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Abstract

In this thesis, we present the Fourier and Fourier-Stieltjes algebras of a locally

compact group and discuss some of their properties.

Let G be a locally compact group. We denote by ΣpGq the family of

equivalence classes of unitary representations of G up to unitary equivalence.

Then, the Fourier-Stieltjes algebra of G, denoted by BpGq, is the set of

coefficient functions of representations of G. That is,

BpGq :“ txπp¨qξ, ηy : π P ΣpGq and ξ, η P Hπu.

We endow BpGq with pointwise addition and multiplication (the sum of

functions corresponds to the direct sum of representations and the product

of functions corresponds to the tensor product of representations) and the

norm

}u} “ inft}ξ} }η} : up¨q “ xπp¨qξ, ηy, pπ,Hπq P ΣpGq, ξ, η P Hπu

for every u P BpGq. With those operations and norm, BpGq becomes a

Banach algebra (2.0.30) and it is isometrically isomorphic to the dual of the

group C˚-algebra (2.0.11). The duality is given by xu
ˇ

ˇfy “
ş

fpxqupxq dx for

u P BpGq and f P L1pGq. The Fourier algebra, ApGq, is equal to the set of

coefficient functions of the left regular representation of G, that is

ApGq “ txλp¨qf, gy : f, g P L2
pGqu,
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where λ is the left regular representation of G. Clearly ApGq is a subset of

BpGq. Endowed with the norm of BpGq, it is actually a closed ideal in BpGq

(3.1.5) and therefore, ApGq is a Banach algebra.

In the first chapter, we give the necessary definitions and results from the

theory of C˚-algebras, von Neumann algebras and locally compact groups,

that will be needed for the rest of this thesis. Most of the results in this

chapter, are stated without proof and the reader is referred to the literature

for proofs. An exception to this, is the section 0.3, where we construct the

universal enveloping von Neumann algebra of a C˚-algebra A in detail and

show that it is isometrically isomorphic to A˚˚ (0.3.2).

In the second chapter, we define the unitary representations of a locally

compact group G and we show that there are bijective correspondences be-

tween unitary representations of G, non-degenerate representations of L1pGq

and representations of the measure algebra MpGq, whose restrictions to

L1pGq are non-degenerate (1.1.8 and 1.1.11). We also introduce the functions

of positive type (1.2.1) and give a short overview of some of their properties.

The first definition of BpGq that we provide in the next chapter, will be based

on the functions of positive type.

In the third chapter, we introduce BpGq, along with its subspaces, BSpGq

(2.0.12), where S is a class of unitary representations of G and we study some

of its properties.

In the fourth chapter, we introduce ApGq and show that it is a closed ideal

in BpGq (3.1.5). We also specify its spectrum and its dual. More specifically,

we show that the spectrum of ApGq is homeomorphic to the group G (3.2.1)

and we show that the dual of ApGq is isometrically isomorphic to the group

von Neumann algebra, vNpGq (3.3.5).



Περίληψη

Σκοπός αυτής της εργασίας, είναι να μελετήσουμε τις άλγεβρες Fourier και

Fourier-Stieltjes μιας τοπικά συμπαγούς ομάδας G και να περιγράψουμε ορι-

σμένες τους ιδιότητες.

΄Εστω G μια τοπικά συμπαγής ομάδα και έστω ΣpGq η οικογένεια των κλάσε-

ων ισοδυναμίας των unitary αναπαραστάσεων της G ως προς unitary equiva-

lence. Τότε, η άλγεβρα Fourier-Stieltjes, BpGq, της G, αποτελείται από τις

συναρτήσεις συντελεστών των αναπαραστάσεων της G, δηλαδή,

BpGq “ txπp¨qξ, ηy : pπ,Hπq P ΣpGq, ξ, η P Hπu.

Εφοδιάζουμε τη BpGq με κατά σημείο πρόσθεση και πολλαπλασιασμό (το άθροι-

σμα συναρτήσεων αντιστοιχεί σε ευθύ άθροισμα αναπαραστάσεων και το γινόμε-

νο συναρτήσεων σε τανυστικό γινόμενο αναπαραστάσεων) και ορίζουμε νόρμα

στην BpGq με

}u} “ inft}ξ} }η} : up¨q “ xπp¨qξ, ηy, pπ,Hπq P ΣpGq, ξ, η P Hπu

για u στη BpGq. Με αυτές τις πράξεις και τη νόρμα, η BpGq είναι άλγεβρα

Banach (2.0.30) και είναι ισομετρικά ισόμορφη με τον δυϊκό της C˚
-άλγεβρας

της ομάδας, με τον δυϊσμό να δίνεται από xu
ˇ

ˇfy “
ş

fpxqupxq dx για f P L1pGq

και u P BpGq (2.0.11).

Η άλγεβρα Fourier, ApGq, της G, ορίζεται από

ApGq “ txλp¨qf, gy : f, g P L2
pGqu,

xi
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όπου λ η αριστερή κανονική αναπαράσταση της G. Με αυτόν τον ορισμό, σαφώς

η ApGq είναι υπόχωρος της BpGq. Εφοδιασμένη με τη νόρμα που κληρονομεί

από τη BpGq, η ApGq είναι κλειστό ιδεώδες στη BpGq (3.1.5) και έτσι η ίδια

είναι άλγεβρα Banach.

Στο πρώτο κεφάλαιο δίνουμε τους απαραίτητους ορισμούς και αποτελέσματα

που χρειαζόμαστε από τη θεωρία των C˚
-αλγεβρών, των αλγεβρών von Neu-

mann και των τοπικά συμπαγών ομάδων. Τα περισσότερα αποτελέσματα σε αυ-

τό το κεφάλαιο δίνονται χωρίς απόδειξη και παραπέμπουμε στη βιβλιογραφία για

αποδείξεις. Εξαίρεση αποτελεί η παράγραφος 0.3, στην οποία αναπτύσσουμε με

λεπτομέρεια την κατασκευή της universal enveloping άλγεβρας von Neumann

μιας C˚
-άλγεβρας A και δείχνουμε ότι αυτή είναι ισομετρικά ισόμορφη με τον

δεύτερο δυϊκό της A.

Στο δεύτερο κεφάλαιο, ορίζουμε τις unitary αναπαραστάσεις μιας τοπικά

συμπαγούς ομάδας και δείχνουμε την αντιστοιχία ανάμεσα σε unitary αναπα-

ραστάσεις της G, σε μη εκφυλισμένες αναπραστάσεις του L1pGq και σε ανα-

παραστάσεις της άλγεβρας των μέτρων, MpGq, οι οποίες περιορισμένες στον

L1pGq είναι μη εκφυλισμένες (1.1.8,1.1.11). Ακόμα εισάγουμε τις συναρτήσεις

θετικού τύπου (1.2.1) και κάνουμε μια σύντομη επισκόπηση κάποιων ιδιοτήτων

τους. Βάσει αυτών θα ορίσουμε για πρώτη φορἀ στο επόμενο κεφάλαιο την

BpGq.

Στο τρίτο κεφάλαιο, εισάγουμε την BpGq μαζί με τους υποχώρους BSpGq

(2.0.12), όπου S είναι κλάση unitary αναπαραστάσεων της G και μελετάμε

κάποιες από τις ιδιότητές της.

Στο τέταρτο κεφάλαιο εισάγουμε την ApGq και δείχνουμε ότι είναι κλειστό

ιδεώδες στην BpGq (3.1.5). Ακόμα, προσδιορίζουμε το φάσμα και τον δυϊκό

της. Πιο συγκεκριμένα, δείχνουμε ότι το φάσμα της ApGq είναι ομοιομορφικό με

την G (3.2.1) και δείχνουμε ότι ο δυϊκός της ApGq είναι ισομετρικά ισόμορφος

με την άλγεβρα von Neumann της ομάδας, vNpGq (3.3.5).



Preliminaries

0.1 C˚-algebras

In this section, we give some basic results and definitions related to C˚-

algebras, that will be needed for the rest of this thesis.

Definition 0.1.1. A Banach algebra is an algebra A, equipped with a norm

}¨}, such that pA, }¨}q is a Banach space and for every a, b P A, we have

}ab} ď }a} }b}.

Definition 0.1.2. Let A be a complex algebra. An involution on A is a map

˚ : A Ñ A such that:

• pa ` λbq˚ “ a˚ ` λb˚

• pa˚q˚ “ a

• pabq˚ “ b˚a˚

for every a, b P A and λ P C. The algebra A equipped with an involution is

called a ˚-algebra.

Definition 0.1.3. A Banach-˚ algebra is a Banach algebra A, equipped with

an isometric involution.

Definition 0.1.4. Let A be a ˚-algebra and let a P A. Then a is said to be

selfadjoint if a “ a˚. The set of selfadjoint elements of A is denoted by Asa.

1
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Definition 0.1.5. A C˚-algebra is a Banach ˚-algebra A that satisfies the

C˚- property, that is

}a˚a} “ }a}
2

for every a P A.

The prototypical example of a C˚-algebra is the algebra of bounded oper-

ators on a Hilbert space.

Example 0.1.6. Let H be a Hilbert space and let BpHq be the algebra of

bounded operators on H. We equip BpHq with the operator norm and with

the involution that maps any bounded operator to its adjoint. Then BpHq is

a C˚- algebra. In fact, every closed ˚-subalgebra of BpHq is a C˚-algebra.

Definition 0.1.7. Let A,B be C˚- algebras and let ϕ be a map from A

to B. Then, ϕ is called a ˚-homomorphism if it is linear, it respects the

multiplication and the involution, that is :

• ϕpa ` λbq “ ϕpaq ` λϕpbq

• ϕpabq “ ϕpaqϕpbq

• ϕpa˚q “ pϕpaqq˚

for every a, b P A and λ P C.

It is remarkable, that any such map is automatically continuous.

Theorem 0.1.8. Let A,B be C˚-algebras and let ϕ : A Ñ B be a ˚-

homomorphism. Then ϕ is continuous. Moreover, if ϕ is injective, then

ϕ is isometric.

The proof of this theorem can be found in [9](proposition 2.2.5. and corol-

lary 2.2.6.).

Proposition 0.1.9. Let A be a C˚-algebra and let I be a closed two sided

ideal in A. Then we can define an involution on the algebra A{I, by defining

pa ` Iq˚ :“ a˚ ` I for every a P A. This involution is well defined on A{I

and equipped with the quotient norm, A{I becomes a C˚-algebra.
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Proof. See [2](proposition 1.8.2.)

We have the following immediate corollary to proposition 0.1.9.

Corollary 0.1.10. Let A,B be two C˚-algebras and let ϕ : A Ñ B be a

˚-homomorphism. Then, the map ϕ̃ : A{Kerpϕq Ñ B is a ˚-homomorphism

from the C˚- algebra A{I to B and it is injective, therefore, by proposition

0.1.9 it is isometric. Moreover, the image of ϕ is clearly a closed ˚-subalgebra

of B and therefore it is a C˚-subalgebra of B.

Definition 0.1.11. Let A be a Banach algebra. Then, A is called unital if it

contains a multiplicative unit, that is, there is an element 1A P A such that

a1A “ 1Aa “ a for every a P A.

Definition 0.1.12. Let A be a unital Banach algebra and a P A. Then a is

called invertible if there exists a´1 P A such that aa´1 “ a´1a “ 1A, where

1A is the unit of A.

Definition 0.1.13. Let A be a unital Banach algebra and let a P A. We

define the spectrum of a by

σpaq :“ tλ P C : a ´ λ1A is invertibleu

Proposition 0.1.14. Let A be a unital Banach algebra and let a P A. Then

σpaq ‰ H.

Proof. See [9] (theorem 1.2.8.).

Definition 0.1.15. Let A be a ˚-algebra and let a P A. Then a is called

selfadjoint if a˚ “ a.

Definition 0.1.16. Let A be a unital Banach algebra and let a P A. Then a

is said to be positive if a is selfadjoint and σpaq Ă r0,8q.

Now, let A be a non-unital Banach ˚-algebra and let a P A. There is a

natural way to define the spectrum of a in A and it is true that σpaq ‰ H,

so the definition 0.1.16 makes sense and therefore, we say that a is positive
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if it is selfadjoint and its spectrum is contained in r0,8q. For the details of

this discussion see [9](1.2.12 and 1.2.1.13.)

If A is a C˚-algebra, there exists a very interesting characterization of the

positive elements.

Theorem 0.1.17. Let A be a C˚-algebra and let a P A. Then a is positive

if and only if there is some x P A such that a “ x˚x.

Proof. See [9] (theorem 3.1.10.)

Definition 0.1.18. Let A be a C˚-algebra and let ϕ : A Ñ C be a linear

functional on A. Then, ϕ is called positive if ϕpaq ě 0 for every a P A that

is positive. We denote the set of positive functionals on A by A˚
`.

A very interesting fact about positive functionals is that they are auto-

matically continuous. For a proof, see [9](theorem 4.1.5).

Definition 0.1.19. A state on a C˚-algebra A is a positive functional of

norm 1. We denote the set of states on A by SpAq.

Definition 0.1.20. Let H be a Hilbert space and A Ă BpHq be a subalgebra.

A vector ξ P H is said to be cyclic for A if the set tapξq : a P Au is dense in

H.

Proposition 0.1.21. Let A be a C˚-algebra and ϕ P SpAq. Then there exists

a Hilbert space Hϕ, a ˚-homomorphism πϕ : A Ñ BpHϕq and a vector ξϕ P Hϕ

that is cyclic for πpAq such that ϕpaq “ xπϕpaqξϕ, ξϕy for every a P A.

Proof. See [9](4.2.1. and theorem 4.3.1.).

Definition 0.1.22. We define the universal representation of a C˚-algebra

A, to be the map π : A Ñ BpHq, where H “
À

ϕPSpAq
Hϕ and πpaq “

pπϕpaqqϕPSpAq.

Theorem 0.1.23 (Gelfand-Naimark). Let A be a C˚-algebra and π : A Ñ

BpHq be its universal representation. Then π is an injective ˚-homomorphism

and therefore A is isometrically ˚-isomorphic to a C˚-subalgebra of BpHq.
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Proof. See [10](theorem 9.18.)

Definition 0.1.24. Let A be a C˚- algebra and ϕ a bounded linear functional

on A. Then we define ϕ˚ : A Ñ C, a ÞÑ ϕpa˚q. The functional ϕ˚ is called

the adjoint of ϕ. If ϕ˚ “ ϕ, we call ϕ selfadjoint. The set of selfadjoint

functionals on A is denoted by A˚
sa.

A simple calculation shows that ϕ˚ is bounded and linear, with }ϕ˚} “ }ϕ}.

Moreover, pϕ˚q˚ “ ϕ for every ϕ P A˚ and pλ ¨ ϕq˚ “ λ ¨ ϕ˚ for every ϕ P A˚

and every λ P C, so the ˚- operation is an involution on A˚.

Proposition 0.1.25 (Jordan decomposition). Let A be a C˚-algebra and

let ϕ P A˚
sa. Then there exist unique positive functionals ϕ`, ϕ´ such that

ϕ “ ϕ` ´ ϕ´ and }ϕ} “ }ϕ`} ` }ϕ´}.

Proof. See [10] (proposition III.2.1.).

Corollary 0.1.26. Let ϕ P A˚. Then, a “ 1
2
pa ` a˚q ´ 1

2i
pia˚ ´ iaq and

a ` a˚, ia˚ ´ ia P A˚
sa and therefore A˚ “ spanA˚

`.

0.2 von Neumann algebras

In this section we provide the basic definitions and results related to von

Neumann algebras, that will be needed for the rest of this thesis.

Definition 0.2.1. Let H be a Hilbert space and BpHq be the bounded opera-

tors on H. We define the weak operator topology (WOT) on BpHq to be the

locally convex topology generated by the seminorms

a ÞÑ |xaξ, ηy|

for a P BpHq and ξ, η P H.

Definition 0.2.2. Let H be a Hilbert space, we define the strong operator

topology (SOT) on BpHq, to be the locally convex topology generated by the

seminorms

a ÞÑ }aξ}

for a P BpHq and ξ P H.
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Definition 0.2.3. Let H be a Hilbert space and let BpHq be the bounded

operators on H. We define the σ-weak or ultraweak topology on BpHq to be

the locally convex topology generated by the family of seminorms

a ÞÑ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“1

xaξj, ηjy

ˇ

ˇ

ˇ

ˇ

ˇ

,

where pξjqj, pηjqj are sequences of vectors in H such that
ř8

j“1 }ξj}
2

ă 8 and
ř8

j“1 }ηj}
2

ă 8.

Definition 0.2.4 (von Neumann algebra). Let H be a Hilbert space and

let A be a unital ˚-subalgebra of BpHq. If A is closed in the weak operator

topology, then A is called a von Neumann algebra.

Remark 0.2.5. Let panqn be a sequence in a von Neumann algebra A such

that panqn converges in the operator norm to some a P BpHq. Then, for any

ξ, η P H, we have |xaξ, ηy´xanξ, ηy| “ |xpa´anqξ, ηy| ď }a ´ an} }ξ} }η} which

converges to 0 and therefore an Ñ a in the weak operator topology. Since A

is WOT-closed, we get that a P A and therefore A is norm-closed. Since A is

a norm-closed ˚-subalgebra of BpHq, we conclude that A is a C˚-subalgebra

of BpHq. So every von Neumann algebra is also a C˚-algebra.

Definition 0.2.6. Let H be a Hilbert space and let A Ă BpHq. We define

the commutant of A to be the set of elements of BpHq that commute with the

elements of A and we denote it by A1. That is,

A1
“ tb P BpHq : ab “ ba @ a P Au.

Proposition 0.2.7. Let A Ă BpHq be closed under taking adjoints. Then

A1 is a ˚-subalgebra of BpHq and it is closed in the weak operator topology.

Moreover, A1 is unital and therefore it is a von Neumann algebra.

Proof. A1 is clearly a subalgebra of BpHq and it contains the identity oper-

ator, so it is unital.

Let x P A1 and a P A. Then, x˚a “ pa˚xq˚ “ pxa˚q˚, since x P A1 and

a˚ P A, so x˚a “ ax˚ and therefore, x˚ P A1, so A1 is a ˚-subalgebra of BpHq.
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To see that A1 is WOT-closed, take a net pxiq in A
1, such that xi converges

to some x P BpHq in the weak operator topology and let a P A. Let ξ, η P H.

Then, xxipaξq, ηy Ñ xxpaξq, ηy, since xi Ñ x in the weak operator topology.

At the same time, xapxiξq, ηy “ xxiξ, a
˚ηy Ñ xxξ, a˚ηy “ xpaxqξ, ηy.

Therefore, ax “ xa and x P A1, so A1 is WOT-closed and therefore it is

a von Neumann algebra.

Theorem 0.2.8 (von Neumann’s double commutant theorem). Let H be a

Hilbert space and let A Ă BpHq be a ˚-subalgebra of BpHq that acts non-

degenerately on H, that is, there is no ξ P H non-zero such that apξq “ 0 for

every a P A. Then A
WOT

“ A2.

Proof. See [9] (theorem 5.2.7.).

Proposition 0.2.9. Let H be a Hilbert space and let C be a convex subset

of BpHq. Then C is WOT-closed if and only if C is SOT-closed.

Proof. See [12] (corollary 2.7.5.)

Corollary 0.2.10. Let A be a ˚-subalgebra of BpHq. Then A is convex and

therefore A
WOT

“ A
SOT

.

Proposition 0.2.11. Let X Ă BpHq be bounded, then the weak and ultra-

weak topologies coincide on X.

Proof. See [12] (proposition 2.7.19.).

Theorem 0.2.12 (Kaplansky’s density theorem). Let H be a Hilbert space

and let A be a ˚-subalgebra of BpHq, with SOT-closure B. Then:

1. Asa is SOT-dense in Bsa.

2. The norm-closed unit ball of A is SOT-dense in the norm-closed unit

ball of B.

Proof. See [7] (theorem 4.3.3.)
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Let A be a ˚-subalgebra of BpHq with SOT closure B. Clearly the closed

unit ball of A is convex and therefore, by 0.2.9, we get that the closure of

the closed ball of A in the weak operator topology is the same as the closure

in the strong operator topology and therefore, the closed unit ball of A is

WOT-dense in the closed unit ball of B. Moreover, since the closed unit ball

of A is bounded, by 0.2.11, we get that the closed unit ball of A is ultraweakly

dense in the closed unit ball of B.

Corollary 0.2.13. Let A be a ˚-subalgebra of BpHq with SOT closure B.

Then the unit ball of A is WOT dense in the closed unit ball of B.

Definition 0.2.14. Let H be a Hilbert space and let M Ă BpHq be a von

Neumann subalgebra of BpHq. Then, we define M˚ to be the subspace of the

dual of M, consisting of the ultraweakly continuous functionals in M. That

is,

M˚ “ tϕ P M˚ : ϕ ultraweakly continuousu.

Proposition 0.2.15. Let M be a von Neumann subalgebra of BpHq. Then,

M˚ is a closed subspace of M˚ and M is isometrically isomorphic to pM˚q˚

via the pairing

xa
ˇ

ˇϕy “ ϕpaq

for a P M and ϕ P M˚.

Proof. See [10] (theorem II.2.6.).

Remark 0.2.16. Notice that with this duality, the w˚-topology on M is

exactly the ultraweak topology.

Proposition 0.2.15 shows that every von Neumann algebra is a dual space.

By a famous theorem of Sakai, von Neumann algebras have unique preduals.

Theorem 0.2.17 (Sakai). Let M be a von Neumann algebra. If E is a

Banach space whose dual is isometrically isomorphic to M, then E is iso-

metrically isomorphic to M˚.

Proof. See [10] (corollary 3.9).
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0.3 The universal enveloping von Neumann

algebra of a C˚-algebra

Every von Neumann algebra is also a C˚- algebra. While the converse is not

true, we do have a natural way to associate to any C˚- algebra A a unique

von Neumann algebra, called the universal enveloping von Neumann algebra

of A. In fact, this von Neumann algebra is isometrically isomorphic to the

double dual of A.

Proposition 0.3.1. Let A be a C˚- algebra, H a Hilbert space and π : A Ñ

BpHq a representation of A. Let M “ pπpAqq2 be the von Neumann algebra

generated by the image of π in BpHq. Then, if i : A Ñ A˚˚ is the natural

embedding of A into A˚˚, there exists a unique π̃ : A˚˚ Ñ M such that

π̃ ˝ i “ π. The map π̃ is onto and it is continuous with respect to the w˚ and

the ultraweak topology on A˚˚ and M respectively.

Proof. First of all, notice that ipAq is w˚- dense in A˚˚. Then, if π̃ is w˚-

continuous, π̃ is determined by its values on the dense ipAq and is therefore

unique. So we only need to check that such a map exists.

Let M˚ denote the predual of M. Since π : A Ñ M, we have π˚ : M˚ Ñ

A˚. Let r “ π˚|M˚
, then its transpose, r˚ is a map from A˚˚ to pM˚q˚ “ M,

so : A˚˚ Ñ M. As we will see, r˚ is exactly the map we are looking for.

Let a P A and ϕ P M˚, then xr˚pipaqq
ˇ

ˇϕy “ xipaq
ˇ

ˇrϕy “ xπ˚ϕ
ˇ

ˇay “ xϕ
ˇ

ˇπpaqy

and so r˚pipaqq “ πpaq for every a P A and r˚ ˝ i “ π. Also, r˚ is a dual

map and therefore it is continuous with respect to the w˚ and the ultraweak

topologies. We only need to show that r˚ is onto.

Assume first that π is isometric. By Goldstine’s theorem, ipBAq is w˚-

dense in BA˚˚ and by the Banach-Alaoglou theorem, BA˚˚ is w˚- com-

pact. Since r˚ is w˚- continuous, r˚pBA˚˚q is ultraweakly compact in M
and r˚pipBAqq “ πpBAq is ultraweakly dense in r˚pBA˚˚q. Now, π is isomet-

ric, so πpBAq “ BM X πpAq, where BM denotes the closed unit ball of M.

The ultraweak topology on M is the w˚- topology induced by M˚, so by the
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Banach-Alaoglou theorem, BM is ultraweakly compact and therefore closed

in M. Moreover, by Kaplansky’s density theorem, πpAqXBM is ultraweakly

dense in BM and so πpBAq
w˚

Ă r˚pBA˚˚q Ă BM, since π is isometric and

therefore r˚ is contractive. But πpBAq
w˚

“ BM, so r˚pB˚˚
A q “ BM and r˚ is

onto.

Now for the general case, let q : A Ñ A{Kerpπq be the quotient map.

Then there exists a unique π̃ : A{Kerpπq Ñ M such that π̃ ˝ q “ π. In

that case, π̃ is isometric, since it is an injective ˚-homomorphism between

C˚-algebras (0.1.8). We only need to show that πpBAq is ultraweakly dense

in BM, then the conclusion follows in exactly the same way as before. By the

isometric case, we know that π̃pBA{Kerpπqq is ultraweakly dense in BM. Let

B˝
A and B˝

A{Kerpπq
denote the open unit balls of A and A{Kerpπq respectively.

We claim that π̃pB˝
A{Kerpπq

q “ πpB˝
Aq.

Clearly, πpB˝
Aq Ă π̃pB˝

A{Kerpπq
q, since }a ` Kerpπq} ď }a} for every a P A.

Let a P A such that a ` Kerpπq P B˝
A{Kerpπq

. Then }a ` Kerpπq} ă 1 and

we can find a sequence pxnqn in Kerpπq such }a ` xn} Ñ }a ` Kerpπq} and

so for large enough n, we have }a ` xn} ă 1 and a ` xn P B˝
A. Moreover,

πpa`xnq “ πpaq “ π̃pa`Kerpπqq for every n, so π̃pa`Kerpπqq P πpB˝
Aq and

therefore π̃pB˝
A{Kerpπq

q “ πpB˝
Aq. π̃ is an isometry, so

π̃pB˝
A{Kerpπq

q “ B˝
M X π̃pA{Kerpπqq “ B˝

M XπpAq and then π̃pBA{Kerpπqq “

BM X πpAq. By the isometric case, π̃pBA{Kerpπqq is ultraweakly dense in

BM and so BM X πpAq is ultraweakly dense in BM and we are done.

Among all representations of A, there is one making the map π̃ of the

previous theorem isometric and since this map is always surjective, A˚˚ is

isometrically isomorphic to the von Neumann algebra generated by the par-

ticular representation of A, through π̃.

Theorem 0.3.2. Let A be a C˚- algebra and π : A Ñ BpHq its universal

representation. Then π̃ : A˚˚ Ñ M “ pπpAqq2 is an isometric isomorphism.

Moreover, the following also hold:

1. π̃ is a homeomorphism with respect to the w˚ and the ultraweak topolo-
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gies on A and M respectively.

2. If f P A˚, there exist ξ, η P H such that fpaq “ xπpaqξ, ηy for every

a P A.

3. If N is a von Neumann algebra and ρ0 : A Ñ N is a ˚´ homo-

morphism, there exists an ultraweakly continuous ˚´ homomorphism

ρ : M Ñ N such that ρ0 “ ρ ˝ π and ρ maps M onto pρ0pAqq2.

M is called the universal enveloping von Neumann algebra of A.

Proof. With the notation of proposition 0.3.1, we have that π̃ “ r˚ and

Kerpr˚q “ pImprqqK, where pImprqqK denotes the orthogonal complement of

Imprq in H. Let f P A˚ be a positive functional of norm 1. Using the

GNS construction [10] (theorem 9.14), we can find a Hilbert space Hf , a

representation πf of A on Hf and ξf P Hf a cyclic vector for A such that

fpaq “ xπf paqξf , ξfy for every a P A. Recall that H “
À

σHσ, where σ runs

over all of the positive functionals on A of norm 1, so we can define ξ P H such

that the f coordinate of ξ is ξf and all others are 0. Then, if we denote the σ

coordinate of ξ by ξσ, we have xπpaqξ, ξy “
ř

σxπσpaqξσ, ξσy “ xπf paqξf , ξfy “

fpaq and so every positive functional of norm 1 is of the form xπp¨qξ, ξy for

some ξ P H and by scaling, the same holds for any positive functional on A.

Since the positive functionals span the whole A˚, by polarization we conclude

that every f P A˚ is of the form xπp¨qξ, ηy for some ξ, η P H, which proves 2.

For convenience, we will denote the functional on M defined by T ÞÑ xTξ, ηy

by ωξ,η. Then, xf
ˇ

ˇay “ xωξ,η

ˇ

ˇπpaqy “ xπ˚ωξ,η

ˇ

ˇay for every f P A˚ and a P A,

so π˚ ptωξ,η : ξ, η P Huq “ A˚ and so π˚pM˚q “ A˚. Moreover, clearly ωξ,η P

M˚, so rpM˚q “ A˚ and r is surjective. Then, Kerpr˚q “ pImprqqK “ t0u

and r˚ is injective. From the proof of the previous proposition, we know

that r˚pB˚˚
A q “ BM. Assume that there exists a a˚˚ P B˚˚

A with }a˚˚} “ 1

such that }r˚pa˚˚q} “ λ ‰ 1. Recall that r˚ is a contraction, so λ ă 1 and

r˚ is injective, so λ cannot be 0. Now, r˚pa˚˚q P BM “ r˚pBA˚˚q, so there

exists x P BA˚˚ such that r˚pxq “
r˚pa˚˚q

λ
and therefore r˚pλ ¨ xq “ r˚pa˚˚q.

Since r˚ is injective, we have λ ¨ x “ a˚˚ and x “ a˚˚

λ
, but a˚˚

λ
R BA˚˚ and
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therefore x R BA˚˚ , which is absurd and thus r˚ is isometric. We showed in

the previous proposition that it is surjective, so r˚ : A˚˚ Ñ M is an isometric

isomorphism.

We have already seen that π̃ is w˚-ultraweakly continuous. Let Ti be a

net in M such that Ti Ñ T ultraweakly for some T P M. Then, there exist

unique fi, f P A˚˚ such that r˚pfiq “ Ti for every i and r˚pfq “ T . Then,

r˚fi Ñ r˚f ultraweakly ðñ xr˚pfiq
ˇ

ˇψy Ñ xr˚pfq
ˇ

ˇψy for every ψ P M˚

ðñ xfi
ˇ

ˇrψy Ñ xf
ˇ

ˇrψy for every ψ P M˚ and as we saw rpM˚q “ A˚ and

therefore, xfi
ˇ

ˇrψy Ñ xf
ˇ

ˇrψy ðñ xfi
ˇ

ˇa˚y Ñ xf
ˇ

ˇa˚y for every a˚ P A˚ which

means exactly that fi
w˚

Ñ f and therefore, π̃ is a homeomorphism with respect

to the w˚ and the ultraweak topology respectively, which proves 1.

For 3, let N be a von Neumann algebra and ρ0 : A Ñ M a ˚´ homo-

morphism. Then, consider ρ̃0 : A˚˚ Ñ pρpAqq2 Ă N the map defined in

proposition 0.3.1 and define ρ : M Ñ N by ρ “ ρ̃0 ˝ pπ̃q´1. Then, ρ ˝ π “ ρ0

and ρ is an ultraweakly continuous ˚´ homomorphism onto pρ0pAqq2.

In fact, the enveloping von Neumann algebra of A is the unique up to

ultraweakly continuous ˚´ isomorphism von Neumann algebra satisfying (3).

To be more specific, we will need a definition.

Definition 0.3.3. Let A be a C˚- algebra and π : A Ñ BpHq a represen-

tation of A on some Hilbert space H. The representation pπ,Hq is called

universal if for any other representation pρ,Kq of A there exists an ultra-

weakly continuous ˚- homomorphism ρ̃ : pπpAqq2 Ñ pρpAqq2 that is onto and

such that ρ̃ ˝ π “ ρ.

By the previous theorem, it is clear that the universal representation of A

is universal in the sense of definition 0.3.3. As the next proposition shows it

is the only universal representation in this sense, thus justifying its name.

Proposition 0.3.4. Let A be a C˚- algebra and pπ,Hq, pρ,Kq be two uni-

versal representations of A. Then there exists an ultraweakly continuous ˚-

isomorphism T : pρpAqq2 Ñ pπpAqq2 such that T ρ̃ “ π̃
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Proof. Since pπ,Hq is universal, there exists a ϕ1 : pπpAqq2 Ñ pρpAqq2 such

that ϕ1 ˝ π “ ρ. In the same way, there is ϕ2 : pρpAqq2 Ñ pπpAqq2 such

that ϕ2 ˝ ρ “ π and so ϕ1 ˝ ϕ2 ˝ ρ “ ρ. Now, ρpAq is ultraweakly dense

in pρpAqq2 and ϕ1 ˝ ϕ2 is ultraweakly continuous, so ϕ1 ˝ ϕ2 “ IdpπpAqq2 . In

exactly the same way, ϕ2 ˝ϕ1 “ IdpρpAqq2 and ϕ1 is an ultraweakly continuous

˚- isomorphism between pπpAqq2 and pρpAqq2 and ϕ1 ˝ π “ ρ.

0.4 Locally compact groups

Definition 0.4.1. (Topological group) Let G be a group endowed with some

topology. We call G a topological group if the multiplication m : G ˆ G Ñ

G, px, yq ÞÑ xy and inversion i : G Ñ G, x ÞÑ x´1 maps are continuous.

Definition 0.4.2. A locally compact group is a topological group G such that

the topology of G is Hausdorff and locally compact.

Proposition 0.4.3. Let G be a locally compact group and x, y P G. Let

CcpGq denote the set of compactly supported continuous functions on G. For

every f P CcpGq we define Lxf : G Ñ C by pLxfqpzq “ fpx´1zq and Ryf :

G Ñ C by pRyfqpzq “ fpzyq for every z P G. Then, Lxf and Ryf lie in

CcpGq and for every f P CcpGq, we have that }Lxf ´ f}
8

Ñ 0 as x tends to

the identity element e and }Ryf ´ f}
8

Ñ 0 as y tends to e.

Proof. See [4](proposition 2.6.)

Proposition 0.4.4. Let K,C be two compact subsets of G. Then, the sets

KC and K´1 are compact.

Proof. Let m : G ˆ G Ñ G be the multiplication map. Then, KC “

mpK ˆ Cq and therefore, KC is compact, since K ˆ C is compact and m is

continuous. In the same way, K´1 “ ipKq and therefore K´1 is a compact

subset of G.

Locally compact groups have the unique property that they can be equipped

with a very special measure, the so called Haar measure. Before introducing

this measure, we will need some additional terminology.
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Definition 0.4.5. Let µ be a Borel measure on a topological group G. Then

µ is called left invariant if µpxEq “ µpEq for every x P G and every Borel

subset E Ă G .

Definition 0.4.6. Let X be a locally compact topological space and let µ be

a positive Borel measure on X. Then, µ is called a Radon measure if the

following hold:

1. µpKq ă 8 for every compact K Ă G.

2. For every open set U Ă G, we have that

µpUq “ suptµpKq : K Ă Ucompactu.

3. For every E Borel subset of G, we have that

µpEq “ inftµpUq : E Ă Uopenu.

Theorem 0.4.7. [Haar measure] Let G be a locally compact group. Then

there exists a non-zero left invariant Radon measure on G. This measure is

unique up to a multiplicative constant and we denote it by λG. If it is clear

that it is a measure on G, we simply denote it by λ.

Proof. See [4](theorem 2.10).

Proposition 0.4.8. Let µ be a non-zero Radon measure on the locally group

G. Then µ is a Haar measure if and only if
ş

pLxfqpyq dµpyq “
ş

fpyq dµpyq

for every f P CcpGq and every x P G.

Proof. See [4](proposition 2.9.)

Proposition 0.4.9. Let G be a locally compact group and let U be a nonempty

open subset of G. Then λpUq ą 0.

Proof. Assume that there is an open U Ă G such that λpUq “ 0. Then, for

every compact subset G that we denote by K, we have that K can covered

by finitely many translates of U and therefore λpKq “ 0 for every compact
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K Ă G. Now, λ is a Radon measure and therefore, λpV q “ suptλpKq : K Ă

U compactu for every V Ă G open. The same holds for V “ G and therefore

λpGq “ 0 and λ “ 0, which is a contradiction.

After choosing a Haar measure λ for G, for every p P r1,8q, we can define

the corresponding Lebesgue space Lppλq and we denote it simply by LppGq.

In the case p “ 8, we will need to define L8pGq in a slightly different

way. Of course, the classical Lebesgue space L8pλq makes sense for the Haar

measure, but since in general the Haar measure is not σ-finite, it is generally

not the case that L8pGq is isometrically isomorphic to the dual of L1pGq. To

fix this, we will define L8pGq as follows.

Definition 0.4.10. Let pX,A, µq be a measure space and let A Ă X. Then,

A is said to be locally in A, if AXB P A for every B P A such that µpBq ă 8.

Definition 0.4.11. Let pX,A, µq be a measure space and let A Ă X be a

locally measurable set. Then A is said to be locally null if µpA X Bq “ 0 for

every B P A.

Definition 0.4.12. Let pX,A, µq be a measure space. A property is said to

hold locally almost everywhere on X, if it holds everywhere, except possibly

on a locally null set.

Definition 0.4.13. Let pX,A, µq be a measure space and let f : X Ñ C.
Then f is said to be locally measurable if f´1pBq is locally measurable for

every B Ă C Borel.

Definition 0.4.14. Let pX,A, µq be a measure space. We define L8pµq to

be the space of locally measurable functions on X, that are bounded except on

a locally null set, equipped with the norm }¨}
8
, defined by

}f}
8

“ inftc ą 0 : |fpxq| ď c locally almost everywhereu.

When X is a locally compact Hausdorff space and µ is a Radon measure

on X, then L8pµq as defined above, is isometrically isomorphic to the dual
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of L1pGq, via the pairing

xϕ
ˇ

ˇfy “

ż

fpxqϕpxq dµpxq

for ϕ P L8pµq and f P L1pµq. For a proof of this result and a discussion about

how to overcome the problems created by the fact that the Haar measure is

generally not σ-finite, see [4] (section 2.3.). Therefore, we define L8pGq to

be L8pλq, where L8pλq is as defined in 0.4.14.

Proposition 0.4.15. Let G be a locally compact compact group and let λ be

a Haar measure on G. Then CcpGq is dense in LppGq for every p P r1,8q.

Proof. See [5] (proposition 7.9.).

Let x P G. For every E Ă G Borel, we define λxpEq :“ λpExq. Then λx

is a left invariant Radon measure on G and by theorem 0.4.7, there exists

a ∆pxq ą 0 such that λx “ ∆pxqλ. It is proved in [4](proposition 2.24)

that the function ∆ : G Ñ Rˆ, is a continuous group homomorphism, where

Rˆ denotes the multiplicative group of positive numbers and that for every

f P CcpGq, we have that

ż

Ryf dλ “ ∆py´1
q

ż

f dλ.

Proposition 0.4.16. Let G be a locally compact group and let p P r1,8q. If

f P LppGq, then the maps G Ñ LppGq, x ÞÑ Lxf and G Ñ LppGq, x ÞÑ

Rxf are continuous.

Proof. See [4] (proposition 2.41.).

Definition 0.4.17. Let X be a locally compact topological space and let µ be

a complex Borel measure on X. Then µ is called a complex Radon measure

if it is the complex linear combination of positive Radon measures on X.

Proposition 0.4.18 (Riesz’s representation theorem). Let X be a locally

compact Hausdorff space and let MpXq be the Banach space of the complex

Radon measures on X, equipped with the norm of total variation. Then
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MpXq is isometrically isomorphic to the dual of C0pXq, where C0pXq denotes

the space of continuous functions on X vanishing at infinity, equipped with

the supremum norm. The duality is given by

xµ
ˇ

ˇfy :“

ż

fpxq dµpxq

for f P C0pGq and µ P MpXq.

Proof. See [5](theorem 7.17)

Let G be a locally compact group and µ, ν P MpGq. We define ϕ : C0pGq Ñ

C by

f ÞÑ

ĳ

fpxyq dµpxqdνpyq.

Then,

|ϕpfq| ď

ĳ

|fpxyq| d|µ|pxqd|ν|pyq ď }f}
8

}µ} }ν} , (*)

so ϕ is well defined, clearly linear and bounded. Thus ϕ P pC0pGqq˚ and by

proposition 0.4.18, there exists a unique measure in MpGq, which we denote

by µ‹ν, such that ϕpfq “
ş

fpxq dpµ‹νqpxq for every f P C0pGq and therefore

ż

fpxq dpµ ‹ νqpxq “

ĳ

fpxyq dµpxqdνpyq

for every f P C0pGq. We call the measure µ ‹ ν the convolution of µ and

ν. Moreover, by (*), we get that }µ ‹ ν} ď }µ} }ν} and therefore, MpGq

equipped with the convolution product is a Banach algebra.

Proposition 0.4.19. Let G be a locally compact group and let µ P MpGq.

Then, for every E Ă G Borel, we define µ˚pEq :“ µpE´1q. Then µ˚ P MpGq

and the map ˚ :MpGq Ñ MpGq, µ ÞÑ µ˚ is an involution on MpGq.

Proof. See [4](2.35.)

When there is no risk of confusion, we write dx instead of dλpxq for the

Haar measure on the locally compact group G.
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Definition 0.4.20 (Measure algebra). Let G be a locally compact group. We

define the measure algebra of the group to be the Banach ˚-algebra MpGq,

where MpGq is equipped with the convolution product and the involution de-

fined in 0.4.19.

Let f P L1pGq. By identifying f with the measure fdλ, where λ is the

Haar measure on G, we can consider L1pGq as a subspace of MpGq. Then

}fdλ} “ }f}1, therefore L1pGq can be isometrically embedded into MpGq.

For f, g P L1pGq, the convolution of the measures fdλ and gdλ is given

by the measure pf ‹ gqdλ, where f ‹ g P L1pGq is defined by pf ‹ gqpxq “
ş

fpyqgpy´1xq dy for x P G. This function is called the convolution of f, g

and it agrees with the usual convolution of functions in L1pRq, for G “ R.
Moreover, pfdλq˚ “ f˚dλ, where f˚ P L1pGq and f˚pxq “ ∆px´1qfpx´1q

for x P G. Therefore, L1pGq, equipped with the convolution, the involution

and the norm it inherits from MpGq is a Banach ˚-algebra. Moreover, for

µ P L1pGq and µ P MpGq, we have that µ ‹ f and f ‹ µ both lie in L1pGq.

We have

pµ ‹ fqpxq “

ż

fpy´1xq dµpyq

and

pf ‹ µqpxq “

ż

fpyq dµpy´1xq.

Therefore, L1pGq is a closed two sided ideal in MpGq. For the details of this

discussion, see [4](section 2.5.).



Unitary representations

of a locally compact group

1.1 Unitary representations

Representation theory of locally compact groups made its first appearance

at the beginning of the the previous century and since then

Definition 1.1.1. Let G be a locally compact group and H be a Hilbert space.

A unitary representation of G on H is a group homomorphism π : G Ñ

UpHq, where UpHq is the set of unitary operators on H, that is continuous

with respect to the strong operator topology on BpHq.

Example 1.1.2. Let H be a Hilbert space and G be a locally compact group.

We define π : G Ñ BpHq by πpxq “ IdH for every x P G, where IdH is the

identity operator on H. Clearly πpxq is a unitary operator for every x P G, so

π is indeed a map from G to UpHq and it is clearly a group homomorphism.

Moreover, π is a constant map, so it is continuous with respect to any topology

on BpHq and in particular, it is continuous with respect to the strong operator

topology and therefore π is a unitary representation of G on H. We call π

the trivial representation of G on H.

There is another representation that we can define on any group and it is

one that is going to play a major role in the rest of this thesis

19
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Example 1.1.3 (Left regular representation). Let G be a locally compact

group. For every x P G, we define a map λpxq : CcpGq Ñ CcpGq as follows:

If f P CcpGq and y P G, we define

pλpxqfqpyq :“ fpx´1yq.

Clearly, λpxqf P CcpGq. Now,

}λpxqf}
2
2 “

ż

|pλpxqfqpyq|
2 dy “

ż

|fpx´1yq|
2 dy “

ż

|fpyq|
2 dy “ }f}

2
2 ,

since the Haar measure is left invariant. Therefore, λpxq is an isometry

on CcpGq with respect to }¨}2 and therefore it has a unique extension to an

isometry from L2pGq to L2pGq, which we denote again by λpxq. Moreover,

if f P CcpGq, then the function g : G Ñ C, y ÞÑ fpxyq lies in CcpGq and

pλpxqgqpyq “ fpyq for every y P G. Therefore, λpxq maps CcpGq onto CcpGq

and λpxq : L2pGq Ñ L2pGq is onto and isometric, so it is unitary.

It is easy to check that λ is indeed a group homomorphism from G to

UpHq and the fact that λ is SOT-continuous follows from [4](proposition

2.41). Therefore λ is a unitary representation of G.

In a similar way, we define the right regular representation of G.

Example 1.1.4. Let G be a locally compact group and x P G. We define

ρpxq P BpL2pGqq by pρpxqfqpyq “ ∆pxq
1
2fpyxq for y P G and f P L2pGq. One

can check that ρ : G Ñ BpL2pGqq is indeed a unitary representation.

Definition 1.1.5. Let G be a locally compact group and pπ1, Hπ1q, pπ2, Hπ2q

two unitary representations of G. We say that the two representations are

unitarily equivalent if there exists a unitary operator T : Hπ1 Ñ Hπ2 such

that Tπ1pxq “ π2pxqT for every x P G.

Definition 1.1.6. Let A be a Banach algebra and H be a Hilbert space. A

representation of A on H is a Banach algebra homomorphism π : A Ñ BpHq,

that is, π is linear, bounded and πpabq “ πpaqπpbq for every a, b P A. If in

addition A is a ˚-algebra and πpa˚q “ pπpaqq˚ for every a P A, π is called
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a ˚-representation. If there is a non-zero ξ P H such that πpaqξ “ 0 for

every a P A, we call π degenerate and if there is no such ξ P H, we call π

non-degenerate.

Let π be a unitary representation of G on the Hilbert space H. Then there

is a natural way to define a representation of L1pGq on H. To see this, let

f P L1pGq and define ψ : H ˆ H Ñ C by

ψ : pξ, ηq ÞÑ

ż

fpxqxπpxqξ, ηy dx.

Then ψ is clearly sesquilinear and if ξ, η P H, we have

|ψpξ, ηq| “

ˇ

ˇ

ˇ

ˇ

ż

fpxqxπpxqξ, ηy dx

ˇ

ˇ

ˇ

ˇ

ď }f}1 ¨ }ξ} ¨ }η} .

So ψ is a bounded sesquilinear form on H with }ψ} ď }f}1 and therefore

there exists a unique π̃pfq P BpHq such that

ψpξ, ηq “ xπ̃pfqξ, ηy

for every ξ, η P H. Moreover, }π̃pfq} “ }ψ} ď }f}1 .

Proposition 1.1.7. Let G be a locally compact group, H a Hilbert space

and π a unitary representation of G on H. Define π̃ : L1pGq Ñ BpHq by

f ÞÑ π̃pfq. Then π̃ is a non-degenerate ˚- representation of L1pGq on H and

}π̃pfq} ď }f}1 for every f P L1pGq.
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Proof. It is clear that π̃ is linear. Now let f, g P L1pGq and ξ, η P H. Then,

xπ̃pf ‹ gqξ, ηy “

ż

pf ‹ gqpxqxπpxqξ, ηy dx
ż ż

fpyqgpy´1xqxπpxqξ, ηy dydx “

ż ż

fpyqgpxqxπpyxqξ, ηy dxdy “

ż ż

fpyqgpxqxπpxqξ, πpy´1ηy dxdy “

ż

fpyqxπ̃pgqξ, πpy´1
qηy dy “

ż

fpyqxπpyqπ̃pgqξ, ηy dy “

xπ̃pfqπ̃pgqξ, ηy

and therefore,

π̃pf ‹ gq “ π̃pfqπ̃pgq.

Let f P L1pGq and ξ, η P H, then,

xξ, pπ̃pfqq
˚ηy “xπ̃pfqξ, ηy “

ż

fpxqxπpxqξ, ηy dx “

ż

∆pxq∆px´1
qfpxqxπpxqξ, ηy dx “

ż

∆px´1
qfpx´1

qxπpx´1
qξ, ηy dx “

ż

f˚pxqxπpxqη, ξy dx “ f˚pxqxπpxqη, ξy dx “

xπ̃pf˚qη, ξy “ xη, π̃pf˚
qξy

and therefore,

π̃pf˚
q “ pπ̃pfqq

˚.

Moreover, }π̃pfq} ď }f}1, so π̃ is bounded and it is a ˚- representation of

L1pGq on H. We still need to show that π̃ is non-degenerate.

To see this, let ξ P H be non-zero. Then, since π : G Ñ BpHq is SOT- con-

tinuous and πpeqξ “ ξ, there exists an open relatively compact neighborhood
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of the identity V such that

}πpxqξ ´ ξ} ă
}ξ}

2

for every x P V.

Let f “ 1
λpV q

1V . Then f is well defined and lies in L1pGq, since V is

open and non empty and so λpV q ą 0 and V is compact and therefore

λpV q ď λpV q ă 8.

Then, notice that

}π̃pfqξ ´ ξ} “ sup t|xπ̃pfqξ ´ ξ, ηy| : η P H, }η} ď 1u

and for every η P H with }η} ď 1 we have,

|xπ̃pfqξ ´ ξ, ηy| “|xπ̃pfqξ, ηy ´ xξ, ηy| “
ˇ

ˇ

ˇ

ˇ

ż

V

1

λpV q
xπpxqξ, ηy dx ´ xξ, ηy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

λpV q

ż

V

pxπpxqξ, ηy ´ xξ, ηyq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

λpV q

ż

V

xπpxqξ ´ ξ, ηy dx

ˇ

ˇ

ˇ

ˇ

ă

1

λpV q

ż

V

}πpxqξ ´ ξ} }η} dx ă

1

λpV q
supt}πpxqξ ´ ξ} : x P V u }η}λpV q ă

}ξ}

2

and therefore, π̃pfqξ cannot be 0. So for each 0 ‰ ξ P H we have found a

function f P L1pGq such that π̃pfqξ ‰ 0 and so π̃ is non-degenerate.

In fact, all the non-degenerate ˚- representations of L1pGq arise in this way.

To see this, let π : L1pGq Ñ BpHq be a non-degenerate ˚- representation of

L1pGq on H. We want to define an operator πpxq for every x P G.

Let pψV qV PV be an approximate unit for L1pGq such that }ψV }1 “ 1 for

every V P V and x P G. Such an approximate unit exists ([4] 2.42.). A
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simple calculation shows that pLxψV q ‹ f “ LxpψV ‹ fq for every f P L1pGq

and so, for f P L1pGq, we have

pLxψV q ‹ f “ LxpψV ‹ fq Ñ Lxf

and therefore,

πpLxψV qπpfq “ πppLxψV q ‹ fq Ñ πpLxfq.

Let D “ spantπpfqξ : f P L1pGq, ξ P Hu “ tπpfqξ : f P L1pGq, ξ P Hu

and let η P DK. Then,

xπpfqξ, ηy “ 0

for every f P L1pGq and every ξ P H and so,

xξ, πpf˚
qηy “ 0

for every ξ P H and every f P L1pGq and so,

πpf˚
qη “ 0

for every f P L1pGq. Now, pπpL1pGqqq˚ “ L1pGq and therefore,

πpfqη “ 0

for every f P L1pGq, but π is non-degenerate, so η “ 0 and therefore,

DK
“ t0u

so D is dense in H.

Let u P D, then u “
řn

j“1 πpfjqξj for some fj P L1pGq and ξj P H. Then,

for every V P V , we have

πpLxψV qu “

n
ÿ

j“1

πpLxψV qπpfjqξj Ñ

n
ÿ

j“1

πpLxfjqξj.

And we define

Tx : D Ñ H,
n
ÿ

j“1

πpfjqξj ÞÑ

n
ÿ

j“1

πpLxfjqξj
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To see that Tx is well defined, we need to check that if
řn

j“1 πpfjqξj “ 0,

then
řn

j“1 πpLxfjqξj “ 0.

Indeed,
řn

j“1 πpLxfjqξj “ limπpLxψV qp
řn

j“1 πpfjqξjq “ 0 and T is well

defined and clearly it is linear. Moreover, for every V P V , we have

}πpLxqψV } ď }LxψV }1 “ }ψV }1 “ 1

so for every u P D, we have

}πpLxψV qpuq} ď }u}

for every V P V and so

}Txu} ď }u} .

Therefore, Tx is bounded and since D is dense in H, we can extend Tx to H

and we denote the extension again by Tx.

We define π̃ : G Ñ BpHq, by π̃pxq “ Tx. We will show that π̃ is a unitary

representation of G.

At first, notice that for every f P L1pGq, ξ P H and x P G, we have

π̃pxqπpfqξ “ πpLxfqξ

and therefore, for every x, y P G, we have

π̃pxyqpπpfqξq “ πpLxyfqξ “ πpLxpLyfqqξ “ π̃pxqπ̃pyqpfqξ

so π̃pxyqu “ π̃pxqπ̃pyqu for every u P D and since D is dense in H, we

conclude that π̃pxyq “ π̃pxqπ̃pyq and π̃ is a group homomorphism.

Let f P L1pGq and ξ P H, then π̃peqpπpfqξq “ πpLefqξ “ πpfqξ and

therefore π̃peqpuq “ u for every u P D and since D is dense in H, we conclude

that π̃peq “ IdH . Now, for every x P G, we have

IdH “ π̃pxx´1
q “ π̃pxqπ̃px´1

q

and therefore π̃pxq is invertible for every x P G and in particular it maps H

onto H.
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Let x P G, f P L1pGq and ξ P H, then

}π̃pxqpπpfqξq} ď }πpfqξ} “
›

›π̃px´1
qπ̃pxqπpfqξ

›

› ď }π̃pxqπpfqξ}

and so,

}π̃pxqu} “ }u}

for every u P D and thus πpxq is an isometry onto, that is, π̃pxq is a unitary.

To see that π̃ is strongly continuous, let pxiqiPI be a net in G, converging

to some x P G and let f P L1pGq and ξ P H. Then, for every i P I, we have

π̃pxiqpπpfqξq “ πpLxi
fqξ Ñ πpLxfqξ “ π̃pxqpπpfqξq

and therefore,

π̃pxiqu Ñ π̃pxqu

for every u P D. Now, let ξ P H and ϵ ą 0. Since D is dense in H, there is

some u P D such that }ξ ´ u} ă ϵ
3
.

Since u P D, we have that π̃pxiqu Ñ π̃pxqu and therefore there is some

i0 P I such that }π̃pxiqu ´ π̃pxqu} ă ϵ
3
for every i ě i0.

Then, for i ě i0 we have,

}π̃pxiqξ ´ π̃pxqξ} ď }π̃pxiqξ ´ π̃pxiqu} ` }π̃pxiqu ´ π̃pxqξ} ď

}π̃pxiq} }ξ ´ u} ` }π̃pxiqu ´ π̃pxqu} ` }π̃pxqu ´ π̃pxqξ} ď

ϵ

3
`
ϵ

3
` }π̃pxq} }u ´ ξ} ď ϵ

and therefore,

π̃pxiqξ Ñ π̃pxqξ

and π̃ is strongly continuous, so it is a unitary representation of G.

Now, it is proved in [4](theorem 3.11) that the representation of L1pGq

associated to π̃ as in proposition 1.1.7 is exactly π.

We have proven the following:

Proposition 1.1.8. Let G be a locally compact group, then there is a one

to one and onto correspondence between unitary representations of G and
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non-degenerate ˚- representations of L1pGq. For pπ,Hπq a unitary represen-

tation of G, for any f P L1pGq we define π̃pfq P BpHq by xπpfqξ, ηy “
ş

fpxqxπpxqξ, ηy dx for every ξ, η P Hπ and for pπ,Hπq a non-degenerate

˚- representation of L1pGq on Hπ and x P G, we define π̃pxq P BpHq by

π̃pxq “ limV πpLxψV q with respect to the strong operator topology, where

pψV qV PV is an approximate unit for L1pGq.

Remark 1.1.9. While π̃pL1pGqq and πpGq can be quite different in general,

they generate the same von Neumann algebra in BpHq, that is

pπpGqq
2

“ pπ̃pL1
pGqqq

2.

For a proof, see [4] (theorem 3.12.).

Remark 1.1.10. We will need to know explicitly the representations of

L1pGq corresponding to the left and the right regular representation of G.

It is proved in [4](example 3.8) that in the case of the left regular represen-

tation λ, for f P L1pGq and g P L2pGq, we get pλ̃pfqqpgq “ f ‹ g. For the

right regular representation we get that pρ̃pfqqpgq “ g ‹ f , for f P L1pGq and

g P CcpGq.

We are going to extend the previous proposition to include representations

of the measure algebra MpGq.

Let pπ,Hπq be a unitary representation of G and µ P MpGq. We are going

to define an operator π̃pµq P BpHq in exactly the same way as we previously

did for f P L1pGq. More specifically, we define

ψ : Hπ ˆ Hπ Ñ C, pξ, ηq ÞÑ

ż

xπpxqξ, ηy dµpxq.

Then, ψ is clearly sesquilinear and for every ξ, η P Hπ, we have

|ψpξ, ηq| “

ˇ

ˇ

ˇ

ˇ

ż

xπpxqξ, ηy dµpxq

ˇ

ˇ

ˇ

ˇ

ď }ξ} }η} }µ}

and therefore ψ is bounded with }ψ} ď }µ}. Therefore, there exists a unique

operator π̃pµq P BpHq such that xπ̃pµqξ, ηy “ ψpξ, ηq for every ξ, η P Hπ.
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Similar calculations to the case of L1pGq show that

π̃ : MpGq Ñ BpHπq, µ ÞÑ π̃pµq is a ˚- representation of MpGq and the

restriction of π̃ on L1pGq is the representation of L1pGq associated to π as in

proposition 1.1.8 and so, by the same proposition, we get that the restriction

of π̃ on L1pGq is non-degenerate.

In the opposite direction, let π : MpGq Ñ BpHq be a ˚- representation

of MpGq on a Hilbert space H, such that the restriction of π on L1pGq

is non-degenerate. Then consider π̃ : G Ñ BpHq as in proposition 1.1.8.

Since π̃ restricted to L1pGq is non-degenerate, proposition 1.1.8 implies that

π̃ is a unitary representation of G. Now, notice that π̃ is determined by

the restriction of π̃ on L1pGq and therefore, two representations of MpGq

that are non-degenerate when restricted on L1pGq and that agree on L1pGq,

induce the same representation of G. We have therefore proven the following

proposition:

Proposition 1.1.11. There is a one to one and onto correspondence be-

tween unitary representations of G and ˚-representations of MpGq, whose

restriction on L1pGq is non-degenerate.

Remark 1.1.12. It is important to note that if pH, πq is a unitary represen-

tation of G, then for every x P G, we have

π̃pδxq “ πpxq

where π̃ is the corresponding representation of MpGq on H.

To see this, let V be a neighborhood basis of the identity, consisting of

relatively compact open sets. Then, it is proved in [4](proposition 2.42) that

there exists an approximate identity of pgV qV PV for L1pGq such that supp gV Ă

V , gV ě 0 and
ş

gV pxq dx “ 1 for every V P V . Now, let µ P MpGq and define

fV “ µ ‹ gV for every V P V.

In light of propositions 1.1.8 and 1.1.11, we will use the same symbol for the

corresponding representations of G, of L1pGq andMpGq, without necessarily

mentioning this every time.
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1.2 Functions of positive type

Definition 1.2.1. Let u P L8pGq. We call u a function of positive type if it

defines a positive functional on L1pGq, that is
ż

pf˚
‹ fqpxqupxq dx ě 0 (*)

for every f P L1pGq. We denote the set of functions of positive type by P pGq.

It is clear from the definition that P pGq is closed under addition and

multiplication with positive scalars and it is therefore a cone in L8pGq.

Remark 1.2.2. Expanding the integral in (*) we get that a function ϕ P

L8pGq is in P pGq if and only if
ĳ

fpxqfpyqupy´1xq dxdy ě 0

for every f P L1pGq. Clearly, if this holds for ϕ, it also holds for ϕ and

therefore ϕ P P pGq for every ϕ P P pGq.

Example 1.2.3. Let π be a unitary representation and ξ P Hπ. We define

u : G Ñ C, by upxq :“ xπpxqξ, ξy. Then, for every f P L1pGq, we have
ż

pf ‹ f˚
qpxqvpxq dx “

ż

pf ‹ f˚
qpxqxπpxqξ, ξy dx “

xπpf ‹ f˚
qξ, ξy “ xπpf˚

qξ, πpf˚
qξy “ }πpf˚

q}
2

ě 0

and therefore, v is of positive type.

In fact, as the next proposition shows, every function of positive type

occurs in this way.

Proposition 1.2.4. Let u : G Ñ C be a function of positive type. Then

there exists a triple pπu, Hu, ξuq where πu is a unitary representation of G on

the Hilbert space Hu and ξu is a cyclic vector for πupL1pGqq in Hu, such that

upxq “ xπupxqξu, ξuy for locally almost every x P G, where by the abuse of

notation we have previously mentioned, we denote by πu the corresponding

unitary representation of L1pGq on Hu.



30

Proof. See [4] (theorem 3.20.). We define x¨, ¨yu on L1pGq by

xf, gyu “

ż

pg˚
‹ fqpxqupxq dx (*)

for every f, g P L1pGq. Then x¨, ¨yu is clearly linear in the first variable and

antilinear in the second one and

xf, fyu “

ż

pf˚
‹ fqpxqupxq dx ě 0

for every f P L1pGq, since u P P pGq.

Notice that

|xf, gyu| ď }g˚
‹ f}1 }u}

8
ď }g}1 }f}1 }u}

8
. (**)

We define ω : L1pGq Ñ C, f ÞÑ
ş

fpxqupxq dx. Then ω is clearly bounded

and linear and ωpg˚ ‹fq “ xf, gyu for every f, g P L1pGq. Moreover, for every

f P L1pGq, we have ωpf˚ ‹ fq “ xf, fyu ě 0 and therefore ω is positive,

therefore by [10](chapter 1 lemma 9.11), we see that ωppg˚ ‹fq˚q “ ωpf˚ ‹ gq

for every f, g P L1pGq and therefore, xg, fyu “ xf, gyu for every f, g P L1pGq

and therefore, x¨, ¨yu is a semi-inner product on L1pGq.

We define

Nu “ tf P L1
pGq : xf, fyu “ 0u.

Let f P Nu and g P L1pGq, then, since x¨, ¨yu is a semi-inner product, the

Cauchy-Schwarz inequality holds [1](1.4) and therefore,

|xf, gyu|
2

ď xf, fyuxg, gyu “ 0,

so,

Nu “ tf P L1
pGq : xf, gyu “ 0 @ g P L1

pGqu

which is clearly a linear subspace of L1pGq. Now, notice that if f1, f2 and

g1, g2 are in L1pGq such that f1´f2, g1´g2 P Nu, then we have that xf1, g1yu “

xf2, g2yu and therefore, x¨, ¨yu defines an inner product on L1pGq{Nu. We then

define Hu :“ L1pGq{Nu

x¨,¨yu
. Now, Hu is clearly a Hilbert space and we are

going to define a unitary representation of G on Hu.



31

Expanding the integral in (*), we get that

xf, gyu “

ż

pg˚
‹ fqpxqupxq dx “

ż ż

∆py´1
qgpy´1qfpy´1xqupxq dydx “

ż ż

gpyqfpyxqupxq dydx “

ż ż

gpyqfpxqupy´1xq dydx.

Now, let z P G and let f, g P L1pGq. Then,

xLzf, Lzgyu “

ż ż

pLzgqpyqpLzfqpxqupy´1xq dydx “

ż ż

gpz´1yqfpz´1xqupy´1xq dydx
s“z´1y

““

ż ż

gpsqfpz´1xqups´1z´1xq dsdx
t“z´1x

““

ż ż

gpsqfptqups´1tq dsdt “

xf, gyu.

In particular, this shows that LzpNuq Ă Nu for every z P G and therefore,

we can define a map L̃z : L
1pGq{Nu Ñ L1pGq{Nu, by L̃zpf`Nuq “ Lzf`Nu

for every f ` Nu P L1pGq{Nu. Then clearly L̃z is linear.

Moreover, if f ` Nu P L1pGq{Nu, then we have that
›

›

›
pL̃zqpf ` Nuq

›

›

›

2

u
“

xLzf, Lzfyu “ xf, fyu “ }f ` Nu}
2
u and therefore L̃z is an isometry and

L1pGq{Nu is dense in Hu, so L̃z extends to an isometry from Hu to Hu,

which we denote again by L̃z. The map L̃z maps L1pGq{Nu onto itself and

therefore L̃z : Hu Ñ Hu is an isometry onto. That is, L̃z is a unitary.

We now define πu : G Ñ UpHq by πupxq “ L̃x for every x P G. We will

show that πu is a unitary representation of G on Hu.

We will first show that πu is a group homomorphism. To see this, notice

that L̃e|L1pGq{Nu
“ Id|L1pGq{Nu

and since L1pGq{Nu is dense in Hu, we get

that L̃e “ Id. Likewise, for every x, y P G, it is clear that L̃xL̃y “ rLxy

in L1pGq{Nu and therefore L̃xL̃y “ rLxy and πu : G Ñ UpHuq is a group

homomorphism.

We still need to show that πu is SOT-continuous.

Let pxiqiPI be a net in G, converging to some x P G and let ξ P Hu. We

need to show that πupxiqξ Ñ πupxqξ.
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Let us first assume that ξ “ f ` Nu P L1pGq{Nu. Then, we have that

}πupxiqξ ´ πupxqξ}
2
u “ }πupxiqpf ` Nuq ´ πupxqpf ` Nuq}

2
u

and by (**) we have that

}πupxiqξ ´ πupxqξ}
2
u ď }Lxi

f ´ Lxf}
2
1 }u}

8

which tends to zero by 0.4.16.

Now for the general case, let ξ P Hu and ϵ ą 0. Then, there is some

f ` Nu P L1pGq{Nu such that }ξ ´ pf ` Nuq}u ă ϵ
3
.

Now, as we just showed, πupxiqf Ñ πupxqf and therefore, there is some

i0 P I such that }πupxiqf ´ πupxqf}u ă ϵ
3
for any i ě i0.

Then, for i ě i0, we have that

}πupxiqξ ´ πupxqξ}u ď }πupxiqξ ´ πupxiqpf ` Nuq}u

` }πupxqpf ` Nuq ´ πupxiqξ}u `

}πupxiqpf ` Nuq ´ πupxiqξ}u ă ϵ.

Therefore, πu is SOT-continuous and therefore it is a unitary representation

of G on Hu.

We still need to find a cyclic vector for πupL1pGqq.

Let pψV qV PV be an approximate unit for L1pGq such that }ψV }1 “ 1 for

every V P V . Then pψ˚
V qV PV is also an approximate unit for L1pGq and so, if

f ` Nu P L1pGq{Nu, we then have that

xf, ψV yu “

ż

pψ˚
V ‹ fqpxqupxq dx Ñ

ż

fpxqupxq dx.

Define ϕ : L1pGq{Nu Ñ C by f ` Nu ÞÑ
ş

fpxqupxq dx “ limV xf, ψV yu.

Then ϕ is well defined and it is clearly linear. Moreover, for every V P V ,
we have that

|xf, ψV y| ď }f ` Nu} }ψV ` Nu}u ď

}f ` Nu} }u}
1
2
8

}ψV }1 “

}f ` Nu}u }u}
1
2
8
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and therefore,

|ϕpf ` Nuq| ď }f ` Nu} }u}
1
2
8

and so ϕ is bounded. Now, ϕ can be uniquely extended to a bounded func-

tional on Hu, which we denote again by ϕ. Then, by Riesz’s representation

theorem, there is a unique vector ξu P Hu such that ϕpξq “ xξ, ξuy for every

ξ P Hu.

First, notice that for f ` Nu P L1pGq{Nu, we have that xf ` Nu, ξuyu “

ϕpf ` Nuq “
ş

fpxqupxq dx.

Now, let f ` Nu, g ` Nu P L1pGq{Nu. Then,

xf ` Nu, g ` Nuy “

ĳ

fpxqgpyqupy´1xq dydx “

ĳ

fpyxqgpyqupxq dxdy “

ĳ

pLy´1fqpxqgpyqupxq dxdxy “

ż

xLy´1f ` Nu, ξuygpyq dy “

ż

gpyqxf ` Nu, πupyqξuy dy “

xπupgqξu, f ` Nuy “

xf ` Nu, πupgqξuy

and therefore,

πupgqξu “ g ` Nu (***)

for every g ` Nu P L1pGq{Nu. Notice that this means that L1pGq{Nu Ă

πupL1pGqqξu and L1pGq{Nu is dense in Hu, so πupL1pGqqξu is dense in Hu

and therefore ξu is cyclic for πupL1pGqq.

Now, if f P L1pGq, we have that,

xπupfqξu, ξuyu “

ż

fpxqxπupxqξu, ξuy dx

and by (***), we get that

xf ` Nu, ξuyu “

ż

fpxqxπupxqξu, ξuy dx
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and therefore,
ż

fpxqupxq dx “

ż

fpxqxπupxqξu, ξuyu dx.

Since this holds for every f P L1pGq, we conclude that upxq “ xπupxqξu, ξuy

for locally almost every x P G and we are done.

Corollary 1.2.5. Let u P P pGq. Then u is locally almost everywhere equal

to a continuous function.

Proof. By 1.2.4, there is a pπ,Hπq, unitary representation of G and ξu P Hπ

such that upxq “ xπpxqξu, ξuy locally almost everywhere inG and the function

xπp¨qξu.ξuy is continuous.

In light of 1.2.5, we will consider u to be continuous for every u P P pGq.

Lemma 1.2.6. Let f P L2pGq, then f ‹ f̃ P P pGq.

Proof. Let x P G, then,

f ‹ f̃pxq “

ż

fpyqf̃py´1xq dy “

ż

fpyqfpx´1yq dy “ xf, λpxqfy

and so f ‹ f̃ is of positive type.

Lemma 1.2.7. Let u, v P P pGq, then uv P P pGq.

Proof. By proposition 1.2.4, there exist unitary representations pHu, πuq,

pHv, πvq and vectors ξu P Hu and ξv P Hv such that xπupxqξu, ξuy “ upxq

and xπvpxqξv, ξvy “ vpxq for every x P G. Then,

uvpxq “ xπupxqξu, ξuyxπvpxqξv, ξvy “ xpπu b πvqpxqpξu b ξvq, ξu b ξvy

which is a function of positive type by remark 1.2.3.



The Fourier-Stieltjes algebra BpGq

It is about time that we introduced the main topics of this thesis, the Fourier

and the Fourier-Stieltjes algebras of a locally compact group. We will first

examine the Fourier-Stieltjes algebra of the group and then define the Fourier

algebra as a particular subspace of the former.

Let ΣpGq denote the family of equivalence classes of unitary representa-

tions of G up to unitary equivalence and let S be a subfamily of ΣpGq. We

will define a Fourier-Stieltjes algebra associated to each such family and de-

note it by BSpGq. In the case S “ ΣpGq, we simply write BpGq and call it

the Fourier-Stieltjes algebra of the group.

Let G be a locally compact group and let S be a subset of ΣpGq. Let µ

be in MpGq and define

}µ}S “ supt}πpµq} : π P Su.

This is well defined, since π is contractive for every unitary representation

of G and so }µ}S ď }µ}. Moreover, it is obvious that }¨}S is a seminorm on

MpGq and by restricting }¨}S to L1pGq we get a seminorm on L1pGq. When

S “ ΣpGq, we write }¨}
˚
instead of }¨}ΣpGq

.

We will first note some properties of these seminorms.

Proposition 2.0.1. Let S be a subset of ΣpGq, µ, ν P MpGq, f P L1pGq and

x, y P G. Then:

1. }µ}S ď }µ} and }µ ‹ ν}S ď }µ}S ¨ }ν}S

35
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2. }µ˚}S “ }µ}S and }µ˚ ‹ µ}S “ }µ}
2
S

3. }Lxf}S “ }f}S and }Ryf}S “ ∆py´1q }f}S

Proof. We noted above that }µ}S ď }µ} .

We have

}µ ‹ ν}S “ supt}πpµ ‹ νq} : π P Su “ supt}πpµq ¨ πpνq} : π P Su.

Now, for every π, since }πpµq ¨ πpνq} ď }πpµq} ¨ }πpνq} ď }µ} ¨ }ν} we obtain

}µ ‹ ν}S “ supt}πpµq ¨ πpνq} : π P Su ď }µ} ¨ }ν} .

For every π P ΣpGq, we have πpµ˚q “ pπpµqq˚ and so,

}µ˚
}S “ supt}πpµ˚

q} : π P Su “ supt}pπpµqq
˚
} : π P Su “ }µ}S ,

since }πpµq˚} “ }πpµq} for every π and µ.Also, }πpµ˚ ‹ µq} “ }pπpµqq˚πpµq} “

“ }πpµq}
2 and so }µ˚ ‹ µ}S “ }µ}

2
S .

Now for the last statement, let π P S and ξ, η P Hπ. Then,

xπpLxfqξ, ηy “

ż

pLxfqpyqxπpyqξ, ηy dy “

ż

fpx´1yqxπpyqξ, ηy dy

“

ż

fpyqxπpxyqξ, ηy dy “

ż

fpyqxπpyqξ, πpx´1
qηy dy

“ xπpfqξ, πpx´1
qηy “ xπpxqπpfqξ, ηy

and this holds for every ξ, η P Hπ, hence πpLxfq “ πpxqπpfq. Since πpxq is a

unitary for every x P G, we have }πpLxfq} “ }πpfq} and so }Lxf}S “ }f}S .

In the same way,

xπpRyfqξ, ηy “

ż

pRyfqpxqxπpxqξ, ηy dx “

ż

∆py´1
qfpyqxπpxy´1

qξ, ηy dx

“ x∆py´1
qπpfqπpy´1

qξ, ηy

and since this holds for every ξ, η P Hπ, we have πpRyfq “ ∆py´1qπpfqπpy´1q

and since πpy´1q is a unitary, }Ryf}S “ ∆py´1q }f}S .
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Let S Ă ΣpGq. We define NS :“ tf P L1pGq : }f}S “ 0u. Clearly NS is

a closed ˚- ideal in L1pGq and so L1pGq{NS is a ˚- algebra and the quotient

norm on L1pGq{NS is a C˚- norm, so the completion of L1pGq{NS is a C˚-

algebra denoted by C˚
SpGq. If S “ ΣpGq, we denote C˚

ΣpGq
pGq “ C˚pGq and

call it the full group C˚- algebra. If S “ tλu, where λ is the left regular

representation, C˚
λpGq is called the reduced group C˚- algebra and is usually

denoted by C˚
r pGq. When S “ ΣpGq we write }f}

˚
instead of }f}ΣpGq

. As

we will see, for every S Ă ΣpGq, the space BSpGq can be naturally identified

with the dual space of C˚
SpGq. Note also that for f P L1pGq, we have that

}f ` NS} “ inft}f ` g}S : g P NSu and for g P NS and π P S, we see that

πpf ` gq “ πpfq and so }f ` g}S “ }f}S for every g P NS and therefore

}f ` NS} “ }f}S for every f P L1pGq.

Before defining BpGq, we need to note an important property of C˚pGq :

Proposition 2.0.2. Let f P L1pGq such that }f}
˚

“ 0. Then f “ 0. There-

fore }¨}
˚
is a norm on L1pGq and NΣpGq “ t0u.

Proof. To see this, consider f P L1pGq with }f}
˚

“ 0. Then πpfq “ 0 for

every unitary representation π of G. In particular, λpfq “ 0 for the left

regular representation of G. Now, there is an approximate unit of L1pGq,

pgiqiPI , consisting of functions in CcpGq and then, gi P L2pGq for every i. By

1.1.10, we know that λpfqgi “ f ‹ gi and therefore f ‹ gi “ 0 for every i and

f ‹ gi Ñ f in L1pGq, so f “ 0 and since }¨}
˚
is already a seminorm, it is a

norm on L1pGq.

Remark 2.0.3. The previous proposition shows that C˚pGq “ L1pGq
}¨}˚ and

therefore L1pGq is a subset of C˚pGq. Now, by proposition 2.0.1, we know

that }f}
˚

ď }f}1 for every f P L1pGq and if i : L1pGq Ñ C˚pGq is the

inclusion of L1pGq in C˚pGq, then i is continuous and it is a continuous

embedding of L1pGq in C˚pGq.

Proposition 2.0.4. Let π be a unitary representation of G and let H be

the corresponding Hilbert space. Then π can be uniquely extended to a non-

degenerate ˚- representation of C˚pGq on H. Moreover, every non-degenerate
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˚- representation of C˚pGq determines a unique non-degenerate ˚- represen-

tation of L1pGq and therefore a unique unitary representation of G, so there

is a bijection between the unitary representations of G and the non-degenerate

˚- representations of C˚pGq.

Proof. Let π be a unitary representation of G on H. We denote again by π

the corresponding representation of L1pGq.

Let a P C˚pGq. We want to define an operator πpaq P BpHq.

Let ξ, η P H. Since a lies inC˚pGq, there exists a sequence pfnqnPN in L1pGq

such that fn Ñ a in }¨}
˚
. We now consider the sequence pxπpfnqξ, ηyqn in C.

Form,n P N, |xπpfmqξ, ηy ´ xπpfnqξ, ηy| “ |xπpfm´fnqξ, ηy| ď }πpfm ´ fnq}¨

}ξ} ¨ }η} ď }fm ´ fn}
˚

¨ }ξ} ¨ }η} and pfnqn is Cauchy with respect to }¨}
˚
and

so pxπpfnqξ, ηyqn is a Cauchy sequence in C and therefore converges in C.
We now define ψa : H ˆ H Ñ C, pξ, ηq ÞÑ limxπpfnqξ, ηy. Then, ψa is

clearly sesquilinear and |ψapξ, ηq| ď M ¨ }ξ} ¨ }η}, where M “ maxt}πpfnq} :

n P Nu, which is finite since pfnqn converges with respect to }¨}
˚
and so ψa is

a bounded sesquilinear form on H. Therefore, there exists a unique operator

on H, that we denote by πpaq, such that ψapξ, ηq “ xπpaqξ, ηy, for every

ξ, η P H and so xπpaqξ, ηy “ limxπpfnqξ, ηy for every ξ, η P H. Clearly, if

there exists a representation of C˚pGq extending the representation of L1pGq

on H it should be the one defined above, so we need to check that it is indeed

a non-degenerate ˚- representation of C˚pGq.

Let a P C˚pGq and consider pfnqn in L1pGq such that fn Ñ a. Since C˚pGq

is a C˚- algebra, f˚
n Ñ a˚ and so for ξ, η P H, xπpa˚qξ, ηy “ limxπpf˚

n qξ, ηy “

lim xπpfnqη, ξy “ xπpaqη, ξy “ xpπpaqq˚ξ, ηy and this holds for every ξ, η P H,

so πpa˚q “ pπpaqq˚.

Now, let a, b P C˚pGq and pfnq, pgnq be sequences in L1pGq such that

fn Ñ a and gn Ñ b. We will first show that fn ‹ gn Ñ ab. To see this, notice

that

}ab ´ fn ‹ gn}
˚

ď }ab ´ agn}
˚

` }agn ´ fn ‹ gn}
˚

ď }a}
˚

}b ´ gn}
˚

` }gn}
˚

}a ´ fn}
˚
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and since p}gn}
˚
qn is bounded, this tends to 0 and fn ‹ gn Ñ ωu.

Now, for ξ, η P H,

|xpπpωqπpuqqξ ´ πpfnqπpgnqξ, ηy| ď

}ξ} }η} p}πpωq} }πpu ´ gnq} ` }πpgnq} }πpω ´ fnq}q

which tends to 0 and therefore, πpfnqπpgnq Ñ πpaqπpbq. Now, πpfnqπpgnq “

πpfn ‹ gnq which tends to πpabq and thus πpabq “ πpaqπpbq for every a, b P

C˚pGq. We have thus shown that π is a ˚- representation of C˚pGq that

extends the representation of L1pGq on H and moreover, the extension to

L1pGq of this representation is non-degenerate and so the representation of

C˚pGq is non-degenerate.

For the converse, every non-degenerate ˚- representation ofC˚pGq defines a

unique ˚- representation of L1pGq by restriction and notice that since L1pGq

is dense in C˚pGq if there were some ξ P H, such that πpL1pGqqξ “ 0,

then πpaqξ “ 0 for every a P C˚pGq and since π is non-degenerate, we

conclude that ξ “ 0 and therefore π restricted to L1pGq is a non-degenerate

˚- representation of L1pGq.

Definition 2.0.5. Let S Ă ΣpGq, we define kpSq as

kpSq “ tω P C˚
pGq : πpωq “ 0 @π P Su

The next lemma will show that every C˚
SpGq as defined is in fact a quotient

of C˚pGq.

Lemma 2.0.6. Let S Ă ΣpGq. We define ϕ : L1pGq Ñ L1pGq{NS , f ÞÑ

f ` NS . Then ϕ extends to a surjective ˚- homomorphism from C˚pGq to

C˚
SpGq, with kernel kpSq.

Proof. Let f P L1pGq, then }f ` NS} “ }f}S ď }f}
˚
and therefore it extends

to a continuous map from C˚pGq to C˚
SpGq, which we denote again by ϕ

and ϕ is a ˚- homomorphism, since its restriction to L1pGq is a ˚- homomor-

phism and L1pGq is a dense *-subalgebra of C˚pGq. Moreover, we have that
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ϕpL1pGqq “ L1pGq{NS which is dense in C˚pGq and therefore, by 0.1.10, we

get that ϕpC˚pGqq “ C˚
SpGq.

Now, let a P C˚pGq, then a P Kerpϕq if and only if ϕpfnq Ñ 0 for every

sequence pfnqn of elements of L1pGq converging to a; thus a P Kerpϕq if and

only if }fn}S Ñ 0 for any such pfnqn which happens if and only if πpaq “ 0

for every π P S, that is, if and only if a P kpSq. Thus Kerpϕq “ kpSq and so

C˚
S and C˚pGq{kpSq are isomorphic as C˚- algebras. From now on, we will

use these two interchangeably without further mention.

We need to define a very important relation between classes of represen-

tations of G, that of weak containment.

Definition 2.0.7. Let S, T Ă ΣpGq. We say that S is weakly contained in

T if and only if kpT q Ă kpSq and we denote it by S ă T .

As the next proposition shows, the notion of weak containment is exactly

what we need to describe the dual of C˚
SpGq.

Denote by PSpGq the set of u P P pGq such that πu ă S, where πu is the

representation associated to u that we defined in proposition 1.2.4.

Proposition 2.0.8. Let S Ă ΣpGq, then pC˚
SpGqq˚ can be identified with

spanpPSpGqq, via the pairing xf
ˇ

ˇuy “
ş

fpxqupxq dx for f P L1pGq.

To prove this proposition, we will need a couple of lemmas.

Lemma 2.0.9. Let S Ă ΣpGq and u P P pGq.Then the following are equiva-

lent:

1. πu ă S

2. There exists a positive functional ϕ on C˚
SpGq such that

ϕpf ` kpSqq “

ż

fpxqupxq dx

for f P L1pGq, where we identify C˚
SpGq with C˚pGq{kpSq.
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Proof. Let’s assume that u P P pGq and πu ă S. There is ξ P Hu such that

upxq “ xπupxqξ, ξy for every x P G.

We define ϕ : L1pGq Ñ C, f ÞÑ
ş

fpxqupxq dx. Then ϕ is well defined

since u is bounded and

ˇ

ˇ

ˇ

ˇ

ż

fpxqupxq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

fpxqxπupxqξ, ξy dx

ˇ

ˇ

ˇ

ˇ

“ |xπupfqξ, ξy| ď }ξ}
2

¨ }f}
˚

and so ϕ extends to a bounded functional on C˚pGq, which we denote again

by ϕ.

Let a P kpSq, recall that πu ă S, so kpSq Ă Kerpπuq. Now, a P kpSq, so

πupaq “ 0 and ϕpaq “ xπupaqξ, ξy, so ϕpaq “ 0. Since ϕ vanishes on kpSq, it

defines a bounded functional on C˚pGq{kpSq, which we denote by ϕ̃, so that

ϕ̃pf ` kpSqq “

ż

fpxqupxq dx

for f P L1pGq. We now need to check that ϕ̃ is positive.

At first, consider a P C˚pGq and let pfnqn be a sequence in L1pGq such

that }fn ´ a}
˚

Ñ 0. Then fn ` kpSq Ñ a ` kpSq in C˚
SpGq and thus,

ϕ̃pfn ` kpSqq Ñ ϕ̃pa ` kpSqq

Then, by definition of ϕ̃, this means that
ş

fnpxqupxq dx Ñ ϕ̃pa ` kpSqq.

Now, upxq “ xπupxqξ, ξy for every x P G and so

ż

fnpxqupxq dx “

ż

fnpxqxπupxqξ, ξy dx “ xπupfnqξ, ξy

Now, fn
}¨}˚
Ñ a, so xπupfnqξ, ξy Ñ xπupaqξ, ξy and therefore

ϕ̃pa ` kpSqq “ xπupaqξ, ξy.

Now, let b P C˚
SpGq be positive, then there exists some a P C˚pGq such that

b “ a˚a and then

ϕ̃pbq “ xπupbqξ, ξy “ xπupa˚aqξ, ξy “ xπupaqξ, πupaqξy “ }πupaqξ}
2

ě 0.
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Which proves that ϕ̃ is indeed positive.

For the converse, assume that ϕpf ` kpSqq “
ş

fpxqupxq dx determines a

well defined bounded positive functional onC˚
SpGq and define ϕ̃ : C˚pGq Ñ C

by ϕ̃paq “ ϕpa ` kpSqq. Then, just as before, ϕ̃paq “ xπupaqξ, ξy for every

a P C˚pGq

Now, let a P kpSq. Since kpSq is a two sided closed ˚- ideal in C˚pGq, for

every f P L1pGq, f˚a P kpSq and so,

0 “ ϕ̃pf˚aq “ xπupf˚aqξ, ξy “ xπupaqξ, πupfqξy

and this holds for every f P L1pGq.

Recall that ξ is cyclic for πu, so πupaqξ “ 0 for every a P kpSq. Moreover,

for every f P L1pGq, we also have that af P kpSq for every a P kpSq and so

πupafqξ “ 0 and so πupaqπpfqξ “ 0 for every f P L1pGq and πupaq “ 0 since

ξ is cyclic.

We have thus shown that πupaq “ 0 for every a P kpSq and therefore

πu ă S, which is exactly what we wanted.

The previous lemma gives a description of a particular class of positive

functionals of C˚
SpGq. As we will see, this class turns out to be the whole

positive cone of pC˚
SpGqq˚.

Lemma 2.0.10. Let S Ă ΣpGq and ϕ P pC˚
SpGqq˚ be positive. Then there

exists u P PSpGq such that ϕpf ` kpSqq “
ş

fpxqupxq dx for every f P L1pGq.

Proof. Let ϕ be a positive functional on C˚
SpGq and define ϕ̃ : L1pGq Ñ C

by ϕ̃pfq “ ϕpf ` kpSqq. Then ϕ̃ is linear and

|ϕ̃pfq| “ |ϕpf ` kpSqq| ď }ϕ} ¨ }f}S ď }ϕ} ¨ }f}
˚

so ϕ̃ P pL1pGqq˚ and therefore there exists u P L8pGq such that ϕ̃pfq “
ş

fpxq ¨ upxq dx for every f P L1pGq.

Let f P L1pGq, then f˚‹f`kpSq is a positive element of C˚
SpGq. Moreover,

f˚ ‹ f lies in L1pGq and ϕ̃pf˚ ‹ fq “ ϕpf˚ ‹ f ` kpSqq ě 0 and therefore
ż

pf˚
‹ fqpxq ¨ upxq dx ě 0
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for every f P L1pGq, so u P P pGq. Now it is clear that u defines a positive

functional on C˚
SpGq and so, by lemma 2.0.9, u must lie in PSpGq and we are

done.

Now, proposition 2.0.8 follows easily from the previous lemmas: Indeed,

it is well known that the dual of a C˚-algebra is spanned by its positive

elements and in the case of C˚
SpGq, we just showed that those are exactly the

elements of PSpGq, so pC˚
SpGqq˚ “ spanPSpGq

We will give another description of the dual of C˚
SpGq.

Proposition 2.0.11. Let S Ă ΣpGq. Then a function u : G Ñ C belongs to

spanPSpGq if and only if there exists a representation π ă S and ξ, η P Hπ

such that upxq “ xπpxqξ, ηy for every x P G.

Proof. Let u P spanPSpGq, then upxq “
n
ř

i“1

λixπipxqξi, ξiy for every x P G,

where λi P C, πi ă S and ξ P Hπi
for every i.

Let π “
Àn

i“1 πi, η “ pλ1 ¨ ξ1, . . . , λn ¨ ξnq and ξ “ pξ1, . . . , ξnq. Then π ă S
and upxq “ xπpxqη, ξy for every x P G.

For the converse, let upxq “ xπpxqξ, ηy for every x P G, where π ă S and

ξ, η P Hπ. Then, by polarization, upxq “ 1
4

3
ř

k“0

ikxπpxqpξ ` ik ¨ ηq, ξ ` ik ¨ ηy

and so u P spanPSpGq.

The last proposition shows that the dual of C˚
SpGq can be identified with

txπp¨qξ, ηy : π ă S, η, ξ P Hπu

the set of coefficient functions of G whose associated representation is weakly

contained in S. This is exactly how we are going to define BSpGq.

Definition 2.0.12. Let S Ă ΣpGq, we define

BSpGq :“ txπp¨qξ, ηy : π ă S, η, ξ P Hπu

and endow it with the norm of the dual of C˚
SpGq. In the case S “ ΣpGq

we simply write BpGq and call it the Fourier-Stieltjes algebra of G. We then
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have

BpGq “ spantxπp¨qξ, ηy : π P ΣpGq, ξ, η P Hπu

Remark 2.0.13. Let u P BpGq. Then u P spanP pGq and by remark 1.2.2,

we see that u P spanP pGq and therefore u P BpGq.

Remark 2.0.14. By the above definition it is clear that BSpGq is a subspace

of BpGq for any S Ă ΣpGq. As we will soon see, it is actually a closed

subspace and the norm we defined on BSpGq agrees with the one it inherits

as a subspace of BpGq.

We will need another lemma.

Lemma 2.0.15. Let X be a Banach space and Y a closed subspace of X.

Then pX{Y q˚ is isometrically isomorphic to the subspace of X˚ consisting of

the functionals of X vanishing on Y .

Proof. Let ϕ P pX{Y q˚. We define ϕ̃ : X Ñ C, ϕpx ` Y q. Then ϕ̃ is linear

and |ϕ̃pxq| “ |ϕpx ` Y q| ď }ϕ} ¨ }x ` Y } ď }ϕ} ¨ }x}. So ϕ̃ is bounded with
›

›

›
ϕ̃
›

›

›
ď }ϕ} and so we can define T : pX{Y q˚ Ñ X˚, ϕ ÞÑ ϕ̃. Then T is

clearly linear with }T } ď 1 and ϕ̃ vanishes on Y.

Now consider ψ P X˚ vanishing on Y and define ϕ : X{Y Ñ C by ϕpx `

Y q “ ψpxq. Then ϕ is well defined since ψ vanishes on Y and it is clearly

linear. Let x ` Y P X{Y , then |ϕpx ` Y q| “ |ψpxq| ď }ψ} ¨ }x}. Let z P X

be such that z ` Y “ x ` Y and therefore z ´ x P Y , then ϕpx ` Y q “

ψpzq “ ψpx ´ px ´ zqq and so |ϕpx ` Y q| ď }ψ} ¨ }x ´ y} for every y P Y ,

so |ϕpx ` Y q| ď }ψ} ¨ }x ` Y } and ϕ P pX{Y q˚ with }ϕ} ď }ψ}. Clearly

ϕ̃ “ ψ and so for every ϕ P pX{Y q˚ we have
›

›

›
ϕ̃
›

›

›
ď }ϕ} ď

›

›

›
ϕ̃
›

›

›
and so T is an

isometry.

We are going to use this lemma to make the following remark, that we

outlined earlier:

Remark 2.0.16. Let S Ă ΣpGq, then the norm we previously defined on

BSpGq is the same as the one BSpGq inherits as a subspace of BpGq.
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Proof. Let u P BSpGq, then u defines a functional on C˚
SpGq that we also

denote by u and }u} is by definition the norm of the functional as an element

of pC˚
SpGqq˚ “ pC˚pGq{kpSqq˚, so by the previous lemma, u defines a unique

functional on C˚pGq, call it ũ, of the same norm as u and vanishing on kpSq.

By identifying u with ũ, we can regard BSpGq as a closed subspace of BpGq

and then, for u P BSpGq,

}u}BpGq
“ supt|xa ` kpSq

ˇ

ˇuy| : }a ` kpSq} ď 1u “

supt|xu
ˇ

ˇf ` kpSqy| : }f ` kpSq} ď 1, f P L1
pGq “

supt

ˇ

ˇ

ˇ

ˇ

ż

fpxq ¨ upxq dx

ˇ

ˇ

ˇ

ˇ

: f P L1
pGq, }f}S ď 1u.

In particular, if S “ tλu and u P BλpGq, then

}u} “ supt

ˇ

ˇ

ˇ

ˇ

ż

fpxq ¨ upxq dx

ˇ

ˇ

ˇ

ˇ

: f P L1
pGq, }λpfq} ď 1u.

Lemma 2.0.17. Let S, T Ă ΣpGq. Then the following are equivalent:

1. S ă T

2. For every f P L1pGq, }f}S ď }f}T

3. For every µ P MpGq, }µ}S ď }µ}T

Proof. We first assume that S ă T . This means that kpT q Ă kpSq. Now

notice that }f}S “ inft}f ` a}
˚
: a P kpSqu ď inft}f ` a}

˚
: a P kpT qu “

}f}T and therefore 1 implies 2.

For the opposite direction, assume that }f}S ď }f}T for every f P L1pGq

and let a P kpT q. We need to show that a P kpSq. Let pfnqn be a sequence

in L1pGq converging to a with respect to }¨}
˚
. Then,

fn ` kpT q Ñ a ` kpT q “ 0 ` kpT q

and so

}fn ` kpT q} “ }fn}T Ñ 0
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At the same time, fn ` kpSq Ñ a` kpSq and }fn ` kpSq} “ }fn}S ď }fn}T

which converges to 0, so fn ` kpT q Ñ 0 and so a P kpT q and 1 implies 2.

L1pGq is a subspace of MpGq and so clearly 3 implies 2.

Now suppose that 2 holds and let u P MpGq. We need to show that

}µ}S ď }µ}T

Let V be a neighborhood basis of the identity and for each V P V let gV

be a non-negative continuous function on G that is supported on V and such

that }gV }1 “ 1. Let fV “ µ ‹ gV . Then fV lies in L1pGq and we will show

that for every bounded and continuous function h, we have

ż

fV pxqhpxq dx Ñ

ż

hpxq dµpxq.

To see this, let h be a continuous bounded function on G. Then,

ˇ

ˇ

ˇ

ˇ

ż

gV pxqhpxq dx ´

ż

hpxq dµpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ĳ

hpxqfV py´1xq dxdµpyq ´

ĳ

gV pxqhpyq dxdµpyq

ˇ

ˇ

ˇ

ˇ

since
ş

gV pxq dx “ 1 and then

ˇ

ˇ

ˇ

ˇ

ż

gV pxqhpxq dx ´

ż

hpxq dµpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ĳ

phpyxqgV pxq ´ gV pxqhpyqq dxdµpyq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ĳ

gV pxqphpyxq ´ hpyqq dxdµpyq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

V

gV pxqphpyxq ´ hpyqq dxdµpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

sup
xPV

t|hpyxq ´ hpyq|u d|µ|pyq .

Now, let

ϕV : G Ñ C, y ÞÑ sup
xPV

t|hpyxq ´ hpyq|u.

Then, for every y P G, we have that ϕV pyq Ñ 0, as V tends to t0u, since

h is continuous at 0 and |ϕV pyq| ď 2 }h}
8

and the constant function 2 }h}
8

is integrable with respect to |µ|, since µ P MpGq and therefore, from the
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dominated convergence theorem, we get

ż

ϕV pyq d|µ|pyq Ñ 0

and therefore,
ż

fV pxqhpxq dx Ñ

ż

hpxq dµpxq

as V tends to teu.

Now, let π P ΣpGq and ξ, η P Hπ. Then,

xπpfV qξ, ηy “

ż

fV pxqxπpxqξ, ηy dx

and xπp¨qξ, ηy is bounded and continuous, so

xπpfV qξ, ηy Ñ

ż

xπpxqξ, ηy dµpxq “ xπpµqξ, ηy

and therefore πpfV q Ñ πpµq in the weak operator topology.

Moreover, for every π P ΣpGq, we have

}πpµq} “ supt|xπpµqξ, ηy| : }ξ} , }η} ď 1u

and so }πpµq} “ lim }πpfV q} and }µ}S “ supπPS lim }πpfV q}.

Moreover,

}πpfV q} “ }πpµ ‹ gV q} ď }πpµq} ¨ }πpgV q} ď }πpµq} ¨ }gV }1 “ }πpµq}

and therefore, }πpµq} “ supV PV }πpfV q}.

Now, for every π P S,

}πpµq} “ sup
V PV

}πpfV q} ď sup
V PV

}fV }S ď

sup
V PV

}fV }T “ sup
V PV

sup
πPT

}πpfV q} “ }µ}S

and since this holds for every π P S, we conclude that }µ}S ď }µ}T for

every µ P MpGq and we are done.
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Remark 2.0.18. Let u P BSpGq, then u defines a bounded linear functional

on C˚
SpGq and therefore, we can consider the functional u˚ P pC˚

SpGqq˚,

defined in 0.1.24, so u˚ P BSpGq. For every f P L1pGq, we have
ż

fpxq ¨ u˚
pxq dx “

ż

f˚pxq ¨ upxq dx “

ż

∆px´1q ¨ fpx´1q ¨ upxq dx “

ż

fpxq ¨ upx´1q dx.

This holds for every f P L1pGq and clearly if we define ũpxq “ upx´1q, x P G,

then ũ P L8pGq and so u˚ “ ũ almost everywhere. They are both continuous,

so u˚ “ ũ everywhere on G and so ũ P BSpGq.

Now, let u P BSpGq such that u “ u˚ “ ũ, then, using the Jordan de-

composition of a functional on a C˚-algebra (proposition 0.1.25), there exist

unique u1, u2 P pC˚
SpGqq˚

` such that u “ u1 ´ u2 and }u} “ }u1} ` }u2} and

so u1, u2 P BSpGq. In the same way, we can find u1
1, u

1
2 P BpGq positive,

such that u “ u1
1 ` u1

2 and }u} “ }u1
1} ` }u1

2}. But u1, u2 P BpGq and the

Jordan decomposition is unique, so u1 “ u1
1 and u2 “ u1

2 and therefore, the

components of the Jordan decomposition of u P BSpGq, when considered in

BpGq, belong again to BSpGq. Moreover, if u “ u˚ P BS and u “ u` ´ u´,

where u`, u´ P PSpGq such that }u} “ }u`} ` }u´}, then |u| “ u` ` u´ lies

inBSpGq.

Having defined the universal enveloping von Neumann algebra of a C˚-

algebra in 0.3.2, we give an analogous definition for locally compact groups.

Definition 2.0.19. Let G be a locally compact group. We define the univer-

sal enveloping von Neumann algebra of G to be the universal enveloping von

Neumann algebra of the full group C˚-algebra C˚pGq.

We have already seen that BpGq can be naturally identified with pC˚pGqq˚

and the universal enveloping von Neumann algebra of G can be identified

with pC˚pGqq˚˚, so there is a natural identification between pBpGqq˚ and the

universal enveloping von Neumann algebra of the group.
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We will let Mpωq be the universal enveloping von Neumann algebra of G

and denote the corresponding representation by ω : C˚pGq Ñ Mpωq. Using

this representation of C˚pGq we will obtain a very useful insight on the norm

of BpGq.

Before that, let us make this identification a little more specific.

Remark 2.0.20. By theorem 0.3.2, the map π̃ : pC˚pGqq˚ Ñ Mω is an

isometric isomorphism, where ω : C˚pGq Ñ BpHωq denotes the universal

representation of C˚pGq and Mω “ pωpC˚pGqqq2. Moreover, if i : C˚pGq Ñ

pC˚pGqq˚˚ is the natural inclusion map, we know that π̃ ˝ i “ ω(0.3.1). Now,

let a P C˚pGq and u P BpGq “ pC˚pGqq˚. Then,

xωpaq
ˇ

ˇuy “ xu
ˇ

ˇay

and in particular, for f P L1pGq Ă C˚pGq, this means that

xωpfq
ˇ

ˇuy “

ż

fpxqupxq dx

since this is how we have defined the duality between C˚pGq and BpGq (2.0.8).

Remark 2.0.21. Let x P G and consider δx, the Dirac measure at x. Let

pgV qV PV be an approximate identity of L1pGq as the one in the proof of lemma

2.0.17 and let u P BpGq. Then, since u is continuous and bounded, we have

proved in the course of the proof of lemma 2.0.17, that
ż

pµ ‹ gV qpyqupyq dy Ñ

ż

upyq dµpyq

with respect to V . Now, for µ “ δx, if we set fV “ δx ‹ gV for every V P V,
we get

ż

fV pyqupyq dy Ñ

ż

upyqdδxpyq “ upxq.

Now, in remark 2.0.20, we saw that for every f P L1pGq and u P BpGq, we

have

xωpfq
ˇ

ˇuy “

ż

fpyqupyq dy

and therefore, for every V P V, we have

xωpfV q
ˇ

ˇuy “

ż

fV pyqupyq dy Ñ

ż

upyq dδxpyq “ upxq. (*)



50

Now, if ξ, η P Hω, then the function xωp¨qξ, ηy is continuous and bounded

and therefore,
ż

fV pyqxωpyqξ, ηy dy “ xωpfV qξ, ηy Ñ

ż

xωpyqξ, ηy dδxpyq “ xωpxqξ, ηy

with respect to V . This means that ωpfV q Ñ ωpxq in the weak operator opera-

tor topology. Moreover, for every V P V, we have that }ωpfV q} ď }fV }1 “ 1,

by 1.1.7 and since the weak operator topology and ultraweak topology co-

incide on bounded subsets of BpHq ([12] proposition 2.7.19.), we get that

ωpfV q Ñ ωpxq ultraweakly and hence,

xωpfV q
ˇ

ˇuy Ñ xωpxq
ˇ

ˇuy

for every u P BpGq. Now, as we saw, xωpfV q
ˇ

ˇuy “
ş

fV pyqupyq dy Ñ upxq

and therefore, we get that

xωpxq
ˇ

ˇuy “ upxq.

For what follows, we will need a few definitions.

Definition 2.0.22. Let A be a C˚- algebra, f P A˚ and x P A. Then we

define x ¨ f P A˚ by px ¨ fqpaq :“ fpx ¨ aq for every a P A.

Clearly x ¨ f is linear and if a P A, |px ¨ fqpaq| “ |fpx ¨ aq| ď }f} ¨ }x ¨ a} ď

}f} ¨ }x} ¨ }a} and so x ¨ f is bounded with }x ¨ f} ď }f} ¨ }x}, so the above

definition makes sense.

Definition 2.0.23. Let A be C˚- algebra and a P A. Then a is called a

partial isometry if a˚a and aa˚ are both projections. The projection a˚a is

called the source projection and aa˚ is called the range projection.

In general, C˚- algebras do not need to contain non-trivial projections

(projections different than the 0 and the identity) and so they need not con-

tain non trivial isometries. The situation is rather different for von Neumann

algebras. Von Neumann algebras are in fact equal to the norm closure of the
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span of their projections ([12] proposition 2.8.12.), so they contain many

projections and many partial isometries. We will need the following lemma,

related to partial isometries in a von Neumann algebra, whose proof we omit

and can be found in [2] (Theorem 12.2.4).

Lemma 2.0.24. Let M be a von Neumann algebra and ϕ P M˚ an element

of its predual. Then there exists a unique positive functional |ϕ| P M˚ and

v P M partial isometry, such that ϕ “ v ¨ |ϕ|.

Proposition 2.0.25. Let u P BpGq and suppose that upxq “ xπpxqξ, ηy, x P

G for some π P ΣpGq and ξ, η P Hπ. Then }u} ď }ξ} ¨ }η}. Moreover, if

u P BSpGq for some S Ă ΣpGq, then there exist π ă S and ξ, η P Hπ such

that upxq “ xπpxqξ, ηy for every x P G and }u} “ }ξ} ¨ }η}.

Proof. Let u P BpGq and suppose that upxq “ xπpxqξ, ηy for every x P G.

Then, since BpGq is identified with pC˚pGqq˚ and L1pGq is dense in C˚pGq,

}u} “ supt|xu
ˇ

ˇfy| : f P L1pGq, }f}
˚

ď 1u “

supt|xπpfqξ, ηy| : f P L1pGq, }f}
˚

ď 1u.

Now, |xπpfqξ, ηy| ď }πpfq} ¨ }ξ} ¨ }η} ď }f}
˚

¨ }ξ} ¨ }η} ď }ξ} ¨ }η} and this

holds for every f P L1pGq with }f}
˚

ď 1 and therefore we conclude that

}u} ď }ξ} ¨ }η}.

Now, let ω : C˚pGq Ñ Mω be the representation of C˚pGq on its universal

enveloping von Neumann algebra and by our usual abuse of notation, we

denote by ω the corresponding representation of G as well.

Since u P BpGq, we have that u P pC˚pGqq˚ . Then, as we saw in theorem

0.3.2, there exist x, y P Hω such that u “ ωx,y and in particular, u P M˚.

Now, by lemma 2.0.24, there are |u| P pM˚q` and V P Mω partial isometry,

such that u “ V ¨ |u| and }u} “ }|u|}. Then, |u| P pM˚q`, so |u| P BpGq “

pC˚q˚ and by theorem 0.3.2 there exists η P Hω such that |u|paq “ xωpaqη, ηy

for every a P C˚pGq.

Now, |u| is in BpGq and it is a positive functional, so |u| P P pGq and so

there exist π P ΣpGq and η P Hπ cyclic for π such that |u|pxq “ xπpxqη, ηy for

every x P G. Let x P G, then upxq “ xu
ˇ

ˇωpxqy “ xV ¨|u|
ˇ

ˇωpxqy “ x|u|
ˇ

ˇV ¨ωpxqy.
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Now, for every a P C˚pGq, x|u|
ˇ

ˇay “ xπpaqη, ηy “ xπ̃ ˝ ωpaqη, ηy and since

πpC˚pGq is ultraweakly dense in Mω by Kaplansky’s density theorem, we

conclude that x|u|
ˇ

ˇT y “ xπ̃pT qη, ηy for every T P Mω.Therefore, x|u|
ˇ

ˇV ¨

ωpxqy “ xπ̃pV ¨ ωpxqqη, ηy “ xπpxq ¨ π̃pV qη, ηy. Set ξ “ π̃pV qη, then upxq “

xπpxqξ, ηy for every x P G.

Then, we already showed that }u} ď }ξ}¨}η}. Moreover, }u} “ }|u|} “ }η}
2

and ξ “ V η and V is a partial isometry, so V is contractive and }ξ} ď }η}

and so }u} ď }ξ} ¨ }η} ď }η}
2

“ }u} and so }u} “ }ξ} ¨ }η}.

We just need to check that π ă S. Let a P kpSq, we need to show that

πpaq “ 0. |u| P BSpGq, so x|u|
ˇ

ˇay “ 0 and so xπpaqη, ηy “ 0 for every

a P kpSq. Let b P C˚pGq, then b˚ ¨ a P kpSq and xπpaqη, πpbqηy “ 0 for every

b P C˚pGq and η is cyclic, so πpaqη “ 0 for every a P kpSq. Now, for every

b P C˚pGq, a ¨ b P kpSq and πpa ¨ bqη “ 0 and so πpaq ¨ πpbqη “ 0 for every

b P C˚pGq and η cyclic, so πpaq “ 0 for every a P kpSq and we are done.

This property will prove to be very useful for the remainder of this thesis.

For the time being, we give two immediate corollaries.

Corollary 2.0.26. For a function u P BpGq, proposition 2.0.25 shows that

}u} “ mint}ξ} }η} : up¨q “ xπp¨qξ, ηy, pπ,Hπq P ΣpGqand ξ, η P Hπu.

Corollary 2.0.27. Let u P BpGq, then }u}
8

ď }u}BpGq

Proof. At first, notice that since u P BpGq there exists π P ΣpGq and ξ, η P

Hπ such that upxq “ xπpxqξ, ηy for every x P G and |upxq| ď }πpxq} ¨ }ξ} ¨

}η}=}ξ} ¨ }η} since πpxq is a unitary and so u P L8pGq. Now, L8pGq can be

identified with the dual of L1pGq with the pairing xϕ
ˇ

ˇfy “
ş

fpxq ¨ϕpxq dx for

ϕ P L8pGq and f P L1pGq and so }u}
8

“ supt
ˇ

ˇ

ş

fpxq ¨ upxq dx
ˇ

ˇ : }f}1 ď 1u.

On the other hand, }u}BpGq
“ supt

ˇ

ˇ

ş

fpxq ¨ upxq dx
ˇ

ˇ : f P L1pGq, }f}
˚

ď 1u

and }f}
˚

ď }f}1, so for any f P L1pGq with }f}1 ď 1, we have that }f}
˚

ď 1

and therefore }u}
8

ď }u}BpGq
.
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Remark 2.0.28. Let u P BpGq. By remark 2.0.13, we know that u P BpGq.

By proposition 2.0.25, there is pπ,Hq unitary representation of G and ξ, η P

H such that upxq “ xπpxqξ, ηy for every x P G and }u} “ }ξ} }η}. Then,

upxq “ xη, πpxqξy for every x P G and again by proposition 2.0.25, we have

}u} ď }ξ} }η} “ }u}. Since u “ u, we conclude that }u} “ }u} for every

u P BpGq.

So far we have been calling BpGq the Fourier-Stieltjes algebra of G, but

we have not yet justified the term “algebra”. As we will soon see, BpGq is in

fact a Banach algebra and contains BλpGq as a closed ideal.

To prove this, we will need a result of independent interest, known as Fell’s

absorption principle.

Theorem 2.0.29. (Fell’s absorption principle) Let G be a locally compact

group, λ its left regular representation and pπ,Hq a unitary representation of

G. Then π b λ is unitarily equivalent to
À

iPI λi, where I is an index set for

a basis of H and λi “ λ for every i. In particular, π b λ ă λ.

Proof. Let peiqiPI be an orthonormal basis of H, we claim that there exists

a unitary W : L2pGq b H Ñ
À

iPI Hi, where Hi “ H for every i, such that

W pπbλqpxq “ p‘iPIλqpxqW for every x P G. To see this, consider the space

of strongly measurable functions f : G Ñ H, such that
ş

}fpxq}
2 dx ă 8,

equipped with the norm }¨}, where }f} “
ş

}fpxq}
2 dx, which we denote by

L2pG,Hq1. We will first show that L2pGq b H is isometrically isomorphic

with L2pG,Hq. Let f P L2pGq and ξ P H and define T pf b ξq P L2pG,Hq by

T pf b ξqpxq “ fpxqξ for every x P G. Then

}T pf b ξq}
2

“

ż

}fpxqξ}
2 dx “

ż

|fpxq|
2

¨ }ξ}
2 dx “

}ξ}
2

ż

|fpxq|
2 dx “ }ξ}

2
¨ }f}

2
“ }f b ξ}

2

and extend T linearly to the span of simple tensors. Recall that peiqiPI is

an orthonormal basis for H and consider i, j P I and f, g P L2pGq, then

1For a definition of strong measurability and an exposition of Bochner integral, we refer

to [8](chapter III)
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xf b ei, g b ejy “ xf, gy ¨ xei, ejy “ xf, gy ¨ δij and so, if i ‰ j,

}f b ei ` g b ej}
2

“ }f b ei}
2

` }g b e2}
2 .

Set u “ f b e1 ` g b e2, then

}Tu}
2

“

ż

}fpxqei ` gpxqej}
2 dx “

ż

`

|fpxq|
2

}ei}
2

` |gpxq|
2

}ej}
2
˘

dx

“ }f b e1}
2

` }g b e2}
2

“ }u}
2

In the same way, we can see that T is isometric on A “ spantf b ei : i P Iu

and A is dense on L2pGq b H, so we can extend T to an isometric linear

map from L2pGq bH to L2pG,Hq, which we denote again by T . Now notice

that simple integrable functions lie in the image of T and those are dense in

L2pG,Hq, so T is onto and therefore it is an isometric isomorphism.

We now define U : L2pG,Hq Ñ L2pG,Hq by pUfqpxq “ πpxqfpxq. Then,

}pUfqpxq}
2

“
ş

}πpxqfpxq}
2 dx “

ş

}fpxq}
2 dx “ }f}

2, since πpxq is a unitary

for every x P G and so U is an isometry. Moreover, if f P L2pGq, consider

g : G Ñ H with gpxq “ πpx´1qfpxq. Clearly g P L2pG,Hq and Ug “ f , so U

is onto and therefore it is an isometric isomorphism.

Now, let x P G and consider TλpxqT´1 : L2pG,Hq Ñ L2pG,Hq. First,

notice that since CcpGq is dense in L2pGq and so, if

B “ spantf b ξ : f P CcpGq, ξ P Hu

then B is dense in L2pGq bH and since T is an isomorphism, T pBq is dense

in L2pG,Hq.

Let f P T pBq. Notice that f is continuous with compact support. For

x P G, consider T pλpxq b IdHqT´1 : L2pG,Hq Ñ L2pG,Hq and let y P G.

Now, f P T pAq and so there exist f1, . . . , fn P CcpGq and ξ1, . . . , ξn P H such
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that f “ T p
řn

i“1 fi b ξq Then,

pT pλpxq b IdHqT´1fqpyq “ pT pλpxq b IdHqp

n
ÿ

i“1

fi b ξiqqpyq

“ pT p

n
ÿ

i“1

pLxfiq b ξiqqpyq

“

n
ÿ

i“1

pLxfiqpyqξi “

n
ÿ

i“1

fipx
´1yqξi

“ fpx´1yq

By a slight abuse of notation, we identify L2pG,Hq with L2pGqbH. Then,

if we consider U acting on L2pGq b H this time, we get that

Upλ b 1Hqpxq “ pλ b πqpxqU

where 1H stands for the trivial representation of G on H and U is an isometry

onto and thus a unitary, so λ b π is unitarily equivalent to λ b 1H and this

is unitarily equivalent to ‘iPIλ, which is exactly what we wanted.

Now, notice that

‘iPIλ ă λ.

Indeed, for a P C˚pGq, it is evident that a P kpλq if and only if a P k p‘iPIλq

and therefore,

λ b π ă ‘iPIλ ă λ.

Proposition 2.0.30. Let G be a locally compact group. Then BpGq equipped

with pointwise multiplication and the norm we defined earlier is a commuta-

tive unital Banach algebra, containing BλpGq as a closed ideal.

Proof. Let u, v P BpGq, then, by proposition 2.0.25, we can find π1, π2 P ΣpGq

and ξi, ηi P Hπi
for i “ 1, 2 such that upxq “ xπ1pxqξ1, η1y and vpxq “

xπ2pxqξ2, η2y for every x P G and }u} “ }ξ1} ¨ }η1}, }v} “ }ξ2} ¨ }η2}. Then,

pu ` vqpxq “ xπ1pxqξ1, η1y ` xπ2pxq, η2y “ xpπ1 ‘ π2qpxqpξ1, η1q, pξ2, η2qy
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and therefore u ` v P BpGq. For the product, we have that

pu ¨ vqpxq “ xπ1pxqξ1, η1y ¨ xπ2pxqξ2, η2y “ xpπ1 b π2qpxqpξ1 b ξ2q, η1 b η2y

and so u ¨ v P BpGq and BpGq is indeed an algebra. Now, by 2.0.25, we have

}u ¨ v} ď }ξ1 b ξ2} ¨ }η1 b η2} “ }ξ1} ¨ }ξ2} ¨ }η1} ¨ }η2} “ }u} ¨ }v}

and so the norm on BpGq is submultiplicative. Moreover, BpGq is isometri-

cally isomorphic to the dual of C˚pGq and therefore it is complete, so BpGq

is a Banach algebra.

Also, notice that if H is a Hilbert space, ξ P H a unit vector and 1G the

trivial representation of G on H, then x1Gpxqξ, ξy “ 1 for every x P G and

so if upxq “ 1 for every x P G, then u lies in BpGq and it is clearly a unit for

BpGq. Moreover, multiplication is clearly commutative and therefore BpGq

is a commutative unital Banach algebra.

To see that BλpGq is a closed ideal in BpGq, notice that BλpGq is identified

with the dual of the reduced group C˚-algebra and so it is complete and

therefore closed in BpGq. It it is clearly a vector subspace of BpGq, so it is a

Banach subspace of BpGq. All that is left is to show that BλpGq is an ideal.

Let u P BλpGq and v P BpGq. Then we can find π ă λ and σ P ΣpGq

such that upxq “ xπpxqξ, ηy and vpxq “ xσpxqk, ρy for some ξ, η P Hπ and

k, ρ P Hσ. Then, pu ¨ vqpxq “ xpπ b σqpxqpξ b k, η b ρy for every x P G and

so it suffices to show that π b σ ă λ, which is clear from theorem 2.0.29 and

we are done.

Lemma 2.0.31. Let µ P MpGq and S be a class of representations of G.

Then,

}µ}S “ sup

"ˇ

ˇ

ˇ

ˇ

ż

upxq dµpxq

ˇ

ˇ

ˇ

ˇ

: u P BSpGq, }u} ď 1

*

Proof. By the definition of }¨}S , we have

}µ}S “ sup t}πpµq} : π P Su
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Then, by lemma 2.0.17, we know that }πpµq} ď }µ}S for every π ă S and

therefore,

}µ}S “ sup t}πpµq} : π ă Su

“ sup
πăS

sup t|xπpµqξ, ηy| : ξ, η P Hπwith }ξ} , }η} “ 1u

Now, by proposition 2.0.25, we know that the functions u P BSpGq with

}u} ď 1 are exactly the functions of the form upxq “ xπpxqξ, ηy for π ă S
and ξ, η P Hπ with }ξ} ¨}η} ď 1 and notice that if }ξ} ¨}η} “ 1, we can assume

that }ξ} “ }η} “ 1, since upxq “
upxq

}ξ}¨}η}
“ xπpxq

ξ
}ξ}
, η

}η}
y and then

sup
πăS

sup t|xπpµqξ, ηy| : ξ, η P Hπwith }ξ} , }η} ď 1u

“ sup
πăS

sup t|xπpµqξ, ηy| : ξ, η P Hπwith }ξ} , }η} “ 1u

“ sup

"
ˇ

ˇ

ˇ

ˇ

ż

upxq dµpxq

ˇ

ˇ

ˇ

ˇ

: u P BSpGq, }u} “ 1

*

“ sup

"ˇ

ˇ

ˇ

ˇ

ż

upxq dµpxq

ˇ

ˇ

ˇ

ˇ

: u P BSpGq, }u} ď 1

*

and therefore,

}µ}S “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

upxq dµpxq

ˇ

ˇ

ˇ

ˇ

: u P BSpGq, }u} ď 1

*

as we wanted.

Proposition 2.0.32. Let S be a class of unitary representations of G and

let u P BSpGq. Then,

}u} “ sup

#ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

upxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: cj P C, xj P G,

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

S

ď 1

+

Proof. Let ω denote the universal representation of C˚pGq and let Mpωq be

the universal enveloping von Neumann algebra of C˚pGq. Then, by theorem

0.3.2, we know that Mpωq can be identified with the double dual of C˚pGq

and therefore with the dual of BpGq, so

}u} “ supt|xa
ˇ

ˇuy| : a P Mpωq, }a} ď 1u.
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Now, let µ P MpGq and define

ϕµ : BpGq Ñ C, u ÞÑ

ż

upxq dµpxq.

Then ϕµ is clearly linear. Let u P BpGq. Then, by proposition 2.0.25, there

is some π P ΣpGq and ξ, η P Hπ such that upxq “ xπpxqξ, ηy for every x P G

and }u} “ }ξ} ¨ }η}.

Then,

ϕµpuq “

ż

upxq dµpxq “

ż

xπpxqξ, ηy dµpxq “ xπpµqξ, ηy

and therefore,

|ϕµpuq| ď }πpµq} ¨ }ξ} ¨ }η} ď }µ} ¨ }u}

so ϕµ is bounded with }ϕµ} ď }µ}.

Let V be a neighborhood basis of the identity and for each V P V , let gV
be non-negative continuous function that is supported in V and such that

}gV }1 “ 1. Let fV “ µ ‹ gV . Then, we have already seen in the proof of

lemma 2.0.17 that for every h P CpGq that is bounded, we have

ż

hpxqfV pxq dx Ñ

ż

hpxq dµpxq

and since u is bounded and continuous, it is evident that,
ż

upxqfV pxq dx Ñ

ż

upxq dµpxq “ ϕµpuq .

Now, fV P L1pGq and therefore,

xωpfV q
ˇ

ˇuy “

ż

fV pxqupxq dx,

so

xωpfV q
ˇ

ˇuy Ñ ϕµpuq. (*)

Notice that ϕµ lies in the dual of BpGq and by identifying pBpGqq˚ with

Mpωq, we can consider ϕµ to be an element of Mpωq. After making this

identification, relation (*) shows that ωpfV q
w˚

Ñ ϕµ.
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At the same time, if ξ1, η1 P Hω and V P V , then

xωpfV qξ1, η1
y “

ż

fV pxqxωpxqξ1, η1
y dx

and this converges to
ş

xωpxqξ1, η1y dµpxq “ xωpµqξ1, η1y and therefore

ωpfV q
WOT
Ñ ωpµq

and in particular, ωpµq P Mpωq.

Now, ωpfV q Ñ ωpµq in the weak operator topology and in fact in the ul-

traweak topology, since }fV } ď }ωpµq} for every V and the ultraweak and the

weak operator topology agree on the ball of radius }ωpµq} (0.2.11). Therefore,

ωpfV q
w˚

Ñ ωpµq, but we have already shown that ωpfV q
w˚

Ñ ϕµ and therefore,

ωpµq “ ϕµ.

In particular,

xωpδxq
ˇ

ˇuy “ upxq

for every x P G.

Now, by 1.1.9, we see that

pspanωpGqq
2

“ pωpL1
pGqqq

2

and therefore, by Kaplansky’s density theorem, if A is the linear span of

ωpGq, we have

}u} “ sup
␣

|xa
ˇ

ˇuy| : a P A, }a} ď 1
(

“

sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: xj P G,

›

›

›

›

›

ωp

n
ÿ

j“1

cjδxj
q

›

›

›

›

›

ď 1, n P N

+

Now, notice that if we set µ “
řn

j“1 cjδxj
, then

}ωpµq} “ supt|xωpµq
ˇ

ˇuy| : u P BpGq, }u} ď 1u “

sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: u P BpGq, }u} ď 1

+

“

sup
␣

|xµ
ˇ

ˇuy| : u P BpGq, }u} ď 1
(

“

}µ}ΣpGq
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by lemma 2.0.31 and so we get

}u} “ sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: xj P G,

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

ΣpGq

ď 1

,

.

-

Now, let Gd be the same group G, but this time endowed with the discrete

topology. Then Gd is a locally compact group and every unitary representa-

tion ofG is again a unitary representation ofGd and therefore, BpGq Ă BpGdq

and BSpGq Ă BSpGdq.

Then, notice that

}u}BpGdq
“ supt|xu

ˇ

ˇfy| : f P CcpGdq, }f}C˚pGdq
ď 1u

and since u P BSpGdq, we get

}u}BpGdq
“ supt|xu

ˇ

ˇfy| : f P CcpGdq, }f}S ď 1u

Now, Gd is discrete, so f P CcpGdq if and only if f “
řn

j“1 cjδxj
, where

n P N, cj P C and xj P G and then,

}u}BpGdq
“ sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: n P N, cj P C s.t.

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

S

ď 1

+

Recall that S is contained in ΣpGq, so }u}BSpGdq
“ }u}BΣpGqpGdq

and there-

fore,

sup

#ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: n P N, cj P C s.t.

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

S

ď 1

+

“

sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: xj P G,

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

ΣpGq

ď 1

,

.

-

and so,

}u} “ sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

cjupxjq

ˇ

ˇ

ˇ

ˇ

ˇ

: n P N, cj P C s.t.

›

›

›

›

›

n
ÿ

j“1

cjδxj

›

›

›

›

›

S

ď 1

+

as we wanted.

For a far more comprehensive exposition of BpGq, the interested reader is

referred to [6].



The Fourier algebra ApGq

3.1 Definition of ApGq

We are going to introduce the second topic of this thesis, the Fourier algebra

ApGq of a locally compact group G. As we will see, the Fourier algebra

is a particular subspace of BpGq, in fact an ideal of BpGq and it is often

considered to be an analogue of the Fourier transform of L1pGq, when the

group G is not abelian. Before defining ApGq, we will need some additional

groundwork.

Lemma 3.1.1. Let f, g P L2pGq, then f ˚ g̃ P BλpGq and }f ˚ g̃} ď }f}2}g}2

Proof. Let x P G, then

pf ˚ g̃qpxq “

ż

fpyqg̃py´1xq dy “

ż

fpyqḡpx´1yq dy “ xf, λpxqgy

and if vpxq “ xλpxqg, fy, then v P BλpGq and f ˚ g̃ “ v̄, so f ˚ g̃ P BλpGq.

Lemma 3.1.2. Let C Ă G be compact and U Ă G be open, such that C Ă U .

Then there exists a u P BpGq XCcpGq with supppuq Ă U such that 0 ď u ď 1

and u|C “ 1.

Proof. We begin with the following observation: LetW be a neighborhood of

the identity, then there exists a symmetric relatively compact neighborhood

of the identity V such that V ¨ V Ă W .
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To see this, notice that the multiplication mapm : GˆG Ñ G, px, yq ÞÑ xy

is continuous at pe, eq and since e P W and W is open, the set m´1pW q is an

open subset of GˆG and pe, eq P m´1pW q, so there exists an open relatively

compact symmetric neighborhood V of e such that V ˆ V Ă m´1pW q, so

that V V Ă W .

Now, for every g P C the set g´1U is an open neighborhood of the identity,

so there exists an open relatively compact symmetric neighborhood Vg of

the identity such that VgVg Ă g´1U . In exactly the same way, we can find

a symmetric relatively compact neighborhood of the identity Ug such that

UgUg Ă Vg. Now C Ă
Ť

gPC gUg and C is compact, so there exist g1, . . . gn P

C such that C Ă
Ťn

i“1 giUgi . Letting V “
Şn

i“1 Ugi , we have a relatively

compact symmetric neighborhood of the identity. Now, let g P C. Then,

there exists i P t1, . . . , nu such that g P giUgi , so g “ gix for some x P Ugi .

Thus gV V “ gixV V Ă giVgiVgi Ă U , so that CV V Ă U .

Now let V be as above and define u : G Ñ C by

u “
1

λpV q
1CV ˚ Ă1V .

From the previous lemma, u P BpGq and u is continuous, since 1CV P L1pGq

and Ă1V P L8pGq. Now, let x P G, then,

upxq “
1

λpV q
p1CV ‹ Ă1V qpxq “

1

λpV q

ż

1CVpyqĂ1Vpy´1xq dy

“
1

λpV q

ż

1CV pyq1V px´1yq dy “
1

λpV q

ż

p1CV 1xV qpyq dy

“
λpCV X xV q

λpV q
.

From this expression, it is evident that 0 ď upxq ď 1 @x P G. Moreover,

lemma 3.1.1 shows that p1CV ‹ Ă1V qpxq “ x1CV , λpxq1V y for every x P G and

therefore 1CV ‹ Ă1V P BpGq and so u lies in BpGq. Furthermore, let x R CV 2

and assume that there is a g P G such that g P CV X xV . Then, there are

c P C and v, w P V such that g “ cv and g “ xw, hence x “ cvw´1 P CV 2,

which contradicts our assumption on x. So CV XxV “ H and thus upxq “ 0



63

for every x R CV 2. This means that

GzCV 2
Ă tx P G : upxq “ 0u

and therefore,

tx P G : upxq ‰ 0u Ă CV 2
Ă CV 2.

Now,

V 2
Ă Ug1

and Ug1 is compact, so V 2 is compact, as a closed subset of the compact Ug1 .

Therefore,

suppu “ tx P G : upxq ‰ 0u Ă CV 2

and so, suppu is compact and u P P pGq X CcpGq.

Proposition 3.1.3. Let G be a locally compact group. We define the follow-

ing subsets of BpGq.

M1 “ tf ‹ g̃ : f, g P CcpGqu

M2 “ tf ‹ f̃ : f P CcpGqu

M3 “ tf ‹ g̃ : f, g P L8
pGqwith compact supportu

M4 “ th ‹ h̃ : h P L8
pGqwith compact supportu

M5 “ BpGq X CcpGq

M6 “ P pGq X CcpGq

M7 “ P pGq X L2
pGq

M8 “ tf ‹ g̃ : f, g P L2
pGqu

M9 “ tf ‹ f̃ : f P L2
pGqu

Let Ej denote the linear span of Mj for every j. Then all Ej have the same

closure in the norm of BpGq.
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Proof. By polarization, it is clear that E1 “ E2, that E3 “ E4 and that

E8 “ E9. Moreover, clearly M2 Ă M4 and therefore E1 “ E2 Ă E3 “ E4.

To see that M4 Ă M5, notice that if h P L8pGq has compact support,

then h P L1pGq and h̃ P L8pGq and therefore, by [4] (proposition 2.39), we

get that h ‹ h̃ P CpGq and suppph ‹ h̃q Ă supph ¨ supp h̃ which is compact,

since both h and h̃ have compact supports. Moreover, by lemma 3.1.1, since

h P L2pGq, we have that

h ‹ h̃ P BλpGq Ă BpGq

and therefore,

h ‹ h̃ P BpGq X CcpGq

and M4 Ă M5.

To see that E5 “ E6, first notice that M6 Ă M5 and therefore E6 Ă E5.

For the converse, let u P M5 “ BpGqXCcpGq. By the definition ofBpGq, we

know that there exist u1, u2, u3, u4 P P pGq such that u “ u1 ´u2 ` ipu3 ´u4q.

Now, u P CcpGq and therefore, by lemma 3.1.2 there is a v P P pGq X CcpGq

such that v|suppu “ 1. Then,

u “ uv “ vu1 ´ vu2 ` ivpu3 ´ u4q

and vui P P pGq X CcpGq for every i, by lemma 1.2.7 and so u P E6 and

E5 “ E6.

The fact that E7 Ă E8 follows from [2](theorem 13.8.6).

To finish the proof, we will show that E1 is dense in E9. Once we prove

that, we will know that E1 Ă ¨ ¨ ¨ Ă E9 “ E1 and we will be done.

To see this, let f, g P L2pGq and ϵ ą 0. Then, since CcpGq is dense in

L2pGq, we can find f1, g1 P CcpGq such that }f ´ f1}2 ă 2 and }g ´ g1}2 ă ϵ.

Then, we have that

}f ‹ g̃ ´ f1 ‹ g̃1}BpGq
ď }f ‹ g̃ ´ f1 ‹ g̃}BpGq

` }f1 ‹ g̃ ´ f1 ‹ g̃1}BpGq
“

}pf ´ f1q ‹ g̃}BpGq
`

›

›

›
f1 ‹ Čpg ´ g1q

›

›

›

BpGq
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and therefore, by lemma 3.1.1, we see that

}f ‹ g̃ ´ f1 ‹ g̃1}BpGq
ď }f ´ f1}2 }g}2 ` }f1}2 }g ´ g1}2 ď

ϵ }g}2 ` p}f}2 ` ϵqϵ

which tends to 0 as ϵ tends to 0 and therefore, E1 is dense in E9 and we are

done.

Definition 3.1.4. We define the closure of any of the Ei’s in the norm of

BpGq to be the Fourier algebra of G and we denote it by ApGq.

We just called ApGq an algebra and the next proposition justifies the use

of this word.

Proposition 3.1.5. Let G be a locally compact group. Then ApGq is a closed

ideal in BpGq. In particular, ApGq is a closed subalgebra of BpGq.

Proof. Let u P BpGq XCcpGq and v P BpGq. Then, vu P BpGq, since BpGq is

an algebra and uv P CcpGq, since both u, v are continuous and u has compact

support, so vu P BpGq X CcpGq. Moreover, BpGq X CcpGq is clearly a linear

subspace of BpGq and therefore it is an ideal in BpGq.

Now, let u P ApGq. Then, by proposition 3.1.3, there is a punqnPN in

BpGq XCcpGq such that un Ñ u in the norm of BpGq. Let v P BpGq. Then,

vun Ñ vu and vun P BpGq XCcpGq for every n P N, so vu P BpGq X CcpGq “

ApGq (Proposition 3.1.3) and therefore ApGq is an ideal in BpGq and by

definition it is closed. In particular, ApGq is a closed subalgebra of BpGq.

Proposition 3.1.6. Let G be a locally compact group. Then ApGq Ă C0pGq

and ApGq is in fact uniformly dense in C0pGq.

Proof. Let u P ApGq, then, there exists a sequence punqnPN in BpGq XCcpGq

such that un Ñ u in the norm of BpGq. Then, by corollary 2.0.27, we know

that un Ñ u with respect to }¨}
8
and u P CcpGq

}¨}8
“ C0pGq, so

ApGq Ă C0pGq.
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To see that ApGq is uniformly dense in C0pGq notice first that for every

u P ApGq, we have that u P ApGq. Indeed, let punqn be a sequence in

BpGq XCcpGq such that un Ñ u. Then, vn P BpGq XCcpGq for every n P N.
and by remark 2.0.28, we see that }v ´ un} “ }v ´ un} which tends to 0 as

n tends to infinity, so un Ñ v and therefore v P ApGq. Since ApGq is closed

under conjugation, we see that ApGq is a ˚-subalgebra of C0pGq. Moreover,

by lemma 3.1.2, it is clear that ApGq separates the points of G and that for

every x P G, there is f P ApGq such that fpxq ‰ 0 and therefore, by the

Stone-Weierstrass theorem, ApGq is }¨}
8
-dense in the C˚-algebra C0pGq.

We showed in proposition 3.1.3 thatApGq“spantf ‹ g̃ : f, g P L2pGqu
}¨}BpGq .

In fact, it turns out that there is no need for taking linear span or closure in

the norm of BpGq and we actually have the following:

Theorem 3.1.7 (Characterization of ApGq). Let G be a locally compact

group, then

ApGq “ tf ‹ g̃ : f, g P L2
pGqu.

This theorem was proved by Eymard in [3] and the proof relied heavily

on the theory of locally compact groups. A different approach is to use von

Neumann algebra theory and show that vNpGq is in standard form on L2pGq,

as it is done in [11].

3.2 The spectrum of ApGq

In this section, we are going to identify the spectrum of ApGq. As we will

see, the spectrum is homeomorphic to the group G and therefore, ”ApGq

remembers the group G.”

Theorem 3.2.1. Let G be a locally compact group G and A(G) its Fourier

algebra. Then, σpApGqq is homeomorphic to G, where σpApGqq denotes the

spectrum of A(G).

The homeomorphism we will use is the map T : G Ñ σpApGqq, x ÞÑ ϕx,

where ϕxpuq “ upxq for all u P ApGq. We will need a couple of lemmas.
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Lemma 3.2.2. Let f P ApGq and x P G such that fpxq “ 0. Then, for every

ϵ ą 0 there exists an open neighborhood V Ă G of x and g P ApGq X CcpGq

such that g|V “ 0 and }f ´ g}ApGq ă ϵ.

Before proving this lemma, we will need some additional terminology.

Definition 3.2.3. Let ϕ P pApGqq˚. We define the support supppϕq of ϕ, to

be the subset of G such that

Gz suppϕ “
ď

tV Ă G open: u P ApGq X CcpGq, suppu Ă V ñ ϕpuq “ 0u.

For a function u : G Ñ C, we define Zpuq “ tx P G : upxq “ 0u.

Definition 3.2.4. Let E be a closed subset of G.

(i) We call E a set of synthesis if for every τ P pApGqq˚ and u P ApGq, the

relation supp τ Ă E Ă Zpuq implies τpuq “ 0.

(ii) We call E a set of local synthesis if for every τ P pApGqq˚ and u P ApGq

with compact support, the relation supp τ Ă E Ă Zpuq implies τpuq “ 0.

This definition may seem out of the blue at this point, but the next propo-

sition will show that the notion of local synthesis is exactly what we need for

lemma 3.2.2.

Proposition 3.2.5. Let E be a closed subset of G. Then E is a set of synthe-

sis if and only if for every f P ApGq such that f |E “ 0, f can be approximated

in the norm of ApGq by functions in ApGq XCcpGq vanishing in a neighbour-

hood of E.

Proof. Let’s first assume that E is a set of synthesis and let f P ApGq be

such that f |E “ 0.

Also, let

JpEq “ spantg P ApGq X CcpGq : g vanishes in a neighborhood of Eu.

Consider a functional τ P pApGqq˚ that vanishes on JpEq. Then, by the

definition of supp τ, it is evident that supp τ Ă E and since E is a set of

synthesis we have τpfq “ 0 and therefore f P JpEq.
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For the opposite direction, assume that every f P ApGq vanishing on E lies

in JpEq and let τ P pApGqq˚ and f P ApGq be such that supp τ Ă E Ă Zpfq.

Then, there is a sequence pgnqnPN with gn P ApGq XCcpGq for every n P N
such that gn vanishes on a neighborhood of E and gn converges to f , so

τpgnq Ñ τpfq. In this case, each gn vanishes on a neighborhood of E and so,

gn vanishes on a neighborhood of supp τ and since gn has compact support,

τpgnq “ 0 by the definition of the support of τ and this holds for every n P N,
so τpfq “ 0 and thus E is a set of synthesis.

This proposition shows that what we need to prove for Lemma 3.2.2 is

exactly the fact that txu is a set of synthesis for every x P G.

There is a characterisation of sets of local synthesis, completely analogous

to the one of Proposition 3.2.5.

Proposition 3.2.6. Let E be a closed subset of G. Then E is a set of local

synthesis if and only if every f P ApGq X CcpGq that vanishes in E can be

approximated by functions in ApGq XCcpGq that vanish in a neighborhood of

E.

Proof. The proof is essentially the same as the one of proposition 3.2.5 and

so we omit it.

Definition 3.2.7. Let τ P pApGqq˚ and f P ApGq. We define f ¨τ P pApGqq˚

by f ¨ τpuq “ τpf ¨ uq for every u P ApGq.

For every u P ApGq we have }τpf ¨ uq} ď }τ} ¨ }f ¨ u} ď }τ} ¨ }f} ¨ }u} and

so f ¨ τ is indeed bounded with }f ¨ u} ď }τ} ¨ }f}.

Lemma 3.2.8. Let E Ă G be a set of local synthesis and τ P pApGqq˚ with

supp τ Ă E and let f P ApGq with f |E “ 1. Then f ¨ τ “ τ .

Proof. Since ApGq XCcpGq is dense in ApGq, we need to show that for every

u P ApGq X CcpGq, we have f ¨ τpuq “ τpuq, or equivalently,τpup1 ´ fqq “ 0.

Notice that p1 ´ fqu P ApGq X CcpGq and p1 ´ fqu vanishes on E, so

τpp1 ´ fquq “ 0

since E is a set of local synthesis.
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The proof of lemma 3.2.2 will be completed with the following proposition:

Proposition 3.2.9. Let E be a compact subset of G. Then E is a set of

local synthesis if and only if it is a set of synthesis.

Proof. Every set of synthesis is a set of local synthesis, so we need to prove

that for a compact set, local synthesis implies synthesis. In that direction,

consider τ P pApGqq˚ and u P ApGq be such that supp τ Ă E Ă Zpuq. We

need to prove that τpuq “ 0.

Since E is compact, by lemma 3.1.2 there is f P ApGq X CcpGq such that

f |E “ 1.

Now, consider f ¨u. Then, f ¨u P ApGq and has compact support. Moreover,

fu|E “ 0 and since E is a local synthesis set, τpfuq “ 0 and so pf ¨τqpuq “ 0.

Then, by lemma 3.2.8, we know that f ¨ τ “ τ and so τpuq “ 0 as we

wanted.

To prove lemma 3.2.2, since txu is compact for every x P G, we need to

prove that txu is a set of local synthesis.

Proof. Consider f P ApGq XCcpGq vanishing on x. We will show that f can

be approximated by functions in ApGq XCcpGq vanishing on a neighborhood

of txu.

Let ϵ ą 0, we want to find some h P ApGq X CcpGq such that h vanishes

on a neighborhood of x and }f ´ h} ă ϵ. Let W “ ty P G : ||f ´Ryf || ă ϵu.

Then W is open, since the map G Ñ ApGq, x ÞÑ Rxf is continuous and

clearly e P W . Now, since G is locally compact, we can find a relatively

compact open neighborhood of e, that we call U . Let W 1 “ W X U . Then

W 1 is open, contains the identity, it is relatively compact and }f ´ Ryf} ă ϵ

for every y P W 1.

Now, let V be an open neighborhood of the identity such that |fpxyq| ă ϵ

for all y P V and such that xV Ă W 1 (we can find such a neighborhood, since

f is continuous at x and fpxq “ 0). Since V Ă V Ă W 1 and W 1 is compact,
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0 ă λpV q ă 8 and since the Haar measure is inner regular on open sets, we

can find K Ă V compact, such that

λpKq ě λpV q ´ ϵλpV q. (*)

Now, we define u “ 1
λpKq

1K , g “ 1xV f and h “ pf ´ gq ˚ ũ. Since ũ P L1pGq

and f´g P L8pGq, the function h “ pf´gq˚ũ is continuous (see [4]proposition

2.39.) and also, f ´ g “ 1GzxV f P L2pGq, since f P CcpGq and u is also in

L2pGq, since it is in L8pGq and has compact support, so, from proposition

3.1.3 we get that h P ApGq. As one can imagine, h will be the function we

are searching for. Expanding the definition of h we get

hpzq “ ppf ´ gq ˚ ũqpzq “
1

λpKq

ż

1GzxV pyqfpyq1Kpz´1yq dy.

Now, let z P G such that hpzq ‰ 0. Then, there must exist y P G such

that y P supp f and z´1y P K. Therefore, z´1 P Ky´1 Ă K ¨ psupp fq´1. So,

we have shown that tz´1 : hpzq ‰ 0u Ă K ¨ psupp fq´1 and thus,

tz P G : hpzq ‰ 0u Ă psupp fq ¨ K´1

and psupp fq ¨ K´1 is compact and therefore closed, so

supph “ tz P G : hpzq ‰ 0u Ă psupp fq ¨ K´1.

Therefore, supph is compact and h P CcpGq.

Now, let z P G such that zK Ă xV . Then, z´1y P K implies that y P

zK Ă xV and therefore, whenever 1Kpz´1yq ‰ 0, we have that 1G{xV pyq

vanishes and therefore the integral defining h is zero and hpxq “ 0.

Clearly, since K Ă V , we have that xK Ă xV . Recall that the mul-

tiplication map m : G ˆ G Ñ G is continuous and therefore m´1pxV q is

an open subset of G ˆ G containing txu ˆ K. Therefore, for each k P K

we can find Uk,Wk open neighborhoods of k and x respectively, such that

Wk ˆ Uk Ă m´1pxV q.

Now, K is compact and therefore we can find k1, ¨ ¨ ¨ , kn P K such that

K Ă
Ťn

i“1 Uki . Set W0 “
Şn

i“1Wki . Then, W0 is an open neighborhood of x
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and for every k P K, it is evident that W0 ˆ tku Ă m´1pxV q and therefore

W0K Ă xV and hpzq “ 0 for every z P W0, so h vanishes in a neighborhood

of x.

To finish the proof, we have to estimate }f ´ h}.

}f ´ h} “ }f ´ pf ´ gq ˚ ũ} “ }f ´ f ˚ ũ ` g ˚ ũ} ď }f ´ f ˚ ũ} ` }g ˚ ũ}.

Now, by lemma 3.1.1, we have }g ˚ ũ} ď }g}2}u}2 and

}g}
2
2 “

ż

|1xV fpyq|
2 dy “

ż

xV

|fpyq|
2 dy ă ϵ2λpxV q “ ϵ2λpV q,

since |fpyq ă ϵ for y P xV by the choice of V and thus,

}g}2 ď ϵpλpV qq
1
2 .

Now,

}u}
2
2 “

ż

p
1

λpKq
q
21Kpyq

2 dy ď
1

λpKq
ď

1

λpV q

1

1 ´ ϵ

from (*) and therefore,

}u}2 ď

d

1

λpV q

1

1 ´ ϵ

so

}u}2 }g}2 ď ϵ

c

1

1 ´ ϵ
.

Now, let g P L1pGq such that }g}
˚

ď 1. We want to estimate

ˇ

ˇ

ˇ

ˇ

ż

gpxqpfpxq ´ f ˚ ũpxqq dx

ˇ

ˇ

ˇ

ˇ

.
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Then,

ˇ

ˇ

ˇ

ˇ

ż

gpxqpfpxq ´ f ˚ ũpxqq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

gpxqfpxq dx ´

ż

gpxq

ż

fpyqũpy´1xq dydx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

gpxqfpxq ´

ż ż

gpxqfpyq
1

λpKq
1Kpx´1yq dydx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż ż

K

1

λpKq
gpxqfpxq dydx ´

1

λpKq

ż ż

K

gpxqfpxyq dydx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

λpKq

ż ż

K

pgpxqfpxq ´ gpxqfpxyqq dydx

ˇ

ˇ

ˇ

ˇ

ď

1

λpKq

ż ż

|gpxqpfpxq ´ Ryfpxqq1Kpyq | dxdy

Now, for y P K, we have that }f ´ Ryf} ď ϵ and so,

ˇ

ˇ

ˇ

ˇ

ż

gpxqpfpxq ´ Ryfpxqq dx

ˇ

ˇ

ˇ

ˇ

ď }g}˚}f ´ Ryf} ď ϵ

and so

}f ´ f ˚ ũ} ď

ż

K

ϵ

λpKq
dx “ ϵ.

Now, putting everything together, we have that

}f ´ h} ď ϵ ` ϵ

c

1

1 ´ ϵ

which tends to 0 as ϵ tends to 0 and we are done.

Lemma 3.2.10. Let X be a Banach space and ϕ, ψ P X˚ such that

Kerpϕq Ă Kerpψq. Then ψ “ λϕ for some λ P C

Proof. If ψ “ 0 then this clearly holds for λ “ 0.

Now assume that ψ ‰ 0. Then ϕ ‰ 0 and there exist unique x0, y0 P X with

ϕpx0q “ ψpy0q “ 1 and such thatX “ Kerpϕq ‘ spantx0u “ Kerpψq ‘ spanty0u

Let x P X, then there exist unique x1, y1 P X and λ, µ P C such that

x “ x1 ` λ ¨ x0 “ y1 ` µ ¨ y0.
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Now,

ϕpxq “ ϕpx1q ` λϕpx0q “ λ

and

ψpxq “ ψpy1q ` µψpy0q “ µ

Then,

ψpxq “ ψpx1q ` λψpx0q “ λψpx0q “ ϕpxqψpx0q

and this holds for any x P X, so we are done.

We are now ready to prove theorem 3.2.1.

Proof. Let x P G and let ϕx : ApGq Ñ C, u ÞÑ upxq. Then, ϕx : ApGq Ñ C

is obviously an algebra homomorphism and lemma 3.1.2 for the compact txu

implies that there is u P ApGq such that upxq “ 1. In particular, upxq ‰ 0,

so ϕx P σpApGqq. So the map T : G Ñ σpApGqq, x ÞÑ ϕx is well defined

and obviously injective.

Let pxiqiPI be a net in G converging to x P G. Then, if u P ApGq we have

T pxiqpuq “ ϕxi
puq “ upxiq Ñ upxq “ ϕxpuq “ T pxqpuq,

since u is continuous. Thus, T pxiq
w˚
Ñ T pxq, so T is continuous with respect

to the topology of σpApGqq.

Now, let’s assume that T is not onto, so there exists ϕ P σpApGqq such

that ϕ ‰ ϕx @x P G and so, for each x P G, we can find a fx P ApGq such

that ϕpfxq ‰ ϕxpfxq.

We will show that we can choose fx such that ϕxpfxq “ 0 and ϕpfxq “ 1

for every x P ApGq. Notice that if there is u P ApGq such that ϕxpuq “ 0 and

ϕpuq ‰ 0, then if we set fx “ u
ϕpuq

, we have ϕxpfxq “ 0 and ϕpfxq “ 1, so we

need to show that there is u P ApGq such that ϕxpuq “ 0 and ϕpuq ‰ 0.

Assume that this is not possible, so there is x P G such that for every

u P ApGq with ϕxpuq “ 0 we have ϕpuq “ 0 and so Kerpϕxq Ă Kerpϕq.

Then, by lemma 3.2.10, there is some λ P C such that ϕ “ λϕx.

Now, let u P ApGq, then,

ϕpu2q “ pϕpuqq
2

“ pλϕxpuqq
2

“ λ2pϕxpuqq
2
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and also,

ϕpu2q “ λϕxpu2q “ λpϕxpuqq
2

so

λpϕxpuqq
2

“ λ2pϕxpuqq
2

and this holds for every u P ApGq, so we get λ “ λ2 and therefore λ can be

either 0 or 1. If λ “ 0, then ϕ “ 0 which is impossible, since ϕ P σpApGqq,

so λ “ 1 and therefore

ϕ “ ϕx .

But we have assumed that ϕ ‰ ϕx and we have reached a contradiction.

Therefore, for every x P G there exists a function fx P ApGq such that

ϕxpfxq “ 0 and ϕpfxq “ 1.

Now, ϕxpfxq “ 0 and this means that fxpxq “ 0 for every x P G, so, by

lemma 3.2.2, there exists a sequence pgxnqnPN in pCcpGqXApGqq and for every

n there exists an open neighborhood of x, which we denote by V x
n , such that

gxn|V x
n

“ 0.

Now, |ϕpfxq ´ ϕpgxnq| ď }ϕ} }fx ´ gxn} and so, for large enough n, we have

that ϕpgxnq ‰ 0 and gxn|V x
n

“ 0. Thus, for each x P G, we can find gx P

CcpGq X ApGq such that ϕpgxq ‰ 0 and gx vanishes in a neighborhood Vx

of x. Let f0 P CcpGq X ApGq be such that ϕpf0q “ 1 and let K “ supp f0.

Then, K is compact and K Ă
Ť

xPK Vx so there exist x1, . . . , xn P K such

that K Ă
Ťn

i“1 Vxi
. Let f “ f0

śn
i“1 fxi

. Then, f P ApGq and ϕpfq “

ϕpf0q
śn

i“1 ϕpfxi
q ‰ 0.

Now, let x P G. If x P K, then there exists i P t1, . . . , nu such that x P Vxi

and thus fxi
pxq “ 0 and so fpxq “ 0. On the other hand, if x R K, then

f0pxq “ 0 and so fpxq “ 0. In either case, fpxq “ 0 and so f “ 0, but

ϕpfq ‰ 0, which is a contradiction, since ϕ is linear. Thus ϕ “ ϕx for some

x P G and hence T is onto.

To finish the proof, consider a net pϕxi
qiPI in σpApGq and x P G such

that ϕxi
Ñ ϕx and let’s assume that xi Û x. In this case, we can find an

open neighborhood V of x and a subnet pxjqjPJ of pxiqiPI , such that xj R V

for every j P J . Now, from lemma 3.1.2, we can find u P ApGq such that
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upxq “ 1 and upyq “ 0 for every y P GzV and so, upxjq “ 0 for every j P J

and upxq “ 1, but ϕxj
Ñ ϕx and so upxjq Ñ upxq, which is absurd, so xi Ñ x

and thus T is a homeomorphism.

3.3 The dual of ApGq

Having described the spectrum of A(G), we are now going to describe its

dual. As the next theorem shows, its dual is isometrically isomorphic to

another operator algebra associated to G, the so called group von Neumann

algebra, vNpGq.

Of course we will first define vNpGq.

Definition 3.3.1 (Group von Neumann algebra). Let G be a locally compact

group and let λ denote the left regular representation of G. Then the group

von Neumann algebra is defined to be the second commutant of λpL1pGqq Ă

BpL2pGqq and we denote it by vNpGq.

Definition 3.3.2. Let u P BpGq. We define a function ǔ : G Ñ C by

ǔpxq “ upx´1q for every x P G.

Proposition 3.3.3. Let u P BpGq. Then ǔ P BpGq and the map BpGq Ñ

BpGq, u ÞÑ ǔ is a linear isometry.

Proof. Let u P BpGq. Then, by 2.0.25, there is pπ,Hπq unitary representation

of G and ξ, η P Hπ such that upxq “ xπpxqξ, ηy for every x P G and such that

}u} “ }ξ} }η}. Then, we have that

ǔpxq “ upx´1
q “ xπpx´1

qξ, ηy “ xπpxqη, ξy,

for every x P G. Now, by 2.0.12, the function xπp¨qη, ξy clearly lies in BpGq

and by 2.0.13, we get that xπp¨qη, ξy P BpGq and therefore ǔ P BpGq.

Moreover, by 2.0.25, we get that }ǔ} ď }ξ} }η} “ }u}. It is clear that ˇ̌u “ u

and therefore }ǔ} “ }u} for every u P BpGq. The map that sends u to ǔ is

clearly linear, so it is a linear isometry on BpGq.
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Proposition 3.3.4. Let u P ApGq, then ǔ P ApGq.

Proof. Let u P BpGq X CcpGq. Then ǔ clearly lies in BpGq X CcpGq. Now,

consider u P ApGq. Then, by 3.1.3, there is a sequence punqnPN in BpGq X

CcpGq such that un converges to u in the norm of BpGq. Now, by 3.3.3, we

get that ǔn Ñ ǔ in the norm of BpGq and ǔn P ApGq for every n P N, so
ǔ P ApGq for every u P ApGq.

Theorem 3.3.5. Let G be a locally compact group.

We define T : pApGqq˚ Ñ vNpGq by ϕ ÞÑ Tϕ, where

xTϕpfq, gy “ ϕp~f ‹ g̃q “ ϕpg ‹ f̌q

for every f, g P L2pGq. Then, T is well defined and it is an isometric iso-

morphism between pApGqq˚ and vNpGq and has the following properties:

1. If u “
8
ř

j“1

gj ‹ f̌j, where fj, gj P L2pGq are such that
8
ř

j“1

}fj}2 }gj}2 ă 8,

then ϕpuq “
8
ř

j“1

upgj ˚ f̌jq “
8
ř

j“1

xTϕfj, gjy2

2. If µ P MpGq and ϕµ P pApGqq˚ is such that ϕµpuq “
ş

upxq dµpxq for

every u P ApGq, then Tϕµ “ λGpµq.

3. T is a homeomorphism for the w˚ topology on pApGqq˚ and the ultra-

weak topology on vNpGq.

Proof. Let ϕ P pApGqq˚. We define ψ : L2pGqˆL2pGq Ñ C pf, gq ÞÑ ϕp~f ˚ g̃q.

Then, ψ is obviously sesquilinear and |ψpf, gq| ď }ϕ} }f ‹ g̃} ď }ϕ} }f}2 }g}2

and so ψ is a bounded sesquilinear form on L2pGq, with }ψ} ď }ϕ} and so

there exists a unique Tϕ P BpL2pGqq such that ψpf, gq “ xTϕf, gy and thus

xTϕf, gy “ ϕp~f ˚ g̃q and }Tϕ} ď }ϕ}. We want to show that Tϕ P vNpGq “

pλpL1pGqq2, where λ is the left regular representation ofG, so we need to show

that Tϕ commutes with the commutant of the left regular representation.

Now, it is proved in ([11] proposition VII.3.1) that pλpL1pGqq1 “ ρpL1pGqq,
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where ρ is the right regular representation of G, so we need to show that Tϕ

commutes with the operators ρphq for h P L1pGq. To see this, let h P L1pGq

and f, g P CcpGq. We will show that xTϕpρphqfq, gy “ xρphqTϕf, gy.

Indeed, we have

xTϕpρphqfq, gy “ ϕpg ‹ p~f ‹ hqq “ ϕpg ‹ ȟ ‹ f̌q “ ϕpg ‹ h̃ ‹ f̌q “

xTϕf, g ‹ h̃y “

ż

pTϕfqpxqpg ‹ h̃qpxq dx “

ż

pTϕfqpxq

ż

gpyqh̃py´1xq dydx “

ĳ

pTϕfqpxqgpyqhpx´1yq dydx “

ż

gpyqppTϕfq ‹ hqpyq dy “

xpTϕfq ‹ h, gy “ xρphqpTϕfq, gy

and since this holds for every f, g P CcpGq, we conclude that ρphqTϕ “ Tϕρphq

for every h P L1pGq and we are done.

Thus, the map T : pApGqq˚ Ñ vNpGq, ϕ ÞÑ Tϕ, is well defined, }Tϕ} ď

}ϕ} and T is obviously linear.

Now, let u “
ř8

j“1 gj‹f̌j, where
ř8

j“1 }fj}2 }gj}2 ă 8. First of all, for every

j P N, we have that gj ‹ f̌j “ gj ‹
rfj and gj, fj P L2pGq, so, by proposition

3.1.3, we see that gj ‹ f̌j P ApGq. Now,
ř8

j“1 }gj ‹ f̌j} ď
ř8

j“1 }fj}2 }gj}2 ă 8

and since ApGq is complete, u is in ApGq and so ϕpuq is well defined. Now,

let Sn “
řn

j“1 gj ‹ f̌j, for every n P N. Then Sn P ApGq and Sn Ñ u and ϕ

is continuous, so ϕpSnq Ñ ϕpuq. Now,

ϕpSnq “

n
ÿ

j“1

ϕpgj ‹ f̌jq “

n
ÿ

j“1

ϕp
fj ‹ g̃jq “

n
ÿ

j“1

xTϕfj, gjy.

So,
řn

j“1xTϕfj, gjy Ñ ϕpuq and so ϕpuq “
ř8

j“1xTϕfj, gjy, which proves 1.

Now, for 2, consider µ P MpGq. Then,

xTϕµf, gy “ ϕµp~f ‹ g̃q “

ż

p~f ‹ g̃qpxq dµpxq
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and thus,

xTϕµf, gy “

ĳ

fpyqg̃py´1x´1
q dydµpxq “

ĳ

fpyqgpxyq dydµpxq “

ĳ

fpx´1yqgpyq dydµpxq “

ż

xλpxqf, gy dµpxq “ xλGpµqf, gy

and this holds for every f, g P L2pGq, so λGpµq “ Tϕµ , which proves 2.

Next, we want to prove that T is onto. Let us start with an operator

A P vNpGq. We are going to construct a functional ϕA P pApGqq˚ such that

TϕA
“ A. Let us first consider f, g P CcpGq. Then, of course, f ‹ g̃ P ApGq

and since A P vNpGq, we know that A commutes with the right regular

representation and so, Apf ‹ g̃q “ Apρpg̃qfq “ ρpg̃qAf “ pAfq ‹ g̃. Now,

pAfq ‹ g̃ is continuous, so it makes sense to consider pAf ‹ g̃qpeq and so we

define ϕA : E1 Ñ C, by u ÞÑ Apǔqpeq. Notice that

pAf ‹ g̃qpeq “

ż

Afpyqg̃py´1
q dy “

ż

Afpyqgpyq dy “ xAf, gy.

Consider u “
řn

j“1 fj ‹ g̃j P E1. Since A P vNpGq, by Kaplansky’s density

theorem (0.2.12), there exists a net pλphiqqiPI with hi P CcpGq for every i and

}λphiq} ď }A} @i P I such that λphiq
SOT
Ñ A and so, for every j P t1, . . . , nu,

we have that xλphiqfj, gjy Ñ xAfj, gjy and so,

n
ÿ

j“1

xλphiqfj, gjy Ñ

n
ÿ

j“1

xAfj, gjy “

n
ÿ

j“1

ϕApfj ‹ g̃jq “ ϕApǔq.

Now, from 2, we have that xλphiqfj, gjy “ ϕhi
pfj ‹ g̃jq (recall that by

the discussion right after the definition, 0.4.20, we can consider L1pGq as

a subspace of MpGq). So,
řn

j“1xλphiqfj, gjy “ ϕhi
pǔq and then, |ϕhi

pǔq| ď

}hi}}ǔ} ď }A}}u} and so, |ϕApǔq| ď }A}}ǔ} and since Ě1 “ E1, we conclude

that ϕA is bounded on E1 and thus it has a unique extension to ApGq, again

denoted by ϕA, that satisfies }ϕA} ď }A}.

Now that we have defined a way to associate to each A P vNpGq a func-

tional in pApGqq˚, we must check that this association is in fact inverse to our
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previous map. With that goal in mind, consider A P vNpGq and f, g P CcpGq.

Then, by definition, xTϕA
f, gy “ ϕAp~f ‹ g̃q “ xAf, gy and since this holds for

any f, g P CcpGq, we obtain TϕA
“ A as claimed.

Let A P vNpGq, then, }ϕA} ď }A} and }A} “ }TϕA
} ď }ϕA} ď }A},

so, we see that, }ϕA} “ }A} for every A P vNpGq and so, T : pApGqq˚ Ñ

vNpGq, ϕ ÞÑ Tϕ is an isometry onto and therefore the dual space of ApGq

is isometrically isomorphic to vNpGq.

Moreover, by 0.2.17, we see that ApGq is isometrically isomorphic to the

predual of vNpGq and therefore T is a homeomorphism for the w˚ and the

ultraweak topologies, which proves 3.
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[3] Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact,

Bull. Soc. Math. France 92 (1964), 181–236. MR 228628

[4] Gerald B. Folland, A course in abstract harmonic analysis, Studies in

Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028

[5] Gerald B Folland, Real analysis: modern techniques and their applica-

tions, vol. 40, John Wiley & Sons, 1999.

[6] Eberhard Kaniuth and Anthony To-Ming Lau, Fourier and Fourier-

Stieltjes algebras on locally compact groups, Mathematical Surveys and

Monographs, vol. 231, American Mathematical Society, Providence, RI,

2018. MR 3821506

[7] Gerald J Murphy, C*-algebras and operator theory, Academic press,

2014.

81



82

[8] E Hille-RS Philips, Functional analysis and semigroups, Amer. Math.

Soc. Colloquium Pubbl, vol. 31, 1957.

[9] Karen R. Strung, An introduction to C˚-algebras and the classifica-

tion program, Advanced Courses in Mathematics. CRM Barcelona,
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