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Abstract

Active Galactic Nuclei exhibit characteristic stochastic flux fluctuations in their X-
ray emission, providing important insights into the accretion physics around su-
permassive black holes. Despite this, few systematic studies have targeted vari-
ability in AGNs with high Eddington ratios and massive black holes, particularly
on shorter timescales that closely reflect conditions near the central engine. In
this thesis, we study intrinsic X-ray variability through normalized excess variance
(NXSV) using a sample of optically-selected SDSS QSOs also found in observations
from XMM-Newton’s Serendipitous Source Catalog. Our sample spans Eddington
ratios λEdd ≈ 10−2 to the Eddington limit and black hole masses MBH ≈ 108–1010M⊙.
We employ a custom processing pipeline for optimal light curve extraction and uti-
lize a new Bayesian hierarchical methodology fit for the Poisson nature of the light
curves to estimate mean NXSV across populations of physically similar QSOs. Our
analysis reveals a positive correlation between NXSV and λEdd, challenging earlier
studies reporting an anti-correlation. This increased short-term X-ray variability
at λEdd may result from changes in the corona’s geometry or from enhanced tur-
bulence associated with transitions to slim-disk accretion. Conversely, variability
shows no clear scaling with MBH, although comparisons with theoretical models
suggest a subtle correlation could be obscured by the uncertainties inherent to our
values.
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Chapter 1

Introduction

1.1 Active Galactic Nuclei

1.1.1 What are AGN

All galaxies are believed to host supermassive black holes (SMBHs) at their centres
[e.g. Kormendy and Ho, 2013, review article]. These black holes grow primarily
through the accretion of surrounding material, a process that can release tremen-
dous amounts of energy. This energy is observed across a broad range of wave-
lengths in the Electromagnetic (EM) spectrum and through its interaction with the
interstellar medium (ISM) alters its physical conditions thereby directly affecting
the host galaxy [e.g. Silk and Rees, 1998, Fabian, 1999, King, 2003]. Simulations of
galaxy evolution have shown a consistent need for feedback from acreeting black
holes to reconstruct fundamental properties of galaxies, such as their star forma-
tion history and stellar mass[e.g. Somerville and Davé, 2015, review article]. Study-
ing the accretion process is therefore essential not only for understanding the for-
mation and growth of these extreme objects but also for having a complete picture
of galaxy evolution[Alloin et al., 2006].
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1.1.2 Current picture of accretion flow

Given the significance of SMBHs in shaping their host galaxies, there have been in-
tensive efforts to understand the structure and dynamics of accretion flows. How-
ever, the scales involved are extremely small. The gravitational radius (Rg), the
characteristic radius dominated by the gravitational effects of the black hole, is
given by:

Rg =
GM

c2
, (1.1)

where G is the gravitational constant, M is the mass of the black hole, and c is the
speed of light. For a black hole with a mass of 108M⊙:

Rg =
(6.674× 10−11 m3 kg−1 s−2)(108 × 1.989× 1030 kg)

(3.0× 108 m/s)2 ≈ 1.5AU ≈ 22× 107km.

At a distance of about 100 Mpc, the corresponding angular size θ can be calculated
as:

θ =
Rg

d
=

1.5AU
100× 3.086× 106 pc ≈ 7microarcseconds.

Due to the limitations on the angular resolution of our current observatories, direct
imaging has been possible for only two black holes so far¹. For the vast majority
of AGN, indirect methods are required to study the accretion flow and its compo-
nents. One such approach is to study the stochastic flux variations of the radia-
tion emitted by the accretion process. Flux variability is a characterizing feature
of any accretion flow and provides a powerful tool to examine their structure be-
yond the limits of angular resolution since variations in the inner accretion flow
are transmitted at the speed of light, thereby allowing us to translate time differ-

¹Direct imaging of black holes was made possible through the Event Horizon Telescope (EHT), a
very long baseline interferometry (VLBI) network operating at millimeter wavelengths. By linking
radio observatories across the globe, the EHT effectively creates an Earth-sized telescope with an
angular resolution of about 20 microarcsec, enough to image event horizon-scale structures of nearby
SMBHs. The EHT has been used to sucessfully image the supermassive black hole at the center of M87
as well as Sagittarius A*, the black hole at the center of the Milky Way.
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ences between variability patterns into spatial scales and distances. Recent X-ray
polarization studies provide additional insights, but variability remains the domi-
nant method for studying the inner structure of AGN. The current picture of the
accretion flow around SMBHs, which is heavily influnced by time domain stud-
ies, includes several distinct components (see figure 1.1):

Figure 1.1: Typical structure (not on scale) of an AGN in accordance to the unified
model with its distinct physical characteristics highlighted [Ricci, 2011].

1.1.2.1 Central supermassive black hole

The presence of supermassive black holes at the centres of galaxies is inferred from
several points of observation. In the case of the Milky Way, Sagittarius A*, the black
hole at its center has been studied through precise measurements of stellar move-
ment in its vicinity. These stellar motions are well described by Keplerian orbits,
allowing a straightforward application of of Kepler’s third law to estimate the black
hole mass as:

MBH =
rv2

G
(1.2)

where r is the star’s orbital radius, v is its velocity, and G is the gravitational con-
stant.

For distant AGN, where direct observations of stellar orbits are not feasible, we
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rely on broad emission lines observed in their spectra. These lines originate from
gas clouds in the Broad Line Region (BLR), a region surrounding the centre of the
AGN where high-velocity gas emits broad spectral lines. Assuming that the motion
of these BLR clouds is dominated by the gravitational influence of an extremely
dense object at their centre (i.e. the SMBH) and that this motion follows Keplerian
dynamics², we can apply the virial theorem to estimate the black hole mass as:

MBH = f
RBLRv

2

G
, (1.3)

where

▶ RBLR is the radius of the BLR determined through reverberation mapping,

▶ f is a geometric factor that accounts for the unknown geometry and kinemat-
ics of the BLR,

▶ v is the velocity of the gas (inferred from the full width at half maximum of
the broad emission lines).

Reverberation mapping techniques are often employed to measure RBLR by
observing the time delay, τ , between variations in the AGN continuous emission
and the corresponding response in the broad emission lines [Alloin et al., 2006].
The radius is then obtained using the relation:

RBLR = cτ, (1.4)

where c is the speed of light. Combining this result with Equation 1.3, we can esti-
mate MBH with reasonable accuracy as:

MBH =
fcτ∆v2

G
(1.5)

²The virial theorem assumes that the BLR clouds are in Keplerian motion around the black hole
and that the system is in dynamical equilibrium. While this is a reasonable approximation for some
AGN, deviations from these assumptions (e.g., non-Keplerian motion, outflows, or inflows in the BLR)
may introduce uncertainties in the estimated mass.
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1.1.2.2 Accretion Disk

A piece of evidence for the presence of accretion disks in AGN is a characteristic fea-
ture in their spectral energy distribution (SED) shown in (Figure 1.2), known as the
Blue Bump. This feature, peaking in the ultraviolet (UV) region, is often attributed
to thermal emission from a geometrically thin, optically thick accretion disk.

Figure 1.2: A schematic representation of an AGN’s Spectral Energy Distribution
SED, loosely based on the observed SEDs of radio-quiet quasars. The black solid
curve represents the total SED and the various coloured curves (with an arbitrary
offset) represent the individual components. Also shown is an example radio–UV
SED of a starburst galaxy [grey curve; the SED is of M82 taken from Silva et al.,
1998](grey curve; the SED is of M82 taken from Silva et al., 1998)). Adapted from
[Baldini, 2015].

The presence of this thermal component suggests that most of the gravitational
potential energy of the infalling matter is converted into radiation near the black
hole, consistent with the predictions of accretion disk models.

In AGN, accretion disks form due to the conservation of angular momentum.
As matter falls inward towards the SMBH, viscous forces dissipate energy and en-
able the gas to lose angular momentum and move further inward. For optically
thick, geometrically thin accretion disks, often referred to as Shakura-Sunyaev or
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α-disks [Shakura and Sunyaev, 1973], the temperature at a radius r is given by:

T (r) =

(
3GMBHṀ

8πσr3

[
1−

(
RISCO
r

)1/2
])1/4

, (1.6)

where Ṁ is the mass accretion rate, σ is the Stefan-Boltzmann constant, and RISCO

is the innermost stable circular orbit (ISCO). The temperature increases inward,
reaching a maximum near RISCO.

The total bolometric luminosity Lbol of an accreting black hole is related to the
mass accretion rate Ṁ and the radiative efficiency η by:

Lbol = ηṀc2, (1.7)

where η represents the fraction of the rest mass energy of the accreted matter that
is converted into radiation. The value of η depends on the spin of the black hole as
it affects the innermost stable circular orbit (ISCO) of the accretion disk, which in
turn influences the radiative efficiency of the accretion process. For a non-rotating
(Schwarzschild) black hole, the ISCO is approximately 6Rg resulting in η ≈ 0.06,
while for a maximally rotating (Kerr) black hole, the ISCO can be as close as Rg an
in turn η can be as high as 0.42. [Netzer, 2013].

The Eddington luminosity LEdd, represents the theoretical upper limit at which
radiation pressure outward balances the gravitational pull inward. It is derived by
equating the outward radiation force with the inward gravitational force on the
infalling matter:

LEdd =
4πGMBHmpc

σT
, (1.8)

where MBH is the black hole mass, mp is the proton mass, and σT is the Thomson
scattering cross-section for electrons. Substituting the constants, this becomes:

LEdd ≈ 1.3× 1038
(
MBH
M⊙

)
erg s−1. (1.9)

The Eddington accretion rate ṀEdd is the mass accretion rate required to sustain the
Eddington luminosity, assuming a given radiative efficiency η. From the equation
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Lbol = ηṀc2, substituting LEdd for Lbol yields:

ṀEdd =
LEdd
ηc2

. (1.10)

Substituting LEdd from Eq. 1.12, we get:

ṀEdd ≈ 2.2× 10−8

(
MBH
M⊙

)(
0.1

η

)
M⊙ yr−1. (1.11)

In practice, AGN often operate at a fraction of their Eddington luminosity. The ra-
tio of the bolometric luminosity Lbol, to the Eddington luminosity, known as the
Eddington ratio λEdd, provides insight into the accretion state of the SMBH:

λEdd =
Lbol
LEdd

. (1.12)

Thin disks, which are radiatively efficient, operate at accretion rates below or near
the Eddington limit. As the accretion rate approaches or exceeds the Eddington
mass accretion rate ṀEdd, radiation pressure becomes significant, and the thin disk
transitions into a slim disk [Abramowicz et al., 1988]. In this regime, the disk be-
comes geometrically thick, and a portion of the gravitational energy is advected
inward with the flow rather than being radiated away, leading to reduced radia-
tive efficiency and harder emission spectra. At very low accretion rates, far below
ṀEdd, the gas density in the disk becomes too low for efficient cooling, resulting
in an advection-dominated accretion flow (ADAF) or radiatively inefficient accretion
flow (RIAF) [Narayan et al., 1998]. In such cases, most of the released energy is car-
ried inward by the flow rather than being radiated, leading to a hot, thick disk that
emits primarily in the X-ray band. This transition from thin disks to slim disks and
eventually to ADAFs helps explain the varied observational properties of AGN.

1.1.2.3 Corona

Observations show that AGN emit a significant fraction of their energy in the X-ray
band, with spectra characterized by a power-law shape and a high-energy cutoff
at around 100–300 keV (Figure 1.2). This X-ray emission cannot originate from the
accretion disk itself, as the disk temperature, even in its innermost regions, reaches
only ∼ 105 K, peaking in the UV band. The observed X-rays must therefore be pro-

7



duced by a separate, hotter component—believed to be a hot, optically thin corona
[Deufel et al., 2002, Netzer, 2013].

The primary mechanism behind the X-ray emission in AGN is inverse Comp-
ton scattering, where low-energy photons gain energy by interacting with high-
energy (relativistic) electrons. In AGN, soft UV photons emitted by the accretion
disk are thought to be upscattered by hot electrons in the corona, resulting in a
characteristic power-law X-ray spectrum. The energy of the scattered photon is
approximately given by:

Escat ≈ γ2Einit, (1.13)

where γ is the Lorentz factor of the electron and Einit is the initial energy of the
photon [Padovani et al., 2017]. This process explains the hard X-ray continuum ob-
served in AGN spectra and produces a power-law spectral shape with a constrained
photon index Γ, where

FE ∝ E−Γ (1.14)

and Γ typically ranges from 1.5 to 2.5 [Bogensberger et al., 2024a].

The strength of inverse Compton scattering is characterized by the Compton
y-parameter, which quantifies the amount of energy gained by the photons during
scattering. It is defined as:

y =
4kTe

mec2
τ, (1.15)

where Te is the electron temperature, me is the electron mass, c is the speed of light,
and τ is the optical depth of the corona. For AGN, y is typically close to 1, indicating
that significant Comptonization occurs. The temperature of the coronal electrons,
Te, and the optical depth, τ , are the main factors that determine the spectral shape
of the X-ray emission.

The observed high-energy cutoff Ecut is related to the coronal temperature by:

Ecut ≈ 2− 3 kBTe, (1.16)

where kB is the Boltzmann constant. Typical values of Te inferred from observa-
tions range from 108 to 109 K, corresponding to cutoff energies between 100 and 300
keV. Beyond the cutoff, the flux drops sharply, marking the high-energy limit of the
scattering process [Padovani et al., 2017].
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The properties of the corona, such as Te, τ , size, and geometry, can be inferred
through various observational methods. X-ray spectroscopy provides direct mea-
surements of the high-energy cutoff Ecut, which is related to the coronal tempera-
ture through equation (1.16), and constrains the optical depth τ through the shape
of the power-law spectrum. Reflection features, such as the iron Kα line at 6.4 keV
and the Compton hump at 20–30 keV, further help determine the coronal geome-
try and its distance from the disk [Padovani et al., 2017]. Rapid X-ray variability,
on timescales of hours to days, offers insight into the size of the corona, with typ-
ical estimates placing it within a few gravitational radii of the black hole. Then,
X-ray polarization studies can distinguish between different geometries, such as a
compact, patchy corona near the disk or a vertically extended lamppost-like struc-
ture, based on the degree and orientation of polarization [Netzer, 2013, Marin et al.,
2024]. Together, these methods provide a comprehensive understanding of the
corona’s physical conditions.

1.1.2.4 Torus

AGN typically exhibit different observational properties based on their orientation
relative to the observer. The idea of a dusty obscuring structure originated from
observations of type 1 and type 2 AGN, which show the same narrow-line emis-
sion but differ in their broad-line and continuum properties. Type 1 AGN exhibit
broad emission lines and strong ultraviolet (UV) and optical continuum, while type
2 AGN show only narrow lines and weaker continuum emission [Antonucci, 1993].
These differences can be attributed to the presence of a torus-shaped structure sur-
rounding the accretion disk and broad line region (BLR). When the torus is viewed
edge-on, it obscures the central engine and BLR, allowing only narrow lines from
the more extended narrow line region (NLR) to be observed, resulting in a type
2 spectrum. Respectively, when viewed face-on, the BLR and accretion disk are
directly visible, producing the type 1 spectrum [Netzer, 2013].

Direct imaging of the torus has been achieved in a few nearby AGN using high-
resolution interferometric observations at infrared (IR) wavelengths, providing ad-
ditional evidence for its existence. These observations reveal structures with sizes
ranging from a fraction of a parsec to several tens of parsecs, consistent with the
expected dimensions of the torus [Tristram et al., 2007, Burtscher et al., 2013].
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The torus is thought to be composed of gas and dust with temperatures ranging
from a few hundred to about 1,500 K, corresponding to the sublimation tempera-
ture of dust grains [Netzer, 2013]. Its inner edge is defined by the dust sublimation
radius, which as expected depends on the luminosity of the central source:

Rsub ≈ 0.4

(
Lbol

1045 erg s−1

)0.5

pc, (1.17)

where Lbol is the bolometric luminosity of the AGN³. Beyond this radius, the gas
cools sufficiently for dust grains to survive.

Observations suggest that the torus extends from a fraction of a parsec to sev-
eral tens of parsecs [Netzer, 2013]. The dust and gas seem to be distributed in
discrete clouds rather than a continuous medium. This clumpiness explains the
observed variability in AGN infrared emission and the occasional only partial cov-
ering of the central regions.

The torus also reprocesses a significant fraction of the AGN’s radiation, absorb-
ing high-energy UV and optical photons from the central engine and re-emitting
them in the infrared (IR). The resulting IR emission is a key property of the torus’
properties and is often used to indirectly estimate the AGN’s bolometric luminosity
[Cackett et al., 2021].

1.1.2.5 Broad & narrow line regions

The existence of the broad-line region (BLR) and narrow-line region (NLR) in AGN is
inferred from the distinct spectral features observed in their emission-line spectra.
AGN typically show both broad and narrow emission lines, with different widths
and ionization levels. Broad lines, such as Hα and Hβ, have FWHM values ranging
from 103 to 104 km/s, indicating high-velocity gas close to the black hole. Narrow
lines, such as [O III] and [N II], have FWHM values less than 103 km/s, suggesting
gas at much larger distances, moving at lower velocities. These spectral differences
naturally point to two distinct regions of line-emitting gas: a compact, high-density
BLR near the black hole, and a more extended, lower-density NLR farther out [Net-

³The proportionality constant is an empirical calibration based on interferometric observations of
nearby AGN [Kishimoto et al., 2007], while the exponent 0.5 is theoretically expected from radiative
equilibrium considerations and has been observationally validated [Suganuma et al., 2006, Kishimoto
et al., 2007].
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zer, 2013].

Broad-Line Region (BLR): The BLR is located close to the accretion disk, typically
within a few light days to a few light weeks from the central black hole [Netzer,
2013]. It consists of high-density clouds (ne ∼ 109 − 1011 cm−3) moving at high ve-
locities (up to tens of thousands of kilometers per second) under the influence of
the black hole’s gravitational field⁴. These high velocities result in the broadening
of emission lines, with FWHM values ranging from 103 to 104 km/s.

The BLR emits prominent broad lines, including hydrogen Balmer lines (Hα,
Hβ), helium lines, and high-ionization lines such as C IV and Mg II. These emis-
sion lines are produced by photoionization, with the ionizing radiation originating
from the accretion disk. The size of the BLR can be estimated using the empirical
size-luminosity relation derived from reverberation mapping studies [Kaspi et al.,
2000]:

RBLR ∝ L0.70±0.03
5100 , (1.18)

where L5100 is the monochromatic luminosity at 5100 Å⁵ . For a typical AGN with
L5100 = 1044 erg s−1, RBLR is on the order 10−2 pc.

The ionization parameter U , which quantifies the ratio of ionizing photon den-
sity to general gas density, is generally higher in the BLR than in the NLR due to the
proximity to the ionizing source. U in the BLR typically ranges from 10−1 to 1 [Net-
zer, 2013].

Narrow-Line Region (NLR): The NLR is located much farther from the SMBH,
extending from several hundred parsecs to a few kiloparsecs [Netzer, 2013]. The
gas in the NLR is less dense (ne ∼ 103−106 cm−3) and moves at lower velocities com-

⁴While Keplerian motion is generally assumed for gas in the BLR, there is evidence that non-
Keplerian dynamics, such as outflows and radiation-pressure-driven winds, may also play a signif-
icant role. In some AGN, high-ionization lines such as C IV exhibit blueshifted profiles, suggesting
that at least part of the BLR gas is participating in an outflowing wind rather than being confined to
bound Keplerian orbits [Netzer, 2013].

⁵Since direct measurements of the ionizing UV luminosity are challenging due to absorption, the
optical luminosity at 5100 Å, L5100, is used as a proxy for the ionizing flux because it scales with the
accretion disk’s total output. The size of the BLR corresponds to the distance where the ionizing flux
is sufficient to maintain photoionization equilibrium, leading to the theoretical scaling RBLR ∝ L0.5

5100.
Empirically, reverberation mapping studies confirm a slightly steeper relation, RBLR ∝ L0.6±0.1

5100 , likely
due to variations in BLR cloud distribution and geometry [Peterson, 2006, Kaspi et al., 2000].
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pared to the BLR, resulting in narrower emission lines with FWHM values typically
less than 103 km/s.

Prominent narrow lines emitted by the NLR include forbidden lines such as [O
III], [N II] and [S II]. These lines are produced primarily by photoionization, with the
ionizing radiation originating from the central region. Due to the lower density and
larger spatial extent, de-excitation due to collisions is less significant in the NLR,
allowing forbidden lines to form. The ionization parameter in the NLR is lower
than in the BLR, typically ranging from 10−3 to 10−1[Netzer, 2013].

Below is a table (Table 1.1) summarizing and directly comparing the above
characteristic values between the BLR and NLR.

Property BLR NLR
Distance from SMBH 10−2–10−1 pc 102–103 pc
Density (ne) 109 − 1011 cm−3 103 − 106 cm−3

Velocity (FWHM) 103–104 km/s < 103 km/s
Ionization Parameter (U ) 10−1 to 1 10−3 to 10−1

Prominent Lines Hα, Hβ, C IV, Mg II [O III], [N II], [S II]

Table 1.1: Comparison of the characteristic properties of the Broad Line Region and
Narrow Line Region in AGN.

1.1.2.6 Relativistic jets

The relativistic jets that are characteristic of some AGN are highly collimated out-
flows of plasma that have been observed extending over vast distances, from sev-
eral parsecs to hundreds of kiloparsecs, and emit across the entire electromagnetic
spectrum, from radio to gamma rays. Despite decades of observations, the exact
mechanisms responsible for jet formation and intense collimation remain poorly
understood. [Netzer, 2013].

Observationally, jets are most prominently associated with radio-loud AGN, in-
cluding blazars and radio galaxies. High-resolution imaging with radio interfer-
ometers, such as the Very Long Baseline Array (VLBA), has revealed detailed jet
structures suggesting that the plasma flows are not uniform but instead consist of
discrete components or regions of varying density and velocity. [Alloin et al., 2006]
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1.2 Phenomenology of AGN

The different emission components of the accretion flow have historically led to
a large diversity in the observed properties of AGN depending on the wavelength
of the observations and the orientation of the accretion flow system relative to the
observer. This diversity in the observed properties of AGN has also led to classifi-
cation schemes devised by astronomers in attempt to better understand the AGN
phenomenon. Some of these classifications are arbitrary and are only kept for his-
torical purposes. Others have physical origin and therefore provide information
on the structure of accretion flows.

1.2.1 AGN Classification

AGN classification (Figure 1.3) arises from observable differences caused primarily
by orientation and, to a lesser extent, intrinsic properties such as luminosity and
jet power . The unification paradigm provides a framework to explain these differ-
ences by positing that all AGN are manifestations of the same underlying processes
with differing observation conditions [Netzer, 2013].

AGN are first divided into two broad categories based on their radio-wave emis-
sions:

▶ Radio-quiet AGN, which lack significant jet activity and are primarily ob-
served through their optical, UV, and X-ray emission.

▶ Radio-loud AGN, which feature powerful relativistic jets and produce signif-
icant radio emission [Antonucci, 1993].

Within each of these categories, AGN are further classified based on:

1. Luminosity: Based on the bolometric luminosity of the AGN:

▶ Seyferts: Low to intermediate luminosity AGN (Lbol ≲ 1045 erg s−1), typi-
cally found in nearby spiral galaxies.

▶ QSOs (Quasi-StellarObjects): High-luminosity AGN (Lbol ≳ 1045 erg s−1),
able observed at high redshifts and as such able to serve as cosmological
probes for early universe conditions. [Netzer, 2013].
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Figure 1.3: Schematic representation of our understanding of the AGN phenomenon in
the unified scheme. The type of object we see depends on the viewing angle, whether or
not the AGN produces a significant jet emission, and how powerful the central engine is.
Graphic by Marie-Luise Menzel [Beckmann and Shrader, 2012].

2. Obscuration: Depending on whether the BLR and accretion disk are directly
visible or obscured by the torus:

▶ Type 1 AGN: BLR and continuum are visible, resulting in broad emission
lines and a strong UV/optical continuum.

▶ Type 2 AGN: BLR and continuum are obscured by the torus, leaving only
narrow lines from the NLR visible.

Spectropolarimetric⁶ observations of some type 2 AGN reveal broad lines in
polarized light, indicating that the BLR is present but obscured, with scattered light
reaching the observer. This provides strong evidence supporting the unification
model.

⁶Observations that involve measuring and comparing the polarization of light across different
wavelengths
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Blazars are a subclass of radio-loud AGN where the relativistic jet is pointed
almost directly toward the observer. This alignment results in extreme relativistic
beaming, causing the observed emission to be dominated by non-thermal radia-
tion from the jet. Blazars exhibit strong variability across all wavelengths and are
further divided into:

▶ Flat Spectrum Radio Quasars: High-luminosity blazars with strong broad
emission lines and a prominent accretion disk.

▶ BL Lacertae objects: Low-luminosity blazars with weak or no emission lines
and spectra dominated by synchrotron emission from the jet.

We will later on (Chapter 1.4) focus on a sample of type-I QSOs in the redshift
range z = 0 − 4 due to their high Luminosities even at higher redshifts and along
with their easier observation conditions as type-I AGN with an unobscured line of
sight to the central engine which makes them ideal for long-term observation.

1.3 Variability in AGN

One of the most distinctive features of AGNs is their flux variability, observed as ir-
regular, aperiodic changes in their brightness across a broad range of wavelengths
and timescales. This variability, particularly in the X-ray and optical bands, is be-
lieved to originate from processes within the accretion flow and corona, regions
that lie only a few gravitational radii from the central black hole [Vaughan et al.,
2003]. Since these regions cannot be directly imaged, variability studies serve as a
key tool for examining the physical structure and dynamics of the innermost parts
of AGNs.

While AGNs may exhibit other forms of variability, such as quasi-periodic os-
cillations [Das and Czerny, 2011], tidal disruption events (TDEs) [Komossa, 2015], or
sudden changes in spectral state (e.g., changing-look AGNs) [Veronese et al., 2024],
we will focus almost exclusively on stochastic variability, characterized by random,
aperiodic flux variations [Georgakakis et al., 2021]. This type of variability is com-
monly modeled as a ”red noise” process, where fluctuations on longer timescales
dominate the variability power spectrum. Such stochastic variability is also be-
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lieved to carry information about the physical processes governing accretion [Kelly
et al., 2009].

1.3.1 Importance of variability studies

Since the innermost regions of AGNs—where the accretion disk and corona reside—
are impossible to resolve directly with current imaging techniques, variability pro-
vides an indirect method for examining these regions. By analyzing the stochastic
fluctuations in flux, we can gain insight into the structure of the accretion flow,
the properties of the corona, and the mechanisms driving the observed variabil-
ity. The shortest variability timescales observed in AGN light curves set an upper
limit on the size of the emitting region, as the signal cannot vary faster than the
light-crossing time of the region:

tcross =
R

c
, (1.19)

where R is the characteristic size of the emitting region and c is the speed of light.

For typical AGN with X-ray variability timescales ranging from hundreds of
seconds to a few hours, the inferred sizes are on the order of a few gravitational
radii from the SMBH. This implies that the X-ray emission originates from a very
compact region close to the event horizon [Vaughan et al., 2003, Bogensberger et al.,
2024a].

In addition, variability studies are invaluable in constraining models that at-
tempt to explain the physics of accretion. Various models have been proposed to
explain the observed flux variations, including instabilities in the accretion disk,
changes in coronal conditions, and turbulence in the accretion flow [Kelly et al.,
2009]. By comparing observed variability patterns to theoretical predictions, we
can test these models and identify the dominant mechanisms responsible for AGN
variability.

In the context of accretion disk models for example, variability timescales may
provide insights into whether the disk follows the Shakura-Sunyaev [Shakura and
Sunyaev, 1973], slim disk [Abramowicz et al., 1988] or ADAF models [Narayan et al.,
1998] while short-term X-ray variability better constrains the geometry and phys-
ical size of the corona, distinguishing between the lamp-post and patchy corona
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models. Additionally, time lags between X-ray and UV/optical variability can be
used to infer the radial structure of the disk and test corresponding reprocessing
and reverberation models [Cackett et al., 2021].

1.3.2 X-ray Variability in AGN

The significance of the X-ray variability for understanding the inner structure of ac-
cretion flows has led to systematic studies to understand the statistical properties
of the X-ray flux variations at different timescales and how they depended on the
fundamental properties of system, such the mass of the black hole and its Edding-
ton ratio. This is not only important for studying the inner stricture of accretion
flows but can also provide constraints to models for the origin of the flux variations.

The most complete characterization of the stochastic flux variability of AGN
is by decomposing long and uninterrupted light curves to its Fourier components.
The amplitude of the a given Fourier components as a function of the correspond-
ing frequency is refereed to as the power spectral density (PSD).

The PSD of AGN X-ray observations is often used to characterize the distribu-
tion of variability power across different timescales. Observations have shown
that the PSD typically follows a broken power-law shape (Figure 1.4), with a high-
frequency slope of −2 and a low-frequency slope of −1.

Figure 1.4: PSD plots for the AGN NGC 5548 and NGC 3516, derived from RXTE
observations in the 2-10 keV energy range showing both a naive single power-law
fit (dotted line) and a more accurate broken power-law fit (solid line). Adapted from
[Uttley et al., 2002]

.
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The break frequency between the above two regimes is found empirically to be
inversely proportional to black hole mass [McHardy et al., 2006]. This is consistent
with models suggesting a link between variability and a characteristic timescale
within the accretion flow, such as the viscous timescale, which governs how effi-
ciently angular momentum is transported outward and is known to scale linearly
with black hole mass: tvis ∝ MBH , and as such the break frequency would then
scale inversely with it [Netzer, 2013]:

In addition to black hole mass, studies have suggested that both the break fre-
quency as well as the amplitude of the PSD may depend on the Eddington ratio.
For example, Ponti et al. [2012] propose that the PSD amplitude is inversely propor-
tional to the Eddington ratio, implying that AGN with higher accretion rates (rela-
tive to the Eddington limit) may exhibit smaller amplitude variations. The physical
interpretation of this trend is not entirely clear, but it may provide insights into disk
or corona instabilities and how variability propagates inward for AGN accreting at
different rates.

Despite significant progress in understanding AGN X-ray variability, many ques-
tions remain. In particular, the physical conditions of the corona, including its
geometry and size, are still under debate. Competing corona models range from
compact, centrally located regions to more extended, patchy structures [Padovani
et al., 2017]. Furthermore, while there is clear evidence that the variability am-
plitude inversely correlates with black hole mass, the dependence on the Edding-
ton ratio is less well-constrained. While some models support the dependence of
the break frequency on both eddington ratio and black hole mass [McHardy et al.,
2006] and even propose a dependence of the PSD normalization on the Edding-
ton ratio [Padovani et al., 2017], other models with constant normalization provide
comparable fits to the observed data. Recent studies that highlight the complexity
of disentangling intrinsic variability mechanisms from external factors such as ob-
scuration and changes in the line of sight, further complicating the interpretation
of observed variability trends [Bogensberger et al., 2024b, Paolillo et al., 2017].

These open questions regarding the correlation between the amplitude of ob-
served X-ray variability and the physical properties of the accretion events such as
the Eddington ratio and the black hole mass will be the focus of this thesis.
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1.4 Thesis Motivation & Objectives

We are interested in the stochastic intrinsic variability of AGNs in the X-ray band,
which is believed to be directly linked to the source’s physical characteristics, such
as black hole mass and accretion rate. Our objective is to investigate whether
AGNs with similar intrinsic properties exhibit comparable variability behavior on
timescales of a few hours to a few days. Studying X-ray variability on these timescales
is particularly important, as it likely corresponds to physical processes occurring
in the innermost regions of the accretion disk and corona.

Understanding this variability is also important for the broader comprehen-
sion of AGN’s role in galaxy evolution, as active galactic nuclei significantly influ-
ence the evolution of their host galaxies through feedback mechanisms that regu-
late star formation and redistribute energy in the interstellar medium. AGNs can
even serve as observational tools for studying cosmic structure, as their high lumi-
nosity and characteristic variability make them ideal probes for calibrating cosmo-
logical distances.

Distinguishing intrinsic variability mechanisms from external factors, such as
obscuration and changes in the line of sight, requires a complex methodology. The
low photon count rates in many XMM-Newton observations posed challenges for
conventional variability estimation methods, leading us to adopt Bayesian method-
ologies for a more reliable analysis. These methodologies allow us to derive vari-
ability estimates not only for individual AGN but also for ensembles, accounting
for trends in populations of similar physical parameters.

A significant part of our work involves the development of a custom light curve
extraction pipeline for XMM-Newton observations that would automatically go through
steps such as data reduction, proper selection of source and background regions,
background subtraction, and light curve generation. Particular emphasis was placed
on optimizing the pipeline for sources with low count rates, ensuring that the ex-
tracted light curves retain as much variability information as possible. This pro-
cess is important for gathering a coherent dataset of light curves for our variability
analysis.
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Chapter 2

Observational Data

2.1 XMM-Newton

2.1.1 Overview

The XMM-Newton space telescope, launched by the European Space Agency (ESA)
in December 1999, has played a pivotal role in X-ray astronomy by providing high-
sensitivity observations across a broad energy range (0.2–12 keV). Designed for
long-duration observations of cosmic X-ray sources its main objective is to observe
X-ray emissions from a variety of astrophysical sources, including active galactic
nuclei (AGN), galaxy clusters, and stellar coronae.

The observatory follows a highly elliptical orbit with an apogee of 114,000 km
and a perigee of 7,000 km with an average period of about 48 hours, allowing for
long uninterrupted observations during each orbit.

Figure 2.1: Sketch of the highly elliptical XMM-Newton orbit [XMM-Newton Com-
munity Support Team].
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It consists of three Wolter Type-I¹ X-ray telescopes mounted in parallel, along
with an Optical Monitor (OM) for simultaneous optical and UV observations. The
X-ray telescopes are designed to focus X-rays via grazing incidence². Each telescope
has 58 nested mirrors coated with gold, which ensures high reflectivity for X-rays
across the full energy range. The focal length of these telescopes is 7.5 meters,
and they achieve an angular resolution ≈ 6 arcseconds on-axis³. This is ideal for
performing high-sensitivity observations of faint X-ray sources over long exposure
times.

Figure 2.2: Schematic layout of the XMM-Newton observatory, with external
shrouds and structure removed for clarity, illustrating the placement of its com-
ponents: the three X-ray telescopes (mirror modules), the RGS detectors, and the
EPIC system with its MOS and PN detectors. The Optical Monitor is also shown
slightly obscured, positioned next to the telescope tube [XMM-Newton Community
Support Team].

¹A telescope that uses a combination of parabolic and hyperbolic mirrors to focus X-rays via graz-
ing incidence, minimizing spherical aberrations and maximizing reflection efficiency

²A method of reflecting X-rays off a surface at very shallow angles, in order to allow high-energy
photons to be reflected without penetrating the surface.

³On-axis refers to observations made at the center of the field of view, where the optical alignment
provides the best resolution. Off-axis, the resolution decreases due to distortions and aberrations at
larger angles.
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2.1.2 XMM-Newton detectors

The three telescopes are arranged to support the instruments located at the focal
plane. Out of these three telescopes, two feed the Reflection Grating Spectrometers
(RGS), while all three provide data to the European Photon Imaging Camera (EPIC)
system.

2.1.2.1 European Photon Imaging Camera (EPIC)

The EPIC system comprises two MOS (Metal-Oxide-Semiconductor) cameras and
one PN (p-n junction) camera, each positioned behind one of the three X-ray tele-
scopes. The MOS cameras offer high spectral resolution, while the PN camera pro-
vides superior time resolution⁴ and quantum efficiency⁵, making it highly effective
for observing bright and rapidly variable sources. The EPIC cameras have a field
of view of 30 arcminutes and cover an energy range from 0.15 keV to 15 keV (al-
though quantum efficiency drops sharply after 12 keV(fig. 2.3)). The PN camera
can achieve readout times as low as 73 ms, enabling precise measurements of fast-
changing phenomena such as flaring AGN and quasars.

Figure 2.3: Left: Quantum efficiency of the EPIC MOS1 (solid line) and MOS2
(dashed line) CCD1 chip as a function of photon energy. Right: Quantum efficiency
of the EPIC pn CCD chips as a function of photon energy [Strüder et al., 2001].

⁴The ability to measure variations in intensity over short intervals.
⁵The ratio of detected photons to actual incident photons from the source.
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2.1.2.2 Reflection Grating Spectrometer (RGS)

The RGS is optimized for high-resolution spectroscopy in the soft X-ray range (0.35–
2.5 keV). It works by dispersing incoming X-rays using a grating assembly before
they reach the CCD detectors, enabling detailed spectral analysis of hot plasma in
galaxy clusters and the inner regions of AGN.

2.1.2.3 Optical Monitor (OM)

The Optical Monitor is a 30 cm optical/UV Ritchey-Chrétien⁶ telescope mounted
alongside the X-ray telescopes. It operates simultaneously with the EPIC and RGS in-
struments, providing complementary optical and UV data. The OM covers a wave-
length range from 180 nm to 600 nm with a field of view of 17 arcminutes, allow-
ing it to detect optical counterparts of X-ray sources and monitor variability across
multiple wavelengths.

⁶A type of reflecting telescope that uses hyperbolic primary and secondary mirrors to minimize
optical aberrations, providing a wide, flat field of view.
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2.1.3 XMM-Newton Data

As a measure of source intensity, we will be using counts, a direct measure of pho-
tons detected by the telescope’s instruments. Counts form the fundamental unit of
measurement in X-ray astronomy, representing the number of photons observed
within a given energy range and spatial region, as recorded by the detector. By in-
tegrating counts over the exposure time of the observation, we derive count rates,
which quantify the number of detected photons per second and provide a normal-
ized measure of source intensity, accounting for differences in exposure time.

2.1.3.1 Serendipitous Source catalog

The XMM-Newton Science Survey Centre (XMM-SSC) has undertaken the task of
systematically analyzing all imaging-mode observations from the EPIC cameras.
This effort has resulted in the XMM-Newton Serendipitous Source catalog, an
invaluable resource for the scientific community. The catalog contains informa-
tion on X-ray fluxes, count rates, and detected counts along with their associated
errors across different energy bands for ≈ 700, 000 unique sources over ≈ 1, 000, 000

detections by XMM-Newton.

The Serendipitous Source catalog also provides various derived products, in-
cluding source detections, images, and spectra. These datasets enable large-scale
statistical studies of X-ray sources observed by XMM. The energy bands defined by
the XMM-Newton Serendipitous Source catalog are discretely divided as:

Band Energy Range (keV)
Band 1 0.2–0.5
Band 2 0.5–1.0
Band 3 1.0–2.0
Band 4 2.0–4.5
Band 5 4.5–12.0

Band 6 (Soft band) 0.2–2.0
Band 7 (Hard band) 2.0–12.0
Band 8 (Total band) 0.2–12.0

Table 2.1: Energy bands defined by XMM-Newton catalogs.
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Each band can provides unique insight into different physical processes. For
variability studies, Band 6 is often preferred due to its high signal-to-noise ratio
in soft X-rays, which dominate AGN emission [McHardy et al., 2006, Paolillo et al.,
2017].

Fluxes (F ) are calculated in units of erg cm−2s−1 using the relation:

F = CR · ECF,

whereCR is the count rate (cts s−1), and ECF is the energy conversion factor specific
to the camera, filter, and energy band. Errors in flux are propagated from the count
rate uncertainties.

2.1.3.2 Point spread function

Not all points in the detector have the same detection capabilities, as the telescope’s
optical system spreads the light from a point source, creating a characteristic dis-
tribution known as the point spread function (PSF). The PSF describes this spatial
distribution of light from a point source as detected by a telescope. It characterizes
the telescope’s imaging performance and accounts for the effects of diffraction, de-
tector imperfections, and optical aberrations. For XMM-Newton, the characteristics
of the PSF for each instrument chain can be found in Table 2.2 while images of the
on-axis PSF for each of the XMM-Newton instruments can be seen in 2.4

Mirror Module 2 3 4
Instr. Chaina pn MOS-1+RGS-1 MOS-2+RGS-2
Orbit/Ground orbit/ground orbit/ground orbit/ground
FWHM [ ′′ ] < 12.5[7]/6.6 4.3/6.0 4.4/4.5
HEW [ ′′ ] 16.6/15.1 16.8/13.6 17.0/12.8

Table 2.2: The on-axis in-orbit and on-ground 1.5 keV PSFs of the different X-ray
telescopes [XMM-Newton Community Support Team].

The EPIC-PN detector has a broader PSF compared to the MOS cameras, pri-
marily due to its larger pixel size , which results in a lower spatial resolution but
higher quantum efficiency. It has a FWHM of approximately 12.5 arcsec and a

⁷The core of mirror module 2 cannot be better resolved in orbit because of the large pn-CCD pixel
size.
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Half Energy Width⁸ (HEW) of about 16.8 arcsec, making it sensitive to faint sources
while also being more affected by out-of-time (OOT) events. It should also be noted
the effective area of the telescope also decreases with increasing off-axis angle due
to vignetting effects. These effects need to be corrected during data reduction to
ensure accurate count measurements.

Figure 2.4: On-axis PSF of MOS1, MOS2, and pn detectors (left to right), registered
on the same source. The MOS cameras use 1.1 arcsec pixel size and the pn camera
used 4.1 arcsec pixel size. Images are 110 arcsec wide with a square root scale to
visualize PSF wings [XMM-Newton Community Support Team].

2.1.3.3 Sky footprint

The cross-matching of sources between different catalogs that we are required to
perform (see section 2.2.2) for this study along with the inhomogeneous nature
of the XMM data releases demands a solid understanding of the complex spatial
footprint of each of our catalogs. To address this we will be using sets of Multi-
Order Coverage (MOC) files. These files are based on the HEALPix (Hierarchical
Equal Area isoLatitude Pixelization) scheme, a framework for mapping data on the
sphere. HEALPix divides the sky into equal-area pixels, enabling efficient data stor-
age and analysis across varying scales. A MOC file encodes the regions of the sky
observed by XMM-Newton, helping with identifying overlaps and determining sky
coverage (see Figure 2.5.

⁸Half Energy Width (HEW) is the angular diameter of the region that collects 50% of the total
reflected photons from a point source. A key measure of a telescope’s imaging sharpness and perfor-
mance.
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Figure 2.5: Comparison of MOC maps using the HEALPix framework for Different
Astronomical Surveys. The left sphere (red) represents the GALEX AIS survey, con-
sisting of approximately 70,000 HEALPix cells, while the right sphere (blue) repre-
sents the SDSS survey, with around 225,000 cells [Fernique et al., 2014].

For our analysis, we will be using data from the aforementioned XMM-Newton
Serendipitous Source Catalog, designed to record X-ray sources detected inciden-
tally during observations intended for other primary targets, leveraging the wide
field of view and high sensitivity of the observatory to capture data on numerous
sources beyond the intended study area. More specifically we will be using it’s
twelfth data release, 4XMM-DR12 [Webb et al., 2020] along with its associated MOC
data for an effective area of ~1,283 deg2. The catalog contains data for 939,270 X-ray
detections corresponding to 630,347 unique X-ray sources.

2.2 Catalogs and dataset filtering

2.2.1 SDSS Quasar Catalog: Sixteenth Data Release

The Sloan Digital Sky Survey Quasar Catalog from Data Release 16 (DR16Q)[Lyke
et al., 2020], is the most comprehensive catalog of spectroscopically confirmed quasars
to date, making it a cornerstone for studies of QSO properties. Released in 2020 as
part of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), DR16Q com-
prises over 750,000 QSOs, with 225,082 of them newly identified, appearing here
for the first time. The catalog extends from redshift z ∼ 0 to z > 7, it covers 9,376
square degrees of the sky, with an average surface density of approximately 80
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quasars per square degree.

DR16Q includes detailed spectroscopic data for quasars, such as emission-line
properties, well calibrated redshift estimates, and multi-wavelength data. It also
includes accurate sky positions for each quasar, allowing precise localization and
cross-matching with external catalogs. Additionally for the purposes of our analy-
sis, value-added catalogs have been developed on top of DR16Q to derive reliable
and consistent estimates for physical parameters such as black hole mass, Edding-
ton ratio (derived through empirical scaling relations of spectral data, see sections
(1.1.2.1) and (1.1.2.2)).

Additionally, the SDSS name of each object in DR16Q serves as a unique, al-
most universal identifier, facilitating cross-matching across datasets and catalogs,
including the aforementioned 4XMM-DR12.

2.2.2 Cross-matching and filtering

With the 4XMM-DR12 and DR16Q catalogs in hand, along with their respective MOC
files, the next step involves cross-matching these datasets to extract the objects that
appear in both catalogs and applying a series of filters based on various factors to
refine the combined dataset for analysis.

The initial datasets include 630,347 unique X-ray sources from 4XMM-DR12
and 750,414 QSOs from DR16Q. By applying spatial overlap to the sections of the
celestial sphere covered by both catalogs and cross-matching their sky coordinates
(with a maximum accepted separation of 5 arcseconds), we identify 25,280 unique
objects (QSOs) common to both catalogs.

Spurious Identification Rate :

The spurious identification rate is the probability of chance alignments be-
tween unrelated sources due to high source densities in large surveys. The prob-
ability of a random SDSS QSO coinciding with an X-ray source within a 5 arcsec
radius is estimated using:

Pspur = 1− exp(−NQSO × π × 52), (2.1)
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which results in a 0.05% probability that any given QSO-X-ray match within 5 arcsec
is a chance coincidence. fewer than 1 spurious counterpart is expected per 2000 X-
ray sources, supporting that over 99.9% of the identified associations are genuine
and alleviating the need to correct for possible contamination of sources.

2.2.2.1 Signal-to-Noise

The first step in refining the matched dataset is filtering based on the signal-to-
noise ratio (S/N) of the X-ray sources in order to include only higher-confidence
detections and sufficiently bright sources (enabling the study of their light curves)
with reliable measurements in our analysis. The S/N is calculated using the source
count rates and their associated errors, which are derived from the 4XMM-DR12
catalog.

The signal-to-noise ratio for each source was computed as:

S/N =

∑3
i=1CRi√∑3
i=1 δCRi

2
, (2.2)

where CR is the total count rate summed across energy bands 1, 2, and 3 (see
table 2.1), totaling the energy of band 6 (0.2–2 keV), and δCR is the corresponding
error. A threshold of S/N > 5 was applied, consistent with standard practices in
X-ray astronomy [Vaughan et al., 2003]. This threshold is a trade-off between suffi-
ciently large sample and sufficient number counts to enable analysis of the sources’
light curves. Increasing the S/N threshold would improve the LC count statistics but
reduce the overall sample size.

These source count rates CR represent the number of photons detected per
second from a source in a specific energy band, after correcting for instrumental
effects such as detector efficiency, background subtraction, and point spread func-
tion (PSF) losses. These rates are derived from the fitted PSF in sub-images of the
X-ray data, ensuring accurate measurements that reflect the source’s intrinsic X-ray
emission. The associated errors are the statistical uncertainties on these rates.

After applying the signal-to-noise threshold of > 5, we are left with a dataset of
14,032 unique quasars observed over 20,414 distinct observations.
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2.2.2.2 Duration

The next step in preparing the dataset for variability analysis involves filtering
based on observation duration. The initial dataset includes observations with du-
rations ranging from 0 to 140 ks (Figure 2.6). For our analysis, we apply a cutoff
below 30 ks, retaining only those observations with durations above this thresh-
old.

Figure 2.6: Histogram showing the distribution of XMM-Newton observation dura-
tions for observations matched between the 4XMM-DR12 and DR16Q catalogs after
signal-to-noise filtering. The red dashed vertical line indicates the cutoff point (30
ks) for durations included in the analysis.

This choice of cutoff is primarily motivated by practical considerations rather
than a strict scientific reasoning. One consideration is that longer observation du-
rations are more likely to include signs of variability in the QSOs. Variability in
AGNs occurs over a range of timescales, but shorter observations may not provide
sufficient time for significant fluctuations in brightness to be made apparent. By
focusing on longer observations, we ensure that the dataset is better suited for de-
tecting and analyzing such variability. A second consideration is the feasibility of
processing a large volume of observational data. The dataset includes a substantial
number of observations with durations between 10 and 30 ks, comprising of well
over half of the total observations. While these shorter-duration light curves are
important, processing such a large subset would be computationally intensive. By
applying the 30 ks cutoff, we significantly reduce the number of observations to be
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analyzed, while still retaining a dataset with sufficient time coverage to investigate
variability across timescales.

After applying a duration cutoff below 30 ks, we are left with a dataset of 8,332
unique quasars.

2.2.2.3 Off-axis angle / PN data / General good data

Off-axis angle: The off-axis angle, measured in arcminutes, represents the distance
between the detection position and the on-axis position on the detector. Larger off-
axis angles are often with reduced sensitivity and increased uncertainties due to vi-
gnetting and other instrumental effects[XMM-Newton Community Support Team].
For our dataset we limited the off-axis angle to a maximum of 12 arcminutes to
reduce the impact of vignetting and improve the accuracy of flux and count rate
measurements, keeping a sufficient number of sources while ensuring reliable ob-
servations.

SUM_FLAG: The 4XMM-DR12 catalog includes a SUM_FLAGwithin it that sum-
marizes the quality of a detection based on several EPIC-specific flags. We selected
only detections marked by this flag as ”good data”. This excluded detections af-
fected by proximity to bright sources, low detector coverage, or regions prone to
spurious detections.

PN_FLAG: Similarly the catalog includes a flag signifying that an observation
includes valid and reliable EPIC-PN data⁹ The PN camera provides the highest sensi-
tivity among the EPIC instruments and is useful for detecting weaker X-ray sources,
ensuring valid PN detections for our analysis that is often characterized by lower
count rates.

After applying filtering for excessive off-axis angles, the sum ”good data” flag
and the PN data flag the dataset was reduced to 4234 unique quasars.

⁹The PN flags provide quality checks for detections, including conditions such as low detector
coverage, proximity to other sources, presence within extended emission, spurious detections near
bright sources, or near hot areas. See Tab 3.1 of XMM-Newton User’s handbook [XMM-Newton Com-
munity Support Team].
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2.2.3 Filtered dataset

By combining the 4XMM DR12 X-ray catalog with the SDSS DR16Q catalog and ap-
plying targeted filtering, we have assembled a robust dataset of 4234 unique QSOs
corresponding to 5672 distinct observations. These span a broad redshift range
(from z=0 to z≈5), with most sources clustering at z<3.

Figure 2.7: Histogram showing the distribution of XMM-Newton observation dura-
tions for observations in our final filtered dataset in their rest frame.

The observations have been observed at various exposure times (see Figure
2.8). To account for redshift, we present variability timescales in the sources’ rest
frame as:

trest =
tobs
1 + z

(2.3)

This transformation allows us to more effectively express the actual timescales un-
der investigation, highlighting the presence of shorter-timescale observations (see
Figure 2.7). These will enable us to probe variability in the inner regions of the cen-
tral engine, providing a direct examination of processes occurring near the central
SMBH.
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Figure 2.8: Histogram showing the distribution of XMM-Newton observation dura-
tions for observations in our final filtered dataset in the instrument’s frame.

With with this refined dataset of QSOs in hand we seek to study the possible
link between the observed variability of AGN and their physical characteristics—
particularly black hole mass and Eddington ratio. To facilitate this, we group the
QSOs into bins of similar physical properties (Figure 2.9). This binning allows us
to test whether QSOs with similar physical characteristics exhibit consistent vari-
ability as implementations of similar physical processes and how variability trends
evolve with changes in these parameters. The black hole masses and Eddington ra-
tios used in this analysis are derived from the SDSS DR16Q value added catalog, as
showcased in (2.2.1).

As shown in (figure 2.9), the bulk of our sources occupies the range −2 ≤
log(λEdd) ≤ 0 and 8 ≤ log(MBH) ≤ 10. Given the high concentration of data in this
region, these bins will serve as the primary focus for our subsequent analysis.
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Figure 2.9: Distribution of the filtered dataset of QSOs on the Eddington ratio vs
black hole mass plane. The contour levels enclose 34, 68, 95 and 99 per cent of the
QSO population. The 1-dimensional projections of this distribution along the black
hole mass and Eddington ratio axes are also shown by the histograms on the top
and to the right of the main panel respectively.
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Chapter 3

Statistical Methodology

3.1 Overview

AGN light curves, while rich in information, are inherently challenging to interpret.
Observational constraints, such as limited telescope availability can often result in
sparse and uneven sampling. This, combined with the relatively low photon counts
typical of many X-ray observations, results in observations that are significantly im-
pacted by the influence of background noise, a fact that complicates the extraction
of the intrinsic variability signals we seek. And in addition the effects of redshift
also stretch the observed timescales, making it more difficult to compare variabil-
ity properties across different populations [Paolillo et al., 2017]. Overcoming these
challenges requires a combination of statistical techniques and theoretical model-
ing to isolate the physical variability from the various observational artifacts.
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3.2 Normalized Excess Variance as a measure of AGN
variability

3.2.1 Excess Variance

The excess variance (σ2
XS) is a statistical measure that can quantify the intrinsic

variability of an AGN light curve. It is derived by measuring the spread of flux val-
ues around their mean, thereby providing a first-order estimate of the amplitude
of variability. In an ideal scenario, where the light curve is noiseless, the excess
variance is defined as:

σ2
XS =

1

N

N∑
i=1

(Fi − ⟨F ⟩)2, (3.1)

where N is the number of observations, Fi is the measured flux at time ti, and
⟨F ⟩ is the mean flux over the light curve.

However, in real observations, the measured flux values are affected by instru-
mental and photon noise. The variability estimate must account for these observa-
tional uncertainties to avoid overestimating the intrinsic variability of the source.
The commonly used estimator for excess variance is modified to subtract the con-
tribution of measurement errors:

σ2
XS =

1

N

N∑
i=1

(Fi − ⟨F ⟩)2 − σ2
err, (3.2)

where σ2
err represents the mean squared measurement error across all epochs.

It should be noted that this correction assumes Gaussian-distributed errors that
are identical for all measurements. In real X-ray observations, however, photon-
counting noise often follows a Poisson distribution, meaning the uncertainty in
each flux measurement is dependent on the flux itself.

The uncertainty in the excess variance is derived from the propagation of the
respective errors and is given by:
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∆σ2
XS =

√
2

N

(
σ2

err
⟨F ⟩2

+
σ2

XS
N

)
. (3.3)

This formula provides an estimate of the statistical error associated with the
excess variance, though additional systematic uncertainties may arise from effects
such as background fluctuations or telescope calibration errors.

3.2.1.1 Normalized excess variance (NXSV)

The normalized excess variance (NXSV) is a dimensionless form of excess variance,
allowing comparison across AGNs with different flux scales:

NXSV =
σ2

XS
⟨F ⟩2

, (3.4)

where the mean flux ⟨F ⟩ normalizes the variance, ensuring that the variability
measurement is independent of the absolute brightness of the source.

NXSV is particularly valuable in AGN variability studies due to its direct re-
lationship with the PSD. Specifically, NXSV can be interpreted as the integral of
the PSD over the observational timescale, meaning it captures the total variability
power across all accessible frequencies [Vaughan et al., 2003, Paolillo et al., 2017,
Bogensberger et al., 2024a]. This property makes NXSV a preferred statistic in cases
where direct PSD estimation is challenging, such as when light curves are sparsely
sampled or have uneven time coverage.

While NXSV provides a robust measure of the overall amplitude of flux varia-
tions, it does not preserve information about specific timescales of variability. Un-
like regular PSD-based methods that allow for the identification of characteristic
frequencies or breaks, NXSV condenses variability information into a single statis-
tical measure. However, this simplification is often advantageous for large-scale
AGN surveys, where individual PSD analysis may not be feasible due to the obser-
vational constraints.

The uncertainty in NXSV is propagated from the excess variance uncertainty
as:
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∆NXSV =
∆σ2

XS
⟨F ⟩2

. (3.5)

By normalizing variability amplitude to flux, NXSV allows for meaningful com-
parisons across AGNs of different luminosities and redshifts.

At low signal-to-noise ratios, NXSV estimates may become negative due to noise
over-subtraction. Error bars on NXSV are often calculated using Monte Carlo sim-
ulations that account for intrinsic variability and measurement uncertainties [Bo-
gensberger et al., 2024a, Vaughan et al., 2003]. NXSV provides a simple and effective
way to quantify the amplitude of variability while accounting for measurement un-
certainties that is well-suited for datasets with limited time coverage and irregular
sampling, making it particularly useful for X-ray variability studies in AGN surveys.

3.2.1.2 Ensemble NXSV

As mentioned before, individual light curves often suffer from sparse and uneven
sampling, leading to unreliable estimates of NXSV. To address this, we introduce
the concept of ensemble NXSV, which extends variability analysis from individ-
ual sources to entire AGN populations. Instead of analyzing each light curve in
isolation, we treat all sources as stochastic manifestations of a common variability
distribution produces by the same underlying processes. By compiling data across
multiple sources, this method attempts to mitigate the effects of sparse sampling,
low count rates, and high noise, which can otherwise bias individual NXSV esti-
mates [Paolillo et al., 2017, Bogensberger et al., 2024b].

3.2.2 Bayesian Methodologies in Estimating NXSV

As discussed in Section 3.2.1, traditional methods for estimating NXSV assume Gaussian-
distributed, independent measurement errors, which is inconsistent with the Poisson-
distributed nature of photon-counting noise in X-ray observations. This mismatch
introduces biases, particularly in low-flux regimes where uncertainties in flux mea-
surements are inherently flux-dependent. Additionally, with AGN light curves of-
ten suffering from sparse sampling and background fluctuations, the reliability of
standard variability estimators is further limited.
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Bayesian methodologies address these challenges by explicitly modeling Pois-
son noise and incorporating hierarchical inference to link single-source variabil-
ity with ensemble-level distributions. Unlike conventional estimators that provide
single-point measurements, Bayesian inference produces posterior distributions
of variability parameters , allowing for more reliable uncertainty quantification.
This approach is particularly advantageous for ensemble studies of AGN variabil-
ity, where hierarchical modeling enables a statistically rigorous characterization
of population-wide trends despite observational limitations.

3.2.2.1 Single-Source NXSV

To analyze variability at the level of individual AGNs, we model flux as a stochastic
process where each measurement fluctuates around a mean value due to intrinsic
variations. Specifically, AGN flux variations often exhibit asymmetric, long-tailed
distributions , which are well captured by a log-normal distribution [Vaughan et al.,
2003]. We therefore assume that the logarithm of the flux follows a normal distri-
bution:

log10 FX,i ∼ N (µLGFlux, σ
2
LGFlux). (3.6)

where µLGFlux represents the mean logarithmic flux, and σLGFlux is the standard
deviation describing the scatter in log-flux space. This formulation ensures that
flux remains strictly positive while aligning with empirical studies of AGN vari-
ability.

The normalized excess variance (NXSV) is derived from the variance of the
log-normal flux distribution:

logσ2
NXSV = σ2

LGFlux ln(10). (3.7)

This follows from the standard variance transformation of a log-normal distri-
bution:

Var(FX) =
(
eσ

2 − 1
)
e2µ+σ2

. (3.8)
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To estimate these variability parameters, we define the likelihood function for
a single-source light curve. Given an observed set of photon counts Ni at times ti,
we assume that flux measurements FX,i follow a Poisson likelihood :

P (Ni|FX,i, Oi) =
e−λiλNi

i

Ni!
, (3.9)

where the expected photon count λi at each epoch is given by:

λi = 10µLGFlux · ti +Bi. (3.10)

This formulation ensures a physically motivated connection between flux vari-
ability and observed count rates, incorporating exposure time ti and background
counts Bi. The full likelihood function for an AGN light curve is then:

L =

N∏
i=1

P (Ni|FX,i, Oi) · N (log10 FX,i|µLGFlux, σ
2
LGFlux). (3.11)

where the index i indexes epochs in an AGN’s light curve.

3.2.2.2 Hierarchical model for estimating Ensemble NXSV

In our ensemble modeling framework, we consider a collection of AGN light curves,
each with an associated NXSV value. Instead of analyzing each source in isolation,
we seek to infer population-level trends by assuming that the NXSV values of indi-
vidual AGNs are realizations of the same physical processes and can be taken from
a shared statistical distribution.

Observational studies indicate that NXSV values across AGN populations ex-
hibit skewed distributions with long tails, making a log-normal distribution a suit-
able model for describing ensemble variability [Paolillo et al., 2017]. Thus, we as-
sume that individual AGN NXSV values are drawn from such a log-normal parent
distribution:

σ2
NXSV,k ∼ logN (µσ2

NXSV
, σ2

σ2
NXSV

), (3.12)
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where µσ2
NXSV

represents the mean log-variance of the AGN population, σσ2
NXSV

is the scatter in variability amplitudes across sources and k indexes AGNs in the
sample.

This formulation assumes that AGNs exhibit a range of variability amplitudes,
with some being more variable than others due to differences in the accretion flow
and mass of the SMBH (see Chapter 1).

Using this to build on equation 3.11, we extend the model to incorporate an
ensemble of AGNs, each following its own stochastic variability process. This leads
to the hierarchical likelihood function:

Lensemble =

Nsrc∏
k=1

Lsingle,k · logN (σ2
NXSV,k|µσ2

NXSV
, σ2

σ2
NXSV

), (3.13)

where Lsingle,k refers to the single-source likelihood for AGN k (see equation
3.11), and the final term enforces a log-normal prior on NXSV values. As mentioned
before, The index k runs over the number of AGN sources, while i loops through
the epochs of each light curve. This hierarchical formulation ensures that individ-
ual AGN variability estimates are constrained by ensemble-level priors, reducing
statistical noise and improving inference.

The ensemble NXSV estimate is then given by:

σ2
NXSV,ensemble = 10

µ
σ2

NXSV , (3.14)

which corresponds to the median of the log-normal distribution logN (µσ2
NXSV

, σ2
σ2

NXSV
).

As we know, AGN X-ray variability follows a red-noise process, in which power
decreases at higher frequencies, leading to longer variability timescales [Vaughan
et al., 2003]. This results in a distribution of variability amplitudes that often re-
sembles a χ2 distribution with low degrees of freedom, seemingly producing an
extended tail toward high-variance AGNs.

Because NXSV measures the amplitude of variability, its distribution is ex-
pected to be skewed rather than Gaussian. A log-normal prior provides a statis-
tically sound approximation for this behavior, ensuring flexibility in capturing the
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observed range of AGN variability amplitudes.

The uncertainty in NXSV estimation is quantified using posterior distributions
of the hierarchical parameters of the model. Bayesian inference provides credible
intervals for each estimate:

∆σ2
NXSV,ensemble = 10

µ
σ2

NXSV ·∆µσ2
NXSV

. (3.15)

This formulation accounts for both measurement noise and intrinsic scatter in
the population variability distribution.

It is also important to note how the single-source model can provide us with ad-
ditional insights into individual AGN variability by more carefully examining AGN
that seem like outliers or edge cases. While the ensemble model enables a broader
statistical understanding of AGN variability across populations, the single-source
model can even be used as supplementary to it when singular sources seem to ef-
fect the ensemble variability in interesting ways that require deeper investigation
into their specific variability.
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Chapter 4

Data Processing & Light Curve
Analysis

4.1 Data Processing & Light curve extraction

4.1.1 Overview

While the XMM Serendipitous Source Catalogue does provide time-binned light
curves for each observation, these products are often incompatible with our Bayesian
methodology since they are derived from count rates rather than contain informa-
tion on the discrete photon counts and expected background level at any given
time interval. Additionally, we require tighter control and deeper insight into the
data-reduction process and as such we opt to reprocess the raw observation data
ourselves.

In the pursuit of analyzing variability over large populations of QSOs we sought
to develop an automated pipeline to process data from XMM-Newton observations,
reducing them and producing reliable light curves for each source and its respec-
tive background. This pipeline is built on top of the foundation set by the xmmpype
pipeline described in [Georgakakis and Nandra, 2011] which in turn makes exten-
sive use of the XMM-Newton Science Analysis System (SAS) for data analysis, as
described below.
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4.1.2 Scientific Data Analysis (SAS) System

The Science Analysis Software (SAS) is the official data reduction and analysis pack-
age for XMM-Newton observations. It is designed to process the Observation Data
Files (ODF) which contain raw uncalibrated science events, instrument housekeep-
ing files, radiation monitor files and spacecraft files. SAS consists of two main
components: Reduction pipelines, which apply instrument calibrations and pro-
duce scientifically useful products such as calibrated event lists, source lists, and
time series, and file manipulation tools, which allow users to extract spectra, light
curves, and images from the aforementioned products. Definitions of SAS tasks
and nomenclature will be provided in this chapter when needed for clarity.

4.1.3 Light curve extraction pipeline

4.1.3.1 The xmmpype pipeline

The xmmpype pipeline [Georgakakis and Nandra, 2011] streamlines XMM-Newton
data processing by constructing event files¹, detecting sources, applying astromet-
ric corrections, estimating fluxes, and identifying X-ray sources with optical coun-
terparts. We will outline its integration into our work.

Starting off, we select a subset of our refined dataset of observations (as de-
scribed in Chapter 1.4) depending on the physical characteristics of the QSOs we
want to analyze. As explained in the above chapter, this final catalog contains a
list of SDSS QSOs along with the corresponding XMM observations (taken from the
4XMM catalog) for all the X-ray sources that lie within 5 arcsec of each QSO.

These XMM observations are assigned a unique observation identification
number (obsid), with each obsid processed separately for efficiency. The raw ODF
corresponding to each selected obsid then undergo reduction via the EPCHAIN and
EMCHAIN tasks within SAS, yielding calibrated event files. These tasks include:

▶ The creation of raw event lists and good time interval² (GTI) data for each CCD.

¹Event files contain time-ordered X-ray photon detections with arrival time, energy, and detector
position.

²GTIs are typically defined to exclude times affected by instrumental issues, Earth occultations,
and other similar observational constraints.
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▶ Identification of bad pixels,

▶ Calibration of the raw event lists by flagging trailing events, performing pat-
tern recognition, gain and CTI (charge transfer inefficiency) corrections,

▶ Assignment of detector and sky coordinates.

▶ Event pattern filtering since X-ray photons interacting with the detector can
deposit charge in one or multiple adjacent pixels. To ensure the highest-quality
photon detections, only single- and double-pixel events are kept.

The cleaned event lists for each CCD are merged per EPIC detector to main-
tain consistency. Images and exposure maps in different filters are created for
each EPIC instrument, followed by a combined coadded image of all three. These
products, along with high-particle background images (Section 4.1.3.2), serve as the
basis for source detection.

HEALPix serves as a spatial indexing scheme to delineate the observation’s
spatial footprint by defining an observation’s field of view while excluding gaps
and other non-observed regions. A MOC map is then generated from the defined
spatial footprint.

4.1.3.2 Flaring background filtering

X-ray Observations are often affected by flaring particle backgrounds, which can
introduce artificial variability. To mitigate this, a filtering process is applied that
excludes high-background periods using a methodology similar to that of Nandra
et al. [2007].

Sources are masked out using theEWAVELET task in SAS, which detects sources
in the 0.5–8 keV band with a threshold of five times the local background root mean
square (rms). This ensures that AGN variability does not influence the estimation of
background fluctuations. The background light curve is then generated by binning
events in the 0.2–12 keV energy range into 20-second intervals, providing a time-
resolved measurement of background activity. The quiescent background level is
estimated by determining the count rate at which the excess variance of the back-
ground light curve is minimized. Periods where the background count rate ex-
ceeds twice this level are excluded to remove transient flares. It is verified that this
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methodology works well for XMM. However, if an entire observation exhibits an
elevated background, it is discarded if the quiescent level exceeds 50 and 20 counts
per second for PN and MOS detectors, respectively. Additionally, observations with
less than 1 ks of remaining good-time intervals after filtering are excluded to en-
sure sufficient exposure for variability analysis. This filtering ensures that the final
event file is free from significant background contamination while preserving as
much clean data as possible.

4.1.3.3 Source detection & count extraction

Source detection follows a two-pass process. First, the emldet task in SAS is used at
a low threshold level to identify source candidate positions. Then, photon counts
are extracted at these candidate source positions within an aperture corresponding
to the 70% encircled energy fraction (EEF). The expected background level and the
mean exposure time within the same aperture are also estimated.

Aperture photometry is then employed to estimate the Poisson probability that
a detected source is merely a background fluctuation. Only sources with a back-
ground probability Pbackground < 4× 10−6 are retained.

Source significance is assessed using a likelihood-based detection algorithm
applied to the processed event files. A source is considered statistically significant
if its likelihood exceeds a given threshold:

L = −
∑
i

lnP (Di|S), (4.1)

where P (Di|S) represents the probability of the observed data Di given a source
model S. The detected sources are cross-matched with the MOC coverage to con-
firm that they lie within the observed footprint.

For each detected source, X-ray photon counts are extracted using an elliptical
aperture corresponding to a specific EEF, set at 70% of the PSF. This choice balances
signal collection and background contamination: a smaller aperture would miss a
significant fraction of source photons, while a larger aperture would introduce ex-
cessive background noise. Since the PSF of the EPIC detectors is energy-dependent
and varies with off-axis angle, the extraction radius is determined using precom-
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puted calibration files that provide energy- and position-dependent PSF models.
These calibration files ensure that flux extraction remains consistent across differ-
ent energy bands and detector positions.

To estimate the corresponding background, an elliptical annular region sur-
rounding each source is used. To prevent contamination from nearby sources,
all detections within a 4-arcminute radius are masked out before extracting back-
ground counts. The annular region has an inner radius of 5 pixels and an outer
radius of 15 pixels, ensuring that the background is measured from an area repre-
sentative of the local conditions. The background counts are then scaled to match
the source extraction aperture, and the net source flux is computed by subtracting
the scaled background contribution from the total extracted counts.

4.1.3.4 Sensitivity maps

Sensitivity maps are then refined following the methodology of Georgakakis et al.
[2008] by incorporating vignetting, flux estimation biases (e.g. Eddington bias³)
and the fraction of spurious sources expected in any source catalogue. These maps
quantify the probability of detecting a source at a given X-ray flux, providing a
well-characterized survey sensitivity across the field of view.

To estimate the background distribution, counts in the vicinity of detected sources
are masked using elliptical apertures corresponding to 80% of the EEF. The missing
pixel values are reconstructed by sampling from the surrounding background, de-
fined by elliptical annuli extending 5 pixels beyond the source region with a width
of 15 pixels. The background map is then smoothed using a 20-pixel median filter
to reduce small-scale fluctuations while preserving large-scale structure.

Using the smoothed background, the mean expected background counts are
computed within the 70% EEF elliptical source detection region. In cases where
multiple EPIC detectors or XMM pointings are combined, background counts are
summed across all contributing images. This procedure is repeated across the field,
yielding a two-dimensional sensitivity map that encodes detection limits as a func-

³A selection effect in astronomical surveys where measurement errors cause rarer, more extreme
objects to be overrepresented. Since common objects mistaken for rare ones significantly inflate the
rare count, while the reverse has a negligible effect, the resulting sample is skewed—especially in
cases like stellar brightness, where a small fraction of dim stars misclassified as bright leads to a
disproportionate overestimate of bright stars.

47



tion of position.

To summarize the detection limits, a sensitivity curve is constructed following
a Bayesian approach of Georgakakis et al. [2008]. This curve represents the total
detector area over which a source of a given flux can be detected. A standard,
non-Bayesian approach is also used for comparison, where a single limiting flux is
assigned to each detection cell based on a fixed net count threshold. The difference
between these approaches is most pronounced at low fluxes, where background
noise significantly affects detection probabilities.

Sensitivity at a given flux is determined by exposure time, effective area, and
background level and is given by:

S =
Nγ

Aeff(E)× texp
, (4.2)

where N is the photon count, Aeff (E) is the energy-dependent effective area, and
texp is the exposure time.

4.1.3.5 Source regions & masking

Having established the positions, extraction radii, and count rates for each detected
source in our observation, the next step is to refine the optimal extraction radius
for each source. This is done using an empirical relation which relates the optimal
source radius to the source count rate (S. Mateos, private communication):

rmin = 18.0 log10(countrate) + 65.0 (4.3)

This relation ensures that the aperture size is optimized for signal-to-noise ratio,
adapting to the brightness of each source. A minimum radius of 10 arcseconds is
enforced to prevent excessively small apertures. Using these refined radii, we con-
struct a source mask for the detector, where all detected sources are systematically
removed. This mask effectively eliminates contamination from detected sources,
providing a source-free background region.

With the source mask established, we cross-match the detected sources in the
current obsid with our catalog of QSOs in order to identify which objects of inter-
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Figure 4.1: Example of an EPIC-pn observation image with counts in log scale. Left:
The light curve extraction regions in purple, with the inner radius defining the
source extraction region and the whole annulus defining the background region.
Middle: The observation mask with all sources masked out. Right: The back-
ground light curve extraction region with all sources masked out.

est lie within our observation and extract their corresponding detector coordinates
and optimized extraction radii. For each matched quasar, a region file is generated,
defining both the source extraction region and its associated background region.
The background region is defined as an annulus centered on the source, with an in-
ner radius equal to the source extraction radius and an outer radius approximately
five detector pixels larger. It is significant to note, this annular background region
also incorporates the source mask, ensuring that any pixels overlapping with other
detected sources are excluded. As a result, the background region maintains an an-
nular shape while avoiding contamination from nearby sources.

These two region definitions—the source region and the background annulus—
form the basis for the extraction of our light curves (see Figure 4.1).

4.1.3.6 Light curve extraction

Having defined these regions, we analyze each QSO of interest in our observation
by extracting and binning time-resolved photon counts from the event files.

For each QSO, the source light curve is obtained by selecting all photon events
within the predefined circular source region. Using the SAS task evselect, we apply
spatial and energy filtering to isolate photons within the Soft X-ray range (0.5-2 keV)
using a binning of 1000 seconds for detected photons, leading to light curves of 30
to 140 time bins in accordance with the durations of our sample, ideal for providing
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a direct measure of temporal variations in photon arrival rates.

We then extract a background light curve using the annular region surround-
ing each source with our detected sources removed allowing for local background
estimation while avoiding unwanted contamination. The extracted background
counts will serve as a reference for further correcting the source light curve, re-
moving any spurious fluctuations caused by instrumental or environmental back-
ground variations.

Once the source and background light curves are obtained, we apply back-
ground and instrumental corrections using the SAS task epiclccorr. This correction
process scales the background counts appropriately based on the relative areas
of the source and background extraction regions, ensuring that background sub-
traction is properly normalized. Additionally, vignetting corrections are applied
to compensate for the position-dependent sensitivity of the XMM detectors. The
correction also accounts for exposure variations, ensuring that gaps in observa-
tional coverage do not introduce artificial fluctuations in the light curve. The light
curve data contains a column of fractional exposure that represents the fraction
of the time bin where valid data was collected. This accounts for observational
gaps caused by instrumental effects, high background contamination, or telemetry
dropouts. We filter out rows that have 0 or invalid fractional exposure and in fur-
ther sections when ”correcting for fractional exposure” we refer to correcting time
like so:

teff = tbin × FRACEXP (4.4)

Our final output consists of light curves for each QSO in our observation of pho-
ton counts binned in 1000-second intervals, generated for each object in both its
source and respective background regions, providing the necessary data for fur-
ther variability analysis. This process from raw data to finalized light curves can
be repeated automatically for any amount of obsids with no further input.

4.2 Light curve analysis

Having the light curve data in hand, our goal is now is to apply our methodology
(Chapter 3.1) to model NXSV as a measure of the intrinsic variability of our objects.
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This analysis can be performed on individual light curves or on an ensemble of
sources, grouped in black hole mass (logMBH) and Eddington ratio logλEDD) bins
as measures of the QSOs’ physical characteristics. We will focus mainly on the latter
approach which allows us to study population-level trends in AGN variability to
investigate if we can validate any type of correlation between the variability and
these characteristics.

4.2.1 Stan

4.2.1.1 Stan as a tool for Bayesian inference

To model the variability of AGN light curves, we employ Stan, a probabilistic code
designed for Bayesian statistical modeling and inference using Hamiltonian Monte
Carlo (HMC) and its extension, the No-U-Turn Sampler (NUTS). These algorithms
are particularly well-suited for high-dimensional parameter spaces and provide ef-
ficient exploration of posterior distributions. Stan’s ability to perform full Bayesian
inference with hierarchical models makes it an ideal choice for estimating the NXSV
of our light curves. The hierarchical approach allows us to incorporate population-
level priors while still being able to fit individual light curves, thus improving sta-
tistical robustness when dealing with low-count X-ray observations.

4.2.1.2 MCMC sampling

Bayesian inference in Stan relies on Markov Chain Monte Carlo (MCMC) sampling,
where multiple chains explore the posterior distribution iteratively. The HMC al-
gorithm in Stan employs Hamiltonian dynamics to propose new states in the pa-
rameter space by treating parameters as particles moving in a potential energy
landscape. This leads to more efficient sampling by reducing the random-walk
behavior inherent in simpler MCMC algorithms. The No-U-Turn Sampler (NUTS)
further enhances efficiency by automatically tuning the number of steps in the
HMC trajectory. This prevents the algorithm from either making excessively short
or long moves (which reduce efficiency and increase computational need respec-
tively). The result is an adaptive MCMC method that ensures better convergence
while maintaining computational efficiency.
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Some pertinent terminology regarding MCMC sampling that will be used later:

▶ Warmup steps (burn-in) are the initial iterations where the sampler adjusts
to the posterior distribution, improving efficiency before collecting meaning-
ful samples. These steps are discarded from the final results.

▶ Sampling steps follow the warmup phase and generate the actual posterior
samples used for inference. The more sampling steps, the better the estimate
of parameter distributions.

▶ Chains are the independent Markov chains running in parallel, each start-
ing from a different point in parameter space. Multiple chains help diagnose
convergence—if they all explore similar distributions, we can be more confi-
dent in the results.

4.2.2 Variability analysis

4.2.2.1 Data pre-processing

Before being passed to our models, the extracted light curves undergo some minor
corrections to ensure accurate statistical modeling. These involve correcting for
fractional exposure exposure using equation (4.4) as well as correcting the back-
ground light curve by normalizing it using the background-to-source ratio calcu-
lated during the creation of the corrected light curves in section 4.1.3.6, ensuring
that background counts are scaled correctly to our source counts.

Then we estimate the mean count rate of each source, which serves as an infor-
mative prior for the Bayesian model. This estimation is performed using a Poisson
likelihood approach. To determine the statistical significance of a detection, we
compute the minimum required counts for a source to be considered above back-
ground fluctuations. This is estimated using the inverse survival function of the
Poisson distribution:

Nmin = Poisson−1(pfalse, Cbkg, total) (4.5)

where pfalse represents the false-positive threshold, chosen to correspond to a detec-
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tion significance of 4e-6 which is approx 4.5σ. We then estimate the most probable
count rate by maximizing the Poisson probability mass function:

P (Ctotal|Cexpected) =
C

Ctotal
expectede

−Cexpected

Ctotal!
(4.6)

where Cexpected represents the predicted total counts for a given mean rate. This
estimated count rate will then be used as a prior in our models.

For both models we will use, we pass the data as individual epochs, meaning
that each data point corresponds to a specific time bin rather than an entire light
curve. The ensemble model additionally requires an index array to map each epoch
to its corresponding AGN.

4.2.2.2 Single light curve analysis

For an individual AGN, we model its X-ray light curve using a log-normal count rate
distribution. We pass to our model:

▶ Observed photon counts Ci

▶ Effective exposure time teff,i

▶ Background photon counts Bi

▶ Aprior on the logarithmicmean count rate logCrate, estimated using the method-
ology described above.

4.2.2.3 Ensemble light curve analysis

Similarly to the individual model, we pass the data as individual epochs which ne-
cessitates a means to account for which epochs belong to which AGN. To address
this we introduce an index array that maps each epoch to its corresponding AGN.
The ensemble model structure consists of:

1. Epoch-Specific Parameters:
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▶ logCrate,i: The log count rate at a given epoch, estimated using the method-
ology described above.

▶ σi: The variability amplitude for each epoch.

▶ NXSVi: The normalized excess variance per epoch.

2. AGN-Specific Parameters:

▶ logCmean,s: The mean log count rate for AGN s.

▶ σs: The overall variability amplitude of an AGN.

▶ NXSVs: The intrinsic excess variance of an AGN.

3. Population-Level (Hierarchical) Parameters:

▶ µσ2
NXSV

: The mean of the log-normal distribution governing NXSV across
the population

▶ σσ2
NXSV

: The scatter in the NXSV distribution

Once the models are defined, inference is performed using 4 parallel chains,
each with 4000 warmup steps and 2000 sampling steps, yielding 8000 posterior
samples per parameter. We compute the posterior mean as the final estimated
value for each parameter with uncertainties derived directly from the posterior
distribution spread.
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Chapter 5

Results & Technical Analysis

5.1 Light curve analysis results

5.1.1 AGN light curves

In this chapter we will present the results of our analysis outlined in chapter 4.
Starting off with a representative example of an extracted light curve extracted
automatically from raw ODF data using our pipeline (see section 4.1.3). This specific
light curve has been binned at 8 kilosecond time intervals (see Figure 5.1) in order
to better visualize the amplitude variability while most of our analysis has been
done using 1 kilosecond intervals.

5.1.2 Bayesian flux estimates validation

After generating the light curves for our QSOs, these are passed to the ensemble
Bayesian model grouped in in logarithmic black hole mass (logMBH) and Edding-
ton ratio (logλEdd ) bins defined to cover the intervals of 8 to 10 and -2 to 0 respec-
tively, using a step of 0.5 dex for both parameters.

Before presenting the results for the median ensemble variability, we first
demonstrate the reliability of our Bayesian model at the individual source level.
To do this, we compare the inferred posterior count rates with the prior count rate
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Figure 5.1: Example light curve of the SDSS DR16Q QSO 012635.58-012343.8 made
with a time binning of 8 kiloseconds. The top panel plots the observed XMM pho-
ton counts (blue filled circles) as a function of the observation epoch in seconds.
The errorbars associated with each point are Poisson uncertainties. The red circles
connected with a dashed line correspond to the XMM background level. The bot-
tom panel plots the estimated photon count rate of the same source as function of
time in seconds. The single epoch rates are inferred from the Bayesian methodol-
ogy described in section 3.1. The uncertainties correspond to the 68% confidence
interval around the median of the posterior distributions of the single epoch pho-
ton count rates. The shaded region is the 1σ uncertainty of the mean count rate.
The dashed black line shows the mean count rate of the light curve also inferred
from the Bayesian approach of Section 3.1.

estimates, as defined in Equation 4.6. Figure 5.2 presents this comparison, with
posterior means of inferred count rate on the y-axis versus the prior on the x-axis.
Most objects lie near the one-to-one diagonal line, signifying that the posterior did
not vastly deviate from the prior, possibly due to it being a good baseline. However,
a small subset of sources exhibits deviations of 0.5–1 dex, marking them as poten-
tial outliers. The optical spectra of three of these consistent outliers can be seen in
Figure 5.3. The spectra exhibit typical broad emission lines characteristic of mostly
Type 1 AGN, without obvious signs of extreme absorption or strong outflows. This
suggests that their deviation from the prior may not be due to dust obscuration
or an unusually absorbed continuum in the optical but could instead arise from
factors affecting their X-ray emission such as their increased intrinsic variability.
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Figure 5.2: Comparison of prior given and model inferred Log Photon Count-Rates
for 80 SDSS DR16 QSOs in the range logMBH = [8.0, 8.5] and Eddington ratios in
the interval logλEdd = [−2.0,−1.5]. Each point corresponds to the mean log photon
count-rate of an individual QSO, with the x axis showing the prior value and the y
axis displaying the inferred value from the Bayesian ensemble model. Green error
bars represent the 68% confidence interval of the inferred posterior distribution.
The red dashed line indicates a one-to-one relation between prior and inferred val-
ues.

Figure 5.3: Optical spectra of outlier sources in Figure 5.2 found in SDSS DR16:
(Left) SDSS J115535.88+232723.1, (Middle) SDSS J140139.46+025721.3, (Right)
SDSS J140946.95+260732.7. Each panel plots flux versus observed wavelength, with
common AGN emission lines visible.
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5.1.3 Log-normal modelling of NXSV

One of the assumptions in our modeling is that the distribution of normalized ex-
cess variance (σNXSV) follows a log-normal form. This assumption is motivated by
the properties of stochastic variability in AGN accretion flows [e.g. Uttley et al., 2005,
Kelly et al., 2009]. Additionally, as shown in Vaughan et al. [2003], for a finite num-
ber of light curve realizations of a red-noise process, the resulting variances fol-
low a distribution that resembles a χ2 distribution with a low number of effective
degrees of freedom. This distribution features a high-variance tail, which can be
approximated by a log-normal function linking the variances of individual sources
to the same underlying population.

Figure 5.4 illustrates how our framework incorporates this assumption, show-
ing the posterior draws of log10(σNXSV) alongside the best-fitting log-normal model.
The figure provides insight into how the prior structure works, particularly be-
cause both the mean and the standard deviation of the log-normal distribution
are treated as free parameters in the model. Most of the posterior samples clus-
ter around the log-normal peak, with relatively few sources populating the high-
σNXSV tail. While there is some extension toward larger variances, the majority of
these points remain within or just above the model’s 68% confidence interval, in-
dicating that the assumed log-normal form provides a reasonable approximation.
However, as emphasized by Vaughan et al. [2003], the true population-level dis-
tribution of excess variance remains uncertain, and our use of a log-normal form
serves primarily as a pragmatic choice for linking individual source variances to a
shared statistical framework.

Overall, our best-fitting log-normal curve describes the distribution adequately.
This result reinforces the idea that short-to-intermediate-timescale AGN flux varia-
tions arise from these physically multiplicative mechanisms, such as disc or corona
instabilities, rather than purely additive noise. The generally good agreement also
suggests that the observed scatter is intrinsic to AGN variability rather than being
driven by systematic effects or outliers identified in the previous section.
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Figure 5.4: Inferred log-normal distribution of the normalised excess variance for
the sample of SDSS DRQ16 QSOs with black hole masses in the range logMBH =
[8.0, 8.5] and Eddington ratios in the interval logλEdd = [−0.5, 0.0]. The shaded re-
gion shows the 68% confidence interval of the reconstructed log-normal distribu-
tion of the population using the posteriors of the model parameters µσ2

NXSV
, σσ2

NXSV
of

Equation (2.11). The histogram is constructed from the inferred σ2
NXSV,k (see Equa-

tion (2.11)) of individual light curves.

5.2 NXSV correlation with physical parameters

5.2.1 Eddington ratio dependence

The motivating factor of this thesis has been to assess how the variability amplitude
changes with the physical characteristics of the accretion flow of an AGN, namely
the Eddington ratio and black holemass. Starting off with the former, in contrast
to many earlier works suggesting an anti-correlation [e.g. Ponti et al., 2012], our
findings show that σ2

NXSV actually increases for higher logλEdd bins, as seen in Fig-
ure 5.5. The lower-Eddington objects in our sample appear less variable on these
(hours-to-days) timescales, while those approaching logλEdd ∼ −1 display signifi-
cantly larger intrinsic amplitude of flux fluctuations.

These results do, however, come with large errors in some of the lowest-λEdd

bins, as evidenced in the right panel of Figure 5.5 stemming from often inconclu-
sive posteriors offered by our model especially those with lower λEdd. Hence, part
of the apparent discrepancy with prior work could be due to limited statistics and
relatively large uncertainties for luminous, fast-accreting AGN. Still, the net effect is
suggestive that near-Eddington sources may be prone to additional variability driv-
ing mechanisms. Further work on the dataset or on deeper exposures may clarify
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Figure 5.5: Ensemble normalized excess variance of DRQ16 QSOs as a function of Edding-
ton ratio. The vertical and horizontal solid lines in the main panel show how the param-
eter space is divided in black hole mass and Eddington ratio bins with logarithmic widths
of 0.5 dex. The value at the middle of each box is the estimated ensemble normalized ex-
cess variance for DRQ16 QSOs within the corresponding black hole mass and Eddington
ratio limits. The shading is a smoothed representation of the mean NXSV variations on
the 1-dimensional space of stable logMBH over a varying logλEdd with brighter colours
corresponding to higher values. he right panel shows how the mean NXSV varies with Ed-
dington ratio at a fixed black hole mass with its respective error stemming from the 68%
confidence interval of the distribution. The value in the logλEdd = [−2,−1.5] bin is an up-
per limit, computed such that 99.6% of the posterior distribution falls below it. The yellow
trendline showcases a qualitative empirical scaling relation for our data as described in
appendix A.

whether this observed increase truly reflects coronal/wind physics or is partially
driven by the uncertainties at lower λEdd.

5.2.2 Black hole mass dependence

We also explore how σ2
NXSV varies as a function of black hole mass. Figure 5.6 simi-

larly presents a two-dimensional map of ensemble-averaged variability amplitudes
across bins of logMBH. Although some bins hint that more massive black holes may
have somewhat smaller amplitudes, we do not observe a smooth or clearly mono-
tonic trend.
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A variety of factors could mask any underlying correlation. Single-epoch mass
determinations carry uncertainties of up to 0.5 dex [Netzer, 2013], meaning that
different true masses can easily end up in the same nominal bin, masking a weak
trend. Additionally, red-noise leakage becomes significant if our observations (span-
ning days at most) fail to probe the longer characteristic timescales expected for
more massive systems [McHardy et al., 2006]. This can artificially lower the mea-
sured σ2

NXSV for high-MBH objects or otherwise add scatter. Finally, comparing the
size of the error bars across these bins reveals that our sensitivity to shallow rela-
tionships is limited: the scatter and uncertainties in each bin frequently match or
exceed any incremental shift from one mass range to another.

It is also rather noteworthy that the number of QSOs populating each bin in
our analysis, roughly on the order of around 100 sources, contributes to, and even
possibly dominates, the relatively large error bars we see. Tests of our Bayesian
model on samples of increasing size heavily suggest that variance estimates be-
come more reliable as additional sources are incorporated. Consequently, further
studies that expand the QSO sample in these particular intervals of logMBH and
logλEdd will likely reduce the statistical scatter and allow a clearer detection of any
shallow trend.

To examine whether a hidden trend could feasibly exist within the error scat-
ter, we apply a variability-black hole linear scaling relation derived in Akylas et al.
[2022] by combining MBH estimates obtained from reverberation mapping and stel-
lar velocity dispersion measurements for local Seyfert galaxies. to the logMBH val-
ues of our sources. It should be noted that this relation was derived for the 3–10 keV
energy band, while our analysis is conducted in the 0.5–2 keV band. We apply the
relation using the 10 ks timescale, as most of our sources have rest-frame durations
clustered around this timescale as seen in Figure 2.7. Thus Figure 5.7 contrasts our
binned mean NXSV values against the predicted scaling slope. We further investi-
gate this by plotting a linear fit of our NXSV values separately from the expected
trend of Akylas et al. [2022] in Figure 5.8. Notably, removing the first bin (which
has the largest scatter and the most unreliable posteriors) results in a best-fit linear
trend that aligns well with the expected relations.
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Figure 5.6: Ensemble normalized excess variance of DRQ16 QSOs as a function of Edding-
ton ratio. The vertical and horizontal solid lines in the main panel show how the param-
eter space is divided in black hole mass and Eddington ratio bins with logarithmic widths
of 0.5 dex. The value at the middle of each box is the estimated ensemble normalized ex-
cess variance for DRQ16 QSOs within the corresponding black hole mass and Eddington
ratio limits. The shading is a smoothed representation of the mean NXSV variations on the
1-dimensional space of stable logλEdd over a varying logMBH with brighter colours corre-
sponding to higher values. The top panel shows how the mean NXSV varies with black hole
mass at fixed Eddington ratio with its respective error stemming from the 68% confidence
interval of the distribution. The values in the logMBH = [8.0, 8.5], [[9, 9.5]] bins are upper
limits, calculated such that 99.6% of the posterior distribution falls below them. The yel-
low trendline showcases a qualitative empirical scaling relation for our data as described
in appendix A.
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Figure 5.7: Mean NXSV values binned over logMBH/M⊙ bins compared against the
expected scaling relation for a 10 ks timescale in the 3–10 keV energy band, as de-
rived in Akylas et al. [2022]. The data points include error bars reflecting measure-
ment uncertainties while the red dashed line represents the expected trend from
the scaling relation. The values in the logMBH bins of 8.0−8.5 and 9.0−9.5 are upper
limits, calculated such that 99.6% of the posterior distribution falls below them.

Figure 5.8: (Left) Logarithmic mean NXSV values for individual sources in our
analysis plotted over logMBH/M⊙. The red dashed line represents the expected
trend from the black hole mass-variability scaling relation for 10 ks timescales in
the 3–10 keV energy band, as given in Akylas et al. [2022]. The green solid line in-
dicates the best linear fit to the data. (Right) The same dataset but excluding the
first bin logMBH = [8.0, 8.5], where the highest scatter was observed.
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Chapter 6

Discussion & Future work

In this thesis, we pursued two closely linked goals: first, to investigate the connec-
tion between X-ray variability in highly energetic AGN—quantified via the Normal-
ized Excess Variance (σ2

NXV)—and the physical properties properties of the accretion
flow such as the black hole mass (MBH) and Eddington ratio (λEdd); and second, to
design and validate an automated pipeline capable of processing rawXMM-Newton
observations into scientifically usable light curves. This work is based on the recog-
nition that X-ray variability on timescales of hours to days can offer unique insights
into the accretion physics unfolding near supermassive black holes, yet extracting
that signal reliably poses significant methodological and technical hurdles. By in-
tegrating source catalogs (e.g., the XMM-Newton 4XMM Catalog and the SDSS QSO
Catalog), implementing systematic filtering strategies (to ensure data quality and
adequate temporal coverage), programmatically processing the raw observations
into workable light curves and applying a novel Bayesian methodology for variabil-
ity estimation, we constructed a large and homogeneous dataset of QSO light curves
along with estimates on their corresponding variability. Through this comprehen-
sive approach we attempted to not only to probe potential correlations between
variability amplitude, black hole mass, and Eddington ratio, but also to establish a
standardized workflow for future AGN variability studies.
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6.1 Discussion of results

Eddington ratio correlation: Our analysis indicates a tentative positive corre-
lation between NXSV and λEdd (Figure 5.5), which contrasts with earlier studies
that reported an anti-correlation Ponti et al. [2012]. Several factors may contribute
to this discrepancy. At high accretion rates (logλEdd ≥ −1), AGN could transition
from radiatively efficient thin disks to advection-dominated slim disks Abramow-
icz et al. [1988], where enhanced turbulence or coronal heating might amplify flux
variability. Such processes could obscure or counteract the usual expectation of
suppressed fluctuations at higher accretion rates. Moreover, our sample selec-
tion differs from prior works that focused on nearby, low-luminosity AGN; by in-
cluding a larger fraction of high-redshift QSOs with systematically higher λEdd, we
may be probing a different regime of black hole growth. Differences in rest-frame
timescales and energy bands (e.g. soft vs. hard X-rays) also introduce observational
biases, as do the evolving size and optical depth of the corona with increasing ac-
cretion rate. A patchier or more compact corona at high λEdd can plausibly yield
strong short-term flux variability, further supporting a positive trend in NXSV.

Black hole mass correlation: No clear trend emerged between NXSV and MBH

(Figure 5.6), it seems the expected anti-correlation between NXSV and black hole
mass is subtle enough (Figure 5.7) that it could be obscured within the uncertain-
ties inherent in the observations. It is noteworthy that the trend in our results
does loosely align with theoretical predictions of similar sources by Akylas et al.
[2022] when excluding the lowest-mass bin that exhibits the strongest scatter of
NXSV values (Figure 5.8). The scatter likely stems from several factors. It’s possi-
ble that the observed timescales (hours to days) may not probe the characteristic
variability timescales (tvar ∝ MBH) for high-mass AGN, leading to red-noise leakage
and underestimated variability amplitudes. In addition to that, single-epoch MBH

estimates are known to carry significant errors (∼ 0.5 dex; Netzer [2013]), blurring
intrinsic correlations.

Feasibility of pipeline development and use: An important component of this
work was the creation of an automated pipeline based on the already existing
xmmpype pipeline to process raw XMM-Newton observations into workable light
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curves. This pipeline integrates SAS routines for data reduction, source detection,
and background filtering, streamlining the extraction of variability metrics. By
automating background subtraction and exposure corrections, it minimizes sys-
tematic uncertainties, particularly for low-count sources. Its modular design en-
sures easy integration with xmmpype and usability across different studies. Be-
yond facilitating the present analysis, the pipeline demonstrates the feasibility of
high-throughput AGN variability studies. Its success highlights the potential for fu-
ture research to prioritize speed and statistical power, overcoming limitations such
as small sample sizes that can hinder precise variability estimates by easily and en
masse turning observations into light curves compatible with our methodology.

6.2 Future work

With the automated pipeline now demonstrated to scale across extensive XMM-
Newtondatasets, a natural next step is to apply the Bayesian ensemble methodology
on significantly larger AGN samples. By pooling together sources within specific
bins of black hole mass, Eddington ratio, or even more refined physical parameters,
one can expect the statistical power to increase dramatically, thereby suppressing
the noise that typically plagues regular single-object variability estimates. As the
uncertainties on individual measurements shrink through the inclusion of more
objects, this approach may reveal the shallow correlations that may remain hidden
in smaller samples.

Another promising direction could lie in combining the pipeline’s light-curve
products with higher-resolution spectra from both XMM-Newton and complemen-
tary instruments (e.g. NuSTAR, Chandra). Such spectroscopic follow-up could char-
acterize the coronal properties (e.g. temperature, optical depth) of the same AGN
whose time-domain variability is being scrutinized. This joint analysis of spectral
and temporal domains could reveal, for example, whether strong short-term vari-
ability correlates with specific coronal configurations or disk states, thereby offer-
ing a more holistic view of the accretion process. Finally, future studies might ex-
plore narrower-duration windows (e.g. restricting datasets to observations of sim-
ilar rest-frame length) to avoid mixing variability on disparate timescales—a strat-
egy that could be especially revealing for understanding why certain AGN, particu-
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larly at high λEdd, appear to deviate from traditional variability–mass correlations.
By merging these large-scale ensemble analyses with deeper spectral insights and
carefully targeted timescale investigations, we can refine our picture of AGN vari-
ability and better link it to the fundamental physics governing black hole growth.

To aid in this endeavour, the upcoming large-scale spectroscopic surveys, 4MOST
and DESI-II are sure to provide transformative datasets. The 4-metre Multi-Object
Spectroscopic Telescope (4MOST) Extragalactic Consortium surveys [de Jong et al.,
2019] plan to deliver around 13 million low-resolution spectra for galaxies, AGNs,
and QSOs, including detailed measurements of velocity dispersions, black hole masses,
star formation rates, metallicities, and star formation histories. In addition to that,
the 4MOST AGN Survey will monitor up to 1,000 AGNs and QSOs fortnightly, aiming
to use these objects as cosmological standard candles. These datasets will signifi-
cantly enrich the statistical analyses, correlating AGN variability to galaxy-scale
environments, accretion physics, and large-scale cosmic structures. In parallel,
DESI-II’s Data Release 1 [DESI Collaboration et al., 2024] will feature detailed clus-
tering analyses from tens of millions of galaxies and QSOs, characterized by pre-
cise two-point clustering statistics. These data promise significant advancements
in cosmological analyses by providing precise measurements of cosmic structure
and expansion, thus enhancing our ability to connect AGN variability with broader
cosmological and structural contexts.
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Appendix A

Empirical Scaling Relations

To interpret the ensemble trends in chapter 5, we compare them against an em-
pirical model of AGN variability described as Model 3 in Georgakakis et al. [2024].
This model is constructed to reflect observed correlations between variability am-
plitude, black hole mass, and Eddington ratio, particularly the inverse correlation
with λEdd.

The model assumes that the AGN PSD follows a bending power-law form:

PSD(ν) = Aν−1

(
1 +

ν

νb

)−1

(A.1)

where ν is the temporal frequency, and the break frequency νb and normaliza-
tion A are given by the scaling relations:

νb =
580

MBH/M⊙
[s−1], A = 3× 10−2 · λ−0.8

Edd (A.2)

Thus, the break frequency is expected to decrease with increasing black hole
mass, shifting the variability power to longer time-scales. The PSD amplitude de-
creases with Eddington ratio, leading to lower overall variability in more rapidly
accreting systems.

In the paper, NXSV values are estimated by generating synthetic light curves
from the PSD using the method of Emmanoulopoulos et al. [2013], and integrating
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the power over the frequency range corresponding to observed rest-frame time-
scales (typically from a few days to∼ 10 years). The result is an ensemble prediction
for the expected variability amplitude in bins of black hole mass or Eddington ratio.

This model does not attempt to match the exact NXSV values of individual
sources. Instead, it captures the expected trends across the parameter space, as-
suming stochastic, red-noise dominated variability modulated by physical accre-
tion properties.
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