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Abstract

Blazars – a subclass of active galaxies – are intrinsically time-variable broadband sources of elec-

tromagnetic radiation. While modeling their time-average spectral energy distribution (SED)

can be informative about the average physical conditions in the blazar radiation zone, the time

domain of blazar models has not been adequately explored. The association of high-energy

neutrinos from active galaxies has sparked the interest in models invoking the presence of rela-

tivistic protons in these sources. In this contribution, we explore relativistic proton (hadronic)

signatures in the time domain blazar emission and search for those parameter combinations

that unveil their presence during flaring epochs.

We investigate the time domain of a broad blazar sample. Utilizing the Gaussian process

modeling method of the celerite2 code, we model the parameters of stochastically-driven

damped simple harmonic oscillators. These parameters enable us to create synthetic light

curves describing the high-energy band of each source, thereby motivating the generation of

time series for key model parameters. In particular, we investigate time variations of the

particle energy injection rate, the magnetic field strength, and power law index variations of

the lepto(-hadronic) particle population.

To conduct this SED model exploration we choose the TeV blazar Mrk 501 as our test case,

as it has been the study ground for extensive investigations during individual flaring events.

Using the code LeHaMoC we compute the electromagnetic radiation for a period of several years

that contains several flares of interest. We search for energy windows where the hadronic

emission may dominate, while discussing time lags and flux-flux correlations between different

energy bands. Finally, we provide light curve predictions of Mrk 501 for the upcoming CTAO

with Gammapy.
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Blazars - υποκατηγορία ενεργών γαλαξιακών πυρήνων - είναι χρονομεταβαλλόμενες πηγές που

εκπέμπουν σε όλο το μήκος του φάσματος. Αν και η μοντελοποίηση της μέσης φασματικής εν-

εργειακής κατανομής (SED) τους είναι χρήσιμη στην εξαγωγή των μέσων φυσικών συνθηκών

εντός της περιοχής εκπομπής, η χρονική εξέλιξη των πηγών αυτών δεν έχει επαρκώς διερευν-

ηθεί. Η συσχέτιση υψηλοενεργειακών νετρίνων από ενεργούς γαλαξιακούς πυρήνες δημιούργησε

το ενδιαφέρον για μοντέλα που περιλαμβάνουν σχετικιστικά πρωτόνια στην θεώρηση τους. Σε

αυτή την μεταπτυχιακή διπλωματική εργασία, διερευνούμε την ύπαρξη σχετικιστικών πρωτονικών

(αδρονικών) σημάτων στην χρονομεταβλητότητα της εκπομπής των blazar και διερευνούμε συν-

διασμούς παραμέτρων που αποκαλύπτουν την ύπαρξη τους σε περιόδους υψηλής ενεργότητας

(Flares). Διερευνούμε τον παραμετρικό χώρο του χρόνου ενός ευρύ δείγματος από blazar. Αξ-

ιοποιώντας την “Gaussian process” μεθόδο του κώδικα celerite2 μοντελοποιούμε τις παραμέτρους

ενός στοχαστικά διεγερμένου αποσβήμενου απλού αρμονικού ταλαντωτή. Αυτές οι παράμετροι

είναι ικανοί να δημιουργήσουν προσομοιώσεις καμπυλών φωτός που περιγράφουν το υψηλοεν-

εργειακό κομμάτι του φάσματος κάθε πηγής. Αυτές οι καμπύλες ύστερα θα αξιοποιηθούν ως

κίνητρο για την δημιουργία χρονοσειρών για σημαντικές φυσικές παραμέτρους της πηγής. Συγ-

κεκριμένα, θα μελετήσουμε χρονομεταβολές στον ρυθμό έγχυσης ενέργειας των σωματιδίων, στην

ισχύ του μαγνητικού πεδίου και στις μεταβολές του δείκτη του νόμου δύναμης του πληθυσμού των

λεπτο(-αδρονικών) σωματιδίων. Για την διεξαγωγή αυτής της SED έρευνας επιλέγουμε τον TeV

blazar Mrk 501 ως ενδεικτική πηγή καθώς έχει αποτελέσει πεδίο μελέτης για λεπτομερές έρε-

υνες αναλύοντας μεμονωμένα flares. Χρησιμοποιώντας τον κώδικα LeHaMoC υπολογίζουμε την

ηλεκτρομαγνητική ακτινοβολία για περίοδο μερικών ετών που εμπεριέχουν flares ενδαφέροντος.

Διερευνούμε την ύπαρξη περιόδων όπου η αδρονική συνεισφορά είναι η κυρίαρχη και συζητάμε

χρονικές υστερήσεις καθώς και συσχετίσεις σε διαγράμματα ροής-ροής μεταξύ διαφορετικών εν-

εργειακών μπαντών. Τέλος, υπολογίζουμε προσομειώσεις καμπυλών φωτός για τον Mrk 501 για

το CTAO με το λογισμικο του Gammapy.
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Chapter 1

Introduction

In this Chapter, we will briefly introduce the reader to active galaxy classifications highlighting

blazars, mentioning their general observational characteristics (Section 1.1) and provide the

motivation of this study (Section.1.2).

1.1 Blazars: A subclass of active galaxies

Figure 1.1: Unification schematic for Active Galactic Nuclei (AGN)[1].

Blazars are a subcategory of Active Galactic Nuclei (AGN). This section will briefly present

the classifications and unified scheme of AGN.

AGN are galaxies that host a central supermassive black hole that is actively accreting
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Chapter 1 1.1 Blazars: A subclass of active galaxies

matter. They feature a hot accretion disk and a corona. They are multi-wavelength emitters

radiating from optical through X-ray. Furthermore, narrow- and broad-line regions are defined

by low- and high-velocity gas regions, respectively. A torus can obscure these regions depending

on the viewing angle. Lastly, they are divided into radio-loud and radio-weak based on the

power of their radio emission. AGN that launch relativistic jets of plasma usually belong to the

radio-loud category According to the paradigm for AGN unification [2], the phenomenology

of AGN can be explained as a result of viewing angles. Various AGN ”types” are depicted

in Fig. 1.1. The upper part of the schematic is dedicated to the radio-loud AGN while the

lower part represents the radio quiet case. We note that for radio-loud systems, the AGN has

2 symmetric jets.

We provide a brief overview of the above classifications:

• Blazars: Blazars are the most extreme of the AGN ”family” and the subject of this

study. Their highly collimated outflows are directly pointed toward Earth and their

emission results in the majority of the extra-galactic gamma-ray emission. They are

divided into Bl Lacs and Flat-Spectrum Radio Quasars (FSRQs). The former have weak

optical emission lines (equivalent width < 5 Å[3]) while the latter feature broad emission

lines. Furthermore, we can classify them as Low-, Intermediate, or High-Synchrotron

Peaked (LSP, ISP, HSP) depending on the peak range of the synchrotron emission as

seen in Fig. 1.2 [4].

Figure 1.2: Differentiation between LSP sources (νsyn
pk < 1014Hz), ISP sources

(1014Hz < νsyn
pk < 1015Hz), and HSP sources (νsyn

pk > 1015Hz) [4].

Margaritis Chatzis 8



Chapter 1 1.1 Blazars: A subclass of active galaxies

• Seyferts: Seyferts are radio-quiet AGN with total luminosities between 1044−1046 erg/s.

They are mostly found within spiral galaxies and can be divided into two types. Seyfert

1 galaxies have broad and narrow absorption lines while Seyfert 2 galaxies only exhibit

narrow line features as illustrated in Fig. 1.3. Furthermore, Seyfert 1 galaxies are more

luminous in the 2-10 keV range than their type 2 counterparts [5],[6].

Figure 1.3: Optical spectrum of (a) Seyfert 1 galaxy NGC3227 and (b) Seyfert 2 Mkn 1157.

The narrow [OIII] emission lines are comparable between the two types but the broad

emission of [Hα] and [Hβ] is missing in the Seyfert 2 case [5].

• Fanaroff and Riley types: Fanaroff and Riley (FR) AGN are radio-loud galaxies di-

vided into two types depending on their total power output. FR-I are less luminous than

FR-II. Furthermore, FR-I have their bright spots close to the center while FR-II are most

luminous at the outermost parts of the lobes as depicted in Fig. 1.4 for RF-I IC4296 on

the left and RF-II 3C175 on the right [7]. Depending on the viewing angle both types are

further classified as Broad- or Narrow-Line Regions (BLRG & NLRG) similar to Seyferts.

However, unlike Seyferts, they are mostly found in elliptical galaxies.

Margaritis Chatzis 9



Chapter 1 1.1 Blazars: A subclass of active galaxies

Figure 1.4: Comparison between RF-I and II radio images. Left: The RF-I IC4296 galaxy is

most luminous close to the center. Right: The RF-II 3C175 is most luminous at the lobe

edges [7].

Lastly, we will summarize the observational tools and properties used in blazar investigations

[8]:

1. Multi-wavelength observations. Blazars and their variability are observed across the

entirety of the multi-wavelength spectrum. These observations will be the foundations of

this study and are:

• Spectral energy distributions (SEDs). Extensive work has been conducted to ob-

serve sources across different energy bands simultaneously. This is supplemented by

theoretical investigations, aiming to model the physical source parameters leading to

the observed SEDs. In this study, we will model the time evolution of these SEDs.

• Intra-day light curves. Blazars exhibit extreme variability reaching timescales on

the order of minutes. This imposes constraints on the emitting region’s size and its

Doppler factor.

• Long-term light curves. Blazars have been observed throughout the multi-wavelength

spectrum over time scales on the order of magnitude of years. These observations

reveal their long-term behavior (e.g. periodic) and uncover correlations between

different energy bands. We will use several long-term light curves throughout this

study.

2. Very-long-baseline interferometry. Blazars can be spatially resolved only at radio

and millimeter waves through interferometry. In interferometry, several radio telescopes

at varying locations on Earth observe the same source forming an interferometer. The an-

gular resolution depends on the observing frequency and the distance between telescopes.

3. Multi-messenger observations. The recent high-energy neutrino detection from blazar

TXS 0506+056 has sparked an interest in hadronic components of blazar SED models.

This constitutes the basis of our motivation and is outlined in the following section.

Margaritis Chatzis 10



Chapter 1 1.2 Motivation

1.2 Motivation

The extragalactic gamma-ray sky is dominated by blazars, a subclass of active galaxies with

jets extending to millions of light years in distance that are closely aligned to our line of sight.

Blazar jets are magnetized outflows of plasma, traveling almost at the speed of light and “shin-

ing” across the electromagnetic spectrum. Their spectral energy distribution (SED) exhibits

variability on different timescales, ranging from minutes to months. Recent studies of blazar

TXS 0506+056, the first astrophysical source to be associated with high-energy neutrinos, have

shown that the emission of accelerated electrons in the jet produces most of the observed pho-

ton flux. Meanwhile, the photon emission arising from the relativistic proton population in the

jet, which is needed to explain the neutrino emission, is sub-dominant. A dedicated study of

blazar variability in the context of this new SED model, known as hybrid leptohadronic, is still

missing, and the goal of this study is to fill this gap.

Using a sample of TeV-detected blazars with dense spectral coverage across the spectrum

we first determine their behavior at gamma-ray energies. We will answer questions such as

“How do we create synthetic time series describing their gamma-ray properties? What kind of

processes do we use? Can the sample be described by the same “family” of models or do we

need models of varying complexity to capture each source’s characteristic behavior? What are

the limitations of our chosen models and how do they impact our subsequent analysis?”.

Having answered the above our aim is to choose one source out of this sample and using

the numerical code, LeHaMoC, first derive baseline parameters by modeling the time-average

source SED. We will investigate which dataset to use to describe the time-average state and

argue for a best-practice scenario in modeling the leptonic and hadronic components.

Utilizing the above results, we turn our attention to specific time variations in singular key

parameters or combinations thereof. We will investigate methods of connecting the aforemen-

tioned synthetic light curves through physical arguments to variations of source parameters.

We will conduct experiments to answer open questions such as “Which parameters should we

vary and in what way? What is the qualitative behavior of a hybrid leptohadronic SED time

variation while varying those parameters? Are hadronic signatures present in those variations

and if so what is their impact?”. And most importantly “What is the proposed benefit of

each time variable model in explaining long-term behavior or short periods of high activity?

Are our models able to capture the behavior of the source?”. To answer the latter, we will

choose specific energy bands and compare flux variability between models and observations.

Furthermore, we will investigate time lags and flux-flux correlations between the proposed en-

ergy bands to determine any hidden or periodic features. Lastly, we plan to use our results to

generate simulated TeV light curves for the next-generation Cherenkov Telescope Array, which

is expected to start operations within the next decade. This serves as another predictive tool

to compare our models to future observations.

Therefore, through this contribution, we will analyze and describe the temporal domain of

a sample of TeV-detected blazars. After selecting and modeling the time-average SED of a

specific source of this sample, we answer some contemporary open questions of the field. We

Margaritis Chatzis 11
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will investigate the behavior of hybrid leptohadronic models in a time-variable scheme and

search for parameters leading to “hadronic flares”, i.e. time periods where the emission from

the hadronic population may dominate in some part of the electromagnetic spectrum. Lastly,

we will provide a series of statistical tools to compare our models’ behavior to the source’s

observational behavior.

Margaritis Chatzis 12



Chapter 2

Theoretical Background

In this chapter, we will introduce several ideas and concepts alongside some mathematical ap-

proximations to describe them. In particular, we will split the chapter into 3 parts. First, we

will shortly describe the effect of bulk relativistic motion on the emission of an astrophysical

source differentiating between our observer’s frame and the source’s rest frame (Section 2.1).

Then, we will focus on a leptonic description of an astrophysical system. In other words, we will

describe the main physical processes that are needed to explain the observed spectra: the elec-

tron synchrotron radiation, synchrotron-self Compton radiation, and the γγ pair absorption of

the resulting spectra (Section 2.2). Lastly, we will describe the processes that have a hadronic

origin. These include the direct contribution to the spectrum via proton synchrotron emission,

photo-pion interactions, and Bethe-Heitler pair productions (Section 2.3). To provide the theo-

retical background necessary for this thesis we follow a multitude of textbooks ([9],[10],[11],[12])

and scientific articles ([13],[14],[15]), as well as references therein. Appropriate references have

been made throughout the text to highlight specific results and methods.

2.1 Doppler Boosting

As our region of interest travels towards us with velocities comparable to the speed of light,

the emitted light is subject to relativistic kinematics and Doppler boosting. What follows is

a brief overview of the transformations of relevant source parameters we will encounter in our

analysis. We adopt the convention that primed parameters are measured in the source’s rest

frame. We define the Doppler factor as [10]:

δ = Γ−1(1 − βcosθ)−1, (2.1)

where Γ is the Lorentz factor of the bulk plasma motion, β = v/c is the bulk velocity over the

speed of light, and θ is the angle between the velocity and our line of sight. Thus, for a general

parameter A we define the Doppler boost as:

A = δnA′

For the energy and frequency, we have a Doppler boost of dε′ = δ−1dε and dν ′ = δ−1dν,

13



Chapter 2 2.2 Leptonic Interactions

respectively. For the time and length variable, a Lorentz transformation yields dt′ = Γ−1dt

and ds′ = Γds respectively. The latter implies a volume and number density transformation of

dV ′ = ΓdV and dn′ = Γ−1dn.

Utilizing the emission coefficient

jν = n
dW

dtdΩdν

and the relation for the solid angle dΩ′ = δ2dΩ we conclude

j′ν′ = δ−2jν .

Defining the differential luminosity of a source at distance D as:

Lν = 4πD2Sν ; Sν =

∫
jνdV/D

2 (2.2)

we infer Lν = δ3L′
ν′ and by extension integrating over frequencies the expression for the total

luminosity reads:

L = δ4L′ (2.3)

For the remainder of this chapter, we will use the above transformations between the observed

and intrinsic frames of reference without explicitly stating them.

2.2 Leptonic Interactions

2.2.1 Synchrotron Radiation - Total Power of Single Particle

Synchrotron radiation is the emission resulting from the relativistic motion of a particle moving

in a magnetic field of strength B. Given the relativistic expression of Newton’s second law, we

have an equation for the particle’s momentum and energy. Assuming a particle charge of q, a

mass of m, and a Lorentz factor of γ, for a Lorentz force of FL = q
c
v ×B we have [9]:

d

dt
(γmv) =

q

c
v ×B

d

dt
(γmc2) = qv · E = 0,

where c is the speed of light and v is the particle’s velocity. The second equation results in a

constant Lorentz factor γ and thus implies a constant velocity magnitude |v|. Decomposing

the velocity into two orthogonal vectors, we obtain from the first equation:

dv∥

dt
= 0,

dv⊥

dt
=

q

γmc
v⊥ ×B.

From the first equation, we conclude that |v⊥| remains constant. The second equation on

the other hand describes uniform circular motion perpendicular to the magnetic field, and by

omitting vector notations, it can be rewritten as:

dv⊥
dt

= ωBv⊥, (2.4)

Margaritis Chatzis 14



Chapter 2 2.2 Leptonic Interactions

Figure 2.1: Helical motion of a particle moving in a magnetic field B [9].

where ωB = qB
γmc

is called the frequency of gyration. Therefore, we have proven that a particle

emitting synchrotron radiation moves with a constant velocity on the axis of the magnetic field.

In contrast, it performs a uniform circular motion on the perpendicular one. The combination

of these two results in a helical motion for the particle as seen in Fig. 2.1. To derive the total

power emitted by a particle, we refer to the relativistic expression of the Larmor formula:

P =
2q2

3c3
(a2⊥ + γ2a2∥),

where, as discussed above, we only have a⊥ given by a⊥ = ωBv⊥. Expressing the perpendicular

velocity as v⊥ = cβ⊥/c , and defining the classical electron radius, r0 = e2

mec2
the synchrotron

electron power is

P =
2

3
r20cβ

2
⊥γ

2B2.

Introducing the pitch angle α, the angle between the velocity and the magnetic field, we average

β⊥ over all angles:

< β2
⊥ >=

β2

4π

∫
sin2αdΩ =

2β2

3
.

Finally, the total electron synchrotron power is:

P =
4

3
σT cβ

2γ2UB, (2.5)

where we also utilized the relation between the classical electron radius r0 and the Thomson

cross section σT = 8πr20/3, and the relation between the magnetic field and field density UB =

B2/8π. From the above, we estimate the synchrotron cooling timescale as:

tcool =
E

−dE
dt

=
E

P
=

6πmec
2

σT cβ2
B−2γ−1. (2.6)

2.2.2 Synchrotron Radiation - Power Spectrum

Although the exact derivation of the power spectrum for a single particle is beyond the scope

of the current discussion, we will provide here a qualitative overview of the results to enhance

Margaritis Chatzis 15



Chapter 2 2.2 Leptonic Interactions

Figure 2.2: Synchrotron radiation spectrum of a single electron shown (Left) with linear axes;

(Right) with logarithmic axes. The function is in terms of x = ω/ωc. Analytic expressions for

ωc and F(x) are given within the text [11].

our comprehension of the observed spectra. The power distribution for a single particle is given

by:

j(x) =

√
3q3Bsinα

2πmc2
F (x) ,

F (x) = x

∫ ∞

x

K5/3(ξ)dξ ,

x = ω/ωc ,

ωc =
3γ2qBsinα

2mc
.

We define a critical frequency ωc depending on the properties of our particle and the magnetic

field strength. F (x), as seen in Fig. 2.2 has a peak at x = 0.29 with a value of almost 1.

As such, ωc is a good approximation for an order of magnitude estimation of the frequency

at which the particle radiates the most. Furthermore, F (x) has two interesting limits for the

asymptotic behavior of x. Namely, a well-defined tail with a slope of 1/3 and a sharp cut-off:

F (x) ∼ x1/3 , x << 1

F (x) ∼ e−xx2 , x >> 1

From the definition of ωc we deduce an approximate relation between emitted photon and

electron energy. Namely, εc = ehB
2πmec

γ2
c or normalizing at the rest mass electron energy:

ϵ = bγ2 ; b = B/Bcr, Bcr =
m2

ec
3

eℏ
. (2.7)
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Chapter 2 2.2 Leptonic Interactions

The above can be generalized for a distribution of particles. The derivation following [11]

is presented below.

Assuming a power law distribution of particles given by:

N(E)dE = KE−pdE , Emin < E < Emax,

the total power distribution is:

JPl(ω) =

∫ ∞

0

j(ω/ωc)N(E)dE.

If

x =
ω

ωc

=
ω

(3/2)(qB/m)γ2sinα
=

2ωm3c4

3E2qBsinα
=

A

E2
,

it follows

E = (A/x)1/2 ; dE = −A1/2x−3/2dx

and

JPl(ω) =
K

2A(p−1)/2

∫ ∞

0

j(x)x(p−1)/2dx.

Finally:

JPl(ω) =

√
3q3KBsinα

2πmc2(p + 1)
Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)(
mcω

3qBsinα

)−(p−1)/2

, (2.8)

where we used

∫ ∞

0

xµF (x)dx =
2µ+1

µ + 2
Γ

(
µ

2
+

7

3

)
Γ

(
µ

2
+

2

3

)
with µ = (p − 3)/2. If we assume that the escape timescale is tesc = R/c we can calculate a

characteristic cooling frequency from Eq. (2.6) by equating tesc = tcool:

νc = δbγ2
c

mec
2

h
; γc =

3melc
2

4σTR0UB

. (2.9)

Assuming a continuous particle injection in the source, our cooled power law distribution steep-

ens by 1 above this frequency, and thus our emission becomes JPl(ν) ∼ ν−p/2.

Throughout the above discussion we assumed an optically thin source, we assumed the

optical depth τ to be smaller than 1. In other words, the radiation passes throughout the

source without significant attenuation. On the other hand, in an optically thick source, τ >

1, the radiation cannot pass through the source without significant attenuation1. When the

synchrotron emission is optically thick to the particle population producing the emission we

are in the synchrotron self-absorption (ssa) regime. We note, without proof, the slope of the

ssa component as JPl(ν) ∼ ν5/2.

1For a detailed analysis of optical depths the interested reader is redirected to [9].
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2.2.3 The δ Function Approximation of the Single-Particle Syn-

chrotron Spectrum

Defining a delta approximation for the synchrotron radiation of a particle distribution is useful

for estimating source parameters motivated by observed features. Following [10] we define a

general photon emissivity (ph cm−3 s−1ϵ−1) of:

ṅsyn(ϵ) = Anel,

where ϵ = ε/mec
2 and nel an arbitrary electron distribution. If we assume the density of 1

electron cm−3, dN
dγdV

= nel(γ) = δ(γ − γ̄) we must recover the energy loss rate of electrons for a

distribution of isotropic pitch angles.

−γ̇syn =

∫
dϵϵṅsyn(ϵ)

=

∫
Aϵδ(γ − γ̄)dϵ

=

∫ ∞

0

Aϵδ

(√
ϵ

b
− γ̄

)
dϵ

=
4

3
σT c

UB

mec2
γ̄2.

(2.10)

But if

x =
ϵ

b
→ ϵ =

√
x
2
b,

then √
x = b−1/2ϵ1/2

⇒ d(
√
x) =

1

2
b−1/2ϵ−1/2dϵ

⇒ dϵ = 2b
√
xd(

√
x).

Thus, ∫ ∞

0

A2b2
√
x
3
δ(
√
x− γ̄) =

4

3
σT c

UB

mec2
γ̄2 ⇒ A =

2

3
σT cUBb

−2γ̄−1.

And finally

ṅsyn(ϵ) =
2

3
σT cUBb

−2ϵ−1/2b−3/2ne(γ). (2.11)

To transform (ph cm−3s−1ϵ−1) to (erg s−1):

ϵLsyn
ϵ = mec

2Vbϵ
2ṅsyn(ϵ) =

2

3
cσTUBγ

3Ne(γ).

And lastly to generalize for observed flux from a source at at a luminosity distance dL and

redshift z [14]:

f syn
ϵ =

δ4

4πd2L
ϵLsyn

ϵ ⇒ f syn
ϵ =

δ4

6πd2L
cσTUBγ

′3N ′
e(γ

′
) ; γ

′
=

√
ϵ(1 + z)

δb
(2.12)
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2.2.4 Energy Minimization

Having derived an expression for the delta approximation for the synchrotron flux we can

derive a value for the magnetic field strength and the injected electron luminosity from an

observational SED. Throughout this analysis, redshift effects will be disregarded. From the

SED:

f syn
ϵ ∼ ϵF syn

ϵ ∼ ϵ−α+1 ; α = (p− 1)/2.

Assuming Nel(γ)dγ = Kγ−pdγ for γmin < γ < γmax and p > 2 we have for the total electron

energy:

Wel = Kmec
2(2 − p)−1

(
εmax

δbmec2

)1−p/2
[

1 −
(
εmin

εmax

)1−p/2
]
. (2.13)

Noting that f syn
ϵ = Fpk

(
ϵ

ϵmax

)−(p−3)/2

, we combine this with Eq. (2.12) and Eq. (2.13) to get:

Wel =
6πd2Lmpc

2Fpk

σT cUcr(p− 2)

[(
εmax

εmin

)p/2−1

− 1

]
δ−7/2

(
mec

2

ε

)1/2

b−3/2 = Aelb
−3/2. (2.14)

For a source of radius R the total energy of the magnetic field is:

WB = UBV =
4π

3
R3Ucrb

2 = ABb
2. (2.15)

The total energy is therefore written as:

WTot = Aelb
−3/2 + ABb

2. (2.16)

And minimizing it for b we have:

∂WTot

∂b
|b=bEM

⇒ bEM =

(
3

4

Ael

AB

)2/7

. (2.17)

Thus:

WB|b=bEM
= A

11/7
B A

−3/7
el . (2.18)

We also have:

uel =
Wel

4π
3
R3

=
Ael

4π
3
R3

b−3/2 ⇒ uel|b=bEM
=

1
4π
3
R3

(
3

4

)−3/7

A
4/7
el A

3/7
B .

And therefore:

Linj
el =

4π

3
R2cuel = R−1Aelb

−3/2 ⇒ Linj
el |b=bEM

= R−1

(
3

4

)−3/7

A
4/7
el A

3/7
B . (2.19)
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2.2.5 Inverse Compton Radiation

Compton radiation is the scattering of photons by electrons. The “Inverse” in the name suggests

an upscattering of low-energy photons on high-energy electrons. If the target photon population

is produced from synchrotron radiation this phenomenon is referred to as Synchrotron-Self

Compton. Although we will not provide a rigorous analysis of the Inverse Compton process,

we will focus on a qualitative understanding of select characteristics of the phenomenon and

discuss useful approximations. Throughout this analysis, we assume a pre- and post-scattering

photon energy of ε and ε1 respectively.

Before discussing particular examples it is noteworthy to emphasize two distinct limits:

• The Thompson limit. This limit occurs when the photon energy in the rest frame of

the electron is much smaller than the rest mass energy of the electron, ε′ ≪ mc2. Here,

the cross-section is a constant given by σT = 6.65 · 10−25cm2. After a scattering event,

the maximum photon energy (in the observer’s frame) is given by εmax
1 = 4γ2ε while the

average energy is < ε1 >= 4/3γ2ε [13].

• The Klein-Nishina limit. When the contrary condition holds, we enter the realm of the

Klein-Nishina limit. This occurs when the energy of the photon in the rest frame of

the electron exceeds the rest mass energy of the electron, ε′ ≥ mc2. The cross-section

takes on a complex form that in the extreme relativistic limit is approximated by σ =
3
8
σT ϵ

−1
(
ln(2)ϵ + 1

2

)
with ϵ = ε/mc2 [9]. The cross-section, and thus the number of events,

rapidly falls off for increasing energies. In this limit, all the energy of the relativistic

electron is transferred to the photon in a single scattering. Thus the photon energy after

the scattering event is ε1 = γmc2. We will not discuss this regime further.

To derive an expression for the energy-loss rate, we approximate:

dE

dt
≈ dN

dt
· (average energy) = cσTnph ·

4

3
γ2ε =

4

3
σT cγ

2Uph,

P =
4

3
σT cγ

2Uph

where we estimated the scattering rate as dN/dt = cnσT and Uph = nph · ε. The scattering

rate is the cross-section of the event times the density of the targets times the speed of light.

It can be shown that, despite being derived through estimations and approximations in this

context, the resulting energy-loss rate can be reproduced by exact calculation in the Thomson

limit.

From an SED of a Synchrotron+SSC scenario, we can compare the two peaks to derive

the ratio between the energy density of the magnetic field, UB, and the energy density of the

photon field produced by the synchrotron emission, Uph:

Psyn

PIC

=
UB

Uph
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For instance, if the peak of the SSC component is one order of magnitude lower than the peak

of the synchrotron component, we infer that the energy density of the photon field must also

be lower by an order of magnitude compared to the energy density of the magnetic field.

Similar to the synchrotron emission, for the SSC flux we have [14]:

fSSC,T
ϵ =

δ4

6πd2L
cσTU

′
synγ

′3
T N

′
e(γ

′
T ) ; γ′

T =

√
ϵ(1 + z)

δb
. (2.20)

We can improve this approximation by combining it with equations for the synchrotron radia-

tion. Therefore, solving Eq. (2.12) for N
′
e(γ

′
) we have:

N ′
e(γ

′) =
6πd2Lf

syn
ϵ

cδ4σTUBγ
′3
. (2.21)

From Eq. (2.11) we get:

n′
syn =

R′
b

c
ṅ′
syn.

Inserting n′
e(γ

′) = N ′
e(γ

′)
V ′
b

into the above:

n′
syn(ϵ′) =

3d2Lf
syn
ϵ

mec3R
′2
b δb

2γ′4
. (2.22)

And thus:

u′
syn(ϵ′) = ϵ′mec

2n′
syn(ϵ′) =

3d2Lf
syn
ϵ

cR
′2
b δb

2γ′4ϵ′
(2.23)

We estimate that the variability timescale tvar must be at least of the order of Rb/c or if

considering the relativistic scenario at redshift z:

tvar =
(1 + z)R′

b

δc
.

Therefore, inserting Eq. (2.21) and Eq. (2.23) into Eq. (2.20) we have the result of [14]:

fSSC,T
ϵs =

24π

c3
(1 + z)2d2Lf

syn
ϵ (ϵpksyn)f syn

ϵ (ϵsyn)

(tvarBδ3)2
; ϵsyn

δbϵs

ϵpksyn(1 + z)
, (2.24)

where ϵsyn can be understood as the energy of the target photons.

2.2.6 Photon-Photon Absorption

A scattering event of 2 photons can result in their annihilation and the creation of an electron-

positron pair, which is called pair production. As positrons radiate the same as electrons we

consider them the same population. To create such a pair, an energy threshold must be met

[12]:

εε1(1 − cosθ) ≥ 2(mec
2)2, (2.25)

where ε and ε1 are the energies of the colliding photons, and theta is the angle between them.

Therefore, if we are interested in photons of energy ε1, we can calculate the minimum energy

of the target photons for pair production as:

ε = 2(mec
2)2/ε1.
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Combined with a cross-section σγγ sharply peaked around the threshold energy (Figure. 2.3),

we can estimate that most of the events will happen around this threshold energy.

Figure 2.3: Cross section of γγ absorption. Function normalized at σT and in terms of

colliding photon energies and their collision angle [12].

We define the optical depth for photons of energy ϵ = ε1/mec
2 in a source of radius R as

[14],[16],[17]:

τγγ = R′
∫ 1

−1

dµ′(1 − µ′)

∫ ∞

2/ϵ′(1−µ)

dϵ′σγγ[ϵ′, ϵ′1(1 − µ′)]n′(ϵ′, µ′), (2.26)

where µ = cosθ and n′(ϵ′, µ′) is the number density of the target photon field. If this field is

isotropic (in the comoving frame) we can simplify it as n′
iso(ϵ

′) = n′(ϵ′, µ′)/2 and thus:

τγγ = R′
∫ ∞

0

dϵ′σγγ(ϵ′, ϵ′1)n
′
iso(ϵ

′) (2.27)

Since in our analysis, we are interested in modeling the internal γγ absorption on a photon

field produced by the δ approximation of synchrotron radiation, we can use Eq. (2.22) and a

cross-section of [18]:

σγγ(ϵ′, ϵ′1) ≈
1

3
σT ϵ

′δ(ϵ′ − 2

ϵ′1
).

The resulting optical depth for photons of energy ϵ1 is thus given by

τγγ(ϵ1) ≈
(1 + z)2σTd

2
L

2mec4tvarδ6
ϵ1f

syn
ϵ̄ ; ϵ̄ =

2δ2

(1 + z)2ϵ1
(2.28)
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Requiring the observed source to be optically thin (τγγ < 1) to gamma rays of energy ϵ1, we

define a lower limit for the Doppler factor [14],[19]:

δ >

[
2a−1(1 + z)2−2aσTd

2
L

mec4tvar
ϵ1f

syn

ϵ−1
1

]1/(6−2a)

, (2.29)

where we assumed a power law of fϵ ∼ ϵa for the synchrotron flux.

2.3 Hadronic Interactions

2.3.1 Proton Synchrotron

Protons are charged particles that radiate due to the synchrotron process outlined in the pre-

vious section. They have the same (but opposite) charge to electrons and a different mass.

The difference in the sign of the charge does not change our result, it only reverses the circular

component of the helical motion compared to the electrons. However, the different masses will

lead to the following correction:

P syn
p = (

me

mp

)2P syn
e = µ2P syn

e .

Considering how µ = me/mp = 1/1836, it is significantly harder to observe synchrotron

radiation due to a proton component. As an extension of the above, we also have:

tcoolp = µtcoole .

Generally, the difference to our electron synchrotron results will be the substitutions: me →
me/µ.

2.3.2 Photohadronic interactions

Photohadronic interactions of astrophysical interest can be classified into 2 categories.

1) Photopion production (pπ)

Photopion production can manifest in one of two versions. We can either produce a neutral

pion which then will decay into 2 gamma ray photons:

p + γ → π0 + p

π0 → γ + γ

or we can have a charged pion which will lead to the production of 1 electron and 3 neutrinos:

p + γ → π± + n(∆++)

π± → µ± + νµ(ν̄µ)
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Figure 2.4: Photo-pion cross-section. Individual components and two-step-function

approximation are noted. Inelasticities are mentioned in each region [10].

µ± → e± + ν̄µ(νµ) + νe(ν̄e).

The cross-section of this event can be found in Fig. 2.4 but a complete treatment of the

different components is beyond the scope of this analysis. We refer the interested reader to [10]

for a more thorough investigation. We, on the other hand, will assume the two-step-function

approximations also depicted in Fig. 2.4. The transition from the former to the latter occurs at

a photon energy, in the rest frame of the photon, of 500 MeV. Similarly, we assume a two-region

approximation to the inelasticity of the process, the energy transfer ratio from the proton to the

pion. As depicted in the figure, in the first region, named single-pion channel, we have a mean

inelasticity of Kpγ = 0.2, while in the second, named multi-pion channel, we have Kpγ = 0.6

which becomes 0.2 for each pion population (π±, π0).

To approximate the energies at which the electrons are injected we first define the proton

energy threshold of this process [15]:

γth
p = xth/xsyn.

Here, xsyn is the dimensionless threshold energy xth = mπc
2/mec

2 with mπc
2 = 145MeV . xsyn

is the dimensionless energy of the target synchrotron photons given by:

xsyn =
hνsyn(1 + z)

δ
; νsyn = 3 · 106δBγ2. (2.30)

Therefore, for a typical synchrotron peak frequency of νpk
syn = 1018Hz:

γth
p,pγ = 3.5 · 104(1 + z)−1δν−1

18 (2.31)
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Figure 2.5: Mean cross-section, inelasticity, and their product for the Bethe-Heitler process.

Functions are in terms of the proton Lorentz factor and the dimensionless photon energy

x = ϵph/mec
2 [20].

and to translate this into secondary electrons [15]:

γth
e,pg = Kpγγ

th
p,pγmp/(4me). (2.32)

Thus, we have a proxy for the energies of the secondaries and their resulting synchrotron emis-

sion.

2) Bethe-Heitler pair production (pe)

In the Bethe-Heitler process, a relativistic moving proton can scatter a photon producing an

electron-positron pair. This results in secondary electron injection at energies different from

the primary population. To describe the proton energy loss rate of such an event, it is beneficial

to consider the cross-section of the event, as well as the cross-section multiplied by the mean

inelasticity. This can be seen in terms of the proton Lorentz factor γ and the dimensionless

photon energy x = ϵph/mec
2 in Figure 2.5.

To approximate the energy at which the electrons are injected the proton threshold energy

reads [15]:

γth
p,BH = 1.2 · 102(1 + z)−1δν−1

18 (2.33)

Noting how the Bethe-Heitler process yields γp ∼ γe, we have a proxy for the energies of the

secondaries and their resulting synchrotron emission.
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Celerite - Generation of Time Series

Our goal is to study the time variability of blazars. To that end, we need 3 key components,

the average state of the source, a time series after which to vary our parameters, and the

relation between time series and parameters. Here, we will conduct a time series analysis for

a broad sample of blazars before selecting and modeling a specific source throughout the next

chapters. We will be using Gaussian process modeling via the software celerite21 ([21],[22])

(Introduced in Section 3.1) to derive the statistical properties of the long-term Fermi-LAT

Light Curves2 (LCs) ([23]) of each source (Section 3.2) while illustrating the limitations of the

method (Section. 3.3).

3.1 Gaussian Processes and Celerite

3.1.1 Introduction

To understand the modeling process we first examine the characteristics of a Gaussian distri-

bution. Therefore, for a single variable x, we can define the univariate Gaussian (or normal)

distribution as the function:

p(x;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
,

where µ is the mean and σ the standard distribution, while the normalization term of 1√
2πσ

ensures
∫∞
−∞ p(x;µ, σ2)dx = 1.

Generalizing for a vector of coordinates X = (x1 . . . xn)T of dimension N we write the

multivariate Gaussian distribution as

p(x;µ,Kα) =
1

(2π)N/2|Kα|1/2
exp

(
−1

2
rθ

TK−1
α rθ

)
,

with

rθ = (x1 − µθ . . . xn − µθ) .

1https://celerite2.readthedocs.io/en/latest/
2https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/
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Chapter 3 3.1 Gaussian Processes and Celerite

Here, µθ is the mean function parametrized by the parameter θ. Kα is the covariance ma-

trix parametrized by α, with elements the covariance or “kernel” functions kα, such that

[Kα]nm = kα(xn, xm). The covariance of 2 variables is defined through the expectation E[X] =∑N
xn

xip(xn;µ, σ2) of a discrete random variable as follows:

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ].

To estimate the best choices for θ and α given a data set of Y = (y1 . . . yn)T we calculate

the log-likelihood of the previous equation which gives the conditional probability that Y is

realized given X, θ, and α:

lnL(θ, α) = ln p(y|X, θ, α) = −1

2
rTθ K

−1
α rθ −

1

2
ln(detKα) − N

2
ln(2π). (3.1)

The celerite process reduces the computational cost of the above log-likelihood maximization

by considering only a specific set of acceptable kernel functions. Namely, the input parameters

xn need to be a one-dimensional data set, in our case time, while the kernel themselves need

to be stationary, i.e. kα(tn, tm) is only a function of τ = |tn − tm|. The simplest form a celerite

kernel can take is3:

kα(τnm) = σ2
nδnm + ae−cτnm ,

where σ2
n are the measurement uncertainties and α is a function of a, c. The generalization of

the above is:

kα(τnm) = σ2
nδnm +

J∑
j=1

[
1

2
(aj + ibj)e

−(cj+idj)τnm +
1

2
(aj − ibj)e

−(cj−idj)τnm

]
,

with a Power Spectral Density (PSD) of

S(ω) =
J∑

j=1

√
2

π

(ajcj + bjdj)(c
2
j + d2j) + (ajcj − bjdj)ω

2

ω4 + 2(c2j − d2j)ω
2 + (c2j + d2j)

2
.

This general mathematical formulation is given astrophysical meaning through the correct

choice of coefficients. The choice made by the celerite2 authors is presented in the next

section.

3.1.2 Stochastically-Driven Damped Simple Harmonic Oscillator (SHO)

Celerite2 provides the model of a stochastically-driven damped simple harmonic oscillator

(SHO) as a fundamental framework for the analysis. Any time series analysis will use a com-

bination or singular SHO described by the differential equation:[
d2

dt2
+

ω2
0

Q

d

dt
+ ω2

0

]
y(t) = ϵ(t), (3.2)

3Expression similar to a Damped Random Walk (DRW) model, but not all values of a and c are permitted.

Celerite2 discourages the use of these kernels and redirects the user to the SHOs of Section 3.1.2.
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where ω0 is the undamped oscillator frequency and Q is a dampening factor regulating the

strength of the oscillation. If ϵ(t) is a white noise term the PSD simplifies to:

S(ω) =

√
2

π

S0ω
4
0

(ω2 − ω2
0)2 + ω2ω2

0/Q
2
, (3.3)

with S0 a proportionality constant at ω0, S(ω0) =
√

2/πS0Q
2.

Although celerite2 has been developed having in mind asteroseismic oscillations, the SHO

framework can be applied to describe stochastic time series with hidden quasi-periodicities.

Extensive work has been done to model blazars and more generally AGNs with SHOs through

celerite2 or other Gaussian fitting methods ([24],[25],[26],[27],[28]). This is achieved by the

SHO’s ability to describe the stochastic nature of a source and determine any hidden periodic

variation based on its dampening factor, Q. For values of Q > 1/2 the system is described

by a damped oscillation, while for Q < 1/2 it is described by a random walk. Both cases are

described by Eq. (3.3), while Q = 1/2 is a limiting case that cannot be directly evaluated by

celerite and corresponds to a critically damped oscillator. As such, it won’t be further discussed.

The kernel for the 2 regimes of interest are:

kSHO(τ ; , S0, Q, ω0) = S0ω0Qe−
ω0τ
2Q

cosh(ηω0τ) + 1
2ηQ

sinh(ηωτ) 0 < Q < 1/2

cos(ηω0τ) + 1
2ηQ

sin(ηωτ) 1/2 < Q
, (3.4)

where

η =
∣∣1 − (4Q2)−1

∣∣1/2.
To better illustrate the impact of each of the 3 parameters (S0, Q, ω0) on the power spectrum,

a short investigation of the parameter space for both cases follows. As we are interested

in qualitative changes, the base parameter values of each scenario have been chosen without

any theoretical motivation for any specific problem but rather are those that best illustrate

their impact. Moreover, in the qualitative examples, the parameter and Power unit values are

unimportant and therefore disregarded.

In Fig 3.1 we present the case of Q > 1/2, i.e. an oscillation with base parameters of

Q = 10, S0 = 1, and ω0 = 1 rad/day. In the left panel, we can see how greater damping factor

Q values lead to higher-quality oscillations. In the limit of Q ≫ 1 an undamped oscillation can

approximate the SHO. This can be mathematically understood through Eq. (3.4) taking the

limit of Q → ∞ and thus η → 1. In the middle panel, the linear impact of the normalization

factor S0 is depicted as predicted by Eq. (3.3). Lastly, the right panel illustrates how a change

in the undamped oscillator frequency shifts the PSD on the horizontal axis. Colored vertical

guides are noted at frequencies of ω0/2π which corresponds to the sharp peaks.
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Figure 3.1: Impact of parameter changes in the oscillation scenario. Vertical lines at ω0/2π.

Figure 3.2: Impact of parameter changes in the random walk scenario. Vertical lines at νbr.

In contrast to the above, Fig 3.2 explores the scenario of Q < 1/2, where randomness is the

driving force behind the PSD. The immediate difference, the absence of a sharp rise, and the

slope’s meaning will be explained shortly after this parameter investigation. Here, the baseline

parameters need to change due to the inherent difference in the physical interpretation of the

PSD. Now we have Q = 0.1, S0 = 10, ω0 = 100 rad/day. Again, the middle panel shows how

S0 plays the role of the normalization factor while the impact of Q, and ω0, as seen in the left

and right panels, is limited to shifting the break frequency on the horizontal axis. Because

η has now become important, the break frequency, noted again by colored vertical guides for

each case on the right panel, is not the same as the peak frequency of ω0/2π as it was in the
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oscillation case. Without proof, we note that in this scenario, the break frequency is given by

νbr = ω0/2π
2Q

[1 −
√

1 − 4Q2].

In other words, S0, always plays the role of the normalization, Q either dampens an oscilla-

tion or shifts the break frequency of noise, and ω0 is the undamped oscillator frequency which

can be seen either directly in the PSD via a sharp peak, or shifted by a factor of 1
2Q

[1−
√

1 − 4Q2]

and displayed by a break in the power spectrum.

The slopes of random processes are of particular interest as they carry physical meaning.

In particular, in our above example for Q < 1/2, we can see a slope of S(ν) ∼ ν0 for low

frequencies and a slope of about S(ν) ∼ ν−2 for higher ones. These are known as white and

red noise respectively which we will discuss now alongside a third scenario, pink noise, as it is

of astrophysical interest [29],[30]:

• “White” noise or S(ν) ∼ ν0. White noise is named after the fact that it carries equal parts

power in each frequency similar to white light which has approximately equal power at

all photon frequencies, has a constant value along the PSD. Examples of white noise are

found in photon noise, quantization noise, and events that stem from discrete quantized

instantaneous events. In our case, the presence of a white noise component in the PSD

is anticipated, as we assume our stochastic driving force to be white noise.

• “Red” noise or S(ν) ∼ 1/ν2, also known as “Random walk” or “Brownian motion”. We

have red noise when the process in question undergoes a random walk. Random walks are

a subset of Markov processes, which are agnostic to past behavior. In a Markov process,

each step is dependent only on its current state multiplied by its probability. If all step

transitions are equally likely, a random walk occurs. An example is the study of diffusion

as the macroscopic result of the microscopic Brownian motion of particles. In our case,

we see red noise in the higher frequency part of the spectrum. This combination of white

and red noise has been previously observed in the study of the time variability of blazars

with an empirical break frequency of around 150 days for OJ 287 [31], 25 days for 3C 66A

[32], and 43 days for PKS2155-304 [32]. However, to the best of the authors’ knowledge,

no complete theoretical model has been proposed to explain those findings.

• “Pink” noise or S(ν) ∼ 1/ν, also known as “flicker” noise. It carries equal amounts of

power in every octave of frequency. Flicker noise can be found in many electronic devices

as well as in physical systems (the flow rates of rivers, sunspot numbers). Although

not represented in the examples of the SHO parameters above, flicker noise is found in

the long-term low-level VHE PSD of TeV blazar PKS 2155-304 on timescales of ≥ 1 d

[33],[34]. As such, we include it alongside the other 2 previously mentioned colors.

3.2 Time Series Analysis of Source Sample

In Fig. 3.3 a sample of BL Lacs and FSRQs sources is presented. As discussed in Section 1.2,

we will analyze all TeV BL Lacs, as well as the TeV FSRQ 3C 279 to contrast our results
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Figure 3.3: Redshift and γ-ray brightness distribution of blazars listed in the table.
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between blazar classifications. This section will use the previously described celerite process

and light curves in the Fermi energy band of 0.1-100 GeV taken from the Fermi LCR4 [23] to

model their statistical properties and study their PSDs.

We will use the 7-day-binning provided by the LCR, ignore upper limits, and use the log

values of the energy flux. Our approach to the problem will utilize the simplest model with

the lowest complexity: a single SHO. Generally, we will follow the method outlined in the

celerite2 documentation and the scientific literature [21],[24]. Namely, we run the L-BFGS-B

optimization routine at random starting points to get initial parameter guesses for our model.

Then, through a Markov Chain Monte Carlo (MCMC) fit via the module emcee [35], we derive

our parameters for each data set. Utilizing 32 walkers, we deploy an initial 2000-step run that

we consider a burn-in period and follow up with a 5000-step run to derive the final estimations.

Our tests have concluded that this step and walker size is sufficient to converge on our final

solutions. As we are considering the fixed model of a singular SHO we do not calculate the

corrected Akaike information criterion (AICc).

To assess the accuracy of our resulting celerite parameters, we employ several statistical

tests. We first calculate our fit’s standardized residuals, which can be considered white noise.

To do so, we connect the celerite process to moving averages by noting:

y∗ = chol(Kα)Tw.

Here, w are our standardized residuals, y∗ are our zero-meaned data points, and chol(Kα) is

the upper triangular Cholesky factorization of our best-fit covariance matrix Kα that has been

introduced at the beginning of this chapter. Then we:

• Fit a normal distribution to the resulting histogram of the residuals via the χ2 method.

The desired result should yield a Gaussian with mean µ = 0 and standard deviation

σ = 1. The χ2 value of a good fit is 1. Deviations towards higher values represent a poor

fit while lower values indicate overfitting.

• Calculate the deviation of our results from a normal distribution via the Kolmogorov-

Smirnov (KS) test. The null-hypothesis in this test is that the results do not originate

from the same distribution. This is quantified by p-values, which describe the likelihood

of an event. Values smaller than 0.05 imply that the null-hypothesis is true only 5% of the

time. Therefore, p values greater than p > 0.05 confirm the hypothesis that our residuals

stem from a normal distribution.

• Show how the residuals’ Autocorrelation Function (ACF) lays mostly within the 95%

confidence limits of white noise given by 1.96√
N

, where N = number of data points.

Furthermore, we compute the PSDs of the MCMC process alongside their respective slopes

calculated for frequencies above the break frequency which we derived previously in this chapter.

In Fig 3.4 through Fig 3.11 we present the above results for the TeV BL Lac of Fig 3.3 as well as

4https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/
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Table 3.1: Celerite parameters for select sample sources of Fig 3.3. µ is in units of

log(Flux(0.1-100) GeV cm−2s−1) and ω0 is in units of rad/day.

Source Name µ [log(Flux)] ln(S0) ln(Q) ln(ω0[rad days−1])

Mrk 501 −4.12+0.03
−0.03 0.58+0.47

−0.39 −3.20+0.83
−1.08 −1.40+1.06

−0.83

Mrk 421 −3.64+0.02
−0.02 0.03+0.28

−0.24 −3.16+0.70
−0.97 −0.56+0.98

−0.69

PKS 2155-304 −3.94+0.03
−0.03 0.69+0.35

−0.30 −3.21+0.74
−0.97 −0.87+0.97

−0.72

S40954+65 −4.49+0.04
−0.04 1.29+0.27

−0.24 −3.06+0.70
−0.96 −0.34+0.94

−0.69

PG 1553+113 −3.89+0.03
−0.03 0.79+0.56

−0.44 −3.09+0.91
−1.18 −1.91+1.17

−0.91

BL Lacartae −3.82+0.05
−0.05 2.01+0.31

−0.27 −3.63+0.66
−0.89 −0.39+0.88

−0.66

3C 66A −4.17+0.04
−0.04 1.47+0.42

−0.36 −3.67+0.72
−0.96 −0.87+0.96

−0.71

3C 279 −3.86+0.06
−0.06 2.33+0.33

−0.28 −3.47+0.69
−0.96 −0.67+0.95

−0.67

Table 3.2: Statistical tests of goodness of fit and characteristic values of the PSD. The mean,

standard deviation, and χ2 value of the Gaussian fit on the standardized residuals, as well as

the p-value of the KS test constitute the statistical test result. The slope of the PSD above

the break frequency and the break frequency in days describe the blazar PSDs.

Source Name µ (10−2) σ χ2 KS p-value PSD slope p tbr[days]

Mrk501 2.95 0.98 0.96 0.2 1.899+0.019
−0.029 619.9+11.9

−9.4

Mrk421 1.32 1.06 1.13 0.28 1.8429+0.0028
−0.0028 258.4+5.1

−1.1

PKS 2155-304 1.55 1.05 1.1 0.22 2.8672+0.0040
−0.0029 371.55+8.1

−0.92

S40954+65 -2.29 0.99 0.99 0.15 1.8208+0.0040
−0.0029 188.1+4.0

−3.6

PG 1553+113 2.44 0.96 0.93 0.14 1.932+0.021
−0.066 935.4+8.7

−5.1

BL Lacartae 2.08 1.05 1.11 0.68 1.8634+0.0083
−0.0096 349.0+2.7

−4.2

3C 66A 1.38 0.98 0.96 0.15 1.885448+0.000012
−0.00086 584.0+5.3

−1.2

3C 279 0.0357 1.02 1.05 0.3 1.867+0.011
−0.011 391.0+8.3

−3.9
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the TeV FSRQ 3C 279. In Table 3.1 we list the derived celerite parameters of each fit while in

Table 3.2 we note the results of the statistical tests alongside the slopes of the PSDs. Although

the remainder of this work will focus on the variability study of a specific source, the resulting

SHO parameters can be utilized in future studies investigating the time domain of TeV blazars.

Figure 3.4: Summary of time series analysis for Mrk 501.

Figure 3.5: Summary of time series analysis for Mrk 421.

Figure 3.6: Summary of time series analysis for PKS 2155-304.
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Figure 3.7: Summary of time series analysis for S40954+65.

Figure 3.8: Summary of time series analysis for PG 1553+113.

Figure 3.9: Summary of time series analysis for BL Lac.
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Figure 3.10: Summary of time series analysis for 3C 66A.

Figure 3.11: Summary of time series analysis for 3C 279.

3.3 Celerite Limitations

At this point, it is imperative to note 2 major limitations of our method that have to be

considered while interpreting our results.

3.3.1 Extreme short-lived Flares

Figure 3.12: PKS2155-304 flare during the night of MJD 53946. The red and blue points are

at the maximum and low-state flux levels for the CHANDRA and H.E.S.S. data. Solid lines

represent modeled SEDs for each state [36].
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The resulting fits as well as the simulated LCs derived from the fit parameters are unable to

capture extreme flares on short timescales (i.e. comparable to the binning). To understand the

importance of this we present the extreme flare of PKS 2155-304 in the VHE range during the

night of MJD 53946 [36]. As seen in Fig. 3.12 the VHE flux increases for almost 1 order of

magnitude within less than a day. Events like these cannot be captured nor predicted by our

process. We emphasize that although we use the Fermi LAT and not the VHE or CHANDRA

range for our analysis, the derived SHO parameters are unable to simulate extreme short-lived

flares across the multiwavelength spectrum.

3.3.2 Hidden Periodicity

PG 1553+113 is a source with a detected periodicity of 2.18 years with an above 99% confidence

level [37], or around 800 days with a local 95% confidence level [24]. Signs of periodicity can

be inferred also by visual inspection of the Fermi LC of the source. However, in our analysis,

we do not find any signs of periodic variability. To understand why this periodic behavior is

not recovered by our analysis, we examine the impact of white noise on a signal. As such, we

conduct the following experiment. We take the linear values of the observed LC and scale them

by a factor of 105 so that our data range is approximately from 0 to 40. We construct a signal

S, for the same time values as our data of PG 1553+113, given by

S = S0ω0Qexp

(
−ω0t

2Q

)
cos(ω0t) + 12.

This is the expression of a high-quality oscillation given by Eq. (3.4) for η = 1 and Q ≫ 1 with

an added constant to scale our simulated signal to the observations. We add to the above signal

white noise N , i.e. a random vector (with a random number seed of 42) of values between -1

and 1, multiplied by a constant a. Thus, our final simulated data set is y = S + aN , using

the mean error of the PG 1553+113 flux for the error values. First, we investigate baseline

parameters for a = 0 such that the amplitude and period approximate the flux deviations and

period of the observations. Thus, the parameters used are S0 = 2, Q = 200, and ω0 = 2π/800

rad/day. We slowly increase a until the celerite process does not produce a clear peak in the

PSD. This we achieve starting at a = 8.25 as seen in the PSD shown in Fig 3.14. To illustrate

the impact of a on the simulated LC we provide 3 examples for a = 0, 4, 8.25 in Fig. 3.13.

The PSD for a = 8.25, although not describing any physical process on its own, is the

superposition between a stochastic and a periodic process. In other words, the walkers of the

MCMC process are split between the two regimes. Similar to previous PSDs we show with

a vertical line the characteristic frequency ω0. Calculating the power of each component as

P = 1
N

∑N
i S2

i and deriving the Signal-to-Noise Ratio (SNR) for a = 8.25 we get a value of

SNR = 6.37, comparable to the SNR = 5.96, calculated as SNR = µ2

σ2 , of our blazar data.
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Figure 3.13: Impact of a on the linear scaling LC discussed in the text. Examples for a = 0

(upper panel), a = 4 (middle panel), and a = 8.25 (lower panel) are shown. The errors of the

simulated flux points are the mean error of the observational flux of PG 1553+113.

Figure 3.14: PSD for y = S + 8.25N with linear scaling.
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We repeat the above experiment taking the log values of our data with a scaling constant

of -4:

S = S0ω0Qexp

(
−ω0t

2Q

)
cos(ω0t) − 4.

This time, to approximate our data when a = 0 we need to take S0 = 0.2, Q = 200, and ω0 =

2π/800 rad/day. As expected from our earlier parameter explanation a different scaling only

changes the value of S0. Now, the first deviation from a periodic process occurs at a = 0.148 as

seen in the PSD in Fig. 3.15. Calculating again the SNR however does not result in comparable

values. We have a value of SNR = 2100 for our simulated data while the observational data

has a value of SNR = 880. Therefore, no direct correlation between the two SNR values can

be established. To address this issue, one could investigate the feasibility of more complex

celerite models. Combinations of SHOs could lead to descriptions of the dominant stochastic

behavior without losing the underlying periodicity. Furthermore, for solely deriving periodic

signals, specialized tools, such as the Lomb-Scargle periodogram [37] can be used. However,

such an analysis exceeds the scope of our analysis and won’t be further discussed. For a

detailed discussion on alternative methods of ”uncovering” periodicities, the interested reader

is redirected to [37].

Figure 3.15: PSD for y = S + 8.25N with logarithmic scaling.
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Computation of Time-Average SED

This chapter is dedicated to deriving the average-state parameters of Mrk 501 that will serve

as a baseline for the variations discussed in Chapter 5. Mrk 501 is a high-synchrotron peaked

(HSP) blazar at a luminosity distance of dL = 149.4 Mpc that corresponds to a redshift of

z = 0.034 [38],[39],[40]. Due to its proximity and time variability, it has been the focus of

numerous observational campaigns. Its well-defined flaring events in the VHE energy range

allow for precise distinctions in modeling its low- and high-activity. Furthermore, Mrk 501

features different flux variability across the multi-wavelength spectrum and exhibits spectral

shape changes between quiescent and high-activity phases.

In Section 4.1 we present and prepare our data set. In Section 4.2.1 we will first discuss the

used numerical code. In Section 4.2.2 a description of the derivation of the average leptonic

source parameters follows. Lastly, we establish the parameters of the proton population.

4.1 Building the average observational SED

For our analysis, we use all the archival data available to us, accessed from the SED Builder

website1 presented in Fig. 4.1.

4.1.1 General

Our first step in constructing an SED that is representative of the time average state of the

source consists in removing the outliers and the flaring states. The former consists of removing

the cyan points at log(ν[Hz]) = 10 and the points below log(νFν [erg/s/cm2])= −13 and above

log(νFν [erg/s/cm2])= −9 in the 14 < log(νFν [erg/s/cm2])< 16 range. To do the latter, in the

VHE range we remove the flare that occurred during October 2011 and the flares of 1997, while

in the X-ray range, we remove the extreme flare of 1997-04-16 [41],[42],[43],[44],[45]. Dividing

the SED into regions of interest as well we have Fig. 4.2, where the black vertical lines separate

the low-energy region (radio+IR), from the optical, X-ray, and (Very-)High-Energy [(V)HE]

1https://tools.ssdc.asi.it/SED/
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Figure 4.1: Archival data of blazar Mrk 501 accessed from SED Builder.

region.

Figure 4.2: Segmented archival data without flares and outliers.

4.1.2 Radio/IR/Optical data

Our second step is to remove the optical bulge of the host galaxy. One way of removing the

bulge is to use SED templates of elliptical galaxies that are fitted to the data and then removed.

We opted for a model-independent way of removing the bulge. We isolated the the low-energy

+ optical region and fit a 3rd-degree polynomial to the data outside of the bounds of the bulge

assuming a a continuous emission (e.g. arising from synchrotron emission along the jet):

poly(ε) = aε3 + bε2 + cε + d (4.1)
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Figure 4.3: Low-energy data fit for the data region defined in the text.

Table 4.1: MCMC parameters for equation 4.1 alongside an uniform error added to the data,

σ2 = σ2
data + f 2

α[erg/s/cm2/erg3] b[erg/s/cm2/erg2] c[erg/s/cm2/erg] d [erg/s/cm2] log(f)

−0.002+0.001
−0.001 −0.084+0.008

−0.008 0.195+0.014
−0.014 −10.668+0.015

−0.015 −4.558+0.034
−0.033

We exclude all data within 2 · 10−1 eV< ε < 4eV and any data with a flux above νFν =

3·10−11 erg/s/cm2. These bounds were manually chosen to approximate the region of the optical

bulge. We have found this precision to be sufficient for our study. Utilizing the Levenberg-

Marquardt algorithm for a non-linear least squares fit we derive the initial guesses for the

Markov Chain Monte Carlo (MCMC) sampler emcee [35]. The sampler is running on 500

parallel walkers, a step size of 2000 with a burn-in phase of 300, and a Gaussian likelihood

function. The parameters are summarized in Table 4.1 whereas the SED results are presented

in Fig 4.3 alongside the initial parameter guess showcasing how the least-squares estimation

is a robust approximation. For the final data selection outside the range used in the fit, we

calculate the mean value of the squared residuals and compare it to the individual residual

value. We only include the data point if its flux is smaller than the mean. The resulting

low-energy+optical region is shown in Fig. 4.4.

4.1.3 X-ray data and above

We supplement our archival data from SED Builder with long-term observations from the X-ray

Telescope (XRT, 0.2 − 10 keV) and Burst Alert Telescope (BAT, 14 − 195 keV) on board the

Neil Gehrels Swift Observatory. In particular, we use the Swift-BAT 157-Month Hard X-ray
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Figure 4.4: Final low-energy region data set.

Figure 4.5: XRT light curve (0.3-10 keV). Blue and orange markers indicate Window Timing

(WT) and Photon Count (PC) data. Dashed lines indicate the 3 epochs defined in the text.
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Figure 4.6: XRT and BAT energy flux spectra (colored markers) alongside archival X-ray

data (grey markers). The 3 epochs of XRT between T < 55500 MJD, 55500

MJD< T < 58000 MJD, and T > 58000 MJD are shown.

Survey Catalogue2 and XRT data from The Neil Gehrels Swift Observatory3. Due to the large

volume of the XRT data we are unable to request the entire dataset simultaneously from the

XRT database. We divided the Light Curve (Fig. 4.5) into 3 segments, T < 55500 MJD,

55500 MJD< T < 58000 MJD, and T > 58000 MJD. The first region exhibits low activity

while the latter 2 capture the rise and decay of a high-activity period. We also use only the

Windowed Timing mode (WT) data and not the Photon Counting mode (PC) as the former

has a 1.8 milli-second time resolution. In contrast, the latter is saturated, as seen in Fig. 4.5, as

it only has a resolution of 2.5 seconds. For each region, we build the spectrum using the online

tools in https://www.swift.ac.uk/user_objects/ and fit an unabsorbed power law to the

data resulting in 15 energy flux data points for each epoch. The mean and standard deviation

of the epochs will be included in our data set as the representative XRT observations. We also

fit an unabsorbed power law to the BAT spectrum provided by the BAT database. The BAT

and the XRT (the final representative flux as well as each epoch separately) data are shown

alongside the archival data (in faded black) in Fig. 4.6.

2https://swift.gsfc.nasa.gov/results/bs157mon/
3https://www.swift.ac.uk/user_objects/
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Figure 4.7: Mrk 501 dataset. With (faded) grey points the archival (flare) observations are

shown. Faded black points represent the archival X-ray data not used in our modeling

process. Highlighted are the BAT (Blue) and XRT (Magenta) observations.

The final data set is seen in Fig. 4.7 where the flares and the archival X-ray data are shown

through faded colors (grey and black respectively) to signify that they have not been used

in the following analysis. We highlight the BAT (Blue) and XRT (Magenta) observations to

differentiate them from the archival data of the SED Builder website.

Lastly, in the (V)HE energy ranges we note that our used observations are time-averaged

and not snapshots. In the HE range, we use data provided by the Fermi Large Area Telescope.

The spectral data is either averaged over the entirety of the mission run at the time of the data

release or represents monthly averaged observations. Similarly, the various observatories in the

VHE range use long exposure times for their observations on an observation-to-observation basis

and time-average the results in their analysis in producing spectral information. The exact time

window for each spectral analysis varies between the provided data and the interested reader

is directed to the observatories of HEGRA [43], ARGO [41], TACTIC [42], as well as MAGIC,

and VERITAS [46].

4.2 SED Modelling

4.2.1 LeHaMoC Code Description

We model our emitting region as a spherical blob of size R within the jet of the AGN and

assume a homogeneous magnetic field of strength B. For blazars, the motion of the blob will

result in relativistic effects as the angle θ between the line of sight to the observer and the

bulk plasma velocity is small. In particular, for a bulk plasma motion with Lorentz factor Γ
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and bulk velocity β = v/c we define the Doppler factor δ = Γ−1(1 − βcosθ)−1. Throughout

our discussion, all parameters are defined in the rest frame of the blob, unless explicitly stated

otherwise. We assume the presence of an acceleration region from which particles escape upon

their injection into the blob (radiation zone). The distribution of particles is described by a

power law Nj(γj) ∼ γ−p
j between energies γmin,j and γmax,j, with a power law index pj, where

j = e, p stands for electron-positrons and protons, respectively. The injected isotropically

distributed luminosity of each population is also quantified via the compactness [47], a measure

comparing the energy contents of a region to its spatial dimensions, l = LσT

4πRmec2
. We will

use particle energy injection rate and compactness interchangeably throughout this chapter.

The emitting particle populations produce photons γ as well as secondary particles, electron-

positron pairs (e−e+) and neutrinos (ν). To quantify and accurately track the time evolution of

a population j with time-dependent particle distribution Nj we use a set of integrodifferential

equations, called kinetic equations parameterizing our problem as follows:

∂Nj

∂t
+

Nj

τesc
+
∑
i

Li
j(t) =

∑
i

Qi
j(t), (4.2)

assuming a physical escape from the source with a timescale of τesc = R/c. In the above, we

consider the general form of a production and loss rate term of the process i and population j

as Qi
j and Li

j respectively, and explicitly note their time dependence.

The complete equation set depends on the treated processes which in our case are:

• Injection (inj),

• Electron and positron synchrotron radiation (e, syn),

• Proton synchrotron radiation (p, syn),

• Electron and positron inverse Compton scattering (IC),

• Synchrotron self-absorption (ssa),

• Photon-photon pair creation (γγ)

• Proton-photon pion production (pγ, π)

• Proton-photon (Bethe-Heitler) pair production (BH)

And thus reads:

• Electrons/Positrons,

∂Ne

∂t
+

Ne

τe,esc
+ Lsyn

e + LIC
e = Qinj

e + Qpγ,π
e + QBH

e + Qγγ
e . (4.3)

• Protons,
∂Np

∂t
+

Np

τp,esc
+ Lsyn

p + LBH
p + Lpγ,π

p = Qinj
p . (4.4)
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• Photons,
∂Nγ

∂t
+

Nγ

τγ,esc
+ Lssa

γ + Lγγ
γ = Qe,syn

γ + Qp,syn
γ + QIC

γ + Qpγ,π
γ . (4.5)

• Neutrinos,
∂Nν

∂t
+

Nν

τν,esc
= Qpγ,π

ν . (4.6)

In the above, we have ignored terms relating to pp collisions and adiabatic effects considering

them insignificant for the problem we aim to solve. These 4 equations alongside the 7 parameter

types, the source size R, the magnetic field B, the Doppler fact δ, the minimum/maximum

Lorentz factor γmin,max, the power law index p, and the injected luminosity/compactness, define

the set of input parameters of the code LeHaMoC [48]. The interested reader is directed to [48]

for a complete description of the operators.

LeHaMoC solves the equations Eq. (4.3) through Eq. (4.6) via an implicit difference scheme

[49] discretizing the time into a grid with steps of light crossing times tcr = R/c and the energy

through a logarithmic energy grid with user-defined endpoints. The selection of appropriate

energy grid bounds and grid points is important to ensure the smoothness of the resulting

SED and correctly include all secondary electrons produced via hadronic processes as these can

extend beyond the primary injected electron distribution. The resulting discretized equations

form tridiagonal matrices solvable through the Thomas algorithm4.

An illustration of the above is presented through the electron kinetic equation for time steps

of ti and Lorentz factors of γj:

V1,jN
i+1
e,j−1 + V2,jN

i+1
e,j + V3,jN

i+1
e,j+1 = N i

e,j (4.7)

with coefficients:

V1,j = 0 ; V2,j = 1 +
∆t

τe,esc
+

∆t

∆γj
Σp

(
dγ

dt

)i,j

p,j

; V3,j = − ∆t

∆γj
Σp

(
dγ

dt

)i,j

p,j+1

(4.8)

where (dγ/dt)p the electron energy losses of one electron due to the p process.

4.2.2 Average State Description

Fully describing our source in a leptohadronic hybrid synchrotron self-Compton (SSC) scenario

requires therefore 11 parameters:

• 3 Global Parameters: R, B, δ

• 4 Electron Parameters,γmin
e , γmax

e , pe, L
inj
e

• 4 Proton Parameters, γmin
p , γmax

p , pp, L
inj
p

4http://www.industrial-maths.com/ms6021_thomas.pdf
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We argue that the scientific literature supports an average state of a blazar to mostly be leptonic

and not exhibit dominant hadronic signatures [50],[51],[52]. We thus first derive the parameters

of a purely leptonic emission, namely synchrotron from IR to X-rays and SSC in gamma-rays

(Section 4.2.2). The emission from relativistic protons, if present in the jet at all times, remains

hidden below the leptonic spectral components. We will argue for the upper limit of the proton

luminosity (Section 4.2.2) and later search for hadronic signatures on the SED during flaring

activity (Chapter 5).

Leptonic Average State

To derive the leptonic average state we use the Markov Chain Monte Carlo (MCMC) sampler

emcee [35] running on 32 parallel walkers. The step size and burn-in phase have been kept

variable throughout our testing allowing for a flexible approach to computational time. The

initial parameter guesses are important to capture the physical problem discussed. Therefore,

we derive these initial parameter estimations by utilizing our observational SED and reverse

engineering using our analytical expressions presented in Section 2.2.4:

• Assuming a power-law distribution of electrons with slope p at injection that produces the

low-energy blazar emission via synchrotron, we can infer p as follows: From Chapter 2.2.2

we have the relation between spectral and power law index: α = (p− 1)/2 → p = 2α+ 1.

From the SED of Fig. 4.7 we estimate that between εmin = 1eV and εmax = 103.5eV we

have νFν ∼ ν0.267 → Fν ∼ ν−0.733 ∼ ν−α and therefore p = 2.47.

• The SSC component peaks at approximately 1013 eV. Assuming a fiducial value for the

variability timescale of tvar = 1d we estimate from Eq. (2.29) the minimum value of the

Doppler factor. Requiring the SSC region to be optically thin to γγ absorption we have

δ = 4.63.

• We estimate the radius from Eq. (2.2.5) as R = 1.15 · 1016 cm.

• To estimate the magnetic field and injected electron luminosity we minimize the energy in

the system. Using Fpk = 1010.2erg/s/cm2, εmin = 1 eV, and εmax = 103.5eV we calculate

from Eq.(2.18) and Eq.(2.19): B = 0.49G and Linj
e = 2.13 · 1041 erg/s.

• Finally, γ =
(

ε
δbmec2

)1/2

for εmin = 1 eV and εmax = 103.5eV. Or γmin = 103.8 and

γmax = 105.54.

Inserting these values into LeHaMoC, our first SED estimation is depicted in Fig. 4.8. In the

upper panel, we see the SED of our energy minimization model, which deviates significantly

from the observations. We will offer some potential explanations for this discrepancy at the

end of this section. To highlight this discrepancy, the middle panel compares observational

to model data. Zero values indicate equality between the model and the observational data.

Lastly, the bottom panel shows the spectral index throughout the model with indicative values

noted throughout. To improve this initial guess we lower the magnetic field by one order of
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Figure 4.8: Parameter estimation using the energy minimization method outlined in

Section 2.2.4.Upper panel: SED of the energy minimization model. Middle panel: Comparison

between model and observations. Lower panel: The spectral index throughout the model.

Indicative values are noted by vertical lines.
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Figure 4.9: Same as Fig. 4.8 for a 10 times lower magnetic field and Doppler factor of δ = 30.

magnitude to better agree with the available literature [41] and manually increase the Doppler

factor to 30. The results, seen in Fig. 4.9 show a drastic improvement and will be the first step

to the parameter derivation.

Throughout our testing, we have used a variety of permissible frequency ranges for the fit.

We arrived at two important conclusions:

• We must exclude all the low-frequency data (ν < 300GHz) in the fitting process as

otherwise, our model does not return physical results. We assume this emission originates

from a more extended region of the jet (and less opaque to ssa) and therefore disregard

it. This treatment is consistent with previous studies where excluded observations have

been used as upper limits [50].

• In testing a variety of permissible frequency ranges for the fit, we found in all cases the

value of the Doppler factor δ to be approximately δ = 20. Assuming a fiducial value of

tvar = 1d for the average time variability time scale we calculate an upper bound for the

radius R ⪅ tvarc
(1+z)δ

= 1016.7cm. Therefore we set Rmax = 1016.5cm to be within this bound.
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Figure 4.10: Sample from the posterior SED parameter space. The shaded band has been

excluded from the fit as explained in the text. The green dashed line represents the 1% limit

discussed in Chapter 4.2.2.

For our final result, we used a total step size of 10000 with a burn-in phase of 2000. In

Fig. 4.10 the average-state SED, zoomed in to emphasize the synchrotron and SSC peaks, and a

representative sample of model SEDs (Orange color) of the posterior are shown. A dashed line

notes the upper limit we will use and discuss in the next section. The grey-shaded region on

the left designates the previously discussed excluded low-frequency band. In Fig 4.11 we show

the posterior distributions of the previously discussed parameters and an error value “log(f)”

that we have added to the standard deviation of the Gaussian as [53],[54]:

σ2 = σ2
data + f 2

All distributions are well-constrained except for the radius which we bound as described

previously. We report that increasing the bound on the radius R and searching for parameter

values that ensure all parameters are well-constrained results in a dynamic interplay between

the radius and the magnetic field B where the former steadily increases while the latter steadily

decreases until each one reaches its respective bound. To constrain both quantities simulta-

neously we need unnaturally high values for the radius and exceptionally small values for the

magnetic field (see Appendix A). These values are unpreceded in the description of emission

regions of blazar jets and should be disregarded as unphysical. Therefore, we conclude that
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Figure 4.11: Posterior distributions for the fitting process with emcee and LeHaMoC for Mrk

501.
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Figure 4.12: Chains of parameters obtained with emcee while fitting the average SED of Mrk

501.

even in the absence of the limit imposed on the radius by the Doppler factor we cannot find uni-

versally well-constrained parameters within our problem description. For completeness reasons,

we show the posterior chains of the fit in Fig. 4.12.

As a result of our parameter investigation, we emphasize that the inclusion or not of the

X-ray data does not heavily impact the resulting parameters nor their posterior distributions.

The only exception is the value of γmax and its distribution. Thus, we conclude that the fit

is driven by the gamma-ray and optical/IR data and only slightly refined by the X-ray data.

To illustrate this, we provide in Appendix B both posterior distributions of the fitting process

with and without the inclusion of X-ray data.

To investigate the discrepancy between our initial SED parameter estimate and the best-

fit emcee results we repeat the energy minimization calculations on the SED obtained by our

best-fit solutions. We also make the following additional assumptions:
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• We acknowledge the impact of synchrotron cooling. In Section 2.2.4 we assumed a steady

state power law. Here, we inject a power law, which in the steady state may end up being

a broken power law. We assume the synchrotron peak at νc and an electron distribution

of N(γ)dγ = Ke(
∫ γc
γmin

γ−pdγ +
∫ γmax

γc
γ−p+1dγ).

• Instead of estimating the minimum and maximum frequencies from the SED, we set

νmin,max = (γModel
min,max)2δModel(BModel/Bcr)mec

2/h. Here, the subscript ”Model” indicates

the best-fit parameter values derived from the emcee run. This is the only point where

we directly reference LeHaMoC parameter results.

Following the method of Section 2.2.4 we present our results in Fig. 4.13 contrasting the

LeHaMoC SED to the energy minimization SED on the LeHaMoC results. We conclude that the

energy minimization method fails if used on the observational SED. However, it also fails if we

employ it on the derived best-fit parameter SED. Following the steps of Section 2.2.4 and the

corrections of the above bullet points lead to inaccurate results even if we use the method on the

best-fit parameter SED calculated via LeHaMoC. Contrasting the values of Fig. 4.11 to the ones

used in the initial parameter guess, we see that we underestimated the range of the injected

power law. This is an expected flaw while visually guessing bounds in an observational SED.

Furthermore, the method overestimates the magnetic field and underestimates the Doppler

factor. The energy minimization scenario is comparable to the equipartition scenario when

Wel = WB. Therefore, decreasing the energy minimization magnetic field by one order of

magnitude implies an emission region where the electrons carry greater amounts of energy

comparable to the magnetic field. Furthermore, lower estimations of the Doppler factor are

expected as its derivation is composed only of a lower limit. Any value above this lower limit

should be considered equally acceptable. Therefore we conclude that a scenario close to/of

equipartition and lower limit estimations of the Doppler factor are not a valid approach to

model the average emission of Mrk 501.

Leptohadronic Average State

Having derived the global and electron parameters, this chapter focuses on the final 4 proton

parameters. We assume that both populations are accelerated before injection by the same

mechanism and to the same Lorentz factors, pp = pe, γ
min/max
p = γ

min/max
e . Another equally

acceptable choice would be Emin
e = Emin

p and Emax
e = Emax

p . This, however, leads to non-

physically meaningful choices for the injected proton luminosity as will be discussed shortly.

From our leptonic posterior analysis, we calculate the upper 1% limit (depicted in Fig. 4.10),

meaning 99% of our solutions at each frequency are below it. We make the assumption that

any leptohadronic model exceeding this limit by 10% cannot be approximated by a leptonic

description. Thus, we investigate an injected proton luminosity of Linj
p = 10αLinj

e searching for

the maximum value of α satisfying the above condition. We found that for a value of α = 105.62

this to be the case and showcase the first deviation point with a different color in Fig. 4.14.

Thus, for our calculations, we assume Linj
p = 105.61Linj

e ≈ 1046.986erg/s.
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Figure 4.13: Testing the energy minimization scenario using the best-fit parameters of

LeHaMoC.

Figure 4.14: First deviation from the leptonic approximation. Shown are the upper leptonic

limit discussed in the text (green line) and the 110% value of it (light blue line). The SED

model data points not exceeding the imposed limit are shown as blue circles. The first

deviation is highlighted by a magenta color.
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We briefly note that equating the energies instead of the Lorentz factors of the two popula-

tions leads to α values unreasonably high (i.e. α > 109). Thus, this scenario must be rejected

and treated as nonphysical. To summarize, our complete set of parameters for Mrk 501 within

LeHaMoC is presented in Table. 4.2.

Table 4.2: Parameters of the

leptohadronic model describing

the average SED of Mrk 501

Parameter Value

log(R[cm]) 16.46+0.03
0.03

log(B[G]) −1.42+0.05
−0.05

log(γmin
e ) 2.75+0.05

−0.05

log(γmax
e ) 7.38+0.35

−0.35

log(le) −4.75+0.03
−0.03

pe 2.50+0.02
−0.02

log(δ) 1.31+0.02
−0.02

pe 2.50

log(γmin
p ) 2.75

log(γmax
p ) 7.38

log(Linj
p [erg/s]) 46.986
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Time Variability of Mrk 501

This Chapter is dedicated to exploring the time domain of Mrk 501. In particular, in Section 5.1

we will construct a synthetic Time Series (TS) of Mrk 501 using the celerite parameters of

Chapter 3. Then, we will connect the simulated variations of the Fermi band to parameter

variability within our source. We will investigate changes in the injection rate of the particle

energy (Section 5.2) and changes in the magnetic field strength (Section 5.3). Lastly, we will

argue for changes in the power-law slope of the particle distribution motivated by the magnetic

field variability (Section 5.4).

5.1 Time Series of Mrk 501

The celerite parameters of Mrk 501, listed in Table 3.1, are: (α) µ[log(Flux)] = −4.12, (b)

ln(S0) = 0.58, (c) ln(Q) = −3.2, and (d) ln(ω0) = −1.4. Using these, we create a synthetic

Light Curve (LC) with statistical properties consistent with the observed LC in the Fermi

energy band of 0.1-100 GeV. For the synthetic LC, we selected a number of points equal to

that of the real LC and multiplied them by the mean cadence of 7 days, thus creating the

TS. However, since we did not include upper limits in our analysis of the Fermi LC, the total

number of points, and by extension the total time length of the derived LC, is slightly shorter

than that of the observational one.

In Figure 5.1 we showcase the entirety of our used zero-meaned TS. As we are interested in

the relative changes of the logarithmic flux, the flux units are disregarded. A horizontal line

indicates the average state of the source. Additionally, we highlight two flares using a grey band

in the upper panel and zoom into them in the lower panels. The first flaring event, labeled

α, exhibits extreme variability exceeding the maximum observed flux of Mrk 501. The second

flaring event, labeled β, is comparable to the observed flux variability.

We interpolate this TS at time steps of one light crossing time, tcr = 0.558 days, to accurately

capture changes in the parameter space of our source. Both the mean cadence and time step

are in the observer’s frame, as they are based on direct observational results. LeHaMoC performs

calculations in the comoving frame of the blob in time-steps of 1 intrinsic light-crossing time.
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Figure 5.1: Upper panel : Simulated TS of Mrk 501. Grey bands designate analyzed flares.

Lower panel: Left: Extreme flare labeled α. The total variation exceeds observations. Right:

flare with variation similar to observed labeled β.

However, transformations between the comoving and the observer’s frame, do not change the

relative values of our generated TS. Therefore, we can use them despite the different reference

frames.

Figure 5.2: Interpolation of flare α (left) and flare β (right).

In Fig. 5.2 the interpolations for both flaring events are shown. Each TS starts close to zero

to be able to model the evolution from the average state description. Furthermore, each TS

has a 10-step “burn-in” phase where no changes occur in any parameter value. This allows the

model to accurately converge to the average state description before any time variations occur.

5.2 Variability in the particle energy injection rate

The first time variation of this study is the energy injection rate for electrons, Linj
e , and protons,

Linj
p . To relate the LC in the Fermi energy band to the above parameters, we note from

Eq.(2.12):

f syn
ϵ ∝ N ′

e(ϵ
′) ⇒ f syn

ϵ ∝ Linj
e , (5.1)
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and thus from Eq.(2.24):

fFermi ∝ fSSC
ϵs ∝ (f syn

e )2 ⇒ fFermi ∝ (Linj
e )2 (5.2)

or

log(fFermi) ∝ 2log(Linj
e ). (5.3)

Therefore, defining the relative flux values of the simulated TS as y(ti), where ti = i · tcr is the

ith time step calculation in LeHaMoC, we derive the time evolution of Linj
e :

log(Linj
e (ti)) = log(⟨Linj

e ⟩) +
1

2
y(ti). (5.4)

In other words, to transform the TS of Fig. 5.1 into parameter variability for the electron energy

injection rate, we divide it by 2. We adopt the same trend for Linj
p assuming both populations

are injected into the source via the same mechanism.

In Fig. 5.3 we present the SEDs throughout each time step in the leptohadronic and leptonic

LeHaMoC run for the complete TS of Mrk 501. The initial average state SED is highlighted in

mustard color. The resulting figure resembles a density plot differentiating between regions of

frequent and rare occurrences. This is underlined by the sparse number of SEDs in the most

luminous cases, contrasted by the predominantly monochrome region close to the average state

description.

Furthermore, we investigate the effect of particle energy injection rate variability on smaller

timescales emulating flaring events. Therefore, we repeat the numerical run for flares α/β

discussed in 5.1. The time evolution SED plot for the flares is shown in Fig. 5.4.

We draw several conclusions from these runs:

• We accurately predict the synchrotron and SSC scaling. The high-energy portion of

the SED produced by SSC exhibits twice as much flux variability as the synchrotron

component. This is expected from Eq.(5.1) and Eq.(5.2). The relation is also illustrated

in the flux-flux diagram of Fig. 5.5 comparing the peak fluxes of the synchrotron and the

SSC component for the full leptohadronic run.

• No spectral changes occur. Following our discussion in Chapter 2.2 no spectral changes

or spectral breaks are expected through changes in Linj
e . We confirm this through our

runs.

• We do not see a flux reduction in the pion bump around ν = 1030Hz. Although the

optical depth for γγ interactions increases slightly caused by the increase of low-energy

photon targets. This is counterbalanced by the increase of available protons and thus

photomeson interactions. A detailed discussion on the impact of γγ absorption is found

in Section 5.4.2 when a significant pion bump contribution is expected.

• The model cannot account for the observed range of fluxes. In particular, it fails to explain

the highest fluxes observed in X-rays and VHE gamma-rays. The flux variations do not

follow the observational trends in all energy bands. The similarities and discrepancies

will be highlighted below through flux histograms, LCs, and coefficients of variation.
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Figure 5.3: Time evolution SED plots for particle energy injection rate variability with the

full TS. Leptohadronic (upper panel) and leptonic (lower panel) cases are shown, both with

the average state of Mrk 501 indicated in mustard color. An animated version of the

leptohadronic time evolution is found Here.
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Figure 5.4: Time evolution SED plots for leptohadronic particle energy injection rate

variability. Flare α (upper panel) and Flare β (lower panel) are shown, both with the average

state of Mrk 501 indicated in mustard color.
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Figure 5.5: Flux-flux diagram of the synchrotron and SSC component peaks in the

leptohadronic time-variable particle energy injection run. Noted with an orange line is the

expected quadratic scaling between SSC and synchrotron peak luminosity.
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• The inclusion of a hadronic population does not impact the above results. The inclusion of

a proton (hadronic) component results in the production of secondary electrons through

photohadronic interactions. Those electrons will contribute to the observed flux. From

Section 2.3 we can estimate the proton threshold energies and the emission frequencies

of the resulting secondary electrons. In particular assuming our average state values of

B = 0.038G and δ = 20.41, for photomeson interactions we have from Eq.(2.31):

γth
p,pγ ≈ 3.5 · 104(1 + z)−1δν−1

18 ≈ 105.85.

And from Eq.(2.32), Eq.(2.30):

γth
e,pγ ≈ Kpγγ

th
p mp/(4me) ≈ 107.81 ⇒ νsyn

e,pγ ≈ 3 · 106δB
(
γth
e,pγ

)2 ≈ 1022Hz.

Similarly, for Bethe-Heitler pair-production we have from Eq.(2.33):

γth
p,pe ≈ 1.2 · 102(1 + z)−1δν−1

18 ≈ 103.38.

And since γth
p,pe ≈ γth

e,pe, from Eq.(2.30) it follows:

νsyn
e,pe ≈ 3 · 106δBγ2 ≈ 1013.12Hz.

We do not see any signatures of the above in our results. We will return to the effects of

secondary particles in Section 5.4.2 when hadronic signatures become prominent.

• Focusing on small timescales of high variability does not change the above results. Isolated

flaring states follow the above trends.

In what follows, we present different diagnostics for comparing our model against obser-

vations in different energy bands. We used the LC from the Fermi LCR for the time series

analysis and thus chose the Fermi band of 0.1 − 100 GeV for the high-energy region. Having

utilized Swift XRT and BAT data in our average state analysis, we use their respective energy

ranges of 0.2 − 10 keV and 14 − 195 keV to describe the soft and hard X-ray regions. For the

very-high-energy (VHE) range, we use 0.3−3 TeV to describe the region of high flux sensitivity

of the upcoming Cherenkov Telescope Array Observatory (see Chapter 6)[55]. Lastly, we use

the R-band (138 − 658 nm) to represent the low-energy region in the optical.

We present in Fig. 5.6 the flux histograms of the full leptohadronic LeHaMoC run for each

energy band. We also included the histogram for the simulated LC used for the time variability.

Furthermore, in each panel, an observational histogram is superimposed when available (Fermi,

BAT, XRT, R-Band). As the available XRT data exceeds the duration of our variability run, we

aligned the endpoints rather than the starting dates. This ensures a better visual comparison

between model and observations as the data for the first years of the XRT lifecycle are sparse.

For the R-Band we utilize observations from the GASP program of the Whole Earth Blazar

Telescope (WEBT) and data from the Tuorla observatory using the KVA telescope. The

resulting LC has a total length of 4 years, a binning time of 1 day, and has been adopted by

Ref. [56]. The shorter duration of this observational LC is a caveat that needs to be taken into
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Figure 5.6: Flux histograms for the complete leptohadronic run for particle energy injection

variability. The respective observational histograms outlined within the text have been

superimposed. From left to right: Upper panel: Energy ranges of 0.3 − 3 TeV and 0.1 − 100

GeV. Middle panel: Energy ranges of 14 − 195 keV and 0.2 − 10 keV. Lower panel: Energy

range of the R-band and the histogram for the simulated TS.

consideration when interpreting our results. In Fig. 5.7 we present the LCs of the discussed

energy bands for the full leptohadronic run together with the observed LC superimposed. From

these results, we conclude that particle energy rate variability alone cannot explain the observed

variability. We have an agreement in the Fermi band between the model and observations (As

expected. The time series were created in a way that reproduces the observed GeV variability).

However, we do not recover the expected variability in the other energy bands. Observationally,

we expect broader histograms in the X-ray range and more confined ones in the optical than

predicted by our numerical experiment.

In Fig. 5.8 we present the LCs for the flares in the energy bands of 0.3 − 3 TeV, 0.1 − 100

GeV, and 14−195 keV. To compare the differences between the model LCs and the injected TS

we superimposed the TS of Fig. 5.2 in each panel. Since y(ti) is a function of the logarithmic

flux variations with respect to the average flux value (y(ti = 0) = 0 corresponding to the

average state description), we added the initial average state value of the energy band LC to

each case. On the horizontal axis, we see small shifts on daily timescales and skewness (see

the decay part of the flare) compared to the peak of the flare TS. The shifts can be explained

qualitatively as a delayed response to changes within the source and will shortly be investigated

with Discrete Correlation Functions. On the vertical axis, we see an approximate agreement

between the X-ray LC and the flare TS while the (V)HE LCs are at approximately double the

values of the flare TS. This is expected from Eq.(5.1) and Eq.(5.2).

To further quantify the statistical properties of the time variability results we supplement

the LCs and flux histograms with flux-flux diagrams, Coefficient of Variation (CV) calculations,
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Figure 5.7: LCs for the complete leptohadronic run for particle energy injection variability.

The respective observational histograms outlined within the text have been superimposed.

From top to bottom: The histogram for the simulated TS. Energy ranges of 0.3 − 3 TeV,

0.1 − 100 GeV, 14 − 195 keV, 0.2 − 10 keV, and the R-band.
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Figure 5.8: LCs for flares α (solid line) and β (dashed line) for particle energy injection

variability. The renormalized TS used for each flare (see Fig.5.2) have been superimposed

(with black lines) for comparison purposes. Results for the energy ranges of 0.3 − 3 TeV

(upper panel), 0.1 − 100 GeV (middle panel), and 14 − 195 keV (lower panel) are shown.
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Energy bands Slope value

VHE vs. Fermi 1.0310 ± 0.0003

BAT vs. Fermi 2.102 ± 0.003

XRT vs. Fermi 2.164 ± 0.003

BAT vs. R 1.0922 ± 0.0009

Table 5.1: Linear fit slope values for the complete run of the leptohadronic energy injection

rate variability of Fig. 5.9.

and Discrete Correlation Function (DCF) diagrams.

In Fig. 5.9 we present the flux-flux diagrams comparing the Fermi flux to the flux in the

VHE range (a), the harder X-ray range probed by BAT (b), and the softer X-ray range probed

by XRT (c). Furthermore, we compare the BAT flux to the R-band flux (d), comparing hard

X-ray to low-energy photons. We present the variability for the complete leptohadronic run

(blue circles) and the results for flare α (yellow stars) and flare β (purple squares). We see the

steady flux increase of both flares during the increasing phase and decline during the decaying

phase. For flare α we see a ”stalling” in the diagram for the period between 10 and 30 days of

Fig. 5.2. We note how the flares (yellow star and purple square symbols) track the shape of the

complete numerical run (blue circle symbols). Therefore, we conclude that flaring states in this

scenario can be studied accurately separately or as part of a longer time variable numerical run.

Lastly, we calculate the slopes of the complete run via a linear fit (Table. 5.1). We recover the

quadratic scaling between synchrotron and SSC fluxes. Moreover, we calculate a linear scaling

between different regions within the SSC component (Fermi vs. VHE) and between X-rays and

optical.

The CV is defined through the mean µ and the standard deviation σ of a TS as CV=
σ
µ
. In Fig. 5.10 we present the results for the discussed energy ranges. We conclude that

the high energy ranges exhibit increased variability compared to the X-rays and IR. This is

expected as the quadratic scaling between the synchrotron and SSC component leads to higher

standard deviations in the TS. Comparing our results to observational CVs we conclude that we

approximate the variation in the Fermi Band. However, we have not recovered the observational

values in the X-ray and R-band ranges: our model underestimates by a lot the variability in

X-rays, and in particular in the BAT range, while it overpredicts the CV found in the R-band

(keeping in mind that for the latter the duration of the model light curve is longer than the

observed R-band). This result is expected from our discussion on the flux histograms and LCs

and is another indication of the need for a more complex model.

Lastly, we will discuss the DCF of the flux variability for the complete TS run. In a DCF

diagram, we compare the similarity between two TS by shifting the temporal domain of one

relative to the other. We define a positive lag in TS ”A” vs. TS ”B” as a leading TS ”A”.

Through this tool, we can investigate time lags and correlations between TS in different energy

bands. The DCF of a TS with itself is called the Auto-Correlation Function (ACF), a sharply

peaked curve at a time lag of 1 and close to zero everywhere else for non-periodic TS. In
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Figure 5.9: Flux-flux diagrams for leptohadronic energy injection rate variability, comparing

the flux variabilities between Fermi vs. VHE (a), Fermi vs. BAT (b), Fermi vs. XRT (c),

BAT vs. R-Band (d). The cases for the complete TS (blue circles), as well as the results for

flare α (yellow stars) and flare β (purple squares) are indicated.
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Figure 5.10: Coefficient of variation (CV) for the Fermi, BAT, XRT, and R-band energy

ranges in the complete leptohadronic particle energy rate variability run.

Figure 5.11: Discrete Correlation Function (DCF) for time lags up to 1000 days. Comparisons

between Fermi vs. BAT, Fermi vs. R-band, and BAT vs. R-band. The Auto-Correlation

function (ACF) for Fermi is noted.
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Figure 5.12: Zoomed in version of Fig. 5.11 focusing on timelags -+10 days.

Fig. 5.11 we present, for a total time lag of 1000 days, the DCF between Fermi vs. BAT,

Fermi vs. R-band, BAT vs. R-band, and the ACF of the Fermi band. Through this selection,

we investigate possible lags between representative high-energy, X-ray, and low-energy regions

on large timescales. In all cases, we derive results similar to the Fermi ACF. Although the

morphology of the DCF at t ̸= 0 is not a flat line, the existing structures are sufficiently close

to zero, indicating the absence of any significant time lags. In Fig. 5.12 we repeat the above

DCF calculations for a total time lag of 10 days to investigate changes on small timescales.

For all three cases, we see a peak shift for about less than a day in either direction and a

skewness of the DCF. These findings are similar to the delay/skewness of Fig. 5.8. One proposed

theoretical explanation is a delayed response between synchrotron emission/cooling and SSC

upscattering of synchrotron emission. However, we were unable to explain those features of

the DCF or the LCs through any theoretical calculations. Therefore, this constitutes another

open question of this thesis work. ”How can we predict the time lag and skewness of the

DCFs/LCs? Do these features stem from underlying physical processes or are they results of

numerical approximations?” are questions that must be explored and answered in future works.

5.3 Variability in the magnetic field strength

We will repeat the methodology outlined in Section 5.2 for time variability in the magnetic

field strength. To relate the LC in the Fermi energy band to the strength of the magnetic field,

we note from Eq.(2.12):

f syn
ϵ ∝ UB ⇒ f syn

ϵ ∝ B2, (5.5)
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and thus from Eq.(2.24):

fFermi ∝ fSSC
ϵs ∝ (f syn

e )2B−2 ⇒ fFermi ∝ B2 (5.6)

or

log(fFermi) ∝ 2log(B). (5.7)

Therefore, similar to the previous section, the time evolution of B is:

log(B(ti)) = log(⟨B⟩) +
1

2
y(ti). (5.8)

In Fig. 5.13 and Fig. 5.14 we present, the results for the full leptohadronic/leptonic and the

leptohadronic runs for flares α/β respectively.

We draw several conclusions from these runs:

• We accurately predict the synchrotron and SSC scaling. The high-energy portion of the

SED produced by SSC exhibits approximately equal amounts of variability compared

to the synchrotron component. This is expected from Eq.(5.5) and Eq.(5.6). The scal-

ing is illustrated in the flux-flux diagram of Fig. 5.15 comparing the peak fluxes of the

synchrotron and the SSC component for the full leptohadronic run.

• The cooled part of the synchrotron spectrum increases as the synchrotron peak shifts to

the left. This is expected as the peak frequency is approximately at the critical frequency

defined in Eq.(2.9). Therefore, νc ∝ bγ2
c ∝ BU−2

B ∝ B−3 ⇒ νsyn
pk ∝ B−3 or log

(
νsyn
pk

)
∝

−3 log(B). As the SSC flux is dependent on the synchrotron component, a displacement

of νsyn
pk results in a displacement of νSSC

pk . The exact scaling cannot accurately be described

in the delta approximation and thus won’t be discussed.

• The flux of the pion bump around ν = 1030Hz decreases. This is expected as the optical

depth for γγ interactions increases slightly. This change is caused by the increase of low-

energy photon targets. A detailed discussion on the impact of γγ absorption is found in

Section 5.4.2 when a significant pion bump contribution is expected.

• The model cannot account for the observed range of fluxes. In particular, it fails to

explain the highest fluxes observed in X-rays and VHE gamma-rays. The flux variations

do not follow the observational trends in any energy band. The discrepancies will be

highlighted below through flux histograms, LCs, and coefficients of variation.

• The inclusion of a hadronic population does not impact the above results.

• Focusing on small timescales of high variability does not change the above results. Isolated

flaring states follow the above trends.

We repeat the comparisons outlined in the previous section. In Fig. 5.17 and Fig. 5.16 we

present the result for the LCs and the flux histograms for the full leptohadronic run while in

Fig. 5.18 we present the LCs for the flares. From this run, we report greater discrepancies
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Figure 5.13: Time evolution SED plots for magnetic field strength variability with the full TS.

Leptohadronic (upper panel) and leptonic (lower panel) cases are shown, both with the

average state of Mrk 501 indicated in mustard color. An animated version of the

leptohadronic time evolution is found Here.

Margaritis Chatzis 72

https://mpetropoulou-astro.com/leptohadronic-blazar-variability/


Chapter 5 5.3 Variability in the magnetic field strength

Figure 5.14: Time evolution SED plots for leptohadronic magnetic field strength variability.

Flare α (upper panel) and Flare β (lower panel) are shown, both with the average state of

Mrk 501 indicated in mustard color.
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Figure 5.15: Flux-flux diagram of the synchrotron and SSC component peak in the

leptohadronic time-variable magnetic field strength run. Noted with an orange line is the

expected scaling of 1 between SSC and synchrotron peak luminosity.

Figure 5.16: Same as Fig. 5.6 for the complete leptohadronic run for magnetic field variability.
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Figure 5.17: Same as Fig. 5.7 for the complete leptohadronic run for magnetic field variability.

Figure 5.18: Same as Fig. 5.8 for flares α (solid line) and β (dashed line) for magnetic field

variability.
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between our model and observations than in the energy injection rate numerical run. In par-

ticular, we predict a smaller spread in the Fermi band. Similar to before, we underpredict

the variability in the X-ray range and overpredict it in the R-band. For the flare analysis, we

report the same conclusions for discrepancies on the horizontal axis. On the vertical axis, we do

not recover the previously expected trends. This deviation is a result of the peak shifts of the

synchrotron and SSC components. The proposed linear and quadratic scaling is only correct

for the peak values of each component.

Figure 5.19: Flux-flux diagrams for leptohadronic magnetic field strength variability,

comparing the flux variabilities between Fermi vs. VHE (a), Fermi vs. BAT (b), Fermi vs.

XRT (c), BAT vs. R-Band (d). The cases for the complete TS (blue circles), as well as the

results for flare α (yellow stars) and flare β (purple squares) are indicated.

In Fig. 5.19 we present the flux-flux diagrams for the leptohadronic magnetic field strength
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Energy bands Slope value

VHE vs. Fermi 2.075 ± 0.003

BAT vs Fermi 1.980 ± 0.005

XRT vs Fermi 1.182 ± 0.002

BAT vs. R 2.751 ± 0.005

Table 5.2: Linear fit slope values for the complete run of the leptohadronic magnetic field

variability of Fig. 5.19.

variability. The conclusions and open questions of the previous section apply to this scenario.

Furthermore, we attribute the slight curvature at the ends of the flux-flux diagrams (see for

example upper right of panel a) to the previously discussed shift of the peak frequency of the

synchrotron and SSC component

In Table 5.2 we present the slopes of the complete run via a linear fit. We recover the

linear scaling between XRT and Fermi. The deviation from this value in the BAT vs. Fermi

comparison is a result of the peak shift of the synchrotron and SSC component. The BAT

vs R comparison yields the greatest deviation from the expected value. We attribute this

discrepancy in parts to the aforementioned peak shift resulting in a smaller BAT variability.

Simultaneously, we note how the quadratic scaling is correct only for the peak frequency in

the delta approximation. For increasing values of B, the effects of electron cooling increase

resulting in an increase of low energy electrons. Thus, in the optical, we expect a higher scaling

on the magnetic field than previously predicted.

Figure 5.20: Coefficient of variation (CV) for the Fermi, BAT, XRT, and R-band energy

ranges in the complete leptohadronic magnetic field variability run.

In Fig. 5.20 we present the CV plot for the time variability of the magnetic field strength.

The lower energy regions exhibit greater variability, in both synchrotron and SSC components.
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This is expected as the peaks shift to the upper left. Previous peak frequencies are past the

current peak leading to lower flux values comparable to the maximum flux. Therefore, this

displacement creates a greater CV value for the XRT and Fermi regions compared to the

BAT and VHE regions. The R-band variability is a result of the quadratic scaling between

synchrotron flux and magnetic field. Unaffected by the peak shifts, it exhibits the greatest

amount of variability. Comparing the model predictions to the observational data we arrive at

the same results as in our discussion of the histograms and LCs.

Lastly, the DCF diagrams for long and short timescales are presented in Fig. 5.22 and

Fig. 5.12 respectively. The conclusions and open questions of the previous section apply to this

scenario.

Figure 5.21: Discrete Correlation Function (DCF) for time lags up to 1000 days. Comparisons

between Fermi vs. BAT, Fermi vs. R-band, and BAT vs. R-band. The Auto-Correlation

function (ACF) for Fermi is noted.

Figure 5.22: Same as Fig. 5.22 for time lags up to 10 days.
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5.4 Variability in the power law slope of particle distri-

bution

In this section, we will investigate changes in the power law index of the particle populations.

In Section 5.4.1 we will provide physical motivations for power law slope changes in a leptonic

population and investigate various scenarios. Moreover, we will briefly discuss simultaneous

changes in the escape timescale. In Section 5.4.1 we will extend our analysis to a complete

treatment for a leptonic and hadronic population and provide a qualitative example for long-

term variability.

5.4.1 One species changes

We note the relation for the power law index in terms of the escape and acceleration timescale

in the acceleration region [57]:

pel = 1 +
tacc
tesc

.

Expressions for tacc depend on the assumed acceleration mechanism. In a Fermi acceleration

scenario, we predict a dependence on the magnetic field either implicitly or explicitly through

the gyroradius (rg ∝ B−1). In particular, for first and second-order Fermi acceleration we have

the dependences of tFI ∝ rg and tFII ∝ rg/B
2 respectively [58]. Therefore, assuming the ratio

tacc/tesc to be a function of the above Fermi timescales we parameterize our problem as:

pel(t) = 1 + pel,0

(
B(t)

B0

)−m

, (5.9)

where B0 = B(t0) and pel,0 = pel(t0) are the values of the magnetic field and the power law index

at the start of the time variation, i.e. in the average state of the source. In this investigation,

we leave m as a free parameter. Therefore, utilizing Eq. (5.8) (with the substitution ⟨B⟩ → B0)

and choosing a value of m we transform the TS of Fig. 5.1 into variability for the power law

index for the electron particle distribution.

To illustrate the impact of m, we present Eq.(5.9) for the full TS for different values of it. In

Fig. 5.23 - Fig. 5.27 we showcase the values of m = 0.5, 1, 2, 3, 4. In each figure, we highlight the

minimum and average value of pel, pel = 1 and pel = 2.5 respectively. As expected, increasing

the value of m leads to increased spectral hardening (pel → 1) during periods of high activity

and to monoenergetic distributions (pel ≫ 1) during periods of low activity.
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Figure 5.23: Complete TS for pel(t) = 1 + pel,0

(
B(t)
B0

)−m

for m = 0.5. Indicated are the

average and minimum values of pel, pel = 1 and pel = 2.5 respectively.

Figure 5.24: Same as Fig. 5.23 for m = 1.

Figure 5.25: Same as Fig. 5.23 for m = 2.
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Figure 5.26: Same as Fig. 5.23 for m = 3.

Figure 5.27: Same as Fig. 5.23 for m = 4.

We are not interested in investigations of monoenergetic distributions created by periods

of low activity in cases similar to Fig. 5.27 and thus focus on flares α and β for the time

variability of pel. This is shown in Fig. 5.28 and Fig. 5.29. We remind the reader that flare

β corresponds to variability in the Fermi band approximately equal to the maximum observed

variability. In contrast, flare α exceeds the variability of the observed high activity periods. As

previously discussed, pel reaches lower values for greater values of m during flares. The average

and minimum pel values of 2.5 and 1 are again noted.
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Figure 5.28: pel(t) = 1 + pel,0

(
B(t)
B0

)−m

variability for flare α. Indicated are the average and

minimum values of pel, pel = 1 and pel = 2.5 respectively.

Figure 5.29: Same as Fig. 5.28 for flare β.

Figure 5.30: Flare α time evolution SED for mild power law index variation with m = 0.5.
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Figure 5.31: Flare α time evolution SED for moderate power law index variation with m = 1.

Figure 5.32: Flare α time evolution SED for extreme power law index variation with m = 4.

Figure 5.33: Flare β time evolution SED for mild power law index variation with m = 0.5.
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Figure 5.34: Flare β time evolution SED for moderate power law index variation with m = 1.

Figure 5.35: Flare β time evolution SED for extreme power law index variation with m = 4.

In Fig. 5.30 - Fig. 5.32 and in Fig. 5.33 - Fig. 5.35 we provide the time evolution SEDs for

m = 0.5, 1, 4 to investigate mild, moderate, and extreme leptonic spectral hardening during

flare α and β respectively. Increasing m yields a reduction of the low-energy and (V)HE

emission components. The former is expected since a decrease of p results in sharply peaked

synchrotron SEDs (fsyn ∼ νFν ∼ ν−α+1, α = (p − 1)/2). A reduction of the SSC flux in

the Fermi range causes the latter. To compare the flux variability in those events with the

observations we present in Fig. 5.36 the flux histograms of the mild variability (m = 0.5) for

both flares. We caution the reader to bear in mind that density histograms of short-term

events do not capture the true distributions of a source. As such, in the above figures we are

interested in the ranges the histograms occupy rather than their densities. In both cases we

exceed the observed variability in the X-ray and optical range. Furthermore, we do not recover

the expected hardening present in the X-ray flares of 1997. Furthermore, we remind the reader

how these X-ray flares are not included in the observational BAT or XRT histograms as they

preceded both instruments. Therefore, this caveat needs to be taken into consideration when
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comparing model to observational variability.

Therefore, we conclude that in a leptonic Synchrotron+SSC scenario reducing the power

law index during flares can lead to spectral hardening and flux increase in the X-ray range

but a flux reduction everywhere else. Even small variations in pel create greater than observed

flux variabilities. Simultaneously no significant spectral hardening is present in those cases.

Therefore, leptonic variations in the power law index through magnetic field variability alone

cannot describe the observational features of Mrk 501.

In what follows we conduct a brief investigation of simultaneous changes in the power law

index pel and escape timescale τesc. Motivated by the extreme case of flare α with m = 4

(Fig. 5.32) we explore possible scenarios that could lead to spectral hardening in the X-rays

without the loss of low- and high-energy emission. In particular, we contrast and compare the

following choices in terms of a constant escape timescale of τesc,0 = R/c:

• τesc(B) = τesc,0 (B(t)/B0)
−m+mB where mB is a free parameter. In our testing, we used

mB = 1.5.

• τesc(γel) = τesc,0 (γel/γN)−mγ , where mγ is a free parameter and γN a normalization con-

stant. In our testing, we used mγ = 1 for the slope. For a slope of mγ = 1, electrons

below γN remain increasingly unaffected by escape from the source. In other words, for

γ ≪ γN we do not expect escape from the source. For our testing, we used a value close

to γc of the average state description, γN ∼ 105.

• τesc(B, γel) = τesc,0 (B(t)/B0)
−m+mB (γel/(γN))−mγ . A combination of the two previous

scenarios.

In Fig. 5.37 we present the time evolution SEDs for the three cases of τesc. In no case do

we observe an improvement compared to previous results. In particular, a dependence on B

reduces the SSC component even further. This is expected as the electron number at each

energy shifts downwards. An energy dependence creates a pivot point around γN . Increasing

γN towards γmax would lead to an increasing region of ”non-escape” in the low energy part.

On the other hand, the opposite would lead to the rapid escape of the majority of electrons.

We report the presence of a ”bump” at around ν = 1012.5 Hz to be a direct result of the

accumulation of non-escaping low energy electrons emitting synchrotron.

Varying the magnetic field B, the power law index pel, and the escape timescale τesc results

in a highly non-linear analysis with a complexity that exceeds the scope of this thesis. Moreover,

we did not find any supporting physical evidence explaining deviations from a constant escape

time of τesc = R/c inside blazar jet radiation zones. Therefore, a complete sampling of the

parameter space (m,mγ,mB, γN) as well as physical arguments supporting those claims will be

left as open questions for future studies.
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Figure 5.36: Flux histograms for pel variability with m = 0.5. The upper panel shows the

results for flare α, while the lower panel shows the results for flare β. An analysis of the

energy bands is found in Fig. 5.6 and the text discussing it.
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Figure 5.37: Time evolution SED plots for Flare α with m = 4 and different τesc

dependencies. Upper panel: τesc(B) = τesc,0 (B(t)/B0)
−m+mB . Middle panel:

τesc(γel) = τesc,0 (γel/γN)−mγ . Lower panel: τesc(B, γel) = τesc,0 (B(t)/B0)
−m+mB (γel/(γN))−mγ .
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5.4.2 Two-species changes

We remind the reader of our previous estimates (Section 5.2) of the emission frequencies of the

injected secondary particles. Assuming our average state values of B = 0.038G and δ = 20.41,

for photomeson interactions we have from Eq.(2.31):

γth
p,pγ ≈ 3.5 · 104(1 + z)−1δν−1

18 ≈ 105.85.

And from Eq.(2.32), Eq.(2.30):

γth
e,pγ ≈ Kpγγ

th
p mp/(4me) ≈ 107.81 ⇒ νsyn

e,pγ ≈ 3 · 106δB
(
γth
e,pγ

)2 ≈ 1022Hz.

Similarly, for Bethe-Heitler pair-production we have from Eq.(2.33):

γth
p,pe ≈ 1.2 · 102(1 + z)−1δν−1

18 ≈ 103.38.

And since γth
p,pe ≈ γth

e,pe, from Eq.(2.30) it follows:

νsyn
e,pe ≈ 3 · 106δBγ2 ≈ 1013.12Hz.

Thus, a harder proton power law increases the available protons for photomeson interactions

resulting in a synchrotron emission from secondaries at high energies. While the BH threshold

is at low energies, an increase of energetic protons results in a secondary population emitting in

the X-ray region (e.g. using the previous equations as a ”back-of-the-envelope” approximation:

γp,pe ≈ 106 → νsyn
e,pe ≈ 1018Hz). Therefore, variations in ppr in addition to pel will generally

result in a flux increase in the X-ray and high-energy region if the energy injection rate of the

proton population is high enough.

In the context of our previous discussion, the above implies possible scenarios of spectral

steepening (large values of m) without the large decrease in SSC flux. Adopting the same trend

as for pel:

ppr(t) = 1 + ppr,0

(
B(t)

B0

)−m

, (5.10)

we present in Fig. 5.38 the time evolution SEDs for joint leptohadronic power law index varia-

tions for flare β with m = 0.5 and m = 4 respectively. Comparing the upper panel of Fig. 5.38

to Fig. 5.33 we see the clear impact of photomeson interactions in the high-energy region. Si-

multaneously, no dominant BH component is present and the X-ray flux remains unchanged.

Contrasting the lower panel of Fig. 5.38 to Fig. 5.35 we now have a dominant hadronic emission

component in the (V)HE region, remedying the problems of the low flux values of the previous

section. Now, however, the predicted gamma-ray flux vastly exceeds the observations.

The prominent pion bump peaking at ∼ 1030 Hz of the upper panel of Fig. 5.38 and the

flux variability in the low energy component lead us to briefly investigate the optical depth for

γγ, its impact on the predicted VHE flux, and its variation throughout a flare. To conduct

this numerical run we use the most extreme of the discussed cases, m = 4 and flare α. To

calculate τγγ we use the delta approximation of Eq.(2.28) and the expression for the complete

cross-section of [10]:

τγγ(ϵ′1) =
R′πr2e
ϵ′21

∫ ∞

1/ϵ′1

dϵ′n′
iso(ϵ

′)φ̄(s0)ϵ
′−2 ; φ̄ (s0) = 2

∫ s0

1

ds
sσγγ(s)

πr2e
, (5.11)
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Figure 5.38: Time evolution SED plots of flare β for two-species power-law index variations.

The upper panel shows mild variation with m = 0.5, while the lower panel shows extreme

variation with m = 4.
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where

σγγ(s) =
1

2
πr2e

(
1 − β2

cm

) [(
3 − β4

cm

)
ln

(
1 + βcm

1 − βcm

)
− 2βcm

(
2 − β2

cm

)]
, (5.12)

with βcm = (1 − γ−2
cm)

1/2
=

√
1 − s−1 and s = γ2

cm. We remind the reader that primed variables

indicate parameters in the rest frame of the emission region. Furthermore, R is the radius of

the source, re is the classical electron radius, and γcm is the Lorentz factor of the 2 photons in

their center of momentum frame. In Fig. 5.39 we present the time evolution SEDs for power

law index variations with m = 4 for flare α with and without γγ absorption (top and bottom

panels respectively). With a dashed vertical line, we indicate the investigated frequency of

ν1 = 1031Hz or ε1 = 4.14 ·1016eV. With horizontal lines, we indicate at the first time step of the

variation the value of the pion bump peak without γγ absorption (νLν = 1043.15 erg s−1) and

the respective absorbed luminosity value (νLν = 1042.2 erg s−1). As seen in the lower panel of

Fig. 5.39, we recover the expected value of (ν1Lν)absorbed =
(

1−e−τγγ

τγγ

)
· (ν1Lν)unabsorbed [14]. In

Fig. 5.40 we present the time evolution of τγγ and of the absorbed representative luminosity of

νLν = 1043.15 erg s−1 throughout flare α using the analytical expression. From this numerical

run, we conclude that we have a significant attenuation due to γγ interactions between the pion

bump and the low-energy region. Varying the power law index can create spectral hardening

leading to a decrease of γγ absorption targets increasing the pion bump emission.

Motivated by the results shown in the lower panel of Fig. 5.38 we will finish this chapter

by investigating a moderate power law variability with a reduced proton energy injection rate

in a long-term scenario. We suggest that such a variation could lead to spectral hardening

comparable to the one observed, while a reduced value of Linj
p would ensure a ”dampened”

high energy component. We try m = 2 and Linj
p = 103.62Linj

e , i.e. an injection luminosity 2

orders of magnitude lower than in our average state description. We remind the reader how

the average state value of Linj
p = 105.62Linj

e has been derived as an upper value of our source.

As there is no hadronic component in the observational SED of Mrk 501, all values below

Linj
p = 105.62Linj

e should be treated as equally acceptable. This treatment is supported by the

available scientific literature [50]. To ensure we don’t have monoenergetic distributions, we

bound the power law index variation with an (arbitrary) upper value of p ≤ 2.6. In Fig. 5.41

and Fig. 5.42 we present the time evolution SEDs for the complete run, as well as the two flares.

In Fig. 5.43 - Fig. 5.45 we present the result for the flux histograms and the LCs for the full

leptohadronic run as well as the LCs for the flares α/β. We exceed the observed flux variability

at all energies except the Fermi band. Furthermore, we report a convoluted LC picture for the

flaring states. This is expected as during periods of high activity (as defined by our injected

TS) the targets for SSC upscattering are reduced leading to a decrease in the flux contribution

of the SSC component. Simultaneously, we see the expected extreme flux increase in the X-ray

band as a result of the spectral hardening and the resulting increased synchrotron emission.

These two results can also be contrasted by comparing the upper to the lower panel of Fig. 5.45.

We see how the VHE flux initially ”mimics” the behavior of the X-ray flux corresponding to the

initial increase of high-energy electrons. The sudden decrease around the peak of the injected

TS corresponds to the spectral hardening in the low-energy synchrotron region and the resulting

decrease of available SSC targets.
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Figure 5.39: Time evolution SED for power law index variations for flare α with m = 4 and

with γγ absorption (upper panel) and without (lower panel). With a dashed vertical line we

indicate the investigated frequency of ν1 = 1031Hz or ε1 = 4.14 · 1016eV. With vertical lines we

indicate at the first time step of the variation the value of the pion bump peak without γγ

absorption (νLν = 1043.15 erg s−1) and the respective absorbed luminosity value (νLν = 1042.2

erg s−1).
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Figure 5.40: Upper panel: Optical depth for γγ absorption at νγ = 1031Hz calculated via the

full cross section and the delta approximation. Lower panel: Attenuation of representative

luminosity value of νLν = 1043.15 erg s−1 highlighting the impact of τγγ.

Figure 5.41: Full TS time evolution SED for two-species power law index variation with

m = 2, Linj
p = 105.62Linj

e , and a hard upper limit on the power law index of p ≤ 2.6. An

animated version of the time evolution is found Here.
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Figure 5.42: Same as Fig. 5.41 for flare α (upper panel) and flare β (lower panel).
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Figure 5.43: Flux histograms for two-species power-law index variation with m = 2,

Linj
p = 105.62Linj

e , and an upper power law index value of p ≤ 2.6. An analysis of the energy

bands is found in Fig. 5.6 and the text discussing it.

Figure 5.44: LCs for the complete leptohadronic run for power law index variability.

Discussion of the superimpositions are found in Fig. 5.7.
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Figure 5.45: LCs for flares α (solid line) and β (dashed line) for power law index variations.

With black lines, the renormalized flares TS of Fig.5.2 have been superimposed. The energy

ranges of 0.3 − 3 TeV (upper panel), 0.1 − 100 GeV (middle panel), and 14 − 195 keV (lower

panel) are shown.
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In Fig. 5.46 we present the flux-flux diagrams for the leptohadronic power-law index vari-

ability. These diagrams consist of 2 structures. A line segment and a parabola. The decreasing

part inside the parabola corresponds to flaring states and is expected as a result of missing SSC

targets. Increasing the available Linj
p is a method of counteracting this decrease. Furthermore,

we suggest, that the parabola occurs during joint magnetic field + power law index variations

while the linear segment corresponds to the magnetic field variations during the upper bound

of pel,pr = 2.6.

We conclude that leptohadronic variations in the power law index of the 2 injected particle

populations lead to greater flux variabilities than purely leptonic variations. Throughout our

testing, no significant BH component has been observed. In contrast, synchrotron emission from

secondary electrons from photomeson interactions dominates the (V)HE region. The spectral

hardening of the particle populations for high m values produces a luminous pion bump as a

result of small optical depths τγγ. Choosing an intermediate value of m = 2, limiting the slope

values to pel,pr < 2.6, and reducing Linj
p by two orders of magnitude compared to the upper

limit value derived in Section 4.2.2 creates a long-term time variability SED with spectral

steepening but flux variability exceeding both observations and previous numerical runs with

particle energy injection rate/magnetic field variability. We exceed the observed XRT and

BAT variability in all of our tests. However, the data of the 1997 flares that exhibit the

drastic spectral hardening are not included in this sample. Therefore, more numerical runs

are needed to appropriately sample the parameter space of m and Linj
p to accurately conclude

whether power law slope index variations can approximate long-term observational features or

short-term periods of high activity.
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Figure 5.46: Flux-flux diagrams for leptohadronic power law index variability, comparing the

flux variabilities between Fermi vs. VHE (a), Fermi vs. BAT (b), Fermi vs. XRT (c), BAT vs.

R-Band (d). The cases for the complete TS (blue circles), as well as the results for flare α

(yellow stars) and flare β (purple squares) are indicated.
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Chapter 6

CTAO Predictions

In this Chapter, we will simulate Light Curves (LCs) and Spectra for the upcoming Cherenkov

Array Telescope Observatory (CTAO). In particular, in Section 6.1 we will introduce the concept

of Cherenkov radiation and how it can be used to observe γ-rays through ground-based tele-

scopes. Then, in Section 6.2 we will create an EBL-corrected simulated dataset with Gammapy

for the time-variation models of Chapter 5 and derive predicted LCs and spectra for the simu-

lated long-term time variability as well as flares α/β.

6.1 Cherenkov radiation and the CTAO

The CTAO will consist of ground-based Imaging Air Cherenkov Telescopes (IACTs) utilizing

the homonymous Cherenkov radiation. Charged particles moving through a medium can exceed

the speed of light in the medium producing Cherenkov radiation. This radiation is emitted at

an angle θ to the direction of the particle motion. The angle depends on the particle velocity

v, or β = v
c

normalized at the vacuum light speed, and the refractive index n of the medium

[59]:

cos(θ) =
1

nβ
. (6.1)

This radiation is caused by the by-products of interactions between Very-High-Energy (VHE) γ-

rays or protons with the atmosphere. The resulting cascades are called “Atmospheric Showers”.

An example for both cases is shown in Fig. 6.1 contrasting lateral extension and elevation

between γ-ray and proton secondary particle trajectories. The former consists of γγ/e−e+ pair

creations/annihilations. In the latter, proton cascades produce secondary hadronic particles

with varying mean free paths resulting in a spatially less confined event.
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Chapter 6 6.1 Cherenkov radiation and the CTAO

Figure 6.1: Secondary particle trajectories of VHE γ-ray (Left) and proton (Right) air

showers [60].

In Fig. 6.2 we showcase how an IACT projects such an event into the camera’s focal plane.

The extent and intensity of the resulting image depend on the γ-ray’s angle and energy. Fur-

thermore, using an array of IACTs, a stereoscopic reconstruction of shower arrival direction

and impact position is possible. This is illustrated in Fig. 6.3. Therefore, using the atmosphere

as the propagating medium, IACTs observe the Cherenkov radiation of atmospheric showers

and reconstruct the energy and position of the VHE γ-ray.

Figure 6.2: Air shower projection into the camera focal plane. Indicated are the angles

between the start, θ1, and end, θ2, of the shower [61].
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Figure 6.3: Stereoscopic geometric reconstruction. Left: Individual camera image data

intensity with arrows directing the main axis of the ellipse. Middle: Superimposed

intersection of the individual observations. Right: 3D view of the array. Each telescope’s

azimuthal angle ϕ to the ellipse’s main axis is indicated [61].

The CTAO will be the next-generation observatory of IACTs replacing the current observa-

tories of MAGIC, H.E.S.S., and VERITAS. Its proposed main benefit will be twofold. At the

time of the writing of this Thesis, all available VHE Observatories are private collaborations

with proprietary rights to the observations. The CTAO will be ”the first observatory of its

kind to operate as an open, proposal-driven observatory providing public access to its high-

level science data and software products”1. Furthermore, it will have an unpreceded sensitivity.

In Fig. 6.4 we present the flux sensitivity of the CTAO for 3 different livetimes (0.5, 5, 50hrs),

and in Fig. 6.5 we show the comparison between the sensitivity of the CTAO North and South

array for a livetime of 50 hours and the current observatories. However, a detailed discussion on

comparisons between the projected performance of the CTAO and current VHE observatories

is beyond the scope of the current discussion, and the interested reader is redirected to the

information provided on the performance section of the CTAO website2.

1https://www.ctao.org/for-scientists/
2https://www.ctao.org/for-scientists/performance/
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Figure 6.4: Flux sensitivity for the upcoming CTAO North (Left) and South (Right). In each

case, 3 representative observation times are provided (black: 50h, red: 5h, and purple:

0.5h)[55].

Figure 6.5: CTAO North and South array sensitivity for a 50-hour livetime compared to

existing VHE observatories. For a detailed discussion of each observatory see

https://www.ctao.org/for-scientists/performance/ and references therein [55].

6.2 CTAO Light Curve predictions with Gammapy

In this section, we will derive predicted LCs for the explored time variable models of the

previous Chapter. For this analysis, we use Gammapy [62],[63], a community-developed open-

source Python library. Built as a core package for CTA, this data analysis tool can be used for

current pointing and all-sky γ-ray observatories and neutrino detectors. In conjunction with

observations provided by the CTA, the workflow of Gammapy can be divided into Data Levels

(DLs) from 0-5. CTA carries out the data analysis for the first 3 DLs and provides the user with
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γ-like events of DL3. As such, the specifics won’t be further discussed. The analysis through

Gammapy therefore starts at DL3. The description of the workflow is presented in Fig. 6.6. Each

section notes its respective core package through a folder icon (denoted by a Python suffix,

e.g. test.data) while the grey bands indicate the pipeline from one DL to the next. Below

each folder, the most prominent objects within the Python sub-package are highlighted. In

particular, the provided data from the CTAO at DL3 include a list of γ-like events and the

Instrument Response Functions (IRFs). To transform the above into DL4, a data reduction is

necessary. The events and IRFs are projected and binned into a shared geometry. Furthermore,

the background is estimated, and ”safe” energy ranges for the analysis are established. This

data reduction results in DL4 object, count data, and reduced IRFs bundled into maps. Lastly,

modeling, fitting, and estimating data results in high-level data science products (DL5) such

as SED and LC estimations. For further discussion of the Gammapy DLs the interested reader

is redirected to the Gammapy documentation3 and to [62].

Figure 6.6: Gammapy analysis workflow. For each DL defined at the top, the corresponding

sub-packages are noted with a folder icon. Below each folder icon, the most prominent objects

within the sub-package are highlighted. Grey bands depict transformations to the next DL.

Below the DL5 category, example science products are depicted.

For our analysis, we will use the investigated time variable models of Chapter 5. Therefore,

we will create predicted CTAO LCs for the energy injection rate variability model of Section 5.2,

the magnetic field variability of Section 5.3, and the moderate-to-extreme power law index

variability with a reduced proton luminosity component of Section 5.4.2. We aim to model

both the long-term variability of the above scenarios as well as flares α/β. In particular, we use

3https://docs.gammapy.org/0.20/userguide/package.html
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Gammapy to create a synthetic dataset (at DL4) based on our SED models for Mrk 501. This is

achieved at the previously discussed data reduction step. Instead of using CTA observations,

we use our EBL attenuated (Finke model [64]) SED models to create a simulation for each

step of the time variation. The resulting count data is shown in Figs. 6.7-6.9. Then, using the

LightCurveEstimator interface we transform the count data into predicted LCs for each of the

3 scenarios. These results are showcased in Figs. 6.10-6.12. We note, that each input is spaced

apart at 1 tcr = 0.558days with an observational livetime of 5 hours. Therefore, the cadence of

the simulated LCs exceeds the cadence achieved in reality, that is 1 observation per night. This

increased prediction cadence is advantageous for our analysis, as it provides more data points

than what is available from actual observations. The observational data should fall within the

predicted regions if our model is accurate. Having more predictions than observations ensures

that our model comprehensively captures the behavior of the data, which would be challenging

if the situation were reversed.

Figure 6.7: Synthetic time series of counts expected in the 0.3-3 TeV energy range for the

long-term time variability (upper panel), and flares α/β (lower left/right) for changes in the

particle energy injection rate of Section 5.2.
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Figure 6.8: Same as Fig. 6.7 for the magnetic field variability of Section 5.3.
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Figure 6.9: Same as Fig. 6.7 for the moderate-to-extreme power law index variability with a

reduced proton luminosity component of Section 5.4.2. Upper/middle panel contrasts

logarithmic to linear scaling.
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Figure 6.10: Synthetic CTA LCs for the long-term time variability (upper panel), and flares

α/β (lower left/right) for changes in the particle energy injection rate of Section 5.2.
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Figure 6.11: Same as Fig. 6.7 for the magnetic field variability of Section 5.3.
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Figure 6.12: Same as Fig. 6.10 for the moderate-to-extreme power law index variability with a

reduced proton luminosity component of Section 5.4.2.

Due to the extreme variability presented in Fig. 6.9 and Fig. 6.12 we chose to include a

logarithmic scaling in the long-term representation. From the above, we conclude that the

long-term variability of each scenario generally follows the trend of the calculated LCs of the

SED models in Chapter 5. We note an important outcome of this numerical run for the

flare analysis of the injection rate and magnetic field variability (Fig. 6.10 and Fig. 6.11).

Specifically, the TS of flare β is a symmetric triangular pulse (as seen in Fig. 5.2). This feature

is not recovered in the CTA predictions. Compared to the TS, our CTA prediction reports a

skewness. We do not report the same behavior for flare α. The predicted LCs track the shape

of the TS in Fig. 5.2. These findings are in line with our results of Chapter 5. Lastly, we report

large variability in the predicted long-term LC of the power law index variation of Fig. 6.12.
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We suggest that the lower values are more confined and resemble the below-zero section of the

TS of Fig. 5.1 as a result of the upper bound on the power law index, pel,pr ≤ 2.6. Furthermore,

in contrast to the two preceding cases, we report a predicted flux reduction at the TS peak of

flare α and close to the peak of flare β. Following the discussion of Chapter 5.4 this is to be

expected as a result of the reduction of available SSC targets. The LCs of all 3 cases can be

used as predictive tools to contrast our investigated models to future long-term observations or

observations of flaring events with the CTAO.

Lastly, we will focus on the presented long-term power law index variation model to in-

vestigate a scenario with a hadronic signature. First, in Fig. 6.13 we compare the different

livetimes of 0.5,1, and 5hrs to investigate the minimum timescale needed to observe Mrk 501.

For the discussed variation, we report how detection times of 30min yield high-quality results

not obscured by background radiation eliminating the need for longer livetimes.

Figure 6.13: Livetime comparison between 0.5,1, and 5hr for flare α (upper panel) and flare β

(lower panel) in the power law index variations scenario.
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Furthermore, motivated by the 0.3-3 TeV LC of Fig. 6.13 for flare α we extend our region

of investigation and present a sample of simulated spectra in the 0.3-10 TeV energy region. To

be precise, using our previously generated dataset we present in Fig. 6.14-6.16 the spectra for

t = 0, 11, 43d. We compare the average state before any time variations (t = 0d), to a period of

maximum VHE flux before the reduction of the SSC flux (t = 11d), and to the anti-correlation

peak (t = 43d) corresponding to the maximum of the injected TS. In each figure, we present

in the upper panel the CTA simulation (blue symbols) alongside our EBL attenuated model

(orange line). In the lower panel, we present the residuals between the data and the model.

We note how in the low flux states (t = 0, 11d) the discrepancies between the model and data

increase for higher energy values. This is expected as we are moving away from the region of

CTAO’s highest sensitivity and are simultaneously lowering the flux to its simulated minimum.

Specifically for the anticorrelation peak, we highlight the impact of the hadronic component in

Fig. 6.17 contrasting the leptohadronic to a purely leptonic spectrum. We conclude that the

hadronic inclusion plays a significant role in the VHE spectrum, especially at the lower energy

part, and its significance throughout the VHE can be increased for higher values of Linj
p (see

discussion of Section 5.4.2 and the VHE flux of Fig. 5.38).

From this investigation of the power law index variation scenario, we leave as an open

question the impact of the upper bound on pel,pr as well as the choices of m and Linj
p . Although,

motivated by qualitative arguments, we illustrated the impact of exposure time and hadronic

inclusion for specific parameter choices in our parameter space, a thorough investigation of it

is missing and should be the focus of future dedicated studies.
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Figure 6.14: Spectrum for flare α at timestep t = 0d. Upper panel: Indicated are the

simulated data points (blue) and our used SED model (orange). Both have been attenuated

by the EBL model of Finke [64]. Lower panel: Residuals between our data and model.

Figure 6.15: Same as Fig. 6.14 for t = 11d.
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Figure 6.16: Same as Fig. 6.14 for t = 43d.
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Figure 6.17: Hadronic impact in flare α at t = 43d. Each figure presents the simulated spectra

(blue) and used SED model (orange) alongside the residuals. Upper figure: Spectrum for a

leptonic SED model. Lower figure: Spectrum for a leptohadronic SED model.
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Summary & discussion

In this Chapter, we will summarize our findings and briefly compare them with the currently

available literature. We will emphasize our limitations and present suggestions for future bodies

of work.

Blazar Time Series Analysis

We analyzed a broad sample of TeV-detected blazars (Fig. 3.3) to derive their statistical proper-

ties in the high-energy range. Using Gaussian process modeling through the software celerite2

we employed the celerite method to fit stochastically-driven damped simple harmonic oscilla-

tors (SHOs) to observational Fermi Light Curves (LCs). For each source, we fitted a singular

SHO and derived their celerite parameters, which are summarized in Table 3.1. These create

SHO models that accurately describe the statistical behavior of each source in the Fermi en-

ergy band enabling us to create synthetic LCs for it. Furthermore, we investigated the values

of our PSD slopes and breaks. We have found how the latter are in the hundreds of days. As

the values are not multiples of 365 days we can exclude artificial origins caused by the earth’s

rotation around the sun. A prevalent suggestion is to connect this relaxation time of the γ-ray

variability to processes responsible for X-ray and optical variability (e.g., thermal timescales of

the innermost parts of the disks [31], perturbations originating at the outer radii of an accretion

disk propagating inward and creating a dependence on diffusion timescale and the viscosity of

the flow [32]). However, to the best of the author’s knowledge, no conclusive theory has been

proposed to explain these findings.

To prove the goodness of our celerite fits, we performed a number of statistical tests, with

summarized results in Table 3.2. This approach aligns with the current literature [28],[27],[24].

Through our tests, we report in some cases better statistical fits than those available in the lit-

erature. Additionally, we examined the slopes of the resulting blazar Power Spectrum Densities

(PSDs) to determine deviations from the expected value of two (See discussion in Section 3.1).

We found tighter constraints (i.e., smaller errors) compared to earlier works. We attribute this

primarily to differences in data treatment. We conducted our analysis in logarithmic space with

data provided by the Fermi Light Curve Repository (LCR) with a mean cadence of 7 days.
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Previous authors conducted their own γ-ray event data reduction, resulting in observations

of varying mean cadence. Furthermore, they fitted their models on linearly scaled data. We

suggest the parameter investigation to be sensitive to these steps. There is also a discrepancy

between the model usage. We chose a singular SHO, while previous contributions investigated

combinations of SHOs and the additions of damped random walks to the models. Moreover,

other authors considered different models altogether (e.g. CARMA).

We also acknowledged the limitations of our method. A time series analysis cannot de-

scribe extreme variability on timescales comparable to the mean cadence. To address this, we

recommend supplementing the investigation with time-series models focusing on short flaring

timescales. Moreover, our approach did not reveal the periodicity of PG 1553+113 hidden by

the statistical noise (Section 3.3). This limitation can be addressed by increasing the model

complexity (e.g. combining SHOs) to describe the main component while identifying secondary

features. This aspect is worth investigating in the future.

In summary, we have derived the celerite parameters for the sources of our blazar sample,

which can be used in future studies to create synthetic LCs in the Fermi band. We high-

lighted the fit quality and PSD slopes as comparison tools and discussed the limitations of our

contribution.

Mrk 501: A Time Variability Study

Using Mrk 501 as our test case we investigated the behavior of time variations in hybrid

leptohadronic SSC scenarios. After discussing and selecting the appropriate data bounds and

initial parameters we argued and derived its average state description using the numerical code

LeHaMoC. Our approach is consistent with the available literature [50], in treating the hadronic

component. More specifically, we attribute the time-average SED to processes associated with

primary leptons, and set an upper limit on the hadronic/proton population in the jet. There

are no visible hadronic components in the observational SED of Mrk 501 such as in 3C 371

and PKS 0735+17 [50]. In those BL Lacs, a hadronic population is necessary to explain the

observations between the broad-band features of the leptonic synchrotron+SSC scenario. As

we are unable to constrain the hadronic contribution we take the derived upper limit as our

representative value.

Using the time-average SED model as a starting point, we argue in favor of key parameter

variations motivated by the synthetic LCs of the Fermi band calculated in celerite2. For

each time step of 1 light-crossing time tcr we vary 1 or more parameters in the calculations of

LeHaMoC. This results in time-variable SED models which we present and discuss. Specifically,

we model variations in the particle energy injection rate, the magnetic field strength, and

changes in the power law index of the (joint) particle population.

For the first two variations, we connect the synthetic LC to the parameters directly via

theoretical arguments. We calculate the long-term time evolution of the SED and supplement

our analysis with short-term periods of high activity to simulate flaring events. For specific

representative energy bands, we present the flux variability through flux histograms, calculate
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the coefficients of variations, and investigate time lags with Discrete Correlation Functions

(DCFs). We have found our model results to underestimate the observed flux variability in

most energy bands. We present the flux-flux diagrams of the discussed energy bands and derive

their scaling. This constitutes a predictive tool for future observations, enabling us to compare

our models to any observed variability.

For the power law index variations we first investigate changes in a purely leptonic pop-

ulation and later expand our analysis to include a hadronic component. We analyzed and

discussed leptonic variabilities of various degrees and discussed their benefits and shortcomings

in approximating the observed behavior of Mrk 501. We have found that greater variations

lead to spectral hardening and a flux increase in the X-ray range but a drastic flux reduction

at energies below optical and in the SSC component above 1022GHz. Mild power law index

variations are not accompanied by significant spectral hardening in the power-law synchrotron

component, extending from optical to X-ray energies, but do not predict the aforementioned

flux reduction in the other two energy bands. This could suggest that such a leptonic model

could describe a period of moderate activity of Mrk 501. We expand our analysis on two-species

changes in the power law index. Our previous results for X-ray and optical flux variability do

not change but we report extreme flux values at high energies caused by the presence of a signif-

icant photo-meson contribution. Lastly, we investigate an alternative scenario with a reduced

proton energy injection rate compared to the derived upper limit value and an upper limit

to the power law index to model the long-term scenario of moderate-to-extreme variability in

the power law index. We present our findings through flux histograms and flux-flux diagrams

and discuss their implications. We conclude, that to accurately describe simultaneous extreme

flares in the X-ray and (V)HE region both a leptonic and hadronic component are necessary,

whereas modeling moderate X-ray activity could be achieved by leptonic means.

Following recent studies, [51] investigates a rare spectral feature of Mrk 501 that a purely

leptonic model cannot explain. They suggest a π0-decay scenario to model a “bump” at 3 TeV

during an extreme X-ray flaring event in 2014. This indicates the presence of an underlying

hadronic component within the source dominating the emission at a narrow γ-ray region during

a period of high X-ray activity. This result should be taken into consideration when trying to

model moderate leptonic power law variations to explain periods of increased X-ray activity.

Furthermore, features like these could be used in future studies to decouple the power law index

variations between electron and proton populations. Another important aspect of this thesis

is the derived flaring LC behavior of the energy injection rate/magnetic field strength and the

time lag/skewness compared to the injected TS when investigating flare α and β. These features

are also present in the derived DCFs. In Ref. [65] the authors recover similar results within

their model description. Specifically for the magnetic field, they assume an inverse relationship

between the magnetic field and the expanding emission region size, B ∝ 1/r. They find flares

peaking earlier than for a constant magnetic field and attribute this feature to the shift of

the synchrotron critical frequency (νsyn ∝ B) to lower values. Moreover, they argue how this

creates a scenario where it takes more time to accumulate the required number of electrons

to generate a peak at higher frequencies, attributing the time lags to it. In our analysis, we
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notice the opposite, a delayed peak. One could investigate whether the reverse is true, that

since the magnetic field strength is rising one should expect a delayed peak. Similarly, by

changing the injection profile, Ref. [65] predict varying degrees of lags in the flare profiles

compared to the profile. A detailed comparison of our results in light of those findings and the

assumptions therein will be left for future endeavors. Lastly, we report how a similar study

has been conducted in the past for blazar sources PKS 2155-304 and 3C 273 [66]. Although

the method behind our works is similar, we report 3 key differences in our approaches besides

the different investigated sources. The first difference is found in the time series analysis.

While we have used the Gaussian process celerite (Section 3), in Ref. [66] the authors use

the Emmanoulopoulos method [67]. This method takes as input parameters an evenly spaced

TS, and thus the authors were forced to join the ”gaps” of an unevenly spaced TS. On the

contrary, the celerite approach is unaffected by unevenly spaced data. The effect of this as

well as a detailed investigation of the differences between the two time series methods as well

as their impact on the resulting blazar time variability should be the focus of future studies

in the field. The second and most major difference is our leptohadronic model description.

Ref. [66] focuses on describing the average leptonic state of their test cases and consequently

model variations of their leptonic model. On the contrary, in our investigation, we consider

a hybrid leptohadronic model and search for hadronic signatures such as those present during

power law index variations. This constitutes also the third key difference, an investigation of

different parameter variabilities. While we do not investigate changes in the Doppler factor

or in external photon fields we investigate 3-parameter (magnetic field and power law index of

both populations) variability and discuss the importance of the resulting hadronic signatures.

Thus, our methodology significantly enhances the flexibility in studying the time variability

of blazars by expanding the parameter space and establishing a coupling between the variable

source parameters.

To summarize, we derived the average state description of Mrk 501 and discussed various

scenarios of key parameter variability. This contribution has led to a qualitative description of

the impact of each variation and its comparison to the observational behavior. We proposed

statistical tools, such as flux-flux diagrams, CVs, and DCFs, for the comparison between our

model and observations while posing key questions for further research in this field. There-

fore, we suggest future studies to focus on the minutiae of the DCFs at small time values and

a detailed investigation of the power law index variability parameter space, constraining and

explaining the morphology behind the flux-flux diagram structure of the long-term variability.

Lastly, using this contribution as a groundwork we suggest future studies to focus on more

complex parameter combinations, such as a detailed exploration of varying escape times. Fur-

thermore, varying Lorentz factor limits, or even a multi-zone model description could jointly

be investigated by considering a two-zone model of an emission and acceleration region and

connecting the maximum Lorentz factor to the efficiency of the acceleration mechanism.
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Chapter

Mrk 501: CTAO predictions

Using Gammapy we attenuated our SED models with the EBL model of Finke [64] and simulated

results for the investigated variations of the energy injection rate, the magnetic field, and the

power law index for both populations. Specifically, we simulated for all 3 cases the predicted

count rate time series and the LCs of each scenario in the 0.3-3 TeV energy band. In this energy

band, CTAO is expected to be the most sensitive, thus our results can be used as predictive

tools for future observations. We note how all the simulated results follow our discussion when

investigating our theoretical findings. As the power-law index variability exhibits a prominent

hadronic signature we investigate various detector livetimes for this scenario. We have found

that a livetime as low as 30min is capable of observing our proposed time variations in Mrk

501. Furthermore, motivated by the simulated LC of flare α, we calculated simulated spectra

in the 0.3-10 TeV range for the average state of Mrk 501, its flux maximum during the flare, as

well as the anti-correlation peak corresponding to the maximum of the injected TS. Lastly, we

repeated our simulation for a purely leptonic scenario and contrasted our spectral results for

the anti-correlation peak showcasing the clear hadronic impact on our model.

Conclusions

Throughout this thesis, we investigated a sample of blazars, conducted a time series analysis in

the Fermi energy band with celerite, and derived their celerite parameters capable of creating

synthetic Fermi LCs. Creating such a LC for the BL Lac Mrk 501 we investigated time vari-

ability utilizing a 12-year-long LC, in which week-long flares could be isolated. We examined

variations in the particle energy injection rate, the magnetic field strength, and the power law

index. For the first two, we have found that we are underpredicting the observational variabil-

ity in the X-ray ranges while overpredicting the optical variability. However, the shorter time

duration of the used optical data is a caveat that needs to be addressed in future works. For

variations in the power law index, we investigated both leptonic and leptohadronic scenarios.

We have found that to explain simultaneous flares in the X-ray range and the (V)HE range

a dominant hadronic component is necessary. Furthermore, we found that by modifying the

injected proton luminosity and putting an upper bound on the power law index we can find a

parameter space capable of producing various strengths of flux and spectral variability. How-

ever, in the cases we tested, we exceeded the observational variability in the X-ray and optical

region. We suggest the exploration of this parameter space as a topic for future studies. Lastly,

we created CTAO simulations, showed the clear hadronic impact of power-law index variations,

and illustrated how small livetimes can observe the proposed variability.
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Posterior distributions without

parameter bounds in the average state

emcee investigation
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Chapter A

Figure A.1: Posterior distributions for the fitting process with emcee and LeHaMoC for Mrk

501 for an unbounded parameter space.
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Posterior distributions with(out) X-ray
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investigation
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Chapter B

Figure B.1: Posterior distributions for the fitting process with emcee and LeHaMoC for Mrk

501 with X-ray data.
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Chapter B

Figure B.2: Posterior distributions for the fitting process with emcee and LeHaMoC for Mrk

501 without X-ray data.
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S. Funk, P. Fusco, J. L. Gómez, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani,

B. Giebels, N. Giglietto, P. Giommi, F. Giordano, A. Giuliani, T. Glanzman, G. God-

frey, I. A. Grenier, C. Gronwall, J. E. Grove, L. Guillemot, S. Guiriec, M. A. Gur-

well, D. Hadasch, Y. Hanabata, A. K. Harding, M. Hayashida, E. Hays, S. E. Healey,

J. Heidt, D. Hiriart, D. Horan, E. A. Hoversten, R. E. Hughes, R. Itoh, M. S. Jackson,
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nis Prester, M. Doro, V. Fallah Ramazani, A. Fattorini, A. Fernández-Barral, G. Ferrara,

D. Fidalgo, L. Foffano, M. V. Fonseca, L. Font, C. Fruck, D. Galindo, S. Gallozzi, R. J.
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M. Mostafá, A. Nayerhoda, L. Nellen, M. Newbold, R. Noriega-Papaqui, A. Peisker,
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