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Abstract

Weyl geometry is a generalization of Riemannian geometry such that the geometric de-

scription of our space is covariant not just under general coordinate transformations but

also local scale transformations. In this context we apply the method of Holographic

Renormalization in asymptotically locally Anti-de Sitter (AlAdS) manifolds. Our moti-

vation is that Weyl geometry, by construction, is ideal for the study of AlAdS manifolds

and Conformal Field Theories (CFTs) which are connected through AdS/CFT corre-

spondence. Additionally, we investigate the impact of Weyl geometry on cosmology. This

exploration is conducted in such a manner that our findings do not contradict Standard

Cosmology but rather present the latter as a specific gauge of Weyl cosmology.
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Chapter 1

Introduction

Our journey commences in 1918 with H. Weyl’s pioneering introduction of an additional

symmetry into Riemannian geometry, aiming to forge a comprehensive geometric model

unifying electromagnetism with gravity. This innovation involved the variation of both

vector orientation and length under parallel transport, diverging from the established

norm of solely altering orientation in Riemannian geometry. These resultant structures,

termed Weyl geometries, represent a coherent and comprehensive extension of Rieman-

nian geometries [1].

While this novel geometry fell short of unifying electromagnetism with gravity, it nonethe-

less paved the way for a profound generalization of Riemannian geometry and, conse-

quently, General Relativity as well. At the heart of General Relativity lies the principle

of invariance under general coordinate transformations. By examining this theory within

the framework of Weyl geometry, we arrive at a theory that exhibits invariance under

local scale transformations as well.

In this thesis, we delve into the inherent suitability of Weyl geometry for investigating

asymptotically locally Anti-de Sitter (AlAdS) manifolds [2–4]. These manifolds serve

as the foundational building blocks of the AdS/CFT correspondence [5], which stands

as one of the most promising yet unproven theories bridging gravitational theories with

quantum field theories. While our focus does not center on exploring this correspon-

dence within the confines of this thesis, in essence, it posits a profound connection: the

geometric properties within a (d+ 1)-dimensional AdS manifold can be correlated with

quantities of a d-dimensional conformal field theory (CFT) residing on its boundary.

The precise equivalence between the two formulations implies that, in principle, com-

prehensive information on one facet of the duality can be attained through computations

carried out on the opposite facet. This is very useful since computations in quantum

field theories can be quite difficult.

1



Chapter 1. Introduction 2

We begin, in Chapter 2 by examining the method of Holographic Renormalization in the

usual Riemannian geometry [6–13]. This is a method of solving difficult differencial equa-

tions, such as Einstein equations, asymptotically. To do that we start from the AlAdS

metric prescribed by Fefferman and Graham in [14], and construct Einstein equations

of the (d+ 1)-dimensional AlAdS manifold. Then we asymptotically expand the metric

tensor of the (d + 1)-dimensional space that appears in these equations. Solving them

order by order with respect to this expansion yields very interesting results. Notably,

the leading term of this expansion—viewed as the induced metric on the (conformal)

boundary of the (d+ 1)-dimensional space—remains entirely unconstrained by the Ein-

stein equations. However, given this term, we can determine all the other coefficients of

the expansion up to some order. In the case where the number of our dimensions d is

even, this procedure breaks when the order becomes equal to the number of dimensions.

To overcome this obstacle we introduce a logarithm term in this order of the expansion.

Solving Einstein equations for this order enables us to determine the coefficient of the

logarithmic term, called the obstruction tensor. This method can also be applied in the

presence of matter. For this purpose we consider the action of a free scalar field and

solve asymptotically for this field the Klein-Gordon equation. Where we see that the

results are very similar to those of the pure gravity situation.

In Chapter 3 we translate the method of Holographic Renormalization in a Weyl geom-

etry background [15–20]. At first we examine why it is quite natural to consider Weyl

transformations on the AlAdS metric. Then we redefine our connection, and thus our

covariant derivative, in order for it to be covariant under those transformations. This

means that we are not working with the usual Levi-Civita (LC) connection as we do in

Riemannian geoemtry, but with a new one which induces different geometric quantities.

We find the curvature of our space imposed by this new connection, called Weyl connec-

tion, and then construct Einstein equations. What we gain from this procedure is that

now these equations are not just covariant under general coordinate transformations, but

also under Weyl transformations (i.e. local scale covariant). This comes from the fact

that our new curvature tensors appearing in the left hand side of Einstein equations, are

now Weyl covariant. Furthermore we solve these new (Weyl-) Einstein equations again

asymptotically using the method of Holographic Renormalization. The main difference

from the Riemannian case is that we asymptotically expand not just the induced metric

on the radial slice, but also the Weyl gauge field we introduced in the construction of the

Weyl connection. The result is that now the coefficients of the expansion of the metric

will not be determined solely from the leading term (i.e. the induced metric) but will

also contain terms of the expansion of the Weyl gauge field.

But does this exploration of Weyl geometry merely constitute a mathematical indul-

gence, or does it hold relevance for our observable universe? Motivated by this inquiry,
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Chapter 4 embarks on an investigation starting from the metric of our Universe, namely

the Friedmann–Robertson–Walker (FRW) metric, analyzed within the framework of

Weyl geometry. The inherent homogeneity and isotropy of our Universe simplify our

analysis, as they impose constraints on the form of the Weyl parameter. We derive the

Friedmann equations, now incorporating this Weyl term. Notably, the symmetry of the

Einstein tensor remains intact.

Furthermore, we derive the geodesic equations induced by Weyl connection. Given our

focus on Cosmology, it would be remiss not to address the concept of Inflation. Recog-

nized as the most elegant and effective solution to the horizon problem to date, we are

keenly interested in the conditions facilitating this process within our Weyl framework.

While analogous work has been conducted from a modified gravity perspective [21, 22],

our approach does not entertain modifications to the Einstein-Hilbert action. Conse-

quently, the sole modification to the corresponding Einstein equations arises from the

Weyl connection.





Chapter 2

AlAdS manifolds

2.1 Asymptotically locally Anti-de Sitter manifolds

Anti-de Sitter (AdS) spacetime is a solution to Einstein’s field equations for an empty

universe with a negative cosmological constant. It was first introduced by the Dutch

mathematician and physicist Willem de Sitter in 1917 and it describes a maximally

symmetric Lorentzian manifold with constant negative scalar curvature.

From a geometric point of view, in the absence of matter or energy, the cosmological

constant models the intrinsic curvature of spacetime. And from a physics perspective

this corresponds to the vacuum having energy density and pressure.

We can embed (d + 1)-dimensional AdS space in (d + 2)-dimensional Minkowski space

having two time directions and d spacial directions

ds2 = −(dx0)2 − (dx1)2 +
d∑

i=1

(dxi)2 (2.1)

as the hyperboloid

(x0)2 + (x1)2 −
d∑

i=1

(xi)2 = L2 (2.2)

where L is a positive constant, called AdS radius.

Introducing the parametrization

5



Chapter 2. AlAdS manifolds 6

x0 = L sin
t

L
cosh

r

L

x1 = L cos
t

L
cosh

r

L

x⃗ = L sinh
r

L
n̂

(2.3)

where n is the unit normal in d-dimensions and t ∈ [0, 2πL], we get the line element

ds2 = L2
(
− cosh2

r

L
dt2 + dr2 + sinh2

r

L
dΩ2

d−1

)
(2.4)

This is mathematically correct but if we look closely we see that periodicity of time leads

to (physically) not desirable results like closed time-like curves. To avoid situations like

this, we extend the time coordinate so t ∈ R, which is the so-called universal covering.

As AdS is a maximally symmetric solution of Einstein’s equations, it has the following

properties for the Riemann tensor, the Ricci tensor and the Ricci scalar respectively

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ), Rµν = − d

L2
gµν , R = −d(d+ 1)

L2
(2.5)

which can be derived by brute-force computation starting from the metric 2.4. And thus

AdS solves the Einstein equations

Rµν −
1

2
Rgµν = −Λgµν (2.6)

with cosmological constant Λ = −d(d−1)
2L2 .

So one can interpret AdS space as the analog of Minkowski flat space in the case of a

negative cosmological constant, or in other words a generalization of the flat space to

Λ < 0.

AdS is best known for its role in the AdS/CFT correspondence that was first proposed by

Juan Maldacena in late 1997 [13, 23–26] which suggests an equivalence between gravity

in AdS spacetime and a conformal field theory (CFT) living on the boundary of that

spacetime. And how computing geometric quantities like tensors in AdS can result in

expectation values of operators in the CFT, something that is quite difficult to do in

general. For example equations of motion in the bulk correspond to the beta functions

in QFT.

Now we are ready to discuss asymptotically locally AdS (AlAdS) manifolds which are

a type of spacetime that is asymptotically similar to AdS space near infinity but may
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have local deviations from the exact AdS geometry in some regions. It is a generalization

of asymptotically AdS spaces that incorporates localized effects or sources within the

spacetime.

We define a non compact (pseudo) Riemannian manifold to be an asymptotically locally

AdS (AlAdS) manifold iff it is a conformally compact Einstein manifold [6].

Let M be a (d+1)-dimensional closed manifold (often called the bulk) with boundary

∂M and (pseudo) Riemannian metric g on Mo (the interior of M). Mo is said to be

conformally compact Einstein manifold iff there exists a smooth non-negative function

ρ on M such that

• ρ(∂M) = 0

• dρ(∂M) ̸= 0

• g̃ = ρ2g extends smoothly to a non-degenerate metric on M (i.e. g has a second

order pole at the boundary)

If it exists, the defining function ρ is not unique and hence the conformal compactification

is not unique.

Let’s see an example

Performing the change of variables sinh r
L = tan θ

L in 2.4 we get the metric

ds2 =
L2

cos2 θ

(
−dt2 + dθ2 + sin2 θdΩ2

d−1

)
(2.7)

which is a certain form of the AdS metric in global coordinates with Lorentzian signature,

dΩ2
d−1 being the metric of the (d-1)-sphere and 0 ≤ θ < π/2. Apparently it has a second

order pole at θ = π/2, this is where the boundary is located. A nice to visualize it

is imagine sending a light ray from the center of the ”cylinder” parametrized by 2.7

towards the boundary θ = π/2. From the metric 2.7 we see that it reaches the boundary

in finite proper time. So we can indeed interpret it as a boundary. And to be more

precise as a conformal boundary, in the sence that the metric diverges for θ → π/2 but

if we guess a defining function like in the previous definition then the remaining metric

has indeed a boundary there. Now we will guess a defining function ρ, as we discussed

above, that could erase this problem of divergence.

The obvious choice is to take ρ = cos θ and it is also straightforward to see that this

choice satisfies all three conditions of the above definition. So this ρ(θ) is indeed our
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defining function. In particular, the metric g̃ ≡ ρ2

L2 g where g is the metric 2.7 is that

of the flat cylinder R × Sd and it is called Einstein Static Universe (ESU). We call the

metric

lim
ρ→0

ρ2g (2.8)

as boundary metric. But is this defining function unique?

The answer is no. For instance one could also take

ρ′ = ew cos θ (2.9)

where w is an arbitrary smooth function on M with no zeros or poles on the boundary.

And we see it also does the job. The difference now is that the induced metric on ∂M

is just conformal to R × Sd. The choice of a particular rescaling factor 2.9 defines a

representative of the corresponding conformal class of boundary metrics. Since now the

limit gives

lim
ρ→0

ρ′
2
g = e2w lim

ρ→0
ρ2g (2.10)

This representative is often called just boundary metric for simplicity but what we

mean by this is that a particular choice has been made, sometimes this is called choice of

conformal frame. Therefore the AdS metric yields a conformal structure at the boundary,

i.e. a metric up to conformal transformations (conformal class of metrics).

A straightforward computation [6] shows that near the boundary we have

Rµνρσ = |dρ|2g̃(gµσgνρ − gµρgνσ) +O(ρ−3) (2.11)

where we defined the quantity1

|dρ|2g̃≡ g̃µν∂µρ∂νρ (2.12)

Combining this with Einstein equations 2.6 we get that on the boundary holds

|dρ|2g̃=
1

L2
(2.13)

1This quantity extends smoothly on ∂M .
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and so the Riemann tensor of an AlAdS space on the boundary looks like that of an AdS

space. It is a known theorem that a choice for defining function like 2.13 can always be

made [27].

In order to see that AlAdS manifolds indeed approach AdS we should first choose a

suitable set of coordinates and then try a power-series solution to the Einstein equa-

tions, by the so-called Fefferman-Graham expansion [14]. We begin by considering the

Fefferman-Graham coordinates on a finite neighborhood U of ∂M . What we mean by it

is that we choose the arbitrary function w in 2.9 so that the defining function r (which

is not unique) obeys 2.13 on U , where of course g̃ = r2g. This choice can always be

made according to a known theorem [28].

Now we consider the defining function to be a coordinate near the boundary and choose

the other d-coordinates xi to be orthogonal (as for g̃) to r in U . So, according to [14]

the metric 2.7 takes the form

ds2 = gµνdx
µdxν =

1

r2
(dr2 + γijdx

idxj) (2.14)

where γij = γij(x, r).

In these coordinates the conformal boundary is located at r = 0.

From now on we set L = 1 for simplicity and if someone wants to recover it at some

point it is easy by just applying simple dimensional analysis. So we can interpret this

space as the vacuum solution for that dynamical system where the Riemann and Ricci

tensors are given respectively by:

Rµνρσ = (gµσgνρ − gµρgνσ), Rµν = −dgµν (2.15)

Its Weyl tensor vanishes (therefore is conformally flat) and thus we can see that AdS

is the analogous of Minkowski space if we choose not Λ = 0 (as in Minkowski) but

Λ = −d(d− 1)/2.

What we want now is expand asymptotically our induced metric r−2γ and if we can

tell something interesting about the coefficients and the terms of the expansion. Such

asymptotic analysis was done in detail in [14] for pure gravity by Fefferman and Graham.

But their analysis extends straightforwardly to include matter with soft enough behavior

at infinity (see [7, 8, 29, 30]).

By construction, γij can be extended to ∂M (it has a smooth limit at r → 0) and thus

we can expand as follows
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γij(x, r) = γ
(0)
ij (x) + rγ

(1)
ij (x) + r2γ

(2)
ij (x) + ... (2.16)

where the upper-index indicates the number of derivatives involved in that term.

Since Einstein equations are second order PDEs, if we plug in them the expansion 2.16

we will end up with algebraic equations for γ(n). By brute-force computation one can

show that in pure gravity situation all coefficients multiplying odd poewrs of r vanish

up to order of d. In the case where d is odd these equations admit solutions for all γ(n).

After we specify γ(0) we can uniquely determine γ(n) for all n < d. When d is even

though, the situation is a bit more complicated [19]. Without further ado let’s dive into

this procedure.

2.2 Holographic Renormalization

We set ρ = r2 in 2.7 for simplicity in our calculations and so we get 2 (in so-called

Gaussian coordinates)

ds2 = gµνdx
µdxν =

1

4ρ2
dρ2 +

1

ρ
γijdx

idxj (2.17)

Our goal is to derive the Einstein equations that stem from this metric and subsequently

solve them asymptotically. The significance lies in the transformation of potentially

complex differential equations into more manageable algebraic ones. To initiate this

process, we calculate the Christoffel symbols as defined by

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) (2.18)

Straightforward computation shows that the non-vanishing Christoffel symbols are3

Γρ
ρρ = −ρ−1

Γρ
ij = 2γij − 2ργ′ij

Γi
ρj =

1

2
γikγ′kj −

1

2ρ
δij

Γi
jk = Γi

jk[γ]

(2.19)

where
2Note that Greek indices go from 1 to d+ 1 and latin ones from 1 to d.
3We denoted by prime the derivative with respect to ρ, i.e. γ′

ij = ∂ργij
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Γi
jk[γ] =

1

2
γil (∂jγkl + ∂kγjl − ∂lγjk) (2.20)

What we want to do now is express the geometric quantities of the big (d+1)-dimensional

metric regarding the corresponding ones for small d-dimensional metric.

We define the Riemann tensor

Rλ
µσν ≡ ∂σΓ

λ
µν − ∂νΓ

λ
µσ + Γκ

µνΓ
λ
κσ − Γκ

µσΓ
λ
κν (2.21)

In order to simplify things we use the more compact notation ∂[µΓ
κ
ν]λ ≡ ∂µΓ

κ
νλ − ∂νΓ

κ
µλ,

so the Riemann tensor can be written as Rλ
µσν = ∂[σΓ

λ
ν]µ + Γκ

µ[νΓ
λ
σ]κ.

Therefore the Ricci tensor will be

Rµν ≡ ∂[λΓ
λ
ν]µ + Γκ

µ[νΓ
λ
λ]κ (2.22)

Calculating its ij-component one finds

Rij = Rij [γ] + Γρ
ij
′
+ Γρ

ijΓ
ρ
ρρ + Γρ

ijΓ
l
ρl − Γρ

ilΓ
l
ρj − Γk

iρΓ
ρ
kj (2.23)

where Rij [γ] is the Ricci tensor of the small metric defined by4

Rij [γ] ≡ ∂[kΓ
k
j]i + Γl

i[jΓ
k
k]l (2.24)

Combining this with the ij-component of the Einstein equations 2.6 yields

Rij [γ]− 2ργ′′ij + 2ργ′ikγ
klγ′lj − ργklγ′klγ

′
ij + (d− 2)γ′ij + γijγ

klγ′kl = 0 (2.25)

Similarly the iρ-component gives 5

∇i

(
γklγ′kl

)
−∇kγ′ki = 0 (2.26)

And finally the ρρ-component

4In general it is not necessarily true that Γi
jk[g] = Γi

jk[γ]. This is a nice property of this perticular
metric. In this definition we mean the latter, but since both are the same we use the same notation Γi

jk.
5The covariant derivative ∇i is constructed from the metric γ.
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γklγ′′kl −
1

2
γijγ′jkγ

klγ′li = 0 (2.27)

So, in total, the equations of motion read [8, 18]

Rij [γ]− 2ργ′′ij + 2ργ′ikγ
klγ′lj − ργklγ′klγ

′
ij + (d− 2)γ′ij + γijγ

klγ′kl = 0

∇i

(
γklγ′kl

)
−∇kγ′ki = 0

γklγ′′kl −
1

2
γijγ′jkγ

klγ′li = 0

(2.28)

To demonstrate how Holographic Renormalization works we expand γij as

γij(x, ρ) = γ
(0)
ij (x) + ργ

(2)
ij (x) + ...+ ρd/2γ

(d)
ij (x) + ρd/2h

(d)
ij (x) ln ρ+O(ρ

d
2
+1) (2.29)

where h(d) is called the obstruction tensor and it appears only when d is even. This

follows from solving Einstein equations order by order in ρ. Let us examine this process.

First we expand the inverse metric

γij(x, ρ) = γij(0)(x)− ρ
(
γ−1
(0)(x)γ

(2)(x)γ−1
(0)(x)

)ij
+ ... (2.30)

and then insert the two expansions into the first equation of 2.28, which gives

Rij − 2ρ
(
γ
(0)
ij + ργ

(2)
ij + ...

)′′
+ 2ρ

(
γ
(0)
ik + ργ

(2)
ik + ...

)′(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(0)
lj + ργ

(2)
lj + ...

)′
− ρ

(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(0)
kl + ργ

(2)
kl + ...

)′ (
γ
(0)
ij + ργ

(2)
ij + ...

)′
+ (d− 2)

(
γ
(0)
ij + ργ

(2)
ij + ...

)′
+
(
γ
(0)
ij + ργ

(2)
ij + ...

)(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(0)
kl + ργ

(2)
kl + ...

)′
= 0

(2.31)

Performing the differentiation with respect to ρ yields
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Rij − 2ρ
(
2γ(4) + 6ργ(6) + ...

)
+ 2ρ

(
γ
(2)
ik + 2ργ

(4)
ik + ...

)′(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(2)
lj + 2ργ

(4)
lj + ...

)
− ρ

(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(0)
kl + ργ

(2)
kl + ...

)′ (
γ
(0)
ij + ργ

(2)
ij + ...

)′
+ (d− 2)

(
γ
(2)
ij + 2ργ

(4)
ij + ...

)
+
(
γ
(0)
ij + ργ

(2)
ij + ...

)(
γkl(0) − ρ

(
γ−1
(0)γ

(2)γ−1
(0)

)kl
+ ...

)(
γ
(2)
kl + 2ργ

(4)
kl + ...

)
= 0

(2.32)

At the order of ρ0 we get

Rij [γ
(0)] + (d− 2)γ

(2)
ij + γ

(2)
kl γ

(0)klγ
(0)
ij = 0 (2.33)

Where we defined

Γi(0)
jk ≡ 1

2
γim(0)

(
∂jγ

(0)
km + ∂kγ

(0)
jm − ∂mγ

(0)
jk

)
(2.34)

and the Ricci tensor of the induced metric

Rij [γ
(0)] ≡ ∂mΓm(0)

ij − ∂jΓ
m(0)

im + Γm(0)
ij Γn(0)

mn − Γm(0)
in Γn(0)

mj (2.35)

So, if we take the trace of 2.33 we find the Ricci scalar of the induced metric

R[γ(0)] = −2(d− 1)γ
(2)
ij γ

(0)ij (2.36)

And thus

γ
(2)
ij = − 1

d− 2

(
Rij [γ

(0)]− R[γ(0)]

2(d− 1)
γ
(0)
ij

)
(2.37)

The right hand side, without the minus sign, is also known as the Schouten tensor.
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Similarly from the ρ1-order we get the γ
(4)
ij coefficient in terms only of γ

(0)
ij , from the

ρ2-order the γ
(6)
ij and so on. If we continue this process we can determine all coefficients6

γ
(n)
ij in the expansion of the metric up to the order of n < d and the obstruction tensor

h
(d)
ij in terms of γ

(0)
ij using the first equation in 2.28. The first coefficient γ

(0)
ij ends up

to be completely arbitrary and is considered to be the induced metric on the boundary

(ρ = 0) since ρgij = γ
(0)
ij +ργ

(2)
ij + ...

ρ→0−−→ γ
(0)
ij (x) (more precisely a representative of the

conformal class of metrics). As for the term γ
(d)
ij one we can determine, again by solving

Einstein equations (in particular the last two equations in 2.28), its trace and covariant

divergence7 [8].

2.2.1 Pure gravity in 5d

To see this procedure more clearly let us suppose that d = 4. We expect to determine

γ
(0)
ij and γ

(2)
ij from the first equation of 2.28, the divergence and trace of γ

(4)
ij from the

last two equations and the obstruction tensor h
(4)
ij again from the first equation.

We already proved the expression for γ
(2)
ij in 2.37 so in our case we just have to put d = 4

in the expression. For the rest of the terms we first expand the Christoffel Symbols of

the small metric up to the order of ρ.

Γk
ij =

1

2
γkm (∂iγmj + ∂jγmi − ∂mγij)

=
1

2

(
γkm(0) − ρ(γ−1

(0)γ
(2)γ−1

(0))
km + ...

)
×
(
∂i(γ

(0)
mj + ργ

(2)
mj + ...) + ∂j(γ

(0)
mi + ργ

(2)
mi + ...)− ∂m(γ

(0)
ij + ργ

(2)
ij + ...)

)
(2.38)

So in the order of O(ρ) we get

Γ
(2)k
ij =

1

2
γkm(0)

(
∂iγ

(2)
mj + ∂jγ

(2)
mi − ∂mγ

(2)
ij

)
− 1

2
(γ−1

(0)γ
(2)γ−1

(0))
km
(
∂iγ

(0)
mj + ∂jγ

(0)
mi − ∂mγ

(0)
ij

) (2.39)

where we denoted the coefficients Γk
ij = Γ

(0)k
ij + ρΓ

(2)k
ij + ...

Furthermore

6In general the corresponding expressions for γ
(n)
ij are singular for n = d.

7In odd dimensions they turn out to be zero.
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∇(0)
i γ

(2)
mj = ∂iγ

(2)
mj − Γ

(0)n
im γ

(2)
nj − Γ

(0)n
ij γ(2)mn

∇(0)
j γ

(2)
mi = ∂jγ

(2)
mi − Γ

(0)n
jm γ

(2)
ni − Γ

(0)n
ij γ(2)mn

∇(0)
m γ

(2)
ij = ∂mγ

(2)
ij − Γ

(0)n
im γ

(2)
nj − Γ

(0)n
mj γ

(2)
in

(2.40)

So adding the first two rows and subtracking the third we get

∂iγ
(2)
mj + ∂jγ

(2)
mi − ∂mγ

(2)
ij = ∇(0)

i γ
(2)
mj +∇(0)

j γ
(2)
mi −∇(0)

m γ
(2)
ij + 2Γ

(0)n
ij γ(2)mn (2.41)

Substituting into 2.39 we get

Γ
(2)k
ij =

1

2
γkm(0)

(
∇(0)

i γ
(2)
mj +∇(0)

j γ
(2)
mi −∇(0)

m γ
(2)
ij

)
+ γkm(0) γ

(2)
mnΓ

(0)n
ij

− 1

2
(γ−1

(0)γ
(2)γ−1

(0))
km
(
∂iγ

(0)
mj + ∂jγ

(0)
mi − ∂mγ

(0)
ij

) (2.42)

where the last two terms cancel its other out and thus yields

Γ
(2)k
ij =

1

2
γkm(0)

(
∇(0)

i γ
(2)
mj +∇(0)

j γ
(2)
mi −∇(0)

m γ
(2)
ij

)
(2.43)

Now that we’ve got the expression for the Christoffel Symbols we can compute the

ρ-order of the Ricci tensor which also suppose expands as

Rij = R
(0)
ij + ρR

(2)
ij + ... (2.44)

So from its definition we get

Rij =∂mΓm
ij − ∂jΓ

m
im + Γm

ijΓ
n
mn − Γm

inΓ
n
mj ⇒

R
(2)
ij =∂mΓ

(2)m
ij − ∂jΓ

(2)m
im + Γ

(0)m
ij Γ(2)n

mn − Γ
(0)m
in Γ

(2)n
mj

+ Γ
(2)m
ij Γ(0)n

mn − Γ
(2)m
in Γ

(0)n
mj

=∇(0)
m Γ

(2)m
ij ⇒

Rij =R
(0)
ij + ρ∇(0)

m Γ
(2)m
ij + ...

(2.45)
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Now it’s time to return to the Einstein equations 2.28. In these equations we substitute

the expression we found for the Ricci tensor and for the metric tensor

γij(x, ρ) =γ
(0)
ij (x) + ργ

(2)
ij (x) + ρ2(γ

(4)
ij (x) + h

(4)
ij (x) ln ρ) + ...⇒

γ′ij(x, ρ) =γ
(2)
ij + 2ργ

(4)
ij + ρh

(4)
ij + 2ρ ln ρh

(4)
ij + ...⇒

γ′′ij(x, ρ) =2γ
(4)
ij + 3h

(4)
ij + 2h

(4)
ij ln ρ+ ...

(2.46)

Substituting into the first equation of 2.28 and taking the order O(ρ) gives

0 =∇(0)
m Γ

(2)m
ij − 2(2γ

(4)
ij + 3h

(4)
ij ) + 2γ

(2)
ik γ

kl
(0)γ

(2)
lj − γkl(0)γ

(2)
kl γ

(2)
ij

+ (d− 2)(2γ
(4)
ij + h

(4)
ij ) + γ

(0)
ij γ

kl
(0)(2γ

(4)
kl + h

(4)
kl )

− γ
(0)
ij (γ−1

(0)γ
(2)γ−1

(0))
klγ

(2)
kl + γ

(2)
ij γ

kl
(0)γ

(2)
kl

(2.47)

where, from the second term in the first row and the first term in the second row, we

can see that the coefficient of γ
(4)
ij is proportional to d− 4. But since d = 4 there is no

γ
(4)
ij in the above expression and this is why we cannot compute it as we did for γ

(2)
ij .

We see that the above equation can be written as

0 = ∇(0)
m Γ

(2)m
ij − 4h

(4)
ij + 2(γ(2)γ−1

(0)γ
(2))ij −������

Tr(γ(2))γ
(2)
ij

+ 2γ
(0)
ij Tr(γ

(4)) + γ
(0)
ij Tr(h

(4))− γ
(0)
ij Tr(γ

2
(2)) +������

Tr(γ(2))γ
(2)
ij

(2.48)

To find the trace of γ(4) we take the trace of this equation, which gives

0 =�������:0
∇(0)

m Γ
(2)m
ij γ

(0)
ij + 8Tr(γ(4))− 2Tr(γ2(2)) ⇒ Tr(γ(4)) =

1

4
Tr(γ2(2)) (2.49)

Notice that we couldn’t find the trace of the obstruction tensor from the above equation

since it vanished from the expression. In order to find we must take the ρ0-order third

equation of 2.28. If we do so we deduce that it is zero.
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γkl(0)(2γ
(4)
kl + 3h

(4)
kl ) =

1

2
γij(0)γ

(2)
jk γ

kl
(0)γ

(2)
li ⇒

2Tr(γ(4)) + 3Tr(h(4)) =
1

2
Tr(γ2(2)) ⇒

Tr(γ(4)) +
3

2
Tr(h(4)) =

1

4
Tr(γ2(2)) ⇒

Tr(h(4)) = 0

(2.50)

Replacing this into the expression 2.47 and solving for the obstruction tensor we find

0 = ∇(0)
m Γ

(2)m
ij − 4h

(4)
ij + 2(γ(2)γ−1

(0)γ
(2))ij −������

Tr(γ(2))γ
(2)
ij

+
1

2
γ
(0)
ij Tr(γ

2
(2)) +�������:0

γ(0)Tr(h(4))− γ
(0)
ij (γ−1

(0)γ
(2)γ−1

(0))
klγ

(2)
kl +������

Tr(γ(2))γ
(2)
ij

(2.51)

Therefore8 [8]

h
(4)
ij =

1

2
(γ(2))

2
ij −

1

8
γ
(0)
ij Tr(γ

2
(2))

+
1

8

(
∇k

(0)∇
(0)
i γ

(2)
jk +∇k

(0)∇
(0)
j γ

(2)
ik −∇2

(0)γ
(2)
ij −∇(0)

i ∇(0)
j Tr(γ(2))

) (2.52)

is the obstruction tensor in 4 dimensions.

Now let’s see what the second equation in 2.28 has to tell us. We expect to find the

the divergence of γ(4). To do so we first take the ρ0-order of this equation and find the

divergence of γ(2). Indeed at O(ρ0) we get

∇(0)kγ
(2)
ki = ∇(0)

i (γkl(0)γ
(2)
kl ) ⇒

= ∇(0)k(γ
(0)
ki γ

mn
(0) γ

(2)
mn) ⇒

∇(0)kγ
(2)
ki = ∇(0)k

(
γ
(0)
ki Tr(γ

(2))
) (2.53)

Finally, in order to find the divergence of γ(4) we first take the divergence of the expres-

sion 2.48. This results in h(4) being divergence-free. Using this we take the ρ-order of

the second equation of motion and find [8]

8Where we denoted (γ(2)γ−1
(0)γ

(2))ij ≡ (γ2
(2))ij



Chapter 2. AlAdS manifolds 18

∇(0)iγ
(4)
ij =∇(0)i

(
−1

8
γ
(0)
ij (Tr(γ2(2))− Tr2(γ(2)) +

1

2
γ2(2)ij −

1

4
γ
(2)
ij Tr(γ

(2))

)
(2.54)

To summarize, we saw that by solving asymptotically Einstein equations in d = 4

dimensions we were able to determine the subleading term γ(2) of the metric expansion

in terms of the induced metric γ(0). For the latter there was no constraint added by the

equations of motion and thus it is completely arbitrary in pure gravity. Furthermore

we saw that the number of dimensions didn’t allow us to determine the coefficient γ(4)

but we found its divergence and trace from the last two equations of motion. The

introduction, however, of the logarithmic term in the expansion of the metric gave us

the opportunity to determine the exact form of the obstruction tensor, since due to this

term the coefficient of h(4) was not zero as the one of γ(4) and we were thus able to solve

for it.

2.2.2 Massive scalar in (d+ 1)-dimensions

If we are interested in the case of matter, these results can be extended. In the presence

of matter we suppose we have a free massive scalar field coupled to gravity. Therefore

its action will have the form [6]

S =
1

2

∫
ddx

√
g
(
gµν∂µΦ∂νΦ+m2Φ

)
. (2.55)

where we consider it to be in the Euclidean version of AdS spacetime (hyperbolic space).

What we want to do is to see how can we perform the same procedure we did earlier but

now for the massive scalar. The equations of motion now are given by the Klein-Gordon

equation:

− 1
√
g
∂µ (

√
ggµν∂νΦ) +m2Φ = 0. (2.56)

We are looking for solutions in the form Φ(x, ρ) = ρ(d−∆)/2ϕ(x, ρ).

Plugging this into 2.56 gives9

(
m2 −∆(∆− d)

)
ϕ− ρ

(
∂µ∂

µϕ+ 2ϕ′(d− 2∆ + 2) + 4ρϕ′′
)
= 0 (2.57)

9Again prime denotes derivative with respect to ρ.
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Taking the limit ρ = 0 we see that

m2 −∆(∆− d) = 0 (2.58)

and thus

∂µ∂
µϕ+ 2ϕ′(d− 2∆ + 2) + 4ρϕ′′ = 0 (2.59)

We perform the asymptotic expansion

ϕ(x, ρ) = ϕ(0)(x) + ρϕ(2)(x) + ρ2ϕ(4) + ... (2.60)

and solving order by order in 2.59 yields

ϕ(2) =
1

2(2∆− d− 2)
∂µ∂

µϕ(0) (2.61)

Continuing this procedure we find all coefficients in the expansion 2.60. However, this

process stops when 2∆− d− 2 = 0 (the analogue for n = d in the even dimension case

for the pure gravity situation we analyzed earlier).

ϕ(2n) =
1

2(2∆− d− 2n)
∂µ∂

µϕ(2n−2) (2.62)

And this is the very reason why we need once more to introduce a logarithmic term in

order to obtain a solution. And thus the asymptotic expansion becomes

ϕ(x, ρ) = ϕ(0)(x) + ρ
(
ϕ(2) + ψ(2) ln ρ

)
+ ... (2.63)

If we insert this into 2.57 we find

ψ(2) = −1

4
∂µ∂

µϕ(0) (2.64)

One very interesting feature in both situations is that we didn’t have to solve any

differential equation, as we are used to when equations of motion are needed. Instead,

Einstein equations on pure gravity and Klein-Gordon in the presence of matter ended

up amounted to algebraic equations. We solved them and observed two things. First the



Chapter 2. AlAdS manifolds 20

leading order equation leaves γ(0) and ϕ(0) undetermined. Second we can determine the

subleading terms in the asymptotic expansion up to some order where field equations

cannot help us anymore.

In the next section we will explore how all those terms in the expansion can enjoy a

particular kind of symmetry. The motivation for this symmetry comes not only from

the structure of AlAdS but also from electromagnetism.



Chapter 3

Weyl Geometries

”It appears as one of the fundamental principles of nature that the equations expressing

the basic laws of physics should be invariant under the widest possible group of

transformations.” (P.A.M.Dirac)

In this chapter we are going to explore a generalization of the Riemannian geometry,

introduced by Weyl, and then see why this geometry is more suitable for the analysis of

AlAdS manifolds and CFTs through Holographic Renormalization.

3.1 Weyl connection

In 1918, H. Weyl conceived a simple, but important as we will see, generalization of

Riemaniann geometry [1]. His idea was to allow both the orientation and the length of

vectors to vary under parallel transport instead of just the orientation as in Riemaniann

geometry. Mathematically this means that instead of the familiar metricity condition

∇αgµν = 0 (3.1)

we introduce the 1-form σ with components σα to a local coordinate basis {∂α} and we

assume the more general condition

∇αgµν = σαgµν (3.2)

which is also known as Weyl metricity condition.

21
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In this condition if we perform the so called Weyl transformations 1

g → B−2(x)g (3.3)

we see that

∇g → ∇(B−2g) =B−2∇g + gd(B−2)

=B−2∇g − 2gB−3dB

=(∇g − 2gd lnB(x))B−2(x)

(3.4)

So we are motivated to introduce the 1-form a that transforms as

a→ a− d lnB(x) (3.5)

and now it is easy to check that this new connection (i.e. the Weyl connection) satisfies

∇g − 2ag → (∇g − 2ag)B−2(x) (3.6)

Which means that this connection is actually covariant under Weyl transformations.

Here the factor −2 appears because we supposed that the metric transforms as 3.3.

When this happens we say that the tensor (in our case the metric) has Weyl weight

of −2 and we denote it by wg. So in general, a tensor A has Weyl weight wA iff

A→ B(x)wAA.

Now, suppose we live in a AlAdS manifold. Fefferman and Graham taught us [14] that

our metric can always be brought in the form 2

ds2 =
dz2

z2
+ hij(x, z)dx

idxj (3.7)

which is called Fefferman-Graham (FG) gauge. The reason we are interested in Weyl

transformations and their link to the AlAdS metric is that the latter induces a conformal

1The basic difference between Weyl geometry and conformal geometry is that in the latter we have
the conformal transformations

g → ω(x)−2g

where ω(x) is a specific function associated with a diffeomorphism that is a conformal symmetry of the
theory, whereas in Weyl geometry B(x) is completely arbitrary.

2Here we use the letter h for the induced metric on the radial slice and not for the obstruction tensor
as we did in Chapter 2.
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structure on its boundary. By this we mean that starting from 3.7 and taking the leading

term of hij(x, z) ≈ 1
z2
h
(0)
ij (x) we get that on the (conformal) boundary

z2ds2
z→0−−→ h

(0)
ij dx

idxj ≡ ds2boundary (3.8)

We see that this does not define an induced metric on the boundary in a unique way. It

defines it up to the transformations z → B(x)−1z and xi → xi. This is what we mean

by a conformal class of metrics.

Unfortunately in FG gauge the form of the AlAdS metric is not preserved under Weyl

diffeomorphisms.

z → B(x)−1z, xi → xi, ai → ai − ∂i lnB(x) (3.9)

In order to preserve the form of the metric we consider instead the Weyl-Fefferman-

Graham (WFG) gauge

ds2 =

(
dz

z
− ai(x, z)dx

i

)2

+ hij(x, z)dx
idxj (3.10)

and then indeed if we perform Weyl transformations 3.9 we get

ds2 =

(
dz

z
− ai(x, z)dx

i

)2

+ h̃ij(x,B−1z)dxidxj (3.11)

where h̃ij(B−1z, x) = hij(z, x) since z → B−1z.

It is worth noticing that since, from FG theorem, every AlAdS metric can be written

as 3.7 this means that ai is a pure gauge in the bulk. In another perspective, if we set

ai = 0 in the WFG gauge we simply get the FG gauge. In that sense the WFG gauge is

a generalization of the FG gauge.

Rewriting the metric 3.10 we get

ds2 =

(
dz

z

)2

− 2ai
dz

z
dxi + γij(x, z)dx

idxj (3.12)

where γij = hij + aiaj
3 and under Weyl transformations γij → B−2γij .

3Here the metric γij is not related to γij in Chapter 2
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In matrix form

gµν =

(
1
z2

−ai
z

−aj
z γij

)
⇒ gµν =

 z2

aiai
zai
ajaj

zai
ajaj

γij + aiaj

1−akak

 (3.13)

Now we define the Weyl connection so it would be invariant under 3.9 and so 4

Gk
ij ≡ Γk

ij [γ]−
(
a(iδ

k
j) − akγij

)
(3.14)

Since there are 3 different ”Christoffel symbols” we can define 3 different covariant

derivatives with them and one more through the definition of the Weyl weight we gave

above. Given a tensor A5 we define

∇µAν ≡ ∂µAν − Γλ
µνAλ, for Γλ

µν =
1

2
gλρ (∂µ(gρν) + ∂ν(gµρ)− ∂ρ(gµν))

DiAj ≡ ∂iAj − Gk
ijAk = DiAj +

(
a(iAj) − akAkγij

)
, for Gk

ij ≡ Γk
ij [γ]−

(
a(iδ

k
j) − akγij

)
DiAj ≡ ∂iAj − Γk

ij [γ]Ak, for Γk
ij [γ] =

1

2
γkm (∂iγmj + ∂jγmi − ∂mγij)

DiAj ≡ DiAj + wAaiAj

(3.15)

The last connection is constructed so it would be covariant under Weyl transformations

3.9, indeed it has the property

DiA→ B(x)wADiA (3.16)

In particular, for the metric tensor one gets

Diγjk = 0 (3.17)

4Here we denoted a(iδ
k
j) ≡ aiδ

k
j + ajδ

k
i. In other authors you will see a normalization factor of 1

2
.

Also we raise or lower indices in ai by γij , i.e. a
k = γikai

5This tensor can be of any kind
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which the new metricity condition, called Weyl metricity condition. Notice that our

motivation behind this construction 3.14 was to get a connection that satisfies

Diγjk = 2aiγjk (3.18)

since our initial idea was that of 3.2. The difference between the two is that D is Weyl-

covariant (it satisfies 3.16) whereas D is not. An also important fact and crucial for our

calculations is that the introduction of ai happened in such a way that it didn’t break

the torsion-free property of our connection, since Gi
jk is still symmetric in jk.

What we want to explore now is how this Weyl connection can lead us into defining

geometric quantities that are covariant under transformations 3.9. This Weyl covariance

property however comes with a great cost, these geometric quantities will have less

symmetries than the corresponding ones from the usual Levi-Civita connection ∇ due

to the introduction of ai.

We begin from the most important one which is not other than Riemann tensor 2.21.

Since we want to construct Weyl-covariant geometric tensors we should start from the

derivative that is covariant under Weyl transformations, i.e. D. We know that for an

arbitrary contravariant tensor Ai the usual Riemann tensor can be defined as the part

of the commutator of covariant derivatives which is proportional to Ai

Rk
imnA

i ≡ [Dm, Dn]A
k (3.19)

so now we define a Weyl-invariant Riemann tensor as

Rk
imnA

i ≡ [Dm,Dn]A
k (3.20)

After quite a bit of calculation we get the tensor in the familiar

Rl
knm = ∂[nGl

m]k + Gl
i[nG

i
m]k (3.21)

and what this beautiful form of the tensor shows us is that it is in fact Weyl-invariant

since Gi
jk are Weyl-invariant. But how is it related to our usual (LC) Riemann tensor?
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To answer that we have no other option than to start from 3.21 (or equivalently 3.20)

and by straightforward calculations show the explicit form of the tensor. So after we do

this we find that the Weyl-invariant Riemann tensor in its full glory can be written as6

Rl
knm = Rl

knm + δlkD[man] + δl[nDm]ak + γk[mDn]a
l + (aka[m − a2γk[m)δln] + ala[nγm]k

(3.22)

The full derivation will be found in Appendix A. From there we can see that the Weyl-

Riemann tensor is actually antisymmetric in the last two indices (as the usual one) but

it lacks the antisymmetry of the first two indices and the interchange symmetry of the

index pairs. So the introduction of ai did come with a cost. Now, contracting the two

indices to get the Weyl-invariant Ricci tensor yields

Rkm = δnlRl
knm (3.23)

and thus get

Rkm = Rkm +D[mak] + (d− 2)Dmak + γkmD · a+ (d− 2)(akam − a2γkm) (3.24)

Before going to the Ricci scalar lets take a moment and think about what can we deduce

from the last two expressions. First from 3.23 we see that since the tensor we defined

is actually Weyl-invariant so Rij will be also Weyl-invariant (as expected). The second

observation, coming from 3.24, is that the Weyl-invariant Ricci tensor is not symmetric.

In fact we can measure exactly how it fails to be symmetric and if we do so we find

R[km] = dD[mak] ≡ −dFkm (3.25)

where we defined the field strength tensor to be Fij ≡ Diaj −Djai. So our tensor in not

symmetric but it is not symmetric in a nice way. A useful observation here regarding

field strength tensor is that it is also Weyl-invariant. This can be easily seen due to its

form, since instead of the covariant derivative D we can use either D or D (or even the

usual partial derivative ∂).

Fij ≡ D[iaj] = Di[aj] = Di[aj] = ∂i[aj] (3.26)

6Where Rl
knm is the Riemann tensor of γij using Levi-Civita connection.
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which of course remains the same after performing 3.9.

As for the Weyl-covariant Ricci scalar, from the trace of 3.24 we get

R = R+ 2(d− 1)D · a− (d− 1)(d− 2)a2 (3.27)

and since

R = γkmRkm ⇒

R → B(x)2γkmRkm = B(x)2R
(3.28)

it indeed transforms covariantly (in particular it is a tensor with Weyl-weight 2).

Now that we warmed up lets define our final Weyl tensors7. Following the same thinking

as before, we start from the Weyl connection D and construct the Weyl-Riemann tensor

as

Rk
imnA

i ≡ [Dm,Dn]A
k (3.29)

and after some calculations8 we find

Rl
kmn = Rl

kmn + δlkFmn (3.30)

Therefore, by contracting the two indices, we get the Weyl-Ricci tensor

Rij = Rij + Fij (3.31)

and finally the Weyl-Ricci scalar

R = γijRij = R (3.32)

where we see that Rl
kmn and Rij have no Weyl-weight (i.e. they are Weyl-invariant)

and R has weight 2.

7Some authors call Weyl-tensors those that are built from D and others those from D . Here we
choose the second terminology.

8Here we chose Ai to be a basis vector of the tangent space, which has Weyl-weight 1. In general
this tensor depends on the weight of the vector field we choose to act on, check A. This is not a problem
however since it is a well-defined tensor on each vector field. Here we define it so it acts on the basis of
the tangent space.
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This property of those geometric quantities is very important. Since it indicates that one

can construct a Weyl-covariant (gravitational) Lagrangian from which yields a Weyl-

invariant (gravitational) action. This action combined with a (not necessarily Weyl-

invariant) matter action can give very interesting cosmological results as we are going

to see in the next chapter [21, 22].

It also worth noticing that, although Weyl-Riemann tensor possesses less symmetries

than the LC Riemann tensor, it satisfies the Bianchi identity9

DiR
l
mjk + DjR

l
mki + DkR

l
mij = 0 (3.33)

Now one can define also a Weyl-Einstein tensor

Gij ≡ Rij −
1

2
Rγij (3.34)

which will also be Weyl-invariant. And the Weyl-Schouten tensor as

Pij ≡
1

d− 2

(
Rij −

1

2(d− 1)
Rgij

)
(3.35)

From these two expressions we see that both Weyl-Einstein and Weyl-Schouten are

Weyl-invariant. This invariance however did not come to us for free. In the usual

LC connection it is known that both of these tensors are symmetric, i.e. Gij = Gji

and Pij = Pji. This symmetry now is lost. Since the antisymmetric part of Rij is

R[ij] = −(d− 2)Fij and thus G[ij] = P[ij] = −Fij . Finally, the Weyl-Cotton tensor can

be defined as

Cijk ≡ DkPij − DjPik (3.36)

which is also Weyl-invariant.

If we would like to construct the Weyl-Weyl tensor W 10, its quite easy because we know

it is the part of the Weyl-Riemann tensor 3.30 that is trace-free. So it is just the part

of the Riemann tensor that is trace-free, which is exactly the Weyl tensor W (in the LC

connection). Thus, the Weyl tensor is the same in the LC and the Weyl connection.

9For the proof check A
10Weyl tensor measures how the shape of a body changes due to the tidal force when moving along a

geodesic, it does not contain the information on how the volume of the body changes. This information
is contained in the Ricci tensor
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We saw how we can define all the known tensors we have to describe the geometry of

our universe. If one would like to search for how the geodesic equations change can

read [16]. In the next section we are going to explore how we can apply the method of

Holographic Renormalization in this geometric background.

3.2 Weyl geometry in Holography

As we mentioned earlier we supposed that we live in a (d+1)-dimensional AlAdS mani-

fold and thus the metric of our space can always be brought in the form 3.7, where the

conformal boundary is located at z = 0. According to [17] near z = 0 we expand h(x, z)

as follows

hij(x, z) =
1

z2

(
h
(0)
ij (x) + z2h

(2)
ij (x) + z4h

(4)
ij (x) + ...

)
(3.37)

We are interested where Weyl geometry come into play? As we have seen before Weyl

transformations change the form of the FG gauge but they preserve the form of WFG

gauge. So we consider the AlAdS metric in the WFG gauge, where now near the bound-

ary not just hij(x, z) can be expanded as 3.37 but also the Weyl connection 11

ai(x, z) = a
(0)
i (x) + z2a

(2)
i (x) + z4a

(4)
i (x) + ... (3.38)

When ai is zero all the subleading terms h
(2k)
ij are determined by h

(0)
ij as we show in 2.

Now, in the presence of ai, they will also depend on a
(0)
i , a

(2)
i , etc.

From 3.9 and the expansions 3.38 3.37 we can see that

h
(k)
ij (x) → B(x)2k−2h

(k)
ij (x), for k ≥ 0

a
(k)
i (x) → B(x)2ka(k)i (x), for k ≥ 1

a
(0)
i (x) → a

(0)
i (x)− ∂i lnB(x)

(3.39)

Where one sees that all terms, except a
(0)
i , transform covariantly under Weyl transfor-

mations. Therefore this term does not have a Weyl weight, whereas the weight of the

other terms can be read off from the power of B(x).

Now lets expand the Weyl connection 3.14 near z = 0 and take the leading order. We

then find

11The asymptotic expansion of ai will also contain a second part series as γij did.
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Gk(0)
ij =

1

2
hkm(0)

(
∂ih

(0)
mj + ∂jh

(0)
mi − ∂mh

(0)
ij

)
−
(
a
(0)
(i δ

k
j) − a(0)m hmk

(0)h
(0)
ij

)
(3.40)

which means that on the boundary we can define a connection D(0) built by 3.40 that

is torsion-free and satisfies (by construction) the metricity condition

D(0)
i h

(0)
kj = 2a

(0)
i h

(0)
kj (3.41)

This shows that the leading term a
(0)
i of ai can be interpreted as a (Weyl) connection

at the boundary and the term h
(0)
ij as an induced metric. Together they form a Weyl

geometry at the boundary.

Since h
(0)
ij and a

(0)
i transform as 3.39 following the logic of the previous section we can

define the Weyl-covariant connection12 denoted by D (0) as

D
(0)
i A ≡ D(0)

i A+ wAa
(0)
i A (3.42)

which is indeed Weyl-covariant since

D
(0)
i A→ B(x)wAD

(0)
i A (3.43)

We happily obtained a geometric structure on the boundary that has the beatiful prop-

erty of Weyl-covariance so we are now interested in developing the corresponding geo-

metric tensors as we did before. The idea is that for every geometric quantity we built

from h(0) and the usual LC connection, now we have a Weyl-covariant one constructed by

h
(0)
ij , a

(0)
i and the connection D(0)

i . So given these, we first construct the Weyl-Riemann

tensor on the boundary as

Rl(0)
ikj ≡ ∂[kGl(0)

ij] + Gm(0)
i[j G

l(0)
mk] (3.44)

thus the Ricci tensor and Ricci scalar are given by

R(0)
ij ≡ ∂[kGk(0)

ij] + Gm(0)
i[j G

k(0)
mk] R(0) = hij(0)R

(0)
ij (3.45)

And as we did before we have13

12Some authors call Weyl connection the Weyl-covariant connection D whereas some others the con-
nection D that satisfies the Weyl-metricity condition.

13We defined F
(0)
ij = ∂[ia

(0)

j] , which can be viewd as the curvature of a
(0)
i .
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Rl(0)
ikj = R(0)

ij + F
(0)
ij R

(0)
ij = R(0)

ij + F
(0)
ij R(0) = R(0) (3.46)

and of course the Weyl-Einstein, Weyl-Schouten and Weyl-Cotton tensors respectively

G
(0)
ij ≡ R

(0)
ij − 1

2
R(0)γ

(0)
ij

P
(0)
ij ≡ 1

d− 2

(
R

(0)
ij − 1

2(d− 1)
R(0)γ

(0)
ij

)
C

(0)
ijk ≡ D

(0)
k P

(0)
ij − D

(0)
j P

(0)
ik

(3.47)

An important note on these definitions is that nothing hasv changed regarding the Weyl-

weights of the tensors, they are the same as in the previous chapter. This as far as the

good news go. As for the bad news, we see that the Weyl-quantities do not necessarily

have the same symmetries as the corresponding ones in the LC connection. For instance

there is once again an antisymmetric part in the Weyl-Ricci and Weyl-Schouten tensors

(as we expected)

R
(0)
[ij] = −(d− 2)F

(0)
ij ⇒ G

(0)
[ij] = P

(0)
[ij] = −F (0)

ij (3.48)

Now that we saw we can define all known geometric quantities in the Weyl-connection

background one can apply the same procedure as we did to find 2.37 to this background.

In this process the first step was to form the Einstein equations. Of course someone

could do it the Weyl-connection case also by brute-force, i.e. start from the metric 3.13,

compute the Christoffel symbols, then the Ricci tensor components, insert them into

Einstein equations and then solve them order by order. In practise, however, this can

be quite difficult. So a better idea is to perform a compactification of the metric 3.10 in

order to form Einstein equations. This compacitfication is made in such a way so that

the metric becomes diagonal. This makes our computations much easier. On the other

hand, the corresponding Christoffel symbols will have torsion. After that we expand all

quantities inside Einstein’s equations and solving order by order yields the same result

for the leading term as we did in 2.37 (where only the symmetric part of the Weyl-Ricci

tensort appears). The whole procedure is described in detail in [17]. Here we are going

to remark the main points and the details can be found in Appendix B.

First we define the differential form e ≡ dz
z − aidx

i and thus the metric 3.10 can be

written as

g = e⊗ e+ hij(x, z)dx
i ⊗ dxj (3.49)
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We can check that the 1-form e is Weyl-invariant

e ≡ dz

z
− aidx

i →d(B−1z)

B−1z
− (ai − ∂i lnB) dxi

=
dz

z
− dB

B
− aidx

i + ∂i lnBdxi

=
dz

z
− aidx

i

(3.50)

and by construction hij is Weyl-invariant since it expands as 3.37 and γij transforms as

3.39. Therefore the metric 3.49 is Weyl-invariant.

Defining the dual vectors such that they form a basis on the tangent space TpM

e ≡ z∂z ∂i ≡ ∂i + aiz∂z (3.51)

With their help we define the Riemann tensor and after quite a bit of work we find the

Einstein field equations. The ij-component14 of Einstein equations gives

0 =Ĝij + Λgij ⇒

0 =Gij −Djϕi − (e+ θ)

(
ρij +

1

2
fij

)
− ϕiϕj + 2ρkiρkj

+
1

2
fjkf

k
i + hij

(
e(θ)− 1

8
Tr(ff) +

1

2
Tr(ρρ) +Dkϕ

k +
1

2
θ2 + ϕ2 + Λ

) (3.52)

where we defined ϕi ≡ e(ai), fij ≡ ∂iaj − ∂jai, ρij ≡ 1
2h

ike(hkj), ψi
j ≡ ρij +

1
2h

ikfkj and θ ≡ ρii. We denoted by R the new Ricci scalar in this coordinate system

constructed by 3.49.

In Chapter 2 this is the step where we inserted the asymptotic expansion of the metric

into the Einstein equations. And this is what we are going to do now but this time we

will also expand the Weyl connection ai.

hij(x, z) = z−2
(
h
(0)
ij (x) + z2h

(2)
ij (x) + z4h

(4)
ij (x) + ...

)
+ zd−2

(
π
(0)
ij (x) + z2π

(2)
ij (x) + ...

)
ai(x, z) =

(
a
(0)
i (x) + z2a

(2)
ij (x) + z4a

(4)
i (x) + ...

)
+ zd−2

(
p
(0)
i (x) + z2p

(2)
i (x) + ...

)
(3.53)

14In this coordinate system the components of the metric are not ρ and i but e and i.
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The expansion of hij in 3.53 holds for generic d. If d is an even integer additional

logarithmic terms appear in the expansion [19].

We know how the first part of the series behaves under Weyl transformations. According

to these expansions we can also deduce that

π
(k)
ij → B(x)d−2+kπ

(k)
ij p

(k)
i → B(x)d−2+kp

(k)
i

(3.54)

Now according to these expansions we also expand our tensors in order to solve field

equations order by order. Those expressions can be found in Appendix B. This work

has also be done in [17].

We should note that in the FG gauge, where ai = 0, after solving field equations the

terms h(2k) were going to be determined by the induced metric h(0) and its derivatives.

In our situation (i.e. WFG gauge) those subleading terms will also depend on a(2k).

The leading order of 3.52 gives

h
(2)
ij = − 1

d− 2

(
1

2
R

(0)
(ij) −

1

2(d− 1)
R(0)h

(0)
ij

)
(3.55)

where R
(0)
ij is the leading term of the expansion of Rij constructed by 3.49 and R

(0)
(ij) =

R
(0)
ij +R

(0)
ji . For the explicit expansions and the exact way we obtain the result 3.55 we

refer to the Appendix B.

Continuing this procedure we find that in WFG gauge all the subleading terms in the

expansion of the metric are determined by the Weyl curvature exactly as happened in

the FG gauge using the usual LC connection. The difference is that now (in WFG gauge

using Weyl-connection) all those terms are Weyl-covariant.

But is this new geometry purely a mathematical heist of curiosity or does it have also a

meaning in our physical world? In the next section we are going to see that it does give

some very interesting results in cosmology. These results are not in contrast with our

known cosmology, but they are rather a generalization of it so that the FRW cosmology

appears as just a special gauge of the so called Weyl cosmology. This should not be a

surprise since Weyl geometry is just a generalization of Riemaniann geometry.





Chapter 4

Weyl Cosmology

In this chapter, our exploration delves into the properties of the metric that defines

our physical universe. Rather than confining ourselves to conventional Riemannian

background geometry, our focus shifts towards the utilization of Weyl geometry and its

implications for well-established cosmological phenomena, such as inflation. Through

this analysis, we aim to unveil novel perspectives on cosmic evolution and structure,

broadening our understanding beyond traditional frameworks.

4.1 Standard Cosmology

The Cosmological Principle asserts that on large scales1, the universe exhibits homogene-

ity and isotropy. Homogeneity implies uniformity throughout the universe, suggesting

that the metric describing it should remain consistent across all regions, as well as the

curvature. Isotropy means that the universe should look the same across every direc-

tion. This suggests that there is no difference in what two different observers in different

parts of the universe see. Furthermore it suggests that our own place in the universe

is not special by any means. The isotropy of the universe is also heavily supported by

astronomical observation, most famously the Cosmic Microwave Background radiation

(CMB)

In the realm of theoretical physics, the Friedmann-Robertson-Walker (FRW) metric

serves as a cornerstone in describing the large-scale structure and evolution of the uni-

verse. This metric, a fundamental component of Einstein’s general theory of relativity,

offers a mathematical framework to comprehend the dynamics of cosmic expansion, the

distribution of matter, and the fabric of spacetime itself.

1Those scales are the galaxy filaments scales and are about 100 million lys.

35
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At its core, the FRW metric embodies the principles of homogeneity and isotropy on

cosmological scales. These principles assert that the universe, on average, appears the

same to all observers regardless of their position or direction of observation. Homogeneity

implies that the universe is uniform, exhibiting the same properties at every point in

space, while isotropy suggests that it looks the same in all directions.

Mathematically, the FRW metric takes the form:

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(4.1)

where k = 0,±1 is a curvature parameter2 and a(t) is the scale factor. The values

0,+1,−1 of k correspond to Euclidean, spherical and hyperbolic space respectively. The

scale factor describes how distances between cosmological objects change over time. As

the universe evolves, the scale factor determines the expansion or contraction of spatial

distances. The dynamics of a(t) are governed by the solutions to Einstein’s equations,

which relate the distribution of matter and energy in the universe to the curvature of

spacetime. is considered to be 1 today and 0 at the Big Bang.

In this chapter we will denote all spacetime indices with Greek letters µ, ν ∈ {0, 1, 2, 3}
and spacial indices with Latin i, j ∈ {1, 2, 3}3.

The FRW metric allows for the inclusion of various forms of energy and matter content

in the universe, including radiation, matter (both ordinary and dark), and dark energy.

These components influence the dynamics of cosmic expansion and the evolution of the

universe over time. The relative densities of these components dictate the fate of the

universe, determining whether it will continue expanding indefinitely, reach a maximum

size and contract, or undergo an accelerated expansion due to dark energy.

It also serves as the foundation for numerous cosmological models that aim to explain

observed phenomena such as the cosmic microwave background radiation, the large-scale

distribution of galaxies, and the redshift-distance relationship of distant objects. The

full derivation of the metric, due to the Cosmological principle, can be found in the

beginning of Appendix C.

Starting from 4.1 we can compute its Christoffel symbolds and find that the non-

vanishing ones are4

2It has dimension of length−2 and should not be confused with the curvature of spacetime which is
captured by the Riemann tensor.

3Note that the analogue of γij of chapter 3 in our cosmological case is gµν defined in 4.1.
4We have denoted with dot the derivative with respect to t.
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Γ0
11 =

aȧ

1− kr2
Γ0
22 = aȧr2 Γ0

33 = aȧr2 sin2 θ Γ1
01 = Γ1

10 =
ȧ

a

Γ1
11 =

kr

1− kr2
Γ1
22 = r(1− kr2) Γ1

33 = r(1− kr2) sin2 θ

Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ

a
Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r

Γ2
33 = sin θ cos θ Γ3

23 = Γ3
32 = cot θ

(4.2)

Using these symbolds we calculate the components of the Ricci tensor. Doing so yields

R00 =
−3ä

a
R11 =

1

1− kr2
(äa+ 2ȧ2 + 2k)

R22 = r2(äa+ 2ȧ2 + 2k) R33 = r2 sin2 θ(äa+ 2ȧ2 + 2k)

(4.3)

And of course the Ricci scalar

R = −6

(
ä

a
+

(
ȧ

a

)2

+
k

a2

)
(4.4)

Finally, the Einstein tensor is

G0
0 = 3

(
ȧ

a

)2

+
3k

a2
Gi

j =

(
2ä

a
+

(
ȧ

a

)2

+
k

a2

)
δij (4.5)

But what equations should it satisfy?

If we suppose our Universe was filled with a perfect fluid of energy density ρ and pressure

P then the field equations, coming from the principle of least action, will be

Gµ
ν = 8πGTµ

ν (4.6)

where G is the gravitational constant and Tµ
ν is the stress energy tensor.

These equations describe how matter and energy curve the spacetime around them,

thereby influencing the paths of particles and the geometry of the universe and vice

versa. They show how the geometry of our space dictates the physical laws.

Since our Universe is homogeneous and isotropic the stress-energy tensor of a perfect

fluid by a comoving observer must have the form
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Tµ
ν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 (4.7)

This tensor represents the distribution of energy, momentum, and stress within a given

spacetime. In this expression ρ and P are understood as the sum of all contributions to

the energy density and pressure respectively in the Universe. Of course both of them

are function of time.

Substituting 4.7 and 4.5 in 4.6 gives us the Friedmann equations

H2 =
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ+ 3P )

(4.8)

The first equation relates the rate of expansion of the universe, given by the Hubble

parameter

H ≡ ȧ

a
(4.9)

to the density of matter and energy (ρ) and the curvature of space (k). It essentially

quantifies how the energy density and curvature influence the rate at which the universe

expands. While the second equation describes how the rate of change of the expansion

rate (given by the derivative of the Hubble parameter, Ḣ) is influenced by the energy

density and pressure of various components in the universe. It accounts for the acceler-

ation or deceleration of the expansion due to the presence of matter, radiation, or other

forms of energy.

In order to work on the cosmological dictionary we need to define also the Hubble radius

(aH)−1 which has the physical meaning of the maximal distance at which particles can

communicate with each other at a given time5.

And there lies a problem that tortured cosmologists for years. If we suppose that our

Universe did not existed before t = 0 then there wouldn’t be enough time for the photons

of the CMB to communicate with each other and thus to make CMB almost perfectly

5Hubble radius should not be confused with particle horizon x =
∫ t

ti

dt
a

which is the maximal distance
at which particles could have ever been able to communicate with each other.
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isotropic as it is observed today. This is called the horizon problem. In standard

cosmology the most elegant and successful way to solve the horizon problem is through

inflation. There are many ways to define inflation, but the most common is as the period

of shrinking Hubble sphere (i.e. the Hubble radius decreases).

Another way some authors define inflation is as an accelerated expansion period since

d(aH)−1

dt
< 0 ⇒ − ä

ȧ2
< 0 ⇒ ä > 0 (4.10)

Now in order to measure whether inflation occurs or not and if so how much, we define

two quantities that reflect the possibility and the amount of inflation. These quantities

in Riemannian geometry are called inflation parameters and are respectively

ϵ ≡ − Ḣ

H2
, η ≡ d ln ϵ

dN
(4.11)

where N is the so called number of e-folds defined by N ≡ ln a. Cosmological evidence

have shown that in order to solve the horizon problem we want inflation to last for at

least 40 to 60 e-folds.

Inflation response to ϵ < 1 since

d(aH)−1

dt
= −1

a
(1− ϵ) ⇒ ϵ < 1 (4.12)

and the second condition regarding the parameter η is |η|< 1 which guaranties that the

fractional change of ϵ per Hubble time is small.

The simplest model of inflation is that of a single scalar field ϕ(t), called the inflaton. The

fact that our Universe is homogeneous and isotropic dectates that ϕ = ϕ(t). This field

carries potential energy density V (ϕ) and if it is dynamical it carries also kinetic energy

density. We want to establish under which conditions of these two energy densities

can give rise to inflation (i.e. accelerated expansion). So from now on whenever we

write ρ and P we will mean the energy density and pressure of the inflaton scalar field

respectively.

From Noether’s theorem we know that the stress-energy of a scalar field tensor can be

written as

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
gκλ∂κϕ∂λϕ− V (ϕ)

)
(4.13)
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In order for this result to agree with the high amount of symmetries of FRW metric it

must equals with 4.7 and so we get tow equations for the energy density and the pressure

of the inflaton

ρ =
1

2
ϕ̇2 + V (ϕ), P =

1

2
ϕ̇2 − V (ϕ) (4.14)

We saw earlier that if we want inflation to occur we must demand ϵ to be small. This,

in Riemannian geometry leads to a period of domination of a fluid of negative pressure

P < −1
3ρ.

ϵ ≡ − Ḣ

H2
=

3

2

(
1 +

P

ρ

)
< 1 ⇒ P < −1

3
ρ (4.15)

Finally, since inflaton is a scalar, its equations of motion will be given by the Klein-

Gordon equation. To derive this equation we first prove the continuity equation. We

want our stress-energy tensor to be conserved in our gravitational backgraound and thus

∇µT
µ
ν = 0 (4.16)

Taking the ν = 0 component of this equation and using the Christoffel symbols we

calculated earlier we get the evolution of the energy density (i.e. the continuity equation)

ρ̇+ 3H(ρ+ P ) = 0 (4.17)

Once we have this equation we simply substitute 4.14 into this expression and yields

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (4.18)

This equation represents the evolution of the inflaton. Here, the potential serves as

a driving force, influencing the field’s behavior, while the expansion of the universe

introduces a damping effect, akin to friction in the system.

All the aforementioned findings were obtained within the framework of Riemannian

geometry. While this model stands as the most promising explanation for our physical

universe, recent evidence, such as the Hubble tension problem, prompts us to consider

the possibility of its refinement. The introduction of the Weyl term into the connection is

intriguing; not only does it render the new connection Weyl-invariant, but it also endows
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the Weyl term with units of time−1, akin to the Hubble parameter. This raises suspicions

regarding its potential cosmological implications on the expansion of our Universe.

4.2 Weyl connection in Cosmology

We know that the gravitational part of equations 4.6 is obtained by varying the Einstein-

Hilbert action

Sg =
1

16πG

∫
R
√
gd4x (4.19)

with respect to the metric.

An interesting idea would be to study gravitational theories in Cosmology using Weyl

connection. And then see what kind of Inflation those gravitational theories imply.

So we define once more the Weyl-invariant connection

Gλ
µν = Γλ

µν −
(
A(µδ

λ
ν) −Aλgµν

)
(4.20)

where we denoted with Aµ the Weyl gauge field in order not to be confused with the

scale factor a.

According to [21, 22] one can construct a Weyl-invariant action so that the theory as a

whole enjoys Weyl symmetry. So the main difference with Chapter 3 is that now Weyl

symmetry is not the result of diffeomorphisms in the bulk, since there is no bulk in

our case. Weyl symmetry is considered a priori in our theory through the gravitational

action

Sw =

∫
d4x

√
g
(
a1RµνρσRµνρσ + a2RµνRµν + a3R2 + a4FµνF

µν
)

(4.21)

for some constants (a1, a2, a3, a4) and Fµν being the field strength tensor of Aλ.

This action is indeed Weyl-invariant, since under Weyl transformations

Rµ
νρσ → Rµ

νρσ ⇒

Rµνρσ = gµλRλ
νρσ → B−2gµλRλ

νρσ = B−2Rµνρσ

(4.22)

In the same way, the Riemann with upper indices
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Rµνρσ = gναgρβgσγRµ
αβγ

→ B6gναgρβgσγRµ
αβγ

(4.23)

Therefore the product transforms as

RµνρσRµνρσ → B4RµνρσRµνρσ (4.24)

Similarly we get that

RµνRµν → B4RµνRµν , R2 → B4R2, FµνF
µν → B4FµνF

µν (4.25)

And since the metric transforms as gµν → B−2gµν its determinant will transform as

g → B−8g, which means that
√
g → B−4√g.

Therefore, the whole gravitational action

Sw =

∫
d4x

√
g
(
a1RµνρσRµνρσ + a2RµνRµν + a3R2 + a4FµνF

µν
)

→
∫
d4xB−4√gB4

(
a1RµνρσRµνρσ + a2RµνRµν + a3R2 + a4FµνF

µν
)

= Sw

(4.26)

But it is not really necessary to create an action of order R2 in order to obtain Weyl

symmetry. For example one can start from the closest action to the Einstein-Hilbert

one, which is

∫
R√

gd4x (4.27)

the problem is that this action is not Weyl-invariant but rather Weyl-covariant, since

R√
g → B−2R√

g. We can easily, however, overcome this problem by adding a suitable

scalar field ϕ in such a way that would cancel the B−2 term. So we take our scalar field

ϕ to transform as

ϕ→ ϕ+ lnB (4.28)
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we can define the Weyl-invariant action

Sw =

∫
R√

ge2ϕd4x (4.29)

If we do so we can check that is indeed invariant

Sw =

∫
R√

ge2ϕd4x

→
∫

B−2R√
ge2ϕ+2 lnBd4x

=

∫
B−2R√

gB2e2ϕd4x

= Sw

(4.30)

It would be an interesting future research direction to obtain the Weyl-invariant field

equations from this action by varying with respect to the metric. Also, varying with

respect to the scalar field ϕ will give us its equations of motion. The difference from the

work done in [21, 22] is that the modified action we proposed in 4.29 has a GR limit.



Chapter 4. Weyl Cosmology 44

In conclusion, although Weyl’s original intention for this particular geometry may not

have been fulfilled, it has nonetheless provided us with a valuable tool. Not only in the

realm of AdS/CFT correspondence and Holography but also in Cosmology. There are

many ways to insert Weyl-invariance in a cosmological theory but we proposed one that

has a GR limit. We hope that Weyl connection in Cosmology will be able in the future

to explain observational results in the cosmological regime that our Standard Cosmology

right now cannot. If so, it would signify that this geometry aids us in gaining a deeper

understanding of the world around us.
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Appendix A

Connections

First let’s prove that Gi
jk are invariant under Weyl transformations

Gi
jk ≡1

2
γim (∂jγmk + ∂kγmj − ∂mγjk)− (a(jδ

i
k) − aiγjk)

→1

2
B(x)2γim(∂j(B(x)−2γmk) + ∂k(B(x)−2γmj)− ∂m(B(x)−2γjk))

−
(
a(j − ∂(j lnB(x)

)
δik) + (al − ∂l lnB(x))B(x)2γilB(x)−2γjk

=Γi
jk[γ]− B(x)−1γim(γmk∂jB(x) + γmj∂kB(x)− γjk∂mB(x))

− a(jδ
i
k) + ∂(j lnB(x)δik) + aiγjk − γjk∂

i lnB(x)

=Γi
jk[γ]− (a(jδ

i
k) − aiγjk)

(A.1)

Now, if we take the covariant derivative of the metric

Diγjk =∂iγjk − Gl
i(jγk)l

=∂iγjk −
1

2
γl(kγ

lm
(
∂j)γim + ∂iγj)m − ∂mγj)i

)
+ γl(k

(
aiδ

l
j) + aj)δ

l
i − alγj)i

)
=∂iγjk −

1

2
δm(k

(
∂j)γim + ∂iγj)m − ∂mγj)i

)
+ aiγ(jk) +����γi(kaj) −����a(kγj)i

=2aiγjk

(A.2)

Therefore
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Diγjk = Diγjk + waiγjk = 2aiγjk − 2aiγjk = 0 (A.3)

since γjk → B(x)−2γjk (in other words γjk has Weyl weight −2)

We derive a Weyl-invariant Riemann tensor

DnAk =DnAk + (anδ
i
k + akδ

i
n − aiγnk)Ai ⇒

DmDnAk =∂mDnAk − Gl
nmDlAk − Gl

mkDnAl

=∂mDnAk + ∂m(anAk + akAn − a ·Aγnk)− Γl
nmDlAk − Γl

nm(alAk + akAl − a ·Aγlk)

+ (anδ
l
m + amδ

l
n − alγmn)(DlAk + alAk + akAl − a ·Aγkl)− Γl

mkDnAl

− Γl
mk(anAl + alAn − a ·Aγmk) + (amδ

l
k + akδ

l
m − alγmk)(DnAl + a(nAl) − a ·Aγnl)

=DmDnAk + ∂m
(
a(nAk) − a ·Aγnk

)
− Γl

mn

(
a(lAk) − a ·Aγlk

)
+
(
a(nδ

l
m) − alγmn

)
(DlAk + a(lAk) − a ·Aγkl)− Γl

mk(anAl + alAn − a ·Aγnl)

+ (amδ
l
k + akδ

l
m − alγmk)(DnAl + a(nAl) − a ·Aγnl) ⇒

D[mDn]Ak =D[mDn]Ak + ∂[m(an]Ak + akAn] − a ·Aγn]k)− Γl
k[m(an]Al + alAn] − a ·Aγn]l)

+ (a[mδ
l
k + akδ

l
[m − alγk[m)(Dn]Al + an]Al + alAn] − a ·Aγn]l)

=D[mDn]Ak + ∂[m(an]Ak + akAn] − a ·Aγn]k)− Γl
k[m(an]Al + alAn] − a ·Aγn]l)

+ a[mDn]Ak + aka[mAn] −������
a ·Aa[mγn]k + akD[nAm] +

�����������:0

aka[nAm] + aka[mAn]

−
�������:0
a ·Aakγ[mn] − alγk[mDn]Al −������

a ·Aγk[man] − a2γk[mAn] + a ·Aa[nγkm]

(A.4)

The terms proportional to Al give
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Rl
knmAl =R

l
knmAl +Ak∂[man] +A[n∂m]ak −Ala

l∂[mγn]k −Alγk[n∂m]a
l

−AlΓ
l
k[man] − Γi

k[mAn]ai + alAlγi[nΓ
i
m]k

− a[mΓl
n]kAl + aka[mAn] −������:0

akΓ
l
[nm]Al + alγk[mΓi

n]lAi − a2γk[mAn] + a ·Aa[nγkm]

=AlR
l
knm +Alδ

l
k∂[man] +Alδ

l
[n∂m]ak −Ala

l∂[mγn]k −Alγk[n∂m]a
l

−AlΓ
l
k[man] −AlΓ

i
k[mδ

l
n]ai +Ala

lγi[nΓ
i
m]k

−Ala[mΓl
n]k +Alaka[mδ

l
n] +Ala

jγk[mΓl
n]j −Ala

2γk[mδ
l
n] +Ala

la[nγkm] ⇒
(A.5)

Rl
knm =Rl

knm + δlk∂[man] + δl[n∂m]ak − al∂[mγn]k − γk[n∂m]a
l −

�
���

Γl
k[man] − Γi

k[mδ
l
n]ai + alγi[nΓ

i
m]k

�����−a[mΓl
n]k + aka[mδ

l
n] + ajγk[mΓl

n]j − a2γk[mδ
l
n] + ala[nγkm]

=Rl
knm + δlkD[man] + δl[nDm]ak + γk[mDn]a

l + (aka[m − a2γk[m)δln] + ala[nγm]k

(A.6)
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To prove the Bianchi identity for Rl
mjk begin from the Jacobi identity for the (Weyl-)

covariant derivative

[Di, [Dj ,Dk]] + [Dj , [Dk,Di]] + [Dk, [Di,Dj ]] = 0 (A.7)

and act on an arbitrary vector field Al

[Di, [Dj ,Dk]]A
l = Di[Dj ,Dk]A

l − [Dj ,Dk]DiA
l

= Di

(
Rl

mjkA
m
)
−Rl

mjkDiA
m +Rm

ijkDmA
l

= DiRl
mjkA

m +Rl
mjkDiA

m −Rl
mjkDiA

m +Rm
ijkDmA

l

= DiRl
mjkA

m +Rm
ijkDmA

l

(A.8)

Inserting this into the Jacobi identity we get

(
DiRl

mjk +DjRl
mki +DkRl

mij

)
Am +

(
Rl

knm +Rl
nmk +Rl

mkn

)
DmA

l = 0 (A.9)

The second parenthesis vanishes identically and thus

DiRl
mjk +DjRl

mki +DkRl
mij = 0 (A.10)

Since Rl
mjk is Weyl-invariant we can replace D with D .

DiRl
mjk + DjRl

mki + DkRl
mij = 0 (A.11)

And from the definition of Rl
mjk we have

DiR
l
mjk = DiRl

mjk + δlmDiFjk (A.12)

We see that
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DiFjk +DjFki +DkFij =

Di (Djak −Dkaj) +Dj (Dkai −Diak) +Dk (Diaj −Djai) =(
Rl

kij +Rl
ijk +Rl

jki

)
al = 0

(A.13)

Therefore

DiR
l
mjk + DjR

l
mki + DkR

l
mij = 0 (A.14)
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We claim that the Weyl weight of an arbitrary tensor Ak is equal to the weight of its

Weyl-covariant derivative. Of course this is something that occurs by construction of

the Weyl-covariant derivative, but in order to check that our definitions are valid we

show it explicitly

DnAk =∂nAk − Gl
nkAl → ∂n (B(x)wAk)− Gl

nkB(x)wAl

=B(x)wDnAk +Ak∂nB(x)w

=B(x)wDnAk + wB(x)wAk∂n lnB(x) ⇒

DnAk =DnAk + wanAk →

B(x)wDnAk + wB(x)wAk∂n lnB(x) + w(an − ∂n lnB(x))AkB(x)w

=B(x)wDnAk + wanAkB(x)w

=B(x)wDnAk

(A.15)

Now we compute the quantity

DnAk =DnAk + wanAk = ∂nAk − Gl
nkAl + wanAk ⇒

DmDnAk =Dm (DnAk + wanAk) + wamDnAk

=DmDnAk + wanDmAk + wAkDman + wam (DnAk + wanAk)

=DmDnAk + wan∂mAk − wanGl
mkAl + wAkDman

+ wam∂nAk − wamGl
nkAl + w2amanAk ⇒

D[mDn]Ak =D[mDn]Ak + wa[n∂m]Ak − wa[nGl
m]kAl

+ wAkD[man] + wa[m∂n]Ak − wa[mGl
n]kAl ⇒

(A.16)

Rl
kmn = Rl

kmn + wδlkD[man] (A.17)

And so

Rij = Rij + wfij (A.18)
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Einstein equations

In order to work on the Holographic dictionary it is useful to write the metric as

g = e⊗ e+ hij(x, z)dx
i ⊗ dxj (B.1)

where e ≡ dz
z − aidx

i.

The advantage of this notation is that now our metric is diagonal

gµν =

(
1 0

0 hij

)
⇒ gµν =

(
1 0

0 hij

)
(B.2)

The dual vectors are given by

e ≡ z∂z ∂i ≡ ∂i + aiz∂z

and they indeed form an orthonormal basis:

e(e) = 1, e (∂i) = 0, dxi
(
∂j
)
= δij , dxi(e) = 0 (B.3)

where {µ, ν} ∈ {1, ..., d+ 1} and {i, j} ∈ {1, ..., d}.

If we set

ϕi ≡ e(ai), fij ≡ ∂iaj − ∂jai

55



Appendix B. Einstein equations 56

where ϕ can be thought as the acceleration of the radial congruence e and f as the field

strength tensor of ai, we get

[e, ∂i] = ϕie, [∂i, ∂j ] = fije (B.4)

.

By definition the LC coefficients are [eµ, eν ] = Cµν
ρeρ and since in our case µ ∈ {e, i},

eµ = {e, ∂i} we compute the commutators and find

Cei
e = ϕi, Cij

e = fij , Cij
k = 0 (B.5)

.

With these coefficients we define the most general non-coordinated LC connection as

Γ̂λ
µν =

1

2
gλρ
(
eµ(gρν) + eν(gµρ)− eρ(gµν)

)
−1

2
gλρ (Cµρ

σgσν + Cνµ
σgσρ − Cρν

σgσµ) (B.6)

For our future calculations we also define the quantities

ρij ≡
1

2
hike(hkj), ψi

j ≡ ρij +
1

2
hikfkj , θ ≡ ρii (B.7)

Then, by direct computation we get

Γ̂e
ee = 0, Γ̂e

ei = ϕi, Γ̂e
ie = 0, Γ̂e

ij = −1

2
e(hij) +

1

2
fij Γ̂i

ee = −hijϕj ,

Γ̂i
ej = Γ̂i

je = ρij +
1

2
f ij , Γ̂i

jk = Γi
jk ≡ 1

2
him

(
∂jhmk + ∂khjm − ∂mhjk

) (B.8)

Those Christoffel symbols have now torsion. This is the cost we have to pay for the

coordinate transformation we did to bring the metric in a nice diagonal form.

In order not to create confusion according the connections we are going to have, given

a tensor Aµ we define
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∇̂µAν ≡ eµAν − Γ̂λ
µνAλ, for Γ̂λ

µν =
1

2
gλρ
(
eµ(gρν) + eν(gµρ)− eρ(gµν)

)
− 1

2
gλρ (Cµρ

σgσν + Cνµ
σgσρ − Cρν

σgσµ)

∇iAj ≡ ∂iAj − Γ
k
ijAk, for Γ

k
ij ≡ Γk

ij −
(
a(iδ

k
j) − akhij

)
DiAj ≡ ∂iAj − Γk

ijAk, for Γk
ij =

1

2
hkm

(
∂ihmj + ∂jhmi − ∂mhij

)
D iAj ≡ ∇iAj + wAaiAj such that A

Weyl−−−→ B(x)wAA

(B.9)

We see that they obey the usual rules of covariant derivatives, such as

Dihjk = 0, ∇ihjk = 2aihjk, D ihjk = 0 (B.10)

and taking the leading order like we did in 3.40 we can construct the Weyl-covariant

derivative on the boundary in our coordinate system exactly as happened in 3.42. This

derivative will appear soon in our computations.

The corresponding Riemann tensor in these coordinates will be

R̂λ
µρν = e[ρ(Γ̂

λ
ν]µ) + Γ̂σ

[νµΓ̂
λ
ρ]σ − Cρν

σΓ̂λ
σµ (B.11)

Contracting the two indices we get the Ricci tensor

R̂µν = e[λ(Γ̂
λ
ν]µ) + Γ̂σ

[νµΓ̂
λ
λ]σ − Cλν

σΓ̂λ
σµ (B.12)

with components

R̂ee = −Diϕ
i − ϕ2 − e(θ)− Tr(ρρ)− 1

4
Tr(ff)

R̂ei = R̂ie = Dj

(
ρj i +

1

2
f j i

)
− ∂iθ + ϕjfji

R̂ij = Rij −Djϕi − (e+ θ)

(
ρij +

1

2
fij

)
− ϕiϕj + 2ρkiρkj +

1

2
fjkf

k
i

(B.13)

where
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Ri
jkm = ∂[kΓ

i
m]j + Γn

[mjΓ
i
k]n (B.14)

and the two Ricci scalars are related by

R̂[g] = R[h]− 2e(θ)− θ2 − 2ϕ2 − 2Diϕ
i +

1

4
Tr(ff)− Tr(ρρ) (B.15)

We see that although the bulk Christoffel symbols were not symmetric (i.e. there is

torsion) the Ricci tensor is symmetric. Therefore the Einstein tensor will also be sym-

metric.

The Einstein tensor is defined by

Gµν ≡ Rµν −
1

2
Rgµν (B.16)

and equations of motion read

Gµν = −Λgµν (B.17)

But since this is a tensor equation, it is invariant under coordinate transformations and

thus it will has the same form for the hated tensors:

Ĝµν = −Λgµν (B.18)

Of course the last two equations do not mean that the components of the Einstein (or

Riemann) tensor are the same in the two bases, since the hated µ, ν indices take values

in {e, i} in the Einstein tensor and the metric according to its basis while the unhated

ones take values in {z, i} (again according to its basis)1.

So, by direct computation, starting from the Ricci tensor components and the Ricci

scalar, we get the components of the Einstein tensor. In the third equation we expressed

the Einstein tensor of the bulk metric gµν with the corresponding one for the small

metric hij which is denoted by Gij and is constructed from B.14.

1Here to be precise we should denote the new diagonal metric with ĝ to distinguish it form the old
one g. But this would have made our notation very bad and difficult to read so we remark that since
we made the coordinate transformation {z, i} → {e, i} whenever we write g we mean the new diagonal
metric.
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Ĝee =− 1

2
Tr(ρρ)− 3

8
Tr(ff)− 1

2
R+

1

2
θ2

Ĝei =Ĝie = Dj

(
ρj i +

1

2
f j i

)
− ∂iθ + ϕjfji

Ĝij =Gij −Djϕi − (e+ θ)

(
ρij +

1

2
fij

)
− ϕiϕj + 2ρkiρkj

+
1

2
fjkf

k
i + hij

(
e(θ)− 1

8
Tr(ff) +

1

2
Tr(ρρ) +Dkϕ

k +
1

2
θ2 + ϕ2

)
(B.19)

Combined with the Einstein equations yields

0 =− 1

2
Tr(ρρ)− 3

8
Tr(ff)− 1

2
R+

1

2
θ2 + Λ

0 =Dj

(
ρj i +

1

2
f j i

)
− ∂iθ + ϕjfji

0 =Gij −Djϕi − (e+ θ)

(
ρij +

1

2
fij

)
− ϕiϕj + 2ρkiρkj

+
1

2
fjkf

k
i + hij

(
e(θ)− 1

8
Tr(ff) +

1

2
Tr(ρρ) +Dkϕ

k +
1

2
θ2 + ϕ2 + Λ

)
(B.20)

Before expanding the tensors we first define2

m(k)i
j ≡

(
h−1
(0)h

(k)
)i

j n(k)
i
j ≡

(
h−1
(0)π

(k)
)i

j (B.21)

and the scalars

X(1) ≡ Tr(m(2))

X(2) ≡ Tr(m(4))− 1

2
Tr(m2

(2)) +
1

4

(
Tr(m(2))

)2
Y (1) ≡ Tr(n(0))

(B.22)

From the expansions 3.53 we get the expressions

2Note that h
(0)
ij acts as a metric only on the boundary terms. Which means that whenever we write

hij
(2) we simply mean hik

(0)h
(2)
kl h

lj
(0), which is not the inverse of

(2)
ij .
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hij(x, z) = z2
(
h−1
(0) − z2m(2)h−1

(0) − z4(m(4) −m2
(2))h

−1
(0) + ...

)ij
− zd+2

(
n(0)h−1

(0) + ...
)ij

√
−deth(x, z) = z−d

√
−deth(0)(x)

(
1 +

1

2
z2X(1) +

1

2
z4X(2) + ...+

1

2
zdY (1) + ...

)
ρij(x, z) = −δij + z2m(2)i

j + z4(2m(4) −m2
(2))

i
j + ...+

d

2
zdn(0)

i
j + ...

θ(x, z) = −d+ z2X(1) + z42(X(2) − 1

4
(X(1))2) + ...+

d

2
zdY (1) + ...

ϕi(x, z) = z22a
(2)
i + ...+ zd−2(d− 2)p

(0)
i + ...

fij(x, z) = f
(0)
ij (x) + z2D

(0)
[i a

(2)
j] + ...+ zd−2D

(0)
[i p

(0)
j] + ...

(B.23)

where the leading order of field strength tensor was defined by f
(0)
ij ≡ ∂[ia

(0)
j] . And the

leading order of the Weyl-covariant derivative D
(0)

as we mentioned earlier.

We also expand the Christoffel symbols of the ”small metric” as follows

Γi
jk =Γi(0)

jk + z2
(
1

2
him(0)

(
D

(0)
j h

(2)
km + D

(0)
k h

(2)
jm − D

(0)
m h

(2)
jk

)
−
(
a
(2)
(j δ

i
k) − a(2)m hmi

(0)h
(0)
jk

))
+ ...− zd−2

(
p
(0)
(j δ

i
k) − p(0)m hmi

(0)h
(0)
jk

)
+ ...

(B.24)

Therefore, by contracting B.14 and inserting the previous expansion, we get3

Rij =R
(0)
ij + z2

(
1

2
D

(0)
n

(
hnm(0)

(
D

(0)
j h

(2)
im + D

(0)
i h

(2)
jm − D

(0)
m h

(2)
ji

)))

+ z2
(
(d− 1)D

(0)
j a

(2)
i − D

(0)
i a

(2)
j + h

(0)
ij D

(0) · a(2) − 1

2
D

(0)
j D

(0)
i X(1)

)
+ ...+ zd−2

(
(d− 1)D

(0)
j p

(0)
i − D

(0)
i p

(0)
j + h

(0)
ij D

(0) · p(0)
)
+ ...

(B.25)

Similarly the Ricci scalar expands as

3We dropped the bar notation in the leading terms for simplicity.
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R =z2R(0) + z4
(
hij(0)D

(0)
i D

(0)
k

(
mk

(2)j − Tr(m(2))δ
k
j

)
+ 2(d− 1)D

(0) · a(2) − Tr(m(2)h
−1
(0)R

(0))
)

+ ...+ 2(d− 1)zdD
(0) · p(0) + ...

(B.26)

And finally we expand the Einstein tensor

Gij =G
(0)
ij + z2

(
1

2
D

(0)
n

(
hnm(0)

(
D

(0)
j h

(2)
km + D

(0)
k h

(2)
jm − D

(0)
m h

(2)
jk

)))

+ z2
(
(d− 1)D

(0)
j a

(2)
i − D

(0)
i a

(2)
j + h

(0)
ij D

(0) · a(2) − 1

2
D

(0)
j D

(0)
i X(1)

)

+ z2
(
−1

2
h
(2)
ij R

(0) − 1

2
h
(0)
ij D

(0)
k D

(0)
l

(
(h−1

(0)h
(2)h−1

(0))
kl −X(1)hkl(0)

)
+

1

2
h
(0)
ij Tr(m(2)h

−1
(0)R

(0))

)
+ ...+ zd−2

(
(d− 1)D

(0)
j p

(0)
i − D

(0)
i p

(0)
j − (d− 2)h

(0)
ij D

(0) · p(0)
)
+ ...

(B.27)

First let us look on the zz-component of Einstein equations B.20. At the order O(z0)

we get the trivial equation Λ = −d(d−1)
2 . The O(z2) order gives

X(1) = − 1

2(d− 1)
R(0) (B.28)

And if we take the O(z0) order of the ij-component and plug in B.28 we get 3.55.
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Weyl cosmology

In order to derive the FRW metric we start from the most general form of a metric

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj (C.1)

and consider an observer with spacetime coordinates (t, xi). In the comoving frame its

four-velocity will be

uµ =


u0

0

0

0

 (C.2)

Since uµuµ = 1 we get u0 = 1√
g00

.

Now, for a constant time slice of spacetime Σt, isotropy dectates that the projection of

the four-velocity on this slice should be zero. This means that for ever v ∈ Σt we have

u · v = 0 ⇒ g0iu
0vi = 0 (C.3)

And since this should hold for every v on Σt, we get

g0i = 0 (C.4)

Furthermore, if we think about the acceleration of the observer, we know that it is given

by

63
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aµ = uν∇νu
µ (C.5)

Taking the i-component yields

ai = ∂i ln
√
g00 (C.6)

and isotropy demands that this should be zero. Therefore the coefficient g00 is only a

function of time. This way we can define

t′ =

∫ t

0

√
g00(λ)dλ⇒ dt′ =

√
g00dt (C.7)

Changing the notation from t′ to t for simplicity gives us

ds2 = dt2 + gijdx
idxj (C.8)

Also, considering a spatial vector v ⊥ u and normalized (i.e. vµvµ = −1 and v0 = 0) we

define

H = vµvν∇µu
ν (C.9)

which is the spatial components of the gradient of the four-velocity. So it cannot depend

on the direction of the spatial vector vµ.

Doing a little bit of calculation we get

H =
1

2
vivj∂tgij (C.10)

But since vivjgij = −1, and since we know that the result of vivj∂tgij cannot depend

on the direction of v, we get that

∂tgij = A(t)gij (C.11)

where A is scalar function of time. Inserting it back to the definition of H we get that

A = −2H. Therefore
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∂tgij = −2Hgij (C.12)

We also define

a(t) = e
∫
H(t)dt ⇒ H =

ȧ

a
(C.13)

and integrating ∂tgij = −2Hgij gives

gij = −a2g̃ij ⇒ (C.14)

ds2 = dt2 − a2(t)g̃ijdx
idxj (C.15)

Finally, we know that in a (d + 1)-dimensional maximally symmetric space, like our

Universe, the Riemann tensor can be written as

Rµνρσ =
R

d(d+ 1)
(gµρgσν − gµσgνρ) (C.16)

From this relation we get

Rij [g̃] =
R[g̃]

3
g̃ij ≡ 2kg̃ij (C.17)

Isotropy in the spatial metric g̃ implies that

g̃ijdx
idxj = e2β(r)dr2 + r2dΩ2 (C.18)

for an arbitrary function β which can be found from

R11[g̃] = 2kg̃11 ⇒
2

r
β′(r) = 2kg̃11 ⇒ β(r) = −1

2
ln (1− kr2) (C.19)

and therefore we have the FRW metric in its full glory

ds2 = dt2 − a2(t)

(
1

1− kr2
dr2 + r2dΩ2

)
(C.20)
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To see the components more clearly we write it in a matrix form

gµν =


1 0 0 0

0 − a2(t)
1−kr2

0 0

0 0 −a2(t)r2 0

0 0 0 −a2(t)r2 sin2 θ

 , gµν =


1 0 0 0

0 −1−kr2

a2(t)
0 0

0 0 − 1
a2(t)r2

0

0 0 0 − 1
a2(t)r2 sin2 θ


(C.21)

Homogeneity and isotropy implies that

Aµ = (A(t), 0, 0, 0) (C.22)

So we can compute the new ”Christoffel symbols”. The non-vanishing ones end up to

be

G0
00 = −A, G0

11 =
aȧ−Aa2

1− kr2
, G0

22 = ar2(ȧ− aA), G0
33 = ar2 sin2 θ(ȧ− aA)

G1
01 =

ȧ

a
−A, G1

11 =
kr2

1− kr2
, G1

22 = r − kr3, G1
33 = (r − kr3) sin2 θ(ȧ− aA)

G2
02 =

ȧ

a
−A, G2

12 =
1

r
, G2

33 = sin θ cos θ, G3
03 =

ȧ

a
−A, G3

13 =
1

r
, G3

23 = cot θ

(C.23)

Next we define the Ricci tensor as

Rµν = ∂λGλ
µν − ∂νGλ

µλ + Gκ
µνGλ

κλ − Gκ
µλGλ

κν (C.24)

And with this definition we find that the non-vanishing components are

R00 =
3(ȧA+ aȦ− ä)

a

R11 =
2k + 2ȧ2 + a2(2A2 − Ȧ)− 5aȧA+ aä

1− kr2

R22 = r2
(
aä+ 2ȧ2 + 2k + a2(2A2 − Ȧ)− 5aȧA

)
R33 = r2 sin2 θ

(
aä+ 2ȧ2 + 2k + a2(2A2 − Ȧ)− 5aȧA

)
(C.25)

Therefore we can define the Ricci scalar to be R = gµνRµν , from which it yields
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R = −
6
(
k + ȧ2 + aä+ a2(A2 − Ȧ)− 3aȧA

)
a2

(C.26)
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