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ΠΕΡΙΛΗΨΗ

Στις μέρες μας το ποδόσφαιρο, ιδίως το επαγγελματικό, δεν αποτελεί μόνο έναν τρόπο
ψυχαγωγίας που απευθύνεται σε ποδοσφαιριστές και φιλάθλους, αλλά συνιστά επίσης
πεδίο τόσο οικονομικής δραστηριότητας όσο και επιστημονικού ενδιαφέροντος. Η επιστήμη
της υπολογιστικής γεωμετρίας χρησιμοποιείται ευρέως απόπολλές ομάδες για την ανάλυση
δεδομένων των ίδιων των ομάδων αλλά και των αντιπάλων τους. Σκοπός της παρούσας
εργασίας είναι η παρουσίαση μερικών από τις εφαρμογές της υπολογιστικής γεωμετρίας
στην ανάλυση ποδοσφαιρικών αγώνων. Επιπρόσθετα η δημιουργία ενός μοντέλου
αναγνώρισης και πρόβλεψης αποτελέσματος αγώνα, το οποίο θα βασίζεται στο διάγραμμα
Voronoi.

Η εργασία διαρθρώνεται με τον εξής τρόπο. Αρχικά θα παρουσιάσουμε δύο θεμελιώδη
εργαλεία της υπολογιστικής γεωμετρίας, το κυρτό περίβλημα και το διάγραμμα Voronoi
και θα ανατρέξουμε στη βιβλιογραφία, εντοπίζοντας διάφορες χρήσεις τους στην ανάλυση
αγώνων και δεδομένων. Στη συνέχεια θαπαραθέσουμε το σχετικό επιστημονικό υπόβαθρο
των πιθανοτήτων και της μηχανικής μάθησης που απαιτείται για τη δημιουργία των δικών
μας μοντέλων. Αφού αναφέρουμε άλλες έρευνες στον τομέα της πρόβλεψης αγώνων
ποδοσφαίρου και τα αποτελέσματά τους, θα κατασκευάσουμε ένα δικό μας μοντέλο, σκοπός
του οποίου είναι η αναγνώριση του αποτελέσματος αγώνων που έχουν ολοκληρωθεί, με
βάση τα διαγράμματα Voronoi των τελικών φάσεών τους. Έπειτα, εφαρμόζοντας κάποιες
τροποποιήσεις στον αλγόριθμο, θα δημιουργήσουμε ένα μοντέλο που προβλέπει το
αποτέλεσμα μελλοντικών αγώνων. Τέλος, θα παρουσιάσουμε τα αποτελέσματα των
προσπαθειών μας, σχολιάζοντάς τα και θα συζητήσουμε ορισμένες βελτιώσεις που δύνανται
να πραγματοποιηθούν μελλοντικά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Γεωμετρία, Μηχανική Μάθηση

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: ΔιάγραμμαVoronoi, Tαξινόμηση, ΠρόβλεψηΑποτελέσματος, Ποδοσφαιρική
Ανάλυση



ABSTRACT

Nowadays football, especially when played on a professional level, is not just a way of
entertainment that brings players and fans together, but also a field of economic activity
and scientific interest. Computational geometry is widely utilized by many teams in order
to analyze their data and data that concern their opponents. This thesis aims to present
some of the applications of computational geometry in the analysis of football matches.
Moreover another purpose is the construction of a reckoning and prediction model of out-
comes of football matches, based on the Voronoi diagram.

This thesis is organized as described below. Firstly we will present two fundamental tools
of computational geometry, convex hull and Voronoi diagram and we will detect several
uses of them in football analysis in the literature. Secondly we will expand on the re-
lated scientific field of probabilities and machine learning, which is necessary for the con-
struction of our own models. Before building our first model, whose purpose will be the
reckoning of completed matches based on the Voronoi diagrams of their highlights, we
will examine the scientific research on football prediction and the results so far. Then we
will modify our algorithm to create a second model, which will predict outcomes of future
matches. Lastly, we will demonstrate and comment on the results of our attempt and will
discuss some improvements that could take place in the future.

SUBJECT AREA: Computational Geometry, Machine Learning

KEYWORDS: Voronoi Diagram, Classification, Match Prediction, Football Analysis
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1. INTRODUCTION

Indisputably, modern football is not just a game of skill, but also a strategy game. It is
not unusual for underfunded teams with a dubious reputation (underdogs) to outperform
historical teams with universally recognised players. This fact clearly illustrates that except
for players’ individual abilities, choosing the particular style of play, which combines most
effectively each player’s virtues, contributes to a great extent to a team’s success.

Despite the fact that football is a team sport, collaboration and team tactics have not always
been an integral part of it. A typical example is that in England, where modern football
originated, passing used to be a very rare phenomenon until the end of the 19th century.
At that time, many Scottish players migrated south to join English football clubs due to
professionalism, introducing other styles of play. Apart from professionalism, the rapid
spread of football all over the world, especially across Europe and South America, led to
the enrichment of the sport with numerous new tactical variations.

Furthermore, in this day and age, the increasing TV coverage, combined with the introduc-
tion of new technology in athletics, opened the way for a more assiduous and systematic
study and analysis of the applied tactics and playing systems. In this analysis, the con-
cept of space plays a crucial role. For instance, choosing a proper formation that helps
the players minimize empty space when defending or create empty space near the oppo-
nent’s goal area through unmarking movements and deliberate passing patterns is one of
the most important decisions a coach has to make when planning a match. Computational
geometry has a significant contribution to football analysis, as it provides the necessary
tools to model space and draw useful conclusions regarding the team’s strategy and tac-
tics.

11 A. Theodorou



2. BACKGROUND AND RELATED WORK

In this chapter we will provide some fundamental knowledge from the field of computa-
tional geometry about some concepts that are widely used in football analysis, such as
the convex hull and the Voronoi diagram. After the establishment of that basic knowledge
with definitions and a short reference to relevant algorithms, we will inspect the corre-
sponding bibliography to understand the exact manner in which these concepts are being
put into practice when analyzing a football match. Then, we will present some necessary
background material regarding machine learning algorithms and techniques, in order to
discuss the work that has been done in the direction of predicting the outcome of football
matches.

In more detail, in section 2.1 we define the concepts of polygonal line, polygon, and con-
vexity so that we are able to define the concept of the convex hull. Following this, we
briefly mention the known algorithms for constructing the convex hull of a set of points in
the plane. In section 2.2 we approach the concept of the Voronoi diagram, while also mak-
ing a reference to the most popular construction algorithms. In section 2.3 we focus on the
use of the previous concepts in football analysis by examining related papers. In section
2.4 we briefly present some machine learning algorithms, as a prerequisite knowledge
for the next section. Finally, in section 2.5 researches and related work on attempting to
predict the outcomes of football matches are discussed.

2.1 Convex Hull

2.1.1 Definition

Consider a finite sequence of line segments (e1, e2, ..., en), where each segment ei is de-
fined by an ordered pair of points. The sequence is called closed if the ending point of
the segment ei, for i = 1, 2, ..., n−1, coincides with the initial point of the next segment ei+1

and the ending point of segment en coincides with the initial point of e1. Every (closed)
sequence of line segments is also called (closed) polygonal line. [16]

Consider a finite closed sequence of line segments. Τhe region of the plane that is interior
of the sequence is called a closed polygon, or more simply a polygon. [16]

A. Theodorou 12
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Figure 2.1: (a) A polygonal line, (b) a closed polygonal line, (c) a closed polygon

Any object, or set of points P , is called convex if and only if for any pair of points p, q ∈ P ,
the line segment pq is completely contained in P . [11]

The convex hull of a set of points P in the plane is the convex polygon of the minimum
area that contains all the points in P . [16]

An alternative definition of the convex hull of a finite set of points P in the plane is the
following: it is the unique convex polygon whose the vertices are points from P and that
contain all points of P . [11]

Figure 2.2: (a) One possible non-convex closed polygon whose vertices are the positions
of players on the football pitch at a specific moment. (b) Two points that belong to the
closed polygon and their line segment violates the property of convexity. (c) The convex
hull of position of the players on the pitch

2.1.2 Construction Algorithms

The first algorithm for the construction of the convex hull of a finite planar set was sug-
gested in 1972 by Graham [34]. His algorithm, known as the Graham scan, uses a back-
tracking technique and has time complexity O(n logn). The algorithm initially determines
a point that lies on the interior of the convex hull as a reference point and an arbitrary half-
line, so that each point in the set can be expressed in polar coordinates. Then the points

13 A. Theodorou
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are ordered in terms of increasing angle and some points that clearly lie in the interior
are deleted. In the last step, triplets of consecutive points are examined, and depending
on the angle they form, it is either confirmed that the first point is an extreme point of the
convex hull or the middle point is deleted, as it lies in the interior of it. The algorithm ends
when all the points have been examined.

The second algorithm was suggested in 1973 by Jarvis [27]. He used a simple wrapping
technique, known as gift wrapping or Jarvi’s march, which computes the convex hull of a
given set of points inO(nh) time, where h is the number of vertices the convex hull consists
of. Starting with the leftmost point of the set, which definitely belongs to the convex hull,
the algorithm gradually adds vertices in a clockwise direction, by checking that the edge
created due to the last addition has all the remaining points lying on its right side. Gift
wrapping is an output-sensitive algorithm, meaning that its running time depends on the
size of its output. In the worst case, when all the points are vertices of the convex hull, the
algorithm’s complexity becomes O(n2). However, most of the times, only a small subset
of the points belongs to the convex hull, so in practice, gift wrapping tends to be faster
than Graham’s scan.

In 1977 Preparata and Hong approached the problem with the ”divide and conquer” tech-
nique [18]. They developed an algorithm that recursively subdivides the initial set of points
in two subsets, computes each subset’s convex hull, and then merges the two convex
hulls by tracing two tangents, common to both hulls. Their algorithm has O(n logn) time
complexity.

Another algorithm based on the ”divide and conquer” technique, was published indepen-
dently later that year and in 1978 by Eddy and Bykat respectively [13] [6]. The algorithm
got the name QuickHull from the famous QuickSort algorithm due to the similarity they
have. It works mainly by computing triangles and excluding points that lie in their interior
from the vertices of the convex hull. The mean time complexity of this approach is also
O(n logn), but it can go up to O(n2) in the worst case, where the points are not distributed
randomly enough.

In 1979 Andrew published his algorithm, which is a variation of the Graham’s scan, where
the points are sorted in lexicographical order [1]. Thus, the time complexity is the same
as Graham’s scan, O(n logn). The algorithm starts from the leftmost point and computes
the upper half of the convex hull moving in a clockwise direction and is completed when
the lower half of the convex hull has been computed, beginning from the rightmost point
and ending at the leftmost one.

An incremental algorithm was presented in the ’80s by Kallay and was later improved
by Edelsbrunner [29] [14]. The algorithm, named beneath-beyond, presorts the points
along their x- coordinate and processes them in increasing order. The triangle defined by
the first triplet of points is the initial convex hull. In every next step of the algorithm, the
next point of the set is added to the convex hull and the edges that are visible from that
point are deleted. The hull is growing iteratively until the last point is added. The initial
pre-processing step of the sorting is the most expensive operation. Therefore, its time
complexity is O(n logn). This is the upper bound in both average and worst case.

A. Theodorou 14
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In 1986 Kirkpatrick and Seidel presented the first optimal output-sensitive algorithm with
time complexity O(n logh). They achieved this by using a variation of the ”divide and con-
quer” paradigm, which they called ”marriage before conquest” [32]. While in the traditional
”divide and conquer” technique the original problem is firstly divided into subproblems,
then these subproblems are solved and ultimately, their solutions are combined to form
the final solution, in Kirkpatrick and Seidel’s approach the last two steps are reversed. It is
first determined how the solution, that has not been computed yet, will be combined and
then the subproblems are actually solved. In that way, their algorithm manages to exclude
redundant points in the second step, thus minimizing the input size of the subproblems
that are being solved in the last step.

A decade later, in 1996, Chan came up with another optimal output-sensitive algorithm,
which runs in O(n logh) time as well, by expanding the idea of gift wrapping, combining it
with other known convex hull construction algorithms, like Graham’s scan [8]. The basic
idea is to partition the initial set of points into smaller groups at first and compute each
group’s convex hull with an algorithm of O(n logn) complexity, producing some convex
polygons. Then those polygons are wrapped together with Jarvi’s technique in a bigger
convex polygon, which is the convex hull of the whole set.

2.2 Voronoi Diagram

2.2.1 Definition

Denote the Euclidean distance between two points p and q by dist(p, q). In the plane we
have:

dist(p, q) :=

√
(px−qx)2 + (py−qy)2

Let P := {p1, p2, ..., pn} be a set of n distinct points in the plane. These points are the
sites.

We define the Voronoi diagram of P as the subdivision of the plane into n cells, one for
each site in P , with the property that a point q lies in the cell corresponding to a site pi if
and only if dist(q, pi) < dist(q, pj) for each pj ∈ P with j ̸= i. [11]

In other words, a cell contains all the points in the plane which lie closer to the cell’s site
than any other site.

15 A. Theodorou
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Figure 2.3: (a)The positions of defenders with green and attackers with red on the pitch
at a specific moment. (b) The generated Voronoi diagram of the image on the left. The
plane is the one half of the whole football pitch and the sites of the Voronoi diagram are
the positions of the players.

2.2.2 Construction Algorithms

The simplest way to generate the Voronoi diagram of a given set of sites is to compute
the cell of each site as the intersection of the half-planes created by the mid-perpendicular
lines between the site and each one of the other sites. The total cost of the computations
is O(n2 logn).

A more efficient incremental algorithm was suggested in 1976 by Sibson and Green [21].
Their algorithm starts with defining a ”window”: a rectangle that contains all the points in
the dataset. (Initially start with 2 points) Then, new points arrive in random order. The first
point to arrive acquires the whole window as its cell. From the second point and beyond,
each point that is added lies inside an already existing cell. In order to create the cell of
the new point three steps are to be made. First, the cell where the point lies is separated
by the mid-perpendicular line of the site and the new point. After that, the new point will
gain territory from the neighboring cells. This is computed once again by finding the mid-
perpendicular line between the new point and the site of each neighboring cell. In the
last step, the sectors of the edges which were cut by the border of the new cell and lie in
the interior of the cell must be removed from the diagram. Those three actions combine
the incremental step that updates the diagram for every new point that is added. The
algorithm runs in O(n2).

Another approach to address the Voronoi problem is based on the divide and conquer
technique. The initial set of points P is vertically divided into two subsets A and B. What
follows is the recursive computation of the Voronoi diagram for each of the subsets sepa-
rately. Then, the two diagrams are combined into one, producing the Voronoi diagram of
the whole set of points. It is proven that a monotone chain of edges exists, such that the
Voronoi diagram of A coincides with the part of the Voronoi diagram of P that lies on the
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one side of the chain and the Voronoi diagram of B coincides with the part of the Voronoi
diagram of P that lies on the other side of the chain. So the third step of the algorithm
is to compute this specific chain. That can be done in linear time.. Lastly, the edges of
the Voronoi diagrams of each subset that cross the chain must be cut, so each Voronoi
diagram of the subsets lies entirely on the one side of the chain. This approach achieves
the optimal time complexity which is O(n logn).

Fortune’s algorithm is one of themost well-knownmethods of the generation of the Voronoi
diagram of a given set of points, and it is also optimal. It is a plane sweep algorithm in
which a horizontal line scans the plane from top to bottom. Apart from the horizontal line,
another curve, which is synthesized by parts of different parabolas, spreads across the
plane. When the sweep line comes across a new site, a parabola which contains all the
points lying closer to the site than the sweep line is created. Each parabola corresponds
to a specific site. The beach line passes, for each x-coordinate, through the lowest point of
all the parabolas. As the sweep line continues downwards, the parabolas of the different
sites expand, with their intersections on the beach line tracing out the edges of the Voronoi
diagram. When a parabolic arc shrinks to a point and disappears, while the sweep lines
moves downwards„ this point is a vertex of the Voronoi diagram. In addition to optimal
time complexity, Fortune’s algorithm also achieves optimal space complexity O(n)[20].

2.3 Applications of Computational Geometry in Football Analysis

Nowadays, the concepts of computational geometry discussed above are widely incorpo-
rated into contemporary performance analysis software, used by elite teams worldwide.
That sophisticated software supports managers in tactical performance analysis and de-
cision making. In this section, we will focus on the academic research in the field.

Let’s begin with the convex hull. This notion is mainly connected to the detection of the
team’s formation, a major tactical decision, and tactical behaviour while attacking or de-
fending. Shaw and Glickman used the convex hull in their analysis of team strategy based
on the relative players’ position, in order to recognize the team’s formation consistency
[46]. They pointed out the similarity of the shapes of the convex hulls of the team captured
in different instants of time, concluding that each player’s movement is not independent,
but highly correlated to his playmates’ positions, so that the team’s formation is maintained
during the game. Another study [5] also confirmed this result based on the teams’ con-
vex hull. In the second study, the shapes of the convex hulls observed during a match
were categorized in clusters. Although both teams presented a variety of different shapes
during the match, those shapes were consistent to a great extent.

Hendriks used the convex hull to study the reaction of the team right after the ball posses-
sion is lost and concluded that there is a rapid decrease of the area covered within the first
5 seconds [23]. This result agrees with a significant number of other studies that correlate
the wider convex hull area with attacking and the narrower area with defending.

Bauer and Anzer used the convex hull to calculate the effective playing space, one of
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the parameters that contribute to the detection of counterpressing in professional football
matches [3].

Lastly, in another study [39] researchers used the convex hull of the two opponents to
calculate the surface area covered by each team, as well as players spread as functions
of time. Then, they studied the median frequencies of the produced time series to describe
team tactics and patterns of play. In contrast to Hendrix’ research findings, their results
indicated that collective movements in football are slow and may last more than a minute.
An additional conclusion was that frequency values correlated with ball possession, with
higher values indicating rapid ball possession changes and lower values indicating that a
team maintained ball possession for longer periods of time.

Conflicting results are not surprising, as each study is based on different data, mined from
different leagues. While football rules and principles are the same, the style of play and
applied team tactics may vary greatly depending on the league examined or even among
teams of the same league.

Wemove on to the Voronoi diagram. The Voronoi diagram has also been tightly connected
to a team’s spatial configuration. Rosen used the Voronoi diagram as a tool to visualize
and observe the collective motion behaviour of the players and the ball in a football match
[45].

However, the most common use of the diagram is the measuring of space domination, a
critical factor for the outcome of the game. The space a team controls coincides with the
sum of the area of the Voronoi cells, whose sites are the team’s players. In the majority
of the studies, researchers endeavour to correlate this value with other variables, in order
to evaluate the effectiveness of specific actions or applied tactics.

This technique has been widely applied in RoboCup, an international robotics competi-
tion, where teams consisting of robotic players compete in football matches. Prokopenko,
Wang, and Obst developed a mechanism for their team which contributed to the selection
of the players’ actions, depending on a dynamic tactical scheme [41]. In this way, they
attempted to dominate over the opponent teams more by tactical flexibility rather than
by excelling in their robots’ technical abilities. In addition, other researchers [28] [10] ex-
ploited the Voronoi diagram to determine a strategically advantageous positioning for their
robotic agents.

The notion of the Voronoi diagram has also been used in another robot football competi-
tion, called Mirosot. More specifically, Law attempted to create a form of spatial percep-
tion, so that the robots of his team could ”intuitively” cooperate on the spur of the moment,
without playing or moving based on a pre-programmed strategy. However, his efforts were
impeded by the high processing times that the image processing techniques demanded.
He solved this problem by basing his analysis on Voronoi diagrams instead of pitch im-
ages, which require only positional data but still maintain all the useful information about
spatial distribution [35]. The conclusions of this research were similar to Kim’s results. Kim
[31], due to a lack of tracking data from real matches, used the Voronoi diagram with data
extracted from a popular electronic football game. His observations focused on teams’
domination, excess areas, and defending strategy.
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Of course, the Voronoi diagram could not be absent from studies with real world matches
data. Ueda, Masaaki, and Hiroyuki examined the relationship between the dominant re-
gion calculated with the Voronoi diagram and offense–defense performance [51]. Rein,
Raabe, Perl, and Memmert chose the Voronoi diagram as the most appropriate model
to measure space dominance, in order to evaluate changes in space control caused by
passing [44]. Those measures helped them categorize passes by their effectiveness.
Their finding was that passes made from the midfield and attacking field tend to be more
effective, as they usually lead to a larger gain in space dominance for the attacking team.

Despite its extensive usage in football analysis, the Voronoi diagram has received a lot of
criticism from several researchers [15] [19] [7], who have argued about the efficiency of
the diagram regarding the calculation of the dominance area. The main weakness pointed
out is that the diagram disregards some important parameters, such as the players’ speed,
motion, reaction time, and distance from the ball, that may have a decisive role in which
player will reach the ball first. For this reason, some studies have adapted variations of
the classic Voronoi diagram, such as the weighted Voronoi diagram, while others have
developed other more sophisticated models [15].

2.4 Machine Learning

In this day and age, machine learning is one of the most evolving fields of artificial intel-
ligence and computer science in general. Its applications are permeated every aspect of
modern life, from spam filtering in e-mail services to cancer detection and autonomous
driving. The strength of machine learning lies in its ability to turn information and data,
which have rapidly increased in the last decades, into knowledge, and discover hidden
patterns in them.

Traditional software engineering is based on rules, that derive fromwell-established knowl-
edge, to solve problems. For example, in order to decide whether a number is odd or even,
we would use the rule of the remainder of the division by two. The rule implies that if the
remainder of the division of the given number by two equals zero, then the number is even.
Otherwise, the number is odd. The simplicity of this problem renders this rule easy to un-
derstand. However, in other cases formulating the rules, that would lead to the solution of
more complicated problems, is a much more challenging task. For instance, how easily
could someone define the rules to classify an e-mail as spam?

The innovative approach of machine learning is that it combines the provided data with
given answers to find out the rules that govern a specific problem. Then, these extracted
rules can be applied to any other data concerning the same problem and lead to a solution.
This capability makes machine learning techniques highly recommended and appropriate
for that kind of problems, whose rules are difficult to be explicitly described.
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2.4.1 Probability Theory

In this section, we will present some fundamental parts of the probability theory, on which
depend some of the algorithms we will use in this thesis. Firstly, we are going to describe
four useful discrete probability distributions.

2.4.1.1 Discrete Probability Distributions

Α discrete probability distribution expresses the relationship between a discrete random
variable and the probabilities of its possible outcomes. The four most commonly used
distributions for classification are Bernoulli, Binomial, Categorical (or Multinulli), and Multi-
nomial. Apart from the above, another famous distribution is the Poisson distribution.

The Poisson distribution describes the probability of the number of times isolated events
occur during a period of time. For example, the distribution could describe how many
times a lighting will strike during a thunderstorm. It is based on the Euler’s number:
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In order to turn this series into a probability distribution, the sum of terms should equal
one. So we multiply with e−z:
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If we set z equal to the expected or average number of event’s occurrences, then the
terms e−z, e−zz, e−z z2

2!
, e−z z3

3!
, . . . express the probability of 0, 1, 2, 3, . . . occurrences of the

event. So the only requirement to calculate the probability of any number of occurrences
is to know the average number of the occurrences of the event. [38]

In Bernoulli distribution, the discrete random variable is binary, which means that it can
have only two possible outcomes. A typical example is the flip of a coin. If the outcomes
are expressed as 1 and 0, then the probabilities of each event are the following:

• P (x = 1) = p, 0 ≤ p ≤ 1

• P (x = 0) = 1− p
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The binomial distribution is the repetition of consecutive independent Bernoulli trials. A
classical case is the repetitive flip of a coin. The distribution estimates the number of
successes in a fixed number of trials.

The categorical distribution is being used in cases where an event has at least three
possible outcomes. For instance when we roll a die there are six possible outcomes.
The distribution counts the probability p1, p2, . . . , pk of every possible outcome, where
p1 + p2 + . . .+ pk = 1

The multinomial distribution models multiple independent events with at least three pos-
sible outcomes. For example when we roll the same die twice and we want a specific
outcome, like four the first time and six the second one, then this probability is calculated
using the multinomial distribution.

2.4.2 Supervised Learning - Classification Algorithms

In this section we will outline some of the most common supervised learning algorithms
in machine learning. In supervised learning, the goal is to find a mapping from input data
to their output. If the output is a continuous number, then we are referring to a regression
problem. If the output is a category, then it is a classification problem. In order for the
problem to be solved the machine must pass through a learning process with examples.
Those examples will train the model to correctly classify the given input data into their
classes.

During training, the provided data should be as general as possible. Otherwise, we are
running the risk of overfitting, a problematic situation where the model has been exces-
sively adapted to the given examples and can not accurately classify new, previously
unknown data. Another reason why our training data should be general is that in super-
vised learning our data introduce some bias to the model. In other words, our model will
imitate what it has been taught. This means that both the reliability and the impartiality of
data are critical for the success of the model. Last but not least, the amount of data plays
a crucial role, as the more data a model has been trained on, the less likely it is to deal
with new input data for which it has not come across similar training data yet.

2.4.2.1 Multinomial Logistic Regression

The multinomial logistic regression is a generalization of the logistic regression for mul-
ticlass classification problems. In the binary logistic classification algorithm, a sigmoid
function is being applied to the input data and the output determines the class of every
point depending on whether it lies above or below a certain threshold. One way to imple-
ment a multinomial logistic regression model is as an independent set of binary logistic
regression models. In this case, models and classes have an one to one correspondence,
as every model separates the members of a specific class from members of all the other
classes. The procedure to classify an unknown point to a category is the following: the
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point is being given as input to every model. Then, each model calculates the probability
of the point to belong to the corresponding class. The class with the larger probability is
the final prediction of the multinomial logistic regression model. Another approach that
results in smaller standard errors is to use one class as a pivot and regress all the other
classes against the pivot one. Of course, there are other methods which also formulate
the multinomial logistic regression based on binary logistic regression models.

2.4.2.2 Support vector machines (SVM)

Support vector machine (SVM) is another widely used algorithm suitable for classification.
The algorithm’s purpose is to map the training set’s examples on amultidimensional space
and then find a boundary that separates the different classes. Having found this boundary,
the algorithm is able to categorize new data depending on the side of the boundary they
fall into. The real challenge, though, is the determination of the optimal boundary, among
the plethora of possible boundaries that can be chosen. The optimal boundary is the
one that is the furthest away from the closest point of the training set. If the training
data can be distinctly separated by a straight line, then the optimal boundary, also called
decision boundary, has equal distance from the closest points of each class. These points
are called support vectors. Between the lines that pass through the support vectors and
are parallel to the decision boundary there is a margin in which there are no points from
either class. When this margin is wider the algorithm can more easily identify the class in
which an unknown point belongs. Thus, the algorithm selects the decision boundary that
maximιzes this margin.

While the classical SVM algorithm supports binary classification, the same principals can
be also applied to multiclass classification problems. The basic idea is to break the initial
problem of multiclass classification into smaller binary classification problems and com-
bine their solutions. There are two methods one can employ. The first one is to consider
only the points of two classes at a time. Thus, a decision boundary will be created for
every possible pair of different classes. For example, if the training data belong to three
classes, A, B or C, then three decision boundaries would be formed. One to separate
classes A and B, another one for the separation of classes A and C and a third one to
separate classes B and C. The second method is to have a classifier for every class. The
classifier of each class separates the points of the class from all the other points that be
long to other classes. In that way, in the previous example with the three classes A, B and
C three classifiers would be formed. Generally, the first approach generates m(m-1)/2
decision boundaries while the second generates m decision boundaries, where m is the
number of different classes.

2.4.2.3 Naive Bayes

Naive Bayes algorithm is a probabilistic approach to deal with the classification of categor-
ical data, based on Bayesian probability theory. Bayesian theorem allows us to calculate
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the probability of an event to occur, given that another event has occurred. For instance,
we could determine the probability of a team to win a match, given that the opponent team
has less players on the pitch, due to a sent off. Bayes theorem’s strong assumption is that
all the features are independent and all contribute equally to the occurence of the event.
This is quite a naive assumption to make, which is rarely met in real world case scenar-
ios. For example, as discussed above, the researcher in football analysis has proved
a strong relationship between successful passing and ball possession (or goal scoring).
Despite this obvious drawback Naive Bayes tends to achieve good accuracy in many clas-
sification problems, like document classification[50], spammessage classification[40] and
traffic risk management[9]. It remains to be seen if it will have a good prediction rate in
our problem as well.

2.4.2.4 Decision trees

The decision tree is a very popular and powerful tree-based algorithm used for supervised
machine learning classification problems. It utilizes a tree-like structure with each branch
representing an if/else rule. Inner nodes contain features of the data, the edges possible
values of those features and the leaves contain the categories of the data. The procedure
to classify a new unknown element is the following: the tree is being traversed beginning
from the root until the leaves, following the a path. The path is being determined by
applying the conditions of each node on the element’s feature values. This path ends
to a leaf, which represents the prediction of the category of the element. Decision tree
algorithm is similar to ”divide and conquer” methods, as in every step the initial set is split
in two subsets.

It is obvious by the number of different combinations of the features and the nodes, that
there are many ways to construct a decision tree. The way the features are assigned to
nodes is based on several criteria, such asmaximizing the information gain andminimizing
the entropy. Entropy is a metric to measure the uncertainty in data. The more mixed
a dataset is the higher the entropy. In other words, in a set that consist of elements
from many different classes, with each class having the same number of representatives,
predicting the class of a random element would be a tough task. On the other hand, in a
dataset in which the majority of items derive from only one class, then a random element
will belong to that class most of the times. The splitting of the data stops either when there
are no more features left to be assigned to nodes or all the subsets that have been created
contain data of the same class.

Decision trees have several advantages. Among them is the fact that they can be utilized
both for numeric and categorical data. In addition, they require less or no data prepara-
tion, like outliers removal, normalization and missing values handling. Moreover a major
advantage is their effectiveness with non-linear data. Last but not least, the greatest ad-
vantage of decision trees, to which they owe their popularity, is their simplicity. Decision
trees are so simple that they can be easily described using natural language and therefore,
they can be understood by humans.
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2.4.2.5 Random forest

Random forest algorithm extends the idea of the decision trees, combining many of them
for a single prediction. It is a special case of the ensemble classification methods, which
utilizes decision trees as classifiers. Each tree makes a prediction and the most popular
prediction is being returned as the prediction of the random forest classifier. In case of
numerical data, the returned prediction is the mean value of the individual predictions.
Random forest cures the overfitting problem that might appear in a single decision tree,
as it consults many decision trees, which are , relatively, uncorrelated one another. The
uncorrelation is being ensured by the way each decision tree is constructed. In opposition
to the construction of the trees in the traditional decision tree algorithm, in the random
forest case, the features that composite each node are chosen randomly. Apart from
that, the trees use different subsets of the initial dataset as training examples. The more
uncorrelated each tree is, the better the random forest prediction model performs. Also,
it has been theoritically proven that the generalization error in random forest converge to
a limit when the number of trees is large enough. This is the reason why random forests
don’t suffer from overfitting when more decision trees are added to the ensemble model.
On the contrary, this addition tends to limit the generalization error.

2.4.2.6 k-Nearest Neighbors

Arguably the k-nearest-neighbors algorithm is one of the simplest classification methods
in machine learning. As a nonparametric method, it does not require any assumption
for the training data. This is a highly convenient characteristic that makes the algorithm
suitable for any dataset, without any prerequisite knowledge about the data’s underlying
distribution or specific properties. The basic idea behind knn algorithm is so intuitive that
it could be summarized in just an old saying, ”tell me who your friends are, and I will tell
you who you are”. Every query point is assigned to the class to which its nearest neighbor
(if k=1) or neighbors (if k>1) belong. The nearest neighbor is the point of the dataset that
lies closer to the query point. In order to define the nearest neighbor a distance metric
should be applied. Depending on the type of variables, some commonly used metrics are
Euclidean or Manhattan distance for numeric data and Hamming distance for text data. In
cases when the proximity and the density of the training data are not the only parameters,
but there are other factors which also play a role in the classification, such as size, velocity,
or range, then weight assignment to each point of the training set is considered a useful
method to address this kind of problems. Lastly, the choice of hyperparameter k, which
represents the number of nearest neighbors that will decide the class of a query point, can
have an effect on the quality of the classification. On the one hand, even though larger
values of k have been observed to address more efficiently the issue of outliers, it may lead
to underfitting. On the other hand, smaller values of k tend to lead to overfitting. While
there is no golden rule for the optimal selection of the k value, several heuristics have
been proposed. The only non-negotiable property of k is that it must be an odd number,
due to the ”majority voting” nature of the algorithm. Although knn have several strengths,
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it also has some weaknesses. The major drawback is the high computational cost of the
classification, which may be a prohibitive factor for large datasets with multidimensional
points. In those cases, it is critical that data reduction techniques are performed and a
trade off between speed and is made.

2.4.2.7 Neural networks

Neural networks or artificial neural networks (usually also referred to as deep learning) are
an old concept in artificial intelligence. They were first introduced by McCulloch and Pitts
in 1943. However, their capabilities were really highlighted during the last decade, sig-
nificantly boosted by the increased processing power of modern GPUs. These networks
have an amazing ability to recognise patterns in data of large datasets that a human could
not perceive.

The fundamental building blocks of neural networks are the neurons. The neurons are
computational units that receive a vector of input values, perform some computations on
them and produce a single output value. In more detail the neuron computes the dot
product of the input values x1, x2, xn with a set of weights w1, w2, wn and then adds a
constant b to the sum, called bias.

z = b+
n∑

i=1

wi · xi

Then a function f , called activation function, is applied to z, producing the final output of
the neuron: f(z) = a

Activation functions are non-linear, differentiable functions that map the weighted sum z
to another range that usually is more suitable for the application. Some popular activation
functions are: - Sigmoid - tanh - ReLU - Softmax - ELU - Swish

A neural network consists of layers, at least two, with each layer containing at least one
neuron. The two necessary layers are the input layer and the output layer. The input
layer’s neurons receive the initial input of the network and the output layer’s neurons pro-
duce the final output values. The layers in between are called hidden layers. Although
hidden layers are optimal, they greatly contribute to the building of more complex networks
which can better deal with non-linear datasets with many features. The number of hidden
layers must be carefully chosen, as too many layers can lead to overfitting. Since there
is no concrete rule to determine the optimal number of hidden layers, a trial and error
approach is required so that a balance can be achieved.

2.5 PCA

Despite the vast processing capabilities that we nowadays enjoy the curse of dimension-
ality still occurs in the field of machine learning. The curse of dimensionality springs from

25 A. Theodorou



Applications of Computational Geometry in Football and Result Prediction Using Voronoi Diagrams

the high number of dimensions of data. Sometimes the number of features can be com-
paratively large, even surpassing the number of samples of the dataset. This is a deeply
problematic situation, considering that for each added feature, an exponentially larger
number of training data are required in order the model to be sufficiently trained. Even
worse, there are particular methods, like k-nn, that cannot work at all in high dimensions,
because samples are so scattered that the concept of proximity stops making sense. For
all the aforementioned reasons, the dimensions of data should be limited to an extent that
a good balance between accuracy and speed is achieved.

The research in this field has been encouraging, as it has been observed that in many
real world problems, only a small subset of features is enough to make accurate predic
tions. Now the question that arises is: how will this subset be determined? The features
that should be chosen are those that maintain the information which best describes or
separates the classes of the samples, in the case of classification. Various techniques
have been developed for this task. Principal component analysis (PCA) is one of the most
widely used.

PCA can be described as a sequence of five steps. Firstly, the values of the features
should be standardized so that they equally contribute to the analysis. The importance of
this step can be easily understood with an example. Imagine that in our attempt to predict
the outcome of a football match, we consider two variables, the number of red cards and
the number of successful passes. The maximum difference in red cards can not exceed
a specific number, as, according to the current regulation, a game ends if a team fields
less than seven players. Thus, the maximum difference in red cards is four. For every red
card one team receives, the opponent team gains great advantage. On the other hand, a
difference of four successful passes between the two teams is negligible, because each
team attempts hundreds of passes during the game. If the standardization did not take
place then those two facts would have the same impact on the prediction of the outcome.

The second step of PCA is to compute the covariance matrix. This is a square symmetric
matrix that contains all the possible pairs of features and their covariance. Simply stated,
the covariance of two variables expresses the relationship between them. When the co-
variance is positive, then if the one variable increases, the other variable increases as
well. On the contrary, when the covariance is negative, then if the one variable increases,
the other decreases.

The computation of the covariance matrix is a preparation step for the next task, which
is the determination of the principal components. This is done by calculating the eigen-
vectors and the eigenvalues of the covariance matrix. Each eigenvector corresponds to
one principle component and the eigenvalue expresses the amount of variance the cor-
responding component carries. The eigenvector with the highest eigenvalue is the first
principal component, that carries the most information about the dataset. The eigenvec-
tor with the second highest eigenvalue is the second principal component and so on.

Since the principal components have been determined what follows is the selection of the
number of principal components to be maintained. The more principal components are
discarded, the more dimension reduction is conducted. The number of principal compo-

A. Theodorou 26



Applications of Computational Geometry in Football and Result Prediction Using Voronoi Diagrams

nents that are kept is the new dimensions of the data. The decision on the number of
components depends on both the wanted extent of the reduction of the dimensions and
the amount of information that is acceptable to be lost. In the majority of the problems
two or three components are enough in order for more than 90% of the variance to be
captured. In the last step. the data must be reoriented from their initial axes to those that
represent the chosen principal components.

2.6 Model evaluation

In our thesis we will test several different classifiers in order to estimate the significance of
every attempt, with an ulterior purpose to predict the outcome of a match and even further
of the whole championship. Apparently, the classification model with the most successful
prediction rate on the training phase will be the one used to classify the unknown dataset
with the unlabeled data. In order to distinct the most efficient model, we must be able to
compare the efficiency of one model with another one. Moreover, it would be beneficial
to have a tool which would help us understand if a modification we made on a specific
model’s parameters had a positive or negative impact on its performance.Finally, a com-
parison between traditional benchmarks and new approaches is necessary for the further
advancement of the field of football prediction and machine learning in general. For these
reasons, it is of critical importance to define and use some evaluation metrics. The metrics
we will be relying on for the evaluation of our models are the following: accuracy, preci-
sion, recall, F1 score and Mathews Correlation Coefficient. Before we analyze the above
metrics, we will describe a useful structure that is associated with most of them, called
confusion matrix.

2.6.1 Confusion matrix

A confusion matrix is a two dimensional n × n square matrix, where n is the number of
classes that exist in the dataset. The rows of the matrix represent the actual classes,
while the columns represent the predicted classes. In the main diagonal lie the number
of data that were correctly predicted by the model. The higher the diagonal elements, the
more accurate the model. On the other hand, elements that do not lie on the diagonal
correspond to wrong predictions. As an illustration, let’s inspect the following confusion
matrix of three classes.
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Figure 2.4: The confusion matrix of a classification problem with three classes

The element in first row and first column (17) is the number of instances that were correctly
predicted to belong to class A. Next to it, the second element of the first row (7) is the
number of instances that were predicted to belong to class B, but the class they really
belong to is A. The first element of the second row tells us that there were 5 elements of
class B that were misclassified to class A.

2.6.2 Accuracy

Accuracy is a simple and easily comprehensible metric that expresses the percentage of
the correct predictions. In binary classification where there are two classes, one class
could be identified as positive and the other one as negative. In this case, the confusion
matrix would be the following:

Figure 2.5: The confusion matrix of a binary classification problem
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and the accuracy would be calculated with the following type

Accuracy =
TP + TN

TP + FP + FN + TN

In multiclass classification the accuracy is calculated by summing all the diagonal elements
and dividing by the total number of predictions made.

Accuracy is inappropriate for imbalanced dataset. Imagine the spam filtering problem.
Suppose that a training dataset consist of one hundred message samples, of which five
are spam messages. An inefficient model that would detect none of the messages as
spam would have 95% accuracy rate.

In those cases, it is preferable to use other kind of metrics like the following.

2.6.3 Precision

Precision expresses what percentage of instances that were classified as positives (or
negative) and were truly positive (or negative), in the case of binary classification.

In multiclass classification the precision expresses the percentage of the instances that
were classified as items of a certain class, and indeed belong to that class. In the example
given in the section of the confusion matrix with the three classes A, Band C, the precision
of each class would be the following:

Precision =
TP

TP + FP

The precision is increased if the false positives are decreased.

2.6.4 Recall

Recall expresses what percentage of all the instances belonging to a certain class has
been correctly classified.

Recall =
TP

TP + FN

The recall is maximized when the false negatives are minimized.

2.6.5 F1 score

F1 score is a combination of precision and recall. In more detail F1 score is the harmonic
mean of those two metrics and is calculated by the following type
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F1 score =
2 · precision · recall
precision+ recall

F1 score usually ranges somewhere in between precision and recall. Thus this metric is
very useful when a balance must be achieved between false positives and false negatives
reduction.

2.6.6 Mathew’s Correlation Coefficient (MCC)

A slightly different metric that involves all the elements of the confusion matrix is the so
called Mathew’s Correlation Coefficient. The type of this metric is the following one

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

Mathew’s Correlation Coefficient ranges between -1 and 1. Negative values are an in-
dication of extended misclassification while values closer to one is a sign of an accurate
prediction model. Lastly, values around zero are also considered inadequate as they show
that the model has similar accuracy with a classifier that would randomly categorize the
input data.

2.7 Related research on football outcomes prediction

Football is not a new sport. The attempts to make match predictions based on scientific
methods rather than pure intuition began a long time ago. At first, researchers approached
football prediction with a more statistical perspective. In 1956 Moroney modeled the goals
that a team scores in a football game as a Poisson distribution [38]. Although the predicted
values were not far from the actual ones, this piece of information disregards the dynam-
ics of the two teams. In more detail, this model would suggest that a team has the same
probability of scoring zero, one, two, three, etc. goals in any match, independently of who
the opponent might be. In 1971 Reep, Pollard and Benjamin made their own analysis
suggesting that the Negative Binomial distribution fits better than Poisson to the number
of goals scored at a match by individual teams [43]. About a decade later, Maher ques-
tioned the rejection of the Poisson in favour of the Negative Binomial distribution [36]. He
claimed that if the different attacking and defending qualities of each team are taken into
account, then a customized Poisson distribution to every match can fit the data of the
scores reasonably well.

Although traditional statistical methods, such as Poissonmodels[2] [26], are still utilized , in
themodern era, machine learning techniques and neural networks constitute the dominant
trends in the field of football prediction. Some research of the last ten years that is worth
mentioning is the following.
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In 2013 Sujatha, Godhavari, and Bhavani developed an artificial neural network to pre-
dict the outcome of four matches between the Bundesliga teams Borrusia Dortmund and
Bayern Munich in the season 2011-2012 [48]. They used the results from the previous
meetings of the two teams during the period 2005 to 2011 and some other factors, in-
cluding but not limited to transfer money spent, UEFA’s point system, league rank., as
input. The artificial neural network achieved high accuracy in the number of goals, but it
performed less adequately in outcome prediction in comparison with other methods.

In 2014 a group of researchers [25] tried to predict 20 English Premier League matches
played in season 2014-2015 using logistic regression and an artificial neural network. The
input of themodels was both direct statistics like home and away goals, corners, shots etc.,
and some performance indexes for the manager and the players. While logistic regression
yielded higher accuracy than artificial neural networks, it could only predict win or loss
results. This could result in lower accuracy in larger data sets in which more draws were
observed.

Another attempt to predict the outcome of football matches with the use of neural networks
was made in 2020 [42], but in this case, it focused on matches between national teams.
More specifically, the predictions were made for the group stage matches of FIFA world
cup 2018. The model’s input consisted of ten features. The accuracy of the model in the
group stage was 63,3%. According to the author, a drop of the accuracy was observed in
the knock out matches.

An interesting experiment was conducted by Kampakis and Adamides in 2014 [30]. The
two researchers combined historical features with almost two million tweets in an attempt
to predict English premier league matches. Twitter proved to be a valuable source of
information as it can provide data which is not available in historical statistics, such as the
fans’ emotions for the game, discussions about the outcome, and players’ injuries. Three
different datasets were used in this study: one with historical data, another one with data
retrieved from Twitter, and a third one with combined data. It is worth noting that the model
tested on the Twitter dataset outperformed the model that used historical data as features.
Not surprisingly, the mean accuracy was raised even higher with the combined dataset,
going up to 69,6%.

In 2017 Hijmans and Bhulai made predictions for the national team of the Netherlands
using generalized boost models, naive bayes and k-nn classification [24]. They used a
dataset that consisted of various variables that belong to the following categories: type of
game (e.g. friendly, qualification etc.), squad attributes, individual player attributes, and
the team’s form. The best performance was observed with the generalized boost models
method, which predicted 60,22% of the matches correctly.

In 2018 Esme and Kiran used the k-nn algorithm for the prediction of 153 games of the
second round of the Turkish super league [17]. Their predictions were highly based on
historical statistical data as well as betting odds. The model they created performed quite
similarly to the bookmakers’ predictions in the full time result case. However, in the double
chance betting, in which the bettor can make two predictions simultaneously, the model
outperformed the bookmakers’ accuracy by 7,84%. In total, the full time result accuracy
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of their model was 57,52%. Their result is consistent with previous studies [49], which
suggest that with open data engineering, it might be possible to beat the bookmakers.

Admittedly, betting and profit-making are two of the basic reasons why research on football
match predictions has been greatly boosted in our time. Another study that proves that is
the one carried out by Stübinger, Mangold, and Knoll in 2019 [47]. The researchers utilized
machine learning algorithms to predict football outcomes, in order to generate positive re-
turns based on a successful betting strategy. Their input data was derived from the top
five European leagues during a period of eleven seasons and regarded players’ character-
istics and skills. Their predictions and betting strategy were focused on goals difference.
When the predicted difference was over two goals, then the match was considered safe for
betting. Else no trading was conducted. Among all the applied methods, the combination
of all of them was proven the most beneficial, yielding 81.77% total accuracy.

As it was expected, the spread of COVID-19 greatly affected all kinds of football leagues
and associations around the world competitively and economically, causing many match
postponements and cancellations. The impact of the virus on sports events is also being
reflected in the field of the related research, which was also impeded, due to reasons
related both to public health and lack of data. However, in the following years, football
leagues and the research around football came back decisively.

In 2021 Kozak and Głowania applied heterogeneous ensembles of classifiers to predict
the results of Bundesliga matches based on teams’ positions and points in the league
table [33]. They compared their method to single classifiers and other ensemble methods
and concluded that their approach gives the best results. The yielded accuracy was 56%.
The main drawback of the suggested model seemed to be its poor performance in draw
predictions.

The same year Beal, Middleton, Norman, and Ramchurn combined statistical data and
sports journalists’ articles to predict match outcomes of the English premier league [4].
Their method turned out to produce more accurate predictions than other benchmarks
based on text-only data, statistical-only data, and bookmakers’ odds. The achieved accu-
racy was 63,19%, which was 6,9% higher than the traditional methods’ accuracy.

In a study of 2022 [22], researchers evaluated several combinations of features with dif-
ferent classifiers to determine the one that gives the highest predictive score. The set
of classifiers used included Logistic Regression, SVM, Random Forest, K-NN, and Naive
Bayes. The features derived from two seasons of the English Premier League, specifi-
cally seasons 2011-2012 and 2012-2013. The researchers initially conducted two tests,
with different features selected in each test, considering only Manchester United club’s
matches, the team which admittedly had the best performance among all during those
two seasons (2nd place in 2011-2012 and champion in 2012-2013). In both tests, the
majority of classifiers had a fair prediction rate. Random Forest and Naive Bayes in par-
ticular achieved 79,17% and 80% accuracy in the first and the second test respectively.
However, in the experiments that involved the whole set of teams that participated in the
league, a significant drop in accuracy was observed. An exception to this fact was the
k-nn method, whose accuracy rate scaled up to 83,95% with a specific set of features.
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Duarte also conducted a study in 2022 on predicting the English Premier League Cham-
pion of the season 2021/22 [12]. He incorporated the last three seasons of the league,
using the first two for training in order to predict the third season’s final ranking table.
Among several classifiers whose accuracy was tested, the k-nn was evaluated as the
most powerful model for the purpose of the study, with 75% to 85% accuracy, depend-
ing on the data set it was tested on. The model’s accuracy in not previously known data
(72,37%) was good enough for the researcher to correctly predict the top six clubs, not
in the correct order though, as well as the teams that were relegated, with their exact
positions.

Last but not least, the most relevant research to our thesis is the work of Malamatinos,
Vrochidou, and Papakostas, also conducted in 2022 [37]. In their study, they tested
five different machine learning models with data derived from six seasons (2014-2020)
of the Greek Super League, in order to predict the outcome of the matches of the season
2021/22. They also conducted a comparison with the results from two other data sets with
English Premier League and Dutch Eredivisie matches. The Greek Super League proved
to be the most predictable league with a maximum accuracy of 67,73%. We will use this
result as a benchmark for our own research since we will attempt to predict the outcomes
of the same matches.
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3. OUTCOME OF COMPLETED MATCHES RECKONING PROCESS

In this chapter we will present both the process and the results of our attempt to reckon the
outcome of completed matches of the greek Super League championship of the season
2021-2022 based only on the Voronoi diagrams of their final attempts (highlights). In
section 3.1 we will describe the dataset we worked upon, providing information such as the
way the data were extracted, how they were divided into classes and some statistics of the
league. Then we will thoroughly analyze the procedure of estimating matches outcomes.
In more detail, in section 3.2 we will cover the preprocessing of the input data and the
training of the model. Following this, in section 3.3 we will discuss the evaluation metrics
we based upon to determine the most suitable algorithm for our problem. In section 3.4
we will show the results of the classification model. In the last section of this chapter we
will compare three different strategies on how to use the output of the classification model
in order to determine the final outcome of a match.

3.1 Dataset

The dataset used in this thesis consist of 1862 png colored images with dimensions 600×
400 pixels. Each image depicts the Voronoi diagram of an attempt made on a match of
the greek Super League championship of the season 2021-2022. We were able to collect
data for 178 out of 182 matches of the main season. Due to lack of official tracking data
of the players, the whole dataset was created from scratch with a procedure that involved
the following steps:

1. We wrote a python program using the Tkinter and MplSoccer libraries which creates
a football pitch diagram where the user is able to import players’ positions by clicking
on the corresponding point of the diagram. The user also determines for every player
involved if he belongs to the attacking or the defending team and if he is the holder
of the ball. The program receives the aforementioned data as input and produces
the Voronoi diagram of the pitch, with sites the players’ positions.

2. We found online, publicly available on Youtube, videos with the highlights of almost
every match of the season. For every attempt included in them, we paused the video
the moment when the attacker makes the last touch with the ball.

3. Then we enter the positions of the players shown in the paused video to the diagram
we created with the python program and receive the Voronoi diagram of this attempt
as the output of the program

4. Last but not least, we rename the output png file with a name of the following format:

class− homeTeamCode− awayTeamCode− attackingTeamCode−minute.png

where
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• class: the category to which we classify the attempt based on its level of suc-
cess for the attacking team. We chose to divide the attempts into five classes:

(a) 1: poor attempt
(b) 2: mediocre attempt
(c) 3: good attempt
(d) 4: save or off the post
(e) 5: goal

• homeTeamCode: a three letter code name for the home team

• awayTeamCode: a three letter code name for the away team

• attackingTeamCode: a three letter code for the teamwhich attempted the attack

• minute: the minute that the attempt took place

It can be easily noticed that themethods used to obtain the input data and classify them into
classes have twomajor disadvantages. Firstly it is obvious that the players’ positions in the
pitch and consequently in the Voronoi diagrams are lacking preciseness. The fault in the
accuracy occurs not only due to the manual introduction of the data in the diagram which
involves human error, but also because not all the pitches of greek Super League comply
with the international standardization of the pitch dimensions. As far as the classification
of the attempts is concerned, no one can deny that, apart from the attempts which belong
to the goal category, the characterization of an attempt for example as mediocre and not
good and vice versa involves a lot of subjectivity.

Figure 3.1: The process of the creation of the dataset
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3.1.1 Statistics

The statistics provided below concern the first half of the 2021-2022 season of the greek
Super League. Based on them we will make an effort later in this thesis to interpret the
predictions of machine learning model that we will build in order to reckon the outcomes
of the matches played during the second half of the season. Apart from that we also aim
to predict the final ranking of the championship utilizing these statistics.

The first table presents the number of attempts per class and the total sum of the labels
of the attempts that each one of the fourteen teams of the championship has made in the
first half of the season (13 matchdays).

Attempts Per Category

Home Away

# Teams
num.
of

match.

Total
Atte. 1 2 3 4 5 Labels

Sum

num.
of

match.

Total
Atte. 1 2 3 4 5 Labels

Sum

1 aek 6 35 5 6 11 1 12 114 7 41 4 7 12 5 13 139

2 apo 5 16 2 5 2 4 3 49 6 19 3 5 5 3 3 55

3 ari 6 49 15 12 8 7 7 126 7 30 3 8 11 3 8 98

4 ast 6 36 9 5 10 4 8 105 6 22 2 6 6 5 3 67

5 atr 6 45 9 6 10 12 2 149 7 22 6 6 3 0 7 62

6 ion 6 29 2 3 9 6 8 99 7 24 2 7 6 3 6 96

7 gia 6 33 4 10 6 3 10 104 5 17 1 3 2 3 8 65

8 lam 6 24 2 4 6 6 6 82 6 22 5 4 7 2 4 62

9 ofi 7 34 4 4 12 5 9 113 6 27 3 6 5 7 6 51

10 oly 7 63 14 9 19 11 10 183 6 36 4 3 11 4 14 129

11 pan 7 30 3 7 5 9 6 98 6 23 5 3 6 3 6 71

12 pao 7 43 1 6 12 6 18 163 6 34 11 10 6 3 4 81

13 the 6 49 6 13 8 10 12 156 7 40 5 4 14 5 12 135

14 vol 7 33 3 7 7 9 7 109 6 25 2 1 7 3 12 87

Table 3.1: The attempts of the first 13 matchdays per class

A. Theodorou 36



Applications of Computational Geometry in Football and Result Prediction Using Voronoi Diagrams

Figure 3.2: The outcomes of the
matches of the first half of the sea-
son

Figure 3.3: The distribution of at-
tempts per class for the first half of
the season

3.2 Preprocessing

The proprecessing of our input data aims mostly to the reduction of their dimensions and
to a lesser extent the increase of their purity. At first we resize the original images from
600× 400 pixels to 240× 160 pixels. This reduction in size does not imply reduction of the
precision of the model, as our trials indicated. As a second step, we cropped the images
removing the white frame which surrounds the Voronoi diagram as it carries no piece of
information. Thus the dimensions of the final input images are 148 × 120 pixels. Then
we flatten the image. The last preprocessing action before embοding the image to the
training set is to apply scaling. In our case scaling the data does not play a decisive role
to the improvement of our model, since all the features are of the same type, pixel values
in a range from 0 to 255, and measured at same scales. However we implemented this
technique because it has become a standard in machine learning and does not drastically
increase the computational cost.

3.3 Evaluation metrics to determine best classification algorithm

All the classification algorithms described in section 2.4.2 were tested in order to find the
most suitable for the classification of the attempts into the five classes. To achieve this
goal it is essential to determine a common subset of data, upon which the algorithms
will be tested, as well as objective evaluation metrics. For the first part of this task we
randomly selected 50 matches and applied the 5-fold cross validation technique. While
the majority of the classification algorithms examined are deterministic, which means that
given the same training data they will produce the same model, some of them, such as
random forest or decision tree classifiers have some randomness in the building phase
of the model. This characteristic makes 5-fold cross validation a top-quality choice, as its
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repeatability ensures an overall view of the performance of those randomized algorithms
and does not rely on only one model, which may show a misleading precision.

For the problem of the preferred evaluation metric, plenty of options were examined. Ex-
cept for the widely used metrics presented in section 2.6 we also considered to introduce
a new metric which is the difference of the predicted label from the actual one. The logic
behind this metric is that while the traditional metrics receive a prediction as either correct
or false, this one provides a meaningful range that indicates how far the prediction has
fallen. To explain the idea better, if a successful attempt in which a goal was scored (class
no 5) was predicted as a goalkeeper’s save (class no 4) then the distance would be 1.
If the same attempt had been predicted as a poor one (class no 1), the distance would
have been 4. The sum of the distances of all predictions is the final sum. The lower the
final sum the higher the model’s performance. On the first view the distance metric seems
to provide a better understanding of the model performance. However, the major disad-
vantage of this metric is that in a balanced dataset it tends to favor models which mostly
predict the class that lies in the middle. Indeed, from a mathematical point of view, clas-
sifying an attempt as a good one (class no 3) is the safest answer, because in worst case
its distance with the real label will be 2. Especially in datasets in which the middle class
is prominent it is highly likely that the preferred models based on the distance metric will
perform poorly with the minority classes. Taking these facts into consideration we turned
down the idea of the distance metric.

Reconsidering the traditional metrics, a possible way to determine the most efficient metric
for us is to analyze how the results of the attempts classification process will be handled.
This analysis, presented in detail in the next section, leads to the conclusion that although
it would be favorable to build a model which would be able to classify correctly the attempts
of all the classes, the most valuable class for us is class no 5 (attempts in which a goal
has been scored). There are two requirements that the desired model should fulfill. Firstly
the attempts of the class no 5 to be correctly classified as such. Secondly the attempts
which belong to other classes to be misclassified as little as possible as goal attempts.
Therefore the most suitable metric is the precision of the class no 5, which is not only
increased when the attempts of the fifth class are correctly classified but is also decreased
when the attempts of other classes are misclassified as goals.

The following tables present the performance of each classification algorithm. Apart from
different algorithms we also tested different scaling techniques as well as different image
sizes. Smaller size image were tested five times using 5-fold cross validation and larger
images were tested three times using 5-fold cross validation. All tests used the same
training and testing sets and the same equipment. The results presented are the average
values of all the trials:
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240× 160 images with MinMaxScaler

Metric Random
Forest

Decision
Tree SVC

Logistic
Regres-
sion

Multinomial
Naive
Bayes

kNN Neural
Network

Av
er
ag
e
of
5
tri
al
s

Average
f1-score 0.237 0.202 0.215 0.240 0.233 0.200 0.228

Average
MCC 0.084 0.026 0.071 0.069 0.068 0.017 0.068

Average
Precision 0.284 0.214 0.266 0.252 0.278 0.220 0.240

Average
Recall 0.256 0.220 0.244 0.252 0.242 0.214 0.246

Goal
Precision 0.328 0.272 0.298 0.364 0.280 0.280 0.336

Goal
Recall 0.388 0.276 0.352 0.368 0.510 0.136 0.342

Table 3.2: The average score of the seven classifiers on different metrics with images of
240× 160 pixels size scaled with MinMaxScaler

240× 160 images with MaxAbsScaler

Metric Random
Forest

Decision
Tree SVC

Logistic
Regres-
sion

Multinomial
Naive
Bayes

kNN Neural
Network

Av
er
ag
e
of
5
tri
al
s

Average
f1-score 0.216 0.208 0.193 0.263 0.229 0.169 0.224

Average
MCC 0.080 0.021 0.070 0.095 0.066 -0.023 0.070

Average
Precision 0.262 0.220 0.304 0.272 0.272 0.18 0.242

Average
Recall 0.246 0.224 0.242 0.272 0.240 0.180 0.250

Goal
Precision 0.320 0.262 0.362 0.388 0.270 0.202 0.354

Goal
Recall 0.344 0.258 0.300 0.396 0.500 0.102 0.340

Table 3.3: The average score of the seven classifiers on different metrics with images of
240× 160 pixels size scaled with MaxAbsScaler
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600× 400 images with MaxAbsScaler

Metric Random
Forest

Decision
Tree SVC

Logistic
Regres-
sion

Multinomial
Naive
Bayes

kNN Neural
Network

Av
er
ag
e
of
3
tri
al
s

Average
f1-score 0.231 0.198 0.215 0.262 0.226 0.193 0.218

Average
MCC 0.082 0.010 0.076 0.093 0.061 0.005 0.063

Average
Precision 0.267 0.207 0.266 0.272 0.272 0.202 0.233

Average
Recall 0.250 0.220 0.248 0.272 0.236 0.210 0.240

Goal
Precision 0.350 0.257 0.318 0.388 0.266 0.254 0.287

Goal
Recall 0.367 0.267 0.354 0.404 0.490 0.136 0.273

Table 3.4: The average score of the seven classifiers on different metrics with images of
600× 400 pixels size scaled with MaxAbsScaler

There is no doubt that the Logistic Regression algorithm outbalances the other six algo-
rithms. Especially combined with the max abs scaler it dominates in almost all the used
metrics, with only exception the recall of class no 5 where Multinomial Naive Bayes can
predict one out of two goals correctly. As we observe the size of the image does not play
a decisive role in the performance of the model, so we will use the 240× 160 pixel images
to train our final model for time efficiency and scalability to larger datasets. As far as the
scaler is concerned, the max abs scaler seems to enhance in some extent the scores of
the Logistic Regression algorithm, so we will choose this one over the min max scaler.
Some other alternatives, apart from the Logistic Regression, would be the Support Vector
Classifier, a Neural Network and the Random Forest. On the opposite Decision Tree algo-
rithm and Multinomial Naive Bayes fall behind. Lastly, the k-Nearest Neighbors algorithm
should be definitely avoided for this problem as it even presents a negative Matthews
correlation coefficient in some cases.

3.4 Model tuning using class weights

Tuning a model in machine learning is about experimenting with the values of the hyper-
parmeters in order to achieve an even better prediction rate. As one can notice the dataset
we will use to train and test our model is slightly imbalanced with classes no 3 and 5 being
dominant. Therefore our attempts to boost the performance of our model will focus on
the modification of the weight of each class. We also observed during the determination
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process of the most suitable classifier that the default lbfgs solver was unable to converge.
However the amount of time that the other three solver demanded was prohibitive. Thus
experimenting with the solver hyperparameter is not an option.

There is no denying that the combinations of the weights are countless and the attempt
to examine as many of them as possible seems tempting. However due to limited time
and computational power it is essential to make a selection of only a few weight values
for every class. We have performed an exhaustive search of the 1024 models made of
combinations with the following weight values:

• {0.9, 1.0, 1.2, 1.4} for w1

• {0.9, 1.0, 1.2, 1.4} for w2

• {0.9, 0.8, 0.7, 0.6} for w3

• {1.0, 1.2, 1.4, 1.6} for w4

• {0.9, 1.0, 1.15, 1.25} for w5

Due to the mass of the tested combinations of class weights, it is not worth considering
to present the full list of them in the results. It would be serviceable though to provide
a subset of them which, we hope, will enlighten the purpose and the usefulness of this
experimental process.

The first row of the table will be our reference point. As we have slightly modified only the
weight of the third class to 0.9 the metrics observed are the closest we can to the original
non modified model. We will compare the rest of the models with this one to see what
influence the changes in weights have on the performance of the model.

In rows 2 and 3 we reduce even more the the weight of the third class leaving the weights
of the other classes untouched. The initial reduction leads to a noticeable raise of the
metrics that concern the goal class, with little effect on the average precision and recall of
themodel. The second reduction though has clearly a negative impact on the performance
of the model, which is mostly reflected on the Matthews’s correlation coefficient metric.

In the next two rows we modify the guide model by gradually increasing the weight of the
fifth class. The aim of this action is to boost mainly the goal related metrics, with the hope
that this will also benefit the general performance of the model. Indeed, by increasing
the fifth weigth by 15% we observe higher goal precision and recall as well as a higher
Matthews’s correlation coefficient and at the same time the average precision and recall
are maintained at the same level. But once again at the second increment all the metrics
are going downwards.

In rows from 6 to 8 we are attempting to modify two class weight at once. We chose
to enhance the two less represented classes, which are the first and the forth one. At
first by equally increasing their weights by 20% we notice a discouraging reduction of the
performance for almost every metric. However by increasing their weight even more we
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get a model with average metrics as good as those of the guide model and even better
goal related metrics. Lastly, when we increase the weight of the fourth class to 1.6 in the
next row we discern mixed changes to the metrics of the model, with goal related being
increased, average precision and Matthews’s correlation coefficient being decreased and
average precision remaining unchanged.

In rows 9 and 10 we display two combinations of weights that did not work while in the
last three rows three successful combinations are presented. With the combination of
the 11th row the maximum goal recall was achieved. The model with the class weights
of the 12th row has the highest Matthews’s correlation coefficient, average precision and
average recall metrics. Last but not least, the model with the last combination of class
weights demonstrates the best performance as far as goal precision is concerned. Taking
everything into consideration we decided to adjust our final model using the last combi-
nation not only because we have selected the goal precision as the most suitable metric
of evaluation but also because the rest of the metrics are fairly high in comparison to the
rest combinations.

Experimental Tuning of the Model using Class Weights

weights metrics

# w1 w2 w3 w4 w5 MCC Average
Precision

Average
Recall

Goal
Precision

Goal
Recall

1 1.00 1.00 0.90 1.00 1.00 0.15 0.33 0.31 0.38 0.41

2 1.00 1.00 0.80 1.00 1.00 0.15 0.31 0.30 0.44 0.50

3 1.00 1.00 0.60 1.00 1.00 0.10 0.29 0.26 0.39 0.41

4 1.00 1.00 0.90 1.00 1.15 0.16 0.33 0.31 0.46 0.50

5 1.00 1.00 0.90 1.00 1.25 0.13 0.32 0.29 0.42 0.45

6 1.20 1.00 0.90 1.20 1.00 0.14 0.31 0.29 0.38 0.36

7 1.40 1.00 0.90 1.40 1.00 0.15 0.32 0.30 0.42 0.45

8 1.40 1.00 0.90 1.60 1.00 0.14 0.30 0.30 0.44 0.50

9 1.00 1.20 0.80 1.00 0.90 0.08 0.28 0.26 0.36 0.36

10 1.40 1.00 0.90 1.20 1.00 0.12 0.30 0.29 0.33 0.32

11 0.90 1.20 0.60 1.60 1.15 0.15 0.32 0.30 0.48 0.59

12 0.90 1.40 0.70 1.40 1.15 0.20 0.39 0.34 0.44 0.55

13 1.00 1.00 0.60 1.20 1.25 0.19 0.36 0.33 0.50 0.55

Table 3.5: Comparison of the performance of models with different class weights
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3.5 Strategies of reckoning the final outcome

Until now we have decided which is the most efficient classification algorithm, we have
used this classifier to train and build our model and we have tuned that model experiment-
ing with the class weight parameter in order to boost its performance. The final step to
complete the process of reckoning the final outcome of any completed match of the sea-
son is to determine the way in which the predicted classes of the attempts will be handled.
We have developed three different strategies for that task, which are described below. In
order to make our strategies clear and better understood we provide one simple example
for every one of them.

3.5.1 Absolute Strategy

The first strategy is the most simple and obvious one. Its name is inspired by the absolute
trust we show to our model. We assume that the model has made 100% accurate predic-
tions. Thus it is enough just to count the attempts that were predicted to belong to class
no 5 not only to define the winner but even the accurate score of the match.

3.5.1.1 Absolute Strategy Example

Let us assume that our model has classified seven attempts as [2, 3, 5, 4, 5, 5, 1]. The three
first attempts belong to the home team and the rest four to the away team. Our absolute
strategy suggest that whatever the model predicted is true. So it suggests that the home
team scored one goal in its third attempt and the away team scored two goals in its second
and third attempt respectively. Consequently the winner is the away team with score 1-2.

3.5.2 Probabilistic Strategy

This strategy is more sophisticated in comparison to the first one. In this case we accept
the indisputable fact that our model is far away from being perfect and we try to deal
with its inaccuracy using probabilities. As a preparatory step we need to detect the most
probable real labels for every predicted class. This information can be directly extracted
by the confusion matrix of the classification. The following confusion matrix was formed
when trying to predict the matches of the last three matchdays (11th-13th) of the first half of
the greek Super League by using the first ten matchdays of the season as a training set.

Let us take the class no 2 as an example. Examining the 3rd row of the matrix we observe
that the most probable label when our model predicts an attempt to belong to the 2nd class
is 3. The second higher probability is the real label to be the same with the predicted one.
And the third more likely real label is 5. Making a list of the highest probabilities of the real
labels for an attempt predicted to be in the 2nd class we get [3, 2,5]. Similarly working for
the rest of the classes we get the following lists with the most probable labels.
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Figure 3.4: The confusion matrix of the predictions of the attempts from matchdays 11, 12
and 13, made by a model which was trained on the first ten matchdays

Most probable real labels

predicted
label

probable real labels

1st 2nd 3rd

1 1 2 3

2 3 2 5

3 5 2 4

4 4 3 1

5 5 3 4

Table 3.6: Comparison of the performance of models with different class weights

Now that we have access to that information we are able to describe the probabilistic strat-
egy in more detail. The main idea is to create all the combinations of probable labels by
replacing each predicted label with the three most probable ones. Thus 3 to the power of
the count of attempts of the match different combinations are produced. Every combina-
tion can be interpreted as either a home win, a draw or an away win. Each combination
”votes” for the most probable outcome according to its own labels. By summing up the
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number of votes for each outcome we can determine the outcome of the match as the one
which collects the most votes. We can also estimate the probability of each outcome as
the quotient of the number of votes in favor of this outcome to the total number of votes.

One detail that must be clarified here is that each vote has not the same weight. That
occurs because as we noticed in the confusion matrix, the three most probable real labels
for each predicted label occur with different frequencies. Therefore combinations are di-
vided into three categories, depending on their composition. There are combinations that
consist mainly of true labels with the highest probability, those which consist mainly of true
labels with the second higher probability and those whose true labels have the least high
probability. The votes of the combinations of the first category have an extra weight while
the votes of the combinations of the last category have less influence on the determination
of the final outcome.

3.5.2.1 Probabilistic Strategy Example

In this example we will introduce only two attempts, one for each team so that the number
of combinations (3numberofattempts) remains manageable. Let us assume that the model
predicted one mediocre attempt for the home team and a very good attempt (goalkeeper’s
save or of the post attempt) for the away team. So our list of predictions will be [3, 4].

We observe in the confusion matrix above that the most probable real labels when the
predicted label is 3 (mediocre attempt) are 5, 2 and 4. So the first attempt produces the
following combinations: [5] [2] [4]

Now we examine the second attempt. The predicted label is 4. The most probable real
labels are, according to the confusion matrix, 4, 3 and 1. So the algorithm of the proba-
bilistic strategy will execute the following steps:

Triple the already existing combinations

We will get:
[5] [2] [4] [5] [2] [4] [5] [2] [4]

To the first number_of_combinations_before_tripling add the first most probable real la-
bel. To the next number_of_combinations_before_tripling add the second most proba-
ble real label and to the last number_of_combinations_before_tripling add the third most
probable real label

We will get:
[5, 4] [2, 4] [4, 4] [5, 3] [2, 3] [4, 3] [5, 1] [2, 1] [4, 1]

We have produced all the possible combinations of the three most probable real labels
of each predicted attempt. We can now examine these combinations to predict the final
outcome and its probabilities. We notice there are three combinations that indicate a
home win (1st, 4th and 7th), six combinations vote for draw (2nd, 3rd, 5th, 6th, 8th, 9th) and no
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combination that suggests an away win.

If the combinations had the same weights then our final prediction for the outcome would
be a draw with probabilities of home win, draw and away win being 33%, 66% and 0%
respectively. However we argued that some combinations have a higher chance to be
real than others. As a typical example of this consider the first and the last combination.
The first one consist of the twomost probable real labels of each attempt, while the last one
consist of the two less probable choices. Although in this example with only two attempts
it is not very obvious, in the long run with more attempts, combinations of higher chance
to get real tend to stack up to the beginning of the list and those with the lesser chance
to show up in reality lie to the end of the list. Therefore we enhance the first items of the
list with a weight of 1.33, we leave the middle of the list untouched and we downgrade
the last items, giving them a weight of 0.66. As a result in this example we have three
combinations which vote for home win with weights 1.33 and 1.0 and 0.66, six votes for
draw with weights 1.33, 1.33, 1, 1, 0.66 and 0.66 and no combination votes for away win.
So the final prediction will be still a draw and also the probabilities happen to be the same.

3.5.3 Cumulative Strategy

Our third and last strategy is quite simple. The predicted labels of the attempts of every
team are summed up and then we compare the difference of the two sums. If this differ-
ence is lower than a threshold we have defined, then the outcome is considered a draw.
Else if the difference is above this threshold then the team with the greater sum stands out
as the winner. Depending on the difference of sums we also estimate the goal difference
of the match. In order this strategy to be as efficient as possible it is of crucial importance
to determine a good threshold. Once again we will trace back to our data.

The following table contains the difference of the sum of the labels of the attempts of the
two opponent teams. The columns represent the goal difference of the match. The table
includes the matches played in the first half of the season.

Although the mean values of the sums of differences of the labels suggest that we should
define the minimum threshold to be between 7 and 8, we ran an exhaustive search for the
determination of the best values of thresholds for the first half of the season. The search
indicated that setting the minimum threshold lower, at 3, lead to a better differentiation
between draws and short goal difference wins. Therefore 3 was qualified as preferable
minimum threshold. Similarly the thresholds to discrete the wins with medium goal dif-
ference (1-2 goals) from the wins with short goal difference (0-1 goals) and the wins with
wide goal difference (2-4 goals) from those with medium goal difference were set to 14
and 21 respectively.
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Difference of the sum of labels per goal difference

Matches Draw 1 Goal 2 Goals 3 Goals 4 Goals 5+ Goals

1 aek-ion - - - 14 - -

2 ari-ofi 14 - - - - -

3 oly-atr 22 - - - - -

4 pan-ast 2 - - - - -

5 pao-apo - - - - 15 -

6 the-gia - 8 - - - -

7 vol-lam - 2 - - - -

8 ari-gia - - - - - 16
... ... ... ... ... ... ... ...

86 oly-ion - 17 - - - -

87 gia-pan - - - 8 - -

88 vol-ari - 0 - - - -

Mean 7.38 8.92 11.82 20.13 24.0 16.0

Table 3.7: The difference of the sum of the real labels of the attempts of the opponents of
each match classified according to the goal difference of the match

3.5.3.1 Cumulative Strategy Example

This example is really simple and sort. Assume that our list of predicted labels consist of
twelve attempts, of which the first seven belong to the home team and the remaining five
to the away team
[3, 4, 2, 2, 4, 5, 3, 1, 1, 5, 5, 2]

The cumulative algorithm will calculate the two sums of the predicted labels of the at-
tempts, one for each team. The sum for the first team is homeTeam = 23 and for the
second team is awayTeam = 14. Consequently the difference of the two sums will be
homeTeam − awayTeam = 23 − 14 = 9 in favor of the home team. We defined our
minimum threshold to be 3, so the observed difference is above it. This leads us to the
conclusion that our prediction for the outcome of the match is a home win, despite the fact
that our model has initially predicted two goals for the away team and one goal for the
home team.

Now that we have thoroughly covered the entire process which will be utilized to reckon
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completed matches we are able to proceed to the results and note the performance of
each strategy.

3.6 Results

The following table presents the number of correct predictions of outcomes that every
strategy achieves per matchday. In every matchday seven matches are played, with only
exception the 19th in which the match between Asteras Tripolis and Appolon Smyrnis was
not covered by the television due to snowfall. The first thirteen matchdays were used as
a training set, so the predictions start from the 14th matchday.

The highest prediction rate, which is 58%, is being recorded by the probabilistic strategy.
The cumulative strategy is the second best, being 53% accurate. The absolute strategy
takes the third place, being only 1% less accurate than the cumulative one. An observation
that can be made is that the highest accuracy for every strategy in a single matchday is
six out of seven correct predictions and this rate has been only reached once for every
strategy. Another observation is that there are some matchdays in which all of the applied
strategies performed poorly. The most typical example is the 20th matchday, in which the
cumulative strategy was unable to predict any of the outcomes correctly. Attempting to
analyze the reasons why all of the tested algorithms failed, we notice that this was indeed
a special matchday during which none of the ”big four” teams of the greek Super League
(Olympiakos, Panathinaikos, AEK and PAOK) was victorious.

Motivated by this analysis, we should mention that the prediction rates observed do not
fulfill our expectations. It may be true that the tested strategies would outperform a naive,
dummy model which would randomly predict an outcome of a match to be one of the
three possible choices, home win, away win and draw. However nothing could be further
from the truth than suggesting that every outcome is equally possible in a match. In the
majority of the matches one of the two teams is odds-on to win the match and the other one
is the outsider. In the case of the greek Super League we claim that there is a noticeable
difference in the quality and the dynamics among the teams. Thus a naive algorithm
which would take advantage of this knowledge could propose that whenever one of the
mentioned above ”big four” teams plays with an opponent that does not belong to that
group, the team will be victorious. When two teams of this group play against each other
then the outcome will be a draw. Lastly when none of the opponent teams belong to
the ”big four” group the algorithm arbitrarily predicts the home team as a winner. This
simple algorithm applied to the second half of the league would outperform all of the tested
strategies, predicting correctly 53 out of 90 matches, which is equivalent to 59%.
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Number of outcomes that were correctly

predicted using each strategy

Matchday .
Num. of
matches Correctly Predicted

Absolute Probabilistic Cumulative

14 7 6 5 4

15 7 3 5 5

16 7 3 6 5

17 7 3 4 4

18 7 2 5 3

19 6 5 4 4

20 7 2 2 0

21 7 5 4 6

22 7 4 4 3

23 7 4 4 5

24 7 3 4 4

25 7 4 2 2

26 7 3 3 3

Total 47 52 48

Accuracy 52% 58% 53%

Table 3.8: Strategy comparison for completed matches

Our failure in achieving a higher rate than the one a simple algorithm that supports the
favorite brings off leads us to the pursuit of new ideas which could at least surpass the
upper bound of 60%. Such an idea would be to substitute the model we have built using
the attempts off all the teams with fourteen new models, one model for every team of the
league. This alternative approach has both pros and cons. One the one hand, each model
will be customized to a single team, which may contribute to a deeper learning of the way
the team attacks and scores. For example, one team may be very efficient in scoring from
close distance while another may excels in scoring by long shots. So for the first team a
Voronoi diagram in which the player who holds on to the ball is outside the boundary of the
penalty area will probably correspond to a poor chance, but for the later one it may indicate
a save or a goal. On the other hand this technique significantly reduces the number of
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diagrams upon each model will be trained.

In practice, in order to save time and computational resources, we developed four cus-
tomized models to compare with the central model we have demonstrated so far. The
teams we selected to build models for are Olympiakos, Panathinaikos, Volos and Apollon
Smyrnis. Their place in their final ranking of the season were 1st, 5th, 10th and 14th respec-
tively. Due to the variance in their performances we support the view that every team of
the league can be represented to a decent extent by one of the four selected teams. The
customized models have not been tuned. Therefore the following table demonstrates the
number of correct predictions and the prediction rates of the central model, in which ll the
teams contribute, with and without tuning, against those of the customized models:

Strategy
num. of central with centr. without customized

matches tuning tuning models

# % # % # %

absolute 51 28 55% 28 55% 24 47%

probabilistic 51 31 61% 32 63% 30 59%

cumulative 51 27 53% 28 55% 29 57%

Table 3.9: Comparison of ’central’ models with customized models

As we notice the idea of introducing a customized model for each team instead of a central
model in which matches and attempts of all the teams contributes to its training does
not serve our purpose. The majority of the customized models are less accurate than
both the tuned and not tuned central model. Even if the customized models based on
the cumulative strategy slightly outperform the central models of the same strategy, their
prediction rate is still lower than all the models which utilize the probabilistic method to
interpret the predictions for the attempts. An unexpected fact that comes to light by this
experiment is that the tuning of the model using class weights seems to have a negative
impact on the accuracy of the model. We checked whether this condition is confirmed
when examining the total number of the matches of the second half of the league using
the probabilistic strategy, which give the highest rate, and the results are the following:
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Probabilistic Models

90 matches

Not tuned Tuned

Correct
predictions 53 52

Accuracy 59% 58%

Table 3.10: Comparison of the performance of the model with and without tuning

It might be harsh to support the view that the tuning actually downgrades the quality of the
model, since the difference of the two models is only one correct prediction, but certainly
its importance in our case is not critical.
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4. OUTCOME OF FUTURE MATCHES RECKONING PROCESS

In this chapter we will concern ourselves with future matches. To clarify the term ’future’,
we refer to matches which of course have been completed at least two years sooner than
the time these lines were written. However all the data used to predict the outcome of
the matches were available before the day the matches took place. Thus the exact same
predictions could have been made from a week to a day before the events of the matches
had actually taken place.

Our dataset for the current process will be the table presented in the statistics section of
chapter three, namely the number of attempts per class every team hadmade until the 13th
matchday. Note that no Voronoi diagrams will participate in the estimation of the future
outcomes. This time, instead of classifying the attempts made during the matches, we
will use a different approach. First we calculate the mean number of attempts per match
per class made by every team. This computation is performed twice for every team, once
for the home matches and once for the away matches. For example, the champion of the
examined season Olympiakos made on average 9 attacks when played home, which are
further analyzed into 2 poor, 1.29 mediocre, 2.71 good, 1.57 very good attempts and 1.43
goals scored and 6 attacks in its away matches with 0.67 poor, 0.5 mediocre, 1.83 good,
0.67 very good attempts and 2.33 goals respectively.

Having this piece of information for every team of the season, we randomly generate
the number of the attempts for both opponents for every class. We achieve this using the
normal distribution withmean value themean number of attempts of the specific class. The
standard deviation is set to 1. Then the lists of attempts of both teams are being interpreted
using one of the three strategies described in chapter 3 in order to determine the final
outcome of the match. Because the dataset and the matches we will make predictions
for are the same as in the previous process, the most probable real labels defined for the
probabilistic strategy and the thresholds defined for the cumulative strategy remain the
same. Due to the introduction of randomness in the process, we test every strategy three
times to get more representative results.
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Absolute Strategy

Matchday .
Num. of
matches Correctly Predicted

1st try 2nd try 3rd try

14 7 3 5 1

15 7 4 5 3

16 7 5 2 2

17 7 2 2 3

18 7 3 3 1

19 6 0 1 1

20 7 3 2 3

21 7 1 4 4

22 7 2 3 6

23 7 3 2 3

24 7 2 2 4

25 7 2 1 2

26 7 1 1 4

Total 31 33 37

Accuracy 34% 37% 41%

Table 4.1: Absolute strategy performance on predicting future matches
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Probabilistic Strategy

Matchday .
Num. of
matches Correctly Predicted

1st try 2nd try 3rd try

14 7 4 4 3

15 7 2 3 4

16 7 3 5 4

17 7 3 5 2

18 7 3 1 1

19 6 3 3 3

20 7 3 2 4

21 7 3 4 5

22 7 4 4 3

23 7 4 5 4

24 7 4 2 5

25 7 3 2 5

26 7 3 2 2

Total 42 42 45

Accuracy 47% 47% 50%

Table 4.2: Probabilistic strategy performance on predicting future matches
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Cumulative Strategy

Matchday .
Num. of
matches Correctly Predicted

1st try 2nd try 3rd try

14 7 2 2 4

15 7 3 5 2

16 7 5 5 6

17 7 4 4 4

18 7 3 2 2

19 6 3 3 0

20 7 1 3 2

21 7 2 4 4

22 7 4 2 3

23 7 6 2 4

24 7 5 4 3

25 7 1 3 2

26 7 2 4 3

Total 41 43 39

Accuracy 46% 48% 43%

Table 4.3: Cumulative strategy performance on predicting future matches

Similarly to the prediction of completed matches the probabilistic strategy tends to show
more potential in predicting future matches. It also seems to be more stable, achieving
prediction rates in a range between 47% and 50%, in comparison to the other two strate-
gies in which more intense fluctuations are observed in their performances. However
more testing has to be conducted in order to verify the correctness of this consideration.
Although it is highly likely that better values of accuracy will be presented if more tests are
done, all the applied strategies are far from the desirable prediction rates that we had set
as a target.

Despite the fact that the achieved accuracy did not satisfy our expectations, the ability to
predict the final ranking of the teams at the end of the 26th matchday, given the ranking of
the first half of the season is remarkable.
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Real Ranking Average Ranking of 9 trials

Teams

Real
Rank
Posi-
tion

Real
Points

Average
Rank

Position

Average
Points

Position
Range

Points
Range

oly 1 65 1 61.78 1 55-71

the 2 53 2.67 48.78 2-4 44-54

aek 3 46 2.44 49.89 2-3 45-53

ari 4 45 5.44 40.89 3-8 36-49

pao 5 42 5.44 39.78 4-9 33-44

gia 6 40 5.78 39.33 4-8 31-42

ofi 7 37 6.22 37.22 4-9 31-42

ast 8 35 10.56 25.22 8-13 17-32

pan 9 32 11 26.44 8-13 20-32

vol 10 30 9.22 30.56 7-13 25-37

ion 11 26 8.67 30.11 6-12 21-39

atr 12 23 10.78 26.56 8-13 19-33

lam 13 18 12 24 10-14 18-29

apo 14 13 13.67 14.56 11-14 13-26

Table 4.4: The real ranking and the average ranking of the 9 trials

The above table includes plenty of information such as the average rank position and the
average points every team collected in the 9 simulations. The two last columns represent
the maximum and minimum rank position every team occupied and the minimum and
maximum points it collected. Observing the two ranking we feel that the following remark
are worth mentioning:

• In all of the conducted tests, Olympiacos was correctly predicted as the champion of
the season. This success was quite expected, as Olympiacos was 8 points ahead
of the second best A.E.K. on the first half of the season.

• PAOK, indicated as ’the’ in the rankings, occupied the 2nd position, covering a 5
points difference from the second best of the first half of the season, AEK, which
eventually finished 3rd. This ranking reversal was predicted by four out of nine simu-
lations. In another four simulations AEK and PAOK maintained their initial positions,
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2nd and 3rd respectively. Finally there was one simulation where AEK occupied the
2nd and PAOK the 4th place.

• Apart from the collected points of Asteras Tripolis, indicated as ’ast’, the real points
and positions of the rest teams are lying between the predicted ranges resulted by
the simulations. While some ranges are wider than others, running multiple tests
could be used as a technique to predict the final position and the total collected
points of the teams of the league with a certain confidence interval.

• Although half of the final rank positions of the teams were predicted correctly, we
can convert the average ranking table to the original ranking table with only three
moves. The tables below are the original ranking table with the average predicted
ranking with its points rounded in the nearest integer. In order to convert the second
table into the first one we have to do the following:

1. swap the 2nd with the 3rd row

2. swap the 11th with the 12th row

3. Move rows 11 and 12 three positions above

This fact evinces that generally the dynamics of the teams are decently reflected in
the predicted ranking.

• One last notice is that comparing the rankings of the first half of the season with
the final ranking, little differences are to be observed. This clearly indicates that the
Greek Super League is of the season 2021-2022 was a quite predictable league and
that our strategy to base the predictions of the outcomes of the second half of the
season to the first half of the season was a right choice.
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Real Ranking

Rank
Posi-
tion

Teams Points

1 oly 65

2 the 53

3 aek 46

4 ari 45

5 pao 42

6 gia 40

7 ofi 37

8 ast 35

9 pan 32

10 vol 30

11 ion 26

12 atr 23

13 lam 18

14 apo 13

Average Ranking of 9 Trials

Rank
Posi-
tion

Teams Points

1 oly 62

2 aek 50

3 the 49

4 ari 41

5 pao 40

6 gia 39

7 ofi 37

8 vol 31

9 ion 30

10 atr 27

11 pan 26

12 ast 25

13 lam 24

14 apo 15
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In the current thesis we discussed about the importance of the Voronoi diagram in analyz-
ing football matches, as well as how Voronoi diagrams in combination with machine learn-
ing techniques could be utilized as an initiative approach to predicting football matches
based on images rather than on statistical data. For this purpose we designed and im-
plemented several classification models in order to become competent in reckoning the
outcome of completed matches, whose final attempts are in our possession in form of
Voronoi diagrams. Then we tested various methods we had developed for the reckoning
of the outcome of completed matches, in order to predict future matches, this time using
statistical data instead of Voronoi diagrams.

While the significance of the Voronoi diagram in football analysis is indisputable, its use
in the prediction of outcome of football matches turned out to be inefficient. The highest
accuracy we achieved was 59% in reckoning completed matches. Applying the same
methods to generated data based on the attempts of the teams in the first half of the
league led to an also inadequate accuracy rate of 50% for the prediction of the matches
of the second half of the league. This prediction rate is noticeably lower than the 67,73%
of accuracy that has been observed in the literature for the same dataset [37].

Although the algorithms developed in this thesis did not surpass previous research efforts,
there are signs that they might be useful in computing possible ranges that concern the
final rank positions of the teams and their collected points.

5.2 Future Work

There is no denying that many improvements could bemade to the proposedmethodology
which could result in a more efficient prediction model. First and foremost it would be
highly beneficial to gain access to players tracking data captured through wearable gps
or camera technology. The effect of this would be the production of Voronoi diagrams of
superb quality. This would also eradicate the problem of manual data entry which is both
inaccurate and time consuming. Another possible way to improve our dataset would be
to include data from more seasons. It would be interesting to study whether the additional
training data would enhance the quality of the model or if the changing compositions and
applied tactics of the teams would eventually have a negative impact on it.

Apart from improving the dataset, splitting the diagrams into two categories, goal and not
goal and performing a binary classification instead of multinomial could also be examined
as an alternative mode of action. Besides it is a matter of debate whether the division of
the dataset in many not objectively distinct categories (mediocre attempt, good attempt,
very good attempt)is advantageous for the model or not.
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Moreover a useful suggestion to improve the effectiveness of the model would be to intro-
duce data related to the skills of the player who performs the attempt. Although judging a
player’s skills involves some subjectivity, there is no doubt that features like shot accuracy
could play a crucial role in how the attempt will end.

Last but not least, if extensive testing of the rejected algorithms or even testing of non-
examined classification algorithms were to happen, as well as further tuning, the results
could be surprising.
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Python scripts and code execution instructions

The python scripts used by the author for the purpose of this thesis are available on github:
https://github.com/ApostolosTheodorou/Football_Predictions_using_Voronoi_Diagrams

The following instructions may be helpful in the execution of the code.

Evaluation of different classification algorithms
To run an evaluation of the tested classifiers navigate to the code/classifier_selection di-
rectory and run:

-$ python3 evaluateClassifier.py

Estimated time for 1 fold: 12 min.

If you want to run multiple folds create more folds directories with the structure of the
existing fold and name them Fold-2, Fold-3 etc. Then change the number of folds in file
evaluateClassifier.py line 16.

Predictions of future or completed matches
To run a prediction for future or completedmatchesmove the savedModels andmatchdays
directories in the code/prediction directory and run:

-$python3 driver.py -ma <future>/<completed> -f <first matchday of predictions> -l <last
matchday of predictions> -mo <model path> -s <absolute>/<probabilistic>/<cumulative>

Example:
-$python3 driver.py -ma future -f 20 -l 26 -mo ./savedModels/RandomForest_oly_1_13_14_26.skops
-s probabilistic

New models training
To train a new model run the following code:

-$python3 train_model.py -p <path to matchdays directory> -t <team> -c <classifier> -str
<starting training set matchday> -etr <ending training set matchday> -ste <starting test
set matchday> -ete <ending test set matchday> -s <model’s name>

where:

• team is a three character string with possible values: All (for all teams to contribute
to the building of the model), aek, ion, ari, ofi, oly, atr, pan, ast, pao, apo, the, gia,
vol, lam
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• classifier possible values: Decision Tree, SVC, Random Forest, Nearest Neighbors,
Naive Bayes, Neural Network, Multinomial Logistic Regression

• arguments refering to matchdays can receive integer values from 1 to 26

• in the name of your model do not include file extension (.skops file extension is added
by default)

Example: -$python3 train_model.py -p ./matchdays -t oly -c ’Random Forest’ -str 1 -etr 13
-ste 14 -ete 26 -s RandomForest _oly_1_13_14_26
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ABBREVIATIONS - ACRONYMS

GPU Graphics Processing Unit
SVC Support Vector Classifier
SVM Support Vector Machine
k-NN k-Nearest Neighbors
PCA Principal Component Analysis
TP True Positive
TN True Negative
FP False Positive
FN False Negative
MCC Mathew’s Correlation Coefficient

THE TEAMS

oly Olympiacos F.C.
the P.A.O.K. F.C.
aek A.E.K. F.C.
ari Aris F.C.
pao Panathinaikos F.C.
gia PAS Giannina
ofi O.F.I. F.C.
ast Asteras Tripoli F.C.
pan Panetolikos F.C.
vol Volos NFC
ion Ionikos F.C.
atr Atromitos F.C. Athens
lam PAS Lamia 1964 F.C.
apo Apollon Smyrni
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