
 1 

 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 

ΙΑΤΡΙΚΗ ΣΧΟΛΗ 

 Α’ Παιδιατρική Κλινική Πανεπιστημίου Αθηνών 

Νοσοκομείο Παίδων «Η Αγία Σοφία» 

          Καθ. Γ. Χρούσος 

 

  ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ 

 

 

 

  

 

ΣΟΦΙΑ Κ. ΛΕΚΑ - ΕΜΙΡΗ 

 

Αθήνα 2014 

 

Κλινική και Μοριακή μελέτη παιδιών με διαταραχές ενήβωσης 

    (Έλεγχος σχετικών γονιδιακών επιτόπων – γονίδιο GPR54) 

 



 2 

 

 Ημερομηνία αίτησης  για ορισμό τριμελούς επιτροπής: 1-12-2008 

 Ημερομηνία ορισμού τριμελούς επιτροπής: 24-2-2009 

 Ημερομηνία καθορισμού θέματος διδακτορικής διατριβής: 13-4-2009 

 

Τριμελής επιτροπή επίβλεψης της Διδακτορικής Διατριβής:  

 Αν. Καθηγήτρια Χριστίνα ΚΑΝΑΚΑ-GANTENBEIN (Επιβλέπων) 

 Καθηγητής Γεώργιος ΧΡΟΥΣΟΣ 

 Επ. Καθηγητής Εμμανουήλ  ΖΟΥΜΑΚΗΣ  

 

 

Επταμελής επιτροπή παρουσίασης της Διδακτορικής Διατριβής:  

 Αν. Καθηγήτρια Χριστίνα ΚΑΝΑΚΑ-GANTENBEIN (Επιβλέπων) 

 Καθηγητής Γεώργιος ΧΡΟΥΣΟΣ 

 Επ. Καθηγητής Εμμανουήλ ΖΟΥΜΑΚΗΣ  

 Αν. Καθηγητής Nicolas de ROUX, INSERM U676, Paris 

 Αν. Καθηγητής  Αναστάσιος ΠΑΠΑΔΗΜΗΤΡΙΟΥ 

 Αν. Καθηγητής Νεοκλής ΓΕΩΡΓΟΠΟΥΛΟΣ 

 Αν. Καθηγητής Γεώργιος ΜΑΣΤΟΡΑΚΟΣ 



 3 

 

 

 

NATIONAL UNIVERSITY OF ATHENS 

  MEDICAL SCHOOL 

1
st

 Department of Peadiatrics 

The “Aghia Sofia Children’s Hospital” 

Prof. G. Chrousos  

 

PhD Thesis 

 

 

 

 

 

Sofia K. LEKA - EMIRI 

 

Athens 2014 

 

 
Molecular and clinical investigation of children with 

disorders of puberty (GPR54 gene and relevant genes) 
 
 

 



 4 

 

 

 

 

Scientific committee: 

 

Associate Professor Christina KANAKA-GANTENBEIN (Supervisor) 

Professor George CHROUSOS 

Assistant Professor Emmanouil ZOUMAKIS 

Associate Professor Nicolas de ROUX, INSERM 676, Paris, FRANCE 

Associate Professor Anastasios PAPADIMITRIOU 

Associate Professor Neoklis GEORGOPOULOS 

Associate Professor George MASTORAKOS 

 

Date of presentation: 22-5-2014 



 5 

Acknowledgements 

 

Professor George CHROUSOS 

Chairman of First Department of Pediatrics and Division of Pediatric Endocrinology and 

Diabetology, “Aghia Sofia” Children’s Hospital, University of Athens, Greece 

For having accepted me as a young resident in Pediatrics seven years ago and having inspired 

me in the field of Pediatric Endocrinology 

   Please find here the expression of my profound respect 

 

Associate Professor Christina KANAKA-GANTENBEIN 

Division of Pediatric Endocrinology and Diabetology, First Department of Pediatrics,“Aghia 

Sofia” Children’s Hospital, University of Athens, Greece  

For her enthusiastic guidance and trust in my research fields.  

For her precious contribution in the finalization of this work. 

Please find here the expression of my warmest gratitude   

  

Associate Professor Nicolas De ROUX 

Inserm U676 « Equipe Avenir : Génétique et Physiologie de l’Initiation de la puberté », 

Robert Debré Hospital and University of Paris 7-Denis Diderot, Paris, France 

For having accepted me in his laboratory and contributed in unraveling the molecular biological 

mechanisms of the physiology of puberty 

  Please find here the expression of my honest reconnaissance 

 

Professor Juliane LEGER 

Service d’Endocrinologie et Diabétologie Pédiatrique H. Robert Debré,  

University of Paris 7- Denis Diderot, Paris, France 

For having accepted me in her department as an ESPE Clinical Fellow and for her kind eagerness 

that helped me advancing in my research 

  Please find here the expression of my profound reconnaissance 

 

IOANNIS…  

Zacharias and Konstantinos for every one day of my life…  

 



 6 

CONTENTS 

page 

Acknowledgements ........................................................................ 5 

List of Contents  ............................................................................. 6 

CURRICULUM VITAE ...................................................................... 9 

HIPPOCRATES OATH  ................................................................... 23 

Abbreviations ................................................................................. 25 

 

I. GENERAL PART 

 

1. NORMAL PUBERTY ................................................................... 26 

1.1 Physiology ................................................................................ 26 

1.1. A. Overview of Kisspeptin signaling  ...................................................... 30 

1.1. A. 1 Biochemistry ........................................................................................ 31 

1.1. A. 2 Molecular physiology of Kiss1 neurons  ............................................... 34 

1.1. A. 3 Comparative physiology ....................................................................... 39 

1.1. A. 4 Role of kisspeptin in the onset of puberty ............................................ 47 

1.1. A. 4.aThe kisspeptin system is necessary for normal puberty initiation ....... 47 

1.1. A. 4.b Changes in the neural Kiss1 system during puberty ......................... 49 

1.1. A. 4.c Sexual dimorphism of kisspeptin expression .................................... 51 

1.1. B. Overview of Neurokinin B (NKB) signaling ........................................ 55 

1.1. B. 1 Molecular biology of NKB ..................................................................... 55 

1.1. B. 2 Anatomic studies of (NKB) and Neurokinin B receptor (NKR3)............ 56  

1.1. B. 3 Estrogen modulation of NKB gene expression..................................... 57 

1.1. B. 4 Sexual dimorphism of NKB neurons .................................................... 58 

1.1.C. An interconnected network of NKB/kisspeptin/dynorphin  

neurons ............................................................................................... 59 

1.1.C. 1 Evidence for NKB/kisspeptin/dynorphin neurons in the arcuate  

nucleus for the modulation of pulsatile GnRH secretion ....................... 61 

1.1.C. 2 Pharmacological studies ....................................................................... 65 

 



 7 

1. 2 Clinical manifestations and age references of puberty ....... 67 

1. 3 Possible mechanisms of variation in timing of puberty ...... 70 

1.3. a Genetic Factors ........................................................................................ 72 

1.3. b Environmental factors ............................................................................... 81 

1.3. b1 Intrauterine conditions ............................................................................ 81 

1.3. b2 Nutrition .................................................................................................. 82 

1.3. b3 Stress ..................................................................................................... 75 

1.3. b4 Exposure to endocrine-disrupting chemicals (EDCs)  ............................ 85 

 

2. DISORDERS OF PUBERTAL ONSET ........................................ 86 

2. A. Delayed puberty ....................................................................................... 86 

2. A.1 Age limits ................................................................................................. 86 

2. A.2 Causes and diagnostic work up ............................................................... 86 

2. A.3 Consequences ....................................................................................... 101 

2 .B. Precocious puberty ............................................................................... 102 

2. B.1 Age limits ............................................................................................... 102 

2. B.2 Causes and diagnostic work up ............................................................. 102 

2. B.3 Consequences ....................................................................................... 114 

 

3. SEXUAL DIMORPHISM OF PUBERTAL  

ONSET DEVIATIONS ............................................................... 115 

 

II. SPECIFIC PART ............................................................ 118 

1. RESEARCH PROJECT 

TITLE: Molecular and clinical investigation of the GPR54 and TACR3 gene 

mutations and polymorphisms in Idiopathic Central Precocious Puberty 

1. A. Background  ........................................................................................... 118 

1. B. Objectives .............................................................................................. 118 

1. C. Patients and Methods ............................................................................ 118 

1. D. Results .................................................................................................... 124 

1. E. Discussion ............................................................................... 125 

1. F. Conclusion and perspectives ..................................................... 144 



 8 

III. REFERENCES ......................................................................... 148 

IV. ABSTRACT IN GREEK............................................................ 200 

V. ABSTRACT IN ENGLISH ......................................................... 201 

VI. PUBLICATION OF FINDINGS  

XI. APPENDIX  

 



 9 

Σοφία Κ. ΛΕΚΑ - ΕΜΙΡΗ  
 

ΠΑΙΔΙΑΤΡΟΣ 
  

Εξειδικευθείσα στην Παιδιατρική Ενδοκρινολογία 

 

Βιογραφικό Σημείωμα 

 

 

Ημερομηνία Γέννησης: 25/05/1974 

 

Τόπος Γέννησης: Αθήνα 

 

Διεύθυνση Κατοικίας: Χίου 4, Χαλάνδρι, Τ.Κ. 15231 

 

Τηλέφωνα: Οικίας 210 6897387 / 210 6773200 Κινητό 6934227386 

 

FAX: 210 6773200 / 210 6897387 

 

e-mail: sofialekaemiris@gmail.com  

 

mailto:sofialekaemiris@gmail.com


 10 

 

 
1) ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ 

 
 
01/2014 -   ΕΠΙΜΕΛΗΤΡΙΑ Β’ ΠΑΙΔΙΑΤΡΙΚΗΣ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑΣ 

Τμήμα Παιδιατρικής Ενδοκρινολογίας  
   Νοσοκομείο Παίδων «Π. & Α. ΚΥΡΙΑΚΟΥ», Αθήνα 
 
12/2008  -  12/2010 ΜETEΚΠΑΙΔΕΥΣΗ στην 
   ΠΑΙΔΙΑΤΡΙΚΗ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑ και ΔΙΑΒΗΤΟΛΟΓΙΑ 
   Τμήμα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  
   (Καθηγητής J-C CAREL) (ESPE Clinical Fellowship) και 
   Εθνικό Ίδρυμα Υγείας και Ιατρικής Έρευνας  
   (Institut Natiοnal de la Santé et Recherche Médicale - INSERM)  
   Mονάδα έρευνας “Παιδικός διαβήτης και Ανάπτυξη”  

(Έμμισθη ερευνητής) 
   (Διευθυντής: Pr. C. LEVY-MARCHAL)  
                                      Παιδιατρικό Πανεπιστημιακό Νοσοκομείο «Robert Debré»  
   Université Paris VII, Παρίσι, ΓΑΛΛΙΑ     
 
6/2008  - 11/2008          ΜETEΚΠΑΙΔΕΥΣΗ  
   ΠΑΙΔΙΑΤΡΙΚΗ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑ και ΔΙΑΒΗΤΟΛΟΓΙΑ 

Τμήμα Παιδιατρικής Ενδοκρινολογίας, Διαβήτη και Μεταβολισμού 
Α΄ Παιδιατρική Κλινική Πανεπιστημίου Αθηνών 

   (Καθηγητής: Γ. ΧΡΟΥΣΟΣ)  
   Νοσοκομείο Παίδων «Η Αγία Σοφία», Αθήνα 
 
5/2005 - 5/2008  ΕΙΔΙΚΕΥΟΜΕΝΗ ΙΑΤΡΟΣ ΠΑΙΔΙΑΤΡΙΚΗΣ 

Α΄ Παιδιατρική Κλινική Πανεπιστημίου Αθηνών 
(Καθηγητής: Γ. ΧΡΟΥΣΟΣ)  
Νοσοκομείο Παίδων «Η Αγία Σοφία», Αθήνα 

 
6/2004  -  5/2005           EΠΙΣΤΗΜΟΝΙΚΗ ΣΥΝΕΡΓΑΤΗΣ  

Τμήμα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  
 (Διευθυντής:  Χ. ΧΑΤΖΗΑΘΑΝΑΣΙΟΥ)  
  Νοσοκομείο Παίδων «Π. & Α. Κυριακού», Αθήνα   
 
11/2001 - 10/2002 ΕΙΔΙΚΕΥΟΜΕΝΗ ΙΑΤΡΟΣ ΠΑΙΔΙΑΤΡΙΚΗΣ 

Τμήμα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  
(Καθηγητής: P. CZERNICHOW)  

   Παιδιατρικό Πανεπιστημιακό Νοσοκομείο «Robert Debré»,  
 Université Paris VII, Παρίσι, ΓΑΛΛΙΑ  
 
5/2001 - 10/2001 ΙΑΤΡΟΣ (πλήρους έμμισθης απασχόλησης) 

Τμήμα Ενδοκρινολογίας, Διαβητολογίας και Αναπαραγωγής  
(Καθηγητής: P. FENICHEL) 
Πανεπιστημιακό Νοσοκομείο «L`Archet I»,  
Université de Νice, ΓΑΛΛΙΑ. 

 
9/1999 - 12/2000 Υποχρεωτική Υπηρεσία Υπαίθρου (Αγροτικό),  
 Παιδιατρικό Ιατρείο (βοηθός Επιμελητή Α’- Χ. ΣΑΒΒΑΚΗ) 
 Κέντρο Υγείας Περάματος, Ρέθυμνο, ΚΡΗΤΗ. 



 11 

 

 

 

2 ) ΣΠΟΥΔΕΣ - ΔΙΠΛΩΜΑΤΑ 

 

Ιούλιος 2010 Τίτλος Εξειδίκευσης στην  

 ΠΑΙΔΙΑΤΡΙΚΗ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑ ΚΑΙ ΔΙΑΒΗΤΟΛΟΓΙΑ 

Τμήμα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  

   (Καθ. J-C CAREL),  

Παιδιατρικό Πανεπιστημιακό Νοσοκομείο AP-HP,  

 «Robert Debré», Παρίσι, ΓΑΛΛΙΑ 

 

Φεβρουάριος 2009-    Υποψήφια ΔΙΔΑΚΤΟΡΑΣ  

 στον τομέα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  

   Α’ Παιδιατρική Κλινική Πανεπιστημίου Αθηνών   

 Νοσοκομείο Παίδων «Η Αγία Σοφία», Αθήνα 

 Τίτλος Διατριβής: «Κλινική και Μοριακή μελέτη παιδιών με διαταραχές ενήβωσης  

                                                                        (έλεγχος σχετικών γονιδιακών επιτόπων - γονίδιο GPR54)»  

Τριμελής Επιτροπή: Αν. Καθ. Χρ. ΚΑΝΑΚΑ-GANTENBEIN (Επιβλέπουσα) 

Επ. Καθ. Εμ. ΖΟΥΜΑΚΗΣ και  

Καθ. Γ. ΧΡΟΥΣΟΣ  

    

Ιούλιος 2008 Τίτλος Ιατρικής Ειδικότητας στην ΠΑΙΔΙΑΤΡΙΚΗ (1
η
 Επιτυχούσα)  

   Α’ Παιδιατρική Κλινική Πανεπιστημίου Αθηνών  

   Νοσοκομείο Παίδων «Η Αγία Σοφία» 

(Καθηγητής – Διευθυντής: Γ. ΧΡΟΥΣΟΣ)  

Νοσοκομείο Παίδων «Η Αγία Σοφία», Αθήνα 

 

12/2003-1/2006 Μεταπτυχιακό Πρόγραμμα Σπουδών   

 «Κλινική και Εργαστηριακή Ιατρική – Γενετική» (Άριστα) 

Τμήμα Ιατρικής Γενετικής, Ιατρική Σχολή,  

Εθνικό και Καποδιστριακό Πανεπιστήμιο ΑΘΗΝΩΝ 

Τίτλος: «Μελέτη με μοριακές τεχνικές του γονιδίου SHOX σε παιδιά με 

ιδιοπαθή βραχυσωμία» 

Τριμελής Επιτροπή: Σ. ΚΙΤΣΙΟΥ-ΤΖΕΛΗ (Αν. Καθηγήτρια Πανεπιστημίου 

Αθηνών),  

Α. ΚΑΛΠΙΝΗ-ΜΑΥΡΟΥ (Αν. Καθηγήτρια Πανεπιστημίου Αθηνών) και 

Ε. ΚΑΝΑΒΑΚΗΣ (Καθηγητής Πανεπιστημίου Αθηνών) 

 



 12 

Ιούλιος 1999  ΠΤΥΧΙΟ ΙΑΤΡΙΚΗΣ (Λίαν Καλώς) 

 Τμήμα ΙΑΤΡΙΚΗΣ, Εθνικό και Καποδιστριακό Πανεπιστήμιο ΑΘΗΝΩΝ  

Υποτροφία: Ίδρυμα Παπαδάκης (1994-1999) 

 

Ιούνιος 1993 ΑΠΟΛΥΤΗΡΙΟ Λυκείου (Άριστα) - Πανελλήνιες Εισαγωγικές Εξετάσεις 

 Λύκειο Ξυλοκάστρου Νομού Κορινθίας  

 
3 ) ΕΡΕΥΝΗΤΙΚΗ ΕΜΠΕΙΡΙΑ 

  
(Διεθνή και Εθνικά Ερευνητικά Προγράμματα) 

 
 
 

 
 2010-2011 Φορέας: Εθνικό Σύστημα Υγείας και Έρευνας της Γαλλίας  

  (Institut Natiοnal de la Santé et Recherche Médicale - INSERM)  

Mονάδα έρευνας στην «Γενετική και Φυσιολογία Έναρξης της 

Εφηβείας»  

        Χρηματοδότηση: Εθνικό Κέντρο Αποκωδικοποίησης DNA  

Centre National de Sequencage- GIS- Institut des maladies rares), 

Παρίσι, Γαλλία  

  Eπιστημονικός Υπεύθυνος: Καθηγητής Nicolas DeROUX 

  Τίτλος: «Ανάλυση δύο υποψήφιων περιοχών σε οικογενή νευροενδοκρινική νόσο» 

 

 

 2009-2010 Φορέας - Χρηματοδότηση:  

Εθνικό Σύστημα Υγείας και Έρευνας της Γαλλίας  

  (Institut National de la Santé et Recherche Médicale-INSERM)  

  Mονάδα έρευνας στην «Ανάπτυξη και τον Παιδιατρικό Διαβήτη»  

        Eπιστημονικός Υπεύθυνος: Dr Claire LEVY-MARCHAL 

 Τίτλος:  

 1) «Θεραπευτικό πρωτόκολλο με ανθρώπειο ανασυνδυασμένη λεπτίνη  

(human recombinant Leptin –rmetHuLeptin)  σε παιδιά με συγγενή λιποδυστροφικό 

διαβήτη» 

2) «Μεταβολικές παράμετροι σε παιδιά με ιστορικό ενδομήτριας καθυστέρησης της 

ανάπτυξης» 

 

 

 2008-2009 Φορέας: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών  

  Χρηματοδότηση: Πανελλήνια Ένωση Ενδοκρινολογίας 

  Eπιστημονικός Υπεύθυνος: Αν. Καθ. Χριστίνα ΚΑΝΑΚΑ-GANTENBEIN 

Τίτλος: «Κλινική και Μοριακή μελέτη του γονιδίου GPR54 σε παιδιά με ιδιοπαθή 

κεντρική πρώιμη ή  καθυστερημένη ήβη». 



 13 

 

4 ) ΕΙΔΙΚΗ ΕΚΠΑΙΔΕΥΣΗ - ΣΕΜΙΝΑΡΙΑ 
 

Α) ΣΤΑΤΙΣΤΙΚΗ  

 
 Mάιος 2009 (1 εβδομάδα) Σεμινάριο στην Στατιστική Επεξεργασία Βιο-Iατρικών 

δεδομένων  

      (SAS statistical logistics), INSERM IR 6, Ville – Juif, France 

 

 

Β) ΠΑΙΔΙΑΤΡΙΚΗ  

 

 Φεβρουάριος 2007 (1 εβδομάδα), Σεμινάριο Εξειδικευμένης Υποστήριξης της Ζωής 

Παιδιών και Βρεφών (Αdvanced Pediatric Life Support - APLS) Hellas,  (Δυευθύνων: 

K. ΒΕΛΑΟΡΑΣ) 

 

 

Γ) ΠΑΙΔΙΑΤΡΙΚΗ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑ 

 

1. Μάρτιος 2014 (2 ημέρες) Εντατική Εκπαίδευση στην Παιδιατρική Ενδοκρινολογία 

και   Αναπαραγωγή, Ελληνική Ενδοκρινολογική Εταιρεία, Μαγγίνειο Αμφιθέατρο, 

Αρεταίειο Νοσοκ.  Αθήνα 

 

2. Mάιος 2012 (1 εβδομαδα) European Society for Pediatric Endocrinology Science 

School and NICHE conference 2012, Hersonissos – Heraklion, Crete, May 16-20, 

2012, GREECE 

 

3. Μάρτιος 2010 (1 εβδομάδα) Εντατική Εκπαίδευση στην Παιδιατρική 

Ενδοκρινολογία, 

 Diplôme Interuniversitaire d’Endocrinologie et Diabétologie Pédiatriques, 

 Hôpital d’enfants Armand Trousseau, Paris, FRANCE  

 

4. Ιανουάριος 2010 (2 ημέρες) Σεμινάριο στην Παιδιατρική Ενδοκρινολογία και 

Διαβητολογία, 

 Necker - Hôpital des Enfants Malades (Prof. R. RAPPAPORT), Paris, FRANCE   

 

5. Νοέμβριος 2009 (1 εβδομάδα) International Society for Pediatric and Adolescent 

Diabetes 

 (ISPAD) Science school for Physicians, Cambridge, UK   

 



 14 

6. Σεπτέμβριος 2009 (3 ημέρες) Lawson & Wilkins Pediatric Endocrinology 

Society/European Society of Pediatric endocrinology Fellows Workshop on 

Growth, New York, USA 

 

7. Μάρτιος 2009 (1 εβδομάδα) Εντατική Εκπαίδευση στην Παιδιατρική 

Ενδοκρινολογία, 

 Diplôme Interuniversitaire d’Endocrinologie et Diabétologie Pédiatriques, 

 Hôpital d’enfants Armand Trousseau, Paris, FRANCE  

 

8. Ιανουάριος 2009 (2 ημέρες) Σεμινάριο στην Παιδιατρική Ενδοκρινολογία και 

Διαβητολογία, 

 Necker - Hôpital des Enfants Malades (Prof. R. RAPPAPORT), Paris, FRANCE   

 

9. Σεπτέμβριος 2008 (1 εβδομάδα), 22
nd

 European Society for Pediatric 

Endocrinology  

 (ESPE) Summer School, Istanbul, Τurkey  

 

10. Φεβρουάριος 2008 (2 ημέρες) Εντατική Εκπαίδευση στην Παιδιατρική 

Ενδοκρινολογία 

 Ελληνική Ενδοκρινολογική Εταιρεία, ΕΚΕΦΕ «Δημόκριτος», Αθήνα 

 

11. Μάιος 2007 (1 μήνας), Visiting observer Division of Pediatric Endocrinology  

 (Professor A. Moran), University of Minnesota Medical School, Minneapolis, 

Minnesota, USA 

 

12. Ιανουάριος 2007 (2 ημέρες), Σεμινάριο στην Παιδιατρική Ενδοκρινολογία και 

Διαβητολογία, 

 Necker - Hôpital des Enfants Malades (Prof. R. RAPPAPORT), Paris, FRANCE  

 

13. Νοέμβριος 2005 (1 εβδομάδα), Visiting Observer Division of Pediatric 

Endocrinology  

 (Prof. J. Majzoub), Boston Children’s Hospital, Harvard Medical School, Boston, USA 

 

14. 2003 – 2013 Ετήσια Προγράμματα Ημερίδων στην Παιδιατρική Ενδοκρινολογία,  

 Ελληνική Εταιρεία Παιδικής και Εφηβικής Ενδοκρινολογίας, Αθήνα, ΕΛΛΑΔΑ 

 

15. Μάρτιος 2003  (1 εβδομάδα), Σεμινάριο στην Παιδιατρική Ενδοκρινολογία και 

Διαβητολογία  

 Universite de Bordeaux, FRANCE 
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Δ) ΚΥΤΤΑΡΟΓΕΝΕΤΙΚΗ και ΜΟΡΙΑΚΗ ΒΙΟΛΟΓΙΑ  

  
 
2/2010   Εθνικό Ίδρυμα Υγείας και Ιατρικής Έρευνας  

   (Institut Natiοnal de la Santé et Recherche Médicale - INSERM)  

   Hôpital «  LE KREMLIN BICETRE » 

   (Επιστημονικός Υπεύθυνος: Directeur de recherche B. HEMAR) 

   Θέμα: « Analyse Bioinformatique des séquences moléculaires»  

   

   Universite Paris XI, Παρίσι, ΓΑΛΛΙΑ 

 

1/2009 - 3/2009  Εθνικό Ίδρυμα Υγείας και Ιατρικής Έρευνας  

   (Institut Natiοnal de la Santé et Recherche Médicale - INSERM)  

   Mονάδα έρευνας «Γενετική και Φυσιολογία της έναρξης της ήβης» 

    (Επιστημονικός Υπεύθυνος: Καθηγητής N. DEROUX) 

                                      Παιδιατρικό Πανεπιστημιακό Νοσοκομείο «Robert Debré»,  

 Université Paris VII, Παρίσι, ΓΑΛΛΙΑ   

 Θέμα: «Μοριακή ανάλυση δύο υποψήφιων περιοχών σε οικογενή νευροενδοκρινική 

νόσο» 

 Υποτροφία: European Society for Pediatric  Endocrinology (ESPE) 

Visiting Scholarship 

 

 

 

4/2003 έως  5/2005 Τμήμα Ιατρικής Γενετικής, Πανεπιστημίου Αθηνών  

 (Καθηγητής - Διευθυντής Ε. ΚΑΝΑΒΑΚΗΣ),  

Χωρέμειο Ερευνητικό Εργαστήριο, Νοσοκομείο Παίδων «Αγία Σοφία», 

ΑΘΗΝΑ 

Θέμα: «Μελέτη με μοριακές τεχνικές του γονιδίου SHOX σε παιδιά με βραχυσωμία»,  

 

1/2001 έως 4/2001 Εργαστήριο Φυσιολογίας (Καθηγήτρια D. CRENESSE),  

Θέμα: “Ισχαιμία και επαναιμάτωση του ήπατος. Μελέτη της απόπτωσης in 

vivo και in vitro”,  

Τμήμα Ιατρικής, Université de Nice, ΓΑΛΛΙΑ , 

Υποτροφία: Εμπειρίκειο Ίδρυμα 
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5 ) Διεθνείς και Εθνικές Διακρίσεις - Υποτροφίες 
 
 
 
6/ 2012   Μέλος της  

 Ελληνικής Εταιρείας Παιδικής και Εφηβικής 

Ενδοκρινολογίας (ΕΕΠΕΕ) 

 Ευρωπαϊκής Εταιρείας Παιδικής Ενδοκρινολογίας (ESPE) 

 
 
1/2010 έως 10/2010 European Society for Pediatric Endocrinology (ESPE)  

Clinical Fellowship 

   Τμήμα Παιδιατρικής Ενδοκρινολογίας και Διαβητολογίας  

   (Καθηγητής J-C CAREL) 

   Παιδιατρικό Πανεπιστημιακό Νοσοκομείο «Robert Debré»  

   Université Paris VII, Παρίσι, ΓΑΛΛΙΑ  

  

1/2009 έως 3/2009 European Society for Pediatric Endocrinology (ESPE)  

 Visiting Scholarship  

   Εθνικό Ίδρυμα Υγείας και Ιατρικής Έρευνας  

   (Institut Natiοnal de la Santé et Recherche Médicale - INSERM)  

   Mονάδα έρευνας «Γενετική και Φυσιολογία της έναρξης της ήβης»

    (Επιστημονικός Υπεύθυνος: Καθηγητής N. DEROUX) 

                                      Παιδιατρικό Πανεπιστημιακό Νοσοκομείο «Robert Debré»,  

   Université Paris VII, Παρίσι, ΓΑΛΛΙΑ    

 

Ιούλιος 2006   Κριτής:  Journal of Pediatric Endocrinology and Metabolism   
 
1/2000 έως 6/2000 Υποτροφία Εμπειρικείου Ιδρύματος     

(Μεταπτυχιακές Σπουδές στην Γαλλία)  
 
1994 έως 1999  Υποτροφία Παπαδάκη  
   (κατόπιν διαγωνισμού κατά την φοίτηση στην Ιατρική Σχολή Αθηνών)  
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6) Δημοσιεύσεις - Publications 
 

                     
Περιοδικά - Journals 

 
 

 Leka-Emiri S, Louizou E, Kambouris M, Chrousos G, De Roux N, Kanaka-

Gantenbein C. Absence of GPR54 and TACR3 Mutations in Sporadic Cases of 

Idiopathic Central Precocious Puberty. Horm Res Paediatr. 2014 Jan 10. [Epub 

ahead of print] 

 

 Spoulou VI, Tzanakaki
 
G, Lekka

 
S, Chouliaras G, Ladis VA, Theodoridou MC. 

“Natural and vaccine-induced immunity to Neisseria meningitidis serogroup C in 

asplenic patients with β-thalassemia”.  Vaccine. 2011 Jun 15;29(27):4435-8. 

 

 Leka S, Kousta
 
E, Anyfandakis K, Dolianiti M, Vakaki M, Linos D, Chrousos GP, 

Papathanassiou A. “Primary Pigmented Nodular Adrenocortical Disease (PPNAD): A 

case report in a 7-year-old girl” The J Pediatr Endocrinol Metab. 2011;24(3-4):197-

202.  

 

 Beltrand J, Lahlou N, Le Carpentier T, Sebag Guy, Leka S, Polak M, Tubiana-Rufi N, 

Lacombe D, de Kerdanet M, Huet F, Robert J-J, Korpysz A, Chevenne D, Gressens 

P, Levy-Marchal Cl. “ Resistance to leptin replacement therapy in children with 

berardinelli-seip congenital lipodystrophy (bscl): an immunological origin” Eurοpean 

Journal of Endocrinology 2010 Jun;162(6):1083-91. 

  

 Leka SK, Kitsiou S, Mavrou A, Kanavakis E. “Short stature and dysmorphology 

associated with SHOX gene defects” HORMONES 5(2): 107-118, 2006 

 

 Leka S. “Arguments and counter arguments concerning HBV vaccination”, ANNALES 

CLINICAE PAEDIATRICAE UNIVERSITATIS ATHENIENSIS; pp.357-359, Vol 53, 

Issue 4 Oct-Nov-Dec 2006 

 

 Leka S, Kanaka-Gantenbein Ch, Frysira H. “Tricho-Rhino-Phalangeal syndrome: a 

case report, differential diagnosis and review of the literature” ANNALES CLINICAE 

PAEDIATRICAE UNIVERSITATIS ATHENIENSIS; pp.148-154, Vol 52, Issue 2, Apr-

May-June 2005 

http://www.ncbi.nlm.nih.gov/pubmed?term=Leka-Emiri%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=Louizou%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=Kambouris%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=Chrousos%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=De%20Roux%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanaka-Gantenbein%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanaka-Gantenbein%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24434351
http://www.ncbi.nlm.nih.gov/pubmed/?term=sofia+leka-emiri
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Διεθνή Συνέδρια – International Conferences 

 

 

1. Léger J, Huijbregts L, Tata B, Jacquier S, Genin E, Leka S, Durr A, Nardelli J, Carel 

J-C, de Roux N. “Rabconnectin-3α is a synaptic protein that controls pubertal onset 

and reproduction“9th Joint Meeting of Paediatric Endocrinology, 2013, Milan, Italy 

September 19-22, Milan, Italy, PL4-4 HORMONE RESEARCH Pediatrics  

 

2. Leka-Emiri S, Louizou E, Kambouris M, Chrousos G, De ROYX Ν, ΚΑΝΑΚΑ-

GANTENBEIN Ch. “Absence of GPR54 (KISS1R) and TACR3 gene mutations in a 

cohort of  girls with idiopathic central precocious puberty (ICPP) of Hellenic origin”, 

39th Greek Conference in Endocrinology and Metabolism, Athens, 4-7 April, 2012 

 
3. Leka-Emiri S, Léger J, HH french study group, Carel J-C, de Roux N. “Gender and 

phenotype differences with respect to genetic defect in 83 patients with Congenital 

Hypogonadotropic Hypogonadism (HH)” ESPE 2010, The European Society’s for 

Pediatric Endocrinology 49
th
 Annual Meeting, September 22-25, Prague, Czech 

Republic, FC13-150, HORMONE RESEARCH Pediatrics 74(suppl 3): 45  

 

4. Leka-Emiri S, Falucar Njuieyon F, Chevenne D, Deghmoun S, Claris O, Levy-Marchal 

C, Beltrand J. “Fetal growth pattern and post-natal fat mass distribution effects on 

adiponectin levels”, ESPE 2010, The European Society’s for Pediatric Endocrinology 

49
th
 Annual Meeting, September 22-25, Prague, Czech Republic, P2-d1-429, 

HORMONE RESEARCH; HORMONE RESEARCH Pediatrics 74(suppl 3): 131 

 

5. Leka S, de Roux N, Genin E, Carel J-C, Leger J. “Hypoglycemia during childhood 

followed by insulin-deficient diabetes mellitus, hypogonadotrophic hypogonadism, 

central hypothyroidism, demyelinating neuropathy and alopecia: A Woodhouse-

Sakati-like syndrome or a new neuroendocrine disease?”, 8
th
 LWPES/ESPE 2009, 9-

12 September, New York, USA,  PO3-172, HORMONE RESEARCH; 399 

 

6. Leka-Emiri SK, Kanaka-Gantenbein SK, Louizou E, Kambouris M , Chrousos G. “A/G 

synonymous SNP (dbSNP ID: rs10407968) on the GPR54 gene in children with 

abnormal puberty onset: A meaningful variant?” ENDO 2009, 91th Annual Meeting of 

Endocrine Society, Washington DC, 10-13 June, P1-334, pp 25 

 

http://www.google.gr/url?q=http://www.jointmeeting2013.org/&sa=U&ei=_2hAUr2fN9CGswbUsIHwAw&ved=0CBYQFjAA&sig2=bjLu3M_Oqv3WDUiXdrCuYA&usg=AFQjCNGTcJ4JLI2VKsyeC5qU54JTRdU38w
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7. Leka S, Louizou E, Kanaka-Gantenbein Ch, Kambouris M, Chrousos G. “Molecular 

investigation of the GPR54 gene in children with idiopathic central precocious puberty 

and delayed puberty”, ESPE 2008, The European Society’s for Pediatric 

Endocrinology 47
th
 Annual Meeting,  September 20-23, Istanbul, Turkey p2-d3-

647, HORMONE RESEARCH 2008; 70(suppl 1):193 

 

8. Leka S, Petropoulou Th, Kanaka-Gantenbein Ch. “A rare cause of neonatal diabetes 

mellitus”, ESPE 2008, The European Society’s for Pediatric Endocrinology 47
th
 

Annual Meeting, September 20-23, Istanbul, Turkey, R64, HORMONE RESEARCH 

2008; 70(suppl 1); 241  

 

9. Skarpa V, Ioannidis D, Tertipi A, Lekka G, Papachileos P, Leka S, Petrou V, 

Georgoulas Th, Papastathi E, Vakaki M, Kaimara-Papathanasiou A. “ Effect of 

treatment with thyroxine on goiter size in euthyroid children with Hashimoto’s 

thyroiditis”, ESPE 2008, The European Society’s for Pediatric Endocrinology 47
th
 

Annual Meeting, September 20-23, Istanbul, Turkey, p2-d2-561, HORMONE 

RESEARCH 2008; 70(suppl 1):167 

 

10. Leka S, Xaidara A, Platokouki H, Youroukos S. “Neonatal arterial ischaemic stroke 

and prothrombotic factors: a case report” European Journal Paediatric Neurology, 26-

29 September 2007, Kusadasi, Turkey; Vol 11 (suppl 1):66 

 

11. Dimitriou D, Leka S, Tsilifis N, Stamatiou M, Mostrou G, Giannaki M, Theodoridou M. 

“Measles outbreak-Athens, Greece 2005-2006: Data from the hospitalization of 

children”, European Academy of Paediatrics, 7-10 October 2006, Barcelona, Spain  

 

12. Leka S, Hadjiathanasiou Ch, Psaromatis I, Skarpa V, Douniadakis D, Papathanasiou 

A, Anastasakou M, Paraskaki  I, Apostolopoulos N. “Pituitary stalk interruption 

syndrome (PSIS) with ectopic neurohypophysis associated with congenital hearing 

impairment”, ESPE 2006, 45
th
 Annual Meeting of European Society of Pediatric 

Endocrinology,30 June – 3 July, Rotterdam, The Netherlands, PO1-630,  HORMONE 

RESEARCH; June 2006 Vol 65 (suppl 4):183 

 

13. Vazeou A, Mitrakou A, Roumanis G, Koumanzeli C, Papathanasiou A, Tournis S, 

Leka S, Perperidis G, Papadopoulou A, Stamoyannou L, Hadjiathanasiou Ch. 

“Frequency of impaired glucose tolerance test (IGT) in overweight and obese children 

in the Greek population”, Obesity Reviews; 1-4 June 2005 Vol 6 (suppl 1):127  

 

14. Leka S, Ballot E, Johanet J, Tubiana-Rufi T, Czernichow P. “Prévalence des anticorps 

antithyroidiens (Ac AT) dans une population d'enfants diabétiques insulinodépendant 
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(D.I.D)” a seven year report”, 17th Scientific and Medical Meeting on Pediatric 

Diabetology”, “Aide aux jeunes diabetiques” Association, Paris, France, November 

2002  

 

 

 

 

Εθνικά Συνέδρια  – Greek Conferences 

 

1. Leka-Emiri S, Louizou E, Kambouris M, Chrousos G, De ROYX Ν, ΚΑΝΑΚΑ-

GANTENBEIN Ch. “Absence of GPR54 (KISS1R) and TACR3 gene mutations in a 

cohort of  girls with idiopathic central precocious puberty (ICPP) of Hellenic origin”, 

39th Greek Conference in Endocrinology and Metabolism, Athens, 4-7 April, 2012 

 

2. Hajdiathanassiou Ch, Konstantopoulos H, Leka S, Evangelopoulou A, Kostakioti E, 

Fotinou A. “Intrauterine growth retardation with or without GH deficiency: effect of 

Growth Hormone treatment in glucose homeostasis”, 43th Greek Pediatric Congress, 

June 2005, Kos, Greece; EA047; 34 

 

3. Hadjiathanasiou Ch, Konstantopoulos H, Lekka G, Kostakioti E, Leka S, 

Evagelopoulou A. “GH treatment effects in children with IUGR do not depend upon 

GH secretion”, 43th Greek Pediatric Congress, June 2005,  Kos, Greece; EA 048; 34  

 

4. Kostakioti E, Theodoridis Ch, Petrou V, Leka S, Papathanasiou A, Lekka G, 

Hadjiathanasiou Ch, Foteinou A. “GH treatment effects on glucose and insulin levels 

in children with GH deficiency”, 43th Greek Pediatric Congress, June 2005,  Kos, 

Greece; AA 073; 115 

 

5. Papathanasiou A, Tertipi A, Fotinou A, Petrou V, Skarpa V, Anastasakou M, Leka S, 

Hadjiathanasiou Ch. “Growth hormone deficiency in a boy with polyglandular 

autoimmune syndrome type 2”, 32th Greek Congress in Endocrinology and 

Metabolism, March 2005, Patras, Greece; P78; 117  
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7 ) Συνέδρια – Ημερίδες 

 
 

 

Συμμετοχή σε συνολικά περίπου  60 

Διεθνή και Εθνικά Συνέδρια στον τομέα ΕΝΔΟΚΡΙΝΟΛΟΓΙΑΣ (26),  

ΠΑΙΔΙΑΤΡΙΚΗΣ (21) και ΓΕΝΕΤΙΚΗΣ (8)  

 

Ενδεικτικά  

 

 39ο Πανελλήνιο Συνέδριο Ενδοκρινολογίας & Μεταβολισμού, 17-20 Απριλίου, 
Αθήνα, 2012  

 
 49

th
 Annual Meeting of the European Society for Pediatric Endocrinology 

(ESPE), Prague, 2010  
 

 53
emes

 Journées Internationales d’ Edocrinologie Clinique H-P KLOTZ, Paris, 
2010 

 

 8
th

 LWPES/ESPE, New York, September 2009 
 

 91
th

 Annual Meeting of Endocrine Society, Washington DC, June 2009  
 

 47
th

 Annual Meeting of the European Society for Pediatric Endocrinology (ESPE), Istanbul, 
Turkey 2008  

 

 Πανελλήνιο Συνέδριο Ενδοκρινολογίας και Μεταβολισμού Αθήνα, Μάρτιος 2005, 2008 

 
 Ετήσιο Διήμερο Παιδιατρικής Ενημέρωσης «Εφόλης της Ύλης» 2005 - 2008 

 Ετήσια Θεραπευτική Ενημέρωση της Α’ Παιδιατρικής Κλινικής του Πανεπιστημίου Αθηνών 

2003 - 2013 

 Ετήσιο Μετεκπαιδευτικό Σεμινάριο Εργατηρίου Ιατρικής Γενετικής του Πανεπιστημίου 

Αθηνών 2003 - 2006 

 Πανελλήνιο Συνέδριο Παιδιατρικής 2004 

 

 

8 ) Ξένες Γλώσσες 
 

ΓΑΛΛΙΚΑ 1988, « Diplôme  d’Etudes Françaises », Université de Paris IV Sorbonne 

 1996, « Diplôme d’Etudes Supérieures », Γαλλικό Ινστιτούτο Αθηνών 

ΑΓΓΛΙΚΑ 1997, «Certificate of Proficiency in English», University of Cambridge 
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“P.& A. Kyriakou” Children’s Hospital, Athens 
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Ο ΟΡΚΟΣ ΤΟΥ ΙΠΠΟΚΡΑΤΟΥΣ 
ΑΡΧΑΙΟ ΚΕΙΜΕΝΟ: 
 
ΟΜΝΥΜΙ ΑΠΟΛΛΩΝΑ ΙΗΤΡΟΝ ΚΑΙ ΑΣΚΛΗΠΙΟΝ ΚΑΙ ΥΓΕΙΑΝ ΚΑΙ ΠΑΝΑΚΕΙΑΝ ΚΑΙ 
ΘΕΟΥΣ ΠΑΝΤΑΣ ΤΕ ΚΑΙ ΠΑΣΑΣ, ΙΣΤΟΡΑΣ ΠΟΙΟΥΜΕΝΟΣ, ΕΠΙΤΕΛΕΑ ΠΟΙΗΣΕΙΝ ΚΑΤΑ 
ΔΥΝΑΜΙΝ ΚΑΙ ΚΡΙΣΙΝ ΕΜΗΝ ΟΡΚΟΝ ΤΟΝΔΕ ΚΑΙ ΣΥΓΓΡΑΦΗΝ ΤΗΝΔΕ. ΗΓΗΣΕΣΘΑΙ 
ΜΕΝ ΤΟΝ ΔΙΔΑΞΑΝΤΑ ΜΕ ΤΗΝ ΤΕΧΝΗΝ ΤΑΥΤΗΝ ΙΣΑ ΓΕΝΕΤΗΣΙΝ 
ΕΜΟΙΣΙ, ΚΑΙ ΒΙΟΥ ΚΟΙΝΩΣΕΣΘΑΙ ΚΑΙ ΧΡΕΩΝ ΧΡΗΙΖΟΝΤΙ ΜΕΤΑΔΟΣΙΝ ΠΟΙΗΣΕΣΘΑΙ 
ΚΑΙ ΓΕΝΟΣ ΤΟ ΕΞ ΕΑΥΤΟΥ ΑΔΕΛΦΕΟΙΣ ΙΣΟΝ ΕΠΙΚΡΙΝΕΕΙΝ ΑΡΡΕΣΙ ΚΑΙ ΔΙΔΑΞΕΙΝ 
ΤΗΝ ΤΕΧΝΗΝ ΤΑΥΤΗΝ, ΗΝ ΧΡΗΙΖΩΣΙ ΜΑΝΘΑΝΕΙΝ, ΑΝΕΥ ΜΙΣΘΟΥ ΚΑΙ ΣΥΓΓΡΑΦΗΣ. 
ΠΑΡΑΓΓΕΛΙΗΣ ΤΕ ΚΑΙ ΑΚΡΟΗΣΙΟΣ ΚΑΙ ΤΗΣ ΛΟΙΠΗΣ ΑΠΑΣΗΣ ΜΑΘΗΣΙΟΣ ΜΕΤΑΔΟΣΙΝ 
ΠΟΙΗΣΕΣΘΑΙ ΥΙΟΙΣΙ ΤΕ ΕΜΟΙΣ ΚΑΙ ΤΟΙΣ ΤΟΥ ΕΜΕ ΔΙΔΑΞΑΝΤΟΣ ΚΑΙ ΜΑΘΗΤΑΙΣΙ 
ΣΥΓΓΕΓΡΑΜΜΕΝΟΙΣΙ ΤΕ ΚΑΙ ΩΡΚΙΣΜΕΝΟΙΣ ΝΟΜΩ ΙΗΤΡΙΚΩ, ΑΛΛΩ ΔΕ ΟΥΔΕΝΙ. 
ΔΙΑΙΤΗΜΑΣΙ ΤΕ ΧΡΗΣΟΜΑΙ ΕΠ' ΩΦΕΛΕΙΗ, ΚΑΜΝΟΝΤΩΝ ΚΑΤΑ ΔΥΝΑΜΙΝ ΚΑΙ ΚΡΙΣΙΝ 
ΕΜΗΝ. ΕΠΙ ΔΗΛΗΣΕΙ ΔΕ ΚΑΙ ΑΔΙΚΙΗ ΕΙΡΞΕΙΝ. ΟΥ ΔΩΣΩ ΔΕ ΟΥΔΕ ΦΑΡΜΑΚΟΝ 
ΟΥΔΕΝΙ ΑΙΤΗΘΕΙΣ ΘΑΝΑΣΙΜΟΝ, ΟΥΔΕ ΥΦΗΓΗΣΟΜΑΙ ΣΥΜΒΟΥΛΙΗΝ ΤΟΙΗΝΔΕ, 
ΟΜΟΙΩΣ ΔΕ ΟΥΔΕ ΓΥΝΑΙΚΙ ΠΕΣΣΟΝ ΦΘΟΡΙΟΝ ΔΩΣΩ. ΑΓΝΩΣ ΔΕ ΚΑΙ ΟΣΙΩΣ 
ΔΙΑΤΗΡΗΣΩ ΒΙΟΝ ΤΟΝ ΕΜΟΝ ΚΑΙ ΤΕΧΝΗΝ ΤΗΝ ΕΜΗΝ. ΟΥ ΤΕΜΕΩ ΔΕ ΟΥΔΕ ΜΗΝ 
ΛΙΘΙΩΝΤΑΣ , ΕΚΧΩΡΗΣΩ ΔΕ ΕΡΓΑΤΗΣΙΝ ΑΔΡΑΣΙΝ ΠΡΗΞΙΟΣ ΤΗΣΔΕ. ΕΣ ΟΙΚΙΑΣ ΔΕ 
ΟΚΟΣΑΣ ΑΝ ΕΣΙΩ, ΕΣΕΛΕΥΣΟΜΑΙ ΕΠ' ΩΦΕΛΕΙΗ ΚΑΜΝΟΝΤΩΝ, ΕΚΤΟΣ ΕΩΝ ΠΑΣΗΣ 
ΑΔΙΚΙΗΣ ΕΚΟΥΣΙΗΣ ΚΑΙ ΦΘΟΡΙΗΣ ΤΗΣ ΤΕ ΑΛΛΗΣ ΚΑΙ ΑΦΡΟΔΙΣΙΩΝ ΕΡΓΩΝ ΕΠΙ ΤΕ 
ΓΥΝΑΙΚΕΙΩΝ ΣΩΜΑΤΩΝ ΚΑΙ ΑΝΔΡΕΙΩΝ, ΕΛΕΥΘΕΡΩΝ ΤΕ ΚΑΙ ΔΟΥΛΩΝ. 
Α Δ' ΑΝ ΕΝ ΘΕΡΑΠΕΙΗ Η ΙΔΩ Η ΑΚΟΥΣΩ, Η ΚΑΙ ΑΝΕΥ ΘΕΡΑΠΕΙΗΣ ΚΑΤΑ ΒΙΟΝ 
ΑΝΘΡΩΠΩΝ, Α ΜΗ ΧΡΗ ΠΟΤΕ ΕΚΛΑΛΕΙΣΘΑΙ ΕΞΩ, ΣΙΓΗΣΟΜΑΙ, ΑΡΡΗΤΑ ΗΓΕΥΜΕΝΟΣ 
ΕΙΝΑΙ ΤΑ ΤΟΙΑΥΤΑ. ΟΡΚΟΝ ΜΕΝ ΟΥΝ ΜΟΙ ΤΟΝΔΕ ΕΠΙΤΕΛΕΑ ΠΟΙΕΟΝΤΙ ΚΑΙ ΜΗ 
ΣΥΓΧΕΟΝΤΙ ΕΙΗ ΕΠΑΥΡΑΣΘΑΙ ΚΑΙ ΒΙΟΥ ΚΑΙ ΤΕΧΝΗΣ, ΔΟΞΑΖΟΜΕΝΩ ΠΑΡΑ ΠΑΣΙΝ 
ΑΝΘΡΩΠΟΙΣ ΕΣ ΤΟΝ ΑΙΕΙ ΧΡΟΝΟΝ, ΠΑΡΑΒΑΙΝΟΝΤΙ ΔΕ ΚΑΙ ΕΠΙΟΡΚΟΥΝΤΙ, ΤΑΝΑΝΤΙΑ 
ΤΟΥΤΕΩΝ. 
 
ΝΕΟΕΛΛΗΝΙΚΗ ΑΠΟΔΟΣΗ:  
 
ΟΡΚΙΖΟΜΑΙ ΕΙΣ ΤΟΝ ΑΠΟΛΛΩΝΑ ΤΟΝ ΙΑΤΡΟ ΚΑΙ ΕΙΣ ΤΟΝ ΑΣΚΛΗΠΙΟ ΚΑΙ ΕΙΣ ΤΗΝ 
ΥΓΕΙΑ ΚΑΙ ΕΙΣ ΤΗΝ ΠΑΝΑΚΕΙΑ ΚΑΙ ΕΙΣ ΟΛΟΥΣ ΤΟΥΣ ΘΕΟΥΣ ΚΑΙ ΤΙΣ ΘΕΕΣ, 
ΕΠΙΚΑΛΟΥΜΕΝΟΣ ΑΥΤΟΥΣ ΩΣ ΜΑΡΤΥΡΕΣ, ΟΤΙ ΘΑ ΤΗΡΗΣΩ ΚΑΤΑ ΤΗ ΔΥΝΑΜΗ ΚΑΙ 
ΤΗΝ ΚΡΙΣΗ ΜΟΥ ΑΥΤΟΝ ΤΟΝ ΟΡΚΟ ΚΑΙ ΑΥΤΟ ΕΔΩ ΤΟ ΣΥΜΒΟΛΑΙΟ ΜΟΥ. ΘΑ ΘΕΩΡΩ 
ΕΚΕΙΝΟΝ Ο ΟΠΟΙΟΣ ΜΕ ΔΙΔΑΞΕ ΤΗΝ ΤΕΧΝΗ ΑΥΤΗ ΙΣΟ ΠΡΟΣ ΤΟΥΣ ΓΟΝΕΙΣ ΜΟΥ ΚΑΙ 
ΘΑ ΜΟΙΡΑΣΤΩ ΜΑΖΙ ΤΟΥ ΤΑ ΥΠΑΡΧΟΝΤΑ ΜΟΥ ΚΑΙ ΘΑ ΤΟΝ ΒΟΗΘΩ ΟΤΑΝ 
ΕΥΡΙΣΚΕΤΑΙ ΣΕ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΓΚΗ. ΘΑ ΘΕΩΡΩ ΤΟΥΣ ΑΠΟΓΟΝΟΥΣ ΤΟΥ ΩΣ 
ΑΔΕΛΦΟΥΣ ΜΟΥ ΚΑΙ ΘΑ ΤΟΥΣ ΔΙΔΑΣΚΩ ΤΗΝ ΤΕΧΝΗ ΑΥΤΗ, ΕΑΝ ΕΠΙΘΥΜΟΥΝ ΝΑ ΤΗ 
ΜΑΘΟΥΝ, ΧΩΡΙΣ ΑΜΟΙΒΗ ΚΑΙ ΣΥΜΒΟΛΑΙΟ. ΘΑ ΜΕΤΑΔΩΣΩ ΜΕ ΠΑΡΑΓΓΕΛΙΕΣ, 
ΟΔΗΓΙΕΣ ΚΑΙ ΣΥΜΒΟΥΛΕΣ ΟΛΕΣ ΤΙΣ  ΠΟΛΟΙΠΕΣ ΓΝΩΣΕΙΣ ΚΑΙ ΕΙΣ ΤΑ ΠΑΙΔΙΑ ΜΟΥ 
ΚΑΙ ΕΙΣ ΤΑ ΠΑΙΔΙΑ ΤΟΥ ΔΙΔΑΣΚΑΛΟΥ ΜΟΥ ΚΑΙ ΕΙΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΟΙ ΟΠΟΙΟΙ ΕΧΟΥΝ 
ΟΡΚΙΣΤΕΙ ΟΤΙ ΘΑ ΤΗΡΟΥΝ ΤΟΥΣ 
ΙΑΤΡΙΚΟΥΣ ΚΑΝΟΝΕΣ ΚΑΙ ΕΧΟΥΝ ΣΥΜΦΩΝΗΣΕΙ ΕΓΓΡΑΦΩΣ, ΕΙΣ ΟΥΔΕΝΑ ΔΕ ΑΛΛΟΝ. 
ΘΑ ΘΕΡΑΠΕΥΩ ΤΟΥΣ ΑΣΘΕΝΕΙΣ ΚΑΤΑ ΤΗ ΔΥΝΑΜΗ ΚΑΙ ΤΗΝ ΚΡΙΣΗ ΜΟΥ, ΧΩΡΙΣ 
ΠΟΤΕ ΕΚΟΥΣΙΩΣ ΝΑ ΤΟΥΣ ΒΛΑΨΩ Η ΝΑ ΤΟΥΣ ΑΔΙΚΗΣΩ. ΔΕ ΘΑ ΧΟΡΗΓΗΣΩ 
ΘΑΝΑΤΗΦΟΡΟ ΦΑΡΜΑΚΟ ΣΕ ΚΑΝΕΝΑΝ, ΟΥΤΕ ΚΑΙ ΕΑΝ ΜΟΥ 
ΖΗΤΗΘΕΙ ΚΑΙ ΟΥΤΕ ΘΑ ΔΩΣΩ ΤΕΤΟΙΑ ΣΥΜΒΟΥΛΗ. ΕΠΙΣΗΣ ΔΕ ΘΑ ΔΩΣΩ ΣΕ ΓΥΝΑΙΚΑ 
ΦΑΡΜΑΚΟ ΓΙΑ ΝΑ ΑΠΟΒΑΛΕΙ. ΘΑ ΔΙΑΤΗΡΗΣΩ ΤΟ ΒΙΟ ΜΟΥ ΚΑΙ ΤΗΝ ΤΕΧΝΗ ΜΟΥ 
ΚΑΤΑ ΤΡΟΠΟ ΑΓΝΟ ΚΑΙ ΣΥΜΦΩΝΟ ΠΡΟΣ ΤΟΝ ΘΕΙΟ ΝΟΜΟ. ΔΕ ΘΑ ΧΕΙΡΟΥΡΓΗΣΩ 
ΟΥΤΕ ΤΟΥΣ ΠΑΣΧΟΝΤΑΣ ΑΠΟ ΛΙΘΙΑΣΙΝ, ΑΛΛΑ ΘΑ ΕΚΧΩΡΗΣΩ ΤΗΝ ΠΡΑΞΗ ΑΥΤΗ 
ΣΤΟΥΣ ΕΙΔΙΚΟΥΣ. ΣΕ ΟΣΕΣ ΔΕ ΟΙΚΙΕΣ ΕΙΣΕΛΘΩ, ΘΑ ΕΙΣΕΛΘΩ ΓΙΑ ΩΦΕΛΕΙΑ ΤΩΝ 
ΠΑΣΧΟΝΤΩΝ, ΑΠΕΧΟΝΤΑΣ ΑΠΟ ΚΑΘΕ ΕΚΟΥΣΙΑ ΑΔΙΚΙΑ ΚΑΙ ΑΛΛΗ ΖΗΜΙΑ ΚΑΙ ΚΑΘΕ 
ΓΕΝΕΤΗΣΙΑ ΠΡΑΞΗ ΕΠΙ ΓΥΝΑΙΚΕΙΩΝ ΚΑΙ ΑΝΔΡΙΚΩΝ ΣΩΜΑΤΩΝ, ΕΛΕΥΘΕΡΩΝ Η 
ΔΟΥΛΩΝ. ΟΣΑ ΔΕ ΔΩ Η ΑΚΟΥΣΩ ΚΑΤΑ ΤΗΝ ΑΣΚΗΣΗ ΤΟΥ ΕΠΑΓΓΕΛΜΑΤΟΣ ΜΟΥ Η 
ΚΑΙ ΕΚΤΟΣ, ΓΙΑ ΤΗ ΖΩΗ ΤΩΝ ΑΝΘΡΩΠΩΝ, ΤΑ ΟΠΟΙΑ ΔΕΝ ΠΡΕΠΕΙ ΠΟΤΕ ΝΑ 
ΚΟΙΝΟΠΟΙΗΘΟΥΝ, ΘΑ ΚΡΑΤΗΣΩ ΜΥΣΤΙΚΑ, ΘΕΩΡΩΝΤΑΣ ΟΤΙ ΑΥΤΑ ΕΙΝΑΙ ΑΠΟΡΡΗΤΑ. 
ΟΣΟ ΛΟΙΠΟΝ ΘΑ ΤΗΡΩ ΤΟΝ ΟΡΚΟ ΜΟΥ ΑΥΤΟΝ ΚΑΙ ΔΕ ΘΑ ΤΟΝ ΠΑΡΑΒΑΙΝΩ, ΕΙΘΕ 
ΝΑ ΑΠΟΛΑΥΩ ΚΑΙ ΤΗΣ ΖΩΗΣ ΚΑΙ ΤΗΣ ΤΕΧΝΗΣ, ΕΚΤΙΜΩΜΕΝΟΣ ΕΣΑΕΙ ΑΠΟ ΟΛΟΥΣ 
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ΤΟΥΣ ΑΝΘΡΩΠΟΥΣ. ΕΑΝ ΟΜΩΣ ΤΟΝ ΠΑΡΑΒΩ ΚΑΙ ΓΙΝΩ ΕΠΙΟΡΚΟΣ, ΝΑ ΥΠΟΣΤΩ ΤΑ 
ΑΝΤΙΘΕΤΑ ΑΠΟ ΑΥΤΑ. 
 
ΑΓΓΛΙΚΗ ΑΠΟΔΟΣΗ: 
HIPPOCRATES OATH  
 
I swear by Apollo Physician and Asclepius and Hygiea and Panacea and all the gods 
and goddesses, making them my witnesses, that I will fulfil according to my ability and 
judgment this oath and this covenant: 
To hold him who has taught me this art as equal to my parents and to live my life in 
partnership with him, and if he is in need of money to give him a share of mine, and to 
regard his offspring as equal to my brothers in male lineage and to teach them this art - 
if they desire to learn it - without fee and covenant; to give a share of precepts and oral 
instruction and all the other learning to my sons and to the sons of him who has 
instructed me and to pupils who have signed the covenant and have taken an oath 
according to the medical law, but no one else. I will apply dietetic measures for the 
benefit of the sick according to my ability and judgment; I will keep them from harm 
and injustice. I will neither give a deadly drug to anybody who asked for it, nor will I 
make a suggestion to this effect. Similarly I will not give to a woman an abortive 
remedy. In purity and holiness I will guard my life and my art. I will not use the knife, 
not even on sufferers from stone, but will withdraw in favour of such men as are 
engaged in this work. Whatever houses I may visit, I will come for the benefit of the 
sick, remaining free of all intentional injustice, of all mischief and in particular of sexual 
relations with both female and male persons, be they free or slaves. 
What I may see or hear in the course of the treatment or even outside of the treatment 
in regard to the life of men, which on no account one must spread abroad, I will keep to 
myself, holding such things shameful to be spoken about. If I fulfil this oath and do not 
violate it, may it be granted to me to enjoy life and art, being honoured with fame 
among all men for all time to come; if I transgress it and swear falsely, may the 
opposite of all this be my lot. 
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Abbreviations 

 

ARC = arcuate nucleus 

AVPV = anteroventral periventricular nucleus   

GRP54 = KISS1R = Kisspeptin-1 receptor 

ICPP = idiopathic central precocious puberty 

HPG = hypothalamo-pituitary-gonadal axis 

ME = median eminence  

nIHH = normosmic idiopathic hypogonadotropic hypogonadism 

SNP = single nucleotide polymorphism 

TAC3 = NKB = neurokinin B  

TACR3 = NKB3R = Neurokinin B receptor 
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GENERAL PART 

I. INTRODUCTION 

 

Puberty is the phase of life when secondary sexual characteristics and subsequently 

reproductive capacity develop and normally takes place between 8 and 13 years in 

girls and 9 and 14 years in boys. Puberty results from the awakening of a complex 

neuroendocrine network in which the primary mechanisms are still unclear 

(Terasawa and Fernandez 2001). A peculiarity of sexual maturation in the human 

species is the 4- to 5-yr physiological variation in the age at pubertal onset that is 

observed among normal individuals despite relatively similar life conditions (Tanner 

1962). This variability involves genetic factors, as indicated by the studies on 

heritability of menarcheal age (Kaprio et al. 1995). Other factors such as ethnicity, 

nutritional conditions, and environment, as well as secular trends have been also 

shown to influence the physiological range in pubertal onset (Van Wieringen 1978; 

Eveleth 1978).  

 

A. NORMAL PUBERTY  

1. Physiology 

The onset of puberty is defined as the activation (or in some species reactivation) of 

the hypothalamic pituitary gonadal (HPG) axis (Grumbach, 2002; Ojeda and Skinner 

2006; Plant and Witchel, 2006). Thus, puberty onset is reflected by increased 

pulsatile GnRH secretion resulting in pulsatile FSH and LH production, which 

activates the production of sex steroids by the gonads, thereby stimulating 

development of secondary sexual characteristics and contributing to the enhanced 

physical growth (pubertal growth spurt), estrous/menstrual cyclicity, ovulation and 

gametogenesis (fig. 1). 
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Figure 1. Hormonal changes driving pubertal onset (Smith 2008) 

Despite the prevailing dogma that puberty is governed by the enhanced in amplitude 

and frequency pulsatile GnRH secretion, that is initially restricted at nighttime only 

and then covering all 24 hours, the specific neural and molecular mechanisms that 

trigger GnRH secretion in order to initiate puberty remain one of the enigmas of 

modern science, as does the temporal mechanism that orchestrates when puberty 

actually occurs (Richter 2006).  
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GnRH neurons and the pulsatile secretion of LH 

The release of GnRH in a pulsatile manner is necessary for pulsatile LH secretion. 

Pulsatile LH release is indispensable for normal ovarian function (Clarke and 

Cummins 1982; Knobil 1990). Electrophysiological findings from the arcuate nucleus 

in monkeys, rats and goats (Knobil 1981; Kimura et al. 1991; Kinsey-Jones et al. 

2008; Maeda et al. 1995; Wakabayashi et al. 2010) reveal significant, transient 

increases in neuronal firing rates (of 2000 spikes/minute approximately) that occur 

every 20-120 minutes depending mainly upon species and steroid status. These 

“multiunit volleys” are tied with pulses in serum LH which peaks minutes after the end 

of each volley. Based on this temporal correlation, it has been proposed that the 

multiunit volleys come from a group of neurons termed the “GnRH pulse generator”, 

which signals GnRH neurons to fire (Knobil, 1981). However, this concept remains 

controversial, with an important divergence of opinions regarding the relationship 

between the multiunit volleys and the control of GnRH release. Although the 

anatomical/cellular substrate of the multiunit activity is still unknown, GnRH neurons 

themselves have been proposed to be the source. In the monkey, GnRH neurons are 

close to the site of electrical activity (Silverman et al. 1986), and in the rat, 

unmyelinated GnRH axons passing through the adjacent median eminence are also 

in close proximity to the multiunit activity (Kimura et al. 1991). In this context, GnRH 

neurons are probably capable of generating oscillations autonomously (Moenter et 

al., 2003; Herbison, 2006). Cultures of GnRH-secreting GT1 cells, primary 

hypothalamic neuronal cultures, and nasal placode explants all exhibit spontaneous 

oscillations and pulsatile secretion of GnRH (Krsmanovic et al., 1992; Wetsel et al., 

1992; Charles and Hales 1995; Terasawa et al., 1999). Despite the fact that GnRH 

neurons are not confined to a single location or nucleus, they are extensively 

interconnected providing an anatomical framework for synchronization (Campbell et 
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al. 2009). Since isolated multi-unit recordings of GnRH neurons in vivo are not 

possible due to their scattered location, the contribution of GnRH neurons to the 

multiunit volleys remains to be established.  

Additionally, the regulation of pubertal process is proposed to include gonadal 

steroid-dependent as well as steroid-independent mechanisms. In rodents, negative 

feedback of reproductive axis by low levels of gonadal steroids is a primary 

mechanism for inhibitng the axis before puberty (Ebling 2005; Ojeda and Skinner 

2006). Through the developmental process approching puberty it has been noticed a 

decrease in the sensitivity of key neural networks to gonadal steroid negative 

feedback, allowing with an enhanced activation of the GnRH axis. In rats, this 

developmental change in gonadal steroid feedback sensitivity normally occurs on the 

day of vaginal opening wich is a “downstream” event in the pubertal maturation. 

Therefore it is postulated that puberty onset has already occurred by the time of 

gonadal steroid sensitivity alteration. As a consequence, additional, non-gonadal 

components must be involved. This is confirmed in primates. Gonadectomy during 

the juvenile phase does not lead to elevated gonadotropin release. In agonadal 

males and females gonadotropin release stays low until just before normal puberty 

onset and increases importantly at that time. (Plant and Witchel 2006; Herbison 

2007). These findings show that there is a steroid-independent regulation of the 

developing reproductive axis. Puberty onset may consequently reflect not only a 

removal of inhibitory input onto neurohormonal circuits, but also, an enhancement of 

stimulatory input, both of which occurs independently of changes in gonadal steroids. 

In conclusion, GnRH neuronal activation seems to be controlled by a large number of 

stimulatory, inhibitory and permissive networks (Terasawa and Fernandez 2001). 

Among these networks Kiss1 neurons along with Kisspeptin/GPR54 complex seem 

to play a great role in the neuroendocrine control of GnRH pulsatile decretion (Fig. 2).  
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Figure 2 

KiSS1 neuron integrates diverse signals to promote GnRH pulsatile release 

(www.endotext.org) 

 

1. 1. A. Overview of Kisspeptin signaling 

Kisspeptin (a Kiss1 gene product) and its receptor (GPR54 or Kiss1r) have emerged 

as gatekeepers in the regulation of puberty and reproduction. Neurons that express 

Kiss1/Kisspeptin are present in discrete nuclei in the hypothalamus and in other brain 

regions in many vertebrates. Their distribution, regulation and function varie widely 

across species. Kisspeptin neurons: 1) directly innervate and stimulate GnRH 

neurons, which are the final common pathway that regulates hypothalamic pituitary 

gonadal (HPG) axis; 2) are dimorphically expressed with respect to cell number and 

transcriptional activity in certain brain nuclei,; 3) express other co-transmitters, 
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including dynorphin and neurokinin B and 4) express the estrogen and androgen 

receptor that direct the action of gonadal steroids in both male and female animals. 

Kisspeptin signaling in the brain along with triggering and guiding the tempo of sexual 

maturation during puberty, has been also involved in: 1) mediating the negative 

feedback action of sex steroids on gonadotropin secretion, 2) generating the 

preovulatory GnRH/LH surge, 3) controlling seasonal reproduction and 4) restraining 

reproductive activity during lactation. Finally, kisspeptin signaling may also serve 

diverse functions such as: 1) the regulation of metastasis in certain cancers, 2) the 

vascular dynamics, 3) the placental physiology and 4) even higher-order brain 

functions.  Kisspeptin signaling was reviewed in detail by Oakley et al. in 2009 

(Oakley et al. 2009) and more recently by Franceschini et al in 2013 (Franceschini et 

al. 2013) . In this part we will present the most important information on this subject.   

1. 1. A.1. Biochemistry     

The initial product of the Kiss1 gene is a 145-amino acid peptide, from which a 54-

amino acid protein, the kisspeptin-54, is cleaved (West et al. 1998).  The sequence of 

kisspeptin-54 is surrounded by pairs of basic residues, where furin or prohormone 

convertases are suggested to proteolytically cleave. There are also shorter peptides 

(kisspeptin-10, -13 and -14).  These peptides share a common RF-amidated motif 

with kisspeptin-54 and collectively, they are termed kisspeptins. Although no obvious 

cleavage sites have been identified that would result in these shorter peptides it has 

been suggested that kisspeptin-54 is unstable and may be proteolytically cleaved into 

shorter products. All four peptides (kisspeptin-10, -13, -14, and 54) exhibit the same 

affinity and efficacy for the Kiss1r (Kotani et al. 2001). Although all four kisspeptin 

products are biologically active (Muir et al. 2001), the in vivo relevance of the shorter 

peptides is as yet unknown.  

G protein-coupled receptors (GPCRs) transduce a variety of inputs to activate 

signaling pathways implicated in diverse functions such as cell growth, proliferation 
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and migration. The GPCR superfamily is classified into three subdivisions, e.g., 

rhodopsin-, secretin-, and metabotropic glutamate receptor – like families (Marchese 

et al. 1999). Typical of the rhodopsin family of GPCRs, Kiss1r has seven 

transmembrane domains, with three glycosylation sites at the N terminus (Clements 

et al. 2001). Kiss1r is most similar to the galanin receptor family (~45% homologous), 

however it does not bind either galanin or galanin like peptide (Lee et al. 1999). 

Screens for agonists that bind Kiss1r identified several neuropeptides of the 

RFamide and RWmide family (Clements et al. 2001). The RMRFamide (Phe-Met-

Arg-Phe-NH2)-related peptides (RFRPs), of which Kiss1 is a member, constitute a 

superfamily of neuropeptides that terminate with the sequence Arg-Phe-NH2 and are 

present in all species (Greenberg and Price 1992; Li et al. 1999). The binding of 

Kiss1r by Kiss1 peptide results in the activation of G protein-activated phospholipase 

C (PLCβ), suggesting a Gαq/11-mediated signaling pathway (Kotani et al. 2001; Muir 

et al. 2001; Stafford et al. 2002; Liu et al. 2008; Constantin et al. 2009) (Fig. 3). PLCβ 

activation results in the generation of the intracellular second messagers, inositol 

triphosphate (IP3) and diacylglycerol (DAG); these signaling molecules in turn 

mediate intracellular Ca2+ release and activation of protein kinase C, respectively 

(Stafford et al. 2002; Constantin et al. 2009).  

 

 

Figure 3 
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Proposed mechanism of neuronal depolarization by kisspeptin binding to its receptor, Kiss1r. 

Kisspeptin binding to its GPCR, Kiss1r, activates the G protein, Gαq, and PLC to cleave 

phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and DAG. DAG activates a signal 

cascade by activating PKC, whereas IP3 mobilizes calcium ions (Ca
2+

), which participate in 

the cascade by activating other proteins. Membrane depolarization is caused by activation (+) 

of nonselective TRPC cation channels and inhibition (−) of inwardly rectifying potassium 

channels (Kir), possibly through involvement of DAG (Oakley et al. 2009). 

 

Kisspeptin is thought to stimulate GnRH secretion by activating transient receptor 

potential canonical (TRPC)-like channels and inhibiting inwardly rectifying potassium 

channels (Zhang et al 2008), likely mediated by DAG and/or Ca2+. In addition, Kiss1r 

has been shown to stimulate arachidonic acid release and ERK1/2 and p38 

activation, as well as Rho activation, which causes stress fiber formation (Kotani et 

al. 2001; Castellano et al. 2006(b)). Endogenous kisspeptin may activate Kiss1r via a 

ligand transportation mechanism, in which initial binding of a ligand to the membrane 

is followed by lateral diffusion to the receptor (Lee et al. 2009).  

Recently, progress has been made in the development of novel ligands or 

pharmacologically therapeutic agents, agonists or antagonists, of kisspeptins. Orsini 

et al. (Orsini et al 2007) have identified a model kisspeptin pharmacophore utilizing a 

structure-activity relationship approach combining nuclear magnetic resonance, 

receptor binding and functional assays. The authors demonstrated that the 

kisspeptin-13 peptide has a relatively stable helix conformation form residues 7 to 13, 

with three functionally key residues (Phe9, Arg12 and Phe13) that lie on one face of 

the helix and define its pharmacophore site (Orsini et al. 2007). Through amino acid 

substitution, Gutierrez-Pascual et al. (Gutierrez-Pascual et al. 2009) have identified 

alanine at positions 6 and 10 as critical for kisspeptin-10 action at Kiss1r, pointing to 

potential modifications that could lead to new kisspeptin analogs. The 

stereochemistry of kisspeptin analog amino acids also appears to be of major 
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importance; substitution of key residues with the d-isomer significantly decreases 

peptide agonist activity (Niida et al. 2006). Utilizing a structure-activity relationship 

approach, Tomita at al. (Tomita et al. 2006; Tomita et al. 2007(a) and (b); Tomita et 

al. 2008) have identified several pentapeptide kisspeptin analogs as novel Kiss1r 

agonists. Molecules identified that mimic the key features of the pharmacophore site 

can act as full agonists, although with reduced potency compared to kisspeptin itself 

(Orsini et al. 2007).  

Several methods have been used to block kisspeptin-Kiss1R signaling. Kinoshita et 

al. developed a monoclonal anti-rat kisspeptin antibody that, when infused in the 

preoptic area (POA) completely blocks the proestrus LH surge and inhibits estrous 

cyclicity (Kinoshita et al. 2005). Roseweir et al. (Roseweir et al. 2009) have 

developed several kisspeptin antagonists via amino acid substitution of kisspeptin-10 

analogs. Based on its structure-activity profile, one potent and specific antagonist 

(“peptide 234”) was selected for use in ex vivo and in vivo studies. This antagonist 

inhibits the kisspeptin-induced rise in LH secretion in mice and rats and blocks the 

postcastration LH secretion in rodents and sheep, suggesting a powerful role of 

kisspeptin neurons in mediating the negative feedback action of sex steroids on the 

hypothalamic-pituitary gonadal axis (Roseweir et al. 2009). Furthermore, the 

antagonist inhibits kisspeptin-10-induced GnRH neuronal firing in the mouse brain 

and reduces pulsatile GnRH secretion in female pubertal monkeys (Roseweir et al. 

2009), underlying the importance of kisspeptin signaling in the control of GnRH 

secretion.     

 

1.1. A. 2 Molecular physiology of Kiss1 neurons  

Kiss1 neurons are regulated by several factors, including steroid hormone feedback, 

metabolic signals and photoperiodic cues (Fig. 4).  
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Figure 4 

Kisspeptin neurons may act as central processors for relaying signals from the periphery to 

GnRH neurons. Metabolic and environmental factors regulate reproductive function, which 

ensures that reproduction proceeds only when metabolic and environmental conditions are 

favourable. Kisspeptin stimulates GnRH secretion, and Kiss1 mRNA is both negatively and 

positively regulated by sex steroids. The expression of Kiss1 may be induced by leptin, whose 

plasma levels reflect the state of metabolic reserves. Kisspeptin neurons may also receive 

input from the hypothalamic-pituitary-adrenal axis and from environmental cues such as time 

of day via the SCN of the hypothalamus and day length via melatonin from the pineal gland. 

AVP: Arginine vasopressin; VIP: vasoactive intestinal peptide. (Modified from Dungan et 

al.2006). 

 

In accordance with their role as mediators of steroid feedback most Kiss1 neurons 

express estrogen receptors (ERα) (Adachi et al. 2007; Smith et al. 2006; 
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Franceschini et al. 2006; Smith et al. 2005 (a) and (b); Clarkson et al. 2008), ΕRβ 

(Smith et al. 2006) and progesterone receptors (Pr) (Clarkson et al. 2008; Smith et al. 

2007). About 40% of Kiss1-expressing neurons in the ARC of the mouse express the 

mRNA for the active form of the leptin receptor (Ob-Ob) (Smith et al. 2006), thus 

providing a potential link between nutrition and reproduction. Numerous studies 

indicated that Kiss1 neurons are regulated by photoperiod (Martinez-Chavez et al. 

2008; Kanda et al. 2008; Revel et al. 2006; Mason et al. 2007;  Smith et al. 2008(a); 

Smith et al. 2007; Gingerich et al. 2009). Goodman et al. (Goodman et al. 2007) 

describes a subpopulation of ovine kisspeptin neurons in the ARC that co-express 

dynorphin A and neurokinin B (NKB), and quite likely ERα and PR (Foradori et al 

2002; Goubillon et al. 2000). Other investigations have shown a similar co-

expression phenomenon in other species, including the rat, mouse and human. For 

instance, there is extensive colocolisation of NKB and dynorphin in the ARC of the rat 

(Burke et al. 2006). Rometo et al. (Rometo et al. 2007) observed similar distribution 

and morphology of NKB- and kisspeptin-containing neurons in the infundibular (ARC) 

nucleus of postmenopausal women, Furthermore, approximately 50% of the 

glutamergic neurons in the ARC of sheep express ERα (Pompolo et al. 2003), 

indicating the presence of a discrete population of 

kisspeptin/dynorphin/NKB/glutamate estrogen-responsive neurons in the ARC.  

Navarro et al. (Navarro et al. 2009) have verified that kisspeptin, NKB and dynorphin 

are all co-localized in cells of the ARC in the mouse, where all three of these 

neuropeptides are regulated by estradiol. Moreover, in this species kisspeptin 

neurons in the ARC also express the cognate receptors for NKB and dynorphin (i.e., 

NK3 and κ-opiate receptor, respectively), suggesting the existence of autosynaptic 

contacts among kisspeptin/dynorphin/NKB neurons in this region. In this study by 

Navarro et al. (Navarro et al. 2009) it has been shown that NKB agonists inhibit LH 

secretion in ovariectomized mice; moreover, they showed that mice bearing targeted 

deletions of either dynorphin or κ-opiate receptor gene present a diminished 
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postcastration rise in LH, implying that NKB and dynorphin signaling play key roles in 

the regulation of GnRH/LH release. These observations suggest that kisspeptin, 

dynorphin, NKB (and perhaps glutamate) participate in the regulation of pulsatile 

GnRH secretion. Indeed, Navarro et al. (Navarro et al. 2009) propose a model on 

which dynorphin and NKB act autosynaptically on kisspeptin neurons (directly and/or 

indirectly) to generate discrete pulses of kisspeptin, which in turn drives pulsatile 

GnRH and LH secretion. This hypothesis is in agreement with the observations of 

Keen et al. (Keen et al. 2008), that has shown apparent coincidence of pulsatile 

kisspeptin and GnRH secretion, as measured in the median eminence (ME) of the 

monkey. It is likely that other peptidergic systems and classical neurotransmitters, 

such as glutamate and γ-aminobutiric acid, also play important roles in the regulation 

of kisspeptin activity in the ARC (Clarkson et al. 2006).  

In the AVPV, the situation is different from the ARC. Kisspeptin neurons in the AVPV 

express neither dynorphin nor NKB in any species studied to date. However, in the 

mouse, kisspeptin neurons in the AVPV appear to co-express tyrosine hydroxylase, 

suggesting that these cells may be dopaminergic - although this does not appear to 

be the case in the rat, where few, if any, kisspeptin neurons in the AVPV appear to 

express tyrosine hydroxylase (Kauffman et al. 2007). The differential expression of 

various cotransmitters with kisspeptin at different sites (ARC vs. AVPV) evidence that 

these two populations of “kisspeptin” neurons are phenotypically unique, not only in 

their molecular fingerprinting, but also in their physiological function. Figure 5 

illustrates the main circuits between kiss1 neurons and GnRH neurons. 
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Figure 5 

A schematic representation of the initial understanding of Kiss1 signaling in the forebrain of 

the mouse. Kisspeptin stimulates GnRH secretion by a direct effect on GnRH neurons, most 

of which express the kisspeptin receptor, Kiss1r. Neurons that express Kiss1 mRNA reside in 

the AVPV and the ARC (arcuate). Kiss1 neurons in the ARC appear to be involved in the 

negative feedback regulation of GnRH/LH by sex steroids. The expression of Kiss1 mRNA in 

the arcuate is inhibited by estradiol (E), progesterone (P) and testosterone (T). These same 

hormones induce Kiss1 mRNA expression in the AVPV, where Kiss1 neurons are thought to 

be involved in the positive feedback regulation of GnRH/LH. (Modified with permission from 

Gottsch et al. 2006). 

The afferent inputs to Kiss1 neurons (besides possible autosynaptic processes) 

remain mostly unknon. Kiss1 neurons in the AVPV of the rodent are likely to receive 

afferent input from the suprachiasmatic nucleus (SCN) because that region projects 

to the AVPV and is involved in the timing of the LH surge (Watson et al. 1995). Most 

of the neurotransmitters involved are currently unknown, but they could be arginine 

vasopressin or vasoactive intestinal peptide because these are the major efferent 
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projections form the SCN (Watson et al. 1995; Kalsbeek et al. 2006); however, this 

remains to be clarified.  

 

1. 1. A. 3 Comparative physiology 

Some aspects of Kisspeptin anatomy and physiology are highly conserved across 

species, such as the stimulatory effect of kisspeptin on GnRH. However, other 

aspects of Kiss1 anatomy and physiology are unique to particular species – such as 

the mechanisms that govern the preovulatory surge of GnRH/LH. 

 

 Direct and indirect effects of kisspeptin   

Several studies suggest that kisspeptin signals directly to GnRH neurons (Colledge 

et al. 2009). First, the majority of GnRH neurons express Kiss1r (Parhar et al. 2004; 

Han et al. 2005; Messager et al. 2005; Irwig et al. 2004). Second, Kisspeptin-1r fibers 

are found in close association with GnRH neurons (Kinoshita et al. 2005; Clarkson et 

al. 2006; Smith et al. 2008; Decourt et al. 2008). Third, kisspeptin can act directly to 

depolarize and increase firing rates of GnRH neurons in vitro (Liu et al 2008; Zhang 

et al. 2008; Han et al. 2005;  Liu and Herbison 2008; Pielecka-Fortuna et al. 2008; 

Quaynor et al. 2007; Dumalska et al 2008). Although kisspeptin may act through 

traditional synaptic mechanisms to stimulate GnRH release, it may also act directly in 

a nonsynaptic manner, particularly in the median eminence (ME) (Pompolo et al. 

2006; Franceschini et al. 2006; Decourt et al.2008; d'Anglemont de Tassigny et al. 

2008). Additionally, there is growing evidence to propose that kisspeptin also acts on 

intermediary neurons, such as GABAergic cells, to regulate GnRH secretion 

(Pielecka-Fortuna et al. 2008; Zhang et al. 2009). 

By acting at the level of the hypothalamus to increase GnRH release, Kisspeptin  

produces an increase in LH secretion from the pituitary as well. However, some 

studies suggest that kisspeptin may also act directly at the level of the pituitary.. 
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Richard et al., have reviewed in detail the action of kisspeptin on the pituitary 

(Richard et al. 2009 ). Indeed, it appears that both Kiss1 and Kiss1r are present in 

the pituitary, specifically in gonadotropes, and are differentially regulated by sex 

steroids (Kinoshita et al. 2005; Richard et al. 2008; Smith et al. 2008; Gutierrez-

Pascual et al. 2007). The presence of a functional kisspeptin receptor in the pituitary, 

combined with the finding that kisspeptin is released in ovine hypophyseal portal 

blood, assums kisspeptin action at the level of the pituitary to regulate gonadotropin 

secretion (Smith et al. 2008). This notion is supported by in vitro studies showing a 

stimulatory increase in gonadotropin release from pituitary fragments or cells treated 

with kisspeptin (Gutierrez-Pascual et al. 2007; Navarro et al. 2005; Suzuki et al. 

2008). Taken together, these findings would suggest a dual action of kisspeptin, at 

the pituitary and hypothalamus.. However, it remains unclear whether kisspeptin acts 

as true hypophysiotropic factor to regulate LH secretion. Although kisspeptin can be 

measured in hypophyseal portal blood, levels are similarly low in both ovariectomized 

and treated with estrogen to induce LH surge ewes (Smith et al. 2005), suggesting 

that the action of kisspeptin at the pituitary does not greatly affect the release of LH. 

Utilizing the hypothalamo-pituitary disconnection sheep model, Smith et al. (Smith et 

al. 2005) examined the in vivo relevance of kisspeptin at the level of the pituitary. In 

this model, kisspeptin treatment had no effect on LH secretion, indicating that any 

effect of kisspeptin on LH secretion occurs upstream of the pituitary. Moreover, a 

GnRH antagonist blocks the kisspeptin-induced increase in LH, again suggestive of a 

supra-pituitary action of kisspeptin (Gottsch et al. 2006; Irwig et al. 2004). Thus, 

whereas some evidence supports a role of kisspeptin action at the pituitary, most 

findings imply a higher level of action. 
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 Continuous vs. pulsatile exposure to kisspeptin 

After an initial stimulation, a continuous exposure of the pituitary to GnRH (or 

agonists) eventually causes suppression of gonadotropin secretion (Belchetz et al. 

1978) through down-regulation and sensitization of the GnRH receptors (McArdle et 

al. 1987; Wu et al. 1994; Vizcarra et al. 1997; Mason et al. 1994). Because kisspeptin 

is known to activate the hypothalamic-pituitary-gonadal axis, several groups have 

examined whether a continuous infusion of kisspeptin would produce the same 

inhibitory effect on gonadotropin secretion as GnRH. Indeed, continuous delivery of 

exogenous kisspeptin appears to desensitize Kiss1r, resulting in decrease of LH 

secretion in agonadal juvenile and adult male monkeys and testicular degeneration in 

adult male rats (Seminara et al. 2006;  Ramaswamy et al. 2007; Thompson et al. 

2006). In contrast, repeated peripheral injections of kisspeptin elicit unrestrained LH 

pulses in male rats and monkeys (Tovar et al. 2006; Plant et al. 2006), suggesting 

that the efficacy of kisspeptin to drive LH secretion depends on its pulsatile nature, 

much like for GnRH. Interestingly, sustained (30 or 48h) iv kisspeptin treatment was 

effective in seasonally acyclic ewes (anestrous season), resulting in ovulation in 80% 

of animals (compared to 20% controls) (Caraty et al. 2007). However, it is not clear 

whether this finding reflects a difference in the way sheep respond to continuous 

exposure to kisspeptin compared with other species or whether the differences 

reported between studies are due to differences in the dose and mode of kisspeptin 

administration. Desensitization may have a major impact on the efficacy of kisspeptin 

analogs and antagonists when used as contraceptives or to treat reproductive 

disorders.  
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 Negative feedback action of sex steroids on Kiss1 gene expression in 

arcuate nucleus (ARC) 

A classic example of negative feedback in male is that of testosterone acting at the 

level of the hypothalamus to suppress GnRH and thereby regulating gonadotropin 

secretion and testicular function. Because GnRH neurons appear to lack both the 

androgen receptor (AR) and ERα (in either sex), some intermediary neuronal system 

is believed to indirectly relay the feedback signal from the gonad to the GnRH 

neurons. Kisspeptin neurons may represent an important element of this negative 

feedback loop. After castration in mice, rats, hamsters and monkeys, levels of Kiss1 

mRNA increase dramatically in the mediobasal hypothalamus, specifically the ARC, 

In addition, this effect can be reversed with sex steroid replacement (Revel et al. 

2006; Irwig et al. 2004;Shibata et al. 2007; Smith et al. 2005 (b), Navarro et al. 2004). 

A castration-induced increase in Kiss1 expression in the ARC coincides with the 

increase in GnRH and gonadotropin secretion  (Smith et al. 2005(b)) reflecting that 

they are direct targets for the action of sex steroids.  Furthermore, studies of male 

mice with null mutations in the ERα and hypomorphic alleles of the AR implicate both 

ERα- and AR-dependent regulation of Kiss1 gene expression in the ARC (Smith et 

al. 2005(b)). Taken together, these observations provide convincing evidence that 

Kiss1/Kiss1r signaling (in the ARC) mediates the negative feedback regulation of 

GnRH secretion – at least in the male.  

In the female mammal, during most days of the estrous and menstrual cycle, the 

negative feedback loop of gonadotropin secretion predominates and a relatively low 

plasma level of sex steroids restrains GnRH and LH secretion. Kisspeptin neurons 

appear to play an elemental role in the negative feedback action of estradiol in the 

female. The expression of Kiss1mRNA in the ARC changes in function of the estrous 

cycle in the rat, with levels reaching nadirs at or around the time when estradiol 

levels are highest (Smith et al. 2006). Ovariectomy causes an increase in 



 43 

hypothalamic expression of Kiss1mRNA in the ARC of rodents, sheep and monkeys 

(Smith et al. 2008; Rometo et al. 2007; Smith et al. 2005(a); Smith et al. 2007; 

Navarro et al. 2004; Dungan et al. 2007; Kim et al. 2009). The increase in expression 

of Kiss1 is reversible upon treatment with estradiol (Smith et al. 2006;  Smith et al. 

2008;  Rometo et al. 2007; Smith et al. 2007; Navarro et al. 2004;  Dungan et al. 

2007). Finally, female mice bearing targeted deletions of Kiss1r do not show a post 

castration rise in LH despite exhibiting a dramatic increase in the expression of 

kiss1mRNA (Dungan et al. 2007). These observations suggest that kisspeptin 

neurons in the ARC of both the male and female provide tonic drive to GnRH 

neuronal activity, which is modulated by the negative feedback effects of sex 

steroids.  

 

 Circadian signals and positive feedback action of estradiol on Kiss1 

gene expression in the anteroventral periventricular nucleus (AVPV) 

Early during proestrous in rodents (or late in the follicular phase of the menstrual 

cycle in primates), the increasing levels of estradiol in the plasma lead to a surge of 

GnRH and LH secretion, which induces ovulation. In rodents, this so-called positive 

feedback effect of estradiol appears to involve estradiol-sensitive neurons in the 

AVPV, which act directly on GnRH neurons. (Terasawa et al. 1980; Wintermantel et 

al. 2006). Nearly all kisspeptin expressing cells in the AVPV of the female rodent 

express ERα (Smith et al. 2005(a)); moreover, the AVPV is a sexually dimorphic 

nucleus, with sexually differentiated expression of tyrosine hydroxylase (Simerly et al. 

1989), Kiss1 (Kauffman et al. 2007), neurotensin (Dungan et al. 2008) and other 

genes. Kisspeptin neurons in the AVPV of rodents seem to play a central role in 

relaying the positive feedback effects of estradiol to GnRH neurons. First, treatment 

with a kisspeptin antiserum to block kisspeptin signaling completely abolishes the LH 

surge in female rats (Kinoshita et al. 2005; Adachi et al. 2007). Second, in the 
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mouse, the expression of Kiss1 mRNA in the AVPV is dramatically increased by 

estradiol (Smith et al. 2005(a); Dungan et al. 2007). Third, in the rat, the expression 

of Kiss1 mRNA in the AVPV peaks at a time coincident with the GnRH/LH surge, and 

Kiss1 neurons in the AVPV demonstrate Fos induction at precisely this time (Adachi 

et al. 2007; Smith et al. 2006). Fourth, a population of rodent ERα- positive neurons 

has direct synaptic contact with GnRH neurons (Terasawa et al. 1980; Wintermantel 

et al. 2006), and these neurons are likely to be Kiss1 neurons (Smith et al. 2005 (a). 

Finally, Clarkson et al. (Clarkson et al. 2008) demonstrated that whereas normal wild-

type mice that have been ovariectomized and treated with both estradiol and 

progesterone show a clear LH surge, mice bearing targeted deletions in Kiss1r seem 

to lack this capacity. In addition, approximately 50% of GnRH neurons in wild-type 

mice demonstrated Fos expression coincident with the LH surge, whereas none of 

the mutant animals showed evidence of Fos expression at this same time (Clarkson 

et al. 2008). Together, these observations suggest that activation of kisspeptin 

neurons is a prerequisite for generating the estradiol/progesterone-induced GnRH/LH 

surge in the female mouse. However, another study added caution to this conclusion. 

Dungan et al. (Dungan et al. 2007) demonstrated that in another, independently 

produced line of Kiss1r-knockout mice, ovariectomized knockout females treated with 

estradiol retain the capacity to elicit a GnRH/LH surge and Fos induction in GnRH 

neurons, virtually identical to wild-type controls. Although Clarkson et al. and Dungan 

et al. (Clarkson et al. 2008; Dungan et al. 2007) have provided evidence for having 

produced a complete knockout of the Kiss1r gene, the method that these groups 

used to generate a GnRH/LH surge in ovariectomized animals differed. The protocol 

used to produce a surge in the Dungan et al. (Dungan et al. 2007) study involved 

sustained treatment with estradiol alone, which produces a diurnal GnRH/LH surge 

that persists for many days. In the Clarkson et al. study (Clarkson et al. 2008) the 

protocol involved a combination of estradiol and progesterone to generate a single 

surge, which produces a single GnRH/LH surge, instead of a daily event. 
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Consequently, it is possible that these two methods activate different pathways to 

produce the GnRH/LH surge, which could involve a differential dependency on 

kisspeptin signaling. Additional observations also argue that kisspeptin signaling is 

not an absolute prerequisite to sustain some degree of activity of the hypothalamic-

pituitary-gonadal axis. In these studies, a subset of animals in another independently 

derived line of Kiss1r knockout mice and a separate line of Kiss1 knockout mice 

retain the capacity to show some degree of gonadotropin release and ovarian 

cyclicity although lacking regularity and evidence of ovulation (Lapatto et al. 2007; 

Chan et al. 2009). In addition, patients with various mutations in KISS1R show 

variable reproductive phenotypes (even those with an identical mutation) that, in 

some cases, indicate a modest level of pulsatile LH secretion (Seminara et al. 2003; 

Tenenbaum-Rakover et al. 2007; Semple et al. 2005). However, we cannot ignore 

the possibility that these mutations do not completely disable the KISS1R and thus 

kisspeptin signaling to GnRH neurons. Taken together, these observations would 

propose that either some of the various mutations are not fully disabling to the 

KISS1R and signaling pathway or that GnRH is secreted in low levels independently 

of trophic activation by kisspeptin. In conclusion, there may exist some degree of 

GnRH/gonadotropin-dependent reproductive activity to persist in many animal 

models in which kisspeptin signaling would seem to be completely or partially 

inactivated whereas in other models, inactivation results in complete reproductive 

failure.  

How might the hypothalamic-pitiutary-gonadal axis retain some activity even when 

kisspeptin signaling has been completely disabled? First, there may be a 

compensatory process that occurs throughout development, which drives GnRH 

release. Second, there may be redundancy in the circuits that drive the GnRH/LH 

surge, such as the neurotensin pathway in the AVPV (Alexander et al. 1989). Third, 

the activity of one of the kisspeptin co-transmitters could sustain some level of GnRH 

activity, such as glutamate or dopamine produced by Kiss1 cells in the AVPV. 
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Although presumably the negative feedback effect of estradiol and testosterone on 

GnRH secretion is mediated by kisspeptin/dynorphin/NKB-producing neurons in the 

ARC of the mammals studied to date, the same principle does not apply in the case 

of positive feedback. In the rodent, the ability of estradiol to result in a GnRH/LH 

surge would seem to be mediated by kisspeptin neurons in the AVPV. However in 

the ewe and primates, there is no homolog of the AVPV. In the ewe, the positive 

feedback effects of estradiol seem to be mediated by kisspeptin neurons in the 

rostral region of the mediobasal hypothalamus, as shown by the up-regulation of 

Kiss1 mRNA in the rostral ARC during the preovulatory period (Estrada et al. 2006). 

Thus, it appears that there are several “phenotypes” of Kiss1 neurons comprised 

within the MBH, one involved in negative feedback, and another implicated in positive 

feedback. In the case of primate species (e.g., monkey and human) it is known that 

the neuroendocrine mechanisms that drive the preovulatory GnRH/LH surge are also 

different from the rodent. According to the previous observations, there may exist 

different site-and species roles for kisspeptin neurons in mediating steroid hormone 

signaling to GnRH neurons. Figure 6 illustrates the distinct neurophysiology of the 

Kiss1 neurons. 
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Figure 6 

Simplified scheme of a midsagittal section through the ventral forebrain representing the 

neuroanatomy of the kisspeptin–GPR54 system. Two anatomically and phenotypically distinct 

populations of kisspeptin neurons (green) control GnRH (red) secretion: kisspeptin neurons in 

the POA drive GnRH surges and kisspeptin cells in the ARC modulate the tonic pulsatile 

release of GnRH. Both populations of kisspeptin neurons interact with GnRH neurons in part 

directly. A, anterior; P, posterior; D, dorsal; V, ventral; POA, preoptic area; ARC, arcuate 

nucleus; OC, optic chiasm, VMH, ventromedial hypothalamus; MB, mammillary bodies; APit, 

anterior pituitary; PPit, posterior pituitary (Franceschini et al. 2013). 

 

1. 1. A.4 Role of the kisspeptin system in the onset of puberty  

1.A.4.a The kisspeptin system is necessary for normal puberty initiation 

Mice and humans  lacking a functional kisspeptin receptor do not progress normally 

to puberty (de Roux et al. 2003; Seminara et al. 2003). Many species demonstrate a 

marked increase in Kiss1 and/or Kiss1r expression to concide with the onset of 

puberty, suggesting that kisspeptin may act as “gatekeeper” for the initiation of 

puberty (Martinez-Chavez et al. 2008; Filby et al. 2008; Han et al. 2005; Li et al. 

http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=IsabelleFranceschini&UID=6328
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2008; Shahab et al. 2005;  Navarro et al. 2004; Clarkson et al. 2009).  Several 

reviews have focused on the role of kisspeptin in puberty (Messager et al. 2005; 

Tena –Sempere 2006; Kuohung et al. 2006; Seminara et al. 2006; Navarro et al. 

2007; Kauffman et al. 2007; Smith et al. 2007(b)).  

The role of kisspeptin in regulating the neuroendocrine reproductive axis was first 

brought to light by two clinical studies on subjects that had impaired or absent sexual 

maturation. In 2003, de Roux et al. and Seminara and colleagues independently 

reported that puberty was significantly impaired in humans with spontaneous 

mutations in the Kiss1R (GPR54) gene (de Roux et al. 2003; Seminara et al. 2003). 

These findings were reported in two separate consanguineous families. Different 

base pair deletions/substitutions had as common result a non functional Kiss1R 

protein in either case. An additional study, in 2005, similarly detailed an individual 

with pubertal impairment in the presence of a disfunctional Kiss1R mutation (Semple 

et al. 2005).  

In addition to the initial findings in humans, the necessity of intact kisspeptin signaling 

for puberty initiation has since been extended to other mammalian species, mainly 

mice. Transgenic knockout technology has allowed for the creation of Kiss1RKO 

mice. Seminara et al. (2003) first showed that Kiss1RKO mice do not progress 

through puberty, and have severe deficits in adulthood reproductive function. This 

finding has been extended by other laboratories. In all cases, Kiss1R KO mice are 

sexually immature. They present low gonadotropin and sex steroid levels, small 

gonads, absent spermatogenesis, impaired ovulation and absent or impaired estrous 

cyclicity (Funes et al. 2003; Messager et al. 2005; Dungan et al. 2007; Kauffman et 

al. 2007c; Lapatto et al. 2007). Additional reports of impaired sexual maturation and 

reproductive deficiencies in mice lacking a functional Kiss1 gene have followed 

(d’Anglemont de Tassigny et al. 2007; Lapatto et al. 2007). Of note, targeted deletion 

of Kiss1R does not affect GnRH neuron migration or synthesis as it has been shown 

that Kiss1R KO mice have normal hypothalamic distribution and content of GnRH 
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(Messager et al. 2005). Further evidencing that the GnRH system is functional in 

these mice some GnRH secretagogues, such as galanin-like peptide, are able to 

promote GnRH and LH secretion in Kiss1R KO mice (Dungan et al. 2006). 

In addition to disfunctional mutations in the Kiss1 system that prevent puberty onset, 

two clinical studies found that activating mutations of the Kiss1 gene or its receptor 

were linked to precocious puberty (Teles et al. 2008, Silveira et al. 2010). In these 

cases, a single base pair substitution in the Kiss1 gene or the Kiss1R gene was 

reported. In response to kisspeptin binding to the receptor, a prolonged intracellular 

signaling was noticed, thereby resulting in hyperstimulation of the reproductive axis. 

Animal studies have mimicked this effect by experimentally treating prepubertal 

rodents or monkeys with exogenous kisspeptin. In these animals, kisspeptin 

treatment was found to initiate various aspects of precocious puberty (such as 

enhanced LH secretion or early vaginal opening) (Navaro et al, 2004a,b; Shahab et 

al. 2005)  

 

1. 1. A. 4. b Changes in the neural Kiss1 system during puberty 

Although it was determined in 2004 that exogenous kisspeptin treatments can induce 

indices of pubertal onset, it was not until 2008 that endogenous secretion of 

kisspeptin was found to increase during puberty. Working with hypothalamic explants 

from female monkeys, Keen et al. (2008) showed that neural kisspeptin secretion, as 

measured with radioimmunoassay, was elevated in pubertal compared to prepubertal 

juvenile monkeys. In addition, kisspeptin secretion was shown to be pulsatile and to 

pulse in synchrony with GnRH pulses. Thus, Keen et al. proposed that increased 

kisspeptin pulsatility results in increased GnRH pulsatility in the pubertal monkey. 

However, the neuroanatomical source of the pubertal kisspeptin secretion was not 

determined. In other wrds, it is not known whether the kisspeptin pulses were coming 

from the ARC Kiss1 neurons, preoptic neurons, or both (or neither). Takase et al. 
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(2009) have addressed this issue in developing female rats. Kiss1 mRNA levels were 

found to be higher in adulthood than in prepubertal animals in both the ARC and 

AVPV/PeN, as was Kisspeptin protein immunoreactivity. This finding in female rats 

contradicted that in male mice in which the ARC Kiss1 system did not appear to 

change with puberty (Han et al. 2005). To determine if sex steroids influence the 

increase in Kiss1 levels in rats, Takase et al. (2009) treated separate cohorts of 

female rats with constant low E2 levels at each age and measured Kiss1 mRNA 

levels several days later. As in intact animals, Kiss1 was found to be higher in both 

ARC and AVPV/PeN in adults than in prepubertal females, even when gonadal 

steroid levels were equal between age groups. Concequently, at least in females 

rats, Kiss1/kisspeptin increases with puberty in both the ARC and AVPV/PeN, and 

this increase is independent of changes in circulating gonadal steroids. Whether this 

is the case for male rats, or males and females of other species remains to be 

determined.  

In mice, the number of kisspeptin-containing fibers that oppose GnRH neurons was 

reported to increase at puberty (Clarkson and Herbison, 2006). This suggests that 

pubertal maturation may also include the completion of developmental circuit 

coupling Kiss1 and GnRH neurons. However, higher gonadal steroids in adulthood 

would result in elevated kisspeptin synthesis in the AVPV/PeN, which could cause 

more kisspeptin immunoreactivity to be present. Thus, it is possible that the degree 

of innervation of GnRH neurons by kisspeptin neurons is not different before and 

after puberty, but that the technical ability to visualize these kisspeptin axonal fibers 

is enhanced in adulthood when more kisspeptin is being produced.  

In addition to Kiss1, changes in the kisspeptin receptor, Kiss1R, may also be 

implicated in pubertal maturation. Low doses of Kisspeptin treatment are less 

effective in stimulating GnRH neuronal firing activity and gonadotropin secretion in 

juvenile than adult rodents, suggesting that kisspeptin has a reduced ability to 

activate the GnRH system before puberty (Han et al. 2005; Castellano et al. 
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2006a,b). In support of this, in rats of both sexes and female monkeys, but not male 

mice, hypothalamic Kiss1R expression is lower in juveniles than in adulthood 

(Navarro et al. 2004 a, b; Han et al. 2005; Shahab et al. 2005). However, in most 

cases, Kiss1R was only measured well before or well after puberty, not during the 

pubertal transition. Navarro et al. (2004a, b) measured Kiss1R levels on day 1 during 

the actual pubertal period and reported that total hypothalamic Kiss1R expression 

was higher on that first day than in both juvenile and adult rats. It is worth to say that, 

the elevated Kissi1R levels occurred earlier in female than male rats, corresponding 

with earlier puberty onset in the former. Consequently, increases in hypothalamic 

Kiss1R may constitute a critical aspect of the pubertal process, though more work on 

this subject is needed. In addition, it is possible that the ability of the Kiss1R protein 

to signal within GnRH neurons changes with puberty, which could be independent of 

changes in Kiss1R mRNA levels.  

 

1.1.A.4.c Sexual dimorphism of kisspeptin expression  

Kisspeptin expression, kisspeptin neurons, and/or serum kisspeptin have been 

shown to be sexually dimorphic in many species, including humans. Expression of 

the kisspeptin receptor has also been reported to be sexually dimorphic in rats, 

Rhesus monkeys and teleost fish cobia (Navarro et al. 2004 a; Shahab et al. 2005 

Mohamed et al. 2007). This dimorphism has been associated to the onset of puberty 

and fertility in some species (Wray and Gainer 1987; Kauffman et al. 2007a,b; 

Homma et al. 2009; Kauffman et al. 2009; Bakker et al. 2010; Hrabovszky et al. 

2010; Jayasena et al. 2011; Pita et al. 2011a). Prenatal exposure to sex steroids may 

be responsible for part of the sexual dimorphism in kisspeptin and lack of kisspeptin 

dimorphism can result in irreversible abnormalities of the sexual bexavior in some 

species (Kauffman et al. 2007 a,b; Gonzalez-Martinez et al. 2008). Moreover, 

circulating kisspeptin has been reported to be sexually dimorphic in humans. Women 
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having significantly more elevated kisppeptin when compared to men (Wray and 

Gainer 1987; Kauffman et al. 2007a,b; Hrabovszky et al. 2010; Pita et al. 2011 a,b).  

Additionally, in other species, such as in the adult sheep, the ARC is sexually 

differentiated, with ewes expressing higher numbers of Kiss1 neurons than rams. 

(Estrada et al. 2006; Caraty et al. 1998). In the rodent, the AVPV is sexually 

differentiated, being larger and with more Kiss1 neurons in the female than the male 

(Clarkson and Herbison 2006;  Kauffaman et al. 2007; Adachi et al. 2007; Simerly 

1989; Dungan et al. 2008). Because the AVPV is thought to play a critical role in 

relaying the positive feedback effects of estradiol to GnRH neurons (Smith et al. 

2006; Dungan et al. 2007), it is not surprising that the male rodent is incapable of 

generating a GnRH/LH surge. Kiss1 expression of the adult rodent is organized 

perinatally, when neonatally androgenized females display a male-like pattern of 

Kiss1 expression on the AVPV in adulthood and lack the capacity to generate a 

GnRH/LH surge (Kauffman et al. 2007; Navarro et al. 2009). On the opposite, 

neonatally castrated males show a feminized pattern of Kiss1 expression in the 

AVPV (Homma et al. 2009).  Kiss1 expression in the ARC of the adult rodent is not 

sexually differentiated and thus not apparently dependent upon the perinatal sex 

steroid milieu (Kauffman et al. 2007). However, this generalization does not apply to 

the prepubertal animal, where it appears that Kiss1 and NKB in the ARC are sexually 

differentiated. Prepubertal male, compared to female, rodents show a reduced rise in 

Kiss1/NKB expression in the ARC after gonadectomy and this phenomenon is 

associated with a more restrained postcastration rise in LH. This sexually 

differentiated response to castration in the prepubertal animal does not occur in the 

adult (Kauffman 2008). In other words, sex differences in the tempo of sexual 

maturation (females being earlier than males) may reflect a differential sensitivity to 

the steroid milieu in the prepubertal animal.     

Kauffman et al. 2009 suggested that earlier puberty onset in females compared to 

males may reflect sex differences in the timing of the gating of peripubertal Kiss1 
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circuits, such that there is greater (or longer lasting) inhibition of Kiss1 gene in 

prepubertal males as opposed to prepubertal females. They found that, in 

prepubertal female mice, but not in male mice, Kisss1 levels and LH secretion in the 

ARC increased dramatically 2 and 4 days after gonadectomy.  Moreover, adult mice 

of both sexes exhibited increases in both LH levels and ARC Kiss1 expression 4 

days following gonadectomy. In other words sex differences in the steroid-

independent regulation of ARC Kiss1 neurons and LH secretion are manifested only 

during peripubertal development. These findings show that the regulation of 

reproductive status during prepubertal development is sexually dimorphic, with 

males, but not females, exhibiting gonadal steroid-independent suppression of Kiss1 

and LH levels. This Kiss1 sex difference may relate to known sex differences in 

pubertal maturation in mammals, including humans (boys usually mature later than 

girls) though additional data are needed to support this idea.  

Recent studies have investigated the expression and /or secretion of kisspeptin in 

adults as well as in pubertal children. The results of these studies show sexually 

dimorphic differences in the expression of kisspeptin in humans as well as in serum 

levels. In one study, sexually dimorphic diefferences were found in the distribution 

and number of immunolabeled kisspeptin in hypothalamic areas in humans. Females 

presented heavily labeled kisspeptin in the infundibulus, whereas very few, if any, 

were present in males. Brain samples were obtained from healthy subjects who died 

of sudden death. Results were confirmed with an additional antibody from a distinct 

source, the analysis was blinded and the age of subjects did not influence the results 

(Hrabovszky et al. 2010). The homogeneity of the data in the female group was 

reassuring against the potential variability of unknown sex steroid levels at the time of 

death among subjects.  

Although the source of circulating kisspeptin has not been established, experimental 

studies show that intravenously injected kisspeptins can significantly stimulate 

GnRH/gonadotropin/ steroid secretion in rats (Matsui et al. 2004; Pheng et al. 2009), 
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mice (Mikkelsen et al. 2009), Rhesus monkeys (Ramaswamy et al. 2007) and 

humans (Dhillo et al. 2005; George et al. 2011). Additionally, systemic injections of 

physiologically relevant concentrations of kissspeptin synchronize LH surge in cycling 

ewes and induces ovulation in non-cycling ewes on the anestrous season (Jayasena 

et al. 2010). Similarly, kisspeptin injected peripherally to women is capable of 

inducing desensitization of the LH response (Jayasene et al. 2009) as well as of 

bypassing the suppression of LH in patients affected from hypothalamic amenorrhea 

(Caraty et al. 2007). These observations demonstrate that circulating kisspeptins are 

physiologically relevant and likely to play a role in the regulation of the HPG axis in 

many species, including humans.  

Serum kisspeptin in adult, sexually mature women was significantly elevated as 

opposed to adult men of similar age in two studies of different populations from 

distinct ethnic backgrounds (Pita et al. 2011 a,b). This reinforces the sexually 

dimorphic character of kisspeptin secretion. 

In healthy children, serum kisspeptin is reported to positively correlate with rises in 

LH and testosterone during all stages of puberty in boys (Bano et al. 2009). Similarly, 

serum kisspeptin in pubertal girls is reported to positively correlate to bone age, 

peak/basal LH, and LH/FSH ratios (Rhie et al. 2011). Additionally, healthy pubertal 

girls from an unrelated population were reported to have significantly elevated serum 

kisspeptin when compared to Tanner stage -matched healthy boys, who were, in 

average, one year older (Pita et al. 2011a). These observations show that kisspeptin 

is not only a faithful indicator but an important mediator as well of onset and 

progression of puberty in healthy children.  

Consequently, Kisspeptin signaling is essential in initiating puberty onset. However, 

although prepubertal kisspeptin treatments stimulate GnRH secretion before it is 

normally activated, it remains unclear if these treatments alter the developmental 

mechanisms that normally time and trigger puberty. Indeed, it is not known if 

kisspeptin signaling represents a key element of the puberty-triggering mechanism, 
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including, but not limited to, the pubertal ”clock”, or simply a downstream effector of 

the puberty machinery elsewhere in the brain.  

 

1. 1. B. Overview of Neurokinin B (NKB) signaling  

Several studies implicate NKB and its receptor NK3R as essential components of the 

human reproductive axis. Over the last two decades it was shown that a group of 

neurons in the hypothalamic infundibular/arcuate nucleus form an important 

component of this regulatory circuit. These neurons are steroid-responsive and co-

express NKB, kisspeptin, dynorphin, NK3R and estrogen receptor a (ERa) in a 

variety of mammalian species. Important studies in the human have indicated that 

these neurons function in the hypothalamic circuity regulating estrogen negative 

feedback on gonadotropin-releasing hormone (GnRH) secretion. Loss of function 

mutations in the genes encoding either neurokinin B (NKB) or its receptor, (NK3R), 

result in hypogonadotropic hypogonadism, characterized by low circulating levels of 

LH and gonadal steroids and an absence of pubertal development . A detailed review 

on neurokinin B signaling was provided by Rance et al. in 2010 (Rance et al. 2010) 

and more recently by Navarro et al. in 2013 (Navarro et al. 2013). In this part we will 

share critical information on this subject.   

  

1.1. B.1. Molecular biology of NKB 

Neurokinin B (NKB) is a member of the tachykinin family of peptides. Tachykinins are 

characterized by a common C-terminal amino-acid sequence (Phe-X-Gly-Leu-Met-

NH2) and include substance P, neurokinin A and NKB, as well as neuropeptide K, 

neuropeptide γ, and hemokin-1. NKB is the only tachykinin synthesized from the 

preprotachykinin-B gene (Almeida et al., 2004; Bonner et al., 1987; Helke et al., 

1990; Kotani et al., 1986; Page et al., 2001) which is currently designated as TAC3 in 

humans, Tac3 in non-humans primates, cattle and dogs and Tac2 in rodents. The 
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TAC3 precursor mRNA contains 7 exons, 5 of which are translated to form the 

preprotachykinin B peptide. This prepropeptide undergoes enzymatic cleavage to 

form proneurokinin B, then NKB. The primary amino acid sequence of the final active 

peptide is encoded by exon 5 (Bonner et al., 1987; Kotani et al., 1986; Page et al., 

2000). TAC3 precursor mRNA variants have been described, but the NKB peptide is 

widely conserved across vertebrates (Page et al., 2009). NKB preferentially binds to 

NK3R, encoded by the TACR3 gene. Three tachykinin receptors have been 

identified, although the existence of additional receptors has been proposed (Grant et 

al., 2002; Pennefather et al., 2004). The three receptors (NK1R, NK2R and NK3R) 

belong to the rhodopsin-like family of G-protein coupled receptors and share 

considerable structural homology (Almeida et al., 2004; Takahashi et al., 1992). After 

NKB is bound to its receptor, NK3R activation increases intracellular Ca2+ 

concentration through inositol phospholipids hydrolysis. Alternatively, NK3R 

activation can increase intracellular cAMP levels through adenylate cyclase activation 

(Satake and Kawada 2006).  A feature of G-protein related receptors, however, is 

that down stream cascades of the receptor can be either excitatory or inhibitory 

depending on which intracellular proteins are expressed (Kenakin et al., 1995). Other 

G-protein coupled receptors, such as the serotonin receptor, can associate with more 

than one intracellular cascade (Berg et al., 1998). Thus the cellular responses arising 

from NK3R signaling are likely complex.   

 

1.1. B. 2 Anatomic studies of NKB and NK3R in the hypothalamus and 

basal forebrain 

The location of neurons expressing NKB mRNA has been mapped in detail in the 

human hypothalamus and basal forebrain (Chawala et al., 1997). NKB mRNA-

expressing neurons are present predominantly in the infundibular nucleus and the 

anterior hypothalamic area. Magnocellular neurons in the septal region, diagonal 
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band of Broca and nucleus basilis of Meynert also express NKB mRNA. The bed 

nucleus of the stria terminalis and the amygdala are also prominent sites of NKB 

mRNA-containing cell bodies and scattered neurons are localized in the adjacent 

neocortex (Chawala et al., 1997). A major population of NKB neurons resides in the 

arcuate nucleus of the rat. Small numbers of NKB neurons are also scattered 

throughout the anterior, lateral and dorsomedial hypothalamus and preoptic regions 

(Krajewski et al., 2010). NKB neurons have also been described in the arcuate 

nucleus of the monkey (Abel et al.,1999; Ramaswamy et al., 2010), sheep (Foradori 

et al., 2006; Goodman et al, 2007), goat (Wakabayashi et al., 2010) and mouse 

(Duarte et al., 2006; Navarro et al., 2009). Many of the regions receiving arcuate 

NKB projections in the rat also express NK3R (Ding et al.,1996; Krajewski et al., 

2005). Moreover, NK3R neurons are present in the zona incerta and the lateral 

hypothalamic area and perifornical region. Magnocellular neurons of the 

paraventricular nucleus, suppraoptic nucleus and accessory magnocellular nucleus 

are intensely labeled with NK3R antibodies. There are also magnocellular NK3R 

neurons in the septal nuclei, diagonal band and nucleus basalis (Krajewski et al., 

2005).  

 

1.1.B.3 Estrogen modulation of NKB gene expression  

Early studies demonstrated that neurons in the rat arcuate nucleus concentrate 

radioactive estradiol after intraperitoneal injections (Pfaff and Keiner 1973). Later on, 

two isoforms of estrogen receptor were identified, ERα and ERβ. Studies using 

knockout mice have shown that ERα is critical for estrogen negative feedback on LH 

release (Dorling et al., 2003; Hewitt and Korach et al., 2002). However, GnRH 

neurons have only been shown to express ERβ, suggesting that estrogen negative 

feedback is mediated via a separate set of neurons (Hrabovsky et al., 2001). NKB 

and ERα co-expression has been localized in the arcuate nucleus of humans (Rance 
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and Young et al., 1991), sheeps (Goubillon et al., 2000) and rats (Burke et al., 2006), 

indicating that estrogens could act directly on arcuate NKB neurons. Additionaly, 

progesterone receptors have  been identified on these neurons in the ewe (Foradori 

et al., 2002). The transcription of NKB could be directly altered by estrogen 

receptors, as sequences corresponding to the estrogen response element (ERE) and 

the imperfect palindromic ERE have been reported upstream of the TAC3 gene 

transcription start site (Page et al. 2001). Experiments in multiple species have 

documented sex steroid modulation of the gene encoding NKB in the arcuate 

nucleus. NKB gene expression changes during the estrous cycle of the rat (Rance 

and Bruce 1994). Gonadectomy increases NKB gene expression in arcuate nucleus 

of female rats (Race and Bruce 1994), mice (Kauffman et al., 2009; Navarro et al., 

2009) and monkeys (Gelid et al., 2010). Orchidectomy increases NKB gene 

expression in the arcuate nucleus of male rats (Danzer et al., 1999) and mice 

(Kauffman et al., 2009). Moreover, estrogen treatment of gonadectomized animals 

suppresses NKB gene expression in rats, of both genders (Rance and Bruce 1994; 

Danzer et al., 1999), monkeys (Abel et al., 1999), sheep (Pillon et al., 2003) and mice 

(Dellovade and Merchenthaler 2004; Navarro et al., 2009). Finally, the suppression of 

NKB gene expression by estradiol does not occur in ERa knockout mice.(Dellovade 

and Merchenthaler 2004). 

 

     

1.1.B.4 Sexual dimorphism of NKB neurons 

Although gonadectomy and steroid replacement modify NKB gene expression in both 

sexes (Danzer et al., 1999; Rance and Bruce 1994), gender differences exist in the 

number and morphology of NKB neurons. Prenatal testosterone treatment of ewes 

results in a male-type pattern, indicating an organizational effect of androgens early 

in development. Increased numbers of NKB neurons have been identified in the 
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arcuate nucleus of ewes compared to rams (Cheng et al., 2010; Goubillon et al., 

2000). In the rat male, there are dense projections of NKB axons around blood 

vessels in the median eminence, as opposed to a more diffuse distribution in the 

female. This morphology is altered by treatment with gonadal steroids even after the 

postnatal period (Ciofi et al., 2006; Ciofi et al., 2007). Finally, the response of NKB 

neurons to gonadectomy before puberty is gender dimorphic. Prepubertal female 

mice exhibit increased NKB (and Kisspeptin) gene expression in the arcuate nucleus 

in response to gonadectomy, while this response is delayed until after puberty in 

male mice (Kauffman et al., 2009). 

 

  

1. 1. C. An interconnected network of arcuate NKB/kisspeptin/dynorphin 

neurons  

First showed in the ewe (Goodman et al., 2007), kisspeptin (or its mRNA) is co-

expressed with NKB in the actuate nucleus in the rat (Kirigiti et al., 2009), mouse 

(Navarro et al., 2009) and goat (Wakabayashi et al., 2010). Additionally, NKB and 

kisspeptin mRNAs are co- expressed in the infundibular (arcuate) nucleus of the 

human (Rance and Young 1991; Rometo et al., 2007) and monkey (Abel et al., 1999; 

Rometo et al., 2007). This fact is further supported by the recent 

immunohistochemical demonstration of kisspeptin and NKB co-localization in the 

human (Hrabovszky et al., 2010) and monkey (Ramaswamy et al., 2010) infundibular 

nucleus. Dynorphin is an endogenous opioid peptide involved in progesterone 

negative feedback on GnRH release in the luteal phase of the ewe (Goodman et al., 

2004). Dynorphin is co-expressed with NKB in the arcuate nucleus of the rat (Burke 

et al., 2006; Ciofi et al., 2006), ewe (Foradori et al., 2006), mouse (Navarro et al., 

2009) and goat (Wakabayashi et al., 2010). Coexistence of multiple peptides in a 

single neuron is a common finding in the central and peripheral nervous system. 
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Typically, two or more peptides are stored together in large dense core vesicles and 

may be differentially released depending on their relative synthesis (Salio et al., 

2006). Through a series of studies, a bilateral network of NKB neurons within the 

arcuate nucleus in the female rat has been described that project to GnRH axons in 

the median eminence as well as in the contralateral arcuate nucleus (Burke et al., 

2006; Krajewski et al., 2005; Krajewski et al., and 2010).  There is also evidence of a 

similar network of arcuate NKB/kisspeptin/dynorphin neurons projecting to the 

median eminence of the monkey (Ramaswamy et al., 2008; Ramaswamy et al., 

2010), mouse (Navarro et al., 2009), sheep (Foradori et al., 2006; Lehman et al., 

2010) and goat (Wakabayashi et al., 2010).   

Within the arcuate nucleus there is a dense network of NKB/dynorphin axons and 

apposition of these axons on NKB/dynorphin cell bodies and dendrites that is 

indicative of communication between these neurons (Burke et al., 2006). An 

important feature of the arcuate nucleus is the presence of NK3R on 

NKB/kisspeptin/dynorphin neurons (Burke et al., 2006). This feature has been shown 

in the rat (Burke et al., 2006), mouse (Navarro et al., 2009) and ewe (Amstalden et 

al., 2009). Bilateral connections among arcuate NKB/Kisspeptin/dynorphin/ ERα 

neurons via NK3R may provide an anatomic framework for coordinated activity of this 

important neuronal network. From the arcuate nucleus, NKB fibers project to both the 

internal and external zones of the median eminence, including the lateral palisade 

zone, a site with dense GnRH terminals (Krajewski et al., 2005; Krajewski et al., 

2010). Using electron microscopy, Ciofi et al. showed direct apposition between NKB 

fibers and GnRH axons in the median eminence without synaptic specializations 

(Ciofi et al., 2006). NKB would be expected to be released by large dense core 

vesicle exocytosis, a mode of neurotransmission that does not require the presence 

of classic synapses (Salio et al., 2006).  
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1. 1. C. 1 Evidence for NKB/kisspeptin/dynorphin neurons in the arcuate 

nucleus for the modulation of pulsatile GnRH secretion    

Even if GnRH neurons generate pulsatile activity, this would not exclude the 

possibility of an external oscillator in the arcuate nucleus that relays information from 

sex-steroids to influence pulsatile GnRH secretion (a GnRH pulse modulator). 

Modulation of GnRH neurons via external sources might also need to be pulsatile or 

at least coordinated, to ensure synchronized GnRH secretion. There are currently 

several lines of evidence that arcuate NKB/kisspeptin/dynorphin neurons could 

modulate pulsatile GnRH secretion, and be the source of the multiunit volleys of 

electrical activity that are timed with pulses of serum LH (Rance et al. 2010):  

1. NKB/kisspeptin/dynorphin neurons are located in the arcuate nucleus where 

the multiunit volleys of activity are present in monkeys (Knobil, 1981), rats 

(Kimura et al., 1991; Kinsey-Jones et al., 2008) and goats (Maeda et al., 

1995; Okhura et al., 2009; Wakabayashi et al., 2010).  

2. Destruction of the arcuate nucleus in the rhesus monkey (with relative 

preservation of more lateral GnRH neurons) abolishes spontaneous and 

estrogen-induced LH secretion (Plant et al., 1978; Plant and Ramaswamy, 

2009).  

3. NKB/kisspeptin/dynorphin neurons in the arcuate nucleus of the rat form 

bilateral interconnected network that could provide an anatomical framework 

for the coordination and synchronization of activity (Burke et al., 2006; 

Krajewski et al., 2010). 

4. NKB/kisspeptin/dynorphin neurons in the arcuate nucleus project to GnRH 

terminals in the median eminence in the rat (Krajewski et al., 2005; Krajewski 

et al., 2010), monkey (Ramaswami et al. 2008) and sheep (Lehman et al., 

2010), an ideal location for final modulation of GnRH output (Moenter et al., 

2003).  
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5. The expression of NKB and kisspeptin mRNAs in arcuate neurons and the 

frequency of multiunit activity and LH pulses (Mori et al., 1991; Nishihara et 

al., 1999; Wakabayashi et al., 2010) are modulated in a similar direction by 

ovariectomy and steroid replacement.  

6. There is strong evidence that progesterone inhibition of LH pulse frequency in 

the luteal phase of the ewe is mediated by NKB/kisspeptin/dynorphin. 

Neurons in the arcuate nucleus (Goodman et al., 2004; Lehman et al., 2010). 

7. In monkeys, the duration of each multiunit volley increases over a 4-6 week 

period after ovariectomy (O’Byrne et al., 1993) consistent with a time-course 

of cellular remodeling in the form of neuronal hypertrophy (Rance et al., 1990; 

Rance and Young, 1991). On the other hand, estradiol treatment of 

ovariectomized monkeys reduces the duration of multiunit activity within hours 

(O’Byrne et al., 1993), consistent with the time course that estradiol 

suppresses arcuate NKB mRNA in the ewe (Pillon et al., 2003).  

8. Kisspeptin is released in a pulsatile manner into stalk-median eminence of 

female rhesus monkeys and these pulses occur with the majority of GnRH 

pulses (Keen et al. 2008). Based on morphological descriptions, the 

kisspeptin released in the stalk-median eminence of monkeys is likely 

secreted from NKB/kisspeptin-co-expressing neurons in the arcuate nucleus 

(Ramaswamy et al., 2008; Ramaswamy et al., 2010; Rometo et al., 2007; 

Sandoval-Guzman et al., 2004) and could have direct effects on GnRH axons 

at the level of the median eminence (d’Anglemont de Tassigny et al., 2008).  

9. The frequency of multiunit volleys and pulsatile LH secretion are altered by 

infusions of NKB or dynorphin into the arcuate nucleus of the goat 

(Wakabayashi et al., 2010), consistent with the identification of NK3R 

(Amstalden et al., 2009; Burke et al., 2006; Navarro et al., 2009) and kappa 

opioid receptor mRNA (Navarro et al., 2009) on arcuate 

NKB/kisspeptin/dynorphin neurons.  
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10.  Patients with hypogonadotropic hypogonadism due to TAC3 and TACR3 

mutations exhibit low levels of serum LH but normal, or nearly normal, levels 

of FSH (Topaloglu et al., 2009; Young et al., 2010). This profile of 

gonadotropin secretion can be simulated by changing the pattern of pulsatile 

GnRH secretion (Wildt et al., 1981; Wise et al., 1979; Young et al., 2010).  

11.  In contrast to the normal frequency and low amplitude LH pulses detected in 

patients with kisspeptin receptor gene mutations (Tenenbaum-Rakover et al., 

2007), no LH pulses were reported in untreated patients with TAC3 and 

TACR3 mutations (Gianetti et al. 2010; Young et al., 2010). After gonadal 

steroid treatment of patients with TAC3 and TACR3 mutations, despite some 

recovery of function, LH pulse frequency is slow or irregular (Gianetti et al., 

2010). Thus, it was hypothesized that loss of functional NK3R signaling on 

arcuate NKB/kisspeptin/dynorphin neurons leads to alterations in the 

frequency of LH pulses due to dysfunctional coordination of the arcuate 

nucleus network. Figure 7 recapitulates the role of Kiss1/Dyn/NKB neurons in 

the generation of the GnRH pulses. 
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Figure 7 

According to this model, Kiss1/Dyn/NKB neurons receive autosynaptic input from NKB and 

Dyn and target GnRH fibers in the ME, which are responsive to kisspeptin and NKB (through 

Kiss1r and NK3, respectively). When E2 levels decline, Kiss1/Dyn/NKB neurons become 

spontaneously active. This activity would be amplified by positive autosynaptic feedback 

through NKB/NK3 signaling, which would also propagate by collaterals to trigger 

synchronized firing in the ensemble of Kiss1/DYN/NKB neurons in the Arc. DYN which would 

be released along with NKB, would act on Kiss1/DYN/NKB neurons (or interneurons that 

express KOR) with a small phase lag to clamp further discharge from Kiss1/Dyn/NKB neurons 

and thus extinguish their activity. In the absence of additional activity, Dyn release would 

cease, and eventually the inhibitory effect of Dyn would wane, causing the Kiss1/Dyn/NKB 

neurons to reactivate and initiate another cycle of regenerative activity, followed by inhibition. 

Each time Kiss1/Dyn/NKB neurons would undergo a burst of activity, a “pulse” of kisspeptin, 

Dyn, and NKB would be released in the ME, where kisspeptin and NKB would act directly on 

GnRH fibers or terminals. It is unlikely that Dyn acts directly on GnRH neurons, because 

GnRH neurons apparently do not express KOR. Kisspeptin would evoke prolonged activation 

of GnRH fibers or terminals, which, if unchecked, would last for hours. Thus, some 

mechanism must subsequently inactivate GnRH neurons so that a discrete pulse of GnRH 

can be delivered into the portal circulation. It is postulated that NKB acts via NK3 on GnRH 

fibers or terminals to accomplish this task (Franceschini et al. 2013). 

 

http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=IsabelleFranceschini&UID=6328
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1.1. C. 2 Pharmacological studies of the effects of NK3R agonists on LH 

secretion 

As reviewed in detail by Rance et al. in 2010 (Rance et al. 2010) pharmacological 

administration of NKB or NKR3 agonists has resulted in disparate effects on LH 

secretion, depending on the animal model and gonadal status. Initial studies showed 

that intraventricular injections of senktide, a potent and selective NK3R agonist, 

importantly decreased serum LH in ovariectomized rats treated with very low levels 

of estradiol (Sandoval-Guzman and Rance, 2004). Inhibitory effects on LH secretion 

have also been noticed after intraventricular injection of senktide in ovariectomized 

mice (Navarro et al., 2009) and direct injection of NKB into the arcuate nucleus of 

ovariectomized goats (Wakabayashi et al., 2010). On the other hand, senktide 

stimulated LH secretion in the ewe during the follicular phases but not during the 

luteal phase (Billings et al., 2010). Moreover, stimulation of LH secretion was found in 

prepubertal rhesus monkeys after intravenous infusion of either NKB or senktide 

(Ramaswamy et al., 2010). NKB also modulates the effects of kisspeptin on LH 

release. For example, intraventricular co-administration of NKB and kisspeptin 

amplified kisspeptin’s stimulatory effects in male rodents while co-administration of 

NKB and kisspeptin to mouse hypothalamic explants inhibited kisspeptin’s positive 

effect on GnRH secretion (Corander et al., 2010). Thus, the effects of 

pharmacological administration of NKB or senktide are complex and contradictory. 

This complexity contrasts with kisspeptin, which consistently stimulates LH secretion 

in a wide variety of mammalian species and experimental settings (Dhillo et al., 2006; 

Han et al., 2005; Plant et al., 2006; Thompson et al., 2004). While administration of 

NK3R agonists clearly alters LH secretion, the interpretation of these studies is 

complicated by many aspects. First, senktide is a potent and selective NK3R agonist, 

but NKB binds to other tachykinin receptors (Laufer et al., 1986; Pennefather et al., 

2004). Second, there may be species differences in the efficacy of pharmacological 
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agents (Leffler et al., 2009) and in the location of NK3R (Amstalden et al., 2009; 

Krajewski et al., 2005). Third, the steroid environment could alter the basal activity of 

the neurons, relative levels of gene expression and the number or responsiveness of 

receptors (Kelly et al., 2003). Finally, endogenous neuropeptides are released in 

specific spatial and temporal patterns, while intraventricular infusion of a 

pharmacological agent could simultaneously interact with NK3R at numerous sites at 

nonphysiologic concentrations. For NK3R agonists in particular, there could be direct 

effects on GnRH neurons, as well as indirect effects via the arcuate nucleus that 

could modulate the pattern of GnRH secretion and thereby alter the responsiveness 

of the anterior pituitary gland.  

In summary, there is strong evidence for proposing that arcuate (infundibular) 

NKB/kisspeptin/dynorphin neurons are part of the neural network influencing the 

pulsatile secretion of GnRH and contribute to the multiunit activity known as the 

“GnRH pulse generator”. This hypothesis does not exclude GnRH neurons in 

generating pulses or a role of other neurons within the arcuate nucleus or elsewhere. 

It must be emphasized that there is currently no definitive demonstration of the 

source of multiunit activity and thus, these concepts are speculative. It is exciting, 

however, to have substantial clues on a cellular identity of the multiunit activity, and 

these data are currently being used to develop models of how GnRH pulses are 

generated (Lehman et al., 2010; Navarro et al., 2009; Okamura et al., 2010; 

Wakabayashi et al. 2010). Of note, if this theory is correct, then NK3R signaling on 

arcuate NKB/kisspeptin/dynorphin neurons may represent an integral part of network 

coordination (Amstalden et al., 2009; Burke et al., 2006; Navarro et al., 2009; 

Wakabayashi et al., 2010). Since pulsatile GnRH secretion is essential for normal 

reproductive function, dysfunctional coordination of the NKB/kisspeptin/dynorphin 

network may explain the etiology of hypogonadotropic hypogonadism and of 

idiopathic central precocious puberty. 
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1.2 Clinical manifestations and age references of normal 

puberty 

Although the concerns about sexual precocity and changes in timing of puberty 

appear to be much greater in girls than in boys, these issues must be addressed in 

both sexes in a comprehensive and comparative perspective.  

The first sign of the onset of puberty in females is thelarche, otherwise breast 

development. Menarche, the occurrence of first menstruation is the last characteristic 

in the development of puberty. Thelarche is defined as Tanner B2 stage that normally 

occurs between 8 and 13 years of age (Tanner 1962). The Tanner stages provide 

semi-quantitative information with less accuracy than using the menarcheal age to 

access the timing of pubertal development. Menarche, however, is a relatively late 

marker of female puberty and might provide information different from breast budding 

because the former is the end point of a complex sequence of maturational events, 

whereas the later results more simply from the onset of estrogenic action reflecting 

hypothalamic-pituitary-ovarian axis stimulation. In addition, there are possible 

confounding factors that can explain that the ages at the onset of breast development 

and at menarche are not strictly correlated (de Ridder et al. 1992). Because food 

and/or energy availability influence sexual maturation (Van Wieringen 1978; Warren 

1983) and are unequally distributed around the world, the age limits for puberty 

should be discussed separately in well-off and underprivileged conditions. Data 

published during the last 20yr on the age at onset of breast development and 

menarche in different European countries, are represented in Figure 8.  
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Figure 8 

Average (mean or median) ages at onset of breast development (B2) or menarche in different 

well-off populations around the world (Parent et al. 2003). 

 

In boys, the first sign of pubertal development is an increase in testicular volume 

above 3 ml, consistent with Tanner G2 stage that normally ranges from 9 to 14 years 
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and can be assessed only by thorough evaluation at physical examination (Tanner 

1962; Marshall and Tanner 1970). However, most data from all around the world 

were obtained based on visual inspection without palpation of testicular volume or 

assessment of testicular size. For instance, in the pioneering work of Marchall and 

Tanner (Marshall and Tanner 1970) which provided age references for male pubertal 

development in 1970, the mean age for G2 stage was found to be 11.6 yr in UK. 

Similar data have been reported for the US (11.5 yr) in 1985, Sweden (11.6 yr) in 

1996, The Netherlands (11.5 yr) in 2001, Switzerland (11.2 yr) in 1983, Spain (12.3 

yr)in 2002 (Tanner and Davies 1985; Lindgren 1996; Mul et al. 2001; Largo and 

Prader 1983). In a longitudinal study of 78 boys, Roche et al. (Roche et al. 1995) 

reported a mean age of 11.3 yr at G2, but the validity of these data may be limited 

because of self-assessment. In a more recent study analyzing the data collected and 

evaluated biannually in 1112 Turkish school children aged from 8 to 18 years showed 

that mean age at onset of puberty was 11.6 +/- 1.2 years (Bundak et al. 2007). In a 

recent Greek study (Papadimitriou et al. 2008)  the median age at onset of breast 

development (B2) was at 10 years (9,2; 10,6) for girls whereas the median (95% CI]) 

age for boys at G2, defined as testicular volume (TV)  4 mL, was 11.3 (10.9-11.6) 

years (Papadimitriou et al. 2011). On the other hand in urban Chinese boys (Ma et al. 

2011) the median age of onset of puberty defined as the age at attainment of 

testicular volume of 4mL or greater was 10.55 (95% CI 10.27-10.79) years. In a 

Danish study (Sørensen K, 2010) onset of puberty, defined as age at attainment of 

testicular volume above 3 ml, occurred significantly earlier in 2006-2008 [11.66 yr 

(11.49-11.82); mean (95% confidence interval)] than in 1991-1993 [11.92 yr (11.76-

12.08); P = 0.025]. Thus, it is difficult to draw conclusions without additional data 

from a prospective study with assessment of testicular volume or size. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22S%C3%B8rensen%20K%22%5BAuthor%5D
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1. 3 Possible mechanisms of Variation in Timing of Puberty 

Puberty is determined by an increase in the secretion of the pituitary gonadotropins, 

LH and FSH, which are dependent on the frequency and amplitude of pulsatile GnRH 

neurosecretion from the hypothalamus (Grumbuch and Styne 1998; Terasawa and 

Fernandez 2001).The timing of puberty can be influenced by signals involving 

neurotransmitters and neuropeptides that originate in the hypothalamus. Additionally, 

signals linked to the environment such as intrauterine conditions, nutrition, endocrine 

disruptors might impinge on the hypothalamic signaling network directly or through 

peripheral signals (fig. 9).  

 

Figure 9 

Schematic illustration of the relative influences of hypothalamic, peripheral and environmental 

signaling on the physiological variability in timing of puberty (A) or the occurrence of a subset 

with sexual precocity (B) or the shift of the whole study population toward early pubertal 

timing (C) (Parent et al. 2003). 

 

As summarized schematically in figure 10, the individual variability, which involves 

familial, ethnic and gender patterns, is likely to depend on the genetic control of the 
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expression of signals or signal receptors in the hypothalamus. This process is only 

slightly influenced by peripheral and environmental signals, which play an essential 

permissive role in those conditions. In specific situations, however, these peripheral 

and environmental signals may play a crucial role in the occurrence of either 

abnormal precocious or delayed puberty.  

 

 

 

 

Figure 10 

Integration of timing of puberty within a spectrum of processes that are influenced by both 

genetic and environmental factors (Parent et al. 2003) 
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1.3.a Genetic Factors 

 

Puberty is an important developmental stage. The timing of puberty varies greatly in 

the general population and is influenced by genetic factors (Parent et al. 2003; 

Palmert and Hirschhorn 2003; Demerath et al. 2004; Euling et al. 2008). Early 

observations (Zacharias and Wurtman 1969; Fischbein 1977) derived from 

monozygotic twin correlation studies indicated that 70-80% of the variance in 

pubertal timing can be explained by or genetic factors. Kaprio et al (Kaprio et al. 

1995) used a bivariance twin ANOVA in age and BMI and concluded that 74% of the 

variance involved genetic effects and 26% environmental effects. In a review article, 

Palmert and Boepple (Palmert and Boepple 2001) suggested that the genetic control 

of the variance in pubertal timing was likely to be a complex polygenic trait.  

The high correlation of the onset of puberty seen within racial/ethnic groups, within 

families and between monozygotic as opposed to dizygotic twins all provide evidence 

for genetic regulation of pubertal onset. These data suggest that 50-80% of the 

variation in pubertal onset is determined by genetic factors (Parent et al. 2003; 

Palmert and Hirschhorn 2003; Towne et al. 2005; van den Berg and Boomsma 

2007).  

“Mistakes of nature” have contributed to the unraveling of the networks implicated in 

the normal initiation of puberty. Genes that have been proved to be involved in the 

normosmic Idiopathic Hypogonadotropic Hypogonadism (nIHH), in the X-linked or 

autosomal forms of Kallmann syndrome (KS), in the obesity and Hypogonadotrophic 

Hypogonadism (HH), in precocious puberty and in the abnormal Hypothalamic 

Pituitary Gonadal (HPG) axis development have been identified (GNRH1, GNRHR, 

GPR54, FGFR1, FGF8, PROK2, PROKR2, TAC3, TACR3, KAL1, PROK2, PROKR2, 

CHD7, LEP, LEPR, PC1, DAX1, SF-1, HESX-1, LHX3 and PROP-1). All of these 

genes were found to play critical roles in the development and regulation of the HPG 



 73 

axis (Herbison 2007; Bianco and Kaiser 2009). Recently, the first two loci associated 

with population variation in the timing of puberty were identified at 6q21, in or near 

LIN28, and at 9q31.2 (Perry et al. 2009). Human genetics has been a powerful 

contributor to the discovery of molecular elements critically involved in the embryonic 

migration of GnRH neurons as well as in the secretion, regulation and action of 

hypothalamic GnRH. At this point we will review main genes proved to be implicated 

in the GnRH-mediated pathway initiating puberty. 
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 GNRH1 and  GNRHR   

Gonadotropin-releasing hormone (GnRH) is the master hormonal regulator of the 

reproductive endocrine system, largely controlling the pulsatile secretion of luteinizing 

(LH) and follicle stimulating hormone (FSH) from pituitary.  These gonadotropins then 

lead to steroidogenesis and gametogenesis from the gonads, culminating in 

secondary sexual characteristics development and fertility. 

The human GnRH is a decapeptide produced by a small number of GnRH neurons in 

the preoptic area. The GnRH neurons originate in the olfactory placode and undergo 

a remarkable axophilic migration along the scaffold of olfactory, vomeronasal and 

terminal nerves into the forebrain. Ultimately, the GnRH neurons dissociate from their 

olfactory guiding fibers to reach the preoptic area, where their axons extend into the 

median eminence. These complex developmental events are tightly regulated by 

specific spatiotemporal expression patterns of adhesion molecules, growth factors, 

and attractants and repellents (Gonzalez-Martinez et al. 2004). 

The human GnRH receptor (GNRHR) gene, located at 4q13.2-3, encodes a 328 

amino acid G protein-coupled receptor with seven transmembrane domains and an 

extracellular amino terminus, but no intracellular carboxy terminus. Ligand binding 

results in activation of phospholipase C, with increased inositol triphosphate (IP3) 

production and intracellular calcium mobilization (Kakar et al. 1992). 

 

 Kisspeptin (KISS1) and and KISS1 receptor (GPR54 or KISS1R)    

Kisspeptin and its receptor (KISS1R or GPR54) have emerged as the gatekeepers of 

puberty onset and the reproductive function, as already described (Han et al. 2005, 

2007). The human KISS1R gene, located at 19p13.3, encodes a 398-amino acid 

heptahelical G-protein-coupled receptor with homology to the galanin receptor family 
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(Lee et al. 1999). Kisspeptin binding to the KISS1R results in coupling to the Gaq/11 

pathway, with activation of phospholipase C, leading to IP3 production and 

intracellular calcium mobilization (Ohtaki et al. 2001; Kotani et al. 2001; Muir et al. 

2001; Castano et al. 2008). In the central nervous system, Kisspeptin expression is 

highest in the arcuate (ARC) and anteroventral periventricular (AVPV) nuclei, sends 

projections to the media preoptic area, where there is an abundance of GnRH cell 

bodies, whereas KISS1R is expressed in the surface of GnRH neurons (Smith and 

Clarke 2007). Physiological and pharmacological studies conducted in humans and 

animal models showed that Kisspeptin is the most potent known stimulator of GnRH-

dependent LH secretion (Gottsch et al. 2004a). Low doses of Kisspeptin, 

administrated to rodents, primates or humans, either centrally or peripherally, are 

capable to trigger a robust GnRH-dependent gonadotropin release (Gottsch et al. 

2004b; Matsui et al. 2004; Thompson et al. 2004; Dhillo et al. 2005; Messager et al. 

2005; Navarro et al. 2005; Shahab et al. 2005). 

 

 TAC3 (Neurokinin B) and TACR3 (Neurokinin B Receptor)   

Neurokinin B, as already described, is a member of the substance-P-related 

tachykinin family highly expressed in the hypothalamus arcuate nucleus, where it co-

localizes with estrogen receptor-α. In rodents, neurokinin B and GnRH axons are in 

close anatomical apposition within the median eminence, and neurokinin B receptors 

have been identified on GnRH-expressing neurons, suggesting a role at the level of 

the hypothalamic GnRH release (Krajewski et al. 2005). In addition, both neurokinin 

B and its receptor are co-expressed in neurons that express Kisspeptin and 

dynorphin further emphasizing the role of kisspeptin in the regulation of pubertal 

timing (Goodman et al. 2007). 
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 KAL1 

This gene encodes an extracellular 680-amino-acid protein called anosmin-1, which 

contains a cystein-rich region, a whey acidic protein domain, four fibronectin-like type 

III repeats that are homologous to cell adhesion molecules, and several predicted 

heparin sulfate binding regions (Franco et al. 1991). During development, anosmin-1 

is expressed in basement membranes of developing olfactory bulb, retina and kidney 

(Duke et al. 1995)). Anosmin-1 is involved in the control of different cell functions, 

including cell adhesion, neuro/axonal elongation and fasciculation, epithelial 

morphogenesis as well as in the migratory activity of GnRH neurons (Soussi-

Yanicostas et al. 2002; Bulow et al. 2002).  

 

 Fibroblast growth factor 1 receptor (FGFR1) and FGF8 

In the recent years it has been hypothesized that FGF signaling is critical for the 

proper formation and maintenance of a functional GnRH system and that it can be 

modulated by anosmin-1 (Gonzalez-Martinez et al. 2004). The FGFR1 gene, located 

at 8p11.1, has been considered a potential causative gene for Kallmann syndrome, 

following characterization of patients with contiguous syndromes (Vermeulen et al. 

2001; Dode et al. 2003). The FGFR1 is a member of the fibroblast growth factor 

receptor family containing three extracellular Ig-like domains, one acid box domain, 

one transmembrane domain, and two intracellular tyrosine-kinase domains. It is 

expressed in multiple embryonic tissues and organs such as skeletal tissue, inner 

ear, and rostral forebrain (Pirvola et al. 2002; Rice et al. 2003). FGFR1 signaling is 

achieved by receptor conformational changes upon ligand binding, resulting in 

dimerization and subsequent activation by autophosphorylation of the tyrosine-kinase 
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intracellular domains. Heparin sulfate proteoglycan (HSPG) binding is essential for 

the dimerization and activation of the FGF-FGFR complex (McKeehan and Kan et al. 

1994; Ibrahimi et al. 2004). Several lines of evidence hypothesized that FGF 

signaling is critical for the proper formation and maintenance of a functional GnRH 

system, and it can be modulated by anosmin-1 (Gonzalez-Martinez et al. 2004). 

Additionally, the fibroblast growth factor 8 (FGF8) was considered as a key ligand of 

the FGFR1 in the ontogenesis of GnRH neurons. It was initially suspected by the 

observation that FGFR1 mutated receptors have dramatically reduced affinity for 

FGF8 (Pitteloud et al. 2007). Subsequently, experimental results of Chung et al. 

(2008) clearly indicated that the heterozygous state of FGF8 hypomorphic mice alone 

is sufficient to cause significant disruption of GnRH neuronal development. 

 Leptin and Leptin receptor (LEPR) 

While there is no doubt that leptin plays a role in the onset of puberty, current 

evidence is not enough to define the precise nature of this effect. Some argue that 

the initiation of puberty in humans (Frish and Revelle 1970) and rodents (Kennedy 

and Mitra 1963) would require a critical fat mass, and that the resulting increase in fat 

produced leptin would be the signal to initiate puberty once this critical mass is 

achieved (Barash et al. 1996; Chehab et al. 1996). The fact that injection of leptin 

accelerates puberty in normal female mice would support the requirement of a critical 

fat mass for the onset of puberty (Ahima et al. 1997; Chehab et al. 1997). 

 

 Prokineticin 2 (PROK2) and PROK Receptor (PROKR2) 

Prokineticins are secreted bioactive proteins that regulate several biological 

processes, including olfactory bulb morphogenesis and reproduction. Masumoto et 

al. in 2006 ( Masumoto et al. 2006) have shown that the activation of the prokineticin 
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receptor-2 (PROKR2), a G protein-coupled receptor, is essential for the normal 

development of the olfactory bulbs and sexual maturation. 

 

 

 

 Nasal embryonic LHRH factor (NELF) 

Nasal embryonic LHRH factor (NELF) has been hypothesized to participate in the 

migration of GnRH and olfactory neurons into the forebrain. However, the biological 

functions of NELF, which has no homology to any human protein, remain largely 

elusive. Although mRNA expression did not differ, NELF protein expression has been 

described to be greater in migratory than postmigratory GnRH neurons. Pituitary Nelf 

mRNA expression was also observed and increased 3-fold after exogenous GnRH 

administration. NELF has been shown to display predominant nuclear localization in 

GnRH neurons and NELF knockdown impaired GnRH neuronal migration of NLT 

cells in vitro. These findings and the identification of two putative zinc fingers suggest 

that NELF being a transcription factor could be involved in the onset of puberty (Xu et 

al. 2010). 

 

 CHD7 

Clues to the candidate genes for GnRH deficiency in humans could also be 

elaborated by other syndromes that combine hypogonadism and olfactory 

abnormalities. CHARGE syndrome is a developmental disorder consisting of eye 

coloboma, heart defects, choanal atresia, growth retardation, genitourinary 

anomalies and ear abnormalities (Pagon et al. 1981). However, no single feature is 

universally present or sufficient for the diagnosis of CHARGE syndrome. Other 

frequently occurring features include semicircular canal agenesis, hearing 
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impairment and characteristic face and hand dysmorphia. In 2007, new diagnostic 

criteria have been proposed (Sanlaville and Verloes 2007). This syndrome has as an 

estimated birth incidence of 1/8500 -12000 and is caused by CHD7 mutations 

(Vissers et al. 2004). CHD7 encodes the chromodomain helicase DNA-binding 

protein 7, belonging to a family which shares a unique combination of functional 

domains consisting of two N-terminal chromodomains, followed by SWI2/SNF2-like 

ATPase/-helicase domain and aDNA-binding domain. CHD protein complexes may 

affect chromatin structure and gene expression and thereby play important roles in 

regulating embryonic development (Higgs et al. 2007). CHD7 is expressed in the 

disease-associated organs of CHARGE syndrome, but also in affected tissues in 

Kallmann syndrome, including the olfactory epithelium and pituitary in mice, the 

olfactory placode in mouse embryo, as well as the olfactory nerve and bulb, 

hypothalamus and pituitary in humans (Kim et al. 2008; Jongmans et al. 2009). The 

CHD7 pattern of expression is consistent with involvement in the development of the 

olfactory pathway and the GnRH neurons. 

 

 LIN28B 

LIN28B is the human homolog of a C.elegans gene with a role in timing larvae to 

adult maturation, which suggests that LIN28B could play a role in human sexual 

maturation. This is further supported by genome-wide association studies indicating 

that polymorphisms in or near the LIN28B gene could be significant sources of 

variation in the age of menarche in girls (He et al. 2009; Ong et al. 2009; Perry et al. 

2009). 

 

 GABRA1 

Gamma-Aminobutyric acid (GABA) is a dominant inhibitory neurotransmitter involved 

in the modulation of brain electric activity and puberty onset in primates. GABA 
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inhibitory effects on GnRH neurons are mainly mediated by GABA-A receptor 

alpha1-subunit. GABRA1 is reported to be essential for the effects of the gamma 

amino butyric acid type A (GABAA) receptors on GnRH neurons (Lee et al. 2010). 

Early studies showed that a GABAA receptor antagonist (bicuculine) accelerated 

puberty in monkeys (Keen et al. 1999). Recently it was demonstrated that this effect 

was mediated by kisspeptin as indicated by robust increases in kisspeptin secretion 

in response to bicuculine (Kurian et al. 2012). Additionally, the effect of bicuculine on 

GnRH neurons was prevented by pre-treatment with anti-kisspeptin serum 

(Terasawa et al. 2010; Kurian et al. 2012). However, selective reduction of GABAA 

receptors in GnRH neurons in mice did not lead to visible pubertal abnormalities (Lee 

et al. 2010), suggesting that deficiencies in this receptor would be compensated for in 

rodents.  

 

 NPYR  

The NPYR gene encodes the receptor for neuropeptide Y (NPY), which antagonizes 

GABA effects on GnRH neurons. This antagonism was shown to play a role in 

pubertal development in monkeys and rodents (Terasawa and Fernandez 2001). 

Additionally, hypothalamic NPY-producing neurons were shown to co-express Kiss1r 

and respond to kisspeptin in mouse cells and sheep hypothalamic explants. These 

observations raised the possibility that mutations in the NPYR gene could play a role 

in the etiology of ICPP (Backholer et al. 2010; Kim et al. 2010). 

 

 Makorin RING –finger protein 3 (MKRN3) 

Very recently MKRN3 protein was proved to have an inhibitory effect on GnRH 

release (Abreu et al. 2013). The authors showed that Mkrn3 mRNA, which is 

abundant in the ARC nucleus in mice, was highest on postnatal days 10 and 12, 

began to decline on day 15, and reached a nadir by days 18 to 22, at which time 
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Mkrn3 expression was 10 to 20% of the levels detected at 10 days, precisely 

consonant with the onset of puberty, and remained low after puberty. The timing of 

the decline in Mkrn3 expression correlated with the ages at which arcuate Kiss1 and 

Tac2 expression have been shown to increase, heralding the onset of puberty.    

 

1.3.b  Environmental factors 

1.3.b1 Intrauterine conditions 

Early studies proposed that the intrauterine milieu might influence physiological 

events occurring throughout life (Barker et al. 1993). Evidence of central precocious 

puberty associated with intra-uterine growth restriction (IUGR) has been provided in 

some patients with Russel-Silver syndrome (Silver 1964) or with maternal uniparental 

isodisomy of chromosome 14 (Tomkins et al. 1996; Fokstuen et al. 1999). In the UK, 

the age at menarche was 0.2 yr earlier in girls with birth weight below 2.85 Kg as 

opposed to those weighing more than 3.75 Kg (Cooper et al. 1996). In Spain, among 

girls with early puberty (B2 between 8 and 9 yr), menarcheal age was 1yr earlier in 

girls with a birth weight below 2.7 Kg (Ibanez et al. 2000). However, in France, IUGR 

was found to be associated with a pubertal delay averaging 0.8 yr in girls and 2.1 yr 

in boys (Lienhardt et al. 2002). A sexual dimorphism in the relationship between birth 

weight and timing of puberty was observed in a limited group of 35 girls who 

demonstrated pubertal age positively and significantly correlated with birth weight 

tertiles whereas a trend toward a negative correlation was seen in 34 boys 

(Delemarre-van de Waal et al. 2002). This female predisposition to early onset of 

puberty in IUGR (Marks and Bergeson 1977, Delemarre-van de Waal et al. 2002) is 

in agreement with the gender dimorphism seen in other health conditions. This 

suggests that factors linked with IUGR may be superimposed to a more general 

mechanism rendering females prone to develop sexual precocity.  
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1.3.b 2. Nutrition 

 

Among the factors linked with the living standards nutrition is likely to play a key role 

in the downward secular trend in timing of puberty and the differences between 

underprivileged and privileged settings. A direct relationship between body weight 

and the age at onset of puberty was suggested by Frisch and Revelle (Frisch and 

Revelle 1970; Frisch and Revelle 1971) based on comparison between early and late 

maturers. Frish et al. (Frisch and Revelle 1973) concluded that a critical amount of 

body fat was needed for the onset of puberty. The Frish and Revelle hypothesis has 

triggered a number of studies that confirmed (Wattigney et al. 1999; Stark et al. 1989; 

Moisan et al. 1990; Merzenich et al. 1993) a significant relationship between 

menarcheal age and fat mass estimated through BMI, the sum of skinfold thickness 

or dual energy x-ray absorptiometry. On the other hand it has been shown that girls 

with early menarche are more likely to be obese than those with late menarche 

(Stark et al. 1989). In comparison with non obese girls, the average menarcheal age 

of obese girls was 9 months earlier in Japan (Murata and Hibi 1992) and 0.9 yr 

earlier in Thailand (Jaruratanasirikul et al. 1997).  However, it is debatable whether 

the Frisch and Revelle hypothesis could be relevant when only the physiological 

variations in body fatness are considered and thus the mechanisms involved in these 

pathological conditions may be different from those in normal subjects. Importantly, 

there were studies suggesting that childhood might be a critical period for weight to 

influence the timing of puberty. Kaprio et al. (Kaprio et al. 1995) suggested that the 

association between relative body weight and menarcheal age was mainly due to 

correlated genetic effects.  On the other hand, Cooper et al. (Cooper et al. 1996) 

showed that menarcheal age was inversely related to weight at 7 yr. In this same 

direction, Wang et al. (Wang 2002) demonstrated that early sexual maturation was 

associated with an increased prevalence of fatness in girls. Such sexual dimorphism 
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could involve genetic and/ or endocrine factors. As a consequence, it is tempting to 

conclude that the link between nutritional status and physiological variations in the 

onset of puberty can be significant but not particularly strong, suggesting that the 

relationship is indirect or partial or superseded by other factors. 

Fat-produced leptin is regarded as the main mediator of nutritional signals to 

reproduction. Leptin deficient ob/ob mice have arrested puberty and infertility 

(Swedloff et al. 1976; Batt et al. 1982) and humans with congenital leptin deficiency 

present hypogonadotropic hypogonadism and early onset obesity. Negative energy 

balance with suppression of serum leptin is also associated with loss of body fat due 

to extreme exercise routines or eating disorders (Licinio et al. 2004; Welt et al. 2004). 

These abnormalities are at least partially rescued with leptin supplementation 

(Farooqi et al. 2002; Gibson et al. 2004; Kiess et al. 1998).  Although it is clear that 

leptin plays a role in the timing of puberty, current evidence is not enough to define 

the precise mechanism of this effect. Kisspeptin is a recognized target of leptin 

(Smith et al. 2006a; Bakholer et al. 2010) and suggested to be the main mediator of 

pubertal effects of leptin (Roa et al. 2008; Kalamatianos et al. 2008). In this context, 

the hypotheses to explain accelerated induction of puberty in foreign adopted 

children after migration have incriminated the transition from an underprivileged to a 

privileged high energy intake environement, through leptin mediated awaking of the 

hypothalamic-pituitary-gonadal axis (Proos et a. 1991; Bourguignon et al. 1992).   

Evidence suggests that the activity of Kiss1 neurons is influenced by body weight 

nutrition, metabolism and hormonal signals (Fernandez-Fernandez et al. 2006; 

Forbes et al. 2009; Wu et al. 2009). More precisely, a significant fraction of Kiss1 

neurons in the ARC express the leptin receptor, Ob-Ob (Smith et al. 2006). 

Additionally, Kiss1mRNA is significantly reduced in obese ob/ob mice compared with 

wild-type controls (Smith et al. 2006). In other models in which the leptin receptor is 

dysfunctional as a result of a mutation, such as obese, diabetic Zucker rat (fa/fa), 

reproduction is also impaired. Treatment with exogenous kisspeptin can induce an 
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acute release of LH in these animals, suggesting that the kisspeptin signaling might 

be responsible for their dysfunction (Navarro et al. 2004). In rats with streptozotocin-

induced diabetes, hypothalamic levels of Kiss1 mRNA as well as pituitary 

gonadotropin levels are decreased. The hypogonadotropic state associated with 

streptozotocin-induced diabetes can be rescued by kisspeptin administration, 

suggesting that reduced kisspeptin signaling may explain the reproductive failure that 

often accompanies diabetes (Castellano et al. 2006(b); Castellano et al. 2009). In 

states of undernutrition (or fasting) which reduce Kiss1 expression as well as 

gonadotropin secretion, exogenous kisspeptin administration can establish 

reproductive function (Navarro et al. 2004; Roa et al. 2008; Castellano et al. 2005). 

Collectively, these findings point to a potentially important role of Kiss1 neurons in 

regulation of reproduction by metabolic factors. 

 

 

1.3. b.3 Stress 

 

Different stress situations, such as adverse physical or psychological conditions and 

acute or chronic illnesses, are known to supress the hypothalamic-pitiutary-gonadal 

axis activation (Van den Berghe et al. 1998; Chrousos 1992). Intensive physical 

training and sport competition, such as in elite gymnasts, may lead to combined 

physical, psychological and nutritional stresses that are associated with delayed 

puberty and late menarche (Theintz et al. 1989; Georgopoulos et al. 1999). In war 

conditions, which involve nutritional deprivation and psychological/emotional insult 

such as occurred in Bosnia and Croatia, a delay in menarcheal age was observed 

(Tahirović 1998; Prebeg and Bralic 2000). In these situations, it is difficult to separate 

the participation of each stress factor. The relative difference in impact of the 

components of a stressful situation is further suggested by the heterogeneity of the 
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neuroendocrine response to various acute stressors and by the fact of different 

sensitivity of each individual to a specific stressor (Pacak and Palkoviits 2001). 

Among the neuronal circuits involved, signaling through CRH and interleukin-1 (IL-1) 

may be particularly important (Rivest and Rivier 1995). In this context, it is possible 

that, in foreign migrating children, withdrawal from a stressful environment 

contributes to potentiation of maturation, although some stress may result from the 

adoption and migration process as well. This hypothesis might be consistent with the 

observation of precocious pubertal development in conditions of stressful rearing and 

insecure attachment to parents (Belsky et al. 1991; Wierson et al. 1993). 

 

 

1.3.b.4  Exposure to endocrine-disrupting chemicals (EDCs) 

 

EDCs are environmental substances that have been introduced by man and that may 

influence the endocrine system in a harmful manner (Marshall 1993; Toppari et al. 

1996). Krstevska-Konstantinova and co-workers (Krstevska-Konstantinova et al. 

2001) have hypothesized that moving to Belgium could result in a change in 

exposure to EDCs leading to sexual precocity. The screening for eight 

organochlorine pesticides in serum of foreign migrating patients with precocious 

puberty in comparison with Belgian native patients has revealed the presence of p,p’-

DDE [1,1-dichloro-2,2-bis (4-chlorophenyl) ethane] with a half life of several decades. 

DDT has been banned in the US and Western European countries since the late 

1960s (Partsch and Sippell 2001; Key and Reeves 1994), but is still used extensively 

in developing countries. DDT and some isomers behave as estrogen agonists (Clark 

et al. 1998; Kelce et al. 1995) or may promote the hypothalamic-pituitary-gonadal 

axis maturation. On the other hand migration may interrupt exposure of foreign 

children to some EDCs. As a consequence, it is unknown whether central precocious 
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puberty could result indirectly from withdrawal of the negative feedback effects of the 

sex steroids or their environmental analogs and/or directly from accelerated 

hypothalamic maturation caused by sex steroids. The biopotency of EDCs on the 

reproductive system in general is further supported by data showing that 

spermatogenesis was delayed or advanced after neonatal administration of high or 

low doses of diethylstilbestrol respectively (Atanassova et al. 2000). Another study 

demonstrated that increased lead levels were associated with delayed pubic hair 

development and menarche but not with breast development in a mixed cohort of 

American girls (Wu et al. 2003). In conclusion, EDCs may act at different 

hypothalamic-pituitary-gonadal or extragonadal levels to influence pubertal timing.  

 

2. DISORDERS OF PUBERTAL ONSET 

 

2. A. Delayed puberty   

2. A.1 Age limits 

 

Delayed puberty (DP) is defined by the absence of testicular development in boys 

beyond 14 years old (or a testicular volume lower than 4 ml) and by the absence of 

breast development in girls beyond 13 years old. DP occurs in approximatively 3% of 

cases. 

 

2. A.2 Causes and diagnostic work up 

Causes and diagnostic work up of delayed puberty are detailed in figures 11 and 12.  
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Figure 11 Diagnostic work-up of delayed puberty in boys (www.pathology.leedsth.nhs.uk) 
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Figure 12. Diagnostic work-up of delayed puberty in girls (elsevierimages.com) 

Congenital hypogonadotropic hypogonadism (CHH) is one od the causes of pubertal 

failure in both boys and girls. CHH is usually due to defective secretion of LH and 

FSH, leading to abnormal testicular/ovarian function during the physiological 

activation of the gonadotropic axis. The prevalence of CHH has been estimated at 

1/4000 to 1/10000 in males and is reported to be 2 to 5 times less frequent in 
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females than males (Tanner 1962; Kaprio et al. 1995). Isolated forms are most 

frequently discovered during adolescence or early adulthood because of incomplete 

or absent pubertal development. Genetic alterations affecting GnRH secretion 

(mutations in GNRH1, KISS1 and KISS1R, TAC3 and TACR3) or GnRH action 

(GNRHR) account for mainly familial cases. Patients with isolated CHH can usually 

be distinguished from adolescents with constitutional delay of growth and puberty 

because they often have normal height for chronological age (de Ridder et al. 1992), 

while the latter tend to be short (Van Dop et al. 1987). CHH is less often diagnosed in 

boys before the normal age of puberty, usually based on unilateral or bilateral 

cryptorchidism and/or micropenis during the neonatal period. These cases can be 

documented by hormonal investigations if done before the age of 6 months, the only 

period before puberty during which testosterone and gonadotropin deficiency can be 

documented due to the mini-puberty during the first 3-6 months of life (Tanner and 

Whitehouse 1976; Sklar et al. 1980; Palmert et al. 2001; Hergenroeder et al. 1999).   

Patients with more complex forms are usually diagnosed by pediatricians or pediatric 

endocrinologists during early infancy or childhood,  due to multiple anterior pituitary 

hormone deficiencies (Van Wieringen 1978; Eveleth 1978), leading to growth failure, 

hypoglycemia, adrenal insufficiency, or in other forms in combination with adrenal 

failure (Herman-Giddens et al. 1997), obesity (NHANES III 1997; Lee 2001; 

Grumbach 1998; Bridges 1994; Proos 1991) or neurological disorders that appear 

before the normal age of puberty and are usually predominant. For example, 

Kallmann’s syndrome may be suspected in a prepubertal patient with anosmia or 

mirror movements (Krstevska-Konstantinova et al. 2001) especially when there is 

already a positive family history. At this point, we will review the main gene defects 

associated with GnRH-dependent hypogonadotropic hypogonadism, including 

normosmic idiopathic hypogonadotrophic hypogonadism (nIHH) and Kallman 

Syndrome (KS) (Fig.13).  
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Figure 13. Genes implicated in GnRH-dependent hypogonadotropic hypogonadism  

 Normosmic idiopathic hypogonadotrophic hypogonadism (nIHH) 

or Isolated hypogonadotropic hypogonadism 

Congenital nIHH is characterized by partial or complete lack of pubertal development 

after the age of 13 years in girls and 14 years in boys, secondary to deficient GnRH-

induced gonadotropin secretion. The diagnosis is based on the presence of low 

levels of sex steroids associated with low or inappropriately normal LH and FSH 

serum levels, with no anatomical lesion in the hypothalamic-pituitary tract and no 

other pituitary hormone deficiencies (Seminara, Oliveira et al. 2000). nIHH is  a rare 

and genetically heterogeneous disease, which occurs most commonly in the sporadic 

form or, less frequently, inherited as an autosomic recessive trait (Quinton et al. 

2001). Its prevalence has been estimated at 1/4000 to 1/10000 in males and it is 

reported to be between 2 to 5 times less frequent in females (Seminara et al. 1998; 

Quinton et al. 2001) but it is probably underestimated in this gender, as in women 

breast development can be highly variable, it is often present and sometimes almost 

normal, and the disease is revealed by primary amenorrhea in over 90% of cases. 
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In the last few years, a number of neuropeptides and their receptors involved in the 

control of different stages of GnRH function were implicated in the pathogenesis of 

nIHH, especially in familial cases. 

 

 GnRH1 and GnRHR 

Mutations in the GNRHR gene were first described by de Roux et al. (1997). To date, 

approximately twenty different homozygous or compound heterozygous point 

mutations in the GNRHR have been reported in patients with sporadic or familial 

forms of nIHH, in an autosomal recessive mode of inheritance (de Roux et al. 1997; 

Layman et al. 1998; Kottler et al. 1999; Seminara et al. 2000b; Pralong et al. 1999; 

Costa et al. 2001; Soderlund et al. 2001; Silveira, Stewart et al. 2002; Meysing et al. 

2004). Large-scale screening revealed that GNRHR mutations account for 3.5-16% 

of sporadic cases of nIHH and up to 40% of familial cases of nIHH (Beranova et al. 

2001), representing the most frequent genetic cause of the disease.   

The mechanisms responsible for the inactivation of the mutant GnRH receptors 

include defects in the synthesis, trafficking to the cell membrane and/or in 

internalization, recycling, or degradation of receptors, impaired ligand binding and/or 

ligand –induced signal transduction, leading to various degrees of LH and FSH 

deficiency (Conn and Janovick, 2009). The phenotype of nIHH patients with GNRHR 

mutations varies from partial to complete hypogonadism (de Roux et al. 1997; Costa 

et al. 2001; Silveira, Stewart et al. 2002; Pitteloud et al. 2001).  

Considering the fundamental role of GnRH in human reproduction, the gene that 

encodes GnRH is an obvious candidate for explaining nIHH. Bouligand et al. (2009) 

reported a homozygous GNRH1 frameshift mutation (c.18-19insA) in the amino-

terminal region of the signal peptide-containing protein precursor of GnRH in a 

teenage brother and sister out of 145 patients screened with sporadic nIHH. The 



 92 

severity of gonadotropin deficiency was demonstrated by very low levels of plasma 

gonadotropins and sex steroids in both siblings. Their unaffected parents and sister 

were heterozygous and had a normal phenotype, indicating an autosomal recessive 

mode of transmission. In another study (Chan et al. 2009), the DNA screening of 310 

patients with nIHH revealed a different homozygous frameshift mutation (c.87delA) in 

one boy with micropenis, bilateral cryptorchidism and absent puberty at 15 years of 

age, suggestive of severe congenital HH. Heterozygous variants which were not 

seen in the normal controls were identified in four patients with IHH in this study. 

Therefore, the large number of patients with nIHH without GNRH1 defects in these 

two recent studies indicated that the GNRH1 mutations represent a very rare cause 

of nIHH. Loss-of-function mutations in genes encoding ligands arise less commonly 

than in genes encoding receptors (Chanc et al. 2009). One possibility to explain this 

difference is related with the size of the peptide. Indeed, GNRH1 represents a 

smaller “target” for mutation and the infertility caused by genetic mutations results in 

the rapid disappearing of these inherited defects in future generations. 

 Kisspeptin and KISS1 receptor (KISS1R or GPR54) 

In 2003, two independent groups identified a new candidate region in the short arm 

of chromosome 19 using linkage analysis on two large consanguineous families with 

several members affected with nIHH (de Roux et al. 2003; Seminara et al. 2003). 

After screening several candidate genes, homozygous inactivating mutations in the 

GPR54 gene were identified in the affected patients, establishing a new and 

unsuspected cause of nIHH. Segregation analysis showed that heterozygous carriers 

of GPR54 mutations had normal pubertal development, confirming the autosomic 

recessive mode of inheritance. A recent report estimated that the prevalence of 

KISS1R mutations in humans encompasses approximately 5% of normosmic 

idiopathic hypogonadotropic hypogonadism (IHH) cases and about 2% of total IHH 

cases although this prevalence is expected to be higher in familial cases (Bianco and 
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Kaiser 2009)..After the initial description a few different GPR54 loss-of-function 

mutations have been described. So far, GPR54 abnormalities were identified in three 

out of 180 sporadic cases (1,6%) and five out of 24 familial cases (20,8%) (de Roux 

et al. 2003; Seminara et al. 2003; Semple et al. 2005; Tenenbaum-Rakover et al. 

2007;  Lanfranco et al. 2005, Nimri et al. 2011). 

Patients carrying GPR54 mutations present with impaired pubertal development with 

no other associated conditions. Reproductive phenotype varies from partial to severe 

hypogonadism. However, the majority of patients had at least partial LH and FSH 

responses to GnRH stimulation. De Roux et al. (2003) were the first to describe a 

consanguineous French family with eight children, five of whom had HH. The index 

case was a 20-year-old man referred for delayed puberty. He had small intra-scrotal 

testes (4ml), a penis of 7cm, sparse pubic hair and a bone age of 15 years With no 

other associated abnormalities. His 16-year-old sister had partial breast development 

and a single episode of uterine bleeding. She had low plasma gonadotropin levels 

with a “blunted” response in the GnRH test and low sex steroid levels. Sequencing 

revealed a homozygous deletion of 155 bp spanning the splice acceptor site of the 

intron 4 - exon 5 junction and part of exon 5. Seminara et al. (2003) described a male 

patient who presented at the age of 18 years with delayed puberty (hypotrophic 

intrascrotal testes measuring 1.2ml, sparse pubic hair) and had a GPR54 compound 

heterozygous mutation (Arg331X and X399Arg). Although he had low basal 

testosterone and gonadotropin levels, response to GnRH stimulation test was normal 

and frequent gonadotropin sampling showed the presence of low amplitude, 

endogenous LH pulses. On the other hand, Semple et al. (2005) described another 

compound heterozygous mutation (C223R and R297L) in a patient of mixed Turkish-

Cypriot and Afro-Caribbean ancestry who was diagnosed at 2 months of age with 

micropenis, bilateral cryptorchidism and undetectable levels of gonadotropins. 

Micropenis and/or cryptorchidism were described in three cases, suggesting a role 
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for kisspeptin/Kiss1R in the gonadotropin induced androgen secretion in the last 

trimester of gestation. Additionally, Tenenbaum-Rakover et al. (2007) identified five 

patients with HH belonging to two unrelated consanguineous Arab-Muslim families 

from Syria and Israel. All affected subjects were homozygous for a GPR54 missense 

mutation (L102P). The index case of the first family presented partial pubertal 

development (Tanner stage B4) and primary amenorrhea. In the second family the 

propositus had micropenis and cryptorchidism at birth but hormonal studies revealed 

persistent with a normal frequency but a very low amplitude LH pulsatile secretion. 

Finally, Nimri et al. (2011) described a new homozygous mutation (c.T815C) in 

GPR54 leading to a phenylalanine substitution by serine (p.F272S). Functional 

analysis showed an almost complete inhibition of kisspeptin-induced GPR54 

signaling and a dramatic decrease of the mutated receptor expression at the cell 

surface. The males exhibited the same clinical features from infancy to adulthood, 

characterized by cryptorchidism, a relatively short penis, and no spontaneous 

pubertal development. The female patient presented at 18 yr with absence of 

secondary sexual characteristics and primary amenorrhea. Repeated stimulation 

tests demonstrated complete gonadotropin deficiency throughout follow-up. It is 

interesting to state that male and female patients carrying GPR54 mutations have 

been successfully treated, either with exogenous gonadotropin or long –term 

pulsatile GnRH infusion and achieved fertility and normal pregnancy outcomes, 

suggesting that the Kisspeptin/GPR54 system is operative above the GnRH receptor 

level, most likely stimulating GnRH secretion. This was already demonstrated in 

animal models, but without discernible direct effect on the pituitary or gonads. (Bo-

Abbas et al. 2003; Seminara et al. 2003; Lanfranco et al. 2005; Pallais et al. 2006; 

Tenenbaum-Rakover et al. 2007; Colledge 2009).. Further studies in animal models 

showed that kisspeptins can stimulate GnRH secretion in the hypothalamus: 

Kisspeptin-10 was shown to elicit GnRH release by rat hypothalamic explants (Plant 

and Ramaswami 2009; Colledge et al. 2009; Roa et al. 2008), while intracerebral 
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kisspeptin injection to sheep induced GnRH release into the cerebrospinal fluid. An 

additional interesting finding in men with HH and GPR54 mutations is the relatively 

high frequency of patients with cryptorchidism and micropenis that are considered to 

reflect gonadotropin deficiency during the antenatal period (Grumbach et al. 2005). 

More recently, Topaloglu et al. reported the first inactivating mutation in KISS1 gene 

in a large consanguineous family that results in failure of pubertal progression, 

indicating that functional kisspeptin is important for puberty and reproduction in 

humans (Topaloglu et al. 2012). These data indicate that the activation of 

Kisspeptin/GPR54 signaling is not only necessary to trigger puberty but is also 

involved in all phases of physiological activation of the hypothalamic-pitiutary-

gonadal axis. However, whether the KISS1/GPR54 system is the initial trigger of 

puberty or whether it acts as a downstream effector of other yet to be identified 

factors it remains unclear.  

 Neurokinin B (TAC3) and Neurokinin B recetor (NKR3 or 

TACR3) 

By means of genome-wide analysis of nine inbred Turkish families with IHH 

Topaloglu et al. (2009) were able to identify that the neurokinin B pathway has a 

critical role in the human reproductive axis. Homozygous loss-of-function missense 

mutations in TAC3 and TACR3, encoding neurokinin B and its receptor, respectively, 

were identified in four unrelated consanguineous families; while pedigree analysis 

also demonstrated that heterozygous carriers were unaffected, indicating autosomal 

recessive HH. The TACR3 mutations (G93D and P353S) demonstrated evidence of 

impaired receptor signaling in HEK293 cells. Likely, a marked reduced activity of the 

synthetic peptide containing the M90T variant of the neurokinin B was demonstrated 

using the same expression system. All patients with TAC3 or TACR3 gene mutations 

exhibited a severe gonadotropin deficiency. Micropenis was reported in all affected 

males, suggesting failure of normal intrauterine and perinatal activation of the 
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reproductive axis. Additionally, a novel missense mutation (H148L) in the first 

extracellular loop of the neurokinin B receptor was reported in three siblings with 

nIHH (Guran et al. 2009). The signaling activity of the mutant receptor in response to 

neurokinin B or its analog was severely impaired in a heterologous expression 

system. This study further strengthens the link between the neurokinin B signaling 

defects and the pathogenesis of nIHH.  More recently, Young et al. (2010) identified 

three unrelated patients with the same homozygous substitution in the TAC3 intron 

splice acceptor site (c.209-1G>C) and three siblings with a homozygous mutation in 

the TACR3 intron 2 splice acceptor site (c.738-1G>A) both of which invalidate 

neurokinin B and its receptor respectively. Like Topaloglou et al. (2009) they 

observed dissociation between very low LH levels and normal or near-normal FSH 

levels that responded excessively to GnRH challenge. Finally, the extensive analysis 

of the TAC3 and TACR3 in a large cohort of 345 patients with nIHH revealed that 

mutations in this system appear to have an attenuated effect over time, as a 

significant proportion of patients carrying mutations exhibited reversal of the 

hypogonadotropism (Gianetii et al. 2010). These findings demonstrate the 

hypothalamic origin of the gonadotropin deficiency showing that neurokinin B and 

NK3R both play a crucial role in human GnRH release.  

 

 Kallmann syndrome (KS) 

Most cases with KS are also diagnosed at the time of puberty because of the lack of 

sexual development, identified by small testes in males or the lack of breast 

development and primary amenorrhea in females. The prevalence of Kallmann 

syndrome has been roughly estimated to occur in 1/10.000 males and in 1/50.000 

females (Pawlowitzki et al. 1987). Although Kallmann syndrome is most commonly 

sporadic, X-linked, autosomal dominant and autosomal recessive inheritance has 
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been described (Waldstreicher et al. 1996; Georgopoulos et al. 1997). In Kallmann 

syndrome, the hypogonadism is due to GnRH deficiency (Naftolin et al. 1971), 

probably by defective migration of GnRH-synthesizing neurons. Anosmia is related to 

hypoplasia or aplasia of the olfactory bulbs, even though normal olfactory bulbs 

images have been reported (Quinton et al. 1996; Sato et al. 2004). Genetic disruption 

of factors putatively involved in the GnRH migration has been described in patients 

with KS. Of these, the Kallmann 1 (KAL1) and the fibroblast growth factor receptor 1 

(FGFR1) genes were the major loci identified in the etiology of KS.  

 KAL1 

Various types of KAL1 abnormalities have been described that are distributed 

throughout the entire gene, including missense, nonsense and splice site mutations, 

intragenic deletions and submicroscopic chromosomal deletions (Tsai and Gill 2006; 

Trarbach et al. 2007). These KAL1 abnormalities have been identified in 

approximately 8-11% of sporadic and 14-50% of familial cases of X-linked Kallmann 

syndrome (Franco et al. 1991; Legouis et al. 1991; Hardelin et al. 1993; Tsai and Gill 

2006; Trarbach et al. 2007).  Patients with KAL1 mutations most usually present 

severe and highly penetrant reproductive phenotypes (Salenave et al. 2008; Pitteloud 

et al. 2002). In the X-linked Kallmann syndrome most patients have micropenis and 

bilaterally undescended testes at birth, reflecting severe congenital GnRH and 

gonadotropin insufficiency (Salenave et al. 2008). The non-reproductive, non-

olfactory abnormalities frequently associated with X-linked Kallmann syndrome are 

cleft lip and/or palate, tooth agenesis, high arched palate, sensorineural hearing 

impairment, abnormal eye movements, congenital ptosis, abnormal visual spatial 

attention, short metacarpals, unilateral renal agenesis, agenesis of the corpus 

callosum, involuntary upper limb mirror movements (bimanual synkinesis) (White et 

al. 1983; Schwankhaus et al. 1989; Zenteno et al. 1999; Mayston et al. 1997; 

Quinton et al. 2001; Dode and Hardelin 2009).  
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 FGFR1 and FGF8  

The FGFR1/anosmin1 connection is supported by the shared clinical findings of 

patients carrying KAL1 and FGFR1 mutations.  Dode et al. (2003) were the first 

investigators reporting the association of loss-of-function mutations in FGFR1 with an 

autosomal dominant form of Kallmann syndrome. Since then, FGFR1 gene was 

extensively studied and mutations were identified in approximately 10-17% of 

Kallmann syndrome affected individuals. Some non-reproductive phenotypes, 

including cleft lip or palate, dental agenesis and, less often, bimanual synkinesis 

were also reported (Tsai and Gill 2006; Trarbach et al. 2007). FGFR1 mutations have 

been associated with marked phenotypic variability both within and among families 

and apparent incomplete penetrance. Most reported FGFR1 mutations are small 

insertion/deletion or point mutations. Only a heterozygous FGFR1 deletion was 

reported in a female patient with IHH (Trarbach et al. 2009).  

The fibroblast growth factor 8 (FGF8) is considered as a key ligand of the FGFR1 in 

the ontogenesis of GnRH neurons. It was initially suspected by the observation that 

FGFR1 mutated receptors have dramatically reduced affinity for FGF8 (Pitteloud et 

al. 2007). Falardeau et al. (2008) screened a large cohort of patients with IHH and 

identified six FGF8 missense mutations that reduce the receptor biological activity in 

vitro. The affected patients presented a different degree of GnRH deficiency, 

including the rare adult onset form of hypogonadotrophic hypogonadism and a 

variability of olfactory phenotypes.  

 

 PROK2 and PROKR2 

Mutations in PROKR2 and its ligand were first described by Dode et al. (2006), who 

studied a cohort of 192 patients with Kallmann syndrome. One frameshift and nine 



 99 

missense mutations on PROKR2 and four PROK2 defects were identified in these 

patients. However most of these mutations were found in heterozygous state and 

some in apparently unaffected individuals, while no functional study was provided, 

raising questions regarding their pathogenic role. Later, PROK2 and PROKR2 

mutations were found in patients with GNRH deficiency with or without olfactory 

abnormalities (Pitteloud, Zhang et al. 2007; Cole et al. 2008; Abreu et al. 2008).  In 

the study performed by Cole et al. (2008), mutations in PROKR2 or PROK2 genes 

were observed in 2 and 5% of Kallmann syndrome, respectively, and in 2% of nIHH 

probands. Genotype/phenotype correlations showed considerable variability even 

within families (Dode et al. 2006; Cole et al. 2008; Abreu et al. 2008). Reproductive 

phenotypes of patients with heterozygous or homozygous PROK2/PROKR2 

mutations ranged from complete to partial IHH, including complete reversal of GnRH 

deficiency. Additional non-reproductive phenotypes such as fibrous dysplasia, severe 

obesity, sleep disorder, synkinesis and epilepsy have been described in these 

patients. Abreu et al. (2008) described a homozygous nonsense PROKR2 mutation, 

in an anosmic boy with micropenis, bilateral cryptorchidism and high arched palate. 

Many mutations were identified in the heterozygous state but segregation analysis 

and in vitro functional studies suggest that the presence of monoallelic PROKR2 

mutations is not sufficient to produce hypogonadotrophic hypogonadism (Abreu et al. 

2008; Monnier et al. 2009). Different defective mechanisms of the PROKR2 

missense mutations were demonstrated in vitro. However, when wild-type and 

mutant receptors were co-expressed, none of the mutant receptors affected cell 

surface-targeting or signaling activity of the wild-type receptor, arguing against a 

dominant negative effect of the PROKR2 hetorozygous mutations in vivo (Monnier et 

al. 2009). In other words, patients heterozygous for PROK2 and PROKR2 are 

expected to carry additional in other, as yet unknown genes, arguing in favor of a 

digenic or oligogenic mode of inheritance of the disease. 
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 CHD7 

Given that most if not all CHARGE patients have both olfactory aplasia or hypoplasia 

and IHH Kim et al. (2008) hypothesized that CHD7 mutations could be involved in the 

pathogenesis of Kallmann syndrome. The authors performed a mutation screening of 

the CHD7 gene in 197 patients with IHH with and without olfactory abnormalities. 

Seven heterozygous mutations were identified in three sporadic Kallmann syndrome 

and four sporadic nIHH patients. Therefore, it was proposed that these conditions 

could be considered mild allelic variants of CHARGE syndrome. On the other hand, 

another study of Jongamans et al. (2009) identified CHD7 mutations only in Kallmann 

syndrome patients who had additional phenotypic features of CHARGE syndrome. 

This study suggested that the patients diagnosed with IHH and anosmia should be 

screened for clinical features consistent with CHARGE syndrome and only in the 

presence of deafness, dysmorphic ears and /or hypoplasia or aplasia of the 

semicircular canals CHD7 sequencing should be recommended.  

 Digenic (oligogenic) defects 

The distinction among the different abnormalities of pubertal development may not 

be absolute. It is worth mentioning that mutations in FGFR1 can cause both KS and 

nIHH (Pitteloud et al. 2006) and a homozygous mutation in PROK2 has been 

reported to cause both KS and HH within a single family (Pitteloud et al. 2007a). A 

more comprehensive study of PROK2 and PROKR2 in HH and KS patients found 

mutations in both genes distributed in both groups of patients (Cole et al. 2008)  

IHH has been classically considered a monogenic disorder with Mendelian 

inheritance pattern. However, in light of the report by Pitteloud et al. (2007a), where 

two IHH families were described, one with Kallmann syndrome with FGFR1 and 

NELF mutations and another with nIHH with GNRHR and FGFR1 mutations, a 

possible digenic model causing the IHH phenotype was proposed. Co-existence of 
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mutations in PROKR2 and KAL1 genes, PROKR2 and PROK2 and FGFR1 and 

FGF8 has also been described in cases of Kallmann syndrome (Hardelin et al. 1992; 

Miura et al. 2004; Dode et al. 2006; Cole et al. 2008; Canto et al. 2009). Defects in 

different genes seem to act synergistically to modify the severity of the GnRH 

deficiency, partially explaining the wide phenotypic variability observed within and 

across families with nIHH and Kallmann syndrome. 

 

2. A.3 Consequences 

 

All patients with CHH have normal statural growth during childhood and, despite the 

absence of the pubertal growth spurt, statural retardation is very rarely a presenting 

symptom (Tanner and Davies 1985). On the contrary, the absence of long-bone 

epiphyseal closure explains these patients’ frequent eunuchoid habitus and relative 

tallness. Retarded bone maturation, osteopenia and osteoporosis are frequent when 

gonadotropin deficiency is diagnosed in adulthood (Tanner and Davies 1985; Ducros 

and Warren 1983). Additionally, two different polymorphisms of the estrogen receptor 

α gene, which were found previously to be associated with reduced breast cancer 

risk, were also associated with a relative delay in menarcheal age in Greek 

adolescent girls (Stavrou et al. 2002). 
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2.B. Precocious puberty 

2.B.1 Age limits 

In accordance with the above mentioned average ages at onset of pubertal 

development and assuming a Gaussian distribution in the normal population, 

abnormally precocious puberty has been defined in Europe as less than 8yr for the 

B2 stage in girls and less than 9yr for the G2 stage in boys (Bridges et al. 1994; 

Lebrethon and Bourguignon 2000; Klein 1999). These age limits, which are below the 

3rd centile, have been used for several decades and are still currently used. The 

definition of appropriate age limits is important to restrict diagnostic investigations 

and possible therapeutic intervention to children with abnormal precocious pubertal 

development.  

 

2.B.2 Causes and diagnostic work up  

Main causes of precocious puberty in girls and boys are illustrated in table 1. Sexual 

precocity is classified as central, gonadotropin-dependent, when it results from early 

hypothalamic-pituitary-gonadal maturation (Lee et al. 2001). Central precocious 

puberty (CPP) mimics the physiological pubertal development and results from 

premature activation of hypothalamic GnRH-secreting neurons. Children present with 

pubertal basal or stimulated gonadotropins and sex steroids levels, acceleration in 

linear growth and progressive bone age advancement (>2SD) resulting in premature 

epiphyseal closure and short stature in untreated children (Palmert and Boepple 

2001; Partsch et al. 2002; Carel and Leger 2008). CPP represents four fifths of the 

total number of patients with precocious puberty and is much more frequent in girls 

than in boys (Klein 1999; Pescovitz et al. 1986). 
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Precocious Puberty in girls 
 

 

Precocious Puberty in boys 
 

  Incomplete variants 
 

  Gonadotropin independent 
 

 Premature thelarche      Exogenous 
 Premature adrenarche       

     Testosterone cream 
 Premature menarche       
 

 Complete variants 
 

     Endogenous 

 Gonadotropin independent      Testicular source  
     Testicular tumor 

   Estrogenic ovarian cyst      McCune Albright Syndrome 
   Estrogenic ovarian tumor      Testotoxicosis 
   Estrogenic adrenal tumor      HCG producing tumor 
   McCune Albright syndrome      Adrenal source 
   Primary hypothyrodism      CAH (21OH deficinecy or 11OH deficiency) 
      Adrenal tumor 

 
 
 

Gonadotropin dependent 
Idiopathic 
Organic 

Brain tumor 
Hypothalamic hamartoma 

Glioma 
Congenital anomaly 

Hydrocephalus 
Arachnoid cyst 

Cerebral dysgenesis 
Central Nervous System insult 

Infection 
Trauma 
Surgery 

Radiation 
Genetic 

Activating KISS1 or KISS1R mutation 
Rare variants in TAC3 or TACR3 genes 

Loss of function mutations in MKRN3 gene 

 

Table 1 Causes of precocious puberty 

 

As shown in Fig. 14, the female to male ratio found among patients with central 

precocious puberty in the studies published between 1961 and 1990 was relatively 

similar, around 3:1 to 4:1 (Pescovitz et al. 1986, Thamdrup 1961; Wilkins 1965; 
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Sigurjonsdottir and Hayles 1968; Kaplan and Grumbach 1990; Blanco-Garcia 

et al.1983; Caragorri et al. 1982; Lee et al. 1989 ).  

 

Figure 14 

Gender and etiologic distribution of patients with central precocious puberty in the series 

published between 1961 and 2001 in relation to the year of publication and the country of 

study. The number of patients and reference (in parenthesis) are indicated at the top of each 

bar (Parent et al. 2003).  

 

CPP can be organic or idiopathic (ICPP). The idiopathic to organic ratio has been 

reported to be around 2:1, indicating that two thirds of the patients had idiopathic 

forms and one third had identified neurogenic organic causes. Data published from 

four European countries as well as from the US (Bridges et al. 1994; Krstevska-

Konstantinova et al. 2001; Neely 1995; Palmert et al. 1999; Mil et al. 2000) showed 

that the proportion of female patients and of idiopathic forms has clearly increased. 
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Among patients with central precocious puberty the proportion of idiopathic forms 

varies between 58 and 96% (Partsch and Sippel 2001). This proportion is greater in 

girls than in boys, who show a higher prevalence of recognizable organic causes 

(Grumbach and Styne 1998; Lebrethon and Bourguignon 2000). Finally, some partial 

forms of sexual precocity, such as isolated premature thelarche, can secondarily 

evolve into central precocious puberty (Lebrethon and Bourguignon 2000, 2001).  

In peripheral, gonadotropin-independent sexual precocity, the underlying cause is 

increased secretion of adrenal or gonadal sex steroids or exposure to exogenous sex 

steroids without activation of the HPG axis (Bridges et al. 1994; Pescovitz et al. 

1986). Peripheral sexual precocity represents one third to one fifth of the total 

number of patients with precocious puberty and involves both sexes. Some forms of 

peripheral sexual precocity predominate in boys, such as chorionic gonadotropin-

secreting tumors and familial testotoxicosis, the latter caused by activating mutations 

of the LH receptor. Other causes, such as constitutive Gsα activity which accounts 

for the McCuneAlbright syndrome, predominate in girls (Bridges et al. 1994; 

Lebrethon and Bourguignon 2001). In peripheral precocious puberty the development 

of secondary sexual characteristics is due to the effect of the sex steroids without 

activation of the hypothalamic-pituitary-gonadal axis that is actually found 

suppressed. However, some cases of peripheral precocious puberty, such as 

untreated forms of congenital adrenal hyperplasia in males, may be complicated by 

the secondary activation of the hypothalamic-pituitary gonadal axis and therefore by 

a gonadotropin-dependent central precocious puberty. Figures 15 and 16 

demonstrate the detailed diagnostic flow chart of precocious puberty in boys and 

girls. 
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Figures 15 Diagnostic work up of precocious puberty in boys 

(www.biomedsearch.com) 
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Figure 16 Diagnostic work-up of precocious puberty in girls (www.biomedsearch.com) 
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Idiopathic central precocious puberty (ICPP) 

Over 90% of the girls and up to 25% of the boys with CPP have an idiopathic form 

(Palmert and Boepple 2001; Partsch et al. 2002; Kakarla and Bradshaw 2003). Up to 

27.5% prevalence of familial cases has been reported among 156 patients with 

idiopathic CPP, suggesting a role for genetic factors in the pathogenesis of this 

condition (de Vries et al. 2004). At this point we will review pathophysiology and gene 

defects associated to idiopathic central precocious puberty (ICPP).  

 GABRA1 

Initial research and sequencing of the GABRA1 gene in a cohort of thirty-one girls 

from 28 unrelated families with ICPP-mean age at onset of pubertal signs 4.7 (2.1) 

years did not lead to mutations’ detection (Brito et al. 2006). In that study seven 

different GABRA1 polymorphisms, including two exonic (156T>C and 1323G>A) and 

five intronic [IVS2-712(GT)n, IVS3+12A>T, IVS8+45T>G, IVS9+76A>G, and 

IVS10+15G>A] were found in patients and controls.  

 

 NPYR1 

Later on, sequencing of the NPYR1 detected only a synonymous SNP (K374T) in the 

heterozygous state in a girl with familial ICPP-out of trhirty three patients tested, and 

this polymorphism was present at a higher rate in the control population (28%). 

Moreover, in vitro assays failed to show altered activity for this mutant (Freitas et al. 

2007). 

 

 Kisspeptin and KISS1R  

The Kisspeptin system has been recently implicated in the pathogenesis of CPP in 

humans. A cohort of 67 Brazilian children with idiopathic CPP, including 13 familial 

cases, was screened for KISS1R mutations (Teles et al. 2008; Silveira et al. 2008). A 
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heterozygous activating mutation of the KISS1R gene (R386P) was described in an 

adopted girl with CPP (Teles et al. 2008). She had slow progressive thelarche from 

birth, suggesting an early, persistent, and slightly increased estrogen secretion. 

Accelerated growth, skeletal maturation and progression of breast development were 

noticed at 7 years of age. She had pubertal estradiol levels and GnRH- stimulated LH 

levels were borderline for pubertal activation. Interestingly, in vitro studies 

demonstrated that the R386P mutation, located in the carboxy-terminal tail of the 

KISS1R, led to prolonged activation of intracellular signaling pathways in response to 

Kisspeptin, resulting in significantly higher inositol phosphate accumulation for as 

long as 18h. These findings suggested a significant reduction in the rate of 

desensitization of the mutant KISSI1R. This mechanism would result in an increased, 

prolonged cellular response and hence the release of an increased-amplitude pulse 

of GnRH in response to Kisspeptin stimulation. Ligand binding affinity and 

intracellular signaling capacity of the mutant KISS1R under basal conditions were not 

altered, indicating that the R386P is a non-constitutively activating mutation. Indeed a 

constitutive activation of KISS1R might be expected to disrupt pulsatile GnRH 

release and result in delayed puberty, since continuous GnRH secretion leads to 

receptor desensitization.  

In addition to the KISS1R mutation, two KISS1 missense mutations (P74S and 

H90D) were identified in two unrelated Brazilian children out of 83 patients with ICPP 

tested (Silveira et al. 2010). The P74S mutation was identified in the heterozygous 

state in a boy who had sporadic CPP at 1 year of age. His mother and maternal 

grandmother, who had history of normal pubertal development, also carried the P74S 

mutation in the heterozygous state, suggesting incomplete sex-dependent 

penetrance. The H90D mutation was identified in the homozygous state in a girl with 

familial CPP, who developed puberty at 6 years of age. Her mother, who had 

menarche at 10 years of age, was heterozygous for this variant. Both KISS1 
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mutations were absent in 400 control alleles and are located in the amino-terminal 

region of the KISS1 gene, which may be involved in protein stabilization and 

protection against proteolytic digestion. In vitro studies revealed that the capacity of 

the P74S and H90D mutants to stimulate inositol phosphate (IP) production was 

similar to the wild type GPR54. However, after pre-incubation of wild-type and mutant 

GPR54 in human serum, the capacity to stimulate signal transduction was 

significantly greater for P74S and H90D compared to the wild-type, indicating that 

both variants were associated with higher Kisspeptin resistance to degradation as 

opposed to the wild type. These findings suggest a role for these mutations in the 

CPP.  Additionally, while no mutations in KISS1 were found in 101 Korean girls with 

ICPP - mean age at first breast budding was 7.09 (1.14) years  (Ko et al. 2010), eight 

polymorphisms were identified. Although two of them were novel, those 

polymorphisms could not lead to amino acid changes. p.P110T was detected less 

frequently in CPP patients than in the controls (P = 0.022). Moreover, the CPP 

patients with p.P110T evidenced lower peak FSH values under GnRH stimulation 

than those without p.P110T (P = 0.002) and therefore p.P110T, appeared to be a 

meaningful polymorphism. Additionally, very recent data demonstrated that 

polymorphisms in the 3'UTR of KISS1 are associated to CPP and interfere with the 

conformation of the DNA sequence and potentially the RNA sequence of KISS1 

further verifying a role of the KISS1/KISS1R in the abnormal initiation of puberty 

[Huijbregts et al. 2012]. Finally, two mutations identified in Chinese patients with 

ICPP in genome wide association studies (His196Pro-KISS1R and Pro110Thr-

kisspeptin) stil await confirmation of this association (Luan et al. 2002; 2007). On the 

other hand no mutations in KISS1 or KISS1R genes were found in a cohort of thirty 

girls with ICPP -mean age at onset of puberty was 7.5 (6.5 ;7.9) years and mean 

bone age advancement was 1.4 (-0.1; 2.8) years (Tommiska et al. 2011). Finally, 

very recently, no rare variants were detected in KISS1 or KISS1R out of twenty-eight 

girls with ICPP. Age at diagnosis was 5.72±2.59, with a mean bone age 
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advancement of 1.4 years (-0.1 to 2.8) and height at onset of therapy in SD score 

was 0.90±1.48 for age. Luteinizing hormone-releasing hormone test was performed 

in all subjects, and all of them had a pubertal response (LH 20.35±32.37 mIU/mL; 

FSH 23.32±15.72 mIU/mL) (Krstevska-Konstantinova et al. 2014).  

 LIN28B 

As already exposed, LIN28B has also been implicated in the pathophysiology of 

onset of puberty. However on the aformentioned study of Tommiska et al. (Tommiska 

et al. 2011) no mutations were detected. Later on, out of 178 Brazilian children with 

CPP (171 girls with mean pubertal onset at age 5.4, 16.8% familial cases) one 

mutation in LIN28B was identified in the heterozygous state (p.H199R) in a girll who 

developed CPP at 5.2 years. Nonetheless, functional assays performed did not 

detect significant changes in the activity of the mutant (Sileveira-Neto et al. 2012). 

More precisely, when ectopically expressed in cells the mutant protein was capable 

of binding pre-let-7 miRNA and inhibiting let-7 expression to the same extent as wild-

type Lin28B protein; thus, the significance of LIN28B for human pubertal maturation 

remains unknown.  

 Leptin and Leptin receptor (LEPR) 

Three SNPs in the leptin (nt-2548) or leptin receptor (223 A/G, 109 A/G) genes were 

assessed for their association with CPP in a population of 249 female patients as 

opposed to 219 healthy controls. Allele frequencies in SNPs were compared with 

anthropometric measures and circulating hormone concentrations (estradiol, FSH, 

LH and leptin). SNPs at LEPR223 and LEPR109 were significantly associated with 

higher levels of LH in girls with CPP, but none of the genotypes at these SNPs were 

significantly associated with CPP (Su et al. 2012).  

http://www.ncbi.nlm.nih.gov/pubmed?term=Krstevska-Konstantinova%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23950571
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 TAC3/TACR3 complex 

As detailed above, TAC3/TACR3 complex could also be implicated in ICPP. In 2012, 

Tusset et al. published a new variant of TAC3 gene (c.187G>C) in the heterozygous 

state, in a Brazilian girl out of 114 patients (107girls/7boys) with CPP. The affected 

girl had pubertal onset at 7 years of age. She had advanced bone age (11 years) and 

breast development pubertal stage Tanner 3. Hormonal evaluation revealed pubertal 

basal LH level (IFMA) of 1.2U/L, LH after acute GnRH stimulation of 17.9 U/L and 

pubertal basal estrogen level (IFMA) of 35.2pg/ml. This variant was absent in the 

control population of 150 Brazilian individuals. In silico analyses suggested that this 

variant does not alter the splicing sites and its pathogenicity was not supported using 

the Polyphen-2 tool. No mutation in TACR3 was found in their population with ICPP 

[Tusset et al. 2012]. 

 Estrogen reaceptor a (ERα) 

Estrogen is the final key factor that triggers the onset of puberty. The raised 

sensitivity of ERa, which may be caused by an ERα gene mutation or polymorphism, 

has been implicated in the etiology of precocious puberty. Two novel polymorphisms, 

p.G145S and p.R55H were idenitfied in a population of 204 Korean female patients 

with CPP as compared to 102 healthy female controls. The subgroup with p.G145S 

showed significantly higher level of peak LH levels than the subgroup without this 

SNP (Lee et al. 2013). However, no solid conclusion could be made from this study 

and further studies are needed to validate the function of these SNPs. 

 

 Thyroid transcription factor 1 (TTF1) and enhanced at puberty 
(EAP1) genes 

 
Thyroid transcription factor 1 (TTF1) and enhanced at puberty (EAP1) are 

transcription factors that modulate GnRH expression but also were connected, via 

gene networks, to genes implicated in the control of menarche. Several studies 

indicated that EAP1 is crucial for the ARC to maintain menstrual cyclicity in higher 
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primates. Using the lentiviruses delivery system it was determined that decreasing 

the production of EAP1 would alter the onset of female puberty and adult 

reproductive cyclicity (Garcia-Rundaz et al., 2007; Hager et al., 2007). It was then 

observed that Eap1 siRNA-producing lentiviral particles injected bilaterally into the 

preoptic area (POA) of juvenile 23-day-old rats resulted in delayed puberty, disrupted 

estrous cyclicity, reduced plasma LH, FSH and estradiol levels, and delayed growth 

of ovarian follicles. Additional experiments were conducted to determine if EAP1 is 

also important for the hypothalamic control of menstrual cyclicity in nonhuman 

primates and found that knocking down EAP1 expression in the arcuate nuclei (ARC) 

of the hypothalamus abolished menstrual cyclicity (Dissen et al., 2009). In this 

context, 86 cases with central precocious puberty were analysed for TTF1 or EAP1 

mutations or polymorphisms (Cukier et al. 2013). Direct sequencing of the TTF1 did 

not reveal any mutation or polymorphism, whereas two EAP1 synonymous variants 

were identified in two sisters but without resulting in alteration in their transcriptional 

activity.   

 

 MKRN3 

In 2013, Abreu et al. (Abreu et al. 2013) showed that loss of function mutations in the 

imprinted gene MKRN3, located in 15q11-q13, predict to cause CPP. After whole –

exome sequencing performed in 40 members of 15 families with history of CPP, 32 

patients (27 females/5 males) with CCP and 8 with normal puberty (5 females/3 

males) they identified four novel heterozygous mutations in MKRN3. All fifteen 

affected persons (8 females / 7 males) inherited the mutations from their fathers, the 

median age at the onset of puberty was 5.75 (5-6.6) years for girls and 8.1 (5.9-8.5) 

for boys.  

In 2014, two additional studies (Settas et al. 2014; Macedo et al. 2014) further 

confirmed the implication of MKRN3 in precocious puberty. A novel heterozygous 
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missense variant in the MKRN3 gene (p.C340G) was detected in two affected 

siblings, a girl with CPP, her brother with early puberty and their unaffected father. In 

silico analysis predicted the mutation possibly damaging in all five software packages 

used and structural alignment of the ab initio native and mutant MKRN3 models 

predicts that this variant leads to significant structural perturbations in the 3-

dimensional structure of the C3HC4 (Settas et al. 2014). Finally, in the study of 

Macedo et al. (Macedo et al. 2014) five novel heterozygous mutations in MKRN3 

gene were found in eight unrelated girls out of 215 children with CPP (213 sporadic, 

207 girls). Four were frameshift mutations predictive to encode truncated proteins 

and one was a missence mutation, which was suggested to be deleterious by in silico 

analysis. All patients with MKRN3 mutations had classical features of CPP with a 

median age of onset of puberty at 6 years and the mutation was inherited on the 

paternal allele.  

 

2.B.3 Consequences 

 

Several authors reported that early menarche was associated with an increased risk 

of obesity, type 2  diabetes and cardiovascular disease in adulthood (Sherman et al. 

1981; Van Lenthe et al. 1996; Elks et al. 2010). Additionally, several studies pointed 

that the timing of puberty could be linked to the risk of breast cancer later in life. In 

pairs of monozygotic twins discordant for breast cancer an earlier menarche did not 

predict an increased risk of the disease, whereas in twins concordant for breast 

cancer, an earlier menarche predicted an earlier occurrence or diagnosis of breast 

cancer suggesting that the same genes could be involved in determining the timing of 

menarche and the risk of breast cancer (Hamilton and Mack 2003). These data 

indicate that, in the heritable or familial forms of breast cancer, genetic susceptibility 

can cause unusual early sensitivity to sex hormones or unusual early load in sex 
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hormones.  Additionally, precocious puberty has also been associated with increased 

incidence of conduct and behavior disorders during adolescence (Golub et al. 2008).  

 

3. Sexual dimorphism of pubertal onset deviations 

In almost all mammals studied, puberty onset is significantly different between the 

sexes, usually earlier in females. The onset of puberty in girls occurs 1-2 years 

earlier than in boys; menarche happens even earlier than reproductive maturity in 

boys (Iuliano-Burns et al. 2009). The prevelence of pubertal disorders in humans is 

also sexually dimorphic: the incidence of precocious puberty being disproportianally 

higher in girls when compared to boys (de Vries et al. 2004). The ratio for ICPP is 

estimated to be 15-20 females for each male with the disorder (Teles et al. 2011). On 

the other hand, incidence of IHH is 5-fold elevated in males when compared to 

females (Seminara et al. 1998; Sykiotis et al. 2010) and males quite often exhibit 

more severe symptoms than females carrying the same mutation. It is noteworthy 

that the majority of mutations studied to date were identified in patients with IHH, a 

disorder far less frequent than ICPP. Prevalence of premature puberty has been 

predicted to be 0,2% in one population (Teilmann et al. 2005), whereas incidence of 

IHH is estimated to be 1-10 cases per 100.000 births (or 0.001-0.01%) (Seminara et 

al.1998). Another important difference between ICPP and IHH is the mode of 

inheritance. The pedigree of families with history of IHH suggests an autosomal 

recessive mode of inheritance (Bianco and Kaiser 2009). In other words, only 

individuals carrying the associated mutation in the homozygous (or compound 

heterozygous) state present the IHH phenotype, whereas heterozygous parents and 

siblings have no obvious reproductive abnormalities (de Roux et al. 2003; Seminara 

et al. 2003; Bhagavath et al. 2006; Topaloglu et al. 2006; Bedecarrats and Kaiser 

2007; Nimri et al. 2011). On the other hand, the pedigree of families with a history of 

ICPP indicates an autosomal dominant mode of transmission (de Vries et al. 2004). 
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The later is further supported by recent reports of human mutations with confirmed 

association with ICPP, which were identified in the heterozygous state in affected 

children (Teles et al. 2008; Silveira et al. 2010; Abreu et al. 2013; Settas et al. 2014; 

Macedo et al. 2014)  

The mechanisms underlying this key sex difference in sexual maturation, as well as 

the adaptive significance of early or late puberty in one sex versus the other, remain 

to be investigate, but the underlying mechanisms could implicate sexually dimorphic 

signaling pathways with a role on GnRH release.   

 In all species, activation of GnRH neurons remains a consistent pubertal hallmark, 

and it was shown that any species differences occur “up stream” of GnRH secretion 

at afferent regulatory signals. However, GnRH neurons were not found to be sexually 

dimorphic in experimental animals such as rats or guinea pig (Clarkson and Herbison 

2006; Cheng et al. 2010). This would be compatible with the involvement of 

KISS1/NKB signaling, which has been shown to be sexually dimorphic in the 

hypothalamus of mice (Wray and gainer 1987; Kauffman et al. 2007b; Kauffman et 

al. 2009), rats (Kauffaman et al. 2007a; Ciofi et al. 2006, 2007), and sheep 

(Schanzel-Fukunda et al. 1981) (fig. 17).  
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Figure 17 

Kisspeptin, sexual dimorphism, and puberty: Kisspeptin neurons (KISS-1) in the 

infundibular nucleus would be regulated by positive (1) and negative (2) inputs from 

nutritional, hormonal and environmental sources. Possible leptin input on kisspeptin neurons 

is shown in (1) and (3). Kisspeptin from KISS-1 neurons (4) or the circulation (8) stimulate GnRH 

neurons to secrete GnRH (5). The number of KISS-1 neurons in the infundibulus is reported to 

be elevated in women (left panel) when compared to men (right panel). This sexual difference in 

kisspeptin is proposed to contribute to earlier onset of puberty in healthy girls when compared to 

boys (6), as well as to the higher incidence of idiopathic CPP in girls (7) (Bianco 2012).  
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II. SPECIFIC PART 

1. RESEARCH PROJECT 

 TITLE: Molecular and clinical investigation of the GPR54 and TACR3 gene 

mutations and polymorphisms in Idiopathic Central Precocious Puberty 

 

I. A. Background  

In the last few years, GPR54 (KISS1R) and TACR3 (NK3R) loss of function 

mutations have been reported to be associated with absence of pubertal initiation, 

namely with idiopathic hypogonadotropic hypogonadism (IHH) [Cerrato and 

Seminara 2007; de Roux et al. 2003; Seminara et al. 2003; Semple et al. 2005; 

Tenenbaum-Rakover et al. 2007; Topaloglu et al. 2009; Gianetti et al. 2010; Nimri et 

al. 2011]. At the time of the initiation of the current study, only one publication so far 

reported GPR54 (KISS1R) gain of function mutations to be associated with Idiopathic 

Central Precocious Puberty ([Teles et al. 2008) while no publication existed so far, 

exploring the putative role of TACR3 mutations in the pathogenesis of precocious 

puberty.  

 

1. B. Objectives 

The aim of the current study was to investigate the presence of GPR54 (KISS1R) 

and TACR3 (NK3R) gene mutations and polymorphisms in a population of girls of 

Greek origin with ICPP and evaluate their possible role in phenotypic variations.  

 

1. C. Patients and Methods 

Subjects 

Thirty-eight girls were enrolled in this study based on the diagnosis of ICPP that  was 

settled by a paediatric endocrinologist according to the combination of clinical and 

laboratory data: breast development before the age of 8 years, accelerated 

progression from one Tanner stage to the next  in a period of ≤ 6 months, advanced 
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bone age by at least 1yr, predicted adult height [Bayley and Pinneau 1952] below 

target height, uterine length > 34mm, FSH, LH and E2 levels in the pubertal range 

and LH peak after GnRH testing in the pubertal range. Additional elements for ICPP 

were: no evidence of hypothalamic-pituitary anatomical lesion on imaging and 

otherwise normal pituitary function as documented by normal basal levels of 

prolactin, thyroid stimulating hormone, IGF1 and cortisol.  At initial evaluation, the 

median (25th; 75th) and mean (SD) age were 8.5 (7.5; 9.5) and 8.2 (1.3) years 

respectively. The median bone age (25th; 75th) was 10.75 (10; 11) years. The median 

difference (25th; 75th) between target and predicted average final height was 7.2 (3.1; 

13.2) cm, the median basal LH levels (25th; 75th) were 1.5 (0.3; 3.9) IU/lt, the median 

peak LH levels after GnRH stimulating test were 13.6 (6.5; 22.5) IU/lt, the median E2 

levels (25th; 75th) were 26.2 (17; 48.5) and the median uterine length (25th; 75th) was 

44mm (35; 51.8) (detailed data available on table 2).  

The girls have been followed in the Division of Paediatric Endocrinology, Diabetes 

and Metabolism of the First Department of Paediatrics, National University of Athens, 

in "Aghia Sofia" Children’s Hospital, Athens, Greece. Medical history and clinical 

examination data (weight and height, pubertal Tanner staging) as well as hormonal 

assessment (basal FSH, LH, E2 values and GnRH Test) and imaging studies (bone 

age, pelvic U/S, MRI of the hypothalamo-pituitary area) have also been registered 

from their medical files.  
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Case 

no. 

Age  

(ys) 

Puberty 

Tanner 

stage  

Bone 

Age 

(ys)  

Height 

(cm) 

Target 

Height 

(cm) 

FSH 

(IU/L) 

LH 

(IU/L) 

Peak 

LH 

(IU/L) 

Ε2 

(pg/ml) 

U/S 

Uterus 

length 

(mm) 

LHRH 

analog 

therapy 

1 8.5 3 10 125.8 149,3 3 0.1 6.6 na na Yes 

2 7.1 3 9 143 168,5 6.4 0.7 3.7 20 60 No 

3 7.9 5 10.5 124.6 na 7.5 1.4 9.2 31 50 Yes 

4 9.3 4 11 130.0 151,0 12.6 6.5 22.2 49 60 Yes 

5 8.3 4 10 138.8 153,0 14.6 6.1 30.3 16 43 No 

6 8.5 5 12 145.0 155,5 3.4 0.8 20.3 63 83 No 

7 7.8 3 10 133.5 152,0 3.8 0.3 8.8 15 na Yes 

8 9.5 3 10.5 131.3 162,0 3.6 0.7 12.5 25 47 Yes 

9 6 2 9 113.0 na 3.6 0.4 12.8 4 38 Yes 

10 9.8 4 12.5 139.0 159,0 7.1 14.2 88.3 na 46 Yes 

11 6.1 4 11 136.0 163,5 5.7 4.6 51.7 26 60 Yes 

12 9.5 5 12.5 145.0 160,3 2 0.3 8.2 na 70 Yes 

13 4.5 4 6 102.5 162,5 4.9 1.6 70.8 50 36 Yes 

14 8 3 10.5 130.3 161,5 7.5 5 43.5 na 37 Yes 

15 8.8 4 13 142 155,3 2.9 1.7 15.5 na 27 Yes 

16 9.8 3 10.5 140.8 164,5 2.3 2.1 13.6 27 na Yes 

17 9 4 11 142.2 164,0 7.5 2.9 13.6 na 35 Yes 

18 9.7 5 12 154.5 170,0 2.6 0.1 3.9 na 64 No 

19 7.7 3 10 141.0 162,0 4.7 2 6.2 na na Yes 

20 6.8 3 10 123.8 159,9 3.3 1.8 35.2 10 20 Yes 

21 7.8 3 11 133.0 162,5 2.2 0.2 5.5 na na Yes 

22 8.7 4 11 141.2 159,5 4.9 2.1 na 35 57 Yes 

23 9.5 4 10.5 143 159,5 3.1 1.6 na 20 46 Yes 

24 8 2 11 134.0 167,8 1.8 0.1 3 na 34.2 No 

25 7.2 3 8.5 124.2 163,0 2.1 0.1 2.9 26 35.8 No 

26 7.6 2 10.5 136.0 na 4.9 0.4 16.6 10 45 Yes 

27 8.5 3 10 139.0 165,8 10.5 6.1 22.8 47 34 Νο 

28 6.5 3 9 128.0 162,5 2.2 0.2 16 8 35 Yes 

29 9.5 3 12 139.4 165,2 4.8 1.5 40.6 na 35 Yes 

30 9.7 4 12 145.5 169,0 2.2 0.1 12.7 60 49 Yes 

31 9 5 11 138.0 164,8 5.4 1.2 na 58 na Yes 

32 8 3 11 132.5 na 3.4 1.1 20 na na Yes 

33 7 2 8 124.5 156,0 7.3 16 11.4 20 na Yes 

34 5.5 3 7.5 114.8 161,8 0.7 0.1 4.3 26 21 Yes 

35 9.5 4 11 138.5 160,0 3.9 4 na na 43 Yes 

36 8.5 4 11 131.6 155,0 3.1 0.2 6.3 45 45 Yes 

37 9 4 11 143.9 162,1 6.1 4.3 14.6 na 40 Yes 

38 9.5 4 11 146.5 167,0 4.4 3.8 na 83 48 Yes 

   

  Table 2: Clinical and laboratory data for each case with ICPP at referral, na:not available 
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Ethical Issues 

The study has been approved by the Institutional Ethic Committee of the “Aghia 

Sophia” Children’s Hospital and blood has been withdrawn from the children for 

genetic analysis only after written informed consent has been obtained from their 

parents or guardians. 

 

Methods 

GPR54 (KISS1R) and TACR3 gene analysis 

 Genomic DNA was extracted from peripheral blood lymphocytes of the patients 

according to classical methods. The entire coding region as well as the exon - intron 

boundaries of GPR54 (KISS1R) (exons 1 through 5) and TACR3 (NK3R) (exons 1 

through 5) genes were amplified by the polymerase chain reaction (PCR) method 

with a GeneAmp PCR System 9700 (Applied Biosystems). The nucleotide 

sequences were determined by fluorescent dye chemistry sequencing with an ABI 

PRISM3000 DNA Analyser and analyzed with Sequencing Analysis software 

(Applied Biosystems). Primers for GPR54 (KISS1R) and TACR3 (NK3R) were 

designed as described in previous reports [de Roux et al. 2003; Topaloglu et al. 

2009] (detailed data available on tables 3 and 4). By referencing the assembled 

sequence in the Ensemble genome database, the presence of mutations or single 

nucleotide polymorphisms (SNP) was checked. 
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. 

 
EXONS Primers Annealing 

Temperature/cycles 

number 

PCR 

product 

DNA polymerase 

Exon 1  forward 

GGGCGGCCGGGAGGAGGA 

reverse 

CCGGGACGGCAGCAGGTG 

62
0
C /35 cycles 315bp Platinum Taq 

(Invitrogen, Greece) 

Exon 2 forward 

GCCCAGCGCCCGCGCATC 

reverse 

GTCCCCAAGTGCGCCCTCTC 

66
0
C /35 cycles 195bp Platinum Taq 

(Invitrogen, Greece) 

Exon 3 forward 

CAGGCTCCCAACCGCGCAG 

reverse 

CGTGTCCGCCTTCTCCCGTG 

61
0
C /35 cycles 200bp AmpliTaq Gold 

(Applied Biosystems, 

Greece)  

Exon 4  forward, 

CTTCATCCTGGCTTGTGGCAC 

reverse 

CTTGCTGTCCTCCCACCCAC 

62
0
C /35 cycles 290bp Platinum Taq 

(Invitrogen, Greece) 

Exon 5  

 

forward 

GCCTTTCGTCTAACCACCTTC 

reverse 

GGAGCCGCTCGGATTCCCAC 

65
0
C/35 cycles 525bp  Phusion Master Mix 

(Finnzymes, Finland) 

 

Table 3: Primers and annealing temperatures for GPR54’s exons PCR amplification 

 

PCR reactions were carried out in 25 μl total volume with 20-100 ng of purified DNA, 1.5mM 

MgCl2, 0.4 μM of primers, 0.2 mM dNTPs, 5% DMSO and 0.1μl U of DNA polymerase  
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EXONS Primers Annealing 

Temperature/cycles number 

PCR product 

Exon 1 A forward  

CCAGCAGGGATTGCAGTATC            

reverse  

GCCAGGATGATCCAGATGAC  

57
0
C /35 cycles 330bp 

Exon 1 B forward 

CCAACCTCACCAACCAGTTTC 

reverse  

ACTCGAGGGCTACAAATGGG 

57
0
C /35 cycles 499bp 

Exon 2 forward 

GCCATGATTACCATTCTACGC 

reverse 

CAACTTATTGACCACACACAAATC 

57
0
C /35 cycles 535bp 

Exon 3  forward   

CAACTGGCAGCATTTGAAAC   

reverse 

GATTACAGTATGTGGACAGCAGC 

57
0
C /35 cycles 529bp 

Exon 4  

 

forward 

CTGTCCGTATATTGCTTCACC 

reverse   

AAAGCCTGTGCCTCTCTCAG 

57
0
C /35 cycles 496bp  

Exon 5 

 

forward 

TGTGACATAAATTCTAAGAGTCTGGC 

reverse 

CCTTTCTCAATTTGACCATAGC    

57
0
C /35 cycles  603bp 

 
Table 4: Primers and annealing temperatures for TACR3’s exons PCR amplification.  

PCR reactions were carried out in 25 μl total volume with 20-100 ng of purified DNA, 1.5mM 

MgCl2, 0.2 μM of primers, 0.2 mM dNTPs and 0.1/μl U of Red Taq DNA polymerase 

(Eurogentec, Brussels)  
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1. D. Results 

No mutation in GPR54 that might explain the occurrence of central precocious 

puberty in our subjects was detected. An A/G coding sequence SNP in GPR54 

(rs10407968) (fig. 18) was identified in the homozygous state in 2 out of the 38 

patients with ICPP corresponding to a frequency of 6% for the minor allele G in this 

population. This is a synonymous SNP located in exon 1 of GPR54. Global Minor 

Allele Frequency (MAF) of the minor allele of rs10407968 in Caucasian populations 

is 15.7%. Since there is no intron before exon 1, this identified SNP cannot modify 

pre-mRNA splicing and lead to an abnormal mRNA processing. Moreover, at the 

protein level, this change does not result in the substitution of an amino-acid, 

indicating that the GPR54 (KISS1R) protein encoded would not differ from the wild–

type protein. 

 

 

 

Figure 18 The A/G coding sequence SNP identified in GPR54 (rs10407968) 

 

The sequence analysis for TACR3 gene revealed neither a mutation nor a 

polymorphism in this gene in our cohort of girls with ICPP.  
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1. E Discussion 

In this study we have screened for GPR54 (KISS1R) and TACR3 (NK3R) gene 

mutations and polymorphisms a population of 38 girls with ICPP but found no 

mutation of these genes in this cohort. 

It has been shown that Kisspeptin/GPR54 complex is an established positive 

regulator of GnRH secretion (Oakley et al. 2009). Kisspeptin consistently stimulates 

LH secretion in a wide variety of mammalian species and experimental settings 

(Dhillo 2008). Given the central role of the kisspeptin-KISS1R signaling complex in 

the pubertal activation of GnRH neurons and the reproductive axis (Seminara et al. 

2003), a defective kisspeptin system appears to be an obvious candidate in the 

pathogenesis of sexual precocity. Until the initiation of the current study only one 

publication so far reported GPR54 (KISS1R) gain of function mutations to be 

associated with Idiopathic Central Precocious Puberty (Teles et al. 2008). In that 

study of 53 unrelated children with ICPP, an autosomal dominant missense mutation, 

Arg386Pro, in KISS1R (GPR54), leading to prolonged activation of intracellular 

pathways in response to kisspeptin, has been suggested to cause central precocious 

puberty in an adopted girl whose premature breast development with slow 

progression had been observed since birth. Biologic family history was not available. 

At 8 years breast development was Tanner stage 4, pubic hair was Tanner stage 2 

and bone age was 11 years. Her basal FSH levels were 2.6IU/lt, and after GnRH 

stimulation test 5.9IU/lt, her basal LH  were <0.6IU/lt and after GnRH stimulation test 

6.4IU/lt and her estradiol levels were 22 pg/ml. To the best of our knowledge, no 

other ICPP cases with activating KISS1R mutations have been reported.  

In our study, patients presented with advanced ICPP on the basis of early breast 

development (at least B2) at median age (25th; 75th) of 8.5 years (7.5; 9.5) given that 

the latest Greek report for median age at onset of breast development (B2) was at 10 

years (9,2; 10,6) (Papadimitriou et al. 2008). The patients were selected based on 

their clinical and hormonal data according to their medical files available in the 
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Division of Endocrinology, Diabetes and Metabolism of the First Department of 

Pediatrics of the University of Athens. However, the retrospective nature of patients’ 

data collection has inherent limitations and cannot guarantee the ideal selection of 

patients included in the genetic study, since some patients may have been cases of 

early puberty and not clear cut cases of precocious puberty.  

In the current study we have identified a synonymous SNP (rs 10407968) residing in 

exon 1 of the GPR54 gene in two patients with ICPP, out of 38 screened. Until now 

few variations of the GPR54 (KISS1R) gene have been 

reported:http://www.ensembl.org. GPR54 (KISS1R) receptor’s polymorphisms have 

been poorly studied so far. The A/G coding sequence SNP on the GPR54 (KISS1R) 

gene (dbSNP ID: rs10407968) was previously identified by others (Tenenbaum-

Rakover et al. 2007; Lanfranco et al. 2005) in a population of male patients with IHH 

but no association with this disorder was found. Moreover, this polymorphism has not 

been recorded in a large population of Chinese girls (24 girls randomly selected from 

272 girls with idiopathic central precocious puberty vs 288 unrelated normal girls) that 

were screened for GPR54 (KISS1R)’s SNPs through direct sequencing (Luan et al. 

2007). The discordance in these data between Chinese and Caucasian populations 

cannot be explained by a different frequency of rs10407968 polymorphism in the 

Chinese general population, since it is reported to be 13,3% for G allele and 

therefore  it is not represented significantly lower than the 15.7% representing the 

frequency of this allele in the Caucasian population (Chi-Square test, p:0.3). 

However, a further limitation of our study is the limited size of enrolled cases and the 

absence of control group. 

Recently, Silveira et al. (Silveira et al. 2010) studied 83 children (77 girls) with ICPP 

for mutations in KISS1, and reported two missence variants, c.369C>T (p.Pro74Ser) 

and c.417C>G (p.His90Asp), in three unrelated children. These variants were not 

detected in 200 controls, but only Pro74Ser differed from the wild type in the in vitro 

studies: the variant appeared to result in higher kisspeptin resistance to degradation. 
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However, the proband’s mother and maternal grand-mother were also carriers of the 

variant, but had menarche at appropriate ages. On the other hand, no mutations in 

KISS1 gene were found in 101 Korean girls with ICPP (Ko et al. 2010). Moreover, 

very recent data demonstrated that polymorphisms in the 3'UTR of KISS1 are 

associated with CPP and interfere with the conformation of the DNA sequence and 

potentially the RNA sequence of KISS1 further verifying a role of the KISS1/KISS1R 

in the abnormal initiation of puberty (Huijbregts et al. 2012). In accordance to the 

aforementioned findings, no mutations were found in either KISS1R or KISS1 in 30 

girls with ICPP (Tommiska et al. 2011).  

Our findings of absence of any mutation in the GPR54 gene are in agreement with 

those reported previously, suggesting that defects in the kisspeptin system are a rare 

cause for ICPP.  

Moreover, several lines of evidence sugest that neurokin B might have a role as 

regulator of GnRH secretion (Goodman et al. 2007). Neurokinin B/NKB3R signaling 

pathway shares many similarities with the Kisspeptin/GPR54 pathway. Navarro et al. 

[Navarro et al. 2009] proposed a model whereby NKB acts autosynaptically on 

Kisspeptin neurons in the arcuate nucleus to synchronize and shape the pulsatile 

secretion of Kisspeptin and drive the release of GnRH in the median eminence.  

Kisspeptin and NKB (along with Dyn and ERa) signaling pathways may represent the 

so far called “GnRH pulse generator system”. Imbalance of this functional network 

may result in alterations in the timing of puberty. Therefore, it has been also 

reasonable to hypothesize that gain-of-function mutations in TACR3 (or NKB3R) 

might be identified in children with ICPP.  

In 2012, a new heterozygous variant (p.A63P) in proneurokinin B was identified in a 

Brazilian girl out of a population of 114 patients (107girls) with ICPP (Tusset et al. 

2012). Comparative analysis of the amino acid sequence of neurokinin B showed 

that the alanine in position 63 is a conserved residue among primates. Nonetheless, 

this variant was not predicted to alter the splicing site, and the functional effects of 
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this amino acid substitution were controversial using different in silico algorithms. In 

other words, this new variant does not seem to have a direct causative role in the 

precocious puberty. Accordingly, we were not able to identify any mutation or 

polymorphism in TACR3 gene in this cohort of 38 girls with ICPP, suggesting that 

TACR3 mutations can rarely, if ever, be the underlying genetic abnormality leading to 

the premature initiation of puberty.  

Taken the above studies and our findings together it appears that no isolated 

pathway is responsible for the neuroendocrine control of puberty and that the 

initiation of puberty could involve several inhibitory and stimulatory pathways. It is 

noteworthy that, a hypothetical transcriptional model that control mammalian puberty 

via “activators” and “repressors” regulating genes  involved in advancing the pubertal 

process has been proposed [Ojeda et al. 2010].   

In the last decade a wealth of evidence has accumulated demonstrating the 

contribution of different, yet partially overlapping, sub-systems to the neuroendocrine 

mechanism controlling the pubertal onset in mammals.The final event required for 

puberty to occur is a sustained increase in pulsatile gonadotropin-releasing hormone 

(GnRH) release. In rodents, GnRH neurons reside in the preoptic area; in primates 

they are mostly located in the medial basal hypothalamus,(Ojeda and Skinner, 2006; 

Plant and Witchel, 2006). The pubertal changes in GnRH output are, in turn 

determined by modifications in transsynaptic (Kordon et al., 1994; Ojeda and 

Terasawa, 2002) and glial (Ojeda et al., 2003; Ojeda and Terasawa, 2002) inputs to 

the GnRH neurons. Studies in monkeys and rodents have shown that the 

transynaptic changes involve an increase in excitatory inputs and a reduction in 

inhibitory influences (Ojeda and Terasawa, 2002; Plant and Witchel, 2006; Terasawa 

and Fernandez, 2001) The glial component of the system is predominantly 

facilitatory, and consists of growth factors and small diffusible molecules that directly 

or indirectly stimulate GnRH release (Ojeda et al., 2003; Ojeda and Skinner 2006). 
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Individual components of each of these regulatory systems continue to be identified 

(fig.19). 

 

 

Figure 19 Neural, hormonal, and environmental factors regulating the kisspeptin–

GPR54 system. Scheme summarizes the different factors that have been shown to regulate 

the kisspeptin–GPR54 system only during adulthood (squared by dashed lines) or also during 

development (squared by full lines and colored). Hormonal factors are codified by an arrow 

and central factors by a triangle. Molecular factors have been included whose receptors have 

been found on some kisspeptin neurons, factors found within fibers in close apposition to 

kisspeptin neurons, factors eliciting c-fos expression, or an electrophysiological response 

within kisspeptin neurons or changing Kiss1 or GPR54 mRNA levels, kisspeptin or GPR54 
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immunoreactivities, or the number of Kiss1/kisspeptin expressing cells when exogenously 

administered. Of note this synthetic scheme combines data from mice, rats, sheep, and 

monkeys and therefore occults potential species differences that may exist in these 

regulations. It is hypothesized that the developmental pattern of GnRH release (red graph 

below the tap) is shaped by interactions of these different neural and hormonal factors with an 

intrinsic differentiation program of the system (central clock). The developing kisspeptin–

GPR54 system is particularly vulnerable to some environmental factors like endocrine 

disruptors, diet and stress which can alter GnRH secretion and reproductive function on the 

long-term. POA, preoptic area; ARC, arcuate nucleus; E2, estradiol; T, testosterone; P4, 

progesterone; ER, estrogen receptor; AR, androgen receptor; PR, progestin receptor; IGF, 

insulin-like growth factor; IGF-R, insulin-like growth factor receptor; FGF, fibroblast growth 

factor; FGF-R, fibroblast growth factor receptor; GABA-R, GABA receptor; RFRP3, RF-

amides related peptide-3; RFRP3-R, RFRP3 receptor; LepR, leptin receptor; Prl-R, Prolactin 

receptor; NKB, neurokinin B; NK3R, NKB receptor; Glut-R, glutamate receptor; VP, 

vasopressin; VP-R, vasopressin receptor; MCH, melanocortin; MCH-R, MCH receptor; Dyn, 

dynorphin; KOR, kappa-opioid receptor (Dyn-receptor); GR, Glucocorticoid receptor; CRH, 

corticotrophin-releasing hormone; CRH R, corticotrophin-releasing hormone receptor; D2-R, 

dopamine-receptor (Franceschini et al. 2013).  

.  

 

As already exposed, in addition to glutamatergic neurons (Brann, 1995; Ojeda and 

Skinner 2006; Plant and Witchel, 2006), which are widely distributed through the 

basal forebrain, the hypothalamus contains neurons that use the peptide kisspeptin 

to stimulate GnRH secretion (Kauffman et al., 2007; Oaklay et al., 2009). These 

neurons also produce neurokinin B (Navarro et al., 2009), a neuropeptide that has 

been shown to stimulate GnRH release and dynorphin, an opioid peptide that inhibits 

GnRH release (Kinoshita et al., 1982; Navarro et al., 2009; Schulz et al., 1981). In 

rodents, one group of kisspeptin neurons is located in the periventricular region of the 

anteroventral periventricular nucleus (AVPV) and the other in the periventricular 

region of the arcuate nucleus (ARC) (Clakson et al., 2009b). Thus, the excitatory 

transynaptic regulation of GnRH secretion is provided by neurons that use glutamate, 

kisspeptin (Dungan et al., 2006; Ojeda and Skinner, 2006) and apparently, 

neurokinin B (Topaloglu et al., 2008).  

http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=IsabelleFranceschini&UID=6328
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With regard to the inhibitory transynaptic network controlling GnRH release, it clearly 

appears that GABAergic and opioergic neurons are major players (Terasawa and 

Fernandez 2001). However, growing evidence suggests that a product of the 

RFamide-related peptide gene (RFRP), which is the mammalian ortholog of the 

peptide gonadotropin-inhibiting hormone (GnIH) in birds (Ebling and Luckman, 2008) 

is a physiological inhibitor of GnRH neurons (Ducret et al., 2009; Gibson et al., 2008; 

Tsutsui et al., 2010). These observations propose that RFRP-containig neurons 

provide an additional, and perhaps important, transsynaptic mode of inhibitory 

systems. The RFamide-component seems to be the simplest, because it is 

composed of one or two peptides (RFRP1 and RFRP3) and a single receptor termed 

GPR147 (Hinuma et al., 2000; Tsutsui et al., 2010), which appears to be expressed 

in GnRH neurons (Ducret et al., 2009). The GABA system presents a higher level of 

complexity. GABA can inhibit GnRH secretion indirectly, via effects exerted on 

neurons connected to the GnRH neuronal network (Ojeda and Skinner 2006; 

Terasawa and Fernandez, 2001), but can also stimulate GnRH neurons directly 

through activation of GABA receptors (DeFazio et al., 2001; Moenter and DeFazio, 

2005). The opioid inhibitory system is even more complex. Opioergic neurons imply 

different peptides and several receptors to inhibit GnRH release (Kordon et al., 

1994). Similarly to GABAergic inputs, opiatergic inhibition may be exerted directly 

(Dudas and Merchenthaler, 2006) or indirectly on GnRH neurons or on neurons 

involved in the stimulatory control of the GnRH neuronal network, such as kisspeptin 

neurons (Navarro et al., 2009). In addition to transsynaptic inputs, the pubertal 

activation of GnRH secretion also requires information from glial cells (Ojeda et al., 

2000; Ojeda and Terasawa, 2002). Astrocytes and ependymoglial cells lining the 

ventral surface of the third ventricle produce cell to cell signaling molecules that 

stimulate GnRH release (Lomniczi and Ojeda, 2009). Glial cells contribute to the 

pubertal activation of GnRH secretion via two mechanisms. One of them involves 

growth factors of at least four different families. Transforming growth factor-beta 
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(TGFβ), of the TGF superfamily, is recognized by cell-membrane receptors endowed 

with serine-threonine kinase activity that are located on GnRH neurons (Prevot et al., 

2000). Upon binding, TGFβ enhances GnRH gene expression and GnRH secretion 

(Mahesh et al., 2006; Prevot et al, 2002). Growth factors of the other three families, 

include the epidermal growth factor (EGF) family, basic fibroplast gorwth factor 

(bFGF), and insulin-like growth factor 1 (IGF-1). These factors are recognized by 

receptors with tyrosine kinase activity. Some of these receptors (FGFR, IGF-1R) are 

expressed in GnRH neurons, but erbB receptors (which recognize EGF and EGF-like 

peptides) are mostrly expressed on glial cells. Genetic disruption of erbB receptors 

delays female sexual development due, at least in part, to impaired erbB ligand-

induced glial prostaglandin E2 (PGE2) secretion (Lomniczi and Ojeda, 2009). While 

growth factors of glial origin set in motion glia-to-neurons signaling pathways, at least 

one neuron-to-glia regulatory pathway initiated by glutamatergic neurons has been 

shown to facilitate astrocytic signaling mediated by erbB receptors (Dziedzic et al., 

2003). The second mechanism of glia-to-GnRH neuron communication involves 

plastic rearrangement in cell adhesiveness. The adhesion of glial cells to GnRH 

neurons appears to require at least three different cell-to-cell communications 

systems. One is thought to be provided by the sialylated form of the neural cell 

adhesion molecule NCAM (PSA-NCAM) (Parkash and Kaur, 2005; Perera et al., 

1993). PSA-NCAM is abundant in brain regions that present a high degree of 

postnatal plasticity (Gascon et al., 2007), such as the medial basal hypothalamus-

median eminence (ME) region (Perera et al., 1993). PSA-NCAM is abundant in 

GnRH nerve terminals and glial cells of the ME (Parkash and Kaur, 2005), 

suggesting an involvement in glia-GnRH nerve terminal adhesiveness. The addtional 

adhesive systems are the Synaptic Cell Adhesion Molecule 1 (SynCAM1) (Ojeda et 

al., 2008) and the Receptor-like Protein Tyrosine Phosphatase-β (RPTPβ) (Parent et 

al., 2007). Because in all three cases the participating proteins contain intracellular 

domains with signalling capabilities, it is likely that the interaction of glial cells with 
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GnRH neurons may not only involve secreted bioactive molecules, but also the 

activation of cell-to-cell signalling mechanisms (Lomniczi and Ojeda, 2009).  

 

The neuroendocrine control of puberty seems to involve many genes with different 

functions  

 

So, can the initiation of puberty be attributed to the activation of a single gene? 

Superficially the answer to this question may be affirmative if one considers that rare 

single gene mutations, such as those affecting GNRHR (Bedecarrats and Kaiser, 

2007), GPR54 (de Roux et al., 2003; Seminara et al., 2003; Teles et al. 2008) KiSS1 

(Lapatto et al., 2007; Topaloglu et al., 2010; Silveira et al. 2010) TAC3 and TACR3 

(Topaloglu et al., 2008) result in failure or acceleration of pubertal onset. However, 

none of these genes seems to be in a commanding position to synchronize neuronal 

and glial networks involved in the initiation of puberty. Contrary to earlier studies, 

recent evidence suggests that KiSS1 may not be a gene that sets in motion the 

pubertal process. Instead, KiSS1 – expressing neurons more likely are activated in 

response to developmental changes in estradiol production (Clarkson et al., 2009a). 

These observations along with the recent finding that common genetic variation in a 

set of genes thought to play an essential role in puberty does not affect the pubertal 

timing in humans (Gajdos et al., 2008), have made clear that no isolated pathway is 

responsible for the neuroendocrine control of pubertal onset (Eaves et al., 2004; 

Krewson et al., 2004; Ojeda et al., 2006; Seminara and Crowley 2001). Moreover, 

this notion is supported by recent genome-wide association studies that, as already 

exposed, have found an association of a sequence variation in LIN28B  with early 

menarche (He et al., 2009; Ong et al., 2009; Perry et al., 2009; Sulem et al., 2009). 

However, to the best of our knowledge, only one sequence variant (rs11800887) was 

found in the coding region of LIN28B, that was detected in a patient out of 30 girls 

with ICPP (Tommiska et al. 2011), but it was also present in 1 of the 132 controls 
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who did not deviate from the other controls with respect to weight, height or Tanner 

stage as well as gonadotropins or sex steroids levels. Thus, this missence change is 

not likely to be causative for ICPP and is not of clinical value in the early detection of 

girls at risk of ICPP.  

Further studies found a significant association of sequence polymorphisms in at least 

10 other genes with age at menarche (Perry et al., 2009; Sulem et al., 2009). Very 

recently, it was reported that – in addition to the observations in humans – mice 

overexpressing Lin28α have delayed puberty (Zhu et al., 2010). However, it is 

currently unknown if Lin28α overexpression delays puberty due to a general effect on 

body metabolism or via a mechanism involving an alteration in GnRH secretion. 

Several other studies identified and characterized other elements of the regulatory 

system controlling the onset of female puberty, such as novel molecules required for 

glutamate release (Choi et al., 2008; Ha et al., 2008), homeostatic maintenance of 

GnRH neuron excitability (Garcia-Rudaz et al., 2008), unidirectional glia-to-GnRH 

neuron signaling (Lomniczi et al., 2006), and glia-GnRH neuron adhesive 

communication (Parent et al., 2007; Sandau et al., 2009). Τranscriptional regulators 

of the pubertal onset were also identified, such as the POU-domain gene Oct2 

(Ojeda et al., 1999), the homeodomain gene Ttf1/Nkx2.1 (Mastronardi et al., 2006), 

and a novel gene termed Eap1 (Enhanced At Puberty 1) (Rampazzo et al., 2000; 

Heger et al., 2007). Based on a variety of experimental studies, including the use of 

anti-sense oligodeoxynucleotides (Ojeda et al., 1999), CreloxP-mediated, neuron-

specific conditional gene deletion (Mastronardi et al., 2006) and siRNA-mediated 

region-specific knock-down of gene expression (Heger et al., 2007) it was suggested 

that these genes may play a central role in the hierarchical arrangement of networks 

controlling the pubertal process (Ojeda et al., 2006). In most of these studies GnRH 

secretion had been affected by manipulating the expression of these genes 

selectively in the hypothalamus and the endpoints were manifestations of puberty, 

such as vaginal opening and age at first ovulation. In other words there exist strong 
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evidence that puberty is controlled by regulatory gene networks composed of multiple 

functional modules operating with overlaps of partially redundant pathways as 

opposed to being in a strict hierarchy (Ojeda et al., 2006).  

 

Genes controlling puberty are organized in functional networks 

In accordance with the above reports it may be concluded that there are genes 

required for the acquisition of reproductive function, such as GPR54, KISS1 and 

TAC3, and genes that contribute to define the correct timing of the pubertal onset, 

such as those encoding molecules involved in glia-neuron communication, 

transsynaptic information, glia-GnRH neuron adhesiveness, and intracellular 

signaling. Others, such as OCT2, TTF1/NKX2.1, EAP1, and LIN28B appear to be 

involved in the transcriptional control of puberty. As such they are supposed to 

control the expression of subordinate genes that are needed for the neuron-to-

neuron and glia-to neuron regulation of GnRH secretion at puberty (Ojeda et al., 

2010b). Using DNA arrays evidence was provided that an additional gene network 

exists that contributes to the hypothalamic control of puberty. Genes composing this 

network have diverse cellular functions but share the common feature of being first 

identified being involved in tumor suppression/tumor formation (Roth et al., 2007). 

Consequently this network was termed “TSG” (for Tumor Suppressor Gene) network. 

Quantitative PCR studies verified the array results (Parent et al., 2008; Roth et al., 

2007) and in silico analysis of transcription factor recognition sites present in gene 

promoters indicated that kiss1, Gpr54 and Syncam1, are subordinate genes of the 

network. Importantly, before the discovery of kisspeptin being involved in the control 

of puberty, the Kiss1 gene was known as a tumor metastases suppressor (Ohtaki et 

al., 2001; Steeg et al., 2003).  

Cis-regulatory analysis of shared TSG binding sites predicted the existence of five 

central hubs (Cdp/Cutl1, Maf, p53, Yy1 and Usf2) controlling the TSG network at the 

mailto:TTF1/NKX@.1
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transcriptional level (Roth et al., 2007). This analysis involved: 1) the computer-

assisted inspection of the 5’flanking region of the genes of interest for predicted 

transcription factor binding sites using databases such as TransFac (Matys et al., 

2003; Wingender etal., 1996) and P-MATCH (http://www.gene-

regulation.com/pub/programs.html), 2) the establishment of directional links among 

genes encoding transcription factors to all genes containing a binding site for those 

transcription factors, and 3) the visualization of these interactions using the on-line 

tool CytoScape (http//www.expasy.org). Several hubs were identified and found to be 

connected to both subordinate genes encoding proteins required for intracellular 

signaling and cell-to-cell communication and to other presumptive non-TSG upper-

echelon genes (Oct2, Ttf1 and Eap1) involved in the transcriptional regulation of the 

pubertal process. Immunohistochemistry and in situ hybridization analysis 

demonstrated that these three genes, as well as other subordinate nodes of the 

network, are expressed in neuronal and/or glial subsets involved in the control of 

GnRH secretion, including GnRH neurons themselves (Heger et al. 2007; 

Mastronardi et al., 2006; Ojeda et al., 2008; Roth et al., 2007). However, the current 

model of this TSG network is imperfect and needs to be fully validated by functional 

studies. Such studies are necessary to not only verify in silico predictions, but also to 

provide a more accurate and comprehensive architecture of the network. Also in 

need of definition is the identity of the neuronal and glial subsets expressing each 

putative central hub, and the possibility that individual central hubs have different, 

cell-specific, puberty-related developmental patterns of expression. It is likely that the 

TSG network is just one of several sub-networks involved in the control of puberty. 

As indicated above, Oct2, Ttf1 and Eap1 may form part of another, functionally 

connected network, because they do not behave as TSGs. LIN28b, on the other 

hand, may be a hub of the TSG network, because of its role in puberty and its well-

established contribution to cancer biology (Viswanathan et al., 2009; Ojeda et al. 

2010).  

http://www.gene-regulation.com/pub/programs.html
http://www.gene-regulation.com/pub/programs.html
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Based on both in silico models and experimental data, it was suggested that there 

may exist a controlling system in which transcriptional regulators are shared by 

different neuronal and glial subsets, with sets of subordinate genes specifically 

expressed in particular cellular subsets. It is tempting to speculate that these 

transcriptional control systems extend to genes encoding enzymes involved in 

processing precursors of puberty-related peptides, such as kisspeptin, dynorphin, 

RFRP1/3, etc. Likewise, little is kown about the transcriptional machinery operating in 

hypothalamic astrocytes to control the production of growth factors (e.g. TGFa, 

neurogulins) and small molecules (e.g., prostangladin E2, glutamate, ATP) involved 

in stimulating GnRH release. Of all of these factors, only TGFa expression has been 

shown to be controlled by a gene (Oct2) involved in the transcriptional regulation of 

puberty (Ojeda et al. 2010).  

Gain-of-function methods were used to assess the involvement of transcription 

factors in the control of the pubertal process. (Davidson et al., 2002; Ideker et al., 

2001). Such approaches have been employed to define the involvement of astroglial 

cells (Ma et al., 1994; Prevot et al., 2003; Rage et al., 1997; Sandau et al., 2009) and 

specific neuronal subsets (Bilger et al., 2001; Heger et al., 2003) in the hypothalamic 

control of puberty. Loss-of-function approaches were used to identify three upstream 

transcriptional regulators of the pubertal process (Heger et al., 2007; Mastronardi et 

al., 2006; Ojeda et al., 1999), and four subordinate genes involved in neuron-to-

neuron communication (Choi et al., 2008; Garcia-Rudaz et al., 2008; Ha et al., 2008; 

Sandau et al., 2009).  

 

The transcriptional repression of puberty 

Growing evidence suggests that puberty may not occur earlier because it is held in 

check by a developmental program involving transcriptional/posttranscriptional 

repression of genes that are stimulatory to the pubertal process. For instance, as 
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already exposed, LIN28B encodes RNA-binding proteins that control gene 

expression via posttranscriptional regulation (Moss et al., 1997). Nucleotide 

polymorphisms near the  LIN28B gene in chromosome 6(q21) are associated with 

earlier puberty and shorter stature in girls (Ong et al., 2009; Perry et al., 2009; Sulem 

et al., 2009). Increasing Lin28b expression in C.Elegans (Moss et al., 1997) and Lina 

in mice (Zhu et al., 2010) leads to developmental delay. Lin28b exerts its effect by 

preventing the early expression of genes, which should normally be activated at a 

subsequent phase of development (Ambros and Horvitz, 1984; Moss et al., 1997). 

Mammalian LIN 28A and B control cellular function by blocking the maturation of let-7 

miRNA precursors into mature miRNAs. An excess of LIN28B has been shown to 

reduce production of this miRNA family leading to depression of let-7 miRNA target 

genes (Viswanathan et al., 2009). Considering that Lin28a overexpression in mice 

results in delayed puberty (Zhu et al., 2010), both Lin28 and let-7 miRNAs can be 

considered as repressive components of the TSG network controlling the onset of 

puberty.  

Other potential mechanisms of transcriptional/ posttranscriptional repression that 

may be involved in controlling the onset of puberty could exist. For instance, it was 

observed that expression of a family of genes encoding Zinc-finger (ZNF)-containing 

proteins changes in the hypothalamus of castrated male nonhuman primate at the 

expected time of puberty (Matagne et al., 2009). The expression profiles of these 

genes were inversely correlated to the prepubertal changes in LH output.. ZNF genes 

encode proteins that function as transcriptional repressors (Urrutia, 2003; Vogel et 

al., 2006). Additionally, two families of transcriptional repressors were expressed in 

the pre- and peripubertal female rat hypothalamus (Lomniczi et al., 2010). 

Interestingly, expression of genes belonging to one of these families decreases at 

puberty, while that of members from the other family increases. Family 1 consists of 

genes of the POZ-ZF (poxvirus and Zinc finger) family of transcriptional regulators, 

also konown as BTB (broad complex, Tramtrack, bric –à - bric) (Kelly and Daniel, 



 139 

2006). It has been observed that expression of a subset of these genes, known as 

the POK (POZ and Kruppel) subfamily, increases in the hypothalamus of female rats 

at puberty, suggesting that POK proteins may be repressing downstream repressors 

of the pubertal process. Family 2 consists of genes of the Polycomb group (PcG). 

The PcG silencing complex is considered as a major regulator of genomic programs, 

because it acts at different stages of development to define which set of genes are 

active and which are quiescent (Kohler and Villar, 2008; Schwrtz and Pirrotta, 2007; 

Simon and Kingston, 2009). Expression of key members of this complex decreases 

in the hypothalamus at puberty, suggesting that PcG proteins may provide a 

repressive influence on the initiation of puberty. Like POK genes, genes of the PcG 

silencing complex can be considered as TSGs, because they have tumor 

suppressive nodes (Classen et al., 2009; Kelly and Daniel, 2006; Martinez et al., 

2009). Based on these considerations, the concept of a TSG network controlling 

puberty can be refined by postulating that the network’s core is composed of both 

trans-activational and repressive nodes. While the former move the process along by 

facilitating the sequential activation of key stimulatory events, the latter may impose a 

repressive, and likely encompassing, tone to the system, so that premature 

reproductive maturation is prevented. Obviously, these preliminary observations will 

need to be thoroughly tested before they can be universally employed to support the 

idea that transcriptional repression is an integral component of the developmental 

program controlling mammalian puberty at the hypothalamic level (Ojeda et al. 2010). 
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The epigenetic control of puberty  

 

As reported, pubertal timing is influenced by complex interactions among genetic, 

nutritional, environmental, and socioeconomic factors (Palmert and Boepple 2001). It 

appears obvious that alternative mechanisms of control of puberty onset must exist. 

It is believed that a powerful biological regulatory system that meets these 

requirements is epigenetics (Herman and Bylin, 2003; Wolffe and Matzke, 1999). 

Chemical modification of DNA or chromatin-associated proteins, particularly histones, 

has a major influence on chromatin structure and gene expression. DNA can be 

modified by methylation of cytocine residues in CpG dinucleotides (Bjornsson et al., 

2004; Jaenish and Bird, 2003). N-terminal tails of histone proteins are subject to a 

wide range of different modifications, including acetylation, methylation, 

phosphorylation and ubiquitylation (Jenuwein and Allis 20001; Kouzarides 2007). 

Epigenetic mechanisms can not only provide gene-specific gate keeper functions 

(Garcia-Bassets et al., 2007), but are also endowed with an unsuspected degree of 

plasticity able to transiently change gene expression within hours (Miller and Sweatt 

2007) and even minutes (Kangaspeska et al., 2008; Metivier et al., 2008). Even more 

remarkably, epigenetic regulation of certain genes (Metivier et al., 2008), such as the 

gene encoding ERα (Kangaspeska et al., 2008), is unexpectedly cyclic, exhibiting a 

periodicity that results in a rapid, tight and dynamic control of gene expression. It has 

been demonstrated that epigenetic information is also essential for a variety of neural 

functions, including estrogen-induced gene expression (Perillo et al., 2008; 

Subramanian et al., 2008), glial-neuronal interactions (Shen et al., 2008), circadian 

rhythms (Nakahata et al., 2008) and sexual differentiation of the brain (McCarthy et 

al., 2009). Lomniczi et al. (2010) suggested that an epigenetic mechanism of 

transcriptional repression operating in the hypothalamus plays a significant role in the 

timing of the initiation of female puberty. Recent results suggest that the PcG group 
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of transcriptional silencers is a major contributor to this repressive mechanism. It was 

observed that hypothalamic expression of core components of the PcG complex 

decreases at puberty, and that this change is associated with acquisition of 

epigenetic silencing marks (DNA methylation, repressive histones) and loss of 

activating histone marks from their promoter regions. Using the Kiss1 gene as a 

prototype, it was then found that PcG proteins interact with the 5’ flanking region of 

this gene, and that the pubertal increase in Kiss1 expression is accompanied by the 

acquisition of epigenetic modifications associated with gene activation, i.e. DNA 

demethylation, recruitment of activating histones and loss of repressive histones. 

More precisely,in pre-pubertal period, Kiss1 expression has been described to be 

inhibited by the Eed and Cbx7 (components of PcG complexes). At pubertal onset, 

the Eed and Cbx7 promoters become methylated, causing a decrease in their 

expression, allowing the Kiss1 gene to be turned on by other epigenetic 

modifications, and thereby initiate puberty (Lomniczi et al., 2013).  

Moreover, very recently, Abreu et al. (Abreu et al. 2013) reported four loss of function 

mutations in 12 patients with familial CPP (6 girls) in the imprinted gene MKRN3. 

MKRN3 is a maternally imprinted gene (only the paternal allele is expressed) and is 

associated with protein ubiquitination, in which an ubiquitin moiety is attached to a 

protein, thus tagging it for movement to the proteasome, where it is degraded. 

Ubiquitination can also be an indicator for signal transduction, cell-cycle regulation, 

differentiation, morphogenesis and other nonproteolytic fates. The precise 

mechanism by which the deletion of MKRN3 leads to the early reactivation of 

pulsatile GnRH secretion remains to be elucidated. However, the widespread species 

conservation of the makorin protein family, in which MKRN3 protein belongs, 

suggests that it plays one or more vital roles in cells, with high levels of expression in 

the developing nervous system (Gray et al. 2000). Recently, increased levels of 

mkrn3 mRNA at young ages in the arcuate nucleus of male and female mice were 

found, with a striking reduction in levels immediately before puberty and low levels in 
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adulthood. The arcuate nucleus is considered to play a key role in puberty control in 

mice (Navarro et al. 2009), and the pattern of Mkrn3 mRNA expression correlates 

with an inhibitory effect on the initiation of puberty in these animals. These data are in 

agreement with the identification of a loss of function mutation in patients with CPP, 

corroborating the view that the mutation has an inhibitory effect on the secretion of 

GnRH. Thus the initiation of puberty is thought to result from a decrease in factors 

that inhibit the release of GnRH combined with an increase in stimulatory factors (fig. 

20). These results support the notion that epigenetic mechanisms are integral 

components of the neuroendocrine process controlling puberty.  
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Figure 20 Timing of Puberty 

A pivotal event in the onset of puberty in mammals is the resumption of pulsatile release of 

GnRH from neurons of the hypothalamus. Known influences on the timing of the onset of 

puberty I mammals include the photoperiod, leptin levels, and the increased expression of 

neurokinin B, kisspeptin, and their receptors (NK3R and KISS1R, respectively). Abreu et al. 

(Abreu et al. 2013) implicate MKRN3, a protein that is believed to mediate ubiquitination, in 

puberty onset. In contrast with kisspeptin and neurokinin B, which stimulate the 

commencement of puberty, MKRN3 seems to inhibit puberty: Abreu et al. show that 

mutations in MKRN3 predicted to cause loss of function of the protein, cause central 

precocious puberty. KNDy denotes kisspeptin-neurokinin B-dynorphin, INF infudibular 

nucleus, ME medin eminence, and POA preoptic area (Hughes 2013). 
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1. F Conclusions and perspectives   

In conclusion, mutations in coding sequences of GPR54 or TAC3R do not seem to 

be a frequent cause of ICPP. Large-scale international collaborative studies 

comprising more candidate genes implicated in the initiation of puberty are certainly 

necessary to delineate in different ethnic groups the impact of specific mutations in 

the abnormal initiation of puberty.  

 GnRH decapeptide structure was elucidated in 1971. However, debate continues on 

the relative importance of neuronal circuits controlling GnRH neuronal secretion. This 

is due to the complexity of a system regulated by multiple inputs. Under various 

physiological and pathological conditions, hormonal and metabolic signals either 

regulate GnRH neurons directly or indirectly. Neuronal inputs to GnRH cells mediate 

important metabolic-, stress-, sex steroid-, lactational-, and circadian signals to the 

reproductive axis, among other effects. Based on several studies, it is likely that this 

critical function is carried out by an interconnected network of sex-steroid sensitive 

neurons in the infundibular/arcuate nucleus that coexpress NKB/kisspeptin/dynorphin 

and project to GnRH axons in the median eminence. Connections among the 

NKB/kisspeptin/dynorphin neurons within the arcuate nucleus provide an anatomic 

framework to explain how these neurons could be coordinated bilaterally to relay 

feedback information from the ovaries to modulate pulsatile GnRH release. Thus it is 

expected that a more complex network of neuronal circuits interplays to exert their 

regulation on GnRH release under specific physiologic conditions. reasoning this 

context, we do believe that the tandem Kisspeptin/NKB is essential for the tonic 

episodic release of GnRH while yet there are significant open questions in this model 

that await to be addressed in the upcoming years. Given the rarity of KISS1R/TACR3 

mutations in patients with ICPP as opposed to patients with IHH, roles of kisspeptins 

in the timing of puberty could be challenged. Are they triggers, amplifiers, or 
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dispensable regulators? What are the interactions and hierarchy of Kiss1 neurons 

with respect to other central regulators of the HPG axis: glutamate, GABA, RFRPs? 

What are the exact roles and mode of action of KNDy neurons in the central control 

of GnRH secretion? In addition, it will be important to further define the essential 

regulatory regions of Kiss1 gene and identify critical transcription factors that interact 

with Kiss1, in order to better elucidate the complex mechanisms involved in its 

regulation (Semaan et al. 2013). Moreover, it would be of great interest to decode 

what the genuine role of dynorpin in this model is and what interneurons it is acting 

on. It will also be very important to determine the role of NKB signaling in the early 

activation of the reproductive axis in the neonatal period. In addition, it is known that 

GnRH neurons exhibit a prolonged period of activation after a single kisspeptin pulse 

(Han et al. 2005), therefore, there must be a factor that actively block kisspeptin’s 

action on GnRH neurons after every pulse, whose nature is to be discovered.    

The above observations support the notion that the onset of puberty depends on the 

contribution of more than one gene. There are many genes and many pathways that 

contribute to the process, but as seen in embryonic developmental processes, 

puberty also appears to be controlled at the transcriptional/post transcriptional level 

by discrete groups of genes. “Activators’ might move the process along by promoting 

key developmental events; “repressors’ might prevent the untimely activation of 

activating genes (Fig. 21).  
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Figure 21 General organization of a hypothetical transcriptional complex 

controlling the activational arm of female puberty 

According to this model the highest level of control is exerted by repressors of repressors 

(e.g., POK, ZNF genes); because these genes repress other repressors (e.g. PcG genes), 

their influence would be expected to be low during juvenile development, increasing at 

puberty. In contrast, the repressive influence of a second, less “central” level of control formed 

by “repressors” (e.g. PcG genes) would be higher during juvenile development than at 

puberty, because these genes function to prevent the premature activation of puberty 

activating genes (PubAGs). As a result of these changes in repressive tone, PubAG 

expression (e.g, Kiss1, Tac3, TTF1), would increase at and/or preceding the onset of puberty. 

Because Eap1 predominantly represses gene expression, it may be considered as a second 

tier repressor, but more information is needed before an accurate assignment can be made. 

An additional level of regulation is provided by epigenetic mechanisms. These mechanisms 

involve opposite changes in DNA methylation (DNA me) and association of modified histones 

to PcG and PubAG promoters (repr H3 = histones associated with gene repression; activ H3 

= histones associated with gene activation). Not considered in this model is the possibility that 

repressors of repressors also modulate the activity of neuronal populations involved in the 

inhibitory control of puberty; should this be the case, an increased repressive influence of 

these factors at puberty would remove transsynaptic inhibitory influences on GnRH neurons, 

allowing stimulatory inputs to operate at full force. Lastly, this model does not consider 

“further upstream” mechanisms of control that may govern the expression of repressors of 

repressors, and that are likely to impose an even more encompassing regulation of the 

transcriptional cascade controlling puberty onset (Ojeda and Lomniczi 2010). 
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As detailed in the above figure, it is speculated that both inhibitory and stimulatory 

pathways of transcriptional regulation operate within neuronal and glial cell 

populations involved in controlling the onset of puberty and that an encompassing 

level of regulation is provided by two layers of gene repression, acting in concert with 

epigenetic mechanisms (Ojeda and Lomniczi 2010). 

One of these layers, formed by transcriptional/posttranscriptional ‘repressors” (e.g. 

PcG genes, Lin28b, etc) may function to prevent the premature activation of puberty-

inducing genes (such as Kiss1, Tac3, Ttf1, Eap1, Oct2, etc); the other layer, located 

more centrally in the network (e.g., POK, ZNF genes, and possibly others), may 

modulate in a temporally dynamic manner the expression of repressors. As such, 

these more centrally located genes can be considered as ‘repressors of repressors”. 

Both layers may also directly control key subordinate genes of the network (such as 

those operating within kisspeptin, GABAergic, glutamatergic, opioid and RFRP 

neurons) not by variations in DNA sequence, but by epigenetic changes in gene 

expression (Lomniczi et al., 2010; Ojeda and Lomniczi 2010). Puberty onset seems 

to integrate diverse genetic and environmental signals. The control of gene 

expression via epigenetic mechanisms enables the integration of both intrinsically 

programmed and environmental factors, thus allowing for the ability to adapt to a 

changing environment by altering the activity of genes (Bernstein et al. 2007; Rando 

et al. 2012). Much research is obviously needed to verify or challenge the validity of 

these concepts.  
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IV. ABSTRACT IN GREEK 

 

Η έναρξη της εφηβείας είναι ένα σύνθετο και κρίσιμο φαινόμενο στην εξέλιξη κάθε 

είδους και οι μηχανισμοί που εμπλέκονται σε αυτήν παραμένουν εν πολλοίς 

άγνωστοι. Πρόσφατα τα νευροπεπτίδια Kisspeptin και Neurokinin Β (ΝΚΒ)  έχουν 

προταθεί ότι παίζουν κεντρικό ρόλο στην ενεργοποίηση των GnRH νευρώνων κατά 

την έναρξη της ήβης. Μελέτες σε ανθρώπους και πειραματόζωα έχουν δείξει ότι 

μεταλλάξεις στα γονίδια που κωδικοποιούν αυτά τα νευροπεπτίδια ή τους υποδοχείς 

τους (GPR54 και TACR3 αντίστοιχα) οδηγούν σε διαταραχές ενήβωσης  Ενδιαφέρον 

παρουσιάζει το γεγονός ότι η πλειοψηφεία των μεταλάξεων που έχουν μελετηθεί έως 

σήμερα έχουν ανιχνευτεί σε ασθενείς με Ιδιοπαθή Υπογοναδοτροφικό 

Υπογοναδισμό, μια νόσο πολύ πιο σπάνια από την Ιδιοπαθή Κεντρική Πρώιμη Ήβη 

(ΙΚΠΗ) (επίπτωση 0.001-0.01% και 0.2% αντίστοιχα). Σκοπός της παρούσας μελέτης 

ήταν να μελετηθεί η επίπτωση μεταλλάξεων και πολυμορφισμών των γονιδίων 

GPR54 και TACR3 στην παθογένεια της ιδιοπαθούς  κετρικής πρώιμης ήβης (ΙΚΠΗ).  

Σε αυτή τη μελέτη 33 θήλεα άτομα με διάγνωση ΙΚΠΗ και τακτική παρακολούθηση 

από παιδίατρο ενδοκρινολόγο στη Μονάδα Ενδοκρινολογίας, Μεταβολισμού και 

Διαβήτη της Α’ Πανεπιστημιακής Κλινικής, Νοσοκομείου Παίδων «Η Αγία Σοφία» 

μελετήθηκαν αναδρομικά. Το γενομικό DNA των ασθενών  πολλαπλασιάστηκε με 

PCR και έγινε μοριακή ανάλυση των γονιδίων GPR54 και TACR3 με direct 

sequencing. Η βάση δεδομένων Ensemble genome database χρησιμοποιήθηκε για 

των έλεγχο τυχών μεταλλάξεων και πολυμορφισμών.  

Δεν διαπιστώθηκαν μεταλλάξεις στα γονίδια GPR54 και TACR3. Η σιωπηλή 

παραλλαγή (SNP) A/G coding sequence στη θέση 857526 στο γονίδιο GPR54 

(dbSNP ID: rs10407968) βρέθηκε σε 2 ασθενείς με ΙΚΠΗ.  

Συμπερασματικά μεταλλάξεις στα γονίδια GPR54 και TACR3 μάλλον δεν αποτελούν 

συχνά αίτια στην παθογένεια της ΙΚΠΗ.  
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 V. ABSTRACT IN ENGLISH   

Kisspeptin (KISS1)/GPR54 (KISSR) signaling complex and Neurokinin B (NKB)/ NKB 

receptor (TACR3) signaling have been proposed as an integral part of the network 

coordinating GnRH release. GPR54 (KISS1R) and TACR3 gene mutations have 

been described in cases of idiopathic hypogonadotrophic hypogonadism, while 

limited data exist on gain of function mutation in GPR54 (KISS1R) gene causing 

idiopathic central precocious puberty (ICPP). No data on TACR3 mutations in ICPP 

have been described so far. Aim of this study was to elucidate the possible impact of 

GPR54 (KISS1R) and TACR3 mutations in ICPP. PCR-amplified genomic DNA of 38 

girls with ICPP was analysed for GPR54 and TACR3 genes mutations. No GPR54 or 

TACR3 mutations were found. The A/G coding sequence SNP on the GPR54 gene 

(dbSNP ID: rs10407968) was found in 2 patients with ICPP.  

Conclusion: Our data indicate that GPR54 and TACR3 gene mutations are not a 

frequent cause of ICPP. The identified A/G synonymous SNP (dbSNP ID: 

rs10407968) located in exon 1 of the gene is not probable to have a pathogenic role 

in exon splicing and therefore in the premature initiation of puberty.  

 


