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Introduction in English

The deformation theory of curves with automorphisms is an important generalization of the classical
deformation theory of curves. This theory is related to the lifting problem of curves with automor-
phisms, since one can consider liftings from characteristic p > 0 to characteristic zero in terms of a
sequence of local Artin-rings.

J. Bertin and A. Mézard in [10], following Schlessinger’s [68] approach, introduced a deformation
functor D, and studied it in terms of Grothendieck’s equivariant cohomology theory [31]. In Sch-
lessinger’s approach to deformation theory, we want to know the tangent space to the deformation
functor Dy (kle]) and the possible obstructions to lift a deformation over an Artin local ring I' to a small
extension I'" — I'. The reader who is not familiar with deformation theory is referred to section M for
terminology and references to the literature. Let X be a non-singular complete algebraic curve defined
over an algebraically closed field k of characteristic p > 0. The tangent space of the global deforma-
tion functor Dy (kl[e]) can be identified as Grothendieck’s equivariant cohomology group H'(G, X, %),
which is known to be equal to the invariant space H'(X,.7x)€. Moreover, a local-global theorem is
known, which can be expressed in terms of the short exact sequence:

0 —=H'(X/G, 7 (Fx)) —= H'(G, X, Ix) —= H(X/G,R'nT (Fx)) —=0 (1)

W\
D (6o T

i=1

The lifting obstruction can be seen as an element in
T —_
H2(G, X, %) = D H? (Gx, T, ) -
i=1

In the above equation x, ..., x, € X are the ramified points, G, are the corresponding isotropy groups
and %\(M are the completed local tangent spaces, that is %\(m = k[[ti]}diti, where t; is a local uni-
formizer at x;. The space k[[ti]]a%i is seen as Gy,-module by the adjoint action, see [22, 2.1], [49,
1.5]. Bertin and Mézard reduced the computation of obstruction to the infinitesimal lifting problem
of representations of the isotropy group Gy, to the difficult group Autk[[t]], where Autk/[[t]] denotes the

group of continuous automorphisms of k[[t]].
Let now G be a finite group, and consider the homomorphism

p: G — Aut(k[[t]]),

which will be called a local G-action. Let W(k) denote the ring of Witt vectors of k. The local lifting
problem considers the following question: Does there exist an extension A/W(k), and a representation

p: G — Aut(A[[T]]),

such that if t is the reduction of T, then the action of G on A[[T]] reduces to the action of G on k[[t]]?
If the answer to the above question is positive, then we say that the G-action lifts to characteristic
zero. A group G for which every local G-action on k[[t]] lifts to characteristic zero is called a local Oort
group for k.

After studying certain obstructions (the Bertin-obstruction, the KGB-obstruction, the Hurwitz tree
obstruction etc.) it is known that the only possible local Oort groups are known to be

(i) Cyclic groups
(if) Dihedral groups D, of order 2ph
(iii) The alternating group A,

The Oort conjecture states that every cyclic group Cq of order q = p™ lifts locally. This conjecture
was proved recently by F. Pop [66] using the work of A. Obus and S. Wewers [63]. A. Obus proved
that A, is local Oort group in [60] and this was also known to F. Pop, I. Bouw and S. Wewers [[14].
The case of dihedral groups D,, are known to be local Oort by I. Bouw and S. Wewers for p odd [14]



x - Contents

and by G. Pagot [65]. Several cases of dihedral groups D,,» for small p™ have been studied by A. Obus
[61] and H. Dang, S. Das, K. Karagiannis, A. Obus, V. Thatte [23], while the D, was studied by B.
Weaver [80]. For more details on the lifting problem we refer to [19], [20], [21], [59].

Probably, the most important of the known so far obstructions is the KGB obstruction [20]. It was
conjectured that if the p-Sylow subgroup of G is cyclic, then this is the only obstruction for the local
lifting problem, see [69], [61]]. In particular, the KGB-obstruction for the dihedral group Dy is known
to vanish, so the conjecture asserts that the local action of D4 always lifts. We will provide in section

.5g a counterexample to this conjecture, by proving that the HKG-cover corresponding to D55, with
a selection of lower jumps 9, 189, 4689, which does not lift.

This thesis is splitted into two parts. In the first part, we aim to give a new approach to the
deformation theory of curves with automorphisms, which is not based on the deformation theory of
representations on the subtle object Autk[[t]], but on the deformation theory of the better understood
general linear group. In order to do so, we will restrict ourselves to curves that satisfy the mild
assumptions of Petri’s theorem.

Theorem 1 (Petri’s theorem). For a non-singular non-hyperelliptic curve X of genus g > 3 defined
over an algebraically closed field with sheaf of differentials Qx there is the following short exact
sequence:

0 — Ix = SymH’(X, Qx) = @ H(X,Q%™) — 0,
n=0

where Ix is generated by elements of degree 2 and 3. Also if X is not a non-singular quintic of
genus 6 or X is not a trigonal curve, then Ix is generated by elements of degree 2.

For a proof of this theorem we refer to [30], [67]. The ideal Ix is called the canonical ideal and it is
the homogeneous ideal of the embedded curve X — P91,

For curves that satisfy the assumptions of Petri’s theorem and their canonical ideal is generated
by quadrics, we prove in section the following relative version of Petri’s theorem

Proposition 2. Let fi,...,f, € S := SymH’(X, Qx) = k[w;, ..., wgy] be quadratic polynomials which
generate the canonical ideal Ix of a curve X defined over an algebraic closed field k. Any deforma-
tion Za is given by quadratic polynomials fi,....fr € SymHO(%A,Q%A/A) = AW, ..., Wql, which
reduce to fq,...,f, modulo the maximal ideal ma of A.

This approach allows us to replace several of Grothendieck’s equivariant cohomology construc-
tions in terms of linear algebra. Let us mention that in general, it is not so easy to perform explicit
computations with equivariant Grothendieck cohomology groups and usually, spectral sequences or
a complicated equivariant Chech cohomology is used, see [9], [0, sec.3].

Let i : X — P97! be the canonical embedding. In proposition we prove that elements
[f] € HY(X, 9x)€ = Dgikle] correspond to cohomology classes in H' (G, M4 (k)/(I4)), where Mg (k)/(L4) is
the space of g x g matrices with coefficients in k, modulo the vector subspace of scalar multiples of
the identity matrix.

Furthermore, in our setting the obstruction to liftings is reduced to an obstruction to the lifting of
the linear canonical representation

p: G — GL(H(X,Qx)) 2)

and a compatibility criterion involving the defining quadratic equations of our canonically embedded
curve, namely in section @ we will prove the following:

Theorem 3. Consider an epimorphism I'" — I' — 0 of local Artin rings. A deformation x € D(T")
can be lifted to a deformation x’ € D (') if and only if the representation pr : G — GLg4(I') lifts to a
representation pr: : G — GLg4(I'") and moreover there is a lifting Xr/ of the embedded deformation
of Xr which is invariant under the lifted action of pr-.

Remark 4. The liftability of the representation p is a strong condition. In proposition we give
an example of a representation p: G — GLz(k), for a field k of positive characteristic p, which can not
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be lifted to a representation p : G — GL2(R) for R = W(k)[(,~], meaning that a lifting in some small
extension R/m}Jl — R/mk is obstructed. Here R denotes the Witt ring of k with a primitive p" root of
unity added, which has characteristic zero. In our counterexample G = Cq x Cry, ¢ =p", (m,p) = 1.

Remark 5. The invariance of the canonical ideal Ix, under the action of G can be checked using
Gauss elimination and echelon normal forms, see section (or [B1], sec 2.2]).

Remark 6. The canonical ideal Ix, is determined by r quadratic polynomials which form a I'[G]-
invariant '-submodule Vi in the free '-module of symmetric g x g matrices with entries in ' When
we pass from a deformation x € Dy (') to a deformation x’ € Dy (I'") we require that the canonical
ideal Ix,, is invariant under the lifted action, given by the representation pr, : G — GLg4(I''). In
definition .1 we introduce an action T(g) on the vector space of symmetric g x g matrices,
and the invariance of the canonical ideal is equivalent to the invariance under the T-action of the
I'"-submodule Vi generated by the quadratic polynomials generating Ix.. Therefore, we can write one
more representation

p'": G — GL(Tor? (k, Ix)). (3)

Set r = (9,7%). Liftings of the representations p,p!) defined in eq. [), [E) in GLg(T) resp. GL.(I") will
be denoted by pr resp. p(rl).

Notice that if the representation pr lifts to a representation pr- and moreover there is a lifting Xr-
of the relative curve Xr so that Xy, has an ideal Ix,, which is pr/ invariant, then the representation

p(rl) also lifts to a representation p(rl,), see also chapter .

The deformation theory of linear representations p, p(!) gives rise to cocycles Dy, Dgl,)l in H!(G, M4 (k)),
H!(G, M(g,z) (k)), while the deformation theory of curves with automorphisms introduces a cocycle
2

B, [f] corresponding to [f] € H!(X, 9x)C. We will introduce a compatibility condition in section
among these cocycles, using the isomorphism

P : Mg(k)/(Ig) — HO(X, 1" Fpo-1) < Homs (Ix, S/Ix) = HO(X, A5 /pa—1)
B+— g

defined in In proposition .

Proposition 7. The following compatibility condition is satisfied
~ —pW 4
bp, —WB, 1 =Dy

Our main result, is to give a necessary and sufficient condition for a C4 x Cx,-action and in
particular for the group D to lift. In order to do so, we will employ the Harbater-Katz-Gabber-
compactification (HKG for short), which can be used in order to construct complete curves out of
local actions. In this way, we have a variety of tools at our disposal and we can transform the local
action and its deformations into representations of lineal groups acting on spaces of differentials of
the HKG-curve. We will lay the necessary tools in the chapter , where we have collected several facts
about the relation of liftings of local actions, liftings of curves and liftings of linear representations.

More precisely, the first part consists of three chapters. In the first chapter we study the auto-
morphism group of a curve from the viewpoint of the canonical embedding and Petri’s theorem. We
give a criterion for identifying the automorphism group as an algebraic subgroup of the general lin-
ear group. Furthermore, we extend the action of the automorphism group to a linear action on the
generators of the minimal free resolution of the canonical ring of the curve X.

In the second chapter we study the deformation theory of curves by using the canonical ideal. We
reduce the problem of lifting curves with automorphisms to a lifting problem of linear representations.

In the last chapter we study the local lifting problem of actions of semidirect products of a cyclic p-
group by a cyclic prime to p group, where p is the characteristic of the special fibre. We give a criterion
based on Harbater-Katz-Gabber compactification of local actions, which allows us to decide whether
a local action lifts or not. In particular for the case of dihedral group we give an example of dihedral
local action that cannot lift and in this way we give a stronger obstruction than the KGB-obstruction.
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In the second part we give a necessary and sufficient condition for a modular representation of a
group G = C,n x Cyy in a field of characteristic zero to be lifted to a representation over local principal
ideal domain of characteristic zero containing the p" roots of unity. This construction is an essential
tool in our study for liftings of the first part.
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Elwoaywyn ota EAAnvika

H Bewpia mapapoppioe®v KAPIMUAGV PE AUTOPOPPIo0UG, £1val P1d ONAVIIKY YEVIKEUOT TNG KAAOGIKNG
Bewplag mapapoppooe®v kapnudov. H Bewpia autr) cuvdéetal pie 10 mpoBAnpia aviypnong KAPmTUuA©v
HE& autopopd1op0ug, adou PIopoue va Be@prjooupe Pia avUypeor) aro v 0K XapaKIPlOTIKT OtV
XAPAKINPLOTIKY PUNdEv og Pia akodoubia tomkov Artin Saktudiov.

OtJ. Bertin kat A. Mézard oto [10], akoAouBavrag v nipooéyyion tou Schlessinger [68], sloryayav
Tov ouvaptnt) napapopdeong Dy kat tov peAémoav pe v BorjBeia tng equivariant ouvopoAoyiag
tou Grothendieck [31]. Zwv mpoogyyion ng Bswpiag napapopdpwoenv tou Schlessinger, BéAloupe va
yvopifoupe tov EQAIIOPEVO X®PO ToU ouvaptnt napapopdaong Dgi(kle]) kat ta mbava epnodia tng
aviyPeong piag rnapapopdeong nave aro évav toruko Artin SaxtvAio I' oe pia pikpr) enéktaon M — T
O avayvootng rou dev gival e501KE1RNEVOG P Vv Benpid MapapopPOOE®V MAPATIEPIIETAL OV EVOTITA
yla Vv opoldoyia kat apariopreg otnyv 8i8Aoypadia. '‘Eote X pia pn 16iadouoca, mAnpen, aiyeBpikr)
KAPIUAL oplopévr ave aro eva alyeBpikd kAelotd oopa k xapaxktpoukng p > 0. O epartopevog
X0Pog tou kKaboAwkou ouvaptntt] Dyi(k[e]) prnopel va tavtiotel pe v equivariant opdda cuvopoAoyiag
tou Grothendieck H!(G, X, 9x), n onoia yvopiloupe nwg stvat ion pe tov xopo avadowotov H (X, Fx)C.
Ermrméov £6e18av £éva toruko-kaboAiko Bemprjia 1o Oroio PIopel va Petadpaotel oV nmapardate Pikper)
axkp8n akoAoubia:

0 —=H'(X/G, ¢ (Fx)) —= H'(G, X, Ix) —=H(X/G,R'n¢ (Fx)) —=0 (5)

W\
D (6v )

i=1

To epnodio g avuiy®ong PItopoue va 1o Soupe ®g £va oTolXeio 11€0a OToV XOPOo

H2(G, X, %) = d}HQ (G P ) -
i=1

OTIOU OTNV IAPATIAVE® 100TNTd X4, ...,X, € X €ival ta onueia dtarkAdadwong, Gy, Ol aviiotoixeg opdadeg
wootportiag Katr Jx x, 1l MANPROT] TOU TOINKOU £PAITIOHEVOU X®OPOU, JX x, = k[[ti]}%, Ortou t; ewvat o
s

torukog uniformizer to x;. Mmopoupe va 6oupe 1oV XHpo k[[ti“diti ®G Gy, -TipdTUTIo P€ow g 6paong

ouluylag, BAéme [22, 2.1], [49, 1.5]. Ot Bertin ka1 Mezard petétpeypav tov UNIOAOY1010 TOU epuItodiou g
infinitensimal aviyeong tng avanapdotaocng tng opadag wootportiag Gy, , otnv SUokoAn opada Autk[[t]],
ortou pe Autk[[t]] oupBoAidoupie v opAda TV CUVEXGOV auTopopPlop®V g opadag k([t]].

'Eote topa G pa nienepacpévn opdda, kat Be@pouiie 1ov Opopopp1o0o
p: G = Aut(k[[t]]),

oto Ba avagpepopaote wg torukn G-6paon. Me W(k) oupBodidoupe tov Saktudio tov Witt Siavuopdtev
tou k. To mpoBAnpa g TOIKNG AVUYPEONG ATTOTEAEITAL ATIO TNV EMOHEVI] €PAOTNOL: YIIAPXEL EMEKTAOT)
A/W (k) kat avanapdotaon
p: G — Aut(A[[TI]),

1€t0la ©OOote, av t eival n avayeyn wou T, 10te 1 §pdon tou G oto A[[T]] avayayete ounv Spdaon g G
oo k[[t]]l; Av n amavinon otV napandve epwinon sivat Betukr), 1ote Agpe 61l 1 G-6pdon avuywvetat
otnv xapaxkmmplouky pndév. Mia opdda yia v oroia kabe torukr G-6pdon oto k[[t]] onkovetat otnv
Xapaxtplotiki pndév kaleitatl torukn Oort opdda yia to k.

Katoérmv pedémng dapopwv eprodiav (Bertin-epunodio, KGB-epnodio, Hurwitz tree eprnodio, rAr.)
£ivatl yvooto ot o1 poveg rbavég torkég Oort opadeg propouv va ivat ot e€ng:

() KuxAwkég opadeg
(ii) Aedpixég opadeg Dpyn tagng 2p"
(iii) H alternating opdda A4

H ewkaoia tou Oort Aéet ot kaBe KUKAKY opdda Cq tang q = p" avuyavetat torukd. H ekaoia
auty) anodeixdnke npoogpata arod tov F. Pop [66] xpnotpornoiaviag tv Souleia tou tov A. Obus and S.
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Wewers [63]. O A. Obus anédee ot n A4 eivat torukr Oort opdda oto [60] kat fjrav emiong yvootod
otoug F. Pop, I. Bouw and S. Wewers [[14]. H nepimwon g 61e6pikng opadag D, £xet anoderxOet
ou eival emiong toruky) Oort opdada amd toug I. Bouw kat S. Wewers yla p riepttd [14] kat arno tov
G. Pagot [65]. Atadopeg mepittioetg g 61edpikhg opadag Dg, yia pikpd p" éxouv pedetnOet anod tov
A. Obus [61] kat toug H. Dang, S. Das, K. Karagiannis, A. Obus, V. Thatte [23], kaBwg xat n1 Dy
amno tov B. Weaver [80]. T'a mepioodtepeg Aentopépeieg oto PoBAnpa aviy®ong Maparnédnovpe ota
[19], [20], [21]], [B9]. ITIBavotata To 1o CNUAvVIIKO Ao ta yveootd epnodia, eivat to KGB-spunodio [20].
"Yrupxe 1 ewkaoia newg, av n p-Sylow urtoopdda tng G eivatl KUKAKY, TOTE AUTO €1val 10 POVO ePItod1o
yla 1o ripoBAnpa g tormkrg avuywong see [69], [61]. Edwkdtepa, 1o KGB-gpmnoddio pndevidetat yia v
d1edp1kn opada D4, ondre amno v napandve e1Kacia, MOotevetal G n Tormkn dpaon g D avuyovetat
mavta. ZInv evotnta E Bd KATAOKEUAOOUNE €va avimapddetlypa yia tnv eikaoia auvtr, deiyxvorag ot
10 HKG-kdAAupa mou avriotoxet otnv Dios, pe lower jumps 9, 189, 4689, dev eivat uvatd va avuypndet.

H 8watpi6r) auty) eival xoplopévr oe 800 pépr. X10 MPAOTO PEPOG O OTOX0G Pag ivatl va doooupe pa
VEa MPOCEYY10T) OtV Oewpia MapaPopPROE®V KAPTUAGV e AUTOP0PpPLIooUG, 1) oroia dev Baoiletal otnv
Bewpia MAPAPOPPHOOEDY AvVATIAPACTACE®V TG TepimAokng opadag Autk[[t]]l, aAAd ng o ratavonng
YEVIKIG YPAPHIKAG opddag. TMa va 1o ermtuyoupe auto Ba meploplotoUle 08 KAPUITUAEG TIOU TIANPOUV TG
ipounoBEoelg Tou Bewprjpatog tou Petri.

Ocmpnpa 1 (Behpnpa tou Petri). Ta pia pn-1diddouoa kat pn-vrnepeAdeurttiky] Kaprudn X, yévoug
g > 3 oplopévn mave aro éva adysBpika kAewoto oopa pe sheaf Siapopikav Qx, urapxel n eEng
H1KpL akpBrg akoloubia:

0 — Ix = SymH’(X, Qx) = @ H'(X,Q%™) — 0,
n=0

orou 1o [x mmapdyetat ano otoryxeia tédng 2 kat 3. Akopa av i X dev eivat pn 181a¢ouvoa quintic yévoug
6 1) n X 8ev eivat trigonal kapruAn, tote 10 Ix mapdyetat and oroikeia téing 2.

Ma pia anodeign autou tou Bewprjpatog maparepniovpe ota [30], [67]. To 18ekdeg Ix kalAeitat
Kavoviko 186emdeg Kat eival 10 opoyevég 18endeg g Kaprudng X epguteupévng péoa oo P9I~ T
KAUITUAEG TTOU 1KAVOTIO0UV T1§ TpoUTiof£oe1g tou Bempr)patog Petri kat 1o opoyeveg 16ewdeg Toug tapaye-
Tal anod TEIPAY®VIKA oTotXeia, anmodelkvuoupe otV evotnta @ TV AKOAOUB1 OXETIKI] Lopd1] TOU Bewpt)-
partog Petri.

Ipétaon 2. 'Eow fy,...,fr € S := SymH"(X, Qx) = klwy,..., Wy TETPaymVvikd moAuwvuna ta omnoia
TApPAyouV 10 KAVOViKO 18eddeg Ix tng kapmuAng X ndve aro éva alyeBpikd rAsioto oopa k. Kdbe
MApPapoPPOn 24 Sivetal amod TeTpay@Vvikd moAudvunad fy, .. ., fr € SymHO (2, Q aa/A) =AW, ., W,
1a omoia mEPTouv ota fy, ..., fr av mdpoue MNAIKO P To PEYIOTO 16eddeg ma TOU A.

H mpooéyyion autr) pag smipénel va avukataotooupe kataokeuég Grothendieck equivariant ouvo-
poAoyiag pie EUKOAOTEPEG KATAOKEUEG YPANIKLG AAyeBpag. Ag ONUEI®OOUE aKO[a OTL eV YEVEL, Oev elvat
€UKO0AO1 01 urtodoytopot pe opddeg equivariant Grothendieck ouvopoAoyiag kat ouvrBwg Xpro10Io0U-
vtat spectral sequences 1) equivariant Chech cuvopoloyia, BAéne [9], [60, sec.3]. 'Eotw i: X — P91
1 KAVOVIKY] EPPUTEUOT. ZTnV npotaocn anodsikvuoupe 6t ta otoixeia [f] € HY(X, Ix)C = Dgklel
avuototouv oe KAGoelg ouvopodoyiag oty HY (G, Mg(k)/(Ig)), émou Mg(k)/(Ig) etvar o xopog g X g
TVAK®V € OUVIEAEOTEG Ao 1O k, TNAIKO T0 §1aVUCHATIKO UTTOX®PEO TIOU TIAPAYETAL ATIO TOV TAUTOTIKO
niivaka. ErmutAéov, oto mAaiolo auto, 10 eprodio g aviymong PETATPETIETAL OTO EPITOO10 TG AVUPRONS
aAvanapaotdce®V g YEVVIKAG YPAPRHIKAG opadag

p: G — GL(H(X,Qx)) (6)

Kat éva kptr)plo oupBatotntag. 1o cuykekpiéva oty evotnta @ Ba arobeifoupe 10 akoAoubo:
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Ocmpnpa 3. Oswpoupe ermpopPlopo Tormkey Artin daktudieov I'' — I' — 0. Mia apapopp®on
x € Dg(I") prnopet va avuynbet oe pia napapoppeon x’ € Dy (') av kat pévo av n avanapdotaon
pr: G = GLg4(I") onkovetat oe pia avarnapdaotaon pr/ : G — GLg (') kat ermmmAéov undpxet aviypeor
Xr/ TNG EPPUIEUPEVNG TTAPAPOPPOOoNG Xr 1 oroia ival avaAdointn amo v avuyron g dpaong
meg prv.

Hapatijpnon 4. H duvatdtnra aviyeong g avanapdotacslg p eivat pia woxupn ouvOrhkn. Xwv
mpotaon bivoupe éva napdadetypa piag avarapdotaong p: G — GLy(k), yia éva oopa k Beukng
XAPAKINPLIOTIKAG P, 1) oroia eivat aduvato av avuywBel oe pa avanapaoctaon p : G — GLe(R) omou
R = W(k)[(,n], evvomvtag ot pia avipeon ot pia Pikpr) eMEKTaot R/mE™ — R/mk epmobigetal. To R
oupBoAider 60, tov Witt SaxtuAio tou k £€xoviag mpooBéoete pe pia nmpetapXikn ph pida g povadag,
XApaxkmpelotkng pndév. o avurapddetypa pag G = Cq x Cry, ¢ =p", (m,p) = 1.

Iapatfipnon 5. To avaldointo tou kavovikou 16ewdoug Ik, urd v dpaon g G propet va edexbel pe
anadoipry Gauss kat echelon kavovikég popgég, BAéme evotnta (1 [B1, sec 2.2]).

IMapatfpnon 6. To Kavoviko 16ewdeg Ix, Kabopiletal amo r terpayevika moAuovupd, ta onoia oxnpati-
Zouv éva IN'G]-avadrointo M-unornpdtuno Vi tou eAetBepou MN-TPoTUIoU T®V CUPPEIPIKGOV g X g TIUVAK®V
e eyypagég oto I'. otav nepvape and pia napapdppeon x € Dy (') oe pia napapdppwon x’ € Dy (),
ATIATTOUE TO KAVOVIKO 16e0deg Ix ., va eivat avadAoimwto anod v uPepévn 6pdon g avanapaotacns
pg’ : G — GLg(I''). Ztov oplcrpé gloayoupe tv 6paon T(g) oTtov H1avUuopPaTIKO XOPO T®V CUPHETPIKOV
g X g TIVAK®V, KA1 TO va gival avaAAointo 1o Kavoviko 186emdeg, petadpdadetal oto va PEvel avaAAoi®To uro
v T-6pdon tou I'-unornpoturiou Vi, MoU Mapdyetatl arnod 1da TEIPAyeVIKA MTOAU®VULA TTIOU ITapdyouV 1o
Ix/. Enopéveg, prnopolpe va KATAOKEUACOUHE akOd Jid avarnapaotaor):

p'M: G — GL(Tor? (k, Ix)). (7)

@touper = (952). Ot avuyaoeig TV p, p'Y) Tou opidovtat otig mpotdoeig (], @) oto GL4(T') xat avtiotoxa
oto GL,(T") 6a ocupBoAiletal pe pr avtiotolxa p(rl).
Av n avarntapdotaon pg avuyebel o pa pr/ Kal eImA£ov Udpxel pia avuyeor Xrr TG OXETKAG

KapruAng Xr tétowa oote n Xr/ va £xet 16ewdeg Ix,., 1o omnoio eivat pr/ avaddointo, tdte n avanapdotacn
p(rl) pnopet emiong va avupndei oe pia avanapdaotaon p(rl,), deite emiong 10 RePAAaio .
H Bswpia mapapoppooeny tov avarnapactdosmv p, pl!) pag diver toug ouvkixkAoug Dy, Dfrlll oto
HY(G, M4(k)), H!(G, M(g,z) (k)), xaBwg 1 Bewpia MAPAPOPPHCEDV KAPTTUAGV HE AUTOPOPPIOII0UG E10AYEL
2

ouvkUKAoUG B, [f] mou avtiotoxouv oto [f] € HY (X, Z%)€. v evétta E.4b: Ba arodeifoupie pia ouvOnKn
oupBatdtntag Petady auteV IOV OUVKUKA®V, XPNOTHIOIOIOVIAS TOV ITAPAKAT® 1000P(IoH0

P Mg(k)/(Ig) — HO(X,i* Fpe—1) < Homs (Ix, S/Ix) = HO(X, A /pa—1)
B+— g

omwg opiletal oty mPOTaot .

IIpétaon 7. H napakdate ox£orn Kavoroteitat

Yp, — B, = foll- (8)

To xUp1o anotédecpa pag eivar va dwooupe pia kavr) katr avaykaia ouvlnkn yia my Cq x Cyy-
dpdon xat edikotepa yia myv Siedpikn opdda Dy, yia va vyovetat. Ta v emiteudn tou otdxou
autou Ba xpnowpornoirjooupe v Harbated-Katz-Gabber-compactification (HKG), n onoia propet va
XpnowiorotnOetl yia va KataoKeUdoet ia MANPr KAUImuAn arno pia tormky dpdon. Me auto tov 1pomno
PITopoUlLe va PETATPEWPOUTLE 1Uld TOTTIKT) 5pAcT) KAl TI§ IAPAPOPPOOELS TG O€ AVAIIAPACTACELS TG YEVIKAS
ypappikng opadag rou §pouv otov xopo Stapopikav g HKG-kapmuAng. ®a avarrtuioupie ta Kuplotepa
epyaleia oto kepddato .

[Tio ouykekpipéva 10 MPWIO KOPPATL Xwpidetat oe 1pia RePpadala. 1o mp®Io KePAAalo pedetape tmyv
opada auvtopopdlopev piag KaprmuAng amno v OITKY TG KAVOVIKLG EPPUIEUONS KAl ToU Oe@prnatog
tou Petri. Aivoupe éva kpurpto yia va Soupe v opdda autopopdlopev oav pia adyeBpikn urnoopada



xvi - Contents

G YEVIKIG YPAPHIKNG opadag. ErmumAéov enekteivoupe tnv §pdon 1oV aUTOPopP1oH®V 08 P1d YPAHHIKY)
dpaorn oToug yevvtopeg g eAAX10TNG eAeUBepng eMIAUONG TOU KAVOVIKOU SAKTUAIOU TG KAPITUANG.

1o 6evtepo kePpalatlo peletdape v Bewpia MApaAPoPPOOERDV KAPTTUA®V 1€ TNV P01 TOU KAVOVIKOU
16eB0UG KAl PETATPEMOULIE TO TTPOBANIA AVUP®OONG KAPTUAGDV 1€ AUTOHOPP1IO0UG 08 TIPOBANIIA avUy®-
ong YPAPHIKOV aVATIApACOTACGERDV.

210 tedeutaio KePAAAlo TOU TIIPAOTOU PEPOUG KOTTAIE TO TOTIKO MTPOBANIA aviy®ong NIEUBE®V yivopE-
vV pilag KUKAIKAG p-opadag katl piag KUKAIKNAG opddag pe tafem mpwin 1mpog to p, OIou p eivai n
Xapaktnplotikn) tou special fibre. Atvoupe éva kpurpto Baociopévo oto HKG-compactification, to omoio
pag ermrpénet va anopacicoupe mote pia o1k dpaorn priopel va avuynbel 1) oxt. Eidwkodtepa otnv
niepimwor) g Siebpikng opdadag divoupe éva mapadetypa torkng dpdong 1o oroio dev eivat Guvatod va
avuywBel, Kal pe autov Tov tporo divoupe éva véo eprodio 1o 1oxupo aro 1o KGB-epmodio.

Zto Seutepo Hivoupe pla 1kavr) Katl avaykaia ouvOnkn yla pia modular avanapaotaocn ng opdadag
G = Cpn x Ciyy oplopévn oe €va owpa BeTIKNG XAPAKIPIOTIKAG, Y1a va avupeBel og pia TOTTKT)| Mep1oxT)
KUPIoV 18e@d0V XapaKinplotikng pundév n oroia mepiéxet p" pileg g povadag. Auto sivat £va moAu
ONPAvVIKO £pyaldeio TOU XP1O110IIOI0UE OV TPIT0 KEPAAAI0 TOU MPOTOU HEPOUG KAl TaUTOXpova €Xel
ave§aptnto evéiadepov amnod v Bewnpia mapapopPwoenv.

Euyapilotieg

®¢Aw va Eekvrjom ekPppaloviag tig Beppég pou suxapiotieg pog tov Kabnynt Apioteibn Kovioyewpyn,
10V adooiwpévo ermBAérnovia g SiatpiBrig 110U, 0 oroiog ivat o povadikog AGyog Tou mapEPeva otV
EAA&Sa kat enéde€a va akodoubrjom to §18axtopiko pou oto Iavermotpio ABnvov. [épa ard tov podo
10U ®¢ ermBAémovida, sipatl Babutata eUyvVOP®V Yid ToVv poAo ToU ©g PEvIopa Kat gpido.

Ot euxap1otieg POU EKTEIVOVIAL OTOUG YOVEIG OU yid TV UTootpi§n) ToUg, IapEXovidg 1ou 01 116Vo
1a anapaitnta, aAAd kat evBappuvoviag v aydr) pou yia ta pabnpatikd, myv KatdAAnin ouyun.

Eipat emiong unidxpeog otoug cupgottniég pou, dtaitepa otov Iavayiwtn Xprjotou, o oroiog 6xt pévo
PO1pActnKe 11§ PabnpaTKeg ToU yvaoelg, aAAd urrjpde 1 povadiky) pabnpatkn) napéa katd ) Sidpkela
1V 6U0 MPOTEV £1wv Tou d18aktopikou. Exppdln e§ioou tnv extipnor] pou npog toug Anurten Falouln,
TMwpyo Zaxapomoudo, Midto Kapaxkiké, Opéotn Auyda, Kootaviia Mavouoou kat Anuntpn Nouda, pe
Toug ortoioug dnuioupyroape pia opdda yla ta eropeva duo xpovia.

®¢Aw va erPpaoe tr Beppr) pou extipnon nipog tov Koota Kapayidvvn yia v kabodrynor| tou,
poodEpovtag OUPBOUAEG Kal OKEWELS Ao TNV PO rapouciact) pou. ErumAéov, n elAkpivig eUyvepioouvn
pou miyaivel otov Avipiou ‘Oprnoug yia ta e§aipetikd Xpriotpa oxoAld ToU Kal TV ermKovevia otny
bdouleia pag.

TéAog, aAdd otyoupa Ox1 Atyotepo onpaviiko, BEA® va ekPPAo® TG Oeppdtepeg EUXAPIOTiES POV OtV
ouduyo pou Avva KaAuBa. H ouvexr|g Katavonor) g Kat 1 aPETaKivntn Urootr)pigr] tng anotéAeoav mnyr)
duvapng kaBoAn ) diapkela avtng g Stadpopng. Ta abépdia p1ou kat ot pidot rmou pou otabnkav 6Ao
auto tov Kapo agidouv emiong 8iaitepn pveia, kat e181kOTEPA aAUToi rmou avie§av va pe akouve va PAde
yla pabnpatikd pe g opeg.

01/01/2021 - 30/05/2022 H ulonoinon ng 618aktopikng diatpBng xpnpatodot|dnke amo v
unotpodia Toakupdkng tou EOvikou kat Kamodiotprakou [avermotnpiov AGnvav.

30/05/2022 - 30/09/2023 H uvlornoinon g Sibaxktopikng SiatpiBrig ouyxpnpatodotriOnke anod v
EAAdSa kat tnv Evpenaikn ‘Eveorn (Evpenaiko Kowveviko Tapeio) péoe tou Emyeipnotakou [poypappatog
«Avarrruén AvBporuvou Auvapikou, Exnaidevon kat Ala Biou Mabnorp, 2014-2020, oto mAaiolo g
ITpagng «Evioyuon tou avBpwriivou Suvapikou péo® tng vldoroinong 6ibaxktopikng épsuvag Yrodpdon
2: TIpdypappa xopfynong vriotpopiev IKY oe unoyngioug didaktopeg tov AEI tng EAAASagy.

Emixeipnoiaké Mpoéypaupa 5 EZ"A
Avdarrtugn AvBpwirivou Auvapikou, =pm 2014-2020
Bl Extaidsuon kai Aid Biou Mdaénon

Evpwraikr Evwon i . .
Eupwnaikd Kowwviké Tapeio Me tn ouyxpnpatodoten tng EAAGSag kat g Eupwraikrg Evwong

ABrjva ZermtépBpilog 2023
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Deformations of curves with
Automorhisms






Chapter 1

Automorphisms and the canonical
ideal

1.1 Introduction

Let X be a non-singular complete algebraic curve defined over an algebraically closed field of char-
acteristic p > 0. If the genus g of the curve X is g > 2 then the automorphism group G = Aut(X) of
the curve X is finite. The theory of automorphisms of curves is an interesting object of study, see the
surveys [2], [16] and the references therein.

On the other hand the theory of syzygies which originates in the work of Hilbert and Sylvester
has attracted a lot of researchers and it seems that a lot of geometric information can be found in
the minimal free resolution of the ring of functions of an algebraic curve. For an introduction to this
fascinating area we refer to [26].

In the first chapter we aim to put together the theory of syzygies of the canonical embedding
and the theory of automorphisms of curves. Throughout this chapter X is a non-hyperelliptic, non-
trigonal and a non-singular quintic of genus 6 and we also assume p # 2. These conditions are needed
for Petri’s theorem to hold, while the p # 2 condition is needed to ensure the faithful action of the
automorphism group on the space of holomorphic differentials H%(X, Q).

More precisely, in section [1.2a we use Petri’s theorem in order to give a necessary and sufficient
condition for an element in GL(H"(X, Qx)) to act as an automorphism of our curve. In this way we
can arrive to

Proposition 1.1.0.1. The automorphism group of a curve X as a finite set can be seen as a
subset of the g?(g+1)?—1-dimensional projective space and can be described by explicit quadratic
equations.

In section we show that the automorphism group G of the curve acts linearly on a minimal free
resolution F of the ring of regular functions Sx of the curve X canonically embedded in P9-!. Notice
that an action of a group G on a graded module M gives rise to a series of linear representations
pa : G — My to all linear spaces My of degree d for d € Z. For the case of the free modules F; of the
minimal free resolution F we relate the actions of the group G in both F; and in the dual Fg_»_; in
terms of an inner automorphism of G.

This information is used in order to show that the action of the group G on generators of the
modules F; sends generators of degree d to linear combinations of generators of degree d. Let S =
Sym(H°(X, Qx)) be the symmetric algebra of H°(X, Qx).

Proposition 1.1.0.2. There is a well defined linear action of the automorphism group G on min-
imal generators of the free resolution, which sends a minimal generator of degree d of the free
module F; to a linear combination of other generators of degree d.

The degree d-part of ToriS (k, Sx) will be denoted by Torf (k,Sx) 4, which is a vector space of dimension
Bi,a. We can use our computation in order to show that all ToriS (k,Sx)a are acted on by the group
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G, but this also follows by Koszul cohomology, see [3]. Indeed, one starts with the vector space
V =H"X,Qx), dimV = g, S = Sym(V) and considers the exact Koszul complex

0= AIVRS(—g) = ATV S(—g+1) = ---

= AVRS(—2) 5 v S(—1) - S — k — 0.

The symmetry property of the Tor functor implies that one can calculate Tor} (k,Sx) by using the
Koszul resolution of k instead of the Koszul resolution of Sx. Since the Koszul resolution of k is a
complex of G-modules and all differentials are G-module morphisms the Torf(k, Sx)a are naturally
G-modules. On the other hand the passage to the action on generators is not explicit since the
isomorphism between the graded components of the terms in the minimal resolution and Koszul
cohomology spaces is not explicit, as it comes from the spectral sequence that ensures the symmetry
of Tor functor.

Finally, the representations to the d graded space of each F;, p; 4 : G — GL(F; 4) can be expressed as
a direct sum of the G-modules ToriS (k,Sx)a. We conclude by showing that the G-module structure of
all F; is determined by knowledge of the G-module structure of H’(X, Qx) and the G-module structure
of each Tor} (k,Sx) forall 0 < i< g—2.

1.2 Automorphisms of curves and Petri’s theorem

Consider a complete non-singular non-hyperelliptic curve of genus g > 3 over an algebraically closed
field K. Let Qx denote the sheaf of holomorphic differentials on X.

Theorem 1.2.1 (Noether-Enriques-Petri). There is a short exact sequence

0 — Ix = SymH’(X, Qx) = P H(X,QF™) — 0,

n=0

where Ix is generated by elements of degree 2 and 3. Also if X is not a non-singular quintic of
genus 6 or X is not a trigonal curve, then Ix is generated by elements of degree 2.

For a proof of this theorem we refer to [67], [30]. The ideal Ix is called the canonical ideal and it is the
homogeneous ideal of the embedded curve X — ]P’Efl. The automorphism group of the ambient space
P9~ is known to be PGL4(k), [36, example 7.1.1 p. 151]. On the other hand every automorphism of
X is known to act on H°(X, Qx) giving rise to a representation

p:G — GL(H(X,Qx)),

which is known to be faithful, when X is not hyperelliptic and p # 2, see [46]. The representation p in
turn gives rise to a series of representations

Pa - G — GL(Sd),

where S, is the vector space of degree d polynomials in the ring S := k[w;, ..., wg].

Let X C P" be a projective algebraic set. Is it true that every automorphism o : X — X comes as
the restriction of an automorphism of the ambient projective space, that is by an element of PGLy (r)?
For instance such a criterion for complete intersections is explained in [48, sec. 2]. In the case of
canonically embedded curves X C P91 it is clear that any automorphism o € Aut(X) acts also on
P91 = ProjH(X, Qx). In this way we arrive at the following:

Lemma 1.2.1.1. Every automorphism o € Aut(X) corresponds to an element in PGLg4(k) such
that o(Ix) C Ix and every element in PGL4(k) such that o(Ix) C Ix gives rise to an automorphism
of X.

In the next section we will describe the elements o € PGL4(k) such that o(Ix) C Ix.
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1.2a Algebraic equations of automorphisms

For now on we will assume that the canonical ideal Ix is generated by polynomials in k[w;,...,wy] =
SymH?(X, Qx) of degree 2, that is the requirements for Petri’s theorem hold. Consider such a set of
quadratic polynomials Aq,..., A, generating Ix.

A polynomial A; of degree two can be encoded in terms of a symmetric g x g matrix A; = (a,,,) as
follows. Set @ = (w1, ..., wy)". We have
Ai(@) = @A .

The polynomial O‘(A ) is still a polynomial of degree two so we write o(A;) for the symmetric g x g
matrix such that o(A;) = @w'c(A)iw. It is clear that for an element o € GL4(k), o(Ix) C Ix holds if and
only if for all 1 < i<, o(A;) € spani {Ay,...,A,}. This means that

(Ou~) Ai(owy) Z?\ A; for every 1 < i <j. (1.1)

1.2b The automorphism group as an algebraic set.

Let Aq,...,A, be a set of linear independent g x g matrices such that the w*A;w 1 < 1 < r generate the
canonical ideal, and w' = (wy, ..., wq) is a basis of the space of holomorphic differentials. By choosing
an ordered basis of the vector space of symmetric g x g matrices we can represent any symmetric g x g

25 that is

matrix A as an element A € k

gl q+1)

~: Symmetric g x g matrices — k

Ar—s A
We can now put together the r elements A; as a g(g+1)/2 x r matrix (A4]---|A +). which has full rank
r, since {Aq,...,A;} are assumed to be linear independent.

Proposition 1.2.1.1. An element o = (0y;) € GL4(k) induces an action on the curve X, if and only
if the g(g+ 1)/2 x 2r matrix

B(o) = |A4,..., A, 0tAq0,...,0tA 0

has rank r.

We have that ¢ is an automorphism if the g(g + 1)/2 x 2r-matrix B(c) has rank r, which means
that (r+1) x (r+1)-minors of B(o) are zero. This provides us with a description of the automorphism
group as a determinantal variety given by explicit equations of degree (r+1)2.

But we can do better. Using Gauss elimination we can find a 9“) x 2
which puts the matrix (A;|---|A;) in echelon form, that is

Q (Rl Ar) = (©(mi_r)w> |

(92+1) invertible matrix Q

But then for each 1 < i < req. (.) is satisfied if and only if the lower (g[gﬂ) — 1) X 1 bottom block
matrix of the matrix

Q (GtAld\ e |0‘tATO'> (1.2)
is zero, while the top r x r block matrix gives rise to the representation

p1: G — GLy(k),

defined by equation (). Assuming that the lower (w — 1) X r bottom block matrix gives us

1 . . . . .
r(% — 1) equations where the entries o = (0y;) are seen as indeterminates. In this way we can

write down elements of the automorphism group as a zero dimensional algebraic set, satisfying certain
quadratic equations.
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1.3 Syzygies

1.3a Extending group actions

Recall that S = k[wy,...,w4] is the polynomial ring in g variables. Let M be a graded S-module acted
on by the group G, generated by the elements mg,..., m, of corresponding degrees ai,...,a,. We
consider the free S-module Fy = @jr:l S(—a;) together with the onto map

Fo=@DS(—a;) = M. (1.3)
j

Let us denote by M;,..., M, elements of Fy, such that n(M;) = m;, assuming also that deg(M;) =
deg(m,), for 1 < i < r. The action on the generators m; is given by

o(my) = Z ayimy, for some a, ; €S. (1.4)

v=1

Remark 1.3.1. We would like to point out here that unlike the theory of vector spaces, an element
x € Fp might admit two different decompositions

T T T
X:Zaimi :Zbimi, that is Z(ai—bi)mi :O,
i=1 i=1 i=1

and if a;, —b;, # 0 we cannot assume that a;, —b;, is invertible, so we can’t express m;, as an S-linear
combination of the other elements m;, for iy # 1,1 < 1 < r in order to contradict minimality. We can
only deduce that {a; — bi}i—; ., form a syzygy.

Therefore one might ask if the matrix (a, ;) given in eq. (] is unique. In proposition 1.3.1.2
we will prove that the elements a, ; which appear as coefficients in eq. (1.4) are in the field k and
therefore the expression is indeed unique.

The natural action of Aut(X) on HY(X, Qx) can be extended to an action on the ring S = SymH%(X, Qx),
so that o(xy) = o(x)o(y) for all x,y € S. Therefore if M = Ix then for all s € S, m € Ix = M we have
o(sm) = o(s)o(m). All the actions in the modules we will consider will have this property.

For a free module F = @]?:1 S(—aqj), generated by the elements M;, 1 <1i <1, deg(M;) = a; and a
map 7 : F - M we define the action of G by

o Z ;M | = Z o(sj) Z ayj(o)M, =
j=1 j=1 v=1

T
av,j(o-)o-(sj) My,
j=1

v=1
where degs avj + av = degs m;. This means that under the action of ¢ € G the r-tuple (sq,...,s:)" is
sent to
S1 aji(o) aia(o) - air(o)\ [fol(s1)
. '& . . . .
Sy ar,l(c) ar,Q(G) e ar,T(G) G(ST)

If A(o) = (ai’j(a)) is the matrix corresponding to o then for 0,7 € G the following cocycle condition
holds:
A(ot) = A(0)A(T1)°.
If we can assume that G acts trivially on the matrix A(t) for every T € G (for instance when A(t) is a
matrix with entries in k for every t € G), then the above cocycle condition becomes a homomorphism
condition.
Also if A(o) is a principal derivation, that is there is an r x r matrix Q, such that

A(o)=0(Q)- Q"
then after a basis change of the generators we can show that the action on the coordinates is just
given by
(517 T uST‘)t ’i> (0-(51)7 ) G(ST‘))t7
that is the matrix A(o) is the identity. We will call the action on the free resolution F obtained by
extending the action on M the standard action.
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1.3b Group actions on free resolutions

Recall that S = klw;,...,wy] is the polynomial ring in g variables. Let M be a graded S-module
generated by the elements my,..., m, of corresponding degrees ai, ..., a,. Consider the minimal free

resolution

0 Fg 20 FL -2 F, (1.5)

where coker(¢;) = Fo/Imd; = Fo/kerm = M. Let m be the maximal ideal of S generated by (wi,...,wy).
Each free module in the resolution can be written as

Fy _EBS )P,

where the integers (3; ; are the Betti numbers of the resolution. The Betti numbers satisfy

Bij = Bg—2—1i,g+1—j- (1.6)

as one can see by using the self duality of the above resolution by twisting by S(—g) see [58, prop.
4.1.1], [26, prop. 9.5] or by using Koszul cohomology, see [27, prop. 4.1].

Assume that M and each F; is acted on by a group G and that the maps 6; are G-equivariant. We
will now study the action of the group G on the generators of F;. First of all we have that

Ti Bl'\/

F_@@ewus_@s V)P

v=1 p=1

In the above formula we assumed that F; is generated by elements e; . , such that the degree of
eiv,u=4diy forall 1 <p<piy. We also assume that

di71 < dig <0 < di,n-

The action of o is respecting the degrees, so an element of minimal degree d;; is sent to a linear
combination of elements of minimal degree d; ;. In this way we obtain a representation

pi1: G = GL(B4,1,k).
In a similar way an element e; 5 ,, of degree d; » is sent to an element of degree d; » and we have that

Blz [?)11

elQp E )\12p]1612)1+§ )\12ullell]27
ji=1 jo=1

where all Ao, j, € kand allA{, ;. € mdiz=di1_In this case we have a representation with entries in
an ring instead of a field, which has the form:

Pi2: G = GL(By1 + Big,mizTdin),

Ai(o) Aiz(o)
0H< 10 Alj(ﬁ))’

where A;(0) € GL(Bi,1,k) and Az(0) € mdi2~4LIGL(By 2, k).
By induction the situation in the general setting gives rise to a series of representations:

pij: G — GL(Bi1 + Bi2,mdi—dun)

Ai(o) Aqp(o) -+ Aygj(o)
0 As(0) Az (o)

o— Ao) = : . : (1.7)
0 0 A0

where A,(0) € GL(Biv,k) and A (o) is an By« x Bix matrix with coefficients in mPir=Pix The
representation p; ;, taken modulo m reduces to Tor? (k, M), seen as a k[G]-module.
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1.3c Unique actions

Let us consider two actions of the automorphisms group G on HY(X, Qx), which can naturally be
extended on the symmetric algebra SymH’(X, Qx). We will denote the first action by g x v and the
second action by gov, where g € G, v € SymH"(X, Qx).

Proposition 1.3.1.1. If the curve X satisfies the conditions of faithful action of G = Aut(X) on
H(X, Qx), that is X is not hyperelliptic and p > 2, [46, th. 3.2] and moreover both actions x,o
restrict to actions on the canonical ideal Ix, then there is an automorphism i: G — G, such that
gxv=1i(g)ov.

Proof. Both actions of G on H°(X, Qx) introduce automorphisms of the curve X. That is since GxIx = Ix
and G o Ix = Ix, the group G is mapped into Aut(X) = G. This means that for every element g € G
there is an element g* € Aut(X) = G such that gxv = g*v, where the action on the right is the standard
action of the automorphism group on holomorphic differentials. By the definition of the group action
for every g1,92 € G we have (g1g2)*v = gigsv for all v € H°(X,wx) and the faithful action of the
automorphism group provides us with (g;1g2)* = gjgs, i.e. the map i, : g — g* is a homomorphism.
Similarly the map corresponding to the o-action, i, : g — ¢° is a homomorphism and the desired
homomorphism 1i is the composition of i,i . O

The map Homs (F;, S(—g)) induces a symmetry of the free resolution F by sending F; to F;_»_;. Each free
module F; of the resolution F is equipped by the extension of the action on holomorphic differentials,
according to the construction of section . On the other hand since S(—g) is a G-module we have
that Fy_»_; = Homs(F;, S(—g)) is equipped by a second action namely every ¢ : F; — S(—g) is acted
naturally by G in terms of ¢ — ¢$° = o '$po. How are the two actions related?

Lemma 1.3.1.1. Denote by x the action of G on F; induced by taking the S(—g)-dual. The standard
and the x-actions are connected in terms of an automorphism 1; of G, that is for all v € F;

g*xv =1i(g)v.

Proof. Assume that i < g — 2 —i. Consider the standard action of G on the free resolution F. The
module Fy_»_; obtains a new action g xv for g € G,v € F;. By this % action is transferred to an
action on all Fj for j > g — 2 — 1, including the final term F4_, which is isomorphic to S(—1). This gives
us two actions on HY(X, Qx) which satisfy the requirements of proposition . The desired result
follows, since the action can be pulled back to all syzygies using either F or F*.

Proposition 1.3.1.2. Under the faithful action requirement we have that all automorphisms o € G
send the direct summand S(—j)P of F; to itself, that is the representation matrix in eq. () is
block diagonal.

Proof. Consider F; = @' ; M; S, where M 1,...,M;,, are assumed to be minimal generators of F;
with descending degrees a;, = deg(m; ), 1 < v < r;. The action of an element o is given in terms of
the matrix A(o) given in equation [). The element ¢ € Homs(F;, S(—g)) is sent to

h : Homs (Fi, S(—9g)) — Fg_2+ (1.8)
d) — (d)(Mi,l)a ceey d)(Mi,Ti))

Each ¢$(M; ) can be considered as an element in S(—g — 1 + deg(m; )) inside Fy__;. Observe that
the element ¢ € Homs(Fi, S(—g)) is known if we know all $(M; ) for 1 < v < r;. From now on we will
identify such an element ¢ as a ri-tuple ($p(Miy)), v
Recall that if A,B are G-modules, then there is an natural action on Hom(A,B), sending ¢ €
Hom(A, B) to °¢, which is the map
°p:A>ar op(o ta).
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We have also a second action on the module Fy_» ;. We compute (M, ) for all base elements
M, v in order to describe °¢:

Ti

o (d)(o-ilMi,v))lgng = (Z G(“u,v(cl))gd)(Mi,u))
1<vEry

p=1

p=1

- (Z a(au,v(cl))x(amm,u))
1<vsr

VXTi

where in the last equation we have used the fact that ¢(M;) are in the rank one G-module S(—g) =
A97104 hence the action of ¢ € G is given by multiplication by x(o), where x (o) is an invertible element
is S.

In order to simplify the notation consider i fixed, and denote M, = M;,, r =i, a;; = a;. We can
consider as a basis of Hom(F;, S(—g)) the morphisms ¢, given by

¢u(Mj) =8, - E, (1.9

where E is a basis element of degree g of the rank 1 module S(—g) = S - E. This is a different basis
than the basis My_, <n <1y of Fg_p_; we have already introduced.

According to eq. (@) if M; has degree a; then the element ¢; has degree g + 1 — a;. Assume that
M., has maximal degree a,. Then ¢, has minimal degree. Moreover, in order to describe ¢, we have
to consider the tuple (“$,(My),...,° d+(M,)). We have

T

and we finally conclude that

In this way every element x € Fq_,_; is acted on by ¢ in terms of the action
oxx=h("h(x)),

where h is the map given in eq. (). On the other hand the elements h(¢,) are in F4_,_; and by
lemma [1.3.1.1 there is an element ¢’ € G such that

Zocg 2 (0 )y ).

Since the element ¢, has maximal degree among generators of F; the element h(¢,) has minimal
degree. This means that all coefficients

%2V (0') = ool (07 1) x(0)
are zero for all v such that degm, < deg .. Therefore all coefficients al T( ) for v such that degm, <
deg m, are zero. This holds for all ¢ € G. By considering in this way all elements ¢,_1, $r_2,...,d1,
which might have greater degree than the degree of ¢, the result follows. O

1.4 Representations on the free resolution

Each S-module F; in the minimal free resolution can be seen as a series of representations of the
group G. Indeed, the modules F; are graded and there is an action of G on each graded part F; 4, given
by representations

Pi,a - G— GL(Fiyd),
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where F; 4 is the degree d part of the S-module F;. The space ToriS (k,Sx)) is clearly a G-module, and
by proposition there is a decomposition of G-modules

Tor? (k, Sx) = @ Tor? (k, Sx);,
JjEZ

where Tor? (k, Sx)j is the k-vector space generated by generators of F; that have degree j. This is a
vector space of dimension f3; ;.

Denote by Ind(G) the set of isomorphism classes of indecomposable k[G]-modules. If k is of char-
acteristic p > 0 and G has no-cyclic p-Sylow subgroup then the set Ind(G) is infinite, see [[7, p.26].
Suppose that each Tor} (k, Sx) ; admits the following decomposition in terms of U € Ind(G):

Toris (k, SX))‘ = @ CliJ"uU where aiju € Z.
Uelnd(G)
We obviously have that
Bi,j = Z (li7j7u dimk u.
Uuelnd(G)
The G-structure of F; is given by
Tor (k,Sx) ® S,

that is the G-module structure of F; 4 is given by

Fia= EBEBTOTiS(k’SX)d*j ® S5.

dez jez

1.5 An example: the Fermat curve

Consider the projective non singular curve given by equation
Fuixt+x3 +x3 =0
This curve has genus g = % Set x = x1 /%0, Yy = X2/Xg. For w = % = _% we have that the
set o
x'yYwfor0<i+j<n—-3 (1.10)

forms a basis for holomorphic differentials, [47], [75], [76]. These g differentials are ordered lexico-
graphically according to (i,j), that is

Woo < Wp1 < < Won-3<Wpg<Wy << Wpnog<-< Wn_30-

The case n =2 is a rational curve, the case n = 3 is an elliptic curve, the case n =4 has genus 3 and
gonality 3, the case n = 5 has genus 6 and is quintic so the first Fermat curve which has canonical
ideal generated by quadratic polynomial is the case n = 6 which has genus 10.

Proposition 1.5.0.1. The canonical ideal of the Fermat curve F,, for n > 6 consists of two sets of
relations

G1 ={wy, j, Wiy gy — Wiy js Wiy j, : 11 + 12 =13 + 14,1 +j2 =j3 +jat, (1.11)
and

Litiz=n+a, jitje=b } (1.12)

Gy = § Wi, i, Wi, s + Wi, 5, Wi, i, + Wis i Wis i = 0: istia=a, jz+ja=n+b
1)1 25)2 3,)3 45)4 55)5 65)6 fotig—a, i54je=b

where 0 < a,b are selected such that 0 < a+b<n—3.

We will now prove proposition for n > 6, following the method developed in [[18]. Observe
that the holomorphic differentials given in eq. () are in 1-1 correspondence with the elements of
the set A ={(i,j) : 0 < i+j < n—3} C N2, First we introduce the following term order on the polynomial
algebra S := SymH°(X, Qx).
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Definition 1.5.0.1. Choose any term order < for the variables {wn . : (N, 1) € A} and define the
term order < on the monomials of S as follows:

WN i WNy g+  WNg g = ONJ WNG s - Wy e if and only if (1.13)

e d<sor

*d=sand )} p; >} pfor

ed=sand ) py=) pland } Ny <) N{

d=sand ) py=) pfand } N;y=) N{and

WNyp,pu WNo i * " WNg g St WONJ L WNg s WNZ g -

By evaluating ZiE:O ZjE:_Oi 1 we can see that
#{(1,)) eN?*:0<i+j<E}=(E+1)(E+2)/2 (1.14)

We will use the following lemma, for a proof see [18].

Lemma 1.5.0.1. Let ] be the ideal generated by the elements G;, G2 and let I be the canonical ideal.
Assume that the cannonical ideal is generated by elements of degree 2. If dim; (S/in«(])), < 3(g—1),
then I =7.

We extend the correspondence between the variables w; ; and the points of A to a correspondence
between monomials in S of standard degree 2 and points of the Minkowski sum of A with itself, defined
as

A+A={(i+1,j+i)](ij),({,j") € A}C N2 (1.15)

Proposition 1.5.0.2. Let A be the set of exponents of the basis of holomorphic differentials, and
let A + A denote the Minkowski sum of A with itself, as defined in (). Then

(p,T)EA+A &3 WijWirjr € S such that mdeg(wiiji/,j/) =(2,p,T).

For each n € N we write T" for the set of monomials of degree n in S and proceed with the charac-
terization of monomials that do not appear as leading terms of binomials in G; C J.

Proposition 1.5.0.3. Let o be the map of sets
c:A+A — T?
(p, T) — m_in{wi,jwi’,j’ eT? | (p,T)=({i+1i,j+i)}

Then
o(A+A) :{wi,jwi/J/ e T? | Wij - Wir s Z#ing(f), Ve Gy}

The above proposition gives a characterization of the monomials that do not appear as initial
terms of elements of G;, therefore they survive in the quotient (S/in4(J)),. Indeed, the minimal of
the set {w;jwisjr € T? | (p, T) = (1 +1/,j +j’)} will never appear as the initial term of an element in
G;. Therefore A + A is bijective with a basis of the vector space (S/in,G;),. However, some of these
monomials appear as initial terms of polynomials in G, and these have to be subtracted in order to
compute dim; (S/in<(J)),
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Proposition 1.5.0.4. Let
C={(p,b)eA+A|lp=n+a,0<a+b<n—6,a,beN}

Then
o(C) C {wi7jwi/7j/ e T? | 3 g € Gy such that Wi jWisjr = in(g)}

Moreover #C = #0(C) = (n—5)(n —4)/2.

Proof. Observe that elements in G, are mapped into elements of the form x%y®(x™ + y™ + 1)w? €
HO(X,Q?(Q). By the form of the initial term of such an element of G; we have for i; +i; = n+a =
p,j1 +j2 = b. Therefore

Brlu=a=p—njst+ja=n+bistis=a=p—m,js+je=b=T

We should have 0 < a+b < n—6 and by eq. () we have that the cardinality of C equals (n—5)(n—
4)/2. O

We now observe that
A+AcC{i,jeN:i+j<2n—6}

so #(A+A) < (2n—5)(2n—4)/2 and

dimp (S/in<(])), = #((A+ANC) = #(A+ A) — #C
< 2n—5)2n—4) M —5)(n—4)
= 2 B 2

so by lemma |1.5.0.1 we have that [ =]J.

1.5a Automorphisms of the Fermat curve

=3(g—1).

The group of automorphisms of the Fermat curve is given by [77], [54]

PGU(3,p"), ifn=1+ph
(Z/MZ x Z/nZ) x S3, otherwise

The action of the automorphism group is given in terms of a 3 x 3 matrix A sending

2 2
s A1.iX4 s A2 iX{
Zlfo 1,iM y= (XZ/X()) — 2170 2,18

X = (XI/XO) = D) 2 )
2 i G0,iXi 20 G0,iXi

In characteristic 0, the matrix A is a monomial matrix, that is, it has only one non-zero element in
each row and column and this element is an n-th root of unity. Two matrices A;, A, give rise to the
same automorphism if and only if they differ by an element in the group {Al; : A € k}. In any case the
group G is naturally a subgroup of PGL3 (k). Finding the representation matrix of G as an element in
PGLy_1(k) is easy when n # 1 + p™ and more complicated in n = 1+ p" case. We have two different
embeddings of the Fermat curve F,, in projective space

Pg ! <~—F, —=P}.

In both cases the automorphism group is given as restriction of the automorphism group of the
ambient space.

The computation of the automorphism group in terms of the vanishing of the polynomials given
in equation () is quite complicated.

We have performed this computation in magma [[12], and it turns out the automorphism group for
the n = 6 case is described as an algebraic set described by g2 = 100 variables and 756 equations.



Chapter 2

The canonical ideal and the
deformation theory of curves with
automorphisms

2.1 Introduction

The structure of the section is as follows. In section we will present together the deformation
theory of linear representations p : G — GL(V) and the deformation theory of representations of the
form p : G — Autkl[[t]]. The deformation theory of linear representations is a better-understood object
of study, see [66], which played an important role in topology [4 1] and also in the proof of Fermat’s last
theorem, see [67]. The deformation theory of representations in Autk[[t]] comes out from the study of
local fields and it is related to the deformation problem of curves with automorphisms after the local
global theory of Bertin Mézard. There is also an increased interest related to the study of Nottingham
groups and Autkl[[t], see [17], [25],[52].

It seems that the similarities between these two deformation problems are known to the expert,
see for example [64, prop. 3.13]. For the convenience of the reader and in order to fix the notation,
we also give a detailed explanation and comparison of these two deformation problems.

In section we revise the theory of relative canonical ideals and the work of H. Charalambous,
K. Karagiannis and A. Kontogeorgis [18] aiming at the deformation problem of curves with automor-
phisms. More precisely a relative version of Petri’s theorem is proved, which implies that the relative
canonical ideal is generated by quadratic polynomials.

In section @ we study both the obstruction and the tangent space problem of the deformation
theory of curves with automorphisms using the relative canonical ideal point of view. In this section
theorem (3 is proved.

2.2 Deformation theory of curves with automorphisms

2.2a Global deformation functor

Let A be a complete local Noetherian ring with residue field k, where k is an algebraically closed
field of characteristic p > 0. Let % be the category of local Artin A-algebras with residue field k and
homomorphisms the local A-algebra homomorphisms ¢ : I’ — T between them, thatis ¢! (mr) = mp/.
The deformation functor of curves with automorphisms is a functor Dy, from the category % to the
category of sets

Equivalence classes

Dyt : ¢ — Sets, ' — of deformations of
couples (X, G) over I’

defined as follows. For a subgroup G of the group Aut(X), a deformation of the couple (X, G) over the
local Artin ring I is a proper, smooth family of curves

Xr — Spec(T')
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parametrized by the base scheme Spec(I'), together with a group homomorphism G — Autr(Xr), such
that there is a G-equivariant isomorphism ¢ from the fibre over the closed point of ' to the original
curve X:

¢ : Xr ®gpec(r) Spec(k) — X.

Two deformations X}, X3 are considered to be equivalent if there is a G-equivariant isomorphism
that reduces to the identity in the special fibre and making the following diagram commutative:

¥

~

Specl’

Xr X¢

Given a small extension of Artin local rings
0=-E-k=T"=T=0 2.1

and an element x € Dy (') we have that the set of lifts x’ € Dy (I'’) extending x is a principal homo-
geneous space under the action of Dy (k[e]) and such an extension x’ exists if certain obstruction
vanishes. It is well known, see section R.2b, that similar behavior have the deformation functors of
representations.

2.2b Lifting of representations

Let ¢ : ¥ — Groups be a group functor, see [24], ch. 2]. We will be mainly interested in two group func-
tors. The first one, GLg4, will be represented by the by the group scheme G4 = Alxi1, ..., Xgg, det(xi;) 1],
that is GL4(T") = Homa (G4, T). The second one is the group functor from the category of rings to the
category of groups A4 : ' — Autl'[[t]].

We also assume that each group ¢(I') is embedded in the group of units of some ring Z(I") de-
pending functorially on I'. This condition is asked since our argument requires us to be able to add
certain group elements. We also assume that the additive group of the ring #(I') has the structure of
direct product I'', while Z(T") = Z(A) ®4 T. Notice, that I might be an infinite set, but since all rings
involved are Noetherian I'! is flat, see [53, 4F].

A representation of the finite group G in ¢(I') is a group homomorphism

p:G—¥9(IN),
where I' is a commutative ring.

Remark 2.2.1. Consider two sets X, Y acted on by the group G. Then every function f : X — Y is acted
on by G, by defining °f : X — Y, sending x ~— ofo—1(x).

More precisely we will use the following actions

Definition 2.2.1.1. (i) Let My(I') denote the set of g x g matrices with entries in ring I'. An
element A € My (") will be acted on by g € G in terms of the action

T(g)A =p(g ")'Ap(g™ ).

This is the natural action coming from the action of G on H°(X, Qx i) and on the quadratic
forms w'Aw. We raise the group element in —1 in order to have a left action, that is T(gh)A =
T(g)T(h)A. Notice also that T(g) restricts to an action on the space .74(T") of symmetric g x g
matrices with entries in I'.

(ii) The adjoint action on elements A € M4(T"), comes from the action to the tangent space of the
general linear group.

Ad(g)A = p(g)Ap(g™!).

(iii) Actions on elements which can be seen as functions between G-spaces as in remark .
This action will be denoted as f —°f.
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Examples
1. Consider the groups GL4(I') consisted of all invertible g x g matrices with coefficients in I'. The
group functor

I'— GLg(T') = Hom(R, T),

is representable by the affine A-algebra R = k[xi1,...,Xgq,det ((xij))fl], see [73, 2.5]. In this case the
ring #Z(T") is equal to End(I'?), while I ={i,j e N: 1 < 1,j,< g}

We can consider the subfunctor GLg 1, consisted of all elements f € GL4(T'), which reduce to the
identity modulo the maximal ideal mr. The tangent space T;,GL4 of GLg at the identity element I,
that is the space Hom(Speck[e], SpecR) or equivalently the set GLg 1, (kle]) consisted of f € Hom(R, kle]),
so that f = I; mod(e). This set is a vector space according to the functorial construction given in [57,
p.- b 272] and can be identified to the space of End(k9) = My(k), by identifying

Hom (R, k[e]) 3 f — I, + eM, M € My(k).

The later space is usually considered as the tangent space of the algebraic group GL4 (k) at the identity
element or equivalently as the Lie algebra corresponding to GL4 (k).

The representation p : G — GLg4(I') equips the space Ty, GLy = Mg(k) with the adjoint action, which
is the action described in remark , when the endomorphism M is seen as an operator V — V,
where V is a G-module in terms of the representation p:

G x My(k) — Mgy (k)
(9, M) — Ad(g)(M) = gMg ",

In order to make clear the relation with the local case below, where the main object of study
is the automorphism group of a completely local ring we might consider the completion R; of the
localization of R = k[x11,...,%Xggq,det ((xij )) _1] at the identity element. We can now form the group AutR;
of automorphisms of the ring R; which reduce to the identity modulo mg . The later automorphism

group is huge but it certainly contains the group G acting on Ry in terms of the adjoint representation.
We have that elements o € AutR; ® kle] are of the form

o(xij) = xij + €B(xi;), where B(xi;) € Ry.

Moreover, the relation
o(f-g) ="fg+eB(fg) = (f+ eB(f))(g + eB(f)),

implies that the map 3 is a derivation and

B(fg) = fB(g) + B(f)g.

Therefore,  is a linear combination of —2—, with coefficients in Ry, that is

aXii ’

Remark 2.2.2. In the literature of Lie groups and algebras, the matrix notation Mg (k) for the tangent
space is frequently used for the Lie algebra-tangent space at identity, instead of the later vector field-
differential operator approach, while in the next example the differential operator notation for the
tangent space is usually used.

2. Consider now the group functor I' — A4(T") = Autl'[[t]]. An element o € Autl'[[t]] is fully described
by its action on t, which can be expressed as an element in I'[[t]]. When T is an Artin local algebra
then an automorphism is given by

o0
o(t) = Z atY, where a; € I',ap € mr and a; is a unit in I'.

v=0

If a; is not a unit in I or ag € mr then o is an endomorphism of I'[[t]]. In this way Autl'[[t]] can be seen
as the group of invertible elements in I'[[t]] = Endl'[[t]] = £(T"). In this case, the set [ is equal to the set
of natural numbers, where I'' can be identified as the set of coefficients of each powerseries.
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Aut(klel[t]]) = {t —o(t) = Z aitY rap = o +€eBi, i, P ek # 0}

v=1

Exactly as we did in the general linear group case let as consider the subfunctor I' — .41(T"), where
M(T") consists of all elements in Autl'[[t]] which reduce to the identity mod mr.
Such an element o € 41(kle]) transforms f € k[[t]] to a formal powerseries of the form

o(f) =1+ eFy(f),

where F;(f) is fully determined by the value of o(t). The multiplication condition o(f;fy) = o(f1)o(f3)
implies that

Fo(fif2) = f1Fg(f2) + Fo(f1)fa,

that is F, is a k[[t]]-derivation, hence an element in k[[t}]%.

The local tangent space of I'[[t]] is defined to be the space of differential operators f (t)%, see [[10],
[22], [49]. The G action on the element % is given by the adjoint action, which is given as a composition

of operators, and is again compatible with the action given in remark R.2.1i:

p(o™1) & p(a)

r[[t]] ] )] ]

¢ ol ) (1)} dp(oﬂ;l)(t) } o(0) (dp(c*lnt))

So the G-action on the local tangent space k[[t}]% is given by

-1
f(t)% — Ad(o) <f(t)§t> = o(0)(f(t)) - p(0) (dp(“dt)(t)> d

see also [49, lemma 1.10], for a special case.

| 9 Z(T) tangent space action |
GLg(")  Endg(N) Endg(k) = Mg (k) M — Ad(o)(M)
Autl'[[t]] End(T[it]]) k[t & f(t) & — Ad(o) (f() L)

Table 2.1: Comparing the two group functors

Motivated by the above two examples we can define

Definition 2.2.2.1. Let ¢ be the subfunctor of ¢, defined by
G (M ={fe9():f=1Imodmr}.

The tangent space to the functor ¢ at the identity element is defined as ¥(k[e]), see [57]. Notice,
that ¢ (k[e]) = Z(k), is k-vector space, acted on in terms of the adjoint representation, given by

G x () — 4(T)
(0,) — p(0) - £+ p(0) .
If Z(T") can be interpreted as an endomorphism ring, then the above action can be interpreted in
terms of the action on functions as described in remark .

We will define the tangent space in our setting as .7 = #Z(k), which is equipped with the adjoint
action.
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2.2c Deforming representations

We can now define the deformation functor F, for any local Artin algebra I' with maximal ideal mr in
% to the category of sets:

liftings of p: G — ¥(k)
to pr: G — ¢4(I') modulo

Fp: T €Ob(®) — conjugation by an element @-2)
of ker(¥4(T") — 9(k))
Let
ST
0——(E)=E-T"=E-k o r P r 0 (2.3)

be a small extension in %, that is the kernel of the natural onto map ¢ is a principal ideal, generated by
E and E-mp, = 0. In the above diagram i: I' — I' is a section, which is not necessarily a homomorphism.
Since the kernel of ¢ is a principal ideal E - '’ annihilated by mr/ it is naturally a k = I'"/mp,-vector
space, which is one dimensional.

Lemma 2.2.2.1. For a small extension as given in eq. (] consider two liftings pl,, p%, of the
representation pr. The map

d:G — 7 :=%(k)

_ et (o)pf, (o)t —Ir/

o+— d(o) 3

is a cocycle.

Proof. We begin by observing that ¢ (pf, (0)p2, (o)™t —Ir/) =0, hence
ot (0)p%/(0)" ! =Ir + E-d(o), where d(o) € .

Also, we compute that

Ir/ +E-d(o1) = pb (071)p2/ (01) !

(
= pr (0)pts (T)pf (1) i (0)
= pb (1) (Ir + Ed(0)) p31)) "

= o (Dpf (T +E- pf(T)d(0)pf (1)
=Ir +E-d(t) + E - pi(t)d(0)pk(T) ",

1

since E annihilates mr/, so the values of both pl,(t)) and p#%, (t) when multiplied by E are reduced
modulo the maximal ideal mr.. We, therefore, conclude that

d(07) = d(T) + px(t)d(0)pk(T) ™" = d(7) + Ad(7)d(0).

Similarly if p},, p?, are equivalent extensions of pr, that is

ok (0) = (Ir + EQ)p} (o) (Ir + EQ) ",

then
d(o) = Q — Ad(0)Q,

that is d(o) is a coboundary. This proves that the set of liftings pr- of a representation pr- is a principal
homogeneous space, provided it is non-empty.

The obstruction to the lifting can be computed by considering a naive lift pr/ of pr (that is we don’t
assume that pr/ is a representation) and by considering the element

$(0,7) = pr/(0)opr/(t)opr/(ot)”!, foro,teG
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which defines a cohomology class as an element in H?(G,.7). Two naive liftings pl,, p%, give rise to
cohomologous elements ¢!, $? if their difference pi., — p2, reduce to zero in I'". If this class is zero,
then the representation pr can be lifted to I''.
Examples Notice that in the theory of deformations of representations of the general linear group,
this is a classical result, see [57, prop. 1], [66, p.30] while for deformations of representations in
Autl'[[t]], this is in [22],[[10].

The functors in these cases are given by

liftings of p : G — GLn (k)
to pr : G — GL (I") modulo

F:Ob(#) 5T~ conjugation by an element @-4)
of ker(GLn (") — GLn (X))
lifts G — Aut(T'[[t]]) of p mod-
Dp:Ob(¥)>T — ulo conjugation with an element (2.5)
of ker(Autl'[[t]] — Autk[[t])

Let V be the n-dimensional vector space k, and let Enda (V) be the Lie algebra corresponding to
the algebraic group GL(V). The space Enda (V) is equipped with the adjoint action of G given by:
Enda (V) — Enda (V)
e (g-e)(v) = p(g)(elp(g) (V)

The tangent space of this deformation functor equals to
F(k[e]) = H'(G, Enda (V)),

where the later cohomology group is the group cohomology group and Enda (V) is considered as a
G-module with the adjoint action.
More precisely, if
0 (B =T 550

is a small extension of local Artin algebras then we consider the diagram of small extensions

GLn (T)
p%/ap?‘/ ld}

where p{., p#, are two liftings of pr in I''.
We have the element
1
d(o) == £ (o (0)p? (0) ! —1,) € H'(G, Endy (k).
To a naive lift pr/ of pr we can attach the 2-cocycle «(o, 1) = pr/(0)pr/ (T)pr/(ot) ! defining a cohomology
class in H?(G, End,, (k)).
The following proposition shows us that a lifting is not always possible.

Proposition 2.2.2.1. Let k be an algebraically closed field of positive characteristic p > 0, and
let R = W(k)[Cq] be the Witt ring of k with a primitive q = p™ root adjoined. Consider the group
G = Cq x Cp, where C;,, and C4 are cyclic groups of orders m and q respectively and (m,p) = 1.
Assume that o and T are generators for C,,, and C, respectively and moreover

for some integer a (which should satisfy a™ = 1 modq.) There is a linear representation p : G —
GLs(k), which can not be lifted to a representation pg : G — GL3(R).
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Proof. Consider the field F, C k and let A be a generator of the cyclic group F;. The matrices
a 0 11
0-(0 1) andr-(o 1)

oPl=119=10t0 ! = (é cll) =¢¢

satisfy

and generate a subgroup of GL3(k), isomorphic to Cq xC,, for m = p—1, giving a natural representation
p: G — GL2(Fp) C GLa2(Kk).

Suppose that there is a faithful representation p : G — GL,, (R) which gives a faithful representation
of p: G — GL,(Quot(R)). Since p(t) is of finite order after a Quot(R) linear change of basis we might
assume that p(t) is diagonal with g-roots of unity in the diagonal (we have considered R = W(k)[(] so
that the necessary diagonal elements exist in Quot(R)). We have

(1) = diag(Ay, ..., An).

At least one of the diagonal elements say A = Ay, in the above expression is a primitive g-th root of
unity. Let E be an eigenvector, that is

p(T)E = AE.

The equality To = ot® implies that oE is an eigenvector of the eigenvalue A“. This means that n should
be greater than the order of a modq since we have at least as many different (and linearly independent)
eigenvectors as the different values A, A°, )\‘12, .

Since, for large prime (p > 3) we have 2 =n < p — 1 the representation p can not be lifted to R. [

Local Actions By the local-global theorems of J.Bertin and A. Mézard [10] and the formal patching
theorems of D. Harbater, K. Stevenson [33], [34], the study of the functor Dy can be reduced to the
study of the deformation functors Dp attached to each wild ramification point P of the cover X — X/G,
as defined in eq. (@). The theory of automorphisms of formal powerseries rings is not as well
understood as is the theory of automorphisms of finite dimensional vector spaces, i.e. the theory of
general linear groups.

As in the theory of liftings for the general linear group, we consider small extensions

1H<E>Hf’i>l"%1
An automorphism p" (o) € Autl'[[t] is completely described by a powerseries
p'(o)(t) =fo =) al(o)t",
v=1
where a! (o) € T'. Given a naive lift

o (o)) =) ol (o)t

v=1

r’

where a,,

(o) € T’ we can again form a two cocycle
a(o,7) = p" (0) 0 p" (1) 0 p" (07) (1),
defining a cohomology class in H?(G, ;). The naive lift p" (o) is an element of Autl'[[t]] if and only

if « is cohomologous to zero.
Suppose now that p]’, p}’ are two lifts in Autl"’[[t]]. We can now define

a(0) = + (o] ()0} ()" ~1d) € H'(G, Figy)
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2.3 Relative Petri’s theorem.

Recall that a functor F : 4 — Sets can be extended to a functor F: % — Sets by letting for every
R € Ob(%¥), F(R) = lim F(R/mg“). An element 1 € F(R) is called a formal element, and by definition
—

it can be represented as a system of elements {u, € F(R/m{;“)}n;o, such that for each n > 1, the

map F(R/mi*!) — F(R/m}) induced by R/mi*! — R/m} sends u, ~ u, ;. For R € Ob(%) and a
formal element G € F(R), the couple (R, 1) is called a formal couple. It is known that there is a 1-1
correspondence between F(R) and the set of morphisms of functors hg := Hom(R,—) — F, see [70,
lemma 2.2.2.]. The formal element 1 € F(R) will be called versal if the corresponding morphism hg — F
is smooth. For the definition of a smooth map between functors, see [70, def. 2.2.4]. The ring R will
be called versal deformation ring.

Schlessinger [68, 3.7] proved that the deformation functor D for curves without automorphisms,
admits a ring R as versal deformation ring. Schlessinger calls the versal deformation ring the hull
of the deformation functor. Indeed, since there are no obstructions to liftings in small extensions
for curves, see [68, rem. 2.10] the hull R of D, is a powerseries ring over A, which can be taken
as an algebraic extension of W(k). Moreover R = Al[xy,...,x34_3ll, as we can see by applying [9, cor.
3.3.5], when G is the trivial subgroup of the automorphism group. In this case the quotient map
f: X — £ =X/{Id} = X is the identity. Indeed, for the equivariant deformation functor, in the case of
the trivial group, there are no ramified points and the short exact sequence in eq. () reduces to an
isomorphism of the first two spaces. We have dimy H'(X/G, ¢ (%)) = dimy H}(X, Zx) = 3g — 3. The
deformation 2~ — SpecfR can be extended to a deformation 2" — SpecR by Grothendieck’s effectivity
theorem, see [70, th. 2.5.13], [32].

The versal element {i corresponds to a deformation 2" — SpecR, with generic fibre Z;, and special
fibre Z,. The couple (R, 1) is called the versal [70, def. 2.2.6] element of the deformation functor
D of curves (without automorphisms). Moreover, the element u defines a map hg,» — D, which by
definition of the hull is smooth, so every deformation X5 — SpecA defines a homomorphism R — A,
which allows us to see A as an R-algebra.

Indeed, for the Artin algebra A — A/ma = k we consider the diagram
hR//\ = Hom%;(R, A) — hR//\(k) XD (k) D(A)

This section aims to prove the following

Proposition 2.3.0.1. Let fi,...,f. € k[w;,...,wy] be quadratic polynomials which generate the
canonical ideal of a curve X defined over an algebraic closed field k. Any deformation Z is given
by quadratic polynomials fy,...,f, € A[Wy,... , Wyl, which reduce to fy,. .., f, modulo the maximal
ideal ma of A.

For n > 1, we write Q%“/R for the sheaf of holomorphic polydifferentials on 2". By [36, lemma

11.8.9] the R—modules H°(Z", Q%‘/R) are free of rank d, 4 for all n > 1, with d, 4 given by eq. (@)

g, ifn=1
dn g = 2.6
9 {(211—1)(9—1), ifn>1. (2.6)

Indeed, by a standard argument using Nakayama’s lemma, see [36, lemma II.8.9],[43] we have that
the R-module H°(.%Z", Q%“/R) is free. Notice that to use Nakayama’s lemma we need the deformation
over R to have both a special and generic fibre and this was the reason we needed to consider a

deformation over the spectrum of R instead of the formal spectrum.

Lemma 2.3.0.1. For every Artin algebra A the A-module H?(Xa, Q%‘ y A) is free.

Proof. This follows since H°(.2",Q 4- /) is a free R-module and [36, prop. 11.8.10], which asserts that
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Ox, /A =9*(Qg /r), where g’ is shown in the next commutative diagram:

’

XA = £ Xspecr SpecA g Z

!

SpecA

SpecR
We have by definition of the pullback

9" (Qa/R)(XA) = (") " Qa /r(XA) ®(g) 16, (xp) Oxa(XA) 2.7

and by definition of the fiber product 0x, = 02 ®r A. Observe also that since A is a local Artin
algebra the schemes X5 and 2" share the same underlying topological space so

g Qg r(XA)) = Qo /r(Z)
and g 109 (XA) = 04 (Z). So eq. (@) becomes
HO (XA, Qx, /a) = Qx, /a(XA) = ¢*(Qa r)(XA)) =
=Qq /R(Z) Qo () @O (2) ®r,, A
=H(2,Qy /) ®r A.

So H%(Xa, Qx, /a) is a free A-module of the same rank as H(2", Q- /g).
The proof for H°(Xa, QY™ /) follows in the same way. O

We select generators Wy, ..., W, for the symmetric algebra
Sym(H (27, Qg /r)) = RIW4,..., Wl.
Similarly, we write
Sym(H(25, Qg 1) = Llws, ..., wg] and Sym(H (20, Q1)) = klwy, ..., wgl,

where
wi =W;®r L wi:Wi®kaora111<i<g.

We have the following diagram relating special and generic fibres.

Spec(k) X Spec(R) 2 =% v *%1 = Spec(L) X Spec(R) vl

| | |

Spec(k) «——  Spec(R) «+——— Spec(L)

Our work is based on the following relative version of Petri’s theorem.

Theorem 2.3.1. Diagram (@] induces a deformation-theoretic diagram of canonical embeddings
® [e's)
0 Iy, C St:=Llws,...,wg] —> P H (2,05 ) —=0 (2.9)
n=0
®rL ®rL J®RL
0—— I\/ggc—> Sg = R[Wl, oo Wyl — 9 @ HO(%,Q%P/R) ——0
n=0
®rR/m ®rR/m i@kk/m
® 00
0 I, C Sk ::k[wl,...,wg]—°>>@HO(%O7Q%:/k)—>O
n=0
where I4 = ker ¢y, I = kerd, 19, = ker ¢g, each row is exact and each square is commutative.
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I Moreover, the ideal I can be generated by elements of degree 2 as an ideal of Sg.

The commutativity of the above diagram was proved in [18] by H. Charalambous, K. Karagiannis
and A. Kontogeorgis. For proving that I is generated by elements of degree 2 as in the special and
generic fibers we argue as follows: Since L is a field it follows by Petri’s Theorem, that there are
elements fl, ..., Ty € Sy of degree 2 such that

Lo, = (f1,..., ).

Now we choose an element ¢ € R such that f; := cf; € Sg for all i and notice that deg(f;) = deg(f;) = 2.
e Assume first that the element c € R is invertible in R. Consider the ideal I = (f, ..., f;) of Sg. We will
prove that I = I5. Consider the multiplicative system R*. We will prove first I C I = ker¢. Indeed,
using the commuting upper square every element a = > |_; a;fi € I maps to } ._, aif; ®r 1 which
in turn maps to 0 by ¢,. The same element maps to ¢(a) and ¢(a) ®r 1 should be zero. Since all
modules H(27, QG" ;) are free ¢p(a) =0 and a € L.

Since the family 2" — SpecR is flat we have that [5- ®r L = I, , that is we apply the @rL functor
on the middle short exact sequence of eq. (@). The ideal I =19, NSg = (Io- ®r L) N Sg. By [6, prop.
3.11ii] this gives that

[ =User+ (I :s) D la,

so I4- = 1. In the above formula (I4 :s) ={x € Sg: xs € Io}.
¢ From now on we don’t assume that the element c is an invertible element of R.

Let g be an element of degree 2 in I4,, we will prove that we can select an element g € Iz such
that g ® 1y = g, so that g has degree 2.

Let us choose a lift § € Sg of degree 2 by lifting each coefficient of g from k to R. This element is
not necessarily in I,-. We have ¢(g) ® 1x = do(g ® 1) = do(g) = 0. Let ey,...,e34 3 be generators of

the free R-module H° (%", Q‘?;VQ/R) and choose ey, ..., e3g_3 € Sg such that ¢(e;) = e;. Let us write ¢(g) =

239 3 Aiéi, with A; € R. Since ®o(g) = 0 we have that all A; € mg for all 1 < i < 3g — 3. This means that
the element g = g — 239 ® Aie; € Sg reduces to g modulo mg and also ¢(g) = ¢(§) — 2397 A =0, so
gely.

Let g1,...,0s € L2, be elements of degree 2 such that

and, using the previous construction, we take g; lifts in 1, < Sg, i.e. such that g; ® 1x = g; and also
assume that the elements g; have also degree 2.

We will now prove that the elements g; ®s, 1r,...,9s ®s, 1L € Sy generate the ideal 4, . By the
commutativity of the diagram in eq. (2.9) we have (g1 ®s, 1t,...,9s ®s; 1) C I, = ker ¢,,. Observe

that any linear relation
N

Z(avgv ®s, 11) =0, with a, € L

v=1

gives rise to a relation for some ¢ € R
S
Zc-anV:O, c-ay € Sg,

which implies that c - a, € mg.
We will prove that the elements g; ®s, 11 are linear independent.

Lemma 2.3.1.1. Let vy,...,v,, € k™ be linear independent elements and vy, ..., v, be lifts in R™.
Then

n
Z ayvy =0 ay € R,
v=1

implies that a; =--- = a, =0.
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Proof. We have n < m. We write the elements vy, ...,v, (resp. vi,...,V,) as columns and in this way
we obtain an m x n matrix J (resp. J). Since the elements are linear independent in k™ there is ann xn
minor matrix with an invertible determinant. Without loss of generality, we assume that there is an
n x n invertible matrix Q with coefficients in k such that Q- J* = ( I, | A ), where Ais an (m—n) xn
matrix. We now get lifts Q,] and A of Q,] and A respectively, with coefficients in R, i.e.

Q-J'=(1I.| A )modmg.

The columns of J are lifts of the elements vy, ..., V,. It follows that Q-J* = ( I, | A )+( C | D ), where
C,D are matrices with entries in mz. The determinant of I, + C is 1 + m, for some element m € mg,
and this is an invertible element in the local ring R. Similarly, the matrix Q is invertible. Therefore,

J'=(Q'In+C) |QA+D))

has the first n x n block matrix invertible and the desired result follows.
O

Remark 2.3.2. Itis clear that over a ring where 2 is invertible, there is an 1-1 correspondence between
symmetric g x g matrices and quadratic polynomials. Indeed, a quadratic polynomial can be written
as
fwi,...,wg) = Z aywiw; = w'Aw,
1<i,j<g
where A = (ai;). Even if the matrix A is not symmetric, the matrix (A + A')/2 is and generates the
same quadratic polynomial

A+ At
thw—wt( + )w

2

Notice that the map

A+ At
/1\»—>+

is onto the space of symmetric matrices and has as kernel the space of antisymmetric matrices.

A minimal set of quadratic generators is given by a set of polynomials fy,...,f,, with f; = w'A;w,
where the symmetric polynomials are linearly independent.

By the general theory of Betti tables we know that in the cases the canonical ideal is generated
by quadratic polynomials, the dimension of this set of matrices equals (952), see [26, prop. 9.5].
Therefore we begin on the special fibre with the s = (9;2) generators gy, ..., Js elements. As we have
proved in theorem we can lift them to elements gi,...,gs € I so that for | := (g1,...,9s) we
have

(i) JorL=1g,.
(i) Jork=1g,.

In this way we obtain the linear independent elements g; ®s, 1i,...,9s ®s, 1p in Ix,. We have seen

that the s = (952) linear independent quadratic elements generate also [ o, .

By following Lemma 5 (ii) of [18] we have the next lemma.

Lemma 2.3.2.1. Let G be a set of polynomials in Sk such that (G) ®r L =14, and (G) ®r k = I ;.
Then 14 = (G).

Essential for the proof of lemma was that the ring R has a generic fibre. The deformation
theory is concerned with deformations over local Artin algebras which do not have generic fibres. But
by tensoring with A in the middle sequence of eq. (@) we have the following commutative diagram:

.0

0 —— Ix, &> Sa == AW, ..., Wg] —= D H'(Xa, 0

n=0

N )
XA /A

AA/mA RAA/mA i®AA/mA

® 00
0 I14,C Sk i=kwy,...,wgl *O»GBHO(%aQ%E/k) —0
n=0
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Indeed, since H°(.Z", Qi%“/ A) is free the left top arrow in the above diagram is injective. Moreover the

relative canonical ideal Ix, is still generated by quadratic polynomials in Sa.
2.3a Embedded deformations

Let Z be a scheme over k and let X be a closed subscheme of Z. An embedded deformation X’ — Speck/e]
of X over Speck[e] is a closed subscheme X’ C Z' = Z x Speckle] fitting in the diagram:

Z Z x Speckle]
Speck Speckle]

Let .7 be the ideal sheaf describing X as a closed subscheme of Z and
Nx)z = Homz (I, 0x) = Homx(I/I?,0x), (2.10)

be the normal sheaf. In particular for an affine open set U of X we set B’ = 07z/(U) = B & €B, where
B = 07(U) and we observe that describing the sheaf of ideals .#’(U) C %’ is equivalent to giving an
element

du € Homg, (u) (£ (W), 0z(U)/.7(U)),

see [37, prop. 2.3].

We will take Z = P9 ! and consider the canonical embedding f : X — P9-!. We will denote by
N¢ the sheaf .45 ,ps-1. Let #x be the sheaf of ideals of the curve X seen as a subscheme of P9'.
Since the curve X satisfies the conditions of Petri’s theorem it is fully described by certain quadratic

polynomials f; = Ad,... e = A, which correspond to a set g x g matrices Aq,...,A;, as we described
in chapter . The elements fy, ..., f. generate the ideal Ix corresponding to the projective cone C(X)
of X, C(X) C A9,

We have

H%(X, N¢) = Homs (Ix, Ox).

Assume that X is deformed to a curve Xr — Specl’, where T is a local Artin algebra, X C P?_l =
P9~! x Specl’. Our initial curve X is described in terms of the homogeneous canonical ideal Ix, gen-
erated by the elements {w'A;w,...,w'A,w}. For a local Artin algebra I" let .74 (I") denote the space of
symmetric g x g matrices with coefficients in I The deformations X are expressed in terms of the
ideals Ix., which by the relative Petri’s theorem are also generated by elements wtAlw,... wtAlw,
where Air is in 74(T"). This essentially fits with Schlessinger’s observation in [69], where the defor-
mations of the projective variety are related to the deformations of the affine cone, notice that in our
case all relative projective curves are smooth and the assumptions of [69, th. 2] are satisfied. We can
thus replace the sheaf theoretic description of eq. () and work with the affine cone instead.

Remark 2.3.3. A set of quadratic generators {w'A;w,...,w'A . w}is a minimal set of generators if and
only if the elements A4,..., A, are linear independent in the free I'-module .7 (T') of rank (g + 1)g/2.

Embedded deformations and small extensions

Let
0= (E)=T" 5T =0

be a small extension and a curve IP’?,_l D X/ — Specl” be a deformation of Xr and X. The curve X/ is
described in terms of quadratic polynomials w*A!l'w, where Al" € .7, ("), which reduce to Al modulo
(E). This means that

Al" = Al mod ker(n) forall 1 <i<r (2.11)

and if we select a naive lift i(A]) of A, then we can write

A" =i(Al) + E - By, where B; € .7, (k).
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The set of liftings of elements Al of elements A!, for 1 < i < r is a principal homogeneous space,
under the action of H(X, N¢), since two such liftings {Agl) rH,1r<igr}, {AEQ)(F’), 1 < i r}differ by a
set of matrices in {B;(I'’) = Agl](l“') — Agz)(l“’), 1 < i < r} with entries in (E) = k, see also [37, thm. 6.2].

Define a map ¢ : (Ay,...,A;) = F4(k) by d(A;) = Bi(I'') and we also define the a corresponding
map on polynomials ¢p(A;) = wtd(A;)w. we obtain a map ¢ € Homs(Ix, Ox) = H°(X,N¢), see also [37,
th. 6.2], where S = Sy. Obstructions to such liftings are known to reside in H' (X, A% /ps—1 ®y ker ),
which we will prove it is zero, see remark .

Embedded deformations and tangent spaces

Let us consider the kl[e]/k case. Since i : X — P97! is non-singular we have the following exact
sequence

0— Ix = 1" Tpg1 — J‘/)(/[P)gfl —0

which gives rise to

0 — HO(X, Zx) — H(X,1* Fpo—1) — H (X, A% /po 1))

3
L HY (X, Fx) —— H' (X, 1" Tpa—1) — H' (X, A5 /pa—1) —0

Remark 2.3.4. In the above diagram, the last entry in the bottom row is zero since it corresponds
to a second cohomology group on a curve. By Riemann-Roch theorem we have that H°(X, Z%) = 0 for
g = 2. Also, the relative Petri theorem implies that the map 6 is onto. We will give an alternative proof
that 8 is onto by proving that H!(X,i*Z,1) = 0. This proves that H' (X, 4% ps—1) = 0 as well, so there
is no obstruction in lifting the embedded deformations.

Each of the above spaces has a deformation theoretic interpretation, see [35, p.96]:

* The space H’(X,i* Zp¢—1) is the space of deformations of the map i: X — P9~ 1, that is both X, P91
are trivially deformed, see [70, p. 158, prop. 3.4.2.(ii)]

* The space H"(X, 4% pa—1) is the space of embedded deformations, where P9~ is trivially deformed
see [37, p. 13, Th. 2.4)].

* The space H!(X, Zx) is the space of all deformations of X.

The dimension of the space H!(X, Z%x) can be computed using Riemann-Roch theorem on the dual
space HY(X, Q%Q) and equals 3g — 3. In next section we will give a linear algebra interpretation for the
spaces HY(X, Ax /pa—1), HO(X,i* Zp¢—1) allowing us to compute its dimensions.

2.3b Some matrix computations

We begin with the Euler exact sequence (see. [36, I1.8.13], [78, p. 581] and [40] MO)
0— Opg1 — Ops1(1)%9 = Fpg1 — 0.
We restrict this sequence to the curve X:
0— Ox = i*Ope—1(1)%9 = 0F9 — i* Fpg—1 — 0.

We now take the long exact sequence in cohomology

00— > k=HO(X,ox) f1—> HO(X,i*ijg 1(1)99) —fo> Ho(x,i*gﬂ,g 1)> (2.12)
fd
é{l(x,ﬁx) —fg> HL(X,i*0pg 1 (1)99) f5—= HL(X,i*Tpg 1) ————> HZ(X,0x) =0

The spaces involved above have the following dimensions:

® {*Ops—1(1) = Qx (canonical bundle)


https://mathoverflow.net/questions/5211/geometric-meaning-of-the-euler-sequence-on-mathbbpn-example-8-20-1-in-ch
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o dimHO(X, i* Ops 1 (1)29) = g - dim H(X, Qx) = g2
e dimH!(X, Ox) = dimH(X,Qx) =g
o dimH! (X, i*Ops +(1)%9) = g - dim HO(X, Ox) = g

We will return to the exact sequence given in eq. () and the above dimension computations in
the next section.

Study of HO(X, Ny)

By relative Petri theorem the elements ¢(A;) are quadratic polynomials not in Ix, that is elements
in a vector space of dimension (g + 1)g/2 — (952) = 3g — 3, where (g + 1)g/2 is the dimension of the
symmetric g x g matrices and (952) is the dimension of the space generated by the generators of the
canonical ideal, see [26, prop. 9.5].

The set of matrices {A;,...,A,} can be assumed to be linear independent but this does not mean
that an arbitrary selection of quadratic elements w'B;w € Ox will lead to a homomorphism of rings.
Indeed, the linear independent elements A; might satisfy some syzygies, see the following example
where the linear independent elements

oo o)) e (e )G

y-x*—x-xy=0.

satisfy the syzygy

Therefore, a map of modules ¢, should be compatible with the syzygy and satisfy the same syzygy.
This is known as the fundamental Grothendieck flatness criterion, see [69, 1.1] and also [5, lem. 5.1,
p- 28].

Proposition 2.3.4.1. The map

P : Mg(k) — Homg (Ix, S/Ix) = H(X, A5 /ps—1)
B+— Vg : wrA;w — w(A;B + B*A;)w modIx

identifies the vector space Mg (k)/(ILg) to HO(X, i* Fps—1) C H*(X, A% ps—1 ). The map  is equivariant,
where M4 (k) is equipped with the adjoint action

B — p(g)Bp(g~") = Ad(g)B,

that is

9V =Vad(g)B-

Proof. Recall that the space H(X,i*.%¢ 1) can be identified to the space of deformations of the map
f, where X, P91 are both trivially deformed. By [69] a map ¢ € Homs(Ix,S/Ix) = Homs(Ix, Ox) gives
rise to a trivial deformation if there is a map

wj = wj + edj(w),
where 8;(w) =Y ?_, b; v wy. The map can be defined in terms of the matrix B = (b; ),
w— w+ eBw

sothat forall A;, 1<i<r 3 3
VA -Bw=¢(A) = p(W'A;w) modlx. (2.13)

But for A; = wtA;w we compute VA; = w'A;, therefore eq. [) is transformed to
WtAiBW = WtBiW IIlOdI)(, (2 14]

for a symmetric g x g matrix B; in .“j(kle]). Therefore if 2 is invertible according to remark
we replace the matrix A;B appearing in eq. (] by the symmetric matrix A;B + B'A;. Since we
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are interested in the projective algebraic set defined by homogeneous polynomials the 1/2 factor of
remark 2.3.@ can be omitted.
For every B € Mg(k) we define the map g € Homs(Ix,S/Ix) = Homs(Ix, Ox) given by

Ai = wtA;w — w'(A;B + B'A;)w modlx,

and we have just proved that the functions g are all elements in H°(X,1*Z¢-1). The kernel of the
map VY : B — Pp consists of all matrices B satisfying:

AiB = —B'A; modIx for all 1 < i< (9 ; 2). (2.15)

This kernel seems to depend on the selection of the elements A;. This is not the case. We will prove
that the kernel consists of all multiples of the identity matrix. Indeed,

dim HO(X,1* %) = g% — ker .
We now rewrite the spaces in eq. () by their dimensions we get

f1 fa

(0) (1) (%)
f3

/ (g) (9) (7) (0)
So

® dimkerfy =dimImf; =1

(9> — kerlb))

e dimker f3 = dimImfy, = g2 — 1
e dimImfs = (g? — dimker{) — (g> — 1) = 1 — dim ker
It is immediate that dim ker{ = 0 or 1. But obviously I, € ker1, and hence
dimker{ = 1.

Finally dimImf3 =0, i.e. f3 is the zero map and we get the small exact sequence,

0 ——k = HO(X, Ox) — HO(X, " Opg—1(1)®9) — HO(X,1* Fpg—1) —= 0

It follows that
dim H(X,1* Zpo 1) = g° — 1.

We have proved that ¥ : M4(k)/(Ig) — H°(X,1*Zps—1) is an isomorphism of vector spaces. We will now
prove it is equivariant.
Using remark we have that the action of the group G on the function

11)]3 A — AB+ BtAi,
seen as an element in H°(X,i* Z¢-1) is given:
A =+ T A % T(0) (p(0) Aip(0)B + B'p(0) Asp(0))
= (Aip(0)Bp(o™") + (p(0)Bp(o 1)) As)

Corolarry 2.3.4.1. The space H°(X,i* 754 1)C is generated by the elements B # {Alg : A € k} such
that
p(0)Bp(oc ')B™! = [p(0),B] € (A4,...,A,) for all o € Aut(X).

Remark 2.3.5. This construction allows us to compute the space H!(X,1*Z¢-1). Indeed, we know
that f4 is isomorphism and hence f; is the zero map, on the other hand f; is surjective, it follows that
H(X,1* Zp¢—1) = 0. This provides us with another proof of the exactness of the sequence

0 ——= HO(X, 1* Fog 1) ——= HO(X, A jpo 1) —= HY(X, Fx) —= 0 (2.16)
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2.3c Invariant spaces

Let
0-A—-B—-C—=0

be a short exact sequence of G-modules. We have the following sequence of G-invariant spaces

0— AS — BS - CC 2% HY(G,A) — -
where the map 6¢ is computed as follows: an element c is given as a class b modA and it is invariant

if and only if gb — b = ag € A. The map G 3 g — a4 is the cocycle defining §g(c) € H'(G, A).
Using this construction on the short exact sequence of eq. () we arrive at

0 —= HO(X, " Fpo )€ —= HO(X, A /po—1) G = HY(X, yx)GD

e
L) Hl(G,HO(X7i*%g 1))

We will use eq. () in order to represent elements in H' (X, 7x) as elements [f] € H(X, A% /ps—1)/HO (X, i* Zpg 1) =
HO(X, A5 /po—1)/Tm.

Proposition 2.3.5.1. Let [f] € H'(X,.9%)€ be a class of a map f : Ix — S/Ix modulo Im{. For
each element o € G there is a matrix B;[f], depending on f, which defines a class in Mg(k)/(Ig)
satisfying the cocycle condition in eq. ( ), such that

8 (f)(0) : Ay = Aq (Bolf]) + (BL[f]) Ay mod(A4, ..., Ag).

Proof. Let [f] € H!(X, Zx)€, where f : Ix — S/Ix that is f € H(X, A% ps—1). The 8g(f) is represented
by an 1-cocycle given by 6¢(fl(0) =°f — f. Using the equivariant isomorphism of 1} : My(k)/(Ig) —
HO(X,1* Zpe—1) of proposition we arrive at the diagram:

1|)71
G — = HO(X,i* Fpo 1)

Mg (k)/(Ig)
0 8g(f)(0) ———= Blfly =V (8g(f)(0))
We will now compute

f

o Ay T T(0m1)A; — > £(T(0 1A — %

T(o)f(T(o1)AL).

We set .
T(o ") (A) = p(0)' Aip(o) = ) Niv(0)As
v=1
SO
56 (f)(0) (A1) = ) Aiv(0) - p(o™ ) F(Ay)p(o!) — F(A}) (2.17)
v=1

= A;B,[f] + Bo‘[f]tA.i modIx
for some matrix B,[f] € M4(k) such that for all 0,7 € G we have

Bo<[f]l = Bo[f] + 0B<[flo! + A(0,T)Ig (2.18)
= By [f]l + Ad(0)B[f] + Ao, T)L,.

In the above equation we have used the fact that ¢ — B,[f] is a 1-cocycle in the quotient space
M4 (k)/14, therefore the cocycle condition holds up to an element of the form A(o, 7)I,. O
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Remark 2.3.6. Let
)\(0-7 T)Hg = Bo[f] — Bolf]l — Ad((ﬁ)B@[ﬂ

The map G x G = k, (0,7) — A0, 1) is a normalized 2-cocycle (see [81, p. 184]), that is

0=A(0,1) =A(1,0) foralloe G
0 = Ad(ce1)A(02,03) — A(0102,03) + A(01, 0203) — A(01, 02) for all 01,02,03 € G
= A(02,03) —A(0102,03) + A(01, 0203) — A(01, 02) for all 01,02,03 € G

For the last equality notice that the Ad-action is trivial on scalar multiples of the identity.

Proof. The first equation is clear. For the second one,
)\(61627 GS)Hg = Bﬂ‘l 0203 [f] — B(rl o2 [f] — Ad(ml(EQ)Boeg [f]
and
}\(0-17 0-2)]19 = BO‘10‘2 [f] — B(rl [f] — Ad((El)Ber [f].
Hence
A(0102,03)Ig +A(01, 02)g =Bs, 0,0, [fl — Ad(ce10e2)Bee, [f] — Bee, [f] — Ad(0ce1)Bee, [f]
:Bcl 0203 [ﬂ - BG] [ﬂ - Ad(oel)Boegoeg [f]+
+ Ad(ce1)Beey, s [f] — Ad(ce1)Be, [f] — Ad(ceqoe) B, [f]
=A(01,0203)Ig + Ad(0e1) (Beey,ces [f] — Bee, [f] — Ad(ce1)Bee, [f])

=Ad(ce1) " (ceg, 0e3)ly + “(cer, cegces)ly.

Corolarry 2.3.6.1. If f(w'A;w) = w'B;w, where B; € My(k) are the images of the elements defining
the canonical ideal in the small extension " — T, then the symmetric matrices defining the
canonical ideal Ix(I'') are given by A; + E - B;. Using proposition we have

(°f = f)(A) = D) Aiv(0)T(0)(By) — By (2.19)
v=1
= (AiBG[ﬂ + Bg[ﬂAl) HlOd</A17 .. ,AT>
=g, 1A
Therefore, using also eq. [)
> Aiv(0)(By) = T(o 1By = T(o g, 111 (Ad). (2.20)
v=1

2.4 On the deformation theory of curves with automorphisms
Let1 — (E) - T" — I = 0 be a small extension of Artin local algebras and consider the diagram

Xr Xr/ X

L

Spec(I") —— Spec(T'') —— Spec(R)

Suppose that G acts on Xr, that is every automorphism o € G satisfies o(Ix,.) = Ix,.. If the action of

the group G is lifted to X, then we should have a lift of the representations p, p(*) defined in eq. (], @]

to I'" as well. The set of all such liftings is a principal homogeneous space parametrized by the spaces

HY(G, Mg4(k)), H' (G, M, (k)), provided that the corresponding lifting obstructions in H?(G, M4 (k)), H?(G, M, (k))
both vanish.
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Assume that there is a lifting of the representation

GLg(I") (2.21)

Prs

\L mod(E)
G T CLg(T)

This lift gives rise to a lifting of the corresponding automorphism group to the curve Xy if
pr.(0)Ix., =Ix., foralloe G,

that is if the relative canonical ideal is invariant under the action of the lifted representation pr.. In
this case the free I''-modules V., defined in remark E are G-invariant and the T-action, as defined
in definition .1 restricts to a lift of the representation

GL,(T) (2.22)

(1)
r’

l mod(E)
G~ GL.(N

1
oi

In section (or [B1], sec. 2.2]) we gave an efficient way to check this compatibility in terms of linear
algebra:

Consider an ordered basis X of the free '-module .7 (I") generated by the matrices Z(ij) = (0(ij))v,u.
1 <1i<j < gordered lexicographically, with elements

0(1]) _ 617V6j7p, + 6i7u6j,‘\/7 lfl # ]
YR 8ivOiy if i =j.

For example, for g = 2 we have the elements

0(11)_<(1) 8> 6(12)_<(1) é) a(22)_<8 2)

For every symmetric matrix A, let F(A) be the column vector consisted of the coordinates of A in the
basis Z. Consider the symmetric matrices A!’,..., Al"’, which exist since at the level of curves there
is no obstruction of the embedded deformation. For each o € G the (g+ 1)g/2 x 2r matrix

Fro(o) = [F(AT) . F(AD) F (e (o)Al o)) . F (or(0) AT prr(0))] (2.23)

The automorphism o acting on the relative curve Xr is lifted to an automorphism o of X if and only
if the matrix given in eq. ( ) has rank r.

Proposition 2.4.0.1. The obstruction to lifting an automorphism of X to X, has a global ob-
struction given by vanishing the class of

Alo,7) = prs(a)pr (t)pr/(0T)

in H?(G, M4(k)) and a compatibility rank condition given by requiring that the matrix Fr. (o) equals
r for all elements o € G.

2.4a An example

Let k be an algebraically closed field of positive characteristic p > 0. Consider the Hermitian curve,

defined over k, given by the equation

1
H:ypfyzm, (2.24]
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which has the group PGU(3,p?) as an automorphism group, [79, th. 7]. As an Artin-Schreier exten-
sion of the projective line, this curve fits within the Bertin-Mézard model of curves, and the defor-
mation functor with respect to the subgroup Z/pZ = Gal(H/P!) = {y ~ y + 1} has versal deformation
ring W(k)[{][[x;]], where ( is a primitive p root of unity which resides in an algebraic extension of
Quot(W(k)) [10], [43]. Indeed, m=p+1=2p—(p—1) = qp — 1, so in the notation of [10] q = 2 and
l=p—1.
The reduction of the universal curve in the Bertin-Mezard model modulo myy (i is given by the
Artin-Schrein equation:
poxo X
XP—X= ] (2.25)
which has special fibre at the specialization x; = 0 the original Hermitian curve given in eq. ().
The initial Hermitian curve admits the automorphism o :y — y,x — (,11%, where (,; is a prim-
itive p + 1 root of unity. We will use the tools developed in this chapter in order to show that the
automorphism o does not lift even in positive characteristic.
We set a(x) = x> +x;x and A = { — 1 € W(k)[(]. In [43] S. Karanikolopoulos and A. Kontogeorgis
proved that the free R-module H(2", Q 5 /&) has basis

xNa(x)p~1-mrxp—1-n ul
¢ { N T AP T X+ e {pJ d HSP }

From the form of the holomorphic differentials it is clear that the representation of (o) on H°(H, Q}, /1)
is diagonal, since a(x) = x% + x;x reduces to x? for x; = 0. In our example, we have q = dega(x) = 2 so
in the special fibre we have

WN,u = xN72ZrxP—I—rgy

N—2p+1
o(wn,u) = Cp+1 HTwWN

and

N+N/—2(p+p’)+2
O(WNuWN7 ) = Cp1 WN,uWN/,u/- (2.26)

Thus, the action of o on holomorphic differentials on the special fibre is given by a diagonal matrix.
To decide, whether the action lifts to the Artin local ring k[e], we have to see first whether the
diagonal representation can be lifted, that is whether we have the following commutative diagram:

GLg (klel)
-
(0) > GLg(K)

Since p(o) = diag(d1,...,84) = A a possible lift will be given by p(o) = A + €B, for some g x g matrix B
with entries in k. The later element should have order p + 1, that is

Iy = (A+€B)PT = APT! 4 eAPB,

which in turn implies that APB = 0 and since A is invertible B = 0. This means that the representation
of the cyclic group generated by o is trivially deformed to a representation into GLg4(k[e]).

The next step is to investigate whether the canonical ideal is kept invariant under the action of o
for x; # 0. The canonical ideal for Bertin-Mézard curves was recently studied by H. Haralampous K.
Karagiannis and A. Kontogeorgis, [[18]. Namely, using the notation of [18] we have

2(p—1)
a(x)P = (x2+xx)P = Z Cj,pfixj

j:jmin
p—i .
_ Z (P — 1) ngfifjxjﬂj_i
A
sobysetting ] =j+p—1, p—i<] <2(p—1i) we have

—i 2(p—-i)—J .
Clpi= (Ijzpii))xl P if]>p—i
P 0 P
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This means that cy(p—i)p—i = 1, Co(p—i)—1,p—i = (p—1)x1 and for all other values of |, the quantity cy, ;
is either zero or a monomial in x; of degree > 2.

It is proved in [18] that the canonical ideal is generated by two sets of generators G, and G, given
by:

Gicl :{WNhulWNLH{ 7WN27H2WNQ,H§ €S WNlaLllWN{,H{7WN27H2WNQ;H§ € T?
and Ny + Ny =No+Nj, w4 By = o + ok

Gg = {WNJLWN/#U _WNN,H”WN”/,H/”

p—1 (p—ilq _ P
£y Oy mp(i)cj,p_inj,MwNj,Mes;
=1 j=jmin (1)

NN+NH/:N+N/+p—17 u//+u///:u+u/+p’
Nj+Nj=N+N"+j, mi+p=p+p +p—1i

The reduction modulo myy (i), of the set G is given by simply replacing each W;, ,, by wn . and does
not depend on x;. Therefore it does not give us any condition to deform o.
The reduction of the set G§ modulo myy ([ is given by

(p—1)q
3 ®R k — {WN;HWvaul —WNI/)HIIWN/II’HIII — Z C]"p,]_WNj’ujWNi/’u][ S S .
]:]mm(l)
N/I+N///:N+N/+p_17 u//+u///:u+u/+p7
Ny + Ny =N+N+j, pit+p{=p+p +p—i

for jmin(1) <j < (p— 1)q}~
If we further consider this set modulo (x?), that is if we consider the canonical curve as a family over

first-order infinitesimals then, only the terms cyp—1)p—1 =1, Ca2(p—1)—1,p—1 = (p — 1)x1 survive.
Using eq. () and the definition of G§ we have that for

W = WN N = WNZ w0 WN o = WG i a WNG

o(W) = )N R Ry

Set
W// = WNz(P71)717up71WN£(p71]71’”’1’)71'
The automorphism lifts if and only if the element
W =W +xW”

we have

But this is not possible since for
" Nop—1)1+Nop 1) 1—2(kp—1+1p 1) +2y, 0
o(W") = ¢, i P w

and

Nop—1)-1 + Nop_1)-1 — 2(Hp—1 + H{gq) +2=N+N'—-2u+u)+2-1



2.4 On the deformation theory of curves with automorphisms - 33

2.4b A tangent space condition

All lifts of Xr to Xr form a principal homogeneous space under the action of H(X, #x spo—1). This
paragraph aims to provide the next compatibility relation given in eq. (@) by selecting the deformations
of the curve and the representations.

Let {Al,... AL} be a basis of the canonical Ideal Ix,, where Xr is a canonical curve. Assume also
that the special fibre is acted on by the group G, and we assume that the action of the group G is
lifted to the relative curve Xr. Since Xr is assumed to be acted on by G, we have the action

T(o YY) (AD) = pr(0)*Alpr(o Z?\ )foreachi=1,...,r, (2.27)

where pr is a lift of the representation p induced by the action of G on H%(Xr, Qx,r), and ?\ir_’). (o) are the

entries of the matrix of the lifted representation p,(-l) induced by the action of G on AT, ... Al'. Notice
that the matrix pr(o) € GLg(I'). We will denote by A LA € Z4(T'") a set of liftings of the matrices
Al ... AL. Since the couple (Xr, G) is lifted to (Xr/, G), there is an action

T(o (Al = pr () Al pri(o Z?\ o)Al  foreachi=1,...,m,

where 7\5’(6) € I'". All other liftings extending Xr form a principal homogeneous space under the
action of HY(X, 4% ps—1) that is we can find matrices By,..., B, € .74(k), such that the set

(A" +E-By,...,Al" +E-B,}

forms a basis for another lift Iy:, of the canonical ideal of Ix,. That is all lifts of the canonical curve
Ix, differ by an element f € Homsg(Ix,S/Ix) = H*(X, A% ps—1) so that f(A;) = B;.
In the same manner, if pr- is a lift of the representation pr every other lift is given by

pr/(0) + E - t(0),

where 1(0) € Mg(k).
We have to find out when pr/(0) + E - T(0) is an automorphism of the relative curve Xr-, i.e. when

T(or (oY) +E-t(0 ) (A" +E-By) € spanp {A] +E-By,...,Al" +E-B,}, (2.28)
that is

(prs(0) +E - 7(0))" (Af’+E-Bi) (pre(0) +E- (0 Z?\ (AF +E- B) (2.29)

for some 7\;.’(0) e I'’. Since
Tr(0 AL = pr(0)'Al pr(0) mod(E)
we have that 7\';].' (0) = AL, ;(0) modE, therefore we can write
A (0) = A (0) + E - uyj (o), (2.30)
for some (o) € k. We expand first the right-hand side of eq. () using eq. (). We have
Y AL (o) (A{’ +E- Bj) -y (A;’(o) YE- uij(cr)) (A{’ +E- B,-) 2.31)
j=1 j:l
—Z)\ o)A]" +E(uij(0)A; + Aij(0)B5). (2.32)

Here we have used the fact that Emr = Emp, so E- x = E - (x modmp/) for every x € I'.
We now expand the left-hand side of eq. ().

(or/(0) + E-t(o))* (A" +E-B¢) (pr(0) + E - 7(0)) = pr+(0) AL or (o)
+E - (p(0)'Bip(0) + T (0)A;p(0) + p(0) Av(o)
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Set D, = t(0)p(0)~! = d(0) according to the notation of lemma , we can write
1(0)'Aip(0) + p(0) ' Ait(0)

to (1)t ta. tA. -1
; p(o ) 1(0)"Aip(0) + p(0) Ast(0)p(0) "p(0) (2.33)

p(0)'Bip(o) — Y Aylo By =—T(o g, r1(AL). (2.34)

For the above computations recall that for a g x g matrix B, the map Vg is defined by

11)]3 (Al) = AIB + BtAi.

Combining now eq. (P.Siﬂ) and (fz.34|) we have that eq. () is equivalent to

T(o ") (Wb, (A) = T(o g, Zuu
(Wp, (A1) — ZT )i (o (2.35)

= Z Z i (0)Ajy (07 1AL

j=1v=1

On the other hand the actlon Ton A4,..., A, is given in terms of the matrix (A; ;) while the right hand
side of eq. g) ul] 1)) (A (6)) corresponds to the derivation D(*) (o~ ') of the p;-representation.
Equation (4)) is now proved




Chapter 3

A new obstruction to the local lifting
problem

3.1 Introduction

Consider a local action p : G — Autk[[t]] of the group G = C4 x Cy,. The Harbater-Katz-Gabber com-
pactification theorem asserts that there is a Galois cover X — P! ramified wildly and completely only
at one point P of X with Galois group G = Gal(X/P!) and tamely on a different point P’ with ramifi-
cation group C,, so that the action of G on the completed local ring Ox p coincides with the original
action of G on k[[t]]. Moreover, it is known that the local action lifts if and only if the corresponding
HKG-cover lifts.

In particular, we have proved that in order to lift a subgroup G C Aut(X), the representation
p: G — GLH’(X, Qx) should be lifted to characteristic zero and also the lifting should be compatible
with the deformation of the curve. More precisely, in chapter P} we have proved the following relative
version of Petri’s theorem

Proposition 3.1.0.1. Let fy,...,f, € S := SymH°(X, Qx) = k[w, ..., wgy] be quadratic polynomials
which generate the canonical ideal Ix of a curve X defined over an algebraic closed field k. Any
deformation 2, is given by quadratic polynomials f1,...,fr € SymH?(2a, Q a/A) =AW, ..., W,
which reduce to fq, ..., f, modulo the maximal ideal ma of A.

And we also gave the following liftability criterion:

Theorem 3.1.1. Consider an epimorphism R — k — 0 of local Artin rings. Let X be a curve which
is is canonically embedded in P} and the canonical ideal is generated by quadratic polynomials,
and acted on by the group G. The curve X — Spec(k) can be lifted to a family 2~ — Spec(R) € D (R)
along with the G-action, if and only if the representation py : G — GLg4(k) = GL(H"(X, Qx)) lifts to
a representation pg : G — GLg(R) = GL(H"(2", Q4 /&) and moreover the lift of the canonical ideal
is left invariant by the action of pg(G).

In section we collect results concerning deformations of HKG covers, Artin representations and
orbit actions and also provide a geometric explanation of the KGB-obstruction in remark . In
section we prove that the HKG-cover is canonically generated by quadratic polynomials, therefore
theorem (3 can be applied.

In order to decide whether a linear representation of G = C4 x C;,, can be lifted we will we use the
following criterion for the lifting of the linear representation, based on the decomposition of a k[G]-
module into intecomposable summands. We begin by describing the indecomposable k[G]-modules
for the group G = Cq x Cy:

Proposition 3.1.1.1. Suppose that the group G = C4 x C,, is represented in terms of generators
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o, T and relations as follows:
G=(o,Tt9=1,0™ =1,01t0 ! =1%),

for some o« € N,1 < o < p" —1,(,p) = 1. Every indecomposable k[G]-module has dimension
1 < k < q and is of the form V, (A, k), where the underlying space of V4 (A, k) has the set of elements
{(t—1)Ye,v =0,...,k — 1} as a basis for some e € V4(A, ), and the action of o on e is given by
oe = () e, for a fixed primitive m-th root of unity.

Proof. We will prove this in the secon part, in section @ Notice also that (t—1)*e = 0. O

Remark 3.1.2. In the chapter 2 V, (A, k) notation is used. In this chapter we will need the Galois
module structure of the space of homolomorphic differentials of a curve and we will employ the results
of [11], where the U, notation is used. These modules will be defined in section , notice that

voc(}\v K) = u()\+a0(|<71)modm,|<’ see lemma -

Notice that in section @ we will give an alternative description of the indecomposable k[G]-
modules, which is compatible with the results of [11].

Theorem 3.1.3. Consider a k[G]-module M which is decomposed as a direct sum
M = Vy(e1,K1) @ D Vyles, Kg).

The module lifts to an R[G]-module if and only if the set {1, ..., s} can be written as a disjoint union
of sets I, 1 < v < t so that

a. Zuelv Ky < g, foralll<v<t
b. Zuelv kK, = amodm for all 1 < v < t, where a € {0,1}.
c. For each v, 1 < v < t there is an enumeration o:{1,...,#I,} — I, C{l,.., s}, such that

Ko (3) Ko(s—1)
yees o

€5(2) = €5(1)X D), €g(3) = Eg(3)X y€o(s) = Eo(s—1)X

Condition B with a = 1 happens only if the lifted C4-action in the generic fibre has an eigenvalue
equal to 1 for the generator T of Cg.

Proof. The above theorem is actually the proposition and we prove it in part @ O

The idea of this, is that indecomposable k[G]-modules in the decomposition of H?(X, Qx) of the spe-
cial fibre, should be combined together in order to give indecomposable modules in the decomposition
of holomorphic differentials of the relative curve.

We will have the following strategy. We will consider a HKG-cover

G
XZ—sP ——=P!

Cq Cm

of the G-action. This has a cyclic subcover X — P! with Galois group C4. We lift this cover using
Oort’s conjecture for C4-groups to a cover 2~ — Spec/A. This gives rise to a representation

p:G — GLHY(X,Qx), (3.1)

together with a lifting
GLH(2", Q4 /0) = GLg(A) (8.2)

/ imodm/\
Cq = GLH (X, Qx) = GLg4(k)

of the representation of the cyclic part C4 of G. We then lift, checking the conditions of theorem
the linear action of eq. (8.1) in characteristic zero in a such a way that the restriction to the Cq
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group is our initial lifting of the representation of the C4 subgroup coming from the lifting assured
by Oort’s conjecture given in eq. (8.2). Notice that the lifting of the cyclic group acting on a curve of
characteristic zero in the generic fibre has the additional property that every eigenvalue of a generator
of C4 is different than one, see eq. . Then using theorem E we will modify the initial lifting 2
to a lifting 2"’ so that 2"/ is acted on by G.

Notice that m = 2, that is for the case of dihedral groups D of order 2q, there is no need to pair two
indecomposable k[D4]-modules together in order to lift them into an indecomposable R[D4]-module.
The sets I, can be singletons and the conditions of theorem are trivially satisfied. For example,
condition B does not give any information since every integer is either odd or even. This means
that the linear representations always lift.

In our geometric setting on the other hand, we know that in the generic fibre cyclic actions do
not have identity eigenvalues, see proposition . This means that we have to consider lifts
that satisfy B with a = 0. Therefore, indecomposable modules for G = C4 x C; = Dq of odd
dimmension d; should find an other indecomposable module of odd dimension d, in order lift to
an R[G]-indecomposable module of even dimension d; + d;. Moreover this dimension should satisfy
d; + d2 < q. If we also take care of the condition B we arrive at the following

Criterion 3.1.4. The HKG-curve with action of D lifts in characteristic zero if and only if all inde-
composable summands V, (e, d), where € € {0,1} and 1 < d < q" with d odd have a pair V(e’,d’), with
€’ €{0,1} —{e}and d’ odd and d + d’ < q". Notice that since, d,d’ are both odd we have

/ i
Vule,d) =Uera—imodz,a = Ue,a, Vale',d") =Uerra/—imod2,a’ = Uer,a-

The indecomposable modules given above will be called complementary. We will apply this criterion
for complementary modules in the U, 4-notation.

In section @ we will show that given a lifting 2" of the C,4 action using Oort conjecture, and a
lifting of the linear representation satisfying criterion the lift 2" can be modified to a lift 2"/,
which lifts the action of D4. In order to apply this idea we need a detailed study of the direct k[G]-
summands of H(X, Qx), for G = Cq x Cy,. This is considered in section @ where we employ the joint
work of F. Bleher and T. Chinburg and A. Kontogeorgis [11], in order to compute the decomposition of
H°(X, Qx) into indecomposable kG-modules, in terms of the ramification filtration of the local action.

Then the lifting criterion of theorem m is applied. Our method gives rise to an algorithm which
takes as input a group Cq x Cy,,, with a given sequence of lower jumps and decides whether the action
lifts to characteristic zero.

In section we give an example of an Ci35 x C4 HKG-curve which does not lift and then we
restrict ourselves to the case of dihedral groups. The possible ramification filtrations for local actions
of the group C4 x C;,, were computed in the work of A. Obus and R. Pries in [62]. We focus on the
case of dihedral groups D4 with lower jumps

p28+1
p+1

be =wp ,0<f<h—1. (3.3)
For the values wy = 9 we show in this section that the local action does not lift, providing a counterex-
ample to the conjecture that the KGB-obstruction is the only obstruction to the local lifting problem.

Finally, in section @ we prove that the jumps of eq. (3.3) for the value wy = 1lift in characteristic
zero. This result is a special case of the result of A. Obus in [61], Th. 8.7] proved by completely different
methods.

We also have developed a program in sage [74] in order to compute the decomposition of H’(X, Qx)
into intecomposable summands, which is freely availablefl.

In the last chapter of the first part we will study metacyclic groups G = Cq x Cn, where q = p" is
a power of the characteristic and m € N, (m,p) = 1. Let T be a generator of the cyclic group C4 and o
be a generator of the cyclic group Cy,.

The group G is given in terms of generators and relations as follows:

G= (o1t =1,0™=1,0t0 ! =1%), (3.4)

h

for some x € N,1 < a <p"*—1,(x,p) = 1. The integer « satisfies the following congruence:

a™ =1 modq (3.5)

1 https://www.dropbox.com/sh/uo0dg9110vuqulr/AACarhRxsru zulp5ogLvyébva’dl=@€
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as one sees by computing T = c™to~™ = 1*". Also the « can be seen as an element in the finite field
F,, and it is a (p — 1)-th root of unity, not necessarily primitive. In particular the following holds:

Lemma 3.1.4.1. Let (,, be a fixed primitive m-th root of unity. There is a natural number aq,
0 < ap < m—1 such that & = ¢%°.

Proof. The integer « if we see it as an element in k is an element in the finite field F,, C k, therefore
P! =1asanelementinF,. Let ord, (x) be the order of « in F}. By eq. @ we have that ord, («) [ p—1
and ord, («) | m, that is ord, () | (p — 1, m).

The primitive m-th root of unity (,, generates a finite field F,,((,n) = Fp,~ for some integer v, which
has cyclic multiplicative group F,~\{0} containing both the cyclic groups ((m) and (o). Since for every
divisor 6 of the order of a cyclic group C there is a unique subgroup C’ < C of order  we have that

& € ({m), and the result follows. O
Remark 3.1.5. For the case C4 x C;,, the KGB-obstruction vanishes if and only if the first lower jump
h satisfies h = —1 modm. For this to happen the conjugation action of C,, on C4 has to be faithful,
see [69, prop. 5.9]. Also notice that by [62, th. 1.1], that if ug,uy,...,up_; is the sequence upper
ramification jumps for the C, subgroup, then the condition h = —1 modm, then all upper jumps
u; = —1 modm. In remark [3.2.2 we will explain the necessity of the KGB-obstruction in terms of the
action of C,,, on the fixed horizontal divisor of the C group.

3.2 Deformation of covers

3.2a Splitting the branch locus

Consider a deformation 2" — SpecA of the curve X together with the action of G. Denote by T = p(1) a
lift of the action of the element t € Aut(X). Weierstrass preparation theorem [[13, prop. VIIL.6] implies
that:

T(T) =T = g=(Tux(T),

where g:(T) is a distinguished Weierstrass polynomial of degree m + 1 and uz(T) is a unit in R[[T]].

The polynomial g+(T) gives rise to a horizontal divisor that corresponds to the fixed points of 7.
This horizontal divisor might not be irreducible. The branch divisor corresponds to the union of the
fixed points of any element in G;(P). Next lemma gives an alternative definition of a horizontal branch
divisor for the relative curves 2~ — 2 S, that works even when G is not a cyclic group.

Lemma 3.2.0.1. Let 2" — SpecA be an A-curve, admitting a fibrewise action of the finite group
G, where A is a Noetherian local ring. Let S = SpecA, and Q 4 /s, Q4 /s be the sheaves of relative
differentials of 2" over S and # over S, respectively. Let m: 2" — % be the quotient map. The
sheaf

Z(—Dyg,9) = QEL}/S ®s T Qg s

is the ideal sheaf of the horizontal Cartier divisor D 4,4 . The intersection of D 4,4 with the special
and generic fibre of 2 gives the ordinary branch divisors for curves.

Proof. We will first prove that the above defined divisor D 4,5 is indeed an effective Cartier divisor.
According to [45, Cor. 1.1.5.2] it is enough to prove that

* Dy 4 is a closed subscheme which is flat over S.

e for all geometric points Speck — S of S, the closed subscheme D 4 ,» ®s k of 2” ®s k is a Cartier
divisor in 2" ®s k/k.

In our case the special fibre is a nonsingular curve. Since the base is a local ring and the special
fibre is nonsingular, the deformation 2" — SpecA is smooth. (See the remark after the definition 3.35
p-142 in [65]). The smoothness of the curves 2° — S, and % — S, implies that the sheaves Q 4,5 and
Q o s are S-flat, [55, cor. 2.6 p.222].

On the other hand the sheaf Qg speca is by [45, Prop. 1.1.5.1] O -flat. Therefore, 7 (Qw speca)
is O g -flat and SpecA-flat [36, Prop. 9.2]. Finally, observe that the intersection with the special and
generic fibre is the ordinary branch divisor for curves according to [36, IV p.301]. O
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For a curve X and a branch point P of X we will denote by ig p the order function of the filtration
of G at P. The Artin representation of the group G is defined by arp(o) = —fpig,p(0) for o # 1 and
arp(l) = fp ) . 21 ig,p(0o) [72, VI.2]. We are going to use the Artin representation at both the special
and generic fibre. In the special fibre we always have fp = 1 since the field k is algebraically closed.
The field of quotients of A should not be algebraically closed therefore a fixed point there might have
fp > 1. The integer ig p(0) is equal to the multiplicity of P x P in the intersection of A.T; in the relative
A-surface 2" Xgpeca £, Where A is the diagonal and I'; is the graph of o [72, p. 105].

Since the diagonals A, A, and the graphs of ¢ in the special and generic fibres respectively of
2 Xspeca £ are algebraically equivalent divisors we have:

Proposition 3.2.0.1. Assume that A is an integral domain, and let 2" — SpecA be a deformation
of X. Let P;, i = 1,---,s be the horizontal branch divisors that intersect at the special fibre, at
point P, and let P; be the corresponding points on the generic fibre. For the Artin representations
attached to the points P, P; we have:

arp(o) = Z arp, (0). (3.6)
i=1

This generalizes a result of J. Bertin [8]. Moreover if we set ¢ = 1 to the above formula we obtain a
relation for the valuations of the differents in the special and the generic fibre, since the value of the
Artin’s representation at 1 is the valuation of the different [72, prop. 4.IV,prop. 4.VI]. This observetion
is equivalent to claim 3.2 in [29] and is one direction of a local criterion for good reduction theorem
proved in [29, 3.4], [44], sec. 5].

3.2b The Artin representation on the generic fibre

We can assume that after a base change of the family 2~ — Spec(A) the points P; at the generic fibre
have degree 1. Observe also that at the generic fibre the Artin representation can be computed as

follows: ¢
_J 1ifo(Q)=Q,
arqlo) = { 0if o(Q) # Q.
The set of points S :={Py, ..., P} that are the intersections of the ramification divisor and the generic

fibre are acted on by the group G.
We will now restrict our attention to the case of a cyclic group H = C, of order q. Let Sy be the
subset of S fixed by C,n«, i.e.

P € Sy if and only if H(P) = C,n—«.

Let sy be the order of Si. Observe that since for a point Q in the generic fibre ¢(Q) and Q have the
same stabilizers (in general they are conjugate, but here H is abelian) the sets Sy are acted on by H.
Therefore #S, =: s, = p*ix where iy is the number of orbits of the action of H on Sy.

Let by, by,...,bn_1 be the jumps in the lower ramification filtration. Observe that

H: — Cphfk for0<k<h—1
e {1} for k > h.

An element in Hy, fixes only elements in S with stabilizers that contain Hy, . So Hy, fixes only Sg, Hy,
fixes both Sy and S; and Hy, fixes all elements in Sy, S4, . .., Sk. By definition of the Artin representation
an element o in Hy, — Gy, ,, satisfies arp(o) = by + 1 and by using equation (@] we arive at

br +1 =1 +pis + -+ p~ik.

Remark 3.2.1. This gives us a geometric interpretation of the Hasse-Arf theorem, which states that
for the cyclic p-group of order q = p", the lower ramification filtration is given by

Ho=Hi = =Hp, 2 Hpgt1 = =Hp, 2 Hp,41 =" =Hp, , 2 {1},
i.e. the jumps of the ramification filtration appear at the integers by, ...,bn_1. Then

bk +1=1p+ip +ip?+ - +p" (3.7)
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Figure 3.1: The horizontal Ramification divisor
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The set of horizontal branch divisors is illustrated in figure . Notice that the group C,, acts on
the set of ramification points of H = C4 on the special fibre but it can’t fix any of them since there are
already fixed by a subgroup of C4 and if a branch point P of C4; was also fixed by an element of C,,
then the isotropy subgroup of P could not be cyclic. This proves that m divides the numbers of all
orbits ig,...,in_1.

Remark 3.2.2. In this way we can recover the necessity of the KGB-obstruction since by eq. (@]
the upper ramification jumps are ip — 1,ig+1; —1,...,ig+ -+ + i1 — 1.

The Galois cover X — X/G breaks into two covers X — X« and X¢¢ — C€. The genus of CC is zero
by assumption and in the cover X¢4« — CC there are exactly two ramified points with ramification
indices m. An application of the Riemann-Hurwitz formula shows that the genus of X4 is zero as
well.

The genus of the curve X can be computed either by the Riemann-Hurwitz formula in the special
fibre

n 1 -
g=1-7p +5;(|Gi|—1)
1
=1=p" + 5 ((bo+1)(p" = 1) + (b1 =bo)(p" " —1)

+ (ba—=b)(P" 2 = 1) 4+ (bn—bn 1) (p—1))
or by the Riemann-Hurwitz formula on the generic fibre:
1, . e . e
g=1-p"+ 3 (" =1 +upE™ " =1+ inap™ Hp 1)) (3.8)

Using eq. (@) we see that the two formulas for g give the same result as expected.
3.3 HKG-covers and their canonical ideal

Lemma 3.3.0.1. Consider the Harbater-Katz-Gabber curve corresponding to the local group ac-
tion Cq x Cr, where q = p" that is a power of the characteristic p. If one of the following conditions
holds:

*h>30orh=2p>3

* h =1 and the first jump iy in the ramification filtration for the cyclic group satisfies i, # 1
12
and q > T +1,
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I then the curve X has canonical ideal generated by quadratic polynomials.

Remark 3.3.1. Notice, that the missing cases in the above lemma which satisfy the KGB obstruction,
are all either cyclic, D3 or Dy, which are all known local Oort groups.

Proof. Using Petri’s Theorem [67] it is enough to prove that the curve X has genus g > 6 provided that
p or h is big enough. We will also prove that the curve X is not hyperelliptic nor trigonal.

Remark 3.3.2. Let us first recall that a cyclic group of order q = p" for h > 2 can not act on the
rational curve, see [79, thm 1]. Also let us recall that a cyclic group of order p can act on a rational
curve and in this case the first and only break in the ramification filtration is i, = 1. This latter case
is excluded.

Consider first the case p™* = p and iy # 1. In this case we compute the genus g of the HKG-curve
X using Riemann-Hurwitz formula:

2g =2-2mq+q(m—1)+qm—1+1iy(q—1),

where the contribution q(m — 1) is from the g-points above the unique tame ramified point, while
gm—1+41ip(q— 1) is the contribution of the wild ramified point. This implies that,

2g=(ip—1)(q—1),

therefore if iy > 2, it suffices to have q = p" > 13 and more generally it is enough to have q > i0131 +1
in order to ensure that g > 6.

For the case h > 2, we can write a stronger inequality based on Riemann-Hurwitz theorem as
(recall that iy = i; modp so ig — i1 = p)

29> (ip— D" =1+ (o —i)(p" " —=1) = p" —p, (3.9)

which implies that g > 6 for p > 3 or h > 3.

In order to prove that the curve is not hyperelliptic we observe that hyperelliptic curves have a
normal subgroup generated by the hyperelliptic involution j, so that X — X/(j) = P!. It is known that
the automorphism group of a hyperelliptic curve fits in the short exact sequence

1— () = Aut(X) > H—1, (3.10)

where H is a subgroup of PGL(2,k), see [[15]. If m is odd then the hyperelliptic involution is not an
element in C,,. If m is even, let o be a generator of the cyclic group of order m and T a generator of the
group C4. The involution o™/2 again can’t be the hyperelliptic involution. Indeed, the hyperelliptic
involution is central, while the conjugation action of ¢ on Tt is faithful that is ¢c™/?t6~™/2 # 1. In
this case G = C4 x Cy, is a subgroup of H which should act on the rational function field. By the
classification of such groups in [79, Th. 1] this is not possible. Thus X can’t be hyperelliptic.

We will prove now that the curve is not trigonal. Using Clifford’s theorem we can show [4, B-3
p-137] that a non-hyperelliptic curve of genus g > 5 cannot have two distinct g}. Notice that we have
already required the stronger condition g > 6. So if there is a gi, then this is unique. Moreover, the
g} gives rise to a map 7 : X — P! and every automorphism of the curve X fixes this map. Therefore,
we obtain a morphism ¢ : C4 ¥ C, = PGL;(k) and we arrive at the short exact sequence

1—kerp - CqxCpr - H—=1,

!

for some finite subgroup H of PGL(2, k). If ker¢ = {1}, then we have the tower of curves X Pt 5 pl,
where 7’ is a Galois cover with group C4 % C,,. This implies that X is a rational curve contradicting
remark . If kerd is a cyclic group of order 3, then we have that 3 | m and the tower X — P* . pt,
where 7 is a cyclic Galois cover of order 3 and 7’ is a Galois cover with group C4 x C,,,/3. As before

this contradicts remark and is not possible. O
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3.4 Invariant subspaces of vector spaces

The g x g symmetric matrices A4, ..., A, defining the quadratic canonical ideal of the curve X, define
a vector subspace of the vector space V of g x g symmetric matrices. By Oort conjecture, we know
that there are symmetric matrices A, ..., A, with entries in a local principal ideal domain R, which
reduce to the initial matrices Aq,.. S Ar. These matrices /5\1, ... ,AT correspond to the lifted relative

curve X. Moreover, the submodule V = (A;,...,A,) is left invariant under the action of a lifting p of
the representation p : Cq4 — GL4(k).

Proposition 3.4.0.1. Let g be the genus of the quotient curve X/H for a subgroup H of the auto-
morphism group of a curve X in characteristic zero. We have

J ifd=1
dim HO(X, Q@4HH = 5 .
X (2d—1)(G—1) + Y pex/a {d(l—e(}p])J ifd>1

Proof. See [28, eq. 2.2.3,2.2.4 p. 254]. O

Therefore, a generator of Cq acting on H°(X,Qx) has no identity eigenvalues and m should divide
g. This means that we have to consider liftings of indecomposable summands of the C,-module

HY(X, Qx), which satisfy condition B with a = 0. We now assume that condition B of
theorem can be fulfilled, so there is a lifting of the representation
GLg(R)

b
/ lmodmg

Cq % Cp ——> GLg4 (k)

satisfying condition, see also the discussion in the introduction after the statement of this theorem
after eq. ().

We have to show that we can modify the space V C Symg(R) to a space V' with the same reduction
V modulo mg so that V is C q @ Cn-invariant.

Consider the sum of the free modules

W =V+5(0)V+pc?)V+- -+ plc™HV c RN.

Observe that W is an R[C4 x Cn]-module and also it is a free submodule of RN and by the theory of
modules over local principal ideal domain there is a basis E;,...,En of RN such that

W:El@"’@Er@nar+lEr+lEB"’@T[QNEN7

where Eq,..., E, form a basis of V, while 7% +E, q,...,m*NEy form a basis of the kernel W; of the
reduction modulo mg. Since the reduction is compatible with the actions of p, p we have that W; is
an R[C4 x Cy]-module, while Vis just a C4-module. }

Let m be the R[C4]-equivariant projection map W = V @©g(c,)-modules W1 — Wi. Since m is an
invertible element of R, we can employ the proof of Mascke’s theorem in order to construct a module
V', which is R[C q % Ci] stable and reduces to V modulo mg, see also [}, 1.3 p.12]. Indeed, consider
the endomorphism 7 : W — W defined by

[

m—

plot)mp(o™ ).
0

_ 1
T=—
m

i=

We see that 7 is the identity on W, since 7 is the identity on W,;. Moreover V' := kert is both C q and
Cyn invariant and reduces to V modulo mg.

3.5 Galois module structure of holomorphic differentials, special fibre

Consider the group Cq x C;,,. Let T be a generator of C; and o a generator of C,. It is known that
Aut(Cq) = F}, x Q, for some abelian group Q. The representation ¥ : C;, — Aut(Cq) given by the action
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of Cyy on Cq4 is known to factor through a character x : Ciy — Fj,. The order of x divides p — 1 and

xP~1 =x~ P~V is the trivial one dimensional character. In our setting, using the definition of G given
in eq. (3.4) and lemma we have that the character x is defined by
x(0) =ax=(0 € Fp. (3.11)

For all i € Z, x' defines a simple k[C,,]-module of k dimension one, which we will denote by Syi. For
0 < £ < m—1 denote by S, the simple module on which ¢ acts as Cfn. Both SXi, S¢ can be seen as

k[Cq % Cyn]-modules using inflation. Finally for 0 < { < m — 1 we define x'(¢) € {0,1,...,m — 1} such
that S,:(¢) = S¢ ®x Syi. Using eq. (] we arrive at
Syi(e) = Setiao- (3.12)

There are q - m isomorphism classes of indecomposable k[C q X CJ-modules and are all uniserial,
i.e. the set of submodules are totally ordered by inclusion. An indecomposable k[Cq x Cn]-module U is
uniquely determined by its socle, which is the kernel of the action of t—1 on U, and its k-dimension.
ForO0<f{<m-1land1l < p < q, let Uy, be the indecomposable k[Cq x C,,] module with socle S,
and k-dimension p. Then U, is uniserial and its p ascending composition factors are the first p
composition factors of the sequence

Se, Sxfl((), Sx*2(€)7 ceey Sxf(pfz)(g),S@, Sxfl(@), SX72(€)’ ceey Sxf(p72)(z)

Lemma 3.5.0.1. There is the following relation between the two different notations for indecom-
posable modules:
Voc(}\7 K) = u()\Jrao(Kfl))mOdm,K)

In particular, for the case of dihedral groups D, we have the relation

ch(}\a K) = u7\+|<71mod2,|<~

Proof. Indeed, in the V4(A, k) notation we describe the action of ¢ on the generator e, by assuming
that oe = () ,e. We can then describe the action on every basis element e; = (t — 1)'"!e, using the
group relations

oei =o(t—1)"le=(t*—1)"loe = C;(T“ —1)tte

This allows us to prove, see lemma that
K
oey = ociflCﬁ1 + Z ayey
v=i+1
for some elements a, € k and in particular
oe, = o~ 100 .

Recall that the number « = ($¢ for some natural number ag, 0 < ap < m — 1, see also lemma .
In the U, « notation, p is the action on the one-dimensional socle which is the t-invariant element
e = (t—1)"le, i.e. o(e,) = (. Putting all this together we have

L=A-+ (k—1)ag modm.
In the case of dihedral group Dy, m =2 and a = —19, i.e. ap = 1, we have V4 (A, k) = Unjc—1mod2,x- O

Assume that X — P! is an HKG-cover with Galois group Cq x Cy,. The subgroup I generated by
the Sylow p-subgroups of the inertia groups of all closed points of X is equal to Cg.

Definition 3.5.0.1. In [11] for each 0 < j < q — 1 the divisor

D; = Z dy Y,

yep!

is defined, where the integers d, ; are given as follows. Let x be a point of X above y and consider
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the i-th ramification group I ; at x. The order of the inertia group at x is assumed to be p™*) and
t i(x) = h—n(x) is defined. In our work we will have HKG-covers, where n(x) = h, so i(x) = 0. We
will use this in order to simplify the notation in what follows.

Let by, by, ..., by_; be the jumps in the numbering of the lower ramification filtration subgroups
of I,. We define

h
1
dyj = | th_l(P —1+(p-1- al,t)blfl)
L
for all j > 0 with p-adic expansion
1

j= a1+ azgp+ oo+ anp"T

In particular D4_; = 0. Observe that d,; # 0 only for wildly ramified branch points.

Remark 3.5.1. For a divisor D on a curve Y define Qy (D) = Qy ® Oy (D). In particular for Y = P!, and
for D = Dj = dp_ P, where Dj is a divisor supported at the infinity point P, we have

HO (P, Qp1 (Dj)) = {f(x)dx : 0 < deg f(x) < dp, ; — 2}.

For the sake of simplicity, we will denote dp_ ; by d;. The space H%(P!, Qp (Dj)) has a basis given by B =
{dx,xdx,...,x%~2dx}. Therefore, the number n;, of simple modules appearing in the decomposition
Qp1(Dj) isomorphic to S¢ for 0 < ¢ < m, is equal to the number of monomials x¥ with

v={—1modm,0<v<dj—2.
If d; < 1then B = ¢ and nj,e = 0for all 0 < £ < m. If d; > 1, then we know that in the d; — 1 elements of
the basis B, the first m {%J elements contribute to every representative modulo m. Thus, we have

at least % elements in isomorphic to S, for every 0 < { < m. We will now count the rest elements,
of the form {x¥dx}, where

di—1 —
m\‘ )m J <v<dj—2andv={—1modm,
where { — 1 is the unique integer in {0, 1,..., m — 1} equivalent to { — 1 modulo m. We observe that the
number y;({) of such elements v is given by

y;(0) = o

1 HT-T<d—2-m |4
0 otherwise

Therefore

A2y i >
Ny = .

For example if d; = 9 and m = 3, then a basis for H°(P!, Qp:1 (9P)) is given by {dx, xdx, x?dx, ... x"dx]}.
This basis has 8 elements, and each triple {dx,xdx, x?dx}, {x3dx, x*dx,x’dx} contributes one to each
class Sg,S1,S2, while there are two remaining basis elements {x°dx,x"dx,}, which contribute one to
S1,S2. Notice that |§| =2and y(¢) =1 for £ =1,2.

In particular if m = 2, then n;, =0 if d; < 1 and for d; > 2 we have

% if d; = 1 mod2
$ 1 ift=0and dj = 0mod2 (3.13)

% if ¢ =1 and dj = 0 mod2

Ny =
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Lemma 3.5.1.1. Assume that d;_; =d; + 1. Then if d; > 2

1 ifdj_y=1mod2and (=0
or dj_; =0mod2 and { =1

0 ifdj1=1mod2and (=1
ordj_; =0mod2and { =0

Nj—1,0—Mje =

If d; <1, then

1 ifdj=1land{=1

{o if d; = 0 or (d; = 1 and ¢ = 0)
N1, —Mje =

Proof. Assume that d; > 2. We distinguish the following two cases, and we will use eq. ()
* dj_, is odd and d; is even. Then, if { =0

Ty_1,0— MNj¢ = %*%‘Fl:l
while nj_; ¢ —ny=0if £ = 1.
* dj_, is even and d; is odd. Then, if { =0
dj_q 717dj—1 B
2 2

Nj—1,0 —Nje =
while nj_1¢—Nje=1 if £ =0.

Ifnow d; =0and dj_; =1, thennj_; ¢ —n;j ¢ =0. If d =1 and dj_; = 2 then n; ¢ = 0 while nj_; ¢ = 0 if
{=0and 1,0 = 1if€=1.
O

Theorem 3.5.2. Let M = H(X, Qx), let T be the generator of Cq, and for all 0 < j < q we define M)
to be the kernel of the action of k[Cq](t—1)). For0 < a<m-—1land1<b < q=p" letn(a,b) be the
number of indecomposable direct k[C4 x C;,,]-module summands of M that are isomorphic to Ug 3.
Let n;(a,b) be the number of indecomposable direct k[C,,,]-summands of M(®)/M(~1) with socle
Sy—(v-1)(q) and dimension 1. Let ns(a,b) be the number of indecomposable direct k[C,,,]-module

summands of M(®**1)/M(®) with socle S, v (,). Where we set ny(a,b) =0if b = q.
n(a, b) = Tll((l, b) - TIQ(CL, b)
The numbers n;(a,b),n2(a,b) can be computed using the isomorphism

where Y = X/C, and Dj are the divisors on Y, given in definition .

Proof. This theorem is proved in [[11], see remark 4.4. O

Corolarry 3.5.2.1. Set d; = L%, Shopvtp—14+(p—1-— al,t)bl,l)J . The numbersn(a,b),n;(a,b)
and ns(a,b) are given by

n(a,b) =ny(a,b) —ns(a,b) =np_1,a —Nb,a-

Proof. We will treat the n,(a, b) case and the ns(a, b) follows similarly. By the equivariant isomorphism
for M = H%(X, Qx) we have that

M /MO 2§ ) oy HO(BY, Qg (D).



46 - A new obstruction to the local lifting problem

The number of idecomposable k[C,,]-summands of M®)/M(*~1) jsomorphic to S, v-1)(a) = Sa_(b—1)aq
equals to the number of idecomposable k[C,,]-summands of H (P!, Qp: (D;)) isomorphic to S, which
is computed in remark . O

In [62, Th. 1.1] A. Obus and R. Pries described the upper jumps in the ramification filtration of
Cpn x Ciy-covers.

Theorem 3.5.3. Let G = C,n x Cry, where p f m. Let m’ = [Centg(0)|/p", where (1) = Cpn.
A sequence u; < ---u, of rational numbers occurs as the set of positive breaks in the upper
numbering of the ramification filtration of a G-Galois extension of k((t)) if and only if:

@ uie LNfor1<igh
(i) ged(m, muy) =m’
(iii) p t mu; and for 1 < i < h, either u; = pu;_; or both u; > pu;—; and p { mu;.

(iv) mu; = mu; modm for 1 <i< n.

Notice that in our setting Centg(t) = (7), therefore m’ = 1. Also the set of upper jumps of C, is given
by wi = muq,...,wp = mup,w; €N, see [62, lemma 3.5].

The theorem of Hasse-Arf [72, p. 77] applied for cyclic groups, implies that there are strictly
positive integers 19, t1, ..., th—1 such that

s—1
bS:ZLVp", for0<s<h-1
v=0

Also, the upper jumps for the C4 extension are given by
Wo :io—l,wl :io+il—1,...7wh :10+11—|—+uh—1 (314]
Assume that for all 0 < v < h—1 we have w, = pw,_;. Equation () implies that

i1 = (p— Dwo, iz = (p— Dpwo,iz = (p — p*wo, ..., un—1 = (p — 1)p™ *wy.
Therefore,
i
be+1= Z ivpY
v=0

=1+wo+(p—LDwo-p+(p—Lpwo-p”---+ (p—1)p* 'y - p
£—1

2871
=1+up+plp—Duo [ Y p™ | =1+ wo+pp—Lwe’
v=0 p —1
2¢ 20+1
pt—1 P +1
=1+wg +pw =1+wp——
oTPpP Op+1 0 S

where we have used that wy = by =iy — 1.

3.5a Examples of local actions that don’t lift

Consider the curve with lower jumps 1, 21, 521 and higer jumps 1, 5, 25, acted on by C;25 x C4. According
to eq. (@), the only possible values for « are 1,57,68,124. The value « = 1 gives rise to a cyclic group
G, while the value « = 124 has order 2 modulo 125. The values 57,68 have order 4 modulo 125. The
cyclic group F} is generated by the primitive root 2 of order 4. We have that 57 = 2 mod5, while
68 = 3 = 22 mod5.

Using corollary together with remark we have that H°(X, Qx) is decomposed into the
following indecomposable modules, each one appearing with multiplicity one:

Uo,5, Uz 11, Us 17, Uy 23, Ug 29, U3 35, Uz 41, Ug 47, Ug 53, U3 59,
Uz 65, Ug, 71, Up, 77, U3z g3, U289, U1 95, Ug, 101, U3, 107, U2,113, U1 119
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We have that 119 = 3 mod4 so the module U, ;;9 can not be lifted by itself. Also it can’t be paired with
Up 5 since 11945 = 4 # 1 mod4. All other modules have dimension d such that d+119 > 125. Therefore,
the representation of H°(G, Qx) cannot be lifted. Notice that this example has non-vanishing KGB
obstruction, so our criterion does not give something new here.

The case of dihedral groups, in which the KGB-obstruction is always vanishing, is more difficult
to find an example that does not lift. We have the following example.

The HKG-curve with lower jumps 9,9 - 21 = 189,9 - 521 = 4689 has genus 11656 and the following
modules appear in its decomposition, each one appearing with multiplicity one:

Ug,1, Up,1, Ug,2, Up 2, Uy 3, Ug g, Uy 4, Ug s, Ug 6, Ug.7, Ui 7, Up g, Uy g, Ug g,
Uy 9, Up,11, Ui,11, Ug12, Ug 12, Ug 13, Ui 13, Ug 14, Ui 15, U 16, Uo,17, Ui 17,
Uo,18, Ui,18, Ug,19, U119, Ug 21, Ui 21, Ug 22, U1 22, Ug 23, Uy 23, U 24, U 25,
Uy 26, Up,27, Uy 27, Ug 28, U1 28, Ug 29, Ui 29, Ug 31, Uy 31, Ug 32, U1 32, Ug 33,
Uog,34, Uy 34, Uy 35, Ug 36, Uo, 37, U1 37, Ug 38, U1 38, Up 39, U1 39, Ug 41, Uy 41,
Uog a2, Uy 42, Ug.a3, Uy a3, Uq 44, Uo a5, Ug a6, U1 46, U147, Ug ag, U1 48, Up 49,
Uy 49, Up 51, Ui 51, Ug 52, U1 52, Uo 53, Ug 54, U1 54, U1 55, Ug 56, Uo 57, U1 57,
Uo,58, U1 58, Ug 59, U1 59, Ug 61, Ur,61, Uo,62, U162, Uo 63, U163, U164, Uo,e5,
Uog,66, U1,66, U167, U 68, U168, Uo,69, Ui 69, Uo 71, U 71, Ug 72, Uq 72, Ug 73,
Uy 73, Up,74, Uy 75, Ug 76, Uo, 77, Uy 77, Ug 78, U1 78, Uo, 79, U1 79, Ug 81, U1 81,
Uog,g2, Uy 82, Ug,.83, U1 83, U1 84, Ug 85, Ui 86, Up 87, U1 87, Ug 88, U188, Up 89,
Uy 89, Up,01, U191, Ug 92, U1 92, Ug,93, Ui 93, Ug 94, U1 95, Ug 96, U196, Uo,97,
Uog,98, U1,08, Uo,99, U1 99, Up 101, U1,101, Uo, 102, U1,102, U1,103, Uo,1045 U1,104,
Uo, 105, U1,106, Uo,107, U1,107, Uo, 108, U1,108, Uo,100, U1,100, Uo, 111, U1,111,
Uog,112, Ug,112, Uo 113, U113, Uo 114, Ui 115, Uo, 1165 Ui 116, o117, Uo, 118,

Uy 118, Uo, 119, Uy 119, Ug 121, g 121, Ug 122, Ug 122, U 123, Up 123, Ug 124,

The above formulas were computed using Sage 9.8 [74]. In order to be completely sure that are correct
we will compute the values we need by hand also. We have

dj = 515 (5°(44 (4—a1)9) +5(4 + (4 — a2)189) + (4 + (4 — a3)4689))J
— | L (23560 — 2250, — 9450, 4689a3)J
| 125
j | p—adic 4 N0 | N1 | Nj—1,0 =Ny | Nj—1,1 — Ny,1
0 | 0,0,0 |[2350]=188] 93 | 94 — —
1 | 1,0,0 | [235]=186| 92 | 93 1 1
2 | 1,0,0 | [2EFE%]=184] 91 | 92 1 1
3 | 1,0,0 | [%585]=183| 91 | 91 0 1
4 | 1,0,0 | |80 =181| 90 | 90 1 1
5 | 0,1,0 | %82 =180| 89 | 90 1 0
6 (22590 — 179 | 89 | 89 0 1

1,1,0

120 | 0,4,4 |12 =

125 8 3 4
121 | 1,4,4 |2 =6 2 | 3 1 1
122 | 2,4,4 |52 =4 1 2 1 1
123 | 3,4,4 |32 =2 0 |1 1 1
124 | 4,4,4 122 =0 0|0 0 1

Notice that U, 123, U 123 can be paired with U, o, U, ;, and then for Ug 21, U; 121 there is only one
U; 3 to be paired with. The lift is not possible.

3.5b Examples of actions that lift

Our aim now is to prove the following
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Proposition 3.5.3.1. Assume that the first lower jump equals by = wy = 1 and each other lower

jump is given by

p2(’,+1 + 1
p+1

Then, the local action of the dihedral group D, lifts.

by = (3.15)

Remark 3.5.4. Notice that in this case if d;_; > d; then d;_; = d; + 1.

Remark 3.5.5. This set of upper jumps was constructed by assuming that wy = 1 and w, = pwy_;
for all 0 < w, < h— 1. Hence the above proposition is a special case of [6]], cor. 1.20], for m = 2.

Definition 3.5.5.1. For an integer j with p-adic expansion j = a; + axp + - -- + app"~! we define

h
B(j) = Z agbe_1p™ .
=1

Lemma 3.5.5.1. Write

j—l=p-1D+@E-Dp+-+p-1p 2+ap '+
j=(as+1)p> '+

where 1 < s < h is the smallest integer such that the corresponding coefficient a in the p-adic
expansion of j — 1 satisfies 0 < a; < p — 1. Then

B(j))—B(G—1) =p" . (3.16)
Proof. By definition of the function B(j) and using the values of b, from eq (), we have
B()) —B(j—1) =be_1p"* — (p = 1) (bop" " + -+ + bs_op" )

s—1

251 2v—1

p +1 hos h—vP +1

= — —1
TP (p—1)) p .

h—s

v=1

=P

Definition 3.5.5.2. We will call the element j of type s if all p-adic coefficients a = v in the p-adic
expansion of j for 1 < v < s—1 are p— 1, while a; is not p — 1. For example j — 1 in lemma
is of type s, while j is of type 1.

Proposition 3.5.5.1. Write 7i; = LT?J. Then,

T o— 7Tj71+1 lfJ:k(p+1)
) 1 otherwise

Also p"{B(j) forall 1 <j < ph—1.

Proof. Equation (3.1 ) implies that B(j) > B(j — 1) hence 7; > 7;_;. Write B(j) = mp™ +vj, 0 < v; < p"
for each 0 < j < p™ *. We observe first that

B(j) —B(i— 1) = (m — m_1)p™ + v —vj_1
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therefore

1 Vj—1 —Vj

mwm T = — - ——
j j—1 h
ps P

Notice that |v; —v;_| < p", thus |7ty — 7511 < 2. Since 7; > 7;_; we have either 7; = 7 or my = m_; + 1.
In the following table we present the change on B(j) after increasing j — 1 to j, where j — 1 has type

s, using lemma .

j B(j) Bl
0 0 0
1 pht 0
a=2,...,p—1 a;ph! 0
P (p—1)p" Tt +ph? 0
p + 2 ph _~_.phf2 _i_phfl 1
ptapa=3,...,p—1 PPN (@ — )pt 1
2p prA2p™ 2 4 (p —2)pn ! 1
2p +1 pr+2p" 2+ (p—1p! 1
2p +3 2ph 4 2ph—2 4 ph-! 2
2p + a 2p" +2p" 2 4 (a; — 2)ph! 2
3p 2p" +3p"2 4+ (p—3)ph! 2
(p—1p (p—2)p" + (p—Dp" 2 +ph! p—2
P—D+(p—1)p (p—1pM+(p—1)ph? p—1
p? (p—1p"+(p—Dp" 2 +p"? p—1
(p—1) +p? P—Up"+p—Dp" > +p" P+ (p—1p" | p—1
phtl 4 phe3 @
1+p+p? phHl 4 ph=1 4 ph=3 P

Indeed, if the type of j — 1 is s = 1 then B(j) = B(j — 1) + p"~!, therefore 7; = 7;_;. It is clear from the
above table that m; = m;_; + 1 at j = kp + k, for 1 < k < p. These integers are put in a box in the table
above.
We will prove the result in full generality by induction. Observe that if j — 1 is of type s, and
7, =m_1 + 1, then B(j) = B(j — 1) + p"* and moreover
Bl—1D)=(p—-Dp" '+ (p-1p"*+ -+ (p-Dp " +m_1p" +u
B(j) = ph + 7Tj,1ph +u

for some
h—s—1

u=w—(p—Dp" "+ (p—p T (p— 1P = Y v,
v=0

for some integers 0 <vyy <p,0<v<h—s—1. Set T =m_;p" +u. Assume by induction that this jump
occurs at j = k(p+1). We will prove that the next jump will occur atj =k(p+1)+(p+1) = (k+1)(p+1).
Indeed, j has the zero p-adic coefficient ay equal to 0, so it is of type 1 and we have
B(j+1)=B() +p" ' +T (3.17)
B(j+2)=B()+2p" 1+ T

B(j+(p—1)=B()+(p—1)p " "+T  «— type2
Bi+p)=BG) +(p—1p* " +p" 24T
BGj+p+1) =BG +ph+T+p 2

Therefore, 71j = 1 = -+ = M1 p < Mo (p41) = T + 1, i.e. the desired result.



50 - A new obstruction to the local lifting problem

In order to prove that p™ { B(j) we observe first that all values of B(j) given in the table are not
divisible by p The result can be proved by induction. Indeed, we can assume that B(j) is not
divisible by p" and then we add p"~!. Therefore all values in equation (] when divided by p" have
non-zero residue either vp"—! +u for v — L...,(p—1) orp"h 2+ O

Theorem 3.5.6. Assume that wy = 1, and the jumps of the C, action are as in proposition .
Then each direct summand U(e,j) of H°(X, Qx) has a compatible pair according to criterion 3.1.4,

which is given by

U(e’,p™ —1—j) if h is odd
U(e/,p" —p —j) if h is even

Proof. For every 1 <j < p*—1, setj = p" —1—j. For every 1 <j < p™— 1 write B(j) = mp"™ + vj,
0 < v; < p™. Recall that

" 1+B(p"—1)—B() "1+ B(j) —1+4v
o[PS R [0

Since v; # 0, we have that { 1;“" J = 0. Therefore, dj_; > d; if and only if 7; , > 75 that is

j+l=kp+1)=j=kp+1) -1 (3.18)
Observe now that if d;_; = d; + 1, that is j = k(p + 1) — 1, then
j=pt—1-j=p"—kip+1). (3.19)
¢ If h is odd, then by the right hand side of eq. () we have
j=p"—(1+p")+klp+1)=p"—K'(p+1)

for some integer k' = P;Tﬁl —k, since in this case p + 1 | p™* + 1. This proves that d;_, =d; +1, using

proposition , since both j,j are of the same form. Using ; = j we can assume that j < j. Then
dj — d; is the number of jumps between d;, d;, that is the number of elements x = ph—L(p+1)eN
of the form

j=p"—k(p+1) <ph—lx(p+1) <pt—K'(p+1)

that is k/ < 1, < k. This number equals k — k' = 2k —
odd.

which is odd since 11 = Zt;é(—p)v is

+1’

* If h is even, then we set j’ = p"* —p —j and using eq. (] we have

i’:phfpﬂ':p“*(p+Ph)+k(p+1) =p"—k'(p+1)

for some integer k' = p +1 —k, since in this case p+1 | p +p. As in the h odd case, this proves that
d_, =d; +1, u31r}g prop051t10n , since both j,j’ are of the same form. Again since j” = j we
can assume that j < j’. As in the odd h case, the difference d; — d is the number of jumps between

dj, dj/, which equals to 2k — P—E which is odd since £ L 5 +1+ ! is odd.

Observe that we have proved in both cases that d; is odd if and only if d; (resp. d;) is even. The change
of € to €’ follows by lemma [3.5.1.1, which implies that if we have the indecomposable summand
U(e, dj), where € € {0, 1}, then we also have U(e’ ) (resp. U(e’, d;-)) with €’ € {0,1}—{e} and dj+d; < gh
(resp. dj + d;j» < q™M), that is criterion - is satlsﬁed O
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Representations of metacyclic group






Chapter 4

The lifting of representations of a
metacyclic group

4.1 Introduction

The lifting problem for a representation
p:G — GLn(k),

where k is a field of characteristic p > 0, is about finding a local ring R of characteristic 0, with maximal
ideal my such that R/mg =k, so that the following diagram is commutative:

GLn(R)

]

G —— GLn (k)

Equivalently one asks if there is a free R-module V, which is also an R[G]-module such that V&g R/mg
is the k[G]-module corresponding to our initial representation. We know that projective k[G]-modules
lift in characteristic zero, [71], chap. 15], but for a general k[G]-module such a lifting is not always
possible, for example, see proposition . In the second part we study the lifting problem for
the group G = Cq x Cy, where Cq is a cyclic group of order p™ and C,, is a cyclic group of order
m, (p,m) = 1 and give necessary and sufficient condition in order to lift. We assume that the local
ring R contains the g-roots of unity and k is algebraically closed, and we might need to consider a
ramified extension of R, in order to ensure that certain g-roots of unit are distant in the mg-topology,
see remark . An example of such a ring R is the ring of Witt vectors W(k)[(4] with the g-roots of
unity adjoined to it.

We notice that a decomposable R[G]-module V gives rise to a decomposable R-module modulo mg
and also an indecomposable R[G]-module can break in the reduction modulo mg into a direct sum
of indecomposable k[G]-summands. We also give a classification of k[C4 x C,]-modules in terms of
Jordan decomposition and give the relation with the more usual uniserial description in terms of their
socle [[1]].

Our interest to this problem comes from the problem of lifting local actions. The local lifting
problem considers the following question: Does there exist an extension A/W(k), and a representation

p:G — Aut(A[[T]]),

such that if t is the reduction of T, then the action of G on A[[T]] reduces to the action of G on k|[[t]]?

If the answer to the above question is positive, then we say that the G-action lifts to characteristic
zero. A group G for which every local G-action on k[[t]] lifts to characteristic zero is called a local Oort
group for k. Notice that cyclic groups are always local Oort groups. This result was known as the
“Oort conjecture”, which was recently proved by F. Pop [66] using the work of A. Obus and S. Wewers
[63].

There are a lot of obstructions that prevent a local action to lift in characteristic zero. Probably the
most important of these obstructions in the KGB-obstruction [20]. It is believed that this is the only
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obstruction for the local lifting problem, see [69], [61]. In theorem E we gave a criterion for the local
lifting, which involves the lifting of a linear representation of the same group. The case G = C4 x Cy,,
and especially the case of dihedral groups Dy = C4 x Cy, is a problem of current interest in the theory
of local liftings, see [61]], [23], [80]. For more details on the local lifting problem we refer to [19], [20],
[21], [B9].

Keep also in mind that the C4 x C,,, groups were important to the study of group actions in holo-
morphic differentials of curves defined over fields of positive characteristic p, where the group involved
has cyclic p-Sylow subgroup, see [11].

Let us now describe the method of proof. For understanding the splitting of indecomposable R[G]-
modules modulo mg, we develop a version of Jordan normal form in lemma for endomorphisms
T:V — V of order p", where V is a free module of rank d. We give a way to select this basis, by
selecting an initial suitable element E € V, see lemma . The normal form (as given in eq. (#.9))
of the element T of order ¢, determines the decomposition of the reduction. We show that for every
indecomposable summand V; of V, we can select E as an eigenvalue of the generator o of C,, and then
by forcing the relation I'T = T*T" to hold, we see how the action of ¢ can be extended recursivelly to an
action of o on V;, this is done in lemma . Proving that this gives indeed a well defined action
is a technical computation and is done in lemmata |4.5.4.E}l, |4.5.4.4, |4.5.4.ﬁ, |4.5.5. 1|, |4.5.5.q.

The important thing here is that the definition of the action of ¢ on E is the “initial condition”
of a dynamical system that determines the action of C,, on the indecomposable summand V;. The
R[C4 % Cyy] indecomposable module V; can break into a direct sum V(ey, ky)-modules 1 < v < s (for
a precise definition of them see definition , notice that k; denotes the dimension). The action
of 0 on each V4(ey.ky) can be uniquely determined by the action of o on an initial basis element as
shown in section , again by a “dynamical system” approach, where we need s initial conditions,
one for each V4 (e, ky). The lifting condition essentially means that the indecomposable summands
V« (€, k) of the special fibre, should be able to be rearranged in a suitable way, so that they can be
obtained as reductions of indecomposable R[C4 x C;,]-modules. The precise expression of our lifting
criterion is given in the following proposition:

Proposition 4.1.0.1. Consider a k[G]-module M which is decomposed as a direct sum
M = Voc(€17 K1) ® - ® V(€s, Ks).

The module lifts to an R[G]-module if and only if the set {1, ..., s} can be written as a disjoint union
of sets I,, 1 < v < t so that

a. ) e, ku<q foralll<v<t.
b. 3 1, kKu = amodm forall 1 <v < t, where a € {0,1}.
c. For each v, 1 < v < t there is an enumeration o:{1,...,#I,} = I, C {1, .., s}, such that

K"(s),.. Ko(s—1)

€5(2) = €c(1) X "M, €q(3) = €g(3) X .y €g(s) = €g(s—1)%

In the above proposition, each set I, corresponds to a collection of modules V4(e,, k), u € I, which
come as the reduction of an indecomposable R[C4 x C,,]-module V, of V.

4.2 Notation

Let T be a generator of the cyclic group C4 and o be a generator of the cyclic group C,,. The group G
is given in terms of generators and relations as follows:

1 — 1% for some x € N,1 < a <p" —1,(a,p) = 1).

G={o,tt9=1,0™ =1,0t0"
The integer « satisfies the following congruence:
a™ =1 modq 4.1)

as one sees by computing T = c™to™ = 1", Also the integer « can be seen as an element in the
finite field F,,, and it is a (p — 1)-th root of unity, not necessarily primitive. In particular the following
holds:
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Lemma 4.2.0.1. Let (,, € k be a fixed primitive m-th root of unity. There is a natural number a,,
0 < ap < m—1 such that o = ¢%°.

Proof. The integer « if we see it as an element in k is an element in the finite field F,, C k, therefore
oaP~! =1lasanelementinF,. Let ord,(«) be the order of « in Fy. By eq. () we have that ord, (o) | p—1
and ord, («) | m, that is ord, () | (p — 1, m).

The primitive m-th root of unity (,, generates a finite field F,, ({,n) = F,,~ for some integer v, which
has cyclic multiplicative group F,~\{0} containing both the cyclic groups () and (e). Since for every
divisor § of the order of a cyclic group C there is a unique subgroup C’ < C of order § we have that
& € ({m), and the result follows. O

Definition 4.2.0.1. For each p' | q we define ord,:« to be the smallest natural number o such
that «® = 1 modp'.

It is clear that for v e N
«¥ =1 modp' = «¥ =1 modp’ for all j < i.
Therefore
ordp; o | ord,: & forj < i.

t

On the other hand « € N and «” ! = 1 modp so ord,« | p — 1. Also since o'to * = ™" we have that

«™ = 1 modp", therefore ord,a | ord, i | ord,nex | m, for 1 <i< h.

Lemma 4.2.0.2. The center Centg (1) = (1, 0> %" *). Moreover

|Centg(T)] m —m
ph  ordpn(a)
Proof. The result follows by observing (tVot)t(tvot) ™! = " forall1 < v < g, 1<t<<m. O

Remark 4.2.1. If ord, & = m then ordpioc =mforalll <i<h.

Lemma 4.2.1.1. If the group G = C4 x C,, is a subgroup of Aut(k[[t]]), then all orders ordpio =
m/m’, forall 1 <i<h.

Proof. We will use the notation of the book of J.P.Serre on local fields [[72]. By [62, Th.1.1b] we have

that the first gap iy in the lower ramification filtration of the cyclic group Cq satisfies (m,ip) = m'.

The ramification relation [72, prop. 9 p. 69]
a0, (T) = 05, (T%) = 05, (070 1) = 0p(0) 04, (1),
implies that 0y(0)* = o € N. From (m, i) = m’ and the fact that ordd,(c) = m we obtain

;=

I — ordBo(0) = ordp ().
m

Thus
m
— = ordpafordyiodordnoe = —.
m/’ m’

Hence all orders ord,:a = m/m’. O

Remark 4.2.2. If the KGB-obstruction vanishes and « # 1, then by [69][prop. 5.9] iy = —1 modm and
ordyix =m forall1 <i<h.
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4.3 Indecomposable C, x C,,odules, modular representation theory

In this section we will describe the indecomposable C4 x C,,-modules. We will give two methods in
studying them. The first one is needed since it is in accordance to the method we will give in order
to describe indecomposable R[C q X Cml-modules. The second one, using the structure of the socle, is
the standard method of describing k[C4 % Cy,]-modules in modular representation theory.

4.3a Linear algebra method.

The indecomposable modules of the C, are determined by the Jordan normal forms of the generator
T of the cyclic group Cq4. So for each 1 < k < p" there is exactly one C, indecomposable module
denoted by J.. Therefore we have the following decomposition of an indecomposable C4 x C,,,-module
M considered as a Cq-module.

M=], & & .. 4.2)

Lemma 4.3.0.1. In the indecomposable module |, for every element E such that
(t—Id ) 'E#0

the elements B = {E, (t — Id,)E, ..., (T — Id,)* 'E} form a basis of J. such that the matrix of T with
respect to this basis is given by

0 0
1 3
T=Ide+ |g -, °-. a0 4.3)
1 0
0 0 1 0

Proof. Since the set B has k-elements it is enough to prove that it consists of linear independent
elements. Indeed, consider a linear relation

ANE+A(T—Td)E+ -+ A1 (T—Id ) 'E=0.
By applying (t—1Id,)* ! we obtain A¢(t—1Id.)*~! = 0, which gives us A\ = 0. We then apply (t—1Id, )< 2

to the linear relation and by the same argument we obtain A; = 0 and we continue this way proving
that A\p = --- = A«_1 = 0. The matrix form of T in this basis is immediate. O

We will now prove that o acts on each J, of eq. [) proving that r = 1. Since the field k is algebraically

closed and (m,p) = 1 we know that there is a basis of M consisting of eigenvectors of 0. There
is an eigenvector E of o, which is not in the kernel of (t — Id)**~!. Then the elements of the set
B = {E, (t — Id\)E,..., (T — Id)** " 'E} are linearly independent and form a direct Cq summand of M

isomorphic to Jy, .
We will now show that this module is an k[Cq x C,]-module. For this, we have to show that the
generator o of C,, acts on the basis B. Observe that for every 0 <i < «; —1 < p"

olt—1"! = (* -1 1o

Set e = E; and k = ;. This means that the action of 0 on e determines the action of o on all other
basis elements e, = (t—1)¥"'e, 1 < v < k3.
Let us compute:
oeir1 =o(1—1)'e = (1% — 1)1Cﬁ1€

On the basis {ej,..., e, } the matrix 7 is given by eq. (@) hence using the binomial formula we
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compute
1 0 0
(5) 1
I R »

S sy M
(k) (kfl) e (2)
Thus 1* — 1 is a nilpotent matrix A = (ay;) of the form:

(fﬁ) ifj =1— p for some pu,1 < p <«
a;; =

YUlo ifjei
The (-th power A* = (ag)) of A is then computed by (keep in mind that ai; = 0 for i <)

(0 _ §
aij - Aivy Ovyvo Qvgvg 7 Oy

i<vi<-—-<ve_1<j

This means that i —j > { in order to have a;; # 0. Moreover for i = j 4+ { (which is the the first non zero
diagonal below the main diagonal) we have

e
& ¢
Qiite = 04 i+1Qi4+1,i+2 °° Qipe—1,i+0 = =

Therefore, the matrix of A is of the following form:
k—¢ ¢

——f ——
O -~ -+ 0 0 0
0 0 0 0
ol e 0 : (4.5)
* O(l :
0
* x of 0 0

Definition 4.3.0.1. We will denote by V. (A, k) the indecomposable k-dimensional G-module given
by the basis elements {(t —1)Ve,v =0,...,k — 1}, where oe = () e.

This definition is close to the notation used in [42].

Lemma 4.3.0.2. The action of ¢ on the basis element e; of V4 (A, k) is given by:

K
oe; = o 1N e + Z avey, (4.6)
v=i+1
for some coefficients a; € k. In particular the matrix of o with respect to the basis e;,...,e. is

lower triangular.
Proof. Recall that e; = (T — 1)'"'ey. Therefore
oei =o(t—1)"tey = (1 — 1) Loe = C%(T“ — 1)t ey,

The result follows by eq. (@) O
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We have constructed a set of indecomposable modules V, (A, k). Apparently V4(A, k) can not be
isomorphic to V4 (A’ k') if k # k’, since they have different dimensions.

Assume now that k = k’. Can the modules V, (A, k) and V4 (A’ k) be isomorphic for A # A’?

The eigenvalues of the prime to p generator o on V4 (A, k)are

[ TCA N L A
Similarly the eigenvalues for ¢ when acting on V, (A, k) are
ol T

If the two sets of eigenvalues are different then the modules can not be isomorphic. But even if
A # A modn the two sets of eigenvalues can still be equal. Even in this case the modules can not be
isomorphic.

Lemma 4.3.0.3. The modules V4 (A1, k) and V4(Aq, k) are isomorphic if and only if A; = A modm.

Proof. Indeed, the module V, (A, k) has an eigenvector for the action of o0 which generates the V, (A1, k)
by powers of (t— 1), i.e. the vectors

e, (tT—1e, (t—1)%,...,(t—1)<Tte 4.7
form a basis of V4 (A1, k).
The elements E which can generate V, (A1, k) by powers of (t — 1) are linear combinations
k—1
E=) M(t—1),
v=0
for A; € k and Ag # 0.
On the other hand using eq. (@] we see that o with respect to the basis given in eq. [@) admits
the matrix form:

C% 0 0
0 old 0 - 0
0 B 0] “Kflcﬁl

It is now easy to see from the above matrix that every eigenvector of the eigenvalue a“A;, v > 1 is

expressed as a linear combination of the basis given in eq. (@), where the coefficient of e is zero.
Therefore, the eigenvector of the eigenvalue «"(,, can not generate the module V, (A, k) by powers

of (o —1)". O

4.3b The uniserial description

We will now give an alternative description of the indecomposable C; x C,,,-modules, which is used
in [11]].

It is known that Aut(Cq) = F}; xQ, for some abelian p-group Q. The representation : Cr, — Aut(Cq)
given by the action of C;, on Cq4 is known to factor through a character x : Ci, — Fy,. The order of x
divides p — 1 and P! = x~ (=1 is the trivial one dimensional character.

For all i € Z, x* defines a simple k[C,,]-module of k dimension one, which we will denote by S,:.
For 0 < £ < m — 1 denote by S, the simple module where on which o acts as Cfn. Both S,:, §; can be
seen as k[C4 x C]-modules using inflation. Finally for 0 < £ < m — 1 we define x'(¢) € {0,1,...,m —1}
such that S, ¢) = S¢ ®x Sy

There are q - m isomorphism classes of indecomposable k[C q X CnJ-modules and are all uniserial.
An indecomposable k[C4 x Cyy]-module U is unique determined by its socle, which is the kernel of
the action of T — 1 on U, and its k-dimension. For 0 < { < m—1land 1 < p < q, let Uy, be the
indecomposable k[C q X C] module with socle S, and k-dimension p. Then U, , is uniserial and its p
ascending composition factors are the first p composition factors of the sequence

Sz, SX71(5)7SX*2(45)’ Ceey Sxf(pfz)(m,Se, SX—l(g),SX72(g)7 ey Sxf[p72)(2).

Notice that in our notation Vq(A, k) = Uxj i «.
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Remark 4.3.1. The condition ord,i =m for all 1 < i < h, is equivalent to requiring that {; : C;n, —
Aut(C,+) is faithful for all 1.

4.4 Lifting of representations

Proposition 4.4.0.1. Let G = C4 x C;;,. Assume that for all 1 <1i < h, ord,:a = m. If the G-module
V lifts to an R[G]-module V, where K = Quot(R) is a field of characterstic zero, then

m | (dim(V ®g K) — dim(V ®@g K)9) .

Moreover, if V(Cg‘i") is the eigenspace of the eigenvalue Cg‘”‘ of T acting on V, then

i

dim V(¢5) = dim V(¢&%) = dim V(&) = -+ - = dim V(3™ ).

Proof. Consider a lifting V of V. The generator 7 of the cyclic part C4 has eigenvalues A, ..., A which
are p"-roots of unity. Let (4 be a primitive q-root of unity. Consider any eigenvalue A # 1. It is of the
form A = (g for some k € N, q { . If E is an eigenvector of T corresponding to A, that is TE = (gE then

m—1

To 'E =0 IT%E = o8 o E

and we have a series of eigenvectors E, 0~ 'E, 07 2E, - - - with corresponding eigenvalues Car Cg%s Cg“z cee Cg"‘u ,
where o = ordg,(q,x). Indeed, the integer o satisfies the

q
(q,k)’

ka® = k modq = o™ =1 mod

Therefore the eigenvalues A # 1 form orbits of size m, while the eigenspace of the eigenvalue 1 is just
the invariant space VS and the result follows. O

4.5 Indecomposable C, x C,,odules, integral representation theory

From now on V be a free R-module, where R is an integral local principal ideal domain with maximal
ideal mg, R has characteristic zero and that R contains all g-th roots of unity and has characteristic
zero. Let K = Quot(R).

The indecomposable modules for a cyclic group both in the ordinary and in the modular case
are described by writing down the Jordan normal form of a generator of the cyclic group. Since in
integral representation theory there are infinitely many non-isomorphic indecomposable C,-modules
for g = p™, h > 3, one is not expecting to have a theory of Jordan normal forms even if one works over
complete local principal ideal domains [38], [39].

Lemma 4.5.0.1. Let T be an element of order q = p" in End(V), then the minimal polynomial of
T has simple eigenvalues and T is diagonalizable when seen as an element in End(V ® K).

Proof. Since T9 = Idy, the minimal polynomial of T divides x9 — 1, which has simple roots over a field
of characteristic zero. This ensures that T € End(V ® K) is diagonalizable. O

Lemma 4.5.0.2. Let f(x) = (x —A1)(x —A2) - - (x —Aq) be the minimal polynomial of T on V. There
is an element E € V, such that

E, (T —AIdv)E, (T —A2ldy ) (T — A Idv)E, ..., (T —Ag—1Idy) - - - (T — A Idv)E

are linear independent elements in V ® K.
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Proof. Consider the endomorphisms fori=1,...,d

d
M = [ J(T—AIdv).

v=1

v#L

In the above product notice that T — Ajldy, T — AjIldy are commuting endomorphisms. Since the
minimal polynomial of T has degree d all R-modules KerlT; are strictly less than V. Moreover there is
an element E such that E ¢ Ker(TT;) for all 1 <1 < d. Consider a relation

d o
Z H (T —AuIdy)E (4.8)
=0 v=0

where []°_ o(T—AIdv)E = E. We fist apply the operator [18_,(T — A Idy) to eq. (@] and we obtain
0 = voT E,

and by the selection of E we have that ap = 0. We now apply ]_[ 3(T—2AyIdy) to eq. [@) We obtain
that

d
0=v1 [ [(T=AIdy)(T —MIdy) = viTTE,
v=3
and by the selection of E we have that y; = 0. We now apply ]_[3:4(T —AvIdy) to eq. (@) and we

obtain
d

0 =72 [ [(T—=AvIdv)(T = Asldy)(T — A Idy JE = ,TT5E
v=4
and by the selection of E we obtain y; = 0. Continuing this way we finally arrive at yo =y, = -+ =
Ya—1 =0. O

Lemma 4.5.0.3. Let V be a free R-module of rank R acted on by an automorphism T:V — V of
order p". Assume that the minimal polynomial of T is of degree d and has roots A, ...,Aq. Then
T can be written as a matrix with respect to the basis as follows:

Ay 0 e o0
a; Aq :

0 as As . : (4.9)
- T . .0

0 -+ 0 ag-1 Ag

Proof. By lemma the elements

E, (T—MIdV)E, (T — Addy ) (T —MIdV)E, ..., (T —Ag—11dy) - - - (T —AIdv)E

form a free submodule of V of rank d. The theory of submodules of principal ideal domains, there is
a basis Eq,E,, ..., E4 of the free module V such that

E; =E, (4.10)
a1Ex = (T —AIdv)Ey,
axEs = (T — A2ldv)Ey,

as—1Eq = (T —Aq—11dv)Eq_1.

Let us consider the module V; = (E;,...,E4) C V. By construction, the map T restricts to an auto-
morphism V; — V; with respect to the basis E4,...,E4 has the desired form. We then consider the
free module V/V; and we repeat the procedure for the minimal polynomial of T, which again acts on
V/V:. The desired result follows. O
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Remark 4.5.1. The element T as defined in eq. (@) has order equal to the higher order of the
eigenvalues Aq,...,Aq involved. Indeed, since we have assumed that the eigenvalues are different
the matrix is diagonalizable in Quot(R) and has order equal to the maximal order of the eigenvalues
involved. In particular it has order q if there is at least one A; that is a primitive q-root of unity. The
statement about the order of T is not necessarily true if some of the eigenvalues are the same. For
instance the matrix G ?) has infinite order over a field of characteristic zero.
Remark 4.5.2. The number of indecomposable R[T]-summands of V is given by #{i: a; =0} + 1.

A lift of a sum of indecomposable kCq-modules ], @ --- @ J, can form an indecomposable RC-
module. For example the indecomposable module where the generator T of C4 has the form

Ay 0 e e 0
ap AQ :
T=10 a A
: . . . 0
0 0 as—1 }\d
where a; =--- =ag,-1 =1, A, EMR, Qg 415+, Ayt —1 = 1, Ag,4¢, € Mg, etc reduces to a decompos-

able direct sum of Jordan normal forms of sizes J«,,Jc,—«;, " " -

Remark 4.5.3. It is an interesting question to classify these matrices up to conjugation with a matrix
in GL4(R). It seems that the valuation of elements a; should also play a role.

Definition 4.5.3.1. Let hi(xi,...,%;) be the complete symmetric polynomial of degree i in the
variables x, ..., x;. For instance

ha(x1,%2,X3) = X§ + X3X2 + xix3 + X1%5 + X1X2X3 + X1X3 + X5 + X3X3 + X2X3 + X5.
Set
L(K,j,\/) = hK()\j7A)‘+1, ces ,)\]'Jr.v)

A(Lf) = QiQit1 e Qig lfJ >0
0 ifj <0

Lemma 4.5.3.1. The matrix T* = (tgx )) is given by the following formula:

Ax if i =j
) = {AGi—j— 1) Lla—(i—j),ji—j) ifj<i
0 ifj>1

Proof. For j > i the proof is trivial. When j < i and « = 1 it is immediate, since L(x,-,-) = 0, for every
x < 0. Assume this holds for x =n. f x =n +1,

Y =ty = Yt g =AY + gt = NAG - — D= (E—5),5,i— )+
k=1
+ A+ Li—j=2)l(a—(i—j—1),j+Li—j—1)=
:A(]al_]_l) ()\thx )()\]7 )+h (i— ]+1()\j+17~-~>Ai)):
:A(jai*jfl)hcx (17])+1(A]7~-~a}\i):
=A(,i—j—DLle—(i—j) +1,i,i—]).
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Remark 4.5.4. The space of homogeneous polynomials of degree k in n-variables has dimension
(™ 1*¢). Since all g-roots of unity are reduced to 1 modulo mg the quantity L(a — (i —j),j,i —j) is

(29=(63)

reducedton=(i—j)+1l,c=a—(i—j)
This equation is compatible with the computation of T* given in eq. (@].

Lemma 4.5.4.1. There is an eigenvector E of the generator o of the cyclic group C,,, which is not

S
an element in U Ker(TT; ® K).

i=1

Proof. The eigenvectors E;,...,E4 of o form a basis of the space V ® K. By multiplying by certain
elements in R, if necessary, we can assume that all E; are in V and their reductions E;®R/mg, 1 <i< d
give rise to a basis of eigenvectors of a generator of the cyclic group C,, acting on V ® R/mg. If every
eigenvector E; is an element of some Ker(TT,) for 1 < i < d, then their reductions will be elements in
Ker(T —1)4~!, a contradiction since the later kernel has dimension < d. O

Lemma 4.5.4.2. Let V be a free C; x C,,-module, which is indecomposable as a C4-module.
Consider the basis given in lemma . Then the value of o(E;) determines o(E;) for 2 <1i < d.

Proof. Let o be a generator of the cyclic group C,,. We will use the notation of lemma E.5.0.2. We use
lemma in order to select a suitable eigenvector of E; of o and then form the basis E;, Eo, ..., Eq4
as given in eq. (4.10). We can compute the action of o on all basis elements E; by

o(ai—1E;) = o(T = A1 Idv)Eiy = (T* = AiqIdv)o(Ei—1). (4.11)

This means that one can define recursively the action of o on all elements E;. Indeed, assume that

We now have

n,v
pn=1
d
=\ —AEv+ ) tE
pu=v+1

We combine all the above to

d d d
ai10(E) = ) vviaAS —Ac)Ev+ ) vvia ) tUE.
v=1

v=1 p=v+1

[
M=

?VJEV7 (4-12)
1

<
Il

for a selection of elements v, ; € R, which can be explicitly computed by collecting the coefficients of
the basis elements Eq, ..., Eq.

Observe that the quantity on the right hand side of eq. () must be divisible by a;_;. Indeed,
let v be the valuation of the local principal ideal domain R. Set

e = 1glil<1d{\’ﬁ/v,i)}~

SV
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If eg < v(a;_1) then we divide eq. () by m¢ where 7 is the local uniformizer of R, that is mg = nR.
We then consider the divided equation modulo my to obtain a linear dependence relation among the
elements E; ® k, which is a contradiction. Therefore e; > v(a;—;) and we obtain an equation

d d
Z v = Zyv,iEv
v=1 v=1

O
For example o(E;) = (5, E;. We compute that
a;0(Ez) = (T* —A;Id)o(Ey)
and
d ()
(7\“ ) tu 1
o(E2) = =GR+ G Z
(AY — A(lp—2)L(ax— (p—1),1,np—1)
= a Cfn Z a Eu
(}\10‘—)\1) d ajasg - au 1]’1 (p—1) ()\1,)\2,... Au)
= —C B+ Z ar |
n=2
Proposition 4.5.4.1. Assume that no element a, .. ad 1 given in eq. (@) is zero. Given « €

N, « > 1 and an element E;, which is not an element in U1 1 Ker(IT; ®K), if there is a matrix I' = (vij),
such that 'TIr! = T* and T'E; = ¢t Eq, then this matrix I' is unique.

Proof. We will use the idea leading to equation () replacing o with I'. We will compute recursively
and uniquely the entries v, ;, arriving at the explicit formula of eq. (].
Observe that trivially v, ; =0 for all v < 1 since we only allow 1 < v < d. We compute

n—1
Yii = VYwi—1 (AL —Aim1) + Z Yvio1tl) (4.13)

v=1
pn—1

= Yuwi 1T =A1) + D) Vv AV, p—v—DL{a—(r—V),v,p—)
v=1
p—1

=Yu,i— 10\ — A1 +Z’Yv1 10y Qyyq - ap—lhoc—p.—b—v(}\w}\v+17--~7}\p)

v=1

Define

for i <j. If i > j then both of the above quantities are defined to be equal to 1.
Observe that for p =1 eq. () becomes

1

1i—

Yii= Y1,i-1 (AT — A1) (4.14)

and we arrive at (assuming that I'(E;) = ¢, Eq)

& - ce, .
yii=—2— [ —A) = ——NF A (4.15)
a;ag---aj—1 i) ajas---ai_q
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For p > 2 we have vy, ; =0, since by assumption TE; = (5, E;. Therefore eq. () gives us

i—2 D\o( 1 1 —
1 K —1
Yui= Z [ ]1 1 —T Z Yuz,i—1—k1 ]ﬁz h“—u‘ﬂlz (}\lev s 7}\1)
K1=0 ali1- K1 pa=1
n—1 i—2 [AO(_ —A ]i—l
-1 [ Xli—x
= Z [Cl]ﬁz Roprps Augs -5 An) Z lem,iflﬂq-
pno=1 K1=0 i1«

We will now prove eq. () by induction on i. For i =2, u > 2 we have

1
Yu2 = CTI'Yu,lU\ — A1) + - Z Y ua, il 2 hoo TSP O\ugv cee »}\u)
po=1

1

= —[al' o wrt (A, A YL
a

Assume now that eq. (] holds for computing v, i—1. We will treat the y,,; case. We have

(AF —Aiz1)
Yopi=———Yui- § Vi i-1laly; hoc*uﬂtz Awzs - Au)
ai—1 -1 n=1
x p—1 i—-3 A% 1',72
(A% —Ai1) —1 i—1—k
== - - [al*""h —1 ;
@ Lo a—ptpn (Apgs s A Yuz,i—2—x1
i-1 po=1 K1:0 — *Kl
a § Yuassi—1lally; hcxfuﬂtz Apzs - AW
i—1 o=1
p—1 -3 oc ifl
_ p—1 K1 .
= [a ]uz th*HﬁLuz Moy o A E —Yu2,172fl<1
po=1 1=0 1—2—K1
i— 1 2 hoc—u+p2(}\u27~-~7}\u)
T pe=1
n—1 i—2 D\o( _ }\ ]i—l
_ -1 Z H ik
= [a] ﬁg Ry (Auw e J‘u) [ ]171 Yus,i—1—k;
no=1 K1=1 a i—1—k1
p—1 1
§ p—1 .
+ [a}w‘, hocfquuz ()\uza"'a)\u) o 1‘YLL271*1
pa=1 b
p—1 —2 cx ]1 1
o u—1 i—Ky .
= [a] 1o hcx—u—b—uz Moy« 7 E i1 Yuo,i—1-k
Ho=1 1=0 1 1 K1

and equation (4. lé) is now proved.

(4.16)

We proceed recursively applying eq. () to each of the summands vy, i—1—«, if g2 > 1 and
i—1—xky > 1. If up =1, then vy, i—1—«, is computed by eq. (] and if uyp >1andi—1—«; <1 then

Yus,i—1—x; = 0. We can classify all iterations needed by the set ¥,, of sequences (s, Hs—1,..

such that
l=ps <ps_1 < < Uz < Mg < B = Hy.

For example for p = 5 the set of such sequences is given by

L, ={(1),(1,2),(1,3),(1,2,3),(1,4),(1,2,4),(1,3,4),(1,2,3,4)}

corresponding to the tree of iterations given in figure . The length of the sequence (s, ts—1, - ..

-5 U3, u—?)

(4.17)

au'Q)

is given in eq. () is s — 1. In each iteration the i changes to i — 1 — k thus we have the following

sequence of indices

11 :i—)igzi—l—Kl —>i3:i—2—(K1+K2)—)~"—)is :i—(s—l)—(Kl—F"'

For the sequence i, 1s,..., we might have i, = 1 for t < s — 1. But in this case, we will arrive at the
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o =1 uz‘:z o =3 g =4

— /\
pz =1 wsZ1 ug=2 /’\
I
pa =t nz =1 ua‘:2 n3z =3
_ PN
Ha = g =1 g =2
Hs‘zl

Figure 4.1: Iteration tree for L =5

element v, ., i, = Yu,,1 = 0 since y, > 1. This means that we will have to consider only selections

K1,...,Ks—1 such that i;_; > 1. Therefore we arrive at the following expression for pu > 2
S
_ -1 —1 so1—1
Vo= X Ll el T i B A
(KsyH2)EX, v=2
1\/—1
1\/+1+1
Z H [ ]1V—1 YLiS'
i=1i1>1y>-- >1§>1v 1 iyl

— Z H oy 1ty A s e Apy )

(Ksyerr2)EX, V=2

1 s—1 1
[al}™ i1 CE A — A}
Z (1}1' 1 P'V 1v+1+1 [a}ls—l

i7i1>.i.2>"'>ig>1 1s 1

[alf ™! ~
=y Hhcx PRI . U W [a]l';*l <Y H AL (4.18)

i=i1 >y > >121 v=1

where i5,1 +1 =1 thatis is,; =0. O

We will now prove that the matrix I' of lemma exists by cheking that I'T = T*T. Set (a,i) =
I'T, (byi) =T*T. For i < d we have

d
Qui = 2 Youvtvi = Yuitio + Ypivaticng

v=1

= Vuihi + Vi (A — Ay + Zymt{;’fg

p—1 1
=Yu, 1)\ =+ Z Vv ltp, v = Z t&?‘x)ﬂ/v,i p.,i~
v=1

v=1

For i = d we have:

a
Qua = ZYu,vtv,d =Yuata,d = Yu,dAda

v=1
while

d p—1
b[l,d = Z \)/'Yvd - Ztuv‘de_FApY}l,
v=1

v=1

This gives us the relation

Aa =ADVia =) t9vv.a (4.19)
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For p =1 using eq. () we have

Yiala = ViaAy = A=A =0.

This relation is satisfied if A% is one of {A1,...,Aq}. Without loss of generality we assume that
A if i
Aga) _ )i 1 mf} (4.20)
AM_mg1 ifmli

We have the following conditions:

=2 Ad —AY)v2,a = té‘ﬁ]ﬁ/l,d

=3 (Aa —AF)y3a = t;(;?;)Yl,d + t:(;?;)YQ,d

u=4 Ad —A)vaa = tiﬁ]%,d + tz(:;)YZd + tr:(g)YB,d

p=d—1 (Aa —Ag_1)Ya-1,a= tffi)lﬂl,d + tgoi)mw,d +ot tffi)lvd,ﬂdfl,d
All these equations are true provided that vy 4,...,v4a—2,4 = 0. Finally, for u = d, we have
d—1
Aa—A%)Yaa =Y tiyva (4.21)

v=1

which is true provided that (Aq —A§)yd,qa = tgﬂ,ﬂ/dq,d-

Lemma 4.5.4.3. For n > 2 the vertical sum S,, of the products of every line of the following array
Y
1 1 (x1 —x2) (%1 —x3) (%1 —xn)
2 (z—x1) 1 (%1 —x3) (%1 —xn)
3 (z—x1) (z—x2) 1
n—1|(z—x1) (z—x2) (z—xn—2) 1 (x1 —xn)
n | (z—x1) (z—x2) (z—=xn-2) (z—%xn-1) 1
is given by
n n y—1
Sn=) ] Ca—x)][[z—x)=(—x2) (z—xn)-
y=1v=y+1 pn=1
In particular when z = x,, the sum is zero.

Proof. We will prove the lemma by induction. For n = 2 we have S = (x; —x2) + (z — x1) = z — Xxa.
Assume that the equality holds for n. The sum S, ;1 corresponds to the array:

Yy
1 1 (x1 —x2) (%1 —x3) (X1 —%Xn) (X1 —Xn41)
2 (z—x1) 1 (x1 —x3) (X1 —=%Xn) (X1 —Xn41)
3 (z—x1) (z—x2) 1
N1 z—x) o (z—xwa) 1 (i—xw) (4 —%Xni)
n (z—x1) (z—x2) (z—%n-1) 1 (X1 —Xn+1)
n+1|(z—x1) (z—x2) (z—xn-1) (z2—xn) 1
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We have by definition Sy, 1 = Sn(x1 —Xny1) + (z2—%1)(z —x2) - - - (z— %), Which by induction gives

X1 —Xnt1) +(z—=x1)(z—%2) -+ (2 —%xn)

X1 —Xnt1+2—X1)

Sny1=(z—x2) - (z—%xn)
=(z—x2) - (z—xn)

(
(

and gives the desired result. O

Lemma 4.5.4.4. Consider A < 1 < L < B. The quantity

Z D\a - Ax]l’j\il . [Ab - )\x]5+1
1<y<L

equals to

. Ao = At = Do — AL
o -1 o B  Yla x11 x U
D\a }\X]A D\b )\X}L-}—] ()\a — )\b)

Proof. We write
E D\a - Ax]%il : D\b - )\x}yBJrl
I<y<L

= D\a - )\x]ﬁ\_l : D\b - )\x]]liq : Z [)\a - )\x]%il : D\b - )\XHJ+1
l<y<tL
The last sum can be read as the vertical sum S of the products of every line in the following array:

Yy
l 1 (Ap = A1) Ap — Aryg2) Ay —Ar—1) (Ap —Ar)

L+ 1[(Aq —Ay) 1 (Ap — A42) (Ao —Ar—1)(Ap —Ar)
L42(Aa —A) Aa —As1) 1 : :

Lo 20 M) (e —Aut) - L o= A1) (o —AL)

L—1(Aa —A) (A — Arg1) (Aad —AL—2) 1 (Ap —Ar)
L |(Aa —A)(Aa —Ary1) e (Aa —Ar—2)(Aa —Ar—1) 1

If 1 = b, then lemma implies that S = [Aq — AJ§ ;. Furthermore, if L = a then S =0.
The quantity S cannot be directly computed using lemma , if 1 #b. We proceed by forming
the array:

Yy

b 1T (A —Avg1) Ao — M) (Ab —ArL)
| YR NS S L oA e - - e De—A)

L |(Aa —Ab) Aa —M1) 1 Ao = Ati1) (A —Ary2) (Ao —ArL—1) (Ab —AL)
L+ 1{(Aq —Av) (Aa —A-1)|(Aa — A1) 1 (Ao — Aty2) (Ao —ArL—1) (Ab —AL)
L+2/(Aq —Av) (Aa —=AM-1)|(Aa = A (Aa — Arg1) 1 : :
LA o e M| a A Oa—Aua) oo U e = A (e —A)
L—1Aq —Av) Aa —=AM-1)(Aa = A (Aa — Ary1) (A —AL—2) 1 (Ao —AL)

L |(Aa—2b) Aa —=AM-1)Aa = A (Aa — Ary1) Aa—=A2)Aa—AL—1) 1

The value of this array is computed using lemma to be equal to [Aq — A, . We observe that
the sum of the products of the top left array can be computed using lemma , while the sum of
the products of the lower right array is S.

[)\a - ?\x]lbil -S + [Aa - Ax}tjrll : [Ab - }\x]{_ - [Aa - Ax}[ﬁJrl

we arrive at
Mo = Ay 'S = Ma = Adpah (Ra — At — o — ALY
or equivalently
(?\a 7}\b) S = D\a 7Ax}{_ - D\b 7}\x]{_
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Lemma 4.5.4.5. Forall1 < p < d—2 we have y, 4 =0.

Proof. Let uy = pu > py > --- > pus =1 € L, be a selection of iterations and d =1; > iy > ------ ig>1>
is+1 = 0 be the sequence of i’s. Using eq. (4.2%]) we see that the quantity AY — )\X]{z: .1 # 0 if and
only if one of the following two inequalities hold:

either 1yl >y — mf(py) (4.22)
or 1y <y + 2 —mf(uy), (4.23)
where
1 if
flx) = ifm|x
0 ifmitx

We will denote the above two inequalities by (]V )V when applied for the integer v. Assume,
that for all 1 < v < s one of the two inequalities ()V,()V hold, that is A}, — AT £,

iy 1+l
Inequality ( )s can not hold for v = s since it gives us 0 =isy; > 1 = s, we have m{1 = u?
We will keep the sequence p: ;> py > -+ > pg fixed and we will sum over all possible selections

of sequences of i; > ---is > 1541 = 0, that is we will show that the sum

N
Mai = > [T, —adb Tl (4.24)

i=iy >ig>e>ig 21 v=1

is zero, which will show that v, 4 = 0 using eq. ().
Observe now that if (4.23), holds and m v, v—1, then (%.23),_, also holds. Indeed the combination
of (]V and ()V,l gives the impossible inequality

(m)\, . (m)\,71
u-v + 2 > 1\/ > u-y_l.

Assume now that m | v and ()V holds, then ()V,l also holds. Indeed the combination of ()V
and ()V,l gives us
(=23), | (2=22),
Wy +2-m > i, > pyog—mflpuy ).

If m ¢ u,_1, then the above inequality is impossible since it implies that
uv+2_m> Hv—1 > Hy.

If m | uy—1, then the inequality is also impossible since it implies that u, +2 > p,_; so if we write
Uy—1 =k'mand p, = km, k,k’ € N, k’ > k, we arrive at 2 > (k' — k)m > m. This proves the following

Lemma 4.5.4.6. The inequality ()V_l might be correct only in cases where m | uy_1, m1{ ..
Assume that for all v inequality () holds. Then for v =1 it gives us (recall that n < d —2)
p+2<d=1 <pu; +2—mf(u;) =p+2—mf(u), (4.25)

which is impossible. Therefore either there are v such that none of the two inequalities (]V, ()V
hold (in this case the contribution to the sum is zero) or there are cases where [] holds.

The sumands appearing in eq. () can be zero, for example the sequence @; = m > py = 1 with
iy =2 <1, =d, s =2 give the contribution

A%, = AJETIAY, = AJE T = A = NS =AY = A —A) — AdS !

1 io+1
while for i, = 1 < 1; = d it gives the contribution

A%, = MIP TS, = AJEL = A - AJIAS — AT = A — AT

is+1 7

It is clear that these non-zero contributions cancel out when added.
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Lemma 4.5.4.7. Assume that m | p,,_; and m { p,,, where ()\,0 and ()Vo,l hold. Then,
we can eliminate p,,_; and i,, from both selections of the sequence of pu’s and i’s, i.e. we can form
the sequence of length s — 1

Hs—1=Hs <Hs2=Hs 1 <+ < Hyg1 = Hyy < Hyg2 = Hyg2 <+ < Hy = [
and the corresponding sequence of equal length
11 =1 <ilsg o =151 < -~ <"LVO,1 :i\,ofl <iy0 :iyo+1 <. - <ip=1 =d,

so that

s s
fa= > JIML M= 3 TT B A
=il

i1>>15 v=1 1y>>i g WZVOA

where (%) is a non zero element.

Proof. (of lemma ) We are in the case m | 1,1 and m ¢ pu,,, where [)\,0 and ()Vo_l hold,

€2dy, - E23,,
<

Hyo—1—Mm vy < My t+2 (4.26)

or equivalently
Ho ‘= Hvy—1 —m+1 givo < Hv, +1
For i,,.; the inequality ()VO iyo+1 > Wy, — Mf(Hy,) can not hold, since it implies

. L (E23)y, .
Tyl <ivg < Hye +2<iyg41 +2.

Observe that also
i\/OJrl +1 < ivo < i\/071 -1

Set | = max{ug,iv,4+1 + 1} and L = min{p,, +1,1iy,-1 — 1}. Then y =1i,, satisfies

I<y<L

By lemma the quantity

y—1 ivg—1—1
§ D‘uvoﬂ - Ax}iv0+1+1 Ay — )‘x]y+1
lysLh

equals to

ivg—1—1 . [)\HV0+1 - Ax}{_ - D\Ho - )\x]{_

[7\ v - AX]}il N D\ - Ax]
Hvo+1 ivg+1+1 Ho L+1 (}\HvoJrl - )\Ho)

L iyg—1—1 1—1 iyg—1—1
[)‘MVUH - Ax]ivoﬂﬂ ’ D\Ho - )\’JL-El - D\HvoJrl - Ax]ivo+1+1 : D\Ho - }‘X]l ’ 4.27)

()\Hv0+1 - )\Ho)
Case Al | =y > iy,41 + 1. Then A, —AJE =0.
Case A21=1i,,,1+1>uy. Weset z:=1,,41, which is bounded by eq. (]v0+1 that is

Case A2 (EZ3)vg+1
Mo < Z2 < Hy41 T L

Notice that in this case m { p,,+1. Indeed, we have assumed that inequality ()VOH holds wich

gives us
(Case A2) (B23) v +1
Bvo—1—m=Ho—1 < iy41 < Hyp1+2-—m,

which implies that p.,,—1 < py,+1 + 2, a contradiction. Thus for 1 =z + 1 we compute

S I AR D A =

HoSZ<Hvg+1+1
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_ z—1 L _
- § D‘uvo 1+l T )‘x}ivoﬁﬂ ’ D‘uo - )\X]z+1 =
Mo<Z<Hvg+1+1
Hvg+1+1 Hvg+1+1
D‘uvo+1+1 - Ax]uo - D‘uo — A Ho
)‘uv0+1+1 - )\Ho+1

Case B1 L =p,, +1<1i,, 1 —1. Inthis case [\, .1 =AJ[ =0.
Case B2 =1,,_; —1<u,, +1. In this case eq. () is reduced to

= (%) - =0.

ivg—1—1
[}\U-vo"'l - X]"LVU+1+1

(Auv0+1 - )\LL())
This means that we have erased the p,,_; from the product and we have

S S
oI —Adi b =00 > TT o, —adiv

i3> >15 v=1 11> >1 v#\'vzl N
0—

where (%) is a non zero element. This procedure gives us that the original quantity

A& ivg—1—1

AN I
Hvo Xy 41+l

)\Hvofl - AX]iVOle
after summing over i,, becomes the quantity

iv 71_1 {v 71_1
[Aﬁvo - X]iv2+1+1 = [ gvofl B X]{Vz+1 ’
that is we have eliminated the p,,—; and i,, from both selections of the sequence of p’s and i’s, i.e.
we have the sequence of length s — 1

Hs—1=Hs <Hs2 = HUs1 < 0 < Hygo1 = Hyy < Hyg—2 = Hyg2 < -+ < 1 = M.
and the corresponding sequence of equal length
g =l <lso=is 1 < <yl =iyt <lvg Zhvor1 < - <11 =1 =d.
O

Remark 4.5.5. One should be careful here since iy, 1 = iy,—1 > iy, > iy, = fvg1. S0 iyg_1 > iy, + 1.
This means that the new sequence of i;_; > --- > i; satisfies a stronger inequality in the v, position,
unless vy — 1 = d in the computation of v4 4.

Consider the set s,s — 1,...,vg such that m for s > v > vy and assume that m | p,,_; and
()\,0 and [)Vo,l hold. We apply lemma and we obtain a new sequence of u’s with p,,_1
removed, provided that vo —1 > 1. We continue this way and in the sequence of u’s we eliminate all
possible inequalities like (] obtaining a series of pu which involves only inequalities of type ().
But this is not possible if p < d — 2, according to equation (). This proves that all vy, 4 = 0 for
1 < p < d—2, this completes the proof of lemma 4.5.4.5. O

Lemma 4.5.5.1. If u; # d — 1, then the contribution of the corresponding summand Iy ; to vq4.q4
is zero.

Proof. We are in the case p = d = i. We begin the procedure of eliminating all sequences of inequalities
of the form (23),,, (22)y,—1, where m | vog — 1, m { v, using lemma §#.5.4.7. For v =1 inequality (4.23),
can not hold since it implies the impossible inequality d = i; < d + 2 — m. Therefore, ( ); holds,
that is i, > d — m. On the other hand we can assume that ()2 holds by the elimination process,
so we have

(E=22) (=23)
d—-m < i < po+2.

Following the analysis of the proof of lemma we see that the contribution to y4 4 is non zero
if case B2 holds, that is (vo =2 in this case) d — 1 =1,,_1 — 1 < p2 + 1, obtaining that us =d — 1. O
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Lemma 4.5.5.2. Equation () holds, that is

d—1
Aa—A§)Yaa=)_ tgj(\),yv,d = tgﬂ,ﬂ/dq,d-

v=1

Proof. We will use the procedure of the proof of lemma . We recall that for each fixed sequence
of ug > -+ > we summed over all possible sequences i; > --- > isy; = 0. In the final step the
inequality ( ) appears, for vo =2, and py, =g =d—1and vo—1=1and p,,—1 = p = d, that is:

®22, ({23
0=Hy, 1—m @2% 1 Hy, +2=d+ 1.

As in the proof of lemma we sum over y = i, and the result is either zero in case B1 or in the
B2 case, where u,, = po =d—1and pp = py,—1 —m+1=d—m+ 1, the contribution is computed to
be equal to

ivﬂflfl

[ gvo+1 - )\X}iv0+1+1 _ [)\?1( - }\X]?Zijrll
Mg +1 = Amo) Aa=Ad

The last py,—1 = 11 = d is eliminated in the above expression. This means that for a fixed sequence
p > ... > U the contribution of the inner sum in eq. () is given by

1 - i1
}\d —AX : Z H[)\ﬁv - )\X]iv+1+1'

d d—1=iy>ig>->1s21 v=2

Observe that 1; = d does not appear in this expression and this expression corresponds to the se-
quence i3 = s =d—1> s =p3 > -+ > ps—1 = s = 1. Notice, also that the problem described in
remark ¢.5.5 does not appear here, sence we erased i; which is not between some 1i’s but the first
one. Therefore, we can relate it to a similar expression that contributes to y4_1,4. Conversely every
contribution of y4_1 4 gives rise to a contribution in vy4 4, by multiplying by A4 —A%. The desired result
follows by the expression of v, 4 given in eq. (). O

We have shown so far how to construct matrices I', T so that
T =1,TTr !t =T% (4.28)
We will now prove that I' has order m. By equation () I'* should satisfy equation
reTr—k = 7o,

Using proposition asserting the uniqueness of such I'* with « replaced by «* we have that
the matrix multiplication of the entries of I' giving rise to (yﬂfi)) =T'* coincide to the values by the the
recursive method of proposition () applied for I'" =T*, o’ = «* and I'"E; = (¢FE;. In particular for
k =m, we have «™ = 1 modp” for all 1 < v < h, that is the matrix Tk should be recursively constructed
using proposition () for the relation 'TI'™ =T, T™E; = E,, leading to the conclusion ' = Id.
Notice that the first eigenvalue of I' is a primitive root of unity, therefore I' has order exactly m.

By lemma the action of ¢ in the special fibre is given by a lower triangular matrix. Therefore,
we must have

Yv,i € my for v < i (4.29)

Proposition 4.5.5.1. If
VAt —Aj) >v(ay) foralll<i,j<dand1<v<d—1 (4.30)

then the matrix (v, i) has entries in the ring R and is lower triangular modulo mg.
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Proof. Assume that the condition of eq. (] holds. In equation (] we compute the fraction

=<1 ifi=p (4.31)
[ ifi<p

The number of (7\3 — M) factors in the numerator is equal to (recall that i;,, = 0)

S

D (iv—l-iy—1+1)=i—s

v=1

andi> u>s, soi—s > 0. Therefore, for the upper part of the matrix i > u we have i — s factors of the
form (A — ;) in the numerator and i — p factors a, in the denominator. Their difference is equal to
(i—s)—(i—u) = p—s > 0. By assumption the matrix reduces to an upper triangular matrix modulo
mg. O

Remark 4.5.6. The condition given in equation () can be satisfied in the following way: It is clear
that A; —A; € mg. Even in the case vy, (A; —Aj) = 1 we can consider a ramified extension R’ of the ring
R with ramification index e, in order to make the valuation v, (A; —A;) = e and then there is space
to select vy, (ai) < Vi, (AL —Aj).

Proposition 4.5.6.1. We have that

1

Yii = (S modmg (4.32)

Let A ={ay,...,aq-1} € R be the set of elements below the diagonal in eq. (@). If a; € mg, then
Yu,i € mg for p#1,

that is E; is an eigenvector for the reduced action of I' modulo mg. If a,,...,a«, the elements of
the set A which are in mg, then the reduced matrix of I' has the form:

0 Iy :
0
0 0 T
where I, T5,..., Iy for 1 < v<r+1are (ky —ky_1) X (ky — Ky_1) lower triangular matrices (we set
Ko =0, Ky = d).
Proof. Consider the matrix I':
Y11
YKl,l YKl,Kl
Yri+1,k1+1
Yu,i Yio,k1+1 Vka,k2
1<i<ki<m<d Yu,i
Ki<i<ke<pu<d Yk, +1,k0+1
Ya,k,+1 © Yd,d

We have that p =i and the only element in X, which does not have any factor of the form (A — Ax)
is the sequence

Il=ps=ps1—1<ps 1 < - <pe=m—1l<m=p
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For this sequence eq. () becomes

S
Yii = H No—1 Ay, A, )5, modmg,

v=2

which gives the desired result since hy—1(Ay,, Ay, ;) = (§) = @ modmg.

For proving that all entries v, ; € mg for ky, < i < ky41 < p < d, that is for all entries bellow the
central blocks, we observe that from equation () combined with eq. (] that v, ; is divisible by
[a]?_l =QiQi41 - Qg 41 Au—1 € MR.

O

Recall that by lemma there is an 1 < ap < m such that o = 0.

Proposition 4.5.6.2. The indecomposable module V modulo mg breaks into a direct sum of r + 1
indecomposable k[C4 x C;] modules V,,, 1 < v <r+1. Each V, is isomorphic to V(e +agky_1, Ky —
Ky—1 ) 0

Proof. By eq. [) the first eigenvalue of the reduced matrix block I, is
(€ vt = C€+[Kv71Ja0
m m :

Since that first eigenvalue together with the size of the block determine the last eigenvalue, that is
the action of C,,, on the socle the reduced block is uniquely determined up to isomorphism. O

This way we arrive at a new obstruction. Assume that the indecomposable representation given
by the matrix T as in lemma reduces modulo mgr to a sum of Jordan blocks. Then the o
action on the leading elements of each Jordan block in the special fibre should be described by the
corresponding action of ¢ on the leading eigenvector E of V. The corresponding actions on the special
fibre should be compatible.

This observation is formally given in proposition , which we now prove: Each set I, 1 <
v < t corresponds to an indecomposable R[G]-module, which decomposes to the indecomposables
Vu(ew, ky), v € I, of the special fiber. Indecomposable summands have different roots of unity in R,
therefore }_ kv < g, this is condition (.Eb. The second condition (.B) comes from
proposition #.4.0.1]. If 1 is one of the possible eigenvalues of the lift T, then } | .; k. =1 modm. If all
eigenvalues of the lift T are different than one, then }_ Ky = 0 modm. If #I, = q, then there is one
zero eigenvalue and the sum equals 1 modm.

It is clear by eq. () that condition (.B) is a necessary condition. On the other hand if
(.B) is satisfied we can write (after a permutation if necessary) the set {1,...,S}, S = 25:1 #1,
as

pnely

T1
1 1 1 1 1 1
]1:{1,2,...,K§ ’,K§ )+1,...,K§ )+Ké),‘..,ZK]§ ):bl},llz{K§)7...,K%)}
j=1
T2
Jo= B+ 1br+2,. . ba=bi+ ) kL ={k", k)

j=1
]s :{bsfl + 1abt71 +27"'7bt = S}a IS :{KES)V‘ng‘i)}
The matrix given in eq. (@), where
0 ifie{by,...,bs_1}
ai=<{m ifie{ "+l 4
1 otherwise

(v) (v)

el i (

oy

lifts the T generator, and by (] there is a well defined extended action of the o as well.
Example: Consider the group q =5> m =4, =7,

25

G=Cs xCy= (0,10 =1 =1,010 ! =17).

Observe that ord;7 = ords=7 = 4.
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¢ The module V(e.25) is projective and is known to lift in characteristic zero. This fits well with
proposition , since 425 —1=4-6.

* The modules V(e, k) do not lift in characteristic zero if 4 1 k or 4 { k — 1. Therefore only V(e, 1),
V(e,4), V(e,5), V(e,8), V(€,9), V(e, 12), V(e,13), V(€,16), V(e,17), V(e,20), V(e,21), V(e,24), V(€,25)
lift.

e The module V(1,2) @ V(3,2) lift to characteristic zero, where the matrix of T with respect to a
basis Eq, E, E3, E4 is given by

g 0 0 0
|1 & o o0
T= 0 = C?a 0

0 0 1 ¢

and O'(El) = Cqu.

¢ The module V(1,2) ® V(1,2) does not lift in characteristic zero. There is no way to permute the
direct summands so that the eigenvalues of o are given by (¢, alS,, (S, oa3CE,. Notice that
x=2="{n.

¢ The module V(eq,21)® V(22! €1, 23) does not lift in characteristic zero. The sum 21+ 24 is divisible
by 4, e = 2?'¢; is compatible, but 21 + 23 = 44 > 25 so the representation of T in the supposed
indecomposable module formed by their sum can not have different eigenvalues which should
be 25-th roots of unity.
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