f.. EAAHNIKH AHMOKPATIA
1&2 Edvikév kot Kanodietprokov
'::..L.L

3 L &
2, Havemotnpiov Adnvov
IAPY®EN TO 1837

IATPIKH 2XOAH AOHNQN
EPFTAZTHPIO ®DYZIONOTIAZ

AevBuvtpla: Kadnyntpia Mavpayavn KAsww

Mua uTtoAoyLOTIKN TTPOCEYYLON OTNV KATELOUVON pLag BeATLwpEVNG Stadkaoiag
XOPOKTNPLOHOU Kol Tteplypadrig Tou HeETOYPaPWHATOC EVOG KUTTOPLKOU
ntAnOucopov, Baoiopévn os texvoloyieg aAAnAouxiong RNA og eninedo

povadiaiov Kuttdpou

A computational approach towards a more accurate characterization and
annotation of a cell population’s transcriptome based on single-cell RNA

sequencing technologies

Tladépng Xpriotog
BlonAnpodopkdg
Asaktopiki AtatpBn

ABrva 2024



?;.,. EAAHNIKH AHMOKPATIA

% Edvikév kot KanmodietpLakov
B, 7 # #

R HNavemotnriov Adnvoyv

[APY®EN TO 1837

IATPIKH 2XOAH AOHNQN
EPFTAZTHPIO ®DYZIONOTIAZ

AevBuvtpla: KaBnyntpia Mavpayavn KAsww

Mua uTtoOAOYLOTIKA TTPOCEYYLON oTNV KateUOUvon pLag BeATiwpEvVNg Stadkaoiog
XOPOAKTNPLOMOU Kot Tteplypadrg Tou HeTaypadWHOTOC EVOC KUTTAPLKOU
nAnBuopou, Baocilopévn o€ texvoAoyieg aAAnAolxiong RNA o eninedo

povadiaiov Kuttdpou

A computational approach towards a more accurate characterization and
annotation of a cell population’s transcriptome based on single-cell RNA

sequencing technologies

Tladépng Xpriotog
BlonmAnpodopikdg
Awbaktopikn AwatpBn

AGRva 2024



stoeia tavtotnToc S16aKTopkAC StatpBhg

o) Huepopnvia attijoswg tou untoPndiouv: 04/09/2019

B) Huepounvia optopou 3pehol¢ Zuppouleutikng Emtponng: 08/10/2019

v) Ta LA t¢ 3peAouc ZUPBOoUAEUTIKN G EMitponn(:

KoAALag Mrewpylog, KaBnyntng, latpikn ZxoAn, EKMNA
Xatinyewpylou Avtwviog, AvarmAnpwtng Kadnyntng, latpiki ZxoAn, EKMNA
MauvAomouloc Mewpylog, Epsuvntng A, E.KE.B.E «AAE€avEpog DAELLYK»

8) Huepounvia oplopou tou @£patog: 03/01/2020

£) Huepopnvia katabéoswce ¢ Sidaktoptkig Statpprg: 19/06/2024

{) Huepounvia dnuootag unootipléng tng Stdaktopikng dtatplpnc: 15/07/2024

EntapeAng EEETAGTLKY EMLTPOTH

N o v A w NP

Ydnkakng Nétpog, KaBnyntng, latpikn ZxoAn, EKMNA

KoAAwag Mrewpylog, KaBnyntng, latpikn ZxoAn, EKMNA

Xatinyewpylou Avtwviog, AvarmAnpwtng Kadnyntng, latpiki ZxoAn, EKMNA
NaAnkapdg Kwvotavtivog, Emikoupog KaBnyntng, latpikn 2xoAn, EKMNA
ABavaoladng Eppavoun, Enikoupog Kadnyntng, Mavemotiuio AuTikrg ATTIKAG
MauAdmoulocg Mewpylog, Epsuvntig A, E.KE.B.E «AAE€avEpog DAELLYK»
NikoAdou Xplotodopoc, Epeuvntrc B’, E.KE.B.E «AAEEaVEPOG DAEULYK Y

EmBAEnwyY

KoAALog Mrewpylog, KaBnyntng, latpikni ZxoAn, EKMA

Npdebpoc latpkA g TXOANC

Apkadomoulog NikdAaog, KaBnyntng latpikig 2xoAng ABnvwy



OPKOZz TOY INNOKPATH

"Opvupt ArtoA\wva intpov, kat AckAnmiov, kai Yysiav, kai Mavakelav, kol Bgolc mavtag te Kol naoag,
loTtopag oleUUEVOG, ETUTEAEQ TTIOLAOELY KAt SUVAULY Kal Kplowv Eunv Opkov TovEe Kal Euyypadrv trvoe.
‘HynoaoBal pév tov S18afavtd pe thv téxvnv tautnv toa yevétnow éuolol, kal Blou kowwoaoBal, kal
Xpe®v xpnilovtlL petadoov motoachal, kol yévog T0 £€ wutéou adeldoic (oov Emikpvéely Gppeot, Kal
S1batewv TV téYVNV tawtny, Av xpnilwol pavbavelv, dveu poBol kal Euyypadiic, mapayyeAing te kat
Aakponolog Kal T Aoutiic andong padnaolog petadootv motoacbol vioilol te £éuoiol, Kal tolol tol £ue
S18agavtog, kal pabntalol cuyysypappévolol Te Kol WPEKLOUEVOLG VOUW LNTPK®, GAAWw &€& oudevi.
Alatpaoct e xprioopal €n' woeAein KOUVOVTWY KaTA SUvauLy Kol Kpiow €unv, ént dnAnoesl € kal adikin
gip€ewv. OV Swow &€ oUBE dappakov o0Sevi aitnBelc Bavaaotpov, ovdE udnyrnoopat EuuBoulinv Tolnvee.
‘Opoiwg 6€ 006£ yuvalkl meooov pBOpLov dwow. Ayvig 6£ Kal 6oiwg dtatnpriow Bilov TOV EUOV Kal TEXVNV
TV EUNv. OO Tepéw &€ oUBE pnv ABLivTag, Ekxwprnow 8¢ €pyatnoly avdpaot mpnéLog tfiode. EG oikiag 6&
okooag Gv éolw, éoeleloopal €' WdeAeln KAUVOVTWY, £KTOC WV Aoncg adLking ékouaing kat ¢pBoping,
T ¢ T GAANC Kol Adpodioiwv Epywv ETTi TE yuVaLKELWV CWHATWY Kal Avopwwv, EAeuBEpwV Te Kol SoUAwV.
‘A &' v év Bepanein A dw, | dkovow, i Kal Gveu Bepamning kata Biov avBpwnwv, & U xpn mote
gkhoNéeoBal E€w, olyroopal, AppnTa NYEVHEVOC Elval T ToladTa. “OpKov HEV oV poL TOVSE EmteAéa
ToLEovTL, Kal pn Euyxéovty, €in émavpacBat kat Biou kal Téxvng Sofalopévyw mapd Aol AvOpwmoLg ¢

TOV aiel xpovov. mapaPaivovtl 8¢ kal Emopko vy, TAvavTia TOUTEWV.



CURRICULUM VITAE

Personal information

First name/ Surname: Christos Tzaferis

Date of birth: 09/07/1990

Nationality: Greek

Address: Kyprou 11, Petroupoli 13231, Athens
Telephone: +306973936727

E-mail: christzaferis@gmail.com

LinkedIn name: Christos Tzaferis

Professional experience

08/2022 - present

Bioinformatician at Single Cell Analysis Unit of Biomedical Sciences Research Center "Alexander Fleming"
Institute - lab: Institute for Bio-innovation - Kollias lab

Responsibilities: Bioinformatics analysis of -Omics data, development of pipelines and workflows for
automated analysis and visualization of bulkRNA-seq, scRNA-seq, scATAC-seq and spatial transcriptomics
data.

Supervisor: George Kollias, Research Group Leader

11/2020 - 07/2022

Bioinformatician at pMedGR infrastructure, Medical School of Athens.

Sector: Personalized medicine

Responsibilities: Bioinformatics analysis of Big data from NGS platforms, development of pipelines for data
analysis and visualization purposes.

Supervisor: Petros Sfikakis, Scientific Manager

02/2018 - 10/2020

Research assistant in bioinformatics at Biomedical Sciences Research Center "Alexander Fleming"
Institute - lab: Institute for Bio-innovation - Kollias lab

Responsibilities: Bioinformatics analysis of next generation sequencing (NGS) data, analysis and
visualization of genomics, transcriptomics and pharmacogenomics data.

Supervisor: George Kollias, Research Group Leader

09/2013 - 02/2014

Internship at Janssen Pharmaceutical Companies of Johnson & Johnson.

Sector: Digital Communications, Business Intelligence

Responsibilities: Supportive tasks in the information system of the company, participation in the
implementation of a new web portal for health care professionals and web testing of the new corporate
website.

Supervisor: Tsigris Ksenofon, Digital Communications Manager

Education

10/2019 - present
PhD candidate, Department of Physiology, Medical School of Athens


mailto:christzaferis@gmail.com

Research topic: “A computational approach towards a more accurate characterization and annotation of
a cell population’s transcriptome based on single-cell RNA sequencing technologies.”
PhD Supervisor: Prof. George Kollias

10/2014 - 02/2017
Master of Bioinformatics, Biology department, University of Athens
Master thesis: “Research on cellular communication and immunity”

09/2008 —02/2014
Bachelor of Computer Science, Department of Informatics, Athens University of Economic and Business
Specialization: Computer Systems and Networks, Information Systems and Security

Publications and awards

e Papadopoulou D, Mavrikaki V, Charalampous F, Tzaferis C, Samiotaki M, Papavasileiou KD,
Afantitis A, Karagianni N, Denis MC, Sanchez J, Lane JR, Faidon Brotzakis Z, Skretas G, Georgiadis
D, Matralis AN, Kollias G. Discovery of the First-in-Class Inhibitors of Hypoxia Up-Regulated
Protein 1 (HYOU1) Suppressing Pathogenic Fibroblast Activation. Angew Chem Int Ed Engl.
(2024) 63(14):€202319157. doi: https://doi.org/10.1002/anie.202319157

e Tzaferis C, Karatzas E, Baltoumas FA, Pavlopoulos GA, Kollias G, Konstantopoulos D. SCALA: A
complete solution for multimodal analysis of single-cell Next Generation Sequencing data.
Computational and Structural Biotechnology Journal (2023) 21:5382-5393.
https://doi.org/10.1016/j.csbj.2023.10.032

e Papadopoulou D, Roumelioti F, Tzaferis C, Chouvardas P, Pedersen AK, Charalampous F,
Christodoulou-Vafeiadou E, Ntari L, Karagianni N, Denis MC, Olsen JV, Matralis AN, Kollias G.
Repurposing the antipsychotic drug amisulpride for targeting synovial fibroblast activation in
arthritis. JCI Insight. (2023) 8(9):e165024. doi: https://doi.org/10.1172/jci.insight.165024

e Armaka M, Konstantopoulos D, Tzaferis C, Lavigne MD, Sakkou M, Liakos A, Sfikakis PP,
Dimopoulos MA, Fousteri M, Kollias G. Single-cell multimodal analysis identifies common
regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-
driven arthritis. Genome Medicine (2022) 14(1):78. https://doi.org/10.1186/s13073-022-01081-
3

e Kerdidani D, Aerakis E, Verrou KM, Angelidis |, Douka K, Maniou MA, Stamoulis P, Goudevenou K,
Prados A, Tzaferis C, Ntafis V, Vamvakaris |, Kaniaris E, Vachlas K, Sepsas E, Koutsopoulos A, Potaris
K, Tsoumakidou M. Lung tumor MHCIl immunity depends on in situ antigen presentation by
fibroblasts. Journal of Experimental Medicine (2022) 219(2):e20210815.
https://doi.org/10.1084/jem.20210815

e Melissari MT, Henriques A, Tzaferis C, Prados A, Sarris ME, Chalkidi N, Mavroeidi D, Chouvardas P,
Grammenoudi S, Kollias G, Koliaraki V. Col6a1+/CD201+ mesenchymal cells regulate intestinal


https://doi.org/10.1002/anie.202319157
https://doi.org/10.1016/j.csbj.2023.10.032
https://doi.org/10.1172/jci.insight.165024
https://doi.org/10.1186/s13073-022-01081-3
https://doi.org/10.1186/s13073-022-01081-3
https://doi.org/10.1084/jem.20210815

morphogenesis and homeostasis. Cellular and Molecular Life Sciences (2021) D79(1):1.
https://doi.org/10.1007/s00018-021-04071-7

Koliaraki V, Chalkidi N, Henriques A, Tzaferis C, Polykratis A, Waisman A, Muller W, Hackam DJ,
Pasparakis M, Kollias G. Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes
Spontaneous  Intestinal ~ Tumorigenesis. Cell Reports (2019)  26(3):536-545.e4.
https://doi.org/10.1016/j.celrep.2018.12.072

Best poster presentation award certificate in the 14t Conference of HSCBB19 for the study “A
computational approach towards a more accurate characterization and annotation of a cell population’s
transcriptome based on single-cell RNA sequencing technologies.”

Conferences

16th Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB22,
2022) [Oral presentation]

1st International Conference on Mesenchymal Cells in Health & Disease (2022) [Poster
presentation]

14" Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB19,
2019) [Poster presentation]

Mesenchymal cells in inflammation, immunity and cancer (EMBO Workshop, 2019)
17" European Conference on Computational Biology (ECCB2018, 2018)

Genome Informatics, Precision Medicine & Clinical Omics in a world of Data Economies (H.bioinfo,
2018)

11'" Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB16,
2016)

10™ Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB15,
2015)

Core skills

Bioinformatics: Analysis of NGS data, Biological databases, Modeling of complex biological systems,
Simulations of biological functions, Bioinformatics algorithms, Biological networks, Visualization of
biological data

Programming languages: Java, R, R/Shiny, Python, BASH, C#, C++, C, Perl, JDBC, JSP, Java ME, VHDL, MIPS
Assembly Language

Web technologies: XHTML, CSS, JavaScript


https://doi.org/10.1007/s00018-021-04071-7
https://doi.org/10.1016/j.celrep.2018.12.072

Databases: Microsoft SQL, MySQL, Transact SQL

Operating Systems programming (PCs and “smartphones”): Microsoft Windows, UNIX/LINUX, Android,
Windows Phone, BlackBerry, Windows Mobile

Modeling tools and languages: Unified Modeling Language (UML), Entity—Relationship model (ER), Agent
Based Modeling (ABM)

Languages

Greek: Native
English: Full professional proficiency
French: Elementary level



Acknowledgments

In this section, | would like to take the opportunity to express my gratitude to all those who helped me

successfully complete my PhD thesis.

First and foremost, | would like to thank Professor George Kollias for giving me the opportunity to work in
his lab, for trusting me with this fascinating project, and for his continuous support and guidance
throughout my PhD. | also extend my sincere thanks to Associate Professors Georgios Pavlopoulos and
Antonis Hatzigeorgiou for their invaluable contributions during the supervision of my thesis. Additionally,
| am grateful to P. Sfikakis, K. Palikaras, E. Athanasiadis and C. Nikolaou who honored me with their

presence on the 7-member committee for my PhD thesis.

| am deeply appreciative of all my colleagues who closely collaborated with me on the two projects related
to my PhD thesis, including M. Fousteri, M. Armaka, M. Sakkou, M. Lavigne, T. Liakos, D. Konstantopoulos,

V. Karatzas, and F. Baltoumas.

Special thanks go to Ana, Alex, Dimitra, Dora, Elena, Erifyli, Filippos, Fani, Katerina, Kostas, Lida, Lydia,
Maria, Niki, and Vaso. Over the years, we shared the same office and created many great memories both

inside and outside of working hours. They all created a wonderful working environment for me.

| would also like to thank Dr. V. Koliaraki, P. Moulos, P. Chouvardas, M. Rezcko, A. Dimopoulos, C. Nikolaou,
M. Denis, N. Karagianni, E. Christodoulou, M. Tsoumakidou, A. Matralis, and G. Sofianatos for the

stimulating scientific conversations and our collaboration on various projects.

| am grateful to my colleagues from other labs, including Dimitris, Dimitra, Manos, Arsenios, llias, Iliana,

Apostolis, Elie, Kleio, and Athanasia, for our scientific discussions and interactions at the Fleming premises.

Finally, | would like to thank my family—my parents Loukas and Popi, and my sister Giota—for their
unwavering love and support over the years, standing by my side through both the joyful and challenging

times.
Z0G EUXOPLOTW YLt OAEC TLG OVAVIOELG TTIOU SnLoupyroope!

Xpnotog






Table of Contents

Table of Contents

1

10

T oo [¥TotTo T3 E PP 12
1.1 Chronic Inflammatory Diseases — Rheumatoid Arthritis ...........ccceeeeeiiiiii e, 12
1.2 The role of cytokines in Rheumatoid Arthritis ........ccccoociiiiiiiiiiii e, 14
1.3 The role of Tumor Necrosis Factor in Chronic Inflammatory Diseases.......cccccceecvveeeeeeesnrnnnnnn. 17
14 The use of animal models in Rheumatoid Arthritis........cooviiieiniiiiiiie e 19
1.5 The function of fibroblast cells in homeostasis and diSEase ..........cccceerieeiiiinieiiieeneeeeee 25
1.6 Single cell sequeNCiNg tECANOIOZY .......vvviiiiiiiiiiiie e e e aae e e e 29
1.7 Single cell application in biological SYSTEMS .......ccciiiiiiiiiiie e 39
1.8 Computational methodologies for single cell data analysis ........cccceveiiieieiiiiiciieeee e, 42

Material and METNOUS. ........uiiiee e e e s e e s e e e s 47
2.1 Implementation of a web-based application for SC data analysis........cccoveeeeeeecciieeeeeeecnieeen. 47
2.2 (D1 = [ oY o 10 | S PP PPR R UPPPPPPPPPPPRt 47
2.3 V0T 4 Lo} YA e [E ol a1 ] n o] JE PP P U RPN 48
2.4 (O TUE | 11V ole T2 oo SRR 48
2.5 Normalization and scaling of the data ..........cceuuviiiiiiiieii e, 50
2.6 Detection of highly variable ENes............uvvii i 51
2.7 Principal Component ANAIYSIS ......uueiiiiiiiiiiiie et e e e e rre e e e e e s aarree s 52
2.8 Latent SEMaNtiC INAEXING....ccuii i e e e e e e s tee e e e e s s sareaeeas 53
2.9 (O LU (T o T oY= SR UPUUPN 53
2.10  Non-linear dimensionality reduction Methods .......cccccoeciiieii i 54
2.11  Identification Of MArker BENES .......uuiii it e e eerrrre e e e e e e eaaraae s 55
W A [ o 1Y o Y=ot n (o1 W ) i (=T 1 {0 USSP 56
b8 1 T 0 To 10 o =Y e [ {=Tot o] o T PP P PP PPRTOPPI 56
2.14  Cell cycle phase @analysis ......cooieeiiiiceeeeee e e e e e e e e e e e e e e e e e e e e s eaaaaaaaaaans 57
2.15 Functional/Motif enrichment analysis .........coocuieiiiiiii it et 58
2.16  Automated annotation Of CIUSLEIS .......oocuiiiiiiiiiie e 58
2.17 Multimodal integration aNAlYSIS .......eeiiiciiiiii e e 59
2.18  TraJeCtOry @NAlYSIS coveeiieiee i e e e e e e e e e e e e ——raaaaaaaaaaaaans 60
2.19  Cell-cell commuNication @NAIYSIS ...ueiiiiieiiiiieee et e e e e e errrre e e e e e e errae e e e e e e eanrreeeas 61
2.20  Gene regulatory Network reCoONSTIUCTION........cocciiiiie e 62
2.21  Visualization of epigenome signal tracks .........ccccoviiiiiiiciiiii e 63



2.22  Utility functions and cod@ NiSTOrY .......coocciiiiiiiiiiiiiiiee e e e e e 63

T (T U] | £ PP PP VR PP OPPOP 67
3.1 Analysis of synovial fibroblasts in hTNFtg arthritis mouse model..........ccccciviiiiiiieieeiieeneeenn.n. 67
3.2 Analysis using SCALA’S SCRNA-SEQ PIPEIINE ...cceeeiiiiiee et e 67
33 Analysis using SCALA’s SCATAC-SEQ PIPEIINE ...ceeviiiieee e 71
3.4 Subclustering of Lining fibroblasts ..........ccioiiiiiii e 73
3.5 Comparison of hTNFtg and STIA single cell RNA-seq data .......ccccceevveviveeeee i 73
3.6 Cross species integration of mouse and human patients single cell data ..............cccoeeennnns 76
3.7 Analysis with alternative WOorkflOWS ..........coeiiiiiiiiiii it 79
3.8 Benchmarking with other similar toOoIs.........ccoiviiiiiii i 82
3.9 Performance and scalability of the application.......cccooviiiiiiiiieic e, 83

N b 11T o1 U 13 o ] o L PSPPI 85

T o] o [ol U1y o[- PO TSP 87

B SUMIMIAIY c ittt ettt rre e e e e e e e ettt ettt aa e e e e e e e e e e et e e bbb aaa e e e e e e et e e ettt e e e e eeeeeeeaaeebe e eeeeeas 89

/2 1 1= 17 s 113 L OO RRRUSPSPUURN 91

S T Vol {01 1Y/ o o LSOO UO PP PPTT R UPPPPPRE 93

1 B B o T To T} o Lo AR U U UUTN 97
9.1 MPOUTIOBECELG ATIOKTNONG SLEGKTOPLKOU .eeeeeeveeeeerieeeireeeeeireeeeeteeeeereeeeereeeeeseeesessseeesssenaeanns 97
9.2 DANOOLEUOELG ..eeuuvveeeeiieeeeetreeeeitreeeetteeeeeetresesatteeesassesesassaseaassaeeeasaseeabaeeaassaeseasaesesasseseansseeennses 98

10 RETEIEINCES ...ttt ettt e sttt e s bt e e e s bt e e e s abe e e e sabbeeesabbeeesabeeeesabeeessaneeens 107

11



1 Introduction

1.1 Chronic Inflammatory Diseases — Rheumatoid Arthritis

Study of immune system, inflammatory processes as well as mechanisms leading to chronic inflammation,
has contributed to the recognition of Chronic Inflammatory Diseases as one of the most significant causes
of death today (Furman et al. 2019). Rheumatoid arthritis (RA), Crohn’s disease (CD), Inflammatory Bowel
Disease (IBD), psoriasis, and Systemic Lupus Erythematosus (SLE) are examples of such diseases. Although
inflammation is a normal process that can protect the human organism from different types of hazards
e.g., pathogens or toxins, it can also result in serious disorders when the resolving phase cannot be
reached. Chronic inflammation is linked to aberrant cytokine and chemokine production, which in turn
induce infiltration of immune cells and activation of fibroblasts, leading to temporary or permanent tissue

damage (Hayden and Ghosh 2014).

RA is mainly characterized by inflammation of synovial membrane and pannus formation (the formation
of an invasive synovial tissue), which can lead to cartilage destruction and bone erosion (Fig. 1) (Sudot-

Szopinska et al. 2012).

RA is estimated to affect on average 0.5 to 1.0 % of adult population in Western world, however geographic
variability in RA incidence has been reported (Tobdn, Youinou, and Saraux 2010; Garcia-Alonso, Pérez-
Naranjo, and Fernandez-Caballero 2014). More precisely, women are more susceptible than men in
developing this disease. That difference could be explained partially by the effect of estrogens in the
regulation of immune system, although the overall influence of hormones in disease onset and progression
remains a controversial topic (Ngo, Steyn, and McCombe 2014). Patients with RA are more likely to suffer
also from cardiovascular diseases, diabetes mellitus and hyperlipidemia. Factors like abnormal immunity
and unresolved chronic inflammation, could explain the increased risk of RA patients to develop heart

disease compared to the general population (Crowson et al. 2013).

Due to the complex nature of RA, and its heterogeneity among individuals, it is difficult to conclude on a
single cause of the disease. However, over the past years several risk factors have been associated with
disease initiation and progression. More specifically, genetic susceptibility, epigenetic modifications, as
well as smoking, diet, and microbiota are all factors that can trigger the emergence of disease (Smolen et

al. 2018).
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Figure 1. In this figure a knee joint is depicted before and after RA onset. In the top left panel healthy condition is shown. In the
top right panel immune infiltration has been initiated in the lining layer. In the bottom panels synovial hyperplasia and pannus

formation are evident, leading eventually to cartilage and bone damaging. (Adapted from Smolen et al., 2018)

As mentioned before, RA is a disease with variable clinical demonstrations and pathogenic characteristics
among affected individuals. Hence, several different pathotypes of RA patients can be defined. One
distinction is based upon the detection or not of autoantibodies in the blood of patients, dividing them in
“seropositive” and “seronegative” respectively. In the first category autoantibodies against immunoglobin
G, also known as rheumatoid factor (RF), and citrullinated proteins, also referred as anti-citrullinated
protein antibodies (ACPAs) can be detected. Interestingly though, this is not the case in the second
category of patients, who are negative for those autoantibodies (Smolen et al. 2018). Another interesting

categorization of patients has emerged based on linking gene expression signatures from synovium and

13



peripheral blood with clinical and imaging phenotypes, leading to the definition of three distinct RA
pathotypes: “fibroblastic pauci-immune pathotype”, “macrophage-rich diffuse-myeloid pathotype”, and a
“lympho-myeloid pathotype” (Fig.2). Those three pathotypes are characterized by different levels of
immune cells infiltration. In the first category there is a lack of infiltrating cells, in the second one an
enrichment of macrophages or monocytes is prevalent, while in the third B cells and T cells infiltration is

observed (Lewis et al. 2019).

H&E CD3

Lympho-
Myeloid

Diffuse-
Myeloid

Pauci-
immune
Fibroid

Figure 2. Immunochemistry of synovial biopsies from untreated patients with early RA for CD20+ B cells, CD3+ T cells and CD68+
macrophages and CD138+ plasma cells in lining and sublining compartments. They are categorized in three groups: lympho-
myeloid (B cell aggregates are present), diffuse-myeloid (characterized by macrophage infiltration), or pauci-immune fibroid (lack

of or low infiltration of immune cells). (Adopted from Lewis et Al., 2019)

1.2 The role of cytokines in Rheumatoid Arthritis

Over the past decades numerous studies have highlighted that cytokines have a crucial role in RA
pathogenesis. In more detail, different cytokines can affect both innate and adaptive immune system
responses as well as the stroma responses during disease (Fig. 3). Additionally, cytokines can contribute
to the transition from a systemic to localized disease. Moreover, they influence the way patients respond
to different therapeutical interventions and they can also affect the duration of remission period, as well

as the probability for a recurring disease flare in the future (Mclnnes, Buckley, and Isaacs 2016).
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Figure 3. A schematic representation summarizing the different roles of cytokines during disease initiation, response to treatment

and remission or relapse of the disease. (Adopted by Mcinnes et Al., 2015)

A wide range of cytokines can be present in the affected joints of RA patients. The most important of them
include Tumor Necrosis Factor (TNF), Interleukins such as IL1, IL6, IL18, IL17, 1L21, IL23, IL27, type |

interferons (IFNs), as well as the Granulocyte- Macrophage Colony- Stimulating Factor (GM-CSF).

Before focusing on the pivotal role of TNF, it is important to discuss the effects of the rest of the cytokines
mentioned in the previous section. Regarding IL6, it is worth stating that it is a cytokine participating in
innate and adaptive immune response over the course of the disease. IL6 can activate other cell types
both through cis (IL-6 binds to membrane IL-6 receptor) and trans-signaling (IL-6 & IL-6 soluble receptor
binding and homodimerization with the subunits of glycoprotein 130). Notably, IL6 can aggravate
synovitis and damage in the cartilage and bone of the affected joint, by promoting migration of
neutrophils, aiding the maturation of osteoclasts, and supporting pannus proliferation through increased
levels of vascular endothelial growth factor (VEGF) expression. Furthermore, it can influence the
differentiation of B cells to plasma cells that produce antibodies. Moreover, IL6 in combination with

transforming growth factor beta (TGF-b) in mouse models or IL-1b and IL-23 in human can lead to the
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differentiation of naive T cells into T-helper 17 cells (Th17), which in turn secrete IL-17 (Srirangan and Choy
2010).

The IL-1 family contains members that can exhibit either pro-inflammatory or anti-inflammatory
properties and can be detected in the joints of RA patients. The equilibrium between the two
aforementioned categories can often affect the severity of disease symptoms (Dinarello 2019). Even
though IL1 is connected to innate immune response, during the acute or chronic phase of the disease, its
inhibition has not been proved as efficacious as expected against RA till this day. This could be attributed
to the fact that pathways related to RA are mediated by IL1 and TNF in synergy, thus suggesting that the

role of IL1 in the cytokine cascade of RA is not dominant (Mclnnes, Buckley, and Isaacs 2016).

Regarding IL-17A, it has been shown that it contributes to the secretion of other proinflammatory
cytokines (such as TNF, IL-6, IL-1, GM-CSF), chemokines (like CXCL8, CCR2, CCR3) and matrix
metalloproteinases (MMPs). Additionally, it influences processes like angiogenesis and activation of
osteoclasts. Moreover, IL-17A in combination with other growth factors causes an anti-apoptotic effect in
fibroblast like synoviocytes (FLS), T cells and B cells. Thus, its presence is associated both with inflammation
and bone damage during the course of disease (Mclnnes, Buckley, and Isaacs 2016). Interestingly, a loop
between IL-17 and IL-6 production is established since IL-17 promotes IL-6 production through FLS, while
IL-6 contributes to IL-17 secretion through the stimulation of naive T cells and its differentiation in Th17

cells.

Other cytokines that participate in RA disease are interleukins IL-12, IL-23, IL-27 and IL-35, all members of
the IL12 family. Despite the fact that those cytokines share structural similarities (IL-12: subunits p40, p35,
IL23: p40, p19, IL27: EBI3, p28, IL35: EBI3, p35), they can have different roles. IL-12 and IL-23 exhibit mainly
proinflammatory attributes, while IL-35 poses a more immunoregulatory role. Interestingly, IL-27 can have
both proinflammatory and immunoregulatory characteristics, depending on the maturation state of T

cells.

Type | Interferons (IFNs) are critical components of the host defense mechanism against viral infections.
However, they have also an active role in RA, as they can be detected in patients’ synovial fluid and tissues
(Conigliaro et al. 2010). Their biological activity in disease has also been supported from transcriptomics
studies in synovium and leukocytes in peripheral blood. Although, they cannot be successfully targeted

directly for RA therapy thus far, the IFN-stimulated response elements (ISREs) could have prognostic value
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in predicting how patients will respond to treatment with certain biological drugs (Mclnnes, Buckley, and

Isaacs 2016).

GM-CSF is a pleiotropic cytokine that can contribute to the activation of several cell types such as
macrophages, neutrophils and dendritic cells (Fig. 4). This activation leads these cells to exhibit an
inflammatory phenotype, followed by increased cytokine production and synthesis of prostanoids

(Mclnnes, Buckley, and Isaacs 2016). GM-CSF has been detected in RA patients both in synovial fluid and

in blood.
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Figure 4. Schematic figure summarizing the contribution of GM-CSF in RA progression and pain elicitation. (Adopted by Wicks et
Al 2016)

Regarding the therapeutic potential of blocking this cytokine, early clinical trials with mavrilimumab have
demonstrated positive outcomes, particularly in reducing disease activity and alleviating pain. (Wicks and

Roberts 2016).

1.3 The role of Tumor Necrosis Factor in Chronic Inflammatory Diseases

Tumor Necrosis Factor (TNF) is one of the most important cytokines for both RA initiation and

development (Mclnnes, Buckley, and Isaacs 2016).
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TNF has a soluble (sTNF) and a transmembrane form (mTNF). After trimerization of the protein, it can bind
to two different receptors TNFR1/p55 and TNFR2/p75. It’s worth mentioning that soluble TNF exhibits a
selective binding for TNFR1 receptor, while transmembrane TNF can bind to both receptors (TNFR1,
TNFR2). Interestingly, the TNF-a converting enzyme, also known as TACE, can lead to the conversion of

MTNF to its soluble form through enzymatic processing.

Binding of TNF to its receptors can induce various inflammatory signaling pathways. The TNFR1 receptor
can be found universally expressed in almost every cell type. On the contrary TNFR2 is expressed mainly
in neurons, olygodendrocytes, regulatory T cells (Tregs) and monocytes (Atretkhany et al. 2020; Madsen
et al. 2020; 2016; Veroni et al. 2020; X. Chen et al. 2007; Polz et al. 2014). Through a complex procedure,
which includes the recruitment of various molecules, followed by creation of different complexes (shown
in a schematic representation in figure5), TNF-TNFR1 binding leads to the activation of NF-kB signaling,
which inturn induce transcription of pro-inflammatory genes. Another similar mechanism, associated with
up-regulation of pro-inflammatory genes, includes the activation of the transcription factor (TF) AP1
through MAP kinases p38 and JNK. Additionally, the interaction between TNF and TNFR1 receptor is
responsible for two biological processes related to cell death. In the first one, cell apoptosis is achieved in
a caspase8 dependent manner, while in the second one necroptosis is caused by rapture in the cell
membrane followed by intrusion of ions with a positive charge including Ca?*, Na* and K*. Although TNF-
TNFR2 interaction exhibits differences with the TNF-TNFR1, especially as regards the molecules required
to be recruited for the signal transduction, they share similar downstream effects. In more detail, TNF-
TNFR2 can induce both canonical and non-canonical NF-kB signaling. In addition, it can reinforce TNFR1-
driven apoptosis through controlling the TRAF2 expression levels in the cytoplasm. Of note, both TNF
receptors can acquire soluble forms through proteolytic cleavage. These soluble receptors, known as

SsTNFR1 and sTNFR2, act as natural TNF antagonists.

TNF blockade has been proved a successful form of therapy for many RA patients. TNF can be mainly
targeted with the use of biologic drugs — monoclonal antibodies such as infliximab, adalimumab,
certolizumab pegol, golimumab or fusion protein Etanercept (Enbrel), as well as small molecule inhibitors
that affect trimerization of TNF. Although anti-TNF treatment is widely recognized as one of the most
effective therapeutic solutions for chronic inflammatory diseases, some patients do not respond to the
therapy, experience a loss of response over time, or become more susceptible to infections due to the
immune system suppression caused by the treatment. (Mclnnes, Buckley, and Isaacs 2016; Willrich,

Murray, and Snyder 2015; Mazumdar and Greenwald 2009; Goel and Stephens 2010).
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Figure 5. An overview of TNF binding to TNFR1 & TNFR2, summarizing the different downstream effects that are induced in a cell
by those two interactions. (Adopted by Atretkhany et Al., 2020)

1.4 The use of animal models in Rheumatoid Arthritis

The use of animal models is very common in the biomedical field, as they are extremely useful for studying
the underlying causes of disease pathology and testing novel therapeutic approaches before proceeding
with clinical studies in human patients. In the case of RA, a wide variety of animal models have been
generated to cover different aspects of the disease, including initiation, chronicity, relapse, and outcome
(Kollias et al. 2011). In the following section a brief description of the most widely used animal models can

be found.
» Adjuvant-induced arthritis model (AIA)

In this model of arthritis, the disease is induced by intradermally injecting a rat with mycobacterial cell
walls diluted in mineral oil. However, this model fails to accurately describe the disease since it showcases
characteristics of systemic inflammation. Another similar model to this arthritis model is the pristane-

induced arthritis (PIA) model. This model uses a component of mineral oil called pristane and is T cell-
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dependent. It can be induced in both mice and rats, with its main characteristics being joint swelling and

infiltration of inflammatory cells, leading to chronic and recurring disease.
> Zymosan-Induced Arthritis (ZIA)

Zymosan induced arthritis (ZIA) model can be initiated by utilizing zymocan, an ingredient which can be
found in Saccharomyces cerevisiae, and injecting it in mice or rats. Studies with TLR2 and C3 deficient mice
suggested that both innate and acquired immune pathways are involved in ZIA. More specifically, TLR2
exhibited an important role in adaptive immune response, while C3 appeared to be less influential in this
arthritis model (Frasnelli et al. 2005). The symptoms of the disease begin at the 3rd day post immunization

and include immune cell infiltration, formation of pannus and cartilage destruction.
» Type Il collagen induced arthritis (CIA)

In the collagen-induced arthritis (CIA) model, which is an induced model of rheumatoid arthritis,
immunization with type Il collagen (diluted in complete Freund’s adjuvant) leads to Th17-mediated
responses and the production of antibodies against joint collagens. This process ultimately triggers
inflammation and pain in the affected area. CIA has been successfully tested in mice, rats, rabbits, and
non-human primates. Disease onset typically occurs around day 12 post-immunization, with the peak of
the disease being reached by day 30 (Trentham, Townes, and Kang 1977). While the CIA model shares
many similarities with human rheumatoid arthritis, such as the development of rheumatoid factor (RF)
and the presence of ACPAs, it also exhibits significant variability, often associated with the quality of the

collagen Il used during injection or group-related stress (R. Holmdahl et al. 1992).
» Collagen antibody-induced arthritis model (CAIA)

CAlAis an inducible mouse model of arthritis. The immunization can be achieved either by utilizing directly
monoclonal antibodies, that target epitopes of Collagen type Il (Rikard Holmdahl et al. 1986), or by serum
transfer from other immunized mice or RA patients, given that their serum contains the relevant
monoclonal antibodies (K. S. Nandakumar, Svensson, and Holmdahl 2003). The developed arthritis is
characterized by the implication of macrophages and fibroblasts, while it is considered independent of B
and T cells. The onset of disease is defined at 48 hours post immunization and the peak of disease is
reached at 7 days after the injection. However, despite eliciting both innate and adaptive responses, the
immune compartment is not significantly involved. As a result, this mouse model fails to capture important

elements found in human disease.
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» Serum- transfer Induced arthritis (STIA)

Although STIA is considered an inducible model of RA, is also highly dependent on a spontaneous model
known as K/BxN. Disease is initiated after injection of anti-G6PI antibodies intraarticularly (K. S. elv.
Nandakumar and Holmdahl 2006). Symptoms of RA can be manifested as early as 20 minutes after the
injection, while the peak of the disease is reached approximately at the 14" day post induction. This
procedure can be applied to a variety of mouse strains; however, variability in the phenotype of disease is
observed. Recently, single-cell (SC) studies in STIA mouse model have highlighted the existence of distinct
fibroblasts subsets that perform different functions during disease progression (Fig. 6). More particularly,
FAPa+ THY1+ fibroblasts are found in the synovial sub-lining compartment, while FAPa+ THY1- fibroblasts
are restricted to the lining layer of the synovial membrane. Interestingly, when these cell populations are
adoptively transferred into the inflamed ankle joints of mice with STIA, FAPa+ THY1- fibroblasts selectively
mediate bone and cartilage damage with no significant contribution to inflammation. On the contrary, the
transfer of FAPa+ THY1+ fibroblasts leads in the development of a more severe and persistent

inflammatory arthritis, with minimal effect on bone and cartilage integrity (Croft et al. 2019).
» Human chimeric transfer model

For the generation of the human chimeric transfer model, mice with severe combined immunodeficiency
disease (SCID) are submitted to a surgical procedure, which enables the implantation of small fragments
of tissue from human synovium (Geiler et al. 1994). These humanized mice exhibit pannus formation and
cartilage destruction, recapitulating aspects of disease found in RA patients. A disadvantage that could
impede the experimental usage of the model is the time required for progression of the disease. In more
detail, signs of bone erosion can be detected histologically after the 35" day following induction, while

pannus formation begins at the 105" day.
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Figure 6. (a) Violin plots showcasing marker genes of the fibroblast subsets identified during the analysis of STIA single-cell RNA-
sequencing data. (b) Dotplot depicting unique and shared enriched GO terms for the different fibroblast clusters. (Adopted from
Croft et al, 2019)

> K/BxN model

K/BxN model was also mentioned briefly in the description of STIA model above. For the generation of this
mice, a cross between non-obese diabetic mice (NOD) and mice with a KRN T-cell receptor transgene (K/B),
is required. The TCR receptor can recognize a specific peptide from the glucose-6-phosphate isomerase
(GPI) protein, which is presented through the major histocompatibility complex class Il (MHC II) (Monach,
Mathis, and Benoist 2008). K/BxN exhibits many similarities with RA pathology, including development of
synovitis, high rates of fibroblast proliferation, adaptive immune response and destruction of bone and
cartilage. Arthritis symptoms begin 15 days after the birth of the mice and the peak of the disease is
reached at 3 months of age. Is worth repeating that the serum of these mice can induce arthritis in the

STIA mice.
> IL-1ra-deficient mice

IL-1ra deficient mice is a T-cell dependent RA model. More precisely, a complete knockout of Interleukin 1

(IL1) receptor causes an increase in the expression of IL1 systematically, leading ultimately to the
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development of chronic RA (Horai et al. 2000). In this mouse model, several aspects of human disease are
represented. More particularly, a variety of cytokines, such as IL1, IL6, IL17, and TNF are up-regulated.
Additionally, RF and autoantibodies (targeting collagen and double-stranded DNA) can be detected during
the progression of disease. The initiation of RA is estimated at the 5™ week of age, while the peak of the

disease is reached at the 16™ week.
> SKG mice

The SKG is a spontaneous model of RA, linked with a mutation in the ZAP-70 gene (zeta chain associated
protein kinase 70kDa), which affects T-cell receptor signaling and leads to T-cell driven arthritis (Sakaguchi
et al. 2003). Classical manifestations of human disease are also present in this model, including hyperplasia
of the synovium and synovitis, accompanied by immune cells’ infiltration, detection of RF and
autoantibodies, as well as, formation of pannus and destruction of cartilage and bone. At two months
postnatally the disease begins and reaches its peak at approximately 8 months of age. Since the point
mutation mentioned above creates a genetic predisposition to the mice, it is worth mentioning that the
disease onset can be accelerated when there is exposure to serum (containing antibodies against

glycoprotein 39) from K/BxN mice.
» TNFAARE/+ mice

The TNFAARE mouse model is generated by the deletion of the AU-rich elements (ARE) from the 3’
untranslated region of the TNF gene. These regulatory sequences have an important role in both the
stability and translation of the mRNA molecule to the corresponding protein (Kontoyiannis et al. 1999).
Ablation of ARE elements leads to a chronic over-expression of endogenous mouse TNF. This mouse model
displays a phenotype that is characterized by comorbidities including chronic polyarthritis and
inflammatory bowel disease. Arthritis manifestations can be detected as early as 3 weeks of age, while the
peak of disease is reached approximately at 16 weeks post birth. Furthermore, the clinical and histological
manifestations of arthritis in this model are exclusively dependent on the overexpression of TNF by
synovial fibroblasts (SFs), rendering the involvement of B and T cells unnecessary for both the initiation

and progression of the disease (Kontoyiannis et al. 1999; Maria Armaka et al. 2008).
» hTNFtg mice

The Tg197 mouse model is a spontaneous model that exhibits chronic inflammatory polyarthritis, sharing
many characteristics with RA in humans. It provided the first in vivo evidence demonstrating the

pathogenic role of the TNF molecule in RA. This mouse model contains five copies of the human TNF
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transgene (hTNF), characterized by chronic overexpression of human TNF (Fig. 7). This overexpression is
achieved by replacing the 3' untranslated region of the hTNF gene with the corresponding region from the
human B-globin gene, resulting in the continuous expression of human TNF mRNA (Keffer et al. 1991). The
symptoms experienced by the animals range from pain and swelling of back joints to inability of proper
movement in the front limbs. Disease onset starts at 3 weeks of age, while in most of the cases mice die

approximately at the 12" week, after having developed cachexia.

Histological study of the affected areas shows hyperplasia in the synovium, immune cell infiltration,
cartilage destruction and bone erosion, however RF is absent at all stages of disease. Additionally, an
increase in the expression of different metalloproteases, such as MMP (-3, -9, -13) is observed in both

Tg197 mice and RA patients.

SFs possess a pivotal role in the initiation and development of the disease in Tg197 mouse model, as they
are the main cell type responding to TNF signals. Moreover, it has been shown that they are capable of
driving disease advancement in immunodeficient Rag” mice (Aidinis et al. 2003). Although, TNFR1
receptor on SFs is crucial for the pathology progression, lack of TNFR1 signaling does not affect disease
onset (Douni et al. 1995; Marietta Armaka et al. 2018). Another important aspect of SFs is that they exhibit
an activated phenotype, they express cytokines and genes related to cell proliferation and migration,
sharing overall common properties with the RA FLS, which are their human counterparts (Vasilopoulos et

al. 2007; Ntougkos et al. 2017).

It is worth noting that Tg197 has also been used in drug testing. More specifically, anti-TNF, anti-IL1 and

anti-IL6 therapies have been accessed utilizing this model.
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Figure 7. In the top left panel, a schematic representation of hTNF transgene is depicted. In the next three panels, hematoxylin and
eosin (H&E) staining of the ankle joint at the talus level is exhibited for wild type mice and hTNFtg mice at the age of 4 and 8
weeks. (Adopted from Keffer et Al., 1991 and Armaka et Al., 2022)

1.5 The function of fibroblast cells in homeostasis and disease

Fibroblast cells originate from a non-hematopoietic lineage, they exhibit a spindle-shaped morphology,
they possess the role of resident cells in many different tissues and are known for producing extracellular
matrix proteins. Numerous studies over the years have highlighted their multifunctional role both in
homeostatic and disease states. Fibroblasts are known to be implicated in various cancer types,
inflammatory diseases, and fibrosis (Koliaraki et al. 2020). They can sense both molecular cues related to
pathogens and mechanistic stress. They respond by secreting cytokines and chemokines, which play a role

in the recruitment of leukocytes.

Studies at single cell level seek to identify marker genes uniquely expressed in specific fibroblast subsets,
in order to facilitate their isolation. To date, fibroblasts are mainly selected based on the absence of protein
markers such as CD45, CD31 and EPCAM, which are found in myeloid, endothelial and epithelial cells,
respectively. Although positive markers like PDGFRA and PDPN are associated with fibroblasts, they are

not exclusively expressed by them.
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Recent studies have highlighted the existence of various fibroblast subsets that perform distinct functions
across different tissues, under diverse conditions (Davidson et al. 2021; Buechler et al. 2021). Fibroblast
heterogeneity is evident not only during disease, but also during homeostasis. For instance, fibroblasts
located in the villus of the intestine express the genes WNTa and WNTb, however the fibroblasts in the
lamina propria express only WNTb (Smillie et al. 2019). In the case of lung disease, a fibroblast
subpopulation characterized as AXIN1*/ PDGFRA" is connected to lung fibrosis, however a different
population AXIN*/PDGFRA* is essential for the maintenance of the alveolar epithelium during

homeostasis.

There was an effort by (Buechler et al. 2021) to delineate different fibroblast subsets by building mouse
and human single cell atlases of fibroblasts in steady and perturbed states in different tissues.
Bioinformatics analysis of the single-cell transcriptomics profiles highlighted the existence of 10 distinct
fibroblasts groups, characterized by the expression of different markers such as, Pi1l6, Col15al, Ccl19,
Coch, Comp, Cxcl12, Fbinl, Bmp4, Npnt and Hhip. From those clusters the Pi16+ fibroblast subset was
predicted as an initial state in the differentiation process. Interestingly, the comparison between fibroblast
clusters that were identified in steady and perturbed states revealed two groups that were present in both
conditions (Pi16* and Col15a1*) and 3 groups that emerged in the disease state (characterized by markers
such as Lrrcl5, Cxcl5 and Adamdecl). Besides differences in the gene expression profiles of the
aforementioned clusters, it is suggested that they are also associated with separate biological processes.
More particularly, the two universal populations are mainly involved in fibroblasts’ development and ECM

secretion, while the three disease emerging clusters are implicated in PI3K, TNF, NFkB and TGFp signaling.
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Figure 8. A schematic representation of distinct fibroblast subsets, showcasing the differences in their functional role during

homeostasis and disease state in intestinal, synovial and lung tissues. (Adopted from Davidson et Al., 2021)

It is worth noting also that another category of fibroblasts, known as cancer associated fibroblasts (CAFs),
can be found in various types of cancers and can demonstrate either tumor-promoting or tumor-

restraining behavior, depending on the specific context or conditions within the tumor microenvironment

(Fig. 9).

Focusing on the roles of SFs during RA disease, it is worth noting that activated SFs secrete cytokines,
chemokines and metalloproteinases, which facilitate the inflammation of the joint, infiltration of immune
cells, cartilage destruction and bone erosion. Notably, TNF signaling is both sufficient and necessary for
the development of chronic polyarthritis in mice (Maria Armaka et al. 2008; Marietta Armaka et al. 2018).
More specifically, it has been shown that SFs with pathogenic characteristics are able to initiate disease in

mice with RAG knockout (Miller-Ladner et al. 1996; Lefévre et al. 2009; Aidinis et al. 2003).
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Figure 9. A simplified representation of the different types of CAFs. (Adopted from Chhabra et Al., 2023)

As regards the characterization of fibroblast populations in RA at single cell resolution, several attempts
have been made over the last five years. Single-cell RNA-sequencing (scRNA-seq) in RA and OA patients
revealed the existence of four different SFs populations CD34* (SC-F1), HLA-DRA" (SC-F2), DKK3* (SC-F3)
and CD55" (SC-F4). The first three Thy1* clusters belong to the sublining compartment, while the fourth
Prg4" cluster belongs to the lining compartment (F. Zhang et al. 2019). Another recent single-cell study in
RA patients highlighted the important role of Notch3 signaling in the differentiation processes of Thyl+

fibroblasts to Prg4+ through intermediate transcriptional states (Wei et al. 2020).

Single cell studies in mouse models of RA have contributed significantly to the appreciation of the
heterogeneity of SFs and the understanding of their functional roles during disease progression. As

mentioned before (in the paragraph dedicated to STIA mouse model) (Croft et al. 2019), five distinct SFs
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populations were identified in STIA mouse model. The ones belonging to the sublining layer (F1, F2, F3,
F4) were mainly implicated in inflammatory responses, while the fifth population (F5) belonging to the
lining layer was mainly associated with a destructive transcriptional profile. Additionally, sequencing
techniques at single cell resolution were employed to study the ankle joints of Tg197 mice at early and
established disease timepoints. Single cell data analysis pinpointed the existence of 9 distinct fibroblasts
subsets that can be categorized in three main groups, namely sublining, intermediate and lining
fibroblasts. Comparing the relative abundances of the different populations between the wild-type (wt)
and disease states (Fig. 10) revealed the expansion of intermediate and inflammatory lining synovial
fibroblasts (SFs) (Marietta Armaka et al. 2022). Since the aforementioned dataset served as a use-case
scenario for the computational platform developed within the context of this PhD dissertation,
accompanied by custom analysis tasks, a more detailed presentation of the biological findings will follow
in the next sections. In both cases, bioinformatics methods, including correlation analysis between cluster
marker genes and integration of mouse-human datasets, revealed correspondences between the

fibroblast populations identified in human patients and the mouse model.

hTNFtg 4

_%’_'\

hTNFtg 8w 1
¥ 22 HER

Fraction of cells (%)
a ~
S a

N
o

n= 1,553 cells n= 1,498 cells I .

©S1 ©S2beS2deS4aess
Cluster ¢ 522 © S2ic ® S3 © S4b "

Figure 10. Comparison of the relative abundances of SFs populations across wild type and hTNFg arthritic mice. (Adopted from

Armaka et Al., 2022)
1.6 Single cell sequencing technology

Single-cell sequencing technologies have transformed genomics, transcriptomics, and proteomics,

enabling the examination of intricate biological systems at the level of individual cells. Yet, before focusing
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on the contemporary techniques, it is valuable to briefly refer to some of their predecessors, which laid

the foundation for the new era of omics and enabled the generation of large scale of biological data.
> Microarrays

Microarrays involve the binding of thousands of nucleic acids to a surface, allowing for the assessment of
the relative concentration of nucleic acid sequences within a mixture through hybridization and
subsequent detection of the hybridization events. Their most common application is in the measurement
of gene expression (Bumgarner 2013). To achieve this RNA is extracted from target cells and is directly
labeled or converted into labeled complementary DNA or RNA (cDNA or cRNA), further amplified through
the Eberwine process (Van Gelder et al. 1990). Various labeling techniques are available, among these the
most common methods involve incorporating fluorescently labeled nucleotides during cRNA or cDNA
synthesis, or biotin-labeled nucleotides during cRNA synthesis (e.g., Affymetrix platform). The labeled
samples are then hybridized onto the microarray, washed, and fluorescence is detected, typically using a
scanning confocal microscope. The intensity of signals at each spot reflects the expression level of the

corresponding gene.
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Figure 11. Schematic representation of a typical microarray experiment (Adopted from Bumgarner et Al., 2013).

Except for gene expression profiling, microarrays have been successfully used in the tasks of transcription
factor binding analysis (Horak and Snyder 2002) and SNP genotyping. It's important to note that

microarrays have been invaluable in comparing gene expression profiles between different conditions or
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states, allowing for the identification of disparities between diseased and healthy samples, as well as the
evaluation of the effects of various perturbagens such as smoke, radiation, or treatments. However,
despite their significant contributions to biomedical research, microarrays do come with limitations.
Specifically, the fluorescent signal detected on a microarray may not directly correlate with the
concentration of the target species in solution, due to the dynamics of hybridization. Moreover, when
studying genes or gene families with multiple spliced variants, cross-hybridization can occur, leading to an
increase in false positives as similar sequences might bind to the same probes. Furthermore, the design of
probes is constrained to genes cataloged in the reference genome of an organism, thereby excluding other

potential targets such as microRNAs or long non-coding RNAs that have not yet been annotated.
> Bulk RNA sequencing

Bulk RNA sequencing (RNA-Seq) is a potent successor of microarrays, harnessing high-throughput
sequencing methods to explore the transcriptome of a cell. It offers significantly enhanced coverage and
resolution of transcriptome dynamics. Beyond simply measuring gene expression levels, bulk RNA-Seq
data facilitates the discovery of novel transcripts, identification of alternatively spliced genes, and
detection of allele-specific expression. Moreover, RNA-Seq is not limited to polyadenylated messenger
RNA (mRNA) transcripts; it can also probe various RNA molecules, including total RNA, pre-mRNA, and
noncoding RNA such as microRNA and long noncoding RNA (ncRNA) (Kukurba and Montgomery 2015).
However, it is worth noting that the effectiveness of an RNA-seq experiment hinges on meticulous
experimental design, tailored to address specific biological questions. This involves management of
various technical considerations, including the choice of RNA-extraction protocols like polyA-selection or
ribosomal depletion, and deciding between sequencing options such as single-end or paired-end reads.
Moreover, determining the optimal sequencing depth and incorporating adequate technical and biological
replicates are crucial steps to capture the inherent variability of biological systems. Properly managing
these technical aspects lays the groundwork for robust downstream statistical analyses, gaining
meaningful insights into gene expression dynamics and regulatory mechanisms (Conesa et al. 2016). The
burgeoning utilization of RNA-seq analysis across diverse biomedical domains has spurred significant
advancements within the bioinformatics community as well. This led to the development of numerous
specialized software packages tailored to various stages of analysis. These tools encompass a wide array
of functions, ranging from aligning sequences to a reference genome and summarizing read counts, to
conducting differential expression analyses, reconstructing regulatory networks, and performing

functional enrichment analyses. Such software contributions play a pivotal role in enhancing the efficiency
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and accuracy of RNA-seq data interpretation by researchers. One of the major drawbacks of bulk RNA-seq,
regarding its resolution, is that it provides only an averaged gene expression measurement across entire
populations of cells. In more detail, the RNA is extracted from a large number of cells, pooled together,
and sequenced collectively. This means that any differences in gene expression between individual cells
within the population are lost, and the results represent an average expression profile of the entire
population (Li and Wang 2021). To overcome this limitation and achieve higher resolution, scRNA-seq

techniques have been developed.
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Figure 12. Brief overview of the main steps involved in a typical RNA-seq experiment (Adopted from Kukurba et Al., 2015).

> Single cell RNA sequencing

Over the past decade, single-cell RNA sequencing has revolutionized the landscape of transcriptomics. It

was Initially recognized as the Method of the Year for 2013 by Nature (“Method of the Year 2013”) and its
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rapid advancement has empowered biomedical researchers to study gene expression profiles with
unprecedented precision and resolution in many different complex biological systems. SCRNA-seq enables
the interrogation of gene expression dynamics in individual cells, unraveling intricate molecular signatures
and providing invaluable insights into many biomedical phenomena such as cellular heterogeneity in
healthy tissues or tumor sites, developmental relationships among cell-types, and underlying disease
mechanisms. Those new capabilities surpass the limitations posed by bulk RNA-seq methods, which can

only capture the average expression of cell populations within a sample (Fig. 13).
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Figure 13. Schematic representation summarizing the differences between bulk RNA-seq and scRNA-seq (Adopted from 10x
Genomics website).

The first single-cell transcriptome analysis employing a next-generation sequencing platform was
performed in 2009 (F. Tang et al. 2009), allowing the characterization of cells during early developmental
stages. Remarkably, substantial advancements in equipment, alongside significant improvements in the
scalability of the software utilized for data analysis, have facilitated the profiling of hundreds of thousands,

or even millions of cells within a single experimental procedure (Hwang, Lee, and Bang 2018).

Over the years, numerous protocols (Fig. 14) have been devised for single-cell RNA sequencing, each
distinguished by factors such as the applied methodology for cell isolation, amplification, and sequencing
(Papalexi and Satija 2018). Therefore, researchers often face the task of selecting the most appropriate
protocol depending on the biological questions at hand. For instance, when the primary objective is to
explore tissue heterogeneity and identify various cell populations, a protocol that allows profiling of a large
number of cells, albeit with reduced sequencing depth, is typically preferred. On the contrary, in scenarios

where researchers aim to dissect specific cell subsets in greater detail, protocols that focus on profiling
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fewer cells but achieving deeper sequencing are often employed, allowing for the detection of a higher

number of genes per individual cell.
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Figure 14. Different protocols of scRNA-seq experiments are showcased (Adopted from Papalexi et Al., 2017).

A significant effort in cataloguing the different scRNA-seq protocols and their major advantages and
disadvantages was made by (G. Chen, Ning, and Shi 2019). These protocols can be further classified based
on the isolation method employed. Established cell isolation techniques include limiting dilution,

micromanipulation, flow-activated cell sorting (FACS), and laser capture microdissection.

Limiting dilution involves individual cell isolation via pipetting, while micromanipulation employs

microscope-guided capillary pipettes to retrieve cells, limiting the throughput due to their low capacity.

In recent years, flow-activated cell sorting (FACS) has emerged as the leading method for isolating highly
purified single cells. Initially, cells are tagged with fluorescent monoclonal antibodies, facilitating the

recognition of specific surface markers for positive or negative cell selection.

Laser capture microdissection utilizes a laser system in conjunction with a computer to isolate cells from

solid samples.
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Notably, microfluidic technology for cell isolation has gained traction due to its advantages of minimal
sample consumption, cost-effectiveness, and precise fluid control, with nanoliter-sized volumes reducing
contamination risks. Platforms like Fluidigm C1 offer automated single-cell lysis, RNA extraction, and cDNA
synthesis for hundreds of cells in parallel. Additionally, microdroplet-based microfluidics enables
manipulation and profiling of thousands to millions of cells at a low cost, exemplified by the Chromium

system from 10x Genomics, Drop-seq, and InDrop.

Another crucial distinction among scRNA-seq protocols lies in their ability to sequence the full-length
transcript, demonstrated by Smart-seq2, SUPeR-seq, and MATQ-seq, or only capturing and sequencing the
3'-end or 5-end of transcripts, as seen in Drop-seq, Seq-Well, DroNC-seq, SPLiT-seq, and STRT-seq. Full-
length scRNA-seq methods excel in isoform analysis, allelic expression detection, and RNA editing
identification due to their comprehensive transcript coverage and may outperform 3’ sequencing methods
in detecting lowly expressed genes. Moreover, certain scRNA-seq technologies, like SUPeR-seq and MATQ-
seq, can capture both polyA+ and polyA- RNAs, facilitating the sequencing of long noncoding RNAs
(IncRNAs) and circular RNAs (circRNAs). This capability opens avenues for exploring the expression

dynamics of both coding and noncoding RNAs at the single-cell level.

Despite their differences in technical details, the major steps of scRNA-seq remain the same, including
isolation of the cells, cell lysis and RNA extraction, cDNA synthesis, PCR amplification, library construction,

sequencing and quantification of gene expression measurements.

Finally, the single cell era propelled also the development of new bioinformatics methods and novel
algorithms utilized in the analysis, visualization and interpretation of the data. Two reviews summarizing
the different steps of analysis and the best practices in the field can be found online (Luecken and Theis
2019; Heumos et al. 2023), however a more thorough description of the available bioinformatics steps will

follow in the section 1.8.
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Figure 15. A table showing various scRNA-seq methods and their technical differences (Adopted from Chen et Al., 2019)

> Single cell ATAC sequencing

Assay for Transposase-Accessible Chromatin using sequencing at single-cell (scATAC-seq) has enabled the

study of chromatin accessibility dynamics at an unprecedent resolution. More precisely, individual cells

are isolated and subjected to the ATAC-seq protocol. Depending on the selected protocol, cells are sorted

into individual wells of a microfluidic device or plates, where the steps of transposition, fragmentation,
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and sequencing adapter ligation occur within each cell. More specifically, a transposase enzyme is utilized
to efficiently cleave open chromatin DNA, while simultaneously specific sequences known as adapters are
attached. The adapter-ligated DNA fragments are subsequently isolated, amplified via PCR, and prepared
for next-generation sequencing. Analysis of sequencing data allows for the identification of regions with
increased accessibility, indicating open chromatin. Additionally, it facilitates the mapping of transcription
factor binding sites and the positioning of nucleosomes across the genome (Yan et al. 2020). Among the
most common applications of scRNA-seq data analysis are the study of tumor heterogeneity across
different cancer types, the reconstruction of gene regulatory relationships, lineage tracing and discovery

of novel biomarkers.
> Spatially resolved transcriptomics

Spatially resolved transcriptomics techniques have become increasingly accessible in the past five years.
These methods, whether used alone or in conjunction with other modalities like single-cell RNA
sequencing (scRNA-seq), offer valuable insights into tissue architecture and cellular organization under
both normal and diseased conditions. They allow for the characterization of transcriptional patterns and
regulatory mechanisms in tissues, uncovering not only broad gene expression patterns but also subtle
differences in tissue neighborhoods that may contribute to disease initiation or progression. A broad

categorization (Williams et al. 2022) of spatial methods (Fig. 16) can be achieved by dividing them in:

1. Imaging-based methods, including in situ hybridization (ISH) and in situ sequencing (ISS),
which offer visualization of mMRNA molecules within the tissue of interest.
2. Sequencing-based methods, which extract mRNA and preserve at the same time spatial

information for the upcoming next-generation sequencing (NGS).

In the one hand imaging-based methods rely on fluorescently labeled probes or direct sequencing of
amplified mRNAs. On the other hand, sequencing-based methods preserve spatial information through
either microdissection or the existence of spatially barcoded probes. Spatial methodologies are employed
in a wide range of applications in many different research areas such as cancer, neuroscience,
developmental biology, auto-immune diseases, and others. It is worth clarifying that some of them achieve
single cell resolution e.g. CosMx platform, while others approach single cell resolution like 10x Visium,
where 1-10 cells are captured in a single spot. Finally, most of the bioinformatics steps required for data

analysis are almost identical to the ones implemented for scRNA-seq.
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Figure 16. The two main categories of spatial trascriptomics methods are showcased (Adopted from Williams et Al., 2022)

» Multimodal single cell assays

In the previous paragraphs, we provided a concise overview of various single-cell assays, highlighting their
advancements over their predecessors and outlining their main applications. Multimodal single-cell
assays, by leveraging the principles underlying these methodologies, can enable the simultaneous
measurement of multiple modalities within the same cell (Fig. 17). More specifically, parallel profiling of a

cell’'s genome and transcriptome was achieved by G&T-seq and DR-seq followed by methods such as

TARGET-seq and SIDR. Most of these methods enable the simultaneous studying of gene expression

dynamics and possible mutations. Regarding the combination of RNA and open chromatin information

more than twenty methods have been reported in the literature. Among them is the 10x multiome that
enables epigenomics (chromatin accessibility), and transcriptomics (RNA) measurements, from the same
single cell. Additionally, TEA-seq, a method for trimodal single-cell measurements permitting study of
transcripts, epitopes and chromatin accessibility at the same time. Moreover, the pairing of
transcriptomics and proteomics approaches led to the development of techniques such as CITE-seq or

REAP-seq. In the first, high-throughput detection of protein markers is integrated with unbiased
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transcriptome profiling for thousands of individual cells simultaneously. In the second, a unified workflow
permits the quantification of surface proteins utilizing 82 antibodies and the concurrent genome wide

mRNA analysis (Baysoy et al. 2023).
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Figure 17. Different combinations of multiomics assays are presented (Adopted from Baysoy et Al., 2023).

1.7 Single cell application in biological systems

ScRNA-seq and scATAC-seq assays have been used in the study of many different biological systems and
experimental settings in Homo sapiens and other organisms like Mus musculus, Drosophila melanogaster,
Caenorhabditis elegans and Danio rerio and many others. The capabilities of single cell technology have
enabled shedding new light on different aspects of biology such as organogenesis, cell development,
cancer, wound healing/tissue repair mechanisms and disease conditions (e.g. auto-immune diseases), to

mention just a few.

In the past decade, numerous groundbreaking scientific publications have leveraged SC technology to

provide new insights into various biological processes. These discoveries have enhanced our
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understanding of various diseases and have also facilitated the application of novel therapeutic strategies.
We will briefly mention some relevant publications in the following lines, however it's important to note

that this is not an exhaustive list.

In 2019 (Packer et al. 2019) have compiled a map of embryonic cells from C. elegans consisting of 86,024
single cell transcriptomes. Additionally, (Sommarin et al. 2023) have characterized the transcriptional
profiles of individual hematopoietic cells, unravelling the molecular cues involved in the emergence and
maturation of hematopoietic stem cells during human fetal development. As regards lung cancer, in the
publication of (D. He et al. 2021) the usage of SC transcriptomics enabled the examination of the cellular
composition of early-stage lung adenocarcinomas harboring EGFR mutations (Fig. 18). The tumors studied
included populations of both tumor cells and immune cells exhibiting heterogeneous properties. The
analysis showcased diverse cellular subtypes of tumor cells with distinct gene expression profiles,
highlighting the existence of intra-tumoral heterogeneity. Furthermore, different immune cell populations
were identified within the tumor microenvironment. Overall, the findings emphasized the underlying
complexity of early-stage lung adenocarcinomas. Another interesting publication in 2022 (Sinha et al.
2022) stratified SC transcriptomics in order to decipher the role of fibroblasts subsets in reindeer upon
injury (Fig. 19). More specifically velvet fibroblasts, found in the antlers of the deer, enable regeneration
of the injury site by adopting an immunosuppressive phenotype that accelerates resolution. On the
contrary, skin fibroblasts found in the back of the animals (resembling fibroblast subtypes in human and
mice) express inflammatory molecules and promote leukocyte infiltration, leading to difficulties in
completion of the repair process. Although, the transplantation of velvet fibroblasts to scar-forming back
skin initially enables regeneration in the injury site, eventually leads to fibrosis, resembling the fetal-to-
scar-forming transition that is also observed in humans. Conclusively, the study proposes reindeer as a
valuable model for studying wound healing and suggests that the of targeting fibroblast-immune
interactions could be proved beneficial to mitigate scarring in humans. Finally, significant progress has
been achieved also in the sector of various disease conditions, where publications utilizing SC have
enabled the study of novel aspects in human patients and disease models or organoids. A prominent
example is the work of (Martin et al. 2019), in which a cell module consisting of 1gG plasma cells,
inflammatory mononuclear phagocytes, activated T cells, endothelial cells and fibroblasts (called GIMATS)
proved to be predictive of anti-TNF response in IBD patients (Fig. 20). On the other hand, anti-TNF non-
responders exhibited enriched interaction of IL1 (produced from inflammatory macrophages) and IL-1R

(expressed by fibroblasts).
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The coordinated efforts of large consortia were crucial for the development of public databases containing
vast numbers of SC datasets from different tissues. The Human Cell Atlas, the Tabula Muris and the Fly Cell
Atlas belong among the most distinguished resources in single-cell community. More specifically, the
Human Cell Atlas takes advantage of scRNA-seq, imaging technologies and computational approaches to
reconstruct maps of human cells from all different tissues. The uploaded datasets are organized in 18
broad categories (Adipose, Gut, Lung, Pancreas, Breast, Heart, Musculoskeletal, Reproduction,
Development, Immune, Nervous System, Skin, Eye, Kidney, Oral &Craniofacial, Genetic diversity, Liver,
Organoid) and are consisted of ~ 59 million cells in total originated from ~ 8.6 thousands of donors.
Regarding its mouse counterpart, known as Tabula Muris, it is a compendium of scRNA-seq datasets
encompassing ~ 100,000 cells from 20 different organs or tissues. Interestingly, the Fly Cell Atlas project
employs SC genomics, transcriptomics and epigenomics methodologies in order to construct a set of

cellular atlases representing distinct developmental or disease states of drosophila.

In parallel, new repositories such as CellPortal (Tarhan et al. 2023) and CellxGene (Chan Zuckerberg
Initiative, n.d.) have been created to facilitate collection and easy access in processed data that are publicly
available through scientific publications. Both support online exploration of the uploaded SC datasets, as
well as downloading of the data in well-established formats, which can allow further processing by

software packages in R or python programming languages.

1.8 Computational methodologies for single cell data analysis

Since the emergence of single cell technology, thousands of software applications have been developed
for data analysis and visualization purposes (Fig. 21). Databases such as scTools (Zappia and Theis 2021)
provide extensive catalogues of those tools accompanied by additional information including links to the
source code, manuscripts, vignettes, etc. In a previous section, several single cell techniques were
described. However, In the context of the current dissertation, we will focus only on methodologies and
software packages utilized for the analysis and representation of scRNA-seq and scATAC-seq data. Most of
the steps implemented are common in both assays, however there are also analytical tasks specific for
each modality. It is worth noting that the preliminary steps of analysis, including alignment to reference
genome and quantification of gene expression, are usually performed by sequencing facilities or by
utilizing software packages tailored to the sequencing platform and the experimental protocol that was

selected. For these reasons those steps are not discussed in the following sections.
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Figure 21. (a) Number of tools developed for the analysis of scRNA-seq data. (b) Programming languages utilized for the
development of the tools. (c) Analytical tasks implemented and included in the different available tools (Adopted from
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Regarding scRNA-seq data, the first step of the analysis is devoted to quality control ensuring that low
quality cells are filtered out. After that, normalization of the data is performed to mitigate differences in
the sequencing depth between the different cells. Next the most highly variable genes of the dataset are
detected. Following this step principal component analysis (PCA), a well-established linear method of
dimensionality reduction, is employed. The most informative principal components (PCs) derived from the
PCA analysis are then used as input in non-linear dimensionality reduction algorithms like t-Distributed
Stochastic Neighbor Embedding (tSNE) (Maaten and Hinton 2008) or uniform manifold approximation and
projection (UMAP) (Becht et al. 2018) to produce new embeddings for the visualization of the cells in 2D
or 3D space. Additionally, PCs are utilized to construct a shared nearest neighbor graph (SNN) of the cells.
Since the primary objective of the main analysis is the detection of cells populations, graph-based
clustering with louvain or leiden algorithm is applied. The clusters originating from the previous step are
subjected to marker gene analysis, which enables the identification of genes that exhibit preferential

expression in specific clusters.

In the case of the scATAC-seq data, the analysis begins with quality control as well. However, normalization,
detection of highly variable genes and PCA are replaced by the latent semantic indexing (LSI)

dimensionality reduction method. Non-linear dimensionality reduction methods e.g. tSNE and UMAP are
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utilized for cell visualization purposes, followed by clustering and marker gene detection. Some additional
steps available in the ATAC modality are the detection of marker peaks, that enables the search of peaks
that show high accessibility in specific clusters and the and the motif enrichment analysis, which can

recognize enriched TF-specific binding sites on the marker peaks.

Furthermore, additional modes of analysis can be used to perform more advanced analysis tasks
containing functional enrichment analysis of the clusters, cell-cycle phase analysis, trajectory inference,
automatic cell type annotation, Gene Regulatory Network (GRN) reconstruction and cell-cell
communication analysis. Most of the previously mentioned algorithms are mainly developed in R and
Python programming languages. Various software applications and packages have been introduced to
execute these tasks. Notable ones include Seurat (Stuart et al. 2019), Scanpy (Wolf, Angerer, and Theis
2018), Monocle (Trapnell et al. 2014; Qiu et al. 2017), scater (McCarthy et al. 2017), slingshot (Street et al.
2018), scvelo (Bergen et al. 2020), SCENIC (Aibar et al. 2017), decoupleR (Badia-I-Mompel et al. 2022),
cellphoneDB (Efremova et al. 2020), nichnetR (Browaeys, Saelens, and Saeys 2020), cellchat (Jin et al.
2021), singleR (Aran et al. 2019), CIPR (Ekiz et al. 2020b), Cicero (Pliner et al. 2018), Signac (Stuart et al.
2021), EpiScanpy (Danese et al. 2021), cisTopic (Bravo Gonzalez-Blas et al. 2019), and ArchR (Granja et al.
2021b), which are some of the most widely used R and Python libraries. Seurat and Scanpy are primarily
employed for analyzing single-cell RNA sequencing (scRNA-seq) data, offering functionalities ranging from
QC to population identification and integration of multiple datasets. Signac and EpiScanpy extend these
functionalities to process single-cell ATAC sequencing (scATAC-seq) data. ArchR focuses on analyzing single-
cell chromatin accessibility data, offering standard analysis steps and advanced features like Positive
Regulator identification, (TF) footprinting, and trajectory inference. Monocle provides a widely used
pseudo-temporal cell ordering framework for scRNA-seq analysis, while Cicero extends it for scATAC-seq
analysis. Scater focuses mainly on the initial quality control (QC) of the data, while SCENIC and decoupleR
are utilized in GRN analysis. Slingshot and scVelo are specialized in the task of trajectory inference.
CellphoneDB, nichenetR and CellChat are well established tools for the analysis of cell-cell communication
interactions. Finally, SingleR and CIPR are two packages that perform automatic cell type annotation on

the identified clusters.

Moreover, there are software applications also offering a Graphical User Interface (GUI) such as Scope, CZ
CELLXGENE (Chan Zuckerberg Initiative, n.d.), Azimuth (Hao et al. 2021), Cerebro (Hillje, Pelicci, and Luzi
2020), iCellR (K. H. Tang et al. 2022), ICARUS (Jiang et al. 2022) and SeuratWizard (Yousif et al. 2020). The

existence of a GUI, which in many cases is also accompanied by a web service, facilitates the engagement
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of scientists with no prior computational experience in the analysis of their datasets. In terms of GUI tools,
Scope offers various visualization options, including comparative views at cluster and gene levels for
datasets containing multiple samples or conditions, although it lacks further downstream data analysis
support. CZ CELLXGENE facilitates exploration of single-cell datasets and gene expression visualization
across tissues in published datasets but lacks complex analytical capabilities. Azimuth specializes in basic
scRNA-seq analysis steps and characterizing identified populations using a 'reference-based mapping'
approach but lacks customization options. SeuratWizard follows standard analysis steps, while Cerebro
expands upon them, offering additional modes such as signature scoring, cell cycle phase analysis, and
trajectory inference. iCellR covers basic analyses for both scRNA-seq and scATAC-seq but does not include
ligand-receptor (L-R) and GRN reconstruction functionalities. ICARUS performs all the aforementioned
modes of analysis and at the same time offers a lightweight implementation of GRN analysis with SCENIC

as well as cell-cell communication analysis mode based upon CellChat.

Advances in the field of machine learning (ML) and artificial intelligence (Al) have led to the development
of software packages leveraging those approaches to perform SC analytical tasks. Neural Networks and
Variational Autoencoders are two ML methodologies that are widely used for clustering, dimensionality
reduction, annotation of cells as well as integration of SC datasets or SC modalities. Examples of developed
tools based on ML principles are scAce (X. He et al. 2023), Midas (Z. He et al. 2024) and SUPREME
(Kesimoglu and Bozdag 2023). Following the increasing interest of researchers on the Al based chatbots
such as ChatGPT (Meyer et al. 2023), web-based Al tools performing data interpretation or data analysis
have emerged. In the first category we can find tools like BioChatter, while in the second tools like scGPT

(Cui et al. 2024).

Another interesting category of utility packages contains tools such as dittoSeq (Bunis et al. 2021), Scillus
(“GitHub - Xmc811/Scillus: R Package for Single-Cell Dataset Processing and Visualization” n.d.), scPubR
(Blanco-Carmona 2022) and scCustomize (“Samuel-Marsh/ScCustomize: Version 2.1.2” n.d.). These tools
utilize already analyzed single cell datasets to offer enhanced visualization of cells in 2D/3D space and
gene expression patterns. In more detail, scatterplots of single cells, violin plots, heatmaps, dotplots and
swarm plots are implemented building upon basic packages of R or python such as ggplot2 and plotly (Fig.

22).

Concluding this introductory part, it is noteworthy to highlight that several computational methods
discussed earlier have led to the development of publicly accessible databases. These databases can be

employed for various analytical purposes, either similar or distinct from those described already.

45



Regarding regulatory interactions, two notable online databases, Dorothea and CollecTRI (Miiller-Dott et
al. 2023), were compiled by integrating interactions between transcription factors (TFs) and their target
genes. These databases are valuable resources for inferring transcription factor activity. Moreover,
cellphoneDB and cellchatDB are repositories containing curated L-R pairs that document autocrine and

paracrine interactions among different cell types in humans and mice.
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Figure 22. Various plots used in scRNA-seq data visualization including: (a) UMAP plot (b) Swarm plot (c) Dotplot (d) Heatmap and
(e) Violinplot.
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2 Material and methods

2.1 Implementation of a web-based application for SC data analysis

Building upon the intricate challenges previously discussed in SC data analysis, we embarked on the
development of an interactive web application. This platform provides automated analysis, visualization,
and exploration functionalities for both scRNA-seq and scATAC-seq datasets. Our approach involved
integrating a range of software technologies including R/Shiny, HTML, JavaScript, and CSS, resulting in the

establishment of a robust pipeline capable of executing diverse analytical tasks on single-cell data (Fig. 23).

Central to our design is a user-friendly graphical interface (GUI), tailored to accommodate researchers
without prior programming experience. More specifically, the R/Shiny framework seamlessly merges the
capabilities of R programming language with web technologies like HTML, CSS, and JavaScript. This
integration empowers the creation of an interactive environment featuring dynamic plots, data tables,
widgets, buttons, and comprehensive instructions to aid users in navigating their preferred analysis

methodologies.

To provide a variety of analysis options for both assays, we carefully combined numerous state-of-the-art
software packages and facilitated their seamless integration, resulting in the creation of a comprehensive
pipeline, which was named SCALA (Single Cell AnaLysis for All). Moreover, to ensure reproducibility, we
have made the code of the developed application accessible through a public GitHub repository. Finally,
extensive segments from Material & Methods, Results and Discussion sections of the current dissertation,
have also been published (in their current form or with slight modifications) in two research articles. One
of them focuses on the detailed characterization of gene expression and chromatin accessibility profiles
of hTNFtg mouse model at single cell resolution (Marietta Armaka et al. 2022) while the second is oriented
in delineating the capabilities of our application and illustrating its functionality across different use case

scenarios (Tzaferis et al. 2023).

2.2 Datainput

SCALA supports various input data types. For scRNA-seq analysis, the primary input data is a unique

molecular identifier (UMI) count matrix. Users can provide this matrix by either uploading a gene-by-cell
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tab-delimited text file (where rows represent features and columns represent barcodes), including both
row and column names, or by uploading the output of the 10X cellranger pipeline located at
“filtered_bc_matrix” folder. In the latter case, the “cellranger count” output folder should include three
files: “barcodes.tsv.gz” containing detected cellular barcodes in gzip CSV format, “features.tsv.gz” with
features (genes) corresponding to row indices in gzip TSV format, and a feature-barcode count matrix in
gzip Market Exchange Format (MEX). Additionally, users have the option to load a pre-analyzed Seurat
object in RDS (R saved object) format. In the latter case, the condensed RDS format can allow uploads with

hundred thousand cells, something that would be extremely difficult in the case of txt count matrix.

For scATAC-seq analysis, SCALA currently only accepts arrow files. This file format stores all associated
data, including metadata, accessible fragments, and data matrices of a sample. Users can create arrow
files using the provided “create_arrow_file.R” helper script from SCALA's GitHub repository or directly with
the ArchR package. It's important to state that the analysis of human and mouse datasets is supported in

both modalities.

2.3 Workflow description

Once the input files have been loaded, SCALA's primary workflow can be applied to both single-cell
pipelines. The workflow includes the following steps: (i) Quality Control (QC), (ii) data normalization and
scaling, (iii) detection of variable features, (iv) dimensionality reduction using Principal Component
Analysis (PCA), (v) dimensionality reduction using Latent Semantic Indexing (LSI), (vi) clustering, (vii)
additional dimensionality reduction methods, (viii) inspection of features, (ix) identification of markers, (x)
analysis of cell cycle phases, (xi) functional/motif enrichment analysis, (xii) annotation of clusters, (xiii)
trajectory analysis, (xiv) analysis of Ligand-Receptor (L-R) interactions, (xv) analysis of Gene Regulatory

Networks (GRNs), and (xvi) visualization of epigenome signal tracks.

2.4 Quality control

In single-cell datasets, identifying and discarding “low quality” cells (such as empty, stressed, broken, or
dead cells) and non-informative genes is crucial for downstream analysis. The developed application
facilitates this process by allowing users to explore quality control (QC) plots and filter out cell barcodes

based on user-defined thresholds. Common QC criteria for scRNA-seq include: (i) the number of unique
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features detected per cell, (ii) the number of detected UMIs per cell, and (iii) the percentage of
mitochondrial content per cell. Cells containing low numbers of unique features and UMlIs are typically
excluded as low-quality, while those with very high numbers may indicate capturing RNA material from
multiple cells. Cells displaying a high percentage of mitochondrial UMIs are also flagged as low-quality or

potentially dying cells (Fig. 24).

For scATAC-seq, typical QC metrics include: (i) transcription start site (TSS) enrichment and (ii) the number
of unique nuclear fragments in logarithmic scale (log10(nFrags)). In most cell types, there is usually a
notable enrichment of ATAC-seq signal in the transcription start site (TSS) regions of actively expressed
genes, serving as a traditional indicator of the quality of the assay. For the calculation of the first metric a
comparison between the enrichment of ATAC-seq signal at TSS regions to the enrichment observed in
flanking regions, extending 2 kilobases (kb) away from the TSS, is performed. Additionally, regarding the
second metric, cells with too few nuclear fragments should be discarded to prevent the inclusion of non-

interpretable data.
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Figure 23. A schematic workflow of the developed application called SCALA (Adopted from Tzaferis et Al., 2023).
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Figure 24. A set of scatter plots and violin plots utilized to guide quality control and cell filtering procedures.

2.5 Normalization and scaling of the data

Normalization and scaling of scRNA matrices are crucial steps that focus on mitigating biases originating
mainly from differences in cell depth and ensuring proper transformation of the data before subsequent
analyses such as variable feature detection and dimensionality reduction. In our implementation, data
normalization follows a global-scaling approach (Hao et al. 2021), wherein the gene count for each barcode
is normalized by the total barcode counts, multiplied by 10,000, and subjected to logarithmic
transformation. These normalized values are stored within a matrix data structure, and are further
standardized to z-scores, ensuring a column-wise mean expression of 0 and a variance of 1. Moreover, to
address additional unwanted sources of variation, users have the option to specify metadata variables as

covariates. In such cases, these variables are regressed against each feature, followed again by scaling and

centering of the resulting residuals.
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2.6 Detection of highly variable genes

During this step, the normalized RNA data matrix is utilized to identify genes that exhibit the highest
variation among cells. This subset of features is crucial for uncovering the underlying biological patterns
within single-cell datasets in a computationally efficient manner, reducing the initial dimensions of the
matrix to less than 3,000 features. Three methods are supported for detecting the most variable features
including “Variance Stabilizing Transformation” (VST), “Mean-Variance Plot” selection (MVP), and

“Dispersion”.

VST (Fig. 25) involves fitting a line to the log-variance/log-mean relationship using local polynomial
regression. Subsequently, feature values are standardized based on the observed mean and expected
variance, with feature variance then calculated for standardized values. This procedure typically returns a

fixed number of variable features (usually set at 2,000 by default).

MVP calculates average gene counts and gene dispersions using a designated function. Specifically, genes
are divided into 20 bins based on their average read counts, and dispersion z-scores are computed for

each gene group.

Finally, for the “Dispersion” method, genes with the highest dispersion values are retained. Both MVP and

“Dispersion” methods return a variable number of features not determined by the user.
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Figure 25. Scatter plot of genes in the single cell dataset. Most highly variable genes are depicted in red color.
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2.7 Principal Component Analysis

Principal Component Analysis (PCA) is a linear dimensionality reduction technique applied to the scaled
values of the most variable features, resulting in the computation of 'meta-genes,' which are linear
combinations of genes within the assay. The most informative Principal Components (PCs) are
subsequently identified and employed in downstream steps such as cell clustering and cluster visualization
(often using non-linear dimensionality reduction methods). Determining the optimal number of PCs
exhibiting the highest variation in the scRNA matrix can be achieved either automatically through a 10-
fold Singular Value Decomposition (SVD) cross-validation process or manually by inspecting the
incremental variance ranking of each PC (via an elbow plot). For large datasets automatic calculation is not

advised, as it could take hours to be completed.
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Figure 26. Cells depicted in PCA space after PCA analysis.
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2.8 Latent Semantic Indexing

In scATAC-seq matrices, the methodology of Latent Semantic Indexing (LSI) is applied using genome-wide
500 base pairs (bp) tile counts (Granja et al. 2021). Initially, tile-counts undergo normalization to mitigate
cell depth bias, utilizing a constant of 10,000, followed by inverse document frequency normalization and
log-transformation. Throughout this process, the most variable features (in our case tiles) are discerned.
LSI transformation is applied in an iterative manner using the most accessible features (tiles), thereby
uncovering lower resolution clusters that are free from batch confounding factors. Subsequently, the
average accessibility for each of these clusters is computed across all features. Finally, the most variable

features across low-resolution clusters are identified and used as input for the next LSl iteration.

2.9 Clustering

Graph-based clustering is executed on scRNA-seq and scATAC-seq data to delineate cell types and/or
cellular states. Initially, a Shared-Nearest Neighbor (SNN) graph structure of the cells is constructed using
Euclidean distances in the PCA/LSI space. Cells sharing similar gene expression/chromatin accessibility
profiles are connected by edges. Subsequently, the graph is partitioned into densely connected

communities utilizing the Louvain algorithm (Blondel et al. 2008).
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Figure 27. Barplot summarizing the results of Louvain clustering procedure.
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2.10 Non-linear dimensionality reduction methods

To enhance the visualization of cells, cell clusters, and their relationships in both 2D and 3D space, a variety
of nonlinear dimensionality reduction techniques are employed. Traditional linear methods like PCA or
multi-dimensional scaling (MDS) may fail to capture complex patterns effectively, prompting the utilization
of alternative methodologies such as UMAP, tSNE, diffusion maps (Haghverdi, Buettner, and Theis 2015),
and Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) (van Dijk et al. 2018).
These methods play a crucial role in unraveling the underlying structure of the datasets while facilitating
feature inspection, exploration of cluster structures, and trajectory inference. More specifically, UMAP and
tSNE plots’ inspection can serve as qualitative criterion for evaluating clustering success (Fig. 28).
Additionally, they are very useful in exploring gene expression patterns of single genes or gene signatures.
On the other hand, plots generated by PHATE and Destiny packages (e.g. diffusion maps) are valuable for

exploring trajectory dynamics and lineage relationships between different cell populations.
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Figure 28. A 3D plot depicting cells in UMAP space.
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2.11 ldentification of marker genes

Differential expression analysis, as well as differential accessibility analysis, facilitate the identification of
marker genes and marker peaks respectively, having a major contribution in the proper annotation and
characterization of cell clusters based on already known cell type markers from the literature. This
analytical approach aids in pinpointing crucial transcriptional and regulatory programs driving different
biological processes such as development, progression of a disease, etc. The analysis is conducted in a
cluster-specific manner. In more detail, cells within each cluster are compared against the rest of the cells
in the dataset. Plenty of statistical tests are available for scRNA-seq analysis, including the Wilcoxon rank
sum test, likelihood-ratio test for single-cell feature expression (McDavid et al. 2013), standard Area Under
the Curve (AUC) classifier, Student’s t-test, MAST (Finak et al. 2015), and DESeq2. Similarly, for scATAC-seq,

available tests contain the Wilcoxon rank sum test, Student’s t-test, and binomial test.
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Figure 29. Dotplot showing normalized expression of top marker genes per cluster.
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2.12 Inspection of features

Exploration of feature expression and chromatin activity can be conducted through inspection of cell
scatter plots in reduced dimensional space (e.g., UMAP, tSNE, etc.), or via dotplots (Fig. 29), heatmaps,
and violin plots (Fig. 30). In scRNA-seq datasets, gene signatures can additionally be computed using the
UCell package and visualized as outlined above. Furthermore, quality control metrics such as the total
number of reads per cell and genes detected per cell can be visualized using scatter plots and violin plots
at a cluster level.
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Figure 30. Violin plot used for inspection of genes across clusters.

2.13 Doublet detection

Doublet detection in scRNA-seq datasets is carried out by using the R package DoubletFinder (McGinnis,

Murrow, and Gartner 2019). Initially, artificial doublets are simulated and merged with the original data.
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Cells exhibiting a high number of artificial neighbors in the gene expression space are then characterized
as potential doublets and can be excluded from subsequent analysis. This methodology demonstrates
enhanced accuracy in detecting doublets arising from transcriptionally distinct cell types (increased
performance in heterotypic doublets over homotypic). Similarly, for scATAC-seq datasets, a similar
approach, implemented in ArchR package, is stratified to identify potential doublets. After computing

doublet enrichment measurements, users can filter out doublets by specifying their preferred thresholds.

2.14 Cell cycle phase analysis

Cell cycle phase scores are computed for all cells based on canonical markers linked to S, G2/M, and G1
phase. If cluster-specific patterns of cell cycle biases are identified, users have the option to utilize the
"regress out" feature during the scaling step to mitigate the cell-cycle effect. The results of this analysis
can be visualized either in a scatter plot, where cells are projected into reduced spaces (PCA, UMAP, tSNE,
diffusion map, PHATE), and colored according to the predicted phase of the cell cycle (Fig. 31), or as a bar

plot summarizing the percentages of cells assigned to each cell cycle phase within each cluster.
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Figure 31. Scatter plot depicting cells colored by predicted cell cycle phase in PCA space.
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2.15 Functional/Motif enrichment analysis

Utilizing the previously identified marker genes and marker peaks, functional enrichment analysis,
encompassing pathways and Gene Ontology (GOs) terms, as well as motif enrichment analysis, can be
conducted for each cluster in scRNA-seq and scATAC-seq data respectively. Specifically, in scRNA-seq data,
genes upregulated or downregulated (in the clusters identified during the previous steps) are assessed for
enriched GO terms or KEGG pathways using the g:Profiler package (Raudvere et al. 2019). The enriched
terms are presented in a tabular format alongside information relative to statistical significance and gene
overlap between the input list and the term of interest. Furthermore, a bubble plot summarizing the
enriched terms for the selected databases is also available to the users (Fig. 32). Regarding motif
enrichment analysis, marker peaks identified in the step of marker peaks detection, are examined for
enrichment of binding sites of specific transcription factors. Additionally, more comprehensive functional
enrichment analysis with enhanced visualization options is provided by the external application Flame
(Thanati et al. 2021). This analysis can be conducted either iteratively for each cluster, or by selecting as
input multiple gene lists (up to 10 clusters) for simultaneous processing using interactive UpSet plots and

many other additional features.
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Figure 32. Bubble plot showing enriched functional terms of a cluster.

2.16 Automated annotation of clusters

This module is implemented only for scRNA-seq datasets. The CIPR package is employed (Ekiz et al. 2020),
providing reference datasets, containing various cell types, for both human and mouse organisms. Users
can choose a reference dataset and specify the type of analysis to be conducted for producing the final

predictions per cluster, either by considering normalized expression measurements from all genes in the
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dataset or fold change values only from the differentially expressed ones. Additionally, users have the
flexibility to select the correlation metric (Pearson or Spearman) which will be used during the calculations.
In terms of results’ visualization, the output includes a table displaying all predicted cell type annotations

per cluster, along with a dot plot that depicts the top 5 predictions for each cluster (Fig. 33).
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Figure 33. Dotplot showcasing cell type annotation predictions across clusters.

2.17 Multimodal integration analysis

This analysis mode is dedicated to scATAC-seq datasets. Specifically, users have the option to upload a pre-
processed scRNA-seq dataset to perform integration analysis with the currently loaded scATAC-seq
dataset. During this process, gene activity scores from the ATAC assay and gene expression values from
the RNA assay are utilized to align cells between the datasets. The result of this integration analysis enables

transferring labels from scRNA clusters to cells within the scATAC dataset. Subsequently, the newly
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assigned clustering identities of the cells can be further utilized in various downstream tasks such as

marker peak detection, trajectory analysis, and other analytical steps that require cluster information.

2.18 Trajectory analysis

The ordering of cells using pseudotime analysis can be very helpful in unravelling the underlying processes
of differentiation and development, guiding cells through transitions between different cellular states. In
our application, Slingshot package is employed for this purpose, utilizing both clustering information and
dimensionality reduction coordinates for all cells within a dataset, Slingshot constructs a Minimal Spanning
Tree (MST) at the cluster level. In this tree, nodes represent clusters, while edges signify relationships
between them. Users have the option to select the dimensionality reduction method employed for
Slingshot execution (PCA, UMAP, tSNE, diffusion map, or PHATE), along with defining the initial and final
states of the trajectory. The MST is depicted in a UMAP plot, while pseudotime values are computed per
lineage and can be further illustrated in UMAP space as a distinct scatter plot (Fig. 34). Cell pseudotime
values close to zero indicate cells belonging to the root of the trajectory, while higher values denote cells

associated with the final state.

Figure 34. Scatterplot showcasing trajectory results. Arrow shows the direction of the lineage, while cells are colored according to
pseudotime values.
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2.19 Cell-cell communication analysis

The prediction of ligand-receptor interactions is a significant step for deciphering cell-to-cell
communication patterns in different tissues. Inspection of communication networks between different cell
types can contribute to the detection of key interactions, which can lead to gene expression alterations
(downstream of signaling pathways) in healthy and disease contexts. SCALA incorporates the analysis
framework of nichenetR. More precisely, after clustering the user needs to select a pair of clusters that
will be examined for active L-R interactions among them. First, overexpressed genes are calculated in each
cluster. Next, the reported interactions are ranked by considering a "prior interaction potential" score that
is calculated in the initial steps, when the protein-protein interaction model is constructed. Regarding the
visualization of results, a heatmap that summarizes all the interactions that have been detected between
the two clusters of interest is provided (Fig. 35). L-R interactions along with their respective scores are
available in a table format including the prior interaction potential score that signifies the strength of the

predicted interaction.
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Figure 35. Heatmap summarizing L-R interactions between clusters.
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2.20 Gene regulatory network reconstruction

In our application, users have the option to choose between two methodologies for this step of the

analysis in scRNA-seq datasets.

The first method adopts the SCENIC workflow. Initially, co-expression modules of TFs and their target genes
are detected through co-expression and TF motif analysis. Subsequently, the AUCell package calculates
AUC scores per cell, representing the activity of a regulon—a group of genes containing a TF and its targets.
These AUC values, along with Regulon Specificity Score (RSS) scores, indicating the activity and specificity
of regulons respectively, are used for the visualization of active regulatory networks in heatmap format.
Additionally, users can identify cluster-specific regulons within the dataset, by inspecting the average
activity values across clusters. Due to runtime limitations in R environments, users are provided with
instructions and custom scripts to externally execute certain parts of the analysis in Python. They can then

import the result files back into our application for visualization and exploration.
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Figure 36. Heatmap showing scale TF activity scores for 50 TFs across clusters.

The second methodology offers an alternative option for users who prefer not to use SCENIC analysis. This
approach follows the method proposed by decoupleR to infer TF activity levels at the single-cell level.
Specifically, it utilizes a curated resource of interactions between TFs and their target genes (CollecTRI).

For each cell in the dataset and each TF, a linear model is fitted to predict observed gene expression based
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solely on the TF's TF-Gene interaction weights from the CollecTRI resource. The resulting t-value of the
slope serves as the TF activity score in the cell, where positive values indicate TF activity and negative
values indicate the opposite. These scores are scaled for visualization, and average activity values per

cluster are provided. The TFs showcasing high variability among the clusters are depicted in a heatmap.

For scATAC-seq datasets, gene regulation analysis at the chromatin level aims to identify cluster-specific
TFs whose expression correlates strongly with chromatin accessibility changes at genomic sites, including

their DNA binding motifs, a process known as the identification of positive regulators.

2.21 Visualization of epigenome signal tracks

Chromatin accessibility tracks serve as an alternative to feature plots, which typically display gene activity
scores in reduced space, such as UMAP or tSNE plots. In our application, users have the option to select a
specific gene and define a genomic interval of interest by specifying the number of bases upstream and
downstream. By examining the generated plot via a genome browser snapshot (Fig. 37), users can identify
chromatin accessibility patterns within the gene body or within upstream/downstream gene regulatory

elements, including promoters, enhancers, and silencers.

2.22 Utility functions and code history

Since the developed application is more useful to users with limited computational expertise, we tried to
enhance the overall user experience and accessibility. This was achieved by integrating features like
comprehensive instructions accompanied by explanatory screenshots, as well as a command history log

detailing actions performed during basic analyses, as well as various utility operations.

Each analysis task within SCALA is accompanied by a series of explanatory pages and tabs. These contain
brief descriptions of the ongoing operation, input guidelines, and explanations of the output. Certain
modes also feature an instant help section, conveniently located at the top of the page in the form of a
collapsible window. Furthermore, to alert users to potentially longer processing times, especially for large

datasets, a banner displaying estimated processing times is also provided (Fig. 38).
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Figure 37. Example of ATAC tracks for an immune marker gene across different clusters.

Regarding the code history function, for scRNA-seq data, the basic analysis R commands and their
parameters are displayed in a dedicated text area at the “utility” tab. For ATAC-seq data, the executed
commands and the selected parameters are stored in a text file within the sub-folder of each analysis step.
These sub-folders are automatically saved under a directory dedicated to storing all the analysis output

files. This feature is currently supported only in the local version of the application.

As for the utility options, they become available to the user after the completion of the clustering
operation (Fig. 39). Initially, users often experiment with different clustering resolutions, so it's important
for them to select the active clustering column. This column is utilized for subsequent analysis steps such
as functional enrichment and trajectory inference and many more. Another utility option is cluster
renaming, which is useful for annotating clusters with cell type identities or custom names. It's also helpful

in merging clusters that showcase similar gene expression patterns. The last utility operation is cluster
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deletion. It is commonly used when unexpected cell types are found in the dataset or when a cluster is
identified as a poor-quality cluster, according to the QC metrics. Users may also choose to delete clusters

to focus on specific cell type categories for sub-clustering analysis (e.g. subclustering of fibroblasts).

oF To insert your own data:

Lipiond your fies 1) Write the name of your project

2) Load the three required files, which can be found in the output folders of

cellranger
| h (B B 8
barcodestovg:  festureifogr  mstrinbege
v -
—
e et et — « 3) Pre-filtering options that can exclude cells or genes of low information
- L
3 organism
- 1 4) Select between human or mouse

S 1 5) Press this button to upload your data

PCA estimated time in web server for a scRNA-seq dataset of 6,000 cells ~ 8sec (quick version), ~25min (slow version)
LS! estimated time in web server for a scATAC-seq dataset of 6,000 cells ~ 38 sec

*For datasets containing more than 10,000 cells the slow version of PCA is not suggested
(The execution times were measured in the web version of the tool. However, improved performance can be achieved by using the stand-alone version on PCs with appropriate CPU and RAM specifications.)

Figure 38. Examples of instructions for data input (at the top of the figure) and a banner showing estimated execution time for a
dataset containing 6,000 cells (bottom of the figure).
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Figure 39. Utility options and code history functionality are shown.
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3 Results

3.1 Analysis of synovial fibroblasts in hTNFtg arthritis mouse model

To demonstrate the capabilities of our application, we utilized two previously published datasets (Marietta
Armaka et al. 2022), encompassing both scRNA-seq and scATAC-seq data. These datasets were originally
generated to investigate the dynamics of single-cell transcriptomes and chromatin in Synovial Fibroblasts
as they transition from homeostasis to pathology in a TNF-driven arthritis model. We specifically employed

the Tg197 mouse model of arthritis (Keffer et al. 1991), and compared it to healthy wild type (Wt) mice.

For cell isolation, non-hematopoietic stromal cells (Cd45-, Cd31-, Ter119-, Pdpn+) were sorted from the
synovium of whole ankle joints and used to prepare 10x Genomics scRNA-seq libraries. These libraries,
sequenced with a depth of 400 million reads using an Illumina NextSeq 500 machine, comprised 6,667
single cells. Similarly, scATAC-seq libraries were generated following 10x Genomics guidelines, profiling

6,679 single nuclei.

In both experiments, cells were sourced from tissues of three healthy mice (WT, 4 weeks old) and six
diseased hTNFtg mice, with three at an early disease stage (hTNFtg/4, 4 weeks old) and three at an
established pathological stage (WTNFtg/8, 8 weeks old). As discussed in the introduction section, the Tg197
mouse model, characterized by the overexpression of the human TNF (hTNF) transgene, exhibits an
arthritic phenotype marked by cartilage destruction and bone erosion, ultimately leading to joint function

impairment.

Our developed application was utilized to reanalyze the transcriptomes of 5,903 synovial fibroblasts (SFs)
and epigenomes of 6,046 cells from healthy mice (control sample) and arthritic mice at 4 and 8 weeks of
age (early and established disease states). Additionally, any custom analysis steps performed outside the

SCALA application environment will also be described in the current section of this dissertation.

3.2 Analysis using SCALA’s scRNA-seq pipeline

For the scRNA-seq quality control step, cells with fewer than 500 detected features (genes) or with more

than 10% of their reads mapped to the mitochondrial genome were excluded from further analysis.
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Subsequently, downstream analysis of scRNA-seq proceeded with the following operations: the most
highly variable features were identified using the mean-variance-plot (MVP) method (offered by the Seurat
package), resulting in the identification of 1535 variable genes. The gene counts of each cell were
normalized by the total cell counts, multiplied by 10,000, and then subjected to natural-log
transformation. Normalized expression values for all genes were scaled by "regressing out" the

mitochondrial content effect.

The scaled gene-by-cell expression matrix of the most variable genes was used as input for Principal
Component Analysis (PCA). To determine the dataset's dimensionality, and thus the most informative
principal components reflecting cell heterogeneity, Singular Value Decomposition (SVD) k-fold cross-
validation was conducted using the dismo R library. This operation suggested that 25 principal components
(PCs) could capture the most relevant aspects of cell diversity. These 25 PCs were then utilized for both

cell clustering and non-linear dimensionality reduction analysis.

Specifically, to delineate distinct fibroblast subsets, graph-based clustering analysis was performed using
Seurat's Louvain algorithm, with the resolution parameter set to 0.6. Furthermore, the 25 most
informative PCs were employed for non-linear dimensionality reduction analysis, including both t- tSNE

and UMAP plots, enabling visualization of the newly identified cell clusters in 2D/3D space.

SF clustering resulted in the delineation of 10 distinct SF clusters, each presenting unique transcriptional
profiles that embody homeostatic, inflammatory, and destructive properties that can be observed in
healthy and arthritic joints. These distinguishing features were elucidated through marker gene
identification analysis conducted for each SF cluster. Specifically, the transcriptomes of each cluster were
compared against those of all other cells using the Wilcoxon rank sum test on normalized gene expression
values. After the analysis was completed, genes meeting the criteria of an average log Fold Change (avg.
logFC) > 0.25, a percentage of expression (% of cells in the cluster in which the gene is detected) > 25%,

and a p-value < 0.01 were retained for additional modes of analysis.

Initially, genes showing up-regulation were employed as input for functional enrichment analysis. More
specifically, GO enrichment analysis was conducted for each fibroblast (SF) cluster using g:Profiler package.
By scrutinizing similarities and disparities among SF clusters in terms of markers and enriched functional
terms, two clusters, labeled 0 and 9, were merged. Consequently, the resulting nine clusters were denoted

as S1,S2a, S2b, S2¢, S2d, S3, S4a, S4b, and S5. It is worth noting that these identified clusters demonstrated
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changes in their relative abundances between healthy and diseased states. Interestingly, while some

clusters are observed to diminish, others display expansion during disease progression.

Thy1 + clusters (S1, S2a, S2b, S2c, S3, and S5) were further categorized as “sublining”. Notably, their
transcriptional and functional characteristics reflect features of tissue homeostasis preservation, apart
from S5, which exhibits an immuno-regulatory role under healthy conditions. Enriched Gene Ontology
(GO) terms for these populations encompass biological processes such as BMP, WNT, TGFbeta, and SMAD
signaling, as well as responses to TNF and IFN-beta/gamma. Key markers for these clusters include Smoc2,
Thbs1, Vwa, Rgma, Dkk2, Sfrpl, Ecrgd, Osrl, Nr2f2, KIf5, Clu, Id1, Meox1, Pi16, Sema3c, Efemp1l, Ccl7, II6,
and Notch3.

Likewise, the PrgdHigh S4a cluster was designated as "lining" and associated with functions characterizing
an inflammatory and destructive profile specific to this SF subpopulation. The lining phenotype is
characterized by markers such as Tspanl5, Hbegf, Htrad4, and Clic5. In terms of enriched biological

processes, we observed terms such as inflammatory response and class | antigen presentation.

Finally, clusters S2d and S4b exhibited a mixed expression profile of both Prg4 and Thy1 (Prg4+ Thyl+) and
were thus labeled as "intermediate" subpopulations. Marker genes such as FbIn7, Thbs4, Cthrcl, Lrrc15,
Dkk3, Mki67, Pdgfa, Birc5, Aqpl, Acta2, and Cxcl5, which were predominantly upregulated in the
intermediate and lining compartments, have been previously implicated as contributors to fibroblast
pathogenicity or associated with potential pathogenic roles. Correspondingly, terms such as regulation of
immune response, redox response, fibroblast proliferation, cell division, and apoptosis were found to be
enriched in S2d and S4b. In conclusion, the intermediate group of SFs exhibits a pro-inflammatory and

proliferative character.

Next, cell cycle phase analysis was conducted, categorizing each cell into S, G1, or G2/M phase. Intriguingly,
among the three SF populations demonstrating pathogenic characteristics, S4b exhibited the highest
proportion of cells in the G2/M phase. This discovery was further reinforced by inspecting cycling markers
obtained from the literature, which were mainly expressed in the S4b cluster. The mixed expression
signature of Prgd and Thyl (Prg4 + Thyl +), characteristic of this “intermediate” cell group, can be

considered as a robust indicator of disease state.

Cellular trajectories were computed in the pooled dataset by employing the first 25 most informative
principal components as input for the slingshot algorithm. To identify the clusters designated as the initial

and final states of the trajectory, insights from current literature (Wei et al. 2020; Buechler et al. 2021)
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were taken into consideration, along with analysis results from alternative external software applications
such as scVelo (Bergen et al. 2020) and CellRank (Lange et al. 2022). The resulting minimum spanning tree
highlighted the presence of a pathogenic branch comprised of clusters S2a, S2d, S4b, and S4a, with S4a

identified as the terminal state and S1, S2b, S3, and S5 as potential starting points.
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Figure 40. Results of the scRNA-seq data analysis with SCALA (A) UMAP plot depicting SF cells in 2D space. Cells are colored
according to cluster identity. (B) Bar plot showcasing relative abundances of clusters in healthy and disease state. (C) Feature plots
showing gene expression patterns of marker genes. (D) Trajectory analysis results shown as a UMAP overlay. Cells are colored by
their pseudotime value in the lineage S2b — S2a — S2d — S4b — S4a. (E) Heatmap showing z-scores of regulons’ activity across
clusters. The column dendrogram divides clusters into two major groups: sublining clusters (blue) and intermediate & lining clusters
(red) (Adopted from Tzaferis et Al., 2023).

We then proceeded to investigate ligand-receptor interactions between the sublining and intermediate
compartments with the lining. Employing the nichnetR package we detected ligands and receptors
exhibiting a percentage of expression > 10% in the clusters of interest and we uncovered both shared and
specific interactions. More accurately, we identified 157 interactions between sublining-lining and 152
between intermediate-lining compartments. Among these, 126 interactions were shared, with 26 being
specific to intermediate-lining and 31 to sublining-lining clusters. Interestingly, in sublining-lining

interactions, we observed pairs of ligands and receptors involved in Wnt and BMP signaling pathways. On
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the contrary, in intermediate-lining interactions, pairs associated with MMP13, IL-11, and RSPO2 signaling

were detected.

As the final step in the scRNA-seq analysis pipeline, GRN analysis was conducted to identify regulons with
preferential activation patterns at the cluster level, leading to the discovery of a total of 133 regulons.
Notably, diverse activation patterns were evident across the various clusters, and hierarchical clustering of
the top-80 regulons unveiled two distinct groups: the first comprising solely sublining clusters, and the

second encompassing intermediate and lining clusters.

3.3 Analysis using SCALA’s scATAC-seq pipeline

In the analysis of scATAC-seq data, quality control procedures were initially implemented, during this step
cells with a Transcription Start Site (TSS) enrichment score below 4 and count-depth less than 1,000 unique
nuclear fragments were excluded from downstream analysis. Subsequently, LSI was employed with a
resolution set at 0.6, utilizing the first 30 dimensions, number of iterations equal to 4, and default settings
otherwise. Moreover, a Uniform Manifold Approximation and Projection (UMAP) projection was created

to enable visualization of cells in two-dimensional space.

Gene activity scores were computed as the summed local accessibility of promoter-associated count-tiles
in the proximity of each gene, adopting a distance-weighted accessibility model. In detail, count-tiles in

the range of 100,000 bp of a gene promoter were aggregated using the following distance weight formula:

distance

- _ - N . e 1
e 5000 P 4+ e~1, An additional normalization step was implemented (multiplication by Gone sine’ scaled

linearly from 1 to 5), to account for gene length biases. Next, the above-weighted sum was multiplied by
the aggregated Tn5 insertions in each tile. Gene scores were then scaled to 10,000 counts and log2-
transformation was performed. To enhance the visualization of gene activity scores, a smoothing process

was applied using the MAGIC algorithm (van Dijk et al. 2018).

Similar to the scRNA-seq analysis, clustering was conducted using the Louvain algorithm with a resolution
of 0.6, resulting in the identification of 8 distinct clusters. Next, integration between the scATAC dataset
and the previously analyzed scRNA dataset was executed. Our objective was to achieve "label transferring"
between the annotated scRNA clusters and the newly emerged clusters identified during the scATAC
clustering analysis. This integration process facilitated the labeling of scATAC-seq cells according to the 9

SF subpopulations designated during the scRNA analysis. Following integrative analysis, semi-supervised
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trajectory inference with ArchR package, verified the existence of a pathogenic branch, which consists of

S2a, S2d, S4b, and S4a clusters.
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Figure 41. Results of scATAC-seq data analysis with SCALA. (A) UMAP plot of SFs after clustering (left) and label transferring from
SCRNA-seq data (right). (B) Trajectory analysis results shown as a UMAP overlay. Cells are colored by their pseudotime value in the
lineage S2b — S2a — S2d — S4b — S4a. (C-F) Heatmaps showing top marker genes, marker peaks, enriched motifs and positive
regulators, respectively. (Adopted from Tzaferis et Al., 2023)

Using previously calculated gene activity scores, the Wilcoxon test was employed to identify statistically
significant marker features per cluster (applying |Log2FC| > 0.58 and FDR < 0.05 thresholds). Additionally,
a robust merged peak set was determined across SF clusters using MACS2 (Y. Zhang et al. 2008) software,
which involved creating two pseudo-bulk replicates. Subsequently, iterative overlap peak merging (Corces
et al. 2018) was applied to the pseudo-bulk replicates across SF subpopulations, resulting in a single
merged peak set comprising 158,713 regions, each with a fixed length of 500 bps. Following this,
differential accessibility analysis between cells was carried out to identify cluster-specific marker peaks
(with |Log2FC| = 0.58 and FDR < 0.1 thresholds). These marker peaks were then used as input to perform
motif enrichment analysis using the CIS-BP database (applying |Log2FC| 20.58 and FDR <0.05 thresholds).

Collectively, these analytical approaches revealed distinct patterns of gene activity and peak/motif
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accessibility across clusters. Moreover, hierarchical clustering based on z-scores further supported the

classification of clusters into three main groups: sublining, intermediate, and lining.

In the ATAC assay, gene regulatory reconstruction was also carried out. Precisely, peak-to-gene linkages
were identified by analyzing the correlation between enhancer peak accessibility and integrated gene
expression values. Furthermore, TF motif accessibility was correlated with integrated TF gene expression
on a cell-by-cell basis, identifying TFs with a Pearson R? > 0.5 and an adjusted p-value < 0.05, thus

identifying 41 “positive regulators”.

3.4  Subclustering of Lining fibroblasts

During TNF-mediated arthritis, lining SFs maintain some of their homeostatic marker gene identity while
also displaying an increased diversity in their transcriptome, suggesting potential impairment of their
reparative functions post-disease onset. We observed markers associated with inflammatory response
(Ccl2, Ccl5, Hmox1, Saa3), class | antigen presentation (H2-K1, B2m, H2-Q7), and ECM remodeling (Mmp3,
Timp1, Cd44), which aligns with previous findings on arthritic lining synovial fibroblasts (LSFs) (Croft et al.
2019; Zhang et al. 2019). The expansion of LSFs during disease progression is linked to a decline in certain
homeostatic functions, such as ER calcium homeostasis and oxygen level response. Interestingly, a detailed
sub-clustering analysis of the S4a cluster revealed the existence of two cell groups, subclusters hS4a
(homeostatic) and iS4a (inflammatory), with the inflammatory state iS4a becoming predominant during
disease, overshadowing the homeostatic state hS4a. Top marker genes and enriched pathways

characterizing the two identified sub-clusters are shown in Fig. 42.

3.5 Comparison of hTNFtg and STIA single cell RNA-seq data

After completing the scRNA-seq data analysis of the hTNFtg mouse, a chronic arthritis model, we
compared it with previously published data from a different mouse model exhibiting acute inflammatory
arthritis. To achieve this, we employed integration analysis, a technique useful for comparative or
combinatorial analysis among different datasets and modalities. This method has been successfully
applied to analyze biological replicates, mitigating potential technical differences, comparing data across

species, and combining datasets from various modalities such as RNA and ATAC or CITE-seq.
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In our case we leveraged a publicly available SC dataset from serum transfer-induced arthritis (STIA) model
uploaded in the Gene Expression Omnibus (GEO) (accession code GSE129087) (Croft et al. 2019). For the
generation of the STIA dataset, CD45- synovial cells from the hind limb joints were isolated and sort

purified at the nineth day (3 biological replicates, each comprised of cells from the joints of three animals)

and captured with the 10X Genomics Chromium system. The integration strategy that is implemented in
Seurat package was employed. More specifically WT, hTNFtg, and STIA datasets were processed by
applying normalization and most-variable-genes detection using the function “normalizeData” with
default settings and “FindVariableFeatures” (method set to vst and number of variable features to 2000)
respectively. Anchors between samples were identified using the function “FindIntegrationAnchors” with
dimensions parameter set to 30, and then the resulting anchors were utilized to integrate all the samples
together using the function “IntegrateData”. The final object, containing cells from the control and both
arthritic models, was processed in a standard way, performing the steps of dimensionality reduction and
clustering. The integrated clusters were defined by using the “FindClusters” function with a 0.4 resolution.

Finally, the top marker genes per clusters were selected for visualization purposes.

Interestingly, by inspecting the integration results of normal and hTNFtg samples with the respective data
from the STIA mouse model, we observed a similar pattern of both expansion and shrinkage of SF clusters
compared to the WT control. Furthermore, we performed Spearman correlation analysis between SF
clusters, using the normalized expression values of the most highly variable genes of the two datasets.
Additionally, exploration of gene expression patterns for the top marker genes per cluster across datasets
aligned with the previous analysis results, revealing similarities between particular clusters. Specifically,
cluster F3 from STIA aligned with the sublining SFs of the hTNFtg mouse, while F5 matched the lining SFs.
Finally, clusters F1, F2, and F4 exhibited more similarities with the intermediate SFs from the hTNFtg

mouse model (Fig. 43).
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Figure 42. Subclustering of LSFs (A) UMAP showcasing the two identified sub-clusters (hS4a and iS4a are colored in blue and red
respectively). (B) Barplot showing the relative abundances of the two lining subclusters across samples. (C) Featureplots showing
expression of top marker genes per sub-cluster. (D) Dotplot summarizing the enriched GO terms of each subcluster. (Adopted from
Armaka et Al., 2022)
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Figure 43. Integration analysis of hTNFtg and STIA mouse models. (A) UMAP plots showing cells of wt, hTNFtg and STIA samples
post integration analysis. Cells are colored according to the integrated clusters (B) Barplot showcasing relative abundance of
integrated clusters across samples. (C), (D) The same as A and B, but the color code is in alignment with the original cluster
annotation of the datasets. (E) Dotplot showing normalized expression of top marker genes across samples. (F) Spearman
correlation analysis between clusters of hTNFtg and STIA samples. (Adopted from Armaka et Al., 2022)
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3.6 Cross species integration of mouse and human patients single cell data

In the preceding section, we concentrated on the integrated analysis of two distinct mouse models.
Subsequently, we aimed to elucidate potential similarities and differences between single-cell gene
expression profiles of hTNFtg mice and human RA patients. To this end, we integrated previously
generated scRNA-seq data from synovial biopsies of RA patients (H) (F. Zhang et al. 2019; Stephenson et
al. 2018) with the hTNFtg scRNA-seq dataset (M).

Initially, human genes were mapped to their mouse homologs using the Ensembl Biomart and MGI
database, resulting in 17,594 homologous pairs. From the mouse dataset, only cells from pooled hTNFtg
samples (3,051 cells) were processed, while from the three human datasets, only cells from RA patients
(24,042 cells) were included. The integration strategy was implemented using the Seurat package.
Specifically, all datasets were normalized, and the most variable genes were identified using the
“normalizeData” function with default settings and the “FindVariableFeatures” function (with the method
parameter set to “VST” and the number of variable features to 2000). Integration anchors between
datasets were identified using the “FindIntegrationAnchors” function with the “dimensions” parameter
set to 30, and these anchors were utilized to integrate the datasets using the “IntegrateData” function.
The final integrated dataset, containing cells from both species, underwent dimensionality reduction,
clustering, and marker gene identification. Integrated clusters were defined using the “FindClusters”

function with a resolution of 0.3. Marker gene identification was performed using the “findAllMarkers”

function with thresholds set to p-value < 0.01 and avgLFC > 0.25.

During functional enrichment analysis, upregulated genes from both human and mouse datasets were
inserted into Metascape (Zhou et al. 2019). Significant terms and pathways (p-value < 0.05) were used to

evaluate the similarities and differences across the datasets.

Interestingly, we observed that cells from both species align well within the newly integrated UMAP space.
Employing unbiased graph-based clustering, we identified seven distinct sub-populations denoted as H1-
H7 and M1-M7 (Fig. 44). Examination of correlation measurements among the most variable genes (MVGs)
between human (H) and mouse (M) clusters unveiled significant similarities in synovial fibroblast (SF)
expression profiles across the two species, with the exception of cluster 2. This cluster predominantly
comprises human sublining synovial fibroblasts (SLSFs), with only a few mouse cells stemming from the

SLSF category.
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The synovial fibroblast (SF) populations in mice, including S1, S2a, S2b, S2c, S3, and S5, primarily co-
localized with clusters 3 and 4, aligning well with previously annotated human sublining cell expression
profiles. Human and murine lining Prg4-high cells are mainly found within cluster 1, with a lesser presence
in cluster 7. Furthermore, we identified a previously underappreciated proliferative mixed lining/sublining
SF state within these clusters. Cluster 5 predominantly consists of mouse S2d cells, with M5 associated
with human cells in both clusters 5 and 6. This suggests that human clusters H5 and H6 could acquire the

“intermediate” arthritis-specific profile previously delineated in mouse data analysis (Fig. 45).

Functional inter-species similarities were validated through Gene Ontology (GO) and pathway enrichment
analyses of marker genes, as well as co-clustering of human (H) and mouse (M) groups. We identified
conserved functions and processes of SLSFs in regulating vasculogenesis, muscle tissue development, and
bone and tissue renewal, corresponding to clusters H3, M3, H4, and M4. Our analysis revealed that clusters
M5 and H5 are characterized by pathogenic RA features such as metalloproteinase secretion, collagen
catabolic processes, and bone destruction signaling pathways, aligning with the S2d SFs identified in the
hTNFtg model. Clusters 1, 6, and 7, which contain SFs from the lining synovial compartment previously
noted for their destructive properties, exhibit pro-proliferative pathways and regulate immune-related,
cell adhesion and migration pathways. Furthermore, key marker genes exhibit significant conservation
between mouse and human datasets. As anticipated, the analysis of the human-specific cluster 2 showed
fewer shared features but highlighted common functions related to translation and ribosome assembly.
Human H2 SFs are associated with the regulation of ossification, epithelial cell proliferation, and
autophagy. Conversely, the gene expression of mouse M2 SFs is linked to post-translational modifications

and apoptotic cell death, differentiating them from H2 SFs.

At level of gene regulation, analysis of human and mouse data using the SCENIC algorithm enabled the
inference of common TF regulons across species. Specifically, we retained all conserved TFs identified in
both datasets. We identified mouse regulatory modules by performing pairwise correlation analysis
between motif deviations of conserved mouse and human TFs, followed by hierarchical clustering, as
described in a previous publication. This methodology identified three primary regulatory modules
corresponding to lining, intermediate, and sublining states, demonstrating considerable overlap between

the two species.

The regulatory modules are governed by the activities of the TFs Ar, DIx3, and Runx1. Gene Ontology (GO)
enrichment analysis of TFs and their downstream target genes revealed that these modules share similar

functions in both species. Module one (Ar) controls multipotent functions of the core SLSFs; module two
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(Runx1) regulates functions associated with an inflammatory profile, consistent with the intermediate
profile of SLSFs in the hTNFtg model. Notably, up to 25 of the 107 core mouse genes were identified as
target genes in human cells, highlighting the translational potential for genes such as Tnfaip3, Tnfaip6, Tir2,
Lrrc15, and Bmp2. Additionally, the third module (DIx3) exhibited functions that are less well-

characterized, likely related to the lining SF profile in both human and mouse SFs.

Conclusively, the aforementioned analysis of mouse and human data at different levels enabled
identification of similarities and differences that could help in the prioritization of potential novel targets

in future therapeutic interventions.
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Figure 44. Mouse and Human data integration. (A) Cells of human and mouse datasets depicted in UMAP space after integration.
Cells are colored by cluster identity. (B) Spearman correlation analysis between mouse and human clusters utilizing normalized
expression data from the most highly variable genes of the datasets. (C) Heatmap showing enriched functional terms for every
cluster. (D) Feature plots showing normalized expression for a set of fibroblast marker genes.
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Figure 45. Mouse and Human data integration. (A) (C) Cells plotted in UMAP space after integration. A separate plot is employed
for each dataset. In (A) cells are colored according to the integrated cluster while in (C) they are colored according to the original
annotation of each dataset. (B) (D) Bar plots showing the relative abundances of integrated clusters or original annotation clusters
across the four datasets.

3.7 Analysis with alternative workflows

For the single-cell datasets analyzed in this dissertation, all libraries were generated using the same chip
and sequenced in a single run to minimize potential batch effect issues that could interfere with
downstream analysis. To prevent skewing biological differences among the various conditions, samples
were aggregated using the “cellranger aggr” option. Despite this, we also applied integration between
conditions and batch correction. For batch correction Harmony (Korsunsky et al. 2019) was employed
across both modalities, which allowed us to identify populations exhibiting expansion. Based on cell
annotation from our initial analysis, we confirmed that the majority of cells in the expanding populations
were annotated as S2.d, S4.b, and S4.a (91.27% in scRNA-seq and 84.68% in scATAC-seq), corresponding

to the expected intermediate and lining clusters (Fig. 46).

To further ensure the robustness of the analysis output (which was based on the Seurat package pipeline),

we performed a re-analysis using an alternative toolkit, Monocle3. This workflow comprised the following
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steps: (i) Data pre-processing, (ii) Non-linear dimensionality reduction, (iii) Cell clustering, (iv) Inter-cluster

comparisons, and (v) Trajectory analysis (Fig. 47).
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Figure 46. Batch correction analysis. (Left panel) UMAP plots of scRNA-seq and scATAC-seq data after batch correction with
Harmony. (Right panel) Utilizing the original cluster annotations, the bar plots in both modalities confirm that the clusters which
show an expansion during disease belong to the pathogenic populations.
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Figure 47. Flow diagram depicting the main steps of analysis incorporated in Monocle3 pipeline.

After loading the data according to the instructions, we tested for potential batch effects. Consistent with
previous results from the Harmony package, no batch effects were detected between the samples. Next,
normalization and PCA analysis were performed. The UMAP algorithm was used for cell visualization and
the Leiden algorithm for clustering. Moreover, we utilized an additional clustering module offered in
Monocle, which divides cells into large, well-separated groups called partitions. In our analysis, two main
partitions were detected: the first included the sublining SFs, and the second contained the intermediate
and lining SFs. By applying the original cell annotations and performing marker gene analysis, we observed

that the top markers identified in Seurat were retained (Fig. 48).
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Figure 48. Monocle3 analysis results. (Left panel) UMAP plot showing cells after Monocle3 analysis has been perdformed. (Right
panel) Feature plots depicting gene expression patterns of top marker genes.

Finally, we conducted trajectory analysis and pseudotime ordering of the cells. Monocle utilizes an
algorithm that learns the sequence of gene expression changes each cell undergoes during a dynamic
biological process. Once the overall trajectory is established, Monocle positions each cell accordingly
within this trajectory. We employed four possible roots, as previously described, S1, S2b, S3, and S5. An
additional analysis mode enables users to search for genes that change as a function of pseudotime.
Specifically, Monocle identifies genes that vary between groups of cells along the trajectory graph using
“Moran's I”, a statistic measure from spatial autocorrelation analysis, which is also effective in single-cell
RNA-seq datasets. After identifying the final set of genes that exhibit significant variation across clusters,
Monocle groups these genes into modules. This is achieved by applying UMAP on the genes (instead of
cells) and then using the Louvain community analysis algorithm to form modules. In our case, this
procedure yielded 49 modules, with some showing preferential activity in the initial, intermediate, or the

final states of the trajectory (Fig. 49).
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Figure 49. Monocle3 analysis results. (Left panel) UMAP plot depicting trajectory results. Different lineages starting from 3 root
points are drawn while cells are colored by predicted pseudotime values. (Right panel) Heatmap showing the activity of gene
modules varying between clusters along the trajectory.

3.8 Benchmarking with other similar tools

One of our final objectives was to perform a comparative analysis between SCALA and similar tools. Hence,
we present a compilation of alternative tools (e.g., pagoda2 (“GitHub - Kharchenkolab/Pagoda2: R Package
for Analyzing and Interactively Exploring Large-Scale Single-Cell RNA-Seq Datasets” n.d.), SingleCAnalyzer
(Prieto, Barrios, and Villaverde 2022), Bingle-seq (Dimitrov and Gu 2020), iCellR (K. H. Tang et al. 2022),
cerebro (Hillje, Pelicci, and Luzi 2020), Is-CellR (Patel 2018), SeuratWizard (Yousif et al. 2020), ICARUS (Jiang
et al. 2022), SC1 (Moussa and Mandoiu 2021), alona (Franzén and Bjérkegren 2020), WASP (Hoek et al.
2021), CHIPSTER (Kallio et al. 2011), Asc-Seurat (Pereira et al. 2021), GenePattern (Mah et al. 2019), PIVOT
(Zhu et al. 2018)) designed to provide a user-friendly graphical interface for individuals with limited
experience in bioinformatics. We emphasize the analytical capabilities offered by these tools and their
complementarity to our application. It is noteworthy that, to our knowledge, only iCellR offers scATAC-seq
analysis, and only six applications are available as web services. Additionally, SCALA stands out as one of

the few tools offering modes for L-R and GRN analysis (Fig. 50).
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Figure 50. Comparison with other tools. In this table our application is compared to other applications which offer a GUI or are
accessible as a web service.

3.9 Performance and scalability of the application

In terms of performance, including execution times and RAM consumption, we conducted benchmarking
tests using eight single-cell datasets (four scRNA-seq and four scATAC-seq), varying in cell numbers. The
results demonstrated that our application effectively handled datasets containing hundreds of thousands
of cells. However, we recommend users to utilize the desktop version of SCALA for larger datasets (> 50,000
cells), as certain analysis steps may require more than 64 GB of RAM memory. Additionally, the desktop
version offers improved execution times for scATAC datasets by enabling multiprocessing, which facilitates

parallel execution during computationally intensive processes (Fig. 51).
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scRNA-seq datasets

Operations PBMC 3k Joint Sfs 6k Liver Fibro 60k lleum Immune 200k Time format
QC <1sec <1sec <1 sec <1sec
Filtering <1sec <1sec <1sec <1sec
Normalization and Scaling <1sec <1 sec 00 00 07 000012
PCA quick 000007 000012 000126 00 04 25
PCA slow 000551 002131 060205 10 38 54
Clustering <1sec <1sec 00 00 20 00 00 56
SNN < 1sec <1 sec Not enough RAM  Not enough RAM
UMAP 000008 000009 000042 0001 20
Marker genes 000017 000036 001824 0019 41 HH:MM:SS
Signatures 000003 000013 000106 00 02 57
Enrichment (for one cluster’ 00 0001 000002 0000 02 00 00 02
Cell cycle <1sec <1sec 00 00 01 00 00 02
Annotation 000001 000001 00OO0OZ2 00 00 03
Doublets 000022 000100 Not enough RAM  Not enough RAM
Trajectory 000001 000003 000534 00 06 03
LR (for a pair of clusters) 000003 000005 000011 00 00 16
GRNs 000019 000145 001124 Not enough RAM
Number of Cells 2700 5303 58358 201073
Input size (RDS format) 21.4MB 1275MB 364.9 MB 718.6 MB

CPU: 12th Gen Intel® Core™ i7-12700KF = 20

RAM: 64 GB

Machine Specs 0S: Ubuntu 20.046 LTS

17 GB (*without TF
activity inference

Max memory consumption 3.6 GB 6.9GB 31 GB step)
scATAC-seq datasets

Operations BMMCs 5k SFs 6k Skin 80k COVID 200k Time format
Qc <1sec <1sec 00 00 03 00 00 06
LSl 000019 000035 000108 00 02 47
Clustering 000008 000012 000610 04 32 58
UMAP and tSNE 000024 0000231 00 08 52 00 32 1
Marker genes 000106 000103 000531 00 11 38
Marker peaks 000223 000423 001946 001715 HH:MM:SS
Doublets 000121 000207 001833 00 40 06
Motif enrichment 000320 000234 000545 0010 35
Integration 000409 000915 002926 011625
Trajectory 000004 000002 0Q0O0Z238 0005 11
GRNs 000812 001238 001240 00 37 43
Number of cells 4932 6046 78996 200762
Input size (Arrow format) 5843 MB 3.2 GB 7.8 GB 11.5 GB

CPU: 12th Gen Intel® Core™ i7-12700KF = 20

RAM: 64 GB

Specs 0S: Ubuntu20046 LTS
Max RAM consumption 3.5GB 8 GB 10.3 GB 43.2 GB

Figure 51. Benchmark of our application with different datasets as input. In this table dasets of various sizes have been utilized to
test execution time and memory consumption for the different modes of analysis offered in our application for scRNA-seq and
SCATAC-seq data. The hardware specifications of the PC used for the benchmark are shown.
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4  Discussion

The application that was developed in the context of this PhD project is a comprehensive bioinformatics
pipeline offered both as a web-service and a stand-alone application. It performs end-to-end SC analysis,
by using the current best practices of the field. It currently enables the analysis of scRNA-seq and scATAC-
seq datasets, which comprise the vast majority of the available SC data to date, facilitating both

independent and integrative analysis of the two modalities.

The architecture of our application enables a seamless integration between various software packages
offering many modes of analysis to the end user. Both R programming language and web technologies

have aided us to develop an interactive application that could be useful to both novice and advanced users.

To showcase its full capabilities, we utilized single cell data from hTNFtg mouse model of arthritis, using
as input data from both scRNA-seq and scATAC-seq modalities. Moreover, to test whether our results were
robust across different pipelines, we used two alternative workflows that resulted in similar results
confirming our original findings. Additionally, to achieve comparison between the data from our use case

scenario and other publicly available datasets we performed integration analysis.

One important aspect of this dissertation was the study of synovial fibroblast subsets and their properties
in both homeostasis and TNF-mediated chronic arthritis at a single-cell resolution. More precisely, we
aimed to delineate their transcriptomic profiles, chromatin accessibility, spatial distribution, and the
regulatory networks governing the transition from a healthy state to arthritic pathology with precision.
Marker gene detection and functional enrichment analysis facilitated the identification of three principal
fibroblast super-clusters. Lining synovial fibroblasts (Thy1~ LSFs) were observed to modulate the size of the
lining layer through apoptotic and migratory mechanisms. Conversely, sublining synovial fibroblasts (Thy1*
SLSFs) were responsive to growth factors and differentiation signals, including WNT, BMP, and TGFbeta.
However, during the progression of arthritis, distinct subtypes of SLSFs undergo a phenotypic transition,
relinquishing their homeostatic functions and acquiring activated characteristics. Consequently, novel
arthritis-specific subpopulations emerge, two examples are Dkk3/Lrrc15* and Birc5/Agqpl* subsets, which
demonstrate elevated inflammatory and destructive attributes. These findings underscore the intricate
networks orchestrating the pathogenesis of arthritis. Notably, the combinatorial analysis of both
modalities played a pivotal role in the prioritization of TFs and regulatory networks, revealing distinct
activity patterns across various synovial fibroblast (SF) groups and conditions. Furthermore, a noteworthy

section of this study was the integration of SF profiles from the hTNFtg mouse model with SFs of the STIA
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mouse model, as well as SF profiles derived from RA human patients. Through meticulous examination of
gene expression patterns, correlation analyses, and enriched biological pathways, coupled with regulatory
network analysis, this integrative approach unveiled both commonalities and disparities among SFs across

diverse datasets.

Closing this section, it is important to acknowledge several limitations and prospective future directions
for the developed application. Firstly, the application comprises various software packages, and there is
no automated mechanism to update all packages simultaneously without risking compatibility issues.
Consequently, updating the packages used in SCALA necessitates extensive testing, both in the context of
official updates from the development team and independent user updates in local installations. Secondly,
a potential future limitation is scalability. Although the application performed effectively with datasets
ranging from 6,000 to over 200,000 cells, we observed diminished responsiveness of the graphical
components when handling datasets exceeding 50,000 cells. Enhancing the multi-threading
implementation could mitigate these issues by delegating the visualization and plotting tasks to one or

more dedicated threads.

To enhance and expand the functionality of our application in future releases, several additional features
could be considered. Firstly, the integration analysis between different datasets, as well as spatial
transcriptomics analysis could be introduced as additional modes. These enhancements can be seamlessly
incorporated into our application as they fall within the same framework of the Seurat package.
Furthermore, alternative workflows for cell-to-cell communication analysis and trajectory analysis could
be incorporated by adding the implementations from the CellChat and Monocle packages. Additionally,
the aesthetic aspects of the application could be improved by adding more customizable plotting options,

such as different color palettes and additional export format options.
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5 Conclusions

This dissertation had two primary objectives. The first was to develop a user-friendly application that
integrates various software packages to provide a comprehensive pipeline for the analysis, exploration,
and visualization of single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-
accessible chromatin sequencing (scATAC-seq) data. The second aim was to employ the developed
pipeline, along with custom bioinformatics analysis steps, to study and characterize the hTNFtg mouse

model of rheumatoid arthritis at single-cell resolution.

This study has significantly advanced our understanding of the cellular heterogeneity of synovial
fibroblasts in the chronic RA model hTNFtg by examining their properties in both healthy and diseased
contexts. Utilizing various bioinformatics analysis steps, we identified distinct gene expression programs
and regulatory networks that may drive the initiation and progression of pathology. Furthermore, through
integration analysis with other datasets, including the STIA mouse model of RA and human data from RA
patients, we identified similarities and differences at the level of genes, biological pathways, and cell

population dynamics.

Additionally, we developed an application named SCALA, which takes advantage of the R programming
language and web technologies such as HTML, JavaScript, CSS, and R/Shiny. SCALA enables automated and
interactive analysis of single-cell transcriptomics and epigenomics data. The application is built upon two
widely used software packages, Seurat and ArchR, which support key analytical steps, ranging from quality
control to the identification of distinct cell populations. SCALA is designed for interoperability with other

software packages, thereby facilitating the execution of more complex analytical tasks.

A notable advantage of SCALA is its user-friendly interface, making it accessible to a broad audience within

the biomedical community. SCALA is available both online as a web service (http://scala.fleming.gr/) and

offline through local installation via GitHub (https://github.com/PavlopoulosLab/SCALA) or Docker

(https://hub.docker.com/r/paviopouloslab/scala). As an open-access R package, SCALA allows advanced

users to modify and improve the source code according to their needs.

In conclusion, the bioinformatics methodologies described in this dissertation, alongside the development
of a computational pipeline offered as a user-friendly web application, could be highly beneficial for
biomedical scientists seeking to analyze and explore their data in an interactive manner. The analysis of a
use case scenario involving the hTNFtg mouse model of arthritis yielded significant biological findings,

enhancing our understanding of the cellular heterogeneity of fibroblast populations. These findings could
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aid biologists and researchers from other disciplines in the identification of important genes and pathways

that could be useful for diagnostic purposes or therapeutic intervention in the future.
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6 Summary

Single-cell technologies have revolutionized biomedical research by enabling the study of the genome,
transcriptome, proteome, and epigenome at unprecedented resolution. These experimental assays are
further enhanced by spatial transcriptomics methods, such as Visium and CosMx, as well as imaging
techniques like CODEX (CO-Detection by indEXing) and RNA-FISH (RNA Fluorescence In Situ Hybridization).
These methods facilitate the validation of marker genes identified through bioinformatics analysis by

allowing the visualization of RNA transcripts and proteins within complex tissue architectures.

The boom of single-cell assays in the last decade has led to the development of numerous software
packages dedicated to data analysis, visualization, and exploration. To date, more than 1,700 tools are
available. Both R and Python programming languages are favored by developers, while some tools are
written in C++, Matlab, or other languages. Among the most widely used tools in the single-cell community
are Seurat, Scanpy, Cicero, and ArchR. The first two are utilized for the analysis of scRNA-seq data, while
the latter two are used for the analysis of scATAC-seq data. These tools, in combination with other
methodologies, offer various modes of analysis to the end users, including quality control, dimensionality
reduction, clustering of cells, identification of marker genes, annotation of cell populations, trajectory
analysis, integration of RNA and ATAC assays, motif enrichment analysis, and identification of regulatory

networks, to name just a few.

To alleviate potential technical difficulties in installing, managing, and combining various software
packages into one pipeline, we developed SCALA. Our application offers seamless integration of different
toolsin a user-friendly and interactive environment, available both online and as a stand-alone application.
To achieve this, we leveraged the R programming language and web technologies such as HTML,

JavaScript, CSS, and R/Shiny.

We utilized SCALA for an end-to-end analysis of scRNA-seq and scATAC-seq data originated from synovial
fibroblasts (SFs) of the hTNFtg mouse model of arthritis. This analysis enabled us to characterize the
heterogeneity of SFs during homeostasis, early, and established disease states. Specifically, we observed
cell population dynamics and transitions between different cellular states. Additionally, integrating both
modalities facilitated the identification of regulatory networks with preferential activity across different
cell sub-populations. Moreover, we performed a comparative analysis between SFs in the hTNFtg mouse
model, the STIA mouse model, and SFs from human RA patients, highlighting similarities and differences

at different levels such as in gene expression patterns and enriched biological pathways.
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Conclusively, we consider that the scientific material presented in the current dissertation can have a
positive impact on the biomedical community in several ways. First, the pipeline we developed is freely
available, enabling users to analyze their data or modify the source code and adjust the pipeline to their
specific needs since it is an open-source project. Additionally, the biological findings may be of significant
interest to researchers specializing in RA disease, as the genes, biological pathways, and master regulators
identified by the bioinformatics analysis could be potentially targeted for diagnostic or therapeutic

purposes.
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7 NMeplAnyn

Ot texvohoyiec aAAnAouxiong oe emninedo povadlaiouv kUTTApou €xouv dEPEL emavaotoon oto nedio g
LOTPOPBLOAOYLIKAG £pEUVAC, KABWC ETMITPEMOUV TNV UEAETN TOU YOVISLWUATOC, TOU HETOYPADWHATOG, TOU
TPWTEWMOTOC KOL TOU ETLYOVISIWHATOC HE Tpwtodavh akpiBela. AUTEC Ol TIELPOPOTIKEG TEXVLKEC
EVIOYUOVTAL TEPALTEPW O HeBOSoUC peTtaypadwLKNG O LOTOUC, 0w To Visium kot 1o CosMXx, kaBwg
KOl TEXVIKEC aTElKOVIONG Otwg to CODEX (CO-Detection by indEXing) kaL to RNA-FISH (RNA Fluorescence
In Situ Hybridization). Autég oL péBodol SleukoAUvouv Tnv emikUpwaon yovidiwv mou yapaktnpilouv
KUTTaPLKOUG MAnBuopouc (kat £xouv TtautomnonBel péow tng BLomAnpodopLkhiG aVAAUCONG), ETUTPETOVTOG

TNV omrtkomnoinon poplwv RNA Kol Twv MPWTEiVWV Héoa o€ LOTOUG.

H paydaia avamtuén twy Texvikwy povadlaiou Kuttdpou tnv tTeAeutaia Sekaetia 06rynos otnv avamtuén
EKOTOVIAOWV TIAKETWY AOYLOHULKOU TIOU ETILKEVIPWVOVTOL OTNV ovAAUon, TNV OTTLKOToinon Kot
Slepelivnon twv Sedopévwy. MéxpL onpepa, sival Stabéotpa meplocotepa amo 1.700 UTIOAOYLOTIKA
epyoleia. Ot y\wooeg mpoypoppatiopol R kal Python mpotipwyvtal and Toug MPoypaUaTIOTEG EVAVTL
TWV UTIOAOITIWVY, EVW UTIAPXOUV KOlL KATIOLOL UTIOAOYLOTIKA epyaleia eival uhomolnpéva os C ++, Matlab kait
GANEC YAWOOEC TIPOYPAULATIONOU. Avapeca ota TiLo SnUodIAn TIAKETA AOYLOULKOU OTNV EMLOTNHOVLKA
KowoTtnta eival To Seurat, Scanpy, Cicero kat ArchR. Ta SUo mpwTa XPNOLLOTOLOUVTAL YL TV avAAuon
S6edopévwy scRNA-seq, evw ta aAAa SUo xpnotomololvtal ylo Tty avaiuon dedopévwy scATAC-seq.
AUTA TO UTIOAOYLOTIKA £pyaAeia, o cuvbuaoud pe aAAeg peBoSoloyleg, MPoohEPOUV GTOUC XPOTECG TNV
duvatdtnta va ekteAécouv Bripata ¢ avaluong e SLadopeTikr AstoupykotnTa. Mia oUVToun
nieplypadn autwv mepAappavel ta BRpata tou gAéyxou moldtnTog Twv dedopévwy, TnG Helwong Twv
opXLKWY SLaoTAoewv Twv Se8opévwy (avadEpeTal otny peiwon Twv yovidiwv mou Aappdvovtal uroPv
yla Tnv TeAkn avaAuon), g opadomoinong Twv KUTTAPWY, TNG avayvwplong yovidiwv mou
XopaKktTnpilouv KUTTAPLIKOUG TTANBUGHOUG KOl TNV armodoon auTwy OE YVWOoToUG KUTTapLkoU g TUTIOUG, TNV
€UPECN OXECEWV KUTTAPLKAG Sladopomoinong HeTafy Twv KUTTAPKWY MANBUCUWY, TV CUVOUAOTIKN
avaAiuon twv dedopévwy tomou RNA kot ATAC, Tng avaAuong eUmAouTiopol potiBwyv oto DNA rmou

avayvwpilovtal anod petaypadikolg MapaAyovTeG Kal TNG EVPECNC PUBULOTIKWY SIKTUWV.

H avamtuén tng epappoyng SCALA (mou mapouctaletal os autn tnv Slatplpr)) €ywe Pe okomo va
QVTLUETWTTiOEL TILBAVEG TEXVIKEG SUOKOALEG Tou Ba pmopovoav va eudavioToUV O XPAOTEC KATA TV
gykaTaotaon, tnv Slaxeipon 1 tnv cuvduaoTik xprnon TOAAAMAWY TIAKETWY AOYLOULKOU OavAAUGoNG
6ebopuévwv alknAouylong povadlaiwv Kuttdpwv. H edappoyn mou avoamtuxbnke mpoodépel pio

anpPOoKonTn S10cUvVEea MOANATAWY UTIOAOYLOTLKWY £pYQAELWV o€ £va SLadpaoTikd Kal GLALKO TIPOG ToV
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xpnotn neptBaiAov. Eival dtabéoiun mpog xpron Swpedv 1000 pPéow ALadIKTUOU 000 Kol oav edappoyr
OE TIPOCWTILKO UTIOAOYLOTH META OO TOTUKA EYKOTAOTACN. Mo TNV €MITEVEN TOU MAPATIAVW EYXELPAUATOC
afLOTOLNCAE TNV YAWOOCO TPOYPAUMOTIONOU R Kal TiG texvoloyieg totou HTML, JavaScript, CSS, kat

R/Shiny.

XpNOLUOTIOLCAUE TNV £PAPLOY HAC VLA VA ETIUTUXOUUE ULa OAOKANPWHEVN avaluon Twv dedopévwy
scRNA-seq kal ScATAC-seq amo WOPBAGOTEC TG ApBpwoNg TOU AOTPAYAAOU TOVIKWY OTO HOVTEAO
apBpitdag hTNFtg. H avaluon autr Hag EMETPEPE va XAPOKTNPLIOOUUE TNV KUTTAPLKI) ETEPOYEVELA TWV
WoPBAACTWV KATA TN SLAPKELA TNG OUOLOCTOCNG, KAL OTO OTASLA TNG TPWLMNG KAl HETayeVESTEPNG PAoNG
NG VOOOU. JUYKEKPLUEVQ, TIOPATNPHOALE TIG LETABOAEG OTNV EKTIPOCWIINGCT CUYKEKPLUEVWVY KUTTAPLKWY
mANBuopwv Kat tnv Stadikacio petafaocng HeTafl SLaPOPETIKWY KUTTAPLKWY KATACTACEWV. EmuAéoy, n
ouvbuaoTtiky avdluon SeSopévwy Kal amd TG SUO TEIPAMOTIKEG TEXVIKEG SLEUKOAUVE TOV EVTOTILOUO
Siktbwv  puBuong pe  Spaoctnpotnta ot SladopeTikeG ouddeg  KuTtapwv. EmumpodoBetaq,
T(POYLLOTOTIOL GALE GUYKPLTIKA avaAuon petafl Twv voBAaoTwY amod to HovtéAo movtikiou hTNFtg, amno
TO HovTélou TmovTikioUu STIA kat amd WoPAACTEG TOU TPOEPXOVTaL amo acBevel¢ pe peupatosldn
apBpitida, emonuaivovtag TIG OpoLOTNTES KOl TIC SladopEC ToUuC o€ MOANATIAG TTiMES AL OTIWC OTO KOUUATL
™G yovISLaKAC £KPPAcNC KOl TO KOUUATL TWV EVEPYOTIOLNUEVWVY BLOAOYLKWV HOVOTIOTIWY (UETA Qo

OVAAUGN EUMAOUTIOMOU).

JUUMEPAOUATIKA, BEWPOUPE OTL TO EMOTNUOVIKO UALKO TIOU Ttapouctaletal otnv mapoloa S18aKTopLK
SlatplBn pmopel va €xel BeTikd avtiktumo otn BlolaTpikr) kowotnta o TMoAAATAQ eminmeda. ApXLIKE, n
UTIOAOYLOTLKN edappoyn Tou avartiEape sival Slabéatun Swpedv, EMTPEMOVTOG OTOUG TEALKOUC XPrOTES
va avaAloouv Ta dedouéva TOug 1 OKOUO KOL VO TPOTOTOLCOUV TOV Tnyaio Kwdlka Kal vo Tov
TPOCAPUOCOUV OTIG SIKEC TOUG QVAYKEC, KABWC TPOKELTOL Yo pla epapUoyr OVOLKTOU AOYLOULKOU.
ErutA£ov, Ta BLOAOYIKA EUPAHOTA UMOPOUV VO ATIOTEAECOUV QVTIKEIUEVO EVOLADEPOVTOC VLA EPEUVNTEG
o £€e1l6LIKEVOVTAL OTN HEAETN TNC VOOOU TNG peupatoeldouc apbpitidag, kabwe kamola anod ta yovidla,
Ta PBLOAOYLKA HOVOTIATIO KoL TOUC PUBULOTIKOUC TOPAYOVIEG TIOU EVIOTOTNKAV HECW TNC
BlomAnpodopikig availuong Ba pmopoucav va Xpnolpomolnfolv evOEXOUEVWG YA SLOYVWOTIKOUG N

BepamneuTikol oKoToUG.
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8 Acronyms

ACPAs anti-citrullinated protein antibodies
Acta2 Actin alpha 2

Adamdecl ADAM-like, decysin 1

Al artificial intelligence

AlA Adjuvant-induced arthritis model

AP1 Activator protein 1

Aqpl Aquaporin 1

ARE AU-rich elements

ATAC Assay for Transposase-Accessible Chromatin
AUC Area Under the Curve

AXIN1 Axin 1

B2m Beta-2 microglobulin

Birc5 Baculoviral IAP repeat-containing 5

Bmp4 Bone morphogenetic protein 4

bp base pairs

CAFs cancer associated fibroblasts

CAIA Collagen antibody-induced arthritis model
Ccl C-C motif chemokine ligand

CCR C-C motif chemokine receptor

CD Crohn’s disease

CD45 Cluster of Differentiation 45

cDNA Complementary DNA

CIA Type |l collagen induced arthritis
circRNAs circular RNAs

Clic5 Chloride intracellular channel 5

Clu Clusterin

Coch Coagulation factor C homolog

Col15al1 Collagen, type XV, alpha 1

Comp Cartilage Oligomeric Matrix Protein

CPU Central Processing Unit

cRNA Complementary RNA

CSS Cascade Style Sheet

Cthrcl Collagen triple helix repeat containing protein 1
Cxcl Chemokine (C-X-C motif) ligand

Dkk Dickkopf WNT Signaling Pathway Inhibitor
DIx3 Distal-less homeobox 3

DNA Deoxyribonucleic Acid

ECM Extracellular Matrix

Ecrgd ECRG4 augurin precursor

Efempl EGF containing fibulin extracellular matrix protein 1
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EPCAM Epithelial Cell Adhesion Molecule
FAP Fibroblast Activation Protein Alpha
Fbinl Fibulin 1
FLS fibroblast like synoviocytes
G6PI glucose-6-phosphate isomerase protein
GBs Gigabytes
GM-CSF Granulocyte- Macrophage Colony- Stimulating Factor
GO Gene Ontology
GRN Gene Regulatory Network
GUI Graphic User Interface
H&E Hematoxylin and Eosin
H2-K1 Histocompatibility 2, K1, K region
H2-Q7 Histocompatibility 2, Q region locus 7
Hbegf Heparin-binding EGF-like growth factor
Hhip Hedgehog-interacting protein
HLA-DRA Major histocompatibility complex, class I, DR alpha
Hmox1 Heme oxygenase 1
HTML Hyper Text Markup Language
hTNFtg human TNF transgene
Htrad HtrA serine peptidase 4
IBD Inflammatory Bowel Disease
Id1 Inhibitor of DNA binding 1, HLH protein
IFNs Interferons
IL Interleukin
ISREs IFN-stimulated response elements
JNK c-Jun N-terminal kinase JNK
a cross between non-obese diabetic mice (NOD) and mice with a KRN T-cell
K/BxN receptor transgene (K/B)
KEGG Kyoto Encyclopedia of Genes and Genomes
KIf5 Kruppel like factor 5
IncRNAs long noncoding RNAs
L-R Ligand - Receptor
Lrrcl5 Leucine rich repeat containing 15
LSFs Lining Synovial Fibroblasts
LSI Latent Semantic Indexing
MAP Mitogen-Activated Protein
MDS Multi-Dimensional Scaling
Meox1 Mesenchyme Homeobox 1
MEX Market Exchange Format
Mki67 Antigen identified by monoclonal antibody Ki 67
ML machine learning
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MMPs

matrix metalloproteinases

mRNA messenger RNA
MST Minimal Spanning Tree
MTNF transmembrane TNF
MVP Mean-Variance Plot
ncRNA noncoding RNA
NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells
NGS Next-Generation Sequencing
Notch3 Notch receptor 3
Npnt Nephronectin
Nr2f2 Nuclear receptor subfamily 2, group F, member 2
Osrl Odd-skipped related transcription factor 1
PCA Principal Component Analysis
PCR Polymerase Chain Reaction
Pdgfa Platelet derived growth factor subunit A
PDGFRA Platelet Derived Growth Factor Receptor Alpha
PDPN Podoplanin
PHATE Potential of Heat-diffusion for Affinity-based Trajectory Embedding
Pil6 Peptidase Inhibitor 16
PI3K Phosphoinositide 3-kinase
PIA pristane-induced arthritis
Prgd Proteoglycan 4
QcC Quality Control
RA Rheumatoid arthritis
RAG recombination activation gene
RAM Random Access Memory
RF rheumatoid factor
Rgma Repulsive guidance molecule family member A
RNA Ribonucleic Acid
RNA-seq RNA sequencing
RSPO2 R-spondin 2
Saa3 Serum amyloid A 3
SC single cell
SCATAC-seq single cell ATAC sequencing
SCID severe combined immunodeficiency disease
scRNA-seq single cell RNA sequencing
Sema domain, immunoglobulin domain (Ig), short basic domain, secreted,
Sema3c (semaphorin) 3C
Sfrpl Secreted frizzled-related protein 1
SLE Systemic Lupus Erythematosus
SLSFs Sublining Synovial Fibroblasts
SMAD SMA and MAD-related protein
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Smoc2 SPARC related modular calcium binding 2
SNN Shared-Nearest Neighbor

SNP Single Nucleotide Polymorphism

STIA Serum Transfer Induced arthritis

sTNF soluble TNF

SVD Singular Value Decomposition

TACE TNF-a converting enzyme

Terl119 Mouse TER-119 Erythroid Antigen MAb (Clone TER-119)
TF transcription factor

TGF-b transforming growth factor beta

Th17 T helper 17 cells

Thbs1 Thrombospondin 1

THY1 Thy-1 cell surface antigen

Tlr2 Toll-like receptor 2

TNF Tumor Necrosis Factor

Tnfaip Tumor necrosis factor alpha induced protein 6
TNFR1 TNF receptor |

TNFR2 TNF receptor Il

TRAF2 TNF receptor-associated factor 2

Tregs regulatory T cells

tSNE t-Distributed Stochastic Neighbor Embedding
Tspanl5 Tetraspanin 15

TSS transcription Start Site

UMAP uniform manifold approximation and projection
UMl unique molecular identifier

VEGF vascular endothelial growth factor

VST Variance Stabilizing Transformation

Vwa von Willebrand factor A domain

WNT Wingless and Int-1

wt Wild Type

ZAP-70 Zeta chain associated protein kinase 70kDa
ZIA Zymosan induced arthritis
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9 Mapaptnua

9.1 TMMpoUmnoBeoelg amoktnong SLOAKTOPLKOU

ANMOOLEVOELC OXETLIKEC UE TNV S16aKTOPLKI) SLoTPLBH) O EMOTNLOVIKA TTEPLOSIKA TS BACEWC TOU
PubMed

Armaka M, Konstantopoulos D, Tzaferis C, Lavigne MD, Sakkou M, Liakos A, Sfikakis PP, Dimopoulos MA,
Fousteri M, Kollias G. Single-cell multimodal analysis identifies common regulatory programs in synovial
fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 2022 Jul
26;14(1):78. doi: 10.1186/s13073-022-01081-3. PMID: 35879783; PMCID: PM(C9316748. [lcoSUvapog

MPWTOG cuyypadag]

Tzaferis C, Karatzas E, Baltoumas FA, Pavlopoulos GA, Kollias G, Konstantopoulos D. SCALA: A complete
solution for multimodal analysis of single-cell Next Generation Sequencing data. Comput Struct Biotechnol
J. 2023 Oct 20;21:5382-5393. doi: 10.1016/j.csbj.2023.10.032. PMID: 38022693; PMCID: PMC10651449.

[Mpwtog ouyypadeac]

’

Napoucioon tng peBodoloyioc A HEPOC TWV OMOTEAEOHATWV TNC OSdaktopwknc SwatpBAC o€
EMLOTNUOVIKO ZUVESPLO otV EAAGSA 1) TO EEWTEPLKO

16th Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB22, 2022)
[Tithog optAiag: “SCALA: A web application for multimodal analysis of single-cell next-generation
sequencing data”]

ALaOECLUATATO TOU TTNYAioU KWSLKA KAt TNE UTTOAOYLOTIKAC MAATdHOPUOC TTOU avantuxdnke

https://scala.fleming.gr

https://github.com/PavlopoulosLab/SCALA

https://hub.docker.com/r/pavlopouloslab/scala

AwaBeopudtnto Twv Brodoyikwv dedopévwy mou xpnoponowjonkov

https://www.ncbi.nlm.nih.gov/bioproject/PRINA778928
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ABSTRACT

Keywaords:

Single-cell RNA sequencing analysis
Single-cell ATAC-seq analysis

Automated analysis of single-cell Next Gener-
ation Sequencing data

Integrative analysis of single-cell Next Genera-
tion Sequencing data

Analysis and interpretation of high-throughput transcriptional and chromatin accessibility data at single-cell (sc)
resolution are still open challenges in the biomedical field. The existence of countless bioinformatics tools, for the
different analytical steps, increases the complexity of data interpretation and the difficulty to derive biological
insights. In this article, we present SCALA, a bioinformatics tool for analysis and visualization of single-cell RNA
sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) data-
sets, enabling either independent or integrative analysis of the two modalities. SCALA combines standard types
of analysis by integrating multiple software packages varying from quality control to the identification of distinet
cell populations and cell states. Additional analysis options enable functional enrichment, cellular trajectory
inference, ligand-receptor analysis, and regulatory network reconstruction. SCALA is fully parameterizable,
presenting data in tabular format and producing publication-ready visualizations. The different available analysis
modules can aid biomedical researchers in exploring, analyzing, and visualizing their data without any prior
experience in coding. We demonstrate the functionality of SCALA through two use-cases related to TNF-driven
arthritic mice, handling both scRNA-seq and scATAC-seq datasets. SCALA is developed in R, Shiny and JavaScript
and is mainly available as a standalone version, while an online service of more limited capacity can be found at
http://scala.pavlopouloslab.info or https://scala.fleming.gr.

1. Introduction

(from hundreds to millions) that can be simultaneously sequenced in one
run. Widely used technologies that have been introduced over the past

Single-cell RNA sequencing (scRNA-seq) and ATAC sequencing
(scATAC-seq) are both Next Generation Sequencing (NGS) techniques
that have enabled the study of the transeriptome and epigenome |,
respectively, at an unprecedented resolution [1-5]. Exploitation of these
two modalities allows researchers to observe the heterogeneity of cell
populations in  more depth compared (o established bulk
RNA-sequencing techniques.

Since the first scRNA-seq publication [6], advances in technology
and equipment have led to an exponential increase in the number of cells

ten years include Fluidigm C1 (7], Smart-seqZ2 [8], Drop-seq [9] and 10x
Genomics [10], whereas new protocols such as the 10x multiome and
spatial transcriptomics [11] have also emerged. Both scRNA-seq and
scATAC-seq techniques have been used in various experimental settings
such as the investigation of different tissues, developmental timepoints,
disease states and organisms. ScRNA-seq for example, has played a
crucial role in the comprehensive annotation of cell types in multiple
organisms (e.g., Human Cell Atlas for Homo sapiens [12], Tabula Muris
for Mus musculus [13]), as well as in the identification of novel cell
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Single-cell multimodal analysis identifies as

common regulatory programs in synovial
fibroblasts of rheumatoid arthritis patients
and modeled TNF-driven arthritis

Marietta Armaka'"'®, Dimitris Konstantopoulos''®, Christos Tzaferis**'®, Matthieu D. Lavigne'#'®,
Maria Sakkou?**"®, Anastasios Liakos'®, Petros P. Sfikakis*®/®, Meletios A. Dimopoulos**®,
Maria Fousteri' '® and George Kollias***7"'®

Abstract

Background: Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and lubricants
for the proper function of diarthrodial joints. Recent evidence appreciates the contribution of SF heterogeneity in
arthritic pathologies. However, the normal SF profiles and the molecular networks that govern the transition from
homeostatic to arthritic SF heterogeneity remain poorly defined.

Methods: \We applied a combined analysis of single-cell (sc) transcriptomes and epigenomes (scRNA-seq and
sCATAC-seq) to SFs derived from naive and hTNFtg mice (mice that overexpress human TNF, a murine model for
rheurnatoid arthritis), by employing the Seurat and ArchR packages. To identify the cellular differentiation lineages,
we conducted velocity and trajectory analysis by combining state-of-the-art algorithms including scWelo, Slingshot,
and PAGA. We integrated the transcriptomic and epigenomic data to infer gene regulatory networks using ArchR
and custorm-implemented algorithms. We performed a canonical correlation analysis-based integration of murine
data with publicly available datasets from 5Fs of rheumatoid arthritis patients and sought to identify conserved gene
regulatory netwarks by utilizing the SCENIC algorithm in the human arthritic scRNA-seq atlas.

Results: By comparing SFs from healthy and hTNFtg mice, we revealed seven homeastatic and two disease-specific
subsets of SFs. In healthy synovium, SFs function towards chondro- and osteogenesis, tissue repair, and immune sur-
veillance. The development of arthritis leads to shrinkage of homeostatic 5Fs and favors the emergence of SF profiles

*harietta Armaka, Dimitris Konstantopoulos, Christos Tzaferis, Matthieu 0.
Lavigne, and Maria Sakkou contributed equally to this work.

*Marietta Armaka, Maria Fousteri, and George Kollias jointly supervised the
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Discovery of the First-in-Class Inhibitors of Hypoxia Up-
Regulated Protein 1 (HYOU1) Suppressing Pathogenic
Fibroblast Activation

Dirnitra Papadopoulou, Vasiliki Mavrikaki, Filippas Charalampous, Christos Tzaferis, Martinag Samiotaki,
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Graphical Abstract

A multidisciplinary pipeline consisting of medicinal chemistry, molecular phenotyping,
chemoproteomics, RWA-sequencing, short hairpin RNAs (shRNAs)-medizted gene silencing and in vivo
studies led to & novel series of compounds suppressing pathogenic fibroblast activation via Hypoxia
up-regulated protein 1 (HYQU1) inhibition. The first reported HYQU1 inhibitors are presented as a
promising therapeutic approach in fibroblast-related disedses.
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Abstract

Fibrablasts are key regulators of inflammation, fibrosis, and cancer. Targeting their
activation in these complex diseases has emerged as a novel strategy to restore tissue
homeostasis. Here, we present a multidisciplinary lead discovery approach to identify
and optimize small molecule inhibitors of pathogenic fibroblast activation. The study
encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics,
bulk RNA-sequencing analysis, target validation experiments, and chemical absorption,
distribution, metabolism, excretion and toxicity (ADMET) pharmacokinetic (PK)/in vive
evaluation. The parallel synthesis employed for the production of the new benzamide
derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide
potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor
or disfavor a desirable ADMET profile, and c) identify metabalic *hot spots™, Furthermaere,
we report the discovery of the firstin-class inhibitor leads for hypoxia up-regulated
protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often
associated with cellular stress responses, particularly under hypoxic conditions. Targeting
HYQU1 may therefore represent a potentially nowvel strategy te modulate fibroblast
activation and treat chronic inflammartory and fibrotic disorders,
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Repurposing the antipsychotic drug
amisulpride for targeting synovial
fibroblast activation in arthritis

Dimitra Papadopoulou,’ Fani Roumelioti,’ Christos Tzaferis,"? Panagiotis Chouvardas,’
Anna-Kathrine Pedersen,’ Filippos Charalampous,’ Eleni Christodoulou-Vafeiadou,* Lydia Ntari,*
Nild Karagianni,® Maria C. Denis,*® Jesper V. Olsen,? Alexios N. Matralis,” and George Kollias'**

"Institute for Bisinnovation, Biomedical Sciences Research Centre Alexander Fleming”, Vari, Greece. *Department

of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. *Novo Nordisk
Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark. “Biomedcode Hellas SA, Vari, Greece. “Center of New Biotechnologies & Precision Medicine, School of Medicine,
Mational and Kapodistrian University of Athens, Athens, Greece.

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumnatoid arthritis (RA). Their in vivo
activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and
TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing
rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS?
search engine, to repurpose drugs that could reverse the pathogenic expression signature of
arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely
amisulpride, which reduced SFs’ inflammatory potential while decreasing the clinical score

of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its
known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF
receptor | binding inhibition. Through a click chemistry approach, potentially novel targets of
amisulpride were identified, which were further validated to repress hTNFtg 5Fs’ inflammatory
potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment
altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could
prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia,
reducing SF pathogenicity along with its antidepressive activity, serving further as a “lead”
compound for the development of novel therapeutics against fibroblast activation.

Introduction
Rheumatoid arthritis (R.A) is a chronic inflammatory disease characterized by swelling and gradual destruc-
tion of the joints. Synovial fibroblasts (SFs) are one of the main cell types that hyperproliferate during RA
progression, producing inflammatory cytokines/chemokines and degrading metalloproteinases, leading pro-
gressively to increased joint inflammation, stiffness, and pain (1). We have shown that mice overexpressing
TNF, by carrying a human TNF transgene (i TNFig mice) (2) or by deletion of ARE elements in the endog-
enous Tnfgene (TNF'** mice) (3), spontaneously develop chronic polyarthritis, with histological manifesta-
tions fully resembling human RA. Notably, arthritic pathology in both models develops independently of the
adaptive immune response highlighting the dominant role of the innate/stromal compartment in the devel-
opment of disease (3, 4). Most importantly, TNF signaling via TNF receptor I (TNFR1) in 5Fs was found
to be both required and necessary for the orchestration of full R A-like pathology (5, 6). Interestingly, # TNFig
SFs have been found to highly correlate with RA human fibroblast-like synoviocytes (FLS) both at the bulk
(7) and at the single-cell RNA levels (8-10). Together, these findings established in principle the dominant
in vivo role of SFs in the initiation and progression of chronic polyarthritis and suggested a mechanism that
may also explain, at least in part, the development of joint pathology in the human disease.

Current first-line therapies against RA,| including disease-modifying antirheumatic drugs (DMARDs),
such as methotrexate, and targeted synthetic DMARDSs inhibiting several kinases, such as Janus kinases
or mitogen-activated protein kinase (MAPK), offer significant clinical benefits (11). However, although
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Lung tumor MHCII immunity depends on in situ
antigen presentation by fibroblasts

Dimitra Kerdidani!@®, Emmanouil Aerakis'®, Kleio-Maria Verrou?®, llias AngelidisJ@, Katerina Douka®, Maria-Anna Maniou'@®, Petros Stamoulis'@®,
Katerina Goudevenou'®, Alejandro Prados'®, Christos Tzaferis"*@®, Vasileios Ntafis*®, loannis Vamvakaris'®, Evangelos Kaniaris*®,
Kenstantinos Vachlas®@®, Evangelos Sepsas*@®, Anastasios Koutsopoulos’®, Konstantinas Potaris® @, and Maria Tsoumakidou?*@

A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer
antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast
and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts
are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII
immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced Clqg, which acted on
T cell Cigbp to rescue them from apoptosis. Fibroblast-specific MHCII or Clq deletion impaired €CD4 T cell immunity and
accelerated tumor growth, while inducing Clqbp in adoptively transferred CD4 T cells expanded their numbers and reduced
tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive
properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.

Introduction
The series of immunological events that takes place between
tumors and tumor-draining LNs forms a cyclic trajectory that is
being referred to as the cancer-immunity cycle (Chen and
Mellman, 2013). In the first step of these events, tumor anti-
gens are carried to the tumor-draining LNs and are partly
transferred to resident dendritic cells (DCs; Ruhland et al.,
2020}. In LNs, migratory and resident DCs present their anti-
genic cargo to antigen-inexperienced (naive) T cells, which be-
come differentiated effector cells that egress from LNs and enter
tumors. In tumors, CD8 cells exhibit direct killing activity
against cancer cells, but they are seriously dependent on CD4
T cells for function and transition to memory cells (Ahrends
et al, 2019; Binnewies et al., 2019; Sledzinska et al, 2020;
Zander et al,, 2019; Bos and Sherman, 2010; Schietinger et al.,
2010). Although our current understanding of the functional
space in the cancer-immunity cycle is that MHCII cancer antigen
presentation primarily occurs in LNs, the contribution of in situ
cancer antigen presentation has not been ruled out (Dammeijer
et al., 2020; Oh et al., 2020).

A few studies have directly addressed the role of peripheral
anfigen presentation in CD4 T cell responses (Dammei]'er et al.,
2020; Doebis et al., 2011; Low et al., 2020; McLachlan and

Jenkins, 2007; Scheller et al., 2019). In cancer, three lines of
evidence support that the TCRs are stimulated in situ within
solid tumors. First, the CD4 TCR repertoire is regionally shaped
by the local neoantigen load (Joshi et al., 2019). Second, stemlike
CD8 T cells reside in dense MHCII-expressing cell niches within
tumors (Jansen et al., 2019). Third, right flank tumors that differ
only in one MHCII neoantigen with left flank tumors are in-
filtrated by higher numbers of neoantigen-specific CD4* T cells
(Alspach et al., 2019). DCs are scarce and immature within solid
tumors and are generally considered to exert their primary ef-
fects in LNs (Dammeijer et al., 2020; Ferris et al., 2020; Maier
et al., 2020; Ruhland et al, 2020; Oh et al, 2020). Because
structural tissue cells greatly outnumber professional antigen-
presenting cells, express immune genes (Krausgmber et al.,
2020), and can be induced to present antigens (Koyama et al.,
2019; Low et al., 2020), we hypothesized that they are required
for local antigen presentation and anti-tumor immunity.
Fibroblasts are largely considered to be immunosuppressive
cells (Biffi and Tuveson, 2021). Accordingly, the recently iden-
tified MHCII* antigen-presenting cancer-associated fibroblasts
{apCAFs} in pancreatic adenocarcinoma (PDAC) and breast
carcinoma (BC) are presumed to induce immune tolerance
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Col6a1*/CD201* mesenchymal cells regulate intestinal morphogenesis
and homeostasis
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Abstract

Intestinal mesenchymal cells encompass multiple subsets, whose origins, functions, and pathophysiological importance are
still not clear. Here, we used the Cel6al Cre mouse, which targets distinct fibroblast subsets and perivascular cells that can
be further distinguished by the combination of the CD201, PDGFRo and aSMA markers. Developmental studies revealed
that the Col6al ™ mouse also targets mesenchymal aggregates that are crucial for intestinal morphogenesis and patterning,
suggesting an ontogenic relationship between them and homeostatic PDGFRa" telocytes. Cell depletion experiments in
adulthood showed that Col6alt/CD201* mesenchymal cells regulate homeostatic enteroendocrine cell differentiation and
epithelial proliferation. During acute colitis, they expressed an inflammatory and extracellular matrix remodelling gene sig-
nature, but they also retained their properties and topology. Notably, both in homeostasis and tissue regeneration, they were
dispensable for normal organ architecture, while CD34* mesenchymal cells expanded, localised at the top of the crypts, and
showed increased expression of villous-associated morphogenetic factors, providing thus evidence for the plasticity poten-
tial of intestinal mesenchymal cells. Our results provide a comprehensive analysis of the identities, origin, and functional

significance of distinct mesenchymal populations in the intestine.

Keywords Fibroblasts - Colitis - Tissue damage - Cell plasticity

Maria-Theodora Melissari and Ana Henriques contributed equally
to this work.

L]

103

Vasiliki Koliaraki
koliaraki @ fleming.gr

Institute for Fundamental Biomedical Research, Biomedical
Sciences Research Center (B.S.R.C.) “Alexander Fleming™,
16672 Vari, Greece

Institute for Bioinnovation, Biomedical Sciences Research
Center (B.S.R.C.) “Alexander Fleming”, 16672 Vari, Greece

Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Bern, Switzerland

Department for BioMedical Research, University of Bern,
Bern, Switzerland

Department of Physiology, Medical School, National
and Kapodistrian University of Athens, 11527 Athens,
Greece

Present Address: Institute for Research in Biomedicine
(IRB Barcelona), The Barcelona Institute of Science
and Technology. Barcelona, Spain

Introduction

The mammalian intestine is characterized by a unigue
architecture, which ensures both efficient nutrient and
water absorption and rapid self-renewal of the intestinal
epithelium. Self-renewal is mediated by Lgr5* multi-
potent crypt-base stem cells (CBCs) that progressively
give rise to transit amplifying (TA) progenitor cells and
differentiated epithelial cell populations with specific
absorptive or secretive functions [1, 2]. The tight regu-
lation of this architectural organization is mediated by a
gradient of factors produced both by epithelial and stromal
cells. Among stromal cells, intestinal mesenchymal cells
(IMCs) have emerged as an important cell type for the
development and homeostasis of the intestine, by provid-
ing both structural support and regulatory elements [3].
Of particular interest is their contribution to the mainte-
nance of the stem cell niche via the production of solu-
ble mediators [4]. Notably, in the absence of epithelial
Wnts, production of stromal Wnts is sufficient for the
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Innate Sensing through Mesenchymal TLR4/MyD88
Signals Promotes Spontaneous Intestinal
Tumorigenesis
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In Brief

Koliaraki et al. show that MyD88 in
mesenchymal cells is responsible for its
tumor-promoting role in the Apc™™*
model. They further show that this is a
TLR4-mediated mechanism that leads to
the production of pro-tumorigenic
molecules, also identified in human CAFs.
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Cellular complexity and crosstalk in murine TNF-dependent ileitis: Different
fibroblast subsets propel spatially defined ileal inflammation through TNFR1
signalling
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Abstract:

Crohn's disease represents a persistent inflammatory disorder primarily affecting the terminal
ileum. Through the application of single-cell RNA sequencing, we unveil the intricate cellular
complexities within murine TNF-dependent ileitis, developing in Tnf**** mice. Detailed
immune cell analysis highlights B cell expansion, T cell effector reprogramming, and
macrophage lineage shifts during inflammation. Focusing on stromal cells, we reveal a strong
pro-inflammatory character, acquired by all fibroblast subsets, which exhibit complex
communication patterns with the infiltrating immune and surrounding stromal cells.
Interestingly, we identify that Tnf*"**-induced ileitis is initiated in the lamina propria via TNFR1
pathway activation in villus-associated fibroblasts (Telocytes and Pdgfra'® cells). Furthermore,
we unveil separate spatial subsets of fibroblasts acting as exclusive responders to TNF, each
orchestrating inflammation in different intestinal layers. Additionally, manipulating the
Tnfrsfla gene exclusively in fibroblast subsets suggests that inflammation is initiated by
telocytes and Pdgfra®™ cells, while trophocytes drive its progression. This introduces novel
evidence of spatial regulation of inflammation by fibroblast subsets, inciting and advancing
disease in different layers of the gut. These findings underscore the pivotal role of fibroblasts
in the inception and advancement of ileitis, proposing that targeting different fibroblast

populations could impede the disease development and chronicity of inflammation.
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miR-221/222 drive synovial fibroblast expansion and pathogenesis of
TNF-mediated arthritis
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Abstract

MicroRNAs (miRNAs) constitute fine tuners of gene expression and are implicated in a
variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated
in rheumatoid arthritis (RA), however, their specificrole in key arthritogenic cells such as the
synovial fibroblast (SF) remains elusive. We have shown in the past that the expression of
the miR-221/222 cluster is upregulated in RA SFs. Here, we demonstrate that miR-221/222
activation is downstream of major inflammatory cytokines, such as TNF and IL-1B, which
promote miR-221/222 expression independently. miR-221/222 expression in SFs from the
huTNFtg mouse model of arthritis correlates with disease progression. Targeted transgenic
overexpression of miR-221/222 in SFs of the huTNFtg mouse model led to further expansion
of synovial fibroblasts and disease exacerbation. miR-221/222 overexpression altered the
transcriptional profile of SFs igniting pathways involved in cell cycle progression and ECM
regulation, Validated targets of miR-221/222 included p27 and p57 cell cycle inhibitors, as
well as Smarcal (a chromatin remodeling component). In contrast, complete genetic
ablation of miR-221/222 in arthritic mice led to decreased proliferation of fibroblasts,
reduced synovial expansion and attenuated disease. scATAC-seq data analysis revealed
increased miR-221/222 gene activity in the pathogenic and activated clusters of the
intermediate and lining compartment, Taken together, our results establish an SF-specific
pathogenic role of the miR-221/222 cluster in arthritis and suggest that its therapeutic
targeting in specific subpopulations should inform the design of novel fibroblast-targeted
therapies for human disease,
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