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ABSTRACT

Morley’s categoricity theorem stands as a cornerstone in model theory, with many experts
considering it the beginning of modern model theory. A complete theory 7" in a countable
language is x-categorical if it has a unique (up to isomorphism) model of cardinality «.
Morley, with his PhD thesis "Categoricity in Power”, published in 1962, positively answered
the conjecture of Lo$ stating that if 7" is k-categorical for some uncountable «, then it is «-
categorical for any uncountable . This theorem is now known as the categoricity theorem.
The ideas used to prove it now play a central role in model theory and still shape the
direction of the field. We will follow a recent proof given by Lachlan and Baldwin, which
presents many ideas and definitions that are still at the forefront of research, the way it is
presented in ” Model Theory: An Introduction” by David Marker.

SUBJECT AREA: Model Theory

KEYWORDS: Uncountably Categorical Theory, Algebraic Closure, Type






NEPIAHWH

To Bewpnua KaTnyopIlkoTNTag Tou Morley atroTeAsi akpoywviaio AiBo otn Bewpia povTé-
Awv, pe TTOAAOUG €18IKOUG va TO Bewpoulv TNV apxr TG ouyXpovng Bewpiag HOVTEAWV.
Mia TTAfpnG Bewpia T o€ pia apIBOuNoIun YAWOOA gival k-KATNYOpPIKA €AV €xEl €va povadi-
KO (TTPOG I00MOP@PIoHO) HoVTEAD TTANBIKOTNTAG K. O Morley, pe Tn d1daKTOPIKN TOU dIATPIRN
"Categoricity in Power”, TTou dnuooieubnke 1o 1962, amrdvrnoe BETIKA OTnV €IKAoia Tou L.os
N otroia dNAwve OTI av T’ €ival K-KATAYOPIKH YA KATTOIO un aplOunioiyo TAnB8dapibuo x, 1ot
€ival k-KaTNYOPIKN YIa OTTOIOdATTOTE N apIBunaoiuo TANBApPIBUOo . AuTd To Bewpnua eival
TTA0oV YyVwoTO wg 10 Bewpnua katnyopikdtnTag. O1 10€€C TTOU XpNOIPOoTToINONKaV yia va
TO atmodeifouv Traifouv TWPa KEVTPIKO POA0 OTn Bewpia povTEAWV Kal eEakoAouBouv va
KaBopidouv Tov TOpEd. ©Oa aKOAOUBOOUNE JIa JETAYEVEDTTEPN ATTOBEIEN TTOU OOONKE ATTO
Toug Lachlan kai Baldwin, n otroia Tapouciddel TTOAAEG IDEEG KAl OPIOUOUG TTOU EEAKOAOU-
Bouv va gival oTnv aixunf TG €peuvag, OTTWG TTapouaciadetal oTo BIBAio "Model Theory: An
Introduction” Tou David Marker.

OEMATIKH MNMEPIOXH: Otwpia MovTéwv

AEZEIX KAEIAIA: YtrepapiBunioiun Katnyopiky Ocswpia, AAyeBpikry KAsiotdotnTta, MNoAu-
TUTTOG
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Morley’s Categoricity Theorem

1. INTRODUCTION

In order to state what Morley’s theorem is about, we need to establish the basic notation
and tools we will use. The following is a short introduction to first-order logic, covering the
basics usually taught in an undergraduate course before we can jump into more advanced
terminology at the end of this chapter.

1.1 Language, Structures, Truth

Definition 1.1.1. A first-order language L is defined as the collection of:

* a set of function symbols F and positive integers n, for each f € F;
+ a set of relation symbols R and positive integers ny for each R € R;

+ a set of constant symbols C. The following sets are common for all first-order lan-
guages.

a set of the logical symbols =, —, A, VvV, —,V, 3.

+ asetof variables V = {vy,...,v,...}
Notes:

1. The natural numbers n; and ny denote the arity of the functional or relational symbol.

2. Instead of using the variables names in V', we use sometimes use z, y, z for conve-
nience.

Definition 1.1.2. An L-structure M defined as the collection of:
i) a nonempty set M called the universe of M;
plus the interpretation of the non-logical symbols of £ over M:

ii) afunction fM: M — M foreach f € F;
iii) aset RM C M"= foreach R € R;

iv) an element c™ € M foreach c € C.
We refer to fM, RM, and ¢ as the interpretations of the symbols f, R, and c in M, re-
spectively. The interpretation of logical symbols =, —, A, v, =, V¥, 3 does not vary in differ-

ent structures, in fact they have the same meaning we are all used to across all structures
described in a first-order language. Lastly the interpretation of variables is a function from

15 F. Apostolou



Morley’s Categoricity Theorem

VY — M but it is not fixed for a structure and we will always declare how we interpret a set
of variables.

We use combinations of the symbols of £ to form terms. Their interpretation in any struc-
ture can be informally described as names for some elements of M, in the case when no
variable is used in the combination, or when variables are used, as names of functions
from M™ — M for m € N.

Definition 1.1.3. The set of £-terms is the smallest set 7 such that

i) ¢ € T for each constant symbol ¢ € C,
ii) each variable symbol v; € 7 fori=1,2,...,
iii) ift1,...,t,, € Tand f € F,then f(ty,...,tn,) € T.

Example 1.2. Let £ = {+,-,0, 1} be the language of rings. In the structure of reals, one
can think of the term 1 + 1 as a name for the element 2, while v; + v; + v; is a name for
the function z — 3x.

Definition 1.2.1. We will now define a term given an interpretation of its variables, like
giving input to a function. Let ¢ be a term, we will denote (v;,, ..., v;,, )the variables used
in ¢t (note this might be empty), and @ = (a4,...,a,,) € M how we will interpret those
variables. Let s be a sub-term of ¢, we inductively define s (a) as follows:

(i) If s is a constant symbol ¢, then s*(a) = M.
(ii) If sis the variable v;,, then sM(a@) = a;.

(iii) If s is the term f(t,...,t,,), where f is a function symbol of £ and ¢,,... ¢, are
terms, then
M@) = @), ..., 1 (@)

77’Lf

Terms are a stepping stone to defining formulas and the notion of truth in a structure.

Definition 1.2.2. We say that ¢ is an atomic £-formula if ¢ is either

(i) t, = to, where t; and t, are terms, or

(i) R(t1,...,tn,), Where R € Rand ty,...,t,, are terms.
The set of £L-formulas is the smallest set VW containing the atomic formulas such that

(i) if € W, then ¢ € W,
(i) if pand ¢ € W, then (¢ A¢p) € W and (¢ V¢p) € W, and
(iii) if o € W, then (Jv;)(¢) and (Yv;)(¢) are in W.

F. Apostolou 16



Morley’s Categoricity Theorem

We define the scope of a quantifier (Vv;)(¢) as the all the variables v; found in ¢. A variable
v; that appears in a formula v is bound if it is in the scope of a quantifier; otherwise, it is
considered free. A sentence is a formula that has only bounded variables.

Definition 1.2.3. Let ¢ be a formula with free variables from v = (v;,,...,v;,), and let
a=(a,...,a;,) € M™. We inductively define M |= ¢(a) as follows:

(i) If ¢ ist; = ty, then M | ¢(a) if t{(a) = t3"(a).

(i) If pis R(t1,...,tny), then M |= ¢(a) if (t1"(a), ..., t) (a)) € RM.
(iii) If ¢ is —b, then M = ¢(a) if M £ ¢(a).

(iv) If ¢is (¥ A 6), then M = ¢(a) if M |= (a) and M = 6(a).
(V) If ¢ is (¢ v 0), then M |= ¢(a) if M |= 1(a) or M |= 6(a).
(vi) If ¢ is Jv;¢(v,v;), then M = ¢(a) if there is b € M such that M |= ¢ (a, b).
(vii) If ¢ is Vv (7,v;), then M = ¢(a) if M |= ¢ (a,b) forall b € M.

Notice that if ¢ is a sentence M |= ¢, no assignment of variables influences its truth in a
structure, so it’s either true or false. Let ¢ be a formula with free variables. We can view
the fact M = ¢(a) or M [~ ¢(a), as a property of a. Informally, we can say that if ¢ is
a sentence, it describes a property of a structure, a rule; if it has free variables, then it
describes a property of tuples of M™.

We will use the notation ¢(v1, ..., v,) to denote the free variables occurring in ¢. Also, will
might write M |= ¢(a) fora = (ay, . .., a,,) where m > n. In this case, we will end up using
the sub-tuple @, = (ay,...,a,). Also we will write ¢(vy,...,v,) even if ¢ is a sentence,

since forany @ € M", M = ¢(a) iff M = ¢.

1.3 Theories

Given L, we have a vast pool of structures to study. We usually want to consider only the
ones that follow specific rules, i.e., sentences.

Definition 1.3.1. Let £ be a language. An L-theory T a set of L-sentences, the axioms.
We say that M is a model of T" and write M = T if M = ¢ for all sentences ¢ € T.

As in definition, 1.2.3 structures satisfy either ¢(a) or —¢(a) for any ¢ and a. However, a
theory T can have both ¢, -¢ € T. Thus, T has no models that satisfy all its sentences
at the same time. We call a theory satisfiable (unsatisfiable) if it has at least a model (or
none).

Definition 1.3.2. Let 7" be an L-theory and ¢ an L-sentence. We say that ¢ is a logical
consequence of T'and write T' |= ¢ if M |= ¢ whenever M = T, i.e., itis true for all models
of T.

17 F. Apostolou



Morley’s Categoricity Theorem

Definition 1.3.3. Let M be an L-structure. We define the the theory of M
Th(M) ={¢ | ¢ is a sentence and M = ¢}.

Definition 1.3.4. An L-theory T is called complete if for any £-sentence ¢ either T' = ¢
orT |: —\¢.

By definition, a complete theory doesn’t have any contradictions. Notice, for M an L-
structure, the theory Th(M) is complete and satisfiable.

It is true that when a theory T is satisfiable, then any finite subset A C T does not have a
contradiction, as any model of 7" is a model of A. The converse is also true. This is known
as the Compactness theorem. We say 7' is finitely satisfiable if every finite subset A C T’
is satisfiable.

Theorem 1.3.5 (Compactness Theorem). T is satisfiable if and only if every finite subset
of T is satisfiable. Specifically, if T is a finitely satisfiable £-theory and « is an infinite
cardinal with x > |£|, then there is a model of T" of cardinality at most .

The importance of this theorem cannot be understated as almost exclusively every time
we want to know if a theory is satisfiable, we resort to it. Also, the proof of the theorem,
which the reader can find in [1], constructs a model for T" of size at most . This is used
to create small models for a theory. Using the 1.3.5, we can also create arbitrarily large
models of T'.

Theorem 1.3.6. Let 7" be an L-theory with infinite models. If  is an infinite cardinal and
k> |L|, then there is a model of T" of cardinality .

In the following section, we present a refinement of the 1.3.6.

1.4 Embeddings

Now that we have focused on models of an £L-theory instead of all the £-structures. It is
time to introduce another crucial way to organize and group L-structures.

Definition 1.4.1. If M is an L-structure and ¢(vy, ..., v,) is an L-formula, we let $(M) =
{T e M™| M = ¢(T)}. Wesay that X C M™ is definable if and only if there is an £-formula

d(v1, ..., v,) that (M) = X.

Definition 1.4.2. Suppose that M and N\ are L-structures with universes M and N, re-
spectively. An £L-embedding n : M — A is a one-to-one mapn : M — N:

(i) n(fM(ar,...,an,)) = N(nlar),...,n(ay,)) forall f € Fand ay, ..., a,, € M;

(i) (a1,...,am,) € RMifand only if (n(ay),...,n(am,)) € RN forall R € R
and ay, ..., an, € M;

F. Apostolou 18



Morley’s Categoricity Theorem

(iii) n(cM) = ¢V forc € C.

If M C N and the inclusion map' is an £-embedding, we say that M is a substructure
of Nor N is an extension of M. We sometimes say M is a substructure of N/ without
M C N. We mean that under n : M — A as described above, (M) is a substructure of
N.

The following theorem shows that not only the interpretation of £-symbols is retained in
N2under 7, but it also retains the interpretation of some weak formulas.

Theorem 1.4.3. Suppose that M is a substructure of N, @ € M, and ¢(v) is a quantifier-
free formula. Then, M E ¢(a) iff N' = ¢(a). In other words, the properties of @ that are
quantifier-free formulas are preserved.

This result can be viewed from the perspective of the definable sets of the structures. Let
¢ be a quantifier-free formula, then ¢(M) = ¢(N) N M, that if there are new elements b
satisfying ¢(b), then b € N \ M.

An L-embedding that is also onto is called an L-isomorphism; in other words, the two

structures are the same under the function n and consequently preserve all properties of
aec M.

Theorem 1.4.4. If 5 is an onto £-embedding then M = ¢(a4,...,a,) if and only if N |=
o(n(ar),...,n(a,)) for all formulas ¢, not only quantifier-free ones.

Definition 1.4.5. Anembedding j : M — N between two L-structures is called elementary
if for every L-formula ¢(z1,...,2z,) and any ay,...,a, € M,

M Ep(ay,...,a,) <= N Ep(i(ar),...,j(a)).

In other words, ;j preserves all the properties of elements of M to N. We write M < N
when the inclusion map is elementary and say that N\ is an elementary extension of M.
We sometimes say M < N without M C N. We mean that under j : M — N as
described above, j(M) is an elementary substructure of A.

Notice that M and N have the same theory as sentences are £-formulas.

Corollary 1.4.6. Suppose that j : M — N is an isomorphism. Then j is elementary.
Also, M and N have the same theory.

Definition 1.4.7. Suppose that (/, <) is a linear order. Suppose that M, is an £-structure
fori € I. We say that (M, : i € I) is a chain of L-structures if M; C M, fori < j. If
M; < M, fori < j, we call (M, :i e I)an elementary chain.

Theorem 1.4.8. Suppose that (I, <) is a linear order and (M, : ¢ € I) is an elementary
chain. Then, M = J,_, M, is an elementary extension of each M;.

'the injection f : M — N defined by f(m) = m for allm € M.
2ZRM = RN N M and fM = fN 0 pmstt

iel
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Morley’s Categoricity Theorem

1.5 Parameters

Definition 1.5.1. Suppose that M is an £-structure and A C M. Let L4, = LU {c, | a €
A}, we say that A is a set of parameters; that is, we deal with A as constants. Under
the interpretation of ¢, — o M is an L4-structure. Let Th, (M) be the set of all £,-
sentences true in M. We also have new definable subsets under the parameters A. We
call X C M™ an A-definable set or definable over A if there is a formula ¢ and b € A™
such that X = {@: ¢ (a,b)} defines X.

Note, if N' = Th4(M), the interpretation of ¢, must satisfy the same formulas ¢(v) as
a € M. This generalizes to any tuple of parameters.

Definition 1.5.2. Suppose that M is an L-structure. We call Th,,(M) the elementary
diagram of M, and we write Diage (1), which is the following set in the language £,;:

{p(ma,...,my) : M = ¢(my,...,m,), ¢ an L-formula}.

We can see the elementary diagram Diage (M) as the full description of the model M
because all the elements in M are now in the expanded language £,; and so they can be
referenced in sentences.

Theorem 1.5.3. If M/ |= Diage/((M), M < N.

Proof. Let j: M — N be j(m) = ¢V, i.e., maps the interpretation of c,, in M, which is m
to the interpretation of ¢,, in V. Notice j is an embedding. If m;, m, two distinct elements
of M, then ¢,,, # ¢, € Diage(M) then j(m,) # j(ms). Using a similar argument, we
can show that j is a function. Assume that j is not elementary, then M | ¢(m) and
N E —¢(j(m)) form € M™ and an L-formula ¢. Let ¢z = (¢, - -+, Cmy,), then ¢(cm) €
Diage(M), so N = ¢(cm), a contradiction to the assumption. O

In the following sections, when a € M is a parameter we will use a as a constant symbol
instead of ¢, as we did above.

Theorem 1.5.4 (Tarski-Vaught Test). Suppose that M is a substructure of M. Then, M
is an elementary substructure of V' if and only if, for any tuple of elements @ € M" and
every ¢(v,w) such that V' = Jvg(v,a), then M = Jug(v,a).

So, an easy way to check if an £-embedding is elementary is to check if all existential
properties of any tuple of elements are preserved in the substructure. In other words, the
substructure contains all the witnesses of existential formulas.

With enough symbols in the language, we can force all substructures of models of T" to
contain the witnesses to existential formulas, whatever the size of the model.

F. Apostolou 20



Morley’s Categoricity Theorem

Definition 1.5.5. We say that an L-theory T has built-in Skolem functions if for all £-
formulas ¢(v, wy, ..., w,), there is a function symbol f such that

T =V ((Fv (v, w)) = o(f(w), w)).

In other words, the language has enough function symbols to witness all existential state-
ments.

Theorem 1.5.6. Let 7" be an L-theory. There are £* D £ and T* O T an L*-theory such
that 7T* has built-in Skolem functions, we call 7* a Skolemization of 7. The following
properties hold for 7* and L£*:

* If M =T, then we can expand M to M* |= T*. The opposite is also true.
o |L*] = |L] + No.
* Let M be a substructure of N/ |= T* then M < N.

Using 1.5.3, 1.3.6, and 1.5.4 1.5.6 we get the following theorems about elementary exten-
sions and elementary substructures.

Theorem 1.5.7 (Upward Lowenheim-Skolem ). Let M be an infinite £-structure and « be
an infinite cardinal such that x > | M| + |£|. Then, there is an L-structure N of cardinality
x and an elementary embedding j : M — N.

Theorem 1.5.8 (Downward Léwenheim-Skolem). Suppose that M is an £-structure and
X C M. There is an elementary submodel N/ of M such that X C N and |NV| < | X]| +
L] + No.

1.6 Types

Definition 1.6.1. From now on, assume that L is a countable language and 7" is a complete
theory. Let M |= T and a set of parameters A C M. Let p be a set of £ 4-formulas all in the
same variables vy, ..., v,. We call p an n-type if puU Th4(M) is satisfiable. What we mean
for the set of £ 4 formulas to be satisfiable is there is A/ = Th, (M) anda € N" that satisfies
all ¢ € p. We can also view p U Th4(M) as a theory in an expanded language with new
constant symbols ¢; ,0 < ¢ < n, and the new theory being {¢(¢) | for all ¢ € p} UThs(M).

Definition 1.6.2. We say that p is a complete n-type if ¢ € p or ¢ € p for all £ ,-formulas
¢ with free variables from vy, ..., v,, otherwise we call p incomplete.

We let SM(A) be the set of all complete n-types of the model M over the parameters A.
Each tuple of elements @ € M™ has a complete type over parameters A denoted

tpM(@/A) = {p(v1,...,vn) € La: M ¢lay, ..., a,)}.

If p is an n-type over A, we say thata € M" realizes p if M |= ¢(a) for all ¢ € p. If pis not
realized in M, we say that M omits p.

21 F. Apostolou



Morley’s Categoricity Theorem

By definition, a set p of £ 4 formulas is a type if there is a model of Th 4 (M) that is realized.
We can make this more specific so the model is an elementary extension of M.

Definition 1.6.3. We define [¢] = {p € SM(A) | ¢ € p}, which is all the types that contain
the formula ¢.

Theorem 1.6.4. Let M be an L-structure, A C M, and p an n-type over A. There is N an
elementary extension of M such that p is realized in V.

It is often hard to provide isomorphisms and elementary embeddings between structures;
partial elementary embeddings are used to express partial isomorphism between subsets
of the models. These are important as they can be expanded to full embeddings later.

Definition 1.6.5. If M and N are L-structures and B C M, we say that the one-to-one
f: B — N is a partial elementary map if

M= ¢(b) & N = o(f (b))

for all £-formulas ¢ and all finite sequences b from B. Note that ¢ can be a sentence, so
M and N share the same theory.

There is a connection between theories with parameters and partial elementary embed-
dings.

Theorem 1.6.6. Let M and N be models of T'.

1. f N | Thy(M) for A C M, there is a partial elementary map f: A — N.

2. If there is partial elementary embedding between M and N, f : A — B where
AC Mand BC N, then N |=Thy(M) and M = Thg(N).

Proof.

1. We can take the interpretation of the set parameters A in \V, in the language L4, as
the partial elementary map.

2. To prove NV |= Th4(M) we can interpret the the parameters A as the elements B as
they are matched in f. This way an £ 4-sentence M = ¢ (a) iff N = ¢(b) because
f is elementary.

O
This way, we can view A and B as isomorphic copies and we can identify them as just A.

The following corollary says that if two models have the same theory with parameters (if
any), they have the same set of types.

Corollary 1.6.7. Assume Th (M) = Th4(N). Then SM(A) = SN (A).

F. Apostolou 22



Morley’s Categoricity Theorem

All models of the same theory (with parameters or not) share the same fixed number of
types. The maximum number of types is 2/4, in the case without parameters 2%,

Types influence how many different models a theory can have for a given cardinality. We
can think of different models realizing different types or in different quantities (X, Ny, ...
realizations for p).

The main focus of this exposition is to count the non-isomorphic models of cardinality ~
for specific theories.

Definition 1.6.8. A complete theory 7" in a countable language L is «-categorical if it has
a unique (up to isomorphism) model of cardinality «.

Theorem 1.6.9. Let |£| < k, then the maximum number of models of cardinality « a theory
can have is 2".

Under normal conditions, we cannot use language to refer to an element with a specific
type as it would an infinite sentence with all ¢ € p. However, if the type is isolated, we can
reference it with a single formula.

Definition 1.6.10. We say p € SM(A) is isolated if there is an £ 4-formula ¢(v) € p such
that for all £ 4-formulas v (7)

() € p & Thy(M) |= ¢(v) = ¥(0).

In other words, the property ¢ determines all the other properties of p; no other type has
the property ¢.

Lemma 1.6.11. Suppose that A C B C M |= T and every b € B™ realizes an isolated
type in SM(A). Suppose that a € M" realizes an isolated type in S2(B). Then, a realizes
an isolated type in SM(A).

We are ready to state the main theorem we are aiming for, which was proven by Morley.
Theorem 1.6.12. Let T' be a complete theory in a countable language with infinite models
and k > N;. T is k-categorical iff T"is A-categorical for any \ > ;.

We will prove 1.6.12 through the characterization of x-categorical theories given by Bald-
win and Lachlan[2]. We encourage the reader to see the original proof by Morley in [2].

We now state the Baldwin-Lachlan characterization, although we have not defined the two
properties, w-stability and Vaughtian pairs.

Theorem 1.6.13. Let k > X; and T" a complete theory in a countable L. T is k-categorical
iff 7" has no Vaughtian pairs and is w-stable.

Proof. This immediately implies Morley’s theorem, as the second part of the characteri-
zation does not depend on x.

]

In the following sections, we will focus our attention on defining the prerequisites for 1.6.13
and proving both directions of the theorem. We start at the next chapter with w-stability.
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1.7 Prime and Homogeneous Models, Stable Theories

Definition 1.7.1. We say that M |= T is a prime model of T if for all such that V' = T,
M < N holds.

The same definition can be adjusted with parameters.

Definition 1.7.2. Let M = T and A C M; we say M, | Th,(M) is prime over A if for
every N' = Thy(M), My < N holds. Equivalently using 1.6.6, we have that M, = T is
prime over A C M, if whenever N' =T and f : A — N is a partial elementary function,
there is an elementary f* : M, — N extending f.

To summarize the above definitions, a prime model of T" over a set of parameters A can
be embedded in every model with a copy of A and the same theory, T'.

Definition 1.7.3. Let M = T be a first-order theory and A C M. We say that isolated
types are dense in SM(A) if for all £,-formulas ¢ exist an isolated type p € S2(A) such
that p € [¢].

Not all theories have prime models or prime models over parameters. The following T’
theories, known as k-stable, have a special connection with prime models.

Definition 1.7.4. Let T" be a complete theory in a countable language, and let x be an
infinite cardinal. We say that 7' is x-stable if whenever M =T, A C M, and |A| = &, then
1S (A)] = .

Intuitively, the number of parameters | A| dictates the number of types a theory would have
over them. Each parameter a € A adds one unique type, isolated by the formula v = «, so
having |A| as parameters always yields at least | A| < [S(A)| complete types. So, stable
theories yield the least possible types for a |A| = x. We traditionally use w-stable instead
of Ny-stable theories. We give a case of a theory that is not w-stable.

Example 1.8. Take (Q, <) to be the rationals with the ordering relation in the language
L = {<}, Th(Q) is not w-stable. Take Q as the set of parameters. However |S%(Q)| = 2%
because for each Dedekind cut (L,U), thereisatype {¢ < v |qe L} U{v <q | q € U}
that expresses a real number.

Theorem 1.8.1. Let 7" be a complete theory in a countable language. If T is w-stable, then
T is k-stable for all infinite cardinals «.

Proof. For the sake of contradiction, assume that 7" is w-stable but not x-stable for some
specific cardinal . Since T is not x-stable there exists a model M and A a set of param-
eters with |A| = « such that |SM(A)| > « for some n.

1. Notice there are x L -formulas. If every formula ¢ is in at most x many types, then

there are |SM(A)| = . Thus, there is a £ 4-formula ¢y, which is in more than x many
types. Recall [¢] = {p € S;"(A) | ¢ € p}. So |[¢y]| >
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2. Assume we have any £, formula |[¢]| > . Assume for the sake of contradiction
there is no ¢ formula that can divide [¢] into |[¢ A ¥]| > x and |[¢ A =¢]| > k. So
always, one of the two sets is bigger than « and the other less or equal to . Let
By = [¢] and B,.1 = B,N[ta+1] With 1; belonging to a well-ordering of all £ 4 formulas
such |[¢ A ¢;]| > k and let p = {¢,} denote that set. Notice that p is a complete set
of £, formulas because of our assumption. If |B,| > x then |B,i1| > . If < &
is a limit ordinal, then (,_; B, # (), because every finite subset of {¢, 11, ... ¢z} is
satisfiable. Also, for § < k, |Bg| > « otherwise |[¢]| < &,

0] = Jlo A =] U Bg

i<

3. So because B, is non-empty set of types, but all types in B,, are complete, as noted
above so p is the only one. However this is a contradiction because

6] = o A—wi U {p}

i €p

so the cardinality of |[¢]| = x - k + 1, a contradiction. So we have that any ¢ with
[[#]| > ~ can be divided by some v to |[¢ N ]| > x and |[¢ N —]| > k.

4. We will build a binary tree of formulas (¢, : o € 2<¢) such that:

i) if o C 7then ¢, = ¢,;
”) Poi ): _|<)00'71—i;
iii) [loo || > Ro.

We start by letting ¢y be the formula we found on the first part, such that |[¢y]| > .
Given ¢, where [p,]| > &, by the third part we can find ¢ such that |[p, A ¢]| > &
and |[p, A —Y]| > k.

Let v,0 = v, AN and ¢, 1 = ¢, A 1. This is a complete binary tree. We now argue
that for each infinite branch f € 2¢ there is a countable type associated

pr € ﬁ [0 1m] »

m=0

where f|m is f restricted to the first m bits. We need to show p; is a type. We
know that for any m, [¢,,] # 0, so by the compactness theorem we have that
Noe_o [#s1m] # 0. Notice that if f # g then p; # p,. Assume f and g split at the
n-step, i.e. for some v, ) € py and - € p, . However the number of branches are
2% so there are at least that many types using the parameters A, because in the tree
we used only countably many formulas each using finitely many parameters. So let
Ay C A be the parameters used by the formulas of the tree, we have |Ay| = X, and
S (Ap)| = 2%, this is a contradiction to w-stability.

]
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Lemma 1.8.2. Let 7' be a complete theory in a countable language. If T is w-stable, then
forall M =T and A C M, the isolated types in S(A) are dense.

Proof. If the isolated types in S;*'(A) are not dense, this means that there exists an £ 4-
formula ¢ such that [¢] contains no isolated types. Notice that if |[¢]| € N\ {0}, then all
p € [¢] are isolated, so it has to be infinite. Because of that we can find a £ 4-formula v
such that |[¢ A ¥]| > Ry and |[¢ A =)]| > Ry; each one has no isolated types, so we can
apply again the same idea. This allows us to build a complete binary tree. Having that
tree we can complete the proof as the one in 1.8.1. [

Theorem 1.8.3. Suppose that 7" is w-stable. Let M =T and A C M. There is M, < M,
a prime model over A. Moreover, we can choose M, so that every element of M, realizes
an isolated type over A.

Proof. To build the elementary submodel of M, which is prime over A, we need to start
investigating the substructures of M that contain A. We will find an ordinal § and build a
sequence of sets (4, : a < ) where A, C M and

i) Ay = A4;
ii) if o is a limit ordinal, then A, = Uﬁ<a Ag;

i) if no element of M \ A, realizes an isolated type over A,, then let 6 = « this is
our universe, which are elements realizing isolated types. Otherwise, include any
a, realizing an isolated type over A,, and let A,,; = A, U {a,}. Let M, be the
substructure of M with universe Aj.

We will now prove that the substructure M, < M. To prove this, we use the 1.5.4.
Suppose that M = o(v,a), where @ € As;. By 1.8.2, the isolated types in SM(A;) are
dense. Thus, if there is b € M such that M = ¢(b,a) there is a ¢ € M with M = ¢(c,a)
and tpM(c/A(;) is isolated. By choice of §, ¢ € A;. Thus, My < M. Now, we need to
show that M, is a prime model over A. Suppose that ' =T and f : A — N is partial
elementary. We will construct a sequence of functions f = f, C --- C f, C --- C fs,
where f, : A, — N is elementary, and ultimately extending the domain of f to A;.

* If ais a limit ordinal, we let f., = U,_,, f5-

» Assume that f, : A, — N partial elementary, we know because of the way we con-
structed M, we know that there exists a formula ¢(v, @), that isolates tp™"(a,/A,).
Because f, is partial elementary, we have that o (v, f,,(@)) isolates to™ ( fa(aa)/ fa(Ad)).
Also, because f, is partial elementary, there is b € N with A/ = ¢(b, f.(a)). Thus,

far1 = fa U{(aa,b)} is elementary.

So the last union will be fs5 : My — N and elementary, proving that M, is prime over A.
We have that every @ € M, realizes an isolated type over M = As;. However, we want
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every element @ € M to be isolated in A. Here, an argument of just removing too many
parameters does not work because we can actually remove parameters that define the
isolating formula. We can prove that using ordinal induction and 1.6.11. ]

The last property we will explore in this section is homogeneity, which is a model’s property
to extend local similarities.

Definition 1.8.4. Let x be an infinite cardinal. We say that M | T is k-homogeneous if
whenever A C M with |A| < k, f : A — M is a partial elementary map, and a € M, there
is f* D fsuchthat f*: AU {a} — M is partial elementary. We say M is homogeneous if
it is | M |-homogeneous.

Note that |[A U {a}| < & still, so we can repeat the process using ordinals until we get
f*: B — M, where |B| = x and cannot be extended. If M is homogeneous, then with
the ordering of M, we have B = M.

The next theorem will play an important role by having an easy, sufficient condition for
countable models to be isomorphic. Here, homogeneity is a key property in constructing
the isomorphism by using a method called back-and-forth.

Theorem 1.8.5. Let 7" be a complete theory in a countable language. Suppose that M
and N are countable homogeneous models of 7" and M, and N realize the same types
in S,(T) forn > 1. Then M 2 N.

Proof. To construct an isomorphism f : M — N, we define a sequence of partial elemen-
tary maps f, C fi C ---, each with a finite domain each strictly larger than the previous.
A chain of finite subsets, the domains, and ranges of those functions, does not guarantee
that the limit of this sequence f = J.2, f; will be a bijection, so we must carefully con-
struct this chain to include all elements of M and N. Let ag,a,,... be an enumeration
of elements in M, and by, b, ... be an enumeration of elements in /. We will ensure
that a; belongs to dom( f»;,1) and b; belongs to img( f;12). In this way, we establish that
dom(f) = M and that f is a surjective elementary map from M onto V.

* s =0: Let f, = (). Because T is complete f is partial elementary.
We inductively assume that f, is partial elementary. Let a be the domain of f,and b = f,(a).

* If s+ 1 = 2: + 1: We want to extend the domain of f,,; by adding «; to it. If we
have already add that element we proceed with no change to our function. Let p =
tpM (@,a;). Because M and N realize the same types, we can find ¢, d € N such that
tpV (¢, d) = p. AlsotpV () = tp™ (@), as any ¢(v) € tp™(a, a;) is intp™ (¢, d). Because
f, is partial elementary, we have that tp™(a) = tp'(b). Thus, tpV(c) = tp"(b).
Because A is homogeneous, there is ¢ € A such that tp"(b,e) = tpV(c,d) = p.
Thus, fo11 = fs U{(a;,e)} is partial elementary with a; in the domain.
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* If s +1 = 2i + 2: We want to extend the range of the function by adding b; to it.
Because f, is elementary, we can apply everything we did in the previous step for
the partial elementary function f;!.
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2. VAUGHTIAN PAIRS

In this chapter, we will prove the forward direction of Baldwin’s and Lahlan’s characteriza-
tion of unaccountably categorical theories. Specifically, the following theorem:

Theorem 2.0.1. Let 7" be a complete theory in a countable language with infinite models.
If « > Ny and T is k-categorical, then T" has no Vaughtian pairs and is w-stable.

2.1 Vaught’s Two Cardinal Theorem

We begin by finding an obstruction for categoricity for a specific uncountable cardinality «.
If such obstruction is found, we show how it is encountered in every uncountable cardinality
under the condition of w-stability.

We remind (M) ={z € M" | M = ¢(z)}.

Definition 2.1.1. Let K > A\ > R,. We say that an £-theory and T has a (x, A)-model if
there is M |= T and ¢(v) an L-formula such that |M| = x and |¢p(M)| = .

The following theorem states that a (x, A\)-model obstructs «-categoricity.

Lemma 2.1.2. Let k > N,. If T is k-categorical, then it has no (x, A)-model.

Proof. For the sake of contradiction, we assume there is a (x, \)-model /. Using A/ and
the compactness theorem, we get a model M such that | M| = « and every definable set
also has cardinality <. Thus, M and N are not isomorphic, a contradiction.

To demonstrate how we build M: We expand £ by adding constants {¢{ | i < x} for each
formula ¢ that has infinite realizations in A”. We construct a new theory 7* = Diage(N) U
Ug{o(ei)? i < s} U{c] # ¢! i # j or ¢ # 4}, which is satisfiable using the compactness
theorem, as each finite A ¢ T* has NV as a model by interpreting the constants as different
elements of A/ with the property ¢(v). Let M be any model of this theory of cardinality «.
Any (-definable set of M has & realizations.

]

Definition 2.1.3. We say that (N, M) is a Vaughtian pair of models of T if M < N/,
M # N, and there is an £,,-formula ¢ such that (M) is infinite and p(N) = p(M).

Vaughtian pairs are an obstruction to N,-categoricity. The following chain of theorems
demonstrates that if 7" has a (k, \)-model for any « > Y, then it has a Vaughtian pair
of models, a countable Vaughtian pair, a countable Vaughtian pair of isomorphic models,
and finally a (X, Xy)-model obstructing X;-categoricity.

Lemma 2.1.4. If T has a (k, A)-model with k > XA > Y, then there exists a Vaughtian pair
(N, M) of models of T
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Proof. Let N be a (x,\)-model of T"and X = &#(N) be the definable set of cardinality \.
By the downward Lowenheim-Skolem theorem, we can take an elementary submodel M
of A/ that contains X and |[M| < | X| + |£] + Xy < |V, soitis a proper submodel. O

Now that we know that 7" has a Vaughtian pair, we want to make a theory 7™ to capture
exactly all the Vaughtian pairs of 7. To do that, we need to alter our language so every
model of T* is actually a pair of models of 7" with the second being a proper subset of the
first.

Definition 2.1.5. Let £* = L U {U}, where U is a unary predicate symbol. If M C A\ are
L-structures, we write an L*-structure (N, M) to designate that U is interpreted as .

We need some work to ensure M is an elementary submodel of /. We already know that
if an element in A has a quantifier-free property, it is preserved under substructure. From
the Tarksi-Vaught theorem, we know that all existential properties are preserved under a
substructure iff it is an elementary substructure. We want a way to express in our language
that a property holds for M.

If ¢(vi,...,v,) is an L-formula, we define ¢V (v) in the new L*, the restriction of ¢ to U,
inductively as follows:

1. If ¢ is atomic, then ¢V is U(vy) A ... AU(v,) A ¢;

2. If ¢ is =), then ¢V is =Y

3. Ifgpisy A6, then ¢V is YU A GY;

4. If ¢ is Jv ), then ¢V is Jv U(v) A Y.
Notice that by 4, if ¢V is true in \V, then a witness for ¢ must exist inside M, the interpre-
tation of U.

Claim 2.1.6. The properties of elements of the submodel M can be expressed inside N/,
i.e., N "M E ¢(a)”. If (M, M) is an L*-structure and a € M*, then M = ¢(a) if and only
if (W, M) = ¢"(a).

With our extended language, we want to capture exactly those pairs of models that U is
interpreted as a substructure of NV, specifically an elementary one. Thus, we need to add
some axioms.

Lemma 2.1.7. If (N, M) is a Vaughtian pair for T, then there is a countable Vaughtian
pair, i.e. a pair (Ny, M,) where N is countable.

Proof. The following axioms together with 7" ensure that its models are Vaughtian pairs of
T. Let ¢ be a fixed £,, formula such that (M) = ¢(N) with parameters m, € M.

1. my are new constants.
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2. UV is a substructure of \. For each function symbol f € £, Vo U(7) — U(f(7)).

3. UV is an elementary substructure of \. Vo ((/\f:1 Ul(v;) A w@) — wU(ﬂ)>, for any
L-formula . The important detail here to distinguish the antecedent and conse-

quent is that both state that U(7), but the second one states that the witnesses of its
existential properties are in U as well.

4. ¢(N) is an infinite set. So we add each k the sentences,

k
30, ... v (/\m # U A/\Qb(vi))

1<j

5. ¢(N) is a proper subset of N. Vo(p(v) = AU(v;)) , Jx—-U(x).

This new theory is satisfiable by (N, M) and the language £* is countable, so by the
downward Léwenheim-Skolem, there is a countable elementary submodel (Ny, M,) that
contains m,. The two models N, M, form a Vaughtian pair because of the axioms re-
garding ¢. [

Lemma 2.1.8. Suppose that M, < A, are countable models of 7. Now consider the
model (Ny, My) in £ U {U} defined in 2.1.5, we can find an elementary extension of it
(No, M) < (N, M) such that N and M are countable, homogeneous, and realize the
same types in S, (7). By 1.8.5, M = N. Specifically, if (Ny, M) is a Vaughtian pair, so is
(N, M).

Proof. We start with the countable pair (N, M,) and build an elementary chain of count-
able models working toward obtaining the homogeneous property and realizing the same
types. Our chain consists of 3 sub-steps:

Claim 2.1.9. If a € M, and p € S, (a) is realized in Ny, then there is (Ny, M) < (N, M)
such that p is realized in M.

Proof. LetT'(v) = {¢Y(v,a) : ¢(v,a) € p}UDiage(No, My) be the type "I am like p, but my-
self and my properties are contained in U” in the extended language £*. Any finite subset
of I'(v) is satisfiable by (Ny, My). Let ¢1,..., ¢, € p, Ny = Fv A\ ¢:(v, a) because it real-
izes the type. As a result M, = 3v A\ ¢;(7, @) since it is an elementary submodel. We can
express that sentence in the extended language £* satisfied by (N, My) &= Jv A ¢Y (v, a).
Let (N, M’) be a countable elementary extension realizing I' by the LOwenheim-Skolem
Theorem. ]

Claim 2.1.10. If b € Ny and p € S, (b), then there is (Ny, My) < (N’, M’) such that p is
realized in \.

1. By iterating 2.1.9 for all p € S,,(T) that are realized in N3;, we get a new pair such
that M3, realizes the same types as Ns;; (w-steps)
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2. We enumerate all (a,b,c) € Ms;y, with the property tp™si+1(a) = tp#+1(p). For
any such tuple, we can find an elementary extension with d € Mas;,, such that
tpMei+2(q, ¢) = tpM=i+2(b, d). Because we want to realize the type I'(v) = {¢(b,v) :
o(z,v) € tpM&“(a c¢)} can do this using 2.1.9 as I'(v) € Si(a); (w-steps)

3. We enumerate all (@, b, ¢) € N340 With the property tp™®+2(@) = tp"*+2(3), and fol-
lowing the same method, we can find an elementary extension with a d € N33 by
2.1.10, such that tp"*+3(a, c) = tp™*+3 (b, d) . (w-steps)

Let (M, M) = U,_,(N;, M;). Then, (N, M) is a countable Vaughtian pair. By i), M and \/
realize the same types. By ii) and iii), M and N are homogeneous and hence isomorphic
by 1.8.5. A note here is that we cannot skip step two or three because homogeneity for
M does not imply homogeneity for A" and vice versa.

]

We know that a theory like T* has models of any cardinality, so for any cardinal « there
is (M, M) with [N] = x. However, |[M| could be any cardinality. We are interested in
creating a Vaughtian pair of models with | V| = &, and |M| = X, so that we can have a
(Ny, Rg) model for 7.

Theorem 2.1.11. If T" has a (x, A\)-model where k > X > R, then T" has an (X, X)-model.

Proof. Using the previous lemmas, we have a countable Vaughtian pair of isomorphic
models (N, M) as in 2.1.8 and ¢ be the formula as in the definition of Vaughtian pair. We
want to build an elementary chain (N, : a < w;) such that N, \ N, contains no elements
satisfying ¢. This is true as (N,.1,N,) has the same theory as (A, M), so because
Vo(¢(w) — AU(v;)) is an axiom and N,’s are elementary extensions of M. Hence, the
only elements that have the ¢ property are inside M. Lastly having NV, = N = M for
every a helps us extend to NV, ;.

Let Ny = N; we want two properties for our chain of models.

1. N, =N
2. (Nay1,Na) = (N, M)

» For a alimit ordinal, let N, = ;. Ns. Because N, is a union of models isomorphic
to V, every N, is homogeneous and realizes the same types as A. Notice that \V,,
is homogeneous because if you take any partial elementary function f : A — B with
A, B C N, and finite A, B, then for any a« € N, there is § < «a such that A, B C N;
and a € Nj3. So using the homogeneity of A/ we can extend the function. The same
argument can be used for the types in S,,(T'), so N, is countable and homogeneous
realizing the same types as \/, so AV, = A by 1.8.5.
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« For a successor ordinal, given NV, = N = M we have an isomorphism f : M — N,
we can extend N, to V.., as we would extend M to /. The extension of f is an
isomorphism (N, M) = (N,.1, N, ) in £*, so we have NV, = N in the L.

Because for every 3, N5, \ N5 has no elements with the property ¢, Az doesn’t have any
other such elements than the elements of M.

Finally, the limit of the chain N* = (J,,_, NV, has cardinality |N*| = &, the only realizations
of ¢ are in M, which is countable, so A'* is an (R, Xy)-model. O

Corollary 2.1.12. If T'is X;-categorical, then T" has no Vaughtian pairs and hence no (x, \)
models for xk > \ > N,.

The first chain of theorems showed us a "descent” from a (x, A) to a (X, Xg)-model. How-
ever, if we add the conditions of w-stability, then we can increase X; to any x > X, ob-
structing all of the uncountable categoricity with (x, X,)-models.

2.2 Omitting Types on w-stable Theories

The following Lemma describes a model extension that has the same omitted types.

Lemma 2.2.1. Suppose T is w-stable, M =T, and |M| > R;. There is a proper elemen-
tary extension N of M such that if I'(w) is a countable type over M realized in N, then
['(w) is realized in M. By the contrapositive, if ['(w) is omitted in M, then its is omitted in
N.

Proof. 1. There is an L,-formula ¢(v) such that |[¢(v)]| > R, and for all ¥(v) € Ly
either [[¢(v) A ¥ (v)]] < Ng or [[¢(v) A —(v)]] < No. Suppose not. Then, for each
L -formula ¢(v) with [¢(v)] being uncountable, we can find a formula (v) such that
[o(v) A(v)] and [p(v) A —(v)] are both uncountable. Using this fact repeatedly,
we can build an infinite countable tree of formulas (¢, : ¢ € 2<¢) such that for all

o€ 2
¢ |[¢0] | Z Nh
¢ [QﬁU,O} N [(bcr,l] = (Z)

were each branch is a unique countable type, and since we used only countable
formulas, each having only finitely many elements of M as parameters, we have a
countable A C M. However |S}M(A)| = 2% since we built a complete infinite binary
tree, contradicting w-stability.

2. With ¢ as above, we consider the type p = {¢(v) : ¥ an Ly,-formula and |[¢(v) A
¥(v)]] > Ry} that is the type that its properties have uncountable many realizations
in conjunction with ¢.
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« This is a type because it is finitely satisfiable. Take v, ...,v,, € pthen M
Nir, ¥i(v), because only countable elements inside [¢] lack a property 1;, so
[[p(v) AV =i (v)]] < Rg. Thus y(v) = ¢(v) A A~ ¥i(v) must have uncountable
many elements, being the complement of \/ —¢;(v) inside [¢].

* It is also a complete type. Take any ¢ & p then |[¢(v) A ¥(v)]| < Ry s0 [p(v) A
—ap(v)]| > Ry and —) € p, assuming otherwise we get that 4] has countable
realizations.

3. Let M’ be an elementary extension of M containing ¢, a realization of p. By 1.8.3,
there is N' < M’ prime over M U {c} such that every @ € N realizes an isolated type
over M U {c}.

4. Let I'(v) be any countable type over M realized by b € A/; this is important as
these formulas can be defined in M. The type I'(v) is not complete as there are
uncountably many formulas with parameters from M, so T'(v) C tpV'(b/M U {c}).
Let £,, formula 0(w, ¢) be the one that isolates tp™' (b/M U {c}). Notice the following
Lrugeysentences hold:

« N E Jwb(w, c)
« N E=Vw(d(w,c) — ~(w)), for all v(w) € T.

these can be viewed as properties of c. Let A = {Jwl(w, v) } U{Vw(0(w, v) — v(W)) :
v € I'} which is a countable subset of p. We hope to find a realization of A in M as
this will force I'(v) to be realized.

5. Let dg(v),d1(v) ... enumerate A C p, each has only countable non-realizations in ¢
i.e. [[¢p A —d]| < Vo. The set |J,_,[¢ A 4] is a countable union of countable sets
and so its complement under [¢] must be uncountable. This implies that there exist
many realizations for A in M.

]

Theorem 2.2.2. Suppose that T is w-stable and there is an (X, Rg)-model of T'. If k > Ny,
then there is a (x, Ny)-model of T.

Proof. Let M |= T with |[M| > X; such that |¢(M)| = R, and let M < A be as in 2.2.1.
The type I'(v) = {p(v)} U{v # m : m € M and M = ¢(m)} is a countable type omitted
in M and hence in /. So no elements are added in the extension, ¢(N) = ¢(M). We
can also find such an extension for A/ since the previous lemma applies to all uncountable
cardinalities. We build an elementary chain (M,, : « < ) such that My = M, M, #
M, and for all o, (M) = ¢(My). fN =J,.,. Ma, then Nis a (k,Xg)-model of . [

a<k

2.3 Sequences of Indiscernibles and Skolem Hull

We have proved that if T is k-categorical for some « > R; and w-stable, then it has no
Vaughtian pair. In the following part, we will prove that every such T is w-stable. To prove
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this, we will focus on tuples of elements indistinguishable from each other, i.e., any such
tuple satisfies the same formulas.

Definition 2.3.1. Let (/, <) be an ordered set, and let (z; : i € I) be a sequence of distinct
elements of M. We say that X = (z; : « € I) is a sequence of order indiscernibles if
whenever i; < iy < ... <1, and j; <... < j, are two increasing sequences from I, then
M E= oz, ... xi,) & d(xj,, ..., z;,). We frequently identify X and 1.

An important note is that the order (I, <) is not necessarily defined inside a model by a
formula ¢.

Theorem 2.3.2. Let 7" be a theory with infinite models. For every infinite linear order (1, <),
there exists a model M = T such that it contains an infinite set of order indiscernibles
(332' 11 € I)

Proof. 1. We expand our vocabulary by adding constants corresponding to the ele-
ments of the order £ = LU{¢; : i € I}. We also increase our theoryto I' = T'U{¢; #
cj 1 #j el U{dlc,...,c,) = ¢, ... ¢}, for all L-formulas ¢(v), where
ih<---<iyand g <--- <, are increasing sequences from /. Notice that in the
last set of axioms, the inverse implication is also included as an axiom; this ensures
the indiscernibility between every ordered tuple of size m.

2. If we find a model of T', the interpretations of {¢; : i € I} are the order indiscernibles
we want. Let A C I' be a finite set. Let I, be the finite subset of I such that if ¢;
occurs in A, then i € Iy and {¢;| : = 1,2,...,m} be all the formulas appearing in a

L'-sentence, ¢;(ci,, ..., ¢i,,) = ¢i(Cjs---,¢5,) € A, We take the A’ D A toinclude all
sentences that ensure indiscernibility for all tuples of constants ¢;, i € I, with respect
to {¢:;| : = 1,2,...,m} Finally, take vy, ..., v, as the free variables in all ¢, formulas,

any model of A’ is a model of A.

3. To find a model of A’ we take a model M = T and a < linear order of its ele-
ments. In A, we guarantee that {¢; : i € I} are satisfying the same formulas

from {¢;| i = 1,2,...,m}, but we haven't specified which. We will define a par-
tition ' : [M]" — P({1,...,m}) that represents all the possible satisfying formu-
las an ordered tuple can have. If A = {ay,...,a,} where a; < ... < a,, then

F(A) ={i: M = ¢i(a,...,a,)}. Because F partitions [M]" into at most 2™ sets,
we can find an infinite X C M homogeneous for F', using Ramsey’s theorem. Let
n C{1,...,m} such that F(A) =n for A € [X]". So X is an infinite set indiscernible
to {¢;| i = 1,2,...,m} for the order <. From this set, we can find interpretations for
¢i,i € Iy that satisfy A’ and hence A. The fact that X is infinite makes this proof
work for every finite I,.

O

Definition 2.3.3. In a sequence of order indiscernibles X = (z; : ¢ € I) in M, every
ordered n-tuple has the same complete n-type. The set of all those n-types we call type
of the indiscernibles X and write as tp(.X).
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Theorem 2.3.4. Let T be an L-theory. Suppose that X = (z; : ¢ € I) is an infinite
sequence of order indiscernibles in M |= T'. If (J, <) is any infinite ordered set, we can find
N = T containing a sequence of order indiscernibles Y = (y; : j € J) and tp(X) = tp(Y).

Proof. We expand the vocabulary to £* adding constant symbols, ¢; for j € J; their in-
terpretation will establish the new sequence of order indiscernibles. We also expand our
theory as we did in the previous theorem, but this time we specify the formulas ordered
tuples agree on.

F:TU{Cl 7£Cj 11,) € J,Z.#j}U{¢(Cil,...,Cim) —>¢(Cj1,...,ij)}U{¢(Cil,...,Cim) 1 <
. <iy € Jand ¢ € tp(X)}.

We will use X as a witness for our A finite sub-theories of I" in a straightforward way.
Thus, T is satisfiable if N |=T" then (y; : j € J) is the desired sequence. O

Definition 2.3.5. Let 7™ be a theory with Skolem functions 1.5.6 and a subset A C M with
M = T*. We define #H(A) or the Skolem hull of A to be the substructure generated from
A.

Theorem 2.3.6. Let £ be countable, and 7' be an L-theory with infinite models. For all
Kk > N, there is M |= T with |M| = x such thatif A C M, then M realizes at most |A| + X,
types in SM(A).

Proof. We will explore only the case of n = 1. We consider £* and T the Skolemization of
T. Take a model NV |= T* with a sequence of order indiscernibles I of order type (x, <) and
take M to be the Skolem hull of I. Since £* has countable many functions and constants,
the substructure that arises has cardinality at most the cardinality of the finite subsets of
N, i.e. equal to k. To prove this is the desired model, we take A C M to be the set of
parameters. Notice, however, that all the elements of M are terms generated from I,
so each a in A, there is a term ¢, and 7,, a sequence from [ such that a« = ¢,(7,). Let
X ={x € I : xoccursinsomeT,} be the subset of indiscernibles that generate the
parameters. |A| < |X| < |A|+Rq since every a € A yields 7, which consists of finite many
elements. The main idea that follows is that we can reduce any property ¢(v,a) of m € M

with parameters from @ € A to a property ¢'(v’) about an ordered tuple of indiscernibles.

Fory, < ... <wy,andz < ... < z, tuples of order indiscernibles, we define 7 ~x Z as
follows: foreach x € X andeachi € {1,... ) n}, y; < ziff 2, < xand y; = z iff z; = =z,
which translates as 7, z are in the same positions relative to X.

Another element of our analysis is the symmetric formulas of ¢(vy, ..., v,). Let o be a per-
mutation of the set {1,...,n}. We consider ¢,, to be the formula ¢ where every appearance
of the free variable v; is substituted by v, (), i.€.,0,(v1, ..., V) = O(Vs1), - - -, Vo(n)). The fol-
lowing holds for any o:

M ): gb(a) iff M ): ¢J(a0(1)a ceey 6La(n))
Claim 2.3.7. Any elements generated by the same Skolemterm m, = t(y), my = t(z) € M
realize the same type in SM(A) if § ~x Z.
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Let (0,01, ...,0m) = ¢(t(V), ta,(V1), ...t (Um)) and let [y,Z,,, ..., Z,,], be the ordered
tuple of these elements with respect to < and ¢ the appropriate permutation.

ME oY), ar,...,an) & M OEY) ta,(Tar), - - tan (Tan)) (1)
& MEYT T, Tan) (2)
& MEY(U.Zars- - Tanl,y) 3)
& MEY([ZTars - Tanly) (4)
& MEYET, . Ta,) (5)
& MEOEZ), te(Tay)s - ta,, (Ta,,)) (6)
& MEtZE),ar,...,an). (7)

From (2) < (3), we use the observation above to order both tuples with the same per-
mutation since they have the same order with respect to X, and for (3) < (4), we used
indiscernibility.

Now ~ x is an equivalence relationship on the elements of M/™ as they are terms made from
elements of I, so the maximum number of equivalence classes is, at most, the number of
the different placements of n elements relative to X.

We define an upper cut and a lower for y € I with respectto X tobe U, = {z € X | z > y}
and L, ={r € X |z <y}andwesayy ~x ziff U, = U, and L, = L,. There are a total of
2| X| + 1 possible cuts including, y = x, € X, so for any y there are (2| X |+ 1)" < |X| <
|A| + X, different placements. O

Theorem 2.3.8. Let 7" be a complete theory in a countable language with infinite models,
and let k > N,. If T is k-categorical, then T is w-stable.

Proof. For the sake of contradiction, assume that 7" is not w-stable, so thereis M = T and
subset A C M with |A| = Xy and SM(A) > R,. We use the Lowenheim-Skolem with X = A
to get a countable elementary submodel M; with A included. We know that only countably
many types are realized in M;. Using compactness, we can realize uncountably many
types of SMi1(A) in an elementary extension N, and |N;| = . To construct the second
model N, with |N,| = «, we use the 2.3.6. For each countable B C N, A, realizes only
countably many types. Let f : N7 — A, an L-isomorphism due to x-categoricity and
B = f(A) the image of A. Thus, we can compare the two models using the same set of
parameters. Let ¢ € N to realize a type Sﬁfl(A) not realized in N,. So ¢ has a different
type than f(¢) over A and f(A), i.e. N7 E ¢(¢,a) and i.e. Ny £~ ¢(f (), f(a)) for some ¢.
This means that f is not an isomorphism, and hence T  is not k-categorical. ]
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3. STRONGLY MINIMAL SETS

Moving on to the last part of our proof, it is important to take a look back. For the first part,
we relied heavily on indiscernibles to prove the first part to the Baldwin-Lachlan charac-
terization 1.6.13. To prove the converse, when our theory has no Vaughtian pairs and is
w-stable, our methods will uncover hidden algebraic structure within every model. This
structure will be the point of reference for any model. For any two models, finding a partial
isomorphism between these algebraic structures yields an isomorphism between them.
Conveniently, these algebraic structures can only be distinguished by cardinal size.

Theorem 3.0.1. If T is w-stable and has no Vaughtian pairs, then it is x-categorical any
K Z Nl-

3.1 Finding a Strongly Minimal Formula

Definition 3.1.1. If M is an L-structure and ¢(7) is an £,,-formula, we will let (M) de-
note the elements of M that satisfy ¢. From now on, "definable” means "definable with
parameters” unless specified. Let D C M™ be a definable set with parameters. We are
concerned with two notions of minimality:

1. We say that D is minimal in M if, for any definable Y C D, either Y is finite or
D\Y is finite. If (v, a) is the formula that defines D, then we also say that ¢(7, a) is
minimal. Also, any minimal formula in M is minimal in any elementary substructure
that shares the parameters of ¢.

2. We say that D and ¢ are strongly minimal if ¢ is minimal in any elementary exten-
sion ' of M.

Strongly minimal formulas are important because they appear in every model of such 7.

Lemma 3.1.2. Let T be w-stable and M |= T, then there is a minimal formula in M.

Proof. Suppose not, without loss of generality, we build a tree of formulas with one variable
(¢o : 0 € 2<¥) such that:

« ifo C 7, then ¢, | ¢,;
* Qo F 0015
* ¢, (M) is infinite.

Let ¢y be the starting formula v = v. Suppose we have a formula ¢, such that ¢,(M)
is infinite. Because ¢, is not minimal, we can find a formula ¢ such that divides ¢, (M)
into two infinite sets. We do this iteratively until we get a complete binary tree where
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each branch defines a unique countable yet partial type in S{*(A) where A is the set of alll
parameters in the formulas in the tree, which is countable. Here, we have a contradiction
as the cardinality of the branches is 2% < |S{M(A)] is while |A| = X,. O

Following, we prove that if 7" has no Vaughtian pairs, any minimal formula is strongly min-
imal. This is because when we have Vaughan pairs, we can express "there are infinitely
many realizations of ¢(7, a) for any set of parameters.”

Lemma 3.1.3. Suppose that 7" is an £-theory with no Vaughtian pairs. Let M = T, and
let ¢(vy,..., vk, wn,...,w,) be a formula with parameters from M. There is a number n
such that for each @ € M and |¢(M,a)| > n, then ¢(M, a) is infinite.

Proof. For the sake of contradiction we have M = T that does not have this property
for ¢, so assume there is no such n € N. This means that for each n, there is @, in M
that |¢(M,@,)| > n and not infinite, i.e., there is no maximum size for definable finite sets
d(M,a) foralla € M.

We will use the £* = LU {U} and T* we used in 2.1.7. We can briefly describe 7™ as
T in addition to axioms that say for any model A of T* the interpretation U+ is a proper
elementary substructure of A. We use the notation (A, ) for these models to with .A being
the model of 7 and B the interpretation of U+. Let A/ be an elementary extension of M,
(N, M) is a model of T*. Let I'(w) be the following set; we will prove it is a type in L*.

1. U(w);
2. Ju1.. (N Ui # 05 A N\, 6(0i,0)) for each n € N;
3. Yup(v,w) — U(v);

For each finite subset A ¢ 7* U T'(w), we have that all sentences of T* are satisfied by
(N, M), and the finite subset of formulas from I'(w), describes an element w with U(w)
and that all the solutions of ¢(v,w) are in U and are at least k, for some k € N. For every
such k € N there is a a;, € M such that |¢p(M,a;)| > k, so |p((N, M),ar)| > k, which
satisfy the first two properties of A C I'(w). For the last property, let b € (N, M) such that
o(b, ar), then b € M. If assumed otherwise then (N, M), ar)| > |¢(M, ar)| which is a
contradiction because M is an elementary substructure, thus (N, M) = ¥(ax) & M |
Y(ax). Soax, € (N, M) witnesses A. By compactness I'(w) is a type, so it is realized in an
elementary extension of (N, M) < (N, M’). Leta € (N’, M’) be the element realizing
['(w), then ¢((N', M'),a) € M’ C N'. Because ¢((N', M'),a) is infinite, we have that
(N', M) is a Vaughtian pair for 7.

]

Notice that the n in the previous lemma works for definable sets ¢(7, b) for b later introduced
in some elementary extension because of the sentences Vw|¢(v,w)| # k, k > n; We now
can express in one sentence whether a definable set is finite or not, rather than having an
infinite collection of sentences, more importantly strongly minimal can be expressed as a
sentence.
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Theorem 3.1.4. If T has no Vaughtian pairs, then any minimal formula is strongly minimal.

Proof. Let M = T and the minimal a formula ¢(v) over M, and denote D as the cor-
responding minimal set. Assume that it is not strongly minimal, which means in an el-
ementary extension A/, there is a new definable set A such that AN D and AN D are
infinite. To this be the case, the A has to be with parameters form b € A defined by
¥ (v, b). Due to 3.1.3 and because in M, ¢ is minimal, we get the following sentence in 7":
M EVu ([p(M,w) NpM)| <ny vV [=(M, @) N ¢(M)] < np) =

N EVo ( |[pN, @) NeN)| <niV |[-0(WN,w) N ¢(N)| < ny). This is a contradiction be-
cause b € N and ( [¢(N,b) No(N)| > ng A |[=(N, D) N(N)] > no). O

Corollary 3.1.5. If T is w-stable and has no Vaughtian pairs, then for any M = T, there
is a strongly minimal formula over M. Since T is w-stable we have a prime model M, <
M, take ¢ to be the strongly minimal formula in M, defined with parameters m, C M.
Consequently, we can always find a strongly minimal formula with parameters from the
prime model of T'.

3.2 Algebraic Closure

Now that we have established that every model of T', a theory that is w-stable and without
Vaughtian pairs, has a strongly minimal formula with parameters from M, the prime model
of T', we will focus on the properties of strongly minimal sets.

Definition 3.2.1. We say an element b is algebraic over A (a set of parameters) if there is a
formula ¢ (x, @) with @ € A such that ¢/(M, a) is finite and (b, @). We also call ¢ algebraic
formula and tp]!(b/A) algebraic type. Let M be an L-structure, D C M be a strongly
minimal set, and ¢(v) the corresponding formula (possibly defined with parameters). From
now on, we will consider algebraic elements only inside D:

aclp(A) = {be D : bis algebraic over A}

= [ J{o(M) A (M, @) = [¢(M) Ap(M,a)] < R}
— U{A C D : Ais definable and finite}.

To give some intuition, will also write b is generated by a set of parameters, meaning that
b is algebraic over that set.

Lemma 3.2.2. The following properties hold for any strongly minimal D and A,B C D.
We write acl(A, b) for acl(A U {b}).

i) acl(acl(A)) = acl(4) DO A. (enlargement)
i) If A C B, then acl(A) C acl(B). (containment)
i) If a € acl(A), then a € acl(A,) for some finite A, C A. (finite character)
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iv) Ifa € acl(A,b) \ acl(A), then b € acl(A, a). (exchange property)

Proof.

iv) So we assume that a € acl(Ab) \ acl(A), so this means that a is one of the finite many
solutions to a formula that contains b as a parameter, ¢(z,b). There is a sentence that
expresses the number of solutions for ¢. Let ¢/(b) be the following sentence

|6(x,b)| = n

We now consider ¢)(v), where v is a free variable (z is not free). So, the previous sentence
(x(b)) asserts that the number of solutions for ¢ with b as a parameter is n. If there are
finitely many solutions for ¢ (v), assume m, there would be a contradiction because b €
acl(A), and then the following formula has « as a solution and only uses parameters from
A:

Fop(z,v) ANp(v)

We will prove that ¢(a,v) A ¥ (v) defines a finite subset of D and so b € acl(A). We
assume it is not, so G = ¢(a, M) A (M) is cofinitely. We will call this set the set of
proper generators of a that generate exactly n elements (one of them is a). So there are
finitely many non-proper generators for a, either non-generators or not generating exactly
n elements. Without loss of generality, assume the number of non-generators of a is
|G| = 1. We can see |G| = [ as a property of the element a,

[=(a, M) V= (M)] = 1.

If there are finitely many elements like a with this property, then a € acl(Aa). So there must
be cofinitely many. Take n + 1 of them a4, ..., a, .1, €ach one of them has [ non-proper
generators denoted as G,,,1 < i < n + 1. So the |JG,, is finite, take g ¢ |JG,, this is a
proper generator for all n + 1 a;’s. This is a contradiction as it is non-proper because v(g)
is false. O

Because of the sentence M = |¢(M) A (M, a)| = n, there are no new elements sat-
isfying ¢(v) A ¥(v,a) in any elementary expansion over A DO a. This has the following
consequences.

Lemma 3.2.3. If p is algebraic over A, then it is isolated.

Proof. Let ) be the algebraic formula and n be the number of its solutions. If we assume
that there are m > n different types that include 1, then there is an elementary extension
N realizing m solutions to ). Contradiction. So there are at most n different types that
include . For any of those types, if ¢ # p, we have that there is a formula that ; € p and
Y; € q. Then the formula ) A A v; isolates p. O

We will define the notion of independence, which generalizes the algebraic independence
in algebraically closed fields.
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Definition 3.2.4. We say that A C D is independent if a ¢ acl(A \ {a}) forall a € A. If
C C D, we say that A is independent over a set of parameters C' ifa € acl(CU(A\{a}))
foralla € A.

Definition 3.2.5. We say that AisabasisforY C Dif A C Y isindependentand acl(A) =
acl(Y'). Here, independence might also mean over a set of parameters.

Lemma 3.2.6. If A and B are bases for Y C D, then |A| = |B|.

Proof. We will first prove the following claim.

Claim 3.2.7. (Swapping base elements) Suppose A, C A and By C B are subsets such
that AoU By isabasis for D. Thenifa € A\ Ay, thereis some b € B, so that AoU{a}UB,\{b}
is a basis for D.

Let B, C B, be of minimal cardinality such that a« € acl(4, U B;). Let b € By, because
of the minimality of By, a € acl(4, U By) \ acl(4, U B, \ {b}), because b is essential in
constructing the algebraic formula « satisfies. By the exchange principle, we have b €
acl(Ap U {a} U (B \ {b})). We can increase B; \ {b} back to B, \ {b} and have b €
acl(AoU{a}U(By\{b})) because all the elements used to create the formula b is a solution
arein (AgU{a} U (B \ {b}). Since acl(Y') = acl(acl(Y)) and b € acl(AgU {a} U (By\ {b}))
it means that acl(Ay U {a} U (By \ {b})) = acl(Ay U By) = D because A, U B is a basis for
D.

We now need to check the independence of Ay U {a} U (By \ {b}). We only need to
check the independence of a as all other elements are in the basis Ay U By,. For the
sake of contradiction, suppose that a € acl(A4y U (B, \ {b})) then acl(4y U (By \ {b})) =
acl(Ap U{a} U (By\ {b})) and b € acl(Ay U (By \ {b})), because Ay U {a} U (By \ {b})
generates 0. [

We distinguish two cases:

« if B is finite assuming the following, |B| < |A|, we will end in a contradiction. Let
|B| = n and ay,...,a,,; are all distinct elements of A. Let Ay, = ) and By = B
we can apply the claim above n times to get that {a;...,a,} U (B \{b1....,b,}) =
{ai1...,a,} has the same span as B, sois a basis for D. But this is a contradiction as
a,+1 € acl(B), so a,,; € acl({ay,...,ay}) contradiction because A is independent.
Swap the roles of A and B to get |A| = |B].

« if Bis infinite then we can see B as the union of all of its finite subsets B, C B which
are |B| is total. Notice that acl(B,) is finite and any d € acl(B) holds that d € acl(B,)
for some By, s0 Up, 5 finire 8Cl(Bo) = acl(B) = D and A C D.

A< | ad(By).

BoCB finite

This leads to |A| < |B|, because |Up 3 ini. | = |Bl- We can then apply the same
proof technique to A to get |A| = |B|.
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Definition 3.2.8. If Y C D, then the dimension of Y is the cardinality of a basis for Y,
denoted dim(Y').

Lemma 3.2.9. If D is uncountable and £ is countable, then dim(D) = |D|.

Proof. First, note that dim(D) cannot be more than |D| because any base is a subset of
D. Let A be a basis for D and dim(D) < |D| since the language is countable and the
finite subsets of A are |A| for each ¢(v, w) formula we can make |A| formulas by inserting
constants in the variables w. So each of the |A|, £4-formulas contributes a finite number
of elements to the algebraic closure alc(A)=|A|-n = |A| < |D|, soitis nota basis of D. [

Lemma 3.2.10. Let M, N | T, and ¢(v) be a strongly minimal formula with parameters
from Ay, where Ay C M, where My, £ T, My < M, and My, < N. Ifn € N and
ai,...,a, € (M) are independent over Ay and b,,...,b, € ¢(N) are independent over
Ay, then tp™(@/Ay) = tp™' (b/ Ay).

Proof. We will use induction over n, which is the number of independent elements. For
n=1,ay,b ¢acl(A), they both realize the same 1-type. Indeed, take M = ¢ (a1) Ap(ay),
we know that ¢ A ¢ has infinite solutions, so =i A ¢ has finite many. If M |= —(by) A p(by),
then b, € acl(Ay), a contradiction.

Assume tp™M(ay, ..., an/Ag) = tp" (b1, ..., b,/ A) is true for n, we will show that it is also
true for ay,...,a,, a1 @and by, ... b,,b,41. Leta = (ay,...,a,) and take M E (@, a,11).
We can view 1 as a formula with parameters from aU A,; we will denote it as v);. Because
any1 € acl(Ag,a), ¥z(v) A ¢(v) has infinite many realizations hence =z (v) A ¢(v) is finite.
M E |=g(v) A é(v)] = k for some k € N is a property of the elements @ over 4y, so
we can use the inductive hypothesis that tp™(a/A,) = tp"' (b/A4y) and get N |= |—15(v) A
¢(v)| = k as a property of b. Because ¢ is strongly minimal 15(v) A ¢(v) is infinite. If V' =

“U5(bns1) A @(bnya) then b, € acl(Ay, b) a contradiction. So N = ¢5(bni1) A ¢(bnya) =
N >:,I7D(ba bn-‘rl)' u

3.3 Extending Partial Isomorphism of Strongly Minimal Sets

Corollary 3.3.1. Let B and C be independent subsets over A, of ¢(M) and ¢(N), re-
spectively, with the same cardinality. Any bijection f : BU Ay — C U Ay that fixes Ay is
elementary.

Proof. For the sake of contradiction, assume thatb,,...,b, € BUAyandcy,...,c, € CUA,
their respective image under f, such that

M }:wa)laabn) andNb&w(cla"'acn)'

Let 7 C {1,...,n} be such that foreach i € I, b; € A,. But we can view b;’s as parameters
and get

M |: on (b) and N % ¢A0 (E)
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with ¢4, being a formula with parameters from A,. This is a contradiction since b and ¢
are indiscernible' over A, because of 3.2.10. O

The next theorem will extend an elementary function of the transcendental basis of strongly
minimal sets to f : ¢(M) — ¢(N) to only later be extended to f : M — N.

Theorem 3.3.2. Let M, N = T, and ¢(v) be a strongly minimal formula with parameters
from Ay, where Ay C M, where My = T, My < M, and M, < N. If dim(¢(M)) =
dim(¢(N)), then there is a bijective partial elementary map g : ¢(M) — ¢(N).

Proof. Take a B basis for the transcendental subset of ¢(M) and C' as a basis for the
transcendental subset of ¢(\). These are also bases for ¢(M) and ¢(N) together with
Ay, i.e., acl(BU Ay) = ¢(M) and the same for C. We can deduce that |B| = |C| since
the dimensions of ¢(M) and ¢(N') are equal. Then take f: BU{A,} — C U{A,} be any
bijection that fixes Ay. Because of 3.3.1, f is a partial elementary function. We will extend
f from the bases to the whole strongly minimal sets.

Let

I={9:B" —=C":
BUAyC B'Cop(M), CUA; CC" Co(N), fC g partial elementary}.

By Zorn’s Lemma, there is a maximal g : B" — C’. We will show that B’ = ¢(M). Suppose
there is b € ¢(M) \ B, that b is algebraic over B U A, since it is a basis. Let (v, d)
isolating tp™!(b/B’) because of 3.2.3 we will find a way to extend the function ¢ by find a
pair for b. Notice, because g is elementary, that M |= Jvy)(v,d) and so N = Juip(v, g(d)),
so there exists an element € N that satisfies ). Let ¢ € N denote that element. It is true
that tp™(b/B’) = tp"(¢/g(B')) so ¢ (v, g(d)), is isolating tp™(c¢/g(B’)). Then ¢ € ¢(N),
as this is one of the properties of b. We can now extend ¢g by sending b — ¢. This is
a contradiction because ¢ is maximal. Thus, we are concluding that B’ = ¢(M). The
same argument works for C" = ¢(N), because g is one-to-one. So g : $(M) — ¢(N) is a
bijective partial elementary function. O

Now we are ready to prove the second direction of the 1.6.13. We will use the bijective
partial elementary function from the previous theorem for any two models of the same
cardinality. This function connects their strongly minimal sets; we extend this to a total
bijective elementary function between the models using prime models and the lack of
Vaughtian pairs.

Theorem 3.3.3. If T' is a complete theory in a countable £, which is w-stable and has no
Vaughtian pairs, then it is k-categorical, for k > W;.

"Here we use the more general notion of indiscernibles rather than order indiscernibles, we want M =
¢(@) <> ¢(b) foralla,be X
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Proof. Let ¢(v) be the strongly minimal formula with parameters A, from M, the prime
model of 7', as in 3.1.5. Let M and A be models of T of the same cardinality x > ¥;,
due to M, being prime M, < M and M, < N. Assume that |(M)| < « then we
have a (x, \)-model and a Vaughtian pair. So |¢(M)| = x and as explained in 3.2.9
dim(¢(M)) = dim(é(N)) = k. By 3.3.2, we can find a partial elementary map f : ¢(M) —
#(N). Our goal is to extend this to a total elementary map. If we take X = ¢(M) as
our parameters, then every model of Thx (M) contains X. From 1.8.3 let M’ be prime
over X. If M’ C M, then because X = ¢(M) is definable and contained in A’ there is
a Vaughtian pair (M’, M). So M’ = M, i.e., M is the prime model over X. Notice that
N |= Thx(M) as there is the elementary map f between the parameters X = ¢(M)
and ¢(N') and we can extend to an elementary f’ : M — N because M is prime. This
embedding is surjective. Assume otherwise, then f'(M) C N and ¢(N) is contained in
(M), so (N, f/(M)) is a Vaughtian pair, a contradiction. O

This theorem marked an important milestone in the development of Model Theory and
was the start of exciting new directions for the subject. Saharon Shelah built on Morley’s
work by developing Stability Theory to classify theories based on how tame they are. The
reader is advised to look into [3] to expand their knowledge of the results that sprouted af-
ter Morley’s Theorem. One of the most famous open problems in Model theory is Vaught’s
Conjecture, which states that any first-order theory in a countable language has finite, N,
or 2% countable models. Much of Shelah’s work has revolved around counting the models
of a theory per cardinality. The closest attempt to prove this conjecture in its full general-
ity is actually a theorem of Morley proving that the number of countable models is finite,
Ny, Ny, 2% which significantly narrows it down to excluding only ®; when the Continuum
Hypothesis fails. However, narrowing it down to specific classes has proven true in many
cases [4], [5]. In closing, to this day, we don’t know the absoluteness of Vaught's Conjec-
ture, meaning it could be independent of set theory, just like the Continuum Hypothesis
was.
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