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ABSTRACT 

 

Objective: The purpose of the project is to propose a machine learning based 
classification model, able to identify patients in high risk for decreased overall survival 
based only on CT-derived muscle related data, in patients with stage IV HNSCCs. As 
part of the project, an automated paravertebral muscle area (with and without 
intermuscular and intramuscular adipose tissue) segmentation method will be developed 
and proposed. Our aim will not be to achieve near perfect classification results (something 
utopic due to the complex medical background of the problem addressed), but to identify 
possibly high-risk group of patients that may be benefited from targeted nutritional and 
other interventions. Therefore, we are aiming to develop an automated screening method 
that will be based on CT-derived muscle related data. Material and Methods: A PET-CT 
collection, with 298 patients with histologically proven head-and-neck cancer, was 
retrieved from the cancer imaging archive and was used for the purposes of this pilot 
study. We included only patients with Stage IV cancer, with known site of the primary 
tumour and with a minimum follow-up period of 5 years. These inclusion criteria resulted 
in 74 patients. Further sub-cohorts (with 47 and 51 patients)  were created with the 
application of extra exclusion criteria in the group of patients with oropharyngeal 
carcinomas. Premature death was defined as death when the survival probability was 
higher than 75% in the separate, for each primary site, survival curves. Unsupervised 
machine learning methods were also used to address the separability of our data and to 
test different feature selection strategies. Classification results after training on both 
manually and automatically segmented muscle areas were evaluated. Best performing 
classifiers were tested on a validation set consisted of the three images per patient that 
had not been used for training. Validation results were tested in terms of classifiers’ ability 
to separate survival curves of the low-risk and the high-risk group of patients statistically 
significantly. Survival analysis was performed using Kaplan-Meier survival curves. 
Results: In unsupervised learning we observed that when excluding patients with 
OPSCC without premature death, there seemed to be an inherent 3-cluster tendency in 
our dataset (one cluster with overrepresentation of low-risk patients and two clusters with 
overrepresentation of high-risk patients). Our classification results were very 
encouraging, as we managed to train classifiers that served well the screening purposes 
of the problem addressed, by achieving high recall while maintaining an acceptable F1-
score. The best results in the validation set were obtained in the cohort with 47 patients 
and when classification models were trained with 7 principal components and with a test 
ratio of 0.3. A soft voting ensemble model achieved to showcase a trend for difference in 
survival curves between the two risk groups (p-value < 0.1) in 80% of the 40 different 
train-test splits of the dataset, and to separate statistically significantly the two curves in 
65% of the splits. Conclusion: The proposed automatic method for segmentation, 
radiomic feature extraction and subsequent patient risk stratification, based on CT-
derived skeletal muscle related data, constitutes a promising automatic screening 
method. The fact that results were evaluated on 40 different train-test splits of the dataset 
and that proposed risk stratification was tested on a validation set using the same risk 
cut-off points and not always the optimal ones, along with the consistency regarding 
various classifiers’ performance pave the way for potential generalization. However, more 
data are needed to establish risk stratification based on CT-derived skeletal muscle 
related data as a clinically useful biomarker. 

SUBJECT AREA: Radiomics-based machine learning 

KEYWORDS: Radiomics, head and neck cancer, automatic segmentation, risk 

stratification, machine learning 



ΠΕΡΙΛΗΨΗ 

 

Σκοπός: Η μελέτη στοχεύει στο να προτείνει ένα μοντέλο ταξινόμησης μηχανικής 
μάθησης ικανό να αναγνωρίζει ασθενείς υψηλού ρίσκου για μειωμένη συνολική επιβίωση, 
βασιζόμενο μόνο σε δεδομένα σχετικά με τους σκελετικούς μύες από την αξονική 
τομογραφία, σε ασθενείς με σταδίου 4 καρκίνο της κεφαλής και του τραχήλου. Ως μέρος 
της μελέτης θα αναπτυχθεί και θα προταθεί μία μέθοδος αυτόματης κατάτμησης της 
περιοχής ενδιαφέροντος στην αξονική τομογραφία των παρασπονδυλικών μυών (με και 
χωρίς το περιμυϊκό και ενδομυϊκό λιπώδη ιστό). Στοχεύουμε στο να αναπτύξουμε μια 
μέθοδο διαλογής των ασθενών υψηλού κινδύνου που θα μπορούσαν να ωφεληθούν από 
διατροφικές ή άλλες παρεμβάσεις, βασιζόμενη σε δεδομένα σχετικά με τους σκελετικούς 
μύες από την αξονική τομογραφία, και όχι να πετύχουμε κοντά στο τέλειο αποτελέσματα 
ταξινόμησης, κάτι που ούτως ή άλλως είναι ουτοπικό εξαιτίας του πολύπλοκου ιατρικού 
υποβάθρου του προβλήματος που απευθύνουμε. Υλικό και Μέθοδος: Αποκτήσαμε 
πρόσβαση σε μία συλλογή PET-CT του αρχείου απεικονίσεων καρκίνου της TCIA που 
περιλάμβανε 298 ασθενείς με ιστολογικώς αποδεδειγμένο καρκίνο της κεφαλής και του 
τραχήλου. Στη μελέτη συμπεριλάβαμε μόνο ασθενείς σταδίου 4 , με γνωστή πρωτοπαθή 
εστία και με ελάχιστη περίοδο παρακολούθησης τα 5 έτη, καταλήγοντας έτσι σε 74 
ασθενείς. Με την εφαρμογή περαιτέρω κριτηρίων αποκλεισμού στη κατηγορία των 
ασθενών με καρκίνο του στοματοφάρυγγα δημιουργήθηκαν μικρότερες κοορτές των 47 
και 51 ασθενών. Ως πρόωρος θάνατος ορίστηκε ξεχωριστά για ασθενείς με διαφορετική 
πρωτοπαθή εστία , ο θάνατος όταν η πιθανότητα επιβίωσης στις καμπύλες επιβίωσης 
ήταν μεγαλύτερη του 75%. Χρησιμοποιήσαμε ακόμη μεθόδους μη επιβλεπόμενης 
μάθησης προκειμένου να δούμε την έμφυτη τάση των δεδομένων μας για διαχωρισμό σε 
ομάδες, καθώς και για να τεστάρουμε διαφορετικές στρατηγικές επιλογής 
χαρακτηριστικών. Τα αποτελέσματα ταξινόμησης μετά την εκπαίδευση των μοντέλων 
αξιολογήθηκαν τόσο στις εικόνες που είχε γίνει χειροκίνητα η κατάτμηση των περιοχών 
ενδιαφέροντος των μυών όσο και στις εικόνες με αυτόματη κατάτμηση. Οι ταξινομητές με 
τα καλύτερα αποτελέσματα αξιολογήθηκαν σχετικά με την ικανότητά τους να 
κατηγοριοποιούν τους ασθενείς σε υψηλού και χαμηλού ρίσκου με τρόπο ώστε να 
χωρίζουν σε βαθμό στατιστικά σημαντικό οι καμπύλες επιβίωσης μεταξύ των δύο ομάδων 
ρίσκου των ασθενών. Η ανάλυση επιβίωσης έγινε χρησιμοποιώντας τις κατά Kaplan-
Meier καμπύλες επιβίωσης. Αποτελέσματα: Χρησιμοποιώντας μεθόδους μη 
επιβλεπόμενης μάθησης παρατηρήσαμε ότι αποκλείοντας ασθενείς με καρκίνο του 
στοματοφάρυγγα χωρίς πρόωρο θάνατο, υπήρχε μια έμφυτη τάση για σχηματισμό 3 
ομάδων (1 με σαφή κυριαρχία των ασθενών χαμηλού ρίσκου και 2 όπου κυριαρχούσαν 
οι ασθενείς υψηλού ρίσκου). Τα αποτελέσματα επιβλεπόμενης μάθησης ήταν επίσης 
πολύ ενθαρρυντικά, επιτυγχάνοντας εξαιρετική ευαισθησία διατηρώντας αποδεκτά F1-
score. Τα καλύτερα αποτελέσματα επιτεύχθηκαν στην κοορτή με 47 ασθενείς, όταν η 
εκπαίδευση έγινε χρησιμοποιώντας 7 κύριες συνιστώσες, αφήνοντας για τεστ 30% των 
δεδομένων, με το καλύτερο μοντέλο να καταφέρνει να αναδείξει τάση  διαφοροποίησης 
των καμπυλών επιβίωσης των δύο ομάδων κινδύνου στο 80% των 40 διαφορετικών 
διαχωρισμών για εκπαίδευση-αξιολόγηση των δεδομένων. Συμπεράσματα: Η 
προτεινόμενη μέθοδος αυτόματης κατάτμησης της περιοχής ενδιαφέροντος, εξαγωγής 
ραδιομικών χαρακτηριστικών και διαστρωμάτωσης κινδύνου των ασθενών είναι πολλά 
υποσχόμενη, με δυναμικό γενίκευσης, ωστόσο απαιτούνται περισσότερα δεδομένα πριν 
προταθεί ως χρήσιμος στην κλινική πρακτική βιοδείκτης.  

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική μάθηση βασισμένη σε ραδιομική ανάλυση 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ραδιομική ανάλυση, καρκίνος κεφαλής και τραχήλου, αυτόματη 

κατάτμηση, διαστρωμάτωση κινδύνου, μηχανική μάθηση 
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1. INTRODUCTION 

1.A Purpose of the study 

The majority of patients with head and neck squamous cell carcinomas (HNSCC) present 
with locoregionally advanced stages (III, IV). In these group of patients, notably in stage 
IV patients, multimodal interventions are required, as well as personalized treatment 
options, in order to minimize the side effects of the treatment applied, while achieving 
increased overall survival (OS) and superior quality of life (QoL) [1], [2].  

The nutritional status of the patient (as expressed by sarcopenia, myosteatosis, frailty 
and others) together with the presence of human papilloma virus (HPV) infection hold 
great prognostic significance in those patients (see chapter 1.B). Therefore, it is important 
to identify patients in which treatment benefits outweigh the risk of any adverse outcome, 
as well as patients who are in high risk for decreased overall survival. However, it can be 
not only highly time consuming to assess frailty and sarcopenia, but also sometimes 
impossible (especially in retrospective studies) due to the lack of critical clinical 
information required. Moreover, there is no consensus regarding cut off values for 
sarcopenia in literature with studies done in different parts of the world citing different cut 
off values.  

The aforementioned limitations lead us to investigate the feasibility of extracting data 
related to sarcopenia, myosteatosis and frailty from the patient’s CT-scan, which is 
routinely performed, and subsequently available in all patients. Based on the literature 
(see 1B.4) we decided to extract these radiomic information from the paravertebral 
muscle area at the level of the third cervical vertebra (C3). Manual paravertebral muscle 
segmentation remains another time-consuming process, therefore there is need for 
automated segmentation methods. 

The purpose of the project is to propose a machine learning based classification model, 
able to identify patients in high risk for decreased overall survival based only on CT-
derived muscle related data, in patients with stage IV HNSCCs. As part of the project, an 
automated paravertebral muscle area (with and without intermuscular and intramuscular 
adipose tissue) segmentation method will be developed and proposed. Classification 
results after training on both manually and automatically segmented muscle areas shall 
be evaluated. Unsupervised machine learning methods will be also used in order to 
address the separability of our data and in order to test different feature selection 
strategies. 

Given the fact that survival is affected by various other, both known and yet unknown 
factors, we will focus on the occurrence of premature death, while taking into account the 
site of the primary tumour. Especially, we shall treat with great precaution data from 
oropharyngeal cancer (OPC) patients, as in this specific group, survival is highly affected 
by the HPV status, which is not always available. Our aim will not be to achieve near 
perfect classification results (something utopic due to the complex medical background 
of the problem addressed), but to identify possibly high-risk group of patients that may be 
benefited from targeted nutritional and other interventions. Therefore, we are aiming to 
develop an automated screening method that will be based on CT-derived muscle related 
data. Moreover the muscle related risk stratification of the patients, may serve as an extra 
feature in more complicated prognostic models that will also include well established 
prognostic factors. 
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1.B Definitions, medical background, and relative research interest in 
Otorhinolaryngology 

 

1.B.1 Head-and-neck squamous cell carcinoma 

Head and neck squamous cell carcinomas (HNSCCs) develop from the mucosal 
epithelium of the oral cavity, nasopharynx, oropharynx, hypopharynx and larynx [3]. 
Despite the similar cell origin, tumours of the nasopharynx constitute a separate epithelial 
malignancy entity with distinct geographical distribution and different, compared to other 
epithelial head and neck tumours, pathogenesis progression and aetiology (including 
EBV infection, host genetics, and environmental factors) [4]. Due to the aforementioned 
differences nasopharyngeal carcinomas are studied separately. Sinonasal squamous-
cell carcinomas are studied separately as well, as they constitute a quite complex tumour 
type for with numerous histologic variants and unusual morphologic features, with their 
aetiology, epidemiology, clinical features, and genetic profiles being quite distinct from 
those of the main head and neck cancer localizations [5]. The main anatomical sites of 
HNSCC development are shown in Figure 1 [3]. 

 

Figure 1: Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium 
of the oral cavity (lips, buccal mucosa, hard palate, anterior tongue, floor of mouth and retromolar 

trigone), nasopharynx, oropharynx (palatine tonsils, lingual tonsils, base of tongue, soft palate, 
uvula and posterior pharyngeal wall), hypopharynx (the bottom part of the throat, extending from 

the hyoid bone to the cricoid cartilage) and larynx 

 

It has been almost 20 years now that trends in head and neck cancer (HNC) have started 
changing. It has been reported [6] that oral cavity cancer incidence rates increased in 
many countries with peaking tobacco epidemics and on the other hand declined in 
countries where tobacco use peaked some time ago. Moreover, rates of oropharyngeal 
cancer increased in a number of countries where tobacco use has declined [6], and the 
incidence of human papilloma virus (HPV) associated oropharyngeal cancer is increasing 
in developed countries [7], induced mainly by HPV type 16, affecting predominantly 
younger people in North America and northern Europe, reflecting a latency of 10 to 30 
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years after oral-sex exposure [8]. Despite the distinct patterns of geographic variation in 
HPV-related oropharyngeal cancer, with higher prevalence in Western Europe, there are 
still limited recent data available for Eastern Europe, Asia or Africa [9]. 

Hence, HNSCC can be classified into two distinct types, HPV-positive and HPV-negative, 
with distinct mutational landscape, response to clinical treatment, and survival outcomes 
[7]. HPV-associated HNSCCs arise primarily from the palatine and lingual tonsils of the 
oropharynx, whereas tobacco-associated HNSCCs arise primarily in the oral cavity, 
hypopharynx and larynx [3]. The main characteristics of these two distinct types of 
HNSCC are summarized in Table 1 [7], [10] . 

 

Table 1: HPV-negative compared with HPV-positive head and neck cancer 

Parameter HPV (-) HPV (+) 

Male:Female 3:1 8:1 

Age > 60 40-60 

Race White > black; 
worse prognosis in blacks 

White > black 

Socioeconomic status Low-middle Higher 

Smoking >90% have smoking history; 
risk increases with increasing 
tobacco use 

50%–65% have smoking 
history 

Alcohol consumption Synergistic with tobacco in 
increasing risk 

Not a significant risk factor 

Sexual history Not a significant risk factor Number of oral sex partners is 
a strong risk factor 

Primary tumour site Larynx and oral cavity most 
common 

Oropharynx, specifically 
lymphoid tissue of tonsils and 
tongue base 

Presentation Varies Enlarged cervical lymph nodes 
common; also oropharyngeal 
pain, dysphagia, referred 
otalgia 

Incidence trends Decreasing Increasing 

Tumour (T) stage More advanced T stage Early T stage 

Nodal (N) stage Early N stage Advanced N stage 

Second primary rate (%) 4.6 11 

Prognosis All sites:  
5-year survival 65%,  
5-year recurrence 50% 
Oropharynx:  
5-year survival 20%–25%,  
5-year recurrence 50% 

Oropharynx:  
5-year survival 60%–90%,  
5-year recurrence 10%–15% 

 

The need for continued awareness in reducing HNSCC traditional risks factors, such as 
cigarette use, remains, while emerging risk factors like HPV infection, require novel 
staging systems and greater resources to be poured into, in order to decrease the 
incidence of HNSCC worldwide [11]. Despite the significant drop in the incidence of 
smoking-related HNSCC, efforts to decrease cigarette usage should continue, and newly 
emerged potential risk factors, such as the E-cigarettes, should be tackled, given that 
they are ineffective in helping head and neck cancer patients achieve smoking cessation 
[12], E-cigarettes’ exact role in HNSCC development has not been clarified [13], and their 
young users are more likely to use conventional cigarettes in the future [14].  



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               20 

1.B.2 Definitions 

 

1.B.2.1 Sarcopenia 

In 2018, the European Working Group on Sarcopenia in Older People met for the second 
time (EWGSOP2) in order to update the original definition of sarcopenia, in a way that 
would reflect all the scientific and clinical evidence built since their first published 
definition back in 2010. Aiming to increase consistency of research design, clinical 
diagnoses and ultimately, care for people with sarcopenia, they proposed the following 
operational definition of sarcopenia [15] : Sarcopenia is probable when low muscle 
strength is detected. A sarcopenia diagnosis is confirmed by the presence of low muscle 
quantity or quality. When low muscle strength, low muscle quantity/quality and low 
physical performance are all detected, sarcopenia is considered severe. As a way of 
applying this definition in practice, EWGSOP2 reviewed tests and tools used for 
assessing muscle properties and performance, and presented the EWGSOP2 
sarcopenia cut-off points, as seen in Table 2 [15], and an updated algorithm for 
sarcopenia case-finding, diagnosis and severity determination as seen in Figure 2 [15]. 

 

Figure 2: Sarcopenia: EWGSOP2 algorithm for case-finding, making a diagnosis and quantifying 
severity in practice. The steps of the pathway are represented as Find-Assess-Confirm-Severity or 

F-A-C-S. *Consider other reasons for low muscle strength (e.g. depression, stroke, balance 
disorders, peripheral vascular disorders). 
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Table 2: EWGSOP2 sarcopenia cut-off points 

 

1.B.2.2 Frailty 

Frailty is a state of vulnerability to poor resolution of homoeostasis after a stressor event 
and is a consequence of cumulative decline in multiple body systems or functions 
(physical, cognitive, social, and psychological) during a lifetime, increasing susceptibility 
to poor health outcomes and remaining the most problematic expression of population 
ageing [26]. While the physical phenotype of frailty shows significant overlap with 
sarcopenia with low grip strength, slow gait speed and weight loss being involved in both, 
frailty and sarcopenia are still distinct— one a geriatric syndrome representing a much 
broader concept and the other a disease [15].  

In 2013 a frailty consensus from 6 major international, European, and US societies was 
published [27], highlighting the following 4 key points regarding physical frailty:  

1. Physical frailty is an important medical syndrome. Physical frailty was defined as “a 
medical syndrome with multiple causes and contributors that is characterized by 
diminished strength, endurance, and reduced physiologic function that increases an 
individual’s vulnerability for developing increased dependency and/or death.” 

2. Physical frailty can potentially be prevented or treated with specific modalities, such as 
exercise, protein-calorie supplementation, vitamin D, and reduction of polypharmacy. 

3. Simple, rapid screening tests have been developed and validated, such as the simple 
FRAIL scale, to allow physicians to objectively recognize frail persons. 

4. For the purposes of optimally managing individuals with physical frailty, all persons 
older than 70 years and all individuals with significant weight loss (≥5%) due to chronic 
disease should be screened for frailty. 

Frailty’s diagnostic tools were built based on two main models: 1) the phenotypic model, 
which describes a relationship between a set of criteria that defines frailty and the effect 
on certain outcomes, and 2) the deficit accumulation model, which measures the number 

Test Cut-off points for 
men 

Cut-off points for 
women 

Reference 

EWGSOP2 sarcopenia cut-off points for low strength by chair stand and grip strength 

Grip strength <27 kg <16kg [16] 

Chair stand >15 s for five rises  [17] 

EWGSOP2 sarcopenia cut-off points for low muscle quantity 

Appendicular 
skeletal muscle 
mass (ASM) 

<20kg <15kg [18] 

ASM/height2 <7.0kg/m2 <5.5kg/m2 [19] 

EWGSOP2 sarcopenia cut-off points for low performance 

Gait speed ≤0.8 m/s  [20], [21] 

SPPB ≤8 point score [22], [23] 

TUG ≥20 s [24] 

400 m walk test Non-completion or ≥6 min for completion [25] 
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of deficits that an individual has accrued across a number of different domains, including 
comorbidities, the ability to manage activities of daily living, and physical signs [28]. 
Fried’s phenotypic model [29]  is a predominantly physical conceptualization and is based 
on evaluating unintentional weight loss (shrinking), grip strength (weakness), self-
reported exhaustion (poor endurance and energy), slow walking speed (slowness), and 
low physical activity. On the other hand, the Frailty Index (FI) [30] consists of a 70-item 
scale derived from history and physical exam and is calculated as a ratio of the possible 
number of deficits (up to 70) to the number of actual deficits present in the individual. 

Nowadays, comprehensive geriatric assessment (CGA) that evaluates physical, 
psychological, functional, and social capabilities, and limitations of geriatric patients is the 
accepted gold standard for caring for frail older people in hospital, with a recently 
published umbrella review [31] highlighting that there is a degree of consistency in 
definition, essential content, key target group and outcomes of CGA. However, such 
assessments are time-consuming, leading many cancer specialists to seek a shorter 
screening tool that can separate fit older adults with cancer, who can receive standard 
cancer treatment, from vulnerable patients, who should subsequently receive a full 
assessment to guide tailoring of their treatment regimens [32]. One such tool is the 
Geriatrics 8 (G8) screening tool, which was developed specifically for older adult patients 
with cancer. G8 consists of eight items which cover multiple geriatric domains, including 
nutritional status, physical capacity, mood, and polypharmacy. G8 scores range from zero 
to seventeen, with scores ≤ fourteen representing potential frailty [33]. 

 

1.B.2.3 Myosteatosis 

Myosteatosis occurs as a result of fatty infiltration of skeletal muscle tissue. An 
interdisciplinary workshop convened by the National Institute on Aging Division of 
Geriatrics and Clinical Gerontology on September 2018, discussed myosteatosis in the 
context of skeletal muscle function deficit (SMFD)[34].Traditionally the term myosteatosis 
has been used to describe multiple different adipose depots found in skeletal muscle 
including: (a) intermuscular adipose tissue, the extracellular adipose tissue found 
beneath the fascia and in-between muscle groups; (b) intramuscular adipose tissue, the 
extracellular adipose tissue found within an individual muscle; and (c) intramyocellular 
lipids. Intermuscular, intramuscular, and intramyocellular fat all provide a slightly different 
measure of myosteatosis and may represent different risk factors to metabolic and 
muscle health particularly in older adults. In myosteatosis ectopic fat depot increases with 
aging and is recognized to negatively correlate with muscle mass, strength, and mobility 
and disrupt metabolism (insulin resistance, diabetes). Figure 3 [35] demonstrates 
pathophysiology changes in myosteatosis. 

Although myosteatosis is not synonymous with sarcopenia (loss of muscle mass and 
function), it does appear to be independent of muscle mass and perhaps act 
synergistically. Studying myosteatosis role as a newly defined independent risk factor 
should be expanded. Opportunistic opportunities like cancer populations, shoulder injury 
patients, bariatric surgery patients, and conditions that may accelerate myosteatosis 
would considerably expand our knowledge and open an array of research prospects in 
the field. 
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Increased myosteatosis may lead to metabolic and mechanical changes in the muscle 
through a variety of mechanisms. Changes in muscle cell metabolism can lead to 
increased insulin resistance and inflammation, aiding in the development of diabetes, and 
cardiovascular diseases. Alterations in muscle architecture can also lead to muscular 
dysfunction and functional decline. Both processes may be increased through activation 
of proteolytic systems, which may also result from increased myosteatosis. 

Figure 3: Potential mechanisms underlying the effects of myosteatosis 

 

In 2017, the need for standardized assessment of myosteatosis was discussed in a 
symposium[35]. Imaging methods that can easily and rapidly assess muscle composition 
in multiple clinical settings and with minimal patient burden, were discussed as well. 
Magnetic resonance imaging (MRI) is considered an excellent non-invasive technique for 
measuring myosteatosis, providing high-quality images, yet the cost is high, and 
traditional MRI does not typically allow quantification of the fat content of the muscle. 
Computed tomography (CT) on the other hand, has been the most utilized as a research 
tool to investigate myosteatosis. The CT analysis of myosteatosis is based on a 
Hounsfield unit (HU), which is a measure associated with the way rays pass through 
water. Water has a density of zero, higher measurements are denser (i.e., bone), and 
lower measurements are less dense (i.e., fat). The lower the density, the lower the 
Hounsfield units and the higher the degree of myosteatosis. Any given skeletal muscle 
displays radiation attenuation between -190 and +150 Hounsfield units (HU), with a 
prominent peak near +50 HU. When muscle cross-sectional area and attenuation are 
reported, the most common practice is to use predefined HU ranges to demarcate 
intermuscular adipose tissue (usually -190 to -30 HU) and muscle tissue (usually -29 HU 
to 150 HU) [36].  Figure 4 [36] demonstrates radiation attenuation map of paraspinal 
muscles with and without myosteatosis. 
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(a, c, e, g): Subject 1 has hardly visible intermuscular fat (4.6% of total tissue area), 77.2% 
of the total muscle cross-sectional area falls into the normal attenuation range for muscle 
and the mean overall radiation attenuation is 42.3 HU.  

(b, d, f, h): Subject 2 exhibits extensive regions (14.1%) of intermuscular fat infiltration, low 
overall mean attenuation (20.4 HU) and less than half (44.4%) of the total tissue cross-
sectional area falls within the normal range of muscle radiation attenuation values. 

a,b: CT images of paraspinal muscles ;  

c,d: annotated CT images;  

e,f: pie charts;  

g,h: histograms of radiation attenuation showing the percentages of total tissue cross-
sectional area within the following attenuation ranges:   

adipose tissue [light blue, -190 to -30 HU],   

normal attenuation muscle [red, +30 to +150 HU], 

abnormal (reduced) attenuation muscle in two ranges [dark blue, -29 to 0 HU; yellow, +1 
to +29 HU] 

Figure 4: Radiation attenuation map of paraspinal muscles with and without myosteatosis 

 

1.B.2.4 Radiomics 

The word omics refers to a field of study in biological sciences that ends with -omics, such 
as genomics, transcriptomics, proteomics, or metabolomics. The ending -ome is used to 
address the objects of study of such fields, such as the genome, proteome, transcriptome, 
or metabolome, respectively. In medicine all these “omics” concepts have resulted in an 
incremental growth of medical big data. In order to extract the desired information from 
all these emerging data, different techniques from artificial intelligence (AI), mainly 
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machine learning and deep learning algorithms, are increasingly being applied in the 
medical sector. Over the past decade, medical imaging analysis has grown exponentially 
[37] leading to the vigorous development of another “-omic” concept, called “radiomics”. 
Radiomics is a quantitative approach to medical imaging, aiming at enhancing the 
existing data available to clinicians by means of advanced mathematical analysis [38]. 
Through mathematical extraction of the spatial distribution of signal intensities and pixel 
interrelationships, radiomics quantifies textural information, overcoming the subjective 
nature of image interpretation, and extracts quantitative features. 

 

Figure 5: The radiomic workflow 

 

Although radiomics can be applied to various conditions, it is most well developed in 
oncology [37], [39]. A very high number of features can be extracted from various imaging 
modalities, including CT, MRI and positron emission tomography (PET), alone or 
combined, contributing to better tumour and environment characterization, early detection 
of relapse after radical treatment and development of a patient’s phenotype that could 
lead to personalized treatment. [40]. Furthermore, radiomic data can be combined with 
other relevant data, such as medical notes from electronic-health records, pathology, 
biology, or genomics, in an attempt to develop models that could improve diagnostic, 
prognostic, and predictive accuracy, facilitating better clinical decision making [37], [41]. 
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Figure 5 [38] shows a schematic illustration of the radiomics workflow and Table 3 [40], 
[42] provides a brief overview of the major radiomic features. 

 

Table 3: Overview of major radiomic feature 

 Concept and aim Summary of statistics and 
characteristics 

Clinical 
application 
in oncology 

Structural 
features 

❖ Basic descriptors according to physical 
characteristics (e.g., shape, volume, 
size). 

▪ Volume of region of interest 
(ROI), max axial length, max 
3D diameter, surface area, 
surface-to-volume ratio, 
sphericity, compactness, 
spherical disproportion, 2D and 
3D fractal dimension 

✓ Differential 
diagnosis 

(malignant 
vs benign) 

✓ Treatment 
response 

Statistical 
features 

❖ 1st order - histogram features: 

They derive from image histograms 
(i.e., graphical representation of the 
intensity distribution of an image) and 
they describe the distribution of the 
intensity within the segmentation. 

▪ Intensity: minimum, maximum, 
median, mean, percentiles 

▪ Kurtosis: magnitude of pixel 
distribution. It provides a 
measure of the weight of the 
histogram tails with respect to a 
normal distribution. 

▪ Skewness: asymmetry of the 
histogram around its mean 

▪ Entropy: irregularity of the 
structure. High values correlate 
with high heterogeneity 

 

 

 

 

 

✓ Prognosis 
prediction: 

locoregional 
control 

 

 

✓ Survival 
correlation: 

overall 
survival 

 

❖ 2nd order – texture features: 
They describe the statistical 
relationship between pixels or voxel to 
characterize the heterogeneity of the 
lesion from the segmentation 
performed for the volume extractions. 
• Gray-level co-occurrence matrix 
(GLCM) is the most frequently used. It 
defines the distribution of concurrent or 
repeated pixels in the image. 
• The neighbouring grey-tone difference 
matrix (NGTDM) uses the intensity 
values of a neighbourhood instead of 
one pixel to represent how similar or 
dissimilar pixel intensities are within a 
neighbourhood. Other: neighbouring 
grey level dependence matrix 

 
 
 
 

▪ GLCM: correlation, cluster, 
contrast, energy 
 
 
 

▪ NGTDM: complexity, texture 
strength 

Model-
based 
features 

❖ Higher order features are usually based 
on matrices that consider relationships 
between three or more pixels or voxels. 

•  

Nosologic maps: the spatial 
registration of the image 
biomarkers obtained voxel by 
voxel conforms parametric 
maps to obtain nosological 
images that represent different 
biological behaviours 

Prognosis 
prediction 

 

✓ Response 
prediction 

 

In head and neck cancer the field of radiomics is constantly developing, targeting 
personalized treatment. Using PET/PET CT biomarkers for patient treatment 
individualization and response prediction seems promising and literature shows that 
macroscopic changes in medical images (whether structural or functional) are correlated 
with biologic and biochemical changes within a tumour [43]. However, there has been 
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spotted lack of stability and generalization in ongoing research, with the specific study 
conditions and the authors’ choices still influencing considerably the results and although 
PET radiomics is a promising field, the number of patients in most publications remains 
inadequate, with very few papers perform in-depth validations [41]. Future research 
should be directed at overcoming the limitations outlined, mainly regarding sample size, 
uniformization and standardization of radiomics workflow and subsequent generalization 
of results, along with optimization of technical issues (e.g., dental artifacts) [40], [41]. 

 

1.B.3 The role of sarcopenia, myosteatosis, frailty and nutritional status in patients 
with head and neck cancer 

 

1.B.3.1 Sarcopenia 

The prognostic role of sarcopenia in patients with head and neck cancer is well studied 
in recent years, and meta-analyses have already been conducted. A meta-analysis of 
seven studies and 1059 patients where skeletal muscle cross sectional area was 
evaluated at gold-standard anatomical level of L3  [44] concluded that CT-defined 
sarcopenia is independently associated with reduced overall survival in patients with HNC 
and holds a clinically meaningful prognostic value. Forest plots of hazard ratio in 
subgroup analyses for patients with versus patients without sarcopenia, at pre-treatment 
and post-treatment time points, for reduced overall survival are shown in Figure 6 [44]. 
However, given the studies’ variation in skeletal muscle index (SMI) threshold values 
applied and ethnicity, the meta-analysis’ authors highlighted the need for consensus 
regarding sarcopenia assessment and definitions in order to support body composition 
assessment as a clinically meaningful prognostic tool into practice. 

 

(a) pre-treatment and (b) post-treatment time-points 
CI, confidence interval; HR, hazard ratio; SE, standard error 

Figure 6: Forest plots of hazard ratio in subgroup analyses for patients with versus patients 
without sarcopenia for reduced overall survival 

 

Another meta-analysis included 27 studies with a total of 7704 patients with different 
HNSCCs [45]. This meta-analysis included both patients treated with definitive 
chemotherapy and/or radiation, and patients surgically treated with or without adjuvant 
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chemoradiotherapy. Sarcopenia was associated with lower overall survival (OS) and with 
occurrence of severe postoperative complications and predicted disease-free survival 
(DFS) as well. Forest plots of reported hazard ratios of sarcopenia for different treatment 
modalities used and for different endpoints are shown in Figure 7 [45]. 

a) Adjusted HRs of sarcopenia regarding OS in patients treated by curative radio-chemotherapy. 

  

b) Adjusted HRs of sarcopenia regarding OS in patients treated by surgery +/- adjuvant radio-
chemotherapy. 

  

c) Reported HRs of sarcopenia regarding to occurrence of severe postoperative complications (three 
or more points according to the Clavien–Dindo classification). 

 

d) Adjusted HRs of sarcopenia relating to DFS 

  

Figure 7: Forest plots of reported HRs of sarcopenia for different treatment modalities used and 
for different endpoints 
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Another meta-analysis of 3,461 patients [46] included 11 studies with measures of body 
composition not limited at L3 (3 studies derived L3 values from equations using measures 
taken at C3, and 1 study measured at the second thoracic vertebra (T2)). Pre-treatment 
sarcopenia was independently associated with reduced: overall survival OS (Figure 8 
[46]), 3-year OS, disease-free survival, prolonged radiotherapy breaks, and 
chemotherapy-related toxicities. However, the studies’ heterogeneity in HNC diagnosis, 
ethnicity, definition of sarcopenia, CT level of evaluation, and skeletal muscle index 
threshold value, led to very low certainty of evidence. 

 

Figure 8: Multivariable hazard ratio for predictive value of sarcopenia on overall survival at pre- 
and post- treatment time points (muscle status evaluation was undertaken at L3, C3, or T2) 

 

Furthermore, a large cohort study of 750 head and neck cancer patients, treated with 
definitive (chemo)radiotherapy, that used skeletal muscles at level C3 in order to assess 
sarcopenia, confirmed that sarcopenia is an independent adverse prognostic factor for 
OS and DFS, especially in patients with worse World Health Organization Performance 
Status (WHO PS 1-3), or locally advanced disease, (stage III–IV) [47]. Apart from worse 
survival outcomes the authors found in multivariable association models, that sarcopenia 
is associated with physician-rated xerostomia six months after treatment (OR 1.65, p = 
0.027) and physician-rated dysphagia six and twelve months after treatment (OR 2.02, p 
= 0.012 and 2.51, p = 0.003, respectively). Interestingly, the study also showed that in 
oropharyngeal cancer patients, survival was more determined by p16 status than by 
sarcopenia. Figure 9 [47] shows Kaplan-Meier curves of OS of the aforementioned study 
for different patient subgroups. In another study that investigated the prevalence and 
impact of sarcopenia on DFS and OS in advanced oropharyngeal cancer, see Table 4 
[48], sarcopenia was associated with increased mortality and recurrence but was not 
statistically significant in survival models.  
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Patients grouped by WHO PS (WHO PS 0, p = 0.154 (A) and WHO PS 1–3, p < 0.001 
(B)), stage of disease (stage I–II, p = 0.532 (C) and stage III–IV, p < 0.001 (D)), and p16 
status in patients with oropharyngeal cancer (p16 negative, p = 0.541 (E) and p16 
positive, p = 0.150 (F)). 

Figure 9: Kaplan-Meier curves of overall survival in head and neck cancer patients treated with 
radiotherapy 
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Table 4: Multivariable Cox proportional hazards model of OS and DFS OS in advanced stage 
oropharyngeal cancer 

 Hazard Ratio 95% CI p-value 

OS HPV 16 0.463 (0.235-0.909) 0.25 

Sarcopenia 1.943 (0.999-3.779) 0.50 

DFS HPV 16 0.403 (0.201-0.810) 0.11 

Sarcopenia 1.926 (0.961-3.862) 0.65 

 

Finally, one of the few studies that have investigated the impact on cost, while focusing 
on CT-defined sarcopenia, suggests that, compared to patients who were never 
sarcopenic, the mean cost of unplanned admissions was higher for patients who were 
sarcopenic either pre-treatment or post-treatment, as well as for those who became 
sarcopenic during care [49]. Unplanned admissions usually occur due to increased 
susceptibility to treatment toxicities, malnutrition, dehydration, and psychosocial impact. 
Therefore, understanding the impact CT-defined sarcopenia has on outcomes for these 
patients, holds possible important implications regarding nutrition interventions and 
individualized care. 

 

1.B.3.2 Myosteatosis 

There are very few studies assessing myosteatosis on survival outcomes for patients with 
head and neck cancer. Myosteatosis is usually assessed through calculation of mean 
muscle attenuation on CT scan (MACT) for the entire L3 muscle area [50]. MACT 
threshold values were defined for both sexes according to body mass index (BMI) using 
optimal stratification based on log-rank statistics to best separate patients with respect to 
time to death (Table 5 [50]). 

 
Table 5: MACT Threshold values significantly associated with low survival 

BMI Category (kg/m2) MACT (HU) 

 Men  Women 

Underweight (< 20.0) <41 <41 

Normal weight (20.0 to 24.9) <41 <41 

Overweight (25.0 to 29.9) <33 <33 

Obese (≥ 30.0) <33 <33 

 

In one of those few studies [51] the very high prevalence of pre-existing myosteatosis (in 
over 90% of participants) prevented any meaningful statistical comparison with the very 
small non-myosteatotic group, and therefore no significant association with outcomes 
was observed. However, another retrospective observational study [49],  found that CT-
defined myosteatosis holds clinically meaningful prognostic value and recommended 
muscle status evaluation in routine clinical practice, when treating patients with head and 
neck cancer. In the aforementioned study, pre-treatment myosteatosis was significantly 
associated with overall survival both in univariate and multivariate analysis (adjusted for 
possible confounders including gender, age, TNM stage, treatment modality, body mass 
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index category, tobacco use, alcohol use and human papilloma virus status). The 
corresponding survival curves are shown in Figure 10 [49] . 

Pre-treatment Post-treatment 

 

green curve: patients with myosteatosis, blue curve: patients without myosteatosis 

Figure 10: Kaplan–Meier survival estimates of overall survival with log-rank comparisons of 
patients with and without myosteatosis at pre-treatment and post-treatment 

 

1.B.3.3 Frailty 

Frailty has been found as an important determinant of many health outcomes across 
various surgical specialties and is an emerging predictor of outcome in elderly HNC 
patients. Although functional and cognitive impairment, depressive symptoms and social 
isolation had been associated with high risk of worse prognosis in older patients with 
head and neck cancer, since 2017 no studies reported association between frailty and 
adverse health outcomes [52]. However, the current literature demonstrates the utility of 
frailty as a predictor of perioperative mortality and morbidity, with recent studies 
supporting a significant association between frailty and perioperative outcomes, length of 
hospital stay, readmission rate, and likelihood of discharge to short-term or skilled nursing 
facilities [28].  In a prospective study with 274 patients recruited [53] , frailty was a 
predictor of both type and severity of complications and an independent predictor of 
length of hospital stay. Frailty and functional assessment can help surgeons identify 
patients at risk of adverse postoperative outcomes, still further research is needed to 
develop frailty screening measures in order to risk-stratify patients and optimize 
modifiable factors preoperatively. 

 

1.B.3.4 Nutritional status 

The Nutritional Risk Screening-2002 (NRS-2002) and Patient-Generated Subjective 
Global Assessment (PG-SGA) are the most common tools used for nutritional 
assessment [54] and high nutritional risk according to the NRS-2202 and worse nutritional 
status according to the PG-SGA are positively associated with a longer hospital stay and 
mortality. The PG-SGA is a subjective nutritional assessment tool used in oncology and 
other chronic catabolic conditions, including questions about symptoms of nutritional 
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impact and recent weight loss. The PG-SGA allows to classify patients as well-nourished 
(A) or either moderately (B) or severely (C) malnourished.  

A retrospective, observational study of 277 patients who had completed radiotherapy 
(RT) or chemoradiotherapy (CRT) of curative intent for HNC aimed to describe body 
composition profile and examine the impact of nutritional status as well as independently 
and concurrently occurring body composition features on overall survival, treatment 
completion, unplanned admissions, and length of stay [55]. PG-SGA was used to 
determine nutritional status, tissue-density data were derived at the third lumbar vertebra 
(L3) with sarcopenia and myosteatosis defined by published, sex-specific threshold 
values stratified by body mass index for skeletal muscle index (cm2/m2) and skeletal 
muscle radiodensity (SMR, Hounsfield Unit). The prevalence of malnutrition was 24.9% 
of sarcopenia 52.3%, of myosteatosis 82.3%, and of concurrently occurring sarcopenia 
and myosteatosis 39.7% (Figure 11[55]).  

 

Figure 11: Euler diagram denoting pre-treatment combination of computed tomography-defined 
body composition features and baseline nutritional status 

 

Malnutrition was found to be a more powerful prognostic indicator than CT-defined 
skeletal muscle depletion, independently associated with reduced OS in patients 
undergoing radiotherapy or chemoradiotherapy of curative intent for HNC. Figure 12 [55] 
shows Kaplan–Meier survival estimates of overall survival with log-rank comparisons for 
combination of skeletal muscle status features and for nutritional status. Moreover, 
malnourished patients were more likely to require unplanned hospital admission with 58% 
of severely malnourished patients vs. 34% of well-nourished patients admitted (p = 
0.021), Therefore, the authors suggested that CT-defined skeletal muscle depletion 
studies should also measure nutritional status using validated methods in order to 
develop more accurate high risk stratification criteria for the complex group of patients 
with head and neck cancer. 
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a) 

 

b) 

 

Figure 12: Kaplan–Meier survival estimates of overall survival with log-rank comparisons for 
combination of skeletal muscle status features (a) and for nutritional status (b) 

 

1.B.4 Reviewing the literature on how sarcopenia is assessed from computed 
tomography in patients with head and neck cancer and how widespread is each 
method when addressing sarcopenia’s prognostic role 

CT allows the evaluation of muscle quality and fatty infiltration [56]. Abdominal CT-
imaging at the level of the third lumbar spine vertebra (L3) has been broadly used to 
assess sarcopenia, as the cross-sectional area (CSA) of the skeletal muscles measured 
at the level of L3, correlates well with the total-body skeletal muscle mass [57]. In HNC 
patients though, such scans are rarely available. Before 2016 there was hardly any 
published literature regarding the effect of sarcopenia in HNC patients, probably because 
of the absence of a widely available diagnostic tool to assess sarcopenia in those 
patients. In 2016, a study [58] investigated the feasibility of using head and neck CT 
imaging in order to assess skeletal muscle mass in HNC patients. The authors compared 
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muscle CSA at the level of C3 to L3 and correlated skeletal muscle mass assessed on 
head and neck CT-scans with abdominal CT imaging, concluding that assessment of 
skeletal muscle mass on head and neck CT-scans is feasible and may be an alternative 
to abdominal CT-imaging. Therefore, C3-level CT-scans, which are routinely performed 
in HNC patients, offer a cost-effective and widely available tool to determine sarcopenia, 
allowing for assessment of sarcopenia in HNC patients without additional imaging. 

The literature review was performed by following the PRISMA 2020 (preferred reporting 
items for systematic reviews and meta-analyses) statement [59] (Figure 6). The 
bibliographic databases PubMed/MEDLINE [60] and Scopus were searched manually for 
relevant published studies reporting how sarcopenia is assessed from computed 
tomography in HNSCC patients, using the keywords: ((computed tomography) AND 
sarcopenia) AND (head and neck). The eligibility criteria for including studies in the 
present review were the following: (i) studies reporting the effectiveness of head and neck 
or thoracic CT images to assess SMM in patients with HNC and/or (ii) studies addressing 
the prognostic role of sarcopenia in HNSCC patients. Studies were excluded from this 
review based on the following exclusion criteria: (i) not directly assessing sarcopenia, (ii) 
cut-offs were determined by optimal stratification of cohort’s data according to the 
outcome of interest (usage of outcome-oriented optimal cut-off methods) (iii) reviews, 
editorials, commentaries. Prognostic studies where data-oriented stratification methods 
were used, such as using median or quartiles for cut-off values, were not excluded. 
Moreover, studies using optimal cut-off values for sarcopenia prediction, were also 
included. Notably studies using optimal cut-offs previously proposed from different 
cohorts – studies were included, for evaluation purposes. Collectively, 76 relevant records 
were retrieved from PubMed (up to 06 April 2023) (Figure 13) and 85 records from 
Scopus. 85 records were removed before screening 72 duplicates and 13 reviews and 
letters. After initial screening, 26 titles and abstracts were excluded because they were 
irrelevant to our study. A total of 50 full-text articles were assessed for eligibility. By 
applying strict inclusion and exclusion criteria, 31 studies were included in this review 
(Fig. 14). The basic characteristics of the included studies are summarized in Table 6. 

 

Figure 13: Relevant records retrieved from PubMed by year (date of search: 06 April 2023) 
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Figure 14: PRISMA 2020 flow diagram 
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Table 6: Main characteristics of the eligible studies included in the review, that have investigated the feasibility to use alternate to L3 skeletal muscle 
areas in order to assess sarcopenia in patients with HNSCC 

Skeletal 
muscle area 

Studies 
investigating 
feasibility 

Comparison with gold 
standard (L3); variable 
tested for correlation (r, 
p value)  

Supports 
usage for 
assessing L3? 

Sarcopenia cut-off values and/or formula for L3 prediction 

Cervical 
vertebral 
level 

C2 [61] SMI (r=0.810, p<0.001) Yes Men: 9.3cm2/m2, Women: 8cm2/m2  

Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic 
performance of these values in the diagnosis of sarcopenia via ROC curve 

C3 [62] Predicted L3-SMI 
(r=0.883, p<0.001) 

Yes L3-CSA = 124.838 + [1.881*C3-CSA] – [24.687*sex] – age + 
[0.472*Weight] (male:1, female:2) 

Note: The prediction model for estimating L3-CSA in this study’s predominantly overweight cohort was found to have 
better agreement, and specificity than that of [63] suggesting probable better effectiveness in recognizing sarcopenic 
obesity. 

[64] C3-CSA (r=0.810, 
p<0.001), predicted L3-
CSA (r=0.875, p<0.0001) 

Yes L3SMI cut-off for men:<55.0cm2/m2, for women:<36.6cm2/m2  
L3-CSA= −6.310 + 1.845*C3-CSA + 1.101*Weight + 4.923*Sex (female 
= −1, male = 1) 

Note: X-tile was used for cut-offs establishment, which applies an outcome orientated optimal cut-off method. 

[65] SMA (men (r=0.77, 
p<0.001), women (r=0.80, 
p<0.001)) 

Yes Men: 14cm2/m2, Women: 11.1cm2/m2 

Note: ROC curves were generated to show the general predictive ability of C3 to predict L3-defined sarcopenia and 
Youden’s Index was used to determine the optimal C3 cut-off value for predicting sarcopenia 

[66] Predicted L3-CSA 
(r=0.86, p<0.001) 

Yes, but The [63] formula for L3 prediction was used. 
Each patient was classified as sarcopenic or not by applying the sex and 
BMI-specific threshold values at L3 [50] 

Note: Sarcopenia was diagnosed in 26%-(L3), 45%-(C3), with weak agreement (sensitivity 79.2%, specificity 66.7%). 
The study highlighted the limitation of applying predefined prediction formulas on different populations.  
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[67] C3-CSA (r=0.75, p<0.01), 
predicted L3-CSA 
(r=0.82, p<0.01) 

Yes, but The [63] formula for L3 prediction was used 

Note: There is moderate agreement in the identification of patients with low SMM based on the estimated lumbar SMI 
(based on measurement at C3) and actual LSMI 

[68] C3-SMM in non-
sarcopenic patients (r = 
0.876, p<0.001), while in 
sarcopenic patients (r = 
0.381, p=0.003). 
Predicted L3-SMM in 
non-sarcopenic patients 
(r>0.9, p<0.001), whereas 
in sarcopenic patients (r = 
0.7633, p<0.0001). 

No Predicted L3 = 45.9183 + 0.9736*C3-PVM + 1.2863*Weight – 
0.4414*Age – 18.2159*Sex (male:0, female:1) 

Note: correlation between L3 and C3 SMMs was weak in sarcopenic patients and the prediction model showed poor 
diagnostic accuracy. Therefore, C3 SMM may not be a strong predictor for L3 SMM in sarcopenic HNC patients. 

[69] C3-SMM (r=0.421, 
p<0.001), Predicted L3-
SMM(r=0.721, p<0.001) 

Yes 56.3cm2 

L3-SMM= 81.059 + 0.874*C3-SMM + 0.956*Weight − 28.127* Sex − 
0.257*Age 

Note: supports usage of prediction model including the strongest predictive factors (sex, age, weight, and C3-CSA) as 
it significantly increased the L3-CSA correlation power. Median C3- SMM value was used as cut-off. 

[61] SMI (r=0.877, p<0.001) Yes Men: 9.3cm2/m2, Women: 6.3cm2/m2  

Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic 
performance of these values in the diagnosis of sarcopenia via ROC curve 

[63] C3-CSA (r=0.785, 
p<0.001), Predicted L3-
CSA (r=0.891, p<0.001) 

Yes L3-CSA= 27.304 + 1.363*C3-CSA -0.671*Age + 0.640*Weight + 
26.442*Sex (female:1, male:2) 

C4 [61] SMI (r=0.827, p<0.001) Yes Men: 10.8cm2/m2 Women: 9.5cm2/m2 

Note: cut-off values and prediction rule were obtained by multivariable analysis and by evaluating the diagnostic 
performance of these values in the diagnosis of sarcopenia via ROC curve 
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Thoracic 
vertebral 
level 

T2 [70] Predicted L3-CSA 
(r=0.796, p<0.001) 

Yes L3-CSA = 174.15+[0.212*T2-CSA] - [40.032*Sex] - [0.928*Age] + 
[0.286*Weight] (male:1, female:2) 

T4 [71] Muscle CSA (r=0.791, 
p<0.05). 

Yes L3-CSA = 34.48 + 0.78 * T4- CSA 

Note: measurements at the level of T4 can be an alternative in patients with extensive localized disease or post-
treatment necks 

T12 [72] Muscle CSA (r= 0.915 
95%CI [0.886–0.937], 
p<0.05) 

Yes L3-CSA = 14.143 + 0.779*T12-CSA - 0.212*Age + 0.502*Weight + 
13.763*Sex (female:1, male:2) 

Masticatory 

(Masseter, 
pterygoid, 
temporalis) 

[73] Masseter muscle volume 
corelation with L3-CSA 
(r=0.531, p<0.001) 

No patients present in the lowest quartile of MCSA for their specific gender 
as “low MSMI” 

[74] Masticatory SMI (r=0.901, 
p<0.001) 

Yes MSMI of <5.5cm2/m2 was an independent predictor of sarcopenia 
(hazard ratio = 5.37, p < 0.001) 

L3SMI= 7.21*MSMI + 7.56 

Note: ROC curve analysis was used to assess the ability of the Masticatory SMI to identify sarcopenia, and Cox logistic 
regression was used to identify predictors of sarcopenia 

Infrahyoid [75] SMI (r=0.434, p<0.001) No  16.88 cm2/m2  

Note: cut- off value according to ROC curve analysis using Youden’s index by referencing the overall survival (OS). 
L3SMI and IHSMI were moderately correlated. However, IHSMI might be a good predictor for OS. 

Abbreviations: SMI, skeletal mass index; SMA, skeletal muscle area; SMM, skeletal muscle mass; r, Pearson correlation coefficient; CSA, cross-sectional 
area; CI, confidence interval; IHSMI, infrahyoid skeletal muscle index; L3SMI, L3 skeletal muscle index; OS, overall survival; ROC, receiver operating 
characteristic; PVM, paravertebral muscle; MSMI, masticatory skeletal muscle index;  

Overall note: Several studies have suggested formulas and cut-off values related to sarcopenia. However, the results varied considerably, possibly due to 
different races, regions, age groups and disease conditions including stage (all stages vs locally advanced carcinomas), primary site and virus relation (e.g., 
HPV (+) oropharyngeal carcinomas). 
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Table 7: Main characteristics of the eligible studies included in the review that have addressed the prognostic role of sarcopenia in patients with HNSCC 
without using outcome-oriented methods for sarcopenia cut-off values establishment 

Skeletal 
muscle 
area 

Studies 
in total 
per 
area 

Studies on 
the 
prognostic 
role of 
sarcopenia 

Number of 
patients (N); 
Primary; Stage; 
Outcome  

Sarcopenia assessment and 
patient stratification 

Survival statistic, p value 

.L3 9 [51] N=101; All sites 
(mostly p16 
positive OPC); All 
stages; OS 

Sarcopenia was defined according 
to [50] : for females: SMI<41cm2/m2 

and for males: SMI<43cm2/m2 for 
BMI ≤ 24.9kg/m2 or SMI<53 m2/m2 
for BMI ≥ 25 kg/m2. Both baseline 
and post-treatment sarcopenia 
were assessed. 

5-year OS favoured those without post-treatment 
sarcopenia (HR=0.37, 95%CI [0.16-0.88], p=0.06). No 
significant differences found in OS regarding the presence 
of baseline sarcopenia. 

[76] N=216; All sites; 
Stages II-IV; OS, 
DFS 

Cut-off values for men: 
SMI<43.3cm2/m2 and for women: 
SMI<33.09cm2/m2 (lowest gender 
specific quartile values of our 
population) according to [47] 

3-year OS was 75% versus 82% (p=0.1) and 3-year DFS 
was 70% versus 85% (p=0.00015) for sarcopenic and non-
sarcopenic patients, respectively. Pre-treatment 
sarcopenia was an independent negative prognostic factor 
for DFS (HR=2.174, p=0.0001). 

[77] N=190 (patients 
aged ≥65 years 
who underwent 
curative surgery); 
All sites; All 
stages; OS, DFS, 
CSS, LRFS 

Sarcopenia was defined as 
SMI<52.4cm2/m2 for men and 
SMI<38.5cm2/m2 for women based 
on [78] 

Patients with sarcopenia before treatment had about a 4.5-
fold increased risk of overall recurrence or death. 5-year 
OS rates of patients without and with pre-treatment 
sarcopenia were 79.7% and 20.4% respectively (p<0.001). 
5-year DFS rates of patients without and with pre-
treatment sarcopenia were 82.2% and 26.0%, respectively 
(p<0.001). Sarcopenia was also the significant factor of 
cause-specific death (HR=5.33, 95%CI [3.05–9.31], p< 
0.001) and local control (HR=5.89, 95%CI [2.94–11.79], 
p<0.001). In multivariate analyses, sarcopenia remained 
strongly associated with OS and DFS (p<0.001). 

[79] N=113; All sites; 
All stages; OS 

Sarcopenia was defined based on 
sex specific cut-off values 
established by [78] 

Sarcopenic patients had poorer OS compared to non-
sarcopenic (Log-rank p=0.004). When stratified by BMI 
group, OS in sarcopenic patients remained significantly 
poorer, regardless of BMI group prior to treatment. 
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[80] N=258; All sites; 
Stages III/IV; OS, 
DFS 

Sarcopenia was defined based on 
sex specific cut-off values 
established by [78] 

Sarcopenia was significantly associated with DFS and OS 
(all p<0.05). In multivariable analysis both pre-treatment 
and post-treatment sarcopenia remained independent 
variables predictive of DFS (pre-treatment sarcopenia: 
HR=3.06, 95%CI [1.25-7.54], p=0.015; post-treatment 
sarcopenia HR=3.34, 95%CI [1.70-6.55], p<0.001) and 
OS (pre-treatment sarcopenia: HR=3.93, 95%CI [2.36-
6.56], p<0.001; post-treatment sarcopenia HR=2.92, 
95%CI [1.68-5.07], p<0.001). 

[48] N=113; 
Oropharynx, 
Stages II-IVC; 
OS, DFS 

Sarcopenia was defined using SMI 
thresholds proposed by [50].  

Log-rank tests of differences in survival distributions did 
not reveal differences across DFS (p=0.065) but did 
demonstrate a statistically significant difference with OS 
(p=0.049). However, sarcopenia was not a statistically 
significant predictor of OS (HR=1.925, 95%CI [0.993-
3.735], p=0.053) or DFS (HR=1.901, 95%CI [0.950-3.802], 
p=0.069) on univariable analysis. 

[81] N=221; All sites; 
Stages III/IV; OS, 
PFS 

Sarcopenia was defined as 
SMI<49cm2/m2 for men and 
SMI<31cm2/m2 for women based 
on previous studies of the same 
ethnicity (Korean). [82], [83] 

Sarcopenic patients showed poorer OS than non-
sarcopenic patients (3-year OS: 62 vs. 76%, p=0.037), but 
PFS rates were not significantly different between the 2 
groups (3-year PFS: 46.6 vs. 55.6%, p=0.187). 

[84] N=158; Larynx 
and Oropharynx; 
All stages; OS, 
PFS 

Sarcopenia was defined based on 
sex specific cut-off values 
established by [78] 

Sarcopenia was not independently predictive for increased 
risk for overall death and disease progression 

[85] N=190 
(oropharyngeal=1
39, non-
oropharyngeal=5
9), All sites; All 
stages; OS, CSS, 
LRFS 

Sarcopenia was defined based on 
sex specific cut-off values 
established by [78] 

Pre-treatment sarcopenia was significantly associated 
with shorter OS (HR=1.92, 95%CI [1.19–3.11], p=0.007) 
and CSS (HR=1.87, 95%CI [1.03–3.36], p=0.03). No 
significant difference in LRFS was observed (HR=1.38, 
95%CI [0.66–2.89], p=0.34) 
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Note: Separate analysis regarding primary site was performed finding that sarcopenia was associated with a decrease 
in OS (HR=1.89, 95%CI [0.94–4.23], p=0.09) and CSS (HR=2.85, 95%CI [1.20–7.20], p=0.02) in patients with non-
oropharyngeal HNSCC, but not in those with oropharyngeal carcinomas 

C3 8 [86] N=426; OSCC; All 
stages; OS 

Predicted L3 [63], previous cut-off 
established in the literature [87] 

Sarcopenia did not seem to cause a statistically significant 
reduction in OS in patients with OSCC (HR=0.996, 95%CI 
[0.732-1.354], p=0.979), however,  

Note: sarcopenic obesity showed a meaningful negative prognostic impact on OS (HR=0.985, 95%CI [0.424-2.286], 
p=0.972) 

[65] N=536; All sites; 
All stages; OS 

Optimal C3 cut-off value for 
predicting sarcopenia (C3-SMI cut-
off for men: 14cm2/m2 and for 

women: 11.1cm2/m2) 

C3 sarcopenia was independently associated with 
reduced overall survival in men (HR = 2.63; 95%CI [1.79, 
3.85], p<0.0001) but not women (HR = 1.18, 95% CI [0.76, 
1.85], p=0.46) 

[88] N=300, 
Oropharynx, 
Supraglottic 
Larynx, 
Hypopharynx; 
stages III/IV; DFS 

Predicted L3 [63], previous cut-off 
established in the literature [89] 

As per cut of criteria used nearly 91% of the patient cohort 
were sarcopenic. Sarcopenic patients had a worse DFS 

[90] N=164; All sites; 
All stages; OS, 
DFS, LRFS 

Predicted L3 [63], previous cut-off 
established in the literature [87] 

The sarcopenia group had poorer 3-year OS (73.3% vs. 
94.7%, p<0.01). There were no significant differences in 3-
year DFS (p=0.084) or 3-year LRFS (p=0.34). In the 
multivariate analysis, sarcopenia (HR=2.95, 95%CI [1.34–
6.49], p<0.01) was significantly associated with poor OS. 

[91] N=,174 OSCC; 
Stages III-IVB; 
OS and DFS 

Predicted L3 [63], cut-off values for 
sarcopenia were set at the lowest 
tertile for SMI 

The 5-year OS rate was 54.0% in the sarcopenic group 
and 79.0% in the non-sarcopenic group (p=0.001); the 
corresponding 5-year DFS rates were 48.0% and 78.3%, 
respectively (p=0.006) 

[47] N=750; All sites; 
All Stages; OS 
and DFS 

Predicted L3 [63], cut-off values for 
sarcopenia were set at SMI 
according to lowest gender specific 
quartile 

Three-year OS and DFS in sarcopenic patients were 56% 
and 48% versus 75% and 69% in non-sarcopenic patients, 
respectively (both p<0.001). When stratified by stage of 
disease significant difference was found only in advanced 
stages (stage I–II, p=0.532 and stage III–IV, p<0.001). 
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[69] N=305; All sites; 
Stages III/IV; OS 

Median C3-SMM was used as cut-
off 

5-year OS rates of low and high C3 SMM were 46.3% and 
87.6%, respectively (p<0.001). Multivariate analysis 
showed that C3 SMM remained independent variable 
predictive of OS (p<0.001) 

[92] N=246; All sites; 
Stages III-IVB; 
OS and PFS 

Predicted L3 [63], cut-off values for 
sarcopenia according to gender 
specific SMI thresholds proposed 
by [50] 

While sarcopenic patients had worse survival outcomes 
overall, this was driven by patients without p16-positive 
oropharyngeal cancers. In p16-positive oropharynx 
patients, there was no difference in either OS (p=0.82) or 
PFS (p=0.38) in sarcopenic compared to non-sarcopenic 
patients. In all other patients, the difference in OS (p=0.01) 
and PFS (p=0.02) remained significant, with the estimated 
OS at 3 years 71.2% and 53.2%, and estimated PFS at 3 
years 78.1% and 56.3% in patients without and with 
sarcopenia, respectively. 

Masseter 2 [73] N=99; All sites; All 
stages (mostly 
III/IV); OS 

Gender specific low quartile of 
MCSA 

significant difference in OS, p=0.015 

[93] N=111; All sites; 
All stages; OS 

sarcopenia defined using as cut-off 
the gender based mean MCSA  

significantly associated with worse OS, p=0.038 

T2 1 [70] N=111; All sites; 
All stages; 
cancer-specific 
survival (CSS) 

Predicted L3 no significant difference in 5-year CSS, p=0.191 

Low quartile T2-SMI significantly worse 5-year CSS, p=0.003 

Abbreviations: SMI, skeletal mass index; CSS, cancer-specific survival; OS, overall survival; MCSA, masseter cross-sectional area; SMM, skeletal muscle 
mass; OSCC, oral squamous cell carcinoma; PCF, pharyngocutaneous fistula; TL, total laryngectomy; DFS, disease free survival; PFS, progression free 
survival; OPC, oropharyngeal carcinoma; LRFS, locoregional recurrence-free survival;  
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1.B.5 Application of radiomics and machine learning in head and neck cancer 

In general machine learning (ML) could be described as computational algorithms using 
data to improve performance or make accurate predictions. In the field of head and neck 
cancer, artificial intelligence (AI)-based prediction models have been created for both 
oncologic outcomes, treatment toxicity, and pathological findings (Figure 15) [94]. 
Especially in the field of Radiation Oncology machine learning methods have been 
applied in auto-segmentation, treatment planning optimization, and prediction of 
oncological and toxicity outcomes [95].  

 

Figure 15: Applications of AI – based   prediction models in head and neck oncology 

 

In patients with HNSCCs, treatment choices are made aiming to achieve disease control 

while maintaining an acceptable treatment toxicity. The ability to accurately predict 

treatment outcomes through ML models, allows for personalized treatment intensity 

choices [94]. However, precision medicine using radiomics and artificial intelligence is 

heavily dependent on the quality, robustness, and generalizability (model’s ability to 

perform well in new unseen data) of generated prediction models [96]. Critical challenges 

regarding model generalizability are false-positive associations, overfitting and  

underfitting, unbalanced datasets, features multicollinearity, and model result 

interpretability [96]. A major limitation of application of radiomics and ML in head and neck 

cancer is the small training datasets and the differences in the sizes of the training and 
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test datasets [95]. The patient sample size can   cause incorrect model fitting and, hence, 

make a model ungeneralizable to new data. Moreover, unbalanced data could be 

considerably challenging, even in representative cohorts, and might result in 

unrealistically high model’s performance metrics. 

Training in ML can be subdivided in two major subcategories: supervised learning, where 
machines are trained using labelled training data and unsupervised learning, where data 
are unlabelled, and machines make use of the intrinsic relationship within the data for the 
purpose of clustering these data. A systematic review that investigated the use of ML 
models in head and neck cancer radiotherapy, including 48 studies in total, reported the 
application of numerous machine learning algorithms as presented in Figure 16 [95]. 

 

Figure 16: Classification of the machine-learning algorithms included in the analysis. ANN, 
Artificial Neural Network; CNN, Convolutional Neural Network; FCNN, Fully CNN; HMM, Hidden 

Markov Model; k-NN, k-Nearest Neighbour; MARS, Multiadaptive Regression Splines; PCA, 
principal component analysis; PCR, principal component regression; SVC, support vector 

classifier; SVM, support vector machine. 

 

There are many challenges to overcome before radiomics and machine learning methods 

become integrated into everyday clinical practice. Collaboration between institutions is 

essential both for the significant augmentation of the data available, and for the 

standardization of protocols used for validating the models. Notwithstanding, in the new 

era of precise medicine, the introduction of new machine learning-derived biomarkers, 

able to provide significant prognostic power, seems a safe bet [95]. 
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Nonetheless, one should be critical when assessing studies regarding big biomedical 
data analysis. Due to the inherent complexity of machine learning methods, and the 
flexibility in specifying these models, results are often insufficiently reported in research 
articles. Therefore, reliable assessment of those models’ validity and consistency can 
become quite hard. Luo et. al generated a set of guidelines to enable correct application 
of machine learning models and consistent reporting of model specifications and results 
in biomedical research [97]. Interestingly, Volpe et al. [95] in their systematic review 
regarding machine learning for head and neck cancer used an adapted version of the 
qualitative checklist originally developed by Luo et al. for the quality assessment of the 
included studies. The organization of the checklist was maintained with the following 
subsections being rated for each study: “Title and abstract”, “Introduction”, “Methods”, 
“Results”, and “Discussion” allowing for a maximum achievable global score of 58 in their 
modified Luo classification (Table 8).   Results regarding their quality assessment of the 
included studies are shown in Figure 17 and Figure 18 [95]. 

 

Figure 17: Boxplots for global and methodological scores (modified Luo classification) for the 
studies included in Volpe et al. systematic review, categorized according to the task of the 

proposed algorithm(s); Autosegmentation, Outcome, Toxicity, Treatment (Tr.) Planning 

 

 

Figure 18: Boxplots representing global and methodological scores (modified Luo classification) 

for the studies included in Volpe et al. systematic review, categorized per the presence of texture 

analysis
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Table 8: Luo et al. modified quality check list for assessing studies developing and reporting machine learning predictive models in biomedical research 
as proposed by Volpe et al. 

TITLE     

Nature of study 1 Identify the report as introducing a machine learning-based model 

ABSTRACT     

Structured 
summary 

2 Background 

  3 Objectives 

  4 Data sources 

  5 Performance metrics of the model or models, in point estimates 

  6 Performance metrics of the model or models, in confidence intervals 

  7 Conclusion including the practical value of the developed machine learning-based model or models 

INTRODUCTION     

Rationale 8 Identify the clinical goal 

  9 Review the current practice of any existing models 

  10 Review the prediction accuracy of any existing models 

Objectives 11 State the nature of study being a machine learning-based model 

  12 Define the target of the model 

  13 Identify how task resolution may benefit the clinical goal 

METHODS     

Describe the 
setting 

14 Identify the clinical setting for the target machine learning-based model 

Define the 
prediction problem 

15 Define a measurement for the model task (e.g. patient-based or outcome-based) 

  16 Determine that the study is retrospective or prospective 

  17 Identify the problem to be prognostic, diagnostic, classification-based, etc. 

  18 
Determine the form of the model: (1) classification if the target variable is categorical, (2) regression if the target 
variable is continuous, (3) survival prediction if the target variable is the time to an event 

  19 Explain practical costs of prediction errors (e.g. implications of underdiagnosis or overdiagnosis) 

  20 Defining quality metrics for the model/models 
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  21 
Define the success criteria (e.g. based on metrics in internal validation or external validation in the context of the 
clinical problem) 

Prepare data for 
model building 

22 Identify relevant data sources 

  23 States that relevant data sources were approved by ethics committee or Institutional Review Board 

  24 States the inclusion criteria for data 

  25 States the exclusion criteria for data 

  26 Describe the time span of data 

  27 Describe the sample or cohort size 

  28 Define the observational units on which the response variable is defined 

  29 Define the observational units on which the predictor variable(s) are defined 

  30 
Define the predictor variables. Extra caution is needed to prevent information leakage from the response variable 
to predictor variables 

Data (feature) pre-
processing 

31 Describe the data cleaning performed 

  32 Describe the transformation performed 

  33 Remove outliers with impossible or extreme responses 

  34 State any criteria used for outlier removal 

  35 State how missing values were handled 

Basic statistics of 
the data set 

36 Describe the basic statistics of the dataset, particularly of the response variable 

  37 
Classification vs. Regression Problem: If classification problem, described ratio of positive to negative classes. If 
regression problem, describe the distribution of the response variable (e.g. time to event) 

  38 
Define the model validation strategies: Internal validation: must specify validation strategy (e.g. random split, time-
based split, and patient-based split) (+1 pt),  
External validation (+1 pt) 

  39 
Define the validation metrics. (e.g. for regression problems, the normalized root-mean-square error should be 
used. For classification problems, the metrics should include sensitivity, specificity, positive predictive value, 
negative predictive value, area under the ROCd curve, and calibration plot) 

  40 
Retrospective vs. Prospective: For retrospective studies, split the data into a derivation set and a validation set. 
For prospective studies, define the starting time for validation data collection 
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Build the predictive 
model 

41 Identify independent variables that predominantly take a single value (eg, being zero 99% of the time) 

  42 Report the number of independent variables 

  43 
Determine a set of candidate modeling techniques (eg. logistic regression, random forest, or deep learning). If 
only one type of model was used, must also justify the decision for using that model 

  44 Define the performance metrics to select the best model 

  45 
Specify the model selection strategy. (e.g. common methods include K-fold validation or bootstrap to estimate the 
lost function on a grid of candidate parameter values. For K-fold validation, proper stratification by the response 
variable is needed) 

RESULTS     

Report the final 
model and 

performance 
46 

Report the predictive performance of the final model in terms of the validation metrics specified in the methods 
section (+1 pt) 
Report the parameter estimates in the model (+1 pt) 
Report the parameter estimates' confidence intervals. (+1 pt) 
When the direct calculation of confidence intervals is not possible, report nonparametric estimates from bootstrap 
samples 

  47 If possible, report what variables were shown to be predictive of the response variable 

  48 Designate subpopulation performance characteristics 

DISCUSSION     

  49 Interpretation of the final model 

  50 Comparison with other models in the literature should be based on confidence intervals 

  51 
Report the clinical implications derived from the obtained model (e.g. report the dollar amount that could be saved 
with better prediction. How many patients could benefit from a care model leveraging the model prediction? And 
to what extent?) 

Limitations of the 
model  

52 
Sufficient data available for a good fit of the model. In particular, for classification, there should be a sufficient 
number of observations in both positive and negative classes 

  53 
Assumed variances in data format: For example, input data format (e.g. inter-scanner variability, sample size, 
difference in sequences used) or output data format 

  54 Potential bias of the data used in modeling 

  55 Generalizability of the data 
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2. MATERIAL AND METHODS 

2.1 Material 

A Head and Neck PET-CT collection from the cancer imaging archive was retrieved and 
used for the purposes of this pilot study. The collection was downloaded from the Cancer 
Imaging Archive [98]. This collection contains FDG-PET/CT and radiotherapy planning 
CT imaging data of 298 patients from four different institutions in Québec with 
histologically proven head-and-neck cancer. All patients had pre-treatment FDG-PET/CT 
scans between April 2006 and November 2014, and within a median of 18 days (range: 
6-66) before treatment. These patients were all part of a study described in further detail 
(treatment, image scanning protocols, etc.) in the publication by [99]. Most of the patients 
in this cohort (252 patients - 85%) received chemo-radiation with curative intent as part 
of treatment management. The median follow-up period of all patients was 43 months 
(range: 6-112). 

Three critical factors regarding survival are TNM stage, location of the primary tumour 
and HPV status. Moreover, sarcopenia has been found as independent adverse 
prognostic factor for OS and DFS, especially in patients with locally advanced disease, 
(stage III–IV) [47]. Hence, we considered that it would be beneficial for the purposes of 
our study to included only patients with Stage IV head and neck cancers, with known site 
of the primary tumour. We also decided to define premature death separately for each 
primary site. The minimum follow-up period was set to 5 years. The aforementioned 
inclusion criteria resulted in 74 patients. Characteristics of the patients both included and 
excluded, after initial inclusion criteria were applied are shown in Table 9, Table 10, and 
Table 11.  

 

Table 9: Characteristics of patients excluded due to insufficient follow-up (<5 years) 

 Patients excluded because of insufficient follow-up   

Characteristic 
Overall,  

N = 1231 

Larynx,  

N = 41 

Nasopharynx,  

N = 41 

Oropharynx,  

N = 1151 

p-
value2 

Sex     >0.9 

F 31 (25%) 1 (25%) 1 (25%) 29 (25%)  

M 92 (75%) 3 (75%) 3 (75%) 86 (75%)  

Age 62 (57, 70) 72 (67, 75) 63 (60, 68) 62 (56, 69) 0.2 

Nodal stage     0.002 

N0/1 8 (6.5%) 0 (0%) 3 (75%) 5 (4.3%)  

N2/3 115 (93%) 4 (100%) 1 (25%) 110 (96%)  

Last follow-up 
(years) 

3.37 (2.76, 3.91) 2.88 (1.96, 3.76) 3.33 (3.07, 3.70) 3.37 (2.77, 3.92) 0.6 

HPV.status     0.017 

- 13 (11%) 1 (25%) 2 (50%) 10 (8.7%)  

+ 50 (41%) 0 (0%) 0 (0%) 50 (43%)  

unknown 60 (49%) 3 (75%) 2 (50%) 55 (48%)  

1n (%); Median (IQR) 

2Fisher's exact test; Kruskal-Wallis rank sum test 
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The vast majority (105/123) of patients excluded due to insufficient follow-up were 
patients with oropharyngeal carcinomas and HPV (+) or with unknown HPV-status (Table 
9). The above two categories of patients could had acted as a confounding factor in our 
study, given the fact that in patients with oropharyngeal carcinomas survival is more 
determined by HPV status than by sarcopenia. Therefore, we believe that by excluding 
these patients we shall not lose important data regarding our clinical problem, and that 
we will facilitate learning. 

In the 74 patients initially included, premature death was defined as death when the 
survival probability was higher than 75% in the separate, for each primary site, survival 
curves (Figure 19). Subsequently patients were initially divided in 3 survival categories: 
(1) patients that died prematurely, (2) patients with overall survival less than 5 years and 
(3) patients with overall survival more than 5 years.  

 

Table 10: Characteristics of the 74 patients included in the cohort by survival category, after initial 
inclusion criteria were applied 

 Survival category   

Characteristic 
Overall,  

N = 741 

<5yr OS,  

N = 211 

>5yr OS,  

N = 341 

premature death,  

N = 191 
p-value2 

Primary Site     0.001 

Hypopharynx 8 (11%) 6 (29%) 0 (0%) 2 (11%)  

Larynx 15 (20%) 5 (24%) 6 (18%) 4 (21%)  

Nasopharynx 7 (9.5%) 4 (19%) 1 (2.9%) 2 (11%)  

Oropharynx 44 (59%) 6 (29%) 27 (79%) 11 (58%)  

Sex     0.8 

F 15 (20%) 3 (14%) 8 (24%) 4 (21%)  

M 59 (80%) 18 (86%) 26 (76%) 15 (79%)  

Age 63 (57, 72) 70 (60, 75) 61 (56, 67) 63 (60, 71) 0.14 

Nodal stage     0.5 

N0/1 7 (9.5%) 2 (9.5%) 2 (5.9%) 3 (16%)  

N2/3 67 (91%) 19 (90%) 32 (94%) 16 (84%)  

Tumour stage     0.8 

T1/2 8 (11%) 1 (4.8%) 5 (15%) 2 (11%)  

T3 21 (28%) 7 (33%) 8 (24%) 6 (32%)  

T4 45 (61%) 13 (62%) 21 (62%) 11 (58%)  

1n (%); Median (IQR) 

2Fisher's exact test; Kruskal-Wallis rank sum test 

 

Further exclusion criteria were applied in the group of patients with oropharyngeal 
cancers due to the unknown HPV status in the majority of them, which acts as a highly 
confounding factor. We should also highlight that the exclusion of a potentially 
confounding group of patients, also resulted in more balanced cohorts in terms of survival 
categories, which is expected to favour learning.  
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Table 11: Characteristics of the 74 patients included in the cohort by location of the primary tumour, after initial inclusion criteria were applied 

 Location of the primary tumour   

Characteristic Overall, N = 741 Hypopharynx, N = 81 Larynx, N = 151 Nasopharynx, N = 71 Oropharynx, N = 441 p-value2 

Sex      0.5 

F 15 (20%) 2 (25%) 1 (6.7%) 1 (14%) 11 (25%)  

M 59 (80%) 6 (75%) 14 (93%) 6 (86%) 33 (75%)  

Age 63 (57, 72) 64 (59, 73) 60 (58, 71) 67 (57, 77) 63 (58, 69) 0.8 

Nodal stage      0.2 

N0/1 7 (9.5%) 0 (0%) 2 (13%) 2 (29%) 3 (6.8%)  

N2/3 67 (91%) 8 (100%) 13 (87%) 5 (71%) 41 (93%)  

Survival      0.001 

<5yr OS 21 (28%) 6 (75%) 5 (33%) 4 (57%) 6 (14%)  

>5yr OS 34 (46%) 0 (0%) 6 (40%) 1 (14%) 27 (61%)  

premature death 19 (26%) 2 (25%) 4 (27%) 2 (29%) 11 (25%)  

Time of death (days) 749 (523, 1,096) 615 (409, 1,169) 735 (558, 1,051) 584 (395, 808) 859 (529, 1,116) 0.6 

Time of premature death (days) 518 (356, 665) 259 (227, 291) 541 (502, 558) 319 (304, 335) 540 (430, 775) 0.061 

1n (%); Median (IQR) 

2Fisher's exact test; Kruskal-Wallis rank sum test 
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Figure 19: Kaplan-Meier survival analysis by site of the primary tumour. Premature death was defined as death when the survival probability was higher 
than 75% (lower quartile among those patients who died, separately defined for each primary site)
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Two sub-cohorts were created with the application of further exclusion criteria in the group 

of patients with oropharyngeal carcinomas. One where all patients with oropharyngeal 

carcinomas and overall survival greater than five years were excluded, resulting in 47 

patients (see Table 12), and another one where HPV-negative patients with 

oropharyngeal carcinomas and overall survival greater than five years were included 

(meaning 4 extra HPV-negative patients with good prognosis), resulting in a cohort of 51 

patients in total (see Table 13).  

 

Table 12: Characteristics of the 47 patients included in the cohort by survival, when all patients 
with oropharyngeal carcinomas and overall survival > 5 years were excluded 

 Survival category   

Characteristic 
Overall,  

N = 471 

<5yr OS,  

N = 211 

>5yr OS,  

N = 71 

premature 
death,  

N = 191 

p-value2 

Primary Site     0.015 

Hypopharynx 8 (17%) 6 (29%) 0 (0%) 2 (11%)  

Larynx 15 (32%) 5 (24%) 6 (86%) 4 (21%)  

Nasopharynx 7 (15%) 4 (19%) 1 (14%) 2 (11%)  

Oropharynx 17 (36%) 6 (29%) 0 (0%) 11 (58%)  

Sex     0.9 

F 8 (17%) 3 (14%) 1 (14%) 4 (21%)  

M 39 (83%) 18 (86%) 6 (86%) 15 (79%)  

Age 63 (59, 73) 70 (60, 75) 59 (58, 66) 63 (60, 71) 0.3 

Nodal stage     0.4 

N0/1 7 (15%) 2 (9.5%) 2 (29%) 3 (16%)  

N2/3 40 (85%) 19 (90%) 5 (71%) 16 (84%)  

HPV status     >0.9 

- 4 (8.5%) 2 (9.5%) 0 (0%) 2 (11%)  

+ 4 (8.5%) 2 (9.5%) 0 (0%) 2 (11%)  

unknown 39 (83%) 17 (81%) 7 (100%) 15 (79%)  

1n (%); Median (IQR) 

2Fisher's exact test; Kruskal-Wallis rank sum test 

 

Our final models shall be trained and tested in all three cohorts (the one with 74 patients, 

the one with 47 patients and the one with 51 patients) and the results will be evaluated 

accordingly.  

Therefore, we will be enabled to test our initial assumption that the smaller cohorts have 

the potential of favouring training, by suppressing some known confounding factors and 

by achieving more balanced datasets in terms of survival categories. By having more 

balanced datasets we will also avoid using oversampling techniques, like Synthetic 

Minority Oversampling Technique (SMOTE) where synthetic samples are generated for 

the minority class. 
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Table 13: Characteristics of the 51 patients included in the cohort by survival, when patients with 
oropharyngeal carcinomas and overall survival > 5 years were included only if they were HPV(-) 

 Survival category   

Characteristic 
Overall,  

N = 511 

<5yr OS,  

N = 211 

>5yr OS,  

N = 111 

premature 

death,  

N = 191 

p-value2 

Primary Site     0.2 

Hypopharynx 8 (16%) 6 (29%) 0 (0%) 2 (11%)  

Larynx 15 (29%) 5 (24%) 6 (55%) 4 (21%)  

Nasopharynx 7 (14%) 4 (19%) 1 (9.1%) 2 (11%)  

Oropharynx 21 (41%) 6 (29%) 4 (36%) 11 (58%)  

Sex     0.9 

F 9 (18%) 3 (14%) 2 (18%) 4 (21%)  

M 42 (82%) 18 (86%) 9 (82%) 15 (79%)  

Age 64 (59, 73) 70 (60, 75) 60 (59, 68) 63 (60, 71) 0.4 

Nodal stage     0.7 

N0/1 7 (14%) 2 (9.5%) 2 (18%) 3 (16%)  

N2/3 44 (86%) 19 (90%) 9 (82%) 16 (84%)  

HPV status     0.3 

- 8 (16%) 2 (9.5%) 4 (36%) 2 (11%)  

+ 4 (7.8%) 2 (9.5%) 0 (0%) 2 (11%)  

unknown 39 (76%) 17 (81%) 7 (64%) 15 (79%)  

1n (%); Median (IQR) 

2Fisher's exact test; Kruskal-Wallis rank sum test 

 

2.2 Methods 

 

2.2.1 Statistical analysis 

All analyses were conducted using R [100] version 4.0.5 (2021-03-31). For survival 

analyses, “survival” [101] (version 3.2.11) and “survminer” [102] (version 0.4.9) packages 

were used. For Bland Altman plots and linear regression models we used the “blandr” 

[103] (version 0.5.1) package. For assessing the intraclass correlation coefficient (ICC) 

and the Cohen's kappa coefficient we used the “psych” (version 2.3.9) package [104] and 

for assessing various evaluation metrics we used the “Metrics” [105] (version 0.1.4) 

package. The statistical test used in each case is provided along with the results. 

Statistical significance was defined as a p < 0.05. 

 

2.2.2 Selection and pre-processing of CT images, and radiomic features 
extraction  

A dictionary of 4 consecutive CT images at the level of the third cervical vertebra (C3) 

was created for all 74 patients. These images were manually selected by an 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               56 

otolaryngology specialist (PM). For the extraction of the radiomic features a flowchart like 

the one shown in Figure 20 [42] was followed. Image processing usually starts with 

reconstructed images, which may be processed through several optional steps (e.g., 

conversion to standardized uptake values, image denoising and image interpolation). 

Then the region of interest (ROI) can be created automatically, manually or an existing 

ROI can be retrieved. The ROI is then interpolated as well, and intensity and morphologic 

masks are created as copies. Radiomics features are then computed from the image 

masked by the ROI, including features from the intensity histogram (IH), the intensity-

volume histogram (IVH), the gray-level co-occurrence matrix (GLCM), the gray-level run-

length matrix (GLRLM), the gray-level size-zone matrix (GLSZM), the gray-level distance-

zone matrix (GLDZM), the neighbourhood gray-tone difference matrix (NGTDM), and the 

neighbouring gray-level dependence matrix (NGLDM) families. 

 

Figure 20: Flowchart of the general radiomics image processing scheme for computing radiomics 
features 

 

Two approaches of segmentation were followed, manual and automatic segmentation. 

Moreover, in each segmentation approach, two regions of interest (ROIs) were selected 

for each CT image. One ROI contained only the paravertebral muscle cross sectional 

area (CSA) and the other ROI also contained, along with the paravertebral muscles, the 

intermuscular and intramuscular adipose tissue. Manual segmentation was performed by 

an otolaryngologist (PM), using 3D slicer desktop software, version 4.11.20210226, 
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(https://www.slicer.org/) [106]. Automatic segmentation is discussed in more details in a 

following section. Afterwards, the ROIs’ radiomic features were computed in Python using 

the PyRadiomics package (https://pypi.org/project/pyradiomics/) [107]. For each ROI 93 

radiomic features were computed (3 shape related, 15 First order statistics, 24 GLCM, 16 

GLRLM, 16 GLSZM, 14 GLDM and 5 NGTDM), resulting in 186 (93x2) computed 

radiomic features. We also added 3 extra features (fat ratio, muscle ratio and fat/muscle 

ratio) that were computed using the areas in both ROIs, finally resulting in 189 features. 

These features were defined as: fat ratio = ((area in ROI with muscles and fat -area in 

ROI with muscles only) / area in ROI with muscles and fat), muscle ratio = (area in ROI 

with muscles only / area in ROI with muscles and fat) and fat/muscle ratio = ((area in ROI 

with muscles and fat -area in ROI with muscles only) / area in ROI with muscles only. 

 

2.2.3 Auto-segmentation of ROIs 

Auto-segmentation code was developed in Python v3.8.8 using OpenCV [108] and scikit-

image [109] libraries. The auto-segmentation process was based on some anatomical 

landmarks (mainly the third cervical vertebra) and on the typical Hounsfield Unit (HU) 

intensities of the different tissues [36], [55], [110]. Figure 22 [110] shows expected 

radiation attenuation values variation across muscle, fat-infiltrated muscle, and fat. The 

function developed for the auto-segmentation was taking 4 arguments: the medical image 

in DICOM format (Digital Imaging and Communications in Medicine is the standard for 

the communication and management of medical imaging information and related data 

[111]), followed by the HU windows intensities for muscles, adipose tissue, and bones. 

While applying this function we used the following HU intensities’ upper and lower limits: 

for bones [150HU,1500HU], for muscles [-20HU,135HU], and for adipose tissue [-200HU, 

-20HU]). We used -20 HU as lower limit for muscles, because our auto-segmentation 

code performed better with -20 HU than with -30 HU as lower muscles’ attenuation value 

limit. The main steps that are being executed during the auto-segmentation code that we 

developed are presented in Figure 22. The first step is to isolate the patient from any 

external signals such as CT scanner’s examination bed (this step is based on a HU 

window that targets patient’s muscles, followed by some morphological operations). The 

second step is to define the upper limit of our ROI (this step is based on targeting the 

body of the third vertebra). The third step is to define the rightmost and leftmost borders 

of our ROI (this step is based on the maximum diameter of the third cervical vertebra 

along with the vertebra’s centroid). The fourth step is to get the mask for our first ROI, 

that is the paravertebral muscle cross sectional area. The fifth step is to get the mask for 

our second ROI that is the paravertebral muscles along with the intermuscular and 

intramuscular adipose tissue. The last two steps use morphological operations and “help” 

muscles’ and fat’s masks addition and subtractions, along with HU refinements. 

Examples of auto-segmentation results compared to manual segmentation are shown in 

the following figures: Figure 23, Figure 24, Figure 25, and Figure 26. 

 

Figure 21: Radiation attenuation values (HU) for muscle, fat-infiltrated muscle, and fat 

https://www.slicer.org/
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Figure 22: Auto-segmentation step by step 
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Figure 23: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV 
laryngeal carcinoma (T3, N2/3) and overall survival < 5 year
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Figure 24: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV 
laryngeal carcinoma (T3, N2/3) and overall survival > 5 years 
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Figure 25: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a male patient with Stage IV 
carcinoma of the nasopharynx (T1, N2/3), who died prematurely
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Figure 26: Example of manual segmentation (on the left-hand side) versus auto-segmentation (on the right-hand side) in a female patient with Stage IV 
HPV-negative oropharyngeal carcinoma (T4a, N2/3), who died prematurely 
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For comparison purposes, between the manual segmentation method and the automatic 

segmentation method, we compared the results regarding two features in each one of 

the two ROIs along with two more features concerning both ROIs (in total 2x2+2= 6 

features). We chose to compare features that can be easily clinically interpreted. These 

features were the mean HU values in each ROI (the one with the paravertebral muscles 

and the one with the paravertebral muscles along with the intermuscular and 

intramuscular adipose tissue), the mean HU absolute deviation (distance of all HU 

intensity values from the mean HU value) in each ROI, the paravertebral muscle ratio, 

and the adipose tissue / paravertebral muscle ratio. Bland-Altman plots, linear regression 

models and intraclass correlation coefficient (ICC) for the two methods of segmentation 

were assessed. The Intraclass correlation is used as a measure of association when 

studying the reliability of raters, in our case the measurements regarding some features, 

resulting from the two different segmentation methods (manual and automatic). We used 

a single-measurement, consistency, 2-way mixed-effects model, to calculate the 

corresponding ICC results. These results are presented in Table 14. Corresponding 

Bland-Altman plots along with linear regression model’s plots of the two methods’ 

measurements are presented in Figures 27-38. In general, a good degree of agreement 

was observed between the two methods regarding the examined features. The most 

prominent difference in the examined features between the two methods was the fact that 

the auto-segmentation method had a tendency of including a higher proportion of adipose 

tissue resulting in lower mean HU values, lower muscle ratio and higher adipose tissue / 

paravertebral muscle ratio. Nevertheless, the linear regression models had very strong 

correlation coefficients. Altogether, the aforementioned results were quite promising 

regarding the utility of the auto-segmentation method as a time-efficient alternative 

approach of extracting computed tomography-derived skeletal muscle related data.  

 

Table 14: ICC results regarding 6 features’ measurements resulting from the different 
segmentation methods (automatic and manual) 

Feature ICC* 95% CI Koo & Li (2016) degree 
of reliability [112] 

Mean HU in paravertebral 
muscles’ ROI 

0.929 0.912 < ICC < 0.943 Excellent 

Mean HU in ROI with both 
paravertebral muscles and 
adipose tissue 

0.873 0.843 < ICC < 0.897 Good 

Mean HU absolute 
deviation in paravertebral 
muscles’ ROI 

0.848 0.812 < ICC < 0.877 Good 

Mean HU absolute 
deviation in ROI with both 
paravertebral muscles and 
adipose tissue 

0.717 0.657 < ICC < 0.768 Moderate to Good 

Paravertebral muscle ratio 0.853 0.819 < ICC < 0.881 Good 

Adipose tissue / 
paravertebral muscle ratio 

0.776 0.727 < ICC < 0.818 Moderate to Good 

* 2-way mixed-effects model, single-measurement, consistency  
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Figure 27: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding mean HU in paravertebral muscles’ ROI 

 

 

Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.9293499 
Regression equation: Mean HU paravertebral muscles’ ROI = 
0.9272525 x auto-segmentation’s measurements + 1.018074 

Figure 28: Plot of the two methods’ resulting mean HU in in paravertebral muscles’ ROI, with line 
of equality (dashed black) and linear regression model (solid red) 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               65 

 

Figure 29: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding mean HU in ROI with both paravertebral muscles and adipose tissue 

 

 
Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8852279 
Regression equation: Mean HU absolute deviation in in ROI with both paravertebral muscles and 

adipose tissue = 1.04803 x auto-segmentation’s measurements -13.05961 

Figure 30: Plot of the two methods’ resulting mean HU in ROI with both paravertebral muscles and 
adipose tissue, with line of equality (dashed black) and linear regression model (solid red) 
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Figure 31: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding mean HU absolute deviation in paravertebral muscles’ ROI 

 

 
Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8549848 
Regression equation: Mean HU in paravertebral muscles’ ROI = 
0.974184x auto-segmentation’s measurements + 0.3046604 

Figure 32: Plot of the two methods’ resulting mean HU absolute deviation in paravertebral 
muscles’ ROI, with line of equality (dashed black) and linear regression model (solid red) 
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Figure 33: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding mean HU absolute deviation in ROI with both paravertebral muscles and adipose tissue 

 

 
Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.7290292 
Regression equation: Mean HU in ROI with both paravertebral muscles and adipose tissue = 
0.8763081x auto-segmentation’s measurements + 12.37233 

Figure 34: Plot of the two methods’ resulting mean HU absolute deviation in ROI with both 
paravertebral muscles and adipose tissue, with line of equality (dashed black) and linear 

regression model (solid red) 
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Figure 35: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding paravertebral muscle ratio 

 

 
Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8768474 
Regression equation: Paravertebral muscle ratio = 
1.110489 x auto-segmentation’s measurements - 0.172471 

Figure 36: Plot of the two methods’ resulting paravertebral muscle ratio with line of equality 
(dashed black) and linear regression model (solid red) 
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Figure 37: Bland - Altman plot for comparison of auto-segmentation and manual segmentation 
regarding adipose tissue / paravertebral muscle ratio 

 

 
Method 1: Auto-segmentation, Method 2: Manual segmentation, Correlation coefficient: 0.8684105 
Regression equation: Adipose tissue / paravertebral muscle ratio = 
1.407045 x auto-segmentation’s measurements + 0.05696887 

Figure 38: Plot of the two methods’ resulting adipose tissue / paravertebral muscle ratio with line 
of equality (dashed black) and linear regression model (solid red) 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               70 

2.2.4 Feature selection 

We decided to train our classifiers using only one image per patient, to prevent our 

classifiers from learning the patient itself and to avoid subsequent overfitting. Therefore, 

we were left with either 74 or 51 or 47 samples for training, depending on the application 

of further exclusion criteria in the group of patients with oropharyngeal cancers, while 

having 189 features per sample. Moreover, in the case of the cohort with the 74 patients, 

we also had to deal with an unbalanced dataset, regarding our outcome of interest, that 

is premature death. When dealing with radiomic features, one should be aware that many 

features could be simply noise, or highly correlated with each other. Hence, feature 

reduction is necessary to increase prediction accuracy and to minimize computational 

cost. In general, reducing the number of features can be achieved either supervised or 

unsupervised. Altogether, when supervised, features are selected based on their 

discriminative value of outcomes and when unsupervised dimensionally reduction 

algorithms are being used, maintaining that way more information in the dataset.  

A study regarding radiomics-based prognosis analysis for non-small cell lung cancer with 

112 patients and 30 radiomic features per patient (11 statistical – first order and 19 

textural – second order) [113] addressed the limitations and challenges mentioned above. 

The authors evaluated the performance of 5 feature reduction techniques (principal 

component analysis [PCA], independent component analysis [ICA], near zero variance 

[NZV] , zero variance [ZV], consensus clustering [CC] + PCA) along with no reduction 

and a filtered feature selection method (Wilcoxon test), using 8 common machine learning 

classifiers (random forest [RF], generalized linear model [GLM], support vector machine 

[SVM], naïve Bayes [NB], neural network [NNET], k-nearest neighbour [KNN], mixture 

discriminant analysis [MDA], partial least squares GLM [PLS]). Moreover, to tackle the 

problem of unbalanced endpoints in their binary classification problems (death being the 

most unbalanced outcome with ratio of 0.23) the authors also evaluated the performance 

of 4 subsampling methods (down sampling, up sampling, Random Over Sampling 

Examples [ROSE], and Synthetic Minority Over-sampling Technique [SMOTE]). In 

unbalanced datasets, machine learning algorithms while aiming the highest possible 

accuracy, have the tendency of sacrificing the minority group, resulting in low sensitivity.  

Applying subsampling methods, when having more balanced cohorts is not feasible, can 

significantly improve sensitivity, leading to better predictive performance. Among the 

feature reduction techniques tested, PCA showed the highest overall (average) predictive 

performance, RF was the classifier with the highest predictive value and SMOTE was the 

subsampling method that achieved to enhance AUC (area under the curve) in a balanced 

way (significantly increasing sensitivity while maintaining high specificity). Thus, the 

authors proposed the combination of PCA feature selection, RF classifier, and SMOTE 

subsampling (PCA + RF + SMOTE) as an optimal radiomics pipeline for prognosis of 

clinical outcomes [113]. 

Some radiomic features might have less predictive value individually but become 

important when interaction effects among the features are taken into consideration. 

Unsupervised feature reduction techniques, like PCA, maintain these interactions 

favouring the predictive model training process [113]. Moreover, as Aerts et al. [114] 

demonstrated texture features with higher stability tend to be more informative and have 

higher prognostic performance as well as reproducibility. Therefore, we critically 

searched the literature in the last 5 years (2018-2023), regarding human studies 

(phantom studies excluded) addressing the problem of robustness of radiomic features, 
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extracted from CT images (using search strings including radiomic feature, robustness, 

computed tomography +/- perturbation). One relevant review was retrieved, published in 

2021. In this review [115] authors found that the most common approach to report the 

robust features were the percent of robust features, the robust features against all the 

imaging parameters and the robust feature-parameter that determine which features are 

robust against which parameter(s). However, authors failed to provide a list of robust 

features due to the substantial inconsistencies related to the reporting style of the 

included studies and concluded that radiomics features are dependent on imaging 

parameters, suggesting that the impact of this dependency must be evaluated on the 

prediction of clinical outcome. 

In a study by X. Teng et al. [116] that used the same Head-Neck-PET-CT collection as 

we did, but different outcomes and ROI (the region of interest for feature extraction was 

the primary gross tumour volume) authors assessed radiomic model’s reliability using 

perturbations (authors identified unreliable models by comparing the model's 

performance on the training dataset with the performance achieved on random 

perturbations of the training dataset). Aiming to determine whether predictions can be 

repeatedly produced after perturbations, authors calculated ICC, using one-way model 

with random effects and absolute agreement, to quantify consistency of the C-index 

among the samples in the perturbed-train and perturbed-test cohorts. Authors reported a 

lower training C-index for the perturbed data revealing that evaluating models using their 

original data is prone to overfitting to noise and to over-estimating the model's learning 

ability. In their analysis a filter-based feature selection method with two steps (feature–

outcome relevance filtering and feature–feature redundancy filtering) was used. To 

validate the calculation of model robustness, the same experiment was repeated with 

highly reliable features (ICC > 0.75), leading to a significant increase in the model 

reliability ICC values from moderate to good, revealing sensitivity of their method to input 

reliability. In a similar paper X. Teng et al. [117], used an extended dataset, consisted of 

four publicly available head-and-neck cancer CT collections. Three models were built 

using all features, good-robust features (ICC > 0.75), and excellent-robbust features (ICC 

> 0.95). Authors reported that the average model robustness ICC improved significantly 

from 0.65 to 0.78 (P< 0.0001) when using good-robust features and to 0.91 (P< 0.0001) 

when using excellent-robust features. Moreover, by including good-robust features, 

authors achieved the best average AUC in the unseen data. 

Finally, we identified and chose to present, a study [118] that investigated the impact of 

generative adversarial network (GAN)-based lesion-focused medical image super 

resolution (SR), on the robustness of radiomic features. Authors applied image SR to 

increase the number of voxels used since the radiomic features are possibly affected by 

low statistics in ROI voxels. 75 3D radiomic texture features were calculated (24 GLCM, 

14 GLDM, 16 GLRLM, 16 GLSZM and 5 NGTDM). The authors evaluated the robustness 

of their model’s radiomic feature in terms of quantization. Features were extracted from 

a non-small cell lung cancer CT dataset using different quantization configurations (the 

number of bins varied [8, 16, 32, 64, 128, 256]). In quantisation of grey levels the number 

of bins typically has an impact on the GL matrices that are calculated comparing local 

image intensities, such as co-occurrence (GLCM) and run-length (GLRLM) matrices 

affecting the values of certain radiomic features. The authors reported that the most 

important radiomic features in their PCA-based analysis were the most robust features 

extracted on the GAN-super-resolved images, paving the way for the application of GAN-
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based techniques for studies of radiomics for robust biomarker discovery. The highly 

robust features identified by GAN could possibly generalize well on other CT datasets. 

The study’s results of the robustness analysis related to the textural features (in terms of 

ICC) according to different image groups resulted in thirteen features that obtained an 

excellent robustness for at least one of the Original, Cubic and GAN-SR image groups 

(Table 15 [118]). 

 

 Table 15: Features that obtained an excellent robustness for at least one of the image groups 
(Original, Bicubic, GAN-SR) in a study investigating the impact of GAN-based lesion-focused 

medical image super-resolution on the robustness of radiomic features 

Radiomic feature name Original Bicubic GAN-SR 

GLCM Correlation 0.980 0.979 0.984 

GLCM DifferenceEntropy 0.846 0.911 0.910 

GLCM IDMN 0.996 0.996 0.997 

GLCM ID 0.997 0.995 0.998 

GLCM MCC 0.633 0.938 0.923 

GLCM SumEntropy 0.822 0.897 0.905 

GLRLM LongRunLowGrayLevelEmphasis 0.926 0.560 0.631 

GLRLM LowGrayLevelRunEmphasis 0.967 0.952 0.944 

GLRLM ShortRunLowGrayLevelEmphasis 0.97 0.973 0.925 

GLDM DependenceEntropy 0.910 0.870 0.895 

GLDM LargeDependenceLowGrayLevelEmphasis 0.985 0.976 0.890 

GLDM LowGrayLevelEmphasis 0.986 0.986 0.950 

GLDM SmallDependenceLowGrayLevelEmphasis 0.902 0.955 0.946 

 

We decided to test those features with excellent robustness in the manual segmentation 

cohort with all 74 patients. Having two ROIS (13x2 radiomic features) and adding muscle 

CSA, fat CSA, fat/muscle ratio and fat ratio we ended up with 30 features per CT image. 

We then ran multivariate analysis regarding survival (see results in Figure 39). 

 

Figure 39: Forest plot based on the results of multivariate analysis of survival (manual 
segmentation cohort with 74 patients and 4 CT images per patient) 
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We chose only the 6 features that were found to be significantly related (p<0.05) with 

survival in multivariate analysis, to train our models. Results are presented and discussed 

in the section “3.1 Results on the manually segmented CT images”.  

For the auto-segmentation cohort we tested different sets of features using unsupervised 

clustering. As we will see in the following sections “2.2.5 Unsupervised clustering” and 

“3.2.1 Unsupervised learning results on auto-segmented CT images”, when all features 

were kept, we achieved the best results. Therefore, based on these results and on the 

literature [113], we decided to train our models using PCA as feature reduction technique. 

 

2.2.5 Unsupervised clustering 

We tested different features sets of the auto-segmentation cohort by applying 

unsupervised learning algorithms. The sets tested were all features, robust005 (see in 

Figure 39; “robust” features significantly related [p-value<0.05] with survival in 

multivariate analysis), robust01 (see in Figure 39; “robust” features with a trend of 

association [p-value<0.1] with survival in multivariate analysis). We applied Gaussian 

Mixture Models (GMM) in the 2-dimensional space for better visualization and 

interpretation of the results. Dimensionality reduction to the 2-dimensional space for each 

feature set was performed with t-SNE (T-distributed Stochastic Neighbor Embedding) 

and UMAP (Uniform Manifold Approximation and Projection).  

T-SNE [119] takes a set of points in a high-dimensional space and finds a faithful 

representation of those points in a lower-dimensional space, typically the 2D plane. T-

SNE tends to expand dense clusters, contract sparse ones. Notably, distances between 

well-separated clusters in a t-SNE plot may mean nothing. An important parameter to 

tune when applying t-SNE is perplexity. Perplexity is kind of a guess about the number of 

close neighbors each point has. The proposed range is (5:50), and outside this range 

things get a little weird. With very high values of perplexity, it is highly expected to observe 

merged clusters whereas with low perplexity values, meaningless “clumping” can occur. 

In any case, the perplexity should be smaller than the number of points.  

On the other hand, UMAP [120] preserves more of the global structure. UMAP’s first 

phase consists of constructing a fuzzy topological representation and its second phase 

of optimizing the low dimensional representation, to have as close a fuzzy topological 

representation as possible as measured by cross entropy. UMAP’s parameters to tune 

include min_dist (default 0.1), which refers to the effective minimum distance between 

embedded points and n_neighbors (default 15) which refers to the size of local 

neighborhood used for manifold approximation. Smaller values of min_dist will result in a 

more clumped embedding, where nearby points on the manifold are drawn closer 

together and larger values of min_dist will result on a more even dispersal of points. 

Larger values of n_neighbors result in more global views of the manifold, whereas smaller 

values result in more local data being preserved. In general values of n_neighbors should 

be in the range (2:100). 

A Gaussian mixture model is a probabilistic model that assumes all the data points are 

generated from a mixture of a finite number of Gaussian distributions with unknown 

parameters. The expectation-maximization (EM) algorithm is used for fitting mixture of 

Gaussian models. There are different options to constrain the covariance of the different 

classes estimated: spherical, diagonal, tied or full. Full means the components may 
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independently adopt any position and shape, tied means they have the same shape, but 

the shape may be anything, diagonal means the contour axes are oriented along the 

coordinate axes, but otherwise the eccentricities may vary between components and 

spherical is a "diagonal" situation with circular contours. Although one would expect full 

covariance to have the best performance, it is prone to overfitting, especially on small 

datasets. GMM were implemented in python using scikit-learn 1.3.2 [121]. GMM’s require 

the user to specify K, the number of Gaussians in the model that are posited to have 

generated the data. The number of Gaussians corresponds to the number of clusters that 

the algorithm is looking for. Although GMM is used for clustering, we can also compare 

the obtained clusters with the actual classes from the dataset. 

In the following section “3.2.1 Unsupervised learning results on auto-segmented CT 

images” we will attempt to evaluate the separability of our dataset for different sets of 

features and for different number of clusters based on the stratification of our dataset by 

survival and site of the primary tumor and on the application of further exclusion criteria 

in patients with oropharyngeal carcinomas; exclusion of patients with OPC who did not 

die prematurely. Based on the aforementioned, the number of asked clusters will be either 

2 (patients with and without premature death; two scenarios with 2 clusters depending on 

the exclusion or inclusion of patients with OPC who did not die prematurely), or 3 (patients 

with OPC who died prematurely, non-oropharyngeal carcinoma patients who died 

prematurely and non-oropharyngeal carcinoma patients who did not die prematurely), or 

4 (when no patients were excluded and all patients were stratified by both survival and 

site of the primary tumor). We will include all 4 images per patient when exploring 

unsupervised learning’s results. Different features set, following dimensionality reduction 

to 2D space, with either t-SNE or UMAP and with varying algorithms’ parameter tuning, 

shall be tested. Accuracy based on the true clusters (stratified categories of patients) will 

be documented. Even when searching for more than 2 clusters, we will also calculate 

binary accuracy depending only on the survival outcome (e.g., if a patient was correctly 

predicted to die prematurely but incorrectly predicted to belong to a different primary 

tumor cluster, the prediction will be evaluated as correct in the calculation of binary 

accuracy).  

 

2.2.6 Supervised learning - training of machine learning classification models 

Machine learning classification models were trained using ATOM [122] (Automated Tool 

for Optimized Modelling) which is an open-source Python package. We kept for training 

only the 2nd CT slice at the level of C3 per patient. We chose only one image per patient 

to ensure that our models shall not learn the patient itself. We chose the 2nd CT slice 

because it usually had the best segmentation quality in the auto-segmentation method. 

We trained our models using different left-out for test ratios (0.2, 0.25, 0.3, 0.4). We also 

repeated the training process with 40 different splits of the dataset in order to evaluate 

our results based on the average metrics’ values and on the standard deviation of the 

metrics’ values obtained from the different splits. When using data from the manual 

segmented images we included all 74 patients, which resulted in a highly imbalanced 

dataset. In that case we also applied oversampling using the borderline SMOTE 

algorithm. Figure 40 [123] highlights in an example the differences between algorithms of 

the SMOTE family. We initially built SVM, RF and XGBoost (eXtreme gradient boosting) 

classifiers for the manual segmentation case. We also built kSVM  (kernel SVM) and RF 
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classifiers after applying the borderline SMOTE oversampling technique; for 

distinguishing purposes we will refer to them as SVM_os and RF_os. We then evaluated 

the results using various ensemble techniques (soft voting of RF and RF_os classifiers 

with varying weights). 

 

Figure 40: Decision function for different algorithms of the SMOTE family and resulting 
resampling when used 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               76 

For the auto-segmentation cohort we built the following classifiers: AdaBoost, GNB 

(Gaussian Naive Bayes), GP (Gaussian Processes), kSVM, lSVM (linear SVM), MLP 

(Multi-layer Perceptron), QDA (Quadratic Discriminant Analysis), RF, Trees. We also built 

soft and hard voting ensemble models by combining with the same weight the vote of 

multiple classifiers.  

Based on the results on the manual segmentation cohort (see section 3.1) and on the 

fact that HPV status is the main determinant of prognosis in oropharyngeal cancer 

patients, we decided to exclude oropharyngeal cancer patients with overall survival 

greater than 5 years. The application of this exclusion criteria resulted in a quite balanced 

(ratio of premature death: 0.4) sub-cohort of 47 patients (see Table 12). We also trained 

classifiers in another one sub-cohort with 51 patients (ratio of premature death: 0.37) 

where we also included HPV (-) OPC patients with OS >5 years (see Table 13). Given 

that our cohorts had become quite balanced, following the application of exclusion 

criteria, we did not apply oversampling techniques in those two auto-segmentation sub-

cohorts.  

 

2.2.7 Evaluation metrics and validation 

The following classification metrics were used to evaluate our results: accuracy, balanced 

accuracy, precision, recall, Matthews correlation coefficient (MCC), area under receiver 

operating characteristics curve (AUC-ROC), F1-score, Cohen’s kappa coefficient. 

Accuracy: correct predictions / number of predictions. It is a metric that should be treated 

with great caution in imbalanced datasets as it can be quite misleading. In such cases, 

other evaluation metrics should be considered for better interpretation of the model’s 

utility within the classification problem each time addressed. 

Balanced accuracy: ½ (correct positive predictions/number of positives + correct negative 

predictions/number of negatives). Therefore, by calculating the average accuracy for 

each class, it can perform better on imbalanced datasets. 

Precision: the ratio of true positives and total positives predicted. Precision metric focuses 

on Type-I errors (false positives). In our case, Type-I error is incorrectly labelling patients 

who did not die prematurely as high risk for premature death. A precision score towards 

1 will signify that our model did not miss any true positives and is able to classify well 

between high and low risk for premature death.  

Recall: the ratio of true positives to all the positives in ground truth. Recall metric focuses 

on type-II errors (false negatives), in our case, type-II error is incorrectly labelling patients 

with premature death as low risk for premature death. 

Matthews Correlation Coefficient (MCC): MCC is used in machine learning as a measure 

of the quality of binary classifications and is in essence a correlation coefficient between 

the observed and predicted binary classifications, returning a value between −1 and +1. 

A coefficient of +1 represents a perfect prediction, 0 no better than random prediction and 

−1 indicates total disagreement between prediction and observation. 

AUC-ROC; combines the false positive and the true positive rate into a single metric. A 

receiver operating characteristic curve (ROC curve) is the plot of the true positive against 
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the false positive rate at each threshold setting and the resulting area under this curve is 

the AUROC. 

F1-score: 2 x (Precision x Recall) / (Precision + Recall). It gives a combined idea about 

Precision and Recall metrics and is maximum when Precision is equal to Recall. F1-score 

is considered an effective evaluation metric when true negative is high (our case when 

all 74 patients are included) and when false positive and false negative are equally costly. 

F1-score belongs to wider metric family, the Fβ-score= (1+β2) x (Precision x Recall) / (β2 

x Precision + Recall). For β=1 we have F1, for β>1 we are giving more weight to recall 

than precision and for β<1 we are giving more weight to precision than recall. In our case 

if we wanted to give more weight to one of the two metrics, that would be recall, as our 

target is to screen for patients in possible high risk for premature death who might be 

beneficiated by nutritional and other interventions. 

Cohen’s kappa coefficient: a statistic that is used to measure inter-rater reliability for 

categorical items that takes into account the possibility of the agreement occurring by 

chance. 

We also used a custom metric, because despite having a binary classification problem 

(premature death vs no premature death) we wanted to treat with different penalty 

misclassification of patients with OS > 5 years and of patients with OS < 5 years. In this 

custom metric, with moderate penalty, scoring was: (+1) for every patient with premature 

death classified as high risk, (-1) for every patient with OS >5 years classified as high 

risk, (-0.5) for every patient with premature death classified as low risk, (0) for every other 

case e.g., patient with OS < 5 years classified either as high or low risk. The sum was 

then divided by the number of patients who died prematurely. Thus, the maximum score 

would always be 1, whereas the minimum will be a varying negative. 

Moreover, we assessed the robustness of the model trained using the bootstrap 

technique, which creates several new data sets (we used 20) selecting random samples 

from the training set (with replacement) and evaluates them on the test set (we used mcc 

as evaluation metric for bootstrapping). 

Finally, when evaluating the models trained with ROIs from CT images obtained with the 

automatic segmentation method, we used as external validation set the three images per 

patients, that hadn’t been used for training (Figure 41). We averaged the three risks 

(either hard voting or soft voting derived from probabilities) from the different classifiers 

to obtain an average risk for premature death for each patient. Then we calculated the 

optimal risk cut-offs regarding survival separately for each one of the 40 different runs 

(train-test splits of the dataset). We evaluated classifiers in terms of the standard 

deviation of the optimal cut-offs obtained. Afterwards, we tested classifiers with the lowest 

optimal cut-offs’ standard deviation. We set cut-off for each classifier’s risk as either the 

median or the mean of all the optimal cut-offs. By setting the same cut-off (not always the 

optimal) for each one of the 40 scenarios, we tried to be as much unbiased as possible, 

given that finding the optimal cut-off is an outcome orientated method. We then tested 

survival outcomes in all 40 scenarios in terms of the resulting p-values from the 

comparison between the survival curves of the two risk groups of patients (low and high 

risk for premature death). 
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Figure 41: Using as external validation set the three images per patient (1st, 3rd and 4th CT slice at the level of C3) that remained completely unseen when 
training our classification models (only images from the 2nd CT slice were used for training)
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3. RESULTS 

3.1 Results on manually segmented CT images 

The following classification results derived from training in the manual segmentation 

cohort (with all 74 patients), using only one image per patient for training (the 2nd CT slice 

at the C3 level) and as feature set only the 6 “robust” features which were found to be 

significantly related (p<0.05) with survival in multivariate analysis (see section 2.2.4). RF 

classifiers showed better performance in terms of average balanced accuracy compared 

to XGBoost and kSVM classifiers (see Figure 42).  

 

Figure 42: Classifiers’ evaluation when trained with a 0.25 ratio left for testing (40 different 
test:train splits of the dataset) in the manual segmentation cohort 

 

Although oversampling with BorderlineSMOTE did not improve balanced accuracy, we 

investigated if a combination of RF classifiers trained with and without oversampling 

would improve the classification results. Therefore, we tested results from soft-voting 

ensembles were RF and RF_os contributed with different weights (75% RF + 25% RF_os, 

70% RF + 30% RF_os, 60%RF + 40% RF_os, 50% RF + 50% RF_os, 40% RF + 60% 

RF_os). We compared results in terms of the variance of the optimal cut-off for survival 

stratification (see Figure 43) and in terms of the custom metric (see section 2.2.7 

Evaluation metrics and validation), which took also into consideration the subgroups with 

OS > 5 years and OS < 5years (see Figure 44). In general, the combination of RF with 

RF_os significantly improved the results achieved by RF and RF_os alone. The best 

results derived from the 60% RF + 40% RF_os combination. We also investigated the 

performance of the 60% RF + 40% RF_os combination in different subgroups of patients 

within the cohort (oropharyngeal carcinomas, non-oropharyngeal carcinomas, HPV(+) 

oropharyngeal carcinomas and laryngeal, hypopharyngeal and HPV(-) oropharyngeal 

carcinomas; Figures 45,46,47,48). Finally, we checked the proportion of positive custom 

metric scores achieved with the 60% RF + 40% RF_os voting scheme (see Figure 49), 
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and how moderate scores (near 0) or even negative scores are being translated in the 

survival curves with a few examples (see Figures 50,51). 

 

Figure 43: Optimal cut-off values regarding survival stratification for different soft-voting 
partitioning of the RF models trained with and without application of oversampling techniques 

 

 

Figure 44: Scoring results for different voting schemes ( 40 different train:test splits with a 0.25 
ratio left for testing) 
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Figure 45: Comparing RF, RF_os and ensemble RF60%-RF_os40% scoring results in manual 
segmentations’ non-OPC sub-cohort  

 

 

Figure 46: Comparing RF, RF_os and ensemble RF60%-RF_os40% scoring results in manual 
segmentations’ OPC sub-cohort  

 

The soft voting combination RF60%-RF_os40% achieved better results on both 

subgroups of patients regarding the primary tumour site (oropharyngeal and non-

oropharyngeal carcinomas), whereas RF and RF_os classifiers alone performed better 

in different subgroups. Moreover, overall results were considerably better in the non-OPC 

subgroup. Interestingly, regardless the disappointing results of the RF_os classifier in the 
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OPC subgroup when combined with the RF classifier managed to improve the RF 

classifier’s results. Scoring results in HPV(+) patients were poor, something expected as 

HPV status heavily affects survival and HPV(+) patients have significantly better 

prognosis regardless of other factors. 

 

 

Figure 47: Comparing RF, RF_os and ensemble RF60%-RF_os40% scoring results in manual 
segmentations’ HPV(+) OPC sub-cohort  

 

 

Figure 48: Comparing RF, RF_os and ensemble RF60%-RF_os40% scoring results in manual 
segmentations’ sub-cohort including only laryngeal, hypopharyngeal and HPV(-) oropharyngeal 

carcinomas 
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Figure 49: Classification scores achieved with the RF60%-RF_os40% ensemble in the whole 
manual segmentation cohort in the 40 different train:test splits with a 0.25 ratio left for testing 

 

As we can see in Figure 49 in 77.5% of the different train:test splits of the dataset the 

RF60%-RF_os40% ensemble achieved positive classification scores. As a way of 

visualizing these scores in terms of survival curves, Figure 50 and Figure 51 demonstrate 

survival results for the patients stratified as high risk versus those stratified as low risk 

when the scoring result was nearly 0 (Figure 50) and when the scoring result was even 

slightly negative (Figure 51).  

 

Figure 50: Example of patients’ stratification with RF60%-RF_os40% ensemble’s classification 
score equal to 0.0263 (all cases, OPC, non-OPC)  
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Figure 51: Example of patients’ stratification with RF60%-RF_os40% ensemble’s classification 
score equal to -0.0789 (all cases, OPC, non-OPC) 

Stratification results in those two examples were statistically important (p<0.05) in both 

cases in the non-oropharyngeal subgroup but no difference in the survival curves was 

found in the oropharyngeal group in the case of the negative scoring result (Figure 50). 

Summing up, overall results were quite encouraging for the non-OPC subgroup of 

patients. Nonetheless the fact that there is a very large proportion of patients in our 

dataset with oropharyngeal carcinomas and with unknown HPV status emerged as a 

serious limitation. Therefore, we decided to proceed training in the case of the auto-

segmentation cohort by applying exclusion criteria in the group of patients with 

oropharyngeal carcinomas. 

 

3.2 Results on auto-segmented CT images 

 

3.2.1 Unsupervised learning results on auto-segmented CT images 

As we will observe in the following Figures: 52-59, unsupervised learning with GMMs 

achieved better classification results when all features were taken into consideration  and 

OPC patients without premature death were excluded. Moreover, we observed that OPC 

patients without premature death tend to be widespread in the two-dimensional space, 

after dimensionality reduction (Figure 56) . Therefore, we believe that inclusion of such 

widespread cases will complicate the learning process when training the different 

classifiers. While interpreting these Figures we should also beware of the fact that 

accuracy is over-estimated when patients with oropharyngeal squamous cell carcinoma 

(OPSCC) without premature death are not excluded, because of the resulting very large 

proportion of patients without premature death in those cohorts. Regarding the results 

when using only “robust” features significantly  associated (p-value<0.05) or with a trend 

of association (p-value<0.1) with survival, we found these results to be inferior (Figures 
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58, 59) to the results when all features were included (Figure 57) before the 

dimensionality reduction. Finally, as we can observe in Figures 52 and 53 when excluding 

patients with OPSCC without premature death, there seem to be a 3-cluster tendency in 

our dataset (one cluster with overrepresentation of low-risk patients and two clusters with 

overrepresentation of high-risk patients). 

 

Figure 52: Unsupervised clustering (GMM covariance= “diag”, 3 clusters) results in the cohort 
where patients with OPSCC without premature death were excluded ,and all features were kept 

before dimensionality reduction with t-SNE (perplexity=15) 

 

 

Figure 53: Unsupervised clustering (GMM covariance= “diag”, 3 clusters) results in the cohort 
where patients with OPSCC without premature death were excluded ,and all features were kept 

before dimensionality reduction with UMAP (n_neighbors=20, min_dist=0.25) 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               86 

 

Figure 54: Unsupervised clustering (GMM covariance= “tied”, 2 clusters) results in the cohort 
where patients with OPSCC without premature death were excluded ,and all features were kept 

before dimensionality reduction with t-SNE (perplexity=20) 

 

 

Figure 55: : Unsupervised clustering (GMM covariance= “diag”, 2 clusters) results in the cohort 
where patients with OPSCC without premature death were excluded ,and only “robust” features 
with a trend of association (p-value<0.1) with survival were kept before dimensionality reduction 

with UMAP (n_neighbors=50, min_dist=0.2) 
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Figure 56: Unsupervised clustering (GMM covariance= “diag”, 4 clusters) results in the cohort 
where all patients were included and all features were kept before dimensionality reduction with 

UMAP (n_neighbors=10, min_dist=0.2) 

 

 

Figure 57: Unsupervised clustering (GMM covariance= “diag”, 2 clusters) results in the cohort 
where all patients were included and all features were kept before dimensionality reduction with 

UMAP (n_neighbors=10, min_dist=0.2) 
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Figure 58: Unsupervised clustering (GMM covariance= “full”, 2 clusters) results in the cohort 
where all patients were included ,and only “robust” features with a trend of association (p-

value<0.1) with survival were kept before dimensionality reduction with UMAP (n_neighbors=20, 
min_dist=0.3) 

 

 

Figure 59: Unsupervised clustering (GMM covariance= “full”, 2 clusters) results in the cohort 
where all patients were included ,and only “robust” features significantly associated (p-

value<0.05) with survival were kept before dimensionality reduction with UMAP (n_neighbors=20, 
min_dist=0.2) 
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3.2.2 Supervised learning results on auto-segmented CT images 

Supervised learning results will be presented separately for the two sub-cohorts created 

after the application of further exclusion criteria in the group of patients with 

oropharyngeal carcinomas (one with 47 patients where all OPC patients with OS > 5 

years were excluded, and another one with 51 patients where 4 extra HPV-negative OPC 

patents with OS > 5 years were included; see Tables 12 and 13 in section “2.1 Material” 

for characteristics of the patients in each sub-cohort). PCA analysis will be presented 

prior to training results. We shall present results regarding two different ratios left for 

testing, 0.3 and 0.4. Dependence on the different dataset’s train-test splits, of the variance 

explained shall also be investigated for the optimal number of components (Figures 61 

and 85).  

Classifiers were tested on the validation set consisted of the three images per patient that 

hadn’t been used for training (Figure 41 – section 2.2.7). We averaged the three risks 

(either hard voting or soft voting derived from probabilities) from the different classifiers 

to obtain an average risk for premature death for each patient. Classifiers and ensemble 

models were then sorted out based on their performance in terms of minimum standard 

deviation of the optimal risk cut-off values derived from survival analysis, during the first 

2.5 years, in the 40 different train-test splits of the dataset. Classifiers and ensemble 

models with the 8 lowest standard deviations of the optimal cut-off values have been 

evaluated with different metrics. For the evaluation of the various classifiers’ final 

classification decision, we used the same cut-off point (both the mean and the median 

were tested), for all 40 different train-test splits of the dataset. In the following evaluation 

plots ensemble models will be named by the contributing classifiers and the name will be 

starting with either “pb” when soft voting with probabilities or “risk” when hard voting, all 

separated by underscore. For exmple pb_RF_QDA_GNB name will be used for soft 

voting ensemble model from equal contribution of RF’s, GNB’s and QDA’s probabilities, 

and risk_lSVM_QDA for combined hard voting of the lSVM and the QDA. 

 

3.2.2.1 Supervised learning results on auto-segmented CT images - 47 patients 

The exclusion of all OPC patients with OS > 5 years resulted in a quite balanced (ratio of 

premature death: 0.4) sub-cohort of 47 patients (see Table 12).  

 

Figure 60: PCA analysis prior to training for the cohort with 47 patients 
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Figure 61: Variance explained in the training set by number of components and left out 
percentage for test, in the 40 different train-test splits of the dataset (cohort with 47 patients) 

 

In the following subsections 3.2.2.1.a-d we will present training and validation results 

obtained when training with either 6 or 7 principal components and with a test ratio of 

either 0.3 or 0.4. The combination of 7 principal components and a test ratio of 0.3 

seemed to be the most promising, from the variance analysis, and therefore the results 

obtained in that case, shall be presented in more details. In the other cases, we will focus 

on recall and f1 score, as we observed that classifiers with better performance in those 

two metrics achieved the best results regarding patients’ overall survival related risk 

stratification.  

 

3.2.2.1.a Training with 7 principal components and with a test ratio of 0.3 

 

Figure 62: Example of variance explained in the training set in one of the 40 different train-test 
splits of the dataset 
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Figure 63: Training evaluation of different classifiers when trained with 7 principal components 
and with a test ratio of 0.3 

 

 

Figure 64: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived 
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest 

standard deviation, classifiers and ensemble models (trained with 7 principal components and 
with a test ratio of 0.3) are being presented. 

 

As we can observe in Figure 62 GNB, lSVM and QDA classifiers achieved the best results 

regarding MCC, balanced accuracy and precision, while GNB and lSVM remained the 
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better performing classifiers regarding bootstrapping and ROC AUC score. Moreover, 

GNB, lSVM and QDA remained within the 8 classifiers and ensemble models with the 

lowest standard deviation in terms of optimal cut-off values for patients’ risk stratification 

(Figure 64). These three classifiers along with RF were also the base of the better 

performing ensemble models in the validation set (Figures 65-71). In Figures 65-71 

various metrics’ results achieved both when using the mean and when using the median 

of all 40 individual optimal cut-off values, will be compared.  

 

Figure 65: Accuracy results in the validation set for classifiers and ensemble models trained with 
7 principal components and with a test ratio of 0.3 

 

Accuracy 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Regarding accuracy we observed that the usage of the mean led to better results for three 

classifiers (pb_RF_GNB, pb_RF_QDA and pb_RF_QDA_GNB), whereas the results of 

the other 5 classifiers remained the same (Figure 65).  

 

Figure 66: Cohen’s kappa results in the validation set for classifiers and ensemble models trained 
with 7 principal components and with a test ratio of 0.3 

 

Regarding both Cohen’s kappa, MCC and precision, the usage of mean achieved again 

better results in the same three classifiers (pb_RF_GNB, pb_RF_QDA and 

pb_RF_QDA_GNB), while the rest had the same results (Figures 66, 67, 68).  

Cohen's kappa 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 67: MCC results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.3 

 

MCC 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 68: Precision results in the validation set for classifiers and ensemble models trained with 
7 principal components and with a test ratio of 0.3 

 

Precision 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 69: F1-score results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.3 

 

Regarding F1-score the results were almost the same, and only slightly better in the same 

three classifiers (pb_RF_GNB, pb_RF_QDA and pb_RF_QDA_GNB) when using the 

mean (Figure 69). 

F1-score 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 70: Recall results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.3 

 

Regarding recall again the three ensemble models with probabilities soft voting 

(pb_RF_GNB, pb_RF_QDA and pb_RF_QDA_GNB) were differentiated between mean 

and median. However, in the case of recall the usage of median led to better results. 

Interestingly, in the case of recall risk_lSVM_GNB model emerged as the fourth best 

performing classifier. 

The differences observed so far are in line with the fact that the usage of median led to 

lower cut-off values compared to mean, in the cases of soft voting ensemble models 

Recall 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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(Figure 64). Lower cut-off values generally lead to more cases identified as high risk and 

therefore potentially increase false positives (resulting in lower precision) and decrease 

false negatives (resulting in higher recall), while F1-score’s results that are equally 

affected by both recall and precision remain almost the same. Moreover, the custom 

metric whose scoring was favouring identifying high risk cases (scoring described in 

section “2.2.7 Evaluation metrics and validation”), showcased the same differences as 

recall (Figure 71).  

 

Figure 71: Custom metric results in the validation set for classifiers and ensemble models trained 
with 7 principal components and with a test ratio of 0.3 

 

Custom metric score 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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3.2.2.1.b Training with 6 principal components and with a test ratio of 0.3 

 

Figure 72: Training evaluation of different classifiers when trained with 6 principal components 
and with a test ratio of 0.3 

 

 

Figure 73: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived 
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest 

standard deviation, classifiers and ensemble models (trained with 6 principal components and 
with a test ratio of 0.3) are being presented. 
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GNB and lSVM classifiers achieved the best results regarding MCC, balanced accuracy, 

ROC AUC score and bootstrapping when training with 6 principal components and with 

a test ratio of 0.3 (Figure 72), while GNB was the base of most of the better performing 

ensemble models in terms of lowest standard deviation of optimal risk cut-off values 

(Figure 73). 

 

Figure 74: F1-score results in the validation set for classifiers and ensemble models trained with 6 
principal components and with a test ratio of 0.3 

 

F1-score 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Ensemble soft voting models pb_RF_GNB and pb_RF_QDA_GNB achieved the most 

promising results in the validation set, especially when using median as cut-off (Figures 

73-75). 

 

Figure 75: Recall results in the validation set for classifiers and ensemble models trained with 6 
principal components and with a test ratio of 0.3 

 

3.2.2.1.c Training with 6 principal components and with a test ratio of 0.4 

In consistent with previous results, GNB and lSVM classifiers achieved again the best 

results regarding MCC, balanced accuracy, ROC AUC score and bootstrapping (Figure 

Recall 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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76), while pb_RF_GNB and pb_RF_QDA_GNB were the better performing ensemble 

models in the validation set (Figures 77, 78 and 79). 

 

Figure 76: Training evaluation of different classifiers when trained with 6 principal components 
and with a test ratio of 0.4 

 

 

Figure 77: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived 
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest 

standard deviation, classifiers and ensemble models (trained with 6 principal components and 
with a test ratio of 0.4) are being presented. 
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Figure 78: F1-score results in the validation set for classifiers and ensemble models trained with 6 
principal components and with a test ratio of 0.4 

 

F1-score 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 79: Recall results in the validation set for classifiers and ensemble models trained with 6 
principal components and with a test ratio of 0.4 

 

3.2.2.1.d Training with 7 principal components and with a test ratio of 0.4 

GNB and lSVM classifiers achieved again the best results regarding MCC, balanced 

accuracy, ROC AUC score and bootstrapping (Figure 80), while hard voting based on 

GNB achieved better results in the validation set (Figures 81,82 and 83). Interestingly we 

observed that when the left-out for test ratio increases, hard voting models tend to have 

more stable results. Nevertheless, the better performing classifiers remain the same in 

Recall 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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all cases, GNB and lSVM. This consistent finding is quite promising regarding the 

generalization of our results. 

 

Figure 80: Training evaluation of different classifiers when trained with 7 principal components 
and with a test ratio of 0.4 

 

 

Figure 81: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived 
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest 

standard deviation, classifiers and ensemble models (trained with 7 principal components and 
with a test ratio of 0.4) are being presented. 
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Figure 82: F1-score results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.4 

 

F1-score 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 83: Recall results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.4 

 

3.2.2.2 Supervised learning results on auto-segmented CT images - 51 patients 

The inclusion of 4 extra HPV (-) OPC patients with OS >5 years resulted in a cohort with 

51 patients (see Table 13) that remained to some extent balanced (ratio of premature 

death: 0.37). However, the overall results were inferior to those obtained in the more 

balanced cohort with 47 patients. Therefore, we will present only the results obtained with 

the usage of 7 principal components and with a test ratio of 0.3, a combination that have 

already been found to be the most promising. 

Recall 

Using mean as cut-off value for patients’ risk stratification 

 

Using median as cut-off value for patients’ risk stratification 
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Figure 84: PCA analysis prior to training for the cohort with 51 patients 

 

 

Figure 85: Variance explained in the training set by number of components and left out 
percentage for test, in the 40 different train-test splits of the dataset (cohort with 51 patients) 

 

In consistent with the results in the cohort with 47 patients, GNB and lSVM classifiers 

achieved again the best training results regarding MCC, balanced accuracy and 

bootstrapping (Figure 86). In the validation set, hard voting of GNB and lSVM classifiers 

along with the soft voting ensemble models pb_RF_GNB and pb_RF_QDA_GNB 

achieved the best results (Figures 87, 88 and 89). In Figures 88 and 89 we presented 

only the results derived when using the median of all optimal cut-off values as cut-off 

point, based on previous findings that median leads to better recall results and 

consequently identification of more true high-risk patients. The resulting higher sensitivity 

when using median better serves the screening purposes of the proposed patients’ risk 

stratification.  
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Figure 86: Training evaluation of different classifiers when trained with 7 principal components 
and with a test ratio of 0.3 (cohort with 51 patients) 

 

 

Figure 87: Optimal risk cut-off values in the 40 different train-test splits of the dataset, derived 
from survival analysis during the first 2.5 years. The 8 best performing, in terms of lowest 

standard deviation, classifiers and ensemble models (trained with 7 principal components and 
with a test ratio of 0.3) are being presented (cohort with 51 patients). 
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Figure 88: F1-score results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.3 (median used as cut-off, cohort with 51 patients) 

 

 

Figure 89: Recall results in the validation set for classifiers and ensemble models trained with 7 
principal components and with a test ratio of 0.3 (median used as cut-off, cohort with 51 patients) 

 

3.2.3 Survival results on auto-segmented CT images 

For the classifiers with the better performance in terms of minimum optimal risk cut-offs’ 

standard deviation , we used the same cut-off point for all the 40 different train-test splits 

of the dataset, in order to stratify patients in the validation set. As cut-off point, we tried 

both the mean and the median of all the optimal cut-off values. We then tested the 

percentage of the 40 different splits, where the proposed classification model achieved 

to separate survival of low-risk and high-risk group of patients statistically significantly (p-

value < 0.05) or to showcase a trend for difference in survival between the two risk groups 
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(p-value < 0.1). By using the same cut-off, and not the optimal, we tried to partially 

overcome the bias of an outcome-oriented method (providing a value of a cut-point that 

correspond to the most significant relation with outcome, in our case survival) and to 

present results with some potential of generalisation. Our survival results confirmed that 

in most cases the resulting higher sensitivity when using median better serves the 

screening purposes of the proposed patients’ risk stratification. Moreover, we also 

confirmed that models with better performance regarding both F1-score and recall were 

the ones that led to better separation of the 2.5 years overall survival curves between 

patients classified as high and low risk. In subsections 3.2.3.1 and 3.2.3.2 we will present 

classification models’ results obtained when using the median as cut-off point. We 

selected to present the best results obtained in different training settings (7 principal 

components with a test ratio of 0.3, 6 principal components with a test ratio of 0.3 and 7 

principal components with a test ratio of 0.4). 

3.2.3.1 Survival results on auto-segmented CT images - 47 patients 

 

Figure 90: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 
pb_RF_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40 
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median 

of all 40 optimal-cut-off values); cohort with 47 patients 
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Figure 91: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 
risk_lSVM_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 

40 different train-test splits of the dataset), using in all cases the same risk cut-off value (the 
median of all 40 optimal-cut-off values); cohort with 47 patients 

 

The best results in the validation set were obtained in the cohort with 47 patients and 

when classification models were trained with 7 principal components and with a test ratio 

of 0.3 (Figures 90, 91) followed by the results obtained when trained with 6 principal 

components and with a test ratio of 0.3 (Figures 92, 93).  

In the case of training with 7 principal components the best performing classifiers were 

the soft voting model pb_RF_GNB and the hard voting model risk_lSVM_GNB. Both 

models achieved to showcase a trend for difference in survival between the two risk 

groups (p-value < 0.1) in 80% of the 40 different train-test splits of the dataset. 
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Figure 92: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 
pb_RF_QDA_GNB classifiers (trained with 6 principal components and with a test ratio of 0.3 in 
the 40 different train-test splits of the dataset), using in all cases the same risk cut-off value (the 

median of all 40 optimal-cut-off values); cohort with 47 patients 

 

In the case of training with 6 principal components the best performing classifiers were 

the soft voting model pb_RF_QDA_GNB and the hard voting model 

risk_GNB_QDA_RF_lSVM. Both models achieved to showcase a trend for difference in 

survival between the two risk groups (p-value < 0.1) in around 70% of all the 40 different 

train-test splits of the dataset. Notably, the hard voting model risk_GNB_QDA_RF_lSVM 

achieved the best overall results regarding separating survival curves of low-risk and 

high-risk group of patients statistically significantly (p-value < 0.05), reaching such results 

in 67.5% of all the 40 different train-test splits of the dataset (Figure 93). 
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Figure 93: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 
risk_GNB_QDA_RF_lSVM classifiers (trained with 6 principal components and with a test ratio of 
0.3 in the 40 different train-test splits of the dataset), using in all cases the same risk cut-off value 

(the median of all 40 optimal-cut-off values); cohort with 47 patients 

 

Finally, even in the case of training with 7 principal components and with the quite high 

test ratio of 0.4, hard voting with GNB alone achieved in the validation set to showcase a 

trend for difference in survival between the two risk groups (p-value < 0.1) in 70% of all 

the 40 different train-test splits of the dataset (Figure 94). Looking back at Figure 81 we 

can see that the cut-off point used for the risk_GNB was 0, meaning that in the validation 

set only one out of the three images per patient had to be classified as high-risk, by the 

GNB classifier, in order to finally classify the patient as high-risk. However, the results 

were quite inferior in separating survival curves of low-risk and high-risk group of patients 

statistically significantly (p-value < 0.05), achieving such results in only 45% of the 40 

different train-test splits of the dataset (Figure 94). 



Predicting head and neck cancer patients’ survival using CT-derived skeletal muscle related data 

    
P. T. Moumoulidis                                                                                                                                                                               115 

 

Figure 94: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 

risk_GNB classifiers (trained with 7 principal components and with a test ratio of 0.4 in the 40 
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median 

of all 40 optimal-cut-off values); cohort with 47 patients 

 

3.2.3.2 Survival results on auto-segmented CT images – 51 patients 

In the cohort with 51 patients the results were inferior to those of the cohort with 47 

patients. Only classifiers resulted from the training setting with 7 principal components 

and with a test ratio of 0.3 achieved to showcase adequate separation between the 

survival curves of the low and high risk group of patients. Again, the GNB classifiers 

achieved the best results followed by the lSVM classifiers and the ensemble soft voting 

model pb_RF_GNB (Figures 95, 96 and 97).  
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Figure 95: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 

risk_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40 
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median 

of all 40 optimal-cut-off values); cohort with 51 patients 

 

Although those classification models achieved to showcase a trend for difference in 

survival between the two risk groups (p-value < 0.1), in high percentages of the 40 

different train-test splits of the dataset (reaching even 75%), those models had poorer 

results in separating survival curves of the low-risk and the high-risk group of patients 

statistically significantly (p-value < 0.05), achieving such results in only 47.5%-55% of the 

40 different train-test splits of the dataset (Figures 95, 96 and 97). 
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Figure 96: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 

risk_lSVM classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40 
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median 

of all 40 optimal-cut-off values); cohort with 51 patients 
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Figure 97: Kaplan–Meier 2.5 years overall survival curves according to risk group classification in 
the validation set (red curve for the high-risk group and blue curve for the low-risk group), by the 
pb_RF_GNB classifiers (trained with 7 principal components and with a test ratio of 0.3 in the 40 
different train-test splits of the dataset), using in all cases the same risk cut-off value (the median 

of all 40 optimal-cut-off values); cohort with 51 patients 
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4. DISCUSION 

Undefined HPV status in oropharyngeal carcinomas was a serious limitation for the 

current pilot study. The unknown HPV status acts as a highly confounding factor. With 

the application of further exclusion criteria in the group of patients with oropharyngeal 

carcinomas we partially overcame it. On the one hand, by excluding all patients with 

oropharyngeal carcinomas and overall survival greater than 5 years, a group of patients 

that was considered as a potential confounder in our study, we ended up with a balanced 

cohort in terms of survival categories. The most balanced cohort was the one with 47 

patients, and our results showed that it favoured training, as we achieved the best results 

in that case. On the other hand, the exclusion of all these patients resulted in a small 

dataset.  

Radiomics machine learning studies with small sample size are quite challenging and can 

lead to unreliable results. We applied unsupervised learning to investigate the separability 

of our data. We observed that when excluding patients with OPSCC without premature 

death, there seemed to be an inherent 3-cluster tendency in our dataset (one cluster with 

overrepresentation of low-risk patients and two clusters with overrepresentation of high-

risk patients). We also observed that when taking all features into consideration there 

seem to be a stronger inherent tendency for clusters formation that were relevant to the 

clinical problem addressed. The aforementioned observations indicated that proceeding 

with the smaller but more balanced cohorts and with a dimensionality reduction method 

that takes all features and consequently the interaction effects among the features into 

consideration, like PCA, would be a promising strategy.  

Our classification results were very encouraging, as we managed to train classifiers that 

served well the screening purposes of the problem addressed, by achieving high recall 

while maintaining an acceptable F1-score. The results were validated by survival 

analysis. By using the same cut-off, and not the optimal, we tried to partially overcome 

the bias of an outcome-oriented method and to present results with some potential of 

generalisation. It was also encouraging that in different training settings the same 

classifiers, GNB and lSVM, emerged as the ones with the better performance. Moreover, 

the soft voting ensemble model pb_RF_GNB was also consistently among the better 

performing. 

Nevertheless, more data, with known HPV status for the OPSCC patients, are needed to 

achieve better and more stable results. Data augmentation by using more CT slices at 

the same cervical level (C3) per patient is not recommended especially as long as the 

dataset remains relatively small. However, using more than one image per patient might 

be beneficial when calculating the patient’s risk for premature death and is recommended 

both for validation purposes on unseen data, and for classification of new entries whose 

outcome is yet unknown.  

To conclude, prognosis of HNSCC patients remains complex and such risk classifications 

should be considered only in more complex models along with other well studied 

prognostic features. When other indications of malnutrition are present , nutritional 

interventions should be seriously considered in patients classified as high-risk. Sex and 

biometric measurements should be also taken into consideration in larger datasets. When 

sarcopenia can be defined from the L3 level, prevalence of sarcopenia in the high-risk 

group should also be addressed. Still, such studies cannot be conducted without the 
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establishment of large national cancer databases, and it is in this direction where we 

should focus our actions. Figure 98 shows how a head and neck cancer registry could be 

developed and utilized. 

 

Figure 98: Head and neck cancer registry - data collection, processing, prediction models and 
future perspectives  
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5. CONCLUSION 

The proposed automatic method for segmentation, radiomic feature extraction and 

subsequent patient risk stratification, based on CT-derived skeletal muscle related data, 

constitutes a promising automatic screening method. The fact that results were evaluated 

on 40 different train-test splits of the dataset and that proposed risk stratification was 

tested on a validation set using the same risk cut-off points and not always the optimal 

ones, along with the consistency regarding various classifiers’ performance pave the way 

for potential generalization. However, more data are needed, with known HPV status for 

the OPSCC patients in order to establish risk stratification based on CT-derived skeletal 

muscle related data as a clinically useful biomarker, that might be integrated in more 

complex machine learning prognostic models aiming personalized treatment. 
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ABBREVIATIONS 

AI, artificial intelligence 

ASM, appendicular skeletal muscle mass 

AUC-ROC, area under receiver operating characteristics curve 

C3, third cervical spine vertebra 

CC, consensus clustering 

CGA, comprehensive geriatric assessment 

CI, confidence interval 

CSA, cross-sectional area 

CSS, cancer specific survival 

CT, computed tomography 

DFS, disease free survival 

EM, expectation-maximization 

FI, frailty index 

GAN, generative adversarial network 

GLCM, gray-level co-occurrence matrix 

GLDZM, gray-level distance-zone matrix  

GLM, generalized linear model 

GLRLM, gray-level run-length matrix 

GLSZM, gray-level size-zone matrix 

GMM, gaussian mixture models 

GNB, gaussian naive Bayes  

GP, gaussian processes,  

HNC, head and neck cancer 

HNSCC, head and neck squamous cell carcinoma 

HPV, human papilloma virus 

HR, hazard ratio 

HU, Hounsfield unit 

ICA, independent component analysis 

ICC, intraclass correlation coefficient 

IH, intensity histogram  

IVH, intensity-volume histogram 

KNN, k-nearest neighbour 

kSVM, kernel support vector machine  

L3, third lumbar spine vertebra 
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lSVM, linear support vector machine 

MACT, mean muscle attenuation on CT scan 

MCC, Matthews correlation coefficient 

MDA, mixture discriminant analysis 

ML, machine learning 

MLP, multi-layer perceptron 

MRI, magnetic resonance imaging 

NB, naive Bayes 

NGLDM, neighbouring gray-level dependence matrix 

NGTDM, neighbouring gray-tone difference matrix 

NNET, neural network 

NZV, near zero variance 

OPC, oropharyngeal cancer 

OPSCC, oropharyngeal squamous cell carcinoma 

OS, overall survival 

OSCC, oral squamous cell carcinoma 

PCA, principal component analysis 

PET, positron emission tomography 

PG-SGA, patient-generated subjective global assessment 

PLS, partial least squares 

QDA, quadratic discriminant analysis 

QoL, quality of life 

RF, random forest 

ROC curve, receiver operating characteristic curve 

ROI, region of interest 

ROSE, random over sampling examples 

SE, standard error 

SMFD, skeletal muscle function deficit 

SMI, skeletal mass index 

SMOTE, synthetic minority oversampling technique 

SMR, skeletal muscle radiodensity 

SR, super resolution 

SVM, support vector machine 

T2, thoracic vertebra 2 

t-SNE, t-distributed stochastic neighbor embedding 

UMAP, uniform manifold approximation and projection 
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WHO PS, world health organization performance status 

ZV, zero variance 
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