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Abstract

In recent decades, there has been a rapid advancement in the utilization of Earth
Observation (EO) data in geology, driven by a growing interest in its application to identify
potential sites associated with hydrothermal alteration and ore deposits. This
development has garnered increasing attention due to its potential for substantial time
and cost savings. In the present study, the target of interest is a small island called
Koutala near the city of Lavrion (Attiki, Greece) and the aim is (a) to identify granitoid
intrusions and schist formations on its surface and (b) to detect the associated alteration
minerals. To this end, two high-resolution satellite datasets depicting the area of interest,
taken from the Sentinel-2 and WorldView-3 missions, are utilized (the data sets differ in
their spatial and spectral characteristics). Two different machine learning methods,
namely clustering and spectral unmixing, were applied to extract geological information

from the island.

Clustering was applied to both datasets to delineate regions with similar spectral
signatures, aiming to identify granitoid and schist formations, as is referred on previous
research insights [1]. In this framework, a novel clustering algorithm named SHC was
introduced. SHC has been tailored especially for multispectral data. It takes advantage of
the derivative of each pixel’s spectral signature, and outperforms traditional off-the-shelf
clustering algorithms, like K-means and hierarchical methods. The SHC algorithm
demonstrated improved accuracy in identifying granitoid intrusion areas, especially in the
challenging lower spatial resolution context of the Sentinel-2 dataset and in general yield

to more homogeneous clusters (in terms of spectral characteristics).

Additionally, various linear spectral unmixing methods were explored in the Sentinel-2
dataset, taking into account its larger number of spectral bands and spectral positions
compared to WorldView-3 data, to detect the associated alteration minerals on the
surface of the island. Despite the dataset's relatively low spatial resolution for this type of
study, alteration minerals with high probability of presence (having as reference previous

search insights [1]) were accurately identified by most algorithms.
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MepiAnyn

Ta TeAeuTaiEG DEKAETIEG, UTTAPEE MIa ypriyopn TTPOG0B0G OTNV ETTECEPYATIA DOPUPOPIKWV
oedopévwy lMapatipnong ™G 'ng otn yewAoyia, odnyoupevn ammd To aAuavouevo
eVOIOQPEPOV YIA TNV EQAPHOYA TOUG OTNV avayvwplion Toavwy BEcewv TTou oXeTiCovTal
ME TNV UdPOBEPUIKA ECAANOIWON KAl TNV TTAPOUCIa OPUKTWY UdPOBEPUIKAG EEaAAOIWONG.
Auti n pEBOdOG €£xel Kepdioel augavouevn TTpoooxy Adyw Tng duvarotnTag TTOU
TTPOOPEPEI €COIKOVOUNONG XPOVOU Kal TTOPWV. ZTNV TTAPOUCa HEAETN, TO QVTIKEIYEVO
EVOIAQEPOVTOG €ival TO JIKPG vNai TTou ovouddeTal KoutdAa kovtd otnv TTOAN Tou Aaupiou
Kal 0 0TOXO0G €ival (a) N avayvwpion YPAVITIKWY OIEICOUCEWY Kal OXIOTOAIBOU OTO vNnaoi Kal
(B) n avixveuon Twv OXETIKWV OPUKTWV €eEaNoiwong. la Tov OKOTd auTo,
Xpnolgotrolouvtal dU0 OUVOAQ UWNANG XWPIKAG avaAuong OedOPEVWVY  ATTO  TIG
dopuopikéc atmmooToAég Sentinel-2 kar WorldView-3 110U atreikoviouv Tnv TrEPIOXA
evOIOQPEPOVTOG (T DEDOUEVA DIAPEPOUV OTA XWPIKA KOl PACHUATIKA XOPAKTNPIOTIKA TOUG).
AUO JIAQOPETIKEG HEBODOI pnXavIKNG HpABNoNg e€@apudoTnKaAv yia TV €Eaywyn
YEWAOYIKWYV TTANpoQopIwyV atrd To vnoi: n opgadotroinon (clustering) kKal 0 @OACHATIKOG

dlaxwpIouog (spectral unmixing).

To clustering e@apuOOTNKE KAl 0TOUG BUO TUTTOUG OEDOPEVWV PE OTOXO VA QVIXVEUTOUV
TTEPIOXEG ME TTAPOUOIEG QOCHATIKEG UTTOYPAPEG TIOU  AVTIOTOIXOUV O€  YPAVITIKEG
01e100U0¢€IC Kal OXIOTONIBOUG, OTTWG £XEI avaPePBEi o€ TTPONYOUNEVEG €peuveG [1]. Z€ auTd
TO TTAQiCI0, évag véo ahyopiBuog clustering pe Tnv ovouacia SHC ulotroindnke. O SHC
EXEl OXEDIAOTEI E10IKA YIa TTOAUQACHATIKG OedOMEVA. EKUETAANEUETAI TNV TTAPAYWYO TNG
QPACUATIKNG UTTOYPAPAG KABE ciIkovooTolxEiou (pixel) Kal utTEPEXEl TWV TTAPAdOCIAKWY
aAyopiBuwv clustering, 6TTwg 0 K-means Kai o1 1EpapxIkéS pEBodol. O alyépiBuog SHC
eTEDEICE PEATIWUEVN OKPIBEIO OTNV avayvwpion TTEPIOXWVY HE ypavitn, AauBdvovrag
uTTOWN TNV OXETIKA XauNAR XwpIkh avaAuon Twyv dedopévwy Sentinel-2 yia Tétoiou TUTTOU
MEAETEG KAl YEVIKA €ixe WG aATmOTEAEOPA IO opolduop@a  cluster (6oov agopd Ta

QACUATIKA XOPAKTNPIOTIKA TOUG).

EmmAéov, e€epeuviiBnkav did@opeg pEBodol spectral unmixing ota dedouéva Sentinel-2,

AauBdavovtag utrdown Tov PEYOAUTEPO QPIBUO QPACUATIKWY KAVOAIWY & OIOPOPETIKES



Béocig oe ouykpion pe Ta dedopéva WorldView 3 VNIR, yia TRV avixveuon TwV OPUKTWV
e€aAoiwong oTo vnoi. MNapd TN xaunAr xwpik avaluon Twv dedopévwy Sentinel-2 yia
TETOIOU TUTTOU PEAETEG, TA OPUKTA £CaAAoiwong pe uwnAl mTBavoTnTa TTAPOUCiag aTnyv
EM@PAVEID TOU VvNOoloU avayvwpioTnkav WdE akpifeia atmd TOug TTEPICCOTEPOUG

aAyopiBuoug, pye Baon TTponyoupeveg £peuveg [1].

OEMATIKH NMEPIOXH: Mnxaviki padénon oc dopu@opikd dedopéva

AEZEIZ KAEIAIA: Opadotmroinon, ®Paocpatikég JSlaxwpiopog, Sentinel-2,
WorldView-3 VNIR
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Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data

1. Introduction

According to the United States Geological Survey “Remote sensing is the process of
detecting and monitoring the physical characteristics of an area by measuring its reflected
and emitted radiation at a distance (typically from satellite or aircraft). Special cameras
collect remotely sensed images, which help researchers "sense" things about the Earth”
[2]. According to [3], the benefits of the use of remote sensing are (among others) the
ability “to collect information over large spatial areas; to characterize natural features or
physical objects on the ground; to observe surface areas and objects on a systematic
basis and monitor their changes over time; and the ability to integrate this data with other

information to aid decision-making”.

Machine learning is the process of extracting information from the data in an automated
way. It is a branch of the Artificial Intelligence field and, nowadays, it is used in almost
any sector of the human activity. Machine learning algorithms, offer valuable capabilities
for analyzing vast areas, including object classification, detection of temporal changes,

data fusion, cloud removal, and spectral analysis using satellite or aerial imagery [4].

Machine learning has dynamically entered to the remote sensing area, in order to aid to
the more effective and reliable processing of the huge amount of data gathered in various
remote sensing contexts, most of them depicting the earth's surface. The essential aim
of machine learning in the remote sensing framework is the recognition of patterns, by
identifying/highlighting both more obvious and less obvious feature correlations in the
data. This aids end-users in comprehending collected data and finding advanced
solutions in solving problems related to natural environment (e.g., agricultural areas

classification, lithological classification/identification).

Referring to satellite data, there are several types of them, such as the optical

hyperspectral/multispectral® imaging systems (e.g. Sentinel-2, WorldView-3, ASTER,

Landsat series, Hyperion, EnMAP). These datasets have different spectral and spatial

resolutions, offering the potential to extract information about the composition and

1 The main difference between multispectral and hyperspectral is the number of bands and the spectra of
electromagnetic radiation that each band contains.

K. Tsamkosoglou 14
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characteristics of various materials. [5]

The majority of the machine learning techniques that are used in remote sensing data,

are applied on the image pixels.

Two famous machine learning techniques (that are also used in remote sensing) are

clustering and spectral unmixing.

Clustering is the process of grouping more similar objects into the same group and less
similar objects into different groups, according to a predetermined proximity measure [6].
The goal of applying clustering in remote sensing data is to identify homogenous areas

in the image.

On the other hand, spectral unmixing relies on the assumption that the spectral signature
of a specific pixel in a remote sensing image is a combination/mix of the (spectral
signatures of the) materials that lie in the area of interest. The aim is to identify for each
pixel in an image, the degree to which (the spectral signature of) each material contributes
to the formation of (the spectral signature of) the pixel. [7]

The approach allows for a quantitative analysis of the materials met in the image.

The present study focuses on a geological application on a small island, called Koutala
(Lavrio, Attiki, Greece), utilizing multispectral Sentinel-2 and WorldView-3 VNIR (Visible
— Near Infrared) remote sensing data. The aim of this study is to investigate the capability
of such data (a) to identify/discriminate granitoid intrusions and schist formations on the
island and (b) to map related hydrothermal alteration minerals distributed on the surface

of the island, using clustering and spectral unmixing methods respectively.

K. Tsamkosoglou 15
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2. Materials

In this chapter, the study area for our application is first introduced. Then, some general
information about the nature of the Sentinel-2 and WorldView-3 VNIR data utilized in this
study is provided. In parallel, the Sentinel-2 and WolrdView-3 VNIR images depicting the

Koutala islet are also given.

2.1 Study area

The islet of “Koutala” is located about 5 km NNE of the city of Lavrion (Fig. 1). The islet
has a form of a rocky promontory, forming a characteristic tombolo feature with the
mainland (in coastal geomorphologic terms). Its size is about 240 m in E-W by 40- 60 m
in the N-S direction. [1]

40°N 40°N

24.07°E 24.08°E

A
37.76°N

37.76°N

Profitis Ilias
T'horikou Kerateas

Koutala Mikrolimanou islet

37.75°N 37.75°N

24.07°E 24.08°E

(b)
Figure 1: Location of the study area: (a) Lavrion area in Attica (Greece) (red rectangle); (b) Koutala
islet in Lavrion area (yellow rectangle). Background image from Google Earth. (Source: [1]).
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2.2 Satellite Data
A multispectral image comprises several image layers captured from the same scene,

with each layer acquired within a specific wavelength band. [8]

In this study Sentinel-2 and WorldView-3 VNIR data were used. Table 1 presents the
spectral characteristics of the two sensors.

Sentinel-2 Worldview-3 VNIR
Band | Centre Width Res. | Band | Centre | Width | Res.
(Sb) | (hm) (hm) (m) | (Wb) | (nm) (hm) (m)
1 443 20 10 1 425 50 1.33
2 490 65 10 2 480 60 1.33
3 560 35 10 3 545 70 1.33
4 605 40 1.33
4 665 30 10 5 660 60 1.33
5 705 15 10
6 740 15 10 6 725 40 1.33
7 783 20 10
8 842 115 10 7 832 125 1.33
8A 865 20 10
9 940 20 10 8 950 180 1.33
11 1610 90 10
12 2190 180 10

Table 1: Spectral characteristics of Sentinel-2 and WorldView-3 VNIR data. For each spectral band,
its center, width and resolution are provided.

2.2.1 Sentinel-2

Sentinel-2 mission provides high-resolution, multi-spectral imaging with a wide swath. It
is designed to support Copernicus Land Monitoring initiatives, encompassing the
assessment of vegetation, soil, and water coverage, in addition to the observation of
inland waterways and coastal regions. The Sentinel-2 MultiSpectral Instrument (MSI)
captures information in 13 spectral bands, from which four bands have a 10-meter spatial
resolution, six bands have a 20-meter spatial resolution, and three bands have a 60-meter

K. Tsamkosoglou 17
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spatial resolution. [9]

The image that we used in our study is a Sentinel-2 Level 2A (atmospherically corrected)

image with 12 bands (dimensions) resampled to 10m acquired on 19 July 2022 (Fig. 2)

The image was subset to the area of interest with totally 832 pixels, while the pixels

corresponding to the sea were masked. (Fig. 3). The number of unmasked pixels is 144

in total, and further processing is exclusively focused on them.

Figure 2: True color composite of the Sentinel-2 image of the study area.

K. Tsamkosoglou 18
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Figure 3. Masked, subset pseudo-color composition of the Sentinel-2 subset image of the
Koutalaislet. Bands 2,3,4 were used to construct the pseudo color compaosition
respectively.

2.2.2 WorldView-3

WorldView-3, owned by DigitalGlobe, is a commercial Earth observation satellite. It offers
various imaging capabilities, including panchromatic imagery with a resolution of 0.31
meters (VNIR), eight-band multispectral imagery at 1.24 meters resolution (VNIR),
shortwave infrared imagery at a resolution of 3.7 meters (SWIR), and provides CAVIS

data (Clouds, Aerosols, Vapors, Ice, and Snow) at a resolution of 30 meters. [10]

In our study, the image used has 8 spectral bands in the Visible-Near infrared region of
the E/M spectrum (VNIR) and 1.33m spatial resolution, and was acquired on 15 January
2022 (Fig.4).

This image underwent atmospheric correction and then subset to our specific area of
interest with a total of 20496 pixels. As in the case of the Sentinel-2 image, all the pixels
representing the sea were appropriately masked and excluded from subsequent analysis.

The remaining pixels were 6510 in total after the masking. (Fig.5)

K. Tsamkosoglou 19
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Figure 5: Masked, subset true color composition of the WorldView-3 VNIR image. Bands
4,3,2 were used to construct the color composition, respectively.

K. Tsamkosoglou
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3 Methods

In this section the methods that were used in this study are described.

3.1 The concept of the spectral signature

An important concept in this type of applications is that of the spectral signature. A
spectral signature (sometimes called pixel spectrum) refers to the fluctuation in
reflectance exhibited by a material in different (consecutive) wavelengths. It essentially

represents the reflectance variation as a function of wavelength [11] (Fig.6). Usually, it is

depicted as a continuous line connecting consecutive band reflectance values.

Spectral Profile
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Data Value
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Figure 6: A pixel spectral signature example: black crosses correspond to the wavelength (x axis)
and the corresponding reflectance value (y axis) of a Sentinel-2A image.

3.2 Continuum removal on reflectance spectra

The continuum removal method is a technique that standardizes reflectance spectra,
enabling the comparison of individual absorption features from a consistent baseline. In
this process, the initial and final spectral data values are set to 1.0, ensuring that the first

and last bands in the resultant continuum-removed spectrum have this standardized
value.

More specifically, for each image pixel, its continuum is removed by dividing the original
spectrum with the continuum curve:

K. Tsamkosoglou
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S
Scr=E

where: S, = Continuum-removed spectrum, S = Original spectrum, ¢ = Continuum curve
(Fig. 7) [12]
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Figure 7. Reflectance spectrum with the continuum and the continuum-removed spectrum
(Source: [12]).

In our case 1 — S, values are used so the first band and the last band have value zero.

3.3 Spectral signature derivative calculation
The derivative of a spectral signature is a vector that represents the rate of change of the

reflectance value from one band to its next one. This can help us to recognize the rate of
change of the reflectance values within a spectral signature. Among the various

approaches that can be used to arithmetically approximate the derivative, in this work the

derivative of an n-dimensional spectral signature vector X= (%1, x5,..,xy) IS approximated
by the (n — 1) dimensional vector (Fig.8) :

-

Y = (%3 - %1, . Xp - Xn_q)
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Figure 8 : Derivative of a Sentinel-2 spectral pixel. On left side of the figure a continuum
removed spectral pixel (1 —S,.) is shown and on the right side the respected derivative of
this spectral pixel. On x-axis the number of band and on y-axis the respected reflectance

value are presented.

3.4 Fréchet distance between curves

In the field of mathematics, the Fréchet distance is a metric for assessing the likeness
between curves, considering both the arrangement and sequence of points along these
curves. This distance metric is named in honor of Maurice Fréchet. An intuitive definition
of the Fréchet distance is the following: An individual walks along a finite curved route,
accompanied by their leashed dog, which follows a distinct finite curved path. Both the
person and the dog can adjust their speeds to maintain some slack in the leash, but
neither can reverse direction. The Fréchet distance between these two curves quantifies
the length of the shortest leash necessary for both the person and the dog to complete
their respective paths from beginning to end. It is important to note that this definition

remains symmetric regardless of whether the dog is leading or following its owner.

The discrete Fréchet distance, sometimes referred to as the coupling distance, serves as
an approximation of the Fréchet metric but is specifically tailored for polygonal curves. In
the context of the discrete Fréchet distance, only the positions of the leash matter when
its endpoints are positioned at the vertices of the two polygonal curves, never within the
interior of an edge. This unique characteristic enables the computation of the discrete
Fréchet distance using a straightforward dynamic programming algorithm, making it

possible to calculate it in polynomial time. [13]

To visualize this concept figure 9 displays two polygonal curves, namely [al, a2, a3] and

[b1,b2]. We can identify two possible couplings between these curves:
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[b1 al,b2 a2,b2 a3] and [b1 al,bl a2, b2 a3]. It's important to note that these couplings
must adhere to the requirement that the endpoints of both polygonal curves coincide,
respecting the order of the points and preventing backward movement.

The discrete Fréchet distance is determined by selecting the smallest of the maximum
pairwise distances within these couplings. In the provided example, the maximum
distance found in both couplings occurs at b2 a3, which is equal to two units.

Consequently, the minimum of these two maximum distances is also two units. [14]

Figure 9: Example of discrete Fréchet distance.

3.5 Clustering algorithms

As it has been also stated in the introduction, the aim of a clustering algorithm is to assign
more similar data vectors to the same group and less similar data vectors to different
groups (in terms of a predetermined proximity measure). Clustering algorithms can be
roughly categorized as either hierarchical or partitional. In hierarchical algorithms, clusters
are built step by step, building upon previously formed clusters. On the other hand,
partitional algorithms produce a single clustering for the data set of interest and (most of

them) are less computationally demanding, compared to the hierarchical algorithms.

3.5.1 Partitional Algorithm - K-means
A celebrated paradigm of partitional algorithms that is used very often in practice
(although its age exceeds the six decades) is the K-means algorithm. This algorithm

represents each cluster with a representative vector (also called, representative, or
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center, or centroid of the cluster) and its aim is to place each such representative to a
region that is dense in data. Then, it assigns each data point to the cluster whose center,
is closest to it, in terms of the squared Euclidean distance measure. It turns out that the
centroid represents the average position of all the data points within the cluster. This
means that for each dimension, the centroid's coordinates are calculated as the arithmetic
mean of all the corresponding coordinates of the points in the cluster. The algorithm is

described below:

LetX = (xq,x,,..x,) bethe setofdatapointsandV = (v, v,, ...v,) be the set of centers.
¢ Initialize randomly the c cluster centers.
e (A) Compute the distances of each data point from all the cluster centers.

e Assign each data point x; to the cluster ¢; whose center is closest to x; .

e Reestimate the cluster center v; of each cluster ¢; using the formula:

where, n; is the number of data points in cluster C;.

e Repeat from step (A), until no data point is reassigned to a different cluster. [6]

3.5.2 Hierarchical Algorithms
The hierarchical algorithms, produce sequentially a hierarchy of clusterings. They are

further divided into agglomerative and divisive clustering algorithms.

Agglomerative clustering algorithms: In the case, the initial clustering consists of N
clusters (each one containing a single data point) and the algorithm proceeds in the
definition of the next clusterings, by merging at each level of the hierarchy the two most
similar clusters, until the final clustering consisting of a single cluster (the whole dataset)

is reached.
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In more detail, the agglomerative hierarchal algorithms have the following steps:

1.

Initialization: The initial clustering (0-th clustering level) consist of N clusters, each

one containing a single data vector.

(A) At the t-th clustering level:

2.

Pairwise Distance Calculation: Compute the distance between all pairs of
clusters. This often involves the use of distance metrics like Euclidean distance or

Manhattan distance, or another distance metric.

Merging the Closest Clusters: Identify the two clusters that are closest to each

other and merge them into a single cluster.

Updating the Distance Matrix: After the merging, update the distance matrix? to
include the distances between the newly formed cluster and each one of the
remaining clusters. The method for updating distances depends on the chosen
linkage criterion, such as single linkage, complete linkage, or average linkage that

are described in detail below.

Iteration: Go to (A), until a predetermined stopping condition is met. This condition
can involve achieving a specified number of clusters, reaching a distance threshold
beyond which clusters are not merged, or another criterion tailored to the problem

under study.

Output: The result of agglomerative clustering is typically represented as a
dendrogram, a tree-like structure illustrating the sequence of cluster mergers
(Fig.10). To obtain the desired number of clusters, one should cut the dendrogram

at an appropriate level.

2 The matrix that contains the distances of all pairs of clusters.
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Figure 10: Example of a dendrogram. On the left side, the dataset is displayed. On the right side,
the dendrogram is depicted along with the corresponding distances. The dendrogram is cut when
the distance reaches 9.1, resulting in the formation of two clusters.

Divisive hierarchical clustering: Algorithms of this kind proceed in the opposite way
compared to the agglomerative ones. They start with the single cluster clustering and
proceed by dividing at each level the cluster with the smallest internal coherence.

The divisive hierarchal algorithms have the following steps:

1. Initialization: The initial clustering (0-th clustering level) consist of a single cluster,

which is actually the whole data set.
(A) At the t-th clustering level:

2. Pairwise Distance Calculation: For each cluster, determine its partition to two
sub-clusters, so that these sub-clusters to have the maximum possible dissimilarity

(or minimum possible similarity).

3. Cluster Splitting: Among all the clusters at the current clustering level, select the
one whose associated two sub-clusters exhibit the maximum possible dissimilarity
and replace it with its two subclsuters. Thus, the resulting clustering has now one

cluster more than the previous clustering.
K. Tsamkosoglou 27



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data

4.

Iteration: Go to (A), until a predetermined stopping condition is met. This condition
can involve achieving a specified number of clusters, reaching a distance threshold
beyond which clusters are not merged, or another criterion tailored to your

problem.

In hierarchical algorithms, a pivotal concept lies in determining how to calculate the

distance between clusters as the algorithm progresses. Various methods have been

devised to address this issue, with the most prevalent types being:

Maximum or complete linkage clustering: The algorithm calculates all
dissimilarities between each element in cluster 1 and every element in cluster 2,
selecting the highest value (i.e., maximum) from these dissimilarities to represent
the distance between the two clusters. This approach often leads to the formation
of more compact clusters.

Minimum or single linkage clustering: The algorithm calculates all pairwise
dissimilarities between the elements in cluster 1 and those in cluster 2, choosing
the smallest dissimilarity as the linkage criterion. This method often results in the
formation of elongated, less compact clusters.

Mean or average linkage clustering: The algorithm computes dissimilarities
between all pairs of elements in cluster 1 and cluster 2, using the average of these
dissimilarities as the measure of distance between the two clusters.

Centroid linkage clustering: It calculates the dissimilarity between the centroid
of cluster 1 and the centroid of cluster 2.

Ward’s minimum variance method: It aims to minimize the increase in variance
within the newly formed cluster when two clusters are merged. This method is

known for producing relatively balanced and compact clusters. [6]
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3.6 Unmixing spectral sighature algorithms

In both multispectral and hyperspectral imagery, the spectral signature of a single pixel
usually corresponds to a mixture of reflectance spectra from multiple materials
(endmembers), with the mixture coefficients (each one associated with a material)
indicating the relative contribution of each constituent material to the formation of the pixel
spectral signature. These coefficients offer insight into the abundances of the composing

materials within the pixel.

3.6.1 Linear unmixing

The linear unmxing is based on the assumption that each mixed pixel is expressed as a
linear combination of n endmembers weighted by their corresponding abundances. A
spectral image of k pixels and b bands can be represented as a b X k matrix, whose
columns are the spectral signatures of the pixels (the rows corresponding to the spectral
bands), that is:

Y = (y1,¥2, - ¥k) € RP*¥
Then (according to the linear mixing hypothesis)

Y=0-W+E

where 0 is a b X n matrix whose columns are the spectral signatures of the n materials,

W = (wq,w,, ...wy,) IS @ n X k matrix, whose j-th row is the abundance vector associated

with the j-th pixel and E is a b X k matrix which represents the noise.

Linear unmixing typically involves three primary stages: first, estimating the number of
endmembers; second, extracting the spectral signatures of these endmembers; and

finally, estimating the abundances of these endmembers within each pixel (Fig.11) [15].
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Figure 11: Linear unmixing method visualization. This method can be applied to both
multispectral and hyperspectral data.

3.6.2 Nonlinear unmixing

The linear mixture model has demonstrated very good performance in situations where
the Earth's surface exhibits extensive, well-defined regions with distinct endmembers.
However, its effectiveness diminishes in scenarios characterized by intricate geometric
structures and/or intimate mixtures. In such cases, incident light rays can interact with
multiple pure materials within a pixel before reaching the sensor, resulting in reflectance
spectra that are highly non-linear mixtures of the individual endmember reflectances. In
such cases, the linear mixing hypothesis is not valid, and one should resort to nonlinear
models. [16]
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4. Methodology

In our geological application, we considered two distinct problems.

The first one has to do with the identification of homogeneous regions on the island
(granitoid intrusions and schist formations). This problem has been tackled via a novel
clustering approach to group the pixels associated to the island into clusters based on

common pixel spectral signature characteristics.

The second problem has to do with the. In this case the linear spectral unmixing approach

has been utilized.

4.1 Clustering

In our study, a novel clustering methodology has been developed, tailored to the
specificity of the problem under consideration. In particular, the Sentinel-2 dataset
consists of mixed pixel spectral signatures in a small area combined with significant
spatial heterogeneity. Moreover, traditional clustering algorithms treat the pixel spectral
signature as a whole and do not focus exclusively on specific spectral characteristics
within the signature (e.g. absorptions) that are indicative of the presence of a specific
material. In the sequel, a new methodology is presented, where the pixel spectral
signatures are transformed, in order to better highlight the differences between different

materials.

The algorithm comprises a two-step clustering procedure. First, a sequential algorithm is
employed to cluster the pixels into ¢’ groups based on their spectral derivatives. The
resulting clustering by this algorithm is next fed to the second algorithm, which is of
hierarchical nature. As is well known, the latter algorithm (as all hierarchical clustering
algorithms) requires the calculation of the distances between any pair of clusters, C,, C,
resulted from the sequential algorithm. To this end, the [1 distances among the spectral
derivatives of all possible pairs of pixels (pixel;, pixels), d,(pixel;, pixels), with pixel; € C,
and pixel € C, are calculated and the maximum of them defines the dissimilarity between
Cq, Cr. The produced ¢’ x ¢’ (symmetric) distance matrix (whose (q,7) element is the

distance between the clusters C, and C,) is fed to a hierarchical algorithm, along with the
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desired number of final clusters, c. In our implementation the Ward algorithm has been
used. Due to the two-step clustering approach in the algorithm, we called the algorithm
Sequential Hierarchical Clustering (SHC) (see its flowchart in Fig.12)

Input-S

Takes into account
the form of each
spectral pixel using
the form their
derivatives

Takes into account
the rate of change
of the reflectance
value of each
spectral pixel
using the
absolute difference
of their derivatives

Figure 12: Flow chart of the SHC algorithm.

In the sequel, the proposed clustering methodology is described in detail.

4.1.1 Sequential clustering
The sequential clustering step of the SHC methodology takes a matrix A of size b X n as

input, where n is the number of pixel spectral signatures of the pixels, and b is the number

of bands characterizing each pixel spectral signature ¥, = [x, ..., xp]7.

X1,1,X1,2)-X1n ]

xb,lr xb,Zr LR xb,n
In this study n is the number of the unmasked pixels.

The first step in the SHC algorithm is to create the derivative matrix D of size (b — 1) X (n)
from the A matrix. To create the derivative matrix, we approximate the derivative of each

spectral pixel vector ¥; as the vector containing the differences between the values of
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consecutive spectral bands. This, gives raise to the following derivative matrix:

X211~ X111 Xon — X1n
Xp1 — Xp-11 " Xpn — Xp-1n

After the calculation of the derivative matrix, the clustering process starts. The first vector
from the derivative array is assigned to the first cluster. Each next point is assigned to
one of the currently formed clusters, say C;, if it has the same form of derivative with one
of points belonging to C;, otherwise a new formed cluster is created. The procedure

continues sequentially for all the remaining points.

SHC Algorithm step-1 Sequential clustering
1: m = 1 number of clusters

2: Assign the first point to the cluster C,, = {x;}
3:fori = 2,...N ... do

4 forj =1,..m...do

5 if X; has the same spectral form with a x;: € C; then
6: C;: =C; U {x}

7: break

8 Else

9: if j =mthen

10 m=m+1
11: C,, ={%:}
12: end if

13: end if
14: end for

15:end for

To compare the spectral form between two spectral pixels ¥;, X; we utilize their spectral
derivatives D; = [Dyy, ...,Di,b_l]T, D; = Dy, ...,Dj,b_l]T.

The vectors X; and X; are considered spectrally similar if the respective values of
Djx and Dji are of the same sign, for k = 1, ...,b — 1. However, apart from the sign

of Djx and Dy, their size should also be taken into account, since differences

between near zero values are not considered as indication of dissimilarity. In the

light of this observation, we consider that we have similarity in the following cases:

e Both Dy, and D, have the same sign and their sizes, |Dy| and |Dj|, are “large”
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(greater than a user-defined threshold, threshold_1).

e Both D;; and Djx have the same sign, their sizes, |Djx| and |Djk|, are “small”
(less than threshold_1) and their [1 distance is “small” (less than a user-defined
threshold, threshold_2).

e The size of both D, and Dy, is “small” (less than a user-defined threshold,

threshold_3).
If any other case occurs for any pair Dy, and Djx, k = 1, ...,b — 1, we consider that

X; and X; are spectrally dissimilar.

Increasing the threshold_1 in the SHC algorithm results in more clusters, while

increasing the threshold_2 and the threshold_3 results in fewer clusters.

The above rationale is summarized to the next pseudocode algorithm.

SHC Algorithm step-1 Spectral form similarity

1. spectral_similarity = true

2: fork =1,...h—1...do

3 if ( Dy > threshold_1 and Dj, > threshold_1)
4: or (D;, < —threshold_1

5: and Dj, < —threshold_1) then
6
7
8
9

spectral_similarity = spectral_similarity A true
Else if (0 < Dy, < threshold_1 and 0 < Dj,, < threshold_1 and

dl(Dik'Djk) < threshold_Z)
or (—threshold_1 < Dy, < 0 and —threshold_1 < D, < 0 and

10: dl(Dik'Djk) < threshold_Z) then

11: spectral_similarity = spectral_similarity A true
12: Else if |[Dj| < threshold_3 and |D;;| < threshold_3 then
13: spectral_similarity = spectral_similarity A true

14: Else

15: spectral_similarity = spectral_similarity A false
16:

17: end if

18: end for
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4.1.2 Hierarchical clustering

The hierarchical clustering component of the SHC algorithm takes as input the ¢’ clusters
formed by the sequential algorithm, along with the labels of clusters to which each spectral
signature belongs, and the desired final number of clusters, c. Each cluster, C;, is
represented as a matrix with dimensions b X n;, where n; is the number of pixels within
C;, and b is the number of bands. The cluster labels are represented by a n-dimensional

vector, so that its i-th position containing the label of the cluster to which the data vector

x; belongs.

The algorithm starts by calculating the distance matrix between the clusters taken as an
input. To calculate the distance between two clusters, the algorithm utilizes the maximum
[1 distance of the derivative vectors between all pair of pixels belonging to the respective

clusters (see Box below).

SHC Algorithm step-2 Distance between clusters C; and Cy, j,k=1,...,c’

1: Calculate the derivative b X n; matrix D; (the derivative vectors of the pixels in
clusters C; are in the columns of Dj).

2: Calculate the derivative matrix D, with b X n;, dimensions (the derivative vectors
of the pixels in clusters C; are in the columns of D;,).

3: Initialize (n; - n, )dimensional vector P to zero

4m =1

5:fori = 1,...n; do

6 for s = 1,...n, do

7 distance = 0

8 forr = 1,...b do

9 distance = distance + |Dj — Dg|
10 end for

11: P(m) = distance

12: m=m +1

13: end for

14: end for

15: d(Cj, Ck) = max P

After constructing the distance matrix of size ¢’ x ¢’ (¢’ is the number of clusters resulted
from the sequential algorithm), the SHC algorithm proceeds with the execution of a
hierarchical algorithm taking into account the desired final number of clusters, c. Following

the execution of the hierarchical algorithm, a ¢’- dimensional vector is returned as output
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containing the new labels of clusters in which each cluster from the first clustering refers
to (in total ¢ different cluster labels). The final step of the algorithm involves creating the
final clustering of the points by combining the vector with the cluster labels from the first
clustering (sequential algorithm) and the vector with the cluster labels from the second

clustering (hierarchical algorithm) (see Box below).

SHC Algorithm step-2 Combine clusterings to create the final clustering

1: Input: an n-dimensional vector S (its i-th element is the cluster label of the cluster
where the i-th data vector has been assigned from the sequential clustering).

2: Input: A c¢’-dimensional vector H where ¢’ is the number of clusters from the
sequential clustering (its j-th element is the cluster label of the cluster where the j-
th cluster resulted from the sequential algorithm. The value of the cluster label has
been assigned from the output of hierarchical algorithm and there are in total ¢
different cluster labels)

3: Initialize the n-dimensional vector P to zero

4:fori = 1,...,cdo

5: Determine the positions j of H for which H(j) =i and accumulate their
respective position indexes into a vector L

6 for j = 1,...,size(L) do

7: Determlne the positions g of S for which S(gq) =L(j) and
accumulate their respectlve position indexes into a vector W

9: form = 1,...,size(W) do

10: P(W(m)) =i

11: end for

12: end for

13: end for

4.2 Spectral Unmixing
The second problem considered in this work, which has to do with the potential detection
of alteration minerals, only established linear spectral unmixing methods were employed,

to determine the mineral abundances in the pixels on the island.

Spectral unmixing was exclusively performed on the Sentinel-2 dataset due to the
presence of a greater number of spectral bands, including two shortwave (SWIR) bands
(11, 12). In a future work the spectral unmixing can be investigated into the World-View-

3 dataset as well.
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4.2.1 Endmembers definition

The endmembers used were selected from the USGS spectral library resampled to the

Sentinel-2 spectral bands. The minerals selected as endmembers are (i) muscovite, (ii)

chlorite, (iii) goethite, and (iv) pyrochroite. This choice is based on prior research, which

provides evidence of the presence of these minerals on the island [1]. The table below

illustrates the (a) reflectance and (b) the continuum removed spectral signatures of the

four endmembers that have been resampled to the Sentinel-2 spectral bands.

Endmember Sentinel-2 spectra Sentinel-2 - continuum
removed (1- Scr), spectra
Muscowte v muscovite - muscovite
o7 035
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06
025
05
0z
04
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03
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02 5 083
01 0.05 051
0 2 4 hlﬁ _ 8 10 12 Uﬂ 2
Chlorite ‘ = ‘
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pyrochroite pyrochroite

Pyrochroite 08

L

0 2 4 6 8 10 12 0 2 P Sk 0 12

Table 2: Reflectance and corresponding continuum removed (1- Scr) spectral signatures of the
mineral endmembers used in this study.

000

4.2.2 Linear Unmixing methods
Given that each pixel in spectral image y= [xy, ..., x,]" can be described as y = Y!_, w; *

51' where 51‘ represents the i-th endmember, w; is the abundance of each endmember,
b is the number of bands and p is the number of the endmembers our objective is to

calculate the abundance values w; for each pixel.

Using the least squares cost function, we can model the problem using the formula where

n is the number of the total pixels:

n 14
] = Z(Vi—zwj x6; ) ?
i=1 =1

where J should be minimized respect to the w;, .. , wy, for every ¥,

The solution of this problem can be expressed using matrices with the formula:
W= (0T x0)71oT Y
where:
e 0Oisab x p matrix containing all the 8 endmembers vectors.

e Y is b X n matrix containing all the y pixel vectors.

e W isp X n matrix containing the abundances values for each pixel.

Due to the specific characteristics of the problem, the abundance values are expected to
be greater or equal than zero, and their sum should equal 1. In the case of a least squares
solution, any abundance values that turn out to be negative are typically modified to be
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zero. This adjustment ensures that the abundance values remain non-negative, adhering

to the constraints imposed by the problem's nature.

By imposing constraints on the objective function J to ensure that abundances sum to one
and are non-negative, the problem can be solved effectively using iterative methods.
More specifically, the interior-point optimization algorithm [17] of MATLAB function

fmincon was used to solve the problem.

Finally, to mitigate the risk of overfitting, the problem can also be addressed using Lasso
regularization [18]. This regularization technique helps prevent overfitting by incorporating

a penalty term into the optimization formula:

n p p
J= ) G= ) w8+ 2 ) |wl
j=1 j=1

i=1
The problem was solved using the lasso MATLAB function and the selection of the A
value was guided by the condition that the solution maintains abundance values greater
or equal than zero while ensuring that the norm of the abundance values is maximized
among various choices of A. This approach helps strike a balance between
regularization to prevent overfitting and retaining physically meaningful abundance

values during the spectral unmixing process.

In the following table the methods used for the unmixing process are summarized.

Method Constraint Abbreviation
Least squares No constraint U-LS
Least squares Non negativity constraint N-LS
Least squares Sum to 1 constraint S-LS
Least squares Non negativity constraint NS-LS

and Sum to 1 constraint
Lasso |1-norm LASSO

Table 3: Overall methods used for the lineal spectral unmixing, along with their abbreviations.
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5. Results

In this chapter the results from the applied machine learning methods (clustering and
spectral unmixing) on the two problems ((a) identification and mapping of granitoid
intrusions and schist formations and (b) detection for alteration minerals in Koutala islet

will be demonstrated.

5.1 Identification of granitoid intrusions and schist formations (Clustering
approach)

In this section, the results generated by the SHC algorithm will be presented,
encompassing both the reflectance and continuum-removed spectral cases. For
benchmarking purposes, the results obtained from the K-means algorithm and the
hierarchical complete link algorithm using the Fréchet distance as distance metric will also
be demonstrated. Given the large volume of results, only a subset of the results will be
presented and highlighted.

5.1.1 Sentinel-2 dataset
The SHC algorithm was executed with specific threshold values as follows:

o For the reflectance spectra case, threshold_1 and the threshold_2 were set to
0.005, and the threshold_3 was set to 0.002.3

e In the continuum removal spectra case, threshold_1 was assigned a value of
0.004, and threshold_2, threshold_3 were set to 0.002.

For both the reflectance and continuum removal spectra cases, the K-means algorithm
was executed 1000 times, each time with different initial cluster center configurations.
The best solution was selected by identifying the run that resulted in the minimum value

of its associated cost function. The results are shown in table 4.

3 Recall that these thresholds are in the part of the algorithm.
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Sentinel-2 spectra Sentinel-2 - continuum removed (1-
Scr), spectra

o

K-means

21 clusters
Hier-Fréchet .

SHC algorithm

29 clusters 28 clusters'

Table 4: A sample with the best clustering results for the Sentinel-2 dataset. The numbers
at each pixel represent the corresponding cluster label from the output each algorithm.

5.1.2 WorldView-3 VNIR dataset

All the algorithms in the WorldView-3 VNIR dataset were run only for the reflectance
spectra since the results from the clustering methods seems to recognize the granitoid
clusters (as discussed in the following chapter) without the need of the continuum-

removed procedure.

The SCH algorithm was executed using threshold_1, threshold_2 values equal to 0.04
and threshold_3 value equal to 0.002.
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The K-means algorithm was executed 100 times for this dataset, primarily due to the
increased time complexity resulting from the large number of pixels involved in this case.

The relative results are shown in table 5.

WorldView-3 VNIR

K-means o

8 clusters

Hier-Fréchet P

8 clusters

hiar after sequential

SHC algorithm

120 10 = ™

8 clusters

Table 5: A sample with the best clustering results for the WorldView-3 VNIR case.
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5.2 Detection for alteration minerals (Spectral unmixing approach)

In this section the results of all the spectral unmixing methods that mentioned in the table
3, are demonstrated. However, the focus will be primarily on the results obtained from
these algorithms when applied on the Sentinel-2 dataset. This emphasis to the Sentinel-
2 dataset is due to the larger number of spectral bands and their positioning in the spectral

spectrum, compared to the WorldView-3 VNIR dataset.

In future research the spectral unmixing in the WorldView-3 VNIR data could also be

examined as well.

5.2.1 Sentinel-2 dataset

Muscovite Chlorite Goethite Pyrochroite
U-LS == e S
Values range 0-0.6 Values rangé 0-2 Values range 0- 0.9 Values range 0 - 0
LASS e — — —
0}
Values range 0 - 0 Values range 0 -0 Values raﬁge 0-0.16 ' Values range 0 -0
NS-LS B e — ——
Values range 0-0.6 Values range 0 - 0.25 Values range 0 - 0.45 Values range 0 - 45
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S-LS

Values range 0 — 0.35 . Values range 0 - 0.9 Values range 0 -2

[ —

N-LS —

Values range 0—-0.9 Values range 0 - 0.5 Valuesrange 0-1

Values rahge 0- 0:9

Table 6: Spectral unmixing results for the Sentinel-2 reflectance image. The abundance value for
each pixel is represented with a color ranging from light blue (low abundance value) to yellow
(high abundance value). Pixels in dark blue correspond to zero abundances. The number at each
pixel corresponds to the corresponding cluster label from the output of the SHC algorithm.

Muscovite | Chlorite | Goethite | Pyrochroite

U-LS

Values range 0 - 3.5

Values range 0 - 0.6

v

[

LASSO

Values range 0 -2 Values range 0 - 0.4 Values range 0 — 0.6 Values range 0 — 2.5
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NS-LS
Values range 0 — 0.9 Values range 0 — 0.08 Values range 0 — 4 x 10°® Values range 0 — 3.5 x 10°®
S-LS — i R -
Values range 0 — 09 Values range 0 - 0.3 Values range 0 — 1.4
N-LS A —— Pe—
Values range 0 — 10 Values range 0 - 2 Values range 0 — 0.15 vélues raﬁge 0- 0.25

Table 7: Spectral unmixing results for the Sentinel-2 continuum removed image (1- Scr). with a color ranging
from light blue (low abundance value) to yellow (high abundance value). Pixels in dark blue correspond to
zero abundances. The number at each pixel corresponds to the corresponding cluster label from the output
of the SHC algorithm.
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6. Discussion

In this section, the results derived from the machine learning methods applied on the
Sentinel-2 and WorldView-3 VNIR datasets depicting the Koutala island will be discussed

and analyzed.

6.1 Identification of granitoid and schist formations (Clustering approach)

To validate the results of the clustering for this problem, external information from
previous research is utilized [1]. This additional information is crucial for assessing the
accuracy and relevance of the clustering outcomes. The island contains granitoid
intrusions in two separate areas, and it's expected that pixels within each of these
locations should ideally belong to the same cluster. (Fig.13) However, due to the
significant heterogeneity within the granitoid areas, it is possible for pixels in these regions

to be clustered into different groups. This heterogeneity can pose a challenge for the

clustering process.

Google Earth 60m '
Figure 13: Google Earth high resolution image of the island. With the red rectangles the
distinct locations of the granitoids are shown.
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6.1.1 Sentinel-2 dataset

To validate the obtained clustering results using the Sentinel-2 image, the related RGB
image (Fig.3) is superimposed to match the Google Earth imagery, and the pixels
corresponding to the locations of granitoid intrusion are extracted. The red rectangles in
the RGB image shown in figure 14, are used to indicate the actual locations of the pixels

in the Sentinel-2 image, helping to establish the correspondence between the two images.

Figure 14: RGB-image (produced by the Sentinel-2 image) georeferenced to match the
Google earth image. With the red rectangles the granitoid locations are depicted in the
Sentinel-2 image. Slight displacements between the background image and the Sentinel-2
image are due to differences in the georeferenced systems and to the very high difference
between the spatial resolution between the Sentinel-2 and Google Earth image.

The granitoid pixels in the Sentinel-2 image are summarized in the following table:

Left granitoid area Right granitoid area
(14,10) (16,22)
(14,11) (16,23)
(14,12) (16,24)

(16,25)
(17,22)
(17,23)
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(17,24)
(17,25)
Table 8: Sentinel-2 image granitoid pixels locations. Each (row, column) position corresponds to a

single pixel in the displayed image. For example, the position (14,10) corresponds to the pixel at
row 14, column 10 in the image.

The signatures of the granitoid pixels are demonstrated in the following table 9 both for
the reflectance and continuum removal spectral values. The observation of common
spectral characteristics within the pixels in the western granitoid area (whose spectral
signatures are denoted with a red line in table 9) supports the expectation that they lie in
the same cluster. On the other hand, the pixels in the eastern granitoid area (whose
spectral signatures are denoted with a blue line in table 9) exhibit spectral variations,
indicating the potential need for multiple distinct clusters to accurately represent the
diversity within this region.

Sentinel-2 spectra Sentinel-2 - continuum removed (1- Scr),
spectra

Table 9: Spectral signatures of granitoid pixels for both reflectance and continuum-
removed spectral values. The red lines represent the signatures of the granitoid pixels in
the western area whereas the blue lines the signatures of the granitoid pixels in the
eastern area of the island. Some pixels share the same signature so a line can represent

one or more pixels.

6.1.1.1 Reflectance spectra

In this section, the results from the clustering in the reflectance spectra case will be
discussed and analyzed. In order to validate the results, a table is provided for each
clustering method, that includes the number of granitoid pixels and the number of the

non- granitoid pixels at the clusters containing them. Additionally, a table is presented for
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each clustering method, indicating the cluster label associated with each granitoid cluster.
Finally, a table showing the spectral pixels for these cluster labels is demonstrated. These

tables contribute to the comprehensive analysis and validation of the clustering outcomes.

K-means

Number of granitoid pixels in the cluster | Number of non- granitoid pixels in the cluster
5 23
2 7
1 6
3 4

Table 10: K-means - reflectance spectra - granitoid pixels vs non granitoid pixels at the clusters.

Cluster label Granitoid pixels in the cluster
12 (14,10) (14,11) (14,12) (16,22) (16,23)
21 (16,24) (16,25)
7 (17,22)
14 (17,23) (17,24) (17,25)

Table 11: K-means - reflectance spectra - granitoid pixels positions at the clusters.

Cluster label

Signatures

12

K. Tsamkosoglou

49




Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data

21

0.35-

0.25+-

14

0.28 -

0.26 -

0.24+-

0.18+-

0.16 -

10

12

Table 12: K-means - reflectance spectra — signatures of clusters containing granitoid pixels.

Each distinct spectral signature within a cluster is represented by a unique color.
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As we can see from tables 10, 11, 12 the K-means failed to isolate the granitoid pixels

into separate clusters. The cluster 12 for example contains many spectral pixels that

they don’t have similar spectral form especially in the band 8. The cluster 14 seems to

have the most common spectral signatures among the other clusters.

Hier-Fréchet

Number of granitoid pixels in the cluster

Number of non- granitoid pixels in the cluster

1 2
4 7
2 2
1 8
3 1

Table 13: Hier-Fréchet —reflectance spectra - granitoid pixels vs non granitoid pixels at the
clusters.

Cluster label Granitoid pixels in the cluster
7 (14,10)
2 (14,11) (14,12) (16,22) (16,23)
23 (16,24) (16,25)
9 (17,22)
11 (17,23) (17,24) (17,25)

Table 14: Hier-Fréchet — reflectance spectra - granitoid pixels positions at the clusters.

Cluster label

Signatures

7

0.22-

0.2
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0.28 -

0.26 -

0.24 -

0.18 -

23

0.25 -

12

10

12
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11

I I I
0 2 4 6 8 10 12

Table 15: Hier-Fréchet — reflectance spectra — signatures of clusters containing granitoid pixels.
Each distinct spectral signature from the pixels is represented by a unique color.

The results from the hierarchical complete link algorithm using as distance metric the
Fréchet distance seem to be better than the K-means corresponding ones, since the
pixels have more similar spectral signatures at the clusters formed. Another observation
is that at clusters 7, 23 where the spectral patterns are similar in these clusters, the
granitoid pixels are recognized together with non-granitoid pixels. This depicts the
complexity of the problem since some non-granitoid pixels share the same spectral
signature pattern with the granitoid pixels. In cluster 11, the granitoid pixels are more
numerous compared to the non-granitoid pixels. However, it appears that the clustering
results are not optimal, as clusters like the one labeled 2 or 9 consist of pixels with varying
spectral patterns. This inconsistency suggests that the clustering method may not

effectively capture the desired differentiations in the data.

SHC algorithm

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster

RINININ(F-
=
U'IHI\)-PU'I_P

3
Table 16: SHC algorithm - reflectance spectra- granitoid pixels vs non granitoid pixels at the
clusters.
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Cluster label Granitoid pixels in the cluster
25 (14,10)
10 (14,11) (14,12)
16 (16,22) (16,23)
2 (16,24) (16,25)
3 (17,22)
12 (17,23) (17,24) (17,25)

Table 17: SHC algorithm - reflectance spectra- granitoid pixels positions at the clusters.

Cluster label

Signatures

25

0.26 -

10
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16

0.28 -

0.24 -

0.25 -

12

10

12
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12

I I I
0 2 4 6 8 10 12

Table 18: SHC algorithm - reflectance spectra- signatures of clusters containing granitoid pixels.
Each distinct spectral signature within a cluster is represented by a unique color.

Comparing visually the tables with the signatures of clusters containing granitoid pixels,
the first observation from the clustering results of the SHC algorithm is that all formed
clusters that contain granitoid pixels consist of pixels with more similar signatures,
compared to the clusters produced by the previous methods. This is probably due to the
fact that instead of using individual band reflectance values within the algorithm
procedure, we use their derivatives at the two steps of the SHC algorithm. Two of the
pixels of the western granitoid area (14,11) and (14,12) were grouped into the same
cluster with some other non-granitoid pixels near to them (see table 4). The pixel (14,10)
was grouped wrongly to another cluster. The clustering of eastern granitoid area resulted
in smaller granitoid clusters, with some pixels within the same cluster located near each
other in the granitoid area (cluster labels: 16, 2), while others are positioned farther away
from the granitoid area (cluster labels: 12, 3) (see table 4). Despite these spatial
variations, the spectral signatures within these clusters are quite similar, underscoring the
complexity of the area, the possibility of more than one granitoid intrusions and the

challenge of accurately clustering pixels in a granitoid area with Sentinel-2 data.
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6.1.1.2 Continuum-removed spectra

K-means

Number of granitoid pixels in the cluster

Number of non- granitoid pixels in the cluster

2 25
4 10
2 5
3 2

Table 19: K-means - continuum removed spectra - granitoid pixels vs non granitoid pixels at the
clusters.

Cluster label Granitoid pixels in the cluster
11 (14,10) (17,22)
19 (14,11) (14,12) (16,22) (16,23)
14 (14,11) (14,12) (16,22) (16,23)
8 (17,23) (17,24) (17,25)

Table 20: K-means - continuum removed spectra - granitoid pixels positions at the clusters.

Cluster label

Signhatures

11
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19

12

14

0.35- B

0.25- -

0.05+- B

Table 21: K-means — continuum removed spectra — signatures of clusters containing granitoid
pixels. Each distinct spectral signature within a cluster is represented by a unique color.
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Observing the signatures of clusters containing the granitoid pixels it is evident that the

K-means algorithm again failed to distinct signatures with common patterns at the clusters

and hence distinguish granitoid clusters.

Hier-Fréchet

Number of granitoid pixels in the cluster

Number of non- granitoid pixels in the cluster

6

7

3

5

R INININ|F-

18

3

0

Table 22: Hier-Fréchet — continuum removed spectra - granitoid pixels vs non granitoid pixels at
the clusters.

Cluster label Granitoid pixels in the cluster
6 (14,10)
20 (14,11) (14,12)
13 (16,22) (16,23)
23 (16,24) (16,25)
9 (17,22)
1 (17,23) (17,24) (17,25)

Table 23: Hier-Fréchet — continuum removed spectra - granitoid pixels positions at the clusters.

Cluster label

Signatures

6
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20

13

10

12

23

10

12
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Table 24: Hier-Fréchet — continuum removed spectra — signatures of clusters containing granitoid
pixels. Each distinct spectral signature within a cluster is represented by a unique color.

It seems that the Hier-Fréchet algorithm demonstrates improved outcomes compared to
K-means algorithm in terms of the similarity observed within the clusters when examining
their spectral signatures. Nevertheless, it remains evident that the clusters do not exhibit
identical signature patterns. For instance, in cluster label 1, despite the algorithm grouping
pixels from the eastern granitoid area into a single cluster, these signatures do not share
the same pattern. The explanation of potentially more than one granitoid intrusions is to

be examined in the future.

K. Tsamkosoglou 61



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data

SHC algorithm

Number of granitoid pixels in the cluster

Number of non- granitoid pixels in the cluster

2

6

13

1

3

7

RINR RPN |w

1

Table 25: SHC algorithm - continuum removed spectra - granitoid pixels vs non granitoid pixels at
the clusters.

Cluster label Granitoid pixels in the cluster

14 (14,10) (14,11) (14,12)
13 (16,22) (16,23)

2 (16,24)

1 (16,25)

3 (17,22)

27 (17,23) (17,24)

15 (17,25)

Table 26: SHC algorithm - continuum removed spectra - granitoid pixels positions at the clusters.

Cluster label

Signatures

14

0.4-

0.35-

1 1
6 8 10 12
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13

0.05+-

10 12

10 12

0.2

10 12
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0.25 -

27

15

0.35- B

0.25- -

0.05+- ~

Table 27: SHC algorithm — continuum removed spectra- signatures of clusters containing
granitoid pixels. Each distinct spectral signature within a cluster is represented by a unique color.
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Like the reflectance spectra case the SHC algorithm seems to have the best results in
returning clusters with common spectral signature patterns than the previous algorithms.
The SHC algorithm was the only algorithm that was able to successfully distinguish the
western granitoid area, even though some non-granitoid pixels were present, sharing a
similar signature pattern. Compared with the reflectance case, this can be explained by
the fact that the normalized reflectance values of these granitoid pixels share the same
pattern, whereas in the reflectance data, they differ at band 1 (the first band and last band
in the continuum removal procedure have 0 value). This explains why these pixels are
within the same cluster from the output of the sequential algorithm (first step) where the
shape of the spectral forms is compared. The appearance of the non-granitoid pixels into
this cluster could happen due to the low spatial resolution Sentinel-2 data (10m), which
has as an effect the formation of a mixed common signature pattern for a large area
(100m?). Another observation is that all the pixels in cluster 2 exhibit the same signature
pattern; however only one granitoid pixel belongs to the cluster. This reflects again the
effect of the low spatial resolution into the clustering results. Finally, in some clusters
(cluster labels: 1, 13, 15) the signatures differ only in one band, which could be explained
by the fact that in the second step of the algorithm the pixels are clustered based on the
sum of the absolute differences of all the corresponding coordinates of the derivative

signatures between two pixels, which is minimal between these pixels.
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6.1.2 WorldView-3 VNIR dataset

Due to the significantly higher spatial resolution offered by the WorldView-3 VNIR image
compared to the Sentinel-2 image, the validation of clusters is achieved primarily through
visualization rather than pixel-by-pixel verification (Fig.15). To capture the signature
patterns in the granitoid areas, a subset of pixels from these regions is utilized. This
sample aids in capturing and analyzing the spectral patterns present in the granitoid areas
within the higher-resolution WorldView-3 VNIR dataset. Lastly, a sample of pixels in non-
granitoid areas is utilized as well to compare the signature patterns with the granitoid
areas. (Fig.16) From figure 16, it is evident that the granitoid areas exhibit a similar
signature pattern, with minor differences primarily observed in bands 6, 7, and 8.
However, these small variations in bands 6,7 and 8 are small indicating that both granitoid
areas share some common mineralogical compositions. Conversely, the non- granitoid
pixels exhibit minimal variations across all bands, and, despite apparent similarities in
signature patterns with the granitoid pixels across many bands, the noticeable differences

in the reflectance values indicate a differentiation in their pattern.

Figure 15: WorldView-3 VNIR masked RGB image where the red squares represent the
granitoid areas.
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0.35~

Figure 16: Signatures of granitoid and non- granitoid pixels of the WorldView-3 VNIR
image. The red lines represent the signatures of the granitoid pixels in the western area of
the islet whereas the blue lines the signatures of the granitoid pixels in the eastern area.
The green lines represent pixels in the center of the island where no granitoid intrusions
were detected.

From the information presented in table 5, all the algorithms successfully identified the
granitoid area. Here below, some more specific observations are provided for each
algorithm:

e K-means algorithm: Associates the granitoid area with cluster label 7, along with
some pixels located near the sea, possibly indicating some misclassifications or
mixed pixels.

e Hierarchical Hier-Fréchet-based algorithm: Associates the granitoid area with two
separate clusters (cluster label 6, cluster label 7). This split of the area into two
clusters is probably due to spectral variations within the granitoid area.
Additionally, some pixels across the island were included in these clusters.

e SHC algorithm: Provides a more accurate delineation of the granitoid area,
compared with the previous algorithms, covering the entire area (cluster label 3).
However, there are still some pixels across the island, which are grouped within
the same cluster as the granitoid area because they share the same signature
pattern with the granitoid pixels.
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Cluster K-means Hier- Fréchet SHC
Cluster 1
Values range Values range
0-045 0.2-0.45 0-0.4
Cluster 2
Values range
0-0.12 0-0.45 0-04
Cluster 3
Values range Values range
0.03-0.3 0-0.1 0-0.35
(Granitoid)
Cluster 4 “
TN NN
E N\/\\
Values range
0-0.25 0-0.2 0.2-0.55
Cluster 5
Values range Values range Values range
01-04 0-04 0-0.45
Cluster 6
Values range Values range Values range
0.25-0.55 0-0.35 0-0.45
(Granitoid)
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Cluster 7
Values range Values range Values range
0.03-0.35 0-0.3 0-045
(Granitoid) (Granitoid)
Cluster 8

Values range Values range Values range
0-0.2 0.44 - 0.56 0-0.45

Table 28: Signatures of clusters of all the algorithms in the WorldView-3 VNIR dataset.

Comparing the signatures obtained from the clusters formed by the algorithms (table 28):

e SHC algorithm: Shows the most consistent and common patterns across clusters,

indicating a higher level of similarity among the signatures of pixels within each
one of them. This suggests a better overall performance in capturing shared
spectral patterns within clusters, due to the two step SHC algorithm and the fact

that the derivatives of the spectral signatures of each pixel are utilized.

e K-means algorithm: Exhibits good performance in preserving common patterns

among clusters, but noticeable errors are evident in cluster 5, indicating some

discrepancies or misclassification in this particular cluster.

e Hierarchical Hier-Fréchet-based algorithm: Displays the least favorable

performance among the algorithms in terms of signature patterns. In clusters like
2, 5, and 6, the signatures do not exhibit the same pattern, indicating challenges

or limitations in accurately delineating clusters based on spectral similarities.

It is important to mention that the SHC algorithm was executed with a higher threshold
value (threshold_1 set to 0.04) in order to achieve satisfactory results in the WorldView-
3 VNIR dataset. This adjustment from the significantly lower value threshold used in the
Sentinel-2 dataset suggests that the choice of the threshold_1 plays a crucial role in
effectively differentiating pixels into distinct clusters and it should be adjusted based on

the distribution of the reflectance values on the corresponding dataset.
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6.2 Detection for alteration minerals (Spectral unmixing approach)
The spectral unmixing technique was used to correlate specific locations on the island
with various minerals. To validate these findings, information from previous research

regarding the distribution of each mineral across the island was employed. [1].

Phases : schist Granodiorite-1  Granodiorite-2 contact
micas micas + + + 4
quartz qz + + + +
chlorite chl + + +
K-feldspars fsp + +

calcite cal + + +
plagioclase plg + +
Mn-oxides Mn-ox + +

goethite goe +
halite hal +

Table 29: Mineralogy of the lithologies present in the study area according to XRD analysis results on the four
samples collected in the field.(Source: [1]).

The observations from the provided information indicate the presence of muscovite
(micas) across the entire island. Chlorite is widespread throughout the island except in
the areas where schist contacts with granodiorites occur. Additionally, the minerals
goethite and Mn-oxides (representing pyrochroite) are exclusively found at the

boundaries where schist meets granodiorites.

6.2.1 Reflectance spectra
Relating the results obtained from various spectral unmixing methods with mineral

presence, the following observations can be extracted:

e The U-LS method accurately identified muscovite and chlorite across the entire
island, although with some pixels being near the sea. However, it unexpectedly

found goethite spread throughout the island rather than in contacts, which requires
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further investigation. Pyrochroite was not detected despite its anticipated presence
at the schist contacts with granodiorites.

The LASSO method failed to detect muscovite, chlorite, and pyrochroite, with only
small amounts of goethite found, which is in partial agreement with [1].

The NS-LS algorithm identified muscovite across the island and chlorite only on
the west side. It also found goethite mainly in pixels near the sea, conflicting with
the expected distribution. Finally, pyrochroite was detected across the entire
island, contradicting prior research.

Both the S-LS and the N-LS methods yielded results like the NS-LS approach.
Considering the previous research, the U-LS method provides the most plausible
outcomes by correctly identifying muscovite and chlorite across the island.
However, it failed to identify pyrochroite, possibly due to its small spatial
appearance. The unexpected presence of goethite beyond the schist contacts with

granodiorites warrants further investigation.

6.2.2 Continuum-removed spectra

In the continuum-removed spectra case, the results differ notably from the reflectance

spectra case across various algorithms:

The U-LS method identified muscovite across the entire island, but with higher
abundance values compared to the reflectance case. However, as in the previous
case some pixels near the sea are shown to contain muscovite. Chlorite is not
detected on the island. Goethite and pyrochroite results seem reasonable,
observed with low abundances near schist contacts and at smaller appearances
elsewhere.

The LASSO method shows similar outcomes with the U-LS method, with
differences observed in the abundance value of muscovite in each pixel. Moreover,
fewer pixels containing pyrochroite were found compared to the U-LS method.
The NS-LS method identifies muscovite across the island. Small portions of
chlorite are found on the west side, but with very low abundance values. The

abundance values of goethite and pyrochroite are even smaller than chlorite in
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pixels where these minerals are detected.

e The S-LS method detects muscovite and chlorite across the entire island, whereas
goethite is observed near the sea. Pyrochroite was found on east side but not at
pixels near the eastern granitoid area as expected. On the west side of the island
the pyrochroite was found in reasonable areas with the previous research but with
higher abundance values than chlorite which contradicts the samples analysis in
the previous research [1].

e The NS-LS method found muscovite and chlorite widely across the island with
higher abundances than every other method. Muscovite and pyrochroite were

found mostly at pixels near the sea but in very small abundances.

Considering the continuum-removed case, the NS-LS method appears to provide the
most reasonable results in terms of previous chemical analysis [1]. Muscovite and chlorite
are found across the island as expected, although goethite and pyrochroite are identified

with small portions at unexpected locations, necessitating further investigation.

Considering the results obtained from both the reflectance and continuum removed
cases, it is evident that none of the methods succeeds to accurately reproduce the
expected results based on the previous research (table 28). A possible explanation of this
problem is the low spatial and spectral resolution of the Sentinel-2 image for this type of
studies, which poses challenges in accurately identifying these minerals. Additionally, the
variations in results among the different methods further emphasize the complexity and
difficulty of accurately resolving this problem with the available data and methods.
However, it is important to mention that the minerals that exhibit high abundances in the

island (muscovite, chlorite) are successfully identified by most of the algorithms.
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7. Conclusion

The aim of this study was (a) to identify granitoid and schist formations in it and (b) to
detect alteration minerals on the island of Koutala using EO data. Two different datasets
(Sentinel-2, WorldView-3 VNIR) on the Koutala island were utilized, with different spatial
and spectral resolutions. Two different machine learning methods (clustering, spectral
unmixing) were used to extract the results from the two datasets. Additionally, the
continuum removal procedure was also applied to compare spectral patterns (e.g.

absorptions) from a common baseline.

Clustering was applied to both datasets to delineate regions with similar spectral
signatures, aiming to identify granitoid intrusions and schist formations, as is referred on
previous research insights [1] (aim (a)). A new novel clustering algorithm named SHC
designed especially for spectral data was introduced due to the inability of common off-
the-shelf clustering algorithms (K-means, hierarchical methods) to provide accurate
results. In general, the SHC algorithm yielded to better results than the other algorithms,
based on visual comparisons of pixel spectral signature patterns of pixels within the
clusters. This underlines the significance of spectral analysis using the derivative of a
pixel within both two steps of SHC. The SHC algorithm was the only algorithm that was
able to identify one out of the two granitoid areas into the Sentinel-2 dataset, while none
of the algorithms accurately detected the granitoid clusters. The difficulty is probably due
to the low spatial resolution of this dataset, which results to mixed pixel signatures. In the
case of World-View-3 VNIR dataset, all the algorithms successfully identified the granitoid
areas, highlighting the importance of high spatial resolution. However, the SHC algorithm
identified more accurately the granitoid areas than the other algorithms when comparing
the spectral signatures of pixels in the granitoid clusters. In general, the SHC algorithm
exhibited more “coherent” clusters compared with the clusters produced by other

algorithms.

Spectral unmixing was used to detect alteration minerals on Koutala island. It was applied
exclusively on the Sentinel-2 dataset, given its larger number of spectral bands
(compared to WorldView-3 VNIR dataset).
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Various linear unmixing methods were employed for spectral unmixing by applying or not
various constraints, such as the sum-to-one constraint, the non-negativity constraint, or
other constraints (e.g., as in the Lasso case). The results indicated that despite the low
spatial resolution of the Sentinel-2 dataset, the alteration minerals with high degree of
appearance in the island (such as muscovite and chlorite) were identified quite accurately
by most algorithms. This can be attributed to the fact that mixed signatures in a dataset

with low spatial resolution are primarily influenced by minerals with high abundance.

The most favorable outcomes were obtained from the U-LS method for the reflectance
spectra case and the NS-LS method for the continuum-removed spectra case (1- Scr), as
compared to the results of a previous chemical analysis conducted on the island [1].

In future studies, the potential of spectral unmixing could be further examined in the
WorldView-3 VNIR dataset, where clustering results using this dataset were more
accurate due to higher spatial resolution compared with the Sentinel-2 corresponding
one. Finally, it is worth investigating in the future the relations between the distribution of
alteration minerals extracted from the unmixing procedure with the generated clusters

from clustering.
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8. Data and code availability

The datasets and the related code are available at:
https://github.com/kostsamko/clustering koutala
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