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Abstract 
 

In the pursuit of developing effective therapeutics, structure-based drug design has emerged as 

a powerful approach, leveraging our understanding of molecular structures to design molecules 

with enhanced binding and functional properties. The search for effective therapeutics targeting 

adenosine receptors (ARs), members of the G protein-coupled receptors (GPCRs) family, has 

gained substantial significance due to their involvement in various pathological conditions. 

The aim of this thesis is to explore the field of structure-based drug design, focusing on the 

development of antagonists targeting adenosine receptors A1 and A3. In pursuit of this objective, 

advanced computational methods like alchemical free energy perturbation and kinetic binding 

calculations are employed. In Chapter 1, there is an introduction on GPCRs with emphasis on 

ARs. Agonists, antagonists, and dual antagonists are mentioned that act on the orthosteric and 

allosteric sites. Chapter 2 describes the principles of the methodologies applied through the 

present thesis. 

In Chapter 3, the synthesized derivatives of 7-aryl or alkylamino-pyrazolo[3,4-d]pyridazine 

provided a novel scaffold for developing ligands against ARs. We have pharmacologically 

characterized these compounds using functional cAMP assays and fluorescent ligand 

displacement binding studies, expanding our study to the antiproliferative potential of these 

agents as well. The introduction of a 3-phenyl group, together with a 7-benzylamino and 1-

methyl group at the pyrazolopyridazine scaffold, generated the antagonist compound 10b which 

displayed 26 nM affinity and a residence time (RT) 60 min for the human A1R, 7.4 nM affinity 

and RT = 73 min for the human A3R and low μΜ affinity for the human A2BR while not be toxic 

against the normal cell line. The site of the N-methyl substitution on the pyrazole ring had a 

remarkable effect on the bioactivity, since the corresponding 2-methyl-3-phenyl derivative (15b) 

had no significant affinity, while when the 3-phenylgroup of 10b was replaced by an isopropyl 

group, the resulting derivative 10a possessed considerably reduced affinity. We compared the 

binding interactions of the regio-isomers 10b and 15b with molecular dynamics (MD) 

simulations and the results suggested that the 2-methyl group in 15b hinders the formation of 

hydrogen bonding interactions with N6.55 which are considered critical for the stabilization inside 

the orthosteric binding cavity. Mutagenesis experiments for 10b against A1R provided results 

that complement the observations from MD simulations. We showed that L2506.51A mutation 

resulted in only a slight reduction of binding affinity concerning 10b while the Y2717.46A mutation 

caused a 10-fold reduction in binding affinity of this compound. Mutation to alanine of residues 
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T913.36, H2516.52 or S2677.42, which are deep in the orthosteric binding affinity, did not affect 

binding affinity.  

In Chapter 4, we report the identification of 7- (phenylamino)-pyrazolo[3,4-c]pyridines L2−L10, 

A15, and A17 as low-micromolar to low-nanomolar A1R/A3R dual antagonists, with 3-phenyl-5-

cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity 

at both receptors with a long residence time of binding, as determined using a NanoBRET based 

assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding 

area of A1R in MD simulations, and we selected the most plausible orientation based on the 

agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug 

design purposes, the mutation of L2506.51 to alanine increased the binding affinity of A17 at A1R. 

We explored the structure−activity relationships against A1R using alchemical binding free 

energy calculations with the thermodynamic integration coupled with the MD simulation 

(TI/MD) method, applied on the whole GPCR−membrane system, which showed a good 

agreement (r = 0.73) between calculated and experimental relative binding free energies. 

In Chapter 5, we sought to develop a computational model of inactive adenosine A3 receptor 

(A3R), not yet resolved experimentally, for drug design purposes. We tested five homology 

models of inactive human A3R (hA3R) that are either publicly available or available from a web-

resource. After merging 3 homology models by similarity, we came up with homology Models 1 

and 2 and the AlphaFold2-based Model 3. We observed that these models showed good 

agreement in the orthosteric binding area except in upper region where Models 1, 2 differed 

from Model 3 in the orientation of side chains of R1735.34, M1725.33 and M1745.35 located in the 

extracellular loop 2 (EL2). We compared Models 1-3 regarding predictions of the experimentally 

determined thermodynamic and kinetic stability for the pyrazolo[3,4-d]pyridazine antagonists. 

The protein Models 1-3 in TI/MD calculations performed with good agreement (r = 0.74, 0.62 

and 0.67, respectively) between the calculated and experimental relative binding free energies. 

The  τ-Random Acceleration Molecular Dynamics (τRAMD) simulations effectively distinguished 

between compounds with short and long RT within the receptor only with Models 1, 2, since in 

Model 3 the orientation of R1735.34 located at the top of ligands’ exit route affected compound 

dissociation. By optimizing the orientation of side chains of residues M1725.33, R1735.34, M1745.35 

in Model 3 the optimized Model 3 was generated. τRAMD simulations using the optimized model 

3 correctly ranked ligands according to their residence time inside binding site. Furthermore, the 

performance of TI/MD calculations with the optimized Model 3 was improved such as the 

Pearson correlation coefficient was increased from r = 0.67 to 0.84 while the mean assigned 

error was reduced from 0.81 kcal mol-1 to 0.56 kcal mol-1. 

https://kbbox.h-its.org/toolbox/methods/molecular-simulation/-random-acceleration-molecular-dynamics-ramd/
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Περίληψη 
 

Στην προσπάθεια ανάπτυξης αποτελεσματικών θεραπειών, ο σχεδιασμός φαρμάκων 

βασισμένος στη δομή έχει αναδειχθεί ως μια ισχυρή προσέγγιση, εκμεταλλευόμενος την 

κατανόησή των μοριακών δομών για τον σχεδιασμό μορίων με βελτιωμένες ιδιότητες 

δεσμευτικότητας και λειτουργίας. Η αναζήτηση αποτελεσματικών θεραπειών που στοχεύουν 

στους υποδοχείς της αδενοσίνης (ARs), μέλη της οικογένειας των υποδοχέων που συνδέονται 

με G πρωτείνες (GPCRs), έχει αποκτήσει σημαντική σημασία λόγω της συμμετοχής τους σε 

διάφορες παθολογικές καταστάσεις. 

Σκοπός αυτής της διατριβής είναι η ανάπτυξη ανταγωνιστών που στοχεύουν τους υποδοχείς 

της αδενοσίνης Α1 και Α3. Για την επίτευξη αυτού του στόχου, χρησιμοποιούνται προηγμένες 

υπολογιστικές μέθοδοι, όπως η αλχημική διαταραχή της ελεύθερης ενέργειας και υπολογισμοί 

κινητικής δεσμευτικότητας. Στο Κεφάλαιο 1, παρέχεται μια εισαγωγή στους GPCRs με έμφαση 

στους ARs. Αναφέρονται γνωστοί αγωνιστές, ανταγωνιστές και διπλοί ανταγωνιστές που δρουν 

στα ορθοστερικά και αλλοστηρικά σημεία των ARs. Το Κεφάλαιο 2 περιγράφει τις αρχές των 

χρησιμοποιούμενων μεθοδολογιών στην παρούσα διατριβή. 

Στο Κεφάλαιο 3, τα συνθετικά παράγωγα των 7-αρυλικών ή αλκυλαμινο-πυραζολο[3,4-

δ]πυριδαζίνη παρείχαν μια νέα πλατφόρμα για την ανάπτυξη δεσμευτών ενάντια στους ARs. Οι 

ενώσεις συντέθηκαν στο εργαστήριο της συνθετικής χημείας του ΕΚΠΑ υπό την επίβλεψη των 

καθηγητών Παναγιώτη Μαράκου, Νικόλ Πουλή και επίκουρου καθηγητή Νικόλαου Λουγιάκη 

και η βιολογική αξιολόγηση των ενώσεων έγινε με φαρμακολογικές και βιοφυσικές μεθόδους 

από το εργαστήριο φαρμακολογίας του καθηγητή Graham Ladds στο Πανεπιστήμιο του 

Cambridge.  Η εισαγωγή ομάδας 3-φαινυλίου, μαζί με μια ομάδα 7-βενζυλαμίνης και μια ομάδα 

1-μεθυλίου στην πυραζολοπυριδαζίνη παρήγαγε την ένωση ανταγωνιστή 10b με 26 nM 

συγγένεια δέσμευσης (Ki) και χρόνος παραμονής στον υποδοχέα (RT) 60 λεπτά για τον A1R, 7,4 

nM Ki και RT = 73 λεπτά για τον A3R και χαμηλό μΜ Κi για τον A2BR. Η αντικατάσταση του N-

μεθυλίου στον δακτύλιο της πυραζόλης είχε εντυπωσιακή επίδραση στη βιοδραστικότητα, 

καθώς το αντίστοιχο 2-μεθυλ-3-φαινυλικό παράγωγο 15b, δεν είχε σημαντική συγγένεια 

δέσμευσης, ενώ όταν η 3-φαινυλική ομάδα του 10b αντικαταστάθηκε από μια ομάδα 

ισοπροπυλίου, το αποτέλεσμα που προέκυψε, το αντίστοιχο παράγωγο 10a, είχε σημαντικά 

μειωμένη συγγένεια δέσμευσης. Συγκρίναμε τα προφίλ δέσμευσης των 10b και 15b με 

προσομοιώσεις μοριακής δυναμικής (MD) και τα αποτελέσματα υποδήλωσαν ότι η ομάδα 2-

μεθυλίου στο 15b εμποδίζει την δημιουργία δεσμών υδρογόνου με το N6.55 που θεωρείται 

κρίσιμο αμινοξύ για τη σταθεροποίηση μέσα στην ορθοστερική κοιλότητα. Οι πειραματικές 
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μελέτες γενετικής μετάλλαξης για το 10b στον A1R παρείχαν αποτελέσματα που συμπληρώνουν 

τις παρατηρήσεις από τις προσομοιώσεις MD. Δείξαμε ότι η μετάλλαξη L2506.51A οδήγησε μόνο 

σε μια ελαφρά μείωση της συγγένειας δέσμευσης όσον αφορά το 10b, ενώ η μετάλλαξη 

Y2717.46A προκάλεσε μια μείωση 10 φορές στην συγγένεια πρόσδεσης αυτού του παραγώγου. 

Η μετάλλαξη σε αλανίνη των αμινοξέων T913.36, H2516.52 ή S2677.42, που βρίσκονται βαθιά στην 

ορθοστερική θέση δέσμευσης, δεν επηρέασε την συγγένεια δέσμευσης. 

Στο Κεφάλαιο 4, αναφέρεται ο εντοπισμός των 7-(φαινυλαμίνων)-πυραζολο[3,4-κ]πυριδίνων 

L2-L10, A15 και A17 ως νανομοριακοί ανταγωνιστές των A1R/A3R, με την ένωση 3-φαινυλ-5-

κυανο-7-(τριμεθοξιφαινυλαμίνο)-πυραζολο[3,4-κ]πυριδίνης (A17) να εμφανίζει την υψηλότερη 

συγγένεια και για τους δύο υποδοχείς όπως καθορίστηκε φαρμακολογικά με τη δοκιμασία 

NanoBRET. Στις προσομοιώσεις MD, δύο πιθανοόι προσανατολισμοί δεσμεύσεων του A17 

παρήγαγαν σταθερά σύμπλοκα μέσα στην ορθοστερική περιοχή του A1R. Επιλέξαμε τον πιο 

πιθανό προσανατολισμό βασιζόμενοι στις μελέτες μεταλλαξηγένεσις. Ενδιαφέρον έδειξε η 

μετάλλαξη του αμινοξέος L2506.51 σε αλανίνη,  η οποία αύξησε την συγγένεια δέσμευσης του 

A17 για τον A1R. Εξετάσαμε τις σχέσεις δομής-δράσης κατά τον A1R χρησιμοποιώντας 

υπολογισμούς θερμοδυναμικής ολοκλήρωσης (ΤΙ/ΜD), μέθοδος που απορρέει χωρίς 

προσεγγίσεις (ab initio) από θεωρήματα στατιστικής μηχανικής για θερμοδυναμικά συστήματα, 

που εφαρμόστηκε σε ολόκληρο το σύστημα GPCR-μεμβράνης, το οποίο έδειξε καλή συσχέτιση 

(r = 0,73) μεταξύ των υπολογισμένων και των πειραματικών αποτελεσμάτων. 

Στο Κεφάλαιο 5, αναπτύξαμε ένα υπολογιστικό μοντέλο του ανενεργού A3R, που δεν έχει ακόμα 

επιλυθεί πειραματικά, για σκοπούς σχεδιασμού φαρμάκων. Δοκιμάσαμε πέντε υπολογιστικά 

ομόλογο μοντέλα του ανενεργού A3R που είναι είτε διαθέσιμα δημόσια είτε διαθέσιμα από ένα 

διαδικτυακό εργαλείο. Kαταλήξαμε στα υπολογιστικά Μοντέλα 1 και 2 που παράχθηκαν από 

πειραματικές δομές του ανενεργού A2AR ή του Α1R και το βασισμένο στο AlphaFold2 Μοντέλο 

3. Διαπιστώσαμε ότι τα μοντέλα έδειξαν σχετική συμφωνία στον προσανατολισμό των 

πλευρικών αλυσίδων στην ορθοστερική περιόχη πρόσδεσης, εκτός από την ανώτερη περιοχή 

όπου τα Μοντέλα 1, 2 διέφεραν από το Μοντέλο 3 στον προσανατολισμό των πλευρικών 

αλυσίδων των αμινοξέων R1735.34, M1725.33 και M1745.35 που βρίσκονται στο εξωκυττάριο 

βρόγχο 2 (EL2) και θεωρητικά θα μπορούσαν να λειτουργούν ως εμπόδιο στην έξοδο των 

φαρμάκων. Συγκρίναμε τα Μοντέλα 1-3 ως προς τις προβλέψεις της πειραματικά καθορισμένης 

θερμοδυναμικής και κινητικής σταθερότητας για την σειρά των αντγωνιστών πυραζολο[3,4-

κ]πυριδίνων. Τα μοντέλα πρωτεΐνης 1-3 στους υπολογισμούς TI/MD παρουσίασαν καλή 

συσχέτιση (συντελεστής συσχέτισης Pearson r = 0,74, 0,62 και 0,67, αντίστοιχα) μεταξύ των 

υπολογισμένων και των πειραματικών αποτελεσμάτων.  
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Οι υπολογισμοί πρόβλεψης της κινητικής πρόσδεσης των ανταγωνιστών στους υποδοχείς με 

την μέθοδο τRAMD, κατέταξαν αποτελεσματικά τις ενώσεις ανάλογα με τον χρόνο παραμονής 

τους μέσα στον υποδοχέα χρησιμοποιώντας τα Μοντέλα 1, 2, αντίθετα στο Μοντέλο 3 ο 

προσανατολισμός της R1735.34 που βρίσκεται στην κορυφή της διαδρομής εξόδου των 

φαρμάκων επηρέασε τη έξοδο των ενώσεων. Με τη βελτιστοποίηση του προσανατολισμού των 

πλευρικών αλυσίδων των αμινοξέων M1725.33, R1735.34, M1745.35 στο Μοντέλο 3 

δημιουργήθηκε το βελτιστοποιημένο Μοντέλο 3. Οι προσομοιώσεις του τ-RAMD 

χρησιμοποιώντας το βελτιστοποιημένο μοντέλο 3 κατέταξαν σωστά τις ενώσεις ανάλογα με τον 

χρόνο παραμονής τους μέσα στον υποδοχέα δεσμεύσης. Επιπλέον, η απόδοση των 

υπολογισμών TI/MD με το βελτιστοποιημένο Μοντέλο 3 βελτιώθηκε, καθώς ο συντελεστής 

συσχέτισης Pearson αυξήθηκε από r = 0,67 σε r = 0,84, ενώ η μέση ανισορροπία μειώθηκε από 

0,81 kcal mol-1 σε 0,56 kcal mol-1. 
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_________________1. Introduction _________________ 

 

1.1 G-protein coupled receptors (GPCRs) 

G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors and have 

the ability to recognize a wide range of ligands, including photons and large protein molecules. 

1,2 These receptors play a crucial role in regulating numerous physiological processes in various 

body systems, such as the skeletal, muscular, nervous, endocrine, urinary, and digestive 

systems, among others. Given their significance in human physiology, dysfunctions in GPCRs can 

lead to severe diseases, making them highly desirable targets for pharmaceutical intervention. 

In fact, GPCRs represent the largest protein family that current approved drugs target, with 

approximately 700 drugs on the market (around 35% of all approved drugs) specifically designed 

to interact with GPCRs. These numbers are expected to continue increasing as extensive 

research is being conducted to explore the druggability of GPCRs.3,4 

Despite the diversity of natural GPCRs ligands, there exist several receptor subfamilies in which 

all proteins respond to a single endogenous agonist: for example, all GPCRs in the adrenergic 

subfamily are activated by epinephrine while all muscarinic receptors naturally bind 

acetylcholine and its derivatives. GPCR subtypes within a subfamily usually have distinct amino 

acid sequences, tissue distributions and/or functional and pharmacological profiles; however, 

their ligand binding pockets are highly conserved within the subfamily. The similarity of the 

orthosteric binding pockets poses a challenge for design of subtype selective ligands which 

remains one of the main hurdles in development of safe and effective medications targeting 

GPCRs 5. 
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1.1.1 GPCR signaling 

The signaling pathway initiated by GPCRs involves the activation of G-proteins, which are 

intracellular proteins that act as molecular switches. Upon ligand binding to the GPCR, 

conformational changes occur that facilitate the interaction of the receptor with specific G-

proteins. This interaction leads to the exchange of GDP (guanosine diphosphate) for GTP 

(guanosine triphosphate) on the G-protein, causing its activation. 

G proteins are composed of three distinct α, β, and γ subunits. There are five subtypes of Gβ 

subunits and 12 subtypes of Gγ subunits that form constitutive Gβγ heterodimers. The Gα 

subunits are categorized into four main subtypes: Gαs, Gαi/o, Gαq/11, and Gα12/13. 6  

Both subunits have been shown to modulate the activity of different downstream effector 

proteins (Figure 1-1).  

Their signaling cascades in more detail:  

Gαs: Activation of Gαs stimulates adenylyl cyclase (AC), leading to an increase in cyclic adenosine 

monophosphate (cAMP) levels. Elevated cAMP levels then activate protein kinase A (PKA), which 

phosphorylates target proteins, resulting in diverse cellular responses such as increased heart 

rate, smooth muscle relaxation, and hormone secretion. 

Gαi/o: Activation of Gαi/o inhibits AC, reducing cAMP levels and PKA activity. This leads to 

decreased cellular responses, including reduced heart rate, smooth muscle contraction, and 

neurotransmitter release inhibition. 

Gαq/11: Activation of Gαq/11 stimulates phospholipase C-beta (PLC-β), leading to the hydrolysis 

of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3) and 

diacylglycerol (DAG). IP3 triggers the release of calcium ions from intracellular stores, while DAG 

activates protein kinase C (PKC). These events result in diverse cellular responses, including 

smooth muscle contraction, secretion, and cell growth. 

Gα12/13: Activation of Gα12/13 leads to the activation of Rho family small GTPases, such as 

RhoA. These GTPases regulate actin cytoskeleton dynamics and cell shape changes, influencing 

processes such as cell migration, adhesion, and cell growth. 6–11 

While Gα subunits often receive the most attention, Gβγ subunits are equally critical for 

transmitting signals and modulating cellular responses. Gβγ subunits can regulate AC activity, 

either by inhibiting or stimulating its function. They can activate Phosphoinositide 3-Kinase 

(PI3K), a lipid kinase involved in cell growth, survival, and migration. Activation of PI3K by Gβγ 
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subunits leads to the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which 

recruits and activates downstream effectors involved in cellular responses such as cell 

proliferation and cytoskeletal rearrangement. They can also activate Mitogen-Activated Protein 

Kinase (MAPK) signaling pathways, including the extracellular signal-regulated kinase (ERK), c-

Jun N-terminal kinase (JNK), and p38 pathways. Activation of these pathways by Gβγ subunits 

contributes to cellular processes such as cell proliferation, differentiation, and gene expression. 

Gβγ subunits can modulate intracellular calcium levels by directly interacting with calcium 

channels or by regulating calcium release from intracellular stores. This calcium signaling events 

are crucial for diverse cellular processes, including neurotransmitter release, muscle 

contraction, and gene expression. 1213 

 

 

 
 

Figure 1-1: Diversity of G-protein-coupled receptor signaling. Upon ligand agonist binding, the receptor adopts an 

active-state conformation and interacts with one or multiple G proteins (Gαβγ), initiating a cascade of events. 

Specifically, the interaction facilitates the exchange of GDP for GTP on the Gα subunit and consequently, Gα and Gβγ 

subunits dissociate, enabling them to activate (→) or inhibit (—|) various effectors, which in turn regulate intracellular 

levels of second messengers. Adapted from Sutkeviciute and Vilardaga 2020 11. 
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1.1.2 GPCR family 

According to their sequence and function, GPCRs can be classified into six main sub-families, 

four of which contain mammalian GPCRs (Figure 1-2).  Class A receptors, also known as 

rhodopsin-like receptors (80% of GPCRs, and most well studied); Class B secretin-like; Class C 

metabotropic glutamate receptors; and Class F frizzled (FZD) or smoothened (SMO) receptors. 

Class D and Class E families are composed of non-mammalian GPCRs. Class D family are fungal 

mating pheromone receptors while Class E family contains cAMP receptors from slime molds. 

• Class A: The rhodopsin-like family (Class A) is the largest family of GPCRs found in most 

organisms. It includes > 700 members with 197 receptors with known ligands, > 400 

olfactory receptors and 87 orphans. Within this family, members are recognized for their 

extensive range of ligands, encompassing hormones, peptides, odorants, and even 

photons of light. Given that the rhodopsin-like family constitutes over 80% of the GPCRs 

found in humans 14, it has garnered considerable attention in research efforts focusing 

on potential therapeutic advantages. The class A receptors according to Fredrikson et 

al. 15,16, it can be further divided into four main branches:   

- α branch: prostaglandin, amine, opsin, melatonin and MECA receptors (which 

include Melanocortin, Endothelial, Cannabinoid and Adenosine receptors),     

- β branch: most peptide receptors,  

- γ branch: SOG (for Somatostatin, Opioid and Galanin) receptors, melanin-

concentrating hormone receptors and chemokine receptors, and    

- δ branch: Mas-related receptors, glycoprotein receptors, purine receptors and 

olfactory receptors.  

 

• Class B: The secretin-like family (Class B) is another significant group of GPCRs. An 

important feature of this family is its large N-terminal extracellular domain (ECD), which 

plays a vital role in ligand recognition and binding, typically peptides or hormones. 17 

- Class B1 (secretin receptor family) includes 15 receptors with known ligands and 

26 orphans. This class includes the calcitonin receptors, corticotropin-releasing factor 

receptors, glucagon receptor family, parathyroid hormone receptors and vasoactive 

intestinal peptide, pituitary adenylate cyclase-activating polypeptide and growth-

hormone-releasing hormone receptors.  
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- Class B2 (adhesion receptor family) includes 34 receptors, which possess a large 

extracellular N-termini. 

 

• Class C: Metabotropic glutamate receptors (mGlu) (Class C) were discovered relatively 

late compared to the other GPCR families. The mGlu receptors bind a diverse set of 

ligands, such as amino acids, Ca2+ and pheromones. 18 These receptors possess a large 

ECD that forms a distinct structure known as the Venus flytrap (VFT) module. When a 

ligand binds to one lobe of the VFT, the other lobe closes, triggering a conformational 

change that is transmitted to the rest of the protein through a cysteine-rich region. They 

function as dimers, which are either covalently linked by disulfide bonds or through 

shared ion binding. 19 

• Class F: Frizzled or Smoothened receptors (Class F) contain a cysteine-rich domain in 

their N-terminus that binds lipoglycoproteins of the Wingless family. 20  More recently, 

both Frizzled and Smoothened receptors have been shown to also function as canonical 

GPCRs, Frizzled proteins, in particular, serve as guanine nucleotide exchange factors 

(GEFs) for Gαi/o proteins, while Smoothened acts as a GEF for Gαi. 21,22 Additionally, 

GPCRs belonging to the related adhesion group frequently possess cadherin or integrin 

domains, and many of these receptors exhibit auto-proteolytic activity. 23 The ligands 

for these receptors encompass various components of the extracellular matrix, 

including collagen.  24 

 

Figure 1-2: Crystal structures of representative mammalian GPCR-ligand complexes from classes A, B, C, and F 

presenting diverse ligand-binding pockets. Class A GPCRs are further subdivided into aminergic-like (β1AR/β2AR, D3R, 

H1R, M2R/M3R, 5-HT1B/5-HT2B)), peptide-like (CXCR4, CCR5, NTSR1, PAR1, Opioid receptor), nucleotide-like (A2AR, 

P2Y12), and lipid-like receptors (S1P1, FFAR1). Similarly, representative structures for class B (CRF1), class C (mGlu1, 

mGlu5 , and class F (SMO) are shown. Receptors are shown in cartoon representation and the ligands are shown as 

surface models. The PDB-IDs of the structures used for this graphic are indicated. Adapted from Shonberg et al. 2015. 

25  
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Alternatively, GPCRs are classified into the GRAFS system, with each letter of the acronym 

standing for the most representative member of the family i.e., Glutamate, Rhodopsin, 

Adhesion, Frizzled/Taste2, Secretin. 15,26 

The International Union of Pharmacology, Committee on Receptor Nomenclature and 

Classification (NC-IUPHAR) 27(see http://www.guidetopharmacology.org/) recommends using 

the A-F system classification. 

1.1.3 GPCR structures 

All proteins in the GPCRs family share a common structure with seven-transmembrane (TM) α-

helices, (TM1-TM7), which detect and transduce diverse external stimuli across the cell 

membrane, the diversity of which is particularly high for class A GPCRs, 4,28 and includes ions, 

small molecules, peptides, and globular proteins. 16 

In recent years, the field of GPCRs structural biology has experienced a significant resurgence, 

with numerous new experimentally resolved structures. 29 This progress is attributed to 

remarkable technological advancements in both membrane protein engineering and 

crystallography, which have facilitated an exponential growth in the determination of GPCR 

structures. These structures include receptors in both energetically stable inactive and active 

conformations, stabilized by either a heterotrimeric G protein or a G protein mimetic nanobody. 

Consequently, these solved structures not only offer molecular insights into ligand binding 

mechanisms, activation processes, allosteric modulation, and receptor dimerization but also 

open new avenues for Structure-Based Drug Design (SBDD). 

For many years, the main choice in how to determine the structure of a GPCR coupled to a 

heterotrimeric G protein, was the X-ray crystallography. However, the disadvantage of the X-ray 

crystallography lies in the difficulty of producing good quality crystals of a GPCR coupled to a 

heterotrimeric G protein. New methods have been developed, such as lipidic cubic phase and 

cryo–electron microscopy (cryo-EM), in order to determine the structures of the GPCRs. In the 

cryo-EM method, it is noteworthy that even the low-resolution structures exhibit a high degree 

of flexibility, which stands in contrast to X-ray crystallography. 30. 

The first protein found to be organized into seven transmembrane domains and finally became 

a model for structural studies of the GPCRs was bacteriorhodopsin 31, the major light-sensitive 
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protein of the purple membrane of Halobacterium halobium, and since bacteriorhodopsin’s 

structure many GPCRs structures have been solved.  

 

Common structural elements of the GPCR A family 

Owing to the technological advances of X-ray crystallography and cryo-EM, during the last 2 

decades, much has been learned about the structural characteristics of GPCRs. 

All class A GPCRs exhibit common structural features consisting of seven transmembrane helices 

(TM1–TM7) linked by three extracellular loops (EL1–3 or ECLs) and three intracellular loops (IL1–

3 or ICLs) (Figure 1-3) , the length of these loops varies between the members of the GPCR family. 

This 7TM bundle can be further divided into two modules: the extracellular (EC) and intracellular 

(IC) modules. The N-terminus, located on the extracellular side, and the ECLs play crucial roles 

in recognizing a wide array of ligands and modulating ligand entry. ECLs often contain disulfide 

bridges, vital for maintaining loop stability.  29 

The 7TM bundle constitutes the main structural core that undergoes conformational changes 

upon ligand binding, transmitting signals from the extracellular to the intracellular region. On 

the other hand, the C-terminus and the ICLs interact with G proteins, arrestins, GPCR kinases 

(GRKs), and other downstream signaling effectors, crucial for signal transduction and other 

receptor modulatory functions. The intracellular region is relatively conserved due to the limited 

types of downstream signaling effectors. The C-terminal region often contains a 3–4 turn α-helix, 

known as helix 8 that is characterized by a common [F(RK)xx(FL)xxx] amphiphilic motif and it  

carries a palmitoylation site that is responsible for anchoring helix 8 to the membrane.- 32 

The general numbering scheme for GPCRs is proposed by Ballesteros and Weinstein 33. In 

essence, every residue is numbered as X.YY, where X corresponds to the transmembrane helix 

(X=[1,7]) and YY is a correlative number in the protein sequence, but taking as a reference 

position (YY=50) the most conserved residue in the given helix: Asn in TM1 (98%), Asp in TM2 

(93%), Arg in TM3 (95%), Trp in TM4 (96%), Pro in TM5 (76%), Pro in TM6 (98%) and, Pro in TM7 

(93%). 

One of the most conserved motifs among Class A GPCRs, as proposed by the rhodopsin structure 

31  is the amino acids glutamate acid/aspartic acid–arginine–tyrosine, i.e., the D[E]R3.50Y motif in 

TM3 that has a significant role in regulating GPCR conformational states.  
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This motif forms a salt bridge with D/E6.30 in TM6, the so called “Ionic lock” that may play a role 

in restraining the fully inactive conformation of the class A receptors. This ionic lock is considered 

a hallmark of the inactive conformation of GPCRs, obstructing G-protein binding at the 

cytoplasmic region. Furthermore, the W6.48 xP motif in TM6 is regarded as one of the micro-

switches that exhibit significantly different conformations in the active state compared to the 

inactive state of the receptor. Another conserved motif is the NP7.50xxY motif in TM7, which also 

plays a vital role in GPCR activation. The extracellular loop regions in GPCR structures also show 

similarities. Particularly, a highly conserved disulfide bond between Cys3.25 at the extracellular 

tip of TM3 and a cysteine residue in ECL2 is observed in most GPCR structures. This disulfide 

bond significantly contributes to stabilizing the extracellular region's conformation and helps the 

entrance to the ligand-binding pocket. 32 

 

Figure 1-3: General architecture and structural features of GPCRs. The 7TM bundle (TM1–7) and key structural 

features are shown on an example of the Adenosine Receptor A2AR crystal structure (PDB ID: 3eml)34. GPCRs are 

characterized by an extracellular N-terminus, followed by seven transmembrane α-helices (TM1-TM7) each shown in 

a different color. TM helices are connected by three intracellular (IL1-IL3) and three extracellular loops (EL1-EL3) and 

finally an intracellular C-terminus. The TM module (considered as the highly conserved component of GPCRs) shows 

characteristic hydrophobic patterns and several functionally potent signature sequence motifs, including the D(E)RY 

motif in TM3, the CWxP motif in TM6, and the NPxxY motif in TM7, which are also highlighted. The seven 

transmembrane helices form a cavity within the plasma membrane that serves as a ligand-binding domain (orange 

circle) that is often covered by EL2. 
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GPCRs are activated by agonist ligand binding in the orthosteric binding pocket located within 

the upper half of the TM core. This binding event is relayed to the extracellular site of the 

receptor through allosteric interaction networks that are distinct for each GPCR class but 

converge in a common GPCR activation hallmark—the mobilization and outward movement of 

TM6. The outward movement of TM6 leads to the opening of the cytosolic cavity of the GPCRs, 

allowing the subsequent binding and activation of the heterotrimeric G proteins. (Figure 1-4) 

 

Figure 1-4: Comparison of inactive → active state transition between representative class A β2 adrenergic receptor.  

The common activation hallmark is an outward movement of TM6. The inactive- and active-state structures are shown 

as semi-transparent cyan and pink cartoons, respectively, with TM6 helices highlighted as an opaque cartoon and 

dashed lines connected with an arrow depicting transition from the inactive to the active state. The superimposed 

structures are as follows: inactive-state (PDB entry 2R4R) 35 and active-state (PDB entry 3SN6)  36  β2AR. The G protein 

is not depicted in the active-state structure. 

 

Despite sharing a common 7TM architecture, GPCRs represent an intriguing model of finely 

tuned recognition modules. This is attributed to their ability to recognize a wide range of ligands 

with distinct physicochemical and structural properties, highlighting an extraordinary 

convergence in signaling and regulatory processes. 
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1.2 Adenosine Receptors (ARs) 

Adenosine receptors (ARs) are class A GPCRs that are widely distributed throughout the human 

body. These receptors play crucial roles in various physiological and pathological processes, 

making them attractive targets for drug development. Understanding the tissue distribution, 

functions, and structures of adenosine receptors is essential for understanding their significance 

in both health and disease. There are four subtypes of adenosine receptors: A1, A2A, A2B, and A3. 

Each subtype has distinct functions and signal transduction mechanisms. Among the four 

subtypes the most similar are the A1 and A3 ARs (49% sequence similarity) and the A2A and A2B 

ARs (59% similarity).  

1.2.1 Adenosine receptors as drug targets 

ARs natural ligand is adenosine (Ado), an endogenous purine nucleoside which is released in 

response to cellular stress and inflammation. Each subtype has a different affinity for adenosine 

with the A1R having the highest affinity at approximately 70 nM and the A2AR having a lower 

affinity at approximately 150 nM. The A2B and A3 receptors have a much lower affinity at 5100 

nM and 6500 nM, respectively. 37 

Adenosine is involved in the regulation of various biological functions in different tissues and 

organ systems, including cardiovascular, liver, renal, respiratory and central nervous system 

(CNS) through its receptors. 38 When adenosine levels are low, it binds preferentially with A1R or 

A3R and activates Gi/o protein, thus reducing AC and PKA activity. Instead, when adenosine 

levels are higher, its binding is favored to A2AR or A2BR, activates Gs protein, and stimulates the 

AC/cAMP/PKA cascade. 39Therefore, adenosine depending on its concentration may affect 

several physiological or pathological processes.  

The development of drugs targeting ARs is a topic of active research. Scientists and 

pharmaceutical companies are exploring various approaches, including the design of selective 

agonists, antagonists, and allosteric modulators for each receptor subtype (Figure 1-5). The aim 

is to develop drugs with improved efficacy, selectivity, and reduced side effects. ARs are present 

in virtually all tissues and organs. This widespread distribution reflects the diverse functions that 

these receptors serve in various physiological and pathological processes. The ARs are 

prominently expressed in specific locations and exert their effects through signaling pathways 
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involving the activation of G-proteins and the subsequent modulation of intracellular signaling 

cascades. However, the widespread presence of ARs increases the likelihood of side effects, 

making the promising potential of selective AR modulators quite a challenging task. 40 

The functions and tissue distribution of each AR subtype, as well as the diseases in which ARs 

are involved, are presented in summary below and in (Figure 1-5). 

A1R 

The A1R is the most conserved adenosine receptor subtype among species, and it is widely 

expressed throughout the body with the highest levels found in the brain. It is highly 

concentrated in regions involved in sleep regulation, such as the basal forebrain and the 

hypothalamus. Additionally, A1 receptors are found in areas involved in pain perception, such as 

the spinal cord and the periaqueductal gray. Within the cardiovascular system, A1Rs are 

expressed in cardiac muscle cells and blood vessels. Activation of A1R in the heart leads to a 

decrease in heart rate, resulting in a cardioprotective effect. In blood vessels, A1 receptors are 

involved in regulating vascular tone and blood pressure. They are also present in smooth muscle 

cells of the lungs, where they modulate bronchoconstriction and airway diameter. In the 

gastrointestinal tract, they are found in the liver, where they are involved in the regulation of 

glucose and lipid metabolism. 38  A1R is an attractive pharmacological target, since its antagonists 

have been explored as kidney-protective agents, cognitive enhancers, and antiasthmatic and 

CNS agents. 41 40 

A2AR 

A2AR antagonists have emerged as an attractive approach to treat Parkinson, sickle cell and 

infectious diseases, cancer, ischemia reperfusion injury, diabetic nephropathy, cognition, and 

other CNS disorders. 42 Activation of A2AR in the brain influences the release of neurotransmitters 

like dopamine, which is essential for movement and pleasure. Additionally, A2A receptors play a 

role in cognitive functions, including attention, learning, and memory. They have been also 

implicated in neurodegenerative disorders; A2AR antagonists have shown promise in alleviating 

motor symptoms associated with Parkinson's disease and they may have therapeutic 

implications in managing neuroinflammation in Alzheimer's disease. 

In peripheral tissues, A2ARs are involved in the modulation of inflammation, blood flow, 

angiogenesis and the control of cancer pathogenesis. 38 Within the cardiovascular system, A2ARs 

are expressed in cardiac muscle cells and blood vessels. A2AR agonists promote vasodilation and 

improved blood flow, making them promising candidates for the management of hypertension 



Doctoral Thesis  Stampelou Margarita Eleni 

13 
 

and ischemic heart disease. In the lungs, they are important targets for the treatment of 

respiratory conditions, such as asthma and chronic obstructive pulmonary disease (COPD). A2ARs 

are found in immune cells and their agonists have been investigated as potential treatments for 

inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease. 41 40 

A2BR 

The A2B receptor is prominently found in various tissues, including the lungs, immune cells, and 

blood vessels but mostly in low abundance. A2BR antagonists may be useful for the treatment of 

asthma, COPD. They are also present in immune cells, including T cells and macrophages. 

Activation of A2BR on immune cells can modulate immune responses and influence 

inflammation. 38 Furthermore, A2BRs are expressed in blood vessels, where they contribute to 

the regulation of vascular tone and blood flow.  

A3R 

A3R is a target for a number of inflammatory diseases, including asthma, glaucoma, COPD, 

rheumatoid arthritis and ischemic injury.  38 In addition, evidence is emerging to suggest that the 

A3R is over-expressed in various tumor cells compared to normal cells, presenting the possibility 

that A3R may be a viable drug target against cancer cell proliferation.43 In the brain, they are 

expressed in regions involved in pain perception and inflammation regulation. They are also 

expressed in immune cells, including mast cells, neutrophils, and macrophages. A3R activation 

has been implicated in the regulation of mast cell degranulation, which plays a role in allergic 

responses and asthma. Within the cardiovascular system, activation of A3R can have 

cardioprotective effects, including reducing myocardial injury during ischemia and reperfusion. 

In blood vessels, A3R activation can influence vascular tone and regulate blood flow.  41 40 

Understanding the functions of ARs provides valuable insights into their potential as therapeutic 

targets and their implications in various physiological and pathological conditions. Targeting ARs 

with selective or non-selective drugs holds promise for the development of treatments for sleep 

disorders, neurological disorders, pain management, cardiovascular diseases, respiratory 

conditions, gastrointestinal disorders, metabolic disorders, immune disorders, inflammatory 

conditions and certain types of cancer.  
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Figure 1-5: Disease targets for selective adenosine receptor agonists and antagonists. Most promising prospects exist 

for treatment of arrhythmias, ischemia of the heart, pain, neurodegenerative diseases, sleep disorders, inflammation, 

cancer and glaucoma. 

1.2.2 Structures 

Understanding the structures of ARs is crucial for elucidating their mechanisms of action and 

designing selective or non-selective drugs targeting these receptors. The four subtypes share 

common GPCRs structural features. However, each subtype exhibits distinct structural features 

and differential affinities for adenosine and selective ligands. 

The below Figures (Figure 1-6, Figure 1-7) show the structures of adenosine  and other 

representative agonists, like the 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-

ribofuranuronamide or 5′-(N-ethylcarboxamido)adenosine (NECA), the 1-deoxy-1-[6-[[(3-

iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide (IB-MECA), the 2-

(1-hexynyl)-N6-methyladenosine (HEMADO) etc, and some common ARs antagonists like 

caffeine, theophylline and the A2A and A2B antagonist 4-[2-[7-amino-2-(2-furyl)-1,2,4-triazolo-

[1,5-a][1,3,5]triazin-5-ylamino]ethyl]phenol (ZM241385) that will be discussed further below.  
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Figure 1-6: Chemical structures of representative ARs agonists. 
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Figure 1-7: Chemical structures of representative ARs antagonists. 
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The publication of the  X-ray structure of A2AR bound to the antagonist ZM241385 (Figure 1-7) 

in 2008 34,  revealed the binding mode of this antagonist (see Figure 1-8B). This significant 

advancement significantly improved the methodologies for membrane protein crystallization 

and structural biology techniques. Additionally, the A2AR-ZM241385 complex structure paved 

the way for highly successful structure-based approaches in ligand discovery, resulting in 

elevated hit rates and the identification of novel ligands. 44 

This milestone subsequently facilitated the experimental determination of three out of four AR 

subtypes. These structures have yielded valuable insights into the ligand binding pockets and 

the conformational changes that occur upon receptor activation. The structural similarities 

among adenosine receptor subtypes allow for the design of ligands with varying affinities and 

selectivity.  

Since 2008, A2AR has received extensive attention and was considered a prototypical receptor 

within the GPCR superfamily. A2AR structures with different types of ligands were determined 

by crystallography or cryo-EM, revealing the inactive, intermediate, and fully active 

conformations. The binding mode of agonists like Ado and NECA (Figure 1-6) were resolved 

using X-ray crystallography 45 46 47 48 49 or cryo-EM.30,  respectively. Additionally, the binding mode 

of several antagonists (Figure 1-7) i.e. ZM241385, 34,50  PSB36, caffeine and theophylline51 52 53 54 

inside the A2AR and one bound to an engineered G protein 47 have been determined since 2008.  

Similarly, structures of the A1 subtype receptor (A1R) have also been determined, providing 

insights into its structure-function relationship. These structures show the binding of A1R with 

the antagonists DU172 55 (Figure 1-7, Figure 1-8B) and PSB36  56 and the adenosine-bound A1R-

Gi complex. 57 

More recently, the A2B subtype receptor (A2BR) has been investigated, and its structures have 

been reported 58,59. The A2BR structure exhibits a larger extracellular region compared to other 

adenosine receptor subtypes. This region is involved in interactions with ligands and may 

contribute to the receptor's selectivity. The A2BR structure also provides insights into its binding 

pocket and conformational changes upon ligand binding, facilitating the design of specific drugs 

targeting this receptor. 

However, the detailed structure of the A3 subtype adenosine receptor (A3R) is yet to be resolved, 

and further research is needed to obtain a comprehensive understanding of its molecular 

architecture. Therefore, homology modeling must be employed to study A3R in complex with 

ligands. 
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Figure 1-8: Comparison of the experimentally resolved structures of A1R  (PDB ID 5UEN  55 ) and A2AR (PDB ID 3EML  

34)   (A) side and top view structural comparison. (B) Binding modes of DU172 (A1R) and ZM241385 (A2AR). The 

complex is viewed from the membrane side facing helices TM6 and TM7 with the view of TM7 partially omitted. The 

A1R is colored in blue and the A2AR in orange; Binding site residues are shown as sticks; DU172 (cyan) and ZM241385 

(yellow) are shown as stick-ball models. Yellow dashed lines represent H-bonds, green dashed lines represent π-

stacking interactions. 

 

ARs structures have revealed critical determinants in shaping the orthosteric binding sites, 

influencing ligand recognition, and defining the receptor's pharmacological profile. In more 

detail, it has been reported that the EL2 may orchestrate a network of interactions which may 

stabilize the inactive conformation of the receptor and/or kinetically control the receptor-ligand 

recognition 60,61.  A2BRs are characterized by the longest EL2 (≥38 amino acids) while in A3 

subtype, EL2 is the shortest (≥28 amino acids). 62 Despite the high degree of structural diversity 

A 

B 
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with respect to EL2 in family A GPCRs, there is one feature that is conserved in the vast majority 

of GPCRs i.e. a disulfide bond between EL2 and the top of TM3 (Cys3.25) (Figure 1-8A). This 

disulfide bond effectively tethers EL2 on the top of the TM helical bundle and provides a very 

important conformational constraint of the EL2. Some GPCRs have additional disulfide bonds 

between different ELs such as for example between EL2-EL1 in A2AR. Additionally, the A2AR 

subtype also possesses an additional intra-loop disulfide bond within EL3, in common with 

melanocortin receptors and human histamine receptor 1. These “additional” disulfide bonds 

contribute to reduce the flexibility of ELs and, consequently, they peculiarly sculpt the 

topography of the extracellular portion of the receptor in proximity of the orthosteric binding 

cleft. Finally, only one cysteine-bridge, linking TM3 to EL2 in A2BR models, is detectable. 

If the orthosteric binding area is compared for the ARs, the A1 subtype has a much closer 

homology to A2AR. Although A1R differs from A2AR by only four residue changes in the periphery 

of the binding pocket, the shape of the binding area differs according to the recently published 

X-ray structure of A1R in complex with the covalently bound antagonist DU172 55. It was showed 

that due to movements of TM1, TM2, TM3 and TM7 and EL3 in A1R., binding cavity is very wide 

and open compared to A2AR which is elongated and narrower. (Figure 1-8) The A2AR pocket is 

narrower with Met(7.35) acting as a gatekeeper (see Figure 1-8B) and preventing entry and 

binding of bulky substituents. The compact structure of the TM bundle of the A2AR is consistent 

with its unique disulphide bond, C74-C146, through which the beginning of TM3 is tightly 

connected with the end of EL2 allowing for shifts in 1, 2, and 3 TMs as suggested. Both A1 and 

A3Rs lack this disulphide bond. According to ref. 55, TM7 also tilts towards TM6, possibly as a 

result of a shorter EL3 in the A1R due to the deletion of one amino acid; EL3 is also shorter by 

one amino acid in A3R. These differences in ELs tethering result in the different shape of binding 

site and influence especially the approach of the ligand. A1R binding area includes a common 

orthosteric binding region and a secondary one, i.e., there is a common region covered by 

ZM241385 inside A2AR or DU172 inside A1R despite their different orientation and height into 

the cavity and the different shape and extension of the binding area (Figure 1-8). A1, A2A, A2BRs 

contain the E(5.30) residue, except A3R which have a valine in (5.30) position. This glutamate 

acid residue in (5.30) position may play a key role in high affinity ligand binding through the 

formation of a strong hydrogen bond, for example, with an unsubstituted exocyclic amine. 

Instead, the valine in (5.30) position of A3R may allow bulky substituents fitting, for example, 

bulky substituents on amino group or other lipophilic moieties at this region. 

The structural information of adenosine receptors has paved the way for the development of 

selective or non-selective drugs that target these receptors. Selective ligands that specifically 
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bind to a particular adenosine receptor subtype have been developed for therapeutic 

applications. These ligands can modulate the activity of the receptors, leading to various 

physiological effects. Furthermore, the structural insights into adenosine receptors have 

allowed the design of non-selective ligands that can target multiple receptor subtypes 

simultaneously. These ligands offer the advantage of broader efficacy in modulating adenosine 

receptor signaling. 

1.2.3 Agonists and antagonists 

The main approach for discovering AR agonists has been modification of adenosine itself. 

Optimization of Ado has been achieved after structural modifications of the ribose moiety and 

by substitutions on the adenine ring and few structures are shown in Figure 1-6.  63 However, 

NECA and analogues are non-selective AR agonists and their side effects include chest pain, 

flushing, dyspnoea and low blood pressure through the activation or inhibition of different AR 

subtypes.64 Among the developed agonists 65–69 IB-MECA (CF101, Piclidenoson, and its 2-chloro 

analogue, Cl-IB-MECA (CF102, Namodenoson) are the most potent, subtype-selective and 

widely used A3R agonists that have progressed to advanced clinical trials for the treatment of 

inflammation and cancer, respectively.70,71 Both compounds 63 inhibit tumor cell growth 

according to in vitro and in vivo tumor models.72–74. Other potent and selective A3R agonists, 

which have been synthesized as analogues of NECA and IB-MECA include CP-608,039 65, 

HEMADO 67, etc. Despite early setbacks, 2008 has been marked by successful FDA approval of 

the new generation A2AR selective agonist regadenoson as a coronary vasodilator for use in 

myocardial perfusion imaging. This breakthrough, along with other advances in preclinical and 

clinical studies 41  boosts interest to development of a new generation of bio-available and safe 

agonists and antagonists for adenosine receptors. 5 

Similarly, the main approach for the discovery of AR antagonists (Figure 1-7) has been 

modification of xanthines such as the non-selective antagonists caffeine and theophylline. 

Selective human A1R or hA2AR antagonists have already reached market. The hA1R antagonist 

theophylline is a natural product and doxophylline, bamifylline , have been approved in the 

market against paroxysmal supraventricular tachycardia and asthma, respectively 75,76 (Figure 1-

7). A phase III clinical trial of the selective hA1R antagonist rolofylline has been developed for 

the treatment of congestive heart failure but although has shown excellent tolerability of the 
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drug, but lack of efficacy. 77 The selective hA2AR antagonist istradefylline was studied in phase 

III clinical trials and is currently approved as Parkinson disease therapy in Japan. 78  

A3R antagonists haven’t entered clinical trials so far. One reason may be the large species 

differences between hA3R and rodent A3Rs that impair antagonists’ development through mice 

models. 79–81 The affinity at the human subtype is usually considerably higher than in the rat A3R 

(rA3R). 79,80 Early efforts to discover selective antagonists primarily involved extensive 

pharmacological screening of various heterocyclic compounds with a non-purine structure. The 

first nonxanthine heterocyclic derivatives found to be selective for the hA3R were MRS1220 ((N-

[9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-yl]benzeneacetamide) and its 

derivative MRS1523 (5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-

carboxylate) 82,83 MRS5147 (1′ R, 2′ R, 3′ S, 4′ R, 5′ S)-4′-[2-chloro-6- (3-bromobenzylamino)-

purine]-2′, 3′-O-dihydroxybicyclo- [3.1.0]hexane) and its 3-iodo analogue MRS5127 are highly 

selective A3R antagonists in human, based on a conformationally constrained ribose-like ring 

that is truncated at the 5′ position 84. Cyclized derivatives of xanthines, such as the PSB-11 (R)-

4-methyl-8-ethyl-2-phenyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one), are also A3R-

selective 41. Selective A3R antagonists are used for studies of several diseases, such as the 

heterocyclic derivatives OT-7999 (5-n-butyl-8-(4-trifluoromethylphenyl)-3H-[1,2,4]triazolo-[5,1-

i]purine)which has been used for the treatment of glaucoma studies 85, and other such 

antagonists are under consideration for treatment of cancer, stroke, and inflammation 40,86. No 

selective A3R antagonists have yet reached human trials. 

Ιn a previous work of our lab, from in silico screening of Maybridge HitFinder Library 87 we 

identified new hits in collaboration with Prof. N. Klotz (Wurtzburg, Germany) using radiolabeled 

assays and Prof. G. Ladds (Dept of Pharmacology, Cambridge) using Nano bioluminescence 

resonance energy transfer (NanoBRET) assays and functional assays. These include antagonist 

Κ18, with low micromolar affinities against hA3R. 87 We investigated the structural features of 

the orthosteric binding profile of the agonist IB-MECA and antagonist Κ18 in complex with the 

experimentally unresolved hA3R using MD simulations, site-directed mutagenesis experiments 

and functional assays. 88–90  



Doctoral Thesis  Stampelou Margarita Eleni 

21 
 

1.2.4 Allosteric modulators 

Allosteric modulation, which involves ligands binding to sites other than the primary binding site 

of a receptor, has gained significant attention in recent years. 91–93 These ligands can modify the 

receptor's response to stimuli. Positive allosteric modulators (PAMs) enhance agonist-mediated 

responses, while negative allosteric modulators (NAMs) attenuate the response.  

A recent review article 93 summarizes the recent findings of allosteric modulators for ARs. 

Several allosteric modulators targeting A1 and various A3 ARs have been identified, and their 

validation in diverse preclinical scenarios has shown promising outcomes. In contrast, the quest 

for allosteric modulators for A2A and A2B ARs has been less successful, but the findings obtained 

thus far are still encouraging.  

Allosteric modulators of ARs hold great potential as valuable pharmacological tools, capable of 

potentially surpassing the limitations associated with orthosteric ligands. However, developing 

allosteric modulators for ARs and GPCRs in general remains challenging. Detection of allosteric 

behavior is also limited, and some modulators may not have been correctly identified initially. 

Additionally, the binding of NAMs may resemble that of competitors, further complicating the 

identification process. Structural determination through techniques like crystallography and 

cryo-EM has been instrumental in identifying allosteric binding sites. 94 

1.2.5 Dual Antagonists 

Dual antagonists are a class of drugs that simultaneously block two or more subtypes of 

adenosine receptors. These compounds have the ability to bind to multiple adenosine receptor 

subtypes, thereby inhibiting their activity and modulating downstream signaling pathways. The 

development of adenosine receptor dual antagonists has gained attention as a potential 

therapeutic strategy for various conditions. The potential applications of adenosine receptor 

dual antagonists could include the development of treatments for various diseases with 

enhanced therapeutic effects and simplified drug regimens. It is also known that multi-target 

drugs for treatment of complex diseases are considered safer than drug combinations since they 

have lower toxicities and a lower risk of drug-drug interactions. 95  

Thus, the development of dual- or multi-target drugs can offer significant advantages. A dual 

hA2BR/hA3R antagonist was designed as an anti-asthmatic agent. 96 Recent data suggested that 
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dual hA1R/hA2AR antagonists may have therapeutic value against Parkinson's disease and 

epilepsy. 97 By blocking these receptors, these dual antagonists may help modulate 

neurotransmitter release and improve motor symptoms or reduce seizure activity. 98–100 Dual 

antagonism of A1R/A2AR has also opened up new prospects for the treatment of diabetes. 100 

Additionally, a recent study on the pyridone-substituted triazolopyrimidine scaffold showed 

great potential as a novel foundation for advancing the development of dual A1R/A2AR 

antagonists as a potential treatment for the ischemic stroke. 100 

No pharmacological data on dual hA1R/hA3R ligands have been published. Antagonists of both 

hA1R and hA3R, targeting the same Gi-mediated pathway, may be useful and might even show 

synergistic effects for the treatment of important diseases including (i) acute kidney injury and 

kidney failure, 101 (ii) inflammatory pulmonary disease, asthma, allergy, 102 and (iii) Alzheimer's 

disease. 103–105  

Developing adenosine receptor dual antagonists poses certain challenges, including achieving 

sufficient selectivity for the desired receptor subtypes and managing potential side effects 

resulting from the simultaneous blockade of multiple receptors. However, advancements in 

medicinal chemistry and structure-based drug design could facilitate the discovery and 

optimization of dual antagonists with improved selectivity and pharmacokinetic properties. 

Further research and development efforts are needed to refine the selectivity, efficacy, and 

safety profiles of such dual antagonists. The exploration of adenosine receptor dual antagonists 

opens new possibilities for pharmacological interventions and may contribute to improved 

patient outcomes in various disease settings. 
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_________________2. Methodology_________________ 

 

 

The aim of this chapter is to give a general overview of the computational chemistry techniques 

employed through the present thesis followed by a section of brief descriptions of the protocols 

of the computational methods used.  

 Computational chemistry, which belongs to a part of the in-silico realm, studies molecular 

systems through the application of computational models and simulations (numerical 

algorithms) with the aim of understanding their structure and/or properties. 

Computational chemistry has revolutionized the drug discovery process by accelerating and 

optimizing the identification and design of potential drug candidates. Through the simulation of 

molecular interactions, binding affinities, and pharmacokinetic properties, enables the 

screening of vast chemical libraries, predict the activity of molecules, and prioritize the most 

promising candidates for experimental validation. Moreover, computational chemistry aids in 

the understanding of structure-activity relationships, guiding the modification of lead 

compounds to enhance their potency, and selectivity.  

2.1 Theory  

2.1.1 Homology Modelling  

Homology modeling is a computational technique used for predicting the three-dimensional 

structure of a target protein by using the structure of a related protein with a known 3D 

structure as a template. The process involves aligning the amino acid sequence of the target 

protein with a template protein and then constructing a model based on the template's 

structural information. The underlying principle behind homology modeling is the observation 

that structural features are often more conserved throughout evolution than the exact amino 
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acid sequence. Therefore, if two proteins share significant sequence similarity, their structures 

are likely to be similar as well. 106,107 

The accuracy and reliability of a homology model depends on the degree of sequence identity 

and similarity between the target and template proteins. Higher sequence identity and similarity 

typically result in more accurate models. However, certain regions of the model, especially loop 

regions, can be challenging to predict accurately due to insertions or deletions in the sequence, 

making them less conserved. Consequently, loop regions are often the most error-prone parts 

of the homology model. 

Unlike A1R 55–57 and A2AR subtypes 30,34,45,47,49,51,54  and more recently the A2BR subtype 58,59, the 

detailed structure of the A3R subtype has yet to be resolved. GPCRs structures’ predictions based 

on homology templates have long provided reliable models when an experimentally determined 

structure of a closely related protein homolog is available.108,109  Therefore, homology models 

have been used for drug design and interpretation of biological potencies for agonists 89,110 and 

antagonists 89,110 111,112 at the A3R and have been generated from both agonist- or antagonist-

bound A2AR or A1R X-ray structures.  

The first essential step is to compare the sequence of unknown structure (ex. A3R) with known 

structures stored in the PDB database 113,  to align their sequences and choose the best 

candidate. The alignment allows the transfer of structural information from the template to the 

target, generating a reliable three-dimensional model of the adenosine receptor. The high-

resolution crystal structure of A2AR in complex with an antagonist (PDB ID 3EML 34) provides an 

excellent template as A2AR is closely related to A3 with a 55% sequence similarity. Homology 

modelling of A3R based on A1R crystal structure (PDB ID 5UEN 55) has a sequence similarity of 

54%.  

Once the model is generated, it undergoes refinement through various computational 

techniques to improve its accuracy and reliability. Techniques such as molecular dynamics 

simulations and energy minimization are applied to optimize the model's structure and address 

any steric clashes or structural distortions. Additionally, the quality of the homology model is 

assessed through various validation metrics, such as Ramachandran plots 114 which assess the 

stereochemical quality of the model. Some computational tools available for model building are 

MODELLER software 115 and SWISS-MODEL server 116,  a fully automated workflow that simplifies 

the homology modelling process.  

Additionally, several intricate techniques have been developed for generating A3R models, such 

as the creation of hybrid models by incorporating multiple template structures 117, ligand-guided 
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model optimization 111,112,118, and sampling of multiple receptor conformations (MRCs) followed 

by docking studies 110.  

In recent years, significant advancements in homology modelling have been driven by 

breakthroughs in machine learning and deep learning algorithms such as AlphaFold2 (AF2) 

119,120and RoseTTAFold 121 that can generate accurate models for essentially any sequence. These 

methods utilize a deep neural network architecture that integrates multiple sequence alignment 

and co-evolutionary information to predict protein structures. They can predict not only the 

overall fold but also the spatial arrangements of side chains, which are critical for ligand binding 

and receptor activation.  

In the case of GPCRs, AF2 has a bias towards either the active or inactive conformation of the 

receptor and can only predict one state. However, a more sophisticated method has been 

developed based on AF2, known as the Multi-state Alpha Fold method 122, which considers the 

conformational switch between the active and inactive states that occurs upon ligand binding. 

This method has been shown to accurately predict the structures of GPCRs in different states, 

making it a valuable tool for studying their function and developing new drugs.  

By incorporating all the available homology modeling techniques, researchers can now generate 

highly accurate models of ARs with unprecedented precision. These models provide valuable 

insights into the receptor-ligand interactions and allosteric regulation, enabling the rational 

design of novel drugs targeting ARs. As computational methods continue to evolve, homology 

modeling will continue to be a vital tool in the field of structural biology, facilitating our 

understanding of ARs and guiding the development of therapeutic interventions for various 

diseases and conditions. 

2.1.2  Molecular Docking  

Docking in the field of molecular modeling is a method that makes predictions for the most 

preferable placement of a molecule within a receptor when they bound to each other to form a 

stable complex 123. Molecular docking is one of the most widely applied techniques in the field 

of drug design, because of its ability to give predictions about the possible binding mode of 

a small molecule ligand within a protein target binding site. 124  
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In the common rigid molecular docking method, only the ligand is flexible. However, both the 

ligand and protein are characterized by flexibility. More sophisticated and computationally 

demanding model correspond to the “induced fit” method, where both the ligand and the 

protein adjust their structures to achieve an overall "best-fit". 125 

Every docking program includes two steps components for its normal execution:  

 

1. Explore the conformational landscape of the small molecule to find the best 

candidate binding modes (poses) within the receptor. This is done using sampling 

methods 126 that can be categorized based on the degree of flexibility of the 

molecules involved in the calculations, such as rigid (both molecules are kept rigid), 

semi-flexible (where the protein is kept rigid while the molecules are allowed to be 

flexible), and flexible docking (where both the protein and molecules are allowed to 

be flexible). Each of these methods provides valuable insights into the interactions 

between the small molecule ligands and the receptor, aiding in the identification of 

potential binding sites and the most favorable binding configurations. 

 

2. Rank the generated poses of potential binding modes and evaluate their binding 

affinity using a scoring function 127. There are three main types of scoring functions: 

- Force-field based: These functions take into account both intermolecular and 

intramolecular interactions. The scoring is based on the sum of energy contributions 

from various forces, such as van der Waals interactions, electrostatic interactions, and 

hydrogen bonding, among others. These interactions are calculated using force-field 

parameters and equations that describe the physical properties of the molecules. 

- Empirical: These functions use multiple linear regressions to combine various 

energy terms with coefficients that are adjusted to fit experimental data. The energy 

terms encompass contributions from different aspects of the molecular interactions, 

and the coefficients are optimized to produce scores that correlate well with 

experimental binding affinities. 

- Knowledge based: These scoring functions utilize statistical analysis of 

intermolecular contacts found in large 3D databases. By applying the principles of 

Boltzmann statistics, potentials are derived from the observed frequencies of different 

interactions. This approach leverages existing knowledge about molecular interactions 

to estimate binding affinities. 
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Docking softwares used in this study:  

 

GOLD Software 128 is a widely used molecular docking program that efficiently explores the 

conformational space of ligands and protein receptors to predict binding modes and assess 

ligand-protein interactions. Gold software has available four scoring functions (GoldScore, 

ChemScore, ASP and ChemPLP). In this work, ChemScore 129 scoring function (empirical) was 

used for the Molecular Docking calculations. ChemScore scoring function incorporates the term, 

ΔG, that represents the total free energy change that occurs on ligand binding. 

Glide (Induced Fit Docking) 130 is a molecular docking method that considers the flexibility of 

both the ligand and the receptor, allowing for structural adjustments to occur in the active site 

during the docking process. The available scoring functions are GlideScore SP (standard 

precision) and XP (extra precision). In this work, Glide SP scoring function 131 was used, an 

empirical scoring function that evaluates the interaction energy between ligands and protein 

binding sites.   

2.1.3 Molecular Dynamics (MDs) 

Molecular dynamics (MD) is a method that aims at understanding the time-evolution of a 

molecular system represented by a set of particles with defined positions, based on an initial 

structure like an X-ray crystallography, NMR or homology model.  Starting from this initial 

structure and assigning initial velocities to each atom (from a statistical mechanics approach, 

the Boltzmann distribution at a given temperature). Sequential coordinates and velocities are 

then computed by integrating Newton's equation of motion. 132   

The outcome is a trajectory that shows the temporal evolution of atomic positions and velocities 

influenced by all system atoms. However, due to the large number of particles interacting with 

each other, analytically solving equation of motion is difficult, so it is necessary to perform 

numerical integration using methods, such as Leapfrog integrator. 133 This is an extension of the 

Verlet algorithm, 134 so named because the particle positions are updated at integer timesteps, 

whilst velocities are updated at half-integer timesteps, thus essentially ‘leap-frogging’ over one 

another. The relationships for updating positions, 𝑟 , and velocities, 𝑣 , within the leap-frog 

integrator are given by:  
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𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑣 (𝑡 +
𝛿𝑡

2
) 𝛿𝑡 

𝑣 (𝑡 +
𝛿𝑡

2
) = 𝑣 (𝑡 −

𝛿𝑡

2
) + 𝑎(𝑡)𝛿𝑡 

Where 𝑎(𝑡) is the acceleration of particle 𝑖 at time 𝑡 calculated from 
𝐹𝑖(𝑡)

𝑚𝑖
 . 

This process is contingent on knowing particle velocities from the prior step. Thus, the question 

arises as to the origin of initial velocities. In general, such initial random velocities at the start of 

a simulation are canonically taken from a Maxwell-Boltzmann distribution at a user-specified 

temperature.  

The frequency with which the equations of motion are integrated is determined by the time 

step, 𝛿𝑡, specified by the user. The careful choice of the time interval significantly impacts the 

stability of the simulation. A value too small is computationally inefficient and limits sampling of 

phase space, whilst too high a value may fail to adequately sample bond vibrations, and may 

lead to deviation from their equilibrium values, resulting in the accumulation of artefactually 

high forces and simulation errors. The choice of an appropriate time step is determined by force 

field, system composition, integrators, and bond constraints.  

Covalent bonds with high vibrational frequency are typically constrained to their equilibrium 

value within MD simulations. Constraint algorithms are implemented after particle coordinates 

have been updated by the integrator; and act to correct deviations from equilibrium bond 

lengths. This is particularly useful for bonds undergoing high frequency vibrations, such as those 

between heavy atoms and hydrogens, and allows for a larger timestep to be applied. The LINCS 

algorithm 135 was applied to constrain covalent bonds within this thesis.  

The standard approach for simulating the behavior of a transmembrane protein complex is 

typically to embed the structure in a box that contains a lipid bilayer and water solvent. To avoid 

problems with boundary effects caused by the finite size of the box (unit cell), periodic boundary 

conditions (PBCs) are used, where the unit cell is surrounded by infinite replicas of itself. 136 The 

geometry of the unit cell satisfies perfect two-dimensional tiling, and when an object passes 

through one side of the unit cell, it re-appears on the opposite side with the same velocity. The 

large systems approximated by PBCs consist of an infinite number of unit cells. In computer 

simulations, one of these is the original simulation box, and others are copies called images. 

During the simulation, only the properties of the original simulation box need to be recorded 
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and propagated. The minimum-image convention is a common form of PBC particle 

bookkeeping in which each individual particle in the simulation interacts with the closest image 

of the remaining particles in the system. 

Prior to initiation of a MD simulation, systems are generally subjected to an energy minimization 

step. Such a procedure involves iteratively adjusting atomic coordinates to reach a local 

minimum in the potential energy landscape, described by a force field. This is key in alleviating 

incorrect geometries and steric clashes which may be present in the initial system configuration. 

Leaving such features uncorrected may result in the accumulation of unacceptably high forces 

and unstable simulations. Within this thesis the steepest descent algorithm 137 is used.  

MD simulations are typically run in the NVT (constant number of particles, volume, and 

temperature also known as canonical ensemble) or the NPT (constant number of particles, 

pressure, and temperature or isothermal-isobaric ensemble) statistical mechanical ensembles. 

For simulations that contain a lipid bilayer the NPT ensemble is generally employed. To keep 

pressure and temperature constant, simulations are performed with a barostat (one for each 

system component: protein, lipids and solvent), and thermostats, respectively.  

 

Force Fields 

Τα μοριακά χαρακτηριστικά που χαρακτηρίζουν κάθε άτομο του συστήματος καθορίζουν τις 

αλληλεπιδράσεις και τη δυναμική τους κατά τη διάρκεια της προσομοίωσης. Η μαθηματική 

συνάρτηση και οι παράμετροι που επιτρέπουν τον υπολογισμό της δυναμικής ενέργειας (E) του 

συστήματος με βάση τη θέση των ατόμων ονομάζονται "force field" (FFs). Οι πιο 

χρησιμοποιούμενοι force fields στη μοριακή δυναμική των βιολογικών μακρομορίων είναι οι 

AMBER, CHARMM, GROMOS και OPLS, με κάθε έναν από αυτούς να έχει ελαφρώς διαφορετικά 

πρωτόκολλα παραμετροποίησης αλλά, τελικά, παρόμοιες βασικές μαθηματικές μορφές. 

Μια τυπική συνάρτηση force field περιλαμβάνει δεσμευμένους όρους που ορίζουν τις 

ενδομοριακές αλληλεπιδράσεις στο σύστημα και μη-δεσμευμένους όρους που καταγράφουν 

κυρίως τις αλληλεπιδράσεις μεταξύ μορίων ανάμεσα στον εξωτερικό χώρο του συστήματος: 

𝑈(𝑟𝑛) = ∑ 𝑈𝑏𝑜𝑛𝑑𝑒𝑑 +  ∑ 𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

Where 𝑈 is the potential energy of 𝑛 particles, with positions given by 𝑟𝑛. 

These components may be further subdivided into the energy terms: 
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𝑈 =  ∑
1

2
𝐾𝑏(𝑏 −  𝑏0)2 

+ ∑
1

2
𝐾𝜃(𝜃 − 𝜃0)2   

+ ∑ 𝐾𝜑[1 − cos(𝑛𝜑 + 𝛿)]  

+ ∑ 𝜀 [(
𝑟0

𝑟
)

12

− 2 (
𝑟0

𝑟
)

6

]  

+ ∑
𝑞𝑖𝑞𝑗

4𝜋 𝜀0 𝑟𝑖𝑗
 

With each term of the equation above accounting for the energy of all bonds, all angles, all 

torsion angles, all non-bonded pairs (Lennard-Jones), and all partial charges (Coulomb) 

respectively. 

 

Bonded interaction terms describe forces within between covalently bonded particles, which 

arise as a function of those covalent linkages. They include terms describing bond stretching, 

bending of angles, and rotations about bonds.  Both bonds and angles terms are described by 

harmonic potentials (Hooke’s law), where b and b0 are the current bond length and its 

equilibrium value, θ and θ0 are the current angle value and its equilibrium value and Kb, Kθ are 

the bond and angle force constants between atoms. The torsion term, also referred as dihedral 

is often represented as a sum of cosine function, where φ is the torsion angle, n is the 

multiplicity, δ is the phase angle and Kφ is the dihedral force constant between atoms.  

Non-bonded interaction terms consist of two energy terms: van der Waals and electrostatic 

interactions, which are implemented through the Lennard-Jones 12-6 potential (van der Waals 

or Lennard-Jones) and the Coulombic potential, respectively. The Lennard-Jones potential is a 

mathematical model that approximates the interaction between a pair of atoms, accounting for 

two distinct forces, one attractive and another repulsive, where ε is a parameter defining the 

depth of the energy minimum, r is the distance between the 2 atoms and r0 is the energy 

expressed as an inverse power function of the distance between the considered 2 atoms. Finally, 

the last term in the force field equation is the Coulombic potential, where qi and qj are the partial 

charges assigned to atoms i and j, ε0 is the dielectric constant and rij is the relative distance 

between these atoms.    
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The computation of non-bonded interactions is the most time-consuming part of a MD 

simulation as the evaluation of the forces scales quadratically with the number of atoms in the 

system if no approximation is used. Therefore, a distance cut-off of about 1nm is typically used 

for non-bonded interactions. The same truncation strategy of Coulomb interactions causes 

problems in simulations. Therefore long-ranged electrostatic interactions beyond a certain 

cutoff (typically 1 nm) are not truncated but considered using Particle Mesh Ewald (PME) 142 

methods. 

2.1.4 Free Energy Calculations 

Relative binding free energy calculations offer an attractive approach to predict protein–ligand 

binding affinities in silico using molecular simulations and statistical mechanics to compute free 

energy differences between congeneric molecules. 

Free energy calculations play a pivotal role in computational chemistry and molecular modeling, 

offering valuable insights into the thermodynamic properties and energetics of molecular 

systems. These calculations provide a means to predict and quantify the stability, binding 

affinities, and reaction pathways of molecules in diverse chemical and biological contexts. By 

assessing the changes in free energy associated with molecular interactions or transformations, 

we can gain a deeper understanding of complex processes such as ligand binding. In this dynamic 

field, various approaches and algorithms have been developed to tackle the challenges of 

accurate and efficient free energy estimation, contributing to a more comprehensive 

comprehension of molecular behavior at the atomic level. 

Free energy calculations methods can be divided into: 

• Endpoint Methods:   

MM/PBSA and MM/GBSA: Molecular Mechanics - Poisson Boltzmann (MM/PBSA) or Molecular 

Mechanics - Generalized Born Surface Area (MM/GBSA) methods combine molecular mechanics 

and continuum solvent models to estimate free energies of binding or solvation based on 

molecular structures. 143,144 

Linear Interaction Energy (LIE): LIE estimates free energy changes by considering non-bonded 

interactions between ligand and protein atoms. 145,146 

• Pathway or Alchemical methods:  
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Thermodynamic Integration (TI): TI computes free energy changes by gradually transforming 

one system into another while calculating the work done along the transformation path. 147 

Free Energy Perturbation (FEP): FEP involves changing a system by adding or mutating atoms 

and then calculating the free energy difference between the initial and modified systems.148 

• Pulling Methods or Nonequilibrium:  

Steered MD (SMD): In contrast with free-energy calculations carried out at thermodynamic 

equilibrium, SMD utilizes either a constant or a time-varying force, responsible for marked 

deviations from equilibrium conditions. 149 

Umbrella Sampling: This method involves running multiple simulations with a harmonic 

restraint that keeps the ligand at different positions along the unbinding pathway. The potential 

of mean force (PMF) is then computed from these simulations to determine the binding free 

energy. 150 

These methods offer various approaches to estimating free energy changes in molecular 

systems, each tailored to different types of simulations and research questions. 

Virtual screening (VS) protocols including docking calculations and an additional end-point 

binding free energy calculation MM/PBSA or MM/GBSA method 143,144 have been applied and 

identified novel hits for GPCRs. 118,151–157 In our lab, we have also participated toward this effort 

using a combination of docking and MM/PBSA calculations. 87 However, the hit-to-lead discovery 

process warrants more accurate binding free energy calculations. 158 In this context, the accuracy 

of alchemical relative binding free energies calculations of antagonists with Free-Energy 

Perturbation coupled with MD simulations (FEP/MD) and a thermodynamic cycle method 

(TI/MD) using experimental structures of ligand-GPCR class A systems, e.g., antagonists in 

complex with A2AR, 156,159–164 was previously established.  

A significant challenge associated with alchemical methods is the slow convergence of the free 

energy differences and the high computational cost. 165,166 However, there has been a recent 

emergence of software designed to execute TI and FEP calculations utilizing graphics processing 

units (GPUs). 165,166   

Additionally, advanced force fields and sampling algorithms have been recently produced that 

are capable of predicting relative binding free energies at a high level of accuracy. 167,168 These 

advancements coupled with a workflow automation 169,170have enabled free energy simulations 

to be performed in a rigorous, high-throughput mode.  
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Next, the methods employed for the purposes of this thesis will be further discussed.  

 

 

MM/PBSA and MM/GBSA 

Calculating binding energies in ligand-receptor complexes is of fundamental importance in 

finding a candidate drug molecule in this approach. 171 The huge number of interactions between 

the solvent molecules and the system consisting of a ligand L which binds to a receptor R to form 

a complex R – L, hampers the accuracy of the calculation of an accurate value for ΔGbind. 

MM/PBSA or MM/GBSA methods use the thermodynamic cycle shown in Scheme 2.1 

 

 

Scheme 2.1. The free energy for the formation of ligand L - receptor R complex can be calculated 

using the end-points of this thermodynamic cycle including the bound and unbound states of 

the ligand. According to thermodynamic cycle the ΔGbind is calculated using equation (2.1)  

 

𝛥𝐺𝑏𝑖𝑛𝑑
𝑠𝑜𝑙𝑣  = 𝛥𝐺bind

gas
+ 𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑠𝑜𝑙𝑣 − (𝛥𝐺solv
𝑅 + 𝛥𝐺solv

𝐿 )   (2.1) 

 

This can be transformed to equation 2.2 172 

 

   Δ𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐻 − 𝑇𝛥𝑆 

= 𝛥𝐸𝛭𝛭 + (𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥
solv − 𝛥𝐺solv

𝑅 − 𝛥𝐺solv
𝐿 ) − 𝑇𝛥𝑆            (2.2) 

 

https://paperpile.com/c/SRHkPC/syxO
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If entropy change is taken to be approximately zero or if we compare complexes with similar 

entropy changes then equation 2.2 can be transformed to equation 2.3 for the calculation of 

effective binding free energies (ΔGeff). 

 

ΔGeff = ΔEMM + ΔGsolv    (2.3) 

 

ΔΕMM = ΔEint +  ΔΕelec + ΔΕvdW    (2.4) 

 

ΔGsolv = ΔGPB/GB + ΔGSA   (2.5) 

 

 

The terms for each complex ΔEMM and ΔGsolv are calculated using equations (2.4) and (2.5).  

 

ΔEMM defines the interaction energy between the receptor and the ligand, as calculated by 

molecular mechanics in the gas phase and includes the changes in the internal energies ΔEint 

(bond, angle, and dihedral energies), electrostatic energies ΔEele, and the van der Waals energies 

ΔEvdW. 

ΔGsolv is the desolvation free energy for transferring the ligand (L) or the receptor (R) or the 

complex from water to the binding area. ΔGsolv is the sum of the electrostatic solvation energy 

ΔGPB/GB (polar contribution or ΔGP) and the non-polar contribution ΔGSA ( or ΔGNP) between the 

solute and the continuum solvent.  

The polar contribution of the solvation binding free energy in medium is given by the equation 

(2.6) 

 

𝐺𝑃 = −
1

2
∑ 𝑞(𝑟𝑖)

𝑖

𝜑𝑖(𝑟𝑖)   (2.6) 

 

The difference in electrostatic energy between water (εsolute=80) and protein (εsolute=1) ΔGP, for 

L, R and complex is given by the equation (2.7) 

 

 

𝛥𝐺𝑃 = −
1

2
∑ 𝑞𝑖(

𝑖

𝜑𝑖
80 − 𝜑𝑖

1)   (2.7) 



Doctoral Thesis  Stampelou Margarita Eleni 

36 
 

The calculation of electrostatic potential φi needed to compute ΔGP can be calculated using the 

Poisson Boltzmann (PB) or Generalized Born (GB) equations. 173  

In MD applications, the associated computational costs are often very high, as the ΔGPB/GB needs 

to be solved every time the conformation of a molecule changes. To reduce the computational 

cost, the GB model can be applied as an approximation of the PB equation 174.  

Here, ΔGP is the contribution of the Coulomb and Born energy in the two dielectric environments 

according to equation (2.8) 

 

𝛥𝐺P = (−(1‑
1

𝜀
)) ∑ ∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗

𝑁

𝑗≠𝑖

𝑁

𝑖=1

 −
1

2
((1‑

1

𝜀
)) ∑

𝑞𝑖
2

𝑅𝑖

𝑁

𝑖=1

           (2.8) 

 

where qi and Ri are the charges and atomic radii for each atom i from the N atoms.  

Τhe choice of the solute dielectric constant (ε)  is strictly system-dependent and requires precise 

study of the binding sites to obtain the most suitable ε.  Although ε is dependent on the 

characteristics of the binding site (a higher ε for a highly charged binding site and a lower ε for 

a hydrophobic site), frequently the calculations are best with ε = 2−4, especially in larger data 

sets of diverse proteins. 175  Since the atomic charges used to calculate polar solvation energy 

have fixed values, they cannot be adapted to respond to the dielectric changes when a solute is 

solvated in the solvent. Therefore, a charge model that takes the solvent effect into account is 

critical for the accurate calculation of solvation free energies. Applying a single dielectric 

constant ε to describe the heterogeneous dielectric environment of a solute can cause errors.  

For membrane proteins, like GPCRs, to account for the lipophilic environment of the membrane, 

a heterogeneous dielectric implicit membrane model can be used along the bilayer z-axis. 176–178 

Τhe non-polar contribution of solvation free energy is calculated according to equation (2.9) 

 

𝛥𝐺𝑁𝑃 = 𝛾𝑆𝐴𝑆𝐴 + 𝛽   (2.9) 

 

where SASA (solvent accessible surface area) is the total area that the solvent can access around 

solute, γ is surface tension and β is an added as a correction factor. Typical values for γ and β are 

0.005420 kcal mol-1Å-2 and -1.008000 kcal mol-1, respectively.  

Since the continuum models ignore all information about water molecules in water-exposed 

binding sites (including the number and entropy changes) before and after ligand binding 
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sometimes the treatment of the water molecules as a part of the receptor, provides improved 

results in some cases 179–182. Another way is to replace the desolvation in MM/GBSA by the free 

energy combined with displacement of binding-site water molecules upon ligand binding 

estimated by the WaterMap approach, which yields varying results. 183 

Usually, the binding free energy methods like MM/PBSA or MM/GBSA are applied in a set of 

congeneric series of compounds and can provide good accuracy regarding the correlation 

between calculated ΔGbind and experimental pΚi values for Κi's covering a range of 103 

corresponding to a ΔΔGbind scale equal to 4-5 kcal mol-1. 184,185 

The computational duration is 50 times longer with the PB model. 186. The accuracy of the 

calculated energy using the GB approach is compromised at the expense of computational 

speed. The correlation and the computational demands make the GB approach attractive, 

especially for qualitative analysis, though the GB method in principle is not as accurate as PB. 144 

However, some studies have shown that optimal prediction of MM/GBSA with a solute dielectric 

constant of 2.0 is better than using MM/PBSA for 98 ligand complexes. 143 

 

TI/MD 

The TI/MD method has been described in ref 147. To compare two ligands 0 and 1 binding to a 

receptor, the calculation of Δ𝐴1(b) and Δ𝐴0(b), respectively, is needed and then the difference 

ΔΔ𝐴0→1 , i.e., ΔΔ𝐴0,1 (b). The calculation of Δ𝐴1(b) and Δ𝐴0(b) is computationally demanded 

because it includes large changes between the two states and doing free energy calculations for 

the two states alone often have very large errors. Free energy is a state function, thus the free 

energy difference between states is independent of the path that connects them. Thus, we can 

construct a thermodynamic path that takes us through a set of states that improve phase space 

overlap between states that can be unphysical, meaning that the intermediate states do not 

have to be observable experimentally.  The calculation of the relative binding free energies for 

two ligands bound to a receptor can be performed instead using the MBAR method 187 and 

applying a thermodynamic cycle (Scheme 2.2), 188–190 i.e., using the ΔG values obtained for the 

transformations of the ligands in the bound (b) and the solvent (s; water) state ΔG0,1(b) and 

ΔG0,1(s), respectively,  according to equation (2.10) 
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 ΔΔ𝐴b,0→1 or ΔΔ𝐴b,0,1 = Δ𝐴b,1 − Δ𝐴b,0 = Δ𝐴0,1(𝑏) − Δ𝐴0,1(𝑠)          (2.10) 

 

 

ligand 0(aq) + AR 
     (solvent=water)

ΔA0 (b) AR-ligand 0
       (bound)

ligand 1(aq) + AR
     (solvent=water)

ΔA0,1(s) ΔA0,1(b)

AR-ligand 1
       (bound)

ΔA1 (s)

 

 

Scheme 2.2. Thermodynamic cycle used for the calculation of relative binding free energies. 

 

Using this method, we can calculate the difference between Δ𝐴0,1(𝑏) and Δ𝐴0,1(𝑠)  which 

corresponds to the unphysical alchemical transformation 0 → 1 in the bound and in the water 

state, known as alchemical transformation which may be chosen to include small change or 

perturbation of ligand structure to lower the error for the free energy perturbation calculation. 

To put this mathematically, we can improve our results by constructing high phase space overlap 

intermediates and calculating the free energy difference ΔΔ𝐴0→1 by the sum of the binding free 

energy differences between the intermediate states.  Briefly, a thermodynamic parameter λ that 

smoothly connects states 0 and 1 through a λ-dependent potential U(rN; λ), such that U(rN; 0) = 

U0(rN) and U(rN; 1) = U1(rN). The transformation is broken down into a series of M steps 

corresponding to a set of λ values λ1, λ2, ..., λM ranging from 0 to 1, such that there is sufficient 

phase space overlap between neighboring intermediate λ states. The TI method computes the 

free energy change of transformation 0 → 1 by integrating the Boltzmann averaged dU(λ)/dλ as 

is described in equation (2.11). 

 

𝛥𝛢0→1 =  ∫ 𝑑𝜆〈
𝑑𝑈(𝑟𝑁; 𝜆)

𝑑𝜆
〉𝜆

1

0

 

 

= 𝛥𝛢0→1 ≈  ∑ 𝑤𝑘〈
𝑑𝑈(𝑟𝑁;𝜆)

𝑑𝜆
〉𝜆𝑘

𝛭
𝑘=1           (2.11) 
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where the second sum indicates numerical integration over M quadrature points (λk, for k = 1, 

..., M) with associated weights wk. A linear extrapolation between states can be applied for the 

construction of U1(rN; λ) while with Amber18 softcore potentials 190–192 the LJ and Coulomb term 

potentials are described according to equation (2.12).  

 

𝑈(𝑟𝑁; 𝜆) = 𝑈0
𝑆𝐶(𝑟𝑁; 𝜆) + 𝜆𝛥𝑈𝑆𝐶(𝑟𝑁; 𝜆) 

                                                                    = 𝑈0
𝑆𝐶(𝑟𝑁; 𝜆) + 𝜆 (𝑈1

𝑆𝐶(𝑟𝑁; 1 − 𝜆) − 𝑈0
𝑆𝐶(𝑟𝑁; 𝜆))           

(2.12) 

 

Multistate Bennett Acceptance Ratio (MBAR) method 187  calculates the free energy difference 

between neighboring intermediate states using equation (2.13) 

 

𝛥𝛢𝜆→𝜆+1 =  − 𝑙𝑛 𝑙𝑛 
〈𝑤𝑒𝑥𝑝(−𝛽𝑈𝜆+1)〉𝜆

〈𝑤𝑒𝑥𝑝(−𝛽𝑈𝜆+1)〉𝜆+1
             (2.13) 

 

where w is a function of Α(λ) and Α(λ + 1). The equation is solved iteratively to give the free 

energy change of neighboring states ΔΑ(λ → λ + 1), which via combination yield the overall free 

energy change. MBAR method has been shown to minimize the variance in the calculated free 

energies, by making more efficient use of the simulation data. 187,193–195 

 

2.1.5 Binding Kinetics 

The binding equilibrium dissociation constant (Kd) has been traditionally considered 

fundamental for understanding structure-activity relationships and for efficient drug design. 

However, over the past few years, the significance of calculating binding kinetic rates and 

understanding the binding mechanisms of drugs with their target proteins has emerged in the 

drug design process. 196–198 199–201 

The rate in which the drug tackles the binding process is called the on-rate or the association 

rate constant (kon). An efficacious drug usually has high kon values. The kon constant is usually 

expressed in M–1 s–1, since it depends on the concentration of the drug. The kon value can be an 

indicator of the selectivity of the drug and how fast the drug can sample the surface of the target 

molecule and find the binding site. Protein or drug dynamics or thermal fluctuations may cause 
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the unbinding of the drug. The rate at which the drug leaves the binding site is called the off-

rate or the dissociation rate constant (koff) and is usually expressed in s–1. Another important 

parameter for binding kinetics is the residence time (RT or τ). The RT is the time a drug stays in 

the binding pocket 202 and can be calculated by the following equation: 

τ  =  1/koff 

Experimental methods such as surface plasmon resonance (SPR) and bioluminescence 

resonance energy transfer (BRET) can be used for measuring koff and RT values. 

Residence time can be directly linked to the drug activity, efficacious drugs usually have long 

residence times. The more a drug stays in the binding site, the more it can interfere with the 

function of the target protein. 203 A ligand can have a high binding affinity value against the target 

protein in vitro in early stages of development, but a sufficiently long RT value is usually required 

to proceed in the clinical phases. 196 Moreover, in in vivo systems, such as the human body, the 

pharmacokinetics and pharmacodynamics play an important role while the drug is constantly 

involved in off-target interactions, metabolism, and excretion. Longer residence times mean 

more time in the bound state, away from these off-target events. 

Indeed, many studies, including studies on GPCRs, have shown that the RT can exhibit a better 

correlation with in vivo drug efficacy. 204,205  An in-depth knowledge and the understanding of 

the molecular determinants 206 of drug–receptor binding kinetics at GPCRs is required to 

successfully target this class of proteins. 207–210 Experimental data and evidence for the binding 

kinetics of orthosteric AR ligands have been reviewed 211 including antagonists 199–201 and 

agonists 212,213 that bind the orthosteric binding area of ARs. 

 

New approaches for computing ligand–receptor binding kinetics 

The growing evidence that the efficacy of a drug can be correlated to protein binding kinetics 

has emerged the development of novel methods aimed at computing rate constants for ligand-

receptor binding events. Computing accurately the residence times or the dissociation rates, 

poses challenges with conventional MDs alone due to the extensive sampling required. In this 

regards, enhanced sampling methods have been developed to simulate biomolecular binding 

and dissociation processes and predict the associated binding kinetic rates.  
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The methods are mainly divided into two types, absolute methods for computing absolute 

association (kon) and/or dissociation (koff) rate constants and relative methods to describe how 

residence times of several compounds compare and rank them according to their binding 

kinetics and whether ligands are considered fast (residence time t < 20 min) or slow (t > 40 min). 

Obtaining the absolute kinetic constant is difficult and often time-consuming. Ranking and 

finding correlations is usually faster and more likely to be used by industry to prioritize drugs.  

Absolute kinetic rates could be estimated with <1 µs of total simulation time using enhanced 

sampling methods such as the Markov State Modelling (MSM)214–216, Weighted Ensemble217–219, 

Gaussian accelerated Molecular Dynamics (GaMD) 220,221, and Simulation Enabled Estimation of 

Kinetic Rates (SEEKR)222–225.  

Metadynamics 226,227or Multiple Infrequent Metadynamics (InMetaD) simulations 228–232 have 

been widely applied to investigate the ligand binding kinetics.  However, Metadynamics 

simulations challenge is to accurately define collective variables (CVs), which requires expert 

knowledge of the studied systems. To overcome this challenge, Machine Learning (ML) has been 

incorporated into Metadynamics simulations. Filizola et al 233  developed a novel approach, 

which combined InMetaD and ML methods to predict the dissociation kinetic rates of two drugs 

(morphine and bruprenorphine) in the μ-opioid receptor. 

Relative kinetic rates prediction methods, that allow high-throughput simulations of large 

datasets and rank compounds according to their unbinding rates are Random Acceleration 

Molecular Dynamics (RAMD), 234,235 scaled MD 236,237 and steered MD.  238  

Scaled MD 236,237 has been mainly used for the prediction of koff values. Mollica et al. used scaled 

MD to correctly rank a congeneric series of four A2AR antagonists based on their residence times. 

239 RAMD, a similar method to Scaled MD, is mainly used to qualitatively predict dissociation 

rates. Nunes-Alves et al 234 performed RAMD simulations to predict ligand dissociation rates of 

T4 lysozyme.  

Coarse-grained Molecular dynamics 240,241 have also been used to capture protein - ligand kinetic 

pathways. 242 

The on-line toolbox, KBbox 243 (kbbox.h-its.org) contains descriptions of the different methods, 

along with some tutorials and guidance on usage. 

The trypsin-benzamidine system is the most widely used system for benchmarking different 

methods. This is mainly because of the system’s relatively small size, as well as the relatively fast 

association rate. Other systems that had been studied are Hsp90 236,237,244 and kinases245–248 . 
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Studies have been also performed to GPCRs, e.g., in β2-adrenergic receptor (β2AR), 249,250 

muscarinic receptor M3 (M3R), 251 muscarinic acetylcholine receptor M2 (mAChR M2), 250 

corticotropin-releasing factor type 1 receptor (CRF1R). 252  

 

τRAMD method 

In the present work, a recently developed method τ-Random Acceleration Molecular Dynamics 

(τRAMD)235, is applied for the studied ARs systems. τRAMD is an efficient computational 

workflow that enables the prediction of drug-protein relative RTs. The method is based on the 

random acceleration molecular dynamics (RAMD) 253 method, an enhanced sampling procedure 

that was originally developed for exploring ligand egress pathways from buried binding sites in 

proteins.  

The probability of a ligand leaving the binding site through a given exit path, ptot, can be 

considered as an equal of the probability of the ligand finding the entrance to the exit path, pI, 

and the probability of the ligand passing through it pII. i.e.: 

𝑝𝑡𝑜𝑡 = 𝑝I  ∙  𝑝II 

 

The RAMD method enables computation of an estimation of the ptot, as the method permits a 

ligand to find an exit path without a priori directional bias.  Assuming that ligand exit occurs over 

one single energy barrier, ΔGII, one can apply the theory of activated complexes. pII is thus 

associated with ΔGII and pI is a pre-exponential factor. koff, which is proportional to ptot, can 

therefore be written as: 

 

𝑘𝑜𝑓𝑓 ∝  𝑝𝑡𝑜𝑡 =  𝑝I  𝑒
− 

ΔGII
𝑅𝑇   

 

This model is a simplification of the complex free energy profile that is expected along a ligand 

exit pathway in a protein.  

The τRAMD workflow is summarized in Figure 2-1.  In the RAMD method, during a standard MD 

simulation of the protein-ligand complex, a small additional force (�⃗�) with a random orientation 

is applied to the ligand to facilitate its unbinding. The force’s direction is randomly reassigned 

when the ligand’s movement within a defined time frame drops below a predetermined 
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threshold distance. The application of the random force allows the acceleration of the egress 

event to be observed in a short simulation of several nanoseconds. Unlike other enhanced 

sampling methods, τRAMD does not require any advance knowledge of the dissociation pathway 

or extensive parameter fitting. The only user-set parameter is the magnitude of the random 

force, which mainly affects the simulation time required.  

 

Figure 2-1: Illustration of the application of the τRAMD workflow to simulate the dissociation of a drug-like compound 

from a target protein. 

  

τRAMD is a very flexible and computationally inexpensive that can be used to rank a set of small 

molecules that bind to given protein target by their dissociation rates or residence times and to 

build this information into the rational drug design workflows for the design of new molecules 

or ligand optimization. In addition to implementations in the NAMD and AMBER software 

packages, RAMD has recently been implemented in GROMACS molecular simulation engine for 

simulations on CPU or GPU nodes. In this thesis the calculations are run on Gromacs-RAMD 

version 2.0.  
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2.2 Methods  

2.2.1 Protein Models 

Residues will be described by their amino acid identity (single letter code) and position (amino 

acid number) within the specific GPCR with the Ballesteros and Weinstein numbering. 254. All His 

were protonated on the Nε. 112 255 

 

Model of WT A1R-antagonist complex 

The X-ray WT A1R – DU172 structure with PDB ID 5UEN 55 was used for the purpose of this study.  

 

Model of WT A2BR-antagonist complex 

We superimposed the experimental crystal structure ZM241385 - A2AR complex (PDB ID 3EML34) 

to the WT A2BR model from Adenosiland web-service. 256 Then, the A2AR protein was removed 

resulting in the WT A2BR - ZM241385 model used in the study described on Chapter 3. 

 

Three Models of WT A3R-antagonist complex 

Model 1: As it has been previously described in ref. 257, we used the template-based homology 

model for inactive A3R WT derived from Adenosiland web-service 256 or from ref. 258 that was 

built using the crystal structure of the complex hA2AR - ZM241385 (PDB ID 3EML 34 ) as a template 

which has a 56% sequence similarity (32.38% sequence identity) to hA3R (Figure S1). A model 

from ref. 259 generated from A1R (PDB ID 5UEN 55), which has a 54% sequence similarity (40% 

sequence identity) to hA3R (Figure S1), was also compared; the A3R complexes after 100ns-MD 

simulations converged to the same protein structure observed with homology models derived 

from A2AR as described. Their sequence alignment was carried out using Jalview 2.11.2.6. 116 The 

side chain of V1695.30 was rotated to increase the free space for ligands binding. 5 

A3R Model 1 was used for the study described in Chapters 3 and 4.  
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Model 2: An inactive A3R homology model was used as described in ref.  110 Their homology 

models were initially generated from a convenient modelling program and then were further 

refined by sampling MRCs. The resulted MRCs were examined by docking calculations of 

representative nucleoside ligands, and the model with the most reasonable binding mode was 

selected for further optimisation using MD simulations. Using their homology models, along 

with MD simulation and structural network analysis, they observed the boundary between 

agonist and antagonist activity. 

 

Model 3: We used the ML-based homology model derived from GPCRdb 260 that contains 

predictions for GPCRs in active and inactive forms via the advanced multi-state AF method.  122 

For the study described in Chapter 5, we used the inactive state of A3R. The predicted local-

distance difference test (pLDDT) for modelled transmembrane residues was > 70, the disordered 

intracellular C-terminus was discarded. Residues R1735.34, M1725.33 and M1745.35 (MRM motif) 

that have a different orientation compared to the other two models, demonstrate a very low 

confidence level (pLDDT < 50). The optimized Model 3 was derived with modification of MRM 

motif orientation. 

 

A3R Models 1, 2, 3 and optimized model 3 were used for the study described in Chapter 5.   

 

All protein models were optimized using the Protein Preparation Wizard in Schrödinger suite 

2021 (Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021). 261 In this 

process, the bond orders and disulfide bonds were assigned and N- and C-termini of the protein 

models were capped by acetyl and N-methyl-amino groups, respectively.  All hydrogens of each 

protein complex were minimized with the OPLS2005 force field 262,263 for by means of 

Maestro/Macromodel 9.6 264 using a distance-dependent dielectric constant of 4.0. The 

molecular mechanics minimizations were performed with the conjugate gradient method and a 

threshold value of 2.4 10-5 kcal mol-1 Å-1 as the convergence criterion. Each protein model was 

subjected in an all-atom minimization using the OPLS2005 force field 262,263 with heavy atom root 

mean square deviation (RMSD) value constrained to 0.30 Å until the root mean square of 

conjugate-gradient value reached < 0.05 kcal·mol-1·Å-1. Models were then utilized for molecular 

docking calculations. 
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2.2.2 Molecular Docking Calculations 

Ligand preparation  

The 2D structures of the studied compounds were sketched with Marvin Program (Marvin 

version 21.17.0, ChemAxon (https://www.chemaxon.com)) and model-built with Schrödinger 

2021-1 platform (Schrödinger Release 2021-1: Protein Preparation Wizard; Epik,  Schrödinger, 

LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New 

York, NY, 2021) and minimized using the conjugate gradient method, the MMFF94 force field 265 

and a distance-dependent dielectric constant of 4.0 until a convergence threshold of 2.4 10-5 

kcal mol-1 Å-1  was reached. Ionization states of the compounds at pH 7.5 were tested using Epik 

program 266 implemented in Schrödinger suite (Prime, Schrödinger, LLC, New York, NY, 2021). 

Energy minimization of the compounds' 3D structures was performed using the OPLS2005 262,263 

force field force field.  

 

Gold software Docking Calculations 

The molecular docking calculations of the studied compounds of Chapters 3 and 4 with A1R, A2BR 

or A3R were performed using GOLD software 267 128 and ChemScore 129 as the scoring function. 

The models of WT A1R - DU172, WT A3R - ZM241385, WT A2BR - ZM241385 were used as 

templates for the molecular docking calculations of the antagonists to the binding area of each 

of the receptors. Each compound was docked in the binding site of ZM241385 in the A3R-

ZM241385 model or DU172 in A1R - DU172, model or ZM241385 in the A2BR-ZM241385 model 

in an area of 15 Ǻ around the ligand using the experimental coordinates of ZM241385 or DU172 

and 20 genetic algorithm runs were applied for each docking calculation. The top-scoring 

docking poses were used for MD simulations to investigate the binding profile of the tested 

compounds inside the receptors.  

 

Induced Fit Docking Calculations 

Molecular docking simulations for Chapter 5 were performed using the induced-fit docking 

protocol of Schrödinger suite 2021 (Induced-fit Docking, Schrödinger, LLC, New York, NY, 2021) 

in standard protocol (standard precision) which allows flexibility of both the ligand and the 
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entire binding site. Ligand ZM241385 (from A2AR - ZM241385 (PDB ID 3EML 34 was used as 

template for the molecular docking calculations of the antagonists to the binding area of each 

of the A3R models. Thus, the grid boxes for the binding site were built considering the 

coordinates of ZM241385. Docking was performed using a softened potential, i.e. the van der 

Waals scaling factor was set at 0.5 for both receptor and ligand. The Prime refinement step was 

set on side chains prediction of amino acid residues within 5 Å of the ligand. Subsequently, a 

minimization of the same set of residues and the ligand for each protein/ligand complex pose 

was performed. After this stage, any receptor structure in each pose reflects an induced fit to 

the ligand structure and conformation. For each ligand docked, a maximum of 20 poses was 

retained. The binding was analyzed and the top-scoring docking poses were used for MD 

simulations to investigate the binding profile of the tested compounds at inactive A3R.  

2.2.3 MD simulations 

System preparation 

Each protein-ligand complex was inserted in a pre-equilibrated hydrated 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphoethanolamine (POPE) membrane bilayer according to OPM (Orientations 

of Proteins in Membranes) database. 268 The orthorhombic periodic box boundaries were set 12 

Å away from the protein using the System Builder utility of Desmond v4.9 (Schrödinger 

Release 2021-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 

2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021). The 

membrane bilayer consisted by ca. 170 lipids and 16,000 TIP3P 269 water molecules. Sodium and 

chloride ions were added randomly in the water phase to neutralize the system and reach the 

experimental salt concentration of 0.150 M NaCl. The total number of atoms of the complex was 

approximately 75,000 and the simulation box dimensions was ca. 88 x 76 x 113Å3. We used the 

Desmond Viparr tool to assign the amber99sb 270,271 force field parameters for the calculation of 

the protein, lipids and intermolecular interactions, and the Generalized Amber Force Field 

(GAFF) 167 parameters for the ligands. Ligand atomic charges were computed using the 

Restrained Electrostatic Potential (RESP) 272 fitting for the electrostatic potentials calculated with 

Gaussian03 273 at the HF/6-31G* 274 level of theory and the antechamber of AmberTools18. 275 
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MD simulation protocol 

100 ns-MD simulations at constant pressure (NPT) were performed for the tested compounds 

in complex with AR receptors embedded in POPE bilayers using Desmond v4.9 software, the 

Desmond MD algorithm 276 with amber99sb 270,271 force field to investigate their binding 

interactions. 

The MD simulation protocol consists of a series of MD simulations designed to relax the system, 

while not deviating substantially from the initial coordinates. During the first stage, a simulation 

was run for 200 ps at 10 K in the NVT ensemble (constant volume, temperature and number of 

atoms), with solute-heavy atoms restrained by a force constant of 50 kcal mol Å−2. The 

temperature was raised to 310 K during a 200 ps MD simulation in the NPT ensemble (constant 

pressure, temperature and number of atoms), with the same force constant applied to the 

solute atoms. The temperature of 310 K was used in MD simulations in order to ensure that the 

membrane state is above the main phase transition temperature of 298 K for POPE bilayers. 277 

The heating was then followed by equilibration simulations. First, two 1 ns stages of NPT 

equilibration were performed. In the first 1 ns stage, the heavy atoms of the system were 

restrained by applying a force constant of 10 kcal mol-1 Å−2, and in the second 1 ns stage, the 

heavy atoms of the protein-ligand complex were restrained by applying a force constant of 2 

kcal mol-1 Å−2 to equilibrate water and lipid molecules. In the production phase, the relaxed 

systems were simulated without restraints in the NPT ensemble for 100 ns. Replicas of the 

system were saved every 50 ps. 

In the MD simulations the PME method was employed to calculate long-range electrostatic 

interactions with a grid spacing of 0.8 Å. The SHAKE method was used to constrain heavy atom-

hydrogen bonds at ideal lengths and angles.278 Van der Waals and short-range electrostatic 

interactions were smoothly truncated at 12 Å. 279 The Nosé-Hoover thermostat 280 was utilized 

to maintain a constant temperature in all MD simulations, and the Martyna-Tobias-Klein method 

281 was used to control the pressure. The equations of motion were integrated using the 

multistep reversible reference system propagator algorithms (RESPA) 282 integrator with an inner 

time step of 2 fs for bonded interactions and non-bonded interactions within the cutoff of 12 Å. 

An outer time step of 6.0 fs was used for non-bonded interactions beyond the cutoff.  

Two MD simulation repeats were performed for each complex using the same starting structure 

and applying randomized velocities. All the MD simulations with Desmond software were run 

on GTX 1060 GPUs in lab workstations or the ARIS Supercomputer.  



Doctoral Thesis  Stampelou Margarita Eleni 

49 
 

 

Trajectories visualization  

The visualization of the desmond MD simulation trajectories was performed using the graphical 

user interface (GUI) of Maestro and the protein− ligand interaction analysis was carried out with 

a simulation interaction diagram (SID) tool, available with a Desmond v4.9 program. For the 

calculation of hydrogen bond interactions, a distance of 2.5 Å between donor and acceptor 

heavy atoms, and angle ≥120° between donor-hydrogen-acceptor atoms and ≥90° between 

hydrogen-acceptor-bonded atom. Non-specific hydrophobic contacts were identified when the 

side chain of a hydrophobic residue fell within 3.6 Å from a ligand’s aromatic or aliphatic carbon, 

while π−π interactions were characterized by stacking of two aromatic groups face-to-face or 

face-to-edge. Water-mediated interactions were characterized when the distance between 

donor and acceptor atoms was 2.7 Å, as well as an angle ≥110° between donor-hydrogen 

acceptor atoms and ≥80° between hydrogen-acceptor-bonded atoms. 

The generation of Figures for the representative frames were carried out using Pymol Molecular 

Graphics System, Version 2.3.5 Schrödinger, LLC. 283 

2.2.4 Binding Free Energy Calculations 

MM/GBSA calculation 

For the MM/GBSA calculations, structural ensembles were extracted in intervals of 40 ps from 

the last 20 ns MD simulation for each complex. Prior to the calculations all water molecules, 

ions, and lipids were removed, except 20 waters in the vicinity of the ligand, 284 and the 

structures were positioned such that the geometric centre of each complex was located at the 

coordinate origin. The MD trajectories were processed with the Python library MDAnalysis 285 in 

order to extract the 20 water molecules closest to any atom in the ligand for each of the 501 

frames. During the MM/GBSA calculations, the explicit water molecules were considered as 

being part of the protein. Binding free energies of compounds in complex with A1R or A3R were 

estimated using the 1-trajectory MM/GBSA approach. 144 
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A dielectric constant εsolute = 1 was applied to the binding area and to account for the lipophilic 

environment of the protein a heterogeneous dielectric implicit membrane model was used 

along the bilayer z-axis. 176–178 The post-processing thermal_mmgbsa.py script of the Schrodinger 

Suite was used which takes snapshots from the MD simulations trajectory and calculates ΔGeff.  

 

 

Alchemical TI/MD calculation 

For the TI/MD calculations, the relaxed complexes of the tested compounds at A1R or A3R from 

the 100ns-MD simulations in a POPE lipid bilayer with the amber99sb 270,271 force field were used 

as starting structures for the calculations of the alchemical transformations. TI/MD calculations 

were also performed for the ligands in solution. 

Setups were performed using structures of the complexes that were already equilibrated from 

the 100ns-MD simulations. The relaxed complexes were embedded in a POPE lipid bilayer 

extending 12 Å beyond the solutes using the CHARM-GUI web-based graphical user tool. 

286Sodium and chloride ions were randomly added in the aqueous phase to neutralize the system 

based on a Monte-Carlo approach.  Each ligand-AR complex in the bilayer was processed by the 

LEaP module in AmberTools18 under the Amber18 software package.275 Proteins, ligands, and 

water were described with ff14sb 287, GAFF1.8 167, and TIP3P force fields 269, respectively, and 

intermolecular interactions with ff14sb force field. Atom types, bonded and van der Waals 

parameters for ligands were added using Antechamber and Parmchk2 in the Amber18 tool set. 

275Partial charges for ligands were obtained using RESP fitting 272 for the electrostatic potentials 

calculated with Gaussian03 288 at the Hartree-Fock (HF)/6-31G* 274 level of theory and the 

antechamber of AmberTools18.  

Thus, initial geometries were minimized using 20,000 steps of steepest descent minimization at 

λ=0.5. These minimized geometries were then used for simulations at all λ values. Eleven λ 

values were applied, equally spaced between 0.0 to 1.0. Each MD simulation was heated to 310 

K for 500 ps using the Langevin thermostat (dynamics) 289for temperature control, as 

implemented in Amber18, 275,290  employing a Langevin collision frequency of 2.0 ps-1 in the 

presence of harmonic restraint with force constant 10 kcal mol-1 Å-2 on all membrane, protein, 

and ligand atoms. The temperature of 310 K was used in MD simulations to ensure that the 

membrane state is above the main phase transition temperature of 298 K for POPE bilayers. 277 

The Berendsen barostat 291 was used to adjust the density over 500 ps at constant pressure 
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(NPTγ) (with γ = 10 dyn cm-1), with a target pressure of 1 bar and a 2 ps coupling time. Then, the 

500 ps of constant volume equilibration (NVT) was followed by 2 ns NVT production simulation 

without restraints. Energies were recorded every 1 ps, and coordinates were saved every 10 ps. 

Production simulations recalculated the potential energy at each λ value every 1 ps for later 

analysis with MBAR. 187,195 

The bond constraint SHAKE 278 algorithm was disabled for TI mutations in AMBER GPU-TI module 

pmemdGTI, 166 and therefore a time step of 1 fs was used for all MD simulations. Long range 

electrostatics were calculated using PME, with a 1 Å grid, and short-range non-bonding 

interactions were truncated at 12 Å with a continuum model long range correction applied for 

energy and pressure.  

For each alchemical calculation, the 1-step protocol was performed, ie. disappearing one ligand 

and appearing the other ligand simultaneously, and the electrostatic and van der Waals 

interactions are scaled simultaneously using softcore potentials from real atoms that are 

transformed into dummy atoms. 190  Alternatively, in the 3-step “decharge-vdW-recharge” 

protocol, the atoms of the first ligand are first decharged, then undergo a van der Waals 

interactions transformation using softcore potentials, and then recharged to the final state 

(second ligand).  190 The 1-step protocol is a less computational expensive and more accurate 

approach to free energy estimates according to recent studies. 192 However, for the L9 → L8 

transformation (see Chapter 4) the 3-step protocol was applied because it has been observed 

that TI calculation converges poorly with 1-step protocol if the substituent that is involved in the 

transformation include a large numbers of atoms.  292 

The final states 0 and 1 of the alchemical calculations 0 → 1 or 1 → 0, ie. the structures of ligand 

0-AR and 1-AR complexes as resulted from the alchemical transformations were compared with 

these complexes structure resulted from converged 100ns-MD simulations. This was performed 

to certify that the 2 ns MD simulation for each λ-state during the alchemical calculations was 

enough for the complexes 0-AR and 1-AR to converge to same structure with 100ns-MD 

simulations. Two repeats were performed for each alchemical transformation.  Experimental 

relative binding free energies were estimated using the experimental binding affinities according 

to equation 2.14.   

 
ΔΔ𝐺0→1(b)exp = −1.9872 𝑇 (p𝐾d, 1 − p𝐾d, 2)       (2.14) 
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2.2.5 Binding Kinetics Calculations 

For the binding kinetics calculations, the τRAMD algorithm was used.  The complete workflow 

for the τRAMD method includes a preparation step for the system setup, several sets of 

conventional MD simulations and RAMD simulations as well as the trajectory analysis to 

compute relative residence times, as described below.  

System preparation 

Four representative ligands (A17, L4-6) that have a wide range of RT values (see Chapter 5, Table 

5-2) were selected to test the reliability of the τRAMD method using the three different models 

of A3R. The relaxed complexes of the four representative ligands from the 100ns-MD simulations 

were used as starting structures for the τRAMD protocol 234,235,293,250 which (for which a tutorial 

can be found at https://kbbox.h-its.org/). For the first step of preparation, we employed the 

Amber20 software 294  as described in the τRAMD protocol 234,235,293,250 which generate topology 

and coordinate files for simulations with Amber software, each complex in the POPE bilayer was 

processed by the LEaP module in AmberTools20 under the Amber20 software package to assign 

the ff19sb 295 and GAFF 167 force fields as described above in the TI/MD section.  

 

Equilibration MD Simulation Protocol 

First, the system was minimized (with restraints on all heavy atoms except water and ions of 

500, 50, 5 and 0.5 kcal mol−1 Å−2 each for 500 steps of steepest descent minimization followed 

by 1000 steps of conjugate gradient and then 1500 steps without restraints). It was then heated 

up to 310K for 100 ps (NVT- Langevin) with restraints of 50 mol−1 Å−2.  Then the system was 

further equilibrated by applying gradually decreasing restraints on the heavy atoms of the 

protein and ligand for 100ps (50, 25, 10 and 5 kcal mol−1 Å−2) followed by a small equilibration 

step without restrains (5ns) and by applying random velocities, as the membrane systems used 

where already relaxed from the previous 100ns-MD simulation. In all simulations, non-bonded 

Coulombic and Lennard-Jones interactions were truncated at a cut-off of 12 Å. Periodic 

boundary conditions were applied, and long-range Coulombic interactions were treated using 

the PME method. A time step of 2 fs was used, and the SHAKE algorithm was employed to 

constrain bonds involving hydrogen atoms. 

https://kbbox.h-its.org/
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For the Gromacs simulations, we transformed the final output of the equilibrated systems from 

Amber to Gromacs using ParmEd.  296 We then conducted short NVT simulations with v-rescale 

temperature coupling for a duration of 5 ns. Subsequently, we generated four independent 

trajectories (4 replicas) of conventional MD simulations under NPT conditions using the 

Nosé−Hoover thermostat and Parrinello−Rahman barostat, with each trajectory spanning 20 ns. 

To ensure trajectory diversity, velocities were initialized from the Maxwell distribution. The 

resulting final coordinates and velocities were utilized for the simulation of dissociation 

trajectories using RAMD, which was carried out under the same NPT conditions. 

 

τRAMD simulations protocol - Calculation of residence times  

A series of 15 RAMD dissociation trajectories were generated using the starting snapshots 

obtained from the four replicas mentioned earlier. The default parameters of the RAMD 

protocol, as described in detail in the τRAMD protocol 293 were retained. The external force was 

applied to the centre of atoms (COM) of the ligand and the ligand displacement was assessed 

every 100 fs. If the ligand displacement was less than 0.025 Å, a new random force orientation 

was selected. Once the ligand’s COM reached a predefined distance of 50 Å from the binding 

site, it was considered dissociated, and the dissociation time was recorded. The length of the 

RAMD trajectory was limited to 24 h wall-clock time due to the configuration of the utilized 

computer cluster (ARIS Supercomputer). Within this time, ∼ 40 ns of simulation time could be 

achieved. The external force magnitude was defined as 8 kcal/mol Å based on the dissociation 

time of the slowest dissociating compound (L6).  

To obtain the residence time for each replica, a bootstrapping procedure consisting of 5000 

rounds with 80% randomly selected samples was performed. This procedure aims to converge 

to a Gaussian-like distribution if the sampling is sufficient. The final relative residence time 

(τRAMD) was determined as the mean value across all replicas. Computed relative residence 

times were plotted against the corresponding experimental RT values (τ exp). The mean 

standard deviations of the computed residence times were computed as defined in the 

previously reported τRAMD protocol of ref 235. 

The visualization of the RAMD trajectories was performed using VMD 1.9.4 297 and the protein− 

ligand interaction analysis was carried out with the MDanalysis toolkit285.  
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3. Identification of high affinity dual A1/A3 antagonist 

with novel 7‑Amino-pyrazolo[3,4‑d]pyridazine Scaffold 

Investigation of the binding profiles to ARs using MD simulations and 

mutagenesis experiments. 

 ______________________________________________ 

 

3.1 Purpose of the study 

It has been reported that non-xanthine pyrazole bicyclic derivatives that bind to ARs are 

pyrazolo[4,3-d]pyrimidines, pyrazolo[1,5-c]quinazolines, pyrazolo[3,4-b]pyridines,  

pyrazolo[3,4-b]pyridines, pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines, pyrazolo-[3,4-c] or -

[4,3-c]quinolines, pyrazolo-[4,3-d]pyrimidinones, pyrazolo-[3,4-d]pyrimidines, and pyrazolo-

[1,5-a]pyridines 298–300.  

In the work described in this Chapter, in collaboration with Prof Marakos, Prof Pouli and Assist. 

Prof Lougiakis, we initially designed a novel pyrazolo[3,4-d]pyridazine scaffold for activity at the 

ARs. The objective was to design compounds having an alkyl or aryl group, such as a phenyl 

moiety, directed towards the lower region of the receptor for anchoring purposes. 

Simultaneously, a larger, more flexible aryl-containing group, such as anilino or aminobenzyl, 

was designed to orient towards the upper portion of the binding site, thereby enhancing 

interactions with residues located within EL2. 

 A new series of 7-amino-pyrazolo[3,4-d]pyridazine derivatives were synthesised as reported in 

ref 301 . The new derivatives’ binding affinities against the different ARs were determined using 

functional cAMP accumulation assays and fluorescent ligand displacement binding studies. After 

the pharmacological characterization by Prof Graham Ladds, we identified the 26nM A1R / 7 nM 

A3R / <1μΜ A2BR antagonist 1-methyl-3-phenyl-7-benzylaminopyrazolo[3,4-d]pyridazine (10b) 
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as a lead compound. Strikingly, compound 15b, the 2-methyl congener of 10b, had lower affinity 

by > 100-fold against A1R or A3R or A2BR.  

The computational studies involved the comparison of the binding interactions of the regio-

isomers 10b and 15b with MD simulations in order to suggest the critical mechanisms for the 

stabilization inside the orthosteric binding cavity. The results suggested that the 2-methyl group 

in 15b hinders the formation of hydrogen bonding interactions with N6.55 which is a key residue 

for ligand stabilization. Mutagenesis experiments for 10b against A1R provided results that 

complement the observations from MD simulations. We showed that L2506.51A mutation 

resulted in only a slight reduction of binding affinity concerning 10b while the Y2717.36A mutation 

caused a 10-fold reduction in binding affinity of this compound. Mutation to alanine of residues 

T913.36, H2516.52 or S2677.32, which are deep in the orthosteric binding affinity, did not affect 

binding affinity.  

3.2 Results & Discussion 

3.2.1 Similarity calculations 

Upon searching CHEMBL 302,303 database for similar compounds as antagonists to ARs using a 

TanimotoCombo 304 coefficient > 0.85, we did not find the pyrazolo[3,4-d]pyridazine scaffold 

suggesting that it is novel ring system for the development of ARs ligands.  Representative 

nonxanthine pyrazolo derivatives include pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines, 

pyrazolo-[3,4-c] or -[4,3-c]quinolines, pyrazolo-[4,3-d]pyrimidinones, pyrazolo-[3,4-

d]pyrimidines, and pyrazolo-[1,5-a]pyridines. 305  

All the 3D similarity calculations were performed with Canvas program (Schrödinger Release 

2021-1: Canvas, Schrödinger, LLC, New York, NY, 2021). 306  
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3.2.2 Biological Results 

Compounds were pharmacological characterized to validate the in-silico predictions for the 

purpose of this study by the laboratory of Dr Graham Ladds, Dept. of Pharmacology, University 

of Cambridge as described in references 90,301,307 and as reported in Chapter 6 of the Doctoral 

thesis of Dr Anna Hilser (University of Cambridge). 308 The pharmacological evaluation included 

cAMP assays assessing the activity of compounds at ARs, quantifying binding parameters using 

a NanoBRET-based saturation binding assay and determination of kinetic parameters of 10b 

binding at A3R, A1R using the NanoBRET method.  

Compounds 10a-c and 15a-c were pharmacologically evaluated to assess their activity, as 

antagonists, against the different human AR subtypes as described previously 90 using functional 

cAMP assay and  the equilibrium dissociation constant (pKd) was calculated for each compound 

(Table 3-1). Of the compounds tested, 10b displayed the highest affinity at the different AR 

subtypes with greater selectivity towards the A1R and A3R than the A2BR (Table S1). Using the 

Schild plot analysis, 10b’s affinity (pA2/pKb) was calculated at 21 nM at the A1R and 55 nM at the 

A3R while only 1.7 μΜ at the A2BR (Table S1).  

To independently verify the affinities determined using the functional cAMP assay, a previously 

described NanoBRET binding assay (see ref  90 ) was performed to directly quantify the potential 

antagonists binding to the A1R and A3R (Table 3-1). The A2BR was not included in this analysis 

since the pKd of 10a and 10b at the A2BR were estimated to be below 1 μM (Table 3-1). Consistent 

with the Schild analysis compound 10b displayed the highest affinity at the A1R and A3R (A1R: pKi 

= 7.95 ± 0.09; A3R: pKi = 7.89 ± 0.11). Of the remaining compounds, 10a displayed weak affinity 

at the A3R (pKi: 6.42 ± 0.28), which was in agreement with the Schild regression estimate, but 

failed to bind A1R making an estimate for its affinity unreliable. All the other compounds failed 

to bind A1R or A3R except for 15a and 15c which did display some binding at the A3R but. 

Significantly, 15b a regio-isomeric derivative of 10b that contains a N-methyl substitution to 1-

NH, failed to bind either AR subtype. 

We next investigated the real-time binding kinetics  90,309,310,211 of 10b at the A3R, A1R using 

NanoBRET binding method as described in 90.The kinetics of binding were determined for 10b 

against A1R (Kon = 51.4 ± 0.26 x 105 M-1 min-1, Koff = 0.019 ±0.003 min-1 with a pKD = 7.46 ± 0.1 and 

RT = 59.8 ± 12.7 min) and against A3R (Kon = 25.6 ± 0.1 x 105 M-1 min-1, Koff = 0.014 ±0.002 min-1 

with a pKD = 7.26 ± 0.05 and RT = 72.58 ± 8.8 min). None of the other compounds were able to 

be analyzed using this method due to their extremely fast Koff rate (> 2 min-1). For compound 
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10b there was excellent agreement between pKD (Kon/Koff) of the compounds from the kinetics 

assays and the Schild analysis (pA2/pKb) and fair agreement (~ 3.16-fold) with the saturation 

binding assays (pKi). 

 

Table 3-1: Chemical structures, antagonistic potencies (pEC50 in presence of NECA 
a) and affinities 

(pKi  
b) of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15a-c against A1R and A3R. Data 

 A1R A3R 

Compound 

pEC50 of NECA in 

presence of 

compounda 

pKi  
b 

pEC50 of NECA 

in presence of 

compounda 

pKi  
b 

 

10a 

8.15 ± 0.12** 5.17 ± 1.13# 9.04 ± 0.11 6.42 ± 0.28 

 

10b 

7.15 ± 0.07*** 
7.95 ± 0.09 

*** 
7.80 ± 0.10*** 7.89 ± 0.11* 

 

10c 

9.01 ± 0.16 < 5.0 9.50 ± 0.12 < 5.0 
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a Mean ± SEM; Functional activities of at least 3 independent repeats 

b Mean ± SEM; Equilibrium binding affinities of the ligands measured with NanoBRET against WT A3R or A1R; NECA was 
used as positive control as described in ref 90. 

# Due to high affinity of MRS1220, 10 nM was used to enable measurement of full dose-response curve of NECA in 
order to determine pEC50. 

Statistical significance compared to NECA was determined, at p < 0.05, through One-Way ANOVA with Dunnett’s post-
test (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 301.    

 

 

15a 

8.62 ± 0.15 <5.0 8.94 ± 0.11* 5.77 ± 0.27# 

 

15b 

8.82 ± 0.15 < 5.0 9.33 ± 0.13 < 5.0 

 

15C 

8.96 ± 0.18 < 5.0 9.27 ± 0.16 6.44 ± 0.23# 

DPCPX 6.03 ± 0.16 9.23 ± 0.08 - - 

MRS1220 7.32 ± 0.09 7.29 ± 0.27 7.44 ± 0.02# 9.94 ±0.11 

NECA 8.74 ± 0.15 6.69 ± 0.10 9.39 ± 0.11 7.05 ± 0.07 
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3.2.3 Binding Profile of the 7-Aminopyrazolo[3,4-d]pyridazines to A1R 
and A3R using MD simulations and Mutagenesis experiments. 

MD simulations 

Having pharmacologically evaluated the different compounds, molecular docking calculations 

followed to provide insights into how they bind to the ARs. 10a-10c were docked into the 

orthosteric binding site of the A1R and 10b, 15b into A2BR and A3R (the amino acid sequences of 

A1R, A3R, A2BR in the orthosteric binding area are shown in Scheme 3.1) using the ChemScore as 

the scoring function 270,271 with the highest score docking pose being inserted into a hydrated 

POPE bilayer. The complexes were subjected to 100ns-MD simulations with amber99sb 270,271 

and then the MD simulations trajectory was analyzed (Table 3-2). The MD simulations showed 

that the 7-benzylamino-pyrazolo[3,4-d]pyridazine 10b substituted with N1Me and a 3-phenyl 

group, formed a stable complex with all three ARs with RMSDprotein value < 2.1 Å.  Starting from 

the same docking pose of 10b in A1R (Figure 3-1B), or A3R (Figure 3-2B), the mean frame from 

MD simulations was close to the starting docking pose in A1R (RMSDlig = 1.21 Å) while in A3R the 

ligand moved considerably into the cleft between TM3, TM5 and TM6 helices (RMSDlig = 4.88 Å). 

Thus, starting from the same binding pose for 10b, the MD simulations produced two different 

binding orientations at A1R and A3R. This is due also to the fact that A1R has a broader binding 

area, expanded towards TM1, TM2, compared to the other ARs, according to the X-ray 

structures of A1R in complex with antagonists. 55,56 A similar AR ligand reported in the literature 

is the 4-(2-phenethyl)amino 1-phenylethyl pyrazolo[3,4-b]pyridine (Tc = 0.15), which binds with 

a similar docking pose to 10b to A1R. 311We also docked a representative adenine derivative that 

binds A1R, e.g. N9-methyl,N6-benzyl adenine, and found a similar docking pose (Figure 3-3).  

Inside the A1R orthosteric site, compound 10b formed hydrogen bonds through its pyrazole or 

pyridazine nitrogen donor groups to the amide side chain of N2546.55 or imidazole side chain of 

H2787.43. Furthermore, 10b, was stabilized in the orthosteric binding site through π-π 

interactions between its pyrazolo[3,4-d]pyridazine or phenyl rings with F1715.29, H2516.52 and 

W2476.48 , respectively. The benzylamino group of the 10b oriented towards the widened TM2 

area in A1R forming hydrophobic interactions with A662.61 and I692.64. Furthermore, 10b was 

found to positioned deep in the binding pocket interacting with V873.32 or W2476.48 while the 3-

phenyl-pyrazole aligned close to the side chains of M1805.38 and L2506.51 (Figure 3-1).  In the A3R 

compound 10b was stabilized through formation of hydrogen bonding interactions with N2546.55 

and H2787.43 and hydrophobic interactions with L903.32, L913.33, F1685.29, M1775.38, L2466.51 and 
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I2687.39 (Figure 3-2B). Finally, the interaction profile for 10b was very similar inside A2BR to that 

observed for the A1R (Figure 3-2A), though 10b showed weak hydrogen bonding interactions 

with N2546.55. 

Pharmacologically, compounds 10b and 15b, differed considerably in their affinity to the ARs 

(Table 3-1). Comparing MD simulations for 15b with 10b in the orthosteric binding area of the 

A1R, the A3R (or also A2BR) show that starting from a similar docking pose the substitution from 

N1Me, 2-NH (found in 10b) to N1H, N2Me (in 15b) results in 15b failing to generate hydrogen 

bonds with N6.55 because of the steric repulsion between 2-methyl and the amide side chain of 

N6.55; (see Figure 3-1D, 3-2C,D) for this reason also 15a, 15c were inactive. Although many ligands 

can have similar docking poses, subtle changes in the ligand substitution pattern can result in 

significant changes in binding and this can be followed only with MD simulations. Considering 

the two active compounds, 10a and 10b, replacement of the 3-phenyl group (found in 10b) with 

a 3-isopropyl group (generating 10a) results in a remarkable reduction of affinity. This is due to 

10a losing significant π-π interactions with H2516.52 and hydrophobic interactions with residues 

deeper in the binding site such as W2476.48, L2506.51 and V873.32 (Figure 3-1). Finally, the 

substitution of 10b’s 7-benzylamino by the more rigid morpholinyl group (found in 10c) resulted 

in reduced affinity to the ARs. The more rigid morpholino group in 10c repels F1715.29, so the 

ligand rotates and moves at the bottom of the binding area, losing hydrogen bonding 

interactions with N2546.55 and weaking its hydrophobic interaction with critical residues, e.g. 

F1715.29 and L2506.51 (Figure 3-1). With an accuracy ± 4 kcal mol-1, the MM/GBSA method144,312 

only provides an approximation when applied to structure-activity relationships for analogs in 

the same series. Nevertheless, the MM/GBSA binding free energy calculations for ligands 10a-c 

against A1R (Table 3-2), using the OPLS2005 force field 262,263 and a hydrophobic slab as implicit 

membrane model and including the waters in the orthosteric binding area 176–178, predicted fairly 

the stability of 10a-c in complex with A1R with binding free energy values (after neglecting 

entropy) ΔGeff = -94.50 kcal mol-1, -96.42 kcal mol-1, -85.35 kcal mol-1.   

Residues 3.33 5.29 5.30 5.38 5.42 6.48 6.51 6.52 6.55 6.66 6.67 7.32 7.35 7.36 7.39 

A1R L F E M N W L H N K K S T Y I 

A3R L F V M S W L S N V V Q L Y I 

A2BR L F E M N W V H N K N K M N I 

 
Scheme 3.1. Sequence alignment of the residues surrounding the binding site of A1R, A3R and A2BR (Ballesteros-
Weinstein numbering is applied). Colored in yellow columns show residues that differ in side chain polarity, volume, 
rigidity. 
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Table 3-2: MD simulations results of 7-amino-pyrazolo[3,4-d]pyridazines 10a-c, 15b in complex 

with A1R, A3R or A2BR and MM/GBSA calculations results for 10a-c in complex with A1R. 

comp
ound 

A1R A3R A2BR 

 
 

RMSDli

g
a 

RMSDp

rotein 
b 

ΔGeff
c 

RMSDli

g
a 

RMSDp

rotein 
b 

ΔGeff
c 

RMSDli

g
a 

RMSDp

rotein 
b 

ΔGeff
c 

10a 
2.21 ± 
0.42 

2.14 ± 
0.14 

-94.50 
± 5.93 

- - - - - - 

10b 
1.29 ± 
0.31 

1.21 ± 
0.17 

-96.4 ± 
5.93 

4.88 
±0.66 

2.01 ± 
0.21 

-101.9 ± 
5.02 

1.53 ± 
0.41 

2.08 ± 
0.56 

-94.19 ± 
6.06 

10c 
1.53 ± 
0.37 

1.66 ± 
0.24 

-85.35 
± 5.97 

- - - - - - 

15b 
2.38 ± 
0.45 

2.03 
0.19 

- 
3.19 ± 
0.45 

2.86 ± 
0.15 

- 
6.77 ± 
0.38 

2.50 ± 
0.14 

- 

a Mean±SD (Å); Ligand RMSD is calculated after superposition of each protein-ligand complex to that of the starting 

structure (snapshot 

b Mean±SD (Å); Protein RMSD is calculated for the Cα atoms of the α-helices, for the last 50 ns of the trajectories, 

using as starting structure snapshot 0 of the production MD simulation. 

c Mean±SEM; Calculated effective binding free energy (kcal mol-1) between ligand and receptor. ΔGeff is calculated 

from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using a MM/GBSA model 

that is taking into account the membrane as hydrophobic slab.  Mean from three 20ns-MD simulations. 

 

A A1R - 10a       s 

  

Docking position  Representative frame from MD 
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B A1R – 10b       s 

  

 
 

 

 

 

 

 

 

  

 

 

 

 

 

Docking position Representative frame from MD simulation 
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C 

 

A1R – 10c       s 

 

 

 

 

 
 

 

 

 

D  

 

 

 

s A1R – 15b       

  

Docking position 

posepopoposeposition 

Docking position Representative frame from MD simulation 

Representative frame from MD simulation 
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Figure 3-1: (A)-(C) 100ns-MD simulations of 10a-c inside the orthosteric binding area of A1R. (D) 100ns-MD simulations 

of 15b inside the orthosteric binding area A1R.Are shown starting structure (docking pose) and representative frames 

from MD simulations, receptor-ligand interaction frequency histograms and RMSD plots of protein Ca (RMSDprotein; 

blue plots) and ligand heavy atoms (RMSDligand; red plots) inside the orthosteric binding area of WT A1R or A3R. Bars 

are plotted only for residues with interaction frequencies ≥ 0.2. Colour scheme: Ligand=brown sticks, receptor=white 

cartoon and sticks, hydrogen bonding interactions=yellow (dashes or bars), π-π interactions=green (dashes or bars); 

hydrophobic interactions=grey; water bridges-blue. For the protein models of A1R in complex with 10a-c or 15b in 

complex with A1R was used the experimental structure of the inactive form for A1R in complex with an antagonist 

(PDB ID 5UEN 55).  

 

A                                                                       A2BR - 10b 

 

Representative frame from MD simulation Docking position 
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B                                                                           A3R-10b 

 

 

C                                                                      A2BR - 15b 

For 15b – A2BR complex a similar binding pose as 10b – A2BR was used.  After 100ns molecular dynamic 

simulation, 15b leaves the binding pocket and enters the membrane area through an opening between 

TM6 and TM7.  The RMSD of this ligand (6.77 ± 0.38 Å) is also indicative of a ligand translation from the 

starting position.   

 

Representative frame from MD simulation Docking position 

Representative frame from MD simulation Docking position 

Docking position  
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D                                                                      A3R - 15b 

 

Figure 3-1: Docking poses and representative frames, receptor-ligand interaction frequency histograms and RMSD 

graphs from 100ns-MD simulations of 10b (A)-(B) inside the orthosteric binding area of WT A2BR or A3R and (C),(D) 

15b inside the orthosteric binding area of WT A2BR ,A3R, respectively. Bars are plotted only for residues with 

interaction frequencies ≥ 0.2. Color scheme: Ligand=10b dark red, 15b cyan sticks, receptor=white cartoon and sticks, 

hydrogen bonding interactions=yellow (dashes or bars), π-π interactions=green (dashes or bars); hydrophobic 

interactions=grey; water bridges=blue. RMSD graphs of protein Ca (RMSDprotein; blue plots) and ligand heavy atoms 

(RMSDligand; red plots).   

 

 

Figure 2-3: N9-methyl,N6-benzyl adenine inside the orthosteric binding area of WT A1R; from docking calculations. 

.Color scheme: Ligand=light pink sticks, receptor=white cartoon and sticks, hydrogen bonding interactions=yellow 

(dashes), π-π interactions=green (dashes).  

Representative frame from MD simulation Docking position 
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Mutagenesis experiments to study 10b binding to A1R. 

We have previously observed that mutation of residues that do not directly interact with the 

ligands, (e.g. V5.30 for A3R, which is more than 4 Ǻ apart from the ligand inside the orthosteric 

binding area) can, through allosteric interactions due to the plasticity of the binding area, 

significantly affect ligand affinity. 89,257,313As such it is not always straight forward to determine 

the effects of a mutation on affinity properties. Despite this caveat, we next used mutational 

analysis combined with NanoBRET to determine the important residues required for 10b binding 

to A1R. The mutation of L2506.51A resulted in only a slight reduction of binding affinity for 10b 

(Table 3-2) despite the MD simulations suggesting that the ligand should be close enough to 

L2506.51 to enable hydrophobic interactions. It is possible that residues H2516.52 and W2476.48 

could contribute to the stabilization of 10b with hydrophobic interactions even if L2506.51 is 

mutated to alanine. It is noteworthy that mutation of E1725.30 (which is also more than 4 Ǻ apart 

from the ligand inside the orthosteric binding area) to alanine also did not significantly change 

the binding affinity (Table 3-2).   

In addition, mutation of H2516.52A has been reported to reduced antagonist affinity against and 

A3R 257,313although here it did not have any effect on 10b affinity at the A1R. Other residues of 

interest to mutate were T913.36A and S2677.32A, which are deep in the orthosteric pocket. 

Interestingly, we found that mutation to alanine of these residues, also did not have a significant 

effect on the binding affinity of 10b (Table 3-3Table 3-1).  

The biggest effect in this study was observed for the Y2717.36A mutation which caused a ~10-fold 

reduction in binding affinity of 10b (Table 3-3). Since the MD simulations showed contacts with 

H2787.43 and not Y2717.36, the mutation Y2717.36A in the A1R might affect binding of 10b through 

contact with H2787.43. We performed the MD simulation of 10b in complex with Y2717.36A A1R 

and observed that the ligand loses its hydrogen bonding interactions with the orthosteric 

binding area (Figure 3-4). 
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Table 3-3: Binding affinities (pKi) for 10b measured using saturation NanoBRET binding against 

WT A1R and mutant A1Rs.  Data retrieved from  

A1R pKi  Effect on affinity 

WT 7.68 ± 0.11 baseline 

T913.36A 7.68 ± 0.07 no change 

E1725.30 A 7.34 ± 0.06 no significant change 

L2506.51 A 7.57 ± 0.04 no significant change 

H2516.52A 7.62 ± 0.06 no significant change 

S2677.32A 7.86 ± 0.03 no significant change 

Y2717.36A 6.99 ± 0.05 ~10-fold reduction 

 

 

Figure 3-3: Representative frames from 100ns-MD simulations of (A) 10b inside the orthosteric binding area of WT 

A1R; (B) 10b inside mutant Y271A A1R. Receptor-ligand interaction frequency histogram and RMSD graphs of protein 

Ca (RMSDprotein; blue plot) and ligand heavy atoms (RMSDligand; red plot). Bars are plotted only for residues with 

interaction frequencies ≥ 0.2. Color scheme: Ligand=brown sticks, receptor=white cartoon and sticks, hydrogen 

bonding interactions=yellow (dashes or bars), π-π interactions=green (dashes or bars); hydrophobic interactions=grey; 

water bridges=blue.  

A B 



Doctoral Thesis  Stampelou Margarita Eleni 

70 
 

 

 

 

 

 

 

Binding Kinetics and SAR Studies Using 

Mutagenesis and Alchemical Binding Free Energy 

Calculations 

 

 

Chapter 4.  

Identification of high affinity dual 

A1/A3 AR antagonists with a novel 

pyrazolo[3,4-c]pyridine Scaffold 



Doctoral Thesis  Stampelou Margarita Eleni 

71 
 

4. Identification of high affinity Dual A1/A3 AR 

antagonists with a novel pyrazolo[3,4-c]pyridine Scaffold 

Binding Kinetics and Structure−Activity Relationship Studies Using 

Mutagenesis and Alchemical Binding Free Energy Calculations 

______________________________________________ 

 

4.1 Purpose of the study 

In this study, two rounds of screening for compounds that acted as antagonists against ARs were 

performed [in total, 52 molecules tested with chemical structures defining 7 classes of 

compounds (Table 4-1). The tested compounds belonged to National and Kapodistrian 

University of Athens in-house compounds library. The pyrazolo[3,4-c]pyridine (shown with blue 

color in Scheme 4.1) was found as a novel pharmacophore which, upon introduction of different 

substituents, led to high-affinity antagonist activity against both the A1R and A3R. Potent 

antagonists were also identified in two classes of pyrazolo[3,4-c]pyridines, the 7-aminoaryl-3-

aryl-5-substituted-pyrazolo[3,4-c]pyridines and 3- of 3-(N-acyl)amino-5-aminoaryl-pyrazolo[3,4-

c]pyridines as shown in Scheme 4.1.  These compounds were characterized for their 

pharmacological activity using both functional inhibition of cAMP accumulation assays and 

competition for binding of a fluorescent tracer. These studies revealed that compound A17 

displayed a high Kon and a low Koff for both the A1R and A3R, which resulted in a low nanomolar 

affinity; A17 (Scheme 4.1), at the A1R, had a Kd of 5.62 nM and a residence time (RT of 41.33 min) 

and at the A3R, the Kd was 13.5 nM with a RT of 47.23 min. 

To interpret the interactions of these ligands within the orthosteric binding area of A1R, for 

which experimental structures with bound antagonists have been resolved, 55,56 we performed 

MD simulations, mutagenesis experiments, binding free energy calculations using the 

approximate MM/GBSA method 144 with an implicit membrane and by taking into account the 

waters inside the binding area. 177 314 For the accurate description of the structure-activity 
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relationships (SARs), the TI/MD method and a thermodynamic cycle were applied while 

including the whole ligands-GPCR membrane system in the calculations. The aim was to explore 

how the experimentally measured relative binding free energies correlated with the calculated 

values. The accuracy of relative binding free energies calculation for ligands-GPCR systems have 

been studied previously using FEP/MD method and a thermodynamic cycle. 156 

 

Scheme 4.1 : Chemical structures of 7-aminoaryl-3-phenyl-5-substituted-pyrazolo[3,4-

c]pyridines and 3-(N-acyl)amino-5-anilino-pyrazolo[3,4-c]pyridines. The pyrazolo[3,4-c]pyridine 

pharmacophore is shown in blue color and the attached substituents in red color.  

 

4.2 Results 

4.2.1 Compound selection 

A functional screen was performed initially of 30 compounds (A9−18, A20, A25−29, and 

A32−A45) from our in-house library for the identification of A3R ligands (Table S2) which were 

selected after computation of their TanimotoCombo coefficient (Tc) 304 and subsequent 

comparison of the Tc values with compounds in CHEMBL database 303. The 7-anilino-3-phenyl 

pyrazolo-[3,4-c]pyridines had a  Tc = 0.4 compared to 9-anilino imidazo[4,5-c]quinoline A3R 

antagonists, 315 the 3-(N-acyl)amino 5-anilino pyrazolo-[3,4-c]pyridines had a Tc = 0.2-0.3 

compared to 2,4-diaminoquinazoline A3R antagonists, 316 the N-piperazinyl acetamides of 

aminopyridinο quinazolines had a  Tc = 0.22-0.35 compared to N-piperazinyloacetamido 

aminopyrimidines with antagonistic activity against all ARs, 317 nucleoside derivatives had a  Tc 

= 0.3-0.6 when compared to known agonists or antagonists against all ARs. 69,318–320   
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4.2.2 Biological results 

Compounds were pharmacological characterized to validate the in-silico predictions for the 

purpose of this study by the laboratory of Dr Graham Ladds, Dept. of Pharmacology, University 

of Cambridge as described in references 90,301,307 . The pharmacological evaluation included 

cAMP assays assessing the activity of compounds at ARs, quantifying binding parameters using 

a NanoBRET-based saturation binding assay and determination of kinetic parameters of 

compounds binding at A3R, A1R using the NanoBRET method. Relevant figures and data can be 

found in the references 90,301,307 and in Chapter 6 of the Doctoral thesis of Dr Anna Hilser 

(University of Cambridge, 2022). 308  

 

Three New Lead Compounds Have A1R and A3R Subtype Selectivity. 

The in-house library of 30 antiproliferative compounds (Table S2) was initially screened using 

cAMP accumulation assays 321,322 at A3R.  From this functional screen we identified five 

compounds, A10, A15, A17, A26 and A45 as potential A3R antagonists (Table 4-1). The 

nucleosides A10 and A45 were discontinued in the study since they showed the weakest activity. 

The three remaining compounds were all pyrazolo[3,4-c]pyridines. Compounds A15 and A17 

have the same substituents at 5- and 7-positions but have isopropyl and phenyl group at 3-

position, respectively. Compound A26 has different substitution pattern with an acetamido and 

anilino groups at 3- and 5-position, respectively.  

The similarities between the four AR subtypes often result in reduced selectivity of potential 

antagonists. The subtype selectivity of A15/A17 and A26 was explored at the different ARs in a 

functional cAMP assay as described previously 90. Both A15 and A26 showed a lack of efficacy at 

the NECA-stimulated A2AR and A2BR but were able to antagonise the A1R, although A15 showed 

weaker efficacy than A26. A17 also was able to antagonise the A1R alongside the A3R with high 

efficacy (Table 4-1) but did also display, very weak efficacy at the A2BR (pKd = 5.50 ±0.12)(Table 

S3). These data indicate that all three compounds showed high subtype selectivity for both the 

A1R and A3R.   
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Table 4-1: Binding affinities measured using Schild curves (Kd) or BRET method (Ki) and functional 

activities for A15, A17, L2-L10, and A26, L12, L15, L21 against A3R or A1R. 

      

COMPOUND 

A3R A1R 

pIC50 

in presence 
of NECA 

a 
pKd

 b pKi  
c 

pIC50 

in presence 
of NECA 

a 
pKd

 b pKi  
c 

A15 

N
N

H
N

NH

NC

OCH3

H3CO

H3CO

 

8.71 ± 0.14 
5.91 ± 
0.19 

5.49 ± 
0.10 

7.99 ± 
0.14 

6.91 ± 
0.18 

6.64 ± 0.1 

A17 N
N

H
N

NH

NC

OCH3

H3CO

H3CO

 

7.12 ± 0.13 
7.87 ± 
0.18 

8.01 ± 
0.06 

6.70 ± 
0.10 

8.25 ± 
0.15 

8.36 ± 
0.10 

L2 
N

N

H
N

NH

Cl

OCH3

H3CO

H3CO

 

8.55 ± 0.13 
6.26 ± 
0.18 

6.20 ± 
0.06 

8.30 ± 
0.15 

6.54 ± 
0.19 

6.54 ± 
0.07 

L3 
N

N

H
N

NH

NC

OCH3

H3CO

H3CO

 

8.42 ± 
0.19 

6.45 ± 
0.23 

6.22 ± 
0.10 

8.49 ± 
0.17 

6.28 ± 
0.20 

7.91 ± 
0.09 

L4 

 

7.22 ± 
0.09 

7.77 ± 
0.16 

7.36 ± 
0.05 

7.87 ± 
0.10 

7.04 ± 
0.14 

6.67 ± 
0.18 

L5 N
N

H
N

NH

Cl

OCH3

H3CO

H3CO

 

7.91 ± 
0.10 

7.05 ± 
0.2 

7.26 ± 
0.03 

8.54 ± 
0.14 

6.20 ± 
0.18 

6.66 ±  
0.14 

L6 

 

8.29 ± 
0.10 

6.60 ± 
0.24 

7.00 ± 
0.10 

8.72 ± 
0.23 

6.84 ± 
0.23 

6.78 ± 
0.30 
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L7 

 

8.31 ± 
0.21 

6.59 ± 
0.25 

6.88 ± 
0.08 

7.64 ± 
0.14 

7.29 ± 
0.18 

7.64 ± 
0.57 

L8 

 

8.14 ± 
0.20 

6.80 ± 
0.24 

7.19 ± 
0.10 

8.41 ± 
0.22 

7.18 ± 
0.25 

6.69 ± 
0.30 

L9 

 

8.05 ± 
0.10 

6.89 ± 
0.20 

7.19 ± 
0.07 

7.92 ± 
0.11 

6.99 ± 
0.16 

7.20 ±  
0.04 

L10 

 

8.56 ± 
0.20 

6.24 ± 
0.24 

6.72 ± 
0.09 

8.33 ± 
0.15 

6.50 ± 
0.19 

6.13 ± 
0.08 

A26 

 

7.91 ± 
0.19 

7.05 
±0.22 

7.07 ± 
0.08 

8.58 ± 
0.10 

6.13 ± 
0.17 

6.53 ± 
0.27 

L12 

 

8.52 ± 
0.21 

6.31± 
0.24 

6.33 ± 
0.09 

8.16 ± 
0.09 

6.71 ± 
0.14 

6.44 ± 
0.11 

L15 

 

8.17 ± 
0.20 

6.77 ± 
0.24 

6.95 ± 
0.08 

8.30 ± 
0.14 

6.54 ± 
0.17 

6.02 ± 
0.14 

L21 

 

8.37 ± 
0.19 

6.52 ± 
0.2 

6.60 ± 
0.13 

8.85 ± 
0.12 

<6.0 <6.0 

MRS 
1220 

 

- 10.01 ±# 
9.94 

±0.11 
7.32 ± 
0.09 

7.62 ± 
0.14 

7.29 ± 
0.27 

NECA 

 

9.03 ± 
0.13 

- 
6.63 ± 
0.15 

8.95 ± 
0.10 

- 
7.08 ± 
0.05 

 

a Functional activities (pIC50 values in presence of NECA) for the ligands as mean ± standard error of the mean (SEM) 
of at least 3 independent repeats, conducted in duplicate – values. 
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b Dissociation constant (pKd) of the ligands as mean ± SEM of at least 3 independent repeats, conducted in duplicate 
as determined using the Schild analysis. 

c Equilibrium binding affinities of the ligands measured with NanoBRET against WT A3R or A1R; NECA was used as 
positive control as described in ref 90. 

# Value obtained from ref 90 using IB-MECA as an agonist. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   

 

 

Pyrazolo[3,4-c]pyridine, a Novel Scaffold for the Development of AR Antagonists. 

Having identified that A15/A17 and A26 have a potential scaffold with which to design A1R/A3R 

antagonists, a second screening round of 22 compounds was performed using only A15/A17 and 

A26 analogues (L1-L22).   Thus, compounds L1-11 were derivatives of A15/A17 and L12-L22 

derivatives of A26 (Table S2). From this screen the 12 additional compounds L2-L10, L12, L15, 

L21 (Tables 4-1, S4) were identified as statistically significant potential antagonists at the 

A1R/A3R, through their ability to elevate cAMP accumulation when compared to forskolin and 

NECA co-stimulation. 307 Between these 12 compounds, 11 compounds showed a lack of efficacy 

at the NECA-stimulated A2AR and A2BR except for L4 which, analogous to A17, showed very weak 

efficacy at the A2BR (pKd = 5.77 ± 0.12; Tables S4) but were able to antagonise the A1R or A3R.  

The compounds A15/A17 and their analogues L2-L10 are all pyrazolo[3,4-c]pyridines and 

contain an alkyl or phenyl group at 3-position, an anilino group at 7-position and a cyano-, or a 

chloro- or an aminomethyl or N-(arylmethyl)-2-aminomethyl group at 5-position (Table 4-1). 

Compounds A26 and its analogues L12, L15, L21 are pyrazolo[3,4-c]pyridines substituted with a 

3-(N-anilinoacetyl)amino and 3-(N-benzoyl)amino or 3-(N-phenylureido) groups, respectively. 

Compounds A26, L12, L15 are also substituted with a 5-anilino group and compound L21 with 

the 7-(N-cyclohexanylamino) group. 

The identified pyrazolo[3,4-c]pyridine derivatives provide a novel scaffold for the development 

of ARs antagonists. Representative nonxanthine pyrazolo derivatives that have been reported 

as ARs ligands include pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines, pyrazolo-[3,4-c] or -

[4,3-c]quinolines, pyrazolo-[4,3-d]pyrimdinones, pyrazolo-[3,4-d]pyrimidines, and pyrazolo-

[1,5-a]pyridines. 305 Searching in ChEMBL using similarity-based parameters for A15/A17 or A26, 

that is, a Tc value > 0.85, non similar compounds or any other pyrazolo[3,4-c]pyridines as ARs 

antagonists were found.  
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Functional activities measurements of the 15 pyrazolo[3,4-c]pyridines showed that all 

compounds caused a reduction in NECA potency at the A3R, characteristic of competitive 

antagonism all-be-it with varying extents (Table 4-1). Moreover, some of the compounds also 

showed antagonism at the A1R although compounds L5, A26 displayed only weak effects on 

NECA potency while L21 was inactive (Table 4-1, Table S5). When analyzed using Schild analysis 

323 ,the data enabled a crude estimation of the dissociation constant (pKd) of each antagonist at 

the two AR subtypes. L21 did not display any activity at the A1R.  

 

Competition binding assays and determination of kinetic parameters using NanoBRET 

To provide a more quantitatively accurate estimate of the pKD for all 15 pyrazolo[3,4-c]pyridines 

at the A3R and A1R, a BRET-based competition binding assay was performed as described 

previously 90  (Table 4-2).  The NanoBRET binding assay also enables the determination of the 

kinetics of the compounds binding, which Schild regression does not, as have been reported in 

previous studies 90 309 324,210,211.  The reciprocal of the Koff enables a determination of the RT of 

the compound. 90  Beyond this, the pKD of the compounds (k4/k3) was also determined from the 

kinetics assays and was compared to those determined from the saturation binding assays and 

the Schild analysis. Estimates of the kinetics of binding were determined for most of the A17 

and A26-based derivatives except for A15, L2, and L3 at the A3R and L21 at the A1R which failed 

to provide a reliable fit to the data, likely due to their high Kd values (Table 4-2).  

Many of the compounds showed a good agreement between the different methods used to 

determine their affinities as compared in Table 4-1 and Table 4-2. Thus, consistent with the 

Schild analysis, compound A17 displayed the highest affinity at the A3R followed by L4 > L6 = L5 

= A26 = L9. At A1R A17 also had the highest affinity with the rank order of affinities being A17 > 

L3 > L9 > L7 > L4. All the other compounds displayed weaker affinities. The comparison of the 

affinity constants calculated by the NanoBRET binding assays and the Schild analysis once again 

showed close agreement except for compound L3 at the A1R where the affinities determined in 

the BRET binding assays were 50-fold higher than in the Schild analysis. This may indicate that 

L3 has unusual properties compared to the other compounds tested here.  
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Table 4-2: Kinetics of binding for the A17- and A26-panels of compounds to the orthosteric 

binding area at the A3R and A1R.  

 A3R A1R 

COMPO
UND 

Kon (k3) 
x105 M-1 a 

Koff (k4) 
min-1 b 

pKD
 

Kinetics c 
RT 

(mins) d 
Kon (k3) 

x105 M-1 a 
Koff (k4) 
min-1 b 

pKD
 

Kinetics c 
RT 

(mins) d 

A15 <50 <0.4 N.D. >2 
3.18 
±1.0 

0.03 
±0.006 

6.99 
±0.21 

38.7 
±8.8 

A17 
21.3 
±1.2 

0.021 
±0.003 

8.00 
±0.32 

47.23± 
8.2 

139.7 
±1.5 

0.024 
±0.009 

8.76 
±0.07 

41.31 
±4.56 

L2 <50 <0.4 N.D. >2 
1.72 
±0.3 

0.048 
±0.01 

6.55 
±0.03 

22.9 
±4.3 

L3 <50 <0.4 N.D. >2 
45.07 
±3.4 

0.061 
±0.002 

7.86 
±0.45 

16.3 
±0.3 

L4 
8.2 

±0.5 
0.026 

±0.006 
7.58 

±0.32 
46.72 
±4.5 

11.5 
±4.0 

0.051 
±0.004 

7.21 
±0.51 

20.61 
±3.4 

L5 
3.65 
±0.6 

0.031 
±0.01 

7.07 
±0.22 

32.05 
±6.3 

2.79 
±0.29 

0.055 
±0.001 

6.70 
±0.54 

18.2 
±4.37 

L6 
24.7 
±3.8 

0.18 
±0.02 

7.13 
±0.55 

5.55 
±2.6 

5.23 
±0.45 

0.036 
±0.005 

6.88 
±0.23 

27.72 
±3.7 

L7 
4.8 

±2.4 
0.105 
±0.04 

6.59 
±0.73 

9.55 
±3.5 

9.63 
±2.5 

0.039 
±0.004 

7.39 
±0.40 

25.34 
±4.9 

L8 
9.33 
±1.4 

0.173 
±0.067 

6.73 
±0.45 

5.78 
2.34 
±0.6 

0.054 
±0.005 

6.37 
±0.11 

18.50 
±2.6 

L9 
5.62 
±1.0 

0.054 
±0.02 

7.0 
±0.33 

17.85 
±4.3 

8.17 
±1.4 

0.02 
±0.015 

7.54 
±0.10 

43.96 
±2.1 

L10 
3.38 
±1.1 

0.01 
±0.001 

6.56 
±0.43 

10.85 
±3.4 

1.65 
±0.4 

0.04 
±0.007 

6.64 
±0.03 

31.43 
±7.1 

A26 
12.45 
±1.8 

0.096 
±0.03 

7.11 
±0.45 

10.4±3.4 
3.36 
±1.6 

0.134 
±0.003 

6.40 
±0.18 

7.47 
±2.2 

L12 
1.45 
±0.3 

0.051 
±0.03 

6.45 
±0.22 

19.04 
±5.6 

1.84 
±0.4 

0.052 
±0.003 

6.55 
±0.40 

19.23 
±4.5 

L15 <50 <0.4 N.D. >2 
0.834 
±0.3 

0.071 
±0.004 

6.07 
±0.22 

14.06 
±2.4 

L21 <50 <0.4 N.D >2 <50 <0.4 ND >2 

MRS122
0 

3250 
±2.8# 

0.025 
0.005# 

10.11# 40.32# 
14.54 
±0.4 

0.023 
±0.0008 

7.80 
±0.2 

43.67 
±5.6 

 

a Kon  (k3) for ligands as determined using NanoBRET binding assays and determined through fitting with the ‘Kinetics 
of competitive binding’ model. 
b Koff (k4) for ligands determined as in a. 
c Kinetic dissociation constant (pKd) for each ligand as determined from Kon/Koff. 
d Residence time of each ligand as determined by the reciprocal of the Koff. 
#  Value obtained from ref 90. 
Note – values in bold could not be fitted using the ‘kinetics of competitive binding’ model. 
Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   
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From this data we observed that the most interesting potencies at 1 μM concentration 

(indicated in bold in Table 4-1) include: (a) L3 or L4, L5, L7,L8, L9, A17, which are pyrazolo-[3,4-

c]pyridines with isopropyl or phenyl group at 3-position, respectively, a cyano or chloro or 

aminomethyl or N-(arylmethyl)aminomethyl group at 5-position and an anilino group at 7-

position, (b) A26, which is 3-(N-acyl)amino-5-anilino pyrazolo-[3,4-c]pyridine. The affinity range 

for the A17 series, including compounds L2-L10, A15 was between low micromolar to low 

nanomolar. The affinity range for A26 series, including compounds L12, L15, L21, was between 

low micromolar to 100 nM. Using these different methods revealed that,  at the A3R, both A17 

and L4 displayed a low nanomolar affinity, while A26, L5, L8 and L9 had mid-nanomolar affinities 

with the remaining compounds showing low affinities. At the A1R, only A17 displayed a low 

nanomolar affinity while the five compounds L4 and L6-L9 displayed mid-nanomolar to low 

nanomolar affinities. We can observe that A26 displayed a 5-fold selectivity for A3R while L7 is 

6-fold selective for A1R. 

Compared to A15, the phenyl group in A17 increased the binding affinity by ∼17-fold at A1R and 

considerably increased it at A3R (Tables 4-1, 4-2). The affinity was increased with the size of the 

3-substituent according to the pKd values for L3 and A17, showing that the phenyl group was 

favored over the isopropyl group. Removal of the 5-cyano group in compound L6 resulted in a 

reduction of affinity of ∼100-fold at the A1R and ∼7-fold at the A3R. Similarly, when the cyano 

in A17 was changed to chlorine group in L5 the affinity was reduced ∼100-fold for A1R and ∼5-

fold for A3R. Changing the cyano group in A17 to an aminomethyl group in L7 reduced its affinity 

at both receptors by ∼25-fold.  Affinity was increased by ∼3-fold at both receptors, when three 

methoxy groups (A17) were added to the phenyl group of L4. No change was observed in the 

affinity against A3R between L8 and L9. However, the presence of a pyridinyl group in L9 

(compared to phenyl group in L8) led to a 15-fold increased affinity of L9 against A1R compared 

to L8. The molecular basis of these changes for A1R-ligand complexes, i.e. the SARs, will be 

discussed in the TI/MD calculations section. 

The highest affinity compounds at the A3R, ie. A17, L4, L5, displayed the longest RT = 35-50 min. 

Some of the compounds, which displayed the highest affinity (A17 and L9) at the A1R, also 

displayed the longest RTs (40 – 50 min).  
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4.2.3 Binding Profile of the novel pyrazolo[3,4-c]pyridines using MD 
Simulations and Mutagenesis Experiments  

To investigate the binding profile of the antagonists shown in Table 4-1 at the A1R [ for which an 

X-ray structure in complex with an antagonist have been resolved (PDB ID 5UEN 55)], MD 

simulations were performed.  Using GOLD software 267 and the ChemScore as scoring 

function,129, molecular docking calculations of these compounds into the orthosteric binding site 

of the A1R were carried out. All docking poses showed that the anilino group oriented towards 

the extracellular side of the membrane. The anilino group was oriented towards EL2 (as in 

docking pose 1 shown in Figure 4-1A) or toward the water environment (docking pose 2 shown 

in Figure 4-1B). Similar binding poses for the antagonist ZM241385 in complex with A2AR have 

been observed in the X-ray structures PDB ID 4EIY53 or 3EML34 respectively. However, only 

docking pose 1 agreed with our mutagenesis data described below. Within the 100ns-MD 

simulation time, the total energy and RMSD of the protein backbone Cα atoms reached a plateau, 

and the systems were considered equilibrated and suitable for statistical analysis (Table 4-3). 

The RMSDprot values were between 2-3 Å except in cases of the ligands L8, L9 which having an 

increased girth produced RMSDprot values 3-3.5 Å. 

 

Table 4-3:  RMSDlig, RMSDprot for A15, L2-L10, A17, and A26, L12, L15, L21 against A1R and 

OPLS2005-calculated MM/GBSA binding free energies (ΔGeff) from the amber99sb 100ns-MD 

simulations using an implicit membrane model, for A15, L2-L10, A17, against A1R. 

 

Compound RMSDlig a RMSDprot b ΔGeff 
c 

A15 5.77 ± 0.42 2.07 ± 0.15 -99.37 ± 6.88 

A17 2.81 ± 0.19 1.90 ± 0.20 -120.21 ± 7.25 

L2 3.22 ± 0.36 1.78 ± 0.13 n.d. 

L3 3.50 ± 0.40 2.42 ± 0.47 -118.06 ±7.18 

L4 2.10 ± 0.20 1.71 ± 0.32 -91.10 ± 6.62 

L5 2.90 ± 0.84 1.80 ± 0.14 -125.22 ± 7.60 

L6 4.39 ± 0.39 1.96 ± 0.13 -105.14 ± 6.99 

L7 1.36 ± 0.15 2.12 ± 0.16 -135.53 ± 5.95 

L8 3.8 ± 0.29 2.0 ± 0.2 -141.21 ± 9.17 

L9 3.54 ± 0.08 1.86 ± 0.13 -140.51 ± 9.36 

L10 3.07 ± 0.28 2.18 ± 0.28 -162.58 ± 9.79 
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A26 2.30 ± 0.3 2.51 ± 0.08 n.d. 

L12 2.13 ± 0.20 1.66 ± 0.34 n.d. 

L15 n.d. n.d. n.d. 

L21 4.79 ± 0.38 3.78 ± 0.18 n.d. 

MRS1220 n.d. n.d. n.d. 
 

a Mean±SD (Å); Ligand RMSD is calculated after superposition of each protein-ligand complex to that of the starting 

structure  

b Mean±SD (Å); Protein RMSD is calculated for the Cα atoms of the α-helices, for the last 50 ns of the trajectories, 

using as starting structure snapshot 0 of the production MD simulation. 

c Mean±SEM; Calculated effective binding free energy (kcal mol-1) between ligand and receptor. ΔGeff is calculated 

from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using a MM/GBSA model 

that is taking into account the membrane as hydrophobic slab.  Mean from three 20ns-MD simulations. , n.d., not 

determined. 

 

 

 

MD simulations of A1R- A17 complex 

The selected docking pose was embedded in 12 Å hydrated POPE lipid buffer and the system 

was subjected to 100ns-MD simulations with the amber99sb 270,271 force field. Using docking 

pose 1, the MD simulations of the A1R-A17 complex showed that A17 made interactions (> 20% 

frequency) with F1715.29, E1725.30, M1805.38, W2476.48, L2506.51, H2516.52, N2546.55, I2747.39 (Figure 

4-1A). In addition, the A1R-A17 complex was stabilized by:  

(a) Direct hydrogen bonding interactions between both the pyrazole 1-NH and anilino NH 

groups of the ligand and the amide side chain carbonyl of N2546.55 and between anilino NH 

group and carboxylate side chain of E1725.30. 

(b) Hydrogen bonds between the cyano group of the ligand with waters that are inserted in 

the region between the ligand and TM1-TM2. 

(c) π-π stacking interactions between the core pyrazolo-[3,4-c]pyridine scaffold and the 

F1715.29 side chain phenyl and between the ligand phenyl substituent and the imidazole of 

H2516.52 or indole of W2476.48.  

(d) Hydrophobic interactions between:  

(i)the trimethoxy-phenyl group of the ligand, which is directed either towards the water 

exposed area of the receptor or to EL2, and Ι2747.39.  

(ii) the pyrazole ring of the ligand and M1805.38, L2466.51.  



Doctoral Thesis  Stampelou Margarita Eleni 

82 
 

(iii) the phenyl ring of the ligand, which was oriented deeper into the receptor from the 

pyrazole scaffold, and W2476.48.  

 
In comparison, starting from docking pose 2 (Figure 4-1B), in which the anilino group was 

oriented toward the water environment, the MD simulations showed that A17 did not form 

hydrogen bonding interactions with E1725.30 but did form hydrogen bonds with L2506.51, H2516.55, 

and T2707.35. We next considered the hydrophobic interactions; A17 had diminished interactions 

with M1805.38, W2476.48, and L2506.51 but formed contacts with Y2717.36 and π−π interactions 

with H2516.52. Where the 3-phenyl group was oriented extracellularly and the flexible 7-anilino 

group was oriented toward the bottom of the receptor, no docking pose was obtained. To 

achieve such a pose, manual docking is needed; however, the MD simulations showed that the 

complex with A1R was unstable due to the Pauli repulsion of the 7-anilino group with the bottom 

part of the receptor.  
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Figure 4-1:  Representative frames, receptor-ligand interaction frequency histograms and RMSD plots of A17 inside 

the orthosteric binding area of WT A1R from 100ns-MD simulations using the amber99sb force field. with (A) binding 

pose 1 or (B) binding pose 2. Bars are plotted only for residues with interaction frequencies ≥ 0.2. Color scheme in 

frames or bar plots: ligand is shown with pink sticks and ligand’s starting position with an orange wire, receptor is 

shown with a white cartoon and sticks, hydrogen bonding interactions are shown with yellow dashes or bars, π-π 

interactions are shown with green dashes or bars; hydrophobic interactions are shown with grey bars; water bridges 

are shown with blue bars. Mutagenesis experiments were performed for A1R with point mutations to alanine of 

residues shown in red sticks and/or noted in red color in the frame. For MD simulations we used the experimental 

structure of the inactive form of A1R (PDB ID 5UEN) in complex with an antagonist.  

 

MD simulations for the A17 and A26 series A1R complexes  

L4-L7. L4-L7 contain the main 3-phenyl-5-substituted-7-anilino pyrazolo[3,4-c]pyridine scaffold 

and compared to A17 the substituent changes at 7- or/and 5-position. Thus, L6 or L5 or L7 has 

no substituent or a chlorine or an aminomethyl group at 5-position, respectively, while in L4 the 

phenyl group of 7-anilino substituent is unsubstituted (no trimethoxy groups attached). These 

substituent changes had significant changes in binding affinity as previously discussed and 

further SARs are discussed in the TI/MD sections. The MD simulations showed that L4-L7 

remained stable inside the orthosteric binding area of A1R during the MD simulation (Figures 4-

2) but in compounds L6, L5 the interactions between the ligand and residues N2546.55, Ε1725.30, 

Μ1805.38, W2476.48 are weakened (Figures 4-2). The effect of the 5-aminomethyl group in the 

binding mode of L7 is remarkable. The MD simulations showed that L7, compared to A17, can 

interact inside the orthosteric binding area of A1R with F1715.29, W2476.48. However, L7 is inclined 

towards TM3, TM7 and moves deeper in the binding area due to protonated 5-aminomethyl 

group which is attracted strongly by H2787.43, losing direct hydrogen bonding interactions with 

N2546.55/E1725.30 and hydrophobic contacts with M1805.38, L2506.51. As is shown in Figure 4-2 the 

ligand forms direct hydrogen bonds mainly with H2787.43, water-mediated hydrogen bonds with 

T2777.42, E1725.30, N1845.42 and van der Waals contacts with TM3 residues V873.32, T913.36 and 

with TM7 residue I2747.39.  

 

L8, L9. Compounds L8 or L9 have a phenylmethyl or 3-(pyridinyl)methyl group connected with 

the 5-aminomethyl group of compound L7. The MD simulations showed that compounds L8, L9 

are stabilized inside the binding area. Compounds L8 and L9 form contacts through all their 

groups with A1R and are extended inside the binding area from TM6 to TM2 because of the long 

chain substituent at 5-position (Figure 4-2). Compared to A17, L8 adopts the same position and 
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binding interactions, ie. with residues F1715.29, E1725.30, M1805.38, W2476.48, L2506.51, N2546.55 

inside the orthosteric binding area of A1R. L9 ligand in A1R forms additionally hydrogen bonding 

interactions through the ammonium group in 5-aminomethyl moiety with H2787.43 and 

hydrophobic contacts through its pyridinylmethyl group with V622.57, A662.61, V873.32 and I2747.39. 

Similarly, L8 showed contacts with A662.61 (Figure 4-2). These contacts are favoured due to the 

stabilization of the pyridinylmethyl or benzyl group close to TM2, TM3.  

 

Α26, L12 . After several MD simulation repeats we observed that 3-(N-anilinoacetyl)amino-5-

anilino-pyrazolo[3,4-c]pyridine L12 and its 1-methyl analog A26 have the 3-(N-

anilinoacetyl)amino oriented deep in the binding pocket and the 5-anilino group oriented 

towards TM2 (Figure 4-2).   

 

 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

8
6 

 
  

   

A15-A1R 

 

L2-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

8
7 

 

  

 

  

L3-A1R 

 

L4-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

8
8 

 

 
 

 

 
 

L5-A1R 

 

L6-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

8
9 

 

 
 

 

  

L7-A1R 

 

L8-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

9
0 

 

  

 

 
 

L10-A1R 

 

L9-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

 
 

9
1 

 

  

 

 
 

A26-A1R 

 

L12-A1R 

 



Doctoral Thesis  Stampelou Margarita Eleni 

92 
 

Figure 4-2: Representative frames of ligands A15, L2- L10, A26, L12 inside the orthosteric binding area of A1R from 

100ns-MD simulations.  (left hand part). In each panel are shown the receptor-ligand interaction frequency histogram 

and the RMSD plots for the Ca atoms (blue) and the ligand heavy atoms (orange). Bars are plotted only for residues 

with interaction frequencies ≥ 0.2. If RMSDlig ≥ 4.5, starting position of the ligand inside binding area is shown in 

orange lines. Color scheme: Ligang=pink sticks, receptor=white cartoon and sticks, hydrogen bonding 

interactions=yellow (dashes or bars), π-π interactions=green (dashes or bars); hydrophobic interactions=grey; water 

bridges-blue. For the protein models of A1R was used the experimental structure of the inactive form for A1R (PDB ID 

5UEN) in complex with an antagonist. 

 

Mutational Analysis of A17 

To experimentally investigate residues that were suggested to be important for the binding of 

A17 and A26, mutagenesis combined with NanoBRET-based competition binding 90 were 

conducted (Table 4-4). For completeness, the affinity of A1R for the agonist NECA at each mutant 

was determined. The amino acid residues tested are shown in Figures 4-1 for docking pose 1 

and docking pose 2.  The A1R mutants T913.36A, E1725.30A, L2506.54A and H2516.52A all displayed 

reduced affinity for the fluorescent tracer CA200645 compared to WT A1R, while mutants 

S2677.32A and Y2717.36A showed little difference in effect. As regards NECA, A1R mutants 

E1725.30A, Y2717.36A reduce affinity, S2677.32A maintain affinity and H2516.52A increase affinity.  

Previous findings have also shown that mutation of S2677.32A significantly reduced NECA’s 

affinity to the A2AR. 325 No binding for NECA at T913.36A or L2506.51A mutants could be 

determined, since in agreement to similar observations for A2AR 326 and our findings 89 for A3R, 

NECA binds to the orthosteric binding area through hydrogen bonding to T913.36 at the bottom 

of the binding area.   

 

 

Table 4-4: Binding affinities for CA200645, NECA and A17, measured using NanoBRET against 

WT and mutant A1Rs.  

   

 Mutation Kd (nM) a pKd Effect on 
affinity 

Residue’s 
location in the 
binding area 

 CA200645 A17 NECA  

 WT 76.37 ± 9.37 7.87 ± 0.06 6.67 ± 0.05 baseline 
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Bottom  T913.36A 166.35 ± 
17.36 

8.37 ± 0.07 
** 

n.b. b  ~3.2-fold 
increase 

Upper E1725.30A 116.04 ± 
12.22 

7.63 ± 0.08 5.38 ± 0.06 
** 

~0.5-fold 
reduction 

Middle L2506.51A 158.28 ± 
17.37 

8.44 ± 0.05  
** 

n.b. a ~3.8-fold 
increase 

Middle H2516.52A 145.19 ± 
19.13 

8.03 ± 0.10* 8.04 ± 0.10 
** 

~1.5-fold 
increase 

Upper S2677.32A 70.99 ± 7.03  8.10 ± 0.16 
** 

6.31 ± 0.10 ~1.5-fold 
increase 

Upper Y2717.36A 71.10 ± 7.68  7.82 ± 0.04 5.45 ± 0.06 
** 

no significant 
change 

 

a Affinity constant for CA200645 binding to mutant A1R receptors.  

b n.b. NECA was unable to displace CA200645 at the mutant receptor 

Statistical significance (* p < 0.05, ** p < 0.01,) determined using ANOVA and Dunnett’ s post-test. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   

 

 
 
The mutations H2516.52A or S2677.32A in the middle or upper regions of the binding site increased 

the affinity of A17 by ~ 1.5-fold (Table 4-4). The effect of H2516.52A mutation is usually the same 

observed for antagonists against A3R 89,90,257,327 or against A2AR. 325 Alanine mutation of T913.36A 

or L2506.51A in the bottom or middle region caused a 3.2- and 3.8-fold increase in the affinity of 

A17, respectively (Table 4-4), while displaying no significant effect for A26 (see Table S6).  This 

agreed with other reports describing how mutating T913.36 to Ala increased the affinity of 

antagonist LUF5834, 328 to A2AR and of other non-nucleoside antagonists for A1R. 325,329 

Previously, we and other groups showed that mutation of residue T913.36 to alanine had a 

negligible effect on the affinity of antagonists to A3R 89,90,257,327 or for A2AR, 325,329 respectively. The 

result for L2506.51A was a bit unexpected, since L2506.51 is key-to-recognition, highly conserved 

residue in all four AR subtypes and its mutation to Ala often causes a reduction or blockage of 

binding (see for examples our results for A3R in refs 87,90). The mutant E1725.30A in the upper 

region of the receptor displayed reduced affinity by 10% while mutation Y2717.36A did not 

change the affinity of A17. 

From the MD simulations of WT A1R-A17 complex starting from docking pose 1 (see Figure 4-

1A), A17 forms π-π interactions with H2516.52 and strong hydrophobic interactions with L2506.51, 

strong hydrogen bonding interaction with E1725.30, and almost no interaction with Y2717.36, 

while T913.36 and S2677.32 were at a distance > 4  Ǻ from the ligand and their effect was allosteric.  
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From the MD simulations of WT A1R-A17 complex starting from docking pose 2 (see Figure 4-

1B), A17 forms strong π-π interactions with H2516.52 and strong hydrogen bonding interactions 

with L2506.51. Hydrogen bonding interactions with E1725.30 were not observed nor were 

interactions with Y2717.36, while both T913.36 and S2677.32 were again distant from A17.  

To further explore which of the two docking poses agreed with the mutagenesis data, MD 

simulations of Y2717.36A A1R were performed in complex with A17 in each competing pose. The 

simulations (Figure 4-3) showed that Y2717.36A A1R reduced the binding interactions of A17 in 

docking pose 2 but maintained the interactions in docking pose 1, which agreed with our 

mutagenesis data. Docking pose 1 was further evaluated by exploring the effects of mutating 

S2677.32A, of T913.36A or L2506.51A and H2516.52A, on the stability of the complex A1R-A17 by 

performing MD simulations. In all cases, although ligand lost hydrogen bonding with E1725.30, 

the orthosteric binding area displayed plasticity with flexible residues recruited to the binding 

region to aid binding to A17 (Figure 4-4). These findings agreed with the observations from the 

mutagenesis experiments that E1725.30 was not very important for binding of A17 to A1R and 

that its mutation to Ala caused only a small reduction in affinity (Table 4-4). Based on these 

findings, the docking pose 1 was selected to carry out the simulations of A17 analogues.   

 

 

Figure 4-3: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations of Y2717.36A 

A1R in complex with A17 using docking pose 1 (left hand part) or docking pose 2 (right hand part). RMSD plots for the 

Ca atoms (blue) and the ligand heavy atoms (orange). Bars are plotted only for residues with interaction frequencies 

≥ 0.2.  
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Figure 4-4: Receptor-ligand interaction frequency histogram and the RMSD plots of 100ns-MD simulations of 

S2677.32A, H2516.52A, L2506.51A and T913.36A A1Rs in complex with A17 from 100ns-MD.. In each panel are shown the 

receptor-ligand interaction frequency histogram and the RMSD plots for the Ca atoms (blue) and the ligand heavy 

atoms (orange). Bars are plotted only for residues with interaction frequencies ≥ 0.2.  
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4.2.4 SAR Analysis of Ligand Binding Using Free Energy Calculations. 

Alchemical Free Energy Calculations with TI/MD 

The FEP/MD 330 and TI/MD 189,190 methods can provide accurate results for relative binding free 

energies with a method error 1 kcal mol-1.  We performed TI/MD calculations for the 9 

alchemical transformations in the A1R as listed in Table 4-5.  The set of the studied compounds 

A15, L2−L6, L8, and L9 cover ∼100 units of Kd’s range. The MD simulations of these compounds 

in complex with A1R converged during 100-ns of production (Figure 4-1, 4-2) with an RMSDprotein 

no higher than ~ 2 Å (Table 4-3). These refinements produced suitable structures of the 

complexes between A1R and A15, L2-L6, L8, L9 for using them with rigorous alchemical 

perturbation calculations. In the TI/MD simulations the last frames of the complexes from the 

alchemical perturbation calculations match the frames of the complexes from the 100ns-MD 

simulations.  

 

 

Table 4-5: Relative binding free energies computed by TI/MD calculations (ΔΔGb,TI/MD in kcal mol-

1) using alchemical transformations and a thermodynamic cycle, experimental values (ΔΔGb,exp 

in kcal mol-1) and deviation of calculated from experimental values (|ΔΔGb,TI/MD - ΔΔGb,exp| in kcal 

mol-1) for pairs of compounds complexed to A1R. 

alchemical perturbation ΔΔGb,TI/MD ΔΔGb,exp
a |ΔΔGb,TI/MD - ΔΔGb,exp| 

A15 → L3; 3H → 3iPr  -0.66 ± 0.07 -1.80 ± 0.09 1.14 

A15 → A17; 3H → 3Ph -1.06 ± 0.09 -2.44 ± 0.09 1.38 

L3 → A17; 3iPr → 3Ph -0.87 ± 0.09 -0.63 ± 0.09 0.24 

L4 → A17; 7Ph → 7Ph(OMe)3 -3.34 ± 0.10 -2.39 ± 0.15 0.95 

L6 → A17; 5H → 5CN -3.05 ± 0.05 -2.24 ± 0.20 0.81 

L6 → L5; 5H → 5Cl -0.67 ± 0.04 0.16 ± 0.22 0.83 

L5 → A17; 5Cl → 5CN -1.09 ± 0.07 -2.40 ± 0.12 1.31 

L2 → L5; 5Cl → 5CN -0.37 ± 0.07 -0.18 ± 0.11 0.19 

L9 → L8; py → Ph b 0.71 ± 0.08 0.72 ± 0.17 0.01 

   mue = 0.87 kcal mol-1 

a Experimental relative binding free energies (ΔΔGb,exp) were estimated using the experimental binding affinities 

pKd (Table 4-2); b in the substituent at 5-position of the pyrazole ring. 
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Compared to A15, the presence of an alkyl substituent at 3-position anchors the ligand deeper 

into the receptor and forms hydrophobic interactions mostly with F1825.43, W2436.48 but also 

with L913.32. Thus, the presence of the isopropyl group in L3 or phenyl group in A17 at 3-position 

led to stronger binding as shown in the relative binding free energy values which are for A15 → 

L3 ΔΔGb,exp = -1.80 ± 0.09 kcal mol-1 , ΔΔGb,TI/MD = -0.66 kcal mol-1 and for A15 → A17 ΔΔGb,exp = -

2.44 ± 0.09 kcal mol-1, ΔΔGb,TI/MD = -1.06 kcal mol-1. The binding affinity was increased with the 

size of this substituent as measured in the alchemical perturbation L3 → A17 with ΔΔGb,exp = -

0.63 kcal mol-1, ΔΔGb,TI/MD = -2.54 kcal mol-1 (Table 4-5) and in L2 → L5 with ΔΔGb,exp = -0.18 ± 

0.11kcal mol-1, ΔΔGb,TI/MD = -0.37 ± 0.07mol-1 conforming that phenyl group is favored over the 

isopropyl group.  

The critical effect in binding free energy from replacing the hydrogen at 5-position with a 

chlorine or with a cyano group was examined with the alchemical perturbations L6 → L5 or L6 

→ A17 or L5 → A17 with ΔΔGb,exp = 0.16 ± 0.22 kcal mol-1, ΔΔGb,TI/MD = -0.67 ± 0.04 kcal mol-1 or 

ΔΔGb,exp = -2.24 ± 0.20 kcal mol-1, ΔΔGb,TI/MD = -3.05 ± 0.05 kcal mol-1 or ΔΔGb,exp = -2.40 ± 0.12 kcal 

mol-1, ΔΔGb,TI/MD = -1.09 ± 0.09 kcal mol-1 which suggest that the change of hydrogen at 5-position 

with chlorine or cyano group increases binding free energy. Further changing chlorine at 5-

position with a cyano group favors stronger binding. Compared to L5, L6 in A17 the combination 

of the cyano group and nitrogen at 7-position increased polarity of this ligand’s part which can 

attract waters that enter the binding area between ligand and TM2, TM3. Thus, compared to L5, 

L6, in A17 and L4, the 5-cyano group can form hydrogen bonding interactions with waters 

positioned between the ligand and TM2, TM3 (Figure 4-1).  In L6, which lacked the 5-cyano 

group, the hydrogen bonding interactions with N2546.55 and Ε1725.30 as well as the hydrogen 

bonding interactions with waters that enter the area between the ligand and TM2, TM3, and the 

hydrophobic interactions with Μ1805.38 and W2476.48 were all reduced (Figure 4-2). By adding 

three methoxy groups in the phenyl group of the 7-anilino substituent, ligand’s lipophilicity was 

enhanced and the desolvation penalty of A17 compared to L4 to reach the orthosteric binding 

area was reduced thus increasing the binding affinity. Due to the deletion of the methoxy group, 

the hydrophobic interaction with Μ1805.38 was also diminished. This effect in binding free energy 

was predicted by the TI/MD calculations in alchemical transformation L4 → A17 with ΔΔGb,exp = 

-3.34 ± 0.10 kcal mol-1, ΔΔGb,TI/MD = -2.39 ± 0.15 kcal mol-1. 

The orthosteric binding pocket could accommodate sizeable substituents at 5-position, e.g. the 

phenylmethyl group in L8 or the 3-(pyridinyl)methyl group in L9 connected with the 5-

aminomethyl group of compound L7 leading to Kd =  427 nM for L8 or Kd = 29 nM for L9 against 

A1R (Table 4-2). The TI/MD predictions suggested that pyridinyl instead of phenyl as described 
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by the alchemical transformation L8 → L9 was favoured with ΔΔGb,exp (ΔΔGb,TI/MD)  binding free 

energy values -0.72 (-0.71) kcal mol-1 for A1R. In L9, the increased length of the 5-substituent 

resulted in contacts with residues A662.61 and V622.57 of TM2, while the pyrazole ring was 

positioned close to TM5−TM7, thus increasing the π−π interactions with F1715.29 and L2506.51 and 

forming new interactions H2787.43 (Figure 4-2). The increased hydrophobic interactions between 

the pyridinylmethyl group and V622.57, A662.61, V873.32 and I2747.39 but particularly the hydrogen 

bonding interaction of pyridinyl nitrogen with H2787.43 led to the ~ 15-fold increased affinity of 

L9 compared to L8.We obtained (a) calculated relative binding free energy values that were 

quite close to the experimental values with mean unsigned error (mue) = 0.87 kcal mol-1 (Table 

4-4); (b) a very good correlation coefficient r = 0.73 (p = 0.026) (Figure 4-5) between the 

calculated and the experimental relative binding free energies suggesting that the binding model 

used is reliable and the TI/MD calculations describe accurately the binding interactions against 

A1R and can be used for structure-based drug design; 156,163,331,332 (c) the predictive index (PI) of 

Pearlman, 333 a measure for the correctness of the relative ranking of ligands according to 

binding free energy, was also high, (PI = 0.73). Overall, the TI/MD simulations can accurately 

calculate the changes in binding affinity between different substituents that we described only 

qualitatively in MD simulations section using the height of protein-ligand interactions frequency 

bars.  

  

 

Figure 4-5: Computed ΔΔGb,TI/MD values plotted against ΔΔGb,exp values estimated by the experimental binding 

affinities pKd (Table 4-2) for A1R.  r: correlation coefficient, s: slope, mue: mean unsigned error. 

r= 0.73, s = 1.04 kcal mol-1  
mue = 0.87 kcal mol-1 
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MM/GBSA calculations with an Implicit Membrane Model.  

A post processing analysis of the MD simulations of the tested compounds A15, L2-L10, A17 in 

complex with A1R was applied with the MM/GBSA method variant using a hydrophobic slab as 

implicit membrane model and including waters in the orthosteric binding area, in a radius of 4 

Å from the center of mass of the ligand 176–178 and the OPLS2005 262,263  force field for the 

calculation of ligand-protein interactions.  

Applying this approach showed that, compared to the highest affinity compound A17 (ΔGeff = -

120.32 ± 7.25 kcal mol-1), L6 lacked the 5-electronegative substituent that had more positive 

binding free energy values (ΔGeff = -105.14 ± 6.99 kcal mol-1) (Table 4-3). Moreover, L4 which 

lacked the trimethoxy substitution from the 7-anilino substituent also had a more positive 

binding free energy value, ΔGeff = -91.10 ± 6.62 kcal mol-1. Further, L3 which contained a 3-

isopropyl instead of 3-phenyl group had a ΔGeff = -118.06 ± 7.18 kcal mol-1, and A15 (devoid of 

any substitution at 3-position) had a ΔGeff = -99.37 ± 6.88 kcal mol-1.  However, the MM/GBSA 

method performed poorly at predicting other changes, for example in L7 the presence of the 3-

aminomethyl group or the 3-chloro group in L5 led to ΔGeff = -126.67 kcal mol-1 or ΔGeff = -125.22 

± 7.60 kcal mol-1, respectively, suggesting stronger binding affinity compared to A17. In L8 and 

L9, the benzyl and N-(3-pyridinylmethyl)aminomethyl at 3-position led to ΔGeff = -143.08 ± 7.68 

kcal mol-1 and ΔGeff = -140.46 ± 7.41  kcal mol-1, respectively, showing erroneously stronger 

binding affinity compared to L7 but also compare to A17. Similarly, L10 had a ΔGeff = -162.67 ± 

8.79 kcal mol-1, which suggested that L10 was a stronger binder compared to A17. 

Overall, compared to the most potent compound A17 the MM/GBSA calculations showed 

correctly that the deletion of a group or substituent in A17 results in much more positive ΔGeff 

values, i.e. weaker binding without providing accurate relative free energy values (Figure 4-6). 

The accuracy in calculation of relative binding free energies for alchemical transformations is 

possible using perturbation methods based on statistical mechanics as we showed with TI/MD 

method and suggested by studies related to comparative performance of FEP/MD and the 

MM/PBSA method for water soluble proteins,314,334 and membrane proteins including A1R and 

A2AR. 335 
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Figure 4-6:  ΔGeff values from MM/GBSA calculations and experimental binding affinities pKi for A1R. MM/GBSA 

calculations using a model that is taking into account the membrane as hydrophobic slab (blue bars) and pKi values 

measured using BRET (brown bars).  

4.3 Discussion 

We, 87 257 and other groups, 118,152–156 are motivated to identify new hits from virtual screening 

of ARs and modify them to lead compounds. However, the possibility of re-purposing 

compounds from in-house libraries 153 is an exciting opportunity and cost-effective process. We 

identified here the pyrazolo[3,4-c]pyridines L2-L10, A15, A17 with a phenyl or isopropyl group 

at 3-position, an anilino group at 7-position and a cyano-, or chloro- or aminomethyl group or 

N-(arylmethyl)-2-aminomethyl group at 5-position with nanomolar to mid-nanomolar binding 

affinities at A1R and A3R. . Another second series, including 3-(N-acyl)amino 5-anilino pyrazolo-

[3,4-c]pyridine A26 and its analogues L12, L15, L21 displayed low micromolar to 100 nM binding 

affinity against A1R and A3R.  

The orthosteric binding areas of ARs are broad so, it is very interesting to observe that small 

changes in ligand’s structure resulted in significant changes in affinity/activity and receptor 

selectivity. For example, the replacement in Α17 of the 5-cyano by the chloro group in L5 

reduced the affinity by ca. 30-fold and the deletion of the cyano group reduced the affinity by 

ca. 100-fold against A1R. These changes reduced the affinity at to A3R by 7-fold and by 20-fold 

respectively. 
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Some compounds showed high affinities and a diverse range of kinetic profiles. We found A3R 

and A1R antagonists with medium RT and much longer RTs. For compounds acting at the A3R 

A17, L4, L5 had the longer residence time with RT values between ca. 32-50 mins and L6, L7, 

L10, A26 the shortest residence with RT values between ca. 5.6-11 mins. For compounds acting 

at the A1R A15, A17, L9, L10 had the longer residence time with RT values between ca. 30-44 

mins and L3, L5, L8, A26, L15 the shortest residence with RT values between ca. 7.5-19 mins. 

Compounds, which displayed high affinity at the A3R, had RT between ca. 5-50 mins, and at A1R 

between ca. 18-40 min (L4, L6-L8). The kinetic data showed that compared to not potent 

congeners the active compounds which displayed high affinity have similar association rate, for 

example at A3R Kon = 21.3 x105 M-1 (A17) vs Kon = 4.8 x105 M-1 (L7) but much lower dissociation 

rate Koff = 0.021 min-1 (A17) vs 0.105 min-1 (L7) resulting in lower Kd’s. Knowledge of target 

binding kinetics has been discussed to be very important for developing and selecting new AR 

antagonists in the early phase of drug discovery. 336,337 

The binding orientation of A17 inside A1R was selected between docking pose 1 and docking 

pose 2 that both produced stable A17 −A1R complexes in MD simulations, based on the 

agreement with alanine scanning mutagenesis experiments and affinities measured with the 

NanoBRET method. We observed that mutations H2516.52A, S2677.32A increased the affinity of 

A17 by ~ 1.5-, 1.7-fold, respectively while T913.36A and L2506.51A increased the affinity of A17 by 

3.2- and 3.8-fold. Residues Y2717.36 or E1725.30 were not important for binding of A17 to A1R since 

their mutation to alanine had little effect upon A17 affinity. The result for L2506.51A was a bit 

unexpected because L2506.51A is a highly conserved residue in all four AR subtypes where it is 

key to ligand recognition. Indeed, mutation of L2506.51 to Ala had been reported to reduce or 

block affinity as our lab also showed previously. 87,90  

This contrasts with our studies on 7‑Amino-pyrazolo[3,4‑d]pyridazine, for which we showed that 

T913.36A and S2717.42A did not significantly change the binding affinity (Chapter 3), suggesting 

that pyrazolo[3,4-c]pyridines are positioned below compound 10b closer to the bottom part of 

the binding site. Y2717.46A mutation did not affect binding affinity. This effect is in contrast to 

that observed previously for 7‑Amino-pyrazolo[3,4‑d]pyridazine 10b for which we showed that 

Y2717.46A mutation caused a ~10-fold reduction in binding affinity (See Chapter 3).  

We selected docking pose 1 with the anilino group oriented toward EL2 because the MD 

simulations of A17 with the mutant A1R-Y2717.36A maintained binding interactions with A17, 

which agreed with our mutagenesis experiments. The MD simulations of A17 in complex with 

the A1R mutants S2677.32A or T913.36A or H2516.52A or L2506.51A starting from docking pose 1 
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produced complex with binding interactions that also agreed with our mutagenesis data. A novel 

observation from mutagenesis data for drug design purposes that when the L2506.51 was 

changed to Ala the binding affinity of A17 was significantly increased at A1R.  

Our MD simulations starting from docking pose 1 for the complexes with A1R showed that A17, 

the most potent antagonist against A1R, was stabilized inside the binding area by an array of co-

operative interactions. Compound A17 binds to A1R and interacts with TM5 E1705.28, F1715.29, 

E1725.30, M1805.38, N1845.42, TM6 W2476.48, L2506.51, H2516.52, N2546.55, TM7 T2707.35, Y2717.36 in 

A1R. 338 ; its 5-cyano group in A17 seems to be stabilized through hydrogen bonding interactions 

with waters that enter the binding area between the ligand and TM2 and TM3. In the case of L9, 

having an increased girth compared to A17 due to the replacement of the cyano with N-(3-

pyridinylmethyl)aminomethyl group the interactions with A1R also include TM2, TM3 residues, 

eg. V622.57, A662.61, V873.32 but also additional residues at TM7, eg. I2747.39, H2787.43.   

To explore a method that enabled the quantitative description of the SARs, we performed 

MM/GBSA calculations, using an implicit membrane model and taking into account the waters 

inside the binding area, and TI/MD simulations using the alchemical perturbations of these 

ligands. The TI/MD method produced a very good correlation coefficient (r = 0.73) between the 

calculated and experimental relative binding free energies for A1R showing that the method can 

be used for heat-to-lead optimization of A17. 
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5. Computational Model for the Unresolved, Inactive 

___________A3R for Drug Design Purposes_________  

 

5.1 Purpose of the study 

In Chapter 4, we discovered the 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridines as 

dual A1R/A3R antagonists. We characterized them with kinetic binding measurements of rate 

and binding constants (Kd=koff/kon) at A1R and A3R and identified nanomolar (nM) 3-phenyl-7-

(phenylamino)-pyrazolo[3,4-c]pyridines with high RT.  

MD simulations of the resolved structures of several purinergic receptors 339,340 have enabled 

characterization of biomolecular binding pathways and kinetics which attract increasing 

attention in recent years. Computing accurately the residence time (τ = 1/Koff) poses challenges 

with conventional MDs alone due to the extensive sampling required. Thus, several promising 

methods for computing ligand–receptor binding kinetics have been developed and enhanced 

sampling methods have greatly reduced the computational cost. 158,164,225,235,247,251,341–345  Studies 

have been performed to various GPCRs as described in Section 2.1.5.  

For unresolved protein structures, homology models are developed based on available 

experimental structures of closely related protein homologs. 108,109 These homology models have 

been used to explore binding of both agonists and antagonists and for structure-based drug 

design purposes against hA1R, 111,346hA2AR, 347 hA2BR 161,348 and hA3R. 112,300,87,89,111,201,255,349–351 

FEP/MD calculations of relative binding free energies have been successfully applied with 

homology models of GPCRs class A. 352  

It is important all developed homology models to be available from the published work in a 

suitable three-dimensional structural format than can be used for model evaluation. Overall, 

from the reported homology models of inactive hA3R the publicly available models are based: 

(a) on experimental structure of inactive hA2AR with an antagonist provided in refs. 256 ,258,110; (b) 

on experimental structure of hA1R with an antagonist provided in ref. 259; (c) on multi-state AF2 

method. 122 
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Here we used different homology models of inactive hA3R in complex with our previously 

identified 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists (Chapter 4) to 

explore the binding profile of these ligands and investigate the ability of these homology models 

to predict the experimental relative binding free energies and relative residence times of the 

antagonists against inactive A3R. After filtering degenerate models, we came up with Models 1-

3. 

The TI/MD calculations were applied on the whole GPCR―membrane system with Models 1-3 

and resulted in a good to very good agreement between the calculated and experimental 

binding free energies (r = 0.74, 0.62 and 0.67, respectively). In contrast, the binding free energy 

calculations using the approximate MM/GBSA method 144 with an implicit membrane and 

considering the waters inside the binding area 177,314 failed to rank the ligands according to their 

experimental binding affinities. 

For the kinetic binding calculations, the τRAMD method 234,235,293 was used, which was previously 

applied successfully for the accurate calculation of relative RT of ligands bound to the orthosteric 

binding site of GPCRs. 

Compared to Models 1, 2 we observed that in the multi-state AF2-based Model 3 residues 

M1725.33, R1735.34, M1745.35 (MRM motif) that lie on EL2 in the upper region of TM5 have 

significantly different side chain orientation and R1735.34 cap the exit route of ligands. When the 

conformation of MRM motif was adjusted in Model 3 the performance of the kinetic binding 

calculations with the optimized Model 3 was considerably improved. The optimized Model 3 

was able: (a) to rank the ligands according to their experimental RT values with τRAMD 

calculations and (b) improved ligands’ ranking according to their experimental relative binding 

free using TI/MD calculations, with a Pearson correlation coefficient and mean assigned error 

that was improved from r = 0.67 and 0.81 kcal mol-1 in Model 3 to 0.84 and 0.56 kcal mol-1 in 

optimized Model 3.  
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5.2 Results 

5.2.1 MD simulations of pyrazolo[3,4-c]pyridines in complex with 
inactive A3R 

In Table 5-1 are shown compounds L3-L6, L9, Α17 that bind to A3R with dissociation constants 

(Kd’s) that differ by ~ 100-fold, i.e., between Kd ~ 1000 nM in A15 to Kd ~ 13.5 nM in A17, reported 

in Chapter 4 (Table 4-2). 

We performed induced-fit docking calculations 130  to generate binding poses of the most potent 

3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (Α17) inside the 

orthosteric binding site of inactive hA3R using five publicly available homology models. In the 

docking poses the phenylamino group was oriented towards the upper side of the binding site 

as calculated also inside hA1R (Chapter 4). We embedded each of the five generated complexes 

from docking calculations in POPE bilayers and performed 100 ns-MD simulations with the 

amber99sb. 270,271  We showed previously that amber99sb performed accurately in describing 

the interactions of NECA inside the orthosteric binding site of hA2AR  89compared with the X-ray 

structure of NECA - hA2AR complex (PDB ID 2YDV45) while the α-helix conformation of TM 

domains 1-7 remains stable.  

 

Table 5-1: Chemical structure of 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine 

antagonists against A3R, experimental RT (RTexp) and Kd values as reported in Chapter 4 (Table 4-

2) . 
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a RTexp of each ligand as determined by the reciprocal of the koff,exp. 

b Equilibrium binding affinity constant (pKi,exp) of a ligand against A3R (Chapter 4). 

c Kinetic dissociation constant (pKd,exp) for each ligand as determined from kon,exo/koff,exp with kinetic 

constants (Chapter 4).  

d Values that could not be fitted using the ‘kinetics of competitive binding’ model. 

 

 

We tested homology models of inactive hA3R that were generated based on the crystal structure 

of an antagonist bound to hA2AR (PDB ID 3EML34) provided by Adenosiland web-service 256 and 

from ref. 258 or based on the crystal structure of an antagonist bound to A1R (PDB ID 5UEN 55) 

provided in ref. 259 (see Figure S1 and Methods Section 2.2.1). The MD simulations of the 

complexes between Α17 and hA3R converged for all these homology models during the 100 ns-

MD simulations with RMSD including protein (p) Cα carbons of all ΤΜ (RMSDp,(Cα)) < ~ 2.1 Å. 

These three homology models converged to a similar inactive hA3R structure (Figure 5-1A) in 

complex with A17 after the 100ns-MD simulations. Thus, we observed that the MD simulations 

of the A17-hA3R complexes converged to ensembles that differ by RMSDp(Cα) 2.1 – 2.4 Å when 

all TMs were estimated and between 0.8-2 Å for same TMs between the homology models 

(Figure 5-1B).   

LIGAND pKd,exp  RTexp (min) a LIGAND pKd,exp
   RTexp (min) a 

A15 5.91 ± 0.19 b,d >2 d L5 7.07 ± 0.22 c 32.05 ± 6.30 

A17 8.00 ± 0.32 c 47.23 ± 8.20 L6 7.13 ± 0.55 c 5.55 ± 2.60 

L2 6.26 ± 0.18 b,d >2 d L8 6.73 ± 0.45 c 5.78 

L3 6.45 ± 0.23 b,d >2 d L9 7.0 ± 0.33 c 17.85 ± 4.30 

L4 7.58 ± 0.33 c 46.72 ± 4.50  
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Figure 5-1: Structure comparison of three homology protein models of inactive in its complex with antagonist A17 

embedded in phospholipid bilayers derived from 100ns-MD simulations with amber99sb. The homology models used 

for inactive A3R were based on the crystal structure of an antagonist bound to hA2AR (PDB ID 3EML 34) provided by 

Adenosiland web-service256 and from ref. 258 or based on the crystal structure of an antagonist bound to A1R (PDB ID 

5UEN 55) provided in ref. 259. (A) Structure alignment; side view (left) and top view (right). (B) RMSDp(Cα) measures 

between pairs of these protein models; when RMSDp(Cα) > 2 Å the values are highlighted in bold. Protein homology 

models are shown as cartoon and coloured dark red, dark blue, and light green, respectively.  

 

 

We merged these three homology models of inactive hA3R structure to Model 1. Additionally, 

we tested the homology model provided in ref. 110 defined as Model 2 and homology model 

which became available from GPCRdb 260 web-resource define as Model 3.  

We observed that the MD simulations of the A17-hA3R complexes converged to ensembles that 

differ by RMSDp(Cα) = 2.97 Å between Model 1 and Model 2, RMSDp(Cα) = 2.92 Å between 

Model 2 and Model 3, RMSDp(Cα) = 2.34 Å between Model 1 and Model 3 (Figure 5-2A,B). The 

most noticeable difference was observed in the conformation of TM2 and TM5 Cα carbons 

(Figure 5-2C). In Model 3, TM2 leaned towards the inside of the ΤΜ bundle compared to Model 

1, with an Ala69 CA distance between the two models of 6.7 Å and an angle of 39 degrees 

between the upper sides of the TM2.  This resulted in a narrower configuration in Model 3, 

whereas in Model 1, this region was the widest. 

  

A 

B 
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We measured also the RMSDp(Cα) values for the orthosteric binding site (BS) (RMSDp,BS (Cα)) 

shown in Figure 5-3, and observed between Model 1 and Model 2 slight differences, more 

important in side-chains of residues Q1675.28 and F1685.29 the last being crucial for antagonist 

binding. However, in Model 3, there is a significant difference with Models 1 and 2 in the upper 

region of TM5, where residue R1735.34 in the EL2 faces the upper side of the binding site whereas 

in the other two models faces the outward region of the TMs bundle (Figure 5-3). The same 

observation applied to residues M1725.33 and M1745.35, being adjacent to R1735.34 (MRM motif), 

which are facing the opposite direction in Model 3 compared to the other two models. Figure 

5-3 (right) shows the comparison of MRM motif for the three Μodels 1-3. Additionally, 

compared to Models 1, 2 residues Q1675.28 and F1685.29 in Model 3 showed more important 

differences in their conformation.   

 

A 

B 
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Figure 5-2: Measures and ligand positions from 100ns-MD simulations with amber99sb 270,271 of antagonist A17 - 

inactive hA3R complex embedded in phospholipid bilayers using inactive hA3R described with protein Models 1-3 or 

optimized Model 3. (A) Cartoon representation of protein models in complex with A17 shown in surface representation. 

Protein Models 1-3 and optimized Model 3 are coloured pink, orange, blue, and green, respectively. (B) RMSDp(Cα) 

measures between pairs of protein Models 1-3 and optimized Model 3; when RMSDp(Cα) > 2 Å the values are 

highlighted in bold. (C) Structure alignment (top view; left, side view; right) that indicated differences in TM2 and TM5. 

Black and red arrows show differences in TM2 and TM5 conformation, respectively, between protein Models 1-3 (up) 

and between Model 3 and optimized Model 3 (bottom). 

C 
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2 
TM5 

TM2 
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Figure 5-3: Measures from 100ns-MD simulations with amber99sb 270,271 of antagonist A17 - inactive hA3R complex 

embedded in phospholipid bilayers using inactive hA3R described with Models 1-3 or optimized Model 3. Comparison of the 

orthosteric binding site (BS) area residues shown in sticks and labelled. Left: side view of the aligned BSs between (A) protein 

Models 1-3 and (B) between Model 3 and optimized Model 3.  Right: top view of the aligned BSs focusing on the conformation 

differences in residues M1725.33, M1745.35, R1735.34 (MRM motif) between (A) Models 1-3 and (B) between Model 3 and 

optimized Model 3. (C) RMSD of the BS heavy atoms between pair of protein models; when RMSDp,BS (Cα) > 2 Å the values 

are shown in bold. Protein Models 1-3 and optimized Model 3 are coloured pink, orange, blue, and green, respectively.  

C 

A 

B 
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The induced-fit docking calculations 130 of the selected 3,5-disubstituted-7-(phenylamino)-

pyrazolo[3,4-c]pyridines (L3-L6, L9, Α17) inside the orthosteric binding site of inactive hA3R in 

Models 1-3 generate 27 complexes that were embedded in POPE bilayers and subjected to 100 

ns MD simulations with the amber99sb 270,271. The MD simulations of the complexes between 

the ligands and hA3R converged during the 100 ns-MD simulations (Figure 5-4, 5-5), with RMSD 

value of the protein Cα carbons (RMSDp,1 (Cα)) < ~ 2.6 Å for Model 1, RMSDp,2(Ca) < ~ 2.5 Å for 

Model 2 and RMSDp,3(Ca) < ~ 2.8 Å for Model 3 (Table 5-2). 

With all three Μodels 1-3 the MD simulations of the hA3R-A17 complex showed that A17 formed 

interactions (> 20% frequency) with F1685.29, V1695.30, M1775.38, W2436.48, L2466.51, N2506.55, 

L2647.35, I2687.39 (Figure 5-4). In more detail, we observed that the A17-hA3R complex was 

stabilized by: 

(a) Hydrogen bonding interactions between both the pyrazolo 1-NH and anilino NH groups of 

the ligand and the amide side chain carbonyl of N2506.55 which are direct or water-mediated. 

(b) Hydrogen bonds between the cyano group of the ligand with waters that are inserted in the 

region between the ligand and TM1-TM2.  

(c) π-π stacking of aromatic rings between the core pyrazolo-[3,4-c]pyridine and the side chain 

phenyl of F1685.29. 

(d) Hydrophobic interactions between the pyrazole ring of the ligand and L2466.51 possibly with 

M1775.38. 

(e) Hydrophobic interactions between the phenyl ring of the ligand, which is oriented deeper 

into the receptor from the pyrazole scaffold, and L903.32 and W2436.48. 

(f) The trimethoxyphenyl group has hydrophobic contacts with V1695.30, L2647.35, I2687.39. 

(g) A difference between Models Μodels 1-3 is the orientation of the trimethoxyphenyl group 

of the ligand, which is directed towards the extracellular part (Models 1, 2) or ECL2 (Model 3).  

(h) A second noticeable difference between the Models is observed in the interactions of A17 

observed with Model 3. In Model 3 A17 forms hydrogen bonds with R1735.34 through its methoxy 

group oxygens and hydrophobic interactions with M1725.33, with these two residues oriented 

towards the binding site in this model, as described above (Figure 5-3, 5-4).  

Selected results from MD simulations were plotted also for L3-L6, L9 (Figure 5-5, RMSD plots are 

provided in the Appendix Figure S2). In case of L9 the girth of the ligand is increased due to the 

5-CH2NHCH2py substitution allowing interaction with TM2 (L652.57, L682.60 and V722.64).  
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Figure 5-4: Last frames, ligand interaction frequency histograms and RMSD plots from 100ns-MD simulations with 

amber99sb 270,271 of A17 ̶ hA3R complexes embedded in phospholipid bilayers using a homology model. (A) Model 1; 

(B) Model 2; (C) Model 3; (D) Optimized Model 3.  Receptor models are shown as cartoon; ligand, and key interacting 

residues or waters at a distance < 4  Å from the ligand are shown as sticks while hydrogen bonding interactions 

between A17 and A3R are shown with yellow dashes or green dashes respectively. Color scheme used in frames and 

RMSD plots: protein Model 1 is shown in pink, protein Model 2 in orange, protein Model 3 in blue, optimized Model 3 

in green, ligand sticks in salmon. Color scheme used in protein-ligand frequency interaction bars: hydrogen bonds are 

shown in yellow, π-π interactions in green; hydrophobic interactions in grey; water bridges in blue. TM7 residues are 

hidden for clarity and only Q2617.32 and H2727.43 are shown. 

 

Table 5-2: Experimental dissociation constants, RMSDp and RMSDl for the 100ns-MD simulations 

with amber99sb for the complexes of inactive A3R with antagonists A17, L3, L4, L5, L6, L9 

embedded in phospholipid bilayers using homology Models 1-3 and optimized Model 3. 

  MODEL 1 MODEL 2 MODEL 3 
Optimized 

MODEL 3 

Comp

ound 
pKD 

a 
RMSDp

b 

RMSDl
 

c 
RMSDp RMSDl RMSDp RMSDl RMSDp RMSDl 

A17 
8.00 ± 

0.32 

1.97 ± 

0.13 

3.03 ± 

0.57 

2.12 ± 

0.09 

3.64 ± 

0.34 

2.39 ± 

0.11 

2.66 ± 

0.55 

2.35 ± 

0.1 

3.25 ± 

0.25 

L3 
6.22 ± 

0.10 

2.04 ± 

0.06 

3.54 ± 

0.38 

2.44 ± 

0.11 

4.38 ± 

0.32 

2.49 ± 

0.10 

5.36 ± 

0.61 
- - 

L4 
7.58 ± 

0.32 

2.58 ± 

0.08 

2.99 ± 

0.28 

2.28 ± 

0.1 

3.42 ± 

0.23 

2.55 ± 

0.12 

3.58 ± 

0.22 

2.58 ± 

0.15 

3.48 ± 

0.26 

L5 
7.07 ± 

0.22 

2.32 ± 

0.08 

2.19 ± 

0.24 

2.54 ± 

0.17 

3.26 ± 

0.26 

2.79 ± 

0.16 

3.58 ± 

0.26 

2.46 ± 

0.13 

3.38 ± 

0.34 

L6 
7.13 ± 

0.55 

1.87 ± 

0.12 

3.88 ± 

0.31 

2.26 ± 

0.11 

3.25 ± 

0.25 

2.8 ± 

0.19 

5.63 ± 

0.35 

2.37 ± 

0.15 

3.77 ± 

0.19 

L9 
7.00 ± 

0.33 

2.14 ± 

0.06 

3.36 ± 

0.3 

2.3 ± 

0.16 

2.83 ± 

0.24 

1.85 ± 

0.11 

3.03 ± 

0.23 
- - 

a See Table 5-1. 

b Mean ± SD (Å); RMSDp(Cα) was calculated from Ca atoms of only TM α-helices, from the last 50 ns of the MD simulations 

trajectories, using as starting structure snapshot 0 of the production MD simulation. 

c Mean ± SD (Å); RMSDl was calculated after superposition of each protein-ligand complex to that of the starting structure 

(snapshot 0) based on the Cα atoms of the protein, for the last 50ns of the MD simulations trajectories. 
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Figure 5-5: Last frames and ligand interaction frequency histograms of ligand  ̶  inactive A3R complexes embedded in 

phospholipid bilayers from 100ns-MD simulations with amber99sb for the three homology models tested  Models 1-3 

and optimized Model 3. (A) L3 (B) L4 (C) L5 (D) L6 (E) L9 (F) interactions for Model 1 (left), Model 3 (center) and 

optimized Model 3 (right).Receptor models are shown as cartoon; ligand or key interacting residues or waters are 

shown as sticks at a distance < 4 Å from the ligand, hydrogen bonding interactions and π-π interactions are shown 

with yellow dashes or green dashes respectively. Color scheme used in frames: protein Model 1 is shown in magenta, 

protein Model 2 in orange, protein Model 3 in blue, optimized Model 3 in green and ligand sticks in salmon. TM7 

residues are hidden for clarity, only Q2617.32 and H2727.43 are shown.  

5.2.2 Comparison of the homology models of inactive A3R based on 
experimental data from thermodynamics of binding and dissociation 
kinetics 

Structure – dissociation rate relationships  

Models 1-3 of inactive hA3R were also evaluated for their predictive capability of the relative RT 

of ligands inside the receptor using the τRAMD method. The τRAMD method 234,235,293,250 

performs a series of accelerated MD simulations with an additional randomly oriented force on 

the ligand. The experimental RT values of the ligands in Table 5-1 differ by ~ 10-fold with RT ~ 

5.5 min in L6 to RT ~ 47 min in A17.  

As is shown in Table 5-3, we selected four ligands for the τRAMD simulations, ligand L6 having a 

short experimental RT (RT= 5.55 ± 2.6 min), ligands A17 and L4 with long experimental RTs (RT 

= 47.23 ± 8.4 min and RT = 46.72 ± 4.5 min, respectively) and ligand L5 (RT= 32.05 ± 6.3 min). 

We used the relaxed complexes from the 100ns-MD simulations of the four selected ligands with 

Models 1-3 of inactive A3R and further run four 5ns-MD simulation replicas with ff19sb 295 with 

each MD simulation trajectory being initialized with random velocities. Then, a series of 15 



Doctoral Thesis  Stampelou Margarita Eleni 
 

119 
 

RAMD dissociation trajectories were generated using the starting snapshots obtained from 

these four replicas spanning 20 ns. The external force magnitude was chosen 8 kcal/mol Å based 

on the dissociation time of the quickest dissociating compound (L6) and the rest parameters 

were retained as described in the τRAMD protocol. 234,235,293,250  

 

Table 5-3:  RTexp values and calculated RT (RTcalc) values for ligands A17, L4, L5, L6; the latter 

were calculated with τRAMD method for the ligand - inactive hA3R complexes embedded in 

phospholipid bilayers using ff19sb 295 with the protein Models 1-3 or optimized Model 3. 

a See Table 5-1. 

 

Using Model 1 and Model 2, the τRAMD method was able to separate the 'slow' from the 'fast' 

ligands successfully (see Table 5-3) with correlation coefficient between calculated and 

experimental RT values, r = 0.93, r = 0.53, respectively (see Figure 5-6). However, using AF2-

derived Model 3 the results were initially unsatisfactory (see Table 5-3, Figure 5-6), e.g., with L5 

being the slowest ligand and L4 the faster that exit binding site (see Figure S3A). 

As previously shown in experimental kinetic binding studies with hA3R antagonists 199–201 and in 

the application of τRAMD with GPCRs 250 the residues structure and length of EL2 affects the 

dissociation of compounds because it can hinder the exit route. Residue R1735.34 as well as the 

two adjacent residues M1725.33 and M1745.35 (MRM motif) that lie on EL2 seem to play a key role 

in the ligands’ egress route. As it is shown in Figure 5-3, 5-4 these residues have different 

conformation in protein Model 3 compared to Models 1, 2. In contrast to Models 1, 2 in Model 

3 residue R1735.34 is oriented towards the upper side of the binding site. The τRAMD calculations 

with Model 3 showed that ligand A17 during its exit from the binding site passed from residues 

  

Μodel 1 Μodel 2 Μodel 3 

Optimized  

Model 3 

Ligand RTexp (min) 

a

 
 

RTcalc (ns) RTcalc (ns) RTcalc (ns) RTcalc (ns) 

A17 47.23 ± 8.4 3.08 ± 1.78 3.17 ± 2.88 4.79 ± 3.29 2.63 ± 0.89 

L4 46.72 ± 4.5 2.72 ± 1.29 1.16 ± 0.82 1.31 ± 0.37 4.95 ± 1.64 

L5 32.05 ± 6.3 1.17 ± 0.39 3.72 ± 1.35 13.69 ± 3.95 1.66 ± 0.19 

L6 5.55 ± 2.6 0.49 ± 0.1 0.36 ± 0.07 4.96 ± 3.60 0.66 ± 0.18 



Doctoral Thesis  Stampelou Margarita Eleni 
 

120 
 

Q1675.28, F1685.29, V1695.30, L2466.51, I2536.58, V2596.64, L2646.69, I2686.73 as is shown in Figure S3B 

and in agreement with Figure 5-4C. Being in the upper side of the binding site of the receptor 

R1735.34 can act as a closing lid that hinders the egress of ligands L5, L6. However, in the case of 

ligands L4 and A17 their 5-cyano group can form hydrogen bonding interactions with R1735.34 

and waters (in the upper area of the binding area between TM2, TM3 and the ligand) favoring 

ligands’ exit from the binding site, as is shown in Figure S3B in agreement with Figure 5-4C. The 

τRAMD-based calculations revealed that L5, L6 stayed longer inside binding area compared to 

A17, L4. In contrast, the experimental data showed that A17 has the longest RT.  

Thus, we rotated the side chains of MRM residues in Model 3 to match the conformation they 

adopt in protein Models 1,2 and ran the 100ns-MD simulations for the tested compounds L4-

L6, A17 in complex with inactive A3R. The MD simulations of the complexes between the ligands 

and inactive hA3R converged during the 100ns-MD simulations with RMSDp,opt3(Cα) < ~ 2.6 Å 

(Table 5-2, Figure 5-4, S2). In Figure 5-4D and Figure 5-5 snapshots for A17 and L4-L6 are shown 

respectively, inside the orthosteric binding site of inactive hA3R with optimized Model 3 are 

shown.  While in Model 3 R1735.34 of EL2 that capped the binding area, in the optimized Model 

R1735.34 was turned to face the outward region of the TMs bundle. In the optimized Model 3, 

the trimethoxy anilino group of A17 was oriented towards the extracellular water face of the 

binding site instead forming hydrogen bonds with R1735.34 in EL2 as is shown in Figure 5-4D. 

In Figure 5-2, 5-3 were also included measures for comparison of the optimized Model 3 with 

Models 1-3. As expected the most noticeable difference between Model 3 and optimized Model 

3 was measured as RMSDp(Ca) ~ 2.1 Å in the conformation of TM5 (Figure 5-2B). In Figure 5-3 is 

shown that without considering the MRM motif modified orientation the binding site 

conformation between Model 3 and optimized Model 3 in their complexes with A17 have after 

the MD simulations relaxation small difference with an RMSDp,BS (Cα)  ~ 0.7 Å. However, when 

we modified the MRM motif orientation the RMSDp,BS (Cα)  was ~ 3.4 Å. 

The τRAMD calculations with optimized Model 3 showed that compound A17 during its exit 

from the binding site passed from residues Q1675.28, F1685.29, V1695.30, L2466.51, I2536.58, V2596.64, 

L2646.69, I2686.73 as is shown in Figure S3B and in agreement with Figure 5-4D.  Using the 

optimized Model 3, the τRAMD calculations provide a satisfactory ranking of ligands L4-L6, A17 

according to their experimental RT values (Table 5-3, Figure 5-6).  
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Figure 5-6: Calculated RT values (ns) with τRAMD method for the ligand - inactive A3R complexes embedded in 

phospholipid bilayers against experimental RT values (min) for ligands binding to inactive A3R. Plots are coloured pink 

for Model 1, orange for Model 2, blue for Model 3 and green for optimized Model 3; r: correlation coefficient, s: slope; 

long RT values are shown with dark color compared to short RT values; experimental errors are shown with horizontal 

line segments and computational method errors are shown with vertical line segments in the plotting points. 

 

Structure-binding affinity relationships from binding free energy calculations  

In Table 5-4 we show the experimentally or the TI/MD-calculated relative binding free energies, 

ΔΔGb,exp or ΔΔGb,TI/MD, respectively, that described the structure-activity relationships for these 

ligands against the inactive A3R using Models 1-3 and optimized Model 3. The experimental 

binding free energies were computed from the experimental dissociation constants determined 

in ref. 307 (Chapter 4) (see notes in Table 5-4). In our TI/MD simulations the last frames of the 

complexes from the alchemical perturbation calculations matched the last frames of the 

corresponding complexes from the 100ns-MD simulations (Figure 5-4, 5-5).  

We observed that the binding affinity of the ligand is increased with the size of the substituent 

at the 3-position which can be anchored deeper into the receptor where it forms hydrophobic 

interactions mostly with W2436.48 and L903.32. This is shown from the Kd’s of the 3,5-

disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridines in Table 5-4 by changing the 3-
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hydrogen in A15 (pKD = 5.49 ± 0.10) to 3-isopropyl group in L3 (pKD = 6.22 ± 0.10) or 3-phenyl 

group in A17 (pKD = 8.00 ± 0.32) showing a ~ 5-fold or ~ 324-fold increase in affinity. Similarly 

changing isopropyl group in L2 (pKD = 6.20 ± 0.06) to phenyl group in L5 (pKD = 7.07 ± 0.22) a 13-

fold increase in affinity was observed. These results showed that 3-phenyl group is favored, as 

regards binding affinity, over the 3-isopropyl group or 3-hydrogen (see also Figure 5-5A). We 

observed this same effect also previously for hA1R (Chapter 4). This effect of the 3-substitution 

can be quantitated by considering the alchemical perturbations A15 → L3 (3H → 3iPr), A15 → 

A17 (3H → 3Ph), L3 → A17 (3iPr → 3Ph), L2 → L5 (3iPr → 3Ph) and the corresponding ΔΔGb,exp 

values and the TI/MD calculated values.  

Thus, for A15 → L3 (3H → 3iPr), ΔΔGb,exp = -1.04 ± 0.09 kcal mol-1 and the calculated values with 

Models 1-3 and the optimized Model 3 are ΔΔGb,TI/MD,1 = -1.04 ± 0.07 kcal mol-1, ΔΔGb,TI/MD,2 = -

1.30 ± 0.06 kcal mol-1, ΔΔGb,TI/MD,3 = -1.31 ± 0.08 kcal mol-1 and ΔGb,TI/MD,opt3 = -2.47 ± 0.07 kcal mol-

1 with deviation (|ΔΔGb,TI/MD - ΔΔGb,exp|, see Table 5-4) 0, 0.26, 0.27 and 1.43 kcal mol-1, 

respectively. For A15 → A17 (3H → 3Ph), ΔΔGb,exp = -3.56 ± 0.21 kcal mol-1 and the calculated 

values are ΔΔGb,TI/MD = -4.05 ± 0.09, -6.24 ± 0.08, -3.93 ± 0.09 and -4.86 ± 0.09 kcal mol-1 with 

deviation 0.49, 2.68, 0.37 and 1.30 kcal mol-1, respectively. For L3 → A17 (3iPr → 3Ph), ΔΔGb,exp 

= -2.52 ± 0.21 kcal mol-1 and the calculated values are ΔΔGb,TI/MD = -1.68 ± 0.09, -1.13 ± 0.08, -

1.81 ± 0.09 and -2.45  ± 0.09 kcal mol-1 with deviation 0.84, 1.39, 0.71 and 0.07 kcal mol-1, 

respectively. For L2 → L5 (3iPr → 3Ph), ΔΔGb,exp = -1.23 ± 0.44 kcal mol-1 and the calculated values 

are ΔΔGb,TI/MD = -2.24 ± 0.05, -1.20 ± 0.08, -0.68 ± 0.08 and -0.97 ± 0.05 kcal mol-1 with deviation 

1.01, 0.03, 0.55 and 0.26 kcal mol-1, respectively.  

In comparison to L4 (pKD = 7.58 ± 0.32), three methoxy groups in the phenyl group of the 7-

anilino substituent have been added in A17 (pKD = 8.00 ± 0.32). This substitution pattern boosts 

lipophilicity and enhances hydrophobic interactions with residues V1695.30, L2647.35, I2687.39 

located in the upper area of the binding site (Figure 5-4D, Figure 5-5B), increasing binding affinity 

according to ΔΔGb,exp = -0.60 ± 0.32 kcal mol-1 for L4 → A17 (7Ph → 7Ph(OMe)3. The TI/MD 

calculations showed a deviation 0.48 – 1.79 kcal mol-1 with optimized Model 3 showing the 

lowest deviation. 

The important effect in binding free energy from replacing the hydrogen at 5-position in L6 (pKD 

= 7.13 ± 0.55) with chlorine group in L5 (pKD = 7.07 ± 0.22) or with cyano group in A17 (pKD = 

8.00 ± 0.32) is described by the alchemical perturbations L6 → L5 (5H → 5Cl) or L6 → A17 (5H → 

5CN) or L5 → A17 (5Cl → 5CN) with ΔΔGb,exp = 0.09 ± 0.39 or -1.23 ± 0.44 or -1.32 ± 0.27 kcal mol-

1, respectively (Table 5-4). By changing the hydrogen at the 5-position with a chlorine maintained 
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binding affinity but the replacement with cyano group increased affinity by ~ 10-fold. The TI/MD 

calculated values with the tested models for L6 → L5 (5H → 5Cl) are ΔΔGb,TI/MD = -1.29 ± 0.05, -

2.89 ± 0.03, -0.79 ± 0.04 and -0.39 ± 0.04 kcal mol-1 with deviation 1.38, 2.98, 0.88 and 0.48 kcal 

mol-1, respectively. For L6 → A17 (5H → 5CN), ΔΔGb,TI/MD = -0.61 ± 0.05, -3.68 ± 0.04, -1.48 ± 0.06 

and -1.15 ± 0.05  kcal mol-1 with deviation 0.62, 2.45, 0.25 and 0.08 kcal mol-1, respectively. For 

L5 → A17 (5Cl → 5CN), ΔΔGb,TI/MD = 0.40 ± 0.04, -0.91 ± 0.03, -0.10 ± 0.04 and -0.39 -1.48 ± 0.04 

kcal mol-1 with deviation 1.72, 0.41, 1.22 and 0.93 kcal mol-1, respectively. 

Compared to L6 (or also L5), the combination of the 5-cyano group and nitrogen at 6-position in 

A17 increased polarity. Thus, in L6, which lacked the 5-cyano group, the hydrogen bonding 

interactions with N2506.55 are reduced (Figure 5-4D, 5-5C,D) and the hydrogen bonding 

interactions with waters that enter area between the ligand and TM2, TM3 can’t be formed.  

The orthosteric binding pocket can also accommodate sizeable substituents at 5-position, e.g., 

the phenylmethyl group in L8 or the 3-(pyridinyl)methyl group in L9 that are linked to a 5-

aminomethyl group. Ligands L8 (pKd = 6.73 ± 0.45) and L9 (pKd = 7.0 ± 0.33) have similar affinities 

at hA3R (Table 5-3) differing by only ~ 1.8-fold, with pyridinyl group being slightly disfavored 

compared to the phenyl group according to the ΔGb,exp = 0.38 ± 0.39 kcal mol-1 for the alchemical 

transformation L9 → L8. The TI/MD predictions showed that ΔΔGb,TI/MD,1 = 0.99 kcal mol-1, 

ΔΔGb,TI/MD,2 = 0.43 ± 0.09 kcal mol-1, ΔΔGb,TI/MD,3 = -0.92 ± 0.09 kcal mol-1, ΔΔGb,TI/MD,opt3 = 0.38 ± 

0.09 kcal mol-1 with deviation 0.61, 0.05, 1.30, 0 kcal mol-1, respectively (Table 5-3).  
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Table 5-4:  Calculated relative binding free energies by the TI/MD method 189,190 with ff19sb 295 and a thermodynamic cycle for alchemical transformations of 

3,5-disubstituted 7-(phenylamino)-pyrazolo[3,4-c]pyridines complexed to inactive A3R and embedded in phospholipid bilayers, using protein Models 1-3 and 

optimized Model 3 (ΔΔGb,TI/MD,1, ΔΔGb,TI/MD,2 and ΔΔGb,TI/MD,3, ΔΔGb,TI/MD,opt3, respectively), experimental relative binding free energies (ΔΔGb,exp) and deviation 

of calculated from experimental values (|ΔΔGb,TI/MD - ΔΔGb,exp|) (free energies in kcal mol-1). 

   Model 1 Model 2 Model 3 Optimized Model 3 

No 
alchemical 

perturbation 
ΔΔGb,exp 

a ΔΔGb,TI/MD,1 
|ΔΔGb,TI/MD,1 

- ΔΔGb,exp| 
ΔΔGb,TI/MD,2 

|ΔΔGb,TI/MD,2 

- ΔΔGb,exp| 
ΔΔGb,TI/MD,3 

|ΔΔGb,TI/MD,3 

- ΔΔGb,exp| 
ΔΔGb,TI/MD,3 

|ΔΔGb,TI/MD,opt3 

- ΔΔGb,exp| 

1 
A15 → L3;  

R: 3-H→3-iPr 
-1.04 ± 0.1 -1.04 ± 0.07 0.00 -1.30 ± 0.06 0.26 -1.31 ± 0.08 0.27 -2.47 ± 0.07 1.43 

2 
A15 → A17; 

R: 3-H→3-Ph 
-3.56 ± 0.21 -4.05 ± 0.09 0.49 -6.24 ± 0.08 2.68 -3.93 ± 0.09 0.37 -4.86 ± 0.09 1.30 

3 
L3 → A17; 

R: 3-iPr→3-Ph 
-2.52 ± 0.21 -1.68 ± 0.09 0.84 -1.13 ±0. 08 1.39 -1.81 ± 0.09 0.71 -2.45 ± 0.09 0.07 

4 
L4 → A17; 

Y: 7-Ph→7-Ph(OMe)3 
-0.60 ± 0.32 1.19 ± 0.09 1.79 b 0.98 ± 0.10 1.58 -2.33 ± 0.12 1.73 -1.08 ± 0.11 0.48 

5 
L6 → A17; 

A: 5-H→5-CN 
-1.23 ± 0.44 -0.61 ± 0.05 0.62 -3.68 ± 0.04 2.45 -1.48 ± 0.06 0.25 -1.15 ± 0.05 0.08 

6 
L6 → L5; 

A: 5-H→5-Cl 
0.09 ± 0. 39 -1.29 ± 0.05 1.38 -2.89 ± 0.03 2.98 -0.79 ± 0.04 0.88 -0.39 ± 0.04 0.48 

7 L5 → A17; -1.32 ± 0.27 0.40 ± 0.04 1.72 -0.91 ± 0.03 0.41 -0.10 ± 0.04 1.22 -0.39 ± 0.04 0.93 
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a Experimental relative binding free energies (ΔΔGb,exp) were computed using the experimental binding affinities (pKd) determined in Chapter 4 and as described in ref. 307; b 

values in bold and underlined showed a deviation > 1 kcal mol-1; c mue = mean unsigned error or the mean of |ΔΔGb,TI/MD - ΔΔGb,exp| values. 

 

 

 

 

 

 

A: 5-Cl→5-CN 

8 
L2 → L5; 

R: 3-iPr→3-Ph 
-1.23 ± 0.14 -2.20 ± 0.05 0.97 -1.20 ± 0.08 0.03 -0.68 ± 0.08 0.55 -0.97 ± 0.10 0.26 

9 

L9 → L8; 

A: 5CH2NHCH2Ph→ 

5CH2NHCH2py b 

0.38 ± 0.39 0.99 ± 0.08 0.61 0.43 ± 0.09 0.05 -0.92 ± 0.09 1.30 0.38 ± 0.09 0 

   mue c = 0.94 kcal mol-1 mue = 1.31 kcal mol-1 mue = 0.81 kcal mol-1 mue = 0.56 kcal mol-1 
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Using homology Model 1 we obtained calculated relative binding free energy values that have 

a mean unsigned error (mue) = 0.96 kcal mol-1 (see Table 5-4). We observed in 3 out of 9 cases 

a deviation of the calculated relative binding free energies from experimental values between 

1.38-1.79 kcal mol-1. In Figure 5-7 it is shown the very good correlation coefficient r = 0.74 (p = 

0.0216) between the TI/MD calculated and the experimental relative binding free energies. 

 

 

Figure 5-7: Calculated ΔΔGb,TI/MD values plotted against ΔΔGb,exp values which were determined using the experimental 

binding affinities pKd for ligands binding to inactive A3R (Table 5-4); plots are coloured pink for Model 1, orange for 

Model 2, blue for Model 3, green for optimized Model 3; r: correlation coefficient, s: slope. 

 

Using homology Model 2 the results showed mue = 1.31 kcal mol-1 with 5 out of 9 perturbations 

having a deviation between 1.39 - 2.98 kcal mol-1 (Table 5-4). In Figure 5-7 is shown that the 

correlation coefficient between the calculated and the experimental relative binding free 

energies is r = 0.62 (p = 0.0732). 
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With homology Model 3, the results showed mue = 0.81 kcal mol-1 and with 3 out of 9 

perturbations having a deviation between 1.33 - 1.73 kcal mol-1 (Table 5-4) and a correlation 

coefficient r = 0.67 (p = 0.0505) between the calculated and the experimental relative binding 

free energies (Figure 5-7).  When the optimized Model 3 was used we obtained a correlation 

coefficient r = 0.88 (p = 0.0015), mue = 0.56 kcal mol-1 with only 2 alchemical perturbations 

having deviation between 1.30 - 1.43 kcal mol-1. This suggested a computational model reliable 

to describe binding interactions of ligands against inactive A3R. 

A post processing analysis of the MD simulations of ligands A15, L2-9, A17 in complex with 

inactive hA3R was also tested using the MM/GBSA method. The MM/GBSA protocol was 

elaborated to include a hydrophobic slab as an implicit membrane model while including water 

molecules in the orthosteric binding area, to a radius of 4 Å from the center of mass of the ligand, 

176–178 and the OPLS2005 262,263 for the calculation of ligand-protein interactions. In Figure S4 and 

Table S7 are shown representatively results using Model 1. Compared to the most potent 

compound A17, the MM/GBSA method calculated the correct sign of binding free energy change 

when a group of atoms was deleted from A17 (i.e., the cyano or the methoxy groups) without 

providing accurate relative binding free energy values. However, it failed to predict the sign of 

the binding free energy changes when a group at 3- or 5-position of in the phenylamino 

substituent was changed to another group. 

5.3  Discussion  

To explore the orthosteric binding area and design new antagonists against the unresolved hA3R, 

accurate computational models are needed as regards calculation methods and protein model 

used. To achieve this aim, we explored the thermodynamic and kinetic binding SARs antagonists 

for a set of our previously identified antagonists against inactive hA3R using TI/MD calculations 

of relative binding free energies and τRAMD calculations of relative RTs and comparing 

homology models of inactive hA3R. We used five publicly available models which after filtering 

degenerate ones we came up with Models 1-3 for inactive A3R. 

We used Model 1 available from refs 256 258 259 and Model 2 available from ref. 110 generated 

based on the crystal structures of inactive A2AR 34 or A1R 55, respectively, and 

bioinformatics/chemoinformatics tools. We also used Model 3 from GPCRdb 260 which has been 

generated based on a multi-state AF2 method. 122 AF2 has a bias towards either the active or 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/chemoinformatics
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inactive conformation of the receptor and can only predict one state. Multi-state AF2 method is 

a more sophisticated method that has been developed based on AF2 which considers the 

conformational switch between the active and inactive states that occurs upon ligand binding. 

This method has been shown to accurately predict the structures of GPCRs in different states, 

making it a valuable tool for studying their function and developing new drugs.  

We observed small differences between Models 1-3 in the orientation of side chains of Q1675.28, 

F1685.29, V1695.30, W2436.48 that play important role in antagonistic binding. However, it was 

striking that in Model 3 residues M1725.33, R1735.34, M1745.35 (MRM motif) that lie in the upper 

region of TM5 on EL2 have significantly different side chain orientation compared to Models 1,2. 

EL2 residues affect the dissociation kinetics of the ligands and their RT inside the receptor. The 

EL2 is a challenging GPCR domain to be modelled because it is the longest and the most diverse 

loop of the three Els, 353,354 and in AF2-models EL2 is indicated as a low confidence region. 120  

We used the 3,5-disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists of hA3R, L3-

L6, L9, Α17, for description of their binding profile and for some evaluation of the available 

homology models that will allow further development of the low nM leads as hA3R antagonists, 

including compound A17  and our other developed compounds. These antagonists (L3-L6, L9, 

Α17) were previously identified and characterized with kinetic and equilibrium binding 

experiments (Chapter 4).  

We applied induce-fit docking calculations and MD simulations in the complex of the 3,5-

disubstituted-7-(phenylamino)-pyrazolo[3,4-c]pyridine antagonists with inactive A3R. We 

observed that A17 is stabilized inside the orthosteric binding area of inactive A3R and binds 

between TM3 and TM5-TM7. Ligand A17 forms attractive hydrophobic interactions with L903.32, 

W2436.48, L2466.51, L2647.35, I2687.39 at the bottom of the binding site, attractive hydrophobic 

interactions with V1695.30 and possibly Q1675.28, R1735.34 at the top of the binding area, and in 

the middle area hydrogen bonding interactions with N2506.55 and hydrophobic interactions with 

F1685.29, M1725.33, M1775.38. Compared to L4 (Y=H, A=CN, R=H; pKD = 7.58 ± 0.33) these 

additional three methoxy groups in the phenyl group of the 7-anilino substituent in A17 (Y=OMe, 

A=CN, R=H; pKD = 8.00 ± 0.32) add affinity against inactive hA3R, likely because they can lower 

the desolvation penalty of the ligand for entering binding site from bulk water phase and 

increase hydrophobic interactions with residues V1695.30, L2647.35, I2687.39 (located in the upper 

area of the binding site). However, A17 (RT = 47.23 ± 8.20 min) and L4 (RT = 46.72 ± 4.50 min) 

have similar residence time values. 
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Mutagenic studies with other antagonists showed that residues Q923.34, H953.37, W2436.48 at the 

bottom of the binding site and K1525.13 in EL2, and H2516.56 at the upper part are important for 

ligand recognition but not residue L2446.49. 338 These residues are the same or lie close to the 

residues observed for A17. Additionally, in Model 3 residues R1735.34 in EL2 and Q1675.28 on the 

top of the binding area can form hydrogen bonds with the methoxy group of the ligand. The 5-

cyano group of A17 is hydrogen bonded with waters that enter the binding area between ligand 

and TM2, TM3 and residues L903.32 and Q1675.28. Compared to L6 (Y=OMe, A=H, R=Ph; pKD = 7.13 

± 0.55) or L5 (Y=OMe, A=Cl, R=Ph; pKD = 7.07 ± 0.22) which lack the 5-cyano group, the presence 

of the cyano group at 5-position and nitrogen at 6-position in A17 (Y=OMe, A=H, R=Ph; ; pKD = 

8.00 ± 0.32) increased polarity at this part of the ligand and hydrogen bonding interactions with 

waters positioned between the ligand and TM2 and TM3. Ιn compound L6 which lacks the 5-

cyano group, the hydrogen bonding interactions with waters and consequently the hydrogen 

bonding interactions with N2506.55 are diminished. The much lower residence time of L6 (RT = 

5.55 ± 2.60 min) being ~ 8.5-fold smaller compared to A17 (RT = 47.23 ± 8.20 min) or ~ 5.8-fold 

smaller compared to L5 (RT = 32.05 ± 6.30 min) reflect these ligands’ interactions inside the 

inactive A3R. 

The MD simulations showed that L9 (A=CH2NHCH2Ph; pKD = 7.0 ± 0.33) or L8 (CH2NHCH2Ph; pKD 

= 6.73 ± 0.45) with the increased in length 5-substituent have additional hydrophobic contacts 

with residues V652.57, L682.60, A692.61, V722.64 extending the ligands’ girth from TM6 to TM2, TM1 

and TM7. The ligand can form water bridged hydrogen bonds with Ε191.39 and the pyrazole ring 

is positioned close to TM5-TM7 so increasing the π-π interactions with F1685.29 and forming new 

hydrogen bonding and π-π interactions with H2727.43. While the two ligands L8 (RT = 5.78 min) 

and L9 (RT = 17.85 ± 4.3 min) have similar binding affinity they have residence times that differ 

by ~ 3.1-fold. 

To explore the thermodynamic binding profile of the ligands we applied the MM/GBSA 

calculations, using an implicit membrane model and considering the waters inside the binding 

area. 176–178 This protocol is not adequate to rank differences in binding free energy due to subtle 

changes in substitution of ligands (i.e., SARs) against A3R and failed also against hA1R as we 

previously showed in Chapter 4. Thus, the performance we obtained with MM/GBSA method 

against hA3R in ref. 257with another class of antagonists seemed to be accidental. Such accuracy 

is possible using the perturbation methods based on statistical mechanics 314,334 as also 

suggested by studies related to the comparative performance of FEP/MD and MM/PBSA 

methods for water soluble protein-ligand complexes314,334 and membrane protein-ligand 

complexes, e.g., complexes of hA2AR. 335 
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The alchemical perturbation calculations of relative binding free energies have been used to 

describe such SARs in membrane protein-ligand complexes, e.g., complexes of hA2AR 156,159–163,335 

and hA1R (see Chapter 4) either with the TI/MD or FEP/MD or using homology models of inactive 

hA2BR 161 and inactive hA3R. 112,162,258 We applied the TI/MD method for the calculation of relative 

binding free energies of our previously identified 3,5-disubstituted-7-(phenylamino)-

pyrazolo[3,4-c]pyridine antagonists to inactive hA3R with homology Models 1, 2, 3 showing a 

satisfactory performance with a correlation coefficient, r = 0.74, 0.62 or 0.67, respectively, 

between the calculated and experimental relative binding free energies with mue = 0.96, 1.31  

0.81 kcal mol-1, respectively. 

To assess the relative RT of compounds within the receptor we applied the τRAMD method, 

234,235,293,250 using four selected ligand with different experimental RTs for testing the τRAMD 

calculations, i.e., A17 (Y=OMe, A=CN, R=Ph; RTexp = 47.23 ± 8.20 min), L4 (Y=H, A=CN, R=Ph; RTexp 

= 46.72 ± 4.50 min), L5 (Y=OMe, A=Cl, R=Ph; RTexp = 32.05 ± 6.30 min), L6 (Y=OMe, A=H, R=Ph; 

RTexp = 5.55 ± 2.60 min). Notably, τRAMD performed well with protein Models 1 and 2, 

effectively distinguishing between short and long RT compounds. The multi-state AF2-based 

Model 3 showed in the MD simulations that residue R1735.34 in EL2 forms hydrogen bonds 

through its side chain with methoxy groups of Α17. Residue R1735.34 lying on the top of the 

binding area can affect egress route of ligands. 

To address this and obtain a consistent ranking of the ligands as regards RTs we optimized the 

AF2-based Model 3 by rotating side chains of MRM motif to match the orientation of the 

residues in Models 1, 2. Ιn the optimized Model 3 antagonist A17 orients its anilino group 

towards the extracellular water face of the binding pocket and exit the binding site from there. 

In Model 3 ligand A17 forms hydrogen bonds with R1735.34 in EL2. It is worth noting that the 

trimethoxy-anilino group of the ligand A17 orients towards ΕL2 in A1R although this receptor has 

a glutamic acid instead of valine at position 5.30. We found 89 that when residue V1695.30 in hA3R, 

which considered to be a selectivity filter for ligands’ binding to A3R orthosteric, was mutated to 

glutamic acid, the functional activity of agonist IB-MECA is increased due to the conformational 

plasticity of the binding area. With optimized Model 3 we obtained not only an improved 

performance with τRAMD method showing a good correlation (r = 0.81) between calculated and 

experimental RT values but also, we achieved with TI/MD method better performance with a 

correlation r = 0.84 between calculated and experimental free energies with mue = 0.56 kcal 

mol-1 
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Chapter 6.  

Conclusions 
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___________________ 6. Conclusions ___________________ 

 

 

 

Adenosine receptors, members of the GPCRs family, have garnered significant attention in drug 

discovery efforts, primarily due to their involvement in various physiological processes and their 

potential as therapeutic targets. Computational chemistry techniques have emerged as 

indispensable tools in the quest to design novel drugs targeting ARs. These techniques allow 

researchers to virtually screen large chemical libraries, predict ligand-receptor interactions, and 

assess the binding affinities of potential drug candidates. 

One particular area of focus in ARs drug design is the development of dual antagonists that can 

target multiple receptor subtypes simultaneously. Dual antagonists, such as those already 

published to act on both hA1R/hA2AR 98–100. and hA2BR/hA3R 96 , hold great promise in addressing 

complex medical conditions considered safer than drug combinations since they have lower 

toxicities and a lower risk of drug-drug interactions. No pharmacological data on dual hA1R/hA3R 

ligands have yet been published.  

In this PhD thesis, we investigated the new 7-aminopyrazolo[3,4-d]pyridazine core, as promising 

scaffold for the development of novel antagonists targeting ARs. A number of derivatives 

synthesized by the National & Kapodistrian University of Athens revealed that the 1-methyl-3-

phenyl-7-benzylaminopyrazolo[3,4-d]pyridazine 10b was a high affinity dual antagonist of the 

human A1R (26 nM) and A3R (7.4 nM). It also displayed weak affinity (>1 μM at the A2BR) 

measured using the NanoBRET method and functional assays. We also determined its kinetics 

of binding and found that at both the A1R and A3R, compound 10a resides inside the binding 

pocket for > 60 mins. Compound 10b is placed inside the orthosteric binding area of A1R 

interacting with N6.55, H7.43 and F5.29, W6.48, L6.51, T3.36, H6.52, Y7.46. Interestingly the regio-isomeric 

derivative 15b where the methyl group is connected with pyrazole N2 , lacked affinity due to the 

steric hindrance for hydrogen bonding interactions with N6.55. We performed MD simulations to 

investigate the binding interaction in the new series as well as the observed regioselectivity in 

N1Me (10b) compared to N2Me (15b) isomer. The mutagenesis results for 10b showed that in 

contrast to previous studies mutation L2506.51A resulted in only a slight reduction of binding 

affinity for 10b while Y2717.36A mutation caused a 10-fold reduction in binding affinity. Mutation 

to alanine of residues T913.36, H2516.52 or S2677.32, which are deep in the orthosteric binding 
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affinity, did not affect binding affinity. Thus, 10b can be used as a useful probe for the 

investigation of other features in the orthosteric binding area by suitable substitutions of this 

compound. 

We also identified from the re-purposing of in-house antiproliferative compounds the novel 

pyrazolo[3,4-c]pyridine scaffold  than can lead to ligands of ARs and improved understanding of 

SARs of ligands targeting ARs. After testing of pyrazolo[3,4-c]pyridine derivatives against all four 

AR subtypes we identified binding affinity and antagonistic activity against A1R and A3R. We 

found one series of potent derivatives with phenyl group at 3-position, anilino group at 7-

position and cyano group at 5-position and one series with 3-(N-acyl)amino-5-anilino group at 

3-position and anilino group at 5-position.  Thus, A17, L4 displayed low nanomolar affinities and 

L5, L8, L9 mid-nanomolar affinities to the A3R. At the A1R, A17, displayed low nanomolar affinity 

and the five compounds L4, L6-L9, L12 displayed mid-nanomolar to low nanomolar. Compound 

A17 has a Kd = 5.62 nM and RT = 41.33 min measured using a NanoBRET assay for A1R and Kd = 

13.5 nM and RT = 47.23 min for A3R. The kinetic data showed that compared to not potent 

congeners, A17 has similar association but much lower dissociation rate (eg. at A1R Kon = 139.7 

x105 M-1 and Koff = 0.024 min-1). 

We investigated particularly the molecular recognition of the ligands against A1R for the 

analogues of the most potent antagonist A17, which has a 3-phenyl, 5-cyano and 7-(3,4,5-

trimethoxy)anilino substitution pattern, using a combination of MD simulations and accurate 

binding free energy calculations of the membrane systems using TI/MD method, first applied on 

a GPCR system, and site-directed mutagenesis. The TI/MD shows a very good agreement 

between calculated and experimental relative binding free energies for A1R (r = 0.73). A novel 

observation from mutagenesis data for drug design purposes is that when the L2506.51A is 

changed to alanine the binding affinity of A17 significantly increased at A1R. 

As we showed here, TI/MD is an accurate method to predict the effect of changing a substituent 

in the structure of A17 in A1R and the next step is to design and synthesize analogs of A17 with 

improved affinity.  

Finally, our study emphasizes the importance of selecting appropriate computational models for 

the design of antagonists against the unresolved inactive A3R. The computational model that we 

suggest, includes a selected homology model in combination with MD simulations and methods 

that can predict relative binding free energies and relative RTs (TI/MD and τRAMD). The derived 

computational model can help in the prospective ranking of candidate drugs in a congeneric 

series prioritizing leads with stronger binding and longer residence times. 
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CHAPTER 2 

 

 

 

 

Figure S4: Pairwise sequence alignments (A) Pairwise sequence alignment of hA2A crystal structure (PDB ID 3EML 34) 

that was used as template for the homology modelling of A3R (Uniprot ID P0DMS8) showing the identical (blue), the 

strongly conserved (purple), and the weakly conserved (light-purple) residues. (B) Pairwise sequence alignment of hA1 

crystal structure (PDB ID 5UEN 55) that was used as template for the homology modelling of A3R (Uniprot ID P0DMS8) 

showing the identical (red), the strongly conserved (orange), and the weakly conserved (light-orange) residues. This 

figure was made with Jalview 2.11.2.6. 116 
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CHAPTER 3 

 

Table S1: Antagonistic potencies (pEC50 in presence of NECAa) of 7-amino-pyrazolo[3,4-

d]pyridazines 10a-c, 15a-c against A2AR and A2BR. 

 A2AR (10 μm) A2BR (10 μm) 

COMPOUND 
pEC50 of NECA in 

presence of 
compounda 

pEC50 of NECA in 
presence of 
compounda 

 
pKd

b 

10a 5.64 ± 0.38 7.01 ± 0.10 4.79± 0.15 

10b 5.82 ± 0.33 6.39 ± 0.07* 5.76± 0.14 

10c 5.60 ± 0.52 7.23 ± 0.10 N.B. 

15a 6.17 ± 0.47 6.87 ± 0.09 5.09± 0.15 

15b 5.71 ± 0.46 7.22 ± 0.13 N.B. 

15c 5.84 ± 0.46 7.24 ± 0.10 N.B. 

vehicle 6.42 ± 0.17 7.22 ± 0.12 - 

aMean ± SEM; Functional activities of at least 3 independent repeats, conducted in duplicate.  

Statistical significance compared to NECA was determined, at p< 0.05, through One-Way ANOVA with Dunnett’s post-

test (*, p< 0.05). 

bMean ± SEM; Equilibrium binding affinities of the ligands measured with NanoBRET against WT A2BR; NECA was used 

as positive control. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   

 

 

 

 

 

 

 

 

 



 

174 
 

CHAPTER 4 

 

Table S2: Chemical structures of 53 compounds from our in-house library. 

 

NO CODE 
STRUCTURE 

REF COMPOUND 
CLASS 

A9 NL666 

N

N

N CH3

H
N

C
O F

Br  

355 pyrido[2,3-
b]pyrazine 

A10 NL660 

N

N

N CH3

H
N

C
O

N

N

CH3  

355 pyrido[2,3-
b]pyrazine 

A11 NL681 

N

N

N CH3

H
N

C
O

NH

CF3  

355 pyrido[2,3-
b]pyrazine 

A12 NL605 

N

N

N CH3

H
N

C
O

S  

355 pyrido[2,3-
b]pyrazine 

A13 NL757 

N

N

N CH3

H
N

C
O

NH

S CF3

 

355 pyrido[2,3-
b]pyrazine 

A14 MVN196 

N
N

N

NH

Cl

OCH3

 

356 pyrazolo[3,4-
c]pyridine 

A15 MVN377 

N
N

H
N

NH

NC

OCH3

H3CO

H3CO

 

356 pyrazolo[3,4-
c]pyridine 
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A16 MVN445 

N
N

N

NH

Cl

OCH3

 

356 pyrazolo[3,4-
c]pyridine 

A17 MVN492 

N
N

H
N

NH

NC

OCH3

H3CO

H3CO

 

357 pyrazolo[3,4-
c]pyridine 

A18 MVN281 

N
N

N

N
H

OCH3
N

N

CH3

N

N
H3C

 

358 pyrazolo[3,4-
c]pyridine 

L1 Mvn450 

 
 

357 pyrazolo[3,4-
c]pyridine 

L2 Mvn468 

N
N

N

NH

Cl

OCH3

H3CO

H3CO
H

 

356 pyrazolo[3,4-
c]pyridine 

L3 Mvn451 

N
N

N

NH

NC

OCH3

H3CO

H3CO
H

 

356 pyrazolo[3,4-
c]pyridine 

L4 Mvn489 

N
N

N

NH

NC

H

 

357 pyrazolo[3,4-
c]pyridine 
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L5 Mvn411 

N
N

N

NH

Cl

OCH3

H3CO

H3CO
H

 

356 pyrazolo[3,4-
c]pyridine 

L6 Mvn474 

N
N

N

NH

OCH3

H3CO

H3CO
H

 

356 pyrazolo[3,4-
c]pyridine 

L7 Mvn494 

N
N

N

NH

OCH3

H3CO

H3CO

H2N

H

 

357 pyrazolo[3,4-
c]pyridine 

L8 Mvn 497 

H

N
N

N

NH

OCH3

H3CO

H3CO

N
H

 

357 pyrazolo[3,4-
c]pyridine 

L9 Mvn498 

H

N
N

N

NH

OCH3

H3CO

H3CO

N

N

H

 

357 pyrazolo[3,4-
c]pyridine 

L10 Mvn496 

N
N

N

NH

OCH3

H3CO

H3CO

N

N

H

H

 

357 pyrazolo[3,4-
c]pyridine 
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L11 Mvn487 

 
 

357 pyrazolo[3,4-
c]pyridine 

A20 NLG35 

NHHN

H3C CH2CH2CH2OH

 

359 perimidine 

A25 MER142 
N

N

N

CH3

N
H

HN

O

N

N
CH3

 

360  pyrazolo[3,4-
c]pyridine 

A26 MER143 
N

N

N

CH3

N
H

HN

O

N
H

 

360  pyrazolo[3,4-
c]pyridine 

A27 MER191 N

N

H
N

N
H

HN

O

N

N
CH3

 

360  pyrazolo[3,4-
c]pyridine 

L12 MER148r
n 

N
N

N

N

HN

O

NHH

H

 

360  pyrazolo[3,4-
c]pyridine 

L13 MER117 

N
N

N

N

HN

O

NH

O

H

 

360  pyrazolo[3,4-
c]pyridine 

L14 MER140 
N

N

N

N

HN

O

NH

 

360  pyrazolo[3,4-
c]pyridine 

L15 MER139 
N

N

N

N

HN

O

H

 

360  pyrazolo[3,4-
c]pyridine 
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L16 MER194 
N

N

N

N

HN

O

NH

H

 

360  pyrazolo[3,4-
c]pyridine 

L17 MER196r 
N

N

N

N

HN

O

NHH

H

 

360  pyrazolo[3,4-
c]pyridine 

L18 MER195r 
N

N

N

N

HN

O

NH

O

H

 

360  pyrazolo[3,4-
c]pyridine 

L19 MER172t 
N

N

N

N

HN

O

NHH

 

360  pyrazolo[3,4-
c]pyridine 

L20 TP 29 

N
N

N

NH

NHCCH2NH

CH3

O  

360  pyrazolo[3,4-
c]pyridine 

L21 TP 59 

N

NH

N

N

NHCNH

CH3

O  

360  pyrazolo[3,4-
c]pyridine 

L22 TP 64 

N
N

N

NH

NHCCH2NH

CH3

O  

360  pyrazolo[3,4-
c]pyridine 

A28 TP27 

 

360  pyrazolo[3,4-
c]pyridine 
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A29 TP102 

N

N

N

HN

NH

N

O

O

 

360  pyrazolo[3,4-
c]pyridine 

A32 TP265 N

N

N

HN

NH

CH3

 

360 pyrazolo[3,4-
c]pyridine 

A33 TP325D 

N

N

N

HN

NH

O

 

360 pyrazolo[3,4-
c]pyridine 

A34 TP383 

N

N

N

HN

NH

N

O

O

 

360 pyrazolo[3,4-
c]pyridine 

A35 GP239 

N

Cl NH2

N
H

N

O

N

CH3  

361 pyridine 

A36 GP327B 

N
N

N
Cl N

O

S

H3C

O

O

 

361 imidazo[4,5-
b]pyridine 

A37 NL647 

N
N

N
H2N

H3C

O

HO

HO

OH

H

 

362  imidazo[4,5-
b]pyridine 



 

180 
 

A38 NL639 

N
N

N

H
N

H3C

O

HO

HO

OH

H

Cl

F3C

O

 

362  imidazo[4,5-
b]pyridine 

A39 NL642 

N
N

N
H2N

H3C

O

HO

HO

OH

H

Cl

 

362  imidazo[4,5-
b]pyridine 

A40 NL566 

N
N

N

O

HO

HO

OH

H

H
N

N

 

362  imidazo[4,5-
b]pyrazolo[3,4-
e]pyridine 

A41 GP126 

N
N

N
Cl

Cl

O

HO

HO

OH

H

NH

 

363 imidazo[4,5-
b]pyridine 

A42 GP174 
N

N

N
Cl

Cl

O

HO

HO

OH

H

NH

 

363 imidazo[4,5-
b]pyridine 

A43 GP172 

N
N

N
Cl

Cl

O

HO

HO

OH

H

NH2

 

363 imidazo[4,5-
b]pyridine 
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A44 PK288 

N
N

N

O

HO

HO

OH

H

N

N

NH

 

364 imidazo[4’,5’:5,6]
pyrido[2,3-
b]pyrazine 

A45 PK285 

N
N

N

O

HO

HO

OH

H

N

N

HN

 

364 imidazo[4’,5’:5,6]
pyrido[2,3-
b]pyrazine 

 

 

 

Table S3:  Functional activities for A15, A17 and A26 against A2AR and A2BR. 

COMPOUND 

A2AR A2BR 

pIC50 in 
presence of 

NECA 
a 

pKd
 b 

pIC50 in 
presence of 

NECA 
a 

pKd
 b 

DMSO 5.94 ± 0.18 - 7.22 ± 0.12 - 

A15 5.79 ± 0.24 - 7.07 ± 0.09 - 

A17 5.94 ± 0.2 - 6.62 ± 0.07* 5.50 ± 0.12 

A26 6.12 ± 0.43 - 7.21 ± 0.09 - 

 

apIC50 values are reported as mean ± standard error of the mean (SEM) of at least 3 independent repeats, conducted 

in duplicate.  

b Dissociation constant (pKd) of the ligands as mean ± standard error of the mean (SEM) of at least 3 independent 

repeats, conducted in duplicate as determined using the Schild analysis (Equation 1). 

Statistical significance (* p < 0.05) determined using ANOVA and Dunnett’ s post-test. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   
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Table S4: Functional activities for L2-L10, and L12, L15, L21 against A2AR and A2BR. 

 

COMPOUND 

A2AR A2BR 
pEC50 in 

presence of 
NECA 

a 
pKd

 b 
pEC50 in 

presence of  
NECA 

a 
pKd

 b 

DMSO 5.94 ± 0.18 - 7.22 ± 0.12 - 

L2 5.33 ± 0.28 - 7.20 ± 0.07 - 

L3 6.35 ± 0.22 - 7.33 ± 0.09 - 

L4 5.58 ± 0.22 - 6.60 ± 0.09* 5.77 ± 0.12 

L5 6.09 ± 0.22 - 6.82 ± 0.09 - 

L6 5.31 ± 0.19 - 6.64 ± 0.10 - 

L7 5.73 ± 0.22 - 6.99 ± 0.09 - 

L8 5.80 ± 0.19 - 6.82 ± 0.07 - 

L9 5.46 ± 0.3 - 6.92 ± 0.08 - 

L10 6.15 ± 0.30 - 7.15 ± 0.08 - 

L12 5.68 ± 0.25 - 6.97 ± 0.10 - 

L15 6.56 ± 0.30 - 7.16 ± 0.12 - 

L21 6.18 ± 0.32 - 7.03 ± 0.11 - 

 

a Functional activities (pIC50 values in presence of NECA) for the ligands as mean ± standard error of the mean (SEM) 

of at least 3 independent repeats, conducted in duplicate. 

Statistical significance ( * p < 0.05) determined using ANOVA and Dunnett’ s post-test. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   
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Table S5: pIC50 of NECA in the presence of DMSO and in the presence of each potential 

antagonist, in A3R Flp-InTM CHO cells. 

 

apIC50 values are reported as mean ± standard error of the mean (SEM) of at least 3 independent repeats, conducted 

in duplicate. b Difference in pIC50 between DMSO and each potential antagonist. Statistical significance ( * p < 0.05, 

** p < 0.01, *** p < 0.001) determined using ANOVA and Dunnett’ s post-test. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   

 

 

Table S6: Binding affinities for A26 measured using NanoBRET against WT and mutant A1Rs. 

Mutation Kd (nM) a pKd 
 CA200645 A26 

WT 76.37 ± 9.37 6.30 ± 0.07 
T913.36A 166.35 ± 17.36 6.10 ± 0.07 

E1725.30A 116.04 ± 12.22 5.98 ± 0.06 
L2506.51A 158.28 ± 17.37 6.15 ± 0.09 
H2516.52A 145.19 ± 19.13 7.15 ± 0.08** 
S2677.32A 70.99 ± 7.03  5.97 ± 0.17 
Y2717.36A 71.10 ± 7.68  6.33 ± 0.07 

 

a Affinity constant for CA200645 binding to mutant A1R receptors.  

b n.b. NECA was unable to displace CA200645 at the mutant receptor 

Statistical significance (* p < 0.05, ** p < 0.01,) determined using ANOVA and Dunnett’ s post-test. 

Adapted from the Doctoral Thesis of Dr Anna Hilser 308 and ref 307 .   

 
 

COMPOUND 

A3R A1R 

pIC50 of NECAa 

Mean 
difference from 

DMSOb 

pIC50 of NECAa 
Mean difference 

from DMSOb 

DMSO 9.03 ± 0.1 - 8.95 ± 0.1 - 
A17 7.27 ± 0.1*** -1.72 6.70 ± 0.1*** -2.25 
L2 6.57 ± 0.39*** -2.46 6.85 ± 0.1*** -2.15 
L3 8.42 ±0.19* -0.61 8.49 ±0.17  -0.46 
L4 7.40 ± 0.1*** -1.60 7.04 ± 0.1** -1.55 
L5 7.91 ± 0.1** -1.09 8.54 ± 0.1 -0.41 
L6 8.29 ± 0.1* -0.74 8.72 ± 0.23 -0.23 
L7 8.31 ± 0.21* -0.72 7.64 ± 0.14** -1.31 
L8 8.14 ± 0.1* -0.89 8.41 ± 0.22 -0.51 
L9 8.05 ± 0.1** -0.95 7.92 ± 0.11** -1.03 

L10 8.56 ± 0.2 -0.47 8.33 ± 0.15* -0.62 

A26 7.86 ± 0.1** -1.14 8.58 ± 0.1 -0.37 
L12 8.52 ± 0.21 -0.51 8.16 ± 0.09* -0.89 
L15 8.17 ± 0.2* -0.86 8.30 ± 0.14* -0.65 
L21 8.78 ± 0.1 -0.22 8.85 ± 0.12 -0.1 
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CHAPTER 5 

 

 

Figure S25: RMSD plots from 100 ns MD simulations with amber99sb of Inactive A3R - A17, L3, L4, L5, L6, L9 complexes 

embedded in phospholipid bilayers. Pink plots were used for Model 1, orange for Model 2 and blue for Model 3 and 

green for optimized Model 3.  
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Figure S3: MD simulations with τRAMD. (A) RMSD plots of the ligand from MD simulations showing the egress of 

ligands L5 and A17.  (B) Protein-ligand interactions during the suggested egress route of A17 showing the 5/100 MD 

simulation snapshots (blue color) and the last 5/100 MD simulation snapshots snapshots (light brown color) for Model 

3 (up) and optimized Model 3 (bottom); HY: hydrophobic, HD H-bond donor, HA H-bond acceptor interactions.  
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Table S7: Experimental dissociation constants, ΔGeff calculated from the MD simulations using 

amber99sb and the MM-GBSA method using OPLS2005 force field with an implicit membrane 

model and considering the waters inside the binding area, for A15, L2-L6, L8, L9, A17 against 

inactive A3R using homology Model 1. 

Compound pKd
 a ΔGeff b 

A15 5.91± 0.19 -94.31 ± 8.62 
A17 8.00 ±0.32 -116.06 ± 7.74 
L2 6.26 ± 0.18 n.d. 
L3 6.45 ± 0.23 -119.03 ±6.28 
L4 7.58 ± 0.33 -102.16 ± 5.44 
L5 7.07 ± 0.22 -141.44 ± 5.62 
L6 7.13 ± 0.55 -98.55 ± 8.02 
L8 6.73 ± 0.45 -127.39 ± 8.87 
L9 6.89 ± 0.2 -143.08 ± 7.68 

 

a See also Table 5-1. 

b Mean ± SEM; Calculated effective binding free energy (kcal mol-1) between ligand and receptor. ΔGeff is 

calculated from the last 20 ns of the trajectories using 40 ps intervals (ie. 500 frames per trajectory) using 

the MM/GBSA model that considers the membrane as hydrophobic slab. Mean from three 20ns-MD 

simulations. 

 

 

 

Figure S4: ΔGeff values from MM/GBSA calculations and experimental binding affinities pKi for for inactive A3R. 

MM/GBSA calculations using a model that is taking into account the membrane as hydrophobic slab (blue bars) and 

pKi values measured using BRET (blue bars). Homology Model 1 of inactive A3R was used used for the MM/GBSA 

calculations.   
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"As I close this chapter of my life, I'm reminded of Oscar Wilde: 'I'm not young enough to know 

everything.' I now embrace the journey ahead, eager to keep learning and growing." 


