

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Distributed filtering and dissemination of XML data
in peer-to-peer systems

Spyridoula K. Miliaraki

ATHENS

JULY 2011

Θ Ν Ν Ν Η Ν ΘΗ Ω

ΗΝΘ Ω Ν Η Ω
Η Ν Η Φ Η Ν Ν Η Ω Ω

Γ Ν Ν

ΗΝ Η

α α Ν Ν α Ν χυ ΝXML ω Ν
Ν υ α αΝ ω Ν ω

πυ αΝK. α

ΘΗ

Νβί11

PhD THESIS

Distributed filtering and dissemination of XML data in peer-to-peer systems

Spyridoula K. Miliaraki

SUPERVISOR: Manolis Koubarakis, Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Manolis Koubarakis, Professor UoA
Yannis Ioannidis, Professor UoA
Alex Delis, Professor UoA

SEVEN-MEMBER EXAMINATION COMMITTEE

Manolis Koubarakis,
Professor UoA

Yannis Ioannidis,
Professor UoA

Alex Delis,
Professor UoA

Mema Roussopoulos,
Assistant Professor UoA

Christos Tryfonopoulos,
Lecturer, University of Peloponnese

Peter Triantafillou,
Professor, University of Patras

Minos Garofalakis,
Professor, Technical University of

Crete

Examination Date 21/07/2011

ΗΝ Η

α α α υ XML

 υ α α

πυ αΝ α

Ν ΘΗΓΗ Η μΝ α υ Ν υ πα , α

Η Ν ΗΝ ΘΗ Η μ
α υ Ν υ πα , α

ω Ν ωα , α
Ν , α

Η Ν ΗΝ Η

α υ Ν υ πα ,
 α Ν

ω Ν ωα ,
α Ν

Ν ,

α Ν

α- αΝ υ π υ,
π υ Ν α α

Ν υφω π υ ,
α Ν α π υΝ

π υ

α α Ν α αφ υ,
α Ν α π υΝ α

ω ΝΓα φα ,
α Ν υ χ υΝ

Η αΝ α Νβ1ήίι/2011

ABSTRACT

Publish/subscribe systems have emerged in recent years as a promising paradigm for
offering various popular notification services such as news monitoring, e-commerce site
monitoring and alerting services for digital libraries. Since XML is widely used as the
standard format for data exchange on the Web, a lot of research has focused on
designing efficient and scalable XML filtering systems. To offer XML filtering
functionality on Internet-scale and avoid the typical problems of centralized solutions,
we need to deploy such a service in a distributed environment.

In this thesis, we design, develop and evaluate an XML filtering system called FoXtrot.
Our proposal combines the strengths of automata for fast XML filtering and distributed
hash tables for building a fully distributed scalable system. In FoXtrot, we distribute an
nondeterministic finite automaton on top of Pastry DHT exploiting the inherent
parallelism of an NFA that allows it to be in several states at the same time. Structural
matching is performed using the automaton, while we study different methods for also
distributing the task of predicate evaluation. As a result, FoXtrot scales both for a large
number of queries and a large number of predicates per query.

We extensively evaluate our system under various conditions and demonstrate that it
can index millions of user queries exhibiting a high indexing and filtering throughput. At
the same time FoXtrot achieves very good load balancing properties, improves its
performance as we increase the size of the network and exhibits a sufficient degree of
fault-tolerance. Our evaluation was done in a controlled environment of a local cluster
and on the worldwide testbed provided by the PlanetLab network representing the real-
world conditions of the Internet.

SUBJECT AREA: Distributed data filtering

KEYWORDS: peer-to-peer network, information filtering, distributed processing, XML

data, non-deterministic finite automaton

Η Η

α υ α α ή υ (publishήsubscribe systems) α α
υ α α (filtering systems) απ α υ α

π α α έ α υ α α υ φ αφ υ α
 φα π π α φ α

 α α α π α π π φ α π α αφ α α
έ υ Xεδ α α φ π α

α α α α υ , υ α π αυ
π α απ υ α

Xεδέ Γ α α π υ απ Xεδ α α α α
απ φ υ α υ π α α π υ φα υ υ π ,
π π α α π υ α α υπ α α α α
π έ

α π α α α , α , υ π α α α α π α α α
α α α π υ όoXtrotέ Η π α α υ υ α

α α αυ α α απ Xεδ α α υ
α α υ π α α α α (distributed hash tables) α α π
α α α α αέ Η α α αυ α α α
α α υ αυ α υ υ υ υ υ α πα

α υπ π υ α π φ α -α α α έ
απ π υ πα υ α α α α α (structural matching)

 Xεδ α α π π αυ α π υ π α ,
π υ α φ α α α α α α (value
matching) π υ π α α α α Xεδ α α υ φ υ
α αυ α α έ

, π α α π α α π α α α υ υ α όoΧtrot
 α π α α α π

α α π υ πα α απ Planetδabέ α π π
α όoXtrot π υ υ π α απ υ

 α α αυ α α α α υ
 Xεδέ π π , α α α υ α α υ

υ α α υ υ υ υ π υ α όoXtrot
α απ υ υ α έ

Θ ΗΝ Η: α α

Ν : υα , , α α

π α α, α, α α αυ α

To Mihalis, for giving me back my faith.

ACKNOWLEDGEMENTS

 First, I would like to thank my supervisor, Manolis Koubarakis for trusting me and

supporting me throughout the years of my PhD. I would also like to thank the members

of my doctoral committee, Yannis Ioannidis, Alex Delis, Mema Roussopoulos, Peter

Triantafillou, Minos Garofalakis and Christos Tryfonopoulos for their comments and

suggestions for improving and extending this work.

Special thanks go to the rest of my colleagues in the group, Zoi, Matoula, Kostis and

Babis for being good workmates. Especially Zoi, apart from a close friend, was always

there for helping me and advising me at every step of this journey.

Special thanks go to my parents, Kostas and Sofia, my brother Stelios and my sister

Alkmini for their love, patience and encouragement throughout these years. My father's

belief in me always motivated me for never giving up despite the difficulties.

This thesis became possible as special persons stood by me in difficult personal

moments and offered a relief after long working hours and work-spoiled weekends.

Words are not enough to thank Mihalis for being part of my life, for his love and support

to all my decisions.

Throughout this thesis I am very grateful and honored to have received financial support

by Microsoft Research through its European PhD Scholarship Programme. I would like

to thank all the people involved in this research grant.

ΗΝ Η Η Ν Η Ν Η

1έΝ α ω Ν
Η α α α α π υ υ α υ υ α α α

υ υ α υ έ α αυ π α
 υ α υ α α α υ απ υ α α

α α α υ π φ π υ υ αφ υ έ Γ α α α π αυ
π , υ π α α α α υ α α α α α α

υ α α ή υ (publishήsubscribe systems) α υ α α
 π φ α (information filtering systems) α πα απ

π αέ Έ α α ή υ υ α α υ
 α φ υ α αφ α υ υπ α α φ π υ
α (continuous query) α υπ α α υ (subscription).

 υ α υ α α α π υ α υ α αφ α
π , α α α α α υ έ αυ π

 α α α α απ υ π φ α π υ αφ
α α φ π π υ π φ α α

α αυ π υ α π υ α α αφ α υέ
1έ1Ν υ α αΝ ω ή υ

α υ α α ή υ υ π π
φα π α α πα α πα α
α α απ φ α έ Γ α πα α, α

 π υ α α υ υ
υ αφ α α π υ π έ Έ α

 π α φ α αφ α υ π α αφ
π υπ α α π π α α α απ
(keywords) α π π α α π π
XPath. α π α α αυ α υ π

 α Xεδ (eXtensible Markup Language).

1.2 Ν ω ΝXML

 XML α α υ α α α α α
 α υ α α αυ α π υ αφ υ α α

ή υ υ π υ έ αυ α
υ α α π , υπ υ α α α υ φ α α α

α π π α α XPath (XML Path language) α
ΧQuery (XML Query language) α α α π φ α π α

 XML. π α α φ α α XML π π α
ταιριάξει α α α α α π υ α φ XML

φ έ Η αφ α αυ π π
απ α α α α α .

βέΝ υ α αΝ ω ή υ ΝXML ω

α υ α α α, υ π α αφ α φ α
υ α α π α α YFilter α α XTrie π υ υ

απ α φ α XML α υ υ υ απ
α α έ Ω , π υ α π φ α α π

απ α α α π π α απ φ α υ α α
π π π α πα α υ

απ υ α (single point of failure), υ α (scalability), α

αυ α π α π XML φ π υ
α , α α π α π υ φ (bottleneck)έ π

αυ π υ α αφ α π υ α α φα υ α
α α ή υ α α υ

α π α α αέ
 π α α α α υ α α ή υ φ

 α π α πα α α α υ
απ α Xσet α α τσYXέ α π α υ α α
« α » π α υ απ απ υ π υ απ α υ

 XML π υ φ υ υ έ α
υπ υ α α α XML π υ υπ π υ υ

 α φ υ υ αφ υ ή υ έ π υ
α πα α α τσYX π υ π υ υ υ α α
α , π α π α α π υ α
υ α α α α υ αέ Γ α φ α
α π α π α ή υ

(υ α π π υ υ α ONYX π α α αυ α
π υ α υ υ α YFilter)έ υ αυ α

π α α α α απα α α α α π υ απ α
 α α α π υ

αυ α α α π υ υ π π α π α αέ
α α απ φα α α α ή υ

π α πα απ α π α α α α υ
υ υ υέ π π υ α αυ α α α

π α π υ α α υ α XML α π υ α
υ α α α π υ υ απ υ υ α έ α

πα α φ α α α (α
πα α α υπ π π υ α α α π υ απ π
« α π α » π υ α απ α α α),
απ υ υ α α π α υ έ υ , φ υ υ
π α φ α π α απ υ α υ α

, α φ α XML ,
α α αφ α π α υ
α π έ

 π π π υ α α α , π
π π υ υ α ONYX, π υ α α π « α»
αυ α α υπ φ υ α φ υπ π

έ υ α α υ φ υ α αυ π
 α α α α υ υ π α

 υπ φ « α» α π α υ υ α έ
π π , π π υ υ α τσYX, υ αφ π α

 υ π υ απ φα π υ α απ υ αέ
π α α, π π α υπ π α αυ
υπ α α π α απ υ έ Η πα αυ υ

υ υ απ α α απ υ α α υ α
α π α α α υ υ α ONYX.

Θ π υ φ υ α α α
π π α α α α α α π υ υ απ
α α α υ α α π αέ Ω απ α,

π α αυ α α π υ α α α α
α α α ή υ π υ α α υ απ

 α α π α α α (distributed hash tables)έ
α α π α α α α απ α υ α α α

 (structured peer-to-peer networks) α
αυ α π υ υ α απ φ υ α υ α
π π α α υ α α απ υ α π
α α α π υ φ α α α π α α α υ υ
υ υέ

γέΝ αΝFoXtrot

 α αυ α α α υ απ α
απ α π α π υ ή υ
XML π α α Yόilter α α XPushέ Η α α
π π υ α υ α α α α α

 α α α α π α α α έ π α αυ ,
υ α π υ α όoxtrot (Filtering of XML data in structured

overlay networks) α XML α α α π
π υ α α π α α υ έ

α υ υ α όoxtrot απα π υ υ
υ (π α πα α απα α ONYX) α π α α α

π α α α υ υ α α α α
απ υ έ
3.1 α α Νπ α Ν α α α

 π υ α α π π α υ α
FoXtrot α υ α α π υ π π α

υ π υ α π φ α α « υ » π α
XML έ α α π α α α α υ π υ

υ α π µα α α μ «΄ X α α µ µ
απ υµ α α α µ µ υ αµ υ απ µ υ έ α µ

µ Xέ»έ π υ φ π π α α Chord
α α Pastry α αφ υ π ϐα α α α
υ αυ π µα α α π φ α π α µ φ α α µ µ

υ α µ π α α α α µα µ . Θ α αυ α
α µ α µ µπ α α α µ π α µ α
α µ , µ υ υ υ α α α απ υ α

 µ α υ (α α µ α µ µπ α α α π α µα µ α
 µ α)έ Η απ παφ π υ πα α απ υ α α υ

π α α α α απ α απ ϐα υ : (1) υ α
put(id, item) π υ α α µ µ id α µ item υ υ α (β)

υ α get(id) π υ π φ α µ υ υ π υ α
υπ υ α idέ Χ π α υ α αυ α υ

 απ υ α FoXtrot
 α XML φ π υ α έ

4έΝ Ν α α αΝ
 αυ α π φ υ π υ π α

XML α FoXtrot α α φα « α α α»έ
4.1 π α α - αυ α α

π α α π υ α υ α ,
 α α α YFilter, α π π α - αυ α

((nondeterministic finite-state automaton σόχ)έ Έ α π π α

αυ α α α π π α αυ α π υ απ α α α , α α α
 υ, α α α α πα απ α α έ π α α α

α α υ υ , α απ υ , α α υ αυ α π υ π
α XPath α α α π έ π υ

π υ α α α υ υ υ υ υ υ α
 φυ - φ αυ αυ π υ υ π π

α α π α α αυ αέ π υ α
π υ α π π α αυ α (Dόχ) π υ π

α α α α α α π π πα α α
υ. π α υ π υ π α π α υ α α

 αφ α π υ π - α
 αυ α α π α π α XPush.

4.2 α α ΝNFA Ν αΝFoXtrot

Η α α α απ υ υ NFA αυ α υ α FoXtrot α
 υ υ α υπ υ α α « » αυ

έ Η α α α π π α α υ NFA (NFA states)
α α α α α α υ υ π α «υπ υ »
α υ α α έ Θ π π πα l, π α
α υ « α » α π α υπ υ έ
 πα α υ l α ί, α α υ NFA απ α α

α φ α υπ υ έ Γ α α πα α υ l,
 απ α α α π α α υπ υ απ α

α π α α π υ «α υ » α π υ l.
αυ π α α απ α π υ απ α υ

 α α απ υ π α υπ α « α» υ αυ υ,
α αυ π α α υ υ α απ υ έ

Χ π « α α αυ α » « α α NFA» α α
α αφ αυ α π υ α υ υ α FoXtrot.
απ α αφ α α π υ π π απ πα α υ l,

π α α αφ π υ υ α α φα υ
π υ φ υ α α υ υ έ

Γ α α α υ π α υπ υ α α α α υ NFA,
α α υ α α α α έ αυ π ,

π α α υ α α υ π α α α α α
π υ π α π υ , α π υ α α υπ υ έ

 α α α υ α απ υ υα (concatenation)
 α (label transitions) υ αυ α υ π υ αυ

α α έ α α α απ α α α
α α (final accepting states) υ έ α α, α α υ

αυ υ φ υ α α α π υ απ α α α α
α, α αυ α α π α υ

έ
4.3 α α υ Ν α α υ NFA Ν αΝFoXtrot

φ α π α υ α α α αυ α α υ υ υ
υ, υ υ π φ α π « υ » α α αυ αυ α

α α α α α αέ Η α α α π υ
α α υ υ α α υ αυ υ α α υ έ Έ α α

α α υ α υ α α αυ α υ FoXtrot.
α υ αυ α α απ α α α α π α απ

α α α α (α α π π π υ

απ α υ) α α α α αυ α α
α α υ α α α π α υπ έ π π
υπ υ υ υ α α α

 α υ υ υ π π α υ π υ α α π
 α αυ α α έ αυ π π υ α α

α α α α απ υ π υ υ αέ
4.4 Ν α α υΝNFA Ν αΝFoXtrot

υ π αφ α α α α NFA υ υ α FoXtrot
π φ α π α αυ α α α α XML

αφα α α α α υ α α α π υ α π α απ αυ α α
υ υ αφ υ έ Η α α α π υ α υ α

α αυ π υ α υ α π α YFilter π υ
XML αφ « υ α υ α» α αυ α έ

υ α α α α α π α α π α π
α α π υ υ π φ α α α α π υ α π π
 αυ π α π υ (backtracking) α α έ Γ α

α α π υ α υφ α α α « α α »
α α α α υ π α α π υ π α π υ α

α υ π XML υ έ Η α α α α
 α έ υ α α α α α υ υ
υ υ, α π π α π υ υ

υ υ υ π υ α υπ υ α « α α »έ
υ υ α α π υ αυ , π υ πα α π

 υ α α έ
Η πα α π π α α υ π υ α υπ υ α
α α α έ υ υ α α α α

υ αυ α υ α π π π υ υ υ α α π υ
α α α α π α α α α π α

 υ αυ υέ Η πα α π π π α
υ π υ απ α α α , π α υπ υ α
π υ υ υ υ π υ υ α α π υ απα α α

 α α π απ υ έ α
α α , α υ π π α α α ,
πα α π π απ υ φ π υ

υ α υπ υ έ
υ α α α π , πα α π α υπ υ

π π α α NFA α π α α α α α
 υ π α π πα α απ αφ υ έ

αυ π π π υ α XML αφ π π α
 π υ α υπ υ α α α α α έ Η

 υ α υ α α α υπ υ α α
 α α α υ υ π έ αυ

 , α υ α α π α α
 α α αφ πα έ Όπ υ α

π α α φ α α α α α
π υ υ α π π υ α α πα

 α α α π α απ πα α π
έ

ηέΝ α α αΝ

 απ α π υ α α αυ α α α α α
α α , π π α π α

α α (value predicates) π υ π α α α α α α α
α π υ α α π π φ α έ Ω α

 πα α α υ α α α XPath α
φ «ή αφ αή ήα αφ » π υ α αφ α α π υ

π α υ π α α αφ έ υ α α α π υ
π π π α π π υ α υ υ υ υ
 α υ υ αφ α π α α υ «ή αφ α ή [@ ρ

βίίι] ή υ αφ α [text() ο ΟΊ α Ο])έ α π π α
αυ (α πα α π υ υ

υ αφ α π π υ υ υ βίίι), π
π α υ α α π XML φ π υ π α
α έ α α α α π α α α υ

 π α α α α πα π α
 α α α έ α α υπ π πα α ,

υ α α FoXtrot π υ υ υ υ
α α α α α α α α α α

π α α π έ υ υα υ α α
α α α π α φ υ π υ α υ α

π φ υ αφ π π υ π α α υ υ έ
ηέ1Ν Ν«top-down»

Η π αφ α α α α
π π α α αφα XML «απ π π α » (top-down)

π α απ α π α φ αέ Ά α, π α
α α NFA α α υπ υ α π υ
α υ XML αφ έ Έπ α α απ α

υπ υ π υ α π α υ απ XML
αφ έ

 α α αυ αφ υ
αυ α υ α υ «top-down»έ υ α
FoXtrot υ αυ α υ α πα α απ φ υ υ ,

α απ αυ υ υ α α α π α υπ π υ υ
α α υ έ α α α α π αυ α α α,

α υπ υ α α έ
5.1 «bottom-up»

Γ α π υ α απ α υ α α
π π α π υ π π
(selections) φα α υ α α α α
π έ φα α π , υ π α

 α υ α υ έ α π
, π α α α Χ L αφα απ α φ α π α (υ

 α XML α π α υ υ -φ α) α
π υ αυ «bottom-up».

 α υ α α π υ «bottom-up» π π
α α υ π π υ υ α α α υ υ υ υέ

 α α π α α α α υ α α α α α α π υ

π α υ π υ έ Γ α αυ α α υ α
α α υ υ π υ π υ έ

Έ α α υ «bottom-up» α υ υ α υ
π α π π π α υ α
α π π υ FoXtrot, π α πα α υ π υ
α α α π α XML αφ έ

5.1 «step-by-step»

Η υ α α α «step-by-step» α α υπ α α α
XPath απ α απ α α α α α α απ αυ α α α π α
π α α π υ π έ π , «step-
by-step» π π α α α α υ
αυ υ (α α α υ α α) α π α.

θέΝ α α Να

Η π α α α υ υ α FoXtrot αφ
π αέ π α α α π υ α υπ (machine
cluster), α α υ απ αφ υ

υ α α α π α αυ π
υ πα έ Έπ α α α α α υ

PlanetLab, π απ α υ α π α φ α π υ π
 α π α π α α υ υ α υέ α

π π , π α απ υ α α α
υ α α π α έ

υ α α υ αυ α υ π υ α
(πα α υ l) π α π υ αφ απ α α α
α αφ α υ φ υέ π π α φ α α α ,

 α XML (π
 π υ π α υ), π υ απ υ υ α έ

 π α π υ α π α υπ υ υ α FoXtrot
 π π α απ α α α α π υ α

αυ α υ απ φ α α XML (υ α
 1ίίί α υ π)έ Η α α α

υ π π υ αφ υ φ α 1ηίί
π α υ π έ α π π υ α α

υ υ α α αυ α α υ υ α α π
αυ π απ υέ

7. υ π α α

α π α α αυ α α π φ υ α FoXtrot.
α FoXtrot α α π α α α XML

π υ π α α α π α α α έ
υ υ υ υ απ αυ υ NFA α α α α

XPath α XML α υ α α α π
α α α α α α υ υ α έ π α

 α α π π υ α α φ α α υ υ
υ υ απ φ α α α υ φ π υ π α υ

απ υ υ α έ
υ α υ υ αφ υ α α α α XML

 α α α α α έ α π α α α

υ α FoXtrot π α απ α α
π υ α αυ α υ απ φ α α XML έ

υ π π απ υ υ α α α αυ υ
 υ υ α π α α α π

α υ πα α α α α υ α υ
π υ πα α απ π α φ α PlanetLab.

ιέ1Ν Ν π

Ω π υ α υ π υ υ
 π υ π α υπ υ π φ α α

 α XPath. π π α αφ α α π α
π α φα α α π φ α α π α

 RDF (Resource Description Framework) π υ α υ
α π υ α (Semantic Web).

Contents

1 Introduction 35

1.1 Publish/subscribe paradigm . 36

1.1.1 Applications . 37

1.1.2 Models and languages . 37

1.1.3 The filtering problem . 38

1.1.4 Architectures . 38

1.2 Fundamental questions . 39

1.3 Solution outline . 39

1.3.1 XML as a subscription model . 40

1.3.2 Distributed hash tables as the architecture 40

1.3.3 Scalable and efficient filtering algorithms 41

1.3.4 Contributions . 41

1.4 Published papers . 43

1.5 Thesis structure . 43

2 Background and related research 45

2.1 Extensible Markup Language (XML) . 45

2.1.1 XML documents . 45

2.1.2 XML Path Language . 48

2.1.2.1 Location paths . 49

2.1.2.2 Axes, nodes tests and predicates 49

2.1.2.3 Syntax . 51

2.2 Finite automata . 52

2.2.1 Deterministic finite automata . 52

2.2.2 Nondeterministic finite automata . 53

2.2.3 Applications . 55

2.3 Peer-to-peer networks . 56

2.3.1 Unstructured P2P systems . 57

2.3.2 Structured P2P systems . 57

2.3.2.1 Chord . 59

2.3.2.2 Pastry . 60

2.4 Related research . 61

2.4.1 XML-based publish/subscribe systems 62

2.4.1.1 Centralized approaches . 62

2.4.1.2 Distributed approaches . 64

2.4.2 XML query processing in P2P networks 68

2.4.3 Tree structures in DHTs . 68

2.5 Summary . 70

3 An XML filtering system 71

3.1 Data model . 71

3.1.1 XML documents . 71

3.1.2 XPath queries . 71

3.2 An NFA-based XML filtering model . 72

3.3 The FoXtrot architecture . 73

3.4 FoXtrot API . 73

3.5 Summary . 74

4 Structural matching 77

4.1 Distributing the NFA . 77

4.2 Constructing a distributed NFA . 80

4.3 Executing a distributed NFA . 84

4.3.1 Iterative method . 85

4.3.2 Recursive method . 88

4.3.3 Example . 91

4.4 Load balancing . 92

4.4.1 Overview . 92

4.4.2 Static replication . 93

4.4.3 Dynamic replication . 94

4.4.4 Virtual nodes . 94

4.4.5 Load-shedding . 95

4.5 Fault-tolerance . 95

4.5.1 Overview . 95

4.5.2 Techniques . 96

4.6 Experimental evaluation . 97

4.6.1 Setup . 97

4.6.2 Results . 100

4.6.2.1 Distributed NFA properties 100

4.6.2.2 Load balancing . 102

4.6.2.3 Fault tolerance . 105

4.6.2.4 Indexing queries . 106

4.6.2.5 Filtering documents . 110

4.6.3 Discussion . 114

4.7 Summary . 114

5 Value matching 117

5.1 Overview . 117

5.2 Prerequisites . 119

5.2.1 Revisiting our data and query model 119

5.2.2 Terminology . 120

5.3 Methods . 120

5.3.1 Bottom-up evaluation . 120

5.3.2 Top-down evaluation . 123

5.3.3 Top-down evaluation with pruning 125

5.3.4 Step-by-step evaluation . 128

5.4 Online selectivity estimation . 130

5.4.1 Overview . 131

5.4.2 Definitions . 131

5.4.3 Distributed sampling . 132

5.4.4 Using statistics in predicate evaluation 133

5.5 Experimental evaluation . 133

5.5.1 Filtering data . 134

5.5.2 Benefit of using value filters . 135

5.6 Summary . 137

6 Conclusions 139

6.1 Summary . 139

6.2 Future directions . 140

6.2.1 Richer data models . 140

6.2.2 Predicate evaluation . 141

6.2.3 Load balancing . 141

6.2.4 Fault tolerance and churn . 141

Abbreviations 143

List of Figures

1.1 Overview of a publish/subscribe system . 36

2.1 An example XML document from DBLP XML records 46

2.2 The XML tree of a DBLP XML record . 47

2.3 A part of the DBLP DTD file . 48

2.4 A finite automaton for a simple on/off switch 52

2.5 An NFA accepting all strings that end in ab 53

2.6 An NFA that searches for the words XML and peer 55

2.7 Application interface for distributed hash tables 58

2.8 Chord ring with 10 nodes storing 5 keys (adapted from [93]) 59

2.9 Pastry circular nodeId space: Routing a message 61

2.10 Parallel filtering strategies with XTrie [33] 65

2.11 ONYX architecture [29] . 66

3.1 An example NFA constructed from a set of XPath queries 73

3.2 Architecture of FoXtrot . 74

4.1 An example NFA constructed from a set of XPath queries 78

4.2 Distributing an NFA in FoXtrot (l = 1) . 80

4.3 NFA construction . 81

4.4 NFA execution (YFilter case) . 85

4.5 An XML document enriched with positional encoding 89

4.6 Executing the distributed NFA . 92

4.7 State replication due to parameter l . 97

4.8 Distributed NFA characteristics . 100

4.9 NFA states per depth . 101

4.10 Load distribution using static replication . 102

4.11 Storage overhead for static replication . 103

4.12 Load distribution using dynamic replication 104

4.13 Storage overhead and storage load distribution 105

4.14 Fault tolerance (parameter l) . 106

4.15 Fault tolerance (parameter l) . 107

4.16 Network traffic during query indexing . 107

4.17 Indexing operation (II) . 109

4.18 Iterative vs. Recursive method . 110

4.19 Network traffic during filtering . 111

4.20 Increasing parameter l . 112

4.21 Filtering latency and notifications . 112

4.22 Filtering latency . 113

5.1 Constructing candidate equality predicates 120

5.2 Query indexing in bottom-up approach . 121

5.3 Queries and predicate assignments to peers 122

5.4 XML filtering in bottom-up approach . 122

5.5 Query indexing in top-down evaluation . 123

5.6 XML filtering in top-down evaluation . 124

5.7 Query indexing in top-down evaluation with pruning 126

5.8 XML filtering in top-down evaluation with pruning 128

5.9 Query indexing in step-by-step . 129

5.10 XML filtering in step-by-step . 130

5.11 Filtering latency (different value-matching methods) 134

5.12 Filtering operation . 135

5.13 Benefit of pruning operation . 136

5.14 Performance improvement . 136

List of Tables

4.1 State assignments to peers . 80

4.2 Dataset generation . 99

4.3 FoXtrot setup . 99

4.4 DTD characteristics . 101

List of Algorithms

1 IndexQuery(): Indexing a query . 82

2 PublishIterative(): Publishing an XML document using iterative method . 87

3 PublishRecursive(): Publishing an XML document using recursive method . 88

4 RecExpandState(): Recursively expand states at each execution path 90

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 1

Introduction

As the Web is growing continuously, a great amount of data becomes available to more and

more users, making it difficult for them to discover interesting information by searching.

Users cannot cope with this information explosion and while attempting to stay informed

by browsing through a vast amount of new information, they fail to take advantage of the

dynamic nature of the Web. As successfully observed by Mitch Kapor:

“Getting information off the Internet is like taking a drink from a fire hydrant”

Mitch Kapor, founder of Lotus Development Corporation

In the client/server communication model typically found in large-scale distributed sys-

tems, the communication between clients and servers is synchronous causing the client to be

blocked from the time it issues a request until it receives a reply. This kind of synchronous

communication complicates the development and maintenance of dynamic large-scale In-

ternet applications. If we also consider the continuous increase in the scale of available

distributed systems, it becomes evident that a more flexible and less tightly coupled com-

munication model is required. The key idea towards designing such a model lies in achieving

loose coupling between the producers and the consumers of data. In other words, producers

should be able to publish information into the network without knowing the identity, the

location or the total number of consumers. Likewise, consumers should be able to express

their interests without knowing which data producers can provide relevant content.

Eugster et al. [31] analyzed this kind of decoupling along the following three dimen-

sions: synchronization, time and space. Synchronization decoupling allows consumers and

producers to communicate in an asynchronous way. As a result, data consumers are not

blocked while waiting for data to arrive and likewise data producers are not blocked waiting

for consumers to receive their data. Time decoupling allows producers and consumers to

exchange data without needing to be active at the same time. Finally, space decoupling

allows consumers and producers to remain anonymous to each other.

Spyridoula Miliaraki 35

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

I am interested for articles

published by an author from
the University of Athens

I am interested in

news article about

the economic
situation in Greece

Notifications/

events

Queries

Publishers Subscribers

Events

Notify

Subscribe
Publish

Notification

service

News

agency

Digital library

Figure 1.1: Overview of a publish/subscribe system

The publish/subcribe paradigm unifies all the above types of decoupling and has received

a lot of attention in the literature. It provides a flexible and loosely coupled form of com-

munication enabling selective dissemination of information.

1.1 Publish/subscribe paradigm

A high-level architecture of a publish/subscribe system is depicted in Figure 1.1. As the

figure illustrates, a typical publish/subscribe system involves the following parties:

• The subscribers who express their interests by submitting a subscription and waiting

to be notified whenever an event of interest is published. Subscribers are also called

consumers since they consume events.

• The publishers who publish information and generate events. Publishers are also called

producers since they produce events.

• The notification service which is the basic infrastructure for managing the subscriptions

of the consumers and delivering them relevant events from the publishers. The noti-

fication service realizes the interaction between publishers and subscribers and allows

them to act independently of each other as we described above.

Before proceeding with surveying different subscription and publication models proposed

for publish/subscribe systems and describing different architectures for building a notification

service, we present some interesting applications.

Spyridoula Miliaraki 36

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

1.1.1 Applications

Applications of publish/subscribe systems include various popular notification services such

as news monitoring, blog monitoring, product monitoring (e.g., for price changes) and alert-

ing services for digital libraries. For the case of digital libraries, Elsevier alerting services1

is a interesting example since it allows users to subscribe for specific topics, search results

or even citations of a specific publication. Another popular service that has emerged for

everyday use is Google alerts2. This is a notification service offered by Google that provides

email alerts to users about the latest Google results. Users can either select a topic or specify

a list of keywords and monitor a developing news story or get the latest on their favorite

sports teams. Other popular services in the area of e-commerce include alert services about

price drops and hot deals for products like the BuyLater website3.

1.1.2 Models and languages

Subscribers are typically interested in only a subset of the events produced by various

providers. Depending on the data model and language used to express publications and

subscriptions different levels of expressiveness can be offered. Such a decision is of great

importance since it affects the overall capabilities of the system. Several subscription mod-

els have been proposed in the literature for expressing the interests of subscribers and can

be classified in two major categories, namely topic-based or subject-based and content-based

[31].

In topic-based publish/subscribe systems, events are assigned to topics. Consumers can

select to subscribe to one or more topics, typically identified by keywords, and will then

receive all relevant events that belong to these topics. Some of the earliest topic-based

systems include SCRIBE [19] and Bayeux [113]. A useful enhancement of the topic-based

subscription model is to use an hierarchy for topics. In this case, a subscription to a node of

this hierarchy also involves subscribing to all the subtopics of that nodes. As shown in the

literature, topic-based systems are easier to implement than content-based ones due to the

simplicity of their data model. However, this is also their disadvantage: their subscription

model is static and allows only a limited level of expressiveness.

Content-based publish/subscribe systems employ a more expressive subscription model

by allowing subscriptions to be constructed using the actual content of the events. The

generality of this model is the reason it has received a lot of interest in the literature. In this

context, many systems have been built using different data models like the attribute-value

1Elsevier alerting services: http://www.elsevier.com/alerts
2Google alerts (beta): http://www.google.com/alerts
3Buy later: http://www.buylatr.com

Spyridoula Miliaraki 37

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

model [18, 100, 6, 42], XML data model [7, 16, 40, 39, 41, 56, 30, 20] and RDF data model

[78]. Other well-known content-based systems include Gryphon [45, 3] and LeSubscribe [76].

Since the content-based approach allows highly expressive data models, it also requires

more complex protocols and implemented systems can suffer from higher overheads. For

example, the more expressive a subscription model is, the more complex the algorithms

required to manage and filter subscriptions are.

1.1.3 The filtering problem

In a publish/subscribe system, the notification service has to solve the following important

problem:

Given a set of subscriptions S and a publication p, identify all the subscriptions

s ∈ S that match publication p.

Depending on the publication data model and the subscription language used, the seman-

tics of matching and the algorithm for solving this can differ substantially. In the literature,

different semantics considered for matching include topic-based, predicate-based and XML-

based semantics. Given a semantics for matching, the algorithm for solving the filtering

problem goes hand-in-hand with the choice of architecture for the notification service. The

possibilities for this choice are discussed immediately.

1.1.4 Architectures

In the literature, the following classes of system architecture have been proposed for building

the notification service: centralized systems, content-based overlay networks and peer-to-peer

networks.

A centralized architecture is the easiest to implement since the notification service consists

of a single component performing all relevant tasks. This component is typically referred

to as a broker or a server. Centralized solutions suffer from well-known weakness including

lack of scalability and zero fault-tolerance, and are not considered suitable for realizing a

large-scale publish/subscribe system.

Content-based overlay networks consist of a collection of routers responsible for forward-

ing data towards interested subscribers. Content-based routers, also called brokers, route

data based on their content and are usually organized in mesh or tree-based configurations.

The tasks performed by the notification service are distributed among these routers. This

approach can achieve scalability as the size of the system grows depending on the protocols

utilized.

Spyridoula Miliaraki 38

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Finally, peer-to-peer (P2P) networks are distributed systems consisting of a very large

number of computing nodes that cooperate for sharing data without any centralized control.

They go beyond the typical client-server systems since each peer can play both the role of

a client and a server. Some of their most desirable features include robustness, efficient

search of data items, anonymity, massive scalability and fault tolerance. Because of these

properties, several publish/subscribe systems have been implemented over P2P networks

[113, 96, 99].

An important issue affecting the performance of distributed publish/subscribe systems

based on content-based overlay networks of or P2P networks is load balancing. A network

is load-balanced if all its nodes are sharing the tasks required to run the notification service

functionality as fairly as possible. These tasks include managing and storing subscriptions,

performing matching, forwarding and delivering events.

1.2 Fundamental questions

To design and implement a large-scale publish/subscribe system, we need to address a num-

ber of interesting challenges as we discussed above. In this thesis, we look into the following

fundamental questions underlying the design and implementation of such a system:

• Which subscription model is appropriate in the Web era and allows an adequate level

of expressiveness for consumers to express a plethora of diverse interests?

• Which architecture is appropriate for offering publish/subscribe functionality on an

Internet-scale facilitating scalability and reliability?

• Which algorithms to employ for performing filtering and manage subscriptions achiev-

ing good performance using the aforementioned architecture?

In the rest of this thesis we provide answers to the above questions and present our

original results for advancing the state of the art in the above problems. For achieving this,

we design, develop and evaluate an distributed XML filtering system and demonstrate how

we meet these challenges.

1.3 Solution outline

Let us provide now an overview of our answers to the questions posed earlier and argue that

our approach provides solutions that outperform the relevant literature.

Spyridoula Miliaraki 39

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

1.3.1 XML as a subscription model

Over the past decade, eXtensible Markup Language XML [15] has been widely used for

data representation and exchange on the Web. The properties of XML, including simplicity,

flexibility and extensibility, have assisted in becoming a de facto standard on the Internet

and also make XML a good fit for our purposes. It also suitable since it separates data and

presentation enabling heterogeneous systems to exchange data without knowing how this

data is represented internally. We are not alone in this choice. Due to the popularity and

advantages of the XML data model, a lot of research has focused on designing efficient and

scalable XML filtering systems [30, 20, 41, 16, 98].

In XML-based publish/subscribe systems, subscribers submit continuous queries ex-

pressed in XPath/XQuery asking to be notified whenever their queries are satisfied by in-

coming XML documents. As an example, consider XPath query article[author= “John

Smith”], where a user wants to be notified when author John Smith publishes an article.

Users can specify in XPath queries constraints over both the structure and values of XML

documents enabling a more precise filtering of the XML documents.

1.3.2 Distributed hash tables as the architecture

Many approaches have been proposed in recent years like YFilter [30] and its predecessor

XFilter [7], XTrie [20], IndexFilter [16] and many others [41, 39, 44, 73] performing XML

filtering in a centralized environment. As a result, these proposals suffer from the typical

problems of centralized solutions, such as limited scalability, single point of failure, net-

work bottlenecks and zero fault tolerance. To overcome these weaknesses and offer XML

filtering functionality on Internet-scale, such a service should be deployed in a distributed

environment.

Earlier proposals like XNet [22], ONYX [29], parallel and hierarchical XTrie [33] and

others [92, 24, 38, 102, 21] have also proposed to implement XML filtering in a distributed

way. With respect to the distributed setting supported by the former techniques, the ma-

jority of these approaches assume a content-based overlay network with brokers responsible

for forwarding XML data towards interested subscribers. Brokers route XML data based on

their content and can be organized in meshes [92] or tree-based configurations [33, 29, 22].

Depending on design decisions that are specific to each system, these proposals do not ex-

hibit good load balancing properties. Thus a performance deterioration can easily occur

especially as the number of subscriptions increases, incoming events arrive at a high rate, or

a large number of notifications is generated.

In addition, these architectures have not been designed so that they can cope with failures

in a graceful way. This is an important disadvantage since large-scale XML filtering systems

Spyridoula Miliaraki 40

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

run on top of the Internet we expect them to continue operating in the presence of failures.

We deal with the disadvantages of earlier systems by proposing an alternative architecture

that exploits the power of distributed hash tables (DHTs), a well-known class of structured

overlay networks, overcoming the weaknesses of the earlier and developing a fully distributed

load balanced system exhibiting resilience to failures.

1.3.3 Scalable and efficient filtering algorithms

Considering that the amount of subscriptions we want to evaluate is very large, evaluating

one query at a time in a brute force way becomes prohibitively expensive. The main challenge

in building a notification service that provides efficient XML filtering against a large set of

subscriptions is to effectively organize these subscriptions. A popular method to accomplish

this is by designing and building some kind of index over the queries and perform filtering

of the XML documents against a much smaller set of queries.

Works like YFilter [30], XTrie [33], XPush [41] and many others employ an XML filtering

strategy based on automata or tree-based structures. While these strategies have been used

with success for representing a set of queries and identifying XML documents that struc-

turally match XPath queries, little attention has been paid to value matching (i.e., evalua-

tion of value-based predicates) and especially in distributed environments. This can become

an important problem since typical queries, apart from defining a structural path (e.g.,

/dblp/article/author), also contain value-based predicates (e.g., /dblp/article[@year

> 2007], /author[text() =“Iris Miliaraki”]) and depending on the selectivity of these

predicates, the number of queries which are only structurally matched (i.e., false positives),

might be large. For this reason, the benefit of using a filtering engine for structural match-

ing, can be diminished. In other words, the XML filtering service should be able to scale

with respect to both the number of the queries indexed and the predicates included in the

queries.

The main idea of the approach studied in this thesis is to combine techniques for struc-

tural and value XML filtering in a distributed environment achieving high performance and

scalability for a large set of applications.

1.3.4 Contributions

The main contributions of this thesis can be described in more detail as follows:

• We design, implement and evaluate a fully-distributed system called FoXtrot (Filtering

of XML data on top of structured overlay networks) for efficient filtering of XML data

on very large sets of XPath queries To achieve this, we show how a nondeterministic

Spyridoula Miliaraki 41

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

automaton can be distributed among the nodes of a DHT and be executed by methods

that exploit the inherent parallelism of an NFA. This distributed NFA is maintained

by having peers being responsible for overlapping fragments of the corresponding NFA

and different peers participating in the filtering process by executing in parallel several

paths of the NFA. The size of these fragments is a tunable system parameter that

allows us to control the amount of generated network traffic and load imposed on each

peer. In addition, our distribution scheme adds redundancy to our system and as a

result it also increases its fault tolerance.

• We show that our approach overcomes the weaknesses of typical content-based XML

dissemination systems built on top of meshes or tree-based overlays with respect to load

balancing. The design of FoXtrot allows us to employ simple yet effective replication

methods for achieving a balanced load distribution. In addition, there is no need

for a centralized component for assigning queries to network peers, since queries are

distributed among the peers using the underlying DHT infrastructure.

• We demonstrate that apart from structural matching, our system FoXtrot can also deal

in an efficient way with value-based predicates. To the best of our knowledge, our work

is the first to study combined structural and value matching of queries in a distributed

setting emphasizing on both operations. We describe, compare and implement different

methods for combining structural and value XML filtering in FoXtrot.

• We perform an extensive experimental evaluation of FoXtrot in both the controlled

environment provided by a local cluster and PlanetLab to exhibit the performance of

our methods. We demonstrate that FoXtrot can index millions of user queries, achiev-

ing a high throughput of around 1000 queries per second in the local cluster. With

respect to filtering, FoXtrot generates and disseminates more than 1500 notifications

per second for the filtering scenarios we consider. We also show that our system ex-

hibits scalability with respect to the network size, improving its performance as we

add more peers to the network.

Since any path query can be transformed into a regular expression and consequently

there exists an NFA for representing this query, our techniques described using XML and

XPath can be applied to other data models and query languages. For example, Pérez et al.

[77] show how to construct an NFA for indexing RDF path queries and provide us with the

basis to apply our results to RDF.

Spyridoula Miliaraki 42

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

1.4 Published papers

The results of this thesis have been published in the following papers ([66] and [67]):

• I. Miliaraki, Z. Kaoudi and M. Koubarakis. XML Data Dissemination using Automata

on top of Structured Overlay Networks. 17th International World Wide Web Confer-

ence (WWW 2008), Beijing, China, 2008.

• I. Miliaraki and M. Koubarakis. Distributed Structural and Value XML Filtering. 4th

ACM International Conference on Distributed Event-Based Systems (DEBS 2010),

Cambridge, United Kingdom, 2010.

Also the following journal version of our research has been submitted to a major international

journal [68]:

• I. Miliaraki and M. Koubarakis, FoXtrot: Distributed Structural and Value XML Fil-

tering, Submitted to a journal.

1.5 Thesis structure

The remainder of this thesis presents related work, the FoXtrot system, its core techniques for

combined structural and value matching, and results of an extensive experimental evaluation

of the techniques fully implemented in the system. Chapter 2 provides background on the

technical context in which the research of this thesis is conducted by describing the XML

data model, the XPath query language, the technology of peer-to-peer networks an providing

some background knowledge about finite automata. It also covers related research in this

area. In Chapter 3, we present the architecture of our XML filtering system along with

its data and query models. Chapter 4 describes our basic filtering techniques for structural

matching in FoXtrot and also includes their experimental evaluation. Next, in Chapter 5, we

focus on value matching techniques, discuss a number of different methods and also include

their evaluation. Chapter 6 concludes this thesis by summarizing our contributions and

discussing directions for future research.

Spyridoula Miliaraki 43

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 44

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 2

Background and related research

In this chapter, we provide background information required to understand the rest of this

thesis. We first present the XML data model and describe how XML documents are struc-

tured, define the classes of well-formed and valid XML documents, and present the XPath

query language for querying XML data. Second, we describe finite automata, give formal

definitions of both deterministic and nondeterministic ones, and also give some example

applications. Third, we present a survey of peer-to-peer networks focusing on structured

overlays. We conclude this chapter, providing a detailed survey of previous research relevant

to the topics of this thesis ranging from centralized and distributed XML filtering methods

to works that distribute tree-like or other hierarchical structures on top of distributed hash

tables.

2.1 Extensible Markup Language (XML)

The XML language [15] has been widely used as the standard format for data exchange on

the Web and other environments. It uses a simple and very flexible text format derived from

SGML1. In this section, we first describe the XML data model and how XML documents

are structured. Then, we give a brief description of schema languages for specifying the

structure of XML documents. Last, we introduce the XML query language XPath.

2.1.1 XML documents

We introduce the hierarchical data model used in XML language. An XML document can be

represented using a rooted, ordered, labeled tree where each node represents an element or a

value and each edge represents relationships between nodes such as an element - subelement

1Standard Generalized Markup Language was developed and standardized by the International Organi-
zation for Standards (ISO) in 1986

Spyridoula Miliaraki 45

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

<dblp>

<inproceedings key="conf/www/MiliarakiKK08" mdate="2008-05-13">

<author>Iris Miliaraki</author>

<author>Zoi Kaoudi</author>

<author>Manolis Koubarakis</author>

<title> XML data dissemination using ... overlay networks.</title>

<pages>865-874</pages>

<year>2008</year>

<booktitle>WWW</booktitle>

<url>db/conf/www/www2008.html#MiliarakiKK08</url>

</inproceedings>

</dblp>

Figure 2.1: An example XML document from DBLP XML records

relationship. There is no limit on the nesting level of elements. Element nodes may also

contain attributes, which describe their additional properties, or textual data. With respect

to syntax, elements are identified by their start-tag and end-tag. The tag names are enclosed

between angled brackets (i.e., <tag name>), while for end-tags an additional backslash is used

(i.e., </tag name>). The content of an element is included between its start- and end- tags,

and can contain textual data and sub-elements. The start-tag may also include a list of

attributes.

We define the following characteristics for an XML document. The depth of an XML

document is the longest nesting of an element appearing in the document. The fanout of an

XML document is the maximum number of children nodes emerging from an element node.

Example 2.1.1 (An XML document). Figure 2.1 shows the textual representation of an

example XML document that describes a conference publication as found in the DBLP bib-

liographic database2, while Figure 2.2 illustrates its corresponding tree structure. The root

element of this document is <dblp>, which refers to the DBLP bibliographic database. The

child node of <dblp> is <inproceedings> element which represents a conference publica-

tion. The <inproceedings> element has two attributes, namely key and mdate with val-

ues “ conf/www/MiliarakiKK08” and “ 2008-05-13”, respectively. Attribute key is used as a

unique record identifier, while attribute mdate refers to the date this record was last modified.

Element <title> includes as textual data the title of the publication “XML data dissemi-

nation using automata on top of structured overlay networks”. The element <booktitle>,

referring to the conference this paper was published, has no associated attributes. The depth

of this XML document is 2 and its fanout is 8 (which corresponds to the children nodes of

<inproceedings> element). Throughout this dissertation, we will use as our main example

the DBLP XML records [1], which correspond to a well-understood paradigm.

2DBLP Computer Science Bibliography: http://dblp.uni-trier.de

Spyridoula Miliaraki 46

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

dblp

title

inproceedings

booktitle...@key

"Iris Miliaraki" WWW"XML data ... networks"

author

"conf/www/MiliarakiKK08"

@mdate

"2008-05-13"

...

Figure 2.2: The XML tree of a DBLP XML record

With respect to the correctness of XML documents, we distinguish between well-formed

and valid XML documents. An XML document is well-formed if it follows certain syntax

rules defined in XML 1.0 specification [15]. Particular, it must start with an XML declaration

indicating the version of XML being used and some other relevant attributes. An example

declaration is the following which specifies the XML version and the character encoding

supported:

<?xml version="1.0" encoding="UTF-8" ?>

A well-formed document must also follow the syntactic guidelines of the tree model. There

is exactly a single element, called the root or document element, no part of which appears in

the content of any other element [15]. For all other elements, if the start-tag is in the content

of another element, the end-tag is in the content of the same element. In other words, the

elements as specified by their respective start- and end-tags, nest properly within each other.

Apart from well-formedness, a stricter criterion for XML documents is validity. A well-

formed XML document is valid if there is a document type definition (DTD) [15] or an

XML schema [97] associated with it and the document complies with it. A document type

definition specifies a general set of rules including all possible structures of the XML doc-

ument and the domains of the attributes. DTD files are specified using a special syntax

demonstrated in the following example.

Example 2.1.2 (An XML DTD file). A part of the DBLP DTD3 is shown in Figure 2.3.

First, a name is specified for the root element of the document which is called dblp. The XML

root element <dblp> contains a long sequence of various bibliographic records. The DTD lists

the different available elements that can be used as bibliographic records (namely article,

inproceedings, proceedings, book, incollection, phdthesis, mastersthesis and www

3DBLP DTD file as found in http://dblp.uni-trier.de/xml/dblp.dtd

Spyridoula Miliaraki 47

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

<!-- DBLP DTD -->

<!ELEMENT dblp (article|inproceedings|proceedings|book|incollection|

 phdthesis|mastersthesis|www)*>

<!ENTITY % field "author|editor|title|booktitle|pages|year|address|

journal|volume|number|month|url|ee|cdrom|cite|

publisher|note|crossref|isbn|series|school|chapter">

<!ELEMENT inproceedings (%field;)*>

<!ATTLIST inproceedings key CDATA #REQUIRED

 mdate CDATA #IMPLIED

>

...

Figure 2.3: A part of the DBLP DTD file

elements). For element <inproceedings>, it defines a list of attributes containing attribute

key as a required attribute and attribute mdate as an optional one.

We can see that our example XML document depicted in Figures 2.1 and 2.2 conforms

to the XML DTD of Figure 2.3. To require that an XML document conforms to a DTD,

we specify this in the declaration of the document. The first lines of the example document

should be changed as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE bib SYSTEM "dblp.dtd">

Even though XML DTD is considered adequate for specifying the tree structure of XML

documents, it has several limitations. The main limitation is that it has its own specialized

syntax. As a result, a different parser is required for processing it. These drawbacks led

to the development of the XML schema language [97] which has been used as a standard

for specifying the structure of XML documents using the syntax rules of XML itself. XML

Schema provides a superset of the capabilities found in DTDs.

Note that the techniques described in this thesis for XML document filtering do not

require XML documents to conform to a DTD or an XML schema but could exploit such

schema information, if present, to improve their performance.

2.1.2 XML Path Language

Having described the XML data model and how XML documents are structured, we now

proceed to languages used for querying XML data. There have been many proposals for

XML query languages but two standards have emerged. The first is XML Path Language

(XPath) [25] which models an XML document as a tree of nodes. XQuery language [13] is the

second corresponding to a more general query language that uses XPath expressions but also

Spyridoula Miliaraki 48

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

has additional constructs. In this section, we describe in detail XPath which is the language

we support in this thesis. Our description is based on the relevant W3C specification [25].

2.1.2.1 Location paths

XPath [25], as its name indicates, is a language for navigating through the tree structure of

an XML document. As described, there are different types of tree nodes, including element

nodes, attribute nodes and text nodes. XPath treats an XML document as a tree and offers

a way to select paths of this tree. Each XPath expression uses a location path. A location

path consists of a sequence (one or more) location steps separated using a child (/) or a

descendant (//) axis. The steps in a location path are composed together from left to right.

There are two kinds of location paths, relative location paths and absolute location paths.

An absolute location path starts with a child axis (/) which by itself selects the root node

of the document. Otherwise, the location path is called relative starting with a node called

the context node. Let us now study the structure of a single location step. A location step

has three parts:

1. an axis, which specifies the tree relationship between the nodes selected by the location

step and the context node,

2. a node test, which specifies the node type and node name selected by the location step,

and

3. zero or more predicates, which use arbitrary expressions to further refine the set of

nodes selected by the location step.

2.1.2.2 Axes, nodes tests and predicates

With respect to the first part of a location step which is an axis, XPath query language

supports the following axes:

• The self axis contains the context node.

• The child axis contains the children of the context node.

• The descendant axis contains the descendants of the context node where a descendant

is a child or a child of a child and so on. The descendant axis never contains attribute

or namespace nodes.

• The descendant-or-self axis contains the context node and the descendants of the

context node.

Spyridoula Miliaraki 49

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

• The parent axis contains the parent of the context node.

• The ancestor axis contains the ancestors of the context node where the ancestors of

a node are the parent and the parent’s parent and so on. The ancestor axis always

includes the root node unless the context node is the root node itself.

• The ancestor-or-self axis contains the context node and the ancestors of the context

node. The ancestor axis always includes the root node.

• The following-sibling (preceding-sibling) axis contains all the following (pre-

ceding) siblings of the context node respectively. If the context node is an attribute

node or namespace node, the following-sibling and

preceding-sibling axes are empty.

• The following (preceding) axis contains all nodes in the same document as the

context node that are after (before) the context node in document order, excluding

any descendants, attribute nodes and namespace nodes.

• The attribute axis contains all the attributes of the context node. If the context

node is not an element then the axis will be empty.

• The namespace axis contains the namespace nodes of the context node. If the context

node is not an element then the axis will be empty.

For selecting element nodes, names of nodes or the wildcard character “*” can be used as

node tests. A node test “*” is true for any node of the corresponding node type. For example,

child::* will select all element children of the context node, and attribute::* will select

all attributes of the context node. The text() node test is true for any text node. Finally,

a node test node() is true for any node of any type.

We now continue with the predicate part of an XPath location step where many kinds

of different expressions can be used. Predicates may consist of various functions operating

on a set of nodes (e.g., position() function returns the position of the context node and

count(node-set) returns the number of nodes in the respective node set). In addition, predi-

cates may specify constraints on the textual data of the nodes (e.g., article[title = “Dis-

tributed XML filtering”] selects all article elements that have a child element title with

the respective value. We call predicates of this type, textual predicates. Likewise, we may

have predicates for the attributes of the nodes (e.g., descendant::article[attribute::key

= “conf/www/MKK08”] selects all descendants of the context node that are article ele-

ments and whose key attribute has the value “conf/www/MKK08”). Predicates of this type

are usually called attribute predicates. In the case of multiple adjacent predicates associated

Spyridoula Miliaraki 50

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

with a location step, the predicates are applied from left to right, and the result of applying

each predicate serves as the input for the next predicate.

2.1.2.3 Syntax

The syntax for a location step is the axis name and node test separated by a double colon,

followed by zero or more expressions, each in square brackets. For example, consider query

Q1:descendant::dblp/child::inproceedings, which selects all the inproceedings ele-

ments that have a dblp parent element. Query Q1 consists of two location steps. A most

common way to write XPath queries is using an abbreviated form of syntax. The most

important abbreviations, also used throughout this thesis, are the following:

• Location step child::childname can be abbreviated as childname. Actually, child is

the default axis. For example, a location path dblp/phdthesis is short for

child::dblp/child::phdthesis.

• Pattern /descendant-or-self::node()/ can be abbreviated as //. For example, //a

is short for /descendant-or-self::node()/child::a and selects any a element in

the document.

• There is also an abbreviation for attributes where location step

attribute::childname can be abbreviated to @childname. For example, a location path

inproceedings[@key="conf/www/MiliarakiKK08"] is short for

child::dblp[attribute::type="conf/www/MiliarakiKK08"] and so selects dblp chil-

dren with a key attribute with value equal to

"conf/www/MiliarakiKK08".

• A location step of . is short for self::node(). This becomes particularly useful

in conjunction with //. For example, the location path .//article is short for

self::node()/descendant-or-self::node()/child::article and so will select all

article descendant elements of the context node.

• Similarly, a location step of .. is short for parent::node(). For example, ../title

is short for parent::node()/child::title and so will select the title children of

the parent of the context node.

In this section, we described the main characteristics of XPath query language focusing on

its syntax and providing many examples. For the methods described throughout this thesis,

we consider a subset of XPath query language which we formally define later in Chapter 3.

Spyridoula Miliaraki 51

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

2.2 Finite automata

Finite automata are a useful computational model for many important kinds of hardware

and software [43]. In this section, we define finite automata formally, distinguishing between

deterministic and nondeterministic ones and also present some example applications. Before

proceeding to a formal definition, let us first describe informally the notion of finite automata.

off on

Push

Push

Figure 2.4: A finite automaton for a simple on/off switch

Each system can be viewed as being at all times in one of a finite number of states. For

example, an on/off switch of a device can be viewed as one of the simplest nontrivial finite

automaton [43]. Such a device remembers whether it is in the “on” state or the “off” state

and the effect of pushing the button of the device is different depending on the current state

of the switch. The corresponding finite automaton modeling this switch is depicted in Figure

2.4. States are represented using circles and the two states of this automaton are labeled

“on” and “off”. An arc represents an external influence on the system, in our case the user

who pushes the button. Depending on these actions, the state the system is in changes.

Finite automata are classified into deterministic and nondeterministic [43]. A determin-

istic finite automaton (DFA) is in a single state after reading any sequence of inputs. In other

words, deterministic refers to the fact that there is a single state to which the automaton

can transition from its current state. In contrast, nondeterministic finite automata (NFA)

can be in several states at once. Usually, when one refers to a finite automaton without

specifying its class, it refers to a deterministic finite automaton. The automaton depicted in

Figure 2.4 is a deterministic one.

2.2.1 Deterministic finite automata

We now proceed with a formal definition of finite automata starting with the deterministic

ones. A deterministic finite automaton (DFA) [43] consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted Σ, called the alphabet.

3. A transition function, commonly denoted as δ, which takes as arguments a state and an

input symbol and returns a state. In our previous graph representation of automata,

Spyridoula Miliaraki 52

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

q
0

q
1

a,b

a q
2

b

Figure 2.5: An NFA accepting all strings that end in ab

δ was represented by arcs between states and their respective labels. So, if there is an

arc from a state q to a state p labeled with the input symbol a, it means that if the

automaton is in state q when it reads an input symbol a, it moves to state p. We use

the transition function to indicate this as δ(q, a) = p.

4. A start state, one of the states in Q.

5. A set of final or accepting states F where F ⊆ Q.

A common notation for a DFA is using a 5-tuple A = (Q,Σ, δ, q0, F), where q0 ∈ Q is

the start state. The language of the DFA is the set of all strings that the DFA accepts or

recognizes. To define the language of the DFA, we use an extended transition function that

describes what happens after reading a sequence of inputs. If δ is the transition function,

then the extended one constructed from δ is called δ̂. The extended transition function takes

as input a state q and a string w and returns a state p, which is the state reached by the

automaton when starting from state q and processing the sequence of inputs w. So, formally,

the language L(A) of a DFA A = (Q,Σ, δ, q0, F) is L(A) = {w | δ̂(q0, w) is in F}. In other

words, the language of A is the set of strings w that take the start state q0 to one of the

accepting states.

2.2.2 Nondeterministic finite automata

We continue now with the class of nondeterministic finite automata which have the power of

being at several states at once. NFAs are considered easier to design and each NFA can be

converted to an equivalent DFA. However, the latter may, although rarely, have exponentially

more states than the NFA. In the worst case, the smallest DFA can have 2n states while the

smallest NFA for the same language has only n states [43]. Like the DFA, an NFA has a

finite set of states, a finite set of input symbols, a single start state and a set of accepting

states. The difference between an NFA and a DFA is in the transition function δ. In the case

of the NFA, δ is a function that takes a state and input symbol as arguments and returns a

set of zero, one, or more states instead of a single state in the case of the DFA. Recall that

function δ for a DFA returns exactly one state. We show an example NFA in Figure 2.5.

Spyridoula Miliaraki 53

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Analogous to the formal definition of a DFA, we formally define an NFA as follows. A

nondeterministic finite automaton (NFA) [43] consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted Σ, called the alphabet.

3. A transition function, denoted as δ, which takes as arguments a state in Q and a

member of Σ and returns a subset of Q.

4. A start state, denoted as q0 and a member of Q.

5. A set of final or accepting states F , where F ⊆ Q.

A common notation for an NFA is using a 5-tuple A = (Q,Σ, δ, q0, F). So, the NFA of Figure

2.5 can be specified formally as ({q0, q1, q2}, {a, b}, δ, q0, {q2}). We also describe an extension

of finite automata by allowing transitions on the empty string ϵ. As a result, an NFA is

allowed to make an transition without receiving an input symbol. Typically, NFAs allowing

ϵ-transitions (transitions without receiving an input symbol) are called ϵ-NFAs. The only

difference between an NFA and an ϵ-NFA has to do with the transition function of the ϵ-NFA

which takes as arguments a state in Q and a member of Σ ∪ ϵ. Throughout this thesis we

will use the term NFA for actually referring to an ϵ-NFA.

Likewise to the language of a DFA, we define the language L(A) of an NFA A =

(Q,Σ, δ, q0, F) is L(A) = {w | δ̂(q0, w) ∩ F ̸= 0}. L(A) is the set of strings w in Σ ∪ {ϵ}

such that δ̂(q0, w) contains at least one accepting state, where δ̂ is the extended transition

function constructed from δ. Function δ̂ takes a state q and a string of input symbols w, and

returns the set of states that the NFA is in, if it starts in state q and processes the string w.

We also define the concept of ϵ-closure of a state q [43]. Let q be a state. The ϵ-closure of

q, denoted by ϵClose(q), is the set of all states that can be reached from q along any path

whose arcs are all labeled ϵ.

The main idea behind how an NFA is executed is described by Sipser [91] as follows.

Suppose that we are running an NFA and arrive at a state with more than one ways to

proceed. After reading the corresponding symbol, the machine splits into multiple copies of

itself and follows all the possibilities in parallel. Each copy of the machine continues as before

and in case more choices appear, the NFA splits again. Nondeterminism can be viewed as

a kind of parallel computation where several processes can be running concurrently. This

fundamental observation motivated us in studying distributed NFA execution in this thesis.

Spyridoula Miliaraki 54

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0

1X 2
M

8

3
L

5 6
e

7
ep r

*

Figure 2.6: An NFA that searches for the words XML and peer

2.2.3 Applications

Finite automata are actually excellent models for several real problems. So, we conclude

our discussion about finite automata by presenting some example applications. In our first

example, inspired from the area of Web search, we demonstrate how we can perform text

search with automata. In our second example application, we mention some indicative ways

automata have been used for processing XML.

Text search The following example from the Web is described by Hopcroft et al. [43]. A

common process found in the popular example of Web search engines is the following. Given

a set of words, find all documents that contain one or all of these words. Search engines

employ inverted indexes, i.e., indexes where for each word appearing on the Web (there are

more than 100,000,000 different words), a list of all the Web places where that word occurs

is stored. The most common of these lists are kept in the main memory of machines allowing

fast search. Such indexes do not make use of finite automata but a lot of time is required

to build them. However, similar applications that have certain characteristics and make

use of such a process can employ automata-based techniques. One example is when the

repository where the search is conducted rapidly changes, e.g., daily searching news articles

for interesting topics.

Let us now describe how we can design an NFA for the above task. Suppose we are

given a set of words, referred to as keywords, and we want to find occurrences of any of

these words. For such application, it is useful to design a nondeterministic finite automaton

for identifying when we have seen one of the keywords by entering an accepting state. The

idea is that the text of a document is fed, one character at a time to the NFA to recognize

occurrences of the keywords in this document. A simple form of an NFA that is able to

recognize a set of keywords has the following characteristics [43]:

1. It has a start state with a transition to itself for every possible input symbol. Intuitively

the idea is that the start state represents a guess that we have not yet seen one of the

keywords, even if we have already seen some letters of one of these words.

2. For each keyword a1a2 . . . ak, the NFA includes k states, q1, q2, . . . , qk. We add a tran-

sition from the start state to q1 labeled with character a1, a transition from q1 to q2

Spyridoula Miliaraki 55

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

labeled with character a2, and so on. The last state qk for each keyword is an accepting

state and indicates that we have found the corresponding keyword.

Example 2.2.1 (Text search with NFAs). Suppose we want to design an NFA to recognize

occurrences of the words XML and peer. The NFA designed with the above characteristics

is shown in Figure 2.6. State 0 is the start state and character Σ is used to represent the

set of all allowed characters. States 1, 2 and 3 are used to recognize word XML, while states

5, 6, 7 and 8 recognize peer. Accepting states 3 and 8 (denoted by two concentric circles)

indicate that the corresponding keywords have been found. It is interesting that a well-known

text-processing program that uses a similar approach include advanced forms of the UNIX

grep command (egrep and fgrep).

XML processing As extensively surveyed by Schwentick [89], automata models are con-

sidered very useful for XML and there is a plethora of works that make use of automata in

several ways. For example, Segoufin and Vianu [90] study the problem of validating stream-

ing XML documents against a DTD using a finite automaton. For this purpose they employ

a finite automaton and use constant memory to achieve this.

In this thesis, we use an NFA for performing XML filtering in a distributed environment.

More details about our representation and how we implement such a method are described

later in Chapters 3 and 4.

2.3 Peer-to-peer networks

Back in 1999, Napster4 pioneered the idea of peer-to-peer (P2P) file sharing systems using

the killer application of digital music sharing. Even though Napster supported a central-

ized search functionality, it was the first system to acknowledge that requests for popular

content can be handled by many peers instead of being sent to a central server. Following

this paradigm, other systems like Gnutella [2] which distributed both search and download

capabilities, Kazaa5 and Morpheus6 indicate the immediate success of this approach. Nowa-

days, ideas from P2P computing have been applied to many popular distributed applications

beyond traditional data sharing such as Grid computation (e.g., SETI@Home7, IP telephony

(e.g., Skype8) and content distribution.

4http://www.napster.com
5http://www.kazaa.com
6http://www.musiccity.com
7http://www.setiathome.ssl.berkeley.edu
8http://www.skype.com

Spyridoula Miliaraki 56

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

In this section, we describe the technology of P2P networks. P2P networks are distributed

systems consisting of a very large number of computing nodes that cooperate for sharing data

without any centralized control. They go beyond the typical client-server systems since each

peer can play both the role of a client and a server. Some of the most desirable features of

peer-to-peer networks include robustness, efficient search of data items, redundant storage,

hierarchical naming, anonymity, massive scalability and fault tolerance.

P2P overlay networks are typically classified into two main classes, structured and un-

structured P2P networks. In the following, we first briefly describe unstructured P2P net-

works and then emphasize on structured ones and specifically on distributed hash tables

(DHTs). We briefly survey some well-known DHTs including Pastry [88] which is one of the

earlier influential DHTs and forms the basis of this research. This study hardly represents a

comprehensive survey of the area and the interested reader can see the study of Lua et al.

[60] and other more detailed surveys [10, 101] for this purpose.

2.3.1 Unstructured P2P systems

This class of P2P networks corresponds to the case where the nodes are organized without

any restrictions on the topology or in a hierarchical manner. In the latter case super-peer

networks introduce a hierarchy of peers classifying them into super-peers and clients. All

super-peers are equal and have the same responsibilities. Each super-peer serves a fraction of

the clients and typically holds an index for this purpose so that the clients can learn about

resources by querying them. Clients are also equal to each other and actually keep the

resources. In these overlays, search is performed using flooding, random walks or techniques

like expanding ring search.

Napster utilized an unstructured P2P network requiring at the same time a centralized

server for providing search capability (i.e., the directory server). Also, Gnutella [2] was the

first system to make use of a fully distributed unstructured P2P network. Gnutella used

flooding to send queries across the network within a defined limited scope. However, such

flooding techniques may be effective for locating highly replicated data items and highly

resilient to churn but they perform poorly for locating unpopular items and can lead to a

high consumption of network bandwidth.

2.3.2 Structured P2P systems

Structured networks have a network topology that is tightly controlled and the content of the

peers is not placed at random peers but at specified locations for more efficient performance.

Such structured networks use the distributed hash table (DHT) paradigm where each data

Spyridoula Miliaraki 57

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Peer PeerPeerPeer

Distributed Hash Table

...

Application

value = get(key)remove(key)put(key, value) value

Figure 2.7: Application interface for distributed hash tables

item is placed deterministically at a peer. The roots of DHTs can be found in work conducted

some years ago in the area of distributed data structures and databases. Litwin et al.

[58] coined the term scalable distributed data structures (SDDS) for introducing a class of

data structures used in distributed environments. They introduced LH*, a generalization of

linear hashing (LH) for distributed RAM and disk files. LH [58] does not require a central

directory and allows a file to extend to any number of sites. Although DHTs and SDDS

offer a similar abstraction, their application area differs significantly and each system makes

different assumptions for the reliability and dynamicity of the underlying network system.

DHTs were designed and deployed for highly dynamic environments where peer failures are

common. This assumption led to designs in which each peer requires to know only a limited

number of other peers in the system (e.g., O(logN)). Thus, any change in the system such

as a peer joining or leaving affects only a relatively small number of other peers.

DHTs are structured P2P systems which aim to solve the following data location problem

in a network of peers: Suppose x is a data item stored at a distributed dynamic network of

peers, find data item x. The core idea in all different DHTs is to solve this search problem

by offering a kind of distributed hash table functionality where data items are uniquely

identified by keys and DHT peers cooperate to store these keys. Although there have been

many proposals of DHTs like Chord [93, 94], Pastry [88] and CAN [85] which differ in their

technical details, they all provide a very simple interface consisting of two operations:

• put(k, v), this operation inserts a data item identified by key k and value v in the

DHT.

• get(k), this operation retrieves the data items associated with key k from the DHT

node responsible for key k.

Also a lookup(k) operation returns a pointer to the DHT node responsible for key k. A

generic interface demonstrating the operations supported by DHTs, also including a remove

Spyridoula Miliaraki 58

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

N1

N51

N48

N42

N38

N32

N21

N14

N8
N56 K10

K24

K30
K38

K54

N1

N51

N48

N42

N38

N32

N21

N14

N8N56

K54

lookup(K54) N8+1 N14

Finger table

N8+32 N42

N8+16 N32

N8+8 N21

N8+4 N14

N8+2 N14

Figure 2.8: Chord ring with 10 nodes storing 5 keys (adapted from [93])

operation which deletes keys from the network, is shown in Figure 2.7 (adapted from the

survey of Lua et al. [60]). A value can be any kind of data item including a document, a file

or an address. Chord can easily implement this functionality by storing each key/value pair

at the node to which that key maps. In the following, we describe in detail Chord and Pastry

which correspond to two of the most popular DHT examples. Other DHTs include Tapestry

[110], Content Addressable Network (CAN) [85], Kademlia [64], Viceroy [62], Bamboo [87]

and Skip Graphs [9].

2.3.2.1 Chord

Chord DHT [93, 94], proposed by Stoica et al., uses a variant of consistent hashing [51] to

assign keys to peers. Consistent hashing is designed to allow peers joining and leaving the

network without significantly changing the mapping of keys. Specifically, only K/n keys

need to be remapped on average, where K is the number of keys, and n is the number of

peers. In contrast, traditional hash tables would require nearly all keys to be remapped in

such a case. Using this decentralized scheme, each peer receives roughly the same number of

keys and whenever peers join or leave the network there is a small relocation of keys. Chord

improves even more the scalability of consistent hashing by avoiding the requirement that

every node knows about every other node and for a system of N peers, each peer needs to

maintain routing information for only O(logN) other peers.

In the consistent hashing scheme each node and data item is assigned an m-bit identifier

using SHA-1 [71] as the base hash function, where m should be large enough so that the

probability of keys hashing to the same identifier is negligible. The identifier of a peer is

computed by hashing its IP address. Keys are assigned to data items and their identifiers

are obtained by hashing these keys. In a file-sharing scenario, each file may use as key its

Spyridoula Miliaraki 59

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

name but in general this is an application-specific decision and does not affect the scheme.

Identifiers are ordered on an identifier circle modulo 2m i.e., from 0 to 2m− 1. The identifier

circle is also termed as the Chord ring. A key k is assigned to the first peer whose identifier

is equal to or follows the identifier of k (also denoted as H(k), where H is the SHA-1 hash

function) in the identifier space. This node is called the successor node of key k and is

denoted as successor(k). If identifiers are represented as a circle of number from 0 to 2m−1,

then successor(k) is the first number appearing clockwise from k. We will also refer to a

successor peer of a key as the responsible peer for this key.

If each peer knows only its successor, a query for locating the peer responsible for a key

k can always be answered in O(N) steps where N is the number of network peers. Chord

improves on this bound, by having each peer maintaining a routing table, called the finger

table, with at most m entries, where m is the number of bits in the identifier space. Each

entry i in the finger table of peer n, points to the first node s on the identifier circle that

succeeds identifier H(n) + 2i−1. These nodes (i.e., successor(H(n) + 2i−1) for 1 ≤ i ≤ m)

are called the fingers of node n. Since fingers point at repeatedly doubling distances away

from n, they can speed-up search for locating the node responsible for a key k. If the finger

tables have size O(logN), then finding a successor of a node n can be done in O(logN)

steps with high probability [93]. In addition, when a peer n leaves Chord, all of its assigned

keys are reassigned to n’s successor. Therefore, a join or leave operation requires O(log2N)

messages.

Figure 2.8 depicts a Chord ring where m = 6. This ring consists of 10 peers and 5 keys

are stored. The successor of the identifier 10 is peer 14, so key is located there. In case a peer

with identifier 26 joined the network, key with identifier 24 would be stored there instead

of peer with identifier 32. We also illustrate how a lookup is performed. Peer 8 performs

a lookup for key 54 and the path of the query by utilizing the entries of the finger table is

depicted in the figure.

2.3.2.2 Pastry

Pastry [88], along with Tapestry [110], employ routing based on address prefixes. Such an

approach bears some similarity with the distributed data structure proposed by Plaxton et

al. [81], known as Plaxton mesh. In Plaxton mesh, a hypercube routing algorithm is used to

efficiently locate a resource by utilizing routing tables of small size stored in each node in the

network. Pastry [88] uses a version of this algorithm as the core of its routing mechanism,

modified appropriately for a dynamic environment. The Chord protocol is closely related

to both Pastry and Tapestry, but while Pastry routes towards peers that share successively

longer address prefixes with the destination, Chord forwards messages based on numerical

Spyridoula Miliaraki 60

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

65a1fc

d13da3

d4213f

d462ba

Route(d46a1c)

0 | 2128-1

d467c4

Key d46a1c

Figure 2.9: Pastry circular nodeId space: Routing a message

difference with the destination address.

Each peer in Pastry is assigned a 128-bit node identifier, referred to as NodeId. The

NodeId is used to indicate the position of the node in a circular NodeId space ranging from

0 to 2128−1. The NodeId is assigned randomly when the node joins the network. Likewise to

other DHTs, a cryptographic hash of the IP address of the node can be used for generating

the identifier. The random way of assigning a NodeId to peers results with high probability

in nodes with adjacent node identifiers being diverse in characteristics like location and

ownership.

Assuming a network consisting of N nodes, Pastry routes to the numerically closest peer

to a given key in less than logB N steps under normal operation. Configuration parameter

B = 2b has a typical value where b = 4. Each peer maintains as routing states, a routing

table, a neighborhood set, and a leaf set. The routing table includes logBN rows, each one

including B − 1 entries. The IP address of peers is kept with each entry.

2.4 Related research

In this section, we provide a detailed survey of previous research relevant to the topic of

this thesis. We begin our discussion with centralized XML filtering systems and continue

with distributed ones. We give an extensive survey of distributed approaches, discuss their

main properties and also refer to whether they deal with load balancing in their settings. In

addition, we comment on whether they explicitly consider predicate evaluation and discuss

the relevant methods. Next, we give a small overview of distributed systems offering XML

query processing functionality (i.e., one-time query processing). Finally, since our system

FoXtrot, designed and developed in the context of this thesis, is built on top of a DHT,

we also give a comprehensive survey of systems supporting different data models in a DHT

Spyridoula Miliaraki 61

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

environment.

2.4.1 XML-based publish/subscribe systems

As we discussed earlier, in XML filtering systems deployed on the Internet, we expect that the

amount of queries to be evaluated is very large. Consequently, it is considered prohibitively

expensive to use a brute force approach and evaluate the queries one at a time. Based on this

insight, an important optimization for XML filtering systems has been to build an index over

the queries and actually evaluate a smaller set of queries against the XML documents. There

is a significant amount of work that propose such indexes in centralized environments and

also others that employ them in a distributed setting. With respect to predicate evaluation,

while most of the systems, both centralized and distributed ones, support both structural

and value matching, they focus either on structural matching or on the evaluation of value-

based predicates. We also focus on the latter systems and describe their techniques. In the

following we give a detailed survey of these works, point out some of their weaknesses which

have motivated the research described in this thesis.

2.4.1.1 Centralized approaches

Many approaches have been proposed in the past for XML filtering in a centralized setting.

A popular approach in many of the earlier works has been to adopt some form of finite

state machine (FSM) to represent each path expression [7, 47]. This approach is based

on the observation that a path expression can be transformed into a regular expression and

consequently there exists an FSM that accepts the language described by the path expression

[43]. Both XFilter [7] and Tukwila [47] create one FSM for each path expression by mapping

its location steps to machine states. XML documents that arrive are parsed using an event-

based parser (e.g., SAX parser [65]) and the events are used to drive the execution of query

FSMs. A path expression is said to match a document if during parsing, the accepting state

for that path is reached. For this purpose XFilter builds a dynamic index over the states of

query FSMs which changes its content as parsing events drive the execution of the FSMs.

However, by creating a single FSM per query, such an approach fails to take into account

potential commonalities among the queries and it is subject to scalability problems since a

large amount of redundant work may be performed.

Diao et al. [30] overcome XFilter weaknesses by constructing a single nondeterministic

finite automaton (NFA) from the set of XPath queries. The NFA is used as a matching

engine that scans incoming XML documents and discovers matching queries. YFilter is

considered a state-of-the-art filtering engine exhibiting high performance for large sets of

queries due to exploiting common path prefixes. With respect to predicate evaluation, the

Spyridoula Miliaraki 62

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

authors propose two methods in YFilter, namely Inline and Selection-Postponed. Method

Inline processes predicates as soon as the relevant state is reached during NFA execution

while Selection-Postponed delays predicate evaluation until after the whole structure of a

query is matched.

Zhang et al. [109] investigate an optimization of YFilter algorithm, called YFilter*.

The authors employ clustering and aggregation methods aiming to decrease the number of

matchings performed and improve the performance of the system. To accomplish this the

authors design a new metric for measuring the similarity among query patterns.

Gupta and Suciu [41] identify the need for eliminating redundant work not only in the

structural part of the queries but also in the predicate evaluation part. The authors propose

to construct a single deterministic pushdown automaton, called XPush machine, and perform

structural matching along with predicate evaluation directly with this automaton. They

avoid the theoretical exponential state blow-up by computing the XPush machine lazily also

consider some heuristic-based optimizations to reduce the total number of states. Their

approach scales for both a large number of XPath queries and a large number of predicates

per query.

Chan et al. [20] utilize a trie-based data structure called XTrie aiming to reduce un-

necessary index probes and avoid redundant matchings. XTrie indexes tree-structured

XPath queries by first decomposing them into a minimal number of substrings, each be-

ing a nonempty sequence of elements, which only contain parent-child relationships. These

substrings are then organized using a trie structure and an auxiliary table which contains

an entry for each substring of each indexed XPath query. In each row of the table, a set of

values describes the positional and structural constraints of the associated substring.

Another filtering system called FiST is proposed by Kwon et al. [54]. The authors per-

form holistic matching of tree-structured XPath patterns (also called twigs) against incoming

XML documents. Instead of splitting the queries into linear paths and then performing the

matching, Kwon et al. [54] transform twigs into Prüfer sequences and then match each twig

as a whole. The authors demonstrate that FiST outperforms YFilter in terms of scalability

under various situations. In a more recent work, Kwon et al. [55] study an extension of

FiST and design pFiST (predicate enabled FiST) to also support value-based predicates in

the twig queries. The method proposed evaluates queries in a bottom-up fashion, checking

the value-based predicates before performing structural matching. The authors evaluate

their method comparing to YFilter for the case of equality predicates and report that pFiST

exhibits a better performance.

A different approach is followed by Tian et al. [98] who design and implement an XML

publish/subscribe system using a relational database. The authors deal with both structural

and value matching by breaking queries into two parts, namely the predicate matching part

Spyridoula Miliaraki 63

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

and the XML tree structure. Other systems offering centralized XML filtering include work

of Index-Filter [16] where the authors build indexes not only for the queries but also for

the incoming XML documents, XSQ system [74, 75], XSM machine [61], BoXFilter [70] and

more recently AFilter [17] which exploits both prefix and suffix commonalities.

Since centralized solutions typically suffer from disadvantages including lack of scalability,

zero fault tolerance and creation of bottlenecks, in the following section we continue our

discussion with distributed approaches.

2.4.1.2 Distributed approaches

The majority of distributed approaches [92, 24, 33, 29, 38, 102, 21] assume a content-based

overlay network where routers are responsible for forwarding XML data towards interested

subscribers. Content-based routers, also called brokers, route XML data based on their

content and are organized in mesh or tree-based configurations. We will describe in detail

the most distinctive works emphasizing on the specific properties of network setting consid-

ered, the methods employed by the network brokers for forwarding XML data to interested

subscribers, methods for dealing with predicate evaluation and other interesting properties

like load distribution among the network brokers. With respect to predicate evaluation,

we also include works that focus explicitly on the evaluation of value-based predicates. We

also survey the latter systems emphasizing on these techniques. We also include works that

focus on optimizing the functionality of each single XML broker and can be considered

complementary to most of the other approaches.

In the work of Felber et al. [33], the authors first propose two simple strategies for

parallelizing the filtering task, performed using the XTrie algorithm [20], among the available

XML routers. In the first strategy, called data-sharing, each router keeps the whole set of

queries and a load balancer dispatches each XML document that arrives to one of the routers.

In the second strategy, called filter-sharing, routers share the queries equally and incoming

XML documents are filtered by all the routers. Intuitively, the time for indexing queries in

the former strategy is proportional to the number of routers in the network, while filtering

time decreases as more routers become available. In addition, filtering in the filter-sharing

strategy requires a broadcast operation to all routers. Whereas these two strategies are

proposed in the context of XTrie, similar approaches could be supported by any kind of

filtering engine. Apart from these strategies, referred together as Parallel XTrie, the authors

also propose to organize the XML routers in a hierarchical structure and deal with the

challenge of partitioning queries among the network brokers using the XTrie structure. In

the latter approach, the authors identify that certain routers may suffer heavy access load but

do not offer solutions to this problem. An overview of the different strategies is illustrated

Spyridoula Miliaraki 64

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

1 32

Trie

Trie

Trie

.........

1

2

3

1 32

Trie

Trie

Trie

.........

1 32

1 32

1 32

XML data XML data

Data-sharing Filter-sharing

Hierarchical

1 32

XML data Trie

Trie

1 32
Trie

.........

1

32
/*

/nitf

/bib,/dblp

..
..
.

Trie

Trie

Trie

.....

.....

.....

XML brokers XML brokers

XML brokers

XML brokers

Figure 2.10: Parallel filtering strategies with XTrie [33]

in Figure 2.10.

In a more recent work by the authors of XNet [22], the authors describe another XML

content-based network called XNet, where XML filtering is also performed using the XTrie

algorithm [20]. A global spanning tree is used to implement a broadcast layer for publishers

to communicate with all XML routers forming the inner network. XNet focuses on aggrega-

tion techniques for minimizing the size of the routing tables kept by the routers and employs

fault tolerance methods to recover from router failures. The authors evaluate XNet using an

overlay consisting of 22 nodes from the PlanetLab network and experiment with a subscrip-

tion set containing at most 105 queries. They report on an indexing throughput of almost 19

single-element queries per second for each consumer node. While they report on the routing

load of the individual nodes in terms of the size of their routing tables, the authors do not

deal with any other kind of load with respect to load balancing.

We continue our discussion with the ONYX system, proposed by Diao et al. [29], which

assumes a similar topology to XNet, where each broker uses a broadcast tree for reaching all

other brokers in the network. ONYX consists of an overlay network of nodes. Most of the

nodes serve as information brokers and handle XML messages and queries. A centralized

component, called the registration service, is used to assign a priori XML data sources and

queries to brokers using criteria like topological distances between the source and broker,

available bandwidth, query content and the location of the subscriber. As a result, the

Spyridoula Miliaraki 65

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Broker

Broker
BrokerBroker

Broker

Broker

Registration

service

Data

source
Data

source

Data

source

ONYX

register

assign a root broker

publish data

re
gi

st
er

as
si
gn

 a
 h

os
t

br
ok

er

Figure 2.11: ONYX architecture [29]

registration service can suffer a lot of load. However, the authors do not address this issue

or deal explicitly with the distribution of load among the network routers in general. An

overview of the ONYX architecture is illustrated in Figure 2.11. The authors state that

instead of a single node, the registration service may be offered by a small number of nodes

which collaborate for this purpose. However, it still remains a single point of failure and a

potential bottleneck for system ONYX even though some fault-tolerance can be achieved by

having backup nodes. Diao et al. [29] consider this out of the scope of their research and do

not study it any further. In ONYX, each message broker participating in the network runs a

YFilter instance [30] for filtering and transforming XML messages. In addition, each broker

contains a routing component to efficiently forward messages to the downstream brokers that

are interested in the messages.

Another system called SONNET [111], is closely related to our work since it uses a DHT

to build an XML dissemination system. In contrast to ONYX and XNet that forward XML

data using queries as entries in the routing tables of the brokers, the authors of [111] construct

a summarization of the queries using path digests. So, during the routing process, instead

of performing XML filtering, checking is performed using cheaper bit-based operations. As

a result, filtering is approximate and false positives are introduced. The authors use load-

shedding techniques to balance the number of packets forwarded by each peer. However,

they do not consider the size of each packet or the processing load suffered by each peer

receiving a packet. They evaluate their system using a simulated peer-to-peer network.

The system XTreeNet [34] combines the publish/subscribe and the query/ response mod-

els within a network of XML routers that connects XML data producers and consumers. The

Spyridoula Miliaraki 66

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

authors introduce the concept of content descriptors and create a different distribution tree

for each of these descriptors. As a result, XML data are not matched repeatedly at inter-

nal brokers. Content descriptors can be elements of an ontological topic hierarchy or XML

data paths and are considered high-level descriptions for both subscription and publication

information.

We continue with a work that deals explicitly with load balancing issues [102]. The

authors assume that they have available a number of servers that share XPath queries.

Filtering is performed using a lazily constructed DFA similar to the work of Gupta et al.

[41]. The authors employ a technique for transferring XPath queries from overloaded to

under-loaded servers using a centralized component called XPE control server.

Papaemmanouil and Cetintemel [72] describe another relevant system called SemCast for

distributed content-based routing. SemCast works with either relational or XML data, and

in the case of XML, queries are expressed using the XPath language. In contrast to ONYX

and other systems that require content-based filtering performed at all brokers, SemCast

splits incoming data streams a priori and sends them across multiple channels implemented

as independent dissemination trees. The process of deciding which and how many channels

are created is called channelization. This process can be periodically revised and is based

on criteria like network statistics, stream statistics and profile characteristics. The authors

consider as a key advantage for SemCast that content-based filtering takes place only at the

source and destination brokers and do not focus on which filtering engine is used for this

purpose.

Also, other works in the literature [69, 21, 38] focus on optimizing the functionality of

each single XML broker and can be considered complementary to most of the former works.

For example, Gong et al. [38] describe techniques that use Bloom filters for summarizing

the queries included in the routing tables. However, such a technique does not specify and

is independent of the distributed setting used for organizing the brokers.

Vagena et al. [103] deal with XML message aggregation and describe the VA-RoXSum

structure. VA-RoXSum aggregates structural information of XML data in a compact way,

while Bloom filters are used to encode values of root-to-leaf XML data paths. Similarly to

YFilter, in each broker queries are indexed using an NFA and value predicates are augmented

with the final states of the NFA using Bloom filters. Also, Gong et al. [38] use Bloom filters

to summarize path queries and build routing tables for efficiently filtering XML data. Finally,

Bloom filters have been used by Pitoura et al. [53] as summaries of XML data to efficiently

route path queries in a P2P network.

Spyridoula Miliaraki 67

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

2.4.2 XML query processing in P2P networks

To offer a complete review of related work in this area, we point out that there are various

interesting papers on storing XML documents in P2P networks and executing XPath queries.

Representative works include approach by Bonifati et al. [14], the catalog service developed

by Galanis et al. [36], and also work of Pitoura et al. [53]. In the latter, the authors

study content-based routing for XPath queries in a P2P network storing XML documents

[53]. Peers are connected using an unstructured P2P network and clustered based on their

contents. We do not present an in-depth discussion of these papers since their emphasis is

not on filtering algorithms.

2.4.3 Tree structures in DHTs

We now describe approaches that distribute tree-like structures on top of DHTs and other

publish/subscribe systems built using peer-to-peer networks. These works do not necessarily

consider the XML data model but since in FoXtrot we distribute an automaton on top of a

DHT, we consider these works closely related and we discuss them in detail.

We begin with psiX [84], a hierarchical distributed index for locating XML data in a

DHT network. Each XML document and query is mapped into an algebraic signature and

indexes, called H-indexes, are built for the document signatures. To answer a query, first

the root node of each H-index is discovered using the query elements. This is considered

a special node and its id is computed based on the relevant XML element name. XML

data location continues with each peer following pointers to the other nodes that keep index

entries. Note that apart from locating the root node, where a DHT lookup operation is used,

a peer continues traversing an H-index by following a set of extra pointers kept locally. Apart

from disk usage, the authors do not study how load is distributed as a result of their design

and depend solely on the underlying overlay offered by Chord for providing load balancing

of key-value pairs.

A similar approach to psiX, was recently proposed by [5] with system KadoP which

supports XPath query processing on top a DHT. Their indexing scheme is a combination of

an inverted index on XML tags and a set of hierarchical indexes for storing the positional

representation of tag name instances. Each peer keeps a list of indexes using B+-trees for

XML tag elements. The authors acknowledge that distribution of element tags can be very

skewed and peers migrate their data in the case of popular terms.

Prior to the above works that refer to the XML data model, [6] designed PastryStrings,

where DHT peers also keep additional pointers for traversing a forest of trees representing a

set of queries. PastryStrings supports queries expressed using an attribute-value data model

handling a rich set of operators for both numerical and string attributes. Actually, they

Spyridoula Miliaraki 68

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

consider an alphabet β, and for each character of β, a tree structure is created (called string

tree) having words mapped to its tree nodes. Additional routing tables are kept by peers

for enabling prefix-based routing. The authors are concerned with load balancing since as

expected a fraction of nodes, the tree nodes close to the root of each tree, may become

bottlenecks. For this reason, they use common used strategies including replication of the

trees, partitioning of the storage load for popular values and also apply domain relocation

techniques. The latter technique is based on the fact that each attribute is expected to have

values from a very small part of its domain.

Zhang et al. [108] propose a distributed tree scheme called Brushwood, designed on top

of Skip Graph DHT [9], where peers are assigned a tree partition using a linearization of

the tree. The authors target locality-sensitive applications like distributed file services. This

work is concerned with load balancing and uses load shedding methods to achieve this. In

particular, peer-wise gossiping is used to aggregate load information inside the distributed

tree and then trigger load adjustment operations.

One of the earlier approaches that uses a trie structure for organizing data in a peer-

to-peer system is P-Grid system proposed by Aberer et al. [4]. P-Grid uses a virtual

distributed search tree similarly structured as DHTs for supporting both prefix and range

queries. Queries are resolved using prefix matching, while the actual network topology has no

hierarchy and each peer keeps a part of the overall trie. For reasons including fault-tolerance

and load-balancing, multiple peers are responsible for each leaf node of the P-Grid trie.

A different approach is proposed by Jagadish et al. [48], where the authors describe

BATON (BAlanced Tree Overlay Network) for organizing peers in a distributed binary tree

structure and supporting both exact match and range queries. In BATON, each peer stores

tree nodes keeping links to its parent, children, adjacent nodes, and also some selected neigh-

bors of the same level. For load balancing, again a load-shedding technique is used where

overloaded nodes share or migrate their data. However such a technique is not sufficient

when global imbalances occur. BATON* [49] improves on BATON by supporting multi-

attribute queries using a multi-way tree structure. This improved design allows to achieve

better load balancing by increasing the fanout of the tree leading to more leaf nodes. Also

in this case load balancing occurs dynamically having peers partitioning or migrating their

load when necessary. Other approaches include Prefix Hash Tree [82] that uses the lookup

interface of a DHT to construct a trie-based structure for efficiently answering range queries.

We also mention that there are works that design publish/subscribe systems on top of

DHTs supporting different data models. Such systems include SmartSeer system [50], Scribe

[19], Corona [83] and the work of Tryfonopoulos et al. [100]. Corona [83] is a publish/sub-

scribe system built on top of a DHT. In Corona, each information source is assigned to

a random peer which monitors the source and disseminates updates to interested clients

Spyridoula Miliaraki 69

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

who have subscribed to the specific source. The authors use an optimization method to

decide which peers should monitor each channel using periodic polling aiming to optimize

bandwidth utilization. In SmartSeer, the authors use a keyword-indexing method for al-

lowing users to subscribe with queries containing conjunctions or disjunctions of terms over

the CiteSeer database. Tryfonopoulos et al. [100] design an information filtering system

supporting an attribute-value model in a DHT environment.

2.5 Summary

In this chapter, we described the XML data model and focused on XPath query language.

Also, we gave an overview of finite automata and provided formal definitions of both de-

terministic and nondeterministic finite automata. Next, we presented the technology of

peer-to-peer systems emphasizing on distributed hash tables. Finally, we provided a survey

of work conducted in related areas focusing mainly on XML filtering systems. In the next

chapter we give an overview of the distributed XML filtering system described and developed

in this thesis, called FoXtrot. We describe the data model supported, its architecture and

also present the API offered by our system.

Spyridoula Miliaraki 70

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 3

An XML filtering system

In this thesis, we design, develop and evaluate a fully distributed XML filtering system

called FoXtrot (Filtering Of XML data on top of sTRuctured Overlay neTworks). FoXtrot

exploits the technology of DHTs to offer XML filtering functionality on Internet scale. In

this chapter, before describing our techniques in detail, we introduce the architecture of

FoXtrot along with the data model it supports. We also present the FoXtrot API.

3.1 Data model

In this section, we describe our data model with respect to the XML documents and the

subset of XPath we allow throughout this thesis for designing the methods we have developed

in our system FoXtrot.

3.1.1 XML documents

We consider well-formed XML documents. XML documents may be valid according to a

DTD or an XML schema but this is not required by our methods.

3.1.2 XPath queries

As described in detail in Section 2.1.2, each XPath expression consists of a sequence of

location steps. Throughout this thesis, we consider location steps of the following form:

axis nodetest [predicate1] . . . [predicaten]

where axis is a child (/) or a descendant (//) axis, nodetest is the name of the node or the

wildcard character “*”, and predicatei is a predicate in a list of one or more predicates used

to refine the selection of the node. We allow either attribute predicates of the form [attr op

Spyridoula Miliaraki 71

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

value] where attr is an attribute name, value is an attribute value and op is one of the basic

logical comparison operators {=, >,>=, <,<=, <>} or textual predicates of the form [text()

op value] where value is a string value and op is a string operator as defined in XPath W3C

recommendation [25].

A linear path query q is an expression of the form l1l2 . . . ln, where each li is a location

step as defined above. In this thesis, queries are written using this subset of XPath, and we

will refer to such queries as path queries or XPath queries interchangeably. We write path

queries using the abbreviated form of syntax presented earlier. Queries containing branches

can be managed by our algorithms by splitting them into a set of linear path queries.

Example 3.1.1 (Example path queries). We present here some example path queries for

the case of a bibliographic database.

Q1: /bibliography/phdthesis[@published>2007]

which selects PhD theses published in year 2007.

Q2: /bibliography/*/author[text()="John Smith"]

which selects any publication of author John Smith.

Q3: //*/[school="University of Athens"]

which selects any type of publication written by authors from University of Athens.

Q4: /dblp/proceedings/author[position()=1]

which selects all first authors of a publication.

3.2 An NFA-based XML filtering model

Automata and tree-based structures have been proven to be efficient ways for indexing path

queries in XML filtering systems. As a result, we decided to use an NFA-based model, simi-

lar to the one use in YFilter [30], for indexing path queries in our approach and performing

structural matching. Any path query can be transformed into a regular expression and conse-

quently there exists an NFA that accepts the language described by this query [43]. Following

YFilter [30], for a given set of path queries, we construct an NFA A = (Q,Σ, δ, q0, F) where

Σ contains element names and the wildcard (*) character, and each path query is associated

with an accepting state q ∈ F . An example of this construction is depicted in Figure 3.1.

The figure also shows how the different location steps in a query are represented using the

corresponding NFA fragments. In FoXtrot, this NFA is distributed among the network peers

which cooperate to perform XML filtering. Our techniques are described in detail in Chapter

4.

Spyridoula Miliaraki 72

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

4

0

6

1

7

8

2

9

5

3
Q

1

Q
2

Q
3

Q
4

bib

e

article

phdthesis
author

author

article

*

*

conference

Basic location steps as NFA fragmentsExample NFA

a
/a

/*

//a

//*

e

e

a

*

*

*

*

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]

Q2: /bib/*/author[text()="John Smith"]

Q3: /bib/article/conference[text()="WWW 2010"]

Q4: //article[@year>2009]

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]

Q2: /bib/*/author[text()="John Smith"]

Q3: /bib/article/conference[text()="WWW 2010"]

Q4: //article[@year>2009]

Figure 3.1: An example NFA constructed from a set of XPath queries

3.3 The FoXtrot architecture

Let us now describe the architecture of FoXtrot. A high-level view of the architecture is

illustrated in Figure 3.2. FoXtrot is built on top of a P2P network where peers are organized

using DHT-based protocols. Each peer participating in FoXtrot will be referred to as a

FoXtrot peer. We can identify two parties involved, the subscribers and the publishers. In

FoXtrot, subscribers submit path queries to the system asking to be notified whenever XML

documents arrive that match these queries. Publishers publish their data in the form of

XML documents. Each publisher/subscriber can communicate and submit its request at

any FoXtrot peer participating in the network. Moreover, any FoXtrot peer can also play

the role of a publisher or a subscriber.

We identify many application scenarios that can be supported by FoXtrot. For example,

news monitoring where the providers of the news can be news agencies that provide XML

feeds of their updates, common users or other parties which publish news. Another scenario

we consider in this thesis is the publication monitoring scenario where a user wants to be

notified about publications submitted to a bibliographic server.

3.4 FoXtrot API

We have developed an API in FoXtrot so that a user or an external party can communicate

with any peer of FoXtrot, subscribe with queries or publish XML documents. The following

functions are provided by the FoXtrot API:

- subscribe(query), indexes a query q in the FoXtrot system. The query should be

written in the subset of XPath defined earlier. For indexing the query, FoXtrot peers

Spyridoula Miliaraki 73

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

7 568

4 3 2

9 1

10

ae

v

k

* bc

aal

*

0

Misc
data

source

News data
source

Bibliographic
data source

Misc
data

source

...

I want to be notified if an

author from the University of
Athens publishes a paper

Let me know if a

news article is

published for the
economic situation

in Greece

Notifications/

XML

documents

XPath queries

Publishers Subscribers

XML

documents
Distributed

NFA

Notifying

subscriber

Subscribing
Publishing

FoXtrot

DHT

Figure 3.2: Architecture of FoXtrot

cooperate to traverse and update the distributed NFA. A pointer to the subscriber of

q is associated with the query so that FoXtrot peers can communicate with her in case

the query is satisfied.

- publish(document), publishes an XML document d in FoXtrot. The XML document

must be well-formed but not necessarily valid. FoXtrot peers cooperate to execute the

distributed NFA using recursive method and if a match is discovered for a query, then

a notification is dispatched to the interested subscriber. In the latter case, the peer

who discovers the match, disseminates the XML document to the subscriber.

- publish(document,method), publishes an XML document d in FoXtrot using the

specified method. The available options that this call allows is the two supported

methods, namely iterative and recursive method. These methods are described in

detail in Chapter 4.

3.5 Summary

In this chapter we provided a high-level overview of FoXtrot, the distributed XML filtering

system which is the subject of this thesis. We described the data and query model of

FoXtrot, presented the architecture of the system and some example applications and also

the supported API.

We continue with describing in detail the algorithms used by the FoXtrot peers for pro-

viding XML filtering functionality. First, we focus on how structural matching is performed

Spyridoula Miliaraki 74

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

(Chapter 4) and then continue with value matching (Chapter 5).

Spyridoula Miliaraki 75

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 76

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 4

Structural matching

Automata and tree-based structures have been proven to be efficient ways for indexing path

queries in XML filtering systems. For this reason, we decided to use an NFA-based model for

query indexing and performing structural matching in our approach. The NFA corresponding

to a set of path queries is essentially a tree-like structure that needs to be traversed both for

indexing a query during NFA construction, and for finding matches against incoming XML

data during NFA execution.

In FoXtrot, we distribute an NFA on top of Pastry and provide efficient ways of supporting

these two basic operations performed by a filtering system, namely path query indexing and

XML document filtering. Our main motivation for distributing the automaton derives from

the nondeterministic nature of NFAs that allows them to be in several states at the same

time, resulting in many different parallel executions. Apart from their nondeterministic

nature, we also preferred to use an NFA instead of its equivalent DFA for reducing the

number of states. Recall that in the worst case, the smallest DFA can have 2n states while

the smallest NFA for the same language has only n states [43].

In this chapter, we describe in detail how the NFA corresponding to a set of XPath

queries is constructed, maintained and executed by the network peers for providing XML

filtering functionality in the distributed environment of FoXtrot. In addition, we discuss load

balancing methods for evenly distributing the load among the peers and also techniques for

improving the fault tolerance of the system. We conclude this chapter by presenting an

extensive experimental evaluation of FoXtrot.

4.1 Distributing the NFA

The distribution of the NFA among the network peers in FoXtrot is done at the level of NFA

states. An example NFA for a small set of path queries is depicted in Figure 4.1. Since we

Spyridoula Miliaraki 77

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0

7

5

6

84

3

2

9

1

10

bib

e

article

author

*

phdth
esis

article

author

author

cite

*

Example NFA

Q1

Q7

Q2

Q3

Q5,Q6

Q4

Queries

Q1: /bib/phdthesis[@published>2005]/author[@country=italy]

Q2: /bib/*/author[text()="Michael Smith"]

Q3: /bib/*[@conf=www]

Q4: /bib/article[@year<2009]/author[@degree-from="UOA"]

Q5: /bib/article[@year=2009]/cite[@paper-id=2392]

Q6: /bib/article/cite[@paper-id=2770]

Q7: //article[@year=2007]

Q1: /bib/phdthesis[@published>2005]/author[@country=italy]

Q2: /bib/*/author[text()="Michael Smith"]

Q3: /bib/*[@conf=www]

Q4: /bib/article[@year<2009]/author[@degree-from="UOA"]

Q5: /bib/article[@year=2009]/cite[@paper-id=2392]

Q6: /bib/article/cite[@paper-id=2770]

Q7: //article[@year=2007]

Figure 4.1: An example NFA constructed from a set of XPath queries

distribute the NFA on top of a Pastry network, we use the term distributed NFA to refer to

it.

Each NFA state is assigned to a network peer as follows. Each state qi along with every

other state included in δ̂(qi, w), where w is a string of length l included in Σ∪{ϵ}, is assigned

to a single peer in the network. Note that l is a parameter that determines how large part

of the NFA is the responsibility of each peer. If l = 0, each state is indexed only once at

a single peer, with the exception of states that are reached by an ϵ-transition, which are

also stored at the peers responsible for the state which contains the ϵ-transition. Recall

that the ϵ-transition represents a transition that can be followed without receiving an input

symbol. Formally, if a peer is responsible for storing a state q, then it will also store the

states included in the ϵ-closure of q, denoted by ϵClose(q). For larger values of l, each state

is stored at a single peer along with other states reachable from it by following a path of

length l. Again, potential ϵ-transitions do not contribute to the specified length l. As a

result, using parameter l results in storing each state at more than one peers. Therefore,

peers store overlapping fragments of the NFA and parameter l characterizes the size of these

fragments.

The use of parameter l creates a trade-off between the size of the NFA fragments that each

peer holds and the degree of distribution of the NFA among the peers. The larger the value

for parameter l is, each peer is aware of a larger part of the NFA and can perform a greater

amount of work by itself decreasing the number of peers that are required to participate for

completing a task (i.e., an indexing task or a filtering task). As we demonstrate later during

the evaluation of FoXtrot, depending on the specific characteristics of the workload, tuning

parameter l can lead to a significant improvement in performance.

We have explained so far how peers share the NFA states, having a single peer responsible

Spyridoula Miliaraki 78

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

for each state. We now describe how we determine which peer will be responsible for a specific

state. We uniquely identify each state with a key. The responsible peer for state with key k is

the peer whose identifier is numerically closest to Hash(k), where Hash() is the DHT hash

function. The key of an automaton state is formed by the concatenation of the transition

labels included in the path leading to the state. For the NFA depicted in Figure 4.1, the key

of state 4 is the string start + bib + ∗, the key of the start state is start, and state 9 has

key start + $, since we choose to represent ϵ-transitions using character $. Operator + is

used to denote the concatenation of strings.

Apart from parameter l, which adds redundancy to our system, we also employ repli-

cation techniques to achieve a balanced load. For example, even for larger values of l,

given our distribution scheme as described above, the start state will be stored by a sin-

gle peer creating a potential network bottleneck. For this reason, we study load balancing

methods to distribute evenly the total load among the network peers. These methods are

considered complementary to the methods we describe here for indexing XPath queries and

filtering XML documents. For ease of the reader in understanding our basic methods, we

first describe them without considering any load balancing method. Later, in Section 4.4 we

discuss in detail how these methods are enhanced for achieving a better distribution of the

load among the network peers.

Implementation To implement the NFA structure we use a hashing-based approach which

has been shown by Watson et al. [105] to have low-time complexity for inserting states,

inserting transitions, and following the transitions. For this purpose, each peer keeps the

following data structures for holding each state and its associated information. The basic

data structure is a hash table, denoted by p.states, which contains the states assigned to

peer p indexed by their keys. For each state st included in p.states we keep the transitions

from st organized also in a hash table structure. The transition hash table for each state

maps a string label to an identifier stkey, where label is the label of the outgoing transition

(i.e., element name, ∗, or ϵ) and stkey is the identifier of the target state that the transition

leads to. In the case of an ϵ-transition, we treat the child states differently since they include

a self-loop labeled with ∗ (see state 9 as an example in Figure 4.1). For these states we

do not index the self-loop in the transition hash table but keep it using a separate boolean

parameter denoted as st.selfChild for a state st. Finally, if st is an accepting state, we

also keep the identifiers and the subscribers of the associated queries. Recall that a query

matches a document if during the execution of the NFA, the accepting state for that query

is reached. We denote the list containing the queries associated with an accepting state st,

as st.queries.

Spyridoula Miliaraki 79

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0

7

5

6

84

3

2

9

1

10

bib

e

article

author

*

phdth
esis

article

author

author

cite

*

P2
P1

P7

P4

P9 P5

P6
P8

P3

Distributed NFA

Q1

Q7

Q2
Q3

Q5,Q6

Q4

FoXtrot network

P7

P8

P9 P1

P2

P3

P4

P5

P6

58

84

76

9

52
10 9

21 43

10

10

763

P10

P10
10

Figure 4.2: Distributing an NFA in FoXtrot (l = 1)

State key 0 1 2 3 4 5 6 7 8 9 10
Responsible peer P7 P4 P2 P9 P6 P1 P5 P5 P8 P3 P10

Table 4.1: State assignments to peers

Example 4.1.1 (Distributing an NFA in FoXtrot). Figure 4.2 illustrates how we distribute

an NFA on top of Pastry when l = 1. We consider a network of 10 peers and illustrate

where each state is stored on the Pastry ring. Table 4.1 contains the peers responsible for

each one of the states. We use unique integers instead of the actual state keys for readability

purposes. The queries indexed in this example NFA are shown in Figure 4.1. Notice that

state 10 is included in P7.states = [0, 1, 9, 10], because the ϵ-transition does not contribute

to the specified length l.

4.2 Constructing a distributed NFA

We explained how the NFA corresponding to a given set of path queries is distributed

among the DHT peers. To achieve this distribution in FoXtrot, we incrementally construct

the automaton as XPath queries arrive in the system. In this section, we describe how this

works in detail.

To help the reader understand this process, we first describe how the NFA is constructed

without considering the fact that the states are distributed and stored at different peers. This

process is identical to the construction process in the centralized environment of YFilter [30].

A location step in a query can be represented by an NFA fragment. The different location

steps and the corresponding NFA fragments were shown in Figure 3.1. The NFA for a

path query can be constructed by concatenating the NFA fragments of the location steps

it consists of, and making the final state of the NFA the accepting state of the path query.

Spyridoula Miliaraki 80

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Inserting a new query into an existing NFA requires to combine the NFA of the query with

the already existing one. So, to insert a new query represented by an NFA S to an existing

NFA R, we start from the common start state shared by R and S and we traverse R until

either we reach the accepting state of S or a state for which there is no transition that

matches the corresponding transition of S. If the latter happens, a new transition is added

to that state in R. Formally, if L(R) is the language of the NFA already constructed by

previously inserted queries, and L(S) is the language of the NFA of the query being indexed,

then the resulting NFA has language L(R)∪L(S). We show examples of how different NFA

fragments are combined in Figure 4.3. We also depict how the previous example NFA of

Figure 3.1 is updated after inserting query Q5.

a b
a

b

e

*
a

e

*
b

e

*
a

b

Combining NFA fragments

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]

Q3: /bib/article/conference[text()="WWW 2010"]

Q4: //article[@year>2009]
Q5: //masterthesis[@school=University of Athens]

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]

Q3: /bib/article/conference[text()="WWW 2010"]

Q4: //article[@year>2009]

Q5: //masterthesis[@school=University of Athens]

4

0

6

1

7

8

2

9

5

3
Q

1

Q
2

Q
3

Q
4

bib

e
article

phdthesis

author

author

article

*

*

conference

10

masterthesis Q
5

NFA construction

e

*
a

b

e

b

*

a

Figure 4.3: NFA construction

Let us now describe how we traverse the distributed NFA for inserting a query q. The

main idea is that whenever we want to visit a particular NFA state st during indexing q,

we first discover and contact the peer responsible for that state. If the state does not exist,

the corresponding peer creates it. In case this state was previously created, then the peer

checks whether there is the corresponding transition t associated with state st. If no such

transition exists, t is added along with state st′ where t leads to. Else, we follow transition

t and indexing continues in the same way with the next state.

The exact steps followed are depicted in Algorithm 1. Algorithms are described using a

notation, where p.Proc() means that peer p receives a message and initiates execution for

procedure Proc().

Suppose s is the subscriber peer for query q. Using Pastry, peer s sends a message

IndexQueryMesg(q, d, st, sid) to peer r, where q is the query being indexed in the form

of an NFA, d is the current depth of the query NFA reached, st is the state at this depth,

and sid is the identifier of the subscriber peer. Initially d = 0, st is the start state, and

Spyridoula Miliaraki 81

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Algorithm 1: IndexQuery(): Indexing a query

1 procedure peer.IndexQuery(q, d, st, sid, l, firstCall)
2 if peer.states does not contain st then
3 peer.states.put(st.key, st) ;
4 else
5 st := peer.states.get(st.key);
6 if d == q.length then
7 add q to st.queries ;
8 peer.states.update(st.key, st) ;

9 else
10 t := transition label of q at depth d;
11 if no transition exists labeled t from st to st′ then
12 add transition labeled t from st to st′;
13 if t == $ then
14 st′ := st.getTransition(t);
15 st′.selfChild := true;
16 peer.states.put(st′.key, st′);

17

18 else st′ := st.getTransition(t);
19 if t == $ then
20 t′ := transition label of q at depth d+ 1;
21 if no transition exists labeled t′ from st′ to st′′ then
22 add transition labeled t′ from st′ to st′′;
23

24 if firstCall is true then
25 nextPeer := Lookup(st′.key);
26 nextPeer.Route(IndexQueryMesg(q, d+1, st′, sid));

27 else
28 if l > 0 then
29 if t == $ then
30 peer.IndexQuery (q, d+1, st′, sid, l, false);
31 else
32 peer.IndexQuery (q, d+1, st′, sid, l − 1, false);
33

34

35

36

37 end

Spyridoula Miliaraki 82

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

r is the peer responsible for it. Starting from this peer, each peer r which receives an

IndexQueryMesg message, executes locally the corresponding procedure IndexQuery(q,

d, st, sid, l, firstCall), where l is the value of system parameter l and firstCall is a boolean

parameter initially true. If l is larger than 0, then r calls recursively this procedure to store

locally the additional states as required by l. To distinguish between the first call of the

procedure and a recursive one, we use parameter firstCall.

Let us now describe the details of the local procedure IndexQuery executed at each peer

for a state st. At first, the peer checks whether state st is already stored locally. Recall that

each NFA state is identified by a sequence of transition labels. If st is not stored locally, it

creates it (lines 2-5). If st is the accepting state of q, q is inserted in the list st.queries and

execution ends (lines 6-8). At this point, the responsible peer can notify the subscriber peer

that q is successfully indexed. Else, query indexing continues with the next state. Let t be

the label of the transition from state st to state st′. Then, if there is no such transition from

st, a new transition is added from state st to st′ with label t (lines 11-12). If this transition

is an ϵ-transition, then a self-loop transition is also added to state st′ to represent a “//”

step (lines 13-16). We also need to fix the local transition table of the next state st′ (lines

19-22). Finally, peer creates and sends a new IndexQueryMesg(q, d+1, st′, sid) message

to the next responsible peer (i.e., the peer responsible for state st′) increasing query depth

by 1 and indexing continues in a similar (lines 24-26). If parameter l is larger than 0, the

procedure is also called recursively l times by the peer to store additional states (lines 27-32).

Constructing the NFA as described above, requires sending as many

IndexQueryMesg messages as the number of states in the NFA of query q. We clar-

ify at this point that the number of messages that travel through the network during the

construction of the NFA is independent of the value of parameter l. However, the value of l

affects the time spent by each peer for locally processing the indexing request.

NFA updates As reported by Diao et al. [30], another great benefit of an NFA-based

approach is the ease of maintaining it during insertion, updating or deletion of queries.

First, for deleting a query q, we locate the accepting state of q, st and remove the identifier

of the query from st.queries list. In case this list becomes empty and the state has no

children states in the NFA (i.e., contains no transitions), we can delete this state and also

remove the corresponding transition from its parent. This deletion should also be propagated

to its predecessors. Second, query updates can be handled by deleting the old queries and

then inserting the updated ones.

The authors of YFilter [30] consider less expensive to adopt a lazy approach where a list

of the deleted queries is maintained and checked before returning any results. The queries

can then be deleted at a later point of time. However, it is not straightforward to adopt

Spyridoula Miliaraki 83

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

such a lazy approach in FoXtrot where a large number of peers participates.

4.3 Executing a distributed NFA

In this section, we describe how the distributed NFA is executed for performing XML filter-

ing, discovering matching queries and notifying the interested subscribers in FoXtrot. Again,

to help the reader understand how this works, we first describe how the NFA would be ex-

ecuted if we ignore that the states are distributed. This process is similar to the execution

process in the centralized environment of YFilter [30]. After explaining how we execute

a centralized NFA, we describe two different methods for executing the distributed NFA,

namely iterative and recursive method.

The NFA execution proceeds in an event-driven fashion. As the XML document is parsed,

the produced events are fed, one event at a time, to the NFA to drive its transitions. Parsing

is performed using a SAX (Simple API for XML) parser [65] that produces events of the

following types: StartOfElement, EndOfElement, StartOfDocument, EndOfDocument and

Text. During parsing, StartOfElement events trigger transitions of the NFA. The nesting of

elements in an XML document requires that when an EndOfElement event is raised, the NFA

execution should backtrack to the states it was in when the corresponding StartOfElement

was raised. For achieving this, YFilter maintains a stack, called the runtime stack, during

the execution of the NFA. Since many states can be active at the same time in an NFA, the

stack is used for tracking multiple active paths. The states placed on the top of the stack

will represent the active states, while the states found during each step of execution after

following the transitions caused by the input event, will be called the target states.

Execution is initiated when a StartOfDocument event occurs and the start state of the

NFA is pushed into the stack as the only active state. Then, each time a StartOfElement

event occurs for an element e, all active states are checked for transitions labeled with e or

wildcard (∗). We also check for ϵ-transitions and in this case the target state is recursively

checked one more time. All active states containing a self-loop are also added to the target

states. The target states are pushed into the runtime stack and become the active states

for the next execution step. If an accepting state is included in the active states, the NFA

outputs the identifiers of all queries accepted at that state. If an EndOfElement event occurs,

the top of the runtime stack is popped and backtracking takes place. Execution proceeds

in this way until the document has been completely parsed or the stack becomes empty.

Finally, it is important to note that, unlike traditional NFAs, whose goal is to find a single

accepting state for each input, the NFA execution here must find all matching queries. So,

even after we reach an accepting state during filtering an XML document, the execution

Spyridoula Miliaraki 84

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

continues until the document has been completely parsed.

0

0000

000

0

1 9 10 1 9 10

1 9 101 9 101 9 10

1 9 10

1 9 10

4 7 9 10 4 7 9 10

4 7 9 10 4 7 9 10

5 9 10

6 9 10

4 7 9 10

start

read </school>

read <school>read

<proceedings>
read <bib>

read </bib>read </title>read <title> read

</proceedings>Match for Q3

Match for Q2

XML document

Runtime stack

<bib>

<proceedings>
<school>....</school>

<title>.....</title>

</proceedings>
</bib>

NFA execution progress

0

7

5

6

84

3

2

9

1

10

bib

e

*

author

*

phdth
esis

proceedings

author

school

cite

*

Q1

Q4

Q3

Q2

11
cite Q5

0

6

87

4

2

9

1

10

bib

e

*

author

*

phdth
esis

proceedings

year

school

title

*

Q1

Q4

Q3

Q2

3

5

11
cite Q5

NFA

Figure 4.4: NFA execution (YFilter case)

Example 4.3.1 (NFA execution in YFilter). Let us consider the NFA depicted in Figure 4.4.

The figure illustrates how the runtime stack is updated during NFA execution for filtering an

XML document. Initially, only the start state, 0, is active. Parsing the start-tag for element

<bib> causes transition to state 1 to be triggered and state 1 becomes active. States 9 and 10

also become active because of the ϵ-transition and the wildcard transition respectively. Later,

when we parse the start-tag for element <school>, state 5 becomes active and therefore a

match for query Q2 is detected since state 5 is an accepting state for this query. Whenever we

read a close tag for an element, like element <proceedings>, the runtime stack is backtracked

to the state immediately before reading the respective start-tag.

Let us now proceed with the execution of a distributed NFA in FoXtrot. Likewise, we

maintain a stack for backtracking during the execution. Also, for each active state we retrieve

all target states reached after feeding the corresponding parsing event to the NFA. Given

that the NFA states in our approach are distributed among the network peers, at each step

of the execution, the relevant parsing event should be forwarded to the peers responsible for

the active states. Having this in mind, we can identify two ways for executing the NFA: the

first proceeds in an iterative way, while the other executes the NFA in a recursive fashion.

4.3.1 Iterative method

We begin our description with the iterative method. In this method, the publisher peer

is responsible for parsing the XML document, maintaining the runtime stack, forwarding

Spyridoula Miliaraki 85

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

the parsing events to the responsible peers and retrieving from them the target states to

continue execution. As a result, the execution of the NFA proceeds in a similar way with the

centralized case, except that the target states cannot be retrieved locally but are retrieved

from other peers of the network. Furthermore in FoXtrot, we need to take into account

parameter l which allows peers to keep larger fragments of the NFA. As a result, a peer

responsible for an active state during execution can exploit the whole relevant NFA fragment

(i.e., the NFA fragment beginning at that state) kept locally. In other words, each peer may

perform several subsequent expansions instead of one. In the following we give a detailed

description of this algorithm.

Description Algorithm 2 describes the actions required by the publisher peer during the

iterative execution of the distributed NFA. The publisher peer p publishes a document by

following the steps described in procedure PublishIterative(doc) where doc is the XML

document being published. At first, p parses the XML document and stores the correspond-

ing parsing events in a list (line 2). Then, it initializes a variable called pathLength using

the value of parameter l. If l is equal to 0, then along with each active state the peer will

send a single document element (from the parsing events) to the responsible peer. Else, if

l is greater than 0, the publisher peer will send more than one elements with each active

state, since the responsible peer will be able to perform more expansions (lines 4-7). At

first p communicates with the peer responsible for the start state to retrieve it and then add

it to the active states to initiate NFA execution (lines 8-11). Next, peer p begins reading

the parsing events and inserts them in a list called currentEvents until either pathLength

elements are inserted or an EndElement event is read (lines 12-20). Then, p sends a Get-

TargetStatesMesg message to each peer responsible for an active state. During the first

iteration only the start state is included in active states. Each responsible peer proceeds

with the expansion of the relevant states and returns the corresponding target states back

to the publisher. Note that depending on the value of parameter l, each responsible peer

may perform multiple expansions by itself. The states are stored in the list targetStates

(lines 21-24). Next, for each target state, peer p checks whether it has associated queries

that are successfully matched and notifies interested subscribers (lines 25-28). The target

states are pushed on the runtime stack and become the active states for the next iteration

of the execution (line 29). If the next parsing event is an EndElement event, the stack is

popped (lines 30-31). Execution continues until the document has been completely parsed

or the runtime stack becomes empty.

Discussion When using the iterative method, the majority of the load is imposed on the

publisher peer since it is responsible for the whole execution of the NFA including contacting

Spyridoula Miliaraki 86

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Algorithm 2: PublishIterative(): Publishing an XML document using iterative
method
1 procedure peer.PublishIterative(doc)
2 parsingEvents = parse(doc);
3 publisherId = peer.getId();
4 if l == 0 then
5 pathLength := 1;
6 else
7 pathLength := l;
8 firstPeer := Lookup(“start”);
9 Mesg := GetStateMesg(“start”) ;

10 startState := firstPeer.Route(Mesg);
11 add startState to activeStates;
12 while parsingEvents.size ! = 0 do
13 initialize event, currentEvents;
14 while currentEvents.size < pathLength do
15 event = parsingEvents.getNext() ;
16 if event is endElement then
17 break;
18 else
19 add event to currentEvents;
20

21 end
22 foreach state in activeStates do
23 responsiblePeer := Lookup(state.key);
24 Mesg := GetTargetStatesMesg(state, currentEvents, publisherId);
25 targetStates.add(responsiblePeer.Route(Mesg));

26 end
27 foreach state in targetStates do
28 if state.queries > 0 then
29 notify interested subscribers;
30

31 end
32 runtimeStack.push(targetStates);
33 if parsingEvents.getNext() is endElement then
34 runtimeStack.pop();
35 activeStates := runtimeStack.getTopElement();

36 end

37 end

Spyridoula Miliaraki 87

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

several peers to retrieve from the network the states that are not locally stored. We expect

that the iterative method will perform poorly because of this potential bottleneck and we

presented it here mainly to ease the reader in understanding the details of our next method.

In the iterative approach, a stack mechanism is employed for maintaining multiple active

paths during NFA execution. Each active path consists of a chain of states, starting from

the start state and linking it with the reached target states. The main idea of the recursive

method is that these active paths can be executed in parallel by different peers, which is in

fact our primary motivation for choosing an NFA-based model in FoXtrot.

4.3.2 Recursive method

We now proceed with the description of the recursive method. The details of the recur-

sive method are as follows. The publisher peer forwards the XML document to the peer

responsible for the start state to initiate the execution of the NFA. The execution continues

recursively, with each peer responsible for an active state continuing the execution. Note

that the runtime stack is not explicitly maintained in this case, but it implicitly exists in

the recursive executions of these paths. The execution of the NFA is parallelized in two

cases. The first case is when the input event being processed has siblings with respect to the

position of the element in the tree structure of the XML document. In this case, a different

execution path will be created for each sibling event. The second case is when more than

one target states result from expanding a state. Then, a different path is created for each

target state, and a different peer continues the execution for each path.

Algorithm 3: PublishRecursive(): Publishing an XML document using recursive
method
1 procedure peer.PublishRecursive(doc)
2 enrichedEvents := constructIndex(doc.parsingEvents);
3 firstPeer := Lookup(“start”);
4 currentIndex := 0;
5 parentIndex := -1;
6 Mesg := RecExpandStateMesg(“start”, enrichedEvents, 0, −1) ;
7 firstPeer.Route (Mesg);

8 end

Description Recursive method requires that a different execution path is created for each

sibling event during the execution. To capture such structural relationships between ele-

ments in an XML document, we need to use a suitable positional representation. One such

representation was introduced by Consens and Milo [26, 27] and has been used by many

Spyridoula Miliaraki 88

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

bib

title

article

yearconf
author

name

University of
Athens

"Iris Miliaraki"

2008WWW"Distributed XML
Filtering" institute

(1:16,1)

(10:11,4)

(9:14,3)(7:8,3)(5:6,3)(3:4,3)

(12:13,4)

(2:15,2)

Figure 4.5: An XML document enriched with positional encoding

works for matching XML path queries like the work of Bruno et al. [16]. Specifically, the

events are enriched with the position of the corresponding element with a pair (L:R,D),

where L and R are generated by counting tags from the beginning of the document until the

start-tag and the end-tag of this element respectively, and D is its nesting depth. Consider

document nodes n1 and n2 and their positional encodings (L1 : R1, D1) and (L2 : R2, D2)

respectively. Then, n1 is the parent of n2 if and only if L1 < L2, R2 < R1 and D1 + 1 = D2.

The publisher peer is responsible for parsing and enriching the XML document nodes with

this positional representation prior to execution. This requires a single pass over the in-

put XML document. An example of how the nodes of an XML document are encoded is

shown in Figure 4.5. For instance, the author node (9 : 14, 3) is the parent of institute

node (12 : 13, 4), since Lauthor = 9 < Linstitute = 12, Rinstitute = 13 < Rauthor = 14, and

Dauthor + 1 = Dinstitute.

Algorithms 3 and 4 describe the actions required by the publisher peer and each peer

responsible for an active state during recursive execution.

The publisher peer p publishes an XML document by following the steps described in

procedure PublishIterative(doc) where doc is the XML document being published (Al-

gorithm 3). First, peer p is responsible for enriching the parsing events using a positional

representation to enable efficient checking of structural relationships (line 2). Then, peer

p sends a message RecExpandStateMesg which contains the list enrichedEvents with

the enriched parsing events of the XML document, a pointer currentIndex referring to the

event that needs to be processed next (in this case 0 refers to the first element) and a pointer

parentIndex referring to its parent event (lines 3-7) to peer r, which is responsible for the

initial state. At first, parentIndex is −1 since the root element of the document has no

parent element.

Let us now continue with the details of the local procedure RecExpandState executed at

each peer that receives a RecExpandStateMesg message. The exact steps followed are

Spyridoula Miliaraki 89

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Algorithm 4: RecExpandState(): Recursively expand states at each execution path

1 procedure peer.RecExpandState(stateKey, enrichedEvents, currentIndex,
parentIndex)

2 st := peer.states.get(stateKey);
3 add st to activeStates;
4 if l == 0 then pathLength := 1 else pathLength := l;
5 elementsProcessed := 0;
6 while elementsProcessed < pathLength && enrichedEvents.size ! = 0 do
7 currEvent = enrichedEvents.getNext();
8 if currEvent.isEndElement() then break;
9 if currEvent.hasSiblings() then

10 siblings := siblings of currEvent;
11 foreach siblingEvent in siblings do
12 compute targetStates from each st in activeStates for input

siblingEvent;
13 foreach state in targetStates do
14 if state.queries > 0 then notify interested subscribers;
15 end

16 end
17 break;

18 else
19 siblings := currEvent;
20 compute targetStates from each st in activeStates for input currEvent;
21 foreach state in targetStates do
22 if state.queries > 0 then notify interested subscribers;
23 end

24 end
25 activeStates := targetStates ;
26 elementsProcessed++;

27 end
28 for i=0 tosiblings.size do
29 currEvent := siblings.get(i);
30 nextEvent := siblings.get(i+1);
31 if nextEvent is endElement then continue;
32 nextIndex := nextEvent.getIndex();
33 nextParentIndex := currEvent.getIndex();
34 foreach nextState in targetStates do
35 nextPeer = Lookup(nextState.key);
36 Mesg := RecExpandStateMesg(nextState.key, enrichedEvents,

nextIndex, nextParentIndex) nextPeer.Route(Mesg);

37 end

38 end

39 end

Spyridoula Miliaraki 90

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

depicted in Algorithm 4. When peer r which is responsible for state st, receives message

RecExpandState, it retrieves st from its local store and adds it to a list containing the active

states of the execution (lines 2-3). Similar to the iterative approach, r initializes a variable

called pathLength using the value of parameter l (line 4). If l is equal to 0, then r can perform

by itself a single expansion. Else, if l is greater than 0, r can perform multiple expansions.

Peer r also keeps the number of the elements it has already processed, initially 0 (line 5).

Next, r begins the execution of the NFA in the relevant path starting with state st until

either it performs the relevant number of expansions or it reaches the end of the document

filtered. In case the corresponding element has no siblings, r computes the expansions by

itself in this single execution path and notifies the interested subscribers (lines 16-20). If

the element has siblings then it computes separately the expansions for each different sibling

(lines 6-15). Suppose e1, . . . , es are the sibling events and TS(e1), . . . , TS(es) represent the

sets with the target states computed by each event. These target states may have been

computed either after a single expansion or after multiple expansions. Then, r will forward
∑

| TS(ei) | different RecExpandStateMesg messages, one for each of the different

execution paths (lines 23-31). The execution for each path continues until the document

fragment has been completely parsed. Peers that participate in the execution process are

responsible for notifying the subscribers of the satisfied queries.

Note that the recursive method assumes that the XML document being filtered is rela-

tively small and this is the reason for deciding to forward the whole document at each step

of execution. In realistic scenarios XML documents are usually small as discussed in the

study of Barbosa et al. [11]. However, in the case we want to filter larger XML documents,

our method can be easily adjusted so that we forward smaller fragments of the document.

4.3.3 Example

An example of how peers communicate during NFA execution when using the iterative and

the recursive method respectively is depicted in Figure 4.6. Peer P10 is the publisher of

an XML document. In the case of the iterative, all communications are initiated by the

publisher peer P10 which contacts 7 different peers for retrieving the corresponding states

that are stored by those peers. When using the recursive method, execution begins with

peer P10 contacting peer P3 which is responsible for the initial state. Peer P3 continues

execution by forwarding the corresponding filtering requests to peers P5 and P9. Then,

peers P5 and P9 can continue filtering in parallel as Figure 4.6 illustrates. We omit the

details of the execution of this specific example and only demonstrate the sequence of the

different communications occurring among the peers so that the reader can have a better

understanding of the methods. However the example used is the one illustrated in Figure

Spyridoula Miliaraki 91

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

P7

P8

P9
P1

P2

P3

P4

P5

P6

26

4

1

0

35

9

10
P10

7

11

12

2

2

3

3

4

4

P7

P8

P9
P1

P2

P3

P4

P5

P6

26

4

1

0

35

9

10
P10

7

11

1
5

2

3

6

4

7

3

Iterative method Recursive method

Figure 4.6: Executing the distributed NFA

4.4 for the case of the centralized NFA.

4.4 Load balancing

A core issue that arises in a distributed filtering system like FoXtrot is to have peers equally

sharing the load. This is important because if a fraction of peers becomes overloaded, the

overall performance of the system can be deteriorated. As we stressed earlier, apart from

parameter l, which adds redundancy to our system, our distribution scheme stores the start

state at a single peer creating a potential bottleneck. For this reason, we employ replication

techniques to achieve a more balanced distribution of the load in FoXtrot. In this section,

we describe the load balancing techniques we have designed and developed in FoXtrot.

4.4.1 Overview

In systems like ONYX [29], it is required to adopt a strategy for deciding where to store

queries and where to deliver XML data. For example, the authors in ONYX use criteria

like the topological distance between the broker and the data source, the available band-

width, the content of the query, and the location of the subscriber. This selection process

is performed by a centralized component. Instead, FoXtrot uses a single NFA to index the

queries and this NFA is distributed among the peers using the DHT mechanism provided by

Pastry. As a result, NFA fragments are assigned to peers in a random way. This leads to a

fairly uniform distribution of storage load among the network peers without requiring any

additional actions.

However, even when peers share equally the fragments of the NFA (i.e., storage load is

evenly distributed), filtering load distribution can be very unbalanced due to the following

Spyridoula Miliaraki 92

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

reasons. Firstly, given that the distributed NFA is a tree-like structure, this causes peers

responsible for the states of smaller depths to suffer more load than the others. Consider

for example the peer responsible for the start state. Secondly, the distribution of element

names in the XML document set being filtered can be skewed and the relevant states will

be accessed more frequently. The same holds for the distribution of element names in the

query set. We are mainly concerned with the balancing of the filtering task since this is

considered the heaviest. Each peer which receives a filtering request in FoXtrot, retrieves

the relevant NFA states, performs execution, dispatches notifications if queries are matched

and if execution has not ended, creates and forwards a new filtering request.

In the following, we first describe the load balancing methods we employ, namely static

and dynamic replication and later in the section we demonstrate their efficiency experimen-

tally. Apart from the methods designed for FoXtrot, we also describe two generic techniques

that we employed for our initial simulations, presented in [66], namely virtual nodes and

load-shedding. In general, there is a lot of work that studies efficient load balancing methods

in DHTs [52, 95, 100]. Note that we design our methods assuming a network consisting of

peers with similar capabilities and our goal is to evenly distribute the load among them. We

do not consider the case where the network consists of a heterogeneous group of peers.

4.4.2 Static replication

Given our state distribution technique, there is one responsible peer for each state. As a

result, the states that are more frequently accessed will cause the relevant peers to suffer

more load. Such examples include states of smaller depths and also states accessed due to

a skewed distribution of element names as mentioned previously. Consider for example a

bibliographic database where a user wants to be notified when a certain author publishes an

article. The corresponding query is q: /bib/article/author[text() = authorname]. This is a

common case and the state of the relevant path would be accessed more frequently causing

a potential bottleneck for our system. Along with our state distribution technique, we

design replication techniques for storing states multiple times across the network. Increasing

parameter l also affects the distribution of load since peers are able to perform execution at

a larger NFA fragment but this is not sufficient for achieving a uniform load distribution.

Our first method creates a fixed number of r replicas, where r is called the replication

factor, for each NFA state. Instead of having a single peer responsible for a state, we

assign the same state to r responsible peers. We refer to this method as static replication.

Replication is performed during query indexing and whenever a peer creates a state for which

it is responsible, it also creates r replicas for this state and randomly selects the peers to

store them. This is accomplished as follows. Recall that each NFA state is identified by a

Spyridoula Miliaraki 93

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

key k. The responsible peer for state with key k is the peer whose identifier is numerically

closest to Hash(k), where Hash() is the DHT hash function. Now, in order to create r

replicas for state st, instead of indexing st only according to k we also index it using the

keys k1 = k+1, k2 = k+2, . . . , kr = k+ r. Operator + is used to denote the concatenation

of strings. These correspond to the replication keys and lead to the peers responsible for the

replicated states. During filtering, if a peer wants to forward a request for state st, it will

choose randomly among the r peers and the load that would be suffered by a single peer is

now distributed among the r + 1 peers.

An obvious drawback of static replication is the extra storage overhead suffered by the

peers as we increase the replication factor. Even if the storage overhead is considered neg-

ligible, it causes an increased latency during indexing since r times more states need to be

created and stored. We will study this in detail during our evaluation.

4.4.3 Dynamic replication

To avoid the excessive storage requirements of static replication, which can cause latencies

during indexing, we improve our method as follows. We assume that the frequency of

visiting an NFA state during filtering is inversely proportional to the depth of this state.

This assumption is made having in mind that the tree structure of the NFA is the main

reason causing the load imbalances (e.g., if r > 0, one of the r peers responsible for the start

state will receive a filtering request each time an XML document arrives at the system).

For this reason we create a different number of replicas for each state depending on its NFA

depth. So, instead of having a fixed number of replicas for each NFA state, we create a

number of r/d replicas for each NFA state of depth d. For the purposes of this method, we

consider that the depth of the start state is 1, its children states have depth 2, and so on.

We refer to this method as dynamic replication.

Another interesting case is when the frequencies of visiting the NFA states are not depen-

dent on the depth of the states but follow a different distribution. In this case, the number

of the replicas for a state should be proportional to its access frequency f . Estimating these

frequencies is an interesting problem which we have not considered.

4.4.4 Virtual nodes

There have been many DHT proposals including Chord [93], CAN [85] and Pastry [88].

Even though these different systems are based on the same concept of employing a hash

function for distributing data items among the network peers, the exact distribution differs

depending on the specific overlay. In the case of Chord, where consistent hashing is used,

Spyridoula Miliaraki 94

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

with high probability for any set of N nodes and K keys, each node is responsible for at most

(1 + ϵ)K/N keys. Karger et al. [51] show in their paper regarding consistent hashing that ϵ

can be reduced to an arbitrarily small constant by having each node run O(logN) “virtual

nodes” each with its own identifier. As a result, the load balancing scheme proposed called

virtual nodes balances the number of keys per node by associating keys with virtual nodes

and then mapping multiple virtual nodes (with unrelated identifiers) to each real peer. As

claimed by Karger et al. [51] and demonstrated in Chord paper [93], we need to allocate

logN randomly chosen virtual nodes to each peer for ensuring an equal partitioning of the

identifier space between the peers.

4.4.5 Load-shedding

Another popular method for achieving load balancing in distributed systems and DHTs

more particular, is based on the concept of load-shedding. Such a method has been used

successfully in works like the one of Galanis et al. [36] and also by Tryfonopoulos [100] who

study information filtering in a DHT environment. The main idea is that when a peer p

becomes overloaded, it chooses the most frequently accessed state st and contacts a number

of peers requesting to replicate state st. Then, p notifies the rest of the peers that st has been

replicated, so that if a peer needs to retrieve it, it will randomly select one of the responsible

peers.

4.5 Fault-tolerance

As the size of distributed systems increases daily, the chances for failures are higher. Exam-

ples of failures include failures of processors, disks, memory, power and network link failures.

A large-scale distributed system like FoXtrot, expected to run on collections of machines on

the Internet, should be designed to operate in the presence of failures. In this section, we

discuss ways to increase the resilience of FoXtrot to failures.

4.5.1 Overview

In a distributed system, a node may depart without prior warning due to a network failure or

even leave the network at its own will. We are mainly concerned with the former case where

a departure of a peer is sudden. Fault tolerance has been studied extensively for the case of

distributed systems in general [28] and also more specifically for peer-to-peer environments

[8, 59, 80].

We discussed earlier some replication-based techniques for improving load distribution in

Spyridoula Miliaraki 95

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

FoXtrot. Replication-based techniques, apart from assisting us in the task of load balancing,

they can also increase the fault tolerance of the system through introducing redundancy.

4.5.2 Techniques

In general, by having a replication degree r (i.e., the number of replicas is r) a system can

tolerate up to r−1 faults. In other words, if at most r−1 peers fail simultaneously, this will

not affect the system and thus fault tolerance is achieved in this case. Hence, by using static

replication with r replicas, FoXtrot can tolerate up to r−1 faults. To achieve this, each peer

p who forwards a request for a state st to another peer will wait to get an acknowledgement.

If it fails to get this acknowledgement, it redirects the request to a peer which owns a replica

for state st, and so on. In case, r or more peers fail, then fault tolerance is not guaranteed.

Of course, a larger number of replicas also means a larger overhead for the system in terms

of creating and storing these replicas.

Besides explicitly using a replication-based technique, recall that our distribution scheme

in FoXtrot uses parameter l and allows peers to store additional states (i.e., apart from

those for which they are responsible) so that each peer is able to execute a larger part of the

NFA during filtering. This also adds redundancy to FoXtrot and can also be exploited to

increase the resilience of the system to failures. Let us describe how exactly we achieve this.

Consider a peer p who forwards a request for a state st to another peer. If it fails to get an

acknowledgement and l > 0, it redirects the request to the peer which is responsible for the

parent state of st, stparent. Due to l, this peer will not only keep locally state stparent but

also all the states reachable from stparent after following a path of length l. Since l > 0 this

path includes state st. Now, if l > 1, then the peer can also contact the peer responsible for

the parent of state stparent and so on.

Example 4.5.1 (Using parameter l for fault-tolerance). Let us demonstrate the above using

an example. Figure 4.7 illustrates a small NFA fragment consisting of 4 different states. We

also show the peers responsible for each of the states depicted in the figure. As we increase

l, states become replicated across the different peers. If l = 0, the failure of a single peer

will cause loss of the states stored locally at the peer. So as expected when l = 0, FoXtrot

exhibits zero tolerance to failures. For a larger value of l = 2, if only a single peer fails, then

the system can continue operating under normal conditions. However, if more than one peer

fails, fault tolerance is not guaranteed.

Spyridoula Miliaraki 96

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

d d+3d+2d+1
bib phdthesis author

Example NFA fragment

d d+3d+2d+1

d d+3d+2d+1d+1 d+2 d+3

d d+3d+2d+1d+1 d+2 d+3d+3d+2

L=0

L=1

L=2

P1 P2 P3 P4

State assignments at peers

...

...

...

...

...

...

... ...

P0

d

d

Figure 4.7: State replication due to parameter l

4.6 Experimental evaluation

In this section, we study the performance of FoXtrot focusing on structural matching. We

begin by describing our experimental settings, the datasets used for our evaluation and the

metrics that interests us with respect to the performance of FoXtrot. Then, we give a

detailed description of our evaluation and demonstrate the performance of FoXtrot under

various scenarios. Finally, we discuss our results and compare them with other related

approaches.

We point out that there are cases where it is interesting to also include predicates in

the queries. In such cases, predicate evaluation takes place after the execution of the NFA.

However, we do not provide any more details at this point about how this is achieved since

this is the topic of the next chapter, where different value matching methods are described

and evaluated.

4.6.1 Setup

Our structural matching methods were initially evaluated [66] using a simulated Chord net-

work [93] we developed in Java. We have also implemented FoXtrot in Java using FreePastry

release [35]. In the latter case, we run our experiments in two different environments, the

worldwide testbed for large-scale distributed systems provided by the PlanetLab network1

which represents the real-world conditions of the Internet and a local shared cluster2. As

expected, during our evaluation, we mainly focus on the experiments conducted using the

1PlanetLab global research network http://www.planet-lab.org/
2Grid computer at Technical University of Crete http://www.grid.tuc.gr/

Spyridoula Miliaraki 97

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

implementation of FoXtrot but we also report some interesting simulation results.

Network setup In the case of PlanetLab, we used 396 nodes that were available and

lightly loaded at the time of the experiments. Note that PlanetLab nodes are geographically

distributed among four continents and shared by many users. We also ran our experiments

on a cluster that consists of 41 computing nodes. Each node is a server blade machine with

two processors at 2.6GHz and 4GB memory. In this case, we used 28 of these machines

running up to 4 peers per machine, i.e., 112 peers in total. With respect to the experiments

we ran using our Chord simulator, we created networks of 103 to 5 ∗ 103 peers.

XML documents We generated many different synthetic data sets using the IBM XML

generator [46] and also used a real dataset consisting of the DBLP XML records [1]. Each

set included 1000 documents. Our synthetic datasets were created using the NITF (News

Industry Text Format) DTD and the Auction DTD from the XMark benchmark [106]. We

also created a mixed dataset using a set of 10 different DTDs. Using the mixed dataset,

we study the performance of our approach in a realistic scenario where users subscribe

to FoXtrot to receive notifications concerning various interests of theirs (e.g., information

about scientific papers and news feeds). The NITF DTD has been used in many works

[20, 30, 44] for evaluating XML filtering functionality and represents an interesting case since

it allows 123 different element tags, 513 attributes and a large fraction of XML elements

can be recursive. On the other hand, the DBLP DTD represents a quite simplistic case

including 36 different element tags and 14 different attributes. If not explicitly mentioned,

our measurements presented in this chapter concern the NITF dataset. However, in cases

where the performance of FoXtrot is affected by the corresponding dataset, we also include

the relevant experiments. The values of the parameters used for generating the document

sets are shown in Table 4.2.

XPath queries The same DTDs were used to generate different sets of 106 path queries

with varying characteristics using the XPath generator available in the YFilter release [107].

Each query set contained only distinct queries, in other words there are no duplicates. In a

realistic scenario where users share interests, such a query set can represent the interests of

millions of users. The values of the parameters used for generating our query sets are shown

in Table 4.2.

Evaluation metrics We are mainly interested in measuring the time spent and the net-

work traffic generated during indexing XPath queries and filtering XML data. We also study

how this traffic is distributed among the network peers. More formally, the metrics used in

Spyridoula Miliaraki 98

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Parameter Default Range

Number of documents 102 10− 103

Document depth 10 5− 25
Number of queries 106 105 − 106

Query depth 12 5− 15
Predicates per query 2 1− 3
Wildcard
probability 0.2 0.2
Descendant axis
probability 0.2 0.2
Skewness of element
names (θ) 0 0

Table 4.2: Dataset generation

Parameter Default

Network size (Cluster) 112
Network size (PlanetLab) 396
Structural matching Recursive method
Value matching Succeeds structural
Parameter l 2

Table 4.3: FoXtrot setup

the experiments as well as their definitions are the following. The indexing latency for a

set of queries Q is measured as the amount of time spent until all queries of Q are indexed

in the system. Indexing throughput is measured as the number of queries indexed over a

specified time period. The filtering latency for a set of XML documents D is measured as

the amount of time spent until all notifications are dispatched to the interested subscribers

for the queries matched by the documents of D. The network traffic is measured as the

total number of messages generated by network peers during indexing queries and filtering

incoming XML data. We also distinguish the following types of peer load. The filtering

load of a peer is measured as the total number of messages a peer sends during a filtering

operation, while the storage load of a peer is measured as the total number of states it stores

locally. Finally, we will use the term NFA size to refer to the total number of states included

in the distributed NFA that is shared by the peers.

FoXtrot setup To carry out our experiments we execute the following steps. We create

a network of n peers connected using Pastry DHT and implementing the functionality of

FoXtrot. Then, we index a set of queries Q in the system using randomly selected peers

as subscribers and study the performance of FoXtrot with respect to the metrics described

above. Last, we filter a set of XML documents D, using random peers as publishers, and

measure again all relevant metrics.

Our default method for executing the distributed automaton is the recursive method

which as expected performs better than the iterative method as we also demonstrate in our

experimental evaluation. Table 4.3 summarizes the default values for setting up FoXtrot

including the value of parameter l.

Spyridoula Miliaraki 99

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

 DBLP AUCTION NITF
0

1

2

3

4

5

6
x 10

5

N

u
m

b
e

r
o

f
s
ta

te
s

(a) NFA size

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
x 10

4

NFA depth

N
F

A
 s

ta
te

s

DBLP

AUCTION

NITF

(b) NFA states per depth

Figure 4.8: Distributed NFA characteristics

4.6.2 Results

In this section, we present our results. Our main goal is to demonstrate the scalability of

FoXtrot and its load balancing properties under various conditions including a very large

set of queries and a high rate of incoming data. The following experiments are divided

into four groups. We begin our evaluation by studying the properties of the distributed

NFA shared among the peers. Then, we study how load balancing techniques affect the

distribution of the load imposed on the network peers. In the third group, we study the

performance of FoXtrot during query indexing. Then, in the fourth group of experiments,

we demonstrate how FoXtrot operates during XML filtering. Finally, we summarize our

evaluation by discussing our results. Unless otherwise stated, our results are obtained by

running the experiments on the cluster. In cases where we observed differences among the

experiments in the two environments, we point out these differences and discuss them in

detail. We also include in some cases our simulation results from our initial evaluation [66].

4.6.2.1 Distributed NFA properties

In this group of experiments, we study some properties of the distributed NFA shared among

the network peers in FoXtrot. In particular, we focus on the size of the NFA measured in

states and how these states are distributed among the different levels of the NFA.

We begin by demonstrating how the structure of the NFA differs for the different query

sets we consider. The main characteristics of these DTDs are shown in Table 4.4. In

general, the number of the NFA states depends on the properties of the relative DTD and

the characteristics of the query set. A larger number of elements allowed in a DTD results

Spyridoula Miliaraki 100

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
x 10

4

NFA depth

N
F

A
 s

ta
te

s

AUCTION (P=0)

AUCTION (P=2)

(a) NITF query set

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
x 10

4

NFA depth

N
F

A
 s

ta
te

s

NITF (P=0)

NITF (P=2)

(b) Auction query set

Figure 4.9: NFA states per depth

in a broader NFA (greater branching factor for each state), while a larger recursion level

increases the depth of the NFA. For the generation of the queries we allow a maximum

query depth of 15 steps. Note that since the NFA also includes ϵ-transitions to represent

descendant axes, the length of the NFA can be larger.

DBLP AUCTION NITF

Number of different elements 36 77 123
Number of different attributes 14 16 510

Larger recursion level infinite infinite infinite

Table 4.4: DTD characteristics

Figure 4.8 illustrates the size of the NFA and how the states are distributed among the

different NFA levels for the NITF, Auction and DBLP query sets respectively. Each query

set in this experiment consists of 105 distinct queries with no predicates. In the case of the

NITF query set, we observe that the corresponding NFA is the largest containing about

9∗104 more states than the others. This is expected as the NITF DTD allows a significantly

larger number of different elements.

In Figure 4.8(b) we show how the states are distributed among the different NFA levels

for each query set. Again, in the case of NITF query set the increase rate of the states at

each NFA level is higher than the rate observed in the other query sets. As explained in

the previous chapter, we utilize the XPath generator from YFilter [107] for constructing our

query sets. It is interesting to study how the different characteristics of the queries affect

the structure of the NFA. Recall that we only include queries distinct from each other. In

this experiment, we demonstrate how the structure of the NFA differs as we increase the

number of predicates included in each indexed query. The results are shown in Figures 4.9(a)

Spyridoula Miliaraki 101

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

10987654321
0

20

40

60

80

100

Peers

F
ilt

e
ri
n

g
 l
o

a
d

No replication

Static replication (r=5)

Static replication (r=10)

Static replication (r=15)

(a) Most loaded peers

561 28 84 112
0

200

400

600

800

1000

1200

1400

Peers

F
ilt

e
ri
n

g
 l
o

a
d

No replication

Static replication (r=5)

Static replication (r=10)

Static replication (r=15)

(b) Filtering load (all peers)

Figure 4.10: Load distribution using static replication

and 4.9(b) for the NITF and the Auction query set. In the case of Auction DTD, the size

of the NFA as we increase the number of predicates per query to 2 is slightly decreased

but the overall distribution of states is similar. A more interesting example is the NITF

query set. As Figure 4.9(b) depicts, the set containing queries with predicates corresponds

to a significantly smaller NFA and a more balanced distribution of states across the NFA

structure. The main reason is that the large number of attributes defined in the NITF DTD

(i.e., 510 different attributes) allows to create a large number of distinct queries sharing the

same structural path.

4.6.2.2 Load balancing

In the following experiments, we evaluate our load balancing methods, namely static and

dynamic replication, using the following steps. We create a network of 112 peers, index

5 ∗ 105 path queries, and publish repeatedly 100 XML documents simultaneously using

random peers as publishers.

Static replication We begin with demonstrating how static replication affects load dis-

tribution in FoXtrot. The results, when we vary the number of replicas r from 0 to 15, are

presented in Figure 4.10. First, in Figure 4.10(a), we show the 10 peers that suffer the most

load in a descending order of filtering load. As we can see, when no replication is used, a

fraction of peers is overloaded receiving a large number of requests, while other peers receive

only a small proportion of the total load. Even when a small number of replicas is created

in FoXtrot, load distribution is considerably improved. When 15 replicas are created, load

distribution is further improved having the 10 most loaded peers receiving almost equal loads

Spyridoula Miliaraki 102

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

No replication r=5 r=10 r=15
0

1

2

3

4

5

6

7

8
x 10

5

Number of replicas

T
o

ta
l
N

F
A

 s
ta

te
s

replicas

states

Figure 4.11: Storage overhead for static replication

and eliminating potential bottlenecks.

In Figure 4.10(a), we concentrated on the part of the network that receives the most

load, disregarding the overall load distribution. In Figure 4.10(b) we show the distribution

of load among all the network peers. On the x-axis, peers are ranked starting from the peer

with the most filtering load. The y-axis represents the cumulative filtering load, i.e., each

point (x,y) in the graph represents the sum of filtering load y for the x most loaded peer.

When no replication is used, the filtering load is very unbalanced and many peers receive

very few or no requests at all. Particularly, more than 40 peers do not receive any filtering

request from the total 1350 requests that are generated during filtering in FoXtrot (see the

straight line segment when x > 70). By using replication, we quickly observe a more even

distribution of load which improves as we increase replication factor from 5 to 15. Also all

the networks peers participate in the filtering process. We also measured the variation of

the different peer loads using the metric of standard deviation (σ) and we observed that

deviation is decreased as we increase the number of replicas for each NFA state. In other

words, less dispersion is observed among the different peer loads. For example, when no

replication is used σ ≃ 20, while when r = 15, σ ≃ 8.

However, the price we pay for a more uniform distribution of the load is the large storage

overhead suffered by the peers as we increase the total number of replicas. We are mainly

concerned with the creation of this large number of replicas because it can deteriorate in-

dexing performance in terms of latency since actual storage costs even for a large number of

states are negligible (measured in MBs). We demonstrate in Figure 4.11 how storage load

increases as we increase the number of replicas. As expected, the number of replicas is high

and as an illustration, when r = 15, the storage overhead is more than 6 ∗ 105 replica states.

Note that storage load includes some redundant states because of parameter l as discussed

Spyridoula Miliaraki 103

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

10987654321
0

20

40

60

80

100

Peers

F
ilt

e
ri
n

g
 l
o

a
d

No replication

Dynamic replication (r=10/d)

Dynamic replication (r=20/d)

Dynamic replication (r=30/d)

(a) Most loaded peers

561 28 84 112
0

200

400

600

800

1000

1200

1400

Peers

F
ilt

e
ri
n

g
 l
o

a
d

No replication

Dynamic replication (r=10/d)

Dynamic replication (r=20/d)

Dynamic replication (r=30/d)

(b) Filtering load (all peers)

Figure 4.12: Load distribution using dynamic replication

in Section 4.1. However we do not create replicas for these states and that is the reason that

a replica factor r results in less than r times the number of states as shown in Figure 4.11.

Dynamic replication We now continue with the evaluation of dynamic replication method.

As we have explained, dynamic replication avoids the excessive storage requirements of static

replication by creating a different number of replicas for each NFA state of depth d. We

run the same experiments as before to evaluate the dynamic replication method and the

results are presented in Figure 4.12. We first demonstrate how load is distributed among

the 10 peers that suffer most of the load. In Figure 4.12(a) on the x-axis peers are ranked

starting from the peer with the most filtering load. We observe that as we increase the

replication factor the peer that receives the most filtering requests suffers less load. At the

same time load is distributed in a more uniform way among the other peers. Static and

dynamic replication techniques exhibit a similar performance when r = 15 and r = 30/d

respectively (see also Figure 4.10(a)). The main advantage of dynamic replication is that

we achieve this while keeping storage overhead low. As Figure 4.13(a) shows, a replication

factor of 30/d almost triples the NFA states stored by the peers. This compares favorably

with static replication where we achieve a similar load distribution for the case of 15 replicas

(see Figure 4.10(b)), but the resulting amount of storage load was 9 times the number of

states (see first bar of Figure 4.13(a)).

We also demonstrate the overall load distribution in Figure 4.12(b). As previously, on

the x-axis peers are ranked starting from the peer with the most filtering load and y-axis

represents the cumulative filtering load. Creating a varying number of replicas depending

on the depth of each NFA state, results in a more even distribution of load which improves

Spyridoula Miliaraki 104

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

r=15 r=10/d r=20/d r=30/d
0

1

2

3

4

5

6

7

8
x 10

5

Number of replicas

T
o

ta
l
N

F
A

 s
ta

te
s

replicas

states

(a) Storage overhead for dynamic replication

561 28 84 112
10

3

10
4

10
5

10
6

Peers

S
to

ra
g

e
 l
o

a
d

No replication

Static replication (r=15)

Dynamic replication (r=30/d)

(b) Storage load distribution

Figure 4.13: Storage overhead and storage load distribution

as we increase the replication factor (from r = 10/d to r = 30/d). When we use dynamic

replication, all peers participate in the filtering process. We also measured the variation of

the different peer loads using standard deviation and we observed that deviation is relatively

low. For instance when r = 30/d, σ ≈ 10 (the total number of filtering load is 1350 requests).

Storage load For completeness we also demonstrate in this group of experiments the

storage load distribution in FoXtrot. The results are shown in Figure 4.13(b). We plot our

results on a logarithmic scale since the total storage load differs considerably among the

different load balancing techniques. Again y-axis represents the cumulative load with peers

ranked on x-axis in a descending order of their load. We can see in Figure 4.13(b) that even

when no replication is used, as expected, storage load is distributed in a fairly uniform way

among the peers due to the randomness of our distribution method. We report that a small

group of peers stores a larger fraction of the total states, however in case of storage load, as

we explained previously, these differences can be considered negligible (measured in MBs).

Also, increasing the number of replicas slightly improves storage load distribution.

4.6.2.3 Fault tolerance

As we discussed earlier, our replication-based methods and parameter l adds redundancy to

our system and as a result increases the fault tolerance of FoXtrot. In this set of experiments,

we study how exactly our system operates under failures.

First, we study the impact of parameter l without creating any more replicas. Our

experiment is conducted as follows. We create a network of 100 peers and index 105 queries.

Then, we randomly select n peers to disconnect from the network simultaneously. We analyze

Spyridoula Miliaraki 105

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0 1 2 3 0 1 2
0

0.2

0.4

0.6

0.8

1

parameter l

%
N

F
A

5% failures

10% failures

20% failures

(a) Percentage of accessible states

3210
0

1

2

3

4

5

6

A
v
e

ra
g

e
 r

e
p

lic
a

s
 p

e
r

s
ta

te

parameter l

(b) Storage overhead

Figure 4.14: Fault tolerance (parameter l)

the impact of the failures by attempting to traverse the entire distributed NFA beginning

from the initial state and following transitions. We report the percentage of the total NFA

states that we were able to access. Note that if a state becomes inaccessible after the failure

of all peers which kept it, we fail to traverse all the states that follow. We repeat this

experiment for n = 5, 10, and 20 and the results are shown in Figure 4.14 as we increase

parameter l.

As we can see from Figure 4.14, when l = 0 and each state is stored at single peer, a

large part of the NFA cannot be accessed. In particular, when 10 peers fail only 30% of the

NFA structure can be accessed. As we increase parameter l, the resilience of the system to

failures is improved and when l = 2 even with 20 peers failing more than 80% of the NFA

can be traversed. We also depict the storage overhead from the additional states created

due to parameter l in Figure 4.14(b).

We also performed experiments combining l with our replication-based methods. The

results when r = 2 are shown in Figure 4.15(a). We observe that FoXtrot becomes less

sensitive to failures, exhibiting high resilience to failures when 5% of the network peers fail.

However, there is a higher storage overhead due to the creation of a larger number of replicas

depicted in Figure 4.15(b).

4.6.2.4 Indexing queries

In this section we demonstrate how FoXtrot performs during query indexing. We are mainly

interested in the number of messages that travel through the network and the time spent

when indexing a set of queries. We study how the performance of the system is affected by

the different characteristics of the query set (e.g., query depth and number of predicates per

Spyridoula Miliaraki 106

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

0 1 2 3 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

parameter l (r=2)

%
N

F
A

20% failures

10% failures

5% failures

(a) Percentage of accessible states

3210
0

2

4

6

8

10

12

A
v
e

ra
g

e
 r

e
p

lic
a

s
 p

e
r

s
ta

te

parameter l (r=2)

(b) Storage overhead

Figure 4.15: Fault tolerance (parameter l)

5 10 15

2

4

6

8

10

12

14

16

18
x 10

6

query depth

N
e
tw

o
rk

 t
ra

ff
ic

 (
in

 m
e
s
s
a
g
e
s
)

1000000 queries

500000 queries

(a) Varying query depth

1 2 3

1

2

3

4

5

6

7

8
x 10

6

predicates per query

N
e
tw

o
rk

 t
ra

ff
ic

 (
in

 m
e
s
s
a
g
e
s
)

1000000 queries

500000 queries

(b) Varying predicates per query

Figure 4.16: Network traffic during query indexing

query).

Network traffic In this group of experiments we study the network traffic that is generated

during query indexing. We begin with examining the impact of query depth on the generated

traffic and continue with how the number of predicates per query affects the network traffic.

We create a network of 112 peers and index three different query sets containing queries

with depths 5, 10, and 15 respectively. The results are shown in Figure 4.16(a) for the cases

where 5 ∗ 105 and 106 queries are indexed in FoXtrot. The graph shows the total amount

of network traffic generated during the indexing of queries. In both cases, as Figure 4.16(a)

depicts, the network traffic generated scales linearly with the depth of the queries being

indexed. Particularly, for the case of 106 indexed queries, as we increase the query depth

Spyridoula Miliaraki 107

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

from 5 to 15, FoXtrot generates from 6 ∗ 106 to 16 ∗ 106 messages respectively. This is due

to the fact that indexing a single query of depth d requires sending at most d+ 1 messages,

i.e., one message to the peer responsible for the start state and d additional messages to

the peers responsible for the other d states. These messages either update or create the

corresponding NFA states. So, for indexing a set of 106 queries consisting of 5 steps each, at

most 6 ∗ 106 messages travel through the network. In some cases the messages actually sent

may be slightly less since peers can be responsible for subsequent states and less than d+ 1

messages are needed for a query of depth d. Note that for the purposes of this experiment,

we prefer to index queries one at a time in each iteration. However, if queries arrive in

chunks, we can decrease the number of messages by performing a bulk indexing operation

for each chunk instead of several separate operations.

Apart from query depth, we also examine how the number of predicates per query affects

network traffic during indexing. In this case instead of increasing the depth of each query,

we increase the number of predicates per query. Again, Figure 4.16(b) shows the total

amount of network traffic generated during indexing query sets with 1, 2, and 3 predicates

respectively. We present two cases when 5 ∗ 105 and 106 queries are indexed in FoXtrot.

While network traffic increases linearly with the query depth, the total number of predicates

included in each query does not significantly affect the number of indexing messages sent in

all cases. We observe a decrease of network traffic as the number of predicates per query is

increased. However, this is actually caused by the method we use for synthetically generating

our queries. As we increase the number of predicates allowed per query, the query generator

creates a set where queries share more structural similarities. In other words, the distributed

NFA that is constructed is smaller and as a result less messages travel through the network

for traversing it during indexing. This is depicted more clearly in the case of 106 queries

where we observe a 30% decrease on network traffic as we increase the predicates to 3 per

query (average query depth in this case is 6).

Let us now study the throughput of FoXtrot during query indexing. We measure through-

put as the number of queries indexed in a given amount of time. While network traffic mea-

surements are obviously unaffected by whether we run our experiments using the PlanetLab

network or the cluster, indexing throughput is considerably different. The main reason is

that network delays in a setting like PlanetLab, where peers are geographically dispersed,

are significantly higher compared to the ones observed in the cluster.

Before proceeding with the results, we describe a cache mechanism we used for improving

the performance of FoXtrot and decrease latencies. During query indexing we repeatedly

visit the same states of the distributed NFA by contacting the relevant peers. We take

advantage of this and cache useful routing information at each peer. Consider for example

a peer p which is responsible for a state st. Each time another peer p′ wants to forward an

Spyridoula Miliaraki 108

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

5 10
0

200

400

600

800

1000

1200

Query depth

In
d

e
x
in

g
 t

h
ro

u
g

h
p

u
t

(q
u

e
ri
e

s
 p

e
r

s
e

c
)

Cluster

Planetlab

(a) Indexing throughput

200000 400000 600000 800000 1000000
0

0.5

1

1.5

2

2.5
x 10

5

Queries

N
F

A
 s

iz
e

 i
n

 s
ta

te
s

NITF

Mixed

(b) NFA size

Figure 4.17: Indexing operation (II)

indexing message to p as responsible for state st, the message will travel O(log n) hops to

reach its destination.3 We can avoid this by having p′ keeping the IP address of p as the

peer responsible for state st. So, if p′ wants to contact again the peer responsible for state

st, it will first check its local cache and then the message will be delivered in a single hop.

Such a caching technique is standard in these settings [100, 57] and helps to reduce latency

since messages reach faster their destinations.

Indexing throughput In Figure 4.17(a), we demonstrate the throughput achieved by

FoXtrot in queries per second. In both cases, we create networks of 100 peers. In the case of

PlanetLab, when query depth is 5, only 150 queries are indexed per second, while throughput

drops to less than 70 queries per second when query depth is increased to 10 steps. This is

due to the fact that as query depth increases, so does the indexing time, since the number of

messages that are sent through the network are increased. FoXtrot exhibits a significantly

better performance on the cluster reaching a throughput of 969 queries per second when

queries contain 5 steps. In other words, the throughput FoXtrot achieves using the cluster

machines is 1 order of magnitude higher than when we run FoXtrot on PlanetLab. We also

report that in the case of PlanetLab, our measurements suffered from an increased variation.

This was due to the existence of a few arbitrarily slow nodes. This problem has been studied

in the context of a public DHT service called OpenDHT which was deployed on PlanetLab

by [86]. The authors focus on the problem of slow nodes and demonstrate ways to overcome

their effect on the performance of the system.

Again, we expect that we can further increase indexing throughput by performing a bulk

3Pastry routes messages to the peer whose identifier is numerically closest to the given key using prefix
routing and each such request can be done in O(log n) steps, where n is the number of nodes in the network.

Spyridoula Miliaraki 109

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

200000 400000 600000 800000 1000000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Queries

N
e

tw
o

rk
 t

ra
ff

ic
 (

m
e

s
s
a

g
e

s
)

Iterative method

Recursive method

(a) Network traffic

200000 400000 600000 800000 1000000
0

200

400

600

800

1000

1200

Queries

L
a

te
n

c
y
 (

h
o

p
s
)

Iterative method

Recursive method

(b) Latency

Figure 4.18: Iterative vs. Recursive method

indexing operation for each chunk of queries. We expect that this would benefit more an

environment like PlanetLab where network latencies are large. We do not include results for

the case where we increase the number of predicates per query. The reason for this is the

strong dependence of indexing latency on the number of predicates per query for which we

have carried out the recent study [67].

4.6.2.5 Filtering documents

We continue our evaluation by studying the performance of FoXtrot during XML filtering.

First, we compare the two methods we described for executing the distributed automaton in

FoXtrot, namely the iterative and the recursive method. With respect to the evaluation of

the filtering performance of our system, we are mainly interested in the number of messages

that travel through the network and the time spent when filtering a set of XML documents.

Iterative vs. Recursive method We have described two methods for structural match-

ing, namely the iterative and the recursive method. We have chosen to implement only the

recursive method in FoXtrot since as expected and demonstrated through simulation results

[66] it outperforms the iterative one in terms of latency since it distributes the load more

evenly and generates less network traffic. Figure 4.18 presents two graphs that illustrate this

clearly.

Network traffic Let us first study the number of messages that are generated during the

filtering process in FoXtrot. For the purposes of the experiments, we create a network of 112

peers and incrementally index 106 path queries. After each indexing iteration, we publish

Spyridoula Miliaraki 110

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

 250000 500000 750000 1000000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Queries

N
e

tw
o

rk
 t

ra
ff

ic
 (

in
 m

e
s
s
a

g
e

s
)

(a) Increasing indexed queries

 1 2 3
0

1000

2000

3000

4000

5000

6000

7000

predicates per query

N
e

tw
o

rk
 t

ra
ff

ic
 (

in
 m

e
s
s
a

g
e

s
)

500000 queries

1000000 queries

(b) Increasing predicates

Figure 4.19: Network traffic during filtering

the whole document set consisting of 100 XML documents and measure the network traffic

generated during the filtering of these documents. We repeat these steps for various cases.

Note that the notification messages generated when an XML document matches an indexed

query are not considered part of the network traffic. In other words, we only consider the

messages generated for the purposes of filtering.

In our first experiment, we study how network traffic is affected as we increase the number

of indexed queries resulting in the execution of a larger distributed NFA. The results are

shown in Figure 4.19. We can see that network traffic scales linearly with the number of

queries. As we index more queries in FoXtrot, the part of the distributed NFA that we

traverse during filtering is larger and as a result more messages travel through the network.

We also examine how the number of predicates per query affects network traffic during

filtering. In this case we increase the number of predicates included in each query. Figure

4.19(b) shows the total amount of network traffic generated during filtering against the

corresponding sets of queries with 1, 2, and 3 predicates. We present two cases when 5 ∗ 105

and 106 queries are indexed respectively. In both cases, the query set which contains more

predicates is more selective and this results in traversing a smaller part of the NFA during

filtering. So, network traffic is significantly decreased as the number of predicates per query

increases as we can see in Figure 4.19(b).

We continue by demonstrating how parameter l affects the number of messages that are

generated during filtering. The results are shown in Figure 4.20, where we measure network

traffic as we increase l. We repeat our experiment for the two cases where the average

document depth is 5 and 10 respectively. As Figure 4.20 depicts, increasing the value of

parameter l results in decreasing the generated amount of network traffic. This is explained

as follows. When l is increased, each peer is able to perform execution on a larger path

Spyridoula Miliaraki 111

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

1 2 3 4
220

240

260

280

300

320

340

360

380

400

l parameter

N
e

tw
o

rk
 t

ra
ff

ic
 (

in
 m

e
s
s
a

g
e

s
)

document depth = 5

document depth = 10

Figure 4.20: Increasing parameter l

250000 500000 750000 1000000
0

5

10

15

20

25

30

Queries

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 (

in
 s

e
c
s
)

(a) Increasing indexed queries

250000 500000 750000 1000000
0

1

2

3

4

x 10
4

Queries

T
o

ta
l
n

o
ti
fi
c
a

ti
o

n
s

(b) Notifications

Figure 4.21: Filtering latency and notifications

of the distributed NFA. However we can see that as l is increased more, the corresponding

decrease in the generated traffic is smaller.

Filtering latency and throughput Apart from network traffic, we are mainly concerned

with the filtering latency of the XML documents that arrive in FoXtrot. Recall that for a

set of XML documents D, we measure filtering latency as the amount of time spent until all

notifications are disseminated to the interested subscribers for the queries satisfied by the

documents ofD. As a result, filtering latency strongly depends on the number of notifications

that are generated during filtering.

We begin by studying how filtering latency is affected as we increase the total number

of indexed queries. The results are shown in Figure 4.21(a). As the graph shows, filtering

Spyridoula Miliaraki 112

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

30 60 90 120
1000

2000

3000

4000

5000

6000

7000

Network size

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 i
n

 m
s
e

c
s

500000 queries

250000 queries

(a) Increasing network size

1 2 3 4
500

600

700

800

900

1000

1100

1200

1300

1400

1500

l parameter

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 (

in
 m

s
e

c
s
)

document depth = 5

document depth = 10

(b) Increasing parameter l

Figure 4.22: Filtering latency

latency is increased when the number of queries indexed in FoXtrot is increased. More

specifically, the time spent for filtering and delivering the notifications is proportional to the

number of the queries matched in terms of the generated notifications. The number of these

matches in each case is depicted in Figure 4.21(b). For example, 4 ∗ 104 notifications are

generated when matching against 106 queries (selectivity of 4%). In terms of throughput,

when 106 queries are indexed in FoXtrot, after publishing 100 XML documents, FoXtrot

generates and disseminates about 1600 notifications per second.

We continue by demonstrating the scalability of FoXtrot during filtering as we increase

the size of the network. We repeat our experiment for networks consisting of 30, 60, 90, and

120 peers accordingly. The results are shown in Figure 4.22(a) where two cases are depicted,

when 2.5 ∗ 105 and 5 ∗ 105 queries are indexed respectively in the system. As the results

clearly indicate when the size of the network increases, the time for filtering is significantly

decreased. For example, when network size is increased from 30 peers to 120 peers and 5∗105

queries are indexed in the system, filtering latency is decreased from 6 to less than 4 seconds.

We also study how we can improve filtering performance by increasing the value of

parameter l. The results are shown in Figure 4.22(a). As expected, filtering latency is

significantly decreased as we increase l and this is mainly due to the smaller amount of

network traffic that is generated (studied earlier and depicted in Figure 4.20). Also we

observe that the margin for improvement is larger when the document set being filtered

includes XML documents of a higher depth.

Spyridoula Miliaraki 113

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

4.6.3 Discussion

Let us now summarize the results from our experimental evaluation. First, with respect

to query indexing, FoXtrot is highly efficient reaching a throughput of almost 1000 queries

per second for a network of 112 peers deployed using the cluster machines. Even though

we cannot directly compare FoXtrot to other systems evaluated under different conditions

we report on the performance of XNet [22] which is a closely related system for distributed

XML filtering. XNet is evaluated using an overlay consisting of 22 peers from the PlanetLab

network. A total of 105 queries are indexed in XNet which exhibits an indexing throughput

of almost 19 single-element (i.e., query depth is 1) queries per second for each peer.

We also studied the performance of FoXtrot during filtering by publishing a burst of 100

XML documents and FoXtrot exhibited a high filtering throughput generating and delivering

about 1500 notifications per second. Moreover, we demonstrated how scalable FoXtrot is

since increasing network size results in improving performance and decreasing latencies. For

load balancing, we employed two simple yet effective replication methods for distributing

the load among the FoXtrot peers. We exhibited that using our dynamic replication method

we can evenly distribute the filtering load while incurring a small storage overhead to the

peers. We also illustrated how parameter l affects the performance of FoXtrot and showed

experimentally that increasing l can help us decrease network traffic and improve filtering

latency especially for the case of deep XML documents. In general, depending on the specific

properties of the distributed NFA and the size of the network, tuning parameter l can lead

to an improved performance.

The majority of these experiments were conducted on two different environments, namely

the PlanetLab network and a shared cluster. PlanetLab network represented the real-world

conditions of the Internet and for this purpose we deployed FoXtrot on 396 nodes. The

latency observed in PlanetLab, either during indexing or filtering, was always one order of

magnitude higher than the one observed in the cluster. We also experienced an increased

variation in the measurements of Planetlab among our different runs. This was mainly due

to the existence of slow nodes in PlanetLab. [86] have studied this problem in the context

of a simple DHT service deployed using PlanetLab machines and propose several methods

for overcoming its effect.

4.7 Summary

In this chapter, we first described in detail how we construct, maintain and execute the

distributed NFA FoXtrot. Then, we described methods for load balancing and techniques

for improving the fault tolerance of the system. We concluded this chapter with an extensive

Spyridoula Miliaraki 114

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

experimental evaluation. While our approach and other similar approaches that employ au-

tomata or similar indices have been used with success for structural matching, little attention

has been paid to predicate evaluation or else value matching. The next chapter describes

and evaluates different methods for combining structural and value matching in FoXtrot.

Spyridoula Miliaraki 115

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 116

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 5

Value matching

While our approach and other similar approaches that employ automata or similar indices

have been used with success for representing a set of queries and identifying XML documents

that structurally match XPath queries, little attention has been paid to the evaluation of

value-based predicates, especially in distributed settings. However, there are many cases

where predicate evaluation can be costly and attention should be paid for providing an

efficient solution. To the best of our knowledge, our work is the first to study combined

structural and value matching of queries in a distributed setting aiming to distribute both

tasks. In this chapter, we describe different methods for distributing the task of value

matching in combination with our structural matching algorithms described earlier.

5.1 Overview

First, we give a high-level overview of the problem and the different methods one can use

to combine structural and value XML filtering in general and then we describe in detail

how we employ these methods in our distributed setting. Consider for example query q:

/dblp/phdthesis[author ="Iris Miliaraki"], which selects the Ph.D. thesis of author Iris

Miliaraki. Filtering incoming XML data against q requires to check whether the data struc-

turally match the query and also whether the value-based predicates of q are satisfied. This

can become an important problem depending on the selectivity of the structural and value-

based predicates. So the number of queries which are only structurally matched might be

large. We will refer to queries only structurally matched as false positives. Our goal is to

design a system that scales with respect to both the number of the queries indexed and the

number of the predicates included in the queries. Let us now discuss the alternative methods

we can employ for achieving this in the distributed environment of FoXtrot.

Following a widely used strategy from relational query optimization, where selections are

Spyridoula Miliaraki 117

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

applied as early as possible, we can check the value-based predicates before proceeding with

the structural matching following a bottom-up approach. Such an approach evaluates XML

documents in a bottom-up way since in a tree representation element values are placed in the

leaves of the tree. To support such a method, we first want to discover queries that contain

specific predicates. This is accomplished by mapping queries to peers using their predicates.

After discovering a set of queries that contain a specific predicate, we will then perform

structural matching. This indexing algorithm resembles works presented for information

filtering (IF) on top of DHTs including work of Tryfonopoulos et al. [100], where queries

are expressed using a simple attribute-value data model and attribute values are used in

this case to map queries to peer identifiers. As expected, we call this method bottom-up

evaluation.

Alternatively, we can evaluate the predicates after performing structural matching. Such

a technique operates in a top-down fashion processing incoming XML documents from the

root towards their leaves. In this case, contrast to the previous approach, we can employ

the distributed NFA to identify the subset of queries that structurally match incoming XML

documents, and then evaluate the predicates of the corresponding subset of queries. Hence,

this method evaluates predicates after the execution of the NFA. Since in FoXtrot structural

matching is performed in parallel by multiple peers, each of these peers identifies a different

subset of structurally-matched queries. Whenever a peer identifies such a set, it is also

responsible for the predicate evaluation. We refer to this method as top-down evaluation.

Furthermore, considering that XPath queries consist of distinct steps and each step may

be associated with one or more value-based predicates, we can perform at each step of the

NFA execution structural matching concurrently with predicate evaluation. In this case we

evaluate predicates during the NFA execution in step-wise manner. We refer to this method

as step-by-step evaluation.

Finally, since in our case the XPath queries are indexed using an NFA, we could perform

predicate evaluation directly with the automaton by adding extra transitions for the predi-

cates. An expected drawback of such a method comes from the fact that the elements in a

set of XPath queries represent a rather small set since they are constrained by the schema,

while the values of the predicates may form a really large set. This could result in a huge

increase of the NFA states and most importantly destroy the sharing of path expressions for

which the NFA was selected to begin with. For this reason, we have not studied this method

any further.

In the following, we describe how we implement the above methods, namely bottom-up,

top-down and step-by-step evaluation for offering XML filtering functionality on top of Pastry

DHT. In the case of the bottom-up evaluation method, since predicate evaluation precedes

structural matching, a different query indexing algorithm is used to distribute queries in

Spyridoula Miliaraki 118

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

the network. Instead of using the path structure of the queries to traverse the NFA, we

index them based on their predicates. Top-down evaluation and step-by-step are designed

assuming that queries are indexed using the distributed NFA described earlier (see Chapter

4). In addition, we propose a method called top-down with pruning which improves on

top-down by applying some early checks during structural matching.

5.2 Prerequisites

In this section, we describe our query model focusing on the types of predicates allowed, our

data representation model and also define some terms used in this description.

5.2.1 Revisiting our data and query model

As described in detail in our data model we allow path queries containing attribute and

textual predicates. Without loss of generality we describe our value matching techniques

assuming that each query contains at least one predicate. Also, based on the subset of

XPath we allow, we consider only conjunctions of predicates in the queries.

With respect to our data model, recall that for structural matching to take place we

enrich the XML documents that arrive for filtering with a positional representation. Such

a representation helps us to efficiently check structural relationships between elements. For

the purpose of predicate evaluation we also generate and attach with this representation a

set of candidate predicates. We call these predicates candidates because they correspond

to the query predicates that can be satisfied by the incoming XML documents. Such a

representation (i.e., positional information and candidate predicates) requires a single pass

over the input XML document.

Depending on the predicates we allow in the subset of XPath supported in our setting, we

can distinguish among different ways for constructing the candidate predicates. We decide

to focus only on equality predicates and consider only this type of predicates in the rest of

this thesis. So, each candidate predicate is an equality predicate constructed using either an

element name, an attribute and its value (attribute predicates) or the element name and its

text value (textual predicates), as found in the XML data fragment.

The publisher peer is responsible for enriching the parsing events and producing the set

of the candidate predicates. The enriched parsing events along with the candidate predicate

set are forwarded with each filtering request. Note that we parse the document a priori to

generate the above structures before proceeding with filtering. However, we do not consider

this additional parsing operation to cause significant load to the system since it is typical

for XML dissemination systems to deal with relatively small documents. As mentioned in

Spyridoula Miliaraki 119

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

bib

title

article

yearconf author

NKUA

"Iris Miliaraki"
2008WWW"Distributed XML

Filtering" @institute

1. article[@title="Distributed XML Filtering"]

2. article[@conf=WWW]

3. article[@year=2008]

4. author[text()="Iris Miliaraki]

5. author[@institute=NKUA]

Candidate predicate listXML document

Generate equality

candidate predicates

Figure 5.1: Constructing candidate equality predicates

the study of Barbosa et al. [11], the average size of an XML document in the Web is only 4

KB, while the maximum size can reach 500 KB.

5.2.2 Terminology

In the following we give some definitions that will be used in the rest of this chapter.

Definition 5.2.1. An NFA path is a sequence of NFA states st0, st1, . . . , stn such that for

every pair states sti,sti+1 there exists an input symbol w where δ(w, sti) = sti+1 (i.e., there

exists a transition from sti to sti+1).

Definition 5.2.2. An NFA accepting path of a query q is an NFA path st0, st1, . . . , stn

where st0 is the start state of the NFA and stn is the accepting state of q.

Example 5.2.1 (Generating candidate predicates). An example of how we construct the

set of candidate predicates from an XML document is depicted in Figure 5.1. The XML

document refers to an article and XML element article has an attribute title with

value “Distributed XML filtering”. The corresponding candidate predicate has the form

article[@title="Distributed XML Filtering"]. If we want to also support other types

of predicates, like range predicates, then we should construct our candidate predicates in a

different way.

5.3 Methods

We now describe in detail our methods, namely bottom-up, top-down and step-by-step eval-

uation for offering distributed combined structural and value matching in FoXtrot.

5.3.1 Bottom-up evaluation

Inspired by the heuristic from relational query processing to push selections as early as

possible, we describe a method that operates in a bottom-up fashion. This method indexes

Spyridoula Miliaraki 120

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

P7

P8

P9

P1 P2

P3

P4

P5

P6

P10

Pastry network

QUERY LIST

article[@year=2007] [Q
7
]

article[@year=2009] [Q
4
,Q

5
]

PRED
key

QUERY LIST

author[@degree-from="UOA"] [Q
4
]

PRED
key

QUERY LIST

author[text()="Iris Miliaraki" [Q
2
]

PRED
key

QUERY LIST

cite[@paper-id=2392] [Q
5
,Q

6
]

PRED
key

QUERY LIST

author[@nationality=Greek] [Q
1
]

PRED
key

Figure 5.2: Query indexing in bottom-up approach

queries in the network based on their predicates and performs filtering by first checking

the value-based predicates and then proceeding with the structural matching. Contrast to

the other methods presented here, which operate in a complementary way to our structural

matching techniques, bottom-up evaluation requires a different indexing approach.

Indexing queries We assign each query to a network peer using its predicates. So, for

each distinct predicate p included in a query set, there is a single responsible peer which is

responsible for any query that contains this predicate. Each predicate is uniquely identified

by a key formed by its string representation to determine the responsible peer. Formally,

since we employ the Pastry DHT as the underlying network, the responsible peer for predicate

with key k is the peer whose identifier is numerically closest to Hash(k), where Hash() is

the DHT hash function. Locally, each peer maintains a hash index mapping predicates to

the list of queries that contains them for fast retrieval. Each query is indexed multiple times

in the network, depending on the number of distinct predicates it contains.

Example 5.3.1 (Query indexing in bottom-up approach). We demonstrate with an example

how queries are assigned to network peers to enable bottom-up evaluation. The set of queries

indexed is shown in Figure 5.3 along with the peers responsible for each different predicate.

For the purposes of this example, we associate a number with each distinct predicate. Figure

5.2 illustrates the local hash indices kept by the peers for indexing the queries.

Filtering data Whenever an XML document arrives for filtering, we construct the set of

candidate predicates. For each candidate predicate, we create and send a filtering request

to the peer responsible for this predicate. The peer probes its local index, retrieves the

queries that contain the specific predicate and then performs locally structural matching for

Spyridoula Miliaraki 121

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Queries

1 2

3

4

5

6

7

5

8

7

Q
1
: /bib/phdthesis[@published=2005]/author[@nationality=greek]

Q
2
: /bib/*/author[text()="John Smith"]

Q
3
: /bib/article[@conf=debs]

Q
4
: /bib/article[@year=2009]/author[@degree-from="UOA"]

Q
5
: /bib/article[@year=2009]/cite[@paper-id=2392]

Q
6
: /bib/article/cite[@paper-id=2392]

Q
7
: //article[@year=2007]

Predicate key Responsible peer

1 P8

2 P4

3 P2

4 P3

5 P10

6 P1

7 P7

8 P10

Predicate assignments to peers

Figure 5.3: Queries and predicate assignments to peers

P7

P8

P9

P1 P2

P3

P4

P5

P6

P10

FoXtrot network

1. article[@title="Distributed XML Filtering"]

2. article[@conf=WWW]

3. article[@year=2008]

4. author[text()="Iris Miliaraki]

5. author[@institute=NKUA]

Candidate predicate list

XML document

NKUA

bib

title

article

yearconf
author

"Iris Miliaraki"
2008WWW"Distributed XML

Filtering" @institute

QUERY LIST

author[text()="Iris Miliaraki"] [Q
2
]

PRED
key

Figure 5.4: XML filtering in bottom-up approach

these queries. Structural matching can be performed using any centralized engine for this

purpose. We prefer to use an NFA like in the case of YFilter system [30]. So, if a query

is also structurally matched against the incoming XML document, a notification is sent to

the interested subscriber. Since we construct several candidate predicates from each XML

document, filtering is performed in parallel by the corresponding peers which are responsible

for these predicates. Specifically, each peer performs structural matching for the subset of

queries that contain the predicates that led to that peer.

Example 5.3.2 (Filtering in bottom-up approach). Figure 5.4 demonstrates an example

of how filtering takes place when an XML document arrives. Suppose that the XML docu-

ment depicted in Figure 5.1 arrives for filtering at peer P9. For each candidate predicate

constructed, the publisher peer issues a different filtering request and forwards it to the peer

responsible for this predicate. Then, the peer retrieves from its local index the set of queries

that contain this predicate and performs structural matching for this set. In this example,

a match is found by peer P2 for predicate author[text()="Iris Miliaraki"] which is

Spyridoula Miliaraki 122

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

ST
key

 + PRED
key

QUERY LIST

QUERY LIST

3 + [@conf=debs] [Q
3
]

7 + [@year=2009] [Q
4
,Q

5
]

7 + [@paper-id=2392] [Q
5
]

7 + [@paper-id=2770] [Q
6
]

0

Q
1

Q
2

Q
4

bib
phdth

esis
 author

*

article

cite

author

7

6

5

3

2

1

4
author

8

{Q
5
,Q

6
}

8

Q
3

Q
1
: /bib/phdthesis[@published=2005]/author[@nationality=greek]

Q
2
: /bib/*/author[text()="Iris Miliaraki"]

Q
3
: /bib/article[@conf=debs]

Q
4
: /bib/article[@year=2009]/author[@degree-from="UOA"]

Q
5
: /bib/article[@year=2009]/cite[@paper-id=2392]

Q
6
: /bib/article/cite[@paper-id=2770]

Q
7
: //article[@year=2007]

Queries Distributed NFA

ST
key

 + PRED
key

Figure 5.5: Query indexing in top-down evaluation

contained in query Q2. If the query is also structurally matched and the rest of its predicates

are satisfied, a notification is sent to the interested subscriber.

5.3.2 Top-down evaluation

Instead of first evaluating predicates, this approach begins by performing structural match-

ing. In this case, we use the distributed NFA to identify the subset of queries that structurally

match incoming XML documents, and then we evaluate the predicates of these queries. In

other words, this method evaluates predicates after the execution of the NFA. Since struc-

tural matching is performed in parallel by multiple peers, each of these peers identifies a

different subset of structurally-matched queries and as a result the task of predicate evalu-

ation is also distributed among the network peers. Whenever a peer identifies such a set, it

is also responsible for the predicate evaluation.

Indexing queries Query indexing is performed using the distributed NFA. When we reach

an accepting state then predicate evaluation is performed for the set of queries associated with

that state. We avoid evaluating each predicate separately by utilizing an index structure.

Since we deal with equality predicates, it is sufficient to construct a hash index mapping

predicates to the list of queries which contain them. For each accepting state, we include

in the hash index all the predicates of the corresponding queries. Since each peer can store

more than one accepting state, each entry in the index maps {STkey, PREDkey} pairs, where

STkey is the key of the accepting state and PREDkey is the predicate key, to a list of queries.

We discuss later how we can extend our method to support other types of predicates like

range ones.

Spyridoula Miliaraki 123

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

FoXtrot network

1. article[@title="Distributed XML Filtering"]

2. article[@conf=WWW]

3. article[@year=2008]

4. author[text()="Iris Miliaraki]

5. author[@institute=NKUA]

Candidate predicate list

XML document

NKUA

bib

title

article

yearconf author

"Iris Miliaraki"
2008WWW"Distributed XML

Filtering" @institute

P7
P8

P9

P1 P2

P3

P4

P5
P6

P10

QUERY LIST

7 + [@year=2009] [Q
4
,Q

5
]

7 + [@paper-id=2392] [Q
5
]

7 + [@paper-id=2770] [Q
6
]

ST
key

 + PRED
key

1

2
2

3

3
3 4

4

ST
key

 + PRED
key

QUERY LIST

3 + [@conf=debs] [Q
3
]

... ...

... ...

Figure 5.6: XML filtering in top-down evaluation

Example 5.3.3 (Query indexing in top-down approach). We illustrate the above using an

example shown in Figure 5.5. In the top-down evaluation we associate each accepting state

with hash indexes (i.e., states 3, 5, 6, 7 and 8 denoted by two concentric circles). The hash

index of state 3 contains a single entry for Q3 and the index of state 7 contains three entries,

one for each distinct predicate contained in Q5 and Q6.

Filtering data Filtering is performed by executing the distributed NFA until we reach

an accepting state. When a peer reaches an accepting state, it needs to further evaluate

the queries associated with that state with respect to their value-based predicates. Instead

of sequentially checking all the queries that have been structurally matched, we use the

candidate predicates to probe the hash index. If a query is matched by incoming data it will

then be returned as a match by the index. If all the predicates of the query are satisfied we

notify its subscriber.

Example 5.3.4 (XML filtering in top-down approach). Let us illustrate with an example

how we filter an XML document using top-down approach. Suppose that the XML document

depicted in Figure 5.6 arrives for filtering at peer P9. The execution of the NFA begins

by contacting peer P2 which is responsible for the start state. Execution proceeds as usual

until we reach an accepting state. In the example shown in Figure 5.6, states 3 and 7 are

accepting states. Peer P6 reaches accepting state 7 and performs predicate evaluation for the

queries associated with state 7. As we explained earlier, to avoid a sequential check of these

queries which may constitute a large set, peer P6 uses its local index and retrieves only the

Spyridoula Miliaraki 124

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

queries that contain at least one of the candidate predicates. Peer P3 which also reaches an

accepting state operates in like fashion. If a complete match is found, subscribers of satisfied

queries are notified.

5.3.3 Top-down evaluation with pruning

We investigate an improvement on top-down evaluation for overcoming the problem of spend-

ing too much effort structurally matching queries with predicates that are not satisfied by

the incoming XML documents. We already discussed that it can be very expensive, in terms

of NFA states, to represent directly with transitions the value-based predicates. Instead, we

propose to use a compact summary of predicate information to stop the execution of the

NFA (i.e., prune an execution path) whenever we can deduce that no match can be found

if the execution continues. We refer to this method as top-down evaluation with pruning.

The basic idea of this approach is the following. Recall that the NFA is a tree structure

distributed among the network peers and during structural matching we traverse it by vis-

iting the peers responsible for its different NFA fragments. Each peer can be responsible for

storing many fragments of this NFA. At each step of the execution, we can consider that a

part of the NFA has been revealed while the rest part is not. So, we propose to use a data

structure for representing these NFA fragments with respect to the predicates they contain.

Given that we want to support a large set of queries, we prefer to use for this purpose a

probabilistic structure and specifically Bloom filters [12]. The main idea is that we construct

these filters incrementally during indexing, while at the time of filtering we consult them and

decide whether we should continue or terminate execution earlier. In the following, we first

describe in detail the commonly used data structure of Bloom filters [12] and then describe

our method.

Bloom filters Bloom filters were proposed by Burton Bloom [12] for the probabilistic

representation of a set to support membership queries. A Bloom filter is a bit-vector of

length m used to represent a set S = {x1, x2, . . . , xn} of n elements. Initially all bits are

set to 0. Then, using k independent hash functions h1, h2, . . . , hk with range 1 to m, each

element x ∈ S sets to 1 the bits of positions hi(x) for 1 ≤ i ≤ k. Each bit can be set to 1

many times, but only the first operation has an effect. Then, to check whether an item y is

in S, the bits at positions h1(y), h2(y), . . . , hk(y) are checked. In case any of them is 0 then

y is not a member of S, else we assume y is in S. There is however a probability that this

is a false positive and it has been shown that this probability is equal to (1− ekn/m)k.

Spyridoula Miliaraki 125

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

...

1

...

0

0
0

0
1

0
0

1

h
1
(p)

h
2
(p)

h
k
(p)

k hash-functionsm-bit

filter

Distributed NFA

Q
1
: phdthesis[@published=2005]

Q
2
: author[text()="Iris Miliaraki"]

Q
3
: article[@conf=debs]

Q
4
: author[@degree-from="UOA"]

Q
5
: article[@year=2009]

Q
6
: cite[@paper-id=2770]

Peer p

FoXtrot network Value filter

Queries

keeps

value filter

30

9

1

4

2 5

6

8

Q
1

Q
4

Q
3 Q

2

Q
7

bib

e
article

phdthesis

author

author

author

*

article

*

10

7

{Q
5
,Q

6
}cite

Q
1
: /bib/phdthesis[@published=2005]

 /author[@nationality=greek]

Q
2
: /bib/*/author[text()="Iris Miliaraki"]

Q
3
: /bib/article[@conf=debs]

Q
4
: /bib/article[@year=2009]/author[@degree-from="UOA"]

Q
5
: /bib/article[@year=2009]/cite[@paper-id=2392]

Q
6
: /bib/article/cite[@paper-id=2770]

Q
7
: //article[@year=2007]

select 1 predicate from each query to insert in VFis responsible for state 1

Figure 5.7: Query indexing in top-down evaluation with pruning

Indexing queries The main idea of this method is to use Bloom filters for summarizing

the query predicates indexed in a specific NFA fragment. For easier maintenance each peer

keeps a single Bloom filter to summarize a set of value-based predicates. We call such

filters value filters (VF). Each predicate represented by a value filter is associated with the

respective NFA state. Query indexing is performed as described earlier but instead of only

updating the distributed NFA, we also update the corresponding value filters using the query

predicates. Since we assume only conjunctions of predicates in queries, if at least one of the

query predicates is not satisfied, then the query cannot be matched. Consider a peer p

and a state st for which p is responsible for. Based on the former observation, for each

query q whose NFA accepting path contains st, we insert one predicate of q in the VF of

p. In other words, only one predicate of each query is required in the value filter. Each

attribute predicate of the form element[@attr = value] is inserted as a whole in the VF

using its string representation element+ attr+ value concatenated with the state identifier.

Likewise, textual predicates of the form element[text() = value] are inserted as a whole in

the VF using their string representation element + text() + value together with the state

identifier. We insert predicates in the filters during query indexing. Since we need to traverse

the NFA accepting path of each query in order to index it, it is guaranteed that all relevant

VFs will be updated. For a query which contains more than one predicates, we need to

decide which one will be inserted in the value filter. We can either do this in a random or a

more sophisticated way. We discuss these alternatives later on in Section 5.4. Alternatively,

instead of only using the name of the element for inserting it in the VF, we can use the path

Spyridoula Miliaraki 126

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

of elements ending with the corresponding element associated with the predicate. However,

this causes overhead in the process of constructing and using value filters which we prefer to

avoid. In addition, this can be considered a schema-dependent decision since recursive XML

schemas allow to repeat the same element in a query while others do not.

Example 5.3.5 (Query indexing in top-down with pruning approach). We illustrate the

above using an example shown in Figure 5.7. We consider queries Q1, Q2, Q3, Q4, Q5, Q6

and Q7 and the corresponding NFA. This NFA is distributed among the network peers. In

our example, peer p is responsible for state 1. Since state 1 belongs to the NFA accepting

paths of queries Q1, Q2, Q3, Q4, Q5 and Q6, one predicate of each query is inserted in the

value filter of p for state 1. Note that we do not insert a predicate of Q7 since Q7 is not

indexed in the corresponding NFA fragment i.e., its NFA accepting path does not include

state 1.

Filtering data In this method, we require from each peer participating in the execution

process to perform an additional step before expanding an NFA state. During this step,

peer checks whether its VF matches any of the candidate predicates. In case no candidate

predicate can be matched (miss), execution is terminated instantly, while if at least one of

the candidate predicates is found in the filter (match), the peer continues execution. In the

worst case where no execution path is pruned, this method works exactly like the top-down

evaluation with the small overhead of checking the bloom filters during the execution. As

described previously, when we reach an accepting state each peer keeps a hash index for

performing predicate evaluation in the same way as in top-down method. Note that we do

not explicitly check query predicates, but at each step of the execution, the value filter only

gives us enough information regarding whether to continue the execution or not. We have

no further information regarding which queries contain the candidate predicates that cause

execution to continue since bloom filters only answer membership queries.

Example 5.3.6. We demonstrate how we use value filters to prune NFA execution using an

example shown in Figure 5.8. Again, we consider the same set of queries and NFA distributed

among the network peers (see Figure 5.7). In our example, peer p1 is responsible for state

0, while peer p2 is responsible for state 1. Suppose a peer publishes the XML document.

This peer is responsible for generating candidate predicates from the document and initiating

filtering. Peer p1 which is responsible for the start state receives the filtering request and

begins filtering. Before proceeding with the expansion of state 0, it checks whether any of the

candidate predicates is included in its local value filter. In this case, a match is returned for

predicate article[@year = 2007], included in query Q7. So, state 0 is expanded causing states

1 and 9 to become active. Peer p2 continues execution from state 1. In this case, when p2

Spyridoula Miliaraki 127

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

XML Document

bib

article

@conf @year author

text() @institute2007

"John Smith" Harvard

VLDB

@title

"XML Filtering"

CP
1
:article[@title="XML Filtering"]

CP
2
:article[@conf=VLDB]

CP
3
:article[@year=2007]

CP
4
:author[text()="John Smith"]

CP
5
:author[@institute=Harvard]

Candidate predicates

Execution steps

Step 1: expanding state 0

Step 2: expanding state 1

Filter comparison

returns MATCH!
(for candidate predicate

[@year=2007])

Filter comparison

returns MISS!
Peer p

2

Peer p
1

execute

NFA

use to check Value filters

Value filter of p
1

Value filter of p
2

generate candidate

predicates

1

...

0

0
0

0
1

0
1

1

1

...

0

0
0

0
1

0
0

1

Figure 5.8: XML filtering in top-down evaluation with pruning

checks its local value filter, it founds no match and this execution path is pruned and state

1 is not expanded. To avoid complicating this example, we do not depict the execution path

from state 9 in the figure.

5.3.4 Step-by-step evaluation

We conclude our description about value matching with our last method based on the concept

of checking predicates concurrently with performing structural matching. This method is

called step-by-step since it performs filtering in a step-wise manner and evaluates predicates

during the execution of the NFA.

Indexing queries Similarly to the other methods, queries are indexed using the dis-

tributed NFA. During query indexing, each peer organizes all the predicates included in

its local queries using an index. Each predicate is associated with the relevant NFA state

it refers to and the local index maps predicates to the list of queries which contain them.

Since a query may not contain predicates at all steps, we also map a generic true predicate

to queries with no predicates at this step. Contrast to top-down method where we only keep

indices for the accepting states, in step-by-step, indices contain entries for all NFA states.

Note that each peer keeps locally a single index.

Spyridoula Miliaraki 128

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

ST
key

 + PRED
key

QUERY LIST
QUERY LIST

1 + true 3 + true

3 + [@conf=debs] [Q
3
]

3 + [@year=2009] [Q
4
,Q

5
]

0

Q
1

Q
2

Q
4

bib
phdth

esis
 author

*

article
cite

author

7

6

5

3

2

1

4
author

8

{Q
5
,Q

6
}

8

Q
3

Distributed NFA

ST
key

 + PRED
key

[Q
1
,Q

2
,Q

3
,Q

4
,Q

5
,Q

6
] [Q

6
]

Q
1
: /bib/phdthesis[@published=2005]/

author[@nationality=greek]

Q
2
: /bib/*/author[text()="John Smith"]

Q
3
: /bib/article[@conf=debs]

Q
4
: /bib/article[@year=2009]/author[@degree-from="UOA"]

Q
5
: /bib/article[@year=2009]/cite[@paper-id=2392]

Q
6
: /bib/article/cite[@paper-id=2770]

Queries

Figure 5.9: Query indexing in step-by-step

Example 5.3.7. Figure 5.9 illustrates the above with an example. We consider again the

same set of queries. We also depict the NFA which is distributed among the network peers.

Each NFA state is associated with a number of predicates. For each distinct predicate, there

is an entry in the corresponding index mapping it to the queries that contain it. So, for

example for state 1 we create an index entry mapping a generic true predicate to queries

Q1, Q2, Q3, Q4, Q5 and Q6 since no predicates are associated with this state. Instead, for

state 3 we keep 3 different entries, 1 for the true predicate and 2 for the distinct predicates

associated with that state. Note that if the same peer p was responsible for states 1 and 3,

then all entries would be part of a single index kept locally by p. However, for the sake of

simplicity we do not depict the corresponding peers in this example.

Filtering data Recall that each filtering request carries a document representation and

the candidate predicates produced by the document. In addition, each filtering request also

includes the queries which have been partially matched with respect to both their structure

and predicates until the current execution step. To filter incoming XML data, each peer

participating in the filtering process uses the candidate predicates to probe its local index.

Let us explain how this works in detail. After peer p expands a state st during execution,

it uses the candidate predicates to probe its hash index. Let CurrQ and PrevQ be the set

of queries returned by the hash index and the set of previously satisfied queries respectively.

We will denote as NextQ, the set of satisfied queries after expanding st, i.e., NextQ =

PrevQ∩CurrQ. In case state st is an accepting state for a query q ∈ NextQ (both structure

and predicates have been satisfied), then p notifies the subscriber of q and removes q from

NextQ. Then, execution continues and p forwards a new filtering request that includes

NextQ. At the current state of our work, we only support equality predicates and for this

reason we use a hash index. We plan to support range predicates using appropriate indexes

Spyridoula Miliaraki 129

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

FoXtrot network

1. article[@title="Distributed XML Filtering"]

2. article[@conf=WWW]

3. article[@year=2008]

4. author[text()="Iris Miliaraki]

5. author[@institute=NKUA]

Candidate predicate list

XML document

NKUA

bib

title

article

yearconf author

"Iris Miliaraki"
2008WWW"Distributed XML

Filtering" @institute

P7
P8

P9

P1 P2

P3

P4

P5
P6

P10

QUERY LIST

3 + true [Q
6
]

3 + [@conf=debs] [Q
3
]

3 + [@year=2009] [Q
4
,Q

5
]

ST
key

 + PRED
key

1 2

2

33
3 4

4

... ...

ST
key

 + PRED
key

QUERY LIST

1 + true [Q
1
,Q

2
,Q

3
,Q

4
,Q

5
,Q

6
]

... ...

Figure 5.10: XML filtering in step-by-step

like B+-trees.

We illustrate the above using an example shown in Figure 5.10. We construct an NFA

from a set of six queries. For the sake of simplicity, we do not show how this NFA is

distributed among network peers. For each NFA state, we keep a different hash index.

In Figure 5.10, we show the contents of the hash indexes associated with states 1 and 3

respectively. The index at state 1 contains only one entry mapping the true predicate to

{Q1, Q2, Q3, Q4, Q5, Q6}, since no query contains a predicate at that step. While, the index at

state 3 contains three entries, one for the true predicate and two for the predicates contained

in queries Q3,Q4 and Q5. Q4 and Q5 contain the same predicate, so one entry is added to

the hash index. Execution ends when NextQ becomes empty.

5.4 Online selectivity estimation

In this section, we define the selectivity of value-based predicates in our context, describe

techniques for estimating their selectivity and explain how we can exploit these statistics for

optimizing our value matching method of top-down evaluation with pruning. Even though

the problem of selectivity estimation for XML path expressions has been studied extensively

in the past, little attention has been paid in estimating the selectivity of the value-based

predicates included in the queries.

Spyridoula Miliaraki 130

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

5.4.1 Overview

Our value-matching method employs bloom filters to summarize predicate information and

prune execution as early as possible. We achieve this by deducing that no match can be

found if we continue execution. For each query that we want to summarize its predicates

in the corresponding filter, we select and insert only one of its predicates. Recall that we

support linear path queries which can contain at each query step conjunctions of predicates.

This selection can be made randomly or ideally we can select the predicate which can lead

to better pruning, i.e. the least selective predicate.

Example 5.4.1 (Predicate selectivity). Consider query Q:

/dblp/article[@year = 2009]/author[text() = "Michael Smith"],

which selects all articles of author Michael Smith which were published in 2009. Intuitively,

for this example, one can expect that there are many more articles published in 2009 than

the total articles of author Michael Smith. As a result, we would like to insert in the filter

the predicate on the author.

In general, we want to select and insert the most selective predicate of each query in

the respective filters. In the following, we first define predicate selectivity in our context,

describe how we estimate this selectivities in our distributing setting, and explain how these

statistics are used by our top-down method for efficient pruning.

5.4.2 Definitions

As described in this chapter, we support two types of predicates in XPath queries, namely

attribute and textual predicates on XML elements. In the following we define predicate

selectivity for these two types of predicates.

Definition 5.4.1. We define the selectivity of a textual predicate [text() = v] on element

e for an XML document collection D as the fraction of elements e, reachable by any path,

with value v in D. The corresponding formula is the following:

sel(e[text() = v]) =
total occurrences of e equals v in D

total occurrences of e in D
(5.1)

Definition 5.4.2. We define the selectivity of an attribute predicate [@attr = v] for at-

tribute attr on element e for an XML document collection D as the fraction of elements

e, reachable by any path, that satisfy the predicate in D. The corresponding formula is the

following:

sel(e[@attr = v]) =
total occurrences of attr equals v in D

total occurrences of e in D
(5.2)

Spyridoula Miliaraki 131

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

We also consider that any predicate on an element explicitly defined is more selective

than a predicate on a wildcard element.

5.4.3 Distributed sampling

In an XML dissemination system like the one described in this thesis, a large volume of XML

data is expected to arrive for filtering. As a result, it is not feasible to store the entire set

of XML data that have been processed for computing the exact predicate selectivities. For

this reason, we use sampling and keep information only about a fixed-size random subset of

the XML data collection.

Formally, we want to obtain a random sample of size n from a set of size N , where N

is not known beforehand. A well-known and broadly used algorithm for random sampling

is the reservoir sampling algorithm proposed by Vitter et al. [104]. For obtaining a random

sample of size n, the algorithm works as follows. The first n items are inserted in the

reservoir. Then, a random number of items is skipped and the next item replaces a random

item from the reservoir. Again, a random number of items is skipped and so on. This way

the reservoir always contains a random sample of n items.

Let us recall at this point what kind of selectivities we want to extract from the document

sample. We keep the occurrences of each element along with the occurrences of its attributes

and their values. Each peer keeps its own independent reservoir of n items, in our case XML

documents. This reservoir is created from the documents that arrive at this peer. This

random sample is kept at the document-level, so each item in the reservoir is actually an

XML document that has previously arrived for filtering. Whenever a document arrives at a

peer, it runs the reservoir sampling algorithm to decide whether or not to add this document

to its local reservoir.

An alternative method for improving our estimates is instead of having each peer keeping

its own independent sample, use a distributed sampling algorithm. Pitoura and Triantafillou

[79] describe several distributed sampling algorithms on top of DHTs for estimating peer

loads. These algorithms can be adapted to obtain better estimates of predicate selectivities

by combining the estimates computed by different peers. For instance using the random

walking algorithm described in this work [79], each peer can collect the estimated selectivities

from each neighbors and compute better estimates.

Another factor that can affect the quality of our estimates is that we perform sampling

at the XML document level. As stressed by Chand et al. [23], where the authors estimate

tree pattern selectivities, such a coarse-grain document-level sampling can result in poor es-

timates. By keeping more fine-grained statistics at the level of distinct elements, the quality

of the statistics can be improved. Such a technique is described in the work of Chand et

Spyridoula Miliaraki 132

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

al. [23] where the authors maintain a sample of distinct elements over an XML document

stream to collect tree pattern selectivities. Even though the authors do not consider pred-

icate selectivities, the core ideas described for path selectivities can be also applied for the

estimation of predicate selectivities.

Since our focus is not on estimating the selectivities but demonstrating that exploiting

such statistics instead of making a random choice can lead to an improvement of our method,

we do not consider them any further in the context of this thesis.

5.4.4 Using statistics in predicate evaluation

We have described what kind of selectivity statistics we keep and how we compute them. Let

us now describe how these statistics are exploited by the value-matching method to select

which predicates will be inserted in the value filters.

Each time a query arrives at a peer p, before starting indexing the query, p computes

the selectivities of its predicates by consulting its local reservoir. Then, p marks the most

selective predicate of the query and initiates indexing. This process is performed only by the

subscriber peer. Recall that we update value filters for a specific query only once when it

arrives for indexing, so the most selective predicate is chosen using the selectivity statistics

collected until that point of time. Alternatively, we could also update filters at a later time

because XML data may follow a different distribution and the selectivities may change.

However, this would require to be able to also remove entries from the Bloom filters. In this

case, one could use Counting Bloom filters [32].

5.5 Experimental evaluation

In Chapter 4, we evaluated the performance of FoXtrot in the absence of value matching.

We now focus on evaluating the performance of the different value matching techniques

combined with structural matching. Our experimental setup remains the same (see Section

4.6). Likewise, we perform our measurements in two different environments, the PlanetLab

network and a local shared cluster.

For the case of the top-down evaluation method which uses pruning, we run two versions

of this method based on how we select the predicate we include for each query in the value

filters. The first version uses selectivity statistics to insert the most selective predicate

(denoted as top-down* (most-sel)) and in the second version we perform a random selection

(denoted as top-down* (random)).

Spyridoula Miliaraki 133

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Top−down Td*(rand) Td*(sel) Bottom−up Step−by−step
0

1

2

3

4

5

6

7
x 10

4

Value matching methods

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 i
n

 m
s
e

c
s

4 predicates

2 predicates

(a) All methods (cluster)

Bottom−up Step−by−step Top−down Td*(rand) Td*(sel)
0

200

400

600

800

1000

1200

Value matching methods

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 (

s
e

c
s
)

2 predicates

(b) All methods (PlanetLab)

Figure 5.11: Filtering latency (different value-matching methods)

5.5.1 Filtering data

In this experiment, we study the performance of our methods during XML filtering. Firstly,

we show results from experiments conducted using the cluster machines after indexing

100,000 queries. Figure 5.11(a) shows the filtering latency when queries involve 2 and 4

predicates respectively. We observe that methods which evaluate predicates in a top-down

fashion outperform the others by a wide margin. The step-by-step method exhibits the worst

performance in both cases, greatly deteriorating as the number of predicates per query is

increased from 2 to 4. This is due to the fact that peers spend a lot of effort evaluating pred-

icates for queries whose structure is not matched by the XML data. Likewise, bottom-up

evaluation method which indexes queries based on their value-based predicates also demon-

strates a poor performance, even though it is 10 times faster compared to step-by-step. This

is explained because each peer responsible for a candidate predicate, as this is generated by

incoming XML data, performs structural matching for all queries containing this predicate.

We now proceed with the experiments conducted using the Planetlab network. Figure

5.12(a) shows the filtering latency for all different value-matching methods. As we discussed

earlier, since Planetlab peers are located in four continents and network delays in such a

setting are considerably higher compared to the ones observed in the cluster, filtering requires

more time. As before, the step-by-step evaluation method exhibits the worst performance

suffering even more from the network delays of Planetlab peers. It is also interesting to study

how the system generates the notifications during filtering the XML documents. We depict

these measurements in Figure 5.12(a). Bottom-up evaluation method generates notifications

faster than the top-down evaluation methods at the beginning of the filtering process. This

Spyridoula Miliaraki 134

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

2 4 6 8 10

10
3

10
4

10
5

10
6

Total notifications

N
o

ti
fi
c
a

ti
o

n
s
 a

rr
iv

a
l
ti
m

e
s
 (

in
 m

s
e

c
s
)

Bottom−up

Top−down*(rand)

Top−down*(sel)

Top−down

Step−by−step

(a) Notification arrivals (PlanetLab)

200 400 600 800 1000
0

100

200

300

400

500

600

700

800

Queries (x1000)

N
e

tw
o

rk
 t

ra
ff

ic
 (

in
 m

e
s
s
a

g
e

s
)

Top−down

Top−down*(rand)

Top−down*(sel)

Step−by−step

Bottom−up

(b) Filtering messages

Figure 5.12: Filtering operation

is due to having less peers participating in the filtering process and thus decreasing network

delays. However, top-down evaluation methods exhibit a more stable performance since the

total amount of processing load is distributed more evenly among a larger number of peers.

For example, bottom-up evaluation generates the 260th notification about 3 seconds later

compared to the top-down evaluation methods.

In Figure 5.12(b), we show the total number of messages that travel through the network

during filtering of XML data while varying the total number of indexed queries. Note that

the notifications generated during the filtering are not included since all methods generate

the same amount of notification messages. Bottom-up method generates a constant number

of messages since this is analogous to the number of candidate predicates generated by the

XML data and independent of the total indexed queries. Moreover, top-down evaluation

method and step-by-step generate almost the same number of messages in all cases. This

is due to the fact that both methods traverse almost the same NFA fragment during XML

filtering. Finally, when pruning is used less messages are sent since, as expected, execution

is stopped at some cases.

5.5.2 Benefit of using value filters

In this experiment, we study the benefit of using Bloom filters to summarize predicate

information aiming at stopping NFA execution if we determine that no query can be satisfied

by the incoming XML data. We compare our methods after having indexed 100,000 queries

and again show notification arrival times after publishing the XML documents. The number

of predicates per query ranges from 2 to 4. Figures 5.13(a) and 5.13(b) show the arrival times

Spyridoula Miliaraki 135

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Top−down*(sel) Top−down*(rand) Top−down
0

200

400

600

800

1000

1200

1400

1600

1800

Value matching methods

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 (

m
s
e

c
s
)

4 predicates

2 predicates

(a) Top-down methods (Cluster)

Top−down Top−down*(rand) Top−down*(sel)
0

1000

2000

3000

4000

5000

6000

7000

8000

Value matching methods

F
ilt

e
ri
n

g
 l
a

te
n

c
y
 (

m
s
e

c
s
)

2 predicates

(b) Top-down methods (PlanetLab)

Figure 5.13: Benefit of pruning operation

1 2 3
0

5

10

15

20

25

30

35

40

45

50

predicates per query

%
 I
m

p
ro

v
e
m

e
n
t
in

 f
ilt

e
ri
n
g
 l
a
te

n
c
y

Top−down*(sel) − Cluster

Top−down*(sel) − PlanetLab

Figure 5.14: Performance improvement

for queries involving 2 and 4 predicates respectively. In general, we observe that top-down

evaluation demonstrates a better performance when pruning is used, either by exploiting

selectivity statistics or not. As queries involve a larger number of predicates, the gain of

using Bloom filters increases, resulting in faster arrival times. This is depicted in Figure

5.13(a) where queries involve 4 predicates and the use of value filters results in a better

performance. In addition, the use of selectivity statistics when constructing the value filters

results in better arrival times in most cases. We expect that we could further improve its

performance with more sophisticated techniques for selectivity estimation but we consider

this to be out of the scope of the paper.

Figure 5.14 summarizes how the use of selectivity statistics can result in better perfor-

mance as we increase the number of predicates per query. We have conducted this experiment

in both Planetlab and the cluster. We measure the performance improvement using the for-

Spyridoula Miliaraki 136

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

mula tbase−tmethod

tbase
, where tmethod is the filtering time for the method under observation and

tbase is the filtering time of the top-down evaluation method without any pruning. As shown

in the figure, for queries with one predicate, the use of pruning results in a 20% improvement

in Planetlab, while in the cluster, where network delays are minimized, we achieve a 30%

improvement. As the number of predicates per query grows, the performance improvement

due to the use of pruning over the simple top-down evaluation method increases significantly.

We have experimented with a higher number of predicates using other datasets and the trend

observed was similar. However, in most datasets, more predicates result in significantly less

notifications, minimizing the potential improvement in performance and the importance of

the measurements.

5.6 Summary

In this chapter, we described methods for the combined structural and value XML filtering

in the distributed environment of FoXtrot. One of our methods utilizes Bloom filters to

summarize predicate information and decrease the effort spent during value matching. We

experimentally evaluated our approach on both PlanetLab and on a local cluster and demon-

strated how our methods scale in both the size of query set and the number of predicates

per query.

This chapter concludes our presentation of the research conducted in terms of this thesis.

In the next chapter, we sum up by highlighting our main contributions. We also discuss

open problems and possible directions for future work.

Spyridoula Miliaraki 137

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 138

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Chapter 6

Conclusions

We conclude this work by presenting a short summary of the research conducted in this thesis,

highlighting our main contributions and discussing possible directions for future research.

6.1 Summary

As the Web is growing continuously, a great amount of data becomes available to users,

making it more difficult for them to discover interesting information by searching. As a

result, publish/subscribe systems have emerged in recent years as a promising paradigm.

In this thesis, we described an XML-based publish/subscribe system called FoXtrot built

on top of a structured overlay network. FoXtrot is a fully-distributed system for efficient

filtering of XML data on very large sets of XPath queries. To achieve this, we utilize the

successful automata-based XML filtering engine YFilter, distribute the automaton among

the network peers and design methods that exploit the inherent parallelism of an NFA. This

way different peers participate in the filtering process by executing in parallel several paths

of the NFA.

We show that our approach overcomes the weaknesses of typical content-based XML

dissemination systems built on top of meshes or tree-based overlays while paying special

attention to load balancing. The design of FoXtrot allows us to employ simple yet effective

replication methods for achieving a balanced load distribution. In addition, replication also

improves FoXtrot’s resilience to faults by introducing redundancy.

The majority of previous approaches addressed the XML filtering problem focusing on

designing highly efficient structural matching techniques both in centralized and distributed

environments. However, the need for more sophisticated predicate evaluation techniques

has also become evident. Especially when queries contain a large number of predicates, the

computation time can be dominated by predicate evaluation. In FoXtrot, we combine the

Spyridoula Miliaraki 139

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

strength of the NFA structure for efficiently matching XPath queries along with different

methods for evaluating value-based predicates distributing the load for both tasks among

the network peers.

We have implemented our system FoXtrot and performed an extensive experimental

evaluation under various conditions. Our evaluation was done in a controlled environment

of a local cluster and on the worldwide testbed provided by the PlanetLab network. We

demonstrated that FoXtrot can index millions of user queries achieving a high indexing and

filtering throughput. At the same time FoXtrot exhibits very good load balancing properties

and is also scalable with respect to network size since it improves its performance as we add

more peers to the network.

6.2 Future directions

In this section we present a discussion on open problems related with the research conducted

in this thesis and give possible future directions for enhancing this work.

6.2.1 Richer data models

As subject of future work, an interesting direction would be to study how our techniques can

be applied for richer data models like the case of the Resource Description Framework (RDF)

[63]. The RDF data model uses a simple and abstract knowledge representation to describe

Web resources. The main idea for enriching our methods to support such a model lies in the

following observation: Since any path query can be transformed into a regular expression and

consequently there exists an NFA for representing this query. In other words, our techniques

described using XML and XPath can be used for other data models and query languages

including RDF path queries expressed in a navigational query language like nSPARQL [77].

Pérez et al. [77] study how to construct an NFA for indexing RDF path queries and provide

us with the basis to apply our results to RDF. A different approach is proposed by Mo and

Yuqing [112] who decompose RDF graphs to XML trees and actually demonstrate improved

query processing performance compared to existing RDF techniques. Such an approach can

also be studied in the context of FoXtrot identifying potential issues that arise. A work that

deals with continuous RDF query processing on top of DHTs has been proposed by Liarou

et al. [57].

Spyridoula Miliaraki 140

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

6.2.2 Predicate evaluation

We described our value matching methods focusing on the efficient evaluation of equality

predicates. Future work could concentrate on extending these methods for a richer class

of predicates like range predicates. In addition, one could consider using more fine-grained

statistics for estimating the selectivities of the predicates as well as other a more sophisticated

sampling method. For example, Pitoura and Triantafillou [79] focus on distributed sampling

algorithms on top of DHTs and describe sampling algorithms for estimating peer loads.

These algorithms can be easily adapted to obtain better estimates of predicate selectivities

by combining the estimates computed by different peers. For instance, using the random

walking algorithm described [79], each peer can collect the estimated selectivities from its

neighbors and compute better estimates.

6.2.3 Load balancing

As we discussed, our load balancing method currently depends on the properties of the NFA

tree-like structure where the states of lower depths are typically accessed more frequently

than the others. Another interesting case would be if the frequencies of visiting the NFA

states are not dependent on the depth of the states but follow a different distribution. It

would be interesting to demonstrate how FoXtrot can adapt is such situations. One possible

direction would be to estimate these frequencies and then design a load balancing method

that exploits these statistics for achieving an even load distribution.

6.2.4 Fault tolerance and churn

Since we design FoXtrot as a distributed system expected to run on top of the Internet, we

also expect it to continue operating in the presence of failures. We studied how replication-

based methods can assist us in increasing the resilience of FoXtrot to failures. A future

enhancement of our methods could be to design methods that react on failures trying to

minimize the chance of future failures causing information loss in the system.

Apart from dealing with infrequent node failures, almost every distributed system should

also address churn. Churn refers to the case where the participating network nodes change

frequently due to joins, leaves, and failures [37]. This problem has been studied by Rhea et

al. [87] for improving the churn resilience of the Bamboo DHT, while Godfrey et al. studied

ways for reducing the effects of churn in a distributed system [37]. A possible extension of

our work could be to incorporate churn into the system design and study the effect of such

membership events on the performance of FoXtrot.

Spyridoula Miliaraki 141

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 142

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Abbreviations

DHT Distributed Hash Table

NFA Non-deterministic Finite Automaton

P2P Peer-to-Peer

XML Extensible Markup Language

XPath XML Path Language

Spyridoula Miliaraki 143

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Spyridoula Miliaraki 144

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Bibliography

[1] DBLP XML records. http://dblp.uni-trier.de/xml/.

[2] Gnutella development forum. http://groups.yahoo.com/group/the_gdf/.

[3] An efficient multicast protocol for content-based publish-subscribe systems. In Pro-

ceedings of the 19th IEEE International Conference on Distributed Computing Systems,

pages 262–, Washington, DC, USA, 1999. IEEE Computer Society.

[4] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,

and R. Schmidt. P-Grid: a self-organizing structured P2P system. SIGMOD Rec.,

32(3):29–33, 2003.

[5] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML processing in

DHT networks. In Proceedings of the 2008 IEEE 24th International Conference on

Data Engineering (ICDE ’08), pages 606–615, Washington, DC, USA, 2008. IEEE

Computer Society.

[6] I. Aekaterinidis and P. Triantafillou. PastryStrings: A comprehensive content-based

publish/subscribe DHT network. In Proceedings of the 26th IEEE International Con-

ference on Distributed Computing Systems (ICDCS ’06), pages 23–, Washington, DC,

USA, 2006. IEEE Computer Society.

[7] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for Selective

Dissemination of Information. In Proceedings of the 26th International Conference on

Very Large Data Bases (VLDB ’00), pages 53–64, San Francisco, CA, USA, 2000.

Morgan Kaufmann Publishers Inc.

[8] James Aspnes, Zoë Diamadi, and Gauri Shah. Fault-tolerant routing in peer-to-peer

systems. In Proceedings of the twenty-first annual symposium on Principles of dis-

tributed computing, PODC ’02, pages 223–232, New York, NY, USA, 2002. ACM.

[9] James Aspnes and Gauri Shah. Skip graphs. ACM Trans. Algorithms, 3, November

2007.

[10] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Looking up data in p2p systems. Commun. ACM, 46:43–48, February 2003.

[11] D. Barbosa, L. Mignet, and P. Veltri. Studying the XML Web: Gathering statistics

Spyridoula Miliaraki 145

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

from an XML sample. World Wide Web, 9(2):187–212, 2006.

[12] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

mun. ACM, 13(7):422–426, 1970.

[13] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-

guage. World Wide Web Consortium, Recommendation, December 2010.

http://www.w3.org/TR/2010/REC-xquery-20101214/.

[14] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath Lookup Queries in

P2P Networks. In Proceedings of the 6th annual ACM international workshop on Web

information and data management (WIDM ’04), pages 48–55, New York, NY, USA,

2004. ACM.

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible Markup Language (XML) 1.0. World Wide Web Consortium, Recommen-

dation, November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[16] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation- vs. index-based

XML multi-query processing. In Proceedings. 19th International Conference on Data

Engineering (ICDE ’03), pages 139–150, Los Alamitos, CA, USA, 2003. IEEE Com-

puter Society.

[17] K. Selçuk Candan, Wang-Pin Hsiung, Songting Chen, Junichi Tatemura, and Di-

vyakant Agrawal. Afilter: adaptable xml filtering with prefix-caching suffix-clustering.

In Proceedings of the 32nd international conference on Very large data bases, VLDB

’06, pages 559–570. VLDB Endowment, 2006.

[18] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evalua-

tion of a wide-area event notification service. ACM Trans. Comput. Syst., 19:332–383,

August 2001.

[19] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. Scribe:

A large-scale and decentralized publish-subscribe infrastructure. IEEE Journal on

Selected Areas in Communications (JSAC), 20(8), October 2002. Special issue on

Network Support for Multicast Communications.

[20] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient Filtering of XML

Documents with XPath Expressions. In Proceedings of the 18th International Confer-

ence on Data Engineering (ICDE ’02), page 235, Washington, DC, USA, 2002. IEEE

Computer Society.

[21] C. Y. Chan and Y. Ni. Efficient XML Data Dissemination with Piggybacking. In

Proceedings of the 2007 ACM SIGMOD international conference on Management of

data (SIGMOD ’07), pages 737–748, New York, NY, USA, 2007. ACM Press.

[22] R. Chand and P. Felber. Scalable Distribution of XML Content with XNet. IEEE

Spyridoula Miliaraki 146

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Transactions on Parallel and Distributed Systems, 19(4):447–461, 2008.

[23] R. Chand, P. Felber, and M. Garofalakis. Tree-pattern similarity estimation for scalable

content-based routing. Data Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference on, pages 1016–1025, April 2007.

[24] R. Chand and P. A. Felber. A Scalable Protocol for Content-Based Routing in Overlay

Networks. In Proceedings of the Second IEEE International Symposium on Network

Computing and Applications (NCA ’03), pages 123–, Washington, DC, USA, 2003.

IEEE Computer Society.

[25] James Clark and Steven J. DeRose. XML Path Language (XPath) Ver-

sion 1.0. World Wide Web Consortium, Recommendation, November 1999.

http://www.w3.org/TR/1999/REC-xpath-19991116/.

[26] M. P. Consens and T. Milo. Optimizing queries on files. In Proceedings of the 1994 ACM

SIGMOD international conference on Management of data (SIGMOD ’94), pages 301–

312, New York, NY, USA, 1994. ACM.

[27] Mariano P. Consens and Tova Milo. Algebras for querying text regions (extended

abstract). In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART sympo-

sium on Principles of database systems, PODS ’95, pages 11–22, New York, NY, USA,

1995. ACM.

[28] Flavin Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,

34:56–78, February 1991.

[29] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-scale XML dissemination

service. In Proceedings of the Thirtieth international conference on Very large data

bases (VLDB ’04), pages 612–623. VLDB Endowment, 2004.

[30] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter Fischer. Path

Sharing and Predicate Evaluation for High-Performance XML Filtering. ACM TODS,

28(4):467–516, 2003.

[31] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

The many faces of publish/subscribe. ACM Comput. Surv., 35:114–131, June 2003.

[32] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache: a Scalable

Wide-Area Web Cache Sharing Protocol. IEEE/ACM Transactions on Networking,

8(3):281–293, 2000.

[33] P. Felber, C.Y. Chan, M. Garofalakis, and R. Rastogi. Scalable filtering of XML data

for Web services. IEEE Internet Computing, 7(1):49–57, 2003.

[34] W. Fenner, M. Rabinovich, K. K. Ramakrishnan, D. Srivastava, and Y. Zhang.

XTreeNet: Scalable overlay networks for XML content dissemination and querying

(synopsis). In Proceedings of the 10th International Workshop on Web Content Caching

and Distribution (WCW ’05), pages 41–46, Washington, DC, USA, 2005. IEEE Com-

Spyridoula Miliaraki 147

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

puter Society.

[35] FreePastry 2.1 release, 2009. http://www.freepastry.org/FreePastry/.

[36] L. Galanis, Y. Wang, S. Jeffery, and D. J. DeWitt. Locating data sources in large

distributed systems. In Proceedings of the 29th international conference on Very large

data bases (VLDB ’03), pages 874–885. VLDB Endowment, 2003.

[37] P. Brighten Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed sys-

tems. In Proceedings of the Annual ACM Conference of the Special Interest Group on

Data Communication (SIGCOMM), 2006.

[38] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom filter-based XML packets filtering

for millions of path queries. In Proceedings of the 21st International Conference on

Data Engineering (ICDE ’05), pages 890–901, Washington, DC, USA, 2005. IEEE

Computer Society.

[39] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML

streams with deterministic automata and stream indexes. ACM Trans. Database Syst.,

29(4):752–788, 2004.

[40] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing xml

streams with deterministic automata. In Proceedings of the 9th International Con-

ference on Database Theory, ICDT ’03, pages 173–189, London, UK, 2002. Springer-

Verlag.

[41] A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In

Proceedings of the 2003 ACM SIGMOD international conference on Management of

data (SIGMOD ’03), pages 419–430, New York, NY, USA, 2003. ACM.

[42] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Megh-

doot: content-based publish/subscribe over p2p networks. In Proceedings of the 5th

ACM/IFIP/USENIX international conference on Middleware, Middleware ’04, pages

254–273, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[43] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction to Automata

Theory, Languages and Computability. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2000.

[44] S. Hou and H. A. Jacobsen. Predicate-based filtering of XPath expressions. In Pro-

ceedings of the 22nd International Conference on Data Engineering (ICDE ’06), pages

53–, Washington, DC, USA, 2006. IEEE Computer Society.

[45] IBM. Gryphon: Publish/subscribe over public networks. Technical report, 2001.

[46] IBM XML Generator, 1999. http://www.alphaworks.ibm.com/xmlgenerator.

[47] Zachary G. Ives, A. Y. Halevy, and D. S. Weld. An xml query engine for network-bound

data. The VLDB Journal, 11:380–402, December 2002.

[48] H. V. Jagadish, B. C. Ooi, K. Tan, and Q. H. Vu. Baton: a balanced tree structure

Spyridoula Miliaraki 148

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

for peer-to-peer networks. In Proceedings of the 31st international conference on Very

large data bases (VLDB ’05), pages 661–672. VLDB Endowment, 2005.

[49] H. V. Jagadish, B. C. Ooi, K. Tan, Q. H. Vu, and R. Zhang. Speeding up search in

peer-to-peer networks with a multi-way tree structure. In Proceedings of the 2006 ACM

SIGMOD international conference on Management of data (SIGMOD ’06), pages 1–

12, New York, NY, USA, 2006. ACM.

[50] Jayanthkumar Kannan, Beverly Yang, Scott Shenker, Puneet Sharma, Sujata Baner-

jee, Sujoy Basu, and Sung ju Lee. Smartseer: Using a dht to process continuous queries

over peer-to-peer networks. In IEEE INFOCOM, 2006.

[51] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and

Daniel Lewin. Consistent hashing and random trees: distributed caching protocols for

relieving hot spots on the world wide web. In Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, STOC ’97, pages 654–663, New York, NY,

USA, 1997. ACM.

[52] David R. Karger and Matthias Ruhl. Simple efficient load balancing algorithms for

peer-to-peer systems. In SPAA ’04.

[53] G. Koloniari and E. Pitoura. Content-based routing of path queries in peer-to-peer

systems. In Advances in Database Technology - EDBT 2004, pages 29–47. Springer

Berlin / Heidelberg, 2004.

[54] Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho Lee. FiST: Scalable XML Doc-

ument Filtering by Sequencing Twig Patterns. In Proceedings of the 31st international

conference on Very large data bases (VLDB 2005), 2005.

[55] Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho Lee. Value-based Predicate

Filtering of XML Documents. Data and Knowledge Engineering, 67(1):51–73, 2008.

[56] Laks V. S. Lakshmanan and Sailaja Parthasarathy. On efficient matching of streaming

xml documents and queries. In Proceedings of the 8th International Conference on

Extending Database Technology: Advances in Database Technology, EDBT ’02, pages

142–160, London, UK, 2002. Springer-Verlag.

[57] Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Evaluating conjunctive triple

pattern queries over large structured overlay networks. In International Semantic Web

Conference, pages 399–413, 2006.

[58] Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. LH*a scalable, dis-

tributed data structure. ACM Trans. Database Syst., 21:480–525, December 1996.

[59] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai Ganesh. Graph-theoretic analysis of

structured peer-to-peer systems: routing distances and fault resilience. In Proceedings

of the 2003 conference on Applications, technologies, architectures, and protocols for

computer communications, SIGCOMM ’03, pages 395–406, New York, NY, USA, 2003.

Spyridoula Miliaraki 149

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

ACM.

[60] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and com-

parison of peer-to-peer overlay network schemes. Communications Surveys Tutorials,

IEEE, 7(2):72 – 93, quarter 2005.

[61] Bertram Ludäscher, Pratik Mukhopadhyay, and Yannis Papakonstantinou. A

transducer-based xml query processor. In Proceedings of the 28th international con-

ference on Very Large Data Bases, VLDB ’02, pages 227–238. VLDB Endowment,

2002.

[62] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic

emulation of the butterfly. In Proceedings of the twenty-first annual symposium on

Principles of distributed computing, PODC ’02, pages 183–192, New York, NY, USA,

2002. ACM.

[63] F. Manola and E. Miller. RDF primer: W3c recommendation. Decision Support

Systems, 2004.

[64] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system

based on the xor metric. In Revised Papers from the First International Workshop on

Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, 2002. Springer-Verlag.

[65] David Megginson. SAX: the Simple API for XML. http://www.saxproject.org/.

[66] I. Miliaraki, Z. Kaoudi, and M. Koubarakis. XML data dissemination using automata

on top of structured overlay networks. In Proceedings of the 17th International World

Wide Web Conference (WWW ’08), pages 865–874, New York, NY, USA, 2008. ACM.

[67] I. Miliaraki and M. Koubarakis. Distributed structural and value XML filtering. In

Proceedings of the 4th ACM International Conference on Distributed Event-Based Sys-

tems (DEBS ’10), pages 2–13, New York, NY, USA, 2010. ACM.

[68] Iris Miliaraki and Manolis Koubarakis. Foxtrot: Distributed structural and value xml

filtering.

[69] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early profile pruning on XML-aware

publish/subscribe systems. In Proceedings of the 33rd international conference on

Very large data bases (VLDB ’07), pages 866–877. VLDB Endowment, 2007.

[70] Mirella M. Moro, Petko Bakalov, and Vassilis J. Tsotras. Early profile pruning on xml-

aware publish-subscribe systems. In Proceedings of the 33rd international conference

on Very large data bases, VLDB ’07, pages 866–877. VLDB Endowment, 2007.

[71] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Stan-

dard. Federal Information Processing Standards Publication, Gaithersburg, MD, USA,

apr 1995.

[72] O. Papaemmanouil and U. Cetintemel. SemCast: Semantic multicast for content-

based data dissemination. In Proceedings of the 21st International Conference on

Spyridoula Miliaraki 150

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

Data Engineering (ICDE ’05), pages 242–253, Washington, DC, USA, 2005. IEEE

Computer Society.

[73] F. Peng and S. S. Chawathe. XPath queries on streaming data. In Proceedings of the

2003 ACM SIGMOD international conference on Management of data (SIGMOD ’03),

pages 431–442, New York, NY, USA, 2003. ACM.

[74] Feng Peng and Sudarshan S. Chawathe. Xpath queries on streaming data. In Pro-

ceedings of the 2003 ACM SIGMOD international conference on Management of data,

SIGMOD ’03, pages 431–442, New York, NY, USA, 2003. ACM.

[75] Feng Peng and Sudarshan S. Chawathe. Xsq: A streaming xpath engine. ACM Trans.

Database Syst., 30:577–623, June 2005.

[76] João Pereira, Françoise Fabret, François Llirbat, Radu Preotiuc-Pietro, Kenneth A.

Ross, and Dennis Shasha. Publish/subscribe on the web at extreme speed. In Pro-

ceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00,

pages 627–630, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[77] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF.

Web Semant., 8:255–270, November 2010.

[78] Milenko Petrovic, Haifeng Liu, and Hans-Arno Jacobsen. G-topss: fast filtering of

graph-based metadata. In Proceedings of the 14th international conference on World

Wide Web, WWW ’05, pages 539–547, New York, NY, USA, 2005. ACM.

[79] T. Pitoura and P. Triantafillou. Load Distribution Fairness in P2P Data Management

Systems. In ICDE 2007.

[80] Theoni Pitoura, Nikos Ntarmos, and Peter Triantafillou. Saturn: Range queries, load

balancing and fault tolerance in dht data systems. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 2010.

[81] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In Proceedings of the ninth

annual ACM symposium on Parallel algorithms and architectures, SPAA ’97, pages

311–320, New York, NY, USA, 1997. ACM.

[82] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Brief announce-

ment: prefix hash tree. In Proceedings of the twenty-third annual ACM symposium on

Principles of distributed computing (PODC ’04), pages 368–368, New York, NY, USA,

2004. ACM.

[83] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer. Corona: a high

performance publish-subscribe system for the World Wide Web. In Proceedings of the

3rd conference on Networked Systems Design & Implementation - Volume 3, NSDI’06,

pages 2–2, Berkeley, CA, USA, 2006. USENIX Association.

[84] P. R. Rao and B. Moon. Locating XML documents in a peer-to-peer network using

Spyridoula Miliaraki 151

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

distributed hash tables. IEEE Trans. on Knowl. and Data Eng., 21(12):1737–1752,

2009.

[85] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content-addressable network. In Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer communications,

SIGCOMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

[86] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fixing the

embarrassing slowness of OpenDHT on PlanetLab. In Proceedings of the 2nd conference

on Real, Large Distributed Systems - Volume 2, WORLDS’05, pages 25–30, Berkeley,

CA, USA, 2005. USENIX Association.

[87] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn in a

dht. In Proceedings of the annual conference on USENIX Annual Technical Conference,

ATEC ’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[88] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms (Middleware ’01), pages 329–350,

London, UK, 2001. Springer-Verlag.

[89] Thomas Schwentick. Automata for xml–a survey. Journal of Computer and System

Sciences, 73(3):289 – 315, 2007. Special Issue: Database Theory 2004.

[90] Luc Segoufin and Victor Vianu. Validating streaming XML documents. In PODS,

pages 53–64. ACM Press, 2002.

[91] Michael Sipser. Introduction to the Theory of Computation. International Thomson

Publishing, 1st edition, 1996.

[92] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based content routing using

XML. In Proceedings of the eighteenth ACM symposium on Operating systems princi-

ples (SOSP ’01), pages 160–173, New York, NY, USA, 2001. ACM.

[93] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In Proceedings of the

2001 conference on Applications, technologies, architectures, and protocols for com-

puter communications (SIGCOMM ’01), pages 149–160, New York, NY, USA, 2001.

ACM.

[94] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol

for internet applications. IEEE/ACM Trans. Netw., 11:17–32, February 2003.

[95] Sonesh Surana, Brighten Godfrey, Karthik Lakshminarayanan, Richard Karp, and Ion

Stoica. Load balancing in dynamic structured peer-to-peer systems. Perform. Eval.,

63(3):217–240, 2006.

Spyridoula Miliaraki 152

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

[96] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejandro P.

Buchmann. A peer-to-peer approach to content-based publish/subscribe. In Proceed-

ings of the 2nd international workshop on Distributed event-based systems, DEBS ’03,

pages 1–8, New York, NY, USA, 2003. ACM.

[97] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML

Schema Part 1: Structures. World Wide Web Consortium, Recommendation, October

2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[98] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymaki. Implementing a

scalable XML publish/subscribe system using relational database systems. In Pro-

ceedings of the 2004 ACM SIGMOD international conference on Management of data

(SIGMOD ’04), pages 479–490, New York, NY, USA, 2004. ACM.

[99] Peter Triantafillou and Ioannis Aekaterinidis. Content-based publish-subscribe over

structured p2p networks. In Proc. third Int. Workshop Distributed Event-based Systems

(DEBS”04), pages 24–25, 2004.

[100] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. Publish/subscribe

functionality in IR environments using structured overlay networks. In SIGIR, pages

322–329, 2005.

[101] Dimitrios Tsoumakos and Nick Roussopoulos. A comparison of peer-to-peer search

methods. In WebDB, pages 61–66, 2003.

[102] H. Uchiyama, M. Onizuka, and T. Honishi. Distributed xml stream filtering system

with high scalability. In Proceedings of the 21st International Conference on Data

Engineering (ICDE ’05), pages 968–977, Washington, DC, USA, 2005. IEEE Computer

Society.

[103] Z. Vagena, M. M. Moro, and V. J. Tsotras. Value-aware RoXSum: Effective message

aggregation for XML-aware information dissemination. In 10th International Workshop

on the Web and Databases (WebDB ’07), 2007.

[104] Jeffrey Scott Vitter. Random Sampling with a Reservoir. ACM Transactions on

Mathematical Software, 11(1):37–57, 1985.

[105] Bruce Watson. Practical optimizations for automata. In Derick Wood and Sheng Yu,

editors, Automata Implementation, volume 1436 of Lecture Notes in Computer Science,

pages 232–240. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0031396.

[106] XMark: An XML benchmark project, 2001. http://www.xml-benchmark.org/.

[107] YFilter 1.0 release, 2004. http://yfilter.cs.umass.edu/code_release.htm.

[108] C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood: Distributed trees in peer-

to-peer systems. In Peer-to-Peer Systems IV, 4th International Workshop, IPTPS

2005, volume 3640 of Lecture Notes in Computer Science, pages 47–57. Springer, 2005.

[109] Xi Zhang, Liang Huai Yang, Mong-Li Lee, and Wynne Hsu. Scaling sdi systems via

Spyridoula Miliaraki 153

Distributed Filtering and Dissemination of XML Data in Peer-to-Peer Systems

query clustering and aggregation. In DASFAA, pages 208–219, 2004.

[110] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastruc-

ture for fault-tolerant wide-area location and. Technical report, Berkeley, CA, USA,

2001.

[111] A. Zhou, W. Qian, X. Gong, and M. Zhou. Sonnet: An efficient distributed content-

based dissemination broker (poster paper). In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data (SIGMOD ’07), pages 1094–1096,

New York, NY, USA, 2007. ACM.

[112] Mo Zhou and Yuqing Wu. XML-based RDF data management for efficient query pro-

cessing. In Proceedings of the 13th International Workshop on the Web and Databases,

WebDB ’10, pages 3:1–3:6, New York, NY, USA, 2010. ACM.

[113] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D.

Kubiatowicz. Bayeux: an architecture for scalable and fault-tolerant wide-area data

dissemination. In Proceedings of the 11th international workshop on Network and

operating systems support for digital audio and video, NOSSDAV ’01, pages 11–20,

New York, NY, USA, 2001. ACM.

Spyridoula Miliaraki 154

