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ABSTRACT

Despite being a fast-paced research field, text-to-SQL systems face critical challenges.

The datasets used for the training and evaluation of these systems play a vital role in de-

termining their performance as well as the progress in the field. In this work, we introduce

a methodology for text-to-SQL dataset analysis, and we perform an in-depth analysis of

several text-to-SQL datasets, providing valuable insights into their capabilities and limita-

tions and how they affect training and evaluation of text-to-SQL systems. We investigate

existing evaluation methods, and propose an informative system evaluation based on er-

ror analysis. We show how our dataset analysis can help explain the behavior of a system

on different datasets. Using our error analysis, we further show how we can pinpoint the

sources of errors of a text-to-SQL system for a particular dataset and reveal opportunities

for system improvements.

SUBJECT AREA: Database Systems

KEYWORDS: Machine Translation, Deep Learning, Semantic Parsing, Databases



ΠΕΡΙΛΗΨΗ

Παρά τους γρήγορους ρυθμούς ανάπτυξης στο ερευνητικό πεδίο της μετάφρασης από

φυσική γλώσσα σε SQL, τα Text-to-SQL συστήματα αντιμετωπίζουν κρίσιμες προκλήσεις.

Οι συλλογές δεδομένων που χρησιμοποιούνται για την εκπαίδευση και την αξιολόγηση

αυτών των συστημάτων είναι ζωτικής σημασίας για τον καθορισμό της απόδοσής τους και

της εξέλιξης σε αυτό το πεδίο. Σε αυτή την εργασία, εισάγουμε μία μεθοδολογία για την

ανάλυση των text-to-SQL συλλογών δεδομένων και παρουσιάζουμε την ανάλυσή τους,

παρέχοντας πολύτιμες πληροφορίες για τις δυνατότητες και τους περιορισμούς των text-

to-SQL συστημάτων, αλλά και τον τρόπο με τον οποίο οι συλλογές δεδομένων επηρεάζουν

την εκπαίδευση και την αξιολόγηση αυτών των συστημάτων. Διερευνούμε τις υπάρχουσες

μεθόδους αξιολόγησης και προτείνουμε μια αναλυτική αξιολόγηση συστήματος βασισμένη

στην ανάλυση των σφαλμάτων. Δείχνουμε πώς η ανάλυση των δεδομένων μπορεί να

βοηθήσει στην εξήγηση της συμπεριφοράς ενός συστήματος σε διαφορετικά σύνολα δεδο-

μένων. Χρησιμοποιώντας την ανάλυση σφαλμάτων μας, δείχνουμε πώς μπορούμε να

εντοπίσουμε τις πηγές σφαλμάτων ενός συστήματος text-to-SQL για ένα συγκεκριμένο

σύνολο δεδομένων και να αποκαλύψουμε ευκαιρίες για βελτιώσεις του συστήματος.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα Βάσεων Δεδομένων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: ΜηχανικήΜετάφραση, ΒαθιάΜάθηση, Σημασιολογική Ανάλυση, Βάσεις

Δεδομένων
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Towards more robust text-to-SQL translation

1. INTRODUCTION

Text-to-SQL systems translate natural language (NL) questions to SQL relieving users

from the use of SQL for accessing data in relational databases. In recent years, with

the use of large language models (BERT [11], T5 [52], GPT [51]) and the creation of task-

specific datasets (e.g., WikiSQL [80], Spider [74]) used for system training and evaluation,

text-to-SQL systems [39, 49, 54, 63] have achieved significant advancements. These re-

cent approaches tackle the text-to-SQL problem as a language translation problem, and

train a neural network on a large amount of {NL query/SQL} pairs [30].

Unfortunately, unlike systems that translate from one natural language to another, or from

natural language to code (e.g., Python), text-to-SQL systems face challenges and do not

enjoy as broad adoption, despite the high competition that exists among them. There are

several reasons that mainly stem from the fact that neural text-to-SQL systems cannot

make good predictions for unseen domains and unseen queries.

The datasets used for the training and evaluation of text-to-SQL systems play a vital role

in the performance of these systems as well as in determining the progress in the field.

While a system trained on a benchmark like Spider [74] may exhibit good performance on

this benchmark, when it is used on a different benchmark or used in a real application/-

domain, it does not fare as well. Several factors, such as the type of SQL queries, their

distribution, the domains, and even the size of the data, matter when training a system.

A system cannot perform well for unseen (or even not “seen enough”) queries or data.

On the other hand, when evaluating a text-to-SQL system, a text-to-SQL benchmark may

create false expectations on the query translation capabilities of the system. For example,

a system achieving 80% accuracy on a dataset with simple queries could be worse than

one achieving 60% accuracy on a dataset with more complex queries. An absolute accu-

racy number does not provide much insight unless we consider the characteristics of the

evaluation dataset, such as the types and distributions of NL and SQL queries. It is also

important to be able to pinpoint the sources of the errors a text-to-SQL systemmakes, and

hence the points where the system requires improvements. Text-to-SQL benchmarks fall

short in highlighting the real capabilities and limitations of text-to-SQL systems.

In this work, we present an extensive list and a structured survey of existing text-to-SQL

datasets that helps the reader get a good grasp of the landscape of benchmarks, their

design objectives as well as their shortcomings. Moreover, we present a text-to-SQL

A Mitsopoulou 12
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dataset analysis methodology that provides a set of dimensions and measures to analyze

and characterize the richness and distributions of the SQL queries, the natural language

questions and the databases covered by a dataset. Using our methodology, we analyze

several datasets, and provide valuable insights into their value, complexity, and possible

limitations. This analysis also provides us with insights into the limitations of current text-

to-SQL systems, and presents several opportunities for research for the development of

more effective benchmarks and systems, alike.

Furthermore, we investigate the methods and metrics for evaluating text-to-SQL systems

and we point out their shortcomings. We propose an alternative in the direction of a more

informative evaluation that combines a new metric and error analysis based on an auto-

matically generated SQL query categorization that can provide insights about the system

capabilities and pain points.

We show the potential of our approach for providing a more fine-grained system evalua-

tion. In particular, we experimentally show how our dataset analysis can help explain the

behavior of a system on different datasets. Using our proposed error analysis, we further

show how we can pinpoint the sources of errors of a text-to-SQL system for a particular

dataset.

In a nutshell, our contributions are summarized as follows:

1. We present a structured study of text-to-SQL datasets.

2. We present a methodology for evaluating text-to-SQL datasets.

3. We present an in-depth analysis of several text-to-SQL datasets.

4. We present an error analysis method that combines a new metric and an automati-

cally generated SQL query categorization.

5. We show the potential of our dataset analysis methodology and error analysis for

more fine-grained and insightful system evaluations.

A Mitsopoulou 13
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2. RELATED WORK

2.1 Code generation with Transformers

In the last few years, large pre-trained language models ( [61], [11], [52], [51]) are increas-

ingly used for several downstream natural language tasks. Following the state-of-the-art

performance of these models, there have also been an increasing number of attempts to

broaden their use in programming language generation and understanding tasks. As in

language models, systems’ architectures can be separated into encoder-only, decoder-

only, or encoder-decoder.

2.1.1 Encoder-only

CodeBERT [12] is a pre-trained model in multiple programming languages. The training

objectives used by the authors are the masked language objective and the replaced token

detection objective, introduced in [8]. To adapt the second objective in their use case,

they introduce a NL and a PL generator that generate plausible alternatives for randomly

selected positions. Then, the CodeBERT model is requested to predict whether a word

is original or not. GraphCodeBERT [21] is a model that tries to utilize the information

from the code structure. The input of the model contains the comments, the code, and

the variables sequence from the code’s data flow. The authors train the model with the

masked language objective (MLM) applied to the source code and comments, the edge

prediction objective, in which they mask edges in the data flow and train the model to

predict whether the edge exists, and the node alignment objective, which train the model

to predict edges between code tokens and nodes.

2.1.2 Decoder-only

In [7], the authors fine-tune GPT [51] in Python code files collected from GitHub, produc-

ing Codex, a model that can create Python code from docstrings and vice versa. They

experiment with additional supervised fine-tuning in a corpus that contains only functions

to adapt the model to the distribution of the requested tasks, resulting in a model with im-

proved performance. In SYNCHROMESH [47] the authors evaluate the use of zero-shot

GPT architectures. Authors at [44] have created a family of models, CodeGen, all trained

A Mitsopoulou 14
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in The Pile dataset [19], while some are further trained in additional corpora (BigQuery,

BigPython), with the next-token prediction objective. They additionally explore the frag-

mentation of problems into simpler ones with the use of multi-turn prompts, each of which

will solve a subproblem. In [43] authors make an effort towards a unification across archi-

tecture, objectives, sampling procedures, and data distribution. Even though they do not

fully achieve their goal, they present a model, CodeGen2, trained in Stack v1.1 [32] with

a mix of span corruption and causal language objective.

2.1.3 Encoder-Decoder

PLBART [1] is a model pretrained with 3 denoising objectives, token masking, token dele-

tion, and token infilling [36]. In PYMT5 [9], authors train a model in Github repositories

with the span-masking objective. In CodeT5 [67], except for the masking objective, the

authors define 2 identifier-aware objectives to capture the code-specific characteristics.

In more detail, they introduce identifier tagging, in which the model is requested to predict

whether a token is an identifier or not, and masked identifier prediction where they mask

all identifiers in the input code and train the model to predict the value of each unique

identifier.

2.1.4 Datasets

The majority of the models created in the last few years use primarily mined code from

Github to train their models, such as Stack [32] and CodeSearchNet [27]. For the eval-

uation of the systems, several benchmarks have been used mostly focusing on the per-

formance of the models in the Python programming language(APPS [26], MBPP [2], Hu-

manEval [7]). A more extensive evaluation benchmark is CodeXGlue [41], a collection of

datasets for numerous code-related tasks such as code repair, translation, and summa-

rization, that try to simulate the Glue benchmark [62] used for the evaluation of language

models.

Although SQL can be considered a programming language, it is not included in the training

or evaluation of most of the code-related models. Exceptions of the above, as far as we

know, are SYNCHROMESH [47], in which the model is evaluated in the Spider dataset,

resulting in much lower performance than current SOTA, Staqc [71], a large dataset con-

taining mined answers of Python and SQL code snippets with their corresponding ques-

A Mitsopoulou 15
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tions from Stack Overflow, which has not been used in any of the above systems, and

Stack [32] dataset, which contains SQL files, definitely UPDATE, CREATE, DELETE and

INSERT statements but an unclear number of SQL queries.

2.2 Text to SQL translation

The most successful existing text-to-SQL systems rely on large language models (LLMs)

finetuned mainly with two datasets, WikiSQL [80] and Spider [74], and define problem-

specific solutions to tackle themain discovered challenges, namely domain generalization,

the translation of complex SQL queries, and schema linking.

2.2.1 Pre-training techniques

Introducing pre-training tasks is a popular approach to improving themodel’s performance.

In text-to-SQL systems, they have been commonly used to tackle task-specific problems,

like schema linking. In more detail, GAP2SQL [58] created a synthetic dataset and trained

a model using 4 objectives (denoising, column prediction, column recovery, and SQL gen-

eration) resulting in an encoder that can better represent SQL. SeaD [69] introduces 2

schema-aware denoising objectives aiming to minimize the schema-linking problem. In

the first objective, erosion, the model takes as input the natural language question and the

schema with permuted, removed or added columns, and the requested output is the SQL

query. The second objective re-permutes the mentioned entities in the SQL or NL ques-

tion and trains the model to reconstruct their order. GRAPPA [73] proposes a grammar-

augmented pre-training framework for table semantic parsing, using the MLM objective in

the natural language and table headers input. Spider-Realistic [10] introduces 3 pretrain-

ing objectives(column grounding, value grounding, and column-value mapping) to better

capture the alignments between the natural language and the tabular data of a database

schema. GP [77] proposes extra pretraining of the decoder to reduce SQL grammar er-

rors.

All the pretraining methods used seem to have a positive impact on the models’ perfor-

mance but there is not a clear go-to solution among them.

A Mitsopoulou 16
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2.2.2 Structure utilization

The use of LLMs introduces restrictions regarding the formulation of the text-to-SQL task.

This is not a problemwhen we have to represent text, such as a natural language question,

or a SQL query, but it restricts the potential information gathered from a database schema,

which is better represented as a graph structure. Several systems introduce techniques

that can incorporate the additional information provided by the database schema structure.

IRNet [22], RATSQL [63], and LGESQL [5] construct a graph with the database schema

and natural language question entities that reference schema elements and use a relation-

aware self-attention [57] encoder to capture the relations between input segments. In [4],

the authors use graph encodings for both the natural language question and the database

schema and they introduce a Structure-Aware Dual Aggregation Network (SADGA) to

learn the alignment between the 2 graphs. The rest of their architecture consists of an

encoder with a relational-aware self-attention to further unify the SADGA representations

and the commonly used decoder of [72]. In RASAT [50], they construct a graph similar

to RATSQL and create relation embeddings that pass to the multi-head relation-aware

self-attention. GRAPHIX-T5 [39] modifies the architecture of the T5 model by introducing

a relational graph attention network (RGAT [65]) and jointly passing to the decoder the

output of the RGAT and the T5’s encoder block, to incorporate both the semantics and

structure of the schema.

2.2.3 Tasks decoupling

Schema linking is one of the main challenges in the task of text-to-SQL. Recently, there

is a tendency to unburden the main translation model from the schema-linking problem.

SLSQL [35] proposes a schema-linking extension to the base model that can learn the

relations between the natural language question and the schema elements and pass to the

decoder a schema-aware representation. RESDSQL [38] introduces a ranking-enhanced

encoder that can rank the schema elements by relevance to the natural language question

and provide the encoder only with the most similar to the natural language question. In

DIN-SQL [49] the translation is broken down into 4 simpler tasks, schema linking, SQL

classification and decomposition, SQL generation, and self-correction.
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3. TEXT-TO-SQL DATASETS

A text-to-SQL dataset is a set of NL/SQL query pairs defined over one or more databases.

Text-to-SQL datasets play an integral role in the development and benchmarking of text-

to-SQL systems. Notably, early non-neural systems did not rely on common benchmarks

[20]. WikiSQL and Spider are the first large-scale, multi-domain benchmarks that made

training and evaluating text-to-SQL systems possible. Both have become very popular

with Spider being the most used one.

We divide text-to-SQL datasets into 4 categories: (a) single-domain datasets contain

queries defined over one database; (b) cross-domain datasets are defined upon a col-

lection of domains and databases; (c) perturbed datasets are based on existing ones with

introduced variations; and (d) augmented datasets are generated by automatic methods

that create a large set of NL/SQL pairs. Table 1 groups text-to-SQL datasets and provides

information about their size and domains. Note that a dataset may fall in more than one

category (e.g., a perturbed dataset is also cross-domain). For easiness, we have grouped

them based on their most prominent category.

3.1 Single-domain Datasets

Most of the text-to-SQL datasets that contain queries in a single domain were created

before Spider, and were used for a particular system. The majority of them were published

before 2017 but most of the SOTA text-to-SQL systems do not use them. This is mainly

due to their small size, which limits their use for training neural models. Nevertheless,

their size is not a problem in the evaluation process, where they could provide insights in

a system’s performance in different use-case scenarios.

These datasets exhibit diversity in terms of (a) size, (b) creationmethods, and (c) databases.

Regarding their size, most of the datasets are small, with the exceptions of SEDE [23] and

MIMICSQL [66], which have a size similar to Spider’s. Regarding the creation method,

most of the datasets were created through crowdsourcing/user studies (Yelp [70], IMDb [70],

Scholar [28], Geoquery [75], Advising [13], ATIS [25], Fiben [56]). Additionally, some

datasets were automatically created using templates. These datasets include Restau-

rants [48,60] and MIMICSQL [66], which also included additional filtering of the produced

questions by users. Finally, there are datasets created from user logs. These include
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Table 1: Text-to-SQL datasets overview. ”-” denotes unavailable information.

Dataset NLQ-SQL Databases Domains Category

Academic [37] 196 1 Microsoft Academic Search

Advising [13] 4570 1 University courses

Geoquery [75] 880 1 US geographical facts

IMDb [70] 131 1 Movies

Yelp [70] 128 1 Business reviewing

Scholar [28] 816 1 Academic database

Atis [25] 5418 1 Air travel information system

Restaurants [48,60] 250 1 Info about restaurants in N. California

Fiben [56] 300 1 Financial

SEDE [23] 12023 1 Stack Exchange Website

MIMICSQL [66] 10000 1 Electronic medical records

Single domain

WikiSQL [80] 80654 24241 Wikipedia domains

Staqc [71] 119519 - -

Spider [74] 10181 200 Wikipedia, college courses, SQL tutorial websites

KaggleDBQA [33] 272 8 Kaggle datasets in multiple domains

EHRSQL [34] 24000 2 Electronic medical records

BIRD [40] 12751 95 Professional domains

Cross domain

Spider-Syn [17] 8034 200 Spider domains

Spider-realistic [10] 508 20 Spider domains

Spider-DK [18] 535 - Spider domains

ADVETA [46] - - Spider, WikiSQL, WDC domains

DR Spider [6] 15269 - Spider domains

MT-TEQL [42] 62430 2273 Spider domains

Perturbed

Spider-CG [16] 45599 - Spider domains

GRAPPA synthetic data [73] - - Spider domains

GAP2SQL synthetic data [58] 30000 - Spider domains

SHiP [78] - - Wikitables and spider train domains

Augmented

Academic [37], which was generated from logs from the Microsoft Academic Search, and

SEDE [23], which was created from logs from the Stack Exchange Data Explorer. Re-

garding the databases, the majority of the datasets are defined upon existing databases,

in some cases with alterations or simplifications. For example, the FIBEN [56] database

is created by mapping two existing financial ontologies into one.

3.2 Cross-domain Datasets

WikiSQL contains simple SQL queries over Wikipedia tables from multiple domains. Spi-

der consists of 10,181 questions and 5,693 unique complex SQL queries on 200 databases
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with multiple tables, covering 138 different domains. The Spider SQL queries are divided

into 4 levels: easy, medium, hard, and extra hard. The difficulty is defined based on the

number of SQL components, projections, and conditions so that more complex queries

are considered harder.

Staqc [71] was created by mining SQL-related questions and their answers from Stack

Overflow. To the best of our knowledge, its use as a training or evaluation dataset is very

limited, probably because of the lack of a database schema. KaggleDBQA [33] contains a

small number of queries upon real databases from Kaggle. BIRD [40] contains questions

over large-scale databases aiming to better represent real use-case scenarios. Finally,

EHRSQL [34] contains questions over two databases related to health records.

WikiSQL, Spider and BIRD stand out in this category as they cover a broad spectrum of

domains. Even so, there are databases and domains, such as scientific and business

ones, that are more challenging than the ones in these datasets: they may have a very

complex database schema, use special terminology, contain cryptic table and column

names, and so forth. Inevitably, the general-purpose datasets, such as the ones above,

cannot cover these particularities, andmore work is required tomake a text-to-SQL system

work on a new domain. Additionally, despite current efforts [33, 40], it is unclear if the

existing benchmarks cover queries of different difficulty levels that capture the challenges

present in real-world use cases.

3.3 Perturbed Datasets

As we will see in our analysis, Spider has several drawbacks, and serving as the primary

evaluation dataset conceals various shortcomings of systems. Creating a large text-to-

SQL dataset from scratch demands extensive manual effort.

As an alternative, numerous initiatives focus on creating variations of existing datasets.

These variations emphasize on specific challenges, such as schema linking, which is the

correlation of the natural language question with the database elements (tables, columns,

values). Their goal is to provide a more accurate assessment of the system capabilities

and/or boost these capabilities by enriching the training dataset.

Spider-Syn [17] is created by replacing schema references in the NL questions with their

synonyms in the train and development Spider sets. Spider-Realistic [10] is created by re-
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moving or paraphrasing explicit mentions of column names from a subset of NL questions

in the Spider development set. MT-TEQL [42] is generated by applying transformation

rules in the schema or the utterance of the Spider queries. ADVETA (ADVErsarial Table

perturbAtion) [46] is built by applying perturbations in the tables of WikiSQL, Spider, and

WTQ. Spider-DK [18] is derived by selecting a sample of the Spider development set and

creating paraphrases of the natural language questions to incorporate domain knowledge.

DR-Spider [6], created by applying perturbations in natural language questions, queries,

and database schemas, has been proposed to simulate diverse task-specific robustness

challenges. Two synthetic datasets are proposed to quantify domain generalization [76].

Existing systems show a substantial performance drop across all perturbed datasets. This

makes the value of such datasets in the evaluation process clear and highlights the lim-

ited capabilities of current text-to-SQL models in handling new datasets and specific chal-

lenges, even with small differences from the originals.

3.4 Augmented Datasets

The use of deep neural networks in the text-to-SQL task requires a large amount of data in

the training process. The absence of a huge dataset for the text-to-SQL task and the low

adaptability of existing models in databases without domain-specific training have led to

several efforts to create augmented datasets. These datasets are used in the pretraining

process either with the text-to-SQL task or with pretraining tasks defined in each work.

GRAPPA [73] contains augmented NLQ-SQL pairs over WikiTables [3], and it was cre-

ated by using a Synchronous Context-free grammar (SCFG) containing rules for the SQL

queries and their corresponding questions induced from Spider examples. Gap2sql [58]

has been created by crawling SQL queries from Github and using a SQL-to-Text model

to create the corresponding natural language questions. A method for creating an aug-

mented dataset using a database-specific probabilistic context-free grammar (PCFG) and

a SQL-to-Text system is described in [64]. The method was used to create augmented

datasets from the Geoquery [75] and Spider databases and pre-train models in the down-

stream task. In SHiP [78], given a database schema, SQL queries are generated based on

templates and a schema-weighted column sampling, and the corresponding natural lan-

guage questions are built with a SQL-to-Text parser. Spider-CG [16] has been created by

generating multiple variations of the natural language questions and the SQL queries from
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Spider. This was achieved by adding new clauses or conditions, or substituting existing

ones in the SQL queries, along with the corresponding changes in the natural language

questions. While previous efforts used the augmented dataset in the pre-training process,

the authors of SpiderCG finetune their model only with their augmented dataset and do

not use the training set of Spider.

The augmented datasets, with the exception of Gap2sql, do not significantly enhance the

diversity of SQL queries, because their production rules rely on templates that exist in cur-

rent datasets. The variation from existing SQL queries is based on the different utilization

of the variables (tables, columns, values). On the other hand, the natural language ques-

tions in most of the systems are new, as they are produced from a deep neural network.

In general, the augmented datasets introduce new examples to some degree, can boost

underrepresented categories, and pose new challenges.

Themain problem that these datasets face is quality. They cannot guarantee syntactic and

semantic correctness of the SQL and natural language questions due to the use of deep

neural networks and the random selection of variables to fill in the SQL templates. Con-

sequently, despite the observed boost in performance that existing systems have shown

with the use of an augmented training dataset, we should keep in mind that the low quality

of these datasets can lead to systems susceptible to semantic errors.

Table 2: Dataset analysis axes

SQL queries Structural variety, Operator variety, Operator usage,

Schema usage, Content usage

Databases Schema complexity, Schema quality, Database size

NL questions Schema linkage, Lexical complexity, Syntactic

complexity, Readability
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4. DATASET ANALYSIS METHODOLOGY

An analysis of the characteristics of the datasets used for training and evaluating text-

to-SQL systems can help explain the performance of a system. For instance, poor per-

formance in nested queries could be due to their absence in the training dataset, while

excellent performance in another dataset could be due to the dataset’s poor ability to pro-

vide enough variant examples, which results in hiding system vulnerabilities.

Apart from the size of the dataset that is typically given, several works provide addi-

tional statistics for text-to-SQL datasets. These include the frequency of specific clauses

[13,33,34,40,55,74], the percentage of columns mentioned in the natural language ques-

tions [10,33,59], the quality of the natural language queries [42], the number of templates

existing in the dataset [13,23,28], and summary metrics related to the SQL queries or the

NL questions (e.g., the average conditions in the queries, the average length of the ques-

tions, etc) [23,66]. Furthermore, dataset analyses typically incorporate statistics about the

databases, such as the number of columns, tables or rows, or the size of the databases

in a dataset.

Existing approaches focus on different characteristics of text-to-SQL datasets failing to

provide a uniform, multi-aspect and fine-grained analysis and comparison of such datasets.

To address this gap, we propose a methodology for characterizing text-to-SQL datasets

that provides a set of facets that capture the diversity and distribution of the SQL queries,

the natural language questions, and the databases in a dataset. Our methodology incor-

porates the statistics used in previous works along with several new additions. Table 2

shows the main axes of our methodology.

4.1 SQL Queries

The analysis of the SQL queries in a dataset provides an overview of the type of queries

that a system is capable of predicting and helps explain system shortcomings due to un-

balanced query distributions in the training data. Our SQL query analysis comprises five

axes.

Structural variety. To gain a general view of the variety of the SQL queries, we focus on

their structure. The structural components consist of select, from, where, group by, having,
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order by, limit, set operators, and nesting. Each SQL query is categorized based on the

combination of its structural components. The structural variety of the SQL queries in a

dataset is shown by reporting the percentage of each structural combination in the dataset.

Operator variety. Operations (e.g. logical, mathematical) expressed in the natural lan-

guage question must be translated into SQL. To explore the SQL complexity from this

angle, we examine the operators of the SQL queries. We have considered operator types

instead of operators to reduce the number of possible combinations. Specifically, each

query is characterized based on the combination of the following operator types:

− Aggregates: count, max, min, sum, avg

− Comparison operators: >, >=, <, <= , =, !=, between, not between

− Logical Operators: and, or

− Arithmetic Operators: +, -, /, *, %

− Membership Operators: in, not in

− Join Operators: join, outer join, left join, cross join, etc

− Like Operators: like, not like

− Null Operator: is null, is not null

The operator variety is shown by the percentage of each operator combination in the

dataset.

Operator usage. The complexity introduced by the operators in a SQL query is not caused

only by their variety, but additionally by their quantity. For that reason, we explore their

usage in a dataset by reporting, for each number of operators, the percentage of SQL

queries that contain so many operators. The report could additionally contain the percent-

ages of the numbers of each operator separately, but we believe that it would not add

significant value. Nevertheless, as joins play a significant role in the query complexity, the

average number of the join operators is also reported.

While the first three axes (structural variety, operator variety and usage) focus on the query

complexity, the next two focus on the interaction of the query with the database elements.

Schema usage. The usage of schema elements in the SQL queries is shown by reporting

the percentages of SQL queries for each number of columns and tables used in the queries

of a dataset.

Content usage. To understand the usage of the database values in the SQL queries, for

each number of values mentioned in SQL queries of a dataset, the report includes the
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percentage of queries that contain this number of values.

4.2 Databases

The databases upon which the queries are formulated have a significant impact on the

difficulty of the queries. Our database analysis in a dataset focuses on three axes.

Schema complexity. We measure the complexity of the schema by calculating the num-

ber of tables and columns in each database of the dataset. The larger and more convo-

luted a database schema, the more complex SQL queries may become, and the more

difficult it is to map NL questions to this schema. Schema serialization as the dominant

approach to encoding the database schema in the input of text-to-SQL systems [30] may

also be a problem.

Schema quality. To understand the schema quality of a database, we measure the per-

centage of schema elements that are valid English words. In this way, we can have an

intuition on how easy a database schema is to be understood by a text-to-SQL system.

For example, the attribute hadm in the MIMICSQL database, which refers to hospital ad-

mission, is not an English word, and it cannot be easily understood by a neural model.

Database size. The database size can have an impact on a text-to-SQL system. Some

systems implement schema linking methods that require a database search, whose over-

head is affected by the database size. Furthermore, text-to-SQL systems typically focus

on how to translate a NL question to an equivalent but not necessarily efficient SQL query.

This oversight becomes critical as the performance of SQL queries deteriorates with the

database size. For the database size, we report the total number of rows across tables in

every database in a dataset.

Table 3: Example values of lexical complexity metrics

Question Rarity Lexical density

What is the area of California? 0 0.33

What is the total number of patients who had coronary

atherosclerotic native vessel?

0.5 0.57

How many such stocks are there whose last traded

value does not exceed 1?

0.27 0.78
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4.3 Natural Language Questions

The analysis of the natural language (NL) questions in a dataset helps understand the

type of questions that a system is capable of successfully translating to equivalent SQL

queries. Our analysis of the NL questions has four axes.

Schema linkage. One aspect that can determine the difficulty of the natural language

questions in the task of text-to-SQL is how well they align with the underlying schema.

Therefore, we report the percentages of the schema elements required in the correspond-

ing SQL that are referenced by their exact name in the NL question.

Lexical complexity. A NL question may be expressed in simple words or use more

rare words making it possibly harder for a text-to-SQL system to find an equivalent SQL

query. To understand the complexity of the vocabulary used in NL questions, we adopt

well-known metrics:

(a) Rarity: the ratio of the rare words to the content words of an NL question [53]; and (b)

Lexical density: the ratio of the content words to the total words of an NL question [29].

Content words are the important words (e.g., not the articles) of a text based on their part-

of-speech tag. Table 3 presents example questions with their corresponding rarity and

lexical density values.

Syntactic complexity. To measure syntactic complexity of a NL question, we report the:

(a) Dependency depth: the depth of the NL question dependency tree; and (b) Length:

the number of words in the NL question. As an alternative to the length, the number of

dependencies in the NL question dependency tree could be reported.

Readability. We also report the readability of a NL question. For this purpose, we adopt

one of the most popular formulas, the Flesch reading ease [14].

A Mitsopoulou 26



Towards more robust text-to-SQL translation

5. DATASET ANALYSIS RESULTS

We present the results of our analysis of text-to-SQL datasets using our methodology. We

included publicly available datasets that are not derived from Spider, as the latter have

small differences from the original dataset. We report the summary statistics across all

axes of our methodology, enabling us to thoroughly compare the datasets. Due to space

constraints, the full analysis of each dataset is included in our GitHub repository1. The

following plots present the evaluation (test) splits of the datasets. For datasets with no

splits, we consider the whole dataset as an evaluation set, while in the case of Spider and

BIRD, where the test split is not available, we consider the dev set as the evaluation split.

We omit the analysis of the training sets, as in all datasets, except Atis, the distributions

in the training set are similar to the evaluation one. The omitted plots can be found in

our Github repository. Lastly, in the figures and tables, we use the abbreviations: Geo

(Geoquery), MIMIC (MIMICSQL), Restos (Restaurants), K-DBQA (KaggleDBQA).

5.1 Analysis of the SQL Queries

5.1.1 Structural variety

Figure 1 shows the percentages of the nine most common structural categories across

datasets. As we can see the vast majority of the queries in the datasets are of type SFW.

Most single-domain datasets exhibit small structural variety. Among them, Atis, MIMIC-

SQL, and Restaurants, have exclusively SFW queries with or without nesting. On the

other hand, Spider and KaggleDBQA have the highest structural varieties. This may be

partially attributed to the existence of multiple databases in each dataset that lend them-

selves to expressing richer types of questions. Lastly, BIRD and Scholar are the more

diverse ones containing the highest percentages of queries that do not belong to the most

common categories. Overall, we observe a high imbalance in the structural categories of

the queries in the datasets and a focus on a few, simple, categories.
1https://github.com/athenarc/Experimental-Analysis-of-Text-to-SQL-Benchmarks
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Figure 1: Structural variety in the SQL queries of the datasets. ({S}elect, {F}rom, {W}here,
{G}roup by, {O}rder by, {L}imit, {N}esting

Figure 2: Operator variety in the SQL queries of the datasets. ({J}oin, {Ag}gregate,
{C}omparison, {Lo}gical, {Me}mbership, {Li}ke)

5.1.2 Operator variety

Figure 2 depicts the eleven most common operator type combinations existing in the

datasets. Geoquery and Advising are the only single-domain datasets that contain multi-

ple operator categories in a substantial percentage. MIMICSQL offers some operator type

variety but it is more imbalanced. The multi-domain datasets have the highest varieties.

In the Advising dataset, half of its queries contain like operators. Overall, the datasets do

not cover a broad spectrum of operator combinations, while arithmetic, membership, and

like operators appear rather rarily, if not at all.
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(a) Operator usage

(b) Schema usage

(c) Content usage

Figure 3: Usage analysis of the SQL queries of the datasets.

Figure 4: Schema complexity in the databases of the datasets.
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5.1.3 Operator usage

Figure 3a depicts the number of operators used in queries in the considered datasets.

In most datasets, queries use 0-10 operators. Atis stands out with the highest operator

usage. Interestingly, the most popular datasets (Spider, BIRD) are among the ones with

the lowest use of operators.

5.1.4 Schema usage

Figure 3b shows the number of tables and columns used by the SQL queries in each

dataset. The schema usage (and in particular the column usage) is proportional to the

operator usage in the datasets. The vast majority of the queries in all datasets, except

Atis, mention at most 10 columns. Regarding the number of tables used, the differences

across datasets are small, and most of the times, queries contain fewer than five tables.

5.1.5 Content usage

Figure 3c provides insights into the number of values used in the queries in the datasets.

Most queries in almost all datasets involve an average of less than four values. A notable

exception are Atis queries, which contain 2-3 times more values than the queries in the

rest of the datasets. In other words, Atis queries involve several conditions on values.

Overall, regarding schema and content usage, Atis queries make better use of the schema

and content of the Atis database, while Spider and BIRD queries ‘touch’ only few tables

and columns.

5.2 Analysis of the Databases

5.2.1 Schema complexity

Figure 4 shows the number of columns and tables for the databases in each dataset. The

majority of the datasets contain a single database, resulting in one line in the plot. All

databases have a small number of schema elements, with fewer than 25 tables and 125

columns. Focusing on the multi-domain datasets (Spider, BIRD, KaggleDBQA), we ob-

serve small variations in the schema complexity of their database collection. The small
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Figure 5: Schema quality in the databases of the datasets.

Figure 6: Size of databases in the datasets.

size of the existing schema allows schema serialization in the input of the systems, which is

themost popular inputmethod, however, is not necessarily representative of real databases

with much larger schemas. Overall, all datasets use toy databases.

5.2.2 Schema quality

Figure 5 shows the percentages of database schema elements that are valid English

words. The single-domain datasets and Spider contain a high percentage ( > 75%) of

explainable schema elements. The other cross-domain datasets (BIRD, KaggleDBQA)

have less self-explainable database schemas. Scholar is the only single-domain dataset

with the lowest schema quality across all datasets (∼20%) because its column names are

often concatenation of multiple words without underscore or camel case (e.g., citedpa-

perid). Overall, most datasets use easy database schemas.
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5.2.3 Database size

Figure 6 shows the total number of rows in each database. As we can see the biggest

databases are the Academic and IMDb followed by Yelp, while the rest of the datasets have

much smaller databases. Overall, these databases do not present significant efficiency

challenges for the predicted SQL queries.

5.3 Analysis of the NL Questions

5.3.1 Schema linkage

Figure 7 depicts the exact schema reference percentages in the NL questions of all datasets.

In most datasets, on average, only 10-35% of the NL questions contain exact schema ref-

erences. The datasets with the lowest use of exact references are Restaurants, Atis and

Advising. Spider is by far the dataset with the highest percentages, with a 50% average.

The high number of exact references in Spider has been mentioned [10,35] as a downside

that makes the schema linking task easier than in real use cases.

5.3.2 Lexical complexity

Figure 8 shows the values of rarity and lexical density across all datasets. IMDb, Geo-

query, and Academic questions have the lowest average rarity values. In other datasets,

we can not detect noticeable differences. Regarding the lexical density, the average in

most datasets varies from 0.3 to 0.6. MIMICSQL has the highest lexical density, while

Academic is the one with the lowest. Overall, the datasets contain rather simple NL ques-

tions as they contain many pronouns and auxiliaries rather than nouns and lexical verbs

(based on lexical density) and do not contain rare words (based on rarity).

5.3.3 Syntactic complexity

Figure 9 shows the values of the metrics regarding the syntactic complexity of the NL

questions. Geoquery has the simplest questions in terms of syntactic complexity, while

BIRD and MIMICSQL have the more complex questions.
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Figure 7: Schema linkage in the NL questions of the datasets.

Figure 8: Lexical complexity of the NL questions.

Figure 9: Syntactic complexity of the NL questions.
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Figure 10: Readability of datasets NL questions.

5.3.4 Readability

Figure 10 presents the readability scores of the questions existing in the datasets. The

majority of the questions across datasets have a high readability score. MIMICSQL and

Academic are the datasets with the lowest scores.

Overall, NL questions are easily understood by humans.

5.4 Summary

Table 4: Summary of datasets in the analyzed axes. L: Low, M: Medium, H: High.

SQL Queries NLQs Databases

Dataset
Structural

Variety

Operator

Variety

Operator

Usage

Schema

Usage

Content

Usage

Schema

linkage

Lexical

Compl.

Syntactic

Compl.
Read/ty

Schema

Compl.

Schema

quality

DB

Size

Academic L L M L M L L H M M M H

Advising L M M M M L M M M M H M

Geo H L L L M M L M H M H L

IMDb L L M L L L L M H L M H

Yelp L L M L L L L M H L H H

Scholar M L M L L L M M M M L N/A

Atis H H M M M L L M M M H M

Restos L L M M M L M M H L H M

MIMIC L L L L L M H H M L M N/A

Spider M L L L L H M H H L M L

K-DBQA M L L L L L L M M L L M

BIRD M L L L L M M H M M M M

Table 4 provides a summary of our findings across the considered aspects. For every

aspect of our analysis, we group the results and create 3 different levels, Low, Medium,

and High, characterizing the dataset regarding this aspect. The criteria defining each level
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are described in the long report in our GitHub repository.

5.4.1 Where do existing datasets fall short?

The variety of SQL queries, NL questions, and databases in the existing datasets do not

cover a broad spectrum of all the possible cases, raising several concerns regarding the

robustness of the training and evaluation process. (1) The imbalanced training datasets

create several problems in the models like biased predictions and reduced generaliza-

tion capabilities [24]. (2) Real applications typically involve more complex queries with

several tables, conditions, nesting, formulas, etc. Thus, a system trained on an existing

benchmark will probably not cope with these queries. (3) The distribution of queries in

the evaluation datasets is also unbalanced giving more focus on simpler queries. As a

result, a system’s accuracy will not represent accuracy balanced across different SQL

types. (4) Real databases contain hundreds of tables and columns, which means that

systems trained and evaluated on the existing benchmarks have not tested their transla-

tion capabilities over more realistic databases nor their capabilities of generating efficient

queries. Additionally, taking into account the broad usage of fine-tuning techniques in the

task of text-to-SQL, (5) existing datasets are fairly small compared to the datasets used

for training neural models, such as models for code understanding and generation. For

example, CodeSearchNet [27] used for training code-related models contains 2 million

training examples, with even larger datasets created after it (Stack [32], The Pile [19]).

Lastly, since most of the datasets have been built within the scope of the text-to-SQL task

(e.g., through crowdsourcing or researchers’ manual work), (6) the questions may not rep-

resent real use case scenarios, making it difficult to understand the performance that a

system would have if we used it, for instance, as an assistant for data analysis.

5.4.2 What are the best datasets for training?

There are two scenarios: Finetuning. A critical requirement for a dataset used for train-

ing a PLM is to be of substantial size. As a result, most existing datasets cannot be used

as a standalone training solution. Additionally, the use of a system in multiple domains

requires a multi-domain training dataset. The datasets that meet the size and domain

requirements are the most popular ones that are already used for training, namely Wik-

iSQL, Spider and BIRD. We believe that a combination of the existing diverse big datasets
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(e.g., Spider+BIRD) would be the best strategy for training. On the other hand, the small

datasets should be left out of the training set as their value could be higher serving as

out-of-distribution evaluation sets.

Prompting. Lately, a popular solution for creating systems for a downstream task is the

use of pre-trained large language models with prompting. In this scenario, the dataset

requirements are minimized to finding similar examples to the provided one. This means

that all datasets can be equally valuable in creating a pool of diverse examples from which

the prompt examples will be selected.

5.4.3 What are the best datasets to test the capabilities of a system?

Evaluating on multiple datasets is necessary to measure the coverage of the types of

questions a system can support [13]. Therefore, the more datasets used for evaluation

the more robust will be the understanding of a system’s capabilities. The most valuable

datasets in the evaluation process are the most diverse compared to the training datasets,

or the ones with unique characteristics. For example, it would be valuable to test the

performance of a system trained on Spider, in a dataset like MIMICSQL, which has a

database with demanding terminology and it is different from most of the databases ex-

isting in Spider. In the same manner, evaluating a system with the Atis dataset, which

contains queries with a higher number of filters would be of high value in determining the

capabilities of a system.
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6. TEXT-TO-SQL EVALUATION METHODS

6.1 Existing Evaluation Approaches

Accuracy metrics. The primary method for evaluating the performance of a text-to-SQL

system is by computing its accuracy, i.e., the percentage of the SQL queries that are

translated correctly. This is accomplished by either comparing the predicted and ground

truth SQL queries or by comparing their execution results. These correspond to Spider’s

exact match and execution match andWikiSQL’s [80] logical form accuracy and execution

accuracy metrics.

While these metrics are widely utilized, they are not completely accurate by design. The

exact match can result in false negatives due to equivalent queries, while execution ac-

curacy can result in false positives when distinct queries coincidentally produce the same

execution result. In addition to that, Spider’s implementation of exact match produces

erroneous results in several other cases. The most important one, as was also men-

tioned in [79], is the fact that the exact match does not consider the join’s ”on” condition

in the comparison. For example, the exact match score of the queries ”select * from

author join actor on author.name = actor.name” and ”select * from author join actor

on author.id = actor.id" will be 1, i.e., the queries will be erroneously considered the

same.

Efforts to enhance the robustness of accuracy metrics and mitigate false results include

Partial Component Matching F1, which is similar to Spider’s component matching but

uses a parser that can process a larger set of SQL queries [23], an accuracy metric that

considers semantically equivalent queries [31], and a metric called test suite execution

accuracy [79] that tests the execution results of the queries over diverse variations of the

database contents. Finally, QATCH [45] proposes a set of new metrics that can more

accurately depict the capabilities of a system.

Efficiency metrics. Translating a NL question to SQL occurs with a non-negligible over-

head. Furthermore, the predicted SQL query may not be the most efficient one, an issue

that becomes more critical for databases with a large number of tables, columns and

rows. Efficiency metrics include the latency of processing an entire query [15,55], and the

throughput, i.e., the number of queries that can be processed when a maximum number

of processes are given [15]. A metric called VES (Valid Efficiency Score) computes the
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efficiency of the valid predicted SQL queries [40]. A query is valid if its result set aligns with

this of the ground-truth SQL query. In this case, efficiency refers to the query’s running

time.

Although these metrics are valuable components of a comprehensive evaluation, they do

not help understand translation errors.

Query categorization. Towards a more insightful evaluation, many systems categorize

the SQL queries or the natural language questions existing in the dataset and report the

accuracy results in every category. With this approach, they gain a deeper understand-

ing of the system capabilities across different categories. The most popular categoriza-

tion is the SQL query categorization introduced in Spider, which divides the queries into

four groups based on hardness criteria. However, this categorization is too generic, and

it fails to effectively highlight system challenges. While more extensive categorizations

have been proposed [20,68], they have not gained wide adoption. These categorizations,

while beneficial, face challenges such as a non-automatic process for query classifica-

tion, hindering their application to new datasets. Moreover, a common limitation lies in the

lack of clear justification for the criteria underlying selected categories, limiting their broad

applicability.

Error analysis. Another direction towards a more comprehensive evaluation is error anal-

ysis. In an effort to provide insights into their system’s errors, many works [22,31,33,35,42,

63] manually select a subset of the wrong predictions made by their model, and group the

error causes. This categorization provides useful information about the system’s down-

falls, but it requires extensive and repetitive manual work.

6.2 Automated Error Analysis

Given the above analysis of evaluation metrics, we introduce an automatic categorization

for both queries (Section 6.2.1) and errors (Section 6.2.2) as the foundational step toward

an evaluation framework that can be easily adapted across diverse contexts.

6.2.1 SQL Categorization

The decision for the set of categories that will achieve the best results, in terms of error

explainability, is not trivial. The first challenge is the definition of the features that constitute
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a category or can be combined to create a more general one. The second challenge is

the optimal selection from these categories, which will result in a reasonable number of

categories, capable of depicting the downfalls of a model. We begin our study by defining

two general sets of categories to examine if any valuable information can be gained and

decide if a more thorough effort for a different categorization would be useful.

The first set of categories aims at structural categorization and contains all structural com-

binations of a query. The second one categorizes queries based on the operator types

combination they contain. We selected these categorizations, as from the analysis of the

datasets we observed that they can sufficiently depict the structural and operator variety of

the SQL queries. Hence, they provide a more fine-grained analysis compared to template

analysis [13,23,28], as templates combine structural and operator categories.

6.2.2 Our Partial Match

To create the error categories, we built on the components match defined in Spider, refor-

matting the components and defining three categories of matches: (a) structural match,

(b) operator match, and (c) variable match. With this categorization, we try to identify

problems that arise due to the difficulty of a model understanding the requested structure,

the confusion in recognizing the requested relations, or the model’s inability to select the

correct database components and extract the values from the natural language query,

respectively.

Structural Match. To calculate errors in the structure, we check whether the predicted

query’s structural components are equivalent to the ones of the gold query. In more detail,

we create a set with the names of existing structural components in every subquery. In

the case of nesting or of a set operator, we additionally store information for the position

in which they exist (e.g., in the WHERE clause). The score of the structural match is

produced by the average of the Jaccard similarity on the two sets for every compared

subquery.

For example, for the gold query ”select name from students where age < (select avg(age)

from students where age>17) and grade in (select grade from best_grades)” and the predicted

query ”select name from students where grade>10 and age>17”, the structural match will be:

avg(Jaccard([select, from,where, nesting_where_1,

nesting_where_2], [select, from,where]),
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Jaccard([select, from,where], []),

Jaccard([select, from], [])) = 0.2

The main problem that arises with this approach is the selection of the subqueries to be

compared. Due to the difficulty of finding an optimal solution, we choose a naïve ap-

proach by comparing the subqueries with the order they exist in the query and we leave

the exploration for a better solution as future work.

Operator Match . A similar approach is followed for the calculation of the operator match.

In this case, we create the set, for each subquery, containing a unique entry for every op-

erator, alongside its positional information. The operator match value for a pair of queries

is the average of the Jaccard similarities of all subqueries.

Variable Match. To calculate the variable match of two queries, for each subquery, we

create a set containing entries for the variable names and types, where the variable types

consist of table names, column names, and values. For models without constant predic-

tion, we do not consider literals and numbers in the comparison.

Finally, we define the average of the above 3 matches as the partial match score of two

queries. With these metrics, we do not aim at predicting with precision the accuracy of

a model. Instead, we focus on error explainability to validate our intuition, that a more

detailed analysis of the errors could make the process of evolving text-to-SQL models

easier and more robust.

6.2.3 Discussion

The advantage of our method is that it automatically creates an error analysis that could

assist the creator of a system to understand its pain points and produce more robust

models. Hence, our method can be used as an additional tool for system evaluation.

Nevertheless, it is not perfect as there are cases in which it falls short.

The proposed metrics for error analysis could result in false negatives in the case of equiv-

alent queries. For example, the queries ”select name, age from singer order by age limit

3” and ”select name, age from singer where singer.id in (select singer.id from singer order

by age limit 3)” will result in errors in all matches, even though the two queries are the

same. To mitigate the impact of the equivalent queries in the depicted errors, we could

use our metric only in queries that we know are wrong (e.g., in queries with 0 execution ac-

curacy). Additionally, our proposed method will not point out the cause of errors related to
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the natural language questions. For example, the elevated errors in a structural category

could be caused by ambiguities in the natural language question, but our metric will only

show that the model struggles in this category. The exploration of the natural language

effect in the models’ errors is an important aspect of the error analysis and we leave it for

future work.
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7. EXPERIMENTS FOR SYSTEM EVALUATION

In this section, we describe experiments with existing text-to-SQL models over the ana-

lyzed datasets. Our purpose is to show how the dataset analysis using our methodology

of Section 4 can shed more light into the performance of a text-to-SQL model. Then, as a

second step, we focus on Spider, and perform an error analysis as described in Section

6.2 that demonstrates how our approach can pinpoint the sources of errors and provide

additional insights into the performance of a text-to-SQL system in a dataset.

7.1 Using Dataset Analysis in System Evaluation

We provide the results of text-to-SQL models in all the analyzed datasets focusing on

insights that stem from the extra information provided by the analysis of the evaluated

datasets. Hence, our focus is on showing the value of dataset analysis for system evalu-

ation and not the value of any particular text-to-SQL model.

7.1.1 Models

Wehave selected several variations of the T5model, which is used as the base component

in several systems at the top of Spider’s leaderboard. The reason for this selection is

primarily the available checkpoints of the T5 in the Spider dataset from [54] that made it

easy to get the predictions of the models for all datasets. We did not select any LLM, e.g.,

all the GPT-4 based architectures existing on top of the Spider and BIRD leaderboard,

as their cost for getting the predictions in all datasets was prohibitive. More specifically,

our models consist of T5-base_lm100k, T5-large, T5-large_lm100k, T5-3B and T5 with

Table 5: Models’ evaluation in several text-to-SQL datasets with execution match (EM) and

execution accuracy (EX). ({b}ase_lm100k, {l}arge, {l}arge{-lm}100k, {b}ase-lm100k +
{P}ICARD (b+P))

T5
Spider Geo Atis Academic MIMIC K-DBQA IMDb Yelp Scholar BIRD Restos

EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX

b 59.4 59.3 4.2 16.8 0 0.4 4.6 6.1 2 - 11.3 16.7 11.4 11.4 4.6 7.8 0 - 1.3 4.1 0 7.2

l 67 68.3 10.3 16.4 0 0.4 4.6 4.1 4.3 - 16.7 21 12.9 14.5 4.6 8.5 0 - 1.9 8.2 0 21.6

l-lm 71.1 73 13.8 19.6 0 0.2 3.5 5.1 4.7 - 15.1 21.6 18.3 18.3 5.4 11.7 0 - 2.2 7.6 0 26.4

3B 71.5 72.8 16.8 19 0 1.2 5.1 5.6 8.2 - 18.9 21.6 16 17.5 4.6 11.7 0 - 3.1 9.5 0 4

b+P 66.2 67.4 13.4 32.9 0.9 6.7 5.1 6.1 2.8 - 18.3 24.8 11.4 16 4.6 8.5 0 - 2.7 10 0 0
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the PICARD method [54]. For the datasets that had the database available and in a

.sqlite format (Geoquery, Atis, KaggleDBQA, BIRD, Restaurants, Advising) in addition

to PICARD, we enabled the option of using the DB content provided by the authors [54].

The lm_100k suffix suggests that the model was trained for 100k additional steps with the

language modeling objective and PICARD is a constrained decoding algorithm.

7.1.2 Dataset preprocessing

We removed unnecessary blank spaces from the literals (e.g., “ VLDB ” instead of “VLDB”)

from the gold queries of IMDb, Yelp, and Academic, as we saw that their execution resulted

in empty sets and we assumed that they were wrong.

7.1.3 Metrics

To measure the performance of the models we used the execution accuracy and the im-

plementation of the Spider’s exact match. Through experiments, we figured out that the

exact match could not parse a large portion of the queries existing in several datasets.

For this reason, we preprocessed the queries before passing them to the metric to correct

some of the error cases that were fixable by reformatting the query. These include:

1. Implicit joins. Queries that had tables in the from clause separated by a comma were

not parsable. We replaced the implicit joins with the ‘join’ keyword.

2. <> operator. We replaced the <> operator with the !=, which was parsable.

3. Inner join. The exact match could not parse queries that specified the type of join

(outer join, left outer join, inner join etc.). We could not reformat these queries without

altering their logic, but we replaced the appearances of ‘inner join’ with ‘join’, as it is

the default join method.

4. Backquotes. We replaced backquotes in literals with quotes.

5. where clause content in parentheses. We removed redundant parentheses in the

where clause (e.g, ”select * from singer where (name=’A’ and age>18)”).

These changes significantly increase the number of parsable queries, though there are

still many that remain unparsable. The number of parsing errors in each dataset along
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Figure 11: Errors in Spider development set with Exact match (EM), Execution accuracy (EX),

Structural match (SM), Operator match (OM) and Variables Match (VM).

with their causes are in our GitHub repository.

7.1.4 Results

Table 5 presents the performance of the T5 models in the analyzed datasets. As already

mentioned, all models are trained on Spider. Hence, the table shows their performance

in several datasets. It is important to mention that even though the value of evaluating

a model over multiple datasets has been repeatedly underscored in the literature [10,13,

17,18,45,46], most of the current systems are evaluated in only one dataset. The table’s

results once again demonstrate the need for this broader evaluation.

Focusing on the results, we observe that the Atis, Scholar, and Restaurants datasets have

the worst performances. If we recall our analysis, Atis is a dataset with many more con-

ditions than other datasets and all three datasets are among the ones with the lowest

percentage of exact schema references. Additionally, Scholar had the lowest percent-

age of explainable schema items. Through manual inspection of the predictions, we can

observe that the above characteristics seem to be the main source of errors. As we can

observe in the example predictions of the Atis and Scholar datasets in Table 6, the models

struggle to connect with the schema, they often hallucinate schema elements and in the

case of Atis, they produce much shorter queries than the ground truth ones.

Geoquery, KaggleDBQA and IMDb are the datasets with the best performances. We

believe that the fact that they all contain a significant percentage of easy queries, i.e.,

queries with only one type of operator and SFW queries - combined with their low oper-

ator, schema, and content usage contributes to the correct prediction of a considerable

portion of their corpus. Table 6 presents a correct prediction in the Geoquery dataset,

demonstrating the simplicity of the NL question and the corresponding SQL query.

Similarly, we can detect hints of the primary challenges encountered by the models for

most of the datasets. For instance, given the MIMICSQL dataset, we can observe that it

has only simple queries with low schema usage. Combined with one of the lowest question
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Figure 12: Structural match errors in structural categories.

readability, the high lexical and syntactic complexity in the natural language questions,

and one of the highest lower bounds in the content usage we could infer that possibly

the model struggles with understanding the DB content in the questions. For example, as

we can see in Table 6, it omits the ’mitral valve disorders’ value in the first example and

it incorrectly translates the value ”crnry athrscl natve vssl”, in the second example, as a

schema element.

Regarding the capabilities of different models, we see that they tend to improve with

changes in model size, extra pretraining, or the use of PICARD for datasets that are sim-

ilar to the Spider (mainly regarding the SQL axes). This indicates that the techniques for

improving the model affect datasets close to the one used for training, but seem to have

limited gains in datasets with different characteristics.

The above serves as a demonstration of the valuable insights our dataset analysis can

provide, aiding in both a better understanding of a model’s capabilities and the identifica-

tion of its limitations.

7.2 Using Error Analysis in System Evaluation

To demonstrate the effectiveness of our error analysis in revealing additional informa-

tion regarding the sources of errors in a model, we present the results of our method in
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Figure 13: Operator match errors in operator type combinations categories.

analyzing the performance of text-to-SQL systems in the Spider dataset. We selected

Spider because it is the most popular and we were able to collect results from multiple

systems. More specifically, except from the above-used models, we report the results

in RATSQL [63], which uses a task-specific encoder and decoder, and DIN-SQL [49],

which is based on GPT-4. For the RATSQL model, we reproduced the results of the RAT-

SQL+BERT following the instructions in their repository, while for the DINSQL, we have

parsed the predictions from the given file in their repository.

Figure 11 shows the percentages of errors with the exact match, the execution accuracy

metric, and our error metrics, namely partial, structural, operator, and variable match. The

execution match is not reported for the RATSQL, since it does not predict the values in

the produced SQL queries. For example, in the predicted SQL query ”select distinct

singer.country from singer where singer.age > 'terminal')”, instead of a value in the

age condition the model predicts just the ’terminal’ symbol, that denotes a value existence.

We observe that the performance of the models decreases if we evaluate them, in the

Spider development set, with our partial match, instead of Spider’s exact match. This

happens due to the errors in the exact match implementation, as previously mentioned.

In more detail, the distribution of the partial match errors for the T5 and DINSQL models

remains the same but slightly elevated, as opposed to RATSQL, in which we can see a

large increase in errors.

A Mitsopoulou 46



Towards more robust text-to-SQL translation

Table 6: Examples of predictions

Dataset NL Question SQL query Prediction

flights from washington

to seattle

SELECT DISTINCT flight.flight_id FROM flight WHERE

( flight.from_airport IN ( SELECT

airport_service.airport_code FROM airport_service

WHERE airport_service.city_code IN ( SELECT

city.city_code FROM city WHERE city.city_name =

'WASHINGTON' )) AND flight.to_airport IN ( SELECT

airport_service.airport_code FROM airport_service

WHERE airport_service.city_code IN ( SELECT

city.city_code FROM city WHERE city.city_name =

'SEATTLE' )) )

select flight.flight_id from

flight join aircraft on

flight.aircraft_code =

aircraft.aircraft_code where

aircraft.aircraft_name =

'washington' and

aircraft.aircraft_name

='seattle'

Atis
i want to go from

boston to washington

on a saturday

SELECT DISTINCT flight.flight_id FROM flight WHERE

( flight.from_airport IN ( SELECT

airport_service.airport_code FROM airport_service

WHERE airport_service.city_code IN ( SELECT

city.city_code FROM city WHERE city.city_name =

'BOSTON' )) AND ( flight.to_airport IN ( SELECT

airport_service.airport_code FROM airport_service

WHERE airport_service.city_code IN ( SELECT

city.city_code FROM city WHERE city.city_name =

'WASHINGTON' )) AND flight.flight_days IN ( SELECT

days.days_code FROM days WHERE days.day_name =

'SATURDAY' ) ) )

select airport.city from

airport join airport_service

on airport.airport_code =

'Boston' and airport.

city_code = 'Denver'

who publishes in NIPS

?

SELECT DISTINCT writes.authorId FROM paper, venue,

writes WHERE paper.venueId = venue.venueId AND

venue.venueName = 'NIPS' AND paper.paperId =

writes.paperId"

select t1.authorname from

author as t1 join writes as t2

on t1.authorid = t2.authorid

join journal as t3 on

t2.journalid = t3.journalid

where t3.journalname = "NIPS"

Scholar
Fetch me the most

cited publications for

Artificial Intelligence

SELECT DISTINCT cite.citedPaperId,

count(cite.citingPaperId) FROM cite,

paperKeyphrase, keyphrase WHERE cite.citedPaperId =

paperKeyphrase.paperId AND

paperKeyphrase.keyphraseId = keyphrase.keyphraseId

AND keyphrase.keyphraseName = 'Artificial

Intelligence' GROUP BY cite.citedPaperId ORDER BY

count(cite.citingPaperId) DESC

select t1.title, t2.numcitedby

from paper as t1 join cite as

t2 on t1.paperid =

t2.citingpaperid where

t1.title = "Artificial

Intelligence" group by

t2.citedpaperid order by

count(*) desc limit 1

Geo what is the area of

california

SELECT STATEalias0.AREA FROM STATE AS STATEalias0

WHERE STATEalias0.STATE_NAME = ”california”

select area from state where

state_name = ”california”

find the number of

patients diagnosed

with mitral valve

disorders.

SELECT COUNT ( DISTINCT DEMOGRAPHIC.SUBJECT_ID )

FROM DEMOGRAPHIC INNER JOIN DIAGNOSES on

DEMOGRAPHIC.HADM_ID = DIAGNOSES.HADM_ID WHERE

DIAGNOSES.LONG_TITLE = M̈itral valve disorders"̈

select count(*) from

demographic as t1 join

diagnoses as t2 on t1.hadm_id

= t2.hadm_id join

primary_disease as t3 on

t2.primary_disease =

t3.primary_disease group by

t3.primary_disease having

count(*) >= 1

MIMICSQL
what is the total

number of patiemts

who had crnry athrscl

natve vssl?

SELECT COUNT ( DISTINCT DEMOGRAPHIC.SUBJECT_ID )

FROM DEMOGRAPHIC INNER JOIN DIAGNOSES on

DEMOGRAPHIC.HADM_ID = DIAGNOSES.HADM_ID WHERE

DIAGNOSES.SHORT_TITLE = "Crnry athrscl natve vssl"

select count(*) from crnry

athrscl natve vssl
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Focusing on our metrics for error explainability, namely the structural, operator, and vari-

able match, it is clear that the primary source of mistakes, in all models, is the wrong

prediction of the variables. The second most important source of errors lies in the predic-

tion of operators, while structural mismatches remain comparatively low and steady for all

models. Focusing on the T5 model variations, increase in size, as well as extra pretrain-

ing, provide significant improvements, mainly by reducing variable errors. Regarding the

RATSQL we can see that there is a huge difference in the operator and variable match er-

rors compared to the rest of the models. Finally, we can observe that the PICARD method

with the use of column values in the input reduces mainly the errors in the variables, while

surprisingly generating more errors in the structural match.

By combining the SQL categorization with the error categorization, we create Figures

12 and 13, which depict the structural and operator match errors for the structural and

operator categorization, respectively. In this way, we can observe more clearly the errors

in each category.

Figure 12 shows that in the queries with nesting or set operators, the T5-3B model has the

highest error percentage among the T5 models, possibly indicating that the training data

for these more complex categories are not enough to successfully train a model this big.

Additionally, DINSQL’s errors significantly increase in structural combinations with limit,

nesting, or set operators. This behavior combined with the high difference between the

exact and execution match could indicate that DINSQL produces equivalent queries with

different structures, more often than the rest of the models. We also observe that different

models seem to have achieved complementary understandings of the SQL structure. We

should mention though that due to the low differences (less than 0.5%) those are not safe

conclusions.

Figure 13 shows the huge deficiency of RATSQL when there is a join operator, leading to

the point that queries containing joins rarely produce a correct answer. Additionally, from

the normalized errors, we can observe that all models, except DINSQL, struggle the most

in queries with logical operators and in the ’other’ category, which contains the most rare

operator combinations in the Spider dataset. This can be attributed to the use of Spider

as a training dataset in the models, which creates biases regarding the predicted queries,

and it highlights the importance of a more diverse dataset during the training process.

Moreover, the small percentage of errors of these operator combinations, due to their

low usage in the evaluation dataset, makes clear the importance of the distribution in the

A Mitsopoulou 48



Towards more robust text-to-SQL translation

evaluation dataset in pinpointing model vulnerabilities.

Overall, error categorization can provide useful insights into the sources of errors and the

differences between models. Given that our implementation is open source and the only

requirement for the error analysis is a JSON file, with the predictions of a model over a

dataset, we believe that it provides an easy way to start the analysis of any model, without

extra overhead and enable an in-depth comparison of several state-of-the-art systems.
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8. CONCLUSIONS

Recognizing the vital role of datasets used for the training and evaluation of text-to-SQL

systems play, in this work, we introduced a methodology for text-to-SQL dataset analysis,

and we performed an in-depth analysis of several text-to-SQL datasets. We examined

existing evaluation methods, and proposed an automated error analysis method. We

showed how our dataset analysis can help explain the behavior of a system better than

the systems’ original evaluations. Using our error analysis, we further showed how we can

pinpoint the sources of errors of a text-to-SQL system for a particular dataset. Our work

provides several insights into the limitations of current text-to-SQL systems and datasets,

and opens up opportunities for the development of more effective benchmarks, evaluation

methodologies and systems. Future work could include the upgrade of our error metrics,

to detect equivalences and to report false negatives and positives cases. Additionally, we

could explore extra axes in the datasets analysis, for instance, for the detection of ambi-

guities in the NL questions. Designing novel benchmarks using our dataset methodology

is another important direction.
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ABBREVIATIONS - ACRONYMS

NL Natural Language

T5 Text-to-Text Transfer Transformer

PL Programming Language

MLM Masked Language Modeling

SOTA State Of The Art

LLM Large Language Model

SADGA Structure-Aware Dual Aggregation Network

RGAT Relational Graph Attention Network

ADVETA Adversarial Table Perturbation

SCFG Synchronous Context Free Grammar

Geo Geoquery

MIMIC MIMICSQL

Restos Restaurants

K-DBQA Kaggle DataBases Question Answering

e.g. from the Latin phrase exempli gratia, meaning “for example.”

i.e. from the Latin phrase ”id est”, meaning “that is”

etc et cetera

PLM Pretrained Language Model

VES Valid Efficiency Score
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GPT Generative Pretrained Transformer

JSON JavaScript Object Notation

BERT Bidirectional Encoder Representations from Transformers

MBPP Mostly Basic Python Porgramming

GAP Generation Augmented Pretraining

SeaD Schema-aware Denoising

GP Grammar Pretraining

SLSQL Schema-Linking SQL

A Mitsopoulou 52



Towards more robust text-to-SQL translation

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for

program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen

Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv

preprint arXiv:2108.07732, 2021.

[3] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: Entity linking in web

tables. In International Semantic Web Conference, pages 425–441. Springer, 2015.

[4] Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. Sadga: Structure-aware dual graph aggregation

network for text-to-sql. Advances in Neural Information Processing Systems, 34:7664–7676, 2021.

[5] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. Lgesql: line graph enhanced

text-to-sql model with mixed local and non-local relations. arXiv preprint arXiv:2106.01093, 2021.

[6] Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei Lan,

Sheng Zhang, Jiarong Jiang, Joseph Lilien, et al. Dr. spider: A diagnostic evaluation benchmark towards

text-to-sql robustness. arXiv preprint arXiv:2301.08881, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,

Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models

trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text

encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

[9] Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan.

Pymt5: multi-mode translation of natural language and python code with transformers. arXiv preprint

arXiv:2010.03150, 2020.

[10] Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and

Matthew Richardson. Structure-grounded pretraining for text-to-sql. arXiv preprint arXiv:2010.12773,

2020.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing

Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages.

arXiv preprint arXiv:2002.08155, 2020.

[13] Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasi-

vam, Rui Zhang, and Dragomir Radev. Improving text-to-sql evaluation methodology. arXiv preprint

arXiv:1806.09029, 2018.

A Mitsopoulou 53



Towards more robust text-to-SQL translation

[14] Rudolf Franz Flesch and Alan J Gould. The art of readable writing. (No Title), 1949.

[15] Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. Catsql: Towards real world natural

language to sql applications. Proceedings of the VLDB Endowment, 16(6):1534–1547, 2023.

[16] Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. Measuring and improving composi-

tional generalization in text-to-sql via component alignment. arXiv preprint arXiv:2205.02054, 2022.

[17] Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R Woodward, Jinxia Xie, and Peng-

sheng Huang. Towards robustness of text-to-sql models against synonym substitution. arXiv preprint

arXiv:2106.01065, 2021.

[18] Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-domain

text-to-sql generalization. arXiv preprint arXiv:2109.05157, 2021.

[19] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,

Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language

modeling. arXiv preprint arXiv:2101.00027, 2020.

[20] Orest Gkini, Theofilos Belmpas, Georgia Koutrika, and Yannis Ioannidis. An in-depth benchmarking

of text-to-sql systems. In Proceedings of the 2021 International Conference on Management of Data,

pages 632–644, 2021.

[21] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey

Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow. arXiv

preprint arXiv:2009.08366, 2020.

[22] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. To-

wards complex text-to-sql in cross-domain database with intermediate representation. arXiv preprint

arXiv:1905.08205, 2019.

[23] Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-sql in the wild: a naturally-occurring dataset

based on stack exchange data. arXiv preprint arXiv:2106.05006, 2021.

[24] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on knowledge

and data engineering, 21(9):1263–1284, 2009.

[25] Charles T Hemphill, John J Godfrey, and George R Doddington. The atis spoken language systems

pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,

Pennsylvania, June 24-27, 1990, 1990.

[26] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin

Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence with

apps. arXiv preprint arXiv:2105.09938, 2021.

[27] Hamel Husain, Ho-HsiangWu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Codesearch-

net challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436, 2019.

[28] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer. Learning

a neural semantic parser from user feedback. arXiv preprint arXiv:1704.08760, 2017.

A Mitsopoulou 54



Towards more robust text-to-SQL translation

[29] Victoria Johansson. Lexical diversity and lexical density in speech and writing: A developmental per-

spective. Working papers/Lund University, Department of Linguistics and Phonetics, 53:61–79, 2008.

[30] George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for

text-to-sql. The VLDB Journal, 2023.

[31] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to sql: where

are we today? Proceedings of the VLDB Endowment, 13(10):1737–1750, 2020.

[32] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,

Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively

licensed source code. arXiv preprint arXiv:2211.15533, 2022.

[33] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. Kaggledbqa: Realistic evaluation of

text-to-sql parsers. arXiv preprint arXiv:2106.11455, 2021.

[34] Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Minjoon

Seo, Jong-Yeup Kim, and Edward Choi. Ehrsql: A practical text-to-sql benchmark for electronic health

records. Advances in Neural Information Processing Systems, 35:15589–15601, 2022.

[35] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and Tat-Seng Chua. Re-

examining the role of schema linking in text-to-sql. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 6943–6954, 2020.

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[37] Fei Li and Hosagrahar V Jagadish. Nalir: an interactive natural language interface for querying rela-

tional databases. In Proceedings of the 2014 ACM SIGMOD international conference on Management

of data, pages 709–712, 2014.

[38] Haoyang Li, Jing Zhang, Cuiping Li, and HongChen. Resdsql: Decoupling schema linking and skeleton

parsing for text-to-sql. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence

(AAAI), 2023.

[39] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu

Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained transformers with graph-aware layers for

text-to-sql parsing. arXiv preprint arXiv:2301.07507, 2023.

[40] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu

Cao, Ruiying Geng, et al. Can llm already serve as a database interface? a big bench for large-scale

database grounded text-to-sqls. arXiv preprint arXiv:2305.03111, 2023.

[41] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,

Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark dataset for

code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

[42] Pingchuan Ma and Shuai Wang. Mt-teql: evaluating and augmenting neural nlidb on real-world lin-

guistic and schema variations. Proceedings of the VLDB Endowment, 15(3):569–582, 2021.

A Mitsopoulou 55



Towards more robust text-to-SQL translation

[43] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2: Lessons

for training llms on programming and natural languages. arXiv preprint arXiv:2305.02309, 2023.

[44] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and

Caiming Xiong. Codegen: An open large language model for code with multi-turn program synthesis.

arXiv preprint arXiv:2203.13474, 2022.

[45] Simone Papicchio, Paolo Papotti, and Luca Cagliero. Qatch: Benchmarking sql-centric tasks with table

representation learning models on your data. Advances in Neural Information Processing Systems, 36,

2024.

[46] Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang Lou. Towards robust-

ness of text-to-sql models against natural and realistic adversarial table perturbation. arXiv preprint

arXiv:2212.09994, 2022.

[47] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and

Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv

preprint arXiv:2201.11227, 2022.

[48] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural language interfaces

to databases. In Proceedings of the 8th international conference on Intelligent user interfaces, pages

149–157, 2003.

[49] Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql

with self-correction. arXiv preprint arXiv:2304.11015, 2023.

[50] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Chenghu Zhou, Xinbing Wang, Quanshi Zhang,

and Zhouhan Lin. Rasat: Integrating relational structures into pretrained seq2seq model for text-to-sql.

arXiv preprint arXiv:2205.06983, 2022.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-

standing by generative pre-training. 2018.

[52] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text trans-

former. J. Mach. Learn. Res., 21(140):1–67, 2020.

[53] John AS Read. Assessing vocabulary. Cambridge university press, 2000.

[54] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for con-

strained auto-regressive decoding from language models. arXiv preprint arXiv:2109.05093, 2021.

[55] Jaydeep Sen, Chuan Lei, Abdul Quamar, FatmaÖzcan, Vasilis Efthymiou, Ayushi Dalmia, Greg Stager,

Ashish Mittal, Diptikalyan Saha, and Karthik Sankaranarayanan. Athena++ natural language querying

for complex nested sql queries. Proceedings of the VLDB Endowment, 13(12):2747–2759, 2020.

[56] Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish Mittal, Manasa Jammi, Chuan Lei,

Diptikalyan Saha, and Karthik Sankaranarayanan. Natural language querying of complex business

intelligence queries. In Proceedings of the 2019 International Conference on Management of Data,

pages 1997–2000, 2019.

A Mitsopoulou 56



Towards more robust text-to-SQL translation

[57] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.

arXiv preprint arXiv:1803.02155, 2018.

[58] Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Cicero Nogueira

dos Santos, and Bing Xiang. Learning contextual representations for semantic parsing with generation-

augmented pre-training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,

pages 13806–13814, 2021.

[59] Alane Laughlin Suhr, Kenton Lee, Ming-Wei Chang, and Pete Shaw. Exploring unexplored general-

ization challenges for cross-database semantic parsing. 2020.

[60] Lappoon R Tang and Raymond Mooney. Automated construction of database interfaces: Intergrating

statistical and relational learning for semantic parsing. In 2000 Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, pages 133–141, 2000.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[62] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:

A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint

arXiv:1804.07461, 2018.

[63] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. Rat-sql:

Relation-aware schema encoding and linking for text-to-sql parsers. arXiv preprint arXiv:1911.04942,

2019.

[64] BailinWang,Wenpeng Yin, Xi Victoria Lin, andCaiming Xiong. Learning to synthesize data for semantic

parsing. arXiv preprint arXiv:2104.05827, 2021.

[65] Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, and Rui Wang. Relational graph attention

network for aspect-based sentiment analysis. arXiv preprint arXiv:2004.12362, 2020.

[66] Ping Wang, Tian Shi, and Chandan K Reddy. Text-to-sql generation for question answering on elec-

tronic medical records. In Proceedings of The Web Conference 2020, pages 350–361, 2020.

[67] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained

encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859,

2021.

[68] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi, Shekar Ramaswamy,

Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen Eger, et al. Dbpal: A fully pluggable nl2sql

training pipeline. In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data, pages 2347–2361, 2020.

[69] Kuan Xuan, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. Sead: End-to-end text-to-sql

generation with schema-aware denoising. arXiv preprint arXiv:2105.07911, 2021.

[70] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query synthesis from

natural language. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–26, 2017.

A Mitsopoulou 57



Towards more robust text-to-SQL translation

[71] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined question-

code dataset from stack overflow. In Proceedings of the 2018 World Wide Web Conference, pages

1693–1703, 2018.

[72] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.

arXiv preprint arXiv:1704.01696, 2017.

[73] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,

Richard Socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for table semantic

parsing. arXiv preprint arXiv:2009.13845, 2020.

[74] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-

ing Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex and cross-

domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

[75] John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive logic pro-

gramming. In Proceedings of the national conference on artificial intelligence, pages 1050–1055, 1996.

[76] Chen Zhao, Yu Su, Adam Pauls, and Emmanouil Antonios Platanios. Bridging the generalization gap in

text-to-sql parsing with schema expansion. In Proceedings of the 60th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 5568–5578, 2022.

[77] Liang Zhao, Hexin Cao, and Yunsong Zhao. Gp: Context-free grammar pre-training for text-to-sql

parsers. arXiv preprint arXiv:2101.09901, 2021.

[78] Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan,

Jun Wang, Chung-Wei Hang, et al. Importance of synthesizing high-quality data for text-to-sql parsing.

arXiv preprint arXiv:2212.08785, 2022.

[79] Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites. arXiv

preprint arXiv:2010.02840, 2020.

[80] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from nat-

ural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

A Mitsopoulou 58


	Contents
	INTRODUCTION
	RELATED WORK
	Code generation with Transformers
	Encoder-only
	Decoder-only
	Encoder-Decoder
	Datasets

	Text to SQL translation
	Pre-training techniques
	Structure utilization
	Tasks decoupling


	TEXT-TO-SQL DATASETS
	Single-domain Datasets
	Cross-domain Datasets
	Perturbed Datasets
	Augmented Datasets

	DATASET ANALYSIS METHODOLOGY
	SQL Queries
	Databases
	Natural Language Questions

	DATASET ANALYSIS RESULTS
	Analysis of the SQL Queries
	Structural variety
	Operator variety
	Operator usage
	Schema usage
	Content usage

	Analysis of the Databases
	Schema complexity
	Schema quality
	Database size

	Analysis of the NL Questions
	Schema linkage
	Lexical complexity
	Syntactic complexity
	Readability

	Summary
	Where do existing datasets fall short?
	What are the best datasets for training?
	What are the best datasets to test the capabilities of a system?


	TEXT-TO-SQL EVALUATION METHODS
	Existing Evaluation Approaches
	Automated Error Analysis
	SQL Categorization
	Our Partial Match
	Discussion


	EXPERIMENTS FOR SYSTEM EVALUATION
	Using Dataset Analysis in System Evaluation
	Models
	Dataset preprocessing
	Metrics
	Results

	Using Error Analysis in System Evaluation

	CONCLUSIONS
	Abbreviations - Acronyms
	References

