/2014 at 03:49:50, latitude 38.69, 

longitude 22.81, depth 23km, magnitude 3.7 at 17.0 km WNW of Atalanti. The value of the 

index q is 1.77. 

Figure 8.2.82 
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In figure 8.2.83 the time origin of the earthquake is 28/06/2014 at 19:09:47, latitude 37.46, 

longitude 22.85, depth 20km, magnitude 3.7 at 12.1 km SSE of Nafplio. The value of the index q 

is 1.66. 

Figure 8.2.83 

 

In figure 8.2.84 the time origin of the earthquake is 30/10/2014 at 06:09:08, latitude 38.14, 

longitude 22.63, depth 15km, magnitude 3.7 at 34.7 km NW of Korinthos. The value of the 

index q is 1.45. 

Figure 8.2.84 
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In figure 8.2.85 the time origin of the earthquake is 05/11/2014 at 20:51:39, latitude 39.14, 

longitude 24.19, depth 25km, magnitude 3.7 at 41.5 km NW of Skyros. The value of the index q 

is 1.81. 

Figure 8.2.85 

 

In figure 8.2.86 the time origin of the earthquake is 15/11/2014 at 08:11:31, latitude 38.99, 

longitude 23.7, depth 24km, magnitude 3.7 at 27.1 km SE of Skiathos. The value of the index q 

is 1.64. 

Figure 8.2.86 
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In figure 8.2.87 the time origin of the earthquake is 18/11/2014 at 00:53:59, latitude 38.63, 

longitude 23.43, depth 23km, magnitude 3.7 at 23.7 km NW of Chalkida. The value of the index 

q is 1.73. 

Figure 8.2.87 

 

In figure 8.2.88 the time origin of the earthquake is 14/12/2014 at 08:16:33, latitude 38.62, 

longitude 22.88, depth 18km, magnitude 3.7 at 10.9 km WSW of Atalanti. The value of the 

index q is 1.59. 

Figure 8.2.88 
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In figure 8.2.89 the time origin of the earthquake is 09/03/2015 at 03:24:41, latitude 39.31, 

longitude 24.02, depth 16km, magnitude 3.7 at 48.9 km ENE of Skiathos. The value of the index 

q is 1.63. 

Figure 8.2.89 

 

In figure 8.2.90 the time origin of the earthquake is 28/07/2016 at 16:17:29, latitude 38.17, 

longitude 22.94, depth 15km, magnitude 3.7 at 25.8 km N of Korinthos. The value of the index 

q is 1.8. 

Figure 8.2.90 
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In figure 8.2.91 the time origin of the earthquake is 11/03/2010 at 09:54:08, latitude 38.12, 

longitude 23.26, depth 21km, magnitude 3.6 at 35.1 km NE of Korinthos. The value of the index 

q is 1.49. 

Figure 8.2.91 

 

In figure 8.2.92 the time origin of the earthquake is 12/05/2010 at 06:59:22, latitude 38.62, 

longitude 23.78, depth 25km, magnitude 3.6 at 23.4 km NE of Chalkida. The value of the index 

q is 1.67. 

Figure 8.2.92 
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In figure 8.2.93 the time origin of the earthquake is 28/07/2010 at 13:55:27, latitude 37.47, 

longitude 23.32, depth 29km, magnitude 3.6 at 46.4 km ESE of Nafplio. The value of the index q 

is 2.17. 

Figure 8.2.93 

 

In figure 8.2.94 the time origin of the earthquake is 06/09/2010 at 19:20:42, latitude 37.59, 

longitude 22.61, depth 56km, magnitude 3.6 at 17.7 km W of Nafplio. The value of the index q 

is 1.6. 

Figure 8.2.94 
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In figure 8.2.95 the time origin of the earthquake is 28/10/2010 at 04:04:46, latitude 38.36, 

longitude 22.25, depth 20km, magnitude 3.6 at 19.2 km NE of Aegion. The value of the index q 

is 1.72. 

Figure 8.2.95 

 

In figure 8.2.96 the time origin of the earthquake is 14/12/2010 at 13:58:52, latitude 38.06, 

longitude 22.78, depth 19km, magnitude 3.6 at 19.0 km NW of Korinthos. The value of the 

index q is 1.76. 

Figure 8.2.96 
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In figure 8.2.97 the time origin of the earthquake is 31/01/2011 at 17:23:13, latitude 37.87, 

longitude 22.7, depth 26km, magnitude 3.6 at 21.7 km WSW of Korinthos. The value of the 

index q is 1.42. 

Figure 8.2.97 

 

In figure 8.2.98 the time origin of the earthquake is 16/08/2012 at 21:22:53, latitude 38.28, 

longitude 22.55, depth 24km, magnitude 3.6 at 31.3 km SSE of Amfissa. The value of the index 

q is 1.66. 

Figure 8.2.98 
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In figure 8.2.99 the time origin of the earthquake is 08/09/2013 at 06:22:10, latitude 38.59, 

longitude 23.76, depth 23km, magnitude 3.6 at 19.8 km NE of Chalkida. The value of the index 

q is 1.77. 

Figure 8.2.99 

 

In figure 8.2.100 the time origin of the earthquake is 12/02/2014 at 07:41:00, latitude 37.93, 

longitude 22.6, depth 16km, magnitude 3.6 at 29.1 km W of Korinthos. The value of the index q 

is 1.58. 

Figure 8.2.100 
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In figure 8.2.101 the time origin of the earthquake is 09/06/2014 at 22:02:57, latitude 39.17, 

longitude 23.75, depth 24km, magnitude 3.6 at 23.0 km E of Skiathos. The value of the index q 

is 1.73. 

Figure 8.2.101 

 

In figure 8.2.102 the time origin of the earthquake is 30/07/2014 at 00:55:04, latitude 38.04, 

longitude 24.12, depth 19km, magnitude 3.6 at 34.5 km E of Athens. The value of the index q is 

1.85. 

Figure 8.2.102 
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In figure 8.2.103 the time origin of the earthquake is 26/07/2016 at 16:59:47, latitude 37.63, 

longitude 23.5, depth 15km, magnitude 3.6 at 44.3 km SSW of Athens. The value of the index q 

is 1.8. 

Figure 8.2.103 

 

In figure 8.2.104 the time origin of the earthquake is 26/08/2016 at 07:47:24, latitude 38.6, 

longitude 24.47, depth 21km, magnitude 3.6 at 34.8 km SSW of Skyros. The value of the index q 

is 1.8. 

Figure 8.2.104 
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In figure 8.2.105 the time origin of the earthquake is 23/06/2017 at 22:26:17, latitude 38.4549, 

longitude 23.53, depth 17km, magnitude 3.6 at 6.1 km W of Chalkida. The value of the index q 

is 1.78. 

Figure 8.2.105 

 

In figure 8.2.106 the time origin of the earthquake is 03/08/2019 at 17:17:09, latitude 38.1404, 

longitude 22.7019, depth 15km, magnitude 3.6 at 30.2 km NW of Korinthos. The value of the 

index q is 1.77. 

Figure 8.2.106 
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In figure 8.2.107 the time origin of the earthquake is 05/06/2010 at 05:12:40, latitude 38.13, 

longitude 23.18, depth 18km, magnitude 3.5 at 30.5 km NE of Korinthos. The value of the index 

q is 1.85. 

Figure 8.2.107 

 

In figure 8.2.108 the time origin of the earthquake is 16/06/2010 at 15:11:21, latitude 37.41, 

longitude 23.58, depth 28km, magnitude 3.5 at 65.2 km SSW of Athens. The value of the index 

q is 1.74. 

Figure 8.2.108 
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In figure 8.2.109 the time origin of the earthquake is 07/03/2011 at 17:10:53, latitude 38.25, 

longitude 22.55, depth 15km, magnitude 3.5 at 34.2 km SSE of Amfissa. The value of the index 

q is 1.93. 

Figure 8.2.109 

 

In figure 8.2.110 the time origin of the earthquake is 16/08/2011 at 20:22:22, latitude 38.15, 

longitude 22.71, depth 22km, magnitude 3.5 at 30.6 km NW of Korinthos. The value of the 

index q is 1.83. 

Figure 8.2.110 
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In figure 8.2.111 the time origin of the earthquake is 24/10/2011 at 09:24:37, latitude 37.61, 

longitude 23.51, depth 27km, magnitude 3.5 at 45.9 km SSW of Athens. The value of the index 

q is 1.76. 

Figure 8.2.111 

 

In figure 8.2.112 the time origin of the earthquake is 20/11/2011 at 22:14:14, latitude 38.17, 

longitude 22.56, depth 21km, magnitude 3.5 at 40.2 km SW of Levadhia. The value of the index 

q is 1.6. 

Figure 8.2.112 
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In figure 8.2.113 the time origin of the earthquake is 11/06/2013 at 19:36:16, latitude 38.17, 

longitude 23.23, depth 23km, magnitude 3.5 at 36.7 km NE of Korinthos. The value of the index 

q is 1.63. 

Figure 8.2.113 

 

In figure 8.2.114 the time origin of the earthquake is 27/10/2013 at 13:53:37, latitude 38.64, 

longitude 23.61, depth 22km, magnitude 3.5 at 19.6 km N of Chalkida. The value of the index q 

is 1.8. 

Figure 8.2.114 
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In figure 8.2.115 the time origin of the earthquake is 22/12/2013 at 18:04:02, latitude 37.85, 

longitude 22.76, depth 27km, magnitude 3.5 at 18.0 km WSW of Korinthos. The value of the 

index q is 1.5. 

Figure 8.2.115 

 

In figure 8.2.116 the time origin of the earthquake is 10/04/2014 at 17:40:44, latitude 37.93, 

longitude 22.61, depth 24 km, magnitude 3.5 at 28.3 km W of Korinthos. The value of the index 

q is 1.65. 

Figure 8.2.116 
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In figure 8.2.117 the time origin of the earthquake is 17/11/2014 at 23:18:45, latitude 38.66, 

longitude 23.4, depth 23 km, magnitude 3.5 at 27.9 km NW of Chalkida. The value of the index 

q is 1.86. 

Figure 8.2.117 

 

In figure 8.2.118 the time origin of the earthquake is 20/11/2014 at 16:26:22, latitude 38.65, 

longitude 23.36, depth 24 km, magnitude 3.5 at 29.4 km NW of Chalkida. The value of the index 

q is 1.51. 

Figure 8.2.118 
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In figure 8.2.119 the time origin of the earthquake is 09/06/2015 at 02:13:27, latitude 38.63, 

longitude 23.4, depth 16 km, magnitude 3.5 at 25.4 km NW of Chalkida. The value of the index 

q is 1.78. 

Figure 8.2.119 

 

In figure 8.2.120 the time origin of the earthquake is 09/06/2015 at 03:04:41, latitude 38.63, 

longitude 23.42, depth 15 km, magnitude 3.5 at 24.2 km NW of Chalkida. The value of the index 

q is 1.71. 

Figure 8.2.120 
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In figure 8.2.121 the time origin of the earthquake is 28/05/2016 at 21:00:10, latitude 37.57, 

longitude 23.57, depth 16 km, magnitude 3.5 at 48.1 km SSW of Athens. The value of the index 

q is 1.92. 

Figure 8.2.121 

 

In figure 8.2.122 the time origin of the earthquake is 03/06/2016 at 01:28:49, latitude 38.62, 

longitude 24.45, depth 16 km, magnitude 3.5 at 33.1 km SSW of Skyros. The value of the index 

q is 1.54. 

Figure 8.2.122 
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In figure 8.2.123 the time origin of the earthquake is 19/07/2019 at 11:42:19, latitude 38.1248, 

longitude 23.5158, depth 16 km, magnitude 3.5 at 24.7 km NW of Athens. The value of the 

index q is 1.75. 

Figure 8.2.123 

 

In figure 8.2.124 the time origin of the earthquake is 27/08/2010 at 11:23:20, latitude 37.86, 

longitude 22.98, depth 19 km, magnitude 3.4 at 9.6 km SSE of Korinthos. The value of the index 

q is 1.79. 

Figure 8.2.124 
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In figure 8.2.125 the time origin of the earthquake is 21/09/2010 at 08:02:11, latitude 38.15, 

longitude 23.32, depth 24 km, magnitude 3.4 at 40.7 km WNW of Athens. The value of the 

index q is 1.79. 

Figure 8.2.125 

 

In figure 8.2.126 the time origin of the earthquake is 12/12/2010 at 08:19:31, latitude 38.11, 

longitude 23.55, depth 18 km, magnitude 3.4 at 21.4 km NW of Athens. The value of the index 

q is 2.14. 

Figure 8.2.126 
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In figure 8.2.127 the time origin of the earthquake is 26/06/2011 at 06:31:10, latitude 38.88, 

longitude 23.69, depth 22 km, magnitude 3.4 at 36.5 km SSE of Skiathos. The value of the index 

q is 1.75. 

Figure 8.2.127 

 

In figure 8.2.128 the time origin of the earthquake is 01/12/2011 at 01:17:43, latitude 38.76, 

longitude 23.44, depth 25 km, magnitude 3.4 at 35.8 km NNW of Chalkida. The value of the 

index q is 1.96. 

Figure 8.2.128 
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In figure 8.2.129 the time origin of the earthquake is 15/08/2013 at 01:03:30, latitude 38.7, 

longitude 22.67, depth 19 km, magnitude 3.4 at 29.1 km W of Atalanti. The value of the index q 

is 1.94. 

Figure 8.2.129 

 

In figure 8.2.130 the time origin of the earthquake is 21/12/2013 at 05:50:39, latitude 38.23, 

longitude 22.21, depth 50 km, magnitude 3.4 at 11.4 km E of Aegion. The value of the index q is 

1.63. 

Figure 8.2.130 
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In figure 8.2.131 the time origin of the earthquake is 28/02/2014 at 22:13:54, latitude 38.2, 

longitude 22.53, depth 21 km, magnitude 3.4 at 38.6 km SSE of Amfissa. The value of the index 

q is 1.48. 

Figure 8.2.131 

 

In figure 8.2.132 the time origin of the earthquake is 30/03/2014 at 20:31:03, latitude 37.58, 

longitude 23.45, depth 20 km, magnitude 3.4 at 51.3 km SSW of Athens. The value of the index 

q is 1.5. 

Figure 8.2.132 
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In figure 8.2.133 the time origin of the earthquake is 18/11/2014 at 01:16:19, latitude 38.63, 

longitude 23.4, depth 19 km, magnitude 3.4 at 25.4 km NW of Chalkida. The value of the index 

q is 1.81. 

Figure 8.2.133 

 

In figure 8.2.134 the time origin of the earthquake is 18/11/2014 at 03:18:49, latitude 38.64, 

longitude 23.41, depth 23 km, magnitude 3.4 at 25.6 km NW of Chalkida. The value of the index 

q is 1.84. 

Figure 8.2.134 
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In figure 8.2.135 the time origin of the earthquake is 18/11/2014 at 23:44:40, latitude 38.64, 

longitude 23.36, depth 21 km, magnitude 3.4 at 28.6 km NW of Chalkida. The value of the index 

q is 1.56. 

Figure 8.2.135 

 

In figure 8.2.136 the time origin of the earthquake is 27/10/2015 at 01:52:29, latitude 38.94, 

longitude 24.3, depth 16 km, magnitude 3.4 at 23.1 km W of Skyros. The value of the index q is 

2. 

Figure 8.2.136 
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In figure 8.2.137 the time origin of the earthquake is 14/01/2016 at 00:27:57, latitude 38.95, 

longitude 24.08, depth 16 km, magnitude 3.4 at 42.1 km W of Skyros. The value of the index q 

is 1.57. 

Figure 8.2.137 

 

In figure 8.2.138 the time origin of the earthquake is 06/02/2016 at 02:23:31, latitude 38.42, 

longitude 23.99, depth 26 km, magnitude 3.4 at 34.4 km E of Chalkida. The value of the index q 

is 1.5. 

Figure 8.2.138 
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In figure 8.2.139 the time origin of the earthquake is 22/08/2016 at 13:24:10, latitude 38.33, 

longitude 24.06, depth 15 km, magnitude 3.4 at 42.8 km ESE of Chalkida. The value of the index 

q is 1.63. 

Figure 8.2.139 

 

In figure 8.2.140 the time origin of the earthquake is 09/09/2016 at 14:07:49, latitude 37.57, 

longitude 23.58, depth 17 km, magnitude 3.4 at 47.9 km SSW of Athens. The value of the index 

q is 2.01. 

Figure 8.2.140 
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In figure 8.2.141 the time origin of the earthquake is 04/06/2017 at 00:07:21, latitude 38.1495, 

longitude 24.0802, depth 20 km, magnitude 3.4 at 35.5 km ENE of Athens. The value of the 

index q is 1.5. 

Figure 8.2.141 

 

In figure 8.2.142 the time origin of the earthquake is 02/09/2017 at 04:21:05, latitude 38.4229, 

longitude 23.5107, depth 23 km, magnitude 3.4 at 9.0 km WSW of Chalkida. The value of the 

index q is 1.62. 

Figure 8.2.142 
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In figure 8.2.143 the time origin of the earthquake is 29/10/2017 at 20:35:32, latitude 37.5146, 

longitude 22.6611, depth 30 km, magnitude 3.4 at 14.0 km WSW of Nafplio. The value of the 

index q is 1.79. 

Figure 8.2.143 

 

In figure 8.2.144 the time origin of the earthquake is 15/03/2012 at 23:47:48, latitude 38.14, 

longitude 22.67, depth 20 km, magnitude 3.3 at 32.1 km NW of Korinthos. The value of the 

index q is 1.67. 

Figure 8.2.144 
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In figure 8.2.145 the time origin of the earthquake is 14/04/2012 at 20:19:18, latitude 38.11, 

longitude 22.71, depth 15 km, magnitude 3.3 at 27.3 km NW of Korinthos. The value of the 

index q is 1.65. 

Figure 8.2.145 

 

In figure 8.2.146 the time origin of the earthquake is 30/09/2012 at 05:19:37, latitude 38.1, 

longitude 22.7, depth 15 km, magnitude 3.3 at 27.2 km NW of Korinthos. The value of the index 

q is 2.1. 

Figure 8.2 146 
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In figure 8.2.147 the time origin of the earthquake is 26/09/2013 at 00:49:53, latitude 38.44, 

longitude 23.81, depth 24 km, magnitude 3.3 at 18.5 km E of Chalkida. The value of the index q 

is 1.97. 

Figure 8.2.147 

 

In figure 8.2.148 the time origin of the earthquake is 26/12/2013 at 13:51:58, latitude 38.6, 

longitude 23.95, depth 28 km, magnitude 3.3 at 34.1 km ENE of Chalkida. The value of the 

index q is 1.76. 

Figure 8.2.148 
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In figure 8.2.149 the time origin of the earthquake is 13/01/2014 at 03:08:12, latitude 38.86, 

longitude 23.39, depth 24 km, magnitude 3.3 at 35.0 km SSW of Skiathos. The value of the 

index q is 1.66. 

Figure 8.2.149 

 

In figure 8.2.150 the time origin of the earthquake is 23/06/2014 at 01:47:01, latitude 38.69, 

longitude 23.56, depth 15 km, magnitude 3.3 at 25.4 km N of Chalkida. The value of the index q 

is 1.75. 

Figure 8.2.150 
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In figure 8.2.151 the time origin of the earthquake is 18/11/2014 at 00:35:38, latitude 38.65, 

longitude 23.41, depth 21 km, magnitude 3.3 at 26.5 km NW of Chalkida. The value of the index 

q is 1.71. 

Figure 8.2.151 

 

In figure 8.2.152 the time origin of the earthquake is 18/11/2014 at 00:47:48, latitude 38.66, 

longitude 23.41, depth 24 km, magnitude 3.3 at 27.4 km NW of Chalkida. The value of the index 

q is 2.17. 

Figure 8.2.152 
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In figure 8.2.153 the time origin of the earthquake is 06/05/2015 at 19:05:01, latitude 38.43, 

longitude 23.9, depth 17 km, magnitude 3.3 at 26.4 km E of Chalkida. The value of the index q 

is 1.63. 

Figure 8.2.153 

 

In figure 8.2.154 the time origin of the earthquake is 10/06/2015 at 18:46:41, latitude 38.66, 

longitude 23.42, depth 17 km, magnitude 3.3 at 26.8 km NW of Chalkida. The value of the index 

q is 1.83. 

Figure 8.2.154 
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In figure 8.2.155 the time origin of the earthquake is 23/06/2016 at 12:10:57, latitude 38.16, 

longitude 22.68, depth 16 km, magnitude 3.3 at 33.1 km NW of Korinthos. The value of the 

index q is 1.69. 

Figure 8.2.155 

 

In figure 8.2.156 the time origin of the earthquake is 04/07/2016 at 05:42:46, latitude 37.54, 

longitude 23.63, depth 16 km, magnitude 3.3 at 50.1 km S of Athens. The value of the index q is 

2.05. 

Figure 8.2.156 
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In figure 8.2.157 the time origin of the earthquake is 07/09/2016 at 09:34:15, latitude 38.4, 

longitude 23.92, depth 18 km, magnitude 3.3 at 28.8 km ESE of Chalkida. The value of the index 

q is 1.82. 

Figure 8.2.157 

 

In figure 8.2.158 the time origin of the earthquake is 01/10/2019 at 01:23:57, latitude 39.521, 

longitude 23.5826, depth 17 km, magnitude 3.3 at 40.3 km NNE of Skiathos. The value of the 

index q is 1.46. 

Figure 8.2.158 
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In figure 8.2.159 the time origin of the earthquake is 29/05/2011 at 22:23:19, latitude 38.16, 

longitude 23.95, depth 18 km, magnitude 3.2 at 27.3 km NE of Athens. The value of the index q 

is 1.8. 

Figure 8.2.159 

 

In figure 8.2.160 the time origin of the earthquake is 05/08/2011 at 05:49:59, latitude 38.72, 

longitude 23.71, depth 25 km, magnitude 3.2 at 30.1 km NNE of Chalkida. The value of the 

index q is 1.73. 

Figure 8.2.160 
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In figure 8.2.161 the time origin of the earthquake is 30/09/2012 at 02:41:34, latitude 38.11, 

longitude 22.7, depth 20 km, magnitude 3.2 at 27.9 km NW of Korinthos. The value of the index 

q is 1.91. 

Figure 8.2.161 

 

In figure 8.2.162 the time origin of the earthquake is 27/07/2013 at 06:46:52, latitude 38.6, 

longitude 23.94, depth 28 km, magnitude 3.2 at 33.3 km ENE of Chalkida. The value of the 

index q is 1.76. 

Figure 8.2.162 
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In figure 8.2.163 the time origin of the earthquake is 15/11/2013 at 18:11:03, latitude 37.54, 

longitude 22.9, depth 76 km, magnitude 3.2 at 8.6 km ESE of Nafplio. The value of the index q is 

1.95. 

Figure 8.2.163 

 

In figure 8.2.164 the time origin of the earthquake is 11/10/2014 at 01:53:35, latitude 37.88, 

longitude 22.55, depth 19 km, magnitude 3.2 at 34.1 km W of Korinthos. The value of the index 

q is 1.44. 

Figure 8.2.164 
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In figure 8.2.165 the time origin of the earthquake is 21/10/2014 at 17:46:25, latitude 38.59, 

longitude 22.99, depth 23 km, magnitude 3.2 at 6.8 km S of Atalanti. The value of the index q is 

1.6. 

Figure 8.2.165 

 

In figure 8.2.166 the time origin of the earthquake is 19/11/2014 at 16:32:28, latitude 38.65, 

longitude 23.42, depth 24 km, magnitude 3.2 at 25.9 km NW of Chalkida. The value of the index 

q is 1.76. 

Figure 8.2.166 
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In figure 8.2.167 the time origin of the earthquake is 06/05/2015 at 18:05:31, latitude 38.43, 

longitude 23.9, depth 16 km, magnitude 3.2 at 26.4 km E of Chalkida. The value of the index q 

is 1.85. 

Figure 8.2.167 

 

In figure 8.2.168 the time origin of the earthquake is 05/11/2015 at 14:27:53, latitude 38.62, 

longitude 24.46, depth 24 km, magnitude 3.2 at 32.8 km SSW of Skyros. The value of the index 

q is 1.85. 

Figure 8.2.168 
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In figure 8.2.169 the time origin of the earthquake is 31/03/2016 at 04:43:29, latitude 37.54, 

longitude 23.57, depth 21 km, magnitude 3.2 at 51.3 km SSW of Athens. The value of the index 

q is 1.8. 

Figure 8.2.169 

 

In figure 8.2.170 the time origin of the earthquake is 04/05/2016 at 23:03:37, latitude 37.53, 

longitude 23.58, depth 15 km, magnitude 3.2 at 52.2 km SSW of Athens. The value of the index 

q is 1.76. 

Figure 8.2.170 
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In figure 8.2.171 the time origin of the earthquake is 02/07/2016 at 23:46:09, latitude 37.55, 

longitude 23.59, depth 15 km, magnitude 3.2 at 49.8 km SSW of Athens. The value of the index 

q is 1.78. 

Figure 8.2.171 

 

In figure 8.2.172 the time origin of the earthquake is 29/10/2016 at 11:52:42, latitude 38.91, 

longitude 23.92, depth 26 km, magnitude 3.2 at 47.3 km SE of Skiathos. The value of the index 

q is 1.67. 

Figure 8.2.172 
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In figure 8.2.173 the time origin of the earthquake is 10/05/2017 at 12:44:01, latitude 38.7763, 

longitude 23.358, depth 25 km, magnitude 3.2 at 34.1 km ENE of Atalanti. The value of the 

index q is 1.72. 

Figure 8.2.173 

 

In figure 8.2.174 the time origin of the earthquake is 24/03/2010 at 20:15:18, latitude 38.87, 

longitude 23.63, depth 21 km, magnitude 3.1 at 35.3 km SSE of Skiathos. The value of the index 

q is 1.83. 

Figure 8.2.174 
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In figure 8.2.175 the time origin of the earthquake is 15/05/2010 at 12:10:02, latitude 38.13, 

longitude 23.17, depth 19 km, magnitude 3.1 at 29.8 km NE of Korinthos. The value of the 

index q is 1.96. 

Figure 8.2.175 

 

In figure 8.2.176 the time origin of the earthquake is 28/01/2011 at 01:36:06, latitude 38.21, 

longitude 23.16, depth 17 km, magnitude 3.1 at 35.3 km SE of Levadhia. The value of the index 

q is 1.66. 

Figure 8.2.176 
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In figure 8.2.177 the time origin of the earthquake is 20/05/2011 at 23:36:21, latitude 38.44, 

longitude 23.88, depth 24 km, magnitude 3.1 at 24.6 km E of Chalkida. The value of the index q 

is 1.8. 

Figure 8.2.177 

 

In figure 8.2.178 the time origin of the earthquake is 24/05/2011 at 10:27:50, latitude 37.88, 

longitude 22.98, depth 16 km, magnitude 3.1 at 7.7 km SSE of Korinthos. The value of the index 

q is 1.99. 

Figure 8.2.178 
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In figure 8.2.179 the time origin of the earthquake is 13/09/2011 at 02:13:33, latitude 38.72, 

longitude 23.38, depth 22 km, magnitude 3.1 at 33.9 km ENE of Atalanti. The value of the index 

q is 1.8. 

Figure 8.2.179 

 

In figure 8.2.180 the time origin of the earthquake is 06/11/2011 at 07:38:21, latitude 39.1, 

longitude 23.28, depth 22 km, magnitude 3.1 at 19.0 km WSW of Skiathos. The value of the 

index q is 1.76. 

Figure 8.2.180 
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In figure 8.2.181 the time origin of the earthquake is 18/01/2012 at 17:53:18, latitude 37.72, 

longitude 23.04, depth 24 km, magnitude 3.1 at 26.0 km SSE of Korinthos. The value of the 

index q is 1.85. 

Figure 8.2.181 

 

In figure 8.2.182 the time origin of the earthquake is 20/02/2012 at 00:51:46, latitude 38.19, 

longitude 24.1, depth 21 km, magnitude 3.1 at 39.5 km NE of Athens. The value of the index q 

is 1.99. 

Figure 8.2.182 
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In figure 8.2.183 the time origin of the earthquake is 16/05/2012 at 00:51:46, latitude 37.81, 

longitude 22.91, depth 22 km, magnitude 3.1 at 14.3 km S of Korinthos. The value of the index 

q is 1.75. 

Figure 8.2.183 

 

In figure 8.2.184 the time origin of the earthquake is 25/06/2013 at 20:25:24, latitude 38.17, 

longitude 23.22, depth 15 km, magnitude 3.1 at 36.1 km NE of Korinthos. The value of the 

index q is 1.86. 

Figure 8.2.184 
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In figure 8.2.185 the time origin of the earthquake is 08/09/2013 at 06:28:10, latitude 38.61, 

longitude 23.76, depth 24 km, magnitude 3.1 at 21.4 km NE of Chalkida. The value of the index 

q is 1.89. 

Figure 8.2.185 

 

In figure 8.2.186 the time origin of the earthquake is 08/11/2013 at 20:01:57, latitude 38.65, 

longitude 24.61, depth 26 km, magnitude 3.1 at 28.6 km S of Skyros. The value of the index q is 

1.81. 

Figure 8.2.186 
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In figure 8.2.187 the time origin of the earthquake is 11/08/2014 at 00:25:29, latitude 38.41, 

longitude 22.5, depth 19 km, magnitude 3.1 at 16.9 km SE of Amfissa. The value of the index q 

is 1.85. 

Figure 8.2.187 

 

In figure 8.2.188 the time origin of the earthquake is 18/11/2014 at 01:19:37, latitude 38.65, 

longitude 23.41, depth 25 km, magnitude 3.1 at 26.5 km NW of Chalkida. The value of the index 

q is 1.85. 

Figure 8.2.188 
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In figure 8.2.189 the time origin of the earthquake is 21/11/2014 at 10:37:59, latitude 38.66, 

longitude 23.39, depth 25 km, magnitude 3.1 at 28.4 km NW of Chalkida. The value of the index 

q is 1.8. 

Figure 8.2.189 

 

In figure 8.2.190 the time origin of the earthquake is 06/06/2015 at 00:40:19, latitude 38.79, 

longitude 23.46, depth 15 km, magnitude 3.1 at 38.3 km NNW of Chalkida. The value of the 

index q is 1.8. 

Figure 8.2.190 
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In figure 8.2.191 the time origin of the earthquake is 23/07/2015 at 16:05:50, latitude 38.6, 

longitude 23.42, depth 15 km, magnitude 3.1 at 21.8 km NW of Chalkida. The value of the index 

q is 1.62. 

Figure 8.2.191 

 

In figure 8.2.192 the time origin of the earthquake is 21/01/2016 at 03:14:49, latitude 37.51, 

longitude 22.62, depth 76 km, magnitude 3.1 at 17.6 km WSW of Nafplio. The value of the 

index q is 1.54. 

Figure 8.2.192 
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In figure 8.2.193 the time origin of the earthquake is 19/03/2016 at 08:17:32, latitude 37.52, 

longitude 23.61, depth 18 km, magnitude 3.1 at 52.6 km SSW of Athens. The value of the index 

q is 1.92. 

Figure 8.2.193 

 

In figure 8.2.194 the time origin of the earthquake is 22/04/2016 at 13:33:20, latitude 37.54, 

longitude 23.6, depth 19 km, magnitude 3.1 at 50.7 km SSW of Athens. The value of the index q 

is 1.88. 

Figure 8.2.194 
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In figure 8.2.195 the time origin of the earthquake is 28/05/2016 at 20:18:58, latitude 37.56, 

longitude 23.57, depth 15 km, magnitude 3.1 at 49.2 km SSW of Athens. The value of the index 

q is 1.57. 

Figure 8.2.195 

 

In figure 8.2.196 the time origin of the earthquake is 06/07/2016 at 16:26:12, latitude 37.55, 

longitude 23.6, depth 15 km, magnitude 3.1 at 49.6 km SSW of Athens. The value of the index q 

is 1.87. 

Figure 8.2.196 
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In figure 8.2.197 the time origin of the earthquake is 18/05/2017 at 08:14:16, latitude 38.0013, 

longitude 23.9545, depth 17 km, magnitude 3.1 at 19.5 km E of Athens. The value of the index 

q is 1.79. 

Figure 8.2.197 

 

In figure 8.2.198 the time origin of the earthquake is 06/06/2017 at 08:01:33, latitude 38.4808, 

longitude 23.3872, depth 20 km, magnitude 3.1 at 18.6 km W of Chalkida. The value of the 

index q is 1.65. 

Figure 8.2.198 
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In figure 8.2.199 the time origin of the earthquake is 23/08/2018 at 02:30:42, latitude 37.5758, 

longitude 22.626, depth 64 km, magnitude 3.1 at 16.1 km W of Nafplio. The value of the index 

q is 1.87. 

Figure 8.2.199 

 

In figure 8.2.200 the time origin of the earthquake is 15/07/2019 at 20:28:24, latitude 37.9047, 

longitude 22.6447, depth 16 km, magnitude 3.1 at 25.5 km W of Korinthos. The value of the 

index q is 1.95. 

Figure 8.2.200 
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