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Abstract

In the pursuit of developing effective therapeutics, structure-based drug design has emerged as
a powerful approach, leveraging our understanding of molecular structures to design molecules
with enhanced binding and functional properties. The search for effective therapeutics targeting
adenosine receptors (ARs), members of the G protein-coupled receptors (GPCRs) family, has

gained substantial significance due to their involvement in various pathological conditions.

The aim of this thesis is to explore the field of structure-based drug design, focusing on the
development of antagonists targeting adenosine receptors A; and As. In pursuit of this objective,
advanced computational methods like alchemical free energy perturbation and kinetic binding
calculations are employed. In Chapter 1, there is an introduction on GPCRs with emphasis on
ARs. Agonists, antagonists, and dual antagonists are mentioned that act on the orthosteric and
allosteric sites. Chapter 2 describes the principles of the methodologies applied through the

present thesis.

In Chapter 3, the synthesized derivatives of 7-aryl or alkylamino-pyrazolo[3,4-d]pyridazine
provided a novel scaffold for developing ligands against ARs. We have pharmacologically
characterized these compounds using functional cAMP assays and fluorescent ligand
displacement binding studies, expanding our study to the antiproliferative potential of these
agents as well. The introduction of a 3-phenyl group, together with a 7-benzylamino and 1-
methyl group at the pyrazolopyridazine scaffold, generated the antagonist compound 10b which
displayed 26 nM affinity and a residence time (RT) 60 min for the human AiR, 7.4 nM affinity
and RT = 73 min for the human AsR and low pM affinity for the human AR while not be toxic
against the normal cell line. The site of the N-methyl substitution on the pyrazole ring had a
remarkable effect on the bioactivity, since the corresponding 2-methyl-3-phenyl derivative (15b)
had no significant affinity, while when the 3-phenylgroup of 10b was replaced by an isopropyl
group, the resulting derivative 10a possessed considerably reduced affinity. We compared the
binding interactions of the regio-isomers 10b and 15b with molecular dynamics (MD)
simulations and the results suggested that the 2-methyl group in 15b hinders the formation of
hydrogen bonding interactions with N> which are considered critical for the stabilization inside
the orthosteric binding cavity. Mutagenesis experiments for 10b against A:R provided results
that complement the observations from MD simulations. We showed that L2505°A mutation
resulted in only a slight reduction of binding affinity concerning 10b while the Y2717%A mutation

caused a 10-fold reduction in binding affinity of this compound. Mutation to alanine of residues
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T91336, H251%%2 or S2677?, which are deep in the orthosteric binding affinity, did not affect

binding affinity.

In Chapter 4, we report the identification of 7- (phenylamino)-pyrazolo[3,4-c]pyridines L2-L10,
A15, and A17 as low-micromolar to low-nanomolar A;R/AsR dual antagonists, with 3-phenyl-5-
cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity
at both receptors with a long residence time of binding, as determined using a NanoBRET based
assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding
area of A;R in MD simulations, and we selected the most plausible orientation based on the
agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug
design purposes, the mutation of L250%! to alanine increased the binding affinity of A17 at A:R.
We explored the structure-activity relationships against AiR using alchemical binding free
energy calculations with the thermodynamic integration coupled with the MD simulation
(TI/MD) method, applied on the whole GPCR-membrane system, which showed a good

agreement (r = 0.73) between calculated and experimental relative binding free energies.

In Chapter 5, we sought to develop a computational model of inactive adenosine A; receptor
(AsR), not yet resolved experimentally, for drug design purposes. We tested five homology
models of inactive human A3R (hA3R) that are either publicly available or available from a web-
resource. After merging 3 homology models by similarity, we came up with homology Models 1
and 2 and the AlphaFold2-based Model 3. We observed that these models showed good
agreement in the orthosteric binding area except in upper region where Models 1, 2 differed
from Model 3 in the orientation of side chains of R173>3% M172>3% and M174>3>|ocated in the
extracellular loop 2 (EL2). We compared Models 1-3 regarding predictions of the experimentally
determined thermodynamic and kinetic stability for the pyrazolo[3,4-d]pyridazine antagonists.
The protein Models 1-3 in TI/MD calculations performed with good agreement (r = 0.74, 0.62
and 0.67, respectively) between the calculated and experimental relative binding free energies.
The t-Random Acceleration Molecular Dynamics (tRAMD) simulations effectively distinguished
between compounds with short and long RT within the receptor only with Models 1, 2, since in
Model 3 the orientation of R173>3* located at the top of ligands’ exit route affected compound
dissociation. By optimizing the orientation of side chains of residues M172>3%, R173%34, M1745%
in Model 3 the optimized Model 3 was generated. tRAMD simulations using the optimized model
3 correctly ranked ligands according to their residence time inside binding site. Furthermore, the
performance of TI/MD calculations with the optimized Model 3 was improved such as the
Pearson correlation coefficient was increased from r = 0.67 to 0.84 while the mean assigned

error was reduced from 0.81 kcal mol™ to 0.56 kcal mol™.


https://kbbox.h-its.org/toolbox/methods/molecular-simulation/-random-acceleration-molecular-dynamics-ramd/
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MepiAnyn

JTNV TpoomdBela avanmtuéng OmoTeAECoUOTIKWY Bepamelwy, o oxedlaopog Gapuakwy
Baolopévog otn Soun €xel avadelxbel w¢ pla LoXupH TIPOCEYYLON, EKUETAAAEUOUEVOC TNV
KOTOVONO!N TWV UOPLOKWY SOUWV ylo TOV OXESLOOUO HOPIlwV HE BeATIWHEVEG OLOTNTEG
SeopeUTIKOTNTOC Kal Asttoupyiag. H avalitnon amoteAEoUATIKWY BEPATIELWY TTOU OTOXEUOUV
otoug urntodoyxeic tng adevoaivng (ARs), LEAN TNG OLKOYEVELAG TWV UTIOSOXEWV TTOU GUVEEovTal
pe G nmpwrteiveg (GPCRs), €€l QIMOKTAOGEL CNUAVTLKNA onpooia AOyw TNG CUPUETOXNG TOUG OF

S1apopecg mMoOOAOYLKEG KATOOTACELC.

JKOTIOC AUTAG TNG SLatpPBng gival n avamtuén avtoywvioTwy OV GTOXEUOUV TOUC UTTOSOXEIC
¢ adevooivng Al kat A3. Ma tnv emitevén autol TOU GTOXOU, XPNOLUOTIOLOUVTAL TIPONYIEVEG
UTIOAOYLOTIKEG HEBOBOL, OTtWG N aAXNULKA Statapayr TG eEAeVBgpNC evEPyELAG KOl UTTOAOYLOHOL
KLVNTLKAC SeopeuTIKOTNTAC. XTO Kedalalo 1, mapéxetal pla eLoaywyr otouc GPCRs pe épudoaon
otoug ARs. Avad£povTal yvwoTol aYWVIOTEC, AVTAYWVLOTEC KoL SUTTAOL AVTayWVLOTEG TToU Spouv
ota opBootepikd Kal aAlooTnplkd onpeia twv ARs. To Keddhalo 2 meplypddel TG apXEG TWV

XpnoLpomnoloUpevwy pebodoloylwv otnv mapovoa Slatplpn.

Jto Kedpdhalo 3, ta OUVOETIKA TapAywyad TwvV 7-0pUALKWV 1 aAkuAapwo-rtupaloAo[3,4-
S]nupdalivn mapeiyav pia véa mAatdopua yLo tTnv avantuén SeoueuTwy evavtia otoug ARs. Ot
EVWOELG OUVTEBNKOV OTO £PYAOTNPLO TNG GUVOETLKNG XNKelag Tou EKMA umd tnv enifAedn twv
KaBnyntwv Mavaywtn Mapadakou, NikdA MouAn kat emikoupou KaBnynt NwoAaou AouyLakn
Kal n BLoAoytkn aLoAOyNon TWV EVWOEWV EYLVE e GOPUAKOAOYLKES Kal Bloduaotkeg LeBoSoug
and 1o epyaotnplo dpappakoloyiag tou kabnynty Graham Ladds oto lMavemiotAuo tou
Cambridge. H eloaywyn opadag 3-dawvuliou, poli pe pa opdda 7-Beviulapivng Kot pio opada
1-uebuliov otnv mupalohonuptdalivn mapnyaye TNV €vwon ovtaywvioty 10b pe 26 nM
ouyyévela 6£¢opeuong (Ki) kal xpovog mapapovrg otov urtodoxéa (RT) 60 Aemtd yia tov AR, 7,4
NM Ki kot RT = 73 Aemtd yla tov AsR kat xapnAd uM Ki yia tov AR, H avtikatdotaon tou N-
peBuliou otov SaktuAlo TnG mMupaloAng eixe eviunwolakn emnidpacn otn PlodpaoTikoTnTa,
KaBw¢ To avtiotolyo 2-peBUA-3-davuAiko mapdywyo 15b, Sev elxe onuavilk ouyyévela
S6éopeuoncg, evw Otav n 3-¢awvuAikn opdda tou 10b aviikataotdbnke amd i opdda
LoompomnuAiou, To amotéAeopa mou MPoéku e, To avriotoo mapdywyo 10a, elxe oNUAVIIKA
MEWWUEVN ouyyevela S€opeuong. Zuykpivape ta mpodih Séopeuong twv 10b kot 15b pe
TIPOCOUOLWOELG LOPLOKAG Suvapkng (MD) kal Ta amoteAéopata umodnAwoav OTL n opada 2-
pnebuliov oto 15b gumodbilel tnv dnpoupyia dsopwv vdpoydvou pe to N6.55 mou Bewpeitatl

kplowo apvoll yia tn otabepomoinon péoa otnv opBooteptkr] KOOTNTA. Ol TIELPOUOTIKEG

vi
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HEAETEG YEVETIKNG LETAAENG yia To 10b otov AsR mapeiyav anoteAéoUOTA TTOU GUUITANPWVOUY
TLG TOPATNPNOELG ATIO TLG TPOCcOUOLWoeLg MD. Asiape 0tL n petdAaén L2506.5:A 06rynos pévo
oc ula ehadpd peiwon tng ouyyévelag déopeuong 6oov adopd to 10b, evw n petaMaén
Y2717.46ATipoKAAeoe pia peiwon 10 dopég otnv ouyyévela MPOadeong AuTou ToU Tapaywyou.
H petalha&n og aAavivn twv apvoféwv T91336, H25165: 1 $S2677.42, TOU Bplokovral Babid otnv

opBootepikn BEon déopeuong, Sev EMNPENCE TNV CUYYEVELD SEGUEUONC.

310 Kedalato 4, avadépetal o evtomopog Twy 7-(dbavulapivwv)-nupalodo(3,4-k]nupldivwv
L2-L10, A15 kat Al7 wg vavopoplakol avtaywvioteg twv A;R/AsR, pe tv évwon 3-dpatvul-5-
Kuavo-7-(tptpuebolidavulauivo)-rupaloro[3,4-k]nuptdivng (A17) va epdavilet tnv unAotepn
OUVYYEVELO KaL yla Toug dU0 uttodoxelg omwe kaboplotnke papuakoloyka pe tn Sdokipooia
NanoBRET. It mpooopowwoelg MD, dUo miBavool mpocavatoAlopol decpevoswv tou Al7
mapnyayav otabepd cUpmAoka péoa otnv opbooteptkn meploxn tou AjR. EmAé€ape Tov TLO
mBavo mpooavatoAlopd Baollopevol otig HeAETeg petaAlagnyeveolg. Evbladépov £6¢elée n
HUETAAAOEN TOU apwvog€og L2506 5; 08 adavivn, n omoia avénoe Thv cUyyEVELa SECUELONC TOU
Al17 ywa tov AjR. E€etdoape TIg ox€oelg dounc-6pacng katd tov AjR XpNOLUOTIOLWVTOG
umoloylopoug Beppoduvaplkng ohokAnpwonc (TI/MD), upéBodog mou amoppéel Xwpig
npooeyyioelg (ab initio) amod BewpApATA OTATIOTIKAG UNXOAVLKAG YLot BgpoSuvapLkad cuoThata,
mou edpappootnke oe oAOKANPO to cuotnuo GPCR-pepBpavng, to onoio £6eL€e koA cUCXETION

(r=0,73) petafl TwV UTIOAOYLOUEVWY KOL TWV TIELPOUATIKWY OMOTEAECUATWVY.

Y10 Kedpahato 5, avamntiéape €va UTIOAOYLOTLKO LOVTEND TOU avevepyoU AsR, Ttou Sev £xeL akopa
€TUAUOEL TIEPAPATIKA, YLot OKOTIOUC OXESLAOHOU GOpUAKWY. AOKLUACAUE TIEVTE UTTOAOYLOTIKA
ouOAOYyOo HOVTEAD TOU avevepyoU AsR mou sival elte Stabéolpa Snuoaota site Stabéoipa and eva
Sladiktuako epyadeio. KataAn€ape ota unoloylotikd Movtéda 1 Kat 2 mou mapdaxbnkav amno
TELPAPATIKEG SOUEG TOU avevepyoU AR 1) tou AsR kat to Baoiopévo oto AlphaFold2 Movtého
3. Almotwoope OTL T povtéla £6elfav OXeTIK cupdwviot oTOV TIPOCOVATOALOUO TWV
TAEUPKWY 0AUCLOWY oTnVv 0pBoCTEPLKN TIEPLOXN TIPOCSEONG, EKTOC OO TNV OVWTEPN TEPLOXN
omou ta Movtéda 1, 2 SiEdepav and 1o MoviéAo 3 OTOV TIPOCOVATOALOUO TWV TIAEUPLKWY
oAucidwv Twv apvoféwv R173s31, M172533 kKot M174s35 Tou Bplokovtol oTo €EWKUTTAPLO
Bpoyxo 2 (EL2) kol BewpnTikd Ba pmopoucav va AELTOUPYOUV WG €UMOSLO oTnv ££060 TwV
dappakwy. Zuykpivape ta Movtéha 1-3 wg pog Tig mPoPAEPELS TNG TTELPAMOTIKA KABOPLOUEVNG
BEPUOSUVOULKAG KoL KLVNTLIKAG oTABEPOTNTAC YLol TNV OELPA TWV oVTywVLOTWV upalolo[3,4-
K]mupdivwv. Ta povtéda mpwrteivng 1-3 otoug umoAoylopoug TI/MD mapouciacav Kalf
ouoxétion (ouvteleotng cuox£tiong Pearson r = 0,74, 0,62 kat 0,67, avtiotolya) petafd Twv

UTIOAOYLOMEVWYV KOl TWV TIELPOUOTLKWY QTIOTEAECUATWV.

Vii
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Ot urtoAoylopot mpoPAsd NG TNC KLVNTLKAG TTPOCGSECNC TWV AVIAYWVLOTWY OTOUG UTIOSOXELG e
™V UEBodo TRAMD, Katétafav amMOTEAECUATLKA TLG EVWOELG AVAAOYQ LLE TOV XPOVO TIOPALOVIG
TOUG HEoa OTov umodoxEa xpnolpomolwvtag to Movtéda 1, 2, avtiBeta oto Movtélo 3 o
MPOCAVATOALOUOG TG R173s34 Tou Pploketal otnv kopudn tng Sladpoung e€odou Twv
dapuakwv ennpéaoce tn £€060 TWV evWoewv. Me Tn BeATioTonolnon TOU MPOCOVATOALGUOU TWV
MAEUPIKWY aAucidwv Twv apwotéwv M172s33, R173534, M174535 oto Movtédo 3
dnuioupynbnke TO PeAtiotomoinpévo Movtého 3. OL Tpooopolwoel; tou T-RAMD
XPNOLLLOTIOLWVTOG TO BEATLOTOMOLNUEVO LOVTEAO 3 KATETAEAV CWOTA TLG EVWOELG OVAAOYQ E TOV
XPOVO TOPOUOVNC TOUG HEoa otov umodoxéa Oeopelong. EmumAéov, n amddoon twv
urtodoylopwv TI/MD pe to Beltiotomotnpévo Movtédo 3 BeAtiwdnke, KaBWE 0 cUVTEAEOTNAG
ouoxétilong Pearson auv€nbnke anod r = 0,67 os r = 0,84, evw n PECN AVICOPPOTILA LELWONKE Ao

0,81 kcal mol*og 0,56 kcal mol™.

viii



Doctoral Thesis Stampelou Margarita Eleni

Acknowledgments

I would like to express my deep gratitude for IKY Foundation, which was my sole source of
funding of my PhD thesis work. Then | would like to acknowledge the following people whose

contribution was crucial for the successful completion of my PhD thesis:

| extend my special thanks to Prof. Antonios Kolocouris for his trust, guidance, and our fruitful
discussions over the years. His mentorship has been invaluable in helping me grasp the
fundamentals of drug design and the theoretical underpinnings of various computational

methods.

| would like to thank Prof. Graham Ladds, member of the counseling committee, who
contributed actively to the completion of this doctoral thesis by conducting the pharmacological

work that complement my research at the Dept of Pharmacology, Cambridge.

Furthermore, my gratitude goes to Prof. Marakos Panagiotis, Prof. Pouli Nicole, and Assistant
Prof. Nikolaos Lougiakis, a member of the examination committee, for their synthesis of the

chemical compounds studied in this thesis.

Special thanks to Dr. Georgios Lamprinidis for his invaluable assistance in setting up and
maintaining the workstations used in this research, as well as for his support with the algorithms.

| also appreciate the insightful comments provided by Dr. Daria Kokh on the algorithms.

I am immensely thankful to all the current and former members of Prof. Antonios Kolocouris'
lab that were fellow travelers to this journey, particular to my dear friend, Dr Eva Tzortzini, that

made this journey feasible and pleasant.

Lastly, my heartfelt thanks to my family for supporting me on this journey. Without them | would

never have been possible to begin this journey.



Doctoral Thesis Stampelou Margarita Eleni

List of Publications

The following publications and presentation are a result of work done during the thesis:

1.Stampelou M., Ladds G., Kolocouris A., Computational Model for the Unresolved,

Inactive A3R for Drug Design Purposes. (Submitted)

2.Stampelou M*, Suchankova A*, Tzortzini E, et al. Dual A1/A3 Adenosine Receptor
Antagonists: Binding Kinetics and Structure-Activity Relationship Studies Using
Mutagenesis and Alchemical Binding Free Energy Calculations, J. Med. Chem., 2022
(first co-authors) (doi: 10.1021/acs.jmedchem.2c01123)

3.Suchankova A.*, Stampelou M.*, Koutsouki K.*, et al. Discovery of a High Affinity
Adenosine A1/A3 Receptor Antagonist with a Novel 7-Amino-pyrazolo([3,4-
d]pyridazine Scaffold, Med. Chem. Lett., 2022, 13 (6), 923—-934 (*first co-authors)

Talk: Dual A1/A3 Adenosine Receptor Antagonists: Binding Kinetics and SAR
Studies Using Mutagenesis and Alchemical Binding Free Energy Calculations, EFMC
2022, Nice, France, September 2022



Doctoral Thesis

Table of Contents

Stampelou Margarita Eleni

ABSTRACT v
MEPINHWH Vi
ACKNOWLEDGMENTS IX
LIST OF PUBLICATIONS X
TABLE OF CONTENTS XI
LIST OF FIGURES XV
LIST OF TABLES Xvii
ABBREVIATIONS XIX
CHAPTER 1. INTRODUCTION 1
1.1 G-PROTEIN COUPLED RECEPTORS (GPCRS) 2
1.1.1 GPCRSIGNALING 3
1.1.2 GPCR FAMILY 5
1.1.3 GPCR STRUCTURES 7
Common structural elements of the GPCR A family 8
1.2 ADENOSINE RECEPTORS (ARS) 11
1.2.1 ADENOSINE RECEPTORS AS DRUG TARGETS 11
1.2.2  STRUCTURES 14
1.2.3  AGONISTS AND ANTAGONISTS 19
1.2.4 ALLOSTERIC MODULATORS 21
1.2.5 DUAL ANTAGONISTS 21
CHAPTER 2. METHODOLOGY 23
2.1 THEORY 24
2.1.1 HOMOLOGY MODELLING 24
2.1.2 MOLECULAR DOCKING 26
2.1.3 MOLECULAR DYNAMICS (MDS) 28
Force Fields 30
2.1.4  FREE ENERGY CALCULATIONS 32

Xi



Doctoral Thesis

MM/PBSA and MM/GBSA

TI/MD

2.1.5 BINDING KINETICS

New approaches for computing ligand—receptor binding kinetics
TRAMD method

2.2 METHODS

2.2.1 PROTEIN MODELS

Model of WT A;R-antagonist complex
Model of WT AzzR-antagonist complex
Three Models of WT AsR-antagonist complex
2.2.2 MOLECULAR DOCKING CALCULATIONS
Ligand preparation

Gold software Docking Calculations
Induced Fit Docking Calculations

2.2.3  MD SIMULATIONS

System preparation

MD simulation protocol

Trajectories visualization

2.2.4 BINDING FREE ENERGY CALCULATIONS
MM)/GBSA calculation

Alchemical TI/MD calculation

2.2.5 BINDING KINETICS CALCULATIONS
System preparation

Equilibration MD Simulation Protocol

TRAMD simulations protocol - Calculation of residence times

Stampelou Margarita Eleni

34
37
39
40
42
a4
44
44
44
44
46
46
46
46
47
47
48
49
49
49
50
52
52
52
53

CHAPTER 3. IDENTIFICATION OF HIGH AFFINITY DUAL A;/A; ANTAGONIST WITH NOVEL

7-AMINO-PYRAZOLO[3,4-D]PYRIDAZINE SCAFFOLD 54
3.1 PURPOSE OF THE STUDY 55
3.2 RESULTS & DISCUSSION 56
3.2.1 SIMILARITY CALCULATIONS 56
3.2.2 BIOLOGICAL RESULTS 57

3.2.3 BINDING PROFILE OF THE 7-AMINOPYRAZOLO[3,4-D]PYRIDAZINES TO AR AND AR USING MD

SIMULATIONS AND MUTAGENESIS EXPERIMENTS.

60

xii



Doctoral Thesis Stampelou Margarita Eleni

MD simulations 60

Mutagenesis experiments to study 10b binding to AsR. 68

CHAPTER 4. |IDENTIFICATION OF HIGH AFFINITY DUAL A,/A; AR ANTAGONISTS WITH A

NOVEL PYRAZOLOI3,4-C]PYRIDINE SCAFFOLD 70
4.1 PURPOSE OF THE STUDY 71
4.2 RESULTS 72
4.2.1 COMPOUND SELECTION 72
4.2.2 BIOLOGICAL RESULTS 73
Three New Lead Compounds Have AiR and AsR Subtype Selectivity. 73
Pyrazolo[3,4-c]pyridine, a Novel Scaffold for the Development of AR Antagonists. 76
Competition binding assays and determination of kinetic parameters using NanoBRET 77

4.2.3 BINDING PROFILE OF THE NOVEL PYRAZOLO[3,4-C]PYRIDINES USING MD SIMULATIONS AND

MUTAGENESIS EXPERIMENTS 80
MD simulations of A1R- A17 complex 81
MD simulations for the A17 and A26 series A;R complexes 84
Mutational Analysis of A17 92
4.2.4  SAR ANALYSIS OF LIGAND BINDING USING FREE ENERGY CALCULATIONS. 96
Alchemical Free Energy Calculations with TI/MD 96
MM/GBSA calculations with an Implicit Membrane Model. 99
4.3 DISCUSSION 100

CHAPTER 5. COMPUTATIONAL MODEL FOR THE UNRESOLVED, INACTIVE ADENOSINE A;

RECEPTOR FOR DRUG DESIGN PURPOSES 103
5.1 PURPOSE OF THE STUDY 104
5.2 RESULTS 106
5.2.1 MD SIMULATIONS OF PYRAZOLO[3,4-C]PYRIDINES IN COMPLEX WITH INACTIVE A3R 106

5.2.2 COMPARISON OF THE HOMOLOGY MODELS OF INACTIVE A3R BASED ON EXPERIMENTAL DATA FROM

THERMODYNAMICS OF BINDING AND DISSOCIATION KINETICS 118
Structure — dissociation rate relationships 118
Structure-binding affinity relationships from binding free energy calculations 121
5.3 DISCUSSION 127

xiii



Doctoral Thesis Stampelou Margarita Eleni

CHAPTER 6. CONCLUSIONS 131
CHAPTER 7. BIBLIOGRAPHY 134
APPENDIX 171

Xiv



Doctoral Thesis Stampelou Margarita Eleni

List of Figures

Figure 1-1: Diversity of G-protein-coupled receptor Signaling. .......cccocvvieieiieeeciiee e s 4

Figure 1-2: Crystal structures of representative mammalian GPCR-ligand complexes from classes A, B, C,

and F presenting diverse ligand-binding POCKETS. .........cciviiieeeiiiie e 6
Figure 1-3: General architecture and structural features of GPCRS. .........ccccceeeviiieeccie e 9

Figure 1-4: Comparison of inactive = active state transition between representative class A 2 adrenergic

FECEPTON . et 10
Figure 1-5: Disease targets for selective adenosine receptor agonists and antagonists. .........ccccccecvveeennee 14
Figure 1-6: Chemical structures of representative ARS @gONIStS. ......ccccuvieeiiieieiiiieecciieeeeciee e e eiree e 15
Figure 1-7: Chemical structures of representative ARS antagonists. .......cccevvveerieeriiienieeniieeee e 15

Figure 1-8: Comparison of the experimentally resolved structures of AIR (PDB ID 5UEN > ) and A2AR
(PDBID BEML 3%) .ttt ettt ettt ettt ettt et et eae et et ese et e s essebensensebebessetebessenesenes 17

Figure 2-1: Illustration of the application of the TRAMD workflow to simulate the dissociation of a drug-

like compound from @ target ProteIN. ....cccuiii i e e s e e e aaee e ennaees 43

Figure 3-1: (A)-(C) 100ns-MD simulations of 10a-c inside the orthosteric binding area of A:R. (D) 100ns-

MD simulations of 15b inside the orthosteric binding area A1R. .....ccoovviveveiiii i 65

Figure 3-2: Docking poses and representative frames, receptor-ligand interaction frequency histograms
and RMSD graphs from 100ns-MD simulations of 10b (A)-(B) inside the orthosteric binding area of
WT A2BR or A3R and (C),(D) 15b inside the orthosteric binding area of WT A2BR ,A3R, respectively.

Figure 3-3: N9-methyl,N6-benzyl adenine inside the orthosteric binding area of WT A1R; from docking

(or=1 (oL U1 = £ To ] o TP P PP PPPPPPPPPPPPPPRS 67

Figure 3-4: Representative frames from 100ns-MD simulations of (A) 10b inside the orthosteric binding

area of WT A1R; (B) 10b inside mutant Y27L1A A1R ...t eeree et e e eee e svee e e snree e 69

XV



Doctoral Thesis Stampelou Margarita Eleni

Figure 4-1: Representative frames, receptor-ligand interaction frequency histograms and RMSD plots of
A17 inside the orthosteric binding area of WT A1R from 100ns-MD simulations using the amber99sb
Lo ] (1= £1=1 o PO OO OO PPN 84

Figure 4-2: Representative frames of ligands A15, L2- L10, A26, L12 inside the orthosteric binding area of
A1R from 100NS-MD SIMUIGTIONS. ..eoiuviiiiiiriieeiieree ettt s 92

Figure 4-3: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations
of Y2717-36A A1R in complex with A17 using docking pose 1 (left hand part) or docking pose 2 (right
aETa o lo - o ) T OO OO TP SRR 94

Figure 4-4: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations
of $267732A, H251%°2A, L250%51A and T9133%A A1Rs in complex with A17 from 100ns-MD........... 95

Figure 4-5: Computed AAGb, TI/MD values plotted against AAGb,exp values estimated by the experimental
binding affinities pKd (Table 4-2) fOr A1R. ....cooiiieeeeee ettt 98

Figure 4-6: AGeff values from MM/GBSA calculations and experimental binding affinities pKi for A1R.100

Figure 5-1: Structure comparison of three homology protein models of inactive in its complex with
antagonist A17 embedded in phospholipid bilayers derived from 100ns-MD simulations with
AMDEBIOOSD. ittt e e et s bt e e s bbe e e e e abeeeseateeesbreeenn 108

Figure 5-2: Measures and ligand positions from 100ns-MD simulations with amber99sb 279271 of
antagonist A17 - inactive hA3R complex embedded in phospholipid bilayers using inactive hA3R
described with protein Models 1-3 or optimized Model 3. .......oooiiiiiiiiiieiiecee e 110

Figure 5-3: Measures from 100ns-MD simulations with amber99sb 27%27! of antagonist A17 - inactive hA3R
complex embedded in phospholipid bilayers using inactive hA3R described with Models 1-3 or
(oY o d[aa1F2=Te 1Y [ o 1] TR 111

Figure 5-4: Last frames, ligand interaction frequency histograms and RMSD plots from 100ns-MD
simulations with amber99sb 2727 of A17—-hA3R complexes embedded in phospholipid bilayers
using a homology model. (A) Model 1; (B) Model 2; (C) Model 3; (D) Optimized Model 3. ......... 114

Figure 5-5: Last frames and ligand interaction frequency histograms of ligand — inactive AsR complexes
embedded in phospholipid bilayers from 100ns-MD simulations with amber99sb for the three

homology models tested Models 1-3 and optimized Model 3. ............ccccciiieiii e, 118

Figure 5-6: Calculated RT values (ns) with TRAMD method for the ligand - inactive AsR complexes
embedded in phospholipid bilayers against experimental RT values (min) for ligands binding to

INACTIVE AR, oo 121

XVi



Doctoral Thesis Stampelou Margarita Eleni

Figure 5-7: Calculated AAGy,Tymp values plotted against AAGb,exp VAIUES.......cevvevieiiiiiieeiiiee e 126

List of Tables

Table 3-1: Chemical structures, antagonistic potencies (pECsoin presence of NECA?) and affinities (pKi ®)

of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15a-c against AiR and AsR. Data ........ccceeveevveenneee. 58

Table 3-2: MD simulations results of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15b in complex with A1R,
A3R or A2BR and MM/GBSA calculations results for 10a-c in complex with A1R. ..........ccvveveenee. 62

Table 3-3: Binding affinities (pKi) for 10b measured using saturation NanoBRET binding against WT AiR

and mutant A1RS. Data retrieVed frOM ... .. . e ettt e e e eeeeeeeeeeseeseeerererereeees 69

Table 4-1: Binding affinities measured using Schild curves (Kq) or BRET method (Ki) and functional activities

for A15, A17, L2-L10, and A26, L12, L15, L21 against AsR or A1R. ....coceeieiiiiiiirininicciccce, 74

Table 4-2: Kinetics of binding for the A17- and A26-panels of compounds to the orthosteric binding area
AL ThE AR AN AR ..ttt e s ettt e s bt e e e s bt e e s e abe e e saabaeeesbreeeaans 78

Table 4-3: RMSDiig, RMSDprot for A15, L2-L10, A17, and A26, L12, L15, L21 against AiR and OPLS2005-
calculated MM/GBSA binding free energies (AGesf) from the amber99sb 100ns-MD simulations

using an implicit membrane model, for A15, L2-L10, A17, against A1R. ....ccccvevevviieeeniieeeeieee e 80

Table 4-4: Binding affinities for CA200645, NECA and A17, measured using NanoBRET against WT and

INULANE AR S, oettiiiei ittt e e e e ettt ereeeeeeeta bt aeeeeesesstaaaeseessssstannaeeesssssnnnnaseeessssrnnnneeeessssssnnnnns 92

Table 4-5: Relative binding free energies computed by TI/MD calculations (AAGb,m/mp in kcal mol?) using
alchemical transformations and a thermodynamic cycle, experimental values (AAGy,exp in kcal mol
1) and deviation of calculated from experimental values (| AAGbm/mp - AAGbexp| in kcal mol?) for

pairs of compounds comMplexed t0 ALR. ....covuiiiiiiiiieeee e e 96

Table 5-1: Chemical structure of 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists

against AsR, experimental RT (RTexp) and Ka values as reported in Chapter 4 (Table 4-2) . .......... 106

XVii



Doctoral Thesis Stampelou Margarita Eleni

Table 5-2: Experimental dissociation constants, RMSD, and RMSD, for the 100ns-MD simulations with
amber99sb for the complexes of inactive AsR with antagonists Al17, L3, L4, L5, L6, L9 embedded in

phospholipid bilayers using homology Models 1-3 and optimized Model 3. ...........ccceeeevreeneee. 114

Table 5-3: RTexp values and calculated RT (RTcar) values for ligands Al7, L4, L5, L6; the latter were
calculated with TRAMD method for the ligand - inactive hAsR complexes embedded in phospholipid

bilayers using ff19sb 2% with the protein Models 1-3 or optimized Model 3. .......c.ccvevveeveerenenee. 119

Table 5-4: Calculated relative binding free energies by the TI/MD method %1% with ff19sb 2°> and a
thermodynamic cycle for alchemical transformations of 3,5-disubstituted 7-(phenylamino)-
pyrazolo[3,4-c]pyridines complexed to inactive AsR and embedded in phospholipid bilayers, using
protein Models 1-3 and optimized Model 3 (AAGb,1i/mp,1, AAGb,1i/Mp,2 and AAGh,Ti/mp,3, AAGhb, Ti/MD,0pt3,
respectively), experimental relative binding free energies (AAGb,exp) and deviation of calculated

from experimental values (| AAGo,/mp - AAGhb,exo|) (free energies in kcal mol™). ....c.oevevenennnne, 124

XViii



Doctoral Thesis

GPCR
GDP
GTP
AC
cAMP
PKA
PLC-B
PIP2
IP3
DAG
PKC
PI3K
PIP3
MAPK
ERK
JNK
FZD
SMO
ECD
mGlu
VFT
GEF
NC-IUPHAR

PDB
™
SBDD
cryo-EM
MECA
SOG
EC

IC

EL

IL
GRK
AR
Ado

Stampelou Margarita Eleni

Abbreviations

G-protein coupled receptors
Guanosine diphosphate

Guanosine triphosphate

Adenylyl cyclase

Cyclic adenosine monophosphate
Protein kinase A

Phospholipase C-beta
Phosphatidylinositol 4,5-bisphosphate
Inositol trisphosphate
Diacylglycerol

Protein kinase C

Phosphoinositide 3-Kinase
Phosphatidylinositol (3,4,5)-trisphosphate
Mitogen-Activated Protein Kinase
Extracellular signal-regulated kinase
c-Jun N-terminal kinase

Frizzled

Smoothened

Extracellular domain

Metabotropic glutamate receptors
Venus flytrap

Guanine nucleotide exchange factors

International Union of Pharmacology, Committee on Receptor Nomenclature and

Classification
Protein data bank

Transmembrane

Structure-Based Drug Design
Cryo—electron microscopy
Melanocortin, Endothelial, Cannabinoid and Adenosine receptors
Somatostatin, Opioid and Galanin
Extracellular

Intracellular

Extracellular loop

Intracellular loop

GPCR kinases

Adenosine receptor

Adenosine

XiX



Doctoral Thesis

CNS
COoPD
NECA

IB-MECA

HEMADO
ZM241385
FDA

PAM

NAM
MRCs

AF

SP

XP

MD

PBC

NVT

NPT

FF

PME
MM/PBSA
MM/GBSA
LIE

Tl

FEP

SMD

PMF

VS

GPU

SASA
MBAR

RT

SPR

BRET
NanoBRET
MSM
GaMD
SEEKR
InMetaD
CVs

Stampelou Margarita Eleni

Central nervous system

Chronic obstructive pulmonary disease

1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-B-D-ribofuranuronamide or 5’-(N-

ethylcarboxamido)adenosine

1-deoxy-1-[6-[[(3iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-B-D-

ribofuranuronamide
2-(1-hexynyl)N6-methyladenosine

4-[2-[7-amino-2-(2-furyl)-1,2,4-triazolo-[1,5-a][1,3,5]triazin-5-ylamino]ethyl]phenol

Food and Drug Administration

Positive allosteric modulator

Negative allosteric modulators

Multiple receptor conformations

AlphaFold

standard precision

extra precision

Molecular dynamics

Periodic Boundary Condition

constant number of particles, volume, and temperature
constant number of particles, pressure, and temperature
Force field

Particle Mesh Ewald

Molecular Mechanics - Poisson Boltzmann
Molecular Mechanics - Generalized Born Surface Area
Linear Interaction Energy

Thermodynamic Integration

Free-Energy Perturbation

Steered molecular dynamics

Potential of mean force

virtual screening

Graphics processing unit

solvent-accessible surface area

Multistate Bennett Acceptance Ratio

Residence time

surface plasmon resonance

bioluminescence resonance energy transfer

Nano bioluminescence resonance energy transfer
Markov State Modelling

Gaussian accelerated Molecular Dynamics
Simulation Enabled Estimation of Kinetic Rates
Multiple Infrequent Metadynamics

collective variables

XX



Doctoral Thesis

ML
RAMD
B:AR
M:R
mAChR M,
CRF:R
TRAMD
hAsR
pLDDT
OPLS
RMSD
MMFF94
POPE
OPM
GAFF
RESP
RESPA
GUI
SID
com
SEM
HEK293
DMSO
SAR
mue

PI
MRM

Stampelou Margarita Eleni

Machine Learning

random acceleration molecular dynamics
B,-adrenergic receptor

muscarinic receptor Ms

muscarinic acetylcholine receptor M,
corticotropin-releasing factor type 1 receptor
t-Random Acceleration Molecular Dynamics
human As;R

predicted local-distance difference test
Optimized Potentials for Liquid Simulations
Root mean square deviation

Molecular mechanics force field 94
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
Orientations of Proteins in Membranes
Generalized Amber Force Field

Restrained Electrostatic Potential

Reversible reference system propagator algorithms
Graphical user interface

Simulation interaction diagram

centre of atoms

standard error of the mean

human embryonic kidney 293

Dimethyl sulfoxide

structure-activity relationship

mean unsigned error

predictive index

M172533, R173534, M174535

XXi



Chapter 1.

Introduction




Doctoral Thesis Stampelou Margarita Eleni

1. Introduction

1.1 G-protein coupled receptors (GPCRs)

G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors and have
the ability to recognize a wide range of ligands, including photons and large protein molecules.
L2 These receptors play a crucial role in regulating numerous physiological processes in various
body systems, such as the skeletal, muscular, nervous, endocrine, urinary, and digestive
systems, among others. Given their significance in human physiology, dysfunctions in GPCRs can
lead to severe diseases, making them highly desirable targets for pharmaceutical intervention.
In fact, GPCRs represent the largest protein family that current approved drugs target, with
approximately 700 drugs on the market (around 35% of all approved drugs) specifically designed
to interact with GPCRs. These numbers are expected to continue increasing as extensive

research is being conducted to explore the druggability of GPCRs.>*

Despite the diversity of natural GPCRs ligands, there exist several receptor subfamilies in which
all proteins respond to a single endogenous agonist: for example, all GPCRs in the adrenergic
subfamily are activated by epinephrine while all muscarinic receptors naturally bind
acetylcholine and its derivatives. GPCR subtypes within a subfamily usually have distinct amino
acid sequences, tissue distributions and/or functional and pharmacological profiles; however,
their ligand binding pockets are highly conserved within the subfamily. The similarity of the
orthosteric binding pockets poses a challenge for design of subtype selective ligands which
remains one of the main hurdles in development of safe and effective medications targeting

GPCRs°.
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1.1.1 GPCR signaling

The signaling pathway initiated by GPCRs involves the activation of G-proteins, which are
intracellular proteins that act as molecular switches. Upon ligand binding to the GPCR,
conformational changes occur that facilitate the interaction of the receptor with specific G-
proteins. This interaction leads to the exchange of GDP (guanosine diphosphate) for GTP

(guanosine triphosphate) on the G-protein, causing its activation.

G proteins are composed of three distinct a, B, and y subunits. There are five subtypes of G
subunits and 12 subtypes of Gy subunits that form constitutive GBy heterodimers. The Ga

subunits are categorized into four main subtypes: Gas, Gai/o, Gag/11, and Ga12/13. ©

Both subunits have been shown to modulate the activity of different downstream effector

proteins (Figure 1-1).
Their signaling cascades in more detail:

Gais: Activation of Gas stimulates adenylyl cyclase (AC), leading to an increase in cyclic adenosine
monophosphate (cAMP) levels. Elevated cAMP levels then activate protein kinase A (PKA), which
phosphorylates target proteins, resulting in diverse cellular responses such as increased heart
rate, smooth muscle relaxation, and hormone secretion.

Gai/o: Activation of Gai/o inhibits AC, reducing cAMP levels and PKA activity. This leads to
decreased cellular responses, including reduced heart rate, smooth muscle contraction, and
neurotransmitter release inhibition.

Gaq/11: Activation of Gag/11 stimulates phospholipase C-beta (PLC-B), leading to the hydrolysis
of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3) and
diacylglycerol (DAG). IP3 triggers the release of calcium ions from intracellular stores, while DAG
activates protein kinase C (PKC). These events result in diverse cellular responses, including
smooth muscle contraction, secretion, and cell growth.

Ga12/13: Activation of Ga12/13 leads to the activation of Rho family small GTPases, such as
RhoA. These GTPases regulate actin cytoskeleton dynamics and cell shape changes, influencing

processes such as cell migration, adhesion, and cell growth. &1

While Ga subunits often receive the most attention, GBy subunits are equally critical for
transmitting signals and modulating cellular responses. GBy subunits can regulate AC activity,
either by inhibiting or stimulating its function. They can activate Phosphoinositide 3-Kinase

(PI13K), a lipid kinase involved in cell growth, survival, and migration. Activation of PI3K by GBy
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subunits leads to the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which
recruits and activates downstream effectors involved in cellular responses such as cell
proliferation and cytoskeletal rearrangement. They can also activate Mitogen-Activated Protein
Kinase (MAPK) signaling pathways, including the extracellular signal-regulated kinase (ERK), c-
Jun N-terminal kinase (JNK), and p38 pathways. Activation of these pathways by GBy subunits
contributes to cellular processes such as cell proliferation, differentiation, and gene expression.
GPBy subunits can modulate intracellular calcium levels by directly interacting with calcium
channels or by regulating calcium release from intracellular stores. This calcium signaling events
are crucial for diverse cellular processes, including neurotransmitter release, muscle

contraction, and gene expression. 1?13

Chemokines * + Sensory stimuli (light, taste and odorant molecules)
Lipids * Ligands + lons (e.g. Ca®*, HY)
Peptide hormones « + Amino acids (e.g. glutamate)
Plasma Prescribed drugs » + Neurotransmitters
rr]embrane GPCR
Gl O O Effectors ond messengers
Go,  —| Adenylate cyclases cAMP t
GWP Ge;  —i| Adenylate cyclases cAMP |}
! —> | Goygy —| Phospholipase CB | —| DAG, IPg, Casigh
OFF GTP Goryz13—| Rho-GEF
: ‘>'/ Gay —|Phosphodiesterase cGMP )
G proteins &l

Recruitment of GRK,,; — Receptor phosphorylation
L Conditional activation of adenylate cyclases 2, 4, 7 1
Regulation of PI3Ky

Regulation of ion channels (GIRK) t

Figure 1-1: Diversity of G-protein-coupled receptor signaling. Upon ligand agonist binding, the receptor adopts an
active-state conformation and interacts with one or multiple G proteins (GaBy), initiating a cascade of events.
Specifically, the interaction facilitates the exchange of GDP for GTP on the Ga subunit and consequently, Ga and GB8y
subunits dissociate, enabling them to activate (=) or inhibit (— [) various effectors, which in turn regulate intracellular

levels of second messengers. Adapted from Sutkeviciute and Vilardaga 2020 1,
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1.1.2 GPCR family

According to their sequence and function, GPCRs can be classified into six main sub-families,
four of which contain mammalian GPCRs (Figure 1-2). Class A receptors, also known as
rhodopsin-like receptors (80% of GPCRs, and most well studied); Class B secretin-like; Class C
metabotropic glutamate receptors; and Class F frizzled (FZD) or smoothened (SMO) receptors.
Class D and Class E families are composed of non-mammalian GPCRs. Class D family are fungal

mating pheromone receptors while Class E family contains cAMP receptors from slime molds.

e C(Class A: The rhodopsin-like family (Class A) is the largest family of GPCRs found in most
organisms. It includes > 700 members with 197 receptors with known ligands, > 400
olfactory receptors and 87 orphans. Within this family, members are recognized for their
extensive range of ligands, encompassing hormones, peptides, odorants, and even
photons of light. Given that the rhodopsin-like family constitutes over 80% of the GPCRs
found in humans 4, it has garnered considerable attention in research efforts focusing
on potential therapeutic advantages. The class A receptors according to Fredrikson et

al. 1% it can be further divided into four main branches:

- a branch: prostaglandin, amine, opsin, melatonin and MECA receptors (which

include Melanocortin, Endothelial, Cannabinoid and Adenosine receptors),
- B branch: most peptide receptors,

- y branch: SOG (for Somatostatin, Opioid and Galanin) receptors, melanin-

concentrating hormone receptors and chemokine receptors, and

- & branch: Mas-related receptors, glycoprotein receptors, purine receptors and

olfactory receptors.

e Class B: The secretin-like family (Class B) is another significant group of GPCRs. An
important feature of this family is its large N-terminal extracellular domain (ECD), which
plays a vital role in ligand recognition and binding, typically peptides or hormones. ¥’

- Class B1 (secretin receptor family) includes 15 receptors with known ligands and
26 orphans. This class includes the calcitonin receptors, corticotropin-releasing factor
receptors, glucagon receptor family, parathyroid hormone receptors and vasoactive
intestinal peptide, pituitary adenylate cyclase-activating polypeptide and growth-

hormone-releasing hormone receptors.
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- Class B2 (adhesion receptor family) includes 34 receptors, which possess a large

extracellular N-termini.

Class C: Metabotropic glutamate receptors (mGlu) (Class C) were discovered relatively
late compared to the other GPCR families. The mGlu receptors bind a diverse set of
ligands, such as amino acids, Ca2+ and pheromones. ® These receptors possess a large
ECD that forms a distinct structure known as the Venus flytrap (VFT) module. When a
ligand binds to one lobe of the VFT, the other lobe closes, triggering a conformational
change that is transmitted to the rest of the protein through a cysteine-rich region. They
function as dimers, which are either covalently linked by disulfide bonds or through
shared ion binding. *°

Class F: Frizzled or Smoothened receptors (Class F) contain a cysteine-rich domain in
their N-terminus that binds lipoglycoproteins of the Wingless family. 2° More recently,
both Frizzled and Smoothened receptors have been shown to also function as canonical
GPCRs, Frizzled proteins, in particular, serve as guanine nucleotide exchange factors
(GEFs) for Gai/o proteins, while Smoothened acts as a GEF for Gai. 2?2 Additionally,
GPCRs belonging to the related adhesion group frequently possess cadherin or integrin
domains, and many of these receptors exhibit auto-proteolytic activity. 2 The ligands

for these receptors encompass various components of the extracellular matrix,

24

including collagen.

Nucleosides
Nucleotides

DR, H;R

M,R/M,R NTSR1, PAR1

5-HT,g/ 5-HT Opioid rec. P2Y,, CRF1R SMO
(4LDO, 3PBL, (4GRV, 30E0, 4MBS, (2YDO, 4EIY, (4JKV, 4NaW,
3RZE, 4MQT, 41AR) 4DKL, 4EA3, 3VW7) 4NTJ, 4PXZ) (3V2Y,4PHU) (4K5Y) (40R2, 4009) 4QIM, 4QIN, 409R)

Figure 1-2: Crystal structures of representative mammalian GPCR-ligand complexes from classes A, B, C, and F

presentin

g diverse ligand-binding pockets. Class A GPCRs are further subdivided into aminergic-like (B1AR/82AR, D3R,

H1R, M2R/M3R, 5-HT1B/5-HT2B)), peptide-like (CXCR4, CCR5, NTSR1, PAR1, Opioid receptor), nucleotide-like (A2AR,

P2Y12), and lipid-like receptors (S1P1, FFAR1). Similarly, representative structures for class B (CRF1), class C (mGlul,

mGlu5, and class F (SMO) are shown. Receptors are shown in cartoon representation and the ligands are shown as

surface models. The PDB-IDs of the structures used for this graphic are indicated. Adapted from Shonberg et al. 2015.

25
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Alternatively, GPCRs are classified into the GRAFS system, with each letter of the acronym
standing for the most representative member of the family i.e., Glutamate, Rhodopsin,

Adhesion, Frizzled/Taste2, Secretin. >2¢

The International Union of Pharmacology, Committee on Receptor Nomenclature and
Classification (NC-IUPHAR) ?’(see http://www.guidetopharmacology.org/) recommends using

the A-F system classification.

1.1.3 GPCR structures

All proteins in the GPCRs family share a common structure with seven-transmembrane (TM) a-
helices, (TM1-TM7), which detect and transduce diverse external stimuli across the cell
membrane, the diversity of which is particularly high for class A GPCRs, #?® and includes ions,

small molecules, peptides, and globular proteins. °

In recent years, the field of GPCRs structural biology has experienced a significant resurgence,
with numerous new experimentally resolved structures. ?° This progress is attributed to
remarkable technological advancements in both membrane protein engineering and
crystallography, which have facilitated an exponential growth in the determination of GPCR
structures. These structures include receptors in both energetically stable inactive and active
conformations, stabilized by either a heterotrimeric G protein or a G protein mimetic nanobody.
Consequently, these solved structures not only offer molecular insights into ligand binding
mechanisms, activation processes, allosteric modulation, and receptor dimerization but also

open new avenues for Structure-Based Drug Design (SBDD).

For many years, the main choice in how to determine the structure of a GPCR coupled to a
heterotrimeric G protein, was the X-ray crystallography. However, the disadvantage of the X-ray
crystallography lies in the difficulty of producing good quality crystals of a GPCR coupled to a
heterotrimeric G protein. New methods have been developed, such as lipidic cubic phase and
cryo—electron microscopy (cryo-EM), in order to determine the structures of the GPCRs. In the
cryo-EM method, it is noteworthy that even the low-resolution structures exhibit a high degree

of flexibility, which stands in contrast to X-ray crystallography. .

The first protein found to be organized into seven transmembrane domains and finally became

a model for structural studies of the GPCRs was bacteriorhodopsin 3!, the major light-sensitive
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protein of the purple membrane of Halobacterium halobium, and since bacteriorhodopsin’s

structure many GPCRs structures have been solved.

Common structural elements of the GPCR A family

Owing to the technological advances of X-ray crystallography and cryo-EM, during the last 2

decades, much has been learned about the structural characteristics of GPCRs.

All class A GPCRs exhibit common structural features consisting of seven transmembrane helices
(TM1-TM?7) linked by three extracellular loops (EL1-3 or ECLs) and three intracellular loops (IL1-
3 orICLs) (Figure 1-3) , the length of these loops varies between the members of the GPCR family.
This 7TM bundle can be further divided into two modules: the extracellular (EC) and intracellular
(IC) modules. The N-terminus, located on the extracellular side, and the ECLs play crucial roles
in recognizing a wide array of ligands and modulating ligand entry. ECLs often contain disulfide

bridges, vital for maintaining loop stability. #

The 7TM bundle constitutes the main structural core that undergoes conformational changes
upon ligand binding, transmitting signals from the extracellular to the intracellular region. On
the other hand, the C-terminus and the ICLs interact with G proteins, arrestins, GPCR kinases
(GRKs), and other downstream signaling effectors, crucial for signal transduction and other
receptor modulatory functions. The intracellular region is relatively conserved due to the limited
types of downstream signaling effectors. The C-terminal region often contains a 3—4 turn a-helix,
known as helix 8 that is characterized by a common [F(RK)xx(FL)xxx] amphiphilic motif and it

carries a palmitoylation site that is responsible for anchoring helix 8 to the membrane.- 32

The general numbering scheme for GPCRs is proposed by Ballesteros and Weinstein 3. In
essence, every residue is numbered as X.YY, where X corresponds to the transmembrane helix
(X=[1,7]) and YY is a correlative number in the protein sequence, but taking as a reference
position (YY=50) the most conserved residue in the given helix: Asn in TM1 (98%), Asp in TM2
(93%), Arg in TM3 (95%), Trp in TM4 (96%), Pro in TM5 (76%), Pro in TM6 (98%) and, Pro in TM7
(93%).

One of the most conserved motifs among Class A GPCRs, as proposed by the rhodopsin structure
31 js the amino acids glutamate acid/aspartic acid—arginine—tyrosine, i.e., the D[E]R**°Y motif in

TM3 that has a significant role in regulating GPCR conformational states.
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This motif forms a salt bridge with D/E®3° in TM6, the so called “lonic lock” that may play a role
in restraining the fully inactive conformation of the class A receptors. This ionic lock is considered
a hallmark of the inactive conformation of GPCRs, obstructing G-protein binding at the
cytoplasmic region. Furthermore, the W8 xP motif in TM6 is regarded as one of the micro-
switches that exhibit significantly different conformations in the active state compared to the
inactive state of the receptor. Another conserved motif is the NP7*°xxY motif in TM7, which also
plays a vital role in GPCR activation. The extracellular loop regions in GPCR structures also show

325 3t the extracellular

similarities. Particularly, a highly conserved disulfide bond between Cys
tip of TM3 and a cysteine residue in ECL2 is observed in most GPCR structures. This disulfide
bond significantly contributes to stabilizing the extracellular region's conformation and helps the

entrance to the ligand-binding pocket. 32

EL2
EL1
E S ~
N-terminus
Extracellular D;?Jg:f/
(EC)
T™3
Binding
pocket N
) C-terminus
Intracellular ‘ i
s L helix 8
e IL1
\J"
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Figure 1-3: General architecture and structural features of GPCRs. The 7TM bundle (TM1-7) and key structural
features are shown on an example of the Adenosine Receptor AzaR crystal structure (PDB ID: 3eml)3*. GPCRs are
characterized by an extracellular N-terminus, followed by seven transmembrane a-helices (TM1-TM7) each shown in
a different color. TM helices are connected by three intracellular (IL1-IL3) and three extracellular loops (EL1-EL3) and
finally an intracellular C-terminus. The TM module (considered as the highly conserved component of GPCRs) shows
characteristic hydrophobic patterns and several functionally potent signature sequence motifs, including the D(E)RY
motif in TM3, the CWxP motif in TM6, and the NPxxY motif in TM7, which are also highlighted. The seven
transmembrane helices form a cavity within the plasma membrane that serves as a ligand-binding domain (orange

circle) that is often covered by EL2.
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GPCRs are activated by agonist ligand binding in the orthosteric binding pocket located within
the upper half of the TM core. This binding event is relayed to the extracellular site of the
receptor through allosteric interaction networks that are distinct for each GPCR class but
converge in a common GPCR activation hallmark—the mobilization and outward movement of
TM6. The outward movement of TM6 leads to the opening of the cytosolic cavity of the GPCRs,

allowing the subsequent binding and activation of the heterotrimeric G proteins. (Figure 1-4)

inactive  » active

Figure 1-4: Comparison of inactive = active state transition between representative class A 82 adrenergic receptor.
The common activation hallmark is an outward movement of TM6. The inactive- and active-state structures are shown
as semi-transparent cyan and pink cartoons, respectively, with TM6 helices highlighted as an opaque cartoon and
dashed lines connected with an arrow depicting transition from the inactive to the active state. The superimposed
structures are as follows: inactive-state (PDB entry 2R4R) 35 and active-state (PDB entry 3SN6) 3¢ B2AR. The G protein

is not depicted in the active-state structure.

Despite sharing a common 7TM architecture, GPCRs represent an intriguing model of finely
tuned recognition modules. This is attributed to their ability to recognize a wide range of ligands
with distinct physicochemical and structural properties, highlighting an extraordinary

convergence in signaling and regulatory processes.
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1.2 Adenosine Receptors (ARs)

Adenosine receptors (ARs) are class A GPCRs that are widely distributed throughout the human
body. These receptors play crucial roles in various physiological and pathological processes,
making them attractive targets for drug development. Understanding the tissue distribution,
functions, and structures of adenosine receptors is essential for understanding their significance
in both health and disease. There are four subtypes of adenosine receptors: A, Aza, Azs, and As.
Each subtype has distinct functions and signal transduction mechanisms. Among the four
subtypes the most similar are the A; and As ARs (49% sequence similarity) and the Azxand Az

ARs (59% similarity).

1.2.1 Adenosine receptors as drug targets

ARs natural ligand is adenosine (Ado), an endogenous purine nucleoside which is released in
response to cellular stress and inflammation. Each subtype has a different affinity for adenosine
with the A;R having the highest affinity at approximately 70 nM and the A.aR having a lower
affinity at approximately 150 nM. The Azs and As receptors have a much lower affinity at 5100
nM and 6500 nM, respectively. ¥’

Adenosine is involved in the regulation of various biological functions in different tissues and
organ systems, including cardiovascular, liver, renal, respiratory and central nervous system
(CNS) through its receptors. *® When adenosine levels are low, it binds preferentially with AR or
AsR and activates Gi/o protein, thus reducing AC and PKA activity. Instead, when adenosine
levels are higher, its binding is favored to A;aR or AzsR, activates Gs protein, and stimulates the
AC/cAMP/PKA cascade. *Therefore, adenosine depending on its concentration may affect

several physiological or pathological processes.

The development of drugs targeting ARs is a topic of active research. Scientists and
pharmaceutical companies are exploring various approaches, including the design of selective
agonists, antagonists, and allosteric modulators for each receptor subtype (Figure 1-5). The aim
is to develop drugs with improved efficacy, selectivity, and reduced side effects. ARs are present
in virtually all tissues and organs. This widespread distribution reflects the diverse functions that
these receptors serve in various physiological and pathological processes. The ARs are

prominently expressed in specific locations and exert their effects through signaling pathways

11
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involving the activation of G-proteins and the subsequent modulation of intracellular signaling
cascades. However, the widespread presence of ARs increases the likelihood of side effects,

making the promising potential of selective AR modulators quite a challenging task. *°

The functions and tissue distribution of each AR subtype, as well as the diseases in which ARs

are involved, are presented in summary below and in (Figure 1-5).
AR

The AiR is the most conserved adenosine receptor subtype among species, and it is widely
expressed throughout the body with the highest levels found in the brain. It is highly
concentrated in regions involved in sleep regulation, such as the basal forebrain and the
hypothalamus. Additionally, A; receptors are found in areas involved in pain perception, such as
the spinal cord and the periaqueductal gray. Within the cardiovascular system, A;Rs are
expressed in cardiac muscle cells and blood vessels. Activation of Ai;R in the heart leads to a
decrease in heart rate, resulting in a cardioprotective effect. In blood vessels, Al receptors are
involved in regulating vascular tone and blood pressure. They are also present in smooth muscle
cells of the lungs, where they modulate bronchoconstriction and airway diameter. In the
gastrointestinal tract, they are found in the liver, where they are involved in the regulation of
glucose and lipid metabolism. 3 AR is an attractive pharmacological target, since its antagonists
have been explored as kidney-protective agents, cognitive enhancers, and antiasthmatic and

CNS agents. 4140
AzaR

AxR antagonists have emerged as an attractive approach to treat Parkinson, sickle cell and
infectious diseases, cancer, ischemia reperfusion injury, diabetic nephropathy, cognition, and
other CNS disorders. ** Activation of A;aR in the brain influences the release of neurotransmitters
like dopamine, which is essential for movement and pleasure. Additionally, A;a receptors play a
role in cognitive functions, including attention, learning, and memory. They have been also
implicated in neurodegenerative disorders; A;aR antagonists have shown promise in alleviating
motor symptoms associated with Parkinson's disease and they may have therapeutic

implications in managing neuroinflammation in Alzheimer's disease.

In peripheral tissues, A;aRs are involved in the modulation of inflammation, blood flow,
angiogenesis and the control of cancer pathogenesis. ¥ Within the cardiovascular system, AaRs
are expressed in cardiac muscle cells and blood vessels. AR agonists promote vasodilation and

improved blood flow, making them promising candidates for the management of hypertension

12
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and ischemic heart disease. In the lungs, they are important targets for the treatment of
respiratory conditions, such as asthma and chronic obstructive pulmonary disease (COPD). A;aRs
are found in immune cells and their agonists have been investigated as potential treatments for

inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease. 4* 4

AR

The Az receptor is prominently found in various tissues, including the lungs, immune cells, and
blood vessels but mostly in low abundance. A;sR antagonists may be useful for the treatment of
asthma, COPD. They are also present in immune cells, including T cells and macrophages.
Activation of AxR on immune cells can modulate immune responses and influence
inflammation. 38 Furthermore, AxsRs are expressed in blood vessels, where they contribute to

the regulation of vascular tone and blood flow.
AsR

AsR is a target for a number of inflammatory diseases, including asthma, glaucoma, COPD,
rheumatoid arthritis and ischemic injury.  In addition, evidence is emerging to suggest that the
AsR is over-expressed in various tumor cells compared to normal cells, presenting the possibility
that AsR may be a viable drug target against cancer cell proliferation.*® In the brain, they are
expressed in regions involved in pain perception and inflammation regulation. They are also
expressed in immune cells, including mast cells, neutrophils, and macrophages. AsR activation
has been implicated in the regulation of mast cell degranulation, which plays a role in allergic
responses and asthma. Within the cardiovascular system, activation of As;R can have
cardioprotective effects, including reducing myocardial injury during ischemia and reperfusion.

In blood vessels, AsR activation can influence vascular tone and regulate blood flow. 4 %°

Understanding the functions of ARs provides valuable insights into their potential as therapeutic
targets and their implications in various physiological and pathological conditions. Targeting ARs
with selective or non-selective drugs holds promise for the development of treatments for sleep
disorders, neurological disorders, pain management, cardiovascular diseases, respiratory
conditions, gastrointestinal disorders, metabolic disorders, immune disorders, inflammatory

conditions and certain types of cancer.
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Antagonists Agonists
AR — cognitive disease AR — stroke, epilepsy, migraine, pain
A,.R = neurodegeneration, A,nR —sleep disorder
Parkinson’s disease | AsR —stroke
Huntington’s disease,
migraine [AMR — respiratory disorders.
—  LAREUnEHnIE

AR - glaucoma

AR - cardiac ischaemia, arrhythmia
A,,R - diagnostic, reperfusion injury,
thrombosis, hypertension

AR and A;R - asthma

AR = diabetes
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Figure 1-5: Disease targets for selective adenosine receptor agonists and antagonists. Most promising prospects exist
for treatment of arrhythmias, ischemia of the heart, pain, neurodegenerative diseases, sleep disorders, inflammation,

cancer and glaucoma.

1.2.2 Structures

Understanding the structures of ARs is crucial for elucidating their mechanisms of action and
designing selective or non-selective drugs targeting these receptors. The four subtypes share
common GPCRs structural features. However, each subtype exhibits distinct structural features

and differential affinities for adenosine and selective ligands.

The below Figures (Figure 1-6, Figure 1-7) show the structures of adenosine and other
representative agonists, like the 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-B-D-
ribofuranuronamide or 5’-(N-ethylcarboxamido)adenosine (NECA), the 1-deoxy-1-[6-[[(3-
iodophenyl)methyllamino]-9H-purin-9-yl]-N-methyl-B-D-ribofuranuronamide (IB-MECA), the 2-
(1-hexynyl)-N6-methyladenosine (HEMADO) etc, and some common ARs antagonists like
caffeine, theophylline and the A,s and Axs antagonist 4-[2-[7-amino-2-(2-furyl)-1,2,4-triazolo-
[1,5-a][1,3,5]triazin-5-ylamino]ethyl]phenol (ZM241385) that will be discussed further below.
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The publication of the X-ray structure of A;aR bound to the antagonist ZM241385 (Figure 1-7)
in 2008 34, revealed the binding mode of this antagonist (see Figure 1-8B). This significant
advancement significantly improved the methodologies for membrane protein crystallization
and structural biology techniques. Additionally, the A;aR-ZM241385 complex structure paved
the way for highly successful structure-based approaches in ligand discovery, resulting in

elevated hit rates and the identification of novel ligands.

This milestone subsequently facilitated the experimental determination of three out of four AR
subtypes. These structures have yielded valuable insights into the ligand binding pockets and
the conformational changes that occur upon receptor activation. The structural similarities
among adenosine receptor subtypes allow for the design of ligands with varying affinities and

selectivity.

Since 2008, AR has received extensive attention and was considered a prototypical receptor
within the GPCR superfamily. A;aR structures with different types of ligands were determined
by crystallography or cryo-EM, revealing the inactive, intermediate, and fully active
conformations. The binding mode of agonists like Ado and NECA (Figure 1-6) were resolved

45464748 49 o1 cryo-EM.30, respectively. Additionally, the binding mode

using X-ray crystallography
of several antagonists (Figure 1-7) i.e. ZM241385, 34°° PSB36, caffeine and theophylline® 525354

inside the A,aR and one bound to an engineered G protein #” have been determined since 2008.

Similarly, structures of the A; subtype receptor (AiR) have also been determined, providing
insights into its structure-function relationship. These structures show the binding of A;R with
the antagonists DU172 >° (Figure 1-7, Figure 1-8B) and PSB36 °° and the adenosine-bound A;R-

Gi complex. >’

More recently, the As subtype receptor (AzsR) has been investigated, and its structures have
been reported *%°°. The AR structure exhibits a larger extracellular region compared to other
adenosine receptor subtypes. This region is involved in interactions with ligands and may
contribute to the receptor's selectivity. The AR structure also provides insights into its binding
pocket and conformational changes upon ligand binding, facilitating the design of specific drugs

targeting this receptor.

However, the detailed structure of the A; subtype adenosine receptor (AsR) is yet to be resolved,
and further research is needed to obtain a comprehensive understanding of its molecular
architecture. Therefore, homology modeling must be employed to study AsR in complex with

ligands.
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Figure 1-8: Comparison of the experimentally resolved structures of AIR (PDB ID 5UEN 53 ) and A2AR (PDB ID 3EML

34)  (A) side and top view structural comparison. (B) Binding modes of DU172 (A1R) and ZM241385 (A2AR). The
complex is viewed from the membrane side facing helices TM6 and TM7 with the view of TM7 partially omitted. The
A1R is colored in blue and the A2AR in orange; Binding site residues are shown as sticks; DU172 (cyan) and ZM241385
(vellow) are shown as stick-ball models. Yellow dashed lines represent H-bonds, green dashed lines represent m-

stacking interactions.

ARs structures have revealed critical determinants in shaping the orthosteric binding sites,
influencing ligand recognition, and defining the receptor's pharmacological profile. In more
detail, it has been reported that the EL2 may orchestrate a network of interactions which may
stabilize the inactive conformation of the receptor and/or kinetically control the receptor-ligand
recognition 61, AxRs are characterized by the longest EL2 (238 amino acids) while in Az

subtype, EL2 is the shortest (>28 amino acids). 5 Despite the high degree of structural diversity
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with respect to EL2 in family A GPCRs, there is one feature that is conserved in the vast majority
of GPCRs i.e. a disulfide bond between EL2 and the top of TM3 (Cys3.25) (Figure 1-8A). This
disulfide bond effectively tethers EL2 on the top of the TM helical bundle and provides a very
important conformational constraint of the EL2. Some GPCRs have additional disulfide bonds
between different ELs such as for example between EL2-EL1 in A,aR. Additionally, the A.aR
subtype also possesses an additional intra-loop disulfide bond within EL3, in common with
melanocortin receptors and human histamine receptor 1. These “additional” disulfide bonds
contribute to reduce the flexibility of ELs and, consequently, they peculiarly sculpt the
topography of the extracellular portion of the receptor in proximity of the orthosteric binding

cleft. Finally, only one cysteine-bridge, linking TM3 to EL2 in AR models, is detectable.

If the orthosteric binding area is compared for the ARs, the A; subtype has a much closer
homology to AzaR. Although A;R differs from AzaR by only four residue changes in the periphery
of the binding pocket, the shape of the binding area differs according to the recently published
X-ray structure of AR in complex with the covalently bound antagonist DU172 *°. It was showed
that due to movements of TM1, TM2, TM3 and TM7 and EL3 in A;R., binding cavity is very wide
and open compared to A;aR which is elongated and narrower. (Figure 1-8) The AR pocket is
narrower with Met(7.35) acting as a gatekeeper (see Figure 1-8B) and preventing entry and
binding of bulky substituents. The compact structure of the TM bundle of the AzAR is consistent
with its unique disulphide bond, C74-C146, through which the beginning of TM3 is tightly
connected with the end of EL2 allowing for shifts in 1, 2, and 3 TMs as suggested. Both A; and
AsRs lack this disulphide bond. According to ref. >°>, TM7 also tilts towards TM6, possibly as a
result of a shorter EL3 in the A;R due to the deletion of one amino acid; EL3 is also shorter by
one amino acid in AsR. These differences in ELs tethering result in the different shape of binding
site and influence especially the approach of the ligand. A;R binding area includes a common
orthosteric binding region and a secondary one, i.e., there is a common region covered by
ZM241385 inside A;aR or DU172 inside AR despite their different orientation and height into
the cavity and the different shape and extension of the binding area (Figure 1-8). A;, Axa, A2sRs
contain the E(5.30) residue, except AsR which have a valine in (5.30) position. This glutamate
acid residue in (5.30) position may play a key role in high affinity ligand binding through the
formation of a strong hydrogen bond, for example, with an unsubstituted exocyclic amine.
Instead, the valine in (5.30) position of AsR may allow bulky substituents fitting, for example,

bulky substituents on amino group or other lipophilic moieties at this region.

The structural information of adenosine receptors has paved the way for the development of

selective or non-selective drugs that target these receptors. Selective ligands that specifically
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bind to a particular adenosine receptor subtype have been developed for therapeutic
applications. These ligands can modulate the activity of the receptors, leading to various
physiological effects. Furthermore, the structural insights into adenosine receptors have
allowed the design of non-selective ligands that can target multiple receptor subtypes
simultaneously. These ligands offer the advantage of broader efficacy in modulating adenosine

receptor signaling.

1.2.3 Agonists and antagonists

The main approach for discovering AR agonists has been modification of adenosine itself.
Optimization of Ado has been achieved after structural modifications of the ribose moiety and
by substitutions on the adenine ring and few structures are shown in Figure 1-6. % However,
NECA and analogues are non-selective AR agonists and their side effects include chest pain,
flushing, dyspnoea and low blood pressure through the activation or inhibition of different AR
subtypes.®* Among the developed agonists %°%° IB-MECA (CF101, Piclidenoson, and its 2-chloro
analogue, CI-IB-MECA (CF102, Namodenoson) are the most potent, subtype-selective and
widely used AsR agonists that have progressed to advanced clinical trials for the treatment of

8 inhibit tumor cell growth

inflammation and cancer, respectively.””’! Both compounds
according to in vitro and in vivo tumor models.”?74, Other potent and selective AsR agonists,
which have been synthesized as analogues of NECA and IB-MECA include CP-608,039 °,
HEMADO %, etc. Despite early setbacks, 2008 has been marked by successful FDA approval of
the new generation AR selective agonist regadenoson as a coronary vasodilator for use in
myocardial perfusion imaging. This breakthrough, along with other advances in preclinical and

clinical studies ** boosts interest to development of a new generation of bio-available and safe

agonists and antagonists for adenosine receptors. °

Similarly, the main approach for the discovery of AR antagonists (Figure 1-7) has been
modification of xanthines such as the non-selective antagonists caffeine and theophylline.
Selective human AR or hAzaR antagonists have already reached market. The hA;R antagonist
theophylline is a natural product and doxophylline, bamifylline , have been approved in the
market against paroxysmal supraventricular tachycardia and asthma, respectively 7>7¢ (Figure 1-
7). A phase lll clinical trial of the selective hA;R antagonist rolofylline has been developed for

the treatment of congestive heart failure but although has shown excellent tolerability of the

19



Doctoral Thesis Stampelou Margarita Eleni

drug, but lack of efficacy. 7 The selective hA;aR antagonist istradefylline was studied in phase

Il clinical trials and is currently approved as Parkinson disease therapy in Japan. 8

AsR antagonists haven’t entered clinical trials so far. One reason may be the large species
differences between hAsR and rodent AsRs that impair antagonists’ development through mice
models. 72®1The affinity at the human subtype is usually considerably higher than in the rat AsR
(rAsR). 7°® Early efforts to discover selective antagonists primarily involved extensive
pharmacological screening of various heterocyclic compounds with a non-purine structure. The
first nonxanthine heterocyclic derivatives found to be selective for the hA3;R were MRS1220 ((N-
[9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-yl]benzeneacetamide) and its
derivative MRS1523 (5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-
carboxylate) 8% MRS5147 (1' R, 2' R, 3' S, 4' R, 5' S)-4'-[2-chloro-6- (3-bromobenzylamino)-
purine]-2’, 3'-O-dihydroxybicyclo- [3.1.0]hexane) and its 3-iodo analogue MRS5127 are highly
selective AsR antagonists in human, based on a conformationally constrained ribose-like ring
that is truncated at the 5’ position 8% Cyclized derivatives of xanthines, such as the PSB-11 (R)-
4-methyl-8-ethyl-2-phenyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one), are also AsR-
selective %1, Selective AsR antagonists are used for studies of several diseases, such as the
heterocyclic derivatives OT-7999 (5-n-butyl-8-(4-trifluoromethylphenyl)-3H-[1,2,4]triazolo-[5,1-

8 and other such

iJpurine)which has been used for the treatment of glaucoma studies
antagonists are under consideration for treatment of cancer, stroke, and inflammation %, No

selective A3R antagonists have yet reached human trials.

In a previous work of our lab, from in silico screening of Maybridge HitFinder Library & we
identified new hits in collaboration with Prof. N. Klotz (Wurtzburg, Germany) using radiolabeled
assays and Prof. G. Ladds (Dept of Pharmacology, Cambridge) using Nano bioluminescence
resonance energy transfer (NanoBRET) assays and functional assays. These include antagonist
K18, with low micromolar affinities against hAsR. 8 We investigated the structural features of
the orthosteric binding profile of the agonist IB-MECA and antagonist K18 in complex with the
experimentally unresolved hAs;R using MD simulations, site-directed mutagenesis experiments

and functional assays. 8°
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1.2.4 Allosteric modulators

Allosteric modulation, which involves ligands binding to sites other than the primary binding site
of a receptor, has gained significant attention in recent years. 9 These ligands can modify the
receptor's response to stimuli. Positive allosteric modulators (PAMs) enhance agonist-mediated

responses, while negative allosteric modulators (NAMs) attenuate the response.

A recent review article * summarizes the recent findings of allosteric modulators for ARs.
Several allosteric modulators targeting A; and various A; ARs have been identified, and their
validation in diverse preclinical scenarios has shown promising outcomes. In contrast, the quest
for allosteric modulators for A;aand Az ARs has been less successful, but the findings obtained

thus far are still encouraging.

Allosteric modulators of ARs hold great potential as valuable pharmacological tools, capable of
potentially surpassing the limitations associated with orthosteric ligands. However, developing
allosteric modulators for ARs and GPCRs in general remains challenging. Detection of allosteric
behavior is also limited, and some modulators may not have been correctly identified initially.
Additionally, the binding of NAMs may resemble that of competitors, further complicating the
identification process. Structural determination through techniques like crystallography and

cryo-EM has been instrumental in identifying allosteric binding sites. %

1.2.5 Dual Antagonists

Dual antagonists are a class of drugs that simultaneously block two or more subtypes of
adenosine receptors. These compounds have the ability to bind to multiple adenosine receptor
subtypes, thereby inhibiting their activity and modulating downstream signaling pathways. The
development of adenosine receptor dual antagonists has gained attention as a potential
therapeutic strategy for various conditions. The potential applications of adenosine receptor
dual antagonists could include the development of treatments for various diseases with
enhanced therapeutic effects and simplified drug regimens. It is also known that multi-target
drugs for treatment of complex diseases are considered safer than drug combinations since they

have lower toxicities and a lower risk of drug-drug interactions. %

Thus, the development of dual- or multi-target drugs can offer significant advantages. A dual

hA,sR/hAsR antagonist was designed as an anti-asthmatic agent. °® Recent data suggested that
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dual hA;R/hA;saR antagonists may have therapeutic value against Parkinson's disease and

9 By blocking these receptors, these dual antagonists may help modulate

epilepsy.
neurotransmitter release and improve motor symptoms or reduce seizure activity. %1% Dual
antagonism of Ai1R/A;aR has also opened up new prospects for the treatment of diabetes. 1%
Additionally, a recent study on the pyridone-substituted triazolopyrimidine scaffold showed
great potential as a novel foundation for advancing the development of dual A;R/A:aR

antagonists as a potential treatment for the ischemic stroke. %

No pharmacological data on dual hA;R/hAsR ligands have been published. Antagonists of both
hAi1R and hAsR, targeting the same Gi-mediated pathway, may be useful and might even show
synergistic effects for the treatment of important diseases including (i) acute kidney injury and
kidney failure, 1°* (i) inflammatory pulmonary disease, asthma, allergy, 1°2 and (iii) Alzheimer's

disease. 10310

Developing adenosine receptor dual antagonists poses certain challenges, including achieving
sufficient selectivity for the desired receptor subtypes and managing potential side effects
resulting from the simultaneous blockade of multiple receptors. However, advancements in
medicinal chemistry and structure-based drug design could facilitate the discovery and
optimization of dual antagonists with improved selectivity and pharmacokinetic properties.
Further research and development efforts are needed to refine the selectivity, efficacy, and
safety profiles of such dual antagonists. The exploration of adenosine receptor dual antagonists
opens new possibilities for pharmacological interventions and may contribute to improved

patient outcomes in various disease settings.
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Chapter 2.

Methodology
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2. Methodology

The aim of this chapter is to give a general overview of the computational chemistry techniques
employed through the present thesis followed by a section of brief descriptions of the protocols

of the computational methods used.

Computational chemistry, which belongs to a part of the in-silico realm, studies molecular
systems through the application of computational models and simulations (numerical

algorithms) with the aim of understanding their structure and/or properties.

Computational chemistry has revolutionized the drug discovery process by accelerating and
optimizing the identification and design of potential drug candidates. Through the simulation of
molecular interactions, binding affinities, and pharmacokinetic properties, enables the
screening of vast chemical libraries, predict the activity of molecules, and prioritize the most
promising candidates for experimental validation. Moreover, computational chemistry aids in
the understanding of structure-activity relationships, guiding the modification of lead

compounds to enhance their potency, and selectivity.

2.1 Theory

2.1.1 Homology Modelling

Homology modeling is a computational technique used for predicting the three-dimensional
structure of a target protein by using the structure of a related protein with a known 3D
structure as a template. The process involves aligning the amino acid sequence of the target
protein with a template protein and then constructing a model based on the template's
structural information. The underlying principle behind homology modeling is the observation

that structural features are often more conserved throughout evolution than the exact amino
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acid sequence. Therefore, if two proteins share significant sequence similarity, their structures

are likely to be similar as well. 106107

The accuracy and reliability of a homology model depends on the degree of sequence identity
and similarity between the target and template proteins. Higher sequence identity and similarity
typically result in more accurate models. However, certain regions of the model, especially loop
regions, can be challenging to predict accurately due to insertions or deletions in the sequence,
making them less conserved. Consequently, loop regions are often the most error-prone parts

of the homology model.

Unlike AR *>>™7 and AR subtypes 3034454749515 and more recently the AR subtype *%°°, the
detailed structure of the A3R subtype has yet to be resolved. GPCRs structures’ predictions based
on homology templates have long provided reliable models when an experimentally determined
structure of a closely related protein homolog is available.!%®1% Therefore, homology models
have been used for drug design and interpretation of biological potencies for agonists 811° and
antagonists 8110 111112 5t the A3R and have been generated from both agonist- or antagonist-

bound A;aR or A;R X-ray structures.

The first essential step is to compare the sequence of unknown structure (ex. AsR) with known
structures stored in the PDB database '3, to align their sequences and choose the best
candidate. The alignment allows the transfer of structural information from the template to the
target, generating a reliable three-dimensional model of the adenosine receptor. The high-
resolution crystal structure of A;aR in complex with an antagonist (PDB ID 3EML **) provides an
excellent template as AzaR is closely related to A3 with a 55% sequence similarity. Homology

modelling of AsR based on AR crystal structure (PDB ID 5UEN *°) has a sequence similarity of
54%.

Once the model is generated, it undergoes refinement through various computational
techniques to improve its accuracy and reliability. Techniques such as molecular dynamics
simulations and energy minimization are applied to optimize the model's structure and address
any steric clashes or structural distortions. Additionally, the quality of the homology model is

114 which assess the

assessed through various validation metrics, such as Ramachandran plots
stereochemical quality of the model. Some computational tools available for model building are
MODELLER software **> and SWISS-MODEL server 118, a fully automated workflow that simplifies

the homology modelling process.

Additionally, several intricate techniques have been developed for generating AsR models, such

as the creation of hybrid models by incorporating multiple template structures '/, ligand-guided

25



Doctoral Thesis Stampelou Margarita Eleni

111,112,118

model optimization , and sampling of multiple receptor conformations (MRCs) followed

by docking studies °.

In recent years, significant advancements in homology modelling have been driven by
breakthroughs in machine learning and deep learning algorithms such as AlphaFold2 (AF2)
11912051d RoseTTAFold % that can generate accurate models for essentially any sequence. These
methods utilize a deep neural network architecture that integrates multiple sequence alignment
and co-evolutionary information to predict protein structures. They can predict not only the
overall fold but also the spatial arrangements of side chains, which are critical for ligand binding

and receptor activation.

In the case of GPCRs, AF2 has a bias towards either the active or inactive conformation of the
receptor and can only predict one state. However, a more sophisticated method has been
developed based on AF2, known as the Multi-state Alpha Fold method %, which considers the
conformational switch between the active and inactive states that occurs upon ligand binding.
This method has been shown to accurately predict the structures of GPCRs in different states,

making it a valuable tool for studying their function and developing new drugs.

By incorporating all the available homology modeling techniques, researchers can now generate
highly accurate models of ARs with unprecedented precision. These models provide valuable
insights into the receptor-ligand interactions and allosteric regulation, enabling the rational
design of novel drugs targeting ARs. As computational methods continue to evolve, homology
modeling will continue to be a vital tool in the field of structural biology, facilitating our
understanding of ARs and guiding the development of therapeutic interventions for various

diseases and conditions.

2.1.2 Molecular Docking

Docking in the field of molecular modeling is a method that makes predictions for the most
preferable placement of a molecule within a receptor when they bound to each other to form a
stable complex 122, Molecular docking is one of the most widely applied techniques in the field
of drug design, because of its ability to give predictions about the possible binding mode of

a small molecule ligand within a protein target binding site. 1%
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In the common rigid molecular docking method, only the ligand is flexible. However, both the
ligand and protein are characterized by flexibility. More sophisticated and computationally
demanding model correspond to the “induced fit” method, where both the ligand and the

protein adjust their structures to achieve an overall "best-fit". 12°

Every docking program includes two steps components for its normal execution:

1. Explore the conformational landscape of the small molecule to find the best
candidate binding modes (poses) within the receptor. This is done using sampling
methods % that can be categorized based on the degree of flexibility of the
molecules involved in the calculations, such as rigid (both molecules are kept rigid),
semi-flexible (where the protein is kept rigid while the molecules are allowed to be
flexible), and flexible docking (where both the protein and molecules are allowed to
be flexible). Each of these methods provides valuable insights into the interactions
between the small molecule ligands and the receptor, aiding in the identification of

potential binding sites and the most favorable binding configurations.

2. Rank the generated poses of potential binding modes and evaluate their binding
affinity using a scoring function ¥’. There are three main types of scoring functions:

— Force-field based: These functions take into account both intermolecular and
intramolecular interactions. The scoring is based on the sum of energy contributions
from various forces, such as van der Waals interactions, electrostatic interactions, and
hydrogen bonding, among others. These interactions are calculated using force-field
parameters and equations that describe the physical properties of the molecules.

— Empirical: These functions use multiple linear regressions to combine various
energy terms with coefficients that are adjusted to fit experimental data. The energy
terms encompass contributions from different aspects of the molecular interactions,
and the coefficients are optimized to produce scores that correlate well with
experimental binding affinities.

— Knowledge based: These scoring functions utilize statistical analysis of
intermolecular contacts found in large 3D databases. By applying the principles of
Boltzmann statistics, potentials are derived from the observed frequencies of different
interactions. This approach leverages existing knowledge about molecular interactions

to estimate binding affinities.
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Docking softwares used in this study:

GOLD Software 128 is a widely used molecular docking program that efficiently explores the
conformational space of ligands and protein receptors to predict binding modes and assess
ligand-protein interactions. Gold software has available four scoring functions (GoldScore,
ChemScore, ASP and ChemPLP). In this work, ChemScore ?° scoring function (empirical) was
used for the Molecular Docking calculations. ChemScore scoring function incorporates the term,

AG, that represents the total free energy change that occurs on ligand binding.

Glide (Induced Fit Docking) *°is a molecular docking method that considers the flexibility of
both the ligand and the receptor, allowing for structural adjustments to occur in the active site
during the docking process. The available scoring functions are GlideScore SP (standard

131 was used, an

precision) and XP (extra precision). In this work, Glide SP scoring function
empirical scoring function that evaluates the interaction energy between ligands and protein

binding sites.

2.1.3 Molecular Dynamics (MDs)

Molecular dynamics (MD) is a method that aims at understanding the time-evolution of a
molecular system represented by a set of particles with defined positions, based on an initial
structure like an X-ray crystallography, NMR or homology model. Starting from this initial
structure and assigning initial velocities to each atom (from a statistical mechanics approach,
the Boltzmann distribution at a given temperature). Sequential coordinates and velocities are

then computed by integrating Newton's equation of motion. 32

The outcome is a trajectory that shows the temporal evolution of atomic positions and velocities
influenced by all system atoms. However, due to the large number of particles interacting with
each other, analytically solving equation of motion is difficult, so it is necessary to perform
numerical integration using methods, such as Leapfrog integrator. ¥ This is an extension of the

Verlet algorithm, 13

so named because the particle positions are updated at integer timesteps,
whilst velocities are updated at half-integer timesteps, thus essentially ‘leap-frogging’ over one
another. The relationships for updating positions, r, and velocities, v, within the leap-frog

integrator are given by:
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. . . Fit
Where a(t) is the acceleration of particle i at time t calculated from Fil®) .

1

This process is contingent on knowing particle velocities from the prior step. Thus, the question
arises as to the origin of initial velocities. In general, such initial random velocities at the start of
a simulation are canonically taken from a Maxwell-Boltzmann distribution at a user-specified

temperature.

The frequency with which the equations of motion are integrated is determined by the time
step, &t, specified by the user. The careful choice of the time interval significantly impacts the
stability of the simulation. A value too small is computationally inefficient and limits sampling of
phase space, whilst too high a value may fail to adequately sample bond vibrations, and may
lead to deviation from their equilibrium values, resulting in the accumulation of artefactually
high forces and simulation errors. The choice of an appropriate time step is determined by force

field, system composition, integrators, and bond constraints.

Covalent bonds with high vibrational frequency are typically constrained to their equilibrium
value within MD simulations. Constraint algorithms are implemented after particle coordinates
have been updated by the integrator; and act to correct deviations from equilibrium bond
lengths. This is particularly useful for bonds undergoing high frequency vibrations, such as those
between heavy atoms and hydrogens, and allows for a larger timestep to be applied. The LINCS

135

algorithm *>> was applied to constrain covalent bonds within this thesis.

The standard approach for simulating the behavior of a transmembrane protein complex is
typically to embed the structure in a box that contains a lipid bilayer and water solvent. To avoid
problems with boundary effects caused by the finite size of the box (unit cell), periodic boundary
conditions (PBCs) are used, where the unit cell is surrounded by infinite replicas of itself. 3¢ The
geometry of the unit cell satisfies perfect two-dimensional tiling, and when an object passes
through one side of the unit cell, it re-appears on the opposite side with the same velocity. The
large systems approximated by PBCs consist of an infinite number of unit cells. In computer
simulations, one of these is the original simulation box, and others are copies called images.

During the simulation, only the properties of the original simulation box need to be recorded
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and propagated. The minimum-image convention is a common form of PBC particle
bookkeeping in which each individual particle in the simulation interacts with the closest image

of the remaining particles in the system.

Prior to initiation of a MD simulation, systems are generally subjected to an energy minimization
step. Such a procedure involves iteratively adjusting atomic coordinates to reach a local
minimum in the potential energy landscape, described by a force field. This is key in alleviating
incorrect geometries and steric clashes which may be present in the initial system configuration.
Leaving such features uncorrected may result in the accumulation of unacceptably high forces

137

and unstable simulations. Within this thesis the steepest descent algorithm **/ is used.

MD simulations are typically run in the NVT (constant number of particles, volume, and
temperature also known as canonical ensemble) or the NPT (constant number of particles,
pressure, and temperature or isothermal-isobaric ensemble) statistical mechanical ensembles.
For simulations that contain a lipid bilayer the NPT ensemble is generally employed. To keep
pressure and temperature constant, simulations are performed with a barostat (one for each

system component: protein, lipids and solvent), and thermostats, respectively.

Force Fields

Ta LOPLAKA XOPOKTNPLOTLIKA TIOU Xapaktnpilouv kaBe dtopo Tou cuotipatog kabopilouv Tig
oAANAsTdpAoELg Kot TN SuVALKA Toug KOTA TN SLdpKela TNE Mpooopoiwong. H padnuotikn
oUVAPTNON KOL OL TTAPAETPOL TTOU ETUTPETIOUV TOV UTTIOAOYLOUO TNG SuvapLkng evépyelog (E) tou
ouoTAuato¢ pe Paon tn Oféon twv atdépwv ovopdalovtotr "force field" (FFs). OL mio
xpnotpomnolovpevol force fields otn poplakr Suvoptk Twv BLOAOYIKWY HOKpPOUOpiwv gival ot
AMBER, CHARMM, GROMOS kot OPLS, pe kaBe €vav amd autolg va £xel ehadpw StadopeTikd

TPWTOKOAAQ TOPAETPOTIOINONG OAAQ, TEALKA, TIAPOUOLEG BACLKEC LAONUATIKEG LOPDEG.

Mua turikp ouvaptnon force field meplapBavel dsopeupévoug 6poug mou opilouv TIG
evbopopLaKkEC aAANAEEPAOELS 0TO CUCTNUA KOl PN-8E0UEUHEVOUC OPOUG TIOU Katoypadouv

KUPLWG TIC aAANAeTLEpAOELG LETAEY LOoplwY OVAECO OTOV EEWTEPLKO XWPO TOU CUCTHOTOC:

uem) = Z Upondea + z Unon-bonded

Where U is the potential energy of n particles, with positions given by r.

These components may be further subdivided into the energy terms:

30



Doctoral Thesis Stampelou Margarita Eleni

1
U= Zsz(b — by)? : bonds

1
+ ZEKQ(G _ 90)2 . angles - bonded

+ z K,[1— cos(ng + 8)]  :torsions

+Z < [(r?o)lz -2 (%)6] : Lennard-Jones _. o

+ Z ﬂ : Coulomb J bonded
T &y rij

With each term of the equation above accounting for the energy of all bonds, all angles, all
torsion angles, all non-bonded pairs (Lennard-Jones), and all partial charges (Coulomb)

respectively.

Bonded interaction terms describe forces within between covalently bonded particles, which
arise as a function of those covalent linkages. They include terms describing bond stretching,
bending of angles, and rotations about bonds. Both bonds and angles terms are described by
harmonic potentials (Hooke’s law), where b and by are the current bond length and its
equilibrium value, 6 and 8¢ are the current angle value and its equilibrium value and Ky, Ko are
the bond and angle force constants between atoms. The torsion term, also referred as dihedral
is often represented as a sum of cosine function, where ¢ is the torsion angle, n is the

multiplicity, 6 is the phase angle and K is the dihedral force constant between atoms.

Non-bonded interaction terms consist of two energy terms: van der Waals and electrostatic
interactions, which are implemented through the Lennard-Jones 12-6 potential (van der Waals
or Lennard-Jones) and the Coulombic potential, respectively. The Lennard-Jones potential is a
mathematical model that approximates the interaction between a pair of atoms, accounting for
two distinct forces, one attractive and another repulsive, where € is a parameter defining the
depth of the energy minimum, r is the distance between the 2 atoms and ro is the energy
expressed as an inverse power function of the distance between the considered 2 atoms. Finally,
the last term in the force field equation is the Coulombic potential, where giand q; are the partial
charges assigned to atoms i and j, €o is the dielectric constant and rj is the relative distance

between these atoms.
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The computation of non-bonded interactions is the most time-consuming part of a MD
simulation as the evaluation of the forces scales quadratically with the number of atoms in the
system if no approximation is used. Therefore, a distance cut-off of about 1nm is typically used
for non-bonded interactions. The same truncation strategy of Coulomb interactions causes
problems in simulations. Therefore long-ranged electrostatic interactions beyond a certain
cutoff (typically 1 nm) are not truncated but considered using Particle Mesh Ewald (PME) 142

methods.

2.1.4 Free Energy Calculations

Relative binding free energy calculations offer an attractive approach to predict protein—ligand
binding affinities in silico using molecular simulations and statistical mechanics to compute free

energy differences between congeneric molecules.

Free energy calculations play a pivotal role in computational chemistry and molecular modeling,
offering valuable insights into the thermodynamic properties and energetics of molecular
systems. These calculations provide a means to predict and quantify the stability, binding
affinities, and reaction pathways of molecules in diverse chemical and biological contexts. By
assessing the changes in free energy associated with molecular interactions or transformations,
we can gain a deeper understanding of complex processes such as ligand binding. In this dynamic
field, various approaches and algorithms have been developed to tackle the challenges of
accurate and efficient free energy estimation, contributing to a more comprehensive

comprehension of molecular behavior at the atomic level.
Free energy calculations methods can be divided into:
e Endpoint Methods:

MM/PBSA and MM/GBSA: Molecular Mechanics - Poisson Boltzmann (MM/PBSA) or Molecular
Mechanics - Generalized Born Surface Area (MM/GBSA) methods combine molecular mechanics
and continuum solvent models to estimate free energies of binding or solvation based on

molecular structures. 143144

Linear Interaction Energy (LIE): LIE estimates free energy changes by considering non-bonded

interactions between ligand and protein atoms. 145146

e Pathway or Alchemical methods:
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Thermodynamic Integration (TI): TI computes free energy changes by gradually transforming

one system into another while calculating the work done along the transformation path. ¥’

Free Energy Perturbation (FEP): FEP involves changing a system by adding or mutating atoms

and then calculating the free energy difference between the initial and modified systems.4
e Pulling Methods or Nonequilibrium:

Steered MD (SMD): In contrast with free-energy calculations carried out at thermodynamic
equilibrium, SMD utilizes either a constant or a time-varying force, responsible for marked

deviations from equilibrium conditions. #°

Umbrella Sampling: This method involves running multiple simulations with a harmonic
restraint that keeps the ligand at different positions along the unbinding pathway. The potential
of mean force (PMF) is then computed from these simulations to determine the binding free

energy. °

These methods offer various approaches to estimating free energy changes in molecular

systems, each tailored to different types of simulations and research questions.

Virtual screening (VS) protocols including docking calculations and an additional end-point
binding free energy calculation MM/PBSA or MM/GBSA method #3'%* have been applied and
identified novel hits for GPCRs. 181517157 |n our lab, we have also participated toward this effort
using a combination of docking and MIM/PBSA calculations. 8 However, the hit-to-lead discovery
process warrants more accurate binding free energy calculations. *8In this context, the accuracy
of alchemical relative binding free energies calculations of antagonists with Free-Energy
Perturbation coupled with MD simulations (FEP/MD) and a thermodynamic cycle method
(TI/MD) using experimental structures of ligand-GPCR class A systems, e.g., antagonists in

R, 156,159-164

complex with Aza was previously established.

A significant challenge associated with alchemical methods is the slow convergence of the free
energy differences and the high computational cost. %> However, there has been a recent
emergence of software designed to execute Tl and FEP calculations utilizing graphics processing

units (GPUs), 16>166

Additionally, advanced force fields and sampling algorithms have been recently produced that
are capable of predicting relative binding free energies at a high level of accuracy. 7% These
advancements coupled with a workflow automation **'7®have enabled free energy simulations

to be performed in a rigorous, high-throughput mode.
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Next, the methods employed for the purposes of this thesis will be further discussed.

MM/PBSA and MM/GBSA

Calculating binding energies in ligand-receptor complexes is of fundamental importance in
finding a candidate drug molecule in this approach. ! The huge number of interactions between
the solvent molecules and the system consisting of a ligand L which binds to a receptor R to form
a complex R — L, hampers the accuracy of the calculation of an accurate value for AGping.

MM/PBSA or MM/GBSA methods use the thermodynamic cycle shown in Scheme 2.1

solv

4 Gbind

- + —
—

soly

. + —

Scheme 2.1. The free energy for the formation of ligand L - receptor R complex can be calculated
using the end-points of this thermodynamic cycle including the bound and unbound states of

the ligand. According to thermodynamic cycle the AGying is calculated using equation (2.1)

AGZL%Z = AGESlsd + AGCSgrlr]l]plex - (AGSR())IV + AGL ) (2-1)

solv

This can be transformed to equation 2.2 172

AGbind = AH - TAS

= AEyy + (Acggigplex —AGR,, — AGL,,) — T4S (2.2)

solv
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If entropy change is taken to be approximately zero or if we compare complexes with similar
entropy changes then equation 2.2 can be transformed to equation 2.3 for the calculation of

effective binding free energies (AGes).
AGeff = AEMM + AGso|v (2.3)
AEMM = AEint+ AEe|ec + AE\,dW (24)

AGson = AGpejs + AGsa (2.5)

The terms for each complex AEmm and AGso are calculated using equations (2.4) and (2.5).

AEwm defines the interaction energy between the receptor and the ligand, as calculated by
molecular mechanics in the gas phase and includes the changes in the internal energies AEin:
(bond, angle, and dihedral energies), electrostatic energies AEele, and the van der Waals energies

AEvdW-

AG;oy is the desolvation free energy for transferring the ligand (L) or the receptor (R) or the
complex from water to the binding area. AG.. is the sum of the electrostatic solvation energy
AGpg/ce (polar contribution or AGp) and the non-polar contribution AGsa ( or AGnp) between the

solute and the continuum solvent.
The polar contribution of the solvation binding free energy in medium is given by the equation
(2.6)

1
Gr = =5 ) a() ¢i(r)) (2:6)

The difference in electrostatic energy between water (&s0ute=80) and protein (&soute=1) AGp, for

L, R and complex is given by the equation (2.7)

1
A6y = =3 ai(9P — o} @7)
i
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The calculation of electrostatic potential ¢; needed to compute AGr can be calculated using the

Poisson Boltzmann (PB) or Generalized Born (GB) equations. 13

In MD applications, the associated computational costs are often very high, as the AGpg/cs Needs
to be solved every time the conformation of a molecule changes. To reduce the computational

cost, the GB model can be applied as an approximation of the PB equation 74

Here, AGp is the contribution of the Coulomb and Born energy in the two dielectric environments

according to equation (2.8)

N N N
o= (-0 D)F W CHSE

i=1 j#i

where gi and R; are the charges and atomic radii for each atom i from the N atoms.

The choice of the solute dielectric constant (€) is strictly system-dependent and requires precise
study of the binding sites to obtain the most suitable €. Although ¢ is dependent on the
characteristics of the binding site (a higher € for a highly charged binding site and a lower ¢ for
a hydrophobic site), frequently the calculations are best with € = 2-4, especially in larger data
sets of diverse proteins. 7> Since the atomic charges used to calculate polar solvation energy
have fixed values, they cannot be adapted to respond to the dielectric changes when a solute is
solvated in the solvent. Therefore, a charge model that takes the solvent effect into account is
critical for the accurate calculation of solvation free energies. Applying a single dielectric

constant € to describe the heterogeneous dielectric environment of a solute can cause errors.

For membrane proteins, like GPCRs, to account for the lipophilic environment of the membrane,

a heterogeneous dielectric implicit membrane model can be used along the bilayer z-axis. 1767178

The non-polar contribution of solvation free energy is calculated according to equation (2.9)

AGyp = YSASA+ B (2.9)

where SASA (solvent accessible surface area) is the total area that the solvent can access around
solute, y is surface tension and 8 is an added as a correction factor. Typical values for y and 8 are

0.005420 kcal mol'*A2 and -1.008000 kcal mol™?, respectively.

Since the continuum models ignore all information about water molecules in water-exposed

binding sites (including the number and entropy changes) before and after ligand binding
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sometimes the treatment of the water molecules as a part of the receptor, provides improved
results in some cases 1797182, Another way is to replace the desolvation in MM/GBSA by the free
energy combined with displacement of binding-site water molecules upon ligand binding

estimated by the WaterMap approach, which yields varying results. 18

Usually, the binding free energy methods like MM/PBSA or MM/GBSA are applied in a set of
congeneric series of compounds and can provide good accuracy regarding the correlation
between calculated AGuing and experimental pK; values for Ki's covering a range of 103

corresponding to a AAGying scale equal to 4-5 kcal mol?, 18418

The computational duration is 50 times longer with the PB model. . The accuracy of the
calculated energy using the GB approach is compromised at the expense of computational
speed. The correlation and the computational demands make the GB approach attractive,
especially for qualitative analysis, though the GB method in principle is not as accurate as PB. 144
However, some studies have shown that optimal prediction of MM/GBSA with a solute dielectric

constant of 2.0 is better than using MM/PBSA for 98 ligand complexes. 143

TI/MD

The TI/MD method has been described in ref *’. To compare two ligands 0 and 1 binding to a
receptor, the calculation of A4, (b) and AA,(b), respectively, is needed and then the difference
AAAgy.,q , ie., AAAg 1 (b). The calculation of AA;(b) and A4y (b) is computationally demanded
because it includes large changes between the two states and doing free energy calculations for
the two states alone often have very large errors. Free energy is a state function, thus the free
energy difference between states is independent of the path that connects them. Thus, we can
construct a thermodynamic path that takes us through a set of states that improve phase space
overlap between states that can be unphysical, meaning that the intermediate states do not
have to be observable experimentally. The calculation of the relative binding free energies for
two ligands bound to a receptor can be performed instead using the MBAR method ¥’ and

), 188190 j e, using the AG values obtained for the

applying a thermodynamic cycle (Scheme 2.2
transformations of the ligands in the bound (b) and the solvent (s; water) state AGo,i(b) and

AGo,1(s), respectively, according to equation (2.10)
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AAAp g1 0r AAAp g = DAy, — AApp = AAg1(b) — BAg,1(s) (2.10)

ligand O(aq) + AR AAg (b) - AR-ligand 0
(solvent=water) (bound)
AAy 4(s) AA 1(b)
AAq(s)
ligand 1(aq) + AR > AR-ligand 1
(solvent=water) (bound)

Scheme 2.2. Thermodynamic cycle used for the calculation of relative binding free energies.

Using this method, we can calculate the difference between A4, 4(b) and A4, 1(s) which
corresponds to the unphysical alchemical transformation 0 = 1 in the bound and in the water
state, known as alchemical transformation which may be chosen to include small change or

perturbation of ligand structure to lower the error for the free energy perturbation calculation.

To put this mathematically, we can improve our results by constructing high phase space overlap
intermediates and calculating the free energy difference AAA,_,; by the sum of the binding free
energy differences between the intermediate states. Briefly, athermodynamic parameter A that
smoothly connects states 0 and 1 through a A-dependent potential U(r"; A), such that U(r"; 0) =
Uo(rY) and U(r"; 1) = U4(r"). The transformation is broken down into a series of M steps
corresponding to a set of A values Ay, A, ..., Am ranging from 0 to 1, such that there is sufficient
phase space overlap between neighboring intermediate A states. The Tl method computes the
free energy change of transformation 0 = 1 by integrating the Boltzmann averaged dU(A)/dA as

is described in equation (2.11).

AA f ' dl(dU(rN; 2N
-1 = 14 /A
017 | dl
du(rN;2
= Mgy ~ S w2y, )

38



Doctoral Thesis Stampelou Margarita Eleni

where the second sum indicates numerical integration over M quadrature points (A, for k=1,
..., M) with associated weights wi. A linear extrapolation between states can be applied for the
construction of Us(r"; A) while with Amber18 softcore potentials °>*°2 the LJ and Coulomb term

potentials are described according to equation (2.12).

U@rN; 1) = UsC(rV; 1) + 24U5¢(rV; 1)
=USC ;) + A (USCErY; 1 = 2) = USE (3 2)

(2.12)

Multistate Bennett Acceptance Ratio (MBAR) method ¥ calculates the free energy difference

between neighboring intermediate states using equation (2.13)

(wexp(-BUx+1))2 (2.13)

AAA—>A+1 = —lInin (wexp(—=BUr+1))2+1

where w is a function of A(A) and A(A + 1). The equation is solved iteratively to give the free
energy change of neighboring states AA(A > A + 1), which via combination yield the overall free
energy change. MBAR method has been shown to minimize the variance in the calculated free

energies, by making more efficient use of the simulation data. 187193719

2.1.5 Binding Kinetics

The binding equilibrium dissociation constant (K4) has been traditionally considered
fundamental for understanding structure-activity relationships and for efficient drug design.
However, over the past few years, the significance of calculating binding kinetic rates and
understanding the binding mechanisms of drugs with their target proteins has emerged in the

drug design process, 1967198 195-201

The rate in which the drug tackles the binding process is called the on-rate or the association
rate constant (kon). An efficacious drug usually has high ko, values. The kon constant is usually
expressed in M s73, since it depends on the concentration of the drug. The ko, value can be an
indicator of the selectivity of the drug and how fast the drug can sample the surface of the target

molecule and find the binding site. Protein or drug dynamics or thermal fluctuations may cause
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the unbinding of the drug. The rate at which the drug leaves the binding site is called the off-
rate or the dissociation rate constant (kor) and is usually expressed in s™. Another important
parameter for binding kinetics is the residence time (RT or 1). The RT is the time a drug stays in

the binding pocket 2°2 and can be calculated by the following equation:
T = 1/koff

Experimental methods such as surface plasmon resonance (SPR) and bioluminescence

resonance energy transfer (BRET) can be used for measuring ko and RT values.

Residence time can be directly linked to the drug activity, efficacious drugs usually have long
residence times. The more a drug stays in the binding site, the more it can interfere with the
function of the target protein. 2°2 A ligand can have a high binding affinity value against the target
protein in vitro in early stages of development, but a sufficiently long RT value is usually required
to proceed in the clinical phases. 1 Moreover, in in vivo systems, such as the human body, the
pharmacokinetics and pharmacodynamics play an important role while the drug is constantly
involved in off-target interactions, metabolism, and excretion. Longer residence times mean

more time in the bound state, away from these off-target events.

Indeed, many studies, including studies on GPCRs, have shown that the RT can exhibit a better
correlation with in vivo drug efficacy. 2°%2% An in-depth knowledge and the understanding of

206

the molecular determinants of drug—receptor binding kinetics at GPCRs is required to

successfully target this class of proteins. 207721 Experimental data and evidence for the binding

199-201

kinetics of orthosteric AR ligands have been reviewed %! including antagonists and

agonists 212213 that bind the orthosteric binding area of ARs.

New approaches for computing ligand—receptor binding kinetics

The growing evidence that the efficacy of a drug can be correlated to protein binding kinetics
has emerged the development of novel methods aimed at computing rate constants for ligand-
receptor binding events. Computing accurately the residence times or the dissociation rates,
poses challenges with conventional MDs alone due to the extensive sampling required. In this
regards, enhanced sampling methods have been developed to simulate biomolecular binding

and dissociation processes and predict the associated binding kinetic rates.
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The methods are mainly divided into two types, absolute methods for computing absolute
association (kon) and/or dissociation (kof) rate constants and relative methods to describe how
residence times of several compounds compare and rank them according to their binding
kinetics and whether ligands are considered fast (residence time t < 20 min) or slow (t > 40 min).
Obtaining the absolute kinetic constant is difficult and often time-consuming. Ranking and

finding correlations is usually faster and more likely to be used by industry to prioritize drugs.

Absolute kinetic rates could be estimated with <1 us of total simulation time using enhanced
sampling methods such as the Markov State Modelling (MSM)?1421¢, Weighted Ensemble?17-219,
Gaussian accelerated Molecular Dynamics (GaMD) 229221 and Simulation Enabled Estimation of

Kinetic Rates (SEEKR)?2272%,

228-232 haVe

Metadynamics 225227or Multiple Infrequent Metadynamics (InMetaD) simulations
been widely applied to investigate the ligand binding kinetics. However, Metadynamics
simulations challenge is to accurately define collective variables (CVs), which requires expert
knowledge of the studied systems. To overcome this challenge, Machine Learning (ML) has been
incorporated into Metadynamics simulations. Filizola et al 23 developed a novel approach,
which combined InMetaD and ML methods to predict the dissociation kinetic rates of two drugs

(morphine and bruprenorphine) in the p-opioid receptor.

Relative kinetic rates prediction methods, that allow high-throughput simulations of large
datasets and rank compounds according to their unbinding rates are Random Acceleration

Molecular Dynamics (RAMD), 242> scaled MD 224237 and steered MD. 2%

Scaled MD 236237 has been mainly used for the prediction of ke values. Mollica et al. used scaled
MD to correctly rank a congeneric series of four A2aR antagonists based on their residence times.
239 RAMD, a similar method to Scaled MD, is mainly used to qualitatively predict dissociation
rates. Nunes-Alves et al 2% performed RAMD simulations to predict ligand dissociation rates of

T4 lysozyme.

240,241

Coarse-grained Molecular dynamics have also been used to capture protein - ligand kinetic

pathways. 24

The on-line toolbox, KBbox *** (kbbox.h-its.org) contains descriptions of the different methods,

along with some tutorials and guidance on usage.

The trypsin-benzamidine system is the most widely used system for benchmarking different
methods. This is mainly because of the system’s relatively small size, as well as the relatively fast

association rate. Other systems that had been studied are Hsp90 23523724 gnd kinases?* 248 |
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Studies have been also performed to GPCRs, e.g., in B-adrenergic receptor (B,AR), 24920

51

muscarinic receptor Ms (MsR), %! muscarinic acetylcholine receptor M, (mAChR M), 2°

corticotropin-releasing factor type 1 receptor (CRF4R). %2

TRAMD method

In the present work, a recently developed method t-Random Acceleration Molecular Dynamics
(tRAMD)?%, is applied for the studied ARs systems. TRAMD is an efficient computational
workflow that enables the prediction of drug-protein relative RTs. The method is based on the
random acceleration molecular dynamics (RAMD) %3 method, an enhanced sampling procedure
that was originally developed for exploring ligand egress pathways from buried binding sites in

proteins.

The probability of a ligand leaving the binding site through a given exit path, pwt, can be
considered as an equal of the probability of the ligand finding the entrance to the exit path, p,,

and the probability of the ligand passing through it py. i.e.:

Ptot = P1 * Pu

The RAMD method enables computation of an estimation of the pwt, as the method permits a
ligand to find an exit path without a priori directional bias. Assuming that ligand exit occurs over
one single energy barrier, AGy, one can apply the theory of activated complexes. py is thus
associated with AG, and p, is a pre-exponential factor. ke, Which is proportional to pwt, can

therefore be written as:

_AGq
koffoc Ptot = D1 € RT

This model is a simplification of the complex free energy profile that is expected along a ligand

exit pathway in a protein.

The TRAMD workflow is summarized in Figure 2-1. In the RAMD method, during a standard MD

simulation of the protein-ligand complex, a small additional force (13) with a random orientation
is applied to the ligand to facilitate its unbinding. The force’s direction is randomly reassigned

when the ligand’s movement within a defined time frame drops below a predetermined
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threshold distance. The application of the random force allows the acceleration of the egress
event to be observed in a short simulation of several nanoseconds. Unlike other enhanced
sampling methods, TRAMD does not require any advance knowledge of the dissociation pathway
or extensive parameter fitting. The only user-set parameter is the magnitude of the random

force, which mainly affects the simulation time required.

7, dissociation time (ns)

Figure 2-1: Illustration of the application of the TRAMD workflow to simulate the dissociation of a drug-like compound

from a target protein.

TRAMD is a very flexible and computationally inexpensive that can be used to rank a set of small
molecules that bind to given protein target by their dissociation rates or residence times and to
build this information into the rational drug design workflows for the design of new molecules
or ligand optimization. In addition to implementations in the NAMD and AMBER software
packages, RAMD has recently been implemented in GROMACS molecular simulation engine for
simulations on CPU or GPU nodes. In this thesis the calculations are run on Gromacs-RAMD

version 2.0.
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2.2 Methods

2.2.1 Protein Models

Residues will be described by their amino acid identity (single letter code) and position (amino
acid number) within the specific GPCR with the Ballesteros and Weinstein numbering. 24, All His

were protonated on the Ne, 112 2%

Model of WT A;iR-antagonist complex

The X-ray WT AR — DU172 structure with PDB ID SUEN 5> was used for the purpose of this study.

Model of WT AzsR-antagonist complex

We superimposed the experimental crystal structure ZM241385 - AR complex (PDB ID 3EML34)
to the WT AR model from Adenosiland web-service. 2° Then, the AzaR protein was removed

resulting in the WT AR - ZM241385 model used in the study described on Chapter 3.

Three Models of WT AsR-antagonist complex

Model 1: As it has been previously described in ref. 7, we used the template-based homology

256 or from ref. 2° that was

model for inactive AsR WT derived from Adenosiland web-service
built using the crystal structure of the complex hA;aR -ZM241385 (PDB ID 3EML 34) as a template
which has a 56% sequence similarity (32.38% sequence identity) to hAsR (Figure S1). A model
from ref. 29 generated from A;R (PDB ID SUEN >°), which has a 54% sequence similarity (40%
sequence identity) to hAsR (Figure S1), was also compared; the AsR complexes after 100ns-MD
simulations converged to the same protein structure observed with homology models derived

from AR as described. Their sequence alignment was carried out using Jalview 2.11.2.6. ** The

side chain of V169°3° was rotated to increase the free space for ligands binding. ®

AsR Model 1 was used for the study described in Chapters 3 and 4.
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Model 2: An inactive AsR homology model was used as described in ref. ° Their homology
models were initially generated from a convenient modelling program and then were further
refined by sampling MRCs. The resulted MRCs were examined by docking calculations of
representative nucleoside ligands, and the model with the most reasonable binding mode was
selected for further optimisation using MD simulations. Using their homology models, along
with MD simulation and structural network analysis, they observed the boundary between

agonist and antagonist activity.

Model 3: We used the ML-based homology model derived from GPCRdb %° that contains
predictions for GPCRs in active and inactive forms via the advanced multi-state AF method. 2
For the study described in Chapter 5, we used the inactive state of AsR. The predicted local-
distance difference test (pLDDT) for modelled transmembrane residues was > 70, the disordered
intracellular C-terminus was discarded. Residues R173%>34, M172>% and M174°>3 (MRM motif)
that have a different orientation compared to the other two models, demonstrate a very low
confidence level (pLDDT < 50). The optimized Model 3 was derived with modification of MRM

motif orientation.

AsR Models 1, 2, 3 and optimized model 3 were used for the study described in Chapter 5.

All protein models were optimized using the Protein Preparation Wizard in Schrodinger suite
2021 (Protein Preparation Wizard; Epik, Schrédinger, LLC, New York, NY, 2021). %! In this
process, the bond orders and disulfide bonds were assigned and N- and C-termini of the protein
models were capped by acetyl and N-methyl-amino groups, respectively. All hydrogens of each
protein complex were minimized with the OPLS2005 force field 2°%2%* for by means of
Maestro/Macromodel 9.6 %** using a distance-dependent dielectric constant of 4.0. The
molecular mechanics minimizations were performed with the conjugate gradient method and a
threshold value of 2.4 10 kcal mol* A as the convergence criterion. Each protein model was
subjected in an all-atom minimization using the OPLS2005 force field 262262 with heavy atom root
mean square deviation (RMSD) value constrained to 0.30 A until the root mean square of
conjugate-gradient value reached < 0.05 kcal-mol*-AL. Models were then utilized for molecular

docking calculations.
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2.2.2 Molecular Docking Calculations

Ligand preparation

The 2D structures of the studied compounds were sketched with Marvin Program (Marvin

version 21.17.0, ChemAxon (https://www.chemaxon.com)) and model-built with Schrédinger

2021-1 platform (Schrédinger Release 2021-1: Protein Preparation Wizard; Epik, Schrodinger,
LLC, New York, NY, 2021; Impact, Schrédinger, LLC, New York, NY; Prime, Schrodinger, LLC, New
York, NY, 2021) and minimized using the conjugate gradient method, the MMFF94 force field 2%
and a distance-dependent dielectric constant of 4.0 until a convergence threshold of 2.4 10°
kcal molt A1 was reached. lonization states of the compounds at pH 7.5 were tested using Epik

266 implemented in Schrodinger suite (Prime, Schrédinger, LLC, New York, NY, 2021).

program
Energy minimization of the compounds' 3D structures was performed using the OPLS2005 262263

force field force field.

Gold software Docking Calculations

The molecular docking calculations of the studied compounds of Chapters 3 and 4 with AsR, AR

267 128 129

or AsR were performed using GOLD software and ChemScore '*? as the scoring function.
The models of WT A;R - DU172, WT AsR - ZM241385, WT AR - ZM241385 were used as
templates for the molecular docking calculations of the antagonists to the binding area of each
of the receptors. Each compound was docked in the binding site of ZM241385 in the A;R-
ZM241385 model or DU172 in AR - DU172, model or ZM241385 in the ARxR-ZM241385 model
in an area of 15 A around the ligand using the experimental coordinates of ZM241385 or DU172
and 20 genetic algorithm runs were applied for each docking calculation. The top-scoring
docking poses were used for MD simulations to investigate the binding profile of the tested

compounds inside the receptors.

Induced Fit Docking Calculations

Molecular docking simulations for Chapter 5 were performed using the induced-fit docking
protocol of Schrédinger suite 2021 (Induced-fit Docking, Schrédinger, LLC, New York, NY, 2021)

in standard protocol (standard precision) which allows flexibility of both the ligand and the
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entire binding site. Ligand ZM241385 (from AR - ZM241385 (PDB ID 3EML ** was used as
template for the molecular docking calculations of the antagonists to the binding area of each
of the AsR models. Thus, the grid boxes for the binding site were built considering the
coordinates of ZM241385. Docking was performed using a softened potential, i.e. the van der
Waals scaling factor was set at 0.5 for both receptor and ligand. The Prime refinement step was
set on side chains prediction of amino acid residues within 5 A of the ligand. Subsequently, a
minimization of the same set of residues and the ligand for each protein/ligand complex pose
was performed. After this stage, any receptor structure in each pose reflects an induced fit to
the ligand structure and conformation. For each ligand docked, a maximum of 20 poses was
retained. The binding was analyzed and the top-scoring docking poses were used for MD

simulations to investigate the binding profile of the tested compounds at inactive AsR.

2.2.3 MD simulations

System preparation

Each protein-ligand complex was inserted in a pre-equilibrated hydrated 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoethanolamine (POPE) membrane bilayer according to OPM (Orientations
of Proteins in Membranes) database. 28 The orthorhombic periodic box boundaries were set 12
A away from the protein using the System Builder utility of Desmond v4.9 (Schrédinger
Release 2021-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY,
2021. Maestro-Desmond Interoperability Tools, Schrodinger, New York, NY, 2021). The
membrane bilayer consisted by ca. 170 lipids and 16,000 TIP3P 2%° water molecules. Sodium and
chloride ions were added randomly in the water phase to neutralize the system and reach the
experimental salt concentration of 0.150 M NaCl. The total number of atoms of the complex was
approximately 75,000 and the simulation box dimensions was ca. 88 x 76 x 113A%. We used the
Desmond Viparr tool to assign the amber99sb 27%271 force field parameters for the calculation of
the protein, lipids and intermolecular interactions, and the Generalized Amber Force Field
(GAFF) ¢7 parameters for the ligands. Ligand atomic charges were computed using the
Restrained Electrostatic Potential (RESP) 27?fitting for the electrostatic potentials calculated with

Gaussian03 273 at the HF/6-31G* ?7* level of theory and the antechamber of AmberTools18. ?°
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MD simulation protocol

100 ns-MD simulations at constant pressure (NPT) were performed for the tested compounds
in complex with AR receptors embedded in POPE bilayers using Desmond v4.9 software, the

276

Desmond MD algorithm with amber99sb 79271 force field to investigate their binding

interactions.

The MD simulation protocol consists of a series of MD simulations designed to relax the system,
while not deviating substantially from the initial coordinates. During the first stage, a simulation
was run for 200 ps at 10 K in the NVT ensemble (constant volume, temperature and number of
atoms), with solute-heavy atoms restrained by a force constant of 50 kcal mol A2 The
temperature was raised to 310 K during a 200 ps MD simulation in the NPT ensemble (constant
pressure, temperature and number of atoms), with the same force constant applied to the
solute atoms. The temperature of 310 K was used in MD simulations in order to ensure that the
membrane state is above the main phase transition temperature of 298 K for POPE bilayers. 2”7
The heating was then followed by equilibration simulations. First, two 1 ns stages of NPT
equilibration were performed. In the first 1 ns stage, the heavy atoms of the system were
restrained by applying a force constant of 10 kcal mol™ A2, and in the second 1 ns stage, the
heavy atoms of the protein-ligand complex were restrained by applying a force constant of 2
kcal mol™ A~ to equilibrate water and lipid molecules. In the production phase, the relaxed

systems were simulated without restraints in the NPT ensemble for 100 ns. Replicas of the

system were saved every 50 ps.

In the MD simulations the PME method was employed to calculate long-range electrostatic
interactions with a grid spacing of 0.8 A. The SHAKE method was used to constrain heavy atom-
hydrogen bonds at ideal lengths and angles.?’”® Van der Waals and short-range electrostatic
interactions were smoothly truncated at 12 A. 7° The Nosé-Hoover thermostat 2% was utilized
to maintain a constant temperature in all MD simulations, and the Martyna-Tobias-Klein method

21 was used to control the pressure. The equations of motion were integrated using the

) #B%integrator with aninner

multistep reversible reference system propagator algorithms (RESPA
time step of 2 fs for bonded interactions and non-bonded interactions within the cutoff of 12 A.

An outer time step of 6.0 fs was used for non-bonded interactions beyond the cutoff.

Two MD simulation repeats were performed for each complex using the same starting structure
and applying randomized velocities. All the MD simulations with Desmond software were run

on GTX 1060 GPUs in lab workstations or the ARIS Supercomputer.
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Trajectories visualization

The visualization of the desmond MD simulation trajectories was performed using the graphical
user interface (GUI) of Maestro and the protein- ligand interaction analysis was carried out with
a simulation interaction diagram (SID) tool, available with a Desmond v4.9 program. For the
calculation of hydrogen bond interactions, a distance of 2.5 A between donor and acceptor
heavy atoms, and angle 2120° between donor-hydrogen-acceptor atoms and 290° between
hydrogen-acceptor-bonded atom. Non-specific hydrophobic contacts were identified when the
side chain of a hydrophobic residue fell within 3.6 A from a ligand’s aromatic or aliphatic carbon,
while m-Tt interactions were characterized by stacking of two aromatic groups face-to-face or
face-to-edge. Water-mediated interactions were characterized when the distance between
donor and acceptor atoms was 2.7 A, as well as an angle >110° between donor-hydrogen

acceptor atoms and 280° between hydrogen-acceptor-bonded atoms.

The generation of Figures for the representative frames were carried out using Pymol Molecular

Graphics System, Version 2.3.5 Schrédinger, LLC. 283

2.2.4 Binding Free Energy Calculations

MM/GBSA calculation

For the MM/GBSA calculations, structural ensembles were extracted in intervals of 40 ps from
the last 20 ns MD simulation for each complex. Prior to the calculations all water molecules,
ions, and lipids were removed, except 20 waters in the vicinity of the ligand, 2% and the
structures were positioned such that the geometric centre of each complex was located at the
coordinate origin. The MD trajectories were processed with the Python library MDAnalysis 2% in
order to extract the 20 water molecules closest to any atom in the ligand for each of the 501
frames. During the MM/GBSA calculations, the explicit water molecules were considered as
being part of the protein. Binding free energies of compounds in complex with A:R or AsR were

estimated using the 1-trajectory MM/GBSA approach. 144
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A dielectric constant &sute = 1 Was applied to the binding area and to account for the lipophilic
environment of the protein a heterogeneous dielectric implicit membrane model was used
along the bilayer z-axis. 167178 The post-processing thermal_mmgbsa.py script of the Schrodinger

Suite was used which takes snapshots from the MD simulations trajectory and calculates AGes:.

Alchemical TI/MD calculation

For the TI/MD calculations, the relaxed complexes of the tested compounds at A;R or AsR from
the 100ns-MD simulations in a POPE lipid bilayer with the amber99sb 27%2" force field were used
as starting structures for the calculations of the alchemical transformations. TI/MD calculations

were also performed for the ligands in solution.

Setups were performed using structures of the complexes that were already equilibrated from
the 100ns-MD simulations. The relaxed complexes were embedded in a POPE lipid bilayer
extending 12 A beyond the solutes using the CHARM-GUI web-based graphical user tool.
8850dium and chloride ions were randomly added in the aqueous phase to neutralize the system
based on a Monte-Carlo approach. Each ligand-AR complex in the bilayer was processed by the
LEaP module in AmberTools18 under the Amber18 software package.?’® Proteins, ligands, and
water were described with ff14sb 287, GAFF1.8 %7, and TIP3P force fields %%, respectively, and
intermolecular interactions with ff14sb force field. Atom types, bonded and van der Waals
parameters for ligands were added using Antechamber and Parmchk2 in the Amber18 tool set.
25partial charges for ligands were obtained using RESP fitting 2’2 for the electrostatic potentials
calculated with Gaussian03 8 at the Hartree-Fock (HF)/6-31G* ?’* |evel of theory and the

antechamber of AmberTools18.

Thus, initial geometries were minimized using 20,000 steps of steepest descent minimization at
A=0.5. These minimized geometries were then used for simulations at all A values. Eleven A
values were applied, equally spaced between 0.0 to 1.0. Each MD simulation was heated to 310
K for 500 ps using the Langevin thermostat (dynamics) 2®for temperature control, as
implemented in Amber18, ?>2° employing a Langevin collision frequency of 2.0 ps? in the
presence of harmonic restraint with force constant 10 kcal mol* A2 on all membrane, protein,
and ligand atoms. The temperature of 310 K was used in MD simulations to ensure that the
membrane state is above the main phase transition temperature of 298 K for POPE bilayers. 27

The Berendsen barostat 2! was used to adjust the density over 500 ps at constant pressure
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(NPTy) (with y = 10 dyn cm™), with a target pressure of 1 bar and a 2 ps coupling time. Then, the
500 ps of constant volume equilibration (NVT) was followed by 2 ns NVT production simulation
without restraints. Energies were recorded every 1 ps, and coordinates were saved every 10 ps.
Production simulations recalculated the potential energy at each A value every 1 ps for later

analysis with MBAR. 187,195

The bond constraint SHAKE 278 algorithm was disabled for TI mutations in AMBER GPU-TI module
pmemdGTl, 1%¢ and therefore a time step of 1 fs was used for all MD simulations. Long range
electrostatics were calculated using PME, with a 1 A grid, and short-range non-bonding
interactions were truncated at 12 A with a continuum model long range correction applied for

energy and pressure.

For each alchemical calculation, the 1-step protocol was performed, ie. disappearing one ligand
and appearing the other ligand simultaneously, and the electrostatic and van der Waals
interactions are scaled simultaneously using softcore potentials from real atoms that are

19 Alternatively, in the 3-step “decharge-vdW-recharge”

transformed into dummy atoms.
protocol, the atoms of the first ligand are first decharged, then undergo a van der Waals
interactions transformation using softcore potentials, and then recharged to the final state
(second ligand). *° The 1-step protocol is a less computational expensive and more accurate
approach to free energy estimates according to recent studies. > However, for the L9 > L8
transformation (see Chapter 4) the 3-step protocol was applied because it has been observed
that Tl calculation converges poorly with 1-step protocol if the substituent that is involved in the

transformation include a large numbers of atoms. 2%

The final states 0 and 1 of the alchemical calculations 0 > 1 or 1 = 0, ie. the structures of ligand
0-AR and 1-AR complexes as resulted from the alchemical transformations were compared with
these complexes structure resulted from converged 100ns-MD simulations. This was performed
to certify that the 2 ns MD simulation for each A-state during the alchemical calculations was
enough for the complexes 0-AR and 1-AR to converge to same structure with 100ns-MD
simulations. Two repeats were performed for each alchemical transformation. Experimental
relative binding free energies were estimated using the experimental binding affinities according

to equation 2.14.

AAGgy_(b)exp = —1.9872 T (pKd,1 — pKd,2)  (2.14)
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2.2.5 Binding Kinetics Calculations

For the binding kinetics calculations, the TRAMD algorithm was used. The complete workflow
for the TRAMD method includes a preparation step for the system setup, several sets of
conventional MD simulations and RAMD simulations as well as the trajectory analysis to

compute relative residence times, as described below.

System preparation

Four representative ligands (A17, L4-6) that have a wide range of RT values (see Chapter 5, Table
5-2) were selected to test the reliability of the TRAMD method using the three different models
of AsR. The relaxed complexes of the four representative ligands from the 100ns-MD simulations
were used as starting structures for the tRAMD protocol 234235293250 which (for which a tutorial

can be found at https://kbbox.h-its.org/). For the first step of preparation, we employed the

Amber20 software 24 as described in the TRAMD protocol 234235293250 which generate topology
and coordinate files for simulations with Amber software, each complex in the POPE bilayer was
processed by the LEaP module in AmberTools20 under the Amber20 software package to assign

the ff19sb 2> and GAFF %7 force fields as described above in the TI/MD section.

Equilibration MD Simulation Protocol

First, the system was minimized (with restraints on all heavy atoms except water and ions of
500, 50, 5 and 0.5 kcal mol™ A2 each for 500 steps of steepest descent minimization followed
by 1000 steps of conjugate gradient and then 1500 steps without restraints). It was then heated
up to 310K for 100 ps (NVT- Langevin) with restraints of 50 mol™ A2, Then the system was
further equilibrated by applying gradually decreasing restraints on the heavy atoms of the
protein and ligand for 100ps (50, 25, 10 and 5 kcal mol~* A-2) followed by a small equilibration
step without restrains (5ns) and by applying random velocities, as the membrane systems used
where already relaxed from the previous 100ns-MD simulation. In all simulations, non-bonded
Coulombic and Lennard-Jones interactions were truncated at a cut-off of 12 A. Periodic
boundary conditions were applied, and long-range Coulombic interactions were treated using
the PME method. A time step of 2 fs was used, and the SHAKE algorithm was employed to

constrain bonds involving hydrogen atoms.
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For the Gromacs simulations, we transformed the final output of the equilibrated systems from
Amber to Gromacs using ParmEd. 2°® We then conducted short NVT simulations with v-rescale
temperature coupling for a duration of 5 ns. Subsequently, we generated four independent
trajectories (4 replicas) of conventional MD simulations under NPT conditions using the
Nosé-Hoover thermostat and Parrinello-Rahman barostat, with each trajectory spanning 20 ns.
To ensure trajectory diversity, velocities were initialized from the Maxwell distribution. The
resulting final coordinates and velocities were utilized for the simulation of dissociation

trajectories using RAMD, which was carried out under the same NPT conditions.

TRAMD simulations protocol - Calculation of residence times

A series of 15 RAMD dissociation trajectories were generated using the starting snapshots
obtained from the four replicas mentioned earlier. The default parameters of the RAMD

293 were retained. The external force was

protocol, as described in detail in the TRAMD protocol
applied to the centre of atoms (COM) of the ligand and the ligand displacement was assessed
every 100 fs. If the ligand displacement was less than 0.025 A, a new random force orientation
was selected. Once the ligand’s COM reached a predefined distance of 50 A from the binding
site, it was considered dissociated, and the dissociation time was recorded. The length of the
RAMD trajectory was limited to 24 h wall-clock time due to the configuration of the utilized
computer cluster (ARIS Supercomputer). Within this time, ~ 40 ns of simulation time could be

achieved. The external force magnitude was defined as 8 kcal/mol A based on the dissociation

time of the slowest dissociating compound (L6).

To obtain the residence time for each replica, a bootstrapping procedure consisting of 5000
rounds with 80% randomly selected samples was performed. This procedure aims to converge
to a Gaussian-like distribution if the sampling is sufficient. The final relative residence time
(tRAMD) was determined as the mean value across all replicas. Computed relative residence
times were plotted against the corresponding experimental RT values (t exp). The mean
standard deviations of the computed residence times were computed as defined in the

previously reported TRAMD protocol of ref 2,

The visualization of the RAMD trajectories was performed using VMD 1.9.4 2°7 and the protein-

ligand interaction analysis was carried out with the MDanalysis toolkit?>.
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Chapter 3.

Identification of high affinity dual
A1/As; antagonist with novel
7-Amino pyrazolo[3,4-d]pyridazine
Scaffold

Investigation of the binding profiles to ARs using

MD simulations and mutagenesis experiments.
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3. Identification of high affinity dual A;/A; antagonist
with novel 7-Amino-pyrazolo[3,4-d]pyridazine Scaffold

Investigation of the binding profiles to ARs using MD simulations and

mutagenesis experiments.

3.1 Purpose of the study

It has been reported that non-xanthine pyrazole bicyclic derivatives that bind to ARs are
pyrazolo[4,3-d]pyrimidines, pyrazolo[1,5-c]quinazolines, pyrazolo[3,4-b]pyridines,
pyrazolo[3,4-b]pyridines, pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines, pyrazolo-[3,4-c] or -
[4,3-c]quinolines, pyrazolo-[4,3-d]pyrimidinones, pyrazolo-[3,4-d]pyrimidines, and pyrazolo-

298-300

[1,5-a]pyridines

In the work described in this Chapter, in collaboration with Prof Marakos, Prof Pouli and Assist.
Prof Lougiakis, we initially designed a novel pyrazolo[3,4-d]pyridazine scaffold for activity at the
ARs. The objective was to design compounds having an alkyl or aryl group, such as a phenyl
moiety, directed towards the lower region of the receptor for anchoring purposes.
Simultaneously, a larger, more flexible aryl-containing group, such as anilino or aminobenzyl,
was designed to orient towards the upper portion of the binding site, thereby enhancing

interactions with residues located within EL2.

A new series of 7-amino-pyrazolo[3,4-d]pyridazine derivatives were synthesised as reported in
ref 3°1 . The new derivatives’ binding affinities against the different ARs were determined using
functional cAMP accumulation assays and fluorescent ligand displacement binding studies. After
the pharmacological characterization by Prof Graham Ladds, we identified the 26nM A;R / 7 nM
AsR / <1uM AR antagonist 1-methyl-3-phenyl-7-benzylaminopyrazolo[3,4-d]pyridazine (10b)
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as a lead compound. Strikingly, compound 15b, the 2-methyl congener of 10b, had lower affinity
by > 100-fold against A:R or AsR or AzR.

The computational studies involved the comparison of the binding interactions of the regio-
isomers 10b and 15b with MD simulations in order to suggest the critical mechanisms for the
stabilization inside the orthosteric binding cavity. The results suggested that the 2-methyl group
in 15b hinders the formation of hydrogen bonding interactions with N®> which is a key residue
for ligand stabilization. Mutagenesis experiments for 10b against A;R provided results that
complement the observations from MD simulations. We showed that L250%°'A mutation
resulted in only a slight reduction of binding affinity concerning 10b while the Y2717-3A mutation
caused a 10-fold reduction in binding affinity of this compound. Mutation to alanine of residues
T91336, H251552 or S26772, which are deep in the orthosteric binding affinity, did not affect

binding affinity.

3.2 Results & Discussion

3.2.1 Similarity calculations

Upon searching CHEMBL 302303 database for similar compounds as antagonists to ARs using a
TanimotoCombo 3% coefficient > 0.85, we did not find the pyrazolo[3,4-d]pyridazine scaffold
suggesting that it is novel ring system for the development of ARs ligands. Representative
nonxanthine pyrazolo derivatives include pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines,
pyrazolo-[3,4-c] or -[4,3-c]quinolines,  pyrazolo-[4,3-d]pyrimidinones,  pyrazolo-[3,4-

d]pyrimidines, and pyrazolo-[1,5-a]pyridines. 3%

All the 3D similarity calculations were performed with Canvas program (Schroédinger Release

2021-1: Canvas, Schrddinger, LLC, New York, NY, 2021). 3%
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3.2.2 Biological Results

Compounds were pharmacological characterized to validate the in-silico predictions for the
purpose of this study by the laboratory of Dr Graham Ladds, Dept. of Pharmacology, University

90,301,307 3nd as reported in Chapter 6 of the Doctoral

of Cambridge as described in references
thesis of Dr Anna Hilser (University of Cambridge). 3% The pharmacological evaluation included
cAMP assays assessing the activity of compounds at ARs, quantifying binding parameters using
a NanoBRET-based saturation binding assay and determination of kinetic parameters of 10b

binding at AsR, AiR using the NanoBRET method.

Compounds 10a-c and 15a-c were pharmacologically evaluated to assess their activity, as
antagonists, against the different human AR subtypes as described previously % using functional
cAMP assay and the equilibrium dissociation constant (pKq) was calculated for each compound
(Table 3-1). Of the compounds tested, 10b displayed the highest affinity at the different AR
subtypes with greater selectivity towards the A;R and AsR than the AxR (Table S1). Using the
Schild plot analysis, 10b’s affinity (pA./pKs) was calculated at 21 nM at the A;R and 55 nM at the
AsR while only 1.7 uM at the AzsR (Table S1).

To independently verify the affinities determined using the functional cAMP assay, a previously
described NanoBRET binding assay (see ref %°) was performed to directly quantify the potential
antagonists binding to the AR and AsR (Table 3-1). The AR was not included in this analysis
since the pKy of 10a and 10b at the AsR were estimated to be below 1 uM (Table 3-1). Consistent
with the Schild analysis compound 10b displayed the highest affinity at the AiR and AsR (A:R: pK;
=7.95 £ 0.09; AsR: pK; = 7.89 + 0.11). Of the remaining compounds, 10a displayed weak affinity
at the AsR (pK;: 6.42 £ 0.28), which was in agreement with the Schild regression estimate, but
failed to bind A:R making an estimate for its affinity unreliable. All the other compounds failed
to bind AiR or AsR except for 15a and 15c which did display some binding at the AsR but.
Significantly, 15b a regio-isomeric derivative of 10b that contains a N-methyl substitution to 1-

NH, failed to bind either AR subtype.

We next investigated the real-time binding kinetics 0309310211 of 10b at the A3R, AR using
NanoBRET binding method as described in %.The kinetics of binding were determined for 10b
against AiR (Kon=51.4+0.26 x 10° Mt min%, Kor = 0.019 £0.003 min with a pKp =7.46 + 0.1 and
RT = 59.8 + 12.7 min) and against AsR (Kon = 25.6 + 0.1 x 10°> M min%, Koss = 0.014 +0.002 mint
with a pKp = 7.26 £ 0.05 and RT = 72.58 + 8.8 min). None of the other compounds were able to

be analyzed using this method due to their extremely fast Ko rate (> 2 min™). For compound
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10b there was excellent agreement between pKp (Kon/Koff) Of the compounds from the kinetics
assays and the Schild analysis (pA./pKy) and fair agreement (~ 3.16-fold) with the saturation

binding assays (pKi).

Table 3-1: Chemical structures, antagonistic potencies (pECsoin presence of NECA?) and affinities

(pKi ®) of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15a-c against A:R and AsR. Data

A1R A3R
pECso of NECA in pECso of NECA
Compound presence of pKi ® in presence of pKi ®
compound? compound?
NHBn CHy
/
T
N Vi 8.15+0.12** 5.17+1.13% 9.04£0.11 6.42+0.28
iPr
10a
NHBn /CH3
N
NZ \
| ’ N 7.95 +0.09
N / 7.15+£0.07*** e 7.80 £ 0.10*** 7.89+0.11*
Ph
10b
[Oj
N CHs
NF "\ 9.01+0.16 <5.0 9.50+0.12 <5.0
o
N Vi
Ph
10c
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NF /N\
| N—CHs
N ~ 8.62 +£0.15 <5.0 8.94+0.11* 5.77 +0.27#
iPr
15a
NHBn
NN
| N—CHs
N ~_ 8.82 £0.15 <5.0 9.33+0.13 <50
Ph
15b
o
[Nj
T/ =" 8.960.18 <5.0 9.27+0.16 6.44 +0.23"
N—CHs
N ~
Ph
15¢C
DPCPX 6.03+0.16 9.23 £ 0.08 - -
MRS1220 7.32 £0.09 7.29 £0.27 7.44 + 0.02% 9.94 +0.11
NECA 8.74 £0.15 6.69 £0.10 9.39+0.11 7.05+£0.07

a Mean  SEM; Functional activities of at least 3 independent repeats

b Mean * SEM; Equilibrium binding affinities of the ligands measured with NanoBRET against WT A3R or A;R; NECA was
used as positive control as described in ref 9,

#Due to high affinity of MRS1220, 10 nM was used to enable measurement of full dose-response curve of NECA in
order to determine pECso.

Statistical significance compared to NECA was determined, at p < 0.05, through One-Way ANOVA with Dunnett’s post-
test (*, p < 0.05; **, p < 0.01; ***, p < 0.001; **** p < 0.0001).

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 301,
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3.2.3 Binding Profile of the 7-Aminopyrazolo[3,4-d]pyridazines to AiR
and AsR using MD simulations and Mutagenesis experiments.

MD simulations

Having pharmacologically evaluated the different compounds, molecular docking calculations
followed to provide insights into how they bind to the ARs. 10a-10c were docked into the
orthosteric binding site of the AiR and 10b, 15b into A,sR and AsR (the amino acid sequences of
AR, AsR, AR in the orthosteric binding area are shown in Scheme 3.1) using the ChemScore as

270,271

the scoring function with the highest score docking pose being inserted into a hydrated

POPE bilayer. The complexes were subjected to 100ns-MD simulations with amber99sb 279271
and then the MD simulations trajectory was analyzed (Table 3-2). The MD simulations showed
that the 7-benzylamino-pyrazolo[3,4-d]pyridazine 10b substituted with N*Me and a 3-phenyl
group, formed a stable complex with all three ARs with RMSD protein Value < 2.1 A. Starting from
the same docking pose of 10b in A;R (Figure 3-1B), or AsR (Figure 3-2B), the mean frame from
MD simulations was close to the starting docking pose in AiR (RMSDy = 1.21 A) while in AR the
ligand moved considerably into the cleft between TM3, TM5 and TM6 helices (RMSDj, = 4.88 A).
Thus, starting from the same binding pose for 10b, the MD simulations produced two different
binding orientations at A:R and AsR. This is due also to the fact that A:R has a broader binding
area, expanded towards TM1, TM2, compared to the other ARs, according to the X-ray
structures of AR in complex with antagonists. °>°° A similar AR ligand reported in the literature
is the 4-(2-phenethyl)amino 1-phenylethyl pyrazolo[3,4-b]pyridine (Tc = 0.15), which binds with
a similar docking pose to 10b to AsR. 31'We also docked a representative adenine derivative that

binds AR, e.g. N9-methyl,N6-benzyl adenine, and found a similar docking pose (Figure 3-3).

Inside the A1R orthosteric site, compound 10b formed hydrogen bonds through its pyrazole or

4555 or imidazole side chain of

pyridazine nitrogen donor groups to the amide side chain of N25
H2787%, Furthermore, 10b, was stabilized in the orthosteric binding site through m-m
interactions between its pyrazolo[3,4-d]pyridazine or phenyl rings with F171%%, H251%52 and
W24754 | respectively. The benzylamino group of the 10b oriented towards the widened TM2
area in A:R forming hydrophobic interactions with A66%%! and 169%%4. Furthermore, 10b was
found to positioned deep in the binding pocket interacting with V87332 or W247%% while the 3-
phenyl-pyrazole aligned close to the side chains of M180>38 and L2508 (Figure 3-1). In the AsR
46.55

compound 10b was stabilized through formation of hydrogen bonding interactions with N25

and H2787*% and hydrophobic interactions with L90%32, 191333, F168°2°, M177°%8, 1246%°! and
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12687 (Figure 3-2B). Finally, the interaction profile for 10b was very similar inside AR to that
observed for the A;R (Figure 3-2A), though 10b showed weak hydrogen bonding interactions
with N254%53,

Pharmacologically, compounds 10b and 15b, differed considerably in their affinity to the ARs
(Table 3-1). Comparing MD simulations for 15b with 10b in the orthosteric binding area of the
AR, the AsR (or also AzsR) show that starting from a similar docking pose the substitution from
NMe, 2-NH (found in 10b) to N*H, N*Me (in 15b) results in 15b failing to generate hydrogen
bonds with N because of the steric repulsion between 2-methyl and the amide side chain of
N®>5: (see Figure 3-1D, 3-2C,D) for this reason also 15a, 15¢ were inactive. Although many ligands
can have similar docking poses, subtle changes in the ligand substitution pattern can result in
significant changes in binding and this can be followed only with MD simulations. Considering
the two active compounds, 10a and 10b, replacement of the 3-phenyl group (found in 10b) with
a 3-isopropyl group (generating 10a) results in a remarkable reduction of affinity. This is due to
10a losing significant -1t interactions with H251%°2 and hydrophobic interactions with residues
deeper in the binding site such as W247%%8, 1250%°! and V87332 (Figure 3-1). Finally, the
substitution of 10b’s 7-benzylamino by the more rigid morpholinyl group (found in 10c) resulted
in reduced affinity to the ARs. The more rigid morpholino group in 10c repels F171%%, so the
ligand rotates and moves at the bottom of the binding area, losing hydrogen bonding
interactions with N254%% and weaking its hydrophobic interaction with critical residues, e.g.
F171%% and L250%! (Figure 3-1). With an accuracy * 4 kcal mol™, the MM/GBSA method4+312
only provides an approximation when applied to structure-activity relationships for analogs in
the same series. Nevertheless, the MM/GBSA binding free energy calculations for ligands 10a-c
against A;R (Table 3-2), using the OPLS2005 force field 26%2%3 and a hydrophobic slab as implicit

176-178

membrane model and including the waters in the orthosteric binding area , predicted fairly

the stability of 10a-c in complex with A;R with binding free energy values (after neglecting

entropy) AGes = -94.50 kcal mol?, -96.42 kcal mol?, -85.35 kcal mol™.

Residues 3.33 5.29 530 5.38 542 648 6.51 6.52 6.55 6.66 6.67 7.32 735 7.36 7.39

AR L F E M N W L H N K K S T Y |
AR L F \% M s W L S N \% vV o Q L Y |

AR L F E M N w \Y H N K N K M N |

Scheme 3.1. Sequence alignment of the residues surrounding the binding site of AR, AsR and AzsR (Ballesteros-
Weinstein numbering is applied). Colored in yellow columns show residues that differ in side chain polarity, volume,
rigidity.
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Table 3-2: MD simulations results of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15b in complex

with A1R, A3R or A2BR and MM/GBSA calculations results for 10a-c in complex with A1R.

comp
ound AR AsR AzeR
RMSD; RMSE)p AGer RMSD; RMSE)p AGer® RMSD; RMSE)p AGer
ga rotein ga rotein ga rotein
10a 221+ 2.14 + -94.50 ) ) ) ) ) )
0.42 0.14 +5.93
10b 1.29+ 121+ -96.4 + 4.88 201+ -101.9+ 153+ 2.08 £ -94.19 +
0.31 0.17 5.93 10.66 0.21 5.02 0.41 0.56 6.06
j0c | 153% 166% 8535 ] ] ] ] ) ]
0.37 0.24 +5.97
15b 238+ 2.03 3.19+ 2.86 * i 6.77 = 2.50 £
0.45 0.19 0.45 0.15 0.38 0.14

a Mean+SD (A); Ligand RMSD s calculated after superposition of each protein-ligand complex to that of the starting

structure (snapshot

b Mean+SD (A); Protein RMSD is calculated for the Ca atoms of the a-helices, for the last 50 ns of the trajectories,

using as starting structure snapshot 0 of the production MD simulation.

¢ MeanzSEM; Calculated effective binding free energy (kcal molt) between ligand and receptor. AGes is calculated

from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using a MM/GBSA model

that is taking into account the membrane as hydrophobic slab. Mean from three 20ns-MD simulations.

?ockm} pfltlon /]

A:R-10a
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Figure 3-1: (A)-(C) 100ns-MD simulations of 10a-c inside the orthosteric binding area of A;R. (D) 100ns-MD simulations

of 15b inside the orthosteric binding area AiR.Are shown starting structure (docking pose) and representative frames

from MD simulations, receptor-ligand interaction frequency histograms and RMSD plots of protein Ca (RMSDprotein;

blue plots) and ligand heavy atoms (RMSDligand, red plots) inside the orthosteric binding area of WT A1R or A3R. Bars

are plotted only for residues with interaction frequencies > 0.2. Colour scheme: Ligand=brown sticks, receptor=white

cartoon and sticks, hydrogen bonding interactions=yellow (dashes or bars), m-it interactions=green (dashes or bars);

hydrophobic interactions=grey; water bridges-blue. For the protein models of AIR in complex with 10a-c or 15b in

complex with AIR was used the experimental structure of the inactive form for A1R in complex with an antagonist

(PDB ID 5UEN 55).
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For 15b — A2sR complex a similar binding pose as 10b — A2sR was used. After 100ns molecular dynamic
simulation, 15b leaves the binding pocket and enters the membrane area through an opening between
TM6 and TM7. The RMSD of this ligand (6.77 + 0.38 A) is also indicative of a ligand translation from the
starting position.
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Figure 3-1: Docking poses and representative frames, receptor-ligand interaction frequency histograms and RMSD

graphs from 100ns-MD simulations of 10b (A)-(B) inside the orthosteric binding area of WT A2BR or A3R and (C),(D)

15b inside the orthosteric binding area of WT A2BR ,A3R, respectively. Bars are plotted only for residues with

interaction frequencies > 0.2. Color scheme: Ligand=10b dark red, 15b cyan sticks, receptor=white cartoon and sticks,

hydrogen bonding interactions=yellow (dashes or bars), m-mt interactions=green (dashes or bars); hydrophobic

interactions=grey; water bridges=blue. RMSD graphs of protein Ca (RMSDprotein; blue plots) and ligand heavy atoms

(RMSDligand; red plots).

Figure 2-3: N9-methyl,N6-benzyl adenine inside the orthosteric binding area of WT A1R; from docking calculations.

.Color scheme: Ligand=light pink sticks, receptor=white cartoon and sticks, hydrogen bonding interactions=yellow

(dashes), rt-it interactions=green (dashes).
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Mutagenesis experiments to study 10b binding to AsR.

We have previously observed that mutation of residues that do not directly interact with the
ligands, (e.g. V>3 for AsR, which is more than 4 A apart from the ligand inside the orthosteric
binding area) can, through allosteric interactions due to the plasticity of the binding area,
significantly affect ligand affinity. 82°7313As such it is not always straight forward to determine
the effects of a mutation on affinity properties. Despite this caveat, we next used mutational
analysis combined with NanoBRET to determine the important residues required for 10b binding
to AiR. The mutation of L250%>'A resulted in only a slight reduction of binding affinity for 10b
(Table 3-2) despite the MD simulations suggesting that the ligand should be close enough to
L250%°! to enable hydrophobic interactions. It is possible that residues H251552 and W247548
could contribute to the stabilization of 10b with hydrophobic interactions even if L250%°! is
mutated to alanine. It is noteworthy that mutation of E17253° (which s also more than 4 A apart
from the ligand inside the orthosteric binding area) to alanine also did not significantly change

the binding affinity (Table 3-2).

In addition, mutation of H251%>2A has been reported to reduced antagonist affinity against and
AzR 25731331though here it did not have any effect on 10b affinity at the A;R. Other residues of
interest to mutate were T9133%A and $26773?A, which are deep in the orthosteric pocket.
Interestingly, we found that mutation to alanine of these residues, also did not have a significant

effect on the binding affinity of 10b (Table 3-3Table 3-1).

The biggest effect in this study was observed for the Y27173®A mutation which caused a ~10-fold
reduction in binding affinity of 10b (Table 3-3). Since the MD simulations showed contacts with
H2787 and not Y2717-3%, the mutation Y2717-3%A in the A;R might affect binding of 10b through
contact with H2787%, We performed the MD simulation of 10b in complex with Y2717-3¢A AjR
and observed that the ligand loses its hydrogen bonding interactions with the orthosteric

binding area (Figure 3-4).
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Table 3-3: Binding affinities (pKi) for 10b measured using saturation NanoBRET binding against

WT A;R and mutant A;Rs. Data retrieved from

AR pK; Effect on affinity

WT 7.68+0.11 baseline
T91336A 7.68 +0.07 no change
E17253°A 7.34 +0.06 no significant change
L25055 A 7.57 £0.04 no significant change
H251552A 7.62 +0.06 no significant change
$2677-32A 7.86 +£0.03 no significant change
Y27173¢A 6.99 +0.05 ~10-fold reduction
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Figure 3-3: Representative frames from 100ns-MD simulations of (A) 10b inside the orthosteric binding area of WT

A1R; (B) 10b inside mutant Y271A AiR. Receptor-ligand interaction frequency histogram and RMSD graphs of protein

Ca (RMSDprotein; blue plot) and ligand heavy atoms (RMSDligand; red plot). Bars are plotted only for residues with

interaction frequencies > 0.2. Color scheme: Ligand=brown sticks, receptor=white cartoon and sticks, hydrogen

bonding interactions=yellow (dashes or bars), rt-i interactions=green (dashes or bars); hydrophobic interactions=grey;

water bridges=blue.
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Chapter 4.

Identification of high affinity dual
A1/As AR antagonists with a novel

pyrazolo[3,4-c]pyridine Scaffold

Binding Kinetics and SAR Studies Using
Mutagenesis and Alchemical Binding Free Energy

Calculations
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4. Identification of high affinity Dual A;/A;s AR

antagonists with a novel pyrazolo[3,4-c]pyridine Scaffold

Binding Kinetics and Structure-Activity Relationship Studies Using

Mutagenesis and Alchemical Binding Free Energy Calculations

4.1 Purpose of the study

In this study, two rounds of screening for compounds that acted as antagonists against ARs were
performed [in total, 52 molecules tested with chemical structures defining 7 classes of
compounds (Table 4-1). The tested compounds belonged to National and Kapodistrian
University of Athens in-house compounds library. The pyrazolo[3,4-c]pyridine (shown with blue
color in Scheme 4.1) was found as a novel pharmacophore which, upon introduction of different
substituents, led to high-affinity antagonist activity against both the A;R and As;R. Potent
antagonists were also identified in two classes of pyrazolo[3,4-c]pyridines, the 7-aminoaryl-3-
aryl-5-substituted-pyrazolo[3,4-c]pyridines and 3- of 3-(N-acyl)amino-5-aminoaryl-pyrazolo(3,4-
c]pyridines as shown in Scheme 4.1. These compounds were characterized for their
pharmacological activity using both functional inhibition of cAMP accumulation assays and
competition for binding of a fluorescent tracer. These studies revealed that compound A17
displayed a high Konand a low Ko for both the AiR and AsR, which resulted in a low nanomolar
affinity; A17 (Scheme 4.1), at the AR, had a Kyof 5.62 nM and a residence time (RT of 41.33 min)
and at the AsR, the Kgwas 13.5 nM with a RT of 47.23 min.

To interpret the interactions of these ligands within the orthosteric binding area of A;R, for
which experimental structures with bound antagonists have been resolved, *>°¢ we performed
MD simulations, mutagenesis experiments, binding free energy calculations using the
approximate MM/GBSA method ** with an implicit membrane and by taking into account the

waters inside the binding area. 7 3% For the accurate description of the structure-activity
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relationships (SARs), the TI/MD method and a thermodynamic cycle were applied while
including the whole ligands-GPCR membrane system in the calculations. The aim was to explore
how the experimentally measured relative binding free energies correlated with the calculated
values. The accuracy of relative binding free energies calculation for ligands-GPCR systems have

been studied previously using FEP/MD method and a thermodynamic cycle. 1°®

7
NN,
=

N.__O
: H Y
G,

Scheme 4.1 : Chemical structures of 7-aminoaryl-3-phenyl-5-substituted-pyrazolo[3,4-
c]pyridines and 3-(N-acyl)amino-5-anilino-pyrazolo(3,4-c]pyridines. The pyrazolo[3,4-c]pyridine

pharmacophore is shown in blue color and the attached substituents in red color.

4.2 Results

4.2.1 Compound selection

A functional screen was performed initially of 30 compounds (A9-18, A20, A25-29, and
A32-A45) from our in-house library for the identification of AsR ligands (Table S2) which were
selected after computation of their TanimotoCombo coefficient (Tc) 3% and subsequent
comparison of the Tc values with compounds in CHEMBL database 3. The 7-anilino-3-phenyl
pyrazolo-[3,4-c]pyridines had a Tc = 0.4 compared to 9-anilino imidazo[4,5-c]quinoline AsR
antagonists, 3 the 3-(N-acyl)amino 5-anilino pyrazolo-[3,4-c]pyridines had a Tc = 0.2-0.3
compared to 2,4-diaminoquinazoline AsR antagonists, 31® the N-piperazinyl acetamides of
aminopyridino quinazolines had a Tc = 0.22-0.35 compared to N-piperazinyloacetamido

317

aminopyrimidines with antagonistic activity against all ARs, **’ nucleoside derivatives had a Tc

=0.3-0.6 when compared to known agonists or antagonists against all ARs, 6%:318-320
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4.2.2 Biological results

Compounds were pharmacological characterized to validate the in-silico predictions for the
purpose of this study by the laboratory of Dr Graham Ladds, Dept. of Pharmacology, University

90,301,307 ' The pharmacological evaluation included

of Cambridge as described in references
cAMP assays assessing the activity of compounds at ARs, quantifying binding parameters using
a NanoBRET-based saturation binding assay and determination of kinetic parameters of
compounds binding at A3R, AiR using the NanoBRET method. Relevant figures and data can be
found in the references 903%%3%7 and in Chapter 6 of the Doctoral thesis of Dr Anna Hilser

(University of Cambridge, 2022). 308

Three New Lead Compounds Have AiR and AsR Subtype Selectivity.

The in-house library of 30 antiproliferative compounds (Table S2) was initially screened using
cAMP accumulation assays 321322 gt AsR. From this functional screen we identified five
compounds, A10, A15, A17, A26 and A45 as potential AsR antagonists (Table 4-1). The
nucleosides A10 and A45 were discontinued in the study since they showed the weakest activity.
The three remaining compounds were all pyrazolo[3,4-c]pyridines. Compounds A15 and A17
have the same substituents at 5- and 7-positions but have isopropyl and phenyl group at 3-
position, respectively. Compound A26 has different substitution pattern with an acetamido and

anilino groups at 3- and 5-position, respectively.

The similarities between the four AR subtypes often result in reduced selectivity of potential
antagonists. The subtype selectivity of A15/A17 and A26 was explored at the different ARs in a
functional cAMP assay as described previously *°. Both A15 and A26 showed a lack of efficacy at
the NECA-stimulated AzaR and A,sR but were able to antagonise the AR, although A15 showed
weaker efficacy than A26. A17 also was able to antagonise the AiR alongside the As;R with high
efficacy (Table 4-1) but did also display, very weak efficacy at the AR (pKq = 5.50 £0.12)(Table
S3). These data indicate that all three compounds showed high subtype selectivity for both the
AiR and AsR.
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Table 4-1: Binding affinities measured using Schild curves (Ks) or BRET method (K;) and functional
activities for A15, A17, L2-L10, and A26, L12, L15, L21 against AsR or AjR.

AsR AR
COMPOUND plCso plCso
in presence  pKa® pKi © in presence  pKa® pKi ©
of NECA® of NECA?®
OCH,
H3coj©\
591+ 5.49 + 7.99 + 6.91 +
HsCO NH 71+0. 6410.
G lig )ﬁ 871014 419 0.10 0.14 0.18 6.64+01
NN
\ N
N
OCH;
H3CO]©\
H,CO NH
H 7.87 8.01% 6.70 £ 8.25+ 8.36
Al7 N 7.12+0.13
"L N 0.18 0.06 0.10 0.15 0.10
=
NC
OCH;,
H3CO:©\
HsCO NH 6.26 £ 6.20 £ 8.30 6.54 £ 6.54 £
H +
L2 NN, Ee e 0.18 0.06 0.15 0.19 0.07
PP
cl
OCH;4
H3coj©\
13 H,CO NH H 8.42 + 6.45 + 6.22 8.49t 6.28 £ 791+
N‘ B N\N 0.19 0.23 0.10 0.17 0.20 0.09
N
©\NH '
s NN 7.22 + 7.77 + 7.36 + 7.87 + 7.04 + 6.67 +
NC l % N 0.09 0.16 0.05 0.10 0.14 0.18
OCH;
H3CO]©\
H,CO NH
L5 H 791+ 7.05+ 7.26 £ 8.54 + 6.20 + 6.66
Ny 0.10 0.2 0.03 0.14 0.18 0.14
= /
cl
7\
OCH;4
H3CO:©\
H4CO NH
L6 H 8.29 6.60 £ 7.00 £ 8.72 6.84 6.78 £
N 0.10 0.24 0.10 0.23 0.23 0.30
4
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L7

L8

L9

L10

A26

L12

L15

L21

MRS
1220

NECA

(0]
: NH g,
N N\N
o~ H
N
e O
[¢]
RN
N
LY
N o)
N)\N
H
NH,
N X
N
<1
H N N
\/N O
(0]
OH OH

831+
0.21

8.14 +
0.20

8.05*
0.10

8.56 +
0.20

791%
0.19

8.52+
0.21

8.17
0.20

837+
0.19

9.03
0.13

6.50 +
0.25

6.80 £
0.24

6.89
0.20

6.24 +
0.24

7.05
$0.22

6.31+
0.24

6.77 £
0.24

6.52 +
0.2

10.01 +*

6.88 £
0.08

7.19+
0.10

7.19%
0.07

6.72 £
0.09

7.07 =
0.08

6.33 ¢
0.09

6.95+
0.08

6.60 +
0.13

9.94
+0.11

6.63 £
0.15

Stampelou Margarita Eleni

7.64 % 7.29 %
0.14 0.18
8.41+ 7.18%
0.22 0.25
792+ 6.99
0.11 0.16
8.33 % 6.50 +
0.15 0.19
8.58 + 6.13
0.10 0.17
8.16 + 6.71
0.09 0.14
8.30+ 6.54
0.14 0.17
8.85+

0.12 <6.0
732+ 7.62 %

0.09 0.14
8.95 +

0.10

7641
0.57

6.69
0.30

7.20%
0.04

6.13 £
0.08

6.53
0.27

6.44 +
0.11

6.02 +
0.14

<6.0

7.29+
0.27

7.08 £
0.05

a Functional activities (plCso values in presence of NECA) for the ligands as mean + standard error of the mean (SEM)
of at least 3 independent repeats, conducted in duplicate — values.
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b Dissociation constant (pKg) of the ligands as mean + SEM of at least 3 independent repeats, conducted in duplicate
as determined using the Schild analysis.

¢ Equilibrium binding affinities of the ligands measured with NanoBRET against WT A3R or A;R; NECA was used as
positive control as described in ref %,

#Value obtained from ref %0 using IB-MECA as an agonist.

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 ,

Pyrazolo[3,4-c]pyridine, a Novel Scaffold for the Development of AR Antagonists.

Having identified that A15/A17 and A26 have a potential scaffold with which to design A1R/AsR
antagonists, a second screening round of 22 compounds was performed using only A15/A17 and
A26 analogues (L1-L22). Thus, compounds L1-11 were derivatives of A15/A17 and L12-L22
derivatives of A26 (Table S2). From this screen the 12 additional compounds L2-L10, L12, L15,
L21 (Tables 4-1, S4) were identified as statistically significant potential antagonists at the
A1R/A3R, through their ability to elevate cAMP accumulation when compared to forskolin and
NECA co-stimulation. 37 Between these 12 compounds, 11 compounds showed a lack of efficacy
at the NECA-stimulated A,aR and AzsR except for L4 which, analogous to A17, showed very weak
efficacy at the AR (pKy =5.77 £ 0.12; Tables S4) but were able to antagonise the AiR or AsR.

The compounds A15/A17 and their analogues L2-L10 are all pyrazolo[3,4-c]pyridines and
contain an alkyl or phenyl group at 3-position, an anilino group at 7-position and a cyano-, or a
chloro- or an aminomethyl or N-(arylmethyl)-2-aminomethyl group at 5-position (Table 4-1).
Compounds A26 and its analogues L12, L15, L21 are pyrazolo[3,4-c]pyridines substituted with a
3-(N-anilinoacetyl)amino and 3-(N-benzoyl)amino or 3-(N-phenylureido) groups, respectively.
Compounds A26, L12, L15 are also substituted with a 5-anilino group and compound L21 with

the 7-(N-cyclohexanylamino) group.

The identified pyrazolo[3,4-c]pyridine derivatives provide a novel scaffold for the development
of ARs antagonists. Representative nonxanthine pyrazolo derivatives that have been reported
as ARs ligands include pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines, pyrazolo-[3,4-c] or -
[4,3-c]quinolines, pyrazolo-[4,3-d]pyrimdinones, pyrazolo-[3,4-d]pyrimidines, and pyrazolo-
[1,5-a]pyridines. 3% Searching in ChREMBL using similarity-based parameters for A15/A17 or A26,
that is, a Tc value > 0.85, non similar compounds or any other pyrazolo[3,4-c]pyridines as ARs

antagonists were found.
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Functional activities measurements of the 15 pyrazolo[3,4-c]pyridines showed that all
compounds caused a reduction in NECA potency at the AsR, characteristic of competitive
antagonism all-be-it with varying extents (Table 4-1). Moreover, some of the compounds also
showed antagonism at the A;R although compounds L5, A26 displayed only weak effects on
NECA potency while L21 was inactive (Table 4-1, Table S5). When analyzed using Schild analysis
323 the data enabled a crude estimation of the dissociation constant (pKs) of each antagonist at

the two AR subtypes. L21 did not display any activity at the AsR.

Competition binding assays and determination of kinetic parameters using NanoBRET

To provide a more quantitatively accurate estimate of the pKpfor all 15 pyrazolo[3,4-c]pyridines
at the AsR and AR, a BRET-based competition binding assay was performed as described
previously ®° (Table 4-2). The NanoBRET binding assay also enables the determination of the
kinetics of the compounds binding, which Schild regression does not, as have been reported in
previous studies %0 309 324210211 " The reciprocal of the Kor enables a determination of the RT of
the compound. *° Beyond this, the pKp of the compounds (ks/ks) was also determined from the
kinetics assays and was compared to those determined from the saturation binding assays and
the Schild analysis. Estimates of the kinetics of binding were determined for most of the A17
and A26-based derivatives except for A15, L2, and L3 at the AsR and L21 at the A;R which failed

to provide a reliable fit to the data, likely due to their high K4 values (Table 4-2).

Many of the compounds showed a good agreement between the different methods used to
determine their affinities as compared in Table 4-1 and Table 4-2. Thus, consistent with the
Schild analysis, compound A17 displayed the highest affinity at the A3R followed by L4 > L6 = L5
= A26 = L9. At A;R A17 also had the highest affinity with the rank order of affinities being A17 >
L3 > L9 > L7 > L4. All the other compounds displayed weaker affinities. The comparison of the
affinity constants calculated by the NanoBRET binding assays and the Schild analysis once again
showed close agreement except for compound L3 at the A:R where the affinities determined in
the BRET binding assays were 50-fold higher than in the Schild analysis. This may indicate that

L3 has unusual properties compared to the other compounds tested here.
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Table 4-2: Kinetics of binding for the A17- and A26-panels of compounds to the orthosteric

binding area at the AsR and A;R.

AR AR
COMPO | Kon (k3)  Koff (ka) pKo RT Kon (ks) Koff (ka) pKb RT

UND [x10°M™? min'® Kinetics® (mins)¢ |x10° M2 min® Kinetics¢  (mins)¢

3.18 0.03 6.99 38.7

A15 <50 <04 N.D. >2 +1.0 +0.006 021 8.8
ALy 213 0.021 800  47.23+ 139.7 0.024 8.76 4131
+12  +0.003  +0.32 8.2 +15 +0.009  +0.07 +4.56

1.72 0.048 6.55 229

L2 <50 <04 N.D. >2 +0.3 +0.01 +0.03 43

45.07 0.061 7.86 16.3

L3 <50 <04 N.D. >2 +3.4 +0.002  +0.45 +0.3
4 8.2 0.026 7.58 46.72 11.5 0.051 7.21 20.61

£05  +0.006  +0.32 +4.5 +4.0 +0.004 051 3.4

s 3.65 0.031 7.07 32.05 2.79 0.055 6.70 18.2
+0.6 +001  +0.22 +6.3 +029  +0.001  +0.54 +4.37

o 24.7 0.18 7.13 5.55 5.23 0.036 6.88 27.72

3.8 +002  +0.55 2.6 +0.45 +0.005 4023 37

7 48 0.105 6.59 9.55 9.63 0.039 7.39 25.34

£2.4 +004  +0.73 +35 £25 +0.004  +0.40 +4.9

s 9.33 0.173 6.73 578 234 0.054 6.37 18.50

+1.4  +0.067  0.45 : +0.6 +0.005 +0.11 £2.6

" 5.62 0.054 7.0 17.85 8.17 0.02 7.54 43.96

+1.0 +002  +0.33 +4.3 +1.4 £0.015  +0.10 +2.1

110 338 0.01 6.56 10.85 1.65 0.04 6.64 31.43

+11 0001  +0.43 +3.4 +0.4 +0.007  +0.03 £7.1

1245  0.09 7.11 3.36 0.134 6.40 7.47

+

A26 +1.8 5003 045 04341 6 +0.003 +0.18 +2.2
1 1.45 0.051 6.45 19.04 1.84 0.052 6.55 19.23

0.3 +0.03  +0.22 +5.6 +0.4 +0.003 +0.40 +4.5

0.834 0.071 6.07 14.06

L15 <50 <0.4 N.D. >2 +0.3 +0.004 4022 +2.4

L21 <50 <0.4 N.D >2 <50 <0.4 ND >2

MRS122 | 3250  0.025 \ . 14.54 0.023 7.80 43.67

0 £28% o005t 01T 4032 +04  +0.0008 0.2 +5.6

3 Kon (k3) for ligands as determined using NanoBRET binding assays and determined through fitting with the ‘Kinetics
of competitive binding” model.

b Koff (kq) for ligands determined as in a.

¢ Kinetic dissociation constant (pKgy) for each ligand as determined from Kon/Koft.

d Residence time of each ligand as determined by the reciprocal of the Kost.

# Value obtained from ref %,

Note — values in bold could not be fitted using the ‘kinetics of competitive binding’ model.
Adapted from the Doctoral Thesis of Dr Anna Hilser 30 and ref 307 ,
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From this data we observed that the most interesting potencies at 1 UM concentration
(indicated in bold in Table 4-1) include: (a) L3 or L4, L5, L7,L8, L9, A17, which are pyrazolo-[3,4-
c]pyridines with isopropyl or phenyl group at 3-position, respectively, a cyano or chloro or
aminomethyl or N-(arylmethyl)Jaminomethyl group at 5-position and an anilino group at 7-
position, (b) A26, which is 3-(N-acyl)amino-5-anilino pyrazolo-[3,4-c]pyridine. The affinity range
for the A17 series, including compounds L2-L10, A15 was between low micromolar to low
nanomolar. The affinity range for A26 series, including compounds L12, L15, L21, was between
low micromolar to 100 nM. Using these different methods revealed that, at the AsR, both A17
and L4 displayed a low nanomolar affinity, while A26, L5, L8 and L9 had mid-nanomolar affinities
with the remaining compounds showing low affinities. At the A:R, only A17 displayed a low
nanomolar affinity while the five compounds L4 and L6-L9 displayed mid-nanomolar to low
nanomolar affinities. We can observe that A26 displayed a 5-fold selectivity for AsR while L7 is

6-fold selective for AsR.

Compared to A15, the phenyl group in A17 increased the binding affinity by ~17-fold at A;R and
considerably increased it at AsR (Tables 4-1, 4-2). The affinity was increased with the size of the
3-substituent according to the pKy values for L3 and A17, showing that the phenyl group was
favored over the isopropyl group. Removal of the 5-cyano group in compound L6 resulted in a
reduction of affinity of ~100-fold at the A;R and ~7-fold at the AsR. Similarly, when the cyano
in A17 was changed to chlorine group in L5 the affinity was reduced ~100-fold for A;R and ~5-
fold for AsR. Changing the cyano group in A17 to an aminomethyl group in L7 reduced its affinity
at both receptors by ~25-fold. Affinity was increased by ~3-fold at both receptors, when three
methoxy groups (A17) were added to the phenyl group of L4. No change was observed in the
affinity against AsR between L8 and L9. However, the presence of a pyridinyl group in L9
(compared to phenyl group in L8) led to a 15-fold increased affinity of L9 against A;R compared
to L8. The molecular basis of these changes for AiR-ligand complexes, i.e. the SARs, will be

discussed in the TI/MD calculations section.

The highest affinity compounds at the AsR, ie. A17, L4, L5, displayed the longest RT = 35-50 min.
Some of the compounds, which displayed the highest affinity (A17 and L9) at the AR, also
displayed the longest RTs (40 — 50 min).
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4.2.3 Binding Profile of the novel pyrazolo[3,4-c]pyridines using MD
Simulations and Mutagenesis Experiments

To investigate the binding profile of the antagonists shown in Table 4-1 at the AiR [ for which an
X-ray structure in complex with an antagonist have been resolved (PDB ID 5UEN *°)], MD
simulations were performed. Using GOLD software 2%’ and the ChemScore as scoring
function'*?®, molecular docking calculations of these compounds into the orthosteric binding site
of the AiR were carried out. All docking poses showed that the anilino group oriented towards
the extracellular side of the membrane. The anilino group was oriented towards EL2 (as in
docking pose 1 shown in Figure 4-1A) or toward the water environment (docking pose 2 shown
in Figure 4-1B). Similar binding poses for the antagonist ZM241385 in complex with A;aR have
been observed in the X-ray structures PDB ID 4EIY>® or 3EML3* respectively. However, only
docking pose 1 agreed with our mutagenesis data described below. Within the 100ns-MD
simulation time, the total energy and RMSD of the protein backbone C, atoms reached a plateau,
and the systems were considered equilibrated and suitable for statistical analysis (Table 4-3).
The RMSD,rot values were between 2-3 A except in cases of the ligands L8, L9 which having an

increased girth produced RMSD ot Values 3-3.5 A.

Table 4-3: RMSDjig, RMSDgrot for A15, L2-L10, A17, and A26, L12, L15, L21 against A:R and
OPLS2005-calculated MM/GBSA binding free energies (AGet) from the amber99sb 100ns-MD

simulations using an implicit membrane model, for A15, L2-L10, A17, against AiR.

Compound RMSDig?® RMSDprot AGes©
A15 5.77+0.42 2.07+0.15 -99.37 +6.88
A17 2.81+£0.19 1.90+0.20 -120.21+7.25

L2 3.22+0.36 1.78+0.13 n.d.

L3 3.50+0.40 2.42+047 -118.06+7.18
L4 210+£0.20 1.71+032 -91.10+6.62
LS 290+0.84 1.80+0.14 -125.22+7.60
L6 439%039 1.96+0.13 -105.14%6.99
L7 1.36£0.15 2.12+0.16 -135.53+5.95
L8 38+0.29 20202 -141.21+9.17
L9 3.54 £ 0.08 1.86+0.13 -140.51+9.36
L10 3.07+0.28 2.18+0.28 -162.58%9.79
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A26 2.30+0.3 2.51+0.08 n.d.
L12 2.13+0.20 1.66+0.34 n.d.
L15 n.d. n.d. n.d.
L21 4.79+0.38 3.78+0.18 n.d.
MRS1220 n.d. n.d. n.d.

a MeanSD (A); Ligand RMSD is calculated after superposition of each protein-ligand complex to that of the starting
structure

b Mean#SD (A); Protein RMSD is calculated for the Co atoms of the a-helices, for the last 50 ns of the trajectories,
using as starting structure snapshot 0 of the production MD simulation.

¢ MeanzSEM; Calculated effective binding free energy (kcal mol1) between ligand and receptor. AGef is calculated
from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using a MM/GBSA model
that is taking into account the membrane as hydrophobic slab. Mean from three 20ns-MD simulations. , n.d., not

determined.

MD simulations of A1R- A17 complex

The selected docking pose was embedded in 12 A hydrated POPE lipid buffer and the system
was subjected to 100ns-MD simulations with the amber99sb 27927 force field. Using docking
pose 1, the MD simulations of the A;R-A17 complex showed that A17 made interactions (> 20%
frequency) with F17152°, E17253°, M180°>%, W24754, 1250651, H251552, N254°%%, 127473 (Figure
4-1A). In addition, the A;R-A17 complex was stabilized by:

(a) Direct hydrogen bonding interactions between both the pyrazole 1-NH and anilino NH
groups of the ligand and the amide side chain carbonyl of N254%% and between anilino NH
group and carboxylate side chain of E1725%,
(b) Hydrogen bonds between the cyano group of the ligand with waters that are inserted in
the region between the ligand and TM1-TM2.
(c) m-mt stacking interactions between the core pyrazolo-[3,4-c]pyridine scaffold and the
F171%% side chain phenyl and between the ligand phenyl substituent and the imidazole of
H251%32 or indole of W247%48,
(d) Hydrophobic interactions between:
(i)the trimethoxy-phenyl group of the ligand, which is directed either towards the water
exposed area of the receptor or to EL2, and 12747°,

(ii) the pyrazole ring of the ligand and M180°3, 1L246%2,
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(iii) the phenyl ring of the ligand, which was oriented deeper into the receptor from the

pyrazole scaffold, and W24754¢,

In comparison, starting from docking pose 2 (Figure 4-1B), in which the anilino group was
oriented toward the water environment, the MD simulations showed that A17 did not form
hydrogen bonding interactions with E17253°but did form hydrogen bonds with L2505, H251°%,
and T2707-%, We next considered the hydrophobic interactions; A17 had diminished interactions
with M180°38, W247548, and L250%°! but formed contacts with Y27173% and n-m interactions
with H251%°2, Where the 3-phenyl group was oriented extracellularly and the flexible 7-anilino
group was oriented toward the bottom of the receptor, no docking pose was obtained. To
achieve such a pose, manual docking is needed; however, the MD simulations showed that the
complex with A;R was unstable due to the Pauli repulsion of the 7-anilino group with the bottom

part of the receptor.
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Figure 4-1: Representative frames, receptor-ligand interaction frequency histograms and RMSD plots of A17 inside
the orthosteric binding area of WT A;R from 100ns-MD simulations using the amber99sb force field. with (A) binding
pose 1 or (B) binding pose 2. Bars are plotted only for residues with interaction frequencies > 0.2. Color scheme in
frames or bar plots: ligand is shown with pink sticks and ligand'’s starting position with an orange wire, receptor is
shown with a white cartoon and sticks, hydrogen bonding interactions are shown with yellow dashes or bars, n-rt
interactions are shown with green dashes or bars; hydrophobic interactions are shown with grey bars; water bridges
are shown with blue bars. Mutagenesis experiments were performed for AIR with point mutations to alanine of
residues shown in red sticks and/or noted in red color in the frame. For MD simulations we used the experimental

structure of the inactive form of A1IR (PDB ID 5UEN) in complex with an antagonist.

MD simulations for the A17 and A26 series AiR complexes

L4-L7. L4-L7 contain the main 3-phenyl-5-substituted-7-anilino pyrazolo[3,4-c]pyridine scaffold
and compared to A17 the substituent changes at 7- or/and 5-position. Thus, L6 or L5 or L7 has
no substituent or a chlorine or an aminomethyl group at 5-position, respectively, while in L4 the
phenyl group of 7-anilino substituent is unsubstituted (no trimethoxy groups attached). These
substituent changes had significant changes in binding affinity as previously discussed and
further SARs are discussed in the TI/MD sections. The MD simulations showed that L4-L7
remained stable inside the orthosteric binding area of AR during the MD simulation (Figures 4-
2) but in compounds L6, L5 the interactions between the ligand and residues N254%>, E172%%,
M180°38, W2475% are weakened (Figures 4-2). The effect of the 5-aminomethyl group in the
binding mode of L7 is remarkable. The MD simulations showed that L7, compared to A17, can
interact inside the orthosteric binding area of A;R with F171%%, W247%%, However, L7 is inclined
towards TM3, TM7 and moves deeper in the binding area due to protonated 5-aminomethyl
group which is attracted strongly by H2787, losing direct hydrogen bonding interactions with
N254%33/E172>% and hydrophobic contacts with M180°38, L250%>1, As is shown in Figure 4-2 the
ligand forms direct hydrogen bonds mainly with H278743, water-mediated hydrogen bonds with
T277742, E172°3° N184°>*? and van der Waals contacts with TM3 residues V87332, T9133¢ and
with TM7 residue 12747%°,

L8, L9. Compounds L8 or L9 have a phenylmethyl or 3-(pyridinyl)methyl group connected with
the 5-aminomethyl group of compound L7. The MD simulations showed that compounds L8, L9
are stabilized inside the binding area. Compounds L8 and L9 form contacts through all their
groups with A;R and are extended inside the binding area from TM6 to TM2 because of the long

chain substituent at 5-position (Figure 4-2). Compared to A17, L8 adopts the same position and
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binding interactions, ie. with residues F17152°, E172°3°, M180°38, W247°%48, 1250%°1, N254°>
inside the orthosteric binding area of A;R. L9 ligand in A;R forms additionally hydrogen bonding
interactions through the ammonium group in 5-aminomethyl moiety with H27874 and
hydrophobic contacts through its pyridinylmethyl group with V62%%7, A662%, V87332and 12747-%,
Similarly, L8 showed contacts with A66%%! (Figure 4-2). These contacts are favoured due to the

stabilization of the pyridinylmethyl or benzyl group close to TM2, TM3.

A26, L12 . After several MD simulation repeats we observed that 3-(N-anilinoacetyl)amino-5-
anilino-pyrazolo[3,4-c]pyridine L12 and its 1-methyl analog A26 have the 3-(N-
anilinoacetyl)amino oriented deep in the binding pocket and the 5-anilino group oriented

towards TM2 (Figure 4-2).
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Figure 4-2: Representative frames of ligands A15, L2- L10, A26, L12 inside the orthosteric binding area of AIR from
100ns-MD simulations. (left hand part). In each panel are shown the receptor-ligand interaction frequency histogram
and the RMSD plots for the Ca atoms (blue) and the ligand heavy atoms (orange). Bars are plotted only for residues
with interaction frequencies > 0.2. If RMSDlig > 4.5, starting position of the ligand inside binding area is shown in
orange lines. Color scheme: Ligang=pink sticks, receptor=white cartoon and sticks, hydrogen bonding
interactions=yellow (dashes or bars), -it interactions=green (dashes or bars); hydrophobic interactions=grey; water
bridges-blue. For the protein models of A1IR was used the experimental structure of the inactive form for A1R (PDB ID

5UEN) in complex with an antagonist.

Mutational Analysis of A17

To experimentally investigate residues that were suggested to be important for the binding of
Al7 and A26, mutagenesis combined with NanoBRET-based competition binding *° were
conducted (Table 4-4). For completeness, the affinity of A;R for the agonist NECA at each mutant
was determined. The amino acid residues tested are shown in Figures 4-1 for docking pose 1
and docking pose 2. The A;R mutants T91336A, E172°3%A, L250%>*A and H251552A all displayed
reduced affinity for the fluorescent tracer CA200645 compared to WT A;R, while mutants
S267732A and Y27173°A showed little difference in effect. As regards NECA, A;R mutants
E172°3%A, Y27173%A reduce affinity, S2677-*2A maintain affinity and H2515%52A increase affinity.
Previous findings have also shown that mutation of S26773%A significantly reduced NECA’s
affinity to the A,;R. 3 No binding for NECA at T9133°A or L250%°!A mutants could be
determined, since in agreement to similar observations for A2aR 32° and our findings ® for AsR,
NECA binds to the orthosteric binding area through hydrogen bonding to T9133¢ at the bottom

of the binding area.

Table 4-4: Binding affinities for CA200645, NECA and A17, measured using NanoBRET against
WT and mutant AsRs.

Mutation Ky (nM)? pKqy Effect on
affinity
Residue’s CA200645 Al7 NECA
location in the
binding area

WT 76.37+9.37|7.87 £0.06| 6.67 £0.05 baseline
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Bottom T913:36A 166.35+ [8.37+0.07 n.b. b ~3.2-fold
17.36 * % increase
Upper E172>30A 116.04+ |7.63+£0.08| 5.38+0.06 ~0.5-fold
12.22 *k reduction
Middle L2506>1A 158.28 + |8.44 £0.05 n.b.? ~3.8-fold
17.37 ** increase
Middle H251%°2A  145.19+ [8.03 +0.10* 8.04 +0.10 ~1.5-fold
19.13 *k increase
Upper S267732A 70.99+7.03|8.10+0.16| 6.31+0.10 ~1.5-fold
* % increase

Upper Y27173%A 71.10+ 7.68|7.82 +0.04| 5.45 +0.06| no significant

* % change

a Affinity constant for CA200645 binding to mutant A1R receptors.
b n.b. NECA was unable to displace CA200645 at the mutant receptor
Statistical significance (* p < 0.05, ** p < 0.01,) determined using ANOVA and Dunnett’ s post-test.

Adapted from the Doctoral Thesis of Dr Anna Hilser 3% and ref 307 ,

The mutations H251%2A or $2677-%2A in the middle or upper regions of the binding site increased
the affinity of A17 by ~ 1.5-fold (Table 4-4). The effect of H251%>2A mutation is usually the same

observed for antagonists against AsR 8290257327

or against AzaR. 32° Alanine mutation of T91336A
or L250%%A in the bottom or middle region caused a 3.2- and 3.8-fold increase in the affinity of
A17, respectively (Table 4-4), while displaying no significant effect for A26 (see Table S6). This
agreed with other reports describing how mutating T913% to Ala increased the affinity of
antagonist LUF5834, 3% to AR and of other non-nucleoside antagonists for A;R. 32532
Previously, we and other groups showed that mutation of residue T91%% to alanine had a
negligible effect on the affinity of antagonists to AsR 8990257:327 or for A,4R, 32°3%9 respectively. The
result for L250%°'A was a bit unexpected, since L250%°! is key-to-recognition, highly conserved
residue in all four AR subtypes and its mutation to Ala often causes a reduction or blockage of
binding (see for examples our results for AsR in refs %), The mutant E172%3°A in the upper

region of the receptor displayed reduced affinity by 10% while mutation Y27173°A did not
change the affinity of A17.

From the MD simulations of WT A;R-A17 complex starting from docking pose 1 (see Figure 4-
1A), A17 forms -1t interactions with H251%%2 and strong hydrophobic interactions with L250%,
strong hydrogen bonding interaction with E172>%, and almost no interaction with Y271736,

while T91336 and S2677-32 were at a distance > 4 A from the ligand and their effect was allosteric.
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From the MD simulations of WT A;R-A17 complex starting from docking pose 2 (see Figure 4-

1%42 and strong hydrogen bonding interactions

1B), A17 forms strong m-m interactions with H25
with L250%°!, Hydrogen bonding interactions with E17253° were not observed nor were

interactions with Y2717, while both T9133¢ and S2677-*2 were again distant from A17.

To further explore which of the two docking poses agreed with the mutagenesis data, MD
simulations of Y27173%A A;R were performed in complex with A17 in each competing pose. The
simulations (Figure 4-3) showed that Y27173°A A;R reduced the binding interactions of A17 in
docking pose 2 but maintained the interactions in docking pose 1, which agreed with our
mutagenesis data. Docking pose 1 was further evaluated by exploring the effects of mutating
S267732A, of T9133°A or L250%°'A and H2515°%A, on the stability of the complex A1R-A17 by
performing MD simulations. In all cases, although ligand lost hydrogen bonding with E1725%,
the orthosteric binding area displayed plasticity with flexible residues recruited to the binding
region to aid binding to A17 (Figure 4-4). These findings agreed with the observations from the
mutagenesis experiments that E172°3° was not very important for binding of A17 to A:R and
that its mutation to Ala caused only a small reduction in affinity (Table 4-4). Based on these

findings, the docking pose 1 was selected to carry out the simulations of A17 analogues.
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Figure 4-3: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations of Y2717-3¢A
AR in complex with A17 using docking pose 1 (left hand part) or docking pose 2 (right hand part). RMSD plots for the
Ca atoms (blue) and the ligand heavy atoms (orange). Bars are plotted only for residues with interaction frequencies

20.2.

94



Doctoral Thesis Stampelou Margarita Eleni

AR A7 52677327
2 RMSD
18 5 AR A17 S2677-2A
16
14 4
=
g 12 _
g =3
§ ! 2
&
08 22
06
04 1
N 1 | 0
o 0 20 40 60 80 100
F171 E172 1175 M177 M180 w247 L250 H251 N254 Time (ns)
5.29 5.30 533 5.35 5.38 6.48 6.51 6.52 6.55 ——RMSDprotein  ——RMSDligand
wh-bonds  ®hydrophobic W pipistacking W water bridges
6.52
X AR A17 H2515%2A RMSD
AR A17 H251552A
18 5
16
14 a
2 =3
g =
g a
& a
08 22
06
04 1
SRR ERE |
o 0 20 40 60 80 100
F171  E172 1175  MI177  MI180  W247 1250  N254 1274 Time (ns)
5.29 5.30 5.33 5.35 538 648 651 655 7.39 —RMSDprotein  ——RMSDligand
whbonds W hydrophobic  Wpipistacking M water bridges
AR A17 L25055A
2 RMSD
18 AR A17 L25055'A
5
16
14 4
[P
i EL
£ 2
< 08
22
0.6
0.4 1
0.2
) | [ | 0
FI71  E172 1175  M177  MI180 W247 H251  N254 1274 0 20 40 fime (ns) 60 &0 00
529 530 533 535 538 648 652 655  7.39 RMSDpratein RMSDligand
wh-bonds ®hydrophobic ™ pi pi stacking ™ water bridges
AR A17 T91336A
. ! RMSD
2 . AR AL7 T91%%A
18
16 2
7 14
2
3 12 =3
2 a
& 1 @
08 22
06
0.4 1
28 D
o 0
0 20 80 100

40 60
Time (ns)
——RMSDprotein  ——RMSDligand

F171 E172 175 M180 w247  L250 L253 N254 T257 T270
529 530 533 538 648 651 654 655 658 735

whbonds  ®hydrophobic  ® pipistacking W water bridges

Figure 4-4: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations of
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atoms (orange). Bars are plotted only for residues with interaction frequencies > 0.2.
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4.2.4 SAR Analysis of Ligand Binding Using Free Energy Calculations.

Alchemical Free Energy Calculations with TI/MD

The FEP/MD 3% and TI/MD 891%0 methods can provide accurate results for relative binding free
energies with a method error 1 kcal mol?. We performed TI/MD calculations for the 9
alchemical transformations in the AiR as listed in Table 4-5. The set of the studied compounds
A15, L2-L6, L8, and L9 cover ~100 units of Kd’s range. The MD simulations of these compounds
in complex with A;R converged during 100-ns of production (Figure 4-1, 4-2) with an RMSDgrotein
no higher than ~ 2 A (Table 4-3). These refinements produced suitable structures of the
complexes between A;R and A15, L2-L6, L8, L9 for using them with rigorous alchemical
perturbation calculations. In the TI/MD simulations the last frames of the complexes from the
alchemical perturbation calculations match the frames of the complexes from the 100ns-MD

simulations.

Table 4-5: Relative binding free energies computed by TI/MD calculations (AAGy mymp in kcal mol
1) using alchemical transformations and a thermodynamic cycle, experimental values (AAGp exp
in kcal mol™) and deviation of calculated from experimental values (| AAGy 1imp - AAGp exp | in kcal

mol?) for pairs of compounds complexed to AjR.

alchemical perturbation AAG Ti/vp AAGy, exp” | AAGy, 1i/mp - AAGh exp |
A15 - L3; 3H - 3iPr -0.66 + 0.07 -1.80 £ 0.09 1.14
A15 - A17; 3H - 3Ph -1.06 £ 0.09 -2.44 +0.09 1.38
L3 - A17; 3iPr - 3Ph -0.87 £ 0.09 -0.63 £ 0.09 0.24
L4 - A17; 7Ph = 7Ph(OMe)s -3.34+0.10 -2.39+0.15 0.95
L6 - A17; 5H - 5CN -3.05 £ 0.05 -2.24+0.20 0.81
L6 - L5; 5H - 5CI -0.67£0.04 0.16 £ 0.22 0.83
L5 - A17; 5Cl - 5CN -1.09 £ 0.07 -2.40+0.12 1.31
L2 - L5; 5Cl - 5CN -0.37+£0.07 -0.18+0.11 0.19
L9 - L8; py > Ph® 0.71+0.08 0.72 +0.17 0.01
mue = 0.87 kcal mol™*

a Experimental relative binding free energies (AAGy,exp) Were estimated using the experimental binding affinities

pKq4 (Table 4-2); 2 in the substituent at 5-position of the pyrazole ring.
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Compared to A15, the presence of an alkyl substituent at 3-position anchors the ligand deeper
into the receptor and forms hydrophobic interactions mostly with F182°>4%, W243%% but also
with 191332, Thus, the presence of the isopropyl group in L3 or phenyl group in A17 at 3-position
led to stronger binding as shown in the relative binding free energy values which are for A15 -
L3 AAGp exp =-1.80 * 0.09 kcal mol?, AAGy 1ymp =-0.66 kcal moltand for A15 - A17 AAGp exp = -
2.44 + 0.09 kcal mol?, AAGymymp =-1.06 kcal mol™. The binding affinity was increased with the
size of this substituent as measured in the alchemical perturbation L3 - A17 with AAGp,exp = -
0.63 kcal mol?, AAGy,1ymp = -2.54 kcal mol? (Table 4-5) and in L2 > L5 with AAGp ey, =-0.18 +
0.11kcal mol?, AAGy1ymp =-0.37 + 0.07mol? conforming that phenyl group is favored over the

isopropyl group.

The critical effect in binding free energy from replacing the hydrogen at 5-position with a
chlorine or with a cyano group was examined with the alchemical perturbations L6 = L5 or L6
- A17 or L5 > A17 with AAGp,ex, =0.16 * 0.22 kcal mol?, AAGy1mp =-0.67 + 0.04 kcal mol™? or
AAGp exp=-2.24 +0.20 kcal mol?, AAGy, 1mp =-3.05 + 0.05 kcal mol™ or AAGy exp=-2.40 + 0.12 kcal
mol?, AAGy 1/mp =-1.09 * 0.09 kcal mol* which suggest that the change of hydrogen at 5-position
with chlorine or cyano group increases binding free energy. Further changing chlorine at 5-
position with a cyano group favors stronger binding. Compared to L5, L6 in A17 the combination
of the cyano group and nitrogen at 7-position increased polarity of this ligand’s part which can
attract waters that enter the binding area between ligand and TM2, TM3. Thus, compared to L5,
L6, in A17 and L4, the 5-cyano group can form hydrogen bonding interactions with waters
positioned between the ligand and TM2, TM3 (Figure 4-1). In L6, which lacked the 5-cyano
group, the hydrogen bonding interactions with N254%%> and E172°>3° as well as the hydrogen
bonding interactions with waters that enter the area between the ligand and TM2, TM3, and the
hydrophobic interactions with M180°38 and W247%¢ were all reduced (Figure 4-2). By adding
three methoxy groups in the phenyl group of the 7-anilino substituent, ligand’s lipophilicity was
enhanced and the desolvation penalty of A17 compared to L4 to reach the orthosteric binding
area was reduced thus increasing the binding affinity. Due to the deletion of the methoxy group,
the hydrophobic interaction with M180°%* was also diminished. This effect in binding free energy
was predicted by the TI/MD calculations in alchemical transformation L4 - A17 with AAGp exp =
-3.34 £ 0.10 kcal mol?, AAGy1ymp =-2.39 + 0.15 kecal mol™.

The orthosteric binding pocket could accommodate sizeable substituents at 5-position, e.g. the
phenylmethyl group in L8 or the 3-(pyridinyl)methyl group in L9 connected with the 5-
aminomethyl group of compound L7 leading to Kq = 427 nM for L8 or K4 = 29 nM for L9 against
AsR (Table 4-2). The TI/MD predictions suggested that pyridinyl instead of phenyl as described
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by the alchemical transformation L8 - L9 was favoured with AAGy, exp (AAGy 1ymp) binding free
energy values -0.72 (-0.71) kcal mol? for AjR. In L9, the increased length of the 5-substituent
resulted in contacts with residues A662°! and V62%°7 of TM2, while the pyrazole ring was
positioned close to TM5-TM7, thus increasing the -t interactions with F171>2°and L250%°*and
forming new interactions H27873 (Figure 4-2). The increased hydrophobic interactions between
the pyridinylmethyl group and V622°7, A66%5, V87332 and 12747 but particularly the hydrogen
bonding interaction of pyridinyl nitrogen with H2787*3 led to the ~ 15-fold increased affinity of
L9 compared to L8.We obtained (a) calculated relative binding free energy values that were
quite close to the experimental values with mean unsigned error (mue) = 0.87 kcal mol™ (Table
4-4); (b) a very good correlation coefficient r = 0.73 (p = 0.026) (Figure 4-5) between the
calculated and the experimental relative binding free energies suggesting that the binding model
used is reliable and the TI/MD calculations describe accurately the binding interactions against
A1R and can be used for structure-based drug design; 1°%163331.332 (¢) the predictive index (PI) of

Pearlman, 3%

a measure for the correctness of the relative ranking of ligands according to
binding free energy, was also high, (Pl = 0.73). Overall, the TI/MD simulations can accurately
calculate the changes in binding affinity between different substituents that we described only
qualitatively in MD simulations section using the height of protein-ligand interactions frequency

bars.
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Figure 4-5: Computed AAGb,TI/MD values plotted against AAGb,exp values estimated by the experimental binding

affinities pKd (Table 4-2) for AiR. r: correlation coefficient, s: slope, mue: mean unsigned error.
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MM/GBSA calculations with an Implicit Membrane Model.

A post processing analysis of the MD simulations of the tested compounds A15, L2-L10, A17 in
complex with A;R was applied with the MM/GBSA method variant using a hydrophobic slab as
implicit membrane model and including waters in the orthosteric binding area, in a radius of 4
A from the center of mass of the ligand %78 and the OPLS2005 262263 force field for the

calculation of ligand-protein interactions.

Applying this approach showed that, compared to the highest affinity compound A17 (AGes = -
120.32 + 7.25 kcal mol?), L6 lacked the 5-electronegative substituent that had more positive
binding free energy values (AGess = -105.14 * 6.99 kcal mol?) (Table 4-3). Moreover, L4 which
lacked the trimethoxy substitution from the 7-anilino substituent also had a more positive
binding free energy value, AGetr = -91.10 + 6.62 kcal mol™. Further, L3 which contained a 3-
isopropyl instead of 3-phenyl group had a AGes = -118.06 + 7.18 kcal mol?, and A15 (devoid of
any substitution at 3-position) had a AGes = -99.37 + 6.88 kcal molt. However, the MM/GBSA
method performed poorly at predicting other changes, for example in L7 the presence of the 3-
aminomethyl group or the 3-chloro group in L5 led to AGes = -126.67 kcal mol™ or AGess = -125.22
+ 7.60 kcal mol?, respectively, suggesting stronger binding affinity compared to A17. In L8 and
L9, the benzyl and N-(3-pyridinylmethyl)aminomethyl at 3-position led to AGe# = -143.08 + 7.68
kcal molt and AGess = -140.46 + 7.41 kcal mol?, respectively, showing erroneously stronger
binding affinity compared to L7 but also compare to A17. Similarly, L10 had a AGess = -162.67 +

8.79 kcal mol?, which suggested that L10 was a stronger binder compared to A17.

Overall, compared to the most potent compound A17 the MM/GBSA calculations showed
correctly that the deletion of a group or substituent in A17 results in much more positive AGes
values, i.e. weaker binding without providing accurate relative free energy values (Figure 4-6).
The accuracy in calculation of relative binding free energies for alchemical transformations is
possible using perturbation methods based on statistical mechanics as we showed with TI/MD
method and suggested by studies related to comparative performance of FEP/MD and the
MM/PBSA method for water soluble proteins#%3* and membrane proteins including AiR and

AZAR- 335
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Figure 4-6: AGeff values from MM/GBSA calculations and experimental binding affinities pKi for Ai;R. MM/GBSA
calculations using a model that is taking into account the membrane as hydrophobic slab (blue bars) and pKi values

measured using BRET (brown bars).

4.3 Discussion

We, & 27 and other groups, 1181527156 gre motivated to identify new hits from virtual screening
of ARs and modify them to lead compounds. However, the possibility of re-purposing

compounds from in-house libraries >3

is an exciting opportunity and cost-effective process. We
identified here the pyrazolo[3,4-c]pyridines L2-L10, A15, A17 with a phenyl or isopropyl group
at 3-position, an anilino group at 7-position and a cyano-, or chloro- or aminomethyl group or
N-(arylmethyl)-2-aminomethyl group at 5-position with nanomolar to mid-nanomolar binding
affinities at A;R and AsR. . Another second series, including 3-(N-acyl)amino 5-anilino pyrazolo-
[3,4-c]pyridine A26 and its analogues L12, L15, L21 displayed low micromolar to 100 nM binding

affinity against A1R and AsR.

The orthosteric binding areas of ARs are broad so, it is very interesting to observe that small
changes in ligand’s structure resulted in significant changes in affinity/activity and receptor
selectivity. For example, the replacement in A17 of the 5-cyano by the chloro group in L5
reduced the affinity by ca. 30-fold and the deletion of the cyano group reduced the affinity by
ca. 100-fold against A;R. These changes reduced the affinity at to AsR by 7-fold and by 20-fold

respectively.
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Some compounds showed high affinities and a diverse range of kinetic profiles. We found AsR
and A;R antagonists with medium RT and much longer RTs. For compounds acting at the AsR
A17, L4, L5 had the longer residence time with RT values between ca. 32-50 mins and L6, L7,
L10, A26 the shortest residence with RT values between ca. 5.6-11 mins. For compounds acting
at the A;R A15, Al17, L9, L10 had the longer residence time with RT values between ca. 30-44
mins and L3, L5, L8, A26, L15 the shortest residence with RT values between ca. 7.5-19 mins.
Compounds, which displayed high affinity at the AsR, had RT between ca. 5-50 mins, and at A;R
between ca. 18-40 min (L4, L6-L8). The kinetic data showed that compared to not potent
congeners the active compounds which displayed high affinity have similar association rate, for
example at AsR Kon = 21.3 x10° M (A17) vs Kon = 4.8 x10° M1 (L7) but much lower dissociation
rate Ko = 0.021 min (A17) vs 0.105 min (L7) resulting in lower K4's. Knowledge of target
binding kinetics has been discussed to be very important for developing and selecting new AR

antagonists in the early phase of drug discovery. 336337

The binding orientation of A17 inside AiR was selected between docking pose 1 and docking
pose 2 that both produced stable A17—-A;R complexes in MD simulations, based on the
agreement with alanine scanning mutagenesis experiments and affinities measured with the
NanoBRET method. We observed that mutations H251552A, S2677-%A increased the affinity of
A17 by ~ 1.5-, 1.7-fold, respectively while T9133¢A and L250%'A increased the affinity of A17 by
3.2-and 3.8-fold. Residues Y27173¢ or E172>*°were not important for binding of A17 to AsR since
their mutation to alanine had little effect upon A17 affinity. The result for L250%°!A was a bit
unexpected because L250%°%A is a highly conserved residue in all four AR subtypes where it is
key to ligand recognition. Indeed, mutation of L250%°! to Ala had been reported to reduce or

block affinity as our lab also showed previously. 8%

This contrasts with our studies on 7-Amino-pyrazolo[3,4-d]pyridazine, for which we showed that
T9133%A and S2717*?A did not significantly change the binding affinity (Chapter 3), suggesting
that pyrazolo[3,4-c]pyridines are positioned below compound 10b closer to the bottom part of
the binding site. Y2717%A mutation did not affect binding affinity. This effect is in contrast to
that observed previously for 7-Amino-pyrazolo[3,4-d]pyridazine 10b for which we showed that

Y2717%A mutation caused a ~10-fold reduction in binding affinity (See Chapter 3).

We selected docking pose 1 with the anilino group oriented toward EL2 because the MD
simulations of A17 with the mutant A;R-Y2717-%A maintained binding interactions with A17,
which agreed with our mutagenesis experiments. The MD simulations of A17 in complex with

the A;R mutants S267732A or T9133A or H251552A or L25085!A starting from docking pose 1
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produced complex with binding interactions that also agreed with our mutagenesis data. A novel
observation from mutagenesis data for drug design purposes that when the L250%°! was

changed to Ala the binding affinity of A17 was significantly increased at A;R.

Our MD simulations starting from docking pose 1 for the complexes with A;R showed that A17,
the most potent antagonist against A;R, was stabilized inside the binding area by an array of co-
operative interactions. Compound A17 binds to A;R and interacts with TM5 E170°%8, F1715%,
E172%%°, M180°38, N184°>42, TM6 W2475%, 1250831, H2515%2, N254%>°, TM7 T27073%, Y27173¢ in
AsR. 338 its 5-cyano group in A17 seems to be stabilized through hydrogen bonding interactions
with waters that enter the binding area between the ligand and TM2 and TM3. In the case of L9,
having an increased girth compared to A17 due to the replacement of the cyano with N-(3-
pyridinylmethyl)aminomethyl group the interactions with A;R also include TM2, TM3 residues,
eg. V6227, A66%51, V87332 but also additional residues at TM7, eg. 127473, H278743,

To explore a method that enabled the quantitative description of the SARs, we performed
MMY/GBSA calculations, using an implicit membrane model and taking into account the waters
inside the binding area, and TI/MD simulations using the alchemical perturbations of these
ligands. The TI/MD method produced a very good correlation coefficient (r = 0.73) between the
calculated and experimental relative binding free energies for A;R showing that the method can

be used for heat-to-lead optimization of A17.
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Chapter 5.

Computational Model for the
Unresolved, Inactive Adenosine As

Receptor for Drug Design Purposes
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5. Computational Model for the Unresolved, Inactive

AsR for Drug Design Purposes

5.1 Purpose of the study

In Chapter 4, we discovered the 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridines as
dual A;R/A3R antagonists. We characterized them with kinetic binding measurements of rate
and binding constants (Ks=kofi/kon) at A;R and AsR and identified nanomolar (nM) 3-phenyl-7-
(phenylamino)-pyrazolo[3,4-c]pyridines with high RT.

MD simulations of the resolved structures of several purinergic receptors 33%34° have enabled
characterization of biomolecular binding pathways and kinetics which attract increasing
attention in recent years. Computing accurately the residence time (t = 1/Kof) poses challenges
with conventional MDs alone due to the extensive sampling required. Thus, several promising
methods for computing ligand-receptor binding kinetics have been developed and enhanced
sampling methods have greatly reduced the computational cost. 158:164225235247,251,341-345 gy jeg

have been performed to various GPCRs as described in Section 2.1.5.

For unresolved protein structures, homology models are developed based on available
experimental structures of closely related protein homologs. %1% These homology models have
been used to explore binding of both agonists and antagonists and for structure-based drug
deSign purposes against hA1R, 111’346hA2AR, 347 hAZBR 161,348 and hA3R 112,300,87,89,111,201,255,349-351
FEP/MD calculations of relative binding free energies have been successfully applied with

homology models of GPCRs class A. 32

It is important all developed homology models to be available from the published work in a
suitable three-dimensional structural format than can be used for model evaluation. Overall,
from the reported homology models of inactive hAsR the publicly available models are based:
(a) on experimental structure of inactive hAaR with an antagonist provided in refs, 256:28110; ()
on experimental structure of hA;R with an antagonist provided in ref. 2°%; (c) on multi-state AF2

method. 1?2
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Here we used different homology models of inactive hAsR in complex with our previously
identified 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists (Chapter 4) to
explore the binding profile of these ligands and investigate the ability of these homology models
to predict the experimental relative binding free energies and relative residence times of the
antagonists against inactive AsR. After filtering degenerate models, we came up with Models 1-

3.

The TI/MD calculations were applied on the whole GPCR—membrane system with Models 1-3
and resulted in a good to very good agreement between the calculated and experimental
binding free energies (r = 0.74, 0.62 and 0.67, respectively). In contrast, the binding free energy
calculations using the approximate MM/GBSA method ** with an implicit membrane and
considering the waters inside the binding area Y”3*failed to rank the ligands according to their

experimental binding affinities.

For the kinetic binding calculations, the tRAMD method #42352% was used, which was previously
applied successfully for the accurate calculation of relative RT of ligands bound to the orthosteric

binding site of GPCRs.

Compared to Models 1, 2 we observed that in the multi-state AF2-based Model 3 residues
M172533, R173>3, M174°3° (MRM motif) that lie on EL2 in the upper region of TM5 have
significantly different side chain orientation and R173°3 cap the exit route of ligands. When the
conformation of MRM motif was adjusted in Model 3 the performance of the kinetic binding
calculations with the optimized Model 3 was considerably improved. The optimized Model 3
was able: (a) to rank the ligands according to their experimental RT values with TRAMD
calculations and (b) improved ligands’ ranking according to their experimental relative binding
free using TI/MD calculations, with a Pearson correlation coefficient and mean assigned error
that was improved from r = 0.67 and 0.81 kcal mol* in Model 3 to 0.84 and 0.56 kcal mol? in

optimized Model 3.
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5.2 Results

5.2.1 MD simulations of pyrazolo[3,4-c]pyridines in complex with
inactive AsR

In Table 5-1 are shown compounds L3-L6, L9, A17 that bind to AsR with dissociation constants
(K4's) that differ by ~ 100-fold, i.e., between K4~ 1000 nM in A15 to K4~ 13.5 nM in A17, reported
in Chapter 4 (Table 4-2).

We performed induced-fit docking calculations *° to generate binding poses of the most potent
3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine  (A17) inside the
orthosteric binding site of inactive hAs;R using five publicly available homology models. In the
docking poses the phenylamino group was oriented towards the upper side of the binding site
as calculated also inside hA;R (Chapter 4). We embedded each of the five generated complexes
from docking calculations in POPE bilayers and performed 100 ns-MD simulations with the
amber99sb. 279271 We showed previously that amber99sb performed accurately in describing
the interactions of NECA inside the orthosteric binding site of hA;aR #¥compared with the X-ray
structure of NECA - hA;aR complex (PDB ID 2YDV*) while the a-helix conformation of TM

domains 1-7 remains stable.

Table 5-1: Chemical structure of 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine
antagonists against AsR, experimental RT (RTexp) and Ky values as reported in Chapter 4 (Table 4-

2).

A15: Y=H, A=CN, R=H
A17: Y=OMe, A=CN, R=Ph

L2: Y=OMe, A=CI, R=iPr

L3: Y=OMe, A=CN, R=iPr

L4: Y=H, A=CN, R=Ph

L5 ¥=0Me, A=Cl, H=Ph

L6: Y=OMe, A=H, R=Ph

L8: Y=OMe, A=CH,NHCH,Ph, R=Ph

L9: Y=OMe, A=CH,NHCH,{3-py), R=Ph
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LIGAND PKa,exp RTexp (Min)®  LIGAND PKa,exp RTexp (Min) 2
A15 5.91+0.19 ¢ >2 L5 7.07+£0.22°¢ 32.05+6.30
Al7 8.00+0.32°¢ 47.23 £8.20 L6 7.13+0.55°¢ 5.55+2.60

L2 6.26 +£0.18 4 >2 L8 6.73+0.45°¢ 5.78
L3 6.45 +0.23 ¢ >2d L9 7.0+0.33° 17.85+4.30
L4 7.58+0.33°¢ 46.72 £ 4.50

3 RTexp Of each ligand as determined by the reciprocal of the Koff,exp-

b Equilibrium binding affinity constant (pKi.exp) of a ligand against AsR (Chapter 4).

¢ Kinetic dissociation constant (pKa,exp) for each ligand as determined from Kon,exo/Koff,exp With kinetic
constants (Chapter 4).

dValues that could not be fitted using the ‘kinetics of competitive binding’ model.

We tested homology models of inactive hAsR that were generated based on the crystal structure
of an antagonist bound to hAzaR (PDB ID 3EML3?%) provided by Adenosiland web-service 2°® and
from ref. %58 or based on the crystal structure of an antagonist bound to A;R (PDB ID S5UEN *°)
provided in ref. °° (see Figure S1 and Methods Section 2.2.1). The MD simulations of the
complexes between A17 and hA;R converged for all these homology models during the 100 ns-

MD simulations with RMSD including protein (p) Ca carbons of all TM (RMSD,,(Ca)) <~ 2.1 A.

These three homology models converged to a similar inactive hAsR structure (Figure 5-1A) in
complex with A17 after the 100ns-MD simulations. Thus, we observed that the MD simulations
of the A17-hAsR complexes converged to ensembles that differ by RMSD,(Ca) 2.1 — 2.4 A when
all TMs were estimated and between 0.8-2 A for same TMs between the homology models

(Figure 5-1B).
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RMSD CA (A) helices all TM1 T™M2 ™3 ™4 TMS TM6 T™M7
5uen - 3eml 2.39 3.90 1.63 1.57 1.17 aLalE 1.99 1.64 1.46
5uen - ref 75,76 2.33 3.96 2.15 0.78 1.76 1.32 1.90 1.37 1.55
3eml - ref 75,76 2.11 4.37 2.14 1.74 1.58 1.74 1.92 1.35 1.07

Figure 5-1: Structure comparison of three homology protein models of inactive in its complex with antagonist A17
embedded in phospholipid bilayers derived from 100ns-MD simulations with amber99sb. The homology models used
for inactive AsR were based on the crystal structure of an antagonist bound to hA,aR (PDB ID 3EML 34) provided by
Adenosiland web-service?>® and from ref. 28 or based on the crystal structure of an antagonist bound to A;R (PDB ID
SUEN >3) provided in ref. 2. (A) Structure alignment; side view (left) and top view (right). (B) RMSD,(Ca) measures
between pairs of these protein models; when RMSD,(Ca) > 2 A the values are highlighted in bold. Protein homology

models are shown as cartoon and coloured dark red, dark blue, and light green, respectively.

We merged these three homology models of inactive hAsR structure to Model 1. Additionally,
we tested the homology model provided in ref. 1° defined as Model 2 and homology model

which became available from GPCRdb 2¢° web-resource define as Model 3.

We observed that the MD simulations of the A17-hA;R complexes converged to ensembles that
differ by RMSD,(Ca) = 2.97 A between Model 1 and Model 2, RMSD,(Ca) = 2.92 A between
Model 2 and Model 3, RMSD,(Ca) = 2.34 A between Model 1 and Model 3 (Figure 5-2A,B). The
most noticeable difference was observed in the conformation of TM2 and TM5 Ca carbons
(Figure 5-2C). In Model 3, TM2 leaned towards the inside of the TM bundle compared to Model
1, with an Ala69 CA distance between the two models of 6.7 A and an angle of 39 degrees
between the upper sides of the TM2. This resulted in a narrower configuration in Model 3,

whereas in Model 1, this region was the widest.
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We measured also the RMSDy(Ca) values for the orthosteric binding site (BS) (RMSDy,ss (Cat))
shown in Figure 5-3, and observed between Model 1 and Model 2 slight differences, more
important in side-chains of residues Q167> and F168°>%° the last being crucial for antagonist
binding. However, in Model 3, there is a significant difference with Models 1 and 2 in the upper
region of TM5, where residue R173%3%in the EL2 faces the upper side of the binding site whereas
in the other two models faces the outward region of the TMs bundle (Figure 5-3). The same
observation applied to residues M172%33 and M174°3°, being adjacent to R173°3* (MRM maotif),
which are facing the opposite direction in Model 3 compared to the other two models. Figure
5-3 (right) shows the comparison of MRM motif for the three Models 1-3. Additionally,
compared to Models 1, 2 residues Q167°%8 and F168>%° in Model 3 showed more important

differences in their conformation.

B
i ™
RMSD (Ca) (A) helices all ™1 T™M2 TM3 TM4 TMS TM6 TM7
Model 1 - Model 2 297 487 149 235 174 115 221 133 212
Model 2 - Model 3 292 385 186 136 1.84 128 210 119 1.69
Model 1 - Model 3 234 443 169 275 180 144 242 0950 1.89

Model 1 - opt Model 3 255 4325 117 331 165 146 269 130 251
Model 2 - opt Model 3 310 389 130 152 086 0954 268 157 234
Model 3 - opt Model 3 251 443 164 118 078 1.13 2.09 1.27 1.64
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Figure 5-2: Measures and ligand positions from 100ns-MD simulations with amber99sb 279271 of antagonist A17 -
inactive hA3R complex embedded in phospholipid bilayers using inactive hA3R described with protein Models 1-3 or
optimized Model 3. (A) Cartoon representation of protein models in complex with A17 shown in surface representation.
Protein Models 1-3 and optimized Model 3 are coloured pink, orange, blue, and green, respectively. (B) RMSDp(Ca)
measures between pairs of protein Models 1-3 and optimized Model 3; when RMSDp(Cat) > 2 A the values are
highlighted in bold. (C) Structure alignment (top view; left, side view; right) that indicated differences in TM2 and TM5.
Black and red arrows show differences in TM2 and TM5 conformation, respectively, between protein Models 1-3 (up)

and between Model 3 and optimized Model 3 (bottom).
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Model 1 - opt Model 3 2.05 1.91
Model 2 - opt Model 3 2.47 2.39 ® opt Model 3
Model 3 - opt Model 3 3.36 0.71

Figure 5-3: Measures from 100ns-MD simulations with amber99sb 27027 of antagonist A17 - inactive hA3R complex
embedded in phospholipid bilayers using inactive hA3R described with Models 1-3 or optimized Model 3. Comparison of the
orthosteric binding site (BS) area residues shown in sticks and labelled. Left: side view of the aligned BSs between (A) protein
Models 1-3 and (B) between Model 3 and optimized Model 3. Right: top view of the aligned BSs focusing on the conformation
differences in residues M1725.33, M1745.35, R1735.34 (MRM motif) between (A) Models 1-3 and (B) between Model 3 and
optimized Model 3. (C) RMSD of the BS heavy atoms between pair of protein models; when RMSDp,BS (Ca) > 2 A the values

are shown in bold. Protein Models 1-3 and optimized Model 3 are coloured pink, orange, blue, and green, respectively.
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The induced-fit docking calculations ¥ of the selected 3,5-disubstituted-7-(phenylamino)-
pyrazolo[3,4-c]pyridines (L3-L6, L9, A17) inside the orthosteric binding site of inactive hAsR in
Models 1-3 generate 27 complexes that were embedded in POPE bilayers and subjected to 100
ns MD simulations with the amber99sb 279?71, The MD simulations of the complexes between
the ligands and hA;R converged during the 100 ns-MD simulations (Figure 5-4, 5-5), with RMSD
value of the protein Ca carbons (RMSD,1 (Ca)) < ~ 2.6 A for Model 1, RMSD,»(Ca) < ~ 2.5 A for
Model 2 and RMSD, 5(Ca) <~ 2.8 A for Model 3 (Table 5-2).

With all three Models 1-3 the MD simulations of the hA;R-A17 complex showed that A17 formed
interactions (> 20% frequency) with F16852°, V169°3, M177538 W243648 [246651 N250555,
L2647, 12687-* (Figure 5-4). In more detail, we observed that the A17-hAsR complex was
stabilized by:

(a) Hydrogen bonding interactions between both the pyrazolo 1-NH and anilino NH groups of
the ligand and the amide side chain carbonyl of N250%>° which are direct or water-mediated.
(b) Hydrogen bonds between the cyano group of the ligand with waters that are inserted in the
region between the ligand and TM1-TM2.

(c) m-mt stacking of aromatic rings between the core pyrazolo-[3,4-c]pyridine and the side chain
phenyl of F168%%.

(d) Hydrophobic interactions between the pyrazole ring of the ligand and L246°%>! possibly with
M177°3%,

(e) Hydrophobic interactions between the phenyl ring of the ligand, which is oriented deeper
into the receptor from the pyrazole scaffold, and L9032 and W243°%4,

(f) The trimethoxyphenyl group has hydrophobic contacts with V169>, 1264735, 1268739,

(g) A difference between Models Models 1-3 is the orientation of the trimethoxyphenyl group
of the ligand, which is directed towards the extracellular part (Models 1, 2) or ECL2 (Model 3).
(h) A second noticeable difference between the Models is observed in the interactions of A17
observed with Model 3. In Model 3 A17 forms hydrogen bonds with R173>3*through its methoxy

25433

group oxygens and hydrophobic interactions with M172>%, with these two residues oriented

towards the binding site in this model, as described above (Figure 5-3, 5-4).

Selected results from MD simulations were plotted also for L3-L6, L9 (Figure 5-5, RMSD plots are
provided in the Appendix Figure S2). In case of L9 the girth of the ligand is increased due to the
5-CH,NHCH,py substitution allowing interaction with TM2 (L65%°7, L68%*®° and V722%).
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Figure 5-4: Last frames, ligand interaction frequency histograms and RMSD plots from 100ns-MD simulations with
amber99sb 270271 of A17-hA3R complexes embedded in phospholipid bilayers using a homology model. (A) Model 1;
(B) Model 2; (C) Model 3; (D) Optimized Model 3. Receptor models are shown as cartoon; ligand, and key interacting
residues or waters at a distance < 4 A from the ligand are shown as sticks while hydrogen bonding interactions
between A17 and A3R are shown with yellow dashes or green dashes respectively. Color scheme used in frames and
RMSD plots: protein Model 1 is shown in pink, protein Model 2 in orange, protein Model 3 in blue, optimized Model 3
in green, ligand sticks in salmon. Color scheme used in protein-ligand frequency interaction bars: hydrogen bonds are
shown in yellow, ri-it interactions in green; hydrophobic interactions in grey; water bridges in blue. TM7 residues are

hidden for clarity and only Q2617.32 and H2727.43 are shown.

Table 5-2: Experimental dissociation constants, RMSD, and RMSD, for the 100ns-MD simulations
with amber99sb for the complexes of inactive AsR with antagonists Al17, L3, L4, L5, L6, L9

embedded in phospholipid bilayers using homology Models 1-3 and optimized Model 3.

Optimized
MODEL 1 MODEL 2 MODEL 3
MODEL 3
Comp RMSD, RMSD
ound pKp? b . RMSD, RMSD, | RMSD, RMSD, | RMSD, RMSD,
8.00 197+ 3.03+ | 212+ 364+ | 239+ 266% | 235+ 3.25%
w 0.32 0.13 0.57 0.09 0.34 0.11 0.55 0.1 0.25
6.22 204+ 354+ | 244+ 438% | 249+ 536+
- 0.10 0.06 0.38 0.11 0.32 0.10 0.61 ) _
758+ | 258+ 299+ | 228+ 342+ | 255+ 358+ | 258+ 348z
“ 0.32 0.08 0.28 0.1 0.23 0.12 0.22 0.15 0.26
707+ | 232+ 219+ | 254+ 326+ | 279+ 358+ | 246+ 338t
. 0.22 0.08 0.24 0.17 0.26 0.16 0.26 0.13 0.34
713+ 187+ 3.88% | 226+ 325+ | 28+ 563+ | 237+ 3.77%
. 0.55 0.12 0.31 0.11 0.25 0.19 0.35 0.15 0.19
700+ | 214+ 336+ | 23+ 283+ | 185+ 3.03%
. 0.33 0.06 0.3 0.16 0.24 0.11 0.23 - .

2 See Table 5-1.
b Mean + SD (A); RMSD,(Ca) was calculated from Ca atoms of only TM a-helices, from the last 50 ns of the MD simulations
trajectories, using as starting structure snapshot 0 of the production MD simulation.
< Mean * SD (A); RMSD) was calculated after superposition of each protein-ligand complex to that of the starting structure

(snapshot 0) based on the Ca atoms of the protein, for the last 50ns of the MD simulations trajectories.
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Figure 5-5: Last frames and ligand interaction frequency histograms of ligand — inactive AsR complexes embedded in
phospholipid bilayers from 100ns-MD simulations with amber99sb for the three homology models tested Models 1-3
and optimized Model 3. (A) L3 (B) L4 (C) L5 (D) L6 (E) L9 (F) interactions for Model 1 (left), Model 3 (center) and
optimized Model 3 (right).Receptor models are shown as cartoon; ligand or key interacting residues or waters are
shown as sticks at a distance < 4 A from the ligand, hydrogen bonding interactions and mt-rt interactions are shown
with yellow dashes or green dashes respectively. Color scheme used in frames: protein Model 1 is shown in magenta,
protein Model 2 in orange, protein Model 3 in blue, optimized Model 3 in green and ligand sticks in salmon. TM7

residues are hidden for clarity, only Q261732 and H272743 are shown.

5.2.2 Comparison of the homology models of inactive AsR based on
experimental data from thermodynamics of binding and dissociation
kinetics

Structure - dissociation rate relationships

Models 1-3 of inactive hA3R were also evaluated for their predictive capability of the relative RT
of ligands inside the receptor using the TRAMD method. The TRAMD method 234235293.250
performs a series of accelerated MD simulations with an additional randomly oriented force on
the ligand. The experimental RT values of the ligands in Table 5-1 differ by ~ 10-fold with RT ~
5.5 minin L6 to RT ~ 47 min in Al17.

As is shown in Table 5-3, we selected four ligands for the TRAMD simulations, ligand L6 having a
short experimental RT (RT=5.55 + 2.6 min), ligands A17 and L4 with long experimental RTs (RT
= 47.23 + 8.4 min and RT = 46.72 + 4.5 min, respectively) and ligand L5 (RT= 32.05 * 6.3 min).
We used the relaxed complexes from the 100ns-MD simulations of the four selected ligands with
Models 1-3 of inactive AsR and further run four 5ns-MD simulation replicas with ff19sb 2°° with

each MD simulation trajectory being initialized with random velocities. Then, a series of 15
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RAMD dissociation trajectories were generated using the starting snapshots obtained from
these four replicas spanning 20 ns. The external force magnitude was chosen 8 kcal/mol A based
on the dissociation time of the quickest dissociating compound (L6) and the rest parameters

were retained as described in the TRAMD protocol. 234235293,250

Table 5-3: RTey values and calculated RT (RTca) values for ligands A17, L4, L5, L6; the latter
were calculated with TRAMD method for the ligand - inactive hAsR complexes embedded in

phospholipid bilayers using ff19sb 2°> with the protein Models 1-3 or optimized Model 3.

Optimized
Model 1 Model 2 Model 3 Model 3
Ligand RTexp (mln) RTcalc (nS) RTcalc (nS) RTcalc (nS) RTcalc (nS)
a

Al7 47.23+84 3.08£1.78 3.17+2.88 4.79 +3.29 2.63+0.89
L4 46.72 £4.5 2.72+1.29 1.16 +0.82 1.31+0.37 495+1.64
L5 32.05+6.3 1.17+0.39 3.72+1.35 13.69 £ 3.95 1.66+0.19
L6 555+2.6 0.49+0.1 0.36 £ 0.07 4.96 *+ 3.60 0.66 +0.18

2 See Table 5-1.

Using Model 1 and Model 2, the TRAMD method was able to separate the 'slow' from the 'fast'
ligands successfully (see Table 5-3) with correlation coefficient between calculated and
experimental RT values, r = 0.93, r = 0.53, respectively (see Figure 5-6). However, using AF2-
derived Model 3 the results were initially unsatisfactory (see Table 5-3, Figure 5-6), e.g., with L5

being the slowest ligand and L4 the faster that exit binding site (see Figure S3A).

199-201 andin

As previously shown in experimental kinetic binding studies with hAsR antagonists
the application of TRAMD with GPCRs 2*° the residues structure and length of EL2 affects the
dissociation of compounds because it can hinder the exit route. Residue R173°3*as well as the
two adjacent residues M172>% and M174°3° (MRM motif) that lie on EL2 seem to play a key role
in the ligands’ egress route. As it is shown in Figure 5-3, 5-4 these residues have different
conformation in protein Model 3 compared to Models 1, 2. In contrast to Models 1, 2 in Model

3 residue R173%34is oriented towards the upper side of the binding site. The tRAMD calculations

with Model 3 showed that ligand A17 during its exit from the binding site passed from residues
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Q167°%, F168°2°, V169°3°, L246°%>, 125358, 259564 [ 264559, 126857 as is shown in Figure S3B
and in agreement with Figure 5-4C. Being in the upper side of the binding site of the receptor
R173%3%can act as a closing lid that hinders the egress of ligands L5, L6. However, in the case of
ligands L4 and A17 their 5-cyano group can form hydrogen bonding interactions with R173>3*
and waters (in the upper area of the binding area between TM2, TM3 and the ligand) favoring
ligands’ exit from the binding site, as is shown in Figure S3B in agreement with Figure 5-4C. The

TRAMD-based calculations revealed that L5, L6 stayed longer inside binding area compared to

A17, L4. In contrast, the experimental data showed that A17 has the longest RT.

Thus, we rotated the side chains of MRM residues in Model 3 to match the conformation they
adopt in protein Models 1,2 and ran the 100ns-MD simulations for the tested compounds L4-
L6, A17 in complex with inactive AsR. The MD simulations of the complexes between the ligands
and inactive hAsR converged during the 100ns-MD simulations with RMSD, opi3(Cat) < ~ 2.6 A
(Table 5-2, Figure 5-4, S2). In Figure 5-4D and Figure 5-5 snapshots for A17 and L4-L6 are shown
respectively, inside the orthosteric binding site of inactive hAs;R with optimized Model 3 are
shown. While in Model 3 R173%34 of EL2 that capped the binding area, in the optimized Model
R173>3* was turned to face the outward region of the TMs bundle. In the optimized Model 3,
the trimethoxy anilino group of A17 was oriented towards the extracellular water face of the

binding site instead forming hydrogen bonds with R173%3%in EL2 as is shown in Figure 5-4D.

In Figure 5-2, 5-3 were also included measures for comparison of the optimized Model 3 with
Models 1-3. As expected the most noticeable difference between Model 3 and optimized Model
3 was measured as RMSD,(Ca) ~ 2.1 A in the conformation of TM5 (Figure 5-2B). In Figure 5-3 is
shown that without considering the MRM motif modified orientation the binding site
conformation between Model 3 and optimized Model 3 in their complexes with A17 have after
the MD simulations relaxation small difference with an RMSD, s (Ca) ~ 0.7 A. However, when

we modified the MRM motif orientation the RMSD,gs (Cal) was ~ 3.4 A.

The TRAMD calculations with optimized Model 3 showed that compound A17 during its exit
from the binding site passed from residues Q167°%8, F168>%%, V16953°, L 246551, 12536558, /259564,
L264°%%, 126857 as is shown in Figure S3B and in agreement with Figure 5-4D. Using the
optimized Model 3, the TRAMD calculations provide a satisfactory ranking of ligands L4-L6, A17

according to their experimental RT values (Table 5-3, Figure 5-6).
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Figure 5-6: Calculated RT values (ns) with TRAMD method for the ligand - inactive AsR complexes embedded in
phospholipid bilayers against experimental RT values (min) for ligands binding to inactive AsR. Plots are coloured pink
for Model 1, orange for Model 2, blue for Model 3 and green for optimized Model 3, r: correlation coefficient, s: slope;
long RT values are shown with dark color compared to short RT values; experimental errors are shown with horizontal

line segments and computational method errors are shown with vertical line segments in the plotting points.

Structure-binding affinity relationships from binding free energy calculations

In Table 5-4 we show the experimentally or the TI/MD-calculated relative binding free energies,
AAGy exp Or AAGy, /v, respectively, that described the structure-activity relationships for these
ligands against the inactive AsR using Models 1-3 and optimized Model 3. The experimental
binding free energies were computed from the experimental dissociation constants determined
in ref. 37 (Chapter 4) (see notes in Table 5-4). In our TI/MD simulations the last frames of the
complexes from the alchemical perturbation calculations matched the last frames of the

corresponding complexes from the 100ns-MD simulations (Figure 5-4, 5-5).

We observed that the binding affinity of the ligand is increased with the size of the substituent
at the 3-position which can be anchored deeper into the receptor where it forms hydrophobic
interactions mostly with W243%4 and 190332, This is shown from the Ky's of the 3,5-

disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridines in Table 5-4 by changing the 3-
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hydrogen in A15 (pKp = 5.49 + 0.10) to 3-isopropyl group in L3 (pKp = 6.22 + 0.10) or 3-phenyl
group in A17 (pKp = 8.00 * 0.32) showing a ~ 5-fold or ~ 324-fold increase in affinity. Similarly
changing isopropyl group in L2 (pKp = 6.20 + 0.06) to phenyl group in L5 (pKp = 7.07 £ 0.22) a 13-
fold increase in affinity was observed. These results showed that 3-phenyl group is favored, as
regards binding affinity, over the 3-isopropyl group or 3-hydrogen (see also Figure 5-5A). We
observed this same effect also previously for hA;R (Chapter 4). This effect of the 3-substitution
can be quantitated by considering the alchemical perturbations A15 - L3 (3H - 3iPr), A15 >
A17 (3H - 3Ph), L3 - A17 (3iPr - 3Ph), L2 - L5 (3iPr - 3Ph) and the corresponding AAGp exp

values and the TI/MD calculated values.

Thus, for A15 > L3 (3H - 3iPr), AAGp,exp = -1.04 + 0.09 kcal mol™ and the calculated values with
Models 1-3 and the optimized Model 3 are AAGy 1/mp,1 =-1.04 + 0.07 kcal mol™?, AAGh1mp,2 = -
1.30 +0.06 kcal mol?, AAGy1ymp,3 = -1.31 +0.08 kcal mol™* and AGy,1i/mp,opts =-2.47 + 0.07 kcal mol
1 with deviation (|AAGuTymp - AAGhexp|, see Table 5-4) 0, 0.26, 0.27 and 1.43 kcal mol?,
respectively. For A15 > A17 (3H = 3Ph), AAGpexp = -3.56 + 0.21 kcal mol*and the calculated
values are AAGp1mp =-4.05 £ 0.09, -6.24 + 0.08, -3.93 + 0.09 and -4.86 + 0.09 kcal mol™ with
deviation 0.49, 2.68, 0.37 and 1.30 kcal mol?, respectively. For L3 - A17 (3iPr - 3Ph), AAGp exp
=-2.52 + 0.21 kcal mol? and the calculated values are AAGy,ymp =-1.68 + 0.09, -1.13 + 0.08, -
1.81 + 0.09 and -2.45 + 0.09 kcal mol™* with deviation 0.84, 1.39, 0.71 and 0.07 kcal mol?,
respectively. For L2 - L5 (3iPr - 3Ph), AAGp,exp = -1.23 + 0.44 kcal mol™ and the calculated values
are AAGy1ymp=-2.24 + 0.05, -1.20 + 0.08, -0.68 + 0.08 and -0.97 + 0.05 kcal mol* with deviation
1.01, 0.03, 0.55 and 0.26 kcal mol?, respectively.

In comparison to L4 (pKp = 7.58 £ 0.32), three methoxy groups in the phenyl group of the 7-
anilino substituent have been added in A17 (pKp = 8.00 + 0.32). This substitution pattern boosts
lipophilicity and enhances hydrophobic interactions with residues V169>3, 1264735, [2687-%
located in the upper area of the binding site (Figure 5-4D, Figure 5-5B), increasing binding affinity
according to AAGp e, = -0.60 + 0.32 kcal mol™® for L4 - A17 (7Ph > 7Ph(OMe);. The TI/MD
calculations showed a deviation 0.48 — 1.79 kcal mol™! with optimized Model 3 showing the

lowest deviation.

The important effect in binding free energy from replacing the hydrogen at 5-position in L6 (pKp
= 7.13 + 0.55) with chlorine group in L5 (pKp = 7.07 + 0.22) or with cyano group in A17 (pKp =
8.00+ 0.32) is described by the alchemical perturbations L6 - L5 (5H = 5Cl) or L6 - A17 (5H >
5CN) or L5 - A17 (5Cl > 5CN) with AAGp exp=0.09 £ 0.39 or -1.23 + 0.44 or -1.32 + 0.27 kcal mol

! respectively (Table 5-4). By changing the hydrogen at the 5-position with a chlorine maintained
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binding affinity but the replacement with cyano group increased affinity by ~ 10-fold. The TI/MD
calculated values with the tested models for L6 = L5 (5H = 5Cl) are AAGp,i/mp =-1.29 + 0.05, -
2.89+0.03, -0.79 + 0.04 and -0.39 + 0.04 kcal mol* with deviation 1.38, 2.98, 0.88 and 0.48 kcal
mol?, respectively. For L6 - A17 (5H > 5CN), AAGy 1/mp=-0.61 + 0.05, -3.68 + 0.04, -1.48 + 0.06
and -1.15 + 0.05 kcal mol? with deviation 0.62, 2.45, 0.25 and 0.08 kcal mol?, respectively. For
L5 - A17 (5Cl - 5CN), AAGy/mp =0.40 £ 0.04, -0.91 £ 0.03, -0.10 + 0.04 and -0.39 -1.48 + 0.04

kcal mol* with deviation 1.72, 0.41, 1.22 and 0.93 kcal mol?, respectively.

Compared to L6 (or also L5), the combination of the 5-cyano group and nitrogen at 6-position in
A17 increased polarity. Thus, in L6, which lacked the 5-cyano group, the hydrogen bonding
interactions with N250%% are reduced (Figure 5-4D, 5-5C,D) and the hydrogen bonding

interactions with waters that enter area between the ligand and TM2, TM3 can’t be formed.

The orthosteric binding pocket can also accommodate sizeable substituents at 5-position, e.g.,
the phenylmethyl group in L8 or the 3-(pyridinyl)methyl group in L9 that are linked to a 5-
aminomethyl group. Ligands L8 (pKy = 6.73 £ 0.45) and L9 (pKy = 7.0 £ 0.33) have similar affinities
at hAsR (Table 5-3) differing by only ~ 1.8-fold, with pyridinyl group being slightly disfavored
compared to the phenyl group according to the AGp,exp= 0.38 + 0.39 kcal mol™ for the alchemical
transformation L9 > L8. The TI/MD predictions showed that AAGy1/mp1 = 0.99 kcal mol?,
AAGy1imp,2 = 0.43 £ 0.09 kcal mol™?, AAGy 1ymp,s =-0.92 + 0.09 kcal mol™, AAGy 1mp,opts = 0.38
0.09 kcal mol™* with deviation 0.61, 0.05, 1.30, 0 kcal mol?, respectively (Table 5-3).
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Table 5-4: Calculated relative binding free energies by the TI/MD method 1% with ff19sb %> and a thermodynamic cycle for alchemical transformations of

3,5-disubstituted 7-(phenylamino)-pyrazolo[3,4-c]pyridines complexed to inactive AsR and embedded in phospholipid bilayers, using protein Models 1-3 and

optimized Model 3 (AAGy, 1i/mp,1, AAGh,1imp,2 and AAGy,1iymp,3, AAGh Tymbp,0pt3, Fespectively), experimental relative binding free energies (AAGp,exp) and deviation

of calculated from experimental values (| AAGym/mp - AAGb exp | ) (free energies in kcal mol™).

Model 1 Model 2 Model 3 Optimized Model 3
alchemical | AAGh,T/vD,1 | AAGp,Ti/vD,2 | AAGp,Ti/MD,3 | AAG,11/MD,0pt3
No AAGp,exp® AAGh,T/vD,1 AAGp,Ti/MD,2 AAGp,1i/MD,3 AAGp,1i/MmD,3
perturbation - AAGb'epr - AAGb'epr - AAGb'epr - AAGb'epr
A15 - L3;
1 -1.04+0.1 | -1.04 £0.07 0.00 -1.30 £ 0.06 0.26 -1.31 +0.08 0.27 -2.47 £0.07 1.43
R:3-H->3-iPr
A15 > A17;
2 -3.56+0.21 | -4.05 £ 0.09 0.49 -6.24 £ 0.08 2.68 -3.93+0.09 0.37 -4.86 + 0.09 1.30
R: 3-H->3-Ph
L3 - A17;
3 -2.52+0.21 | -1.68 £ 0.09 0.84 -1.13 £0. 08 1.39 -1.81 £ 0.09 0.71 -2.45 £ 0.09 0.07
R: 3-iPr-3-Ph
L4 - Al17;
4 -0.60+£0.32 | 1.19+£0.09 1.79° 0.98 £0.10 1.58 -2.33+£0.12 1.73 -1.08+0.11 0.48
Y: 7-Ph->7-Ph(OMe)s
L6 - Al17;
5 -1.23+0.44 | -0.61 £0.05 0.62 -3.68 £ 0.04 2.45 -1.48 £ 0.06 0.25 -1.15 £ 0.05 0.08
A:5-H->5-CN
L6 - L5;
6 0.09+0.39 | -1.29+£0.05 1.38 -2.89+£0.03 2.98 -0.79+£0.04 0.88 -0.39+£0.04 0.48
A: 5-H->5-Cl
7 L5 - Al17; -1.32+0.27 | 0.40+0.04 1.72 -0.91 £0.03 0.41 -0.10+£ 0.04 1.22 -0.39+£0.04 0.93
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A: 5-Cl->5-CN

L2 - L5;

R: 3-iPr->3-Ph

L9 - LS;

A: 5CH,NHCH;Ph—>
5CH;NHCH,py °

-1.23+£0.14

0.38+0.39

-2.20£0.05 0.97

0.99+0.08 0.61

mue € = 0.94 kcal mol*

-1.20 £ 0.08 0.03

0.43 +0.09 0.05

mue = 1.31 kcal mol?

-0.68 £ 0.08 0.55

-0.92 £ 0.09 1.30

mue = 0.81 kcal mol™?

-0.97+£0.10 0.26

0.38+0.09 0

mue = 0.56 kcal mol?

2 Experimental relative binding free energies (AAGp,exp) Were computed using the experimental binding affinities (pK4) determined in Chapter 4 and as described in ref. 3%7; b

values in bold and underlined showed a deviation > 1 kcal mol?; ¢ mue = mean unsigned error or the mean of |AAGb,TI/MD - AAGb,exp| values.
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Using homology Model 1 we obtained calculated relative binding free energy values that have
a mean unsigned error (mue) = 0.96 kcal mol? (see Table 5-4). We observed in 3 out of 9 cases
a deviation of the calculated relative binding free energies from experimental values between
1.38-1.79 kcal mol™. In Figure 5-7 it is shown the very good correlation coefficient r = 0.74 (p =

0.0216) between the TI/MD calculated and the experimental relative binding free energies.
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Figure 5-7: Calculated AAGy, riymp values plotted against AAG, ex, values which were determined using the experimental
binding affinities pKy4 for ligands binding to inactive AsR (Table 5-4); plots are coloured pink for Model 1, orange for

Model 2, blue for Model 3, green for optimized Model 3; r: correlation coefficient, s: slope.

Using homology Model 2 the results showed mue = 1.31 kcal mol™? with 5 out of 9 perturbations
having a deviation between 1.39 - 2.98 kcal mol? (Table 5-4). In Figure 5-7 is shown that the
correlation coefficient between the calculated and the experimental relative binding free

energiesisr=0.62 (p =0.0732).
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With homology Model 3, the results showed mue = 0.81 kcal mol? and with 3 out of 9
perturbations having a deviation between 1.33 - 1.73 kcal mol? (Table 5-4) and a correlation
coefficient r = 0.67 (p = 0.0505) between the calculated and the experimental relative binding
free energies (Figure 5-7). When the optimized Model 3 was used we obtained a correlation
coefficient r = 0.88 (p = 0.0015), mue = 0.56 kcal mol™? with only 2 alchemical perturbations
having deviation between 1.30 - 1.43 kcal mol™. This suggested a computational model reliable

to describe binding interactions of ligands against inactive AsR.

A post processing analysis of the MD simulations of ligands A15, L2-9, A17 in complex with
inactive hAs;R was also tested using the MM/GBSA method. The MM/GBSA protocol was
elaborated to include a hydrophobic slab as an implicit membrane model while including water
molecules in the orthosteric binding area, to a radius of 4 A from the center of mass of the ligand,
176-178 3nd the OPLS2005 262283 for the calculation of ligand-protein interactions. In Figure S4 and
Table S7 are shown representatively results using Model 1. Compared to the most potent
compound A17, the MM/GBSA method calculated the correct sign of binding free energy change
when a group of atoms was deleted from A17 (i.e., the cyano or the methoxy groups) without
providing accurate relative binding free energy values. However, it failed to predict the sign of
the binding free energy changes when a group at 3- or 5-position of in the phenylamino

substituent was changed to another group.

5.3 Discussion

To explore the orthosteric binding area and design new antagonists against the unresolved hA;R,
accurate computational models are needed as regards calculation methods and protein model
used. To achieve this aim, we explored the thermodynamic and kinetic binding SARs antagonists
for a set of our previously identified antagonists against inactive hAsR using TI/MD calculations
of relative binding free energies and TRAMD calculations of relative RTs and comparing
homology models of inactive hAsR. We used five publicly available models which after filtering

degenerate ones we came up with Models 1-3 for inactive AsR.

We used Model 1 available from refs 2°6 258 259

and Model 2 available from ref. 1% generated
based on the crystal structures of inactive AR 3* or AR 35, respectively, and
bioinformatics/chemoinformatics tools. We also used Model 3 from GPCRdb 2%° which has been

generated based on a multi-state AF2 method. '*2 AF2 has a bias towards either the active or
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inactive conformation of the receptor and can only predict one state. Multi-state AF2 method is
a more sophisticated method that has been developed based on AF2 which considers the
conformational switch between the active and inactive states that occurs upon ligand binding.
This method has been shown to accurately predict the structures of GPCRs in different states,

making it a valuable tool for studying their function and developing new drugs.

We observed small differences between Models 1-3 in the orientation of side chains of Q167°%%,
F168°2°, V169>, W243%8 that play important role in antagonistic binding. However, it was
striking that in Model 3 residues M172%33, R173%34, M174°3> (MRM motif) that lie in the upper
region of TM5 on EL2 have significantly different side chain orientation compared to Models 1,2.
EL2 residues affect the dissociation kinetics of the ligands and their RT inside the receptor. The
EL2 is a challenging GPCR domain to be modelled because it is the longest and the most diverse

loop of the three Els, 3°*3°* and in AF2-models EL2 is indicated as a low confidence region. 1?°

We used the 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists of hAsR, L3-
L6, L9, Al17, for description of their binding profile and for some evaluation of the available
homology models that will allow further development of the low nM leads as hA3;R antagonists,
including compound A17 and our other developed compounds. These antagonists (L3-L6, L9,
A17) were previously identified and characterized with kinetic and equilibrium binding

experiments (Chapter 4).

We applied induce-fit docking calculations and MD simulations in the complex of the 3,5-
disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists with inactive AsR. We
observed that A17 is stabilized inside the orthosteric binding area of inactive AsR and binds
between TM3 and TM5-TM7. Ligand A17 forms attractive hydrophobic interactions with L90%32,
W243%48 1246551 126473, 12687-* at the bottom of the binding site, attractive hydrophobic
interactions with V169>% and possibly Q167°2%, R173°3* at the top of the binding area, and in
the middle area hydrogen bonding interactions with N250%°° and hydrophobic interactions with
F168%>%°, M172>33, M177°%8. Compared to L4 (Y=H, A=CN, R=H; pKp = 7.58 * 0.33) these
additional three methoxy groups in the phenyl group of the 7-anilino substituentin A17 (Y=OMe,
A=CN, R=H; pKp = 8.00 * 0.32) add affinity against inactive hAsR, likely because they can lower
the desolvation penalty of the ligand for entering binding site from bulk water phase and
increase hydrophobic interactions with residues V169°3°, L2647-%, 126873 (located in the upper
area of the binding site). However, A17 (RT = 47.23 + 8.20 min) and L4 (RT = 46.72 + 4.50 min)

have similar residence time values.
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Mutagenic studies with other antagonists showed that residues Q92334 H95337, W243%8 at the
bottom of the binding site and K152>% in EL2, and H2515°¢ at the upper part are important for
ligand recognition but not residue L244%%, 33 These residues are the same or lie close to the
residues observed for A17. Additionally, in Model 3 residues R173%3*in EL2 and Q167°28 on the
top of the binding area can form hydrogen bonds with the methoxy group of the ligand. The 5-
cyano group of Al17 is hydrogen bonded with waters that enter the binding area between ligand
and TM2, TM3 and residues L9032 and Q167>%. Compared to L6 (Y=OMe, A=H, R=Ph; pKp = 7.13
+ 0.55) or L5 (Y=OMe, A=Cl, R=Ph; pKp = 7.07 + 0.22) which lack the 5-cyano group, the presence
of the cyano group at 5-position and nitrogen at 6-position in A17 (Y=OMe, A=H, R=Ph; ; pKp =
8.00 + 0.32) increased polarity at this part of the ligand and hydrogen bonding interactions with
waters positioned between the ligand and TM2 and TM3. In compound L6 which lacks the 5-
cyano group, the hydrogen bonding interactions with waters and consequently the hydrogen
bonding interactions with N250%>° are diminished. The much lower residence time of L6 (RT =
5.55 + 2.60 min) being ~ 8.5-fold smaller compared to A17 (RT = 47.23 + 8.20 min) or ~ 5.8-fold
smaller compared to L5 (RT = 32.05 + 6.30 min) reflect these ligands’ interactions inside the

inactive AsR.

The MD simulations showed that L9 (A=CH,NHCH,Ph; pKp = 7.0 + 0.33) or L8 (CH,NHCH,Ph; pKp
= 6.73 £ 0.45) with the increased in length 5-substituent have additional hydrophobic contacts
with residues V65%%7, L68%%°, A69%5 72254 extending the ligands’ girth from TM6 to TM2, TM1
and TM7. The ligand can form water bridged hydrogen bonds with E1912° and the pyrazole ring
is positioned close to TM5-TM7 so increasing the m-mt interactions with F168°>2° and forming new
hydrogen bonding and m-mt interactions with H2727-43, While the two ligands L8 (RT = 5.78 min)
and L9 (RT = 17.85 * 4.3 min) have similar binding affinity they have residence times that differ
by ~ 3.1-fold.

To explore the thermodynamic binding profile of the ligands we applied the MM/GBSA
calculations, using an implicit membrane model and considering the waters inside the binding
area. Y178 This protocol is not adequate to rank differences in binding free energy due to subtle
changes in substitution of ligands (i.e., SARs) against As;R and failed also against hA;R as we
previously showed in Chapter 4. Thus, the performance we obtained with MM/GBSA method

f. 2’with another class of antagonists seemed to be accidental. Such accuracy

against hAsR inre
is possible using the perturbation methods based on statistical mechanics 34334 as also
suggested by studies related to the comparative performance of FEP/MD and MM/PBSA

314,334

methods for water soluble protein-ligand complexes and membrane protein-ligand

complexes, e.g., complexes of hAzR. 3%
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The alchemical perturbation calculations of relative binding free energies have been used to
describe such SARs in membrane protein-ligand complexes, e.g., complexes of hAsR 1°6:159-163,335
and hA;R (see Chapter 4) either with the TI/MD or FEP/MD or using homology models of inactive
hA2sR **and inactive hAsR. 11#162258 We applied the TI/MD method for the calculation of relative
binding free energies of our previously identified 3,5-disubstituted-7-(phenylamino)-
pyrazolo[3,4-c]pyridine antagonists to inactive hAsR with homology Models 1, 2, 3 showing a
satisfactory performance with a correlation coefficient, r = 0.74, 0.62 or 0.67, respectively,
between the calculated and experimental relative binding free energies with mue = 0.96, 1.31

0.81 kcal mol?, respectively.

To assess the relative RT of compounds within the receptor we applied the TRAMD method,
234.235293,250 sing four selected ligand with different experimental RTs for testing the TRAMD
calculations, i.e., A17 (Y=OMe, A=CN, R=Ph; RTey, = 47.23 + 8.20 min), L4 (Y=H, A=CN, R=Ph; RTexp
= 46.72 £ 4.50 min), L5 (Y=OMe, A=Cl, R=Ph; RTex, = 32.05 + 6.30 min), L6 (Y=OMe, A=H, R=Ph;
RTexp = 5.55 + 2.60 min). Notably, TRAMD performed well with protein Models 1 and 2,
effectively distinguishing between short and long RT compounds. The multi-state AF2-based
Model 3 showed in the MD simulations that residue R173>3*in EL2 forms hydrogen bonds
through its side chain with methoxy groups of A17. Residue R173>3* lying on the top of the

binding area can affect egress route of ligands.

To address this and obtain a consistent ranking of the ligands as regards RTs we optimized the
AF2-based Model 3 by rotating side chains of MRM motif to match the orientation of the
residues in Models 1, 2. In the optimized Model 3 antagonist A17 orients its anilino group
towards the extracellular water face of the binding pocket and exit the binding site from there.
In Model 3 ligand A17 forms hydrogen bonds with R173%34in EL2. It is worth noting that the
trimethoxy-anilino group of the ligand A17 orients towards EL2 in A;R although this receptor has
a glutamic acid instead of valine at position 5.30. We found 8 that when residue V169°>3° in hAsR,
which considered to be a selectivity filter for ligands’ binding to AsR orthosteric, was mutated to
glutamic acid, the functional activity of agonist IB-MECA is increased due to the conformational
plasticity of the binding area. With optimized Model 3 we obtained not only an improved
performance with tRAMD method showing a good correlation (r = 0.81) between calculated and
experimental RT values but also, we achieved with TI/MD method better performance with a
correlation r = 0.84 between calculated and experimental free energies with mue = 0.56 kcal

mol*?
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6. Conclusions

Adenosine receptors, members of the GPCRs family, have garnered significant attention in drug
discovery efforts, primarily due to their involvement in various physiological processes and their
potential as therapeutic targets. Computational chemistry techniques have emerged as
indispensable tools in the quest to design novel drugs targeting ARs. These techniques allow
researchers to virtually screen large chemical libraries, predict ligand-receptor interactions, and

assess the binding affinities of potential drug candidates.

One particular area of focus in ARs drug design is the development of dual antagonists that can
target multiple receptor subtypes simultaneously. Dual antagonists, such as those already
published to act on both hAi;R/hA2aR %871%°, and hAsR/hAsR %, hold great promise in addressing
complex medical conditions considered safer than drug combinations since they have lower
toxicities and a lower risk of drug-drug interactions. No pharmacological data on dual hA;R/hAsR

ligands have yet been published.

In this PhD thesis, we investigated the new 7-aminopyrazolo[3,4-d]pyridazine core, as promising
scaffold for the development of novel antagonists targeting ARs. A number of derivatives
synthesized by the National & Kapodistrian University of Athens revealed that the 1-methyl-3-
phenyl-7-benzylaminopyrazolo[3,4-d]pyridazine 10b was a high affinity dual antagonist of the
human A;R (26 nM) and AsR (7.4 nM). It also displayed weak affinity (>1 uM at the AxR)
measured using the NanoBRET method and functional assays. We also determined its kinetics
of binding and found that at both the A;R and AsR, compound 10a resides inside the binding
pocket for > 60 mins. Compound 10b is placed inside the orthosteric binding area of AR
interacting with N&%, H43 and F>2°, W848, | 651 T3.36 652 y7.46 |nterestingly the regio-isomeric
derivative 15b where the methyl group is connected with pyrazole N?, lacked affinity due to the
steric hindrance for hydrogen bonding interactions with N5, We performed MD simulations to
investigate the binding interaction in the new series as well as the observed regioselectivity in
N'Me (10b) compared to N?Me (15b) isomer. The mutagenesis results for 10b showed that in
contrast to previous studies mutation L250%°!A resulted in only a slight reduction of binding
affinity for 10b while Y2717-3%A mutation caused a 10-fold reduction in binding affinity. Mutation

to alanine of residues T913%, H251%%2 or S2677-32, which are deep in the orthosteric binding
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affinity, did not affect binding affinity. Thus, 10b can be used as a useful probe for the
investigation of other features in the orthosteric binding area by suitable substitutions of this

compound.

We also identified from the re-purposing of in-house antiproliferative compounds the novel
pyrazolo[3,4-c]pyridine scaffold than can lead to ligands of ARs and improved understanding of
SARs of ligands targeting ARs. After testing of pyrazolo[3,4-c]pyridine derivatives against all four
AR subtypes we identified binding affinity and antagonistic activity against A;R and As;R. We
found one series of potent derivatives with phenyl group at 3-position, anilino group at 7-
position and cyano group at 5-position and one series with 3-(N-acyl)amino-5-anilino group at
3-position and anilino group at 5-position. Thus, A17, L4 displayed low nanomolar affinities and
L5, L8, L9 mid-nanomolar affinities to the AsR. At the AsR, Al17, displayed low nanomolar affinity
and the five compounds L4, L6-L9, L12 displayed mid-nanomolar to low nanomolar. Compound
A17 has a Ky=5.62 nM and RT = 41.33 min measured using a NanoBRET assay for AiR and K4=
13.5 nM and RT = 47.23 min for AsR. The kinetic data showed that compared to not potent
congeners, A17 has similar association but much lower dissociation rate (eg. at AiR Kon = 139.7

x10°> Mtand Ko = 0.024 min™).

We investigated particularly the molecular recognition of the ligands against A;R for the
analogues of the most potent antagonist A17, which has a 3-phenyl, 5-cyano and 7-(3,4,5-
trimethoxy)anilino substitution pattern, using a combination of MD simulations and accurate
binding free energy calculations of the membrane systems using TI/MD method, first applied on
a GPCR system, and site-directed mutagenesis. The TI/MD shows a very good agreement
between calculated and experimental relative binding free energies for A;R (r = 0.73). A novel
observation from mutagenesis data for drug design purposes is that when the L250%>'A is

changed to alanine the binding affinity of A17 significantly increased at AsR.

As we showed here, TI/MD is an accurate method to predict the effect of changing a substituent
in the structure of A17 in AR and the next step is to design and synthesize analogs of A17 with

improved affinity.

Finally, our study emphasizes the importance of selecting appropriate computational models for
the design of antagonists against the unresolved inactive AsR. The computational model that we
suggest, includes a selected homology model in combination with MD simulations and methods
that can predict relative binding free energies and relative RTs (TI/MD and TRAMD). The derived
computational model can help in the prospective ranking of candidate drugs in a congeneric

series prioritizing leads with stronger binding and longer residence times.
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Figure S4: Pairwise sequence alignments (A) Pairwise sequence alignment of hA;a crystal structure (PDB ID 3EML 34)
that was used as template for the homology modelling of AsR (Uniprot ID PODMS8) showing the identical (blue), the
strongly conserved (purple), and the weakly conserved (light-purple) residues. (B) Pairwise sequence alignment of hA;
crystal structure (PDB ID 5UEN 53) that was used as template for the homology modelling of AsR (Uniprot ID PODMSS8)
showing the identical (red), the strongly conserved (orange), and the weakly conserved (light-orange) residues. This

figure was made with Jalview 2.11.2.6. 116
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CHAPTER 3

Table S1: Antagonistic potencies (pEC50 in presence of NECAa) of 7-amino-pyrazolo|[3,4-
d]pyridazines 10a-c, 15a-c against A;aR and AxR.

A24R (10 pm) A2R (10 um)
PECsoof NECA in pECsoof NECA in
COMPOUND presence of presence of 3
a a pKd
compound compound
10a 5.64 £0.38 7.01+£0.10 4.79+0.15
10b 5.82 £0.33 6.39 £+ 0.07* 5.76% 0.14
10c 5.60 £0.52 7.23£0.10 N.B.
15a 6.17 £ 0.47 6.87 £ 0.09 5.09+0.15
15b 5.71+£0.46 7.22+£0.13 N.B.
15¢ 5.84 £ 0.46 7.24 £0.10 N.B.
vehicle 6.42 £0.17 7.22+£0.12 -

3Mean + SEM; Functional activities of at least 3 independent repeats, conducted in duplicate.

Statistical significance compared to NECA was determined, at p< 0.05, through One-Way ANOVA with Dunnett’s post-
test (*, p< 0.05).

bMean + SEM; Equilibrium binding affinities of the ligands measured with NanoBRET against WT A,sR; NECA was used

as positive control.

Adapted from the Doctoral Thesis of Dr Anna Hilser 30 and ref 307 ,
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CHAPTER 4

Table S2: Chemical structures of 53 compounds from our in-house library.

NO CODE REF COMPOUND
STRUCTURE CLASS
A9 NL666 H o F 33 pyrido[2,3-
[N\j\/\/[N\C” b]pyrazine
N” N7 CcH, -
A10 | NL660 N v 3% pyrido[2,3-
E \j\/j: \C//\ b]pyrazine
NN cH, N
<\N\\>
CH,
A1l NL681 . H o 355 pyrido[2,3-
[ \j\/\/[ CNH blpyrazine
N7 N7 >, @\
CF,
Al12 NL605 H 3% pyrido[2,3-
SN N CH3\©
H 355 ; _
Al13 NL757 N AN 0 pyrldo[2.,3
s7ONT N cH, ®/CF3
Al14 | MVN196 @\ 36 pyrazolo[3,4-
OCH idi
N //O/ 3 c]pyridine
| N
ar ~F
A15 | MVN377 OCHj 36 pyrazolo[3,4-
H;CO c]pyridine
H,CO NH
N N
NN
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A16 | MVN445 ©\ 36 pyrazolo[3,4-
N

, //®/ocm c]pyridine

N N\
I/ N
cl
A17 | MVN492 o OCH, =7 pyrazolo[3,4-
:@\ clpyridine
H,CO NH
H
N N\
NC o~
A18 | MVN281 CHj 38 pyrazolo[3,4-

clpyridine

H
L1 | Mvn450 37 pyrazolo[3,4-
clpyridine

N N
A
CN
L2  Mvn468 o OCH; 36 pyrazolo[3,4-
c]pyridine
H;CO NH
H
N~ N\
| N
ar Y {
L3 | Mvn451 o OCHs 36 pyrazolo[3,4-
c]pyridine
H;CO NH
H
N“ N\
NC \‘ /N
L4 | Mvn489 @\ 37 pyrazolo[3,4-
o clpyridine
N& N\
| N
~ Y,

175



L5

L6

L7

L8

L9

L10

Mvn411

Mvn474

Mvn494

Mvn 497

Mvn498

Mvn496

OCH;

H;CO
H;CO NH
H
N& N\
N
x | 7

N\ N7 N\
\ H | N
= N X 7
OCH;
H;CO: i
H;CO NH
H
o) ~ \ N\N
/

356

356

357

357

357

357

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
clpyridine

pyrazolo(3,4-
c]pyridine

pyrazolo[3,4-
c]pyridine
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L11

A20

A25

A26

A27

L12

L13

L14

L15

Mvn487

NLG35

MER142

MER143

MER191

MER148r
n

MER117

MER140

MER139

CH,

H,C

HN

O

><CH2CHZCH20H

NH

Q@
s¥e-3

p —a

357

359

360

360

360

360

360

360

pyrazolo[3,4-
clpyridine

perimidine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
c]pyridine

pyrazolo(3,4-
c]pyridine

pyrazolo[3,4-
c]pyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
c]pyridine

pyrazolo[3,4-
c]pyridine
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L16

L17

L18

L19

L20

L21

L22

A28

MER194

MER196r

MER195r

MER172t

TP 29

TP 59

TP 64

TP27

Z

N7 \
x | 7
NHﬁCHzNH—Q
0o
NH cH,
NZ N\N
x | Y
NHﬁNH—@
o)
: “NH
CHj;
7/
NT \
| N
X
NHﬁCHzNH—Q
0
CH;,
/

360

360

360

360

360

360

360

360

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
c]pyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
c]pyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
clpyridine

pyrazolo[3,4-
c]pyridine

pyrazolo[3,4-
clpyridine
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A29 | TP102 ©\ § \;O
N NN
oA~(
v
\XO(\\
A32  TP265 T
. \ — N CH.
N \ N\
wn A A
A34  TP383 [Oj
i r@ b
NN
i A A
A35  GP239 Y
| Z g)J\ANﬁ
A36 | GP327B
cl \078/ <[:>
P
A37  NL647 8
= N>
A

360

360

360

360

pyraZO|0[3l4_
clpyridine

pyraZO|0[3l4_
clpyridine

pyraZOIO[3,4'
clpyridine

pyra ZOIO[3I4_

c]pyridine
361 pyridine
361 imidazo[4,5-
blpyridine
362 imidazo[4,5-
blpyridine
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A38 | NL639

A39 | NL642

A40  NLS66

A4l GP126

A42 GP174

A43  GP172

Cl

362 imidazo[4,5-
b]pyridine

362 imidazo[4,5-
b]pyridine

362 imidazo[4,5-
blpyrazolo[3,4-
e]pyridine

363 imidazo([4,5-
b]pyridine

363 imidazo[4,5-
b]pyridine

363 imidazo[4,5-
b]pyridine
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A44 PK288 364 imidazo[4’,5’:5,6]
pyrido[2,3-
b]pyrazine

NH
W N
$os
N, Py
o Lo H
HO g “on
"~
A45 | PK285 A/\\ 364 imidazo[4’,5:5,6]
N pyrido[2,3-
o N b]pyrazine
D
\N N/ N
0 LoV H
HO N oy
Ho
Table S3: Functional activities for A15, A17 and A26 against AR and AzgR.
AsaR AR
COMPOUND plCsoin plCsoin
presence of pKa® presence of pKq®
NECA? NECA?
DMSO 5.94 +£0.18 - 7.22+£0.12 -
A15 5.79£0.24 - 7.07 £0.09 -
Al17 5.94+0.2 - 6.62 +0.07* 5.50+0.12
A26 6.12£0.43 - 7.21 £0.09 -

aplCsp values are reported as mean * standard error of the mean (SEM) of at least 3 independent repeats, conducted

in duplicate.

b Dissociation constant (pKg) of the ligands as mean * standard error of the mean (SEM) of at least 3 independent

repeats, conducted in duplicate as determined using the Schild analysis (Equation 1).

Statistical significance (* p < 0.05) determined using ANOVA and Dunnett’ s post-test.

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 ,
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Table S4: Functional activities for L2-L10, and L12, L15, L21 against A2aR and AxsR.

AzaR
COMPOUND peCall PG
presence of pKad presence of pK4®

NECA® NECA?®
DMSO 5.94+0.18 - 7.22£0.12 -
L2 5.33+0.28 - 7.20 £0.07 -
L3 6.35+0.22 - 7.33+0.09 -

L4 5.58 £0.22 - 6.60 = 0.09* 5.77 £0.12

L5 6.09 £0.22 - 6.82 +£0.09 -
L6 5.31+0.19 = 6.64 £0.10 =
L7 5.73+0.22 - 6.99 £ 0.09 -
L8 5.80+0.19 = 6.82 +£0.07 =
L9 546+0.3 - 6.92 £0.08 -
L10 6.15+0.30 = 7.15+0.08 =
L12 5.68 £0.25 - 6.97 £0.10 -
L15 6.56 £ 0.30 - 7.16 £0.12 -
L21 6.18 +0.32 - 7.03+0.11 -

a Functional activities (plCso values in presence of NECA) for the ligands as mean * standard error of the mean (SEM)
of at least 3 independent repeats, conducted in duplicate.
Statistical significance ( * p < 0.05) determined using ANOVA and Dunnett’ s post-test.

Adapted from the Doctoral Thesis of Dr Anna Hilser 30 and ref 307 ,
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Table S5: plCso of NECA in the presence of DMSO

antagonist, in AsR Flp-In™ CHO cells.

and in the presence of each potential

AsR AiR
Mean Mean difference
COMPOUND | PpICsoof NECA*  difference from pICso of NECA® from DMSQP
DMSOP
DMSO 9.03+0.1 - 8.95+0.1 -
Al17 7.27 £0.1%** -1.72 6.70 £ 0.1%** -2.25
L2 6.57 £ 0.39*** -2.46 6.85 £ 0.1%** -2.15
L3 8.42 +0.19* -0.61 8.49 +0.17 -0.46
L4 7.40 £0.1%** -1.60 7.04 £0.1** -1.55
L5 7.91+0.1** -1.09 8.54+0.1 -0.41
L6 8.29+0.1* -0.74 8.72+0.23 -0.23
L7 8.31+0.21* -0.72 7.64 £0.14** -1.31
L8 8.14+0.1* -0.89 8.41+0.22 -0.51
L9 8.05+0.1** -0.95 7.92 £0.11** -1.03
L10 8.56+0.2 -0.47 8.33 £0.15* -0.62
A26 7.86 £0.1** -1.14 8.58+0.1 -0.37
L12 8.52+0.21 -0.51 8.16 £ 0.09* -0.89
L15 8.17 £0.2* -0.86 8.30+0.14* -0.65
L21 8.78+0.1 -0.22 8.85+0.12 -0.1

aplCsp values are reported as mean * standard error of the mean (SEM) of at least 3 independent repeats, conducted

in duplicate. ® Difference in plCso between DMSO and each potential antagonist. Statistical significance ( * p < 0.05,

** p<0.01, *** p <0.001) determined using ANOVA and Dunnett’ s post-test.

Adapted from the Doctoral Thesis of Dr Anna Hilser 30 and ref 307 ,

Table S6: Binding affinities for A26 measured using NanoBRET against WT and mutant A;Rs.

Mutation Ka (nM) @ pKq

CA200645 A26
wrt 76.37 £9.37 6.30 £ 0.07
T9133°A | 166.35+17.36 | 6.10 +0.07
E172°3°A | 116.04+12.22 | 5.98 +0.06
L250%°IA | 158.28 +17.37 | 6.15 +0.09

H2515?A | 145.19 +19.13 |7.15 + 0.08**

5§267732A 70.99 +7.03 5.97 £0.17
Y2717-36A 71.10+7.68 6.33 £0.07

a Affinity constant for CA200645 binding to mutant A;R receptors.

b n.b. NECA was unable to displace CA200645 at the mutant receptor

Statistical significance (* p < 0.05, ** p < 0.01,) determined using ANOVA and Dunnett’ s post-test.

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 ,
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CHAPTER 5
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Figure $25: RMSD plots from 100 ns MD simulations with amber99sb of Inactive AsR - A17, L3, L4, L5, L6, L9 complexes
embedded in phospholipid bilayers. Pink plots were used for Model 1, orange for Model 2 and blue for Model 3 and

green for optimized Model 3.
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Figure $3: MD simulations with TRAMD. (A) RMSD plots of the ligand from MD simulations showing the egress of
ligands L5 and A17. (B) Protein-ligand interactions during the suggested egress route of A17 showing the 5/100 MD
simulation snapshots (blue color) and the last 5/100 MD simulation snapshots snapshots (light brown color) for Model

3 (up) and optimized Model 3 (bottom); HY: hydrophobic, HD H-bond donor, HA H-bond acceptor interactions.

185



Table S7: Experimental dissociation constants, AGes calculated from the MD simulations using
amber99sb and the MM-GBSA method using OPLS2005 force field with an implicit membrane
model and considering the waters inside the binding area, for A15, L2-L6, L8, L9, A17 against

inactive AsR using homology Model 1.

Compound pK4? AGes ®
Al5 5.91+0.19 -94.31 £ 8.62
Al7 8.00 £0.32 -116.06 £ 7.74

L2 6.26 £ 0.18 n.d.

L3 6.45+0.23 -119.03 £6.28
L4 7.58 £0.33 -102.16 £5.44
L5 7.07 £0.22 -141.44 £ 5.62
L6 7.13 £0.55 -98.55 + 8.02
L8 6.73 £0.45 -127.39 £ 8.87
L9 6.89+0.2 -143.08 £ 7.68

2 See also Table 5-1.

b Mean + SEM; Calculated effective binding free energy (kcal mol) between ligand and receptor. AGes is
calculated from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using
the MM/GBSA model that considers the membrane as hydrophobic slab. Mean from three 20ns-MD

simulations.

A3
MM/GBSA implicit membane
160.00 9
140.00 &
120.00 7
6
100.00
5
80.00
a4
60.00
3
40.00
2
20.00 1
0.00 0
Al7 L3 L4 LS L6 L7 L8 L9
pKi 8.01 6.22 7.36 7.26 7 6.89 7.19 7.19

-AG  116.06 119.03 102.16 141.44 98.55 119.94 127.39 143.08

wpKi m-AG

Figure S4: AGs values from MM/GBSA calculations and experimental binding affinities pKi for for inactive AsR.
MM/GBSA calculations using a model that is taking into account the membrane as hydrophobic slab (blue bars) and
pKi values measured using BRET (blue bars). Homology Model 1 of inactive AsR was used used for the MM/GBSA

calculations.
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"As | close this chapter of my life, I'm reminded of Oscar Wilde: 'I'm not young enough to know

everything.' | now embrace the journey ahead, eager to keep learning and growing."
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