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ΟΡΚΟΣ ΤΟΥ ΙΠΠΟΚΡΑΤΗ 

Ὄμνυμι Ἀπόλλωνα ἰητρὸν, καὶ Ἀσκληπιὸν, καὶ Ὑγείαν, καὶ Πανάκειαν, καὶ θεοὺς πάντας τε καὶ πάσας, 

ἵστορας ποιεύμενος, ἐπιτελέα ποιήσειν κατὰ δύναμιν καὶ κρίσιν ἐμὴν ὅρκον τόνδε καὶ ξυγγραφὴν τήνδε. 

Ἡγήσασθαι μὲν τὸν διδάξαντά με τὴν τέχνην ταύτην ἴσα γενέτῃσιν ἐμοῖσι, καὶ βίου κοινώσασθαι, καὶ 

χρεῶν χρηίζοντι μετάδοσιν ποιήσασθαι, καὶ γένος τὸ ἐξ ωὐτέου ἀδελφοῖς ἴσον ἐπικρινέειν ἄῤῥεσι, καὶ 

διδάξειν τὴν τέχνην ταύτην, ἢν χρηίζωσι μανθάνειν, ἄνευ μισθοῦ καὶ ξυγγραφῆς, παραγγελίης τε καὶ 

ἀκροήσιος καὶ τῆς λοιπῆς ἁπάσης μαθήσιος μετάδοσιν ποιήσασθαι υἱοῖσί τε ἐμοῖσι, καὶ τοῖσι τοῦ ἐμὲ 

διδάξαντος, καὶ μαθηταῖσι συγγεγραμμένοισί τε καὶ ὡρκισμένοις νόμῳ ἰητρικῷ, ἄλλῳ δὲ οὐδενί. 

Διαιτήμασί τε χρήσομαι ἐπ' ὠφελείῃ καμνόντων κατὰ δύναμιν καὶ κρίσιν ἐμὴν, ἐπὶ δηλήσει δὲ καὶ ἀδικίῃ 

εἴρξειν. Οὐ δώσω δὲ οὐδὲ φάρμακον οὐδενὶ αἰτηθεὶς θανάσιμον, οὐδὲ ὑφηγήσομαι ξυμβουλίην τοιήνδε. 

Ὁμοίως δὲ οὐδὲ γυναικὶ πεσσὸν φθόριον δώσω. Ἁγνῶς δὲ καὶ ὁσίως διατηρήσω βίον τὸν ἐμὸν καὶ τέχνην 

τὴν ἐμήν. Οὐ τεμέω δὲ οὐδὲ μὴν λιθιῶντας, ἐκχωρήσω δὲ ἐργάτῃσιν ἀνδράσι πρήξιος τῆσδε. Ἐς οἰκίας δὲ 

ὁκόσας ἂν ἐσίω, ἐσελεύσομαι ἐπ' ὠφελείῃ καμνόντων, ἐκτὸς ἐὼν πάσης ἀδικίης ἑκουσίης καὶ φθορίης, 

τῆς τε ἄλλης καὶ ἀφροδισίων ἔργων ἐπί τε γυναικείων σωμάτων καὶ ἀνδρῴων, ἐλευθέρων τε καὶ δούλων. 

Ἃ δ' ἂν ἐν θεραπείῃ ἢ ἴδω, ἢ ἀκούσω, ἢ καὶ ἄνευ θεραπηίης κατὰ βίον ἀνθρώπων, ἃ μὴ χρή ποτε 

ἐκλαλέεσθαι ἔξω, σιγήσομαι, ἄῤῥητα ἡγεύμενος εἶναι τὰ τοιαῦτα. Ὅρκον μὲν οὖν μοι τόνδε ἐπιτελέα 

ποιέοντι, καὶ μὴ ξυγχέοντι, εἴη ἐπαύρασθαι καὶ βίου καὶ τέχνης δοξαζομένῳ παρὰ πᾶσιν ἀνθρώποις ἐς 

τὸν αἰεὶ χρόνον. παραβαίνοντι δὲ καὶ ἐπιορκοῦντι, τἀναντία τουτέων. 
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1 Introduction 

1.1 Chronic Inflammatory Diseases – Rheumatoid Arthritis 

Study of immune system, inflammatory processes as well as mechanisms leading to chronic inflammation, 

has contributed to the recognition of Chronic Inflammatory Diseases as one of the most significant causes 

of death today (Furman et al. 2019). Rheumatoid arthritis (RA), Crohn’s disease (CD), Inflammatory Bowel 

Disease (IBD), psoriasis, and Systemic Lupus Erythematosus (SLE) are examples of such diseases. Although 

inflammation is a normal process that can protect the human organism from different types of hazards 

e.g., pathogens or toxins, it can also result in serious disorders when the resolving phase cannot be 

reached. Chronic inflammation is linked to aberrant cytokine and chemokine production, which in turn 

induce infiltration of immune cells and activation of fibroblasts, leading to temporary or permanent tissue 

damage (Hayden and Ghosh 2014).  

RA is mainly characterized by inflammation of synovial membrane and pannus formation (the formation 

of an invasive synovial tissue), which can lead to cartilage destruction and bone erosion (Fig. 1) (Sudoł-

Szopińska et al. 2012). 

RA is estimated to affect on average 0.5 to 1.0 % of adult population in Western world, however geographic 

variability in RA incidence has been reported (Tobón, Youinou, and Saraux 2010; García-Alonso, Pérez-

Naranjo, and Fernández-Caballero 2014). More precisely, women are more susceptible than men in 

developing this disease. That difference could be explained partially by the effect of estrogens in the 

regulation of immune system, although the overall influence of hormones in disease onset and progression 

remains a controversial topic (Ngo, Steyn, and McCombe 2014). Patients with RA are more likely to suffer 

also from cardiovascular diseases, diabetes mellitus and hyperlipidemia. Factors like abnormal immunity 

and unresolved chronic inflammation, could explain the increased risk of RA patients to develop heart 

disease compared to the general population (Crowson et al. 2013).  

Due to the complex nature of RA, and its heterogeneity among individuals, it is difficult to conclude on a 

single cause of the disease. However, over the past years several risk factors have been associated with 

disease initiation and progression. More specifically, genetic susceptibility, epigenetic modifications, as 

well as smoking, diet, and microbiota are all factors that can trigger the emergence of disease (Smolen et 

al. 2018). 



13 

  

Figure 1. In this figure a knee joint is depicted before and after RA onset. In the top left panel healthy condition is shown. In the 

top right panel immune infiltration has been initiated in the lining layer. In the bottom panels synovial hyperplasia and pannus 

formation are evident, leading eventually to cartilage and bone damaging. (Adapted from Smolen et al., 2018) 

As mentioned before, RA is a disease with variable clinical demonstrations and pathogenic characteristics 

among affected individuals. Hence, several different pathotypes of RA patients can be defined. One 

distinction is based upon the detection or not of autoantibodies in the blood of patients, dividing them in 

“seropositive” and “seronegative” respectively. In the first category autoantibodies against immunoglobin 

G, also known as rheumatoid factor (RF), and citrullinated proteins, also referred as anti-citrullinated 

protein antibodies (ACPAs) can be detected. Interestingly though, this is not the case in the second 

category of patients, who are negative for those autoantibodies (Smolen et al. 2018). Another interesting 

categorization of patients has emerged based on linking gene expression signatures from synovium and 
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peripheral blood with clinical and imaging phenotypes, leading to the definition of three distinct RA 

pathotypes: “fibroblastic pauci-immune pathotype”, “macrophage-rich diffuse-myeloid pathotype”, and a 

“lympho-myeloid pathotype” (Fig.2). Those three pathotypes are characterized by different levels of 

immune cells infiltration. In the first category there is a lack of infiltrating cells, in the second one an 

enrichment of macrophages or monocytes is prevalent, while in the third B cells and T cells infiltration is 

observed (Lewis et al. 2019).     

 

Figure 2. Immunochemistry of synovial biopsies from untreated patients with early RA for CD20+ B cells, CD3+ T cells and CD68+ 

macrophages and CD138+ plasma cells in lining and sublining compartments. They are categorized in three groups: lympho-

myeloid (B cell aggregates are present), diffuse-myeloid (characterized by macrophage infiltration), or pauci-immune fibroid (lack 

of or low infiltration of immune cells). (Adopted from Lewis et Al., 2019) 

1.2 The role of cytokines in Rheumatoid Arthritis 

Over the past decades numerous studies have highlighted that cytokines have a crucial role in RA 

pathogenesis. In more detail, different cytokines can affect both innate and adaptive immune system 

responses as well as the stroma responses during disease (Fig. 3). Additionally, cytokines can contribute 

to the transition from a systemic to localized disease. Moreover, they influence the way patients respond 

to different therapeutical interventions and they can also affect the duration of remission period, as well 

as the probability for a recurring disease flare in the future (McInnes, Buckley, and Isaacs 2016).  
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Figure 3. A schematic representation summarizing the different roles of cytokines during disease initiation, response to treatment 

and remission or relapse of the disease. (Adopted by McInnes et Al., 2015) 

A wide range of cytokines can be present in the affected joints of RA patients. The most important of them 

include Tumor Necrosis Factor (TNF), Interleukins such as IL1, IL6, IL18, IL17, IL21, IL23, IL27, type I 

interferons (IFNs), as well as the Granulocyte- Macrophage Colony- Stimulating Factor (GM-CSF).  

Before focusing on the pivotal role of TNF, it is important to discuss the effects of the rest of the cytokines 

mentioned in the previous section. Regarding IL6, it is worth stating that it is a cytokine participating in 

innate and adaptive immune response over the course of the disease.  IL6 can activate other cell types 

both through cis (IL-6 binds to membrane IL-6 receptor) and trans-signaling (IL-6 & IL-6 soluble receptor 

binding and homodimerization with the subunits of glycoprotein 130).     Notably, IL6 can aggravate 

synovitis and damage in the cartilage and bone of the affected joint, by promoting migration of 

neutrophils, aiding the maturation of osteoclasts, and supporting pannus proliferation through increased 

levels of vascular endothelial growth factor (VEGF) expression. Furthermore, it can influence the 

differentiation of B cells to plasma cells that produce antibodies. Moreover, IL6 in combination with 

transforming growth factor beta (TGF-b) in mouse models or IL-1b and IL-23 in human can lead to the 



16 

differentiation of naïve T cells into T-helper 17 cells (Th17), which in turn secrete IL-17 (Srirangan and Choy 

2010).  

The IL-1 family contains members that can exhibit either pro-inflammatory or anti-inflammatory 

properties and can be detected in the joints of RA patients. The equilibrium between the two 

aforementioned categories can often affect the severity of disease symptoms (Dinarello 2019). Even 

though IL1 is connected to innate immune response, during the acute or chronic phase of the disease, its 

inhibition has not been proved as efficacious as expected against RA till this day. This could be attributed 

to the fact that pathways related to RA are mediated by IL1 and TNF in synergy, thus suggesting that the 

role of IL1 in the cytokine cascade of RA is not dominant (McInnes, Buckley, and Isaacs 2016). 

Regarding IL-17A, it has been shown that it contributes to the secretion of other proinflammatory 

cytokines (such as TNF, IL-6, IL-1, GM-CSF), chemokines (like CXCL8, CCR2, CCR3) and matrix 

metalloproteinases (MMPs). Additionally, it influences processes like angiogenesis and activation of 

osteoclasts. Moreover, IL-17A in combination with other growth factors causes an anti-apoptotic effect in 

fibroblast like synoviocytes (FLS), T cells and B cells. Thus, its presence is associated both with inflammation 

and bone damage during the course of disease (McInnes, Buckley, and Isaacs 2016). Interestingly, a loop 

between IL-17 and IL-6 production is established since IL-17 promotes IL-6 production through FLS, while 

IL-6 contributes to IL-17 secretion through the stimulation of naïve T cells and its differentiation in Th17 

cells. 

Other cytokines that participate in RA disease are interleukins IL-12, IL-23, IL-27 and IL-35, all members of 

the IL12 family. Despite the fact that those cytokines share structural similarities (IL-12: subunits p40, p35, 

IL23: p40, p19, IL27: EBI3, p28, IL35: EBI3, p35), they can have different roles. IL-12 and IL-23 exhibit mainly 

proinflammatory attributes, while IL-35 poses a more immunoregulatory role. Interestingly, IL-27 can have 

both proinflammatory and immunoregulatory characteristics, depending on the maturation state of T 

cells.  

Type I Interferons (IFNs) are critical components of the host defense mechanism against viral infections. 

However, they have also an active role in RA, as they can be detected in patients’ synovial fluid and tissues 

(Conigliaro et al. 2010). Their biological activity in disease has also been supported from transcriptomics 

studies in synovium and leukocytes in peripheral blood. Although, they cannot be successfully targeted 

directly for RA therapy thus far, the IFN-stimulated response elements (ISREs) could have prognostic value 
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in predicting how patients will respond to treatment with certain biological drugs (McInnes, Buckley, and 

Isaacs 2016). 

GM-CSF is a pleiotropic cytokine that can contribute to the activation of several cell types such as 

macrophages, neutrophils and dendritic cells (Fig. 4). This activation leads these cells to exhibit an 

inflammatory phenotype, followed by increased cytokine production and synthesis of prostanoids 

(McInnes, Buckley, and Isaacs 2016). GM-CSF has been detected in RA patients both in synovial fluid and 

in blood.  

Figure 4. Schematic figure summarizing the contribution of GM-CSF in RA progression and pain elicitation. (Adopted by Wicks et 

Al., 2016) 

Regarding the therapeutic potential of blocking this cytokine, early clinical trials with mavrilimumab have 

demonstrated positive outcomes, particularly in reducing disease activity and alleviating pain. (Wicks and 

Roberts 2016).  

1.3 The role of Tumor Necrosis Factor in Chronic Inflammatory Diseases 

Tumor Necrosis Factor (TNF) is one of the most important cytokines for both RA initiation and 

development (McInnes, Buckley, and Isaacs 2016).  
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TNF has a soluble (sTNF) and a transmembrane form (mTNF). After trimerization of the protein, it can bind 

to two different receptors TNFR1/p55 and TNFR2/p75. It’s worth mentioning that soluble TNF exhibits a 

selective binding for TNFR1 receptor, while transmembrane TNF can bind to both receptors (TNFR1, 

TNFR2). Interestingly, the TNF-a converting enzyme, also known as TACE, can lead to the conversion of 

mTNF to its soluble form through enzymatic processing.   

Binding of TNF to its receptors can induce various inflammatory signaling pathways. The TNFR1 receptor 

can be found universally expressed in almost every cell type. On the contrary TNFR2 is expressed mainly 

in neurons, olygodendrocytes, regulatory T cells (Tregs) and monocytes (Atretkhany et al. 2020; Madsen 

et al. 2020; 2016; Veroni et al. 2020; X. Chen et al. 2007; Polz et al. 2014). Through a complex procedure, 

which includes the recruitment of various molecules, followed by creation of different complexes (shown 

in a schematic representation in figure5), TNF-TNFR1 binding leads to the activation of NF-kB signaling, 

which in turn induce transcription of pro-inflammatory genes. Another similar mechanism, associated with 

up-regulation of pro-inflammatory genes, includes the activation of the transcription factor (TF) AP1 

through MAP kinases p38 and JNK. Additionally, the interaction between TNF and TNFR1 receptor is 

responsible for two biological processes related to cell death. In the first one, cell apoptosis is achieved in 

a caspase8 dependent manner, while in the second one necroptosis is caused by rapture in the cell 

membrane followed by intrusion of ions with a positive charge including Ca2+, Na+ and K+. Although TNF-

TNFR2 interaction exhibits differences with the TNF-TNFR1, especially as regards the molecules required 

to be recruited for the signal transduction, they share similar downstream effects.  In more detail, TNF-

TNFR2 can induce both canonical and non-canonical NF-kB signaling. In addition, it can reinforce TNFR1-

driven apoptosis through controlling the TRAF2 expression levels in the cytoplasm. Of note, both TNF 

receptors can acquire soluble forms through proteolytic cleavage. These soluble receptors, known as 

sTNFR1 and sTNFR2, act as natural TNF antagonists.  

TNF blockade has been proved a successful form of therapy for many RA patients. TNF can be mainly 

targeted with the use of biologic drugs – monoclonal antibodies such as infliximab, adalimumab, 

certolizumab pegol, golimumab or fusion protein Etanercept (Enbrel), as well as small molecule inhibitors 

that affect trimerization of TNF. Although anti-TNF treatment is widely recognized as one of the most 

effective therapeutic solutions for chronic inflammatory diseases, some patients do not respond to the 

therapy, experience a loss of response over time, or become more susceptible to infections due to the 

immune system suppression caused by the treatment. (McInnes, Buckley, and Isaacs 2016; Willrich, 

Murray, and Snyder 2015; Mazumdar and Greenwald 2009; Goel and Stephens 2010).        
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Figure 5. An overview of TNF binding to TNFR1 & TNFR2, summarizing the different downstream effects that are induced in a cell 

by those two interactions. (Adopted by Atretkhany et Al., 2020) 

1.4 The use of animal models in Rheumatoid Arthritis 

The use of animal models is very common in the biomedical field, as they are extremely useful for studying 

the underlying causes of disease pathology and testing novel therapeutic approaches before proceeding 

with clinical studies in human patients. In the case of RA, a wide variety of animal models have been 

generated to cover different aspects of the disease, including initiation, chronicity, relapse, and outcome 

(Kollias et al. 2011). In the following section a brief description of the most widely used animal models can 

be found.  

➢ Adjuvant-induced arthritis model (AIA) 

In this model of arthritis, the disease is induced by intradermally injecting a rat with mycobacterial cell 

walls diluted in mineral oil. However, this model fails to accurately describe the disease since it showcases 

characteristics of systemic inflammation. Another similar model to this arthritis model is the pristane-

induced arthritis (PIA) model. This model uses a component of mineral oil called pristane and is T cell-
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dependent. It can be induced in both mice and rats, with its main characteristics being joint swelling and 

infiltration of inflammatory cells, leading to chronic and recurring disease.   

➢ Zymosan-Induced Arthritis (ZIA) 

Zymosan induced arthritis (ZIA) model can be initiated by utilizing zymocan, an ingredient which can be 

found in Saccharomyces cerevisiae, and injecting it in mice or rats. Studies with TLR2 and C3 deficient mice 

suggested that both innate and acquired immune pathways are involved in ZIA. More specifically, TLR2 

exhibited an important role in adaptive immune response, while C3 appeared to be less influential in this 

arthritis model (Frasnelli et al. 2005). The symptoms of the disease begin at the 3rd day post immunization 

and include immune cell infiltration, formation of pannus and cartilage destruction. 

➢ Type II collagen induced arthritis (CIA) 

In the collagen-induced arthritis (CIA) model, which is an induced model of rheumatoid arthritis, 

immunization with type II collagen (diluted in complete Freund’s adjuvant) leads to Th17-mediated 

responses and the production of antibodies against joint collagens. This process ultimately triggers 

inflammation and pain in the affected area. CIA has been successfully tested in mice, rats, rabbits, and 

non-human primates. Disease onset typically occurs around day 12 post-immunization, with the peak of 

the disease being reached by day 30 (Trentham, Townes, and Kang 1977). While the CIA model shares 

many similarities with human rheumatoid arthritis, such as the development of rheumatoid factor (RF) 

and the presence of ACPAs, it also exhibits significant variability, often associated with the quality of the 

collagen II used during injection or group-related stress (R. Holmdahl et al. 1992). 

➢ Collagen antibody-induced arthritis model (CAIA) 

CAIA is an inducible mouse model of arthritis. The immunization can be achieved either by utilizing directly 

monoclonal antibodies, that target epitopes of Collagen type II (Rikard Holmdahl et al. 1986), or by serum 

transfer from other immunized mice or RA patients, given that their serum contains the relevant 

monoclonal antibodies (K. S. Nandakumar, Svensson, and Holmdahl 2003). The developed arthritis is 

characterized by the implication of macrophages and fibroblasts, while it is considered independent of B 

and T cells. The onset of disease is defined at 48 hours post immunization and the peak of disease is 

reached at 7 days after the injection. However, despite eliciting both innate and adaptive responses, the 

immune compartment is not significantly involved. As a result, this mouse model fails to capture important 

elements found in human disease. 
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➢ Serum- transfer Induced arthritis (STIA) 

Although STIA is considered an inducible model of RA, is also highly dependent on a spontaneous model 

known as K/BxN. Disease is initiated after injection of anti-G6PI antibodies intraarticularly (K. S. elv. 

Nandakumar and Holmdahl 2006). Symptoms of RA can be manifested as early as 20 minutes after the 

injection, while the peak of the disease is reached approximately at the 14th day post induction. This 

procedure can be applied to a variety of mouse strains; however, variability in the phenotype of disease is 

observed. Recently, single-cell (SC) studies in STIA mouse model have highlighted the existence of distinct 

fibroblasts subsets that perform different functions during disease progression (Fig. 6). More particularly, 

FAPα+ THY1+ fibroblasts are found in the synovial sub-lining compartment, while FAPα+ THY1- fibroblasts 

are restricted to the lining layer of the synovial membrane. Interestingly, when these cell populations are 

adoptively transferred into the inflamed ankle joints of mice with STIA, FAPα+ THY1- fibroblasts selectively 

mediate bone and cartilage damage with no significant contribution to inflammation. On the contrary, the 

transfer of FAPα+ THY1+ fibroblasts leads in the development of a more severe and persistent 

inflammatory arthritis, with minimal effect on bone and cartilage integrity (Croft et al. 2019). 

➢ Human chimeric transfer model 

For the generation of the human chimeric transfer model, mice with severe combined immunodeficiency 

disease (SCID) are submitted to a surgical procedure, which enables the implantation of small fragments 

of tissue from human synovium (Geiler et al. 1994). These humanized mice exhibit pannus formation and 

cartilage destruction, recapitulating aspects of disease found in RA patients. A disadvantage that could 

impede the experimental usage of the model is the time required for progression of the disease. In more 

detail, signs of bone erosion can be detected histologically after the 35th day following induction, while 

pannus formation begins at the 105th day.  
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Figure 6. (a) Violin plots showcasing marker genes of the fibroblast subsets identified during the analysis of STIA single-cell RNA-

sequencing data. (b) Dotplot depicting unique and shared enriched GO terms for the different fibroblast clusters. (Adopted from 

Croft et al, 2019)  

 

➢ K/BxN model 

K/BxN model was also mentioned briefly in the description of STIA model above. For the generation of this 

mice, a cross between non-obese diabetic mice (NOD) and mice with a KRN T-cell receptor transgene (K/B), 

is required. The TCR receptor can recognize a specific peptide from the glucose-6-phosphate isomerase 

(GPI) protein, which is presented through the major histocompatibility complex class II (MHC II) (Monach, 

Mathis, and Benoist 2008). K/BxN exhibits many similarities with RA pathology, including development of 

synovitis, high rates of fibroblast proliferation, adaptive immune response and destruction of bone and 

cartilage. Arthritis symptoms begin 15 days after the birth of the mice and the peak of the disease is 

reached at 3 months of age. Is worth repeating that the serum of these mice can induce arthritis in the 

STIA mice. 

➢ IL-1ra-deficient mice 

IL-1ra deficient mice is a T-cell dependent RA model. More precisely, a complete knockout of Interleukin 1 

(IL1) receptor causes an increase in the expression of IL1 systematically, leading ultimately to the 
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development of chronic RA (Horai et al. 2000). In this mouse model, several aspects of human disease are 

represented. More particularly, a variety of cytokines, such as IL1, IL6, IL17, and TNF are up-regulated.  

Additionally, RF and autoantibodies (targeting collagen and double-stranded DNA) can be detected during 

the progression of disease. The initiation of RA is estimated at the 5th week of age, while the peak of the 

disease is reached at the 16th week.  

➢ SKG mice 

The SKG is a spontaneous model of RA, linked with a mutation in the ZAP-70 gene (zeta chain associated 

protein kinase 70kDa), which affects T-cell receptor signaling and leads to T-cell driven arthritis (Sakaguchi 

et al. 2003). Classical manifestations of human disease are also present in this model, including hyperplasia 

of the synovium and synovitis, accompanied by immune cells’ infiltration, detection of RF and 

autoantibodies, as well as, formation of pannus and destruction of cartilage and bone. At two months 

postnatally the disease begins and reaches its peak at approximately 8 months of age. Since the point 

mutation mentioned above creates a genetic predisposition to the mice, it is worth mentioning that the 

disease onset can be accelerated when there is exposure to serum (containing antibodies against 

glycoprotein 39) from K/BxN mice.  

➢ TNFΔΑRE/+ mice 

The TNFΔARE mouse model is generated by the deletion of the AU-rich elements (ARE) from the 3’ 

untranslated region of the TNF gene. These regulatory sequences have an important role in both the 

stability and translation of the mRNA molecule to the corresponding protein (Kontoyiannis et al. 1999).  

Ablation of ARE elements leads to a chronic over-expression of endogenous mouse TNF. This mouse model 

displays a phenotype that is characterized by comorbidities including chronic polyarthritis and 

inflammatory bowel disease. Arthritis manifestations can be detected as early as 3 weeks of age, while the 

peak of disease is reached approximately at 16 weeks post birth. Furthermore, the clinical and histological 

manifestations of arthritis in this model are exclusively dependent on the overexpression of TNF by 

synovial fibroblasts (SFs), rendering the involvement of B and T cells unnecessary for both the initiation 

and progression of the disease (Kontoyiannis et al. 1999; Maria Armaka et al. 2008). 

➢ hTNFtg mice 

The Tg197 mouse model is a spontaneous model that exhibits chronic inflammatory polyarthritis, sharing 

many characteristics with RA in humans. It provided the first in vivo evidence demonstrating the 

pathogenic role of the TNF molecule in RA. This mouse model contains five copies of the human TNF 
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transgene (hTNF), characterized by chronic overexpression of human TNF (Fig. 7). This overexpression is 

achieved by replacing the 3' untranslated region of the hTNF gene with the corresponding region from the 

human β-globin gene, resulting in the continuous expression of human TNF mRNA (Keffer et al. 1991). The 

symptoms experienced by the animals range from pain and swelling of back joints to inability of proper 

movement in the front limbs. Disease onset starts at 3 weeks of age, while in most of the cases mice die 

approximately at the 12th week, after having developed cachexia.   

Histological study of the affected areas shows hyperplasia in the synovium, immune cell infiltration, 

cartilage destruction and bone erosion, however RF is absent at all stages of disease. Additionally, an 

increase in the expression of different metalloproteases, such as MMP (-3, -9, -13) is observed in both 

Tg197 mice and RA patients. 

SFs possess a pivotal role in the initiation and development of the disease in Tg197 mouse model, as they 

are the main cell type responding to TNF signals. Moreover, it has been shown that they are capable of 

driving disease advancement in immunodeficient Rag-/-mice (Aidinis et al. 2003). Although, TNFR1 

receptor on SFs is crucial for the pathology progression, lack of TNFR1 signaling does not affect disease 

onset (Douni et al. 1995; Marietta Armaka et al. 2018). Another important aspect of SFs is that they exhibit 

an activated phenotype, they express cytokines and genes related to cell proliferation and migration, 

sharing overall common properties with the RA FLS, which are their human counterparts (Vasilopoulos et 

al. 2007; Ntougkos et al. 2017).  

It is worth noting that Tg197 has also been used in drug testing. More specifically, anti-TNF, anti-IL1 and 

anti-IL6 therapies have been accessed utilizing this model.  
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Figure 7. In the top left panel, a schematic representation of hTNF transgene is depicted. In the next three panels, hematoxylin and 

eosin (H&E) staining of the ankle joint at the talus level is exhibited for wild type mice and hTNFtg mice at the age of 4 and 8 

weeks. (Adopted from Keffer et Al., 1991 and Armaka et Al., 2022) 

1.5 The function of fibroblast cells in homeostasis and disease 

Fibroblast cells originate from a non-hematopoietic lineage, they exhibit a spindle-shaped morphology, 

they possess the role of resident cells in many different tissues and are known for producing extracellular 

matrix proteins. Numerous studies over the years have highlighted their multifunctional role both in 

homeostatic and disease states. Fibroblasts are known to be implicated in various cancer types, 

inflammatory diseases, and fibrosis (Koliaraki et al. 2020). They can sense both molecular cues related to 

pathogens and mechanistic stress. They respond by secreting cytokines and chemokines, which play a role 

in the recruitment of leukocytes.  

Studies at single cell level seek to identify marker genes uniquely expressed in specific fibroblast subsets, 

in order to facilitate their isolation. To date, fibroblasts are mainly selected based on the absence of protein 

markers such as CD45, CD31 and EPCAM, which are found in myeloid, endothelial and epithelial cells, 

respectively. Although positive markers like PDGFRA and PDPN are associated with fibroblasts, they are 

not exclusively expressed by them.  
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Recent studies have highlighted the existence of various fibroblast subsets that perform distinct functions 

across different tissues, under diverse conditions (Davidson et al. 2021; Buechler et al. 2021). Fibroblast 

heterogeneity is evident not only during disease, but also during homeostasis. For instance, fibroblasts 

located in the villus of the intestine express the genes WNTa and WNTb, however the fibroblasts in the 

lamina propria express only WNTb (Smillie et al. 2019). In the case of lung disease, a fibroblast 

subpopulation characterized as AXIN1+/ PDGFRA- is connected to lung fibrosis, however a different 

population AXIN+/PDGFRA+ is essential for the maintenance of the alveolar epithelium during 

homeostasis. 

There was an effort by (Buechler et al. 2021) to delineate different fibroblast subsets by building mouse 

and human single cell atlases of fibroblasts in steady and perturbed states in different tissues. 

Bioinformatics analysis of the single-cell transcriptomics profiles highlighted the existence of 10 distinct 

fibroblasts groups, characterized by the expression of different markers such as, Pi16, Col15a1, Ccl19, 

Coch, Comp, Cxcl12, Fbln1, Bmp4, Npnt and Hhip. From those clusters the Pi16+ fibroblast subset was 

predicted as an initial state in the differentiation process. Interestingly, the comparison between fibroblast 

clusters that were identified in steady and perturbed states revealed two groups that were present in both 

conditions (Pi16+ and Col15a1+) and 3 groups that emerged in the disease state (characterized by markers 

such as Lrrc15, Cxcl5 and Adamdec1). Besides differences in the gene expression profiles of the 

aforementioned clusters, it is suggested that they are also associated with separate biological processes. 

More particularly, the two universal populations are mainly involved in fibroblasts’ development and ECM 

secretion, while the three disease emerging clusters are implicated in PI3K, TNF, NFκB and TGFβ signaling. 
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Figure 8. A schematic representation of distinct fibroblast subsets, showcasing the differences in their functional role during 

homeostasis and disease state in intestinal, synovial and lung tissues. (Adopted from Davidson et Al., 2021) 

It is worth noting also that another category of fibroblasts, known as cancer associated fibroblasts (CAFs), 

can be found in various types of cancers and can demonstrate either tumor-promoting or tumor-

restraining behavior, depending on the specific context or conditions within the tumor microenvironment 

(Fig. 9). 

Focusing on the roles of SFs during RA disease, it is worth noting that activated SFs secrete cytokines, 

chemokines and metalloproteinases, which facilitate the inflammation of the joint, infiltration of immune 

cells, cartilage destruction and bone erosion. Notably, TNF signaling is both sufficient and necessary for 

the development of chronic polyarthritis in mice (Maria Armaka et al. 2008; Marietta Armaka et al. 2018). 

More specifically, it has been shown that SFs with pathogenic characteristics are able to initiate disease in 

mice with RAG knockout (Müller-Ladner et al. 1996; Lefèvre et al. 2009; Aidinis et al. 2003).     
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Figure 9. A simplified representation of the different types of CAFs. (Adopted from Chhabra et Al., 2023) 

As regards the characterization of fibroblast populations in RA at single cell resolution, several attempts 

have been made over the last five years. Single-cell RNA-sequencing (scRNA-seq) in RA and OA patients 

revealed the existence of four different SFs populations CD34+ (SC-F1), HLA-DRAhi (SC-F2), DKK3+ (SC-F3) 

and CD55+ (SC-F4). The first three Thy1+ clusters belong to the sublining compartment, while the fourth 

Prg4hi cluster belongs to the lining compartment (F. Zhang et al. 2019). Another recent single-cell study in 

RA patients highlighted the important role of Notch3 signaling in the differentiation processes of Thy1+ 

fibroblasts to Prg4+ through intermediate transcriptional states (Wei et al. 2020).  

Single cell studies in mouse models of RA have contributed significantly to the appreciation of the 

heterogeneity of SFs and the understanding of their functional roles during disease progression. As 

mentioned before (in the paragraph dedicated to STIA mouse model) (Croft et al. 2019), five distinct SFs 
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populations were identified in STIA mouse model. The ones belonging to the sublining layer (F1, F2, F3, 

F4) were mainly implicated in inflammatory responses, while the fifth population (F5) belonging to the 

lining layer was mainly associated with a destructive transcriptional profile. Additionally, sequencing 

techniques at single cell resolution were employed to study the ankle joints of Tg197 mice at early and 

established disease timepoints. Single cell data analysis pinpointed the existence of 9 distinct fibroblasts 

subsets that can be categorized in three main groups, namely sublining, intermediate and lining 

fibroblasts. Comparing the relative abundances of the different populations between the wild-type (wt) 

and disease states (Fig. 10) revealed the expansion of intermediate and inflammatory lining synovial 

fibroblasts (SFs) (Marietta Armaka et al. 2022). Since the aforementioned dataset served as a use-case 

scenario for the computational platform developed within the context of this PhD dissertation, 

accompanied by custom analysis tasks, a more detailed presentation of the biological findings will follow 

in the next sections. In both cases, bioinformatics methods, including correlation analysis between cluster 

marker genes and integration of mouse-human datasets, revealed correspondences between the 

fibroblast populations identified in human patients and the mouse model. 

 

Figure 10. Comparison of the relative abundances of SFs populations across wild type and hTNFg arthritic mice. (Adopted from 

Armaka et Al., 2022) 

1.6 Single cell sequencing technology 

Single-cell sequencing technologies have transformed genomics, transcriptomics, and proteomics, 

enabling the examination of intricate biological systems at the level of individual cells. Yet, before focusing 
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on the contemporary techniques, it is valuable to briefly refer to some of their predecessors, which laid 

the foundation for the new era of omics and enabled the generation of large scale of biological data.  

➢ Microarrays 

Microarrays involve the binding of thousands of nucleic acids to a surface, allowing for the assessment of 

the relative concentration of nucleic acid sequences within a mixture through hybridization and 

subsequent detection of the hybridization events. Their most common application is in the measurement 

of gene expression (Bumgarner 2013). To achieve this RNA is extracted from target cells and is directly 

labeled or converted into labeled complementary DNA or RNA (cDNA or cRNA), further amplified through 

the Eberwine process (Van Gelder et al. 1990). Various labeling techniques are available, among these the 

most common methods involve incorporating fluorescently labeled nucleotides during cRNA or cDNA 

synthesis, or biotin-labeled nucleotides during cRNA synthesis (e.g., Affymetrix platform). The labeled 

samples are then hybridized onto the microarray, washed, and fluorescence is detected, typically using a 

scanning confocal microscope. The intensity of signals at each spot reflects the expression level of the 

corresponding gene. 

 

Figure 11. Schematic representation of a typical microarray experiment (Adopted from Bumgarner et Al., 2013). 

Except for gene expression profiling, microarrays have been successfully used in the tasks of transcription 

factor binding analysis (Horak and Snyder 2002) and SNP genotyping. It's important to note that 

microarrays have been invaluable in comparing gene expression profiles between different conditions or 
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states, allowing for the identification of disparities between diseased and healthy samples, as well as the 

evaluation of the effects of various perturbagens such as smoke, radiation, or treatments. However, 

despite their significant contributions to biomedical research, microarrays do come with limitations. 

Specifically, the fluorescent signal detected on a microarray may not directly correlate with the 

concentration of the target species in solution, due to the dynamics of hybridization. Moreover, when 

studying genes or gene families with multiple spliced variants, cross-hybridization can occur, leading to an 

increase in false positives as similar sequences might bind to the same probes. Furthermore, the design of 

probes is constrained to genes cataloged in the reference genome of an organism, thereby excluding other 

potential targets such as microRNAs or long non-coding RNAs that have not yet been annotated. 

➢ Bulk RNA sequencing 

Bulk RNA sequencing (RNA-Seq) is a potent successor of microarrays, harnessing high-throughput 

sequencing methods to explore the transcriptome of a cell. It offers significantly enhanced coverage and 

resolution of transcriptome dynamics. Beyond simply measuring gene expression levels, bulk RNA-Seq 

data facilitates the discovery of novel transcripts, identification of alternatively spliced genes, and 

detection of allele-specific expression. Moreover, RNA-Seq is not limited to polyadenylated messenger 

RNA (mRNA) transcripts; it can also probe various RNA molecules, including total RNA, pre-mRNA, and 

noncoding RNA such as microRNA and long noncoding RNA (ncRNA) (Kukurba and Montgomery 2015). 

However, it is worth noting that the effectiveness of an RNA-seq experiment hinges on meticulous 

experimental design, tailored to address specific biological questions. This involves management of 

various technical considerations, including the choice of RNA-extraction protocols like polyA-selection or 

ribosomal depletion, and deciding between sequencing options such as single-end or paired-end reads. 

Moreover, determining the optimal sequencing depth and incorporating adequate technical and biological 

replicates are crucial steps to capture the inherent variability of biological systems. Properly managing 

these technical aspects lays the groundwork for robust downstream statistical analyses, gaining 

meaningful insights into gene expression dynamics and regulatory mechanisms (Conesa et al. 2016). The 

burgeoning utilization of RNA-seq analysis across diverse biomedical domains has spurred significant 

advancements within the bioinformatics community as well. This led to the development of numerous 

specialized software packages tailored to various stages of analysis. These tools encompass a wide array 

of functions, ranging from aligning sequences to a reference genome and summarizing read counts, to 

conducting differential expression analyses, reconstructing regulatory networks, and performing 

functional enrichment analyses. Such software contributions play a pivotal role in enhancing the efficiency 
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and accuracy of RNA-seq data interpretation by researchers. One of the major drawbacks of bulk RNA-seq, 

regarding its resolution, is that it provides only an averaged gene expression measurement across entire 

populations of cells. In more detail, the RNA is extracted from a large number of cells, pooled together, 

and sequenced collectively. This means that any differences in gene expression between individual cells 

within the population are lost, and the results represent an average expression profile of the entire 

population (Li and Wang 2021). To overcome this limitation and achieve higher resolution, scRNA-seq 

techniques have been developed. 

 

Figure 12. Brief overview of the main steps involved in a typical RNA-seq experiment (Adopted from Kukurba et Al., 2015). 

➢ Single cell RNA sequencing 

Over the past decade, single-cell RNA sequencing has revolutionized the landscape of transcriptomics. It 

was Initially recognized as the Method of the Year for 2013 by Nature (“Method of the Year 2013”) and its 
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rapid advancement has empowered biomedical researchers to study gene expression profiles with 

unprecedented precision and resolution in many different complex biological systems. ScRNA-seq enables 

the interrogation of gene expression dynamics in individual cells, unraveling intricate molecular signatures 

and providing invaluable insights into many biomedical phenomena such as cellular heterogeneity in 

healthy tissues or tumor sites, developmental relationships among cell-types, and underlying disease 

mechanisms. Those new capabilities surpass the limitations posed by bulk RNA-seq methods, which can 

only capture the average expression of cell populations within a sample (Fig. 13). 

 

Figure 13. Schematic representation summarizing the differences between bulk RNA-seq and scRNA-seq (Adopted from 10x 
Genomics website). 

The first single-cell transcriptome analysis employing a next-generation sequencing platform was 

performed in 2009 (F. Tang et al. 2009), allowing the characterization of cells during early developmental 

stages. Remarkably, substantial advancements in equipment, alongside significant improvements in the 

scalability of the software utilized for data analysis, have facilitated the profiling of hundreds of thousands, 

or even millions of cells within a single experimental procedure (Hwang, Lee, and Bang 2018).  

Over the years, numerous protocols (Fig. 14) have been devised for single-cell RNA sequencing, each 

distinguished by factors such as the applied methodology for cell isolation, amplification, and sequencing 

(Papalexi and Satija 2018). Therefore, researchers often face the task of selecting the most appropriate 

protocol depending on the biological questions at hand. For instance, when the primary objective is to 

explore tissue heterogeneity and identify various cell populations, a protocol that allows profiling of a large 

number of cells, albeit with reduced sequencing depth, is typically preferred. On the contrary, in scenarios 

where researchers aim to dissect specific cell subsets in greater detail, protocols that focus on profiling 
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fewer cells but achieving deeper sequencing are often employed, allowing for the detection of a higher 

number of genes per individual cell. 

 

Figure 14. Different protocols of scRNA-seq experiments are showcased (Adopted from Papalexi et Al., 2017). 

A significant effort in cataloguing the different scRNA-seq protocols and their major advantages and 

disadvantages was made by (G. Chen, Ning, and Shi 2019). These protocols can be further classified based 

on the isolation method employed. Established cell isolation techniques include limiting dilution, 

micromanipulation, flow-activated cell sorting (FACS), and laser capture microdissection.  

Limiting dilution involves individual cell isolation via pipetting, while micromanipulation employs 

microscope-guided capillary pipettes to retrieve cells, limiting the throughput due to their low capacity.  

In recent years, flow-activated cell sorting (FACS) has emerged as the leading method for isolating highly 

purified single cells. Initially, cells are tagged with fluorescent monoclonal antibodies, facilitating the 

recognition of specific surface markers for positive or negative cell selection.  

Laser capture microdissection utilizes a laser system in conjunction with a computer to isolate cells from 

solid samples. 
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Notably, microfluidic technology for cell isolation has gained traction due to its advantages of minimal 

sample consumption, cost-effectiveness, and precise fluid control, with nanoliter-sized volumes reducing 

contamination risks. Platforms like Fluidigm C1 offer automated single-cell lysis, RNA extraction, and cDNA 

synthesis for hundreds of cells in parallel. Additionally, microdroplet-based microfluidics enables 

manipulation and profiling of thousands to millions of cells at a low cost, exemplified by the Chromium 

system from 10× Genomics, Drop-seq, and InDrop. 

Another crucial distinction among scRNA-seq protocols lies in their ability to sequence the full-length 

transcript, demonstrated by Smart-seq2, SUPeR-seq, and MATQ-seq, or only capturing and sequencing the 

3′-end or 5′-end of transcripts, as seen in Drop-seq, Seq-Well, DroNC-seq, SPLiT-seq, and STRT-seq. Full-

length scRNA-seq methods excel in isoform analysis, allelic expression detection, and RNA editing 

identification due to their comprehensive transcript coverage and may outperform 3′ sequencing methods 

in detecting lowly expressed genes. Moreover, certain scRNA-seq technologies, like SUPeR-seq and MATQ-

seq, can capture both polyA+ and polyA- RNAs, facilitating the sequencing of long noncoding RNAs 

(lncRNAs) and circular RNAs (circRNAs). This capability opens avenues for exploring the expression 

dynamics of both coding and noncoding RNAs at the single-cell level. 

Despite their differences in technical details, the major steps of scRNA-seq remain the same, including 

isolation of the cells, cell lysis and RNA extraction, cDNA synthesis, PCR amplification, library construction, 

sequencing and quantification of gene expression measurements.     

Finally, the single cell era propelled also the development of new bioinformatics methods and novel 

algorithms utilized in the analysis, visualization and interpretation of the data. Two reviews summarizing 

the different steps of analysis and the best practices in the field can be found online (Luecken and Theis 

2019; Heumos et al. 2023), however a more thorough description of the available bioinformatics steps will 

follow in the section 1.8. 
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Figure 15. A table showing various scRNA-seq methods and their technical differences (Adopted from Chen et Al., 2019) 

➢ Single cell ATAC sequencing 

 

Assay for Transposase-Accessible Chromatin using sequencing at single-cell (scATAC-seq) has enabled the 

study of chromatin accessibility dynamics at an unprecedent resolution. More precisely, individual cells 

are isolated and subjected to the ATAC-seq protocol. Depending on the selected protocol, cells are sorted 

into individual wells of a microfluidic device or plates, where the steps of transposition, fragmentation, 
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and sequencing adapter ligation occur within each cell. More specifically, a transposase enzyme is utilized 

to efficiently cleave open chromatin DNA, while simultaneously specific sequences known as adapters are 

attached. The adapter-ligated DNA fragments are subsequently isolated, amplified via PCR, and prepared 

for next-generation sequencing. Analysis of sequencing data allows for the identification of regions with 

increased accessibility, indicating open chromatin. Additionally, it facilitates the mapping of transcription 

factor binding sites and the positioning of nucleosomes across the genome (Yan et al. 2020). Among the 

most common applications of scRNA-seq data analysis are the study of tumor heterogeneity across 

different cancer types, the reconstruction of gene regulatory relationships, lineage tracing and discovery 

of novel biomarkers. 

➢ Spatially resolved transcriptomics 

Spatially resolved transcriptomics techniques have become increasingly accessible in the past five years. 

These methods, whether used alone or in conjunction with other modalities like single-cell RNA 

sequencing (scRNA-seq), offer valuable insights into tissue architecture and cellular organization under 

both normal and diseased conditions. They allow for the characterization of transcriptional patterns and 

regulatory mechanisms in tissues, uncovering not only broad gene expression patterns but also subtle 

differences in tissue neighborhoods that may contribute to disease initiation or progression. A broad 

categorization (Williams et al. 2022) of spatial methods (Fig. 16) can be achieved by dividing them in:  

1. Imaging-based methods, including in situ hybridization (ISH) and in situ sequencing (ISS), 

which offer visualization of mRNA molecules within the tissue of interest. 

2. Sequencing-based methods, which extract mRNA and preserve at the same time spatial 

information for the upcoming next-generation sequencing (NGS).  

In the one hand imaging-based methods rely on fluorescently labeled probes or direct sequencing of 

amplified mRNAs. On the other hand, sequencing-based methods preserve spatial information through 

either microdissection or the existence of spatially barcoded probes. Spatial methodologies are employed 

in a wide range of applications in many different research areas such as cancer, neuroscience, 

developmental biology, auto-immune diseases, and others. It is worth clarifying that some of them achieve 

single cell resolution e.g. CosMx platform, while others approach single cell resolution like 10x Visium, 

where 1-10 cells are captured in a single spot. Finally, most of the bioinformatics steps required for data 

analysis are almost identical to the ones implemented for scRNA-seq. 
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Figure 16. The two main categories of spatial trascriptomics methods are showcased (Adopted from Williams et Al., 2022) 

➢ Multimodal single cell assays 

In the previous paragraphs, we provided a concise overview of various single-cell assays, highlighting their 

advancements over their predecessors and outlining their main applications. Multimodal single-cell 

assays, by leveraging the principles underlying these methodologies, can enable the simultaneous 

measurement of multiple modalities within the same cell (Fig. 17). More specifically, parallel profiling of a 

cell’s genome and transcriptome was achieved by G&T-seq and DR-seq followed by methods such as 

TARGET-seq and SIDR. Most of these methods enable the simultaneous studying of gene expression 

dynamics and possible mutations. Regarding the combination of RNA and open chromatin information 

more than twenty methods have been reported in the literature. Among them is the 10x multiome that 

enables epigenomics (chromatin accessibility), and transcriptomics (RNA) measurements, from the same 

single cell. Additionally, TEA-seq, a method for trimodal single-cell measurements permitting study of 

transcripts, epitopes and chromatin accessibility at the same time. Moreover, the pairing of 

transcriptomics and proteomics approaches led to the development of techniques such as CITE-seq or 

REAP-seq. In the first, high-throughput detection of protein markers is integrated with unbiased 
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transcriptome profiling for thousands of individual cells simultaneously. In the second, a unified workflow 

permits the quantification of surface proteins utilizing 82 antibodies and the concurrent genome wide 

mRNA analysis (Baysoy et al. 2023).  

 

Figure 17. Different combinations of multiomics assays are presented (Adopted from Baysoy et Al., 2023). 

1.7 Single cell application in biological systems 

ScRNA-seq and scATAC-seq assays have been used in the study of many different biological systems and 

experimental settings in Homo sapiens and other organisms like Mus musculus, Drosophila melanogaster, 

Caenorhabditis elegans and Danio rerio and many others. The capabilities of single cell technology have 

enabled shedding new light on different aspects of biology such as organogenesis, cell development, 

cancer, wound healing/tissue repair mechanisms and disease conditions (e.g. auto-immune diseases), to 

mention just a few.   

In the past decade, numerous groundbreaking scientific publications have leveraged SC technology to 

provide new insights into various biological processes. These discoveries have enhanced our 
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understanding of various diseases and have also facilitated the application of novel therapeutic strategies. 

We will briefly mention some relevant publications in the following lines, however it's important to note 

that this is not an exhaustive list.  

In 2019 (Packer et al. 2019) have compiled a map of embryonic cells from C. elegans consisting of 86,024 

single cell transcriptomes. Additionally, (Sommarin et al. 2023) have characterized the transcriptional 

profiles of individual hematopoietic cells, unravelling the molecular cues involved in the emergence and 

maturation of hematopoietic stem cells during human fetal development. As regards lung cancer, in the 

publication of (D. He et al. 2021) the usage of SC transcriptomics enabled the examination of the cellular 

composition of early-stage lung adenocarcinomas harboring EGFR mutations (Fig. 18). The tumors studied 

included populations of both tumor cells and immune cells exhibiting heterogeneous properties. The 

analysis showcased diverse cellular subtypes of tumor cells with distinct gene expression profiles, 

highlighting the existence of intra-tumoral heterogeneity. Furthermore, different immune cell populations 

were identified within the tumor microenvironment. Overall, the findings emphasized the underlying 

complexity of early-stage lung adenocarcinomas. Another interesting publication in 2022 (Sinha et al. 

2022) stratified SC transcriptomics in order to decipher the role of fibroblasts subsets in reindeer upon 

injury (Fig. 19). More specifically velvet fibroblasts, found in the antlers of the deer, enable regeneration 

of the injury site by adopting an immunosuppressive phenotype that accelerates resolution. On the 

contrary, skin fibroblasts found in the back of the animals (resembling fibroblast subtypes in human and 

mice) express inflammatory molecules and promote leukocyte infiltration, leading to difficulties in 

completion of the repair process. Although, the transplantation of velvet fibroblasts to scar-forming back 

skin initially enables regeneration in the injury site, eventually leads to fibrosis, resembling the fetal-to-

scar-forming transition that is also observed in humans. Conclusively, the study proposes reindeer as a 

valuable model for studying wound healing and suggests that the of targeting fibroblast-immune 

interactions could be proved beneficial to mitigate scarring in humans. Finally, significant progress has 

been achieved also in the sector of various disease conditions, where publications utilizing SC have 

enabled the study of novel aspects in human patients and disease models or organoids. A prominent 

example is the work of (Martin et al. 2019), in which a cell module consisting of IgG plasma cells, 

inflammatory mononuclear phagocytes, activated T cells, endothelial cells and fibroblasts (called GIMATS) 

proved to be predictive of anti-TNF response in IBD patients (Fig. 20). On the other hand, anti-TNF non-

responders exhibited enriched interaction of IL1 (produced from inflammatory macrophages) and IL-1R 

(expressed by fibroblasts). 
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Figure 18. UMAP plot of 125,674 cells originated from Lung adenocarcinoma and healthy samples (Adopted from He et Al., 2021).  

 

 

Figure 19. UMAP plot depicting the different cell types in wound healing skin of reindeer (Adopted from Sinha et Al., 2022). 

 

 

Figure 20. Heatmap depicting gene expression patterns across different clusters in patients with Crohn's disease (Adopted from 
Martin et Al., 2019). 
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The coordinated efforts of large consortia were crucial for the development of public databases containing 

vast numbers of SC datasets from different tissues. The Human Cell Atlas, the Tabula Muris and the Fly Cell 

Atlas belong among the most distinguished resources in single-cell community. More specifically, the 

Human Cell Atlas takes advantage of scRNA-seq, imaging technologies and computational approaches to 

reconstruct maps of human cells from all different tissues. The uploaded datasets are organized in 18 

broad categories (Adipose, Gut, Lung, Pancreas, Breast, Heart, Musculoskeletal, Reproduction, 

Development, Immune, Nervous System, Skin, Eye, Kidney, Oral &Craniofacial, Genetic diversity, Liver, 

Organoid) and are consisted of ~ 59 million cells in total originated from ~ 8.6 thousands of donors. 

Regarding its mouse counterpart, known as Tabula Muris, it is a compendium of scRNA-seq datasets 

encompassing ~ 100,000 cells from 20 different organs or tissues. Interestingly, the Fly Cell Atlas project 

employs SC genomics, transcriptomics and epigenomics methodologies in order to construct a set of 

cellular atlases representing distinct developmental or disease states of drosophila.  

In parallel, new repositories such as CellPortal (Tarhan et al. 2023) and CellxGene (Chan Zuckerberg 

Initiative, n.d.) have been created to facilitate collection and easy access in processed data that are publicly 

available through scientific publications. Both support online exploration of the uploaded SC datasets, as 

well as downloading of the data in well-established formats, which can allow further processing by 

software packages in R or python programming languages.   

1.8 Computational methodologies for single cell data analysis 

Since the emergence of single cell technology, thousands of software applications have been developed 

for data analysis and visualization purposes (Fig. 21). Databases such as scTools (Zappia and Theis 2021) 

provide extensive catalogues of those tools accompanied by additional information including links to the 

source code, manuscripts, vignettes, etc. In a previous section, several single cell techniques were 

described. However, In the context of the current dissertation, we will focus only on methodologies and 

software packages utilized for the analysis and representation of scRNA-seq and scATAC-seq data. Most of 

the steps implemented are common in both assays, however there are also analytical tasks specific for 

each modality. It is worth noting that the preliminary steps of analysis, including alignment to reference 

genome and quantification of gene expression, are usually performed by sequencing facilities or by 

utilizing software packages tailored to the sequencing platform and the experimental protocol that was 

selected. For these reasons those steps are not discussed in the following sections. 
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Figure 21. (a) Number of tools developed for the analysis of scRNA-seq data. (b) Programming languages utilized for the 
development of the tools. (c) Analytical tasks implemented and included in the different available tools (Adopted from 
https://www.scrna-tools.org/). 

Regarding scRNA-seq data, the first step of the analysis is devoted to quality control ensuring that low 

quality cells are filtered out. After that, normalization of the data is performed to mitigate differences in 

the sequencing depth between the different cells. Next the most highly variable genes of the dataset are 

detected. Following this step principal component analysis (PCA), a well-established linear method of 

dimensionality reduction, is employed. The most informative principal components (PCs) derived from the 

PCA analysis are then used as input in non-linear dimensionality reduction algorithms like t-Distributed 

Stochastic Neighbor Embedding  (tSNE) (Maaten and Hinton 2008) or uniform manifold approximation and 

projection (UMAP) (Becht et al. 2018) to produce new embeddings for the visualization of the cells in 2D 

or 3D space. Additionally, PCs are utilized to construct a shared nearest neighbor graph (SNN) of the cells. 

Since the primary objective of the main analysis is the detection of cells populations, graph-based 

clustering with louvain or leiden algorithm is applied. The clusters originating from the previous step are 

subjected to marker gene analysis, which enables the identification of genes that exhibit preferential 

expression in specific clusters. 

In the case of the scATAC-seq data, the analysis begins with quality control as well. However, normalization, 

detection of highly variable genes and PCA are replaced by the latent semantic indexing (LSI) 

dimensionality reduction method. Non-linear dimensionality reduction methods e.g. tSNE and UMAP are 
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utilized for cell visualization purposes, followed by clustering and marker gene detection. Some additional 

steps available in the ATAC modality are the detection of marker peaks, that enables the search of peaks 

that show high accessibility in specific clusters and the and the motif enrichment analysis, which can 

recognize enriched TF-specific binding sites on the marker peaks.  

Furthermore, additional modes of analysis can be used to perform more advanced analysis tasks 

containing functional enrichment analysis of the clusters, cell-cycle phase analysis, trajectory inference, 

automatic cell type annotation, Gene Regulatory Network (GRN) reconstruction and cell-cell 

communication analysis. Most of the previously mentioned algorithms are mainly developed in R and 

Python programming languages. Various software applications and packages have been introduced to 

execute these tasks. Notable ones include Seurat (Stuart et al. 2019), Scanpy (Wolf, Angerer, and Theis 

2018), Monocle (Trapnell et al. 2014; Qiu et al. 2017), scater (McCarthy et al. 2017), slingshot (Street et al. 

2018), scvelo (Bergen et al. 2020), SCENIC (Aibar et al. 2017), decoupleR (Badia-I-Mompel et al. 2022), 

cellphoneDB (Efremova et al. 2020), nichnetR (Browaeys, Saelens, and Saeys 2020), cellchat (Jin et al. 

2021), singleR  (Aran et al. 2019), CIPR (Ekiz et al. 2020b), Cicero (Pliner et al. 2018), Signac (Stuart et al. 

2021), EpiScanpy (Danese et al. 2021), cisTopic (Bravo González-Blas et al. 2019), and ArchR (Granja et al. 

2021b), which are some of the most widely used R and Python libraries. Seurat and Scanpy are primarily 

employed for analyzing single-cell RNA sequencing (scRNA-seq) data, offering functionalities ranging from 

QC to population identification and integration of multiple datasets. Signac and EpiScanpy extend these 

functionalities to process single-cell ATAC sequencing (scATAC-seq) data. ArchR focuses on analyzing single-

cell chromatin accessibility data, offering standard analysis steps and advanced features like Positive 

Regulator identification, (TF) footprinting, and trajectory inference. Monocle provides a widely used 

pseudo-temporal cell ordering framework for scRNA-seq analysis, while Cicero extends it for scATAC-seq 

analysis. Scater focuses mainly on the initial quality control (QC) of the data, while SCENIC and decoupleR 

are utilized in GRN analysis. Slingshot and scVelo are specialized in the task of trajectory inference. 

CellphoneDB, nichenetR and CellChat are well established tools for the analysis of cell-cell communication 

interactions. Finally, SingleR and CIPR are two packages that perform automatic cell type annotation on 

the identified clusters. 

Moreover, there are software applications also offering a Graphical User Interface (GUI) such as Scope, CZ 

CELLxGENE (Chan Zuckerberg Initiative, n.d.), Azimuth (Hao et al. 2021), Cerebro (Hillje, Pelicci, and Luzi 

2020), iCellR (K. H. Tang et al. 2022), ICARUS (Jiang et al. 2022) and SeuratWizard (Yousif et al. 2020). The 

existence of a GUI, which in many cases is also accompanied by a web service, facilitates the engagement 
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of scientists with no prior computational experience in the analysis of their datasets. In terms of GUI tools, 

Scope offers various visualization options, including comparative views at cluster and gene levels for 

datasets containing multiple samples or conditions, although it lacks further downstream data analysis 

support. CZ CELLxGENE facilitates exploration of single-cell datasets and gene expression visualization 

across tissues in published datasets but lacks complex analytical capabilities. Azimuth specializes in basic 

scRNA-seq analysis steps and characterizing identified populations using a 'reference-based mapping' 

approach but lacks customization options. SeuratWizard follows standard analysis steps, while Cerebro 

expands upon them, offering additional modes such as signature scoring, cell cycle phase analysis, and 

trajectory inference. iCellR covers basic analyses for both scRNA-seq and scATAC-seq but does not include 

ligand-receptor (L-R) and GRN reconstruction functionalities. ICARUS performs all the aforementioned 

modes of analysis and at the same time offers a lightweight implementation of GRN analysis with SCENIC 

as well as cell-cell communication analysis mode based upon CellChat. 

Advances in the field of machine learning (ML) and artificial intelligence (AI) have led to the development 

of software packages leveraging those approaches to perform SC analytical tasks. Neural Networks and 

Variational Autoencoders are two ML methodologies that are widely used for clustering, dimensionality 

reduction, annotation of cells as well as integration of SC datasets or SC modalities. Examples of developed 

tools based on ML principles are scAce (X. He et al. 2023), Midas (Z. He et al. 2024) and SUPREME 

(Kesimoglu and Bozdag 2023). Following the increasing interest of researchers on the AI based chatbots 

such as ChatGPT (Meyer et al. 2023), web-based AI tools performing data interpretation or data analysis 

have emerged. In the first category we can find tools like BioChatter, while in the second tools like scGPT 

(Cui et al. 2024). 

Another interesting category of utility packages contains tools such as dittoSeq (Bunis et al. 2021), Scillus 

(“GitHub - Xmc811/Scillus: R Package for Single-Cell Dataset Processing and Visualization” n.d.), scPubR 

(Blanco-Carmona 2022) and scCustomize (“Samuel-Marsh/ScCustomize: Version 2.1.2” n.d.). These tools 

utilize already analyzed single cell datasets to offer enhanced visualization of cells in 2D/3D space and 

gene expression patterns. In more detail, scatterplots of single cells, violin plots, heatmaps, dotplots and 

swarm plots are implemented building upon basic packages of R or python such as ggplot2 and plotly (Fig. 

22).     

Concluding this introductory part, it is noteworthy to highlight that several computational methods 

discussed earlier have led to the development of publicly accessible databases. These databases can be 

employed for various analytical purposes, either similar or distinct from those described already. 
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Regarding regulatory interactions, two notable online databases, Dorothea and CollecTRI (Müller-Dott et 

al. 2023), were compiled by integrating interactions between transcription factors (TFs) and their target 

genes. These databases are valuable resources for inferring transcription factor activity. Moreover, 

cellphoneDB and cellchatDB are repositories containing curated L-R pairs that document autocrine and 

paracrine interactions among different cell types in humans and mice.    

 

 

Figure 22. Various plots used in scRNA-seq data visualization including: (a) UMAP plot (b) Swarm plot (c) Dotplot (d) Heatmap and 
(e) Violinplot. 
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2 Material and methods 

2.1 Implementation of a web-based application for SC data analysis 

Building upon the intricate challenges previously discussed in SC data analysis, we embarked on the 

development of an interactive web application. This platform provides automated analysis, visualization, 

and exploration functionalities for both scRNA-seq and scATAC-seq datasets. Our approach involved 

integrating a range of software technologies including R/Shiny, HTML, JavaScript, and CSS, resulting in the 

establishment of a robust pipeline capable of executing diverse analytical tasks on single-cell data (Fig. 23). 

Central to our design is a user-friendly graphical interface (GUI), tailored to accommodate researchers 

without prior programming experience. More specifically, the R/Shiny framework seamlessly merges the 

capabilities of R programming language with web technologies like HTML, CSS, and JavaScript. This 

integration empowers the creation of an interactive environment featuring dynamic plots, data tables, 

widgets, buttons, and comprehensive instructions to aid users in navigating their preferred analysis 

methodologies. 

To provide a variety of analysis options for both assays, we carefully combined numerous state-of-the-art 

software packages and facilitated their seamless integration, resulting in the creation of a comprehensive 

pipeline, which was named SCALA (Single Cell AnaLysis for All). Moreover, to ensure reproducibility, we 

have made the code of the developed application accessible through a public GitHub repository. Finally, 

extensive segments from Material & Methods, Results and Discussion sections of the current dissertation, 

have also been published (in their current form or with slight modifications) in two research articles. One 

of them focuses on the detailed characterization of gene expression and chromatin accessibility profiles 

of hTNFtg mouse model at single cell resolution (Marietta Armaka et al. 2022) while the second is oriented 

in delineating the capabilities of our application and illustrating its functionality across different use case 

scenarios (Tzaferis et al. 2023). 

2.2 Data input 

SCALA supports various input data types. For scRNA-seq analysis, the primary input data is a unique 

molecular identifier (UMI) count matrix. Users can provide this matrix by either uploading a gene-by-cell 
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tab-delimited text file (where rows represent features and columns represent barcodes), including both 

row and column names, or by uploading the output of the 10X cellranger pipeline located at 

“filtered_bc_matrix” folder. In the latter case, the “cellranger count” output folder should include three 

files: “barcodes.tsv.gz” containing detected cellular barcodes in gzip CSV format, “features.tsv.gz” with 

features (genes) corresponding to row indices in gzip TSV format, and a feature-barcode count matrix in 

gzip Market Exchange Format (MEX). Additionally, users have the option to load a pre-analyzed Seurat 

object in RDS (R saved object) format. In the latter case, the condensed RDS format can allow uploads with 

hundred thousand cells, something that would be extremely difficult in the case of txt count matrix.  

For scATAC-seq analysis, SCALA currently only accepts arrow files. This file format stores all associated 

data, including metadata, accessible fragments, and data matrices of a sample. Users can create arrow 

files using the provided “create_arrow_file.R” helper script from SCALA's GitHub repository or directly with 

the ArchR package. It's important to state that the analysis of human and mouse datasets is supported in 

both modalities. 

2.3 Workflow description 

Once the input files have been loaded, SCALA's primary workflow can be applied to both single-cell 

pipelines. The workflow includes the following steps: (i) Quality Control (QC), (ii) data normalization and 

scaling, (iii) detection of variable features, (iv) dimensionality reduction using Principal Component 

Analysis (PCA), (v) dimensionality reduction using Latent Semantic Indexing (LSI), (vi) clustering, (vii) 

additional dimensionality reduction methods, (viii) inspection of features, (ix) identification of markers, (x) 

analysis of cell cycle phases, (xi) functional/motif enrichment analysis, (xii) annotation of clusters, (xiii) 

trajectory analysis, (xiv) analysis of Ligand-Receptor (L-R) interactions, (xv) analysis of Gene Regulatory 

Networks (GRNs), and (xvi) visualization of epigenome signal tracks. 

2.4 Quality control 

In single-cell datasets, identifying and discarding “low quality” cells (such as empty, stressed, broken, or 

dead cells) and non-informative genes is crucial for downstream analysis. The developed application 

facilitates this process by allowing users to explore quality control (QC) plots and filter out cell barcodes 

based on user-defined thresholds. Common QC criteria for scRNA-seq include: (i) the number of unique 
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features detected per cell, (ii) the number of detected UMIs per cell, and (iii) the percentage of 

mitochondrial content per cell. Cells containing low numbers of unique features and UMIs are typically 

excluded as low-quality, while those with very high numbers may indicate capturing RNA material from 

multiple cells. Cells displaying a high percentage of mitochondrial UMIs are also flagged as low-quality or 

potentially dying cells (Fig. 24). 

For scATAC-seq, typical QC metrics include: (i) transcription start site (TSS) enrichment and (ii) the number 

of unique nuclear fragments in logarithmic scale (log10(nFrags)). In most cell types, there is usually a 

notable enrichment of ATAC-seq signal in the transcription start site (TSS) regions of actively expressed 

genes, serving as a traditional indicator of the quality of the assay. For the calculation of the first metric a 

comparison between the enrichment of ATAC-seq signal at TSS regions to the enrichment observed in 

flanking regions, extending 2 kilobases (kb) away from the TSS, is performed. Additionally, regarding the 

second metric, cells with too few nuclear fragments should be discarded to prevent the inclusion of non-

interpretable data. 

 

Figure 23. A schematic workflow of the developed application called SCALA (Adopted from Tzaferis et Al., 2023). 



50 

 

 

Figure 24. A set of scatter plots and violin plots utilized to guide quality control and cell filtering procedures. 

2.5 Normalization and scaling of the data 

Normalization and scaling of scRNA matrices are crucial steps that focus on mitigating biases originating 

mainly from differences in cell depth and ensuring proper transformation of the data before subsequent 

analyses such as variable feature detection and dimensionality reduction. In our implementation, data 

normalization follows a global-scaling approach (Hao et al. 2021), wherein the gene count for each barcode 

is normalized by the total barcode counts, multiplied by 10,000, and subjected to logarithmic 

transformation. These normalized values are stored within a matrix data structure, and are further 

standardized to z-scores, ensuring a column-wise mean expression of 0 and a variance of 1. Moreover, to 

address additional unwanted sources of variation, users have the option to specify metadata variables as 

covariates. In such cases, these variables are regressed against each feature, followed again by scaling and 

centering of the resulting residuals. 
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2.6 Detection of highly variable genes 

During this step, the normalized RNA data matrix is utilized to identify genes that exhibit the highest 

variation among cells. This subset of features is crucial for uncovering the underlying biological patterns 

within single-cell datasets in a computationally efficient manner, reducing the initial dimensions of the 

matrix to less than 3,000 features. Three methods are supported for detecting the most variable features 

including “Variance Stabilizing Transformation” (VST), “Mean-Variance Plot” selection (MVP), and 

“Dispersion”. 

VST (Fig. 25) involves fitting a line to the log-variance/log-mean relationship using local polynomial 

regression. Subsequently, feature values are standardized based on the observed mean and expected 

variance, with feature variance then calculated for standardized values. This procedure typically returns a 

fixed number of variable features (usually set at 2,000 by default). 

MVP calculates average gene counts and gene dispersions using a designated function. Specifically, genes 

are divided into 20 bins based on their average read counts, and dispersion z-scores are computed for 

each gene group. 

Finally, for the “Dispersion” method, genes with the highest dispersion values are retained. Both MVP and 

“Dispersion” methods return a variable number of features not determined by the user. 

 

Figure 25. Scatter plot of genes in the single cell dataset. Most highly variable genes are depicted in red color. 
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2.7 Principal Component Analysis 

Principal Component Analysis (PCA) is a linear dimensionality reduction technique applied to the scaled 

values of the most variable features, resulting in the computation of 'meta-genes,' which are linear 

combinations of genes within the assay. The most informative Principal Components (PCs) are 

subsequently identified and employed in downstream steps such as cell clustering and cluster visualization 

(often using non-linear dimensionality reduction methods). Determining the optimal number of PCs 

exhibiting the highest variation in the scRNA matrix can be achieved either automatically through a 10-

fold Singular Value Decomposition (SVD) cross-validation process or manually by inspecting the 

incremental variance ranking of each PC (via an elbow plot). For large datasets automatic calculation is not 

advised, as it could take hours to be completed.  

 

Figure 26. Cells depicted in PCA space after PCA analysis. 
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2.8 Latent Semantic Indexing 

In scATAC-seq matrices, the methodology of Latent Semantic Indexing (LSI) is applied using genome-wide 

500 base pairs (bp) tile counts (Granja et al. 2021). Initially, tile-counts undergo normalization to mitigate 

cell depth bias, utilizing a constant of 10,000, followed by inverse document frequency normalization and 

log-transformation. Throughout this process, the most variable features (in our case tiles) are discerned. 

LSI transformation is applied in an iterative manner using the most accessible features (tiles), thereby 

uncovering lower resolution clusters that are free from batch confounding factors. Subsequently, the 

average accessibility for each of these clusters is computed across all features. Finally, the most variable 

features across low-resolution clusters are identified and used as input for the next LSI iteration. 

2.9 Clustering 

Graph-based clustering is executed on scRNA-seq and scATAC-seq data to delineate cell types and/or 

cellular states. Initially, a Shared-Nearest Neighbor (SNN) graph structure of the cells is constructed using 

Euclidean distances in the PCA/LSI space. Cells sharing similar gene expression/chromatin accessibility 

profiles are connected by edges. Subsequently, the graph is partitioned into densely connected 

communities utilizing the Louvain algorithm (Blondel et al. 2008).  

 

Figure 27. Barplot summarizing the results of Louvain clustering procedure. 
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2.10 Non-linear dimensionality reduction methods 

To enhance the visualization of cells, cell clusters, and their relationships in both 2D and 3D space, a variety 

of nonlinear dimensionality reduction techniques are employed. Traditional linear methods like PCA or 

multi-dimensional scaling (MDS) may fail to capture complex patterns effectively, prompting the utilization 

of alternative methodologies such as UMAP, tSNE, diffusion maps (Haghverdi, Buettner, and Theis 2015), 

and Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) (van Dijk et al. 2018). 

These methods play a crucial role in unraveling the underlying structure of the datasets while facilitating 

feature inspection, exploration of cluster structures, and trajectory inference. More specifically, UMAP and 

tSNE plots’ inspection can serve as qualitative criterion for evaluating clustering success (Fig. 28). 

Additionally, they are very useful in exploring gene expression patterns of single genes or gene signatures. 

On the other hand, plots generated by PHATE and Destiny packages (e.g. diffusion maps) are valuable for 

exploring trajectory dynamics and lineage relationships between different cell populations. 

 

Figure 28. A 3D plot depicting cells in UMAP space. 
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2.11 Identification of marker genes 

Differential expression analysis, as well as differential accessibility analysis, facilitate the identification of 

marker genes and marker peaks respectively, having a major contribution in the proper annotation and 

characterization of cell clusters based on already known cell type markers from the literature. This 

analytical approach aids in pinpointing crucial transcriptional and regulatory programs driving different 

biological processes such as development, progression of a disease, etc. The analysis is conducted in a 

cluster-specific manner. In more detail, cells within each cluster are compared against the rest of the cells 

in the dataset. Plenty of statistical tests are available for scRNA-seq analysis, including the Wilcoxon rank 

sum test, likelihood-ratio test for single-cell feature expression (McDavid et al. 2013), standard Area Under 

the Curve (AUC) classifier, Student’s t-test, MAST (Finak et al. 2015), and DESeq2. Similarly, for scATAC-seq, 

available tests contain the Wilcoxon rank sum test, Student’s t-test, and binomial test. 

 

Figure 29. Dotplot showing normalized expression of top marker genes per cluster. 
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2.12 Inspection of features 

Exploration of feature expression and chromatin activity can be conducted through inspection of cell 

scatter plots in reduced dimensional space (e.g., UMAP, tSNE, etc.), or via dotplots (Fig. 29), heatmaps, 

and violin plots (Fig. 30). In scRNA-seq datasets, gene signatures can additionally be computed using the 

UCell package and visualized as outlined above. Furthermore, quality control metrics such as the total 

number of reads per cell and genes detected per cell can be visualized using scatter plots and violin plots 

at a cluster level. 

 

Figure 30. Violin plot used for inspection of genes across clusters. 

2.13 Doublet detection 

Doublet detection in scRNA-seq datasets is carried out by using the R package DoubletFinder (McGinnis, 

Murrow, and Gartner 2019). Initially, artificial doublets are simulated and merged with the original data. 
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Cells exhibiting a high number of artificial neighbors in the gene expression space are then characterized 

as potential doublets and can be excluded from subsequent analysis. This methodology demonstrates 

enhanced accuracy in detecting doublets arising from transcriptionally distinct cell types (increased 

performance in heterotypic doublets over homotypic). Similarly, for scATAC-seq datasets, a similar 

approach, implemented in ArchR package, is stratified to identify potential doublets. After computing 

doublet enrichment measurements, users can filter out doublets by specifying their preferred thresholds. 

2.14 Cell cycle phase analysis 

Cell cycle phase scores are computed for all cells based on canonical markers linked to S, G2/M, and G1 

phase. If cluster-specific patterns of cell cycle biases are identified, users have the option to utilize the 

"regress out" feature during the scaling step to mitigate the cell-cycle effect. The results of this analysis 

can be visualized either in a scatter plot, where cells are projected into reduced spaces (PCA, UMAP, tSNE, 

diffusion map, PHATE), and colored according to the predicted phase of the cell cycle (Fig. 31), or as a bar 

plot summarizing the percentages of cells assigned to each cell cycle phase within each cluster. 

 

Figure 31. Scatter plot depicting cells colored by predicted cell cycle phase in PCA space. 
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2.15 Functional/Motif enrichment analysis 

Utilizing the previously identified marker genes and marker peaks, functional enrichment analysis, 

encompassing pathways and Gene Ontology (GOs) terms, as well as motif enrichment analysis, can be 

conducted for each cluster in scRNA-seq and scATAC-seq data respectively. Specifically, in scRNA-seq data, 

genes upregulated or downregulated (in the clusters identified during the previous steps) are assessed for 

enriched GO terms or KEGG pathways using the g:Profiler package (Raudvere et al. 2019). The enriched 

terms are presented in a tabular format alongside information relative to statistical significance and gene 

overlap between the input list and the term of interest. Furthermore, a bubble plot summarizing the 

enriched terms for the selected databases is also available to the users (Fig. 32). Regarding motif 

enrichment analysis, marker peaks identified in the step of marker peaks detection, are examined for 

enrichment of binding sites of specific transcription factors. Additionally, more comprehensive functional 

enrichment analysis with enhanced visualization options is provided by the external application Flame 

(Thanati et al. 2021). This analysis can be conducted either iteratively for each cluster, or by selecting as 

input multiple gene lists (up to 10 clusters) for simultaneous processing using interactive UpSet plots and 

many other additional features. 

 

Figure 32. Bubble plot showing enriched functional terms of a cluster. 

2.16 Automated annotation of clusters 

This module is implemented only for scRNA-seq datasets. The CIPR package is employed (Ekiz et al. 2020), 

providing reference datasets, containing various cell types, for both human and mouse organisms. Users 

can choose a reference dataset and specify the type of analysis to be conducted for producing the final 

predictions per cluster, either by considering normalized expression measurements from all genes in the 
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dataset or fold change values only from the differentially expressed ones. Additionally, users have the 

flexibility to select the correlation metric (Pearson or Spearman) which will be used during the calculations. 

In terms of results’ visualization, the output includes a table displaying all predicted cell type annotations 

per cluster, along with a dot plot that depicts the top 5 predictions for each cluster (Fig. 33). 

 

Figure 33. Dotplot showcasing cell type annotation predictions across clusters. 

2.17 Multimodal integration analysis 

This analysis mode is dedicated to scATAC-seq datasets. Specifically, users have the option to upload a pre-

processed scRNA-seq dataset to perform integration analysis with the currently loaded scATAC-seq 

dataset. During this process, gene activity scores from the ATAC assay and gene expression values from 

the RNA assay are utilized to align cells between the datasets. The result of this integration analysis enables 

transferring labels from scRNA clusters to cells within the scATAC dataset. Subsequently, the newly 
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assigned clustering identities of the cells can be further utilized in various downstream tasks such as 

marker peak detection, trajectory analysis, and other analytical steps that require cluster information. 

2.18 Trajectory analysis 

The ordering of cells using pseudotime analysis can be very helpful in unravelling the underlying processes 

of differentiation and development, guiding cells through transitions between different cellular states. In 

our application, Slingshot package is employed for this purpose, utilizing both clustering information and 

dimensionality reduction coordinates for all cells within a dataset, Slingshot constructs a Minimal Spanning 

Tree (MST) at the cluster level. In this tree, nodes represent clusters, while edges signify relationships 

between them. Users have the option to select the dimensionality reduction method employed for 

Slingshot execution (PCA, UMAP, tSNE, diffusion map, or PHATE), along with defining the initial and final 

states of the trajectory. The MST is depicted in a UMAP plot, while pseudotime values are computed per 

lineage and can be further illustrated in UMAP space as a distinct scatter plot (Fig. 34). Cell pseudotime 

values close to zero indicate cells belonging to the root of the trajectory, while higher values denote cells 

associated with the final state. 

 

Figure 34. Scatterplot showcasing trajectory results. Arrow shows the direction of the lineage, while cells are colored according to 
pseudotime values. 
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2.19 Cell-cell communication analysis 

The prediction of ligand-receptor interactions is a significant step for deciphering cell-to-cell 

communication patterns in different tissues. Inspection of communication networks between different cell 

types can contribute to the detection of key interactions, which can lead to gene expression alterations 

(downstream of signaling pathways) in healthy and disease contexts. SCALA incorporates the analysis 

framework of nichenetR. More precisely, after clustering the user needs to select a pair of clusters that 

will be examined for active L-R interactions among them. First, overexpressed genes are calculated in each 

cluster. Next, the reported interactions are ranked by considering a "prior interaction potential" score that 

is calculated in the initial steps, when the protein-protein interaction model is constructed. Regarding the 

visualization of results, a heatmap that summarizes all the interactions that have been detected between 

the two clusters of interest is provided (Fig. 35). L-R interactions along with their respective scores are 

available in a table format including the prior interaction potential score that signifies the strength of the 

predicted interaction. 

 

Figure 35. Heatmap summarizing L-R interactions between clusters. 
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2.20 Gene regulatory network reconstruction 

In our application, users have the option to choose between two methodologies for this step of the 

analysis in scRNA-seq datasets. 

The first method adopts the SCENIC workflow. Initially, co-expression modules of TFs and their target genes 

are detected through co-expression and TF motif analysis. Subsequently, the AUCell package calculates 

AUC scores per cell, representing the activity of a regulon—a group of genes containing a TF and its targets. 

These AUC values, along with Regulon Specificity Score (RSS) scores, indicating the activity and specificity 

of regulons respectively, are used for the visualization of active regulatory networks in heatmap format. 

Additionally, users can identify cluster-specific regulons within the dataset, by inspecting the average 

activity values across clusters. Due to runtime limitations in R environments, users are provided with 

instructions and custom scripts to externally execute certain parts of the analysis in Python. They can then 

import the result files back into our application for visualization and exploration. 

 

Figure 36. Heatmap showing scale TF activity scores for 50 TFs across clusters. 

The second methodology offers an alternative option for users who prefer not to use SCENIC analysis. This 

approach follows the method proposed by decoupleR to infer TF activity levels at the single-cell level. 

Specifically, it utilizes a curated resource of interactions between TFs and their target genes (CollecTRI). 

For each cell in the dataset and each TF, a linear model is fitted to predict observed gene expression based 
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solely on the TF's TF-Gene interaction weights from the CollecTRI resource. The resulting t-value of the 

slope serves as the TF activity score in the cell, where positive values indicate TF activity and negative 

values indicate the opposite. These scores are scaled for visualization, and average activity values per 

cluster are provided. The TFs showcasing high variability among the clusters are depicted in a heatmap. 

For scATAC-seq datasets, gene regulation analysis at the chromatin level aims to identify cluster-specific 

TFs whose expression correlates strongly with chromatin accessibility changes at genomic sites, including 

their DNA binding motifs, a process known as the identification of positive regulators. 

2.21 Visualization of epigenome signal tracks 

Chromatin accessibility tracks serve as an alternative to feature plots, which typically display gene activity 

scores in reduced space, such as UMAP or tSNE plots. In our application, users have the option to select a 

specific gene and define a genomic interval of interest by specifying the number of bases upstream and 

downstream. By examining the generated plot via a genome browser snapshot (Fig. 37), users can identify 

chromatin accessibility patterns within the gene body or within upstream/downstream gene regulatory 

elements, including promoters, enhancers, and silencers. 

2.22 Utility functions and code history 

Since the developed application is more useful to users with limited computational expertise, we tried to 

enhance the overall user experience and accessibility. This was achieved by integrating features like 

comprehensive instructions accompanied by explanatory screenshots, as well as a command history log 

detailing actions performed during basic analyses, as well as various utility operations.  

Each analysis task within SCALA is accompanied by a series of explanatory pages and tabs. These contain 

brief descriptions of the ongoing operation, input guidelines, and explanations of the output. Certain 

modes also feature an instant help section, conveniently located at the top of the page in the form of a 

collapsible window. Furthermore, to alert users to potentially longer processing times, especially for large 

datasets, a banner displaying estimated processing times is also provided (Fig. 38). 
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Figure 37. Example of ATAC tracks for an immune marker gene across different clusters. 

 

Regarding the code history function, for scRNA-seq data, the basic analysis R commands and their 

parameters are displayed in a dedicated text area at the “utility” tab. For ATAC-seq data, the executed 

commands and the selected parameters are stored in a text file within the sub-folder of each analysis step. 

These sub-folders are automatically saved under a directory dedicated to storing all the analysis output 

files. This feature is currently supported only in the local version of the application. 

As for the utility options, they become available to the user after the completion of the clustering 

operation (Fig. 39). Initially, users often experiment with different clustering resolutions, so it's important 

for them to select the active clustering column. This column is utilized for subsequent analysis steps such 

as functional enrichment and trajectory inference and many more. Another utility option is cluster 

renaming, which is useful for annotating clusters with cell type identities or custom names. It's also helpful 

in merging clusters that showcase similar gene expression patterns. The last utility operation is cluster 
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deletion. It is commonly used when unexpected cell types are found in the dataset or when a cluster is 

identified as a poor-quality cluster, according to the QC metrics. Users may also choose to delete clusters 

to focus on specific cell type categories for sub-clustering analysis (e.g. subclustering of fibroblasts). 

 

 

Figure 38. Examples of instructions for data input (at the top of the figure) and a banner showing estimated execution time for a 
dataset containing 6,000 cells (bottom of the figure). 
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Figure 39. Utility options and code history functionality are shown.    
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3 Results 

3.1 Analysis of synovial fibroblasts in hTNFtg arthritis mouse model 

To demonstrate the capabilities of our application, we utilized two previously published datasets (Marietta 

Armaka et al. 2022), encompassing both scRNA-seq and scATAC-seq data. These datasets were originally 

generated to investigate the dynamics of single-cell transcriptomes and chromatin in Synovial Fibroblasts 

as they transition from homeostasis to pathology in a TNF-driven arthritis model. We specifically employed 

the Tg197 mouse model of arthritis (Keffer et al. 1991), and compared it to healthy wild type (Wt) mice. 

For cell isolation, non-hematopoietic stromal cells (Cd45-, Cd31-, Ter119-, Pdpn+) were sorted from the 

synovium of whole ankle joints and used to prepare 10x Genomics scRNA-seq libraries. These libraries, 

sequenced with a depth of 400 million reads using an Illumina NextSeq 500 machine, comprised 6,667 

single cells. Similarly, scATAC-seq libraries were generated following 10x Genomics guidelines, profiling 

6,679 single nuclei. 

In both experiments, cells were sourced from tissues of three healthy mice (WT, 4 weeks old) and six 

diseased hTNFtg mice, with three at an early disease stage (hTNFtg/4, 4 weeks old) and three at an 

established pathological stage (hTNFtg/8, 8 weeks old). As discussed in the introduction section, the Tg197 

mouse model, characterized by the overexpression of the human TNF (hTNF) transgene, exhibits an 

arthritic phenotype marked by cartilage destruction and bone erosion, ultimately leading to joint function 

impairment. 

Our developed application was utilized to reanalyze the transcriptomes of 5,903 synovial fibroblasts (SFs) 

and epigenomes of 6,046 cells from healthy mice (control sample) and arthritic mice at 4 and 8 weeks of 

age (early and established disease states). Additionally, any custom analysis steps performed outside the 

SCALA application environment will also be described in the current section of this dissertation. 

3.2 Analysis using SCALA’s scRNA-seq pipeline 

For the scRNA-seq quality control step, cells with fewer than 500 detected features (genes) or with more 

than 10% of their reads mapped to the mitochondrial genome were excluded from further analysis. 
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 Subsequently, downstream analysis of scRNA-seq proceeded with the following operations: the most 

highly variable features were identified using the mean-variance-plot (MVP) method (offered by the Seurat 

package), resulting in the identification of 1535 variable genes. The gene counts of each cell were 

normalized by the total cell counts, multiplied by 10,000, and then subjected to natural-log 

transformation. Normalized expression values for all genes were scaled by "regressing out" the 

mitochondrial content effect. 

The scaled gene-by-cell expression matrix of the most variable genes was used as input for Principal 

Component Analysis (PCA). To determine the dataset's dimensionality, and thus the most informative 

principal components reflecting cell heterogeneity, Singular Value Decomposition (SVD) k-fold cross-

validation was conducted using the dismo R library. This operation suggested that 25 principal components 

(PCs) could capture the most relevant aspects of cell diversity. These 25 PCs were then utilized for both 

cell clustering and non-linear dimensionality reduction analysis. 

Specifically, to delineate distinct fibroblast subsets, graph-based clustering analysis was performed using 

Seurat's Louvain algorithm, with the resolution parameter set to 0.6. Furthermore, the 25 most 

informative PCs were employed for non-linear dimensionality reduction analysis, including both t- tSNE 

and UMAP plots, enabling visualization of the newly identified cell clusters in 2D/3D space. 

SF clustering resulted in the delineation of 10 distinct SF clusters, each presenting unique transcriptional 

profiles that embody homeostatic, inflammatory, and destructive properties that can be observed in 

healthy and arthritic joints. These distinguishing features were elucidated through marker gene 

identification analysis conducted for each SF cluster. Specifically, the transcriptomes of each cluster were 

compared against those of all other cells using the Wilcoxon rank sum test on normalized gene expression 

values. After the analysis was completed, genes meeting the criteria of an average log Fold Change (avg. 

logFC) > 0.25, a percentage of expression (% of cells in the cluster in which the gene is detected) > 25%, 

and a p-value < 0.01 were retained for additional modes of analysis. 

Initially, genes showing up-regulation were employed as input for functional enrichment analysis. More 

specifically, GO enrichment analysis was conducted for each fibroblast (SF) cluster using g:Profiler package. 

By scrutinizing similarities and disparities among SF clusters in terms of markers and enriched functional 

terms, two clusters, labeled 0 and 9, were merged. Consequently, the resulting nine clusters were denoted 

as S1, S2a, S2b, S2c, S2d, S3, S4a, S4b, and S5. It is worth noting that these identified clusters demonstrated 
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changes in their relative abundances between healthy and diseased states. Interestingly, while some 

clusters are observed to diminish, others display expansion during disease progression.  

Thy1 + clusters (S1, S2a, S2b, S2c, S3, and S5) were further categorized as “sublining”. Notably, their 

transcriptional and functional characteristics reflect features of tissue homeostasis preservation, apart 

from S5, which exhibits an immuno-regulatory role under healthy conditions. Enriched Gene Ontology 

(GO) terms for these populations encompass biological processes such as BMP, WNT, TGFbeta, and SMAD 

signaling, as well as responses to TNF and IFN-beta/gamma. Key markers for these clusters include Smoc2, 

Thbs1, Vwa, Rgma, Dkk2, Sfrp1, Ecrg4, Osr1, Nr2f2, Klf5, Clu, Id1, Meox1, Pi16, Sema3c, Efemp1, Ccl7, Il6, 

and Notch3. 

Likewise, the Prg4High S4a cluster was designated as "lining" and associated with functions characterizing 

an inflammatory and destructive profile specific to this SF subpopulation. The lining phenotype is 

characterized by markers such as Tspan15, Hbegf, Htra4, and Clic5. In terms of enriched biological 

processes, we observed terms such as inflammatory response and class I antigen presentation. 

Finally, clusters S2d and S4b exhibited a mixed expression profile of both Prg4 and Thy1 (Prg4+ Thy1+) and 

were thus labeled as "intermediate" subpopulations. Marker genes such as Fbln7, Thbs4, Cthrc1, Lrrc15, 

Dkk3, Mki67, Pdgfa, Birc5, Aqp1, Acta2, and Cxcl5, which were predominantly upregulated in the 

intermediate and lining compartments, have been previously implicated as contributors to fibroblast 

pathogenicity or associated with potential pathogenic roles. Correspondingly, terms such as regulation of 

immune response, redox response, fibroblast proliferation, cell division, and apoptosis were found to be 

enriched in S2d and S4b. In conclusion, the intermediate group of SFs exhibits a pro-inflammatory and 

proliferative character. 

Next, cell cycle phase analysis was conducted, categorizing each cell into S, G1, or G2/M phase. Intriguingly, 

among the three SF populations demonstrating pathogenic characteristics, S4b exhibited the highest 

proportion of cells in the G2/M phase. This discovery was further reinforced by inspecting cycling markers 

obtained from the literature, which were mainly expressed in the S4b cluster. The mixed expression 

signature of Prg4 and Thy1 (Prg4 + Thy1 +), characteristic of this “intermediate” cell group, can be 

considered as a robust indicator of disease state. 

Cellular trajectories were computed in the pooled dataset by employing the first 25 most informative 

principal components as input for the slingshot algorithm. To identify the clusters designated as the initial 

and final states of the trajectory, insights from current literature (Wei et al. 2020; Buechler et al. 2021) 



70 

were taken into consideration, along with analysis results from alternative external software applications 

such as scVelo (Bergen et al. 2020) and CellRank (Lange et al. 2022). The resulting minimum spanning tree 

highlighted the presence of a pathogenic branch comprised of clusters S2a, S2d, S4b, and S4a, with S4a 

identified as the terminal state and S1, S2b, S3, and S5 as potential starting points. 

 

Figure 40. Results of the scRNA-seq data analysis with SCALA (A) UMAP plot depicting SF cells in 2D space. Cells are colored 
according to cluster identity. (B) Bar plot showcasing relative abundances of clusters in healthy and disease state. (C) Feature plots 
showing gene expression patterns of marker genes. (D) Trajectory analysis results shown as a UMAP overlay. Cells are colored by 
their pseudotime value in the lineage S2b – S2a – S2d – S4b – S4a. (E) Heatmap showing z-scores of regulons’ activity across 
clusters. The column dendrogram divides clusters into two major groups: sublining clusters (blue) and intermediate & lining clusters 
(red) (Adopted from Tzaferis et Al., 2023).  

We then proceeded to investigate ligand-receptor interactions between the sublining and intermediate 

compartments with the lining. Employing the nichnetR package we detected ligands and receptors 

exhibiting a percentage of expression > 10% in the clusters of interest and we uncovered both shared and 

specific interactions. More accurately, we identified 157 interactions between sublining-lining and 152 

between intermediate-lining compartments. Among these, 126 interactions were shared, with 26 being 

specific to intermediate-lining and 31 to sublining-lining clusters. Interestingly, in sublining-lining 

interactions, we observed pairs of ligands and receptors involved in Wnt and BMP signaling pathways. On 
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the contrary, in intermediate-lining interactions, pairs associated with MMP13, IL-11, and RSPO2 signaling 

were detected. 

As the final step in the scRNA-seq analysis pipeline, GRN analysis was conducted to identify regulons with 

preferential activation patterns at the cluster level, leading to the discovery of a total of 133 regulons. 

Notably, diverse activation patterns were evident across the various clusters, and hierarchical clustering of 

the top-80 regulons unveiled two distinct groups: the first comprising solely sublining clusters, and the 

second encompassing intermediate and lining clusters. 

3.3 Analysis using SCALA’s scATAC-seq pipeline 

In the analysis of scATAC-seq data, quality control procedures were initially implemented, during this step 

cells with a Transcription Start Site (TSS) enrichment score below 4 and count-depth less than 1,000 unique 

nuclear fragments were excluded from downstream analysis. Subsequently, LSI was employed with a 

resolution set at 0.6, utilizing the first 30 dimensions, number of iterations equal to 4, and default settings 

otherwise. Moreover, a Uniform Manifold Approximation and Projection (UMAP) projection was created 

to enable visualization of cells in two-dimensional space. 

Gene activity scores were computed as the summed local accessibility of promoter-associated count-tiles 

in the proximity of each gene, adopting a distance-weighted accessibility model. In detail, count-tiles in 

the range of 100,000 bp of a gene promoter were aggregated using the following distance weight formula: 

𝑒(−|
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

5000
|) + 𝑒−1. An additional normalization step was implemented (multiplication by 
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linearly from 1 to 5), to account for gene length biases. Next, the above-weighted sum was multiplied by 

the aggregated Tn5 insertions in each tile. Gene scores were then scaled to 10,000 counts and log2-

transformation was performed. To enhance the visualization of gene activity scores, a smoothing process 

was applied using the MAGIC algorithm (van Dijk et al. 2018). 

Similar to the scRNA-seq analysis, clustering was conducted using the Louvain algorithm with a resolution 

of 0.6, resulting in the identification of 8 distinct clusters. Next, integration between the scATAC dataset 

and the previously analyzed scRNA dataset was executed. Our objective was to achieve "label transferring" 

between the annotated scRNA clusters and the newly emerged clusters identified during the scATAC 

clustering analysis. This integration process facilitated the labeling of scATAC-seq cells according to the 9 

SF subpopulations designated during the scRNA analysis. Following integrative analysis, semi-supervised 
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trajectory inference with ArchR package, verified the existence of a pathogenic branch, which consists of 

S2a, S2d, S4b, and S4a clusters. 

 

Figure 41. Results of scATAC-seq data analysis with SCALA. (A) UMAP plot of SFs after clustering (left) and label transferring from 
scRNA-seq data (right). (B) Trajectory analysis results shown as a UMAP overlay. Cells are colored by their pseudotime value in the 
lineage S2b – S2a – S2d – S4b – S4a. (C-F) Heatmaps showing top marker genes, marker peaks, enriched motifs and positive 
regulators, respectively. (Adopted from Tzaferis et Al., 2023) 

Using previously calculated gene activity scores, the Wilcoxon test was employed to identify statistically 

significant marker features per cluster (applying |Log2FC| ≥ 0.58 and FDR ≤ 0.05 thresholds). Additionally, 

a robust merged peak set was determined across SF clusters using MACS2 (Y. Zhang et al. 2008) software, 

which involved creating two pseudo-bulk replicates. Subsequently, iterative overlap peak merging (Corces 

et al. 2018) was applied to the pseudo-bulk replicates across SF subpopulations, resulting in a single 

merged peak set comprising 158,713 regions, each with a fixed length of 500 bps. Following this, 

differential accessibility analysis between cells was carried out to identify cluster-specific marker peaks 

(with |Log2FC| ≥ 0.58 and FDR ≤ 0.1 thresholds). These marker peaks were then used as input to perform 

motif enrichment analysis using the CIS-BP database (applying |Log2FC| ≥ 0.58 and FDR ≤ 0.05 thresholds). 

Collectively, these analytical approaches revealed distinct patterns of gene activity and peak/motif 
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accessibility across clusters. Moreover, hierarchical clustering based on z-scores further supported the 

classification of clusters into three main groups: sublining, intermediate, and lining. 

In the ATAC assay, gene regulatory reconstruction was also carried out. Precisely, peak-to-gene linkages 

were identified by analyzing the correlation between enhancer peak accessibility and integrated gene 

expression values. Furthermore, TF motif accessibility was correlated with integrated TF gene expression 

on a cell-by-cell basis, identifying TFs with a Pearson R² ≥ 0.5 and an adjusted p-value ≤ 0.05, thus 

identifying 41 “positive regulators”. 

3.4 Subclustering of Lining fibroblasts 

During TNF-mediated arthritis, lining SFs maintain some of their homeostatic marker gene identity while 

also displaying an increased diversity in their transcriptome, suggesting potential impairment of their 

reparative functions post-disease onset. We observed markers associated with inflammatory response 

(Ccl2, Ccl5, Hmox1, Saa3), class I antigen presentation (H2-K1, B2m, H2-Q7), and ECM remodeling (Mmp3, 

Timp1, Cd44), which aligns with previous findings on arthritic lining synovial fibroblasts (LSFs) (Croft et al. 

2019; Zhang et al. 2019). The expansion of LSFs during disease progression is linked to a decline in certain 

homeostatic functions, such as ER calcium homeostasis and oxygen level response. Interestingly, a detailed 

sub-clustering analysis of the S4a cluster revealed the existence of two cell groups, subclusters hS4a 

(homeostatic) and iS4a (inflammatory), with the inflammatory state iS4a becoming predominant during 

disease, overshadowing the homeostatic state hS4a. Top marker genes and enriched pathways 

characterizing the two identified sub-clusters are shown in Fig. 42. 

3.5 Comparison of hTNFtg and STIA single cell RNA-seq data 

After completing the scRNA-seq data analysis of the hTNFtg mouse, a chronic arthritis model, we 

compared it with previously published data from a different mouse model exhibiting acute inflammatory 

arthritis. To achieve this, we employed integration analysis, a technique useful for comparative or 

combinatorial analysis among different datasets and modalities. This method has been successfully 

applied to analyze biological replicates, mitigating potential technical differences, comparing data across 

species, and combining datasets from various modalities such as RNA and ATAC or CITE-seq.  
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In our case we leveraged a publicly available SC dataset from serum transfer-induced arthritis (STIA) model 

uploaded in the Gene Expression Omnibus (GEO) (accession code GSE129087) (Croft et al. 2019). For the 

generation of the STIA dataset, CD45- synovial cells from the hind limb joints were isolated and sort 

purified at the nineth day (3 biological replicates, each comprised of cells from the joints of three animals)   

and captured with the 10X Genomics Chromium system. The integration strategy that is implemented in 

Seurat package was employed. More specifically WT, hTNFtg, and STIA datasets were processed by 

applying normalization and most-variable-genes detection using the function “normalizeData” with 

default settings and “FindVariableFeatures” (method set to vst and number of variable features to 2000) 

respectively. Anchors between samples were identified using the function “FindIntegrationAnchors” with 

dimensions parameter set to 30, and then the resulting anchors were utilized to integrate all the samples 

together using the function “IntegrateData”. The final object, containing cells from the control and both 

arthritic models, was processed in a standard way, performing the steps of dimensionality reduction and 

clustering. The integrated clusters were defined by using the “FindClusters” function with a 0.4 resolution. 

Finally, the top marker genes per clusters were selected for visualization purposes. 

Interestingly, by inspecting the integration results of normal and hTNFtg samples with the respective data 

from the STIA mouse model, we observed a similar pattern of both expansion and shrinkage of SF clusters 

compared to the WT control. Furthermore, we performed Spearman correlation analysis between SF 

clusters, using the normalized expression values of the most highly variable genes of the two datasets. 

Additionally, exploration of gene expression patterns for the top marker genes per cluster across datasets 

aligned with the previous analysis results, revealing similarities between particular clusters. Specifically, 

cluster F3 from STIA aligned with the sublining SFs of the hTNFtg mouse, while F5 matched the lining SFs. 

Finally, clusters F1, F2, and F4 exhibited more similarities with the intermediate SFs from the hTNFtg 

mouse model (Fig. 43).   
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Figure 42. Subclustering of LSFs (A) UMAP showcasing the two identified sub-clusters (hS4a and iS4a are colored in blue and red 
respectively). (B) Barplot showing the relative abundances of the two lining subclusters across samples. (C) Featureplots showing 
expression of top marker genes per sub-cluster. (D) Dotplot summarizing the enriched GO terms of each subcluster. (Adopted from 
Armaka et Al., 2022)  

 

Figure 43. Integration analysis of hTNFtg and STIA mouse models. (A) UMAP plots showing cells of wt, hTNFtg and STIA samples 
post integration analysis. Cells are colored according to the integrated clusters (B) Barplot showcasing relative abundance of 
integrated clusters across samples. (C), (D) The same as A and B, but the color code is in alignment with the original cluster 
annotation of the datasets. (E) Dotplot showing normalized expression of top marker genes across samples. (F) Spearman 
correlation analysis between clusters of hTNFtg and STIA samples. (Adopted from Armaka et Al., 2022) 
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3.6 Cross species integration of mouse and human patients single cell data 

In the preceding section, we concentrated on the integrated analysis of two distinct mouse models. 

Subsequently, we aimed to elucidate potential similarities and differences between single-cell gene 

expression profiles of hTNFtg mice and human RA patients. To this end, we integrated previously 

generated scRNA-seq data from synovial biopsies of RA patients (H) (F. Zhang et al. 2019; Stephenson et 

al. 2018) with the hTNFtg scRNA-seq dataset (M). 

Initially, human genes were mapped to their mouse homologs using the Ensembl Biomart and MGI 

database, resulting in 17,594 homologous pairs. From the mouse dataset, only cells from pooled hTNFtg 

samples (3,051 cells) were processed, while from the three human datasets, only cells from RA patients 

(24,042 cells) were included. The integration strategy was implemented using the Seurat package. 

Specifically, all datasets were normalized, and the most variable genes were identified using the 

“normalizeData” function with default settings and the “FindVariableFeatures” function (with the method 

parameter set to “VST” and the number of variable features to 2000). Integration anchors between 

datasets were identified using the “FindIntegrationAnchors” function with the “dimensions” parameter 

set to 30, and these anchors were utilized to integrate the datasets using the “IntegrateData” function. 

The final integrated dataset, containing cells from both species, underwent dimensionality reduction, 

clustering, and marker gene identification. Integrated clusters were defined using the “FindClusters” 

function with a resolution of 0.3. Marker gene identification was performed using the “findAllMarkers” 

function with thresholds set to p-value < 0.01 and avgLFC ≥ 0.25. 

During functional enrichment analysis, upregulated genes from both human and mouse datasets were 

inserted into Metascape (Zhou et al. 2019). Significant terms and pathways (p-value < 0.05) were used to 

evaluate the similarities and differences across the datasets. 

Interestingly, we observed that cells from both species align well within the newly integrated UMAP space. 

Employing unbiased graph-based clustering, we identified seven distinct sub-populations denoted as H1-

H7 and M1-M7 (Fig. 44). Examination of correlation measurements among the most variable genes (MVGs) 

between human (H) and mouse (M) clusters unveiled significant similarities in synovial fibroblast (SF) 

expression profiles across the two species, with the exception of cluster 2. This cluster predominantly 

comprises human sublining synovial fibroblasts (SLSFs), with only a few mouse cells stemming from the 

SLSF category. 
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The synovial fibroblast (SF) populations in mice, including S1, S2a, S2b, S2c, S3, and S5, primarily co-

localized with clusters 3 and 4, aligning well with previously annotated human sublining cell expression 

profiles. Human and murine lining Prg4-high cells are mainly found within cluster 1, with a lesser presence 

in cluster 7. Furthermore, we identified a previously underappreciated proliferative mixed lining/sublining 

SF state within these clusters. Cluster 5 predominantly consists of mouse S2d cells, with M5 associated 

with human cells in both clusters 5 and 6. This suggests that human clusters H5 and H6 could acquire the 

“intermediate” arthritis-specific profile previously delineated in mouse data analysis (Fig. 45). 

Functional inter-species similarities were validated through Gene Ontology (GO) and pathway enrichment 

analyses of marker genes, as well as co-clustering of human (H) and mouse (M) groups. We identified 

conserved functions and processes of  SLSFs in regulating vasculogenesis, muscle tissue development, and 

bone and tissue renewal, corresponding to clusters H3, M3, H4, and M4. Our analysis revealed that clusters 

M5 and H5 are characterized by pathogenic RA features such as metalloproteinase secretion, collagen 

catabolic processes, and bone destruction signaling pathways, aligning with the S2d SFs identified in the 

hTNFtg model. Clusters 1, 6, and 7, which contain SFs from the lining synovial compartment previously 

noted for their destructive properties, exhibit pro-proliferative pathways and regulate immune-related, 

cell adhesion and migration pathways. Furthermore, key marker genes exhibit significant conservation 

between mouse and human datasets. As anticipated, the analysis of the human-specific cluster 2 showed 

fewer shared features but highlighted common functions related to translation and ribosome assembly. 

Human H2 SFs are associated with the regulation of ossification, epithelial cell proliferation, and 

autophagy. Conversely, the gene expression of mouse M2 SFs is linked to post-translational modifications 

and apoptotic cell death, differentiating them from H2 SFs. 

At level of gene regulation, analysis of human and mouse data using the SCENIC algorithm enabled the 

inference of common TF regulons across species. Specifically, we retained all conserved TFs identified in 

both datasets. We identified mouse regulatory modules by performing pairwise correlation analysis 

between motif deviations of conserved mouse and human TFs, followed by hierarchical clustering, as 

described in a previous publication. This methodology identified three primary regulatory modules 

corresponding to lining, intermediate, and sublining states, demonstrating considerable overlap between 

the two species. 

The regulatory modules are governed by the activities of the TFs Ar, Dlx3, and Runx1. Gene Ontology (GO) 

enrichment analysis of TFs and their downstream target genes revealed that these modules share similar 

functions in both species. Module one (Ar) controls multipotent functions of the core SLSFs; module two 
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(Runx1) regulates functions associated with an inflammatory profile, consistent with the intermediate 

profile of SLSFs in the hTNFtg model. Notably, up to 25 of the 107 core mouse genes were identified as 

target genes in human cells, highlighting the translational potential for genes such as Tnfaip3, Tnfaip6, Tlr2, 

Lrrc15, and Bmp2. Additionally, the third module (Dlx3) exhibited functions that are less well-

characterized, likely related to the lining SF profile in both human and mouse SFs. 

Conclusively, the aforementioned analysis of mouse and human data at different levels enabled 

identification of similarities and differences that could help in the prioritization of potential novel targets 

in future therapeutic interventions. 

 

Figure 44. Mouse and Human data integration. (A) Cells of human and mouse datasets depicted in UMAP space after integration. 
Cells are colored by cluster identity. (B) Spearman correlation analysis between mouse and human clusters utilizing normalized 
expression data from the most highly variable genes of the datasets. (C) Heatmap showing enriched functional terms for every 
cluster. (D) Feature plots showing normalized expression for a set of fibroblast marker genes.     
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Figure 45. Mouse and Human data integration. (A) (C) Cells plotted in UMAP space after integration. A separate plot is employed 
for each dataset. In (A) cells are colored according to the integrated cluster while in (C) they are colored according to the original 
annotation of each dataset. (B) (D) Bar plots showing the relative abundances of integrated clusters or original annotation clusters 
across the four datasets.  

3.7 Analysis with alternative workflows 

For the single-cell datasets analyzed in this dissertation, all libraries were generated using the same chip 

and sequenced in a single run to minimize potential batch effect issues that could interfere with 

downstream analysis. To prevent skewing biological differences among the various conditions, samples 

were aggregated using the “cellranger aggr” option. Despite this, we also applied integration between 

conditions and batch correction. For batch correction Harmony (Korsunsky et al. 2019) was employed 

across both modalities, which allowed us to identify populations exhibiting expansion. Based on cell 

annotation from our initial analysis, we confirmed that the majority of cells in the expanding populations 

were annotated as S2.d, S4.b, and S4.a (91.27% in scRNA-seq and 84.68% in scATAC-seq), corresponding 

to the expected intermediate and lining clusters (Fig. 46). 

To further ensure the robustness of the analysis output (which was based on the Seurat package pipeline), 

we performed a re-analysis using an alternative toolkit, Monocle3. This workflow comprised the following 
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steps: (i) Data pre-processing, (ii) Non-linear dimensionality reduction, (iii) Cell clustering, (iv) Inter-cluster 

comparisons, and (v) Trajectory analysis (Fig. 47). 

 

Figure 46. Batch correction analysis. (Left panel) UMAP plots of scRNA-seq and scATAC-seq data after batch correction with 
Harmony. (Right panel) Utilizing the original cluster annotations, the bar plots in both modalities confirm that the clusters which 
show an expansion during disease belong to the pathogenic populations. 

 

Figure 47. Flow diagram depicting the main steps of analysis incorporated in Monocle3 pipeline. 

After loading the data according to the instructions, we tested for potential batch effects. Consistent with 

previous results from the Harmony package, no batch effects were detected between the samples. Next, 

normalization and PCA analysis were performed. The UMAP algorithm was used for cell visualization and 

the Leiden algorithm for clustering. Moreover, we utilized an additional clustering module offered in 

Monocle, which divides cells into large, well-separated groups called partitions. In our analysis, two main 

partitions were detected: the first included the sublining SFs, and the second contained the intermediate 

and lining SFs. By applying the original cell annotations and performing marker gene analysis, we observed 

that the top markers identified in Seurat were retained (Fig. 48). 
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Figure 48. Monocle3 analysis results. (Left panel) UMAP plot showing cells after Monocle3 analysis has been perdformed. (Right 
panel) Feature plots depicting gene expression patterns of top marker genes. 

Finally, we conducted trajectory analysis and pseudotime ordering of the cells. Monocle utilizes an 

algorithm that learns the sequence of gene expression changes each cell undergoes during a dynamic 

biological process. Once the overall trajectory is established, Monocle positions each cell accordingly 

within this trajectory. We employed four possible roots, as previously described, S1, S2b, S3, and S5. An 

additional analysis mode enables users to search for genes that change as a function of pseudotime. 

Specifically, Monocle identifies genes that vary between groups of cells along the trajectory graph using 

“Moran's I”, a statistic measure from spatial autocorrelation analysis, which is also effective in single-cell 

RNA-seq datasets. After identifying the final set of genes that exhibit significant variation across clusters, 

Monocle groups these genes into modules. This is achieved by applying UMAP on the genes (instead of 

cells) and then using the Louvain community analysis algorithm to form modules. In our case, this 

procedure yielded 49 modules, with some showing preferential activity in the initial, intermediate, or the 

final states of the trajectory (Fig. 49). 
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Figure 49. Monocle3 analysis results. (Left panel) UMAP plot depicting trajectory results. Different lineages starting from 3 root 
points are drawn while cells are colored by predicted pseudotime values. (Right panel) Heatmap showing the activity of gene 
modules varying between clusters along the trajectory.  

3.8 Benchmarking with other similar tools 

One of our final objectives was to perform a comparative analysis between SCALA and similar tools. Hence, 

we present a compilation of alternative tools (e.g., pagoda2 (“GitHub - Kharchenkolab/Pagoda2: R Package 

for Analyzing and Interactively Exploring Large-Scale Single-Cell RNA-Seq Datasets” n.d.), SingleCAnalyzer 

(Prieto, Barrios, and Villaverde 2022), Bingle-seq (Dimitrov and Gu 2020), iCellR (K. H. Tang et al. 2022), 

cerebro (Hillje, Pelicci, and Luzi 2020), Is-CellR (Patel 2018), SeuratWizard (Yousif et al. 2020), ICARUS (Jiang 

et al. 2022), SC1 (Moussa and Mandoiu 2021), alona (Franzén and Björkegren 2020), WASP (Hoek et al. 

2021), CHIPSTER (Kallio et al. 2011), Asc-Seurat (Pereira et al. 2021), GenePattern (Mah et al. 2019), PIVOT 

(Zhu et al. 2018)) designed to provide a user-friendly graphical interface for individuals with limited 

experience in bioinformatics. We emphasize the analytical capabilities offered by these tools and their 

complementarity to our application. It is noteworthy that, to our knowledge, only iCellR offers scATAC-seq 

analysis, and only six applications are available as web services. Additionally, SCALA stands out as one of 

the few tools offering modes for L-R and GRN analysis (Fig. 50). 
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Figure 50. Comparison with other tools. In this table our application is compared to other applications which offer a GUI or are 
accessible as a web service. 

3.9 Performance and scalability of the application 

In terms of performance, including execution times and RAM consumption, we conducted benchmarking 

tests using eight single-cell datasets (four scRNA-seq and four scATAC-seq), varying in cell numbers. The 

results demonstrated that our application effectively handled datasets containing hundreds of thousands 

of cells. However, we recommend users to utilize the desktop version of SCALA for larger datasets (> 50,000 

cells), as certain analysis steps may require more than 64 GB of RAM memory. Additionally, the desktop 

version offers improved execution times for scATAC datasets by enabling multiprocessing, which facilitates 

parallel execution during computationally intensive processes (Fig. 51). 
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Figure 51. Benchmark of our application with different datasets as input. In this table dasets of various sizes have been utilized to 
test execution time and memory consumption for the different modes of analysis offered in our application for scRNA-seq and 
scATAC-seq data. The hardware specifications of the PC used for the benchmark are shown.   
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4 Discussion 

The application that was developed in the context of this PhD project is a comprehensive bioinformatics 

pipeline offered both as a web-service and a stand-alone application. It performs end-to-end SC analysis, 

by using the current best practices of the field. It currently enables the analysis of scRNA-seq and scATAC-

seq datasets, which comprise the vast majority of the available SC data to date, facilitating both 

independent and integrative analysis of the two modalities.  

The architecture of our application enables a seamless integration between various software packages 

offering many modes of analysis to the end user. Both R programming language and web technologies 

have aided us to develop an interactive application that could be useful to both novice and advanced users. 

To showcase its full capabilities, we utilized single cell data from hTNFtg mouse model of arthritis, using 

as input data from both scRNA-seq and scATAC-seq modalities. Moreover, to test whether our results were 

robust across different pipelines, we used two alternative workflows that resulted in similar results 

confirming our original findings.  Additionally, to achieve comparison between the data from our use case 

scenario and other publicly available datasets we performed integration analysis.   

One important aspect of this dissertation was the study of synovial fibroblast subsets and their properties 

in both homeostasis and TNF-mediated chronic arthritis at a single-cell resolution. More precisely, we 

aimed to delineate their transcriptomic profiles, chromatin accessibility, spatial distribution, and the 

regulatory networks governing the transition from a healthy state to arthritic pathology with precision. 

Marker gene detection and functional enrichment analysis facilitated the identification of three principal 

fibroblast super-clusters. Lining synovial fibroblasts (Thy1− LSFs) were observed to modulate the size of the 

lining layer through apoptotic and migratory mechanisms. Conversely, sublining synovial fibroblasts (Thy1+ 

SLSFs) were responsive to growth factors and differentiation signals, including WNT, BMP, and TGFbeta. 

However, during the progression of arthritis, distinct subtypes of SLSFs undergo a phenotypic transition, 

relinquishing their homeostatic functions and acquiring activated characteristics. Consequently, novel 

arthritis-specific subpopulations emerge, two examples are Dkk3/Lrrc15+ and Birc5/Aqp1+ subsets, which 

demonstrate elevated inflammatory and destructive attributes. These findings underscore the intricate 

networks orchestrating the pathogenesis of arthritis. Notably, the combinatorial analysis of both 

modalities played a pivotal role in the prioritization of TFs and regulatory networks, revealing distinct 

activity patterns across various synovial fibroblast (SF) groups and conditions. Furthermore, a noteworthy 

section of this study was the integration of SF profiles from the hTNFtg mouse model with SFs of the STIA 
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mouse model, as well as SF profiles derived from RA human patients. Through meticulous examination of 

gene expression patterns, correlation analyses, and enriched biological pathways, coupled with regulatory 

network analysis, this integrative approach unveiled both commonalities and disparities among SFs across 

diverse datasets. 

Closing this section, it is important to acknowledge several limitations and prospective future directions 

for the developed application. Firstly, the application comprises various software packages, and there is 

no automated mechanism to update all packages simultaneously without risking compatibility issues. 

Consequently, updating the packages used in SCALA necessitates extensive testing, both in the context of 

official updates from the development team and independent user updates in local installations. Secondly, 

a potential future limitation is scalability. Although the application performed effectively with datasets 

ranging from 6,000 to over 200,000 cells, we observed diminished responsiveness of the graphical 

components when handling datasets exceeding 50,000 cells. Enhancing the multi-threading 

implementation could mitigate these issues by delegating the visualization and plotting tasks to one or 

more dedicated threads.   

To enhance and expand the functionality of our application in future releases, several additional features 

could be considered. Firstly, the integration analysis between different datasets, as well as spatial 

transcriptomics analysis could be introduced as additional modes. These enhancements can be seamlessly 

incorporated into our application as they fall within the same framework of the Seurat package. 

Furthermore, alternative workflows for cell-to-cell communication analysis and trajectory analysis could 

be incorporated by adding the implementations from the CellChat and Monocle packages. Additionally, 

the aesthetic aspects of the application could be improved by adding more customizable plotting options, 

such as different color palettes and additional export format options. 
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5 Conclusions 

This dissertation had two primary objectives. The first was to develop a user-friendly application that 

integrates various software packages to provide a comprehensive pipeline for the analysis, exploration, 

and visualization of single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-

accessible chromatin sequencing (scATAC-seq) data. The second aim was to employ the developed 

pipeline, along with custom bioinformatics analysis steps, to study and characterize the hTNFtg mouse 

model of rheumatoid arthritis at single-cell resolution. 

This study has significantly advanced our understanding of the cellular heterogeneity of synovial 

fibroblasts in the chronic RA model hTNFtg by examining their properties in both healthy and diseased 

contexts. Utilizing various bioinformatics analysis steps, we identified distinct gene expression programs 

and regulatory networks that may drive the initiation and progression of pathology. Furthermore, through 

integration analysis with other datasets, including the STIA mouse model of RA and human data from RA 

patients, we identified similarities and differences at the level of genes, biological pathways, and cell 

population dynamics. 

Additionally, we developed an application named SCALA, which takes advantage of the R programming 

language and web technologies such as HTML, JavaScript, CSS, and R/Shiny. SCALA enables automated and 

interactive analysis of single-cell transcriptomics and epigenomics data. The application is built upon two 

widely used software packages, Seurat and ArchR, which support key analytical steps, ranging from quality 

control to the identification of distinct cell populations. SCALA is designed for interoperability with other 

software packages, thereby facilitating the execution of more complex analytical tasks.         

A notable advantage of SCALA is its user-friendly interface, making it accessible to a broad audience within 

the biomedical community. SCALA is available both online as a web service (http://scala.fleming.gr/) and 

offline through local installation via GitHub (https://github.com/PavlopoulosLab/SCALA) or Docker 

(https://hub.docker.com/r/pavlopouloslab/scala). As an open-access R package, SCALA allows advanced 

users to modify and improve the source code according to their needs.  

In conclusion, the bioinformatics methodologies described in this dissertation, alongside the development 

of a computational pipeline offered as a user-friendly web application, could be highly beneficial for 

biomedical scientists seeking to analyze and explore their data in an interactive manner. The analysis of a 

use case scenario involving the hTNFtg mouse model of arthritis yielded significant biological findings, 

enhancing our understanding of the cellular heterogeneity of fibroblast populations. These findings could 

http://scala.fleming.gr/
https://github.com/PavlopoulosLab/SCALA
https://hub.docker.com/r/pavlopouloslab/scala
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aid biologists and researchers from other disciplines in the identification of important genes and pathways 

that could be useful for diagnostic purposes or therapeutic intervention in the future.  
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6 Summary 

Single-cell technologies have revolutionized biomedical research by enabling the study of the genome, 

transcriptome, proteome, and epigenome at unprecedented resolution. These experimental assays are 

further enhanced by spatial transcriptomics methods, such as Visium and CosMx, as well as imaging 

techniques like CODEX (CO-Detection by indEXing) and RNA-FISH (RNA Fluorescence In Situ Hybridization). 

These methods facilitate the validation of marker genes identified through bioinformatics analysis by 

allowing the visualization of RNA transcripts and proteins within complex tissue architectures. 

The boom of single-cell assays in the last decade has led to the development of numerous software 

packages dedicated to data analysis, visualization, and exploration. To date, more than 1,700 tools are 

available. Both R and Python programming languages are favored by developers, while some tools are 

written in C++, Matlab, or other languages. Among the most widely used tools in the single-cell community 

are Seurat, Scanpy, Cicero, and ArchR. The first two are utilized for the analysis of scRNA-seq data, while 

the latter two are used for the analysis of scATAC-seq data. These tools, in combination with other 

methodologies, offer various modes of analysis to the end users, including quality control, dimensionality 

reduction, clustering of cells, identification of marker genes, annotation of cell populations, trajectory 

analysis, integration of RNA and ATAC assays, motif enrichment analysis, and identification of regulatory 

networks, to name just a few. 

To alleviate potential technical difficulties in installing, managing, and combining various software 

packages into one pipeline, we developed SCALA. Our application offers seamless integration of different 

tools in a user-friendly and interactive environment, available both online and as a stand-alone application. 

To achieve this, we leveraged the R programming language and web technologies such as HTML, 

JavaScript, CSS, and R/Shiny. 

We utilized SCALA for an end-to-end analysis of scRNA-seq and scATAC-seq data originated from synovial 

fibroblasts (SFs) of the hTNFtg mouse model of arthritis. This analysis enabled us to characterize the 

heterogeneity of SFs during homeostasis, early, and established disease states. Specifically, we observed 

cell population dynamics and transitions between different cellular states. Additionally, integrating both 

modalities facilitated the identification of regulatory networks with preferential activity across different 

cell sub-populations. Moreover, we performed a comparative analysis between SFs in the hTNFtg mouse 

model, the STIA mouse model, and SFs from human RA patients, highlighting similarities and differences 

at different levels such as in gene expression patterns and enriched biological pathways. 
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Conclusively, we consider that the scientific material presented in the current dissertation can have a 

positive impact on the biomedical community in several ways. First, the pipeline we developed is freely 

available, enabling users to analyze their data or modify the source code and adjust the pipeline to their 

specific needs since it is an open-source project. Additionally, the biological findings may be of significant 

interest to researchers specializing in RA disease, as the genes, biological pathways, and master regulators 

identified by the bioinformatics analysis could be potentially targeted for diagnostic or therapeutic 

purposes. 
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7 Περίληψη  

Οι τεχνολογίες αλληλούχισης σε επίπεδο μοναδιαίου κυττάρου έχουν φέρει επανάσταση στο πεδίο της 

ιατροβιολογικής έρευνας, καθώς επιτρέπουν την μελέτη του γονιδιώματος, του μεταγραφώματος, του 

πρωτεώματος και του επιγονιδιώματος  με πρωτοφανή ακρίβεια. Αυτές οι πειραματικές τεχνικές 

ενισχύονται περαιτέρω από μεθόδους μεταγραφωμικής σε ιστούς, όπως το Visium και το CosMx, καθώς 

και τεχνικές απεικόνισης όπως το CODEX (CO-Detection by indEXing) και το RNA-FISH (RNA Fluorescence 

In Situ Hybridization). Αυτές οι μέθοδοι διευκολύνουν την επικύρωση γονιδίων που χαρακτηρίζουν 

κυτταρικούς πληθυσμούς (και έχουν ταυτοποιηθεί μέσω της βιοπληροφορικής ανάλυσης), επιτρέποντας 

την οπτικοποίηση μορίων RNA και των πρωτεϊνών μέσα σε ιστούς. 

Η ραγδαία ανάπτυξη των τεχνικών μοναδιαίου κυττάρου την τελευταία δεκαετία οδήγησε στην ανάπτυξη 

εκατοντάδων πακέτων λογισμικού που επικεντρώνονται στην ανάλυση, την οπτικοποίηση και 

διερεύνηση των δεδομένων. Μέχρι σήμερα, είναι διαθέσιμα περισσότερα από 1.700 υπολογιστικά 

εργαλεία. Οι γλώσσες προγραμματισμού R και Python προτιμώνται από τους προγραμματιστές έναντι 

των υπολοίπων, ενώ υπάρχουν και κάποια υπολογιστικά εργαλεία είναι υλοποιημένα σε C ++, Matlab και 

άλλες γλώσσες προγραμματισμού. Ανάμεσα στα πιο δημοφιλή πακέτα λογισμικού στην επιστημονική 

κοινότητα είναι το Seurat, Scanpy, Cicero και ArchR. Τα δύο πρώτα χρησιμοποιούνται για την ανάλυση 

δεδομένων scRNA-seq, ενώ τα άλλα δύο χρησιμοποιούνται για την ανάλυση δεδομένων scATAC-seq. 

Αυτά τα υπολογιστικά εργαλεία, σε συνδυασμό με άλλες μεθοδολογίες, προσφέρουν στους χρήστες την 

δυνατότητα να εκτελέσουν βήματα της ανάλυσης με διαφορετική λειτουργικότητα. Μια σύντομη 

περιγραφή αυτών περιλαμβάνει τα βήματα του ελέγχου ποιότητας των δεδομένων, της μείωσης των 

αρχικών διαστάσεων των δεδομένων (αναφέρεται στην μείωση των γονιδίων που λαμβάνονται υπόψιν 

για την τελική ανάλυση), της ομαδοποίησης των κυττάρων, της αναγνώρισης γονιδίων που 

χαρακτηρίζουν κυτταρικούς πληθυσμούς και την απόδοση αυτών σε γνωστούς κυτταρικούς τύπους, την 

εύρεση σχέσεων κυτταρικής διαφοροποίησης μεταξύ των κυτταρικών πληθυσμών, την συνδυαστική 

ανάλυση των δεδομένων τύπου RNA και ATAC, της ανάλυσης εμπλουτισμού μοτίβων στο DNA που 

αναγνωρίζονται από μεταγραφικούς παράγοντες και της εύρεσης ρυθμιστικών δικτύων. 

Η ανάπτυξη της εφαρμογής SCALA (που παρουσιάζεται σε αυτή την διατριβή) έγινε με σκοπό να 

αντιμετωπίσει πιθανές τεχνικές δυσκολίες που θα μπορούσαν να εμφανιστούν σε χρήστες κατά την 

εγκατάσταση, την διαχείριση ή την συνδυαστική χρήση πολλαπλών πακέτων λογισμικού ανάλυσης 

δεδομένων αλληλούχισης μοναδιαίων κυττάρων. Η εφαρμογή που αναπτύχθηκε προσφέρει μια 

απρόσκοπτη διασύνδεση πολλαπλών υπολογιστικών εργαλείων σε ένα διαδραστικό και φιλικό προς τον 
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χρήστη περιβάλλον. Είναι διαθέσιμη προς χρήση δωρεάν τόσο μέσω Διαδικτύου όσο και σαν εφαρμογή 

σε προσωπικό υπολογιστή μετά από τοπική εγκατάσταση. Για την επίτευξη του παραπάνω εγχειρήματος 

αξιοποιήσαμε την  γλώσσα προγραμματισμού R και τις τεχνολογίες ιστού HTML, JavaScript, CSS, και 

R/Shiny.  

Χρησιμοποιήσαμε την εφαρμογή μας για να επιτύχουμε μια ολοκληρωμένη ανάλυση των δεδομένων 

scRNA-seq και scATAC-seq από ινοβλάστες της άρθρωσης του αστραγάλου ποντικών στο μοντέλο 

αρθρίτιδας hTNFtg. Η ανάλυση αυτή μας επέτρεψε να χαρακτηρίσουμε την κυτταρική ετερογένεια των 

ινοβλαστών κατά τη διάρκεια της ομοιόστασης, και στα στάδια της πρώιμης και μεταγενέστερης φάσης 

της νόσου. Συγκεκριμένα, παρατηρήσαμε τις μεταβολές στην εκπροσώπηση συγκεκριμένων κυτταρικών 

πληθυσμών και την διαδικασία μετάβασης μεταξύ διαφορετικών κυτταρικών καταστάσεων. Επιπλέον, η 

συνδυαστική ανάλυση δεδομένων και από τις δύο πειραματικές τεχνικές διευκόλυνε τον εντοπισμό 

δικτύων ρύθμισης με δραστηριότητα σε διαφορετικές ομάδες κυττάρων. Επιπρόσθετα, 

πραγματοποιήσαμε συγκριτική ανάλυση μεταξύ των ινοβλαστών από το μοντέλο ποντικιού hTNFtg, από 

το μοντέλου ποντικιού STIA και από ινοβλάστες που προέρχονται από ασθενείς με ρευματοειδή 

αρθρίτιδα, επισημαίνοντας τις ομοιότητες και τις διαφορές τους σε πολλαπλά επίπεδα όπως στο κομμάτι 

της γονιδιακής έκφρασης και το κομμάτι των ενεργοποιημένων βιολογικών μονοπατιών (μετά από 

ανάλυση εμπλουτισμού). 

Συμπερασματικά, θεωρούμε ότι το επιστημονικό υλικό που παρουσιάζεται στην παρούσα διδακτορική 

διατριβή μπορεί να έχει θετικό αντίκτυπο στη βιοϊατρική κοινότητα σε πολλαπλά επίπεδα. Αρχικά, η 

υπολογιστική εφαρμογή που αναπτύξαμε είναι διαθέσιμη δωρεάν, επιτρέποντας στους τελικούς χρήστες 

να αναλύσουν τα δεδομένα τους ή ακόμα και να τροποποιήσουν τον πηγαίο κώδικα και να τον 

προσαρμόσουν στις δικές τους ανάγκες, καθώς πρόκειται για μια εφαρμογή ανοικτού λογισμικού. 

Επιπλέον, τα βιολογικά ευρήματα μπορούν να αποτελέσουν αντικείμενο ενδιαφέροντος για ερευνητές 

που εξειδικεύονται στη μελέτη της νόσου της ρευματοειδούς αρθρίτιδας, καθώς κάποια από τα γονίδια, 

τα βιολογικά μονοπάτια και τους ρυθμιστικούς παράγοντες που εντοπίστηκαν μέσω της 

βιοπληροφορικής ανάλυσης θα μπορούσαν να χρησιμοποιηθούν ενδεχομένως για διαγνωστικούς ή 

θεραπευτικούς σκοπούς. 
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8 Acronyms 

ACPAs anti-citrullinated protein antibodies 

Acta2 Actin alpha 2 

Adamdec1 ADAM-like, decysin 1 

AI artificial intelligence  

AIA Adjuvant-induced arthritis model  

AP1 Activator protein 1 

Aqp1 Aquaporin 1 

ARE AU-rich elements  

ATAC Assay for Transposase-Accessible Chromatin 

AUC  Area Under the Curve 

AXIN1 Axin 1 

B2m Beta-2 microglobulin 

Birc5 Baculoviral IAP repeat-containing 5 

Bmp4 Bone morphogenetic protein 4 

bp base pairs 

CAFs cancer associated fibroblasts  

CAIA Collagen antibody-induced arthritis model  

Ccl C-C motif chemokine ligand 

CCR C-C motif chemokine receptor 

CD Crohn’s disease 

CD45 Cluster of Differentiation 45 

cDNA  Complementary DNA 

CIA Type II collagen induced arthritis 

circRNAs circular RNAs 

Clic5 Chloride intracellular channel 5 

Clu Clusterin 

Coch Coagulation factor C homolog 

Col15a1 Collagen, type XV, alpha 1 

Comp Cartilage Oligomeric Matrix Protein 

CPU Central Processing Unit 

cRNA Complementary RNA 

CSS Cascade Style Sheet 

Cthrc1 Collagen triple helix repeat containing protein 1 

Cxcl Chemokine (C-X-C motif) ligand 

Dkk Dickkopf WNT Signaling Pathway Inhibitor 

Dlx3 Distal-less homeobox 3 

DNA Deoxyribonucleic Acid 

ECM  Extracellular Matrix 

Ecrg4 ECRG4 augurin precursor 

Efemp1 EGF containing fibulin extracellular matrix protein 1 
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EPCAM Epithelial Cell Adhesion Molecule 

FAP Fibroblast Activation Protein Alpha 

Fbln1 Fibulin 1 

FLS fibroblast like synoviocytes  

G6PI  glucose-6-phosphate isomerase protein 

GBs Gigabytes 

GM-CSF Granulocyte- Macrophage Colony- Stimulating Factor  

GO  Gene Ontology 

GRN Gene Regulatory Network 

GUI Graphic User Interface 

H&E Hematoxylin and Eosin 

H2-K1 Histocompatibility 2, K1, K region 

H2-Q7 Histocompatibility 2, Q region locus 7 

Hbegf Heparin-binding EGF-like growth factor 

Hhip Hedgehog-interacting protein 

HLA-DRA Major histocompatibility complex, class II, DR alpha 

Hmox1 Heme oxygenase 1 

HTML Hyper Text Markup Language 

hTNFtg  human TNF transgene  

Htra4 HtrA serine peptidase 4 

IBD Inflammatory Bowel Disease 

Id1 Inhibitor of DNA binding 1, HLH protein 

IFNs Interferons 

IL Interleukin 

ISREs IFN-stimulated response elements  

JNK c-Jun N-terminal kinase JNK 

K/BxN 
a cross between non-obese diabetic mice (NOD) and mice with a KRN T-cell 
receptor transgene (K/B) 

KEGG Kyoto Encyclopedia of Genes and Genomes 

Klf5 Kruppel like factor 5 

lncRNAs long noncoding RNAs  

L-R Ligand - Receptor 

Lrrc15 Leucine rich repeat containing 15 

LSFs Lining Synovial Fibroblasts 

LSI Latent Semantic Indexing 

MAP Mitogen-Activated Protein 

MDS Multi-Dimensional Scaling  

Meox1 Mesenchyme Homeobox 1 

MEX Market Exchange Format 

Mki67 Antigen identified by monoclonal antibody Ki 67 

ML machine learning  
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MMPs matrix metalloproteinases 

mRNA messenger RNA 

MST Minimal Spanning Tree 

mTNF transmembrane TNF 

MVP Mean-Variance Plot 

ncRNA noncoding RNA 

NFκB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NGS Next-Generation Sequencing  

Notch3 Notch receptor 3 

Npnt  Nephronectin 

Nr2f2 Nuclear receptor subfamily 2, group F, member 2 

Osr1 Odd-skipped related transcription factor 1 

PCA Principal Component Analysis 

PCR Polymerase Chain Reaction 

Pdgfa Platelet derived growth factor subunit A 

PDGFRA  Platelet Derived Growth Factor Receptor Alpha 

PDPN  Podoplanin 

PHATE Potential of Heat-diffusion for Affinity-based Trajectory Embedding 

Pi16 Peptidase Inhibitor 16 

PI3K Phosphoinositide 3-kinase 

PIA pristane-induced arthritis 

Prg4 Proteoglycan 4 

QC Quality Control  

RA Rheumatoid arthritis 

RAG recombination activation gene 

RAM Random Access Memory 

RF rheumatoid factor 

Rgma Repulsive guidance molecule family member A 

RNA  Ribonucleic Acid 

RNA-seq RNA sequencing 

RSPO2  R-spondin 2 

Saa3 Serum amyloid A 3 

SC single cell 

scATAC-seq single cell ATAC sequencing 

SCID severe combined immunodeficiency disease 

scRNA-seq single cell RNA sequencing 

Sema3c 
Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 
(semaphorin) 3C 

Sfrp1 Secreted frizzled-related protein 1 

SLE Systemic Lupus Erythematosus  

SLSFs Sublining Synovial Fibroblasts 

SMAD  SMA and MAD-related protein 
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Smoc2 SPARC related modular calcium binding 2 

SNN Shared-Nearest Neighbor  

SNP Single Nucleotide Polymorphism 

STIA Serum Transfer Induced arthritis  

sTNF  soluble TNF 

SVD Singular Value Decomposition 

TACE TNF-a converting enzyme 

Ter119 Mouse TER-119 Erythroid Antigen MAb (Clone TER-119) 

TF transcription factor 

TGF-b transforming growth factor beta  

Th17 T helper 17 cells 

Thbs1 Thrombospondin 1 

THY1 Thy-1 cell surface antigen 

Tlr2 Toll-like receptor 2 

TNF Tumor Necrosis Factor 

Tnfaip Tumor necrosis factor alpha induced protein 6 

TNFR1 TNF receptor I 

TNFR2 TNF receptor II 

TRAF2  TNF receptor-associated factor 2 

Tregs regulatory T cells  

tSNE t-Distributed Stochastic Neighbor Embedding  

Tspan15 Tetraspanin 15 

TSS transcription Start Site 

UMAP uniform manifold approximation and projection 

UMI unique molecular identifier 

VEGF vascular endothelial growth factor 

VST Variance Stabilizing Transformation 

Vwa von Willebrand factor A domain 

WNT Wingless and Int-1 

wt Wild Type 

ZAP-70 Zeta chain associated protein kinase 70kDa 

ZIA Zymosan induced arthritis 
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9 Παράρτημα  

9.1 Προϋποθέσεις απόκτησης διδακτορικού 

Δημοσιεύσεις σχετικές με την διδακτορική διατριβή σε επιστημονικά περιοδικά της βάσεως του 

PubMed 

Armaka M, Konstantopoulos D, Tzaferis C, Lavigne MD, Sakkou M, Liakos A, Sfikakis PP, Dimopoulos MA, 

Fousteri M, Kollias G. Single-cell multimodal analysis identifies common regulatory programs in synovial 

fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 2022 Jul 

26;14(1):78. doi: 10.1186/s13073-022-01081-3. PMID: 35879783; PMCID: PMC9316748. [Iσοδύναμος 

πρώτος συγγραφέας] 

Tzaferis C, Karatzas E, Baltoumas FA, Pavlopoulos GA, Kollias G, Konstantopoulos D. SCALA: A complete 

solution for multimodal analysis of single-cell Next Generation Sequencing data. Comput Struct Biotechnol 

J. 2023 Oct 20;21:5382-5393. doi: 10.1016/j.csbj.2023.10.032. PMID: 38022693; PMCID: PMC10651449. 

[Πρώτος συγγραφέας] 

 

Παρουσίαση της μεθοδολογίας ή μέρος των αποτελεσμάτων της διδακτορικής διατριβής σε 

επιστημονικό Συνέδριο στην Ελλάδα ή το εξωτερικό 

16th Conference of the Hellenic Society for Computational Biology and Bioinformatics (HSCBB22, 2022) 

[Τίτλος ομιλίας: “SCALA: A web application for multimodal analysis of single-cell next-generation 

sequencing data”] 

 

Διαθεσιμότητα του πηγαίου κώδικα και της υπολογιστικής πλατφόρμας που αναπτύχθηκε 

https://scala.fleming.gr 

https://github.com/PavlopoulosLab/SCALA 

https://hub.docker.com/r/pavlopouloslab/scala 

 

Διαθεσιμότητα των βιολογικών δεδομένων που χρησιμοποιήθηκαν 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA778928 

 

 

 

https://scala.fleming.gr/
https://github.com/PavlopoulosLab/SCALA
https://hub.docker.com/r/pavlopouloslab/scala
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA778928
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9.2 Δημοσιεύσεις
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