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The Yamabe problem

by M. Paschalis

The main subject of this graduate thesis is the Yamabe problem, which is
about conformal deformation of Riemannian metrics to ones of constant scalar
curvature. In Chapter 1, we give an overview of the problem, as well as a solution
for the 2-dimensional case using methods of Riemann surfaces. In Chapter 2, we
give a review of the prerequisites, which are the classical theories of Riemannian
manifolds and elliptic PDEs, up to the point that they are usually treated in
graduate-level courses. Chapter 3, the main one in this thesis, systematically
treats the Yamabe problem. Section 3.1 shifts the problem to the value of the
Yamabe invariant, while Section 3.2 is concerned with the determination of this
value, completing the solution to the problem. Finally, Chapter 4 is a survey on
the spinorial Yamabe problem, which can be considered a �rst-order analogue
of the Yamabe problem and shares a lot of similarities.

Βασικό αντικείμενο της παρούσας διπλωματικής εργασίας είναι το πρόβλημα

του Yamabe, το οποίο αφορά τη σύμμορφη παραμόρφωση μιας μέτρικής Riemann
σε κάποια με σταθερή βαθμωτή καμπυλότητα. Στο Κεφάλαιο 1 κάνουμε μια ανα-

σκόπιση του προβλήματος, και επιπλέον παρουσιάζουμε μία λύση του προβλήματος

για διάσταση 2 χρησιμοποιόντας μεθόδους επιφανειών Riemann. Στο Κεφάλαιο
2 παρουσιάζουμε εν τάχει τα προαπαιτούμενα, τα οποία είναι οι κλασικές θεω-

ρίες των πολλαπλοτήτων Riemann και των ελλειπτικών διαφορικών εξισώσεων
δεύτερης τάξης, μέχρι το σημείο που αυτές συνήθως καλύπτονται σε μαθήματα

μεταπτυχιακού επιπέδου. Στο Κεφάλαιο 3, που είναι το κυριότερο σε αυτή την

εργασία, ασχολούμαστε συστηματικά με τη λύση του προβλήματος του Yamabe.
Στην Ενότητα 3.1 μετατοπίζουμε το πρόβλημα στην τιμή της αναλοίωτης Yam-
abe, ενώ στην Ενότητα 3.2 ασχολούμαστε με τον προσδιορισμό αυτής της τιμής,
ολοκληρώνοντας τη λύση. Τέλος, το Κεφάλαιο 4 αποτελεί μια ανασκόπιση του

῾῾σπινοριακού᾿᾿ προβλήματος Yamabe, το οποίο μπορεί να θεωρηθεί ως ένα πρώτης
τάξης ανάλογο του προβλήματος Yamabe και μοιράζεται με αυτό πολλά κοινά.

Τριμελής εξεταστική επιτροπή: Π. Γιαννιώτης, Α. Μελάς, Γ. Μπαρμπάτης
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Chapter 1

The Yamabe problem

In this introductory chapter we o�er an overview of the Yamabe problem and
its historical development, as well as an outline of our presentation. We also
present an elegant solution of the 2-dimensional case using the theory of Rie-
mann surfaces.

1.1 Introduction

Let M be a smooth manifold and let g, g̃ be Riemannian metrics on M . The
metric g̃ is said to be conformal to g if there exists a smooth positive function
u ∈ C∞

+ (M) such that g̃ = ug. This relation will be denoted by g̃ ≃ g and
it is obviously an equivalence relation. Likewise, a map between Riemannian
manifolds ϕ : (M, g) → (M̃, g̃) is said to be conformal if ϕ∗g̃ = ug for some
u ∈ C∞

+ (M). If ϕ is a di�eomorphism, the manifolds are said to be conformally
equivalent, denoted (M, g) ≃ (M̃, g̃). The term conformal is synonymous to
angle-preserving, and thus being conformal is a geometrically profound prop-
erty. The �eld of conformal geometry is concerned with the study of conformal
transformations, as well as conformal invariants.

A conformal class G of M is an equivalence class of conformal metrics of
M . The conformal class of a given metric g will be denoted by

g := {ug : u ∈ C∞
+ (M)}.

In the context of conformal geometry, manifolds are more appropriately equipped
with conformal classes rather than speci�c Riemannian metrics. Such a struc-
ture is called a conformal structure. If M is a smooth manifold and G is a
conformal class of M , the pair (M,G) is called a conformal manifold. At the
same time, given a conformal manifold (M,G) we often choose to work with a
speci�c representative g ∈ G. In doing so, we are often interested in a choice
of representative that simpli�es the underlying analysis and geometry. The
Yamabe problem is a problem of exactly that nature, in particular:

The Yamabe problem: Given a compact conformal manifold (M,G), is it
possible to �nd a representative g ∈ G such that the scalar curvature Sg is
constant?

Why scalar curvature? Why not pursue the bolder claim of �nding a rep-
resentative of constant sectional curvature, a signi�cantly stronger assertion?
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Such a quest readily leads to failure, as the problem becomes heavily overdeter-
mined as dimension goes up. If n = dimM , the space of curvature-like tensors
has dimension

1

12
n2(n2 − 1),

while the unknown function u o�ers only one degree of freedom. One can expect
to solve this problem for n = 2 however, since the above expression becomes
1 in that case. An elegant solution using complex geometry will be given in
Section 1.2. For n = 0, 1 the problem is trivial. As of Ricci curvature, one
runs to similar problems. There are compact manifolds of dimension n = 3, 4
that are known to be unable admit any Einstein metrics (i.e of constant Ricci
curvature) at all. This leaves us placing all our hopes on scalar curvature.

Thus the Yamabe problem becomes truly relevant in the case n ≥ 3, which
we assume to be the case from now on, with the single exception of Section 1.2.
The answer to its question is yes, and it was given through the collective work
of several authors over the span of roughly 25 years. In 1960, Yamabe proposed
a solution using techniques of elliptic PDEs and calculus of variations. Unfortu-
nately, his proof contained a serious error, which was discovered by Trudinger in
1968. Trudinger salveged what he could of Yamabe's original proof, at the cost
of a rather restrictive assumption. In 1976, Aubin complemented Trudinger's
result, giving a positive answer to the problem in all cases where a suitable con-
formal invariant λ(M,G) (called the Yamabe invariant, to be explained later)
is less than that of the standard sphere (Sn, g◦), where g◦ denotes the round
metric. In particular:

Theorem (Yamabe, Trudinger, Aubin). The Yamabe problem possesses a so-
lution for any compact conformal manifold (M,G) provided that λ(M,G) <
λ(Sn, g◦).

The standard sphere certainly has a metric of constant (sectional) curvature,
namely the standard one, and it is also relatively easy to show that in general
λ(M,G) ≤ λ(Sn, g◦). This shifts the problem to determining the value of
Yamabe invariants, and in particular whether they assume the critical value
λ(Sn, g◦) or not. Aubin was also able to prove:

Theorem (Aubin). If (M,G) has dimension ≥ 6 and is not locally conformally
�at, then λ(M,G) < λ(Sn, g◦).

The remaining cases where resolved by Schoen in 1984, by introducing meth-
ods involving Green functions of the conformal Laplacian, as well as the positive
mass theorem, a result from the theory of general relativity that was found to
be unexpectedly relevant. He proved:

Theorem (Schoen). If (M,G) has dimension 3, 4 or 5 or if it is locally con-
formally �at and not conformal to (Sn, g◦), then λ(M,G) < λ(Sn, g◦).

This completes the solution of the Yamabe problem, as well as the histor-
ical introduction. The aim of this thesis is to explain these steps in detail, as
well as some additional developments. The main references are the article of
Lee & Parker [20], which is the �rst place to present a uni�ed solution to the
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problem, as well as the book of Schoen & Yau [23]. Our presentation is aimed
towards a more clear, less coordinate dependent exposition of the source mat-
terial. Nevertheless, coordinates cannot be avoided entirely; the existence of
conformal normal coordinates is still essential for the proof. In this regard, we
have simpli�ed the presentation by introducing conformal normal coordinates
earlier on, relying on more recent results by Günther [13, 14] that exclude un-
necessary remainder terms that complicate the original source material. Proofs
are almost always given - some are merely outlined if judged to be too long and
technical to be of educational value - with the single exception of the positive
mass theorem, which is too involved to include here and far beyond our scope.

The prerequisites for following this presentation is familiarity with the the-
ory of Riemannian manifolds as well as the standard theory of elliptic PDEs,
both classical subjects that are usually treated in most curricula of graduate
mathematics. We review the required notions in Chapter 2, which we encourage
the reader to at least skim through, so as to become familiar with our notation.
The last section on the spinorial Yamabe problem would also make good use
of any prior knowledge of spin geometry, although an e�ort has been made to
keep it self-contained.

Chapter 3, the main one in this thesis, systematically treats the Yamabe
problem. Section 3.1 shifts the problem to the value of the Yamabe invariant,
while Section 3.2 is concerned with the determination of this value, completing
the solution to the problem.

Finally, Chapter 4 is a survey on the spinorial Yamabe problem, which can
be considered a �rst-order analogue of the Yamabe problem and shares a lot of
similarities. It is mostly based in the works of Ammann [4, 2, 3].

1.2 The case n = 2

The 2-dimensional case admits a special, elegant treatment using results from
the theory of Riemann surfaces. These are 2-dimensional manifolds whose
charts are additionally required to have transition maps that satisfy the Cauchy-
Riemann equations. More precisely:

De�nition 1.2.1. A Riemann surface (Σ, C) is a second countable Hausdor�
topological space Σ that is locally homeomorhic to C, together with a set C of
such local homeomorphisms that satisfy the following conditions:

1. The domains of the elements of C form an open cover of Σ,

2. Whenever z, w ∈ C and z : U → C, w : V → C, either U ∩ V = ∅ or
the transition maps z ◦ w−1 and w ◦ z−1 are both holomorphic in their
respective domains of de�nition.

If C is maximal with respect to inclusion, it is called a complex structure.

Of course, not every 2-dimensional real manifold is a Riemann surface, since
a holomorphic map is a special case of a smooth map. But given a surface with
a smooth real structure, can we expect to �nd a complex substructure? If the
manifold is orientable, the answer is yes, a result that is a consequence of the
existence of a special kind of coordinates.
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De�nition 1.2.2. Let (M, g) be a 2-dimensional Riemannian manifold, and let
(x, y) be coordinates on an open set U . If there exists a u ∈ C∞

+ (U) such that

g = u(dx⊗ dx+ dy ⊗ dy),

the set of coordinates (x, y) is called isothermal.

In particular, if for any p ∈ M there exist isothermal coordinates centered
at p, the manifold is locally conformally �at (see Section 3.1.4). Isothermal
coordinates always exist, for a classical proof see Chern [8]; note however that
the existence of conformal normal coordinates, proven here in Section 3.1.4, is
also equivalent to this for n = 2. It is easy to see that the transition maps
between isothermal charts are conformal. Moreover, on an orientable manifold
they can also be taken to be orientation-preserving by possibly changing a sign.
Holomorhic maps between open subsets of the complex plane are precicely the
orientation-preserving conformal maps, so isothermal coordinates readily de�ne
a complex structure on any orientable surface.

In particular, simply connected surfaces are orientable, and thus admit the
structure of a Riemann surface. Then the Uniformisation Theorem applies:

Theorem 1.2.1 (Uniformisation Theorem). Every simply connected Riemann
surface is conformally equivalent to one of the three:

1. the complex plane C,

2. the unit disc D,

3. the Riemann sphere Ĉ.

These are equipped with the standard metrics of constant sectional curvature
K = 0,−1 and 1 respectively. This solves the Yamabe problem for simply
connected surfaces, and in fact the stronger version of sectional curvature.

The non-simply connected case easily reduces to the simply connected one:
just consider the universal cover π : Σ̃ → Σ. If we equip Σ̃ with the pull-back
metric π∗g, then π : (Σ̃, π∗g) → (Σ, g) becomes a local isometry. Local isome-
tries preserve curvature, and the Uniformisation Theorem applies for (Σ̃, π∗g).
This concludes the proof of the 2-dimensional Yamabe problem.

The Uniformisation Theorem was proven in 1907 by Poincaré [22] and in-
dipendently by Koebe, who later gave several more proofs and generalisations.
For a modern proof, see Ahlfors [1].
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Chapter 2

Preliminaries

In this chapter we review the notions and main results of Riemannian Geometry
and Elliptic PDEs that will be needed for the solution of the Yamabe problem.
Most of the results stated here are considered prerequisites for our presentation.
The con�dent reader may skip this chapter and/or refer later to it when needed.

2.1 Review of Riemannian geometry

All material reviewed here can be found in many excellent di�erential geometry
textbooks, see [19, 11, 16] to name a few.

2.1.1 Review of tensor algebra

First, we give a quick review of tensor algebra. Let V be a real vector space of
�nite dimension n. A tensor of valence (k, l) over V is an element of the tensor
product

⊗k
l V = V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l times

.

This space can be identi�ed with the space of multilinear functions

T : V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
l times

→ R.

If {e1, . . . , en} is a basis of V and {ε1, . . . , εn} is the dual basis of V ∗, a basis
of ⊗k

l V is {ei1 ⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjl}, so given such a choice of basis, any
(k, l)-tensor over V can be decomposed uniquely as1

T = T i1···ik
j1···jl ei1 ⊗ · · · ⊗ eik ⊗ ε

j1 ⊗ · · · ⊗ εjl .

If k = 0 then ⊗0
l V = ⊗lV ∗. We recall now a few important subspaces of

⊗kV ∗ that occur frequently in practice. First is the space ΛmV ∗ of antisym-
metric (0,m)-tensors (or m-forms); its dimension is (n|m). We can multiply a
k-form and an l-form to obtain a (k + l)-form using the exterior product

η ∧ θ = (k + l)!

k!l!
Alt(η ⊗ θ),

1We freely use the Einsten summation convention throughout the text, summing over
matching upper and lower indices.
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where Alt is the projection of ⊗mV ∗ onto ΛmV ∗,

Alt(ω)(v1, . . . , vm) =
1

m!

∑
π∈Sm

sgn(π)ω(π(v1), . . . , π(vm)).

Likewise we have SmV ∗, the space of symmetric (0,m)-tensors, with the sym-
metrisation operation

Sym(ω)(v1, . . . , vm) =
1

m!

∑
π∈Sm

ω(π(v1), . . . , π(vm)),

which is a projection of ⊗mV ∗ onto SmV ∗. When working with indices, we have
the following notation:

ω[i1···im] := Alt(ω)i1···im , ω(i1···im) := Sym(ω)i1···im .

Note that it is also possible to (anti-)symmetrise only some of the components,
as in Ti(jk) etc. The symmetrisation and antisymmetrisation operations can also
be considered for upper indices (the arguments permuted in this case will be
covectors).

Another subspace, which is very central in the theory of curvature, is the
subspace S2Λ2V ∗ of ⊗4V ∗. This is the space of (0, 4)-tensors that are antisym-
metric with respect to the permutations (1)↔ (2) and (3)↔ (4) and symmetric
with respect to (1, 2)↔ (3, 4); its dimension is

n(n− 1)(n2 − n+ 2)

8
.

It is not hard to construct elements of S2Λ2V ∗ from 2-forms: if α, β ∈ Λ2V ∗, it
su�ces to consider the symmetric product

α⊙ β = α⊗ β + β ⊗ α.

Conversely, every element of S2Λ2V ∗ is a linear combination of such symmetric
products. Given a T ∈ S2Λ2V ∗, its Bianchi Symmetrisation is the average of
cyclic permutations of its �rst three arguments:

b(T )(X, Y, Z,W ) =
1

3
(T (X, Y, Z,W ) + T (Y, Z,X,W ) + T (Z,X, Y,W )).

It can be shown that b is a projection of S2Λ2V ∗ onto the subspace Λ4V ∗. It
follows that S2Λ2V ∗ = ker(b)⊕ Λ4V ∗, and we call Curv(V ) := ker(b) the space
of curvature-like tensors over V . One way to construct curvature-like tensors is
by taking the Kulkarni-Nomizu product

A⃝∧ B(X, Y, Z,W ) = A(X,Z)B(Y,W )− A(Y, Z)B(X,W )

−A(X,W )B(Y, Z) + A(Y,W )B(X,Z)
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of two symmetric (0, 2)-tensors A,B. The space of curvature-like tensors has
dimension

1

12
n2(n2 − 1).

2.1.2 Review of Riemannian metrics

In what follows we denote by M a di�erentiable manifold of dimension n. Its
tangent and cotangent space at point p ∈M will be denoted by TpM and T ∗

pM
respectively. Then we have as usual the tensor bundles of valence (k, l),

⊗k
l TM =

⊔
p∈M

⊗k
l TpM.

Tensor �elds are de�ned to be the smooth sections of these tensor bundles, so
a (k, l)-tensor �eld is an element of Γ(⊗k

l TM).
A Riemannian metric on M is a (0, 2)-tensor �eld g which de�nes pointwise

an inner product on TM (symmetric, positive de�nite). Then there is a canon-
ical way to extend this inner product to the other tensor bundles, by pairing
indices using the metric; for example the inner product on T ∗M is

g(η, θ) = gijηiθj,

where gij denotes the inverse of gij. Likewise, it is possible to convert vectors
to covectors and vice versa via the musical isomorphism ♭ : TM → T ∗M ,

♭(X)(Y ) = g(X, Y ),

and its inverse (denoted ♯). This process is known as �raising� or �lowering�
indices, owing to the fact that

♭(X)i = gijX
j, ♯(ω)i = gijωj.

A connection (or covariant derivative) on M is a directional derivative for
vector �elds ∇ : TM × Γ(TM) → TM . The covariant derivative of the vector
�eld X along the tangent vector ξ is denoted ∇ξX, and is locally of the form

(∇ξX)k = ξXk + Γk
ijξ

iXj,

where Γk
ij = (∇∂i∂j)

k are the Christo�el symbols of ∇. The torsion tensor of ∇
is de�ned to be the (1, 2)-tensor �eld

T (X, Y ) = ∇XY −∇YX − [X, Y ]

with local expression T k
ij = Γk

ij − Γk
ji. Then ∇ is called torsion-free if T = 0, or

equivalently if Γk
ij = Γk

ji. Moreover, ∇ is said to be compatible with the metric
if it satis�es the Leibniz rule

Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY ).
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To each Riemannian metric g corresponds a unique connection, called the
Levi-Civita connection, which is torsion-free and compatible with the metric.
It satis�es the Koszul formula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))

− g([Y,X], Z)− g([X,Z], Y )− g([Y, Z], X).

and its Christo�el symbols are

Γk
ij =

1

2
gkl

{
∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

}
.

It is also possible to uniquely extend the connection for all tensor �elds in a
manner such that ∇u = du for u ∈ C∞(M), ∇ commutes with traces, and

∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S)

for any tensor �elds T, S. For example, the metric compatibility condition can
be rewritten as ∇g = 0. In this context, a connection can be seen as a map

∇ : Γ(⊗k
l TM)→ Γ(⊗k

l+1TM).

In index notation, we set ∇a := ∇∂a and if T ∈ Γ(⊗k
l TM), denote

T i1···ik
j1···jl;a := (∇aT )

i1···ik
j1···jl .

Note that covariant di�erentiation can be performed multiple times, so we get
a map ∇m : Γ(⊗k

l TM) → Γ(⊗k
l+mTM) and likewise we encounter expressions

of the form
T i1···ik
j1···jl;a1···am := (∇am · · · ∇a1T )

i1···ik
j1···jl .

Each Riemannian manifold (M, g) is naturally equipped with the Rieman-
nian volume form, expressed locally as

ωg = Ωg(x)dx,

where Ωg(x) =
√
det gxx and dx = dx1∧· · ·∧dxn (here gxx is the matrix obtained

by expressing g in the x-coordinates). The associated Borel measure on M is

µg(B) =

∫
B

ωg.

The classical di�erential operators are now in order. Given u ∈ C∞(M), the
gradient of u is the vector �eld

grad(u) = ♯(du) = gij(∂iu)∂j.

The divergence of a 1-form θ ∈ Γ(T ∗M) is

div(θ) := tr(∇θ) = gabθa;b,
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and the Laplacian of a function u ∈ C∞(M) is

∆u := div(du) =
1

Ωg(x)

∂

∂xi
Ωg(x)g

ij ∂u

∂xj
.

These satisfy the divergence theorem∫
M

div(θ) dµg =

∫
∂M

θ(ν) dσg,

where ∂M is the boundary of M (if any), σg is the induced surface measure on
∂M that is obtained from the restriction of g on T∂M and ν is the outward
unit normal vector on ∂M , as well as the integration by parts formula∫

M

⟨du, dv⟩ dµg = −
∫
M

u∆v dµg,

whereM is a compact manifold without boundary. More generally, in a compact
manifold M without a boundary, the following integration by parts formula
holds for all appropriate tensor �elds T, S:∫

M

⟨∇T, S⟩ dµg = −
∫
M

⟨T, tr(∇S)⟩ dµg,

where the trace is with respect to the last two arguments.

2.1.3 Review of curvature

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. The
curvature of (M, g) is then de�ned to be the (1, 3)-tensor �eld

R(X, Y )Z = [∇Y ,∇X ]Z −∇[Y,X]Z.

Locally, its components are given by

Rl
ijk = −Γa

jkΓ
l
ia + Γa

ikΓ
l
ja − ∂iΓl

jk + ∂jΓ
l
ik.

It satis�es the Bianchi identities

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

∇XR(Y, Z,W ) +∇YR(Z,X,W ) +∇ZR(X, Y,W ) = 0,

as well as the Ricci identity

R(X, Y )Z = ∇2
Y,XZ −∇2

X,YZ,

where ∇2
Y,X = ∇Y∇X − ∇∇Y X is the second covariant derivative. Using the

metric, it is possible to turn the curvature into a (0, 4)-tensor �eld

R(X, Y, Z,W ) = g(R(X, Y )Z,W ),
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called the Riemann curvature, which enjoys, unsurprisingly, all the symmetries
of a curvature-like tensor, see Section 2.1.1.

The Ricci tensor Ric is obtained by taking the Ricci contraction c of the
Riemann curvature, i.e by pairing arguments (2) and (4). Its components are

Rij = c(R)ij = gabRiajb.

Then the scalar curvature is obtained by further tracing over the remaining
arguments:

S := tr(Ric) = gabRab.

The Weyl tensor is de�ned to be

W = R− A⃝∧ g,

where A is the Schouten tensor

A =
1

n− 2

{
Ric− S

2(n− 1)
g

}
,

while the traceless Ricci tensor (or Einstein tensor) is

E = Ric− S

n
g.

Then we have the orthogonal decomposition

R = W ⊕ 1

n− 2
E⃝∧ g ⊕ S

2n(n− 2)
g⃝∧ g.

Given a 2-dimensional tangent plane Π = span{X, Y } of TpM , we de�ne its
sectional curvature

K(Π) =
R(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2
,

which does not depend upon the choice of basis {X, Y }. Given a tangent line
L = span{X} of TpM , we de�ne its Ricci curvature

RIC(L) =
Ric(X,X)

g(X,X)
,

which is again independent of the choice of the generating vector. It follows
that the manifold has constant sectional curvature κ if R = κ

2
g⃝∧ g, and constant

Ricci curvature ρ if Ric = ρg. Metrics of constant Ricci curvature are also called
Einstein metrics, and satisfy E = 0.

2.2 Review of elliptic PDEs

The material presented here is classical and is contained in standard references
such as [9, 12].
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2.2.1 Function spaces and embeddings

Let (M, g) be a Riemannian manifold with Levi-Civita connection∇. We denote
by Ck,p(M) the space of all k times di�erentiable functions u on the smooth
manifold M with �nite Sobolev norm

∥u∥k,p =
k∑

i=0

∥∇iu∥p,

where ∥ · ∥p stands for the standard Lp norm. The Sobolev space W k,p(M)
is then de�ned to be the completion of Ck,p(M) with respect to the ∥ · ∥k,p
norm. On a compact manifold, the elements of W k,p(M) are precisely the ones
admitting weak derivatives up to order k with �nite Lp norm. Speci�cally, this
means that for every smooth di�erential operator D of order at most k and
u ∈ W k,p(M), there exists a function Du ∈ Lp(M) such that∫

M

vDu dµg =

∫
M

uD∗v dµg ∀v ∈ C∞(M),

where D∗ is the formal adjoint of D. Moreover, on compact manifolds, C∞(M)
is dense in W k,p(M), and W k,p(M) is independent of g.

Next we de�ne the Hölder space Ck,α(M) for 0 ≤ α ≤ 1. This is the
collection of all functions u ∈ Ck(M) that have �nite Hölder norm

∥u∥Ck,α =
k∑

i=1

sup
M
|∇iu|+ sup

x ̸=y

|∇ku(x)−∇ku(y)|
|x− y|α

,

where the last supremum is taken over all x, y such that y is contained in a
normal coordinate neighbourhood of x and ∇ku(y) is parallelly transported
from y to x along a radial geodesic in this neighbourhood.

These spaces are related via the Sobolev Embedding Theorem:

Theorem 2.2.1 (Sobolev Embedding Theorem). Let M be a compact Rieman-
nian manifold of dimension n (possibly with C1 boundary). Then:

1. If
1

r
≥ 1

q
− k

n
,

then W k,q(M) ↪→ Lr(M).

2. (Rellich Lemma). If the previous inequality for the exponents is strict, the
embedding is compact.

3. If 0 < α < 1 and
1

q
≤ k − α

n
,

then W k,q(M) ↪→ C0,α(M).

In particular, W 1,p(M) ↪→ Lr(M) for r ≤ p∗, where p∗ = np/(n − p) is the
critical Sobolev exponent, while the embedding is compact for r < p∗.
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2.2.2 Important results for elliptic PDEs

Now we give a review of some of the most powerful tools that the theory of
elliptic PDEs has to o�er. First is local elliptic regularity, which roughly states
that a weak solution of −∆u = f must also be a solution in the strong sense.
The same result can be extended globally in the case of a compact Riemannian
manifold.

Theorem 2.2.2 (Local Elliptic Regularity). Let Ω ⊂ Rn be open and consider
the Laplacian ∆ with respect to any metric on Ω, and suppose that u ∈ L1

loc(Ω)
is a weak solution of −∆u = f . Then the following statements are true:

1. If f ∈ W k,q(Ω), then u ∈ W k+2,q(K) for any K ⊂⊂ Ω, and if u ∈ Lq(Ω),
then

∥u∥Wk+2,q(K) ≤ C(∥f∥Wk,q(Ω) + ∥u∥Lq(Ω)).

2. If f ∈ Ck,α(Ω), then u ∈ Ck+2,α(K) for any K ⊂⊂ Ω, and if u ∈ C0,α(Ω),
then

∥u∥Ck+2,α(K) ≤ C(∥f∥Ck,α(Ω) + ∥u∥C0,α(Ω)).

Theorem 2.2.3 (Global Elliptic Regularity). Let M be a compact Riemannian
manifold with Laplacian ∆, and suppose that u ∈ L1

loc(M) is a weak solution of
−∆u = f . Then the following statements are true:

1. If f ∈ W k,q(M), then u ∈ W k+2,q(M), and

∥u∥Wk+2,q(M) ≤ C(∥f∥Wk,q(M) + ∥u∥Lq(M)).

2. If f ∈ Ck,α(M), then u ∈ Ck+2,α(M), and

∥u∥Ck+2,α(M) ≤ C(∥f∥Ck,α(M) + ∥u∥C0,α(M)).

Next we recall the strong maximum principle for compact Riemannian man-
ifolds.

Theorem 2.2.4 (Strong Maximum Principle). Let M be a connected Rieman-
nian manifold with Laplacian ∆, and suppose that h is a non-negative smooth
function of M . If u ∈ C2(M) satis�es (−∆+ h)u ≥ 0 and attains a minimum
≤ 0, then u is constant in M .

Last but not least, we state a result concerning removable singularities,
whose proof can be found in Lee & Parker [20]. For the sake of completeness
we include it here as well.

Theorem 2.2.5 (Weak Removable Singularities). Let U be an open subset of
the compact Riemannian manifold (M, g) and let p ∈ U . If u ∈ Lq(U) for some
q > 2∗/2 is a weak solution of (−∆ + h)u = 0 in U \ p for h ∈ Ln/2(U), then
(−∆+ h)u = 0 weakly in all of U .
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Proof. We need to show that −∆u + hu = 0 holds in the weak sense in all of
U , i.e ∫

U

(−u∆v + huv) dµg = 0 ∀v ∈ C∞
c (U).

Let B ⊂ U be a ball of small enough radius centered at p, and denote by ϵB
the ball centered at p with radius ϵ-times that of B. Let η ∈ C∞

c (U) be a
cut-o� function such that supp η ⊂ B and η|B/2 = 1. De�ne ηϵ = η ◦ δϵ, where
δϵ(x) = x/ϵ in normal coordinates centered at p denotes the dilation by ϵ about
p. Then supp ηϵ ⊂ ϵB, and (1− ηϵ)v ∈ C∞

c (U \ p) for every v ∈ C∞
c (U). Since

−∆u+ hu = 0 away from p, it follows that∫
U

(−u∆v + huv) dµg =

∫
ϵB

(−u∆(ηϵv) + huηϵv) dµg,

and our task is to show that the RHS converges to zero as ϵ→ 0.
By Hölder's inequality, hu is integrable and hence the second term goes to

zero as ϵ → 0 by the dominated convergence theorem. For the �rst term note
that

∆(ηϵv) = v∆ηϵ + 2⟨dηϵ, dv⟩+ ηϵ∆v,

and it is straightforward that |dηϵ| ≤ C/ϵ and |∆ηϵ| ≤ C/ϵ2. Therefore, if
1/p+ 1/q = 1, i.e p and q are Hölder-conjugate exponents, we have∣∣∣ ∫

ϵB

u∆(ηϵv) dµg

∣∣∣ ≤ C

ϵ2

∫
ϵB

|u| dµg

≤ Cϵ−2∥u∥qµg(ϵB)
1
p

≤ Cϵn/p−2∥u∥q,

so it follows that this goes to zero as ϵ → 0 when q > 2∗/2, since n/p > 2 in
that case. This completes the proof.
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Chapter 3

Solution of the Yamabe problem

In this section we solve the Yamabe problem. This is done in two steps, and we
devote a separate section to each. Section 3.1 shifts the problem to the value
of the Yamabe invariant, while Section 3.2 is concerned with the determination
of this value, completing the solution to the problem.

3.1 Solution in terms of the Yamabe invariant

3.1.1 Yamabe's approach

Given a conformal manifold (M,G), we will often choose to work with a Rie-
mannian manifold (M, g) where g ∈ G. This has the advantage of reducing
the problem to the solution of a geometric partial di�erential equation, associ-
ated to which is a conformally invariant functional. This was Yamabe's original
approach, the core of which remains intact until today despite the error that
occurred at a later step, which we will point out when the time comes.

The �rst step is to specify the way curvature changes under conformal trans-
formation of the metric. To this end, suppose that g̃ is of the (convenient) form
g̃ = e2vg. It is straightforward to verify that in this case the connection trans-
forms as

∇̃XY = ∇XY + (Xv)Y + (Y v)X − g(X, Y ) grad v,

and using this we get the transformation law for curvature, which reads

R̃(X, Y )Z = R(X, Y )Z + g(∇X grad v, Z)Y − g(∇Y grad v, Z)X

+ g(X,Z)∇Y grad v − g(Y, Z)∇X grad v + (Y v)(Zv)X

− (Xv)(Zv)Y − g(grad v, grad v)(g(Y, Z)X − g(X,Z)Y )

+ ((Xv)g(Y, Z)− (Y v)g(X,Z)) grad v,

see for example Kühnel [17] for details. From this we can obtain the transfor-
mation laws for Riemann, Ricci and scalar curvature:

R̃ = e2vR− e2vg⃝∧
(
∇2v − dv ⊗ dv + 1

2
|dv|2g

)
, (3.1)

R̃ic = Ric− (n− 2)(∇2v − dv ⊗ dv)− (∆v + (n− 2)|dv|2)g, (3.2)

S̃ = e−2vS − 2(n− 1)e−2v∆v − (n− 2)(n− 1)e−2v|dv|2. (3.3)
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To bring formula (3.3) in a form which is more manageable, we substitute e2v =
u2

∗−2, where 2∗ = 2n/(n− 2) is the critical Sobolev exponent. Straightforward
calculation then yields

S̃ = u1−2∗
(
− 4

n− 1

n− 2
∆u+ Su

)
,

so if S̃ is to assume the constant value λ, it follows that the following PDE,
called the Yamabe equation, must be satis�ed:

Du = λu2
∗−1, (3.4)

where D = −ρ∆+S, ρ = 4(n− 1)/(n− 2) is the conformal Laplacian. To solve
the Yamabe problem λ could assume any value, so this can be thought of as a
non-linear eigenvalue problem.

In terms of calculus of variations, Yamabe noted that equation (3.4) is es-
sentially the Euler-Lagrange equation associated to the functional Q : G→ R,

Q(g) =
∫
M
S dµg

µg(M)2/2∗
, (3.5)

To see this, note that there is an equivalent way to express Q as follows. Fixing
g ∈ G, then if g̃ = u2

∗−2g it is straightforward to check that dµg̃ = u2
∗
dµg and

Q(g̃) =
∫
M
S̃ dµg̃( ∫

M
dµg̃

)2/2∗ =

∫
M
u1−2∗(−ρ∆u+ Su)u2

∗
dµg( ∫

M
u2∗ dµg

)2/2∗
=

∫
M
(−ρu∆u+ Su2) dµg

∥u∥22∗
,

so Q(g̃) = Qg(u) where Qg : C
∞
+ (M)→ R,

Qg(u) =
Eg(u)
∥u∥22∗

, Eg(u) =
∫
M

(ρ|du|2 + Su2) dµg. (3.6)

Q and Qg are obviously di�erent expressions of the same functional de�ned on
a conformal class, the �rst one being independent of a representative and the
second one depending on such a choice, but instead o�ering a more functional
analytic formulation.

The critical points of Qg are all functions u ∈ C∞
+ (M) for which the Gateaux

derivative
d

dt

∣∣∣∣
t=0

Qg(u+ tw)

vanishes for all w ∈ C∞(M) ∼= TuC
∞
+ (M). Explicitly,

d

dt

∣∣∣∣
t=0

Qg(u+ tw) =
∥u∥22∗ d

dt

∣∣
t=0
Eg(u+ tw) + Eg(u) d

dt

∣∣
t=0
∥u+ tw∥22∗

∥u∥42∗
, (3.7)

and it is a matter of straightforward calculations to show that
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d

dt

∣∣∣∣
t=0

Eg(u+ tw) = 2

∫
M

(−ρ∆u+ Su)w dµg, (3.8)

d

dt

∣∣∣∣
t=0

∥u+ tw∥22∗ = 2∥u∥2−2∗

2∗

∫
M

u2
∗−1w dµg. (3.9)

Combining (3.7), (3.8) and (3.9), we get the �nal formula for the Gateaux
derivative

d

dt

∣∣∣∣
t=0

Qg(u+ tw) =
2

∥u∥22∗

∫
M

(
Du− Eg(u)

∥u∥2∗2∗
u2

∗−1

)
w dµg, (3.10)

so it follows that u is a critical point of Qg if and only if it is a solution of the
Yamabe equation

Du = λu2
∗−1, λ = Eg(u)/∥u∥2

∗

2∗ . (3.11)

Now note that by Hölder's inequality we have
∣∣ ∫

M
Su2 dµg

∣∣ ≤ C∥u∥22∗ for
some constant C > 0, thus

Qg(u) =

∫
M
(ρ|du|2 + Su2) dµg

∥u∥22∗
≥

∫
M
Su2 dµg

∥u∥22∗
≥ −C,

so the Yamabe functional is bounded from below. We call its in�mum the
Yamabe invariant, denoted by

λ(M, g) = inf{Qg(u) : u ∈ C∞
+ (M)} = inf{Q(g̃) : g̃ ≃ g}. (3.12)

It is obvious that the Yamabe invariant is a conformal invariant, i.e. λ(M, g̃) =
λ(M, g) whenever g̃ ≃ g, so it makes sense to talk about the Yamabe invariant

λ(M,G) = inf{Q(g) : g ∈ G} (3.13)

of the entire conformal class.

3.1.2 The subcritical problem

In view of the previous section, it has become apparent that if we can prove the
existence of a minimizer for the Yamabe functional Qg, then this would also be
a solution to the Yamabe equation and would therefore yield a solution to the
Yamabe problem. The standard approach would be to consider a minimising
sequence of Qg and then hope that, up to a subsequence, it converges to an
actual minimizer.

This direct approach fails due to the criticality of the exponent 2∗ than
appears in Qg. This can be mended by considering the subcritical problem and
then passing to the limit, but let us take a moment to see where the problem is.
Suppose {uk} ⊂ C∞

+ (M) is a minimising sequence of Qg, i.e. Qg(uk)→ λ(M, g)
as k → ∞. We may assume that ∥uk∥2∗ = 1 for all k ∈ N by rescaling, since
Qg(κu) = Qg(u) for any κ > 0. Then
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∥uk∥21,2 =
∫
M

(|duk|2 + u2k) dµg

=
1

ρ
Qg(uk) +

∫
M

(
1− S

ρ

)
u2k dµg

≤ 1

ρ
Qg(uk) + C∥uk∥22∗ ,

the last inequality being true for some C > 0 due to Hölder's inequality. It
follows that {uk} is bounded in W 1,2(M), which is a Hilbert space. A well
known consequence of the Banach-Alaoglu theorem is that bounded subsets
of a Hilbert space are weakly precompact, see for example Folland [10], so
in particular there is a subsequence {ukl} of {uk} that converges weakly to
an element u ∈ W 1,2(M). It remains to be shown that u ∈ C∞

+ (M). To
show that u is smooth would be a matter of elliptic regularity, but we face a
more fundamental problem: since the embedding W 1,2(M) ↪→ L2∗(M) is not
compact (see the Rellich lemma in Section 2.2.1), we cannot conclude that the
subsequence can be chosen so that ∥ukl∥2∗ → 1, as in general there is no strong
convergence in L2∗(M). In particular, we could have u = 0.

So it is clear that the problem is the critical exponent 2∗. We try to get
around this di�culty by considering the subcritical problem �rst. Consider the
perturbed functional Qs

g : C
∞
+ (M)→ R,

Qs
g(u) =

Eg(u)
∥u∥2s

(3.14)

for 2 ≤ s < 2∗ and the perturbed Yamabe constant

λs(M, g) = inf{Qs
g(u) : u ∈ C∞

+ (M)}. (3.15)

Likewise, one can show that the minimizers of Qs
g that are normalised by ∥u∥s =

1 must satisfy the Euler-Lagrange equation

Du = λsu
s−1, (3.16)

where we write λs = λs(M, g) for brevity. In that case we have the following
regularity theorem.

Theorem 3.1.1. Suppose that u ∈ W 1,2(M) is a weak solution of (3.16) for
some �xed 2 ≤ s ≤ 2∗. Suppose in addition that u ∈ Lr(M) for some r >
(s − 2)n/2. Then either u = 0 or u ∈ C∞

+ (M) and for any 0 ≤ α ≤ 1,
∥u∥C2,α < C for some C = C(M, g, |λs|, ∥u∥r).

Proof. Rewriting Equation (3.16) we have that

−ρ∆u = λsu− Sus−1, (3.17)

and since u ∈ Lr(M) it readily follows that∆u ∈ Lq(M) for q = r/(s−1). Using
global elliptic regularity (see Section 2.2.2), it follows that u ∈ W 2,q(M). Now
applying the critical case of the Sobolev embedding theorem (see Section 2.2.1),



3.1. Solution in terms of the Yamabe invariant 19

we get that u ∈ Lr′(M) for r′ = nr/(ns−n− 2r), while our hypothesis ensures
that r′ > r. Recursive application of this process then yields that u ∈ W 2,q(M)
for all q > 1.

Considering the Hölder space version of the Sobolev embedding theorem
with k = 2 and any 0 ≤ α ≤ 1, it follows that u ∈ C0,α(M), and then the
Hölder space version of global elliptic regularity yields u ∈ C2,α(M), as well as
the desired estimate. Moreover, recursive application of global elliptic regularity
yields u ∈ C∞(M).

Finally, equation (3.17) implies that (−∆+ κ)u ≥ 0 for

κ = max{0, (S − λsus−2)/ρ}

Then one can apply the strong maximum principle to verify the positivity claim.

Since the hypothesis on the exponent r may seem somewhat technical or
ad hoc, let us mention two special cases that we are interested in. The �rst
one arises when we consider the subcritical problem and r = s < 2∗, while the
second one arises when we consider the critical problem and s = 2∗ < r. We
will need to consider both of these cases in the sequel.

We are now in a position to prove the existence of smooth solutions in the
subcritical case. Note that since C∞(M) is dense in W 1,2(M) and Qs

g(u) is
independent of the sign of u, we may continuously and symmetrically extend
Qs

g from C∞
+ (M) to W 1,2(M) in a unique manner, which we will do from now

on without further mention.

Theorem 3.1.2 (Yamabe). For 2 ≤ s < 2∗, there exists a solution us ∈ C∞
+ (M)

of Du = λsu
s−1, for which Qs

g(us) = λs and ∥us∥s = 1.

Proof. Consider a minimising sequence {uk} ⊂ C∞
+ (M) of Qs

g such that ∥uk∥s =
1 (such a choice can again be made due to homogeneity). Similar to the critical
case, it is straightforward to show that {uk} is bounded in W 1,2(M), and thus,
possibly up to a subsequence, it converges weakly in W 1,2(M) and strongly in
Ls(M) to some us ∈ W 1,2(M).

Since Ls(M) ↪→ L2(M), it follows that

lim
k→∞

∫
M

Su2k dµg =

∫
M

Su2s dµg,

while weak convergence in W 1,2(M) and the Cauchy-Swartz inequality imply

∫
M

| gradg us|2 dµg = lim
k→∞

∫
g(gradg uk, gradg us) dµg

≤ lim inf
k→∞

(∫
M

| gradg uk|2 dµg

)1/2(∫
M

| gradg us|2 dµg

)1/2

and so
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Qs
g(us) =

∫
M

(| gradg us|2 + Su2s) dµg

≤ lim inf
k→∞

∫
M

(| gradg uk|2 + Su2k) dµg

= lim
k→∞
Qs

g(uk) = λs.

But then λs is de�ned so that Qs
g(us) ≥ λs, therefore Qs

g(us) = λs and us
is a non-zero minimizer, since ∥us∥s = 1. Since (3.16) is the Euler-Lagrange
equation of Qs

g, it follows that us is a weak solution that is in Ls(M), so by
Theorem 3.1.1 we also have us ∈ C∞

+ (M).

Back to the Yamabe problem, we want to consider the limit s → 2∗. In
particular, our goal is to investigate under what assumptions, if any, does us
converge to an actual smooth, positive solution of the Yamabe equation (3.4)
with λ = λ(M, g). The error in Yamabe's proof was to assume that the se-
quence us is uniformly bounded as s→ 2∗, which may be false in general. The
subtlety of this question will be further explored in the subsequent sections.
The following useful lemma regarding the limit behaviour of λs is a good start
and an indication that such expectations are plausible.

Lemma 3.1.3 (Aubin). If µg(M) = 1, then s 7→ |λs| is a non-increasing
function of s ∈ [2, 2∗]. If, in addition, we have that λ(M, g) ≥ 0, then s 7→ λs
is continuous from the left.

Proof. First, we show that s 7→ |λs| is non-increasing. Due to Hölder's in-
equality and the fact that µg(M) = 1, for every u ∈ C∞(M) we have that
∥u∥s ≤ ∥u∥s′ whenever s ≤ s′. For any s, s′, the functionals Qs

g and Qs′
g are

related by

Qs′

g (u) =
∥u∥s
∥u∥s′

Qs
g(u). (3.18)

Consequently, we have that |λs′| ≤ |λs| for s ≤ s′, which proves the claim.
If λs < 0 for some s ∈ [2, 2∗], we can choose a function u ∈ C∞(M) such

that Qs
g(u) < 0. It follows from (3.18) that λs′ ≤ Qs′

g (u) < 0 for any s′ ∈ [2, 2∗].
Therefore, if λ(M, g) ≥ 0, then λs ≥ 0 for all s ∈ [2, 2∗] as well.

Now we prove the continuity claim. Given ϵ > 0, by the de�nition of λs
there is a function u ∈ C∞(M) such that Qs

g(u) < λs + ϵ/2. Since s 7→ ∥u∥s is
continuous, it follows from (3.18) that for all s′ ≤ s that are su�ciently close
to s, Qs′

g (u) < Qs
g(u) + ϵ/2, and thus

λs ≤ λs′ ≤ Qs′

g (u) < λs + ϵ,

hence λs′ → λs as s′ → s−.

Note that in the context of conformal geometry we can always choose g so
that µg(M) = 1, possibly by multiplying with a positive constant.
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3.1.3 Sharp Sobolev inequality and λ(Sn, g◦)
In this section we explore the unexpected connection between two seemingly
very di�erent things, namely the sharp Sobolev inequality of Rn and the Yamabe
problem of the standard sphere (Sn, g◦). As stated in the introduction, the
Yamabe invariant

λ(Sn, g◦) = inf
u∈C∞

+ (Sn)

∫
Sn(ρ| grad◦ u|2 + u2) dµ◦( ∫

Sn u
2∗ dµ◦

)2/2∗
turns out to be the key for the solution of the general case.

Let n = (0, . . . , 0, 1) denote the north pole of Sn ⊂ Rn+1. It is well known
that Sn \ n can be covered by a single chart using the stereographic projection
σ : Sn \ n→ Rn, whose components are given by

σi(x1, . . . , xn, xn+1) =
xi

1− xn+1

.

Its inverse, i.e the parametrisation χ : Rn → Sn \ n, is given by

χi(x
1, . . . , xn) =

2xi

1 + |x|2
, 1 ≤ i ≤ n, χn+1(x

1, . . . , xn) =
−1 + |x|2

1 + |x|2
.

Let g◦ and g0 denote the standard metrics of Sn and Rn respectively. Then it
follows by straightforward calculations that

χ∗g◦(x) =
4

(1 + |x|2)2
g0(x), x ∈ Rn.

A similar argument for the antipodal stereographic projection excluding the
south pole n′ proves that (Sn, g◦) is locally conformally �at, which means that
its metric is locally conformal to a �at metric. Since the Weyl tensor as a
(1, 3)-tensor is conformally invariant1, it follows that W◦ = 0.

Since (Sn, g◦) is locally conformally �at, the structure of its conformal di�eo-
morphisms is locally determined by the conformal di�eomorphisms of (Rn, g0).
There is a well known rigidity theorem, originally dew to Liouville, which gives
a precise description of these transformations; they are the Möbius transforma-
tions.

Theorem 3.1.4 (Conformal Liouville Theorem). Let n ≥ 3 and ϕ : U → ϕ(U)
be a conformal di�eomorphism from the open set U ⊂ Rn to its image. Then ϕ is
a composition of similarities (translations, rotations, re�ections and dilations)
and inversions.

For a proof of this beautiful result, see Blair [7]; also Schoen & Yau [23].
Now, the round sphere is invariant under rotations and re�ections, so these
conformal maps are not interesting. Neither is inversion, since it amounts to
the transition maps between the two charts obtained by stereographic projection

1This follows directly from the de�nition of the Weyl tensor (see Section 2.1.3) and the
transformation formulas of Section 3.1.1.
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from either pole. So what we are left with are the translations τb : Rn → Rn,

τb(x) = x− b,

as well as the dilations δa : Rn → Rn,

δa(x) =
x

a
,

where b ∈ Rn and a > 0. For reasons that will become apparent in the sequel,
putting

ua(x) =

(
a

|x|2 + a2

)n−2
2

,

we have

χ∗g◦(x) = u2
∗−2

1 (x)g0(x), δ∗aχ
∗g◦ = u2

∗−2
a (x)g0(x/a). (3.19)

An obvious choice of constant scalar (and sectional) curvature of the sphere
is of course the round metric g◦. We now prove the following rigidity theorem
regarding metrics of constant scalar curvature within the conformal class of g◦.

Theorem 3.1.5. Let g ∈ ḡ◦ and suppose that g has constant scalar curvature.
Then g has constant sectional curvature.

Proof. First we show that g is an Einstein metric. Working with g as the back-
ground metric and since g◦ ≃ g, it follows that g◦ = e2fg for some f ∈ C∞(Sn).
Substituting e2f = u−2 and using the conformal transformation formula (3.2)
for Ricci curvature, we obtain

Ric◦ = Ric+
1

u

(
(n− 2)∇2u− (n− 1)

| gradu|2

u
g −∆u g

)
.

Since g◦ is of constant curvature, it is Einstein and hence

E +
n− 2

u
(∇2u+

1

n
∆u g) = E◦ = 0.

Now, the Einstein tensor is traceless, meaning that trg E = ⟨E, g⟩ = 0 in
Γ(⊕0

2TSn), so integration by parts (see Section 2.1.2) yields

∫
Sn
u|E|2 dµg =

∫
Sn
u⟨E,E⟩ dµg

= −(n− 2)

∫
Sn
⟨E,∇2u+

1

n
∆u g⟩ dµg

= −(n− 2)

∫
Sn
⟨E,∇2u⟩ dµg

= (n− 2)

∫
Sn
⟨trg∇E,∇u⟩ dµg = 0.

Since u > 0, this implies that E = 0 and g is indeed an Einstein metric.
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In addition, W = 0 since the round sphere is locally conformally �at and
g ≃ g◦. Since the scalar curvature S is a constant by assumption, using the
orthogonal decomposition formula for curvature (see Section 2.1.3) we conclude
that g is of constant curvature.

As a consequence we get the following corollary regarding the structure of
minimizers.

Corollary 3.1.6. If the Yamabe functional of (Sn, g◦) attains its in�mum, then
the in�mum is attained by every metric of the form ϕ∗κg◦ where κ > 0 and
ϕ : (Sn, g◦) → (Sn, g◦) is a conformal di�eomorphism, and those are the only
metrics that attain it.

Proof. Since minimizers have constant scalar curvature, it follows from the the-
orem that they must have constant sectional curvature. Hence the minimizers
are isometric to constant multiples of the round metric g◦. This means that if
g ∈ ḡ◦ is a minimizer, there exists κ > 0 and a di�eomorphism ϕ : Sn → Sn

such that g = ϕ∗κg◦. In particular ϕ : (Sn, g◦) → (Sn, g◦) is a conformal dif-
feomorphism. Since the Yamabe invariant is a conformal invariant, the claim
follows.

Proving the existence of a minimizer is a more delicate issue. It requires a
renormalisation argument to treat the potential blow-up of the functions {us}
constructed in the proof of Theorem 3.1.2 as s → 2∗. Here we o�er a schetch
of the proof, the complete version of which can be found in Lee & Parker [20].

Theorem 3.1.7. The Yamabe functional of (Sn, g◦) attains its in�mum.

Sketch of proof. We summarise the proof in steps.

1. Consider the family of functions {us} ⊂ C∞
+ (Sn) as in Theorem 3.1.2.

Possibly composing with a rotation, we may assume that maxSn us =
us(n

′) for every s. If the sequence is unifomly bounded, elliptic regularity
and the Arzella-Ascoli Theorem imply that us converges to an actual
minimizer as s→ 2∗.

2. If maxSn us → ∞ as s → 2∗, we may renormalise the sequence using
the dilations δa so that the resulting sequence vs is such that maxSn vs =
vs(n

′) = 1. Using the transformation properties of the conformal Lapla-
cian D, one can show that ∥vs∥1,2 ≤ C∥us∥1,2. Hence {vs} is bounded in
W 1,2(Sn) and consequently in L2∗(Sn), and vs ⇀ v in W 1,2(Sn) for some
v ∈ W 1,2(Sn), possibly up to a subsequence.

3. It is easy to show that {vs} is bounded in Lr
loc(Sn \ n) for any r > 1 and

consequently, using local elliptic regularity (see Section 2.2.2), we conclude
that {vs} is bounded in C2,α

loc (Sn \ n). By considering an exhaustion of
Sn \ n by compact subsets and appealing to the Arzella-Ascoli Theorem
once more, a diagonal argument shows that v ∈ C2(Sn \ n), while the
possibility of a singularity at n remains.
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4. The Yamabe invariant Λ := λ(Sn, g◦) is certainly non-negative by its
de�nition, and thus λs → Λ as s→ 2∗ in view of Lemma 3.1.3. Then one
can show that D v = fv2

∗−1 for some f ∈ C2(Sn \n) such that 0 ≤ f ≤ Λ.
As a consequence, the singularity at N is removable (see Section 2.2.2)
and the same equation holds weakly in all of Sn. Then direct calculations
imply that Qg◦(v) = Λ.

5. The proof is �nished by showing that v is positive and smooth. In view
of Theorem 3.1.1, it su�ces to show that u ∈ Lr(Sn) for some r > 2∗.
This is done by considering a perturbation of the conformal Laplacian of
the form Dη = D−ηΛv2∗−2, where η is a cut-o� function supported in a
su�ciently small neighbourhood of n. The operator D : W 2,q → Lq is
bijective, and η controls the operator norm of the perturbation, so it can
be chosen so that Dη remains bijective. In this way we can prove that
v ∈ W 2,q(Sn) ⊂ Lr(Sn) for some suitable q and r > 2∗.

This completes the proof.

Now we turn to the relationship between the sharp Sobolev inequality and
the spherical Yamabe invariant. In what follows, for u ∈ C∞(Sn) denote by
u ∈ C∞(Rn) ∩W 1,2

0 (Rn) the weighted pull-back u = 4u1χ
∗u.

Theorem 3.1.8 (Sharp Sobolev Inequality). The inequality∫
Rn

| gradu|2 dx ≥ Λ

ρ

(∫
Rn

|u|2∗ dx
)2/2∗

(3.20)

holds for all u ∈ W 1,2
0 (Rn), where Λ = λ(Sn, g◦). The constant is sharp and

attained only by constant multiples and translations of the functions ua de�ned
previously.

Proof. By de�nition, we have

Λ = λ(Sn, g◦) = inf
u∈C∞(Sn)

∫
Sn(ρ| grad◦ u|2 + u2) dµ◦( ∫

Sn |u|2
∗ dµ◦

)2/2∗ .

The integrals are una�ected if we remove the north pole, and since Sn \ n is
conformally �at, we get

Λ = inf
u∈C∞(Sn)

ρ

∫
Rn | gradu|2 dx( ∫
Rn |u|2∗ dx

)2/2∗ .
Since C∞(Rn)∩W 1,2

0 (Rn) is dense inW 1,2
0 (Rn), it follows that Λ/ρ is indeed the

best constant in (3.20). The exact form of the minimizers is a direct consequence
of Corollary 3.1.6.

The exact value of the best Sobolev constant is actually known to be

σn =
n(n− 2)µ◦(Sn−1)2/n

4
,
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see for example Schoen & Yau [23] and also Talenti [24], where the best constant
is determined for the general Lp version of the Sobolev inequality. In view of
Theorem 3.1.8, we obtain the precise value of the spherical Yamabe invariant,
which is

λ(Sn, g◦) = n(n− 1)µ◦(Sn−1)2/n.

To conclude this section, we provide the following lemma regarding the as-
symptotic L2

loc behaviour of the minimizers as a → 0, which will be useful on
several occasions in the sequel.

Lemma 3.1.9. Let k > −n, and for ϵ > 0 de�ne

I(a) :=

∫
Bϵ(0)

|x|ku2a(x) dx, a > 0.

Then as a→ 0, the following statements hold:

1. If k < n− 4, then I(a) ∼ ak+2,

2. If k = n− 4, then I(a) ∼ an−2 log 1/a,

3. If k > n− 4, then I(a) ∼ an−2.

Proof. Passing to polar coordinates and then changing variables r = aξ we have

I(a) =

∫ ϵ

0

(
a

a2 + r2

)n−2

rn+k−1 dr = ak+2

∫ ϵ/a

0

ξn+k−1

(1 + ξ2)n−2
dξ.

Now note that for ξ ≥ 1 we have ξ2 ≤ 1+ξ2 ≤ 2ξ2. This implies that, for a ≤ ϵ,

I(a) ∼ ak+2

(
C(n, k) +

∫ ϵ/a

1

ξ−n+k+3 dξ

)
,

and �nishing the proof is a matter of straightforward calculations.

3.1.4 Some aspects of conformal geometry

As we saw in the previous section, the standard sphere is locally conformally
�at, and this has been the key for proving the relation between the best Sobolev
constant σn of Rn and λ(Sn, g◦), as stated in Theorem 3.1.8. In general, a
Riemannian manifold (M, g) is locally conformally �at if for every point p ∈M
there is a chart (U, x) such that p ∈ U and there is a positive function u ∈
C∞

+ (U) so that
g = u(dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn).

Note that for n = 2 these are the isothermal coordinates, see De�nition 1.2.2.
While such coordinates always exist for surfaces, this is certainly not the case
for n ≥ 3. Since the Weyl tensor - as a (1, 3)-tensor �eld - is a conformal
invariant, every locally conformally �at manifold must have W = 0, which is
not always the case. In fact we have the following characterisation theorem,
generally known as the Weyl-Schouten Theorem.
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Theorem 3.1.10 (Weyl-Schouten). Let (M, g) be a Riemannian manifold of
dimension n.

1. If n = 3, (M, g) is locally conformally �at if and only if

∇A([X;Y ], Z) = 0

for all X, Y, Z ∈ Γ(TM), with A being the Schouten tensor2.

2. If n ≥ 4, (M, g) is locally conformally �at if and only if W = 0.

Local conformal �atness is a very useful property in the context of conformal
geometry, as it allows us to locally carry out calculations exactly as in the
Euclidean space Rn. There is a weaker notion than local conformal �atness
that retains much of this functionality:

De�nition 3.1.1. The Riemannian manifold (M, g) is said to be locally confor-
mally volume preserving if every p ∈ M belongs to a normal coordinate chart
(U, x̃) of a metric g̃ ∈ g so that dµg̃ = dx̃. Such coordinates are called conformal
normal coordinates.

Intrinsically, the de�nition means that the Jacobian of the exponential map
expg̃

p is 1 for some g̃ ∈ g. While local conformal �atness is a quite rigid require-
ment, the locally conformally volume preserving condition is not rigid at all.
In fact, every Riemannian manifold is locally conformally volume preserving as
the following theorem shows.

Theorem 3.1.11 (Conformal Normal Coordinates). Let (M,G) be a conformal
manifold and let p ∈M . Then there are a metric g ∈ G and normal coordinates
(U, x) of g so that x(p) = 0 and

dµg = dx, S = O(|x|2), −∆S(P ) = 1

6
|W (P )|2.

A weaker version of this that is nonetheless su�cient for solving the Yamabe
problem is given in Lee and Parker [20], where dµg = (1+O(|x|m))dx andm ∈ N
is arbitrary. The strong version stated above is due to Günther [13, 14], who
proves this in an analytic as well as a Ck,α setting. Below we give an outline of
Günther's proof for the smooth/analytic case.

Sketch of proof. Since the issue is local in nature, we may work in a ball B :=
BR(0) ⊂ Rn (with the correspondence p ≡ 0) equipped with a background
metric g, and then look for a conformal metric g̃ = ug accompanied by a
set of normal coordinates x̃ for that metric with the desired properties. As
polynomials are dense in C∞(B)3, it su�ces to work with analytic functions.
The proof is given in steps.

2For the de�nition of the Schouten tensor, see Section 2.1.3
3Density is with respect to the weak C∞-topology, which is generated by the �nite rank

Ck-norms evaluated in relatively compact subsets; it is a consequence of the Stone-Weierstrass
Theorem
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1. Suppose that g̃ = ug and x̃ are as desired. Then for v = |x̃|2,

|dv|2g̃ = 4v, ∆g̃v = 2n.

These two relations characterise v as the square distance function with
respect to g̃ = ug. Since u is still unknown, we will instead work in
normal coordinates x of the background metric g and opt to solve the
resulting system of partial di�erential equations for u and v. These are

D1(u, v) := gij
∂v

∂xi
∂v

∂xj
− 4uv = 0 (3.21)

D2(u, v) :=
u

Ωg(x)

∂

∂xi
Ωg(x)g

ij ∂v

∂xj
+
n− 2

2
gij

∂u

∂xi
∂v

∂xj
− 2nu2 = 0,

(3.22)

together with the initial conditions

u(x) = 1 +O(|x|), v(x) = |x|2 +O(|x|3). (3.23)

2. The partial di�erential operatorsD1 andD2 are both non-linear and there-
fore we cannot apply standard elliptic theory to the system. Equations
(3.21) and (3.22) can be rewritten as

L1(u, v) = L1(u, v)−D1(u, v) =: P1(u, v) (3.24)

L2(u, v) = L2(u, v)−D2(u, v) =: P2(u, v), (3.25)

where Li(u, v) is the linearisation of Di(u, v) with respect to the triple
(gij, u, v) = (δij, 1, r2) for i = 1, 2:

L1(u, v) := 4xi∂v/∂xi − 4v − 4r2u (3.26)

L2(u, v) := ∆0v + (n− 2)xi∂u/∂xi − 2nu. (3.27)

3. Since we assume analyticity, we will work with polynomials. Let Pm[x]
denote the set of homogeneous polynomials of order m in x. We consider
the non-homogeneous problem

L1(u, v) = f1, L2(u, v) = f2, (3.28)

where f1 and f2 are homogeneous polynomials that will later be deter-
mined by iteration. To this end we need the following �analytic regularity�
lemma.

Lemma 3.1.12 ([14], Satz 1). Suppose that f1 ∈ Pm+2[x] and f2 ∈ Pm[x]
with coe�cients

f1 =
∑

|α|=m+2

f 1
αx

α, f2 =
∑
|α|=m

f 2
αx

α.
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Then, for m ≥ 4, there exist homogeneous polynomials v ∈ Pm+2[x] and
u ∈ Pm[x] with coe�cients

v =
∑

|α|=m+2

vαx
α, u =

∑
|α|=m

uαx
α

that satisfy the equations (3.28), as well as the estimates∑
|α|=m

|vα| ≤
C

m2

( ∑
|α|=m−2

|f 2
α|+m

∑
|α|=m

|f 1
α|
)

(3.29)

∑
|α|=m

|uα| ≤
C

m

( ∑
|α|=m−2

|f 2
α|+m

∑
|α|=m

|f 1
α|
)
. (3.30)

If m = 3 and u = uix
i, v also satis�es ∆0v = 8f2, as well as the estimate∑

|α|=3

|vα| ≤ C
( n∑

i=1

|u1|+
∑
|α|=3

|f 1
α|
)
. (3.31)

The constant in all estimates is uniform and independent of m.

4. Given u, v satisfying the required initial conditions, we denote the asymp-
totic expansions of Pi(u, v), i = 1, 2 by

P1(u, v) =
∑
|α|≥4

p1αx
α, P2(u, v) =

∑
|α|≥2

p2αx
α

and attempt to solve the problem using the power series method (it is
easy to check that lower order terms vanish). The condition

∆0

∑
|α|=3

p2αx
α = 8

∑
|α|=1

p1αx
α

holds trivially, therefore all estimates of Lemma 3.1.12 apply recursively.
What remains is to show that the power series of u and v converge in a
neighborhood of zero.

5. To this end de�ne

Nm := max
{
(m+ 2)

∑
|α|=m+2

|vα|,
∑
|α|=1

|uα|
}
.

By induction one can show that

Nm ≤ C0

( ∑
i+j≤m+1

NiNj +
∑

i+j=m
i,j ̸=0

NiNj

)
.
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Next we de�ne the complex power series ψ(z) =
∑∞

m=0 Ñmz
m via the

equation

N0 + C0((ψ(z)−N0) + (z + z2 + · · · )ψ2(z)) = ψ(z),

and one can show that Nm ≤ Ñm and that the inverse of ψ−N0 is analytic
with non-vanishing derivative in a neighborhood of zero. It follows that
the same is true for ψ, and the power series of u and v are absolutely
convergent.

This proves the existence of solutions u, v for the system (3.21)-(3.22)
together with the initial conditions (3.23). The desired coordinates can
then be obtained by exponential mapping.

6. Properties S = O(|x̃|2) and −∆S(p) = |W (p)|2/6 are a consequence of
Ωg̃(x̃) = 1, for details see Lee & Parker [20].

This completes the proof.

Note that the construction of the conformal factor in the proof is subject
to the initial conditions u = 1 + uix

i + O(|x|2). This means that the resulting
locally conformally volume preserving metric is not unique; one can get the
required properties and still maintain a lot of freedom. This fact is nevertheless
irrelevant in the sequel.

3.1.5 Resolution in terms of λ(Sn, g◦)
It is a fact of crucial importance that λ(Sn, g◦) is actually an upper bound
for the Yamabe invariant of any other conformal manifold - compact or non-
compact. This is a consequence of the fact that the minimizers ua of the Sobolev
inequality are concentrated at zero as a → 0 and can be approximated by
compactly supported functions. Then one can use conformal normal coordinates
to obtain a test function whose Yamabe quotient approximates λ(Sn, g◦) as close
as we wish as. Geometrically, note that this corresponds to blowing up a small
neighborhood to a sphere.

Theorem 3.1.13 (Aubin). Let (M,G) be a conformal manifold of dimension
n ≥ 3. Then λ(M,G) ≤ λ(Sn, g◦).

Proof. Let η ∈ C∞
c (Rn) be a radially symmetric cut-o� function such that

supp η ⊂ B2(0) and η|B1(0) = 1, and denote by ηϵ = η ◦ δϵ the dilation of η
by a factor ϵ > 0. Then ηϵ ∈ C∞

c (Rn) satis�es supp ηϵ ⊂ B2ϵ(0), ηϵ|Bϵ(0) = 1
and grad ηϵ = ϵ−1 grad η ◦ δϵ. If ua is a minimizer of the Sobolev quotient as in
Theorem 3.1.8, consider the compactly supported approximation ua,ϵ = ηϵua.
Recall that ua satis�es the equality ρ∥ gradua∥22 = Λ∥ua∥22∗ and

ua(x) =

(
a

|x|2 + a2

)n−2
2

, gradua(x) = −(n− 2)

(
a

|x|2 + a2

)n
2 x

a
,

the gradient being obtained by straightforward calculation.
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Our goal is to use ua,ϵ as a test function whose Yamabe quotient can get
arbitrarily close to Λ. The role of ϵ is to make the support of ua,ϵ small enough
to �t into a conformal normal coordinate chart of (M,G), and taking a → 0
should take care of the rest. We estimate∫

Rn

ρ| gradua,ϵ|2dx =

∫
Rn

ρ(η2ϵ | gradua|2 + 2ηϵua⟨grad ηϵ, gradua⟩

+ u2a| grad ηϵ|2) dx

≤
∫
Rn

ρ| gradua|2 dx+ C(ϵ)an−2,

and in addition, by the sharp Sobolev inequality (3.20) and Taylor expanding,∫
Rn

ρ| gradua|2 dx = Λ∥ua∥22∗

≤ Λ

(∫
Bϵ(0)

u2
∗

a dx+

∫
Rn\Bϵ(0)

u2
∗

a dx

)2/2∗

≤ Λ∥va,ϵ∥22∗ +Oϵ(a
n).

Moreover, for 0 < a ≤ ϵ we have the lower estimate

∥ua,ϵ∥2∗ ≥ ∥uaχBa(0)∥2∗ ≥ C.

Taking ϵ su�ciently small, we may regard ua,ϵ(x) as a function of some
conformal normal coordinates (U, x) of (M,G) as in Theorem 3.1.11. Note that
in normal coordinates, for r = |x| one has g(∂r, ∂r) = 1, thus the gradient of
ua,ϵ is una�ected due to radial symmetry. Then by the previous estimates the
Yamabe quotient of ua,ϵ is

Qg(ua,ϵ) ≤ Λ + C(ϵ)an−2 + C

∫
B2ϵ(0)

Su2a,ϵ dx

≤ Λ + C(ϵ)an−2.

(3.32)

for 0 < a ≤ ϵ < 1. Taking a→ 0 yields the conclusion.

In order to proceed we need the following variant of the sharp Sobolev
inequality for compact Riemannian manifolds. In this case the best value σn
of the Sobolev constant of Rn can be approximated as close as we wish, at the
cost of an additional L2 term.

Theorem 3.1.14 (Aubin). Let (M, g) be a compact Riemannian manifold.
Then for every ϵ > 0 there is a constant C(ϵ) > 0 such that the inequality

σn∥u∥22∗ ≤ (1 + ϵ)

∫
M

| gradg u|2 dµg + C(ϵ)

∫
M

u2 dµg (3.33)

holds for all u ∈ C∞(M).

Proof. Let ϵ > 0 and assume an open cover ofM consisting of normal coordinate
charts {(Up, xp)}p∈M centered around each p, respectively, such that the metric
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and local volume density satisfy |gij(x)− δij(x)| < ϵ and |Ωg(x)− 1| < ϵ in UP

for all P . Then we may pass to a �nite subcover {(Uk, xk)}mk=1, and assume a
partition of unity subordinate to that cover, which we write in the form {φ2

k}mk=1

and
∑m

k=1 φ
2
k = 1.

Then, for u ∈ C∞(M),

∥u∥22∗ = ∥u2∥2∗/2 =
∥∥∥∥ m∑

k=1

φ2
ku

2

∥∥∥∥
2∗/2

≤
m∑
k=1

∥φ2
ku

2∥2∗/2

=
m∑
k=1

∥φku∥22∗ =
m∑
k=1

(∫
Uk

|φku|2
∗
dµg

)2/2∗

≤ (1 + ϵ)2/2
∗

m∑
k=1

(∫
xk(Uk)

|φku|2
∗
dx

)2/2∗

.

Applying the sharp Sobolev inequality of Rn, we obtain(∫
xk(Uk)

|φku|2
∗
dx

)2/2∗

≤ 1

σn

∫
xk(Uk)

| gradφku|2 dx

≤ (1 + ϵ)2

σn

∫
Uk

| gradg φku|2 dµg,

and subsequently

| gradg φku|2 = φ2
k| gradg u|2 + 2φku⟨gradg φk, gradg u⟩+ u2| gradg φk|2

≤ (1 + ϵ)φ2
k| gradg u|2 + (1 + 1/ϵ)u2| gradg φk|2,

where in the last step we have used the Cauchy-Schwartz inequality as well as
the inequality 2ab ≤ ϵa2 + b2/ϵ. Summing up, we obtain the conclusion. Note
here that the constant C(ϵ) depends also on the dimension as well as the chosen
partition of unity.

It is worth noting that C(ϵ)→∞ as ϵ→ 0, so as we get closer to the sharp
Sobolev constant the collateral L2 term blows up. Nevertheless, this fact will
be of no consequence to the sequel, and we are in fact in a position to state
and prove the main result of this section, which is the existence of a solution of
the Yamabe problem provided that the Yamabe invariant does not attain the
critical value λ(Sn, g◦).

Theorem 3.1.15 (Yamabe, Trudinger, Aubin). Let (M, g) be a compact Rie-
mannian manifold. Let {us} be the sequence of normalised subcritical solutions
constructed in Theorem 3.1.2. Then a subsequence converges uniformly to a
minimizer u ∈ C∞

+ (M) of the Yamabe functional, i.e

Qg(u) = λ(M, g), Du = λ(M, g)u2
∗−1,

provided that λ(M, g) < λ(Sn, g◦). In particular, in this case the metric u2
∗−2g ∈

ḡ has constant scalar curvature.
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Proof. Without loss of generality we may assume that µg(M) = 1. Let λ =
λ(M, g), Λ = λ(Sn, g◦) for brevity. The proof consists of two parts. In the �rst
part we prove that the condition λ < Λ implies that the sequence is uniformly
bounded in Lr(M) as s→ 2∗ for some r > 2∗, in view of Theorem 3.1.1. In the
second part we use the �rst part in conjunction with the Arzela-Ascoli theorem
and Lemma 3.1.3 to complete the proof.

1. Let δ > 0. Multiplying the equation Dus = λsu
s−1
s by u1+2δ

s and integrat-
ing by parts we obtain∫

M

ρ⟨gradg us, (1 + 2δ)u2δs gradg us⟩ dµg +

∫
M

Su2(1+δ)
s dµg

= λs

∫
M

us+2δ
s dµg.

Setting vs := u1+δ
s , it follows that

1 + 2δ

(1 + δ2)

∫
M

ρ| gradg vs|2 dµg =

∫
M

(λsv
2
su

s−2
s − Sv2s) dµg.

Then the Riemannian version of the Sobolev inequality (3.33) implies

σn∥vs∥22∗ ≤ (1 + ϵ)

∫
M

| gradg vs|2 dµg + C(ϵ)

∫
M

v2s dµg

≤ (1 + ϵ)
(1 + δ)2

1 + 2δ

λs
ρ

∫
M

v2su
s−2
s dµg + C(ϵ, δ)

∫
M

v2s dµg,

so by Hölder's inequality and the fact that Λ = ρσn, it follows that

∥vs∥22∗ ≤ (1 + ϵ)
(1 + δ)2

1 + 2δ

λs
Λ
∥vs∥22∗∥us∥s−2

(s−2)n/2 + C(ϵ, δ)∥vs∥22.

Since µg(M) = 1 and 2 ≤ s < 2∗, it follows that (s − 2)n/2 < s and
∥us∥(s−2)n/2 ≤ ∥us∥s = 1, and consequently(

1− (1 + ϵ)
(1 + δ)2

1 + 2δ

λs
Λ

)
∥vs∥22∗ ≤ C(ϵ, δ)∥vs∥22.

For δ su�ciently small we have 2(1 + δ) < 2∗, so

∥vs∥22 = ∥us∥
2(1+δ)
2(1+δ) ≤ ∥us∥

2(1+δ)
s = 1

as s→ 2∗. In addition, we observe that ∥vs∥22∗ = ∥us∥
2(1+δ)
(1+δ)2∗ , so if we can

prove that the constant of the LHS can be manipulated to be positive by
adjusting δ and ϵ, we are done.

We distinguish two cases. If λ < 0, Lemma 3.1.3 implies that λs < 0 for all
s and the conclusion follows. If, on the other hand, we have λ ≥ 0, s 7→ λs
is non-increasing and continuous from the left, so there is an s0 < 2∗ such
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that 0 ≤ λs ≤ λs0 < Λ whenever s0 ≤ s < 2∗. Hence by choosing δ and ϵ
small the constant remains positive.

2. Since the sequence {us} is uniformly bounded in Lr(M) for some r > 2∗

as s→ 2∗, by Theorem 3.1.1 it is also uniformly bounded in C2,α(M) for
0 < α < 1. Then the Arzela-Ascoli theorem implies that a subsequence
converges uniformly in C2(M) to a function u ∈ C2(M). Therefore u
must satisfy

Du = λ∗u2
∗−1, Qg(u) = λ∗,

where λ∗ = lims→2∗ λs and the equation holds in the strong sense. If
λ ≥ 0, Lemma 3.1.3 implies that λ∗ = λ. If λ < 0, by the same theorem
s → λs is non-decreasing and hence λ∗ ≤ λ. But since λ = infQg, it
follows that λ∗ = λ in that case as well.

Finally, Hölder's inequality and Fatou's Lemma imply

∥u∥2∗ ≥ lim
s→2∗
∥us∥s = 1,

so in particular we have u ̸= 0. Then we apply Theorem 3.1.1 one last
time to conclude that u ∈ C∞

+ (M).

This completes the proof.

It is an interesting fact that, among compact manifolds, the critical value
λ(Sn, g◦) is actually only ever attained by the standard sphere, arguably the
most perfectly symmetric of all geometric objects, and so the Yamabe prob-
lem possesses a solution for every compact manifold. This fact is anything
but straightforward to prove, and will be explored in Section 3.2, using the
complementary methods of Aubin and Schoen.

3.2 Chasing Yamabe invariants

3.2.1 The case n ≥ 6 and W ̸= 0

Following the same reasoning as in Theorem 3.1.13, Aubin was also able to prove
that λ(M,G) < λ(Sn, g◦) for all compact conformal manifolds (M,G) that are
not locally conformally �at and have dimension ≥ 6. This is, in essence, the easy
case which can be obtained without extra e�ort directly from the framework
we have developed so far. We have deliberately chosen to introduce conformal
normal coordinates earlier in our presentation than Lee & Parker [20], as this
simpli�es several of the proofs in Section 3.1.5, and allows us to present this
result without additional modi�cations.

Theorem 3.2.1. Let (M,G) be a compact conformal manifold of dimension
≥ 6, and suppose that the Weyl tensor is not identically zero. Then λ(M,G) <
λ(Sn,G◦). In particular, there is a metric g ∈ G of constant scalar curvature.

Proof. Let p ∈M be such that W (p) ̸= 0, and g ∈ G, (U, x) conformal normal
coordinates with respect to g centered at p as in Theorem 3.1.11. Let ua,ϵ be
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the test function constructed in the proof of Theorem 3.1.13. Then all we need
to do is to examine the estimate (3.32) more carefully, and in particular the last
term ∫

B2ϵ(0)

Su2a,ϵ dx ≤
∫
Bϵ(0)

Su2a dx+ C(ϵ)

∫
R2ϵ(0)

u2a dx

≤
∫
Bϵ(0)

Su2a dx+ C(ϵ)an−2.

The second term is of the same order as estimate (3.32), so it o�ers no additional
advantage. But we are going to show that the �rst term is negative and of
lower order as a → 0, which is just what we need to dominate the positive
contributions of higher order and bring the Yamabe quotient below the critical
value.

Taylor expanding near p we see that

S =
1

2

∂2S

∂xi∂xj
(p)xixj +O(|x|3),

and furthermore4∫
Bϵ(0)

∂2S

∂xi∂xj
(p)xixju2a dx =

∫ ϵ

0

∫
Sn−1(r)

∂2S

∂xi∂xj
(p)xixju2a dσ0dr

= C

∫
Bϵ(0)

∆S(p)|x|2u2a dx

= −C|W (p)|2
∫
Bϵ(0)

|x|2u2a dx,

so in view of Lemma 3.1.9,

Qg(ua,ϵ) =

{
Λ− C(ϵ)|W (p)|2a4 +Oϵ(a

5), n > 6
Λ− C(ϵ)|W (p)|2a4 log 1/a+Oϵ(a

4), n = 6

as a→ 0. This completes the proof.

3.2.2 The case n ∈ {3, 4, 5}, or n ≥ 6 and W = 0

The resolution of the remaining cases involve the construction of a global test
function using the Green function of the conformal Laplacian. The resulting
test metric has zero scalar curvature away from the blow-up area. First we
recall the notion of a Green function.

De�nition 3.2.1. Let (M, g) be a compact Riemannian manifold and D be a
smooth linear di�erential operator in M . A Green function of D at p ∈M is a

4Here we use the following fact: if A is a symmetric n× n matrix, then∫
Sn−1

⟨Ax, x⟩ dx = C(n) trA.
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function Γp ∈ C∞(M \ p) satisfying DΓp = δp in the sense of distributions, i.e∫
M

ΓpD
∗u dµg = u(p) ∀u ∈ C∞(M),

where D∗ is the formal adjoint of D. Likewise, a Green kernel is a symmetric
mapping (p,q) 7→ Γ(p,q) that is C∞ o� the diagonal and Γ(p, ·) is a Green
kernel at p.

The existence of Green functions and kernels for an operator D is invaluable
in the study of non-homogeneous problems involving D. For example, it is
straightforward to verify that the convolution

Γ ∗ f(q) =
∫
M

Γ(p,q)f(p)dµg(p), P ∈M

is a solution of Du = f in the sense of distributions, provided that the integral
makes sense. We are particularly interested in the Green functions of the con-
formal Laplacian, so a natural starting point is the Laplace-Beltrami operator.
In particular we have the following classical result, for a proof see Aubin [5].

Theorem 3.2.2 (Green kernel for −∆). Let (M, g) be a compact Riemannian
manifold of dimension n ≥ 3. Then there exists a Green kernel of −∆, such
that for all u ∈ C2(M)

u(p) =
1

µg(M)

∫
M

u(q) dµg(q)−
∫
M

Γ(q,p)∆u(p) dµg(q). (3.34)

Moreover, Γ is bounded from below and satis�es the estimates

|Γ(p,q)| ≤ Cd(p,q)−(n−2), |∇pΓ(p,q)| ≤ Cd(p,q)−(n−1),

|∇2
pΓ(p,q)| ≤ Cd(p,q)−n.

Since Γ is bounded from below, Γ(p,q) > c for some c ∈ R. It follows that
Γ−c is a positive Green kernel for −∆. The existence of a positive Green kernel
is of central importance in problems involving the Laplacian. In fact, we can
extend this result for the conformal Laplacian, provided that S > 0. Theorem
3.1.15 covers the case λ(M, g) ≤ 0, so this is su�cient for our purposes.

In Section 3.1.3 we used stereographic projection to pull back the round
metric g◦ of Sn to a metric of Rn that is conformal to the standard metric -
namely χ∗g◦ = u2

∗−2
1 g0 - e�ectively transferring the spherical problem to Eu-

clidean space, which has zero scalar curvature. It follows that

g0 = σ∗u2−2∗

1 g◦,

so in view of the Yamabe equation the conformal factor u2−2∗

1 must satisfy
Du−1

1 = 0. Moreover, note that the new metric is singular at the north pole
n. In fact, closer investigation reveals that u−1

1 is just a multiple of the Green
function of D at n.

This procedure is not restricted to Sn. Given any compact Riemannian
manifold (M, g) with λ(M, g) > 0 and a point p ∈ M , constant multiples of
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the metric Γ2∗−2
p g - with ΓP being the Green function of D at p - all have

zero scalar curvature in the non-compact manifold M \ p. This motivates the
following de�nition.

De�nition 3.2.2 (Stereographic projection). Let (M, g) be a compact Rieman-
nian manifold such that λ(M, g) > 0. Moreover, let p ∈ M and Γp denote the
Green function of D at p. The stereographic projection of (M, g) from p is the
natural map σ : (M \ p, g)→ (M̂, ĝ), where

M̂ =M \ p, ĝ = G2∗−2
p g, GP = ρ(n− 2)µ◦(Sn−1)Γp. (3.35)

So the image of a stereographic projection is always a non-compact manifold
with zero scalar curvature. In fact, more is true: it is asymptotically �at.
Before we give the de�nition of asymptotic �atness, let us �x some notation on
asymptotic behaviour. For a tensor �eld T , we write T = Om(rτ ) whenever

T = O(rτ ), ∇kT = O(rτ−k) ∀k ∈ {1, . . . ,m}.

In particular, we write O′ for O1, O′′ for O2 and so forth.

De�nition 3.2.3. A non-compact Riemannian manifold (M, g) is said to be
asymptotically �at of order τ > 0 if it admits a decomposition M = M0 ∪M∞
where M0 is compact and M∞ is a neighbourhood of ∞ with the property that
there exist R > 0 and coordinates z :M∞ → Rn \BR(0) such that

g = (1 +O′′(|z|−τ ))z∗g0.

In that case, we call the coordinates z asymptotic coordinates of M of order τ .

To prove the asymptotic �atness of the stereographic projection, we need
the following estimates for the Green function of the conformal Laplacian.

Theorem 3.2.3. Let Gp = ρ(n− 2)µ◦(Sn−1)Γp as in De�nition 3.2.2, and let
(U, x) be a conformal normal coordinate chart centered at p. Then Gp possesses
the asymptotic expansion

Gp =
1

|x|n−2

(
1 +

n∑
k=4

φk(x)

)
+ c log |x|+O′′(1), (3.36)

where φk ∈ Pk[x] for k = 4, . . . , n and c is a constant that can be taken to be 0
if n is even.

In particular, if n = 3, 4, or 5 or if (M, g) is locally conformally �at at p,
the asymptotic expansion is

Gp =
1

|x|n−2
+m+O′′(|x|), (3.37)

where m is a constant.
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Sketch of proof. Switching to conformal normal coordinates (U, x) centered at
p and then passing to polar coordinates (r, ξ) with r = |x|, we have

g = dr ⊗ dr +
n−1∑
α,β=1

gαβdξ
α ⊗ dξβ,

where gαβ := g(∂ξα , ∂ξβ). In these coordinates the Riemannian volume form is
ωg = dx = rn−1dr ∧ dξ, thus the Laplacian has the form

∆g =
1

rn−1

∂

∂r
rn−1 ∂

∂r
+

n−1∑
α,β=1

∂

∂ξα
gαβ

∂

∂ξβ
.

In view of this formula, it is evident that the Laplacian ∆g acts on radial
functions centered at p the same way as the Euclidean Laplacian ∆0. Moreover,
since gαβ = O′′(r2), it follows that gαβ = O′′(r−2).

Recalling the fact that ∆0r
2−n = (n − 2)µ◦(Sn−1)δp and since S = O′′(r2),

straightforward calculation reveals that

D(Gp − r2−n) = O′′(r4−n), (3.38)

so the problem now is to examine the remainder term. If n ∈ {3, 4, 5} the
remainder is O(r−1). Since r−1 ∈ Lq(U) for q < n, by local elliptic regularity
we have that Gp − r2−n ∈ W 2,q(U), and then the Sobolev embedding theorem
implies that Gp − r2−n ∈ C0,α(U) for 0 < α < 6− n, and the expansion (3.37)
follows. If (M, g) is locally conformally �at at p, things are even simpler since
we can choose gij = δij, and consequently D(Gp − r2−n) = 0 and Gp − r2−n ∈
C∞(U), as a consequence of local elliptic regularity.

The general expansion (3.36) requires a closer investigation of the remainder,
and we omit it as it will not be needed in the sequel, for more details see Lee
& Parker [20] or Schoen & Yau [23].

A fact of key importance for the resolution of the remaining cases of the
Yamabe problem is that the constant m in the above expansion is non-negative
and becomes zero if and only if (M, g) is conformally equivalent to the standard
sphere (Sn, g◦). We have chosen the symbol m since this quantity turns out to
be closely related to the concept of mass in general relativity, and the positivity
of m is then a consequence of the positive mass theorem, for a summary see Lee
& Parker [20].

For the time being let us investigate the asymptotic behavior of the stereo-
graphic projection (M̂, ĝ). To this end, we introduce inverted conformal normal
coordinates as follows. Let p ∈ M and let (U, x) be conformal normal coordi-
nates centered at p. Putting z = x/|x|2 on U \ p, the induced vector �elds
are

∂

∂zi
=

1

|z|2

(
δij −

2zizj

|z|2

)
∂

∂xj
.
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U \p will play the role of the neighborhood of in�nity of M̂ that we are looking
for. Setting γp = |x|n−2Gp = 1 +O(|x|), in the above coordinates we evaluate

ĝ = G2∗−2
p g

= γ2
∗−2

p |z|4g(∂zi , ∂zj)dzi ⊗ dzj

= γ2
∗−2

p (δik −
2

|z|2
zizk)(δjl −

2

|z|2
zjzl)g(∂xk , ∂xl)dzi ⊗ dzj

= γ2
∗−2

p (1 +O′′(|z|2))(dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn),

where we have used the fact that g(∂xk , ∂xl) = δkl + O′′(|x|2) in normal coordi-
nates. In addition, if (M, g) is locally conformally �at at p, the we may take
g(∂xk , ∂xl) = δkl and the O′′(|z|−2) term is redundant. Combining this with the
assymptotic expansion of γp in view of Theorem 3.2.3, we conclude that:

Corollary 3.2.4. Let (M̂, ĝ) be the stereographic projection of the Riemannian
manifold (M, g) from p ∈ M . Then, in inverted conformal normal coordinates
z = x/|x|2 in a punctured neighbourhood of p, ĝ has the assymptotic expansion

ĝ = γ2
∗−2

p (1 +O′′(|z|−2))(dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn), (3.39)

where γp = |x|n−2Gp.
In particular, if n = 3, 4 or 5, or (M, g) is locally conformally �at at p, ĝ

has the assymptotic expansion

ĝ = (1 +O′′(|z|2−n))(dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn),

and is thus aymptotically �at of order n− 2.

We are now in a position to give the proof of the solubility of the Yamabe
problem in the remaining cases.

Theorem 3.2.5. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 3, not conformally equivalent to (Sn, g◦). If n = 3, 4 or 5 or if (M, g) is
locally conformally �at, then λ(M, g) < λ(Sn, g◦). In particular, the Yamabe
problem possesses a solution in those cases.

Proof. The main idea of the proof is to construct a global test function with
zero scalar curvature away from the reference point p using the stereographic
projection. We examine the case where n ≥ 6 and (M, g) is locally conformally
�at at p. In this case, we may choose �at conformal normal coordinates (U, x)
in a neighbourhood of p, i.e gij = δij, while the Green function with pole at p
has the expansion

Gp =
1

|x|n−2
+m+ α(x),

where α(x) = O′′(|x|) as x→ 0 and m > 0 by the positive mass theorem.
Recall the minimizers of the Sobolev quotient ua which we introduced in

Section 3.1.3, as well as the test functions ua,ϵ = ηϵua used in the proof of
Theorem 3.2.1. We modify these local test functions into global ones, in the
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spirit outlined above, to be

ũa,ϵ =


ua(x), |x| ≤ ϵ
a0(Gp(x)− ηϵα(x)), ϵ ≤ |x| ≤ 2ϵ
a0Gp(x), |x| ≥ 2ϵ

,

where a0 = a0(a, ϵ) is chosen so that ũa,ϵ is a Lipschitz continuous function in
M , and therefore ũa,ϵ ∈ W 1,2(M). In particular, a0 is given by

a0 = (ϵ2−n +m)−1

(
a

a2 + ϵ2

)n−2
2

= Oϵ(a
n−2
2 ).

We proceed with estimating the energy of ũa,ϵ. We break this estimate into two
parts, the internal one in Bϵ = {|x| < ϵ} and the external one in the exterior of
Bϵ.

For the exterior estimate we obtain

Eext(ũa,ϵ) =
∫
M\Bϵ

(ρ| grad ũa,ϵ|2 + Sũ2a,ϵ) dµg

=

∫
M\B2ϵ

a20(ρ| gradGp|2 + SG2
p) dµg

+

∫
Bϵ\B2ϵ

a20(ρ| grad(GP − ηϵα)|2 + S(Gp − ηϵα)) dµg

=

∫
M\Bϵ

a20(ρ| gradGp|2 + SG2
p) dµg

+

∫
Bϵ\B2ϵ

a20ρ(| grad(ηϵα)|2 − 2⟨gradGp, grad(ηϵα)⟩) dµg.

Since α = O′′(|x|) and | gradGp| ≤ C|x|1−n, it follows that the second term is
≤ Cϵa20. As for the �rst term, integrating by parts and taking into account that
DGp = −ρ∆Gp + SGp = 0 away from P , we obtain∫

M\Bϵ

a20(ρ| gradGP |2 + SG2
P ) dµg = a20

∫
∂Bϵ

Gp
∂Gp

∂ν
dσg.

Regarding the interior estimate, we proceed much like the case of the local
test function in the proof of Theorem 3.2.1. Since S = 0 in Bϵ, it follows that

Eint(ũa,ϵ) =
∫
Bϵ

(ρ| grad ũaϵ|2 + Sũ2a,ϵ) dµg

=

∫
Bϵ

ρ| gradua|2 dx

= n(n− 2)ρ

∫
Bϵ

u2
∗

a dx+ ρ

∫
∂Bϵ

ua
∂ua
∂ν

dσ0

≤ n(n− 2)ρ

(∫
Bϵ

u2
∗

a dx

) 2
n
(∫

Bϵ

u2
∗

a dx

) 2
2∗

+ ρ

∫
∂Bϵ

ua
∂ua
∂ν

dσ0



40 Chapter 3. Solution of the Yamabe problem

≤ λ(Sn, g◦)

(∫
M

ũ2
∗

a,ϵ dx

) 2
2∗

+ ρ

∫
∂Bϵ

ua
∂ua
∂ν

dσ0.

In addition, similar to the proof of Theorem 3.2.1, for a ≤ ϵ ≤ 1 we have that∫
M

ũ2
∗

a,ϵ dµg ≥
∫
Bϵ

u2
∗

ϵ dx ≥ C(ϵ).

We now turn our attention to the boundary terms on ∂Bϵ. For |x| = ϵ, by
straightforward calculation we see that

Gp
∂Gp

∂ν
= −(n− 2)a20(ϵ

3−2n +mϵ1−n) +O(ϵ2−n),

ua
∂ua
∂ν

= −(n− 2)a20(ϵ
3−2n + 2mϵ1−n) +O(ϵ2−n).

Finally, it follows that

E(ũa,ϵ) ≤ λ(Sn, g◦)∥ũa,ϵ∥22∗ + Cϵa20 +

∫
∂Bϵ

(
ua
∂ua
∂ν
−Gp

∂Gp

∂ν

)
dσ0,

and consequently

Qg(ũa,ϵ) ≤ λ(Sn, g◦)− C(ϵ)(m− ϵ)an−2 + oϵ(a
n−2).

Choosing �rst ϵ < m and then a < ϵ small enough yields the conclusion.
The case n ∈ {3, 4, 5} is very similar. The expansion of the Green function

is identical, and the main di�erence is that since no local conformal �atness is
assumed, in conformal normal coordinates we instead have gij = δij + O(|x|2)
and S = O(|x|2). These changes only contribute higher order terms which are
of no consequence to the conclusion.

This completes the solution of the Yamabe problem. ■
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The spinorial Yamabe problem

4.1 Introduction

Let (M, g, σ) be a compact Riemannian spin manifold of dimension n ≥ 2.
Then for (M, g, σ) there is an associated, canonically de�ned Dirac operator
Dg : Γ(ΣM) → Γ(ΣM), i.e a �rst-order, self-adjoint elliptic operator whose
square is of Laplace type, acting on sections of the associated spinor bundle
ΣM (spinor �elds). Dg possesses a discrete real spectrum {λ±n }∞n=0 of the form

−∞← λ−n < · · ·λ−1 < 0 = · · · = 0 < λ+1 < · · · < λ+n → +∞,

while the multiplicity of the zero eigenvalue, i.e the dimension of kerD, is known
to be a conformal invariant. The eigenvalues are of course dependent on the
metric g.

A problem which is directly related to the Yamabe problem is to minimize
(resp. maximize) the value of the �rst positive eigenvalue λ+1 (Dg) (resp. the
�rst negative eigenvalue λ−1 (Dg)) whithin a given conformal class G. To see the
connection, note that in 1986 Hijazi was able to prove that for n ≥ 3 the lower
bound

|λ±1 (Dg)|2 ≥
n

4(n− 1)
λ1(Dg)

holds, where λ1(Dg) is the �rst eigenvalue of the conformal Laplacian Dg =
−ρ∆g + Sg. On the other hand, the de�nition of the Yamabe invariant implies
that

λ1(Dg)µg(M)2/n ≥ λ(M, g),

so combining these we obtain the lower bound

|λ±1 (Dg)|µg(M)1/n ≥
√

n

4(n− 1)
λ(M, g)

provided that the Yamabe invariant is positive. From our discussion so far it is
obvious that the right hand side is conformally invariant, so this suggests that
the quantity in the left hand side is the appropriate one to study in the setting
of conformal geometry. Note that in this context one can choose µg(M) = 1, so
minimizing this quantity with that assumption also minimizes |λ±1 (Dg)|. With
this in mind, set

λ+min(M,G, σ) := inf
g∈G

λ+1 (Dg)µg(M)1/n. (4.1)
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Studying this functional, i.e the existence and regularity of minimizers, is known
as the spinorial Yamabe problem, and it can be though of as a �rst-order
analogue of the classical Yamabe problem.

Indeed, the similarities are many. Note that by de�nition we have λ+min ≥ 0.
It can actually be shown that

λ+min(M,G, σ) > 0,

and just as with the Yamabe problem,

λ+min(M,G, σ) ≤ λ+min(S
n, g◦, σ◦).

Moreover, the in�mum is attained within a generalised conformal class enlarged
by some singular metrics provided that

λ+min(M,G, σ) < λ+min(S
n, g◦, σ◦).

These results were established by Ammann [4, 2, 3], on whom our presentation
is based.

4.2 A rough outline of spin geometry

While a complete account of the classical theory of spinors is well beyond the
scope and time restrictions of this thesis, we o�er a review of the basic notions
with the hope that the reader will feel comfortable with what will follow, or
that they would perhaps feel motivated to study the material in further detail
themselves. The lecture notes by Bär [6], by which this outline was inspired,
is an excellent place to continue; see also the notes by Hijazi [15]. For a more
comprehensive treatment, there is also the standard reference of Lawson &
Michelsohn [18].

Cli�ord algebras and the spin group. Let V be a vector space of dimen-
sion n, equipped with a symmetric, non-degenerate bilinear form g. The Cli�ord
algebra of (V, g) is the quotient

Cl(V, g) := T 0V/I(V, g),

where

T 0V :=
∞⊕
k=0

T 0
kV, I(V, g) := ⟨v ⊗ v + g(v, v)1 : v ∈ V ⟩.

Note that by the polarisation identity the quotient relation implies the relation

v ⊗ w + w ⊗ v = −2g(v, w)1

in Cl(V, g). The algebra multiplication ⊗ will instead be denoted by · within
the Cli�ord algebra. Moreover, if {e1, . . . , en} is a g-orthonormal basis, a basis
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of Cl(V, g) is given by

{ea11 · · · eann : a1, . . . , an ∈ {0, 1}},

which implies that dimCl(V, g) = 2n. By lifting the antipodal map − IdV , we
obtain a natural Z2-grading

Cl(V, g) = Cl0(V, g)⊕ Cl1(V, g),

where the direct summands are the even and odd elements respectively. Note
that e2i = −1, so Cl(n) can be thought of a generalisation of the complex
numbers in higher dimensions. In fact, Cl(1) ∼= C and Cl(2) ∼= H.

The standard Cli�ord algebra in n elements is Cl(n) := Cl(Rn, g0), which is
generated by the standard orthonormal basis of Rn, together with the relations

ei · ej + ej · ei = −2δij.

Then for v ∈ Rn \ 0, the Cli�ord relation implies v2 = −|v|21, so in particular
Rn \ 0 ⊂ Cl×(n). Moreover, if v ∈ Sn−1 ⊂ Rn, then v−1 = −v. The spin group
in n elements is the multiplicative subgroup of even spherical elements, i.e

Spin(n) = {v1 · · · v2m : vi ∈ Sn−1,m ∈ N0}.

Straightforward calculation reveals that if v ∈ Sn−1, then v · w · v−1 = −(w −
2⟨v, w⟩v) is a re�ection, hence the adjoint map Adv(w) = v · w · v−1 is the
opposite of a re�ection along the hyperplane v⊥. As a matter of fact Ad :
Spin(n) → SO(n) is a double covering, i.e we have the following short exact
sequence

1→ Z2 → Spin(n)
Ad−→ SO(n)→ 1.

In the words of Michael Atiyah, spin geometry is the square root of geometry,
which is a re�ection of just this fact. Spin(n), like SO(n), is a Lie group of the
same dimension, which is

1

2
n(n− 1).

For example, Spin(1) ∼= Z2 and Spin(2) ∼= U(1).

Spinors and spin structures. Let Cl(n) := Cl(n)⊗RC denote the complex-
i�cation of the real Cli�ord algebra Cl(n). For even n = 2m, the standard basis
of C2m will be denoted {e1, ẽ1, . . . , em, ẽm}. We switch to the complex basis

zi :=
1

2
(ei − iẽi), z̄i :=

1

2
(ei + iẽi)

for i = 1, . . . ,m. Putting ω̄ := z̄1 · · · z̄m, let

Σ2m = span{za11 · · · zamm · ω̄ : a1, . . . am ∈ {0, 1}} ∼= C2m .
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Then we have a representation Cl(2m)→ End(Σ2m) obtained by Cli�ord mul-
tiplication (which is actually a complex algebra isomorphism), as well as a de-
composition of Σ2m = Σ+

2m⊕Σ−
2m into positive and negative chirality subspaces.

The restriction σ2m : Spin(2m)→ GL(Σ2m) is called the spinor representation.
Note that σ2m is chirality-preserving and hence not irreducible. Owing to this
we obtain two sub-representations σ±

2m : Spin(2m)→ GL(Σ±
2m). The properties

of the Cli�ord multiplication imply that it is skew-symmetric with respect to
vector multiplication, i.e

⟨v · φ, ψ⟩ = −⟨φ, v · ψ⟩, v ∈ R2m, φ, ψ ∈ Σ2m.

Subsequently this implies that if v ∈ S2m−1, φ 7→ v ·φ is unitary, and hence σ2m
is a unitary representation.

For n = 2m − 1, note �rst that the map Rn → Cl0(2m), v 7→ v · e2m in-
duces an algebra isomorphism Cl(2m − 1) ∼= Cl0(2m). We de�ne the spinor
space Σ2m−1 := Σ+

2m, on which Cl(2m − 1) acts with via the aforementioned
identi�cation. Restricting on the spin group we obtain the representation
σ2m−1 : Spin(2m− 1)→ GL(Σ2m−1), which is again unitary.

So, to summarise, we have constructed unitary representations σn : Spin(n)→
U(Σn) of dimension dimΣn = 2[n/2], where [·] denotes the integer part. The ele-
ments of Σn are called spinors, and elements of the spin group may be identi�ed
with their unitary action on spinors.

Finally, a spin structure on a Riemannian manifold (M, g) of dimension n
is a principal Spin(n)-bundle Spin(M) which is a double cover σ : Spin(M) →
SO(M) of the orthonormal frame bundle SO(M) that is equivariant with re-
spect to the double covering Ad : Spin(n) → SO(n) outlined in the previ-
ous paragraph. A Riemannian spin manifold is then a triple (M, g, σ). The
spinor bundle of (M, g, σ) is de�ned to be the associated vector bundle ΣM :=
Spin(n)×σn Σn, on which the spin group acts via the unitary representation. It
caries a natural Hermitian metric ⟨·, ·⟩g inherited by g; the pair will be denoted
by (ΣM, g). Sections of ΣM are called spinor �elds. It is worth noting here
that not every manifold can admit a spin structure, and if it does, it need not
be unique.

The classical Dirac operator. For each Riemannian spin manifold (M, g, σ)
there is an associated canonically de�ned connection ∇Σ : Γ(ΣM)→ Γ(T ∗M ⊗
ΣM) which is metric with respect to the standard spinor Hermitian form, i.e

X⟨φ, ψ⟩ = ⟨∇Σ
Xφ, ψ⟩+ ⟨φ,∇Σ

Xψ⟩,

and which is also compatible with the Levi-Civita connection ∇ of (M, g), i.e

∇Σ
X(Y · ψ) = ∇XY · ψ + Y · ∇Σ

Xψ.

The superscript ·Σ will be dropped from now on when there is no risk of confu-
sion. The classical Dirac operator of (M, g, σ), Dg : Γ(ΣM) → Γ(ΣM) is then
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given by the composition

Γ(ΣM)
∇−→ Γ(T ∗M ⊗ ΣM)

♯−→ Γ(TM ⊗ ΣM)
Cliff.−−−→ Γ(ΣM),

where ♯ = ♯g is the musical isomorphism and the last mapping is Cli�ord mul-
tiplication. Choosing a local orthonormal frame {e1, . . . , en}, we have the local
expression

Dgψ =
n∑

i=1

ei · ∇eiψ.

Dg is a �rst-order elliptic self-adjoint di�erential operator, whose square is
Laplace type (i.e has principal symbol σ2(D2

g)(ξ) = −|ξ|2). It possesses a real,
discrete, symmetric with respect to zero spectrum, converging to ±∞. By
standard elliptic theory, each eigenvalue has �nite multiplicity.

We now examine the regularity of solutions of the Dirac equation Dgφ = ψ.

Theorem 4.2.1 (Elliptic regularity for the Dirac operator). Let (M, g, σ) be
a compact Riemannian spin manifold, and suppose that ψ ∈ W k,q(ΣM). If
φ ∈ W 1,1(ΣM) is a weak solution of Dgφ = ψ, then φ ∈ W k+1,q(ΣM) and
there is a positive constant C = C(M, g, σ) such that

∥φ∥Wk+1,q(ΣM) ≤ C(∥ψ∥Wk,q(ΣM) + ∥πkerDg(φ)∥Lq(ΣM)),

where πkerDg is the L2-orthogonal projection onto the kernel of Dg.

The Ck,α-version of this is entirely analogous.

4.3 The conformally invariant functional

Like the Yamabe problem, the spinorial Yamabe problem admits a variational
formulation. Constructing the conformaly invariant functional is not straight-
forward; although the Dirac operator is, in a sense to be described, conformally
invariant, its square is not, and this indicates that we should abandon the
idea of a quadratic form, as was the case with the Yamabe problem which was
second-order. Moreover, we are interested in a functional which is bounded,
since we need to establish a relationship between extremals of the functional
and minimizers of λ+min(M, g, σ). First we note the following.

Theorem 4.3.1 (Conformal transformation formula for the Dirac Operator).
Let g̃ = u2g for some u ∈ C∞

+ (M). Then there is an isomorphism of vector
bundles F : (ΣM, g)→ (ΣM, g̃) which is a �ber-wise isometry, such that

Dg̃F (ψ) = F (u−(n+1)/2Dgu
(n−1)/2ψ). (4.2)

For a self-contained proof see Hijazi [15], note however that the result is origi-
nally due to Hitchin. It is convenient to de�ne

ψ̃ := F (u−(n−1)/2ψ),
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and implicitly make the identi�cation (ψ, g) ≡ (ψ̃, g̃). Then it is a matter of
straightforward calculations to show that

Dg̃ψ̃ = u−1D̃gψ,

and moreover
⟨ψ̃, φ̃⟩g̃ = u1−n⟨ψ, φ⟩g, ωg̃ = unωg.

This implies that the top-form

⟨Dgψ, ψ⟩g ωg

is conformally invariant (with the above identi�cation in mind). It is also
straightforward to verify that the quantities ∥ψ∥Lp(ΣM,g) and ∥Dgψ∥Lq(ΣM,g) are
conformally invariant if and only if p = 2⋆ := 2n/(n−1) and q = 2† := 2n/(n+1)
respectively1.

While it might be tempting to de�ne a functional using the simpler quantity
∥ · ∥L2⋆ (ΣM,g), it turns out that choosing the seminorm ∥Dg · ∥L2† (ΣM,g)

o�ers
more freedom and leads to Euler-Lagrange equations that can be more easily
manipulated for our purposes. For reasons that are similar to the ones that
occurred when treating the classical Yamabe problem, for q ∈ [2†, 2] we de�ne
the family of functionals Qq

g : W
1,q(ΣM) \ kerDg → R given by the quotient

Qq
g(ψ) :=

∫
M
⟨Dgψ, ψ⟩gdµg

∥Dgψ∥2Lq(ΣM,g)

. (4.3)

To check that this is well-de�ned, let p be the Hölder-conjugate of q, i.e 1/p +
1/q = 1. Because of the embedding W 1,q ↪→ Lq∗ ↪→ Lp, the nominator is
integrable by Hölder's inequality, and the denominator is positive and �nite by
de�nition. Moreover, the self-adjointness of Dg ensures that Qq

g is real.
Now let ψ ∈ W 1,q(ΣM) \ kerDg. Since Qq

g(ψ + ψker) = Qq
g(ψ) for any

ψker ∈ kerDg, we may assume without loss of generality that ψ ∈ (kerDg)
⊥.

Then Theorem 4.2.1 implies ∥ψ∥W 1,q(ΣM,g) ≤ C∥Dgψ∥Lq(ΣM,g), and therefore

|Qq
g(ψ)| ≤

∥Dgψ∥Lq(ΣM,g)∥ψ∥Lp(ΣM,g)

∥Dgψ∥2Lq(ΣM,g)

≤ C,

so Qq
g is bounded. Let

λqg := supQq
g.

Chosing an eigenspinor ψ to a positive eigenvalue of Dg as a test spinor, we
readily see that λqg ≥ Qq

g(ψ) > 0.
Given a conformal class G, there is a closely related functional outlined in

Section 4.1, namely J : G→ R,

J (g) := λ+1 (Dg)µg(M)1/n, λ+min(M,G, σ) := inf J . (4.4)

1Note that 2⋆ is the fractional Sobolev exponent of order s = 1/2; in general it is p⋆ :=
np/(n− sp). 2† is then the Hölder-conjugate of 2⋆
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The relationship between quantities λqg and λ
+
min(M, ḡ, σ) will be given shortly;

for the time being let us �rst give some properties of the values λqg.

Lemma 4.3.2 (Properties of λqg). The function q 7→ λqg, q ∈ [2†,∞) is contin-
uous from the right and

λ2g =
1

λ+1 (Dg)
.

If, moreover, µg(M) = 1, then q 7→ λqg is non-increasing.

Proof. Continuity and monotonicity are proven in a manner which is entirely
analogous to Lemma 3.1.3. As for the claim λ2g = 1/λ+1 (Dg), one has to simply
use the spectral theorem: for ψ =

∑
k∈Z αkψk, direct computation yields

Q2
g(ψ) =

∑
k∈Z α

2
kλk∑

k∈Z α
2
kλ

2
k

.

This is maximized in the direction of the �rst positive eigenspinor ψ+
1 , and the

claim follows.

Theorem 4.3.3. There holds λ2
†

g = 1/λ+min(M, ḡ, σ).

Proof. Since λ2
†

g is conformally invariant by construction, we have that for any
g̃ ∈ ḡ with µg̃(M) = 1,

λ2
†

g = λ2
†

g̃ ≥ λ2g̃ = 1/λ+1 (Dg̃),

therefore λ2
† ≥ 1/λ+min(M, ḡ, σ).

For the opposite inequality, let ψϵ ∈ Γ(ΣM) be such that Q2†
g (ψϵ) ≥ λ2

†
g − ϵ

and ∥Dgψϵ∥L2† (ΣM,g)
= 1, and we may assume that Dgψϵ is non-vanishing (up

to a small perturbation, which may be done without loss of generality). Setting
gϵ := |Dgψϵ|4/(n+1)

g g, we calculate µgϵ(M) = 1 and |Dgϵψϵ|gϵ = 1. Therefore

Q2†

g (ψϵ) = Q2†

gϵ (ψϵ) = Q2
gϵ(ψϵ) ≤ λ2gϵ ≤ 1/λ+1 (Dgϵ) = 1/λ+min(M, ḡ, σ).

Taking ϵ→ 0 yields the conclusion.

With that settled let us turn our attention to the Euler-Lagrange equations
of Qq

g. The critical points ψ ∈ W 1,q(ΣM) of Qq
g are the ones for which the

Gateaux derivative

d

dt

∣∣∣
t=0
Qq

g(ψ+ tφ) =
2

∥Dgψ∥2Lq(ΣM,g)

∫
M

〈
ψ−

Qq
g(ψ)

∥Dgψ∥q−2
Lq(ΣM,g)

|Dgψ|q−2Dgψ,Dgφ
〉

vanishes for all φ ∈ W 1,q(ΣM). Hence a maximizer ψ of Qq
g that is normalised

by ∥Dgψ∥q(ΣM,g) = 1 must satisfy

Dg(λ
q
g|Dgψ|q−2Dgψ − ψ) = 0. (4.5)

This is the Euler-Lagrange equation associated with Qq
g, which is fully non-

linear, but we can actually do better. Since for any κ ̸= 0 and ψker ∈ kerDg we
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have Qq
g(κψ+ψker) = Qq

g(ψ), there is a lot of room to manipulate the equation.
Note that elliptic regularity implies that λqg|Dgψ|q−2Dgψ−ψ is smooth. Setting
ψ1 := λqg|Dgψ|q−2Dgψ, we see that Dgψ1 = Dgψ and therefore ψ1 ∈ W 1,q(ΣM),
∥Dgψ1∥Lq(ΣM,g) = 1. Moreover, direct calculation yields

Dgψ1 = (λqg)
1−p|ψ1|p−2ψ1, (4.6)

and further substituting φ := ψ1/λ
q
g yields the equation

λqgDgφ = |φ|p−2φ, (4.7)

which is equivalent to (4.5) and (4.6), while one can check by direct calculation
that φ is still a maximizing spinor of Qq

g. Finally, note that for q = 2†, the
equation becomes

Dgφ = λ|φ|2⋆−2φ, λ = λ+min(M, g, σ). (4.8)

Now if Dgψ is non-vanishing, φ is non-vanishing. setting g̃ := |φ|4/(n−1)g,
we calculate |φ|g̃ = 1 and µg̃(M) = 1, and moreover

1/λ+1 (Dg̃) = λ2g̃ ≥ Q2
g̃(φ) ≥ Q2†

g̃ (φ) = Q2†

g (φ) = λ2
†

g = 1/λ+min(M, ḡ, σ).

Since by de�nition we have λ+min(M, ḡ, σ) ≤ λ+1 (Dg̃), it follows that g̃ is a mini-
mizer of J : ḡ → R. Note that by a simple rescaling argument the same is true
for the metric g̃ := |Dgψ|4/(n+1)g.

If, on the other hand, g is a smooth minimizer of J : G → R and ψ is
an eigenspinor to λ+1 (Dg), then ψ is a maximizer of Q2†

g . Thus we have estab-
lished a correspondence between maximising solutions of (4.8) and minimizers
of λ+min(M, ḡ, σ).

4.4 Overview of main results

There are striking similarities between the spinorial and the classical Yamabe
problem. One basic di�erence is the absence of a maximum principle for solu-
tions of the Dirac equation, and therefore one does not get the positivity and
nice regularity properties of solutions to the Yamabe equations. The situation
can be amended if one looks for solutions in an enlarged conformal class modi-
�ed to include some �almost smooth� metrics. In any case, one can show that,
similar to the classical Yamabe problem, there is the following upper bound
with respect to the standard round spin sphere (Sn, g◦, σ◦)

2.

Theorem 4.4.1 (Ammann). Let (M, g, σ) be a compact Riemannian spin man-
ifold of dimension n ≥ 3, or n = 2 and kerDg ̸= {0}. Then

λ+min(M, ḡ, σ) ≤ λ+min(S
n, ḡ◦, σ◦).

2The sphere Sn is di�eomorphic to Spin(n+1)/Spin(n), and carries a natural spin structure
Spin(n+1)→ Sn, with σ◦ : Spin(n+1)→ SO(Sn, g◦) given in a more or less obvious manner
(for a detailed construction, see the Appendix section of [21])
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Sketch of proof. The proof is given by the construction of a suitable Aubin-type
spinor, which is given as a linear combination of Killing �elds and essentially
corresponds to blow-ups by standard round spin spheres, as was the case with
the classical Yamabe problem.

To describe the enlarged conformal class within which one should look for
solutions, set C1,α

sing(M) := {u ∈ C1,α(M) : u ∈ C∞(M \ u−1(0)), suppu = M}.
These functions are smooth except from their zero-set, which is of measure zero,
were they are at least C1,α. The enlarged conformal class of a metric g is then
de�ned to be

ğ = {u2/(n−1)g : u ≥ 0, u ∈ C1,α
sing(M)}.

An important fact is that enlarging the conformal class in such a manner does
not change the value of λ+min, i.e

inf
ğ
J = inf

ḡ
J .

Then we have a result that resolves the problem in terms of the criticality of
λ+min, which is very similar to Theorem 3.1.15.

Theorem 4.4.2 (Ammann). Let (M, g, σ) be a compact Riemannian spin man-
ifold of dimension n ≥ 2, and suppose that

λ+min(M, ḡ, σ) < λ+min(S
n, ḡ◦, σ◦).

In that case:

1. There is a spinor �eld φ ∈ C1,α
sing(ΣM) such that

Dgφ = λ|φ|2⋆−2φ, λ = λ+min(M, ḡ, σ),

normalised by ∥φ∥2⋆ = 1.

2. There is a generalized conformal metric g̃ ∈ ğ such that µg̃(M) = 1 and

λ+1 (Dg̃) = λ+min(M, ḡ, σ).

Sketch of proof. As with the classical Yamabe problem, we consider the family
of functionals Qq

g for q > 2†. In direct analogy, these are subcritical and pos-
sess maximizers φq ∈ Lq(ΣM) satisfying (4.7) and ∥φq∥Lp(ΣM,g) = 1, and the
question is to investigate the limit q → 2†. A suitable regularity result then
reveals that {φq} is uniformly bounded in C0,α(ΣM) as q → 2†, and hence
uniformly bounded in C1,α(ΣM) in view of the C1,α-version of Theorem 4.2.1.
The Arzela-Ascoli theorem and Theorem 4.3.2 then imply that φq converges to
a solution φ satisfying (4.8) which is a maximizer of Q2†

g with ∥φ∥2⋆ = 1.
The second statement is a direct consequence of the �rst. Given such a

spinor �eld φ, set g̃ = |φ|4/(n−1)g, and the discussion of the previous section
implies the required properties.
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