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1 Introduction    

       The main purpose of this master thesis is to describe the Bayesian Weibull 
competing risks model with missing event types and then compare it with an 
existing model in which its coefficients are estimated via the maximum pseudo 
partial likelihood method. In the second and third chapters, the essential theory, 
for the description of the model, is written. In the second chapter, the theory about 
the competing risks and in general the survival analysis is presented. Particularly, 
some elementary theory about the survival analysis is described and then the two 
different types of modeling the competing risks are defined. In the same chapter, 
some basic theory about the missing values is presented, and how each missing 
scenario can be solved. In the end, there are presented some methods to tackle and 
model the competing risks with missing cause of failure scenarios. In the next 
chapter, the third one, the Bayesian theory, the Weibull survival model, and their 
combination are thoroughly explained. The Bayesian Weibull Competing risks 
with missing cause of failure is a combination of four theories, the Bayesian, the 
competing risks, the Weibull survival model, and a Bayesian methodology of 

imputing the missing values. Therefore, the first 2 main chapters try to describe 
and analyze the theory behind this complex and complicated model. 

       In the fourth and fifth chapters, the methodology and the results are presented. 
Particularly, in the fourth chapter, the desirable two models are meticulously 
described. First, the Bayesian Weibull competing risk with the missing cause of 
failure model and then the other model which uses the maximum pseudo partial 
likelihood. Those two methods, especially the target method are both theoretically 
and practically explained. The algorithms for both models are precisely described 
and the code for the main method is given in the Appendix. Furthermore, the 
theory behind the data simulation is given, and the different scenarios are derived 
from it. Also, descriptive statistics and some analytic graphs are given in order to 
somehow enlighten the structure of the data. In the fifth chapter, the parameters 
of the Bayesian algorithm are derived from prior knowledge (knowledge from 
another study) and from the trial-and-error estimation method. Next, the results 
and the evaluation metrics are described. The results are basically given in tables 
and graphs. In addition, the convergence is measured by different metrics such as 
the scale reduction factor and the bias (because the results are known ). In the end, 
some sensitivity analyses are conducted only for the first scenario because of the 
computer and time capabilities.  

       Last but not least, the discussion is the essence of this master thesis because 
all the advantages and disadvantages of the study are presented there. Also, the 
advantages and disadvantages of the models are thoroughly explained. In the end, 
some final thoughts or some study proposals are given. After that, the summary, 
both in English and Greek, the reference, and the appendix which has the code of 
simulation, and the estimation are given. The code is written in R (version 4.3.0).  
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2 Competing risks with missing event types   

2.1 Competing Risks  

2.1.1 Survival Analysis  

         Competing risk usually arises in survival analysis when the event of interest 
cannot occur because another event has already occurred[1,2]. In other words 
when they are more than one event and usually, scientists are interested in one of 
them. For example, in cancer research, the event of interest can be death from 
cancer and the other event can be death from another reason [1]. When estimating 
the cumulative incidence analysts must adjust for the multiple events and do not 
use the naïve approach of Kaplan Meier [1]. That is to say that if the other events 
are converted to censor observations, an analyst can estimate the Kaplan Meier 
estimator and that estimator is biased upwards regardless of the event's 
relation[1]. So, researchers always should adjust their analysis when competing 
risks are present. There are two ways to adapt the analysis to competing risks first 
the researchers can choose the cause-specific hazard function with the purpose of 
estimating the hazard function and the other is modeling the cumulative incidence 
function using the subdistribution hazard function [1,2,3]. Both ways are 
modeling the effect of covariates the former is trying to model the effect of 
covariates on each hazard and the other the effect of covariates on cumulative 
incidence function[1,2,3]. As it is said the first is better to address etiological 
questions and the other is to estimate the clinical prognosis of a patient. 
Particularly, the former is to estimate the effect of covariates on the rate of 
occurrence of the event when the person is event-free. The latter allows the 
estimation of how the covariates affect the absolute risk of the outcome over time 
[1]. 
        It is assumed that 𝑇  donates the time to event in other words the time from 
baseline time until the occurrence of the desirable event. When the competing risk 
is absent the survival function 𝑆(𝑡) is the probability of the outcome occurrence 
after time 𝑡  can be easily estimated by Kaplan Meier method. So the   𝑆(𝑡) is 
described as the probability of certain subject survives at least times 𝑡 or in 
mathematical way as 𝑆(𝑡) = 𝑃(𝑇 > 𝑡)  or 1 − 𝑆(𝑡) = 𝐹(𝑡) where 𝐹(𝑡) is 
cumulative function 𝑃(𝑇 ≤ 𝑡). As a result 𝑆(0) equals to one and 𝑆(𝑡) as 𝑡  tends to 
infinite equals to  zero. Nevertheless, the final property is not applied to every 
problem because the probability of survival under administrative times is below 
one. In the competing risk, the Cumulative Incidence Function as 1 − 𝑆(𝑡) is the 
probability of the survival from all distinct outcomes  and allows researchers to 
estimate the incidence of occurrence of an outcome after adjusting for competing 
risks [1]. Consequently ,  it is defined that the cumulative incidence of the kth event 
is the 𝐶𝐼𝐹𝑘 = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘) where 𝐷 is the variable which donates the 
particular outcome [1].  In other words, 𝐶𝐼𝐹𝑘  is the probability of the occurrence 
of the kth event before another event takes place [1].  Another desirable property 
is that the sum of 𝐶𝐼𝐹𝑘  is the probability of any events occurrence before time 𝑡. 
One relatively different property is that 𝐶𝐼𝐹𝑘 will not tend to unity as time goes to 
infinity because another event might happen before the event of interest  or  just 
in the end one event can occur. In the absence of competing risk, the hazard 
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function is defined as ℎ(𝑡) =  lim
𝛥𝑡→0

𝑃(𝑡≤𝑇≤𝑡+𝛥𝑡|𝑇≥𝑡)

𝛥𝑡
 [1]. In other words,  the hazard 

function which is function of time describes the instantaneous rate of occurrence 
of a desirable outcome when the subject  is event free. The well known,  Cox 
proportional hazard regression model connects the hazard function with the 
covariates. More particularly, when the competing risks are absent the Cox 
proportional hazard regression can be described as  

                                                     log ℎ(𝑡) = log ℎ0(𝑡) + 𝑋𝛽  

where ℎ0(𝑡) [2] is the baseline hazard function typically when covariates are zero 
and 𝑋 is the design matrix multiplied with the coefficients 𝛽.  If an exponential 
transformation is used the former relation is written as  ℎ(𝑡) = ℎ0(𝑡)𝑒

𝑋𝛽. The 
coefficients  are basically equal to log hazard ratio and they are interpretated as 
the relative change of the log hazard function when the relative covariates are 

changed by one unit [2]. If the relation 𝑆(𝑡) =  𝑒∫ ℎ(𝑡)𝑑𝑡 is used,  𝑆(𝑡) can be written 
as 𝑆(𝑡) =  𝑆0(𝑡)

exp (𝑋𝛽) [2] where 𝑆(𝑡) is the survival function and 𝑆0(𝑡)  is the 
baseline survival function (covariates equal to zero) under the absence of 
competing risk. That is to say that the inference about hazard rate is related to the 
survival function. A more particularly positive coefficient means a bigger hazard 
ratio, but a lower survival and negative coefficient means a lower hazard ratio as 
a result of bigger survival [2]. Finally, every researcher should check for the 
assumption that the hazard ratio is independent of time, or the proportionality 
property of the hazard function is valid. In other words, the hazard ratio is not a 
function of time as a result it is invariable as time moves on. This is an important 
property that analysts must check every time. If this property is not valid then the 
researcher can proceed to other models like parametric ones or can tune the Cox 
model and a time covariate in the equation[4].  
 
   Now in the case of the competing risks which is that there are multiple and 
distinct events supposing one of them can happen in the study. An individual can 
experience one of many events but only one and as it has been mentioned there 
are two different hazard functions or types of modeling to adjust to the competing 
risk framework. The first one is the cause-specific hazard function which 
practically models the hazard function for each outcome when the subject is 
event-free and the second one is the subdistribution hazard function which tries 
to model the cumulative incidence function[1,2,3]. So, the formula for the cause-
specific hazard function is    

                                              ℎ𝑘
𝑐𝑠(𝑡) =  lim

𝛥𝑡→0

𝑃(𝑡≤𝑇≤𝑡+𝛥𝑡,𝐷=𝑘|𝑇≥𝑡)

𝛥𝑡
   

and it is recognized that the difference from the not competing risk hazard 
function is that this so-called cause specific hazard function adjust for specific kth 
event in the probability or in the numerator of the limit [1,2,3]. Again, cause 
specific hazard function is the instantaneous rate of occurrence of a kth specific 
outcome in an event free subject (a subject that has not experience any event). 
Consequently, analysts can relate the cause specific hazard function of a specific 
event to covariates through coefficients. In other word cause specific hazard 
function is frequently used for etiological reasons in opposite to subdistribution 
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hazard function. In the opposite side of things, the subdistribution hazard function 
has a little more complicated formula which is 

                                ℎ𝑘
𝑠𝑑(𝑡) = lim

𝛥𝑡→0

𝑃(𝑡≤𝑇≤𝑡+𝛥𝑡,𝐷=𝑘|𝑇>𝑡 ∪(𝑇<𝑡 ∩𝐾 ≠𝑘))

𝛥𝑡
             

and it was introduced by Fine and Gray [5]. It is noticeable that an extra term is 
introduced in the conditional probability ,  so the condition term is the union of an 
event free time and an outcome time of a different event. In other words is the 
instantaneous risk  of failure in subject which have not experienced the kth 
outcome [5,1,2,3]. The main difference between the hazards is that cause specific 
hazard function is estimated for event free subjects and subdistribution hazard is 
estimated for a kth event free subject. Subdistribution hazard relates the effect of 
the covariates to the cumulative incidence function therefore the predicted 𝐶𝐼𝐹𝑘  
can be estimated for a certain subject and that is why subdistribution hazard is 
better for prognosis purposes of a specific event in a particular subject [1,2]. It is 
preferred that analysts should estimate both hazards when both hazards can be 
estimated and when the scientific question is ambiguous.  

2.1.2 Cause Specific Hazard function  

        It is frequently phenomenon that there are more than one distinct event of 
interest and one way to adjust for this problem is to use cause specific hazard 
function. The cause specific hazard function is perfect for answering etiological 
questions and it donates the instantaneous rate of occurrence of a specific 
outcome on free event subject. It is defined as  

                                                  ℎ𝑘
𝑐𝑠(𝑡) =  lim

𝛥𝑡→0

𝑃(𝑡≤𝑇≤𝑡+𝛥𝑡,𝐷=𝑘|𝑇≥𝑡)

𝛥𝑡
   

so, it same as non-competing risk hazard with the difference that in probability 
there is an indicator which shows for which event the hazard rate is calculated. 
The cumulative probability of the realization of an outcome before time 𝑡 when all 
other outcomes are possible to happen is known as cumulative incidence function 
and it is defined as  

𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘) = ∫ h𝑘
𝑐𝑠(𝑢)

𝑡

0
𝑒−∫ ∑ h𝑗

𝑐𝑠(𝑣)𝑑𝑣𝐾
𝑗=1

𝑢
0 𝑑𝑢    

where 𝐾 is the number of the possible events and this formula is only for cause 
specific hazard function [3]. So, under the assumption of the independent right  
censoring which means that the censoring time is independent of the event times 
and cause of failure, the likelihood function can be described as  

𝐿 =∏∏[ℎ𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖)]

𝑑𝑘𝑖

𝐾

𝑘=1

𝑛

𝑖=1

𝑒−∫ ℎ𝑘
𝑐𝑠(𝑣,𝑥𝑖)𝑑𝑣

𝑡𝑖
0  

where 𝑛 is the total number of observations,  𝑡𝑖 is the time until the realization of 
an outcome 𝑑𝑘𝑖 is an indicater which is equal to 1 if ith subject has experienced the 
kth event and 0 elsewhere and 𝑥𝑖  is a design matrix[3]. So, after utilizing the 
property of permutation the likelihood can also be written as  
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𝐿 =∏∏[ℎ𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖)]

𝑑𝑘𝑖

𝑛

𝑖=1

𝐾

𝑘=1

𝑒−∫ ℎ𝑘
𝑐𝑠(𝑣,𝑥𝑖)𝑑𝑣

𝑡𝑖
0  

which is the product of the likelihoods for each event[3]. In other words, is the 
total product of each event likelihood  

𝐿 =∏𝐿𝑘

𝐾

𝑘=1

 

where      𝐿𝑘 = ∏ [ℎ𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖)]

𝑑𝑘𝑖𝑛
𝑖=1 𝑒−∫ ℎ𝑘

𝑐𝑠(𝑣,𝑥𝑖)𝑑𝑣
𝑡𝑖
0 = ∏ [ℎ𝑘

𝑐𝑠(𝑡𝑖, 𝑥𝑖)]
𝑑𝑘𝑖𝑛

𝑖=1  𝑆𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖)  

which is the likelihood if it is presumed that the other events but 𝑘 are censored 
and  𝑆𝑘

𝑐𝑠(𝑡𝑖, 𝑥𝑖)  is the typical non-competing risk survival function for kth event if 

observations with different events are treated as censored[3]. In plain words it is 
vital to procced to  𝐾  analysis one for each event and treat the other events as 
censored observations assuming that the same predictors and the same methods 
are used. In other words if a competing survival analysis is conducting with two 
distinct event, the analyst can separate the competing analysis to two plain 
survival analysis replacing the other event with censoring but the data and the 
covariates are the same. So, because of the previous beneficial  property in 
independent right censoring  the cause specific hazard is sometimes preferred 
than the subdistribution one.  In conclusion the cause specific hazard function 
ℎ𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖) can be modeled as a normal ℎ(𝑡𝑖, 𝑥𝑖) just by treating the non 𝑘 events as 

censored ones. Particularly a Cox model can be used in order to analyze a 
competing risk data set just by conducting Cox modelling for each event,  thus the 
requested cause specific hazard function for a specific kth event is  

ℎ𝑘
𝑐𝑠(𝑡𝑖, 𝑥𝑖) = ℎ𝑘0

𝑐𝑠 (𝑡𝑖, 𝑥𝑖)𝑒
𝛽𝑘𝑥𝑖   

Where ℎ𝑘0
𝑐𝑠 (𝑡𝑖, 𝑥𝑖) is the baseline cause specific hazard function and 𝛽𝑥𝑖 =

∑ 𝛽𝑝𝑘𝑥𝑝𝑖
𝑃
𝑝=1   where 𝛽𝑝𝑘 is the coefficient for 𝑋𝑝 variable 𝑝 = 1, 2, … , 𝑃 are the 

predicted variables for the 𝑘 event[3]. For each analysis 𝑃  coefficietns are 
estimated by either maximizing the likelihood or by using Bayesian statistics. In 
the end  𝑃 ∗ K coefficients are estimated (𝑃  for each analysis). In each analysis, 
the same covariates must be inserted in the model and the final model evaluation 
is done by evaluating each model separately. Apart from using a semi-parametric 
proportional Cox model, an analyst can use a parametric one like an accelerated 
time failure model by giving the baseline hazard function a formula. So, if a 
researcher is suspicious that the proportional hazard might not be valid then they 
can proceed to accelerate time failure models which those models have various 
types like Weibull, log-logistic, gamma, and more each of them models hazard 
functions differently for example Weibull hazard function is monotonous in 
opposition to log-logistic which is not monotonous[4]. More information about 
those models is mentioned in the next chapter. So, the proportionality property 
for each event must be meticulously examined and that can be succeeded through 
various tests and graphical diagnostics using for example Schoenfeld residuals [4]. 
If the proportional hazard assumption is not valid apart from using parametric 
models an analyst can insert the time to predicted variables but this is easier said 
than done or a researcher can use stratified Cox models for the variable whose 
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proportional hazards assumption is not true. Finally, the variable selection is 
conducted using likelihood tests by means of using the property that the total 
likelihood of a model competing risk model is the product of each likelihood when 
the other events are censored. Apart from the hazard modeling, a researcher can 
model the cumulative incidence function utilizing subdistribution models.  
 

2.1.3 Subdistribution hazard function.  

        Another approach to model  the competing risk problem rather than cause 
specific hazard function is using subdistribution hazard function [5]. 
Subdistribution hazard modelling was introduced by Fine and Gray [5]  and this 
type of model also is called as CIF regression model or Fine and Gray hazard or 
model. Calling Subdistribution hazard model as CIF regression model,  an 
individual can understand the strong connection between subdistribution hazard 
and cumulative incidence               𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘).  Particularly  

ℎ𝑘
𝑠𝑢𝑏(𝑡) = lim

𝛥𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡, 𝐷 = 𝑘|𝑇 > 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐾 ≠ 𝑘))

𝛥𝑡
   

=
[
𝑑𝐹𝑘(𝑡)
𝑑𝑡

]

1 − 𝐹𝑘(𝑡)
= −

𝑑

𝑑𝑡
log (1 − 𝐹𝑘(𝑡)) 

and this can be generalized with the introduction of covariates 𝑥  

ℎ𝑘
𝑠𝑢𝑏(𝑡, 𝑥) =  −

𝑑

𝑑𝑡
log (1 − 𝐹𝑘(𝑡, 𝑥)) 

As it is mentioned the subdistribution hazard is linked to the cumulative incidence 
in opposition to cause specific hazard function. Consequently, inference can be 
made for the cumulative incidence using the subdistribution hazard 
function[5,1,2,3]. Nevertheless, a researcher should interpret the results with care 
because interpreting the effect of covariates in the subdistribution hazard model 
is a little unnatural because the Fine and Gray hazard is the incidence of a covariate 
in a subject that is event-free (from the event of interest k) and is not event free 
from other outcomes. For example, if one event is death and the other is cure the 
estimation of subdistribution hazards for death is made by subjects who are not 
either dead or cured or they just are cured[1,2]. So, the interpretation is done 
either by interpreting the rate of hazard in event-free subjects or by connecting 
the cumulative incidence function to subdistribution hazards.        

     Fine and Gray [5] introduced a semiparametric proportional hazard model  for 
the desirable event :  

ℎ𝑘
𝑠𝑢𝑏(𝑡, 𝑥) =  ℎ0𝑘

𝑠𝑢𝑏(𝑡, 𝑥) 𝑒𝑥𝛽𝑘 

Where ℎ0𝑘
𝑠𝑢𝑏(𝑡, 𝑥) is the base line subdistribution hazard and 𝑥 are the covariates 

with 𝛽𝑘 coefficients for the 𝑘 event. The cumulative incidence using the 
subdistribution hazard is described as  
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𝐶𝐼𝐹𝑘 = 𝐹𝑘(𝑡, 𝑥) = 1 − 𝑒
−∫ ℎ𝑘

𝑠𝑢𝑏(𝑢,𝑥)𝑑𝑢
𝑡
0 = 1 − 𝑒−∫ ℎ0𝑘

𝑠𝑢𝑏(𝑢,𝑥) 𝑒𝑥𝛽𝑘𝑑𝑢
𝑡
0

= 1 − 𝑒−∫ ℎ0𝑘
𝑠𝑢𝑏(𝑢,𝑥) 𝑒𝑥𝛽𝑘𝑑𝑢

𝑡
0 = 1 − [1 − 𝐹𝑘(𝑡, 0)]

𝑒𝑥𝛽𝑘   

resulting in  

1 − 𝐹𝑘(𝑡, 𝑥) = [1 − 𝐹𝑘(𝑡, 0)]
𝑒𝑥𝛽𝑘  

where 𝐹𝑘(𝑡, 0) is the base line cumulative incidence for the kth event[5,2,3]. As it 
is observable the coefficients 𝛽𝑘 are present in the hazard equation and in the 
incidence function equation. This means that researcher can use coefficients 𝛽𝑘 to 
interpret the 𝐶𝐼𝐹𝑘 but it is not clearly what type of interpretation can be achieved 
because the previous is not very easy to interpret[2]. Someone can use 𝑙𝑜𝑔 
transformation  log[1 − 𝐹𝑘(𝑡, 𝑥)]  = 𝑒

𝑥𝛽𝑘 + log[1 − 𝐹𝑘(𝑡, 0)]  and then interpret 
that the logarithm of  rate ratio of one minus cumulative incidence function when 
covariates are 𝑥 to one minus cumulative incidence function when covariates are 

0 is 𝑒𝑥𝛽𝑘  [2].  Mathematically this is written as  log[
1−𝐹𝑘(𝑡,𝑥)

1−𝐹𝑘(𝑡,0)
] =  𝑒𝑥𝛽𝑘    and utilizing 

the equation with hazard and the baseline hazard  
ℎ𝑘
𝑠𝑢𝑏(𝑡,𝑥)

ℎ0𝑘
𝑠𝑢𝑏(𝑡,𝑥)

= 𝑒𝑥𝛽𝑘  ,  it is derived to 

the fact that log[
1−𝐹𝑘(𝑡,𝑥)

1−𝐹𝑘(𝑡,0)
] =  

ℎ𝑘
𝑠𝑢𝑏(𝑡,𝑥)

ℎ0𝑘
𝑠𝑢𝑏(𝑡,𝑥)

= 𝑒𝑥𝛽𝑘 .    So, if the rate of hazards is bigger 

than one then the one minus cumulative incidence is bigger than its one minus 
baseline cumulative incidence. Therefore, the direction is the same for the hazard 
ratio and one minus cumulative incidence ratio but the quantification is not the 
same[2]. So, there is one relation between hazards and cumulative incidence and 
that is the influencing and desirable power of subdistribution hazard modeling. 
Practically Fine and Gray modeling can give us information about the incidence or 
the survival prognosis of a patient thus it can solve problems like what is the 
probability of living at most T times without the event k occurring[2]. In general, 
it is preferable to interpret the results using cumulative incidence because it does 
not involve the concept of an event-free subject or event-kth-free subject which 
sometimes seems irrational as explained above. In opposition to subdistribution 
hazards specific hazards cannot directly connect to cumulative incidence, in other 
words, there is not one to one connection between the cause-specific hazard 
function and cumulative incidence. 
         
        Estimating the coefficients in CIF regression modeling is considered hard 
relative to causing specific hazard modeling. This is not because the actual 
estimation method is cumbersome or complex but because of the censoring[5,3]. 
First of all, in most problems independent right censoring is rightly assumed and 
the methods for this type of censoring are elementary ones for example for non-
competing risk survival problems or competing risk problems utilizing cause-
specific hazard modelling, but this is not applied to the sub-distribution hazard 
models. To begin with, the simplest scenario is to not have censored observations 
because each subject has experienced an event, according to the Fine and Gray 
modeling [5,3]  
 

ℎ𝑘
𝑠𝑢𝑏(𝑡, 𝑥) =  ℎ0𝑘

𝑠𝑢𝑏(𝑡, 𝑥) 𝑒𝑥𝛽𝑘 
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It is valid to estimate each vector ( 𝛽𝑘 ) of coefficient just by maximizing the 
likelihood of the specific event kth. So, the requested likelihood for kth event which 
has to be maximized is   

𝐿𝑘 = ∏[
𝑒𝑥𝑖𝛽𝜅

∑ 𝑒𝑥𝑗𝛽𝜅𝑗∈𝑅𝑖

]𝛿𝑖𝑘

𝑛

𝑖=1

 

where 𝑛 is the total number of observations,  𝑥𝑖𝛽𝜅 = ∑ 𝑥𝑖𝑝
𝑃
𝑝=1 𝛽𝑘𝑝 where 𝑃 is the 

number of covariates,  𝛽𝑘𝑝 is the coefficient for 𝑋𝑝 variable in the kth event,  𝑥𝑖𝑝 is 

the value of ith individual in the 𝑋𝑝 variable 𝑝 = 1, 2, … , 𝑃 ,   𝛿𝑖𝑘   is an indicator 

which is 1 when the ith subject has experience the kth event and 0  elsewhere and 

finally     𝑅𝑖 = { 𝑗 ∶  𝑇𝑗 ≥ 𝑇𝑖  ∪ [( 𝑇𝑗 ≤ 𝑇𝑖) ∩ (𝛿𝑗𝑘  ≠ 1)] } [5].  This likelihood is 

called partial likelihood, it is maximized by the frequent tools ( take the logarithm 
and the rest ) and it has all the good properties of likelihood like asymptotic 
normality and consistency of estimators. Nevertheless, when censoring is 
introduced to the framework, the situation and the solution to the problem are 
partially changed [5,3]. Assuming that there is an administrative censoring, which 
is the censoring due to the end of the study, one for a specific event let’s say k can 
treat the non-censored times of the other non-kth events as censored ones and 
then proceed to the normal cox analysis[5,3]. This is the same as the cause–specific 
hazard. In other words, one can conduct a k analysis for each outcome and each of 
them can mark the observation that experiences another event as censored. Then 
can proceed to the normal Cox analysis. When it comes to prominent and most 
probable independent right censoring the concept is altered. 
          
         The independent right censoring is an issue because practically the censoring 
time for each event is needed to estimate the coefficients for each event. In other 
words, if an analyst is interested in the kth event, they must have the censored 
time for each observation that has experienced one of the other competing risks 
to estimate the particular kth coefficients. So that desirable censored time is 
unknown because the observations are not censored. After all, they have 
experienced another outcome. For example, if the event of interest is the first then 
for each observation that has not experienced the first event their censored time 
to the first event is needed but those observations have experienced other events, 
so their requested censored time is missing. For the problem of the independent 
right censoring an analyst can use the inverse probability of censoring weighting 
which by and large assigns every observation a weight [5,3]. Furthermore, there 
are more ways to deal with the problem like utilizing multiple imputations[6]. The 
basic concept is that the unknown censoring times are imputed by random values 
from a specific censoring distribution which is conditional based on the 
occurrence of censoring which is done after the realization of one or another 
competing events. This specific and desirable distribution is estimated by the 
Kaplan-Meier method by replacing the censored observation as an outcome and 
the actual event times as censored [6]. As mentioned, another meaningful way to 
adjust for independent right censoring is inverse probability of censoring 
weighting[5,3]. This technique is very popular because it is generally very 
understandable because an analyst just assigns weight to observations and 
because it is also used to solve other problems like missing values. Particularly, 
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assuming that there are n observations and let T, δ, ε and 𝑋 are the observed time,  
the event indicator,  the cause of failure and final the covariates. The set 𝜀 is the 
total distinct types of outcomes les say 𝜀 = 1, 2, 3… ., 𝑃 and in this specific 
example the coefficients for the first event are requested to be calculated. Every 
observation ith has unique 𝛿𝑖 = 0  if the observation is censored and 1  if it is 
not,𝜀𝑖 equals to the type of the event, 𝑇𝑖 the value of 𝑇 column and their covariates 
𝑋𝑖. Now because the coefficients for the first are needed to estimate  if 𝜀𝑖 = 1 then 
let 𝑁𝑖(𝑡) = 𝐼(𝑇𝑖 ≤ 𝑡) and 𝑌𝑖(𝑡) = 𝐼(𝑇𝑖 ≥ 𝑡) and for 𝜀𝑖 ≠ 1 then 𝑁𝑖(𝑡) = 0  and 
𝑌𝑖(𝑡) = 1. Let 𝑟𝑖(𝑡)  a function which  If 𝛿𝑖 is 0  then 𝑟𝑖(𝑡) = 1  when 𝑡 ≤ 𝑇𝑖  and 0  
otherwise and if 𝛿𝑖 = 1 then 𝑟𝑖(𝑡) = 1  and weight 

 𝑤𝑖(𝑡) = 𝑟𝑖(𝑡)
𝐺(𝑡)

𝐺(𝑇𝑖)
  where 𝐺(𝑡) is the estimation of Kaplan – Meire survival 

function of censoring variable and it calculated using {𝑇𝑖 , 1 − 𝛿𝑖 , 𝑖 = 1,2,3, . . 𝑛 }.So 
if 𝑡 ≤ 𝑇𝑖   then 𝑤𝑖(𝑡) = 1 and if 𝑡 > 𝑇𝑖  and 𝛿𝑖 = 0  then 𝑤𝑖(𝑡) = 0  else  

(𝛿𝑖 = 1 𝑎𝑛𝑑 𝑡 > 𝑇𝑖 )   𝑤𝑖(𝑡) =  
𝐺(𝑡)

𝐺(𝑇𝑖)
.  Therefore, to estimate the  𝛽1 coefficients for 

the first event a pseudo-likelihood 𝐿1 are to be maximized  

𝐿1 = ∏[
𝑒𝛽1𝑥1

∑ 𝑌𝑗(𝑇𝑖)𝑤𝑗(𝑇𝑖)𝑒𝛽1𝑥1
𝑛
𝑗=1

]𝐼(𝛿𝑖𝜀𝑖=1)
𝑛

𝑖=1

 

The above algorithm is applied for every event to find the coefficients for each 
outcome relatively. The disadvantage of the inverse probability of censoring 
weights is that it requires a special computing function in a statistical 
programming language to maximize the pseudo–likelihood. Nevertheless, the 
multiple imputation method can be achieved just with the normal survival Cox 
function utilizing the regeneration of multiple datasets[6,3]. Another method to 
account for right independent censoring is based on a weighted product–limit 
estimator[3]. Similar techniques like the above are frequently used in survival and 
complete data analysis. 
  
      To summarize there are two ways to deal with multiple events in survival 
analysis the first one is modeling the cause-specific hazard function which is used 
for etiological reasons and the other is subdistribution hazard which is used for a 
subject prognosis. The first models each event hazard independently and the 
second connects the cumulative incidence function with the specific 
subdistribution hazard. The risk set of the first method is subjects that are event-
free at a specific time and the second one uses event-free subjects and subjects 
that have experienced another event. The former does not have a one-to-one 
connection, but the latter does. Also, the first is relatively easy to model in 
independent right censoring and the second one needs special care. In terms of 
interpretation, the first is the ratio of hazards in event-free populations and the 
second one is the ratio of hazards in event-free or not from another event 
population. 
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2.2 Missing values  

2.2.1 Introduction  

        The missing values problem arises almost in every data analysis and it is a 
frequent phenomenon that needs an elegant approach. An analyst is requested to 
handle missing values and it is in their responsibility to solve this problem. The 
general approach to handle this issue is to first identify the type of missing values 
and then proceed to a deliberate approach. Sometimes those issues need 
multidisciplinary endeavor to mitigate the problem. There are three types of 
missingness first and easiest type to handle is Missing Complete At Random 
(MCAR), Missing At Random (MAR), and Missing Not At Random 
(MNAR)[7,8,9,10,11]. Finally, it is important to identify which variable has missing 
values and this has to do with the role of variable with missing values. In other 
words, there are different ways to deal with that problem when the variable is 
dependent, or independent or there are missing values both in dependent and 
independent variables[10,11]. Finally, there are some data missing patterns like 
univariate patterns, unit response patterns, monotone patterns, general patterns, 
planned missing patterns, and latent variable patterns [10,11]. The univariate 
pattern appears when there are missing values in one variable. A unit response 
pattern is when there missing values in some variables in the same observations 
(rows). The monotone pattern is associated with longitudinal studies when 
participants have started to drop out and never return. A general pattern is when 
in random variables values of random observations are missing. In other words, 
there is no specific trend related to the missing values. This type of pattern 
missingness is the most common. The next planned missing pattern is a pattern 
that exists in questionnaires, particularly in survey studies analysts can give 
questionnaires in which some variables are missing in some participants to lift the 
respondent burden. Finally, latent variable pattern is when a variable is 
completely missing, and it is related to latent variable analysis.  
 
          To begin with, when the data are missing completely at random(MCAR) 
means that the missingness is independent of observed and unobserved data [8, 
10,11]. In other words, there is no systematic difference between the observation 
with all the data and the observations with missing data.Frequently this specific 
missing problem derives from unwanted and random errors for example some 
data were lost because of a machine error, because of some typos or they are 
missing due to another unknown parameter. For instance, an error in data entry, 
an administrative random error (missing values due to the illness of the 
interviewer), and due to random events like doctor appointments. This type of 
error just reduces the power of the analysis and it is not the reason for introducing 
bias because MCAR data are a random sample of the full dataset. More often than 
not the assumption of MCAR is unrealistic as a result a researcher rarely assumes 
MCAR type of missingness [8,10,11]. One way to check this type of missingness is 
to run an independent t-test with the dependent variable being the missing 
indicator one if it is missing and zero if not and with the other variables[11]. In 
those t-tests and if the MCAR assumption is valid the p-values of the covariates 
have to be relatively large close to one but again it is better not to take the risk and 
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assume MCAR even if the results of general linear regression are indicating the 
opposite. Mathematically the MCAR probability is described as 
 
                                    𝑃(𝑅 / 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠 , 𝜑)  = 𝑃(𝑅 / 𝜑)   

Where 𝑅 is 1 when the value is observed and zero when is missing,   𝑌𝑜𝑏𝑠  are the 
observed data,    𝑌𝑚𝑖𝑠𝑠 are the unobserved and 𝜑 is a set of unmeasured variables. 
Therefore, the probability of missingness is independent of the observed and 
unobserved scores or values of the data but the probability of missingness still is 
related to unknown parameters [10,11]. In practice, this assumption is relatively 
easy to solve and account for. There are numerous methods that can tackle this 
issue and as it is mentioned the only loss is the reduction of power which in a large 
sample might be meaningless. If the researcher presumes this type of missing 
value, it is vital to proceed with care and have strong and significant evidence that 
this assumption is true.  
 
         The data are missing at random (MAR) when basically the missingness is 
related to the observed data [10,11]. In other words, the probability of 
missingness corresponds to other observed data in the study but it is independent 
of unobserved data which if they were collected then the data would have been 
complete. Another fact that a lot of people misunderstand is that the MAR 
missingness is practically not random and it is basically related to other observed 
variables in in the study[8,10,11]. Nevertheless, the random term is derived from 
the fact that the missingness is random in the group which is correlated with the 
missing values. For example, let's suppose that there is a study that has two 
variables the first variable is one kind of score and the other is age grouped into 3 
groups young, middle-aged, and the elderly. The score variable has missing values, 
and it is observed that in the older group, there are significantly more missing 
values than the other groups, so the missingness is correlated with age. Therefore, 
in the older group, the missingness is random. In general, there are systematic 
differences between the observations with observed values and unobserved 
values. Mathematically the probability of missingness is   
                                    𝑃(𝑅 / 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠 , 𝜑)  = 𝑃(𝑅 / 𝑌𝑜𝑏𝑠, 𝜑)   

Thus, it describes that the reason for the missingness is independent of the actual 
missing values in our dataset. Nevertheless, it might be related to other variables 
that are not gathered, or are unknown in bibliographic references. The missing 
data have a bigger probability of being MAR than MCAR. It is a more realistic 
assumption, and it is not as restrictive as MCAR[8,10,11]. In most problems a MAR 
assumption is valid, and, in the end, it is chosen in most cases. Again one can 
implement various univariate t-tests to find out which variables are correlated 
with the targeted missing variable[10,11].In that case, some of those tests should 
have a relatively small p-value which indicates that the relation between the two 
variables is a significant one. The MAR problem has many solutions according to 
the data structure or the type of missing variable (dependent, independent, or 
both ) but a bias can be introduced if the analyst deletes the missing values. 
Therefore, it is vital to employ a sophisticated and appropriate missing values 
model to tackle the issue perfectly. 
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           Missing Not at Random (MNAR) is a missing type in which the probability of 
missingness is related to unobserved which hypothetically should have been 
collected[10,11]. In other words, if a variable 𝑋 has missing values under the 
MNAR assumption the missingness of 𝑋  is correlated with its own missing values. 
For instance, a study related to obesity occurs and some people do not answer the 
question about their weight because they are obese or just slim. So missing values 
are generated because of the unobserved values of the variable. The MNAR 
assumption is very hard to deal with and there are just a few methods that can 
have mediocre results there are other methods that have better results but the 
assumption that those methods needed are very restricted and 
unrealistic[8,10,11]. In addition, the MNAR assumption is not probable to test 
based on the data; as a result, an analyst can only theoretically presume that the 
missing assumption is MNAR. It is a problem that scientists try to find methods to 
tackle it. A lot of times sensitivity analyses are carried out in order to compare the 
different missing values algorithms, or another practice is that the analyst tries to 
find external information about the missingness.  
 

2.2.2 Deletion Methods  

          There are two popular and traditional deletion methods, the first is 
complete-case analysis and the second one is pairwise deletion[7,8,10,11]. The 
complete-case analysis deletes all the observations that have at least one missing 
value are deleted from the analysis. Consequently, the remaining data are without 
missing values and that is the only advantage of this method. On the opposite side 
due to the deletion of observation, this surely leads to power reduction in tests. In 
other words, sometimes the whole part of the dataset might be removed as a result 
the power of various tests or methods is decreased, this phenomenon happens 
especially in datasets with a large percentage of missing data or variables. Except 
for unavoidable power reduction, an MCAR assumption is needed for the analysis 
result to be without bias. In most cases, the MCAR assumption is unrealistic 
resulting in the introduction of unwanted and certain biases. Conclusively the 
advantage of this method is that the final dataset is complete at the expense of 
power reduction and a certain bias if MCAR assumption does not hold. The 
pairwise deletion is partially like the complete case analysis but with one 
important difference, the deletion of missing observations is conducted separately 
in each step of the analysis. For example, the means of several variables are 
requested, in complete case analysis all the observations with missing values are 
deleted but in the pairwise deletion the reduction of observation happens only for 
the specific test or for the calculation of several statistics. For the computation of 
the first mean, only the missing observations of the first variable are deleted, and 
they are deleted only for that purpose and then after the deletion, the data are 
returned to the initial situation, and this goes on for every mean. This strategy is 
an improvement related to the first algorithm. Because only the necessary 
observations are deleted to conduct one specific test; as a result, the power of the 
test is not reduced like the complete case analysis. Nevertheless, this partial 
deletion suffers from the same bias relative issue. If the missingness does not fall 
under the category of MCAR the pairwise deletion results are biased.  
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2.2.3 Single Imputation Methods  

         Single Imputation Methods are methods that impute the missing value with 
an estimated value from the data. This procedure happens only once and there are 
many distinct ways to achieve this type of imputation. There are several methods 
for single imputation some of them are mean and median imputation, last 
observation carried forward, regression imputation, k nearest neighbor 
imputation algorithm stochastic regression imputation, and 
more[12,7,13,8, 10,11]. Those methods are trying to preserve the data structure 
and generate unbiased estimates. In the end, the result of the single imputation 
method is a complete dataset. The mean and the median imputation is the easiest 
of all, they impute the missing value with the mean or the median of the 
variable[7,8,10,11]. The problem with those two methods is that they do not 
preserve the data structure or, in other words, they change the correlation. For 
example, let's assume a scatterplot of two variables Χ and Υ both variables have 
missing values, and both are correlated. The imputed values are steady for both 
variables resulting in the reduction of correlation because the sub imputed sample 
is steady, and it correlates zero. Under the assumption of MAR missingness, the 
mean imputation produces a biased estimation of the mean. The last observation 
carried forward (LOCF) [7] method is frequently used in time series or 
longitudinal studies. This method imputes the missing value in a specific time with 
the previous known values of this time. It is a very easy and understandable 
method that is carried out, especially in medical sciences. Nevertheless, the 
estimations utilizing this method are biased and underestimate the variability of 
the desirable statistic. The next method is the regression imputation which takes 
advantage of other variables to impute the missing values [8,10,11]. Particularly 
missing values are imputed by the predictions of the regression line. This specific 
regression line has as an outcome the variable with missing values and as 
predictor variables have the other variables with complete data. The purpose is 
the estimation of regression lines and the prediction of missing values using the 
values of predictor variables. The resulting predicted dataset is complete data. 
This approach ensemble the information of the other variables with the missing 
variable to predict the missing outcome. This method produced unbiased 
estimates of the mean when the missingness is MCAR or MAR. Nevertheless, the 
data structure is not preserved which means that the correlation of the variables 
and their variability is biased. Next, the k nearest neighbor imputation method is 
a statistical learning algorithm that imputes the missing values using the k nearest 
observations[12]. It has risen in popularity due to the ascending prominence of 
machine learning models[12,13]. The estimation of the number of nearest 
neighbors is conducted through cross-validation and then after the optimal 
selection of k, the missing values are predicted. Particularly it finds the k nearest 
observation as a specific missing observation and then using the k observation it 
predicts the missing values. This method is nonparametric in opposition to the 
regression, and it uses the relation of the missing variable with the other. It suffers 
from ordinary machine learning problems like overfitting. Also, there is difficulty 
in choosing the best metric for finding the closest observations because Euclidean 
metric is not appropriate to factor variables but there are a lot of solutions to this 
problem like dummy variables and byte encoding, and more. More methods like 
this kind can be employed like random forests, artificial neural network ensemble 
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boosting techniques like extreme gradient boosting and more leading to the 
conclusion that a missing value problem is a prediction problem[13]. Also, those 
machine learning techniques can infused with other statistical methods like 
multiple imputation for better results. Stochastic regression is a method that 
merges the regression imputation method with a random error [8,10,11].In other 
words, it unites the deterministic part of the prediction with randomness resulting 
in the preservation of the variability and the data structure of the initial dataset. 
Practically after predicting a missing value a random error is added to the result. 
This method has better results than the other because it keeps the data structure 
and the variability of the data. This error term follows normal distribution with 
zero means and a variance of the residuals leading to the steadiness of the 
variability. This stochastic regression produces unbiased parameter estimations 
under the assumption of MCAR and MAR. Nevertheless, a disadvantage of 
the parametric regression method is that  some of the assumptions are frequently 
violated. For example, the errors must follow a normal distribution with invariable 
standard deviation, but those assumptions are not always valid. Another 
disadvantage this method has relative to the upcoming prominent and 
sophisticated methods is that the standard errors are not being adjusted from this 
method[8,10,11]. A standard error adjusting is necessary because the predicted 
scores are just forecasts for the true missing values leading to reduced and 
unsuitable standard errors which influence the statistical tests. The upcoming 
methods like multiple imputation and likelihood estimation remedy the previous 
problem.  
 

2.2.4 Multiple Imputation and likelihood methods  

          Those two general methods are considered sophisticated and modern 
approaches to the missing values problems[14,8,10,11]. They can solve MCAR and 
MAR problems utilizing distinct, cumbersome, and effective algorithms and 
methods. The results that they produced are valid. In other words, the parameters 
estimated are unbiased under the assumption of MCAR and MAR missingness. 
Also, they solve the problem related to the variability and the preservation of data 
structures and they adjust the issue with the standard deviations by not treating 
a specific prediction as its true value. Finally, these two algorithms are like two 
families of various methods. For example, algorithms for multiple imputations are 
numerous two of them are data augmentation and multiple imputations by 
chained equation, the general concept of the maximum likelihood method is to 
estimate the so-called full information maximum likelihood one way to 
accomplish this is to utilize the expectation-maximization algorithm[8,10,11]. 
Nevertheless, those methods produce biased results when the missingness falls 
under the category of MNAR data, but the bias is less than the bias of the single 
imputation methods.  
 
        Multiple imputation is a method that in the end produces different 
independent datasets[8,10,11]. Those imputed final datasets are complete, and 
they differ only in the imputed missing values. Then after the generation of various 
datasets, the estimated parameters of each analyzed dataset are pooled in a 
specific manner. Particularly there are three steps for multiple imputation (MI): 
imputing the data, analyzing the data, and pooling the results. The distinct aspect 
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of various multiple imputation methods at the most times is the way of imputing 
the data. In the imputation phase, several copies of datasets are produced ( a 
proposed number is 20 ) and each of the datasets has different estimates of the 
missing values. The most used method of estimating the missing values is data 
augmentation for normally distributed data[8,10,11]. There are two steps for this 
algorithm the first is the imputation step (I–step) and the second is the posterior 
step (P-step). To begin with, the I-step is like the stochastic regression imputation. 
For every incomplete variable a regression is constructed with the outcome of the 
variable with missing values, every regression has its estimated coefficients and 
its covariance. Then using this regression with the addition of a random error 
same as the random error of stochastic regression, the imputed values are 
generated. In other words, the imputed values are derived from the predicted 
values adding a random error to introduce variability to the model. Then after the 
imputation of the dataset, a complete dataset is proceeded to the P-step which 
through Bayesian algorithms each estimated coefficient with its covariance matrix 
is updated using the whole filled dataset. After the generation of those means and 
covariance matrixes, a random error related to the dimension is added to the 
estimates. This process creates a different regression than used in the first step. 
Then this regression is used to impute the previously imputed missing values with 
the addition of a random error. So, this process goes on. To summarize the whole 
algorithm an analyst can break down this algorithm into two parts, the first part 
is the imputation, and the next part is the updating of imputation algorithms. In 
other words, first, the imputation is done through stochastic regression and then 
the first complete dataset is used to recalculate this stochastic regression through 
Bayesian principles. After that, a second complete dataset is created and that goes 
on. After the construction of many datasets which have unique but not 
independent estimates this procedure finally can stop. Another important issue is 
that the datasets that will eventually be chosen to be analyzed need to be 
independent. This is practically achieved via repeating the algorithm numerous 
times and choosing one data set every for example 100 or 200 datasets. In other 
words, someone can take the 200th dataset then the 400th and that goes one. The 
period that is needed to choose the dataset is estimated through the correlation of 
the estimated missing values. After that, the analysis phases are conducted with 
the same methods and then the estimates are summarized or pooled in one. So, a 
numeric difference in each parameter estimation is introduced which adjusts the 
problem of standard deviation in a single stochastic imputation. Therefore, after 
the completion of each analysis, several desirable estimated parameters have 
been generated. The pooled estimated parameter is created by calculating the 
mean of those estimated parameters [8,10,11]. The hard side of the pooled step is 
the estimation of the standard deviation of this pooled parameter. To calculate the 
desirable standard deviation an analyst has to calculate the within and between 
variances. The within and between variances are described as  
 

                               𝑊 =  
∑ 𝑆𝐸𝑖

2𝑚
𝑖=1

𝑚
          and        𝐵 = ∑

(𝜃𝑖−𝜃 ̅)
2

𝑚−1

𝑚
𝑖=1   

Where 𝑆𝐸𝑖
2 is the variance of each parameter estimation for 𝑖 = 1,2, … ,𝑚 imputed 

datasets,  𝜃𝑖  is the estimated parameter  and 𝜃 ̅ is the pooled estimated parameter 
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which mathematically is described as 𝜃 ̅ =  ∑
𝜃𝑖

𝑚

𝑚
𝑖=1 . So, the pooled standard error 

is function of the previous quantities   and is given as  

𝑆𝐸 = √𝑊 + 𝐵 + 𝐵/𝑚 

    The single imputation method underestimates the standard error because it 
assumes that the predicted value is the real one but in the multiple imputation, 
this aspect is solved with the between variance. There are many versions of the 
previous, some of them assume for example that there is only one-factor variable 
with missing values and instead of regression a generalized regression model is 
used and more … Multiple Imputation by Chained Equations (MICE) [14] is a 
multiple imputation which follows the same phases of the data augmentation 
analysis. Specifically, it has 3 phases the imputation phase, then the analysis phase, 
and finally the pooling phase. The last two phases are the same as the previous 
algorithm and in general, as it is said above those 3 phases are the same for every 
multiple imputation algorithm. Therefore, the imputation algorithm is different. 
This algorithm is the most acceptable, understandable, and simplest algorithm 
under the powerful and effective family of multiple imputation and likelihood 
methods their results are unbiased for MCAR and MNAR. This method is easily 
used and some packages conduct this type of multiple imputation. So, the 
algorithm is, first impute all the missing values with their variable means or the 
most probable value for factor variables. Then starting from the first variable with 
missing values, build a regression that has as covariates the rest of the variables 
and replace the imputed values with missing values. After the application of the 
regression, predict the missing values. Then proceed to the next variable with 
missing values, replace all the imputed values with missing and build a regression 
using the other variable (with imputed values) as covariates then predict the 
outcome and replace the missing value of the dependent variables. After the 
employment of this concept, the rest of the variables start again in a second cycle 
same as the first. Particularly, again replace the imputed values of the first variable 
with missing values then employ a regression with covariates the other complete 
variables. After the prediction of the missing values of the first variable, keep 
doing this for the rest variables and then a second cycle is finished. Generally, 10 
cycles are conducted but an analyst can define another number of conducted 
cycles which is related to the successive distance cycle datasets[14]. For instance, 
if the distance of data frame of cycle 𝑥 and the data frame of cycle 𝑥 + 1 is lower 
from a certain value then break the loop. Finally, the final cycle is the desirable 
complete dataset. In practice several datasets are needed, to create those datasets 
this procedure starts from the beginning. Nevertheless, the first imputation with 
the means can be a stochastic imputation or the regression imputation can be a 
stochastic one to change the final results, or someone can change the order of the 
variable predictions, or an analyst can employ all 3 ways together. Again, there are 
a lot of ways in which MICE can be applied. Some disadvantages of this method are 
that again the assumption of regression might not hold and the calculations that 
are needed for 10 cycles with numerous variables are enormous. Finally, an 
analyst can use MICE to employ it like a single imputation method, for example, 
they can create just the first complete data set and take only that. Another 
powerful change that can be implemented is the replacement of the regression 
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model with a general machine learning model like random forests or artificial 
neural networks and more.  
 
       Likelihood methods are trying to estimate the full information likelihood 
[8,10,11], as it is called in literature, which is the same normal likelihood using all 
available data. The estimation process of the likelihood is the same either in 
complete or incomplete data. The maximum likelihood process of incomplete data 
is to calculate the estimators of the desirable parameters that maximize the 
likelihood or respectively the log-likelihood. In the non-complete dataset 
framework again the calculation of the parameter’s estimators just requires the 
available dataset ignoring the missing values. This method does not produce a 
complete dataset like multiple imputation, but it just calculates the preferred 
likelihood estimators using all the available datasets. The problem which arises is 
the computation of standard errors which are acquired using the expected or the 
observed information matrix. The expected information matrix uses only the 
complete dataset, but the observed information matrix is dependent on the 
missing values. The expected information produces standard errors which require 
the MCAR missingness and the observed information matrix produce standard 
error which are required for both MCAR and MAR assumption. The observed 
information matrix is the desirable matrix and the option for the observed 
information matrix is available in various software packages. This information 
matrix is derived from the one minus Hessian matrix and the standard errors of 
variables are the root of the diagonal inverse information matrix. In the observed 
information matrix, the sample statistics are used instead of the expected sample 
statistics. As the multiple imputation, the likelihood method for missing values 
requires an algorithm to optimize the likelihood even for a simple parameter 
estimation. One algorithm that is used for the optimization is the expectation-
maximization algorithm (EM). Practically, the mean of using only the available 
data ignoring the missing values is that every individual likelihood uses only the 
available observed variables. It is something like pairwise deletion for every 
observation. Mathematically, let's assume that data follow a multivariate normal 
distribution, and the purpose is to compute the mean and the covariance matrix. 
In the complete case scenario, the log-likelihood which is requested to be 
maximized is   
 log 𝐿 = ∑ log 𝐿𝑖

𝑛
𝑖=1 = ∑ log 𝑓𝑖(𝑥1,

𝑛
𝑖=1 𝑥2, … , 𝑥𝑝 𝜇, 𝛴)⁄  where 𝑛 is the number of 

observations,  𝑥1, 𝑥2, … , 𝑥𝑝 are the observed values of the variables 𝑋1, 𝑋2, … , 𝑋𝑝,  𝜇  

(𝑝 × 1)   is the mean of the variables and 𝛴 is the covariance matrix 𝑝 × 𝑝. Now let 
assume that an observation  has missing values in one variable. Specifically,  

without the loss of generality,  the kth individual has missing value on the variable 
𝑋𝑗 where 𝑗 = 1, 2, … , 𝑝 ,  their specific log likelihood is  

log 𝐿𝑘   = log 𝑓𝑘(𝑥1,𝑥2, . . , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑝 𝜇
𝑗 , 𝛴𝑗)⁄  where  𝜇𝑗  is the expected mean 

and  𝛴𝑗  is the covariance matrix of 𝑋1, 𝑋2, … , 𝑋𝑗−1, 𝑋𝑗+1, … , 𝑋𝑝. In other words, 𝜇
𝑗  is 

the complete  μ  without the jth term and 𝛴𝑗  is the complete 𝛴 without the jth row 
and column. Thus, the whole likelihood under the specific missingness becomes  
log 𝐿 = ∑ log 𝐿𝑖

𝑛
𝑖=1 = ∑ log 𝐿𝑖

𝑛
𝑖=1,𝑖 ≠𝑘 + log 𝐿𝑘  where   

∑ log 𝐿𝑖
𝑛
𝑖=1,𝑖 ≠𝑗  =  ∑ log 𝑓𝑖(𝑥1,

𝑛
𝑖=1,𝑖 ≠𝑘 𝑥2, … , 𝑥𝑝 𝜇, 𝛴)⁄  and 
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 log 𝐿𝑘 =  log 𝑓𝑘(𝑥1,𝑥2, . . , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑝 𝜇
𝑘, 𝛴𝑘)⁄ .  

      In the general missing value scenario, every observation has its log-likelihood 
like the kth observation. In practice, optimization algorithms are used even for 
relatively small missing value problems or even scenarios in which a small 
number of variables have missing values. The expectation–
maximization  algorithm (EM) is an algorithm that is used to optimize the 
likelihood of missing values. The EM is used in every type of parameter estimation 
like mean, covariance, coefficient estimation, and more. This algorithm consists of 
two steps the E-step (expectation step ) and M-step(maximization step) which are 
conducted iteratively. The iterative procedure begins with a pairwise deleted 
estimate of the mean and covariance matrix then using this initial estimation the 
E-step creates a group of regression models relative to the initial mean and 
covariance matrix estimation to predict the missing values. The E-step fills in the 
incomplete data using stochastic regression modeling. The M-step employs the 
ordinary maximum likelihood estimation to estimate the mean and the covariance 
from the fill-in data. Then again, the E-step recreates the stochastic regression 
models utilizing the latter estimation of mean and the covariance matrix. Also, in 
the E-step the missing values are refilled with the predictions from the stochastic 
regression and that goes on until there is a convergence in the mean and 
covariance matrix. The convergence of the mean and covariance matrix is 
achieved when there is no substantial difference in both estimations between two 
sequential M-steps. Conclusively in all M-step, the maximum likelihood estimators 
are calculated using the E-step filled data resulting in the final maximum 
likelihood which is eventually the expected one. This sequence of maximum 
likelihood estimators converges with the true maximum likelihood estimator. 
Nevertheless, the EM is not an algorithm for data imputation but for the 
calculation of the maximum likelihood estimator. This final maximum likelihood 
estimator is unbiased of the maximum estimator under the assumption of MCAR 
and MAR.   
 
      Both algorithms multiple imputation and likelihood estimation are most 
frequently used and they are unbiased for the MCAR and MAR but MNAR 
missingness[8,10,11]. Nevertheless, their estimations in the MNAR framework are 
less biased than the single imputation estimations. Finally, both methods produce 
consistent, unbiased, and canonical estimators. Apart from those two methods, 
there is another prominent general approach which is called inverse probability 
weighting. In this approach, there are several inverse probabilities weighting 
methods that can efficiently be applied to various missing situations.  
 

2.3 The competing risks with missing cause of failure model   

       Competing risks with the missing cause of failure is a frequent phenomenon 
that arises when there are several event types and some of them are missing. 
Specifically, only the event type variable has missing values and not the predictor 
variables. Several algorithms rectify the missing cause of failure issue under the 
missing at-random assumption in the semi-parametric or Bayesian-parametric 
framework[9]. Some simple and easily conducted algorithms are the complete 
case method or the creation of another new event from the missing event but those 
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methods sometimes are biased and misleading or in the best scenario the 
complete case method just reduces the power. Consequently, better approaches 
are essential to have valid and trustworthy results. Initially, a multiple imputation 
approach to handle the missing cause of failure has been mentioned by Lu and 
Tsiatis [9,15] which imputes the missing cause of failure with a probabilistic 
competing event model. A second strategy is to use the concept of weighting in the 
likelihood. Specifically a maximum pseudo partial likelihood is employed via the 
assignment of weights to the observation, the weights are a function of the same 
probabilistic competing event method of Lu and Tsiatis [15,9], this method is 
mentioned by Bakoyiannis et al[16]. The third approach is to utilize a data 
augmentation approach using Bayesian methods to remedy this problem 
[10,17,18]. Some proposed methods are based on the EM algorithm (Craiu and 
Duchesne 2004 )[19], the partial-likelihood approach (Goetghebeur and Ryan 
1995) [20], and the augmented inverse probability weighting (Hyun et al 2012 
)[21].In this master thesis, the first three approaches are efficiently described.  

        The first method represented is multiple imputation which predicts the 
missing outcome with a stochastic regression for every dataset[9,15]. Let assume 
that 𝑇 donates the failure time and 𝐶 the event type or cause of failure. According 
to the competing risk approach there are several event types that it is specifically 
assumed that there are just two types of events. Eventually 𝐶 is equal to 1 when 
the first cause of failure has happened or is equal to 2  for the second event 
occurrence. For each individual 𝑖 (𝑖 = 1, 2, … , 𝑛) there is 𝑇𝑖1, 𝑇𝑖2 which are related 
to two latent time failures and the censoring time 𝑈𝑖. The censoring time is 
independent from the two event times, and it falls under the category of the 
independent right censoring. Consequently, for each subject 𝑖 is observed 
(𝑇𝑖, 𝐶𝑖, 𝑍𝑖) where 𝑇𝑖 = min(𝑇𝑖1, 𝑇𝑖2, 𝑈𝑖),  𝐶𝑖 = 1,2  and 0 when the observation is 
censored and 𝑍𝑖  the other variables. The cause-specific hazard and the cumulative 
incidence function is described as 

  ℎ𝑘
𝑐𝑠(𝑡) =  lim

𝛥𝑡→0

𝑃(𝑡≤𝑇≤𝑡+𝛥𝑡,𝐶=𝑘|𝑇≥𝑡)

𝛥𝑡
   and 𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑘) further details are 

given in the first sub paragraph. Let assume 𝑅   a missingness indicator which is 
equal to 1 if the 𝐶 is observed and 0 if it is not. If 𝑅 = 0  it is assumed that     𝐶 > 0 
and the type of missingness is missing at random (MAR) meaning that the 
probability of missingness is independent of the true missing cause of failure but 
only to observed variables. Also,  some auxiliaries covariates  𝑋𝑖  are  used because 
they may are related to the missingness probability and not to the hazard function. 
Mathematically the probability of missingness  for the ith individual is given as :                                                                                                                  
𝑃(𝑅𝑖 = 0|𝐶𝑖, 𝐶𝑖 > 0,𝑊𝑖) =  𝑃(𝑅𝑖 = 0 | 𝐶𝑖 > 0,𝑊𝑖) where 𝑊𝑖 = (𝑇𝑖, 𝑍𝑖 , 𝑋𝑖). 

          Multiple imputation consists of 3 phases imputation,  analyzing and pooling. 
In the imputation phase several 𝑚 datasets are created which they differ only in 
the imputed missing cause of failure. The missing cause of failure for the first event  
is imputed from a Bernoulli distribution with probability   

 𝑃(𝐶𝑖 = 1 | 𝑅𝑖 = 0, 𝐶𝑖 > 0,𝑊𝑖 ). Under the MAR assumption the  probability 
𝑃(𝐶𝑖 = 1 | 𝑅𝑖 = 0, 𝐶𝑖 > 0,𝑊𝑖 )  is equal to 𝑃(𝐶𝑖 = 1 |  𝑊𝑖 ) = 𝜋1(𝑊𝑖 ). It is proposed 
that a logistic regression is used in order to model the 𝜋1(𝑊𝑖 ),  using as outcome 



20 
 

the variable 𝑌𝑖 which is equal to 1 if 𝐶𝑖 = 1 and 0 if 𝐶𝑖 = 2 ( considering the first 
event as event of interest ) and as covariate all possible and appropriate 
combination of 𝑊𝑖. Furthermore, it is  suggested that  the introduction of high 
order polynomial, splines, fractional polynomial, interactions, and other variable 
modeling strategies are required in order to accumulate an effective and valid 
predictive model. Therefore,  after the modelling,  the vector  𝑔(𝑊𝑖)  of 
components 𝑊𝑖  and its combination of all plausible variable modelling  𝑓(𝑊𝑖) is 
used with aim of acquiring the desirable probabilities. Particularly,  utilizing the 
logistic model it is known that 𝑙𝑜𝑔𝑖𝑡(𝜋1(𝑊𝑖 )) = 𝑔(𝑊𝑖)

′𝜃  where 𝜃 is the vector 

coefficient. Eventually,  𝜋1(𝑊𝑖 ) =  
exp (𝑔(𝑊𝑖)

′𝜃)

1+exp (𝑔(𝑊𝑖)
′𝜃)

.  Consequently, based on the 

probability of 𝜋1(𝑊𝑖 ) the 𝑚    datasets are imputed. Firstly,  run the logistic model 

with only the complete dataset  in order to acquire 𝜃 and 𝑉𝑎𝑟(𝜃)̂  where 𝑉𝑎𝑟(𝜃)̂  is 
the inverse information matrix. For the  dataset imputation,  stimulate 𝜃∗ from 

𝑁(𝜃, 𝑉𝑎𝑟(𝜃)̂ ) which is the posterior probability under the Bayesian framework. 

Then calculate 𝜋1(𝑊𝑖 ) =  
exp (𝑔(𝑊𝑖)

′𝜃∗ )

1+exp (𝑔(𝑊𝑖)
′𝜃∗ )

  and then assign to the missing cause of 

failure the first event with probability 𝜋1(𝑊𝑖 ) and the second event with 
probability 1 − 𝜋1(𝑊𝑖 ). This dataset imputation is conducted 𝑚 times after that 
the analysis phase is carried out which is the typical analysis because each dataset 
is complete. In each analysis the same models or algorithms are applied resulting 
in several 𝑚 estimate effects. The pooling phase is conducted via the same formula 
as the multiple imputation algorithm. Without the loss of generality given that the 
estimated effect of the ith analysis is 𝜃𝑖  for the first cause of failure,  the pooling 

average is   𝜃 ̅ =  ∑
𝜃𝑖

𝑚

𝑚
𝑖=1    and for its standard error the between and within 

variance are needed. The between variance is a metric for  deviation of 𝜃𝑖  from 

𝜃 ̅and it is described as 𝐵 = ∑
(𝜃𝑖−𝜃 ̅)

2

𝑚−1

𝑚
𝑖=1 .  The within variance is the mean of 

standard errors of each estimate effect that is   𝑊 = 
∑ 𝑆𝐸𝑖

2𝑚
𝑖=1

𝑚
. Therefore, the 

standard error of 𝜃 ̅ is the 𝑆𝐸 = √𝑊 + 𝐵 + 𝐵/𝑚. This multiple imputation 

algorithm for missing cause of failure is very flexible because eventually the 
analysis is conducted in complete datasets and it is unbiased under MAR 
assumption. The disadvantage is that it is very numerically heavy because 
sometimes more imputed datasets than average are essentially needed and 
sometimes there are more causes of failure than 2. Finally, this method is also 
applicable to semi-parametric subdistribution hazards and in the parametric 
survival framework.   
 
       The second approach is the so-called maximum pseudo-partial-likelihood 
estimation method (MPPLE) which utilizes the cause-specific semi-parametric 
regression [16]. This method assigns weights to the observations with a missing 
cause of failure and then the maximization of the likelihood is conducted normally. 
Specifically, let's assume that the first cause of failure is the event of interest, as it 
was mentioned in the cause-specific hazard paragraph that several analyses are 
conducted by treating the other events but the event of interest as censor events 
in each analysis. When the outcome is missing, those observations with the 
missing event are duplicated, in the first duplication the events of that observation 
are replaced with the event of interest, and in the second copy, the events are 
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treated as censored. In other words, the observations with missing events are 
doubled and in the first batch they are imputed with the outcome of interest, and 
in the next, they are treated as censored. The weighting of the outcome of interest 
imputed observation is the probability of the desirable event occurrence and the 
weight in the same subject which is treated as censored is the one minus the 
probability of the event of interest occurrence. This probability is the same as the 
one used for the treatment of the missing cause of failure in multiple imputations. 
Then after the event or censor imputation and the assignment of the specific 
probabilities, the maximum likelihood is ordinary maximized. The normal Cox 
regression is applied resulting in the acquisition of the coefficient estimation. 
Nevertheless, one minor problem is that the standard errors of Cox regression are 
invalid which leads to the utilization of bootstrap methodology to acquire the 
standard errors.  
 
         The third approach is the Bayesian data augmentation method which comes 
in very handy with the requested model of this thesis[10,11,17]. Inherently data 
augmentation is a type of multiple imputation algorithm but when the coefficients 
of the requested parametric model are estimated using Bayesian statistics then 
the data augmentation can be included in the Metropolis Hasting algorithm. 
Consequently, there is no need to extract one every turn one dataset because the 
estimation of the coefficients is conducted after the creation phase of the dataset 
in the Metropolis Hasting loop. Specifically, as was mentioned, in the first cycle the 
values of missing causes of failure are simulated from their posterior predictive 
probability with the help of the logistic model and then using the observed and the 
imputed observation the parameters of the logistic regression are updated using 
the parameter’s posterior probability. After that a complete first cycle dataset has 
been created, then using this complete dataset and Bayesian statistics the first 
values of the requested coefficients are calculated. Then the same methodology is 
repeated for numerous cycles and after some burn-in period, the analyst takes the 
rest values of the coefficients. In the end, the coefficients of each cycle are 
aggregated resulting in the final estimations. Using data augmentation and 
Bayesian parametric modeling, there is no need to keep in software memory every 
few turns the complete dataset but only the coefficients. 
 
       In conclusion of the 3 methods rectifying the missing cause of failure, only the 
last two are used in this thesis and further information about them is given in the 
next chapters. All approaches use a logistic regression model to remedy the 
missing cause of failure issue but there is a possibility that this model might not 
be a great fit for the data resulting in bias introduction, thus it is essential to try 
fitting the best possible logistic model. The advantage of the last two approaches 
is that they do not store numerous complete datasets as the first one. 
Nevertheless, the first approach is far more flexible than the others because the 
second approach is valid for cause-specific semi-parametric regression and in the 
third approach sometimes it is hard to calculate the posterior distribution of the 
missing values, parameters of the logistic regression, and the requested 
coefficients. All methods that are described are at least valid for independent right 
censoring and under MAR assumption.   
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3 Bayesian parametric survival analysis  

3.1 Bayesian Analysis 

3.1.1 Bayesian Inference  

         Bayesian analysis is about assigning a probability model to a set of data and 
making inferences from a probability distribution on the parameters of the model 
or unobserved quantities such as predictions [18,22,23]. Bayesian inference is 
based more on probability theory rather than the frequentist's inference because 
the parameters in Bayesian analysis are considered random variables and they 
follow a certain distribution. The whole concept of the Bayesian inference is first 
to assign a probabilistic model to the parameter and then update it using new 
information which practically this new information is the data. In other words, the 
main purpose of Bayesian analysis is to refresh the distribution of the desirable 
parameters with valuable information. Then an informed distribution of the 
parameters is extracted, and this updated distribution is the main purpose of the 
analysis. This so-called posterior distribution of the wanted parameters and 
contains all the inference [18,22,23]. In other words, after calculating the 
posterior distribution the inference is made by summarizing the updated 
distribution. The advantages of Bayesian statistics are the more probabilistic 
approach because in the end it is known exactly the parameter probability to be 
included in a specific interval. Another advantage is that there is no problem with 
data sufficiency because the exact updated probability of the parameters is 
calculated utilizing general probability theorems and not by estimations and 
asymptotic theorems as the frequentist’s approach. The main disadvantage is that 
Bayesian inference is numerically heavy, and the process of inference requests 
some assumptions and most of the time researchers are not even confident that 
those assumptions are valid. 
 
          The steps for the conduction of Bayesian inference are firstly assign a 
probability to all observed and unobserved quantities. The probability should be 
related to the prior knowledge or the nature of the data. Then the calculation of 
the desirable posterior distribution of parameters conditioning on the data 
(information) is conducted to summarize the results. Finally, the evaluation of the 
model fit is carried out to check the goodness of fit [18,22,23]. The calculation of 
the posterior distribution by hand is almost always impossible or sometimes it 
needs cumbersome calculations. Nevertheless, with the help of simulation 
methods like inverse probability method, accept reject, Metropolis Hasting, and 
more the posterior distribution is efficiently summarized. Therefore, the inference 
on the parameter 𝜃 or on the unobserved quantities like the prediction of certain 
values are made from a probabilistic approach. Specifically, the probability model 
is updated from the observations 𝑦 resulting to  the a posterior distribution 𝑝(𝜃|𝑦) 
which it’s random variable 𝜃  given  𝑦 and to the posterior predictive distribution  
𝑝(𝑦̃|𝑦) which is the distribution of the predicted values conditioning on the 
observed values.  
 
           The Bayesian statistics started from the formula of conditional probability 
and the connection with the joint. Specifically, the joist distribution of 𝜃 and 𝑦 is 
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equal to 𝑝(𝜃, 𝑦) = 𝑝(𝜃|𝑦)𝑝(𝑦)  and to 𝑝(𝜃, 𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃) and those two 
relations leads to  the bayes rule   

𝑝(𝜃|𝑦) =  
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 

Where the 𝑝(𝑦|𝜃) is the probability of the 𝑦 realization given 𝜃 which is basically 
the so called likelihood,  𝑝(𝜃) is the prior probability of the parameter 𝜃 which is 
virtually is the initial belief about the parameter and 𝑝(𝑦) is the probability of the 

data which mathematically is equal to  ∑ 𝑝(𝑦|𝜃)𝑝(𝜃)𝜃  or ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃
𝜃

  in case 

of 𝜃  being discreet variable or 𝜃  being continuous. The formula                                 
𝑝(𝜃, 𝑦) = 𝑝(𝑦|𝜃)𝑝(𝑦)   is used and then the sum or the integral is for all possible 
values of 𝜃 is calculated. The 𝑝(𝑦)  is named as normalizing constant because it is 

an invariable quantity which the division of this number from the 𝑝(𝑦|𝜃)𝑝(𝜃) 
results in the posterior distribution and without that,   the 𝑝(𝑦|𝜃)𝑝(𝜃)  is not a 
distribution [18,22,23]. In the most times 𝑝(𝑦) is hard or even impossible to 
calculate; therefore, is omitted because it is not function of 𝜃 and then the 
posterior distribution is analogous of the likelihood and the prior distribution 
which mathematically is  

                                                          𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ℎ(𝜃) 

          The posterior predictive distribution 𝑝(𝑦̃|𝑦) is frequently used for predictive 
problems or for treating missing values problem[18,22,23]. The 𝑝(𝑦̃|𝑦) is called 
posterior predictive distribution because is conditioned to the observed values 𝑦 
.The posterior predicted distribution derives from the upcoming formula  

          𝑝(𝑦̃|𝑦) = ∫ 𝑝(𝑦̃ 𝜃|𝑦) 𝑑𝜃 = ∫𝑝(𝑦̃|𝜃, 𝑦)𝑝(𝜃|𝑦) 𝑑𝜃  = ∫𝑝(𝑦̃|𝜃)𝑝(𝜃|𝑦) 𝑑𝜃 

Which indicates that the probability of the predicted values given the parameter θ 
is independent of the observations 𝑦. The posterior probability distribution 𝑝(𝜃|𝑦) 
is related to the data through 𝑝(𝑦|𝜃) which is so called likelihood function and that 
is the reason the Bayesian analysis is related to likelihood properties. The ratio of 
𝑝(𝜃|𝑦) between two points 𝜃1 and 𝜃2is called posterior odds of 𝜃1 compared to  𝜃2 
[18,22,23]. Mathematically the posterior odds of 𝜃1 and   𝜃2 is  

𝑝(𝜃1|𝑦)

𝑝(𝜃2|𝑦)
=

𝑝(𝑦|𝜃1)𝑝(𝜃1)
𝑝(𝑦)

𝑝(𝑦|𝜃2)𝑝(𝜃2)
𝑝(𝑦)

=
𝑝(𝑦|𝜃1)𝑝(𝜃1)

𝑝(𝑦|𝜃2)𝑝(𝜃2)
=
𝑝(𝑦|𝜃1)

𝑝(𝑦|𝜃2)

𝑝(𝜃1)

𝑝(𝜃2)
 

Which 
𝑝(𝑦|𝜃1)
𝑝(𝑦|𝜃2)

 is called the likelihood ratio  and  
𝑝(𝜃1)

𝑝(𝜃2)
 is the prior odds of  𝜃1 and   

𝜃2. The concept of posterior odds is usually applied to a discreet parameter 𝜃 and 
sometimes if 𝜃 is continuous the posterior odds of the 𝜃1 interval versus 𝜃2 interval 
is possibly requested one.  

          The inference about the parameter 𝜃    is made by the posterior probability 
distribution. Therefore,  all the possible information from the posterior 
probability distribution is essential to be extracted in order to conclude some 
inferences. To begin with,  a histogram or a density plot of 𝑝(𝜃|𝑦) contains 
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valuable graphical information about the updated parameter 𝜃 [18,22,23]. Those 
plots illustrate the symmetry or the skewness of distribution, and also, they 
demonstrate the mode or modes of the posterior probability distribution if it is 
unimodal or not. Nevertheless, measures of centrality and variability are needed 
such as mean, median, mode, standard deviation, quantiles, and others. In most 
cases, the posterior probability distribution is not a closed form or if it is, it is so 
complicated that those measures of centrality and uncertainty need cumbersome 
calculations. Therefore, this problem is solved from the simulation theory and 
those central and variability metrics are easy to calculate through the employment 
of simulation methods. This simulation concept provides this nice to have 
flexibility for metric calculations even when complex transformations are 
previously done. In most cases, a simulation method is conducted and metrics like 
mean, standard deviation, and quantiles are represented. An important issue is 
measuring the posterior uncertainty, this is conducted through the calculation of 
posterior intervals [18,22,23]. Specifically, the usual strategy is to present 
quantiles of 𝑝(𝜃|𝑦),  technically  a range is given which is called central interval. 
The posterior probability of central interval is equivalent to 1 − 𝑎 and contains all 
the values which the minimum value has posterior probability lower than the  𝑎/2 

and the maximum value has the corresponding probability bigger than 1 −
𝑎

2
. 

Practically,  let assume (𝑐1, 𝑐2) be the central posterior interval of 100(1 − 𝑎)%, in 

terms of posterior interval the 𝑐1 and 𝑐2 are found from the ∫ 𝑝(𝜃|𝑦)𝑑𝜃
𝑐2
𝑐1

= 1 − 𝑎  

but virtually the 𝑐1 and 𝑐2 are calculated using the cumulative posterior 
probability (or its corresponding integral ). The formula for the range of the 

central posterior interval is ∫ 𝑝(𝜃|𝑦)𝑑𝜃
𝑐1
−∞

=
𝑎

2
 and ∫ 𝑝(𝜃|𝑦)𝑑𝜃

+∞

𝑐2
= 1 −

𝑎

2
. For 

some specific posterior distributions such as normal or binomial the central 
posterior interval is conveniently given by the corresponding tables. Nevertheless, 
as it is mentioned in most cases the posterior distribution is too complex to have 
a specific table for quantiles, and in those cases, those quantiles are extracted from 
the simulation sample like the ordinary estimated sample quantiles. In addition to 
the central posterior interval, another interval sometimes is given which is called 
as highest posterior density region. This so-called highest posterior density region 
is the typical posterior interval but with the addition that the values inside the 
interval have higher density than the values outside the interval. In other words, 
the bounds of the interval or intervals have a density bigger than a fixed number, 
and the interval or just a union of them has posterior probability of  1 − 𝑎. This 
highest posterior density interval is preferred to the central posterior interval 
when the distribution is not unimodal or is highly skewed. Nevertheless, those 
two regions are the same when the distribution is symmetric with zero skews 
[18,22,23]. 
 
          The selection of prior distribution is very important in Bayesian statistics 
because prior distributions sometimes are very influential to the posterior 
distributions. The prior distribution is the prior or initial knowledge of the 
parameter before the observation of new data-information. So basically, 
sometimes the researchers have a specific initial knowledge about the parameter 
and sometimes they do not. When there is specific prior information about the 
parameter the prior distribution has lower variance; as a result, bigger 
information and when there is not specific information the prior distribution is 
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flat with high variance leading to low information [18,22,23]. The prior 
distribution in the first situation is more informative and influential than the prior 
distribution in the second situation. The posterior distribution is more dependent 
on the data when the prior distribution is noninformative and less dependent on 
when it is informative. In other words, the posterior distribution is similar to the 
corresponding estimated frequentist distribution when the prior is 
noninformative and more distinct when it is informative. Nevertheless, the prior 
distribution should include all the plausible values of 𝜃 either it is informative or 
not. The prior distributions also can break down to two categories proper and 
improper ones. Improper prior distributions are virtually analogous to a fixed 
value 𝑐 for 𝜃 ∈ (−∞,+∞) or mathematically it is described as 𝑝(𝜃) ∝ 𝑐, 𝜃 ∈ 𝑅 . As 
a result, this prior is not a distribution because it’s sum or integral for values of 𝜃 
is not 1 and the posterior distribution is analogous only to likelihood function. 
Those improper prior distributions are part of noninformative family. On other 
hand proper distribution are  those whose sum or integral for viable 𝜃 is equal to 
1. Another popular type of priors is Jeffrey prior which is based on the invariant 
principle. This type of prior used to create noninformative prior related to one-to-
one transformation φ=h(θ) 

1−1
⇔  ℎ−1(𝜑) = 𝜃. By the application of chain rule the 

prior distribution of 𝜑 is 𝑝𝜑(𝜑) = 𝑝𝜃(ℎ
−1(𝜑)) |

𝑑ℎ−1(𝜑)

𝑑𝜑
|. The general concept of 

Jeffrey’s principle is that there is similar corresponding rule which is applied to 
the prior of 𝜃 and to the prior 𝜑. The Jeffrey’s noninformative prior is defined as 

𝑝(𝜃)  ∝  √𝐽(𝜃)  where 𝐽(𝜃) is the Fischer information matrix which is described 

as :  

𝐽(𝜃) = 𝐸 ([
𝑑 log 𝑝(𝑦|𝜃)

𝑑𝜃
]

2

) = −𝛦(
𝑑2 log 𝑝(𝑦|𝜃)

𝑑𝜃2
) 

So in order to find the 𝐽(𝜑),  the ℎ−1(𝜑) = 𝜃 relation is used leading to the 
invariant parametrization principle. Particularly,  

√𝐽(𝜑) = √𝐽𝜃( ℎ−1(𝜑)) |
𝑑ℎ−1(𝜑)

𝑑𝜑
| 

        Finally,  a prominent type of priors  is those which called conjugate 
priors[18,22,23]. Basically, the formal definition is that the 𝑃 is conjugate class for 
𝐹  if 𝑝(𝜃|𝑦) ∈ 𝑃 for all 𝑝(∙ |𝜃) ∈ 𝐹 and 𝑝(∙) ∈ 𝑃  which 𝐹 is sample distributions of 
likelihood  and 𝑃 is sample distribution of prior.  Basically, it says that the prior 
and the posterior belongs to same family under the conjugate property. 
Specifically, the naturally conjugacy is when the 𝑃 and 𝐹 is the same family. This 
natural conjugacy property is applied for the distributions which belong to the 
exponential family. Virtually if the prior and the likelihood distribution belong to 
the exponential family then the posterior belongs to exponential family, and it has 
a closed form. The proof is : Let 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) be identical and independent 
observations which are belong to an exponential family and 𝜃  be a 
multidimensional vector. Therefore,   

𝑝(𝑦𝑖|𝜃) = 𝑓(𝑦𝑖)𝑔(𝜃)𝑒
𝜑(𝜃)𝑇𝑢(𝑦𝑖) 
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Where 𝜑(𝜃)  and 𝑢(𝑦𝑖) are same the dimension as 𝜃.  The vector 𝜑(𝜃) is called 
natural parameter of the exponential family 𝐹.  The likelihood of the vector 𝑦 is 

                          𝑝(𝑦|𝜃) = ∏ 𝑝(𝑦𝑖|𝜃)
𝑛
𝑖=1  =  ∏ 𝑓(𝑦𝑖)𝑔(𝜃)𝑒

𝜑(𝜃)𝑇𝑢(𝑦𝑖)𝑛
𝑖=1  

                                               = 𝑔(𝜃)𝑛𝑒∑ 𝜑(𝜃)𝑇𝑢(𝑦𝑖)
𝑛
𝑖=1 ∏ 𝑓(𝑦𝑖)

𝑛
𝑖=1    

     which  basically results to 

𝑝(𝑦|𝜃) ∝ 𝑔(𝜃)𝑛𝑒𝜑(𝜃)
𝑇 ∑ 𝑢(𝑦𝑖)

𝑛
𝑖=1  

The 𝑡(𝑦) = ∑ 𝑢(𝑦𝑖)
𝑛
𝑖=1  is sufficient statistic for the 𝜃 which means that 𝑝(𝑦|𝜃) is 

depended through the observations only from their sum. Now let the prior belong 
to exponential family.  

𝑝(𝜃) ∝ 𝑔(𝜃)𝜂𝑒𝜑(𝜃)
𝑇𝜈 

Eventually,  the posterior distribution is written as  

𝑝(𝜃|𝑦) ∝ 𝑔(𝜃)𝜂+𝑛𝑒𝜑(𝜃)
𝑇(𝜈+𝑡(𝑦)) 

This leads to the desirable result that the posterior belongs to the exponential 
family. Conclusively, this natural conjugacy closed-form property is used in the 
univariate analysis, but the general conjugacy property is used to determine the 
form of the conditional posterior distributions in the multivariate Bayesian 
analysis. Typically, the selection of prior is conducted with the help of a 
bibliography and the general community suggestions[18,22,23]. Finally, by and 
large, an analyst starts from an informative before a noninformative and vice versa 
to find the optimal parameters for the algorithm convergence or they conduct 
various sensitivity analyses to observe the impact of certain priors.  
 
         Practically in statistical problems, more than one parameter or unobserved 
quantities are involved. Therefore, Bayesian analysis has many advantages over 
other inference methods in terms of the multiparameter problems. Conclusions 
for this multiparameter problem are drawn only for one or some parameters at a 
time. The basic aim of those types of problems is to acquire the marginal posterior 
probability of the parameters of interest which is the posterior probability of the 
desirable parameter. Theoretically, to acquire the marginal posterior probability 
first the joint posterior probability is defined then the integral of this joint 
distribution is calculated[18,22,23]. Or if simulations are the key to this issue, an 
analyst draws simulation from the joint probability then they make inferences 
only from the desirable parameter simulations, ignoring the other simulations. 
Those parameters that are indifferent in terms of inference which are called 
nuisance parameters are necessary to create a valid model and acquire the 
marginal posterior distribution of the parameters of interest. Practically the joint 
posterior density of two parameters 𝜃1, 𝜃2 is given from  

𝑝(𝜃1, 𝜃2|𝑦) ∝ 𝑝(𝑦|𝜃1, 𝜃2)𝑝(𝜃1, 𝜃2) 

Let assume that 𝜃1 is the parameter of interest and 𝜃2 is the nuisance parameters. 
As it is previously mentioned the inference is made by the marginal posterior 
distribution of 𝜃1 and the marginal distribution of  𝜃1 is derived from  
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𝑝(𝜃1|𝑦) = ∫𝑝(𝜃1, 𝜃2|𝑦) 𝑑𝜃2 

One another way to write 𝑝(𝜃1|𝑦) is  

𝑝(𝜃1|𝑦) = ∫𝑝(𝜃1|𝜃2, 𝑦)𝑝(𝜃2|𝑦) 𝑑𝜃2 

Which shows that 𝑝(𝜃1|𝑦) is related to the posterior distribution of nuisance 
parameter and the conditional posterior distribution of 𝜃1 given the nuisance 
parameter. Alternatively, 𝑝(𝜃1|𝑦) = 𝐸𝜃2|𝑦[𝑝(𝜃1|𝜃2, 𝑦)] which is the average of the 

condition posterior distribution given the nuisance parameters multiplied by the 
weighting function the marginal posterior distribution of 𝜃2 over the 𝜃2. In the 
most cases,  the integral is basely not calculated but an alternatively approach is 
conducted which first 𝜃2  is simulated from its posterior marginal distribution and 
then the 𝜃1 is simulated from its conditional posterior distribution given the 
simulated value 𝜃2 [18,22,23]. 

         Conclusively,  the Bayesian inference is conducted through the posterior 
distribution of 𝜃 which in the most cases is impossible or very to hard to be 
calculated leading to the implementation of simulation approaches. From the 
simulations,  the inference is drawn via the centrality and variability measures of 
the sample.  A basic approach to solve Bayesian problems is first to write the 
likelihood 𝑝(𝑦|𝜃) as a function of 𝜃. Then write  the posterior density                    
𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) and try to determine a prior distribution either informative 
or noninformative,  proper or improper or if it possible and viable a conjugate 
prior. The prior is written like the likelihood function,  as function of 𝜃. Then after 
having   𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ℎ(𝜃)  either try to find the true form 𝑝(𝜃|𝑦) from 
ℎ(𝜃) and make inference from formulas or start simulations for 𝑝(𝜃|𝑦)   via 𝑝(𝜃|𝑦)  
or  ℎ(𝜃). For the multiparameter problem the use of the condition posterior 
distribution is the key to solve the issue. Specifically,  the parameters are simulated 
from the conditional posterior distribution given the observation or the other 
previously simulated (or initial values if it’s the first simulation) parameters.   In 
terms of the predictive posterior distribution,  the first approach is to calculate 
theoretically 𝑝(𝑦̃|𝑦)  from the formula 

𝑝(𝑦̃|𝑦) = ∫𝑝(𝑦̃|𝜃)𝑝(𝜃|𝑦) 𝑑𝜃 

Or simulate 𝑦̃ from the 𝑝(𝑦̃|𝜃) for a given 𝜃 which is simulated from the posterior 
probability distribution. So,  for every 𝜃,  a predicted value 𝑦̃ is simulated.  

          One another important chapter in statistics either Bayesian or frequentist is 
hypothesis testing [22,23]. The typical concept of hypothesis testing is that there 
are  two distinct decisions and one of them is the true one. Therefore, the analyst 
using the data must accept one of them. The ordinary idea is that the initial 
hypothesis is 𝐻0 and the alternative is 𝐻1. So,  the two options are  

𝐻0: 𝜃 ∈ 𝛺𝜊 

𝐻1: 𝜃 ∈ 𝛺1 
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The first one indicates that 𝜃 ∈ 𝛺0 and the second one 𝜃 ∈ 𝛺1 where 𝛺0, 𝛺1 are 
subset of the parametric space.  In the easiest scenario 𝛺0, 𝛺1 are equal to {𝜃0} and 
{𝜃1} respectively. The solution to this problem is to calculate the posterior odds of 

𝜃0 and 𝜃1  given the observations 𝑦  
𝑝(𝜃0|𝑦)
𝑝(𝜃1|𝑦)

 [18,22,23] which is  

𝑝(𝜃0|𝑦)

𝑝(𝜃1|𝑦)
=

𝑝(𝑦|𝜃0)𝑝(𝜃0)
𝑝(𝑦)

𝑝(𝑦|𝜃1)𝑝(𝜃0)
𝑝(𝑦)

=
𝑝(𝑦|𝜃0)𝑝(𝜃0)

𝑝(𝑦|𝜃1)𝑝(𝜃1)
=
𝑝(𝑦|𝜃0)

𝑝(𝑦|𝜃1)

𝑝(𝜃0)

𝑝(𝜃1)
 

So,  first a model for the likelihood is assumed in order for the likelihood ratio to 
be calculated and secondly two prior distributions for 𝜃0,  𝜃1 are presumed. After 

finding the 
𝑝(𝑦|𝜃0)
𝑝(𝑦|𝜃1)

𝑝(𝜃0)

𝑝(𝜃1)
 ,  the interpretation of posterior odds is conducted. For 

example let assume that 
𝑝(𝜃0|𝑦)
𝑝(𝜃1|𝑦)

= 𝑐 then the probability the of the parameter 

taking the value 𝜃0 is c times the probability of 𝜃 being 𝜃1. If  
𝑝(𝜃0|𝑦)
𝑝(𝜃1|𝑦)

> 1  𝐻0 is 

chosen otherwise 𝐻1. As it is observed,  there is not p-values or first type error or 
significant level alpha and other [22,23]. The Bayesian interpretation is simpler 
and more logical that the frequentist approach because it is based directly on 
probabilities of a hypothesis being true given the data. Furthermore,  an important 
difference is that the posterior odds is dependent on the prior information of 𝜃   
and on the new information which is the sample. Another valuable metric of 
hypothesis testing is the Bayes factor 𝐵𝐹 of 𝜃0 versus  𝜃1 which in the previous 
example is  

𝐵𝐹01 =
𝑝(𝑦|𝜃0)

𝑝(𝑦|𝜃1)
 

 
In other word the Bayes factor is the likelihood ratio of two parameters, and it does 
not consider the prior distribution in simple hypothesis framework. If Bayes factor 
is incredibly large or small, then it can overcome the prior information. Another 
situation is that  𝛺0, 𝛺1 are intervals then after finding of the posterior distribution 

the posterior odds is calculated though the 𝑝(𝜃 ∈  𝛺|𝑦) =  ∫ 𝑝(𝜃|𝑦)𝑑𝜃
𝛺

 ; namely  

𝑝(𝜃 ∈  𝛺0|𝑦)

𝑝(𝜃 ∈  𝛺1|𝑦)
=
∫ 𝑝(𝜃|𝑦)𝑑𝜃
𝛺0

∫ 𝑝(𝜃|𝑦)𝑑𝜃
𝛺1

=
∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃
𝛺0

∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃
𝛺1

 

The interpretation is pretty much the same as the univariate example if 
𝑝(𝜃 ∈  𝛺0|𝑦)
𝑝(𝜃 ∈  𝛺1|𝑦)

 is bigger than 1 then 𝐻0 has better chance to be valid otherwise 𝐻1 is 

more likely to be true. An introduction about the model’s comparison is essential 
to be done, before continuing in the next basic form of hypothesis testing which is   

𝐻0: 𝜃 =  𝜃0  

𝐻1: 𝜃 ≠ 𝜃0 
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There is more general concept apart from the hypothesis testing and that is the 
model comparison,  particularly every hypothesis is a specific model [22,23]. So 
let assume that there are 𝑘 models  𝑀1, 𝑀2, … ,𝑀𝑘 and the question is which model 
is most probable to be true. As a result, the posterior probability of each model 
given the data is estimated. The 𝑝(𝑀𝑖|𝑦) for each 𝑖 = 1,2,3, … , 𝑘 is estimated 
through the formula  

𝑝(𝑀𝑖|𝑦) =  
𝑝(𝑀𝑖)𝑝(𝑦|𝑀𝑖)

𝑝(𝑦)
=

𝑝(𝑀𝑖)𝑝(𝑦|𝑀𝑖)

∑ 𝑝(𝑀𝑖)𝑝(𝑦|𝑀𝑖)
𝑘
𝑖=1

 

Where 𝑝(𝑀𝑖) is the probability of model 𝑀𝑖  is the true one and 𝑝(𝑦|𝑀𝑖) is derived 

from 𝑝(𝑦|𝑀𝑖) =  ∫ 𝑝(𝑦|𝑀𝑖 , 𝜃)𝛺𝜃|𝑀𝑖
𝑝(𝜃|𝑀𝑖)𝑑𝜃. Basically 𝑝(𝜃|𝑀𝑖) or  𝑝(𝑦|𝑀𝑖, 𝜃)  or 

both are usually different from the  other 𝑝(𝜃|𝑀𝑗),  𝑝(𝑦|𝑀𝑗 , 𝜃) for 𝑖 ≠ 𝑗.  This 

concept of model comparison can expand to variable selection,  checking the 
validation of various models,  complex hypothesis testing and more. In this 
problem basically 𝐻0  is 𝑀0 and 𝐻1 is 𝑀1. Furthermore,  the union of two sub spaces 
of 𝜃 is all the parametric space resulting in 𝑝(𝐻0|𝑦) = 1 −  𝑝(𝐻1|𝑦). The Bayes 

factor is   𝐵𝐹01 =
𝑝(𝑦|𝐻0)
𝑝(𝑦|𝐻1)

=
𝑝(𝑦|𝜃 = 𝜃0)

∫ 𝑝(𝑦|𝐻1, 𝜃)𝛺𝜃|𝐻1
𝑝(𝜃|𝐻1)𝑑𝜃

 and if it is incredibly small or 

large then the 𝐻1  or 𝐻0 might be true respectively. An analyst can calculate the 
𝑝(𝐻0|𝑦)  or 𝑝(𝐻1|𝑦) leading to direct interpretation of the hypothesis given the 
observed data via    

                                                
𝑝(𝐻0|𝑦)  
𝑝(𝐻1|𝑦)

= 𝐵𝐹01   
𝑝(𝐻0)

𝑝(𝐻1)
   

The posterior probability of 𝜃 given the observations and the model assumption 
for the model 𝑀𝑖  is 

𝑝(𝜃|𝑦,𝑀𝑖 ) =  
𝑝(𝑦|𝜃,𝑀𝑖  )𝑝(𝜃|𝑀𝑖 )

𝑝(𝑦|𝑀𝑖 )
∝ 𝑝(𝑦|𝜃,𝑀𝑖)𝑝(𝜃|𝑀𝑖) 

          Eventually, the general concept of model comparison is implemented via the 
measurement of the Bayesian factor. Bayesian factor is sometimes very hard to 
calculate by hand; as a result, various simulation methods are conducted. The 
problem with the Bayesian factor is that it involves the prior information in the 
integral, but the prior distribution is less influential when the sample size is big 
enough. In multivariate problems Bayes factor is impossible to calculate by hand; 
nevertheless, various simulation methods are conducted to estimate the Bayesian 
factor. Apart from utilizing the Bayesian factor framework, there is another tool 
that is based on the predictive function[18,22,23]. In practice, it compares the 
predictive values from the predictive posterior distribution with the observed 
ones.  
 
      Before, proceeding to computational – simulation methods, it is worth 
mentioning some asymptotic properties of the random variable 𝜃 given the 
observations. To begin with,  as the number of observations is tended to infinite 
the influence of the prior distribution tends to be minimum as a result the outcome 
is similar to the frequentist approach. Apart from if the posterior distribution is 
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unimodal and symmetric the posterior distribution 𝜃 given 𝑦 approximates the 
normal distribution[18,22,23]. Let assume that the posterior distribution is 
centered by the posterior mode which is calculated by computation methods. 

After taking the Taylor series around the posterior mode 𝜃 ,  the log posterior 
distribution is written as a approximation of  

log 𝑝(𝜃|𝑦) ≈ log 𝑝(𝜃  |𝑦) + [
𝑑 log 𝑝(𝜃  |𝑦)

𝑑𝜃
]𝜃̂ +

1

2
(𝜃 − 𝜃)[

𝑑2 log 𝑝(𝜃  |𝑦)

𝑑𝜃2
]𝜃̂(𝜃 − 𝜃)

𝑇 

The next Taylor tale after the quadratic form tends basically to zero for 𝜃 close to 

𝜃 and 𝑛 large (where 𝑛 is the length of the sample ). Then the [
𝑑 log𝑝(𝜃  |𝑦)

𝑑𝜃
]𝜃̂  is zero 

to the posterior mode. Consequently,   

log 𝑝(𝜃|𝑦) ≈  log 𝑝(𝜃  |𝑦) + 
1

2
(𝜃 − 𝜃)[

𝑑2 log 𝑝(𝜃  |𝑦)

𝑑𝜃2
]𝜃̂(𝜃 − 𝜃)

𝑇 

So, the if the log 𝑝(𝜃|𝑦) is considered as function of 𝜃 then  

log 𝑝(𝜃|𝑦) ∝
1

2
(𝜃 − 𝜃)[

𝑑2 log 𝑝(𝜃  |𝑦)

𝑑𝜃2
]𝜃̂(𝜃 − 𝜃)

𝑇 

And after the exponent of both  terms the posterior odds is analogous to  

𝑝(𝜃|𝑦) ∝ exp (−
1

2
(𝜃 − 𝜃)𝛪(𝜃)(𝜃 − 𝜃)𝑇) 

Where 𝛪(𝜃) is the estimated information matrix in 𝜃 which is equals to 

−[
𝑑2 𝑙𝑜𝑔𝑝(𝜃  |𝑦)

𝑑𝜃2
]𝜃̂. This relation basically indicates that the posterior distribution  

is analogous to normal distribution.  

Eventually,  the random variable of 𝜃 given 𝑦  is approximated by the  

𝜃| 𝑦  ~N(𝜃, 𝛪−1(𝜃))   

This result has numerous applications one of them is the approximation of the 
posterior distribution when it is difficult to be computed or simulated. 

Nevertheless, an analyst should check if the posterior mode 𝜃 is inside the 
parameter space because if it’s not the information matrix might not be positively 
defined. Another application is that it provides starting values for simulation 
methods. Eventually the most important is that for large datasets the influence of 
the prior distribution is almost zero. Consequently, the Bayesian posterior 
inference is similar to the frequentist inference when the sample is large enough 
regardless of the prior distribution [18,22,23]. 
 

3.1.2 Bayesian Simulation  

     More complicated problems are necessary to be solved leading to the soaring 
complexity of the posterior distribution. In practice as the problems gain more 
intricacy,  more cumbersome algebra is needed for the calculation of posterior 
distribution and its centrality and variability metrics. Furthermore,  in the most 
complex cases even the posterior distribution is not available and only a non-
normalized analogous to posterior distribution is available. In other words,   
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𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ℎ(𝜃) ,   the division of the posterior probability 
distribution by the non-normalized ℎ(𝜃) is equal to an invariable value 𝑐 which is 

equal to the 𝑝(𝑦) =  ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)
𝜃

𝑑𝜃 that is pretty much impossible for someone 

to calculate it.  Therefore,  in Metropolis Hastings simulation paradigm or the 
accept reject method only the non-normalized posterior is essential for the 
simulations[18,24]. Virtually,  as it was mentioned the simulations of posterior 
probability distribution are necessary for the centrality and variability metrics 
which those  metrics are calculated via solving cumbersome integrals. Thus,  the 
simulation framework revolves around solving complicated integrals and the 
mathematical background is based on numerical approximations and limit 
theorems [24]. For instance,  the 𝐸(𝑔(𝜃)|𝑦) which the mean of 𝑔(𝜃)|𝑦 or the 
average of 𝑔(𝜃) for the random variable 𝜃|𝑦.  This theoretical mean is equal to  

 𝐸(𝑔(𝜃)|𝑦) =  ∫ 𝑔(𝜃)
𝜃

𝑝(𝜃|𝑦)𝑑𝜃 

This quantity is calculated either theoretically which is impossible in advanced 
Bayesian framework  or numerically either using deterministic methods or 
stochastic ones like Monte Carlo[24]. Some deterministic numerical integration 
methods for one-dimension problems are rectangle,  trapezoidal, Simpson’s rule 
and more,  those rules involve points to estimate the integral[24]. The stochastic 
integration also called Monte Carlo requires numerous simulated values from the 
targeted distribution in order to approximate the integral using a form of sample 
mean. This sample mean concept derives from the Law of Large Numbers which 
states that let assume 𝑋1, 𝑋2, … , 𝑋𝑛  random independent and identical variables 

with mean 𝐸(𝑋𝑖) = 𝜇 and variance 𝑉𝐴𝑅(𝑋𝑖) = 𝜎
2  for each 𝑖 = 1,2, … , 𝑛. If                                                    

𝜇𝑛 =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 then 

√𝑛

𝜎
(𝜇𝑛 − 𝜇) is approximately distributed to 𝑁(0,1) as 𝑛 tends to 

infinite. This indicated that 𝜇𝑛 approximates the theoretical 𝜇 and the 
𝜎

√𝑛
 should be 

small in order to get more accurate approximations. But how this theorem is 

connected to the numerical integration of 𝐸(𝑔(𝜃)|𝑦) =  ∫ 𝑔(𝜃)
𝜃

𝑝(𝜃|𝑦)𝑑𝜃, let 

assume that 𝑔(𝜃1|𝑦), 𝑔(𝜃2|𝑦),… , 𝑔(𝜃𝑛|𝑦)  are independent and identical 
variables which are independently  drawn from the posterior probability 

distribution. Then the 𝐸(𝑔(𝜃𝑖|𝑦)) = 𝐸(𝑔(𝜃)|𝑦) =   ∫ 𝑔(𝜃)
𝜃

𝑝(𝜃|𝑦)𝑑𝜃   for all   𝑖 =

1,2, … , 𝑛 then using the Law of Large Number theorem the  

∑ 𝑔(𝜃𝑖|𝑦)
𝑛
𝑖=1

𝑛
 ≈  𝐸(𝑔(𝜃)|𝑦) = ∫ 𝑔(𝜃)

𝜃

𝑝(𝜃|𝑦)𝑑𝜃     

Therefore, the only issue is to acquire or simulate large number of 𝜃𝑖|𝑦 from the 
posterior distribution 𝑝(𝜃|𝑦) in order to calculate those types of integrals[24]. 
This concept of approximations is applied to multidimensional problems leading 
to  the definition of a specific problem of how those simulations are generated 
either to the univariate or multidimension framework given the posterior 
probability distribution is fully or partially known  (without the normalizing 
constant ). Apart from the estimation of centrality and variability methods of the 
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posterior probability distribution,  the simulation of the  predicted values is an 
important issue. Basically, one predicted value 𝑦̃ is simulated from  𝑝(𝑦̃|𝜃) 
supposing a simulated value of 𝜃. In other words in order to acquire the predicted 
posterior distribution first a simulated value 𝜃 from 𝑝(𝜃|𝑦) is required and then 
this simulated values is used as a condition to simulate a value from 𝑝(𝑦̃|𝜃) 
[18,22,23]. 

      To begin with  the most popular and easiest simulation method is Inversion 
[24]. This method takes the advantage of a property of the probability theory 
which states that if 𝑋~𝐹 where 𝑋  is random variable and 𝐹 it’s cumulative function 
the 𝐹(𝑋)~𝑈(0,1) where 𝑈(0,1) is the uniform distribution. Then if the inverse 
cumulative function 𝐹−1 exists then 𝑋~𝐹−1(𝑈(0,1)). Basically,  first a value 𝑢 from 
uniform distribution is generated and then the 𝐹−1(𝑢) is a random value from the 

distribution of  𝑋 continuous random variable. For the discreet situation 𝐹−1(𝑢) =
min {𝑥|𝐹(𝑥) ≥ 𝑢}.  In more plain words first generate a 𝑢 value then the desirable 
𝑥 is that which satisfies the 𝐹(𝑥 − 1) < 𝑢 ≤ 𝐹(𝑥). Eventually, this method is very 
plain in the continuous situations where  𝐹−1 is easily calculated and in all the 
discreet situations where just basically the probability distribution is needed. 
Nevertheless,  this method is hard to use when the posterior probability  
distribution has complex form and when the problem is not univariate. The next 
method is called Accept – Reject and it basically solves the problem of the posterior 
complexity [24].This method simulates from another distribution and  only a non-
normalized form of desired distribution is necessary. So,  basically a non-
normalized form of posterior distribution is needed and furthermore the 
generated value is originated from another distribution with at least the same 
parameter space. Nevertheless,  this simulation method suffers from the same 
multidimensional problem. Initially choose a density function 𝑔(𝑥) whose 
parameter space it’s at least as the targeted distribution 𝑓(𝑥)  parameter space. 

Then find the 𝑐 = max(
𝑓(𝑥)

𝑔(𝑥)
)   each value of 𝑥 belonging to 𝑓’s parametric space. 

This 𝑐 is calculated using the Newton -Raphson method. Then generate a value 𝑥  
from  𝑔(𝑥)  and an independent value 𝑢 from uniform distribution. If   

𝑢 ≤
𝑓(𝑥)

𝑐𝑔(𝑥)
 

Then keep 𝑥 and regenerate a 𝑥 and an 𝑢 value  or discard this 𝑥 value and just 

regenerate a 𝑥 and an 𝑢 value .  The 𝑐 value is equal to 
1

𝑝(𝑥 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑)
 ; as a result, the 

minimum 𝑐 is required. Consequently,  the difficulty of the method is finding a 𝑔(𝑥) 

which minimizes the maximum of 
𝑓(𝑥)

𝑔(𝑥)
. Furthermore,  a non-normalized function 

of 𝑓(𝑥) is at least necessary. In the concept of the posterior probability distribution 
only the ℎ(𝜃) which is calculated from 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ℎ(𝜃) and a 
candidate generator 𝑔(𝜃) is needed to be acquired. Eventually,  one final decent 
univariate simulation method worth mentioning is importance sampling. This 
importance sampling method generates values for the desirable distribution from 
another distribution 𝑔(𝑥) like the Accept-Reject method [24].  The space which  𝑔 
is defined is at least the same as the targeted distribution 𝑓(𝑥). The general 
concept of importance sampling is let assume that 𝜇 is the desirable average. 
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𝜇 = ∫𝜑(𝑥)
 𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝑑𝑥 = 𝐸(𝜑(𝑥)𝑤(𝑥)) 

Where 𝑤(𝑥) =
 𝑓(𝑥)

𝑔(𝑥)
 with 𝐸(𝑤(𝑥)) = 1,  is known as the importance weight and 𝑔 

is the importance density. Therefore,  they are two estimators for  𝜇 

𝜇𝑛 =
∑ 𝜑(𝑥𝑖)𝑤(𝑥𝑖)
𝑛
𝑖=1

𝑛
 

And  

𝜇𝑛
′ =

∑ 𝜑(𝑥𝑖)𝑤(𝑥𝑖)
𝑛
𝑖=1

∑ 𝑤(𝑥𝑖)
𝑛
𝑖=1

 

Where 𝑥𝑖   is generated from the importance density 𝑔(𝑥).The first estimator 𝜇𝑛 is 
unbiased and it needs the full formula of  𝑓(𝑥) and 𝑔(𝑥). The second is biased 
estimator but it becomes unbiased as 𝑛  tends to infinity, requiring only a non-
normalized formula of 𝑓(𝑥) and 𝑔(𝑥). The second restriction for 𝑔(𝑥) is that the 
variance of the importance weight is finite.  The second estimator has lower 

variance than the first one when the 𝑔(𝑥) is a function which  𝜑(𝑥)
 𝑓(𝑥)

𝑔(𝑥)
  is 

approximate constant. So,  in practice using a computing software,  an analyst can 

choose various 𝑔(𝑥) and plot the 𝜑(𝑥)
 𝑓(𝑥)

𝑔(𝑥)
 with the aim of observing if this 

quantity is stable or just, they can experiment with various 𝑔(𝑥)  in order to check 

the 𝜑(𝑥)
 𝑓(𝑥)

𝑔(𝑥)
.   Again, this method is very versatile, but it suffers from the 

multidimensional problem; namely, its purpose is only for univariate problems. 
Another relative topic about the Monte Carlo method is to use of estimators with 
low variance to have quick more accurate estimates [24]. One can use consistent 
estimators that are unbiased and with low variance as n tends to infinity. Or they 
can use unbiased estimators with the lowest variance. Nevertheless, those 
estimators are impossible to use in the Bayesian concept because they are hard to 
derive. Last but not least, some distributions are derived from a complication of 
another distribution. For example, the Binomial distribution is the sum of 
Bernoulli ones. Sometimes it is easier to simulate several Bernoulli ones and then 
take a sum rather than the direct simulation of a Binomial. Also, one can take into 
consideration other variable transformations to calculate the desired estimator. 
Those methods are very useful for univariate problems but virtually most 
problems are multidimensional. Those issues are solved by simulation methods 
such as Gibbs sampler and Metropolis Hasting with the first one being a special 
case of the latter.  
         
Gibbs sampling method is a special case of the Metropolis Hasting algorithm  
and its purpose is to simulate parameter values from the posterior probability 
distribution[18,24]. This is achieved by not simulating from the joint posterior 
probability distribution but from the conditional posterior distributions. This 
specific concept makes Gibbs sampling a powerful method to acquire simulations 
from the joint posterior distribution. Particularly let's assume that blocks of 
the parameter 𝜃 = (𝜃1, 𝜃2, . . , 𝜃𝑑) are necessary to be simulated where the 
dimension of 𝜃𝑗   is at least 1  for 𝑗 = 1,2, … , 𝑑 ,  then the first step is to acquire the 
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conditional posterior distributions. The conditional posterior distribution for the 

𝜃𝑗  block is 𝑝(𝜃𝑗|𝜃−𝑗 , 𝑦) ∝  𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ℎ𝑗(𝜃𝑗) for 𝑗 = 1, 2, , … , 𝑑 where 

𝜃−𝑗 = (𝜃1, 𝜃2, … , 𝜃𝑗−1, 𝜃𝑗+1, . . . , 𝜃𝑑) . Therefore, the normalized version of ℎ𝑗  or just  

𝑝(𝜃𝑗|𝜃−𝑗 , 𝑦) is necessary for each 𝑗 = 1, 2, , … , 𝑑. The calculation of 𝑝(𝜃𝑗|𝜃−𝑗 , 𝑦) is 

conducted via the conditional  conjugacy. The conditional  conjugacy is the same 

property as the conjugate property which states that the 𝑝(𝜃𝑗|𝜃−𝑗, 𝑦) belongs to 

the same family as the 𝑝(𝜃𝑗). In other words,  one can write the  𝑝(𝑦|𝜃)𝑝(𝜃) and 

then take the terms which are function of 𝜃𝑗  assuming 𝜃−𝑗  as fixed ,  then using the 

conjugacy property or by normalizing the ℎ𝑗(𝜃𝑗) calculates the 𝑝(𝜃𝑗|𝜃−𝑗 , 𝑦). Then 

an analyst assigns some initial values 𝜃0 = (𝜃1
0, 𝜃2

0, . . , 𝜃𝑑
0) and first 𝜃1

1 is 

simulated from the 𝑝(𝜃1|𝜃−1
0 , 𝑦),  then 𝜃2

1 from the 𝑝(𝜃2|𝜃1
1, 𝜃3

0, . . , 𝜃𝑑
0, 𝑦). .. and 

for the last  𝜃𝑑
1 is simulated from the 𝑝(𝜃𝑑|𝜃−𝑑

1 , 𝑦). Then the first round of 
simulation has been conducted. The second round is similarly conducted. Let 

assume that it is time for the ith round,  the  𝜃𝑗
𝑖 is simulated from the  

𝑝(𝜃𝑗|𝜃1
𝑖, 𝜃2

𝑖 , … , 𝜃𝑗−1
𝑖 , 𝜃𝑗+1

𝑖−1. . , 𝜃𝑑
𝑖−1, 𝑦) 

So, the 𝜃𝑗
𝑖 is simulated given the most updated values of 𝜃. A large number of 

simulations are conducted in order to achieve convergence and after the so-called 
burn in period the next simulations are drawn for inference and summarization.  

         As it is stressed Gibbs sampling is a specific case of the Metropolis – Hasting 
Algorithms [18,24]. The Gibbs sampling method works well when the conditional 
posterior distributions are known; namely, one can simulate the desirable values 
from those conditional posterior distributions. The Metropolis-Hastings has one 
particularity it generates simulations from another distribution; as a result, it 
handles problems when the conditional posterior distribution is too complicated 
to simulate from. Especially it only utilizes the non-normalized aspect of the 
conditional posterior distribution. Nevertheless, the general concept which is the 
endeavor to simulate values from the joint posterior distribution through the 
conditional posterior distribution remains the same. The general algorithm is, 

let  say that the 𝜃1
𝑖, 𝜃2

𝑖 , . . , 𝜃𝑑
𝑖 have been simulated where 𝜃1

𝑖 is a group of or just 

one simulated value of the first set of parameters in the 𝑖 iteration. Then the 𝜃1
𝑖+1 

is the next simulated value for the upcoming round 𝑖 + 1. One possible  𝜃1
𝑖+1 which 

is written as 𝜃1
𝑝𝑜𝑠 is generated by a specific or sometimes arbitrary distribution 

𝑞(𝜃1|𝜃1
𝑖 , 𝜃2

𝑖, . . , 𝜃𝑑
𝑖) then the  𝜃1

𝑖+1 is equal to 𝜃1
𝑝𝑜𝑠 with probability 𝑝    or it is 

equal to 𝜃1
𝑖  with probability 1 − 𝑝. This probability 𝑝 is defined as   

𝑝(𝜃1
𝑝𝑜𝑠, 𝜃1

𝑖) = min{1,
𝑝(𝜃1

𝑝𝑜𝑠|𝜃2
𝑖, . . , 𝜃𝑑

𝑖)

𝑝(𝜃1
𝑖|𝜃2

𝑖, . . , 𝜃𝑑
𝑖)

𝑞(𝜃1
𝑖|𝜃1

𝑝𝑜𝑠, 𝜃2
𝑖, . . , 𝜃𝑑

𝑖)

𝑞(𝜃1
𝑝𝑜𝑠|𝜃1

𝑖, 𝜃2
𝑖, . . , 𝜃𝑑

𝑖)
} 

For  𝜃𝑗
𝑖+1  the same algorithm is used first a value 𝜃𝑗

𝑝𝑜𝑠 is generated from the 

𝑞(𝜃𝑗|𝜃1
𝑖+1, 𝜃2

𝑖+1, … 𝜃𝑗−1
𝑖+1, 𝜃𝑗

𝑖, 𝜃𝑗+1
𝑖 . . , 𝜃𝑑

𝑖) and then the 𝑝(𝜃𝑗
𝑝𝑜𝑠, 𝜃𝑗

𝑖) is equal to   

min{1,
𝑝(𝜃𝑗

𝑝𝑜𝑠|𝜃1
𝑖+1, 𝜃2

𝑖+1, … 𝜃𝑗−1
𝑖+1, 𝜃𝑗+1

𝑖 . . , 𝜃𝑑
𝑖)

𝑝(𝜃𝑗
𝑖|𝜃1

𝑖+1, 𝜃2
𝑖+1, … 𝜃𝑗−1

𝑖+1, 𝜃𝑗+1
𝑖 . . , 𝜃𝑑

𝑖)

𝑞(𝜃𝑗
𝑖|𝜃1

𝑖+1, 𝜃2
𝑖+1, … 𝜃𝑗−1

𝑖+1, 𝜃𝑗
𝑝𝑜𝑠, 𝜃𝑗+1

𝑖 . . , 𝜃𝑑
𝑖) 

𝑞(𝜃𝑗
𝑝𝑜𝑠|𝜃1

𝑖+1, 𝜃2
𝑖+1, … 𝜃𝑗−1

𝑖+1, 𝜃𝑗
𝑖 , 𝜃𝑗+1

𝑖 . . , 𝜃𝑑
𝑖) 
} 
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Some notable comments are that first the generator 𝑞 is possible to be an  arbitrary 
choice  which implies that every possible generator leads to convergence. If the 
generator 𝑞 is equal to the conditional posterior distribution,  then the probability 
of acceptance is one leading to the implementation of Gibbs sampling. 
Furthermore ,  the completed knowledge of the posterior is not necessary,  only a 
non-normalized posterior analogous function is needed. One prominent generator 

because its simplicity is a normal distribution with mean equal to the previous 𝜃𝜅
𝑖  

value and known variance. This is called Random walk Metropolis algorithm 
[18,24]  and it is appropriate and simple because of the symmetry which normal 

distribution provides. Specifically,  for the 𝜃𝑗
𝑖+1 simulation the 

  𝑝(𝜃𝑗
𝑝𝑜𝑠, 𝜃𝑗

𝑖) = min{1,
𝑝(𝜃𝑗

𝑝𝑜𝑠
|𝜃1

𝑖+1,𝜃2
𝑖+1,…𝜃𝑗−1

𝑖+1,𝜃𝑗+1
𝑖 ..,𝜃𝑑

𝑖)

𝑝(𝜃𝑗
𝑖|𝜃1

𝑖+1,𝜃2
𝑖+1,…𝜃𝑗−1

𝑖+1,𝜃𝑗+1
𝑖 ..,𝜃𝑑

𝑖)
}   

where 𝑞(𝜃𝑗|𝜃1
𝑖+1, 𝜃2

𝑖+1, … 𝜃𝑗−1
𝑖+1, 𝜃𝑗

𝑖, 𝜃𝑗+1
𝑖 . . , 𝜃𝑑

𝑖)  is 𝑁(𝜃𝑗
𝑖, 𝛴) with known 𝛴. The 

covariance matrix is tuned by the acceptance rate[24]. When the acceptance rate 
is low the algorithm convergences fast and when the acceptance rate is bigger the 
convergence is lower. In practice when the dimension of the target parameter is 
one or two 0.5 acceptance rate is suggested and when the parameter dimension is 
big at least 0.25  recommended[24]. Therefore, when the  Random walk 
Metropolis algorithm is used the fixed parameters are tuned by the acceptance 
probability. Eventually,  the choice 𝑞  may be different for every 𝜃𝜅 𝜅 = 1,2, … , 𝑑 
which leads to the inference that a mixed type of Metropolis Algorithms is 
frequently utilized. 

       The upcoming issue after the implementation of the previous algorithms is the 
assessment of convergence[24]. Practically the problem is to assess if the 
generated values have been converged to the desired target distribution. This is 
done by collecting the simulated values from different starting points. For each 
starting point a chain of simulations in the form of sequence is conducted. 
Practically, the strategy is to acquire several chains to check the convergence. 
Particularly every chain should converge to the same distribution, therefore, every 
chain should be stationary and be near other chains. For example, two chains are 
stationary but when they are plotted together, they seem to converge in different 
distributions; as a result, the mixing of the two chains is not successful. One 
another problem is that in the Metropolis Hasting algorithm, it is obvious that on 
average every value is dependent on the previous one. So, there is autocorrelation, 
this indicates that the autocorrelation of different lags should be calculated. To 
tackle those issues, the researchers have pointed out that the first half of each 
chain should be deleted because the first half values are somehow correlated to 
the starting points and because convergence might not be achieved[24]. So, after 
the burn-in period the autocorrelation of each halved chain should be calculated 

and choose a specific lag or 𝑘 which 𝑐𝑜𝑣(𝜃𝑖, 𝜃𝑖+𝑘) is close to zero or just 

decreasing. So, after the choice of every 𝑘𝑡ℎ values of each simulation,  an analyst 
can break them in further groups (or just if they have enough chains, they should 
keep it as it is ) with aim of checking both the mixing and stationary convergence. 

This is conducted via the calculation of  the scale reduction factor or just  𝑅̂  which 
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is function of between and within variance of the chains or remaining groups of 
simulations [18,24]. Let assume that there are 𝑚 chains and 𝑛 simulations in each 
chain. Also 𝜓𝑖𝑗  is the 𝑖 value of the  𝑗 chain  where 𝑖 = 1,2, … 𝑛 and 𝑗 = 1,2, . . , 𝑚. 

The Between variance is described as  

𝐵 =
𝑛

𝑚−1
∑ (𝜓̅.𝑗 − 𝜓̅..)

2𝑚
𝑗=1 where 𝜓̅.𝑗 =

1

𝑛
∑ 𝜓𝑖𝑗
𝑛
𝑖=1  and 𝜓̅.. =

1

𝑚
∑ 𝜓̅.𝑗
𝑚
𝑗=1 . The Within 

variance is derived from the 𝑊 =
1

𝑚
∑ 𝑠𝑗

2𝑚
𝑗=1  where 𝑠𝑗

2 =
1

𝑛−1
∑ (𝜓𝑖𝑗 −
𝑛
𝑖=1

𝜓̅.𝑗)
2. Theoretically if the convergence is achieved the Between variance divided 

by 𝑛 should be close to zero. With those quantities the variance of the 𝜓|𝑦 is 

calculated through the formula  
𝑛−1

𝑛
𝑊 +

1

𝑛
𝐵. The scale reduction factor is 

𝑅̂ = √
𝑉𝑎𝑟(𝜓|𝑦)̂

𝑊
= √

𝑛 − 1

𝑛
+
𝐵

𝑛𝑊
 

 
This 𝑅̂ is equal to 1 for 𝑛 going to infinite. So,  a appropriate convergence indicated 

a 𝑅̂ between 1 and 1.1 [18,24].  To sum up,  the parameters of prior distribution or 
the generator function are determined by the acceptance probability and the 
number of 𝑛 the number of each chain (the number of chains are at least two ) are 

determined by the correlation and 𝑅̂.  

        In the most cases the problems which are arises are related with various 
variables, one of them is the desirable outcome (𝑌)   and the others are explanatory 
variables  which are trying to explain the variability or the fluctuation of the 
outcome. In those situations, an analyst can implement a generalized linear 
models or other models like survival and more [25]. Those models have in 
common a construction of likelihood function and a relation which links the 
outcome variable and the explanatory variables. In the general situation let 
assume that there are 𝑛 observations,  the outcome variable 𝑌 and the predictors 
𝑋. Also, there are some parameters which they are trying to measure the 
association between the outcome and the explanatory. So, the purpose of statistics 
either frequentist or Bayesian is to estimate those parameters. Let assume that the 

parameters are 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝) and there is a model which describes the 

relation between 𝑌 and 𝛸. This general model is described as 𝑝(𝑦𝑖|𝛽, 𝑥𝑖) for each  
𝑖 = 1,2, …𝑛,  then in the frequentist approach those 𝛽 frequently are calculated by 
the maximation of the likelihood function ∏ 𝑝(𝑦𝑖|𝛽, 𝑥𝑖)

𝑛
𝑖=1 . In the Bayesian 

approach those parameters are variables and they have a prior distribution lets 
say 𝑝(𝛽). The main purpose of the Bayesian approach is to estimate the posterior 
distribution of the desirable parameters 𝑝(𝛽|𝑦, 𝑥). This posterior probability 
distribution is described as  

𝑝(𝛽|𝑦, 𝑥) ∝∏𝑝(𝑦𝑖|𝛽, 𝑥𝑖)𝑝(𝛽) 

𝑛

𝑖=1

 

Practically,  only the non-normalized version of the posterior distribution is 
known; therefore,  the employment of Metropolis-Hasting algorithm is reasonable. 
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Let consider a theoretical problem which a logistic regression is suggested. 

Furthermore,  let presume 𝑦𝑖 ~ 𝐵(𝑛𝑖, 𝑝𝑖) which is the target variable and 𝑥𝑖
𝑇 =

(1, 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖) are the explanatory variables for the ith observation. The binary 

logistic regression assumes that  

𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1 − 𝑝𝑖
= 𝜂𝑖 = 𝑥𝑖

𝑇𝛽  

Where 𝛽  = (𝛽0, 𝛽1, … , 𝛽𝑝). The likelihood the model is  

𝑝(𝑦|𝛽, 𝑥) =  ∏
exp (𝑦𝑖𝑥𝑖

𝑇𝛽)

1 + exp (𝑥𝑖
𝑇𝛽)𝜂𝑖

𝑛

𝑖=1

 

The prior distribution of the 𝛽 is multivariate normal distribution 𝑁𝑝(𝜇0, 𝛴0) [25] 

where 𝜇0 and 𝛴0 are chosen by some previous information or they can be arbitrary 
or they are chosen in order to satisfy other conditions like the probability of 
acceptance. So the posterior distribution is written as  

𝑝(𝛽|𝑦, 𝑥) ∝∏
exp(𝑦𝑖𝑥𝑖

𝑇𝛽)

1 + exp(𝑥𝑖
𝑇𝛽)𝑛𝑖

𝑛

𝑖=1

exp (−
(𝛽 − 𝜇0)

𝛵𝛴0
−1(𝛽 − 𝜇0)

2
) 

Because the precise form of the posterior probability distribution is hard to be 
calculated,  one can proceed to Metropolis Hasting. The 𝛽 are generated either 
jointly or one by one. There are several algorithms which can conduct this concept 
but one of the simplest is the random walk. The 𝛽 are simulated by the Metropolis 
Hasting theorem and then they are summarized in order to interpret the nature of 
the explanatory variables. The significant of each variable is checked either by 
calculating the Bayesian factors [26,27]  which are estimated through Monte Carlo. 
Particularly,  first simulations from the prior distributions are conducted and then 
for each simulation the likelihood of the given hypothesis is calculated. Finally the 
sample mean of every estimated likelihood is taken. Other measures which are 
related to the frequentists p-values are probability of direction(PH) [26,27] which 
is the proportion of the simulations having the same sign as the simulated  sample 
median ,  region of practical equivalence (ROPE) [26,27] which it checks the 
proportion of the central interval that  is included in the ROPE interval  and central 
interval. Every other problem follows a similar concept,  first the likelihood is 
calculated then some prior assumptions are done and then an analyst must choose 
which simulation algorithm is better.  

3.2  Weibull Survival Model 

          The typical Cox regression model does not assume a specific form about the 
baseline hazard function or just the hazard function [4]. Specifically,  Cox models 
relates the hazard function to baseline hazard function whose form is unknown. 
The parametric proportional models ,  additionally to the proportional property,   
assumes that the hazard  or in practice the baseline hazard function has a specific 
formula. This extra property leads to more precise coefficient parameter 
estimations or just the cox standard errors are bigger than the parametric ones. 
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The parametric proportional hazard model which is analyzed is the Weibull model 
[4] which has the prominent property of monotonous or sometimes steady hazard 
function. The survival time has a density function 𝑓(𝑡),  survival function 𝑆(𝑡) =

1 − ∫ ∫𝑓(𝑢)𝑑𝑢
𝑡

0
,  a hazard function ℎ(𝑡) =  

𝑓(𝑡)

𝑆(𝑡)
  and the cumulative hazard 

function 𝐻(𝑡) = − log 𝑆(𝑡). The hazard function under the Weibull assumption has 
a specific form  

ℎ(𝑡) = 𝜆𝛾𝑡𝛾−1  

Where  𝑡 ≥ 0 and 𝜆, 𝛾 are both grater than zero.  If 𝛾 = 1 (exponential 
distribution),  the hazard function is steady and equal to 𝜆 and if the 𝛾 ≠ 1 the 
hazard function is monotonous. The shape and scale parameter is 𝛾 and the 𝜆 
respectively.Therefore,  𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1 exp ( −𝜆𝑡𝛾 )  and 𝑆(𝑡) = exp ( −𝜆𝑡𝛾 ). 

Eventually the 𝑝th percentile of survival time 𝑡(𝑝) = {
1

𝜆
log (

100

100−𝑝
)}1/𝛾. The scale 

and shape parameters 𝜆, 𝛾 are estimated via the likelihood function. In the 
frequentist approach the likelihood is maximized and in the Bayesian approach 
those two parameters are estimated through simulations via assigning two prior 
distributions. Specifically,  the likelihood function for independent right censoring 
is  

∏ℎ𝑖(𝑡)
𝛿𝑖𝑆𝑖(𝑡)

𝑛

𝑖=1

=∏(𝜆𝛾𝑡𝑖
𝛾−1
)𝛿𝑖exp ( −𝜆𝑡𝑖

𝛾
)

𝑛

𝑖=1

 

 Where 𝑛 are the number of observations and 𝛿𝑖 is equal to 1 if an observation is 
censored and 0 if not.  

      Let assume that there are measure other variables 𝑋1, 𝑋2, … , 𝑋𝑝  than time and 

censoring. Therefore,  for every individual 𝑖th for 𝑖 = 1,2, . , 𝑛 𝑡𝑖 , 𝛿𝑖, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 

are observed. Under the proportional models without giving a specific form to the 
base hazard function; namely, the Cox model the hazard function for a specific 
individual is  

ℎ𝑖(𝑡) = exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝)ℎ0(𝑡) 

Where 
ℎ𝑖(𝑡)

ℎ0(𝑡)
 is independent of time and the ℎ0(𝑡) does now has a specific form. 

Under the Weibull assumption the ℎ0(𝑡) adapt a defined formula which is 𝜆𝛾𝑡
𝛾−1 . 

Consequently, the hazard function of the parametrically proportional hazard is  

ℎ𝑖(𝑡) = exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝)𝜆𝛾𝑡
𝛾−1  

Also, the survival,  cumulative hazard and density function has a particular form. 
The survival function is defined as  

𝑆𝑖(𝑡) = exp (−exp(𝛽
′𝑥𝑖) 𝜆𝑡

𝛾 ) 

Where  𝛽′𝑥𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 [4]. So, the likelihood function is equal 

to ∏ ℎ𝑖(𝑡)
𝛿𝑖𝑆𝑖(𝑡)

𝑛
𝑖=1  and if the ℎ𝑖(𝑡) and 𝑆𝑖(𝑡) are replaced. Then the likelihood is  
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∏[exp(𝛽′𝑥𝑖)𝜆𝛾𝑡
𝛾−1 ]𝛿𝑖exp (− exp(𝛽′𝑥𝑖) 𝜆𝑡

𝛾 )

𝑛

𝑖=1

 

Finally, the quantile 𝑡(𝑝) is equal to {
1

𝜆 exp(𝛽′𝑥𝑖)
log (

100

100−𝑝
)}1/𝛾. The parameters are 

estimated either using the frequentist approach (maximization)  or utilizing the 
Bayesian concept of simulating those parameters and then summarizing them. So,  

after having those estimated parameters 𝛽̂,  𝜆̂  and 𝛾 either by maximizing the 
likelihood or just take the mean of the simulations. The estimated model is ℎ(𝑡) =

exp(𝛽̂′𝑥)𝜆̂𝛾̂𝑡𝛾̂−1  and it is imperative to assess the model validity. The most 

prominent model checking  residuals are  Cox Schnell[4],  martingale residuals or 
deviance residuals. Cox-Snell residuals are  

𝑟𝐶𝑖 = 𝐻̂𝑖(𝑡𝑖) = − log 𝑆̂𝑖 (𝑡𝑖) = exp(𝛽̂
′𝑥𝑖)𝜆̂𝑡𝑖

𝛾̂   

The Cox-Snell residuals given the theory; they follow unit exponential distribution. 
The martingale residuals[4] are derived from the Cox-Snell residuals their form is  

𝑟𝑀𝑖 = 𝛿𝑖 − 𝑟𝐶𝑖 

Unusual large values of martingale residuals indicate that the specific 
observations are not well fitted. Also, they are not symmetrically distributed. Next 
there are the deviance residuals[4] which they derived from  

𝑟𝑀𝑖 = 𝑠𝑖𝑔𝑛(𝑟𝑀𝑖)√−2(𝑟𝑀𝑖 + 𝛿𝑖 log(𝛿𝑖 − 𝑟𝑀𝑖)) 

Deviance residuals are an endeavor to make the martingale residuals symmetric 
around zero. In the frequentists approach the Schoenfeld residuals are calculated 
using the maximum likelihood estimators or in general the maximum likelihood 
approach. This is not applied to Bayesian survival because the estimators are 
derived from the sample mean of the simulation and they tend to be the same with 
the maximum likelihood estimators if the sample is large enough. In practice, I 
think that the best strategy  to check the proportionality is to introduce dependent 
coefficients and variable selection methods or just one can use the corresponding 
frequentists p-value methods to Bayesian framework like Bayesian factors to 
check if the coefficient of each variable multiplied by the survival time is ‘Bayesian 
significant ‘.  

3.3 Bayesian Weibull survival model. 

    As it was stressed,  to find a non-normalized fraction of the posterior 
distribution of the parameters or the same posterior distribution itself. The 
likelihood function of the model and the prior distribution of the parameters are 
eventually necessary. So,  let assume that there are measures of other variables 
𝑋1, 𝑋2, … , 𝑋𝑝  than time and censoring. Therefore,  for every individual 𝑖th for 𝑖 =

1,2, . , 𝑛 𝑡𝑖, 𝛿𝑖, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 are observed where 𝑡𝑖 and 𝛿𝑖 is the survival time and 

the censored indicator indicating 1 when the observation is censored and 0 
elsewhere. If all the variables are included in the model, then 𝑝 + 2 parameters are 
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essential to construct the Bayesian Weibull model [28]. First the scale and the 
shape parameters 𝜆, 𝛾 and the 𝛽′ = (𝛽1, 𝛽2, … , 𝛽𝑝).  The likelihood of the 

observations given the parameters is   

𝑝(𝑥, 𝑡, 𝛿|𝜆, 𝛾, 𝛽′) =∏[exp(𝛽′𝑥𝑖)𝜆𝛾𝑡
𝛾−1 ]𝛿𝑖exp (− exp(𝛽′𝑥𝑖) 𝜆𝑡

𝛾 )

𝑛

𝑖=1

 

The posterior distribution of 𝜆, 𝛾 are Gamma distribution with parameters 𝑎𝜆,𝑐𝜆 
and 𝑎𝛾,𝑐𝛾  shape and scale parameters respectively where mean of 𝜆 is equal to 

𝑎𝜆 ∗ 𝑐𝜆. The vector 𝛽
′ is following multivariate normal distribution 𝑁𝑝(𝜇0, 𝛴0) with 

known 𝜇0, 𝛴0. Those 𝑎𝜆,𝑐𝜆, 𝑎𝛾,𝑐𝛾, 𝜇0, 𝛴0 are either arbitrary or are tuned to satisfy 

some conditions like the acceptance probability or they are derived from previous 
information. For example,  𝜇0 is 0  because it indicated the initial hypothesis. 𝑎𝜆,𝑐𝜆, 
𝑎𝛾,𝑐𝛾 are tuned to have simulations acceptance rate equal to 0.5  or they just create 

high enough variance. Previously information is derived from previous studies and 
more. Eventually,  sensitivity analysis is frequently conducted to check the 
sensitivity of the prior information. Therefore, the posterior distribution is 
analogous to  

𝑝(𝜆, 𝛾, 𝛽′|𝑥, 𝑡, 𝛿) ∝ 

∏[exp(𝛽′𝑥𝑖)𝜆𝛾𝑡
𝛾−1 ]𝛿𝑖 exp(− exp(𝛽′𝑥𝑖) 𝜆𝑡

𝛾 )

𝑛

𝑖=1

 exp (−
(𝛽 − 𝜇0)

𝛵𝛴0
−1(𝛽 − 𝜇0)

2
)  𝑔(𝜆, 𝑎𝜆 , 𝑐𝜆)𝑔(𝛾, 𝑎𝛾 , 𝑐𝛾) 

The conditional posterior distribution of the parameters  is 

𝑝(𝛽′|𝑥, 𝑡, 𝛿, 𝜆, 𝛾) ∝∏[exp(𝛽′𝑥𝑖)]
𝛿𝑖 exp(− exp(𝛽′𝑥𝑖) 𝜆𝑡

𝛾 )

𝑛

𝑖=1

 exp (−
(𝛽 − 𝜇0)

𝛵𝛴0
−1(𝛽 − 𝜇0)

2
)  

      𝑝(𝜆|𝑥, 𝑡, 𝛿, 𝛾, 𝛽′) ∝∏[𝜆]𝛿𝑖 exp(− exp(𝛽′𝑥𝑖) 𝜆𝑡
𝛾 )

𝑛

𝑖=1

𝑔(𝜆, 𝑎𝜆 , 𝑐𝜆) 

𝑝(𝛾|𝑥, 𝑡, 𝛿, 𝜆, 𝛽′) ∝∏[𝛾𝑡𝛾−1 ]𝛿𝑖 exp(− exp(𝛽′𝑥𝑖) 𝜆𝑡
𝛾 )

𝑛

𝑖=1

𝑔(𝛾, 𝑎𝛾 , 𝑐𝛾) 

Those conditional posterior distribution can further be simplified. Then the 
Metropolis-Hasting algorithm with random walk is applied. The parameters of the 
generators are simply tunned by the accept probability criteria. If the normal 
generator for 𝜆 and  𝛾 produce negative values then the probability of acceptance 
is zero. After finishing the simulation phase with respect of the other convergent 
criteria,  the sample means of the simulations are the estimators of the parameters. 
Therefore, the model checking is conducted via calculation of the  Cox-Snell, 
martingale and deviance residual. For instance the Cox-Snell residuals are derived 
from 

𝑟𝐶𝑖 = 𝐻̂𝑖(𝑡𝑖) = − log 𝑆̂𝑖 (𝑡𝑖) = exp(𝛽̂
′𝑥𝑖)𝜆̂𝑡𝑖

𝛾̂   

    In conclusion,  only the necessary basics of Bayesian statistics are written and 
there are far more topics that have not been represented like the hierarchical 
concept,  variable selection,  predictive model checking,  decision theory, and more. 
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Furthermore,  there are more parametric models than the Weibull model, some of 
them are called accelerated time failure models, and the Weibull is also part of 
them. Those accelerated models describe the relation between the time and the 
covariates like the generalized linear models. In practice, there is a linear relation 
between the logarithm of the survival times and the covariates and not the hazard 
function. 
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4  Methodology  

4.1 The models 

4.1.1 Introduction 

        This master thesis is about first deploying a Bayesian parametric competing 
risk model with missing event types under MAR assumption with independent 
right censoring. Second, the results of the Bayesian method are compared with 
one frequentist approach. Finally, both approaches are compared with the 
simulation data model. In general, the Bayesian parametric competing risk model 
with missing cause of failure is a mixture of two methodologies. The first 
methodology is about employing a Bayesian parametric Weibull competing risk 
model in a complete dataset using the Metropolis Hasting Algorithm [29]. The 
second methodology is about Bayesian imputation methods for missing data [17] 
which generally implies how to develop Bayesian models and use Markov Chain 
Monte Carlo methods to impute missing values. So, under one Metropolis Hasting 
iteration firstly the missing values are imputed, and then using a full dataset the 
Bayesian Weibull competing risk model is updated. The previous procedure is 
continued for numerous steps until the convergence is achieved. The frequentist 
estimation method is exactly the method which is described by Bakoyiannis and 
others [16], this model is the typical Cox competing risk model with the difference 
that the observations with missing event types have weights. It is a weighted Cox 
regression that is deployed for each event type. The observations with missing 
event types are duplicated according to the number of possible events. For 
instance, under MAR assumption and with two event types the missing 
observations are doubled, in the first bunch the first event indicator is imputed, 
and their weights are related to the probability of the first event being the real one 
and in the second bunch the second event indicator is assigned with weights which 
are equal to the probability of the second event being caused. Those probabilities 
are modeled in the same way as Lu and Tsiatis [15] and Bakoyannis and others 
[3,9] proposed. Another possible frequentist method is the multiple imputation 
method estimation which was described by Lu and Tsiatis [15] and Bakoyannis 
and others [9]. This multiple imputation method practically generates numerous 
datasets and then the missing indicator is imputed with predicted values from a 
probability model. Then after the creation of several complete datasets, the 
normal competing risk analysis is implemented and then the results are 
aggregated in the same way as every typical multiple imputation analysis. One 
issue that arises in every proposed method is the modeling of the event probability 
model which plays a crucial role because if this model is biased then each of those 
3 approaches is highly negatively influenced by this misstep. To address this 
problem, several variable model strategies are applied such as fractional 
polynomial, splines, interactions, quadratic, cubic, and higher powers modeling, 
and far more [9,15,16].In the Bayesian approach firstly the missing observations 
are imputed with predictions from posterior predicted distribution (Imputation 
step) each turn [17] and then the probability model is updated according to the 
Bayesian framework. Apart from the requested Bayesian approach, the weighting 
approach is used for comparison because this approach has shown empirically 
more efficient results than the multiple imputation method [16].  
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4.1.2 Bayesian parametric competing risk with missing event type.  

    A convenient way to construct this model is to  break it into pieces. So,  one can 
say that the model is a fusion of two methodologies, the first one is the Bayesian 
parametric competing risk [29] and the other is the Bayesian  handling of missing 
cause of failure under MAR assumption[17].Let assume that there are 𝑛 
observations,  2 cause of failures,  the 𝑑𝑘𝑖 indicator which is basically equal to 1 if 
the ith individual has experience the kth event and 0 if it is not 𝑖 = 1, 2,3, … , 𝑛 and 
𝑘 = 1, 2 ,  the time 𝑡𝑖 until the experienced event or the end of the survey or a lost 
of follow up and finally a set of predictors 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) for each individual 

where 𝑝 is the number of variables. The censoring is independent right and for 
now the cause of failure is fully observed. The hazard function that is studied is the 
cause – specific hazard function. So according to the first chapter,  the likelihood 
function of the competing risk is  

𝐿 =∏∏[ℎ𝑘(𝑡𝑖, 𝑥𝑖)]
𝑑𝑘𝑖

2

𝑘=1

𝑛

𝑖=1

S𝑘(𝑡𝑖, 𝑥𝑖) 

As it was pointed out for each event type an almost independently survival model 
is deployed[1,2,3]. In other words,  in this instance,  there are two models one for 
each event type. In the first event type all other event types are assumed as 
censored and the same concept is carried out in the second event type. Therefore,  
the two likelihoods are  

𝐿1 =∏[ℎ1(𝑡𝑖, 𝑥𝑖)]
𝑑1𝑖

𝑛

𝑖=1

S1(𝑡𝑖, 𝑥𝑖) 

𝐿2 =∏[ℎ2(𝑡𝑖, 𝑥𝑖)]
𝑑2𝑖

𝑛

𝑖=1

S2(𝑡𝑖, 𝑥𝑖) 

The analysis is conducted separately but with the same covariates, the two hazard 
and survival function are different. Therefore,  now let assume that time follows 
Weibull distribution,  the hazard function and the survival function has a specific 
form. In the general situation without competing risk the hazard function is equal 
to  

ℎ(𝑡𝑖, 𝑥𝑖) = exp(𝛽
′𝑥𝑖)𝜆𝛾𝑡𝑖

𝛾−1  

and the survival function is equal to  

𝑆(𝑡𝑖, 𝑥𝑖) = exp (− exp(𝛽
′𝑥𝑖) 𝜆𝑡𝑖

𝛾 ) 

Where 𝛽′ = (𝛽1, 𝛽2, … , 𝛽𝑝) are the coefficients of 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) and the 

𝛽′𝑥𝑖is equal to  ∑ 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖1 +⋯+ 𝛽𝑝
𝑝
𝑗=1 𝑥𝑖1. Also, 𝜆 and 𝛾 are the shape and 

scale parameters respectively. Now,  in the presence of competing risks there are 
two hazards  and two corresponding survival functions. The 𝜆1, 𝛾1 and 𝜆2, 𝛾2 are 
the scale and the shape parameters of the first and the second event type. 
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Therefore, the Weibull competing risk is basically two models with one likelihood 
each. The coefficients of those two models are found by the usual ways such us 
likelihood maximization and more. The two likelihoods are written as  

𝐿1 =∏[exp(𝛽1
′𝑥𝑖)𝜆1 𝛾1𝑡𝑖

 𝛾1−1 ]𝑑1𝑖

𝑛

𝑖=1

exp (−exp(𝛽1
′𝑥𝑖) 𝜆1𝑡𝑖

 𝛾1 ) 

𝐿2 =∏[exp(𝛽2
′𝑥𝑖)𝜆2 𝛾2𝑡𝑖

 𝛾2−1 ]𝑑2𝑖

𝑛

𝑖=1

exp (− exp(𝛽2
′𝑥𝑖) 𝜆2𝑡𝑖

 𝛾2 ) 

In conclusion,  the parameters of both models are found independently,  for 
instance the parameters of the first and second model are found by the 
maximization of the first and second likelihood respectively. In other words, the 
competing risk situations when using cause-specific hazard function is broken 
down to a specific number of event type of standard non-competing risk analysis. 

       The Bayesian Weibull competing risk model is virtually a different way to 
calculate the coefficient estimations. The inference of Bayesian analysis is 
conducted via the calculation of the posterior distribution. This posterior 
distribution of the parameters in the multivariate concept almost always is 
estimated by Monte Carlo simulations. The posterior distribution of the 
parameters is  analogous to the likelihood of the model multiplied by the prior 
distribution of them. In this particular scenario,  the two likelihoods of the two 
independently models are known,  so the only “problem” is to assign prior 
distribution to the parameters. From the final paragraph of the previous chapter 
the Bayesian Weibull survival model ,  the 𝛽 coefficients are following multivariate 
normal distribution with known parameters and the shape and scale parameters 
are following gamma distribution with known parameters. So, the posterior 
distribution of parameters is analogous to the survival likelihood multiplied by the 
prior distribution which is written as  

𝑝(𝜆, 𝛾, 𝛽′|𝑥, 𝑡, 𝛿) ∝ 

∏[exp(𝛽′𝑥𝑖)𝜆𝛾𝑡
𝛾−1 ]𝛿𝑖 exp(− exp(𝛽′𝑥𝑖) 𝜆𝑡

𝛾 )

𝑛

𝑖=1

 exp (−
(𝛽 − 𝜇0)

𝛵𝛴0
−1(𝛽 − 𝜇0)

2
)  𝑔(𝜆, 𝑎𝜆 , 𝑐𝜆)𝑔(𝛾, 𝑎𝛾 , 𝑐𝛾) 

Where 𝛽′ are the coefficients,  𝜆 and 𝛾 are the scale and shape parameters,  
𝑎𝜆 and 𝑐𝜆 are the shape and scale parameters of the 𝜆 distribution,  𝑎𝛾 and 𝑐𝛾 are 

the shape and scale parameters of the 𝛾 distribution and finally  𝜇0, 𝛴0 are the 
mean and matrix variance of the 𝛽.  There are two posterior distributions in the 
presence of the competing risk with different parameters each because there 
virtually two different models – likelihoods. For the first event,  the posterior 
distribution is described as  

𝑝(𝜆1, 𝛾1, 𝛽1|𝑥, 𝑡, 𝛿1) ∝ 

∏[exp(𝛽1
′𝑥𝑖)𝜆1 𝛾1𝑡𝑖

 𝛾1−1 ]𝑑1𝑖

𝑛

𝑖=1

exp (−exp(𝛽1
′𝑥𝑖) 𝜆1𝑡𝑖

 𝛾1 )  exp(−
(𝛽1 − 𝜇01)

𝛵𝛴01
−1(𝛽1 − 𝜇01)

2
)  𝑔(𝜆1, 𝑎𝜆1 , 𝑐𝜆1)𝑔(𝛾1, 𝑎𝛾1 , 𝑐𝛾1) 

The same concept is applied for the second event  
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𝑝(𝜆2, 𝛾2, 𝛽2|𝑥, 𝑡, 𝛿2) ∝ 

∏[exp(𝛽2
′𝑥𝑖)𝜆2 𝛾2𝑡𝑖

 𝛾2−1 ]𝑑2𝑖

𝑛

𝑖=1

exp (− exp(𝛽2
′𝑥𝑖) 𝜆2𝑡𝑖

 𝛾2 )  exp (−
(𝛽2 − 𝜇02)

𝛵𝛴02
−1(𝛽2 − 𝜇02)

2
)  𝑔(𝜆2, 𝑎𝜆2 , 𝑐𝜆2)𝑔(𝛾2, 𝑎𝛾2 , 𝑐𝛾2) 

Where the prior distribution of  𝛽1, 𝛽2 is multivariate normal distribution with 
known mean 𝜇01,  𝜇02 and 𝛴01,   𝛴02 covariance matrix respectively. The prior 
distribution of 𝜆1,  𝛾1,  𝜆2,  𝛾2 is gamma with shape and scale parameters 𝑎𝜆1 ,  𝑎𝛾1  

𝑎𝜆2 , 𝑎𝛾2and 𝑐𝜆1 , 𝑐𝛾1 , 𝑐𝜆2  , 𝑐𝛾2  respectively. The way to estimate the parameters is via 

simulations. The simulation algorithm which is used in this thesis is Metropolis 
Hasting[29]. The general algorithm of Metropolis Hasting, which has been 
described in a previous chapter, starts with the assignment of initial values to the 
parameters then possible candidates are simulated for a specific parameter group 
from a specific generator. Then those simulations are accepted with a probability 
of acceptance, or they are rejected. Nevertheless, the dataset must be complete to 
start the candidate generators in the simulation. 
 
      There is a Bayesian method for imputing missing values such as missing event 
types. This method finds the posterior predictive probability of the missing cause 
of failure and using the predictive probability imputes the dataset each turn [17]. 
The predictive posterior probability of the missing event types in the presence of 
two competing risks is a Bernoulli distribution. The probability of the Bernoulli 
distribution is derived from the general linear model. Therefore, the concept is to 
first calculate the probability that is needed to simulate the predicted values. The 
probability is calculated by the general linear model assuming the existence of its 
parameters. Then after the imputation of the dataset simulate and update the 
parameters of the general linear model. The powerful aspect of this method is that 
in the same iterations of the Metropolis Hasting, both the data imputation and the 
simulation of Weibull's competing risk parameters are combined. So, the general 
concept is that in each Metropolis Hasting iteration first the dataset is imputed 
and then the Weibull competing risk model parameters are simulated. This 
happens each turn until the end of the iterations. The algorithm for the imputation 
of missing event types is described as. So, let's assume that there  are 𝑛 
observations,  𝑛1 are observed and 𝑛 − 𝑛1  are missing. The first step is to impute 
the missing events from the posterior predictive probability 𝑝(𝑦𝑚𝑖𝑠𝑠|𝑦𝑜𝑏𝑠, 𝜃, 𝑧) and 
then using the complete non-censored dataset update the 𝜃 parameter from the 
𝑝(𝜃|𝑦𝑚𝑖𝑠𝑠, 𝑦𝑜𝑏𝑠, 𝑧) where 𝑦 is equal to 1 if the first event has been caused or 0 for 
the second event (censoring observations are not included) and 𝑧 all the possible 
variables including the survival time and their transformations. The posterior 
predictive probability is basically a Bernoulli distribution with probability 𝑝 equal 

to 
exp (𝜃′𝑧)

1+exp (𝜃′𝑧)
. Or basically it is derived from the            

𝑙𝑜𝑔𝑖𝑡 𝑝 = log
𝑝

1 − 𝑝
=  𝜂 = 𝜃′𝑧 

 
Where 𝑧 is all the possible variables which can predict the event type including the 
survival time,  𝜃 are the coefficients. This general linear model must be constructed 
with meticulousness and great attention. All possible interactions or fractional 
polynomials or splines and more should be included. So, after the imputation of 
the missing event type the parameter 𝜃 is simulated using the complete non-
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censored  dataset. The posterior distribution of the parameter 𝜃 is analogous to 
the likelihood of the general model multiplied by the prior distribution. The prior 
distribution follows multivariate normal distribution with fixed mean and matrix 
covariance. The form of the posterior distribution of 𝜃 is  

𝑝(𝜃|𝑦, 𝑧) ∝∏
exp(𝑦𝑖𝜃

′𝑧𝑖)

1 + exp(𝜃′𝑧𝑖)
exp (−

(𝜃 − 𝜇𝜃)
𝛵𝛴𝜃

−1(𝜃 − 𝜇𝜃)

2
) 

The 𝜇𝜃 and 𝛴𝜃 is the mean and covariance matrix of the 𝜃’s prior distribution. In 
addition, someone can exploit the asymptotic property of the posterior 
distribution which has been described in the previous chapter. Particularly, the 
posterior distribution asymptotically  follows the normal multivariate 
distribution. In other words,  

 𝜃|𝑦, 𝑧  ~  𝑁(𝜃, 𝛪−1(𝜃))   

Where 𝜃 is the mode of the posterior distribution which is basically the likelihood 

estimation of the logistic model. The 𝛪−1(𝜃)is the estimated inversed information 
matrix which is equal to the estimated covariance matrix of the parameters. The 
asymptotic method is used for convenient reasons and because in practice, there 
is no need to have a cumbersome simulation method for the logistic model. Also, 
this asymptotic property is valid when the sample size is big enough and has a flat 
prior distribution. Additionally, with the asymptotic model, there is no need to 
check the convergence criteria of the logistic model in the end because the 
coefficients are straightforwardly simulated from the target distribution. In 
contrast to the advantages of the asymptotic model, the main disadvantage is that 
if the total number of observations is very low then the results might be invalid. 
Nevertheless, despite all the advantages and disadvantages of both simulation 
strategies, the logistic model should be efficiently modeled to correctly predict the 
outcome.  

   The Weibull competing risk model plus the posterior predictive model of the 
events are combined in one of the Metropolis Hasting algorithms. Each of the 
simulations of those quantities such as coefficients, predicted values, shape, and 
scale parameters are kept to be aggregated in the end. The Metropolis Hasting is 
used because only the non-normalized aspect of the posterior distribution is 
needed or in other words, there is no need to utilize the full posterior distribution. 
Another advantage of the Metropolis Hasting is that the simulations are done by a 
generator and not the actual posterior. The generator in our problem follows 
univariate or multivariate normal distribution with a mean equal to the previous 
value and a fixed covariance matrix. This type of Metropolis Hasting is called 
Random Walk. This Random Walk Metropolis hasting has two advantages first the 
mean of the generator is known and second, the covariance matrix is tuned 
according to the acceptance rate. When the dimension of the parameter is one 
acceptance rate of 0.5 is valid and if the dimension is big enough an acceptance 
rate of around 0.25 is efficient. The convergence defines the iteration number 
which is tuned appropriately for the stationary and mixing properties to be valid.  
The only aspect that is somehow arbitrary is the parameters of the priors’ 
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distribution. The prior distribution is defined either from previous knowledge or 
by sensitivity analysis or arbitrary or non-informed options. In this case, the prior 
distributions have a mean equal to the null hypothesis and covariance matrix or 
variance big enough. Before entering the Metropolis Hasting algorithm,  itself, the 
conditional posterior distribution of the desirable parameters is given. The 
coefficient posterior distribution of the logistic model which produces the 
probabilities of the predicted posterior Bernoulli distribution, basically is formed 
as  

𝑝(𝜃|𝑦, 𝑧, 𝑎−𝜃) ∝ exp (−
(𝜃 − 𝜃)

𝛵
𝐼(𝜃)̂(𝜃 − 𝜃)

2
) 

Where 𝜃 is the likelihood estimation of ∏
exp(𝑦𝑖𝜃

′𝑧𝑖)

1+exp(𝜃′𝑧𝑖)
𝑛
𝑖=1  and the 𝐼(𝜃)̂ is the 

estimated information matrix using the complete dataset. Both those quantities 
are found from base function of the statistical program and the values of 𝜃  are 
easily simulated from the normal multivariate distribution. Also, 𝑎 =
{𝑦𝑚𝑖𝑠𝑠, 𝜃, 𝛽1, 𝛽2, 𝜆1,  𝛾1,  𝜆2,  𝛾2} is the full set of the total parameters and 𝑎−𝜃 is the 
𝑎 expect 𝜃. For the coefficients of the first and second event type model, the 
conditional posterior distributions are  

 

𝑝(𝛽1|𝑥, 𝑡, 𝛿1, 𝑎−𝛽1) ∝ 

∏[exp(𝛽1
′𝑥𝑖)]

𝑑1𝑖

𝑛

𝑖=1

exp (−exp(𝛽1
′𝑥𝑖) 𝜆1𝑡𝑖

 𝛾1 )  exp (−
(𝛽1 − 𝜇01)

𝛵𝛴01
−1(𝛽1 − 𝜇01)

2
) 

And  

𝑝(𝛽2|𝑥, 𝑡, 𝛿2, 𝑎−𝛽2) ∝ 

∏[exp(𝛽2
′𝑥𝑖)]

𝑑2𝑖

𝑛

𝑖=1

exp (− exp(𝛽2
′𝑥𝑖) 𝜆2𝑡𝑖

 𝛾2 )  exp (−
(𝛽2 − 𝜇02)

𝛵𝛴02
−1(𝛽2 − 𝜇02)

2
) 

 

The conditional posterior distributions for the scale and shape parameters of both 
events models; namely,  𝜆1,  𝛾1,  𝜆2,  𝛾2 are   

𝑝(𝜆1|𝑥, 𝑡, 𝛿1, 𝑎−𝜆1) ∝∏[𝜆1]
𝑑1𝑖

𝑛

𝑖=1

exp (−exp(𝛽1
′𝑥𝑖) 𝜆1𝑡𝑖

 𝛾1 ) 𝑔(𝜆1, 𝑎𝜆1 , 𝑐𝜆1) 

 

𝑝(𝛾1|𝑥, 𝑡, 𝛿1, 𝑎−𝛾1) ∝∏[𝛾1𝑡𝑖
 𝛾1−1 ]𝑑1𝑖

𝑛

𝑖=1

exp (− exp(𝛽1
′𝑥𝑖) 𝜆1𝑡𝑖

 𝛾1 )𝑔(𝛾1, 𝑎𝛾1 , 𝑐𝛾1) 

𝑝(𝜆2|𝑥, 𝑡, 𝛿2, 𝑎−𝜆2) ∝∏[𝜆2]
𝑑2𝑖

𝑛

𝑖=1

exp (−exp(𝛽2
′𝑥𝑖) 𝜆2𝑡𝑖

 𝛾2 ) 𝑔(𝜆2, 𝑎𝜆2 , 𝑐𝜆2) 
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𝑝(𝛾2|𝑥, 𝑡, 𝛿2, 𝑎−𝛾2) ∝∏[𝛾2𝑡𝑖
 𝛾2−1 ]𝑑2𝑖

𝑛

𝑖=1

exp (− exp(𝛽2
′𝑥𝑖) 𝜆2𝑡𝑖

 𝛾2 )𝑔(𝛾2, 𝑎𝛾2 , 𝑐𝛾2) 

All likelihoods start from the first observation, and they are ending to the 𝑛𝑡ℎ 
observation. This is because the first simulated values are the missing events 
which are simulated by the Bernoulli distribution. So, the simulation of the 
previous parameters is conducted after the imputation of the dataset. Last but not 
least the generator of the candidate simulations is normal distribution either 
univariate or multivariate with a mean equal to the previous simulated values and 
a fixed variance or covariance matrix respectively (it is tuned by the acceptance 
probability ). The candidate simulations of the univariate normal distribution are 
either positive or negative; as a result, sometimes the candidate simulations of the 
scale and shape parameters are negative which is not valid. Therefore, when a 
negative value is simulated in a specific iteration the probability of the acceptance 
in this specific iteration is basically zero.  

          In conclusion, first, simulate the missing event types and impute those values 
in the dataset. After that update the parameters of the predictive posterior 
distribution using the complete imputed dataset. The simulation is conducted 
through the conditional posterior distribution. Utilizing the complete dataset 
update the coefficients of the first and the second event model. In the end, the 
univariate parameters of the two Weibull models are updated. The simulations are 
conducted via the generator distribution which is univariate or multivariate 
normal distribution with mean equal to the previous values and fixed covariance 
matrix. The acceptance probability for each simulation in each iteration is 
calculated which is basically the minimum between one and the multiplication of 
the condition posterior density of the candidate simulation and the density of the 
generator on the prior simulation divided by the multiplication of the conditional 
posterior density on the previous simulation and the density of the generator on 
the candite or possible value. For instance, the probability of acceptance in the 𝑖 +
1 iteration of the parameter 𝜃 in Metropolis Hasting Random Walk is  

𝑝(𝜃𝑝𝑜𝑠, 𝜃𝑖) = min{1,
𝑝(𝜃𝑝𝑜𝑠|𝛼−𝜃

𝑖 )

𝑝(𝜃𝑖|𝛼−𝜃
𝑖 )

} 

Where 𝛼−𝜃
𝑖  is the latest set of the simulation without the 𝜃𝑖 ,  𝑝(𝜃|𝛼−𝜃

𝑖 ) is the 
posterior probability of a given parameter θ and the 𝜃𝑝𝑜𝑠 is the generated – 
possible new simulated value if it is accepted. Finally, after the implementation of 
numerous simulations, the convergence criteria are checked. If the convergence 
criteria are not satisfied, then the number of iterations is increased. If the 
convergence criteria are satisfied, then the simulations are aggregated for the final 
– aggregated model to be described. After the aggregation of the simulated 
coefficients, an analyst should proceed to a model evaluation. Therefore, for each 
model according to the number of event types residuals like Cox-Schnell, 
martingale, and deviance residuals are calculated. 
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     Apart from the mean and the standard deviation of each parameter the central 
interval (CI), the probability of direction(PD), and the region of practical 
equivalence (ROPE) are given [26,27].The 95% central interval has been 
thoroughly described in the second chapter, it is the 2.5% and 97.5% quantiles of 
the simulations. Its interpretation is that the probability of the parameter 
belonging to this interval is 0.95. Nevertheless, the probability of direction and the 
region of practical equivalence have not been efficiently described. The 
probability of direction [26,27] measures the effect existence of a specific 
estimated parameter. Particularly it measures how positive or negative the effect 
of a coefficient and it ranges from 0.5 to 1. Also, it is calculated from the 
simulations, it is robust to the scale of both outcome and the covariates, and it is 
somehow empirically related to the frequentist’s prominent p-value. It is highly 
correlated to the p-value and there is an empirical relationship that connects those 
two. In a one-sided hypothesis the p-value is empirically almost equal to one 
minus the probability of direction and the two-sided p-value is empirically equal 
to two multiplied by one minus the probability of direction. The probability of 
direction is the proportion of the same simulation’s sign with the median sign. In 
other words, it is measured the quantity of the simulations having the same sign 
as the median. Finally, it measured the existence of the relation, positive or 
negative, and not the power of the relation. For instance, coefficients might have a 
big probability of direction but low power which is the low distance between the 
coefficient and zero. The region of practical equivalence [26,27] has a center equal 
to the null hypothesis. This equivalence test measures the proportion of 
standardized full(100%) CI being intersected by the ROPE. The ROPE is suggested 
[30] being [−0.1,0.1] supposing the parameter is standardized (or all the 
simulations are divided by the standard deviation ). It measures the significance 
or the power of a parameter estimation. A small percentage of 100% central 
interval being part of the rope means that the significance of the estimated 
coefficient is big. In other words, ROPE is the interval of no effect and if a big 
percentage of the standardized range is inside the ROPE then the null hypothesis 
is more plausible to be accepted. Nevertheless, this equivalence test is very 
objective and there are many different ROPE options. Both the probability of 
direction and the region of practical equivalence indicate efficient evidence that 
there is a relation between the outcome and the covariate. Nevertheless, the Bays 
factor is the most traditional option but in this problem, the calculation of the 
Bayes factor is not done by ordinary methods like Monte Carlo and that is because 
the dataset is incomplete. Therefore, the computation of Bayes factors in a dataset 
with missing event type is a big and complex story which in this scenario will not 
be analyzed any further.   
 
All in all, the Bayesian Weibull parametric competing risk model with missing 
cause of failure is a combination of two methodologies the first methodology is 
about a Bayesian way to handle missing values [17] and the second one is about 
the application of the Bayesian Weibull parametric competing risk model [29]. The 
basic algorithm for each iteration is :  
 
- Step 1: Impute the missing cause of failure using a predictive model. Specifically, 
the predictive model is a general linear model with Y equal to one for the first 
cause of failure and zero for the second one. The covariates are the natural 
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logarithm of the time to the event, the Gender, Age, and CD4. The coefficients of 
the predictive model are estimated in the second step. Therefore, in the first 
iteration, the initial values of the model are estimated before the iterations begin, 
and they are estimated via the maximum likelihood method. The predictions are 
derived from the predictive probability using the ordinary Monte Carlo method. 
 
-Step 2: Update the parameters of the predictive model. This is done by first 
estimating the coefficients of the predictive model using all the datasets. Those 
coefficients are estimated using the maximum likelihood method. Finally, update 
those coefficients by simulating them from a multivariate normal distribution 
with a mean equal to the already estimated coefficients and covariance matrix the 
inverse information matrix which is asymptotically equal to the estimated 
covariance matrix of the coefficients. 
 
-Step 3: Simulate first the coefficients, the scale, and then the shape parameters of 
the first event and then simulates like the first event the coefficients, scale, 
and shape parameters of the second event using the Random Walk Metropolis 
Hasting algorithm. The coefficients from both models are simulated from a 
multivariate normal distribution with a mean equal to the previous accepted value 
and with a covariance matrix which is tuned via the mean acceptance probability. 
The scale and shape parameters of both events are generated from a univariate 
normal distribution with a mean equal to the previously accepted simulations and 
variance tuned from the mean acceptance probability. The covariance matrix and 
the variance of the generators are calculated by trial and error with the aim of the 
mean acceptance probability being approximately equal to 0.4 for the 
multivariate coefficients and 0.5 for the univariate parameters (scale–shape). In 
every iteration, the generated values either are accepted or not. If they are not 
accepted, the previous values instead of the current ones are the accepted ones.  
 
In the end, there are numerous simulations. From all those, I burn some initial 
simulations, and then because of the high autocorrelation I choose one simulation 
every 25 ones. From the final simulations, the desirable coefficients are the mean 
of the corresponding simulations.  
 

 

4.1.3 Cox competing risks with missing event types  

       This method is based on a sophisticated computationally maximum pseudo-
partial-likelihood estimation method for the semiparametric (Cox) proportional 
cause-specific hazard model [16]. In other words, a Cox competing risk model on 
a weighted complete dataset is implemented. Virtually, weights and event 
indicators are assigned to the missing event types resulting in a weighted full 
dataset. The censored times are randomly right censored, and the missing cause 
of failure is under the missing at-random assumption. The maximum pseudo-
partial-likelihood(MPPL) estimation approach is used to calculate the coefficients 
when the likelihood is not the ordinary one. For example, a weighted likelihood is 
calculated by the MPPL method. This method utilizes the same event probability 
function or in this particular scenario a logistic regression model as the 
corresponding Bayesian approach. Particularly the same model as the event 
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imputation method in the Bayesian approach is used. To begin when the event 
types are two, a logistic regression model is applied to the observations with a 
specific event type (the first or the second cause of failure ). Then after the 
estimation of one complex logistic model with interactions, splines, fractional 
polynomials, and more, the missing observations are duplicated. In the first bunch, 
the missing event indicator is assigned as the first event with weights equal to the 
probability of this observation having the first event type. In the second bunch, the 
second event indicator is assigned, and their weights are equal to the probability 
of having this event. This logistic model is calculated at the start only by the 
observed noncensored observations basically only of those who have experienced 
an event. Therefore, after the dataset preparation, two separate usual Cox 
regression models are applied with the aim of estimating the coefficients. The 
standard error of the coefficients is estimated by bootstrap methods. Especially, 
the initial given dataset is resampled with replacement and then the same analysis 
is conducted again and again. Then after the recalculation of the coefficients, the 
standard deviation of the recalculated coefficients is the actual standard error of 
the initial coefficient. The covariance matrix is estimated by the sample covariance 
matrix which is calculated by the bootstrapped sample. Finally, the typical Cox 
model evaluation is conducted which evolves the calculation of Cox-Schnell, 
martingale, and deviance residuals. In addition, the Schoenfeld residuals are 
calculated to check the proportional hazard assumption.  
 
      Let assume that there are 𝑛 observations,  2 cause of failures,  the 𝑑𝑘𝑖 indicator 
which is basically equal to 1 if the ith individual has experience the kth event and 
0 if it is not 𝑖 = 1, 2,3, … , 𝑛 and 𝑘 = 1, 2 ,  the time 𝑡𝑖 until the experienced event or 
the end of the survey or a lost of follow up,  a set of predictors 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) 

for each individual where 𝑝 is the number of variables,  an auxiliary set of 
covariates 𝑧𝑖 = (𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑚) which are function of 𝑥𝑖  and the time to event  and 
there 𝑛1 missing events. The missing event types are under missing at random 
assumption and the censoring is independent right. To begin with the logistic 
model is calculated with only a part of uncensored 𝑛 − 𝑛1 observations. This 
model includes the predictors of the primary model, some auxiliaries covariates, 
and the survival time. The outcome of this model is an indicator that is equal to 
one if the event type is the first one and is equal to zero if the cause of failure is the 
second one. The weights of all observations except the missing ones are equal to 
one. The rest unobserved data are imputed with the first event indicator with the 
corresponding predicted probability as weight. Finally, the same imputed part of 
the dataset is copied, the first event type is replaced with the second, and the 
weights are replaced with the one minus the previous weights. The copied 
imputed dataset is aggregated to the first semi-imputed dataset. Finally, the 
complete aggregated dataset proceeded to the final typical cause-specific 
competing risk analysis.  
 
     This method in contrast to the multiple imputation method proposed by [9,15] 
has shown better empirical results [16]. Also, the MPPLE method is 
computationally lighter and easier than the multiple imputation method because 
virtually it just assigns some weights to a specific observation and after that, the 
typical Cox model is implemented. In addition, both methods need this logistic 
regression model. In the MPPLE method only at the start, a logistic regression 
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model is estimated in order to predict the probabilities in opposition to the 
Bayesian method which the predictive logistic regression model is re-estimated in 
every iteration in order to provide the necessary probabilities. Also, if the dataset 
is too big the multiple imputation is a cumbersome and tedious method to utilize. 
Last but not least, the purpose of this supplementary method is to compare the 
results, therefore it is necessary that the second method is easy and 
straightforward to implement and that is the final reason why MPPLE has been 
chosen.  
 

4.1.4 Conclusion  

     To sum up, the purpose of this thesis is to implement the Bayesian parametric 
competing risk in missing event types. The second purpose is to compare the 
results of this method to another method like the method that is based on the 
maximum pseudo-partial likelihood. Both methods utilize a logistic regression 
method; as a result, this general linear model must be carefully modeled and 
checked. So, the introduction of splines, infections, fraction polynomials, high 
polynomial powers, and more is necessary. In addition, various model-checking 
methods are applied to evaluate the competence of the logistic model. The most 
ordinal methods are the Chi-square test, the deviance test, and Hosmer Lemeshow 
test. That goodness of fit test assures the analyst that the applied logistic model is 
a good and valuable fit. The high effectiveness of the logistic regression model is a 
significant issue because both methods utilize this model. Finally, the analysis is 
implemented in R version 4.3.0 and the algorithms for both models are written in 
R by me except the Cox and logistic regression. For the Cox competing risk model 
with missing failure, I have copied the implementation algorithm from the 
appendix of [16]. All the code from R is given in the Appendix. 
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4.2 The Data  

4.2.1 Real Data 

The analysis is supposed to be conducted with data from the EA-IeDEA HIV study 
(link for the site https://www.iedea.org/regions/east-africa/). EA-IeDEA stands 
for the East African International Epidemiologic Databases to Evaluate AIDS and 
it is basically a huge endeavor to evaluate and eventually tackle the HIV disease in 
the East African Region. However because of bureaucratic reasons, the data were 
not immediately available, and a long procedure was needed in order to acquire a 
dataset from the EA-IeDEA HIV study. Therefore, the main thesis goal is changed, 
and it becomes a simulation study that is basically trying to compare the two 
methods first the Bayesian Weibull competing risk with missing cause of failure 
method with the maximum pseudo-partial-likelihood estimation method 
(MPPLE) which is thoroughly described in [16]. This MPPLE method imputes 
probabilities as weights to the observations with missing event types and then the 
standard weighted Cox regression is implemented. My master thesis simulation 
study tries to imitate the EA-IeDEA data that appeared to [16]. This data appeared 
to [16] have two event types the first one is death and the second one is 
disengagement from HIV care. Also, a large proportion of patients were still in care 
when the study was finished and therefore those patients were characterized as 
censored observations. Apart from that, less than half patients were missing and 
some of them were reached by healthcare professionals. In other words, some 
patients missed the schedule leading to a huge proportion of missingness. 
Because, the actual observed events were small, relative to the censored and 
missing observation, healthcare professionals tried to reach those missing 
patients. From the outreached sample of the initial missing patients, scientists 
found out that most of them were disengaged and 22% of them died leading to 
significant reporting death problems. Except for the time to the event or 
missingness or censoring, the gender, the age of patients at the ART initiation in 
years, and the number of CD4 cells at ART initiation in cells/µl were counted. In 
this EA-IeDEA study sample the number of patients were 6657 HIV-infected 
patients on ART. 3382 of them were in care when the study was finished and the 
rest of them 3275 were either missing or dead. Only 346 patients from 3275 died 
and therefore they were reported in the clinic as dead ones. The rest 2929 patients 
were missing and after the outreach only 448 were successfully reached by the 
hospital workers. 349 of them were disengaged from HIV care and 99 died. 
Eventually, this is leading to 2481 missing observations and the actual percentage 
of missingness given that the observation is not censored is 75.8% which is 
significantly large. The percentage of censored observations and the observed 
cause of failure being death is 50.8% and 56% respectively. The 56% percentage 
indicates that 56 patients out of 100 who have experienced one of two events have 
died. 
    Also ,  the descriptive statistics along with the results [16] have a meaningful 
role in the simulation study because the information about the distributions for 
the gender,  age and CD4 cells count  and the hazard functions of two events  is 
taken from the descriptive statistics table (table 3 in [16]) and hazard ratio table 
(table 4 in [16]). As a consequence,  they are represented in this thesis.   

https://www.iedea.org/regions/east-africa/
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Table 1: Descriptive statistics for the   EA-IeDEA study sample [16].  

 Cause of failure  

In Care 
(N=3382) 
n(%) 

Disengagement 
(N=349) 
n(%) 

Death 
(N=445) 
n(%) 

Missing 
(N=2481) 
n(%) 

Gender 
Female 

 
2300(68.0)            210(60.2)                254(57.1)               1665(67.1) 

Male 1082(32.0) 139(39.8) 191(42.9) 816(32.9) 

                   Median(IQR) Median(IQR) Median(IQR) Median(IQR) 

Age* 37.9(31.8,45.4) 35.5(29.7,41.9) 37.3(31.3,46.0) 35.4(29.9,42.7) 

CD4** 174(91,258) 145 (69, 222) 88 (39, 180) 155 (71, 214) 

*At Art initiation in years,  **At Art initiation in cells/µl  

 From the Table 1,   I try to imitate the distribution of Gender,  Age and CD4. Also 
the hazard ratio and its standard deviation are needed for each variable (Gender,  
Age and CD4). They are needed for the modelling of the two hazard functions and 
the covariance matrix of prior distribution respectively. This Table 2 which is 
represented beneath is part of Table 4 [3],  particularly it is only the proposed 
MPPLE part.  

Table 2:Data analysis with the MPPLE method EA-IeDEA study sample [3].  

Covariate  exp(𝛽𝑛) 95%CI p-value 

Disengagement from care  

Sex(male=1, female=0) 1.15 (1.02,1.31) 0.022 

Age(10 years) 0.75 (0.7,0.8) <0.001 

CD4(100 cells/μ1) 1.03 (1,1.06) 0.094 

Death while in care 

Sex(male=1, female=0) 1.24 (0.96,1.59) 0.094 

Age(10 years) 1.10 (0.97,1.25) 0.153 

CD4(100 cells/μ1) 0.76 (0.63,0.91) 0.003 

 

 To begin with, the standard error of the hazard ratios which is used to construct 
95%CI of Table 2 is calculated with the bootstrap method [16]. Virtually, the initial 
sample is resampled with replacement and for each resampled dataset, the 
coefficients for each event are calculated. Then the standard error of the hazard 
ratios is the standard deviation of the “resampled” coefficients. In other words, the 
resampling of the initial dataset is conducted for several rounds, and for each 
round, a set of coefficients (2 causes of failure) is calculated, then the standard 
deviation of the coefficients for each covariate is the standard error for each 
respectively. So, the standard error of the hazard ratio is used to calculate the 95% 
confidence intervals. Someone can instantly take the q0.025 and q0.975 of the 
“resampled” coefficient and find the 95% CI instead of calculating the standard 
error where qp is the quantile that cumulative function is equal to p. Now, because  
I want the actual log – hazard ratios and their standard errors,  I need to transform 
the values in Table 2. For example, the log hazard ratio of Sex in Disengagement is 
just  ln(1.15) but the log hazard ratio of Age(10 years) in Disengagement is  
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ln(0.75)

10
. The standard error of log hazard ratio is calculated with pretty much the 

same reasoning. For example,  the standard error of the Age(10 years)  in 

disengagement is mean of  |
 
ln(0.7)

10
−
ln(0.75)

10
 

1.96
|  and |

 
ln(0.8)

10
−
ln(0.75)

10
 

1.96
|. Mean is used 

because there is a possibility that the 95%CI is either calculated using standard 
errors or the ordinary bootstrap way (just find the quantiles of 0.025 and 0.975 
cumulative probability). So,  the standard errors, I calculate from the Table 2,  are 
estimations of the real ones and they are used to define the prior distribution of 
the covariates. The upcoming Table 3 has the transformed hazard ratios which are 
used to define the hazard function  and their standard error.  

Table 3: log -hazard ratios and their estimated standard errors  

Disengagement 
from care 

Sex(male=1,female=0) Age(1 year)  CD4(1 cell/μ1) 

log – hazard ratio 0.1397619* 
 

-0.02876821 
 

0.000295588 
 

standard error 0.06383278 0.003406413 
 

0.0001486452 
 

Death while in 
care  

Sex(male=1,female=0) Age(1 year)  CD4(1 cell/μ1) 

log – hazard ratio 0.2151114 0.009531018 -0.002744368 

standard error 0.1287133 
 

0.006469458 
 

0.0009380734 
 

*The values are exactly the same as the R software computed and they have the 
maximum potential decimals because those numbers are essential to calculate the 
bias in the end.  

4.2.2 Data Simulation   

    The are two problems that arise when someone wants to simulate a competing 
risks scenario with missing events. First, how to simulate the time and the cause 
of failure. Second, how to determine the distribution parameters for the 
distribution of Gender, Age, CD4, shape, scale, censored parameters, the model for 
the missing values indication, and more.  

      Initially, the time is simulated using the survival function (or the cumulative 
function) with Monte Carlo simulation methods like inverse probability 
simulation. In this method basically, someone simulate a random value from a 
uniform distribution (0,1) and then they find the requested simulated time which 
satisfies or solves the equation 𝑆(𝑡) = 𝑢 where u is the random value of the 
uniform distribution. There are two problems,  first what is the actual form of 𝑆(𝑡) 
and can this equation be solved with standard ways? Firstly, there two hazard 
functions because there are two competing risks [16,31], so the survival function 

is written as 𝑆(𝑡) = exp (−∫ ℎ(𝑣)𝑑𝑣
𝑡

0
) where ℎ(𝑡) =  ℎ1(𝑡) + ℎ2(𝑡),  ℎ1(𝑡) is the 

hazard function related to the death event and ℎ2(𝑡) is the disengagement hazard 
function. Those hazard function are defined according to the scenarios, in this 
thesis there are three scenarios the first one is a Weibull with shape parameters 
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equal to one, the second is again Weibull with shape parameters different to 1 and 
in the thirst scenario time follows the Gompertz distribution. The 𝑆(𝑡) = 𝑢 is 
solved with numerical algorithms like the Newton -Rapson. The solution is unique 
because the survival function is monotonous function. For all three scenarios,  
1000 rounds of simulations are conducted.   

     After accumulating the survival time,  the cause of failure needs to be simulated. 
There are two causes of failures death and disengagement,  those indicators are 
simulated using Bernoulli distribution. Death cause of failure is simulated with 
probability 𝑝 and the disengagement with probability 1 − 𝑝. The probability 𝑝 is 

equal to 
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
=

ℎ1(𝑡)

ℎ2(𝑡)

1+
ℎ1(𝑡)

ℎ2(𝑡)

  [31].  In other words,  both ℎ1(𝑡) and ℎ2(𝑡) are found 

for each individual and the probably 𝑝 =
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
  is calculated which is the 

probability experiencing the first event (death).  

          Nevertheless, the hazard functions are functions of other independent 
variables like Gender, Age, and CD4. Therefore, the problem is to assign a 
distribution to them that best matches the descriptive statistics in Table 1. To 
begin with, the Gender distribution is a Bernoulli one with the probability of being 
male equal to the males of the study divided by the total sample population. So, 
Gender follows Bernoulli(0.335) but Age and CD4 are the trickiest. I assume at the 
start that Age and CD4 follow a normal distribution with means equal to the 
weighted medians of Table 1 and with variance, a variance in which the q0.25 and 
q0.75 are close to the weighted quantiles of Table 1. For example, the weighted 

mean–median of Age distribution is  
37.9∗3382 + 35.5∗349+37.3∗445+35.4∗2481

6657
 and 

corresponding mean of CD4 distribution is  
174∗3382+145∗349+88∗445+155∗2481

6657
.  This 

procedure is repeated for the q0.25 and q0.75. After acquiring the weighted q0.25 
and q0.75 then with the trial-and-error method,  I found the variance that has 
q0.25 almost equal to the weighted q0.25 and then I found a second variance that 
has q0.75  almost equal to the weighted q0.75. After having the two variances, I 
calculate the mean of them. Then this variance is the requested one. In the end Age 
and CD4 are simulated from 𝑁(36.80,9.852) and 𝑁(159.65,115.42) respectively 
but because sometimes Age and CD4 take negative values, I take the absolute value 
of them. In the end Age and CD4 follow an absolute version of Normal distribution.  
          Next, there are three more important issues, the first one is related to the 
censoring, the second one to the assignment of missingness, and the third one with 
the control of the probability the patients died versus being disengaged. In the EA-
IeDEA study sample, the proportion of censoring is 50.8% and it is known that the 
censoring time follows an exponential distribution with a known rate [16]. 
Therefore, again with the method of trial and error, a rate for the exponential 
distribution is searched in order to have a censoring probability equal to 0.508. In 
practice, the optimal rate is a parameter in which the mean of all censoring 
probabilities that are found in each simulation round is equal to 0.508. The 
creation of the missing probability model was hard and somehow I copied the 
Naïve Bayes logic. Basically, in [16] the model of missing probability is applied to 
non-censored observations, and the same is implemented here. In practice, the 
probability model is a function of time to event and the other three covariates 
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because this type of model satisfies the MAR assumption. The missing probability 
is a multiplication of two other probabilities, the first one is a completely random 
choice and the second one is dependent on the descriptive statistics Table 1. The 
first probability is related to time to event, particularly the observations that have 
time lower than the mean of all simulated time 0.25 quantiles has 0.4 probability 
to be missing. The observation which has time to event bigger than the mean of all 
simulated time 0.75 quantiles has also a 0.4 probability of being missing. As a 
result, the observations that belong to the middle have a 0.2 probability of being 
missing. This choice is completely random, and it somehow neglects the 
observations with big or small time to event time. The second probability is the 
interested one, it is derived from the multiplication of several densities. Especially, 
this probability is equal to the missing density divided by the sum of missing and 
observed density. The missing density is a multiplication of 3 densities, the first 

one is the probability distribution of gender with the parameter 𝑝 =
816

2481
=  0.33 

Table 1 which is the number of missing males derived by the number of missing 
patients. The second density is a normal distribution with a mean equal to 155 
cells/μ1 and a standard deviation equal to 106.2 cells/μ1 (the standard deviation 
is calculated in the same way as the previous standard deviation of the Age and 
CD4 distributions). The third density is a normal distribution with mean and 
standard deviation equal to 35.4 years and 9.48 years respectively. This missing 
density counts how much the non-censored observation is fitted to the 
distribution of missing values. In opposition to the missing density, the 
observation density counts how much a non-censored observation fits to the 
distribution of dead or disengaged people. The non-missing Gender distribution is 

Bernoulli one with probability 𝑝 =
139+ 191

349+445
 ,  to the numerator are the males who 

have experienced an event and the denominator is both females and males. The 
other two densities are normal distributions with a mean equal to 36.51 years and 
113.05 cells/μ1 for Age and CD4 respectively. The standard deviation of those two 
distributions is 10.07 years and 108.4 cells/μ1. The two means of the observed 
density are the weighted medians of dead and disengaged patients. The standard 
deviation is calculated with the trial-and-error method, particularly first finding 
the weighted q0.25 and q0.75 of each covariate. Then, find a standard deviation 
that the q0.25 is almost the same as the weighted q0.25 and a second standard 
deviation that the q0.75 is almost the same as the weighted q0.75 and ultimately 
as standard deviation take the mean of the two previous standard deviations. The 
probability which is equal to the missing density divided by the sum of observed 
and missing densities is almost equal to one when the observed density is equal 
to zero and zero if the missing density is low compared to the observed density. 
After calculating the multiplication of two probabilities pfinal, which the first one 
is related to time to the event and the second one to the rest of covariates, one final 
rate is needed to be calculated with the trial and error method. This rate is 
multiplied by the pfinal and the result of the two above is used to assign 
missingness to the observations. For each uncensored observation, a random 
number that follows a uniform(0,1) distribution is simulated, if this simulated 
value is smaller than the previous result, the patient is missing. The rate is 
introduced because the probability of missingness given the subject is uncensored 
is 0.758, therefore the rate is calculated with the trial-and-error method. The rate 
is optimized with the purpose of achieving a probability of missingness equal to 
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0.758. The third important issue is, that the probability of an event being the first 
one (death) is sometimes bigger than the probability of the second event leading 
to the totally unbalanced distribution of event type. In order to counter this issue, 
a final rate is introduced which tries to change the scale parameter of the second 
event (disengagement ) in order to achieve 0.56 probability of the event being 
death only in the beginning. This rate tries to control the probability of events 
because it is observed that if the scale of both events are almost random then there 
is a situation in which all cause of failure is death or disengagement. The only issue, 
I can’t control is the final distribution of the patients who are not censored or 
missing. In general, the observed dead patients are almost two times more than 
the observed disengaged ones because the time to the first event is smaller than 
the time to the second event. As a result, the most censored observation is 
disengaged patients. One can say that if the patients with the first and second 
events have different censoring distribution then the problem can easily be solved 
but the problem is then that the censoring stops being independent right 
censoring. Independent censoring states that the probability of censoring is 
random and the same to each patient, or each censored or uncensored patient has 
the same probability of being censored.  
 

4.2.3 First Scenario   

   In the first and most plain scenario,  the hazard functions for both events are 
steady as time changes. This is implemented by assigning Weibull distribution to 
both hazard function with shapes equal to 1. Then,  for the first event I take the 
scale parameter from the [32],  it is the scale value of the unadjusted model. So, for 
the first event the scale of the Weibull parameter is exp(−1.2) ≈ 0.3 rounded (in 
the R program I always use non rounded values  0.3011942 ). Therefore,  If I take 
the second scale which is in [32],  the probability of death is almost 1. So,  I need a 
modified scale for the second event,  after some trial-and-error,  I find out that 
1.95 × exp (−1.2) ≈ 0.59 is the desirable scale value for the second event because 
the probability of being dead is equal to the same sampled probability 0.56. The 
two hazard functions are  

ℎ1(𝑡) = exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1 

ℎ2(𝑡) = exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2 

The first event is death,  the second event is disengagement and 
𝑏11, 𝑏12, 𝑏13, 𝑏21, 𝑏22, 𝑏23 and the log hazard ratios appeared to Table 3. For 
instance,  𝑏11 = 0.2151114 and 𝑏22 =-0.02876821. The united hazard function is  

ℎ(𝑡) = ℎ1(𝑡) + ℎ2(𝑡) 

and the simulation of time is implemented through the survival function  

𝑆(𝑡) = 𝑆1(𝑡) × 𝑆2(𝑡) 

Where  

𝑆1(𝑡) = exp (−exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1 × 𝑡) 

𝑆2(𝑡) = exp (− exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2 × 𝑡) 
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So,  for every observation a random value for uniform(0,1) distribution is 
simulated and the simulated time is the solution to the 𝑆(𝑡) = 𝑢 equation. This 
equation in this scenario has direct solution but I use Newton-Rapson method 
because I need this method for the rest scenarios. After having the requested 

times,  the probability of cause of failure being dead is  
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
. The cause of 

failure with known probabilities is easily simulated with the inverse method. In 
this scenario, If I used the scale for disengagement in [32], almost all causes of 
failure were death. Therefore, I tweaked scale2 in order to have the mean 
probability of being dead from all simulations equal to 0.56. Then, I proceed to the 
second part, the assignment of censoring. I know from the study that 50.8% of 
observations are censored, also I know from [16] that the censoring time is 
simulated from an exponential distribution. Then, I simulated the censoring time, 
and as the final time, I took a minimum of two times the censored and uncensored. 
The rate of the exponential distribution is estimated with the trial-and-error 
method and it is equal to 0.547 which causes the mean probability of being 
censored equal to 0.508. The assignment of missingness is the hard and 
complicated part. Again, in this situation, there is a desirable rate that is estimated 
with trial and error with the purpose of achieving a mean missingness of 75.8% 
on the uncensored patients. The total non-rated missing probability is a 
multiplication of two probabilities. The first one is a totally random choice, the 
uncensored observations that have time to event lower than 0.26 have a 
probability of missingness equal to 0.4. The observations that are between 0.26 
and 1.28 have a probability of missingness equal to 0.2 and the rest observations 
have 0.4. The 0.26 and 1.28 are the mean q0.25 and q0.75 of all simulations. The 
second probability is a function of Gender, Age, and CD4. It is equal to the density 
of missingness divided by the sum of observed and missing density. Again, the 
missing density is equal to        𝑓𝐺𝑒𝑛𝑑𝑒𝑟(𝑔𝑒𝑛𝑑𝑒𝑟, 0.33) × 𝑓𝐴𝑔𝑒(𝑎𝑔𝑒, 35.4,9.48) ×

𝑓𝐶𝐷4(𝐶𝐷4,155,106.2) 

Where 𝑓𝐺𝑒𝑛𝑑𝑒𝑟 is a Bernoulli distribution with missing probability 0.33,  𝑓𝐴𝑔𝑒  and 

𝑓𝐶𝐷4 are Normal distribution with mean, variance equal to  35.4,  9.48^2  and 
155,106.2^2 respectively. Those number are derived from Table 1. The observed 
density is equal to  

𝑓𝐺𝑒𝑛𝑑𝑒𝑟(𝑔𝑒𝑛𝑑𝑒𝑟, 0.42) × 𝑓𝐴𝑔𝑒(𝑎𝑔𝑒, 36.5,10.08) × 𝑓𝐶𝐷4(113.05,108.4) 

Where 𝑓𝐺𝑒𝑛𝑑𝑒𝑟 is a Bernoulli distribution with missing probability 0.42,  𝑓𝐴𝑔𝑒  and 

𝑓𝐶𝐷4 are Normal distribution with mean, variance equal to  36.5, 10.08^2  and 
113.05,108.4^2 respectively. The way to derive those number is explained in the 
previous paragraph. Therefore,  after calculating the multiplication of two 
probabilities,  I find the appropriate number that if it is multiplied by the previous 
probabilities , the  mean probability of missingness supposing the observation are 
uncensored  is 0.758.  This number is equal to 5.329.  

    Next there are some graphs that are trying to clarify the relations between the 
variables. Those graphs are from the 250th sample  
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Graph 1: The distribution of time in the four situations (scenario 1) 

 
Graph 2: The interaction of time with the gender and with situation (scenario 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph 3: The relation of time and age (years) (scenario 1) 
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Graph 4: The relation between the time and CD4 (cells/μ1) (scenario 1)  

 
 
The observations used for Graph 3 and Graph 4 are 1000 and they are randomly 
chosen from the 250th dataset. The graphs successfully depict the missing 
probability model; specifically,  most observations with the two desirable events 
are located between two specific time values 0.26 and 1.28. Also, females have, in 
general, a bigger median time to either experience the event or be censored or 
missing. Also, it is observed that the censored times follow an exponential 
distribution. 
 
 
 
 
 
 
 
 
Table 4: The descriptive statistics of all simulations.  
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 Cause of failure  

In Care 
(N≈3384)*** 
n(%) 

Disengagement 
(N≈323) 
n(%) 

Death 
(N≈470) 
n(%) 

Missing 
(N≈2480) 
n(%) 

Gender 
Female 

 
2321(68.6)              186(57.6)                 261(55.6)               1664(67.1) 

Male 1063(31.4) 137(42.4) 209(44.4) 816(32.9) 

Mean:       Median(IQR) Median(IQR) Median(IQR) Median(IQR) 

Age* 37.1(30.6,43.7) 35.1(28.2,42.1) 39.2 (32.3,46.2) 36.1(29.5,42.6) 

CD4** 169(95,245) 148(69,214) 106(49,178) 163(91, 238) 

*At Art initiation in years,  **At Art initiation in cells/µl *** The mean number of 
observations at each simulation.  

 It is observed that there are various similarities with Table 1. For example, the 
patients who are still in care have almost the same descriptive statistics as 
the Table 1. Also, the same applied to the variable Age; namely, the median is 
bigger at Death and lower at Disengagement and Missing which is similar to Table 
1. The percentage of missing female patients is more than the percentage of dead 
and disengaged ones similar to Table 1. Finally, dead patients have the lowest CD4 
and this is similar to the simulated data. In general, the descriptive patterns have 
been adequately preserved but there are some insignificant number deviances.  
 
Table 5 :Descriptive statistics for the number of patients and time to event  

 Cause of failure  

In Care 
Median(IQR) 

Disengagement 
Median(IQR) 

Death 
Median(IQR) 

Missing 
Median(IQR) 

Patients*  3384(3358,3385) 323(311,333) 470(457,484) 2480(2455,2506) 

Time ** 0.65(0.27,1.3) 0.63(0.42,0.91) 0.63(0.41,0.92) 0.64(0.2,1.5) 

*For each simulation,  I keep the number of patients in each category. Those 
numbers which are indicated are the quantiles of them.  
**It is the mean of all medians and IQRs of each simulation.  
  
     In practice, there is no actual information about the time to event [16]. 
Specifically, there are no descriptive statistics about time and the only information 
given to the paper is about the censoring and the missingness. In addition, it is not 
known the actual unit of time (days, months, or years) and the implemented Cox 
models don’t give any evidence about the time because there is not a fixed term 
(proportionally) in opposition to the parametric Weibull model that the scale 
parameter is basically the fixed term. More information about the simulation code 
is given in the Appendix.  
 

 

4.2.4 Second Scenario   
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The second scenario follows the same methodology as the first one with the 
difference that the hazard function is not a steady function as time changes. Both 
the shape parameters of the hazard function are taken from the unadjusted 
column in [32]. The shape parameter for the first event (death) is equal to 0.584 
and the second one is equal to 0.931. The scale for the first event is 𝑒𝑥𝑝(−1.2) ≈
0.3 and for the second event is  1.028 × 𝑒𝑥𝑝(−1.2) ≈ 0.31. The scale for the second 
event is estimated via trial and error and it satisfies the first criteria which is that 
the mean percentage of the patients being dead is equal to 0.56. The hazard 
functions are  

ℎ1(𝑡) = exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4)× 𝑠𝑐𝑎𝑙𝑒1× 𝑠ℎ𝑎𝑝𝑒1× 𝑡
𝑠ℎ𝑎𝑝𝑒1−1 

ℎ2(𝑡) = exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4)× 𝑠𝑐𝑎𝑙𝑒2× 𝑠ℎ𝑎𝑝𝑒2× 𝑡
𝑠ℎ𝑎𝑝𝑒2−1 

The time to event is simulated from the survival function  

𝑆(𝑡) = 𝑆1(𝑡) × 𝑆2(𝑡) 

Where  

𝑆1(𝑡) = exp (− exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1 × 𝑡
𝑠ℎ𝑎𝑝𝑒1) 

𝑆2(𝑡) = exp (− exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2 × 𝑡
𝑠ℎ𝑎𝑝𝑒2) 

The methodology is exactly the same as scenario one; namely, the time to the event 
is estimated via the Newton-Rapson method. After,  the calculation of the cause of 
failure being the first event  is stimulated using the probability which is equal to 
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
.  Then, the second rate is the rate for exponential distribution which the 

censoring time is simulated. The estimated rate is equal to 0.3435 leading to a 
0.508 mean probability of a patient being censored. The 0.25 and  0.75 quantiles 
of the observed and non-censored time to event are equal to 0.18 and 1.6 
respectively.  The final rate is equal to 5.36 which causes on average 75.8% of 
uncensored patients to become missing ones.  The rest distributions are the same 
and the patterns are supposed to be similar. 
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Table 6: The descriptive statistics of all simulations in Scenario 2.  

 Cause of failure  

In Care 
(N≈3383)*** 

n(%) 

Disengagement 
(N≈258) 

n(%) 

Death 
(N≈534) 

n(%) 

Missing 
(N≈2482) 

n(%) 

Gender 
Female 

 
2331(68.9)                                149(57.8)                               295(55.2)                             1655(66.7) 

Male 1052(31.1) 110(42.2) 239(44.8) 827(33.3) 

Mean:                      Median(IQR) Median(IQR) Median(IQR) Median(IQR) 

Age* 37.0(30.4,43.6) 34.9(28.0,41.8) 39.0(32.1,46.0) 36.2(29.7,42.8) 

CD4** 171(97,248) 139(71,215) 106(49,179) 160(89, 235) 

Patients**** 3383(3355,3411) 258(248,269) 534(520,548) 2482(2455,2510) 

Time***** 1.16(0.46,2.42) 0.71(0.4,1.12) 0.56(0.3,0.98) 0.64(0.12,2) 

*At Art initiation in years, **At Art initiation in cells/µl, *** The mean number of 
observations at each simulation, ****For each simulation, I keep the number of 
patients in each category. Those numbers which are indicated are the quantiles of 
them. *****It is the mean of all medians and IQRs of each simulation.  
 

It is observed that Table 6 is almost similar to Table 5 and Table 4  which are similar 
to Table 1. Also,  in average 534 patients are dead and 258 are disengaged leading 
to  2 dead patients for 1 disengaged which is bigger rate than Table 4.  The only 
difference is the distribution of time in the four categories-situations. The median 
time of patients which are still in care is bigger  than the rest of them. This is 
dissimilar to the Table 5 and therefore some visual information is necessary. This 
time, I choose the 500th sample of the second scenario to visualize the internal 
patterns. From graphs,  someone can observe that the average median time is 
pretty much the same in the two genders regardless of the situation. Also, more 
patients with relatively small time to event are missing compare patients with big 
times. From graphs,  I observe that patients with big times are in the most 
situations censored.  

Graph 5: The distribution of time in the four situations (scenario 2 ).  
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Graph 6: The interaction of time with the gender and with situation (scenario 2) 

 
Graph 7: The relation of time and age (years) (scenario 2) 

 
 
 
 
 
Graph 8: The relation between the time and CD4 (cells/μ1) (scenario 2)  
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4.2.5 Third Scenario  

The third scenario follows the same methodology as the first and second ones with 
the difference that time to event follows the Gompertz distribution. Shape 
parameters of the hazard function are taken from the unadjusted column in [32]. 
The shape parameter for the first event (death) is equal to 0.584 and the second 
one is equal to 0.931. The scale for the first event is  0.584 × 𝑒𝑥𝑝(−1.2) and for the 
second event is  0.704 × 0.931 × 𝑒𝑥𝑝(−1.2) ≈ 0.197. The scale for the second 
event is estimated via trial and error and it satisfies the first criteria which is that 
the mean percentage of the patients being dead is equal to 0.56. The hazard 
functions are  

ℎ1(𝑡) = exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4)× 𝑠𝑐𝑎𝑙𝑒1× exp(𝑠ℎ𝑎𝑝𝑒1× 𝑡) 

ℎ2(𝑡) = exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4)× 𝑠𝑐𝑎𝑙𝑒2× exp(𝑠ℎ𝑎𝑝𝑒2× 𝑡) 

The time to event is simulated from the survival function  

𝑆(𝑡) = 𝑆1(𝑡) × 𝑆2(𝑡) 

Where  

𝑆1(𝑡) = exp (− exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) ×
𝑠𝑐𝑎𝑙𝑒1

𝑠ℎ𝑎𝑝𝑒1
× (exp(𝑠ℎ𝑎𝑝𝑒1 × 𝑡) − 1)) 

𝑆2(𝑡) = exp (− exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) ×
𝑠𝑐𝑎𝑙𝑒2

𝑠ℎ𝑎𝑝𝑒2
× (exp(𝑠ℎ𝑎𝑝𝑒2 × 𝑡) − 1)) 

The methodology is the same as scenario 1 and 2; namely, the time to the event is 
estimated via the Newton-Rapson method. After, the calculation of the cause of 
failure being the first event  is stimulated using the probability which is equal to 
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
.  Then, the second rate is the rate for exponential distribution which the 

censoring time is simulated. The estimated rate is equal to 0.517 leading to a 0.508 
mean probability of a patient being censored. The 0.25 and  0.75 quantiles of the 
observed and non-censored time to event are equal to 0.5 and 1.7 respectively.  The 
final rate is equal to 5.306 which causes on average 75.8% of uncensored patients 
to become missing ones.  The rest distributions of the other variables are the same 
and the patterns are supposed to be similar. 

Table 7: The descriptive statistics of all simulations in Scenario 3.  

 Cause of failure  

In Care 
(N≈3379)*** 

n(%) 

Disengagement 
(N≈291) 

n(%) 

Death 
(N≈506) 

n(%) 

Missing 
(N≈2483) 

n(%) 

Gender 

Female 

 
2331(68.0)                               149(58.0)                              295(56.0)                                1655(67.7) 

Male 1052(32.0) 110(42.0.) 239(44.0) 827(32.3) 

Mean:                     Median(IQR) Median(IQR) Median(IQR) Median(IQR) 

Age* 37.0(30.4,43.6) 35.1(28.2,42.1) 39.1(32.2,46.1) 36.3(29.8,42.8) 
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CD4** 167(93,244) 140(71,216) 108(50,181) 165(93, 241) 

Patients**** 3379(3350,3403) 291(278,302) 506(492,522) 2483(2456,2507) 

Time***** 1.06(0.39,1.92) 1.08(0.77,1.41) 1(0.7,1.35) 1.06(0.39,1.92) 

*At Art initiation in years, **At Art initiation in cells/µl, *** The mean number of 
observations at each simulation, ****For each simulation, I keep the number of 
patients in each category. Those numbers which are indicated are the quantiles of 
them. *****It is the mean of all medians and IQRs of each simulation.  
     
     It is observed that Table 7 is almost similar to Table 5, Table 4, and Table 6 which 
are similar to Table 1. Also, on average 506 patients are dead and 291 are 
disengaged leading to 7 dead patients for 4 disengaged which is a bigger rate 
than Table 4  but smaller than Table 6. This time, I chose the 750th sample of the 
third scenario to visualize the internal patterns. From the graphs, someone can 
observe that the average median time is pretty much the same in the two genders 
regardless of the situation. Also, more patients with relatively small time to event 
are missing compared to patients with big times. From the graphs, I observe that 
patients with big times are in most situations censored. In the following plots, the 
median time in two genders across all four categories is pretty much the same. It 
is observed that observations with observed time are between some values (0.25 
and 0.75 quantiles ). Finally, after probably the 0.75 quantile of the uncensored 
(before the assignment of missingness) observations, most of the observations are 
missing.  

 

 

 

 

 

 

Graph 9: The distribution of time in the four situations (scenario 3).  
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Graph 10: The interaction of time with the gender and with situation (scenario 3) 

 
 
Graph 11: The relation of time and age (years) (scenario 3) 

 
 
 
 
 
Graph 12: The relation between the time and CD4 (cells/μ1) (scenario 2)  
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5 Results  

5.1 Bayesian Parametrization  

5.1.1 Bayesian Parameters for all three scenarios 

      For all three scenarios, the prior distribution of the survival coefficients is a 
multivariate normal distribution with a mean equal to the log hazards ratios 
of Table 3. I assume that the coefficients are independent with covariance equal to 
zero and with standard deviation equal to the corresponding standard deviations 
of Table 3. Therefore, the covariance matrix for each event is a diagonal one with 
variances equal to the square of the standard deviations. The initial point for the 
Metropolis-Hastings chains is always equal to the mean of the multivariate normal 

distribution; namely, the log hazard ratios of Table 3. The generator of the 
coefficients has a mean equal to the previous simulated vector and covariance 
matrix which is calculated with respect to the acceptance probability 
approximately being 0.4. A similar concept is applied to the shape and scale 
parameters of the Weibull distribution. The prior distribution of the shape and 
scale parameters has a shape parameter equal to the true value of the parameter 
and a scale equal to one. The generator of the shape and scale parameters follows 
a normal distribution with mean equal to the previous value and standard 
deviation with respect to the probability of acceptance approximately being 0.5. 
The total number of chains is two and each chain starts from the same initial value 
and simulates 3000 values, after a 500 burn period, one simulated value per 25 
simulated values is chosen. In the end, 100 final simulated values for each chain 
are chosen leading to 200 final simulated values for each coefficient. Practically, 
there are 10 desirable parameters for each simulated data. In conclusion, 6000 ×
 10 ×  1000 = 60000000  values are simulated for each scenario, and it took 
approximately  20 hours to finish one whole simulation for one specific Bayesian 
scenario. In addition, for every scenario, the coefficients of the predictive model 
are simulated. The number of predictive coefficients is 5; as a result, there are 
6000 ×  5 ×  1000 =30000000 extra simulations for every scenario. Therefore, 
there are three scenarios that lead to 90000000 ×  3 simulations. That is the 
reason why the two unprocessed chains for each coefficient have only 3000 
simulations each and start with the same starting point. 

     Finally, the missing probability model in both methods plays a crucial role and 
therefore the true predictive probability model is compared to the final estimated 
predictive models of both MPPLE and Bayesian methodology. For relative reasons, 
the model is again described in order for the reader to better understand the 
model. The Bayesian Weibull Competing Risk model with missing event types has 
two stages, the first one is the imputation of the missing observations and the 
update of the missing probability model, and the second stage is the simulation of 
the coefficients using a complete dataset. In the first stage the missing probability 
model which is used to impute the missing events, before the loop begins, is 
estimated using only the observed estimations and then it is re-estimated again 
with the full complete imputed dataset. After that, the final coefficients of the 
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probability model are simulated from a multivariate normal distribution with a 
mean equal to the previous re-estimated coefficients and with a covariance matrix 
the covariance matrix of the previous re-estimated coefficients. Then in the next 
round again the missing values are imputed and again the coefficients of the 
missing probability model are simulated from the multivariate distribution with a 
mean equal to the re-calculated coefficients which are estimated, using the typical 
maximum likelihood method, from the last complete imputed dataset. This 
procedure leads to the final true missing probability model. In other words, the 
probability model in the end after some burn-in rounds convergences to the true 
missing probability model. Nevertheless, in this simulation study, it well known 
from the start the form of the missing probability model and that is the model 
which describes the probability of the cause of failure being the first one is equal 
to the hazard function of the first event divided by the sum of the two hazard 
functions. As a result, a comparison between the estimated and the true predictive 
model is possible.  

       Also, for the MPPLE methodology in every dataset, the predictive probability 
is estimated by the current dataset. The probability model is a general linear 
model with an outcome equal to one for the first cause of failure and equal to zero 
for the second one. The covariates for both three scenarios are the natural 
logarithm of the time to event, the Gender, Age, and CD4. In every dataset, the 
general linear model is estimated and then its predictive probabilities are the 
weights of the Cox regression model. Last but not least, from the comparison of 
the two estimated predictive models with the true one, an analyst can compare 
which method handles the missing cause of failure. Both final predictive models 
for every scenario are derived from the coefficient aggregation of the 1000 
predictive models.  

5.1.2 First Scenario 

       For the first event (death), the multivariate normal distribution has a 

covariance matrix equal to 0.00000009× (
1 0 0
0 1 0
0 0 1

) leading to a 0.46 mean 

acceptance probability. For the scale parameter, which is equal to 0.301, the 
standard deviation of the generator is equal to 0.014 and for the shape parameter, 
which is equal to one, the standard deviation of the generator is 0.034 resulting in 
0.51 and 0.53 mean acceptance probability. The starting points for the scale and 
shape parameters are 0.301 and 1 respectively. For the second event 
(disengagement), the multivariate normal distribution has a covariance matrix 

equal to 0.00000007× (
1 0 0
0 1 0
0 0 1

)   leading to 0.41 mean acceptance probability. 

For the scale parameter, which is equal to 0.587, the standard deviation of the 
generator is equal to 0.034 and for the shape parameter, which is equal to one, the 
standard deviation of the generator is 0.0395 resulting in 0.49 and 0.52 mean 
acceptance probability. The starting points for the scale and shape parameters are 
0.587 and 1 respectively. 
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5.1.3 Second Scenario 

     For the first event (death), the multivariate normal distribution has a 

covariance matrix equal to 0.0000001 × (
1 0 0
0 1 0
0 0 1

) leading to a 0.42 mean 

acceptance probability. For the scale parameter, which is equal to 0.301, the 
standard deviation of the generator is equal to 0.013 and for the shape parameter, 
which is equal to 0.584, the standard deviation of the generator is 0.019 resulting 
in 0.51 and 0.53 mean acceptance probability. The starting points for the scale and 
shape parameters are 0.301 and 0.584 respectively. For the second event 
(disengagement), the multivariate normal distribution has a covariance matrix 

equal to 0.00000008 × (
1 0 0
0 1 0
0 0 1

) leading to 0.41 mean acceptance probability. 

For the scale parameter, which is equal to 0.31, the standard deviation of the 
generator is equal to 0.018 and for the shape parameter, which is equal to 0.931, 
the standard deviation of the generator is 0.038 resulting in 0.52 and 0.51 mean 
acceptance probability. The starting points for the scale and shape parameters are 
0.31 and 0.931 respectively.  

5.1.4 Third Scenario 

For the first event (death), the multivariate normal distribution has a covariance 

matrix equal to 0.0000001 × (
1 0 0
0 1 0
0 0 1

) leading to a 0.43 mean acceptance 

probability. For the Gompertz scale parameter, which is equal to 0.176, the 
standard deviation of the generator is equal to 0.01 and for the Gompertz shape 
parameter, which is equal to 0.584, the standard deviation of the generator is 0.047 
resulting in 0.560 and 0.499 mean acceptance probability. The starting points for 
the scale and shape parameters are 0.176 and 0.584 respectively. For the second 
event (disengagement), the multivariate normal distribution has a covariance 

matrix equal to 0.00000008 ×  (
1 0 0
0 1 0
0 0 1

) leading to 0.404 mean acceptance 

probability. For the Gompertz scale parameter, which is equal to 0.197, the 
standard deviation of the generator is equal to 0.022 and for the Gompertz shape 
parameter, which is equal to 0.931, the standard deviation of the generator is 0.06 
resulting in 0.483 and 0.527 mean acceptance probability. The starting points for 
the scale and shape parameters are 0.197 and 0.931 respectively. 
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5.2 Results and Simulation Metrics  

5.2.1 Evaluation Metrics  

    The bias and its Monte Carlo standard error estimation, Empirical Standard 
Error, Mean Square Error, Average Model Standard error, Relative error of 100%, 
the 0.025 and 0.975 quantiles and finally a 95% confidence interval of the mean 
[16,33] are calculated and indicated in the following tables. Virtually, there are 6 
tables in which they compare the two methods the standard one MPPLΕ method 
and the Bayesian Method. The bias estimate and its Monte Carlo SE of estimate are 

equal  to 
1

𝑛
∑ 𝜃𝑖
𝑛
𝑖=1 − 𝜃 and √

1

𝑛

1

𝑛−1
∑ (𝜃𝑖 − 𝜃̅)2
𝑛
𝑖=1  where 𝑛 are the total number of 

simulations,  𝜃𝑖  is the estimated coefficient of the  ith round of simulations and 𝜃̅ is 

the 
1

𝑛
∑ 𝜃𝑖
𝑛
𝑖=1 . The Empirical Standard Error is the typical standard deviation of the 

simulated coefficients which is equal to √
1

𝑛
∑ (𝜃𝑖 − 𝜃̅)2
𝑛
𝑖=1 . The Mean Square Error 

is equal to 
1

𝑛
∑ (𝜃𝑖 − 𝜃)

2𝑛
𝑖=1   which is basically a squared version of bias estimate. 

The Average Model Standard Error is a square root of mean variance of simulated 

coefficients which is equal to √
1

𝑛
∑ 𝑉𝑎𝑟(𝜃𝑖)

̂𝑛
𝑖=1 . There is a relation that connects the 

Empirical Standard Error and the Average Model Standard Error which is 

𝐸(𝐴𝑀𝑆𝐸2) = 𝐸𝑆𝐸2 [33].The Relative Error × 100% is equal to 
|
1

𝑛
∑ 𝜃̂𝑖
𝑛
𝑖=1 −𝜃|

|𝜃|
100%. 

The 95% quantile interval of the simulated values that is created from the 0.025 

and 0.975 quantiles of all simulated coefficients. Finally, the 95% confidence 
interval of the mean. The bias estimate, the relative error, and the MSE are a way 
to check how similar are the mean of the simulated coefficients with the real ones. 
The Empirical Standard Error is supposed to be equal to the Average Model 
Standard Error to have an adequate convergence. Finally, the quantile interval 
shows the variability of the simulated value, and the confidence interval explains 
the variability of the mean. 

5.2.2 Actual Results  

For each coefficient of the two events, a matrix is represented which has the 
previous simulation metrics for both methods and all 3 scenarios. Also, several 
histograms of the simulated values are represented one for each coefficient and 
one for the Weibull parameters. The R hat values that describe the convergence of 
the Bayesian method are given in the Appendix. The rounding has been conducted 
in four, five, or six decimals. It is observed from Graphs 13-21 that the final chosen 
simulations follow a normal distribution. From Table 8, I observe that the Bias, 
MSE, and relative absolute error are bigger in the MPPLE method than the 
Bayesian one. Also, the target value (the coefficient) belongs to all 95%  confidence 
and quantile intervals. Also, the ESE and AMSE in Table 8 are almost the same in 
the MPPLE method in opposition to the Bayesian one but the ESE and AMSE are 
significantly bigger in the MPPLE method than the Bayesian one. In Table 9, the 
Age coefficient of the first belongs to all 95% confidence intervals except from the 
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MPPLE third scenario. In addition, the ESE and AMSE are similar in the MPPLE 
method and in the Bayesian are almost the same. Both the ESE and AMSE are 
bigger in the MPPLE method. In Table 10, the target value belongs to all 95% 
confidence intervals expected from the Bayesian third scenario. The ESE and AMSE 
are the same in all three scenarios. In Table 11, the Bias, the MSE, and the relative 
absolute error are lower in the Bayesian Method. The target value belongs to the 
95% confidence interval. The ESE and AMSE are similar in the MPPLE method but 
in the Bayesian method are different. Also, the ESE and AMSE are bigger in the 
MPPLE method. In Table 12, the Bias, the MSE, and the relative absolute error are 
bigger in the Bayesian method. The Age coefficient in each event does not belong 
to the 95% confidence interval of the coefficients mean in the third scenario. There 
is a difference in the ESE and the AMSE in the Bayesian method and in the MPPLE 
the ESE and AMSE are bigger than the Bayesian one. In Table 13, the Bias, MSE, and 
relative absolute error are bigger in the MPPLE method but in both methods, they 
are bigger than   2%. The ESE and AMSE are similar in both methods but the ESE 
and AMSE are bigger in the MPPLE method. The Bayesian third scenario does not 
efficiently estimate the CD4 coefficient in relation to the MPPLE. In the Bayesian 
method, the difference between the ESE and AMSE is bigger at the gender 
coefficient and almost zero at the CD4 coefficient. In Tables 14,15 and 16 the 
Bayesian method does not efficiently estimate the scale and shape parameters 
because in most scenarios they do not belong in the 95% confidence interval of 
scale and shape parameters. All in all, the ESE and AMSE in the MPPLE method are 
bigger than the Bayesian one. Nevertheless, the ESE and AMSE are equal in the 
MPPLE method but in the Bayesian, they are not. It seems that both method 
produces valid results, but the Bias in the Bayesian method is less than the MPPLE 
when the assumptions of the Bayesian method are valid. 

Graph 13: Histograms of MPPLE method simulations for the first scenario.  

 
*The red line is the true value of the coefficient.  
Graph 14: Histograms of MPPLE method simulations for the second scenario.  
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*The red line is the true value of the coefficient.  
 
 
Graph 15: Histograms of MPPLE method simulations for the third scenario.  

 
*The red line is the true value of the coefficient.  
 

 

 

Graph 16: Histograms of Bayesian method simulations for the first scenario.  
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*The red line is the true value of the coefficient.  
 
 
 
Graph 17: Histograms of Bayesian method simulations for the second scenario.  

 
*The red line is the true value of the coefficient.  
 
 
 
 
Graph 18: Histograms of Bayesian method simulations for the third scenario.  
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*The red line is the true value of the coefficient. 
 

Graph 19: Histograms of Bayesian method parameter simulations for the first 
scenario.  

 
*The red line is the true value of the parameter. 
 

 

Graph 20: Histograms of Bayesian method parameter simulations for the second 
scenario.  
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 *The red line is the true value of the parameter. 
 
 
Graph 21: Histograms of Bayesian method parameter simulations for the third 
scenario.  
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Table 8: Simulations results for the Gender coefficient (0.2151) of the First event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias 0.0007 -0.00002 0.0016 0.00001 -0.0095 -0.0003 

MCSE 0.0023 0.0002 0.0019 0.0002 0.0022 0.0002 

ESE 0.0721 0.0051 0.0612 0.0052 0.0684 0.0052 

MSE 0.0052 0.00003 0.0037 0.00003 0.0048 0.00003 

AMSE 0.0726 0.0068 0.0618 0.0066 0.0668 0.0069 

RE% 0.328% 0.010% 0.746% 0.004% 4.427% 0.129% 

95%QI (0.066,0.353) (0.205,0.225) (0.093,0.336) (0.204,0.225) (0.068,0.333) (0.205,0.225) 

95%CI (0.211,0.220) (0.215,0.215) (0.213,0.221) (0.215,0.215) (0.201,0.210) (0.215,0.215) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE, Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %, Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 
 
Table 9: Simulations results for the Age coefficient (0. 0095) of the First event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias -0.0001 -0.0003 0.0001 0.0001 -0.0010 -0.0001 

MCSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

ESE 0.0036 0.0032 0.0032 0.0029 0.0032 0.0028 

MSE 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

AMSE 0.0036 0.0024 0.0031 0.0022 0.0033 0.0024 

RE% 1.073% 2.706% 0.809% 0.937% 10.695% 0.772% 

95%QI (0.002,0.017) (0.003,0.015) (0.004,0.016) (0.004,0.015) (0.002,0.015) (0.004,0.015) 

95%CI (0.0092,0.0097) (0.0091,0.0095) (0.0094,0.0098) (0.0094,0.0098) (0.0083,0.0087) (0.0093,0.0096) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE, Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %, Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 
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Table 10: Simulations results for the CD4 coefficient (-0.0027) of the First event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias -0.00004 -0.000006 <0.000001 0.00001 0.0001 0.0002 

MCSE 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

ESE 0.0004 0.0004 0.0003 0.0003 0.0004 0.0004 

MSE <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 

AMSE 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 

RE% 0.144% 0.211% 0.005% 0.574% 3.288% 7.881% 

95%QI (-0.004,-0.002) (-0.004,-0.002) (-0.003,-0.002) (-0.003,-0.002) (-0.003,-0.002) (-0.003,-

0.002) 

95%CI (-0.0028,-0.0027) (-0.0028,-
0.0027) 

(-0.0028,-
0.0027) 

(-0.00274,-
0.0027) 

(-0.0027,-
0.0026) 

(-0.0026,-
0.0025) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE, Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %, Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 
 
Table 11: Simulations results for the Gender coefficient (0. 1398) of the Second event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias -0.0005 0.000003 -0.0035 -0.00003 0.0089 0.0001 

MCSE 0.0028 0.0001 0.0033 0.0001 0.0031 0.0001 

ESE 0.0880 0.0047 0.1055 0.0047 0.0976 0.0047 

MSE 0.0077 0.00002 0.0111 0.00001 0.0096 0.00002 

AMSE 0.0898 0.0055 0.1034 0.0058 0.0974 0.0059 

RE% 0.348% 0.002%  2.500% 0.019% 6.384% 0.070%  

95%QI (-0.037,0.308) (0.131,0.148) (-0.063,0.347) (0.131,0.148) (-0.036,0.340) (0.130,0.149) 

95%CI (0.134,0.145) (0.139,0.140) (0.130,0.143) (0.139,0.140) (0.143,0.155) (0.1396,0.1401) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE, Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %, Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 
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Table 12: Simulations results for the Age coefficient (-0.02877) of the Second event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias -0.00003 0.0001 0.0001 0.0001 -0.0004 0.0006 

MCSE 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 

ESE 0.0043 0.0026 0.0049 0.0027 0.0047 0.0027 

MSE 0.00002 0.00001 0.00001 0.00001 0.00002 0.00001 

AMSE 0.0042 0.0022 0.0048 0.0024 0.0046 0.0024 

RE% 0.312% 0.401% 0.301% 0.493% 1.489% 2.111% 

95%QI (-0.037,-0.020) (-0.034,-0.023) (-0.038,-0.019) (-0.034,-0.023) (-0.038,-0.020) (-0.033,-

0.023) 

95%CI (-0.0291,-0.0285) (-0.029,-0.028) (-0.0290,-0.0284) (-0.0288,-0.0285) (-0.0295,-0.0289) (-0.0283,-
0.0280) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE,  Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %,  Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 

Table 13: Simulations results for the CD4 coefficient (0. 000296) of the Second event.  
Scenario 1 2 3 

Method MPPLE Bayesian MPPLE Bayesian MPPLE Bayesian 

Bias -0.00002 -0.00001 -0.00003 -0.00001 0.00001 0.00003 

MCSE 0.00001 0.000003 0.00002 0.00001 0.00001 0.000003 

ESE 0.0004 0.0001 0.0005 0.0001 0.0005 0.0001 

MSE <0.000001 <0.0000001 <0.000001 <0.000001 <0.000001 <0.000001 

AMSE 0.0004 0.0002 0.0005 0.0002 0.0005 0.0002 

RE% 5.550% 2.431% 10.070% 2.230% 2.091% 10.445% 

95%QI (-0.0006,0.0011) (0.00001,0.0005) (-0.0007,0.0012) (0.0001,0.0005) (-0.0006,0.0011) (0.0001,0.0005) 

95%CI (0.00025,0.00031) (0.00028,0.00030) (0.00024,0.00030) (0.00028,0.0003) (0.00027,0.00033) (0.00032,0.00033) 

MPPLE, maximum pseudo-partial likelihood; Bayesian, Bayesian Weibull 
Competing Risk model with missing events type; MCSE, Monte Carlo Standard 
estimate of bias; ESE, Empirical Standard Error; MSE, mean square error; AMSE, 
Average Model Standard error; RE %, Relative absolute error %; 95QI, the 0.025 
and 0.975 quantile of the simulated coefficients-parameters; 95%CI the 95% 
Confidence Interval of the coefficients-parameters mean. 
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Table 14: The Evaluation of Scale and Shape parameters of the Bayesian Weibull 
Model in the first scenario.  

Event Death Disengagement 

Parameter Scale Shape Scale Shape 

True Value 0.3012 1 0.5873 1 

Bias -0.0059 0.0018 0.0014 0.0040 

MCSE 0.0013 0.0015 0.0019 0.0019 

ESE 0.0426 0.0474 0.0604 0.0603 

MSE 0.0019 0.0022 0.0036 0.0036 

AMSE 0.0327 0.0468 0.0551 0.0586 

RE% 1.9680% 0.1836% 0.231% 0.396% 

95%QI (0.233,0.399) (0.911,1.097) (0.483,0.719) (0.893,1.126) 

95%CI (0.304,0.310) (0.999,1.005) (0.585,0.592) (1.000,1.008) 

MCSE, Monte Carlo Standard estimate of bias; ESE, Empirical Standard Error; MSE, 
mean square error; AMSE, Average Model Standard error; RE %, Relative absolute 
error %; 95QI, the 0.025 and 0.975 quantile of the simulated coefficients-
parameters; 95%CI the 95% Confidence Interval of the coefficients-parameters 
mean. 
Table 15: The Evaluation of Scale and Shape parameters of the Bayesian Weibull 
Model in the second scenario.  

Event Death Disengagement 

Parameter Scale Shape Scale Shape 

True Value 0.3012 0.5840 0.3096 0.9310 

Bias -0.0044 -0.0280 0.0050 -0.0059 

MCSE 0.0012 0.0008 0.0012 0.0021 

ESE 0.0365 0.0258 0.0392 0.0654 

MSE 0.0013 0.0014 0.0016 0.0043 

AMSE 0.0296 0.0198 0.0342 0.0610 

RE% 1.454% 4.7912% 1.599% 0.6297% 

95%QI (0.236,0.376) (0.505,0.608) (0.246,0.398) (0.799,1.060) 

95%CI (0.303,0.309) (0.554,0.558) (0.312,0.317) (0.921,0.929) 

MCSE, Monte Carlo Standard estimate of bias; ESE, Empirical Standard Error; MSE, 
mean square error; AMSE, Average Model Standard error; RE %, Relative absolute 
error %; 95QI, the 0.025 and 0.975 quantile of the simulated coefficients-
parameters; 95%CI the 95% Confidence Interval of the coefficients-parameters 
mean. 
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Table 16: The Evaluation of Scale and Shape parameters of the Bayesian Weibull 
Model in the third scenario which data were simulated from a Gompertz 
distribution. 

Event Death Disengagement 

Parameter Scale Shape Scale Shape 

True Value 0.1759 0.5840 0.1974 0.9310 

Estimation 0.269 1.359 0.349 1.768 

ESE 0.0338 0.0693 0.0489 0.1593 

AMSE 0.0280 0.0616 0.0414 0.1289 

95%QI (0.207,0.338) (1.236,1.507) (0.262,0.450) (1.474,2.096) 

95%CI (0.267,0.271) (1.355,1.364) (0.346,0.352) (1.758,1.778) 

True Value, the actual value at which the data were created; ESE, Empirical 
Standard Error; AMSE, Average Model Standard error %;95QI, the 0.025 and 0.975 
quantile of the simulated parameters; 95%CI the 95% Confidence Interval of the 
parameters mean. 

5.2.3 Predictive model  

     In general,  the true from of the predictive probability model is [31]: 

𝑙𝑜𝑔
𝑝1

1 − 𝑝1
= 𝑙𝑜𝑔

ℎ1(𝑡)

ℎ2(𝑡)
 

For every scenario,  the hazard functions are different.  For the first scenario which 
the hazard function is fixed as time changes, the true from of the model is  

𝑙𝑜𝑔
𝑝1

1 − 𝑝1
= 𝑙𝑜𝑔

ℎ1(𝑡)

ℎ2(𝑡)
= 

= 𝑙𝑜𝑔
exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1

exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2
= 

= 𝑙𝑜𝑔
𝑠𝑐𝑎𝑙𝑒1

𝑠𝑐𝑎𝑙𝑒2
+ (𝑏11 − 𝑏21) × 𝐺𝑒𝑛𝑑𝑒𝑟 + (𝑏12 − 𝑏22) × 𝐴𝑔𝑒 + (𝑏13 − 𝑏23) × 𝐶𝐷4 

 

For the second scenario,  the general linear model has the form :  

𝑙𝑜𝑔
𝑝1

1 − 𝑝1
= 𝑙𝑜𝑔

ℎ1(𝑡)

ℎ2(𝑡)
= 

= 𝑙𝑜𝑔
exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1 × 𝑠ℎ𝑎𝑝𝑒1 × 𝑡

𝑠ℎ𝑎𝑝𝑒1−1

exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2 × 𝑠ℎ𝑎𝑝𝑒2 × 𝑡𝑠ℎ𝑎𝑝𝑒2−1
 

= 𝑙𝑜𝑔
𝑠𝑐𝑎𝑙𝑒1 × 𝑠ℎ𝑎𝑝𝑒1

𝑠𝑐𝑎𝑙𝑒2 × 𝑠ℎ𝑎𝑝𝑒2
+ (𝑏11 − 𝑏21) × 𝐺𝑒𝑛𝑑𝑒𝑟 + (𝑏12 − 𝑏22) × 𝐴𝑔𝑒

+ (𝑏13 − 𝑏23) × 𝐶𝐷4 + (𝑠ℎ𝑎𝑝𝑒1 − 𝑠ℎ𝑎𝑝𝑒2) × 𝑙𝑜𝑔𝑡 
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For the third scenario.  The true form of the general linear model is:  

𝑙𝑜𝑔
𝑝1

1 − 𝑝1
= 𝑙𝑜𝑔

ℎ1(𝑡)

ℎ2(𝑡)
= 

= 𝑙𝑜𝑔
exp(𝑏11 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏12 × 𝐴𝑔𝑒 + 𝑏13 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒1 × exp(𝑠ℎ𝑎𝑝𝑒1 × 𝑡)

exp(𝑏21 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏22 × 𝐴𝑔𝑒 + 𝑏23 × 𝐶𝐷4) × 𝑠𝑐𝑎𝑙𝑒2 × exp(𝑠ℎ𝑎𝑝𝑒2 × 𝑡)
 

= 𝑙𝑜𝑔
𝑠𝑐𝑎𝑙𝑒1

𝑠𝑐𝑎𝑙𝑒2
+ (𝑏11 − 𝑏21) × 𝐺𝑒𝑛𝑑𝑒𝑟 + (𝑏12 − 𝑏22) × 𝐴𝑔𝑒 + (𝑏13 − 𝑏23) × 𝐶𝐷4

+ (𝑠ℎ𝑎𝑝𝑒1 − 𝑠ℎ𝑎𝑝𝑒2) × 𝑡 

The hazard function has different form in the third scenario because the time to 
event follows the Gompertz distribution.   

     In all three scenario I use the following form for both Bayesian and MPPLE 
method.  

𝑙𝑜𝑔
𝑝1

1 − 𝑝1
= 𝜃0 + 𝜃1 × 𝑙𝑜𝑔𝑡 + 𝜃2 × 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝜃3 × 𝐴𝑔𝑒 + 𝜃4 × 𝐶𝐷4 

In the first and second scenarios, this form is the appropriate one; nevertheless, in 
the third scenario, the form is wrong because I use instead of. In general, in the 
third scenario, both the Bayesian Weibull and the predictive model are wrong. But 
in the MPPLE method, only the predictive model is wrong, the Cox regression is 
totally true because the hazard function under the Gompertz distribution has the 
proportionality assumption. The next Table represents the actual true form of the 
logistic models and their estimations both in the MPPLE and the Bayesian method. 

    The results are satisfying in both methods as are represented in the following 
Table 17. The estimated predictive models (In both methods) are pretty much near 
the true one. In the third scenario, it is logical that the true fixed term and the true 
time coefficient are different from the true fixed term and the natural time 
coefficient.   
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Table 17: The comparison between the true and estimated predictive models in 
both methodologies. 

First Scenario 

Covariates TRUE MPPLE* Bias  (MPPLE)** Bayesian Bias (Bayesian) 

1 -0.668 -0.679 -0.011 -0.682 -0.014 

𝐺𝑒𝑛𝑑𝑒𝑟 0.075 0.078 0.003 0.079 0.004 

𝐴𝑔𝑒 0.038 0.039 0.001 0.039 0.001 

𝐶𝐷4 -0.003 -0.003 0 -0.003 0 

𝑙𝑜𝑔𝑡 0 -0.001 -0.001 -0.003 -0.003 

Second Scenario 

1 -0.494 -0.515 -0.021 -0.512 -0.018 

𝐺𝑒𝑛𝑑𝑒𝑟 0.075 0.081 0.006 0.082 0.007 

𝐴𝑔𝑒 0.038 0.039 0.001 0.039 0.001 

𝐶𝐷4 -0.003 -0.003 0 -0.003 0 

𝑙𝑜𝑔𝑡 -0.347 -0.356 -0.009 -0.348 -0.001 

Third Scenario*** 

1 -0.115 -0.475 - -0.477 - 

𝐺𝑒𝑛𝑑𝑒𝑟 0.075 0.057 -0.018 0.059 -0.016 

𝐴𝑔𝑒 0.038 0.038 0 0.038 0 

𝐶𝐷4 -0.003 -0.003 0 -0.003 0 

𝑙𝑜𝑔𝑡 - -0.287 - -0.279 - 

*The column MPPLE and Bayesian represent the estimated predictive model (its 
coefficients are the mean of the 1000 predictive models).  
** The columns Bias MPPLE and Bayesian are the estimated coefficients minus the 
true ones.  
*** The true forms and therefore the Bias for them are not given because the actual 
true form does not have the term but. The true coefficient of t is equal to  -0.347. 
Also, the fixed term is different because of the natural logarithm. 
 

5.3 Sensitivity Analysis 

5.3.1 Increasing Prior Variance  

The purpose of the first sensitivity analysis is to check how sensitive are the results 
to the variance of the prior distribution. In other words, it checks if one less 
informative prior distribution can increase the Bias or MSE and if the scale 
reduction factor is dependent on it. The first reason is the important one because 
the deviance of the estimated coefficient informs us how viable and valid the 
method is especially when the variance of the prior distribution is too low Table 3. 
The sensitivity analysis is conducted only for the first scenario because of limited 
time. In order to change the low variance, I multiply both the first and second 
event’s covariance matrixes by 100,000. From, the Bayesian parameters, I change 
the covariance matrix of the generators, for the first event(death) and the second 
event (disengagement),the covariance matrix of both of them is equal 

to  0.00000015× (
1 0 0
0 1 0
0 0 1

) leading to 0.392 and 0.391 mean acceptance 
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probability each. For the scale parameter, which is equal to 0.301, the standard 
deviation of the generator is equal to 0.014 and for the shape parameter, which is 
equal to one, the standard deviation of the generator is 0.036 resulting in 0.51 and 
0.51 mean acceptance probability. The starting points for the scale and shape 
parameters are 0.301 and one respectively. For the scale parameter of the second 
event, which is equal to 0.587, the standard deviation of the generator is equal to 
0.034 and for the shape parameter, which is equal to one, the standard deviation 
of the generator is 0.041 resulting in 0.488 and 0.514 mean acceptance probability. 
The starting points for the scale and shape parameters are 0.587 and one 
respectively.  

Table 17: The evaluation results of the Sensitivity analysis with less informative 
prior in the first scenario. 

Event Death 

Coefficient Gender Age CD4 Scale Shape 

Bias -0.0006 -0.0003 -0.00001 0.0071 0.0020 

MCSE 0.0002 0.0001 0.00001 0.0015 0.0015 

ESE 0.0063 0.0036 0.0004 0.0472 0.0475 

MSE 0.00004 0.00001 <0.000001 0.0023 0.0023 

AMSE 0.0077 0.0027 0.0004 0.0358 0.0471 

RE% 0.265% 2.892% 0.257% 2.353% 0.201% 

95%QI (0.202,0.227) (0.002,0.016) (-0.004,-0.002) (0.227,0.411) (0.912,1.097) 

95%CI (0.214,0.215) (0.0090,0.0095) (-0.00278,-
0.00272) 

(0.305,0.311) (0.999,1.005) 

Event Disengagement 

Coefficient Gender Age CD4 Scale Shape 

Bias -0.0001 0.00003 -0.00004 0.0128 0.0041 

MCSE 0.0002 0.0001 0.00001 0.0032 0.0019 

ESE 0.0066 0.0042 0.0004 0.1002 0.0608 

MSE 0.00004 0.00002 <0.000001 0.0102 0.0037 

AMSE 0.0079 0.0030 0.0004 0.0751 0.0591 

RE% 0.051% 0.088% 14.596% 2.183% 0.4114% 

95%QI (0.127,0.152) (-0.036,-0.020) (-0.0006,0.0010) (0.424,0.818) (0.893,1.124) 

95%CI (0.139,0.140) (-0.029,-0.028) (0.00023,0.00028) (0.594,0.606) (1.000,1.008) 

*MCSE, Monte Carlo Standard estimate of bias ;ESE,  Empirical Standard Error 
;MSE, mean square error ;AMSE, Average Model Standard error ;RE %,  Relative 
absolute error % ;95QI, the 0.025 and 0.975 quantile of the simulated parameters 
; 95%CI the 95% Confidence Interval of the mean.  

First of all, I want to point out that all real coefficients belong to the mean 95% CI 
except the scale parameters which are overestimated, and the CD4 in the second 
event. All true coefficients belong to a 95% quantile interval. The two scale 
parameters, the Age coefficient in the first event and the second event CD4 
coefficient have the biggest relative error in opposition to the Gender coefficient 
in both events which have the lowest. The Bias, MSE, ESE, and AMSE  of the 
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coefficients are insignificantly bigger than the Bias, MSE, ESE, and AMSE   of Table 
8 -13 in the first scenario. The results are satisfying, just the Bias, MSE, and RE% 
have an unimportant rise. Only the CD4 coefficient in the second event has a 
concerning result with a 14.6% relative error. All in all, the less informative prior 
does not significantly impact the results except for the CD4 in the second event 
and the standard error of the coefficients. 
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6. Discussion   

6.1 General  

6.1.1 Bayesian Weibull competing Risk with missing cause of failure  

       The main priority of the master thesis is to describe and model the Bayesian 
Weibull competing risks with missing event types under MAR assumption. The 
strategy is to break down this model into two parts. The first part is about 
modeling the Bayesian Weibull competing risks model which needs a complete 
dataset. The second one is about imputing the missing dataset utilizing one data 
augmentation method and one Bayesian asymptotic property. The concept of the 
specific missing values imputation method is about first imputing the missing 
dataset and then recalculating the coefficients and their covariance matrix using 
the ordinary maximum likelihood method. After that simulate the chosen 
coefficients for this round from a multivariate normal distribution with mean 
equal to the coefficients and with covariance equal to the coefficient’s covariance 
matrix. Then proceed to the simulation of the desirable Bayesian Weibull 
competing risks coefficients and parameters after that the same process is re-
conducted. The simulation of the ‘missing’ coefficients is done by utilizing one 
asymptotic property. The coefficients follow a multivariate normal distribution 
with mean and a covariance matrix the estimated likelihood coefficients and their 
covariance matrix, this asymptotic property is valid when the prior is flat, and the 
number of observations is big enough like this scenario. In practice, the missing 
values are treated as parameters that are simulated from their posterior 
predictive probability. The simulated values from the posterior predictive 
probability are simulated first by simulating the coefficients of the predictive 
model and then they are ‘predicted’ from the model. So, the same process is 
conducted here, first, the simulation of the coefficients is done and then the 
prediction of the missing values using the simulated coefficients is conducted. The 
continuous re-prediction of the missing values is conducted because they are 
unknown parameters, and they are needed for the estimation of the Weibull 
coefficients and the parameters.  
 
         The Bayesian-Weibull-competing-risk part with two events is about 
estimating two Bayesian Weibull survival models. For each event, the other event 
is treated as censored; as a result, the same procedure is conducted twice. The 
Bayesian Weibull survival model is estimated by calculating the coefficients and 
the scale plus shape parameters. In order to simulate the coefficients, the posterior 
distribution of the coefficients is essential. The posterior distribution is impossible 
to calculate because the normalizing constant cannot be estimated; as a result, 
only the likelihood multiplied by the prior distribution is utilized. For this reason, 
a Metropolis Hasting method which belongs to Markov Chain Monte Carlo models 
is chosen instead of a Gibbs one. Particularly, a Metropolis Hasting with Random 
Walk is chosen because it is easier to program, and all parameters are easily tuned. 
For instance, the variance of the generator(normal distribution) is tuned by the 
acceptance probability and the mean of the generator is the previous value. Also, 
the symmetric property of the generator eliminates its density in the probability 
acceptance. As a result, only, the likelihoods and the prior of the parameters are 
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left in the formula of the acceptance probability. Because of that the Metropolis 
Hasting algorithm with Random Walk is the convenient choice. Nevertheless, the 
Metropolis-Hastings with Random Walk produces simulations that have high 
autocorrelation. In general, this Bayesian Weibull competing risk method with 
missing events is a method that first deals with the missing cause of failure and 
then uses a Bayesian methodology to estimate the Weibull coefficients  
plus, the scale and shape coefficients.  
 
       The advantages and the disadvantages of the Bayesian Weibull Competing Risk 
with missing cause of failure are numerous. To begin with, the first both advantage 
and disadvantage is that the method utilizes Bayesian Statistics. Bayesian 
Statistics are better when the sample size is small and when there is specific 
information for the prior distribution.,  another advantage is that Bayesian 
statistics uses the probability theory directly. They use the Bayesian theorem in 
all aspects of models and formulas. In every problem, there is a prior distribution, 
a likelihood, and a posterior distribution. All the information is in the posterior 
distribution or the simulated values of the posterior. Nevertheless, Bayesian 
Statistics have the problem of efficiently defining one good prior or one prior 
which makes sense. In this master thesis, all the information about the prior 
distribution is taken from the [16]. As a consequence, the prior choice that has 
been made is a sensible option based on a particular paper. However, this prior 
knowledge sometimes has a huge impact on the coefficients. Particularly, the prior 
distribution that is used is very informative and can manipulate the results but 
because the number of observations of each dataset is more than 6000 
observations, the impact of the prior distribution becomes meaningless, and the 
results are more like the corresponding frequentist approach. One huge 
disadvantage of Bayesian statistics is that it requires high statistical knowledge 
which this knowledge sometimes does not be taught in the bachelor’s or master’s 
degree. Apart from that it also requires a great knowledge of programming and a 
good computer to run hundreds of thousands of simulations. In this master thesis, 
the number of simulations in each scenario, in each data, and in each chain is too 
low. Consequently, the mean scale reduction factor is above one in several 
situations (see Appendix) and that indicates that convergence might not have 
been achieved. If the real results had been unknown, a such big scale reduction 
factor would have been alarming. In practice, the number of simulations in each 
chain should be higher and the initial value of each chain should be unequal. 
Another, disadvantage of Bayesian statistics is that the convergence of one or 
more coefficients needs too many simulations. In addition, in order to conduct one 
good Bayesian study various sensitivity analyses which are related to the prior 
distribution are necessary to be conducted. The Weibull competing risk is a way 
to model data using the Weibull formula or just apply a Weibull model in the 
baseline hazards. This Weibull model has two requirements first the 
proportionality of hazards and then the baseline hazard must have one specific 
form. Because of that, the coefficient estimations in the third scenario are bad 
because the data for the third have been simulated using the Gompertz 
distribution. Nevertheless, there are various ways to model the baseline hazard, 
for instance, one very popular way is the accelerated failure time model. The 
Weibull parametric model can also be described as one accelerated failure time 
model. Other AFT models are the log-logistic, the lognormal, the gamma, the 
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inverse Gaussian, and more. Those AFT models don’t require the proportionality 
property and their hazards are not monotonous like the Weibull one which is a 
straight line. In each of those models, the baseline hazard has a different form and 
for each hazard form, the survival functions are derived. Using the survival and 
hazard function, one can derive the likelihood and by assigning priors to the 
coefficients, can create for example one Bayesian log-logistic competing risk 
model with missing cause of failure. So, an analyst can try different models and 
choose which of them best fits the data. One should consider that the AFT models 
utilize distinct forms of parameterizing the coefficients. This distinct form models 
the log time and the covariates in a linear way. In general, after having one hazard 
and its survival function, one can easily incorporate them in the likelihood and just 
use the same Metropolis-Hastings with Random Walk. One another advantage of 
the Bayesian Weibull Competing Risk with the missing cause of failure is that the 
missing cause of failures is treated like parameters that need to be estimated. 
Consequently, the imputations of the missing cause of failure are practically a 
Bayesian problem that is solved and applied inside the Metropolis-Hastings loop. 
The Bayesian Weibull competing risks model with missing events type uses a 
complete dataset to estimate the coefficients and the algorithm is the same as the 
corresponding Weibull competing risks without the missing events. One another 
disadvantage is that the probability model referred to missing values must be 
efficiently and meticulously examined for its predictable capability. In other 
words, it is essential that the predictive model must be valid, and its predictions 
are on average true. If this predictive probability model had not been adequately 
modeled, all the predictions would have been wrong or misleading. If the model is 
too simple, it would lose information and if the model is too saturated, the 
predictions would be wrong because of the overfitting. Also, the predictive model 
is restricted to a general linear model because all the papers indicate that. This 
master thesis is a simulation study, and the form of the predictive probability is 
already known; therefore, the form of the estimated predictive models is the same 
for the first and second scenarios but in every estimated predictive model there is 
uncertainty about the coefficients being approximately near the true ones. Finally, 
the variable selection which this master thesis has not been involved with is a hard 
and tedious procedure. Because the coefficients for specific combinations of 
parameters have to be estimated in order to compare those to another estimated 
model. This procedure can absorb a significant amount of time because in order 
to have valid results for each coefficient a convergence has to be achieved and that 
can take time because it might need more simulations or time to tweak the initial 
parameters.  
 

6.1.2 Maximum Pseudo-Partial-Likelihood Estimation method 

         This method has not been described in a theoretical base. In this master 
thesis, only the methodology to apply this MPPLE method has been described. The 
actual reason why this method works is in the [16] and has not been described 
here because this master thesis purpose is to describe and compare the Bayesian 
Weibull competing risk with missing event types. Practically, the methodology and 
the application of the MPPLE method are far simpler than the corresponding 
Bayesian model. In terms of accuracy and validity, it is the same as the Bayesian 
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Weibull competing risk with missing cause of failure. The MPPLE method is a more 
straightforward method because it does not require strong programming and 
unique statistical knowledge (like Bayesian statistics ). Also, it does not require a 
significant time to just calculate one coefficient estimation and its standard 
deviation like the Bayesian method. In addition, this method utilizes packages that 
already exist in R like the survival package because this method is basically a 
weighted Cox regression. The problem with this method is that the standard error 
of each coefficient needs a bootstrap methodology. The initial sample is resampled 
with replacement and for each new-replaced data, a coefficient is calculated. This 
procedure is iterated for one hundred or more times and the standard deviation 
of the bootstrapped coefficients is the standard error of it. This method also suffers 
the same problem with the prediction model as the Bayesian method. Practically, 
this method requires only the probabilities of the event being the first one if there 
are two events. The Bayesian method simulates the event with respect to the 
probability of the event being the first event (or the event of interest ). The missing 
observations are duplicated, and in the first bunch their weights are equal to the 
probability of the missing event being the first one and in the second bunch, their 
weights are equal to the probability of the missing event being the second (or 1 
minus the previous probability). Then the initial complete dataset with weights 
being equal to 1 and the rest imputed dataset, whose length is two times the length 
of the initial missing dataset, have weights equal to the probabilities. Therefore, if 
the prediction model is wrong or misleading the weights can be misleading too. 
Also, the variable selection is more conveniently conducted than the Bayesian 
method because ordinary variable selection methods are required due to the 
weighted Cox implementation. The problem with this methodology is, that it is 
appropriately and scientifically applied to the Cox model [16]. Therefore, if the 
proportionality of the hazards is not valid then the results are not precisely true, 
but they are true on average. It’s like the typical problem of proportionality. So, if 
the proportionality is not applied then various mechanics like the time covariate 
or the stratified Cox regression. Nevertheless, if those strategies cannot remedy 
the situation, there is nothing more to do. In the Bayesian Weibull competing risk 
model with missing events type, if the Weibull model does not appropriately fit the 
data, one can change it to the log-logistic, inverse gamma, and more … The MPPLE 
method is faster, and its results are more accurate and valid because there is not 
an aspect of convergence. In all tables, the results are adequate enough which 
indicates that this method is a solid one. Another disadvantage of this method is 
that it requires more samples than the Bayesian one.   
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6.2 Concluding Remarks   

6.2.1 Advantages of the methods and study  

      The main advantage of the study is that compares two methods that try to deal 
with the missing cause of failure in competing risk. Those methods are directly 
compared, the Bayesian method has less Bias, MSE, and relative absolute error in 
the first and second scenario but it loses in the third one which the data are 
simulated via the Gompertz distribution. The AMSE and the ESE of the MPPLE 
method are similar, but this is not applied to the Bayesian method. Nevertheless, 
the AMSE and ESE are bigger in the MPPLE method in relation to the Bayesian. In 
general, both methods face the competing risk problem with missing cause of 
failure adequately and they handle the missing cause problem efficiently. Also, this 
study covers a space in the bibliography because there is no study that compares 
a frequentist and a Bayesian approach in competing risk with the missing cause of 
failure. Also, in the bibliography, a model like the Bayesian Weibull competing risk 
with missing cause of failure has not been described and programmed. This master 
thesis shows thoroughly how the Bayesian Weibull Competing risk is derived the 
problems that may show up and how to deal with them. Another advantage of the 
study is that the Bayesian method is tested in 3 scenarios and the results indicate 
that if the hazard function is not a straight line or just the time does not follow a 
Weibull distribution then the results might be wrong or misleading. Also, the 
results of the MPPLE method are very satisfying because this method has 
trustworthy results in all 3 scenarios. In addition, one sensitivity analysis has been 
conducted. The sensitivity analysis indicates that if the prior becomes less 
informative, the method does not lose its robustness, and the variability of the 
prior is not correlated with the validity of the results. Finally, one can compare how 
those methods handle the missing values. Particularly, the two estimated methods 
are compared with the true probability predictive model, and with scenario 3 one 
can immediately understand the impact of a good predictive model. In the first and 
second scenarios, the predictive model is efficiently estimated in both methods. In 
the third scenario, the form of an estimated predictive model is wrong but the 
coefficients of the Gender, Age, and CD4 are efficiently estimated. All in all, both 
methods adequately handle the problem of competing causes of failure with 
missing causes of failure especially when the assumptions are applied. One should 
take care that the MPPLE has fewer assumptions than the Bayesian method.  

6.2.2 Disadvantages of the methods and the study 

         The disadvantages of the study are related to the Bayesian Weibull Competing 
risk with missing cause of failure. Firstly, the number of simulations in chains is 
too low because of the low computation power and that is a problem. In order to 
handle this problem, I assign the initial values as the target coefficients; as a result, 
all chains in one scenario -event start from the same values which are the desirable 
target values. The low number of simulations and the initial values being the target 
one cause a big mean scale reduction factor. I have assigned the initial values as 
equal to the target coefficients because I wanted to somehow accelerate the 
convergence. The big mean scale reduction factor indicates that convergence has 
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not been achieved in some variables. Also, the scale reduction factor is a good 
metric of convergence only if the initial values are different [18]. The combination 
of an old computer and the big number of datasets; namely, there are 1000 
datasets in every 3 scenarios which is practically 3000 datasets. For a dataset often 
more than 1000 simulations are needed for each chain and apart from that more 
than 4 chains are essential with different starting points but in this master thesis, 
only two chains with the same initial point are used. The number of simulations, 
chains, and starting points were impossible to change because if I change the 
number of simulations and chains I will need far more time than I need now and 
If I change the initial values, I will need far more simulations and chains. 
Furthermore, the burn-in period is relatively small (500 simulations) and I take 1 
simulation per 25 because I want to lower the correlation between the chosen 
simulations. Another disadvantage is that analysts suggest writing Bayesian 
programs in other statistical software like WinBUGS or Stan and more. In addition, 
the CD4 should be simulated from a Poisson distribution, because the CD4 are cells 
per μ1, and not from a normal distribution but this is practically not a big concern 
because it does not impact the results. 

 6.2.3 Some final thoughts   

     To begin with, both the MPPLE method and the Bayesian Weibull Competing 
risk with missing cause of failure give valid and accurate results but I am more 
satisfied with the results of the MPPLE method, and I totally suggest it because it 
is more straightforward, convenient, and faster and it does not require a strong 
computer and tuning endeavor which sometimes in Bayesian statistics is a tedious 
and monotonous procedure. The Bayesian method is more sensitive to the 
assumption than the MPPLE method. Nevertheless, the Bayesian method 
produces better results when the assumptions are applied. Only two issues might 
arise first the predictive model should be meticulously described and the second 
one is the adequacy of the Cox regression method. In some situations, the 
proportionality does not stand and therefore a stratified Cox or time-coefficient 
term is necessary. In addition, The Bayesian Competing risk with missing cause of 
failure is more flexible because other models than the Weibull one can be used 
such as log-logistic in comparison to the MPPLE methodology which only a Cox 
regression can be applied. Also, the missing cause of failure might be handled 
more appropriately in the Bayesian method because the missing cause of failure 
is treated like a parameter which in the end is theoretically converged to the true 
value. Both methods can use the same predictive algorithm, but the Bayesian 
method can enhance its performance because of the Bayesian methodology. Apart 
from the previous, in this simulation study, the scale and shape of the first and the 
second scenarios are almost always overestimated and underestimated 
respectively. The true values of the scale and shape parameters are outside the 
95% confidence intervals of the mean in most cases. In the third scenario, the scale 
and shape parameters of the Bayesian Weibull competing risk model with missing 
cause of failure are outside the 95% confidence interval of the mean and that is a 
sensible result because the Bayesian Weibull method is the wrong method and 
theoretically does not efficiently fit to the data. From the second sensitivity 
analysis which I simulate more values inside the chains, the shape parameters in 
both events are underestimated by a small amount and only in the first event the 
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scale parameter is inside the 95% confidence interval of the mean. This problem 
of scale and shape parameters might be caused either by missing or censoring 
events. Another problem is the scale reduction factor which is bigger than one in 
the Gender, Age, and Scale coefficient – parameters(Appendix). It seems that it is 
independent of the scenario and the event and there is a specific pattern between 
the scaler reduction factor and the variables. In all scenarios and events, the mean 
scale reduction factor is the biggest in the Age coefficient and the lowest in the 
CD4 coefficient. Also, the mean scale reduction factor of the scale parameter is 
always bigger than the shape parameter. Specifically, the problem of a big-scale 
reduction factor lies in the mixing chains. The mixing chains with high-scale 
reduction factors, first include other chains with high autocorrelation or with high 
lag correlation. Second, the chains seem to be stuck in another area, some are in 
the middle, others up and others down, and third each chain has a different 
variance. The general picture of bad mixing chains indicates that the problem 
arises when there is a high correlation and there is a different route of each chain 
which implies weak or incompetent convergence. The combination of chains with 
small-scale reduction factors is random and stationary, they are like a cloud. In 
other words, they are all randomly distributed around a value, and they have the 
same variance. The results of the second sensitivity analysis indicate that as the 
number of simulations rises the mean scale reduction factor decreases but only to 
the Age and scale coefficient – parameter. Therefore, if the number of simulations 
rises the scale reduction factor might decrease. Apart from that the Gender 
coefficient has the biggest standard error, the biggest value, and the biggest mean 
scale reduction factor in opposition to the CD4 covariate which has the lowest 
value, standard error, and scale reduction factors. From all of those above, it is a 
good question that arises what will happen If I run more simulations and more 
chains? How many simulations are necessary in order to acquire appropriate 
convergence metrics?  
 
       I would like to model the Weibull parametric model as an accelerated failure 
time model and not like I did because If I model it like an AFT, it would be easier 
to fit another AFT model. With the modeling of AFT models, it would be easier to 
conduct different simulation scenarios with different baseline hazards that are not 
monotonous. In other words, one can build a library that can run all types of 
Bayesian parametric competing risk models like the Weibull, Gompertz, log-
logistic, inverse gamma, and more. The purpose of this library would be first the 
modeling of a Bayesian parametric competing risk model with missing event 
types, and second which of them best fits the data. The test of the goodness of fit 
could be the ordinary survival test or the Bayesian test related to the predictive 
model of time to event (comparing the real and estimated time to the event).   
 
         Last but not least, how the Bayesian algorithm behave if there were 3 
generators one for each coefficient and not one that is multivariate? In other 
words, the current generator is a multivariate normal distribution but what if 
every coefficient had its generator like the scale and shape parameters? It is sure 
that the procedure would take far more time than it has taken. Theoretically, in 
the long run, the results of the two types of generators are the same but which of 
them is better in the short term? Also, the current multivariate generator uses a 
diagonal covariance matrix which is interpreted that the coefficients are not 
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correlated. All 3 generators would also produce coefficients that are not 
correlated. The main difference is that the generation is done simultaneously and 
not one after the other. With 3 generators every simulated value is tested 
independently if it fits into the likelihood. Nevertheless, with a multivariate 
generator all 3 values of the vector are tested simultaneously if they fit the data. 
What if one has a bigger impact than the other? For example, the CD4 coefficient 
can manipulate the option if this vector is accepted or not more than the other 
coefficients.  
 
      An analyst can use a different type of predictive model like Random Forest, 
artificial neural network, lasso or ridge regression (elastic net ), k nearest 
neighbors, Extreme gradient boosting (XGBoost), Adaptive boosting (ADA boost), 
and more. Also, someone can use different algorithms and, in the end, can combine 
all of them into one algorithm. This can be done either by a voting procedure for 
example 2 algorithms suggest death and 1 disengagement; as a result, the final 
choice is death. Also, they can predict the outcome from various models and then 
use those results as a covariate in another model. In addition, they can use 
different types of covariate modelling and then combine all those models two one. 
The validity and the accuracy of all those methods are done via the k-fold cross-
validation or bootstrap validation or leave one out and more. There are many 
‘intelligent’ predictive models that one creative analyst has abundant options. 
Nevertheless, those methods have not been validated by the ‘inferential’ 
community. One issue is that we don’t know practically the distribution of the 
parameters. For example, the random forest has two parameters the number of 
trees and the number of bootstrapped samples. Also, most of the predictive 
models do not have a likelihood. So, the problem is that there are no probability 
models; as a result, they don’t have likelihood and their parameters don’t have 
prior. Also, the fact that most of them like XGBoost, artificial neural networks, and 
more are black boxes. Their interpretation power is relatively small, and they 
don’t answer the question of why one model is better intuitively than another but 
which model is better. For example, let's consider the typical problem of smoking, 
the yellow finger and the cancer, the previous predictive models might find the 
yellow finger is a better predictor than the smoking one because the cross-
validation of the model just gives better results. 
 
       One another topic is the use of another model but Cox in the MPPLE method. 
In the paper [3] this method is suggested by applying it to only the Cox regression 
models. One analyst can research if other models like the Weibull parametric, 
accelerated failure time models can be used in a relative scenario. For example, 
one can use a weighted Weibull parametric regression with weights equal to the 
probabilities of the missing values being the first event. There are so many 
parametric models that can deal with the non-proportionality of the hazard 
function. Those accelerated time failure models use hazard functions that are not 
monotonous such as the log-logistic and the Weibull which is a straight line. They 
try to better fit the hazard function to the real one. If the real hazard function is a 
cube that fluctuates around a value, or it changes its monotony dramatically like a 
second-degree polynomial then the straight line is an inadequate option.  
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Summary  

In survival studies, more than one cause of failure is a frequent phenomenon and 
sometimes the cause of failure is missing under MAR assumption. Several 
approaches are suggested some of them are  Bayesian or frequentist, parametric 
or semi-parametric methodologies. The Bayesian Weibull competing risk with 
missing cause of failure is a model that has not been adequately described in the 
bibliography. As a consequence, this master thesis first tries to efficiently describe 
this model and second, compare it with an existing Maximum pseudo-partial 
estimation method. This Bayesian Weibull competing risk with missing event type 
model uses the Bayesian methodology to impute the missing cause of failure and 
estimate the desirable coefficients-parameters. The imputation of the missing 
cause of failure is conducted by treating those missing observations as parameters. 
The form of the coefficients - parameters of the model are derived from a Weibull 
competing risk model and they are estimated via a Bayesian methodology. The 
Maximum pseudo-partial estimation method is a computationally efficient 
method in which its coefficients are estimated by a weighted-probability Cox 

regression model. The simulated data are derived from the statistics of the EA-
IeDEA HIV study which in this study a heavy under-reporting issue of the event 
type is observed. The results of the simulation study indicate that both 
methodologies effectively handle this issue when the assumptions of the models 
are applied. Both the proportionality and the Weibull assumption significantly 
impacts the validity of the results in the Bayesian Weibull model, but in case they 
are not true,  one can use accelerated time failure models instead of a Weibull one 
to tackle this issue.  

Περίληψη  

Στις μελέτες ανάλυσης επιβίωσης,  αρκετές φορές υπάρχει πάρα πάνω από ένα 
είδος κινδύνου  και μάλιστα αρκετές φορές οι ανταγωνιστικοί κίνδυνοι μπορεί να 
λείπουν. Αρκετές μέθοδοι έχουν προταθεί όπως για παράδειγμα Μπεϋζιανα και 
μη,  παραμετρικά ή σχεδόν παραμετρικά μοντέλα. Το Μπεϋζιανο Γουεϊμπουλ 
παραμετρικό μοντέλο με τους ελλιπές  ανταγωνιστικούς κινδύνους είναι ένα 
μοντέλο που δεν έχει περιγράφει επαρκώς στην βιβλιογραφία. Ως αποτέλεσμα,  
αυτή η διπλωματική εργασία  έχει σκοπό να περιγράψει σαφώς και με 
διευκρινιστικό τρόπο το μοντέλο και να το συγκρίνει  με μια μέθοδο που 
χρησιμοποιεί την μέγιστη μερικώς ψευδό πιθανοφάνεια  για να εκτιμήσει τους 
συντελεστές. Το Μπεϋζιανο Γουεϊμπουλ παραμετρικό μοντέλο με τους ελλιπές  
ανταγωνιστικούς κινδύνους χρησιμοποιεί την Μπεϋζιανη μεθοδολογία για να 
γεμίσει τις ελλιπείς τιμές και να εκτιμήσει τις επιθυμητές παραμέτρους. Πιο 
συγκεκριμένα,  για να εισαχθούν οι ελλιπείς τιμές χρησιμοποιώντας την  
Μπεϋζιανη θεωρεία θεωρούνται ως άγνωστοι παράμετροι που πρέπει να 
εκτιμηθούν.  Οι συντελεστές του μοντέλου και οι διάφοροι παράμετροι κτίζονται 
από το Γουεϊμπουλ παραμετρικό μοντέλο με ανταγωνιστικούς κινδύνους και 
τελικά εκτιμώνται με την χρήση της Μπεϋζιανης Στατιστικής. Η μέθοδος που 
εκτιμά τους συντελεστές με  την χρήση της μέγιστης μερικώς ψευδό 
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πιθανοφάνειας είναι μια γρήγορη και παράλληλα αποτελεσματική μέθοδος που 
πρακτικά εκτιμάει τους συντελεστές μέσω ενός Κοξ σταθμισμένου γραμμικού 
μοντέλου. Τα προσομοιωμένα δεδομένα δημιουργούνται από τα στατιστικά μιας 
ερευνάς που έγινε στην Ανατολική Αφρική η οποία λέγεται  EA-IeDEA και έχει 
σκοπό να μελετήσει τον  Ιό της Ανοσοανεπάρκειας του Ανθρώπου, στην 
συγκεκριμένη έρευνα υπάρχουν πολλοί ασθενείς που τελικά είναι άγνωστο για 
τους ερευνητές αν πεθάναν ή απλά έφυγαν από την έρευνα (δηλαδή ζούνε). Τα 
αποτελέσματα από την έρευνα προσομοίωσης έδειξαν ότι και οι δυο μέθοδοι είναι 
αρκετά αποτελεσματική και μπορούν με ευκολία να αντιμετωπίσουν παρόμοια 
προβλήματα όταν ειδικά ισχύουν οι υποθέσεις του κάθε μοντέλου. Η αξιοπιστία 
και η εγκυρότητα του μοντέλου εξαρτάται πολύ από την υπόθεση της 
αναλογικότητας και από την επιθυμητή Γουεϊμπουλ μορφή των κινδύνων ,  σε 
περίπτωση όμως που τα αποτελέσματα είναι αμφιλεγόμενα και καθόλου 
αποτελεσματικά τότε μια καλή λύση είναι κάποιος να χρησιμοποιήσει ένα άλλο 
παραμετρικό μοντέλο αντί του Γουεϊμπουλ  όπως για παράδειγμα ένα μοντέλο 
επιταχυνόμενου χρόνου.  
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Appendix  

Convergence  

In Bayesian Simulation studies is impossible to check the convergence by graphical 
means such as cumulative mean plot or just plotting the sequence of simulations. 
Those two plots check if the mixed chains are stationary, and if they converge to a 
fixed distribution. This graphical method is impossible to be conducted because in 
practice there are 3000 datasets; therefore, for each dataset is improbable to plot 

those graphs. Therefore,  the scale reduction factor 𝑅̂ is used [21,24] which is 

referred to the second unit of this thesis [𝑅̂]. The scale reduction factor 𝑅̂ 
converges to 1 as the number of simulations in chains tend to infinity because the 
perfect convergence is achieved when the number of simulations tend to infinity. 

When the scale reduction factor 𝑅̂ is bigger than 1,  this means that the 
combination of chains has not been efficiently converged because the mixed chains 
are not stationary, and a bigger number of simulations is needed. So,  for every 

simulated coefficient a 𝑅̂ has been calculated using the formula 𝑅̂. To sum up,  If 
the scale reduction factor is bigger than 1 the combinations of chains has been 
inadequately converged and more simulations are needed. In this master thesis, it 
is reasonable to observe scale reduction factors bigger than 1 because of the low 
number of chains which are two for each parameter and the low number of 
simulations (each chain has 3000 simulations which only 100 are chosen ). For 
every scenario,  event and parameter 1000 scale reduction factors have been 
estimated. As a result,  plotting boxplot is a convenient way to observe and 
understand the distribution of scale reduction factors.  
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Graph 22: The distributions of Scale Reduction function 𝑅̂  for the coefficients of 
scenario 1. 

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 

Graph 23: The distributions of Scale Reduction function 𝑅̂  for the coefficients of 
scenario 2  

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 
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Graph 24: The distributions of Scale Reduction function 𝑅̂  for the coefficients of 
scenario 3.  

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 
 

Graph 25: The distributions of Scale Reduction function 𝑅̂  for the Weibull 
parameters of scenario 1.  

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 
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Graph 26: The distributions of Scale Reduction function 𝑅̂  for the Weibull 
parameters of scenario 2.  

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 
 

Graph 27: The distributions of The Scale Reduction function 𝑅̂  for the Weibull 
parameters of scenario 3.  

 
*The red line is the y=mean of 𝑅̂ and black line in the bottom is the y=1. 
 

As it is observed,  the mean of Gender’s 𝑅̂ is bigger than two in both two events 

and in all 3 scenarios. This informs us that the value of 𝑅̂ is independent of the 
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scenario. Also,  the mean of the scale parameter and Age’s 𝑅̂  are bigger than 1. 
Because of those results,  the convergence of the previous quantities is uncertain. 

Furthermore, in some situations the 𝑅̂ is close to 1 which indicates us that in some 
situations there is a convergence. Also, the results are dependent on the 

parameters;namely,  the mean of  Gender’s 𝑅̂  is pretty much the same in all events 
and situation. This is applied to the rest of coefficient and parameters. In addition, 

if the real results were unknown,   a 𝑅̂ bigger than 1 would be a concerning result. 

Apart from the 𝑅̂,  the convergence in this situation can be assessed by the Bias 
and the MSE  because the real results are known. From the tables both Bias and 
MSE are very small, so it is rational to assume that convergence has been achieved. 
Because of the concerning big scale reduction factor in Gender,  some further 
investigation is needed in order to efficiently understand the problem. It is 

observed that  big 𝑅̂ is a result of big range between the maximum and the 
minimum of the   simulated coefficients and when the points are not random. In 
other words,  if the simulations do not extremely fluctuate around a value the scale 
reduction factor is small. Big fluctuations cause big scale reduction factors. 
Basically, the optimal situation is,  that all chains are stationary and all have not 
theoretically but practically the same distribution.Also,  the chains of the 

simulations are not stationary (𝑅̂  > 1) because there is a strong correlation 
between the values. The theory suggests increasing the number of simulations 
inside the chains and lowering the correlation  by increasing the number of 
simulations  between two choices (I choose one simulation every 25). Also,  the 
prior variance of Gender is bigger than the variance of Age and CD4 ;as a result, 
one can say that the scale reduction function is related to the prior distribution.  

So,  the possible solutions with the aim of eradicating the big values of 𝑅̂   are two, 
one is to increase the number of chain simulations and the second one is to 
increase the variance of prior distribution because it is too low. The first solution 
is suggested from the theory [18] and the second one is an ambiguous one because 

it is related to just an observation ( the relation of prior variance and the 𝑅̂  ).  

 

Code in R   

In the Appendix,  I represent the data simulation methodology and the Bayesian 
Weibull competing risk model with missing cause of failure. There are three 
scenarios,  without the loss of generality, I represent only the second scenario.  

Data Simulation  

 

The distribution of the Gender,  Age and CD4  

n<-6657 

probCens<-3382/n 

probmissing<-2481/(n-3382) 

probdeath<-445/(349+445) 

 Gender 
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FEMALE<-c(2300,210,254,1665) 

MALE<-c(1082,139,191,816) 

pGen<-sum(MALE)/(sum(FEMALE+MALE)) 

Age 

meanAge<-(37.9*3382 + 35.5*349+37.3*445+35.4*2481)/n 

q25Age<-(31.8*3382+29.7*349+31.3*445+29.9*2481)/n 

q75Age<-(45.4*3382+41.9*349+46*445+42.7*2481)/n 

sdAge<-(11+8.7)/2 

CD4 

meanCD4<-(174*3382+145*349+88*445+155*2481)/n 

q25CD4<-(91*3382+69*349+39*445+71*2481)/n 

q75CD4<-(258*3382+222*349+180*445+214*2481)/n 

sdCD4<-(120+110.8)/2 

The coefficients  

#pcause1 DEATH 

bgender1<-log(1.24) 

bage1<-log(1.10)/10 

bcd41<-log(0.76)/100 

#pcause2 DISENGAGEMENT  

bgender2<-log(1.15) 

bage2<-log(0.75)/10 

bcd42<-log(1.03)/100 

The function to calculate the standard error of the coefficients  

sdcalc<-function(lh,llower,lupper){ 

  sdlower<-abs((lh-llower)/1.96) 

  sdupper<-abs((lh-lupper)/1.96) 

  return(mean(c(sdlower,sdupper))) 

} 

The standard error of the coefficients  

#pcause1 DEATH 

sdgender1<-sdcalc(log(1.24),log(0.96),log(1.59)) 

sdage1<-sdcalc(log(1.10)/10,log(0.97)/10,log(1.25)/10) 

sdcd41<-sdcalc(log(0.76)/100,log(0.63)/100,log(0.91)/100) 

#pcause2 DISENGAGEMENT  

sdgender2<-sdcalc(log(1.15),log(1.02),log(1.31)) 
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sdage2<-sdcalc(log(0.75)/10,log(0.7)/10,log(0.8)/10) 

sdcd42<-sdcalc(log(1.03)/100,log(1.0)/100,log(1.06)/100) 

The observed distribution of the Gender,  Age and CD4. This distribution is 
needed to assign the missingness in the different observation.  

#Observed probability 

Gender 

pmaleobserved<-(139+ 191)/(349+445) 

Age 

AgeOBSmean<-(35.5*349 + 37.3* 445)/(349+445) 

AgeOBSq25<-(29.7*349+31.3*445)/(349+445) 

AgeOBSq75<-(41.9*349+46.0*445)/(349+445) 

AgeOBSsd<-mean(c(8.77,11.38)) 

CD4 

CD4OBSmean<-(145*349 + 88* 445)/(349+445) 

CD4OBSq25<-(69*349+39*445)/(349+445) 

CD4OBSq75<-(222*349+180*445)/(349+445) 

CD4OBSsd<-mean(c(90.3,126.5)) 

The missing distribution of the variables.  

#MISSING DISTRIBUTION 

Age 

AgeMISSmean<-35.4 

AgeMISSsd<-mean(c(8.16,10.8)) 

Gender 

pmalemisiing<-816/2481 

CD4 

CD4MISSmean<-155 

CD4MISSsd<-mean(c(125,87.4)) 

The scale and shape parameters.  

scale1<-exp(-1.2) 

shape1<-0.584 

 

shape2<-0.931 

scale2<-1.028*scale1 

 

DataLista2<-list() 
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for(k in 1:1000){ 

 The simulation of the three variables.  

Gender<-rbinom(n,1,pGen) 

Age<-rnorm(n,meanAge,sdAge) 

Age<-abs(Age) 

CD4<-rnorm(n,meanCD4,sdCD4) 

CD4<-abs(CD4) 

The survival function.  

St<-function(t,j){ 

  a<-exp(-
(exp(bgender1*Gender[j]+bage1*Age[j]+bcd41*CD4[j])*scale1*(t^shape1)+exp(bgender2*Gen
der[j]+bage2*Age[j]+bcd42*CD4[j])*scale2*(t^shape2))) 

  return(a) 

} 

The numerical solution of the equation S(t)=u (Newton Rapson)  

t<-numeric(n) 

for(i in 1:n){ 

  u<-runif(1) 

  t[i]<-uniroot(function(t) St(t,i)-u, 
interval=c(0.0000000000000000000000000000000001,300))$root 

} 

Two hazards  

#log(p1/p2)=log(h1/h2) => p1/p2 = h1/h2 => p1 = h1/h2 /(1+h1/h2) 

h1<-exp(bgender1*Gender+bage1*Age+bcd41*CD4)*scale1*shape1*(t^(shape1-1)) 

h2<-exp(bgender2*Gender+bage2*Age+bcd42*CD4)*scale2*shape2*(t^(shape2-1)) 

The probability of the cause of failure being death  

pcause1<-(h1/h2)/(1+(h1/h2)) 

u<-runif(6657) 

dobs<-1*(u<=pcause1)+2*(u>pcause1) 

Censoring  

tcen<-rexp(6657,rate=0.3435) 

dobs<-dobs*(t<=tcen) 

finalt<-apply(data.frame(t,tcen),1,min) 

The missing and observed density  
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densmiss<-
dbinom(Gender[dobs!=0],1,pmalemisiing)*dnorm(Age[dobs!=0],AgeMISSmean,AgeMISSsd)*dn
orm(CD4[dobs!=0],CD4MISSmean,CD4MISSsd) 

densobs<-
dbinom(Gender[dobs!=0],1,pmaleobserved)*dnorm(Age[dobs!=0],AgeOBSmean,AgeOBSsd)*dn
orm(CD4[dobs!=0],CD4OBSmean,CD4OBSsd) 

 

probt<-numeric(length(finalt[dobs!=0])) 

The time effect on the missing probability 

probt<- 0.2*(finalt[dobs!=0]<0.1768903)+0.2*(finalt[dobs!=0]>1.5997850)+0.2 

estimprobmis<-probt*(densmiss/(densmiss+densobs)) 

missInd<-numeric(n) 

umis<-runif(length(finalt[dobs!=0])) 

Assigning the missingness  

missInd[dobs!=0]<-1*(umis<5.35*estimprobmis) 

dobs[missInd==1]<- -1  

print(k) 

DataLista2[[k]]<-data.frame(dobs,finalt,missInd,Gender,Age,CD4) 

} 

The end  

 

Bayesian Weibull competing risks with missing cause of failure  

Coefficients  

#pcause1 DEATH  

bgender1<-log(1.24) 

bage1<-log(1.10)/10 

bcd41<-log(0.76)/100 

#pcause2 DISENGAGEMENT  

bgender2<-log(1.15) 

bage2<-log(0.75)/10 

bcd42<-log(1.03)/100 

Scale and shape parameters  

scale1<-exp(-1.2) 

shape1<-0.584 

scale2<-1.028*scale1 

shape2<-0.931 
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The standard error of the coefficients  

sdcalc<-function(lh,llower,lupper){ 

  sdlower<-abs((lh-llower)/1.96) 

  sdupper<-abs((lh-lupper)/1.96) 

  return(mean(c(sdlower,sdupper))) 

} 

#pcause1 DEATH 

sdgender1<-sdcalc(log(1.24),log(0.96),log(1.59)) 

sdage1<-sdcalc(log(1.10)/10,log(0.97)/10,log(1.25)/10) 

sdcd41<-sdcalc(log(0.76)/100,log(0.63)/100,log(0.91)/100) 

#pcause2 DISENGAGEMENT  

sdgender2<-sdcalc(log(1.15),log(1.02),log(1.31)) 

sdage2<-sdcalc(log(0.75)/10,log(0.7)/10,log(0.8)/10) 

sdcd42<-sdcalc(log(1.03)/100,log(1.0)/100,log(1.06)/100) 

 

library(casebase) 

library(MASS) 

library(emdbook) 

library(car) 

library(DescTools) 

DataLista<-readRDS("scenario2/DataLista2.RData") 

 

finalmatrix1<-matrix(numeric(18*1000),nrow=1000,ncol=18) 

finalmatrix2<-matrix(numeric(18*1000),nrow=1000,ncol=18) 

Scale reduction factor  

Rhat<-function(mat){ 

  meann<-apply(mat,2,mean) 

  varr<-apply(mat,2,var) 

  W<-mean(varr) 

  B<-var(meann) 

  R<-round(sqrt(1- 1/nrow(mat) +B/W),2) 

  return(R) 

} 

The cause of failure probability (it is used for the data imputation)  

pcause1<-function(t,Gen,Ag,Cd){ 
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  h1<-exp(bgender1*Gen+bage1*Ag+bcd41*Cd)*scale1*shape1*(t^(shape1-1)) 

  h2<-exp(bgender2*Gen+bage2*Ag+bcd42*Cd)*scale2*shape2*(t^(shape2-1)) 

  pc1<-(h1/h2)/(1+(h1/h2)) 

  return(pc1) 

} 

The essential Bayesian parameters  for the first event  

#competingR1=list(b1canSigma,b1mo,b1Sigma,l1canSd,l1shape,l1scale,g1canSd,g1shape,g1scal
e,b1=0,l1=1,g1=1) 

The covariance of generator  

b1canSigma=0.00000008*matrix(c(1,0,0,0,1,0,0,0,1),nrow=3, byrow=F) 

The mean of the prior  

b1mo=c(bgender1,bage1,bcd41) 

The covariance of the prior  

b1Sigma=matrix(c(sdgender1^2,0,0,0,sdage1^2,0,0,0,sdcd41^2),nrow=3, byrow=F) 

The scale parameter of the first event  

The standard deviation of the scale generator  

l1canSd=0.013 

The scale prior parameters  

l1shape=scale1 

l1scale=1 

The shape parameter of the first event  

The standard deviation of the shape generator  

g1canSd=0.019 

The shape prior parameters  

g1shape=shape1 

g1scale=1 

The initial values  

b1=c(bgender1,bage1,bcd41) 

l1=scale1 

g1=shape1 

competingR1=list(b1canSigma,b1mo,b1Sigma,l1canSd,l1shape,l1scale,g1canSd,g1shape,g1scale,
b1=b1,l1,g1) 

The essential Bayesian parameters  for the second event  

#competingR2=list(b2canSigma,b2mo,b2Sigma,l2canSd,l2mo,l2Sd,g2canSd,g2shape,g2scale,b2
=0,l2=1,g2=1) 
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The covariance of generator  

b2canSigma=0.00000007*matrix(c(1,0,0,0,1,0,0,0,1),nrow=3, byrow=T) 

The mean of the prior  

b2mo=c(bgender2,bage2,bcd42) 

The covariance of the prior  

b2Sigma=matrix(c(sdgender2^2,0,0,0,sdage2^2,0,0,0,sdcd42^2),nrow=3, byrow=T) 

The scale parameter of the second event  

The standard deviation of the scale generator  

l2canSd=0.018 

The scale prior parameters  

l2shape=scale2 

l2scale=1 

The shape parameter of the second event  

The standard deviation of the shape generator  

g2canSd=0.038 

The shape prior parameters  

g2shape=shape2 

g2scale=1 

The initial values  

b2=c(bgender2,bage2,bcd42) 

l2=scale2 

g2=shape2 

competingR2=list(b2canSigma,b2mo,b2Sigma,l2canSd,l2shape,l2scale,g2canSd,g2shape,g2scale,
b2=b2,l2,g2) 

Metropolis Hasting  

#nround is the number of the simulations 

MHvalue<-
function(nround,fdata,competingR1=list(b1canSigma,b1mo,b1Sigma,l1canSd,l1shape,l1scale,g1
canSd,g1shape,g1scale,b1=0,l1=1,g1=1),competingR2=list(b2canSigma,b2mo,b2Sigma,l2canSd,
l2shape,l2scale,g2canSd,g2shape,g2scale,b2=0,l2=1,g2=1)){ 

 

lx<-3 

simulationmatrixFIRST<-matrix(numeric((lx+2)*nround),nrow = nround,ncol=lx+2) 

simulationmatrixSECOND<-matrix(numeric((lx+2)*nround),nrow = nround,ncol=lx+2) 
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pb1<-numeric(nround) 

pl1<-numeric(nround) 

pg1<-numeric(nround) 

pb2<-numeric(nround) 

pl2<-numeric(nround) 

pg2<-numeric(nround) 

 

#Initial coefficients of the predictive model  

glm1<-
glm(dobs==1~log(finalt)+Gender+Age+CD4,data=fdata[fdata$missInd==FALSE&fdata$dobs
%in%c(1,2),],family = binomial(link = "logit")) 

theta<-glm1$coefficients 

thetaMat<-matrix(numeric(5*nround),nrow=nround,ncol=5) 

for(i in 1:nround){ 

#Imputation Step 

  #pc<-
pcause1(fdata$finalt[fdata$missInd==1],fdata$Gender[fdata$missInd==1],fdata$Age[fdata$mis
sInd==1],fdata$CD4[fdata$missInd==1]) 

  pc<-
gcause1(fdata$finalt[fdata$missInd==1],fdata$Gender[fdata$missInd==1],fdata$Age[fdata$mis
sInd==1],fdata$CD4[fdata$missInd==1],theta) 

  u<-runif(sum(fdata$missInd==1)) 

  fdata$dobs[fdata$missInd==1]<-1*(u<=pc)+2*(u>pc) 

  #Update step  

  #Thelo kai ta imputed mazi   

  glm1<-
glm(dobs==1~log(finalt)+Gender+Age+CD4,data=fdata[fdata$dobs%in%c(1,2),],family = 
binomial(link = "logit")) 

  theta<-mvrnorm(1,glm1$coefficients,vcov(glm1)) 

   

  thetaMat[i,]<-theta 

     

  t<-fdata$finalt 

  dobs<-fdata$dobs 

  x<-matrix(c(fdata$Gender,fdata$Age,fdata$CD4),nrow = nrow(fdata),ncol = 3,byrow = F 

   First event  

  dth<-1 

  rate<-0 
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The generation of the first event coefficients  

  ################  b1    ############### 

  b1can<-mvrnorm(1,b1,b1canSigma) 

   

  expcan<-exp(x%*%b1can) 

  expj<-exp(x%*%b1) 

  Two likelihoods  

  likeCAN<-(expcan^(dobs==dth))*exp(-expcan*(l1*(t^g1))) 

  likej<-(expj^(dobs==dth))*exp(-expj*(l1*(t^g1))) 

  The acceptance  probability 

  rate<-prod((likeCAN/likej))*(dmvnorm(b1can,b1mo,b1Sigma)/dmvnorm(b1,b1mo,b1Sigma)) 

  rate 

  if (is.na(rate)|is.nan(rate)){rate<- 0} 

   

  pb1[i]<-min(1,rate) 

  u<-runif(1) 

  simulationmatrixFIRST[i,1:lx]<-b1can*(u<=pb1[i])+b1*(u>pb1[i]) 

  b1<-simulationmatrixFIRST[i,1:lx] 

   

  ### 

  expj<-exp(x%*%b1) 

  ## 

  The scale parameter simulation  

  ###############   l1  ############### 

  l1can<-rnorm(1,l1,l1canSd) 

  rate<-0 

  if(l1can>0){ 

     

  likeCAN<-((l1can)^(dobs==dth))*exp(-expj*(l1can*(t^g1))) 

  likej<-((l1)^(dobs==dth))*exp(-expj*(l1*(t^g1))) 

  rate<-
prod((likeCAN/likej))*(dgamma(l1can,shape=l1shape,scale=l1scale)/dgamma(l1,shape=l1sha
pe,scale=l1scale)) 

 

  if (is.na(rate)|is.nan(rate)){rate<-0} 
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  pl1[i]<-min(1,rate) 

  u<-runif(1) 

  simulationmatrixFIRST[i,lx+1]<-l1can*(u<=pl1[i])+l1*(u>pl1[i]) 

  l1<-simulationmatrixFIRST[i,lx+1] 

  } else { 

    simulationmatrixFIRST[i,lx+1]<-l1 

    pl1[i]<-0 

  } 

  The shape parameter simulation  

  ################ g1 ################### 

  g1can<-rnorm(1,g1,g1canSd) 

  rate<-0 

  if(g1can>0){ 

     

    likeCAN<-((g1can*(t^(g1can-1)))^(dobs==dth))*exp(-expj*(l1*(t^g1can))) 

    likej<-((g1*(t^(g1-1)))^(dobs==dth))*exp(-expj*(l1*(t^g1))) 

     

     

     

    rate<-
prod((likeCAN/likej))*(dgamma(g1can,shape=g1shape,scale=g1scale)/dgamma(g1,shape=g1s
hape,scale=g1scale)) 

     

     

    if (is.na(rate)|is.nan(rate)){rate<-0} 

     

    pg1[i]<-min(1,rate) 

    u<-runif(1) 

    simulationmatrixFIRST[i,lx+2]<-g1can*(u<=pg1[i])+g1*(u>pg1[i]) 

    g1<-simulationmatrixFIRST[i,lx+2] 

  } else { 

    simulationmatrixFIRST[i,lx+2]<-g1 

    pg1[i]<-0 

  } 

   

p1matrix<-matrix(c(pb1,pl1,pg1),ncol=3, byrow=F) 
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Second event 

#SECOND EVENT  

The generation of the second event coefficients  

 

dth<-2 

rate<-0 

################  b2    ############### 

b2can<-mvrnorm(1,b2,b2canSigma) 

 

expcan<-exp(x%*%b2can) 

expj<-exp(x%*%b2) 

Two likelihoods 

likeCAN<-(expcan^(dobs==dth))*exp(-expcan*(l2*(t^g2))) 

likej<-(expj^(dobs==dth))*exp(-expj*(l2*(t^g2))) 

The acceptance probability  

rate<-prod((likeCAN/likej))*(dmvnorm(b2can,b2mo,b2Sigma)/dmvnorm(b2,b2mo,b2Sigma)) 

 

if (is.na(rate)|is.nan(rate)){rate<- 0} 

 

pb2[i]<-min(1,rate) 

u<-runif(1) 

simulationmatrixSECOND[i,1:lx]<-b2can*(u<=pb2[i])+b2*(u>pb2[i]) 

b2<-simulationmatrixSECOND[i,1:lx] 

 

### 

expj<-exp(x%*%b2) 

## 

  The scale parameter simulation  

###############   l2  ############### 

l2can<-rnorm(1,l2,l2canSd) 

rate<-0 

if(l2can>0){ 

   

  likeCAN<-((l2can)^(dobs==dth))*exp(-expj*(l2can*(t^g2))) 

  likej<-((l2)^(dobs==dth))*exp(-expj*(l2*(t^g2))) 



116 
 

 

  rate<-
prod((likeCAN/likej))*(dgamma(l2can,shape=l2shape,scale=l2scale)/dgamma(l2,shape=l2sha
pe,scale=l2scale)) 

  

  if (is.na(rate)|is.nan(rate)){rate<-0} 

   

  pl2[i]<-min(1,rate) 

  u<-runif(1) 

  simulationmatrixSECOND[i,lx+1]<-l2can*(u<=pl2[i])+l2*(u>pl2[i]) 

  l2<-simulationmatrixSECOND[i,lx+1] 

} else { 

  simulationmatrixSECOND[i,lx+1]<-l2 

  pl2[i]<-0 

} 

  The shape parameter simulation  

################ g2 ################### 

 

g2can<-rnorm(1,g2,g2canSd) 

rate<-0 

if(g2can>0){ 

   

  likeCAN<-((g2can*(t^(g2can-1)))^(dobs==dth))*exp(-expj*(l2*(t^g2can))) 

  likej<-((g2*(t^(g2-1)))^(dobs==dth))*exp(-expj*(l2*(t^g2))) 

   

  rate<-
(prod(likeCAN/likej))*(dgamma(g2can,shape=g2shape,scale=g2scale)/dgamma(g2,shape=g2s
hape,scale=g2scale)) 

   

  if (is.na(rate)|is.nan(rate)){rate<-0} 

   

  pg2[i]<-min(1,rate) 

  u<-runif(1) 

  simulationmatrixSECOND[i,lx+2]<-g2can*(u<=pg2[i])+g2*(u>pg2[i]) 

  g2<-simulationmatrixSECOND[i,lx+2] 

} else { 

  simulationmatrixSECOND[i,lx+2]<-g2 
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  pg2[i]<-0 

} 

 

 

 

} 

 

p1matrix<-matrix(c(pb1,pl1,pg1),ncol=3, byrow=F) 

 

p2matrix<-matrix(c(pb2,pl2,pg2),ncol=3, byrow=F) 

 

return(list(simulations1=simulationmatrixFIRST,simulations2=simulationmatrixSECOND,p1me
an=apply(p1matrix,2,mean),p2mean=apply(p2matrix,2,mean))) 

} 

I divided the simulation to three sessions. The first begins from the first dataset 
and ends to the 333th dataset. The second session begins from 334 and ends to 
667. The third one starts from 668 and ends to 1000 

for(k in 1:333){ 

  fdata<-DataLista[[k]] 

  2 chains. Each chain does 3000 simulations. 

mh1<-MHvalue(3000,fdata,competingR1,competingR2) 

  mh2<-MHvalue(3000,fdata,competingR1,competingR2) 

500 simulations  are discarded  and after that one final simulation pair 25 is 
chosen  

  sim11 <- mh1$simulations1[501:3000,] 

  sim11<-sim11[seq(1,nrow(sim11),by=25),] 

  sim21<-mh1$simulations2[501:3000,] 

  sim21<-sim21[seq(1,nrow(sim21),by=25),] 

   

   

  sim12 <- mh2$simulations1[501:3000,] 

  sim12<-sim12[seq(1,nrow(sim12),by=25),] 

  sim22<-mh2$simulations2[501:3000,] 

  sim22<-sim22[seq(1,nrow(sim22),by=25),] 
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  sim1<-rbind(sim11,sim12) 

  sim2<-rbind(sim21,sim22) 

   

  finalmatrix1[k,1:5]<-apply(sim1,2,mean) 

  finalmatrix1[k,6:10]<-apply(sim1,2,sd) 

  finalmatrix1[k,11:13]<-apply(rbind(mh1$p1mean,mh2$p1mean),2,mean) 

   

  finalmatrix2[k,1:5]<-apply(sim2,2,mean) 

  finalmatrix2[k,6:10]<-apply(sim2,2,sd) 

  finalmatrix2[k,11:13]<-apply(rbind(mh1$p2mean,mh2$p2mean),2,mean) 

  The calculation of scale reduction factor  

for (j in 1:ncol(sim1)){ 

    mat<-matrix(sim1[,j],ncol=2,byrow = F) 

    finalmatrix1[k,13+j]<-Rhat(mat=mat) 

  } 

  for (j in 1:ncol(sim2)){ 

    mat<-matrix(sim2[,j],ncol=2,byrow = F) 

    finalmatrix2[k,13+j]<-Rhat(mat=mat) 

  } 

  theta1<-mh1$thetaSim[501:3000,] 

  theta2<-mh2$thetaSim[501:3000,] 

   

  theta1<-theta1[seq(1,nrow(theta1),by=25),] 

  theta2<-theta2[seq(1,nrow(theta2),by=25),] 

   

  finalTheta[k,]<-apply(rbind(theta1,theta2),2,mean) 

  print(k) 

} 

Finalmatrix1 

finalmatrix2 

finalTheta 

 The end  


