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Abstract

In this thesis, we present the Fourier and Fourier-Stieltjes algebras of a locally
compact group and discuss some of their properties.

Let G be a locally compact group. We denote by X(G) the family of
equivalence classes of unitary representations of GG up to unitary equivalence.
Then, the Fourier-Stieltjes algebra of G, denoted by B(G), is the set of

coefficient functions of representations of GG. That is,
B(G) == {(m()&,m) : m e B(G)and {,n € Hr}.

We endow B(G) with pointwise addition and multiplication (the sum of
functions corresponds to the direct sum of representations and the product
of functions corresponds to the tensor product of representations) and the

norm

Jul = inf{lg] n] - u(-) = x()E,m), (7, He) € 3(G), €, € He}

for every uw € B(G). With those operations and norm, B(G) becomes a
Banach algebra (2.0.30) and it is isometrically isomorphic to the dual of the
group C*-algebra (2.0.11). The duality is given by (u|f) = § f(z)u(z) dz for
u € B(G) and f € L(G). The Fourier algebra, A(G), is equal to the set of

coefficient functions of the left regular representation of G, that is

AG) = {9 fge L2 (G)},

X



where A is the left regular representation of G. Clearly A(G) is a subset of
B(G). Endowed with the norm of B(G), it is actually a closed ideal in B(G)
(3.1.5) and therefore, A(G) is a Banach algebra.

In the first chapter, we give the necessary definitions and results from the
theory of C*-algebras, von Neumann algebras and locally compact groups,
that will be needed for the rest of this thesis. Most of the results in this
chapter, are stated without proof and the reader is referred to the literature
for proofs. An exception to this, is the section 0.3, where we construct the
universal enveloping von Neumann algebra of a C*-algebra A in detail and
show that it is isometrically isomorphic to A** (0.3.2).

In the second chapter, we define the unitary representations of a locally
compact group G and we show that there are bijective correspondences be-
tween unitary representations of GG, non-degenerate representations of L!(G)
and representations of the measure algebra M(G), whose restrictions to
L'(G) are non-degenerate (1.1.8 and 1.1.11). We also introduce the functions
of positive type (1.2.1) and give a short overview of some of their properties.
The first definition of B(G) that we provide in the next chapter, will be based
on the functions of positive type.

In the third chapter, we introduce B(G), along with its subspaces, Bs(G)
(2.0.12), where S is a class of unitary representations of G and we study some
of its properties.

In the fourth chapter, we introduce A(G) and show that it is a closed ideal
in B(G) (3.1.5). We also specify its spectrum and its dual. More specifically,
we show that the spectrum of A(G) is homeomorphic to the group G (3.2.1)
and we show that the dual of A(G) is isometrically isomorphic to the group
von Neumann algebra, vN(G) (3.3.5).



IepiAnyn

Yxomog authc g cpyooiog, elvan va uekethAooude Ti¢ dhyePpeg Fourier xan
Fourier-Stieltjes plag tomxd cuunayols opddoag G xon vo meprypdouue opl-
OUEVEC TOUG LOLOTNTEC.

‘Eotw Gy tomixd oupmoryfic opdda xou €6te X(G) 1 oixoyEveLo v xhdoe-
®V looduvoplac Twy unitary avomapactdoeny e G w¢ Teo¢ unitary equiva-
lence. Téte, n dhyeBpo Fourier-Stieltjes, B(G), e G, amotehelton and tig

CUVAPTHOEL CUVTEAEGTWY TOV AvVAmopac tdoewy e G, onAady),

B(G) = {m()&m) : (m, Hx) € B(G), §,m € He}.

Eqobiélouvpe ) B(G) pe xatd onueio mpdbateorn xou tohhamiactacydé (to ddeot-
Ol CLYAPTACEWY avTIo ToLYEl ot eul dpoloua avamuEac TAoEWY XAl TO YIVOUE-

YO GUVOPTACEWY OE TOVUGTIXO YIVOUEVO ovamapao ToewY) xon opllouue vopuol

oty B(G) pe
Jul = inf{[€] In] - w(-) = <w ()& m), (w, Hr) € B(G), §,m € He}

yw u oty B(G). Me autée T mpdielc xou ) vopua, n B(G) eivar dhyeBpor
Banach (2.0.30) xou efvat toopetpind tobuoppn pe tov duixd tng C*-dhyelpoc
e ouddog, ue tov duioud va divetan amé (u|f) = § f(z)u(z) dz yo f € L'(G)
xu u € B(G) (2.0.11).

H dhyefpa Fourier, A(G), tnc G, opileton and

AG) = {9 f.ge LA(G)},

el



patl

omou A 1 aploTtepn xovovixr| avamopdotaon Tng G. Me autdv Tov oplopod, capng
n A(G) eivon undywpoc e B(G). Egodiacuévn ye tn vopuo Tou xAnpovopet
ané ™ B(G), n A(G) ebvon xdetotd 18eddec ot B(G) (3.1.5) xou étot 1 (Bl
elvon dAyePpa Banach.

270 TPOTO XEPIAAO BIVOUNE TOUC amopaiTnTOUS 0PLOHOUS XUk UTOTEAECUTY
mou yeetolouaoTe and TN Yewpla Twv C*-olyeBpdv, Twv ahyefewy von Neu-
mann ot Twv ToTuxd CLUTAYWV ouddwy. To neplocdTepa anoTeAéoUATA OE oU-
T6 T0 xEPdAao Blvovton ywelc amddelln xou tapaméunouue ot BiBAtoypapion yio
amodellelg. E€aipeon amotehel n nopdypagpog 0.3, 6Tnv omoio avamTiGCOUUE e
AETTOUERELX TNV XATaoXEUT TNg universal enveloping dAyefpac von Neumann
wag C*-dhyefpac A xan delyvoupe 6Tt auTH| Elvol LOOUETEXE LGOUOPYPT UE TOV
0eUTERO OUIXO TNg A.

Y10 8eltepo xe@dhano, opiCouye TIC unitary ovamUPUCTICES UG TOTLXS
CUUTOYOUC OUddoG Xal Belyvoupe TNy avTioTotylo avdueoo oc unitary avoma-
cactdoelg g G, OE U1 EXPUMGUEVES OVITRUC TUOELS TOU LY(G) o og ava-
TOEAC TAOELS TNG SAYEBRUC TV UETEWY, M(G), ot omoiec TEQLOPLOUEVES GTOV
LY(G) etvor pn expuiopévec (1.1.8,1.1.11). Axdua e108youye Tic GUVOPTACELS
Yetxol tomou (1.2.1) xou xdvoude pior o0VToun ETOXOTNOT XETotwY WOOTATWY
Toug. Bdoel auteyv Yo oplooupe yioo Tp®TN QOEd GTO EMOUEVO XEPIAMO TNV
B(G).

Y10 tpito xepdhao, ewodyoupe v B(G) uali pe toug unoydpoue Bs(G)
(2.0.12), émou S elvon xAdon unitary ovomopaotdoeny e G xon UEAETHUE
AAMOLEC AT TG WOLOTNTES TN,

Y10 tétapto xe@dhoto ewodyoupe v A(G) xou Belyvoupe 6Tt elvon XAEWOTO
10endec oty B(G) (3.1.5). Axdua, mpocbiogiloupue to @douo xon tov duixd
. o ouyxexpyéva, detyvouue 6Tt to pdopo e A(G) elvan opolopop@ind ue
v G (3.2.1) xou Belyvoupe 6Tt 0 duixde e A(G) ebvan loopeTpxd 1ooUoppog
ue v dhyefpa von Neumann e opddac, vN(G) (3.3.5).



Preliminaries

0.1 ("-algebras

In this section, we give some basic results and definitions related to C*-
algebras, that will be needed for the rest of this thesis.

Definition 0.1.1. A Banach algebra is an algebra A, equipped with a norm
|-l, such that (A,|-|) is a Banach space and for every a,b € A, we have
|ab] < laf 6.

Definition 0.1.2. Let A be a complex algebra. An involution on A is a map
x: A — A such that:

o (a+\b)* =a* + \b*
° (a*)* =a
o (ab)* = b*a*

for every a,b € A and A € C. The algebra A equipped with an involution is

called a =-algebra.

Definition 0.1.3. A Banach-= algebra is a Banach algebra A, equipped with

an isometric involution.

Definition 0.1.4. Let A be a =-algebra and let a € A. Then a is said to be
selfadjoint if a = a*. The set of selfadjoint elements of A is denoted by As,.

1



Definition 0.1.5. A C*-algebra is a Banach *-algebra A that satisfies the
C*- property, that is

2
la*a] = |al
for every a € A.

The prototypical example of a C*-algebra is the algebra of bounded oper-

ators on a Hilbert space.

Example 0.1.6. Let H be a Hilbert space and let B(H) be the algebra of
bounded operators on H. We equip B(H) with the operator norm and with
the involution that maps any bounded operator to its adjoint. Then B(H) is
a C*- algebra. In fact, every closed =-subalgebra of B(H) is a C*-algebra.

Definition 0.1.7. Let A, B be C*- algebras and let ¢ be a map from A
to B. Then, ¢ is called a =-homomorphism if it is linear, it respects the

multiplication and the involution, that is :
o p(a+ Ab) = ¢(a) + Ao(b)
o ¢(ab) = ¢(a)¢(b)
o o(a*) = (¢(a))*

for every a,be A and \ e C.

It is remarkable, that any such map is automatically continuous.

Theorem 0.1.8. Let A, B be C*-algebras and let ¢ : A — B be a =*-
homomorphism. Then ¢ is continuous. Moreover, if ¢ is injective, then

¢ 1s isometric.

The proof of this theorem can be found in [9](proposition 2.2.5. and corol-
lary 2.2.6.).

Proposition 0.1.9. Let A be a C*-algebra and let I be a closed two sided
ideal in A. Then we can define an involution on the algebra A/I, by defining
(a+ I)* := a* + I for every a € A. This involution is well defined on A/I

and equipped with the quotient norm, A/l becomes a C*-algebra.



Proof. See [2](proposition 1.8.2.) O
We have the following immediate corollary to proposition 0.1.9.

Corollary 0.1.10. Let A, B be two C*-algebras and let ¢ : A — B be a
s-homomorphism. Then, the map ¢ : A/Ker(¢) — B is a =-homomorphism
from the C*- algebra A/I to B and it is injective, therefore, by proposition
0.1.9 it is isometric. Moreover, the image of ¢ is clearly a closed =-subalgebra
of B and therefore it is a C*-subalgebra of B.

Definition 0.1.11. Let A be a Banach algebra. Then, A is called unital if it
contains a multiplicative unit, that is, there is an element 14 € A such that

aly = 1lqa = a for every a € A.

Definition 0.1.12. Let A be a unital Banach algebra and a € A. Then a is
called invertible if there ewists a=' € A such that aa™' = ala = 14, where

14 is the unit of A.

Definition 0.1.13. Let A be a unital Banach algebra and let a € A. We
define the spectrum of a by

o(a) :={Ae C:a— Al4is invertible}
Proposition 0.1.14. Let A be a unital Banach algebra and let a € A. Then
ola) # .
Proof. See [9] (theorem 1.2.8.). O

Definition 0.1.15. Let A be a =-algebra and let a € A. Then a is called
selfadjoint if a* = a.

Definition 0.1.16. Let A be a unital Banach algebra and let a € A. Then a

is said to be positive if a is selfadjoint and o(a) < [0, ).

Now, let A be a non-unital Banach =-algebra and let a € A. There is a
natural way to define the spectrum of a in A and it is true that o(a) # &,

so the definition 0.1.16 makes sense and therefore, we say that a is positive



if it is selfadjoint and its spectrum is contained in [0, 0). For the details of
this discussion see [9](1.2.12 and 1.2.1.13.)
If Ais a C*-algebra, there exists a very interesting characterization of the

positive elements.

Theorem 0.1.17. Let A be a C*-algebra and let a € A. Then a is positive

if and only if there is some x € A such that a = x*x.
Proof. See [9] (theorem 3.1.10.) O

Definition 0.1.18. Let A be a C*-algebra and let ¢ : A — C be a linear
functional on A. Then, ¢ is called positive if p(a) = 0 for every a € A that

is positive. We denote the set of positive functionals on A by A%.

A very interesting fact about positive functionals is that they are auto-

matically continuous. For a proof, see [9](theorem 4.1.5).

Definition 0.1.19. A state on a C*-algebra A is a positive functional of
norm 1. We denote the set of states on A by S(A).

Definition 0.1.20. Let H be a Hilbert space and A < B(H) be a subalgebra.
A wector £ € H is said to be cyclic for A if the set {a(§) : a € A} is dense in
H.

Proposition 0.1.21. Let A be a C*-algebra and ¢ € S(A). Then there exists
a Hilbert space Hy, a x-homomorphism my : A — B(Hy) and a vector §, € Hy
that is cyclic for m(A) such that ¢(a) = (my(a)és, &) for every a € A.

Proof. See [9](4.2.1. and theorem 4.3.1.). O
Definition 0.1.22. We define the universal representation of a C*-algebra
A, to be the map m : A — B(H), where H = @454 Hy and m(a) =
(76(a)) ges(a)-

Theorem 0.1.23 (Gelfand-Naimark). Let A be a C*-algebra and 7 : A —

B(H) be its universal representation. Then m is an injective x-homomorphism

and therefore A is isometrically =-isomorphic to a C*-subalgebra of B(H).



Proof. See [10](theorem 9.18.) O

Definition 0.1.24. Let A be a C*- algebra and ¢ a bounded linear functional

on A. Then we define ¢* : A — C, aw— ¢(a*). The functional ¢* is called
the adjoint of ¢. If ¢* = ¢, we call ¢ selfadjoint. The set of selfadjoint

functionals on A is denoted by AZ,.

A simple calculation shows that ¢* is bounded and linear, with |¢*|| = | ¢]|.
Moreover, (¢*)* = ¢ for every ¢ € A* and (A - @)* = X - ¢* for every ¢ € A*

and every A € C, so the =- operation is an involution on A*.

Proposition 0.1.25 (Jordan decomposition). Let A be a C*-algebra and

let o € A%,. Then there exist unique positive functionals ¢, ¢_ such that
¢ = ¢y — o and o] = [¢+] + [lo-].

Proof. See [10] (proposition I11.2.1.). O
Corollary 0.1.26. Let ¢ € A*. Then, a = i(a + a*) — 5 (ia* — ia) and

k% . * % %
a+ a*,ia* —ia € A, and therefore A* = span A% .

0.2 von Neumann algebras

In this section we provide the basic definitions and results related to von

Neumann algebras, that will be needed for the rest of this thesis.

Definition 0.2.1. Let H be a Hilbert space and B(H) be the bounded opera-
tors on H. We define the weak operator topology (WOT) on B(H) to be the

locally convex topology generated by the seminorms
a — [(ag, )l
forae B(H) and {,me H.

Definition 0.2.2. Let H be a Hilbert space, we define the strong operator
topology (SOT) on B(H), to be the locally convex topology generated by the
seminorms

a— [ag]

forae B(H) and £ € H.



Definition 0.2.3. Let H be a Hilbert space and let B(H) be the bounded
operators on H. We define the o-weak or ultraweak topology on B(H) to be

the locally convex topology generated by the family of seminorms

a —> 5

Z<a£jv i)

where (§;);, (1;); are sequences of vectors in H such that 37 I& )7 < oo and

2
St sl < 0.

Definition 0.2.4 (von Neumann algebra). Let H be a Hilbert space and
let A be a unital =-subalgebra of B(H). If A is closed in the weak operator

topology, then A is called a von Neumann algebra.

Remark 0.2.5. Let (ay), be a sequence in a von Neumann algebra A such
that (ay), converges in the operator norm to some a € B(H). Then, for any
§,n € H, we have [(a&, n)—(ang, )| = [((a—an)§,m)| < |a — an| €] |7l which
converges to O and therefore a,, — a in the weak operator topology. Since A
is WOT-closed, we get that a € A and therefore A is norm-closed. Since A is
a norm-closed *-subalgebra of B(H), we conclude that A is a C*-subalgebra

of B(H). So every von Neumann algebra is also a C*-algebra.

Definition 0.2.6. Let H be a Hilbert space and let A < B(H). We define
the commutant of A to be the set of elements of B(H) that commute with the
elements of A and we denote it by A’. That is,

A'={be B(H):ab="baVae A}.

Proposition 0.2.7. Let A ¢ B(H) be closed under taking adjoints. Then
A" is a =-subalgebra of B(H) and it is closed in the weak operator topology.

Moreover, A’ is unital and therefore it is a von Neumann algebra.

Proof. A’ is clearly a subalgebra of B(H) and it contains the identity oper-
ator, so it is unital.
Let z € A" and a € A. Then, z*a = (a*x)* = (xa*)*, since x € A’ and

a* € A, so x*a = az* and therefore, x* € A’, so A’ is a »-subalgebra of B(H).



To see that A" is WOT-closed, take a net (z;) in A’, such that z; converges
to some z € B(H) in the weak operator topology and let a € A. Let £, € H.
Then, (x;(a&),n) — (x(a&),n), since x; — x in the weak operator topology.

At the same time, (a(z;),n) = (@&, a*n) — (&g a*n) = {(ax)§,n).
Therefore, ar = za and z € A, so A" is WOT-closed and therefore it is

a von Neumann algebra. [

Theorem 0.2.8 (von Neumann’s double commutant theorem). Let H be a
Hilbert space and let A < B(H) be a =-subalgebra of B(H) that acts non-

degenerately on H, that is, there is no & € H non-zero such that a(§) = 0 for

every a € A. Then AT — 4

Proof. See [9] (theorem 5.2.7.). O

Proposition 0.2.9. Let H be a Hilbert space and let C' be a convex subset
of B(H). Then C is WOT-closed if and only if C' is SOT-closed.

Proof. See [12] (corollary 2.7.5.)
[

Corollary 0.2.10. Let A be a *-subalgebra of B(H). Then A is convex and

therefore arer _zor,

Proposition 0.2.11. Let X < B(H) be bounded, then the weak and ultra-

weak topologies coincide on X.
Proof. See [12] (proposition 2.7.19.). O

Theorem 0.2.12 (Kaplansky’s density theorem). Let H be a Hilbert space
and let A be a =-subalgebra of B(H), with SOT-closure B. Then:

1. A, is SOT-dense in Bg,.

2. The norm-closed unit ball of A is SOT-dense in the norm-closed unit

ball of B.

Proof. See [7] (theorem 4.3.3.) O



Let A be a =-subalgebra of B(H) with SOT closure B. Clearly the closed
unit ball of A is convex and therefore, by 0.2.9, we get that the closure of
the closed ball of A in the weak operator topology is the same as the closure
in the strong operator topology and therefore, the closed unit ball of A is
WOT-dense in the closed unit ball of B. Moreover, since the closed unit ball
of A is bounded, by 0.2.11, we get that the closed unit ball of A is ultraweakly
dense in the closed unit ball of B.

Corollary 0.2.13. Let A be a =-subalgebra of B(H) with SOT closure B.
Then the unit ball of A is WOT dense in the closed unit ball of B.

Definition 0.2.14. Let H be a Hilbert space and let M < B(H) be a von
Neumann subalgebra of B(H). Then, we define M, to be the subspace of the
dual of M, consisting of the ultraweakly continuous functionals in M. That
18,

M, = {p e M* : ¢ ultraweakly continuous}.

Proposition 0.2.15. Let M be a von Neumann subalgebra of B(H). Then,

*

M. is a closed subspace of M* and M is isometrically isomorphic to (M)
via the pairing

{al¢) = ¢(a)
forae M and ¢ € M,.

Proof. See [10] (theorem I1.2.6.). O

Remark 0.2.16. Notice that with this duality, the w*-topology on M 1is
exactly the ultraweak topology.

Proposition 0.2.15 shows that every von Neumann algebra is a dual space.

By a famous theorem of Sakai, von Neumann algebras have unique preduals.

Theorem 0.2.17 (Sakai). Let M be a von Neumann algebra. If E is a
Banach space whose dual is isometrically isomorphic to M, then E is iso-

metrically isomorphic to M.

Proof. See [10] (corollary 3.9). O



0.3 The universal enveloping von Neumann

algebra of a ("-algebra

Every von Neumann algebra is also a C*- algebra. While the converse is not
true, we do have a natural way to associate to any C*- algebra A a unique
von Neumann algebra, called the universal enveloping von Neumann algebra

of A. In fact, this von Neumann algebra is isometrically isomorphic to the
double dual of A.

Proposition 0.3.1. Let A be a C*- algebra, H a Hilbert space and 7w : A —
B(H) a representation of A. Let M = (mw(A))" be the von Neumann algebra
generated by the image of w in B(H). Then, if i : A — A** is the natural
embedding of A into A**, there exists a unique ™ : A*™* — M such that
ot =m. The map 7 is onto and it is continuous with respect to the w* and

the ultraweak topology on A** and M respectively.

Proof. First of all, notice that i(A) is w*- dense in A**. Then, if 7 is w*-
continuous, 7 is determined by its values on the dense i(A) and is therefore
unique. So we only need to check that such a map exists.

Let M, denote the predual of M. Since 7 : A - M, we have 7* : M* —
A*. Let r = 7| m,,, then its transpose, r* is a map from A** to (M,)* = M,
so : A™ — M. As we will see, r* is exactly the map we are looking for.

Let a € A and ¢ € M,, then (r*(i(a))|¢) = (i(a)|r¢) = (7*¢|a) = (¢|n(a))
and so r*(i(a)) = w(a) for every a € A and r* oi = 7. Also, r* is a dual
map and therefore it is continuous with respect to the w* and the ultraweak
topologies. We only need to show that r* is onto.

Assume first that 7 is isometric. By Goldstine’s theorem, i(B,) is w*-
dense in Bys+ and by the Banach-Alaoglou theorem, By is w*- com-
pact. Since r* is w*- continuous, r*(Bgsx) is ultraweakly compact in M
and r*(i(By)) = m(B,) is ultraweakly dense in r*(Bax+). Now, 7 is isomet-
ric, so m(Ba) = By 0 w(A), where Bag denotes the closed unit ball of M.
The ultraweak topology on M is the w*- topology induced by M., so by the



10

Banach-Alaoglou theorem, By is ultraweakly compact and therefore closed
in M. Moreover, by Kaplansky’s density theorem, w(A) n B is ultraweakly
dense in By and so mw* C 1r*(Baxx) < By, since m is isometric and
therefore r* is contractive. But mw* = B, so r*(BY*) = By and 7* s
onto.

Now for the general case, let ¢ : A — A/Ker(m) be the quotient map.
Then there exists a unique 7 : A/Ker(n) — M such that 7oq = 7. In
that case, 7 is isometric, since it is an injective *-homomorphism between
C*-algebras (0.1.8). We only need to show that w(By) is ultraweakly dense
in By, then the conclusion follows in exactly the same way as before. By the
isometric case, we know that 7(Ba/Kker(x)) is ultraweakly dense in Ba. Let
B and B} () denote the open unit balls of A and A/ Ker(r) respectively.
We claim that (B} ke r)) = T(B3)-

Clearly, m(B}) < 7(B})Ker(m))» since [a + Ker(m)| < [a for every a € A.
Let a € A such that a + Ker(m) € B} k. (r)- Then [a+ Ker(m)| < 1 and
we can find a sequence (z,), in Ker(r) such ||a + z,| — |a + Ker(r)| and
so for large enough n, we have |a + x,| < 1 and a + z, € B}. Moreover,
m(a+x,) =m(a) = 7(a+ Ker(n)) for every n, so 7(a + Ker(r)) € m(BS) and
therefore (B ke(ry) = T(B3). T is an isometry, so

T(BY ker(n)) = B n7T(A/ Ker(m)) = Bjynm(A) and then 71(Ba)ker(r)) =
By nm(A). By the isometric case, (B ker(r)) is ultraweakly dense in

By and so By n w(A) is ultraweakly dense in By and we are done. [

Among all representations of A, there is one making the map 7 of the
previous theorem isometric and since this map is always surjective, A** is
isometrically isomorphic to the von Neumann algebra generated by the par-

ticular representation of A, through 7.

Theorem 0.3.2. Let A be a C*- algebra and 7 : A — B(H) its universal
representation. Then 7w : A** — M = (n(A))" is an isometric isomorphism.

Moreover, the following also hold:

1. 7 18 a homeomorphism with respect to the w* and the ultraweak topolo-
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gies on A and M respectively.

2. If f € A*, there exist {,m € H such that f(a) = (w(a)&,n) for every
ae A

3. If N is a von Neumann algebra and py : A — N is a =— homo-
morphism, there exists an ultraweakly continuous =— homomorphism

p: M — N such that py = pom and p maps M onto (po(A))”.
M is called the universal enveloping von Neumann algebra of A.

Proof. With the notation of proposition 0.3.1, we have that 7 = r* and
Ker(r*) = (Im(r))*, where (Im(r))* denotes the orthogonal complement of
Im(r) in H. Let f € A* be a positive functional of norm 1. Using the
GNS construction [10] (theorem 9.14), we can find a Hilbert space Hy, a
representation 7y of A on Hy and §; € Hy a cyclic vector for A such that
f(a) = (mp(a)éy, &) for every a € A. Recall that H = @, H,, where o runs
over all of the positive functionals on A of norm 1, so we can define £ € H such
that the f coordinate of £ is {; and all others are 0. Then, if we denote the o
coordinate of £ by &,, we have (7(a)&, &) = > (m,(a)és, &) = (mp(a)s, &) =
f(a) and so every positive functional of norm 1 is of the form (r(-)&, &) for
some ¢ € H and by scaling, the same holds for any positive functional on A.
Since the positive functionals span the whole A*, by polarization we conclude
that every f € A* is of the form (7 (-)¢,n) for some &, n € H, which proves 2.
For convenience, we will denote the functional on M defined by 7' — (T¢,n)
by wey. Then, {f|a) = {wey|m(a)) = (T*wey|a) for every f e A* and a € A,
so ™ ({we,, 1 §,me H}) = A* and so n*(M*) = A*. Moreover, clearly we, €
M., so 1(M,) = A* and r is surjective. Then, Ker(r*) = (Im(r))* = {0}
and r* is injective. From the proof of the previous proposition, we know
that r*(B%*) = By Assume that there exists a a** € BY* with [a™| = 1
such that |r*(a**)| = A # 1. Recall that r* is a contraction, so A < 1 and
r* is injective, so A cannot be 0. Now, r*(a**) € By = r*(Baxx), so there
exists © € Basx such that r*(z) = "@™) and therefore r*(\-z) = r*(a™).

A

Since r* is injective, we have A\ - x = ¢** and x = ¢

A0

a**

but DY ¢ BA** and
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therefore x ¢ Ba«x, which is absurd and thus r* is isometric. We showed in
the previous proposition that it is surjective, so r* : A** — M is an isometric
isomorphism.

We have already seen that 7 is w*-ultraweakly continuous. Let T; be a
net in M such that T; — T ultraweakly for some 7' € M. Then, there exist
unique f;, f € A** such that r*(f;) = T; for every i and r*(f) = T. Then,
r*f; — r*f ultraweakly <= <r*(fl)‘1/1> — <7"*(f)‘¢> for every ¢ € M,
= (filrv) = {f|ry) for every ¢ € M, and as we saw r(M,) = A* and
therefore, (fi|ri) — (flry) < {(fi|la*) — {f|a*) for every a* € A* which
means exactly that f; LN f and therefore, 7 is a homeomorphism with respect
to the w* and the ultraweak topology respectively, which proves 1.

For 3, let N’ be a von Neumann algebra and py : A — M a *— homo-
morphism. Then, consider gy : A** — (p(A))” < N the map defined in
proposition 0.3.1 and define p : M — N by p = ppo (7)~!. Then, por = py
and p is an ultraweakly continuous »— homomorphism onto (py(A))”.

O

In fact, the enveloping von Neumann algebra of A is the unique up to
ultraweakly continuous *— isomorphism von Neumann algebra satisfying (3).

To be more specific, we will need a definition.

Definition 0.3.3. Let A be a C*- algebra and m : A — B(H) a represen-
tation of A on some Hilbert space H. The representation (m, H) is called
universal if for any other representation (p, K) of A there ezists an ultra-
weakly continuous =- homomorphism p : (w(A))" — (p(A))” that is onto and

such that pom = p.

By the previous theorem, it is clear that the universal representation of A
is universal in the sense of definition 0.3.3. As the next proposition shows it

is the only universal representation in this sense, thus justifying its name.

Proposition 0.3.4. Let A be a C*- algebra and (7, H), (p, K) be two uni-
versal representations of A. Then there exists an ultraweakly continuous -
isomorphism T : (p(A))" — (w(A))" such that Tp =7
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Proof. Since (m, H) is universal, there exists a ¢; : (7(A))” — (p(A))” such
that ¢ o™ = p. In the same way, there is ¢5 : (p(A))” — (7(A))” such
that ¢o 0 p = 7 and so ¢ 0 ¢y 0 p = p. Now, p(A) is ultraweakly dense
in (p(A))" and ¢ o ¢, is ultraweakly continuous, so ¢1 © ¢o = Id(z(ayr. In
exactly the same way, ¢ 0¢1 = Id(,a))» and ¢; is an ultraweakly continuous
«- isomorphism between (7(A))” and (p(A))” and ¢ o 7 = p. O

0.4 Locally compact groups

Definition 0.4.1. (Topological group) Let G be a group endowed with some
topology. We call G a topological group if the multiplication m : G x G —

1

G, (x,y)— xy and inversioni: G — G, x+— x~' maps are continuous.

Definition 0.4.2. A locally compact group is a topological group G such that
the topology of G is Hausdorff and locally compact.

Proposition 0.4.3. Let G be a locally compact group and x,y € G. Let
C.(G) denote the set of compactly supported continuous functions on G. For
every f € C.(G) we define L,f : G — C by (L.f)(z) = f(x'2) and R, f :
G — C by (R, f)(2) = f(zy) for every z € G. Then, L,f and R, f lie in
Co(G) and for every f € C.(G), we have that |L,f — f|, — 0 as x tends to
the identity element e and |R,f — f|., — 0 as y tends to e.

Proof. See [1](proposition 2.6.) O

Proposition 0.4.4. Let K,C' be two compact subsets of G. Then, the sets
KC and K= are compact.

Proof. Let m : G x G — G be the multiplication map. Then, KC =
m(K x C) and therefore, KC'is compact, since K x C'is compact and m is

continuous. In the same way, K ! = i(K) and therefore K~! is a compact
subset of G. O

Locally compact groups have the unique property that they can be equipped
with a very special measure, the so called Haar measure. Before introducing

this measure, we will need some additional terminology.
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Definition 0.4.5. Let p be a Borel measure on a topological group G. Then
w is called left invariant if p(xE) = p(E) for every x € G and every Borel
subset £ < G .

Definition 0.4.6. Let X be a locally compact topological space and let p be
a positive Borel measure on X. Then, p is called a Radon measure if the

following hold:
1. p(K) < o for every compact K < G.

2. For every open set U < G, we have that

w(U) = sup{u(K) : K < Ucompact}.

3. For every E Borel subset of G, we have that

w(E) = inf{u(U) : E < Uopen}.

Theorem 0.4.7. [Haar measure] Let G be a locally compact group. Then
there exists a non-zero left invariant Radon measure on G. This measure is
unique up to a multiplicative constant and we denote it by Ag. If it is clear

that it is a measure on G, we simply denote it by A.
Proof. See [1](theorem 2.10). O

Proposition 0.4.8. Let p be a non-zero Radon measure on the locally group

G. Then p is a Haar measure if and only if (L. f)(y) du(y) = § f(y) du(y)
for every f € C.(G) and every x € G.

Proof. See [1](proposition 2.9.) O

Proposition 0.4.9. Let G be a locally compact group and let U be a nonempty
open subset of G. Then A(U) > 0.

Proof. Assume that there is an open U < G such that A(U) = 0. Then, for
every compact subset GG that we denote by K, we have that K can covered

by finitely many translates of U and therefore A\(K) = 0 for every compact
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K < G. Now, A is a Radon measure and therefore, A(V') = sup{\(K) : K <
U compact} for every V' < G open. The same holds for V = G and therefore
AMG) =0 and A = 0, which is a contradiction. O

After choosing a Haar measure A for G, for every p € [1,00), we can define
the corresponding Lebesgue space LP()\) and we denote it simply by L*(G).

In the case p = o0, we will need to define L*(G) in a slightly different
way. Of course, the classical Lebesgue space L*(\) makes sense for the Haar
measure, but since in general the Haar measure is not o-finite, it is generally
not the case that L*(G) is isometrically isomorphic to the dual of L'(G). To
fix this, we will define L*(G) as follows.

Definition 0.4.10. Let (X, A, n) be a measure space and let A < X. Then,
A is said to be locally in A, if AnB € A for every B € A such that u(B) < oo.

Definition 0.4.11. Let (X, A, 1) be a measure space and let A < X be a
locally measurable set. Then A is said to be locally null if u(A n B) = 0 for
every B e A.

Definition 0.4.12. Let (X, A, i) be a measure space. A property is said to
hold locally almost everywhere on X, if it holds everywhere, except possibly

on a locally null set.

Definition 0.4.13. Let (X, A, 1) be a measure space and let f : X — C.
Then f is said to be locally measurable if f~Y(B) is locally measurable for

every B < C Borel.

Definition 0.4.14. Let (X, A, ) be a measure space. We define L™ (u) to
be the space of locally measurable functions on X, that are bounded except on

a locally null set, equipped with the norm |-|,, defined by
| fll,, = inf{c > 0: |f(z)| < clocally almost everywhere}.

When X is a locally compact Hausdorff space and p is a Radon measure

on X, then L*(u) as defined above, is isometrically isomorphic to the dual
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of L'(G), via the pairing

Gl = [ F@)ole) duta)

for ¢ € L®(u) and f € L'(u). For a proof of this result and a discussion about
how to overcome the problems created by the fact that the Haar measure is
generally not o-finite, see [1] (section 2.3.). Therefore, we define L*(G) to
be L*(\), where L*()\) is as defined in 0.4.14.

Proposition 0.4.15. Let G be a locally compact compact group and let A be
a Haar measure on G. Then C.(G) is dense in LP(G) for every p € [1, ).

Proof. See [5] (proposition 7.9.). O

Let x € G. For every E — G Borel, we define \,(F) := A(Ez). Then )\,
is a left invariant Radon measure on G and by theorem 0.4.7, there exists
a A(z) > 0 such that A\, = A(x)\. It is proved in [!](proposition 2.24)
that the function A : G — R, is a continuous group homomorphism, where

R, denotes the multiplicative group of positive numbers and that for every
f € C.(G), we have that

JRyf A\ = A(y™) ffd)\.

Proposition 0.4.16. Let G be a locally compact group and let p € [1,0). If
f € LP(G), then the maps G — LP(G), =z~ L,f and G — L*(G), x —

R, f are continuous.
Proof. See [1] (proposition 2.41.). O

Definition 0.4.17. Let X be a locally compact topological space and let p be
a complex Borel measure on X. Then p is called a complex Radon measure

iof it is the complex linear combination of positive Radon measures on X.

Proposition 0.4.18 (Riesz’s representation theorem). Let X be a locally
compact Hausdorff space and let M (X) be the Banach space of the complex

Radon measures on X, equipped with the norm of total variation. Then



17

M (X) is isometrically isomorphic to the dual of Co(X), where Co(X) denotes
the space of continuous functions on X wvanishing at infinity, equipped with

the supremum norm. The duality is given by

W= | 1) duto)
for fe Co(G) and pe M(X).
Proof. See [5](theorem 7.17) O

Let G be alocally compact group and p, v € M(G). We define ¢ : Cy(G) —
C by

f j f f(zy) dp(z)dv(y).
Then,
()] < j )] dial @)l () < 1l Ll 121 *)

so ¢ is well defined, clearly linear and bounded. Thus ¢ € (Cy(G))* and by
proposition 0.4.18, there exists a unique measure in M (G), which we denote
by pxv, such that ¢(f) = § f(z) d(u*v)(z) for every f € Cy(G) and therefore

| eyt @) = [ st dutaravty)

for every f € Cy(G). We call the measure pu * v the convolution of y and
v. Moreover, by (*), we get that |p*v| < |u||v| and therefore, M(G)

equipped with the convolution product is a Banach algebra.

Proposition 0.4.19. Let G be a locally compact group and let € M(G).

Then, for every E < G Borel, we define p*(E) := u(E=1). Then pu* € M(G)
and the map  : M(G) — M(G), p+— p* is an involution on M(G).

Proof. See [1](2.35.) O

When there is no risk of confusion, we write dz instead of d\(x) for the

Haar measure on the locally compact group G.
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Definition 0.4.20 (Measure algebra). Let G be a locally compact group. We
define the measure algebra of the group to be the Banach =-algebra M(G),
where M (G) is equipped with the convolution product and the involution de-
fined in 0.4.19.

Let f € LY(G). By identifying f with the measure fd\, where X is the
Haar measure on GG, we can consider L' (@) as a subspace of M(G). Then
IfdN| = |f]l,, therefore L'(G) can be isometrically embedded into M(G).
For f,g € L'(G), the convolution of the measures fd\ and gd\ is given
by the measure (f * g)d\, where f * g € L(G) is defined by (f * g)(z) =
§f(y)g(y~'x)dy for x € G. This function is called the convolution of f,g
and it agrees with the usual convolution of functions in L'(R), for G = R.
Moreover, (fd\)* = f*dX\, where f* € L'(G) and f*(z) = Az~ f(z~Y)
for x € G. Therefore, L'(G), equipped with the convolution, the involution
and the norm it inherits from M (G) is a Banach =-algebra. Moreover, for
p e LY(G) and p € M(G), we have that p» f and f * u both lie in LY(G).
We have

0+ 1)) = [ £ duty
and
(F+m)@) = | 1w duly '2).

Therefore, L' (G) is a closed two sided ideal in M (G). For the details of this

discussion, see [1](section 2.5.).



Unitary representations

of a locally compact group

1.1 Unitary representations

Representation theory of locally compact groups made its first appearance

at the beginning of the the previous century and since then

Definition 1.1.1. Let G be a locally compact group and H be a Hilbert space.
A unitary representation of G on H is a group homomorphism © : G —
U(H), where U(H) is the set of unitary operators on H, that is continuous
with respect to the strong operator topology on B(H).

Example 1.1.2. Let H be a Hilbert space and G be a locally compact group.
We define m : G — B(H) by w(x) = Idg for every x € G, where Idy is the
identity operator on H. Clearly w(x) is a unitary operator for every x € G, so
7 1s indeed a map from G to U(H) and it is clearly a group homomorphism.
Moreover, 7 is a constant map, so it is continuous with respect to any topology
on B(H) and in particular, it is continuous with respect to the strong operator
topology and therefore m is a unitary representation of G on H. We call &

the trivial representation of G on H.

There is another representation that we can define on any group and it is

one that is going to play a major role in the rest of this thesis

19
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Example 1.1.3 (Left regular representation). Let G be a locally compact
group. For every x € G, we define a map \(x) : C.(G) — C.(G) as follows:
If feC.(G) and y € G, we define

Clearly, A(z)f € C.(G). Now,

@2 = f| |2dy—j|fx y\Qdy—flf Py = |12,

since the Haar measure is left invariant. Therefore, \(x) is an isometry
on C.(G) with respect to |-||, and therefore it has a unique extension to an
isometry from L%(G) to L*(G), which we denote again by \(x). Moreover,
if f € C(G), then the function g : G — C, y > f(zy) lies in C.(G) and
(Ax)g)(y) = f(y) for every y € G. Therefore, A\(x) maps C.(G) onto C.(G)
and \(z) : L*(G) — L*(G) is onto and isometric, so it is unitary.

It is easy to check that X\ is indeed a group homomorphism from G to
U(H) and the fact that X is SOT-continuous follows from [/](proposition
2.41). Therefore X\ is a unitary representation of G.

In a similar way, we define the right regular representation of G.

Example 1.1.4. Let G be a locally compact group and x € G. We define

p(w) € B(LA(G)) by (p(x)f)(y) = Alw)? f(yz) fory € G and f € LX(G). One
can check that p : G — B(L*(Q)) is indeed a unitary representation.

Definition 1.1.5. Let G be a locally compact group and (my, Hy, ), (72, Hr,)
two unitary representations of G. We say that the two representations are

unitarily equivalent if there exists a unitary operator T : H., — H,, such
that Tmi(x) = mo(x)T for every x € G.

Definition 1.1.6. Let A be a Banach algebra and H be a Hilbert space. A
representation of A on H is a Banach algebra homomorphism w : A — B(H),
that is, m is linear, bounded and mw(ab) = w(a)w(b) for every a,b e A. If in

addition A is a *-algebra and w(a*) = (w(a))* for every a € A, m is called
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a =-representation. If there is a non-zero & € H such that mw(a)§ = 0 for
every a € A, we call © degenerate and if there is no such & € H, we call m

non-degenerate.

Let 7 be a unitary representation of G on the Hilbert space H. Then there
is a natural way to define a representation of L'(G) on H. To see this, let
feLY(G) and define ¢ : H x H — C by

b (6n) o f ) (@)e, ) da.

Then % is clearly sesquilinear and if £, € H, we have

b(En)| = | [ e i

< -1l -

So 1 is a bounded sesquilinear form on H with || < ||f||, and therefore
there exists a unique 7(f) € B(H) such that

Y& n) =&

for every &,n € H. Moreover, [7(f)| = || < [f]; -

Proposition 1.1.7. Let G be a locally compact group, H a Hilbert space
and m a unitary representation of G on H. Define 7 : L'(G) — B(H) by

f— 7(f). Then 7 is a non-degenerate =- representation of LY(G) on H and

|7 < Il for every f e LYG).
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Proof. Tt is clear that 7 is linear. Now let f, g € L'(G) and &, € H. Then,

r

<7?(f*g)€,77>—J * g)(x)(m(z)€,n) dx

] Jf gy~ 'a){m(x)€, n) dyde =

Jf r){m(yx)§, n) dedy =

ff 2)E,m(y~ iy daedy =
FW)@ ()& m(y ) dy =

and therefore,

Let f € LY(G) and &,n € H, then,

& RN =G = | el de -
| A@ae ) sera@e ) ds -
| A e e -
| FoG@m e ds - Flarmm. e ds -
G = 7 (100

and therefore,
(/) = &)
Moreover, |7(f)|| < ||f]l;, so 7 is bounded and it is a * representation of
L'(G) on H. We still need to show that 7 is non-degenerate.
To see this, let £ € H be non-zero. Then, since 7 : G — B(H) is SOT- con-

tinuous and m(e)§ = &, there exists an open relatively compact neighborhood
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of the identity V such that

(@t - ¢ < L1
for every x € V.
Let f = ﬁlv' Then f is well defined and lies in L'(G), since V is

open and non empty and so A(V) > 0 and V is compact and therefore

AV) < A(V) < .
Then, notice that

|7(£)§ = &l = sup {7 (f)§ =& ml = me H, [n] <1}

and for every n € H with |n| < 1 we have,

[7Z(F)E = &ml =7 (£)E,m) — & ml =

1
LWW“@KWM@WF
1

Xﬁsﬁﬁ%@km>—@m»¢f

<

1
Xﬁsﬁ}ﬂ@£—&nﬁm

1
X@ﬁﬁﬂwwﬁ—€|ndw<

X%T“@Hﬂ@f—ﬂzzeVHmAWU<

4]
2

and therefore, 7(f)¢ cannot be 0. So for each 0 # £ € H we have found a
function f € L'(G) such that 7(f)¢ # 0 and so 7 is non-degenerate.
O

In fact, all the non-degenerate = representations of L' (G) arise in this way.
To see this, let 7 : L}(G) — B(H) be a non-degenerate *- representation of
LY(G) on H. We want to define an operator 7(z) for every z € G.

Let (¢v)vey be an approximate unit for L'(G) such that ¢y ||, = 1 for
every V e V and x € G. Such an approximate unit exists ([1] 2.42.). A
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simple calculation shows that (L ¢y ) * f = Ly(1y = f) for every f e LY{(G)

and so, for f € L'(G), we have

(Lm¢V) * f = Lm(¢V * f) - L:vf

and therefore,
m( Loy )m(f) = 7((Latov) * f) = 7(Lof).

Let D = span{n(f)¢ : f € LY(G),§ € H} = {n(f)¢ : f € LY(G). ¢ € H}
and let n € D*. Then,

(m(f)&ny=0
for every f € LY(G) and every ¢ € H and so,
&m(f*)m =0
for every & € H and every f € L}(G) and so,
m(f*)n =0
for every f € L'(G). Now, (r(L'(G)))* = LY(G) and therefore,
m(f)n =0

for every f € L'(G), but 7 is non-degenerate, so n = 0 and therefore,

t- (o)

so D is dense in H.
Let u € D, then u = 377, m(f;)¢; for some f; € L'(G) and &; € H. Then,

for every V € V, we have

(Levv)u = ) w(Latv)7 ()€ — D 7 (Lafi)Es

1

n n

<.
Il
—

<.

And we define
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To see that T}, is well defined, we need to check that if >;7_, 7(f;)¢; = 0,
then S0, 7(Lof;)6 = 0.

Indeed, >, (Lo f;)&; = lmm(Lopv) (25—, 7(f3)€) = 0 and T is well
defined and clearly it is linear. Moreover, for every V € V. we have

|7 (La)tbv ] < |Latpvly = Ibv, =1

so for every u € D, we have

| (Latpv) ()] < [ul

for every V €V and so

| Teul < ful-

Therefore, T}, is bounded and since D is dense in H, we can extend T, to H
and we denote the extension again by T}.

We define 7 : G — B(H), by 7(z) = T,,. We will show that 7 is a unitary
representation of G.

At first, notice that for every f € L'(G),£ € H and x € G, we have

m(x)m(f)§ = m(Laf)E

and therefore, for every x,y € GG, we have

T(zy)(m(f)§) = m(Lay f)§ = m(La(Lyf))E = ()7 (y)(f)E

so 7(zy)u = 7(x)7(y)u for every u € D and since D is dense in H, we
conclude that 7(
Let f € LY(G) and € € H, then 7(e)(m(f)E) = n(Lof)é = n(f)€ and

therefore 7(e)(u) = u for every u € D and since D is dense in H, we conclude

zy) = 7(z)7(y) and 7 is a group homomorphism.

that 7(e) = Idg. Now, for every = € G, we have
Idy = 7(zz™t) = 7(2)7(z7h)

and therefore 7(x) is invertible for every x € G and in particular it maps H
onto H.
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Let 7 € G, f € LY(G) and £ € H, then

|7 (@) (x(HON < Im(HE] = |77 (@)m(H)E] < 7 @)m(£)E]

and so,

|7 (z)ull = lul

for every u € D and thus 7(z) is an isometry onto, that is, 7(z) is a unitary.
To see that 7 is strongly continuous, let (x;);c; be a net in GG, converging
to some z € G and let f € LY(G) and £ € H. Then, for every i € I, we have

(i) (m(f)€) = m(La, )€ = m(Laf)E = () (m(f)E)

and therefore,

7(z)u — 7(x)u
for every u € D. Now, let ¢ € H and € > 0. Since D is dense in H, there is
some u € D such that [§ —u < £.
Since w € D, we have that 7(z;)u — 7(z)u and therefore there is some
ig € I such that ||7(x;)u — 7 (z)ul < § for every i > io.

Then, for 7 > iy we have,

|7 ()& = 7(@2)e] <7 ()€ = T(aul + [T (z)u - 7(2)€] <
|7 () [ 1€ = ull + |7 (@i)u — 7(2)ul + |7 (z)u = 7(2)E] <

s+ s R Ju—¢l <e

and therefore,
7(x:)§ — ()€
and 7 is strongly continuous, so it is a unitary representation of G.
Now, it is proved in [4](theorem 3.11) that the representation of L'(G)

associated to 7 as in proposition 1.1.7 is exactly 7.

We have proven the following:

Proposition 1.1.8. Let G be a locally compact group, then there is a one

to one and onto correspondence between unitary representations of G and
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non-degenerate - representations of L' (G). For (w, H,) a unitary represen-
tation of G, for any f € LY(G) we define 7(f) € B(H) by (x(f)&,n) =
§ f(x)(m(x)&,nydx for every & n € H. and for (w, Hy) a non-degenerate
- representation of LY(G) on H, and v € G, we define 7(x) € B(H) by
7(x) = limy w(Lyy) with respect to the strong operator topology, where

(Yv)vey is an approzimate unit for L'(G).

Remark 1.1.9. While 7(LY(G)) and 7(G) can be quite different in general,

they generate the same von Neumann algebra in B(H), that is

(m(G)" = (7(LN(G)))".
For a proof, see [/] (theorem 3.12.).

Remark 1.1.10. We will need to know explicitly the representations of
LY(G) corresponding to the left and the right reqular representation of G.
It is proved in [/](example 3.8) that in the case of the left reqular represen-
tation X, for f € LY(G) and g € L*(G), we get (\(f))(g) = f * g. For the
right regular representation we get that (p(f))(g) = g * f, for f € LY(G) and

g € C.(Q).

We are going to extend the previous proposition to include representations
of the measure algebra M (G).

Let (7, Hy) be a unitary representation of G and u € M(G). We are going
to define an operator 7 (1) € B(H) in exactly the same way as we previously
did for f € LY(G). More specifically, we define

b H, x Hy > C, (6) f (n(@)€m) dp(x).

Then, 1 is clearly sesquilinear and for every &,n € H,, we have

b(En)| = \ [t duta

< (€l e

and therefore 1 is bounded with ||| < |||. Therefore, there exists a unique
operator 7(u) € B(H) such that (7(u)€,n) = (&, n) for every &,m € H,.
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Similar calculations to the case of L'(G) show that
7 M(G) - B(H;), p — 7(p) is a #- representation of M(G) and the
restriction of 7 on L(G) is the representation of L'(G) associated to 7 as in
proposition 1.1.8 and so, by the same proposition, we get that the restriction
of 7 on L*(G) is non-degenerate.

In the opposite direction, let 7 : M(G) — B(H) be a = representation
of M(G) on a Hilbert space H, such that the restriction of 7 on L!(G)
is non-degenerate. Then consider # : G — B(H) as in proposition 1.1.8.
Since 7 restricted to L'(G) is non-degenerate, proposition 1.1.8 implies that
7 is a unitary representation of G. Now, notice that 7 is determined by
the restriction of @ on L!(G) and therefore, two representations of M(G)
that are non-degenerate when restricted on L!(G) and that agree on L!(G),
induce the same representation of G. We have therefore proven the following

proposition:

Proposition 1.1.11. There is a one to one and onto correspondence be-
tween unitary representations of G and =-representations of M(G), whose

restriction on L'(G) is non-degenerate.

Remark 1.1.12. [t is important to note that if (H, ) is a unitary represen-

tation of G, then for every x € G, we have

where T is the corresponding representation of M(G) on H.

To see this, let V be a neighborhood basis of the identity, consisting of
relatively compact open sets. Then, it is proved in [/](proposition 2.42) that
there exists an approximate identity of (gv )vey for LY(G) such that supp gy <
V, gy =0 and gy(z)dz =1 for every V € V. Now, let € M(G) and define
fv = pux*gy for every Vey.

In light of propositions 1.1.8 and 1.1.11, we will use the same symbol for the
corresponding representations of G, of L' (G) and M (G), without necessarily

mentioning this every time.
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1.2 Functions of positive type

Definition 1.2.1. Let u € L*(G). We call u a function of positive type if it
defines a positive functional on L'(G), that is

J(f* * f)(@)u(z)dz =0 (*)
for every f € LY(G). We denote the set of functions of positive type by P(G).

It is clear from the definition that P(G) is closed under addition and

multiplication with positive scalars and it is therefore a cone in L*(G).
Remark 1.2.2. Ezpanding the integral in (*) we get that a function ¢ €
L*(G) is in P(G) if and only if

|[ @) Tty 0) dody > 0

for every f € LNG). Clearly, if this holds for ¢, it also holds for ¢ and
therefore ¢ € P(G) for every ¢ € P(G).

Example 1.2.3. Let © be a unitary representation and & € H,. We define
u:G— C, by u(z) :={x(x)&,€). Then, for every f € LYG), we have

[ @@ ds = [(7+ 57)@)na)g. € da -
(w(f > 96,6 = (m(f*)&,m(f*)€) = |=(f*)|* = 0
and therefore, v is of positive type.

In fact, as the next proposition shows, every function of positive type

occurs in this way.

Proposition 1.2.4. Let u : G — C be a function of positive type. Then
there exists a triple (m,, Hy, &) where m, is a unitary representation of G on
the Hilbert space H, and &, is a cyclic vector for m,(LY(G)) in H,, such that
u(z) = {my(x)&y, &y for locally almost every x € G, where by the abuse of
notation we have previously mentioned, we denote by m, the corresponding

unitary representation of L'(G) on H,.
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Proof. See [1] (theorem 3.20.). We define (-, -, on L'(G) by

(e = f (g° * ) (@)u(z) du *)

for every f,g € L'(G). Then (-,-), is clearly linear in the first variable and

antilinear in the second one and
SoDu= [ s D@t d = 0

for every f € LY(G), since u € P(G).
Notice that

(K 9ul < g™+ fly lull, < lglly 171y el - (**)

We define w : LY(G) - C,  f — { f(z)u(z)dz. Then w is clearly bounded
and linear and w(g* » f) = {f, g). for every f, g € L'(G). Moreover, for every
f e LYG), we have w(f* = f) = {f, f>u = 0 and therefore w is positive,
therefore by [10](chapter 1 lemma 9.11), we see that w((g* * f)*) = w(f* * g)
for every f,g € LY(G) and therefore, (g, f>, = {f, ¢)u for every f,g € LY(G)
and therefore, (-, ), is a semi-inner product on L'(G).

We define

Let f € N, and g € LY(G), then, since {:,-), is a semi-inner product, the
Cauchy-Schwarz inequality holds [1](1.4) and therefore,

’<f7 g>u|2 < <f7 f>u<gug>u = 07

S0,

N, ={feLY(G) : {f,gpu =0V g e L (G)}

which is clearly a linear subspace of L'(G). Now, notice that if fi, fo and
g1, g2 are in L1 (G) such that f,— f2, g1—g2 € N, then we have that {fi, g1 ), =
{f2, g2y and therefore, (-, -), defines an inner product on L'(G)/N,. We then
define H, := W“%. Now, H, is clearly a Hilbert space and we are

going to define a unitary representation of G on H,.
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Expanding the integral in (*), we get that

<f79>uzj(9 « )z dﬁ_JJA Doy f(y  o)u(z) dyde =

| [swt e dyas = | f uly1z) dydz.

Now, let z € G and let f,g € L'(G). Then,

~

(Lof,Loghu = f T-0) )L f) (@)uly ) dydz =

J

f fg<z1y>f<z1$>u<y1w> dydz "Z="

Jfﬁf(z_lx)u(s_lz_lx) dsdx "=="
Jdrwf(t)u(s_lt) dsdt =
s 9

In particular, this shows that L,(N,) c N, for every z € G and therefore,
we can define a map L, : LY(G)/N, — LYG)/N,, by L.(f +N,) = L.f + N,
for every f 4+ N, € LY(G)/N,. Then clearly L. is linear.

Moreover, if f + N, € L'(G)/N,, then we have that H )(f +N)
(Lof, L.fyu = {f, fu = |f + N> and therefore L. is an isometry and
LY(G)/N, is dense in H,, so L, extends to an isometry from H, to H,,

which we denote again by L,. The map L, maps L'(G)/N,, onto itself and
therefore EZ : H, — H, is an isometry onto. That is, f/z is a unitary.

We now define 7, : G — U(H) by m,(z) = L, for every z € G. We will
show that m, is a unitary representation of G on H,,.

We will first show that m, is a group homomorphism. To see this, notice
that Le|ri@yn, = IdlLieyw, and since L'(G)/N, is dense in H,, we get
that L, = Id. Likewise, for every z,y € G, it is clear that Exf/y = ny
in L'(G)/N, and therefore f,xiy = Zmy and 7, : G — U(H,) is a group
homomorphism.

We still need to show that 7, is SOT-continuous.

Let (z;)ie; be a net in G, converging to some x € G and let £ € H,. We
need to show that m,(z;)§ — m,(z)&.
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Let us first assume that £ = f + N, € L'(G)/N,. Then, we have that

Imu(@)€ = mul@)€ls = Ima(z) (f + M) = mul@) (f + N

and by (**) we have that

which tends to zero by 0.4.16.

Now for the general case, let £ € H, and ¢ > 0. Then, there is some
f+ N, € LY(G)/N, such that [£ — (f + N, < &

Now, as we just showed, m,(z;)f — m,(z)f and therefore, there is some
i € I such that ||m,(z;) f — mu(2) f|, < § for any i > 4.

Then, for ¢ > iy, we have that

|mu(@i)€ = mu(@)S ], < Imu(@i)€ = mu(:)(f + N,
+ lmu (@) (f + No) = mul@)€], +
[z (f + Nu) = mu(:)E]l, < €
Therefore, m, is SOT-continuous and therefore it is a unitary representation
of G on H,.
We still need to find a cyclic vector for 7, (L!(G)).
Let (¢y)vey be an approximate unit for L'(G) such that |¢y |, = 1 for

every V € V. Then (¢} )yey is also an approximate unit for L'(G) and so, if
[+ N, € LYG)/N,, we then have that

by = f (68 * f)(@)ul) d — J F(e)ula) d.

Define ¢ : L'(G)/N,, — C by f + N, — § f(x)u(x) de = Lmy{f, Yy )y
Then ¢ is well defined and it is clearly linear. Moreover, for every V € V),

we have that

F o] < f+ Nl v + N, <
If + Nl [ull2 [ ev ], =
1f + Nall, )
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and therefore,

O(f +No)| < If + Nl Jul2

and so ¢ is bounded. Now, ¢ can be uniquely extended to a bounded func-
tional on H,, which we denote again by ¢. Then, by Riesz’s representation
theorem, there is a unique vector §, € H, such that ¢(§) = (£, &,) for every
e H,.

First, notice that for f + N, € LY(G)/N,, we have that {f + N, & u =
O(f + No) = | f(@)u(c) de.

Now, let f + Ny, g + N, € LY(G)/N,. Then,

(f4+Nu,g+ Ny = h”f($)@u(y—1x) dyds =
Jjo fyz)g(y)u(z) dedy =
Jjo(Lylf)(x)@u(x) dedxy =

J<Ly1f + Nua €u>@dy =

f TS + N ma(m)end dy —

<7Tu(g)£u7 f + Nu> =
{f + N, mu(9)u)

and therefore,
Tu(9)€u = g + N, (***)

for every g + N, € L'(G)/N,. Notice that this means that L'(G)/N, <
7, (LN @))€, and LY(G)/N, is dense in H,, so m,(L'(G))&, is dense in H,
and therefore &, is cyclic for m,(L'(G)).

Now, if f € L}(G), we have that,

(u( s Eudu = j (@) (), €25 da

and by (***), we get that

(F + Ny b = f F (@) (@), ) d
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and therefore,

f fehu(@) de = f F@)(mu(@)eu, €u)u da

Since this holds for every f € L'(G), we conclude that u(x) = {(m ()&, Eu)
for locally almost every x € G and we are done.
O

Corollary 1.2.5. Let uw € P(G). Then w is locally almost everywhere equal

to a continuous function.

Proof. By 1.2.4, there is a (7, H,), unitary representation of G and &, € H,
such that u(z) = (w(x)&,, &) locally almost everywhere in G and the function
(m(+)&,.£y) is continuous. O

In light of 1.2.5, we will consider u to be continuous for every u € P(G).
Lemma 1.2.6. Let f € L2(G), then f » f € P(G).

Proof. Let z € G, then,
fo i) = [ Wi e dy = | FTE Ty = @D

and so f * f is of positive type. O

Lemma 1.2.7. Let u,v € P(G), then wv e P(G).

Proof. By proposition 1.2.4, there exist unitary representations (H,,m,),
(H,,m,) and vectors &, € H, and &, € H, such that {(m,(x)&,, &) = u(z)
and (m,(x)&,, &) = v(z) for every x € G. Then,

uv(7) = (Tu(2)&u, §u )T ()0, &) = (T @ ) (2) (§u ® &), Eu ® &)

which is a function of positive type by remark 1.2.3. m



The Fourier-Stieltjes algebra B(G)

It is about time that we introduced the main topics of this thesis, the Fourier
and the Fourier-Stieltjes algebras of a locally compact group. We will first
examine the Fourier-Stieltjes algebra of the group and then define the Fourier
algebra as a particular subspace of the former.

Let 3(G) denote the family of equivalence classes of unitary representa-
tions of G up to unitary equivalence and let S be a subfamily of 3(G). We
will define a Fourier-Stieltjes algebra associated to each such family and de-
note it by Bs(G). In the case & = 3(G), we simply write B(G) and call it
the Fourier-Stieltjes algebra of the group.

Let G be a locally compact group and let S be a subset of X(G). Let p
be in M (G) and define

luls = sup{liw(p)] : m e S}.

This is well defined, since 7 is contractive for every unitary representation
of G and so |p|s < ||| Moreover, it is obvious that ||-|¢ is a seminorm on
M (G) and by restricting || to L'(G) we get a seminorm on L'(G). When
S = X(G), we write ||-[|, instead of || g -

We will first note some properties of these seminorms.

Proposition 2.0.1. Let S be a subset of X(G), u,v e M(G), f € LY(G) and
x,y € G. Then:

L pls < lul and lpxvis < lpls - s

35
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2
2 \wrls = luls and [p* > plls = uls

3. | Lafls = Iflls and |Ryfls = Aly™) [ f]s

Proof. We noted above that ||| < |ul.
We have

lxvls = sup{|m(pv)| : 7 e S} = sup{|x(p) -7 ()] : w e S}.
Now, for every 7, since |7 (p) - 7(v)| < [x()] - [7(v)] < [u] - [v] we obtain

| xvlg = sup{lm(p) -7 ()| : me S} < ul - [v].

For every m € ¥(G), we have 7(u*) = (w(u))* and so,
[1*]s = sup{|w(u®)] : m € S} = sup{|[(zw(n))*[ : 7 € S} = |5,

since | (p)*|| = |7 (u)] for every 7 and . Also, [m(u* * p)|| = || (w () 7 () | =

= [[m(w)|* and so | u* * plls = s -
Now for the last statement, let 7 € S and £, 7€ H,;. Then,

(r(Lof)eun) = j (Lof) ) ()€ m) dy = j Fa ) ()€ n) dy
- j F () (ey)€, n) dy = j F )€, (@ Y dy
— (n(f)E m(a ) = (a(@)n(f)esm)

and this holds for every &, m € H,, hence w(L,f) = w(x)n(f). Since m(x) is a
unitary for every x € G, we have |w(L,f)| = ||7(f)| and so |L.f|s = | fls-

In the same way,

(n(R,)E, 1) = f (R f) (@) ()6 )y dae = jA<y—1>f<y><w<xy—l>5, ) da
(APl e

and since this holds for every &,n € H,, we have m(R, f) = A(y Y)w(f)n(y™!)
and since m(y~') is a unitary, |R,flls = Aly™) || f]s- O
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Let S © X(G). We define Ns := {f € L'(G) : | f|s = 0}. Clearly N is
a closed #- ideal in L'(G) and so L'(G)/Ns is a #- algebra and the quotient
norm on L'(G)/Ns is a C*- norm, so the completion of L'(G)/Ng is a C*-
algebra denoted by C5(G). If § = X(G), we denote C§y ) (G) = C*(G) and
call it the full group C*- algebra. If & = {\}, where X is the left regular
representation, C%(G) is called the reduced group C*- algebra and is usually
denoted by Cj(G). When S = 3(G) we write | f], instead of |f]sg). As
we will see, for every S ¢ 3(G), the space Bs(G) can be naturally identified
with the dual space of C%(G). Note also that for f € L'(G), we have that
If + Ns| = inf{|f + g|s : 9 € Ns} and for g € Ns and 7 € S, we see that
n(f 4+ g) = 7(f) and so || f +g|s = |f|s for every g € Ns and therefore
I + Nl = £ for every f & L}(G).

Before defining B(G), we need to note an important property of C*(G) :

Proposition 2.0.2. Let f € L'(G) such that | f|, = 0. Then f = 0. There-
fore |||, is @ norm on L'(G) and Nx ) = {0}.

Proof. To see this, consider f € L'(G) with ||f], = 0. Then m(f) = 0 for
every unitary representation 7w of G. In particular, A(f) = 0 for the left
regular representation of G. Now, there is an approximate unit of L'(G),
(gi)icr, consisting of functions in C,(G) and then, g; € L*(G) for every i. By
1.1.10, we know that A(f)g; = f * g; and therefore f x g; = 0 for every i and
f*gi — fin LY(G), so f = 0 and since |||, is already a seminorm, it is a
norm on L!(G). O

Remark 2.0.3. The previous proposition shows that C*(G) = mM* and
therefore LY(G) is a subset of C*(G). Now, by proposition 2.0.1, we know
that | f|, < |fll; for every f € LYG) and if i : L}(G) — C*(G) is the
inclusion of L'(G) in C*(G), then i is continuous and it is a continuous

embedding of L'(G) in C*(G).

Proposition 2.0.4. Let m be a unitary representation of G and let H be
the corresponding Hilbert space. Then m can be uniquely extended to a non-

degenerate - representation of C*(G) on H. Moreover, every non-degenerate
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«- representation of C*(G) determines a unique non-degenerate - represen-
tation of LY(G) and therefore a unique unitary representation of G, so there
s a bijection between the unitary representations of G and the non-degenerate

- representations of C*(G).

Proof. Let m be a unitary representation of G on H. We denote again by 7
the corresponding representation of L'(G).

Let a € C*(G). We want to define an operator 7(a) € B(H).
Jn)nen in LYG)
fn)€,m))n in C.

For m,ne N7 ‘<7T<fm)§7 7]> - <7T(fn)§7 7]>| = |<7T(fm_fn)§v 77>| < Hﬂ-(fm - fn)”
[E8- Il < 1 fm = full, - 1€] - 0]l and (fn)n is Cauchy with respect to |-, and

so ({m(fn)&,m))n is a Cauchy sequence in C and therefore converges in C.
We now define ¢, : H x H — C, (§,n) — lm{n(f,)&,n). Then, 1, is
clearly sesquilinear and [1,(&, )| < M - €] - |n|, where M = max{||=x(f,)] :

Let £,n € H. Since a lies in C*(G), there exists a sequence

—~

such that f, — ain |-|,. We now consider the sequence ({m

n € N}, which is finite since (f,,), converges with respect to |-/, and so v, is
a bounded sesquilinear form on H. Therefore, there exists a unique operator
on H, that we denote by m(a), such that ¥,(§,n) = {(w(a)§,n), for every
&,n e H and so (m(a)¢,n) = im{n(f,)&,n) for every £, m € H. Clearly, if
there exists a representation of C*(G) extending the representation of L!(G)
on H it should be the one defined above, so we need to check that it is indeed
a non-degenerate = representation of C*(G).

Let a € C*(G) and consider (f,), in L'(G) such that f,, — a. Since C*(G)
is a C*- algebra, f* — a* and so for §,n e H, (w(a*)¢,n) = lim{n(fF)E,n) =
Hm {7 (fn)n, &) = {(m(a)n, &) = {(w(a))*E,n) and this holds for every &, e H,
so m(a*) = (w(a))*.

Now, let a,b € C*(G) and (f,), (9.) be sequences in L'(G) such that
fn — aand g, — b. We will first show that f, x g, — ab. To see this, notice
that

lab = fo * gnll, < ab = agnl, + lagn = fo * gnl.,

< lall, 6= gnl, + lgnll, lla = ful.,
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and since (|gyll,)n is bounded, this tends to 0 and f,, * g, — wu.
Now, for ¢,me H,

[(m(w)m(u)§ = m(fu)m(gn)€, M)l <
[EM Il (@)l (w = gn) |+ Dl (gn) |1 (w = fu)])

which tends to 0 and therefore, 7(f,,)7(gn) — 7(a)mw(b). Now, 7(f.)7(gn) =
7(fn * gn) which tends to m(ab) and thus 7(ab) = w(a)m(b) for every a,b €
C*(G). We have thus shown that 7 is a *- representation of C*(G) that
extends the representation of L!'(G) on H and moreover, the extension to
L!(G) of this representation is non-degenerate and so the representation of
C*(G) is non-degenerate.

For the converse, every non-degenerate *- representation of C*(G) defines a
unique #- representation of L' (G) by restriction and notice that since L'(G)
is dense in C*(@G) if there were some & € H, such that 7(L'(G))¢ = 0,
then 7(a)¢ = 0 for every a € C*(G) and since 7 is non-degenerate, we
conclude that £ = 0 and therefore 7 restricted to L'(G) is a non-degenerate
« representation of L'(G). O

Definition 2.0.5. Let S « X(G), we define k(S) as
k(S) ={we C*(G) :m(w) =0 YmeS}

The next lemma will show that every C%(G) as defined is in fact a quotient

of C*(G).

Lemma 2.0.6. Let S « X(G). We define ¢ : L'(G) — LY(G)/Ns, [ +—
f+ Ns. Then ¢ extends to a surjective - homomorphism from C*(G) to
C%(G), with kernel k(S).

Proof. Let f € LY(G), then | f + Ns| = | f|s < | f|l, and therefore it extends
to a continuous map from C*(G) to C%(G), which we denote again by ¢
and ¢ is a *- homomorphism, since its restriction to L'(G) is a * homomor-
phism and L'(G) is a dense *-subalgebra of C*(G). Moreover, we have that
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#(LY(G)) = LY(G)/Ns which is dense in C*(G) and therefore, by 0.1.10, we
get that ¢(C*(G)) = CL(G).

Now, let a € C*(G), then a € Ker(¢) if and only if ¢(f,) — 0 for every
sequence (f,), of elements of L'(G) converging to a; thus a € Ker(¢) if and
only if | f,|s — 0 for any such (f,), which happens if and only if m(a) = 0
for every m € S, that is, if and only if a € k(S). Thus Ker(¢) = k(S) and so
C% and C*(G)/k(S) are isomorphic as C*- algebras. From now on, we will

use these two interchangeably without further mention. O]

We need to define a very important relation between classes of represen-

tations of GG, that of weak containment.

Definition 2.0.7. Let S, T < 3(G). We say that S is weakly contained in
T if and only if k(T) < k(S) and we denote it by S < T .

As the next proposition shows, the notion of weak containment is exactly
what we need to describe the dual of C%(G).
Denote by Ps(G) the set of u € P(G) such that m, < S, where 7, is the

representation associated to u that we defined in proposition 1.2.4.

Proposition 2.0.8. Let S < 3(G), then (C5(G))* can be identified with
span(Ps(G)), via the pairing (fluy = § f(z)u(z) dz for f € L}(G).

To prove this proposition, we will need a couple of lemmas.

Lemma 2.0.9. Let S € 3(G) and u € P(G).Then the following are equiva-

lent:
1. m, <S8

2. There ezists a positive functional ¢ on C%(G) such that

oF + k(S) = [ F)ula) da

for f € LYQG), where we identify C%(G) with C*(G)/k(S).
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Proof. Let’s assume that u € P(G) and 7, < S. There is £ € H, such that
u(z) = (m ()&, &) for every x € G.
We define ¢ : LY(G) — C, f — {f(x)u(z)dx. Then ¢ is well defined

since u is bounded and

U F(x)u(z) de

and so ¢ extends to a bounded functional on C*(G), which we denote again
by ¢.

Let a € k(S), recall that m, < S, so k(S) < Ker(m,). Now, a € k(S), so
mu(a) = 0 and ¢(a) = (m,(a)§, &), so ¢(a) = 0. Since ¢ vanishes on k(S), it
defines a bounded functional on C*(G)/k(S), which we denote by ¢, so that

- ] |t ma@e O da] = (DO < e 111,

3(F + k(S) = [ fou

for f € L'(G). We now need to check that ¢ is positive.
At first, consider a € C*(G) and let (f,), be a sequence in L'(G) such
that | f, —all, = 0. Then f, + k(S) — a + k(S) in C%(G) and thus,

O(fo + K(S)) — dla + k(S))

Then, by definition of ¢, this means that § f,(z)u(z)dz — ¢(a + k(S)).
Now, u(z) = (m,(x), &) for every x € G and so

| hwut@) do = [ faim@e o de = mih)e o

Now, f, — "y a, 80 {m,(fn)€, &) — (m.(a)€, &) and therefore
dla+ k(S)) = (m(a)§, &).

Now, let b e C%(G) be positive, then there exists some a € C*(G) such that

b = a*a and then

6(b) = (mu(D)E, €) = (mu(a*a), &) = (mu(a)€, mu(a)€) = [mu(a)¢]* = 0



42

Which proves that gz~5 is indeed positive.

For the converse, assume that ¢(f + k(S)) = { f(z)u(z) dz determines a
well defined bounded positive functional on C S(G) and deﬁne ¢:C*G) - C
by ¢(a) = ¢(a + k(S)). Then, just as before, ¢p(a) = (m,(a)é, &) for every
a e C*(G)

Now, let a € k(S). Since k(S) is a two sided closed #- ideal in C*(G), for
every f e LYG), f*a € k(S) and so,

0 = ¢(f*a) = {m(f*a)é, &) = (mu(a)é, m(f)E)

and this holds for every f e L'(G).

Recall that ¢ is cyclic for m,, so m,(a)§ = 0 for every a € k(S). Moreover,
for every f € L'(G), we also have that af € k(S) for every a € k(S) and so
mu(af)é =0 and so m,(a)m(f)¢ = 0 for every f e LY(G) and m,(a) = 0 since
¢ is cyclic.

We have thus shown that m,(a) = 0 for every a € k(S) and therefore
T, < &, which is exactly what we wanted.

O

The previous lemma gives a description of a particular class of positive
functionals of C%(G). As we will see, this class turns out to be the whole
positive cone of (C%(G))*.

Lemma 2.0.10. Let S ¢ ¥(G) and <;5 € (Cj‘g(G))* be positive. Then there
exists u € Ps(G) such that ¢(f + k(S)) = § f(z)u(x) dx for every f € LY(G).

Proof. Let ¢ be a positive functional on C:‘;(G) and define ¢ : LY(G) — C
by ¢(f) = ¢(f + k(S)). Then ¢ is linear and
@) = [e(f + kSN < 8] - 1 fls < el - 11,

s0 ¢ € (Ll(G))* and therefore there exists u € L®(G) such that ¢(f) =
§ f(x) - u(z) dx for every f e L'(G).

Let f € Ll( ), then f*x f+k(S) is a positive element of C%(G). Moreover,
f* % f lies in LY(G) and ¢(f* « f) = ¢(f* » f + k(S)) = 0 and therefore

f(f* « (@) - u(z) dz > 0
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for every f € LY(G), so u € P(G). Now it is clear that u defines a positive
functional on C%(G) and so, by lemma 2.0.9, v must lie in Ps(G) and we are
done.

]

Now, proposition 2.0.8 follows easily from the previous lemmas: Indeed,
it is well known that the dual of a C*-algebra is spanned by its positive
elements and in the case of C%(G), we just showed that those are exactly the
elements of Ps(G), so (C%(G))* = span Ps(G)

We will give another description of the dual of C%(G).

Proposition 2.0.11. Let S < 3(G). Then a function u : G — C belongs to
span Ps(G) if and only if there exists a representation 1 < S and £, € H,
such that u(z) = (w(x)§,n) for every x € G.

Proof. Let u € span Ps(G), then u(x) = >, A\(m;(x)&;, &) for every = € G,
i=1
where \; e C, m; < § and £ € Hy, for every 1.

Let m =@ m,n=M-&, .., &) and € = (&,...,&,). Thent < S
and u(x) = (w(z)n, &) for every z € G.

For the converse, let u(z) = (w(z)&,n) for every x € G, where 7 < S and

3
¢,n € Hy. Then, by polarization, u(z) = 1 > *(m(z)(€ + % - n), £ + % - n)
k=0

and so u € span Ps(G). O

The last proposition shows that the dual of C%(G) can be identified with

{<7T(>§7 77> < Sa 7775 € Hﬂ'}

the set of coefficient functions of G whose associated representation is weakly

contained in S. This is exactly how we are going to define Bs(G).

Definition 2.0.12. Let S ¢ 3(G), we define

Bs(G) :=A{m()§,m): m < S, § € He}

and endow it with the norm of the dual of C4(G). In the case S = X(Q)
we simply write B(G) and call it the Fourier-Stieltjes algebra of G. We then
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have

B(G) = span{(r()€m) : 7 € £(G), &, € Hy)

Remark 2.0.13. Let u € B(G). Then u € span P(G) and by remark 1.2.2,
we see that u € span P(G) and therefore w € B(G).

Remark 2.0.14. By the above definition it is clear that Bs(G) is a subspace
of B(G) for any S < X(G). As we will soon see, it is actually a closed
subspace and the norm we defined on Bs(G) agrees with the one it inherits

as a subspace of B(G).
We will need another lemma.

Lemma 2.0.15. Let X be a Banach space and Y a closed subspace of X.
Then (X /Y)* is isometrically isomorphic to the subspace of X* consisting of
the functionals of X vanishing on Y .

Proof. Let ¢ € (X/Y)*. We define ¢ : X — C, ¢(z +Y). Then ¢ is linear
and [¢(z)| = [¢(x +Y)| < |¢] - |z + Y| < |¢] - |z]. So ¢ is bounded with
”(5“ < |¢| and so we can define T : (X/Y)* — X*, ¢ — ¢. Then T is
clearly linear with |7 < 1 and ¢ vanishes on Y.

Now consider 1) € X* vanishing on Y and define ¢ : X/Y — C by ¢(z +
Y) = ¢(x). Then ¢ is well defined since ¢ vanishes on Y and it is clearly
linear. Let z +Y € X/Y, then |¢(x +Y)| = [¢(x)] < |[¢] - |z]. Let z € X
be such that z + Y = z + Y and therefore z — x € Y, then ¢(z +Y) =
P(2) = (@ — (@ — 2)) and 50 [g(z + V)| < [6] - | — y| for every y € ¥,
so |¢(z +Y)| < [¢] - [z +Y] and ¢ € (X/Y)* with [¢] < [¢)f. Clearly

¢ = 1 and so for every ¢ € (X/Y)* we have HgEH < o] < Hggu and so T is an

isometry. O

We are going to use this lemma to make the following remark, that we

outlined earlier:

Remark 2.0.16. Let S ¢ X(G), then the norm we previously defined on
Bs(G) is the same as the one Bs(G) inherits as a subspace of B(G).
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Proof. Let u € Bs(G), then u defines a functional on C%(G) that we also
denote by u and |u| is by definition the norm of the functional as an element
of (C%(G))* = (C*(G)/k(S))*, so by the previous lemma, u defines a unique
functional on C*(G), call it @, of the same norm as u and vanishing on k(S).
By identifying u with @, we can regard Bs(G) as a closed subspace of B(G)
and then, for u € Bs(G),

lull ey =sup{l<a + k(S)|[w)] : [a+ k(S)| < 1} =
sup{[Cul f + K(S)| : |f + k(S)| <1, f e LI(G) =

sup{) [ 10 wwaal: rev@ 115 < 1

In particular, if S = {\} and u € B,\(G), then

ful = sup] [ 1) utoyaal 7 € L), N < 1)

Lemma 2.0.17. Let S, T < X(G). Then the following are equivalent:

1. S<T

2. For every f e LY(G), | fls < Ifl+

3. For every pe M(G), |uls < ulr

Proof. We first assume that S < 7. This means that k(7)) < k(S). Now
notice that |[f|g = inf{|f +al, : a € k(S)} < inf{|f+a|, : a € k(T)} =
|f| and therefore 1 implies 2.

For the opposite direction, assume that | f|g < ||f], for every f € LY(G)
and let a € k(T). We need to show that a € k(S). Let (f,), be a sequence
in L'(G) converging to a with respect to ||-|,. Then,

o+ k(T)—>a+k(T)=0+k(T)

and so
1fo + E(T)| =l fall 7 — 0
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At the same time, f, + k(S) — a+k(S) and | f, + k(S)| = | fuls < | fall£
which converges to 0, so f, + k(7) — 0 and so a € k(7) and 1 implies 2.

L!(G) is a subspace of M(G) and so clearly 3 implies 2.

Now suppose that 2 holds and let v € M(G). We need to show that

lulls < Tl 7
Let V be a neighborhood basis of the identity and for each V € V let gy

be a non-negative continuous function on G that is supported on V' and such
that |gv|, = 1. Let fy = u gy. Then fy lies in L'(G) and we will show

that for every bounded and continuous function h, we have

| fe@nie) s — [ 1w duto)

To see this, let h be a continuous bounded function on G. Then,

' [ ovtomta) s = [ 1) auta)
w D)l a) daduy) ~ [ [ gv()hiy) deduty >'

since § gv(z)dx =1 and then

\ [ ovtomta) e = [ 1 auta)

- Uf (hyx)gv (x) — gv (2)h(y)) d”“"d“(y)‘

— ’ J f gv(z)(h(yx) — h(y)) d:z:du(y))

+ | [[ vl ttya) = hiw) doduty

< j sup{[h(yz) — h(y)|} dlul(y)

zeV

Now, let
oy :G—>C, ym— Sug{|h(y:c) —h(y)|}.

Then, for every y € G, we have that ¢y (y) — 0, as V tends to {0}, since
h is continuous at 0 and [¢y (y)| < 2|hl|,, and the constant function 2 |h[_

is integrable with respect to |u|, since u € M(G) and therefore, from the
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dominated convergence theorem, we get

f¢mmﬂmw>»o

and therefore,
ffv(x)h(x) dr — Jh(z) du(x)

as V tends to {e}.
Now, let 7 € 3(G) and &, n € H,. Then,

<ﬂnmm=jhw@ummw

and (7 ()&, n) is bounded and continuous, so

wnmmaﬂm%mwm=@wm»

and therefore 7(fyy) — 7(p) in the weak operator topology.

Moreover, for every 7 € 3(G), we have

|7 () = sup{i<m ()&, ml = liEl, Il < 13

and so 7 (u)| = Tim [x(fv)[ and [pls = supges lim |7 (fv)]-

Moreover,

I ()| = N gv) | < [m ()] - ()l < lm(w)l - lgvly = Iw ()]

and therefore, |7 (1)| = supyey [7(fv)]-

Now, for every w € S,
|7 ()| = sup|lw(fv)|| < sup|fvls <
Vey Vey
sup [ fv |7 = supsup |7 (fv)] = [x s
Vey Vey neT

and since this holds for every m € S, we conclude that ||u|g < |ul, for
every u € M(G) and we are done.
O]
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Remark 2.0.18. Let u € Bs(G), then u defines a bounded linear functional
on C%(G) and therefore, we can consider the functional u* € (C%(G))*,
defined in 0.1.24, so u* € Bs(G). For every f € L}(G), we have

| ) ur@)as ff* -
ff

This holds for every f € LY(G) and clearly if we define u(z) = u(z=1), x € G,

then @ € L*(G) and so u* = @ almost everywhere. They are both continuous,

so u* = u everywhere on G and so U € Bs(G).

Now, let uw € Bs(G) such that v = u* = w, then, using the Jordan de-
composition of a functional on a C*-algebra (proposition 0.1.25), there exist
unique uy, uy € (C5(G))% such that u = uy — uy and |u| = |u| + |usl and
so uy,us € Bs(G). In the same way, we can find u},uy, € B(G) positive,
such that w = uy + uby and |ul| = ||u}| + |ubl|. But ui,us € B(G) and the
Jordan decomposition is unique, so u; = u} and us = uly and therefore, the
components of the Jordan decomposition of u € Bs(G), when considered in
B(G), belong again to Bs(G). Moreover, if u = u* € Bs and u = uy —u_,
where uy,u_ € Ps(G) such that ||u]| = |us| + |Ju—||, then |u| = uy + u_ lies
inBs(G).

Having defined the universal enveloping von Neumann algebra of a C*-

algebra in 0.3.2, we give an analogous definition for locally compact groups.

Definition 2.0.19. Let G be a locally compact group. We define the univer-
sal enveloping von Neumann algebra of G to be the universal enveloping von

Neumann algebra of the full group C*-algebra C*(G).

We have already seen that B(G) can be naturally identified with (C*(G))*
and the universal enveloping von Neumann algebra of G can be identified
with (C*(G))**, so there is a natural identification between (B(G))* and the

universal enveloping von Neumann algebra of the group.
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We will let M(w) be the universal enveloping von Neumann algebra of G
and denote the corresponding representation by w : C*(G) - M(w). Using
this representation of C*(G) we will obtain a very useful insight on the norm
of B(G).

Before that, let us make this identification a little more specific.

Remark 2.0.20. By theorem 0.3.2, the map 7 : (C*(G))* — M, is an
isometric isomorphism, where w : C*(G) — B(H,) denotes the universal
representation of C*(G) and M, = (w(C*(G)))". Moreover, ifi: C*(G) —
(C*(@))** is the natural inclusion map, we know that Toi = w(0.53.1). Now,
let a € C*(G) and u € B(G) = (C*(G))*. Then,

a)‘u} = <u‘a>

and in particular, for f € LY(G) = C*(G), this means that

Pl = [ st
since this is how we have defined the duality between C*(G) and B(G) (2.0.8).
Remark 2.0.21. Let x € G and consider d,, the Dirac measure at x. Let
(gv)vey be an approzimate identity of L'(G) as the one in the proof of lemma

2.0.17 and let w € B(G). Then, since u is continuous and bounded, we have

proved in the course of the proof of lemma 2.0.17, that

[+ gty dy — [utw) duty

with respect to V.. Now, for p = 6., if we set fy = 0, x gy for every VeV,

we get
ffv dy_)f )do.(y) = u(x).

Now, in remark 2.0.20, we saw that for every f € LY(G) and u € B(G), we

have
Pl = [ Fwyuty) dy

and therefore, for every V eV, we have

@D = [ Foluty)dy— [[uly) dbat) = uta). *)
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Now, if £&,n € H,, then the function (w(-)§,n) is continuous and bounded

and therefore,

ffv(y)@(y)é, nydy = w(fv)é§n) — J@J(y)é, ) do.(y) = (w(x)&,n)

with respect to V. This means that w(fy) — w(z) in the weak operator opera-
tor topology. Moreover, for every V € V, we have that |w(fv)| < |fv], =1,
by 1.1.7 and since the weak operator topology and ultraweak topology co-
incide on bounded subsets of B(H) ([12] proposition 2.7.19.), we get that

w(fv) — w(z) ultraweakly and hence,

(W(fv)|uy = w(@)|w

for every u € B(G). Now, as we saw, (w(fv)|uy = § fr(y)uly) dy — u(z)
and therefore, we get that

For what follows, we will need a few definitions.

Definition 2.0.22. Let A be a C*- algebra, f € A* and x € A. Then we
define x - f € A* by (z- f)(a) := f(x-a) for every a € A.

Clearly z - f is linear and if a € A, |(z - f)(a)| = [f(z-a)| < |f] |z -a| <
If]l - || - || and so x - f is bounded with |z - f| < | f| - |=|, so the above

definition makes sense.

Definition 2.0.23. Let A be C*- algebra and a € A. Then a is called a
partial isometry if a*a and aa® are both projections. The projection a*a is

called the source projection and aa™ is called the range projection.

In general, C*- algebras do not need to contain non-trivial projections
(projections different than the 0 and the identity) and so they need not con-
tain non trivial isometries. The situation is rather different for von Neumann

algebras. Von Neumann algebras are in fact equal to the norm closure of the
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span of their projections ([12] proposition 2.8.12.), so they contain many
projections and many partial isometries. We will need the following lemma,
related to partial isometries in a von Neumann algebra, whose proof we omit
and can be found in [2] (Theorem 12.2.4).

Lemma 2.0.24. Let M be a von Neumann algebra and ¢ € M, an element
of its predual. Then there exists a unique positive functional |¢| € M, and

v € M partial isometry, such that ¢ = v - |¢@|.

Proposition 2.0.25. Letu € B(G) and suppose that u(x) = (w(x)¢,n), x€
G for some m € X(G) and §,m € H,. Then |[ul < [£] - |nll. Moreover, if
u € Bs(G) for some § < X(G), then there exist 1 < S and &,m € H, such
that u(x) = (m(x)§,n) for every x € G and |ul = [&]| - |n].

Proof. Let u € B(G) and suppose that u(x) = {(w(z)¢,n) for every z € G.
Then, since B(G) is identified with (C*(G))* and L'(G) is dense in C*(G),
Ju = sup{(Cul ]+ £ < L), 1], < 1} =
sup{[(m(£)§, | : f € LY(G), If]l, <1}
Now, [(w(£)E,ml < [w(H) - 1€l Inl < 1AL - 1l - Inll < €] - In] and this
holds for every f € LY(G) with |f, <

Jul < [1€]- Il
Now, let w : C*(G) — M,, be the representation of C*(G) on its universal

1 and therefore we conclude that

enveloping von Neumann algebra and by our usual abuse of notation, we
denote by w the corresponding representation of G as well.

Since u € B(G), we have that v € (C*(G))* . Then, as we saw in theorem
0.3.2, there exist z,y € H,, such that v = w,, and in particular, u € M,.
Now, by lemma 2.0.24, there are |u| € (M,), and V € M,, partial isometry,
such that v = V - |u| and |u| = [||u||. Then, |u| € (M*),, so |u| € B(G) =
(C*)* and by theorem 0.3.2 there exists n € H,, such that |u|(a) = (w(a)n,n)
for every a € C*(G).

Now, |u| is in B(G) and it is a positive functional, so |u| € P(G) and so
there exist m € 3(G) and n € H, cyclic for w such that |u|(z) = {(w(x)n,n) for
every z € G. Let z € G, then u(z) = (u|w(z)) = (V- |ul|w(z)) = {u||V -w(z)).
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Now, for every a € C*(G), {|ul|a) = (w(a)n,n) = (& o w(a)n,n) and since
7(C*(G) is ultraweakly dense in M, by Kaplansky’s density theorem, we
conclude that (|u||T) = (&(T)n,n) for every T € M, Therefore, {|u||V -
w(x))y =TV - w(@))n,n) = (w(z) - 7(V)n,n). Set & = 7(V)n, then u(z) =
(m(x)&,n) for every x € G.

Then, we already showed that |u| < [£]-|n|. Moreover, |ul = ||ul| = |n|?
and £ = Vn and V is a partial isometry, so V is contractive and ||| < ||
and so [ul < [€] - o]l < [n]* = Jul and so [lu] = €] - |n].

We just need to check that 7 < S. Let a € k(S), we need to show that
m(a) = 0. |u| € Bs(G), so {Julla) = 0 and so {(w(a)n,n) = 0 for every
a € k(S). Let b e C*(G), then b* - a € k(S) and {(n(a)n, w(b)n) = 0 for every
b e C*(G) and n is cyclic, so w(a)n = 0 for every a € k(S). Now, for every
be C*(G),a-be k(S) and w(a-b)n = 0 and so «(a) - m(b)n = 0 for every
be C*(G) and 7 cyclic, so w(a) = 0 for every a € k(S) and we are done. [J

This property will prove to be very useful for the remainder of this thesis.

For the time being, we give two immediate corollaries.

Corollary 2.0.26. For a function u € B(G), proposition 2.0.25 shows that

Ju| = min{|¢] In] : u(-) = {x ()&, m), (7, Hr) € T(G)and§,n € He}.
Corollary 2.0.27. Let u € B(G), then |ul,, < |u]p,

Proof. At first, notice that since u € B(G) there exists 7 € 3(G) and &, 7 €
H, such that u(z) = (w(x)§,n) for every x € G and |u(z)| < [|x(x)| - €] -
In|=[&ll - |n]| since w(x) is a unitary and so u € L*(G). Now, L*(G) can be
identified with the dual of L'(G) with the pairing (¢|f) = { f(z) - ¢(z) dz for
¢ € L*(G) and f € LY(G) and so |ul,, = sup{[§ f(z) - w(z) dz| : | f], < 1}.
On the other hand, |u[pg) = sup{|§ f(z) - w(z) dz| : f e LY(G),|f], <1}
and | f|, < |[fl,, so for any f e L'(G) with | f|, < 1, we have that | f|, <1
and therefore |uf,, < [ulpg)-
[
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Remark 2.0.28. Let u € B(G). By remark 2.0.13, we know that uw € B(G).
By proposition 2.0.25, there is (w, H) unitary representation of G and &,n €
H such that u(x) = {(n(x)&,n) for every x € G and |u| = || |n|. Then,
u(x) = (n,m(x)&) for every x € G and again by proposition 2.0.25, we have

| < [&lnll = |u|. Since @ = u, we conclude that |[u| = |ul for every

ue B(G).

So far we have been calling B(G) the Fourier-Stieltjes algebra of G, but
we have not yet justified the term “algebra”. As we will soon see, B(G) is in
fact a Banach algebra and contains B, (G) as a closed ideal.

To prove this, we will need a result of independent interest, known as Fell’s

absorption principle.

Theorem 2.0.29. (Fell’s absorption principle) Let G be a locally compact
group, X its left reqular representation and (w, H) a unitary representation of
G. Then m® A is unitarily equivalent to @,.; Ni, where I is an index set for

a basis of H and \; = X\ for every i. In particular, T @ A < A.

Proof. Let (e;)icr be an orthonormal basis of H, we claim that there exists
a unitary W : L*(G) @ H — @,_; Hi, where H; = H for every i, such that
W(r®A)(z) = (Bies ) ()W for every x € G. To see this, consider the space
of strongly measurable functions f : G — H, such that §|f(z)|* dz < oo,
equipped with the norm ||, where |f| = {|/f(2)|? dv, which we denote by
L?(G, H)'. We will first show that L?(G) ® H is isometrically isomorphic
with L2(G, H). Let f € L*(GQ) and ¢ € H and define T(f ® €) € L?(G, H) by
T(f®&)(x) = f(x) for every x € G. Then

TG @& = [I @l do = [17@P eI d -
6 [ 1) o = 1€ 11° = 1f 0 6]?

and extend T linearly to the span of simple tensors. Recall that (e;);es is

an orthonormal basis for H and consider i,j € I and f,g € L*(G), then

IFor a definition of strong measurability and an exposition of Bochner integral, we refer
to [8](chapter IIT)
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<f®6i;g®ej>: <fvg>'<ei7€j>:<fag>'5ij and 50, if ¢ 75.]7
If@ei+g@e;|* = |f@eil* + lg@ e

Set u= f®e; + g® ey, then

Tl = [ 1r@)es + gtales ) do = [ ()P el + loG@) e ) do

2 2 2
= [f@el”+lg®ef” = |u]

In the same way, we can see that 7' is isometric on A = span{f ®e; : i € I}
and A is dense on L?(G) ® H, so we can extend T to an isometric linear
map from L*(G) ® H to L*(G, H), which we denote again by 7. Now notice
that simple integrable functions lie in the image of T" and those are dense in
L?(G, H), so T is onto and therefore it is an isometric isomorphism.

We now define U : L*(G, H) — L*(G, H) by (Uf)(z) = m(z)f(x). Then,
(U N @) = §lm@) f@)* de = §]f(@)]* dze = | f|?, since n(z) is a unitary
for every € G and so U is an isometry. Moreover, if f € L*(G), consider
g: G — H with g(z) = n(z71)f(z). Clearly g € L>(G,H) and Ug = f, so U
is onto and therefore it is an isometric isomorphism.

Now, let € G and consider TA(z)T~! : L*(G,H) — L*(G, H). First,
notice that since C.(G) is dense in L*(G) and so, if

B =span{f ®¢: feC.(G), £ € H}

then B is dense in L?(G) ® H and since T is an isomorphism, 7'(B) is dense
in L?(G, H).

Let f € T(B). Notice that f is continuous with compact support. For
r € G, consider T(\(z) ® Idg)T~! : L*(G,H) — L*(G,H) and let y € G.
Now, f € T(A) and so there exist fi,..., fn € C.(G) and &, ..., &, € H such
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that f =73, fi ® &) Then,
(T (2) @ Idm)T~ f)(y) = (T(M(2) ® Id@(i fi®&))(y)

ZLﬂ®& )

By a slight abuse of notation, we identify L*(G, H) with L?(G)® H. Then,
if we consider U acting on L?(G) ® H this time, we get that

UA®1n)(z) = A@m)(x)U

where 1y stands for the trivial representation of G on H and U is an isometry
onto and thus a unitary, so A ® 7 is unitarily equivalent to A ® 15 and this
is unitarily equivalent to @;c; A, which is exactly what we wanted.
Now, notice that
DiertA < A

Indeed, for a € C*(G), it is evident that a € k() if and only if a € k (Dier\)
and therefore,
AR < @ie]A < A\

O
Proposition 2.0.30. Let G be a locally compact group. Then B(G) equipped

with pointwise multiplication and the norm we defined earlier is a commuta-

tive unital Banach algebra, containing By(G) as a closed ideal.

Proof. Let u,v € B(G), then, by proposition 2.0.25, we can find 71, w5 € 3(G)
and &,n; € Hy, for i = 1,2 such that u(z) = {(m(x)&,m) and v(z) =
(ma(@)&2, m2) for every x € G and [[uf = [& - [, [lv] = &[] - [n2]. Then,

(u+0)(x) = (m(@)&r,m) + (ma(@),m2) = (M @ 7m2) (2)(&1, 1), (§2,712))
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and therefore v + v € B(G). For the product, we have that

(u-v)(z) = {m(@)§1,m) - (ma()S2,m2) = (M1 @ 72)(2)(§1 @ &2), 11 @ 72

and so u-v € B(G) and B(G) is indeed an algebra. Now, by 2.0.25, we have

Ju-oll < 16 @& - Im @ mall = €0 - &2l - Il - lme]| = Jwll - o]

and so the norm on B(G) is submultiplicative. Moreover, B(G) is isometri-
cally isomorphic to the dual of C*(G) and therefore it is complete, so B(G)
is a Banach algebra.

Also, notice that if H is a Hilbert space, £ € H a unit vector and 14 the
trivial representation of G on H, then (1¢(z)&, &) = 1 for every z € G and
so if u(xz) = 1 for every x € G, then u lies in B(G) and it is clearly a unit for
B(G). Moreover, multiplication is clearly commutative and therefore B(G)
is a commutative unital Banach algebra.

To see that By(G) is a closed ideal in B(G), notice that B, (G) is identified
with the dual of the reduced group C*-algebra and so it is complete and
therefore closed in B(G). It it is clearly a vector subspace of B(G), so it is a
Banach subspace of B(G). All that is left is to show that B,(G) is an ideal.

Let uw € B\(G) and v € B(G). Then we can find 7 < X and o € 3(G)
such that u(z) = (n(z)&,n) and v(z) = {o(z)k, p) for some &, n € H, and
k,pe H,. Then, (u-v)(z) = {(r®0o)(z)((®k,n® p) for every x € G and
so it suffices to show that 7 ® 0 < A, which is clear from theorem 2.0.29 and
we are done.

]

Lemma 2.0.31. Let p € M(G) and S be a class of representations of G.
Then,

Juls = sup {\ [ wtw auta)

:u € Bs(G), |Jul| < 1}
Proof. By the definition of ||| ¢, we have

lulls = sup i (p)] = m € S}



27

Then, by lemma 2.0.17, we know that |7(u)| < |u|g for every 7 < S and

therefore,

luls = sup{m(p)] - 7 < S}
= s sup {[Km ()€, m)| = §,n € Hywith [|€], |n] = 1}

Now, by proposition 2.0.25, we know that the functions v € Bs(G) with
|u| < 1 are exactly the functions of the form u(x) = (w(x)&,n) for 7 < S
and &, € H, with |[€|-|n]| < 1 and notice that if |£]-||n| = 1, we can assume
that [|€]| = ||n]| = 1, since u(z) = % = (m(x )IIEH IInH> and then

Supsup{|<7f(u)€,n>| 2§ n € Hewith |[€], 0] < 1}

= SupSUP{KW( )& ml & m e Hewith €], n] = 1}

S
— sup {' J u(z) du(x)

and therefore,

Inls = sup | [ o) duto)

as we wanted.

ueBﬂGxuuzl}

cu € Bs(Q), |ul| < 1}

cu € Bs(G), |u| < 1}

]

Proposition 2.0.32. Let S be a class of unitary representations of G and

let u e Bs(G). Then,
|M=m%2uw g%
Jj=1 S
Proof. Let w denote the universal representation of C*(G) and let M(w) be
the universal enveloping von Neumann algebra of C*(G). Then, by theorem
0.3.2, we know that M(w) can be identified with the double dual of C*(G)
and therefore with the dual of B(G), so

i Cj (555].

Jj=1

)W:c;eCzjed,

Jul = sup{a|w)| : a € M(w), o] < 1}.
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Now, let € M(G) and define

bu: B(G) > C, ue fu(x) du(z).

Then ¢, is clearly linear. Let u € B(G). Then, by proposition 2.0.25, there
is some m € X(G) and £, n € H, such that u(z) = (n(z)&,n) for every z € G
and [ul = €] - |-

Then,

¢Am:1[wwduu>=j&w@¢nwmu>=@wman>
and therefore,
Bu(w)] < 1) - €] - Il < ol - ]

so ¢, is bounded with |¢,|| < |-

Let V be a neighborhood basis of the identity and for each V € V), let gy
be non-negative continuous function that is supported in V' and such that
lgvll, = 1. Let fy = p* gy. Then, we have already seen in the proof of
lemma 2.0.17 that for every h € C(G) that is bounded, we have

| b rta)dz — [ hia) duto)

and since u is bounded and continuous, it is evident that,
| u@)frte) s — [ute) duto) = a0,

Now, fy € L'(G) and therefore,

@%M@=JR@M®M,

W(fv)|u) = du(w). (*)

Notice that ¢, lies in the dual of B(G) and by identifying (B(G))* with
M(w), we can consider ¢, to be an element of M(w). After making this

identification, relation (*) shows that w(fy) v Du-
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At the same time, if &, 7/ € H, and V € V, then
@) = | Fe@)wl@ ) da
and this converges to {(w(z)&,n') du(x) = (w(p)&',n') and therefore
w(fv) "B w(p)

and in particular, w(pu) € M(w).

Now, w(fy) — w(p) in the weak operator topology and in fact in the ul-
traweak topology, since | fy/|| < |w(u)| for every V and the ultraweak and the
weak operator topology agree on the ball of radius |w(p)| (0.2.11). Therefore,

w(fv) N w(p), but we have already shown that w(fy) N ¢, and therefore,

w(p) = Pu-

In particular,
(W () |uy = u(x)
for every x € G.
Now, by 1.1.9, we see that

(spanw(G))" = (w(LY(G)))"

and therefore, by Kaplansky’s density theorem, if A is the linear span of

w(G), we have

] =sup{|<a‘u>] ca€ A a| < 1} —

sup { 2 cju(x;)

Now, notice that if we set u = Z?Zl Cj0z,, then

()| =sup{[Cw(p)|wl - ue B(G), |ul < 1} =

sup { Z cju(x;)

sup {|(u|w)| : u e B(G), Jul <1} =

n

w(z Cj0z,)

j=1

rxjed,

<1,n€N}

cu € B(G), |u| < 1} =

”NHz(g)
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by lemma 2.0.31 and so we get

Z cju(z;)

Now, let G4 be the same group G, but this time endowed with the discrete

n

Z Cj0a;

j=1

|u| = sup rxj € G, <1

=(G)

topology. Then (G, is a locally compact group and every unitary representa-
tion of G is again a unitary representation of GG and therefore, B(G) < B(Gy)
and Bs(G) < Bs(Gq).

Then, notice that

lull e,y = sup{lCul ] f € Ce(Ga), | flowa, < 1

and since u € Bs(Gy), we get

lul gy = supilCul = f € Ce(Ga), [ flls < 1}

Now, Gy is discrete, so f € C.(Gy) if and only if f = Z?:l ¢j0y;, Where
neN, ¢; € Cand z; € G and then,
< 1}
S

> ciulz))
Recall that S is contained in 3(G), so |uf g (g, = ||uHBZ(G)(Gd) and there-

i cjdxj

=1

:neN,c;eCst.

HUHB(Gd) = Sup {

=1

fore,
sup{ Z cju(z;)| :neN, ¢ eC s.t. Z cjlq,| < 1} =
j=1 j=1 s
sup Z cju(x;)| : xj € G, Z Cj0a, <1
=1 =1 3(G)
and so,

n

Z ¢;0q,

j=1

:neN, ¢ eC st.

|ul| = sup {

as we wanted.

Z cju(x;)

<1}
S

For a far more comprehensive exposition of B(G), the interested reader is

referred to [0].
0



The Fourier algebra A(G)

3.1 Definition of A(G)

We are going to introduce the second topic of this thesis, the Fourier algebra
A(G) of a locally compact group G. As we will see, the Fourier algebra
is a particular subspace of B(G), in fact an ideal of B(G) and it is often
considered to be an analogue of the Fourier transform of L!(G), when the
group G is not abelian. Before defining A(G), we will need some additional

groundwork.
Lemma 3.1.1. Let f,g € L*(G), then f+ge By\(G) and |f = 3| < | fl2llgll2

Proof. Let x € G, then
(f=g)(x) = Jf(y)é(ylﬂf) dy = Jf(y)ﬁ(xly) dy = {f, A(x)g)
and if v(z) = (A\(x)g, f), then v e By(G) and f+g=10,s0 f=ge B\(G). O

Lemma 3.1.2. Let C' < G be compact and U < G be open, such that C < U.
Then there exists a u € B(G) N C.(G) with supp(u) < U such that 0 < u < 1

and ulc = 1.

Proof. We begin with the following observation: Let W be a neighborhood of
the identity, then there exists a symmetric relatively compact neighborhood
of the identity V such that V -V < W.

61
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To see this, notice that the multiplication map m : GxG — G, (z,y) — xy
is continuous at (e, e€) and since e € W and W is open, the set m~!(1V) is an
open subset of G x G and (e, e) € m™ (W), so there exists an open relatively
compact symmetric neighborhood V' of e such that V x V. < m= (W), so
that VV < W.

Now, for every g € C the set ¢~ U is an open neighborhood of the identity,
so there exists an open relatively compact symmetric neighborhood V, of
the identity such that V,V, < ¢~'U. In exactly the same way, we can find
a symmetric relatively compact neighborhood of the identity U, such that
U,Uy, = V. Now C < UgEC gU, and C' is compact, so there exist gi,...g, €
C such that C < |J;, g:U,. Letting V = (), Uy, we have a relatively
compact symmetric neighborhood of the identity. Now, let g € C. Then,
there exists i € {1,...,n} such that g € g;Uy,, so g = g, for some z € U,.

Thus gVV = g;aVV < g;V,,V, < U, so that CVV < U.

Now let V' be as above and define v : G — C by

1 ~
u=—1 1y.
V) eV * 1y
From the previous lemma, u € B(G) and u is continuous, since 1oy € L' (G)

and 1y € L?(G). Now, let z € G, then,

1 ~ 1 ~
) = 575 ev * @) = 57775 f Lov(y)Ty(y'z) dy
- ﬁ J Lev(y) Ly y) dy = ﬁ f(lclevxy) dy
_ACV V)
V)

From this expression, it is evident that 0 < u(z) < 1Vz € G. Moreover,
lemma 3.1.1 shows that (1cy * 1y)(z) = (1cy, A(2)1y) for every z € G and
therefore 1oy 1V € B(G) and so u lies in B(G@). Furthermore, let z ¢ C'V?
and assume that there is a g € G such that g € C'V n zV. Then, there are
ce C and v,w € V such that ¢ = cv and g = 2w, hence x = cow™! € CV?,

which contradicts our assumption on z. So CV nzV = ¢ and thus u(z) = 0
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for every x ¢ C'V?2. This means that
G\COV?*c {ze G :u(x) =0}
and therefore,
(reG:ulx)+#0}cCV?c CV2.

Now,

Ve U,

and U_g1 is compact, so V2 is compact, as a closed subset of the compact U_gl.

Therefore,

suppu = {r € G : u(z) # 0} c CV?

and so, supp u is compact and u € P(G) n C.(G).
O]

Proposition 3.1.3. Let G be a locally compact group. We define the follow-
ing subsets of B(G).

My ={f*g:f geC(G)}

My = {fxf:[eCG)}

Mz ={f*g:f,geL*G)with compact support}
M, = {h~* h:he L*(G) with compact support}
M5 = B(G) n C.(G)

Mg = P(G) n C.(G)

M, = P(G) n L*(G)

My={f*i: f.gcL(C)}

My ={f[:feL’G)}

Let E; denote the linear span of M; for every j. Then all E; have the same

closure in the norm of B(G).
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Proof. By polarization, it is clear that Fy = FEj, that E3 = E; and that
Es = Ey. Moreover, clearly M, < M, and therefore Fy = Fy ¢ E3 = Ejy.

To see that My < Ms, notice that if h € L*(G) has compact support,
then h € L'(G) and h € L*(G) and therefore, by [1] (proposition 2.39), we
get that h* h € C(G) and supp(h * B) < supp h - supp h which is compact,
since both k and h have compact supports. Moreover, by lemma 3.1.1, since
h € L?(G), we have that

h*he By(G) c B(G)

and therefore,

hxhe B(G)n C.(QG)

and M, c Ms.
To see that F5 = Eg, first notice that Mg < M5 and therefore Eg < Es.
For the converse, let u € M5 = B(G)nC.(G). By the definition of B(G), we
know that there exist uy, us, us, uy € P(G) such that u = u; —us +i(usz —uy).
Now, u € C.(G) and therefore, by lemma 3.1.2 there is a v € P(G) n C.(G)
such that v|sypps = 1. Then,

U= uv = vuy — Vg + iv(uz — uy)

and vu; € P(G) n C.(G) for every i, by lemma 1.2.7 and so u € Eg and
L5 = FEg.

The fact that FE; < Eg follows from [2](theorem 13.8.6).

To finish the proof, we will show that E; is dense in Ey. Once we prove
that, we will know that £y c --- c Eq = E; and we will be done.

To see this, let f,g € L?(G) and € > 0. Then, since C,.(G) is dense in
L*(G), we can find fi, g1 € C.(G) such that |[f — fill, <2 and |g — g1, < €.

Then, we have that

Hf*g_ fi *§1‘|B(G) < Hf*fl_ fi *§HB(G) + ||f1 *g— f *9~1||B(G) =

I =) * 3l + Hfl * (gﬂ_\/gl)‘g(c)
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and therefore, by lemma 3.1.1, we see that

HJ * g — fi *g1‘|B o) S H) - f1||2 H9H2 + ||f1||2 Hg - 91||2 <
(G)
6”9”2 (HfHQ 6)6

which tends to 0 as € tends to 0 and therefore, F; is dense in Fy and we are
done.
]

Definition 3.1.4. We define the closure of any of the E;’s in the norm of
B(G) to be the Fourier algebra of G and we denote it by A(G).

We just called A(G) an algebra and the next proposition justifies the use

of this word.

Proposition 3.1.5. Let G be a locally compact group. Then A(G) is a closed
ideal in B(G). In particular, A(G) is a closed subalgebra of B(G).

Proof. Let u € B(G)nC,(G) and v € B(G). Then, vu € B(G), since B(G) is
an algebra and uwv € C.(G), since both u, v are continuous and u has compact
support, so vu € B(G) n C.(G). Moreover, B(G) n C.(G) is clearly a linear
subspace of B(G) and therefore it is an ideal in B(G).

Now, let u € A(G). Then, by proposition 3.1.3, there is a (u,)neny in
B(G) n C.(G) such that u, — u in the norm of B(G). Let v € B(G). Then,
vu, — vu and vu, € B(G) N C.(G) for every n € N, so vu € B(G) n C.(G) =
A(G) (Proposition 3.1.3) and therefore A(G) is an ideal in B(G) and by
definition it is closed. In particular, A(G) is a closed subalgebra of B(G). [

Proposition 3.1.6. Let G be a locally compact group. Then A(G) < Cy(G)
and A(G) is in fact uniformly dense in Co(G).

Proof. Let ue A(G), then, there exists a sequence (uy)ney in B(G) N C.(G)
such that w, — u in the norm of B(G). Then, by corollary 2.0.27, we know
that u,, — u with respect to ||-|, and u € C’C(G)H‘”OO = Cp(G), so

A(G) = Cy(G).
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To see that A(G) is uniformly dense in Cy(G) notice first that for every
u € A(G), we have that uw € A(G). Indeed, let (u,), be a sequence in
B(G) n C.(G) such that u,, — u. Then, v, € B(G) n C.(G) for every n € N.
and by remark 2.0.28, we see that |0 — u,| = |v — u,| which tends to 0 as
n tends to infinity, so @, — v and therefore v € A(G). Since A(G) is closed
under conjugation, we see that A(G) is a =-subalgebra of Cy(G). Moreover,
by lemma 3.1.2, it is clear that A(G) separates the points of G and that for
every z € G, there is f € A(G) such that f(x) # 0 and therefore, by the
Stone-Weierstrass theorem, A(G) is |-|,-dense in the C*-algebra Cy(G). O

We showed in proposition 3.1.3 that A(G)=span{f xg: f,g € LQ(G)}”.HB(G).
In fact, it turns out that there is no need for taking linear span or closure in

the norm of B(G) and we actually have the following:

Theorem 3.1.7 (Characterization of A(G)). Let G be a locally compact
group, then
AG) ={f*g: f.ge L*(G)}.
This theorem was proved by Eymard in [3] and the proof relied heavily
on the theory of locally compact groups. A different approach is to use von
Neumann algebra theory and show that vN(G) is in standard form on L*(G),

as it is done in [11].

3.2 The spectrum of A(G)

In this section, we are going to identify the spectrum of A(G). As we will
see, the spectrum is homeomorphic to the group G' and therefore, ” A(G)

remembers the group G.”

Theorem 3.2.1. Let G be a locally compact group G and A(G) its Fourier
algebra. Then, o(A(G)) is homeomorphic to G, where o(A(G)) denotes the
spectrum of A(G).

The homeomorphism we will use is the map 7' : G — ¢(A(G)), x — ¢,,

where ¢, (u) = u(z) for all u e A(G). We will need a couple of lemmas.
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Lemma 3.2.2. Let f € A(G) and x € G such that f(x) = 0. Then, for every
e > 0 there exists an open neighborhood V. G of x and g € A(G) n C.(G)
such that gly =0 and | f — glla) <e€.

Before proving this lemma, we will need some additional terminology.

Definition 3.2.3. Let ¢ € (A(G))*. We define the support supp(¢p) of ¢, to
be the subset of G such that

G\ supp ¢ = U{V < Gopen:ue A(G) n Co(G),suppu < V = ¢(u) = 0}.
For a function u : G — C, we define Z(u) = {x € G : u(z) = 0}.

Definition 3.2.4. Let E be a closed subset of G.
(i) We call E a set of synthesis if for every 7 € (A(G))* and u € A(G), the
relation suppT < E < Z(u) implies 7(u) = 0.

(11) We call E a set of local synthesis if for every T € (A(G))* and u € A(G)

with compact support, the relation suppt < E < Z(u) implies 7(u) = 0.

This definition may seem out of the blue at this point, but the next propo-
sition will show that the notion of local synthesis is exactly what we need for

lemma 3.2.2.

Proposition 3.2.5. Let E be a closed subset of G. Then E is a set of synthe-
sis if and only if for every f € A(G) such that f|g = 0, f can be approzimated
in the norm of A(G) by functions in A(G) N C.(G) vanishing in a neighbour-
hood of E.

Proof. Let’s first assume that E is a set of synthesis and let f € A(G) be
such that f|E = 0.
Also, let

J(E) =span{g € A(G) n C.(G) : g vanishes in a neighborhood of E}.

Consider a functional 7 € (A(G))* that vanishes on J(FE). Then, by the
definition of supp 7, it is evident that supp7 < E and since E is a set of
synthesis we have 7(f) = 0 and therefore f € J(E).
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For the opposite direction, assume that every f € A(G) vanishing on F lies
in J(E) and let 7 € (A(G))* and f € A(G) be such that suppT < E < Z(f).

Then, there is a sequence (g, )nen With g, € A(G) N C.(G) for every n € N
such that g, vanishes on a neighborhood of E and g, converges to f, so
7(gn) — 7(f). In this case, each g, vanishes on a neighborhood of E and so,
gn vanishes on a neighborhood of supp 7 and since g, has compact support,
7(gn) = 0 by the definition of the support of 7 and this holds for every n € N,
so 7(f) = 0 and thus F is a set of synthesis. O

This proposition shows that what we need to prove for Lemma 3.2.2 is
exactly the fact that {z} is a set of synthesis for every = € G.
There is a characterisation of sets of local synthesis, completely analogous

to the one of Proposition 3.2.5.

Proposition 3.2.6. Let E be a closed subset of G. Then E is a set of local
synthesis if and only if every f € A(G) n C.(G) that vanishes in E can be

approximated by functions in A(G) n C.(G) that vanish in a neighborhood of
E.

Proof. The proof is essentially the same as the one of proposition 3.2.5 and

so we omit it. [l
Definition 3.2.7. Let 7 € (A(G))* and f € A(G). We define f-7 € (A(G))*
by f-7(u) =7(f-u) for every u € A(G).

For every u € A(G) we have [7(f - w)| < |7 - |f - u| < |7 - |f] - |u] and
so f -7 is indeed bounded with | f - ul| < |7] - | f]-

Lemma 3.2.8. Let E < G be a set of local synthesis and T € (A(G))* with
supp7T < FE and let f € A(G) with flg =1. Then f-7=17.

Proof. Since A(G) n C.(G) is dense in A(G), we need to show that for every
ue A(G) n C.(G), we have f - 7(u) = 7(u), or equivalently,7(u(1 — f)) = 0.
Notice that (1 — f)ue A(G) n C.(G) and (1 — f)u vanishes on E, so
7((1 = f)u) =0

since F is a set of local synthesis. O
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The proof of lemma 3.2.2 will be completed with the following proposition:

Proposition 3.2.9. Let E be a compact subset of G. Then E is a set of

local synthesis if and only if it is a set of synthesis.

Proof. Every set of synthesis is a set of local synthesis, so we need to prove
that for a compact set, local synthesis implies synthesis. In that direction,
consider 7 € (A(G))* and u € A(G) be such that suppt < E < Z(u). We
need to prove that 7(u) = 0.
Since F is compact, by lemma 3.1.2 there is f € A(G) n C.(G) such that
fle=1.
Now, consider f-u. Then, f-u € A(G) and has compact support. Moreover,
fulg = 0 and since F is a local synthesis set, 7(fu) = 0 and so (f-7)(u) = 0.
Then, by lemma 3.2.8, we know that f-7 = 7 and so 7(u) = 0 as we
wanted.
O]

To prove lemma 3.2.2; since {z} is compact for every = € GG, we need to

prove that {z} is a set of local synthesis.

Proof. Consider f € A(G) n C.(G) vanishing on x. We will show that f can
be approximated by functions in A(G) n C.(G) vanishing on a neighborhood
of {x}.

Let € > 0, we want to find some h € A(G) n C.(G) such that h vanishes
on a neighborhood of z and |[f — h| <e. Let W = {y e G : |[f — R, f|| < €}
Then W is open, since the map G — A(G), © — R, f is continuous and
clearly e € W. Now, since G is locally compact, we can find a relatively
compact open neighborhood of e, that we call U. Let W' = W n U. Then
W' is open, contains the identity, it is relatively compact and | f — R, f| <€
for every y e W".

Now, let V' be an open neighborhood of the identity such that |f(zy)| < €
for all y € V' and such that V' < W’ (we can find such a neighborhood, since

f is continuous at x and f(z) = 0). Since V. < V < W’ and W’ is compact,
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0 < A(V) < o0 and since the Haar measure is inner regular on open sets, we

can find K < V compact, such that
AME) = AMV) —eX(V). (*)

Now, we define u = ﬁl;{, g=1,fand h = (f — g) * u. Since u € L(G)
and f—g € L*(G), the function h = (f—g)=u is continuous (see [!|proposition
2.39.) and also, f — g = 1guvf € L*(G), since f € C¢(G) and u is also in
L?(@G), since it is in L®(G) and has compact support, so, from proposition
3.1.3 we get that h € A(G). As one can imagine, h will be the function we
are searching for. Expanding the definition of h we get

1

hE) = ((F =0+ D) = 5

f Lenar () F () L (=) dy.

Now, let z € G such that h(z) # 0. Then, there must exist y € G such
that y € supp f and 2!y € K. Therefore, 27t € Ky~' < K - (supp f)~!. So,
we have shown that {z7!: h(z) # 0} = K - (supp f)~! and thus,

{zeG:h(z)#0} < (supp f) - K*

and (supp f) - K~! is compact and therefore closed, so

supph = {z€ G : h(z) # 0} = (supp f) - K~ *.

Therefore, supp h is compact and h € C.(G).

Now, let z € G such that zK < zV. Then, z 'y € K implies that y €
zK < zV and therefore, whenever 1x(z71y) # 0, we have that 1g/v(y)
vanishes and therefore the integral defining h is zero and h(x) = 0.

Clearly, since K < V, we have that /K < xV. Recall that the mul-
tiplication map m : G x G — G is continuous and therefore m=1(zV) is
an open subset of G x G containing {z} x K. Therefore, for each k € K
we can find Uy, W}, open neighborhoods of k and x respectively, such that
Wi x Uy € m™1(2V).

Now, K is compact and therefore we can find kq,--- ,k, € K such that
K < \J;, Uy,. Set Wy = ()., Wi,. Then, W} is an open neighborhood of x
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and for every k € K, it is evident that Wy x {k} € m™*(zV') and therefore
WoK < 2V and h(z) = 0 for every z € Wy, so h vanishes in a neighborhood
of x.

To finish the proof, we have to estimate |f — hl|.
If=hl=1f=(f =g =t = |f = fra+g=a| <|f—f=a|+]g=al.

Now, by lemma 3.1.1, we have |g = @] < |gll2/u/2 and

ol = [t @R dy = | 1) dy < Ex@V) = V)

zV

since |f(y) < € for y € £V by the choice of V' and thus,

lglly < e(A(V))2.

Now,
) 1 o 1 11
— [ ()21 dy < <
ol = [ G100 v < 55 < 3 T
from (*) and therefore,
July < 4 [+om—
ST T =€
SO
Jul Ll < 4/ —
ullz lglz < €/ 7= =

Now, let g € L'(G) such that |g|, < 1. We want to estimate

\fg@xf@>—f*a@»dx.
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Then,

r

g9(x)(f(x) = [ = u(x)

Pg( ) f () dv — Jf u(y'z) dydx

r

[

K
—

(2)f(z) — Jfg(fv)f(y)ﬁlﬂfly) dydzx

[

| | 5ot @ dus = 5o | | ote) ftan) dye

<

i | | @ @) = g(@)f(xy)) dyde
1
NE) ff 9(2)(f(z) = Ry f(x))1k(y) | dzdy

Now, for y € K, we have that |f — R, f| < € and so,

[0 - Ry do

Now, putting everything together, we have that

< lgllllf = Ryfl <€

and so

1
1—¢

[f—hl<e+e

which tends to 0 as € tends to 0 and we are done.

Lemma 3.2.10. Let X be a Banach space and ¢,9 € X* such that
Ker(¢) < Ker(y). Then 1 = Ao for some X e C

Proof. 1f b = 0 then this clearly holds for A = 0.

Now assume that ¢ # 0. Then ¢ # 0 and there exist unique xg, yo € X with
(o) = ¥(yo) = 1 and such that X = Ker(¢) @ span{zo} = Ker(y)) ®span{yo}
Let z € X, then there exist unique x1,y; € X and A\, € C such that

rT=x1+ A xo=y1 + It Yo-
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Now,
¢(x) = d(w1) + Ad(0) = A
and
(@) = Pyr) + (o) = p
Then,
(@) = (1) + Mp(x0) = Mp(w0) = P(2)1h(0)
and this holds for any z € X, so we are done. ]

We are now ready to prove theorem 3.2.1.

Proof. Let € G and let ¢, : A(G) — C, u — u(z). Then, ¢, : A(G) - C
is obviously an algebra homomorphism and lemma 3.1.2 for the compact {x}
implies that there is u € A(G) such that u(x) = 1. In particular, u(x) # 0,
so ¢, € 0(A(G)). So the map T : G — 0(A(G)), = — ¢, is well defined
and obviously injective.

Let (z;)ier be a net in G converging to « € G. Then, if u € A(G) we have

T(x:)(u) = bu;(u) = u(ws) = w(x) = da(u) = T(2)(u),

since u is continuous. Thus, T'(z;) > T'(x), so T is continuous with respect
to the topology of o(A(G)).

Now, let’s assume that 7" is not onto, so there exists ¢ € d(A(G)) such
that ¢ # ¢, Vx € G and so, for each x € GG, we can find a f, € A(G) such
that ¢(f.) # bu(f2).

We will show that we can choose f, such that ¢,(f,) = 0 and ¢(f,) = 1
for every x € A(G). Notice that if there is u € A(G) such that ¢,(u) = 0 and
o(u) # 0, then if we set f, = S(my» We have ¢:(fz) =0 and ¢(f,) = 1, so we
need to show that there is u € A(G) such that ¢,(u) = 0 and ¢(u) # 0.

Assume that this is not possible, so there is x € G such that for every
u e A(G) with ¢, (u) = 0 we have ¢(u) = 0 and so Ker(¢x) < Ker(¢).

Then, by lemma 3.2.10, there is some A\ € C such that ¢ = A¢,.

Now, let u € A(G), then,

$(u”) = (¢(w))* = (A\du(u))® = N*(¢s(u)”
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and also,
P(u?) = Apu(u?) = A (u))?
SO
Ma(w))* = X*(¢a(u))?
and this holds for every u € A(G), so we get A = A\? and therefore A can be
either 0 or 1. If A = 0, then ¢ = 0 which is impossible, since ¢ € o(A(G)),
so A = 1 and therefore
¢ = ¢z

But we have assumed that ¢ # ¢, and we have reached a contradiction.
Therefore, for every x € G there exists a function f, € A(G) such that
¢x(fz) = 0 and ¢(fz) = 1.

Now, ¢.(f;) = 0 and this means that f,(z) = 0 for every z € G, so, by
lemma 3.2.2; there exists a sequence (g*),en in (Co(G) N A(G)) and for every

n there exists an open neighborhood of =, which we denote by V¥, such that

Gulve = 0.

Now, |¢(fz) — &(g%)] < |9 || fz — ¢%| and so, for large enough n, we have
that ¢(gr) # 0 and g¢%|y= = 0. Thus, for each € G, we can find g, €
C.(G) n A(G) such that ¢(g,) # 0 and g, vanishes in a neighborhood V
of . Let fo € C.(G) n A(G) be such that ¢(fy) = 1 and let K = supp fo.
Then, K is compact and K < |J,.x Vi so there exist z1,...,x, € K such
that K < |J_, Va,. Let f = fo[l, foi- Then, f € A(G) and ¢(f) =
o(fo) [ iy &(f2,) # 0.

Now, let z € G. If z € K, then there exists i € {1,...,n} such that z € V,,
and thus f, (z) = 0 and so f(z) = 0. On the other hand, if z ¢ K, then
fo(z) = 0 and so f(z) = 0. In either case, f(x) = 0 and so f = 0, but
o(f) # 0, which is a contradiction, since ¢ is linear. Thus ¢ = ¢, for some
x € G and hence T is onto.

To finish the proof, consider a net (¢,,)ics in 0(A(G) and x € G such
that ¢,, — ¢, and let’s assume that z; - z. In this case, we can find an
open neighborhood V' of = and a subnet (z;);es of (x;)ier, such that x; ¢ V

for every j € J. Now, from lemma 3.1.2, we can find u € A(G) such that
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u(x) = 1 and u(y) = 0 for every y € G\V and so, u(z;) = 0 for every j € J
and u(z) = 1, but ¢, — ¢, and so u(x;) — u(x), which is absurd, so z; — =

and thus 7' is a homeomorphism. ]

3.3 The dual of A(G)

Having described the spectrum of A(G), we are now going to describe its
dual. As the next theorem shows, its dual is isometrically isomorphic to
another operator algebra associated to G, the so called group von Neumann
algebra, vN(G).

Of course we will first define vN(G).

Definition 3.3.1 (Group von Neumann algebra). Let G be a locally compact
group and let \ denote the left reqular representation of G. Then the group
von Neumann algebra is defined to be the second commutant of N(LY(G)) <
B(L?(G)) and we denote it by vN(G).

Definition 3.3.2. Let u € B(G). We define a function @ : G — C by

w(x) = u(z™t) for every x € G.

Proposition 3.3.3. Let u € B(G). Then @ € B(G) and the map B(G) —

B(G), w~— ais a linear isometry.

Proof. Let u e B(G). Then, by 2.0.25, there is (7, H,) unitary representation
of G and &, € H, such that u(z) = (w(x)§,n) for every x € G and such that
|ull =[] |n]. Then, we have that

i(w) = u(e™) = (r(a™h)E,m) = {n(z)n, ),

for every x € G. Now, by 2.0.12, the function (7 (-)n, &) clearly lies in B(G)

and by 2.0.13, we get that (z(-)n, &) € B(G) and therefore @ € B(G).
Moreover, by 2.0.25, we get that ||[a]| < ||€] [n] = |u]. It is clear that @ = u

and therefore |a| = |u| for every w € B(G). The map that sends u to @ is

clearly linear, so it is a linear isometry on B(G). O
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Proposition 3.3.4. Let ue€ A(G), then u € A(G).

Proof. Let uw € B(G) n C.(G). Then @ clearly lies in B(G) n C.(G). Now,
consider v € A(G). Then, by 3.1.3, there is a sequence (up)nen in B(G) N
C.(G) such that u, converges to u in the norm of B(G). Now, by 3.3.3, we
get that @, — @ in the norm of B(G) and @, € A(G) for every n € N, so
u € A(G) for every u e A(G).

O]

Theorem 3.3.5. Let G be a locally compact group.
We define T : (A(G))* — vN(G) by ¢ — T}, where

(To(f)9) = (f*xg) = (G * f)
for every f,g € L?(G). Then, T is well defined and it is an isometric iso-
morphism between (A(G))* and vN(G) and has the following properties:

0 . 0
1. Ifu= '21 g; * [;, where f;, g; € L*(G) are such that '21 1fill, lgill, < o0,
= o0 o e¢] =
then 6(u) = 3. u(g; + ) = Tub T
i= j=

2. If p e M(G) and ¢, € (A(G))* is such that ¢, (u) = §u(z)du(z) for
every u € A(G), then Ty, = Ag(u).

3. T is a homeomorphism for the w* topology on (A(G))* and the ultra-
weak topology on vN(G).

Proof. Let ¢ € (A(G))*. We define 1 : L2(G) x L3(G) — C (f,g) — &(f * §).
Then, ¢ is obviously sesquilinear and [¢/(f, )| < [o] [f * gl < [o] /], gl
and so 1 is a bounded sesquilinear form on L*(G), with |¢| < |¢| and so
there exists a unique T, € B(L?*(G)) such that ¢ (f,g) = (Tsf,g) and thus
(Tyf,g) = ¢(f+§) and |Ty| < |¢|. We want to show that T, € vN(G) =
(MLY(@))", where X is the left regular representation of G, so we need to show
that Ty commutes with the commutant of the left regular representation.
Now, it is proved in ([11] proposition VIL.3.1) that (A(LY(G))" = p(L}(Q)),
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where p is the right regular representation of G, so we need to show that 7,
commutes with the operators p(h) for h € L'(G). To see this, let h € L1(G)
and f, g e C.(G). We will show that (T, (p(h)f),g9) = (p(h)Tsf, g)-

Indeed, we have

(Ty(p(h)f), 9y = 6@ (fx ) = d(Gxhx f) = plgxhx f) =
Tufogr by = [T @) g« (@) da
|@n@) [ sty o) dus -
|| @n@gton ) dyds = )T« bw) dy -
UTpf) > hyg) = Lp(R) (T f), 9)

*

and since this holds for every f, g € C.(G), we conclude that p(h)T, = Typ(h)
for every h € L'(G) and we are done.

Thus, the map T : (A(G))* — vN(G), ¢ — T, is well defined, |T}| <
|¢| and T is obviously linear.

Now, let u = 37| g; f;, where > | [ f;], [g;], < co. First of all, for every
j € N, we have that g; * f; = g; *flj and g;, f; € L?(G), so, by proposition
3.1.3, we see that g; x f; € A(G). Now, X7, g5+ fi| < 72, £l g, < oo
and since A(G) is complete, u is in A(G) and so ¢(u) is well defined. Now,
let S, =371 95* fj, for every n e N. Then S, € A(G) and S, — u and ¢

is continuous, so ¢(S,) — ¢(u). Now,

—_—

d(Sn) = Z og; * [j) = Z o(fi*g5) = Z<T¢fj79_j>-

So, Z?:1<T¢fj,g_j> — ¢(u) and so ¢(u) = Z;’;1<T¢fj,g_j>, which proves 1.
Now, for 2, consider i € M(G). Then,

(o o) = du(T 7 7) = f (F*9)(x) dulx)
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and thus,
Ty, f. 9) = ”f Y dydu(x) =
[ swaten) dvauta) = [[ s v)ato) ddta) -
@9 dute) = Gt

and this holds for every f, g € L*(G), so Aa(n) = Ty, which proves 2.

Next, we want to prove that 7' is onto. Let us start with an operator
A € vN(G). We are going to construct a functional ¢4 € (A(G))* such that
Ty, = A. Let us first consider f,g € C.(G). Then, of course, f x g € A(G)
and since A € vN(G), we know that A commutes with the right regular
representation and so, A(f * ) = A(p(9)f) = p(9)Af = (Af) x §g. Now,
(Af) % g is continuous, so it makes sense to consider (Af x g)(e) and so we
define ¢4 : E1 — C, by u — A(u)(e). Notice that

(Af *3)(e) = f AF )iy dy = f Af(y)g(y) dy = (Af. g).

Consider u = > .7 | fj » §; € E1. Since A € vN(G), by Kaplansky’s density
theorem (0.2.12), there exists a net (A(h;))ie; with h; € C.(G) for every i and
IA(h:)| < ||A| Vi € I such that A(h;) °%"
we have that (A(h;) f;,9;) — (Afj, g;) and so,

A and so, for every j € {1,...,n},

ZO‘ )95 — Z<Af],gg> Z Galfj* 9] = ¢a().

Now, from 2, we have that (A(h;)f;,g;) = gzﬁh(f]\*?]) (recall that by
the discussion right after the definition, 0.4.20, we can consider L'(G) as
a subspace of M(G)). So, D7 (A(hi)fj, 959 = én, (@) and then, |pp, (7)] <
|hi|lle] < | A]|u| and so, |¢pa(@)| < |A]|@] and since Ey = Ey, we conclude
that ¢4 is bounded on E; and thus it has a unique extension to A(G), again
denoted by ¢4, that satisfies || < | Al

Now that we have defined a way to associate to each A € vN(G) a func-

tional in (A(G))*, we must check that this association is in fact inverse to our
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previous map. With that goal in mind, consider A € vN(G) and f, g € C.(G).
Then, by definition, (T, f,g) = ¢ A(f\*/f]) = (Af, g) and since this holds for
any f,g € C.(G), we obtain Ty, = A as claimed.

Let A € vN(G), then, |64 < |A] and [A] = |Ty,] < loal < [l
so, we see that, ||pa] = |A| for every A € vN(G) and so, T : (A(G))* —
vN(G), ¢ — Ty is an isometry onto and therefore the dual space of A(G)
is isometrically isomorphic to vN(G).

Moreover, by 0.2.17, we see that A(G) is isometrically isomorphic to the
predual of vN(G) and therefore T is a homeomorphism for the w* and the

ultraweak topologies, which proves 3.

[
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