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Abstract

In this thesis we provide a detailed proof of Israel’s uniqueness theorem of the
Schwarzschild solution [28] in the more general setting proven by Bunting and
Masood-ul-Alam [8]. The methods used in the proof of the generalized unique-
ness theorem has had an important impact in many later proofs such as higher
dimensional analogs of uniqueness theorems for the Schwarzschild solution [26], [21]
and the Riemannian Penrose inequality by Bray [7]. General relativity is the best
theory so far describing gravity together with Einstein’s equation which relates the
spacetime geometry to the matter distribution. One of the most important exact
solutions of Einstein’s equation is the Schwarzschild solution. It describes the ex-
terior gravitational field of a static, spherically symmetric body, it predicts several
phenomena of general relativity in our solar system and for a massive, spherical
body that has gravitationally collapsed it describes the spacetime in vacuum which
contains a singularity within a black hole.

After showing some facts for Lorentzian geometry and special relativity, we prove
Birkhoff’s theorem, that the Schwarzschild metric is the unique spherical solution
in vacuum, and describe the Kruskal coordinates which extends the Schwarzschild
metric to the whole spacetime with a singularity. Afterwards we show what are the
initial data for the well-posedness of the Einstein’s equation in vacuum and their
constraint equations. At last we prove that the Schwarzschild metric is the unique
static, asymptotically flat, vacuum spacetime with regular event horizon without
assuming that the event horizon is connected.
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Introduction

Before the formulation of general relativity, Newton’s model of the solar system could
predict precicely the trajectory of most planets. But the perihelion of Mercury was
falling behind its observed position at the rate of about 43 seconds of arc per century.
In 1915, Einstein completed his famous equation that binds together gravity and
the curvature of spacetime. Before a relativistic model of the solar system, he
eliminated the 43 seconds lag of the perihelion of Mercury. Some weeks later Karl
Schwarzschild had discovered the relativistic model outside an isolated, spherically
symmetric star and the first non-trivial exact solution of the Einstein equations [49].
Later it was called Schwarzschild metric. At the time, Schwarzschild, was serving in
the German army and was hospitalized by an illness that soon proved mortal ([37,
p. xv]). Later, it was discovered that massive stars which gravitationally collapse to
themselves, produces a black hole that can be described by the Schwarzschild model
with an event horizon at r = 2M . In 1923 Birkhoff proved that the only spherically
symmetric solution that can exist in a vacuum is the Schwarzschild metric without
assuming the metric being static [6]. This is called Birkhoff’s theorem. According
to Johansen and Ravndal in [29, p. 2], the theorem was discovered and published in
1921 with a different method by Jørg Tofte Jebsen. At the time he was ill and died
in 1922. In 1969 Yvonne Choquet-Bruhat together with Robert Geroch showed the
well-posedness of the initial value problem for the Einstein equations globally. They
showed that for a given initial data, which satisfies the constraint equations, there
exists a unique maximal globally hyperbolic development.

In 1967, Werner Israel anounced the first black hole uniqueness theorem. He
proved that a certain class of static, asymptotically flat solutions of the Einstein
equations in a vacuum can only be the Schwarzschild solution. This result initiated
research on black hole uniqueness theorems which continues today ([42, p. 2]). After
a year he extended his result for static, electrovac spacetimes [27]. Meaning that
the only static spacetime satisfing his assumptions was the spherically symmetic
Reissner-Nordström solution. In the next years some of the assumptions of Israels
first proof was shown that they were not neccesary [23].

A new approach was introduced in 1986 for proving uniqueness of black holes
by Gary L. Bunting and A. K. M. Masood-ul-Alam in [8]. By using results from
the positive mass theorem, proved in 1979 [46] by Schoen and Yau, and Bartnik’s
n-dimensional positive mass theorem for spin manifolds, proved in 1986 [1], they
showed a generalization of Israel’s theorem in which the assumption of connected
event horizon was not necessary. This means that there cannot be more than one
black hole in a static, assymptotically flat, vacuum spacetime. This was done by
first constructing an appropriate conformal manifold to satisfy the conditions of the
positive mass theorem. Then by using the positive mass theorem from Bartnik,
they show that the starting manifold is conformally flat. Here, it is important to be
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noted that the metric needed for the positive mass theorem of Bartnik is required
to be of lower regularity than that of Shoen and Yau’s, this is essential for the proof
of Bunting and Masood-ul-Alam. After that, it can be shown that the conformally
flat metric of the manifold is spherically symmetric and thus the metric of the
spacetime is the Schwarzshild metric. The first geometric approach of constructing
the conformal manifold had the benefit that it didn’t need any assumptions on the
dimension of the manifold. So it has been used for higher dimensional proofs of
the same kind. The next part of the proof which uses conformal flatness to prove
spherical symmetry doesnt generalize that simply to higher dimensions because it
uses the Cotton tensor.

For a very insightfull presentation of the Schwarzschild metric, Israel’s proof,
Bunting and Masood-ul-Alam’s proof and black hole uniqueness theorems in higher
dimensions we refer the video lectures from ICTP School on Geometry and Gravity
[11], [12], [13], [14]. Also, for an extended description of the history of black hole
uniqueness theorems we refer the reader to [42].

The purpose of this thesis is to make an introduction to special and general
relativity with some of their important implications such as the Birkhoffs theo-
rem, the Kruskal diagram, which is used to better understand the singularities of
the Schwarzschild metric, and the Cauchy hypersurfaces. In the end we provide a
detailed proof of the generalized uniqueness theorem from Bunting and Masood-
ul-Alam using many important results from [1]. For that we first need to under-
stand some basic concepts of semi-Riemannian manifolds and the causal character of
Lorentzian geometry so that we can distinguish the possibilities that are presented
to us when using Lorentzian or Riemannian geometry.



Chapter 1

Semi-Riemannian Geometry

In Riemannian geometry we define the Riemannian metric as a symmetric, positive
definite, (0,2) tensor. In general relativity we use a generalization of the Riemannian
metric which is called semi-Riemannian metric (or pseudo-Riemannian metric).
In this section we will show some basic properties.

1.1 Scalar Product Spaces

Definition 1.1.1. Suppose V is a finite dimensional vector space and b : V ×V → R
is a symmetric R-bilinear function.

1. If b(v, v) > 0 for v ̸= 0 then it is called positive definite.

2. If b(v, v) ≥ 0 for all v ∈ V then it is called positive semidefinite.

3. If b(v, v) < 0 for v ̸= 0 then it is called negative definite.

4. If b(v, v) ≤ 0 for all v ∈ V then it is called negative semidefinite.

5. If b(v, w) = 0 for all w ∈ V implies v = 0 then it is called nondegenerate.

Lemma 1.1.2. Suppose b is a symmetric covariant 2-tensor on a finite dimensional
vector space V . The following are equivalent:

(a) b is nondegenerate.

(b) For every nonzero v ∈ V , there is some w ∈ V such that b(v, w) ̸= 0.

(c) The linear map b̃ : V → V ∗ defined by b̃(v)(w) = b(v, w) for all v, w ∈ V is an
isomorphism.

Proof. (a) ⇐⇒ (b) is immediate.
(b) ⇐⇒ (c) because
Assume

ker b̃ = {v ∈ V : b̃(v)(w) = b(v, w) = 0 ∀w ∈ V }
im b̃ = {k ∈ V ∗ : b̃(v)(w) = k(w)}

So we have (b) equivalent with Imb̃ = V ∗ and b(v)(w) = 0 only for v = 0 which
is equivalent to Kerb̃ = {0}. So b̃ is an isomorphism.

1



Chapter 1. Semi-Riemannian Geometry 2

Remark 1.1.3. If b is a symmetric bilinear form on V then for every W subspace
of V the restriction b|(W ×W ) is again symmetric and bilinear. We will denote the
restriction as b|W

Lemma 1.1.4 (Polarization Identity). Suppose symmetric bilinear form. Then

b(v, w) =
1

4
(b(v + w, v + w)− b(v − w, v − w))

=
1

2
(b(v + w, v + w)− b(v, v)− b(w,w))

For a base e1, . . . , en of V we denote bij = b(ei, ej) which is the elements of the
metrix of b relative to the base e1, . . . , en. And since b is symetric we can write

b(
∑

viei,
∑

wjej) =
∑

bijviwj

Lemma 1.1.5. [38, p. 47] A symmetric bilinear form is nondegenerate if and only
if its matrix relative to one basis is invertible.

Proof. Let e1, . . . , en a basis of V and v ∈ V . Then we have for all w ∈ V

b(v, w) = 0 ⇐⇒ b(v,
∑

wiei) = 0

⇐⇒
∑

wib(v, ei)

⇐⇒ b(v, ei) = 0

for i = 1, . . . , n. the matrix (bij) is symmetric and so

b(v, ei) = b(
∑

vjej, ei) =
∑

bijvj

Thus b is degenerate if and only if there exist numbers v1, . . . , vn not all zero such
that ∑

bijv
j

for i = 1, . . . , n. But this is equivalent to the linear dependence of the columns of
(bij) which is equivalent to (bij) being singular. So b is nondegenerate if and only if
(bij) is invertible.

Definition 1.1.6. Suppose a vector space V and a bilinear form b : V × V → R.
If b is nondegererate and symmetric then we call b scalar product and V scalar
product space.

One of the new phenomena that happens when we have a scalar product in
contrast to the inner product (positive definite) is that there exists vectors v ̸= 0
which have b(v, v) = 0. These vectors are called null.

Example 1.1.7. [38, p. 48] Define the symmetric bilinear form b : R2×R2 → R by

b(v, w) = v1w1 − v2w2

The null vectors fill the lines 45 degrees of the axes. For vectors v, w ∈ V and c ̸= 0
the quadratic forms b(v, v) = c, b(w,w) = −c are hyperbolas asymptotic to the null
lines.

Two vectors v, w ∈ V are still defined orthogonal when b(v, w) = 0. But when
b is a scalar product we cannot imagine orthogonal vectors as vectors at 90 degrees
with each other.



3 1.1. Scalar Product Spaces

• If v ∈ R2 is a null vector then v ⊥ v.

• If (x, 0), (0, y) ∈ R2 then (x, 0) ⊥ (0, y).

• If (x, y), (y, x) ∈ R2 then (x, y) ⊥ (y, x)

Assume (V, b) is a scalar product space and W is a subspace of V , then

W⊥ = {v ∈ V : b(v, w) = 0, ∀w ∈ W}

Another difference in scalar product spaces is that in general for a subspace
W ⊂ V we can have W + W⊥ ̸= V . For example let W = span{(1, 1)}, then
W⊥ = W .

Lemma 1.1.8. [31, p. 41] If W is a subspace of a scalar product space V , then

1. dimW + dimW⊥ = dimV

2. (W⊥)⊥ = W

Proof. (1.) We define a linear map

Φ : V → W ∗ such that Φ(v) = b̃(v)|W

We have that

v ∈ kerΦ ⇐⇒ b(v, w) = b̃(v)(w) = 0, for all w ∈ W

So kerΦ = W⊥. If ϕ ∈ W ∗ then there exists an extension ϕ̃ ∈ V such that ϕ̃|W ∗ = ϕ.
Since b̃ is isomorphic (see Lemma 1.1.2) there exists a v ∈ V such that b̃(v) = ϕ̃ and
from the restriction we have Φ(v) = ϕ which implies that Φ is surjective.

From the rank-nullity theorem we have that

dimV − dimkerΦ = dim imΦ

but we have shown that kerΦ = W⊥, imΦ = W ∗, so

dimV − dimW⊥ = dimW ∗ = dimW =⇒ dimW + dimW⊥ = dimV

(2.) We note that every w ∈ W is orthogonal to every z ∈ W⊥ by definition, so

W ⊂ (W⊥)⊥ (1.1)

From the previous assertion we have

dimW + dimW⊥ = dimV

dimW⊥ + dim(W⊥)⊥ = dimV

}
=⇒ dimW = dim(W⊥)⊥

So this together with (1.1) we have W = (W⊥)⊥.

We will call a subspace W ⊂ V nondegenerate if b|W is nondegenerate. Sub-
spaces of scalar product spaces are not necessarilly scalar product spaces. Some
subspaces are degenerate, for example a null vector z ∈ V has span(z) degenerate
since if non zero w1, w2 ∈ span(z) then

b(w1, w2) = b(αz, βz) = 0 ∀w2 ∈ span(z)
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Lemma 1.1.9. Suppose W ⊂ V is a subspace of a scalar product space. The
following are equivalent:

(a) W is nondegenerate

(b) W ∩W⊥ = {0}

(c) V = W ⊕W⊥

Proof. (a) ⇐⇒ (b): We write

W ∩W⊥ = {w ∈ W : b(w, k) = 0 ∀k ∈ W}

and by definition

W nondegenerate ⇐⇒ (b(w, k) = 0, ∀k ∈ W ⇒ w = 0)

So it is immediate

W nondegenerate ⇐⇒ W ∩W⊥ = 0

(b) ⇐⇒ (c): Its known that

dim(W +W⊥) + dim(W ∩W⊥) = dimW + dimW⊥

so W ∩W⊥ = 0 if and only if

dim(W +W⊥) = dimW + dimW⊥ = dimV,

where the last equality is from Lemma 1.1.8, and this is equivalent with

W ⊕W⊥ = V

Lemma 1.1.10. Suppose W ⊂ V of a scalar product space. Then W is non degen-
erate if and only if W⊥ is nondegenerate.

Proof. We use the previous Lemma and the fact that (W⊥)⊥ = W

W⊥ nondegenetate ⇐⇒ V = W⊥ ⊕ (W⊥)⊥

⇐⇒ V = W⊥ ⊕W

⇐⇒ W nondegenerate

A nondegenerate subspace can always be expanded to the nondegenerate space.

Lemma 1.1.11 (Completion of Nondegenerate Bases). [31, p. 41] Suppose V a
scalar product space and v1, . . . , vk span a nondegenerate k-dimensional subspace in
V with 0 ≤ k < n. Then there exist vectors vk+1, . . . , vn such that v1, . . . , vn is a
nondegenerate basis for V .
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Proof. Let W = span(v1, . . . , vk) ⊂ V . Since k < n we have W⊥ ̸= 0 nondegenerate
and W⊥ ⊕ W = V from Lemma 1.1.9. We have W⊥ ̸= 0 because if W⊥ = 0
nondegenerate then

{0} ⊕W = V =⇒ W = V

which is a contradiction from hypothesis. So because W⊥ is nondegenerate there
exists a vector vk+1 ∈ W⊥ such that b(vk+1, vk+1) ̸= 0 and then (v1, . . . , vk+1) span
a nondegenerate subspace. We repeat this to get v1, . . . , vn.

We define the norm of the vectors in a scalar product space (V, b) as

|u| = |b(u, u)|1/2

since b(u, u) can be negative. We call u ∈ V a unit vector when |u| = 1 meaning
b(u, u) = ±1. We can always find an orthonormal base to a scalar product space
similarly to a vector space with inner product.

Proposition 1.1.12. (Gram-Schmidt Algorithm for Scalar Products)[31, p. 42]
Suppose V an n-dimensional scalar product space. If (v1, . . . , vn) is a basis of V , then
there is an orthonormal basis (w1, . . . , wn) with the property that span(w1, . . . , wk) =
span(v1, . . . , vk) for each k = 1, . . . , n.

Proof. We will prove it by induction.
Let w1 = v1/|v1|. Since span(v1) is a nondegenerate subspace then |v1| ≠ 0.
Assume that we have an orthonormal base (w1, . . . , wk). We write

z = vk+1 −
k∑
i=1

b(vk+1, wi)

b(wi, wi)
wi

We notice that b(wi, wi) = ±1 and so z ∈ V is nonzero, z ⊥ w1, . . . z ⊥ wk and
span(w1, . . . wk, z) = span(v1, . . . , vk+1).

• b(wi, wi) = ±1 since w1, . . . , wk is an orthonormal base.

• z ⊥ w1, . . . , z ⊥ wk because

b(z, w1) = b

(
vk+1 −

k∑
i=1

b(vk+1, wi)

b(wi, wi)
wi, w1

)

= b(vk+1, w1)−
k∑
i=1

b(vk+1wi)

b(wi, wi)
b(bi, b1)

= b(vk+1, w1)− b(vk+1, w1)

= 0

It is the same for every wi.

We need to exclude the possibility that z is a null vector. If b(z, z) = 0 then z ⊥ z,
but z ⊥ w1, . . . , z ⊥ wk. So z ⊥ span(w1, . . . , wk) and since z ⊥ z we have that
z ⊥ span(w1, . . . , wk, z). But span(w1, . . . , wk, z) = span(v1, . . . , vk+1) which implies
z ⊥ span(v1, . . . , vk+1). This means that

b(z, v) = 0, ∀v ∈ span(v1, . . . , vk+1)
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then by nondegeneracy of span(v1, . . . , vk+1) we have that z = 0 which is a contra-
diction.

We complete the step of induction by writing

wk+1 =
z

|z|

Suppose e1, . . . en is an orthonormal base for V . Then the matrix of b relative to
the base is diagonal and

b(ei, ej) = δijεj

where εj = b(ej, ej) = ±1. After reordering the orthonormal base such that the
negative signs come first in the signature (ε1, . . . , εn).

Like in inner product spaces we can still write vectors by their orthonormal
expansion.

Lemma 1.1.13. Let (V, b) be an n-dimensional scalar product space. If e1, . . . , en
is an orthonormal base of V , then each v ∈ V has a unique expression

v =
∑

εib(v, ei)ei

such that εi = b(ei, ei).

Proof. We will show that

b(v −
∑

εib(v, ei)ei, w) = 0 ∀w ∈ V

then from nondegeneracy of V we have the Lemma. It suffices to prove the above
for each element of the base e1, . . . , en.

b
(
v −

∑
εib(v, ei)ei, ej

)
= b(v, ej)− b

(∑
εib(v, ei)ei, ej

)
= b(v, ej)−

∑
εib(v, ei)b(ei, ej)

= b(v, ej)− εjb(v, ej)b(ej, ej)

= b(v, ej)− ε2jb(v, ej)

= b(v, ej)− b(v, ej)

= 0

Definition 1.1.14. Let V be a scalar product space andW a nondegenerate subspace
of V . We the orthogonal projection π : V → W to be the surjective linear map
such that π|W⊥ = 0 and π|W = idW . An orthonormal base (e1, . . . , ek) of W can
always be expanded to a basis for V , and so

π(v) =
k∑
i=1

εib(v, ei)ei

Definition 1.1.15. [38, p. 47] The index ν of a symmetric bilinear form b on V
is the largest integer that is the dimension of a subspace W ⊂ V on which b|W is
negative definite.
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Sometimes we will refer to the index ν of the scalar product b of V as the index
of V and we will write ν = indV . The following Lemma tells us that the number
of negative signs in an orthonormal base and the largest dimension of a subspace in
which b is negative definite are equal and that they are independent from the choice
of orthonormal base. This property is sometimes called Sylvester’s Law of Inertia.

Lemma 1.1.16. [38, p. 51] Let V be an n-dimensional scalar product space with
b scalar product. For any orthonormal basis e1, . . . , en of V the number of negative
signs in the signature (ε1, . . . , εn) is the index ν of V .

Proof. Suppose the first d numbers of the signature (ε1, . . . , εn) have negative signs.
If b is definite then the proof is trivial.

Suppose 0 < d < n. Then the index ν of b satisfies ν ≥ d by definition of the
index. Now we wish to show the opposite inequality. Suppose W is a subspace of
V such that b is negative definite on W and dimW = ν. Let N be the subspace
of V such that N = span(e1, . . . , ed), so b is negative definite. Then we define the
orthogonal projection π : W → N

π(w) = −
d∑
i=1

b(w, ei)ei

If we show that π is injective then dimW ≤ dimN and so we have ν = d. To show
this, first we write w by its orthonormal expansion

w = −
d∑
i=1

b(w, ei)ei +
n∑

i=d+1

b(w, ei)ei

To show π is injective, suppose π(w) = 0. So we can write

w =
n∑

i=d+1

b(w, ei)ei

Then we compute

b(w,w) = b(w,
n∑

i=d+1

b(w, ei)ei)

=
n∑

i=d+1

b(w, ei)b(w, ei)

=
n∑

i=d+1

b(w, ei)
2

So b(w,w) ≥ 0. But w ∈ W and g is negative definite in W . So we have

b(w, ei) = 0, for j > d

and since b is nondegenerate w = 0. Thus π is injective.

These are important because for nondegenerate subspaces W we can find an
orthonormal base of V such that V = W +W⊥ and from the previous lemma
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Lemma 1.1.17. Let V be an n-dimensional scalar product space and W a nonde-
generate subspace. then

indV = indW + indW⊥

Proof. SinceW is a nondegenerate subspace we have shown thatW⊥ is nondegener-
ate. SinceW,W⊥ are scalar product spaces, they have orthonormal bases (e1, . . . , ek)
forW and (ek+1, . . . , en) forW

⊥ with indexes indW, indW⊥. But (e1, . . . , ek, . . . , en)
is an orthonormal base for V . Assume that the number of negative signs in the sig-
nature of W is d, of W⊥ is l and of V is r. Then we have

indV = r = d+ l = indW + indW⊥

The kind of maps which preserve the index of scalar product spaces are linear
isometries.

Definition 1.1.18. Assume scalar product spaces V and V with scalar products b
and b̄ . A linear map T : V → V is called linear isometry when:

• T preserves scalar products such that

b̄(Tv, Tw) = b(v, w) for all v, w ∈ V

Remark 1.1.19. We notice that a linear isometry is necessarily injective, because

Tv = 0 =⇒ b(v, w) = 0 for all w =⇒ v = 0

Lemma 1.1.20. [38, p. 52] Suppose (V, b) and (V , b̄) scalar product spaces. Then
dimV = dimV and indV = indV if and only if there exists a linear isometry
T : V → V .

Proof. (=⇒) Suppose orthonormal bases e1, . . . , en for V and ē1, . . . , ēn for V̄ . Since
indV = ind V̄ , we have

b(ei, ei) = b̄(ēi, ēi) for all i ∈ {1, . . . , n}

Let T be a linear transformation such that Tei = ēi. So this means b̄(Tei, T ej) =
b(ei, ej), which is a linear isometry. So for v, w ∈ V we have

v =
∑

viei

w =
∑

wiei

 =⇒ b̄(Tv, Tw) = b(v, w)

(⇐=) Since T is a linear isometry, if (e1, . . . , en) is an orthonormal base of V
then (Te1, . . . , T en) is an orthonormal base of V . Hence

dimV = dimV

and because from the linear isometry

b̄(Tei, T ei) = b(ei, ei) = εi

we have equal number of negative signs of the signatures of V and V . Hence

indV = indV .
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1.2 Semi-Riemannian Metric

Riemannian metrics are symmetric tensor fields g ∈ T 0
2 (M) such that on every point

p ofM they are positive definite. We define the semi-Riemannian metric accordingly
for scalar product spaces.

Definition 1.2.1. Assume M a smooth manifold. If g ∈ T 0
2 (M) is a symmetric

nondegenerate tensor field of constant index, then it is called metric tensor when
for each p ∈M, gp is a scalar product of TpM and has the same index for all p.

When a smooth manifoldM has a metric tensor g it will be called semi-Riemannian
manifold. Since by definition the index ν of the scalar product gp is the same for all
p we can sometimes simply say the index of M .

• If ν = 0 then M is a Riemannian manifold.

• If ν = 1, n ≥ 2 then M will be called Lorentz manifold.

For the metric tensor g sometimes we will write equivalently g(v, w) = ⟨v, w⟩.

Example 1.2.2. In the Riemannian case one of the simplest examples of a flat
Riemannian manifold was the euclidean space Rn. For vectors vp, wp ∈ TpRn it can
be defined a positive definite metric

⟨vp, wp⟩ =
n∑
i=1

viwi

In the semi-Riemannian case one of the simplest examples of a flat semi-Riemannian
manifold is the Minkowski space Rn

ν . This is the Euclidean space with a metric
tensor g of index ν such that:

⟨vp, wp⟩ = −
ν∑
i=1

viwi +
n∑

j=ν+1

vjwj

Remark 1.2.3. It is not true that if we have an n-dimensional semi-Riemannian
manifold M with index ν then every base of TpM containts ν timelike vectors and
n−ν spacelike vectors. We can see that in the Lorentzian case, the Minkowski space
R4

1 has a base of vectors (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1). They are one
timelike vector, one null vector and two spacelike vectors.

We notice that, as was the case in scalar product spaces, there exists non-zero
vectors with positive, negative and zero length.

Definition 1.2.4. Suppose M is a semi-Riemannian manifold. Then for a vector
vp ∈ TpM

• if ⟨vp, vp⟩ > 0 for vp ̸= 0 or if vp = 0 then it is called spacelike,

• if ⟨vp, vp⟩ = 0 for vp ̸= 0 then it is called null,

• if ⟨vp, vp⟩ < 0 for vp ̸= 0 then it is called timelike.
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Remark 1.2.5. [38, p. 56] The set of all null vectors in TpM is called the nullcone
at p ∈ M . The category into which a given tangent vector falls is called its causal
character. This terminology derives from relativity theory, and particularly in the
Lorentz case, null vectors are also said to be lightlike.

So on a semi-Riemannian manifold M we have a decomposition of the tangent
spaces TpM , for every point p ∈M , in spacelike, null and timelike vectors. Lets see
again the Example 1.1.7 the Minkowski space R2

1 with the metric tensor ⟨v, w⟩ =
−v1w1 + v2w2. Assume a ̸= 0 and a timelike vector v, such that ⟨v, v⟩ = −a2. So

⟨v, v⟩ = −a2 =⇒ −(v1)2 + (v2)2 = −a2 =⇒ (v1)2

a2
− (v2)2

a2
= 1

We conclude that the timelike vectors with g(v, v) = −a2 form rectangular hy-
perbolas with major semi-axis y-coordinate axis. Null vectors form their asymptotes
since g(w,w) = 0. And spacelike vectors u form rectangular hyperbolas with major
semi-axis the x-coordinate axis since for b ̸= 0

⟨u, u⟩ = b2 =⇒ (u2)2

b2
− (u1)2

b2
= 1

The above are in contrast the Euclidean case since for ⟨v, v⟩ = a2 the set of vectors
formed a circle. This may give us a hint that also the angles will be measured
differently. In a later section we will show that for timelike vectors in Lorentz vector
space the inverse Cauchy-Schwarz inequality holds.

A difference between Riemannian metric and semi-Riemannian metrics is that
we cant always induce a metric tensor to a submanifold from the ambient manifold.
Let M be a Riemannian manifold with metric g and N a submanifold. For each
subspace TpN of TpM we can induce the metric i∗(g), from the inclusion i : N ↪→M ,
to N which makes it a Riemannian manifold. But in the case of a nondegenerate
metric tensor g of M , i∗(g) is not always a metric tensor because TpN may not be
nondegenerate for some p ∈M or the index may not be the same for all p.

Definition 1.2.6. Suppose (M, g) is a semi-Riemannian manifold and N ⊂M is a
submanifold such that we have the inclusion i : N ↪→M . If i∗(g) is a metric tensor
on N , then N is a semi-Riemannian submanifold of M .

1.3 Parallel Translation

Suppose (M, g) is a semi-Riemannian manifold and γ : I → M a smooth curve.
Then a smooth map X : I → TM , where TM is the tangent bundle, is said to be
an element of X(γ). X assigns to each t ∈ I a tangent vector to M at a(t). The
velocity γ′ is a vector field on γ, as is the restriction Yγ of any Y ∈ X(M).

Proposition 1.3.1. [41, p. 18] Let (M, g) be a semi-Riemannian manifold, I ⊂ R
be an open interval and γ : I → M be a smooth curve. Then there is a unique
function

X 7→ X ′ =
DX

dt



11 1.3. Parallel Translation

such that X,X ′ ∈ X(γ). This map satisfies the following properties:

(aX1 + bX2)
′ = aX ′

1 + bX ′
2 (a, b ∈ R) (1.2)

(fX)′ = (df/dt)X + fX ′ (h ∈ C∞(I)) (1.3)

(Yγ)
′ = Dγ′(t)(Y ) (t ∈ I, Y ∈ X(M)) (1.4)

(d/dt)⟨X1, X2⟩ = ⟨X ′
1, X2⟩+ ⟨X1, X

′
2⟩ (1.5)

For a vector field X on γ when X is tangent to γ, meaning X = γ′, we can write
X ′ = γ′′ and we call it the acceleration of γ. We could try to define X ′ = Dγ′X and
γ′′ = Dγ′γ

′ for X tangent to γ, but this would not be entirely correct since X is not
a vector field of M but a vector field of γ. But it is correct to write X ′ = Dγ′(t0)X
only at points γ(t0) where γ

′(t0) ̸= 0 and some neighborhood of t0.
In coordinates we write

X ′ =
∑
k

{
dXk

dt
+
∑
ij

Γkij
d(xi ◦ γ)

dt
Xj

}
∂k (1.6)

Definition 1.3.2. [41, p. 19] Let (M,g) be a semi-Riemannian manifold, I ⊂ R an
open interval and γ : I →M a smooth curve. Then X ∈ X(γ) is parallel along γ
if and only if X ′ = 0.

Proposition 1.3.3. Let (M, g) be a semi-Riemannian manifold, I ⊂ R be an open
interval and γ : I → M be a smooth curve. If t0 ∈ I and ξ ∈ Tγ(t0)M , then there is
a unique X ∈ X(γ) such that X ′ = 0 and X(t0) = ξ.

Due to the previous proposition we can define a map called parallel translation.

Definition 1.3.4. Let (M, g) be a semi-Riemannian manifold. I ⊂ R be an open
interval with t0, t1 ∈ I and γ : I → M be a smooth curve. Suppose ξ ∈ Tγ(t0)M and
X ∈ X(γ) such that X ′ = 0 and X(t0) = ξ. Then the map

P : Tγ(t0)M → Tγ(t1)M

such that P (ξ) = X(t1) is called parallel translation along γ from γ(t0) to γ(t1)

Proposition 1.3.5. Let (M, g) be a semi-Riemannian, I ⊂ R be an open interval
and γ : I → M be a smooth curve. Suppose t0, t1 ∈ I and pi = γ(ti), i = 0, 1. then
parallel translation along γ from γ(t0) to γ(t1) is a linear isometry from Tp0M to
Tp1M .

Since parallel translation is a linear isometry of the tangent spaces then the
causal character of tangent vectors, curves, and submanifolds are preserved from
Lemma 1.1.20. Another map that preserves the causal character is the conformal
maps with positive conformal factor.

Definition 1.3.6. Suppose X ∈ X(γ) is parallel along γ such that X = X i∂xi and
γ(t0) = p, γ(t1) = q. If the parallel translation from point p to point q along any
curve is just the canonical isomorphism

P (X i∂xi |p) = X i∂xi |q

then we call it distant parallelism.
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Example 1.3.7. Assume we have the Minkowski space Rn
ν , a smooth curve γ and

a vector field X ∈ X(γ) parallel along γ. Since Minkowski space has Γkij = 0, with
respect to the natural coordinates, from equation (1.6) we have

X ′ = 0 =⇒
∑
k

dXk

dt
∂k = 0

It follows that X is parallel along γ if and only if the Xk are constants on γ with
respect to the standard basis. So the parallel translations are distant parallelisms
since the vectors are constant along arbitrary smooth curves of the Minkowski space.
This means that the result does not depend on the curve. This is the case for Eu-
clidean and Minkowski space because the natural coodrinate vector fields are parallel
and hence so are their restrictions on any curve. This is not true in general for
other spaces.

We can use parallel transport in a very convinient way. Assume an orthonormal
basis e1, . . . , en for Tγ(t0)M and then parallel transport the vectors ei along the curve
γ. By that we get the parallel vector fields E1, . . . , En along γ and because parallel
transport is a linear isometry we have that the parallel vector field is an orthonomal
basis for each γ(t). For a vector field X(t) = X i(t)Ei(t) by taking its covariant
derivative along a curve we have

X ′ =
dX i(t)

dt
Ei(t) +X i(t)(Ei(t))

′

=
dX i(t)

dt
Ei(t)

In conclusion we have that a vector field is parallel along γ if and only if its compo-
nents are constant with respect to the frame (Ei).

1.4 Geodesics

Definition 1.4.1. [41, p. 20] Let M, g be a semi-Riemannian manifold, I ⊂ R be
an open interval and γ : I →M be a smooth curve. Then γ is said to be a geodesic
if γ′′ = 0 or equivalently if γ′ ∈ X(γ) is parallel.

Corollary 1.4.2. [38, p. 67] Let x1, . . . , xn be a coordinate system on U ⊂ M . A
curve γ in U is a geodesic of M if and only if its coordinate functions xk ◦ γ satisfy

d2(xk ◦ γ)
dt2

+
∑
i,j

Γkij(γ)
d2(xi ◦ γ)

dt

d2(xj ◦ γ)
dt

= 0

for 1 ≤ k ≤ n. The above is sometimes called geodesic equation.

When the context is obvious we will use the abbreviation of the geodesic equation

d2(xk)

dt2
+
∑
i,j

Γkij
dxi

dt

dxj

dt
= 0

for 1 ≤ k ≤ n such that
xk = xk ◦ γ, Γkij = Γkij(γ)



13 1.4. Geodesics

Proposition 1.4.3. Let (M, g) be a semi-Riemannian manifold, p ∈ M and v ∈
TpM . Then there is a unique geodesic γ : I →M with the properties that

• I ⊂ R is an open interval such that 0 ∈ I,

• γ′(0) = 0,

• I is maximal in the sense that if α : J → M is a geodesic (with J an open
interval, 0 ∈ J and α′(0) = 0), then J ⊂ I and α = γ|J .

The geodesics in the previous proposition are called maximal geodesics or
geodesically inextendible. For a maximal geodesic γ with initial velocity γ′(0) =
v we will frequently use the notation γv.

Definition 1.4.4. Let (M, g) be a semi-Riemannian manifold and γ : I → M be
a maximal geodesic of M . If I = R then γ is called complete geodesic. If all
maximal geodesics the of semi-Riemannian manifold M are complete geodesics then
M is called complete.

So a complete geodesic is a curve γ : I → M that if given an inicial velocity γ′

then it doesnt stop. If we remove a point from a complete geodesic then it loses its
completeness since given an initial velocity it will stop for some t ∈ I.

Example 1.4.5. Suppose the Minkowski space Rn
ν . Since its Christofell symbols

vanish it easy to see that the geodesic equation becomes

d2xi

dt
= 0

such that 1 ≤ i ≤ n. So the components of the geodesics in the Minkowski space are

xi(t) = tvi + pi

for all t and pi, vi ∈ R. Meaning that the geodesics are straight lines

γ(t) = tv + p

and Rn
ν is a geodesically complete.

Note that if we remove a point from a comples space then it becomes not com-
plete. For example Rn

ν \ {0} is not complete.

Remark 1.4.6. If γ is a geodesic then

d

dt
⟨γ′, γ′⟩ = ⟨γ′′, γ′⟩+ ⟨γ′, γ′′⟩ = 0

So ⟨γ′, γ′⟩ is constant.

Definition 1.4.7. Let M be a semi-Riemannian manifold, I ⊂ R be an open inter-
van and α be a curve in M . Then

• if ⟨α′, α′⟩ > 0 and α′ ̸= 0 or α′ = 0 then α is called spacelike curve,

• if ⟨α′, α′⟩ < 0 and α′ ̸= 0 then α is called timelike curve,
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• if ⟨α′, α′⟩ = 0 and α′ ̸= 0 then α is called null curve,

• if α is timelike or null then it is called causal curve.

An arbitrary curve α is not necessarilly any of the above, so it doesnt have
a causal character. This means that an arbitrary curve may have some spacelike
velocity vectors, some timelike velocity vectors and some null vectors for t ∈ I. But
a geodesic γ has one causal character of the above since γ′ is parallel and parallel
translation preserves the causal character of vectors.

1.5 Exponential Map

In the next Lemma we see that it is possible by increasing the velocity of the geodesic
to decrease the length of the interval that the geodesic is defined. Conversely, we
can decrease the interval that the geodesic is defined to increase the velocity of the
geodesic.

Lemma 1.5.1 (Rescaling Lemma). [31, p. 127] Suppose M is a semi-Riemannian
manifold and γ : (−δ, δ) → M a geodesic such that γ(0) = p and γ′(0) = v. Then
the geodesic γcv for c ∈ R, c > 0 is defined on the interval (−δ/c, δ/c) and

γcv(t) = γv(ct)

This Leema makes it possible to define a very importan map for semi-Riemannian
and Riemannian geometry.

Definition 1.5.2. [31, p. 128] Suppose M a semi-Riemannian manifold and a
geodesic γ : I →M such that γ(0) = p and γ′(0) = v. Let the subset D ⊂ TM be

D = {v ∈ TM : γv is defined on an interval containing [0, 1]}

The we define the exponential map exp : D →M by

exp(v) = γv(1)

For each p ∈M we can define the exponential map expp as the restriction of exp to
the set Dp = D ∩ TpM .

We notice that the exponential map expp carries lines through the origin of TpM
to geodesics of M through p since

expp(tv) = γtv(1) = γv(t)

Proposition 1.5.3. For each p ∈ M there exists a neighborhood Ũ of 0 ∈ TpM
such that the exponential map expp is a diffeomorphism onto a neghborhood U of p
in M .

• Suppose S is a subset of a vector space. If v ∈ S implies tv ∈ S for all
0 ≤ t ≤ 1 then S is called starshaped about 0.

• Suppose U and Ũ are as in the proposition 1.5.3. Then if Ũ is starshaped
about 0 (the zero section), then U is called normal neighborhood of p.



15 1.5. Exponential Map

Proposition 1.5.4. [38, p. 72] If U is a normal neighborhood of p ∈ M , then
for each point q ∈ U there is a unique geodesic σ : [0, 1] → U from p to q in U .
Furthermore σ′(0) = exp−1

p (p) ∈ Ũ .

Definition 1.5.5. Suppose σ is the geodesic of a semi-Riemannian manifold M ,
where σ(0) = p, σ(1) = q and U a normal neighborhood of p ∈ M . Let v =
exp−1

p (q) ∈ Ũ and ρ(t) = tv ∈ Ũ then the geodesic σ(t) = expp ◦ρ, which lies in
U , is called radial geodesic.

Example 1.5.6. [38, p. 73] In the Example 1.4.5 we showed that the geodesics of the
Minkowski space with initial velocity vp ∈ TpRn

ν are the straight lines γ(t) = tv + p.
So from the definition map we have that

expp(vp) = γv(1) = v + p

We can express the exponential map expp : TpRn
ν → Rn

ν as the composition of the
canonical isomorphism TpRn

ν
∼= Rn

ν and the translation x 7→ p + x. This maps are
both diffeomorphisms and so we have that expp : TpRn

ν → Rn
ν is a diffeomorphism. If

TpRn
ν has the usual metric tensor then the canonical isomorphism and the translation

are isometries, so expp is also an isometry.
From that we also notice that since TpRn

ν is starshaped, then Rn
ν is a normal

neighborhood around all of its points.

Assume a semi-Riemannian manifold (M, g).

• For an orthonormal basis (bi) of TpM we define the basis isomorphism

B : Rn → TpM

such that B(x1, . . . , xn) = xibi.

• Around p we define U = expp(V ) the normal neighborhood of p

Then by combining the above we get a smooth coordinate map

ϕ = B−1 ◦ (expp |V )−1 : U → Rn

TpM Rn

U

B−1

ϕ
(expp |V )−1

This coordinate map is called normal coordinate centered at p.

Proposition 1.5.7. (Uniqueness of Normal Coordinates)[31, p. 132] Let (M, g) be
a Riemannian or semi-Riemannian n-manifold, p ∈ M and U be a normal neigh-
borhood of p. Then

1. For every normal coordinate chart on U centered at p, the coordinate basis is
orthonormal at p.
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2. For every orthonormal basis (bi) of TpM , there is a unique normal coordinate
chart (xi) on U such that

∂i|p = bi

for i = 1, . . . , n.

Proof. For (1). Suppose normal coordinate chart (U, ϕ) centered at p such that
ϕ = (x1, . . . , xn) and ϕ(p) = 0. Then from the definition we have that

ϕ = B−1 ◦ exp−1
p

such that B : Rn → TpM is the basis isomorphism B(v1, . . . , vn) = vibi where (bi)
is some orthonormal basis of TpM . We notice that

dϕ−1
p = d(expp)0 ◦ dB0

Because d(expp)0 = idTpM and B is a linear map we have

dϕ−1
p = B

So for the coordinate basis of TpM we have

∂xi |p = dϕ−1
p (∂xi |ϕ(p)=0) = B(∂xi |0) = bi

which shows that the coordinate basis is orthonormal at p.
For (2). Suppose orthonormal basis (bi) on TpM . We define the basis isomor-

phism B determined on the orthonormal basis (bi), then we can define a normal
coordinate map ϕ = B−1 ◦ exp−1

p which satisfies

∂xi |p = bi

as it was shown in (1).
Now to show the uniqueness, assume another normal coordinate chart

ϕ̃ = B̃−1 ◦ exp−1
p

Then we notice that

ϕ̃ ◦ ϕ−1 = B̃−1 ◦ exp−1
p ◦ expp ◦B = B̃−1 ◦B

So ϕ̃ ◦ ϕ−1 is a linear map and so d(ϕ̃ ◦ ϕ−1) = ϕ̃ ◦ ϕ−1. We know that two the
coordinate charts ϕ, ϕ̃ are the same if and only if d(ϕ̃ ◦ϕ−1) = idRn . So from this we
have that

ϕ̃ = ϕ

and so the normal coordinate chart centered at p is unique.

Definition 1.5.8. [38, p. 129] An open set V in a semi-Riemannian manifold is
convex when V is a normal neighborhood of each of its points.

In particular for any tow points p, q ∈ V there is a unique geodesic segment
σpq : [0, 1] →M from p to q that lies entirely in V .
Definition 1.5.9. If p and q are points of a convex open set V and σpq is the geodesic
in V from p = σpq(0) to q = σpq(1), the displacement vector p⃗q is σ′

pq(0) ∈ TpM .

An important fact is that local isometries of connected manifolds are completely
determined by their values and differentials at a single point.

Proposition 1.5.10. Let M and N be semi-Riemannian manifolds and M con-
nected. Suppose ϕ, ψ : M → N are local isometries. If for p ∈ M we have
ϕ(p) = ψ(p) and dϕp = dψp, then ϕ = ψ at every point in M .
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Lorentzian Geometry

2.1 Causality of Lorentzian Geometry

Definition 2.1.1. A scalar product space of index 1 and dimension n ≥ 2 is called
Lorentz vector space.

Definition 2.1.2. [38, p. 141] Suppose V is a Lorentz vector space with scalar
product g and W its a subspace.

• If g|W is positive definite, then W is said to be spacelike.

• If g|W is nondegenerate of index 1, then W is timelike.

• If g|W is degenerate, then W is lightlike.

Similar to vectors in the tangent space, the category in which the subspaces fall
is called the causal character.

In Lemma 1.1.9 we showed that a subspace W of a scalar product space V is
nondegenerate if and only if its W⊥ is nondegenerate if and only if V = W ⊕W⊥.
Here we make a similar argument by taking into account its causal character also.

Lemma 2.1.3. [38, p. 141] If z is a timelike vector in a Lorentz vector space V ,
then the subspace z⊥ is spacelike and V = span(z)⊕ z⊥.

From Lemma 1.1.8 we have that (W⊥)⊥ = W , so from the above we have that

• W is timelike if and only if W⊥ is spacelike,

• W is lightlike if and only if W⊥ is lightlike.

For the spacelike subspaces all the properties of vector subspaces with inner
product are the same. For the timelike and lightlike we have some characteristic
properties.

Lemma 2.1.4. [38, p. 141] Let W be a subspace of dimension n ≥ 2 in a Lorentz
vector space. Then the following are equivalent:

1. W is timelike, hence is itself a Lorentz vector space.

2. W contains two linearly independent null vector.

17
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3. W contains a timelike vector.

Lemma 2.1.5. [38, p. 142] For a subspaceW of a Lorentz vector space the following
are equivalent:

1. W is lightlike, that is, degenerate.

2. W contains a null vector but not a timelike vector.

3. W ∩ Λ = L \ 0, where L is a one-dimensional subspace and Λ is the nullcone
of V .

2.2 Timecones

We can now examine if there are analogue properties of timelike vector with the
spacelike vectors such as triangle inequality or the Cauchy-Schwarz inequality. First
we need to be able to distinguish two different sets of timelike vectors.

Definition 2.2.1. [38, p. 143] Let T be the set of all timelike vectors in a Lorentz
vector space V . For u ∈ T

•
C(u) = {v ∈ T : ⟨u, v⟩ < 0}

is the timecone of V containing u.

• The opposite timecone is

C(−u) = −C(u) = {v ∈ T : ⟨u, v⟩ > 0}

We have shown that u⊥ is spacelike, so T = C(u) ⊔ C(−u).
We can distinguish when two timelike vectors are in the same timecone with the

following Lemma.

Lemma 2.2.2. [38, p. 143] Assume V is a Lorentzian vector space and the timelike
vectors v, w, u ∈ V . Then v, w ∈ C(u) or v, w ∈ −C(u) if and only if ⟨v, w⟩ < 0.

Proof. We can assume that u is a unit timelike vector since C(u/|u|) = C(u).
From Lemma 1.1.12 there is an orthonormal base e0, e1, . . . , en of V such that

e0 = u. So e1, . . . , en ∈ u⊥ and by Lemma 2.1.3 e1, . . . , en are spacelike vectors.
Now we can write v =

∑
viei for i ∈ {0, 1, . . . , n} and

⟨v, u⟩ = ⟨v0u+ v1e1 + · · ·+ vnen, u⟩
= ⟨v0u, u⟩+ ⟨v1e1, u⟩+ · · ·+ ⟨vnen, u⟩
= v0⟨u, u⟩
= −v0

If v ∈ C(u), this implies with the above that v0 > 0. We showed

• v ∈ C(u) if and only if v0 > 0,
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• v ∈ −C(u) if and only if v0 < 0.

Let x =
∑
xiei where x̄ = x1e1 + · · · xnen.

⟨x, x⟩ = ⟨
∑

xiei,
∑

xiei⟩

= (x0)2⟨u, u⟩+ (x1)2⟨e1, e1⟩+ · · ·+ (xn)2⟨en, en⟩
= −(x0)2 + (x1)2 + · · ·+ (x1)2

= −(x0)2 + ∥x̄∥2Rn

If x is timelike then

⟨x, x⟩ < 0 ⇐⇒ −(x0)2 + ∥x̄∥2Rn < 0

⇐⇒ (x0)2 > ∥x̄∥2Rn

⇐⇒ |x0| > ∥x̄∥Rn (1)

Since we used equivalences, we showed

• x is timelike if and only if |x0| > ∥x̄∥Rn

For v̄ = v1e1 + · · · vnen and w̄ = w1e1 + · · ·wnen we define the timelike vectors
v, w

v = v0u+ v̄, w = w0u+ w̄

Then we see that

⟨v, w⟩ = ⟨v0u+ v̄, w0u+ w̄⟩Rn

= v0w0⟨u, u⟩+ ⟨v̄, w̄⟩Rn

= −v0w0 + ⟨v̄, w̄⟩Rn

We have shown that v, w timelike vectors if and only if |v0| > ∥v̄∥Rn , |w0| >
∥w̄∥Rn . This together with Cauchy-Schwarz gives us

|⟨v̄, w̄⟩|Rn ≤ ∥v̄∥Rn∥w̄∥Rn < |v0w0|

This means
⟨v̄, w̄⟩Rn < v0w0 or ⟨v̄, w̄⟩Rn < −v0w0

This shows that

• ⟨v, w⟩ < 0 if and only if sign(v0) = sign(w0).

Assume that v, w ∈ C(u), then v0, w0 > 0. So we have ⟨v, w⟩ < 0. Similar for
v, w ∈ −C(u).

Assume that ⟨v, w⟩ < 0. Then v0, w0 have the same sign and so v, w ∈ C(u) or
v, w ∈ −C(u).

Also the timecones are convex sets. This is easy to see since for v, w ∈ C(u) and
if a ≥ 0, b ≥ 0 not both zero then av + bw ∈ C(u) because

⟨av + bw, av + bw⟩ = a2⟨v, v⟩+ b2⟨w,w⟩+ 2ab⟨v, w⟩
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From definition of timecone v, w are timelike and ⟨v, w⟩ < 0. This implies that

⟨av + bw, av + bw⟩ < 0 ⇐⇒ av + bw ∈ C(u)

From Lemma 2.2.2 we have a way to characterize vectors in a timecone. From
that we showed that the timecones are convex so linear combination of timelike
vectors cant escape from them.

Now we show that for timelike vectors in a Lorentz vector space has some anal-
ogous properties with the inner product case.

Proposition 2.2.3. [38, p. 144] Let V be a Lorentz vector space and v, w ∈ V are
timelike vectors. Then

1. the inverse Cauchy-Schwarz inequality holds

|⟨v, w⟩| ≥ |v||w|,

with equality if and only if v, w are collinear.

2. If v, w are in the same timecone of V ,. there is a unique number ϕ ≥ 0, called
the hyperbolic angle between v, w, such that

⟨v, w⟩ = −|v||w| coshϕ

Proof. (1.) We write w = av + w̄, with w̄ ∈ v⊥. So we have

⟨w,w⟩ = a2⟨av + w̄, av + w̄⟩
= a2⟨v, v⟩+ ⟨w̄, w̄⟩+ 2⟨v, w̄⟩
= a2⟨v, v⟩+ ⟨w̄, w̄⟩ (2.1)

So

⟨v, w⟩2 = ⟨v, av + w̄⟩2

= (a⟨v, v⟩+ ⟨v, w̄⟩)2

= a2⟨v, v⟩2

= (⟨w,w⟩ − ⟨w̄, w̄⟩)⟨v, v⟩
= ⟨w,w⟩⟨v, v⟩ − ⟨w̄, w̄⟩⟨v, v⟩ (2.2)

where in the second from last equality we use (2.1). We know that w, v are timelike
vectors and w̄ is a spacelike vector, so

⟨w,w⟩⟨v, v⟩ > 0

⟨w̄, w̄⟩⟨v, v⟩ < 0

}
=⇒ ⟨v, w⟩2 ≥ ⟨w,w⟩⟨v, v⟩ = |v|2|w|2

where the implication comes from (2.2).
If v, w ∈ V are collinear it holds that

w, v collinear ⇐⇒ w = av

⇐⇒ w̄ = 0

⇐⇒ ⟨w̄, w̄⟩
⇐⇒ ⟨v, w⟩2 = ⟨w,w⟩⟨v, v⟩
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(2.) From Lemma 2.2.2 if v, w ∈ C(u) then ⟨v, w⟩ < 0 and so from (1.)

−⟨v, w⟩
|v||w|

≥ 1

From the equation
cosh2 ϕ− sinh2 ϕ = 1,

we have
coshϕ ≥ 1

So for a unique ϕ ≥ 0 we have

coshϕ = −⟨v, w⟩
|v||w|

Because the Cauchy-Schwarz inequality is backwards so is the triangle inequality.

Corollary 2.2.4. [38, p. 144] If v, w are timelike vectors in the same timecone then

|v|+ |w| ≤ |v + w|,

with equality if and only if v, w are collinear.

Proof. v, w are in the same timecone if and only if ⟨v, w⟩ < 0. From the inverse
Cauchy-Schwarz we have

|v||w| ≤ −⟨v, w⟩ (2.3)

hence
(|v|+ |w|)2 = |v|2 + 2|v||w|+ |w|2 ≤ |v|2 − 2⟨v, w⟩+ |w|2 (2.4)

where the inequality holds from (2.3),

|v|2 − 2⟨v, w⟩+ |w|2 = |⟨v, v⟩| − 2⟨v, w⟩+ ⟨w,w⟩
= −⟨v, v⟩ − ⟨w,w⟩ − 2⟨v, w⟩
= −(⟨v, v⟩+ ⟨w,w⟩+ ⟨v, w⟩+ ⟨v, w⟩)
= −(⟨v, w + v⟩+ ⟨v + w,w⟩)
= −⟨v + w, v + w⟩
= |⟨v + w, v + w⟩| (2.5)

= |v + w|2 (2.6)

where the Equation 2.5 holds since if v, w ∈ C(u) then v + w ∈ C(u).
So from (2.4) and (2.6) we have

(|v|+ |w|)2 ≤ |v + w|2 =⇒ |v|+ |w| ≤ |v + w|

From the inverse Cauchy-Schwarz we have that v, w are collinear if and only if
|v||w| = −⟨v, w⟩. So the inequality in (2.4) becomes an equality and we have from
the same calculations

|u|+ |w| = |v + w|

and the inverse holds since we only used equalities.
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The above Corollary tells us that when we are in a timecone the shortest path
between two points is not a straight line anymore. In fact it will be longer to follow
a straight line than going around it.

Definition 2.2.5. Assume V a Lorentz vector space.

• If v ∈ V is a null or timelike vector then we call it causal.

• If v is a timelike vector then C̄(v) is the set of all causal vectors w such that
⟨v, w⟩ < 0 and we call it the causal cone containing v.

Since we have shown that timecones are convex we consider if timelike curves
can change timecones. First some definitions that we will find useful

• A map α : [a, b] → M is a curve segment provided that it has a smooth
extension to an open interval containing a, b.

• A map β : [a, b] →M is a piecewise smooth curve segment provided there
is a partition a = t0 < t1 < · · · < tk+1 = b of [a, b] such that each β|[ti,ti+1] is a
curve segment.

• A map β : I →M , with I being an open interval, is piecewise smooth provided
that for all a < b in I the restriction β|[a,b] is piecewise smooth.

Another possibility arises for piecewise smooth curves, that is if they can change
timecones on a break ti.

• A piecewise smooth curve α : I →M is timelike if

⟨α′(t), α′(t)⟩ < 0 ∀t ∈ I

and for each break ti
⟨α′(t−i ), α

′(t+i )⟩ < 0

where t−i is from α|[ti−1,ti] and t
−
i is from α|ti , ti+1.

So if a piecewise smooth is timelike then it cant change timecones at a break
ti. The next Lemma tells us if a curve is initially timelike then it stays in a single
timecone.

Lemma 2.2.6. [38, p. 146] Let p be a point of a Lorentz manifold M . Suppose that
β : [0, b] → TpM is a piecewise smooth curve starting at 0 such that α = expp ◦ β is
timelike. Then β remains in a single timecone of TpM .

The analogous statement holds for causal curve and causal cone.

2.3 Time Orientation

From the definition of timecones we notice that for each tangent space we divide the
timelike vectors into two components. Also there is no intrinsic way to distinguish
them form each other. So we have to choose one of them. This is called choosing
a time orientation for a Lorentz scalar product space. When a Lorentz scalar
product space has a time orientation it is called time oriented Lorentz scalar
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product space. If we have chosen a time orientation then the timelike vectors that
belong to the specific timecone are called future oriented.

For example on a Lorentz scalar space (V, g) we can choose a time orientation if
we choose the timecone C(u). Then for timelike vectors v, if g(v, u) < 0 then v is
future oriented and if g(v, u) > 0 then v is past oriented.

Definition 2.3.1. [41, p. 10] Let (M, g) be a Lorentz manifold.

• A time orientation of (M, g) is a choice of time orientation of each scalar
product space (TpM, gp), p ∈M , such that the following holds. For each p ∈M ,
there is an open neighborhood U of p and a smooth vector field X on U such
that Xq is future oriented for all q ∈ U .

• A Lorentz metric g on a manifold M is said to be time orientable if (M, g)
has a time orientation.

• A Lorentz manifold (M, g) is said to be time orientable if (M, g) has a time
orientation.

• A Lorentz manifold with a time orientation is called a time oriented Lorentz
manifold.

Not all Lorentzian manifolds are time orientable. The Lorentizan manifolds that
admit a time orientation are called time orientable.

Example 2.3.2. Minkowski space Rn
1 is time-orientable by choosing as time-orientation

to be the one that containts the coordinate vector field ∂u0 of the natural coordinates
u0, . . . , un.

We have the following Lemma to characterise time-orientability.

Lemma 2.3.3. [38, p. 145] A Lorentz manifold M is time orientable if and only if
there exists a timelike vector field X ∈ X (M)

For Lorentizan manifolds there is no relation between orientability and time
orientability since we can find examples that admits either ones.

2.4 Riemannian and Lorentzian Geometry

An important difference between Riemannian and Lorentizan Geometry is that of
existence of metrics in a smooth manifold. In Riemannian geometry it is known that
every smooth manifold admits a Riemannian metric [31, p. 11]. This is not the case
in Lorentzian geometry. Not every smooth manifold can be made into a Lorentzian
manifold.

Proposition 2.4.1. [38, p. 149] For a smooth manifold M the following are equiv-
alent:

1. There exists a Lorentz metric on M .

2. There exists a time-rientable Lorentz metric on M .

3. there is a nonvanishing vector field on M .
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4. Either M is noncompact, or M is compact and has Euler number χ(M) = 0

Next we will see a local property of geodesics that changes from Riemannian
manifold to Lorentzian manifolds. First we define the arc length of a curve.

Definition 2.4.2. Suppose a semi-Riemannian manifold M and a piecewise smooth
curve segment σ : [a, b] →M . Then the arc length of σ is

L(σ) =

∫ b

a

|σ′(s)|ds

In general we restrict our attention to curves which are either causal or spacelike
such that

• if a curve σ is causal then the length is

L(σ) =

∫ √
−g(σ′, σ′)ds

• and if a curve σ is spacelike then the length is

L(σ) =

∫ √
g(σ′, σ′)ds

Remark 2.4.3. The length of curves which change from timelike to spacelike is not
defined.

In Riemannian geometry it is known that locally the shortest length of a curve
between two points is on a radial geodesic.

Lemma 2.4.4. Suppose M be a Riemannian manifold. Let U be a normal neigh-
borhood of p. If q ∈ U then the radial geodesic segment (up to reparametrization)
σ : [0, 1] → U from p to q is the unique shortest curve in U from p to q.

This is reasonable as we see in the case of the Euclidean space where the radial
geodesics are straight lines and intuitively they are the shortest curves between two
points. In Lorentzian geometry this is not always the case since in Corollary 2.2.4
we showed that for timelike vectors inside a timecone the inverse of the triangle
inequality holds, meaning that the straight path is no longer the shortest path
between two points in a timecone. In fact locally inside a timecone the timelike
radial geodesics have the longest length between two points compared to the rest.

Proposition 2.4.5. Suppose M a Lorentzian manifold. Let U be a normal neigh-
borhood of p. If q ∈ U and there exists a timelike curve in U from p to q, then the
radial geodesic segment (up to reparametrization) σ from p to q is the unique longest
timelike curve in U from p to q.

For complete Riemannian manifolds we have the Hof-Rinow theorem

Theorem 2.4.6 (Hopf-Rinow). [38, p. 138] For a connected Riemannian manifold
M the following conditions are equivalent:

1. As a metric space under Riemannian distance d, M is complete, which means
that every Cauchy sequence converges.
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2. There exists a point p ∈ M from which M is geodesically complete, meaning
that expp is defined on the entire tangent space TM .

3. M is geodesically complete.

4. Every closed bounded subset of M is compact.

But unfortunately for the semi-Riemannian case there isnt such a generalization
of the Hopf-Rinow theorem. In a semi-Riemannian manifold we can decompose its
completeness by looking at the causal character. Meaning that a semi-Riemannian
manifold can be spacelike complete (every maximal spacelike curve is complete),
null complete and timelike complete. If it is complete in all three categories
we say that the semi-Riemannian manifold is complete. There is an example of a
Lorentz surface which is null and spacelike complete but not timelike complete (sf
[38, p. 154] Example 5.43).



Chapter 3

Special Relativity

In this section we will see the consequences of the Lorentzian geometry in the flat
spacetime known as Minkowski spacetime. The differences between Minkowski and
Euclidean space have great impact on the physical explanations of several phenom-
ena. In the next sections we will try to showcase these differences. For this purpose
we briefly review some basic features of Newtonian space.

3.1 Newtonian Space and Time

Definition 3.1.1. [38, p. 159] Newtonian space is a Euclidean 3-dimensional
space E, meaning its a Riemannian manifold isometric to (R3, ⟨·, ·⟩Rn).

We dont define Newtonian space as simply R3 because in nature there are no co-
ordinate axes and by choosing a coordinate system we can change where we place the
axes to take measurements. With the same reasoning we will define the Minkowski
spacetime.

Definition 3.1.2. A Newtonian particle is a curve α : I → E in Newtonian
space, with I an interval in Newtonian time.

Definition 3.1.3. A Euclidean coordinate system for E is an isometry ξ :
E → R3.

In Euclidean coordinates geodesics have affine coordinates xi(γ(t)) = ait + bi,
tangent vectors from parallel translations have the same components and the dis-
tance from p to q is given by the usual Pythagorean formula

d(p, q) =
(∑

(xi(q)− xi(p))2
)1/2

3.1.1 Newtonian Space-Time

To define particles a propagating in time we can draw the graph {(t, a(t))|t ∈ I}.
For that reason we can think the particle moving in the plane R2 = R×R. The next
definition doesnt have any physical meaning, we use it to show later the differences
in properties of the Minkowski spacetime.

Definition 3.1.4. Newtonian space-time is the Riemannian product manifold
R× E of Newtonian time and Newtonian space.

26
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• A point (t, x) ∈ R× E is called an event.

• The natural projection T : R×E → R is the universal Newtonian clock which
measures the time interval between two events.

Instead of representing a particle by its equations of motions, we can represent
it by its worldline in R× E.

Definition 3.1.5. A wordline in Newtonian space-time is a one-dimensional sub-
manifold W such that T |W is a diffeomorphism onto an interval.

Wordlines and particles are equivalent. If we have a particle a : I → E, then its
graph {(t, a(t)) : t ∈ I} is a wordline. Conversely, if we have a worldline W , then
we have the particle a = S ◦ (T |W )−1.

In Newtonian mechanics

1. The speed of an object can attain arbitrarily high speeds.

2. The speed of light changes relative to the observer.

3. A particle is either at rest or not.

There have been experiments showing that the above are not necessarily true.
For example it has been known for 300 years that light travels in vacuum at very
high but finite speed. The first must be treated such that no material particle can
travel faster than the speed of light. We assume that the tangent directions of light
are constant of speed c and so they determine a cone the tangent space of every
point in R×E. The material particles are required to have their tangent lines inside
this cone, and so their is speed is bellow c.

To get such cones we can change the sign of the time coordinate in the metric
tensor of R×E. Thus the cones become the nullcones and the Newtonian space-time
becomes the Minkowski spacetime.

3.2 Minkowski Spacetime

Definition 3.2.1. A connected, time-oriented, four-dimensional Lorentz manifold
is called spacetime.

Definition 3.2.2. A Minkowski spacetime M is a spacetime that is isometric
to Minkowski R4

1.

• The time-orientation of the Minkowski spacetime is called the future, and its
negative is the past.

• A tangent vector in a future causal cone is called future-pointing or future-
directed.

• A causal curve is future-pointing if all its velocity vectors are future-pointing.

The point is Minkowski spacetime are still called events and particles are called
worldlines. But in contrast to R × E and R4

1 there doesnt exist a canonical time
function. Meaning there is not an absolute time, but several.
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Definition 3.2.3. [38, p. 163] A material particle in M is a timelike future-
pointing curve a : I → M such that |a′(τ)| = 1 for all τ ∈ I. The parameter τ is
called the proper time of the particle.

So the material particle a has arc length parametrization. Which means we define
the proper time as the arc length of a timelike future-pointing curve γ : [a, b] → M
with arbitrary velocity

τ(t) =

∫ t

0

|γ′(u)|du

Proper time is the elapsed time that each particle experiences from the event
γ(a) to γ(b). Its like each particle comes equipped with a clock measuring its proper
time.

Definition 3.2.4. [38, p. 163] A lightlike particle is a future-pointing null geodesic
γ : I →M .

Any particle β : I → M is a regular curve, and its β(I) is a one dimensional
submanifold of M called the wordlline of β.

Particles in M have mass, positive for material particles and necessarily zero for
lightlike particles.

A fundamental hypothesis in relativity is that light moves in geodesics and since
⟨γ′, γ′⟩ = 0 for lightlike particle we cannot parametrize by proper time.

A particle that is a geodesic is said to be freely falling. By saying free falling we
mean that something moves under the influence of gravity alone. Since Minkowski
spacetime is flat it means that special relativity is limited to situations where grav-
itation is negligible.

Definition 3.2.5. [38, p. 164] A Lorentz coordinate system in M is a time-
orientation-preserving isometry ξ :M → R4

1.

Lemma 3.2.6. Suppose (M, g) the Minkowski spacetime. Then a coordinate system
ξ : M → R4 is Lorentz if and only if gij = δijεj, where ε = (−1, 1, 1, 1), and ∂x0 is
future-pointing.

Proof. Suppose the coordinate system (M, ξ = (x1, . . . , xn)) has the coordinate basis
(∂xi) and suppose the coordinate basis ∂ui of R4

1. We have that

∂xi = dξ−1(∂ui) ⇐⇒ dξ(∂xi) = ∂ui

So from isometry

⟨dξ(∂xi), dξ(∂xj)⟩R4
1
= ⟨∂xi , ∂xj⟩M ⇐⇒ ⟨∂ui , ∂uj⟩R4

1
= ⟨∂xi , ∂xj⟩M

⇐⇒ δijεj = gij

Let X is a future oriented timelike vector field, then dξ(X) is also timelike vector
field since

⟨dξ(X), dξ(X),⟩ = ⟨X,X⟩ < 0

So we have

⟨dξ(∂x0), dξ(X)⟩R4
1
= ⟨∂x0 , X⟩M ⇐⇒ ⟨∂u0 , dξ(X)⟩R4

1
= ⟨∂x0 , X⟩M
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From Example 2.3.2 we know that ∂u0 is future oriented in R4
1 and from Lemma

2.2.2 that two timelike vectors remain in the same timecone if and only if their
scalar product is negative. So

⟨∂u0 , dξ(X)⟩R4
1
< 0 ⇐⇒ ⟨∂x0 , X⟩M < 0

if and only if ∂x0 is in the same timecone with X if and only if ∂x0 is future oriented.
Since we used only equivalences, the converse is also true.

Lemma 3.2.7. Suppose (M, g) the Minkowski spacetime and (ei) is an orthonor-
mal basis of TpM such that e0 is future pointing. Then there is a unique Lorentz
coordinate system ξ such that

∂xi|p = ei

for 0 ≤ i ≤ 3.

Proof. This is immediate from Proposition 1.5.7.

3.3 Minkowski Geometry

Since for Minkowski spacetime M we have an isometry ϕ : M → R4
1, we have the

following properties:

1. For any points p, q ∈ M there is a unique geodesic σ such that σ(0) = p and
σ(1) = q. This is because we know that R4

1 is a complete space, then from the
isometry we have that the Minkowski spacetime is also complete.

2. There is a natural isometry TpM ∼= TqM which is distant parallelism (see
Definition 1.3.6). Suppose that γ is a smooth curve on M such that γ(t0) =
p, γ(t1) = q, X ∈ X(γ) is parallel along γ such that X = X i∂xi . Let P :
TpM → TqM be the parallel translation of γ on M and P : Tϕ(p) → Tϕ(q) be
the distant parallelism of ϕ(γ) on R4

1. Because we have an isometry ϕ, we
know that (see [38, p. 91])

P ◦ dϕ = dϕ ◦ P ⇐⇒ P = (dϕ)−1 ◦ P ◦ dϕ

Tϕ(p)R4
1 Tϕ(q)R4

1

TpM TqM

P

dϕqdϕp

P

So we have

dϕ−1 ◦ P ◦ dϕ(X) = dϕ−1(P (dϕ(X)))

= dϕ−1(P (dϕ(X i∂xi |p)))
= X idϕ−1(P (dϕ(∂xi |p)))
= X idϕ−1(dϕ(∂xi |q))
= X i∂xi|q
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This means that

P (X i∂xi |p) = X i∂xi |q

which tells us that P is a distant parallelism.

3. Each exponential map expp : TpM → M is an isometry. This is because from
the naturality of the exponential map (see [31, p. 130]), if ϕ : M → Rn

ν is an
isometry then

ϕ ◦ expp = expϕ(p) ◦ dϕp =⇒ expp = ϕ−1 ◦ expϕ(p) ◦ dϕp

Tϕ(p)Rn
ν Rn

ν

TpM M

expϕ(p)

ϕ−1

expp

dϕp

From the above we conclude that M viewed from p is geometrically the same
as TpM viewed from 0. This tells us that instead of looking the causality of TpM
now we can look at the causality M itself. Since M is complete, for all p, q ∈ M
the displacement vector p⃗q = σ′(0) (see Definition 1.5.9) is well defined. We want
to describe the displacement vector in terms of a Lorentz coordinate system. To do
that we notice that

expp(p⃗q) = q

We have that exp−1
ϕ(p)(ϕ(q)) = ϕ(q) − ϕ(p). Also σ(0) = p, σ(1) = q, this implies

ϕ ◦ σ(0) = ϕ(p), ϕ ◦ σ(1) = ϕ(q). Since ϕ is an isometry and σ is a geodesic of
M , we know that ϕ ◦ σ is also a geodesic of R4

1. Suppose ϕ(q) = X iei|ϕ(q) and
ϕ(p) = X iei|ϕ(p), then

p⃗q = dϕ−1 ◦ expϕ(p) ◦ϕ(q)
= dϕ−1(ϕ(q)− ϕ(p))

= dϕ−1(ϕ(q)− dϕ−1(ϕ(p))

=
∑

X i(dϕ−1(ei|ϕ(q))− dϕ−1(ei|ϕ(p)))

=
∑

X i∂xi |q −X i∂xi |p

=
∑

X i(q)∂xi(q)−X i(p)∂xi(p)

since we have shown in (2.) that there is a natural isometry TpM ∼= TqM which is
distant parallelism, we denote ∂xi(q) = ∂xi(p), and so

p⃗q = (
∑

X i(q)−X i(p))∂xi

We imagine p⃗q as the vector with its start on p and its end on q.

Definition 3.3.1. [38, p. 165] Suppose M is a Minkowski spacetime.
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• For an event p ∈M we define

I+
p = {q ∈M : p⃗q is timelike an future-pointing}

to be the future timecone of p.

• The boundary of the future timecone of p except p itself is

N+
p = ∂I+

p = {q ∈M : p⃗q is null and future-pointing}

and we call it the future lightcone of p.

• The union of the future timecone of p and the future lightcone of p is called
the future causal cone of p

J +
p = I+

p ∪N+
p

• Similarly, we define the past timecone of p as I−
p , the past lightcone of p

as N−
p and the past causal cone of p as J −

p .

• The union of the past and future lightcones of p is called lightcone

Np = N+
p ∪N−

p

• If a point q is not an element of neither future or causal cone of p, then it is
called spacelike relative to p.

• An event p can influence an event q if and only if there is a particle (material
or lightlike) from p to q.

From Lemma 2.2.6 and the the definition of influence it becomes evident why
the word causal has been used till now.

1. If there is an event p ∈ M then the only events that can be influenced by p
are q ∈ J +

p .

2. If there is an event p ∈M then the only events that can influence the event p
are q ∈ J −

p .

Thus if there is an event p ∈M then it cannot be influenced by events spacelike
relative to p and it cannot influence events spacelike relative to p. This is in contrast
to Newtonian space-time since for an event (t0, x0) ∈ R×E the past and the future
fill the whole space-time except the hyperplane t = t0.

Definition 3.3.2. [38, p. 166] For p, q ∈M the number pq = |p⃗q| ≥ 0 is called the
separation between p and q.

In terms of a Lorentz coordinate system the separation is

pq =

∣∣∣∣∣−(x0(q)− x0(p))2 +
3∑
1

(xj(q)− xj(p))2

∣∣∣∣∣
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Remark 3.3.3 (Physical Significance of Separation). [38, p. 166] Suppose M is a
Minkowski spacetime and p, q ∈M

1. If p⃗q is timelike future-pointing, then pq is the elapsed proper time L(σ) of the
unique freely falling material particle from p to q.

2. p⃗q is lightlike if and only if pq = 0 if and only if there is a lightlike particle
through p and q.

3. If p⃗q is spacelike, then pq ≥ 0 is the distance from p to q as measured by
any freely falling observer orthogonal to p⃗q (we will soon define what observer
means).

We can now prove some trigonometry facts in Minkowski spacetime.

Lemma 3.3.4. [38, p. 166] Suppose o⃗p is spacelike and o⃗q is timelike, then

1. If p⃗q is lightlike and o⃗p ⊥ o⃗q then op = oq.

2. If o⃗p ⊥ o⃗q and op = oq then p⃗q is lightlike.

3. If p⃗q is lightlike and op = oq then o⃗p ⊥ o⃗q.

Proof. By moving the p⃗q to the point o we have

p⃗q = (X(q)−X(p))∂xi = (X(q)−X(o)−X(p) +X(o))∂xi = o⃗q − o⃗p

and

⟨p⃗q, p⃗q⟩ = ⟨o⃗q − o⃗p, o⃗q − o⃗p⟩
= ⟨o⃗q, o⃗q⟩+ ⟨o⃗p, o⃗p⟩ − 2⟨o⃗q, o⃗p⟩

From which we get
±pq2 = −oq2 + op2 − ⟨o⃗q, o⃗p⟩ (3.1)

(1) We have ⟨p⃗q, p⃗q⟩ = 0 and ⟨o⃗p, o⃗q⟩ = 0. From 3.1 we get

op2 = oq2

(2) We have ⟨o⃗p, o⃗q⟩ = 0 and op2 = oq2 so from 3.1

±pq2 = 0

(3) We have ⟨p⃗q, p⃗q⟩ = 0 and op = oq then from 3.1

⟨o⃗q, o⃗p⟩ = 0

Remark 3.3.5. The convention of writing the null cone at angle of 45 degrees comes
from the previous lemma, since for o⃗p = ∂x0 and o⃗q = ∂x1 we have from (2) that p⃗q
is lightlike.

We prove the corresponding Pythagorean formula and the corresponding orthog-
onal projections of an orthogonal triangle in the Euclidean space for the Minkowski
spacetime.
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Proposition 3.3.6. [38, p. 167] Let p, q be events in the same timecone of o and
such that o⃗p ⊥ p⃗q. Then

1. oq2 = op2 − pq2.

2. If ϕ is the hyperbolic angle between o⃗p and o⃗q, then

op = oq coshϕ, pq = oq sinhϕ

Proof. We parallel translate p⃗q to o and so we have

o⃗q = o⃗p+ p⃗q

Then

⟨o⃗q, o⃗q⟩ = ⟨o⃗p+ p⃗q, o⃗p+ p⃗q⟩
= ⟨o⃗p, o⃗p⟩+ ⟨p⃗q, p⃗q⟩+ 2⟨o⃗p, p⃗q⟩

But o⃗p ⊥ p⃗q, which means
oq2 = op2 − pq2

(2) Suppose

u =
o⃗p

op
, v =

o⃗q

oq

So

⟨o⃗p, o⃗q⟩ = ⟨u · op, v · oq⟩
= op · oq⟨u, v⟩
= −op · oq coshϕ

and

⟨o⃗p, o⃗q⟩ = ⟨o⃗p, o⃗p+ p⃗q⟩
= ⟨o⃗p, o⃗p⟩+ ⟨o⃗p, p⃗q⟩
= −op2

By combining the previous two equations we have

op = oq coshϕ

From (1)

oq2 = op2 − pq2

= oq2 cosh2 q + pq2

and so

pq2 = oq2(1− cosh2 ϕ)

= oq2 sinh2 ϕ

And from the fact that ϕ ≥ 0 we have sinhϕ ≥ 0 and so

pq = oq sinhϕ



Chapter 3. Special Relativity 34

We have seen the properties of the Minkowski spacetime and its geometry. Now
we want to be able to make measurements of phenomenas relative to ourselves, the
observer. By comparing such measurements from one observer to the other we will
be able to see the differences that each observer experiences and on what they can
agree on.

When we say observer we mean a material particle of the Minkowski spacetime
M . For a Lorentz coordinate system ξ the x0 axis of ξ will be the worldline of a
freely falling observer ω such that x0(ω(t)) = t, meaning that the proper time of ω is
t. The Lorentz coordinate system produces the measurements taken by an observer
ω.

From Lemma 3.2.7 we see that for every freely falling observer ω : I → M by
choosing a different orthonormal base on a point ω(t0) there exists a unique Lorentz
coordinate system ξ. So for every freely falling observer there are many Lorentz
coordinate systems. When choosing one we will call it the associated Lorentz
coordinate system.

For a Minkowski spacetime M we cannot distinguish between the time and the
space with a natural way. What we can do is use the Lorentz coordinates to make
some observations.

Definition 3.3.7. Suppose M be a Minkowski spacetime with Lorentz coordinate
system ξ.

• We denote the coordinate slice x0 = 0 by

E0 = {q ∈M : (0, x1(q), x2(q), x3(q)) ∈ R4
1}

which is a Euclidean space identified with R3.

• For each event p ∈M we call x0(p) the ξ-time of p.

• For each event p ∈M we call p⃗ = (x1(p), x2(p), x3(p)) ∈ R3 the ξ-position of
p.

Suppose we have a : I →M be a particle that is either material or lightlike. We
told before that each particle has an internal clock which measures the time that
it experiences it passes. By using the ξ-time t = x0(a(s)) of an event a(s) we can
paramitrize the ξ-position (x1(a(s)), x2(a(s)), x3(a(s))) by the ξ-time. So from the
measurements of a we get what the observer ω observes of a. To do that we need
to show that x0 ◦ a is a diffeomorphism.

d(x0 ◦ a)
ds

= dx0(a′) = ⟨gradx0, a′⟩

We see that

gradx0 =
∑
i,j

gij
∂x0

∂xi
∂xj =

∑
j

εjδij∂xj = −∂x0

and so
d(x0 ◦ a)

ds
= −⟨∂x0 , a′⟩

but we know that a is causal curve and future-pointing which means ⟨∂x0 , a′⟩ < 0.
This gives us

d(x0 ◦ a)
ds

> 0
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Hence x0 ◦ a is a diffeomorphism of I onto an interval J ⊂ R. Let u : J → I be the
inverse function. As we wanted we have at ξ-time the ξ-position of a, which is

a⃗(t) = (x1au(t), x2au(t), x3au(t)).

The curve a⃗ : J → R3 is called the ξ-associated Newtonian particle of a.

Remark 3.3.8. In general, unless said otherwise, we will denote the parameters t
and s by t = x0a(s) and s = u(t). We will write

dt

ds
=

d(x0 ◦ a)
ds

> 0

and from the chain rule
da⃗

dt
=

da⃗/ds

dt/ds

We can now check how the speed of lightlike and material particles change relative
to free falling observers. In the next Lemma we see that light has a constant speed
when measuring it relative to every free falling observer.

Lemma 3.3.9. Let M be a Minkowski spacetime and γ : I → M be a lightlike
particle of M . Suppose ξ is the Lorentz coordinate system of M , then the associated
Newtonian particle γ⃗ of γ is a straight line in R3 and it has constant speed

v =

∣∣∣∣dγ⃗dt
∣∣∣∣ = 1

Proof. From definition of lightlike particle we have that γ is a geodesic in M . So
ξ ◦ γ is also a geodesic in R4

1, since ξ is an isometry. Thus γ can be expressed as

xi(γ(s)) = ais+ bi

for i = 0, . . . , 3. Hence its ξ-position

γ⃗(s) = (x1(γ(s)), x2(γ(s)), x3(γ(s)))

is a straight line in R3 and its reparametrization γ⃗(t), the associated Newtonian
particle of γ, is a straight line in R3. We write

dγ

ds
=

d(x0 ◦ γ)
ds

∂x0 +
3∑
i=1

d(xi ◦ γ)
ds

∂xi

=
dt

ds
∂x0 +

3∑
i=1

d(xi ◦ γ)
ds

∂xi

We take the scalar product

⟨dγ
ds
,
dγ

ds
⟩ = ⟨dγ

ds
∂x0 +

3∑
i=1

d(xi ◦ γ)
ds

∂xi ,
dγ

ds
∂x0 +

3∑
i=1

d(xi ◦ γ)
ds

∂xi⟩

= ⟨dt
ds
∂x0 ,

dt

ds
∂x0⟩+ ⟨

3∑
i=1

d(xi ◦ γ)
ds

∂xi ,
3∑
i=1

d(xi ◦ γ)
ds

∂xi⟩+ 2⟨dt
ds
∂x0 ,

3∑
i=1

d(xi ◦ γ)
ds

∂xi⟩

= −
(
dt

ds

)2

+
3∑
i=1

(
d(xi ◦ γ)

ds

)2
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Since dγ/ds is a null vector and dt/ds > 0, we have

dt

ds
=

∣∣∣∣dγ⃗ds
∣∣∣∣

so we have that the speed v of the associated Newtonian particle γ⃗ is

v =

∣∣∣∣dγ⃗dt
∣∣∣∣ = |dγ⃗/ds|

dt/ds
= 1

In the next Proposition we show the formula of the speed v that the free falling
observer ω measures of the material particle a and that it cant reach or surpass the
speed of light. Also we show the formula for the relation of the proper time of the
material particle and the time of the free falling observer.

Proposition 3.3.10. LetM be a Minkowski spacetime and a : I →M be a material
particle. Suppose ξ is the Lonrentz coordinate system of M . If a⃗ is the associated
Newtonian particle of a, then

1. The speed of a⃗ is

v =

∣∣∣∣da⃗dt
∣∣∣∣ = tanhϕ

where ϕ ≥ 0 is the hyperbolic angle between a′ = da/dτ and the coordinate
vector ∂x0 of ξ. Since v = tanhϕ we have 0 ≤ v < 1.

2. The time τ of a and its ξ-time are related by

dt

dτ
=

d(x0 ◦ a)
dτ

= coshϕ =
1√

1− v2
≥ 1

The v and ϕ depend on τ .

Proof. First we prove (2.). From hypothesis we have that a′ and ∂x0 are timelike
and future-pointing such that |a′| = |∂x0| = 1. From Proposition 2.2.3 we have a
unique hyperbolic angle ϕ ≥ 0 such that

⟨a′, ∂x0⟩ = −|a′||∂x0| coshϕ
= − coshϕ

meaning ⟨a′, ∂x0⟩ = coshϕ ≥ 1 for ϕ ≥ 0. Since

a′(τ) =
∑
i

(
d(xi ◦ a)

dτ

)
∂xi

we have
dt

dτ
=

d(x0 ◦ a)
dτ

= −⟨a′, ∂x0⟩ = coshϕ (3.2)

It is known that cosh2 ϕ− sinh2 ϕ = 1, so its easy to see

dt

dτ
= −⟨a′, ∂x0⟩ = coshϕ =

1√
1− tanh2 ϕ
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and since we will show tanhϕ = v this proves (2.).
(1.) We compute the scalar product for a′

⟨a′, a′⟩ = ⟨
∑
i

d(xi ◦ a)
dτ

∂xi ,
∑
j

d(xj ◦ a)
dτ

∂xj⟩

=
∑
i,j

d(xi ◦ a)
dτ

d(xj ◦ a)
dτ

⟨∂xi∂xj⟩

=
∑
i,j

d(xi ◦ a)
dτ

d(xj ◦ a)
dτ

δijεi

= −
(
d(x0 ◦ a)

dτ

)2

+
3∑
i=1

(
d(xi ◦ a)

dτ

)2

= −
(
dt

dτ

)2

+

∣∣∣∣da⃗dτ
∣∣∣∣2

Because ⟨a′, a′⟩ = −1 we have

−
(
dt

dτ

)2

+

∣∣∣∣da⃗dτ
∣∣∣∣2 = −1 =⇒

∣∣∣∣da⃗dτ
∣∣∣∣2 = −1 +

(
dt

dτ

)2

From equation (3.2) ∣∣∣∣da⃗dτ
∣∣∣∣ =√−1 + cosh2 ϕ = sinhϕ ≥ 0

Thus the speed of the associated Newtonian particle a⃗ is

v =

∣∣∣∣da⃗dt
∣∣∣∣ = |da⃗/dτ |

dt/dτ
=

sinhϕ

coshϕ
= tanhϕ

With the free falling observer we can make the following remarks.

Remark 3.3.11. Let M be a Minkowski spacetime and ω a free falling observer.

• For a associated Lorentz coordinate system ξ of ω we have that the coordinate
hyperplane

Et = {q ∈M : (t, x1(q), x2(q), x3(q)) ∈ R4
1}

is perpendicular to ω on the point ω(t) ∈ M because x0(ω(t)) = t, they are
perpendicular in R4

1 and the isometry ξ. And so for all choices of ξ, x0 is the
same and the events that ω sees as simultaneous with ω(t) are the events in
Et.

• From the definition of the observer, the associated Newtonian particle ω⃗ is
contant. We will call E0 the restspace of ω. Every Et can serve as a restspace
of ω since we can project an event p ∈ Et to and event q ∈ Es such that p⃗q is
parallel to ω.
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• We notice that since ω is the x0 coordinate axis and we have shown that distant
parallelism in R4

1 implies distant parallelism in M , we have that ω′ is distant
parallel to ∂x0. In proposition 3.3.10 we found the speed of a by using its
hyperbolic angle with ∂x0. Since parallel translation preserves angles we see
that ϕ(τ) is the hyperbolic angle between ω′ and a′. We will say the funtion
v = |da⃗/dt| is the speed of a relative to ω and the function ϕ = tanh−1 v is the
velocity parameter of a relative to ω.

• In proposition 3.3.10 we showed that

dt

dτ
=

1√
1− v2

for 0 ≤ v < 1. From the above we notive that the faster the particle is moving
relative to the observer, the slower the particles clock τ runs relative to the
observer’s clock t.

• If p⃗q is orthogonal to a freely falling observer ω then p, q lie in a hyperplane
Et and so we have x0(p) = x0(q). This means that their separation is

pq =

(
3∑
j=1

(xj(p)− xj(q))2

)1/2

This means that the distance between events makes sense when observers con-
sider the events simultaneous.

From the above we see that for two different obervers ω1, ω2 which are nonparallel
they have different restspaces. This tells us that events p, q ∈M can be simultaneous
for ω1 but not for ω2 and vice verca. This happens because p⃗q can be orthogonal
to ω1 but not to ω2 and vice verca. So the concept of simultaneity is relative to the
observer.

We have seen the notion of speed relative to ∂x0 and relative to an observer.
We can generalize it for material particles a and b by defining the instanteneous
velocity parameter as their hyperbolic angle ϕ of their velocities a′(σ), b′(τ) and the
instanteneous relative speed v = tanhϕ.

Supose b is a free falling particle, then the free falling observers that are parallel
to b consider him to be at rest. Other free falling observers can see him habing
constant speeds 0 ≤ v < 1. But if b′′ ̸= 0 then no freely falling observer considers b
to be at rest.

Example 3.3.12 (Relativistic Addition of Velocities). [38, p. 172] Assume we have
a space station α free falling in space where inside it there is a rocketship and inside
the rocketship there is a spaceman.

At the event p the rocketship β leaves the space station by free falling with speed
v1 > 0 relative to the space station α. At the event q the spaceman γ ejects himself
into space while free falling with speed v2 relative to the rocketship β. We assume
γ′ is in the same plane with α and β. For v2 > 0 we mean forward, away from α
and v2 < 0 means backward, towards α. We want to find the speed v of spaceman γ
relative to α.

If ϕ1 is the hyperbolic angle between α′, β′ at the event p and ϕ2 is the hyperbolic
angle between β′, γ′ at the event q, then v1 = tanhϕ1 and v2 = tanhϕ2. By distant
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parallelism we parallel translate γ′ from q to q, this tells us that b′ is between α′ and
γ′. So from the additivity of hyperbolic angles ϕ = ϕ1 + ϕ2.

This implies

v = tanhϕ

= tanh(ϕ1 + ϕ2)

=
tanhϕ1 + tanhϕ2

1 + tanhϕ1 tanhϕ2

where the last equality is a well known hyperbolic equation. And so

v =
v1 + v2
1 + v1v2

The same holds if v2 < 0.

So instead of the addition of speed in the Newtonian spacetime we have addition
of velocity parameters in the Minkowski spacetime.

Example 3.3.13 (The Twin Paradox). [38, p. 173] Assume there exists two twin
brothers Peter and Paul living in a spaceship free falling in space. On their 21st
birthday Peter decides to leave Paul to go on a journey. When Peter leaves he is
free falling with constant speed v = 24/25 relative to Peter, this is event o. After
free falling for 7 years of his proper time Peter turns and starts coming back sym-
metrically, this is event p. After free falling for another 7 years of his proper time
he arrives back to Paul, this is event q. We will see that upon arriving Peter is 35
years old, but Paul is 71 years old.

We draw a perpendicular from p which crosses the worldline of the spaceship at
x. From propositions 3.3.6 and 3.3.10

ox = op coshϕ

=
7

(1− (24/25)2)1/2

= 25

Since Peter turned symmetrically we have xq = 25. So the proper time for Paul that
has passed till Peter returned is

oq = ox+ xq = 2ox = 50

And so Paul now is 71 years old.

Corollary 3.3.14. [38, p. 174] Let M be a Minkowski spacetime and σ : [a, b] →M
be a material particle such that σ(a) = p and σ(b) = q. Then we have for its elapsed
time

∆τ = b− a ≤ pq

with equality if and only if σ is free falling.

Proof. This comes from the fact that M is a normal neighborhood of every point
p ∈M and from proposition 2.4.5.
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So free fall is the unique slowest way to go from one event to another in the
Minkowski spacetime.

From this chapter we see that the Minkowski spacetime has the possibility to
solve some problems with simple trigonometry, like we would in Newtonian space.
But from the hyperbolic nature of the geometry in the timecones of the Minkowski
spacetime some physical effects change. What allows us to put physics in this
geometric framework is what is called general covariance principle.

• All physical laws are independent of the choice of a particular coordinate
system. Equally this is expressed as, every equation of physical laws must be
written in terms of tensors.

3.4 Isometry Group of Minkowski Space

Suppose M a Minkowski spacetime and two Lorentz coordinate systems ξ, η. We
would like to determine what kind of maps are the coodrinate changes ξ−1 ◦ η. This
maps will be the change of measurements between different observers in M . Since
ξ, η are isometries then the coordinate change is also an isometry and will preserve
the Minkowski metric. So to find this maps we need to describe the isometry group
of M .

Definition 3.4.1. Suppose M is a semi-Riemannian manifold. Its isometry group
I(M) with composition as its operation is

I(M) = {ϕ :M →M |ϕ isometry}

In general we know that the tangent space of a semi-Riemannian manifold with
index ν is isometric to Rn

ν . So the isometry group I(Rn
ν ) is important.

Lemma 3.4.2. Suppose M is a Minkowski spacetime and ξ : M → R4
1 a Lorentz

coordinate system of M . Then the isometry group I(M) of M is isomorphic to the
isometry group I(R4

1) of R4
1.

Proof. We define a map F : I(M) → I(R4
1) such that F (ϕ) = ξ ◦ ϕ ◦ ξ−1.

• Composition of isometries is an isometry, so F (ϕ) ∈ I(R4
1)

• It is a homomorphism since

F (ϕ ◦ ψ) = ξ ◦ ψ ◦ ξ−1

= ξ ◦ ϕ ◦ ξ−1 ◦ ξ ◦ ψ ◦ ξ−1

= F (ϕ) ◦ F (ψ)

• It is injective since

F (ϕ) = idR4
1

=⇒ ξ ◦ ϕ ◦ ξ−1 = idR4
1

=⇒ ϕ = ξ−1 ◦ idR4
1
◦ξ = idM

And obviously is surjective.
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From the previous Lemma we see that the isometry group of R4
1 describes the

isometry group of the Minkowski spacetime M .

First we will turn our attention on the linear isometries of I(Rn
ν ).

For 0 ≤ ν ≤ n and v, w ∈ Rn
ν ,

• the signature matrix is the diagonal matrix ε = δijεj such that

ε1 = · · · = εν = −1 and εν+1 = · · · = εn = 1,

Since it is diagonal with units in it, we have ε−1 = ε = εt

• the scalar product of Rn
ν is written equally as

⟨v, w⟩ = εv · w

• the set of all matrices g ∈ GL(n,R) such that

⟨gv, gw⟩ = ⟨v, w⟩

is denoted by Oν(n) and it is called semiorthogonal group. This is the
same as the set of all linear isometries of Rn

ν . Since Oν(n) is a closed set and
a subgroup of GL(n,R) then it is a Lie subgroup of GL(n,R) and Lie group
by itself.

Lemma 3.4.3. [38, p. 234] Suppose g ∈Mn(R). The following are equivalent:

1. g ∈ Oν(n).

2. gt = εg−1ε.

3. The columns (rows) of g form an orthonormal base for Rn
ν on which the first

ν vectors are timelike.

4. g sends an orthonormal base of Rn
ν to an orthonormal base.

Proof. (1.) ⇐⇒ (2.) For g relative to an orthonormal base we have that the adjoint
relative to the dot product is gt. For all v, w ∈ Rn

ν

⟨gv, gw⟩ = ⟨v, w⟩ ⇐⇒ εgv · gv = ε · w (3.3)

⇐⇒ gtεgv · gv = εv · w (3.4)

⇐⇒ gtεgv = εv (3.5)

⇐⇒ gtεg = ε (3.6)

⇐⇒ gt = εg−1ε (3.7)

(1.) ⇐⇒ (4.) We know that linear isometries send orthonormal bases to or-
thonormal bases and from Lemma 1.1.20 we know that it also preserves the index
of the scalar product space.

(4.) ⇐⇒ (3.)
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• (For columns)

Let u1, . . . , un ∈ Rn is the natural base and g : Rn → Rn is a linear operator.
Then gu1, . . . , gun are the columns of g since

g(uk) = guk =
∑
j

gij(uk)j

The columns gu1, . . . , gun are orthonormal relative to Rn
ν if and only if u1, . . . , un

is are orthonormal relative to Rn
ν and g sends them to an orthonormal base.

• (For rows)

From (2.) we have

g ∈ Oν(n) ⇐⇒ gt ∈ Oν(n)

and so it holds for the rows if and only if it holds for the columns.

From the previous Lemma we notice that it is necessary for the timelike vec-
tors in the matrix g ∈ Oν(n) to appear first or else g wont be an element of the
semiorthogonal group.

Example 3.4.4. Let the orthogonal unit vectors (0, 1), (1, 0) ∈ R2
1 and the matrix

g =

(
0 1
1 0

)
we notice that g is not an element of Oν(n) even though (0, 1) orthonormal spacelike
and (1, 0) orthonormal timelike. This happens because of the order of the collumns.

• If ν = 0 or ν = n then O0(n) = On(n) = O(n) which is the orthogonal
group of all linear isometries of the Euclidean space Rn.

• If n ≥ 2, then O1(n) is called the Lorentz group of all linear isometries of
the Minkowski space Rn

1 .

Lemma 3.4.5. For 0 ≤ ν ≤ n the Lie groups Oν(n) and On−ν(n) are isomorphic.

Proof. For GL(n,R) we have the Lie group automorphism Cσ : GL(n,R) → GL(n,R)
such that

Cσ(g) = σgσ−1

where, for Iq the identity matrix with q number of units in its diagonal,

σ =

(
0 Iq
Ip 0

)
By taking the restriction to Oν(n) it suffices to show that elements of Oν(n) are sent
to elements of On−ν(n) by Cσ.

Let g ∈ Oν(n). From Lemma 3.4.3 we have that the first ν columns of g are
timelike orthonormal vectors and the rest n− ν are spacelike orthonormal vectors.
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For example we notice that for 1 ≤ j ≤ ν columns relative to an orthonormal base
ei ∈ Rn

ν

⟨gijei, gijei⟩ = −1 ⇐⇒ −
ν∑
i=1

g2ij +
n∑

i=ν+1

g2ij = −1

⇐⇒ −
n∑

i=ν+1

g2ij +
ν∑
i=1

g2ij = 1

Similarly, for the ν + 1 ≤ j ≤ n columns

⟨gijei, gijei⟩ = 1 ⇐⇒ −
ν∑
i=1

g2ij +
n∑

i=ν+1

g2ij = 1

⇐⇒ −
n∑

i=ν+1

g2ij +
ν∑
i=1

g2ij = −1

From the above is evident that by interchanging the first ν rows with the last n− ν
rows we will get the spacelike and timelike columns interchanged, but that leaves
them in the wrong position since we need the timelike vectors to be the first n− ν
for it to be an element of On−ν(n). And so after the permutation of the rows by
interchanging the ν columns with the last n−ν columns we will have what we want.
More speciffically

σ =

(
0 In−ν
Iν 0

)
This is a permutation matrix and so its inverse equals its transpose

σ−1 =

(
0 Iν

In−ν 0

)
For permutation matrix P we have that Pg permutates the rows and gP permutates
the columns. And so we have that

σgσ−1 =

(
0 In−ν
Iν 0

)g11 · · · g1n
...

...
gn1 · · · gnn

( 0 Iν
In−ν 0

)

=



g(ν+1)(ν+1) g(ν+1)(ν+2) · · · g(ν+1)n g(ν+1)1 · · · g(ν+1)ν

g(ν+2)(ν+1) g(ν+2)(ν+2) · · · g(ν+2)n g(ν+2)1 · · · g(ν+2)ν
...

...
...

...
...

gν(ν+1) gn(ν+2) · · · gnn gn1 · · · gnν
g1(ν+1) g1(ν+2) · · · g1n g11 · · · g1ν

...
...

...
...

...
gν(ν+1) gν(ν+2) · · · gνn gν1 · · · gνν


and so Cσ(g) ∈ On−ν(n).

Lemma 3.4.6. [38, p. 235] The Lie algebra oν(n) of Oν(n) is the subalgebra of
gl(n,R) consisting of all S for which St = −εSε. Such S have the form(

a x
xt b

)
,

where a ∈ o(ν), b ∈ o(n− ν), and x in an arbitrary ν × (n− ν) matrix.
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Since from the orthogonal group dim o(ν) = ν(ν−1)/2, then for the semiorthog-
onal group we have

dimOν(n) = dim oν(n) =
n(n− 1)

2

From the previous Lemma for S ∈ oν(n), we have St = −εSε which implies

⟨Sv, w⟩ = εSv · w = (εSv)tw

= vtStεw = vt(−εSε)εw
= −vtεSw = −(εv)tSw

= −εv · Sw = −⟨v, Sw⟩

This is equivalent with ⟨Sv, w⟩ = −⟨v, Sw⟩ for all v, w ∈ Rn
ν . So all the elements of

oν(n) are the skew adjoint linear operators on Rn
ν .

Example 3.4.7. The orthogonal group O(2) describes the rotations and the re-
flections of two vectors in a circle in R2. We could see that by taking the polar
coordinates of two vectors u1, u2 ∈ R2 and then rotating them by an angle θ. This
was the linear map with the matrix(

cos θ − sin θ
sin θ cos θ

)
then from the determinant map, since it is continouous, we have that O(n) is dis-
joint. Its components are O+(2) which is the set of rotations in R2 and O−(2) which
is the set of a reflaction and rotations in R2.

The corresponding group is the semiorthogonal group O1(2). We can similarly
take the hyperbolic coordinates of two vectors vectors similarly and then turn them
by an angle θ. This will produce a linear map with matrix(

cosh θ sinh θ
sinh θ cosh θ

)
This kind of matrices are called boosts of R2

1. Here each a ∈ O1(2) will send each
hyperbola ⟨v, v⟩ = 1 and ⟨v, v⟩ = −1 to itself but in the process it may reverse one
of its branches or even both. This choices give us the decomposition of O1(2) into 4
disjoint open subsets. The set preserving all branches is the set of all boosts.

So the orthogonal group O(n) and the semiorthogonal group Oν(n) have two
main differences

1. O(n) is compact since it is closed and bounded in gl(n,R) ∼= Rn2
but Oν(n)

is not compact since it is unbounded in Rn2
. For example the elements of the

form coshϕ sinhϕ 0
sinhϕ coshϕ 0

0 I 0


constitutes an unbounded set on Rn2

.

2. O(n) has two components, but Oν(n) has four components.



45 3.4. Isometry Group of Minkowski Space

For g ∈ Oν(n) we observe that by keeping the timelike components of a vector
v ∈ Rn−ν unchanged we can rotate the spacelike part of it just as we would in O(n).
For example by the element

Iν 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 In−(ν+2)


To define the components of the semiorthogonal group first we will check the

matrix g ∈ Oν(n) by its block matrices. Let 0 < ν < n such that Rn
ν = Rν

ν × Rn−ν .
Then for g ∈ Oν(n) we have (

gT a
b gS

)
such that gT is ν × ν matrix and gS is (n − ν) × (n − ν) matrix. We will call
gT : Rν

ν → Rν
ν the timelike part and gS : Rn−ν → Rn − ν the spacelike part.

Definition 3.4.8. For 0 < ν < n and g ∈ Oν(n) we will say that

• it preserves time-orientation when det gT > 0,

• it reverses time-orientation when det gT < 0,

• it preserves space-orientation when det gS > 0,

• it reverses space-orientation when det gS < 0.

And so the decomposition of Oν(n) to its components is the following

Definition 3.4.9. For g ∈ Oν(n)

• g ∈ O++
ν (n) if and only if it preserves time and space orientation,

• g ∈ O+−
ν (n) if and only if it preserves time-orientation and reverses space-

orientation,

• g ∈ O−+
ν (n) if and only if it reverses time-orientation and preserves space-

orientation,

• g ∈ O−−
ν (n) if and only if it reverses time and space orientation.

From Lemma 3.4.3 we have

gt = εg−1ε ⇐⇒ gεgt = ε

and from that (det g)2 = 1. As in the case of orthogonal matrices, every semiorthog-
onal matrix has determinant ±1. It can be shown that O++

ν ∪ O−−
ν , O++

ν ∪ O+−
ν ,

and O++
ν ∪ O−+

ν are subgroups of Oν(n) (see Corollary 9.7 from [38]). We have the
special semiorthogonal group

SOν(n) = O++
ν (n) ∪O−−

ν (n) = {g ∈ Oν(n) : det g = 1}

And so
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• g ∈ O++
ν ∪O−−

ν is the linear isometry that preserves orientation,

• g ∈ O++
ν ∪O+−

ν is the linear isometry that preserves time-orientation,

• g ∈ O++
ν ∪O−+

ν is the linear isometry that preserves space-orientation.

We have seen the linear isometries of Rn
ν form the subgroup Oν(n) of the isometry

group I(Rn
ν ). Another isometry of Rn

ν are the translations Tx : Rn
ν → Rn

ν such that
x ∈ Rn

ν and Tx(v) = x+ v. We have

• Tx ◦ Ty = Tx+y = Ty ◦ Tx,

• T0 = idRn
ν
,

• (Tx)
−1 = T−x.

The set T (Rn
ν ) of all translations of Rn

ν is an abelian subgroup of I(Rn
ν ) and it

is isomorphic to Rn via the F : T (Rn
ν ) → Rn such that F (Tx) = x. Now we prove

that the semiorthogonal isometries and the translations are the only isometries of
the semi-euclidean space.

Proposition 3.4.10. [38, p. 240] Each isometry of Rn
ν has a unique expression as

Tx ◦ g, with x ∈ Rn
ν and g ∈ Oν(n). Furthermore, Tx ◦ g ◦ Ty ◦ h = Tx+g(y) ◦ g ◦ h.

Proof. Claim: If ϕ : Rn
ν → Rn

ν is an isometry such that ϕ(0) = 0, then ϕ ∈ Oν(n).

Proof of Claim. Since ϕ is an isometry, then dϕ0 is a linear isometry. We have the
canonical linear isometry TvRn

ν
∼= Rn

ν . So for canonical isometry F : T0Rn
ν → Rnν

we can find a linear isometry g : Rn
ν → Rn

ν by writing g = F ◦ dϕ0 ◦ F−1. Then
dg0 = dϕ0, so from Proposition 1.5.10 we have that ϕ = g.

Suppose ϕ ∈ I(Rn
ν ) and x = ϕ(0) ∈ Rn

ν . We see that (T−x ◦ ϕ)(0) = 0, so from
the previous claim we have that T−x ◦ϕ = g for some ϕ ∈ Oν(n). And so ϕ = Tx ◦ g.

For uniqueness suppose Tx ◦ g = Ty ◦ h, then

x = (Tx ◦ g)(0) = (Ty ◦ h)(0) = y

and so

Tx ◦ g = Tx ◦ h ⇐⇒ g = h

For the last assertion, for all v ∈ Rn
ν we have

(g ◦ Ty)(v) = g(y + v) = g(y) + g(v) = Tg(y)g(v)

and so g ◦ Ty = Tg(y) ◦ g. From that

Tx ◦ g ◦ Ty ◦ h = Tx ◦ Tg(y) ◦ g ◦ h = Tx+g(y) ◦ g ◦ h
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The multiplication rule that we proved shows that the translation subgroup
T (Rn

ν ) is normal in I(Rn
ν ) since for all g ∈ Oν(n) and Tx ∈ T (Rn

ν )

Tx ◦ g ◦ Ty = Tx+g(y) ◦ g ⇐⇒ g−1 ◦ Tx ◦ g = Tx+g(y) ◦ T−y ∈ T (Rn
ν )

By making I(Rn
ν ) into a smooth manifold we can define a diffeomorphism f :

Rn×Oν(n) → I(Rn
ν ) such that f(x, g) = Tx ◦g, from that I(Rn

ν ) is a Lie group. The
dimension of the set of isometries of the Minkowski space is

dim I(Rn
ν ) = dimRn + dimOν(n) =

n(n+ 1)

2

I(Rn
ν ) for 0 < ν < n has four components and for ν = 0, n it has two components.

Definition 3.4.11. [38, p. 240]

• I(Rn
ν ) is called semi-Euclidean group.

• I(Rn) is called Euclidean group.

• I(Rn
1 ) is called Poincare group or inhomogeneous Lorentz group.

3.5 Poincare Group of Minkowski Spacetime

Now that we told some of the properties of the semi-Euclidean group I(Rn
ν ) we can

see what kind of map are the coordinate changes of the Minkowski spacetime M .
From Lemma 3.4.2 we have I(M) ∼= I(R4

1). The Poincare group I(R4
1) has dimension

dim I(R4
1) =

4(4 + 1)

2
= 10

and the Lorentz group O1(4) has dimension

dimO1(4) =
4(4− 1)

2
= 6

From Proposition 3.4.10 we know that isometries of the Poincare group g ∈ I(R4
1)

are the combination of

• translations, for example Tx(v) = x+ v

• rotations in the spacelike directions, for example
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


• and boosts, for example 

coshϕ sinhϕ 0 0
sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1


which can be thought as rotations between space and time directions.

Elements of the Lorentz group g ∈ O1(4) have det g = ±1 and can preserve
or reverse the time and space orientations of vectors. For example if we reverse
the time-orietation we will change the timecone which we define the future directed
vectors.



Chapter 4

General Relativity

4.1 Einstein Equations

General relativity is the extension of special relativity. It gives gravity the meaning
as the curvature in the spacetime. General relativity follows these principles:

• Equivalence principle: One cannot distinguish locally between constant
acceleration and constant gravitational field. This implies the inertial mass
and the gravitational mass are equal.

• Freely falling particles follow timelike geodesics and photons follow null geodesics
in the spacetime.

• General covariance: All physical laws written as equations must be inde-
pendent from a choice of a coordinate system. This means that all physical
laws must be written in terms of tensors.

Now we need equations that will tell us how the metric of the spacetime depends
from the distribution of matter. For a spacetime (M, g) this equation is the Einstein
equation:

Ric− 1

2
Rg = 8πT (4.1)

where Ric is the Ricci tensor, R is the Ricci scalar and T is the energy-momentum
tensor. The energy-momentum tensor is a 2-covariant symmetric tensor which is
divergence free and depends on the matter model. This means that in vacuum, in
the absence of mass, we have T = 0.

We notice that in vacuum, by taking the trace of (4.1) we have:

Ric− 1

2
Rg = 0

R = 0

 =⇒ Ric = 0

We say that the Einstein vacuum equations are:

Ric = 0 (4.2)

Minkowski spacetime is the trivial solution of the Einstein vacuum equations.

48
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Remark 4.1.1. From now on we will use the Einstein summation notation to
denote sums in indices. This is done for simplicity. The summation notation tells
us that when the same index is on top and on bottom then is is a sum. For example
in a 3-dimensional Riemannian manifold (M, g) the vector field X ∈ X(M) will be
written as

X =
3∑
i=1

X i∂i = X i∂i

or the Ricci scalar

R =
3∑

i,j=1

gijRij = gijRij

4.2 The Schwarzschild Metric

One of the most important exact solutions of the Einstein equations is the Schwarzschild
metric

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2 (4.3)

where
dΩ2 = dθ2 + sin2 θ dϕ2

is the metric of the 2-round sphere and M is the mass of the body. Schwarzschild
spacetime is a model of a universe containing a single star, where the star is spher-
ically symmetric and static.

Definition 4.2.1. A spacetime is called spherically symmetric if its isometry
group has a subgroup G which is isomorphic to SO(3) and the orbits of G are two-
spheres.

A spherically symmetric spacetime is a spacetime where its metric is invariant
under rotations.

Definition 4.2.2. A spacetime is called static if it admits a timelike Killing vector
field which is orthogonal to a spacelike hypersuface of M .

Killing vector fields are vector fields such that their flow is a family of isome-
tries. Which means that their flow leaves the metric invariant. Since in the static
case the Killing vector field is orthogonal to a spacelike hypersuface, the spacelike
hypersurfaces are the level sets of {t = c} which propagate in the flow of the Killing
vector field. Since the metric is invariant under the flow, the components do not
depend on the t-parameter and since they are orthogonal to Σt they dont have cross
terms dt dxi.

We notice that for r → ∞ the metric components approach the components of
the Minkowski spacetime in spherical coordinates. We say that this kind of metric
is asymptotically flat. This definition is made precise in Definition 6.0.5.

By computing the geodesics of the Schwarzschild metric we can find many inter-
esting results such as the perihelion precession and the bending of light. For more
details we refer to [50, p. 136] and [38, p. 372].

In the next sections we will present two important facts about the Schwarzschild
metric. One is that in vacuum it is the only possible spherically symmetric metric
and for r = 0, 2M it has singularities.
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4.3 Birkhoff Theorem

This presentation for the proof of Birkhoff’s theorem is based on [10, p. 197] which
we refer to for more details.

Theorem 4.3.1. For a spacetime (M, g) in vacuum, Ric = 0, the unique spherically
symmetric metric is the Schwarzschild metric.

Proof. First we will show that from the geometry of the spherically symmetric space-
time, the metric takes the form:

g = dτ 2(u, v) + r2(u, v) dΩ2(θ, ϕ)

and after that by plugging in the Einstein’s vacuum equations we will get the
Schwarzschild spacetime.

An equivalent definition for the spherically symmetric spacetime is that it has
three Killing vector fields that are the same as those on the 2-round sphere S2. This
Killing vector fields are:

X = ∂ϕ

Y = cosϕ∂θ − cot θ sinϕ∂ϕ

Z = − sinϕ∂ϕ − cot cosϕ∂ϕ

It can be shown that:

[X, Y ] = Z

[Y, Z] = X

[Z,X] = Y

Hence the above Killing vector fields describe an involutive distribution D on
the spacetime. We have the following theorem from [32, p. 502]

Theorem 4.3.2 (Global Frobenius Theorem). Let D be an involutive distribution
on a smooth manifold M . The collection of all maximal connected integral manifolds
of D forms a foliation of M .

Since the integral manifolds of D are the 2-spheres and we have a folliation of
the spacetime by 2-spheres S2 except the origin.

Now we want to give the spacetime coordinates (u, v, θ, ϕ) such that for u =
c1, v = c2 constants each sphere can be specified by (c1, c2, θ, ϕ) and the metric g
takes the form

g(c1, c2, θ, ϕ) = f(c1, c2) dΩ
2 (4.4)

and for θ = c3, ϕ = c4
g(u, v, c3, c4) = dτ 2(u, v) (4.5)

Assume a point p ∈ Sp where Sp is a sphere. Assume Sp has the coordinates
(θ, ϕ). At each point q ∈ Sp let the set Oq be the set of geodesics which pass throught
q and their tanget vectors at q are orthogonal to Sp. Oq is a two-dimensional subspace
which is orthogonal to Sp. Let the one-dimensional subgroup Iq which leave the
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point q fixed. Then Iq leaves any vector perpendicular to Sp at q fixed and Oq is left
invariant by Iq.

Next let m ∈ Sm ∩Oq, then we notice that Oq is orthogonal to both Sm and Sp.
By connecting the points q,m with a unique geodesic we assign the same coordinates
(θ, ϕ) of Sp to Sm.

Assume X, Y ∈ TqM such that span(X, Y ) = TqOq. Then any other sphere
will be connected with a unique orthogonal geodesic such that its tangent vector is
uX+vY ∈ TqM . By doing the same for every point p ∈ Sq we assign the components
of uX + vY to be the coordinates (u, v).

So we have for the spacetimeM the coordinates (u, v, θ, ϕ) and the metric satisfies
(4.4), (4.4) with no cross terms between (u, v) and (θ, ϕ), for example dθ du.

We concluded that spherical symmetry gives us the metric

g = guu(u, v) du
2 + guv(u, v)(du dv + dv du) + gvv(u, v) dv

2 + r2(u, v) dΩ2

where

dΩ2 = dθ2 + sin2 θ dϕ2

We change coordinates to (u, r). If r was a function of v alone, then we would
change to (v, r). The metric becomes:

g = guu(u, r) du
2 + gur(u, r)(du dr + dr du) + grr(u, r) dr

2 + r2 dΩ2

Now we want to eliminate the cross terms du dr by changing to a suitable coordinate
system (t, r) and give to the metric the form

m(t, r) dt2 + n(t, r) dr2 + r2 dΩ2

If t(u, r) was such a function then

dt =
∂t

∂u
du+

∂t

∂r
dr

and

dt2 =

(
∂t

∂u

)2

du2 +

(
∂t

∂u

)(
∂t

∂r

)
(du dr + dr du) +

(
∂t

∂r

)2

dr2

So we would need

m

(
∂t

∂u

)2

du2 + 2m

(
∂t

∂u

)(
∂t

∂r

)
du dr +

[(
∂t

∂r

)2

m+ n

]
dr2 + r2 dΩ2

hence the following equations must be satisfied

m

(
∂t

∂u

)2

= guu

m

(
∂t

∂u

)(
∂t

∂r

)
= gur(

∂t

∂r

)2

m+ n = grr
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Now the metric can be written as:

m(t, r) dt2 + n(t, r) dr2 + r2 dΩ2

By comparing to the simplest spherically symmetric spacetime, the Minkowski, we
take the first term to be negative. Then we assume f(t, r), g(t, r) such that:

g = −e2f(t,r) dt2 + e2w(t,r) dr2 + r2 dΩ2 (4.6)

Now we need to compute the Christoffel symbols of g. For simplicity we denote

∂t = ∂0, ∂r = ∂1 , ∂θ = ∂2, ∂ϕ = ∂3

Lemma 4.3.3. The non-zero Christoffel symbols of the metric g in equation (4.6)
are

Γ0
00 = ∂0f Γ1

01 = ∂0w Γ2
12 =

1

r
Γ0
01 = ∂1f Γ1

11 = ∂1w Γ2
33 = − sin θ cos θ

Γ0
11 = e2(w−f)∂0w Γ1

22 = −re−2w Γ3
13 =

1

r

Γ1
00 = e2(f−w)∂1f Γ1

33 = −re−2w sin2 θ Γ3
23 =

cos θ

sin θ

Proof.

Γ0
00 =

1

2
g0l (∂0gl0 + ∂0gl0 − ∂lg00)

=
1

2
g00(2∂0g00 − ∂0g00)

=
1

2
g00∂0g00

=
1

2
(−e−2f∂0(−e2f ))

=
1

2
e−2f2(∂0f)e

2f

= ∂0f

Γ0
01 =

1

2
g0l (∂0g1l + ∂1g0l − ∂lg01)

=
1

2
g00(∂0g10 + ∂1g00 − ∂0g01)

=
1

2
(−e−2f )(∂1(−e2f ))

=
1

2
e−2f2e2f∂1f

= ∂1f
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Γ0
11 =

1

2
g00(∂1g10 + ∂1g10 − ∂0g11)

=
1

2
(−e−2f )(−∂0e2w)

=
1

2
(−e−2f )(−2∂0we

2w)

= e2(w−f)∂0w

Γ1
00 =

1

2
g11(∂0g10 + ∂0g10 − ∂1g00)

=
1

2
(e−2w)(−∂1(−e2f ))

= −1

2
e−2w(−2∂1fe

2f )

= e2(f−w)∂1f

Γ1
01 =

1

2
g11(∂0g11 + ∂1g01 − ∂1g01)

=
1

2
e−2w(∂0e

2w)

=
1

2
e−2w2∂0we

2w

= ∂0w

Γ1
11 =

1

2
g11(∂1g11)

=
1

2
e−2w(∂1e

2w)

=
1

2
e−2w2∂1we

2w

= ∂1w

Γ1
22 =

1

2
g11(2∂2g12 − ∂1g22)

=
1

2
e−2w(−∂1(r2))

=
1

2
e−2w(−2r)

= −re−2w

Γ1
33 =

1

2
g11(2∂3g13 − ∂1g33)

=
1

2
e−2w(−∂1(r2 sin2 θ))

=
1

2
e−2w(−2r sin2 θ)

= −r sin2 θe−2w
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Γ2
12 =

1

2
g22(∂1g22 + ∂2g12 − ∂2g12)

=
1

2
r−2∂1r

2

=
1

2
r−22r

=
1

r

Γ2
33 =

1

2
g22(2∂3g23 − ∂2g33)

=
1

2
r−2(−∂2(r2 sin2 θ))

=
1

2
r−2(−2 cos θ sin θr2)

= − sin θ cos θ

Γ3
13 =

1

2
g33(∂1g33 + ∂3g13 − ∂3g13)

=
1

2
r−2 sin−2 θ(∂1(r

2 sin2 θ))

=
1

2
r−2 sin−2 θ2r sin2 θ

= r−1

Γ3
23 =

1

2
g33(∂2g33 + ∂3g23 − ∂3g23)

=
1

2
r−2 sin−2 θ(∂2r

2 sin2 θ)

=
1

2
r−2 sin−2 θ2r2 sin θ cos θ

=
cos θ

sin θ

Next we need to compute the Riemman tensor.

Lemma 4.3.4. The non-zero coefficients of the Riemann tensor for the metric g in
equation (4.6) are:

R 0
011 = e2(w−f)

[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
+
[
−∂21f − (∂1f)

2 + ∂1w∂1f
]

R 0
022 = −re−2w∂1f

R 0
033 = −re−2w sin2 θ∂1f

R 0
122 = −re−2f∂0w

R 0
133 = −re−2f sin2 θ∂0w

R 1
122 = re−2w∂1w

R 1
133 = re−2w sin2 θ∂1w

R 2
233 = sin2 θ(1− e−2w)
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Proof. We use the fact that the coefficients of the Riemann tensor in local coordi-
nates are:

R l
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + ΓmjkΓ

l
im − ΓmikΓ

l
jm

We begin the computations.

R 0
011 = ∂0Γ

0
11 − ∂1Γ

0
01 + Γm11Γ

0
0m − Γm01Γ

0
1m

= ∂0(e
2(w−f)∂0w)− ∂1∂1f + Γ0

11Γ
0
00 + Γ1

11Γ
0
01 − Γ0

01Γ
0
10 − Γ1

01Γ
0
11

= 2(∂0w − ∂0f)e
2(w−f)∂0w − e2(w−f)∂20w + ∂21f − e2(w−f)∂0w∂0f

− ∂1w∂1f + (∂1f)
2 + ∂1we

2(w−f)∂0w

= e2(w−f)
[
−2(∂0w)

2 + 2∂0f∂0w − ∂20w − ∂0w∂0f + ∂1w∂0w
]
+
[
∂21f − ∂1w∂1w∂1f + (∂1f)

2
]

= e2(w−f)
[
−(∂0w)

2 + ∂0f∂0w − ∂20w
]
+
[
∂21f − ∂1w∂1f + (∂1f)

2
]

= −e2(w−f)
[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
+
[
−∂21f − (∂1f)

2 + ∂1w∂1f
]

R 0
022 = ∂0Γ

0
22 − ∂2Γ

0
02 + Γm22Γ

0
0m − Γm02Γ

0
2m

= Γ1
22Γ

0
01

= −re−2w∂1f

R 0
033 = ∂0Γ

0
33 − ∂3Γ

0
03 + Γm33Γ

0
0m − Γm03Γ

0
3m

= Γ1
33Γ

0
01 + Γ2

33Γ
0
02

= −re−2w sin2 θ∂1f

R 0
122 = ∂1Γ

0
22 − ∂2Γ

0
12 + Γm22Γ

0
1m − Γm12Γ

0
2m

= Γ1
22Γ

0
11 − Γ2

12Γ
0
22

= −re−2we2(w−f)∂0w

= −re−2f∂0w

R 0
133 = ∂1Γ

0
33 − ∂3Γ

0
13 + Γm33Γ

0
1m − Γm13Γ

0
3m

= Γ1
33Γ

0
11 + Γ2

33Γ
0
12 − Γ3

13Γ
0
33

= −re−2w sin2 θe2(w−f)∂0w

= −re−2f sin2 θ∂0w

R 1
122 = ∂1Γ

1
22 − ∂2Γ

1
12 + Γm22Γ

1
1m − Γm12Γ

1
2m

= ∂1(−re−2w) + Γ1
22Γ

1
11 − Γ2

12Γ
1
22

= −e−2w + 2r∂1we
−2w + (−re−2w∂1w)−

1

r
(−re−2w)

= re−2w∂1w

R 1
133 = ∂1Γ

1
33 − ∂3Γ

1
13 + Γm33Γ

1
1m − Γm13Γ

1
3m

= ∂1(−re−2w sin2 θ) + Γ1
33Γ

1
11 + Γ2

33γ
1
12 − Γ3

13Γ
1
33

= −e−2w sin2 θ + 2r∂1we
−2w sin2 θ − re−2w sin2 θ∂1w +

1

r
re−2w sin2 θ

= −e−2w sin2 θ + r∂1we
−2w sin2 θ + e−2w sin2 θ

= re−2w sin2 θ∂1w
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R 2
233 = ∂2Γ

2
33 − ∂3Γ

2
23 + Γm33Γ

2
2m − Γm23Γ

2
3m

= ∂2(− sin θ cos θ) + Γ1
33Γ

2
21 + Γ2

33Γ
2
22 − Γ3

23Γ
2
33

= − cos2 θ + sin2 θ + (−re−2w sin2 θ)
1

r
− cos θ

sin θ
(− sin θ cos θ)

= sin2 θ − e−2w sin2 θ

= sin2 θ(1− e−2w)

Lemma 4.3.5. The non-zero coefficients of the Ricci tensor of the metric g in the
equation (4.6) are:

R00 = −
[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
− e2(f−w)

[
−∂21f − (∂1f)

2 + ∂1w∂1f − 2

r
∂1f

]
R11 = e2(w−f)

[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
+

[
−∂21f − (∂1f)

2 + ∂1w∂1f +
2

r
∂1w

]
R01 =

2

r
∂0w

R22 = e−2w [r(∂1w − ∂1f)− 1] + 1

R33 = sin2 θR22

Proof. The Ricci tensor is defined

Rij = R k
kij = gkmRkijm

We begin the computations.

R00 = R k
k00 = R 1

100 +R 2
200 +R 3

300

R 1
100 = g1lR100l

= g11R1001

= g11R0110

= g11g0lR
l

011

= g11g00R
0

011

Similarly
R 2

200 = g22g00R
0

022 , R 3
300 = g33g00R

0
033

So

R00 = g00
[
g11R 0

011 + g22R 0
022 + g33R 0

033

]
= −e2f

[
e−2w

(
e2(w−f)((∂02)

2 + ∂20w − ∂0f∂0w) + (−∂21f − (∂1f)
2 + ∂1w∂1f)

)
+ r−2(−re−2w∂1f) + r−2 sin−2 θ(−re−2w sin2 θ∂1f)

]
= −e−2(w−f)e2(w−f)

[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
− e2(f−2)

[
−∂21f − (∂1f)

2 + ∂1w∂1f
]

+ e2fr−1e−2w∂1f + r−1e2fe−2w∂1f

= −
[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
− e2(f−w)

[
−∂21f − (∂1f)

2 + ∂1w∂1f − 2

r
∂1f

]
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R11 = R k
k11 = R 0

011 +R 2
211 +R 3

311

R 2
211 = g2lR211l

= g22R2112

= g22R1221

= g22g1lR
l

122

= g22g11R
1

122

Similarly

R 3
311 = g33R3113 = g33R1331 = g33g11R

1
133

which gives us

R11 = R 0
011 + g22g11R

1
122 + g33g11R

1
133

= e2(w−f)
[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
+
[
−∂21f − (∂1f)

2 + ∂1w∂1f
]

+ r−2e2wre−2w∂1w + r−2 sin−2 θe2wre−2w sin2 θ∂1w

= e2(w−f)
[
(∂0w)

2 + ∂20w − ∂0f∂0w
]
+
[
−∂21f − (∂1f)

2 + ∂1w∂1f2r
−1∂1w

]
R01 = R k

k01 = R 2
201 +R 3

301

And also

R 2
201 = g22R2012 = g22R1220 = g22g00R

0
122

R 3
301 = g33R3013 = g33R1330 = g33g00R

0
133

Hence

R01 = g00
[
g22R 0

122 + g33R 0
133

]
= −e2f

[
r−2(−re−2f∂0w) + r−2 sin−2 θ(−re−2f sin2 θ∂0w)

]
= −e2f

[
−r−1e−2f∂0w − r−1e−2f∂0w

]
=

2

r
∂0w

R22 = R k
k22 = R 2

022 +R 1
122 +R 3

322

and

R 3
322 = g33R3223 = g33R2332 = g33g22R

2
233

Hence

R22 = R 0
022 +R 1

122 + g33g22R
2

233

= −re−2w∂1f + re−2w∂1w + r−2 sin−2 θr2 sin2 θ(1− e−2w)

= e−2w [r(∂1w − ∂1f)− 1] + 1
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R33 = R k
k33

= R 0
033 +R 1

133 +R 2
233

= −re−2w sin2 θ∂1f + re−2w sin2 θ∂1w + sin2 θ(1− e−2w)

= sin2 θ
[
re−2w(∂1w − ∂1f) + 1− e−2w

]
= sin2 θ

[
e−2w ((∂1w − ∂1f)r − 1) + 1

]
= sin2 θR22

No we use the Einstein equations in vacuum Rij = 0. First we have

R01 = 0 =⇒ ∂0w = 0

Hence

∂0R22 = 0 =⇒ ∂0
[
e−2w(r(∂1w − ∂1f)− 1) + 1

]
= 0

=⇒ −2e−2w∂0w [r((∂1w − ∂1f)− 1)] + e−2w∂0(r(∂1w − ∂1f)) = 0

=⇒ e−2wr(∂0∂1w − ∂0∂1f) = 0

=⇒ ∂0∂1f = 0

So we have that

w = w(r)

f = k(r) + h(t)

So the metric

g = −e2f(t,r) dt2 + e2w(t,r) dr2 + r2 dΩ2

becomes

g = −e2k(r)e2h(t) dt2 + e2w(r) dr2 + r2 dΩ2

by redifining the time coordinate such that dt→ e−h(t) dt, we have the static metric

g = −e2k(r) dt2 + e2g(r) dr2 + r2 dΩ2 (4.7)

The metric is the same but now w and k depend only on r. So from the previous
lemmas and by the same calculations we have that for the g static metric in equation
(4.7) the non-zero Christoffel symbols are:

Γ0
01 = ∂1k Γ1

22 = −re−2w Γ2
33 = − sin θ cos θ

Γ1
00 = e2(k−w)∂1k Γ1

33 = −re−2w sin2 θ Γ3
13 =

1

r

Γ1
11 = ∂1w Γ2

12 =
1

r
Γ3
23 =

cos θ

sin θ
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The non-zero coefficients of the Riemann tensor are:

R 0
011 = −∂21k − (∂1k)

2 + ∂1w∂1k

R 0
022 = −re−2w∂1k

R 0
033 = −re−2w sin2 θ∂1k

R 1
122 = re−2w∂1w

R 1
133 = re−2w sin2 θ∂1w

R 2
233 = sin2 θ(1− e−2w)

And the non-zero coefficients of the Ricci tensor are:

R00 = e2(k−w)
[
∂21k + (∂1k)

2 − ∂1w∂1k +
2

r
∂1k

]
R11 = −∂21k − (∂1k)

2 + ∂1w∂1k +
2

r
∂1w

R22 = e−2w [r(∂1w − ∂1k)− 1] + 1

R33 = sin2 θR22

Again using the Einstein equations in vacuum we write:

e2(w−k)R00 +R11 = 0 =⇒ 2

r
(∂1k + ∂1w) = 0

=⇒ k + w = C

Set the constant zero by rescaling t→ e−Ct. So

k = −w (4.8)

Also

R22 = 0 =⇒ e−2w [r(∂1w − ∂1k)]− e−2w + 1 = 0

=⇒ e2k [r(−∂1k − ∂1k)]− e2k + 1 = 0

=⇒ −2e2kr∂1k − e2k + 1 = 0

=⇒ e2k(2r∂1k + 1) = 1

=⇒ ∂1(re
2k) = 1

=⇒ re2k = r − C

=⇒ e2k = 1− C

r
(4.9)

Hence from equations (4.8), (4.9) and

g = −e2k dt2 + e−2k dr2 + r2 dΩ2

we have:

g = −
(
1− RS

r

)
dt2 +

(
1− RS

r

)−1

dr2 + r2 dΩ2

where RS is called the Schwarzschild radius and we set RS = 2M .
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4.4 Kruskal Extension

In the Schwarzschild metric

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2,

according to [50, p. 148], for any static equilibrium configuration the region r ≤ 2M
will be within the matter-filled star. So examining what is happening for r = 2M or
r = 0 in the Schwarzschild metric is irrelevant to the study of the gravitational field
of a static star. But stars with massive bodies will undergo gravitational collapse
and the study of the region r ≤ 2M becomes relevant.

We notice that for r = 0, r = 2M the metric diverges to infinity. Because
the metric coefficients are coordinate dependent it is possible that we can fix the
divergent terms by a coordinate change. For example polar coordinates in a plane

ds2 = dr2 + r2 dθ2

becomes degenerate on gθθ = r−2. The definition of a singularity in a spacetime is
not an obvious one and may be defined differently (we refer to chapter 9 of [50]).
To check when something is wrong we can see when does the curvature becomes
infinite. But since its components are coordinate dependent we check one of the
various scalar quantities of the curvature. Some examples are

R = gµνRµν , RµνρσRµνρσ, RµνρσR
ρσλτR µν

λτ

If any of them diverges to infinity, then on that point on the manifold we will say
that we have a singularity.

By direct calculations it can be shown that:

RµνρσRµνρσ =
48M2

r6

So r = 0 has a singularity but not r = 2M .

In our study of the singularites we will use only the part of the Schwarzschild

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

because of the spherical symmetry.

We check the null geodesics of the Schwarzschild for θ, ψ =constant

−
(
1− 2M

r

)
dt2+

(
1− 2M

r

)−1

dr2 = 0 =⇒
(
1− 2M

r

)
dt2 =

(
1− 2M

r

−2)−1

dr2
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Assume geodesic γ(λ) = (t(λ), r(λ), c1, c2), then

g(γ̇(λ), γ̇(λ)) = 0 =⇒ dγi

dλ

dγj

dλ
gij = 0

=⇒ −ṫ2
(
1− 2M

r

)
+ ṙ2

(
1− 2M

r

)−1

= 0

=⇒ ṫ2
(
1− 2M

r

)
= ṙ2

(
1− 2M

r

)−1

=⇒ ṫ2 = ṙ2
(
1− 2M

r

)−2

=⇒ ṫ = ±ṙ
(
1− 2M

r

−1)
=⇒ dt

dλ
= ±dr

dλ

(
1− 2M

r

)−1

=⇒ dt

dλ

(
dr

dλ

)−1

= ±
(
1− 2M

r

)−1

which gives us

dt

dr
= ±

(
1− 2M

r

)−1

=⇒
(
dt

dr

)2

=

(
r

r − 2M

)2

hence

t = ±
∫

r

r − 2M
dr + C

Suppose r′ = r − 2M and dr′ = dr, which implies

t = ±
∫
r′+2M

r′
dr′

= ±
∫

1 +
2M

r′
dr′

= ± [r − 2M + 2M log(r − 2M) + C1] + C

Also

log(r − 2M) = log
(
2M

( r

2M
− 1
))

= log(2M) + log
( r

2M
− 1
)

So we have
t = ±

[
r + 2M log

( r

2M
− 1
)]

+ C2

where C2 = C ± (log(2M) + C1). We also write it as

t = ±r∗ + C2

This is called Regge-Wheeler tortoise coordinate r∗ and is defined by

r∗ = r + 2M log
( r

2M
− 1
)



Chapter 4. General Relativity 62

which satisfies:

dr∗

dr
=

(
1 + 2M

1
r

2M
− 1

(
1

2M

))
=

(
1 +

1
r

2M
− 1

)
=

(
1− r

2M
− 1

1− r
2M

)
=

(
1− r

2M

1− r
2M

− 1

)−1

=

(
1− r

2M

− r
2M

)−1

=

(
2M − r

−r

)−1

=

(
1− 2M

r

)−1

So if we changed coordinates with respect to r∗ we would have:

g =

(
1− 2M

r

)(
− dt2 + dr∗

)
+ r2 dΩ2

which eliminates the singularity at r = 2M but pushes the surface to infinity since
r∗ = −∞.

We define the null coordinates u, v such that:

u = t− r∗

v = t+ r∗

We write the metric as

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

= −
(
1− 2M

r

)(
dt2 −

(
1− 2M

r

)−2

dr2

)

Also

du = dt−
(
1− 2M

r

)−1

dr, dv = dt+

(
1− 2M

r

)−1

dr

and

du2 =

(
dt−

(
1− 2M

r

)−1

dr

)2

= dt2 − 2

(
1− 2M

r

)−1

dt dr +

(
1− 2M

r

)−1

dr2
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dv2 =

(
dt+

(
1− 2M

r

)−1

dr

)2

= dt2 + 2

(
1− 2M

r

)−1

dt dr +

(
1− 2M

r

)−1

dr2

hence

du dv =

(
dt−

(
1− 2M

r

)−1

dr

)(
dt+

(
1− 2M

r

)−1

dr

)

= dt2 −
(
1− 2M

r

)−2

dr2 −
(
1− 2M

r

)−1

dr dt+

(
1− 2M

r

)
dr dt

= dt2 −
(
1− 2M

r

)−2

dr2

So the metric g becomes:

g = −
(
1− 2M

r

)
du dv

We notice that

r∗ = t− u =
v − u

2

and we see that r = r(u, v), defined by

r + 2M log
( r

2M
− 1
)
= r∗ =

v − u

2

From the above we will again change the metric by:

r + 2M log
( r

2M
− 1
)
= r∗ =

v − u

2
=⇒ r

2M
+ log

( r

2M
− 1
)
=
v − u

4M

=⇒ er/2M
( r

2M
− 1
)
= e(v−u)/4M

=⇒ −2M

r
+ 1 = e(v−u)/4Me−r/2M

2M

r

=⇒ −
(
1− 2M

r

)
= −e(v−u)4Me−r/2M 2M

r

Hence we have

g = −e(v−u)/4Me−r/2M 2M

r
du dv

Suppose

U = −e−u/4M

V = ev/4M

then

dU =
1

4M
e−u/4M du

dV =
1

4M
ev/4M dv

 =⇒
4M dU = e−u/4M du

4M dV = ev/4M dv
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So the metric is

g = −32M3e−r/2M

r
dU dV

and there is no more a singularity at r = 2M , meaning in U = 0, V = 0. Now
we can extend the region of the Schwarzschild metric in U, V coordinates such that
r > 0. The signularity at r = 0 doesn’t disappear because of

RabcdR
abcd(0) = ∞

With the next transformation we will have the desired Kruskal coordinates. Suppose

T =
(U + V )

2

X =
(V − U)

2

where

dT =
dU + dV

2

dX =
dV − dU

2

 =⇒
dT 2 =

(dU + dV )2

4

dX2 =
(dV − dU)2

4

Hence

− dT 2 + dX2 =
− dU2 − dV 2 + dV 2 + dU2

4
− 2 dU dV

4
− 2 dU dV

4
= − dU dV

and so the full metric takes the form:

g = 32M3 e
−r/2M

r
(− dT 2 + dX2) + r2(dθ2 + sin2 θ dϕ2)

such that

X2 − T 2 =
(U − V )2

4
− (U + V )2

4

=
U2 + V 2 − U2 − V 2 − 2UV − 2UV

4
= −UV
= e−u/4Mev/4M

= e(v−u)4M

= er
∗/2M

= er/2Melog(
r

2M
−1)

=
( r

2M
− 1
)
er/2M

It is known that

arctanh(x) =
1

2
log

(
1 + x

1− x

)
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hence

2arctanh

(
T

X

)
= log

(
1 + T

X

1− T
X

)

= log

(
X + T

X − T

)
= log

(
V−U
2

+ U+V
2

V−U
2

− U+V
2

)

= log

(
−V
U

)
= log

(
ev/4M

e−u/4M

)
= log

(
e(v+u)/4M

)
=
v + u

4M

=
t

2M

We have shown that for the Kruskal metric

g = 32M3 e
−r/2M

r
(− dT 2 + dX2) + r2 dΩ2 (4.10)

The following equations hold

( r

2M
− 1
)
er/2M = X2 − T 2 (4.11)

t

2M
= log

(
T +X

X − T

)
= 2tanh−1

(
T

X

)
(4.12)

where r is defined by equation (4.11). If r > 0 then X2 − T 2 > −1. For points
X = C1, T = C2 we have spheres and for r = 0 we have singularities

X2 = T 2 − 1 =⇒ X = ±
√
T 2 − 1

To better understand the causal character that the Kruskal diagram has, we can
look at the figure 4.1.
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T

X

II

I

III

IV

r = 0

r = 0

r = 2M

r = 2M
t = −∞

t = +∞

Figure 4.1: The Kruskal diagram in coordinates (T,X) is divided in the regions I,
II, III, IV. The singularities for r = 0 are in the regions II, III. The horizon is for
r = 2M, t = +∞ and r = 2M, t = −∞.

From [50, p. 155] we have the following remarks:

• the singularities for r = 0 where pushed to the regions II and III.

• The region for r > 2M was pushed to the region I.

• An observer falling radially from region I once he crosses X = T to region II
he will stay there and in finite proper time he will fall to the X =

√
T 2 − 1

singularity. All the light signals sent from him will remain in region II. For
the reason described, region II is called a black hole.

• An observer in region III must have originated from the singularity X =
−
√
T 2 − 1 and within finite time must leave region I. This region represents

the time reversal of region II and it is called a white hole.

• Light signals from region I cannot cross to region IV because they will fall to
region II, the black hole.



Chapter 5

Cauchy Hypersurfaces

For the well-posedness of the Cauchy problem, the solution for the Einstein equa-
tions, we need well defined initial data. For that we need the following.

Definition 5.0.1 (Cauchy Hypersurfaces). [17, p. 6] Assume (M, g) is a spacetime
manifold. Then a Cauchy hypersurface is a complete spacelike hypersurface Σ in M
such that every causal curve through any point p ∈ M intersects Σ at exactly one
point.

Definition 5.0.2. [17, p. 6] A spacetime admitting a Cauchy hypersurface is called
globally hyperbolic.

An important result about the Cauchy hypersurfaces is the following Lemma.

Lemma 5.0.3. [4, p. 4] Let M be a (Ck-)spacetime which admits a Cr-Cauchy
hypersurface S, r ∈ {0, 1, . . . , k}. Then M is Cr-diffeomorphic to R×S and all the
Cr-Cauchy hypersurfaces are Cr diffeomorphic.

According to [43], Geroch in [20] proved that if a Cauchy hypersurface exists
then the spacetime is globally hyperbolic and, conversely:

Theorem 5.0.4. If M is globally hyperbolic, there exists a continuous function
t : M → R such that:

1. t is strictly increasing on any future-directed causal curve

2. Each level set Sa := t−1(a) is a Cauchy hypersurface ∀a ∈ R.

Geroch proved this theorem by considering the time function t as

t(z) = ln

(
vol(J−(z))

vol(J+(z))

)
for a (suitable) finite measure on M .

From this result we have the existence of a time function t which gives as topo-
logical Cauchy hypersurfaces. What wasnt known was the existence of a smooth
function that its level sets are smooth spacelike Cauchy hypersurfaces.

This was proven by Bernal and Sanchez, speciffically, according to [4, p. 2] they
showed

1. Any globally hyperbolic spacetime admits a smooth spacelike Cauchy hyper-
surface S.

67
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2. Besides the existence of a time function, there exists a ”temporal” function,
i.e. smooth with timelike gradient.

3. Any globally hyperbolic spacetime admits a smooth splitting M = R×S with
Cauchy hypersurfaces slices {t0}×S orthogonal to ∇t and thatM is isometric
to R× S.

One can look for the detailed proof in [3] and [5].

5.1 3+1 Splitting

Let (M, g) be a globally hyperbolic spacetime, we define a smooth time function
t : M → R and the diffeomorphism ψ : M → R × Σ0 where each level set Σt is
diffeomorphic to Σ0 and Σ0 is a Cauchy hypersurface. So we have a folliation of M
with leaves Σt.

We define the lapse function

V =
1√

−g(∇t,∇t)

We notice that for X ∈ TpΣτ

g(∇t,X) = dt(X) = X(t)|Στ = 0

and so ∇t ⊥ Στ . So V measures the normal separation between the leaves Στ . We
define the vector field

T = −V 2 · ∇t

which is orthogonal to Στ . From that we have

T = −V 2 · ∇t = − 1

−g(∇t,∇t)
∇t = ∇t

g(∇t,∇t)
and

g(T,∇t) = g

(
∇t

g(∇t,∇t)
,∇t

)
= 1

The vector fields T,∇t are on opposite cones. We choose T to be the future directed
timelike vector field and ∇t to be the past directed. Also

T (t) = −V 2∇t(t)

=
∇t(t)

g(∇t,∇t)

=
1

g(∇t,∇t)
gµν∂µ(t)∂ν(t)

=
1

g(∇t,∇t)
g(∇t,∇t)

= 1

We assume the integrals curves of T are parametrized by λ.
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T (t) = 1 =⇒ T µ
∂t

∂xµ
= 1

=⇒ ∂xm

∂λ

∂t

∂xµ
= 1

=⇒ ∂t

∂λ
= 1

=⇒ t = λ+ c

where c is constant. So the integral curves of T are orthogonal curves to the
level sets Σt and they are parametrized by t. The flow ϕτ of T takes the leaves of
the foliation to another leave by ϕτ (Σt) = Σt+τ .

We assume the unit normal

N = V −1T.

Its a unit normal since

g(N,N) = V 2g(T, T )

= V 2V 4g(∇t,∇t)
= V 2g(∇t,∇t)

= − 1

g(∇t,∇t)
g(∇t,∇t)

= −1

Also for Nµ = ∂xµ

∂s
, where s is arc length, we have

∂xµ

∂t
=
∂xµ

∂s

∂s

∂t
= Nµ∂s

∂t

which implies

T µ = Nµ∂s

∂t
=⇒ V Nµ = Nµ∂s

∂t
=⇒ V =

∂s

∂t

And so the integral curves of N are the same with the integral curves of T but
instead they are parametrized by arc length.

So for ∂t = T we have that

g00 = g(∂t, ∂t)

= V 4g(∇t,∇t)

= V 2

(
− 1

g(∇t,∇t)

)
g(∇t,∇t)

= −V 2

and

gi0 = −V 2g(∇t, ∂i) = 0



Chapter 5. Cauchy Hypersurfaces 70

where the last equation holds since ∂i ∈ TpΣt for some p ∈ M, t ∈ R. For induced
metric ḡ(t) of Σt, the metric g is

g = −V 2 dt2 + ḡ

Notice that V, ḡ both depend from t.

5.2 Initial Value Problem

The Einstein equations can be written as

Ric− 1

2
Rg = 8πT

where T is the energy-momentum tensor. The solution of the Einstein equation is
the metric g of a spacetime M .

For the well-posedness of the Einstein equation we need a set of initial data.
According to Christodoulou [17, p. 22]

”initial data for the Einstein equations consist of a pair (ḡij, kij) where ḡij is a
Riemannian metric and kij is a 2-covariant symmetric tensor field on the 3-manifold
M̄ , which is to be identified with the initial hypersurface Σ0. Once we have a solution
(M, g) with M = [0, T ]×Σ0 and Σ0 = M̄ , then ḡij, kij shall be, respectively, the 1st
and 2nd fundamental form of Σ0 = {0} × Σ0 in (M, g).”

From Choquet-Bruhat and Geroch [15] we have the following result

Theorem 5.2.1. [43, p. 8] Let (Σ, ḡ) be a (connected) Riemannian 3-manifold, and
k a symmetric two covariant tensor which satisfies the compatibility conditions of a
second fundamental form (Gauss and Codazzi equations). Then there exist a unique
spacetime (M, g) satisfying the following conditions:

1. Σ ↪→M , consistenly with g, k (i.e. ḡ = g|Σ etc.).

2. Vacuum: Ric ≡ 0 (this can be extened to more general T ).

3. Σ is a Cauchy hypersurface of (M, g).

4. Maximality: if (M ′, g′) satisfies (1)-(3), then it is isometric to an open subset
of (M, g).

As the previous theorem stated, for it to hold, the initial data needs to satisfy
some constraint equations which are derived from the Gauss and Codazzi equations.
Also the initial data have the evolution equations of g. Next we will find the con-
straint and evolution equations that hold for the initial data of a spacetime in a
vacuum.

5.3 Constraint Equations of the Einstein Equa-

tions in Vacuum

In general, unless otherwise specified, when writing latin indices we will mean the
spatial indices (i.e. i, j, k ∈ {1, 2, 3}) and the greek indices will mean the spacetime
indices (i.e. µ, ν, λ ∈ {0, 1, 2, 3}).
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5.3.1 First and Second Variation of the Metric

Proposition 5.3.1. Let (M, g) be a spacetime such that M ≡ [0, τ ]× Σ0 where

g = −V 2 dt2 + ḡ,

ḡ(t) is the induced metric on Σt and V is the lapse function. Then the first vari-
ation equation is

∂ḡij
∂t

= 2V kij

where kij is the second fundamental form.

Proof. Suppose

T =
∂

∂t
, Ei =

∂

∂xi

The unit normal to Σt is
N = V −1T,

and the second fundamental form is

kij = ⟨∇Ei
N,Ej⟩ .

So we have

T (ḡij) = V N ⟨Ei, Ej⟩ = V (⟨∇NEi, Ej⟩+ ⟨Ei,∇NEj⟩)

First we compute

∇NEi = ∇Ei
N + [N,Ei]

= ∇Ei
N +

[
V −1T,Ei

]
= ∇Ei

N + V −1 [T,Ei] +
[
V −1, Ei

]
T

= ∇Ei
N − Ei(V

−1)T

And so

⟨∇NEi, Ej⟩ =
〈
∇Ei

N − Ei(V
−1)T,Ej

〉
= ⟨∇Ei

N,Ej⟩ − Ei(V
−1) ⟨T,Ej⟩

= ⟨∇Ei
N,Ej⟩

With the above
∂

∂t
ḡij = 2V kij

Proposition 5.3.2. Let (M, g) be a spacetime such that M ≡ [0, τ ]× Σ0 where

g = −V 2 dt2 + ḡ,

ḡ(t) is the induced metric on Σt and V is the lapse function. Then the second
variation equation is

∂kij
∂t

= ∇i∇jV + V kmj kim + V R0i0j

where kij is the second fundamental form, ∇ is the covariant derivative instrinsic
over Σt and R0i0j = R(Ei, E0, Ej, E0) on the coordinate frame field (E1, E2, E3) and
E0 = V −1∂0 being the future directed unit normal on Σt.
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Proof. Suppose

T =
∂

∂t
, Ei =

∂

∂xi

The unit normal to Σt is
N = V −1T

and the second fundamental form is

kij = ⟨∇Ei
N,Ej⟩ .

T (kij) = T ⟨∇Ei
N,Ej⟩

= T
〈
∇Ei

(V −1T ), Ej
〉

= T
(
V −2Ei(V ) ⟨T,Ej⟩+ V −1 ⟨∇Ei

T,Ej⟩
)

= T
(
V −1 ⟨∇Ei

T,Ej⟩
)

= T (V −1) ⟨∇Ei
T,Ej⟩+ V −1 ⟨∇T∇Ei

T,Ej⟩+ V −1 ⟨∇Ei
T,∇TEj⟩

= −V −2T (V ) ⟨∇Ei
T,Ej⟩+ V −1 [⟨∇T∇Ei

T,Ej⟩+ ⟨∇Ei
T,∇TEj⟩]

= −V −1N(V ) ⟨∇Ei
(V N), Ej⟩+ V −1 [⟨∇T∇Ei

T,Ej⟩+ ⟨∇Ei
T,∇TEj⟩]

= −V −1N(V )[⟨∇Ei
(V )N,Ej⟩+ ⟨V∇Ei

N,Ej⟩] + V −1 [⟨∇T∇Ei
T,Ej⟩+ ⟨∇Ei

T,∇TEj⟩]
= −N(V )kij + V −1 [⟨∇T∇Ei

T,Ej⟩+ ⟨∇Ei
T,∇TEj⟩]

We have shown that

T (kij) = −N(V )kij + V −1 [⟨∇T∇Ei
T,Ej⟩+ ⟨∇Ei

T,∇TEj⟩] (5.1)

Denote
A = ⟨∇T∇Ei

T,Ej⟩ , B = ⟨∇Ei
T,∇TEj⟩

so we can write
T (kij) = −N(V )kij + V −1 [A+B] (5.2)

First we will compute B. We know that

[Ei, T ] = ∇Ei
T −∇TEi

and
[Ei, T ] = 0

So we have
∇Ei

T = ∇TEi

B = ⟨∇Ei
T,∇TEj⟩

=
〈
∇Ei

T,∇Ej
T
〉

=
〈
∇Ei

(V N),∇Ej
(V N)

〉
= Ei(V )

〈
N,∇Ej

(V N)
〉
+ V

〈
∇Ei

N,∇Ej
(V N)

〉
= Ei(V )

[
Ej(V ) ⟨N,N⟩+ V

〈
N,∇Ej

N
〉]

+ V
[
Ej(V ) ⟨N,∇Ei

N⟩+ V
〈
∇Ej

N,∇Ei
N
〉]

= −Ei(V )Ej(V ) + Ei(V )V
〈
N,∇Ej

N
〉
+ V Ej(V ) ⟨N,∇Ei

N⟩+ V 2
〈
∇Ej

N,∇Ei
N
〉

= −Ei(V )Ej(V ) + V 2
〈
∇Ei

N,∇Ej
N
〉

= −Ei(V )Ej(V ) + V 2
〈
∇Ei

N, gmikijEm
〉
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The last equation comes from the fact that

∇Ej
N = ♯k(Ei, Ej)

And so we have

B = −Ei(V )Ej(V ) + V 2kmj kim (5.3)

Now we compute A.

A = ⟨∇T∇Ei
T,Ej⟩

=
〈
R(T,Ei)T +∇Ei

∇TT +∇[T,Ei]T
〉

= ⟨R(T,Ei)T,Ej⟩+ ⟨∇Ei
∇TT,Ej⟩

= V 2 ⟨R(N,Ei)N,Ej⟩+
〈
∇Ei

∇(V N)(V N), Ej
〉

Denote

C =
〈
∇Ei

∇(V N)(V N), Ej
〉

So we can write

A = V 2R0i0j + C (5.4)

Now we compute C.

C = ⟨∇Ei
∇V N(V N), Ej⟩

= ⟨∇Ei
(V∇N(V N)), Ej⟩

=
〈
∇Ei

[V N(V )N + V 2∇NN ], Ej
〉

=
〈
∇Ei

(V N(V )N) +∇Ei
(V 2∇NN), Ej

〉
= ⟨Ei(V )N(V )N + V Ei(N(V ))N + (∇Ei

N)V N(V ), Ej⟩
+
〈
Ei(V

2)∇NN + V 2∇Ei
∇NN,Ej

〉
= V N(V ) ⟨∇Ei

N,Ej⟩+ 2V Ei(V ) ⟨∇NN,Ej⟩+ V 2 ⟨∇Ei
∇NN,Ej⟩

= V N(V )kij + 2V Ei(V ) ⟨∇NN,Ej⟩+ V 2 ⟨∇Ei
∇NN,Ej⟩

And so we have

C = V N(V )kij + 2V Ei(V ) ⟨∇NN,Ej⟩+ V 2 ⟨∇Ei
∇NN,Ej⟩ (5.5)

Next we have to compute ∇NN .

∇NN = ∇V −1T (V
−1T )

= V −1∇T (V
−1T )

= V −1(T (V −1)T + V −1∇TT )

= V −1(−V −2)T (V )T + V −2∇TT

= −V −3T (V )T + V −2Γα00Ea

Γ0
00 =

1

2
g0β (E0g0β + E0gβ0 − Eβg00)
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We know that g0β = 0 for β ̸= 0, so

Γ0
00 =

1

2
g00 (E0g00 + E0g00 − E0g00)

=
1

2
(−V −2)E0(−V 2)

=
1

2
V −22V E0(V )

= V −1E0(V )

For k = 1, 2, 3 and β = 0, . . . , 3

Γk00 =
1

2
gkβ (E0g0β + E0gβ0 − Eβg00)

We know gk0 = 0, so we must have β ̸= 0. We write equivalently

Γk00 =
1

2
gkl (E0g0l + E0gl0 − Elg00)

But g0l = 0

Γk00 =
1

2
gkl(−Elg00)

= −1

2
gklEl(−V 2)

=
1

2
2V gklEl(V )

= V gklEl(V )

We have shown that

Γ0
00 = V −1E0(V ), Γk00 = V gklEl(V )

together with the previous computation of ∇NN we have

∇NN = −V −3T (V )T + V −2Γα00Ea

= −V −3E0(V )E0 + V −2V −1E0(V )E0 + V −2V gklEl(V )Ek

= V −1gklEl(V )Ek

= V −1∇V

We have shown

∇NN = V −1∇V (5.6)
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Now we substitute (5.6) to (5.5)

C = V N(V )kij + 2V Ei(V )V −1gklEl(V )gkj + V 2
〈
∇Ei

(V −1∇V ), Ej
〉

= V N(V )kij + 2Ei(V )El(V )δlj + V 2
[
Ei(V

−1)
〈
∇V,Ej

〉
+ V −1

〈
∇Ei

(∇V ), Ej
〉]

= V N(V )kij + 2Ei(V )Ej(V )− V 2V −2Ei(V )gklEl(V )gkj + V
〈
∇Ei

(∇V ), Ej
〉

= V N(V )kij + Ei(V )Ej(V ) + V ⟨∇Ei
(♯ dV ), Ej⟩

= V N(V )kij + Ei(V )Ej(V ) + V [⟨♯ (∇Ei
(dV )) , Ej⟩]

= V N(V )kij + Ei(V )Ej(V ) + V
〈
♯
[
∇Ei

(
Ek(V ) dxk

)]
, Ej
〉

= V N(V )kij + Ei(V )Ej(V ) + V
〈
♯
[
(EiEk(V )− El(V )Γlik) dx

k
]
, Ej
〉

= V N(V )kij + Ei(V )Ej(V ) + V
〈
gkp(EiEp(V )− El(V )Γlip)Ek

〉
= V N(V )kij + Ei(V )Ej(V ) + V

[
gkpEiEp(V )gkj − gkpEl(V )Γlipgkj

]
= V N(V )kij + Ei(V )Ej(V ) + V EiEjV − El(V )ΓlijV

= V N(V )kij + Ei(V )Ej(V ) + V∇i∇jV

Now we substitute C to (5.4).

A = V 2R0i0j + V N(V )kij + Ei(V )Ej(V ) + V∇i∇jV (5.7)

Now we substitute both (5.7) and (5.3) to (5.2).

T (kij) = −N(V )kij + V −1
[
V 2R0i0j + V N(V )kij + Ei(V )Ej(V )

]
+
[
V∇i∇jV +−Ei(V )Ej(V ) + V 2kmj kim

]
= ∇i∇jV −N(V )kij + V R0i0j +N(V )kij + V kmj kim

= ∇i∇jV + V R0i0j + V kmj kim

5.3.2 Gauss and Codazzi Equations

Theorem 5.3.3 (Gauss Equation). [38, p. 100] Let (M, g) be a semi-Riemannian
manifold and (M, g) be a semi-Riemannian submanifold ofM . Then for allW,X, Y, Z ∈
X(M), the following equation holds:

R(W,X, Y, Z) = R(W,X, Y, Z)− ⟨II(W,Z), II(X, Y )⟩+ ⟨II(W,Y ), II(X,Z)⟩

Assume W,X, Y, Z ∈ TpM and N ∈ TpM is a timelike unit vector normal to M .
Then from theorem 5.3.3

R(W,X, Y, Z) = R(W,X, Y, Z)− ⟨II(W,Z), II(X, Y )⟩+ ⟨II(W,Y ), II(X,Z)⟩
= R(W,X, Y, Z)− ⟨k(W,Z)N, k(X, Y )N⟩+ ⟨k(W,Y )N, k(X,Z)N⟩
= R(W,X, Y, Z) + k(W,Z)k(X, Y )− k(W,Y )k(X,Z)

And so in coordinates the Gauss equation is:

Rimjl = Rimjl + kilkmj − kijkml (5.8)
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Theorem 5.3.4 (Codazzi equation). [38, p. 115] Let (M, g) be a semi-Riemannian
manifold and (M, g) be a semi-Riemannian submanifold ofM . Then for allW,X, Y ∈
X(M), the following equation holds:

(R(W,X)Y )⊥ = −∇⊥
W (II(X, Y )) + II(∇WX, Y ) + II(X,∇WY )

+∇⊥
X(II(W,Y ))− II(∇XW,Y )− II(W,∇XY )

Suppose W,X, Y,N ∈ X(M), then from theorem 5.3.4

R(W,X, Y,N) = ⟨−∇W (II(X, Y )) + II(∇WX, Y ) + II(X,∇WY ), N⟩
+ ⟨∇X(II(W,Y ))− II(∇XW,Y )− II(∇XY,W ), N⟩

= ⟨−∇W (k(X, Y )N) + k(∇WX, Y )N + k(X,∇WY )N,N⟩
+ ⟨∇X(k(W,Y )N)− k(∇XW,Y )N − k(W,∇XY )N,N⟩

= −⟨∇W (k)(X, Y )N,N⟩+∇X(k)(W,Y ) ⟨N,N⟩
= −⟨N,N⟩ [∇W (k)(X, Y )−∇X(k)(W,Y )]

So for W = Ei, X = Ej, Y = Em, N = V −1∂0 we have the Codazzi equation in
coordinates:

Rijm0 = kjm;i − kim;j (5.9)

We remind that g0k = 0 for k ∈ {1, 2, 3} and g00 = −1 on the frame field
(E1, E2, E3, N).

We take the trace of the Gauss equation (5.8) in respect to the hypersurface Σt

gmlRimjl = −Rij + kilkmjg
ml − kijk

m
m (5.10)

We notice that

gmlRimjl = −gmlRimlj

= −gµνRiµνj + g0lRi0lj + gm0Rim0j + g00Ri00j

= −Rij + g00Ri00j

= −Rij −Ri00j

Together with equation (5.10) the trace of the Gauss equation becomes

Rij +Ri00j = +Rij − kilk
l
j + kijk

m
m

Taking the second trace on the hypersurface we have

gijRij + gijR0ij0 = R− kjlk
l
j + kiik

m
m =⇒ R− g00R00 + gijR0ij0 = R− kjlk

l
j + kiik

m
m

but
g00R00 = −gijRi00j − g0jR000j − gi0Ri000 = −gijRi00j

because of the antisymmetry of the first two and the last two indices of the Rieman-
nian metric. So we get in coordinates

R + 2R00 = R− kjlk
l
j + kiik

m
m

and in invariant form

R + 2Ric(N,N) = R− |k|2 + (trk)2
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where |k|2 = kjlk
l
j .

For the Codazzi equation (5.9) we take the trace on the hypersurface

gjmRijm0 = gjmkjm;i − gjmkim;j

but
Ri0 = gjmRijm0 + g00Ri000 = gjmRijm0

So in coordinates

R0i = k ;j
ij − ∂j(k)

and in invariant form

Ric(N, ·) = divk − dk

We have proven the equations

R + 2Ric(N,N) = R− |k|2 + (trk)2

Ric(N, ·) = divk − dk

By imposing the Einstein equations in a vacuum we have the constraint equa-
tions

R− |k|2 + (trk)2 = 0 (5.11)

divk − dk = 0 (5.12)

So the initial data (k, g) on a spacetime (M, g), which has the decomposion from
the spatial hypersurfaces (Σt, g(t)), need to satisfy the above constraint equations
and the time evolution equations from propositions 5.3.1, 5.3.2:

∂

∂t
ḡij = 2V kij (5.13)

∂

∂t
kij = V;ji + V kmj kim + V R0i0j (5.14)

5.4 Static Spacetime

Assume a static spacetime (M, g) where

g = −V 2 dt2 + g

static means that V and g dont depend from t. Because of this independence we
observe that spatial hypersurfaces Σt of the static spacetimes are totally geodesic.
This happens because the first variation equation (5.13) and the second variation
equation (5.14) become

kij = 0

V;ji + V R0i0j = 0

and the Gauss equation (5.8) similarly become

Rimjl = Rimjl
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Proposition 5.4.1. Let (M, g) be a static spacetime in vacuum and

g = −V 2 dt2 + g

Then the following equations hold:

Rij = V −1V;ji

∆V = 0

where the bar above the operators are the induced on the hypersurface Σt.

Proof. We observe that

Rµν = gαβRαµνβ

= g0βR0µνβ + gα0Rαµν0 + gklRkµνl + g00R0µν0

= gklRkµνl + g00R0µν0

So we have the equations

Rij = gklRkijl −R0ij0

R00 = gklRk00l

From the second variation equation we have that

Rk00l = V −1V;ji

By taking the trace we get
R00 = V −1∆V

and together with the Einstein equation in vacuum we have

∆V = 0

We showed before that

Rij = gklRkijl −R0ij0

together with the Gauss equation in static spacetime we have

Rij = gklRkijl −R0ij0 =⇒ Rij = Rij −R0ij0

=⇒ Rij = Rij + V −1V;ij

=⇒ Rij = V −1V;ij



Chapter 6

Uniqueness of Asymptotically
Euclidean Static Vacuum
Spacetime

In this chapter we will prove the following theorem:

Theorem 6.0.1. The exterior Schwarzschild solution is the only maximally extended
static, vacuum, asymptotically Euclidean spacetime with regular, compact black-hole
boundary.

In 1967, this theorem, with more assumptions, was first proved by Israel in [28].
In 1986, Gary L. Bunting and A. K. M. Masood-ul-Alam proved the above gener-
alization of Israel’s theorem in [8]. According to [42, p. 18] they introduced a new
approach by using results from the positive mass theorem [46] which was proved by
Schoen and Yau in 1979. In 1986 Bartnik, prior to Bunting and Masood-ul-Alam’s
paper, generalized the positive mass theorem in n dimensions with the hypothesis
of spin manifolds in [1]. Bunting and Masood-ul-Alam didn’t use the assumption
that the intersection of the event horizon with the closure of a t =constant hyper-
surface is connected, which proves that there doesn’t exist multiple black holes in
an asymptotically Euclidean, static, vacuum space-time.

The proof can be decomposed in three parts. First part proves a suitable asymp-
totic expansion for the metric g of the three manifold and the lapse function V . The
second part proves some of the facts needed to use the positive mass theorem and the
third part constructs the suitable manifold using all the previous parts and finally
uses the positive mass theorem to prove the theorem.

We assume a static space-time with metric

g4 = −V 2(xτ ) dt2 + gab(x
τ ) dxa dxb

for a = 1, 2, 3, where V is the lapse function and g is the Riemannian metric of the
t =constant hypersurfaces.

Let Σ be the t = 0 slice. We assume the following

• V > 0 on Σ,

• V = 0 on ∂Σ = Σ \ Σ,

• Σ is a spacelike oriented manifold,

79
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• the boundary ∂Σ is compact C3,

• g and V are smooth in Σ and C2 on Σ.

We will denote the connected components of the boundary ∂Σ with (∂Σ)i. Since
the boundary is compact, we have that the number of (∂Σ)i is finite.

We know that the extrinsic curvature of Σ is zero in M , but it follows that:

• ∂Σ has extrinsic curvature zero in Σ

• |∇V |2 are positive constants on each connected component of ∂Σ.

We have shown in proposition 5.4.1 that the Einstein field equations in static
vacuum take the form

∆gV = 0 (6.1)

Ric(g)ab = V −1V;ab (6.2)

for a, b ∈ {1, 2, 3}.

Remark 6.0.2. To show that the second fundamental form of (∂Σ)i in Σ is zero
and that |∇V |2 is a positive constant on each ∂Σ we do the following:

The static equation (6.2) can be equally be written as:

V Ric(g) = Hess(V )

Since V = 0 in the boundary, we have that Hess(V ) = 0 in the boundary. We also
have

∇X(|∇V |2) = 2 ⟨∇X∇V,∇V ⟩
= 2HessV (X,∇V )

Hence on (∂Σ)i we have
∇X(|∇V |2) = 0

which implies that |∇V | is a positive constant on (∂Σ)i.
From [40, p. 91] we have that

k(X, Y ) =
1

|∇V |
HessV (X, Y ) (6.3)

where X, Y ∈ T (∂Σ)i and k is the second fundamental form on (∂Σ)i. Then from
equation (6.3) and the static equation (6.2) we have

V Ric(g) = |∇V |k (6.4)

So for k to be zero we need |∇V | ≠ 0 in (∂Σ)i. Assume the orthogonal vector field

N =
∇V
|∇V |

from which we have
N(V ) = |∇V |
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on the boundary (∂Σ)i. We have just shown that N(V ) =constant in the boundary,
hence it is sufficient to show that N(V ) ̸= 0 in a point p ∈ (∂Σ)i. We have that
V ∈ C2(Σ), −V has a maximum in (∂Σ)i and from the static equation (6.1) ∆V = 0,
then from Hopf’s maximum principle [19, p. 347] we have that

N(V )|p = N(−V )|p > 0

where p ∈ (∂Σ)i, but N(V ) is also a positive constant on the whole boundary. Hence
N(V ) ̸= 0 on the whole boundary and so from equation (6.4) we have that the second
fundamental form k = 0 in the boundary.

We assume that the spacetime (M, g4 ) is asymptotically Euclidean ([8, p. 2]).

Definition 6.0.3 (Asymptotically Euclidean Manifold). There exists a compact set
K ⊂ Σ such that Σ\K is diffeomorphic to R3 \B1(0) where B1(0) is the closed unit
ball centered at the origin. With respect to the standard coordinate system (ya) in
R3 we have on Σ \K

gab = δab + hab (6.5)

V = 1− m

|y|
+ v (6.6)

such that for |y|2 → ∞

hab = O(|y|−1),
∂hab
∂yk

= O(|y|−2), v = O(|y|−2),
∂v

∂yk
= O(|y|−3)

For some λ > 0 and 4 < q < +∞

∂2hab
∂yk∂yl

∈ Lq−λ−2(R
3 \B2(0)),

∂2v

∂yk∂yl
∈ Lq−λ−3(R

3 \B2(0))

The constant m is positive and is called the mass of (Σ, g).

Definition 6.0.4. [1, p. 663] The weighted Lebesgue space Lqδ, for 1 ≤ q ≤ ∞,
and weight δ ∈ R are the spaces of measureable functions in Lqloc(Rn \ {0}), such
that the norm is defined by

∥u∥q,δ =


(∫

Rn\{0}
|u|qr−δq−n dx

) 1
q

, p <∞

ess supRn\{0}(r
−δ|u|), p = ∞

is finite.
The weighted Sobolev space W k,q

δ is defined by

∥u∥k,q,δ =
k∑

n=0

∥Dju∥q,δ−j

From [1, p. 675] we have a more general definition which is called asymptoti-
cally flat. This definition is the following
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Definition 6.0.5 (Asymptotically Flat Manifold). A smooth n-dimensional man-
ifold (M, g) with Riemannian metric g ∈ W 1,q

loc (M) for some n < q < +∞ is said
to be asymptotically flat if there is a compact K ⊂⊂ M such that M \K has a
structure of infinity:

There is R ≥ 1 and for ER = Rn \BR(0) a C
∞ diffeomorphism Φ :M \K → ER

which satisfies:

1. (Φ∗g)ij is uniformly equivalent to the flat metric δij on ER, so that there is a
λ ≥ 1 such that

λ−1|ξ|2 ≤ (Φ∗g)ij(x)ξ
iξj ≤ λ|ξ|2

for all x ∈ ER, ξ
i ∈ Rn,

2.

(Φ∗g)ij − δij ∈ W 1,q
−τ (ER)

for some decay rate τ > 0.

We will now prove that the conditions of asymptotically Euclidean implies the
conditions of asymptotically flat manifold.

1. Asymptotic Euclidean implies first condition of asymptotic flatness:
gab is uniformly equivalent to the flat metric δab.

Proof. For y ∈ K, gab is continuous and positive definite on a compact set

gab(y)ξ
aξb > 0 for 0 ̸= ξ ∈ R3

If |n| = 1, let F : K × S2 such that F (y, n) = gab(y)n
anb > 0. Then F > 0 in the

compact set and it has a minimum

F (y, n) ≥ F0 > 0 =⇒ gab(y)n
anb ≥ F0 for na =

ξa

|ξ|
=⇒ gab(y)ξ

aξb ≥ F0|ξ|2 for ξ ̸= 0

and it a maximum F1

gab(y)ξ
aξb ≤ F1|ξ|2

If y ∈M \K then y ∈ R3\R for suitable R

gab = δab + hab, hab = O(|y|−1)

which implies

gabξ
aξb = |ξ|2 + habξ

aξb

We have the inner product of matrices tr(B⊺A) = (B,A), so for symmetric matrices
(B,A) = tr(BA) which gives us the norm

∥B∥ = tr(B2)1/2
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Assume the matrix with components Pab = ξaξb and tr(P 2) =
∑

a(P
2), then

(P 2)aa =
∑
b

PabPba

=
∑
b

ξaξbξbξa

= (ξa)2
∑
b

(ξb)2

= (ξa)2|ξ|2

From that we have

tr(P )2 =
∑
a

|ξ|2ξ2a = |ξ|4 =⇒ ∥P∥ = tr(P 2)1/2 = |ξ|2

so from Cauchy-Schwarz
|habξaξb| ≤ ∥hab∥ · |ξ|2

It follows

|gabξaξb| = ||ξ|2 + habξ
aξb|

≤ |ξ|2 + |hab||ξ|2

From the definition of asymptotically Euclidean manifold we have

|habξaξb| ≤
C

|y|
|ξ|2

which implies

gabξ
aξb ≤ |ξ|2 + C

|y|
|ξ|2

Similarly

gabξ
aξb ≥ |ξ|2 − |h||ξ|2

≥ |ξ|2 − C

|y|
|ξ|2

for |y| > R. We choose |y| > R′ > R such that C/R′ ≤ 1/2. From that

gabξ
aξb ≥ 1

2
|ξ|2

gabξ
aξb ≤

(
1 +

C

R′

)
|ξ|2 ≤ 3

2
|ξ|2 ≤ 2|ξ|2

And so we get
1

2
|ξ|2 ≤ gabξ

aξb ≤ 2|ξ|2

for suitable R′ where |y| > R′.

A usefull Lemma that we will use in general is the following:
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Lemma 6.0.6. Suppose a function f : ER → R where ER = R3 \BR and BR is an
open ball of radius R. If f(x) = O(|x|−k) as |x| → ∞ for k > 0, then f ∈ Lq−λ(ER),
for 0 < λ < k and 4 < q < +∞.

Proof. ∫
ER

|f |q|x|λq−3 dx ≤ C1

∫
Er

|x|λq−3−kq dx

= C1

∫
ER

|x|q(λ−k)−3 dx

= C2

∫ +∞

R

r(λ−k)q−1 dr

= C3r
(λ−k)q∣∣+∞

R

where in the 3rd line we substituted spherical coordinates and denoted C2 = C1

∫
dΩ

for the angle coordinates. The above converges for 0 < λ < k. So we have proven
that

∥f∥q,−λ < +∞

when λ ∈ (0, k).

2. Asymptotic Euclidean implies second condition of asymptotic flat-
ness:

Proof. From the asymptotically Euclidean hypothesis and Lemma 6.0.6 we have for
0 < τ < 1

hab = O(|y|−1) =⇒ ∥hab∥q,−τ < +∞
∂khab = O(|y|−2) =⇒ ∥∂khab∥q,−τ−1 < +∞

}
=⇒ ∥hab∥1,q,−τ < +∞

This means that hab ∈ W 1,q
−τ (ER) for 0 < τ < 1.

Remark 6.0.7. Together with D2hab ∈ Lq−λ−2(ER) we have

hab ∈ W 2,q
−τ (ER)

for τ ∈ (0, 1).

From [46] we have the following corollary of the positive mass theorem.

Theorem 6.0.8. [8, p. 2] Let (N, γ) be a complete oriented three dimensional Rie-
mannian manifold which is asymptotically euclidean in the sense that N is topologi-
cally Euclidean outside a compact set and the metric γ satisfies the decay condition

γab =

(
1 +

2c

|y|

)
δab + aab

where

aab = O(|y|−2),
∂aab
∂yk

= O(|y|−3)
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as |y| → ∞ and for some λ > 0 and 4 < q < +∞

∂2aab
∂yk∂yl

∈ Lq−λ−3(R
3 \B1(0))

If the scalar curvature of γ is nonnegative and the mass c = 0, then (N, γ) is
isometric to R3 with the standard euclidean metric.

One of the important features of the positive mass theorem is that it gives as a
precise meaning of mass as the divergence from the Euclidean space.

6.1 Asymptotic Form of the Metric and the Lapse

Function

In this section we prove a series of Lemmas with the goal to gain a suitable form
for the asymptotic expansion of the metric g and the lapse function V which is in
proposition 6.1.11. Most of the following Lemmas uses the previous ones for their
proofs.

First we need to change the coordinate system to harmonic coordinates.

Definition 6.1.1. [16, p. 90] Local coordinates {xi} are called harmonic coordi-
nates if each coordinate function xi is harmonic:

∆xi = 0

We notice that

∆xi = gjk
(
∂j∂kx

i − Γlkj∂lx
i
)

= gjk
(
∂jδ

i
k − Γljkδ

i
l

)
= −gjkΓijk

and so for harmonic coordinates it holds that

gjkΓijk = 0 (6.7)

Now we will choose an asymptotic coordinate system (xa) harmonic relative
to the metric Λ = V 2g such that the components of g and the function V have
better decay properties than before. This is achieved by the following proposition
of Bartnik:

Proposition 6.1.2. [1, p. 19] Suppose that (M, g) has a structure of infinity Φ with
decay rate η > 0, so (Φ∗g − δ) ∈ W 2,q

−η (ER) for some q > n,R ≥ 1, and that the
Ricci tensor of (M, g) satisfies

Ric(g) ∈ Lq−2−τ (M) for some nonexceptional τ > η

Then there is a structure of infinity Θ defined by coordinates harmonic near infinity
which satisfies (Θ∗g − δ) ∈ W 2,q

−τ (ER1), for some R1 ≥ R.

We have already showed that hab ∈ W 2,q
−η (ER) for 0 < η < 1 and that the

manifold has a structure of infinity. We need to show the condition for the Ricci
tensor. First we conformally change the metric to give the conditions needed.
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Lemma 6.1.3. Let g be the metric and V the lapse function of the static, asymp-
totically Euclidean spacetime . If Λ = V 2g and U = log V . Then

∆ΛU = 0 (6.8)

Ric(Λ)ab = 2U;aU;b (6.9)

Proof. First we will calculate equation 6.8

∆ΛU =
1√
|Λ|

∂i

(
Λij
√

|Λ|U;j

)
Where Λij = V −2gij, for |Λ| = detΛ

|Λ| = |V 2g| = V 6|g| =⇒
√

|Λ| = V 3
√

|g|

and ∂jU = V −1∂jV . Then

∆ΛU =
1

V 3
√

|g|
∂i

(
V −2gij

√
|g|V 3V −1∂jV

)
=

1

V 3
√

|g|
∂i(g

ij
√
|g|∂jV )

=
1

V 3
∆gV

= 0

The change of metric is conformal so the Ricci curvature becomes (from [45, p. 184])

Ric(Λ)ab = R(g)ab −
1

2
(log V 2);ab +

1

4
(log V 2);a(log V

2);b −
[
∆(log V 2)

2
+

1

4
|∇ log V 2|2

]
gab

=
V;ab
V

− (log V );ab + (log V );a(log V );b −
[
∆(log V ) + |∇ log V |2

]
gab

We have

(log V );ab =
V;ab
V

− V;aV;b
V 2

∆(log V ) =
∆V

V
− |∇V |2

V 2

|∇ log V |2 = |∇V |2

V 2

and so

Ric(Λ);ab =
V;ab
V

− V;ab
V

+
V;aV;b
V 2

+
V;aV;b
V 2

− ∆V

V
gab

= 2U;aU;b

Now we can show the following lemma:

Lemma 6.1.4. Ric(Λ)ab ∈ Lq−2−τ (M) for some τ > η.



87 6.1. Asymptotic Form of the Metric and the Lapse Function

Proof.
Ric(Λ)ab = 2U;aU;b = 2V −2V;aV;b

where

V = 1− m

|y|
+O(|y|−2) =⇒ Va = − m

|y|3
ya +O(|y|−3)

Ric(Λ)ab = 2
1(

1− m
|y| +O(|y|−2)

)2 (− m

|y|3
ya +O(|y|−3)

)(
− m

|y|3
yb +O(|y|−3)

)

= 2

(
1 +

m

|y|
+O(|y|−2)

)2 [
m2

|y|6
yayb +O(|y|−6)

]
= 2

[
m2

|y|6
yayb +

m3

|y|7yayb
+O(|y|−6)

]
= 2

m2

|y|6
yayb +O(|y|−5)

= O(|y|−4)

where in the second equality we use the Taylors expansion of 1/(1−x). So from
lemma 6.0.6 we have that for λ < 4 and η < τ < 2

Ric(Λ)ab ∈ Lq−λ(M) =⇒ Ric(Λ)ab ∈ Lq−2−τ (M)

Now from proposition 6.1.2 we have that there exists an asymptotic coordinate
system (xa) harmonic relative to Λ such that Λ̃ab components of the metric Λ satisfy

Λ̃ab = δab +Πab (6.10)

where

Πab = O(|x|−1), ∂kΠab = O(|x|−2)

and for τ ∈ (1, 2)

∂k∂lΠab ∈ Lq−τ−2(R3 \B3(0))

From equation (6.7) and lemma 6.1.3 we have

∆ΛU = 0 =⇒ Λ̃ab
(

∂2U

∂xa∂xb
− Γkab∂kU

)
= 0

=⇒ Λ̃ab
(

∂2U

∂xa∂xb

)
= 0

Lemma 6.1.5. [16, p. 92] In harmonic coordinates, the Ricci tensor is given by

−2Rij = ∆(gij) +Qij(g
−1, ∂g)

where ∆(gij) denotes the Laplacian of the component gij and Q denotes a sum of
terms which are quadratic in the metric inverse g−1 and its first derivatives ∂g.
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Proof.

Rjk = R q
qjk

= ∂qΓ
q
jk − ∂jΓ

q
qk + ΓpjkΓ

q
qp − ΓpqkΓ

q
jp

The last two terms will be absorbed by Q since they will be quadratic in g−1 and
∂g. For the first two terms we have

∂qΓ
q
jk =

1

2
[∂q(g

qr) (∂jgkr + ∂kgjr − ∂rgjk)] +
1

2
gqr [(∂q∂jgkr + ∂q∂kgjr − ∂q∂rgjk)]

∂jΓ
q
qk =

1

2
[∂j(g

qr) (∂qgkr + ∂kgqr − ∂rgqk)] +
1

2
gqr [(∂j∂qgkr + ∂j∂kgqr − ∂j∂rgqk)]

where again the first terms in the above equations are absorved in Q. So we have

−2Rjk = gqr (−∂q∂kgjr + ∂q∂rgjk + ∂j∂kgqr − ∂j∂rgqk) +Q (6.11)

We want to show that

−2Rjk = ∆(gjk)− gqr∂k(Γ
s
qrgsj)− gqr∂j(Γ

sgsk) +Q (6.12)

because if the above holds then

−2Rjk = ∆(gjk)− gqr∂k(Γ
s
qrgsj)− gqr∂j(Γ

sgsk) +Q

= ∆(gjk)− ∂k(g
qrΓsqrgsj)− ∂j(g

qrΓsqrgsk) + ∂(gqr)Γsqrgsj + ∂j(g
qr)Γsqrgsk +Q

where the last terms are absorved from Q, and the second and third terms are zero
from the necessary condition of the harmonic coordinates (6.7). And so the equation
holds

−2Rjk = ∆(gjk) +Q(g−1, ∂g)

Now we will open the first three terms in equation (6.12) to show that it is the same
equation as (6.11). We will do the computation in normal coordinates.

∆(gjk)− gqr∂k(Γ
s
qrgsj)− gqr∂j(Γ

s
qrgsk) = gqr

[
∂q∂rgjk − gsj∂k(Γ

s
qr)− gsk∂j(Γ

s
qr)
]

= gqr
[
∂q∂rgjk −

1

2
gsj∂k

(
gsl(∂qgrl + ∂rgql − ∂l)

)
− 1

2
gsk∂j

(
gsl (∂qgrl + ∂rgql − ∂lgqr)

)]
We will ignore the first term gqr∂q∂rgjk since it is one of the terms that we need in
equation (6.11)

−1

2
gqr
(
gsjg

sl [∂k∂qgrl + ∂k∂rgql − ∂k∂lgqr] + gskg
sl [∂j∂qgrl + ∂j∂rgql − ∂j∂lgqr]

)
= −1

2
gqr ([∂k∂qgrj + ∂k∂rgqj − ∂k∂jgqr]− gqr [∂j∂qgrk + ∂j∂rgqk − ∂j∂kgqr])

we reverse the indices q, r since its in a sum

= −1

2
gqr [2∂k∂rgqj + 2∂j∂rgqk − 2∂k∂jgqr] = −gqr (∂q∂kgrj + ∂j∂rgqk − ∂j∂kgqr)

which is rest of the terms in equation (6.11).



89 6.1. Asymptotic Form of the Metric and the Lapse Function

From lemma 6.1.5 we have

Ric(Λ̃)ij = −1

2
Λ̃kl

∂

∂xk
∂

∂xl
Λ̃ij +Qij(Λ̃, ∂Λ̃)

=⇒ 2
∂U

∂xi
∂U

∂xj
= −1

2
Λ̃kl

∂

∂xk
∂

∂xl
Λ̃ij +Qij(Λ̃, ∂Λ̃)

=⇒ Λ̃ab

(
∂2Λ̃ij
∂xa∂xb

)
= −4

∂U

∂xi
∂U

∂xj
+Qij(Λ̃, ∂Λ̃)

In the proof of Theorem 4.3 in [1, p. 22], says that from an observation of in [48]
we have the expansion in harmonic coordinates

Λ̃ij = δij + Aij|x|−1 +O(|x|−τ ) (6.13)

for τ > 1 and Aij constant matrix.
We will prove that Aij = 0, by using the harmonicity condition

Lemma 6.1.6. If we have an asymptotic expansion

Λ̃ij = δij + Aij|x|−1 +O(|x|−τ )

in harmonic coordinates, then Aij = 0.

Proof. From harmonic coordinates we have

∆xk = 0 =⇒ 1√
|Λ̃|

∂i

(√
|Λ̃|Λ̃ij∂jxk

)
= 0

but first we need to calculate |Λ̃| and Λ̃ij. We have

Λ̃ij = δij + εAij +O(|x|−τ )
= δij + εµij

where ε = |x|−1, µij = Aij +O(|x|−τ+1). We write the determinant as

|Λ̃| = εijkΛ̃1iΛ̃2jΛ̃3k

where ε is the levi-civita symbol [10, p. 24]

εijk =


+1, if ijk is an even permutation of 123

−1, if ijk is an off permutation of 123

0, otherwise

We have

|Λ̃| = εijkΛ̃1iΛ̃2jΛ̃3k

= εijk (δ1i + εµ1i) (δ2j + εµ2j) (δ3k + εµ3k)

= εijk (δ1iδ2jδ3k + ε(µ1iδ2jδ3k + µ2jδ1iδ3k + µ3kδ1iδ2j)) +O(ε3)

= ε123 + ε(εi23µ1i + ε1j3µ2j + ε12kµ3k) +O(ε2)

= 1 + ε(µ11 + µ22 + µ33) +O(ε2)

= 1 + εtr(µ) +O(ε2)
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But µ = A+O(|x|−τ+1), ε = |x|−1,

|Λ̃| = 1 + εtr
(
A+O(|x|−τ+1) +O(ε2)

)
= 1 +

trA

|x|
+O(|x|−τ ) +O(|x|−2)

But τ > 1, and so

|Λ̃| = 1 +
trA

|x|
+O(|x|−τ ) (6.14)

for τ ∈ (1, 2). We also have

Λ̃ij = δij − εAij +O(ε2) (6.15)

From the harmonicity condition

∆xk = 0 =⇒ 1√
|Λ̃|

∂i

(√
|Λ̃|Λ̃ij∂jxk

)
= 0

=⇒ ∂i

(√
|Λ̃|Λ̃ijδjk

)
= 0

=⇒ ∂i

(√
Λ̃Λ̃ij

)
= 0 (6.16)

From 6.14

√
Λ̃ =

√
1 +

trA

|x|
+O(|x|−τ )

From Taylor expansion

√
1 + t = 1 +

t

2
+O(t2), for |t| < 1

assume

t =
trA

|x|
+O(|x|−τ )

So we have from the above√
|Λ̃| = 1 +

trA

2|x|
+O(|x|−τ )

Λ̃ij = δij − Aij
|x|

+O(|x|−τ )

Now we continue equation (6.16)

∂i

(√
|Λ̃|Λ̃ij

)
= 0 =⇒ ∂i

[(
1 +

trA

2|x|
+O(|x|−τ )

)(
δij − Aij

|x|
+O(|x|−τ )

)]
= 0

=⇒ ∂i

[
δij
(
δij

trA

2|x|
− Aij

|x|

)
+O(|x|−τ )

]
= 0

=⇒ ∂i

(
δijtrA

2|x|
− Aij

|x|

)
+ ∂i

(
O(|x|−τ )

)
= 0
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We observe that

∂i(O(|x|−τ )) = O(|x|−(τ+1)), ∂i

(
δij

trA

2|x|
− Aij

|x|

)
= O(|x|−2)

But τ + 1 > 2 for τ ∈ (1, 2), so both terms must be zero.

∂i

(
δij

trA

2|x|
− Aij

|x|

)
= 0 =⇒ δij∂i

(
trA

2|x|

)
− ∂i (Aij|x|) = 0

=⇒ −δij trA
2|x|2

2xi + Aij
2xi

|x|2
= 0

=⇒ trA

2
xiδij = Aijx

i

for all x ∈ R3.
Suppose x = e1 = (1, 0, 0).

(
Aij −

trA

2
δij

)
xi = 0 =⇒ A1j −

trA

δ1j
= 0 =⇒

 A1j = 0, j ̸= 1

A11 =
trA

2
, j = 1

Similarly,

A22 =
trA

2
, A33 =

trA

2
From the above

A11 + A22 + A33 = 3
trA

2
=⇒ trA = 3

trA

2
=⇒ trA = 0

and together with the fact that A1j = A2j = A3j = 0 for j ̸= 1 we have that

A = 0

So equation (6.13) becomes

Λ̃ab = δab +O(|x|−τ ) (6.17)

Remark 6.1.7. A usefull calculation that we will use is the following

∂a

(
1

|y|n

)
= ∂a

1(√
(y1)2 + (y2)2 + (y3)2

)n
= ∂a

(
(y1)2 + (y2)2 + (y3)2

)−n/2
= −n

2

1

((y1)2 + (y2)2 + (y3)2)n+2

(
2y1δ1a + 2y2δ2a + 2y3δ3a

)
= −n

2

1

|y|n+2
2ya

= −n ya

|y|n+2
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Lemma 6.1.8. The U = log V can be written as

U = −m

|x|
+
cax

a

|x|3
+ u (6.18)

where ca are constants and

u = O(|x|−τ−1), ∂au = O(|x|−τ−2), ∂a∂bu ∈ Lq−τ−3L
q(R3 \BR(0))

Proof. From equations (6.8) and (6.17), for λ ∈ (1, 2) we have:

Λ̃abU;ab = 0 =⇒ δabU;ab +O(|x|−λ)U;ab = 0

=⇒ ∆EU = −O(|x|−λ)U;ab

Where the operator ∆E is the Euclidean Laplacian. We denote Mab = O(|x|−λ) so
we can write

∆EU = −MabU;ab

First we write

∂2U

∂xa∂xb
=

∂

∂xa

(
1

V

∂V

∂xb

)
= − 1

V 2
∂aV ∂bV +

1

V

∂2V

∂xa∂xb

where

V = O(1), ∂aV = O(|x|−2),
∂2V

∂xa∂xb
= O(|x|−3) +

∂2v

∂xa∂xb

and
∂2v

∂xa∂xb
∈ Lqλ−3

v = O(|x|−2), ∂av = O(|x|−3), ∂a∂bv ∈ Lqλ−3(R
3 \B3(0))

Hence we have

|∆EU | = |MabD
2U |

≤ C

|x|4+λ
+

C

|x|3+λ
+

C

|x|λ
|D2v|

From lemma 6.0.6 we have

C

|x|3+λ
∈ Lq−k,

C

|x|4+λ
∈ Lql

for l < 4 + λ and k < 3 + λ. Substituting for l = 4 + τ and k = 3 + τ we have that
the above holds for τ < λ. For the third term we check for what exponents is it in
Lqτ−3 ∫

ER

|x|−λq|D2v|q|x|−ω dx =

∫
ER

|D2v|q|x|−ω−λq

Suppose −ω − λq = (τ + 3)q − 3

ω = −τq − 3q + 3− λq =⇒ τq = −ω − 3q − λ+ 3

=⇒ q < −ω − 3q − λq + 3 < 2q

=⇒ −q(5 + λ) + 3 < ω < −q(4 + λ) + 3
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so for suitable choice of ω we have:∫
ER

|D2v|q|x|−ω−λq < +∞ =⇒ |x|−λD2v ∈ Lq−τ−3

Hence
∆EU ∈ Lq−τ−3

for τ < λ.
We now prove that the first two terms in equation (6.18) are harmonic:
First term:

∆E

(
m

|x|

)
= m∂2λλ

1

|x|

= −m∂λ
xλ

|x|3

= 3m
xλxλ

|x|5
−m

3

|x|3

= 0

Second term:

∆E

(
cax

a

|x|3

)
=

1

|x|3
∆E(cax

a) + 2∇
(

1

|x|3

)
· ∇(cax

a) + cax
a∆E

(
1

|x|3

)
where

• ∆E(cax
a) = 0

• ∂λ(cax
a) = ca∂λx

a = caδ
a
λ = cλ

•

∂2

∂λ2
1

|x|3
=

∂

∂λ

(
−3xλ

|x|5

)
=

15xλxλ

|x|7
− 9

|x|5

=
15

|x|5
− 9

|x|5

=
6

|x|5

hence

∆E

(
cax

a

|x|3

)
= −2cλ

3xλ

|x|5
+ cax

a 6

|x|5

= 0

From the above we have that

U = −m

|x|
+
cax

a

|x|3
+ u =⇒ ∆EU = −∆E

(
m

|x|

)
+∆E

(
cax

a

|x|3

)
+∆Eu

=⇒ ∆EU = ∆Eu
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And so

∆EU ∈ Lq−τ−3 =⇒ ∆Eu ∈ Lq−τ−3 =⇒ ∥∆Eu∥0,q,−τ−3 < +∞

From [1, p. 667] we have the following Theorem

Theorem 6.1.9. Suppose that δ is nonexceptional, 1 < p < ∞, and s is a
non-negative integer. Then the map

∆ : W s+2,p
δ → W s,p

δ−2

is an isomorphism and there is a constant C = C(n, p, δ, s) such that

∥u∥s+2,p,δ ≤ C∥∆u∥s,p,δ−2

We call δ ∈ R nonexceptional if δ ∈ R \ {k ∈ Z : k ̸= −1,−2, . . . , 3− n}.
From the above Theorem, for s = 0 and δ = −τ − 1, we have

∥u∥2,q,−τ−1 ≤ C∥∆u∥0,q,−τ−3 < +∞

From that we have our first estimate needed for the Lemma:

D2u ∈ Lq−τ−3

For the first derivative we will need from [1, p. 664] the following results

Theorem 6.1.10. If u ∈ W k,p
δ , such that 0 < a ≤ k − n/p ≤ 1, then

∥u∥C0,a
δ

≤ C∥u∥k,p,δ (6.19)

where the weighted Holder norm is defined by

∥u∥C0,a
δ

= sup
x∈Rn

(
√
1 + |x|2)−δ+a(x) sup

4|x−y|≤
√

1+|x|2

|u(x)− u(y)|
|x− y|a


+ sup

x∈Rn

{(
√

1 + |x|2)−δ|u(x)|} (6.20)

For ER we have

u ∈ W 2,q
−τ−1(ER) =⇒ Du ∈ W 1,q

−τ−2(ER)

and from the above theorem for 0 < a ≤ 1− 3/q ≤ 1 and q > 4 we have

∥Du∥C0,a
−τ−2

≤ C∥Du∥1,q,−τ−2 < +∞

which gives us

|Du(x)| ≤ C

|x|τ+2

hence we have the desired estimate for the first derivative of u

|Du(x)| = O(|x|−τ−2) (6.21)
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We also have

|Du(x)−Du(y)| ≤ C|x− y|a

|x|τ+2+a
(6.22)

We cant use the theorem for k = 0 because of the limitation for choosing a.
From the continuity of Du we can use the mean value theorem for

ξ = tx+ (1− t)x0

such that t ∈ (0, 1). So we have

|u(x)− u(x0)| = |Du(ξ)(x− x0)| ≤ |Du(ξ)||x− x0|

Now from equations (6.21), and (6.22)

|Du(ξ)| = |Du(ξ)−Du(x) +Du(x)| ≤ C|ξ − x|a

|x|τ+2+a
+

C

|x|τ+2

But
|ξ − x| = |tx+ (1− t)x0 − x| = |(1− t)x0 − (1− t)x| ≤ |x− x0|

Therefore

|Du(ξ)| = |Du(ξ)−Du(x) +Du(x)| ≤ C|x− x0|a

|x|τ+2+a
+

C

|x|τ+2

But we have

C|x− x0|a

|x|τ+2+a
≤ C(|x|+ |x0|)a

|x|τ+2+a
≤ C

|x|τ+2

(
1 +

|x0|
|x|

)a
We notice for |x| → +∞ (

1 +
|x0|
|x|

)a
→ 1

Then for |x| > R1 (
1 +

|x0|
|x|

)a
≤ 3

2

and so

|Du(ξ)| ≤ 5C

2|x|τ+2

Hence

|u(x)− u(x0)| ≤
5C

2|x|τ+2
|x− x0|

And so

|u(x)| = |u(x)− u(x0) + u(x0)|
≤ |u(x)− u(x0)|+ |u(x0)|

≤ 5C

2|x|τ+2
|x− x0|+ |u(x0)|

≤ 5C

2|x|τ+1
+

5C|x0|
2|x|τ+2

+ |u(x0)|
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Since as |x| → +∞
5C|x0|
2|x|τ+2

+ |u(x0)| → |u(x0)|

then for |x| > R2

5C|x0|
2|x|τ+2

+ u(x0) ≤
3

2
|u(x0)|

hence for R = max(R1, R2), |x| > R

|u(x)| ≤ 5C

2|x|τ+1
+

3

2
|u(x0)|

The later holds for |x0|, |x| > R, then

lim
|x0|→+∞

|u(x0)| = 0

because u is uniform continuous (bounded derivative) and integrable we have that
for |x0| → +∞ we get the desired estimate for |x| > R

|u(x)| ≤ 5C

2|x|τ+1

or differently

u(x) = O(|x|−τ−1)

Now we will give the metric g and the lapse function V the desirable form and
decay conditions using the previous results.

Proposition 6.1.11. Let (M, g4 ) be a static, vacuum, asymptotically Euclidean
spacetime with a metric

g4 = −V 2 dt2 + gab dx
a dxb

Then the spatial part of the metric gab and the lapse function V can be written, in
harmonic coordinates {xa} while |x| → +∞, as

gab =

(
1 +

2m

|x|

)
δab +Hab

V = 1− m

|x|
+

m2

2|x|2
+
cax

a

|x|3
+ u

where, for τ ∈ (1, 2),

Hab = O(|x|−τ ), DHab = O(|x|−τ−1), D2Hab ∈ Lqτ−2(ER1)

and

u = O(|x|−τ−1), Du = O(|x|−τ−2), D2u = Lq−τ−3(ER2)
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Proof. In the previous steps we have used the transformation Λ = V 2g, we proved
for harmonic coordinates the equation (6.17) and (6.18).

Λ = V 2g =⇒ g =
1

V 2
Λ

From U = log V we have

V = eU = 1 + U +
U2

2
+ . . .

Assume

V̂ = U +
U2

2

where we ignore terms O(U3). From equation (6.18) we have

U = O(|x|−1) =⇒ V̂ = O(|x|−1)

Thus

g =
1

(1 + V̂ )2
Λ =

(
1− 2V̂ + 3V̂ 2 +O(V̂ 3)

)
Λ

where the second equality comes from

1

(1 + x)2
= − ∂

∂x

(
1

1− (−x)

)
= − ∂

∂x

(
∞∑
n=0

(−1)nxn

)

from (6.17) we have

Λ = 1 +O(|x|−τ )

where τ ∈ (1, 2). Lets denote π = O(|x|−τ ), then

g =
(
1− 2V̂ + 3V̂ 2 +O(|x|−3)

)
(1 + π)

=
(
1− V̂ + 3V̂ 2

)
(1 + π)

= 1− 2V̂ + 3V̂ 2 + π − 2πV̂ + 3V̂ 2π

We notice that

π = O(|x|−τ ), πV̂ = O(|x|−τ−1), πV̂ 2 = O(|x|−τ−2)

so

g = 1− 2V̂ + π − 2V̂ π + 3V̂ 2 +O(|x|−τ−2)

which means

gab =
(
1− 2V̂ + 3V̂ 2

)
δab + πab − 2V̂ πab

=
(
1− 2V̂ + 3V̂ 2

)
δab +

(
1− 2V̂

)
πab

Denote

M =
(
1− 2V̂ + 3V̂ 2

)
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Substituting V̂ = U + U2/2 we have

M =

(
1− 2U − U2 + 3

(
U +

U2

2

)2
)

= 1− 2U − U2 + 3U2

(
U

2
+ 1

)2

= 1− 2U − U2 + 3U2

(
1 + U +

U2

4

)
= 1− 2U − U2 + 3U2

= 1− 2U + 2U2

where we discarded terms O(|x|−3). Substituting (6.18)

M = 1 +
2m

|x|
− 2

cax
a

|x|3
− 2u+

1

2

(
−m
|x|

− cax
a

|x|3
+ u

)2

= 1 +
2m

|x|
− 2

cax
a

|x|3
− 2u+ 2

(
−m

|x|
+
cax

a

|x|3
+ u

)2

= 1 +
2m

|x|
− 2

cax
a

|x|3
− 2u+ 2

(
m2

|x|2
− cax

a

|x|4
m− m

|x|
u− cax

a

|x|4
m+

+
(cax

a)2

|x|6
+
cax

a

|x|3
u− m

|x|
u+

cax
a

|x|3
u+ u2

)
where u = O(|x|−τ−1), for τ ∈ (1, 2). So from the above after checking the decaying
terms we have

M = 1 +
2m

|x|
− 2cax

a

|x|3
− 2u+ 2

m2

|x|2
+O(|x|−τ−2)

Substituting M back to gab we have

gab =

(
1 +

2m

|x|
− 2cax

a

|x|3
+

2m2

|x|2
− 2u

)
δab + (1− 2V̂ )πab

=

(
1 +

2m

|x|

)
δab + πab +

(
−2cax

a

|x|3
+

2m2

|x|2

)
δab + uδab − 2V̂ πab

where (
−2

cax
a

|x|3
+ 2

m2

|x|2

)
δab = O(|x|−2), uδab − 2V̂ πab = O(|x|−τ−1)

and so

gab =

(
1 +

2m

|x|

)
δab +Hab

where Hab = O(|x|−τ ). Working similarly as before from

V = 1 + U +
U2

2
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and (6.18)

V = 1− m

|x|
+
cax

a

|x|3
+ u+

1

2

(
−m

|x|
+
cax

a

|x|3
+ u

)2

= 1− m

|x|
+

m2

2|x|2
+
cax

a

|x|3
+ u

where
u = O(|x|−τ−1)

We observe that the decay conditions of Lemma 6.1.11 does not match the decay
conditions for the positive mass theorem 6.0.8. From [1, p. 680] we have the following
Theorem which tells us that the mass of a manifold is independent of the structure
of infinity.

Theorem 6.1.12. [1, p. 682] Let (Φ, x), (Ψ, z) be two structures of infinity for
(M, g) satisfying the mass decay conditions with decay rates τ1, τ2, respectively,
so

τ = min{τ1, τ2} ≥ 1

2
(n− 2)

Then the mass of M for both structures of infinity are well defined and equal.

Definition 6.1.13. The mass decay conditions for a manifoldM and asymptotic
structure Φ are

1.
(Φ∗g − δ) ∈ W 2,q

−τ (ER0)

for some R0 > 1, q > n and τ ≥ 1/2(n− 2),

2.
R(g) ∈ L1(M)

In the last section we will show that the mass decay conditions hold.

Remark 6.1.14. In section 6 of [1, p. 689] says that the positive mass theorem,
written there, in n dimensions holds for complete, asymptotically flat n-dimensional
spin manifolds satisfying the mass decay conditions and having non-negative scalar
curvature. Since all 3-dimensional oriented manifolds are spin manifolds, the posi-
tive mass theorem holds also for the decay conditions of 6.1.11. We observe that the
conditions here need the metric to be of lower regularity than in the positive mass
theorem stated in Theorem 6.0.8 where the metric is smooth.

We can prove that the m constant in the metric gab for |x| → +∞ is equal to
the ADM mass.

Lemma 6.1.15. If we have the metric of a 3-manifold

gab =

(
1 +

2m

|x|

)
δab +Hab

being the same as in Lemma 6.1.11, then

MADM = m
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Proof. We have the derivative of gab being

gab;c = −2mxc

|x|3
δab + hab;c

Assume na = xa/|x|

MADM =
1

16π
lim

R→+∞

∫
SR

(gab;b − gbb;a)n
a dΣ

=
1

16π
lim

R→+∞

∫
SR

(
2mxb

|x|3
δab + hab;b +

2mxa

|x|3
δbb − hbb;a

)
na dΣ

=
1

16π
lim

R→+∞

∫
SR

2m

R3

(
−xbnb + 3xana

)
dΣ +

1

16π
lim

R→+∞

∫
SR

(hab;b − hbb;a)n
a dΣ

Let MADM = I1 + I2 where

I1 =
1

16π
lim

R→+∞

∫
SR

2m

R3

(
−xbnb + 3xana

)
dΣ

We have

naxa =
(xaxa)

|x|
=

|x|2

|x|
= |x| = R

and
cbδabn

a = nan
a = R

These gives us

I1 =
1

16π
lim

R→+∞

∫
SR

2m

R3
(−R + 3R) dΣ

=
1

16π
lim

R→+∞
(2R)

2m

R3

∫
SR

dΣ

=
1

16π
lim

R→+∞
2R

2m

R3
4πR2

= m

and

|I2| =
1

16π
lim

R→+∞

∣∣∣∣∫
SR

(hab;b − hbb;a)n
a dΣ

∣∣∣∣
≤ 1

16π
lim

R→+∞

∫
SR

|hab;b| − |hbb;a||na| dΣ

≤ 1

16π
lim

R→+∞

2C

|x|τ+1
dΣ

=
C

8π
lim

R→+∞

∫
S1

R2

Rτ+1
dΩ

=
C

8π
lim

R→+∞

1

Rτ−1
4π

= 0

for τ > 1.
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6.2 Conditions Needed for the Positive Mass The-

orem

In this section we prove some Propositions that are needed to use the positive mass
theorem. Starting with the zero scalar curvature.

Proposition 6.2.1. Let γ± = b2 (1± V )4 g, where b2 is a positive constant and V, g
are C2. Then γ± has zero scalar curvature.

Proof. Suppose the metric transformation ĝ = Ω2g, we notice that for f = log Ω
then the transformation is the same as ĝ = e2fg. From [31, p. 217] we have

R̂ = Ω−2
(
R− 4∆f − 2| df |2g

)
where R̂ is the scalar curvature of ĝ and R is the scalar curvature of g. From Einstein
equations in vacuum we know that R = 0, so we need to calculate ∆f and | df |2g.

∆f =
1√
|g|
∂a

(
gab
√

|g|∂bf
)

=
1√
|g|
∂a

(
gab
√

|g|Ω−1∂bΩ
)

=
1√
|g|
gab
√

|g|∂bΩ∂a(Ω−1) +
1√
|g|

Ω−1∂a

(
gab
√
|g|∂bΩ

)
= −gabΩ−2∂aΩ∂bΩ + Ω−1∆Ω

and

| df |2 = ⟨df, df⟩
= ⟨∇f,∇f⟩
= g

(
gab∂af∂b, g

cd∂cf∂d
)

= gabgcd∂af∂cfg(∂b, ∂d)

= gabδcb∂af∂cf

= gabΩ−2∂aΩ∂bΩ

From ∆f, | df |2 and the equation for R̂.

R̂ = Ω−2R− 4Ω−2
[
−gabΩ−2∂aΩ∂bΩ + Ω−1∆Ω

]
− 2Ω−2gabΩ−2∂aΩ∂bΩ

= Ω−2R− 4Ω−3∆Ω+ 2gabΩ−4∂aΩ∂bΩ

= Ω−2R− 4Ω−3∆Ω+ 2Ω−4|∇Ω|2 (6.23)

Now we need to calculate ∆Ω and |∇Ω|2 for Ω = Ω(V ).

|∇Ω|2 = gab∂aΩ∂bΩ

= gab
dΩ

dV
∂aV

dΩ

dV
∂b

=

(
dΩ

dV

)2

|∇V |2
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and

∆Ω = gabΩ;ab

= gab (∂a∂bΩ− Γcab∂cΩ)

= gab∂a

(
dΩ

dV
∂bV

)
− Γcabg

ab∂cV
dΩ

dV

= gab
d2Ω

dV 2
∂bV ∂aV + gab

dΩ

dV
∂a∂bV − Γcabg

ab∂cV
dΩ

dV

=
d2Ω

dV 2
|∇V |2 + dΩ

dV
gab [∂a∂bV − Γcab∂cV ]

=
d2Ω

dV 2
|∇V |2 + dΩ

dV
∆V

=
d2Ω

dV 2
|∇V |2

Now we substitute |∇Ω|2, ∆Ω and R = 0 to equation (6.23)

R̂ = Ω−2R− 4Ω−3∆Ω+ 2Ω−4|∇|2

= −4Ω−3 d
2Ω

dV 2
|∇V |2 + 2Ω−4

(
dΩ

dV

)2

|∇V |2

which gives us

R̂ = −2Ω−4|∇V |2
[
2Ω

d2Ω

dV 2
−
(
dΩ

dV

)2
]

Now suppose
Ω = b(1± V )2

we notice that

d

dV

d

dV

(
b(1± V )2

)
= b

d

dV
± 2(1± V )

= 2b

and (
dΩ

dV

)2

= (2b(1± V ))2

So we have

R̂ = −2Ω−4|∇V |2
[
2Ω

d2Ω

dV 2
−
(
dΩ

dV

)2
]

= −2Ω−4|∇V |2
[
(2b)2 (1± V )2 − (2b(1± V ))2

]
= 0
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Assume that b2 = 1/16.

Proposition 6.2.2. γ+ = (1/16)(1 + V )4g is asymptotically euclidean with mass
zero.

Proof.

(1 + V )4 =

(
2− m

|x|
+

m2

2|x|2
+
cax

a

|x|3
+ u

)4

We remind that u = O(|x|−τ−1) for τ ∈ (1, 2). Assume k = O(|x|−2) and ζ = 2+ k.
Then

(1 + V )4 =

(
2− m

|x|
+ k

)4

=

(
ζ − m

|x|

)4

• ζ = 2 + k

• ζ2 = 4 +O(|x|−2)

• ζ3 = 8 +O(|x|−2)

• ζ4 = 16 +O(|x|−2)

(
ζ − m

|x|

)4

= ζ4 + 4ζ3
(
−m

|x|

)
+ 6ζ2

m2

|x|2
− 4ζ

m3

|x|3
+
m4

|x|4

= 16− 32
m

|x|
+O(|x|−2)

γ+ =
1

16
(1 + V )4g

=

(
1− 2m

|x|
+O(|x|−2)

)((
1 +

2m

|x|

)
δab +Hab

)
=

(
1− 2m

|x|

)(
1 +

2m

|x|

)
δab +

(
1− 2m

|x|

)
Hab

=

(
1− 4m2

|x|2

)
δab +Hab

= δab +Hab

where Hab = O(|x|−τ ). So

| γ+ ab;b | = O(|x|−τ−1)

So from the definition of ADM mass

|mass| = | 1

16π

∫
S∞

( γ+ ab;b − γ+ bb;a)n
a dΣ|
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we take the estimates

|mass| ≤ 1

16π
lim

R→+∞

∫
SR

| γ+ ab;b |+ | γ+ bb;a | dΣ

≤ 2C

16π
lim
R→∞

∫
SR

|x|−τ−1 dΣ

=
2C

16π
lim

R→+∞
R−τ−1R2

∫
S1

dΩ

=
C

2
lim

R→+∞
R−τ+1

which is zero for τ > 1 as needed.

Proposition 6.2.3. The second fundamental form of (∂Σ)i in the γ± metrics are
given by

A± jk = ±(−8)w
1/2
i γ±2

jk , j, k = 1, 2

γ±2 metric on (∂Σ)i induced from γ± , and wi = |∇V |2 evaluated at (∂Σ)i are
positive constants and the second fundamental forms are with respect to the inward
(or outward) pointing vectors of the manifold with metric γ± .

Proof. We have ĝ = Ω2g, Ω = Ω(V ) and

N = − ∇̂V
ŵ

1/2
i

, n = −∇V
w

1/2
i

are the unit normals of (∂Σ)i in the ĝ metric and the g metric respectively.
The second fundamental form on the ĝ metric on (∂Σ)i is by definition

[A(ĝ)]jk = ĝ(∇̂Ej
N,Ek)

We notice that

N = − ∇̂V
ŵ

1/2
i

= − ĝij∂iV ∂j√
ĝlk∂l∂jV

= −Ω−2

Ω−1

∇V
w

1/2
i

= Ω−1n

and from that we have

ĝ(∇̂Ej
N,Ek) = Ω−1ĝ(∇̂Ej

n,Ek) + ĝ(n∇̂Ej
Ω−1, Ek)

= Ω−1ĝ(∇̂Ej
n,Ek)

= Ωg(∇̂Ej
n,Ek)

From [31, p. 217] we have for ĝ = e2Ug



105 6.2. Conditions Needed for the Positive Mass Theorem

∇̂XY = ∇XY +X(U)Y + Y (U)X − g(X, Y )∇U
= ∇XY +X(log Ω)Y + Y (log Ω)X − g(X, Y )∇(log Ω)

so we have

∇̂Ej
n = ∇Ej

n+ Ej(log Ω)n+ n(log Ω)Ej − g(Ej, N)∇(log Ω)

= ∇Ej
n+ Ej(log Ω)n+ n(log Ω)Ej

We calculate the terms seperately

∂j(log Ω) =
1

Ω
∂jΩ

=
1

Ω

dΩ

dV
∂jV

and

n(log Ω) = −∇V
w

1/2
i

(log Ω)

= −g
kl∂kV ∂l(log Ω)

w
1/2
i

= −g
kl∂kV ∂lV

w
1/2
i

dΩ

dV
Ω−1

= −∇V (V )

w
1/2
i

dΩ

dV
Ω−1

= n(V )
dΩ

dV
Ω−1

=
dΩ

dV
Ω−1g(n,∇V )

no we can calculate the second fundamental form

Ωg(∇̂Ej
n,Ek) = Ω

[
g(∇Ej

n,Ek) + Ω−1 dΩ

dV
∂jV g(n,Ek) + Ω−1 dΩ

dV
g(n,∇V )g(Ej, Ek)

]
= Ω [A(g)]jk + Ω−2 dΩ

dV
g(n,∇V )ĝjk

meaning

[A(ĝ)]jk = Ω [A(g)]jk + Ω−3 dΩ

dV
g(n,∇V )ĝjk

We know the second fundamental form in the boundary (∂Σ)i of the metric g is
zero and the lapse function V is zero, so Ω = 1

4
.
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Also

dΩ

dV
=

d

dV

(
(1± V )2

4

)
= ±1

2
(1± V )

= ±1

2

and

g(n,∇V ) = n(V )

= −∇V (V )

|∇V |

= −g
ij∂iV ∂jV

|∇V |

= −|∇V |2

|∇V |
= −|∇V |
= −w1/2

i

We conclude

[A(ĝ)]jk = ±42

2
(−w1/2

i ) ĝ2 jk

= ±8(−w1/2
i ) γ±2

jk

Proposition 6.2.4. γ− compactifies the infinity: If P is the point at infinity, then
there is a W 2,q extension of γ− to Σ ∪ {P}.

Proof. From the equations in lemma 6.1.11 we have

γ− ab =

(
1

16

)
(1− V )4 gab

=

(
1

16

)(
m

|x|
− m2

2|x|2
− cax

a

|x|3
+ v

)4 [(
1 +

2m

|x|

)
δab +Hab

]
=

(
m4

16|x|4

)(
1− m

2|x|
− cax

a

|x|2m
+
v|x|
m

)4 [(
1 +

2m

|x|

)
δab +Hab

]
We remind that for τ ∈ (1, 2)

v = O(|x|−τ−1), Hab = O(|x|−τ )

which implies that
v|x|
m

= O(|x|−τ )

Assume that

λ = 1 + k, π =
m

2|x|
+

cax
a

|x|2m
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where λ = O(1), π = O(|x|−1), k = v|x|/m.

(λ− π)4 = λ4 − 4λ3π + 16λ2π2 − 4λπ3 + π4

where

λ4 = O(1), λ3π = O(|x|−1), λ2π2 = O(|x|−2), λπ3 = O(|x|−3), π4 = O(|x|−4)

we ignore the terms λπ3, π4 and we write

(λ− π)4 = λ4 − 4λ3π + 16λ2π2

we have the equations

λ2 = 1 + 2k + k2

= 1 + 2k +O(|x|−τ )
λ3 = 1 + 3k + 3k2 + k3

= 1 + 3k +O(|x|−2τ )

λ4 = 1 + 4k + 16k2 + 4k3 + k4

= 1 + 4k +O(|x|−τ )

So

(λ− π)4 = 1 + 4k − 4(1 + 3k)π + 16(1 + 2k)π2

= 1 + 4k − 4π − 12kπ + 16π2 + 16 · 2kπ2

= 1 + 4k − 4π + 16π2

Therefore

(λ− π)4
[(

1 +
2m

|x|

)
δab +Hab

]
=
(
1 + 4k − 4π + 16π2

) [(
1 +

2m

|x|

)
δab +Hab

]
=

(
1 +

2m

|x|
+ 4k

(
1 +

2m

|x|

)
− 4π

(
1 +

2m

|x|

)
+ 16π2

(
1 +

2m

|x|

))
δab+

+
(
1 + 4k − 4π + 16π2

)
Hab

=

(
1 +

2m

|x|
+ 4k +

8km

|x|
− 4π − 8πm

|x|
+ 16π2 +

16π2 · 2m
|x|

)
δab+

+
(
1 + 4k − 4π16π2

)
Hab

=

(
1 +

2m

|x|
+ 4

|x|v
m

+ 8
|x|vm
m|x|

− 4
m

2|x|
− 4

cax
a

|x|2m
− 8

m2

2|x|2

−8
cax

am

|x|3m
+ 16

m2

4|x|2
+ 16

2mcax
a

2|x|3m
+ 16

(cax
a)2

|x|4m2

)
δab +

(
1 + 4k − 4π + 16π2

)
Hab

=

(
1 +

4|x|v
m

+ 8v − 4cax
a

|x|2m
+ 8

cax
a

|x|3

)
δab +

(
1 + 4k − 4π + 16π2

)
Hab

and so

γ− ab =

(
m4

16|x|4

)[
δab − 4

cax
a

m|x|2
δab +

(
4
|x|v
m

δab +Hab

)
+ 8

cax
a

|x3|
δab + (8vδab − 4πHab)

]
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where we denote

Ψab =

(
4
|x|v
m

δab +Hab

)
, Φab = (8vδab − 4πHab)

The above equation becomes

γ− ab =

(
m4

16|x|4

)[
δab − 4

cax
a

m|x|2
δab +Ψab + 8

cax
a

|x3|
δab + Φab

]
(6.24)

s.t. for τ ∈ (1, 2)

Ψab = O(|x|−τ ), Φab = O(|x|−τ−1), DΦab = O(|x|τ−2)

and
D2Φab ∈ Lq−τ−3(R3 \B3(0)) (6.25)

Now we take the coordinate transformation

za =
xa

|x|2
from which we have

|z| = 1

|x|
=⇒ xa = za|z|−2

and

∂xa

∂zb
= δ|z|−2 − za

2

|z|3
∂|z|
∂zb

= δab|z|−2 − za

|z|3
2

2|z|
2zb

= δab|z|−2 − 2
zazb

|z|4

=

(
δab − 2

zazb

|z|2

)
|z|−2

This transformation is called inversion of the sphere because it reflects the points
of the open ball inside the sphere to points outside of the sphere while keeping
the points in the sphere the same. We use this because we want to check the
neighborhood around zero, instead of checking the neighborhood around infinity.

For the coordinate change we will need

∂xa

∂zc
∂xb

∂zd
=

(
δac − 2

zazc

|z|2

)
|z|−2

(
δbd − 2

zbzd

|z|2

)
|z|−2

=

(
δac − 2

zazc

|z|2

)(
δbd − 2

zbzd

|z|2

)
|z|−4

We denote for simplicity

Ψ′
ab =

(
δac − 2

zazc

|z|2

)(
δbd − 2

zbzd

|z|2

)
Ψcd

Φ′
ab =

(
δac − 2

zazc

|z|2

)(
δbd − 2

zbzd

|z|2

)
Φcd

M = 1− 4
cax

a

m|x|2
+ 8

cax
a

|x3|
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where Φcd = O(|x|−τ−2) as |x| → +∞ and Φcd = O(|z|τ+1) as |z| → 0. This implies

Φ′
ab = O(|z|τ+1)

So the equation (6.24) becomes

γ− ab =

(
m4

16|x|4

)
[Mδab +Ψab + Φab]

which after the transformation we have

γ− =

(
m4|z|4

16

)
[Mδcd +Ψcd + Φcd]

(
δac − 2

zazc

|z|2

)(
δbd − 2

zbzd

|z|2

)
|z|−4

=

(
m4

16

)[
M

(
δac − 2

zazc

|z|2

)(
δbd − 2

zbzd

|z|2

)
δcd +Ψ′

ab + Φ′
ab

]
dza dzb

but we notice(
δac −

2zazc

|z|2

)(
δbd −

2zbzd

|z|2

)
δcd =

(
δadδbd +

4zazbzdzd

|z|4
− 2zazd

|z|2
δbd −

2zbzd

|z|2
δad

)
=

(
δab +

4zazb|z|2

|z|4
− 2zazb

|z|2
− 2zbza

|z|2

)
= δab

and so the above equation becomes

γ− =

(
m4

16

)[
δab − 4

cax
a

m|x|2
δab + 8

cax
a

|x3|
δab +Ψ′

ab + Φ′
ab

]
dza dzb (6.26)

We know that D2
xΦ ∈ Lq−τ−3(R3 \B3(0)), but we dont know about D2

zΦ. This is
what we are going to find out.

We can see that

DzΦ
′ = DzxDxΦ

= O(|z|−2)O(|z|τ+2)

= O(|z|τ )

and

D2
zΦ

′ = Dz (DzxDxΦ)

=
(
D2
zx
)
DxΦ +DzxDzDxΦ

=
(
D2
zx
)
DxΦ +DzxDzxDxxΦ

=
(
D2
zx
)
DxΦ + (Dzx)

2DxxΦ

D2
zx = O(|z|−3)

DxΦ = O(|z|τ+2)

}
=⇒ D2

zxDxΦ = O(|z|τ−1)

and Dzx = O(|z|−2). From these we have
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(Dzx)
2DxxΦ = O(|z|−4)DxxΦ

where DxxΦ ∈ Lq−τ−3.∫
|z|<ε

|D2
zΦ

′|q ≤
∫
|z|<ε

(
|D2

zx||DxΦ|+ |Dzx|2|DxxΦ|
)q

dz

≤ C

∫
|z|<ε

(
|z|τ−1 + |z|−4|DxxΦ|

)
dz

= C1

∫
|z|<ε

(
|z|τ−1 + |z|−4|D2

xΦ|
)q |z|2 d|z|

= C2

∫
|x|>1/ε

(
|x|−τ+1 + |x|4|D2

xΦ|
)q 1

|x|4
d|x|

≤ C3

∫ +∞

1/ε

|x|−q(τ−1)−4 d|x|+
∫ +∞

1/ε

|x|4q−4|D2
xΦ|q d|x|

where the last we changes to spherical coordinates and then we used

|z| = 1

|x|
=⇒ |z|2 d|z| = 1

|x|2

(
−d|x|
|x|2

)
= −d|x|

|x|4

We have that

|D2
xΦ| ∈ Lq−τ−3(R3 \B3(0)) =⇒

∫
R3\B2(0)

|D2
xΦ|q|x|(τ+3)q−3 dx < +∞

We take our attention on the two terms of the last inequality.

• First term: ∫ +∞

1/ε

r−q(τ−1)−4 dr = Cr−q(τ−1)−3|+∞
1/ε

which is finite for q > 4

−q(τ − 1)− 3 < 0 =⇒ −q(τ − 1) < 3 =⇒ τ > 1

• Second term:

∫ +∞

1/ε

|x|4q−4|D2
xΦ|q d|x| =

∫ +∞

1/ε

|x|4q−6|D2
xΦ|q dx

=

∫
|x|>1/ε

|x|4q−6−τq−3q+3|x|(τ+3)q−3|D2
xΦ|q dx

=

∫
|x|>1/ε

|x|q(1−τ)−3|x|(τ+3)q−3|D2
xΦ|q dx

We denote

−k = q(1− τ)− 3 < 0 =⇒ |x| > 1/ε =⇒ 1

|x|k
≤ 1

(1/ε)k
= εk
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and so ∫ +∞

1/ε

|x|4q−4|D2
xΦ|q d|x| =

∫
|x|>1/ε

|x|q(τ+3)−3|D2
xΦ|q dx

≤ εk
∫
|x|>1/ε

|x|q(τ+3)−3|D2
xΦ|q dx

< +∞

Using Lemma 6.0.6 for Φ′, DzΦ
′ and τ ∈ (1, 2) we have

∥Φ′∥2,q = ∥Φ′∥q + ∥DΦ′∥q + ∥D2Φ′∥q < +∞

we work similarly for the other terms of γ− ab . We define the metric γ− ∗ such that

γ− ∗ = γ− (z), on {z : 0 < |z| < ε}

=
m4

16
δab dz

a dzb, at P

and from the previous results we have that

γ− ∗ ∈ W 2,q(Bε(P ))

where Bε(P ) = {z : 0 < |z| < ε} ∪ P .

6.3 Doubling of the 3-manifold and Proof of the

Main Theorem

We begin with the 3-dimensional spatial manifold (Σ, g) with the assumptions in
the start of the current section and the metric in the asymptotic form of Proposition
6.1.11.

Figure 6.1: The 3-dimensional spacelike slice (Σ, g) for {t = 0} such that: if S is
compact then its asymptotically Euclidean on the set Σ \ S with constant positive
mass, it has compact boundary (∂Σ)i, the metric g and the lapse function V are
smooth on Σ and C2 on Σ, V is positive in Σ and zero on (∂Σ)i.

We have the following Theorem from [32, p. 224]:

Theorem 6.3.1. Let M and N be smooth n-manifolds with nonempty boundaries,
and suppose h : ∂N → ∂M is a diffeomorphism. Let M ∪h N is a topological
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manifold (without boundary), and has a smooth structure such that there are regular
domains M ′, N ′ ⊆M ∪h N diffeomorphic to M and N , respectively, and satisfying

M ′ ∪N ′ =M ∪h N, M ′ ∩N ′ = ∂M ′ = ∂N ′

If M and N are both compact, then M ∪h N is compact, and if they are both con-
nected, then M ∪h N is connected.

We use Theorem 6.3.1 to glue Σ along its boundaries (∂Σ)i with itself. We
denote for simplicity Σ̃ the copy of Σ which we glue together. In Σ ⊔ Σ̃ we glue the
points in the boundaries using the identity maps idi : (∂Σ)i → (∂Σ̃)i, we denote the
adjunction space as Σ̌ = Σ ∪id Σ̃, (∂Σ)i ∪id (∂Σ̃)i = (∂Σ±)i and the quotient map
π : Σ ⊔ Σ̃ → Σ̌. Suppose the collar neighborhoods of (∂Σ)i and (∂Σ̃)i, are the sets
U+
i ⊂ Σ and U−

i ⊂ Σ̃ respectively. From that we have the diffeomorphisms

f+
i : (∂Σ)i × [0, 1) → U+

i , f−
i : (∂Σ̃)i × [0, 1) → U−

i

Let Ui = U+
i ∪id U

−
i and Φi : U

+
i ⊔ U−

i → (∂Σ̃)i × (−1, 1) be

Φi(x) =

{
(p, x3), x = f+

i (p, x3) ∈ U+
i

(p,−x3), x = f−
i (p, x3) ∈ U−

i

From that we can define the homeomorphism Φ̃ : π(U+
i ⊔U−

i ) → (∂Σ̃)i× (−1, 1). It
can be shown that π(U+

i ⊔U−
i ) and π(intΣ⊔ intΣ̃) are topological manifolds. From

the above, the smooth charts of Σ̌ outside the glued boundaries are(
π(W ), ψ ◦ π−1|π(W )

)
where (W,ψ) are smooth charts of intΣ or intΣ̃. The charts around the glued collar
neighborhoods are

(Φ̃−1
i (Ui), ϕ ◦ Φ̃i|Φ̃−1

i (Ui)
)

where ϕ are smooth charts of (∂Σ̃)i × (−1, 1).

Φ̃i

Figure 6.2: The chart of the collar neighborhood around the boundaries (∂Σ)i and
(∂Σ̃)i

This produces a smooth doubled manifold (Σ̌, ǧ). For more details about
the above statements we refer to the proof of theorem 9.28 in [32]. The manifold
produced by attaching manifolds along their boundaries is smooth, but this isnt true
for the functions attached to it e.g. the metric tensor and the lapse function. In
fact we will see that they may lose some degree of smoothness.
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In Σ̌ we define Ṽ = −V < 0 on Σ̃ and Ṽ = 0 on (∂Σ̃)i. Because (∂Σ)i is totally
geodesic in Σ and N(V ) =constant for each i we will show that the metric is C1,1 on
(∂Σ)i. For V because V = Ṽ = 0 on (∂Σ)i it is continuous on the doubled manifold
and also C1,1 on (∂Σ)i.

So we have the doubled manifold (Σ̌, ǧ) such that

Σ̌ = Σ ∪ Σ̃, ǧ =

{
g, in Σ

g̃, in Σ̃
, V̌ =

{
V, in Σ

Ṽ , in Σ̃

Figure 6.3: The doubled manifold (Σ̌, ǧ) such that: ǧ, V̌ are C1,1 in the the glued
boundaries.

Now we transform conformally the metric such that:

γ = ϕ2
±ǧ

where the conformal factor is:

ϕ± =
(1± V )2

4

This gives us manifold (N, γ∗) where

N = N+ ∪N−, γ∗ =

{
γ+ = ϕ2

+ǧ, in N+

γ− = ϕ2
−ǧ, in N−

We have shown in Lemma 6.2.4 that we can compactify N− in N by adding a
point of infinity P . From that we get a manifold N ∪ {P}. Thus we extend the
metric γ∗ to a metric γ that includes the point P as we did in Lemma 6.2.4 where
on a neighborhood around P , γ is W 2,q.

N = N+ ∪N−, γ =

{
γ+ = ϕ2

+ǧ, in N+

γ− ∗ = ϕ2
−ǧ, in N− ∪ {P}
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Figure 6.4: The manifold (N ∪ {P}, γ) such that: N+ is asymptotically Euclidean
on a set N ∪ {P} with zero mass, the metric γ is C1,1 on the glued (∂Σ)i, (∂Σ̃)i,
N− is compactified with a point of infinity P and γ is W 2,q in a neigbourhood of P .

In Proposition 6.2.2 we proved that the metric γ+ has asymptotically Euclidean
structure and mass zero in |x| → ∞ outside a compact set. Now we can prove that
in fact (N ∪ {P}, γ) is a complete manifold in contrast to the original (Σ, g).

Proposition 6.3.2. The Riemannian manifold (N ∪ {P}, γ) is complete.

Proof. First we will need the following Theorem:

Theorem 6.3.3. [22, p. 222] Let M be a Riemannian manifold which is C3. Then
M is complete with respect to g if and only it supports a proper C3 function f such
that:

|∇f | ≤ constant

The idea of the proof is that we will construct proper functions as the theorem
states and then by gluing them we will have the desired outcome.

First we look on the upper half (N+, γ+ ). Assume a function f : N+ \K → R
such that

f(x) = log(r(x))

where r(x) =
√
(x1)2 + (x2)2 + (x3)2, K is compact and ϕ(N+ \K) = ER from the

structure of infinity that we proved in Proposition 6.2.2. We remind that the metric
on N+ \K takes the form

γ+ ij = δij +Hij

where Hij = O(|x|−τ ) for τ ∈ (1, 2). Then

|∇f(x)|2 = γ+ ij∂if(x)∂jf(x)

= γ+ ij∂i(log(r(x)))∂j(log(r(x)))

but

∂i log(r(x)) = ∂i log
[
((x1)2 + (x2)2 + (x3)2)2

]
=

1

2

1

r(x)

1

r(x)
2
(
x1δ1i + x2δ2i + δ3i

)
=

1

|r(x)|2
xi
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hence

|∇f(x)|2 = γ+ ij 1

|x|4
xixj

=
1

|x|4
δijxixj +

1

|x|4
Hijxixj

and because
|δijxixj| = |x|2, |Hijxixj| = O(|x|−τ−2)

we write

|∇f(x)|2 = |x|−2 +O(|x|−τ−2)

which for |x| → ∞ it goes to zero and so

|∇f(x)| ≤ C

We also have the following Theorem [31, p. 175]:

Theorem 6.3.4. Suppose (M, g) is a connected Riemannian manifold, S ⊆ M is
arbitrary, and f :M → [0,∞) is the distance to S, that is,

f(x) = dg(x, S) = inf{dg(x, p) : p ∈ S}

for all x ∈M . If f is smooth on some open subset U ⊆M \ S, then

|∇f | ≡ 1

on U .

Suppose the function
r(x) = d(x,∪i(∂Σ±)i)

we notice that f(N+ \K) = [logR,+∞) and r(K) = [0, R]. We change the domain
of r with the compact subset S such that f(N+ \ S2) = [2R,+∞), r(S1) = [0, R]
and R = d(P,∪i(∂Σ±)i). We want to find a function

k(x) =


x, x ∈ [0, R]

p(x), x ∈ [R, e2R]

log x, ∈ [e2R,+∞]

such that p is suitable to make k ∈ C3. So we want p to satisfy the conditions:

p(R) = R p(e2R) = 2R

p′(R) = 1 p′(e2R) = e−2R

p′′(R) = 0 p′′(e2R) = −e−4R

p′′′(R) = 0 p′′′(e2R) = 2e−6R

We choose a polynomial p(x) = a7x
7+· · ·+a0 to satisfy the above conditions. To see

that the coefficients exist such that the polynomial satisfies the above conditions we
need the determinant of the system to be nonzero. The determinant is an analytic
function and so it has at most countable roots. If R is a root of the determinant
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then we can choose a different R. The gradient of the polynomial is bounded and
|x| is a proper function as the rest. So we have that

k(x) =


r(x), x ∈ S

p(|x|), x ∈ §2 \ S1

log |x|, x ∈ N+ \ S2

which is proper C3 on N ∪ {P} and has bounded gradient.

After gluing the manifold (Σ, g) along its boundaries (∂Σ)i we made the double
manifold (Σ̌, ǧ), where we claimed that the metric ǧ and the lapse function V̌ are
C1,1 in a neighborhood of (∂Σ±)i. We prove that claim in the following proposition.

Proposition 6.3.5. The metric γ of N ∪ {P} and the lapse function V̌ are C1,1 in
a neighborhood Ui of (∂Σ

±)i.

Proof. First we want to use a suitable metric representation. In a neighborhood
of the attached boudaries we use a coordinate system where the coordinate curves
(x1, x2, t) are unit geodesics such that they cross orthogonally the level sets of x3.
This coordinates are called semigeodesic coordinates (or else Gaussian coordi-
nates). From [31, p. 183] we have the following:

Proposition 6.3.6. Let (M, g) be a Riemannian n-manifold and (xi) are the semi-
geodesic coordinates on an open set U ⊂M . Then the metric can be written as:

g = (dxn)2 + gab(x
1, . . . , xn) dxa dxb

As can be seen from the corollary, from semigeodesic coordinates we have an
orthogonal decomposition of the metric tensor. We use this on a neighborhood of
(∂Σ±)i to get:

γ = (dx3)2 + γab(x
a, xb, x3) dxa dxb

where a, b = 1, 2 and γab is the metric of the attached boundaries. Because of the
conformal tranformation γ = ϕ2

±ǧ and γ3a = 0 for a = 1, 2 we notice that:

γ = ϕ2
±ǧ =⇒ ǧ3a = 0

=⇒ ǧ = ρ(x1, x2, x3)(dx3)2 + ǧab(x
a, xb, x3) dxa dxb

where a, b = 1, 2, ρ is some unknown function and ǧab is the metric tensor on the
attached boundaries. Following the same computations as in proposition 5.3.1, with
small changes because of the spatial metric, we have the first evolution equation of
the metric ǧab

∂

∂x3
ǧab = 2ρ[A(ǧ)]

where [A(ǧ)] is the second fundamental form in the boundary. But as we have shown
in Remark 6.0.2, we have that the second fundamental form on the boundary inside
Σ is zero. And so

∂

∂x3
ǧab = 0 (6.27)

In Σ̌ the metric ǧ in a coordinate chart of Ui can be written as:
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ǧab ◦ Φ̃−1
i ◦ ϕ−1 = ǧab ◦ Φ̃−1(x)

where ϕ ◦ Φ̃i is the chart of the collar neighborhood. Hence

ǧab ◦ Φ̃i =

{
ǧab ◦ Φ̃−1(x1, x2, x3), for x ∈ U+

ǧab ◦ Φ̃−1(x1, x2,−x3), for x ∈ U−

so ǧab(x1, x2, x3) on U
− is even in x3. Then for q ∈ Σ̌ and ψ = ϕ ◦ Φ̃

∂

∂x3
ǧab

∣∣∣∣
q

=
∂

∂x3

(
ǧab ◦ Φ̃−1 ◦ ϕ−1

)∣∣∣∣
ψ(q)

=
∂

∂x3
ǧab

(
Φ̃−1(x1, x2, x3)

)∣∣∣∣
ψ(q)

Assume hab = ǧab ◦ Φ̃−1. For U+, U− we denote the partial derivative on the
boundary ∂x3h+(0), ∂x3h−(0) respectively. Hence

∂x3h+(0) = lim
x3→0+

hab(x1, x2, x3)− hab(x1, x2, 0)

x3

∂x3h−(0) = lim
x3→0−

hab(x1, x2,−x3)− hab(x1, x2, 0)

x3

= lim
0+

hab(x1, x2, x3)− hab(x1, x2, 0)

−x3
= −h′+(0)

This holds when ∂x3h+(0) = ∂x3h−(0) = 0 which we have from (6.27). So h ∈ C1

meaning that ǧ ∈ C1.
For the second derivative we notice that

∂xi∂x3h+(0) = −∂xi∂x3h−(0)

for i = 1, 2. So h ∈ C2 if ∂xi∂x3h(x1, x2, 0) = 0, which is not necessary true.
We have the following Theorem:

Theorem 6.3.7. [19, p. 294] Let U be open and bounded, with ∂U being C1. Then
f : U → R is Lipschitz continuous if and only if f ∈ W 1,∞(U).

Because ǧ outside of (∂Σ±)i is smooth, we have that ∂a∂bǧ ∈ L∞(Ui) and so

∂aǧ ∈ W 1,∞
loc =⇒ ∂aǧ ∈ C0,1 =⇒ ǧ ∈ C1,1

Similarly for V̌ we have

V̌ ◦ Φ̃−1(x) =

{
V ◦ Φ̃−1(x1, x2, x3), x ∈ U+

−V ◦ Φ̃−1(x1, x2,−x3), x ∈ U−

Suppose L = V̌ ◦ Φ̃−1. We have that L(x1, x2, x3) on U
− is odd in x3. By defining

similarly the partial derivatives ∂x3L+(0), ∂x3L−(0) we have that

∂x3L+(0) = ∂x3L−(0)

∂xi∂x3L+(0) = −∂xi∂x3L−(0)
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but again ∂xi∂x3V̌ (x1, x2, 0) is not necessary zero. So V̌ ∈ C1 and

∂a∂bV̌ ∈ L∞ =⇒ ∂aV̌ ∈ W 1,∞
loc =⇒ ∂aV̌ ∈ C0,1 =⇒ V̌ ∈ C1,1

Hence the conformal transformation

γ =
(1± V )4

16
ǧ

tells us that γ is also C1,1.

Corollary 6.3.8. γ ∈ W 2,q
loc (N ∪ {P}).

Proof. From proposition 6.3.5 we have that γ ∈ C1,1 in a neighborhood of the glued
boundaries (∂Σ±)i. Then from the definition of the Holder space we have

γ ∈ C1,1 =⇒ γ ∈ C1, γ′ ∈ C1, f ′ is Lipschitz

So we have
γ′ Lipschitz =⇒ γ′ ∈ W 1,∞

hence

∥γ′∥1,∞ = ∥γ′∥∞ + ∥γ′′∥∞
So we have

γ′′ ∈ L∞ =⇒ γ′′ ∈ Lqloc

Hence we have γ ∈ W 2,q
loc .

In remark 6.1.14 we said that the positive mass theorem for n-manifolds requires
lower regularity for the metric than smoothness in all derivatives because of the
mass decay conditions (Definition 6.1.13).

The first condition of the mass decay conditions is that there exists an asymp-
totical flat structure Φ such that γ ∈ W 2,q

−τ (ER). We have shown that the metric γ
is asymptotically Euclidean which satisfies the condition.

The second condition is that Ricci scalar is integrable on the manifold. In Propo-
sition 6.2.1 we showed that the Ricci scalar is zero for a metric γ± = b2(1 ± V )2g.
But the proof required γ to be C2 and ∆gV = 0 which requires V to be C2. We have
shown that γ, V in a neighborhood of the compactified point P and a neighborhood
around (∂Σ±)i are C

1,1. Also in N ∪ {P} \K where K is a compact set, γ is not
smooth. So we need to prove that the Ricci scalar at those neighborhoods is L1 so
that the second condition of the mass decay conditions is satisfied.

Proposition 6.3.9. R ∈ L1(N ∪ {P}) where R is the Ricci scalar in the metric γ.

Proof. We have dµγ is the Riemannian density. Suppose the covering of N ∪ {P}
by Wi open sets with the smooth charts (Wi, ϕi). Let a partition of unity ψi in Wi

such that:∫
N∪{P}

|R| dµγ =
∑
i

∫
ϕi(Wi)

(ϕ−1
i )∗|ψiR| dµγ

=
∑
i

∫
ϕi(Wi)

(ψi ◦ ϕ−1
i )|R ◦ ϕ−1

i | · |
√
det γij| dx1 dx2 dx3

because dµγ = |ωγ|, where ωγ is the Riemannian volume form.
Suppose the sets
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• U±
i is a neighborhood of (∂Σ±),

• Bε(P ) is a neighborhood of the compactified point P ,

• N ∪ {P} \K is a neighborhood of the infinity such that:

Φ : (N ∪ {P} \K) → ER

is a diffeomorphism for R > 0.

From Proposition 6.2.1 we have that R = 0 except in the neighborhoods above. If
P ∈ W1∩W2 then we choose ε > 0 such thatBε(P ) ⊂ ϕi(Wi) orBε(P ) ⊂ ϕi+1(Wi+1).
Since R = 0 in ϕj(Wj) \Bε(P ) for j = i or i+ 1, we have:∫

N∪{P}
|R| dµγ =

∫
Φ(N∪{P})

(ψ1 ◦ Φ−1) · |R(x)| · |
√

det γij| dx1 dx2 dx3

+

∫
Bε(P )

(ψ2 ◦ ϕ−1
2 ) · |R(x)| · |

√
det γij| dx1 dx2 dx3

+

∫
ϕ3(U±)

(ψ3 ◦ ϕ−1
3 ) · |R(x)| · |

√
det γij| dx1 dx2 dx3

We have ψ ◦ ϕ−1
i ≤ 1. Also

√
det γij in Bε(P ), ϕ3(U

±) is bounded

γij ∈ C1,1 =⇒ γij ∈ C0 =⇒ det γij ∈ C0

hence it is bounded in ϕ3(U±), Bε(P ).
We will prove that det γij is bounded in ER.
We have that

|γij − δij| ≤
C1

|x|τ
, |∂γij| ≤

C2

|x|τ+1

hence γij = δij + Aij where

|Aij| ≤
C1

|x|τ

Then suppose γij = δij + |x|−τ Âij where

|Âij| = ||xτ |Aij| ≤ |x|τ C1

|x|τ
= C1

For |x| ≥ ρ, where r = (2C1)
1/τ , suppose

C1

|x|τ
≤ 1

2

then

∥γ−1∥ = ∥

(
1−

(
− Â

|x|τ

))−1

∥ ≤ 1

1− ∥ Â
|x|τ ∥

≤ 1

1− C1

|x|τ

From geometric-arithmetic inequality, for x1, . . . , xn > 0

n
√
x1 · · ·xn ≤ x1 + · · ·+ xn

n
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where in 3-dimensions

x1x2x3 ≤
(
x1 + x2 + x3

3

)3

Because γ is symmetric, positive definite matrix we have using its eigenvalues

(det γ) ≤
(
tr(γ)

3

)3

=⇒ det

(
1 +

Â

|x|τ

)
≤

tr
(
1 + Â

|x|τ

)
3

3

=

3 + trÂ
|x|τ

3

3

defining the inner product of matrices (A,B) = tr(A ·B) we have ∥A∥ = (tr(A2))1/2,
and so from Cauchy-Schwarz:

trÂ = (1, Â) ≤ ∥1∥ · ∥Â∥ =
√
3tr(A2)1/2 ≤

√
3C3

Hence for |x| ≥ ρ we have

det(γ) ≤

(
1 +

√
3C3

3|x|τ

)3

≤ C4

Because det(γ) is bounded in the required sets, we have∫
N∪{P}

|R| dµγ ≤C4

∫
Eρ

|R(x)| dx1 dx2 dx3

+ C5

∫
Bε(P )

|R(x)| dx1 dx2 dx3

+ C6

∫
ϕ3(U±)

|R(x)| dx1 dx2 dx3

• In ϕ3(U
±) we know thatR is not continuous, but it is continuous in ϕ3(U

+), ϕ3(U
−),

which means ∫
ϕ3(U+)

|R| ≤ C7∫
ϕ3(U−)

|R| ≤ C8

hence ∫
ϕ3(U±)

|R| ≤ C7 + C8

• In Bε(P ) we have shown that γij ∈ W 2,q, which means for a ≤ 1− 3/q ≤ 1

Dγij ∈ W 1,q =⇒ Dγij ∈ C0,a =⇒ γij ∈ C1,a
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Hence γij, Dγij ∈ C1 are bounded in Bε(P ). From equation (6.11) in lemma
6.1.5 we have:

−2Rjk = γqr (−∂q∂kγjr + ∂q∂rγjk + ∂j∂kγqr − ∂j∂rγqk) +Q(γ−1, ∂γ)

= γ−1 ∗ ∂2γ +Q(γ−1, ∂γ) (6.28)

where γ−1 ∗ ∂2γ are contractions of γ−1, ∂2γ and Q(γ−1, ∂γ) are quadratic
terms in γ−1, ∂γ. Because γ, ∂γ are bounded we have:

|R| ≤ |γ−1 ∗ ∂2γ|+ C9 ≤ C10|∂2γ|+ C9

Hence ∫
Bε(P )

|R| ≤ C10

∫
Bε(P )

|∂2γ|+ C9|Bε(P )|

From Holder inequality∫
Bε(P )

|∂2γ| ≤
(∫

Bε(P )

1

)1/q∗

·
(∫

Bε(P )

|∂2γ|q
)1/q

But we have

γ ∈ W 2,q(Bε(P )) =⇒ ∥∂2γ∥Lq(Bε(P )) < +∞

and so ∫
Bε(P )

|R| ≤ C11

• In Eρ we have that γij ∈ W 2,q
−τ (Eρ) for τ ∈ (1, 2). And from the Ricci scalar

equation (6.28) we notice that we have shown that the terms are bounded
except the terms with ∂2γ and (∂γ)2. So∫

Eρ

|R| ≤ C12

(∫
Eρ

|∂2γ|+ |∂γ|2
)

To show that these terms are bounded in Eρ we will use that:

γ ∈ W 2,q
−τ =⇒


∫
|x|≥ρ

|∂2γ|q|x|(τ+2)q−3 < +∞∫
|x|≥ρ

|∂γ|q|x|(τ+1)q−3 < +∞

For the first the term ∂2γ:∫
|x|≥ρ

|∂2γ| =
∫
|x|≥ρ

w−1w|∂2γ|

≤
(∫

|x|≥ρ
w−q∗

) 1
q∗

·
(∫

|x|≥ρ
wq|∂2γ|q

) 1
q



Chapter 6. Uniqueness of Asymptotically Euclidean Static Vacuum Spacetime 122

where q∗ = q/(q − 1) and we want

wq = |x|(τ+2)q−3 =⇒ w = |x|τ+2−3/q

hence (∫
|x|≥ρ

wq|∂2γ|q
) 1

q

< +∞

For w−q∗

w−q∗ = w− q
q−1

= |x|−[(τ+2)− 3
q ]

q
q−1

= |x|−(τ+2) q
q−1

+ 3
q−1

So we have ∫
|x|≥ρ

w−q∗ =

∫
|x|≥ρ

|x|−(τ+2) q
q−1

+ 3
q−1

= 4π

∫ ∞

ρ

|x|−(τ+2) q
q−1

+ 3
q−1

+2

We need

(τ + 2)
q

q − 1
− 3

q − 1
− 2 > 1 =⇒ τ + 2)

q

q − 1
> 3 +

3

q − 1

=⇒ τ + 2 > 3
q − 1

q
+

3

q
= 3− 3

q
+

3

q

=⇒ τ > 1

For the second term (∂γ)2:∫
|x|≥ρ

|∂γ|2 =
∫
|x|≥ρ

w−1w|∂γ|2

≤
(∫

|x|≥ρ
w−q∗

) 1
q∗

·
(∫

|x|≥ρ
w

q
2 |∂γ|q

) 1
q

where q∗ = (q/2)∗ and we want:

w
q
2 = |x|(τ+1)q−3 =⇒ w = |x|2(τ+1)− 6

q

hence (∫
|x|≥ρ

w
q
2 |∂γ|q

) 1
q

< +∞

For w−q∗ : ∫
|x|≥ρ

w−q∗ =

∫
|x|≥ρ

|x|−
2q
q−2 [τ+1− 3

q ]

= 4π

∫ ∞

ρ

|x|−
2q
q−2 [τ+1− 3

q ]+2
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So we need

2q

q − 2

[
(τ + 1)− 3

q

]
− 2 > 1 =⇒ 2q

q − 2

[
τ + 1− 3

q

]
> 3

=⇒ τ + 1− 3

q
>

3

2

(
q − 2

q

)
=⇒ τ + 1 >

3

2

(
1− 2

q

)
+

3

q
=

3

2

=⇒ τ >
1

2

Hence ∫
Eρ

|R| ≤ C13

We have shown that∫
ϕ3(U±)

|R(x)| ≤ C14,

∫
Bε(P )

|R(x)| ≤ C11,

∫
Eρ

|R(x)| ≤ C13

hence together with the previous results we have for the Ricci scalar that:∫
N∪{P}

|R| dµγ ≤ C14 =⇒ R ∈ L1(N ∪ {P})

Proof of the main theorem 6.0.1. We have constructed the smooth 3-manifold
(N ∪ {P}, γ) such that the metric is conformally related to ǧ metric by

γ =
(1± V )4

16
ǧ

We remind that the metric ǧ is the metric of the double manifold Σ̌ such that

ǧ =

{
g, in Σ

g̃, in Σ̃

We have proven the following facts:

• N ∪ {P} is complete by Proposition 6.3.2.

• The metric γ is asymptotically Euclidean and has zero mass by Proposition
6.2.2.

• The metric γ is W 2,q
loc by Corollary 6.3.8.

• The Ricci scalar is zero for γ, V̌ ∈ C2 by Proposition 6.2.1.

• The mass decay conditions, from Definition 6.1.13, are satisfied by Proposition
6.3.9.



Chapter 6. Uniqueness of Asymptotically Euclidean Static Vacuum Spacetime 124

With the above, the positive mass theorem 6.3 from [1, p. 690] tells us that
there exists an isometry between (N ∪ {P}, γ) and (R3, δ), where δ is the standard
Euclidean metric. Hence the 3-manifold (Σ, g) is conformally flat with the metric

g =
16

(1 + V )4
δ

We orthogonally decompose (Σ, g) by taking the level sets of the lapse function V
and then extending it by following orthogonally the flow of ∇V/|∇V |2. So in the
coordinates (V, x1, x2) the metric becomes

g = g33 dV
2 + gij dx

i dxj

for i, j = 1, 2 and ḡij is the induced metric on the level sets of V .
We notice, for a, b = 1, 2, 3 that

|∇V |2 = gab∂aV ∂bV

= g33 +
2∑
j=1

gaj∂aV ∂jV

But in the level set with coordinates (x1, x2) we have V =constant. So

|∇V |2 = g33 =⇒ g33 =
1

|∇V |2

Hence by denoting W 2 = |∇V |2 and for i, j = 1, 2, we get:

g = W−2 dV 2 + gij dx
i dxj (6.29)

For dimension n ≥ 4 we know that the the Weyl tensor is identically zero if
and only if the metric metric is conformally flat. But for dimension n = 3 the Weyl
tensor is zero for every manifold ([31, p. 218]). Thus it doesnt give us a suitable
condition for conformal flatness in 3-dimensions. For a 3-dimensional manifolds we
have that the metric is conformally flat if and only if the Cotton tensor is zero
([31, p. 220]). The Cotton tensor is:

Cabc = Rab;c −Rac;b +
1

4
(gacR;b − gabR;c)

Lemma 6.3.10. Using the static equations of the spacetime (M, g) in vacuum

∆gV = 0

Rab = V −1V;ab

The Cotton tensor can take the form:

Cabc = V −2 [2V;caV;b − 2V;abV;c + V;bmV
;mgca − V;cmV

;mgba]

Proof. We remind that V;ab = V;ba. First we compute the terms of the Cotton tensor

Rab;c = (V −1V;ba);c = −V −2V;cV;ba + V −1V;bac

Rac;b = −V −2V;bV;ca + V −1V;cab
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Also
R = gabRab = gabV −1V;ab = V −1∆V = 0

So
Cabc = V −1(V;bac−V;cab)− V −2(V;cV;ba − V;bV;ca)

But we have the Ricci identity [31, p. 206]

V;bac − V;cab = RbcamV
;m

and that the Riemann tensor in three dimensions is defined by ([23, p. 56]):

Rbcam = −Rbagcm +Rbmgca −Rcmgba +Rcagbm − 1

2
R(gbmgca − gbagcm)

= V −1(−V;abgcm + V;bmgca − V;cmgba + V;cagbm)

since the Ricci scalar is zero. So

Cabc = V −2(−V;abV;c + V;bmV
;mgca − V;cmV

;mgba + V;caV;b − V;cV;ba + V;bV;ca)

= V −2(2V;caV;b − 2V;abV;c + V;bmV
;mgca − V;cmV

;mgba)

Using Lemma (6.3.10), the following equation can be derived ([23, p. 58]):

CabcC
abc = 4W 6V −4(ψijψ

ij +
1

4
W−6(W 2);i(W

2);i) (6.30)

where a, b, c = 1, 2, 3 and i, j = 1, 2

ψij = W (Hij −
1

2
gijH),

such that Hij is the second fundamental form on the level sets, H is the trace of
Hij, ψij/W is the trace-free part of Hij and g is the induced metric on the level sets
of V . For the rest of the proof whenever we write tensors with indices i, j we will
mean that i, j = 1, 2, which means that the tensors are on the level sets.

Since we have shown that g is conformally flat, we have from (6.30)

ψij = 0, (W 2);i = 0

meaning

(Hij −
1

2
ḡijH) = 0, W;i = 0

in coordinates (V, x1, x2). Hence W is a function of V only. Now we change coordi-
nates such that U = log V . For equation (6.29) we have:

W = eU |∇U |
dV 2 = e2U dU

}
=⇒ W−2 dV 2 = |∇U |−2 dU2

For the rest of the rest of the proof we denote W = |∇U |, and so we have

g = W−2 dU2 + ḡij dx
i dxj
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such that i, j = 1, 2 and ḡij is the induced metric in the level sets of U .
The above are tensor equations, so we have that W is a function of U only and

Hij =
1

2
ḡijH (6.31)

We need the equations from [30, p. 90]

dḡij
dU

= 2W−1Hij (6.32)

R−H2 +HijH
ij = 0 (6.33)

W
dH

dU
+HijH

ij = 0 (6.34)

dW

dU
= −H (6.35)

where R̄ is the scalar curvature of the level sets of U .

• From equation (6.35) we have that H is a function of U only.

• From equation (6.34) we have that HijH
ij is a function of U only.

• From equation (6.33) we have that R is a function of U only.

From the last statement we have that the level sets of U have constant scalar
curvature.

From equations (6.31) and (6.32) we have that:

dgij
dU

= W−1Hgij (6.36)

where W−1H is a function of U only. We write f(U) = W−1H, so

dgij
dU

= f(U)gij =⇒ gij(U) = gij(U0)e
∫ U
U0

f(u) du

Denote
r2(U) = e

∫ U
U0

f(u) du

From theorem 1 in [30, p. 89] we have that

Sc = U−1(c) ≃ S2

for |c| sufficiently small. In two dimensions it is known that the scalar curvature is
two times the Gaussian curvature ([31, p. 250]). Since the level sets are diffeomorphic
to spheres, we have that the scalar curvature is positive somewhere on the level set
([31, p. 279]). But we have shown that the level sets have constant scalar curvature,
so they are isometric to two dimensional spheres of r radius. We assume that for a
value c some Sc is the round sphere S2. Let the level set of U0 be from that value,
so we have

g = gij dx
i dxj = r2(dθ2 + sin2 θ dϕ2)

where
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r2 =
2

R
= r2(U)

From Hij = (1/2)Hgij we have

HijH
ij =

1

2
H2 (6.37)

So equations (6.37) and (6.33) gives us:

R−H2 +
1

2
H2 = 0 =⇒ R =

1

2
H2

=⇒ 2

r2
=

1

2
H2

=⇒ H2 =
4

r2

=⇒ H =
2

r
(6.38)

Also

r2(U) = e
∫ U
U0

(W−1H) du
=⇒ 2r

dr

dU
= W−1Hr2

=⇒ 2
dr

dU
=
H

W
r

=⇒ H = 2W
dr

dU

1

r

We denote
′ =

d

dU
So we have the equation:

H = 2W
r′

r
= 2WR′ (6.39)

where R = log r. Using equation (6.39) together with equation (6.35) we have

W ′ + 2WR′ = 0 =⇒ 2WW ′ + 4W 2R′ = 0

=⇒ (W 2)′ + 4R′W 2 = 0

Now equation (6.39) gives us:

H = 2WR′ =⇒ H2

4
= W 2(R′)2

=⇒ W 2(R′)2 =
1

r2

where the in the last equation we used that H = 2/r from (6.38). And so W, r are
determined from the equations:

(W 2)′ + 4R′W 2 = 0 (6.40)

W 2(R′)2 =
1

r2
(6.41)

From Morse theory [35, p. 15] we have that if there is no critical value of U in
[c1, c2], then the level sets Sc1 and Sc2 are diffeomorphic. So we have proven:
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Proposition 6.3.11. [30, p. 92] If all c ∈ [c1, c2] are regular values of U and
any Sc is a sphere, then U−1[(c1, c2)] is diffeomorphic to S2 × R and the metric in
U−1[(c1, c2)] is

W−2 dU2 + r2(dθ2 + sin2 θ dϕ2)

where r(U) and W (U) are determined up to constants from equations (6.40) and
(6.41).

This tells us that the metric g is spherically symmetric. It follows that the
metric g4 in the static spacetimeM is also spherically symmetric. So from Birkhoffs
theorem we have that the only spherically symmetric spacetime in vacuum is the
Schwarzschild metric.

Remark 6.3.12. In the proof of this section we didnt use any arguments involving
the dimension of the time slice Σ up until the point where we used the Cotton tensor.
In fact the whole construction of doubling an asymptotically Euclidean time slice in
static, vacuum spacetime can be generalized in higher dimensions. Again using the
positive mass theorem for spin manifolds to prove that the metric of the time slice
is conformally flat. After that it needs different arguments to proceed. We refer to
the papers [26] and [21] for the proofs.

In 2017 Schoen and Yau proved the positive mass theorem in n-dimensions with-
out the assumption of spin manifolds ([47]).
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[10] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity:
Pearson New International Edition. Pearson Education, 2014.

[11] Carla Cederbaum. Static black hole uniqueness theorems - Lecture 1. https:
//www.youtube.com/watch?v=hf4qIiGVwLk. Accessed: 2023-02–10. 2019.

[12] Carla Cederbaum. Static black hole uniqueness theorems - Lecture 2. https:
//www.youtube.com/watch?v=OctoEFIs50I. Accessed: 2023-02-10. 2019.

[13] Carla Cederbaum. Static black hole uniqueness theorems - Lecture 3. https:
//www.youtube.com/watch?v=hHHGrZ4J1Cc. Accessed: 2023-02-10. 2019.

[14] Carla Cederbaum. Static black hole uniqueness theorems - Lecture 4. https:
//www.youtube.com/watch?v=4vceV8FNUUI. Accessed: 2023-02-10. 2019.

[15] Yvonne Choquet-Bruhat and Robert Geroch. “Global aspects of the Cauchy
problem in general relativity”. In: Communications in Mathematical Physics
14.4 (Dec. 1969), pp. 329–335.

[16] Bennett Chow and Dan Knopf. The Ricci Flow: An Introduction. 2004.

129

https://www.youtube.com/watch?v=hf4qIiGVwLk
https://www.youtube.com/watch?v=hf4qIiGVwLk
https://www.youtube.com/watch?v=OctoEFIs50I
https://www.youtube.com/watch?v=OctoEFIs50I
https://www.youtube.com/watch?v=hHHGrZ4J1Cc
https://www.youtube.com/watch?v=hHHGrZ4J1Cc
https://www.youtube.com/watch?v=4vceV8FNUUI
https://www.youtube.com/watch?v=4vceV8FNUUI


Bibliography 130

[17] D. Christodoulou. Mathematical Problems of General Relativity I. Mathemat-
ical Problems of General Relativity. European Mathematical Society, 2008.

[18] Demetrios Christodoulou and Sergiu Klainerman. The Global Nonlinear Sta-
bility of the Minkowski Space. Princeton: Princeton University Press, 1994.

[19] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics.
American Mathematical Society, 2010.

[20] Robert Geroch. “Domain of Dependence”. In: Journal of Mathematical Physics
11.2 (1970), pp. 437–449.

[21] Gary W. Gibbons, Daisuke Ida, and Tetsuya Shiromizu. “Uniqueness and Non-
Uniqueness of Static Vacuum Black Holes in Higher Dimensions”. In: Progress
of Theoretical Physics Supplement 148 (2002), pp. 284–290.

[22] William B. Gordon. “An analytical criterion for the completeness of Rieman-
nian manifolds”. In: Proceedings of the American Mathematical Society 37.1
(1973), pp. 221–225.

[23] H. Muller Zum Hagen, David C. Robinson, and H. J. Seifert. “Black holes in
static vacuum space-times”. In: General Relativity and Gravitation 4.1 (Feb.
1973), pp. 53–78.

[24] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time.
Cambridge University Press, May 1973.

[25] Markus Heusler. Black Hole Uniqueness Theorems. Cambridge University Press,
July 1996.

[26] Seungsu Hwang. “A Rigidity Theorem for Ricci Flat Metrics”. In: Geometriae
Dedicata 71.1 (1998), pp. 5–17.

[27] Werner Israel. “Event horizons in static electrovac space-times”. In: Commu-
nications in Mathematical Physics 8.3 (Sept. 1968), pp. 245–260.

[28] Werner Israel. “Event Horizons in Static Vacuum Space-Times”. In: Phys.
Rev. 164 (5 Dec. 1967), pp. 1776–1779.

[29] Nils Voje Johansen and Finn Ravndal. On the discovery of Birkhoff’s theorem.
2005.

[30] H. P. Künzle. “On the spherical symmetry of a static perfect fluid”. In: Meth-
ods of Local and Global Differential Geometry in General Relativity. Ed. by
D. Farnsworth et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1972,
pp. 157–164.

[31] John M. Lee. Introduction to Riemannian Manifolds. Springer International
Publishing, 2018.

[32] John M. Lee. Introduction to Smooth Manifolds. Springer New York, 2012.

[33] Lee Lindblom. “Some properties of static general relativistic stellar models”.
In: Journal of Mathematical Physics 21.6 (1980), pp. 1455–1459.

[34] Pawel O. Mazur. “Black Uniqueness Theorems”. In: (2001).

[35] John Milnor. Morse Theory. (AM-51), Volume 51. Princeton: Princeton Uni-
versity Press, 1963.

[36] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. 1973.



131 Bibliography

[37] B. O’Neill. The Geometry of Kerr Black Holes. Ak Peters Series. Taylor &
Francis, 1995.

[38] Barrett O’Neill. Semi-Riemannian geometry With Applications to Relativity.
Academic Press, 1983, p. 468.

[39] Willem van Oosterhout. “Birkhoff’s theorem in general relativity”. Bachelor’s
Thesis. Radboud University Nijmegen Faculty of Science, 2019.

[40] Peter Petersen. Riemannian Geometry. Springer International Publishing, 2016.

[41] Hans Ringström. A brief introduction to Semi-Riemannian geometry and gen-
eral relativity. https://people.kth.se/~hansr/Semi_Riemannian_Geometry.
pdf. Accessed: 2023-05-11. 2015.

[42] David. D. Robinson. “Four decades of black hole uniqueness theorems”. In:
(2012).

[43] Miguel Sánchez. “Cauchy Hypersurfaces and Global Lorentzian Geometry”.
In: vol. 8. May 2006, pp. 143–163.

[44] Bernd Schmidt. “Isometry Groups with Surface-Orthogonal Trajectories”. In:
Zeitschrift für Naturforschung A 22.9 (Sept. 1967), pp. 1351–1355.

[45] R.M. Schoen and S.T. Yau. Lectures on Differential Geometry. Conference
proceedings and lecture notes in geometry and topology. International Press,
2010.

[46] Richard Schoen and Shing Tung Yau. “On the proof of the positive mass
conjecture in general relativity”. In: Communications in Mathematical Physics
65.1 (1979), pp. 45–76.

[47] Richard Schoen and Shing-Tung Yau. “Positive Scalar Curvature and Minimal
Hypersurface Singularities”. In: (2017).

[48] Richard M. Schoen. “Conformal deformation of a Riemannian metric to con-
stant scalar curvature”. In: Journal of Differential Geometry 20 (1984), pp. 479–
495.

[49] K. Schwarzschild. On the gravitational field of a mass point according to Ein-
stein’s theory. 1916.

[50] Robert M. Wald. General Relativity. University of Chicago Press, 1984, p. 491.

https://people.kth.se/~hansr/Semi_Riemannian_Geometry.pdf
https://people.kth.se/~hansr/Semi_Riemannian_Geometry.pdf

	Semi-Riemannian Geometry
	Scalar Product Spaces
	Semi-Riemannian Metric
	Parallel Translation
	Geodesics
	Exponential Map

	Lorentzian Geometry
	Causality of Lorentzian Geometry
	Timecones
	Time Orientation
	Riemannian and Lorentzian Geometry

	Special Relativity
	Newtonian Space and Time
	Newtonian Space-Time

	Minkowski Spacetime
	Minkowski Geometry
	Isometry Group of Minkowski Space
	Poincare Group of Minkowski Spacetime

	General Relativity
	Einstein Equations
	The Schwarzschild Metric
	Birkhoff Theorem
	Kruskal Extension

	Cauchy Hypersurfaces
	3+1 Splitting
	Initial Value Problem
	Constraint Equations of the Einstein Equations in Vacuum
	First and Second Variation of the Metric
	Gauss and Codazzi Equations

	Static Spacetime

	Uniqueness of Asymptotically Euclidean Static Vacuum Spacetime
	Asymptotic Form of the Metric and the Lapse Function
	Conditions Needed for the Positive Mass Theorem
	Doubling of the 3-manifold and Proof of the Main Theorem

	Bibliography

