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Abstract

Aerosols and clouds play a dominant role for solar radiation attenuation with great implication in
climate and energy related applications. The scope of this dissertation is to investigate the role of
aerosols and clouds to this attenuation, aiming to improve surface solar radiation forecasting and
related applications. In addition, atmospheric aerosols, being also of particular concern for human
health, have both natural and anthropogenic origin, and it is more than necessary to understand and

analyze their variability at different spatial scales.

Cities are one of the major sources of anthropogenic aerosols. The increased urbanization (70% of
world’s population by 2050) raises several environmental challenges, including air quality
degradation. The spatial and temporal variability of urban aerosol state of 81 cities with a population
over 5 million was investigated, relying on daily satellite-based aerosol optical depth (AOD) retrievals
of fine spatial resolution, over an 18-year period (2003 to 2020). The population changes of those
cities were also examined. According to the results the European and American cities have lower
aerosol loads compared to African and Asian cities. For European, North American, and East Asian
cities, aerosols are decreasing over time while their population is increasing. Especially for Chinese
cities the greatest reduction in aerosols was found, despite their population growth, in response to the
rigorous environmental measure implemented the last decade. For the rest of Asian, African, and
South American cities, an increase in their aerosol load was found along with an increase of their
population. For Indian cities the greatest increase in aerosol loads was found, a change that was
correlated with the population growth. The agreement of the satellite-derived AOD trends against
those obtained from ground-based AERONET measurements was also examined. Most of the trends
agreed in sign for ground-based stations within the geographical limits of the contiguous urban area of
the examined cities. This study highlights the vital and essential contribution of spaceborne products

to monitor aerosol burden over megacities.

To analyze both anthropogenic and nature aerosols, including their direct radiative effects, focus was
put on the regional scale and especially to the broader Mediterranean basin. The natural aerosol
component that has significant contribution to the aerosol mixture over Mediterranean is dust. The
continuous satellite monitoring of atmospheric aerosols provides long term satellite datasets of AOD,
dust optical depth (DOD) and their vertical distribution in the atmosphere which contribute to
understanding their direct radiative effects. The quantification of total and dust aerosols direct effects
on global horizontal irradiance (GHI; important for photovoltaic installations) and direct normal
irradiance (DNI; important for concentrating solar power systems) was attained for the broader
Mediterranean basin, over the period 2003-2017, using the satellite based Modls Dust AeroSol



(MIDAS) AOD/DOD datasets and radiative transfer modeling (RTM), under clear-sky conditions. The
Mediterranean basin is a region of high interest for such a research effort since it combines high solar
energy potential with an increasing capacity in solar energy installations. Aerosol attenuation of
annual GHI and DNI were 1-13% and 5-47%, respectively. Over North Africa and the Middle East,
attenuation by dust was found to contribute 45-90% to the overall attenuation by aerosols. After 2008,
attenuation of surface solar radiation by aerosols became weaker mainly because of changes in the
amount of dust. Sensitivity analysis using different AOD/DOD inputs from Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis dataset revealed that using CAMS products leads to
underestimation of the aerosol and dust radiative effects compared to MIDAS, mainly because the
former underestimates DOD. The results of this analysis are important for understanding of the role of
aerosols and especially of dust on GHI and DNI over the Mediterranean Basin and planning of future
solar installations.

As solar energy nowecasting and short-term forecasting are essential for the optimization of solar
renewable energy use in the energy mix, accurate clouds and aerosol datasets are the key factors to
achieve optimum results. SENSE?2 is the upgraded version of an existing solar energy nowcasting
system that produces real-time estimates of surface GHI based on earth observation data (satellite and
model based) at high spatial and temporal resolution (~5 km, 15 min) for a domain including Europe
and the Middle East—North Africa (MENA). The improvements that have been introduced to SENSE?2
are a new model configuration and the upgrade of cloud and aerosol inputs. The improved SENSE2
has been validated for 1 year (2017) using ground-based measurements from 10 stations. The
limitations of evaluating such a model were investigated using surface-based sensors due to cloud
effects. Results for instantaneous (every 15 min) comparisons show that the GHI estimates are within
+50 W m-2 (or £10%) of the measured GHI for 61% of the cases after the implementation of the new
model configuration and a proposed bias correction. The bias ranges from-12 to 23 W m-2 (or from -2
to 6.1%) with a mean value 11.3 W m-2 (2.3%). It was demonstrated that the main overestimation of
the SENSE2 GHI is linked with the uncertainties of the cloud-related information within the satellite
pixel, while relatively low underestimation, linked with AOD forecasts (derived from CAMS), is
reported for cloudless-sky GHI. The highest deviations for instantaneous comparisons are associated
with cloudy atmospheric conditions when clouds obscure the sun over the ground-based station. Thus,
they are much more closely linked with satellite vs. ground-based comparison limitations than the
actual model performance. The NextSENSE2 short term forecasting system (up to 3 h ahead) based on
a cloud motion vector technique, was also validated. It was found that it outperforms the persistence
forecasting method, which assumes the same cloud conditions for the future time steps, especially for

periods with increased cloudiness and changes in cloudiness.

Keywords: solar radiation, aerosol, clouds, solar radiation forecasting, radiative transfer modeling
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Hepiinyn

H e€acBévnon mov mpokaiovv ta cHVVEPQ KOl TO OTHLOCPAPIKA OLOPOVUEVE COUOTION GTNV ALK
aKTWVOPBOAI0 TOV TAVEL OTNV EXPAVELX TNG YNG EXEL OCNUOVTIKES EXTMTOCELS OTO KA TNG YNG AAAA
Kot 6€ apuoyEG Tov oyetilovrol pe v mapay®yn nAokng evépyeoc. To avikeipevo peAétng e
Topovoas STPPNg etvarl n dgpevvnon oV POAOL TOV AEPOAVUATOV KOl TOV VEQOV GE OUTH TNV
eCacBévnon, pe otoyo ™ Pertioon TV cvoTNUdTOV TPOYVOONG TG NAOKNG akTivoBoAing mov
QTAVEL OTO £00POC KOl GAAMV CYETIKMOV LE TNV EKUETAALELON TNG MAMOKNG EVEPYELNG EPAPUOYDV.
EmumAéov, o aiwpovpeva copatiow , To omoio £(0vV EnioNg ONUAVTIKEG ENUTTOCELS GTNV VYEN TOV
avBpOTOV, KATATAGGOVTOL GE PLGIKNG Kot avOpToyEVODS TPoEAELON G, KOt EIVOL KATL TAPOTAVE® OO

ATaPAiTNTO VO KOTOVOT)COVLE KAl VO 0VOADGOVLLE TIG LETOPOAES TOVG GE OAPOPES YWPIKES KAIUOKES.

Ot mélelg amotedoVVv TV kvpla nyn ovOpomoyevov aepoivudtov. O maykocuog puiuodg
aotikonoinong cvveyilet va avéaveral (to 70% tov maykoouiov tAnbvopod uéypt to 2050) 1o omoio
ocuvogetal pe TANOMpo TEPPAAAOVTIIKOV EMATOCEOV OTOS M vroPdduion g mowvTTOS TOV
ATULOCPOPIKOV OEPQL. XTNV TOPOVGH SUTPIPN LEAETHONKE N YOPIKT Kot XPOVIKY LETOPANTOTNTA TOV
aoTIKOV oagpoivpdtov 81 moAewv pe TANBuGHd TAve amd 5 ekotoppdplo, YPNOLOTOUDVINS £Vl
VYNANG YOPIKNG avAALOTG 00PVPOPIKO TPOTOV TOL 0T TIKoV BdBovg Twv aepoivpdtov (AOD), yia éva
xpoviko ddotnua 18 xpovev (2003 pe 2020). Meremnkay eniong ot petaforés otov TAnbvoud Tov
TOAE®V AVTAOV Y10 TO 1010 ¥POVIKO O1doTnUa. ZOUP®VO UE TO ATOTEAECUATO 01 TOAELS TG Evpdnng
Kot TG AUEPIKNG €XOVV MYOTEPO ALOPOVUEVO COUATION GE OXEOT TIC TOAELS TNG APPIKNG KOl TNG
Aociog. Meiwon tov awwpovpevev copatdiov Bpétnke yu 1ig moéreg ™ Evponng, Bopelag
Apepikng kot g AvatoMkng Aciag, evo Bpébnie avénom tov TANBucHoD TOVE Yo TO 1010 J1UGTNLLOL.
H peyaivtepn peioon tov awwpovpevov couatdiov Bpédnke yia tig moreg g Kivag, mapoin v
avEnomn tov TANBLGUOV TOVG, N 0Toln OPEIAETOL OTO VGTNPA TEPIPAAAOVTIKG PETPO TOV TAPONKOV
o1 YOpO TNV TEAELTOL deKaETiOL. AVENOT TOV MOPOVUEVOV COUATIOIMV BpEBnke Yo TIG VTOAOITES
TOAES TG Aciag, Tig TOAES TG A@pikng kot TS NOTog AUEPIKNG, 6€ GLVIVAGUO pe TNV avénon
otov TAnBvopd tovg. H peyoivtepn avEnon Ppédnke yio tic moAelg g Ivdiog, n omoia Bpébnke va
ocvoyetiCeton pe v avénon otov tAnbuoud tovg. EEetdotnke eniong Katd TOGO 01 TAGELS TOV TYDV
tov AOD mov vroAoyioTnkay amd o SOPVPOPIKA OEOOUEVOE CLUPOVOVV LLE TIG AVTIOTOLYES TYESG OO
petprioelg €6dpovg tov diktbov AERONET. Ot tég tov 1dcemv mov vroloyioTnkov omd Tig
npoavaeepbeiceg dvo mnyéc elyov to 1010 MPOoNUo OTOV O EMiyelng oTtabuUodg NTAY EVTOC NG
YEWYPOUPIKNG TEPLOYNG TOV KAADTTETOL OO TOV OGTIKO 16TO TNG VIO PeAéTn mOAews. Ta amoteAéopato
™G TOPOVGH HEAETNG SIvOuV EUPOGT GTN CNUAVTIKT] GUVEIGPOPA TWV S0PVPOPIKMV TOPATPN|CEDV

GTNV KOTAYPAPN TOV OIOPOVUEVOV COUATIOIMV 68 HEYOUAOVTOAELS.



H oavédlvon 1ov oagpolvpdtov 1060 0vOpOmOoyevolg OGO KOl QUOIKNG  TPOEAELONG,
CUUTTEPTAQUPOAVOUEVOL TNG GUEOC EMIOPOCTC TOVG OTNV MALOKT OKTWVOPROAlD €yve GE TEPLOYIKN
KAMUOKO KoL GUYKEKPIHEVO GTNV €upLTEPT TEPLOYT TG Mecoyeiov. H gpnuikn okdvn amotelel o
Baoikn cLUVIGTOGH TOV AEPOAVUATOV LGIKNG TPoEAevons ot Mecsoyelo. H cuveyng mapatinpnon
TOV OPOVUEVOV COUOTIOIOV amd d0pueoOpovs TapEyel Hakpoypovies perpnoelg tov AOD, tov
omtiko¥ BéBovg ¢ okdvne (DOD) aAdd kot TG KOTaKOpLENE SOUNG TOVG HESH GTNV OTULOCOULPU,
ogdopévo, TOAVTIUE. OTNV KaTavonon TG GUEoNS OAANAETIOpaoNg TV OgPOAVUATOV pHE TNV
aktvoBoiia. Xpnowomoidvtag dedopévo tov AOD ko DOD mov PBacilovior 6g dopu@opiiés
napatnpnoelg tov padiopetpov MODIS (Bdon dedopévov MIDAS — Modls Dust AeroSol) kot
HOVTELO d1A000NG 0K TIVOPOALOG TOCOTIKOTOMONKE 1 dipeon EXIOPOOT TOV GLVOAOL TOV OEPOAVUATOV
KOl Y®OPLOTA HOVO TNG 6KOVNG GTNV OAKN NAlakn aktvoPoliio og opilovtio eninedo (GHI; n omoia
€LVOIL OTULOVTIKT Y100 T, OTOBOATAIKG GLOTHUATA) KoL GTNV AUEST NAKT aKTvoBoAia kaBeTa Tpog
™ S1evbuvon duadoong (DNI; i omoia eivort onpovTIKT Y10 TOL GUYKEVIPOTIKG NAOKE cvoTipota) ved
avEPELO 0VPAVO, Yo TNV EVPVTEPT TEPLOYN TS Mesoyeiov, yia v mepiodo 2003 — 2017. H meproyn
avTn glvat 1aitepov evolaPEPoVToS KaBMS gival pia meployn Le VYNAO NAKSO SuVOUIKO Kot avénon
TOV EYKOTACTACEMV EKUETAAAEVOTG TG NAakNG evépyelag. H péon emota e€acBévnon g GHI kot
Mg DNI mov ogeideton 6to chvoro tav agpoivpdtov PBpédnke petacd 1% pe 13% won petald 5% pe
47%., avtiotoryo. [la v meproyn g Bopetag Agpikng kot g Méong Avatoing, to 45 pe 90% g
e€aoBévnong kot TV 000 GLVICTOGMOV TNG NAOKNG OKTWVOROAING ad TO GUVOAD TOV 0EPOAVUATOV
Bpénke va opeldetal 61N cLVICTOGCH TNG EPMUIKTY okOvnG. Metd 1o 2008 Bpénke peimon g
e€aoBévnong g NMAMOKNG akTvoBOoAldG TOV QTAVEL TNV EMPAVELD TG YNG OO TO GUVOAO T®V
aEPOAVUATOV, TO 0Toi0 amodoOnke Kupimwg oTIG HUETAPOAEG TG CLVIGTMOOCNG TNG EPNUKNG OKOVIG.
Téhog, mpaypatoromOnke avédAvon evolchnciog TV OTOTEAEGUATOV YPNCULOTOIDVTOS OLOLPOPETIKE
dedopéva AOD ko DOD, kot ovykekpiéva and 1o povtého Copernicus Atmosphere Monitoring
Service (CAMS reanalysis dataset). Zopewvo pe To. 0mOTEAECUOTO VTOEKTILATOL ) GpEST emMidpaon
TOL GLVOAOVL TMOV OEPOAVUATOV KOl ¥®PLOTE POVO TG oKOVNING otV NAoKY aktivofoiio Otov
ypnowomotovvron dedopéva AOD kot DOD and to povtého tov CAMS ce oyéon pe Tig avtictotyeg
TipéS otav ypnopomombnke n Paon dedopévov MIDAS, kvpiog yiati to poviédo tov CAMS
vroektind o DOD. Ta amotehéopata g avdAvong ovtig ivatl onuovTiKd TOco yio TV KoTovonon
TOL POAOL TOV AEPOAVUAT®V Kot €0KA TS epnuikng okoévng oty GHI ko DNI oty gupitepn
nweployn ™G Meooyeiov, KabmdG kot 61N @don oYedOGHOD VEOV EYKATOOTACEMV EKUETAAAELONG

NAOKTG EVEPYELOG.

H extipnon tov emmédwv g NAMOKNG EVEPYELNSG TOV PTAVEL GTNV EXUPAVELL TNG YNG OE TPOYLATIKO
xpOvo (nowcasting), kot n Bpayvrpobeoun tpodyveon g (short-term forecasting) sivon onpoavtikd

epyadeia yio v BEATIOT €vialn TOV GLOTNUATOV EKUETOAAELONG NAOKNG EVEPYELNG GTNV Ayopd
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evépyewng. H axpifela tov anoterespdtov tov epyoieiov avtov eaptdtal o€ peyaio Babuo and v
akpifeld TV OEdOUEVOV VEQOKAADYNG KOl TOV ®POVUEVOV COUATIOI®MVY, T0 OTO10 OTOTEAOVV TO
KVpa dedopéva 16000V Tovg. To oo SENSE2 sivor n Bektiopévn €ékdoomn evog Tpoimapyovtog
OLOTNUATOG NOWCASLING TOV eTTES®V TNG NAOKNG EVEPYELNG TTOV PTAVEL GTNV EXLPAVELN TNG YNG, TO
omoio mapdyel o€ Tpayuatikd xpovo ektipnoelg g GHI oty empdvela ypnowonoiwvtag dedopéva
amd d0pLPOPOVS KOl LOVTEND, O LYNAN XOPIKT Kal xpovikh avaivon (=5 km, 15 min) pe meploym
KaAvymg v Evpdnn, ™ Bopeia Appikr| kot t Méon AvatoAr. Ot BeAtidoelg mov £ywvav 6T1o
ocvotua SENSE2 ota mhaicio g mapovsog dtatpipng apopd otov tpdmo vroroyiopot e GHI kat
T0 TG AAUPEVEL VTOWYIV TO LOVTEAO TOL GUVVEPQ. KO TO OlwPOVUEVE cwpatioe. Eywe a&loAdynomn tov
BeAtiopévov ocvotuatog SENSE2 ypnoipomoidvrog entyeteg petpnoetg oo 10 otabuoive yuo 1 xpovo
(2017). AwepeovnOnkav emiong To UELOVEKTAUOTO Kol Ol Teplopiopoi oty a&loAdynon TETolmv
HOVTEA®V e eMiyeleg HETPNOELG AOY® NG EMIOPACTG TOV VEP®V. ZOUP®VO LE TO. ATOTEAEGLOTO TOV
ovyKpicewv otypoiov Tov (xpovikn kiipako 15 mMin) ot d10popég TV EKTIUOUEVOV TILOV TG
GHI o¢ oyéon pe 11¢ emiyeieg perpnioelg eivar evtdog tov £50 W m2 (7 £10%) y 1o 61% tov
TEPUITAOGEDV, POV EPUPUOCTNKOV 01 PEATIOCELS GTO VEO HOVTEAO KO Lo TPOTEWVOUEVT] 010pBmon
CLOTNUOTIKOV c@oipudtov. To péoo oeaipa g ektiudpevng GHI Bpédnke peta&y -12 pe 23 W m-2
(M and -2% pe 6.1%) yro.tovg 10 otabpove, pe péon tiun 11.3 W m-2 (2.3%) yia 6Aovg 10v otadpois.
Agiybnke 611 0 KOpro¢ Aoyog vepextiunong te GHI and 1o SENSE2 ogeileton oe afefardtnteg mov
oyetifovtol T vepokailvym viog Tov gikovootolyeiov (pixel) Tov dopvpdpov, evd M oyeTikd pikpy
vroektipunomn g GHI vtd avépero ovpavd oeeiletar 6T TPoyvdoelg Tov tiu®mv tov AOD (amd to
povtého tov CAMS). Z11g cuykpioelg otrypaiov THdv, ol peyaiitepeg amokAicelg fpébnkav dtav
VIAPYAV VEPN Kot OTaV avTd EKkpovPav Tov A0 e GYéon Ue ToV entyelo otabud, detyvovtag 0Tl ot
amokAlcels mov PpéOnkav Yoo T0 HOVTEAO GUVOEOVTOL TEPIGGOTEPO HE TOVG TEPLOPIGHOVS TOV
€LGAYOVTOL OTAV GUYKPIvOVTOLl EMiyEleg LETPNGELS e dOPLPOPIKAE TTpoidvTa, Tapd Le TNV KaBovTy|
emidoomn tov povtélov. A&loAoyndnke eniong 1o cvonua Bpayvrpobeounc tpdyvmong (pe opilovia
npdyvoong 3 h) tov enmédwv ™ nhokng evépyelag NeXtSENSE2 1o omoio Baciletar otn puébodo
VITOAOYIGHOD SLOVUGHATOV NG Kivnong tov vepdv (cloud motion vector technique). I'a o wo
avTiKelwevikn a&loAdynon tov povtélov, cuykpibnke exiong pe ™ pébodo Tpdyvmaong « persistencey,
o1V omoin 01 cuVONKES vepokdAvymc Bewpoivian 101€G Y100 OAEG TIG LEAAOVTIKEG YPOVIKES OTLYES TOV
opilovta mpdyvmong, kol Ppédnke 61t To NexXtSENSE2 vreptepel €101k o€ mep16d0vg e avEnuévn

VEQEOKAALYN KOt EVAALAYEG GTI VEQOKAALY.

AEEa1g Khero1d: nAokn akTvofoAia, agpoAduata, cOvvepa, TpdYV®SN NAOKNG oKTvoBoAlag,

povtélo d1doong akTvofoAiag
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List of Abbreviations

AE Angstrom Exponent

AERONET | AErosol Robotic NETwork

AOD Aerosol Optical Depth

BOA bottom of the atmosphere

BSRN Baseline Surface Radiation Network
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
CAMS Copernicus Atmospheric Monitoring Service
CMF Cloud Modification Factor

CMV Cloud Motion Vector

COT Cloud Optical Thickness

CSPs Concentrating Solar Power systems

DB Database

DI Direct Irradiance

DNI Direct Normal Irradiance or Irradiation
DOD Dust Optical Depth

DREs Direct Radiative Effects

DSSI Downwelling Surface Solar Irradiance

DU SSA Dust Single Scattering Albedo

ECMWF European Centre for Medium-Range Weather Forecasts
EO Earth Observation

IR Infrared

Gl Global Irradiance

GHI Global Horizontal Irradiance or Irradiation
LibRadtran | Library of Radiative transfer

LUT look up table

MACv2 Max-Planck Aerosol Climatology version 2
MIDAS Modls Dust AeroSol

MMA Major Metropolitan Area

MODIS MODerate resolution Imaging Spectroradiometer
MSG Meteosat Second Generation

NIR Near Infrared

NWC SAF Satellite Application Facilities of Nowcasting and Very Short-Range Forecasting
OMI Ozone Monitoring Instrument

PM Particulate Matter

PV Photovoltaic

RTM Radiative transfer model

SZA Solar Zenith Angle

SSA Single Scattering Albedo

SW Shortwave

TCWV Total Column Water Vapor

TOA Top Of the Atmosphere

TOC Total Ozone Column

TOMS Total Ozone Mapping Spectrometer

UN United Nations

uv UltraViolet

UVA UltraViolet-A

UVvB UltraViolet-B

VIS Visible
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1 Introduction

Aerosols and clouds are the key atmospheric factors that determine the solar radiation field inside the
earth — atmosphere system, with great implications in earth’s climate and the solar energy sector of
renewables. Aerosols have both natural and anthropogenic origin with several open scientific
questions regarding their trends for assessing aerosol sources’ changes over time. Their presence in the
lower part of the atmosphere is harmful for human health. Cities are main sources of anthropogenic
aerosols, making imperative the need for emissions regulations to minimize their health’s effect.
However, the earth’s population tends to be concentrated in large urban centers, which increases the
energy demand with great environmental implications, with renewables being the sustainable way for
their mitigation. The interaction between solar radiation with clouds and aerosol particles has not yet
been fully understood and much scientific research hasbeen focused on this area. According to Fifth
Assessment Report of IPCC (Boucher et al.,, 2013), the largest uncertainty to estimates and
interpretations of Earth’s changing energy budget is contributed by clouds and aerosols. Aerosol
optical properties control the sign of the Earth’s radiative budget by cooling or heating the
atmosphere. Continuous monitoring of aerosol properties from ground and space, and studies of
aerosols radiative effects aim to reduce those uncertainties. The continuously growing solar renewable
energy sector needs accurate solar resource for optimal planning and deployment. Accurate cloud and
aerosol datasets and their interactions with solar radiation are essential for estimating solar energy on
earth’s surface. In addition, solar radiation/energy forecasting techniques depend on the level of

accuracy of predicting cloud motion on various spatial resolutions.

Since 2018, about 55% of the world’s population has been living in urban areas and the current
projections suggest that this percentage will rise to 60% by 2030 and to 70% by 2050 (UN, 2019b).
Consequently, the population growth will impose difficulties in implementing the United Nations
(UN) Agenda for Sustainable Development Goals (SDGs), including SDG 11 related to “making cities
and human settlements inclusive, safe, resilient and sustainable”. Megacities are defined as cities with
more than 10 million inhabitants. According to UN (2018a), there are 33 megacities worldwide and
this number is expected to increase to 43 in 2030. Even though ~ 7% of the global population in 2018
resides in those megacities (UN, 2018a), their continuous increase both in size and number bring them
in the spotlight, as they will accommodate an increased share of the world’s population (projected to ~
10% by 2030). This population growth of cities, and especially those with more than 5 million
inhabitants, raises urgent and critical environmental issues, like air quality (WHO, 2021). The worst
pollutant affecting megacities is suspended particulate matter or aerosols. This is of particular concem,
as high levels of aerosols are known to be related to increased morbidity and mortality rates, and in

many of the megacities in developing countries healthcare for acute cases is less proficient than in
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developed countries. Particularly, in 2019, cities’ air pollution constituted the 4th leading risk factor

for early death at a global scale (HEI, 2020).

Many countries worldwide have enforced policies in recent decades to reduce anthropogenic aerosol
emissions in urban areas towards mitigating the aerosol adverse health effects. These policies include
the transition of thermal engines technologies to hybrid and pure electric technologies, pollution fees
on big industries and schemes for air quality control. The exact policies and the level of
implementation largely differ between countries, but it is the main cause of decrease in aerosol
concentration in some megacities. WHA69 (WHO, 2016) set a global roadmap and targets for
reduction of air pollution related deaths, urban air quality and clean energy. In the United States (US),
the firstregulations were legislated in 1970, and Environmental Protection Agency (EPA) reported a
drop of ~40% in aerosol related air pollution in major US cities in the last half century (DeMocker,
2003). In the European Union (EU) countries, a decrease of ~29% in aerosols has been reported since
1970 as a result of policy measures and technological improvements (Turnock et al., 2016). In South
and Central American countries, a poor emission control has been reported, resulting in 150 million
people living in urban areas with poor air quality (UNEP, 2016). Jin et al. (2016) summarized the
policies and their implementation over the last three decades for China, and consequently China’s
anthropogenic emissions markedly declined in the last decade (Zheng et al., 2018). In 2019, India
launched the National Clean Air Programme, with the objective to reduce in 2024 the particulate air
pollution by 20% to 30% with respect to 2017 levels, in 122 cities (Ganguly et al., 2020). The
regulations for air pollution for many African cities are weak or non-existent (Abera et al., 2020),
which will be challenging for their future air quality, since many African cities have an unprecedented
population growth. So, it is of vital importance to understand the trends of aerosol loads and their
spatial variability over those great population agglomerations, this way assessing the effectiveness of
air pollution emission regulations. Additionally, quantifying aerosol regime over cities is important for
the solar renewable systems, of large or rooftop scale. In Chapter 4 the aerosol spatial and temporal
variability over the greatest cities of the world is investigated using spaceborne data and possible links

of the latter with changes in cities’ population.

Aerosols are among the main climate change drivers and estimates of changes in their radiative effects
are highly significant for climate-change-related policy making as they are linked to changes in
surface temperature (IPCC, 2013). Nevertheless, estimates of the total anthropogenic radiative forcing
are still highly uncertain (Chen, 2021). Several reasons contribute to these not yet well-constrained
estimates, such as the heterogeneity of the processes governing aerosols’ production and removal,
which in turn regulate optical and microphysical properties, both determining the associated aerosol—
radiation interactions. Focusing on Earth’s surface, apart from the importance of aerosols on climate,
studies quantifying the impact of total aerosols (natural and anthropogenic) on incoming solar
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irradiance are also essential for other societal benefit areas such as the energy sector (e.g., Dumka et
al., 2021; Juliano etal., 2022; Kosmopoulos et al., 2018). Towards the reduction of greenhouse gas
emissions and climate change mitigation, the deployment of renewable energy technologies is one of
the main pillars (Edenhofer et al., 2011; IPCC, 2022), while at the same time renewable energy
technologies provide energy in a sustainable manner. Diverse renewable-energy technologies are
being investigated worldwide, and their deployment has been increasing, with solar energy markets
growing rapidly, such that they could become the major source of energy supplies in the coming
decades (Arvizu et al., 2011; IEA, 2022). For electricity production, the systems in use are the
photovoltaic (PV) cells and the concentrating solar power (CSP) plants, which harness different
components of the solar irradiance: the global horizontal irradiance and the direct normal irradiance,
respectively (Kato, 2016; Sengupta et al., 2021). Within the North Africa, Middle East, and Europe
(NAMEE) domain, International Energy Agency (IEA) projections up to 2025 indicate a continuous
growth in solar PV capacity, while some countries (e.g., Morocco) are increasing their CSP capacity
(IEA, 2020).

The Mediterranean Basin, located at the crossroads of air masses from all over the globe (Lelieveld et
al., 2002), experiences high aerosol concentrations of both natural and anthropogenic origin, and the
aerosol spatiotemporal variability over the area has been investigated in several studies (e.g., Basart et
al., 2012; Hatzianastassiou et al., 2009; Nabat et al., 2013; Papadimas et al., 2008). In addition, due to
its proximity to the Earth’s most active dust sources located across the Sahara Desert and Middle East
deserts, the Mediterranean Basin often experiences high dust aerosol loads (dust intrusions). Several
studies have investigated the Saharan dust transport towards the Mediterranean Basin by exploiting,
either solely or combined, in situ measurements, remote sensing (ground-based or satellite) retrievals
and atmospheric dust numerical products (e.g., Engelstaedter et al., 2006; Nastos, 2012). Across the
Mediterranean Sea, dust concentrations fade down from south to north because of the removal of
mineral particles from the atmosphere, either due to dry or wet deposition (Moulin et al., 1998). It
should be noted that long-range transport of Saharan mineral particles has also been recorded over
northern Europe (Bégue etal., 2012; Papayannis et al., 2008). Additionally, there is a distinct seasonal
cycle of the longitudinal spatial distribution of dust with higher concentrations in spring at the eastern
and central Mediterranean and in summer at the western Mediterranean (Georgoulias et al., 2016;
Gkikas et al., 2013; Moulin et al., 1998). The seasonal patterns are related to the seasonality of the
prevailing meteorological conditions over the area (Gkikas et al., 2015; Moulin et al., 1998). This
intricate aerosol regime along with the increased capacity of solar energy systems in the surrounding
countries, makes the Mediterranean Basin one of the most interesting areas for investigating the

aerosol and dust radiative effects.
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Over most of the globe, the availability of downwelling surface solar irradiance depends mainly on
attenuation by clouds, but the role of aerosols is also significant and under certain conditions can be
dominant (e.g., Fountoulakis etal., 2021; Neher etal., 2019). The countries around the Mediterranean
Basin, apart from their prolonged sunshine durations, also experience high levels of aerosol loads,
mainly composed of mineral particles. For the southern part of the domain, due to the rare cloudy
conditions, aerosols and specifically desert dust constitute the most common source of DSSI
attenuation, as was demonstrated in a study for Egypt by Kosmopoulos et al. (2018). It must be
pointed out here that even for southern Europe, dust can substantially reduce surface solar radiation
during dust intrusions (Kosmopoulos et al., 2017). Thus, studying the radiative effects of dust is of
great interest for the broader Mediterranean Basin. Existing studies are limited to specific locations or
dust event days (e.g., Fountoulakis et al., 2021; Kosmopoulos et al., 2017, 2018). An extensive
analysis of the total aerosol and dust radiative effects for the broader Mediterranean basin over a 15-
year period was conducted, using both spaceborne and reanalysis model aerosol data and additional

climatological datasets and the results are presented in Chapter 5.

Since solar energy resources are strongly affected by atmospheric conditions, they are highly variable
spatially and temporally. From rooftop installations to large solar power plants, reliable information
about solar resources is needed. Ground-based measurements of surface solar radiation are only
available for a few locations (due to the operation’s cost and maintenance), with possible gaps in time.
Hence modeled data are necessary throughout all the various stages of a project development, while
due to the routine operations and management forecast data are also needed (Sengupta et al., 2021).
Existing climatological datasets are needed for solar energy potential assessments for planning of
future solar installations which is important for financial investors. Estimates of solar radiation in real
time are important for power plant installations successful deployment and management. Short term
solar energy forecasting of up to 6 h ahead concerns utility companies and energy suppliers, since it
supports integration of produced energy into the grid and solar energy trading. Therefore, there is a
need for operational nowcasting and short-term solar forecasting for real-time energy production, to
better integrate solar energy exploitation technologies with national and international power systems.
Under all skies, the availability of solar resources is primarily affected by clouds (e.g., Fountoulakis et
al., 2021); for clear-sky conditions, it depends on the atmospheric composition, with the most
important variables being aerosols (e.g., Fountoulakis et al., 2021) and water vapor (e.g.,Yu et al.,
2021). Among those variables, clouds and aerosols are characterized by large temporal and spatial
variability, making them key variables for solar energy applications. Hence, to increase the accuracy
of nowcasting and forecasting tools, it is imperative to understand spatiotemporal variability of cloud

and aerosol properties when implementing the tools.
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Continuously improved earth observation (EO) data (satellite-based and atmospheric models) are
exploited to produce accurate estimates of spectral surface solar radiation in real time (nowcasting),
which has numerous applications in different fields aside from the solar energy sector (e.g.,
Kosmopoulos et al., 2018; Qu et al., 2014; Thomas et al., 2016), like human health (e.g., P. G.
Kosmopoulos et al., 2021; Schenzinger et al., 2023). Due to their large area coverage and high
temporal resolution, geostationary satellite data are used to produce estimates of surface solar
radiation both in real time as an operational service and to generate historical archives based on long-
term satellite measurements. Several methods exist for obtaining satellite estimates of surface solar
irradiance (an overview in Senguptaetal. (2021)). The continued developments and improvements in
satellite estimates of surface solar radiation made since the 1980s resulted in accurate real-time as well
as climatological datasets (Habte et al., 2017; Pfeifroth et al., 2023b; Qu et al., 2014, 2017,
Schroedter-Homscheidt et al., 2022; Sengupta et al., 2018; Urraca et al., 2017), although certain
sources of biases and common factors that increase the uncertainty have been reported: an increase in
the distance from the subsatellite point and more frequent occurrences of clouds (especially
fragmented cloud cover), complex terrain, and bright surfaces (snow, desert). In addition, it is a
challenge per se and increases the evaluation uncertainties when any model is validated at an
instantaneous timescale. Gridded satellite estimates with ground-based point measurements of surface
solar radiation differ not only due to model uncertainties but also due to the different spatiotemporal
scales involved (satellite pixels represent a large area and large time intervals of a few minutes;

ground-based measurements represent the area exactly over the station for smaller time intervals).

Motivated by the recent advances in satellite-based retrievals of surface solar radiation and building
upon the knowledge of already-existing and well-established methodologies, an upgrade has been
performed to an existing service that provides satellite estimates of surface solar radiation in real time.
The aim is for the improved nowcasting system to be the basis of the new forecasting system. The
Solar Energy Nowcasting System (SENSE) was developed under the EU project Geo Cradle by the
Beyond Centre of EO Research and Satellite Remote Sensing at the National Observatory of Athens,
Greece, in collaboration with the Physical and Meteorological Observatory at Davos of the World
Radiation Center, Switzerland (Kosmopoulos et al., 2018). It is a combination of geophysical input
parameters from satellite-based and model data sources and a neural network (NN) technique trained
on precalculated surface solar radiation simulations (look-up table — LUT) using a radiative transfer
model (RTM). It uses the cloud optical thickness (COT) retrievals produced by the Application
Facilities Support to Nowcasting and Very Short Range Forecasting (NWC-SAF) algorithm based on
Meteosat Second Generation (MSG) satellite data and aerosol optical depth (AOD) forecasts from the
Copernicus Atmospheric Monitoring Service (CAMS) as inputs to the NN to derive the surface solar
radiation in real time. More details about the previous version of the SENSE service can be found in
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Kosmopoulos et al. (2018). In the same publication, the validation of this method showed good
agreement on daily and monthly levels; however, various sources of uncertainties have been identified
mainly concerning the use of the NN (especially under high irradiance values), the COT input, and the
structure and density of atmospheric parameters in the LUTs. At Chapter 6 of the thesis the
development of the new version of the model, called SENSE2, is presented and validated against
ground-based measurements, investigating the role of clouds and aerosols in the nowcasting. The
reason for the development of the new version of the model was to minimize the identified
uncertainties of the previous version of the model, before using this model for the new forecasting
system. For the new version, it was decided that the fully physical approach of the model, which
benefits from cloud optical property monitoring by the MSG satellites and recent advances in EO,
would be retained, while the scheme that replaces the direct radiative transfer calculations was
improved.

In operational solar energy forecasting several different methods are used (Sengupta etal., 2021; Yang
etal., 2022), which are categorized with the forecasting time horizon (few seconds to few days) and
the exogenous data i.e., sky cameras, satellite data and numerical weather predictions. The cloud
motion vector (CMV) technique is commonly used on satellite data for solar forecasting a few hours
(up to 6 h) ahead. The CMVs are calculated using consecutive satellite images and, assuming a
constant cloud speed, the future cloud positions are derived by applying the CMV field to the latest
cloud image. The use of CMVs for short-term forecasting of surface solar radiation based on satellite
data started almost 20 years ago (Hammer etal., 1999, 2003; Lorenz et al., 2004). In the last decade,
interest in using optical flow techniques from the computer vision community in satellite images for
cloud motion estimation in the context of solar forecasting has increased. One of the first works was
by (Urbich etal., 2018), who used two optical flow methods for the European domain and compared
them when they were used to forecast MSG-satellite-derived effective cloud albedo. When combined
with SPECMAGIC NOW, those forecasted values of effective cloud albedo deliver short-term
forecasts of surface solar irradiance (SESORA — seamless solar radiation; Urbich et al., 2019). Kallio-
Myers et al. (2020) used an optical flow method on SEVIRI-based images of effective cloud albedo to
forecast global horizontal irradiance up to 4 h ahead with 15 min time resolution for southern Finland
by applying the Heliosat method to the forecasted effective cloud albedo maps in combination with
the Pvlib Solis clear-sky model (the Solis—Heliosat forecasting model). In the same study, they also
found that their forecasting model mostly outperforms persistence, especially under changes in
cloudiness. It is a common practice to benchmark forecasts of surface solar radiation with the
persistence approach (e.g., Garniwa et al., 2023; Kallio-Myers et al., 2020), a method that assumes

constant cloudy conditions for future time steps.
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The NextSENSE system was first introduced in a study by Kosmopoulos et al. (2020) as a novel
short-term solar energy forecasting system (3 h ahead; every 15 min) based on forecasts of satellite-
derived COT using a CMV technique, with solar irradiance estimated by the SENSE model. The
NextSENSE system was developed as a continuation of SENSE during the EU project e-shape and by
the same research groups previously mentioned. The CMV technique that is employed is based on
state-of-the-art image-processing technologies (dense optical flow). The evaluation of the CMV
forecasts was performed by Kosmopoulos et al. (2020) for selected test days with different cloud
movement patterns against the real MSG COT and in terms of irradiance estimates using both
forecasted and real COT. They found that the deviations of forecasted irradiances compared with
nowcasting outputs ranged from 18% to 34% under changing cloudy conditions, outperforming the
persistence method for certain conditions. In the last chapter (Chapter 6) of the thesis the validation of
the NextSENSE model for 1 full year of irradiance forecasts with ground-based measurements is
presented, to obtain more robust conclusions. Additionally, as NextSENSE is based on the same
hierarchy of SENSE with only the CMV analysis added, all improvements to SENSE?2 are inherited
by the new NextSENSE2 system too.

21



2 Theory

2.1 Solar radiation

The definition of basic radiometric quantities precedes, necessary for the proper description of the
radiation, whether solar or another. These radiometric quantities can be defined at any wavelength A

(spectral quantities) or can be used for the whole spectrum (total quantities).
The monochromatic intensity I(A) (or radiance in W m-2 sr1 nm-1) is defined as:

dEQL)

W = s ao didcda

(2.1)

where dE()A) is the differential amount of radiant energy, in a time interval dt and in specific
wavelength interval A to A+dA, which crosses which crosses an element of area dA, in directions

confined in a differential solid angle dQ2, which is oriented at an angle 0 to the normal of dA (Fig. 2.1).

The monochromatic irradiance F(A) (in W m-2 nm-1) is defined by integrating the normal component

of I1(A) over the entire hemispheric solid angle:

2T ,T/2
FQ) = f f I(A,0, @) cosb sinb do d¢ (2.2)
o Jo

The total irradiance F (in W m-2) is the monochromatic irradiance integrated over the whole spectrum
of the solar radiation. The irradiation H is the energy received per unit area during a time interval

expressed in Jm=2, and it can be calculated by integrating the total irradiance F for a given duration At

rsin 8 dp

rae

Figure 2.1 Differential solid angle dQ and its representation in polar coordinates (Liou, 2002).
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The primary natural source of energy on Earth is the sun, which radiates energy in the form of
electromagnetic radiation. The spectral distribution solar radiation emitted by the sun and received by
a surface at the top of the Earth’s atmosphere is depicted in Fig. 2.2, known as the extraterrestrial
radiation. The dotted line is the theoretical emission of a blackbody with sun’s temperature (surface
temperature around 5800K) according to Planck’s law. Sun radiates over a spectral range between
200nm and 4000nm and exhibits a marked peak around 500nm. Almost 50% of the emitted power lies
in the visible spectrum, ~8% in the ultraviolet (UV) and the rest in the near and middle infrared. The
amount of solar radiation at the top of the atmosphere (TOA) varies mainly due to changes in the

position of the Earth relative to the sun (and variations in the solar activity to a lesser extent).

ETR
Blackbody at T = 5800 K

uv Visible Infrared

in 3%}

Spectral irradiance (W/m~/nm)

n

250 500 750 1000 1250 1 500 1750 2000 2250 2500 2750 3000
Wavelength (nm)

Figure 2.2 Reference extraterrestrial spectrum (ETS) by ASTM Standard E490-19 (yellow area) and spectral
distribution the emission of a blackbody with T=5800 K using Planck’s law (Figure from Sengupta et al.
(2021), given by Philippe Blanc, MINES ParisTech/ARMINE).

Only a part of the extraterrestrial radiation reaches the Earth’s surface, about 70-80% in case of a
cloudless sky (or clear sky) and this proportion decreases in the presence of clouds. This proportion
also decreases with increasing concentrations of aerosols, water vapor and other trace gases. The rest
is attenuated (mainly absorbed or backscattered to space) and modified by the atmospheric
constituents in its downward path to the ground. Radiative transfer theory describes the interactions
between radiation and the medium it passes through. Radiative transfer in the atmosphere has to do
with the interactions between solar radiation and the constituents of the atmosphere, where absorption
and scattering are the main optical phenomena that are taking place. Both scattering and absorption

remove energy from a beam of light, which is attenuated, and this attenuation is called extinction.

Absorption is the physical phenomenon that takes place in the atmosphere, where the radiant energy

absorbed by the atmospheric constituents is converted into another form of energy. Inside the earth’s

atmosphere attenuation by absorption happens due to atmospheric gases and aerosols. Figure 2.3

reflects the absorption by gases at different wavelengths of the solar spectrum, by depicting the
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fraction of the flux transmitted to the ground for a moderately dry and clean atmosphere without
aerosols. At wavelengths less than 280 nm solar radiation is absorbed by the ozone (Os3) layer in the
stratosphere, as well as by tropospheric ozone resulted by human activities. In the lower stratosphere
and in troposphere other gases absorb solar radiation such as dioxygen (O,), nitrogen oxides (NOXx),
water vapor (H,0), carbon dioxide (CO,), methane (CH,) and other gases. The water vapor strongly

absorbs radiation resulting in wide and deep absorption lines.

1 - Scattering

Transmitted fraction

2250

Wavelength (nm)

Figure 2.3 Spectral distribution of the ratio between the fluxes received on the ground and at the top of the
atmosphere (fraction of solar flux transmitted by the atmosphere), from 250 to 4000 nm, for a moderately dry
and clean atmosphere without aerosols (Wald, 2021).

Scattering is a fundamental physical phenomenon associated with radiation and its interaction with
matter. It occurs at all wavelengths with varying intensity. The blue color of the sky, the white clouds,
rainbows are a few of the optical phenomena of scattering in the atmosphere. Scattering is the process
by which a particle continuously abstracts energy from the incident electromagnetic wave and radiates
thatenergy in all directions (Fig. 2.4). In the atmosphere, the particles responsible for scattering range
in size from gas molecules (~10-# um) to aerosols (~1 um), water droplets (~10 um), ice crystals
(~100 um), and large raindrops and hail particles (~1 cm). Size parameter y is a physical term to infer
the effect of particle size on scattering. For a spherical particle, it is defined as the ratio of the particle

circumference to the incident wavelength, A:

2Tr
X == (2.3)
If x<<1, the scattering is called Rayleigh scattering. A small particle tends to scatter light equally in
the forward and backward directions. (Fig. 2.4 (a)). This is the case for molecules in the atmosphere,
for wavelengths less than about 700 nm (Fig. 2.3). The blue color of the sky and sky polarization are
explained by the scattering of visible light (0.4—0.7 um) by atmospheric molecules, where blue

photons are more scattered than those with longer wavelengths.
24



When the particle becomes larger, the scattered energy becomes increasingly concentrated in the
forward direction with increasingly complex scattering features (Fig. 2.4 (c)). For particles whose
sizes are comparable to or larger than the wavelength, x 21, the scattering is referred as Lorenz—Mie

scattering.

(a) (b)
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Figure 2.4 The angular distribution of the scattered intensity from spherical aerosols of three sizes illuminated
by the visible light of 500 nm: (a) 104 um, (b) 0.1 um, and (c¢) 1 um. The forward scattering for the 1um
aerosol is extremely large and is scaled for presentation purposes (Liou, 2002).

L i

The phase function describes the way that a body scatters energy to different directions, namely the
scattering pattern. It gives the probability that the energy is scattered in each direction. In the case of
isotropic scattering, the energy is scattered equally in all directions. The scattering pattern (and hence
the phase function) depends on the nature of the scatterer, its shape, size, and surface properties and

on the wavelength.

Aerosols absorb but especially scatter solar radiation, with a strong dependence on the wavelength and
aerosol type, for more details see Section 2.2. Clouds mainly scatter solar radiation, with negligible
wavelength dependence. They are the main attenuators of the solar radiation reaching the earth’s
surface, with optical thick clouds backscatter most of the solar radiation back to space, resulting in
significant attenuation of the radiation field at the ground. More details about clouds and their

radiative effects in Sections 2.3.

The solar radiation intensity 1(A) traversing the atmosphere is attenuated by its interaction with the

atmospheric components (Fig. 2.5), hence:

Al = -k@pIWds  (24)
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where ds is the thickness of the medium in the direction of propagation, p is the density of the material
and k(1) is the mass extinction cross section (cm2 g1) for radiation at wavelength A, due to absorption
and scattering by the material. If Io(A) is the incident intensity at s=0, by integration the emergent
intensity at distance s (Fig. 2.5) can be obtained by the following formula assuming that k() is

independent of the distance s (homogeneous medium):

Is; D) = Io(A) exp(—k(@) w) (2.5)

whereu = fosl p ds is defined as the path length. Equation 2.5 is known as Beer’s law, or Bouguer’s

law or Lambert’s law (sometimes referred as Beer-Bouguer-Lambert law (Liou, 2002)).

extinction, optically homogeneous medium

I,(A) I ()
incident transmitted
intensity intensity

Figure 2.5 Depletion of the intensity through an extinction medium (Adopted by Liou (2002)).

A part of the solar radiation that finally will reach the ground is reflected by the Earth’s surface, part
of which is backscattered toward the ground and so on. The reflection by the ground depends on the
surface properties, the wavelength of incident radiation as well as the angle of incidence. Surface
albedo is the quantity that describes how the sun rays are reflected by the ground, which spectrally

varies.

The solar irradiance (total or spectral) received on the ground by a horizontal surface has two

components, a directand a diffuse (Fig. 2.6). Global horizontal irradiance (GHI) is the sum of these
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components. The direct component is the radiation directly emitted by the sun, while the diffuse
component comes from every direction and is the result of interaction of solar radiation with the
atmospheric constituents. If the horizontal plane is surrounded in certain directions by reliefs, the
reflected component by the ground should also be considered to the sum. Finally, the direct

component at normal incidence is called direct normal irradiance (DNI) calculated by the following

formula:
DNI = Direct 26
" cos(SZA) (2.6)
vAg
<l = _
LA Local vertical

ground

Figure 2.6 Schematic representation of the direct and diffuse components of the solar irradiance received on a
horizontal surface. SZA is solar zenith angle.

The relative geometry between the direction of the sun and an observer on the ground plays a major
role in determining the amount of solar radiation at the earth’s surface. The apparent position of the
sun varies with the time and the geographic location, and it can be determined by the solar zenith
angle (SZA) and solar azimuth (Fig. 2.7). SZA is the angle formed by the direction of the sun and the
local vertical. The solar azimuth is the angle formed by the projection of the direction of the sun on

the horizontal plane and the north and it increases clockwise.
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Figure 2.7 Solar angles (solar zenith angle -SZA and solar azimuth) describing the apparent course of the sun
in the sky for an observer located at P in the northern hemisphere.

2.1.1 Measuring solar radiation at the ground

Different instruments measure different solar radiation components, at a given location at a given
time. The total global, direct, and diffuse solar irradiance is measured by pyranometers,
pyrheliometers and pyranometers with a shadow ring or shadow ball, respectively. Radiation at

specific spectral bands (e.g., ultraviolet) can be measured using spectral filters or specific detectors.

The pyranometers are commonly used by meteorological stations and others for measuring total
global irradiance. The same principles apply for all pyranometers despite the type of the detector or
the measurement spectral window. The detector is at the end of a short tube, which opening is
protected by a double dome. The spectral transmission of the domes is the same for all wavelengths
and sun positions. The pyranometer receives solar radiation from the upper hemisphere (with a field of
view — FOV 360° or 2= steradians), hence providing measurements of global irradiance. This type of
radiometer is mounted horizontally to measure GHI, ideally in a location free of natural or artificial
obstacles on the horizon. The uncertainties in measuring radiation depend on the instrument. GHI
measurement uncertainties for pyranometers in the field range from 3-5% for SZAs between 30° and

60°, assuming regular and high-quality maintenance (Sengupta et al., 2021).
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2.2 Aerosols

Particulate Matter (PM) or aerosols are tiny particles suspended in the atmosphere, either in solid
phase or liquid phase or both. They have natural or anthropogenic origin, and they arise directly from
emissions (primary aerosol) or from the conversion of certain gases to atmospheric aerosols
(secondary aerosol) (Seinfeld & Pandis, 2006). Aerosols from natural sources are windborne dust,
marine, volcanic, pollen, etc. Anthropogenic aerosols are a significant fraction of tropospheric
aerosols, containing sulfate, nitrate, carbonaceous material (black/elemental and organic carbon), etc.
Anthropogenic activities that produce atmospheric aerosols are the combustion of fuels,
predominantly emitting black carbon (or soot), industrial and agricultural activities, biomass burning,
etc. Their size differs from a few nanometers (nm) to tens of micrometers (um) (Fig. 2.8). Particles are
categorized in fine and coarse according to their size (diameter less and greater than 2.5 pum).

€PM2s5
Combustion particles, organic
HUMAN HAIR compounds, metals, etc.
50-70um <2.5um (microns)in diameter
(microns) in diameter
© PMyo

Dust, pollen, mold, etc.
<10um (microns)in diameter

90 um (microns) in diameter
FINE BEACH SAND

Figure 2.8 Size comparisons for PM particles (Source: https://www.epa.gov/pm-pollution/particulate-matter-
pm-basics#PM).

Aerosols absorb and mainly scatter solar radiation, but this is not the same for types of aerosols. For
example, soot strongly absorbs compared to surfaces which are more scattering aerosols. The
attenuation of solar radiation by aerosols is highly variable and depends on their concentrations and
their microphysical properties (size, shape, and chemical composition), all with significant variations

in space and time.

One way to quantify aerosol loads inside the atmosphere is through optical terms by using the total
column parameter of Aerosol Optical Depth (AOD) which can be derived using remote sensing
techniques (see Section 2.4). The AOD(A) (or ta(X) see Section 2.4) is a total atmospheric column

optical property, and it can be expressed in terms of extinction coefficient (Bex:) as:

AOD(D) = f Zmﬁext(x, 2Ddz  (2.7)
0

29


https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

AOD is dimensionless and ranges from 0 (no aerosols) to about 5 (turbid atmosphere). AOD is

strongly dependent on the aerosol mass concentration.

The spectral dependence of AOD can be quantified by the Angstrom Exponent (AE) a. An empirical
expression has been given by Angstrom (1929):

AODQ) = BA~®  (2.8)

where A is the wavelength in um of the corresponding AOD(A) and B is Angstrom’s turbidity
coefficient, which describes the general haziness of the atmosphere. Angstrom exponent can be
computed by spectral values of AOD:

| (AOD(}\Z)>
_dinaoD® _ ™\A0OD(Y) -
~ dina A (29)
In (Z)

The Angstrom exponent o is used as an indicator of the aerosol type (e.g., Eck et al., 1999) and it
provides information about the aerosol size. Fine mode particles are associated with large o values
(>2.0), and coarse particles have o values close to zero. Assuming that o is known, Equation 2.9 can

be used to calculate AOD at any wavelength.

The fraction of the light extinction that is scattered is given by the ratio of scattering to total extinction
and it is called single-scattering albedo (SSA), .

_Bocat® _ Becar®
Bexto\) Bscat()\) + Babsoo

w(d) (2.10)

Thus, the fraction of the light absorbed is 1-®. The o is wavelength dependent and it depends also on
the aerosol size distribution and chemical composition. SSA values range from 0 to 1, with high

values indicating more scattering aerosols.

Aerosols modulate the radiation field of Earth’s atmospheric system with several implications for life
on earth. The physical mechanisms through which they influence the radiation budget are manifold.
Aerosols interact directly (direct effects) with the shortwave (SW) and longwave (LW) radiation
through scattering and absorption. Moreover, through their interactions with clouds, they have
semidirect and indirect effects by altering the atmospheric conditions related to cloud
formation/dissipation due to absorbing aerosols and by acting as cloud condensation and ice nuclei
(altering the microphysical and hence the optical properties of clouds) (e.g., Lohmann & Feichter
(2005) ). The direct radiative effects of aerosols refer to changes in radiative fluxes due to the direct
aerosol-radiation interaction (radiative effects due to aerosol-radiation interactions (REari), as

renamed in the IPCC AR5 (Boucher etal., 2013). Cloud-free aerosol direct radiative effects depend on

30



aerosol optical properties such as the spectrally resolved aerosol extinction coefficient or the
integrated AOD, the SSA, the scattering phase function or the integrated asymmetry parameter and
other environmental parameters such as surface reflectance and the concentration of atmospheric trace
gases (Landi et al., 2021; Loeb et al., 2021; Yu et al., 2006). Their magnitude corresponds to the
perturbation of the radiation fields induced by aerosols, within the Earth’s atmospheric system, with

respect to an atmospheric state without their presence.

Dust particles constitute a major component of atmospheric aerosol load (Textor et al., 2006; Wang et
al., 2021). Their emission is primarily wind-driven over the arid or semi-arid regions of the planet.
The Sahara Desert in North Africa, the Arabian and the Asian deserts are the major dust sources on
Earth, with the highest contribution to global dust load (more than 50%) being emitted from North
Africa (Ginoux etal., 2012; Prospero et al., 2002; Tegen & Schepanski, 2009). Even though the dust
sources are localized, the spatial distribution of dust over the globe is extensive due to dust
mobilization under favorable meteorological conditions. Dust can be transported over long distances
with significant implications for the climate of the affected areasand the global climate (Kallos et al.,
2006; Prospero, 1996; Varga etal., 2021). In addition to its significant radiative effects, dust also plays
a key role in other processes such as the productivity of oceanic waters and terrestrial ecosystems
(Jickells et al., 2005) and affects human health (Fussell & Kelly, 2021; Querol et al., 2019; Soleimani
et al., 2020). The diameter of dust particles is of the order of 0.5-50 pm and, thus, the Angstrom
exponent of dust aerosols is smaller than 1 (Shin et al., 2019). Dust particles generally scatter and
redistribute rather than absorb solar radiation (SSA > 0.9 at visible wavelengths), although dust
absorbs solar radiation at short (i.e., ultraviolet) and long (i.e., infrared) wavelengths more effectively
(Di Biagio et al., 2019; Otto et al., 2009; Sicard et al., 2014).

2.3 Clouds

Clouds are large visible masses suspended in the atmosphere, mostly in the troposphere, consisting of
water droplets or ice crystals or both. Clouds constitute one of the main attenuators of solar radiation

reaching the Earth’s surface.

Cloud coverage, their characteristics and optical properties are highly variable with time and
geographical location. Cirrus clouds allow a significant amount of radiation to pass through, hence
they are optically thin. Optically thick clouds (like cumulonimbus) scatter and reflect radiation

strongly in all directions, resulting in noticeable radiation attenuation.

The absorption by clouds is small, but they strongly scatter solar radiation. The attenuation of solar
radiation by clouds is described by the optical property of cloud optical thickness (COT). COT can

vary from zero to more than 100. COT values depend on the vertical extent of the cloud, its phase and
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the size of the water droplets and ices crystals. The size of the cloud scatterers is large compared to
solar radiation wavelengths, and under these conditions the scattering is non-selective, which means
that the scattering is uniform at all wavelengths, except for those in the infrared. This explains the
white or gray color of clouds for an observer on the ground, because all the visible wavelengths are

scattered in the same manner.

Another way to quantify the attenuation of solar radiation by clouds is through cloud modification
factor (CMF). It is the normalization of the solar radiation received on the surface by the one that
would be received without clouds. CMF is dimensionless and it takes values from zero, meaning

overcast conditions to 1 which signifies clear sky conditions.

The diffuse component of solar radiation received by a horizontal surface can be increased in the
presence of clouds, because clouds backscatter downwards the ground reflected radiation. A special
case is the sparse cloudiness with sun visible by an observer on the ground. In this case it is possible
to measure on a horizontal surface on the ground irradiance greater than the extraterrestrial one, called
cloud enhancement. This is explained by the fact that the direct component of solar radiation is this of
the clear sky, but the diffuse component is greater than that of the clear sky due to the multiple

scattering by the nearby clouds on the ground receiver.

2.4 Remote Sensing

Remote sensing is the science of inferring information about an object from a distance. There are two
techniques of remote sensing. Passive remote sensing exploits the electromagnetic radiation emitted
by the sun and the earth itself, after its interaction with earth’s atmosphere. In active remote sensing,

an artificial source of radiation is used instead, and the backscattered radiation is detected.

The passive remote sensing of aerosols (and other atmospheric constituents) from ground-based
radiometers uses the direct component of solar radiation (see geometry in Fig. 2.9), under cloudless

conditions following the Beer—-Bouguer—Lambert law:

I = (r%)2 L exp(—tm(SZA))  (2.11)

where I(}) is the solar intensity of a given wavelength measured at the ground at a given time, r and rg
are the actual and the mean earth-sun distances, Io(A) is the solar intensity at TOA corresponding to ro
and m(SZA)=1/cos(SZA) is the air mass factor. The total optical depth t(A) is the sum of the
individual values contributed from aerosols (aer), Rayleigh molecules (R), ozone (O3) and nitrogen
dioxide (NO2):

TA) = TaerQ) + TR + 103 + TNo2 (D) (2.12)
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The 1()\) can be retrieved using the previous equations and direct solar intensity measurements at

specific wavelengths to minimize the effects of water vapor and ozone absorption.

Ground based passive remote sensing

Iy
zenith

I(2)

Figure 2.9 Ground based remote sensing geometry. The ground-based radiometer measures the direct solar
beam intensity at the ground (I(X)), lo(}) is the solar intensity at the top of the atmosphere, (1) is the optical
depth and SZA the solar zenith angle.

Remote sensing using ground-based instruments is not available everywhere, with satellite remote
sensing (Fig. 2.10 (a)) filling that spatial observational gap, providing data at high spatial and
temporal resolution. The orbit of satellites carrying the instrument determines its observation
capabilities. Geostationary satellites constantly monitor the same disc of earth, with high temporal
resolution (observe diurnal variations). Polar orbit satellites allow for the whole earth to be monitored,
with sun-synchronous satellites covering the whole earth every day or within a few days. In the last
three decades there has been an advancement in satellite remote sensing of tropospheric composition
(Burrows et al., 2011).

MODerate resolution Imaging Spectroradiometer (MODIS) is a key instrument on board polar-
orbiting NASA satellites (Fig. 2.10 (b)) continuously monitoring earth for more than 20 years. The
orbit is sun-synchronous, which means that the satellite passes over the same spot of the Earth at
about the same local time every day. It acquires data in 36 spectral bands providing valuable products
concerning land, oceans, and the lower atmosphere. Its atmospheric products for clouds, water vapor
and aerosols are the results of retrieval algorithms concerning, providing a long-term data record for
those essential geophysical parameters.
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Figure 2.10 (a) Satellite passive remote sensing. (b) Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard NASA Earth Observing System Aqua (Credits for the image: NASA).

2.5 Surface solar radiation estimates

Solar resources assessment at a particular location is important for planning and management of solar
energy technologies. The necessary GHI and DNI measurements for this are available only in a few
places and this gap is filled by modeled values. Long term estimates of surface solar radiation can be
generated at specific locations by using ground-based measurements of relevant meteorological
parameters (cloud coverage, visibility, water vapor etc.) as input to radiative transfer models or at
empirical relations. Of particular importance are gridded long-term estimates of surface GHI and DNI
with high spatial and temporal resolutionand a wide coverage (up to the global scale) provided by two

different sources:

1. from satellite information

2. numerical weather prediction (NWP) models.

Due to their large area coverage and high temporal resolution, geostationary satellite data are used to
produce estimates of surface solar radiation both in real time as an operational service and to generate
historical archives of GHI and DNI based on long-term satellite measurements. Gridded long-term
GHI data can also be obtained by NWP models either by their actual operational weather forecast or
by running them in reanalysis mode. An overview of those techniques is provided in Sengupta et al.

(2021).
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2.5.1 Satellite -based surface solar radiation estimates

Several methods exist for obtaining satellite estimates of surface solar irradiance. A well-established
method considers cloud extinction through the cloud coverage index (Cano et al., 1986) or cloud
index, calculated from normalized satellite reflectances. Using the cloud index, the transmission factor
or the clear-sky index (also called the cloud modification factor; “CMF” hereafter) is calculated,
which is finally multiplied by the results of a clear-sky model to retrieve the solar irradiance at the
earth’s surface (Hammer etal., 2003). This is the general idea behind the HELIOSAT method (Cano et
al., 1986; Hammer etal., 2003) widely used in various European research projects and applications.
The derivative Heliosat-2 method (Rigollier et al., 2004) is launched in real time by the SoDa service
and produces the HelioClim-3 database (Qu et al., 2014), a real-time solar radiation database dating
from February 2004 onwards. A more recent version of the HelioClim-3 database (Thomas et al.,
2016) — version 5 (HC3v5) — combines the McClear clear-sky model (Gschwind et al., 2019; Lefévre
et al., 2013) with cloud index values extracted from Meteosat Second Generation (MSG) satellite
images. The Satellite Application Facility on Climate Monitoring (CM SAF) provides satellite-based
estimates of surface solar radiation using data from Meteosat geostationary satellites. Currently, the
third edition of the Surface Solar Radiation Data Set — Heliosat (SARAH-3, Pfeifroth et al., 2023a) —
covers the period 1983-2020 as a climate data record (CDR) and is operationally extended into the
present with a delay of a few days (Interim Climate Data Record (ICDR)). The retrieval algorithm
MAGICSOL (Miiller et al., 2015; Pfeifroth & Trentmann, 2023) is a combination of a modified
Heliosat method to derive the effective cloud albedo (CAL) and the SPECMAGIC clear-sky model
(Mueller et al.,, 2012). More available open-access satellite-based surface solar radiation

climatological datasets based on the cloud index method can be found in Miiller & Pfeifroth (2022).

There are also fully physical models that directly estimate surface solar radiation using radiative
transfer models (RTMs) and geophysical parameters — including clouds (cloud and aerosol optical
properties and total column values for water vapor and ozone content) and surface conditions — as
inputs for a given atmospheric state. The combination of multi-channel information from
geostationary satellites with cloud retrieval schemes provides cloud optical properties that can be
explicitly used in RTMs to account for cloud extinction and finally to calculate the surface solar
radiation. Parameterizations or look-up tables based on RTM simulations are used instead of direct
radiative transfer calculationsto optimize the computational time for operational use of the models.
This is the case for the Heliosat-4 method (Qu et al., 2017), which is used in Copernicus Radiation
Service (CAMS Radiation Service) estimates of surface solar irradiance. Their Heliosat-4 method is
composed 5 of two models that independently consider clear-sky and cloudy conditions. Specifically,
the McClear model (Lefévre etal., 2013; Gschwind etal., 2019) is used for calculations of cloud-free

irradiances and the McCloud model for calculating the extinction of irradiance by clouds (through the
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clear-sky index), both of which are based on look-up tables (LUTS) to speed up calculations. The input
cloud properties of the current CAMS Radiation Service v4 are retrieved by the adapted APOLLO
Next Generation scheme from the MSG/SEVIRI (Spinning Enhanced Visible and Infrared Imager)
satellite images (Schroedter-Homscheidt et al., 2022). The most recent version of the US National
Renewable Energy Laboratory’s (NREL’s) gridded National Solar Radiation Database (NSRDB;
1998-2016; Sengupta et al., 2018) is also based on a fully physical model. This is the Physical Solar
Model (PSM), which was developed by NREL and produces gridded surface solar irradiance
estimates using satellite retrievals for clouds and other atmospheric properties from GOES data as

input to the radiative transfer model.

2.6 Surface solar radiation forecasting

Forecasting solar radiation is essential for optimal operation and planning of solar power systems. An
overview of all important aspects regarding solar forecasting is given by Yang et al. (2022) and
Sengupta et al. (2021). The operational solar energy forecasting time horizon spans from a few
seconds to a few days, to fill the different needs of power system control and operations. The day
ahead forecasts are necessary to predict the net load of the next day and the intraday forecasts are

needed in real-time markets to update the previous day schedules with the latest information.

The solar forecasting methods are categorized according to the forecast horizon and the datasets used
(Fig. 2.11). Areview of solar forecasting methods and their classification was presented in Inman et
al. (2013) (Fig. 2.11 (a)), however due to technological and scientific advances in datasets, significant
changes arise in this classification, almost ten years after (Fig. 2.11 (b), (Yang et al., 2022)). NWP
traditionally has been used for day-ahead forecasting, but now there are available hourly updated
NWP models for solar forecasting (Zhang et al., 2022). Currently, satellite images are used for a few
minutes to a few hours ahead forecasting. Methods that are based on sky camera images and ground-
based data are almost at the same timescale from few seconds to few minutes ahead. There are many
statistical and machine learning methods that have been extensively used for solar radiation
forecasting (e.g., El Alani etal., 2023; Hou et al., 2022). It is noteworthy that the statistical learning is

limited now only as a post processing tool of the NWP outputs, instead of a stand-alone category.
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Figure 2.11 Figure adapted by Yang et al. (2022) about the association among forecast horizon, spatial
resolution, and solar forecasting approaches (a) as first proposed by Inman et al. (2013) and (b) the current
perception after new facts and knowledge considered by Yang et al., (2022).
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3 Data and methods

3.1 Aerosol optical properties datasets

3.1.1 Ground - based measurements from the AERONET network

The AErosol Robotic NETwork (AERONET) (Holben et al., 1998) is a federation of ground-based
aerosol remote sensing networks. It provides long-term, continuous, and easy to access data of aerosol
optical, microphysical, and radiative properties for more than 25 years. The network provided global
observations of AOD at various wavelengths, inversion products and precipitable water. Currently,
Version 3 (Giles et al., 2019) AOD data are available at three quality levels. The AERONET
observations can be used for aerosol research and characterization, for validation of satellite retrievals,
for synergistic studies etc. and they can be easily downloaded from the AERONET data base

https://aeronet.gsfc.nasa.gov/. The various AERONET datasets utilized for this thesis are described in

the corresponding sections (Section 4 and 6).
3.1.2 Spaceborne AOD and DOD - Modls Dust AeroSol (MIDAS) dataset

Daily retrievals of AOD at 550 nm from the MODerate resolution Imaging Spectroradiometer onboard
the Aqua satellite (MODIS-Aqua) were used for this thesis. Specifically, quality assured Collection
6.1 MODIS —Aqua Level 2 AOD retrievals (Levy etal., 2013; Wei etal., 2019b) from the Dark Target
(DT) and Deep Blue (DB) retrieval algorithms were merged according to Sayer et al. (2014) into one
dataset and presented by Gkikas etal., (2021). AOD values from DT retrieval algorithm above ocean
and land and DB above land were selected based on quality assurance (QA) of the retrievals. Then,
the AOD values from both retrieval algorithms were merged by applying additional quality filtering
criteria (see Sect. 2.1 in Gkikas et al., 2021) and stored in a scientific dataset. Based on this MODIS
AOD combined productand on MERRA-2 (Gelaro etal., 2017; Randles et al., 2017) reanalysis data
of dust optical depth (DOD) to AOD ratio, the MIDAS (Modls Dust AeroSol; Gkikas et al., 2021,
2022) dataset was developed providing columnar mid-visible (550 nm) DOD and the corresponding
AOD, on a daily basis, at fine spatial resolution (0.1° x 0.1°) and at global scale over the period 2003—
2020. Regarding the DOD uncertainties, there were assessed in Gkikas etal. (2021) by considering the
AOD and Merra-2 dust fraction uncertainties, as they were calculated using AERONET retrievals
(Giles et al., 2019) and LIVAS database (Amiridis et al., 2015) as references, respectively. The
MIDAS  dataset  (Gkikas et al, 2021, 2022) is available online at
https://doi.org/10.5281/zenodo.4244106 (Gkikas etal., 2020). Considering its global coverage at fine
spatial and temporal resolution, over a long period (2003-2020), this dataset is suitable for dust

climatological studies (e.g., Fountoulakis et al., 2021; Gkikas et al., 2022; Logothetis et al., 2021).
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3.1.3 Spaceborne profiles of aerosols (LIVAS/CALIPSO)

LIVAS is a three-dimensional (3-D) multi-wavelength global aerosol and cloud optical database,
which provides averaged profiles of aerosol optical properties at 355, 532, 1064, 1570 and 2050 nm
and cloud optical properties at the wavelength of 532 nm (Amiridis etal., 2015). Established based on
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) (Winker et al., 2010), LIVAS
data have been used in various studies for 3D aerosol climatology (e.g., Gkikas et al., 2021; Proestakis
etal., 2018). To produce Level 2 (L2) Version 4 (V4) profiles of aerosol and cloud optical properties
and layer classification information (Kim et al., 2018), LIVVAS applies a series of quality-assurance
procedures (Tackett etal., 2018) prior averaging to generate the Level 3 (L3) aerosol profile products,
including, among others, vertical profiles of total-aerosol extinction coefficient and AOD at 532 nm.
The original LIVAS database is established on a uniform grid of 1° x 1° spatial resolution, with the
CALIPSO original vertical resolution, while with respect to the temporal resolution, the aerosol
optical properties are provided (1) at the CALIPSO per-orbit level, (2) on monthly means, and (3) on
long-term averaged profiles (6/2006-12/2020). However, for the scientific objectives of the present
study, the LIVVAS total-aerosol extinction coefficient profiles and AODs at 532 nm were generated in a
5° x 5° spatial resolution, providing time-averaged profiles of the CALIPSO total-aerosol extinction
coefficient at 532 nm for the domains of northwest Africa and central-eastern Europe (more

information is provided in Sections 3.7.2).

3.1.4 Model based AOD and DOD - Copernicus Atmospheric Monitoring Service (CAMS)
reanalysis dataset

The CAMS reanalysis, available from 2003 onwards, is the global reanalysis dataset of atmospheric
composition of the European Centre for Medium-Range Weather Forecasts (ECMWF), consisting of
three-dimensional time-consistent atmospheric composition fields, including aerosols and chemical
species (Inness etal., 2019). Itis based on ECMWF’s Integrated Forecast System (IFS), including an
aerosol module described in Morcrette etal. (2009). Five species of tropospheric aerosols are included
in the CAMS aerosol model, including dust. For dust sources, the parameterization of Ginoux et al.
(2001) is implemented. The satellite-derived aerosol products that were assimilated in the CAMS
reanalysis were the MODIS-Aqua and MODIS-Terra AOD retrievals (Benedetti et al., 2009) and, in
addition, the retrievals from the Advanced Along-Track Scanning Radiometer (AATSR) onboard
Envisat from 2003 to March 2012. More details regarding the updates in the meteorological part of
IFS and in the aerosol and chemical modules, the data assimilation process and the emission datasets
are given in Inness etal. (2019) and the references therein. CAMS reanalysis products are available

from the Copernicus Atmosphere Data Store (ADS, https://ads.atmosphere.copernicus.eu/#!/home) on
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a 3-hourly basis. AOD and DOD at 550 nm were obtained programmatically for the period 2003-2017
on a 0.4° x 0.4° lat/lon grid.

3.1.5 Climatological SSA and AE dataset

For the UV-visible—near-IR additional optical properties for all aerosols and dust, climatological
values from the second version of the Max-Planck Aerosol Climatology (MACv2) (Kinne, 2019) were
utilized, which are available at a global scale with a 1° x 1° spatial resolution. The interannual
variability of total aerosol optical properties is provided over the period 2001-2016 in terms of
monthly means for every year. Long-term monthly means for the whole period are provided for five
different aerosol species, including dust. In the current thesis, SSA at 550 nm was used for total
aerosols and dust (DU SSA). AODs at 470 nm and 850 nm, for total aerosols, were obtained from
MACv2 and were used to calculate the Angstrdm exponent (AE) (AE 470-850 nm). For dust, a fixed
climatological value of 0.4 for AE 440-675 nm was used as proposed by Taylor et al., (2015) for the

Mediterranean domain.

3.2 Cloud optical properties - EUMETSAT NWC SAF

The Satellite Application Facilities of Nowcasting and Very Short-Range Forecasting, NWC SAF of
EUMETSAT (Derrien & Le Gléau, 2005; Meteo France, 2016) providesa comprehensive system that
supports operational and research activities related with nowcasting. It provides a software package
that it can be combined with the data from geostationary satellites to generate a set of meteorological

products in real time.

Data from the channels of geostationary Meteosat Second Generation (MSG) satellites are
broadcasted operationally at the National Observatory of Athens. The software package of NWC SAF
uses as input those data for the near real time generation of a set of meteorological products. The
product of interest in this thesis is Cloud Microphysics (CMIC), which contains the information of
Cloud optical Thickness (COT). The operational outputs of COT for a complete year (2017) were

used for the needs of this thesis (see Section 6).

3.3 Datasets of other atmospheric variables

3.3.1 Model based Total Column Water Vapor (TCWV) - CAMS Reanalysis dataset

In the same manner with CAMS AOD and DOD, TCWYV was obtained from CAMS reanalysis dataset
(Inness et al., 2019) for the period 2003-2017 on a 0.4° x 0.4° lat/lon grid, on a 3-hourly basis.
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3.3.2 Satellite based Total Ozone Column (TOC) dataset

To obtain TOC data for the period 2003-2017, a new dataset was constructed by combining data from
Ozone Monitoring Instrument (OMI) onboard NASA’s Aura satellite from 1 October 2004 until 31
December 2017 and from Total Ozone Mapping Spectrometer (TOMS) onboard the Earth Probe (EP)
satellite from 1 January 2003 to 30 September 2004. The satellite-based TOC retrievals were collected
from the daily global OMI TOMS-Like TOC Level 3 (OMTO3d) gridded on a 1° x 1° grid product
(Bhartia, 2012) and from the EP TOMS Level 3 (TOMSEPL3) version 8 product, which provides
daily data on a global grid of 1° x 1.25°. The OMI and TOMS satellite retrievals of TOC were

downloaded from https://disc.gsfc.nasa.gov/datasets/.

3.4 Ground-based irradiance measurements

To validate the modeled GHI (Section 6.2), ground-based measurements from pyranometers were
utilized. The ground-based 1 min GHI measurements were collected from stations of the Baseline
Surface Radiation Network (BSRN; Driemel et al., 2018), which are within the study area and have
data for all of 2017, and from two additional stations at Athens (ASNOA: the NOA’s Actinometric
Station) and Thessaloniki. Table 3.1 summarizes information on all 10 stations utilized, and Fig. 3.1

depicts their geographical locations.

Table 3.1 Detailed information about the ground-based sations used to validate the modeled GHI (Section 6.2).

Ground-based pyranometer

AERONET station
Name Network  Lat. (°N) Lon. (°E) Location
ATH - Athens - 37.9 23.7  Greece (Europe) Co-located
CAB - Cabauw BSRN 519711 4.9267 Amsterdam (Europe) Co-located
CAM — Camborne BSRN 50.2167 -5.3167 London (Europe) Co-located
CAR — Carpentras BSRN 44.083 5.059  Paris (Europe) Co-located
CNR — Cener BSRN 42816  -1.601 Madrid (Europe) Co-located
LER — Lerwick BSRN 60.1389 -1.1847  London (Europe) Co-located
LIN — Lindenberg BSRN 5221 14.122  Berlin (Europe) Co-located (metObs LIN)
PAL —Palaiseau, SIRTA Obser BSRN 48.713 2.208  Paris (Europe) Co-located
TAM — Tamanrasset BSRN 22.7903 5.5292  Algiers (Africa) Co-located
THE -Thessaloniki - 40.63 22.96  Greece (Europe) Co-located
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Figure 3.1 Locations of the ground-based stations measuring global horizontal irradiance (GHI) that are used to
validate the modeled GHI (Section 6.2). These are eight BSRN stations plus Athens and Thessaloniki in
Greece.

BSRN station-to-archive files were accessed and manipulated using the SolarData v1.1 R package
(Yang, 2019). The function that reads the data from the station-to-archive files also computes several
auxiliary variables, such as solar zenith angle, clear sky irradiances using the Ineichen-Perez clear-sky
model (Ineichen & Perez, 2002), and extraterrestrial GHI. Using the same methodology, the Ineichen-
Perez clear sky model values were also computed for the non BSRN station data by adjusting the

functions of the Solar-Data v1.1 R package for the non-BSRN stations.

The BSRN recommended Quality Check (QC) tests (Long & Dutton, 2010) were applied to the
collected measurements to ensure that they were of the best quality. Measurements that did not pass
the above QC tests were flagged and labeled as missing values. The GHI records that are available at
the two Greek stations (1951—present in Athens; 1993—present in Thessaloniki) are among the longest
continuous high-quality GHI records in the eastern Mediterranean Basin, an area where BSRN data
are not available for the period of this study. The pyranometers in Athens and Thessaloniki are
calibrated regularly, and the GHI measurements were subjected to quality control before being used in
the study. More information on the GHI datasets for the Thessaloniki and Athens stations can be found
in Bais et al. (2013) and Kazadzis et al. (2018), respectively.
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3.5 Megacities information and population datasets from United Nations

Megacities are defined as cities with a population of more than 10 million, but in our analysis, we
include cities with populations between 5 and 10 million as well, due to their potential to become
megacities in the coming decades, as estimated by UN projections (UN, 2018a). Table 3.2 summarizes
the number of cities according to their population by 2018 and future projections. According to UN
projections, 10 cities with populations between 5 and 10 million are expected to become megacities
soon. In this thesis, we focus on 81 cities, with more than 5 million inhabitants as reported in 2018,
which are listed in Table A1 (UN, 2018a, 2019a) and their geographical location is depicted in Figure
3.2.

It should be mentioned that the UN data correspond mostly (65%) to urban agglomerations, for which
the city’s boundaries are defined as the extent of the contiguous urban area (or built-up area). A small
part refers to the metropolitan areas (25%) and even smaller (10%) to the city proper. For a major
metropolitan area (MMA), more than one city is close together, and in most cases with no distinct
limits. For example, in the Kinki MMA, Osaka is the city with the highest population and the Los
Angeles metropolitan area includes the Long Beach and Santa Ana population. There are five MMASs
included in this study, and they are shown in bold in Table Al. One last remark concerning population
data is about Guangzhou, Shenzhen, Hong Kong, Dongguan, and Foshan (shown in italics in Table
Al). They are all located in the Guangdong—Hong Kong—Macau Greater Bay Area. This area, which is
confined in a domain narrower than 1° x 1°, also includes five other cities with population more than 1
million, forming a megalopolis, which is the largest urban agglomeration on the planet. The cities in

this region and the MMAs will be exempted from the spatial gradient analysis.

Table 3.2 Number of cities according to their population (adopted by UN (2018a)).

By 2018 Projection to 2030
Megacities
& 10 million) 33 43
48

(10 of those -20% - are

>-10 million projected to become 66
megacities by 2030)
Total > 5 million 81 109
1-5 million 467 597
548
- 28 of those -5% - are
2 I million projected to cross the 5 706
million mark)
500,000 -1 million 598 710
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Figure 3.2 Map of the location of the 81 cities with population greater than 5 million (black circles). Red
circles denote the 10 megacities with the highest population.

To calculate the population changes every city’s population estimates in thousands of inhabitants in an
annual base for the period 2003-2020 utilized from the UN’s collection of datasets (UN, 2018b).

3.6 Radiative transfer modeling (RTM)

3.6.1 Library of Radiative transfer (LibRadtran)

Library of Radiative transfer (LibRadtran) package (Emde et al., 2016; Mayer & Kylling, 2005) is a
collection of routines and functions for radiative transfer calculations under different atmospheric
conditions. The main program of the libRadtran package is uvspec. This program contains a selection
of different radiative transfer equation solvers to calculate the radiation field in the Earth’s atmosphere
for a variety of input parameters. The model input parameters are specified with a plain text file. This

file must contain specific commands to determine the atmospheric parameters such as:
1) Rayleigh scattering

2) Molecular absorption

3) Aerosols

4) Water and ice clouds

5) Surface albedo
3.6.2 Shortwave (SW) Clear sky look up table (LUT)

To minimize the computational time of directly simulating irradiances using RTM, clear-sky global
horizontal irradiance (GHI) and direct normal irradiance (DNI) estimations were based on a detailed

LUT of ~16 million combinations for a wide range of the state of the earth-atmosphere system and sun
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position. It was generated using the National Infrastructures for Research and Technology (GRNET)
High Performance Computing Services and the computational resources of ARIS GRNET
infrastructure. The RTM simulations were performed using the libRadtran package (Emde etal., 2016;
Mayer & Kylling, 2005). Table 3.3 summarizes the input variables and their resolution. The number
of variables and their resolution resulted in a total of ~16 million runs.

Table 3.3 Input parameters for radiative transfer simulations performed on the ARIS GRNET supercomputer
resulted to the 7D GHI/DNI LUT.

Parameter Range Resolution
Solar zenith angle (SZA; in degrees) 1to 89 1
Aerosol optical depth at 550nm (AOD) 0to2,253.0 0.05
Single scattering aloedo (SSA) 06tol 0.1
Angstrom exponent (AE) 0to2 0.4
Total ozone column (TOC; in DU) 200 to 500 100
Water vapor (WV; in cm) 05t03 0.5
Surface albedo 0.05t0 0.8 0.15

RTM simulations were performed spectrally from 280 to 3000 nm, with 1 nm spectral resolution using
the DISORT radiative transfer solver in pseudo-spherical mode (Buras et al., 2011). The molecular
absorption parameterization of representative wavelength approach (REPTRAN; Gasteiger et al.,
2014) was used to account for the absorption of atmospheric gases for the whole solar spectrum. The
Kurucz 1.0nm (Kurucz, 1994) extraterrestrial solar spectrum and the US Standard Atmosphere
(Anderson etal., 1986) were used as inputs. The default aerosol model of Shettle (1989) was used as
the basis, and the aerosol optical properties of AOD, single scattering albedo (SSA), and Angstrom
exponent (AE) were modified varying according to Table 3.3. The spectral global irradiances were

integrated over the spectral range of the simulations to derive the GHI and DNI.

3.7 Sensitivity analysis for the effect of aerosol vertical distribution on surface
solar radiation

An RTM sensitivity analysis has been performed by using different and more realistic profiles of
aerosols than the default of libRadtran (Shettle, 1989) to investigate how changes in the vertical
distribution of aerosol optical properties affect the simulated solar radiation that reaches the Earth’s
surface. We simulated the total shortwave (SW, 280-3000 nm integral) global irradiance (Gl) and
direct irradiance (DI) with different aerosol extinction profiles and for different aerosols and

atmospheric conditions. For better insight, different spectral regions are discussed separately,
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ultraviolet-B (UVB, 280-315 nm integral), ultraviolet-A (UVA, 315-400 nm integral), visible (VIS,
400-700 nm integral), near infrared (NIR, 700-3000 nm integral).

e As a first step, the sensitivity of the solar radiation profile to the altitude of a hypothetical

aerosol layer was investigated using artificial aerosol extinction coefficient profiles.

e Asa second step, radiative transfer (RT) simulations were performed using aerosol extinction
coefficient profiles from the LIVAS (see Section 3.1.3), and the results were compared with
the results of simulations with the default libRadtran profile (Shettle, 1989) which assumed an

exponential decrease in the aerosol extinction coefficient with altitude in the troposphere.

The simulations were performed using the uvspec model of the libRadtran package (Emde et al.,
2016; Mayer & Kylling, 2005). Several input parameters were explicitly defined for each of the
simulations: TCWV, TOC, surface albedo, columnar aerosol optical properties (AOD, SSA and AE),
and the vertical profile of the extinction coefficient at 532 nm. The latter was then scaled to the value
of the AOD at each wavelength. In all cases, the profiles of parameters other than AOD aerosol optical
properties (e.g., SSA, AE) were assumed to be constant throughout the atmosphere. The standard
atmospheric profile (standard US atmosphere (Anderson et al., 1986)) was used for all simulations.
Thus, the default libRadtran profiles of TOC, TCWYV, etc. were scaled to defined columnar values.
Spectral simulations in the range of 280-3000 nm were performed with a step of 1 nm. The
extraterrestrial solar spectrum suggested by Kurucz (1994) and the sdisort (Buras et al., 2011) solver
were used for the simulations. Simulations were performed separately for the four spectral regions:
UVB, UVA, VIS, NIR. For the simulations in the NIR region, absorption was parametrized using the
correlated-k KATO2 distribution (Kato et al., 1999; Wandji Nyamsi et al., 2015). Although the latter
parameterization introduced some additional uncertainty into the simulations compared to more
detailed parameterizations, the additional uncertainty was negligible for the NIR integral (Mayer &
Kylling, 2005). The produced spectra were integrated to calculate and analyze the total irradiance in
the four spectral bands (UVB, UVA, VIS, NIR) and the total SW global and direct irradiances.

3.7.1 Sensitivity Study Using Artificial Extinction Profiles

The first step of the study was to perform simulations for five different artificial homogeneous layers
of aerosols, with layer bases at 0, 1, 2, 3, and 4 km (hereafter referred as LO to L4, respectively) from
the surface (assuming that the surface is at mean sea level). Three of the five layers are shown in
Figure 3.3. The width of each layer was 1.5 km. The aerosol extinction coefficient above and below
each layer was considered zero. Simulations were performed for combinations of different

atmospheric and surface parameters, as well as different aerosol optical properties (see Table 3.4). For
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the simulations in each spectral band, the AOD was independent from wavelength (i.e., AE was set to

zero).

aerosol extinction profiles
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Figure 3.3 Three of the five artificial aerosol profiles that were used for the simulations (here for AOD = 1.5).

Table 3.4 UVSPEC model input parameters for the simulations with the artificial aerosol profiles.

Property values

SZA 20°,40°, 60°, 80°
AOD (all wavelengths) 0.2,05,1.0

SSA (all wavelengths) 0.75,0.95

AE 0

TOC 350 buU

TCWV 10,30 mm
Surface albedo 0.1,04,0.8

For the same sets of parameters and different extinction coefficient profiles, comparisons between the
surface valuesof the GI and DI were performed. In all cases, the results for elevated aerosol layers
were compared with the results for LO. This way, it was possible to investigate the effect of different
aerosol layer altitudes and understand the physical mechanisms that are responsible for the differences

in surface Gl and DI.

3.7.2 Effect of extinction coefficient profile for typical aerosol conditions - LIVAS Profiles

Aerosol extinction profiles at 532 nm from the LIVAS climatology were averaged for two 5° x 5°
regions with centers in northwestern Saharan desert, Africa (32.5° N, 7.5° E), and central-eastern
Europe (47.5° N, 17.5° E) for the period 6/2006—12/2020. In the following, the two regions are
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referred to as NW Africa and CE Europe, respectively. From the daily LIVAS profiles, monthly
averaged profiles were calculated and subsequently averaged again to calculate seasonal profiles for
winter (December, January, February; DJF), spring (March, April, May; MAM), summer (June, July,
August; JJA), and autumn (September, October, November; SON). Seasonal profiles were used to
perform RT simulations. RT simulations were also performed using the libRadtran default profile
(Shettle, 1989). RT simulations for each season were performed for both profiles assuming
climatological seasonal averages for TCWYV, TOC, aerosol optical properties (AOD, SSA, AE), and
surface albedo.

Climatological seasonal TCWV from the CAMS (Section 3.3.1), TOC from the OMI (Section 3.3.2),
and AOD retrievals at 550 nm from the MODIS (Section 3.1.2) were averaged for the same areas and
seasons and used for the simulations. Seasonal climatological averages for the period 2006—-2020 were
calculated from monthly averaged surface albedo from the Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2) climatology (GMAO, 2015) and was used for the
simulations in VIS and IR. Surface albedo in UV differs significantly from surface albedo in VIS for
land-surface types such as deserts. Thus, typical values were used (Feister & Grewe, 1995; Varotsos et
al., 2014) since large-scale climatological data are not available. Seasonally averaged SSA and AE
were calculated from monthly averages, which were derived from the MACv2 climatology (Kinne,

2019) and used for the RT simulations. The above parameters are listed in Tables 3.5-3.7.

Table 3.5 AOD at 550 nm, TCWYV, TOC, and surface albedo used in the simulations for NW Africa and CE
Europe.

winter spring summer autumn
550 nm AOD
NW Africa 0.19 0.35 0.35 0.26
CE Europe 0.07 0.18 0.22 0.13
TCWV (mm)
NW Africa 114 14.6 22.3 20.4
CE Europe 9.6 144 25.7 174
Total ozone (DU)
NW Africa 2994 318.3 2984 282.2
CE Europe 333.3 358.6 320.2 287.8
Surface albedo
NW Africa
VIS/IR 0.42 0.40 041 041
NW Africa
UVB/UVA 0.10 0.10 0.10 0.10
CE Europe
VIS/IR 0.15 0.15 0.15 0.15
CE Europe
UVB/UVA 0.05 0.05 0.05 0.05
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Table 3.6 SSA used in the simulations for NW Africa and CE Europe. For each spectral band, independent
from wavelength SSA was assumed.

winter spring  summer autumn
NW uvB 0.84 0.77 0.81 0.80
Africa UVA 0.85 0.78 0.82 0.81
VIS 0.93 0.93 0.94 0.93
IR 0.94 0.96 0.96 0.96
CE UVB 0.80 0.86 0.87 0.83
Europe  yva 0.81 0.87 0.88 0.85
VIS 0.87 0.91 0.92 0.90
IR 0.86 0.91 0.91 0.89

Table 3.7 AE used in the simulations for NW Africa and CE Europe.

winter spring summer  autumn

NW uvB 1.32 0.74 1.04 0.89
Africa UVA 1.32 0.74 1.04 0.89
VIS 1.32 0.74 1.04 0.89

IR 0.65 0.20 0.31 0.30

CE uvB 1.32 1.52 1.66 141
Europe UVA 1.32 152 1.66 141
VIS 1.32 1.52 1.66 141

IR 1.32 1.30 1.40 1.27

3.8 Methodology to derive aerosol/dust shortwave (SW) Direct Radiative Effects
(DRES) on surface

For quantifying the impact of total aerosols and dust on the downwelling surface solar irradiance
(DSSI) components GHI and DNI, their levels were estimated by performing RTM simulations
following the LUT approach (see Section 3.6.2) using as inputs the satellite (MIDAS) retrievals and
reanalysis (CAMS) products of AOD and DOD, complemented by additional aerosol optical
properties and atmospheric parameters acquired from the MACv2 climatology, spaceborne
observations (OMI, TOMS) and reanalysis products (CAMS), which are described in detail in

Sections 3.1 and 3.3 and are summarized here in Table 3.8.

Table 3.8 Datasets of total aerosol and dust optical properties and key atmospheric parameters for radiative
transfer model (RTM) simulations (based on LUT approach) of downwelling surface solar irradiance (DSSI).

Description
Parameter . . Source Reference
(Spatial-Temporal Resolution)

Satellite-retrieved

) aerosol optical depth (AOD) Modls Dust Aerosol (MIDAS) Gkikasetal., 2021
Aerosol optical
. (0.1°x0.1°,1 day)
properties . . o
Modeled AOD Copernicus Atmospheric Monitoring

] . Inness et al., 2019
(0.4°%x0.4°,3 h) Service (CAMS) reanalysis
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Single scattering albedo (SSA) Max-Planck Aerosol Climatology

Kinne, 2019
(1°x1°, 1 month) (MACvV2)
Angstrdm exponent (AE) _
MACv?2 Kinne, 2019
(1°x1°,1 month)
Satellite-based
dust optical depth (DOD) MIDAS Gkikasetal., 2021
0.1°x0.1°1da
Dust optical ( )
. Modeled DOD .
properties CAMS reanalysis Inness etal., 2019
(0.4°x0.4°3 h)
Dust SSA (DU SSA) )
MACv2 Kinne, 2019

(1°x1°,12 monthly means)

Modeled total column water vapor (TCWV)

Water vapor CAMS reanalysis Innessetal., 2019
(0.4°x0.4°,3 h)

Ozone Monitoring Instrument (OMI)

Satellite-retrieved ] Bhartia, 2012
TOMS-Like Level 3 product/Earth Probe )
Ozone total ozone column (TOC) . TOMS Science
(EP) Total Ozone Mapping Spectrometer
(1°x1°/1°x1.25° 1 day) Team

(TOMYS) Level 3 version 8 product

The analysis was performed for the domain that is confined between 27°N—-50°N and 15°W—40°E,
which includes the countries around the Mediterranean Sea, as well as part of Central Europe and the

Middle East. Analysis was performed with a spatial resolution 0f 0.4° x 0.4° and for the period 2003 —
2017.

3.8.1 Database (DB) for Radiative Properties - Dealing with different spatial and temporal scales

among datasets

The original datasets differ in spatial and temporal resolution. Initially, the spatial and temporal
homogenization of datasets with missing values was performed, which was then followed by the
geolocation and synchronization among all datasets in order to generate a complete database (DB) of
all the input parameters needed for the RTM simulations (SZA, AOD or DOD, SSA, AE, TCWYV,
TOC) on a 0.4° x 0.4° lon/lat grid, on an hourly basis, which was selected to be the frequency of RTM
simulations in order to account for the sun elevation. Figure 3.4 provides a schematic overview of this

process.
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Figure 3.4 Schematic overview of the database (DB) created for the RTM simulations, on a 0.4° x 0.4° lon/lat
grid and 1 h temporal resolution.

The MIDAS dataset was aggregated to the coarser spatial resolution of 0.4° x 0.4° to achieve a small
number of missing values. The median value was selected as the aggregation method, as a
nonparametric measure of central tendency, based on the findings of Sayer & Knobelspiesse (2019).
To homogenize MIDAS dataset in time and space, the missing values were filled by monthly means.
Seasonal means were utilized when the monthly data availability was low (<20% or less than 6 days
in a month). In cases with low seasonal availability, the spatial gaps were filled using bilinear
interpolation. For the 1 h RTM simulations, daily MIDAS values were used and the AOD and DOD

were assumed invariant in the day.

The diurnal variability of CAMS datasets (AOD, DOD and TCWV) was taken into account and the 3
h values were assumed invariant within each 3-h time interval. For TOC, a temporal fitting was
performed to fill the days missing with monthly mean values, and a spatial bilinear fit was performed
to fill the gaps in space. Both OMI and TOMS datasets were bilinearly interpolated to a 0.4° x 0.4°
grid. Again, TOC was assumed invariant in the day. The 1° x 1° fields of MACv2 were also bilinearly
interpolated to the 0.4° x 0.4° grid and the monthly values of SSA and AE were used, assuming that
they remain constant during each month.

3.8.2 Direct Radiative Effects (DRES)

The hourly values of clear-sky DSSI in terms of global and direct components were obtained relying
on the precalculated LUTSs (Section 3.6.2), to achieve realistic computational times, as similarly done
in Kosmopoulos et al. (2018a). Using the DB described in Section 3.8.1 as inputs and linear

interpolation to the LUTSs, instantaneous values of total irradiances (global and direct) every 1 h
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during daytime were extracted for each grid cell (0.4° x 0.4°) for 2003—2017. This procedure was
repeated five times, as different experiments, described in Table 3.9, to quantify the total aerosol as
well as the dust effect on different DSSI components, for the two different datasets (MIDAS, CAMS).

Table 3.9 The different experiments for which DSSI values were extracted from the LUTS.

Atmospheric conditions Dataset
MIDAS AOD
Aerosol included
CAMS AOD
Dust included MIDAS DOD
CAMS DOD
Aerosol-free AOD =0

By integrating the 1 h instantaneous values of total irradiances over sunlight hours, the daily global
horizontal irradiation (GHI) and direct normal irradiation (DNI) components (in MJ/m?2) were
calculated, and those values were post-corrected for the Earth—Sun distance, and for the surface
elevation following the methodology described in Fountoulakis et al. (2021). Using LUT instead of
simulating DSSI for the exact conditions of each time step induced some additional uncertainty in the
results, which however is small. By comparing the daily integrals using both approaches for particular
grid points, it was estimated that the additional (2-fold) uncertainty in the daily integrals is ~0.2 kW
m-2, which for the domain of study corresponds to less than 1% of the simulated DSSI in spring,
summer and autumn and to less than 10% at the northernmost latitudes of the domain in winter. The

corresponding uncertainty in the monthly integrals is much smaller, less than 1% in all cases.

Using the simulated daily irradiations, mean annual and seasonal integrals (INTs) of GHI and DN,
for cloudless conditions, were calculated for the five different experiments described in Table 3.9

using the following formula:

INTi_on - Il\lTaer_free
INTaer_free

x 100% (3.1)

where i stands for aerosols and dust. The relative change (expressed in %) in DSSI due to aerosols and
dust presence was calculated with respect to an aerosol-free atmosphere. Using the same formula, the

daily relative changes were calculated as well.
3.8.3 DREs of extreme dust events

The broader Mediterranean Basin is an area frequently affected by dust outbreaks (Gkikasetal., 2016,
2022), resulting in extremely high concentrations of mineral particles and maximized DODs. Thus, we
aimed to quantify the impact of those extreme DOD values on GHI and DNI. To this end, the
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methodology proposed by Gkikas etal. (2012) and the objective and dynamic algorithm of Gkikas et
al. (2009) was applied to MIDAS DOD values to define the extreme dust episode days (eDEDSs). First,
for every pixel, the mean DOD (DOD) and the associated standard deviation (opgp) Values were
calculated, using the daily values of DOD over the period 2003-2017. An extreme dust episode occurs
on a specific day and ata specific location (pixel) when DOD values are higher than a critical value
(threshold):

This algorithm is characterized as dynamic since the DOD threshold values are not constant for each
pixel. Finally, to characterize a day as an eDED, at least 300 pixels should undergo an extreme dust
episode, providing that the data availability for this day is more than 50%. From our analysis, 67
eDEDs were found for the whole study period 2003—-2017, or on average 4.5 eDEDs year-1.

3.9 The cloud motion vector (CMV) method of the Solar Energy Forecasting
system — NextSENSE?2

NextSENSE2 is the operational system that provides forecasts of GHI up to 3 h ahead with a 15 min
time step by applying a cloud motion vector (CMV) technique to the MSG COT product. It uses
CMVs to predict the motions of the clouds and project their future positions. The CMVs in
NextSENSE?2 are calculated by applying a state-of-the-art optical flow algorithm from the computer
vision community. Optical flow is the apparent motion of objects between consecutive frames, which
is caused by the relative movement between the object and a camera. The Farnebick (2003) two-
frame motion estimation technique is applied to images of the COT product (Kosmopoulos et al.,
2020). Several other optical flow algorithms, like TV-L1, are available as free software (OpenCV) and
are used for cloud motion estimation in solar energy short-term forecasting systems (Urbich et al.,
2019). In this study, we used the Farnebédck technique based on the results of a previous study by
Kosmopoulos et al. (2020). The optical flow displacement vectors are calculated by applying the
algorithm to two consecutive images of satellite-derived COT. This CMV field is applied to the later
COT image (real) to get the next COT image (forecasted COT). This procedure is performed 12 times,
resulting in the 3h forecasting horizon. The main assumptions are brightness constancy and that the
cloud’s displacements are only two-dimensional (i.e., in the image plane). More details regarding the
CMV model and forecasted COT can be found in Kosmopoulos et al. (2020).

3.10 Persistence forecast

It is not easy to evaluate the quality of different forecasting methods of surface solar radiation using

only statistical metrics, since the study period, the geographical area, and other factors affect their
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forecasting accuracies. That is why it is a typical evaluation practice to benchmark the different
forecasts against some simple forecast methods (Pelland et al., 2013). We used the persistence forecast
to benchmark the CMV-forecasted GHI of the NextSENSE2 system, which is a commonly used
reference in solar forecasting (e.g., Kosmopoulos et al., 2020; Kallio-Myers et al., 2020). This method
assumes that the state of the clouds remains constant for future time steps, while all other variables,
like SZA, dynamically change. Hence, it uses the same COT values from the later satellite information

as input to the next time steps in order to forecast the GHI up to 3 h ahead.

3.11 Evaluation metrics

Common statistical metrics were adopted for the validation of the SENSE2- or NextSENSE2-derived
GHI values against ground-based measurements (Section 6.2). Given that the error is defined as the
difference between the modeled values (Xm ;) and the observed values (X, _;), we have three common
metrics: the mean bias error (MBE), root mean square error (RMSE), and Pearson correlation
coefficient (R).

N
1
MBE = NZ(xmi ~ %) (3.3)
i=1
N
1 2
RMSE = | (sm, = Xo) (3.4)
i=1

The relative values of the latter two metrics, rMBE and rRMSE, were obtained with respect to the

mean of the observed values of GHI.

An additional metric, the forecast skill (FS), was used to assess the performance of CMV-forecasted
GHI using the persistence model as a benchmark model:

rRMSECMV

FS =1
rRMSE pers,

(3.5)

where rRMSEcmy and rRMSEs are the relative RMSEs of the CMV and persistence forecasting

models, respectively.
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4 Aerosol state and trends in megacities

Thischapterisbased onthe publication: Papachristopoulou, K., Raptis, I.-P., Gkikas, A., Fountoulakis, I., Masoom, A.,
and Kazadzis, S.: Aerosoloptical depth regime over megacities of the world, Atmos. Chem. Phys., 22, 15703-15727,
https://doi.org/10.5194/acp-22-15703-2022, 2022.

Analyzing the aerosol spatiotemporal variability over megacities is of great importance for air quality
and human health. Additionally, since aerosols attenuate the solar radiation reaching the earth surface,
this analysis is also valuable in terms of solar energy rooftop applications, which consists one of the

most promising ways of green energy production at urban environments.

Aerosol-related air pollution can be quantified, in optical terms, through aerosol optical depth (AOD).
Apart from AERONET (Section 3.1.1) during the last 20-25 years long-term AOD measurements
from ground-based sun photometers have been deployed from additional established global/regional
networks such as GAW-PFR (Kazadzis et al., 2018b) and SKYNET (Nakajimaetal., 2020). Although
the most precise method for monitoring AOD is provided by surface sun photometers, these
measurements are scarce, lacking full spatial and temporal coverage. On the contrary, satellite remote
sensing is a powerful tool for monitoring AOD around the globe (Kaufman et al., 2002) at
considerable accuracy, almost on a daily basis and at relatively fine spatial resolution. Even though the
quality of spaceborne AOD over urban surfaces depends strongly on the limitations of the retrieval
algorithms (Gupta et al., 2016), it is an aerosol parameter available worldwide at high spatial and

temporal resolution.

There are many studies dealing with AOD trends at local (e.g., Raptisetal., 2020; Vohraetal., 2021),
regional (e.g., Che et al., 2019; Cherian & Quaas, 2020; Zhao et al., 2017) and global scale (e.g.,
Buchholz et al., 2021; Gupta et al., 2022; Logothetis et al., 2021; Wei et al., 2019a). AOD trends
(either from spaceborne or from ground-based observations) in the last two decades indicate robust
regional patterns, with decreasing aerosol loads over Europe and US since 2000 and reversed to
decreasing since 2010 for East Asia and continuously increasing over South Asia, which is also
supported by in situ particulate concentration measurements (Gulev et al., 2021 and references
therein). Nevertheless, limited studies have focused on aerosol regime over megacities, which are the
major anthropogenic aerosol sourcesworldwide and, hence, studies specific for megacities provide the
direct link between aerosol load and emissions variability. To conduct such studies, it is necessary to
have a dense surface-based network or to take advantage of the satellite remote sensing coverage
capabilities. Alpert et al. (2012), relying on spaceborne aerosol measurements (MODIS and MISR),
investigated the AOD tendencies over the 189 largest cities worldwide for the 8-year period 2002—
2010. They found increasing AOD trends for the largest cities in the Indian subcontinent, the Middle
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East, and North China, whereas opposite trends were evident in European, northeast US and southeast
Asian megacities. In this chapter up-to-date and state-of-the art spaceborne aerosol retrievals (AOD)
and dust optical depth (DOD) were used to study local and transported aerosols that can affect air
quality in large cities around the globe. Based on the idea of Alpert et al. (2012), we used a finer
spatial resolution (0.1°) aerosol product able to reveal aerosol air pollution disparities within
megacities and will allow for a more detailed AOD spatial analysis at urban scale and for a period

from 2003 to 2020, to have more robust trends.

In order to investigate the aerosol regime of megacities the following scientific questions were

addressed in this chapter:
— What is the spatial variability of AOD in megacities at different geographical locations?
— What is temporal variability?

— Are ground-based AOD measuring stations adequate for reflecting the spatiotemporal changes of

AOD in megacity scales?

— Are AOD trends related to cities’ population changes?

4.1 Methodology

4.1.1 Spatial features

Initially, the geographical distribution of long-term (2003—2020) mean annual and seasonal AOD was
derived for a square area spanning of +1° around the city center (as defined by the UN (2018b)
database). The goal of this analysis was to investigate the AOD variability inside the urban areas, as
retrieved by spaceborne data. In addition, visual inspection of aerosol distributions over 1°x1° areas
and the identified patterns were used for the first qualitative classification of megacities (Section
4.2.1). The main advantage of the MIDAS AOD dataset is the high spatial resolution (of 0.1°) and the
daily data availability. However, there were challenges during averaging regarding the data
availability, and for this reason temporal availability criteria were applied. Every seasonal mean value
was calculated when at least 9 days were available (1st threshold applied), whereas the annual means
were computed when at least three seasonal means were calculated (2nd threshold applied). The
choice of the 9 days was made after conducting sensitivity analysis on data availability limitations for
calculating AOD trends. Based on the filtered year-by-year seasonal and annual means, their
respective long-term averages were calculated. In Fig. 4.1, the geographical distributions of the annual
(Fig. 4.1b) and seasonal (Fig. 4.1d) long-term averages are illustrated for the megacity of Tokyo.
Comparing the AOD field £1° around the city’s center (black circle) with the corresponding Google

Earth satellite map (Fig. 4.1a), higher values of mean AOD can been seen over the urban
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agglomeration of Tokyo, with respect to the surrounding area, throughout the year (Fig. 4.1 b, d). The
blank boxes are pixels that do not fulfill the applied criteria for data availability or data are not
available. This example case demonstrates the applied methodology as it will be explained in the
following sections.
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Figure 4.1 (a) Geographical limits of the study area for the megacity of Tokyo on © Google Earth maps, ©
Google Maps. (b) Geographical distribution of the long-term (2003-2020) annually averaged AOD for the
broader area of Tokyo megacity. (c) Spatial representation equal lat/long grid of AOD data and the sectors
under investigation with different colors. (d) Geographical distribution of the seasonally averaged AOD for the
broader area of Tokyo megacity. Blank pixels do not fulfil the data availability criteria. The black circle denotes
the pixel of the megacity center.
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To investigate further the spatial AOD variability, we quantified the AOD gradients between the city’s
center and the surrounding areas. The square area of each city was divided into six different sectors
(Fig. 4.1c). Sector 1 (or S1) is the 4-pixel area that encompasses the city center. The daily AOD time
series has been constructed by calculating the AOD median for each sector under investigation.
Median was selected rather than mean for AOD aggregation, as a non-parametric statistic of central
tendency, accounting for the not normally distributed AOD data at those spatial and temporal scales
(Sayer & Knobelspiesse, 2019). This aggregation process increased the data availability compared to the
single pixel approach. Following the previous procedure with filtered seasonal and annual means, the
long-term average AOD for every sector was derived. An example for Tokyo is given in Fig. 4.2. For
this megacity, a mean AOD value ~0.35 was found over the city’s center and decreasing mean AOD
values moving towards the outer sections. Although a uniform approach like this ignores the effect of
topography (mainly mountains and sea) that breaks the symmetry around many cities, it could be
considered an indicator of the spatial distribution of AOD. It should also be highlighted that the “city
center” area could have different characteristics and be wider than the area assumed in this approach.
These assumptions are used only to make the results comparable, and studies focusing on a small
number of cities should make a specific division for each case. To give a single number that will
describe the spatial gradient of AOD field from megacities center to the surrounding area, linear
regression was performed to the sectoral annual AOD averages in order to calculate the AOD changes
per 0.1° along with their statistical significance. The results then were expressed in A(AOD) per 1°
and finally were converted in A(AOD) per 100 km (see next paragraph) and were used for a

categorization of the megacities.
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Figure 4.2 The long-term average of AOD (red points) for Tokyo megacity for the six different sectors
considered around every megacity center. The shaded area denotes 1o. The solid red line is the regression line
resulted from the six points.
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Another source of uncertainty for the unified pixel-based approach that was followed for all cities
would be the east-west (E-W) direction size of the pixel. While the pixel size in the north-south (N-S)
direction is the same (~ 110 km for 10 pixels = 1°), this is not the case in the E-W direction. More
than 50% of the cities are located at absolute latitudes 15—45° (Fig. 4.3a) with a median size of 10
pixels (= 1°) in E-W direction of 95 km (Fig. 4.3b) and with the majority of the cities (over 75%)
within the £10 km limit. Even for the high latitude cities (~ 60°), the E-W size of the 10 pixels (= 1°)
is ~ 65 km (~ 2/3 of the median). This difference for the high latitudes cities has been considered in
the subsequent two-domain analysis (see Sect. 4.1.2), by including additional pixels in the analysis.
For the six-sector analysis, we expressed the single measure of the AOD gradients in terms of distance
to account for the difference in the east—west direction. We derived the equivalent distance of the 1°
for every city by taking the mean of 110 km size in the N-S direction and the distance in E-W
direction (Fig. 4.3b) and subsequently we converted the single measure of the AOD gradients from
A(AOD) per 1°in terms of distance in A(AOD) per 100 km. Finally, Fig. 4.3c shows the distribution
of cities elevation, a parameter that has also been considered in the interpretation of the results.

Saint Petersburg Bogota
60- -
— Mo;%%w 110 %%
S London Mexicg City
8 5
= E 100 2000-
g 20 c Johannesburg
£ § 90- g Guada;lgjara
= 8 5
L - = Tehran
o + 80- S x
T 3 2 1000-
o = 1T
o 20- T
.g, ;. 70- London
'g (11
Moscow

5 e
©
-

50 -Saint Petgésburg I\ ,4
(o) VmEmmmmmm— () EEE—E——— () (SN

Figure 4.3 The distribution of the absolute values of megacities latitude (a). The distribution of the equivalent
length of 1° east—west (E-W) direction in km (b). The distribution of megacities elevation in m (c).

4.1.2 Temporal variability and long-term averages

To investigate the temporal variability of AOD and derive the long-term mean values, an area of 0.4°
x 0.4° (4 x 4 pixels, S1 and S2 combined) was considered as representative of the urban
agglomerations, denoted as urban domain hereafter (Fig. 4.4). In the same manner as in six-sector

analysis (Section 4.1.1), the daily AOD time series has been constructed for the urban domain by
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calculating the AOD median. Filtered (the same temporal criteria as in Section 4.1.1) annual mean
AOD values were calculated and based on them, the long-term (2003-2020) annual mean values were
calculated for the urban domain. The AOD interannual variability and decadal trends for the urban
domain were derived, and the methodological details are described in the following subsection. A 4 x
6 pixels area (instead of 4 x 4) was considered for high latitude cities (London, Moscow, and Saint
Petersburg) to have comparable areas for all cities. The differences in annual mean AOD were 1-5%
compared to the same results without making this correction. Despite the small increase in data
availability (~ 10%) when this correction was applied, the trend calculations remained stable. In
general, the uncertainties introduced due to the pixel size are minor compared to those associated with
the data availability.
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Figure 4.4 Spatial representation of equal lat/long grid of the AOD data and the urban domain (red) and
surrounding area domain (brown) under investigation.

4.1.3 AOD interannual variability and trends

The linear trends were calculated by using simple linear regression for the filtered annual mean values
when at least 10 years (out of 18) were available. The statistical significance of the trends was
assessed by performing the t -test. In Fig. 4.5, we are presenting an example for Tokyo. The red and
brown curves correspond to the annual means for the urban and surrounding domains, respectively,
the shaded areas represent the standard deviation, and the same-colored lines denote the calculated
linear trends. For this interannual time series, declining AOD trends are evident both for the urban and
the surrounding domains of the Tokyo megacity.
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Figure 4.5 Annual mean AOD values for the Tokyo megacity (red points) and the surrounding area (brown
points) and the corresponding standard deviations (shaded areas). The linear trends are depicted with the
straight lines.

4.1.4 AOD intra-annual variability

Monthly mean AOD values were calculated when 3 days were available. From those filtered monthly
AODs, the long-term monthly mean AOD values were derived, to assess the intra-annual variability of
aerosol loads for every city’s urban domain. As an example, the intra-annual variability for the
megacity of Tokyo is given in Fig. 4.6. To give a single measure of AOD intra-annual variability, the
temporal coefficient of variation (CV) was derived. The mean and the standard deviation (SD) were
calculated for cities with at least nine monthly values, and then the temporal CV was calculated using

the following formula:

SD
cV = 100%  (4.1)
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Figure 4.6 (a) AOD intraannual variability for Tokyo megacity (red line) and the surrounding area (brown
line). (b) Normalized monthly mean AOD values with respect to June mean AOD value.
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4.1.5 Spatiotemporal variability

To investigate the spatiotemporal AOD variability, the long-term mean AOD values and the linear
trends were also derived for a second domain corresponding to the surrounding area of the urban
agglomerations (brownish cells in Fig. 4.4). This domain (surrounding domain hereafter, Fig. 4.4) is
the remainder from a broader 8 x 8 pixel domain around the city’s center after eliminating the urban
domain (4 x 4 pixels). Again, for high latitude cities, extra pixels were considered (12 x 8 pixels)
adjusting for different pixel area, but even smaller differences were observed (1-4%), with respect to

those found for the urban domain considering this change.

4.1.6 Megacities’ population interannual variability and trends

To identify possible links between cities demographic temporal changes and AOD temporal changes
for the last two decades the annual UN population data (Section 3.5) were analyzed in conjunction

with satellite derived annual mean AOD values representative for every city.

The filtered annual mean AOD values (see Section 4.1.1) and their standard deviation for Kolkata city
are presented in Fig. 4.7 (red points and red shaded area, respectively) along with AOD linear trend
and its statistical significance. An example of the 18-year population counts time series is given with
black points in Fig. 4.7 and the calculated linear trend (dotted black lines). The aim of this analysis
was to identify cities with significant population changes and if those changes are related with
corresponding AOD changes.

Kolkata
1.0 (cc=0.88,p-val<0.05 -17.5
= y=-150+0.083 x 150D
Q R*=1,p<22e-16 S
p =
c 0.8- :
g =
£ o
£ -12.53
: 3
: 5
< 0.6- g

y=-30+0.016 x ~10.0

R%=0.79, p=9.4e-07

! | ' 7.5
2005 2010 2015 2020
Year

Figure 4.7 Time series of annual UN population estimates (black points) for Kolkata, India. Linear regression
line (dotted black lines) is depicted for the study period 2003-2020. Annual mean AOD values (red points)
between 2003-2020 for the urban domain of Kolkata and their standard deviation (red shaded area) are
provided along with linear regression line (dotted red line). The annotation box provides the Pearson correlation
coefficient (cc) and its statistical significance between annual population and mean AOD values.
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4.2 Megacities’ spatial AOD characteristics

In this section, megacities’ AOD spatial variability has been investigated and used as a proxy for

cities’ classification.

4.2.1 Geographical distribution

As already mentioned in Section 4.1.1, the aim of deriving the geographical distribution of the 18-year
period mean annual and seasonal AOD at the original spatial resolution (0.1°) of satellite retrievals
over 1°x 1°area around every city’s center, was to investigate the AOD variability inside and around
cities by the visual inspection of those geographical distributions. An example of the analysis
performed is given for Tokyo megacity in Section 4.1.1. The same approach was followed for all the
examined cities. The firstimportant result of this analysis was that the comparison of the AOD fields
(=1° around cities’ centers) with the corresponding Google Earth maps confirms that the selection of
the 4 x 4 urban domain is representative of cities’ urban agglomerations and the remainder up to 8 x 8
pixels area is representative of cities’ surroundings. Additionally, by examining the spatial AOD
heterogeneities between the urban and surrounding domains for all megacities, interesting features

were found, which led to their first qualitative classification.

Out of the 81 cities, 53% are coastal and 47% are inland. This classification is important, as coastal
cities are related with low data availability —due to satellite retrieval algorithm restrictions— and most
cities that are not present in the following results are costal. One group consists of high-elevated (>
2000 m) cities such as Mexico City and Bogota. Those cities are characterized by low data availability
and for the available pixels, the AOD values are very low, which is not consistent with the GB
measurements (see Section 4.5), thus, they were excluded from the spatial gradient analysis. Another
group contains inland cities adjacent to large deserts where dust regularly dominates the aerosol

mixture (Cairo, Tehran, Riyadh, Baghdad, and Khartoum).

Cities with few blank pixels (< 50%) within the defined limits are clustered in three distinct groups.
There are cities where the AOD field decreases from the central sector towards the surrounding areas
(~ 60% for coastal and ~ 35% for inland). This is always the case for the MMA group of megacities.
For several cities (~ 40% for coastal and for inland), an opposite gradient is found, attributed to the
higher anthropogenic activities (e.g., industrial zones) in the outer domain. Finally, in the third
category only inland cities (~ 25%) are grouped, where a uniform distribution of AOD exhibits a weak
spatial variation. This is a qualitative classification, based on the dataat the original spatial resolution
at 0.1°. To give a quantitative measure of this spatial variability and to reduce uncertainty compared to
the singe pixel approach, the six-sector and two-domain analysis was performed (see Section 4.2.2).
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4.2.2 Long-term means and spatial variability

One of the objectives of this analysis was to take advantage of the high spatial resolution (0.1°) of
MODIS AOD product to assess disparities in aerosol air pollution exposure levels within those high-
risk communities. The aggregation of the AOD for the different sectors and domains that has been
applied (see Sect. 4.1.1 and 4.1.2), increases confidence in these results relative to the single pixel
approach. It must be pointed out here that the combination of the local topography and the location of
the anthropogenic activity outside the examined cities (industrial zones, nearby smaller cities) distorts
the spatial AOD distribution, highlighting the possible inhomogeneity of the city sectors or domains of

the surrounding area we have used.
Spatial (six-sector) analysis

To give a single measure of the AOD gradients (i.e., sharp, or smooth) in the vicinity of the
megacities, a linear fit was applied to the six sectoral 18-year mean AOD values. The slopes are
expressed as A(AOD) per 100 km and along with their statistical significance are presented in Fig. 4.8.
Negative values indicate that greater values of AOD were found in the city center and are denoted
with blue color. Positive values are related to higher AOD values moving away from cities’ center and
are denoted with red color. Due to low data availability, 24 cities were discarded from the analysis.
The MMAs and cities with high elevation (> 2000 m) were also excluded from this spatial gradient
analysis. In Appendix A for every city, the mean AOD values for six sectors are given, normalized

with the 18-year mean value of S1 (Fig. Al).

For most megacities (~ 65%), lower mean AOD values resulted for the surrounding areas with respect
to the city’s center (i.e., negative A(AOD)). This percentage is raised to ~ 75% when only the
statistically significant results are considered. The largest values of negative AOD gradients were
found for Xian (China), Alexandria (Egypt) and Santiago (Chile), attributed to complex topography
(high mountains and coastal areas). On the other hand, only 19 (~ 35%) cities have larger mean AOD
values in the surrounding sectors (i.e., positive A(AOD)) and most of them are in China and India. The
reason that higher AODs were recorded in the surrounding sectors for most of those cities is that they
are enclosing smaller-scale cities (MMAS have been already excluded from the analysis), which,
however, host significant sources of anthropogenic aerosols. For example, Shanghai is the Chinese
city with the largest positive AOD gradient attributed to the influence from the nearby megacity

Suzhou at the west and the Pacific Ocean at the east part of the city.
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Figure 4.8 Spatial AOD gradients per 100 km (1(AOD) per 100 km) from city center to surroundings. The
circle radius is proportional to the statistical significance of the trends. The three cities with the greatest
negative AOD gradient are Xian, Alexandria, and Santiago and the three cities with greatest positive AOD
gradient are Shanghai, Jinan, and Atlanta.

Two-domain spatial analysis

The geographical distribution analysis (Section4.1.1) revealed that the 4 x 4 pixels area is a domain
well fitted to the cities’ urban agglomeration (urban domain). The remainder between the urban
domain and an area up to 8 x 8 pixels (surrounding domain) was found also to be representative for

the surrounding area of all cities. The results for this two-domain analysis are presented in this section.

The geographical distribution of the long-term mean AOD valuesfor the urban domain is presented in
Fig. 4.9. Four cities (BOGO, HCMC, KUAL, SING) are not included due to low data availability.
Low mean AOD values were found for European and American cities in contrast to Asian and African
cities. Specifically, the larger mean AOD values (>0.5) were recorded for Chinese cities, with Indian
cities following, since both areas are densely populated and with high industrial activity. Many
megacities (mostly Asian) lying in the proximity of great deserts are also influenced by natural
aerosols of desert dust (Gkikas et al., 2022; Proestakis et al., 2018). To investigate further this feature
and quantify this influence, the long-term mean DOD, and the DOD to AOD ratio — as a metric of dust
contribution in the aerosol mixture — were derived using the MIDAS DOD and AOD products and the
obtained results are presented in Fig. 4.10. Significant dust contribution (~ 20-40%) was found for the
western Chinese cities, with mean DOD values ranging from 0.1 to 0.2, that were influenced by the
nearby arid and semi-arid regions (namely the great Gobi Desert and the Taklamakan Desert). For
Indian and Pakistan cities around the Thar Desert (India—Pakistan borders), even bigger dust
contribution was found ~ 40-50% and mean DOD values ranging from 0.15to 0.35. The greatest dust
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contribution (up to 60%) with significant mean DOD values up to ~ 0.4 was found for the African
cities of Khartoum and Cairo and for all Middle East cities (Riyadh, Baghdad, and Tehran) that are
influenced by the great deserts of North Africa and Middle East.
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Figure 4.9 Long-term (2003-2020) mean AOD for megacities urban domain (~ 40 km x 40 km around cities
center). The circle radius is in proportion to cities’ population. Three cities with greatest mean AOD are those of
Chengdu, Foshan, and Chongging and the three cities with lowest mean AOD values are those of Atlanta,
Houston, and Belo Horizonte.
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Figure 4.10 Long-term (2003—-2020) mean DOD for megacities urban domain (~40 km x 40 km around cities
center). The circle radius is in proportion to the DOD to AOD ratio. Five cities with the greatest dust
contribution (mean DOD/AQD ratio) are Khartoum, Riyadh, Baghdad, Cairo, and Tehran.
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To contrast the mean AODs for the urban domain against those of the surrounding area, we have
reproduced a global scatterplot with their matchups, presenting also ancillary information (i.e.,
continent, population, coastal/inland) (Fig. 4.11). Points residing on top of the one-by-one line
indicate cities with homogeneous spatial AOD distributions (inside and surrounding area), whereas

above/below the equality line, AODs are higher in the surrounding and urban domain, respectively.

Almost 60% of the cities have greater mean AOD values over the urban domain and 40% have greater
values over the surrounding domain. There are more cities with differences exceeding 10% when
higher values of AOD are recorded over the urban domain compared to the opposite case. In general,
the obtained results are in line with those of spatial gradients (sectoral analysis, Fig. 4.8), while almost
all cities (apart from four) are included here due to the greater data availability for the two-domain
approach. Shenzhen, Osaka, and Jakarta show the biggest decrease of 0.15-0.25 (~ 25-35 %) in a
range of few kilometers from their center. On the other hand, Chinese cities (Shanghai, Suzhou, and

Qingdao) and Atlanta have greater mean AOD values in the area surrounding the center.

Additionally, the classification of the cities according to their geographical location (in line with Fig.
4.9) came up, according to the obtained results for both domains. All European and American cities
yield mean AODs ranging from 0.08 to 0.20, in contrast to African and Asian cities in which the
corresponding levels range from 0.25 to 0.9 (apart from Bangalore (0.2), Dar es Salaam (0.17) and
Johannesburg (0.09)).
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Figure 4.11 Long-term (2003—2020) mean AOD for megacities’ urban domain (~40 km x 40 km around cities’
centers) versus the surrounding area domain. The name of the cities with difference in mean AOD greater than
+0.04 between the two domains is depicted. The dotted black line is the identity line, and the dashed red lines
denote £10% difference in mean AOD between the two domains.
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4.3 Temporal variability

4.3.1 AOD trends

The geographical distribution of the AOD changes per decade (Fig. 4.12, after excluding 11 cities
which did not fulfill the temporal criteria) revealed pronounced regional features. The resulted AOD
trends for the megacities are reflecting the changes in the anthropogenic emissions, associated with
the air quality regulations implemented throughout the years, in the same manner that previous studies
have shown the connection of the satellite-observed AOD trends with the implemented mitigation

policies in regional scales (Gupta et al., 2022; Zhao et al., 2017).

For all European and US/Canadian cities, decreasing AOD values were found (up to ~0.03 and ~0.07
per decade, respectively), in accordance with the AOD decrease in western Europe and eastern North
America that has already been reported in the literature, and was associated with a series of air quality
control measures that have been implemented (Gupta et al., 2022; Zhao et al., 2017). While negative
trends have been found in this study for Los Angeles, other recent studies report small positive trends
for the western United States of America that are associated with reduced precipitation and increased
fire activity over the area (Cherian & Quaas, 2020; Gupta et al., 2022). However, the latter studies
refer to much wider areas and not to the city of Los Angeles, which indicates that the trends in the city
may be related to different mechanisms (i.e., reduction of anthropogenic emissions dominates over the
increase due to increasing dust and smoke events), relative to the trends over the wider region of the
western US. Statistically significant negative AOD trends were found for the eastern Asian megacities,
with the highest values (in absolute terms) up to ~-0.3 per decade being evident for the Chinese
megacities. This result (net negative AOD trend for the whole study period for Chinese cities) is in
agreement with recent studies that reported AOD decrease for eastern China (Gupta et al., 2022),
which was associated with the implemented emission control policies. Specifically, for China, while
up to 2010 AOD was increasing (e.g., Hsu et al., 2012) due to the rapid economic and industrial
development of the country, after 2011 declining AOD trends have been recorded for the central and
eastern sectors of the country, related with the reduction in anthropogenic aerosol emissions due to the
implementation of emission control measures (Sogacheva et al., 2018; Zhao et al., 2017). According
to Sogacheva et al., (2018), the gradual AOD decline after 2011 is more prominent for the highly

populated and industrialized southeast China regions, being in agreement with our results.

On the contrary, strong positive AOD trends (ranging from 0.07 up to 0.16 per decade) were found for
all megacities in the Indian subcontinent, reflecting the increased industrial and financial development
during this period, and is in agreement with previous studies (e.g., Buchholz et al., 2021). In their

recent study, Samset et al., (2019), showed that the climate implications of this dipole pattern of
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positive AOD trends over southern Asia and strong negative values over eastern Asia observed since

2010 might be strong not only on a regional scale but also for areas away from the sources.

Positive AOD trends were also found for the Middle East megacities, ranging from 0.03 to 0.1 per
decade. This finding is in line with the AOD trends that resulted from the analyses of retrievals from
different satellite sensors (Che etal., 2019), although negative trends have been reported in the study
of Gupta et al. (2022) who analyzed AOD from CALIOP. For the Latin American megacities, the
highest AOD trends are positive (~0.03 per decade for Buenos Aires and Lima), reflecting the poor
emission control measures over this geographical domain. In recent studies (Buchholz et al., 2021;
Guptaetal., 2022), areduction in AOD was reported for South America, attributed to the decline in
forest fires, which might explain the negative AOD trends for the rest of Latin American cities. Sub-
Saharan Africa is an area for which AOD decrease has been reported in previous studies, which is
opposite to our findings (+0.06 per decade for Luanda and +0.03 per decade for Dar es Salaam). For
this area, an increase in AOD was also found by the recent study of Gupta et al. (2022), which was
associated with the increase in biomass burning of agricultural activity in the dry season over the area.
However, since our study is focused on megacities, our findings may reflect the increasing
urbanization in combination with the limited air quality regulations over the area, but further

investigation is needed.
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Figure 4.12 Linear trend of AOD per decade for urban domain (~ 40 km x 40 km around cities’ centers). The
circle radius is in proportion to the statistical significance of the trends. Three cities with greatest increase of
AOD are Hyderabad, Kolkata, and Bangalore and the three cities with greatest decrease of AOD are Chengdu,
Chongging, and Xian.

The comparison of the AOD trends against the long-term mean AOD of the urban domain revealed an
interesting clustering of cities, according to their geographical location (Fig. 4.13). It has to be pointed
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out here that only the statistically significant trends were included in Fig. 4.13, thus ensuring robust

and meaningful results.

In all European and North American cities, low AOD climatological values and decreasing trends
were found. Note that in some US cities like Atlanta,Washington, Philadelphia and New York, apart
from their relatively low mean AOD values (<0.17), considerable negative trends (ranging from -53 to

-28%) were recorded.

All Indian cities have positive AOD trends regardless of their mean AOD levels, which span from low
to high values. Among them, Kolkata is the city where extremely high mean AODs (0.70) and large
positive trends (+22% per decade and the higher in absolute values +0.16 per decade) were revealed.
Of particular interest is Bangalore, which has relatively low mean AOD value (0.20), but the
maximum positive AOD trend is almost +69% per decade. Bangalore’s population increased from 6
million to 12 million during the last two decades, which is one of the biggest population increases for
cities at this scale and, thus, it can explain to a large degree the extreme increase of AOD. Meanwhile,
financial development in the area is linked more with new technologies and not heavy industry, which

partially answers the relatively low mean AOD.

All Chinese cities are subjected to AOD decrease (up to ~ 30%), while at the same time they have the
highest mean AOD values ranging from 0.45 to 0.91. Chengdu is the city with the biggest mean AOD
value along with the highest AOD decrease of ~ 30% per decade (or ~ 0.3 per decade).
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Figure 4.13 AOD decadal changes expressed in percentages (A(AOD)%per decade) versus the long-term mean
AOD for the urban domain. Only statistically significant AOD trends are presented (P < 0.1). Cities with
absolute values of A(AOD)% per decade greater than 25% are denoted in the figure.
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4.3.2 Intra-annual variability

AOD exhibits strong intra-annual variability (Zhao et al., 2018), which is quite important to be
analyzed at megacities’ scales to improve our understanding regarding the aerosol-related health
effects. The normalized (using the mean AOD of June as reference) monthly mean values for all cities
are provided in Appendix A, Fig. A2, classified for the different geographical domains. To investigate
the intra-annual variability of AOD at city level, the temporal CV (Sect. 4.1.4) was calculated. The
geographical distribution of temporal CV is illustrated in Fig. 4.14, only for cities complying with the
defined temporal criteria (four cities were omitted). Low CV values (< 20%) were found for eastern
India, most of the Chinese cities and the easter Mediterranean. The highest CV values (>70%) were
recorded for three US cities. To further investigate those results, the relationship between temporal CV

and the long-term mean AOD values for the urban domain was examined (Fig. 4.15).
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Figure 4.14 Temporal coefficient of variation (CV) of monthly mean AOD (intraannual variability) expressed
in percentages for megacities’ urban domains (~ 40 km X 40 km around cities’ center). The circle radius is
proportional to the cities’ population. Three cities with the highest temporal CV are Atlanta, Houston and
Washington, DC and the three cities with lowest values are Kolkata, Chongqging, and Pune.

A non-linear relationship was found, with the gradual decrease of the mean AOD to be related with
increasing CV levels (Fig. 4.15). The greater values of CV (> 50%) were found only in the group of
cities with low mean AOD values (< 0.25, with only exception being Luanda) and almost all are US
cities on the East Coast. For North American cities, the monthly mean AOD values during the boreal
winter are decreasing close to zero and maximized during summer, this resulted in this high intra-
annual variability (Fig. A2b) especially for southeastern US cities. These high values of intra-annual
variability for southeastern US cities, and most notably Atlanta, are explained by the high AOD values

over the area during summer due to secondary aerosol formation by biogenic volatile organic
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compound (BVOC) oxidation (Goldstein et al., 2009). For most southern American cities, rather
stable values were found throughout the year (Fig. A2c). For moderate AOD levels (0.25-0.50), a
limit of 50% was found for the CV values. For the cities with high aerosol loads (> 0.50), which are

mostly Chinese cities, the CV values are confined to the limit 10—40 %.
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Figure 4.15 Temporal coefficient of variation expressed in percentages (CV %) against the long-term mean
AQOD for the urban domain. The size and the color of the points denote cities’ population and geographical
domain, respectively. The shape of the points denotes costal or inland cities.

4.4 Spatiotemporal variability

Towards assessing the AOD spatiotemporal variability, the decadal AOD linear trends for the urban
and the surrounding domains were compared (Fig. 4.16). We are presenting only the points in the
scatterplot when the AOD trends are statistically significant (p <0.1), both for the surrounding and
urban domains (43 pairs). Points residing above/below the identity line correspond to AOD trend

(negative or positive) that is higher in the surrounding/urban domain, respectively.

All cities in India exhibitan increase of AOD both in the urbanand surrounding domains. The largest
difference was found in Hyderabad where AOD trend is 10% larger for the urban domain, indicating
an increase of anthropogenic activity within the boundaries of the urban agglomeration. For cities

where AOD decreases were found, two groups are shaped. The first one, that has greater AOD
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decrease for the urban domain, consists mostly of East Asian cities. Chongging is the Chinese
megacity with the largest difference (~ 20%), reflecting the adaptation of effective measures towards
reducing city’s aerosols air pollution (Gao etal., 2021). The second group, which consists mostly of
the North American cities, has greater AOD decrease for the surrounding domain.
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Figure 4.16 AOD decadal changes expressed in percentages (A(AOD)% per decade) for the surrounding
domain versus the urban domain. Only statistically significant AOD trends are presented (P < 0.1). The dotted
line is the identity line. Cities with absolute differences of A(AOD)% per decade greater than 10% between the
two domains are denoted in the figure.

4.5 Evaluation with ground- based (GB) measurements (AERONET)

For cities with available long-term time series of AOD in the 2003-2020 period from GB stations of
the AERONET network, an evaluation of the satellite AOD averages and trends was performed. The
level 2, version 3 (Giles etal., 2019) daily mean product of AOD at 500 nm was collected for stations
with at least 8 years of data within the study period. Using the Angstrodm exponent, 440—-870 nm, the
AOD values were interpolated at 550 nm. Table A2 summarizes the information of the 27 AERONET
stations utilized. Statistics and trends of ground-based measurements were calculated with the same
methodology and data availability criteria applied to the satellite data (see Sections 4.1.2 and 4.1.3).
This comparison is separated by the GB stations located within the 4x4 pixel area of the urban domain
and those residing in the surrounding domain of a city. The daily averaged AOD product was used
from the AERONET stations to derive long-term mean AOD and linear trends, using the same
approach as followed with the satellite data. The diurnal AOD variability of the AERONET data was
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not considered and this may slightly affect the long-term mean AOD (Smirnov et al., 2002), but it

plays a minor role for the calculation of trends.

Regarding the long-term mean AOD (Fig. 4.17), for the urban domain there is a good agreement
between the satellite derived and the GB values (correlation coefficient R ~ 0.93). The largest
deviations (expressed as percentages) between spaceborne and ground-based AODs are recorded in
general for weak-load cities, and those deviations are maximized in the high-altitude city of Mexico
(>2000 m) and in Osaka due to low satellite data availability. There are only few GB stations in the
surrounding domain, so the R is not representative. The satellite derived mean AOD is overestimated,
but in those cases, the area that was selected for getting the satellite data is considerably large and it is

unlikely that the in-situ measurement statistics would coincide with satellite observations statistics.

Urban Domain Surrounding Domain

0.8
1

@ ]
— satellite o —— satellite
— GB stations — GB stations

Q o w
2 s s
c
g
= & =
g © | < a |
B I )
<
o
S o | o
3 e = \& °
= o =
o [
o o
3‘53- o 8
3 ] A o ]
; ] o ] o
T o / o) Q v/o—"o—-n o o / O—0pn - o—"  ———o0-—__ -
I e e e TN o
a © o 8
= T T T T T T T T T T T T T T T T T T T T T 1 T T T T
oL O ¥ 2 X ¥ < Zz O 0O F 2 0O Wwwo-=sEo2 o < < T T
B Eijgis giisieszggizee g 5§ i
o = © 28U =23apsagesos 3 = @ =
(a) (b)

Figure 4.17 (a) Satellite-derived (red line) and GB (blue line) long-term mean AODs and their relative
difference expressed in percentage (black line) for the urban domain of cities. (b) The same for the surrounding
domain (brown line for the satellite-derived values).

A relatively good agreement was also found for the decadal linear trends (Fig. 4.18), with R ~0.79 for
the urban domain. For 75% of cases, GB and satellite-derived trends have the same sign for both
domains. In Fig. 4.18, the results are presented only when both spaceborne and ground-based AOD
trends are statistically significant. For the urban domain, all the statistically significant trends have the
same sign. For the surrounding domain, the trends’ signs differ only for LOSA. This difference can be
attributed to the shorter period of measurements at the LOSA AERONET station (8 years).
Additionally, in a recent study (Wei et al., 2019c), western North America was found to be the area
with fewer sites with the same signs between MODIS- and AERONET-derived AOD trends.
Nevertheless, our analysis does not focus on a validation of satellite AOD against AERONET, thus, an
exact colocation of the AERONET stations with satellite pixels was not attained. To further investigate
the obtained differences, the spatial CV was calculated for the urban and surrounding domain, as the
ratio of standard deviation and mean values of the pixel long-term mean AODs derived in
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geographical domain analysis. The results are presented in the lower panel of Fig. 4.18 along with the
percentage of the available pixels inside the domain under investigation. For LOSA, the greatest value
of spatial CV was found (> 50%), which was anticipated, since the spatial extent of Los Angeles
metropolitan area is high (including Long Beach and Santa Ana), highlighting the importance of the

selection of the GB location.

An additional interesting feature is that the absolute values of all satellite-derived statistically
significant trends (Fig. 4.18) have lower magnitude compared to the GB results. This difference in
magnitude could be attributed to the domain aggregated satellite values compared to point-derived
results of the GB stations, which may smooth out the AOD fields. In a recent study by Logothetis et
al. (2021), a sensitivity analysis was performed between coarse (1°) and fine (0.1°) spatial resolution
of spaceborne AOD retrievals which revealed AOD trends of lower magnitude for the coarse spatial
resolution data. Moreover, the daily satellite value, corresponding to satellite overpass, contains less
information compared to the continuous monitoring during daytime of cloudless days of the ground-

based photometers.
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Figure 4.18 (a) Satellite-derived (red line) and GB (blue line) statistically significant (P < 0.1) AOD linear
trends for the urban domain and the corresponding spatial CV (red bars) for every city; the numbers on top of
the bars declare the pixel availability for the domain. (b) The same for the surrounding domain (brown line for
the satellite-derived values).

Hence, GB stations are representing the close area around their location and the representativeness of
AERONET stations to characterize aerosol load/trends in megacities should be considered

individually in each case, according to local conditions.

4.6 Population changes and relation to AOD trends

For all cities but one (Fukuoka), the population for the period 2003-2020 has increased (Fig. 4.19),
and those results were found to be statistically significant. Delhi has the greatest increase, almost 7.5
million inhabitants per decade. Thirteen Asian and African megacities (with population >11 million)
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are experiencing the greater values of population increase (>3 million per decade) and Luanda
(Angola, Africa) is the only one non megacity (population ~8 million) that is experiencing the same
population increase, which means that it is anticipated to exceed the limit of 10 million and become a
megacity soon. Seoul exhibits the lowest population increase (~0.1 million per decade). Fukuoka is
the only city where a population decrease was found (approximately 0.01 million per decade), but this

change wasn’t found to be statistically significant.
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Figure 4.19 Linear trend of population for period 2003-2020 based on UN population counts. All results are
statistically significant (P<0.05) but Fukuoka. Three cities with greatest increase of population (>5.5 mil. per
decade) are Delhi, Shanghai, and Dhaka and the three cities with lowest increase of population (<0.3 mil. per
decade) are Philadelphia, Chicago, and Seoul. Fukuoka was found to be the only city with population decrease
(< -0.01 mil. per decade) but this result is not statistically significant.

The relative population changes per decade are compared against corresponding relative AOD
changes in Fig. 4.20 (only statistically significant trends, P<0.1, are presented). For all European,
North American, and eastern Asian cities (e.g., all Japanese) AOD decrease was derived, while they
are associated with small population increase. In contrast for all Indian, most African and South
American, and some Asian cities, their population increase is accompanied by positive AOD decadal
trends. The population increase of Indian cities is correlated with their increase in AOD. Bangalore is
the Indian city with the greatest AOD and population increase, simultaneously. An interesting cluster
of cities are Chinese, which almost all had a considerable population increase, however, the measures
applied for air pollution resulted in AOD decrease for all. Xian is the Chinese city with the greatest
population increase and AOD decrease at the same time. While the AOD increase in relative terms for
Africa cities is small, their population is considerably increased (Dar es Salaam is the African city

with the greatest positive population trend).
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Figure 4.20 AOD versus population decadal changes expressed as percentages. Only statistically significant
trends are presented (P<0.1).

4.7 Summary and conclusions

Motivated by the environmental challenges caused by increasing urbanization and to maximize the
use of spaceborne aerosol products, in this chapter the aerosol regime over the megacities of the world
using satellite aerosol retrievals was investigated. We took advantage of the global coverage, the high
sampling frequency (daily values) and the relatively fine spatial resolution (0.1° x 0.1° grid) of the 18
years MODIS-based AOD and DOD at 550 nm products, in order to examine the spatiotemporal

variability of aerosol loads for the largest 81 cities of the world.

For all European and American cities, mean AOD ranges mainly from 0.08 to 0.20. For all African
and Asian cities but three (Bangalore (0.2), Dar es Salaam (0.17) and Johannesburg (0.09)), mean
AOD ranges from 0.25 up to almost 0.90. There are cities which lie in the proximity of deserts or in
the path of transported mineral dust particles, which were found to have considerable dust
contribution (up to 70%) and the associated mean DOD values (up to 0.4) can be considered as a
constant background aerosol source for those megacities. Results of this contribution can be used by

policymakers for defining the legislations on air quality urban thresholds.

Most cities (~ 60%) have greater mean AOD values over their urban agglomeration domain. Mostly
Chinese and Indian megacities tend to have higher AOD in the surrounding areas of the city center.
Shanghai is the city with the largest difference (13% greater mean AOD values for the surrounding

domain), but in general for the cities grouped in this category, the declinations between the two
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domains are lower compared to the first category, because of the high mean AOD values of the urban
domain. Finding disparities in the exposure at urban scales using satellite remote sensing may be a
useful tool for air pollution assessment and finally taking diverse reduction measures at community
level. As AOD differences are also observed for different months/seasons during the year, AOD intra-
annual variability at megacities’ scale have been quantified. Low intra-annual variability (temporal
CV 10-40 %) was found for Chinese, eastern Indian and eastern Mediterranean megacities, while high

values (> 50%) of temporal CV was recorded for eastern American megacities.

Although Chinese cities were found with the highest mean AOD values (up to ~0.90), they also
exhibit the highest AOD decrease in absolute values up to ~0.3 per decade (or 30% per decade), in
response to the rigorous emission control measures implemented in the country, especially after 2010,
despite their considerable population growth. The effectiveness of those measures also reflects the fact
that, for Chinese cities, the AOD decrease was found to be higher for the urban domain (up to ~20%).
Decreasing AOD values were also derived for US/Canadian and European megacities (up to ~ 0.07
and ~ 0.03 per decade) due to a series of air pollution control policies in the last decades. Small
population growth was found for those cities. The maximum worldwide negative AOD trends in
relative terms, ~30—-55%, per decade were derived for most US cities, which simultaneously have low
mean AOD values (less than ~0.15). The highest AOD increase worldwide in absolute (up to ~0.16
per decade for Kolkata) and relative terms (~ +70% per decade for Bangalore) was found for Indian
megacities, correlated with their population growth. Statistically significant positive AOD trends were
found for all Indian cities, reflecting the increasing urbanization and industrialization of the country.
The AOD increase for Indian megacities was found to be greater (up to ~ 10%) for the urban domain.
Statistically significant AOD increase was also found for Middle East, South African and some Latin
America megacities (up to ~ 0.1, 0.06 and 0.03, respectively), along with an increase in their
population. According to our results population growth and environmental measures to reduce aerosol

loads in megacities are competing factors for their air quality.

For cities where long-term ground-based AERONET measurements of AOD were available, the extent
at which those measurements can capture the spatial and temporal AOD variability was investigated
with respect to the spatial and temporal variability that were derived from satellite data. For GB
stations within the urban agglomerations, a good agreement of the long-term mean AOD was found (R
~ 0.93) and with coincident signs on AOD trends in 75% of the selected stations. The resulted
discrepancies are attributed, apart from the satellite retrievals-related limitations (one overpass per
day, high elevated pixels, low data availability, etc.) and the GB retrieval limitations (large temporal
gaps due to instrument issues/calibration, shorter operating time periods, etc.), to the point (GB)
versus area-averaged (satellite) comparison. It was found that for areas with non-homogeneous
aerosol fields (great spatial CV, e.g., LOSA in our analysis), great differences (opposite signs) were
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recorded between satellite and GB trends. Those findings highlight the importance of the GB station
location selection for future planning of aerosol measuring sites, to achieve representative AOD

measurements for a specific city.

We acknowledge that the total column optical property of AOD analyzed in this study to describe
aerosol load variability, is not always proportional to the surface particulate matter (PM)
concentrations, which is a parameter better describing the cities’ air quality, monitored, regulated by
the cities” authorities, and related directly to health effects. However, PM concentrations are derived
by in situ measurements and a dense network of those measurements is needed to describe the PM
spatial distribution for a city. Even though these ground air quality monitoring stations are valuable,
there are relatively few and unevenly distributed within cities around the world, especially in
developing countries. One way to provide consistent PM data worldwide is by combining available
PM measurements with satellite AOD observations and chemical transport models (e.g., HEI, 2020).
Therefore, the use of satellite AOD is a very fitting source of information to have global coverage and
high spatiotemporal resolution of aerosol loads over urban areas, keeping in mind that the agreement
between satellite columnar AOD and ground-based PM concentrations is determined at a large degree

by the vertical structure of aerosol layers (e.g., Gkikas et al., 2016).

Accordingto the findings in this chapter, long-term high-resolution spaceborne AOD retrievals can be
utilized for detecting spatial and temporal aerosol variability at an urban scale, helping towards the
currentand future assessments of aerosol related impacts in megacities. The link of the AOD changes
with population and emission trends revealed that the AOD increases for cities with population growth

and poor emission regulations.
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5 Aerosol direct effects on solar radiation

Thischapterisprimarily based on the publication: Papachristopoulou, K.; Fountoulakis, I.; Gkikas, A.; Kosmopoulos,
P.G.; Nastos, P.T.; Hatzaki, M.; Kazadzis, S. 15-Year Analysis of Direct Effects of Total and Dust Aerosols in Solar
Radiation/Energy over the Mediterranean Basin. Remote Sens. 2022, 14, 1535. https://doi.org/10.3390/rs14071535

According to the results of the previous chapter, aerosol loads increase in the absence of emission
regulation measures in the greatest cities of the world. The quantification of changes in the aerosol
direct radiative effect that is induced by such changes in aerosol loads is of great importance for solar
energy applications. In this chapter, the aerosol and especially dust effects on DSSI in terms of GHI
(important for PV installations) and DNI (important for CSPs) were investigated on a regional scale,
specifically for the broader Mediterranean Basin using earth observation data and radiative transfer
modeling. The selection of the study area was based on its high solar energy potential, especial for the
southern parts of the domain, the complexity of the aerosol state over the area (both anthropogenic
and natural aerosols, including dust) and the increased installation of solar energy exploitation systems

in the surrounding countries, as it was discussed in the Introduction.

The earth observation data which were explored consist of two different aerosol optical depth (AOD)
and dust optical depth (DOD) datasets, the newly developed satellite-based MIDAS (Section 3.1.2)
and the model derived CAMS reanalysis datasets (Section 3.1.4), to investigating the advantages and
limitations of existing model and satellite-based aerosol time series for solar-energy-related
applications. The most accurate estimates of those optical properties are provided from ground-based
remote sensing instruments (sun photometers), which are however sparse, and their geographical
distribution is spatially inhomogeneous. This observational gap is complemented by satellite remote
sensing along with the related retrieval algorithms, providing considerably accurate measurements
with global coverage and high spatial and temporal resolution. Although they are still not as accurate
as ground-based estimates of the aerosol optical properties, the accuracy of satellite-based aerosol
products has been improved substantially in recent years (Sayer et al., 2013, 2020). A significant
disadvantage of satellite products is that they are representative of relatively wide areas rather than
specific locations, and thus they can be highly uncertain when they are used to study aerosols over
complex environments (Kazadzis et al., 2009; Wei etal., 2020). For reanalysis datasets, compared to
satellite products, their spatial resolution is relatively low, and regardless of the assimilation process of
aerosol observations, the performance of their outputs depends on modeling aspects (e.qg., the balance
between the different aerosol components constituting the aerosol column at any given location and
time) (Gueymard & Yang, 2020).
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Since the results of the analysis presented in this chapter are based on radiative transfer model (RTM)
simulations, as a first step a sensitivity analysis was conducted investigating the effect of changes in
the aerosol profiles on simulated irradiances in the earth’s surface (methodology at Section 3.7) and
the results are presented in Section 5.1. The quantification of the long-term effects of total aerosols
and dust on different DSSI components (GHI and DNI) with respect to aerosol-free conditions were
derived, using both AOD and DOD datasets as inputs to RTM simulations using the LUT approach.
For the simulations, additional aerosol optical properties and atmospheric parameters were used as
inputs as well. Furthermore, the advantages and limitations of existing model and satellite-based
aerosol time series for solar-energy-related applications were investigated. Details of the methodology
are provided in Section 3.8 and the results are presented in Sections 5.2-5.5. In Section 5.6 the 15-year
climatology of clear sky GHI and DNI in the Mediterranean Basin is presented. Finally, the same
methodology was applied for a smaller area inside the Mediterranean domain, in order to extend the
analysis to all-skies conditions, namely, to consider also clouds and compared both aerosol and cloud

radiative effects in a Mediterranean environment and the results are presented in Section 5.7.

5.1 Sensitivity analysis for the effect of the aerosol vertical distribution on surface
solar radiation

In most climatic studies, default aerosol profiles are used which commonly assume an exponential
decrease in aerosol extinction (with aerosols concentrated in the first 1-2 km from the surface). In
many cases, this assumption does not affect the modeled irradiance at the bottom of the atmosphere
(BOA) and the top of the atmosphere (TOA) significantly (e.g., Petrzala (2022)). The scientific
question to be answered here is how deviations of the actual vertical distribution of aerosol optical

properties from the default profile affect the solar radiation that reaches the Earth’s surface.

5.1.1 Sensitivity Study Using Artificial Extinction Profiles

As described in Section 3.7.1, the magnitude of the differences in spectral surface solar radiation when
the altitude of the aerosol layer changes was investigated using artificial aerosol extinction profiles.
Relative differences (%) were calculated between simulations for which all parameters were the same,
exceptthe aerosol extinction coefficient profile. The radiation profiles for elevated aerosol layers (L1
to L4) were compared with the radiation profiles for LO. LO was used as reference because it is closer
to commonly used climatological profiles, as most of the radiation extinction by aerosols takes place
near the surface. Sensitivity of the results to different TCWV was found to be very small even in the
NIR. Thus, only results for TCWV = 1 g cm2 are presented. Moreover, the sensitivity analysis
performed prior to the simulations revealed that the effect of changes in TOC (within the realistic

limits of 200-400 DU) on the results was also negligible. Therefore, all simulations were performed
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for TOC =350 DU. In this section, the effect of the altitude of the aerosol layer on global irradiance
(G1) at the surface is discussed for AOD = 1.

Differences (in %) in the Gl for the four spectral bands, as it was simulated for aerosols at higher
altitudes (L1 to L4) and aerosols at LO, are presented in Fig. 5.1. Below SZA = 60° and for low
surface albedo, the altitude of the aerosol layer had a small impact on the Gl that reached the surface,
since differences were in all cases below 5%. For SZA = 80°, the differences were larger, up to 15%,
mainly for UVA and NIR. For UVA, increasing the altitude of the layer led to increased absorption by
absorbing (SSA = 0.75) aerosols. For L4, the reduction was nearly 8% with respect to the UVA at the
BOA for LO. Apossible explanation is that the direct beam that enters LO is significantly weaker than
the direct beam that enters L4. At such a large SZA, the optical path inside the layer is longer for
photons of the direct beam relative to scattered photons. Thus, when the aerosol layer is higher,
absorption of UVA irradiance by aerosols is stronger. For UVB, the corresponding reduction is smaller
because at high SZA (above 60°) the contribution of the direct component is already weak relative to
the contribution of the scattered component of Gl at 5.5 km. In the VIS and NIR regions, although the
direct component is stronger than in UV, the photons are scattered less effectively in the atmosphere.
Thus, in aerosol-free skies, the direct component of VIS and NIR GI was similar at 1.5 km and 5.5
km. In NIR, the GI atthe BOA at SZA = 80° increased with increasing altitude of the aerosol layer (by
12-14% for L4), for both absorbing and reflective aerosols. This is possibly because scattering of the
NIR at higher altitude at such large SZA results in a reduced optical path for a significant fraction of
the scattered photons as they propagate “more vertically” below the aerosol layer, moving towards the

surface, and are thus absorbed less effectively by atmospheric molecules (mainly by water vapor).

The altitude of the aerosol layer plays a more significant role over highly reflective surfaces,
especially when Rayleigh scattering is strong (i.e., in the UVB and UVA regions). The global
irradiance at BOA increases with increasing aerosol layer altitude, by up to 15% in the UVB for L4
and small SZA. When the layer of aerosols is inside a denser atmosphere (i.e., near the surface) the
photons follow longer paths in the layer (due to multiple Rayleigh scattering) with respect to elevated
aerosol layers. This phenomenonis intensified over reflective surfacesdue to multiple interactions of
the photons with the surface, the dense atmosphere, and the aerosol particles. If the layer constitutes
absorbing aerosols, then increased absorption leadsto even larger differences between GI at the BOA
for elevated aerosol layers and LO, and up to 15% for L4. Longer wavelengths are scattered less
effectively in the atmosphere, which is the reason for the very small (below 3%) differences between
Fig. 5.1 e, f (for reflective and absorbing aerosols). Rayleigh scattering in the NIR is negligible; thus,

the corresponding differences between panels 5.1g and 5.1h are nearly zero.
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Changes in total irradiance (panels 5.1i and 5.1j) due to different altitude of the aerosol layer are
determined by changes in the VIS and the IR. For increasing altitude of the aerosol layers, the total Gl
at BOA increases. The increase was smaller than 5% for SZAs below 60° and larger for SZA = 80°.
The increase was similar for L2, L3, and L4, at 7-8%. Changing the surface albedo has negligible
impact on total Gl at the BOA. It must be mentioned that in realistic conditions, the AE is larger than
0, and subsequently, the effect of aerosols is larger at shorter wavelengths, which means that the
contribution of changes in the NIR to the changes in the total Gl would be less significant than the

contribution of NIR in the results presented in panels 5.1i and 5.1j.
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Figure 5.1 Relative differences in Gl at the BOA for different altitudes of the elevated aerosol layer, SSA and
surface albedo with respect to the corresponding conditions when aerosols are at LO (elevated layer - LO). The
presented results are for AOD = 1 and TCWV = 1 g/cm?. Different rows represent different spectral regions
(UVB, UVA, VIS, NIR). Different columns represent different surface albedo (left: 0.1, right: 0.8).
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5.1.2 Effect of extinction coefficient profile for typical aerosol conditions - LIVVAS Profiles

The methodology used in this section has been described in Section 3.7.2. The differences between the
seasonal total-aerosol extinction coefficient (at 532 nm) profiles from LIVAS and the libRadtran
default profile (Shettle, 1989) (both scaled to the seasonally averaged AOD at 550 nm) for the two
regions are presented in Fig. 5.2. The profiles used to calculate the differences are shown in Appendix
B (Fig. B21).

The different characteristics of aerosols over the two regions lead to quite different patterns in the
extinction coefficient profile differences. Over CE Europe, continental aerosols constitute a significant
fraction of the aerosol mixture, while over NW Africa, dust plays a very significant role. In winter, for
both areas, aerosol extinction was underestimated below ~1.5 km and overestimated above the same

altitude when the default profile was used for the simulations.

For CE Europe, the pattern of differences between the default and measured vertical profiles of
aerosol extinction coefficient were as follows. Negative differences (i.e., overestimation by the default
profile) appear above an altitude that ranges from ~2 km in winter to ~4 km in spring. Then, the

differences become positive. In spring and summer, the differences approach zero near the surface.

For NW Africa, there is a stronger seasonal dependence on the extinction coefficient differences
relative to CE Europe. In springand autumn, the differences are negative above 5—-6 km, and positive
below, approaching zero at about 2 km. In summer, differences in the extinction coefficient are again

negative above ~6 km and positive below. Then, the differences become negative again below 2 km.
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Figure 5.2 Differences between the LIVAS and the libRadtran default extinction coefficient profiles for the
AOD at 350 nm. The results are shown for CE Europe (blue line) and NW Africa (red line) for the four seasons
of the year. The 350 nm AOD for each is also shown in the panels with the corresponding colors.

In Fig. 5.3, the differencesin the Gl at the BOA are presented for each region and each season of the
year. In all cases, the differences were below 3%, and especially for VIS and NIR, they were in many
cases below 0.5%. Given that more than 85% of total SW irradiance is in the VIS and NIR regions,

changes in SW GI were also close to zero. These results confirm that for typical aerosol conditions,
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using a more realistic profile instead of the default is not necessary for the study of the Gl at the

Earth’s surface.
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Figure 5.3 Change (in %) in the simulated Gl reaching the surface due to the use of the LIVVAS profiles instead
of the default libRadtran profile.

5.2 Satellite-Derived and Modeled AODs and DODs—Climatology and
Intercomparison

One of the aims of this study is to investigate the benefits and the drawbacks of choosing between
satellite- and model-derived AOD and DOD datasets for estimating their radiative effects. To this end,
MIDAS and CAMS datasets were explored. For the MIDAS-CAMS comparison, the aggregated
MIDAS datasets were used, before filling in the missing values (see Section 3.8.1). CAMS datasets,
which have a diurnal variation (3 h temporal resolution), were synchronized with MIDAS datasets
(MODIS-Aqua overpass time) to achieve an exact collocation. In Fig. 5.4, the MIDAS cloudless sky
data availability (expressed in percentage) is illustrated. Three regions can be distinguished. North
Africa, which, due to its scarce cloudiness, has the highest data availability, with more than 70% of
daily satellite retrievals with respect to the whole period. Over the Mediterranean Sea, data availability
decreases down to 60%. Over Europe, the MIDAS data amount further decreases and is minimized
(~20%) in mountainous regions (i.e., Alps). For the temporal aggregation, only grid points with at
least 20% data availability on annual and seasonal baseswere used, to ensure the representativeness of

the results.
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MIDAS AOD550 at 0.4x0.4, data availability (2003-2017)
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Figure 5.4 MIDAS dataset data availability.

The geographical distribution of the long-term annual averaged values of AOD (Fig. 5.5 a and b) and
DOD (Fig. 5.6 aand b) were derived for both datasets. The corresponding seasonal results are given in
Appendix B (Fig. B1-4). Our analysis expands further CAMS DOD product evaluation (Bennouna et
al., 2020) in terms of its spatial and temporal variability performance. The frequency histogram of the
CAMS-MODIS biases and their mean annual geographical distribution are presented in panels ¢ and
d, respectively, for AOD (Fig. 5.5) and DOD (Fig. 5.6). By performing t-tests for the differences

shown in Fig. 5.5 d and 5.6 d, most differences were found to be statistically significant (not shown in

the figures for clarity) on a 95% confidence level (p-value<0.05).
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Figure 5.5 Geographical distribution of long-term average of annual mean AOD at 550 nm from MODIS (a)
and CAMS (b). Frequency distribution of CAMS-MODIS AOD biases with their mean value (c) and
geographical distribution of annual mean biases (d). Blank grid points are those that did not fulfill the criterion

of at least 20% data availability on an annual basis.
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Figure 5.6 Geographical distribution of long-term average of annual mean DOD at 550 nm from MIDAS (a)
and CAMS (b). Frequency distribution of CAMS—-MIDAS DOD biases with their mean value (c) and
geographical distribution of annual mean biases (d). Blank grid points are those that did not fulfill the criterion
of at least 20% data availability on an annual basis.

5.2.1 Aerosol optical depth

In general, the AOD spatial features are similarly reproduced for both datasets (Fig. 5.5 a, b), and the
regional averages are almost equal (0.19 + 0.06 for MODIS and 0.18 + 0.06 for CAMS, Table 5.1).
Our findings are also in good agreement with those of previous studies focusing on the same region
(Floutsi et al., 2016; Nabatetal., 2013; Papadimas et al., 2008). Between the two datasets, differences
were found in the magnitude of the maximum AQOD levels. The annual mean AOD values for each
individual pixel range from 0.05 to 0.48 for MIDAS and from 0.05 to 0.37 for CAMS. For both
datasets, the maximum and minimum AOD values were found over the same areas. Over North Africa
and parts of the Middle East, maximum AOD values were derived that were mainly attributed to
desert dust. Large AOD values related to anthropogenic activity (Crosier et al., 2007; EI-Metwally et
al., 2008) were found over the megacity of Cairo, Egypt, and the Po Valley, Italy. Low AOD values
(0.05-0.15) were found over most of the Iberian Peninsula and southern France, which agrees with
Obregodn etal. (2020), who attributed the low AOD to the clean air masses that were transferred over
these areas from the Atlantic Ocean due to the westerly air flow (Obregon et al., 2020) and the

references therein).
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Table 5.1 Regional averages of mean annual and seasonal AOD and DOD at 550 nm from MIDAS and CAMS
and CAMS-MIDAS bias. The maximum of seasonal values is denoted as bold, emphasizing the peak of the
seasonal cycle.

AOD DOD
mean bias mean bias
CAMS MIDAS (CAMS- CAMS MIDAS (CAMS-
MIDAS) MIDAS)
Annual
0.18+0.06 0.19+0.06 -0.005+0.025 0.06+0.06 0.08+0.07 -0.026+0.021
Seasonal
winter 0.11+0.05 0.13+0.06 -0.019+0.021 0.03+0.03 0.06+0.05 -0.030+0.025
spring 0.21+0.07 0.21+0.07 -0.003+0.027 0.07+0.07 0.11+0.08 -0.037+0.024
summer 0.23+0.08 0.23+0.07 0.003+0.038 0.08+0.08 0.10+0.08 -0.019+0.027
autumn 0.15+0.06 0.16+0.07 -0.007+0.028 0.05+0.05 0.07+0.06 -0.023+0.022

Overall, the CAMS-simulated AODs are slightly underestimated (mean bias -0.006) with respect to
MIDAS AQOD (Fig. 5.5c), which was found to be statistically significant on the 95% confidence level
(p-value <0.05, t-test for the differences). This agrees with the results of previous studies (Bennouna
etal., 2020), where lower CAMS AODs relative to MODIS were reported over the NAMEE domain.
The geographical distribution of the annual mean bias (Fig. 5.5d) revealed areas with annual mean
bias that differed a lot from the average value for the whole region. The most significant negative
differenceswere found over an extensive area of Northeast Africa and parts of the Middle East (with
annual mean bias up to -0.14), which can be explained by the AOD overestimation of MODIS Dark
Target and Deep Blue combined product over these areas (Wei etal., 2019b). There are also areas with
much higher CAMS AOD values relative to MIDAS. Maximum positive differences (up to 0.1) were
found over Northwest Africa, which can be explained by the CAMS model overestimation of the
organic matter over that area (Bennouna et al., 2020). This CAMS AOD overestimation is more

pronounced in summer (Fig. B5c).

There is a clear seasonal cycle (Fig. B1 and B2) of the AOD over the Mediterranean Basin. CAMS
AOD reproduces the regional patterns of the MODIS AOD seasonal variability quite well, but again
there were differences in the magnitude of maximum seasonally averaged AODs between the two
datasets. In summer, AODs are maximized (0.66 for MODIS and not exceeding 0.56 for CAMS) over
North Africa, particularly in its western parts. Large AOD values were also found over southeast
Europe in spring and summer, which are mainly due to emissions of anthropogenic aerosols such as
sulfates (Nabat et al., 2013), with a peak in spring over Po Valley with mean values of 0.37 for
MODIS and 0.28 for CAMS. In Table 5.1, the regionally averaged seasonal mean AOD values are
summarized. A distinct seasonal cycle was revealed in both datasets with maximum values during
summer and minimum values during winter, which is the same as the seasonal cycle reported by

Papadimas et al. (2008). The seasonal variations of AOD are linked to the atmospheric circulation and
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the meteorological conditions over the study area that are affecting the aerosol emission, removal, and
transport processes (Diémoz et al., 2019; Gkikas et al., 2012).

5.2.2 Dust optical depth

There is a clear latitudinal gradient of DOD (Fig. 5.6 a, b). For both datasets, the largest DOD values
were found over North Africa and parts of the Middle East, where major dust sources (Sahara and
Arabian Peninsula deserts) are located (Ginoux et al., 2012; Prospero et al., 2002). For the annually
averaged MIDAS DOD, a maximum of 0.35 was found over a persistently dust-active region of salt
lakes (local “chotts™) and dry lakes in the borders of Tunisia and northeast Algeria. Large values
(0.32) were also found over the desert of central Algeria. Over the eastern Libyan Desert and Egypt,
for most pixels, DOD ranges from 0.12 to 0.25. The same range of values was found over the dust
sources of Mesopotamia and the Jordan River Basin in the Middle East. A CAMS DOD deficiency is
reflected in the systematically lower corresponding values over the aforementioned sources (0.2, 0.26
and 0.05 to 0.15 respectively). Regarding the regional averages (Table 5.1), there is a small difference
between MIDAS and CAMS (0.08 = 0.07 and 0.06 + 0.06 respectively) in absolute values.

A relatively high, statistically significant at the 95% confidence level, underestimation (mean bias
almost -0.03) of CAMS DODs against MIDAS (Fig. 5.6 ¢) was found. Average CAMS DOD is almost
40% lower compared to MIDAS DOD, which agrees with the underestimation of CAMS DOD (up to
46%) with respect to AERONET observations reported by Bennouna etal. (2020) over the same area.
Accordingto the latter study, the higher CAMS DOD underestimation was found during wintertime,
which was attributed to overestimations in biomass-burning organic matter (OM). In summer, the
DOD underestimation was attributed to the overestimation of secondary organics over heavily
populated areas. The geographical distribution of annual mean bias (Fig. 5.6d) revealed that MIDAS
DOD is larger than CAMS DOD almost everywhere. The largest values of CAMS DOD
underestimation (up to -0.15) were found over the dust sources of the Saharan and Middle East

deserts, not only for the annually averaged DOD but also for the seasonal DOD (Fig. B6).

The geographical distribution of DOD over the Mediterranean Basin was found to follow a seasonal
cycle (Fig. B3 and B4) with maxima in spring and summer, in agreement with the findings of previous
studies (Gkikas etal., 2013; Moulin et al., 1998; Nabat et al., 2013). In winter, high DOD levels are
confined mainly over northeastern Africa, with DODs up to 0.25 and 0.13 for MIDAS and CAMS,
respectively. Dust activity is enhanced in spring, with elevated DOD values (maximum values up to
0.42 for MIDAS and 0.27 for CAMS) over an extended area covering the central and eastern parts of
North Africa and the part of the Middle East. In summer, elevated dust levels were found mainly over
northwestern Africa, while the highest mean seasonal DOD values were found for this season. In

summer, the smallest differences between the two datasets were found (DOD equal to 0.45 for
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MIDAS and 0.44 for CAMS). This seasonal cycle of dust activity and transport over the
Mediterranean agrees with previous studies, which also investigated the atmospheric circulation
patterns favoring this cycle (Gkikas et al., 2015).

The differences that were found between the two different datasets (MIDAS, CAMS), especially
regarding the maximum AOD/DOD levels, were investigated further. It was found that a great portion
of MIDAS high AOD and DOD values are missing from the CAMS dataset. Table 5.2 summarizes the
amount of data thatare higher than 1, 1.5, 2 and 3 in terms of AOD and DOD for both datasets. It also
shows the percentage of the missing high values from CAMS datasets compared to MIDAS. For the
MIDAS AOD dataset, 0.05% of the values exceed 2, while the corresponding percentage for CAMS is
only 0.0015%. For DOD, over 90% of the missing high values have a lower threshold of DOD 1.5,
due to strong CAMS DOD underestimation. For very high aerosol burdens there are significant
differences between the explored datasets, especially when considering the dust component.

Finally, based on the MIDAS dataset, we estimated that the long-term dust contribution to total
aerosols in optical terms ranges from 40% to 90% over North Africaand the Middle East, making dust

the most important aerosol component over these areas.

Table 5.2 Summary statistics of AOD and DOD (from both MIDAS and CAMS datasets) values greater than
specific threshold values 1, 1.5, 2 and 3.

AOD DOD

Missing from CAMS Missing from CAMS
CAMS MIDAS compared to MIDAS CAMS MIDAS compared to MIDAS

>1 0.19% 0.46% 57% 0.08% 0.31% 75%
>1.5 0.02% 0.13% 85% 0.007% 0.09% 92%
>? 0.0015% 0.05% 97% 0.0008% 0.04% 98%
>3 0.000009%  0.014% ~100% 0 0.01% 100%

5.3 Aerosol and dust direct effects on DSSI

In this section, the quantification of total aerosol and dust radiative effects on GHI and DNI over the
Mediterranean Basin is presented. Moreover, the effects on DSSI when different datasets (MIDAS or
CAMS) of AOD/DOD are used were investigated. For this purpose, in total ~23 million data points
were compared. The average number of data points (days) compared for each of the ~8000 pixels of

the Mediterranean Basin was ~3000 per pixel or ~200 per pixel per year.

The change in the mean annual integral of GHI due to the presence of total aerosols and dust is
presented in Fig. 5.7 and 5.8, respectively, estimated using MIDAS (panel a) and CAMS (panel b)
datasets. The corresponding results for DNI are shown in Fig. 5.9 and 5.10. The corresponding
seasonal results are given in the Appendix (Fig. B 7 — B 14). In all cases, the patterns of GHI and DNI
changes are consistent with those of AOD and DOD. The higher the AOD and DOD values are, the

higher their radiative effect. Due to the interactions of the incoming solar radiation with the overlying
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aerosol (dust) layers, the GHI and DNI reaching the surface are reduced with respect to an aerosol-
free atmosphere, thus explaining the existence of negative values throughout the domain. The day -to-
day variations of these effects are presented in Fig. 5.11. AOD GHI attenuation stands for the GHI
reduction by total aerosols and DOD GHI attenuation means the GHI reduction by the dust

component. The same nomenclature is used for the DNI component.

5.3.1 Aerosol direct effects on GHI

There is a qualitative agreement in the geographical distribution of the annual AOD GHI attenuation
between the two datasets (Fig. 5.7), and their regional averages using the MIDAS dataset (5.2%, Table
5.3) are almost the same as those with CAMS (5.1%). The differences in the magnitude of annual
mean AODs and especially for the maximum values were also inherited to their radiative effects. The
long-term GHI reduction due to aerosols was found to range from 1% to 13% for MIDAS and from
2% to 10% for CAMS.

In general, three subdomains (D) are highlighted for the annual AOD GHI attenuation, based on
aerosol load spatial patterns. The highest effects were found over North Africa and the Middle East
(D1), where the annual AOD GHI attenuation varies from 4% to 13% based on the MIDAS dataset
(4% to 10% for CAMS). Lower values were found for central and southeastern Europe and the
Anatolian Peninsula (D2), ranging from 3% to 8% (3% to 7%), with the largest values over the Po
Valley. Over the Iberian Peninsula and southern France (D3), the lowest annual AOD GHI attenuation
was found, ranging from 1% to 6% (2% to 5%), except for southeastern Spain (attenuation reaches 8%
only for MIDAS dataset). The same low values of the total aerosol direct effect on the downwelling
surface fluxes of the global solar radiation were also found in previous studies (Obregon et al., 2020;

Papadimas et al., 2012) over the same area.
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Figure 5.7 Change (in %) of the mean annual integral of GHI due to the presence of aerosols under (a) MIDAS
AOD and (b) CAMS AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on an annual basis.
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Table 5.3 Change (in %) of the regional averaged mean annual and seasonal integrals of GHI due to total
aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum of seasonal values is
denoted as bold, emphasizing the peak of the seasonal cycle.

AOD DOD
CAMS MIDAS CAMS MIDAS
Annual
5.1 (£1.5) -5.2 (¥1.6) -1.7(x1.7) 2.4 (£1.8)
Seasonal
winter 49 (x15) -5.5 (*1.7) -12(x12) 2.3 (x1.7)
spring -5.3 (+1.7) -5.3 (x1.8) -1.9(1.9) -2.9 (£2.0)
summer 5.2 (x1.9) 5.0 (£1.7) -1.9(2.1) -2.3(x2.0)
autumn 5.0 (+1.5) 5.1 (x1.6) “15( 1.5) “22(x18)

There are pronounced seasonal variations (Fig. B7 and B8) of the AOD GHI attenuation geographical
distribution. The maximum MIDAS AOD GHI attenuation up to 14% (10% for CAMS) was found in
spring over North Africa. For CAMS, the maximum reduction was found for summer over
northwestern Africa and was 13%, which was similar to the corresponding attenuation for the MODIS
dataset. In Table 5.3, the regional averages of the seasonal AOD GHI attenuation are summarized. The
seasonal cycle of AOD GHI attenuation for both datasets differs from the seasonal cycle of the
corresponding AOD values. The most notable difference is that the peak of AOD GHI attenuation was
derived in winter for the MIDAS dataset instead of summer when the peak of MIDAS AOD was
found. The unexpected peak of the GHI attenuation in winter was mainly due to significant
attenuation of the GHI over Egypt and eastern Libya, which was subsequently attributed to minimum
seasonal SSA values in winter over the area (Fig. B15a). For the CAMS AOD dataset, a small shift of

maximum GHI attenuation to spring instead of summer was found.

5.3.2 Dust direct effects on GHI

Under the absence of non-dust aerosol species, the spatial patterns of GHI attenuation, based on
MIDAS and CAMS DODs (Fig. 5.8, B9, and B10), show a clear south-north gradient regulated by the
reduction in dust load amount from sources to distant downwind regions. The CAMS DOD
underestimation is also depicted in the GHI attenuation which is lower than the MIDAS GHI
attenuation. Maximum values of the annual DOD GHI attenuation were found over North Africa and
parts of the Middle East, ranging from 2% to 10% for MIDAS and from 2% to 8% for CAMS. This
attenuation of GHI by dust accounts for ~45-90% of the overall attenuation by aerosols over this area
on an annual basis. Dust contribution becomes more significant (up to 95%) on a seasonal basis over
the same areas. In summer, the seasonal mean reached 11% for MIDAS and 10.5% for CAMS, over
north-western Africa. Except for summer, the CAMS DOD GHlI attenuation is significantly lower than
the MIDAS DOD GHI attenuation for the rest of the year.

92



Regarding the regionally averaged values (Table 5.3), the annual GHI attenuation due to MIDAS
DOD (2.4%) is almost 30% larger than the attenuation estimated for CAMS DOD (1.7%). The
seasonal cycle of GHI attenuation attributed to dust is the same as the seasonal cycle of DOD with
maxima in spring and summer, with the spring peak being higher by 21% than the summer peak (for
MIDAS), which could not be explained solely by the corresponding DOD differences between the two
seasons (9%). The sharp MIDAS peak in spring can also be explained by the lower DU SSA values
over North Africa and parts of the Middle East during spring (Fig. B16b).
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Figure 5.8 Change (in %) of the mean annual integral of GHI due to the presence of dust under (a) MIDAS
DOD and (b) CAMS DOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on an annual basis.

5.3.3 Aerosol direct effects on DNI

The average of AOD DNI attenuation (Fig. 5.9) ranged from 5% to 47% for MIDAS and from 10% to
39% for CAMS. The AOD differences between the CAMS and MIDAS datasets were amplified in
terms of DNI attenuation. The maximum DNI attenuation was found for D1 for both datasets, with
values ranging from 15% to 47% for MIDAS and to 39% for CAMS. In D1, areas such as Morocco,
North Algeria, North Tunisia, and the areas around the Red Sea, annual DNI attenuations were less
than 20%, which makes these areas favorable for CSP (DNI-related) installations. For D2, an average
DNI reduction between 15% and 25% was derived, similar for both datasets, except for Po Valley
where CAMS DNI attenuation (26%) was 6% lower than the MIDAS DNI attenuation (32%). The
lowest values were found for D3 ranging from 5% to 25% (except for southeastern Spain where it was
35%) for MIDAS and from 10% to 20% for CAMS. The seasonal AOD DNI attenuation values (Fig.
B11 and B12) reached higher values up to 53% for MIDAS and 49% for CAMS, which were found
over Northwest Africa in summer. The seasonal cycle (Table 5.4) of DNI AOD attenuation followed
the corresponding seasonal cycle of the AOD, for both datasets, with maximum in summer and

minimum in winter.
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Figure 5.9 Change (in %) of the mean annual integral of DNI due to the presence of aerosols under (a) MIDAS
AOD and (b) CAMS AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on an annual basis.

Table 5.4 Change (in %) of the regional averaged mean annual and seasonal integrals of DNI due to total
aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum seasonal value is
denoted as bold, emphasizing the peak of the seasonal cycle.

AOD DOD
CAMS MIDAS CAMS MIDAS
Annual
-22.2 (£5.6) -22.1(x5.6) -7.5 (26.7) -10.7(x7.2)
Seasonal
winter -17.9 (#5.5) -19.6 (+6.0) -4.9 (x4.7) -9.0(x7.3)
spring -23.6 (£6.2) -232 (x6.7) -8.5 (27.6) -12.7(x7.9)
summer -24.0 (+7.3) -23.3(x6.5) -9.1 (+8.8) -11.2(x8.2)
autumn -20.5 (£5.8) -20.5(x6.2) -6.4 (x6.1) 9.4(x7.2)

5.3.4 Dust direct effects on DNI

The peak of DNI attenuation due to dust was found over North Africa and the Middle East, with
values ranging from 9% to 37% for MIDAS and from 9% to 28% for CAMS (Fig. 5.10). In summer,
over northwestern Africa, the reductions reached values up to 40% and 38% for MIDAS and CAMS
(Figures B13-14), respectively. The contribution of dust to the overall DNI attenuation by aerosols is
~45- 90%. For the regionally averaged values (Table 5.4), a larger DNI attenuation due to MIDAS
DOD (10.7%) was found relative to CAMS DOD attenuation (7.5%). The difference can be attributed
to the strong underestimation of CAMS DOD, especially over northeastern Africa, and the Middle
East.
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Figure 5.10 Change (in %) of the mean annual integral of DNI due to the presence of dust under (a) MIDAS
DOD and (b) CAMS DOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on an annual basis.

5.3.5 Daily Variability

The variability of the daily GHI attenuation due to total aerosols for all pixels (Fig. 5.11 a) is much
larger than the variability in the annual and seasonal values. The underestimation of CAMS AQOD is
reflected in the systematically lower values of the daily GHI attenuation. There is no value of GHI
reduction due to CAMS AOD above 50%, which is related to the absence of CAMS AOD above 3
(see Section 5.2). It is noteworthy that there are days when aerosols attenuated GHI by ~75% (for the
MIDAS AOD). The daily values of GHI reduction due to dust using the MIDAS DOD dataset are
constantly larger than those when CAMS DOD is used (Fig. 5.11b), with the only exception being the
lower bin around zero. There are days when the MIDAS DOD GHI attenuation exceeded 60%, while
the upper limit for CAMS was ~45%. The strong impact of the aerosol particles on the direct
component of solar radiation reaching the Earth’s surface is depicted in the distributions of the DNI
attenuation due to both total aerosols (Fig. 5.11c) and dust (Fig. 5.11d) with values up to 100% for the
MIDAS dataset.
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Figure 5.11 Distribution of daily GHI changes (%) due to the presence of aerosols (a) and dust (b) under
MIDAS and CAMS AOD and DOD. The same for daily DNI change (%) in panels (c,d).

The intercomparison between MIDAS and CAMS AOD and DOD direct effects on DSSI showed how
the AOD and DOD differences between the two datasets were expressed in differences in their direct
radiative effects. Underestimation of high AODs and strong DOD underestimation from CAMS were
clearly depicted in the attenuation of the DSSI. Thus, the MIDAS dataset is used and discussed in the
subsequent analysis. The resulting direct radiative effects on the surface indicated the important role
of total aerosols and especially dust over the Middle East and North Africa (MENA) region, where

DSSI attenuation by clouds is comparable or even lower than aerosols.

5.4 Extreme Dust Events

Fig. 5.12 a presents the geographical distribution of mean MIDAS DOD from the resulting 67 eDEDs.
The highest values up to 0.5 of mean DOD from the extremes were found over northwestern Africa,
while significantly high mean values up to 0.43 and 0.35 were found also over Egypt and the Middle
East, respectively. The highest values of the associated impacts on GHI and DNI, up to 12% and 44%,
respectively (Fig. 5.2 b,c), were found over northwestern Africa, specifically over southern Tunisia
and central Algeria. Large values of eDED mean attenuation were also found over Libya, Egypt, and
the Middle East, with values ranging from 4% to 9% for GHI and 17% to 35% for DNI for the bigger
part of these areas. Cyprus is the Mediterranean island that was affected the most by the resulting

extreme dust events with mean values of GHI and DNI attenuation up to 6.5% and 24%, respectively.
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For the southern European countries, lower values of mean eDED attenuation were derived, up to 4%
for GHI and 19% for DNI, except for very high values over southeastern Spain, up to 5% and 23%,

respectively.
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Figure 5.12 Geographical distribution of mean MIDAS DOD at 550 nm for extreme dust episode days
(eDEDs) (a) and the corresponding GHI (b) and DNI (c) change (in %).
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It should be emphasized here that these results correspond to the long-term (2003-2017) average of
the eDEDs and their direct radiative effects over the region of interest (ROI). Individual dust events
are associated with extremely high dust concentrations, resulting in GHI and DNI attenuations up to
50% and 90%, respectively (Kosmopoulos et al., 2017).

5.5 Interannual Variability and Trends

Using the simulated clear-sky DSSI, we investigated the interannual variability of its changes that
were attributed to total aerosols and the dust and non-dust components. The non-dust optical depth
(nDOD), which is considered to be the optical depth of all other aerosol components besides dust, was
derived by subtracting DOD from AOD. The main assumption to derive nDOD is that the dust
particles are externally mixed with the rest of the aerosol chemical species. For the nDOD RTM
simulations, the same additional optical properties as those of total aerosols were assumed. By
comparison with the RTM results without aerosols, the corresponding annual GHI and DNI
attenuations due to all other aerosol components except dust were derived (nDOD GHI and DNI
attenuation hereafter). The interannual variability of the AOD (red line), DOD (blue line) and nDOD
(green line) GHI and DNI attenuation is presented (Fig. 5.13b, c) for three different domain averages.
The selection of the domains for the spatial averaging was based on the south-to-north gradient of

dust, and the geographical limits of those domains are illustrated in Fig. 5.13a.

The year-to-year variability of GHI attenuation by the different aerosol components is weaker (0.5%
to 1%) compared to the corresponding variability of the DNI attenuation (2-4%). For the DSSI
attenuation (both GHI and DNI) by total aerosols, a successive decline was found after 2008, which is
more prominent for D3. This reduction in the AOD DSSI attenuation is in line with the brightening
effect over the Mediterranean reported in other studies (Kazadzis, 2018a; Nastos et al., 2013). The
resulting decline in the DSSI attenuation by aerosol is attributed mainly to the dust component for D1
and D2, where the variability of annual DOD DSSI attenuation is also large and highly correlated with
annual attenuation by total aerosols (correlation coefficients (cc) ranging from 0.85 to 0.92). For D3,
which has the sharpest decrease in DSSI attenuation by total aerosols, this is attributed to both dust (cc

= 0.84) and nondust components (cc = 0.87).

The increase in GHI (DNI) in D2 and D3 represents the average of positive, statistically significant
trends of the order of 1-2% (3-6%)/decade, mainly attributed to decreases in DOD, over the
Mediterranean Sea and most of Europe, and negative, nonsignificant, trends over the Anatolian
Peninsula. In D1, positive, significant trends in GHI (DNI) of the order of 1% (3—4%)/decade were
found over Libya and northwestern Egypt, while negative significant trends of similar magnitude were
found over many regions of the remaining D1 area. The overall result was a small positive trend

during the whole period (2003-2017), which—as discussed earlier—mainly depicts the increase in
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2008-2017. More information regarding the spatial distribution of the trends can be found in the

Supplementary Materials (Fig. B17).
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Figure 5.13 (a) The geographical limits of the domains used for the spatial averaging. Interannual variability of
GHI (b) and DNI (c) annual integral change (in %) by total aerosols (AOD, red line), dust (DOD, blue line) and
other aerosol components beside dust (nDOD, green line) regional averaged for domains 1, 2 and 3 for the 15-
year period (2003-2017).

99



5.6 GHI and DNI clear -sky climatology

The availability of solar resources at the Earth’s surface is essential information for the different
phases of a plant’s deployment and operation. Average annual solar irradiation is a primary site
selection criterion (Sengupta et al., 2021), and a low seasonal variability is preferable in order to
match the power demand. According to the results of previous sections, there are areas where the GHI
and DNI attenuation due to aerosols can reach 13% and 50%, respectively, which are mainly areas
with high solar energy potential (e.g., North Africa). So, the clear-sky GHI and DNI mean annual
integrals based on high-quality AOD retrievals are of great importance for such areas with scarce

cloudiness.

The clear-sky climatology of GHI and DNI was derived using the MODIS AOD as input in the RTM.
Using the daily irradiations (see Section 3.8.2), annual and seasonal integrals of GHI and DNI were
derived for every year, and their mean values were calculated for the entire period (2003-2017) and
are presented in Fig. 5.14 and B 18-19, while their spatial averages are summarized in Table 5.5.
Given the fact that the cloud effects have not been considered, the description of the results is focused
on the south part of the domain, over North Africa and the Middle East, which are areas with high

solar energy potential, scarce cloudiness and high aerosol loads.

The patterns of both GHI and DNI spatial variability are mainly determined by MODIS AOD (Section
5.2) and the surfacealtitude. For GHI, a latitudinal gradient (south-to-north) is evident as well. Over
North Africa and the Middle East, the cumulative annual GHI and DNI range from 7500 to 8800
MJ/m2 and from 7000 to 12,000 MJ/m2, respectively (Figure 5.14). Maximum values are observed in
the Atlas Mountains (Northwest Africa), in the western parts of Libya and the southeastern parts of the
ROI. Regarding the spatial variability of the seasonal integrals, we focused on spring and summer,
when the effect of clouds is minimal over the ROI. At this time of the year, the distribution of aerosols
expands to the western parts of North Africa, and the spatial variability of DSSI components follows
that pattern. While the maximum levels of DNI over the high-altitude areas are ~3300 MJ/m2 in spring
and ~3100 MJ/m2 in summer, very low levels of ~1800 MJ/m2 were found in the same seasons for
aerosol-affected areas. These differences are less pronounced for GHI (400 MJ/m2 difference in both

seasons).
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Figure 5.14 Mean (2003-2017) annual integrals for clear-sky GHI (a) and DNI (b) using MODIS AOD.

Table 5.5 Regional averages of mean annual and seasonal integrals of clear — sky GHI and DNI using MODIS
AOD.

GHI (M]J/m?2) DNI (M]/m?2)

Annual
7486 (+630) 9899 (+616)

Seasonal
winter 1074 (£273) 1972 (x231)
spring 2287 (x116) 2747 (£247)
summer 2612 (£57) 2931 (£299)
autumn 1512 (£219) 2249 (£143)

5.7 Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and
Solar Energy in Cyprus

In the analysis up to now, aerosol radiative effects were considered. To include also the effect of
clouds a smaller area inside the Mediterranean domain was considered. The same methodology was
applied for Cyprusincluding a cloud dataset, aiming to compare the relative contribution of aerosol
and cloud in surface solar radiation attenuation in a Mediterranean environment. The selection of
Cyprus was based on its high solar energy potential and its complex aerosol regime.

Attenuation of the monthly integrals of surface solar radiation (SSR) by clouds was calculated from
CM SAF Surface Radiation Data Set-Heliosat (SARAH)-Edition 2.1 (Pfeifroth etal., 2019) retrievals
of the SSR (hereon this product is referred as CM SAF-SARAH2.1) for 2004-2017. Details about the
SSR retrievals of this product can be found in Posselt et al. (2012) and Pfeifroth et al. (2018). The
ratio between all-sky and cloudless-sky irradiances, commonly called the cloud modification factor
(CMF), was calculated for the DSSI components. Uncertainties in the retrieved monthly CMF were
estimated at 3%. Then, the monthly CMF was calculated for each quantity (GHI, DNI, etc.). Monthly
integrals of the cloudless-sky irradiance were multiplied with the corresponding monthly CMF for the

retrieval of the all-sky irradiance. Finally, climatology of the all-skies GHI and DNI was developed
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for Cyprus by averaging over the whole 14-year period, using DSSI simulations based on MODIS
AOD and CMF from CM SAF-SARAH2.1.

The maps of the mean annual integrals of GHI and DNI are shown in Fig. 5.15. The mean seasonal
integrals for the four seasons of the year are presented in Appendix (Fig. B20). Despite the small
geographical extent of Cyprus, Troodos Mountains seem to have drastic effect on the spatial
variability of solar potential, especially for DNI. The cumulative GHI is 68007200 MJ/m2 (Fig. 5.15)
with maximum values at the north slopes of Troodos Mountains. The cumulative DNI was 7500-8500

MJ/m2, with maximum levels slightly shifted to the north relative to GHI.
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Figure 5.15 Total annual all-sky GHI and DNI.

In spring and summer, the effect of clouds was less pronounced, and the spatial variability depended
mainly on the distribution of aerosols over the island (Fig. B20). Maximum levels of GHI (2100
MJ/m2 in spring and 2700 MJ/m2 in summer) were found at the north side of the mountains while
minimum levels were found at the south (2000 MJ/m? in spring and 2600 MJ/m? in summer). Again,
the differenceswere more pronounced for DNI. In both seasons the difference between the DNI north

and south of the mountains may be up to 300 MJ/m2,

The intra-annual variability of the effects of aerosols and clouds on GHI and DNI was investigated for
five locations in Cyprus (four biggest cities of Cyprus Larnaca (34.92° N, 33.62° E); Limassol (35.17°
N, 33.33° E); Nicosia (34.67° N, 33.04° E) and Paphos (34.83° N, 32.80° E) and Omodos, (34.78° N,
32.42° E) a mountainous site at 800 m altitude on Troodos Mountains) and the results are presented in
Fig. 5.16. Shaded areas in the graphs represent the standard deviation of the climatological averages
for the 14-year period. As expected, in Omodos, which is at a high altitude at the south side of
Troodos the effects of clouds are generally the strongest among the five locations. What is interesting
is that attenuation by aerosols is also strong at Troodos despite the high altitude. For all five locations
there is a clear annual cycle of the attenuation by clouds. In winter, clouds decrease GHI by 25-30%
and DNI by 35-50%. In spring and autumn attenuation by clouds becomes weaker. In summer, the

role of clouds in the attenuation of GHI was practically the same as that of aerosols, while the

102



attenuation of DNI by clouds was 7—8 times weaker compared to the attenuation by aerosols. Dust
blocked on average 3 times more DNI than clouds in summer.
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Figure 5.16 Attenuation of the monthly GHI and DNI (in %) by clouds, aerosols, and dust aerosols
(climatological monthly averages for 2004-2017).

The annual cycle of the attenuation by aerosols was not as pronounced as the annual cycle of the
attenuation by clouds. Attenuation by aerosols was stronger in spring and summer and weaker in
winter. Maximum attenuation in April and May (8—-10% for GHI and 27-32% for DNI) was mainly
due to increased levels of dust. In autumn, dust and total aerosols had a noticeably weaker effect on

GHI and DNI in Nicosia with respect to the four other locations.

The results presented in Fig. 5.16 show that the variability in the levels of GHI and DNI in Cyprus
was strongly correlated with the variability of aerosols, and especially dust aerosols. It is noteworthy
that low DOD coincided with low AOD, and high DOD coincided with high AOD for all five stations,

which shows that dust was the most significant regulator of the levels of GHI and DNI.
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5.8 Summary and conclusions

The broader Mediterranean Basin hosts and receives various aerosol types, which are quite variable in
spatial and temporal scales. The aim of the work presented in this chapter was to provide an insight
into the perturbation of the surface solar radiation, and the subsequent impacts on solar energy
production, attributed to the presence of all aerosol types, but with special emphasis on dust. AOD and
DOD from two different datasets (MIDAS and CAMS) were used as inputs to the libRadtran RTM (in
terms of precalculated LUTS) along with other necessary aerosol and atmospheric parameters under
clear-sky conditions. From the sensitivity analysis conducted, aerosol profiling has a negligible impact
on the calculations of surface solar irradiances. Model outputs were the GHI and DNI, which are of
particular interest for different solar power systems (PV and CSP, respectively). The study domain
encloses the broader Mediterranean Basin, and the study period spans from 2003 to 2017 (15 years).

The intercomparison between MIDAS and CAMS datasets revealed that the latter slightly
underestimates AOD, and this is mainly evident over areas hosting major aerosol sources, while it
strongly underestimates DOD by up to 40% (-0.03) with respect to MIDAS, which agrees with the
underestimation reported by Bennouna et al. (2020) when compared with ground-based retrievals. The
CAMS underestimation of high AODs resulted in weaker GHI and DNI attenuations on average by 1—
4% and 4-11%, respectively. Likewise, due to the pronounced CAMS DOD underestimation, weaker
attenuations were found (by 0.5-4% for GHI and 1-15% for DNI). These findings reveal that using
CAMS DOD to describe the radiative effects of dust would give highly uncertain results, especially
over areas that are significantly affected by dust, and highlight the importance of using reliable aerosol

and dust optical properties to accurately simulate DSSI.

Using the high-quality satellite-derived MIDAS AOD/DOD datasets, a 15-year climatology of total
aerosols and dust was established for the broader Mediterranean Basin. The largest AODs were found
over dust sources or areas affected by dust transport, with maximum long-term averaged AOD up to
0.48 over Northwest Africa (up to 0.66 for summer season). Over the same area, the peak of MIDAS
DOD values was derived as well, with a mean annual value up to 0.35 (up to 0.45 for summer). Dust
was found to contribute to total aerosol loads, in optical terms, from 40% to 90% over North Africa

and the Middle East, making dust the most important aerosol component over these areas.

Aerosols attenuate GHI by 1-13% and DNI by 5-47%. The largest attenuation (4-13% for GHI and
15-47% for DNI) was found over North Africa and the Middle East. Over the same areas, the GHI
and DNI reduction by dust ranged from 2—10% and 9—37%, respectively, contributing 45-90% to the
total aerosol effects on DSSI. During the dry seasons of the year, when the cloud effects over these
areas are comparable or even lower than the effects of aerosols, the maximum of aerosol and dust
attenuation of the GHI (up to 14% and 11%, respectively) and DNI (up to 53% and 40%, respectively)
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was found, with the dust being responsible for up to 95% of the AOD DSSI attenuation. On a daily
basis, the GHI reduction due to total and dust aerosol reached substantially higher values, up to ~75%
and ~60%, respectively. There were days when the DNI component was totally blocked (-100%)
under high aerosol and dust loads.

The investigation of the intra-annual variability of the effects of aerosols and dust on GHI revealed,
apart from their seasonal variations, the significant role of SSA in calculating the radiative effects of
aerosols. The combination of low SSA values with considerable AODs/DODs resulted in peak of
regional averaged AOD GHI attenuation in winter, which is reversed compared to the seasonal cycle
of MIDAS AOD (maximum in summer and minimum in winter). The same reasons explain the sharp

peak of regional averaged DOD GHI attenuation in spring.

The interannual variability of the DSSI attenuation by total aerosol, dust and total aerosol excluding
dust was assessed for three subdomains covering the Mediterranean Basin. After 2008, a successive
decline in aerosol effects on DSSI was found for all domains, which was attributed mainly to the

reduction in dust.

Since it is well documented that the Mediterranean Basin is frequently affected by dust intrusions, an
assessment of the GHI and DNI attenuation was conducted for extreme dust events over the area.
Using the MIDAS DOD dataset and by adopting the methodology proposed by (Gkikas et al., 2009,
2012), 67 eDEDs (4.5 eDEDs year1) were identified over the study area for the period 2003-2017.
The average DOD during these events reached values up to 0.50 (over North Africa) and the
corresponding GHI and DNI attenuations were 12% and 44%, respectively. South Europe was also
found to be affected by eDEDs, with the largest GHI and DNI attenuations taking place in

southeastern Spain, reaching 5% and 25%, respectively.

Taking advantage of the 15 years of high-quality daily satellite retrievals of AOD from the MIDAS
dataset, a clear-sky GHI and DNI climatology for the broader Mediterranean Basin was derived. An
added value of this new, clear-sky climatology is that the DSSI values were simulated using, apart
from satellite-derived AOD, a climatology of additional aerosol optical properties (SSA, AE), as well
as model and satellite products for key atmospheric factors (TCWV and TOC). The Cyprus case study
shows that for this area in summer the GHI attenuation by aerosol is comparable to the attenuation by
clouds, while solely dust attenuates more DNI than clouds. Thus, of particular interest are North
Africa and the Middle East in summer, where high spatial variability of GHI and DNI was found, of

14% and 42%, respectively.

The basic limitations of the study are linked with the RTM inputs and their uncertainties. The main
parameter to consider is the optical depth (total aerosol or dust). The uncertainties (MODIS-AOD,

MIDAS-DOD, CAMS) have been documented based on the corresponding literature. In addition, SSA
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and AE data were used as monthly values fora 1° x 1° grid through MACv2 climatology. Day -to-day
variability of such parameters can affect the calculated DSSI on a daily basis. However, it has an
almost negligible effect when using monthly GHI and DNI for describing the basic climatology of the
region under study, especially when optical depth data are relatively accurate. Finally, cloud
contamination for satellite-based data is a factor that can affect such DSSI results. However, basic
comparison of such data with CAMS modeled data showed no significant systematic optical depth
overestimation from the satellite-based data. The same results were documented when MODIS and
MIDAS optical depth comparisons with AERONET were initiated.

In conclusion, this study aims to contribute towards a better understanding of the role of aerosols and
especially of dust on surface solar radiation in terms of GHI and DNI over the Mediterranean Basin.
The results of this analysis, apart from their importance from the perspective of climate science,
provide valuable information in terms of management and future planning of PV and CSP

installations.
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6 Solar radiation nowcasting and short-term forecasting

Thischapterisbased onthe publication, under review: Papachristopoulou, K., Fountoulakis, I., Bais, A. F, Psiloglou, B.
E., Papadimitriou, N., Raptis, I.-P., Kazantzidis, A., Kontoes, C., Hatzaki, M., and Kazadzis, S.: Effects of clouds and
aerosols on downwelling surface solar irradiance nowcasting and sort-term forecasting, Atmos. Meas. Tech. Discuss.

[preprint], https://doi.org/10.5194/amt-2023-110, in review, 2023.

In the previous chapter, the important effect of aerosols on solar radiation attenuation was quantified,
which under certain conditions can be larger than the effect of clouds. In addition, the importance of
the use of accurate aerosol optical properties dataset was revealed. While the world’s energy demand
(e.g., electricity, heating, transportation) is growing, renewable/carbon free sources are the only way
to avoid cardon emissions. As the sun is the most abundant source of energy on earth, harnessing
solar energy is one of the most promising ways to achieve carbon neutrality of energy supply in the

future to mitigate climate change and its effects.

For a successful deployment of renewable technologies exploiting solar energy solar resources
availability and its fluctuations with time is important information provided by nowcasting and short-
term forecasting tools of global horizontal irradiance (GHI). In this chapter the role of clouds and

aerosols in such tools is investigated, using ground-based measurements by:

e introducing the SENSE2 and NextSENSE2 upgrades of SENSE and NextSENSE systems,

respectively.

¢ validating the improved nowcasted GHI using ground-based pyranometer measurements for 1
year (2017).

e investigating the cloud and aerosol effects on GHI estimates.
e proposinga possible correction for GHI estimation based on MSG COT real time information.

e validating CMV-forecasted GHI and benchmarking the results with those obtained by the

persistence method.

6.1 SENSE and NextSENSE improvements

SENSE?2 is an operational system that produces fast estimates of GHI in real time every 15 min for a
wide area including Europe and the Middle East-North Africa (MENA) region at high spatial
resolution (~5 km). These estimates are calculated from earth observation (EO) data and look-up
tables (LUTSs) derived from radiative transfer model (RTM) simulations. The SENSE2 presented in

this thesis (Fig. 6.1) is an improved system, compared to the previous SENSE version, in terms of the
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parameterizations for radiative transfer calculations and, mainly, the improvement of the aerosol and
cloud representation in the model using a more detailed LUT and multi-parametric equations for
different aerosol and cloud scenes, respectively. The new version of the SENSE2 system is available

as a web service via https: //solar.neyond-eocenter.eu/#solar_short.
The first improvements of the SENSE2 system are as follows:

e The computations of clear-sky GHI are performed during the previous day for the whole
domain (1.5 million pixels) every 15 min; for the current day, the real-time cloud information

is applied to provide all-skies GHI in real time (no NN is used).

e The computations of clear-sky GHI are based on a new, more-detailed LUT of ~16 million
combinations of simulated GHI at the earth’s surface that was generated using the National
Infrastructures for Research and Technology (GRNET) High Performance Computing

Services and the computational resources of the ARIS/GRNET infrastructure (see Section

3.6.2).
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Figure 6.1 Schematic overview of the solar energy nowcasting system (SENSE2) and system for short-term
forecasting up to 3h ahead (NextSENSE?2).

The clear-sky GHI estimates from SENSE2 (Fig. 6.1) are calculated on the previous day by linear
interpolation in the seven dimensions (7D) of the precalculated GHI LUT using the corresponding
inputs. Specifically, the solar zenith angle (SZA) values are precalculated for every grid cell of the
domain (1.5 million in total) for 15 min time steps. The main input parameter for the clear-sky

computations is the forecasted AOD at 550 nm from CAMS (“CAMS AOD” hereafter). The forecasts
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for the day of interest are values from the CAMS run initialized at 00:00 UTC on the previous day
(e.g., the AOD used to simulate the GHI for the 24th of a month is derived from the CAMS run that
started on the 23rd at 00:00 UTC). Climatological values are used for the interpolation in the 7D LUT
for the additional aerosol optical properties SSA and AE (MAcv2 climatology; Kinne, 2019), the
water vapor (WV) (CAMS reanalysis; Inness et al., 2019)), the total ozone column (TOC)
(climatological values based on o0zone-monitoring instrument (OMI) TOC data; Bhartia, 2012) and the
surface albedo (GOME-2 database of directionally dependent Lambertian-equivalent reflectivity;
Tilstra etal., 2017, 2021). It should be mentioned that the interpolation procedure in the 7D LUT was
added to the new SENSE2 to further improve the accuracy of the GHI estimations. Finally, since the
results of the RTM runs are for sea level and the mean Earth-Sun distance, a post-correction of the
clear-sky GHI values from the LUT is performed for the surface elevation using the methodology
described in Fountoulakis etal., (2021) and the actual Earth-Sun distance for the particular day of the
year (DOY). Based on simulations for various atmospheric and surface albedo conditions,
Fountoulakis et al. (2021) estimated an average increase of the GHI of 2% per km, which has also

been applied to the model output to correct the surface GHI for sites at higher altitudes than sea level.

The use of LUTs in operational surface solar radiation retrievals instead of direct RTM calculations is
well established (e.g., Mueller etal., 2009; Qu etal., 2017). From a technical point of view, there are
various concepts which can reduce the number of RTM simulations needed to generate a LUT by
several orders of magnitude. Mueller etal. (2009) developed a flexible, fast, and accurate scheme to
retrieve the broadband surface solar irradiance (CM CAF datasets) using the hybrid eigenvector
approach, resulting in a combination of basis LUTs with an optimized interpolation grid and
parameterizations using only almost 1000 RTM calculations. This approach was extended by Mueller
et al. (2012) to wavelength bands for spectrally resolved surface solar irradiance retrievals from
spaceborne data. This optimization of the computing performance is of paramount importance for the
reprocessing of a large amount of satellite data (up to a few decades). In this work, the main concept
behind the generation of our clear-sky LUT was to have spectral irradiance outputs (1 nm spectral
resolution). The choice to calculate spectral solar data and not directly calculate total shortwave
radiation is based on the fact that the SENSE2 output could be used for other applications (e.qg., health
and agriculture), based on the irradiance weighting of a relevant spectral range with an action
spectrum (function) defined for each of the effects. So, a large number of RTM runs had to be
performed (once) for the spectral surface solar irradiance that covered all possible combinations of
atmospheric and surface states. Technically, since the operational setup of the SENSE2 model allows
for the computation of the clear-sky GHI values from the previous day, the processing time for
interpolation to the seven dimensions of the LUT has no effect on the timely production of the real-

time output of the model every 15min, while the accuracy of the clear-sky output is almost identical to
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direct RTM simulations, and the uncertainties of the clear-sky GHI retrievals are related only to the
uncertainties of the model inputs. In addition, this LUT includes various aspects, especially for
aerosols (AOD, SSA, AE), that can reduce the uncertainty under different aerosol conditions for

broadband solar radiation or specific spectral regions.

Another improvement is related to the cloud representation in real time using multi-parametric
equations for different cloud scenes based on the cloud modification factor (CMF) concept instead of
usingthe COT as an input parameter in direct RTM calculations. The computation of the all-skies GHI
in real time every 15 min is based on the COT product we extract operationally in real time using
broadcasted MSG satellite data and the software package provided by the EUMETSAT Satellite
Application Facilities of Nowcasting and Very Short Range Forecasting, NWC SAF (Derrien & Le
Gléau, 2005; Meteo France, 2016). Neither the direct radiative transfer simulations nor the multi-
dimensional interpolations would be sufficiently fast to provide the all-skies GHI SENSE?2 product for
1.5 million pixels in a timely manner. Instead, a multi-parametric equation was constructed by fitting
on libRadtran simulations for a wide range of COT values and different SZAs (see the points in Fig.
6.2a). The design of the cloud model was a trade-off between the relevance of the cloud property and
the operational implementation of the model. It was shown in previous studies (Qu et al., 2017) that,
in most of the cases (except for high surface albedo values >0.9), the vertical position and extent of
the cloud has only a small or a negligible influence on the RTM simulations of surface solar
irradiance. Under cloudy conditions, COT is the variable that has the greatest impact on the simulation
of surface solar radiation (Oumbeetal., 2014; Qu etal., 2017; Taylor etal., 2016). In our simulations,
spherical droplets were assumed, with typical values for the effective radius (Res =10 pm) and typical
climatological mean heights (cloud’s base at 2 km and its height was 3 km) (Taylor et al., 2016;
Kosmopoulosetal., 2018) used given the unavailability of height descriptorsin the operational mode,
the negligible influence of changes in droplet effective radius with respect to COT on the simulation
of surface solar radiation (Oumbe, 2009), and that this setup helps to simplify the cloud model. The
COT of the cloud layer at 550 nm is additionally specified, which leadsto an adjustment of the default
liquid water content value of 1 g cm-3 using the parameterization from Hu & Stamnes (1993). Finally,
homogeneous cloud layer was used for the libRadtran simulations, meaning a cloud cover fraction
value of 100 %, which is one of the model’s limitations, since it is not always correct to assume totally
cloudy pixels for low values of COT (Mueller et al., 2009). The simulated GHI for each COT was
divided by the GHI for COT=0 (clear sky) for the same SZA to derive the CMF (Eq. 6.1). The CMF
ranges from zero (overcast conditions) to 1 (clear sky) and it is easy to use to provide all-skies GHI by
simply multiplying clear-sky GHI by CMF (Eq. 6.3). The libRadtran-derived CMFs for each SZA
were fitted against COT using the hyperbolic tangent function. The resulting fits are shown as solid

lines in Fig. 6.2a and are mathematically expressed by the multi-parametric Eq. (6.2).
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6.1)

CMF = 1 — tanh? (COT%) (6.2)
Here, a and b are polynomials of SZA:
a=224-10"1+2.81-10"*-SZA —2.18- 107>+ SZA? + 3.71- 1077 SZA® — 2.65- 107%- SZA*
b=12.2+5.27-10"3-SZA— 2.24-1073 - SZA? + 8.33- 107°- SZA® + 3.94- 1078- SZA*,

The real-time MSG COT is used, along with SZA, as an input in Eq. (6.2) every 15 min for ~1.5
million pixels to calculate the CMF (“CMFmsg” hereafter). Apart from being very fast, this formula
also accurately calculates CMFmsg, as can be seen by a comparison of the CMF values derived by Eq.
(6.2) against those from libRadtran runs (Fig. 6.2b). CMF differences are less than 0.015 (or 1.5%) for
SZAs lower than 70°, while they are up to 0.03 (3%) for SZAs between 80 and 90°, showing the very
good representation of the CMF as a function of COT achieved with Eq. (6.2). In terms of accuracy
this means that using Eq. (6.2) is almost the same as running RTM simulations, but in terms of
computational time, Eq. (6.2) is far more efficient in the operational mode. Finally, by multiplying
CMFmsg by the clear-sky GHI, the all-skies GHI product is obtained (Eg. 6.3), in less than 1 min for
1.5 million pixels.

GHI = GHI * CMFmsg (6.3)
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Figure 6.2 (a) Cloud modification factor (CMF) versus cloud optical thickness (COT) and solar zenith angle
(SZA) based on radiative transfer simulations of global horizontal irradiances using the libRadtran package.
CMF is the ratio of global horizontal irradiance (GHI) to the GHI under cloudless conditions (COT=0). (b)
Differences between the CMF derived directly from libRadtran simulations and that derived from Eqg. (6.2), asa
function of COT and SZA.
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The new SENSE2 configuration was built to improve GHI nowcasting at the 15 min timescale.
Additionally, it allows the system greater flexibility:

- It can include reanalysis or measured data of AOD and other optical properties e.g., CAMS
reanalysis or AERONET measurements.

- It can be extended to other output products. Apart from GHI, direct normal irradiance (DNI) or
total irradiance on a tilted surface could be also produced. By introducing spectral information
and making the appropriate modifications, products related to specific spectral regions could
be also derived (e.g., the UV Index (using real-time TOC data as input) and the
photosynthetically active radiation (PAR)).

- It canrun a past time series of one or few locations autonomously using actual measurements
as input. In this case, if there is no time constrain, model runs could be performed without the
parametrizations (LUT and multi-parametric functions).

NextSENSE?2 is the operational system that provides forecasts of GHI up to 3 hours ahead with a 15
min time step by applying a CMV technique to the MSG COT product (Fig. 6.1). In Section 3.9, the
method employed to produce forecasted COT is described, which is the main input to derive the
operational forecasts of GHI. All the other EO inputs and the radiative transfer parameterizations for
fast estimates of forecasted GHI are the same as those described in this section for the SENSE2

model.

6.2 SENSE2 and NextSENSE?2 evaluation

To validate the GHI estimates, 1 year (2017) ground-based measurements from 8 BSRN stations, and
from two additional stations at Athens (ASNOA: NOA’s Actinometric Station) and Thessaloniki (see
Section 3.4 for details and Table 3.1 and Fig. 3.1) were used.

The results are discussed separately for the evaluation of nowcasted GHI (Section 6.2.1) based on
SENSE2 outputs (“modeled GHI” hereafter) and the evaluation of the short-term forecasted GHI
(Section 6.2.2), namely the NextSENSE2 product (“forecasted GHI” hereafter). The comparisons
between ground-based and estimated GHI were restricted to SZAs below 75° (i.e., for solar height
above 15° from the local horizon) because the accuracy of satellite cloud retrievals is degraded for
higher SZAs.

The CMF derived from the ground-based measurements of GHI was used in our analysis to evaluate
CMFmsg and to categorize the cloudiness conditions. Specifically, the CMF was calculated as the
ratio (Eq. 6.4) of measured GHI to the clear-sky irradiance calculated by the Ineichen-Perez clear-sky
model (Ineichen & Perez, 2002) (see Section 3.4).
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GHImeasured
CMF = ——— 6.4
GHI ¢ (6.4)

Three categories according of CMF are considered in the following: CMF>0.9 for clear sky

conditions, 0.4<CMF<0.9 for partially cloudy conditions and CMF<0.4 for overcast conditions.

6.2.1 Nowcasting (SENSE2)

6.2.1.1 Overall performance

Figure 6.3 presents the overall performance of the SENSE2 system at the (instantaneous) 15 min
timescale by comparing the modeled GHI values against ground-based measurements from all stations
forawhole year (2017). We can see that most of the points (Fig. 6.3a; number of cases N>600) fall on
the 1:1 line (blue line), which indicates that the system shows good performance overall, with a
correlation coefficient of 0.93. For 58 % of the cases, the absolute differences between modeled and

ground-based measurements of GHI are within +50 W m-2 or +10% (Fig. 6.3b). The SENSE2 system

mostly overestimates the GHI, leading to points above the identity line (Fig. 6.3a; MBE is 23.8 W m-2
(4.9%)); this overestimation is more pronounced for low irradiances (lower-left corner of Fig. 6.3a
where GHI<250 W m-2). Lerwick is the most northern station and also the station with the greatest
MBE (Fig. 6.3b and Figs. C1, C2 in Appendix C).

Density scatterplot of GHI(W/ m? ), 2017
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Figure 6.3 (a) Comparison of the modeled versus measured global horizontal irradiance (GHI) for all ground-
based stations, for 2017. (b) Relative frequency of GHI MBE for all stations (grey bars) and for each station
(lines with different symbols and colors).

We investigated how the mean cloudiness (CMF) of every station, the station’s latitude, and the mean

measured GHI influenced the GHI MBE; the results are presented in Fig. 6.4. The GHI MBE

increases with an increase in cloudiness (a decrease in mean CMF). At the same time, the cloudiness

increases and lower values of mean measured GHI are observed with increasing latitude. Those results

are in line with previous studies (Qu etal., 2014,2017). According to Qu et al. (2014), the error of the
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satellite estimates of surface solar radiation increases with an increase in the distance from the
subsatellite point (lat=0°, long=0° for Meteosat) and an increase in the occurrence of fragmented
cloud cover. Qu et al. (2017) found that their retrievals for the northernmost stations were less
accurate, which was attributed to the more frequent cloud occurrence over those stations and the more
erroneous satellite retrievals of cloud properties for large SZAs and satellite viewing angles. One of
those stations was Lerwick, which is close to the edge of the field of view of the Meteosat satellite,
where errors due to parallax become important (Marie-Joseph etal., 2013; Schroedter-Homscheidt et

al., 2022). The effect of clouds on GHI estimates is investigated in more detail in Section 6.2.1.3.
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Figure 6.4 Dependence of the GHI MBE on the mean CMF for all stations. The color of each point indicates
the latitude of the station, and its size indicates the magnitude of the mean GHI observed at the ground-based
station.

All the statistical metrics are drastically improved by increasing timescale for all stations (Fig. 6.5).
The northernmost stations (CAB, CAM, LER, LIN, and PAL) show similar results. At the 15 min
timescale, the MBE, RMSE and correlation coefficient ranges of 29-43 W m-2, 104-131 W m=2, and
0.82-0.90, respectively. Those statistics are improved for the monthly means to 5-10 W m-2 for MBE,
7-13 W m-=2for RMSE and R~1. Similar results were found for the rest of the stations (which are the
southernmost ones): the MBE, RMSE, and correlation coefficient range from -7 to 30 W m-2, from 84
to 104 W m-2, and from 0.93 to 0.95, respectively, for 15 min timescale, whereas the MBE ranges
from -4 to 8 W m-2, the RMSE ranges from 6 to 10 W m=2, and R~1 for monthly means. The overall
MBE and RMSE are reduced to 6.6 W m-2 (3.3%) and 15.4 W m=2(7.7%) for the daily mean GHI and
t0 5.7 Wm-2 (3.2%) and 9.2 W m-2 (5.2%) for the monthly means, while the correlation coefficient
shows values that almost reach 1, which was anticipated since the cloud effect is smoothed out for

larger timescales.
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Figure 6.5 Comparison of the modeled versus measured global horizontal irradiance (GHI) per ground-based
station in 2017 for different timescales (15 min, daily mean, and monthly mean).

6.2.1.2 Aerosol effect on retrieved solar irradiance

The CAMS AOD forecasts used as input to the operational model were assessed against ground-based
measurements from the AERONET network (Holben et al.,, 1998), and the related uncertainty
introduced into the modeled GHI was calculated. Each of the ground-based stations with pyranometer
data (BSRN, Athens and Thessaloniki) has a collocated AERONET station (see Table 3.1). The level
2, version 3 directsun (Giles etal., 2019) AOD data at 500nm were collected and the AOD values at
550nm were derived using the Angstrom exponent for 440-675nm. However, measurements of AOD
at 500 nm were not available for Cabauw, so the AOD at 440 nm was used instead and converted to

550 nm using the Angstrém exponent for 440-675 nm.

The AERONET AOD direct sun measurements were matched with CAMS AOD forecasts (1 h time
resolution) interpolated to the 15 min time steps of the model. The closest AERONET measurement

+10 minutes around each 15 min time step was matched (or the mean value was used if more than one

measurement was available). To estimate the model uncertainties due to the forecasted AOD, the
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clear-sky GHI was calculated using the forecasted CAMS AOD and the synchronized AERONET
AOD measurements as input. The MBE for AOD (CAMS against AERONET) and clear-sky GHI
(modeled using CAMS AOD against those using AERONET AOD) per station is presented in Fig. 6.6.
CAMS forecasts mostly overestimate AOD, with an MBE of 0.015 (10%) for all stations, which
results in an underestimation of the modeled clear-sky GHI of -2.7 W m-2 (-0.4%). The greatest
overestimation, 0.05 (~50%), was found for CAM and CNR; this resulted in the greatest
underestimation of modeled clear-sky irradiances: -8.5 W m-2 (-1.4%). An underestimation of AOD
was found for CAB and THE, with an MBE of <0.01 (<3%), resulting in negligible overestimation of
the modeled irradiance (MBE <1 W m-2 or 1%).
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Figure 6.6 (a) Mean bias error (MBE) of the aerosol optical depth (AOD) at 550nm forecasted by CAMS (1 d
ahead forecast) compared to the AOD measured by ground-based sun photometers of the AERONET network.
(b) MBE of global horizontal irradiance (GHI) modeled under clear-sky conditions using the CAMS-forecasted
AOD at 550nm as input versus measured values (AERONET).

An overestimation of the CAMS-forecasted AOD at 550 nm for 2017 over Europe is also reported
(the average modified normalized mean bias ranges from ~10% to 30 %), which is based on the
continuous quarterly evaluation of the AOD forecasts against daily AERONET cloud screened (i.e.,
version 3, level 1.5) sun photometer data (Basart et al., 2023; Eskes etal., 2021). While this is the case
on average, in contrast, the CAMS-forecasted AOD is underestimated during high aerosol loads,
especially in desert regions and during dust events (Basart et al., 2023), which might explain the
almost zero bias for Tamanrasset station (the overestimation of small AODs is masked by the frequent
underestimation of large AODs) compared to the greater values of bias (>0.01) found for most of the

other stations. Qu et al. (2017) analyzed case studies at Tamanrasset and found that the CAMS
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(MACC) AOD at 550 nm is frequently found to be underestimated when compared against
AERONET data during summer dust events, explaining the strong positive bias they found for their
modeled direct irradiance (using the Heliosat-4 method and the McClear clear-sky model). In the
same study (Qu etal., 2017), in contrast to the CAMS AOD underestimation that occurred during dust
events, a systematic overestimation of AOD during periods free of those events was found for the two
desert stations examined (Sede Boger and Tamanrasset) which the study linked to an underestimation
of the modeled direct irradiance at those stations. The updated McClear v3 clear-sky model was used
in the study by Schroedter-Homscheidt et al. (2022), and a negative bias was found for their GHI
estimates under clear-sky conditions for most of the stations, especially those located in dust-affected
regions, which is in line with our results —although the results are not directly comparable since they
performed a direct comparison with the BRSN-measured irradiances. Those results demonstrate that
the clear-sky model using CAMS forecasts shows good performance, highlighting that the AOD
product forecasted by CAMS is suitable for GHI-nowcasting applications.

6.2.1.3 Cloud effects on retrieved solar irradiance

Overall, the model overestimates GHI, as we saw in Section 6.2.1.1. which can be attributed to the
underestimation of cloud information from satellite (MSG COT). The improvement of the statistics
upon going from an instantaneous comparison to integrated timescales (e.g., daily) indicates that this
overestimation can be attributed to the uncertainties related to the cloud information from satellite
retrievals but also to satellite/ground-based evaluation representativity issues. In order to understand
this more closely, we investigated the effect of different conditions in cloudiness on the error in the
modeled GHI.

Initially, we classified the cloudiness conditions using the ground-based CMF (Fig. 6.7a, b, c).
According to the results, GHI is overestimated by the model under cloudy conditions (CMF<0.9),
while for clear-sky conditions (CMF>0.9, Fig. 6.7a), the model closely resembles the measured GHI.
For partially cloudy conditions (0.4<CMF<0.9, Fig. 6.7b), the MBE is 81.6 W m2 (22.8%), and the
greatest error in GHI occurs for low CMF values (CMF<0.4, Fig. 6.7c) (MBE = 100.1 W m-2 or
73.1%). High deviations at low measured GHI values (<250 W m-2) are most commonly found in the

latter category.

We also compared the modeled and measured GHI values for clear-sky conditions according to the
satellite data, namely for COT=0 (Fig. 6.7d). In this case, the model overestimates GHI, with an MBE
of 13.6 W m-2(2.3%). Most of the cases are on the 1 : 1 line, with a few being higher, especially for
measured GHI<250 W m-2, meaning that there are clouds over the ground-based station that have not
been resolved by the satellite pixel (COT=0). A positive bias was also found at all stations examined
by Qu et al. (2017) for clear-sky pixels as defined by the APOLLO/SEV cloud properties retrieval
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scheme, which contributed to the overall overestimation for all skies. This was attributed to small
broken clouds that cause large variability in surface GHI and to false detections by the cloud retrieval

algorithm being treated as clear-sky cases.
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Figure 6.7 Comparisons of the modeled versus the measured global horizontal irradiance (GHI) at all ground-
based stations (a-c) for different cloudiness conditions based on the cloud modification factor (CMF; the ratio
of ground-based GHI measurements to clear-sky GHI (clear-sky model)), (d) for clear-sky conditions as
determined by the MSG satellite product for zero cloud optical thickness (COT=0), and (e,f) for conditions
characterized as “sun visible” or “sun obscured” over the ground-based station.

To demonstrate the effect of sun visibility over the ground-based stations on the GHI error, those
instances were separated out by using the pyrheliometer measurements of direct irradiance (DNI —
direct normal irradiance) available from the BSRN network. The DNI measurements (1 min) were
divided by the clear-sky DNI, which was again obtained from the Ineichen-Perez clear-sky model
(Ineichen & Perez, 2002). Cases with a ratio of actual to clear-sky model DNI of >0.8 were classified
as “sun visible”. This threshold was selected to account for the strong effect of aerosols in DNI, given
thata monthly mean climatological value for the aerosol attenuation factor is used by the DNI clear-
sky model (Ineichen & Perez, 2002). Cases with a ratio of <0.6 were classified as “sun obscured”, and
cases with ratio values between 0.6 and 0.8 were omitted (“unclassified cases”) so that we could be
confident by more than 40% that direct irradiance was blocked by clouds. The results of the
comparison between modeled and measured GHI values were grouped based on the sun visibility
classification and are presented in Fig. 6.7e and f. We can see that the sun-visible situations give quite
good results (points close to the 1:1 line, with an MBE of -28.1 W m-2 or -4.4 %).
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In contrast, the model overestimates GHI (MBE is 74.5 W m-2 or 24.5%) when the sun is obscured
over the ground-based station. Comparing Fig. 6.7b and c¢ with Fig. 6.7f, we can see that most of the
cases that are above the 1 : 1 line happened when the sun was obscured. This is caused by the fact that
the satellite-based cloud retrieval is representative of the whole pixel, while the information on
whether the sun is obscured over the ground-based station is representative of the (point) station and
cannot be inferred from the satellite cloud retrievals. This — combined with the facts that the direct
irradiance attenuation from clouds is completely different from GHI, it does not linearly decrease with
cloudiness or cloud optical thickness, and, finally, its contribution to GHI depends on various
parameters (mainly the solar elevation) — introduces an issue into any instantaneous comparison
between a satellite-based GHI retrieval representing a whole pixel and a GHI value measured at a
single point. So, the main result of this analysis of sun visibility over a station is to discuss possible
systematic biases due to the satellite pixel versus station evaluation representativeness issue. This

issue makes instantaneous model output evaluation difficult, especially in partly cloudy situations.

Since the main source of errors in this analysis is associated with clouds, we further assessed the
satellite-derived cloud input in the model. The MSG COT is transformed into CMFmsg using Eq.
(6.2), and this is the cloud-related input in the SENSE2 model. Since this cannot be evaluated directly
with ground-based measurements, we indirectly evaluated CMFmsg with the CMF derived from GHI
measurements (Eq. 6.4). The results are presented in Fig. 6.8 as relative frequency distributions of
CMFmsg, CMF, and the difference between them (CMFmsg — CMF) for all cases and different
cloudiness conditions. Overall, the CMFmsg is overestimated (0.02; Fig. 6.8a and b), which is the
reason for the overestimation of SENSE2-modeled GHI overall. This CMFmsg overestimation occurs
mainly when there are cloudy conditions (Fig. 6.8g, h, i, and j) and where the sun is obscured over the

ground-based station (Fig. 6.8m and n).

There are also cases of CMFmsg underestimation (CMF differences<0 in Fig. 6.8b), which come
mostly from situations characterized as cloudless (CMF>0.9, Fig. 6.8e and f) and explain the points
belowthe 1 : 1 line in Figs. 6.3a and 6.7 (i.e., those for which the measured GHI is greater than the
modeled one). The first reason for this is a cloudy satellite pixel (corresponding to CFMmsg<1 in Fig.
6.8e) but a ground-based CMF=1 (which indicates that no clouds are present over the station). There
are also many cases where CMF>1 (Fig. 6.8e) that is attributed to irradiance enhancement by clouds,
which often occurs when the sky above the ground station is partially cloudy but the sun is visible (see
also Figs. 6.8k and | and 6.7¢). In this case, the reflection of solar radiation by clouds increases the
diffuse component from directions relatively close to the sun, hence the measured GHI on the ground.
This is a three-dimensional effect of clouds that cannot be reproduced using the one-dimensional
radiative transfer modeling used in this study. This is a limitation of the SENSE2 model — it does not
include three-dimensional cloud effects (enhancement of the GHI or parallax) which can be
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reproduced using 3D RT simulations (e.g., Mayer, 2009). However, three-dimensional cloud structure
information is not available for an operational solar energy nowcasting model from geostationary
satellites (Qu et al., 2017; Schroedter-Homscheidt et al., 2022); besides, the introduction of
parameterizations and techniques to improve the computational time (Tijhuis etal., 2023) is essential.
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Figure 6.8 Left panels (a, ¢, €, g, i, k, m): distributions of the cloud modification factors (CMFs) from
measurements of global horizontal irradiance (GHI) (blue bars) and from the MSG cloud optical thickness
(COT) (red bars) for all cases and under different cloudiness conditions. Right panels (b, d, f, h, j, I, n):
distributions of the differences between the CMF derived from MSG satellite COT against the CMF derived
from measurements of GHI.

Summarizing, to explain the overestimation of SENSE2 GHI retrievals, we have to recognize that a
direct comparison between point measurements of solar radiation at the ground and satellite estimates
representative of a pixel introduces deviations (e.g., Carpentieri et al., 2023; Kazadzis et al., 2009;
Schenzinger etal., 2023) that are linked with the cloud features within the pixel and the limitations of
cloud monitoring using satellite data (e.g., spatial resolution). The distributions of both CMFs and the
differences between the CMFs were investigated separately for, again, clear-sky conditions according
to the satellite (namely COT=0; Fig. 6.8c and d). Regardless of the fact that CMFmsg can only be one,
meaning that no clouds are resolved by the satellite, there are cloudy cases with CMF<1 for the
ground-based station (Fig. 6.8¢). Due to the satellite’s spatial resolution, small-scale broken clouds
cannot be resolved in some cases (e.g., Schenzinger etal., 2023; Marie-Joseph et al., 2013; Qu et al.,

2017), but those clouds may have a significant impact on the ground-based measured irradiance if
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they are obscuring the sun (almost total attenuation of the direct irradiance). If they do not obscure the
sun, this also corresponds to the clear-sky case for the ground-based station, although the effect of
cloud enhancement of the measured GHI cannot be excluded (CMF=1 and CMF>1 in Fig. 6.8c,
respectively). In arecent study by Schenzinger et al. (2023) using sky camera images, the limitation of
MSG satellite-based modeled CMF was demonstrated for small-scale clouds. Different results were
obtained for two different stations inside the same satellite pixel, which was characterized as cloud
free. For one station that was cloud free, the model agreed with the measurements; however, for the
station that was covered by localized cumulus clouds that could not be resolved by the satellite, there
were discrepancies between the ground-based and satellite-based modeled values. Nevertheless, even
for the cases where the satellite imager can resolve clouds within a partially cloudy pixel, the COT
product for this pixel is a constant value, namely a spatially homogeneous cloud optical property for
the corresponding area. In this atmospheric scene with a high spatial variability of clouds, the results
of the comparison will depend dramatically on whether the GHI is measured at ground level with the

sun obscured or unobscured.

6.2.1.4 Bias correction based on cloud input

Overall, the model overestimates GHI, which is attributed to the CMFmsg overestimation. Based on
the main conclusions from the investigation of CMF differences in the previous section, we tried to
find out if there is a pattern for CMF differences (modeled against measured) as a function of
CMFmsg that is common to all stations, since it is the only operationally available input every 15 min.
Additionally, we found that those differences hardly change with SZA (Fig. C3), so we only
investigated their relationship with CMFmsg.

The mean CMF difference was calculated and its standard deviation per CMFmsg bin for every
station, and the results are presented in Fig. 6.9. A pattern of mean CMF differences in which the
CFMmsg overestimation reached almost 0.1 starting at CMFmsg bin 0.3 and continuing up to bin 0.8
was found for almost all stations (apart from TAM, ATH, and THE), which was also related to the low

standard deviations in those bins.

As it was discussed in the previous section, this CFMmsg overestimation (up to ~0.1) is mostly related
to partial cloudiness and sun-obscured conditions over the station. Nevertheless, the sun’s visibility
above a station is an information that cannot be provided by satellites. Consequently, we tried to
correct CMFmsg (the operational input) with the CMF differences (modeled against measured values).
We used the mean of the CMF differences per CMFmsg bin from 7 out of 10 stations (excluding
TAM, ATH, and THE) to derive the correction factor (“the correction” hereafter), which is depicted as
a dashed thick black line in Fig. 6.9. The correction was only applied to CMFmsg values in bins 0.3-

0.8. The correction was applied to all stations, including TAM, ATH, and THE, which acted as a test
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bed (with a low frequency of cloudy cases) for the general correction derived from the other seven

stations.
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Figure 6.9 (a) Mean differences between cloud modification factor (CMF) modeled from MSG satellite cloud
optical thickness values (CMFmsg) and CMF derived from global horizontal irradiance (GHI) measurements
per modeled CMFmsg bin. (b) The corresponding standard deviations (SDs) of the CMF differences per
modeled CMFmsg bin. Lines with different colors and different symbols correspond to different stations.

Table 6.1 summarizes the statistics of corrected modeled GHI against ground-based measurements.
The MBE and RMSE are improved after the correction. LER and CAM are the two stations with the
greatest improvement in their statistics, followed by CAB and LIN, which was anticipated since those
stations are at higher latitudes (associated with high cloudiness). Even stations ATH and THE, which
were not used in the correction factor derivation, exhibit better results after applying the correction.
TAM is the only station for which statistics were not improved. Because cloudiness was rare at that
station, its statistics were already good, indicating that a hybrid approach to the correction based on
the area’s cloudiness would probably be better. Overall, after the correction the GHI differences

(modeled against measured values) were within £50 W m-2 (or +10%) for 61% of the cases. The MBE

for all stations was also improved to 11.3 W m-2 (2.3%) compared to the uncorrected value (23.8 W m-
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2 0r 4.9%). For the daily mean GHI, the overall MBE and RMSE were improved to 3.3 W m=2 (1.7 %)
and 13.1 Wm-=2 (6.6 %) compared to the uncorrected values of 6.6 W m-2 (3.3 %) and 15.4 W m=2 (7.7
%), respectively. For monthly means, the MBE improved to 2.7 W m-2 (1.6 %) compared to 5.7 W m-2
(3.2 %) before correction, and the RMSE improved to 6.3 W m-2 or 3.6% (it was 9.2 W m-2or 5.2%

before correction).

Table 6.1 Performance of nowecasted irradiances before and after correction with CMFmsg. “cor.” indicates
corrected values; those that were improved after the correction are shown in bold.

15 min

MBE W m? (%) RMSE W m? (%) R
Station N cor. cor. cor.
ATH 9472 14 (2.5) 8 (1.4) 97 (17.5) 97 (17.5) 0.94 0.94
CAB 7749 31 (7.8) 11 (2.9) 115 (29.0) 110 (28.0) 0.88 0.88
CAM 2376 34 (10.1) 13 (3.7) 104 (30.8) 98 (29.0) 0.89 0.89
CAR 8985 30 (5.8) 23 (4.5) 84 (16.2) 80 (15.4) 0.95 0.96
CNR 8806 19 (3.7) 6 (1.2) 104 (20.6) 102 (20.1) 0.93 0.93
LER 5191 44 (12.9) 21 (6.1) 131 (38.6) 124 (36.5) 0.82 0.83
LIN 7989 39 (10.0) 21 (5.3) 119 (30.8) 114 (29.6) 0.88 0.88
PAL 8011 28 (6.7) 11 (2.5) 117 (27.4) 113 (26.5) 0.90 0.91
TAM 9011 -8 (-1.2) -12 (-2.0) 98 (15.4) 98 (15.4) 0.94 0.94
THE 9188 27 (5.2) 18 (3.6) 91 (17.6) 88 (16.9) 0.95 0.95

Daily

MBE W m? (%) RMSE W m? (%) R
Station N cor. cor. cor.
ATH 9472 4.1 (1.9) 2.1 (0.9) 13.2 (5.9) 12.3 (5.5) 0.99 0.99
CAB 7749 9.2 (5.5) 3.3(2.0) 15.2 (9.2) 11.4 (6.9) 0.99 0.99
CAM 2376 7.9 (5.8) 3.6 (3.2) 14.7 (10.8) 11.5 (10.0) 0.98 0.99
CAR 8985 9.5 (4.5) 8.0 (3.8) 14.5 (7.0) 12.5 (6.0) 0.99 0.99
CNR 8806 5.0 (2.5) 21(1.1) 14.0 (6.9) 1n.1(5.7) 0.99 0.99
LER 5191 9.9 (7.0) 3.6 (2.6) 21.6 (15.3) 17.9 (12.7) 0.97 0.97
LIN 7989 12.4 (7.3) 7.1(4.2) 18.4 (10.8) 13.7 (8.1) 0.99 0.99
PAL 8011 6.6 (3.5) 1.9 (1.0) 14.1 (7.4) 11.6 (6.1) 0.99 0.99
TAM 9011 3.9 (-1.5) 4.1 (-1.6) 18.5 (7.2) 18.2 (7.2) 0.94 0.94
THE 9188 8.2 (3.8) 6.0 (2.8) 13.6 (6.3) 1.2 (5.2) 0.99 0.99

Monthly

MBE W m? (%) RMSE W m? (%) R
Station N cor. cor. cor.
ATH 9472 45 (2.3) 1.8 (0.9) 5.6 (2.9) 3.3 (L.7) ~1 ~1
CAB 7749 8.0 (6.0) 3.2 (2.4) 9.3(7.0) 4.2 (3.2) ~1 ~1
CAM 2376 8.1 (6.6) 3.7 (3.4) 8.2 (6.7) 4.5 (4.1) ~1 ~1
CAR 8985 7.9 4.2) 6.6 (3.5) 9.9 (5.3) 8.5 (4.5) ~1 ~1
CNR 8806 4.2 (2.3) 1.8 (1.0) 7.6 (4.2) 4.7 (2.7) ~1 ~1
LER 5191 10.9 (7.6) 4.1 (2.9) 12.9 (9.0) 5.4 (3.8) ~1 ~1
LIN 7989 10.3 (7.6) 6.0 (4.5) 12.2 (9.0) 7.5 (5.5) ~1 ~1
PAL 8011 5.1 (3.4) 1.4 (1.0) 7.4 (5.0) 4.9 (3.3) ~1 ~1
TAM 9011 3.7 (-1.5) 4.5 (-1.8) 9.8 (3.8) 8.8 (3.5) 0.97 0.97
THE 9188 6.7 (3.5) 4.8 (2.5) 9.1 (4.7) 7.2(3.7) ~1 ~1
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After improving the configuration of the SENSE2 model and correcting the bias in CMFmsg for
partially cloudy conditions (the “bell-shaped curve” between CMFmsg bins 0.3 and 0.8, which has
been also reported in other studies, e.g., Marie-Joseph et al., 2013), more accurate estimates of GHI
were produced, in line with the results from similar models (Qu etal., 2014; Thomas et al., 2016; Qu
et al., 2017). These SENSE2 GHI estimates will be the basis for the new forecasting system
NextSENSE2 evaluated in the next section (Section 6.2.2).

Comparing our results with other studies, for the HC3v3 database of surface solar irradiation (Qu et
al., 2014), correlation coefficient values greater than 0.92 and relative RMSEs between 14-38% were
found for the 15 min timescale. In the same study, for daily irradiation, correlation coefficient values
greater than 0.97 were found, along with relative RMSEs between 6% and 20%. For the latest version
(5) of HelioClim-3 database (HC3v5), validation against 14 BSRN stations (Thomas et al., 2016)
resulted in relative biases between —4% and 5% and rRMSEs between 14.1% and 37.2% for GHI.
Both studies highlight the good performance of the clear-sky irradiation values from the McClear
clear-sky model (which uses advanced inputs for aerosol, water vapor, and ozone instead of
climatological values). Acomparison of the 15 min means of global irradiance estimated by the fully
physical Heliosat-4 method (a combination of the McClear and McCloud models) against ground -
based measurements from 13 stations of the BSRN network (Qu et al., 2017) showed large correlation
coefficients for all stations (0.91-0.97) and biases and RMSEs of GHI that ranged between 2—-32 and
between 74-94 W m-2, respectively. In the same study, the greatest values of the relative RMSE of the
mean irradiance were found for stations with rainy climates and mild winters (26% to 43%, with the
greatest value found for the northernmost station), while values for stations in desert and
Mediterranean climates ranged between 15% and 20%, which are in line with the findings for the
northernmost and southernmost stations, respectively, in this thesis. The positive biases previously
observed when using the APOLLO cloud retrieval in Heliosat-4 (Qu et al., 2017) for the CAMS
Radiation Service were significantly reduced and balanced after applying the new cloud retrieval
scheme APOLLO_NG (a new cloud mask with a cloud probability threshold of 1%, among other
improvements; for more details, see Schroedter-Homscheidt et al., 2022). After the improvements,
relative RMSE values of hourly GHI of between 10.3% and 25.5%, along with a mean value of
13.7%, were reported for 2015 (Schroedter-Homscheidt et al., 2022). An extensive validation (Urraca
et al., 2017) of the operational radiation product (ICDR) of the CM SAF over Europe for the 2008—
2015 period gave an MBE of 4.5 W m-2 (4%) and an RMSE of 18.1 W m-2 (15.1%) for daily means of
the product, and it was reported that it was overestimated at high latitudes, in contrast to the climate
data records (CDRs). For the new SARAH-3 CDR SIS (Surface Incoming Shortwave Radiation)
product for the period 1983-2020, validation (Pfeifroth etal., 2023b) showed biases of 4.2, 2.18, and
2.25 W m-2 for the 30 min instantaneous data, daily mean, and monthly mean, respectively. The
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validation of the operational product (ICDR) with respect to the SARAH-3 CDR for the year 2020
showed that the ICDR product consistently temporally extends the SARAH-3 CDR data records. The
reasons for the differences between these two products were differences in the auxiliary data (water
vapor, etc.) and the time range used for deriving the effective cloud albedo and daily snow cover.

6.2.2 Short-term forecasting

6.2.2.1 Overall performance — benchmarking with the persistence method

Figure 6.10 summarizes the performance of the CMV-method-predicted GHI (green points) as a
function of the forecasting horizon by providing the main statistics after comparison with ground-
based GHI measurements from all 10 stations for a whole year (2017). Detailed results per station for
representative statistics and selected time steps (+60, +120, +180 min) can be found in Table 6.2. As a
benchmark, the results fromthe commonly used persistence forecasting method are also presented in
Fig. 6.10 (black points). We can see that the CMV model systematically outperforms persistence for
all time steps. It is interesting that the first time step (+15 min) is not the one with the maximum
difference between the CMV and persistence statistics (or the maximum CMV FS%), indicating that
the probability of changing cloudiness is low for such a short time interval, which favors the
persistence method. The second time step is the one with the maximum CMV FS% (best performance)
compared to persistence (up to ~10%). As the forecasting horizon increases, all the metrics deteriorate

for both methods and persistence is systematically worse than CMV.
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Figure 6.10 Performance statistics for forecasted global horizontal irradiance (GHI) by the CMV model (green
points) and by the persistence method (black points) for every 15 min time step up to 3 h ahead.
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Table 6.2 Performance statistics for CMV-forecasted global horizontal irradiance (GHI) for the 60, 120, and
180 min time steps.

Station  Mean rRSME (%) R FS (%)
CMF Time step (min) time step (min) time step (min)

+60 +120 +180 | +60 +120 +180| +60 +120 +180
ATH 0.97 220 245 253 | 090 0.87 0.86 0 1.7 3.2
CAB 0.68 39.7 456 496 [ 080 0.73 068 ]| 105 75 5.8
CAM 0.63 541 620 689 | 0.66 058 0.50 2.7 3.4 15
CAR 0.85 228 263 296 | 090 0.86 0.82 8.1 5.6 3.1
CNR 0.81 31.0 348 374 | 085 0.79 0.75 2.4 29 2.6
LER 0.61 508 56.0 596 | 0.73 0.67 062 104 95 9.4
LIN 0.68 39.7 459 512|081 074 069 139 10.9 8.8
PAL 0.68 389 449 488 | 082 075 0.71]| 116 7.6 6.0
TAM 0.87 214 231 247 | 089 086 0.82 2.2 1.0 -1.3
THE 091 239 272 292 | 089 086 0.84 6.8 51 2.4

An interesting grouping of stations was obtained by comparing the main statistics (rRMSE and FS) for
both forecasting methods with the mean CMF (representing its mean cloudiness) for each station (Fig.
6.11). Three time steps were selected: +60, +120, +180 min (in order of increasingly transparent
symbols in the plot). Two groups of stations are evident: those with high mean cloudiness (LER,
CAM, PAL, LIN, and CAB), which show worse rRMSEs than those with lower cloudiness (ATH,
THE, TAM, CAR and CNR), independently of the method used. Again, the CMV model (green
symbols) outperforms the persistence method (black symbols) for all stations for these time steps
(except +240 min for TAM). The interesting finding is that the FS (%) of the CMV method increases
with decreasing CMF; in other words, the forecasting skill of the CMV model is higher compared to
persistence for stationswith higher cloudiness, demonstrating the applicability of the CMV method of

forecasting GHI under cloudy conditions.
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Figure 6.11 Relative root mean square error (rRMSE%) and forecasting skill expressed as a percentage (FS%)
for the CMV model (green symbols) and the persistence method (black symbols) when they were used to
forecast global horizontal irradiance (GHI) versus the average cloudiness of stations (mean CMF) for the time
steps (in order of increasingly transparent symbols) +60, +120 and +240 min.

6.2.2.2 Performance for different cloudy conditions

To demonstrate the value of the CMV model compared to the persistence method, which assumes the
same cloudy conditions for all future time steps, their performance was compared under different
cloudy conditions and transitions in cloudiness. Figure 6.12 presents the RMSEs for both models
(green points for CMV and black points for persistence) and the CMV model FS% as a function of
CMF, for three time steps (+60, +120, and +180 min). Persistence performs better than the CMV
model under clear-sky conditions, namely when CMF=1, for all times steps (as expected, as there is
no change in cloudiness). This is also true for CMF bin 0.9 for the +180 min time step only and for
CMF bin > 1 (a bin which mainly contains clear-sky cases) for all time steps. For cloudy conditions,
namely when CMF<0.9, the CMV model outperforms persistence for all time steps (apart from +180
min when considering CMF bin 0.9). The cloudier the conditions (the smaller the CMF), the better the
performance of the CMV model and the greater the CMV FS% (which is up to ~20% for the +60 min
time step). The FS of CMV model decreases slightly with forecasting horizon; however, for the

maximum forecasting horizon (+180 min), it remains quite high (~+10%) for CMF bins <0.7.
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Figure 6.12 (a-c) Root mean square error (RMSE) of the global horizontal irradiance (GHI) for all stations
forecasted with the CMV model (green symbols) and with the persistence method (black symbols) versus the
cloud modification factor (CMF) derived from GHI measurements for three time steps (+60, +120, and +180
min). (d-f) The CMV model’s forecasting skill plotted against CMF class for the same time steps as used for

the panels (a)-(c), respectively.

To demonstrate the better performance of the CMV method compared to the persistence method for all
time steps under cloudy conditions, we calculated CMV FS% for partially cloudy conditions (0.4 <
CMF <0.9) and overcast conditions (CMF<0.4), and the results are presented in Fig. 6.13. We can see
again that the FS of CMV model decreases with time; however, the minimum value is ~10% for both
categories. The maximum of FS occurs at the +15 min time step for both categories (at ~16% and

~22% for 0.4<CMF<0.9 (cross symbols) and CMF<0.4 (triangle symbols), respectively).
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Figure 6.13 Forecasting skill (FS, expressed as a percentage) of CMV model against the persistence method for
all stations as a function of time horizon for two different cloudiness conditions: 0.4<CMF<0.9 (crosses) and
CMF<0.4 (triangles).

The performance of the CMV model against the persistence method was also assessed under changing
cloudiness, evaluated as the CMF changes based on ground-based measurements. The CMF changes
were calculated for a time interval of 60 min (as ACMF=CMFg, - CMF), and the results for the
CMV model FS (%) are presented for the +60min time step as a function of CMF changes in Fig.
6.14. The high negative value of FS for the zero CMF change bin indicates that the persistence
method is better for that bin, which was anticipated since there is zero or almost zero change in CMF,
which is practically the definition of the persistence method. Persistence is still better than CMV for
CMF changes from cloudy to clearer conditions up to the +0.3 CMF change bin, but the FS is less
negative than for the zero bin. For CMF changes from cloudy to clearer conditions with higher
magnitudes (bins > 0.4), CMV is better that persistence, with an FS value of 15% for the +0.6 CMF
change bin. Consistent results were found for the opposite situation, namely changes from clearer to
cloudy conditions, with the CMV model always giving better FS values (up to ~20%) than

persistence.

Our analysis for different cloudiness conditions highlights the limited ability of the persistence
method compared to the CMV-based NextSENSE2 to accurately forecast GHI under cloudy
conditions (CMF values <0.9) and to follow transitions in cloudiness (especially from clearer to

cloudy conditions).

129



+60 min time step

20-

10+ .

FS (%)

-10- I

| | T | T

0.5 0.3 0.1 0.1 0.3 0.5
ACMF BSRN

Figure 6.14 Forecasting skill (FS, expressed as a percentage) of the CMV model against the persistence
method for all stations as a function of CMF change within a 60 min time interval (from time 0 to +60 min time
step).

A direct comparison of the results of the present study for the NextSENSE2 short-term forecasting
model with other studies is not straightforward, as the study period, the geographical area, and the
validation methods used are different. Kallio-Myers et al. (2020) validated their Solis—Heliosat
satellite-based GHI forecast modeled over southern Finland, and they found that the rRMSE reached
50% at the 4 h time step. Urbich etal. (2019) validated SESORA short-term forecasts of solar surface
irradiance over Germany and parts of Europe for 17 different cases with different weather patterns for
the period August to October 2017, with all forecasts initiated at 09:15 UTC. For validation against
the SARAH-2 data by CM SAF, they reported an RMSE of 59 W m-2 after 15 min and a maximum
RMSE of 142 W m-2, reached after 165 min.

One of the limitations and sources of error for NextSENSE2 is related to the satellite-based optical
flow method used for short-term forecasting: this method cannot reproduce cloud formation or
dissipation. One example of this is convective clouds that form very fast, violating the optical flow
criterion, i.e., that there should be constant intensity of the pixels between two consecutive images
(e.g., Urbich etal., 2018, 2019). Urbich et al. (2018) applied the common approach of separation into
subscales for the optimization process, which ultimately did not improve the forecast and increased
the complexity of the implementation. As has already been discussed in the “Introduction” of this

thesis, satellite-based short-term forecasting is the best choice for a time horizon of up to 6 h ahead,
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since it is available in real time and at high spatial resolution. However, merging it with NWP models
is a solution for increasing the time horizon and the quality of forecasts (Lorenz et al., 2012; Wolff et
al., 2016), as it compensates for the effect of changes in intensities (during convection or cloud
dissipation) that cannot be captured by CMV models (Miiller and Pfeifroth, 2022). A comparison of a
short-term forecasting model of surface solar radiation (the SESORA model) with different NWP
models (apart with the persistence model) has been presented by Urbich et al. (2019), and they found
that the intersection point where the NWP model delivers better results depends on the model and is
beyond 3—4 h, which is also in line with the findings of other studies (e.g., Lorenz et al., 2012; Wolff
et al., 2016). The merge of our short-term forecasting model with an NWP model is out of the scope of
the present study. The elaborative benchmark analysis of the NextSENSE2 system against the
persistence approach has demonstrated its applicability as an operational tool for a time horizon of up
to 3 h ahead.

6.3 Summary and conclusions

The motivation of the work presented in this chapter is the continuous improvement of EO-based
estimates and the accuracy of short-term forecasts of available solar resources to support solar energy
exploitation systems on a regional scale (in Europe and the MENA region). The improvements in
SENSE nowecasting and NextSENSE short-term forecasting operational systems were presented in this
chapter and the cloud related uncertainties were analyzed in detail, using ground-based measurements

to discriminate between different sun visibility conditions.

In terms of the aerosol-related inputs, a slight overestimation of CAMS AOD against the AERONET
retrievals (<10%) was found, which resulted in a SENSE2 clear-sky GHI underestimation of less than
1%, highlighting the applicability of CAMS forecasts as EO inputs for operational solar resource
nowcasting. In terms of modeled all-skies GHI, it was found that SENSE2 mostly overestimates GHI,
with an MBE of 23.8 W m2 (4.9%) for instantaneous comparisons, which was attributed to the
uncertainties related to satellite cloud retrievals (overestimation of CMFmsg by ~0.02) and also to the
spatial representativeness of satellite-based retrievals compared to ground-based measurements. We
demonstrated that the most difficult situations to model are those with high spatial variability of solar
radiation within the satellite pixel due to clouds (e.g., small broken clouds and the sun is obscured
over the ground station, which is information that cannot be derived from satellite data). Based on our

cloud-related analysis using ground-based data, a correction for the modeled GHI was used, resulting

in an overall improvement in the SENSE2-modeled GHI such that 61% of the cases were within +50

W m-2(+10%) of the measured GHI and the final MBE of SENSE2 was 11.3 W m2(2.3%). Our main
analysis was based on the 15 min timescale; however, depending on the application, hourly, daily, or

monthly data could be used. The daily and monthly SENSE2 GHI showed much better statistics
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(MBEs of 3.3 and 2.7 W m-, respectively). The validation results for SENSE2 demonstrate highly
accurate nowcasted values of GHI which are in line with similar models. The recorded positive bias
could be reduced by applying improvements in the NWC SAF cloud retrieval input to SENSE?2
regarding partially cloudy pixels. NextSENSE?2 was also improved due to the SENSE2 improvements.
We also showed that, compared to the persistence method, the model works much better (as expected)

at locations with increased cloudiness and for frequent cloudiness changes.

The data and methods involved in the estimation and prediction of the GHI in this study also revealed
their limitations. As mentioned, the pixel-based approach for the model inputs (satellite and models)
could not always reflect the reality above a (point) ground-based station. However, the model inputs
are the state of the art for EO data and are readily available at a regional or global scale and at high
spatial and temporal resolution; hence, the GHI product is representative of an area (~5 km x 5 km in
this model), which is useful for photovoltaic parks covering a wide area. In general, performance
evaluations of such EO-based GHI models with ground-based measurements must account for these
spatial representativity issues when performing comparisons. The optical flow algorithm for
calculating CMVs is also based on assumptions like 2D clouds and brightness constancy. However, it
iIs @ method based on cloud inputs from satellite data in real time, and the applicability of such

methods compared with the persistence approach was demonstrated in this chapter.

Since satellite cloud information is the only real-time input, a new straightforward configuration for
estimating GHI was applied (SENSE2). The advantage of calculating clear-sky GHI from the previous
day, is what increases the accuracy of this product, since it is based on a detailed LUT of ~16 million
combinations of seven different inputs; apart from AOD, these include additional aerosol optical
properties and atmosphere/surface state inputs. Thus, the uncertainties in the estimated clear-sky GHI
practically only result from uncertainties in the inputs. The new scheme for calculating the all-skies
GHI by multiplying the clear-sky GHI by CMFmsg (derived in real time by multi-parametric function
of MSG COT and SZA) was improved by applying a suitable CMFmsg correction. The correction was
successful and improved the model performance, especially for areas with high cloudiness.
Additionally, the new configuration of SENSEZ2 is more flexible, and it is easy to adapt so that it can
provide more products (like DNI, the UV index or PAR). Finally, running the model in a retrospective
way using reanalysis data or in situ observational data for certain locations is one of the prospects for

the new model.

Accordingto the results, high-resolution (every 15 min at ~5 km x 5 km) and quite accurate real-time
GHI estimates and forecasts are produced from the upgraded SENSE2 and NextSENSE?2 operational

systems, respectively, which can contribute to solar energy systems management and planning.
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7 General conclusions

The main goal of this dissertation was to investigate solar radiation interactions with aerosols and
clouds to improve solar radiation forecasting capabilities and related applications. This was achieved
through the synergistic use of long-term earth observation data (satellite and model based) of aerosols
and clouds, ground-based measurements of surface solar radiation and state of the art algorithms. In
this frame, upgrades were introduced to existing surface solar radiation nowcasting and short-term
forecasting systems. The surface solar radiation attenuation by aerosols and, especially by dust, was
quantified for the broader Mediterranean basin. Additionally, a study focusing on the state of the
anthropogenic aerosol component over the greatest cities of the world has been conducted.

In the first part of this thesis, the anthropogenic aerosol component and its changes over time were
investigated, focusing on the 81 greatest cities of the world with population more than 5 million. The
analysis of long-term (2003-2020) high-resolution spaceborne aerosol retrievals revealed that the
aerosol loads were increased the last two decades at the greatest cities of the planet with poor emission
control measures. A population growth was also found for these cities for the same period. This is the
case for megacities at the southern Asia, and especially India, Africa, and south America. This
increase in aerosols is of particular concern for the health of the cities’ inhabitants, as well as for the
performance of solar energy exploitation systems (rooftop or large scale). Future work related to this
direction is to quantify the attenuation of surface solar radiation related to this increase of aerosol

loads in megacity scales.

To quantify the aerosol effects on surface solar radiation, the second part of this thesis was expanded
to the regional scale and especially to the broader Mediterranean basin; an area with increasing
capacity in solar energy installations and high levels of aerosol loads (both natural and
anthropogenic). For the south part of the area (especially in Cyprus) during summer when the levels of
DSSI are maximum, aerosols are the main attenuators of GHI and DNI. For the whole basin, using 15-
year spaceborne data, it was found that aerosols attenuate GHI (important for PV installations) by 1—
13 % and DNI by 5-47 %, where the maximum values were found over North Africa and the Middle
East with dust contributing to 40-90 % to this attenuation. The daily values of aerosol attenuation
reached substantially higher valuesup to 75% for GHI and 100% (totally blocked) for DNI. The use
of additional aerosol optical properties for calculating aerosol direct radiative effects revealed the
essential role of SSA. It was also found that CAMS underestimates slight AOD and strongly DOD
compared to the satellite retrievals, resulting in underestimation of the radiative effects calculated with
this dataset, highlighting the importance of selected dataset for accurately simulate DSSI. Those
results, although for cloudless conditions, are important for the assessment of solar energy potential

regarding the planning of solar installations.
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Solar energy nowecasting and short-term forecasting have an important role in management of solar
installations for the optimization of solar energy production and integration of produced energy into
the grid and solar energy trading. The optimum performance of those forecasting systems is directly
linked to the accuracy of their inputs, namely accurate forecasting of the cloud and aerosol related
input. The upgraded version of a regional (Europe and the MENA region) solar energy nowcasting
system, the SENSE2, was built and validated with ground-based measurements in the third part of this
thesis. It was found that 61% of the modeled GHI cases were within 50 W m-2 (+10%) of the
measured GHI, with an MBE of 11.3 W m=2 (2.3%) for instantaneous (15 min) comparisons.
Concerning the system inputs, CAMS AOD forecasts were proved quite accurate, resulting in
negligible deviations. The SENSE2 system mostly overestimates GHI due to uncertainties related to
satellite cloud retrievals and the spatial representativeness of satellite-based retrievals compared to
ground-based measurements. It was demonstrated that the most difficult conditions to model are those
with high spatial variability of solar radiation within the satellite pixel due to clouds (e.g., small
broken clouds with the sun obscured over the ground station, an information that cannot be derived
from satellite data). The results from SENSE2 validation demonstrate highly accurate nowcasted
values of GHI which are in line with similar models. Future steps to reduce this positive bias could be
to improve the NWC SAF cloud retrieval input to SENSE2 regarding the partially cloudy pixels.
NextSENSE2 short-term solar forecasting system (up to 3 hours ahead), based on a state-of-the-art
cloud motion vector (CMV) approach, was also validated, and benchmarked with the persistence
approach. NextSENSE2 outperforms persistence forecasting method at locations with increased

cloudiness and for frequent cloudiness changes.
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Appendix

A. Aerosol optical depth regime over megacities

Table Al. Analytical table of 81 cities with the highest population up to 2018 (adopted by UN (2018a, 2019a)).
The abreviations of the statistical concept column stand for city proper (CP), urban agglomeration (UA) and
Metropolitan Area (MA). Major metropolitan areas (MMAS) are shown in bold, and the cities located in the
Guangdong—Hong Kong—Macau Greater Bay Area are shown in italics.

Urban Agglomerations short Country or area Populg'gclJﬁ Statistical
name (thousands) concept
Tokyo TOKY Japan 37468 MA
Delhi DELH India 28514 MA
Shanghai SHAN  China 25582 CP
Sao Paulo SAOP  Brazil 21650 MA
Mexico City MEXC Mexico 21581 MA
Cairo CAIR  Egypt 20076 MA
Bombay BOMB India 19980 MA
Beijing BEIJ China 19618 UA
Dhaka DHAK Bangladesh 19578 MA
Kinki M.M.A. (Osaka) OSAK  Japan 19281 MA
New York NEWY  United States of America 18819 UA
Karachi KARA  pakistan 15400 UA
Buenos Aires BUEA  Argentina 14967 UA
Chongging CHON  China 14838 UA
Istanbul ISTA Turkey 14751 UA
Kolkata KOLK India 14681 MA
Manila MANLI  philippines 13482 MA
Lagos LAGO  Nigeria 13463 UA
Rio de Janeiro RIOD  Brazil 13293 MA
Tianjin TIAN China 13215 UA
Kinshasa KINS ggrr:]gc:)cratic Republic of the 13171 UA
Guangzhou, Guangdong GUAN  china 12638 UA
Los Angeles-LongBeach-Santa Ana LOSA  United States of America 12458 UA
Moscow MOSC  Russian Federation 12410 cp
Shenzhen SHNZ  china 11908 UA
Lahore LAHO  pakistan 11738 UA
Bangalore BALO |ndia 11440 UA
Paris PARI'  France 10901 UA
Bogota BOGO  Colombia 10574 UA
Jakarta JAKA  Indonesia 10517 MA
Chennai CHNA |ndia 10456 UA
Lima LIMA  peru 10391 MA
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Qingdao QING  cChina 5381 UA

Dalian DALI China 5300 UA
Washington, D.C. WASH  United States of America 5207 UA
Yangon YANG  Myanmar 5157 UA
Alexandria ALEX  Egypt 5086 CP
Jinan, Shandong JINA China 5052 UA
Guadalajara GUAD  Mexico 5023 MA

Table A2. AERONET stations that have been used in the analysis and the corresponding urban agglomerations.

AERONET station Period Urban Agglomerations Shortname Country or area
Sao_Paulo 2003-2019 Sao Paulo SAOP Brazil
Mexico_City 2003-2018 Mexico City MEXC Mexico
Cairo_EMA_2 2010-2019 Cairo CAIR Egypt
Beijing 2003-2019 Beijing CHN China
Dhaka_University 2012-2020 Dhaka BGD Bangladesh
Osaka 2004-2020 Osaka JPN Japan
CCNY 2003-2020 New York USA United States of America
Karachi 2006-2020 Karachi PAK Pakistan
CEILAP-BA 2003-2019 Buenos Aires ARG Argentina
Manila_Observatory 2009-2020 Manila MANI Philippines
Santa_Monica_Colg 2013-2020 Los Angeles LOSA United States of America
Moscow_MSU_MO 2003-2020 Moscow MOSC Russian Federation
Lahore 2007-2020 Lahore LAHO Pakistan
Paris 2005-2020 Paris PARI France
Yonsei_University 2011-2020 Seoul SEOU Republic of Korea
Hong_Kong_PolyU  2006-2020 Hong Kong HONG China, Hong Kong SAR
Solar_Village 2003-2013 Riyadh RIYA Saudi Arabia
Madrid 2012-2020 Madrid MADR Spain
Taihu 2005-2016 Suzhou SUZH China
Pune 2005-2019 Pune PUNE India
Univ_of Houston 2006-2020 Houston HOUS United States of America
Toronto 2004-2020 Toronto TORO Canada
Key_Biscayne 2007-2018 Miami MIAM United States of America
Singapore 2007-2020 Singapore SING Singapore
Fukuoka 2012-2020 Fukuoka FUKU Japan
Barcelona 2005-2020 Barcelona BARC Spain
GSFC 2003-2020 Washington, D.C. WASH United States of America
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Figure Al. Panels (a)—(g) correspond to different geographical domains. For every panel, the long-term mean
AOQOD for the six different sectors normalized with the mean value of sector 1 (S1) is given with different colors,
and symbols correspond to different cities. Solid/dashed lines denote inland/coastal cities, respectively. The bar
plot shows the long-term mean AOD of S1 for every city in the geographical domain, denoted with the same
color used in the upper plot. The dashed line corresponds to the mean from all cities, while the dotted line gives
the mean AOD for the cities of the corresponding geographical domain.
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Figure A2. Long-term monthly mean AOD values (intraannual variability) normalized against the mean value
of month June. The different colors and symbols correspond to different cities. Solid/dashed lines denote
inland/coastal cities, respectively. Long-term monthly mean AOD values (intraannual variability) normalized
against the mean value of month June. The different colors and symbols correspond to different cities.
Solid/dashed lines denote inland/coastal cities, respectively.
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B. 15-Year Analysis of Direct Effects of Total and Dust Aerosols in Solar
Radiation/Energy over the Mediterranean Basin
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Figure B1 Geographical distribution of long-term average of seasonal mean AOD at 550 nm from MODIS.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B2 Geographical distribution of long-term average of seasonal mean AOD at 550 nm from CAMS.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B3 Geographical distribution of long-term average of seasonal mean DOD at 550 nm from MIDAS.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B4 Geographical distribution of long-term average of seasonal mean DOD at 550 nm from CAMS.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B5 Geographical distribution of annual mean CAMS—-MIDAS AOD biases. Blank grid points are those
that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B6 Geographical distribution of annual mean CAMS—-MIDAS DOD biases. Blank grid points are those
that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B7 Change (in %) of the mean seasonal integral of GHI due to the presence of aerosols under MODIS

AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual
basis.
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Figure B8 Change (in %) of the mean seasonal integral of GHI due to the presence of aerosols under CAMS

AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual
basis.
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Figure B9 Change (in %) of the mean annual integral of GHI due to the presence of dust under MIDAS DOD.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B10 Change (in %) of the mean annual integral of GHI due to the presence of dust under CAMS DOD.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B11 Change (in %) of the mean annual integral of DNI due to the presence of aerosols under MODIS
AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual
basis.

DNI % Attenuation (CAMS AODS50) DNI % Attenuation (CAMS AOD550)
DJF (2003-2017) MAM (2003-2017)

30°N -

10°W 0 10°E 20°E 30°E

DNI % Attenuation (CAMS AOD550) DNI % Attenuation (CAMS AOD550)
JJA (2003-2017) SON(2003-2017)

e
N

o L r e
. . |

n o=

30°N

(© (d)

Figure B12 Change (in %) of the mean annual integral of DNI due to the presence of aerosols under CAMS
AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual
basis.
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Figure B13 Change (in %) of the mean annual integral of DNI due to the presence of dust under MIDAS DOD.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B14 Change (in %) of the mean annual integral of DNI due to the presence of dust under CAMS DOD.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on an annual basis.
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Figure B16 Geographical distribution of seasonal mean DU SSA (MACv2 (Kinne, 2019)).
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Trend of MIDAS AOD550 effect on GHI
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Figure B17 Trends in % per decade for GHI (panels (a), (b)) and DNI (panels (c), (d)) due to the changes in

AOD (panels (a), (c)) and DOD (panels (b), (d)).

Total DJF Clear-sky(MODIS AODS550) GHI Total MAM Clear-sky(MODIS AOD550) GHI

Long term Averaged (2003-2017) Waim? Long term Averaged (2003-2017)

45°N

45°N i

4N 40N

35°N 35°N

30°N ¢ 30°N

(@) (b)

Total JJA Clear-sky(MODIS AOD550) GHI Total SON Clear-sky(MODIS AOD550) GHI
Long term Averaged (2003-2017) Waim? Long term Averaged (2003-2017)

45°N 45°N

s S
40°N 40°N % T g G
35°N 35°N / ;l S —t? 'ﬂ_‘ézé e
30N 30N A —

Coad L N

(© (d)
Figure B18 Mean seasonal integrals for clear-sky GHI using MODIS AOD.
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Figure B19 Mean seasonal integrals for clear-sky DNI using MODIS AOD.
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C. Solar radiation nowcasting and short-term forecasting

Density scatterplot of GHI(W/ m? ), Athens 2017
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Density scatterplot of GHI(W/ m? ), Cabauw 2017
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Density scatterplot of GHI(W/ m? ), Carpentras 2017
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Density scatterplot of GHI(W/ m? ), Cener 2017
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Figure C1 Comparison of the modeled versus measured global horizontal irradiance (GHI) for (a) Athens, (b)
Cabauw, (c) Camborne, (d) Carpentras, and (e) Cener for 2017.
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Density scatterplot of GHI(W/ m? ), Lerwick 2017 Density scatterplot of GHI{(W/ m? ), Lindenberg 2017
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Figure C2 Comparison of the modeled versus measured global horizontal irradiance (GHI) for (a) Lerwick, (b)
Lindenberg, (c) Palaiseau, (d) Tamanrasset, and (e) Thessaloniki for 2017.
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To see if the CMF differences (modeled against measured) changed with SZA, the MBE of CMF was
calculated for 10° bins of SZA. The measured CMF was considered to be the one derived from GHI
measurements (Eq. 6.4) and the modeled one was derived using Eq. (6.2). The results are presented in
Fig. C3 for all cases and under different cloudiness conditions, along with the relative values of CMF
MBE expressed as percentages. We can again see that most of the overestimation of CMF values by
MSG COT occurs for cloudy conditions (CMF < 0.9). Specifically, for partially cloudy conditions (0.4
< CMF <0.9), the MBE reaches values of up to ~0.20, and for overcast skies (CMF < 0.4), there are
SZA bins (0°) for which the MBE reaches values of up to 0.25. However, the MBE hardly changes
with SZA for those two categories.
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Figure C3 Cloud modification factor (CMF) mean bias error (MBE — left column) and relative MBE (% - right
column) as functions of solar zenith angle (SZA) for all cases and different cloudiness conditions.
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