
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Improving the Locality of Page Table Walks in the Cache
Hierarchy of Modern Microprocessors

Angelos E. Chatzopoulos

Supervisor: Vasileios Karakostas, Assistant Professor

ATHENS

August 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βελτιώνοντας την Τοπικότητα του Πίνακα Σελίδων στην
Ιεραρχία της Κρυφής Μνήμης Σύγχρονων

Μικροεπεξεργαστών

Άγγελος Ε. Χατζόπουλος

Επιβλέπων: Βασίλειος Καρακώστας, Επίκουρος Καθηγητής

ΑΘΗΝΑ

Αύγουστος 2024

BSc THESIS

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern
Microprocessors

Angelos E. Chatzopoulos
S.N.: 1115201900217

SUPERVISOR: Vasileios Karakostas, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βελτιώνοντας την Τοπικότητα του Πίνακα Σελίδων στην Ιεραρχία της Κρυφής Μνήμης
Σύγχρονων Μικροεπεξεργαστών

Άγγελος Ε. Χατζόπουλος
Α.Μ.: 1115201900217

ΕΠΙΒΛΕΠΩΝ: Βασίλειος Καρακώστας, Επίκουρος Καθηγητής

ABSTRACT

As the memory footprints of modern, memory-intensive workloads are increasing, con-
ventional TLBs are often inadequate to fully cover their growing working sets, leading to
frequent TLBmisses that cause long latency page table walks due to accesses in the main
memory.

In this thesis we propose PT-Baker, a software, system-level approach for reducing the
latency of page table walks for applications that suffer from a high number of TLB misses
and insufficient page table walks locality. The key idea of PT-Baker is the introduction of a
helper thread that periodically iterates and accesses the workload’s page table entries to
preserve them within the cache hierarchy and accelerate the address translation process.
We design and implement this approach in both (i) user-level, where the helper thread
touches the workload’s allocated memory using a page-size stride and triggers on purpose
page walks, and (ii) kernel-level, by introducing a new system call that directly accesses
the page table of the application. The user-level approach avoids any kernel modifications.
However, it results in increased memory pressure because, as the helper thread iterates
through the application’s allocated memory to touch the page table entries and fetch them
in the cache hierarchy, it also fetches the corresponding application data. On the other
hand, the kernel-level approach directly fetches the page table entries without filling the
memory hierarchy with application data, but this approach requires kernel modifications,
in addition to application modifications.

We evaluate our approach on a native and a virtualized system, as well as on a memory-
pressured system. We conduct experiments with various parameter settings to adjust
the aggressiveness of the helper thread, while we also consider thread placement on the
microprocessor to utilize different parts of the cache hierarchy. Our evaluation shows
that PT-Baker reduces the main memory accesses due to page walks by up to 83% and
improves the performance by up to 5.9% with the user-level approach on a native system.
With the kernel-level approach, PT-Baker reduces themainmemory accesses due to page
walks by up to 99% and improves the performance by up to 18%.

SUBJECT AREA: Computer Architecture, Operating Systems, Hardware/Software
Interaction

KEYWORDS: Virtual Memory, Address Translation, Translation Lookaside Buffer,
Page Table, Cache Hierarchy, Cache Locality, Memory System

ΠΕΡΙΛΗΨΗ

Καθώς οι απαιτήσεις μνήμης των σύγχρονων εφαρμογών αυξάνονται, οι συμβατικοί πί-
νακες μετάφρασης σελίδων (TLB) των μικροεπεξεργαστών είναι συχνά ανεπαρκείς για
να καλύψουν τα συνεχώς αυξανόμενα δεδομένα που επεξεργάζονται οι εφαρμογές αυτές,
οδηγώντας σε συχνές αστοχίες TLB που προκαλούν χρονοβόρες διασχίσεις του πίνακα
σελίδων λόγω προσβάσεων στην κύρια μνήμη.

Σε αυτή την πτυχιακή εργασία, προτείνουμε το PT-Baker, μια προσέγγιση λογισμικού που
μειώνει την καθυστέρηση στη διάσχιση του πίνακα σελίδων για εφαρμογές με υψηλές
αστοχίες TLB και ανεπαρκή τοπικότητα στον πίνακα σελίδων. Η βασική ιδέα του PT-Baker
είναι η εισαγωγή ενός βοηθητικού νήματος στην εφαρμογή που περιοδικά πραγματοποιεί
προσβάσεις μνήμης για να διατηρήσει τις καταχωρήσεις του πίνακα σελίδων της εφαρ-
μογής εντός της ιεραρχίας της κρυφής μνήμης και να επιταχυνθεί με αυτόν τον τρόπο η
μετάφραση εικονικών διευθύνσεων. Υλοποιούμε αυτή την προσέγγιση τόσο (i) σε επίπεδο
χώρου χρήστη, όπου το βοηθητικό νήμα αγγίζει τη μνήμη της εφαρμογής ούτως ώστε να
παράγει εκκούσια αστοχίες TLB και διασχίσεις στο πίνακα σελίδων για να φορτωθεί στην
ιεραρχία της κρυφής μνήμης, όσο και (ii) σε επίπεδο πυρήνα, εισάγοντας μια νέα κλήση
συστήματος που φορτώνει άμεσα τον πίνακα σελίδων της εφαρμογής στην ιεραρχία των
κρυφών μνημών. Η προσέγγιση σε επίπεδο χρήστη αυξάνει την πίεση στην ιεραρχία της
μνήμης γιατί φορτώνει και δεδομένα της εφαρμογής στην ιεραρχία των κρυφών μνημών,
αλλά δεν απαιτείται εγκατάσταση τροποποιημένου πυρήνα λειτουργικού συστήματος. Η
προσέγγιση σε επίπεδο πυρήνα φορτώνει άμεσα τις καταχωρήσεις του πίνακα σελίδων
χωρίς να γεμίζει τη μνήμη με δεδομένα της εφαρμογής, αλλά απαιτείται επιπλέον τροπο-
ποίηση του πυρήνα.

Αξιολογούμε την προσέγγισή μας σε φυσικό και εικονικό σύστημα, καθώς και σε σύστημα
με υψηλή πίεση μνήμης λόγω ανταγωνισμού στην ιεραρχία των κρυφών μνημών. Διεξά-
γουμε πολλαπλά πειράματα εξετάζοντας διάφορες παραμέτρους για να διαχειριστούμε την
επιθετικότητα του βοηθητικού νήματος, και εξετάζουμε την τοποθέτησή του βοηθητικού νή-
ματος στον μικροεπεξεργαστή για να αξιοποιήσουμε την ιεραρχία των κρυφών μνημών.
Η αξιολόγηση μας δείχνει ότι το PT-Baker μπορεί να μειώσει τις προσβάσεις στην κύρια
μνήμη έως και 83% και να βελτιώσει την απόδοση έως και 5.9% με την προσέγγιση επιπέ-
δου χρήστη σε ένα φυσικό σύστημα. Με την προσέγγιση επιπέδου πυρήνα, το PT-Baker
μπορεί να μειώσει τις προσβάσεις στην κύρια μνήμη έως και 99% και να βελτιώσει την
απόδοση έως και 18%.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική Υπολογιστών, Λειτουργικά Συστήματα,
Αλληλεπίδραση Υλικού/Λoγισμικού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Εικονική Μνήμη, Μετάφραση Διευθύνσεων, Κρυφή Μνήμη
Μετάφρασης Διευθύνσεων, Πίνακας Σελίδων, Ιεραρχία Κρυφών
Μνημών, Τοπικότητα Κρυφής Μνήμης, Σύστημα Μνήμης

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Vasileios Karakostas for his dedicated
support and guidance. Without his persistent help and encouragement, this thesis would
not have been possible.

In addition, I would like to extend my thanks to professor Dimitrios Gizopoulos and re-
searcher George Papadimitriou for their valuable contributions and comments throughout
the research.

Last but not least, I would like to thank my family and friends for the continuous support
while undertaking my research and writing my thesis.

CONTENTS

1. INTRODUCTION 14

1.1 Goal & Motivation . 14

1.2 Approach . 15

1.3 Thesis Contributions . 15

1.4 Organization . 16

2. BACKGROUND 17

2.1 Cache Memory . 17

2.2 Virtual Memory . 17
2.2.1 Address Translation . 17
2.2.2 Accelerating Address Translation . 18
2.2.3 Improving Address Translation through Huge Pages 19
2.2.4 Virtual Memory in Virtualized Environments . 20

3. MOTIVATION 21

3.1 Quantifying the Frequency of Misses in the Memory Hierarchy 21

3.2 Quantifying the Locality of Page Walks in the Memory Hierarchy 21

3.3 Opportunity for Improvement . 22

4. PT-BAKER: A HELPER-THREAD APPROACH 24

4.1 Overview . 24

4.2 User-level Approach . 25

4.3 Kernel-level Approach . 25

4.4 Configuring the Helper Thread . 27
4.4.1 Selecting Page Stride . 28
4.4.2 Triggering Page Walks . 28
4.4.3 Crafting a TLB microbenchmark . 28

4.4.3.1 Reverse Engineering the MMU behavior of the Prefetch Instruction 29
4.4.4 Throttling PT-Baker . 29
4.4.5 Placing PT-Baker Thread . 30

4.4.5.1 Reverse Engineering SMT Sharing in TLBs 31

4.5 Discussion . 32

5. EVALUATION METHODOLOGY 33

5.1 System Configuration . 33

5.2 Workloads . 34

5.3 Hardware Performance Counters & Metrics . 34

6. RESULTS 36

6.1 Native Execution . 36
6.1.1 Native Execution in a Non-Memory-Pressured System 36
6.1.2 Native Execution in a Memory-Pressured System 36

6.2 Virtualized Execution . 38

6.3 Sensitivity Analysis . 39
6.3.1 Running PT-Baker using SMT . 41
6.3.2 Testing User PT-Baker using the Builtin prefetch Instruction 41
6.3.3 Testing PT-Baker using NOP and Sleep Instructions 42

6.4 Power Consumption . 43

7. RELATED WORK 45

7.1 Prioritizing PTEs in the Cache Hierarchy . 45

7.2 Storing TLB Entries in the Cache Hierarchy . 46

8. CONCLUSION AND FUTURE WORK 47

ABBREVIATIONS - ACRONYMS 48

APPENDICES 48

A. SOFTWARE ARTIFACT 49

REFERENCES 51

LIST OF FIGURES

2.1 The four-level radix page table organization of the x86-64 ISA. 18
2.2 Virtual address translation using a one-level TLB. 19
2.3 Virtual address translation using a two-level TLB hierarchy. 19
2.4 Virtual address translation in a virtualized system using four-level nested

page tables. 20

3.1 Misses per kilo instructions (MPKI) for L2 data TLB load misses, DRAM
accesses (LLC misses) during page walk, and data DRAM accesses (LLC
misses) in native execution. 22

3.2 Breakdown of the page walks locality, i.e., percentage of memory accesses
due to page table walks that are fetched from the L2 cache, L3 cache, and
DRAM, in native (left) and virtualized (right) execution. 23

3.3 Breakdown of the page walks locality, i.e., percentage of memory accesses
due to page table walks that are fetched from the L2 cache, L3 cache,
and DRAM, on a native memory-pressured system using 1 cache stressor
thread (left) and 2 stream stressors threads (right) with the stress-ng tool. . 23

4.1 PT-Baker design and synchronization within a workload. 25
4.2 L1 (left) and L2 (right) DTLB thrashing experiment using the TLB thrashing

algorithm. 29
4.3 Reverse engineering the prefetch instruction’s page table walk behavior.

We observe increased L2 DTLBmisses, indicating that the prefetch instruc-
tion triggers page walks on the AMD Zen 3 architecture. 30

4.4 AMD CPU Zen 3 PT-Baker thread placement scenarios: PT-Baker can be
placed on the same core using SMT to fill private caches, or on another
core to utilize only the LLC. 31

4.5 AMDRyzen 5900X LLC and cores partitioning. Each group of 6 cores share
32MB LLC, thus PT-Baker must be on the same CCX chip to utilize the
cache hierarchy. 31

4.6 Reverse engineering thread ID tag validation of TLB entries. We observe
increased L2 DTLB misses while accessing a shared allocated structure
within the two hyperthreads of a core, thus TLB entries are not shared within
the same core (SMT). 32

6.1 PT-Baker native execution performance improvement for both user-level
approach and kernel-level approach with NOP instructions (greater than or
equal to zero) and sleep instruction parameters. 37

6.2 DRAM percentage decrease during page table walks on a native system
using user-level and kernel-level PT-Baker with NOP and sleep instruction
parameters. 37

6.3 User-level PT-Baker performance improvement on a nativememory-pressured
system using the sleep instruction parameter. 38

6.4 Kernel-level PT-Baker performance improvement on a nativememory-pressured
system using sleep instruction parameter. 39

6.5 GAPBS - BC workload using the NOP instruction parameter for user-level
(left) and kernel-level (right) PT-Baker on a native memory-pressured system. 39

6.6 PT-Baker virtual execution performance improvement for both user-level
approach and kernel-level approach with NOP instructions (greater than or
equal to zero) and sleep instruction parameters. 40

6.7 Kernel-level PT-Baker, using sleep instructions parameter, performance im-
provement on a virtual memory-pressured system. 40

6.8 Simultaneous Multithreading (SMT) evaluation on Graph500 - List Based,
LibLinear and GAPBS BC for user-level and kernel-level PT-Baker with
sleep instruction parameter. 41

6.9 Using prefetch instruction for user-level approach on LibLinear, Graph500
and GAPBS BC workloads with the Sleep instruction parameter. 42

6.10 Sensitivity analysis for number of NOP instructions parameter on LibLinear
using user-level and kernel-level PT-Baker. 42

6.11 Sensitivity analysis for sleep instruction parameter in microseconds on Lib-
Linear using user-level and kernel-level PT-Baker. 43

6.12 Power Consumption using kernel-level approach PT-Baker thread and user-
level PT-Baker thread. Kernel-level PT-Baker thread using NOP instruc-
tions KWN. Kernel-level PT-Baker thread using sleep KWS. User-level PT-
Baker thread using NOP instructions UWN. User-level PT-Baker thread us-
ing sleep instruction UWS. 44

LIST OF TABLES

5.1 System hardware and software configuration. 33
5.2 Workloads - Memory footprints of workloads and PT-Baker 34
5.3 Performance events used in perf-stat tool 35

PREFACE

This thesis was completed at the National and Kapodistrian University of Athens during
the 2023 - 2024 academic year under the supervision of assistant professor Vasileios
Karakostas.

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

1. INTRODUCTION

Virtual memory is present in almost all classes of modern computing systems. The bene-
fits of enhanced isolation, security between processes, as well as increased programmer
productivity, have constituted its presence ubiquitous. However, virtual memory provides
all the aforementioned benefits by introducing an abstraction layer between the virtual
address space that the applications see, and the physical memory that the computing
system is equipped with. This abstraction layer requires translation from the virtual to the
physical address space and comes with adequate software and hardware support. At the
software level, the operating system manages the memory and stores mappings from the
virtual to the physical address space in the page table. At the hardware level, the trans-
lation lookaside buffer (TLB) accelerates this translation step by caching recently used
virtual-to-physical mappings.

The impact of virtual memory on application performance depends on various applica-
tion characteristics (e.g., use of memory management library and system calls, memory
access patterns), system characteristics (e.g., memory management library, operating
system, processor model), and conditions (e.g., memory fragmentation). Several recent
works [32, 28, 23, 31, 25, 29, 24, 19, 21, 20, 9] have shown that memory-intensive applic-
ations that operate on large working sets, tend to stress the limits of the TLB and spend a
significant amount of their execution time in page table walks due to TLB misses.

Prior works that have focused on reducing the latency of page table walks (and that are
closely related to this thesis) havemainly followed two approaches: (i) they either preserve
page table structures in the cache hierarchy [32, 23, 31, 28, 25], or (ii) directly store TLB
entries within the cache memory hierarchy [29, 24, 19, 22, 18]. However, most of those
works require changes at the architectural (e.g., modifications at the organization of the
page table) or at the microarchitectural level, and hence cannot improve the performance
of existing real systems.

1.1 Goal & Motivation

The goal of this thesis is to reduce the latency of the page table walks by improving the loc-
ality of the page table in the cache hierarchy. We target commodity, off-the-shelf systems,
avoiding the need for any microarchitectural modifications.

To motivate our approach, we perform an analysis of the locality of the memory references
that the page table walks induce in the memory hierarchy using hardware performance
counters for a set of memory intensive applications. We find that a significant percentage
of the memory references due to page walks miss in the cache hierarchy and end up ac-
cessing the main memory (DRAM). More specifically, we observe that 10.3% on average
and up to 32.4% of page walk accesses are fetched from DRAM in native execution. In
a memory-pressured system, we observe that 33% on average and up to 51.5% of page
walk accesses are fetched from DRAM. Under virtualized execution, these percentages
change to 16.3% on average and up to 33.4%, respectively. Hence, there is significant op-
portunity for improving the application performance by converting those DRAM accesses
into cache hits.

A. Chatzopoulos 14

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

1.2 Approach

To improve the locality of the page table walks in the cache hierarchy, we propose PT-
Baker. PT-Baker is a software, system-level approach for reducing the latency of page
table walks for applications that suffer from high TLB misses and insufficient page table
walks locality. PT-Baker introduces a helper thread that periodically iterates through one
or more target application data structures that are responsible for the majority of data TLB
misses, to preserve their corresponding page table entries (PTEs) warm within the cache
hierarchy.

The proposed method requires modification of the application code to introduce the helper
thread. To keep the PTEs warm in the cache hierarchy, we implement a user-level and a
kernel-level approach. The user-level approach touches the allocated space using spe-
cific page strides to improve the cache locality of the page table itself without thrashing
application data in the cache hierarchy. However, this method also fetches the corres-
ponding data, thus increasing the pressure in the cache hierarchy. In contrast, the kernel-
level approach introduces a new system call that directly accesses only the page table
itself. While this approach avoids fetching any application data in the cache hierarchy,
it requires modifying also the operating system kernel. To throttle the aggressiveness of
the PT-Baker helper thread in the memory hierarchy, we insert delay events (i..e, NOP
instructions and sleep system calls) after every iteration round and control the placement
of the helper thread, taking into consideration the multicore organization.

We design and implement PT-Baker in Linux v6.6.10 and evaluate it using various memory
intensive benchmarks on amulticore AMDRyzen 9 5900X Zen 3 CPU. Our results indicate
that the kernel-level approach offers significantly better results and it is also less sensitive
to the parameters that control aggressiveness. On a native environment, the user-level
approach improves the workloads performance by up to 5.9%, while the kernel-level ap-
proach improves performance by up to 18%. Testing on a memory-pressured system
provides up to 11.2% performance improvement with the user-level approach and 22.4%
with the kernel-level approach. In virtualized environments, performance improvements
reach up to 38.2% using the user-level approach, though due to 2D nested page walks
that add more pressure to the cache hierarchy compared to a native system, the average
performance improvement is limited and requires further parameter exploration to adjust
the aggressiveness of the helper thread. Finally, our performance improvements also
come with slightly higher CPU power consumption. The user-level approach increases
power by 5.4% on average, while the kernel-level approach can increase it by up to 9.4%;
however by adjusting the PT-Baker thread’s aggressiveness, we can reduce power usage
while still achieving similar performance benefits.

1.3 Thesis Contributions

In summary, the main contributions of this thesis are:

• We analyze the locality of page walks in the memory hierarchy for several memory
intensive applications and quantify the opportunity for reducing the latency of page
walks.

• We propose a system-level, microarchitecture-aware approach that improves the
locality of the PTEs in the memory hierarchy by touching periodically the PTEs. Our

A. Chatzopoulos 15

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

approach works in both user and kernel levels.

• We comprehensively evaluate our proposal executing several memory intensive ap-
plications in both native and virtualized execution setups, as well as executing them
on a memory-pressured system in conditions of cache contention due to resource
interference.

• We systematically analyze the impact of several parameters in the effectiveness of
the proposed approach.

1.4 Organization

The rest of this document is structured as follows. In Chapter 2 we provide essential back-
ground information regarding caches and virtual memory. In Chapter 3 we describe our
motivation for this work. In Chapter 4 we present our approach, while in Chapters 5 and 6
we describe our evaluation methodology and present results, respectively. In Chapter 7
we describe the related work around optimization methods for virtual memory. Finally, in
Chapter 8 we conclude this work and give an outlook on future work.

A. Chatzopoulos 16

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

2. BACKGROUND

In this chapter we describe the basic functionality and organization of caches. We also
analyze the address translation process in native and virtualized systems, present the
necessary architectural/microarchitectural support, and briefly describe the optimization
mechanism of huge pages for improving the performance of address translation.

2.1 Cache Memory

Cachememory is a small memory hardware component located in themicroprocessor that
is used to reduce the average cost of accessing data and instructions from main memory
and minimize the CPU’s stalled cycles. In modern microprocessors, caches play a cru-
cial role in the performance and energy efficiency. The effectiveness of caches mainly
depends on two important principles: the temporal locality and the spatial locality. Tem-
poral locality means that if a particular memory address is referenced, it is likely to be
referenced again in the near future. On the other hand, spatial locality means that when a
particular memory address is referenced, nearby locations are also likely to be referenced
in the near future. To reduce the total DRAM accesses, modern CPUs are equipped with
a multi-level cache hierarchy, i.e., commonly level 1 (L1), level 2 (L2) and level 3 (L3 or
last-level cache – LLC), that are respectively larger but require higher access latency.

2.2 Virtual Memory

Commodity modern operating systems and microprocessors typically support virtual me-
mory. Virtual memory separates the address space of every process from each other, by
providing a transparent and secure way for processes to manage (i.e., allocate and free)
and access memory. Virtual memory introduces mappings between virtual addresses and
physical addresses in page-size (commonly 4KB or 2MB) granularity. The above address
mapping mechanism demands both operating system and architectural support to make
this address translation process efficient.

2.2.1 Address Translation

The page table is a software data structure that is managed by the operating system and
holds all the mappings of each application from the virtual to the physical address space.
To perform virtual to physical address translation for a memory request, the operating
system (and the hardware depending on the ISA, as explained next) walks the page table.
This process is called a page table walk or page walk.

The organization of the page table depends on the instruction set architecture (ISA). A
common organization that is employed by multiple ISAs, e.g., x86, ARM, RISC-V, is the
radix tree. The radix tree is usually organized in multiple levels, depending on the size of
the supported address space. The page table walk requiresmultiplememory references to
obtain the physical address from the last level leaf node, known as page table entry (PTE).
For example, the three-level and four-level radix trees provide support for 39-bit and 48-
bit address spaces, and the page table walk requires three and four memory accesses,
respectively. Although the page table can be cached within the memory hierarchy, its

A. Chatzopoulos 17

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

locality can significantly affect the address translation process resulting in long-latency
page table walks. With the introduction of Intel’s five-level page tables [1], which extends
the virtual addresses size from 48 bits to 57 bits to increase the maximum capacity of
physical memory, the number of memory references due to page table walks increases,
resulting in even longer delays during the address translation process.

Figure 2.1 shows a 48 bit, four-level radix tree of page tables. There are four levels of
page tables, i.e., PGD, PUD, PMD, and PT, each one pointing to the next page level. The
address translation process is sequential and starts from the PGD directory which is poin-
ted by the CR3 register, goes through all page table levels, and completes upon reaching
the last leaf node, i.e., the PTE. The final physical address is generated by combining the
value of the corresponding PTE with the page offset of the virtual address.

Figure 2.1: The four-level radix page table organization of the x86-64 ISA.

2.2.2 Accelerating Address Translation

To accelerate the address translation process, microprocessors employ a Memory Man-
agement Unit (MMU) that consists of two main caching components: (i) the Translation
Lookaside Buffer (TLB), and (ii) the Page Walk Caches (PWCs).

The TLB stores the most recently translated virtual addresses as entries in page granular-
ity, and provides directly the corresponding physical address, without the need to trigger
a page walk, reducing the memory address translation latency. The growing tendency
towards bigger and more TLB intensive workloads has driven CPU manufacturers to en-
hance the TLB by including separate TLBs for data and instruction accesses and introdu-
cing a two-level TLB hierarchy to avoid the excessive amount of page walks. For example,
modern AMD Zen 3 microprocessors (which we use in this thesis) implement a two-level
TLB organization per core, with separate L1 Data and Instruction TLBs being fully asso-
ciative and a unified L2 TLB with 16-way associativity. In this thesis we focus on L2 TLB
misses due to data accesses that trigger page walks and access the memory hierarchy to
retrieve the missing translation entry.

Figures 2.2 and 2.3 show the virtual address translation mechanism with one-level and
two-level TLBs, respectively. Upon missing in the L2 TLB, a page walk process starts.
There are two types of TLB miss handling: hardware and software. In case of hardware-
managed TLB, a hardware state machine named as page table walker walks the page
table directly using the CR3 register to translate the missing address. In case of software-
managed TLB, a TLB miss exception is triggered and the operating system code (i.e., the

A. Chatzopoulos 18

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

TLB miss handler) is responsible to complete the address translation process and install
the entry in the TLB. In this thesis we focus on the x86-64 ISA which requires hardware-
managed TLBs.

In addition, a private low latency cache called Page Walk Cache (PWC) [12] is imple-
mented within modern microprocessors’ MMUs. This cache is dedicated to storing ad-
dress translations for intermediate levels of the radix page table that have been previ-
ously walked. Therefore, when a TLB miss occurs, the page walk process is accelerated
by skipping some lookups for specific page table levels, reducing the overall memory ad-
dress translation overhead of an application.

Figure 2.2: Virtual address translation using a one-level TLB.

Figure 2.3: Virtual address translation using a two-level TLB hierarchy.

2.2.3 Improving Address Translation through Huge Pages

The TLB reach can be improved by using large or huge pages, i.e., 2MB or 1GB in the x86-
64 ISA. Huge pages require support from both the processor and the operating system
vendors. On the processor side, theMMU is extended to cache translations of huge pages.
On the OS side, the memory management subsystem is extended to manage mappings
at huge page granularity. For example, the Linux kernel provides support for transparent
hugepages (THP) that is a feature of allocating anonymous memory mappings of huge
2MB pages, transparently to the applications [6].

Huge pages decrease the number of TLB misses radically since every TLB entry provides
translation information for a larger memory region. Huge pages also reduce the page table
walking latency because page table leafs are located within the third level of page tables

A. Chatzopoulos 19

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

on the radix tree structure (PMD entries). However, using larger page sizes results in the
following disadvantages. First, applications often experience higher latency during page
fault exceptions. Second and most important, system memory fragmentation increases
over time making it more difficult for the OS to allocate huge pages at runtime. Third, the
mechanism of transparent huge pages is not controlled directly by the users. Therefore,
4KB pages can be promoted to larger pages even if it is not beneficial for the application,
leading to higher memory usage.

2.2.4 Virtual Memory in Virtualized Environments

In virtualized environments, the address translation latency increases significantly. This in-
crease occurs because the address translation process consists now of a two-dimensional
page walk due to the nested page tables that are handled by the guest operating system
and the host operating system. Figure 2.4 shows a memory address translation from a
guest virtual address (gVA) to a host physical address (hPA) on the x86-64 architecture
with a four-level page table structure. Guest’s CR3 and page table levels must also be
translated from the host’s virtual to the host’s physical address space, resulting in this
nested two-dimension search process. The aforementioned mechanisms for accelerat-
ing address translation, i.e., TLB and PWCs, can be used in virtualized environments as
well. The address translation process for a single guest virtual address, in case of a TLB
miss, may require up to 24 memory accesses in the memory hierarchy, depending on the
PWCs. Finally, huge pages can also be used in the guest OS, in the host OS, or in both
the guest and host OS.

Figure 2.4: Virtual address translation in a virtualized system using four-level nested page tables.

A. Chatzopoulos 20

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

3. MOTIVATION

Excessive TLB misses and high latency page walks are a major performance issue for
many emerging workloads that demand large amounts of memory. This issue becomes
particularly important for workloads that exhibit irregular access patterns, which addition-
ally increases the amount of cache misses. In such cases, the PWCs and the CPU cache
hierarchy fail to reduce the latency of the page walks effectively, leading to time consuming
DRAM accesses.

In this chapter we conduct performance analysis on a series of workloads in order to
measure the page table walks locality. To put our findings into perspective, we compare
the frequency of main memory accesses due to page walks with the frequency of main
memory accesses for fetching application data. We perform our analysis in both native
and virtualized environments as well as on a native system under high memory pressure.
We find that a significant percentage of page walk memory references end up accessing
the main memory. We also find that the frequency of LLC misses is much worse for
application data than for page walks. We thus get confidence that there is a high chance
of reusing cached PTEs during page table walks compared to reusing cached application
data, by leveraging also the packed organization and reduced size of the page table.

3.1 Quantifying the Frequency of Misses in the Memory Hierarchy

To better understand the locality of page walks, we first conduct a series of performance
analysis experiments on an AMD Zen 3 microprocessor using the hardware performance
counters and the workloads described in Chapter 5. We measure the frequency of misses
in the memory hierarchy, i.e., misses per kilo-instructions (MPKI) for (i) L2 TLB due to data
accesses, (ii) DRAM accesses during page walks, and (iii) data DRAM accesses (LLC
misses). Figure 3.1 summarizes the results.

We observe that all workloads except Graph500 have very high data DRAM accesses
due to their irregular access patterns that result in low data locality in the LLC. They also
experience a high number of DRAM accesses due to page walk references. Given that
the size of the page table is significantly smaller with respect to the actual dataset of an
application, the application performance could improve by prioritizing the contents of the
page table in the LLC, reducing in this way the latency of page table walks. Although
Graph500 has significantly lower DRAM accesses compared to the other workloads, it
still suffers from a high number of DRAM accesses due to page walk memory references.
Hence, keeping its PTEs warm inside the cache hierarchy could also help speed up the
page table walks for that application as well.

3.2 Quantifying the Locality of Page Walks in the Memory Hierarchy

We also conduct a performance analysis for the same workloads to measure the percent-
age of accesses in the memory hierarchy for the memory references due to page table
walks in a native system and in a virtualized environment. In addition, we perform a profil-
ing analysis under memory-pressure conditions due to resource interference in the LLC,
using the stress-ng tool with one stressor thread and the cache parameter, and with two
stressor threads and the stream parameter.

A. Chatzopoulos 21

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

0

10

20

30

40

50

M
P

K
I

79.95

7.60

14.51

64.45 72.58

35.78

8.45

0.46
1.31

6.74

44.02

0.57

4.33

57.24

20.41

75.63 197.74 104.06

Performance Analysis - MPKI

Data TLB Load Misses DRAM Accesses (L3 Misses) During Page Walk Data DRAM Accesses (L3 Misses)

Figure 3.1: Misses per kilo instructions (MPKI) for L2 data TLB load misses, DRAM accesses (LLC
misses) during page walk, and data DRAM accesses (LLC misses) in native execution.

Figures 3.2 and 3.3 illustrate the results for the system scenarios mentioned above. In
native execution, on average, 10.3% (up to 32.4%) of page walk accesses retrieve data
from DRAM. In memory-pressured systems using one cache stressor thread, this average
increases to 33% (up to 51.5%). With two stream stressor threads, the average percent-
age of accesses during the page walk process rises to 33.6% (up to 55%). In virtualized
environments without memory pressure, on average 16.3% (up to 33.4%) of page walk
accesses end up accessing DRAM. For example, on a native system, the LibLinear work-
load executes 2.3× 1012 instructions with 5.1× 109 L2 cache hits, 13.7× 109 LLC hits, and
1.1×109 main memory accesses during the page table walks. Moreover, in a virtual envir-
onment where the address translation consists of nested pagewalks, the accesses tomain
memory have increased significantly. The LibLinear workload now executes 2.3× 1012 in-
structions with 11 × 109 L2 cache hits, 30.5 × 109 LLC hits, and 3.9 × 109 main memory
accesses during the page walks.

3.3 Opportunity for Improvement

Based on our performance analysis we can clearly notice that a significant percentage
of accesses during page walks are fetched from the main memory across all workloads.
We also notice that the MPKI for LLC data accesses is very high, which highlights the
low data locality and the opportunity for techniques that can efficiently maintain the page
table structures within the cache hierarchy, since cached page table entries are denser
and likely to be used again soon than data during periods of high data cache misses.

A. Chatzopoulos 22

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

0

20

40

60

80

100

P
ag

e
T

ab
le

W
al

k
s

L
o
ca

li
ty

28.8%
25.6%

30.9%
33.9%

36.7%
41.2%

61.6% 68.8%
62.4%

60.0%

30.9%

56.9%

9.5%
5.6% 6.6% 6.1%

32.4%

1.8%

Page Table Walks Locality - Native System

L2 Cache Hits L3 Cache Hits DRAM Accesses

(a) Native System

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

0

20

40

60

80

100

P
ag

e
T

ab
le

W
al

k
s

L
o
ca

li
ty

23.9% 24.2%

34.3% 34.2%
30.9%

33.3%

58.9%

67.1%

54.8%

39.9%

35.7%

64.6%

17.2%

8.6%
10.8%

25.9%

33.4%

2.1%

Page Table Walks Locality - Virtual Machine

L2 Cache Hits L3 Cache Hits DRAM Accesses

(b) Virtual Machine

Figure 3.2: Breakdown of the page walks locality, i.e., percentage of memory accesses due to page
table walks that are fetched from the L2 cache, L3 cache, and DRAM, in native (left) and virtualized

(right) execution.

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

0

20

40

60

80

100

P
ag

e
T

ab
le

W
al

k
s

L
o
ca

li
ty

28.1%
25.8%

30.8%
34.2%

36.1%
40.8%

39.8%

52.2%

32.5%

14.3%
13.6%

53.5%

32.1%

22.0%

36.7%

51.5% 50.3%

5.7%

Page Table Walks Locality - Native System - 1 Stressor

L2 Cache Hits L3 Cache Hits DRAM Accesses

(a) Native - 1 Stressor thread

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

0

20

40

60

80

100

P
ag

e
T

ab
le

W
al

k
s

L
o
ca

li
ty

28.8%

33.6%
29.5%

41.3%

36.3% 35.3%

36.6%

49.2%

31.5%
3.7% 15.4%

57.3%

34.7%

17.1%

39.0%

55.0%

48.3%

7.4%

Page Table Walks Locality - Native System - 2 Stressor

L2 Cache Hits L3 Cache Hits DRAM Accesses

(b) Native - 2 Stressor threads

Figure 3.3: Breakdown of the page walks locality, i.e., percentage of memory accesses due to page
table walks that are fetched from the L2 cache, L3 cache, and DRAM, on a native

memory-pressured system using 1 cache stressor thread (left) and 2 stream stressors threads
(right) with the stress-ng tool.

A. Chatzopoulos 23

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

4. PT-BAKER: A HELPER-THREAD APPROACH

In this chapter we present the main idea of PT-Baker and describe its design and imple-
mentation in user-level and kernel-level, respectively. We also present a thorough exam-
ination of the parameters that affect its performance, and finally we discuss alternative
implementations.

4.1 Overview

Our main approach is to create a software helper thread named Page Table Baker or
simply PT-Baker, that periodically touches the page table structures of the main thread’s
workload in order to preserve them within the cache hierarchy, reducing the number of
the main memory accesses due to page table walks. Algorithm 1 and Figure 4.1 show the
necessary applicationmodifications to create and setup the PT-Baker thread and the work-
flow of PT-Baker, respectively. Initially, before the application’s main algorithm starts, the
PT-Baker thread must be spawned and provided with pointers to the application memory
regions that are responsible for the majority of TLB misses. Then, the PT-Baker starts
touching periodically the page table entries of the corresponding application data in an
infinite loop until the application’s main algorithm thread finishes, while the application’s
main algorithm thread starts its execution and proceeds as normally. After the applica-
tion’s main algorithm thread completes, the PT-Baker thread is stopped and the execution
ends.

PT-Baker requires modifications in the application code to start, execute, and stop the
helper thread in user-level, accordingly. To touch the page table entries, we design and
implement a user-level and a kernel-level approach that offer different trade-offs. The
user-level PT-Baker approach touches the page table entries by loading the correspond-
ing data of one or more memory allocated regions of the application, and triggering on
purpose page table walks. The user-level approach does not require a modified kernel to
be installed, but by accessing the allocated memory regions to trigger page walks, it also
fetches the corresponding data and adds pressure to the system’s memory hierarchy. In
contrast, the kernel-level PT-Baker approach also introduces a user-level thread. How-
ever, instead of loading the corresponding data, the kernel-level PT-Baker approach intro-
duces a new system call that directly accesses the page table structures without fetching
any application data. Thus, the kernel-level PT-Baker approach introduces less memory
pressure, but it requires kernel modifications.

To manage the aggressiveness of PT-Baker based on each workload’s pressure to the
system’s memory hierarchy, PT-Baker uses a series of configurable parameters. In ad-
dition, PT-Baker is microachitecture-aware, taking into consideration the core and cache
organization of the system.

Algorithm 1: User/Kernel-level PT-Baker thread design within a workload.
1 init_workload()
2 create_pt_baker_thread(workload_data)
3 start_workload_main_task()
4 stop_pt_baker_thread()

A. Chatzopoulos 24

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Figure 4.1: PT-Baker design and synchronization within a workload.

4.2 User-level Approach

When designing the user-level approach, we must first consider how to interact with the
application’s memory regions, as direct access to the page table radix tree is not possible
in user-space. For PT-Baker to access the application memory regions that cause a high
number of TLBmisses, it must be able to access both a pointer to the target memory region
and the size of the memory region. As a result, it is necessary that the memory allocations
have been issued and any necessary parameters have been initialized accordingly, before
the PT-Baker thread is spawned.

Algorithm 2 shows the design of the user-level PT-Baker thread iterating on a single
memory region. PT-Baker provides support for applications that use multiple memory
regions, i.e., more than one large data structures. However, for the workloads that we
use in this thesis, we observe that there is always a single memory region that suffers
from frequent TLB misses and thus page walks locality issues. Apart from spawning and
executing the helper thread, PT-Baker does not require any further application modifica-
tions. We only observed in Graph500 that the introduction of the helper thread may affect
the behavior of the memory allocator, leading to variability in execution times. To address
that issue, we modified Graph500 to use the mmap system call instead of glibc’s malloc
function, avoiding such inconsistencies.

To ensure that the helper thread’s access pattern is preserved at the executable program,
the compiler optimizations are disabled for this function by specifying to the GCC compiler
not to use any compiler optimizations on the helper thread function source code file or by
using a GCC attribute keyword on helper thread that disables optimizations for a spe-
cific function. We use NOP instructions and sleep system calls to manage, i.e., throttle,
the aggressiveness of the helper thread (analyzed in Section 4.4). Finally, user-level PT-
Baker does not require any synchronization mechanism to access the application’s alloc-
ated memory region, as the only concern is to trigger page table walks to preserve the
page table structures within the cache.

4.3 Kernel-level Approach

Although the user-level PT-Baker thread can trigger page table walks and fetch page table
entries within the cache hierarchy in user-space, direct access to the page table radix
tree is not possible without fetching the corresponding application data. To avoid fetching
additional data within the memory hierarchy we have to access the page table structures
directly from the kernel-space, i.e., the operating system. Therefore, we design and imple-

A. Chatzopoulos 25

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Algorithm 2: User-level PT-Baker thread function
1 Function user_baker_thread(workload_array, array_length, page_step,

prefetch_enabled, nops, microseconds):
2 offset← page_step

sizeof(workload_array[0])
3 while true do
4 for i← 0 to array_length , i← i+ offset do
5 if prefetch_enabled then

// Prefetch instruction method
6 prefetch(workload_array[i])
7 else

// regular load instruction
8 access_byte = workload_array[i]
9 end

// nops and microseconds can be 0
10 for j ← 0 to nops do
11 asm(”nop”)
12 end
13 end
14 sleep(microseconds)
15 end
16 End Function

ment a new system call that takes one or more address memory regions of the application
and efficiently traverses all the page table level entries that are responsible for translating
those memory regions.

The implementation of the system call function is based on the Linux kernel 6.6.10 page-
walk.c source file under the kernel’s mm directory. The system call traverses the page
table structures with a page stride value as a step size to achieve greater cache locality
and reduce memory pressure on the system. To efficiently access the page table levels
once, the system call traverses the page table from the initial PGD to PUD, PMD, PT and
then to PTE using the page stride mentioned above. After accessing all the PTEs of a
specific PT index, it moves to the next PT structure index. After finishing with all the PTs it
moves to the next PMD and so on. The system call can traverse both 4-level and 5-level
page tables.

To safely iterate over the page table structures, we lock the memory descriptormm_struct
in read mode, to ensure that no other OS components modify the contents of the ap-
plication’s page table while the system call traverses it. The page walk algorithm of the
system call is also able to recognize and iterate over transparent huge pages by tempor-
arily locking a specific page table lock that prevents splitting the pages into regular 4KB
size. Algorithm 3 is a simple pseudocode that shows the traversal of PTEs within the
kernel-space using a specific page stride access pattern in kernel.

Algorithm 4 shows the implementation of the PT-Baker thread that calls iteratively the
system call that we described above. The parameters starts_addrs, end_addrs are arrays
that store the addresses (start and end) of the address spaces that we want to iterate over.
The parameter length stores the number of address spaces that we are going to iterate
over and it is the size of the arrays starts_addrs and end_addrs. The parameter offset
consists the page stride that we mentioned above, and finally nops andmicroseconds are

A. Chatzopoulos 26

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Algorithm 3:Walk PTE range function
1 Function walk_pte_range(pte, addr, end, walk, offset, nops):
2 page_offset← offset× page_size
3 pte_offset← offset
4 while true do
5 if pte then
6 pte_access← value of pte
7 end

// nops can be 0
8 for z ← 0 to nops do
9 asm(”nop”)
10 end
11 if addr ≥ end− page_offset then
12 break
13 end
14 addr ← addr + page_offset
15 pte← pte+ pte_offset
16 end
17 return 0
18 End Function

parameters that manage the aggressiveness of the PT-Baker by adding a delay between
accesses and they are described in further detail in Section 4.4.

Algorithm 4: Kernel-level PT-Baker thread function
1 Function syscall_pt_baker_thread(starts_addrs, end_addrs, length, offset, nops,

microseconds):
2 while true do

// nops and microseconds can be 0
3 syscall_pt_baker(starts_addrs, end_addrs, length, offset, nops)
4 sleep(microseconds)
5 end
6 End Function

4.4 Configuring the Helper Thread

As alreadymentioned above, the user-level and kernel-level approach configurations have
the following common parameters to configure: page step/PTE stride, NOP instructions,
and sleep system calls. In addition, the user-level approach can touch the application’s
memory region using either prefetch instructions or regular load instructions, as shown
in Algorithm 2. The PT-Baker thread in general is very sensitive to those parameters,
especially the user-level approach that also fetches additional application data within the
cache hierarchy. Therefore, selecting an optimal configuration requires experimenting with
various parameters, as the behavior of PT-Baker also depends on the system workload,
i.e., on applications that runs alongside with the target application. The above parameter
series are described in the following sections and evaluated in Chapter 6.

A. Chatzopoulos 27

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

4.4.1 Selecting Page Stride

Since the user PT-Baker thread performs an iterative access to the application memory
region, it firstly needs to calculate the loop offset to access and trigger page table walks
minimizing redundant data fetches within the cache hierarchy. In a 4KB paging system,
a typical value for the loop offset can be 8 × 4KB to utilize the cache block size while
fetching the PTEs; the size of each PTE is 64-bits and the cache block size is 64 bytes,
hence each cache block contains 8 PTEs.

Another interesting page stride value could be 512 × 4KB (i.e., 2MB granularity), where
we only access the first PTE of each page directory entry (PDE) on 4KB pages, restricting
the page table structures that are going to be cached to a specific page table level depth.
This value can be effective for applications that specifically use 2MB pages for the target
allocated structure and still experience frequent TLB misses that cause long-latency page
table walks [9].

Similar to the user-level approach, an optimal stride for PTE accesses in kernel PT-Baker is
8, to utilize the cache block size and spatial locality.

4.4.2 Triggering Page Walks

There are twomethods for triggering address translation during the user-level PT-Baker thread’s
execution: using prefetch instructions or using regular load instructions by performing a
variable assignment. However, while the prefetch instructions seems a valid method to
access an application memory region, we first need to ensure that it also triggers page
table walks. Next we perform relevant experiment and show that prefetch instruction can
indeed trigger page table walks in the AMD Zen 3 architecture. For the kernel-level PT-
Baker approach, we only experimented with using regular load instructions in the imple-
mentation of the system call for accessing directly the page table structures, although
prefetch instructions could be used as well.

4.4.3 Crafting a TLB microbenchmark

To explore and understand the microarchitectural details of the MMU design (particularly
with respect to whether prefetch instructions trigger page table walks) of the AMD Zen 3
(that we use in this thesis), we implement a custommicrobenchmark that thrashes the TLB
hierarchy due to data accesses. Algorithm 5 shows the TLB thrashing microbenchmark
using a simple iterative loop. In each iteration, the microbenchmark accesses the first
byte of every page of a configurable allocated array structure. As we can see in Figure
4.2, when the array allocation size becomes equal to 64 pages of 4KB each, the L1 TLB
is thrashed. This behavior confirms the documented L1 TLB size of our system that is
64 entries. Similarly, the L2 TLB begins to exhibit a high number of TLB misses as the
array is reaching the 2048 pages size, and is ultimately thrashed when using 2560 4KB
pages. This behavior confirms the documented L2 TLB size of our system that is 2048
entries, while the difference in L2 TLB misses between using 2048 and 2560 entries can
be attributed to the TLB Coalescing [30] support that allows the L2 TLB to mapmore pages
than the default size (depending on the contiguity of memory allocations). Overall, using
our simple microbenchmark we verify the sizes of the TLB hierarchy, and thus we can use
it to reverse engineer more properties with respect to the MMU, as explained next.

A. Chatzopoulos 28

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Algorithm 5: TLB Thrashing Algorithm Experiment
Input: Byte Indexed Allocated Array, page_step > 0, N > 0, array_size > 0

1 page_index← 0
2 offset← page_size× page_step
3 for i← 0 to N − 1 do
4 array_index← page_index mod array_size
5 access← array[array_index]
6 page_index← page_index+ offset

7 end

0 100 200 300 400 500

Number of Pages

0.0

0.2

0.4

0.6

0.8

1.0

L
1

d
T

L
B

M
is

se
s

×106 Microbenchmark, L1 dTLB Stress

(a) L1 DTLB

0 1000 2000 3000 4000 5000

Number of Pages

0.0

0.2

0.4

0.6

0.8

1.0

L
2

d
T

L
B

M
is

se
s

×106 Microbenchmark, L2 dTLB Stress

(b) L2 DTLB

Figure 4.2: L1 (left) and L2 (right) DTLB thrashing experiment using the TLB thrashing algorithm.

4.4.3.1 Reverse Engineering the MMU behavior of the Prefetch Instruction

We now determine whether the prefetch instruction triggers page table walks. We re-
view the generated assembly for the _mm_prefetch built-in function, and we observe that
GCC compiler uses the x86 prefetcht0, prefetcht1 and prefetcht2 assembly instructions.
The choice among these assembly instructions depends on the argument provided to the
builtin instruction, that defines in which level of the cache (and above) should the data be
loaded. However, depending on the CPU hardware design, the prefetch instruction might
or might not trigger the MMU to walk the page table. In order to examine the behaviour of
the assembly instruction, we run the TLB microbenchmark in two ways and profile its exe-
cution using the PAPI library [26]. First, we use the TLB microbenchmark with an array of
4224 4KB pages allocated (double the size of L1 and L2 DTLB entries), but we only touch
half of these pages using regular load instructions (i.e., the variable assignment method),
and measure the L2 TLB misses. Then, we use the TLB microbenchmark with the same
array size, touching half of the pages using the load instruction and additionally touching
the other half, which were not previously accessed, using the prefetch instruction. If the
prefetch instruction fills the L2 DTLB, we are going to observe increased L2 DTLB misses
on the second run compared to the first experiment. Figure 4.3 results clearly indicate that
the prefetch instruction triggers TLB fills in our system, thus page walks are triggered and
the instruction can be used in our user-level approach.

4.4.4 Throttling PT-Baker

Furthermore, to be able to manage the aggressiveness of PT-Baker for fetching PTEs in
the cache hierarchy and their respective data in the case of the user-level approach, we

A. Chatzopoulos 29

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Not Using Prefetch Instruction Using Prefetch Instruction
0

2000

4000

6000

8000

10000

12000

14000

16000

L
2

d
T

L
B

M
is

se
s

4052

16955

Allocated Pages: 4224, Iterations N: 8448

Figure 4.3: Reverse engineering the prefetch instruction’s page table walk behavior. We observe
increased L2 DTLB misses, indicating that the prefetch instruction triggers page walks on the AMD

Zen 3 architecture.

insert NOP instructions between the PT-Baker ’s array accesses or issue sleep system
calls for several microseconds before the next iteration round starts executing. Using
NOPs and sleeps allows us to control any cache pollution and memory bandwidth issues.
In addition, the sleep system call allows reducing the energy consumption that the PT-
Baker thread adds. Algorithm 2 code illustrates the user-level PT-Baker thread function
design in a simple manner.

Similarly, in the case of the kernel-space PT-Baker, we insert NOP instructions between
each leaf PTE accesses or a sleep instruction (or both) for a certain amount of time in mi-
croseconds before the next system call execution, to control cache pollution and energy
consumption. Algorithms 3 and 4 show the design of the kernel-level thread PT-Baker ap-
proach.

4.4.5 Placing PT-Baker Thread

Another critical issue that needs to be addressed is PT-Baker’s core placement within the
microprocessor’s chip. PT-Baker has to be microachitecture-aware and its thread place-
ment needs to take into consideration the core and cache organization of the system. If the
PT-Baker thread resides on the same core with the application main thread, utilizing Sim-
ultaneous Multithreading (SMT), it can preserve PTEs in the L2 cache and potentially even
filling entries within the SMT shared TLB hierarchy. Otherwise, if the PT-Baker thread is
placed on another core, they only share the LLC, and the PT-Baker thread can preserve
PTEs inside it without affecting the private caches of the workload’s thread. Figure 4.4
shows the CPU core and memory layout and PT-Baker thread’s affinity options. As de-
scribed above, page table entries can be found in LLC as well as in the L2 cache in AMD
processors.

Figure 4.5 shows the cache and core layout of Ryzen 5900X processor. Each core has
a private Data/Instruction L1 cache and a unified L2 cache. Depending on the number
of cores, these are organized in groups called Core Complexes (CCX) that share a bank
of LLC [7]. The Ryzen 9 5900X CPU (see Section 5.1 for details) has 2 core complexes

A. Chatzopoulos 30

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Figure 4.4: AMD CPU Zen 3 PT-Baker thread placement scenarios: PT-Baker can be placed on the
same core using SMT to fill private caches, or on another core to utilize only the LLC.

Figure 4.5: AMD Ryzen 5900X LLC and cores partitioning. Each group of 6 cores share 32MB LLC,
thus PT-Baker must be on the same CCX chip to utilize the cache hierarchy.

with 6 cores each, with every CCX sharing 32MB of LLC. Therefore, a secondary helper
thread can be either placed on a different core inside a core complex utilizing the shared
LLC, or in the same core (SMT) with the main thread’s execution, preserving the PTEs on
both L2 and LLC, and even filling entries within the shared TLB hierarchy.

4.4.5.1 Reverse Engineering SMT Sharing in TLBs

To determine whether the TLB entries are shared between the two hardware threads,
i.e., hyperthreads, of an SMT core we need to reverse engineer the lookup process of
the TLB. AMD reports that TLB entries have an additional thread ID tag for validation
so that TLB entries can be used only from the hardware thread that created the TLB
entry [10]. Similarly to the previous reverse-engineering method, first we execute the
TLB microbenchmark (Algorithm 5) with 2112 4KB pages (i.e., 2048 + 64 pages to fill the
TLB) and count the total L2 TLB misses using the PAPI library. Then, we run the TLB
microbenchmark with the same memory area, but now with two hardware threads placed
on the same physical SMT core, to observe whether the number of TLB misses will remain
the same between the two different executions. Ultimately, as we notice in Figure 4.6,
the number of L2 TLB misses has increased significantly in the second experiment when

A. Chatzopoulos 31

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

the two parallel threads are running. We confirm that TLB entries are indeed marked
with a hardware thread id and are not shared between the two hardware threads on the
same core, even if they belong to the same application or process. We conclude that PT-
Baker cannot preserve TLB entries within a core’s TLB hierarchy by spawning the helper
thread on the same core using hyperthreading.

Main Thread Main with Helper (SMT)
0

1000

2000

3000

4000

5000

6000

7000

8000
L

2
d

T
L

B
M

is
se

s

4087

8240

Allocated Pages: 2112, Iterations N: 8448

Figure 4.6: Reverse engineering thread ID tag validation of TLB entries. We observe increased L2
DTLB misses while accessing a shared allocated structure within the two hyperthreads of a core,

thus TLB entries are not shared within the same core (SMT).

4.5 Discussion

As mentioned earlier, both user-level and kernel-level approaches require simple modific-
ations at the application code. The proposed technique could also be designed and imple-
mented in a more automated way at compile time; however, the user should provides hints
to the compiler regarding when to start and stop the helper thread and which application
memory regions should be touched by the helper thread.

Another approach could be creating an OS daemon thread which automatically identifies
applications that experience a high number of TLB misses and main memory accesses
due to page walks using hardware performance counters, and touches the application’s
memory regions to preserve the page table structures inside the cache hierarchy. This ap-
proach does not require any application modifications and avoids the need for recompiling
applications.

Finally, another important factor is the power consumption especially when the PT-Baker op-
erates in an aggressive manner; our results in Chapter 6 show that PT-Baker does not
increase power consumption significantly.

A. Chatzopoulos 32

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

5. EVALUATION METHODOLOGY

5.1 System Configuration

The system hardware we use for the evaluation includes a 12-core AMD Ryzen 9 5900X
Zen 3 CPU with 64 GB of DDR4 memory. On the software side, we use the Linux ker-
nel version 6.6.10, as provided by the Pop!_OS distribution, with the gcc/g++ compiler
versions 11.4.0, and the Linux Perf [16] version matching the Linux kernel. Additionally,
we conduct evaluation experiments in a virtualized system, using a virtual machine with
QEMU [14] version 6.2.0 and Kernel Virtual Machine (KVM) [3] enabled.

We use two setups in terms of memory pressure. The first one is a clean setup where
only the target workload is running. The other one is a memory-pressured setup in which
the stress-ng tool [5] runs concurrently with the target workload. We model three different
levels of memory-pressure by configuring stress-ng with: (i) having 1 stress thread with
cache parameter, (ii) having 2 stress thread with the stream parameter, and (iii) having
3 stress thread with the stream. Table 5.1 provides the overall system specifications in
further detail.

While PT-Baker can reduce the latency of page table walks that may occur to memory
regions mapped with any page size, i.e., base 4KB or huge 2MB that are supported trans-
parently in the x86-64 architecture, in the evaluation of PT-Baker in this thesis we mainly
use 4KB pages. This scenario resembles common execution conditions that may occur
in long running servers in which huge pages are unavailable due to system aging and
memory fragmentation [33]. Hence, applications eventually use base 4KB page map-
pings and thus experience frequent TLB misses that trigger long-latency page walks. We
performed experiments using PT-Baker with 2MB pages without any fragmentation and
we did not observe any performance improvements. As future work, we plan to perform
experiments using PT-Baker and 2MB pages while varying memory fragmentation. We
also plan to evaluate PT-Baker on systems with larger main memories using larger data-
sets, as prior work [9] has shown that for such systems and applications, page walks can
occur frequently even when 2MB pages are used without any fragmentation.

Table 5.1: System hardware and software configuration.

CPU AMD Ryzen 9 5900X
L1 I/D Cache 12 Cores× 32KB, 8-way set associative
L2 Cache 12 Cores× 512KB, 8-way set associative
L3 Cache 2 CCX × 32MB, 16-way set associative
RAM 64GB, DDR4 4000MHz

L1 DTLB 64 entries, fully associative
L2 DTLB 2048 entries, 16-way set associative

Linux Kernel 6.6.10
gcc/g++ 11.4.0
Perf tool 6.6.10
QEMU 6.2.0

A. Chatzopoulos 33

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

5.2 Workloads

For the evaluation of our approach we experiment with the following workloads:

• Graph500, List-based version (scale 24) [27],

• LibLinear, a linear classification workload with the HIGGS input set [17, 2],

• GUPS, the RandomAccess benchmark from HPCC (32 GB allocation) [4]

• Hashjoin, an implementation [8] of the well-known algorithm (Hashtable Size: 108,
Iterations: 100, Outer Table Size: 107, Inner Table Size: 9× 108),

• Canneal, a kernel from PARSEC (Input Nets: 6×107, Swaps: 3×104, Start Temper-
ature: 2000, Temperature Steps: 15000) [15], and

• BC, a Betweenness Centrality algorithm from the GAPBS suite [13] with the twitter
graph input set that the suite provides.

For all of the aforementioned workloads, PT-Baker thread only touches one memory re-
gion, which is the main allocated structure for each algorithm that produces the majority
of TLB misses that trigger page walks. For those workloads that use more than one al-
located data structures, such as Graph500, Hashjoin and GAPBS BC, we implemented
the PT-Baker to access multiple data structures sequentially or even touch more than
one structures in each iteration. However, we did not notice any additional performance
improvement when touching more than one allocated data structure. Therefore, in the
reported results PT-Baker touches a single memory region for those workloads as well.

Table 5.2: Workloads - Memory footprints of workloads and PT-Baker

Workload Total Memory
Footprint

PT-Baker Memory
Footprint

Graph500 List Based 9.1GB 4.25GB
LibLinear 5.5GB 4.5GB

Parsec - Canneal 20.6GB 5.1GB
Hashjoin 16.5GB 13.4GB
GUPS 32GB 32GB

GAPBS BC 14GB 5.47GB

5.3 Hardware Performance Counters & Metrics

The metrics used in our analysis are generated by collecting results with the Linux Perf
tool. This tool offers a range of pre-mapped events suitable for our measurements such
as the number of page walks for data requests, L2 data TLB misses and total instructions
executed. Apart from these predefined events that the Linux Perf tool provides, we can
also use raw performance counters that are not directly mapped and offered by the tool.
The AMD Zen 3 architecture contains performance counters that measure page walk hits
in the cache hierarchy and main memory [11]. They are officially documented by AMD
and can be measured using Perf. Table 5.3 shows all the counters used for the motivation

A. Chatzopoulos 34

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

analysis presented in Chapter 3, as well as for the evaluation and performance analysis
experiments presented in Chapter 6.

Table 5.3: Performance events used in perf-stat tool

ls_tablewalker.dside Total data page
table walks

dTLB-load-misses
Total data TLB
load misses that
trigger page walks

cpu/instructions/ Total instructions
executed

power/energy-pkg/ Energy consumption
of the CPU package

event=0x5B, mask=0x01 L2 local cache hit
during page walks

event=0x5B, mask=0x12 L3 Cache hit on local or
remote CCX during page walks

event=0x5B, mask=0x48 Access from DRAM or IO
during page walks

A. Chatzopoulos 35

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

6. RESULTS

In this chapter we measure the performance improvement of PT-Baker on a native sys-
tem in both non-memory-pressured andmemory-pressured execution conditions. Further-
more, we evaluate the performance improvement on a virtualized environment for various
parameter configurations of PT-Baker. We then experiment with the PT-Baker core place-
ment and perform a parameter sensitivity analysis using specific workloads. Finally, we
provide power consumption measurements for some workloads on configurations that
show performance improvement.

6.1 Native Execution

6.1.1 Native Execution in a Non-Memory-Pressured System

First, we tested PT-Baker on the native system without any LLC memory interference,
both for the user-level and kernel-level approach, using the NOP and sleep instruction
parameters. The PT-Baker helper thread runs on a different core than the application
main thread, but within the same CCX. Figure 6.1 shows the performance improvement
and Figure 6.2 shows percentage decrease for DRAM accesses during page table walks
when using 4KB pages with PT-Baker. The results are normalized to the scenario of using
4KB pages without PT-Baker.

We observe that the PT-Baker thread speeds up most workloads. The Graph500 and Lib-
Linear benchmarks show an increase in performance up to 5.9% and 4.1%, respectively
using the user-level approach, with the kernel PT-Baker providing a greater performance
improvement of up to 18% and 5.4%. For the hashjoin workload, we observed a per-
formance improvement of 5.4% with the kernel-level PT-Baker. Finally, we also noticed a
performance improvement for the GAPBS BC algorithm when we used the PT-Baker at
user and kernel level, but only when using the NOP instructions parameter. However,
PT-Baker does not provide performance improvements for Canneal from PARSEC and
GUPS. We observe that Canneal does not experience a significant speedup even with
2MB pages. For GUPS, which is a very memory intensive microbenchmark, we observe
that PT-Baker slightly degrades the application performance due to cache pollution by
even attempting modestly to keep PTEs warm in the LLC. Finally, we compare our res-
ults with the execution time with 2MB pages (THP) without PT-Baker. While 2MB pages
provide important performance improvements for almost all applications due to signific-
ant TLB miss reduction, we observe that PT-Baker is able to bridge the performance gap
between 4KB and 2MB pages, particularly for Graph500.

6.1.2 Native Execution in a Memory-Pressured System

We now perform experiments on a memory-pressured system with LLC contention due to
cache interference. Again, the PT-Baker helper thread is running on a different core than
the application main thread, but within the same CCX. To put pressure on the memory sys-
tem, we used the stress-ng tool with one thread with the cache parameter and also two
and three threads with the stream parameter; with the latter configuration parameters, the
tool allocates more memory and is overall more memory intensive on the cache hierarchy
of the system. Figures 6.3 and 6.4 show the performance improvement with PT-Baker at

A. Chatzopoulos 36

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

−20

−10

0

10

20

30

40

50

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

37
.1

%

2
1.

8%

5.
0%

28
.2

%

87
.5

%

17
.8

%

3.
8
%

3.
1
%

0.
2%

-5
.1

%

-5
.2

%

3.
0%

5
.9

%

4.
1%

-1
.0

%

-7
.0

%

-8
.6

%

-0
.0

%

17
.5

%

5.
2%

0.
0%

4.
9%

-6
.0

%

3
.9

%

18
.0

%

5.
4%

0
.1

%

5.
4%

0.
1% 0.
8%

PT-Baker - Non-Memory-Pressured Native System

2MB-Pages User-level-PT-Baker-Nop User-level-PT-Baker-Sleep Kernel-level-PT-Baker-Nop Kernel-level-PT-Baker-Sleep

Figure 6.1: PT-Baker native execution performance improvement for both user-level approach and
kernel-level approach with NOP instructions (greater than or equal to zero) and sleep instruction

parameters.

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

−75

−50

−25

0

25

50

75

100

P
er

ce
n
ta

ge
D

ec
re

as
e

-3
%

7
0%

-1
1
%

-7
6%

-2
%

21
%

-1
5%

8
3%

-1
3%

-7
3%

-3
%

18
%

19
%

9
6%

-1
2%

41
%

12
%

26
%

20
%

99
%

0%

49
%

6%

25
%

User and Kernel PT-BAKER - Percentage Decrease for DRAM Accesses During Page Walks

User PT-Baker Using NOP User PT-Baker Using Sleep Kernel PT-Baker Using NOP Kernel PT-Baker Using Sleep

Figure 6.2: DRAM percentage decrease during page table walks on a native system using
user-level and kernel-level PT-Baker with NOP and sleep instruction parameters.

user-level and at kernel-level using the sleep command parameter. It can be clearly seen
that PT-Baker at the kernel-level again provides a greater performance improvement com-
pared to PT-Baker at the user-level. We also perform additional measurements for the BC
algorithm using the NOP command parameter for PT-Baker to reduce the aggressiveness

A. Chatzopoulos 37

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

between page walk triggering. As shown in Figure 6.5, we found that the NOP approach,
especially for the kernel-level method, leads to a performance improvement compared to
the sleep parameter.

GUPS Hashjoin LibLinear Parsec GAPBS-BC

Workloads

−20

−10

0

10

20

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

-4
.1

%

-0
.2

%

0
.8

%

-3
.6

% -2
.4

%

0.
6
%

-1
.0

%

-2
.7

%

0.
4
%

-1
.7

%

6
.1

%

11
.1

%

11
.2

%

-2
0.

0%

-0
.1

%

User PT-Baker Using Stress Threads

Speedup - 1 Stressor Speedup - 2 Stressors Speedup - 3 Stressors

Figure 6.3: User-level PT-Baker performance improvement on a native memory-pressured system
using the sleep instruction parameter.

6.2 Virtualized Execution

Wealso test our approach on a virtual machine usingQEMUby running both the workloads
and PT-Baker entirely at the guest level. Figure 6.6 shows the performance improvement
achieved with both user and kernel PT-Baker for sleep and NOP instructions on different
cores within the same CCX CPU chip. Figure 6.7 illustrates the performance improve-
ment when running with two stream stress-ng stress threads. The results show that on
a virtual machine, both in non-memory-pressured and memory-pressured systems, the
percentage improvement is not as significant as with native execution for most workloads,
except for Graph500 and LibLinear. While our thread attempts to keep the PTEs warm in
the cache, it adds additional pressure in the LLC. In a native system, a page table walk re-
quires up to 4 memory references, but in a virtual machine, this process requires up to 24
references, as shown in Figure 2.4. Further investigation of the sleep and NOP instruction
parameters may be necessary to reduce cache pollution and ultimately accomplish addi-
tional memory address translation accelerations. Finally, we observe that the user-level
PT-Baker approach for Graph500 with sleep system calls provides the most significant
performance improvement, likely due to its additional assistance in prefetching data in the
LLC and reducing data cache misses.

A. Chatzopoulos 38

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

GUPS Hashjoin LibLinear Parsec GAPBS-BC

Workloads

−5

0

5

10

15

20

25

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

-0
.6

%

0.
8
%

3
.1

%

2
.3

%

-1
.0

%

-1
.0

%

5.
4
%

13
.3

%

13
.0

%

-1
.0

%

6
.0

%

1.
5
%

2
2
.4

%

1
6
.6

%

-1
.3

%

Kernel PT-Baker Using Stress Threads

Speedup - 1 Stressor Speedup - 2 Stressors Speedup - 3 Stressors

Figure 6.4: Kernel-level PT-Baker performance improvement on a native memory-pressured
system using sleep instruction parameter.

GAPBS-BC
−10

−5

0

5

10

15

20

25

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

0.
7%

4.
1%

-4
.4

%

User PT-Baker - GAPBS BC Using NOP Instructions and Stressor Threads

Speedup - 1 Stressor Speedup - 2 Stressors Speedup - 3 Stressors

(a) User PT-Baker
GAPBS-BC

0

5

10

15

20

25

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

2.
0%

5.
5% 6.

4%

Kernel PT-Baker - GAPBS BC Using NOP Instructions and Stressor Threads

Speedup - 1 Stressor Speedup - 2 Stressors Speedup - 3 Stressors

(b) Kernel PT-Baker

Figure 6.5: GAPBS - BC workload using the NOP instruction parameter for user-level (left) and
kernel-level (right) PT-Baker on a native memory-pressured system.

6.3 Sensitivity Analysis

In this section, we experiment with specific workloads using Simultaneous Multithreading
(SMT), evaluate the effectiveness of the prefetch instruction for the user-level approach,
and assess the sensitivity of NOP and sleep instruction parameters.

A. Chatzopoulos 39

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Graph500 - List Based LibLinear Parsec - Canneal Hashjoin GUPS GAPBS BC

Workloads

−20

−10

0

10

20

30

40

50

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t

16
.0

%

3.
5%

-5
.4

% -3
.5

%

-5
.6

%

0.
6%

38
.2

%

7.
4%

-7
.7

%

-2
.9

%

-5
.5

%

-4
.9

%

19
.6

%

-0
.8

%

-1
.4

%

-2
.0

%

-3
.2

%

0.
8%

20
.5

%

3.
4%

-0
.2

%

1.
9%

-1
.3

%

-4
.3

%

Virtual Machine - PT-Baker - Non-Memory-Pressured Native System

User-level-PT-Baker-Nop User-level-PT-Baker-Sleep Kernel-level-PT-Baker-Nop Kernel-level-PT-Baker-Sleep

Figure 6.6: PT-Baker virtual execution performance improvement for both user-level approach and
kernel-level approach with NOP instructions (greater than or equal to zero) and sleep instruction

parameters.

GUPS Hashjoin LibLinear Parsec GAPBS-BC

Workload

−4

−2

0

2

4

6

8

10

P
er

ce
n
ta

ge
Im

p
ro

ve
m

en
t

-4.8%

-0.6%

4.6%

9.5%

-1.6%

Kernel PT-Baker With Sleep Instructions Using 2 Stream Stressor Threads

Kernel PT-Baker

Figure 6.7: Kernel-level PT-Baker, using sleep instructions parameter, performance improvement
on a virtual memory-pressured system.

A. Chatzopoulos 40

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

6.3.1 Running PT-Baker using SMT

We now test the placement of the PT-Baker thread with sleep instruction on the same core
with the application’s main thread, using themicroprocessor’s SMT capabilities. Figure 6.8
summarizes the performance improvement results, normalized to when using 4KB pages
without PT-Baker. We observe that the kernel-level approach provides similar but slightly
smaller performance improvements compared to placing the helper thread on a different
core within the same CCX. In contrast, the user-level approach provides less performance
benefits with respect to placing the helper thread on a different core. This occurs because
the user-level approach introduces additional L1 and L2 cache pollution by fetching also
application data. This behavior is more pronounced for the GAPBS BC workload, as we
observe that placing the PT-Baker thread on the same core with the application’s main
thread does not bring any performance improvement.

Graph500 - List Based LibLinear GAPBS BC

Workload

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
er

ce
n
ta

ge
Im

p
ro

ve
m

en
t

4.6%

3.0%

-1.5%

17.5%

4.9%

0.4%

SMT - User PT-Baker - Kernel PT-Baker

User PT-Baker

Kernel PT-Baker

Figure 6.8: Simultaneous Multithreading (SMT) evaluation on Graph500 - List Based, LibLinear and
GAPBS BC for user-level and kernel-level PT-Baker with sleep instruction parameter.

6.3.2 Testing User PT-Baker using the Builtin prefetch Instruction

So far we have used regular load instructions, i.e., the variable assignment method, for
accessing the workload’s allocated memory region with the user-level PT-Baker approach.
We now test the user-level approach using the prefetch instruction that we described in
Chapter 4. Figure 6.9 shows the performance improvement results, normalized to when
using 4KB pages without PT-Baker. We observe that Liblinear has reduced performance
improvement compared to using regular load instructions. However, the performance of
Graph500 and GAPBS BC is further improved, with Graph500 showing an increase from
a maximum of 5.9% to 7.9%, while the maximum improvement for GAPBS BC remains at
3%. Overall, we notice that the prefetch instruction is more memory-aggressive compared
to using regular load instructions through a typical variable assignment mode.

A. Chatzopoulos 41

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

Graph500 - List Based LibLinear GAPBS BC

Workload

0

1

2

3

4

5

6

7

8

P
er

ce
n
ta

g
e

Im
p

ro
ve

m
en

t

5.1%

2.1%

3.0%

7.9%

1.7% 1.6%

User PT-Baker Prefetch Instruction

Nop Parameter

Sleep Parameter

Figure 6.9: Using prefetch instruction for user-level approach on LibLinear, Graph500 and GAPBS
BC workloads with the Sleep instruction parameter.

6.3.3 Testing PT-Baker using NOP and Sleep Instructions

We conduct a sensitivity analysis regarding the number of NOP instructions and the dur-
ation of the sleep system calls in microseconds. Figures 6.10 and 6.11 show the per-
formance improvement results, normalized to when using 4KB pages without PT-Baker.
We observe that the user-level approach is much more sensitive to the NOP and sleep
parameters in comparison to the kernel-level approach, because the user-level approach
fetches additional application data.

100 200 400 600

NOP Instructions Between Accesses

0

1

2

3

4

5

P
er

ce
n
ta

ge
Im

p
ro

ve
m

en
t

2.9%

1.7%

3.1%

2.5%

4.4%

3.8%

5.2%

3.3%

LibLinear - User PT-Baker and Kernel PT-Baker Using NOPS Instructions

Userspace-Speedup

Kernelspace-Speedup

Figure 6.10: Sensitivity analysis for number of NOP instructions parameter on LibLinear using
user-level and kernel-level PT-Baker.

A. Chatzopoulos 42

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

100000 10000 1000 100

Sleep in microseconds After Each Iteration/System Call

−1

0

1

2

3

4

5

P
er

ce
n
ta

g
e

Im
p

ro
ve

m
en

t

0.7%

4.1%

1.3%

-1.5%

3.9%

5.4%

4.3%

4.6%

LibLinear - User PT-Baker and Kernel PT-Baker Using Sleep Instructions

Userspace-Speedup

Kernelspace-Speedup

Figure 6.11: Sensitivity analysis for sleep instruction parameter in microseconds on LibLinear
using user-level and kernel-level PT-Baker.

6.4 Power Consumption

Finally, we measure the power consumption of the CPU package for specific workloads
and configurations that provide significant performance improvement. More specifically,
we evaluate the power consumption when executing LibLinear, GAPBS BC and Hashjoin.
Figure 6.12 shows the power consumption in Watts and the percentage increase on the
AMD Ryzen 9 5900X package, which has a TDP of 105 watts. Power consumption is
measured using the perf-stat tool with the power/energy-pkg/ event, as described in Table
5.3. Overall, the kernel-level PT-Baker consumes slightly more power than the user level
approach. The use of NOP instructions only serves to reduce the aggressiveness of PT-
Baker thread’s pressure to thememory cache hierarchy. In contrast, the sleep system calls
can also assist to lower the power consumption of the CPU, enabling other processes to
execute during the time quantum that the PT-Baker thread is in a blocked state.

A. Chatzopoulos 43

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

0

20

40

60

80

100

W
at

ts

8.68%
-0.25% 3.29% 4.79%

LibLinear Workload

Baseline KWN KWS UWN UWS

0

20

40

60

80

100

W
at

ts

9.00%

N/A

7.52%

N/A

GAPBS BC Workload

0

20

40

60

80

100

W
at

ts

10.46% 10.05%

N/A N/A

Hashjoin Workload

Figure 6.12: Power Consumption using kernel-level approach PT-Baker thread and user-level
PT-Baker thread. Kernel-level PT-Baker thread using NOP instructions KWN. Kernel-level

PT-Baker thread using sleep KWS. User-level PT-Baker thread using NOP instructions UWN.
User-level PT-Baker thread using sleep instruction UWS.

A. Chatzopoulos 44

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

7. RELATED WORK

In the last few years, there has been a massive amount of research aiming at reducing
the overheads of address translation. In this chapter we focus on closely related work
that focuses on reducing the latency of page table walks by either preserving page table
structures in the cache hierarchy or directly storing TLB entries within the cache memory
hierarchy. In contrast to PT-Baker that is a system-level approach, prior approaches typ-
ically require architectural and microarchitectural design modifications and thus cannot
directly improve the performance of existing, real systems.

7.1 Prioritizing PTEs in the Cache Hierarchy

To manage better user-level and system-level memory references in the LLC, Wu and
Martonosi [32] proposed a hardware methodology in which a different cache replacement
policy applies to each memory reference type. That approach ensures that cache entries
are managed based on their origin, resulting in more effective LLC locality.

Kwon et al. [23] proposed to use a dynamically reserved LLC space for pinning page
table entries that are most frequently fetched from the main memory. That approach also
requires hardware support and uses the LLCmisses and L2 TLBMPKI events to determine
the space to be allocated in the LLC during the execution of a workload, thus balancing
the page table entries and the data in the cache memory.

Vasudha et al. [31] proposed several optimizations to address translation cache policies
aimed at extending the retention of page table entries in both the L2 and LLC caches,
alongside the introduction of hardware prefetching for address translations. For the L2
cache, the authors modified the DRRIP eviction policy to insert page table leaf nodes at the
lowest eviction priority, while all the previous page table nodes of the corresponding page
walk are assigned the highest eviction priority into the L2 cache. Similarly, the authors
proposed enhancements to the SHiP and Hawkeye cache policies in the LLC to preserve
page table entries in the cache for more time.

Park et al. [28] proposed flattening the tree structure of the page table to reduce the num-
ber of memory accesses during page walks. That approach requires hardware modi-
fications in the page table walkers and the page walker caches (PWCs), while on the
software side it modifies the kernel so that the 3rd and 2nd levels of the page table are
flattened accordingly. In addition, the authors proposed a cache management technique
that prioritizes the page table entries in the LLC. Similarly to the previous approaches,
the proposed technique requires hardware support to enforce the prioritization and de-
tect phases with high TLB and cache misses. To gain confidence about the performance
potential of prioritizing the page table entries in the LLC, the authors state that they imple-
mented an approach similar to PT-Baker and only mention that they managed to achieve
5% speedup for Graph500 on a real Intel microprocessor, without providing any design
and implementation details, or evaluation results. In contrast, in this thesis we compre-
hensively present and evaluate the PT-Baker approach, taking into consideration various
important implementation aspects.

Finally, Margaritov et al. [25] proposed PTEMagnet, a software technique for reducing the
latency of page walks in cloud environments, by improving locality of host PTEs in public
cloud environments. Their approach involves a custom memory allocator that reserves

A. Chatzopoulos 45

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

eight-pages of continuous guest physical memory. As a result, the host’s memory foot-
print is drastically reduced, resulting in better cache locality and reduced latency during
page walks. In contrast, our approach can be beneficial for both native and virtualized
environments, and avoids any changes to the memory allocator.

7.2 Storing TLB Entries in the Cache Hierarchy

Ryoo et al. [29] introduced an addressable, four-way set associative L3-TLB structure
within the main memory, known as POM-TLB, for storing TLB entries. That approach
takes advantage of caching TLB entries in the L2 and L3 caches as well, by substan-
tially decreasing the frequency of page walks and reducing the virtual address translation
latency.

Similarly, Marathe et al. [24] proposedCSALT, a hardware-based cache partitioning design,
to maximize the hit rate of data and TLB entries. Using the Mattson’s Stack Distance al-
gorithm to estimate the hit/miss ratio and a formula to measure the total hit ratio in the
cache called Marginal Utility, CSALT attempts to optimize the capacity of data and TLB
entries inside the cache memory.

Kanellopoulos et al. [19] presented an approach namedVictima, that stores clusters of TLB
entries in the L2 cache. By using a predictor mechanism that recognizes slow address
translations processes based on frequency and cost weight along with a TLB-aware cache
policy, Victima constructs TLB clusters within the L2 cache, enabling direct access to the
corresponding TLB entry.

Finally, recent work by Kotra et al. [22] and Jaleel et al. [18] demonstrated that GPUs also
suffer from high TLB misses and poor page walk latency, which degrade the overall GPU
performance for memory intensive workloads. They proposed techniques that enable TLB
entries to be stored within the memory hierarchy of the host and the device to reduce the
of latency of page walks.

A. Chatzopoulos 46

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

8. CONCLUSION AND FUTURE WORK

The growingmemory requirements in today’s applications are putting extreme pressure on
the TLB, leading to a significant increase in costly address translations in virtual memory.
In Section 3 we conducted a performance analysis for a series of workloads and showed
that a significant percentage of page walks result accessing the main memory. In Section
4 we proposed a user-level and a kernel-level approach called PT-Baker thread that peri-
odically iterates through the page table levels in order to keep the page table structures
warm within the cache hierarchy and reduce the latency of page table walks. We tested
our approach on both native and virtualized systems, as well as on a memory pressured
system. We showed that PT-Baker can bring significant performance improvements for
some applications. Finally, we performed a sensitivity analysis regarding the thread place-
ment, the use of the prefetch instruction to trigger page table table walks at the user level,
and the use of NOP instructions and sleep system calls to throttle the aggressiveness of
PT-Baker.

In our future work, we intend to implement a dynamic system-level daemon that can ac-
cess other processes’ page tables without requiring users to integrate this technique into
their workloads (as described in Section 4.5). Furthermore, we plan to evaluate PT-Baker
on other systems, such as Intel and ARM processors. We will also conduct experiments
on systems with larger memory capacities, using 2MB pages and varying levels of frag-
mentation. While this thesis is focused on single-threaded workloads, we will also consider
multi-threaded workloads with a broader range of applications. Finally, the improvements
of PT-Baker in virtualized execution are less pronounced, due to the 2D page walks that in-
troduce more memory references and result in increased cache pressure. The execution
of PT-Baker in virtualized execution requires further exploration through fine-tuning the
various parameters. An alternative promising technique to improve the performance in
virtualized environments is implementing PT-Baker at the hypervisor level, in which case
PT-Baker will transparently manage and access the host’s virtual memory and trigger only
one-dimensional page walks.

A. Chatzopoulos 47

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

ABBREVIATIONS - ACRONYMS

CPU Central Processing Unit

GPU Graphics Processing Unit

TLB Translation Lookaside Buffer

DTLB Data Translation Lookaside Buffer

MMU Memory Management Unit

CR3 Control Register 3

PGD Page Global Directory

PMD Page Mid-level Directory

PUD Page Upper Directory

PDE Page Directory Entry

PTE Page Table Entry

gVA guest Virtual Address

hPA host Physical Address

DRAM Dynamic Random-Access Memory

LLC Last Level Cache

CCX Core Complex

NOP No Operation

PWC Page Walker Cache

SMT Simultaneous Multithreading

TDP Thermal Design Power

A. Chatzopoulos 48

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

APPENDIX A. SOFTWARE ARTIFACT

The code and the scripts that were used in this thesis can be found in the following link:
https://github.com/Aggelos561/Thesis-PT-Baker

A. Chatzopoulos 49

https://github.com/Aggelos561/Thesis-PT-Baker

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

BIBLIOGRAPHY

[1] Five-level page tables. https://lwn.net/Articles/717293/.

[2] Libsvm data: Classification, regression, and multi-label. https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html#HIGGS.

[3] Qemu kernel virtual machine. https://wiki.qemu.org/Features/KVM.

[4] Randomaccess - giga updates per second (gups). https://hpcchallenge.org/projectsfiles/hpcc/
RandomAccess.html.

[5] Stress-ng, a tool to load and stress a computer system. https://manpages.org/stress-ng.

[6] Transparent hugepage support. https://docs.kernel.org/admin-guide/mm/transhuge.html.

[7] Amd ccx definition. https://www.tomshardware.com/reviews/amd-ccx-definition-cpu-core-explained,
6338.html, 2021.

[8] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe, and Jayneel Gandhi. Mi-
tosis: Transparently self-replicating page-tables for large-memory machines. ASPLOS ’20, page 283–
300, New York, NY, USA, 2020. Association for Computing Machinery.

[9] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Konstantinos Nikas, Geor-
gios Goumas, and Nectarios Koziris. Enhancing and exploiting contiguity for fast memory virtualization.
In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA
’20, page 515–528. IEEE Press, 2020.

[10] AMD. White paper, speculation behavior in amd micro-architectures. https://www.amd.com/system/
files/documents/security-whitepaper.pdf.

[11] AMD. Open-source register reference for amd family 17h processors models 00h-2fh. https:
//www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/
56255_OSRR.pdf, 2018.

[12] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: skip, don’t walk (the page table).
SIGARCH Comput. Archit. News, 38(3):48–59, jun 2010.

[13] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite. arXiv preprint
arXiv:1508.03619, 2015.

[14] Fabrice Bellard. Qemu, a fast and portable dynamic translator. InUSENIX annual technical conference,
FREENIX Track, volume 41, pages 10–5555. California, USA, 2005.

[15] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, pages 72–81, 2008.

[16] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux Kongress, volume 18, pages
1–42, 2010.

[17] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. the Journal of machine Learning research, 9:1871–1874, 2008.

[18] Aamer Jaleel, Eiman Ebrahimi, and Sam Duncan. Ducati: High-performance address translation by
extending tlb reach of gpu-accelerated systems. ACM Trans. Archit. Code Optim., 16(1), mar 2019.

[19] Konstantinos Kanellopoulos, Hong Chul Nam, Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,
Rakesh Kumar, Davide Basilio Bartolini, and Onur Mutlu. Victima: Drastically increasing address trans-
lation reach by leveraging underutilized cache resources. In Proceedings of the 56th Annual IEEE/ACM
International Symposium onMicroarchitecture, MICRO ’23, page 1178–1195, New York, NY, USA, 2023.
Association for Computing Machinery.

[20] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ünsal. Redundant memory mappings for fast access to
large memories. In Proceedings of the 42nd Annual International Symposium on Computer Architecture,
ISCA ’15, page 66–78, New York, NY, USA, 2015. Association for Computing Machinery.

A. Chatzopoulos 50

https://lwn.net/Articles/717293/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#HIGGS
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#HIGGS
https://wiki.qemu.org/Features/KVM
https://hpcchallenge.org/projectsfiles/hpcc/RandomAccess.html
https://hpcchallenge.org/projectsfiles/hpcc/RandomAccess.html
https://manpages.org/stress-ng
https://docs.kernel.org/admin-guide/mm/transhuge.html
https://www.tomshardware.com/reviews/amd-ccx-definition-cpu-core-explained,6338.html
https://www.tomshardware.com/reviews/amd-ccx-definition-cpu-core-explained,6338.html
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/56255_OSRR.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/56255_OSRR.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/56255_OSRR.pdf

Improving the Locality of Page Table Walks in the Cache Hierarchy of Modern Microprocessors

[21] Vasileios Karakostas, Osman S. Unsal, Mario Nemirovsky, Adrian Cristal, and Michael Swift. Perform-
ance analysis of the memory management unit under scale-out workloads. In 2014 IEEE International
Symposium on Workload Characterization (IISWC), pages 1–12, 2014.

[22] Jagadish B. Kotra, Michael LeBeane, Mahmut T. Kandemir, and Gabriel H. Loh. Increasing gpu trans-
lation reach by leveraging under-utilized on-chip resources. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO ’21, page 1169–1181, New York, NY, USA, 2021.
Association for Computing Machinery.

[23] Osang Kwon, Yongho Lee, and Seokin Hong. Pinning page structure entries to last-level cache for fast
address translation. IEEE Access, 10:114552–114565, 2022.

[24] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and Lizy K. John. Csalt: Context
switch aware large tlb. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 449–462, 2017.

[25] Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot. Ptemagnet: fine-grained physical
memory reservation for faster page walks in public clouds. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’21, page 211–223, New York, NY, USA, 2021. Association for Computing Machinery.

[26] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable interface to hard-
ware performance counters. In Proceedings of the department of defense HPCMP users group confer-
ence, volume 710, 1999.

[27] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Introducing the graph 500.
Cray Users Group (CUG), 19(45-74):22, 2010.

[28] Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer. Every walk’s a hit:
making page walks single-access cache hits. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’22, page 128–
141, New York, NY, USA, 2022. Association for Computing Machinery.

[29] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. Rethinking tlb designs in virtualized en-
vironments: A very large part-of-memory tlb. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pages 469–480, 2017.

[30] Eliot H Solomon, Yufeng Zhou, and Alan L Cox. An empirical evaluation of pte coalescing. In Proceed-
ings of the International Symposium on Memory Systems, pages 1–16, 2023.

[31] Vasudha Vasudha and Biswabandan Panda. Address translation conscious caching and prefetching
for high performance cache hierarchy. In 2022 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 311–321, 2022.

[32] Carole-Jean Wu and Margaret Martonosi. Characterization and dynamic mitigation of intra-application
cache interference. In (IEEE ISPASS) IEEE International Symposium on Performance Analysis of Sys-
tems and Software, pages 2–11, 2011.

[33] Kaiyang Zhao, Kaiwen Xue, Ziqi Wang, Dan Schatzberg, Leon Yang, Antonis Manousis, Johannes
Weiner, Rik Van Riel, Bikash Sharma, Chunqiang Tang, and Dimitrios Skarlatos. Contiguitas: The
pursuit of physical memory contiguity in datacenters. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, ISCA ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

A. Chatzopoulos 51

	CONTENTS
	INTRODUCTION
	Goal & Motivation
	Approach
	Thesis Contributions
	Organization

	BACKGROUND
	Cache Memory
	Virtual Memory
	Address Translation
	Accelerating Address Translation
	Improving Address Translation through Huge Pages
	Virtual Memory in Virtualized Environments

	MOTIVATION
	Quantifying the Frequency of Misses in the Memory Hierarchy
	Quantifying the Locality of Page Walks in the Memory Hierarchy
	Opportunity for Improvement

	PT-BAKER: A HELPER-THREAD APPROACH
	Overview
	User-level Approach
	Kernel-level Approach
	Configuring the Helper Thread
	Selecting Page Stride
	Triggering Page Walks
	Crafting a TLB microbenchmark
	Reverse Engineering the MMU behavior of the Prefetch Instruction

	Throttling PT-Baker
	Placing PT-Baker Thread
	Reverse Engineering SMT Sharing in TLBs

	Discussion

	EVALUATION METHODOLOGY
	System Configuration
	Workloads
	Hardware Performance Counters & Metrics

	RESULTS
	Native Execution
	Native Execution in a Non-Memory-Pressured System
	Native Execution in a Memory-Pressured System

	Virtualized Execution
	Sensitivity Analysis
	Running PT-Baker using SMT
	Testing User PT-Baker using the Builtin prefetch Instruction
	Testing PT-Baker using NOP and Sleep Instructions

	Power Consumption

	RELATED WORK
	Prioritizing PTEs in the Cache Hierarchy
	Storing TLB Entries in the Cache Hierarchy

	CONCLUSION AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	SOFTWARE ARTIFACT
	REFERENCES

