
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

MSc THESIS

AutoER: Auto-Configuring Entity Resolution pipelines

Konstantinos A. Nikoletos

Supervisor: Manolis Koubarakis, Professor

Co-Supervisors: George Papadakis, Associate Researcher
Vasilis Efthymiou, Professor
Konstantinos Stefanidis, Professor

ATHENS

SEPTEMBER 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

AutoER: Αυτόματη Παραμετροποίηση Entity Resolution
μεθόδων

Κωνσταντίνος Α. Νικολέτος

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής

Συνεπιβλέποντες: Γιώργος Παπαδάκης, Συνεργαζόμενος Ερευνητής
Βασίλης Ευθυμίου, Συνεργαζόμενος Καθηγητής
Κωνσταντίνος Στεφανίδης, Συνεργαζόμενος Καθηγητής

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2024

MSc THESIS

AutoER: Auto-Configuring Entity Resolution pipelines

Konstantinos A. Nikoletos
S.N.: 7115112200022

SUPERVISOR: Manolis Koubarakis, Professor

COSUPERVISORS: George Papadakis, Associate Researcher
Vasilis Efthymiou, Professor
Konstantinos Stefanidis, Professor

THESIS COMMITTEE: Dimitrios Gunopoulos, Professor
Alexandros Ntoulas, Professor
Manolis Koubarakis, Professor

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

AutoER: Αυτόματη Παραμετροποίηση Entity Resolution μεθόδων

Κωνσταντίνος Α. Νικολέτος
Α.Μ.: 7115112200022

ΕΠΙΒΛΕΠΩΝ: Μανόλης Κουμπαράκης, Καθηγητής

ΣΥΝΕΠΙΒΛΕΠΟΝΤΕΣ: Γιώργος Παπαδάκης, Συνεργαζόμενος Ερευνητής
Βασίλης Ευθυμίου, Συνεργαζόμενος Καθηγητής
Κωνσταντίνος Στεφανίδης, Συνεργαζόμενος Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Δημήτριος Γουνόπουλος, Καθηγητής
Αλέξανδρος Ντούλας, Καθηγητής
Μανόλης Κουμπαράκης, Καθηγητής

ABSTRACT

The same real-world entity (e.g., a movie, a restaurant, a person) may be described in
various ways on different datasets. Entity resolution (ER) is the problem of finding such
descriptions that refer to the same entity, this way improving data quality and therefore,
data value. However, an ER pipeline typically involves several steps (e.g., blocking, sim-
ilarity estimation, clustering), with each step requiring its own configurations and tuning.
The choice of the best configuration, among a vast number of possible combinations, is
dataset-specific, as it has been shown experimentally, while it often requires the existence
of some pre-labeled examples, i.e., a ground truth. In essence, finding the best config-
uration for resolving the entities of a dataset is a labor-intensive task not only for simple
users that want their data cleaned, but also for ER experts. In this work, we introduce
AutoER, a framework that automatically suggests the most promising ER configuration,
even when a ground truth is not available. AutoER relies on sampling strategies that can
significantly reduce the search space of configuration values, when some ground truth is
available. When no pre-labeled examples of a given dataset are available, AutoER relies
on a pre-defined set of ER-specific dataset features, along with configuration features,
and other datasets that have an available ground truth, to train a regression model. We
show experimentally that AutoER consistently and efficiently suggests near-optimal ER
configurations, by comparing it to an exhaustive grid search, over eleven ER benchmark
datasets.

SUBJECT AREA: Data Exploration

KEYWORDS: Entity Resolution, Auto Configuration, Artificial Intelligence

ΠΕΡΙΛΗΨΗ

Η ίδια οντότητα στον πραγματικό κόσμο (π.χ. μία ταινία, ένα εστιατόριο, ένα άτομο) μπο-
ρεί να περιγραφεί με διάφορους τρόπους σε διαφορετικά σύνολα δεδομένων. Η ανίχνευση
οντοτήτων (Entity Resolution, ER) είναι το πρόβλημα της εύρεσης περιγραφών που ανα-
φέρονται στην ίδια οντότητα, βελτιώνοντας έτσι την ποιότητα των δεδομένων και, κατ’ επέ-
κταση, την αξία τους. Ωστόσο, μια μεθοδολογία ER συνήθως περιλαμβάνει αρκετά στάδια
(π.χ. αποκλεισμός, εκτίμηση ομοιότητας, ομαδοποίηση), με κάθε στάδιο να απαιτεί τη δική
του διαμόρφωση και ρύθμιση. Η επιλογή των καλύτερων παραμέτρων και μεθόδων, ανά-
μεσα σε έναν τεράστιο αριθμό πιθανών συνδυασμών, είναι συγκεκριμένη για κάθε σύνολο
δεδομένων, όπως έχει αποδειχθεί πειραματικά, ενώ συχνά απαιτεί την ύπαρξη κάποιων
προεπισημασμένων παραδειγμάτων, δηλαδή των αληθινών ζευγαριών απο όμοιες οντό-
τητες (ground truth). Ουσιαστικά, η εύρεση της βέλτιστης παραμετροποίησης, για την εύ-
ρεση των όμοιων οντοτήτων ενός συνόλου δεδομένων αποτελεί μια δύσκολη εργασία,
όχι μόνο για απλούς χρήστες που θέλουν να καθαρίσουν τα δεδομένα τους, αλλά και για
ειδικούς στο ER. Σε αυτή την διπλωματική εργασία, παρουσιάζουμε το AutoER, μια προ-
σέγγιση που προτείνει αυτόματα την πιο υποσχόμενη μεθολογία ER, ακόμη και όταν δεν
υπάρχει διαθέσιμο σύνολο αληθινά όμοιων ζευγαριών. Το AutoER βασίζεται σε στρατη-
γικές δειγματοληψίας που μπορούν να μειώσουν σημαντικά τον χώρο αναζήτησης των
τιμών παραμετροποίησης, στο σενάριο όπου υπάρχει διαθέσιμο σύνολο αλήθειας. Όταν
δεν υπάρχουν προεπισημασμένα παραδείγματα για ένα δεδομένο σύνολο δεδομένων,
το AutoER στηρίζεται σε ένα προκαθορισμένο σύνολο χαρακτηριστικών του συνόλου δε-
δομένων που σχετίζονται με το ER, μαζί με χαρακτηριστικά της μεθοδολογίας και άλλα
σύνολα δεδομένων που έχουν διαθέσιμο σύνολο αλήθειας, για να εκπαιδεύσει ένα μο-
ντέλο παλινδρόμησης. Δείχνουμε πειραματικά ότι το AutoER προτείνει με συνέπεια και
αποτελεσματικότητα σχεδόν βέλτιστες μεθοδολογίες ER, συγκρίνοντάς το με εξαντλητική
αναζήτηση σε πλέγμα (Grid Search), σε έντεκα σύνολα δεδομένων αναφοράς για το ER.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εξερεύνηση Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανίχνευση Οντοτήτων, Αυτόματη Παραμετροποίηση, Τεχνητή
Νοημοσύνη

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, George Papadakis, for
his guidance and inspiration throughout our collaboration. He has been a true mentor,
providing me with the opportunities to grow and take my first steps in the research field.

I would also like to extend my heartfelt appreciation to Professor Manolis Koubarakis for
his inspiration, mentorship, and for giving me the opportunity to collaborate with him.

Additionally, I would like to acknowledge the co-supervision provided by Professor Vassilis
Eythymiou from Harokopio University, as well as Professor Konstantinos Stefanidis from
University of Tampere, Finland. This project was shaped and guided by all of their valuable
contributions.

Funding. This research was funded by the Horizon Europe project STELAR (GA No.
101070122).

CONTENTS

1. INTRODUCTION 11

2. PROBLEM DEFINITION 13

3. RELATED WORK 15

4. METHODOLOGY 18

4.1 ETEER pipeline . 18

4.2 Tackling Problem 1 . 19

4.3 Tackling Problem 2 . 21
4.3.1 Dataset Features . 22
4.3.2 Instance Generation . 22
4.3.3 Learning procedure . 23

5. EXPERIMENTS 25

5.1 Experimental setup . 25

5.2 Experiments with Available Ground-truth [Problem 1] 27

5.3 Experiments with Missing Ground-truth [Problem 2] 28
5.3.1 AutoML learning procedure . 29
5.3.2 Individual regressors learning procedure . 31
5.3.3 Feature importance . 32
5.3.4 Scalability test . 34

6. CONCLUSIONS AND FUTURE WORK 35

ABBREVIATIONS - ACRONYMS 36

APPENDIX 37

REFERENCES 41

LIST OF FIGURES

1.1 F1 distribution per dataset . 11

4.1 The ETEER pipeline considered in this work. 18
4.2 Joining dataset features with ETEER parameters. 23

5.1 All dataset features comparison. 26
5.2 Samplers F1 convergence. 27
5.3 Samplers F1-Ratio heatmaps. 28
5.4 All trials training set distribution. 29
5.5 AutoML F1-scores. 30
5.6 Individual regressors F1-scores. 32
5.7 AutoML feature importance. 32
5.8 Individual regressors feature importance. 33

LIST OF TABLES

4.1 Configuration parameters and their possible values. 19

5.1 Datasets used in our experimental analysis. 27
5.2 Learning procedure 1 (AutoML) results. AutoGB:Gradient Boosting, AutoRF:

Ranfom Forest, AutoET:Extra Trees . 30
5.3 Learning Procedure 2 results (Individual regressors). 31
5.4 Top-5 ETEER configurations proposed for DBPedia. 34

6.2 Parameters Tested for Each Regression Method. 37

AutoER: Auto-Configuring Entity Resolution pipelines

1. INTRODUCTION

Entity resolution (ER) is the problem of identifying references to the same real-world ob-
ject (e.g., a person, location, movie) in a dataset [14]. ER, as a data cleaning method,
increases the quality and, subsequently, the value of the data, which can later be used
further for downstream applications, like training a machine learning model. Apart from
the benefits that it brings, ER also comes with a significant cost. Typically, ER pipelines
involve several steps (e.g., blocking [51], meta-blocking, similarity estimation, cluster-
ing [27, 49]), with each step, in turn, involving several possible configurations, such as sim-
ilarity threshold, several blocking strategies, language models, and clustering algorithms
to choose from. As it has been repeatedly shown, there is no single configuration that
dominates the others, as each ER setting (e.g., dataset characteristics, assumptions) has
different requirements [14, 63, 34].

Even for end users who are ER experts, choosing the right configuration is a non-trivial
task that involves a lot of trial-and-error experimentation. To make things worse, in a real-
istic setting, the end user does not have a ground truth of correct matches (otherwise,
the ER problem is solved/not needed for that dataset) so they cannot even evaluate the
performance of different configurations, other than a brief and unreliable manual inspec-
tion. Additionally, for a given dataset, predicting a successful configuration can be highly
challenging. As illustrated in Figure 1.1, which presents the distribution boxplot of the ten
primary datasets used in our evaluation, some datasets exhibit a narrow distribution. How-
ever, for the majority, such as D2, D3, D5, and particularly the most challenging dataset,
D10, identifying an appropriate configuration proves to be significantly more difficult.

Figure 1.1: F1 distribution per dataset

K. Nikoletos 11

AutoER: Auto-Configuring Entity Resolution pipelines

In this thesis, we propose an auto-configurable ER pipeline that receives as input a data-
set, optionally along with a very small number of labeled matches, and returns ER results
after automatically deciding which setting is the most promising for that dataset. We ex-
perimentally show that in almost all cases our system yields results that are very close to
the best obtainable results, identified via a grid search over all possible solutions.

In summary, the contributions of this work are the following:

• A self-configurable ER framework, AutoER, that automatically predicts the best ER
pipeline configurations for a given dataset, with or without a known ground truth.

• AutoER can operate even without a ground truth, but it can also exploit a small set
of labeled matches and quickly find the best configuration.

• Extensive experimental evaluation demonstrating the effectiveness and efficiency
of our approach over 39,900 possible configurations tested against 10 widely used
datasets.

• AutoER is open-source with a permissive license, available on Github:
https://github.com/AI-team-UoA/pyJedAI-AutoConfiguration

Outline. The rest of this thesis is organized as follows. In Section 2, we describe the
two variations of the problem that we tackle in this work. In Section 3, we discuss related
works, highlighting the novelty of our approach. In Section 4.1, we present the overall
end-to-end ER pipeline used in this work, for which we provide more details, depending
on each of the two variations of the problem, in Sections 4.2 and 4.3. In Section 5, we
present and discuss the experimental results. We conclude and present the future work
of this thesis in Section 6.

K. Nikoletos 12

https://github.com/AI-team-UoA/pyJedAI-AutoConfiguration

AutoER: Auto-Configuring Entity Resolution pipelines

2. PROBLEM DEFINITION

In this section, we describe the problem that this thesis tackles, which is end-to-end en-
tity resolution, namely ETEER. We define two variations of this problem, depending on
whether ground truth knowledge is available or not.

Let an entity collection E be a set of entity descriptions, where an entity description1 is a
set of attribute-value pairs representing a real-world entity (e.g., an entity description can
be a database record, an ontology class instance, a row in a csv file, a json element).

End-to-end ER (ETEER) is the problem of receiving some entity collections and returning
a set of entity clusters, with each cluster corresponding to set of entity descriptions that
refer to the same real-world entity. Although ER can be generalized to receive as input one
(Dirty ER [27]), two (Clean-Clean ER [49]), or more than two (Multi-Source ER [58, 57])
entity collections, in this work, we will assume the case of two clean (i.e., duplicate-free)
entity collections E1 and E2 that need to be resolved. Our definitions and methodology can
be easily generalized to cover all other cases. More formally:

Definition 2.0.1 (End-to-end Entity Resolution (ETEER)). Given two entity collections E1
and E2, return a set of disjoint clusters C, such that

∪
cl∈C cl = E1 ∪ E2, and ∀cl ∈ C, ∀ei, ej ∈

cl, ei ≡ ej, where ei ≡ ej denotes that the two entity descriptions ei ∈ E1 and ej ∈ E2 match,
i.e., refer to the same real-world entity.

This definition applies to Clean-Clean ER, also known as Record Linkage, where E1 and E2
are individually duplicate-free, but overlapping, sharing some entities. In that setting, each
cluster contains either a single entity from one entity collection, or two entities, one from
each collection. Definition 2.0.1 can be easily generalized to Dirty ER, where the input
comprises a single entity collection with duplicates in itself. In this case, the resulting
clusters are also disjoint, but there is no limit on their size, i.e., the number of entities they
contain. It can also be generalized to the case of Multi-Source ER, requiring that each
cluster cannot contain more than one entity from the same collection.

The problem of Definition 2.0.1 is typically solved through an ETEER pipeline, denoted
by w(E1, E2), i.e., a series of processing steps for solving ER, with each processing step
potentially requiring the configuration of some parameters.

Definition 2.0.2 (ETEER Pipeline). An ETEER Pipeline w(E1, E2) = (S, P, V) is a series
of processing steps S = s1, s2, . . . , sn for solving ETEER, with each processing step si
potentially requiring the configuration of some parameters Pi = pi1, p

i
2, . . . , p

i
m, and with

each parameter pij accepting a set of possible values V i
j .

Following the previous definition, we will sometimes simply call the set P =
∪

i∈[1..n]
Pi as

configuration parameters and we will also simply call the set V =
∪

Pi∈P,pj∈Pi

V i
j as configur-

ation values or possible values.

The effectiveness of an ETEER pipeline is assessed in terms of precision, recall, and F1-
score, with respect to a ground truth of known matches D. In more detail, precision is the
number of clusters in C which contain a pair of entities that also appears in D; recall is the
portion of pairs in D that co-occur in some cluster of C; F1-score is the harmonic mean of
precision and recall. The time efficiency of an ETEER pipeline can be measured in terms

1For brevity, we will also refer to entity descriptions, simply as “entities”.

K. Nikoletos 13

AutoER: Auto-Configuring Entity Resolution pipelines

of the overall runtime, i.e., the time between receiving E1 and E2 and producing C. Given
that we are interested in finding the best configuration for a fixed ETEER pipeline, we will
focus more on measuring time efficiency of AutoER in terms of search time, i.e., the time
needed to produce a the suggested configuration values.

In this context, we address two problems, based on whether a ground truth is available
(Problem 1) or not (Problem 2) for configuration tuning. Such a (subset of the) ground truth
is also known as “seed alignment” that is used for training entity alignment models [21, 63].
For the evaluation, we always use a ground truth of known matches. In Problem 1, we
also use it for tuning the configuration parameters, while in Problem 2, we do not use any
portion of the ground truth.

Problem 1. Given an ETEER pipeline w(E1, E2) for two entity collections E1 and E2, along
with a subset of the ground-truth of matches D′ ⊆ D, return the configuration values V of
w(E1, E2) that maximize the effectiveness ofw(E1, E2) in terms of F1-score, while minimizing
the search time.

The naïve approach is to apply grid search, considering all meaningful values for all con-
figuration parameters in the specified pipeline. However, this is impractical and time-
consuming, even for simple ETEER pipelines, because they typically involve numerous
configuration parameters with large domains. Therefore, more advanced algorithms for
configuration optimization are required to effectively reduce the extremely large search
space of configuration parameters.

A more difficult variation of the first problem is to fine-tune a specific ETEER pipeline
without having any portion of the real matches D provided as input. This task can be
formalized as follows:

Problem 2. Given an ETEER pipeline w(E1, E2) for two entity collections E1 and E2, return
the configuration values V of w(E1, E2) that maximize the effectiveness of w(E1, E2) in terms
of F1-score, while minimizing the search time.

To the best of our knowledge, no prior work focuses on this task.

K. Nikoletos 14

AutoER: Auto-Configuring Entity Resolution pipelines

3. RELATED WORK

In [19], we envisioned a self-configurable, end-to-end ER framework that can operate in
different domains, focusing on data interlinking, while also supporting ethical constraints,
like fairness. As a follow-up to this work, we are now providing a practical implement-
ation of many of those envisioned features, leaving out domain adaptations and ethical
considerations, as they are orthogonal to the topic of this work. This section will make a
thorough pass of the area we are researching for, Entity Resolution. Next, we will present
the current advancements in AutoML and finally we will delve into the intersection of these
areas that form the target area of this study.

Entity Resolution (ER) is a key research area within Data Management and Data Ex-
ploration, gaining significant attention over the last four decades. ER has a crucial role in
addressing the challenges posed by the vast and complex nature of data, including know-
ledge graphs, ontologies, and structured or semi-structured data. To establish meaningful
links between entities in such datasets, a variety of techniques have been developed, fo-
cusing on four primary dimensions: Veracity, Volume, Variety, and Velocity. As outlined in
our recent tutorial [44], ER has evolved through five distinct generations, each addressing
different aspects of these challenges.

The 1st ER generation focused on tackling Veracity, through end-to-end pipelines con-
sisted of three consecutive steps: SchemaMatching, Blocking, andEntity Matching. Thats
the first pipeline-like approach presented for ER. We should mention that like the tradi-
tional Machine Learning (ML) pipelines, that consist of separate building blocks, (i.e Data
Processing, Feature Selection, Model Selection, Hyperparameter tuning) an analogous
approach has been suggested also for ER. The first step is Schema Matching that tries
to match the relevant attributes across two structured datasets with different schemata
[9, 40]. Researchers at this point discovered themost challenging problem of ER. Perform-
ing comparisons between every entity and all others leads to a quadratic time complexity
of O(n2) [13]. As a response to the complexity inherent in ER tasks, various algorithms
and techniques have been developed to reduce the computational overhead, primarily by
minimizing the number of comparisons and similarity evaluations. One such technique is
known as Blocking, which aims to reduce computational cost by restricting comparisons
to entity profiles deemed most similar. This is achieved by generating signatures, com-
posed of selected portions of attribute values, particularly those representing the most
informative attributes. Subsequently, a method for similarity assessment between entity
pairs within the same block is incorporated into the ER pipeline. This step, referred to
as Entity Matching, determines whether two entities represent a match, a non-match, or
are classified as uncertain [13]. However, with the increasing demand for ER, the need to
process larger andmore complex datasets has escalated, thus presenting significant chal-
lenges in scaling ER to accommodate Big Data environments. In this thesis, we will work
with a pipeline, that shares in commom some of the building blocks that were introduced
in the very first generation.

The 2nd ER generation addressed challenges related to Volume and Veracity by extend-
ing the principles of the 1st generation to Big Data. Techniques such as parallelization and
Map/Reduce [15] were employed to handle blocks in parallel after the Blocking phase,
significantly reducing time complexity [32]. The same approach was applied to Entity
Matching [10], although this introduced load balancing challenges [33]. With the 3rd ER
Generation, the focus shifted to tackling Variety, Volume, and Veracity, where heterogen-
eity and noisy data posed additional challenges. Schema Clustering [24] was introduced

K. Nikoletos 15

AutoER: Auto-Configuring Entity Resolution pipelines

as the first step in the ER pipeline to group schemas based on attribute values rather
than semantics, enhancing precision without sacrificing recall. Block Building and Block
Processing were then introduced to create and refine blocks without schema alignment or
manual intervention. Entity Matching generated a similarity graph, where nodes represent
entities and edges denote similarity scores [36, 37, 62], leading to the final optimization
step, Entity Clustering [27]. This is another building block of the auto configuration we sug-
gest for this task. The 4th ER Generation emerged to address new challenges involving
Velocity, alongside Variety, Volume, and Veracity. As datasets became more dynamic
and streaming in nature, due to the evolving web and increasing applications, the speed
and cost of performing ER required optimization. To reduce the number of comparisons
and resource usage, Progressive ER introduced a pay-as-you-go model, prioritizing the
most valuable comparisons within a given budget. Another advancement, Incremental ER
[25], aimed to minimize update costs in streaming use-cases, such as those provided by
web-based REST APIs. Additionally, Query-driven ER [2] was developed to progressively
resolve entities in response to incoming queries over time [28].

Finally, the last generation, the 5th ER Generation, contains the latest advancements
in ER. The most significant additions and innovations are relevant to the Deep Learning
growth, and the changes in the ML field that it brought. Nowadays, more and more ap-
plications use pre-trained Language Models (LMs) [16, 55], utilize transformers [65], and
the most recent advancements like Large Language Models (LLMs)[12, 11]. Our work will
focus on a pipeline, created for ER that utilizes both pre-trained word- and sentence- LMs.

ER Tools. Several ER tools are designed to require minimal or no configuration. Some
of the most hands-off approaches are described in papers like [38, 43, 68]. For example,
Ditto [38] extends the BERT-based EMTransformer by integrating external, domain-specific
knowledge, such as Part-of-Speech (POS) tagging, and employing data augmentation
techniques to create synthetic training instances. However, Ditto requires configuration
of several deep learning parameters, such as learning rate and epochs. Similarly, Deep-
Matcher [43] is a comprehensive framework for deep learning-based matching algorithms,
supporting various pre-trained static embeddings, including GloVe and FastText, with
FastText as the default choice. While DeepMatcher involves fewer configuration paramet-
ers, users still need to specify word embeddings, and no auto-configuration component
has been proposed. Finally, ZeroER [68] is an unsupervised-learning approach, used for
ER with almost none parameters to be configured.

In this work, we will use one of the most recent tools named pyJedAI [45], that integrates
themost recent advancements described in the 5th generation. pyJedAI is an open-source
framework designed for Clean-Clean ER (CCER), Dirty ER (DER), and Geospatial Inter-
linking, offering a wide range of learning-free methods since its development began in
2017 [50, 53, 45]. Released under the Apache License 2.0, pyJedAI is format-agnostic,
enabling ER on structured, semi-structured, and unstructured datasets, while supporting
diverse scenarios where different formats coexist. Its extensible architecture allows seam-
less integration of algorithms targeting specific workflow steps by using concise interfaces
and wrapper mechanisms. For this reason, we selected this tool as the basis of this
study. This approach has been successfully applied to integrate advanced techniques
such as FAISS [30], FALCONN [3], DeepBlocker [64], and language models like (Sen-
tence)BERT [69]. pyJedAI is holistic in nature, supporting schema-based and schema-
agnostic pipelines, and offers both budget-agnostic (batch) and budget-aware (progress-
ive) execution modes. Furthermore, it is highly efficient in terms of time and memory,
utilizing optimized Python data structures while supporting all major execution modes,
including single-core, multi-core, and massively parallel execution via Apache Spark.

K. Nikoletos 16

AutoER: Auto-Configuring Entity Resolution pipelines

AutoML. Automated Machine Learning (AutoML) has gained significant attention in re-
cent years due to advancements in machine learning (ML) and the increasing demand
for hands-free systems to support both developers and novices in efficiently creating
ML applications. AutoML systems automate the process of selecting and optimizing ML
pipelines, which are essential as different datasets often require distinct configurations.
Leading AutoML systems, such as Auto-WEKA [35], Auto-sklearn [22], TPOT [47], and
Auto-Keras [29], optimize across preprocessors, classifiers, and hyperparameters, thereby
reducing themanual effort involved in pipeline creation. AutoML has evolved through chal-
lenges such as the AutoML competitions by ChaLearn [26], which systematically evalu-
ate AutoML systems under strict time and resource constraints. These systems support
dynamic pipeline construction, including processes like data preparation, feature engin-
eering, model generation, and evaluation. Model generation involves both traditional ML
models (e.g., SVM, KNN) and neural architectures, with optimization techniques classified
into hyperparameter optimization (HPO) and architecture optimization (AO). Neural archi-
tecture search (NAS) is a key component, focusing on automating the design of neural
network architectures [20], further enhancing the capabilities of AutoML in democratizing
machine learning by making it accessible and efficient for users with limited ML expertise.

HPO Frameworks. A number of toolkits have been developed for auto-configuring tasks,
such as Optuna [1], SMAC [39], Hyperopt [6], Autotune [31], and Vizier [61, 23]. These
frameworks utilize various algorithms for parameter sampling, which is the process of se-
lecting combinations of parameters from a predefined search space. For instance, Spear-
mint [59] uses Gaussian Processes, while Hyperopt employs the tree-structured Parzen
estimator (TPE). SMAC [39] introduced a method based on random forests. More recent
frameworks, such as Google Vizier [61, 23] and Tune [31], incorporate pruning algorithms.
These algorithms assess the intermediate outcomes of each trial and terminate those that
seem less promising, thereby accelerating the search process. This is akin to the early-
stopping technique commonly used in various machine learning tasks. For this study, and
to construct the ETEER methodology, Optuna toolkit was selected for the HPO task.

Auto-ER Approaches. There has been limited research on auto-configuring ER pipelines
and ER problems in general. Most existing work on auto-configuring ER focuses on the
Entity Matching step. For instance, the study in [70] introduces a transfer-learning frame-
work that utilizes pre-trained EM models derived from extensive knowledge bases (KBs).
However, this approach is domain-specific, heavily relying on relevant and well-curated
KBs, which limits its applicability in real-world scenarios where such KBs are unavailable.
In contrast, the ETEER methodology is domain-agnostic and can be applied across vari-
ous data types. Another study [48] attempts to construct a pure AutoML Entity Matching
pipeline using auto-sklearn. Their approach differs from ours as auto-sklearn is employed
to predict whether a pair of entities is a match/non-match by transforming text entities
through BERT-based pre-trained models. Lastly, [66] proposes the AutoML-EM frame-
work, which shares similarities with our approach by using AutoML models to predict the
optimal Random Forest configuration. However, this work is limited to Random Forest
models and relies on an active learning and self-training strategy, which necessitates a
human-in-the-loop algorithm when ground truth pairs are scarce.

K. Nikoletos 17

AutoER: Auto-Configuring Entity Resolution pipelines

4. METHODOLOGY

4.1 ETEER pipeline

Figure 4.1: The ETEER pipeline considered in this work.

In this section, we present the ETEER pipeline that will be used in the context of Problem 1
and Problem 2. In general, ETEER pipelines consist of two steps, due to the quadratic
complexity of the brute-force approach:

• Filtering, which reduces the computational cost by identifying a set of promising candid-
ate pairs to be matched.

• Verification, which analytically examines each candidate pair.

Based on recent experimental studies [69], our solution relies on the ETEER pipeline
that is shown in Figure 4.1, which leverages language models. This approach not only
combines high effectiveness with high time efficiency, but also requires the fine-tuning of
a limited set of configuration parameters.

The first step is Vectorization, where the input entities are transformed into embedding
vectors using pre-trained LMs, either static ones like Word2Vec [41] and GloVe [54], or
dynamic ones, like BERT [17] and SentenceBERT [56]. The former are context-agnostic,
assigning each word to the same vector regardless of its meaning, while the latter are
context-aware, generating different embeddings for different meanings of the same word
(e.g., trunk as part of a tree or an elephant). Therefore, selecting the appropriate language
model is crucial for achieving good results. Following [69], we restrict our configurations
to five state-of-the-art SentenceBERT models and two static models, listed in Table 4.1
(Parameter: LM). Describing them in more detail goes beyond the scope of this work.

Note that we follow the schema-agnostic procedure, which simply concatenates all at-
tribute values into a sentence describing each entity. This way, we inherently address
noise in the form of misplaced values, while also achieving very high performance under
versatile settings [69].

The second step is Indexing, which receives as input all embedding vectors of E1 and
organizes them in a data structure that facilitates their retrieval in descending distance
from a given query (i.e., an embedding vector of E2). Based on a recent experimental
study [4], we employ FAISS [18] for this purpose, due to its excellent balance between
effectiveness and time efficiency. No parameter needs to be configured in this step, given
that we employ the configuration returning the exact results.

The third step is Querying, which receives as input all embedding vectors of E2 and uses
each vector/entity as a query to the FAISS index. The result of each query consists of the

K. Nikoletos 18

AutoER: Auto-Configuring Entity Resolution pipelines

Table 4.1: Configuration parameters and their possible values.

Parameters (P) Possible values (V)
Language model (LM) smpnet, st5, sdistilroberta, sminilm, sent_glove, fast-

text, word2vec
k [1, 100] with a step of 1
Clustering algorithm Unique Mapping Clustering, Kiraly Clustering, Con-

nected Components
Similarity Threshold [0.05, 0.95] with a step of 0.05

k most similar entities from E1 in terms of cosine similarity. The k parameter is the sole
configuration parameter of this step, playing a major role in the performance of ETEER.
The higher the value of k, the higher the filtering recall, at the cost of lower precision. Note
that the recall of this step sets the upper limit of the overall ETEER recall, given that the
subsequent steps do not detect new matches. Hence, k serves as the second parameter
to the selected ETEER (Parameter: k).
Note that together, the first three steps implement the Filtering approach, which reduces
the computational cost to the k most similar entities from E1 per entity from E2. This means
that it receives as input the given entity collections and returns as output as set of candidate
pairs P .

The set of candidate pairs P is then transformed into a similarity graph, where every node
is an entity and every edge represents a candidate pair, weighted according to the similar-
ity score returned by FAISS. The similarity graph is bipartite in the Record Linkage settings
we are considering. This transformation is carried out by Matching, the fourth step of our
ETEER pipeline. No configuration parameter is involved in this process.

The final step of the ETEER pipeline is Clustering, which applies bipartite graph match-
ing algorithms to the similarity graph generated by the previous step. Based on a recent
experimental study [49], the three state-of-the-art algorithms listed in Table 4.1 are sup-
ported (Parameter: Clustering). All algorithms are configured by a similarity threshold
(Parameter: Threshold), which prunes edges with a lower weight.
The configuration space of our pipeline is summarized in Table 4.1. Note that grid search
should consider 39,900 different combinations on each dataset in order to maximize F1
(7 LM options × 100 k options × 3 clustering options × 19 threshold options). Our goal
is to develop and apply algorithms that converge to the maximum performance, while
minimizing the trials in this search space.

4.2 Tackling Problem 1

Fine-tuning an ETEER pipeline based on the ground truth comprising all duplicate pairs
is similar to hyperparameter fine-tuning in ML and DL models. The only difference is the
form of the data: in the latter case, the data comes in the form of positive and negative
labelled instances, which is not possible in the former case, due to the extremely large
number of pairs that stem even from relatively small datasets with few thousand entities
in E1 and E2. Besides, the number of positive pairs is linear with respect to the number of
given entities, while all other pairs are negative. Therefore, instead of enumerating and
labelling all possible pairs in the Cartesian product of E1 × E2, hyperparameter fine-tuning
is guided by the F1 score corresponding to the matches generated by each configured

K. Nikoletos 19

AutoER: Auto-Configuring Entity Resolution pipelines

ETEER pipeline. This is the only change that can be applied to existing algorithms for
hyperparameter fine-tuning, yet they have not been applied before to Problem 1.

More specifically, hyperparameter fine-tuning is typically carried out by sampling, which
tries to maximize two goals of auto-configuration [1]: (i) the efficiency in the configuration
strategy, which is the process of determining the set of parameters that should be invest-
igated, and (ii) the efficiency of performance estimation strategy, that estimates the value
that a set of configurations will produce, based on learning curves, and finally determines
the set of parameters that should be discarded.

Sampling can be categorized in two main types: (i) relational sampling is the sampling
that exploits the correlations among the parameters, and (ii) independent sampling that
samples each parameter, independently. The former are not compatible with categorical
variables. As a result, we consider the following four state-of-the-art sampling algorithms,
three are independent and one is relational (assume that d is the dimension of the search
space and n is the number of finished trials):

1. RandomSampler [8], with complexity ofO(d), is an independent sampling technique,
where hyperparameter values are chosen randomly from the specified search space.
This method does not use any prior knowledge or adaptive mechanisms to guide
the search process. Instead, it relies on randomness to explore the search space.
Random sampling achieves high efficiency in many cases because each point in the
search space has an equal probability of being explored. This approach results in
a more uniform coverage of the search space. Even in high-dimensional spaces,
random sampling is more likely to identify near-optimal configurations with fewer
trials, especially when compared to the grid search approach.

2. TPESampler, with complexity of O(d ∗ n ∗ log2n), uses the TPE (Tree-structured
Parzen Estimator) algorithm and utilizes independent sampling [67, 7, 5]. During
each trial, for every parameter, the TPE algorithm fits two Gaussian Mixture Mod-
els (GMMs): l(x) to the set of parameter values with the best objective outcomes,
and g(x) to the remaining parameter values. It then selects the parameter value x
that maximizes the ratio l(x)/g(x). In other words, TPESampler models the distri-
bution of good and bad hyperparameters using non-parametric density estimators,
focusing on promising regions of the search space. By iteratively updating these
models based on observed results, TPESampler needs more trials to explore po-
tentially optimal areas, but has improved search efficiency compared to random or
grid search.

3. QMCSampler (Quasi Monte Carlo Sampler) [8], with complexity of O(d ∗ n), uses
quasi-random methods, specifically low-discrepancy sequences, to enhance the ef-
ficiency of hyperparameter optimization by ensuring uniform coverage of the search
space. Unlike random search, which can have uneven distribution, low-discrepancy
sequences spread points more evenly, avoiding clumps and gaps. This uniformity
increases the probability of finding optimal hyperparameters with fewer trials, par-
ticularly in high-dimensional settings where important dimensions need adequate
sampling.

4. GPSampler (Gaussian Process-based bayesian Sampler) [60, 8], with complexity
of O(n3), is a relational sampler that fits a Gaussian process to the objective func-
tion and optimizes the acquisition function to suggest the next set of parameters.
Bayesian optimization methods, in general, first construct a probabilistic model of

K. Nikoletos 20

AutoER: Auto-Configuring Entity Resolution pipelines

the objective function and then exploit this model to estimate the most promising re-
gions in the search space. The GPSampler uses a Gaussian process to represent
the probabilistic distribution of the objective function, providing flexibility and adapt-
ability. Among various acquisition functions, it employs Log Expected Improvement
(logEI) in combination with Quasi-Monte Carlo (QMC) sampling for optimizing the
acquisition function. Gaussian process-based Bayesian approaches, have proven
highly effective in hyperparameter optimization (HPO) problems, as they leverage
the dependencies between hyperparameters and avoids redundant trials, due to
their probabilistic estimation of the objective function.

To the best of our knowledge, none of these algorithms has been applied to fine-tuning
ETEER pipelines.

4.3 Tackling Problem 2

As explained above, the sampling algorithms are guided by the performance that corres-
ponds to each tested configuration. In the context of Problem 2, though, this approach is
inapplicable, due to the lack of a complete ground truth for the dataset at hand. Neverthe-
less, ETEER fine-tuning can still be modelled as a learning-based task by leveraging the
ground truths from other datasets.

More specifically, we frame our solution to Problem 2 as a regression task: first, we define
a set of features that capture the characteristics of a Record Linkage dataset. Then, these
dataset features are concatenated with four configuration features, which stand for the four
configuration parameters of our ETEER pipeline in Figure 4.1. This means that each fea-
ture vector combines parameter configurations with general characteristics of a particular
dataset. For each feature vector, we apply the respective parameter configuration to a
particular dataset with known ground truth in order to estimate the corresponding target
variable, i.e., the corresponding F1 score. Applying numerous ETEER configurations to
multiple datasets with known ground truth yields a sizeable training set that can be used
for learning a regression model. The learned model is then applied to the feature vectors
extracted from the given dataset, which lacks a ground truth. Again, there is a different fea-
ture vector for each parameter configuration we want to try. The one yielding the highest
predicted F1 score is selected as the optimal configuration for the dataset at hand. To put
this idea into approach, we need to:

1. define the features capturing general characteristics of an ER dataset,

2. define the approach for generating the parameter configurations to be tested,

3. choose the datasets with known ground truth that will generate the training instances,
and

4. apply a learning procedure for training a prediction model.

For Point 3, we choose a set of 11 established datasets for Record Linkage that are publicly
available and accompanied by a complete ground truth. See Section 5 for more details.
We delve into Points 1, 2 and 4 in the following.

K. Nikoletos 21

AutoER: Auto-Configuring Entity Resolution pipelines

4.3.1 Dataset Features

The dataset features used by our approach should adhere to the following principles: (i)
They should be generic, applying seamlessly to any ER dataset, regardless of the corres-
ponding flavor of ER (i.e., Record Linkage, Deduplication or Multi-source ER). (ii) They
should be effective, capturing all aspects of a dataset that might affect the performance
of an ETEER applied to it. (iii) They should be efficient, involving low extraction cost and
overhead, so that it is possible to extract predictions for numerous feature vectors from
the learned model. In this context, we define the following dataset features:

1. Number of entities, i.e., the total number of entities in the dataset (|E1| + |E2| in the
case of Record Linkage datasets).

2. Number of attributes, i.e., the total number of distinct attributes describing all given
entities.

3. Number of distinct values, i.e., the total number of distinct values across all attributes.

4. Number of attribute-value pairs, i.e., the total number of attribute-value pairs in the
dataset.

5. Mean attribute-value pairs per entity, i.e., the average number of attribute-value pairs
per entity.

6. Mean attribute-value pairs per attribute, i.e., the average number of attribute-value
pairs per attribute.

7. Number of missing attribute-value pairs, i.e., the total number of missing attribute-
value pairs in the dataset.

8. Mean distinct values per attribute, i.e., the average number of distinct values per
attribute.

9. Mean total attribute value length per entity, i.e., the average total length of attribute
values per entity.

10. Mean attribute value tokens per entity, i.e., the average number of tokens in attribute
values per entity.

11. Mean distinct values per entity, i.e., the average number of distinct values per entity.

12. Max values per entity, i.e., the maximum number of values for any single entity.

These dataset features are concatenated with four configuration features, as illustrated in
Figure 4.2.

4.3.2 Instance Generation

We follow three different procedures for generating a set of labelling instances from each
dataset:

1. Grid search, which applies all configurations in Table 4.1 to extract the corresponding
F1 score.

K. Nikoletos 22

AutoER: Auto-Configuring Entity Resolution pipelines

Figure 4.2: Joining dataset features with ETEER parameters.

2. Sampling-based search, which applies the three sampling methods described in
Section 4.2.

3. All, which combines the instances generated by grid and sampling-based search.

Among these methods, grid search is expected to involve a much more time-consuming
process, due to the larger number of configurations that it typically considers. However,
the actual run-time of the configurations tested by grid search might be much lower than
that of the configurations proposed by sampling-based search. Most importantly, instance
generation is an offline process that does not affect the prediction time for the learned
model. Therefore, we are mostly interested in the effectiveness of the models learned by
each instance generation approach. This is experimentally assessed in Section 5.

4.3.3 Learning procedure

So far, we described the process for assembling a large set of labelled instances that
associate the dataset and configuration features with the corresponding F1. This process
is applied to datasets D1-D10 described in Section 5.1 except for the dataset is given
as input to be fine-tuned (in a vein similar to leave-one-out cross-validation). For this
dataset, we feed all feature vectors to the trained to retrieve the predicted F1 score per
configuration. To train the prediction model, we consider two learning approaches:

1. Auto-ML. Instead of manually testing several state-of-the-art regression algorithms,
we leverage Auto-ML to automatically train a high-performing regression algorithm.

2. Individual regressors. The following regression algorithms were considered: Linear
Regression, Lasso, Ridge, RandomForest Regressor, Gradient Boosting (XGBoost)
Regressor as well as a Neural Network (NN). The neural network, defined using
PyTorch, is designed with adjustable parameters including the size of the hidden
layer, learning rate, and number of epochs. Optuna [1] conducts a series of trials
(50 in our setup) to identify the optimal hyperparameters that minimize the validation
loss. The neural network architecture consists of an input layer, one hidden layer
with ReLU activation and dropout for regularization, and an output layer. The Adam
optimizer is used for training, and a learning rate scheduler adjusts the learning
rate based on the validation loss. Early stopping is implemented to halt training
when the validation loss no longer improves, ensuring the model does not overfit.

K. Nikoletos 23

AutoER: Auto-Configuring Entity Resolution pipelines

Hyperparameter optimization is performed using the TPESampler algorithm, which
efficiently explored the configuration space we defined for each algorithm. In fact,
the fine-tuning minimized the mean squared error on a validation set derived from
10% of a stratified random sample from the training data. After determining the best
hyperparameters, the model is retrained on the full training set and used to predict
the F1-scores of the test set. This process is applied independently to each dataset.
The only exception is Linear Regression, which is a parameter-free approach.

The training data was preprocessed by scaling and converting categorical variables into
dummy variables to maintain consistency across all datasets.

K. Nikoletos 24

AutoER: Auto-Configuring Entity Resolution pipelines

5. EXPERIMENTS

In this section, we first present our experiments for tackling Problem 1 (Section 4.2), and
then by utilizing all the results produced we proceed on showing the results for tackling
Problem 2 (Section 4.3).

5.1 Experimental setup

All experiments were implemented in Python, v. 3.9. For the implementation of the ETEER
pipeline, we used pyJedAI v. 0.1.8. For the implementation of the regression algorithms,
we used scikit-learn v. 1.4.2, and for the sampling-based configuration search algorithms
we used Optuna v. 3.6.1. To implement the AutoML process, we used auto-sklearn with
the following parameters:

• Time limit in seconds for the search of appropriate models (time_left_for_this_task)
equal to 24 hours.

• Time for a single call in the ML model (per_run_time_limit) equal to 2 hours.

• Memory limit inMB for themachine learning algorithm (memory_limit) equal to 6144*4
MB.

• The number of jobs to run in parallel (n_jobs) was set to 1.

No validation set used on this task, as auto-sklearn creates one internally.

All AutoML experiments were executed on a server running Ubuntu 22.04, equipped with
Intel Xeon E5-4603 v2 @ 2,2GHz and 16 GM RAM. All Optuna, Individual Regressors
approach and pyJedAI experiments were executed on a server running Ubuntu 22.04,
equipped with Intel Core i7-9700K @ 8x 4,9GHz and 68 GB RAM, D11 experiment was
executed in the same server.

Evaluation. The evaluation metrics include mean squared error (MSE), the ratio of the
best-predicted F1-score to the global maximum F1-score. After exploring all Optuna and
Gridsearch trials, the maximum F1-score per dataset, serves as the global best F1-score
(GB-F1). Also, for the evaluation of the predicted configurations we measured the differ-
ence between the predicted and actual best scores. Specifically, this metric will be found
later as F1-Ratio and it is the fraction of ETEER predicted configuration F1 divided by the
GB-F1 for each dataset.

F1-Ratiod =
F1predicted,d
GB-F1d

, ∀d ∈ D

GB-F1d = max
t∈Td

(F1d(t))

(5.1)

Where Td are all trials done ∀d ∈ D and D = {D1, D2, ..., D10}.

K. Nikoletos 25

AutoER: Auto-Configuring Entity Resolution pipelines

Figure 5.1: All dataset features comparison.

Datasets. For Clean-Clean ER, we use 11 real-world datasets that are popular in the
literature [64, 42, 34, 52]. Their technical characteristics are reported in Table 5.1, and all
datasets are publicly available1. D1, which was first used in OAEI 20102, contains restaur-
ant descriptions. D2 encompasses duplicate products from the online retailers Abt.com
and Buy.com [34]. D3 matches product descriptions from Amazon.com and the Google
Base data API (GB) [34]. D4 entails bibliographic data from DBLP and ACM [34]. D5,
D6 and D7 involve descriptions of television shows from TheTVDB.com (TVDB) and of
movies from IMDb and themoviedb.org (TMDb) [46]. D8 matches product descriptions
from Walmart and Amazon [42]. D9 involves bibliographic data from publications in DBLP
and Google Scholar (GS) [34]. D10 interlinks movie descriptions from IMDb and DBpe-
dia [50], including a different snapshot of IMDb than D5 and D6. Finally, D11 matches
two different versions of DBpedia that chronologically differ by 3 years and will be used
as a scalability test in our evaluation. Figure 5.1 explores the dataset features extracted
from each dataset, illustrating that D2 through D6 exhibit similar feature values, whereas
D8, D9, D10, and particularly D11 differ significantly, with D11 representing a completely
distinct feature area.

1https://zenodo.org/records/10059096
2http://oaei.ontologymatching.org/2010

K. Nikoletos 26

https://zenodo.org/records/10059096
http://oaei.ontologymatching.org/2010

AutoER: Auto-Configuring Entity Resolution pipelines

Table 5.1: Datasets used in our experimental analysis.

Dataset Names S1 S2 #Duplicates
D1 Restaurants1-Restaurants2 340 2,257 89
D2 Abt-Buy 1077 1,076 1,076
D3 Amazon-Google Products 1,355 3,040 1,103
D4 DBLP-ACM 2,617 2,295 2,225
D5 IMDB-TMDB 5,119 6,057 1,969
D6 IMDB-TVDB 5,119 7,811 1,073
D7 TMDB-TVDB 6,057 7,811 1,096
D8 Walmart-Amazon 2,555 22,075 853
D9 DBLP-Google Scholar 2,517 61,354 2,309
D10 IMDB-DBpedia 27,616 23,183 22,864
D11 DBpedia 1,190,734 2,164,041 892,579

5.2 Experiments with Available Ground-truth [Problem 1]

We evaluated the performance of Optuna using the four available samplers discussed in
Section 4.2: TPESampler, RandomSearchSampler, QMCSampler, and GPSampler. Op-
tuna was configured to run 100 trials per dataset, adhering to the recommendations from
the Optuna documentation3. To analyze the convergence behavior of each sampler, we
performed experiments with five different random seeds, varying the maximum number
of trials from 5 to 100 in increments of 5. The objective was to determine the number of
trials needed to find a near-optimal solution. Figure 5.2 illustrates the convergence ana-
lysis of each sampler across all datasets. The y-axis shows the average of the maximum
F1-scores achieved per sampler. This ”maximum” refers to the highest F1-score within
each set of trials (5, 10, ..., 100), and the ”average” is computed across five different ran-
dom seeds, providing an average of these maximum scores. The x-axis represents the
different sets of trials evaluated.

Figure 5.2: Samplers F1 convergence.

The number of trials in Optuna is a user-defined parameter, and Optuna will execute ex-
actly the number of trials specified. Convergence was generally observed around 20 trials

3https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

K. Nikoletos 27

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

AutoER: Auto-Configuring Entity Resolution pipelines

for most datasets, except for D1, D6, and D8. Consequently, with 20 trials, the ETEER
methodology can offer a sufficiently optimal solution when a ground truth is available. Ad-
ditionally, the figure indicates that there is no significant performance difference among the
Optuna samplers, as most exhibit similar behavior, with GPSampler showing marginally
better results in some cases.

Figure 5.3: Samplers F1-Ratio heatmaps.

To benchmark the Optuna approach, we also conducted an exhaustive grid search for
each dataset. The search space, detailed in Table 4.1, explores the Cartesian product of
all parameters, resulting in a total of 7 × 3 × 19 × 100 = 39, 900 possible configurations.
In contrast, using Optuna, and more generally any hyper-parameter optimization (HPO)
framework with available ground-truth, proves to be highly efficient. This is further sup-
ported by Figure 5.3, where we observe the F1-Ratio per trial and dataset. In most cases,
we begin with an F1-Ratio above 50%, and within 10 to 20 trials, we achieve an F1-Ratio
of over 80 to 90%. Notably, in datasets like D1 and D8, samplers achieve even higher
F1-scores compared to the exhaustive grid search, which required 39,900 evaluations
per dataset. This represents an acceleration in obtaining near-optimal configurations by
approximately 99.95%, or in other words, using the ETEER approach allows us to find
near-optimal solutions in 99.95% fewer trials than a brute-force solution.

5.3 Experiments with Missing Ground-truth [Problem 2]

As outlined in Section 4.3.3, when the ground-truth is not available, we employed two
different approaches. The primary strategy for tackling Problem 2 was to utilize the trials
conducted for Problem 1, in conjunction with a set of data features extracted from the

K. Nikoletos 28

AutoER: Auto-Configuring Entity Resolution pipelines

datasets to be matched. We organized the experiments for this task by first dividing the
trials from Problem 1 into three distinct categories:

• Optuna, which comprises the combined trials from all four Optuna samplers;

• Gridsearch, which consists of all trials from the comprehensive grid search bench-
marking; and

• All, which is the amalgamation of both the Optuna and Gridsearch trials.

Using these three sets, we trained models on each set following the two learning pro-
cedures described in Section 4.3.3. Specifically, we obtained 52,500 trials from each
sampler, totaling 5*52,500 = 210,000 trials for the Optuna set. The Gridsearch set con-
tained 399,000 trials (39,900 trials for each of the 10 datasets). Combining these, the All
set comprised 609,000 trials. A visualization showing this exact distribution of the train-
ing instances can be found in Figure 5.4. For all the training experiments, trials with an
F1-score of zero were excluded from the training sets. Additionally, duplicate trials, where
samplers proposed configurations already covered by the grid search, were also removed
from the training sets.

Figure 5.4: All trials training set distribution.

5.3.1 AutoML learning procedure

Using auto-sklearn4, we conducted experiments by withholding one dataset as the test set
while training the AutoML models on all remaining datasets. The results of this approach
are summarized in Table 5.2, where we present the best experiments for each dataset.
The column labeled Test set indicates the dataset used as the test set, while all others
served as training sets. The Trials column lists the set of trials used for each experiment.
Predicted F1 refers to the actual F1-score of the predicted configuration, measured using
pyJedAI.GB-F1 represents the highest F1-score obtained by anymethod for each dataset,
and F1-Ratio measures how close the ETEER prediction was to the best F1-score. See
representations 5.1 for the definitions of these terms.

Among all AutoML attempts, implementations of Gradient Boosting and Extra Trees mod-
els consistently showed the best performance. Additionally, using the All trials set yielded
the best results for 6 out of 10 datasets. However, it is also notable that the Optuna trials
sets produced the best results in 4 out of 10 datasets.

4https://automl.github.io/auto-sklearn

K. Nikoletos 29

https://automl.github.io/auto-sklearn

AutoER: Auto-Configuring Entity Resolution pipelines

Table 5.2: Learning procedure 1 (AutoML) results. AutoGB:Gradient Boosting, AutoRF: Ranfom
Forest, AutoET:Extra Trees

Test set Trials Regressor Predicted F1 GB-F1 F1-Ratio
D1 optuna AutoET 54.49 78.43 0.69
D2 all AutoGB 85.02 85.85 0.99
D3 all AutoGB 57.42 59.19 0.97
D4 all AutoRF 98.45 98.60 1.00
D5 optuna AutoET 75.39 78.92 0.96
D6 optuna AutoET 50.21 60.42 0.83
D7 all AutoGB 57.57 67.76 0.85
D8 all AutoGB 38.09 49.53 0.77
D9 optuna AutoET 94.39 94.92 0.99
D10 all AutoGB 55.40 56.12 0.99

The configurations predicted by AutoML achieved near-optimal F1-scores, particularly for
datasets D2, D3, D4, D5, D9, and D10, with the minimum F1-Ratio being 69% ”close”
to the best F1-score. To further illustrate the results of this learning procedure, Figure
5.5 provides a comparative analysis of all datasets across all trial sets. Some variations
between the sets of the training trials, can be noticed as they do not exhibit totally similar
performance. For example Gridsearch in D8, reaches a quite low F1-score. Optuna trials
dataset seem to have the most robust performance, producing always a high F1-score.
As, it will later be presented in Section 5.3.2, employing other algorithmic approaches like,
deep learning and Linear Regression, yields better results. For D4, ETEER achieves an
optimal score, meaning that it suggests a pipeline, that yields the GB-F1.

Figure 5.5: AutoML F1-scores.

It is worth noting that the overall runtime and the runtime per model, which are auto-sklearn
parameters, are dependent to the resulting performance. More time provided will result
probably in an even better model selected. In our experiments, we used the predefined

K. Nikoletos 30

AutoER: Auto-Configuring Entity Resolution pipelines

time limits and did not further investigate the impact of longer runtimes on AutoML’s ability
to find the optimal model.

5.3.2 Individual regressors learning procedure

In a different manner, we also employed another learning procedure with quite a different
methodology. We tested classic regressors provided from sklearn open-source python
toolkit, while also created a naive pyTorch5 Neural Network to test it for this task. A valid-
ation set of size 10% from all training data trials is created, and using this we try to minimize
the MSE using Optuna as a HPO tool. To better understand this technique please revisit
Section 4.3.3 and Learning Procedure 2. The exact configurations tested can be found in
Appendix and Table 4.1.

Table 5.3: Learning Procedure 2 results (Individual regressors).

Test set Trials Regressor Predicted F1 GB-F1 F1-Ratio
D1 optuna RFR 56.77 78.43 0.72
D2 gridsearch NN 85.40 85.85 0.99
D3 gridsearch XGB 56.88 59.19 0.96
D4 all NN 98.51 98.60 1.00
D5 optuna RFR 76.96 78.92 0.98
D6 optuna XGB 51.81 60.42 0.86
D7 all RFR 64.24 67.76 0.95
D8 all RFR 40.78 49.53 0.82
D9 all RFR 94.37 94.92 0.99
D10 all LR 55.80 56.12 0.99

Table 5.3, shows the performance of this learning procedure. Random Forest is shown to
be quite effective. Similar with AutoML experiment, All training set yields in 5 out of 10 the
best results. In a same way like the previous experiment, we provide Figure 5.6, where
we notice no big difference between sets of trials. It is now evident that no matter the trials
set we will get a similar score, making Optunas trials set, really appealing as it has less
than half the size of All trials set.

In this scenario, we observe a more balanced distribution in both the performance across
different datasets and the utilization of the various training instances (all, optuna, grid-
search). All training sets, as illustrated in Figure 5.4, exhibit comparable performance.
However, D1 proves to be the most challenging dataset for the ETEER methodology, as
it consistently yields the lowest F1-Ratio.

This technique, comparedwith AutoML, which encompasses a broader range of algorithmic
methods—from simple Linear Regression and Decision Trees to more complex models
such as Deep Learning—achieves greater performance and demonstrates resilience to
varying data specifications. However, it is more computationally expensive, as it requires
conducting a larger number of experiments, unlike AutoML, which offers a more stream-
lined, one-stop solution.

5https://pytorch.org

K. Nikoletos 31

https://pytorch.org

AutoER: Auto-Configuring Entity Resolution pipelines

Figure 5.6: Individual regressors F1-scores.

5.3.3 Feature importance

Both AutoML and Individual regressors learning procedures do differentiate the import-
ance of the dataset features. To better understand the predictions made, we did an ex-
tensive feature importance analysis based on permutation importance provided be sk-
learn. For each experiment separately (for every dataset D and for all training trials sets)
we calculated feature importance and created an average importance per feature. The
results of this analysis are presented in Figure 5.7, which shows the average permutation
importance per feature calculated using the AutoML approach, and in Figure 5.8, where
we examined the average importance per feature generated by all sklearn regressors,
excluding the Neural Network.

Figure 5.7: AutoML feature importance.

K. Nikoletos 32

AutoER: Auto-Configuring Entity Resolution pipelines

Figure 5.8: Individual regressors feature importance.

The findings of this study can be summarized in the below remarks:

• [Dataset features] described in Section 4.3.1 have an importance score of zero.
This indicates that their impact on training and predictions is weak or even non-
existent. This result is theoretically expected, as the training instances have a large
distribution across the four main ETEER parameters, while each dataset feature
has only 10 distinct values. With a total of 609,000 training instances, each feature
described in Section 4.3.1 takes only 10 distinct values. Consequently, decision
tree-based algorithms are unlikely to split based on these features, and linear re-
gression assigns a weight close to zero to them, as they do not provide useful in-
formation. While this observation will not be explored further in this thesis, it should
be addressed in future iterations of the ETEER methodology.

• [Parameter: LM] is the most impactful parameter in the individual regressors ap-
proach and the second most impactful in AutoML. This is due to the fact that chan-
ging the embedding representation between models like BERT and SentenceBERT
results in significantly different entity representations.

• [Parameter: Clustering] is the most impactful parameter in the AutoML approach
and the second most impactful in individual regressors. This is because clustering
is a critical step in the ETEER process, and changing the clustering algorithm leads
to a different final step and the application of a totally different algorithm.

• [Parameter: Threshold] also plays a significant role, as setting an extremely high
or low threshold can drastically alter the performance of entity resolution pipelines.
Setting low threshold means that more entities will be marked as matches, whereas
setting it high will probably miss some real matching pairs.

• [Parameter: K] is the least important parameter, according to the findings. This is
because FAISS identifies the top kmost similar candidates per entity, and increasing
k has minimal impact, as most entities have only a few true matches. Therefore,
increasing k does not meaningfully affect the results.

K. Nikoletos 33

AutoER: Auto-Configuring Entity Resolution pipelines

5.3.4 Scalability test

To test the scalability of the ETEER methodology, we applied it to the DBPedia data-
set (D11), as described in Section 5.1. DBPedia is one of the largest and most widely
used datasets in the ER research literature. The ETEER learning procedure employed is
AutoML, with the same settings as in the previous experiments.

Briefly, we first combined all grid search configurations with the features of the DBPedia
dataset, resulting in a test set containing 39,900 possible configurations. Next, we trained
the AutoML model using the training instances from all datasets (D1, ..., D10) and more
specifically from those produced with Optuna. With this model, we predicted the F1-score
for each configuration in the DBPedia test set. From the resulting set, ETEER will sug-
gest the top-N (N=1 in general) configuration having the highest predicted F1-scores and
will test it in real settings to measure the actual F1-score the suggested configuration.
For robustness purposes, we will show the top five (N=5) configurations with the highest
predicted F1-scores. The results are presented in Table 5.4.

Table 5.4: Top-5 ETEER configurations proposed for DBPedia.

TopN LM K Clustering Threshold F1 Time (s) Time (h)
1 st5 3 Kiraly Approximate 0.05 84.84 44,260 12.29
2 st5 4 Kiraly Approximate 0.05 84.85 44,002 12.22
3 st5 2 Kiraly Approximate 0.05 84.86 45,914 12.75
4 st5 5 Kiraly Approximate 0.05 84.84 49,334 13.70
5 st5 6 Kiraly Approximate 0.05 84.84 53,496 14.86

Time in Table 5.4 refers to pyJedAI runtime. Where LM, K, Clustering and Threshold con-
stitute the suggested configuration. F1 is the score measured in DBPedia after executing
pyJedAI under this configuration.

The results are remarkably surprising, as we achieved the best F1-score, for DBPedia,
known to date. Furthermore, not only did the top-ranked pipeline perform well, but all top
five pipelines suggested by ETEER captured the underlying distribution effectively. For
instance, a well-chosen clustering algorithm, combined with an appropriate threshold and
a robust language model, forms the foundation of a strong pipeline, while the parameter
k played a relatively minor role.

K. Nikoletos 34

AutoER: Auto-Configuring Entity Resolution pipelines

6. CONCLUSIONS AND FUTURE WORK

This thesis proposes a solution to an underexplored ER area. Our vision is to create ER
pipelines that provide hands-off solutions, beneficial for both experts and novice users. By
simply running a black-box ER solution, we have managed to address real-world use-case
scenarios (with and without ground truth) and tested our methodologies on a broad range
of datasets commonly used in the research community. Through thorough experimenta-
tion, we covered the spectrum of HPO algorithms in conjunction with ER and presented
an alternative solution.

The goals and contributions of this thesis can be summarized in two key points:

(i) The development of a unified framework that implements the ETEER methodology.

(ii) The hands-off construction and configuration of complex, end-to-end pipelines, which
can be built by this framework.

With these two primary directions, our objective has been to democratize ER solutions by
leveraging open-source ER tools and reducing the complexity of using such tools.

Future Work. There are several potential improvements to the ETEER methodology.
First, addressing the feature importance limitations in our approach would be a signific-
ant enhancement. Additionally, a major future advancement would involve integrating
increasingly complex pipelines. The pyJedAI toolkit, which was used in this thesis, sup-
ports two fundamentally different workflows: the Blocking workflow and the Similarity Joins
workflow. ETEER should explore these diverse workflows to offer solutions for a broader
range of data variations. Finally, the development of a demo application, serving as a
component to pyJedAI, would be a valuable addition. This application would accept an en-
tity collection—whether Clean-Clean or Dirty ER—and return an appropriate ER pipeline,
aligning with the ultimate goal of this thesis.

K. Nikoletos 35

AutoER: Auto-Configuring Entity Resolution pipelines

ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

AO Architecture Optimization

AutoML Automated Machine Learning

CCER Clean-Clean ER

DER Dirty ER

ER Entity Resolution

ETEER End-To-End Entity Resolution

GB Gradient Boosting

HPO Hyper-Parameter Optimization

KNN K-Nearest Neighbor

LM Language Model

LLM Large Language Model

LR Linear Regressor

ML Machine Learning

NN Neural Network

QMC Quasi-Monte Carlo

RFR Random Forest Regressor

SVM Support Vector Machine

K. Nikoletos 36

AutoER: Auto-Configuring Entity Resolution pipelines

APPENDIX

Table 6.2: Parameters Tested for Each Regression Method.

Regressor Parameter Search Space
Lasso alpha LogUniform(10−4, 101)
Ridge alpha LogUniform(10−4, 101)
LR - -

XGBR

n_estimators {100, ..., 1000} ⊆ Z
max_depth {3, ..., 10} ⊆ Z
learning_rate LogUniform(10−3, 10−1)
subsample Uniform(0.5, 1.0)
colsample_bytree Uniform(0.5, 1.0)
gamma {0, ..., 5} ⊆ Z
reg_alpha LogUniform(10−2, 102)
reg_lambda LogUniform(10−2, 102)

RFR

n_estimators {100, ..., 1000} ⊆ Z
max_depth {3, ..., 10} ⊆ Z
min_samples_split {2, ..., 20} ⊆ Z
min_samples_leaf {1, ..., 20} ⊆ Z
max_features {sqrt, log2}

NN
hidden_dim {16, ..., 128} ⊆ Z
lr LogUniform(10−5, 10−2)
num_epochs {2, ..., 50} ⊆ Z

K. Nikoletos 37

AutoER: Auto-Configuring Entity Resolution pipelines

BIBLIOGRAPHY

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In SIGKDD, pages 2623–2631. ACM, 2019.

[2] Hotham Altwaijry et al. Query: A framework for integrating entity resolution with query processing.
PVLDB, 2015.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt. Practical and
optimal LSH for angular distance. In NIPS, 2015.

[4] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst., 87, 2020.

[5] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search, 2012.

[6] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. TProc. of the 30th International Conference on
Machine Learning (ICML 2013), June 2013, pp. I-115 to I-23., 2013.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter op-
timization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(10):281–305, 2012.

[9] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching, ten years later.
PVLDB, 4(11):695–701, 2011.

[10] Christoph Böhm et al. LINDA: distributed web-of-data-scale entity matching. In CIKM, pages 2104–
2108, 2012.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clem-
ens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020.

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Brad-
bury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sank-
aranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
JasonWei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling
language modeling with pathways. J. Mach. Learn. Res., 24(1), mar 2024.

[13] Peter Christen. Data Matching. Springer, 2012.

[14] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Stefanidis.
An overview of end-to-end entity resolution for big data. ACMComput. Surv., 53(6):127:1–127:42, 2021.

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, 2008.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bid-
irectional transformers for language understanding. In North American Chapter of the Association for
Computational Linguistics, 2019.

K. Nikoletos 38

AutoER: Auto-Configuring Entity Resolution pipelines

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bi-
directional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics, 2019.

[18] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. CoRR, abs/2401.08281,
2024.

[19] Vasilis Efthymiou, Ekaterini Ioannou, Manos Karvounis, Manolis Koubarakis, Jakub Maciejewski, Kon-
stantinos Nikoletos, George Papadakis, Dimitrios Skoutas, Yannis Velegrakis, and Alexandros Zea-
kis. Self-configured entity resolution with pyjedai. In Jingrui He, Themis Palpanas, Xiaohua Hu, Al-
fredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, and
Rakesh Agrawal, editors, IEEE International Conference on Big Data, BigData 2023, Sorrento, Italy,
December 15-18, 2023, pages 339–343. IEEE, 2023.

[20] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: a survey. J. Mach.
Learn. Res., 20(1):1997–2017, jan 2019.

[21] Nikolaos Fanourakis, Vasilis Efthymiou, Dimitris Kotzinos, and Vassilis Christophides. Knowledge
graph embedding methods for entity alignment: experimental review. Data Min. Knowl. Discov.,
37(5):2070–2137, 2023.

[22] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG], 2020.

[23] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, pages 1487–1495. ACM, 2017.

[24] Behzad Golshan, Alon Halevy, George Mihaila, and Wang-Chiew Tan. Data integration: After the
teenage years. In PODS, pages 101–106, 2017.

[25] Anja Gruenheid, Xin LunaDong, andDivesh Srivastava. Incremental record linkage. PVLDB, 7(9):697–
708, 2014.

[26] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir Jajetic, James Robert
Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle Sebag, Alexander Statnikov, Sébastien
Treguer, and Evelyne Viegas. A brief review of the chalearn automl challenge: Any-time any-dataset
learning without human intervention. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors,
Proceedings of the Workshop on Automatic Machine Learning, volume 64 of Proceedings of Machine
Learning Research, pages 21–30, New York, New York, USA, 24 Jun 2016. PMLR.

[27] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. Framework for evaluating clus-
tering algorithms in duplicate detection. Proc. VLDB Endow., 2(1):1282–1293, 2009.

[28] Ekaterini Ioannou and Minos Garofalakis. Query analytics over probabilistic databases with unmerged
duplicates. TKDE, 2015.

[29] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search sys-
tem. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018.

[30] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Trans.
Big Data, 7(3):535–547, 2021.

[31] Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua Griffin, and Yan Xu. Autotune: A
derivative-free optimization framework for hyperparameter tuning. In SIGKDD, pages 443–452, 2018.

[32] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient deduplication with hadoop. PVLDB,
5(12):1878–1881, 2012.

[33] Lars Kolb, Andreas Thor, and Erhard Rahm. Load balancing for mapreduce-based entity resolution.
In ICDE, pages 618–629, 2012.

[34] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution approaches on real-
world match problems. Proc. VLDB Endow., 3(1):484–493, 2010.

K. Nikoletos 39

AutoER: Auto-Configuring Entity Resolution pipelines

[35] Lars Kotthoff, Chris J. Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka. J. Mach. Learn. Res.,
18:25:1–25:5, 2017.

[36] Simon Lacoste-Julien et al. Sigma: simple greedy matching for aligning large knowledge bases. In
KDD, pages 572–580, 2013.

[37] Juanzi Li et al. Rimom: A dynamic multistrategy ontology alignment framework. TKDE, 21(8):1218–
1232, 2009.

[38] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. Deep entity matching
with pre-trained language models. Proc. VLDB Endow., 14(1):50–60, 2020.

[39] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization. Journal of Machine Learning Research, 23:1–9, 2022.

[40] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with cupid. In
VLDB, pages 49–58, 2001.

[41] TomásMikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

[42] Sidharth Mudgal et al. Deep learning for entity matching: A design space exploration. In SIGMOD,
pages 19–34, 2018.

[43] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan,
Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learning for entity matching: A design
space exploration. In Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD ’18, page 19–34, New York, NY, USA, 2018. Association for Computing Machinery.

[44] Konstantinos Nikoletos, Ekaterini Ioannou, and George Papadakis. The five generations of entity res-
olution on web data. In Kostas Stefanidis, Kari Systä, Maristella Matera, Sebastian Heil, Haridimos
Kondylakis, and Elisa Quintarelli, editors, Web Engineering, pages 469–473, Cham, 2024. Springer
Nature Switzerland.

[45] Konstantinos Nikoletos, George Papadakis, and Manolis Koubarakis. pyJedAI: a lightsaber for Link
Discovery. In Demo at International Semantic Web Conference., ISWC, 2022.

[46] Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. Embedding-assisted entity resolution for
knowledge graphs. In ESWC, volume 2873, 2021.

[47] Randal S. Olson and Jason H. Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In AutoML@ICML, 2016.

[48] Matteo Paganelli, Francesco Del Buono, Francesco Guerra, Marco Pevarello, and Maurizio Vincini.
Automated machine learning for entity matching tasks. In Proceedings of the 24th International Con-
ference on Extending Database Technology (EDBT), Short Papers, pages 325–330. OpenProceed-
ings.org, 2021.

[49] George Papadakis, Vasilis Efthymiou, Emmanouil Thanos, Oktie Hassanzadeh, and Peter Christen.
An analysis of one-to-one matching algorithms for entity resolution. VLDB J., 32(6):1369–1400, 2023.

[50] George Papadakis et al. Three-dimensional entity resolution with jedai. Inf. Syst., 93, 2020.

[51] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. Blocking and filter-
ing techniques for entity resolution: A survey. ACM Comput. Surv., 53(2):31:1–31:42, 2021.

[52] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Comparative analysis of
approximate blocking techniques for entity resolution. PVLDB, 9(9), 2016.

[53] Marios Papamichalopoulos et al. Three-dimensional geospatial interlinking with jedai-spatial. CoRR,
abs/2205.01905, 2022.

[54] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1532–1543, 2014.

K. Nikoletos 40

AutoER: Auto-Configuring Entity Resolution pipelines

[55] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Conference on Empirical Methods in Natural Language Processing, 2019.

[56] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In EMNLP-IJCNLP, pages 3980–3990, 2019.

[57] Alieh Saeedi, Eric Peukert, and Erhard Rahm. Comparative evaluation of distributed clustering
schemes for multi-source entity resolution. In ADBIS, volume 10509, pages 278–293, 2017.

[58] Alieh Saeedi, Eric Peukert, and Erhard Rahm. Incremental multi-source entity resolution for knowledge
graph completion. In ESWC, volume 12123, pages 393–408, 2020.

[59] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[60] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[61] Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, and Daniel Golovin. Open source vizier:
Distributed infrastructure and api for reliable and flexible black-box optimization. In Automated Machine
Learning Conference, Systems Track (AutoML-Conf Systems), 2022.

[62] Fabian M. Suchanek et al. PARIS: probabilistic alignment of relations, instances, and schema. PVLDB,
5(3):157–168, 2011.

[63] Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami, and
Chengkai Li. A benchmarking study of embedding-based entity alignment for knowledge graphs. Proc.
VLDB Endow., 13(11):2326–2340, 2020.

[64] Saravanan Thirumuruganathan et al. Deep learning for blocking in entity matching: A design space
exploration. PVLDB, 14(11):2459–2472, 2021.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[66] Pei Wang, Weiling Zheng, Jiannan Wang, and Jian Pei. Automating entity matching model develop-
ment. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 1296–1307,
2021.

[67] Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance, 2023.

[68] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan. Zeroer:
Entity resolution using zero labeled examples. In SIGMOD, pages 1149–1164, 2020.

[69] Alexandros Zeakis, George Papadakis, Dimitrios Skoutas, and Manolis Koubarakis. Pre-trained em-
beddings for entity resolution: An experimental analysis. Proc. VLDB Endow., 16(9):2225–2238, 2023.

[70] Chen Zhao and Yeye He. Auto-em: End-to-end fuzzy entity-matching using pre-trained deep models
and transfer learning. In The World Wide Web Conference, WWW ’19, page 2413–2424, New York, NY,
USA, 2019. Association for Computing Machinery.

K. Nikoletos 41

	CONTENTS
	INTRODUCTION
	PROBLEM DEFINITION
	RELATED WORK
	METHODOLOGY
	ETEER pipeline
	Tackling Problem 1
	Tackling Problem 2
	Dataset Features
	Instance Generation
	Learning procedure

	EXPERIMENTS
	Experimental setup
	Experiments with Available Ground-truth [Problem 1]
	Experiments with Missing Ground-truth [Problem 2]
	AutoML learning procedure
	Individual regressors learning procedure
	Feature importance
	Scalability test

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	APPENDIX
	REFERENCES

