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ABSTRACT

The "LLVM Compiler Infrastructure Project” [3] is an extremely popular collection of tools
and technologies for building compilers. One of LLVM’s central features is a Static Single
Assignment (SSA) form code representation known as the LLVM Intermediate Represent-
ation (LLVM-IR).The LLVM-IR is a target language for a lot of compilers that want to make
use of the LLVM framework such as Clang/Clang++, Rustc, Swift and more.

A lot of static analysis tools choose to run their analyses at the LLVM-IR level as it encodes
the necessary information required to perform those analyses, while simultaneously filter-
ing out language specific high-level concepts that may confuse or add complexity to the
process. In addition, analyzing at the intermediate representation level allows them to be
compatible with a plethora of languages, as the respective LLVM-IR will be generated by
the language’s native compiler. Cclyzer-Soufflé is such a tool, it utilizes the LLVM frame-
work to parse the LLVM-IR generated from a language’s native compiler, generates facts
about the program’s source code and then executes various static analysis algorithms
defined in datalog.

In version 17 of LLVM framework a decision was made to move from a strongly typed
pointer type system to opaque pointer types.This change obscured a lot of information
about pointer types in the LLVM-IR, that many static analysis tools including Cclyzer-
Soufflé required in order to work effectively. Although pointer type information is no longer
directly available, a significant portion remains in the LLVM-IR and can be inferred though
static analysis methods. In this work we make use of static analysis to recover missing
information about pointer types from the LLVM-IR level as well as integrate this type-
inference mechanism we developed, in the Cclyzer toolchain.

SUBJECT AREA: Static Analysis
KEYWORDS: Static Analysis, Type Inference, Datalog, LLVM-IR, Compilers



NEPIAHWH

To "LLVM Compiler Infrastructure Project" [3] €ival pia e€aipeTik& dnuo@IAAg cuAAoyn p-
YOAEIWV Kal TEXVOAOYIWV YIa TNV KATAOKEU METAYAWTTIOTWY. ‘Eva a1rd Ta KEVTPIKA Xapa-
KTNEIoTIKG Tou LLVM e¢ival A avatrapdaoTacn kwdika o€ pop@r| Static Single Assignment
(SSA) yvwot) wg LLVM Intermediate Representation (LLVM-IR). H LLVM-IR aTtroTeAei
TNV YAWOOQ TTOU OTOXEUOUV VA TTAPALOUV TTOAAOI HETAYAWTTIOTEG TTOU BEAOUV va KAvouv
xprion Tou Aaiciou LLVM éttwg o1 Clang/Clang++, Rustc, Swift kai GAAol. MoAAG epyaAcia
OTATIKAG avaAuong eTTIAEyouv va ekTEAOUV TIG avaAuoelg Toug o€ eTTiTredo LLVM-IR kabwg
O€ auTNV KWOIKOTTOIOUVTAI Ol ATTAPAITATES TTANPOQYOPIES TTOU ATTAITOUVTAI VIO TNV EKTEAEDN
AUTWV TWV avaAUoEwY, VW TaUTOXPOovVa QIATpApOVTal £vvoleg uwnAou TTITTEQOU TTOU gival
€IOIKEC MIOG YAWOOAG KAl TTOU UTTOPET va ITTEPOEWOUV 1) va TTPOCOECOUV TTOAUTTAOKOTNTA
otnv diadikacia TnG avaluong. EmmmAéov, n avdAuon Tou OTO €TTTTEDO TNG EVOIAUEDNG
AVOTTAPAOTOONG TOUG ETTITPETTEI TNV CUUPBATOTATA PE Pia TTANBwpa YAwoowyv, Kabwg 1o
avtioToixo LLVM-IR ptropei va dnuioupynOei atmd eyyeveic JETAYAWTTIOTEG TNG YAWOOOG.
To Cclyzer-Soufflé eival éva T€T010 €pyaAcio, TTou XpnoiuyoTtrolei To LLVM framework yia
TNV avaAuon Tou LLVM-IR 110U dnpioupyeEital atrd Tov €yyeVH JETAYAWTTIOTH HIOG YAWO-
0agG, KATayPAQEl EVVOIEG KAl YEYOVOTA OXETIKA HE TOV TTNYAIO KWAIKA TOU TTPOYPAUUATOG
KOl OTN OUVEXEID EKTEAET BIAPOPOUG OAYOPIBPOUG OTATIKAG AVAAUCNG UAOTTOINUEVOUG OTNV
yAwooa datalog. 2tnv ékdoon 17 Tou LLVM framework A\@Bnke n atrégacn va JeTakivnoei
atro £va auoTnPO cUOTNUA TUTTWYV OEIKTWYV O€ adlagaveic TUTTOUG OEIKTWY. AUTH N aAAayr)
€ixe WG atroTEAETPA TTOANEG TTANPOPOPIEG OXETIKA PE TOUG TUTTOUG O€ikTWV 01O LLVM-IR va
aTTOKPUPOOUV, TTOANG epyaAcia oTaTiknG avadAuong, cuptreplAauBavouévou Tou Cclyzer-
Soufflé BaoifdvTouoav o€ AUtV TNV TTANPOYOPIA YIA VO AEITOUPYIOOUV ATTOTEAECUATIKA.
AV Kai o1 TTANPOPOPIES YIa TOUG TUTTOUG TwV OEIKTWYV BeV gival TTAEOV Aueca BIABETINES OTO
LLVM-IR, peydAo pépOG auTtrig TG TTANPOQYOPIaG TTapauével Euueca dlaBEaiun Kal PTTo-
pei va ouvaxBei pEow PeEBOdWY OTaTIKAG avAAUONG. Z€ AUTH TNV EPYATia XPNOIUOTIOIOUNE
OTATIKA avAAuOn yIO VO aQVAKTAOOUUE TIG TTANPOQOPIES TTOU £XOUV ATTOKPUPOET OXETIKA YE
TOUG TUTTOUG OEIKTWV aTTo TO TTiITTEd0 LLVM-IR KaBWw¢ Kal EVOWUATWYOUNE TOUG PNXAVI-
OpoUG TToU avaTtrTugaue, otnv aAucida epyalciwv Tou Cclyzer-Soufflé.

OEMATIKH NEPIOXH: Ztatikii AvaAuon

AEZEIZ KAEIAIA: ZtaTikp AvdaAuon, 2Zuvaywyn Tumwv, Datalog, LLVM-IR,
MeTayAWTTIOTEG
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Recovering LLVM-IR type information using static analysis

1. INTRODUCTION

The LLVM Project [3] is a collection of modular and reusable compiler and toolchain
technologies. It provides various tools for compiler developers, most notably, optimizer
and code generation tools. Currently there are compilers utilizing LLVM as a backend
for a number of languages such as C/C++ Rust Swift Scala and more. These compilers
transform the original source code into LLVM-IR, leaving various optimizations and code
generation to the LLVM backend.

The LLVM-IR is a Static Single Assignment [1] based instruction set language.The LLVM-
IR is a strongly typed language, meaning that every virtual register is associated with an
immutable type, which also as to be explicitly stated in every instance it is relevant. LLVM
version 17 slightly relaxed the strict type system of the IR by completely replacing pointer
types with a singular opaque pointer type. This fundamental change created compatibility
issues with a lot of projects utilizing the LLVM toolchain.

CClyzer-Soufflé is one of the affected tools. Cclyzer-Soufflé is a reimplementation of the
Cclyzer [2] static analysis tool in datalog, utilizing the Soufflé datalog engine. CClyzer-
Soufflé parses the LLVM-IR generated by a languages native compiler and extracts
information in the form of datalog relations. These facts about the target program are
used by CClyzer-Soufflé to execute various static analysis algorithms including points to
analysis and callgraph generation.

These analyses relied on information from the strong typing system in the LLVM-IR and
suffered significant losses on precision but also completeness when the change to opaque
pointer types was made. In this work we explain how we implemented a basic type
inference system that recovers some of the missing pointer type information as well as
how we hijack CClyzer-Soufflé's core analysis to propagate that information across the
program.

This thesis is organized as follows:

* In Chapter 2 we will provide background for some of the technologies involved as
well as explain the implications of opaque pointers in static analysis.

* In Chapter 3 we will describe the type inference datalog algorithm used to recover
missing pointer type information from the LLVM-IR.

* In Chapter 4 we will explain how we integrated the aforementioned type inference
with CClyzer-Soufflé's core analysis.

* In Chapter 5 we evaluate the precision and completeness of CClyzer-Soufflé's
analysis and compare the results with previous versions.

» The final Chapter 6 accounts the conclusions we reached.

A. Argyros 10



Recovering LLVM-IR type information using static analysis

2. BACKGROUND

21 LLVM-IR

The LLVM-IR is a strongly typed language. Each SSA register has a static type, that type
is immutable and the IR syntax expects it to be stated every time the register is used. For
example, a simplified syntax for the load instruction of the LLVM-IR before the change to
opaque pointers can be seen in listing 2.1.

Listing 2.1: Load Instruction Syntax
<result> = l|load <ty>, <ty>* <pointer>

The load instruction loads a value of type <ty> from memory pointed to by the <ty>* type
pointer. A usage example of the above can be seen in listing 2.2.

Listing 2.2: Load Instruction Example - Non-Opaque pointers

%reg = load i32, i32* %ptr

Where the i32 is the type for 32-bit integers and i32* is a pointer to a i32 value. In this
version of LLVM-IR, it is trivial to acquire the type of a pointers pointee value as it is
encoded in the pointers type name.

In LLVM-17 all pointer types were replaced with a generic opaque pointer type "ptr’. With
that change, the updated syntax for the load instruction is now:

Listing 2.3: Load Instruction Syntax - Opaque Pointers
<result> = load <ty>, ptr <pointer>

And the example in listing 2.2 would now become:

Listing 2.4: Load Instruction Example - Opaque pointers

%reg = load i32, ptr %ptr

In version 17 of LLVM-IR which has opaque pointers, the type of pointee values is no longer
encoded in pointer types, nor maintained by the LLVM framework. From the perspective
of static analysis tools, this change could be slightly beneficial, as the previous pointer
type system had created necessity for a lot of typecasting instructions which could bloat
up an analysis.

However, having explicit type information for every entity was extremely convenient for
tools such as Cclyzer, as they relied on that information to implement type and field sens-
itivity components of their analysis. After the switch to opaque pointer types a lot of that
information was obscured, effectively nullifying the benefits of field and type sensitivity, or
downright breaking their core analysis algorithms.

In addition, opaque pointers are problematic when trying to parse the composition of user
defined types. Pointers are very common components in user defined memory structures.
Before the change to opaque pointers, it was possible to construct the type hierarchy of
user defined types by recursively visiting each of its components. In LLVM-17 this is no
longer possible as the connection with some components might be obscured behind an
opaque pointer.

For example take a user defined type, StructA that has an integer field and a pointer to
another user defined type, StructB.

A. Argyros 1"
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Listing 2.5: Composition of struct types with non-opaque pointers

%struct.StructA = type { i32, %struct.StructB* }
%struct.StructB = type { i32 }

With non-opaque pointers the association between the two struct types is obvious. How-
ever, when using opaque pointers that connection gets obscured as can be seen in listing
2.6

Listing 2.6: Composition of struct types with opaque pointers

%struct.StructA = type { i32, ptr }
%struct.StructB = type { i32 }

Although various bits of information about pointer types are no longer directly presentin the
LLVM-IR, they can still be found indirectly by examining the usage of individual pointers.

2.2 CCLYZER-SOUFFLE AND DATALOG

Cclyzer-Soufflé [2] is a static analysis tool which utilizes the Soufflé datalog engine in order
to analyze LLVM-IR code. In datalog, algorithms are defined declaratively, with an initial
set of relations between objects and rules that monotonically "prove” more relations until
a fixpoint is reached.

An example of a Soufflé datalog algorithm can be seen in the listing below:

Listing 2.7: Example of a datalog program that calculates reachable nodes in a directed graph

/l declarations for types and rules
.type Node <: symbol

.decl node(n:Node)

.decl edge(n1:Node,n2:Node)

.decl reachable (from:Node, to :Node)

/[l rule definitions
reachable(n1,n2): -
edge(n1,n2).

reachable(n1,n2): -
reachable(n1,n3),
edge(n3,n2).

/l'input facts about our graph

node ("A”)
node ("B”)
node ("C”)
edge ("A” ,"B”)
edge("B”,”C”)

In the above program, the Soufflé engine "proves” a relation reachable("A","B") using
the first rule and the edge ("A","B") relation. With the addition of reachable("A","B") in
our knowledge base, in the next iteration the engine proves reachable("A","C") using
the second rule by substituting n1 with Node A, n2 with Node C and n3 with Node B.

A. Argyros 12



Recovering LLVM-IR type information using static analysis

Cclyzer-Soufflé focuses on points-to analysis and pointer analysis, meaning it tries to de-
termine information about a pointers set of potential values. In order to achieve sufficient
precision within realistic compute times for realistic programs, Cclyzer-Soufflé employs
auxiliary techniques such as context sensitivity and field sensitivity [5]. Field sensitivity
especially, relied on information about pointer types to produce more accurate points to
sets for compound types. With that information now no longer available in the LLVM-IR,
the performance of Cclyzer-Soufflé’s analysis suffered greatly.

A. Argyros 13
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3. TYPE INFERENCE

3.1 Inference Core Logic

As we mentioned in Chapter 2, a lot of information obscured by the introduction of opaque
pointers is still indirectly present in the LLVM-IR and can thus be inferred with the use of
static analysis.

The LLVM-IR remains a strongly typed language, by examining the type information found
in instructions that involve a pointer we can infer facts about that pointer. Consider again
the example in listing 2.4. Although the type of the pointer the load instruction loads from
is "ptr”, the strongly typed design of the LLVM-IR language requires the actual type being
loaded to be present in the instruction. Since the type of the value loaded from that pointer
is i32, that pointer can be an i32* type pointer. Similar inferences can be made using
information from instructions such as store, getelementptr and alloca.

3.2 Inference Implementation

In order to source type information from the aforementioned LLVM-IR instructions we in-
troduce a new datalog relation, pointer_has_type. This relation records all pointer types
associated with a pointer.

Listing 3.1: pointer_has_type Declaration
.decl pointer_has_type(pointer:symbol , ptr_type: PointerType)

3.2.1 Load Instructions

Listing 3.2: Load Instruction Syntax
<result> = load <ty>, <ty>* <pointer>

As mentioned previously in section 2.1 load instructions carry information about the type
of the value being loaded from a pointer [4]. We visit each instruction with the following
datalog rule and extract the type of the variable being assigned to. Finally we construct
the appropriate type for the pointer by appending a * symbol to the extracted type.

Listing 3.3: pointer_has_type definition for load instructions

pointer_has_type(pointer , ptr_type) :-

/l'indentify load instruction

load_instruction(instr),

load_instruction_address(instr ,pointer),

instruction_assigns_to (instr ,var),

[l build type for pointer

variable_has_type(var,var_type),

ptr_type = cat(var_type ,”*").

Inversely, for pointers that we have made inferences for from other instructions, we can
make inferences about the type of the value being loaded.

A. Argyros 14
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Listing 3.4: pointer_has_type definition for load instructions
pointer_has_type(var , as(var_type,b PointerType)) :-
/l'indentify load instruction
load_instruction(instr),
load_instruction_address(instr ,pointer),
instruction_assigns_to (instr ,var),
[l build type for var
pointer_has_most_specific_type(pointer, ptr_type),
pointer_type_has_component(ptr_type ,var_type).

3.2.2 Store Instructions

Store instructions load a value to a memory address pointed to by a pointer. Similarly with
load instructions, store instructions contain type information about the value being stored.

Listing 3.5: Store Instruction Syntax
store <ty> <value>, ptr <pointer>

From the above, we can infer that the type of <pointer> is <ty>*. We supplement the
pointer_has_type datalog rule with this information.

Listing 3.6: pointer_has_type definition for store instructions
pointer_has_type(pointer , ptr_type) :-

/lidentify store instructions
store_instruction(instr),
store_instruction_address (instr ,pointer),
store_instruction_value_type(instr ,var_type),
[/l build type for pointer
ptr_type = cat(var_type ,”*”).

In addition, for pointers we have already made inferences for its type, we attempt to make
inferences for the type of the value being stored.

Listing 3.7: pointer_has_type definition for store instructions
pointer_has_most_specific_type(variable ,var_type): -
/l'identify store instructions
store_instruction(instr),
store_instruction_address (instr ,pointer),
store_instruction_value (instr ,variable),
pointer_has_most_specific_type(pointer ,pointer_type),
/Il get type for variable
pointer_type_has_component(pointer_type ,var_type).

3.2.3 GetElementPtr Instructions
The getelementptr instruction performs address calculations, given a memory address
pointed to by a pointer the type of the value stored in that address and various offsets.

Listing 3.8: Getelementptr Instruction Syntax
<result> = getelementptr <ty>, ptr <ptrval >{, <ty> <idx>}*

A. Argyros 15
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The <ty> type used as a basis for the address calculations can be used to infer the type of
the <ptrval> pointer, which is <ty>*. The datalog relation that implements this logic follows
in listing 3.9

Listing 3.9: pointer_has_type definition for getelementptr instructions

pointer_has_type(pointer , ptr_type) :-

/l'indentify GEP instructions

getelementptr_instruction(instr),

getelementptr_instruction_base (instr ,pointer),

getelementptr_instruction_base_type(instr ,base_type)

[/ build type for pointer

ptr_type = cat(base_type,”*").

3.2.4 Alloca Instructions

Alloca instructions allocate stack memory for a value of a given type, and return a pointer
to that memory.

Listing 3.10: Alloca Instruction Syntax
<result> = alloca <type>

We can infer the type of the <result> pointer to be <type>*. We supplement the
pointer_has_type relation as follows in listing 3.11

Listing 3.11: pointer_has_type definition for alloca instructions

pointer_has_type(pointer , ptr_type) :-

/l'indentify alloca instruction

alloca_instruction (instr),

alloca_instruction_type (instr ,var_type),

instruction_assigns_to (instr ,pointer),

[l build type for pointer

ptr_type = cat(var_type ,”*”).

3.3 Global Variables

In LLVM-IR all global variables are memory constructs that live in compile-time allocated
memory. As all memory constructs in LLVM, they are accessed through pointers.

Listing 3.12: Global variable declaration example

@G = external global 32

In the above listing , the SSA value @G is a pointer representing a global variable of type
i32. But since @G is a pointer, it is used in LLVM-IR instructions with the "ptr” type. We
add the type information found in global variable declarations to our pointer_has_type
relation.

Listing 3.13: pointer_has_type definition for global variables

pointer_has_type(pointer , ptr_type) :-
global _variable (pointer),

A. Argyros 16
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global_variable_value_type(pointer ,value_type),
global _variable_has_type(pointer, ptr_type).

3.4 Type Hierarchy

Because the LLVM-IR is strongly typed, each pointer has a unique type. However, during
type inference multiple types for a given pointer may be inferred. A simple example of this
is demonstrated with a double pointer in listing 3.14.

Listing 3.14: Example of pointer with multiple inferred types

%1 = alloca ptr, align 8
%2 = load ptr, ptr %1
%3 = load ptr, ptr %2
%4 = load 32, ptr %3

From the last instruction we infer the type of the %3 register to be i32*, and from the second
to last instruction we also infer the type of %3 to be ptr*. Although both of those two types
are semantically correct, the i32* type is much more specific and provides us with the
most information. Since our goal is to provide accurate types for our static analysis tool,
we need to implement a type hierarchy system that will rank our inferred types based
on how much information they provide. We implement this system using three datalog
relations.

The more_specific_type relation expresses that a type is more "specific” than another
type. The more information about the type of the pointee value a pointer type holds, the
more specific it is. We define pointer "specificity” using the following 2 rules:

1. The generic "ptr” pointer type is the least specific pointer type.

2. A pointer "A” type is more specific than a pointer type "B” if A's component type is
more specific than B’s component type. A pointer’'s component type is the type of
its pointee value.

Listing 3.15: Datalog implementation of the more_specific_type relation

.decl more_specific_type(st:Type, t:Type)

more_specific_type(st, "ptr”) :-

type(st),
st I= "ptr”.

more_specific_type(st, t) :-
pointer_type _has_component_type(st, st _ele),
pointer_type _has_component _type(t, t _ele),
more_specific_type(st_ele, t_ele).

The pointer_has more_specific_type relation is a per-pointer  ver-

sion of the more_specific_type relation, and finally pointer_has most_specific_type
is used to select the most specific pointer type we could infer for a given pointer.

A. Argyros 17
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Listing 3.16: Datalog implementation of the pointer_has_more_specific_type and
pointer_has_most_specific_type relations
.decl pointer_has_more_specific_type(pointer:Variable, st:Type,
t:Type)

pointer_has_more_specific_type(ptr, st, t) :-
pointer_has_type(ptr, t),
pointer_has_type(ptr, st),
more_specific_type(st, t).

.decl pointer_has_most_specific_type(pointer:Variable, ty:Type)

pointer_has_most_specific_type(ptr, st) :-
pointer_has_type(ptr, st),
I'pointer_has_more_specific_type(ptr, st, ).

Due to the nature of the SSA form and the limited scope of the inference algorithm thus far,
the pointer_has_most_specific_type set will only contain a single type for each pointer.
Realistically however, this is not always the case as pointers can be used to reference
objects of different types. For example a C void pointer can be used as a reference to
arbitrary memory. In order to make complicated inferences like that we need our analysis
to consider the global scope of the program.

A. Argyros 18
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4. INTEGRATION WITH CCLYZER

4.1 Basic integration with variable_has_type

The first step to integrating our inference mechanism with Cclyzer-Soufflé is to
export the results back into its relations.  More specifically the results of our
pointer_has_most_specific_type are added into Cclyzer-Soufflé’s variable_has_type
relation.

Listing 4.1: Integration of pointer_has_most_specific_type

variable _has_type(as(pointer, Variable),type):-
pointer _has_most_specific_type(pointer , type).

4.2 Integration with Cclyzer-Soufflé’s interprocedural analysis

4.2.1 The need for interprocedural flow analysis

This process we have described thus far is adequate to reliably infer types for pointers
that are directly referenced in the instructions we source the type information from, as
well as account for some intraprocedural data flow. However, due to the nature of the
SSA representation and the general complexity of realistic programs, more sophisticated
methods are required to track the flow of type information through the program. In the
following example we demonstrate the need for a global value flow analysis.

The @foo function takes an integer pointer as argument and does something with it. The
@main function allocates stack memory for an integer value and an integer pointer and
calls @foo.

define 132 @foo(ptr %0){
%2 = alloca ptr, align 8
store ptr %0, ptr %2

}

define i32 @main(){

%1 = alloca 132
%2 = alloca i32
%3 = alloca ptr

store i32 0, ptr %1
store ptr %2, ptr %3
%4 = load ptr, ptr %3
%5 = call i32 @foo(ptr %4)
ret i32 %5
}

Our inference algorithm would be able to infer that the %4 register in @main is an i32*
type pointer, but would not be able to correlate that type with the type of the %0 argument
register in @foo. Tracking the data flow of our program would allow us to associate the in-
ferred type of the function arguments with the function call operands as well as propagate
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our results across the program. Dataflow and interprocedural analyses are already imple-
mented in our tool, Cclyzer-Soufflé. In order to receive the benefits of those analyses, we
integrate our inference mechanism by allowing them to draw information from it.

4.2.2 Type indication mechanism

Before the change to opaque pointers, Cclyzer-Soufflé was able to reliably know the type
of every stack or global allocation object by reading that information off of the respective
alloca instruction or global variable declaration. However, unlike stack and global alloca-
tions, heap allocations require the invocation of allocator functions (e.g., malloc) found in
libraries instead of language built-in heap allocation mechanisms. In addition, as most al-
locator functions only require the allocation size in bytes as an argument and are agnostic
towards the specific type of the data being allocated. As a result it is not possible to infer
the type of the allocation just by looking at the invocation of the allocator.

In order to overcome this problem Cclyzer-Soufflé uses the concept of type indications
to infer the type of those heap allocations. In Cclyzer’s logic, type indications are bitcast
instructions following a heap allocation that typecast the pointer returned by the allocator
function to the appropriate type. Cclyzer-Soufflé records the information found in those
bitcast instructions and constructs new allocation objects with the type information and
integrates them with the core analysis.

Listing 4.2: LLVM-IR example of bitcast instructions used as type indications

define i32 @main(){
%1 = alloca i32
%2 = alloca i32*
store i32 0, i32* %1
%3 = call noalias i8* @malloc(i64 4)
%4 = bitcast i8* %3 to i32*
store i32* %4, i32** %2
%5 = load i32*, i32** %2
%6 = load i32, i32* %5
ret i32 %6

}

The pointer returned from the malloc call in the above example is immediately casted
into the intended type using a bitcast instruction. Cclyzer-Soufflé creates an additional
allocation object for that allocation with the appropriate type.

In the opaque version of LLVM, not only can we not reliably know the exact type of some
stack allocation objects, but the type indication system for heap allocation also breaks
apart as the bitcast instructions it relied upon are now redundant and omitted by the com-
piler. To remedy these problems we redesign Cclyzer-Soufflé’s type indication system to
additionally draw information from the pointer_has_type relation of our type inference
mechanism. This change supplies Cclyzer-Soufflé with information about both stack and
heap allocations and allows it to propagate that information across the entire program
through it's points-to-analysis.

Listing 4.3: LLVM-IR example in version 17

define 132 @main() {
%1 = alloca i32
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%2 = alloca ptr
store i32 0, ptr %1
%3 = call ptr @malloc(i64 4)
store ptr %3, ptr %2
%4 = load ptr, ptr %2
%5 = load i32, ptr %4
ret i32 %5
}

As it can be seen in the above example, in version 17 of the LLVM-IR the bitcast instruc-
tions are omitted due to the existence of the opaque pointer type. In order to recover the
type of the allocation object, we must rely on the results of the pointer_has_type rela-
tion from our analysis. For the above code snippet we are able to infer the type of the %3
register with the following steps:

* %5 = load i32, ptr %4 — %4 is of type i32*

0%4

load ptr, ptr %2 — %2 is of type i32**

* store ptr %3, ptr %2 — %3is of type i32*

With the appropriate pointer type inferred by our analysis we implement new
type_indication rules as follows.

Listing 4.4: Type indication rules that draw information from the inference mechanism
type_indication(?type, ?aCtx, ?alloc) :-

untyped_allocation(?alloc),

var_points_to(?aCtx, ?alloc, _, ?pointer_var),

pointer_has _type(?pointer_var ,?ptrType),

pointer_type_has_component(?ptrType,?type).

type_indication(?PointerAllocType, ?aCtx, ?PointerAlloc) :-
untyped_allocation(? PointerAlloc),
ptr_points_to(?PointeeCtx,? PointeeAlloc, ?aCtx, ?PointerAlloc),
type_indication(?PointeeAllocType, ?PointeeCtx, ?PointeeAlloc),
pointer_type_has_component(?PointerAllocType ,? PointeeAllocType).

The first rule serves to associate an allocation object with the pointers that point to it. A
pointer that has been observed to have a type T* and points to an allocation object acts
as a indication that the allocation object is of type T.

The second rule covers the case where an allocation object A acts as a pointer to another
allocation object B. If there is a type indication that object A is of type T* and object A
points to object B, then this acts as a type indication that object B is of type T.

With the inference mechanism’s information integrated into Cclyzer-Soufflé’s type indic-
ation mechanism, the tool has recovered the majority of the information lost due to the
opaque pointers change.
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5. EVALUATION

We evaluate the performance of our analysis on programs from GNU’s coreutils package
and wherever it is applicable, we compare the results of Cclyzer-Soufflé plus the inference
mechanism, with the results of previous versions of Cclyzer-Soufflé.

The first metric we employ is the percentage of pointer variables that we could infer a
specific type for. Since the purpose of our analysis is to recover the pointer types that
were obscured by the switch to opaque pointers, this metric serves as an indication of
how much information we were able to actually recover.

Table 5.1: Pointer variables with specific inferred types.

| Program Name | N of pointers with recovered type | N of total pointers | % Recovered |

rm.bc 2554 3107 82.2%
join.bc 1179 1527 77.2%
kill.bc 515 714 71.1%
cat.bc 617 818 75.4%

Our analysis was able to recover a considerable amount of the obscured information, up
to 82% in some cases, and around 76% on average across the GNU Coreutils codeset.

We employ a similar approach with allocations, measuring the percentage of allocation
objects with specific inferred types. For this metric, we compare the results of Cclyzer-
Soufflé’s + type inference mechanism against the LLVM-17 version of Cclyzer-Soufflé, but
without the inference mechanism.

Table 5.2: Allocation objects with specific inferred types.

] \ LLVM-17 + inference \ LLVM-17 no inference \

rm.bc | 86.5% 69.4%
join.bc | 89.5% 71.8%
kill.bc | 88.8% 76%

cat.bc | 87.6% 74.4%

Another metric we employ in order to evaluate our analysis is the percentage of pointer
variables that are not involved in any var_points_to relation. Meaning that our analysis
could not deduce anything about the objects those variables may point to.

We compare the results against:

1. The LLVM-14 version of Cclyzer-Soufflé, before the switch to opaque pointers.

2. The LLVM-17 version of Cclyzer-Soufflé, but without the inference mechanism.

Table 5.3: Percentage of pointer variables without a points-to set.

] \ LLVM-17 + inference \ LLVM-14 \ LLVM-17 no inference \

rm.bc | 16.8%(522/3107) | 13.2%(384 / 2907) | 55.8%(1625 / 2907)
join.bc | 23.3%(356 / 1527) | 16.2%(224 / 1378) | 47.8%(652 /1362)
kil.lbc | 32.3%(231/714) 29.0%(174 /600) | 44.6%(268 / 600)
catbc | 33.4%(274 / 818) 28.7%(201/699) | 45.3%(317 / 699)
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Comparing the results of the LLVM-17 + inference and LLVM-17 without inference we
observe significant decrease in the percentage of pointers without points-to sets, which
signifies that the analysis was improved in terms of completeness.

Since in the LLVM-14 version all pointer type information is directly available, our inference
mechanism cannot outperform it. We use the results of version LLVM-14 as the optimum
our inference could reach. By comparing the results of LLVM-17 + inference with LLVM-14
we observe on average 3% less pointers with a points-to set. This discrepancy indicates
that there is information present in the LLVM-14 version that could not be recovered by
the inference mechanism. We believe that the main reason for this discrepancy is the fact
that our inference mechanism does not reconstruct compound types that include pointers
in their fields. An example of such case can be seen in listing 2.5 and 2.6. It is possible
that a similar mechanism to our type inference system could be used to reconstruct those
types, but it is left for future work.
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6. CONCLUSIONS

In this thesis we introduced some core concepts surrounding the LLVM Project, specific-
ally the LLVM-IR and how it serves as an excellent target for static analysis tools to run
their analyses on. We then explained the changes that came with the introduction of
opaque pointers in LLVM version 17 as well how those changes affected the performance
of static analysis tools such as Cclyzer-Soufflé. The core purpose of this thesis was to
showcase a type inference mechanism that could recover the obscured information in a
program through the use of static analysis. We evaluated the type inference mechanism
we implemented and we found that it was capable of recovering up to 88% of the obscured
information on various test programs from the GNU Coreutils package.
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ABBREVIATIONS - ACRONYMS

SSA Single Static Assignment
LLVM Low Level Virtual Machine
LLVM-17 LLVM version 17
LLVM-14 LLVM version 14
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