
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Assessment of modern RISC-V microprocessors
reliability using runtime hardware measurements

Ilias P. Konstantinidis

Supervisor: Dimitris Gizopoulos, Professor

ATHENS

APRIL 2025

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εκτίμηση της αξιοπιστίας των σύγχρονων
επεξεργαστών RISC-V με χρήση μετρήσεων υλικού κατά

τον χρόνο εκτέλεσης

Ηλίας Π. Κωνσταντινίδης

Επιβλέπων: Δημήτριος Γκιζόπουλος, Καθηγητής

ΑΘΗΝΑ

ΑΠΡΙΛΙΟΣ 2025

BSc THESIS

Assessment of modern RISC-V microprocessors reliability using runtime hardware
measurements

Ilias P. Konstantinidis
S.N.: 1115202000109

SUPERVISOR: Dimitris Gizopoulos, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εκτίμηση της αξιοπιστίας των σύγχρονων επεξεργαστών RISC-V με χρήση μετρήσεων
υλικού κατά τον χρόνο εκτέλεσης

Ηλίας Π. Κωνσταντινίδης
Α.Μ.: 1115202000109

ΕΠΙΒΛΕΠΩΝ: Δημήτριος Γκιζόπουλος, Καθηγητής

ABSTRACT

Assessing hardware reliability against different external or internal disturbances is a critical
challenge in processor design, especially in the context of complexmicroarchitectures with
out-of-order (O3) execution, where increased instruction-level parallelism can differenti-
ate the impact of transient faults. This thesis explores the prediction of the Architectural
Vulnerability Factor (AVF - the standard metric for transient faults measurements) and
related error outcomes (Silent Data Coruptions - SDCs, Timeouts, Assertions/Crashes)
across key hardware structures (Register File, L1 Data Cache, L1 Instruction Cache) of
designs with a RISC-V architecture. Utilizing the popular gem5 simulator, a series of auto-
mated Python scripts were developed to create and execute checkpoints for the collection
of runtime hardware metrics. A recent microarchitectural modeling and injection frame-
work (gem5-MARVEL) was employed to calculate the corresponding AVF values through
statistically injecting single-bit faults into random locations of the hardware structures and
CPU cycles during program execution. Feature selection strategies based on the correl-
ation of the performance metrics were implemented to identify the most relevant hard-
ware metrics for each component and support efficient regression procedures. Several
regression techniques (linear, polynomial, ridge and lasso models), with additional ana-
lysis performed using the Patient Rule Induction Method (PRIM), were evaluated using
various scientific Python libraries. While moderately strong R2 values were observed in
the case of total-AVF and SDC-AVF, our final conclusions highlight difficulties in accurate
AVF prediction at runtime.

SUBJECT AREA: Hardware Reliability

KEYWORDS: Architectural Vulnerability Factor (AVF), Silent Data Corruption (SDC),
fault injections, AVF estimation, regression

ΠΕΡΙΛΗΨΗ

Ο υπολογισμός της αξιοπιστίας του υλικού ενάντια σε διαφορετικές εξωτερικές ή εσω-
τερικές διαταραχές αποτελεί μια μεγάλη πρόκληση στο σχεδιασμό επεξεργαστή (CPU
design), ειδικά στο πλαίσιο σύνθετων μικροαρχιτεκτονικών με εκτέλεση εκτός σειράς (out-
of-order, O3) όπου ο αυξημένος παραλληλισμός σε επίπεδο εντολών μπορεί να διαφορο-
ποιήσει την επίδραση των παροδικών σφαλμάτων (transient faults). Αυτή η διατριβή διε-
ρευνά την πρόβλεψη του Συντελεστή Αρχιτεκτονικής Ευπάθειας (Architectural Vulnerability
Factor, AVF) και των υπολοίπων σχετικών εσφαλμένων αποτελεσμάτων (Silent Data Coruptions
- SDCs, Timeouts, Assertions/Crashes) σε σημαντικές δομές του επεξαργαστή (Αρχείο
Καταχωρητών, ΚρυφήΜνήμηΔεδομένωνπρώτου επιπέδου, ΚρύφηΜνήμηΕντολώνπρώ-
του επιπέδου) που σχεδιάστηκαν στα πλαίσια την αρχιτεκτονικής RISC-V. Χρησιμοποιώ-
ντας τον διάσημο προσομοιωτή gem5, αναπτύχθηκε μια σειρά από αυτοματοποιημένα
Python scripts για την δημιουργία και την εκτέλεση σημείων ελέγχου (checkpoints) και την
συλλογή μετρήσεων υλικού κατά τον χρόνο εκτέλεσης. Ένα σύγχρονο πλαίσιο μικροαρ-
χιτεκτονικής μοντελοποίησης και εισαγωγής ελαττωμάτων (gem5-MARVEL) χρησιμοποι-
ήθηκε για τον υπολογισμό των αντίστοιχων τιμών AVF μέσω της στατιστικής εισαγωγής
ελαττωμάτων ενός bit σε τυχαίες θέσεις και κύκλους CPU κατά την εκτέλεση του προγράμ-
ματος. Διάφορες στρατηγικές επιλογής χαρακτηριστικών που βασίζονται στη συσχέτιση
των μετρήσεων απόδοσης εφαρμόστηκαν για τον εντοπισμό των πιο σχετικών μετρήσεων
για κάθε δομή επεξεργαστή και την εφαρμογή αποτελεσματικών διαδικασιών παλινδρόμη-
σης (regression procedures). Αρκετές τεχνικές παλινδρόμησης (γραμμικά, πολυωνυμικά,
ridge και lasso μοντέλα), με επιπλέον ανάλυση που πραγματοποιήθηκε χρησιμοποιώντας
τη μέθοδο PRIM (Patient Rule Indction Method), αξιολογήθηκαν χρησιμοποιώντας διάφο-
ρες επιστημονικές βιβλιοθήκες της Python. Ενώ παρατηρήθηκαν μέτρια ισχυρές τιμές R2

στην περίπτωση του συνολικού AVF και SDC-AVF, τα τελικά αποτελέσματα φανερώνουν
δυσκολίες στην αξιόπιστη πρόβλεψη του AVF κατά τον χρόνο εκτέλεσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αξιοπιστία Υλικού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Συντελεστής αρχιτεκτονικής ευπάθειας, Σιωπηλά σφάλματα,
εισαγωγή ελαττωμάτων, εκτίμηση AVF, παλινδρόμηση

ACKNOWLEDGEMENTS

I would like to thankmy professor, Dimitris Gizopoulos, the postdoctoral researcher, George
Papadimitriou, and the PhD student, Foteini Kotsimpou, for their help and support during
this thesis.

CONTENTS

1. INTRODUCTION 12

1.1 Importance of Hardware Reliability . 12

1.2 Quantifying Hardware Vulnerability . 12

1.3 Motivation . 13

1.4 Related Works . 14

2. BACKGROUND 16

2.1 Faults and Errors Terminology . 16

2.2 Architectural Vulnerability Factor . 17

2.3 Vulnerability Αnalysis Τechniques . 17
2.3.1 Architectural Correct Execution . 17
2.3.2 Statistical Fault Injection . 18

2.4 Instruction Set Architectures . 19
2.4.1 RISC vs CISC . 19
2.4.2 RISC-V Architecture . 22

3. WORKING ENVIRONMENT 23

3.1 gem5 . 23

3.2 Scripts . 24

4. REGRESSION AND CORRELATION ANALYSIS TECHNIQUES 25

4.1 Pearson’s Coefficient . 25

4.2 Regression . 25
4.2.1 Linear Regression . 25
4.2.2 Polynomial Regression . 26
4.2.3 Ridge Normalization . 27
4.2.4 Lasso Normalization . 27
4.2.5 Principal Component Analysis . 28

4.3 Patient Rule Induction Method . 29

5. IMPLEMENTATIONS OF AVF PREDICTION 32

5.1 Regression Analysis Setup . 32

5.2 Formal Definition of the Regression Problem . 33

5.3 Prediction Approaches . 35
5.3.1 Linear Procedure . 35
5.3.2 Quadratic Procedure . 36
5.3.3 Polynomial Pearson’s Coefficient . 36

5.4 Parametric Space . 36

6. RESULTS 37

6.1 All Features Included . 37
6.1.1 total-AVF . 37

6.1.1.1 Register File . 37
6.1.1.2 L1 Data Cache . 39
6.1.1.3 L1 Instruction Cache . 41

6.1.2 SDC-AVF . 43
6.1.2.1 Register File . 43
6.1.2.2 L1 Data Cache . 45
6.1.2.3 L1 Instruction Cache . 47

6.2 Max of 5 Features Included . 49
6.2.1 total-AVF . 49

6.2.1.1 Register File . 49
6.2.1.2 L1 Data Cache . 51
6.2.1.3 L1 Instruction Cache . 53

6.2.2 SDC-AVF . 55
6.2.2.1 Register File . 55
6.2.2.2 L1 Data Cache . 57
6.2.2.3 L1 Instruction Cache . 59

6.3 Conclusion . 61

6.4 Future Work . 62

ABBREVIATIONS - ACRONYMS 63

REFERENCES 65

LIST OF FIGURES

1.1 MTBF, MTTF and MTTR . 13
1.2 Dynamic Redundant Multi-Threading (RMT) based on AVF Estimation . . . 14

2.1 A register with ACE (red) and Un-ACE (gray) bits 18

6.1 total-AVF, Register File, 24 maximum features, K-fold validation 38
6.2 total-AVF, Register File, 24 maximum features, Test Programs 38
6.3 total-AVF, Data Cache, 23 maximum features, K-fold validation 40
6.4 total-AVF, Data Cache, 23 maximum features, Test Programs 40
6.5 total-AVF, Instruction Cache, 12 maximum features, K-fold validation 42
6.6 total-AVF, Instruction Cache, 12 maximum features, Test Programs 42
6.7 SDC-AVF, Register File, 24 maximum features, K-fold validation 44
6.8 SDC-AVF, Register File, 24 maximum features, Test Programs 44
6.9 SDC-AVF, Data Cache, 23 maximum features, K-fold validation 46
6.10 SDC-AVF, Data Cache, 23 maximum features, Test Programs 46
6.11 SDC-AVF, Instruction Cache, 12 maximum features, K-fold validation . . . 48
6.12 SDC-AVF, Instruction Cache, 12 maximum features, Test Programs 48
6.13 total-AVF, Register File, 5 maximum features, K-fold validation 50
6.14 total-AVF, Register File, 5 maximum features, Test Programs 50
6.15 total-AVF, Data Cache, 5 maximum features, K-fold validation 52
6.16 total-AVF, Data Cache, 5 maximum features, Test Programs 52
6.17 total-AVF, Instruction Cache, 5 maximum features, K-fold validation 54
6.18 total-AVF, Instruction Cache, 5 maximum features, Test Programs 54
6.19 SDC-AVF, Register File, 5 maximum features, K-fold validation 56
6.20 SDC-AVF, Register File, 5 maximum features, Test Programs 56
6.21 SDC-AVF, Data Cache, 5 maximum features, K-fold validation 58
6.22 SDC-AVF, Data Cache, 5 maximum features, Test Programs 58
6.23 SDC-AVF, Instruction Cache, 5 maximum features, K-fold validation 60
6.24 SDC-AVF, Instruction Cache, 5 maximum features, Test Programs 60

LIST OF TABLES

2.1 Comparison of Statistical Fault Injection and Architecturally Correct Execution 20
2.2 Comparison of CISC and RISC architectures 21

5.1 MAJOR SIMULATOR CONFIGURATIONS FOR EACH ISA (Adapted from
[8]) . 32

5.2 Margin of error based on confidence levels 32

6.1 total-AVF, Register File, 24 maximum features, PRIM statistics 39
6.2 total-AVF, Register File, 24 maximum features, PRIM box 39
6.3 total-AVF, Data Cache, 23 maximum features, PRIM statistics 41
6.4 total-AVF, Data Cache, 23 maximum features, PRIM box 41
6.5 total-AVF, Instruction Cache, 12 maximum features, PRIM statistics 43
6.6 total-AVF, Instruction Cache, 12 maximum features, PRIM box 43
6.7 SDC-AVF, Register File, 24 maximum features, PRIM statistics 45
6.8 SDC-AVF, Register File, 24 maximum features, PRIM box 45
6.9 SDC-AVF, Data Cache, 23 maximum features, PRIM statistics 47
6.10 SDC-AVF, Data Cache, 23 maximum features, PRIM box 47
6.11 SDC-AVF, Instruction Cache, 12 maximum features, PRIM statistics 49
6.12 SDC-AVF, Instruction Cache, 12 maximum features, PRIM box 49
6.13 total-AVF, Register File, 5 maximum features, PRIM statistics 51
6.14 total-AVF, Register File, 5 maximum features, PRIM box 51
6.15 total-AVF, Data Cache, 5 maximum features, PRIM statistics 53
6.16 total-AVF, Data Cache, 5 maximum features, PRIM box 53
6.17 total-AVF, Instruction Cache, 5 maximum features, PRIM statistics 55
6.18 total-AVF, Instruction Cache, 5 maximum features, PRIM box 55
6.19 SDC-AVF, Register File, 5 maximum features, PRIM statistics 57
6.20 SDC-AVF, Register File, 5 maximum features, PRIM box 57
6.21 SDC-AVF, Data Cache, 5 maximum features, PRIM statistics 59
6.22 SDC-AVF, Data Cache, 5 maximum features, PRIM box 59
6.23 SDC-AVF, Instruction Cache, 5 maximum features, PRIM statistics 61
6.24 SDC-AVF, Instruction Cache, 5 maximum features, PRIM box 61

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

1. INTRODUCTION

1.1 Importance of Hardware Reliability

Reliable computer systems are essential for ensuring performance, efficiency, and security
in various fields, including semiconductors, finance, communication and healthcare. A
reliable system can prevent data loss, minimizes error margin and ensures operational
stability and consistent performance.

Computers are heavily dependent on hardware reliability, as even the most advanced
software cannot function properly without stable and durable hardware components. Hard-
ware failures, such asmalfunctioning processors, faultymemory, or failing storage devices,
can lead to system crashes, data corruption, and operational disruptions. Hardware re-
liability refers to the ability of a computing system to function correctly over time without
failure. The measurement of how well a hardware component (or a full computing sys-
tem) can withstand environmental conditions, such as cosmic rays or radiation[6], while
maintaining performance and correctness constitutes an important issue in the field of
computer engineering.

The importance of hardware reliability stems from the need of proper function of multiple
applications and systems in today’s world:

• Integrity of Data Centers: Unreliable hardware leads to increased maintenance
costs, downtime, and potential data loss. Data centers and cloud computing pro-
viders invest heavily in reliable hardware and vulnerability research to ensure con-
tinuous service and avoid revenue loss.

• Environmental and Economic Impact: Unreliable components can lead to per-
formance degradation, requiring frequent maintenance or replacements. On the
other hand, high reliability reduces electronic waste and the need for frequent re-
placements, contributing to environmental sustainability and cost savings.

• Safety in Critical Systems: In industries such as aerospace, healthcare and auto-
motive, hardware failures can lead to catastrophic consequences. For example,
avionics systems in aircraft or life-supporting medical devices must function flaw-
lessly to avoid life-threatening situations.

1.2 Quantifying Hardware Vulnerability

Reliability is often quantified using metrics like Failure In Time (FIT). FIT is a metric used
to express the failure rate of hardware components, representing the number of failures
expected to occur per 109 hours of operation. For example, a component with a 10 FIT rat-
ing is predicted to experience 10 failures over one billion hours of use. FIT values can be
determined using reliability metrics, specifically the Mean Time Between Failures (MTBF)
or Mean Time To Failure (MTTF). MTBF represents the average operational time between
two consecutive failures of a repairable system, while MTTF measures the expected life-
time of a non-repairable system or component before it fails. Lastly, Mean Time To Repair
(MTTR) is the average time required to diagnose, repair, and restore a failed system back
to operation.

I. Konstantinidis 12

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 1.1: MTBF, MTTF and MTTR

Another widely adopted reliability metric is the Architectural Vulnerability Factor (AVF),
whichmeasures the likelihood that a hardware fault will lead to an actual system failure[20].
Usually, the AVF is estimated or calculated for each individual hardware structure of a CPU
or other compute chip. Not all faults cause functional errors in workload execution, so
AVF helps determine how susceptible a system is to failures caused by soft errors, such
as cosmic radiation or electrical disturbances. Understanding and accurately measuring
AVF is essential for designing resilient systems, optimizing fault-tolerant hardware, and
ensuring high availability in critical applications.

1.3 Motivation

This thesis aims to develop a statistical regression-based model for dynamically predicting
the Architectural Vulnerability Factor (AVF) at runtime, using hardware proxies derived
from microarchitectural features. The main motivation factors of this research are:

• Conventional AVF analysis, such as Architecturally Correct Execution (ACE)[20],
extensive simulations or fault injection experiments, are computationally expensive
and fail to capture real-time variations. By introducing machine learning regression
techniques, a fast, lightweight and accurate real-time AVF estimation approach for
different hardware components may be built.

• Knowing the AVF in real-time enables the processor to apply dynamic redundant
multi-threading (RMT) or other mitigation techniques. RMT is the technique of run-
ning two copies of the same program as separate threads, feeding them identical
inputs, and comparing their outputs[17]. Accurate AVF runtime estimation allows

I. Konstantinidis 13

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

for a threshold to be set that enables and disables RMT based on the desirable
performance and reliability of the specific application.

Start

Measure AVF

Compare AVF
to Threshold

AVF > Threshold?

Normal Execution RMT Execution

End

YesNo

Program execution finished Program execution finished

Instructions > Threshold Instructions > Threshold

Figure 1.2: Dynamic Redundant Multi-Threading (RMT) based on AVF Estimation

• In applications such as aerospace, automotive, and medical devices, real-time AVF
estimation ensures that processors can respond to soft errors before they cause
failures. This can prevent catastrophic consequences in mission-critical operations.

1.4 Related Works

The concept of Architectural Vulnerability Factor (AVF) was initially introduced by Mukher-
jee et al.[20]. In the same research an approach of AVF estimation was proposed called
Architecturally Correct Execution (ACE). The establishment of the AVF metric in the field
of research created the need for the development of a unified framework for architectural
level software reliability analysis. Sim-SODA[10] allowed for the first regression-based
approaches of AVF prediction to be explored[21][15].

Although Sim-SODA and other frameworks are still powerful tools for hardware reli-
ability analysis, they were limited in terms of ISAs and general configurations. Also, al-
though fast, ACE is a conservative method for calculating AVF, providing a pessimistic
upper bound rather than an accurate estimate of vulnerability. These limitations, coupled
with the rise in popularity of the RISC-V architecture[22] led to the formation of a highly-
configurable and accurate infrastructure[8][19][18][13] that uses statistical fault injection

I. Konstantinidis 14

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

(SFI)[14] for the computation of AVF. This newly emerged groundwork brings about the
reexamination of the previous prediction approaches and opens new possibilities for re-
search exploration. In this thesis, both existing and new methods regarding runtime AVF
prediction are tested using gem5 and gem5-MARVEL in RISC-V architecture.

I. Konstantinidis 15

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

2. BACKGROUND

2.1 Faults and Errors Terminology

Understanding the definitions of the core concepts in vulnerability analysis, as well as
the different types of errors and their causes in modern CPUs is an essential first step in
calculating and improving the reliability of the system.

The terms defects, faults, and errors are often used interchangeably in various do-
mains, including hardware design, software engineering, and system reliability analysis.
However, they have distinct meanings, and misunderstanding these terms can cause con-
fusion in diagnosing and resolving issues[4].

• Defect: A defect is the physical cause of the problem or in other words an inherent
flaw in a system’s design, manufacturing, or material composition.

• Fault: A fault is the actual manifestation of a system defect. It represents a model
that may cause deviations from expected behavior. Faults are useful to better un-
derstand the behavior of a system under an infinite set of physical defects and also
a systematic means to calculate the effectiveness of methods to detect and mitigate
defects

• Error: An error is the observable incorrect behavior that results from a fault (and the
defect it models). Errors are what users or monitoring systems detect as failures in
the system’s operation.

As an example, a CPU with a microscopic impurity (defect), may have a faulty transistor
that is stuck-short (fault), which oftentimes causes incorrect arithmetic calculations at the
software level (error).

In simulated environments, when it comes to hardware reliability, faults and errors are
the focus of attention and, therefore, it is essential to understand their different types.

• Transient faults: Transient faults occur temporarily and they remain in the system
state until the affected data is overwritten. They are often caused by environmental
factors, such as cosmic radiation[6], electromagnetic interference, or voltage fluctu-
ations. Errors caused by radiation or electrical disturbances are also known as soft
errors.

• Intermittent faults: Intermittent faults occur sporadically and unpredictably, often
due to unstable physical connection or components that operate near their tolerance
limits.

• Permanent errors: Permanent errors remain in the system until a repair or replace-
ment is performed. They usually result from physical damage, wear and tear, or
irreversible defects in materials.

Transient faults is the type of faults this thesis deals with, as discussed later.

I. Konstantinidis 16

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

2.2 Architectural Vulnerability Factor

The Architectural Vulnerability Factor (AVF) quantifies how likely transient hardware fault
will result in an observable wrong output or to a system failure. AVF is widely used in
reliability analysis to assess the susceptibility of various hardware components to soft
errors caused by transient faults. However, not all faults lead to visible errors. Many
faults are masked have no impact on program correctness. Here are some categories of
masked faults:

• Microarchitectural Masking: Faults that occur in unused processor states or idle
execution units, making them irrelevant.

• Logical Masking: Fault occurs in a part of the circuit that does not affect the final
computation[20]. These faults could affect the control flow of a program execution
and therefore its performance.

• Algorithmic Masking: Certain software-level computations naturally correct or ig-
nore incorrect values, preventing faults from propagating.

Except masked faults, a transient fault leads to one of the following outcomes:

• Silent Data Corruption (SDC): Program execution was completed, but wrong out-
put was produced[12] without any observable notification

• Crash/False Assertion: Program execution was terminated unexpectedly.

• Timeout: Program execution took longer to complete than the allowed duration.
Most likely the execution was stuck in an infinite loop.

2.3 Vulnerability Αnalysis Τechniques

Vulnerability analysis techniques help assess the resilience of a system against faults and
errors. The available techniques can be broadly classified into static and dynamic analysis.
Static analysis examines the system at design time, analyzing the hardware description
or software code without executing it. In contrast, dynamic analysis evaluates the system
during execution. The most well-known static and dynamic analysis techniques for AVF
estimation are ACE[20] and SFI[14] respectively.

2.3.1 Architectural Correct Execution

Architectural Vulnerability Factor (ACE) is a static reliability analysis technique used to
estimate a system’s Architectural Vulnerability Factor (AVF) by determining which bits are
essential for correct execution (ACE bits) and which can tolerate faults without affecting
program correctness (Un-ACE or Masked bits)[20]. In short, a bit is classified as ACE if
it satisfies certain conditions, such as control flow dependency and memory addressing
impact.

As an example, the diagram shown in 2.1 represents an 16-bit register, where after
performing ACE analysis, some bits are classified as ACE bits (red) (faults in these bits

I. Konstantinidis 17

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ACE Bits

Un-ACE Bits

Figure 2.1: A register with ACE (red) and Un-ACE (gray) bits

affect program correctness) and other bits are Un-ACE bits (gray) (faults in these bits do
not impact execution).

The total-AVF is the fraction of bits that are ACE, meaning they contribute to system
failures when faults occur. The formula is:

AV Ftotal =
ACE Bits

Total Bits
(2.1)

Substituting the values:

AV Ftotal =
5

16
= 0.3125 (31.25%)

This means that 31.25% of faults in this register could impact program execution, while
68.75% of faults would be masked.

2.3.2 Statistical Fault Injection

gem5-MARVEL uses Statistical Fault Injection (SFI) for calculating AVF. SFI is a tech-
nique used to evaluate the reliability of a hardware component by single injecting a fault
in the component’s values for a number of program executions and observing their ef-
fects. Instead of testing every possible fault, SFI randomly samples fault location and
times, making it a scalable and efficient statistical approach. For example, to evaluate the
reliability of register file in a CPU, the SFI approach is the following:

1. Randomly select a register, a bit position, and a time step during execution.

2. Flip a randomly chosen bit in the selected register (e.g. changing a 0 to 1 or vice
versa).

3. Continue execution and monitor the system for different outcomes (Masked Faults,
SDCs, Timeouts, Assertions/Crashes)

4. Repeat steps 1-3 for N number of times.

5. Calculate total-AVF using the following formula:

AV Ftotal =
Number of Faults Leading to Errors

Total Number of Faults
(2.2)

I. Konstantinidis 18

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

This formula, based on the possible program outcomes, expands to:

AV Ftotal =
AV FSDC + AV FT imeout + AV FAssertion/Crash

Total Number of Faults
(2.3)

Each category has unique behavior and are worth trying to estimate separately. Thank-
fully, gem5-MARVEL provides the ability to distinguish these categories for each fault in-
jection. Finally, SFI’s margins of error have been quantified and the number of injections
required in order to achieve a desired confidence can be calculated[14].

For example, after performing SFI in the register file for N = 100, on a random program
execution, the results were:

• Masked: 71

• SDCs: 20

• Assertions/Crashes: 5

• Timeouts: 4

Substituting in 2.3, the total-AVF is calculated as:

AV Ftotal =
20 + 5 + 4

100
=

29

100
= 0.29 (29%)

In 2.2, the main differences between SFI and ACE are presented. In general, ACE
is considered a faster but more conservative method, while SFI is time-consuming but
much more accurate. Also, SFI can be configured, since it allows specifying the number
of injected executions based on the desired margin of error.

2.4 Instruction Set Architectures

An Instruction Set Architecture (ISA) defines the interface and communication between
software and hardware. It specifies the behavior of the hardware for every given CPU
instruction by providing an encoding for every one of them that belongs to the ISA.

Every ISA is unique and has its own characteristics that impact processor perform-
ance, power efficiency, complexity and reliability. However, over the years, two dominant
paradigms have emerged: Reduced Instruction Set Computing (RISC) and Complex In-
struction Set Computing (CISC).

2.4.1 RISC vs CISC

RISC architectures simplify the processor by implementing only a small set of simple in-
structions that are frequently used while less common operations are implemented as
subroutines. The instructions usually execute in one single cycle and have fixed length.
Examples of RISC architectures include RISC-V, ARM, PowerPC, and MIPS.

CISC architectures use a large set of complex instructions, some of which can execute
multiple low-level operations on a single instruction. They have variable instruction length

I. Konstantinidis 19

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Aspect Statistical Fault In-
jection (SFI)

Architecturally
Correct Execution
(ACE)

Methodology Simulates faults
and observes their
propagation in the
system.

Assumes faults are
masked or do not
cause visible failures
due to redundancy.

Accuracy When performed with
high statistical sig-
nificance, provides
an accurate estimate
of system vulner-
ability through fault
propagation.

Provides an upper
bound estimate,
which is conservative
and less accurate (in
many cases a severe
overestimation of the
actual vulnerability).

Computational Cost High computational
overhead due to
multiple fault injection
simulations.

Low computational
cost, fast and effi-
cient.

Purpose Detailed empirical
analysis of fault
propagation and
system vulnerability.

Quick approximation
of the system’s worst-
case fault vulnerabil-
ity.

Use Case Used for high-
accuracy reliability
analysis and detailed
fault behavior model-
ing.

Useful for early-stage
design to estimate
potential vulnerabilit-
ies quickly.

Table 2.1: Comparison of Statistical Fault Injection and Architecturally Correct Execution

I. Konstantinidis 20

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Aspect CISC RISC
Origin The original micro-

processor ISA.
Redesigned ISA that
emerged in the early
1980s.

Clock Cycles per Instruction Instructions can take
several clock cycles.

Single-cycle instruc-
tions.

Design Hardware-centric
design; the ISA does
as much as possible
using hardware cir-
cuitry.

Software-centric
design; high-level
compilers take on
most of the burden
of coding many soft-
ware steps from the
programmer.

RAM Usage More efficient use of
RAM than RISC.

Heavy use of RAM
(can cause bottle-
necks if RAM is
limited).

Complexity Complex and vari-
able length instruc-
tions.

Simple, standardized
instructions.

Layers of Instructions May support mi-
crocode (micro-
programming where
instructions are
treated like small
programs).

Only one layer of in-
structions.

Number of Instructions Large number of in-
structions.

Small number of
fixed-length instruc-
tions.

Addressing Modes Compound address-
ing modes.

Limited addressing
modes.

Table 2.2: Comparison of CISC and RISC architectures

I. Konstantinidis 21

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

and are designed to minimize software complexity. The most well-known CISC architec-
ture is x86 (Intel and AMD processors).

Despite their differences, not much research has been conducted in terms of reliability
analysis of RISC vs. CISC architectures. Most studies tend to focus on performance,
power efficiency, and scalability[11], leaving a gap in comprehensive fault tolerance eval-
uations.

2.4.2 RISC-V Architecture

RISC-V is an open-source, royalty-free RISC architecture that has gained significant trac-
tion in both academic research and industry[22]. Unlike proprietary ISAs, such as ARM
and x86, RISC-V allows customization and modifications without license fees.

RISC-V instructions are designed to be simple, modular and extensible, following the
RISC principles. The ISA is divided into the types below:

• Integer Instructions (I): Basic arithmetic, logic and control instructions.

• Multiplication and Division (M): Instructions for integer multiplication and division.

• Floating-Point Instructions (F & D): Single (F) and double (D) precision floating-
point operations.

• Compressed Instructions (C): A subset of 16-bit instructions to reduce code size
and improve efficiency.

• Vector Extensions (V): Instructions for SIMD[3] (Single Instruction, Multiple Data)
operations.

• Privileged Instructions: Instructions meant for system-level operations, including
supervisor mode and memory management.

As RISC-V adoption grows across various fields, ensuring its reliability becomes cru-
cial. Unlike established ISAs, RISC-V’s customization ability and open-source nature in-
troduce additional complexity and variability in reliability. A complete and comprehensive
fault analysis framework like gem5-MARVEL is essential to assess vulnerabilities in the
various RISC-V designs encompassing fault injections experiments, AVF evaluation and
correction mechanisms.

I. Konstantinidis 22

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

3. WORKING ENVIRONMENT

3.1 gem5

gem5[1] is a widely used and open-source architectural simulator that allows evaluat-
ing processors designs, including RISC-V. It provides the ability to model different ISAs,
memory hierarchies and microarchitectures, making it a powerful tool for performance
analysis of program execution.

gem5 has two primary modes of simulation: Syscall Emulation (SE) and Full System
(FS). SE simulates only the CPU and the memory system. It translates system calls dir-
ectly to the host system, allowing for faster simulation but without modeling a full operating
system. FS emulates the entire hardware system and runs an unmodified kernel. This
mode provides a complete simulated environment where an OS, along with all system
components (such as memory, caches, and peripherals), is modeled. This thesis utilizes
Full-System Simulation as it provides a more detailed performance counters report and
it allows for a more accurate representation of RISC-V hardware behavior. Running in
this mode requires a kernel and disk image to provide a functioning OS for the simulated
system.

Building gem5 requires specifying the target architecture during compilation. For ex-
ample, to build gem5 for RISC-V, one would use:

scons build/RISCV/gem5.opt -j$(nproc)

The valid ISAs are RISC-V, Arm, x86, Sparc, Power and Mips.

At the end of simulation, gem5 generates various outputs in them5out folder which are
crucial for performance analysis. Two key outputs that were used extensively are:

• stats.txt: This file contains detailed simulation CPU statistics such as instruction
count and branch prediction accuracy and component specific features, such as
register file reads/writes and cache accesses.

• Checkpoints: gem5 allows checkpointing at specific execution points by saving the
architectural state of the simulated system. This enables resuming simulations from
a particular state instead of restarting from the beginning, which is particularly useful
for long-running experiments. Checkpoints can also be added in the source code
of executables that run within the simulation. Lastly, gem5 allows resuming from
checkpoints regardless of the CPU model used, meaning that even if the checkpoint
was taken with one CPU model (e.g., O3CPU), the simulation can be resumed with
a different CPU model (e.g., AtomicSimpleCPU), as long as the architectural state
is compatible.

gem5 supports different CPU modes that balance speed and accuracy:

• AtomicSimpleCPU: The simplest in-order CPU mode in gem5, designed for speed
over accuracy. It does not model detailed pipeline stages and timing, making it ideal
for early-stage design exploration or when you need to simulate large-scale systems
quickly.

I. Konstantinidis 23

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

• TimingSimpleCPU: This model simulates the timing of a simple CPU, providing
more accuracy than AtomicSimpleCPU. It models the timing of basic operations like
fetch, decode, execute, and memory access.

• O3CPU (Out-of-Order CPU): This CPU model provides a more accurate repres-
entation of modern processors, including out-of-order execution, branch prediction,
and other advanced features[16].

• KvmCPU: The KvmCPU model is used for simulating systems that run directly on a
host machine using KVM (Kernel-based Virtual Machine).

• MinorCPU: This is amoderately detailed CPUmodel that balances performance and
accuracy. It provides more pipeline stages and accuracy than the AtomicSimpleCPU
and TimingSimpleCPU models but is less complex than O3CPU.

Finally, gem5 provides extensive configurability, allowing adjustments in various system
parameters such as number of registers and cache memory configurations. This shaping
can be defined in the gem5 configuration file, but some of the settings can be specified in
the flags of the simulation initialization command as well.

3.2 Scripts

For the thesis, a checkpoint was added at the start of the chosen programs to perform isol-
ated runs. These checkpoints were taken manually, by adding the checkpoint at the start
of the main function in the source code, starting the simulation, copying and running the
executable with the input file(s) (if any). Moreover, Python scripts were utilized to automate
several tasks related to program checkpointing and execution analysis in gem5. One script
was developed to automate the creation of program checkpoints using AtomicSimpleCPU
by periodically capturing the architectural state after a specific number of instructions. An-
other script was used to resume execution from these newly created checkpoints using the
O3CPU for a fixed number of cycles and saving the stats.txt files. Additionally, Jupyter
Notebook files were created for regression analysis, using scikit-learn, pandas, numpy,
and PRIM (Patient Rule Induction Method) from the Project-Platypus[2]. The regression
methods used and the methodologies tried are explained in the next chapters.

I. Konstantinidis 24

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

4. REGRESSION AND CORRELATION ANALYSIS TECHNIQUES

In this chapter the necessary concepts and terminology used in the regression and cor-
relation analysis are discussed.

4.1 Pearson’s Coefficient

The Pearson correlation coefficient, denoted as r, is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where:

• xi, yi are the individual sample points,

• x̄ and ȳ are the means of the x and y values, respectively,

• n is the number of data points.

The Pearson correlation coefficient ranges from -1 to 1:

• r = 1: Perfect positive correlation (as x increases, y increases proportionally).

• r > 0: Positive correlation (as x increases, y tends to increase).

• r = 0: No correlation (no linear relationship between x and y).

• r < 0: Negative correlation (as x increases, y tends to decrease).

• r = −1: Perfect negative correlation (as x increases, y decreases proportionally).

4.2 Regression

The regression techniques used will be explained in detail in the following sections. In
the context of this thesis, the process of applying these techniques based on a given
parametric space will be referred to as the regression procedure.

4.2.1 Linear Regression

Linear regression is a statistical method used to model the relationship between a de-
pendent variable y and one or more independent variables x. The simplest form, known
as simple linear regression, is expressed as:

y = β0 + β1x+ ε

where:

I. Konstantinidis 25

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

• y is the dependent variable (response variable),

• x is the independent variable (predictor variable),

• β0 is the intercept (the value of y when x = 0),

• β1 is the slope of the regression line (indicating the change in y for a unit change in
x),

• ε is the error term (representing the deviation of actual values from the predicted
values).

When there are multiple independent variables, the model extends to:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε

where x1, x2, . . . , xn are the independent variables, and β1, β2, . . . , βn are their corres-
ponding coefficients.

4.2.2 Polynomial Regression

Polynomial regression is an extension of linear regression that models the relationship
between the dependent variable y and the independent variable x as an n-th degree poly-
nomial. The general form of polynomial regression is:

y = β0 + β1x+ β2x
2 + · · ·+ βnx

n + ε

where:

• y is the dependent variable,

• x is the independent variable,

• β0, β1, β2, . . . , βn are the regression coefficients,

• n is the degree of the polynomial,

• ε is the error term.

For multiple features, polynomial regression generates additional interaction terms.
Consider two original features x1 and x2 transformed into polynomial features up to degree
2:

Original Features Degree 1 Degree 2

x1, x2 x1, x2 x2
1, x

2
2, x1x2

x3, x4 x3, x4 x2
3, x

2
4, x3x4

I. Konstantinidis 26

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

For a polynomial of degree n, the number of generated features increases significantly
due to interaction terms. For example, with three features (x1, x2, x3), the second-degree
polynomial features would be:

x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3

These transformed features allow the model to capture nonlinear relationships between
x and y, making polynomial regression a powerful technique for modeling complex pat-
terns.

4.2.3 Ridge Normalization

Ridge regression is a type of linear regression that includes an L2 regularization term to
prevent overfitting by shrinking the model coefficients. The Ridge regression objective
function is:

min
β0,β

n∑
i=1

(yi − β0 −
m∑
j=1

βjxij)
2 + λ

m∑
j=1

β2
j

where:

• yi is the dependent variable for the i-th observation,

• xij is the j-th feature for the i-th observation,

• β0 is the intercept term,

• βj are the regression coefficients,

• λ is the regularization parameter that controls the penalty on coefficients,

• n is the number of observations, and m is the number of features.

The regularization strength is controlled by λ:

• If λ = 0, Ridge behaves like an ordinary least squares regression.

• If λ is too large, the coefficients become very small, leading to an underfitted model.

4.2.4 Lasso Normalization

Lasso (Least Absolute Shrinkage and Selection Operator) is a type of regression that
includes an L1 regularization term to enforce sparsity in the model. The Lasso regression
optimizes the following objective function:

min
β0,β

n∑
i=1

(yi − β0 −
m∑
j=1

βjxij)
2 + λ

m∑
j=1

|βj|

where:

I. Konstantinidis 27

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

• yi is the dependent variable for the i-th observation,

• xij is the j-th feature for the i-th observation,

• β0 is the intercept term,

• βj are the regression coefficients,

• λ is the regularization parameter that controls the penalty on coefficients,

• n is the number of observations, and m is the number of features.

The regularization strength is controlled by λ:

• If λ = 0, Lasso behaves like an ordinary least squares regression.

• If λ is too large, all coefficients shrink to zero, leading to an underfitted model.

Unlike Ridge regression, which applies an L2-norm penalty (
∑

β2
j), Lasso can shrink

some coefficients to zero, making it useful for feature selection.

4.2.5 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique that trans-
forms a set of correlated features into a smaller set of uncorrelated features called principal
components. It is commonly used in regression to reduce multicollinearity and improve
model performance.

Given a dataset X with m features, PCA performs the following steps:

1. Standardization: Center and scale the data:

Xscaled =
X − µ

σ

where µ and σ are the mean and standard deviation of each feature.

2. Compute Covariance Matrix:

C =
1

n
XT

scaledXscaled

3. Eigen Decomposition: Solve for eigenvalues and eigenvectors:

Cv = λv

The eigenvectors v form the principal components.

4. Project Data onto Principal Components:

Z = XscaledV

where V is the matrix of the top k eigenvectors corresponding to the largest eigen-
values.

I. Konstantinidis 28

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

After PCA is performed, the regression model is fit in the reduced space and then
transformed back to obtain the original regression equation.

Given the transformation:
Xpca = XscaledV

where Xpca is the transformed dataset, the regression model is trained as follows:

y = β0 + β1Z1 + β2Z2 + · · ·+ βkZk

Since V is semi-orthogonal, to revert back to the original feature space :

Xorig = XpcaV
T

Thus, the regression equation in the original feature space is:

y = β0 + (β1V
T
1 + β2V

T
2 + · · ·+ βkV

T
k)Xscaled

Finally, substituting Xscaled back in terms of the original features:

Xscaled =
X − µ

σ

The final regression equation is obtained:

y = β0 +
m∑
j=1

γjxj

where γj are the transformed regression coefficients.

Since PCA is designed primarily for dimensionality reduction rather than perfect recon-
struction, these errors are expected. A higher number of retained components improves
the reconstruction precision but increases model complexity.

4.3 Patient Rule Induction Method

The Patient Rule Induction Method (PRIM)[9] is a statistical technique used for identifying
regions in the feature space where the response variable Y is particularly high (or low).
Unlike traditional regression techniques, which focus on fitting a global model, PRIM is
designed for discovering localized patterns in the data. It seeks to identify subregions (or
”boxes”) in the feature space where the target variable y takes extreme values, providing
interpretable rules for decision-making.

Given a dataset with features X = (x1, x2, . . . , xm) and a response variable Y , PRIM
follows these steps:

1. Initialization: Consider the entire feature space as one large box containing all the
data points.

I. Konstantinidis 29

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

2. Peeling Stage: Iteratively remove small fractions of the dataset (αpeel) (typically
5-10%) that do not contribute significantly to high values of Y , shrinking the box to-
wards a high-response region. The criterion for removing a fraction of a feature value
(either by reducing its upper bound or by increasing its upper bound) is based on
maximizing/minimizing the chosen objective function in the remaining region. Two
of the most popular objective functions are:

• Lenient1 Criterion: The objective function evaluates the gain in mean divided
by the loss in mass, as given by:

obj = ave[Yi | Xi ∈ B − b]− ave[Y | X ∈ B]

|n(Yi)− n(Y)|

where:
– B is the original box,
– B − b is the set of candidate new boxes,
– Y are the response values in the old box,
– n(Yi) and n(Y) are the cardinalities of Yi and Y , respectively.

• Lenient2 Criterion:

obj = n(Yi) ·
ave[Yi | Xi ∈ B − b]− ave[Y | X ∈ B]

|n(Y)− n(Yi)|

where B is the current subregion.
The peeling stage terminates when the total number of points in the box (mass) is
smaller than a given fraction or no contribution increases/decrease the value of the
objective function.

3. Pasting Stage: After reaching a small region with high response, PRIM attempts
to slightly expand the box back by iteratively adding small fractions of the dataset
(αpaste). This step is similar to the second.

4. Rule Extraction: Once an optimal box is identified, PRIM extracts decision rules
based on the ranges of the selected features defining the region.

The PRIM method can be evaluated based on these metrics:

• Mean: This is the average value of the response variable y for all data points in the
box. It is defined as:

Mean =
1

nbox

∑
i∈box

yi,

where nbox is the number of points in the box and yi is 1 if it is a desirable data point,
otherwise 0.

• Mass: This represents the proportion of the total data points that fall within the box.
It is given by:

Mass =
nbox
ntotal

,

where ntotal is the total number of points.

I. Konstantinidis 30

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

• Coverage: This metric measures the fraction of the total desirable points that are
contained in the box. If ndesirable, box is the number of desirable points in the box and
ndesirable, total is the total number of desirable points, then

Coverage =
ndesirable, box
ndesirable, total

.

• Density: This is the ratio of the number of desirable points in the box to the total
number of points in the box. It is defined as:

Density =
ndesirable, box

nbox
.

This method is more preferable than choosing the hard limits of the features for a given
threshold of the target value mainly because of these reasons:

• PRIM handles high-dimensional data and produces interpretable decision rules in
terms of just a few feature boundaries.

• PRIM allows flexibility in defining peeling criteria, such as Lenient1 and Lenient2.
The peeling criteria usually takes into consideration both the mean of the target
value and the coverage and by doing so it reduces the impact of the noise data in
the final box.

Finally, after the box is formed, each different parameter is assigned a quasi p-value[7].
In short, quasi p-value expresses the likelihood that a given parameter constraint could
have occurred by chance. It takes values in the range [0, 1], similar to a traditional p-value
and has the following interpretation:

• 0: The parameter is highly significant, meaning the constraint is extremely unlikely
to have occurred by random chance.

• Close to 0: The parameter plays an important role in distinguishing between scen-
arios.

• 0.5: The parameter constraint has a moderate likelihood of occurring by chance,
meaning it may or may not be meaningful.

• 1: The parameter is completely uninformative, meaning its constraint is entirely likely
to have occurred by random chance and does not contribute meaningfully to scen-
ario discovery.

The parameters with quasi p-values equal to one are removed from the final boxes in
this research.

I. Konstantinidis 31

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

5. IMPLEMENTATIONS OF AVF PREDICTION

5.1 Regression Analysis Setup

To predict the target values associated with the Architectural Vulnerability Factor (total-
AVF, SDC-AVF, Timeout-AVF, Assertion/Crash-AVF) at runtime based on the initially selec-
ted features for every hardware component (Register File, L1 Data Cache and L1 Instruc-
tion Cache), the following steps are taken as the foundation for implementing regression
analysis:

• Step 1: Divide the execution of the selected programs into intervals by taking check-
points every 10 million instructions, while excluding the final incomplete interval.

• Step 2: Run each checkpoint for 10 million clock cycles in O3 CPU mode using the
gem5 configuration shown in Table 5.1 and collect the feature counters for every
hardware component.

Table 5.1: MAJOR SIMULATOR CONFIGURATIONS FOR EACH ISA (Adapted from [8])

Parameter Value
ISA RISC-V

Pipeline 64-bit OoO (8-issue)
L1 Instruction Cache 32KB, 64B line, 128 sets, 4-way

L1 Data Cache 32KB, 64B line, 128 sets, 4-way
L2 Cache 1MB, 64B line, 2048 sets, 8-way

Physical Register File 128 Int; 128 FP
LQ/SQ/IQ/ROB entries 32/32/64/128

• Step 3: Conduct 500 program executions in O3 CPU mode, starting the execution
from the current checkpoint. In each execution, a single random bit flip is injected in
the register or memory values of the specified hardware component within the first 10
million clock cycles. This was done utilizing the gem5-MARVEL infrastructure[8][19][18][13].
Based on the program’s execution and output, errors are categorized as Masked,
Silent Data Corruption (SDC), Timeout or Assertion/Crash. The Architectural Vul-
nerability Factor corresponding to the specific execution is calculated by adding the
total SDCs, Timeouts and Assertions/Crashes.
The number of executions, given the specific configuration, corresponds to the mar-
gin of errors[14] shown in 5.2:

Confidence 95% 99% 99.8%

Register File 4.4% 5.8% 6.9%
L1 Data Cache 4.4% 5.8% 7.0%
L1 Instruction Cache 4.4% 5.8% 7.0%

Table 5.2: Margin of error based on confidence levels

I. Konstantinidis 32

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

5.2 Formal Definition of the Regression Problem

The execution of a checkpoint formed in Step 2 defines a vector of counters for every
component. Therefore, the vector that corresponds to the interval i can be represented
as Xi. These will be the independent variables of the regression model.

The 500 batch of executions of a checkpoint formed in Step 3 defines a percentage
value for every target value. Therefore, the target value that corresponds to the interval i
can be represented as Yi. This will be the dependent variable of the regression model.

Assuming that there are n checkpoints, the existing dataset is represented as:

{(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

where:

• Xi represents the independent variables (input features),

• Yi represents the dependent variable (output),

• The task is to learn a function f(X) that maps X to Y such that:

Y = f(X) + ϵ

where ϵ is an error term (noise).

To evaluate a regression model for the problem, after performing k-fold validation with
k=5, the average R2 score of all folds is chosen as the metric.

The initial features for each hardware component were chosen manually from the pro-
duced stats.txt file, based on their relevance to the component’s functionality:

• Register file:

1. system.cpu.ipc
2. system.cpu.intRegfileReads
3. system.cpu.intRegfileWrites
4. system.cpu.rename.squashCycles
5. system.cpu.rename.idleCycles
6. system.cpu.rename.blockCycles
7. system.cpu.rename.serializeStallCycles
8. system.cpu.rename.runCycles
9. system.cpu.rename.unblockCycles
10. system.cpu.rename.renamedInsts
11. system.cpu.rename.ROBFullEvents
12. system.cpu.rename.IQFullEvents
13. system.cpu.rename.LQFullEvents
14. system.cpu.rename.SQFullEvents

I. Konstantinidis 33

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

15. system.cpu.rename.fullRegistersEvents
16. system.cpu.rename.renamedOperands
17. system.cpu.rename.intLookups
18. system.cpu.rename.committedMaps
19. system.cpu.rename.undoneMaps
20. system.cpu.rename.serializing
21. system.cpu.rename.tempSerializing
22. system.cpu.rename.skidInsts
23. system.cpu.rob.reads
24. system.cpu.rob.writes

• L1 Data Cache:

1. system.cpu.ipc
2. system.cpu.dcache.demandHits::cpu.data
3. system.cpu.dcache.demandMisses::cpu.data
4. system.cpu.dcache.demandAccesses::cpu.data
5. system.cpu.dcache.writebacks::writebacks
6. system.cpu.dcache.replacements
7. system.cpu.dcache.LoadLockedReq.hits::cpu.data
8. system.cpu.dcache.LoadLockedReq.misses::cpu.data
9. system.cpu.dcache.LoadLockedReq.accesses::cpu.data
10. system.cpu.dcache.ReadReq.hits::cpu.data
11. system.cpu.dcache.ReadReq.misses::cpu.data
12. system.cpu.dcache.ReadReq.accesses::cpu.data
13. system.cpu.dcache.StoreCondReq.hits::cpu.data
14. system.cpu.dcache.StoreCondReq.misses::cpu.data
15. system.cpu.dcache.StoreCondReq.accesses::cpu.data
16. system.cpu.dcache.SwapReq.hits::cpu.data
17. system.cpu.dcache.SwapReq.misses::cpu.data
18. system.cpu.dcache.SwapReq.accesses::cpu.data
19. system.cpu.dcache.WriteReq.hits::cpu.data
20. system.cpu.dcache.WriteReq.misses::cpu.data
21. system.cpu.dcache.WriteReq.accesses::cpu.data
22. system.cpu.dcache.tags.totalRefs
23. system.cpu.dcache.tags.dataAccesses

• L1 Instruction Cache:

1. system.cpu.ipc
2. system.cpu.icache.demandHits::cpu.inst

I. Konstantinidis 34

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

3. system.cpu.icache.demandMisses::cpu.inst
4. system.cpu.icache.demandAccesses::cpu.inst
5. system.cpu.icache.writebacks::writebacks
6. system.cpu.icache.writebacks::writebacks
7. system.cpu.icache.replacements
8. system.cpu.icache.ReadReq.hits::cpu.inst
9. system.cpu.icache.ReadReq.misses::cpu.inst
10. system.cpu.icache.ReadReq.accesses::cpu.inst
11. system.cpu.icache.tags.totalRefs
12. system.cpu.icache.tags.dataAccesses

Identifying these features, or a subset of them, as hardware proxies for each component
is a central objective of this thesis.

5.3 Prediction Approaches

In this section the regression and prediction methods are presented and evaluated. The
checkpoints were obtained from the execution of programs from the mibench suite[5].
They were gathered 364 checkpoints for the Register File and the L1 Data Cache and
203 checkpoints for the L1 Instruction Cache. After the k-fold validation is completed, two
programs are used for testing purposes.

Below, the variations and the parametric space of the regression procedure are defined.
These variations and parametric space will be applied in all the combinations of features
which will be selected after feature selection. Testing the parametric space for every com-
bination of features and every hardware component is extremely computationally intens-
ive. For example, for the Register File there are 224 possible combinations of features.
Therefore, other feature selections approaches are tried instead of brute force.

The key concepts behind the feature selection approaches in 5.3.1 and 5.3.2 are
described here[21]. However, this thesis differs in several aspects, including the archi-
tecture (RISC-V instead of PISA), interval size (10 million clock cycles instead of 4 million
instructions), CPU configuration and targeted hardware components. Additionally, fewer
features are selected for each component compared to the 160 features used in the ref-
erenced study.

The small number of features for every hardware component allows for the exploration
of other feature selection approaches, such as the approach in 5.3.3.

The PRIM algorithm is applied not only to the initial features of each hardware compon-
ent but also to the features selected from the best model of the regression procedure. A
similar approach is explored in [15], but with a different regression approach.

Finally, the same methodologies can be applied to other hardware components by fol-
lowing the exact same steps, with the only difference being the initial feature selection.

5.3.1 Linear Procedure

This approach is based on the linear procedure found in 4.2.1 here[21].

I. Konstantinidis 35

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

1. Choose the feature with the highest Pearson’s correlation.

2. For each iteration, choose the next feature based on the best evaluation (R2 score)
of the regression procedure.

3. Repeat step 2 until the desired number of maximum features is reached.

5.3.2 Quadratic Procedure

This approach is based on the quadratic procedure found in 4.2.2 here[21].

1. Gather all possible pairs of features (x, y).

2. Perform second degree regression procedure for every pair using the basis {1, x, y, xy, x2, y2}.

5.3.3 Polynomial Pearson’s Coefficient

This approach presents an alternative feature selection method that considers the Pear-
son’s correlation of the polynomial features.

1. Gather the Pearson’s correlations of the polynomial features for a given degree.

2. Choose the desired number of features that’s members of the most correlated poly-
nomial features and perform the regression procedure.

3. Repeat step 3 until all the desired numbers of features are checked.

4. Go to step 1 until all the desired degrees are checked.

5.4 Parametric Space

The parameters that define the parametric space are as follows:

• Number of features: The total number of features used in the regression. It is
defined as {1, 2, ..., number_of_total_features}, however the best solution for the
set {1, 2, 3, 4, 5} is also examined.

• Degree: The degree of the polynomial regression. It is fixed for linear and quadratic
procedures (1 and 2 respectively), while for the Pearson correlation-based approach
it is {1, 2, 3, 4}. For a feature space of {1, 2, 3, 4, 5} the degree is limited to {1, 2, 3}.

• Alpha: The alpha parameter in ridge an lasso regression. The range of examined
values for alpha is [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] for both types of regression.

The regression models evaluated in this thesis include the default, lasso and ridge
regression, both in linear and polynomial forms.

I. Konstantinidis 36

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

6. RESULTS

In this chapter we present the final results for the total-AVF and SDC-AVF runtime predic-
tions across all three approaches and components. Timeout-AVF and Assertion/Crash-
AVF were also tested, but their results were insignificant, as not even the slightest correl-
ation could be observed between the measured features and these failure outcomes. For
each case, the results of the approach with the best R2 score is presented.

6.1 All Features Included

6.1.1 total-AVF

6.1.1.1 Register File

Method: Linear Procedure Model: Ridge Alpha: 0.001 Degree: 1 PCA com-
ponents: 10 R2 Score: 78%
Formula:

0.01756 · system.cpu.rename.idleCycles

+ 0.01040 · system.cpu.rename.renamedOperands

− 0.00760 · system.cpu.rename.renamedInsts

− 0.00469 · system.cpu.rename.serializing

− 0.00990 · system.cpu.rename.blockCycles

− 0.01026 · system.cpu.rename.tempSerializing

− 0.02536 · system.cpu.ipc

− 0.02624 · system.cpu.rename.fullRegistersEvents

− 0.02597 · system.cpu.rename.intLookups

− 0.02622 · system.cpu.rename.runCycles

+ 0.09085

I. Konstantinidis 37

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.1: total-AVF, Register File, 24 maximum features, K-fold validation

Figure 6.2: total-AVF, Register File, 24 maximum features, Test Programs

I. Konstantinidis 38

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 10%
Table 6.1: total-AVF, Register File, 24 maximum features, PRIM statistics

Metric Value

Coverage 0.647059
Density 1
Mass 0.160350
Mean 1

Table 6.2: total-AVF, Register File, 24 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.rename.renamedOperands 24309020 45842460 1.40e− 01
system.cpu.rename.fullRegistersEvents 7567 924236 3.71e− 01

6.1.1.2 L1 Data Cache

Method: Polynomial Pearson’s Correlation Model: Ridge Alpha: 100 Degree: 4
PCA components: 12 R2 Score: 87.9%
Formula: Too large

I. Konstantinidis 39

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.3: total-AVF, Data Cache, 23 maximum features, K-fold validation

Figure 6.4: total-AVF, Data Cache, 23 maximum features, Test Programs

I. Konstantinidis 40

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.3: total-AVF, Data Cache, 23 maximum features, PRIM statistics

Metric Value

Coverage 0.970874
Density 0.952381
Mass 0.306122
Mean 0.952381

Table 6.4: total-AVF, Data Cache, 23 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.dcache.demandMisses::cpu.data 1292 62164 2.54e− 16
system.cpu.ipc 2.1 4.3 2.89e− 09
system.cpu.dcache.tags.totalRefs 3700976 12928680 2.59e− 02
system.cpu.dcache.WriteReq.accesses::cpu.data 5418 3188463 6.16e− 01

6.1.1.3 L1 Instruction Cache

Method: Polynomial Pearson’s Correlation Model: Lasso Alpha: 0.0001 Degree:
3 PCA components: 11 R2 Score: 90%
Formula: Too large

I. Konstantinidis 41

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.5: total-AVF, Instruction Cache, 12 maximum features, K-fold validation

Figure 6.6: total-AVF, Instruction Cache, 12 maximum features, Test Programs

I. Konstantinidis 42

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.5: total-AVF, Instruction Cache, 12 maximum features, PRIM statistics

Metric Value

Coverage 0.982143
Density 0.753425
Mass 0.401099
Mean 0.753425

Table 6.6: total-AVF, Instruction Cache, 12 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.icache.writebacks::writebacks 12166 158529 5.25e− 04
system.cpu.ipc 1.2 2.0 1.53e− 01
system.cpu.icache.demandAccesses::cpu.inst 2119102 3314339 5.63e− 01

6.1.2 SDC-AVF

6.1.2.1 Register File

Method: Linear Procedure Model: Ridge Alpha: 0.01 Degree: 1 PCA com-
ponents: 13 R2 Score: 87.5% Formula:

0.02016 · system.cpu.rename.renamedOperands

− 0.00568 · system.cpu.intRegfileWrites

− 0.01215 · system.cpu.rename.fullRegistersEvents

− 0.02313 · system.cpu.rename.squashCycles

− 0.02115 · system.cpu.rename.renamedInsts

− 0.02426 · system.cpu.rename.serializing

− 0.02014 · system.cpu.rename.IQFullEvents

− 0.01980 · system.cpu.rename.tempSerializing

− 0.01970 · system.cpu.rename.intLookups

− 0.01976 · system.cpu.rename.runCycles

− 0.01969 · system.cpu.rename.SQFullEvents

− 0.01960 · system.cpu.rename.idleCycles

− 0.01953 · system.cpu.rename.serializeStallCycles

+ 0.03480

I. Konstantinidis 43

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.7: SDC-AVF, Register File, 24 maximum features, K-fold validation

Figure 6.8: SDC-AVF, Register File, 24 maximum features, Test Programs

I. Konstantinidis 44

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 8%
Table 6.7: SDC-AVF, Register File, 24 maximum features, PRIM statistics

Metric Value

Coverage 0.789474
Density 1
Mass 0.043732
Mean 1

Table 6.8: SDC-AVF, Register File, 24 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.rename.SQFullEvents 76 12641 2.88e− 02
system.cpu.rename.renamedOperands 26037042 45826733 6.49e− 02
system.cpu.rename.fullRegistersEvents 7529 924236 3.80e− 01
system.cpu.rename.IQFullEvents 15627 2167188 3.80e− 01

6.1.2.2 L1 Data Cache

Method: Polynomial Pearson’s Correlation Model: Ridge Alpha: 100 Degree: 4
PCA components: 10 R2 Score: 90.8%
Formula: Too large

I. Konstantinidis 45

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.9: SDC-AVF, Data Cache, 23 maximum features, K-fold validation

Figure 6.10: SDC-AVF, Data Cache, 23 maximum features, Test Programs

I. Konstantinidis 46

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.9: SDC-AVF, Data Cache, 23 maximum features, PRIM statistics

Metric Value

Coverage 0.959184
Density 0.940000
Mass 0.291545
Mean 0.940000

Table 6.10: SDC-AVF, Data Cache, 23 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.dcache.ReadReq.misses::cpu.data 719 35060 4.07e− 21
system.cpu.dcache.demandHits::cpu.data 3965947 10751620 3.33e− 01
system.cpu.ipc 2.1 4.3 3.33e− 01
system.cpu.dcache.tags.dataAccesses 20769730 52191840 3.33e− 01
system.cpu.dcache.WriteReq.hits::cpu.data 4606 3190222 6.06e− 01

6.1.2.3 L1 Instruction Cache

Method: Polynomial Pearson’s Correlation Model: Ridge Alpha: 10 Degree: 2
PCA components: 6 R2 Score: 76.8%
Formula: Too large

I. Konstantinidis 47

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.11: SDC-AVF, Instruction Cache, 12 maximum features, K-fold validation

Figure 6.12: SDC-AVF, Instruction Cache, 12 maximum features, Test Programs

I. Konstantinidis 48

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 10%
Table 6.11: SDC-AVF, Instruction Cache, 12 maximum features, PRIM statistics

Metric Value

Coverage 1
Density 1
Mass 0.010989
Mean 1

Table 6.12: SDC-AVF, Instruction Cache, 12 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.icache.tags.dataAccesses 163627 9594045 2.50e− 01
system.cpu.icache.demandMisses::cpu.inst 2197255 3300454 4.44e− 01

6.2 Max of 5 Features Included

6.2.1 total-AVF

6.2.1.1 Register File

Method: Linear Procedure Model: Ridge Alpha: 0.1 Degree: 1 PCA compon-
ents: 5 R2 Score: 76.2%
Formula:

0.02706 · system.cpu.rename.idleCycles

+ 0.02018 · system.cpu.rename.renamedOperands

− 0.00692 · system.cpu.rename.renamedInsts

− 0.00379 · system.cpu.rename.serializing

− 0.00733 · system.cpu.rename.blockCycles

+ 0.09085

I. Konstantinidis 49

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.13: total-AVF, Register File, 5 maximum features, K-fold validation

Figure 6.14: total-AVF, Register File, 5 maximum features, Test Programs

I. Konstantinidis 50

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 10%
Table 6.13: total-AVF, Register File, 5 maximum features, PRIM statistics

Metric Value

Coverage 0.647059
Density 0.982143
Mass 0.163265
Mean 0.982143

Table 6.14: total-AVF, Register File, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.rename.blockCycles 207688 1111008 2.10e− 02
system.cpu.rename.idleCycles 1134519 3122663 2.55e− 02
system.cpu.rename.renamedInsts 22832425 50039387 1.40e− 01
system.cpu.rename.renamedOperands 18053002 45842465 3.71e− 01
system.cpu.rename.serializing 532 64018 3.71e− 01

6.2.1.2 L1 Data Cache

Method: Polynomial Pearson’s Correlation Model: Lasso Alpha: 0.01 Degree: 3
PCA components: 5 R2 Score: 61.8%
Formula: Too large

I. Konstantinidis 51

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.15: total-AVF, Data Cache, 5 maximum features, K-fold validation

Figure 6.16: total-AVF, Data Cache, 5 maximum features, Test Programs

I. Konstantinidis 52

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.15: total-AVF, Data Cache, 5 maximum features, PRIM statistics

Metric Value

Coverage 0.970874
Density 0.943396
Mass 0.309038
Mean 0.943396

Table 6.16: total-AVF, Data Cache, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.dcache.ReadReq.misses::cpu.data 719 34631 2.95e− 27
system.cpu.ipc 2.1 4.3 7.63e− 03
system.cpu.dcache.WriteReq.accesses::cpu.data 20480 3192842 1.42e− 01
system.cpu.dcache.WriteReq.misses::cpu.data 362 35496 6.06e− 01

6.2.1.3 L1 Instruction Cache

Method: Polynomial Pearson’s Correlation Model: Ridge Alpha: 0.1 Degree: 2
PCA components: 4 R2 Score: 87.8%
Formula: Too large

I. Konstantinidis 53

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.17: total-AVF, Instruction Cache, 5 maximum features, K-fold validation

Figure 6.18: total-AVF, Instruction Cache, 5 maximum features, Test Programs

I. Konstantinidis 54

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.17: total-AVF, Instruction Cache, 5 maximum features, PRIM statistics

Metric Value

Coverage 0.857143
Density 0.8
Mass 0.329670
Mean 0.8

Table 6.18: total-AVF, Instruction Cache, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.icache.ReadReq.misses::cpu.inst 163037 172223 4.09e− 01
system.cpu.icache.replacements 149213 158529 4.76e− 01
system.cpu.icache.tags.dataAccesses 9415305 9655692 5.02e− 01

6.2.2 SDC-AVF

6.2.2.1 Register File

Method: Linear Procedure Model: Ridge Alpha: 0.01 Degree: 1 PCA com-
ponents: 5 R2 Score: 84.3%
Formula:

0.03689 · system.cpu.rename.renamedOperands

+ 0.01109 · system.cpu.intRegfileWrites

+ 0.00130 · system.cpu.rename.fullRegistersEvents

− 0.01493 · system.cpu.rename.squashCycles

− 0.02462 · system.cpu.rename.renamedInsts

+ 0.03480

I. Konstantinidis 55

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.19: SDC-AVF, Register File, 5 maximum features, K-fold validation

Figure 6.20: SDC-AVF, Register File, 5 maximum features, Test Programs

I. Konstantinidis 56

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 8%
Table 6.19: SDC-AVF, Register File, 5 maximum features, PRIM statistics

Metric Value

Coverage 0.736842
Density 1
Mass 0.040816
Mean 1

Table 6.20: SDC-AVF, Register File, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.rename.fullRegistersEvents 694018 843135 0.00e+ 00
system.cpu.rename.squashCycles 3233 62035 0.00e+ 00

6.2.2.2 L1 Data Cache

Method: Polynomial Pearson’s Correlation Model: Lasso Alpha: 0.01 Degree: 3
PCA components: 5 R2 Score: 74%
Formula: Too large

I. Konstantinidis 57

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.21: SDC-AVF, Data Cache, 5 maximum features, K-fold validation

Figure 6.22: SDC-AVF, Data Cache, 5 maximum features, Test Programs

I. Konstantinidis 58

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 30%
Table 6.21: SDC-AVF, Data Cache, 5 maximum features, PRIM statistics

Metric Value

Coverage 0.959184
Density 0.912621
Mass 0.300292
Mean 0.912621

Table 6.22: SDC-AVF, Data Cache, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.dcache.ReadReq.misses::cpu.data 946 34202 4.15e− 24
system.cpu.ipc 2.1 4.3 4.63e− 03
system.cpu.dcache.WriteReq.accesses::cpu.data 20480 3192842 3.44e− 01
system.cpu.dcache.WriteReq.misses::cpu.data 362 33602 4.62e− 01

6.2.2.3 L1 Instruction Cache

Method: Linear Procedure Model: Linear Regression Degree: 1 PCA compon-
ents: 3 R2 Score: 75%
Formula:

− 0.01292 · system.cpu.icache.demandMisses :: cpu.inst

− 0.01866 · system.cpu.icache.tags.totalRefs

− 0.02394 · system.cpu.ipc

+ 0.03117

I. Konstantinidis 59

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

Figure 6.23: SDC-AVF, Instruction Cache, 5 maximum features, K-fold validation

Figure 6.24: SDC-AVF, Instruction Cache, 5 maximum features, Test Programs

I. Konstantinidis 60

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

PRIM

Threshold: 10%
Table 6.23: SDC-AVF, Instruction Cache, 5 maximum features, PRIM statistics

Metric Value

Coverage 1
Density 0.333333
Mass 0.032967
Mean 0.333333

Table 6.24: SDC-AVF, Instruction Cache, 5 maximum features, PRIM box

Metric Min Max QP Values

system.cpu.icache.tags.totalRefs 2346980 2358469 1.05e− 01
system.cpu.icache.demandMisses::cpu.inst 30979 163825 3.00e− 01

6.3 Conclusion

The results undoubtedly indicate a conservative and moderate correlation between the
features of each component and their corresponding target value (total-AVF or SDC-
AVF).The R2 scores are high enough to support this assumption, even when a maximum
of five features are used in the regression procedure (they all exceed 61%). These max-
imum of five features regression models may be preferable, as they have reduced risk
of overfitting and allow for a more straightforward hardware implementation. Additionally,
the results from the PRIM align well with the performance of the corresponding regression
models as expected.

However, while in many statistical analyses an R2 of this magnitude would be con-
sidered more than enough, AVF prediction requires greater caution due to the critical
nature of this metric. Despite the seemingly high R2 values, the regression procedures
often fail to capture the noise in the train and test execution intervals, leading to significant
deviation in predictions which can lead to less informed runtime decisions for mitigation
like the RMT enabling/disabling know mentioned at the beginning of the thesis. In many
cases, the models fall extremely off, indicating difficulties in generalizing across different
workloads and execution conditions. For example, these figures: 6.4 6.10 6.16 6.22 indic-
ate poor generalization of the regression models, despite the fact that the same models
may perform well on the training data. Also, it is important to keep in mind that the results
shown in the test programs are scaled to 100, which may give the impression of greater
variation than what actually exists. In reality, the raw values show much lower variation,
meaning that even small differences in the scaled results may correspond to significant
deviations. Therefore, considering the tested methodologies, hardware components

I. Konstantinidis 61

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

and configuration and input data (intervals of program execution), the results from the
test programs, along with a close examination of the k-fold validation, suggest that the cor-
relation is not strong enough to support any kind of implementation of reliability detection
mechanism or AVF-aware execution strategies.

Compared to other studies, these findings highlight the difficulties and limitations of
using regression for the prediction of the AVF and point to the need of further research to
improve the prediction accuracy.

6.4 Future Work

As of now, the field of runtime AVF prediction still remains mostly unexplored. Finding the
optimal prediction formula for AVF that balances performance and reliability is a crucial
challenge in processor design that remains unanswered. Future research could explore
deep learning techniques to improve AVF prediction accuracy, using neural networks to
capture complex patterns in hardware behavior. Also, different workloads that specifically
overload a component are yet to be studied. Such benchmarks could improve correlation
analysis and add more variation to the input data.

To support real-time AVF estimation, the design and implementation of dedicated hard-
ware counters that track error vulnerability at runtime is essential. These counters should
act as hardware proxies and monitor the microarchitectural events relevant to AVF, allow-
ing for more responsive and accurate AVF prediction.

With an unified SFI framework like gem5-MARVEL, there are many observational stud-
ies that can be done as well. For example, applying this AVF estimation framework to
different architectures, such as ARM and x86, or even to different hardware configura-
tions could provide broader insights into processor reliability across various computing
environments.

Finally, an interesting future direction is to examine the interplay between AVF, power
efficiency and security, ensuring that reliability improvements do not introduce new flaws
in AVF-aware execution.

I. Konstantinidis 62

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

ABBREVIATIONS - ACRONYMS

MTTF Mean Time To Failure

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

AVF Architectural Vulnerability Factor

SDC Silent Data Corruption

RMT Redundant Multi-Threading

RISC Reduced Instruction Set Computing

CISC Complex Instruction Set Computing

ACE Architecturally Correct Execution

SFI Statistical Fault Injection

ISA Instruction Set Architecture

SE Syscall Emulation

FS Full System

PRIM Patient Rule Induction Method

PCA Principal Component Analysis

I. Konstantinidis 63

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

BIBLIOGRAPHY

[1] gem5. https://www.gem5.org/.

[2] Patient rule induction method for python. https://github.com/Project-Platypus/PRIM.

[3] Single instruction multiple data. https://www.sciencedirect.com/topics/computer-
science/single-instruction-multiple-data.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, 2004.

[5] Jeremy Bennett. mibench. https://github.com/embecosm/mibench, 2012.

[6] IEEE Spectrum Blog. Impact of cosmic rays in hardware.
https://spectrum.ieee.org/cosmic-ray-failures-of-power-semiconductor-devices,
2019.

[7] Benjamin P. Bryant and Robert J. Lempert. Thinking inside the box: A participatory,
computer-assisted approach to scenario discovery. Technological Forecasting and
Social Change, 77(1):34–49, 2010.

[8] Odysseas Chatzopoulos, George Papadimitriou, Vasileios Karakostas, and Dimitris
Gizopoulos. Gem5-marvel: Microarchitecture-level resilience analysis of heterogen-
eous soc architectures. pages 543–559, 03 2024.

[9] Jerome Friedman and Nicholas Fisher. Bump hunting in high-dimensional data. Stat-
istics and Computing, 9, 04 1999.

[10] Xin Fu and José A. B. Fortes. Sim-soda : A unified framework for architectural level
software reliability analysis. 2006.

[11] A.D. George. An overview of risc vs. cisc. In [1990] Proceedings. The Twenty-Second
Southeastern Symposium on System Theory, pages 436–438, 1990.

[12] Randy Fish Jyotika Athavale. Examining silent data corruption: A lurking, per-
sistent problem in computing. https://www.synopsys.com/blogs/chip-design/what-is-
silent-data-corruption-sdc.html, 2024.

[13] Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou, Nikos Foutris, and
Dimitris Gizopoulos. Differential fault injection on microarchitectural simulators. In
2015 IEEE International Symposium on Workload Characterization, pages 172–182,
2015.

[14] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault injection:
Quantified error and confidence. In 2009 Design, Automation Test in Europe Confer-
ence Exhibition, pages 502–506, 2009.

[15] Bin Li, Lide Duan, and Lu Peng. Efficient microarchitectural vulnerabilities prediction
using boosted regression trees and patient rule inductions. IEEE Transactions on
Computers, 59(5):593–607, 2010.

I. Konstantinidis 64

Assessment of modern RISC-V microprocessors reliability using runtime hardware measurements

[16] Daniel McFarlin, Charles Tucker, and Craig Zilles. Discerning the dominant out-of-
order performance advantage: Is it speculation or dynamism? volume 48, pages
241–252, 03 2013.

[17] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. Detailed design and evaluation of re-
dundant multi-threading alternatives. In Proceedings 29th Annual International Sym-
posium on Computer Architecture, pages 99–110, 2002.

[18] George Papadimitriou and Dimitris Gizopoulos. Demystifying the system vulnerability
stack: transient fault effects across the layers. In Proceedings of the 48th Annual
International Symposium on Computer Architecture, ISCA ’21, page 902–915. IEEE
Press, 2021.

[19] George Papadimitriou and Dimitris Gizopoulos. Avgi: Microarchitecture-driven, fast
and accurate vulnerability assessment. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 935–948, 2023.

[20] Joel Emer Steven K. Reinhardt Shubhendu S. Mukherjee, Christopher Weaver and
Todd Austin. A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor. In Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36, pages
29–40. IEEE, 2003.

[21] Kristen R. Walcott, Greg Humphreys, and Sudhanva Gurumurthi. Dynamic prediction
of architectural vulnerability from microarchitectural state. SIGARCH Comput. Archit.
News, 35(2):516–527, June 2007.

[22] Andrew Waterman. Design of the RISC-V Instruction Set Architecture. PhD thesis,
University of California, Berkeley, 2016.

I. Konstantinidis 65

	CONTENTS
	INTRODUCTION
	Importance of Hardware Reliability
	Quantifying Hardware Vulnerability
	Motivation
	Related Works

	BACKGROUND
	Faults and Errors Terminology
	Architectural Vulnerability Factor
	Vulnerability Αnalysis Τechniques
	Architectural Correct Execution
	Statistical Fault Injection

	Instruction Set Architectures
	RISC vs CISC
	RISC-V Architecture

	WORKING ENVIRONMENT
	gem5
	Scripts

	REGRESSION AND CORRELATION ANALYSIS TECHNIQUES
	Pearson's Coefficient
	Regression
	Linear Regression
	Polynomial Regression
	Ridge Normalization
	Lasso Normalization
	Principal Component Analysis

	Patient Rule Induction Method

	IMPLEMENTATIONS OF AVF PREDICTION
	Regression Analysis Setup
	Formal Definition of the Regression Problem
	Prediction Approaches
	Linear Procedure
	Quadratic Procedure
	Polynomial Pearson's Coefficient

	Parametric Space

	RESULTS
	All Features Included
	total-AVF
	Register File
	L1 Data Cache
	L1 Instruction Cache

	SDC-AVF
	Register File
	L1 Data Cache
	L1 Instruction Cache

	Max of 5 Features Included
	total-AVF
	Register File
	L1 Data Cache
	L1 Instruction Cache

	SDC-AVF
	Register File
	L1 Data Cache
	L1 Instruction Cache

	Conclusion
	Future Work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

