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ABSTRACT

Objective: The purpose of the project is to propose a machine learning based
classification model, able to identify patients in high risk for decreased overall survival
based only on CT-derived muscle related data, in patients with stage IV HNSCCs. As
part of the project, an automated paravertebral muscle area (with and without
intermuscular and intramuscular adipose tissue) segmentation method will be developed
and proposed. Our aim will not be to achieve near perfect classification results (something
utopic due to the complex medical background of the problem addressed), but to identify
possibly high-risk group of patients that may be benefited from targeted nutritional and
other interventions. Therefore, we are aiming to develop an automated screening method
that will be based on CT-derived muscle related data. Material and Methods: A PET-CT
collection, with 298 patients with histologically proven head-and-neck cancer, was
retrieved from the cancer imaging archive and was used for the purposes of this pilot
study. We included only patients with Stage IV cancer, with known site of the primary
tumour and with a minimum follow-up period of 5 years. These inclusion criteria resulted
in 74 patients. Further sub-cohorts (with 47 and 51 patients) were created with the
application of extra exclusion criteria in the group of patients with oropharyngeal
carcinomas. Premature death was defined as death when the survival probability was
higher than 75% in the separate, for each primary site, survival curves. Unsupervised
machine learning methods were also used to address the separability of our data and to
test different feature selection strategies. Classification results after training on both
manually and automatically segmented muscle areas were evaluated. Best performing
classifiers were tested on a validation set consisted of the three images per patient that
had not been used for training. Validation results were tested in terms of classifiers’ ability
to separate survival curves of the low-risk and the high-risk group of patients statistically
significantly. Survival analysis was performed using Kaplan-Meier survival curves.
Results: In unsupervised learning we observed that when excluding patients with
OPSCC without premature death, there seemed to be an inherent 3-cluster tendency in
our dataset (one cluster with overrepresentation of low-risk patients and two clusters with
overrepresentation of high-risk patients). Our classification results were very
encouraging, as we managed to train classifiers that served well the screening purposes
of the problem addressed, by achieving high recall while maintaining an acceptable F1-
score. The best results in the validation set were obtained in the cohort with 47 patients
and when classification models were trained with 7 principal components and with a test
ratio of 0.3. A soft voting ensemble model achieved to showcase a trend for difference in
survival curves between the two risk groups (p-value < 0.1) in 80% of the 40 different
train-test splits of the dataset, and to separate statistically significantly the two curves in
65% of the splits. Conclusion: The proposed automatic method for segmentation,
radiomic feature extraction and subsequent patient risk stratification, based on CT-
derived skeletal muscle related data, constitutes a promising automatic screening
method. The fact that results were evaluated on 40 different train-test splits of the dataset
and that proposed risk stratification was tested on a validation set using the same risk
cut-off points and not always the optimal ones, along with the consistency regarding
various classifiers’ performance pave the way for potential generalization. However, more
data are needed to establish risk stratification based on CT-derived skeletal muscle
related data as a clinically useful biomarker.

SUBJECT AREA: Radiomics-based machine learning

KEYWORDS: Radiomics, head and neck cancer, automatic segmentation, risk
stratification, machine learning



NEPIAHWYH

ZKOTTOG: H peAéTn OTOXEUEI OTO va TIPOTEIVEI €va POVTEAO TOEIVOUNONG PNXOVIKAG
MABnong Ikavo va avayvwpilel acBeveic uwnAou pioKou yia PEIwPEVN OUVOAIKN €TTIRiwon,
Baoifopevo PHOVO Ot OEDOUEVA OXETIKA HPE TOUG OKEAETIKOUG MUEG OTTO TNV OEOVIKA
ToPoypa@ia, o aoBeveic pe oTadiou 4 KapKivo TNG KEPAANG Kal Tou TpaxnAou. Q¢ uEpog
TNG MEAETNG Ba avarrTuxBei kal Ba TTpoTalei pia péBodog autouatng KAaTaTunong Tng
TTEPIOXNS EVOIAPEPOVTOG OTNV AEOVIKI TOPOYPAPia TWV TTAPACTIOVOUAIKWY HUWV (ME Kal
XWPIG TO TTEPIMUIKO Kal EVOOMUIKO AITTWAN 10TO). 2TOXEUOUUE OTO VA QVATITULOUME HIO
MEBODBO diaAoyAg Twy aocBevwy uwnAou Kivduvou TTou Ba prTopoucav va weeAnBouv atro
dIaTPOPIKEG ) AAAEG TTapeuBaoelg, BacI{OPEVN 0€ DEDOUEVA OXETIKA PUE TOUG OKEAETIKOUG
MUEC aTtTO TNV AgOVIKH TOUOYPAia, Kal X! va TTETUXOUUE KOVTA OTO TEAEIO aTTOTEAEOUATA
TAgIVOUNONG, KATI TTOU OUTWG 1 AAAWG €ival ouToTTIKG £6QITiag TOU TTOAUTTAOKOU 10TPIKOU
utToBGBpOoU TOou TTPORANMATOG TTou atreuBuvoupe. YAIKO Kol MéBodog: ATTOKTACAUE
TpooPBacn oe pia ouNoy PET-CT Tou apxeiou arreikovioewv kapkivou tnG TCIA TtTou
TTepINGUBave 298 aoBeveic PE I0TOAOYIKWG ATTOBEDEIYHEVO KAPKIVO TG KEPAANG KAl TOU
TPaxNAOU. 21N MEAETN CUPTTEPIAGPBaNE HOVO aoBeveig oTadiou 4 , e YVWOTA TTPWTOTTABN)
eoTia kal e eAaxioTn Tepiodo TTapakoAouBnong Ta 5 £€1n, kataAfyovtag €Tol o€ 74
aoBeveic. Me Tnv €@apuoyr TTEPAITEPW KPITNPEIWY OTTOKAEIOPMOU OTn KATNyopia Twv
a0BevwWV PE KAPKiVO TOU aTopaTto@dpuyya dnuioupyrnénkav PIKPOTEPEG KOOPTES Twv 47
Kal 51 aoBevwyv. Q¢ TTPOWPOS BAVATOG OPIOTNKE EEXWPIOTA YIa Q0BEVEIG UE DIAPOPETIKN
TTPWTOTTA0N £0Tia , 0 Bdvartog dtav n mMOavoeTNTa £TRIWONG OTIC KAWTTUAEG £TTIRIWONG
ATav peyaAutepn Ttou 75%. XpnolgoTroioaue akoun PeBOdoUG un emIRBAETTOPEVNG
MABNOoNG TTPOKEINEVOU Va SOUNE TNV €UEUTN TACT TWV BEBOUEVWY HAG YIa SIaXWPICHO O€
opadeg, KaBWG KAl  yla va TECTAPOUMUE OIAQOPETIKEG OTPATNYIKEG  ETTIAOYAG
XOPAKTNPIOTIKWY. Ta atroteAéouara Tagivopunong PETA TNV eKTTaideuon TwV POVTEAWV
agloAoyndnkav 1000 OTIG EIKOVEG TTOU EiXE YiVEI XEIPOKIVATA N KATATUNON TWV TTEPIOXWV
eVOIOPEPOVTOC TWV HUWV 600 Kal OTIG EIKOVEG PE auTOuaTn KaTtdtunon. O1 TagivounTég e
Ta KoAUTEpa atroteAéoparta  aflohoyndnkav OXeTIKA pe Tnv IKAvOTNTG TOUG Vva
KATNYOPIOTTOIOUV TOUG aoBeveic o€ uwnAou Kai XaunAoU piokou e TPOTTO WOTE VA
Xwpicouv o€ BaBud oTATIOTIKA ONUAVTIKO O KAUTTUAEG £TTIRIWONG METAEU TWV dUO OPAdwWV
piokou Twv acBevwyv. H avdAuon emBiwong €yive xpnoidoTTolwvTag TIG Katad Kaplan-
Meier KauTTUAEG emBiwong. ATtroteAéopara:  XpnoOIJOTTOIWVTAG  MEBODOUG N
eMPBAeTTOMEVNG PABNONG TTapaTnPAcaPE OTI ATTOKAEIOVTOG a0BEvEIC PE KAPKiVO TOu
oTopatopdpuyya Xwpic Tpdéwpo Bdvarto, UTTAPXE MIa EUPUTN TAON VIO OXNUOTIONO 3
opGdwyv (1 pye caen Kuplapxia Twv acBevwv xaunAou piokou Kal 2 OTTou Kuplapyxouoayv
ol aoBeveic uwnAou piokou). Ta atroteAéoparta emPBAETTOMEVNG HABNONG ATAV £TTIONG
TTOAU €vBApPPUVTIKA, ETITUYXAVOVTOG €CAIPETIKA uaioBnaia diatnpwvTag amodekTd F1-
score. Ta KaAUTEpa atroTeAéopATa ETMITEUXONKAV OTAV KOOPTH pE 47 acBeveig, 6Tav n
EKTTAIOEUON £YIVE XPNOIUOTTOIVTOG 7 KUPIEG OUVIOTWOEG, aprivovTtag yia TeoT 30% Twv
OedOUEVWY, PE TO KAAUTEPO POVTENO va KaTagépvel va avadeicel Taon dlagopoTtroinong
TWV KAUTTUAWYV eTTIRiwong Twv dUo ouddwyv Kivduvou oto 80% Twv 40 Si1a@OopETIKWV
OlaXWPICHWY yia  ekTTaideuon-agloAdynon Twv Ocdouévwy. Zuptrepdopara: H
TTPOTEIVOUEVN MEBOOOC AUTOUATNG KATATUNONG TNG TTEPIOXNG EVOIAPEPOVTOC, £Eaywyng
PABIOUIKWY XOPAKTAPIOTIKWY Kal dIOCTPWHATWONG KIVOUVOU TwV aoBevwv gival TTOAG
UTTOOXOMEVN, JE OUVANIKO YEVIKEUONG, WOTOCO ATTAITOUVTAI TTEPICTOTEPA DEDOPEVA TTPIV
TTPOTABEI WG XPNOIUMOG OTNV KAIVIKI) TTPOKTIKY BIOOEIKTNG.

OEMATIKH NMEPIOXH: Mnxavikry udbnon Baciopévn o€ padiopikr) avaAuon

AEZEIZX KAEIAIA: Padiopikrp avAAuon, KOpKivog KEQOANG Kal TpaxnAou, autouarn
KaTtaTtunon, diacTpwudTwaon Kivéuvou, unxaviki yaénon



21N XAon, tnv Kwvortavriva kai tov [wpyo Tou ATav n KaAutepn ouada mou 6a
UITOPOUCA va QavriaoTw Kal arro Toug o1Toious éuaba 1ooa, Kabwgs Kai aTov QiAo pou
[1avvn Tou e TTPOETPEWE va EEKIVIIOOULE QUTO TO UETATTTUXIAKO
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Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data

1. INTRODUCTION

1.A Purpose of the study

The majority of patients with head and neck squamous cell carcinomas (HNSCC) present
with locoregionally advanced stages (lll, 1V). In these group of patients, notably in stage
IV patients, multimodal interventions are required, as well as personalized treatment
options, in order to minimize the side effects of the treatment applied, while achieving
increased overall survival (OS) and superior quality of life (QoL) [1], [2].

The nutritional status of the patient (as expressed by sarcopenia, myosteatosis, frailty
and others) together with the presence of human papilloma virus (HPV) infection hold
great prognostic significance in those patients (see chapter 1.B). Therefore, it is important
to identify patients in which treatment benefits outweigh the risk of any adverse outcome,
as well as patients who are in high risk for decreased overall survival. However, it can be
not only highly time consuming to assess frailty and sarcopenia, but also sometimes
impossible (especially in retrospective studies) due to the lack of critical clinical
information required. Moreover, there is no consensus regarding cut off values for
sarcopenia in literature with studies done in different parts of the world citing different cut
off values.

The aforementioned limitations lead us to investigate the feasibility of extracting data
related to sarcopenia, myosteatosis and frailty from the patient’'s CT-scan, which is
routinely performed, and subsequently available in all patients. Based on the literature
(see 1B.4) we decided to extract these radiomic information from the paravertebral
muscle area at the level of the third cervical vertebra (C3). Manual paravertebral muscle
segmentation remains another time-consuming process, therefore there is need for
automated segmentation methods.

The purpose of the project is to propose a machine learning based classification model,
able to identify patients in high risk for decreased overall survival based only on CT-
derived muscle related data, in patients with stage IV HNSCCs. As part of the project, an
automated paravertebral muscle area (with and without intermuscular and intramuscular
adipose tissue) segmentation method will be developed and proposed. Classification
results after training on both manually and automatically segmented muscle areas shall
be evaluated. Unsupervised machine learning methods will be also used in order to
address the separability of our data and in order to test different feature selection
strategies.

Given the fact that survival is affected by various other, both known and yet unknown
factors, we will focus on the occurrence of premature death, while taking into account the
site of the primary tumour. Especially, we shall treat with great precaution data from
oropharyngeal cancer (OPC) patients, as in this specific group, survival is highly affected
by the HPV status, which is not always available. Our aim will not be to achieve near
perfect classification results (something utopic due to the complex medical background
of the problem addressed), but to identify possibly high-risk group of patients that may be
benefited from targeted nutritional and other interventions. Therefore, we are aiming to
develop an automated screening method that will be based on CT-derived muscle related
data. Moreover the muscle related risk stratification of the patients, may serve as an extra
feature in more complicated prognostic models that will also include well established
prognostic factors.
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1.B Definitions, medical background, and relative research interest in
Otorhinolaryngology

1.B.1 Head-and-neck squamous cell carcinoma

Head and neck squamous cell carcinomas (HNSCCs) develop from the mucosal
epithelium of the oral cavity, nasopharynx, oropharynx, hypopharynx and larynx [3].
Despite the similar cell origin, tumours of the nasopharynx constitute a separate epithelial
malignancy entity with distinct geographical distribution and different, compared to other
epithelial head and neck tumours, pathogenesis progression and aetiology (including
EBYV infection, host genetics, and environmental factors) [4]. Due to the aforementioned
differences nasopharyngeal carcinomas are studied separately. Sinonasal squamous-
cell carcinomas are studied separately as well, as they constitute a quite complex tumour
type for with numerous histologic variants and unusual morphologic features, with their
aetiology, epidemiology, clinical features, and genetic profiles being quite distinct from
those of the main head and neck cancer localizations [5]. The main anatomical sites of
HNSCC development are shown in Figure 1 [3].
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Figure 1: Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium
of the oral cavity (lips, buccal mucosa, hard palate, anterior tongue, floor of mouth and retromolar
trigone), nasopharynx, oropharynx (palatine tonsils, lingual tonsils, base of tongue, soft palate,
uvula and posterior pharyngeal wall), hypopharynx (the bottom part of the throat, extending from
the hyoid bone to the cricoid cartilage) and larynx

It has been almost 20 years now that trends in head and neck cancer (HNC) have started
changing. It has been reported [6] that oral cavity cancer incidence rates increased in
many countries with peaking tobacco epidemics and on the other hand declined in
countries where tobacco use peaked some time ago. Moreover, rates of oropharyngeal
cancer increased in a number of countries where tobacco use has declined [6], and the
incidence of human papilloma virus (HPV) associated oropharyngeal cancer is increasing
in developed countries [7], induced mainly by HPV type 16, affecting predominantly
younger people in North America and northern Europe, reflecting a latency of 10 to 30
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years after oral-sex exposure [8]. Despite the distinct patterns of geographic variation in
HPV-related oropharyngeal cancer, with higher prevalence in Western Europe, there are
still limited recent data available for Eastern Europe, Asia or Africa [9].

Hence, HNSCC can be classified into two distinct types, HPV-positive and HPV-negative,
with distinct mutational landscape, response to clinical treatment, and survival outcomes
[7]. HPV-associated HNSCCs arise primarily from the palatine and lingual tonsils of the
oropharynx, whereas tobacco-associated HNSCCs arise primarily in the oral cavity,
hypopharynx and larynx [3]. The main characteristics of these two distinct types of
HNSCC are summarized in Table 1 [7], [10] .

Table 1: HPV-negative compared with HPV-positive head and neck cancer

Parameter HPV (-) HPV (+)
Male:Female 3:1 8:1
Age > 60 40-60
Race White > black; White > black
worse prognosis in blacks
Socioeconomic status Low-middle Higher
Smoking >90% have smoking history; | 50%—65% have  smoking

risk increases with increasing | history
tobacco use

Alcohol consumption Synergistic with tobacco in | Not a significant risk factor
increasing risk
Sexual history Not a significant risk factor Number of oral sex partners is
a strong risk factor
Primary tumour site Larynx and oral cavity most | Oropharynx, specifically
common lymphoid tissue of tonsils and
tongue base
Presentation Varies Enlarged cervical lymph nodes

common; also oropharyngeal
pain, dysphagia, referred

otalgia
Incidence trends Decreasing Increasing
Tumour (T) stage More advanced T stage Early T stage
Nodal (N) stage Early N stage Advanced N stage
Second primary rate (%) | 4.6 11
Prognosis All sites: Oropharynx:
5-year survival 65%, 5-year survival 60%—-90%,
5-year recurrence 50% 5-year recurrence 10%—-15%

Oropharynx:
5-year survival 20%—25%,
5-year recurrence 50%

The need for continued awareness in reducing HNSCC traditional risks factors, such as
cigarette use, remains, while emerging risk factors like HPV infection, require novel
staging systems and greater resources to be poured into, in order to decrease the
incidence of HNSCC worldwide [11]. Despite the significant drop in the incidence of
smoking-related HNSCC, efforts to decrease cigarette usage should continue, and newly
emerged potential risk factors, such as the E-cigarettes, should be tackled, given that
they are ineffective in helping head and neck cancer patients achieve smoking cessation
[12], E-cigarettes’ exact role in HNSCC development has not been clarified [13], and their
young users are more likely to use conventional cigarettes in the future [14].
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1.B.2 Definitions

1.B.2.1 Sarcopenia

In 2018, the European Working Group on Sarcopenia in Older People met for the second
time (EWGSOP2) in order to update the original definition of sarcopenia, in a way that
would reflect all the scientific and clinical evidence built since their first published
definition back in 2010. Aiming to increase consistency of research design, clinical
diagnoses and ultimately, care for people with sarcopenia, they proposed the following
operational definition of sarcopenia [15] : Sarcopenia is probable when low muscle
strength is detected. A sarcopenia diagnosis is confirmed by the presence of low muscle
guantity or quality. When low muscle strength, low muscle quantity/quality and low
physical performance are all detected, sarcopenia is considered severe. As a way of
applying this definition in practice, EWGSOP2 reviewed tests and tools used for
assessing muscle properties and performance, and presented the EWGSOP2
sarcopenia cut-off points, as seen in Table 2 [15], and an updated algorithm for
sarcopenia case-finding, diagnosis and severity determination as seen in Figure 2 [15].

SARC-F
or clinical
suspicion

Maiilidd No sarcopenia;
rescreen later

POSITIVE
OR PRESENT

Muscle strength eV LME No sarcopenia;

Grip strength,
Chair stand test rescreen later

In clinical practice,
this is enough to
trigger assessment of
causes and start
intervention

Sarcopenia
probable*

Muscle quantity ENEY=*YIH

or quality
DXA; BIA, CT, MRI

Sarcopenia
confirmed

Physical
Performance
Gait speed, SPPB,
TUG, 400m walk

Sarcopenia
severe

Figure 2: Sarcopenia: EWGSOP2 algorithm for case-finding, making a diagnosis and quantifying
severity in practice. The steps of the pathway are represented as Find-Assess-Confirm-Severity or
F-A-C-S. *Consider other reasons for low muscle strength (e.g. depression, stroke, balance
disorders, peripheral vascular disorders).
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Table 2: EWGSOP2 sarcopenia cut-off points

Test Cut-off points for | Cut-off points for | Reference
men women

EWGSOP?2 sarcopenia cut-off points for low strength by chair stand and grip strength
Grip strength <27 kg <16kg [16]
Chair stand >15 s for five rises [17]

EWGSOP?2 sarcopenia cut-off points for low muscle quantity

Appendicular <20kg <15kg [18]

skeletal muscle

mass (ASM)

ASM/height? <7.0kg/m? <5.5kg/m? [19]

EWGSOP?2 sarcopenia cut-off points for low performance

Gait speed <0.8 m/s [20], [21]

SPPB <8 point score [22], [23]

TUG 220 s [24]

400 m walk test | Non-completion or 26 min for completion [25]
1.B.2.2 Frailty

Frailty is a state of vulnerability to poor resolution of homoeostasis after a stressor event
and is a consequence of cumulative decline in multiple body systems or functions
(physical, cognitive, social, and psychological) during a lifetime, increasing susceptibility
to poor health outcomes and remaining the most problematic expression of population
ageing [26]. While the physical phenotype of frailty shows significant overlap with
sarcopenia with low grip strength, slow gait speed and weight loss being involved in both,
frailty and sarcopenia are still distinct— one a geriatric syndrome representing a much
broader concept and the other a disease [15].

In 2013 a frailty consensus from 6 major international, European, and US societies was
published [27], highlighting the following 4 key points regarding physical frailty:

1. Physical frailty is an important medical syndrome. Physical frailty was defined as “a
medical syndrome with multiple causes and contributors that is characterized by
diminished strength, endurance, and reduced physiologic function that increases an
individual’s vulnerability for developing increased dependency and/or death.”

2. Physical frailty can potentially be prevented or treated with specific modalities, such as
exercise, protein-calorie supplementation, vitamin D, and reduction of polypharmacy.

3. Simple, rapid screening tests have been developed and validated, such as the simple
FRAIL scale, to allow physicians to objectively recognize frail persons.

4. For the purposes of optimally managing individuals with physical frailty, all persons
older than 70 years and all individuals with significant weight loss (=5%) due to chronic
disease should be screened for frailty.

Frailty’s diagnostic tools were built based on two main models: 1) the phenotypic model,
which describes a relationship between a set of criteria that defines frailty and the effect
on certain outcomes, and 2) the deficit accumulation model, which measures the number
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of deficits that an individual has accrued across a number of different domains, including
comorbidities, the ability to manage activities of daily living, and physical signs [28].
Fried’s phenotypic model [29] is a predominantly physical conceptualization and is based
on evaluating unintentional weight loss (shrinking), grip strength (weakness), self-
reported exhaustion (poor endurance and energy), slow walking speed (slowness), and
low physical activity. On the other hand, the Frailty Index (FI) [30] consists of a 70-item
scale derived from history and physical exam and is calculated as a ratio of the possible
number of deficits (up to 70) to the number of actual deficits present in the individual.

Nowadays, comprehensive geriatric assessment (CGA) that evaluates physical,
psychological, functional, and social capabilities, and limitations of geriatric patients is the
accepted gold standard for caring for frail older people in hospital, with a recently
published umbrella review [31] highlighting that there is a degree of consistency in
definition, essential content, key target group and outcomes of CGA. However, such
assessments are time-consuming, leading many cancer specialists to seek a shorter
screening tool that can separate fit older adults with cancer, who can receive standard
cancer treatment, from vulnerable patients, who should subsequently receive a full
assessment to guide tailoring of their treatment regimens [32]. One such tool is the
Geriatrics 8 (G8) screening tool, which was developed specifically for older adult patients
with cancer. G8 consists of eight items which cover multiple geriatric domains, including
nutritional status, physical capacity, mood, and polypharmacy. G8 scores range from zero
to seventeen, with scores < fourteen representing potential frailty [33].

1.B.2.3 Myosteatosis

Myosteatosis occurs as a result of fatty infiltration of skeletal muscle tissue. An
interdisciplinary workshop convened by the National Institute on Aging Division of
Geriatrics and Clinical Gerontology on September 2018, discussed myosteatosis in the
context of skeletal muscle function deficit (SMFD)[34].Traditionally the term myosteatosis
has been used to describe multiple different adipose depots found in skeletal muscle
including: (a) intermuscular adipose tissue, the extracellular adipose tissue found
beneath the fascia and in-between muscle groups; (b) intramuscular adipose tissue, the
extracellular adipose tissue found within an individual muscle; and (c) intramyocellular
lipids. Intermuscular, intramuscular, and intramyocellular fat all provide a slightly different
measure of myosteatosis and may represent different risk factors to metabolic and
muscle health particularly in older adults. In myosteatosis ectopic fat depot increases with
aging and is recognized to negatively correlate with muscle mass, strength, and mobility
and disrupt metabolism (insulin resistance, diabetes). Figure 3 [35] demonstrates
pathophysiology changes in myosteatosis.

Although myosteatosis is not synonymous with sarcopenia (loss of muscle mass and
function), it does appear to be independent of muscle mass and perhaps act
synergistically. Studying myosteatosis role as a newly defined independent risk factor
should be expanded. Opportunistic opportunities like cancer populations, shoulder injury
patients, bariatric surgery patients, and conditions that may accelerate myosteatosis
would considerably expand our knowledge and open an array of research prospects in
the field.
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Increased myosteatosis may lead to metabolic and mechanical changes in the muscle
through a variety of mechanisms. Changes in muscle cell metabolism can lead to
increased insulin resistance and inflammation, aiding in the development of diabetes, and
cardiovascular diseases. Alterations in muscle architecture can also lead to muscular
dysfunction and functional decline. Both processes may be increased through activation
of proteolytic systems, which may also result from increased myosteatosis.

Figure 3: Potential mechanisms underlying the effects of myosteatosis

In 2017, the need for standardized assessment of myosteatosis was discussed in a
symposium[35]. Imaging methods that can easily and rapidly assess muscle composition
in multiple clinical settings and with minimal patient burden, were discussed as well.
Magnetic resonance imaging (MRI) is considered an excellent non-invasive technique for
measuring myosteatosis, providing high-quality images, yet the cost is high, and
traditional MRI does not typically allow quantification of the fat content of the muscle.
Computed tomography (CT) on the other hand, has been the most utilized as a research
tool to investigate myosteatosis. The CT analysis of myosteatosis is based on a
Hounsfield unit (HU), which is a measure associated with the way rays pass through
water. Water has a density of zero, higher measurements are denser (i.e., bone), and
lower measurements are less dense (i.e., fat). The lower the density, the lower the
Hounsfield units and the higher the degree of myosteatosis. Any given skeletal muscle
displays radiation attenuation between -190 and +150 Hounsfield units (HU), with a
prominent peak near +50 HU. When muscle cross-sectional area and attenuation are
reported, the most common practice is to use predefined HU ranges to demarcate
intermuscular adipose tissue (usually -190 to -30 HU) and muscle tissue (usually -29 HU
to 150 HU) [36]. Figure 4 [36] demonstrates radiation attenuation map of paraspinal
muscles with and without myosteatosis.
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(a, ¢, e, g): Subject 1 has hardly visible intermuscular fat (4.6% of total tissue area), 77.2%
of the total muscle cross-sectional area falls into the normal attenuation range for muscle
and the mean overall radiation attenuation is 42.3 HU.

(b, d, f, h): Subject 2 exhibits extensive regions (14.1%) of intermuscular fat infiltration, low
overall mean attenuation (20.4 HU) and less than half (44.4%) of the total tissue cross-
sectional area falls within the normal range of muscle radiation attenuation values.

a,b: CT images of paraspinal muscles ;
c,d: annotated CT images;
e,f: pie charts;

g,h: histograms of radiation attenuation showing the percentages of total tissue cross-
sectional area within the following attenuation ranges:

adipose tissue [light blue, -190 to -30 HU],
normal attenuation muscle [red, +30 to +150 HU],

abnormal (reduced) attenuation muscle in two ranges [dark blue, -29 to 0 HU; yellow, +1
to +29 HU]

Figure 4: Radiation attenuation map of paraspinal muscles with and without myosteatosis

1.B.2.4 Radiomics

The word omics refers to a field of study in biological sciences that ends with -omics, such
as genomics, transcriptomics, proteomics, or metabolomics. The ending -ome is used to
address the objects of study of such fields, such as the genome, proteome, transcriptome,
or metabolome, respectively. In medicine all these “omics” concepts have resulted in an
incremental growth of medical big data. In order to extract the desired information from
all these emerging data, different techniques from artificial intelligence (Al), mainly
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machine learning and deep learning algorithms, are increasingly being applied in the
medical sector. Over the past decade, medical imaging analysis has grown exponentially
[37] leading to the vigorous development of another “-omic” concept, called “radiomics”.
Radiomics is a quantitative approach to medical imaging, aiming at enhancing the
existing data available to clinicians by means of advanced mathematical analysis [38].
Through mathematical extraction of the spatial distribution of signal intensities and pixel
interrelationships, radiomics quantifies textural information, overcoming the subjective
nature of image interpretation, and extracts quantitative features.
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Figure 5: The radiomic workflow

Although radiomics can be applied to various conditions, it is most well developed in
oncology [37], [39]. A very high number of features can be extracted from various imaging
modalities, including CT, MRI and positron emission tomography (PET), alone or
combined, contributing to better tumour and environment characterization, early detection
of relapse after radical treatment and development of a patient’s phenotype that could
lead to personalized treatment. [40]. Furthermore, radiomic data can be combined with
other relevant data, such as medical notes from electronic-health records, pathology,
biology, or genomics, in an attempt to develop models that could improve diagnostic,
prognostic, and predictive accuracy, facilitating better clinical decision making [37], [41].
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Figure 5 [38] shows a schematic illustration of the radiomics workflow and Table 3 [40],

[42] provides a brief overview of the major radiomic features.

Table 3: Overview of major radiomic feature

Concept and aim Summary of statistics and | Clinical
characteristics application
in oncology
Structural | Basic descriptors according to physical | Volume of region of interest | Differential
features characteristics (e.g., shape, volume, | (ROI), max axial length, max | diagnosis
size). 3D diameter, surface area, .

: (malignant
surface-to-volume ratio, beni
sphericity, compactness, vs benign)
spherical disproportion, 2D and | Treatment
3D fractal dimension response

Statistical | 15t order - histogram features: Intensity: minimum, maximum,
features They derive from image histograms mediar_l, mean, p_ercentiles _
(i.e., graphical representation of the K_urt_05|s_: magnitude pf pixel
intel’flsity distribution of an image) and distribution. - It pr_owdes a
they describe the distribution of the measure of_the_welght of the
intensity within the segmentation hlstogram ta}lls V.Vlth respecttoa
' normal distribution.
Skewness: asymmetry of the .
histogram around its mean Prognosis
Entropy: irregularity of the prediction:
structure. High values correlate | |ocoregional
with high heterogeneity control
29 order — texture features:
They describe the statistical
relationship between pixels or voxel to
characterize the heterogeneity of the Survival
lesion from the segmentation | GLCM: correlation, cluster, | correlation:
performed for the volume extractions. contrast, energy
« Gray-level co-occurrence matrix overall
(GLCM) is the most frequently used. It survival
defines the distribution of concurrent or
repeated pixels in the image. NGTDM: complexity, texture
* The neighbouring grey-tone difference | strength
matrix (NGTDM) uses the intensity
values of a neighbourhood instead of
one pixel to represent how similar or
dissimilar pixel intensities are within a
neighbourhood. Other: neighbouring
grey level dependence matrix
Model- Higher order features are usually based | Nosologic maps: the spatial | Prognosis
based on matrices that consider relationships | registration of the image | prediction
features between three or more pixels or voxels. | biomarkers obtained voxel by
voxel conforms parametric
maps to obtain nosological | Response
images that represent different | prediction
biological behaviours

In head and neck cancer the field of radiomics is constantly developing, targeting
personalized treatment. Using PET/PET CT biomarkers for patient treatment
individualization and response prediction seems promising and literature shows that
macroscopic changes in medical images (whether structural or functional) are correlated
with biologic and biochemical changes within a tumour [43]. However, there has been
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spotted lack of stability and generalization in ongoing research, with the specific study
conditions and the authors’ choices still influencing considerably the results and although
PET radiomics is a promising field, the number of patients in most publications remains
inadequate, with very few papers perform in-depth validations [41]. Future research
should be directed at overcoming the limitations outlined, mainly regarding sample size,
uniformization and standardization of radiomics workflow and subsequent generalization
of results, along with optimization of technical issues (e.g., dental artifacts) [40], [41].

1.B.3 The role of sarcopenia, myosteatosis, frailty and nutritional status in patients
with head and neck cancer

1.B.3.1 Sarcopenia

The prognostic role of sarcopenia in patients with head and neck cancer is well studied
in recent years, and meta-analyses have already been conducted. A meta-analysis of
seven studies and 1059 patients where skeletal muscle cross sectional area was
evaluated at gold-standard anatomical level of L3 [44] concluded that CT-defined
sarcopenia is independently associated with reduced overall survival in patients with HNC
and holds a clinically meaningful prognostic value. Forest plots of hazard ratio in
subgroup analyses for patients with versus patients without sarcopenia, at pre-treatment
and post-treatment time points, for reduced overall survival are shown in Figure 6 [44].
However, given the studies’ variation in skeletal muscle index (SMI) threshold values
applied and ethnicity, the meta-analysis’ authors highlighted the need for consensus
regarding sarcopenia assessment and definitions in order to support body composition
assessment as a clinically meaningful prognostic tool into practice.
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Figure 6: Forest plots of hazard ratio in subgroup analyses for patients with versus patients
without sarcopenia for reduced overall survival

Another meta-analysis included 27 studies with a total of 7704 patients with different
HNSCCs [45]. This meta-analysis included both patients treated with definitive
chemotherapy and/or radiation, and patients surgically treated with or without adjuvant
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chemoradiotherapy. Sarcopenia was associated with lower overall survival (OS) and with
occurrence of severe postoperative complications and predicted disease-free survival
(DES) as well. Forest plots of reported hazard ratios of sarcopenia for different treatment

modalities used and for different endpoints are shown in Figure 7 [45].

Hazard Ratio

a) Adjusted HRs of sarcopenia regarding OS in patients treated by curative radio-chemotherapy.

Hazard Ratio

Test for overall effect: Z = 3.16 (P = 0.002)

Heterogeneity: Tau? = 0.04; Chi? = 9,63, df = 5 (P = 0.09); I* = 48%

Study or Subgroup log[Hazard Ratio] SE Weight IV, Random, 95% Cl IV, Random, 95% CI

Cho 2018 0.182 0.269 14.8% 1.20[0.71, 2.03] -

Choi 2020 0.742 0548 4.9% 2.10[0.72, 6.15] - -
Hua 2020 1.034 0251 16.2% 2.81[1.72, 460] -
Huiskamp 2020 0.391 0576 4.5% 1.48[0.48, 4.57] [
Pai 2018 0217 0.118 30.6% 1.24]0.99, 1.57] i

van Rijn-Dekker 2020 0.329 013 29.0% 1.39[1.08, 1.79] i

Total (95% CI) 100.0% 1.51[1.17,1.84]

04 02 05 1 2 5 10

b) Adjusted HRs of sarcopenia regarding OS in patients treated by surgery +/- adjuvant radio-

Heterogeneity: Tau? = 0.00; Chi? = 1.52,df=3 (P =0
Test for overall effect: Z = 4.98 (P < 0.00001)

S22 =00 }
68); P=0% 01 02

chemotherapy.
Hazard Ratio Hazard Ratio
Study or Subgroup  log[Hazard Ratio]  SE Weight IV, Random, 85% CI IV, Randem, 95% CI
Ansari 2020 0.875 0.391 13.6% 240[1.11,5.16] -
Bril 2019 0615 022 429% 1.85[1.20, 2.89] ——
Fattouh 2018 1.082 0371 15.1% 295[1.43,6.11] —
Ganju 2019 0604 027 285% 1.83[1.08,3.11] —
Total {95% Cl) 100.0%  205[1.55 2.72] <

or more points according to the Clavi

en-Dindo classification).

¢) Reported HRs of sarcopenia regarding to occurrence of severe postoperative complications (three

Test for overall effect: Z = 4.56 (P < 0.00001)

Odds Ratio Odds Ratio
Study or Subgroup  log[Odds Ratio] SE Weight IV, Random, 95% Cl IV, Random, 95% ClI
Alwani 2020 2071 0453 401%  7.93(3.26,19.28] — i
Ansari 2020 0.964 0544 29.9% 2.62[0.90, 7.62] T
Bril 2019 1496 0543 30.0%  4.46[1.54,12.94] — &
Total (95% CI) 100.0%  4.79[2.52,9.11) <
. 2= . i2 = - - 2= 0, ] ] ] ]
Heterogeneity: Tau? = 0.06; Chi? = 2.48, df = 2 (P = 0.29); = 19% 005 02 1 : 20
Test for overall effect: Z=4.78 (P < 0.00001)
d) Adjusted HRs of sarcopenia relating to DFS
Hazard Ratio Hazard Ratio
Study or Subgroup  log[Hazard Ratio]  SE Weight IV, Random, 95% Cl 1V, Random, 95% Cl
Ansari 2020 0.642 0446 5.9% 1.90 [0.79, 4.55] n
Huiskamp 2020 1.331 0852 16%  3.78[0.71,20.10]
Jung 2019 1.118 0458 58% 3.06 [1.25, 7.51] -
Tamaki 2019 0655 0355 9.3% 1.930.96, 3.86] T
van Rijn-Dekker 2020 0401 0123 77.6% 1.49[1.17, 1.90] 1 ]
Total (95% CI) 100.0% 1.64[1.33,2.03] ¢
i T2 = CChiz = = - ‘12 = ()0 | | | }
Heterogeneity: Tau? = 0.00; Chi* = 3.71,df=4 (P=0.45); I = 0% '0‘05 0!2 1 5'. 20'

Figure 7: Forest plots of reported HRs of sarcopenia for different treatment modalities used and
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Another meta-analysis of 3,461 patients [46] included 11 studies with measures of body
composition not limited at L3 (3 studies derived L3 values from equations using measures
taken at C3, and 1 study measured at the second thoracic vertebra (T2)). Pre-treatment
sarcopenia was independently associated with reduced: overall survival OS (Figure 8
[46]), 3-year OS, disease-free survival, prolonged radiotherapy breaks, and
chemotherapy-related toxicities. However, the studies’ heterogeneity in HNC diagnosis,
ethnicity, definition of sarcopenia, CT level of evaluation, and skeletal muscle index
threshold value, led to very low certainty of evidence.

Sarcopenia and Overall Survival
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Figure 8: Multivariable hazard ratio for predictive value of sarcopenia on overall survival at pre-
and post- treatment time points (muscle status evaluation was undertaken at L3, C3, or T2)

Furthermore, a large cohort study of 750 head and neck cancer patients, treated with
definitive (chemo)radiotherapy, that used skeletal muscles at level C3 in order to assess
sarcopenia, confirmed that sarcopenia is an independent adverse prognostic factor for
OS and DFS, especially in patients with worse World Health Organization Performance
Status (WHO PS 1-3), or locally advanced disease, (stage IlI-IV) [47]. Apart from worse
survival outcomes the authors found in multivariable association models, that sarcopenia
is associated with physician-rated xerostomia six months after treatment (OR 1.65, p =
0.027) and physician-rated dysphagia six and twelve months after treatment (OR 2.02, p
= 0.012 and 2.51, p = 0.003, respectively). Interestingly, the study also showed that in
oropharyngeal cancer patients, survival was more determined by pl6 status than by
sarcopenia. Figure 9 [47] shows Kaplan-Meier curves of OS of the aforementioned study
for different patient subgroups. In another study that investigated the prevalence and
impact of sarcopenia on DFS and OS in advanced oropharyngeal cancer, see Table 4
[48], sarcopenia was associated with increased mortality and recurrence but was not
statistically significant in survival models.
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status in patients with oropharyngeal cancer (p1l6 negative, p = 0.541 (E) and pl16

positive, p = 0.150 (F)).

Figure 9: Kaplan-Meier curves of overall survival in head and neck cancer patients treated with
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Table 4: Multivariable Cox proportional hazards model of OS and DFS OS in advanced stage
oropharyngeal cancer

Hazard Ratio 95% CI p-value
oS HPV 16 0.463 (0.235-0.909) | 0.25
Sarcopenia 1.943 (0.999-3.779) | 0.50
DFS HPV 16 0.403 (0.201-0.810) | 0.11
Sarcopenia 1.926 (0.961-3.862) | 0.65

Finally, one of the few studies that have investigated the impact on cost, while focusing
on CT-defined sarcopenia, suggests that, compared to patients who were never
sarcopenic, the mean cost of unplanned admissions was higher for patients who were
sarcopenic either pre-treatment or post-treatment, as well as for those who became
sarcopenic during care [49]. Unplanned admissions usually occur due to increased
susceptibility to treatment toxicities, malnutrition, dehydration, and psychosocial impact.
Therefore, understanding the impact CT-defined sarcopenia has on outcomes for these
patients, holds possible important implications regarding nutrition interventions and
individualized care.

1.B.3.2 Myosteatosis

There are very few studies assessing myosteatosis on survival outcomes for patients with
head and neck cancer. Myosteatosis is usually assessed through calculation of mean
muscle attenuation on CT scan (MACT) for the entire L3 muscle area [50]. MACT
threshold values were defined for both sexes according to body mass index (BMI) using
optimal stratification based on log-rank statistics to best separate patients with respect to
time to death (Table 5 [50]).

Table 5: MACT Threshold values significantly associated with low survival

BMI Category (kg/m2) MACT (HU)

Men Women
Underweight (< 20.0) <41 <41
Normal weight (20.0 to 24.9) | <41 <41
Overweight (25.0 to 29.9) <33 <33
Obese (= 30.0) <33 <33

In one of those few studies [51] the very high prevalence of pre-existing myosteatosis (in
over 90% of participants) prevented any meaningful statistical comparison with the very
small non-myosteatotic group, and therefore no significant association with outcomes
was observed. However, another retrospective observational study [49], found that CT-
defined myosteatosis holds clinically meaningful prognostic value and recommended
muscle status evaluation in routine clinical practice, when treating patients with head and
neck cancer. In the aforementioned study, pre-treatment myosteatosis was significantly
associated with overall survival both in univariate and multivariate analysis (adjusted for
possible confounders including gender, age, TNM stage, treatment modality, body mass
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index category, tobacco use, alcohol use and human papilloma virus status). The
corresponding survival curves are shown in Figure 10 [49] .
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Figure 10: Kaplan—Meier survival estimates of overall survival with log-rank comparisons of
patients with and without myosteatosis at pre-treatment and post-treatment

1.B.3.3 Frailty

Frailty has been found as an important determinant of many health outcomes across
various surgical specialties and is an emerging predictor of outcome in elderly HNC
patients. Although functional and cognitive impairment, depressive symptoms and social
isolation had been associated with high risk of worse prognosis in older patients with
head and neck cancer, since 2017 no studies reported association between frailty and
adverse health outcomes [52]. However, the current literature demonstrates the utility of
frailty as a predictor of perioperative mortality and morbidity, with recent studies
supporting a significant association between frailty and perioperative outcomes, length of
hospital stay, readmission rate, and likelihood of discharge to short-term or skilled nursing
facilities [28]. In a prospective study with 274 patients recruited [53] , frailty was a
predictor of both type and severity of complications and an independent predictor of
length of hospital stay. Frailty and functional assessment can help surgeons identify
patients at risk of adverse postoperative outcomes, still further research is needed to
develop frailty screening measures in order to risk-stratify patients and optimize
modifiable factors preoperatively.

1.B.3.4 Nutritional status

The Nutritional Risk Screening-2002 (NRS-2002) and Patient-Generated Subjective
Global Assessment (PG-SGA) are the most common tools used for nutritional
assessment [54] and high nutritional risk according to the NRS-2202 and worse nutritional
status according to the PG-SGA are positively associated with a longer hospital stay and
mortality. The PG-SGA is a subjective nutritional assessment tool used in oncology and
other chronic catabolic conditions, including questions about symptoms of nutritional
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impact and recent weight loss. The PG-SGA allows to classify patients as well-nourished
(A) or either moderately (B) or severely (C) malnourished.

A retrospective, observational study of 277 patients who had completed radiotherapy
(RT) or chemoradiotherapy (CRT) of curative intent for HNC aimed to describe body
composition profile and examine the impact of nutritional status as well as independently
and concurrently occurring body composition features on overall survival, treatment
completion, unplanned admissions, and length of stay [55]. PG-SGA was used to
determine nutritional status, tissue-density data were derived at the third lumbar vertebra
(L3) with sarcopenia and myosteatosis defined by published, sex-specific threshold
values stratified by body mass index for skeletal muscle index (cm2/m2) and skeletal
muscle radiodensity (SMR, Hounsfield Unit). The prevalence of malnutrition was 24.9%
of sarcopenia 52.3%, of myosteatosis 82.3%, and of concurrently occurring sarcopenia
and myosteatosis 39.7% (Figure 11[55]).
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Figure 11: Euler diagram denoting pre-treatment combination of computed tomography-defined
body compaosition features and baseline nutritional status

Malnutrition was found to be a more powerful prognostic indicator than CT-defined
skeletal muscle depletion, independently associated with reduced OS in patients
undergoing radiotherapy or chemoradiotherapy of curative intent for HNC. Figure 12 [55]
shows Kaplan—Meier survival estimates of overall survival with log-rank comparisons for
combination of skeletal muscle status features and for nutritional status. Moreover,
malnourished patients were more likely to require unplanned hospital admission with 58%
of severely malnourished patients vs. 34% of well-nourished patients admitted (p =
0.021), Therefore, the authors suggested that CT-defined skeletal muscle depletion
studies should also measure nutritional status using validated methods in order to

develop more accurate high risk stratification criteria for the complex group of patients
with head and neck cancer.
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Figure 12: Kaplan—Meier survival estimates of overall survival with log-rank comparisons for
combination of skeletal muscle status features (a) and for nutritional status (b)

1.B.4 Reviewing the literature on how sarcopenia is assessed from computed
tomography in patients with head and neck cancer and how widespread is each
method when addressing sarcopenia’s prognostic role

CT allows the evaluation of muscle quality and fatty infiltration [56]. Abdominal CT-
imaging at the level of the third lumbar spine vertebra (L3) has been broadly used to
assess sarcopenia, as the cross-sectional area (CSA) of the skeletal muscles measured
at the level of L3, correlates well with the total-body skeletal muscle mass [57]. In HNC
patients though, such scans are rarely available. Before 2016 there was hardly any
published literature regarding the effect of sarcopenia in HNC patients, probably because
of the absence of a widely available diagnostic tool to assess sarcopenia in those
patients. In 2016, a study [58] investigated the feasibility of using head and neck CT
imaging in order to assess skeletal muscle mass in HNC patients. The authors compared
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muscle CSA at the level of C3 to L3 and correlated skeletal muscle mass assessed on
head and neck CT-scans with abdominal CT imaging, concluding that assessment of
skeletal muscle mass on head and neck CT-scans is feasible and may be an alternative
to abdominal CT-imaging. Therefore, C3-level CT-scans, which are routinely performed
in HNC patients, offer a cost-effective and widely available tool to determine sarcopenia,
allowing for assessment of sarcopenia in HNC patients without additional imaging.

The literature review was performed by following the PRISMA 2020 (preferred reporting
items for systematic reviews and meta-analyses) statement [59] (Figure 6). The
bibliographic databases PubMed/MEDLINE [60] and Scopus were searched manually for
relevant published studies reporting how sarcopenia is assessed from computed
tomography in HNSCC patients, using the keywords: ((computed tomography) AND
sarcopenia) AND (head and neck). The eligibility criteria for including studies in the
present review were the following: (i) studies reporting the effectiveness of head and neck
or thoracic CT images to assess SMM in patients with HNC and/or (ii) studies addressing
the prognostic role of sarcopenia in HNSCC patients. Studies were excluded from this
review based on the following exclusion criteria: (i) not directly assessing sarcopenia, (ii)
cut-offs were determined by optimal stratification of cohort’s data according to the
outcome of interest (usage of outcome-oriented optimal cut-off methods) (iii) reviews,
editorials, commentaries. Prognostic studies where data-oriented stratification methods
were used, such as using median or quartiles for cut-off values, were not excluded.
Moreover, studies using optimal cut-off values for sarcopenia prediction, were also
included. Notably studies using optimal cut-offs previously proposed from different
cohorts — studies were included, for evaluation purposes. Collectively, 76 relevant records
were retrieved from PubMed (up to 06 April 2023) (Figure 13) and 85 records from
Scopus. 85 records were removed before screening 72 duplicates and 13 reviews and
letters. After initial screening, 26 titles and abstracts were excluded because they were
irrelevant to our study. A total of 50 full-text articles were assessed for eligibility. By
applying strict inclusion and exclusion criteria, 31 studies were included in this review
(Fig. 14). The basic characteristics of the included studies are summarized in Table 6.
PubMed results by Year
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Figure 13: Relevant records retrieved from PubMed by year (date of search: 06 April 2023)
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Identification of studies via databases and registers

Records identified from:
PubMed (n = 76)
Scopus (n = 85)

Records removed before screening:
Duplicate records removed (n = 72)
Records removed for other reasons
(n=13)

Records screened
(n=76)

Records excluded after Title/Abstract

screening (n=28),

causes:

s Not HNSCC (n=8)

« Not directly assessing sarcopenia
(n=7)

« (Other (mostly irelevant titles)
(n=11)

Reports sought for retrieval

Reports not retrieved
(n=0)

(n= 50)

Reports assessed for

eligibility

(n=50)
Studies included in review
(n=31)

Reports excluded (n=19),

causes:

« volumetric body composition studies
where either sarcopenia was not
directly assessed, or
outcome-oriented methods were
used on the study's cohort for
establishment of sarcopenia’s
optimal cut-off values (n=16)

« Not only squamous cell carcinomas
in the prognostic study’s cohort
(n=3)

Figure 14: PRISMA 2020 flow diagram
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Table 6: Main characteristics of the eligible studies included in the review, that have investigated the feasibility to use alternate to L3 skeletal muscle
areas in order to assess sarcopenia in patients with HNSCC

Skeletal Studies Comparison with gold | Supports Sarcopenia cut-off values and/or formula for L3 prediction
muscle area investigating | standard (L3); variable | usage for
feasibility tested for correlation (r, | assessing L3?
p value)
Cervical C2 |[61] SMI (r=0.810, p<0.001) Yes Men: 9.3cm?/m?, Women: 8cm?/m?
?:;/r;?bral Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic
performance of these values in the diagnosis of sarcopenia via ROC curve
C3 | [62] Predicted L3-SMI | Yes L3-CSA = 124.838 + [1.881*C3-CSA] — [24.687*sex] — age +
(r=0.883, p<0.001) [0.472*Weight] (male:1, female:2)
Note: The prediction model for estimating L3-CSA in this study’s predominantly overweight cohort was found to have
better agreement, and specificity than that of [63] suggesting probable better effectiveness in recognizing sarcopenic
obesity.
[64] C3-CSA (r=0.810, | Yes L3SMI cut-off for men:<55.0cm?/m?, for women:<36.6cm?/m?
p<0.001), predicted L3- L3-CSA=-6.310 + 1.845*C3-CSA + 1.101*Weight + 4.923*Sex (female
CSA (r=0.875, p<0.0001) =-1, male =1)
Note: X-tile was used for cut-offs establishment, which applies an outcome orientated optimal cut-off method.
[65] SMA (men  (r=0.77, | Yes Men: 14cm?/m?, Women: 11.1cm?/m?
p<0.001), women (r=0.80,
p<0.001))
Note: ROC curves were generated to show the general predictive ability of C3 to predict L3-defined sarcopenia and
Youden’s Index was used to determine the optimal C3 cut-off value for predicting sarcopenia
[66] Predicted L3-CSA | Yes, but The [63] formula for L3 prediction was used.

(r=0.86, p<0.001)

Each patient was classified as sarcopenic or not by applying the sex and
BMI-specific threshold values at L3 [50]

Note: Sarcopenia was diagnosed in 26%-(L3), 45%-(C3), with weak agreement (sensitivity 79.2%, specificity 66.7%).
The study highlighted the limitation of applying predefined prediction formulas on different populations.

P. T. Moumoulidis

37




Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data

[67] C3-CSA (r=0.75, p<0.01), | Yes, but
predicted L3-CSA
(r=0.82, p<0.01)

The [63] formula for L3 prediction was used

Note: There is moderate agreement in the identification of patients with low SMM based on the estimated lumbar SMI
(based on measurement at C3) and actual LSMI

[68] C3-SMM in non- | No
sarcopenic patients (r =
0.876, p<0.001), while in
sarcopenic patients (r =
0.381, p=0.003).
Predicted L3-SMM in
non-sarcopenic patients
(r>0.9, p<0.001), whereas
in sarcopenic patients (r =
0.7633, p<0.0001).

Predicted L3 = 45.9183 + 0.9736*C3-PVM + 1.2863*Weight —
0.4414*Age — 18.2159*Sex (male:0, female:1)

Note: correlation between L3 and C3 SMMs
diagnostic accuracy. Therefore, C3 SMM may not be a strong predictor for L3 SMM in sarcopenic HNC patients.

was weak in sarcopenic patients and the prediction model showed poor

[69] C3-SMM (r=0.421, | Yes
p<0.001), Predicted L3-
SMM(r=0.721, p<0.001)

56.3cm?
L3-SMM= 81.059 + 0.874*C3-SMM + 0.956*Weight — 28.127* Sex -
0.257*Age

Note: supports usage of prediction model incl
it significantly increased the L3-CSA correlation power. Median C3- SMM value was used as cut-off.

uding the strongest predictive factors (sex, age, weight, and C3-CSA) as

[61] SMI (r=0.877, p<0.001) | Yes

Men: 9.3cm?/m2, Women: 6.3cm2/m?

Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic
performance of these values in the diagnosis

of sarcopenia via ROC curve

[63] C3-CSA (r=0.785, | Yes
p<0.001), Predicted L3-
CSA (r=0.891, p<0.001)

L3-CSA= 27.304 + 1.363*C3-CSA -0.671*Age + 0.640*Weight +
26.442*Sex (female:1, male:2)

C4 | [61] SMI (r=0.827, p<0.001) Yes

Men: 10.8cm?/m2 Women: 9.5cm?2/m?

Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic
performance of these values in the diagnosis of sarcopenia via ROC curve
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Thoracic | T2 [70] Predicted L3-CSA | Yes L3-CSA = 174.15+[0.212*T2-CSA] - [40.032*Sex] - [0.928*Age] +
vertebral (r=0.796, p<0.001) [0.286*Weight] (male:1, female:2)
level T4 | [71] Muscle CSA (=0.791, | Yes L3-CSA = 34.48 + 0.78 * T4- CSA
p<0.05).
Note: measurements at the level of T4 can be an alternative in patients with extensive localized disease or post-
treatment necks
T12 | [72] Muscle CSA (r= 0.915 | Yes L3-CSA = 14.143 + 0.779*T12-CSA - 0.212*Age + 0.502*Weight +
95%Cl [0.886-0.937], 13.763*Sex (female:1, male:2)
p<0.05)
Masticatory [73] Masseter muscle volume | No patients present in the lowest quartile of MCSA for their specific gender
(Masseter corelation with L3-CSA as “low MSM/I”
pterygoid, (r=0.531, p<0.001)
temporalis) [74] Masticatory SMI (r=0.901, | Yes MSMI of <5.5cm?m?2 was an independent predictor of sarcopenia
p<0.001) (hazard ratio = 5.37, p < 0.001)
L3SMI= 7.21*MSMI + 7.56
Note: ROC curve analysis was used to assess the ability of the Masticatory SMI to identify sarcopenia, and Cox logistic
regression was used to identify predictors of sarcopenia
Infrahyoid [75] SMI (r=0.434, p<0.001) No 16.88 cm?/m?

Note: cut- off value according to ROC curve analysis using Youden'’s index by referencing the overall survival (OS).
L3SMI and IHSMI were moderately correlated. However, IHSMI might be a good predictor for OS.

Abbreviations: SMI, skeletal mass index; SMA, skeletal muscle area; SMM, skeletal muscle mass; r, Pearson correlation coefficient; CSA, cross-sectional
area; ClI, confidence interval; IHSMI, infrahyoid skeletal muscle index; L3SMI, L3 skeletal muscle index; OS, overall survival; ROC, receiver operating
characteristic; PVM, paravertebral muscle; MSMI, masticatory skeletal muscle index;

Overall note: Several studies have suggested formulas and cut-off values related to sarcopenia. However, the results varied considerably, possibly due to
different races, regions, age groups and disease conditions including stage (all stages vs locally advanced carcinomas), primary site and virus relation (e.g.,
HPV (+) oropharyngeal carcinomas).
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Table 7: Main characteristics of the eligible studies included in the review that have addressed the prognostic role of sarcopeniain patients with HNSCC
without using outcome-oriented methods for sarcopenia cut-off values establishment

Skeletal | Studies | Studies on | Number of | Sarcopenia assessment and | Survival statistic, p value
muscle in total | the patients (N); | patient stratification
area per prognostic | Primary; Stage;
area role of | Outcome
sarcopenia
L3 9 [51] N=101; All sites | Sarcopenia was defined according | 5-year OS favoured those without post-treatment
(mostly pl6 | to [50] : for females: SMI<41cm?/m? | sarcopenia (HR=0.37, 95%CI [0.16-0.88], p=0.06). No
positive OPC); All | and for males: SMI<43cm?/m? for | significant differences found in OS regarding the presence
stages; OS BMI < 24.9kg/m? or SMI<53 m?/m? | of baseline sarcopenia.
for BMI 2 25 kg/m?. Both baseline
and post-treatment  sarcopenia
were assessed.

[76] N=216; All sites; | Cut-off values for men: | 3-year OS was 75% versus 82% (p=0.1) and 3-year DFS
Stages II-IV; OS, | SMI<43.3cm?/m? and for women: | was 70% versus 85% (p=0.00015) for sarcopenic and non-
DFS SMI<33.09cm?/m? (lowest gender | sarcopenic  patients, respectively. Pre-treatment

specific quartile values of our | sarcopeniawas an independent negative prognostic factor
population) according to [47] for DFS (HR=2.174, p=0.0001).

[77] N=190 (patients | Sarcopenia was defined as | Patients with sarcopenia before treatment had about a 4.5-
aged 265 years | SMI<52.4cm?m? for men and | fold increased risk of overall recurrence or death. 5-year
who underwent | SMI<38.5cm?/m? for women based | OS rates of patients without and with pre-treatment
curative surgery); | on [78] sarcopeniawere 79.7% and 20.4% respectively (p<0.001).
All  sites;  All 5-year DFS rates of patients without and with pre-
stages; OS, DFS, treatment sarcopenia were 82.2% and 26.0%, respectively
CSS, LRFS (p<0.001). Sarcopenia was also the significant factor of

cause-specific death (HR=5.33, 95%CI [3.05-9.31], p<
0.001) and local control (HR=5.89, 95%CI [2.94-11.79],
p<0.001). In multivariate analyses, sarcopenia remained
strongly associated with OS and DFS (p<0.001).

[79] N=113; All sites; | Sarcopenia was defined based on | Sarcopenic patients had poorer OS compared to non-

All stages; OS

sex  specific  cut-off values

established by [78]

sarcopenic (Log-rank p=0.004). When stratified by BMI
group, OS in sarcopenic patients remained significantly
poorer, regardless of BMI group prior to treatment.
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[80]

N=258; All sites;
Stages Ill/IV; OS,
DFS

Sarcopenia was defined based on
sex  specific  cut-off values
established by [78]

Sarcopenia was significantly associated with DFS and OS
(all p<0.05). In multivariable analysis both pre-treatment
and post-treatment sarcopenia remained independent
variables predictive of DFS (pre-treatment sarcopenia:
HR=3.06, 95%CI [1.25-7.54], p=0.015; post-treatment
sarcopenia HR=3.34, 95%CI [1.70-6.55], p<0.001) and
OS (pre-treatment sarcopenia: HR=3.93, 95%CI [2.36-
6.56], p<0.001; post-treatment sarcopenia HR=2.92,
95%CI [1.68-5.07], p<0.001).

[48]

N=113;
Oropharynx,
Stages -IVC;
OS, DFS

Sarcopenia was defined using SMi
thresholds proposed by [50].

Log-rank tests of differences in survival distributions did
not reveal differences across DFS (p=0.065) but did
demonstrate a statistically significant difference with OS
(p=0.049). However, sarcopenia was not a statistically
significant predictor of OS (HR=1.925, 95%CI [0.993-
3.735], p=0.053) or DFS (HR=1.901, 95%CI [0.950-3.802],
p=0.069) on univariable analysis.

[81]

N=221; All sites;
Stages Ill/IV; OS,
PFS

Sarcopenia was defined as
SMI<49cm?/m? for men and
SMI<31cm?/m? for women based
on previous studies of the same
ethnicity (Korean). [82], [83]

Sarcopenic patients showed poorer OS than non-
sarcopenic patients (3-year OS: 62 vs. 76%, p=0.037), but
PFS rates were not significantly different between the 2
groups (3-year PFS: 46.6 vs. 55.6%, p=0.187).

[84]

N=158; Larynx
and Oropharynx;
All stages; OS,
PFS

Sarcopenia was defined based on
sex specific  cut-off values
established by [78]

Sarcopenia was not independently predictive for increased
risk for overall death and disease progression

[85]

N=190
(oropharyngeal=1
39, non-

oropharyngeal=5
9), All sites; All
stages; OS, CSS,
LRFS

Sarcopenia was defined based on
sex  specific  cut-off values
established by [78]

Pre-treatment sarcopenia was significantly associated
with shorter OS (HR=1.92, 95%CI [1.19-3.11], p=0.007)
and CSS (HR=1.87, 95%CIl [1.03-3.36], p=0.03). No
significant difference in LRFS was observed (HR=1.38,
95%CI [0.66—2.89], p=0.34)
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Note: Separate analysis regarding primary site was performed finding that sarcopenia was associated with a decrease
in OS (HR=1.89, 95%CI [0.94-4.23], p=0.09) and CSS (HR=2.85, 95%CI [1.20-7.20], p=0.02) in patients with non-
oropharyngeal HNSCC, but not in those with oropharyngeal carcinomas

C3

[86] N=426; OSCC; All | Predicted L3 [63], previous cut-off | Sarcopenia did not seem to cause a statistically significant
stages; OS established in the literature [87] reduction in OS in patients with OSCC (HR=0.996, 95%CI
[0.732-1.354], p=0.979), however,
Note: sarcopenic obesity showed a meaningful negative prognostic impact on OS (HR=0.985, 95%CI [0.424-2.286],
p=0.972)
[65] N=536; All sites; | Optimal C3 cut-off value for | C3 sarcopenia was independently associated with
All stages; OS predicting sarcopenia (C3-SMI cut- | reduced overall survival in men (HR = 2.63; 95%CI [1.79,
off for men: 14cm?m? and for | 3.85], p<0.0001) but not women (HR =1.18, 95% CI [0.76,
women: 11.1cm?/m?) 1.85], p=0.46)
[88] N=300, Predicted L3 [63], previous cut-off | As per cut of criteria used nearly 91% of the patient cohort
Oropharynx, established in the literature [89] were sarcopenic. Sarcopenic patients had a worse DFS
Supraglottic
Larynx,
Hypopharynx;
stages lll/IV; DFS
[90] N=164; All sites; | Predicted L3 [63], previous cut-off | The sarcopenia group had poorer 3-year OS (73.3% vs.
All stages; OS, | established in the literature [87] 94.7%, p<0.01). There were no significant differences in 3-
DFS, LRFS year DFS (p=0.084) or 3-year LRFS (p=0.34). In the
multivariate analysis, sarcopenia (HR=2.95, 95%CI [1.34—
6.49], p<0.01) was significantly associated with poor OS.
[91] N=,174 OSCC; | Predicted L3 [63], cut-off values for | The 5-year OS rate was 54.0% in the sarcopenic group
Stages IlI-IVB; | sarcopenia were set at the lowest | and 79.0% in the non-sarcopenic group (p=0.001); the
OS and DFS tertile for SMI corresponding 5-year DFS rates were 48.0% and 78.3%,
respectively (p=0.006)
[47] N=750; All sites; | Predicted L3 [63], cut-off values for | Three-year OS and DFS in sarcopenic patients were 56%

All  Stages; OS
and DFS

sarcopenia were set at SMI
according to lowest gender specific
guartile

and 48% versus 75% and 69% in non-sarcopenic patients,
respectively (both p<0.001). When stratified by stage of
disease significant difference was found only in advanced
stages (stage I-ll, p=0.532 and stage IlI-IV, p<0.001).
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[69] N=305; All sites; | Median C3-SMM was used as cut- | 5-year OS rates of low and high C3 SMM were 46.3% and
Stages IlI/IV; OS | off 87.6%, respectively (p<0.001). Multivariate analysis
showed that C3 SMM remained independent variable
predictive of OS (p<0.001)
[92] N=246; All sites; | Predicted L3 [63], cut-off values for | While sarcopenic patients had worse survival outcomes
Stages llI-IVB; | sarcopenia according to gender | overall, this was driven by patients without p16-positive
OS and PFS specific SMI thresholds proposed | oropharyngeal cancers. In pl6-positive oropharynx
by [50] patients, there was no difference in either OS (p=0.82) or
PFS (p=0.38) in sarcopenic compared to non-sarcopenic
patients. In all other patients, the difference in OS (p=0.01)
and PFS (p=0.02) remained significant, with the estimated
OS at 3 years 71.2% and 53.2%, and estimated PFS at 3
years 78.1% and 56.3% in patients without and with
sarcopenia, respectively.
Masseter [73] N=99; All sites; All | Gender specific low quartile of | significant difference in OS, p=0.015
stages (mostly | MCSA
/1v); OS
[93] N=111; All sites; | sarcopenia defined using as cut-off | significantly associated with worse OS, p=0.038
All stages; OS the gender based mean MCSA
T2 [70] N=111; All sites; | Predicted L3 no significant difference in 5-year CSS, p=0.191
All stages;

cancer-specific
survival (CSS)

Low quartile T2-SMI

significantly worse 5-year CSS, p=0.003

Abbreviations: SMI, skeletal mass index; CSS, cancer-specific survival; OS, overall survival, MCSA, masseter cross-sectional area; SMM, skeletal muscle
mass; OSCC, oral squamous cell carcinoma; PCF, pharyngocutaneous fistula; TL, total laryngectomy; DFS, disease free survival; PFS, progression free
survival; OPC, oropharyngeal carcinoma; LRFS, locoregional recurrence-free survival;

P. T. Moumoulidis

43




Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data

1.B.5 Application of radiomics and machine learning in head and neck cancer

In general machine learning (ML) could be described as computational algorithms using
data to improve performance or make accurate predictions. In the field of head and neck
cancer, artificial intelligence (Al)-based prediction models have been created for both
oncologic outcomes, treatment toxicity, and pathological findings (Figure 15) [94].
Especially in the field of Radiation Oncology machine learning methods have been
applied in auto-segmentation, treatment planning optimization, and prediction of
oncological and toxicity outcomes [95].
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Figure 15: Applications of Al —based prediction models in head and neck oncology

In patients with HNSCCs, treatment choices are made aiming to achieve disease control
while maintaining an acceptable treatment toxicity. The ability to accurately predict
treatment outcomes through ML models, allows for personalized treatment intensity
choices [94]. However, precision medicine using radiomics and artificial intelligence is
heavily dependent on the quality, robustness, and generalizability (model's ability to
perform well in new unseen data) of generated prediction models [96]. Critical challenges
regarding model generalizability are false-positive associations, overfitting and
underfitting, unbalanced datasets, features multicollinearity, and model result
interpretability [96]. A major limitation of application of radiomics and ML in head and neck
cancer is the small training datasets and the differences in the sizes of the training and
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test datasets [95]. The patient sample size can cause incorrect model fitting and, hence,
make a model ungeneralizable to new data. Moreover, unbalanced data could be
considerably challenging, even in representative cohorts, and might result in
unrealistically high model’s performance metrics.

Training in ML can be subdivided in two major subcategories: supervised learning, where
machines are trained using labelled training data and unsupervised learning, where data
are unlabelled, and machines make use of the intrinsic relationship within the data for the
purpose of clustering these data. A systematic review that investigated the use of ML
models in head and neck cancer radiotherapy, including 48 studies in total, reported the
application of numerous machine learning algorithms as presented in Figure 16 [95].
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Figure 16: Classification of the machine-learning algorithms included in the analysis. ANN,
Artificial Neural Network; CNN, Convolutional Neural Network; FCNN, Fully CNN; HMM, Hidden
Markov Model; k-NN, k-Nearest Neighbour; MARS, Multiadaptive Regression Splines; PCA,
principal component analysis; PCR, principal component regression; SVC, support vector
classifier; SVM, support vector machine.

There are many challenges to overcome before radiomics and machine learning methods
become integrated into everyday clinical practice. Collaboration between institutions is
essential both for the significant augmentation of the data available, and for the
standardization of protocols used for validating the models. Notwithstanding, in the new
era of precise medicine, the introduction of new machine learning-derived biomarkers,
able to provide significant prognostic power, seems a safe bet [95].
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Nonetheless, one should be critical when assessing studies regarding big biomedical
data analysis. Due to the inherent complexity of machine learning methods, and the
flexibility in specifying these models, results are often insufficiently reported in research
articles. Therefore, reliable assessment of those models’ validity and consistency can
become quite hard. Luo et. al generated a set of guidelines to enable correct application
of machine learning models and consistent reporting of model specifications and results
in biomedical research [97]. Interestingly, Volpe et al. [95] in their systematic review
regarding machine learning for head and neck cancer used an adapted version of the
gualitative checklist originally developed by Luo et al. for the quality assessment of the
included studies. The organization of the checklist was maintained with the following
subsections being rated for each study: “Title and abstract”, “Introduction”, “Methods”,
“‘Results”, and “Discussion” allowing for a maximum achievable global score of 58 in their
modified Luo classification (Table 8). Results regarding their quality assessment of the
included studies are shown in Figure 17 and Figure 18 [95].
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Figure 17: Boxplots for global and methodological scores (modified Luo classification) for the
studies included in Volpe et al. systematic review, categorized according to the task of the
proposed algorithm(s); Autosegmentation, Outcome, Toxicity, Treatment (Tr.) Planning
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Figure 18: Boxplots representing global and methodological scores (modified Luo classification)
for the studies included in Volpe et al. systematic review, categorized per the presence of texture
analysis
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Table 8: Luo et al. modified quality check list for assessing studies developing and reporting machine learning predictive models in biomedical research
as proposed by Volpe et al.

TITLE
Nature of study ‘ 1 ‘ Identify the report as introducing a machine learning-based model
ABSTRACT

Sstl;;lncrt#;?; 2 | Background
3 | Objectives
4 | Data sources
5 | Performance metrics of the model or models, in point estimates
6 | Performance metrics of the model or models, in confidence intervals
7 | Conclusion including the practical value of the developed machine learning-based model or models

INTRODUCTION

Rationale 8 | ldentify the clinical goal

9 | Review the current practice of any existing models

10 | Review the prediction accuracy of any existing models
Objectives 11 | State the nature of study being a machine learning-based model
12 | Define the target of the model

13 | Identify how task resolution may benefit the clinical goal

METHODS
Describe the
setting
Define the
prediction problem

14 | Identify the clinical setting for the target machine learning-based model

15 | Define a measurement for the model task (e.g. patient-based or outcome-based)

16 | Determine that the study is retrospective or prospective

17 | Identify the problem to be prognostic, diagnostic, classification-based, etc.

18 Determine the form of the model: (1) classification if the target variable is categorical, (2) regression if the target
variable is continuous, (3) survival prediction if the target variable is the time to an event

19 | Explain practical costs of prediction errors (e.g. implications of underdiagnosis or overdiagnosis)

20 | Defining quality metrics for the model/models
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21

Define the success criteria (e.g. based on metrics in internal validation or external validation in the context of the
clinical problem)

Prepare data for
model building

22

Identify relevant data sources

23

States that relevant data sources were approved by ethics committee or Institutional Review Board

24

States the inclusion criteria for data

25

States the exclusion criteria for data

26

Describe the time span of data

27

Describe the sample or cohort size

28

Define the observational units on which the response variable is defined

29

Define the observational units on which the predictor variable(s) are defined

30

Define the predictor variables. Extra caution is needed to prevent information leakage from the response variable
to predictor variables

Data (feature) pre-
processing

31

Describe the data cleaning performed

32

Describe the transformation performed

33

Remove outliers with impossible or extreme responses

34

State any criteria used for outlier removal

35

State how missing values were handled

Basic statistics of
the data set

36

Describe the basic statistics of the dataset, particularly of the response variable

37

Classification vs. Regression Problem: If classification problem, described ratio of positive to negative classes. If
regression problem, describe the distribution of the response variable (e.g. time to event)

38

Define the model validation strategies: Internal validation: must specify validation strategy (e.g. random split, time-
based split, and patient-based split) (+1 pt),
External validation (+1 pt)

39

Define the validation metrics. (e.g. for regression problems, the normalized root-mean-square error should be
used. For classification problems, the metrics should include sensitivity, specificity, positive predictive value,
negative predictive value, area under the ROCd curve, and calibration plot)

40

Retrospective vs. Prospective: For retrospective studies, split the data into a derivation set and a validation set.
For prospective studies, define the starting time for validation data collection
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Build the predictive

model 41 | Identify independent variables that predominantly take a single value (eg, being zero 99% of the time)

42 | Report the number of independent variables

43 Determine a set of candidate modeling techniques (eg. logistic regression, random forest, or deep learning). If
only one type of model was used, must also justify the decision for using that model

44 | Define the performance metrics to select the best model
Specify the model selection strategy. (e.g. common methods include K-fold validation or bootstrap to estimate the

45 | lost function on a grid of candidate parameter values. For K-fold validation, proper stratification by the response
variable is needed)

RESULTS
Report the predictive performance of the final model in terms of the validation metrics specified in the methods
Report the final section (+1 pt) : :
Report the parameter estimates in the model (+1 pt)
model and 46 . , . .
Report the parameter estimates' confidence intervals. (+1 pt)
performance When the direct calculation of confidence intervals is not possible, report nonparametric estimates from bootstrap

samples

47 | If possible, report what variables were shown to be predictive of the response variable

48 | Designate subpopulation performance characteristics

DISCUSSION

49 | Interpretation of the final model

50 | Comparison with other models in the literature should be based on confidence intervals
Report the clinical implications derived from the obtained model (e.g. report the dollar amount that could be saved

51 | with better prediction. How many patients could benefit from a care model leveraging the model prediction? And
to what extent?)

Limitations of the 50 Sufficient data available for a good fit of the model. In particular, for classification, there should be a sufficient
model number of observations in both positive and negative classes

53 Assumed \_/ariances in data format: For example, input data format (e.g. inter-scanner variability, sample size,
difference in sequences used) or output data format

54 | Potential bias of the data used in modeling

55 | Generalizability of the data
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2. MATERIAL AND METHODS

2.1 Material

A Head and Neck PET-CT collection from the cancer imaging archive was retrieved and
used for the purposes of this pilot study. The collection was downloaded from the Cancer
Imaging Archive [98]. This collection contains FDG-PET/CT and radiotherapy planning
CT imaging data of 298 patients from four different institutions in Québec with
histologically proven head-and-neck cancer. All patients had pre-treatment FDG-PET/CT
scans between April 2006 and November 2014, and within a median of 18 days (range:
6-66) before treatment. These patients were all part of a study described in further detail
(treatment, image scanning protocols, etc.) in the publication by [99]. Most of the patients
in this cohort (252 patients - 85%) received chemo-radiation with curative intent as part
of treatment management. The median follow-up period of all patients was 43 months
(range: 6-112).

Three critical factors regarding survival are TNM stage, location of the primary tumour
and HPV status. Moreover, sarcopenia has been found as independent adverse
prognostic factor for OS and DFS, especially in patients with locally advanced disease,
(stage IlI-1V) [47]. Hence, we considered that it would be beneficial for the purposes of
our study to included only patients with Stage IV head and neck cancers, with known site
of the primary tumour. We also decided to define premature death separately for each
primary site. The minimum follow-up period was set to 5 years. The aforementioned
inclusion criteria resulted in 74 patients. Characteristics of the patients both included and
excluded, after initial inclusion criteria were applied are shown in Table 9, Table 10, and
Table 11.

Table 9: Characteristics of patients excluded due to insufficient follow-up (<5 years)

Patients excluded because of insufficient follow-up

Characteristic Sieigg’l LNarzr;;(, NasoNp:jrlynx, Orli)lp:hf?ézlx, val?l;ez
Sex >0.9
F 31 (25%) 1 (25%) 1 (25%) 29 (25%)
M 92 (75%) 3 (75%) 3 (75%) 86 (75%)
Age 62 (57, 70) 72 (67, 75) 63 (60, 68) 62 (56, 69) 0.2
Nodal stage 0.002
NO/1 8 (6.5%) 0 (0%) 3 (75%) 5 (4.3%)
N2/3 115 (93%) 4 (100%) 1 (25%) 110 (96%)

Last follow-up  3.37 (2.76, 3.91) 2.88 (1.96, 3.76) 3.33 (3.07,3.70) 3.37 (2.77, 3.92) 0.6
(years)

HPV.status 0.017
- 13 (11%) 1 (25%) 2 (50%) 10 (8.7%)
+ 50 (41%) 0 (0%) 0 (0%) 50 (43%)
unknown 60 (49%) 3 (75%) 2 (50%) 55 (48%)

n (%); Median (IQR)
2Fisher's exact test; Kruskal-Wallis rank sum test
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The vast majority (105/123) of patients excluded due to insufficient follow-up were
patients with oropharyngeal carcinomas and HPV (+) or with unknown HPV-status (Table
9). The above two categories of patients could had acted as a confounding factor in our
study, given the fact that in patients with oropharyngeal carcinomas survival is more
determined by HPV status than by sarcopenia. Therefore, we believe that by excluding
these patients we shall not lose important data regarding our clinical problem, and that
we will facilitate learning.

In the 74 patients initially included, premature death was defined as death when the
survival probability was higher than 75% in the separate, for each primary site, survival
curves (Figure 19). Subsequently patients were initially divided in 3 survival categories:
(1) patients that died prematurely, (2) patients with overall survival less than 5 years and
(3) patients with overall survival more than 5 years.

Table 10: Characteristics of the 74 patients included in the cohort by survival category, after initial
inclusion criteria were applied

Survival category

Characteristic ONv:er7a£I1Il, <N5y:r 20151 >N5y:r Sﬁ prem;tlirigcieath, p-value?
Primary Site 0.001
Hypopharynx 8 (11%) 6 (29%) 0 (0%) 2 (11%)
Larynx 15 (20%) 5 (24%) 6 (18%) 4 (21%)
Nasopharynx 7 (9.5%) 4 (19%) 1 (2.9%) 2 (11%)
Oropharynx 44 (59%) 6 (29%) 27 (79%) 11 (58%)
Sex 0.8
F 15 (20%) 3 (14%) 8 (24%) 4 (21%)
M 59 (80%) 18 (86%) 26 (76%) 15 (79%)
Age 63 (57,72) 70(60,75) 61 (56, 67) 63 (60, 71) 0.14
Nodal stage 0.5
NO/1 7 (9.5%) 2 (9.5%) 2 (5.9%) 3 (16%)
N2/3 67 (91%) 19 (90%) 32 (94%) 16 (84%)
Tumour stage 0.8
T1/2 8 (11%) 1 (4.8%) 5 (15%) 2 (11%)
T3 21 (28%) 7 (33%) 8 (24%) 6 (32%)
T4 45 (61%) 13 (62%) 21 (62%) 11 (58%)

n (%); Median (IQR)
2Fisher's exact test; Kruskal-Wallis rank sum test

Further exclusion criteria were applied in the group of patients with oropharyngeal
cancers due to the unknown HPV status in the majority of them, which acts as a highly
confounding factor. We should also highlight that the exclusion of a potentially
confounding group of patients, also resulted in more balanced cohorts in terms of survival
categories, which is expected to favour learning.
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Table 11: Characteristics of the 74 patients included in the cohort by location of the primary tumour, after initial inclusion criteria were applied

Location of the primary tumour

Characteristic Overall, N =741 Hypopharynx, N=8' Larynx, N=15! Nasopharynx, N=7' Oropharynx, N =44 p-value?
Sex 0.5
F 15 (20%) 2 (25%) 1 (6.7%) 1 (14%) 11 (25%)
M 59 (80%) 6 (75%) 14 (93%) 6 (86%) 33 (75%)
Age 63 (57, 72) 64 (59, 73) 60 (58, 71) 67 (57, 77) 63 (58, 69) 0.8
Nodal stage 0.2
NO/1 7 (9.5%) 0 (0%) 2 (13%) 2 (29%) 3 (6.8%)
N2/3 67 (91%) 8 (100%) 13 (87%) 5 (71%) 41 (93%)
Survival 0.001
<5yr OS 21 (28%) 6 (75%) 5 (33%) 4 (57%) 6 (14%)
>5yr OS 34 (46%) 0 (0%) 6 (40%) 1 (14%) 27 (61%)
premature death 19 (26%) 2 (25%) 4 (27%) 2 (29%) 11 (25%)
Time of death (days) 749 (523, 1,096) 615 (409, 1,169) 735 (558, 1,051) 584 (395, 808) 859 (529, 1,116) 0.6
Time of premature death (days) 518 (356, 665) 259 (227, 291) 541 (502, 558) 319 (304, 335) 540 (430, 775) 0.061

n (%); Median (IQR)
2Fisher's exact test; Kruskal-Wallis rank sum test
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Figure 19: Kaplan-Meier survival analysis by site of the primary tumour. Premature death was defined as death when the survival probability was higher
than 75% (lower quartile among those patients who died, separately defined for each primary site)
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Two sub-cohorts were created with the application of further exclusion criteria in the group
of patients with oropharyngeal carcinomas. One where all patients with oropharyngeal
carcinomas and overall survival greater than five years were excluded, resulting in 47
patients (see Table 12), and another one where HPV-negative patients with
oropharyngeal carcinomas and overall survival greater than five years were included
(meaning 4 extra HPV-negative patients with good prognosis), resulting in a cohort of 51
patients in total (see Table 13).

Table 12: Characteristics of the 47 patients included in the cohort by survival, when all patients
with oropharyngeal carcinomas and overall survival > 5 years were excluded

Survival category

- Overall, <5yr OS, >5yr OS, premature
Characteristic N = 471 Ny: 11 Ny: 7 lje:atlkgla,l p-value?
Primary Site 0.015

Hypopharynx 8 (17%) 6 (29%) 0 (0%) 2 (11%)
Larynx 15 (32%) 5 (24%) 6 (86%) 4 (21%)

Nasopharynx 7 (15%) 4 (19%) 1 (14%) 2 (11%)
Oropharynx 17 (36%) 6 (29%) 0 (0%) 11 (58%)

Sex 0.9
F 8 (17%) 3 (14%) 1 (14%) 4 (21%)
M 39 (83%) 18 (86%) 6 (86%) 15 (79%)
Age 63 (59, 73) 70 (60, 75) 59 (58, 66) 63 (60, 71) 0.3
Nodal stage 0.4
NO/1 7 (15%) 2 (9.5%) 2 (29%) 3 (16%)
N2/3 40 (85%) 19 (90%) 5 (71%) 16 (84%)
HPV status >0.9
- 4 (8.5%) 2 (9.5%) 0 (0%) 2 (11%)
+ 4 (8.5%) 2 (9.5%) 0 (0%) 2 (11%)
unknown 39 (83%) 17 (81%) 7 (100%) 15 (79%)

n (%); Median (IQR)
2Fisher's exact test; Kruskal-Wallis rank sum test

Our final models shall be trained and tested in all three cohorts (the one with 74 patients,
the one with 47 patients and the one with 51 patients) and the results will be evaluated
accordingly.

Therefore, we will be enabled to test our initial assumption that the smaller cohorts have
the potential of favouring training, by suppressing some known confounding factors and
by achieving more balanced datasets in terms of survival categories. By having more
balanced datasets we will also avoid using oversampling techniques, like Synthetic
Minority Oversampling Technique (SMOTE) where synthetic samples are generated for
the minority class.
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Table 13: Characteristics of the 51 patients included in the cohort by survival, when patients with
oropharyngeal carcinomas and overall survival > 5 years were included only if they were HPV(-)

Survival category

- Overall, <5yr0S,  >byros, Premature
Characteristic N = 511 Ny= o1t Ny= 111 Se:a;g,l p-value?
Primary Site 0.2

Hypopharynx 8 (16%) 6 (29%) 0 (0%) 2 (11%)
Larynx 15 (29%) 5 (24%) 6 (55%) 4 (21%)
Nasopharynx 7 (14%) 4 (19%) 1(9.1%) 2 (11%)
Oropharynx 21 (41%) 6 (29%) 4 (36%) 11 (58%)
Sex 0.9
F 9 (18%) 3 (14%) 2 (18%) 4 (21%)
M 42 (82%) 18 (86%) 9 (82%) 15 (79%)
Age 64 (59, 73) 70 (60, 75) 60 (59, 68) 63 (60, 71) 0.4
Nodal stage 0.7
NO/1 7 (14%) 2 (9.5%) 2 (18%) 3 (16%)
N2/3 44 (86%) 19 (90%) 9 (82%) 16 (84%)
HPV status 0.3
- 8 (16%) 2 (9.5%) 4 (36%) 2 (11%)
+ 4 (7.8%) 2 (9.5%) 0 (0%) 2 (11%)
unknown 39 (76%) 17 (81%) 7 (64%) 15 (79%)

n (%); Median (IQR)
2Fisher's exact test; Kruskal-Wallis rank sum test

2.2 Methods

2.2.1 Statistical analysis

All analyses were conducted using R [100] version 4.0.5 (2021-03-31). For survival
analyses, “survival” [101] (version 3.2.11) and “survminer” [102] (version 0.4.9) packages
were used. For Bland Altman plots and linear regression models we used the “blandr”
[103] (version 0.5.1) package. For assessing the intraclass correlation coefficient (ICC)
and the Cohen's kappa coefficient we used the “psych” (version 2.3.9) package [104] and
for assessing various evaluation metrics we used the “Metrics” [105] (version 0.1.4)
package. The statistical test used in each case is provided along with the results.
Statistical significance was defined as a p < 0.05.

2.2.2 Selection and pre-processing of CT images, and radiomic features
extraction

A dictionary of 4 consecutive CT images at the level of the third cervical vertebra (C3)
was created for all 74 patients. These images were manually selected by an
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otolaryngology specialist (PM). For the extraction of the radiomic features a flowchart like
the one shown in Figure 20 [42] was followed. Image processing usually starts with
reconstructed images, which may be processed through several optional steps (e.g.,
conversion to standardized uptake values, image denoising and image interpolation).
Then the region of interest (ROI) can be created automatically, manually or an existing
ROI can be retrieved. The ROI is then interpolated as well, and intensity and morphologic
masks are created as copies. Radiomics features are then computed from the image
masked by the ROI, including features from the intensity histogram (IH), the intensity-
volume histogram (IVH), the gray-level co-occurrence matrix (GLCM), the gray-level run-
length matrix (GLRLM), the gray-level size-zone matrix (GLSZM), the gray-level distance-
zone matrix (GLDZM), the neighbourhood gray-tone difference matrix (NGTDM), and the
neighbouring gray-level dependence matrix (NGLDM) families.

region of interest

image data =

v v
intensity mask morphological mask
> re-segmentation

computation
local intensity

\ 4

computation
morphology

\ 4

ROI extraction

\ 4

> computation
intensity statistics

h

computation
IH, IVH, GLCM, GLRLM
GLSZM, NGTDM, NGLDM

\ 4

discretization

computation
GLDZM

Y

radiomics features

M

radiomics feature computation

Figure 20: Flowchart of the general radiomics image processing scheme for computing radiomics
features

Two approaches of segmentation were followed, manual and automatic segmentation.
Moreover, in each segmentation approach, two regions of interest (ROIs) were selected
for each CT image. One ROI contained only the paravertebral muscle cross sectional
area (CSA) and the other ROI also contained, along with the paravertebral muscles, the
intermuscular and intramuscular adipose tissue. Manual segmentation was performed by
an otolaryngologist (PM), using 3D slicer desktop software, version 4.11.20210226,
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(https://www.slicer.org/) [106]. Automatic segmentation is discussed in more details in a
following section. Afterwards, the ROIs’ radiomic features were computed in Python using
the PyRadiomics package (https://pypi.org/project/pyradiomics/) [107]. For each ROI 93
radiomic features were computed (3 shape related, 15 First order statistics, 24 GLCM, 16
GLRLM, 16 GLSZM, 14 GLDM and 5 NGTDM), resulting in 186 (93x2) computed
radiomic features. We also added 3 extra features (fat ratio, muscle ratio and fat/muscle
ratio) that were computed using the areas in both ROIs, finally resulting in 189 features.
These features were defined as: fat ratio = ((area in ROl with muscles and fat -area in
ROI with muscles only) / area in ROl with muscles and fat), muscle ratio = (area in ROI
with muscles only / area in ROI with muscles and fat) and fat/muscle ratio = ((area in ROI
with muscles and fat -area in ROI with muscles only) / area in ROI with muscles only.

2.2.3 Auto-segmentation of ROIs

Auto-segmentation code was developed in Python v3.8.8 using OpenCV [108] and scikit-
image [109] libraries. The auto-segmentation process was based on some anatomical
landmarks (mainly the third cervical vertebra) and on the typical Hounsfield Unit (HU)
intensities of the different tissues [36], [55], [110]. Figure 22 [110] shows expected
radiation attenuation values variation across muscle, fat-infiltrated muscle, and fat. The
function developed for the auto-segmentation was taking 4 arguments: the medical image
in DICOM format (Digital Imaging and Communications in Medicine is the standard for
the communication and management of medical imaging information and related data
[111]), followed by the HU windows intensities for muscles, adipose tissue, and bones.
While applying this function we used the following HU intensities’ upper and lower limits:
for bones [150HU,1500HU], for muscles [-20HU,135HU], and for adipose tissue [-200HU,
-20HU]). We used -20 HU as lower limit for muscles, because our auto-segmentation
code performed better with -20 HU than with -30 HU as lower muscles’ attenuation value
limit. The main steps that are being executed during the auto-segmentation code that we
developed are presented in Figure 22. The first step is to isolate the patient from any
external signals such as CT scanner’'s examination bed (this step is based on a HU
window that targets patient’s muscles, followed by some morphological operations). The
second step is to define the upper limit of our ROI (this step is based on targeting the
body of the third vertebra). The third step is to define the rightmost and leftmost borders
of our ROI (this step is based on the maximum diameter of the third cervical vertebra
along with the vertebra’s centroid). The fourth step is to get the mask for our first ROI,
that is the paravertebral muscle cross sectional area. The fifth step is to get the mask for
our second ROI that is the paravertebral muscles along with the intermuscular and
intramuscular adipose tissue. The last two steps use morphological operations and “help”
muscles’ and fat's masks addition and subtractions, along with HU refinements.
Examples of auto-segmentation results compared to manual segmentation are shown in
the following figures: Figure 23, Figure 24, Figure 25, and Figure 26.
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-190 -30 0 +30 +150

Figure 21: Radiation attenuation values (HU) for muscle, fat-infiltrated muscle, and fat
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Figure 23: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV
laryngeal carcinoma (T3, N2/3) and overall survival <5 year
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Figure 24: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV
laryngeal carcinoma (T3, N2/3) and overall survival > 5 years
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Figure 25: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV
carcinoma of the nasopharynx (T1, N2/3), who died prematurely
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Figure 26: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a female patient with Stage IV
HPV-negative oropharyngeal carcinoma (T4a, N2/3), who died prematurely
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For comparison purposes, between the manual segmentation method and the automatic
segmentation method, we compared the results regarding two features in each one of
the two ROIs along with two more features concerning both ROIs (in total 2x2+2= 6
features). We chose to compare features that can be easily clinically interpreted. These
features were the mean HU values in each ROI (the one with the paravertebral muscles
and the one with the paravertebral muscles along with the intermuscular and
intramuscular adipose tissue), the mean HU absolute deviation (distance of all HU
intensity values from the mean HU value) in each ROI, the paravertebral muscle ratio,
and the adipose tissue / paravertebral muscle ratio. Bland-Altman plots, linear regression
models and intraclass correlation coefficient (ICC) for the two methods of segmentation
were assessed. The Intraclass correlation is used as a measure of association when
studying the reliability of raters, in our case the measurements regarding some features,
resulting from the two different segmentation methods (manual and automatic). We used
a single-measurement, consistency, 2-way mixed-effects model, to calculate the
corresponding ICC results. These results are presented in Table 14. Corresponding
Bland-Altman plots along with linear regression model’s plots of the two methods’
measurements are presented in Figures 27-38. In general, a good degree of agreement
was observed between the two methods regarding the examined features. The most
prominent difference in the examined features between the two methods was the fact that
the auto-segmentation method had a tendency of including a higher proportion of adipose
tissue resulting in lower mean HU values, lower muscle ratio and higher adipose tissue /
paravertebral muscle ratio. Nevertheless, the linear regression models had very strong
correlation coefficients. Altogether, the aforementioned results were quite promising
regarding the utility of the auto-segmentation method as a time-efficient alternative
approach of extracting computed tomography-derived skeletal muscle related data.

Table 14: ICC results regarding 6 features’ measurements resulting from the different
segmentation methods (automatic and manual)

Feature ICC* 95% CI Koo & Li (2016) degree
of reliability [112]

Mean HU in paravertebral | 0.929 0.912<ICC <0.943 | Excellent
muscles’ ROI

Mean HU in ROI with both | 0.873 0.843<1CC<0.897 | Good
paravertebral muscles and
adipose tissue

Mean HU absolute 0.848 0.812<1CC<0.877 | Good

deviation in paravertebral

muscles’ ROI

Mean HU absolute 0.717 0.657 < ICC <0.768 | Moderate to Good

deviation in ROI with both
paravertebral muscles and
adipose tissue

Paravertebral muscle ratio | 0.853 0.819<1CC<0.881 | Good

Adipose tissue / 0.776 0.727 <ICC <0.818 | Moderate to Good
paravertebral muscle ratio

* 2-way mixed-effects model, single-measurement, consistency
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Bland-Altman plot for comparisen of 2 metheds of segmentation
Feature: Mean HU in paravertebral muscles’ ROI
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Figure 27: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding mean HU in paravertebral muscles’ ROI

Plot of two methods with line of equality

Method 2
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Method 1

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.9293499
Regression equation: Mean HU paravertebral muscles’ ROl =
0.9272525 x auto-segmentation’s measurements + 1.018074

Figure 28: Plot of the two methods’ resulting mean HU in in paravertebral muscles’ ROI, with line
of equality (dashed black) and linear regression model (solid red)
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Bland-Altman plot for comparisen of 2 metheds of segmentation
Feature: Mean HU in ROl with both paravertebral muscles and adipose tissue
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Figure 29: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding mean HU in ROl with both paravertebral muscles and adipose tissue

Plot of two methods with line of equality
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Method 1

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8852279
Regression equation: Mean HU absolute deviation in in ROl with both paravertebral muscles and
adipose tissue = 1.04803 x auto-segmentation’s measurements -13.05961

Figure 30: Plot of the two methods’ resulting mean HU in ROI with both paravertebral muscles and
adipose tissue, with line of equality (dashed black) and linear regression model (solid red)
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Figure 31: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding mean HU absolute deviation in paravertebral muscles’ ROI
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Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8549848
Regression equation: Mean HU in paravertebral muscles’ ROl =
0.974184x auto-segmentation’s measurements + 0.3046604

Figure 32: Plot of the two methods’ resulting mean HU absolute deviation in paravertebral
muscles’ ROI, with line of equality (dashed black) and linear regression model (solid red)
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Bland-Altman plot for cemparison of 2 metheds of segmentation
Feature:Mean HU absolute deviation in ROI with both paravertebral muscles and adipose tissue
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Figure 33: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding mean HU absolute deviation in ROl with both paravertebral muscles and adipose tissue

Plot of two methods with line of equality

60

Method 2

Method 1

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.7290292
Regression equation: Mean HU in ROI with both paravertebral muscles and adipose tissue =
0.8763081x auto-segmentation’s measurements + 12.37233

Figure 34: Plot of the two methods’ resulting mean HU absolute deviation in ROl with both
paravertebral muscles and adipose tissue, with line of equality (dashed black) and linear
regression model (solid red)
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Bland-Altman plot for comparisen of 2 methods of segmentation
Feature: Paravertebral muscle ratio
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Figure 35: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding paravertebral muscle ratio

Plot of two methods with line of equality
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Method 1

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8768474
Regression equation: Paravertebral muscle ratio =

1.110489 x auto-segmentation’s measurements - 0.172471

Figure 36: Plot of the two methods’ resulting paravertebral muscle ratio with line of equality
(dashed black) and linear regression model (solid red)
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Bland-Altman plot for comparisen of 2 metheds of segmentation
Feature: Adipose tissue / paravertebral muscle ratio
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Figure 37: Bland - Altman plot for comparison of auto-segmentation and manual segmentation
regarding adipose tissue / paravertebral muscle ratio
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Method 1

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8684105
Regression equation: Adipose tissue / paravertebral muscle ratio =
1.407045 x auto-segmentation’s measurements + 0.05696887

Figure 38: Plot of the two methods’ resulting adipose tissue / paravertebral muscle ratio with line
of equality (dashed black) and linear regression model (solid red)
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2.2.4 Feature selection

We decided to train our classifiers using only one image per patient, to prevent our
classifiers from learning the patient itself and to avoid subsequent overfitting. Therefore,
we were left with either 74 or 51 or 47 samples for training, depending on the application
of further exclusion criteria in the group of patients with oropharyngeal cancers, while
having 189 features per sample. Moreover, in the case of the cohort with the 74 patients,
we also had to deal with an unbalanced dataset, regarding our outcome of interest, that
is premature death. When dealing with radiomic features, one should be aware that many
features could be simply noise, or highly correlated with each other. Hence, feature
reduction is necessary to increase prediction accuracy and to minimize computational
cost. In general, reducing the number of features can be achieved either supervised or
unsupervised. Altogether, when supervised, features are selected based on their
discriminative value of outcomes and when unsupervised dimensionally reduction
algorithms are being used, maintaining that way more information in the dataset.

A study regarding radiomics-based prognosis analysis for non-small cell lung cancer with
112 patients and 30 radiomic features per patient (11 statistical — first order and 19
textural — second order) [113] addressed the limitations and challenges mentioned above.
The authors evaluated the performance of 5 feature reduction techniques (principal
component analysis [PCA], independent component analysis [ICA], near zero variance
[NZV] , zero variance [ZV], consensus clustering [CC] + PCA) along with no reduction
and a filtered feature selection method (Wilcoxon test), using 8 common machine learning
classifiers (random forest [RF], generalized linear model [GLM], support vector machine
[SVM], naive Bayes [NB], neural network [NNET], k-nearest neighbour [KNN], mixture
discriminant analysis [MDA], partial least squares GLM [PLS]). Moreover, to tackle the
problem of unbalanced endpoints in their binary classification problems (death being the
most unbalanced outcome with ratio of 0.23) the authors also evaluated the performance
of 4 subsampling methods (down sampling, up sampling, Random Over Sampling
Examples [ROSE], and Synthetic Minority Over-sampling Technique [SMOTE]). In
unbalanced datasets, machine learning algorithms while aiming the highest possible
accuracy, have the tendency of sacrificing the minority group, resulting in low sensitivity.
Applying subsampling methods, when having more balanced cohorts is not feasible, can
significantly improve sensitivity, leading to better predictive performance. Among the
feature reduction techniques tested, PCA showed the highest overall (average) predictive
performance, RF was the classifier with the highest predictive value and SMOTE was the
subsampling method that achieved to enhance AUC (area under the curve) in a balanced
way (significantly increasing sensitivity while maintaining high specificity). Thus, the
authors proposed the combination of PCA feature selection, RF classifier, and SMOTE
subsampling (PCA + RF + SMOTE) as an optimal radiomics pipeline for prognosis of
clinical outcomes [113].

Some radiomic features might have less predictive value individually but become
important when interaction effects among the features are taken into consideration.
Unsupervised feature reduction techniques, like PCA, maintain these interactions
favouring the predictive model training process [113]. Moreover, as Aerts et al. [114]
demonstrated texture features with higher stability tend to be more informative and have
higher prognostic performance as well as reproducibility. Therefore, we critically
searched the literature in the last 5 years (2018-2023), regarding human studies
(phantom studies excluded) addressing the problem of robustness of radiomic features,
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extracted from CT images (using search strings including radiomic feature, robustness,
computed tomography +/- perturbation). One relevant review was retrieved, published in
2021. In this review [115] authors found that the most common approach to report the
robust features were the percent of robust features, the robust features against all the
imaging parameters and the robust feature-parameter that determine which features are
robust against which parameter(s). However, authors failed to provide a list of robust
features due to the substantial inconsistencies related to the reporting style of the
included studies and concluded that radiomics features are dependent on imaging
parameters, suggesting that the impact of this dependency must be evaluated on the
prediction of clinical outcome.

In a study by X. Teng et al. [116] that used the same Head-Neck-PET-CT collection as
we did, but different outcomes and ROI (the region of interest for feature extraction was
the primary gross tumour volume) authors assessed radiomic model’s reliability using
perturbations (authors identified unreliable models by comparing the model's
performance on the training dataset with the performance achieved on random
perturbations of the training dataset). Aiming to determine whether predictions can be
repeatedly produced after perturbations, authors calculated ICC, using one-way model
with random effects and absolute agreement, to quantify consistency of the C-index
among the samples in the perturbed-train and perturbed-test cohorts. Authors reported a
lower training C-index for the perturbed data revealing that evaluating models using their
original data is prone to overfitting to noise and to over-estimating the model's learning
ability. In their analysis a filter-based feature selection method with two steps (feature—
outcome relevance filtering and feature—feature redundancy filtering) was used. To
validate the calculation of model robustness, the same experiment was repeated with
highly reliable features (ICC>0.75), leading to a significant increase in the model
reliability ICC values from moderate to good, revealing sensitivity of their method to input
reliability. In a similar paper X. Teng et al. [117], used an extended dataset, consisted of
four publicly available head-and-neck cancer CT collections. Three models were built
using all features, good-robust features (ICC > 0.75), and excellent-robbust features (ICC
> 0.95). Authors reported that the average model robustness ICC improved significantly
from 0.65 to 0.78 (P< 0.0001) when using good-robust features and to 0.91 (P< 0.0001)
when using excellent-robust features. Moreover, by including good-robust features,
authors achieved the best average AUC in the unseen data.

Finally, we identified and chose to present, a study [118] that investigated the impact of
generative adversarial network (GAN)-based lesion-focused medical image super
resolution (SR), on the robustness of radiomic features. Authors applied image SR to
increase the number of voxels used since the radiomic features are possibly affected by
low statistics in ROI voxels. 75 3D radiomic texture features were calculated (24 GLCM,
14 GLDM, 16 GLRLM, 16 GLSZM and 5 NGTDM). The authors evaluated the robustness
of their model’s radiomic feature in terms of quantization. Features were extracted from
a non-small cell lung cancer CT dataset using different quantization configurations (the
number of bins varied [8, 16, 32, 64, 128, 256]). In quantisation of grey levels the number
of bins typically has an impact on the GL matrices that are calculated comparing local
image intensities, such as co-occurrence (GLCM) and run-length (GLRLM) matrices
affecting the values of certain radiomic features. The authors reported that the most
important radiomic features in their PCA-based analysis were the most robust features
extracted on the GAN-super-resolved images, paving the way for the application of GAN-
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based techniques for studies of radiomics for robust biomarker discovery. The highly
robust features identified by GAN could possibly generalize well on other CT datasets.
The study’s results of the robustness analysis related to the textural features (in terms of
ICC) according to different image groups resulted in thirteen features that obtained an
excellent robustness for at least one of the Original, Cubic and GAN-SR image groups

(Table 15 [118]).

Table 15: Features that obtained an excellent robustness for at least one of the image groups
(Original, Bicubic, GAN-SR) in a study investigating the impact of GAN-based lesion-focused
medical image super-resolution on the robustness of radiomic features

Radiomic feature name Original | Bicubic GAN-SR
GLCM Caorrelation 0.980 0.979 0.984
GLCM DifferenceEntropy 0.846 0.911 0.910
GLCM IDMN 0.996 0.996 0.997
GLCM ID 0.997 0.995 0.998
GLCM MCC 0.633 0.938 0.923
GLCM SumEntropy 0.822 0.897 0.905
GLRLM LongRunLowGrayLevelEmphasis 0.926 0.560 0.631
GLRLM LowGrayLevelRunEmphasis 0.967 0.952 0.944
GLRLM ShortRunLowGrayLevelEmphasis 0.97 0.973 0.925
GLDM DependenceEntropy 0.910 0.870 0.895
GLDM LargeDependencelLowGrayLevelEmphasis | 0.985 0.976 0.890
GLDM LowGrayLevelEmphasis 0.986 0.986 0.950
GLDM SmallDependenceLowGrayLevelEmphasis | 0.902 0.955 0.946

We decided to test those features with excellent robustness in the manual segmentation
cohort with all 74 patients. Having two ROIS (13x2 radiomic features) and adding muscle
CSA, fat CSA, fat/muscle ratio and fat ratio we ended up with 30 features per CT image.
We then ran multivariate analysis regarding survival (see results in Figure 39).

Subgroup | HR Cl p

original_glrim_LongRunLowGraylevelEmphasis ! — T 6.06 (1.88-19.61) 0.003
original_glcm_SumEntropy_muscle 1 0.01 (0.00-0.28) 0.008
original_glcm_SumEntropy ! — 131490 (5.57-310631.32) 0.010
original_gldm_DependenceEntropy_muscle ! —%— 2710 (1.32-555.26) 0.032
fat_muscle_ratio . ! 0.04 (0.00-0.80) 0.035
original_gldm_LargeDependenceEmphasis_muscle —#——————————| 0.02 (0.00-0.77) 0.037
original_glem_ldmn_muscle —— 204 (0.93-4 48) 0.077
original_glrim_ShortRunLowGrayLevelEmphasis_mus: i 0 (0.00-1.69) 0.079
original_gldm_DependenceEntropy 4 ! 0 (0.00-1.88) 0.087
original_glem_DifferenceEntropy_muscle —— 352 (0.77-16.01) 0104
original_gldm_SmallDependencelowGrayLevelEmpha : L 4 59.06 (0.31-11163.98) 0127
original_glrim_LowGrayLevelRunEmphasis_muscle i + 55.37 (0.31-9992.70) 0.130
original_gldm_LowGrayLevelEmphasis + ! 0.06 (0.00-2.39) 0.134
original_gldm_SmallDependencelowGrayLevelEmpha T +» 14.62 (0.21-1024.87) 0.216
original_gldm_LowGrayLevelEmphasis_muscle +* i 0.08 (0.00-9.91) 0.306
original_glcm_Id_muscle i + 535 (0.18-162.51) 0.336
original_glem_MCC_muscle —:—0— 153 (0.56-4.13) 0.405
original_gldm_LargeDependenceEmphasis T 4 6.66 (0.07-598.01) 0.408
original_glem_Gorrelation_muscle —— 175 (0.43-7.15) 0.434
original_glem_Id i * 565 (0.03-1238.08) 0529
original_glrim_LongRunLowGrayLevelEmphasis_musc —0—:— 070 (0.23-2.14) 0.530
fat_ratio T + 3.38 (0.06-193.03) 0.555
muscle CSA —— 1.17 (0.68-2.01) 0.567
original_glcm_DifferenceEntropy ! L 2 1.98 (0.15-25.98) 0.603
original_glcm_Correlation . 065 (0.11-3.89) 0.634
fat_CSA —— 0.83 (0.37-1.87) 0.652
original_glrlm_ShortRunLowGraylLevelEmphasis — 052 (0.01-28.39) 0.750
original_glem_MCC —_— 0.91 (0.14-575) 0.918
original_glcm_ldmn + 0.95 (0.34-2.64) 0.923
original_glrim_LowGrayLevelRunEmphasis %i 0.84 (0.02-29.36) 0.923

1 2 34560

Figure 39: Forest plot based on the results of multivariate analysis of survival (manual
segmentation cohort with 74 patients and 4 CT images per patient)
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We chose only the 6 features that were found to be significantly related (p<0.05) with
survival in multivariate analysis, to train our models. Results are presented and discussed
in the section “3.1 Results on the manually segmented CT images”.

For the auto-segmentation cohort we tested different sets of features using unsupervised
clustering. As we will see in the following sections “2.2.5 Unsupervised clustering” and
“3.2.1 Unsupervised learning results on auto-segmented CT images”, when all features
were kept, we achieved the best results. Therefore, based on these results and on the
literature [113], we decided to train our models using PCA as feature reduction technique.

2.2.5 Unsupervised clustering

We tested different features sets of the auto-segmentation cohort by applying
unsupervised learning algorithms. The sets tested were all features, robustO05 (see in
Figure 39; “robust” features significantly related [p-value<0.05] with survival in
multivariate analysis), robustO1 (see in Figure 39; “robust” features with a trend of
association [p-value<0.1] with survival in multivariate analysis). We applied Gaussian
Mixture Models (GMM) in the 2-dimensional space for better visualization and
interpretation of the results. Dimensionality reduction to the 2-dimensional space for each
feature set was performed with t-SNE (T-distributed Stochastic Neighbor Embedding)
and UMAP (Uniform Manifold Approximation and Projection).

T-SNE [119] takes a set of points in a high-dimensional space and finds a faithful
representation of those points in a lower-dimensional space, typically the 2D plane. T-
SNE tends to expand dense clusters, contract sparse ones. Notably, distances between
well-separated clusters in a t-SNE plot may mean nothing. An important parameter to
tune when applying t-SNE is perplexity. Perplexity is kind of a guess about the number of
close neighbors each point has. The proposed range is (5:50), and outside this range
things get a little weird. With very high values of perplexity, it is highly expected to observe
merged clusters whereas with low perplexity values, meaningless “clumping” can occur.
In any case, the perplexity should be smaller than the number of points.

On the other hand, UMAP [120] preserves more of the global structure. UMAP’s first
phase consists of constructing a fuzzy topological representation and its second phase
of optimizing the low dimensional representation, to have as close a fuzzy topological
representation as possible as measured by cross entropy. UMAP’s parameters to tune
include min_dist (default 0.1), which refers to the effective minimum distance between
embedded points and n_neighbors (default 15) which refers to the size of local
neighborhood used for manifold approximation. Smaller values of min_dist will result in a
more clumped embedding, where nearby points on the manifold are drawn closer
together and larger values of min_dist will result on a more even dispersal of points.
Larger values of n_neighbors result in more global views of the manifold, whereas smaller
values result in more local data being preserved. In general values of n_neighbors should
be in the range (2:100).

A Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite nhumber of Gaussian distributions with unknown
parameters. The expectation-maximization (EM) algorithm is used for fitting mixture of
Gaussian models. There are different options to constrain the covariance of the different
classes estimated: spherical, diagonal, tied or full. Full means the components may
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independently adopt any position and shape, tied means they have the same shape, but
the shape may be anything, diagonal means the contour axes are oriented along the
coordinate axes, but otherwise the eccentricities may vary between components and
spherical is a "diagonal” situation with circular contours. Although one would expect full
covariance to have the best performance, it is prone to overfitting, especially on small
datasets. GMM were implemented in python using scikit-learn 1.3.2 [121]. GMM’s require
the user to specify K, the number of Gaussians in the model that are posited to have
generated the data. The number of Gaussians corresponds to the number of clusters that
the algorithm is looking for. Although GMM is used for clustering, we can also compare
the obtained clusters with the actual classes from the dataset.

In the following section “3.2.1 Unsupervised learning results on auto-segmented CT
images” we will attempt to evaluate the separability of our dataset for different sets of
features and for different number of clusters based on the stratification of our dataset by
survival and site of the primary tumor and on the application of further exclusion criteria
in patients with oropharyngeal carcinomas; exclusion of patients with OPC who did not
die prematurely. Based on the aforementioned, the number of asked clusters will be either
2 (patients with and without premature death; two scenarios with 2 clusters depending on
the exclusion or inclusion of patients with OPC who did not die prematurely), or 3 (patients
with OPC who died prematurely, non-oropharyngeal carcinoma patients who died
prematurely and non-oropharyngeal carcinoma patients who did not die prematurely), or
4 (when no patients were excluded and all patients were stratified by both survival and
site of the primary tumor). We will include all 4 images per patient when exploring
unsupervised learning’s results. Different features set, following dimensionality reduction
to 2D space, with either t-SNE or UMAP and with varying algorithms’ parameter tuning,
shall be tested. Accuracy based on the true clusters (stratified categories of patients) will
be documented. Even when searching for more than 2 clusters, we will also calculate
binary accuracy depending only on the survival outcome (e.g., if a patient was correctly
predicted to die prematurely but incorrectly predicted to belong to a different primary
tumor cluster, the prediction will be evaluated as correct in the calculation of binary
accuracy).

2.2.6 Supervised learning - training of machine learning classification models

Machine learning classification models were trained using ATOM [122] (Automated Tool
for Optimized Modelling) which is an open-source Python package. We kept for training
only the 2" CT slice at the level of C3 per patient. We chose only one image per patient
to ensure that our models shall not learn the patient itself. We chose the 2" CT slice
because it usually had the best segmentation quality in the auto-segmentation method.
We trained our models using different left-out for test ratios (0.2, 0.25, 0.3, 0.4). We also
repeated the training process with 40 different splits of the dataset in order to evaluate
our results based on the average metrics’ values and on the standard deviation of the
metrics’ values obtained from the different splits. When using data from the manual
segmented images we included all 74 patients, which resulted in a highly imbalanced
dataset. In that case we also applied oversampling using the borderline SMOTE
algorithm. Figure 40 [123] highlights in an example the differences between algorithms of
the SMOTE family. We initially built SVM, RF and XGBoost (eXtreme gradient boosting)
classifiers for the manual segmentation case. We also built kKSVM (kernel SVM) and RF
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classifiers after

applying

the Dborderline SMOTE oversampling

technique;

for

distinguishing purposes we will refer to them as SVM_os and RF_os. We then evaluated
the results using various ensemble techniques (soft voting of RF and RF_os classifiers

with varying weights).

Decision function and resampling using SMOTE variants
Resampling with SMOTE
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Figure 40: Decision function for different algorithms of the SMOTE family and resulting
resampling when used
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For the auto-segmentation cohort we built the following classifiers: AdaBoost, GNB
(Gaussian Naive Bayes), GP (Gaussian Processes), kSVM, ISVM (linear SVM), MLP
(Multi-layer Perceptron), QDA (Quadratic Discriminant Analysis), RF, Trees. We also built
soft and hard voting ensemble models by combining with the same weight the vote of
multiple classifiers.

Based on the results on the manual segmentation cohort (see section 3.1) and on the
fact that HPV status is the main determinant of prognosis in oropharyngeal cancer
patients, we decided to exclude oropharyngeal cancer patients with overall survival
greater than 5 years. The application of this exclusion criteria resulted in a quite balanced
(ratio of premature death: 0.4) sub-cohort of 47 patients (see Table 12). We also trained
classifiers in another one sub-cohort with 51 patients (ratio of premature death: 0.37)
where we also included HPV (-) OPC patients with OS >5 years (see Table 13). Given
that our cohorts had become quite balanced, following the application of exclusion
criteria, we did not apply oversampling techniques in those two auto-segmentation sub-
cohorts.

2.2.7 Evaluation metrics and validation

The following classification metrics were used to evaluate our results: accuracy, balanced
accuracy, precision, recall, Matthews correlation coefficient (MCC), area under receiver
operating characteristics curve (AUC-ROC), F1-score, Cohen’s kappa coefficient.

Accuracy: correct predictions / number of predictions. It is a metric that should be treated
with great caution in imbalanced datasets as it can be quite misleading. In such cases,
other evaluation metrics should be considered for better interpretation of the model’s
utility within the classification problem each time addressed.

Balanced accuracy: ¥ (correct positive predictions/number of positives + correct negative
predictions/number of negatives). Therefore, by calculating the average accuracy for
each class, it can perform better on imbalanced datasets.

Precision: the ratio of true positives and total positives predicted. Precision metric focuses
on Type-I errors (false positives). In our case, Type-I error is incorrectly labelling patients
who did not die prematurely as high risk for premature death. A precision score towards
1 will signify that our model did not miss any true positives and is able to classify well
between high and low risk for premature death.

Recall: the ratio of true positives to all the positives in ground truth. Recall metric focuses
on type-ll errors (false negatives), in our case, type-Il error is incorrectly labelling patients
with premature death as low risk for premature death.

Matthews Correlation Coefficient (MCC): MCC is used in machine learning as a measure
of the quality of binary classifications and is in essence a correlation coefficient between
the observed and predicted binary classifications, returning a value between -1 and +1.
A coefficient of +1 represents a perfect prediction, 0 no better than random prediction and
-1 indicates total disagreement between prediction and observation.

AUC-ROC; combines the false positive and the true positive rate into a single metric. A
receiver operating characteristic curve (ROC curve) is the plot of the true positive against
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the false positive rate at each threshold setting and the resulting area under this curve is
the AUROC.

F1-score: 2 x (Precision x Recall) / (Precision + Recall). It gives a combined idea about
Precision and Recall metrics and is maximum when Precision is equal to Recall. F1-score
is considered an effective evaluation metric when true negative is high (our case when
all 74 patients are included) and when false positive and false negative are equally costly.
F1-score belongs to wider metric family, the Fg-score= (1+B2) x (Precision x Recall) / (B?
x Precision + Recall). For =1 we have F1, for f>1 we are giving more weight to recall
than precision and for f<1 we are giving more weight to precision than recall. In our case
if we wanted to give more weight to one of the two metrics, that would be recall, as our
target is to screen for patients in possible high risk for premature death who might be
beneficiated by nutritional and other interventions.

Cohen’s kappa coefficient: a statistic that is used to measure inter-rater reliability for
categorical items that takes into account the possibility of the agreement occurring by
chance.

We also used a custom metric, because despite having a binary classification problem
(premature death vs no premature death) we wanted to treat with different penalty
misclassification of patients with OS > 5 years and of patients with OS < 5 years. In this
custom metric, with moderate penalty, scoring was: (+1) for every patient with premature
death classified as high risk, (-1) for every patient with OS >5 years classified as high
risk, (-0.5) for every patient with premature death classified as low risk, (0) for every other
case e.g., patient with OS < 5 years classified either as high or low risk. The sum was
then divided by the number of patients who died prematurely. Thus, the maximum score
would always be 1, whereas the minimum will be a varying negative.

Moreover, we assessed the robustness of the model trained using the bootstrap
technique, which creates several new data sets (we used 20) selecting random samples
from the training set (with replacement) and evaluates them on the test set (we used mcc
as evaluation metric for bootstrapping).

Finally, when evaluating the models trained with ROIs from CT images obtained with the
automatic segmentation method, we used as external validation set the three images per
patients, that hadn’t been used for training (Figure 41). We averaged the three risks
(either hard voting or soft voting derived from probabilities) from the different classifiers
to obtain an average risk for premature death for each patient. Then we calculated the
optimal risk cut-offs regarding survival separately for each one of the 40 different runs
(train-test splits of the dataset). We evaluated classifiers in terms of the standard
deviation of the optimal cut-offs obtained. Afterwards, we tested classifiers with the lowest
optimal cut-offs’ standard deviation. We set cut-off for each classifier’s risk as either the
median or the mean of all the optimal cut-offs. By setting the same cut-off (not always the
optimal) for each one of the 40 scenarios, we tried to be as much unbiased as possible,
given that finding the optimal cut-off is an outcome orientated method. We then tested
survival outcomes in all 40 scenarios in terms of the resulting p-values from the
comparison between the survival curves of the two risk groups of patients (low and high
risk for premature death).
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Figure 41: Using as external validation set the three images per patient (1%, 3" and 4™ CT slice at the level of C3) that remained completely unseen when
training our classification models (only images from the 2" CT slice were used for training)
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3. RESULTS

3.1 Results on manually segmented CT images

The following classification results derived from training in the manual segmentation
cohort (with all 74 patients), using only one image per patient for training (the 2" CT slice
at the C3 level) and as feature set only the 6 “robust” features which were found to be
significantly related (p<0.05) with survival in multivariate analysis (see section 2.2.4). RF
classifiers showed better performance in terms of average balanced accuracy compared
to XGBoost and kSVM classifiers (see Figure 42).

Test:Train(75:25) models evaluation

0.5- —
Model

1 kSVM
- - kSVM_O s

- e

XGB

value

0.0-

I I I I 1
mean_bootstrap matthews_corrcoef accuracy balanced_accuracy precision
Metrics

Figure 42: Classifiers’ evaluation when trained with a 0.25 ratio left for testing (40 different
test:train splits of the dataset) in the manual segmentation cohort

Although oversampling with BorderlineSMOTE did not improve balanced accuracy, we
investigated if a combination of RF classifiers trained with and without oversampling
would improve the classification results. Therefore, we tested results from soft-voting
ensembles were RF and RF_os contributed with different weights (75% RF + 25% RF_os,
70% RF + 30% RF_os, 60%RF + 40% RF_os, 50% RF + 50% RF_os, 40% RF + 60%
RF_os). We compared results in terms of the variance of the optimal cut-off for survival
stratification (see Figure 43) and in terms of the custom metric (see section 2.2.7
Evaluation metrics and validation), which took also into consideration the subgroups with
OS > 5 years and OS < byears (see Figure 44). In general, the combination of RF with
RF_os significantly improved the results achieved by RF and RF_os alone. The best
results derived from the 60% RF + 40% RF_os combination. We also investigated the
performance of the 60% RF + 40% RF_os combination in different subgroups of patients
within the cohort (oropharyngeal carcinomas, non-oropharyngeal carcinomas, HPV(+)
oropharyngeal carcinomas and laryngeal, hypopharyngeal and HPV(-) oropharyngeal
carcinomas; Figures 45,46,47,48). Finally, we checked the proportion of positive custom
metric scores achieved with the 60% RF + 40% RF_os voting scheme (see Figure 49),
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and how moderate scores (near 0) or even negative scores are being translated in the
survival curves with a few examples (see Figures 50,51).

Optimal cut-off values for different soft-voting partitioning of the RF models
(with and without oversampling)
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Figure 43: Optimal cut-off values regarding survival stratification for different soft-voting
partitioning of the RF models trained with and without application of oversampling techniques
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Figure 44: Scoring results for different voting schemes (40 different train:test splits with a 0.25
ratio left for testing)
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Scoring results for non-oropharyngeal carcinomas

(40 runs with a 75%train:25%test ratio)
Comparing Random Forests results before and after oversampling with their 60%-40% soft voting combination
Kruskal-Wallis chi-squared = 7.3797, df = 2, p-value = 0.02498
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Figure 45: Comparing RF, RF_os and ensemble RF60%-RF_0s40% scoring results in manual
segmentations’ non-OPC sub-cohort

Scoring results for oropharyngeal carcinomas

(40 runs with a 75%train:25%test ratio)
Comparing Random Forests results before and after oversampling with their 60%-40% soft voting combination
Kruskal-Wallis chi-squared = 9.3055, df = 2, p-value = 0.009536
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Figure 46: Comparing RF, RF_os and ensemble RF60%-RF_0s40% scoring results in manual
segmentations’ OPC sub-cohort

The soft voting combination RF60%-RF_0s40% achieved better results on both
subgroups of patients regarding the primary tumour site (oropharyngeal and non-
oropharyngeal carcinomas), whereas RF and RF_os classifiers alone performed better
in different subgroups. Moreover, overall results were considerably better in the non-OPC
subgroup. Interestingly, regardless the disappointing results of the RF_os classifier in the
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OPC subgroup when combined with the RF classifier managed to improve the RF
classifier's results. Scoring results in HPV(+) patients were poor, something expected as
HPV status heavily affects survival and HPV(+) patients have significantly better
prognosis regardless of other factors.

Scoring results for HPV(+) oropharyngeal carcinomas

(40 runs with a 75%train:25%test ratio)
Comparing Random Forests results before and after oversampling with their 60%-40% soft voting combination
Kruskal-Wallis chi-squared = 3.3782, df = 2, p-value = 0.1847
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Figure 47: Comparing RF, RF_os and ensemble RF60%-RF_0s40% scoring results in manual
segmentations’ HPV(+) OPC sub-cohort

Scoring results for laryngeal, hypopharyngeal and HPV/(-) cropharyngeal carcinomas

(40 runs with a 75%train:25%test ratio)
Comparing Random Forests results before and after oversampling with their 60%-40% soft voting combination
Kruskal-Wallis chi-squared = 49497, df = 2, p-value = 0.08418
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Figure 48: Comparing RF, RF_os and ensemble RF60%-RF_0s40% scoring results in manual

segmentations’ sub-cohort including only laryngeal, hypopharyngeal and HPV(-) oropharyngeal
carcinomas
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Scores achieved with RF60%-RFos40% soft voting scheme
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Figure 49: Classification scores achieved with the RF60%-RF_0s40% ensemble in the whole
manual segmentation cohort in the 40 different train:test splits with a 0.25 ratio left for testing

As we can see in Figure 49 in 77.5% of the different train:test splits of the dataset the
RF60%-RF_0s40% ensemble achieved positive classification scores. As a way of
visualizing these scores in terms of survival curves, Figure 50 and Figure 51 demonstrate
survival results for the patients stratified as high risk versus those stratified as low risk
when the scoring result was nearly 0 (Figure 50) and when the scoring result was even
slightly negative (Figure 51).
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Figure 50: Example of patients’ stratification with RF60%-RF_0s40% ensemble’s classification
score equal to 0.0263 (all cases, OPC, non-OPC)

P. T. Moumoulidis

83



Example of patients' stratification when the
RFG0%-RFos40% score 15 -0.0789
all cases

Strata high risk =+ low risk

1.00-

= o
in ~
=

Survival probability

o
i

p =0.05

0.00-

0 12 24 36

Months
Number at risk

21 17 11 8 8 7

== 53 51 43 34 29 27

0 12 24

Strata

36
Months

Survival probability

Strata

Example of patients' stratification when the
RF60%-RFos40% score is -0.0789
oropharyngeal carcinomas

Strata high risk ~+ low risk

1.00-

=)
~

=
in
=1

o
i

p=0.51

0.00-

0 12 24 36

Months
Number at risk

12 12 9 7 7 7

- 32 30 29 23 21 20

0 12 24 36
Months

Survival probability

Strata

Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data

Example of patients' stratification when the
RF60%-RFos40% score is -0.0789
non-oropharyngeal carcinomas
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Figure 51: Example of patients’ stratification with RF60%-RF_o0s40% ensemble’s classification
score equal to -0.0789 (all cases, OPC, non-OPC)

Stratification results in those two examples were statistically important (p<0.05) in both
cases in the non-oropharyngeal subgroup but no difference in the survival curves was
found in the oropharyngeal group in the case of the negative scoring result (Figure 50).
Summing up, overall results were quite encouraging for the non-OPC subgroup of
patients. Nonetheless the fact that there is a very large proportion of patients in our
dataset with oropharyngeal carcinomas and with unknown HPV status emerged as a
serious limitation. Therefore, we decided to proceed training in the case of the auto-
segmentation cohort by applying exclusion criteria in the group of patients with
oropharyngeal carcinomas.

3.2 Results on auto-segmented CT images

3.2.1 Unsupervised learning results on auto-segmented CT images

As we will observe in the following Figures: 52-59, unsupervised learning with GMMs
achieved better classification results when all features were taken into consideration and
OPC patients without premature death were excluded. Moreover, we observed that OPC
patients without premature death tend to be widespread in the two-dimensional space,
after dimensionality reduction (Figure 56) . Therefore, we believe that inclusion of such
widespread cases will complicate the learning process when training the different
classifiers. While interpreting these Figures we should also beware of the fact that
accuracy is over-estimated when patients with oropharyngeal squamous cell carcinoma
(OPSCC) without premature death are not excluded, because of the resulting very large
proportion of patients without premature death in those cohorts. Regarding the results
when using only “robust” features significantly associated (p-value<0.05) or with a trend
of association (p-value<0.1) with survival, we found these results to be inferior (Figures
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58, 59) to the results when all features were included (Figure 57) before the
dimensionality reduction. Finally, as we can observe in Figures 52 and 53 when excluding
patients with OPSCC without premature death, there seem to be a 3-cluster tendency in
our dataset (one cluster with overrepresentation of low-risk patients and two clusters with
overrepresentation of high-risk patients).
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Figure 52: Unsupervised clustering (GMM covariance= “diag”, 3 clusters) results in the cohort
where patients with OPSCC without premature death were excluded ,and all features were kept
before dimensionality reduction with t-SNE (perplexity=15)
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Figure 53: Unsupervised clustering (GMM covariance= “diag”, 3 clusters) results in the cohort
where patients with OPSCC without premature death were excluded ,and all features were kept
before dimensionality reduction with UMAP (n_neighbors=20, min_dist=0.25)
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TSNE (perplexity=20 and GMM covariance="tied")
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Figure 54: Unsupervised clustering (GMM covariance= “tied”, 2 clusters) results in the cohort
where patients with OPSCC without premature death were excluded ,and all features were kept
before dimensionality reduction with t-SNE (perplexity=20)
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Figure 55: : Unsupervised clustering (GMM covariance= “diag”, 2 clusters) results in the cohort

where patients with OPSCC without premature death were excluded ,and only “robust” features

with a trend of association (p-value<0.1) with survival were kept before dimensionality reduction
with UMAP (n_neighbors=50, min_dist=0.2)
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UMAP (neighbors=10, min_dist=0.2 and GMM covariance="diag')
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Figure 56: Unsupervised clustering (GMM covariance= “diag”, 4 clusters) results in the cohort
where all patients were included and all features were kept before dimensionality reduction with
UMAP (n_neighbors=10, min_dist=0.2)
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Figure 57: Unsupervised clustering (GMM covariance= “diag”, 2 clusters) results in the cohort
where all patients were included and all features were kept before dimensionality reduction with
UMAP (n_neighbors=10, min_dist=0.2)
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UMAP (neighbors=20, min_dist=0.3 and GMM covariance="full')
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Figure 58: Unsupervised clustering (GMM covariance= “full”, 2 clusters) results in the cohort
where all patients were included ,and only “robust” features with a trend of association (p-
value<0.1) with survival were kept before dimensionality reduction with UMAP (n_neighbors=20,
min_dist=0.3)
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Figure 59: Unsupervised clustering (GMM covariance= “full”, 2 clusters) results in the cohort
where all patients were included ,and only “robust” features significantly associated (p-
value<0.05) with survival were kept before dimensionality reduction with UMAP (n_neighbors=20,
min_dist=0.2)
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3.2.2 Supervised learning results on auto-segmented CT images

Supervised learning results will be presented separately for the two sub-cohorts created
after the application of further exclusion criteria in the group of patients with
oropharyngeal carcinomas (one with 47 patients where all OPC patients with OS > 5
years were excluded, and another one with 51 patients where 4 extra HPV-negative OPC
patents with OS > 5 years were included; see Tables 12 and 13 in section “2.1 Material”
for characteristics of the patients in each sub-cohort). PCA analysis will be presented
prior to training results. We shall present results regarding two different ratios left for
testing, 0.3 and 0.4. Dependence on the different dataset’s train-test splits, of the variance
explained shall also be investigated for the optimal number of components (Figures 61
and 85).

Classifiers were tested on the validation set consisted of the three images per patient that
hadn’t been used for training (Figure 41 — section 2.2.7). We averaged the three risks
(either hard voting or soft voting derived from probabilities) from the different classifiers
to obtain an average risk for premature death for each patient. Classifiers and ensemble
models were then sorted out based on their performance in terms of minimum standard
deviation of the optimal risk cut-off values derived from survival analysis, during the first
2.5 years, in the 40 different train-test splits of the dataset. Classifiers and ensemble
models with the 8 lowest standard deviations of the optimal cut-off values have been
evaluated with different metrics. For the evaluation of the various classifiers’ final
classification decision, we used the same cut-off point (both the mean and the median
were tested), for all 40 different train-test splits of the dataset. In the following evaluation
plots ensemble models will be named by the contributing classifiers and the name will be
starting with either “pb” when soft voting with probabilities or “risk” when hard voting, all
separated by underscore. For exmple pb_RF_QDA_GNB name will be used for soft
voting ensemble model from equal contribution of RF’s, GNB’s and QDA’s probabilities,
and risk_ISVM_QDA for combined hard voting of the ISVM and the QDA.

3.2.2.1 Supervised learning results on auto-segmented CT images - 47 patients

The exclusion of all OPC patients with OS > 5 years resulted in a quite balanced (ratio of
premature death: 0.4) sub-cohort of 47 patients (see Table 12).

0.8

0.6

0.4

Explained variance ratio

0.2
—— Cumulative explained variance
Individual explained variance

0.0
0 10 20 30 40

Principal component index
Figure 60: PCA analysis prior to training for the cohort with 47 patients
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PCA: Variance explained in training set

7 components, Test:Train(40:60) }—-—{
7 components, Test:Train(30:70) I—-—‘

6 components, Test:Train(40:60) o @ }—-—{ (0]

6 components, Test:Train(30:70) I—-—‘

0.90 0.91 0.92 0.93 0.94

Figure 61: Variance explained in the training set by number of components and left out
percentage for test, in the 40 different train-test splits of the dataset (cohort with 47 patients)

In the following subsections 3.2.2.1.a-d we will present training and validation results
obtained when training with either 6 or 7 principal components and with a test ratio of
either 0.3 or 0.4. The combination of 7 principal components and a test ratio of 0.3
seemed to be the most promising, from the variance analysis, and therefore the results
obtained in that case, shall be presented in more details. In the other cases, we will focus
on recall and f1 score, as we observed that classifiers with better performance in those
two metrics achieved the best results regarding patients’ overall survival related risk
stratification.

3.2.2.1.a Training with 7 principal components and with a test ratio of 0.3

Cumulative variance ratio

% Variance ratio retained: 0.926

03
0 4 8 12 16 2 24 28 32

First N principal components

Figure 62: Example of variance explained in the training set in one of the 40 different train-test
splits of the dataset
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Test:Train(70:30) models evaluation, when trained with 7 principal components

value

mean_bootstrap

matthews_corrcoef f1

balanced_accuracy precision
Metrics

recall

roc_auc

Figure 63: Training evaluation of different classifiers when trained with 7 principal components
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and with a test ratio of 0.3
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Figure 64: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest
standard deviation, classifiers and ensemble models (trained with 7 principal components and

As we can observe in Figure 62 GNB, ISVM and QDA classifiers achieved the best results
regarding MCC, balanced accuracy and precision, while GNB and ISVM remained the
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better performing classifiers regarding bootstrapping and ROC AUC score. Moreover,
GNB, ISVM and QDA remained within the 8 classifiers and ensemble models with the
lowest standard deviation in terms of optimal cut-off values for patients’ risk stratification
(Figure 64). These three classifiers along with RF were also the base of the better
performing ensemble models in the validation set (Figures 65-71). In Figures 65-71
various metrics’ results achieved both when using the mean and when using the median
of all 40 individual optimal cut-off values, will be compared.

Accuracy
Using mean as cut-off value for patients’ risk stratification

Scoring results for different vating schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
Metric: accuracy
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Using median as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
Metric: accuracy
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Figure 65: Accuracy results in the validation set for classifiers and ensemble models trained with
7 principal components and with a test ratio of 0.3
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Regarding accuracy we observed that the usage of the mean led to better results for three
classifiers (pb_RF_GNB, pb_RF_QDA and pb_RF_QDA_ GNB), whereas the results of
the other 5 classifiers remained the same (Figure 65).

Cohen's kappa
Using mean as cut-off value for patients’ risk stratification

Scoring results for different vating schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
Metric: cohen kappa
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Figure 66: Cohen’s kappa results in the validation set for classifiers and ensemble models trained
with 7 principal components and with a test ratio of 0.3

Regarding both Cohen’s kappa, MCC and precision, the usage of mean achieved again
better results in the same three classifiers (pb_RF_GNB, pb_RF _QDA and
pb_RF_QDA_GNB), while the rest had the same results (Figures 66, 67, 68).

P. T. Moumoulidis 93



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data

MCC

Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
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Figure 67: MCC results in the validation set for classifiers and ensemble models trained with 7
principal components and with a test ratio of 0.3
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Precision

Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes

40 runs using 7 principal components for training (Test: Train ratio 30:70)

Metric: precision
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Figure 68: Precision results in the validation set for classifiers and ensemble models trained with
7 principal components and with a test ratio of 0.3
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F1-score
Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
Metric: f1 score
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Figure 69: F1-score results in the validation set for classifiers and ensemble models trained with 7
principal components and with a test ratio of 0.3

Regarding F1-score the results were almost the same, and only slightly better in the same
three classifiers (pb_RF_GNB, pb_RF_QDA and pb_RF_QDA GNB) when using the
mean (Figure 69).
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Recall
Using mean as cut-off value for patients’ risk stratification
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Using median as cut-off value for patients’ risk stratification

Scoring results for different vating schemes
40 runs using 7 principal components for training (Test: Train ratio 30:70)
Metric: recall
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Figure 70: Recall results in the validation set for classifiers and ensemble models trained with 7
principal components and with a test ratio of 0.3

Regarding recall again the three ensemble models with probabilities soft voting
(pb_RF_GNB, pb_RF_QDA and pb_RF_QDA _GNB) were differentiated between mean
and median. However, in the case of recall the usage of median led to better results.
Interestingly, in the case of recall risk_ISVM_GNB model emerged as the fourth best
performing classifier.

The differences observed so far are in line with the fact that the usage of median led to
lower cut-off values compared to mean, in the cases of soft voting ensemble models
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(Figure 64). Lower cut-off values generally lead to more cases identified as high risk and
therefore potentially increase false positives (resulting in lower precision) and decrease
false negatives (resulting in higher recall), while Fl-score’s results that are equally
affected by both recall and precision remain almost the same. Moreover, the custom
metric whose scoring was favouring identifying high risk cases (scoring described in
section “2.2.7 Evaluation metrics and validation”), showcased the same differences as
recall (Figure 71).

Custom metric score
Using mean as cut-off value for patients’ risk stratification
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Figure 71: Custom metric results in the validation set for classifiers and ensemble models trained
with 7 principal components and with a test ratio of 0.3
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3.2.2.1.b Training with 6 principal components and with a test ratio of 0.3

Test:Train(70:30) models evaluation, when trained with 6 principal components
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Figure 72: Training evaluation of different classifiers when trained with 6 principal components
and with a test ratio of 0.3
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Figure 73: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest
standard deviation, classifiers and ensemble models (trained with 6 principal components and
with a test ratio of 0.3) are being presented.
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GNB and ISVM classifiers achieved the best results regarding MCC, balanced accuracy,
ROC AUC score and bootstrapping when training with 6 principal components and with
a test ratio of 0.3 (Figure 72), while GNB was the base of most of the better performing
ensemble models in terms of lowest standard deviation of optimal risk cut-off values
(Figure 73).
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Figure 74: Fl-score results in the validation set for classifiers and ensemble models trained with 6
principal components and with a test ratio of 0.3
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Ensemble soft voting models pb_RF_GNB and pb_RF_QDA_GNB achieved the most
promising results in the validation set, especially when using median as cut-off (Figures
73-75).
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Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 6 principal components for training (Test: Train ratio 30:70)
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Figure 75: Recall results in the validation set for classifiers and ensemble models trained with 6
principal components and with a test ratio of 0.3

3.2.2.1.c Training with 6 principal components and with a test ratio of 0.4

In consistent with previous results, GNB and ISVM classifiers achieved again the best
results regarding MCC, balanced accuracy, ROC AUC score and bootstrapping (Figure
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76), while pb_RF_GNB and pb_RF_QDA _GNB were the better performing ensemble
models in the validation set (Figures 77, 78 and 79).

Test:Train(60:40) models evaluation, when trained with 6 principal components
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Figure 76: Training evaluation of different classifiers when trained with 6 principal components
and with a test ratio of 0.4

Optimal cut-off values for 2.5-years OS
Presenting voting schemes with the lowest standard deviation
40 runs using 6 principal components for training (Test: Train ratio 40:60)
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Figure 77: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest
standard deviation, classifiers and ensemble models (trained with 6 principal components and
with atest ratio of 0.4) are being presented.
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F1-score

Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes

40 runs using 6 principal components for training (Test: Train ratio 40:60)
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Figure 78: Fl-score results in the validation set for classifiers and ensemble models trained with 6
principal components and with a test ratio of 0.4
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Recall
Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 6 principal components for training (Test: Train ratio 40:60)
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Figure 79: Recall results in the validation set for classifiers and ensemble models trained with 6
principal components and with a test ratio of 0.4

3.2.2.1.d Training with 7 principal components and with a test ratio of 0.4

GNB and ISVM classifiers achieved again the best results regarding MCC, balanced
accuracy, ROC AUC score and bootstrapping (Figure 80), while hard voting based on
GNB achieved better results in the validation set (Figures 81,82 and 83). Interestingly we
observed that when the left-out for test ratio increases, hard voting models tend to have
more stable results. Nevertheless, the better performing classifiers remain the same in
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all cases, GNB and ISVM. This consistent finding is quite promising regarding the
generalization of our results.

Test:Train(60:40) models evaluation, when trained with 7 principal components
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Figure 80: Training evaluation of different classifiers when trained with 7 principal components
and with a test ratio of 0.4

Optimal cut-off values for 2.5-years OS
Presenting voting schemes with the lowest standard deviation
40 runs using 7 principal components for training (Test: Train ratio 40:60)
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Figure 81: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest
standard deviation, classifiers and ensemble models (trained with 7 principal components and
with atest ratio of 0.4) are being presented.
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Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 7 principal components for training (Test: Train ratio 40:60)
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Figure 82: Fl-score results in the validation set for classifiers and ensemble models trained with 7

principal components and with a test ratio of 0.4
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Recall
Using mean as cut-off value for patients’ risk stratification

Scoring results for different voting schemes
40 runs using 7 principal components for training (Test: Train ratio 40:60)
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Figure 83: Recall results in the validation set for classifiers and ensemble models trained with 7
principal components and with a test ratio of 0.4

3.2.2.2 Supervised learning results on auto-segmented CT images - 51 patients

The inclusion of 4 extra HPV (-) OPC patients with OS >5 years resulted in a cohort with
51 patients (see Table 13) that remained to some extent balanced (ratio of premature
death: 0.37). However, the overall results were inferior to those obtained in the more
balanced cohort with 47 patients. Therefore, we will present only the results obtained with
the usage of 7 principal components and with a test ratio of 0.3, a combination that have
already been found to be the most promising.
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Figure 84: PCA analysis prior to training for the cohort with 51 patients

PCA: Variance explained in training set

7 components, Test:Train(40:60) }—-—{
7 components, Test:Train(30:70) }—-—{

6 components, Test:Train(40:60) }—-—|

6 components, Test:Train(30:70) I—-—{

0.89 0.90 0.91 0.92 0.93 0.94

Figure 85: Variance explained in the training set by number of components and left out
percentage for test, in the 40 different train-test splits of the dataset (cohort with 51 patients)

In consistent with the results in the cohort with 47 patients, GNB and ISVM classifiers
achieved again the best training results regarding MCC, balanced accuracy and
bootstrapping (Figure 86). In the validation set, hard voting of GNB and ISVM classifiers
along with the soft voting ensemble models pb_RF_GNB and pb_RF _QDA_GNB
achieved the best results (Figures 87, 88 and 89). In Figures 88 and 89 we presented
only the results derived when using the median of all optimal cut-off values as cut-off
point, based on previous findings that median leads to better recall results and
consequently identification of more true high-risk patients. The resulting higher sensitivity
when using median better serves the screening purposes of the proposed patients’ risk
stratification.
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Test:Train(70:30) models evaluation, when trained with 7 principal compenents
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Figure 86: Training evaluation of different classifiers when trained with 7 principal components
and with a test ratio of 0.3 (cohort with 51 patients)
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) risk_GNB = risk_ISWVM - pb_RF_GNB risk_ISVM_RF
Voting scheme )
| risk_ QDA FJ pb_RF_QDA_GNB 5 pb_RF_QDA risk_RF_QDA
1.00 SD: 0.112 SD: 0.165 SD: 0.169 SD: 0.178 SD: 0.193 SD: 0.23 SD: 0.237
Median: 0 Median: 0 Median: 0.167 Median: 0.302 Median: 0.381 Median: 0.167 Median: 0.333
Mean: 0.042 Mean: 0.167 Mea Mea 96 Mean: 0.288 Mean: 0.329
075
o
8
3
] a
5
< 0.50
3
T
E M
AT N
025 e
.
.
»
0.00 .
risk_GNB risk_QDA risk_ISVM pb_RF_QDA_GNB pb_RF_GNB pb_RF_QDA risk_ISVM_RF risk_RF_QDA

Voting scheme

Figure 87: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest
standard deviation, classifiers and ensemble models (trained with 7 principal components and

with atest ratio of 0.3) are being presented (cohort with 51 patients).
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Figure 88: F1-score results in the validation set for classifiers and ensemble models trained with 7
principal components and with atest ratio of 0.3 (median used as cut-off, cohort with 51 patients)
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Figure 89: Recall results in the validation set for classifiers and ensemble models trained with 7
principal components and with atest ratio of 0.3 (median used as cut-off, cohort with 51 patients)

3.2.3 Survival results on auto-segmented CT images

For the classifiers with the better performance in terms of minimum optimal risk cut-offs’
standard deviation , we used the same cut-off point for all the 40 different train-test splits
of the dataset, in order to stratify patients in the validation set. As cut-off point, we tried
both the mean and the median of all the optimal cut-off values. We then tested the
percentage of the 40 different splits, where the proposed classification model achieved
to separate survival of low-risk and high-risk group of patients statistically significantly (p-
value < 0.05) or to showcase a trend for difference in survival between the two risk groups
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(p-value < 0.1). By using the same cut-off, and not the optimal, we tried to partially
overcome the bias of an outcome-oriented method (providing a value of a cut-point that
correspond to the most significant relation with outcome, in our case survival) and to
present results with some potential of generalisation. Our survival results confirmed that
in most cases the resulting higher sensitivity when using median better serves the
screening purposes of the proposed patients’ risk stratification. Moreover, we also
confirmed that models with better performance regarding both F1-score and recall were
the ones that led to better separation of the 2.5 years overall survival curves between
patients classified as high and low risk. In subsections 3.2.3.1 and 3.2.3.2 we will present
classification models’ results obtained when using the median as cut-off point. We
selected to present the best results obtained in different training settings (7 principal
components with a test ratio of 0.3, 6 principal components with a test ratio of 0.3 and 7
principal components with a test ratio of 0.4).

3.2.3.1 Survival results on auto-segmented CT images - 47 patients

2.5years OS survival curves, Classifier: pp_RF_GNB , PCA: 7 , Test:Train (30:70)
(p<0 1in 80% and p<0.05 in 65% of all 40 runs)

_"‘_‘—u_'“"—'-f_"—\-._f_""—*_'_"'—u

p=0.033 p=0.016 p =061 p = 0.0095 p=0.18
33 33 28 21 16 10 33 33 29 22 16 9 39 30 33 27 22 15 33 33 27 21 16 9 37 37 32 24 20 13
14 14 13 12 11 9 14 14 12 1 10 8 8 B8 6 5 4 14 14 14 12 11 10 10 10 9 9 7 6
— - — — —
p = 0.067 p=0.049 p=0.05 p = 0.0034 p = 0.0057
36 36 30 24 18 35 35 29 23 18 11 5315 25 218 1658 34 34 28 21 16 9 35 35 29 22 16 10
11 11 11 9 12 12 12 10 9 8 16 16 16 12 11 10 13 13 13 12 11 10 12 12 12 11 11 9
— -+ -+ -+ —_—
p = 0.009 p=0.092 p=0.012 p=0.75 p=0.18
33 33 28 20 9 29 29 23 19 15 9 33 33 28 21 16 9 34 34 29 24 20 13 35 35 29 24 19 12
14 14 13 13 0 18 18 18 14 12 10 14 14 13 12 11 10 13 13 12 9 7 6 12 12 12 9 8 7
-+ —+ —+ -+ —+
p = 0.049 p =0.052 p=0.036 p=0.022 p=0.013
37 37 31 24 33 33 27 22 17 10 33 33 27 21 16 10 32 32 26 21 16 9 34 34 28 21 16 10
10 10 10 9 14 14 14 11 10 9 14 14 14 12 11 9 15 15 15 12 11 10 13 13 13 12 11 9
— —— == == ——
p = 0.049 p=0.2 p=0.0051 p=0.018 p = 0.0065
39 39 33 26 20 13 35 35 29 24 19 12 34 34 29 22 16 9 38 38 32 24 19 12 32 32 26 19 14 9
8 8 8 7 7 86 12 12 12 9 8 7 13 13 12 11 11 10 9 ¢ 9 9 8 7 15 15 15 14 13 10
— - - —— —
p=0.52 p=0.012 p=0.37 p = 0.00074 p =0.053
33 33 20 23 28 28 23 18 13 7 32 32 27 23 18 11 30 30 25 18 14 6 29 29 25 20 15 8
14 14 12 10 19 19 18 15 14 12 15 15 14 10 9 8 17 17 16 15 13 13 18 18 16 13 12 11
— -+ -+ -+ -
p=0.13 p=0.016 p=0.057 p=0.031 p = 0.052
40 40 34 27 22 14 32 32 26 20 15 9 32 32 26 20 16 10 25 25 19 14 12 T 33 33 27 22 17 10
7 6 15 15 15 13 12 10 1521521513001 28 22 22 22 19 15 12 14 14 14 11 10 9
-+ -+ -+ - -+
p=0.014 p=0.026 p=0.029 p=0.026 p=0.018
30 30 24 19 14 33 33 27 20 16 10 31 31 25 20 15 9 31 31 25 20 15 9 36 36 30 22 18 11
17 17 17 14 13 14 14 14 13 11 9 16 16 16 13 12 10 16 16 16 13 12 10 1 11 11 11 9 8

Figure 90: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
pb_RF_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median
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2.5years OS survival curves, Classifier: risk_ISVM_GNB , PCA: 7 , Test:Train (30:70)
(p<0.1in 80% and p<0.05 in 60% of all 40 runs)
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Figure 91: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
risk_ISVM_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the
40 different train-test splits of the dataset), using in all cases the same risk cut-off value (the
median of all 40 optimal-cut-off values); cohort with 47 patients

The best results in the validation set were obtained in the cohort with 47 patients and
when classification models were trained with 7 principal components and with a test ratio
of 0.3 (Figures 90, 91) followed by the results obtained when trained with 6 principal
components and with a test ratio of 0.3 (Figures 92, 93).

In the case of training with 7 principal components the best performing classifiers were
the soft voting model pb_RF_GNB and the hard voting model risk_ISVM_GNB. Both
models achieved to showcase a trend for difference in survival between the two risk
groups (p-value < 0.1) in 80% of the 40 different train-test splits of the dataset.
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2.5years OS survival curves, Classifier: pp_RF_QDA_GNB , PCA: 6 , Test:Train (30:70)
(p<0.1in 72.5% and p<0.05 in 62.5% of all 40 runs)
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Figure 92: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
pb_RF_QDA_GNB classifiers (trained with 6 principal components and with a test ratio of 0.3 in
the 40 different train-test splits of the dataset), using in all cases the same risk cut-off value (the
median of all 40 optimal-cut-off values); cohort with 47 patients

In the case of training with 6 principal components the best performing classifiers were
the soft voting model pb RF_ QDA GNB and the hard voting model
risk_ GNB_QDA_RF_ISVM. Both models achieved to showcase a trend for difference in
survival between the two risk groups (p-value < 0.1) in around 70% of all the 40 different
train-test splits of the dataset. Notably, the hard voting model risk_ GNB_QDA _RF_ISVM
achieved the best overall results regarding separating survival curves of low-risk and
high-risk group of patients statistically significantly (p-value < 0.05), reaching such results
in 67.5% of all the 40 different train-test splits of the dataset (Figure 93).
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2.5years OS survival curves, Classifier: risk_GNB_QDA_RF_ISVM , PCA: 6 , Test:Train (30:70)
(p<0.1in 70% and p<0.05 in 67.5% of all 40 runs)
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Figure 93: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in

the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the

risk_GNB_QDA_RF_ISVM classifiers (trained with 6 principal components and with a test ratio of

0.3 in the 40 different train-test splits of the dataset), using in all cases the same risk cut-off value
(the median of all 40 optimal-cut-off values); cohort with 47 patients

Finally, even in the case of training with 7 principal components and with the quite high
test ratio of 0.4, hard voting with GNB alone achieved in the validation set to showcase a
trend for difference in survival between the two risk groups (p-value < 0.1) in 70% of all
the 40 different train-test splits of the dataset (Figure 94). Looking back at Figure 81 we
can see that the cut-off point used for the risk_GNB was 0, meaning that in the validation
set only one out of the three images per patient had to be classified as high-risk, by the
GNB classifier, in order to finally classify the patient as high-risk. However, the results
were quite inferior in separating survival curves of low-risk and high-risk group of patients
statistically significantly (p-value < 0.05), achieving such results in only 45% of the 40
different train-test splits of the dataset (Figure 94).
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2.5years OS survival curves, Classifier: risk_GNB , PCA: 7 , Test:Train (40:60)
(p<0.1in 70% and p<0.05 in 45% of all 40 runs)
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Figure 94: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
risk_GNB classifiers (trained with 7 principal components and with a test ratio of 0.4 in the 40
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median

of all 40 optimal-cut-off values); cohort with 47 patients

3.2.3.2 Survival results on auto-segmented CT images — 51 patients

In the cohort with 51 patients the results were inferior to those of the cohort with 47
patients. Only classifiers resulted from the training setting with 7 principal components
and with a test ratio of 0.3 achieved to showcase adequate separation between the
survival curves of the low and high risk group of patients. Again, the GNB classifiers
achieved the best results followed by the ISVM classifiers and the ensemble soft voting
model pb_RF_GNB (Figures 95, 96 and 97).
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2.5years OS survival curves, Classifier: risk_GNB , PCA: 7 , Test:Train (30:70)
(p<0.1in 75% and p<0.05 in 47.5% of all 40 runs)
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Figure 95: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
risk_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median

of all 40 optimal-cut-off values); cohort with 51 patients

Although those classification models achieved to showcase a trend for difference in
survival between the two risk groups (p-value < 0.1), in high percentages of the 40
different train-test splits of the dataset (reaching even 75%), those models had poorer
results in separating survival curves of the low-risk and the high-risk group of patients
statistically significantly (p-value < 0.05), achieving such results in only 47.5%-55% of the
40 different train-test splits of the dataset (Figures 95, 96 and 97).
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, PCA: 7, Test:Train (30:70)

Classifier: risk_ISVM

2.5years OS survival curves,

(p<0.1 in 67.5% and p<0.05 in 55% of all 40 runs)
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Figure 97: Kaplan—Meier 2.5 years overall survival curves according to risk group classification in
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median
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4. DISCUSION

Undefined HPV status in oropharyngeal carcinomas was a serious limitation for the
current pilot study. The unknown HPV status acts as a highly confounding factor. With
the application of further exclusion criteria in the group of patients with oropharyngeal
carcinomas we partially overcame it. On the one hand, by excluding all patients with
oropharyngeal carcinomas and overall survival greater than 5 years, a group of patients
that was considered as a potential confounder in our study, we ended up with a balanced
cohort in terms of survival categories. The most balanced cohort was the one with 47
patients, and our results showed that it favoured training, as we achieved the best results
in that case. On the other hand, the exclusion of all these patients resulted in a small
dataset.

Radiomics machine learning studies with small sample size are quite challenging and can
lead to unreliable results. We applied unsupervised learning to investigate the separability
of our data. We observed that when excluding patients with OPSCC without premature
death, there seemed to be an inherent 3-cluster tendency in our dataset (one cluster with
overrepresentation of low-risk patients and two clusters with overrepresentation of high-
risk patients). We also observed that when taking all features into consideration there
seem to be a stronger inherent tendency for clusters formation that were relevant to the
clinical problem addressed. The aforementioned observations indicated that proceeding
with the smaller but more balanced cohorts and with a dimensionality reduction method
that takes all features and consequently the interaction effects among the features into
consideration, like PCA, would be a promising strategy.

Our classification results were very encouraging, as we managed to train classifiers that
served well the screening purposes of the problem addressed, by achieving high recall
while maintaining an acceptable Fl-score. The results were validated by survival
analysis. By using the same cut-off, and not the optimal, we tried to partially overcome
the bias of an outcome-oriented method and to present results with some potential of
generalisation. It was also encouraging that in different training settings the same
classifiers, GNB and ISVM, emerged as the ones with the better performance. Moreover,
the soft voting ensemble model pb_RF_GNB was also consistently among the better
performing.

Nevertheless, more data, with known HPV status for the OPSCC patients, are needed to
achieve better and more stable results. Data augmentation by using more CT slices at
the same cervical level (C3) per patient is not recommended especially as long as the
dataset remains relatively small. However, using more than one image per patient might
be beneficial when calculating the patient’s risk for premature death and is recommended
both for validation purposes on unseen data, and for classification of new entries whose
outcome is yet unknown.

To conclude, prognosis of HNSCC patients remains complex and such risk classifications
should be considered only in more complex models along with other well studied
prognostic features. When other indications of malnutrition are present , nutritional
interventions should be seriously considered in patients classified as high-risk. Sex and
biometric measurements should be also taken into consideration in larger datasets. When
sarcopenia can be defined from the L3 level, prevalence of sarcopenia in the high-risk
group should also be addressed. Still, such studies cannot be conducted without the
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establishment of large national cancer databases, and it is in this direction where we
should focus our actions. Figure 98 shows how a head and neck cancer registry could be
developed and utilized.
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Figure 98: Head and neck cancer registry - data collection, processing, prediction models and
future perspectives
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5. CONCLUSION

The proposed automatic method for segmentation, radiomic feature extraction and
subsequent patient risk stratification, based on CT-derived skeletal muscle related data,
constitutes a promising automatic screening method. The fact that results were evaluated
on 40 different train-test splits of the dataset and that proposed risk stratification was
tested on a validation set using the same risk cut-off points and not always the optimal
ones, along with the consistency regarding various classifiers’ performance pave the way
for potential generalization. However, more data are needed, with known HPV status for
the OPSCC patients in order to establish risk stratification based on CT-derived skeletal
muscle related data as a clinically useful biomarker, that might be integrated in more
complex machine learning prognostic models aiming personalized treatment.
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ABBREVIATIONS

Al, artificial intelligence

ASM, appendicular skeletal muscle mass
AUC-ROC, area under receiver operating characteristics curve
C3, third cervical spine vertebra

CC, consensus clustering

CGA, comprehensive geriatric assessment
Cl, confidence interval

CSA, cross-sectional area

CSS, cancer specific survival

CT, computed tomography

DFS, disease free survival

EM, expectation-maximization

Fl, frailty index

GAN, generative adversarial network
GLCM, gray-level co-occurrence matrix
GLDZM, gray-level distance-zone matrix

GLM, generalized linear model
GLRLM, gray-level run-length matrix

GLSZM, gray-level size-zone matrix
GMM, gaussian mixture models

GNB, gaussian naive Bayes

GP, gaussian processes,

HNC, head and neck cancer

HNSCC, head and neck squamous cell carcinoma
HPV, human papilloma virus

HR, hazard ratio

HU, Hounsfield unit

ICA, independent component analysis
ICC, intraclass correlation coefficient
IH, intensity histogram

IVH, intensity-volume histogram

KNN, k-nearest neighbour
kSVM, kernel support vector machine
L3, third lumbar spine vertebra
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ISVM, linear support vector machine

MACT, mean muscle attenuation on CT scan

MCC, Matthews correlation coefficient

MDA, mixture discriminant analysis

ML, machine learning

MLP, multi-layer perceptron

MRI, magnetic resonance imaging

NB, naive Bayes

NGLDM, neighbouring gray-level dependence matrix

NGTDM, neighbouring gray-tone difference matrix
NNET, neural network

NZV, near zero variance

OPC, oropharyngeal cancer

OPSCC, oropharyngeal squamous cell carcinoma
OS, overall survival

OSCC, oral squamous cell carcinoma

PCA, principal component analysis

PET, positron emission tomography

PG-SGA, patient-generated subjective global assessment
PLS, partial least squares

QDA, quadratic discriminant analysis

QoL, quality of life

RF, random forest

ROC curve, receiver operating characteristic curve
ROI, region of interest

ROSE, random over sampling examples

SE, standard error

SMFD, skeletal muscle function deficit

SMI, skeletal mass index

SMOTE, synthetic minority oversampling technique
SMR, skeletal muscle radiodensity

SR, super resolution

SVM, support vector machine

T2, thoracic vertebra 2

t-SNE, t-distributed stochastic neighbor embedding
UMAP, uniform manifold approximation and projection
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WHO PS, world health organization performance status
Z\V, zero variance
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