NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Using scripting languages

for hardware/software co-design

Evangelos Logaras

ATHENS
DECEMBER 2015

EONIKO KAI KAMOAIZTPIAKO NMANENIZTHMIO AOGHNQN

2XOAH OETIKQN ENMIZTHMQN

TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

MPOrPAMMA METANTYXIAKQN ZMOYAQN

AIAAKTOPIKH AIATPIBH

M£006o1 cuoxediaong UAIKOU/AOYIOHIKOU

ME XpAon scripting yAwoowv

EudyyeAog Aoyapdg

AOHNA
AEKEMBPIOZ 2015

PhD THESIS

Using scripting languages

for hardware/software co-design
Evangelos Logaras
ADVISOR: Elias Manolakos, Associate Professor, UoA
THREE-MEMBER ADVISING COMMITTEE:
Angela Arapoyanni, Professor, UcA
Elias Manolakos, Associate Professor, UoA

Antonios Paschalis, Professor, UoA

SEVEN-MEMBER EXAMINATION COMMITTEE

Kimon Anastasiadis Angela Arapoyanni
Professor, TEI of Athens Professor, UoA
Dimitrios Gizopoulos Elias Manolakos
Professor, UoA Associate Professor, UoA
Antonios Paschalis Dionysios Reisis
Professor, UoA Associate Professor, UoA

Dimitrios Soudris
Associate Professor, NTUA

Examination date: 4/12/2015

AIAAKTOPIKH AIATPIBH

MéBodol cuoxediaong UAIKOU/AOYIOUIKOU

ME Xpnon scripting yYAwoowv

EudyyeAog Aoyapdg

EMIBAENMQN: HAiag MavwAdkog, AvatmAnpwTrig Kabnyntig EKIMA
TPIMEAHZ ENITPOMNMH NAPAKOAOYOHZHZ:
AyyeAiki Apatroyidvvn, Kabnyntpia EKIMA
HAiag MavwAdkog, AvarrAnpwthig KadnyntAg EKIMA
AvTtwviog MaoxdAng, Kabnyntrig EKIA

ENTAMEAHZ EEETAZTIKH ENITPOMNH

Kipwv Avaotaoiddng AyyeAiki Apatroyidvvn
KaBnyntAg TEI ABrivag Kabnyntpia EKIA
AnunRTpiog NkilérouAog HAiag MavwAdkog
KaBnynthg EKIMA Avarr. KaBnyntig EKIMA
AvTwviog NMaoxdaAng Aiovioiog Pgiong
KaBnyntig EKIMA Avarr. Kadnyntig EKIMA
AnuATpIOG ZOoUVTPNG

Avarr. KaBnyntrig EMIN
Huepopnvia e§éraong: 4/12/2015

Abstract

Multiprocessor embedded System on Chips (SoCs) include at least one programmable proces-
sor Intellectual Property (IP) core and several other hardware blocks, attached as domain-specific
co-processors or peripheral units to the processor’s data and control bus. Such a complex system ar-
chitecture can take advantage of the reconfigurable, parallel processing and low power consumption
features of modern FPGA devices. However these benefits cannot be fully delivered due to the lack
of mature hardware/software co-design and rapid prototyping tools of embedded multi-processor
SoCs.

In this doctoral dissertation we present a new methodology for the hw/sw co-design of multi-
processor embedded SoCs developed by exploiting the strengths of the popular Python scripting
language. We exploit the features of Python to rapidly prototype and validate processor-centric
SoC designs for Field Programmable Gate Arrays (FPGA). Specifically we developed methods to:
(a) describe hardware blocks in Python and automatically generate synthesizable VHDL code, (b)
describe in Python and simulate embedded systems both at the algorithmic/functional level as well
as at the Register Transfer level, and automatically generate digital waveforms recording the results
of the system’s simulation that remains cycle-accurate and bit-true, (c) integrate into the design
flow software development tools for programming in C the microprocessor core, and (d) generate
scripts (Tel) to ease integration of a complete hw/sw design with FPGA implementation tools that
use logic synthesis to construct a physical implementation of the multi-processor SoC.

The above described hw/sw co-design and verification functionalities were implemented in the
developed System Python (SysPy) tool that targets the prototyping of processor-centric embedded
SoCs for FPGAs. In addition we have developed an Application Programming Interface (API)
which enables easy data transfer between a SoC design, running in an FPGA device, and a host
PC. The user can utilize Python software running on the PC and interact with C software running
on the processor IP core of the SoC and in this way control data processing and storage in the
FPGA.

Three sophisticated SoC’s have been designed and implemented and are presented in detail as
SoC design cases to demonstrate and assess the new co-design and co-simulation features of SysPy
along with the supported design methodology. All three designs use a processor IP core as the main
programmable system controller along with domain-specific hardware accelerator units designed
for: a) image processing (edge detection), b) audio processing (music genre classification), and c)
stochastic simulation of large-scale biochemical reaction networks (systems biology). These multi-

processor SoC design cases demonstrate the evolution of the design methodology and each one of

them highlights different features of it.

We believe that with our methodology, developed using Python, we contribute towards the
development of mature tools for the hw/sw co-design and rapid prototyping of FPGA-based em-
bedded multiprocessor SoCs. To get useful feedback from end users community and contribute to
the hw/sw co-design efforts we provide SysPy as an open source tool through GitHub, which is the

largest online code repository.
Subject Area: Digital Design, Embedded Systems

Keywords: Python, Processor-centric SoCs, hw/sw co-design, VHDL, FPGA, SysPy.

10

Heplindn

To Evoowpatouéva Suotiuata ot Uneida vitxol (embedded Systems on Chip - SoC) nepiéyouy
ToUAdyLoTOV évay npoypauuatill{éuevo enelepyaotrh ahhd xal Sudgopes wovades (IP cores) mou dua-
ouvdéovtal 6Toug Stalhoug EAEYYOU XoL BEBOUEVLY TOU m TMEPLYERELUX 1} oUVETEEERYUOTES ELBLXOY
oxonob. 'Evag tétolog timog olvletng dmgraxnic apyttextovixiic unopel va aflonotfoel TLg SuvaTdTN-
TEC EMOVATEOYpaUuaTiouwol (reconfiguration) twv uovédwv FPGA v va emttiyetr udmhéc emdboeig
xaL younih xotovéiwon evépyewg. Tig mpoomtinés autég dumg meplopiler 1 élkeuhn epyoahelwy
ovoyediaong ulxol/hoyiouwol Yo) Yehyoen npwtotunonolnon (rapid prototyping) evowuotwué-
voy nolveneéepyaotix®dy SoCs.

Yty napovoa Sudaxtopwnt| Sate3 tapouaidlouue yebodoroyia cuayediaons uhxol/hoyiouxol
v evoouatwuéva nokvenelepyaotixd SoCs mou uhonoleltol ue Tt yenorn e dnuoguiolc scripting
yAGooag npoypauuationoy Python. Avadewviouue exelva ta yapaxtnpiotind tng yavooag Python
Tou dteuxohlvouy Tn oyedlaon evoouatwuéveoy SoC e npoypauuatilbuevo enelepyaoth (processor-
centric) xar TV uhomolnom toug oe povadeg FPGA. Yuyxexpuéva avantilape uehédoug yuu: (o) vro-
othpln TEpLYpapdy otolyelny Lo ot Python xou autéuatn petatponi toug oe VHDL, (B) yerion
TepLypapdy Python vy v npocouoiwon evowuatwuévou custiuatog 1660 ot akyoptbuxd eninedo
Aetovpywdtntag 600 xon oe eninedo apyitextovixfic RTL (Register Transfer level) xou autéuaty
Topay Y apyelwy Ynplaxdy xuuatopoppdy ue ta anotehéouata e axpBols npocouoinong (cycle-
accurate xou bit-true) touv ovethuatoc. (v) Yrootfelln tov anoupaltntwy AELTOVEYLOV YL TOY Tpo-
veauuatioud Tou enelepyaoth oe Yhdooa C xau (3) mapayoynh apyelwy script (Tcl) yia v edxoln
ouvepyaola ue undpyovta epyarela Aoywnic avvleong yia T Quowy) vhotolnon Tou GUGTAUATOS GE
FPGA.

O napandve Aewtoupyles cuoyedlaong xar mpocouolwong vkixol/hoyiouixob evidyfnxav oto
epyahelo System Python (SysPy) nou otoyelel otny anodotxf| TpwtoTunonolnoy eVvonuatoUuéveny
processor-centric SoCs yiu FPGAs. Emnhéov avantiZoye dienagt, npoypduuatoc (API: Applica-
tion Programming Interface) yw tnv edxohn aviadloyy dedouévov uetall TOU EVOLUATOUEVOU
enelepyaot 0to FPGA xau dwwouvdedeuévoyv H/Y. Me autd o ypfotne unopel vo ahknhenidpd ue
avtiotolyo npdypauua oe C mou extehel 0 EVOOUATWUEVOS ETEEERYAOTNS, TROXEWEVOU Vo ENEYYEL
TpoyeauuaTIo T TNV enelepyaoia xal xaTayGenoy; Sedouévey 6To UALXS.

[tov éheyyo Twv duvatothtwy tne uebodohoylag oyedidoaue xaL uhonotoaue UE TN Yerion Tou
SysPy tpla evoouatwuéva noluveneepyaotind SoCs, ta omola avadewxviouy Tig véeg SuvaTOTNTES
ouoyedlaong xou tpocouolnong. Ko ta tpla autd SoCs yenoywonolody tuphva uixpeoenelepy oot og

%x0pLo EAEYXTY TOU GLUGTALATOS AAAS Xan EWdWES LoVEdES LALXOY oL oyedldoThxay Yia Tnv: o) enelep-

11

yaolo exévov, B) enelepyacio apyelov hyou xat ¥) 6ToxaoTn Tpoc0oUolwon PBLOAOYXGY dxTiwY.
H Saduxaota vhomolnong tov tpudy nolvenelepyaotixedy SoCs éyive ota mhalow g e€éhing xou
Behtiotonoinang Tou dlou tou epyakeiou, evd xdle oyEdlo ypnoluonolel xaL avadelxviel CUYHEXPLUEVA
TOU YAEAXTNRLOTLXA.

Iiotevouue 6TL 1 pebodohoyia oyedlaong mou avantiyOnxe ue ypron e Python cuveisgépet
onuavtixd mpoc v xatevbuven e cuoyedlaone LVAOU/AoYLouxol xaL TpeTOTUTONOINONS YLd
EVOOUATWUEVA ouoThuata oe §neida Aoy, Touéa 6mou ofuecpa dev umdpyouy Gelua dtabéoiua
epyarela. Emniéov to npwtdtuno epyareio SysPy, anotéheoua autric tne €peuvag, nopéyetor ehetbepa
uéow tou GitHub mou anotekel tny yeyalitepn Siadixtuaxt) That@dpoud napoyhic AoYLoULXOU avoLy ToU
%x@dwxa (open source) npoxelwévou va AMBouue yphowes TAnpogopie and Toug Tehixols ypRotes Yo
TNV BEATI®OT TOY ASLTOURYLOY XAl TNG XPNoTXXOTNTAS TOU.

Ocpatixn) neproy: Ynpiaxi Xyeblaon, Evowuatwuéva Yvothuata
Keywords: Python, nupijves eneéepyaotdyv, ovoyediaon vAtxol/Aoyiouwxod, VHDL, FPGA, SysPy.

12

Acknowledgements

First of all I would like to express my gratitude to my advisor Associate Professor Elias
Manolakos for his support during my studies. I am really grateful that he gave me the
opportunity to pursue my Ph.D. thesis by becoming part of his group. His deep knowledge
in the field of embedded systems design gave me the opportunity to improve my technical
skills and explore new ways and methods in digital hardware design. His advice helped me
take important decisions in my career and under his guidance I learned how to use existing
knowledge to expand and promote my ideas and in general how to interact in an academic
environment.

I would also like to thank Professor Antonios Paschalis and Professor Angela Arapoyanni
for their constant support and advice during my studies. I am also grateful to Professor
George Tzanakos for his guidance and for the way he taught me to conduct research in his
laboratory. His ideas and way of thinking will follow me in my professional career.

I also want to thank all my colleagues, officemates and friends who supported me during
my studies. I express my gratitude to my good officemates and friends Symeon Chouvardas,
Dimitrios Manatakis and loannis Stamoulias for the time we spent in the office working
together and talking about science and the way to move on with our lives. I want to
thank my colleague Orsalia Hazapis for working together, helping me improve my ideas and
spending hours over electronic boards. T am grateful to Panagiotis Stamoulis for his support
and friendship and for the countless hours we spent together discussing and solving all kinds
of problems.

Finally I want thank my parents Elias and Christina, my sister Anna and my wife Rodica
for their patience all these years, although sometimes I really feel that they do not have a

clue about my research interests and my profession.

13

14

List of Publications

Journals:

1. E. Logaras, O. G. Hazapis, and E. S. Manolakos. “Python to accelerate embedded
SoC design: A case study for systems biology”. ACM Transactions on Embedded
Computing Systems, 13(4):84:1-84:25, March 2014.

Conferences:

1. E. Logaras and E. S. Manolakos. “SysPy: using Python for processor-centric SoC
design”. In Proc. IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pages 762-765, 2010.

2. O.G. Hazapis, E. Logaras, and E.S. Manolakos. “A soft IP core generating socs for
the efficient stochastic simulation of large Biomolecular Networks using FPGAs”. In
Proc. IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 77-80, 2012.

3. E. Logaras, E. Koutsouradis and E.S. Manolakos. “Python facilitates the rapid pro-
totyping and hw/sw verification of processor centric SoCs for FPGAs”. submitted to

the IEEE International Symposium on Circuits and Systems (ISCAS), October 2015.

15

16

YJUVOTITLXY] TAPOVGLAGT TG
Awdaxtoptnns AtatelBng

1.1 Ewayoyy

H Spauatuah adénon tng ywentxdtnTag Twv Hovddeny npoypauuatilouevng hoywxrg Field Programm-
able Gate Array (FPGA) ta teheutaia ypbvia €yel avifoer onuavind xal Ty TOAUTAOXOTNTA TV
CUGTNUATWY TOU UnopoUy va VAorownboly ue t yerior tous. H yeron étowwmy ntuphvey enclepyaotdy
o€ £vol 6VoTNUO UTOREL Vo ETLTAYUVEL GTUAVTLXA TOV ATULTOVUEVO Yebvo ayedlaong, ahhd npénet enlong
7 uebodohoyia oyedlaong vo unogetl vo untootnel&el ula tétow apyLtexTovixy. e autéd To xe@dAaLo
avagépovTal Ta xivntea ta omola pag odhynoav atny avdntuln tou SysPy xa enlong n ouvelogopd
Tou epyaheiou xaL g urtootnelduevng uebodohroyiag oty oyedlaor System on Chip ue nuprva ene-
Eepyaoth xau yerion FPGA. Y10 téhog tou xegahaiou ava@épouue GUVOTTIXE TO TMEPLEYOUEVO TV

xegohaloy Tou axohovhoiv.

1.1.1 Boaowol otéyol tng dratpPhg

O xdprog atdy0g TNg €peuvag HTay N avdntudy evég epyaielou dmgpraxic oyedlaong xal Tpocouolnang
xdvovtag yeron mepltypap®dy udnlol emnédou oe yawooa Python. To SysPy ctoyevel ewduxdtepa
N oYedlaon EVOWUATOUEVDY CUGTNUATWY UE Tuphva eneepyaoty) SLEUXOAUYOVTAS TN ouayediaoT
vhwol/hoyiopxot. Ta povadid yopaxtnowotixd e Python oe eninedo avdntuing npoypouudtov
script o€ nepBdhiov Linux o cuvduaoud ue T SuVATOHTNTES AVTIXEWEVOGTRAPOUS TPOYPAUUUATLOUOU

(OOP: Object Oriented Programming) nou enlong napéyet, uag Bornoay va avantifouue uebbdoug

Yl THV:

o dnuiovpyia UoviEhwy udmAol emmédou, my. aEOUNTIXOY UOVESKY, GTOLYElwY UVAUNG XoL

AOYXGY LOVAdWY, SLaatvdear Toug Ue TN Ypron meptypapdy Python xou autéuatn yetatpond

17

Toug ot ouvbéoiueg tepiypagés VHDL ouufatéc ue vhonolfoeg oe FPGA.

o avdntuln evog Uéoou To omolo eAEyyel Gha To UTOAOLTA EQYUAEL TTOU ATALTOVVTOL Yo TNV
avdmTuén VAU xau hoyiouxol xoatd tng Swadxacto oyedlaong evég SoC ue muprva enedep-

Yoo TH.

o cnelepyaotio ueydiou aplBudy apyelvy Tou napdyovtal xatd T Stadixaato melaxtg oyedlaong,

Y. apyela avapopdy, apyela YNeLIXGY XUUATOUOLGOY X.d.

AvtihauBavéuaote 611 1 oyedlaoy evég mohdmhoxou PmeLaxol EVEOUATOUEVOL GUGTAUATOS deV
unopel vo autoyatornownfel 6to oUvolo g, meodlaypddoaue Suwe xal avantiZoue €vo AoYLoULX6
oyedlaomng xal Tpocouolnang 1o onolo Slacuydéel Ta TepLocdTER Epyahela ayedlaonc Tou anattovvTaL
Yl TV vhomoinen evég tétoloug cuosthuatog. Me tn Borbeia g Python xou epyvoahelwv heduinic
VNGNS, XATAPERUUE VO UTOOTNPIEOUUE TEpLYpa@éc LAOU ot Aoyiouwod ae uhnké eninedo, ol
ornoleg Guwe urootneilouy xat otolyelo and Tig NO1 undpeyouces YAGGOES TEpLYPAPHC UALXOU, 6K

elvow VHDL xau Verilog.

1.1.2 Xuveiopopd

H ouvelogopd g épeuvag mou dtehybel emxevipdvetal 6To va anodeilel 6TL ulo uPnhol emnédou
yYhdooo 6nwe 1 Python unoget va yonowonownfel yia va oyediaotel, va npocopowwlel xat va uhonounbet
eva Yngraxd avotnua. Ou Suvatdtnteg autés xplvovtol mohd yprowes, eWdxd ota apyxd oTddio
vhornolnong, 6Tay TOAAES Lovadeg VoS GUGTAUATOS dev EYouy axdua Tpodiaypagel TAfpws xan enlong
dev elval YVWOTOC 0 XATAUERLOUOS TWY PAGLXGDY AELTOVEYLOY AVIUESH GE VAXOS XL hoyiouwd. "Onng
Oa dovue n Python elpar pio WSavixr) yhdooa v va Slayetplotel To nAf0oc Twv epYahelny mou
amowtolvTal v T oyedlaon evog SoC. Aellaue axdua Tov TedTO Ue TOV 0Tolo Ta AVTLXEWEVOGTEAURY
%O SCTIpting yopaxTneloTiXd TNe YAMGGS UTopoUy eUX0AN Vo LAY ELOLETOVY TNV TUQUY WYY XL ETE-
Cepyaotia ASCIT apyelowv, 6nweg VHDL, Tcl scripts, apyela XML x.a. ye otéyo 11 Ypriyopn npoco-
Uolwon xal SLepEdYNGY SLAPOPETIXMY APYLTEXTOVIXGY YLo TNV ulornoiner evég SoC.

Mehetdvtag xar ouyxptvovtag ue to epyahela oyedlaong mou Hdr undpyouy, Bewpolue 6Tt uévVOo

t0 SysPy:

1. vrnootnpllel tn cuoyedlaon ukxol/hoyiouxol pe THY SUVATOTHTA GUYTPOGOUOLWOTS LOVTEA®DY

uAixol oe Python xou akyoplBuwy hoyiouixod oe Python 7 C.

2. xdver yphon wag dnuopriods scripting YAGGGAS Yl TNV TEPLYRAUPT TNG APYLTEXTOVXNS EVOS

dnouaxol ouvothuatos oe uPnhé eninedo (ADL: Architectural Description Language) [68]

18

xaL emmAéov unootneiler TV mpocouolwon oe yaunké eninedo meprypapoy RTL addd xou
o ahyoplBuixd eninedo ouUTERLPORdS oL aUTOUATY Tapay YT apyelwy xuuatouoppdy Value
Change Dump (VCD) v yprion pe dnuogihh epyahela npocouolwons, énwe 1o ModelSim and
v Mentor Graphics.

3. vnootnellel Ty autduaty rapaywyr cuviéoysou xddixa VHDL ue yprion napauetponotioLuwy

ouvapthoewy Python.

4. vrootneilel oyediaon SoC ye evowudtwon dwpedy diabéoiuny tuphvey enelepyaotdy, 6Tng o

Leon xat o OpenRISC.

5. Sieuxohlvel TN yefion twv epyalelwy oyedlaong FPGA ue tny autéuatyn napaywyy) apyelwy
script Tel yi v odhynon twv epyahelny hoyuhic obvleong xar guowic oyedlaong xon
exTéleon) Toug o mepBdihov Linux v TV mopaywyd apyelnV TpOYRUUUATIOUOU UOVASKY

FPGA tnc etarpelag Xilinx.

Me autév Tov 1p6m0 10 cpyahelo TOU GYESLACAUUE HAVEL YpNOT TWV XANITEPWY YAPAXTNPLOTL-
x&v g Python yuwr va mepuypdder v apyttextoviny| evég SoC o uPmhé eninedo, adld xau yio va
QUTOUNTOTOLACEL TA TEPLOGOTERA and To PrAUaTa oyedlaong Tou AmoLTOUVTIL Yo TNV UAoTolnoT Tou

CUGTAUATOS GTO UALXO.

1.1.3 X0vodn xeparalwy

Yty nopovoa SwatpPn neptypdpovue T uebodohoyia alhd xar Tig SuvatéTnTeS TOu gpyahelou ToU
oyeddotnxe xou entong napabfétovue eavod apliud tapadelyudtwy oyedlaong date va yivouv xatavo-
NTA T YUEAXTNELOTIXG TOU, AhRd XL VO TORAXLYAGOUUE TOV UEAAOVTIXG avaYVAGTY Vo XdVeL Y pnioT
Tou epyahelov mou Satifetal ehedlepo. T Toug enelepyaotéc mou yenoilonololue ot napadely-
uato oyedlaong xdvouvue Ypfion TV TEPLYEAPOY TOUG YLa va Toug vhonooouye (soft IP cores), oe
avtifeon pe enelepyaotéc mou elvar #3n vhomownuévor 6to LVAS Yéoa oe wa Lovdda FPGA (hard-
wired cores). Ou enelepyaotéc nou unootnpilovtar otny tpéyouoa éxdoor tou SysPy elval o) o
uxpoeheyxthc 8-bit AVR ATmegal28 ATmegal28 [76], o onoloc nopéyetar uéoa and Ty xovéTnta
tou OpenCores [73] yw) oyedlaon evic cuothuatog enelepyacioc ewbvoy xat B) o enelepyaothc
32-bit Leon3 [11], ané tnv Aeroflex Gaisler, yw éva olotnua enelepyaociag fiyou xal éva olotnua
enelepyactog Blohoywdy dedouévwy. Aoxiués oyedlaong enlong TpaYUATOTOAGAUUE XAl UE TN XeToN

tou eneepyaoth 32-bit OpenRISC [29], eniong and to OpenCores.

19

To ehinvixd xeluevo amoterel ua evpela meplindyn tou ayyAwod xewévou g dwteBre. H

0pYdvworn TV xegaialny T dlateBhc 6To eAANVIXS xetuevo €xel g e€hg:

e o710 Kegdhato 2 ylvetal avdluon tng oyetinric BBAoypaplog xoL ouyxplvovtal oL Suvatdtnteg
tou SysPy ue dhha oyetxd epyorela Ynglonic oyedlaong. [ivetow avagopd exlong otoug

Baouxolg Abyoug v Toug omoloug xdvaue yeron tng Python.
e o710 Kegdhato 3 napoucidlovtal to xdpla yopaxtneloTixd xat ol Aettoupyieg Tou epyaheiou.

e o010 Kegdhawo 4 avaddetar 1 pebodoroyia vhonolnong tev teldy mapadelyudtwy oyedlaong
X0l 0 TEOTOG UE Tov omolo xdvaue yehion Twv duvatothtwy mou nepléyel oc xdle meplintwon.
Avagépovtar enlong ta anoteAéouata Tng vhonoinong otn povdda FPGA mou elyaue ot
dudbeon wag. I'ivetar avagopd entong oty yefon tne uehddou BDTI vy ylo apyix) tocotxt

aELOAGYNOT) TWV YALAATNRLOTIXOY XAl TNG YenoTxdtnTag Tou SysPy.

e ot0 Kegdhowo 5 ouvolilovue ta anoteréoyata tng Swatpdnc xabde xar mbavée uehhoviixég

Behtidoelg xoL enexTtdoelg 0TS Nd1 UTAEY0VGES BUVATOTNTES.

1.2 Yyetxn BSAoypapio

T v avéntudn uag egapuoyhc npénel xdle Qopd va emAEyeTol TO0 XATIAANAO TEOYRAUUATLOTING
nepBdiloy. Nty neplntwon uog, 1 Python yenowonouifnxe yia tyyv avdntuin tou epyadelov ahid
XOL GOV YADGGH TEQLYPAPHC YL TNV UOVIEAOTOINGY oToLyelwY UAOU xal Aoyiouixol. Xe autd
T0 xe@dhato awttohoyovue Tt yenon tne Python ywa tnv avdntuln evéc epyakeiou mou atoyevet T
oyedlaomn Ynglaxdy cuotnudtwy. Enlong xdvouue avagopd otov tpbéno ue tov onolo oL a¥yypoveg
dtatderg FPGA unoompllouv 1t oyedlaoy pe evoouatouévoug tuprveg enclepyaotdy. Emmiéov
yivetal avagopd oe egapuoyéc ot onoteg €xel yenowwonoinlel Python, étol dote va Bonbricouyue
TOV AVOYVOOTH VA EXTUUAGEL TLS QUVATOTNTES TNS YAMGOUS, EVK EWSLXT| avapopd YiveTal o epyahela
dngraxrc oyedlaong ota omola yenowwonoteital Python xat yivetat 6byxpion tov yopaxtnploTixdy

Toug ue ta avtiotoya Tou SysPy.

1.2.1 Evoouatouévo cUCTARATL UE TUPNVES ENEEERTATTOV

Y10 TEPLOGOTERU EVOOUATWUEVN GUGTAULITO TTOU UAOTOLOUVTUL GE LOVASES TpoYpauatllOUeEVnS AoYL-
nhg xenotdonoteiton Théov Touldyiotov évag mupRvag tpoyeaupaTiléuevou enelepyaoth. O enelepya-

oThg Aettoupyel oav eEAeYXTHG TV SLaplpwV TEOTOXOAAWY ETLXOLVKVLAG TOU BLacLVSEoUY TO GUGTHU

20

ue eZotepéc Uovddes. To hoyiouwd mou extelel o enelepyaotic vhomowel o LYNAE enineda TV
TEWTOXOAAWY ETXOLVWVING, OTWS T.y. oTNY Teplntwon Tou Ethernet tov Swayweroud Twv dedouévmy
oe maxéta dedouévwy, 1 dayelolon Twv omolwy elvor apxetd dVoxokn av meérel va Yiver 6To UALXS
ue yehon unyavéy xataotdoewy. O enelepyaotic enlong duyelplletar xau v pot| Sedouévwy mpog
Ghhoug enelepyaoTég eLdX0U GXOTOU TOU GUVSEOVTAL GOV TEQLPERELAXES UOVADES.

Ou mhéov npbdogateg “owxoyéveles” pwovadwy FPGA, énwe 7 oepd Virtex-7 and v Xilinx xot 7
oelpd Arria-V ané v Altera, evoouatdvouy dindpnvoug eneepyaotéc ARM aneubelag oto uhixd
(hardwire cores), ou onoloL enxowvwvoly ye to vnbrowna otoyela mpoypaupatléuevng Aoywhc 6To
FPGA yéow eldudy dadlwy ehéyyou xal dedouévmy. O véog autdg tinog FPGA avagépetar we
npoypaupatilléuevo SoC, 6mou UTopoUy Vo ETAVATPOYRPAUUATLOTOUY Tautdypova otolyela hoyloul-
%00 o bAwxot. Erlong ol anapaitnteg tpomonolfoelg €xouv Yivel xar 6T0 TopEYOUEVO AOYLOULXO
oyedlaone and tic etapeles FPGA, dote va vnootneiler véeg uehodoroyieg oyedlaonc Pactouéveg
otig véeg duvatdtnteg 1wy FPGAs. To véo hoyiwouxd oyedlaong vnootneiler uebddoug oyedia-
ong ypnowonoldvtas tAndea étowwy povédwy (block oriented design) mou elval cuufatés xon
unopoVy va auvdeholy edxoha cav mepLpepelaxéc uovddes tou eneepyaoth. Autéd o tpdmoc oyedi-
aAoMG EMTAYYVEL ONUAVTIXE TOV Yedvo vAormoinarg evdg processor-centric SoC. Av AdPouvue entomng
UTOPLY %ol TN PELUEVT XATAVAAWGT Loyvog oy €youv ol véeg wovddes FPGA, urnopodue miéov va
ouyxplvouue pwa vhonoinon FPGA ye tnv avtiotouyn oe povdda Application Specific Integrated
Circuit (ASIC). Av BéBona anarteitar ol Tapaywyh evos 0hoxAnNenUévou xUxhGUAToc, T6Te and
drolm x6atoug N Aban Tou ASIC mapauével 1 ubvr emhoyn.

Ta mpoypapuatiléueva SoC Ha yivovtar 6ho xat mo SnUoguhy), o oyedLaoTéC UALXOU aAAd XaL ho-
yiouLxoU, 660 10 TAH00g TV £TOW®Y AoYIXGOY UoVadwy Ttou elval dlaléowes ota epyakeio oyedlaong
Oa avEdvetar. Egapuoyéc mou anoitody ueydhn enelepyaotiny| oyl, énwe egapuoyvéc enelepyasiog
fyou, ewodvag B eheyxtég Suxtiou dedouévmv €youv 1dn vhonounlel o povddeg FPGA, xdvovtag
yeron tou ueydhou mAf0ouS £TOLOY aELUNTIXGDY UOVABWY 6TO VAXG TOU YP1OLULOTOLOUVTAL YL Vol
exteMéooLY TouC anapaltnToug utohoylouols. Baouxde tapdyovtag npog auth v xatevfuven elvon
1 euxohlo mou Ba mapéyouv ta Swubéowa epyahela oyedlaong otny aUvdeot, Tou TpoyeauUATI OUEVOU
enelepyaoty| ue dAhoug enelepYaoTEC ELBLXOU GXOTOY XL TS TEPLPERELAXES UoVAdeg Tou Suayetpilovtal

T TPWTOXOAA emxolvmviag Tou SoC.

21

1.2.2 Xyedlaorn vAxol pe yerorn tng Python

H yhédooa Python [2] elvar pia yAGooo avorytol AoyLouxob 1 onola avartiylnxe and tov Guido van
Rossum. Elvaw pia yAdooo uhnhol emnédou mou yopaxtnelletar and edxohn avayveooudtnto Tou
xOOX AOY 6 TNG EVXOANE GUVTAENS IOV €Y0UY 0L EVTOAES TNS. Yrootnellel Ohec Tig YVwoTég uebodoug
npoypaupationod, énme T dnuoveyia axohoubuaxdy mpoypauudtey (6nwg n C), tpoypauudtony
SCTipt %ol aVTIXEWEVOOTRAY Tpoypauuationsd. "Eva npdypapua Python uropel vo exteheotel oav
script oe mepBdhhov Aertoupyxol ouathuatog Linux 7 axdua xal vo cuVOLAGTEL UE TNV EXTENEDT)
npoypauudtoy C/C++. H Python eivor e€atpetixd dnuogudfic otoug oyediaotés Aoyiouxol, xupieng
Aoy g amhic olvtaing mou urootnellet xat elvan dabéoiurn oe dhec Tic ExDOGELS TOU AELTOURYLXOV
ovothuatog Linux. Iogéyel enlong yéow tov BiBhobnxdy tng yeydho apliud étoyumy uebédwy yua
dudpopec hertovpyles. Mepueée and g mo yvwotés PBhiobrixes tne yhdooag elvae: o) To NumPy ol
t0 SciPy [62] ue) ypfon v onolwv unopel vo avantuybel xdduxag oe Python, ue obvtaln napduola
ue g Yhdooac Matlab, yw v extéheon unoloyioudy dwuvuopatixrc xar yeapuuhc dhyeleas, B)
to matplotlib [43] to onolo enttpénet tn dnuovpyia Ypapudy tapactdocwy ue) Borbewa Tou SciPy
xat y) 1o Scrapy To onolo mapéyel uehédouc yia tnv avelpeon xau enelepyacia mhnpogoptdy 610
dtadixtuo.

H Python éyel ypnowonotel 670 napeAddy yia tny avdntuln dnuopuhdy epyaleiwy oyedlaong ho-
YiouLxoU xat hixol, ewdixdtepa 6mou anawteltal napayw Yy xa enedepyaotio apyelwy timou ASCIL Ta
PyCells [22] elvan Souég ypauuéves oe Python mou exgedlouvy tn hettovpyla Pnguaxdyv xot avakoyixdy
uovadwy xat yenowwonototvta Y oyediaon ASIC. Ta PyCells ypnowonotobvtal #d1 oe epyahela
oyedlaong oAoxANEOUEVEDY xUXAoUdTwy and Tig etapleg Cadence xoau Synopsys. H Python eniong
xenoruonoinxe xau oty avdntuin tne mhatedpuac VIPER [90] mou ypnowwonoweital yio tov mpo-
YOUUUATIOUS EVOWUATOUEYLY CUOTHUATLY, 6Twe Tou ovothuatoc Arduino [12] [18], nou ypnoiuo-
molelTan Yoo THY uhomolnot eQopuoydY eAEYyou.

Egéoov o tpénog olvtaing tne Python #tav %97 Snuoguiic xat anodextdg and éva eupt xowvd,
npoonaffioaue xatd v avdntuln tou SysPy va xdvouue ypron twv mo xowvd amodextdv xou
OUUPATOY YALAXTNELOTIXDY TNE YAOGGAS XAl VO ATOPUYOUUE TPOTOUS TEQLYRAPNS XAL TROYRAUUATL-
ool aclufatoug Ue TN YAGooo xal To xowvd anodextd meotuna tng. Ta dVo mo onuavtind yoapa-
ATNPLOTXE TG YAWLO GG Tou pag winoav oty yeron tng Yo TRy avdntuln evég epyahelou Yngraxic

oyedlaong elval to axdrovla:

e Evowudtwon xau yehon UEco and £va xOLVO TEOYRAUUATIOTIXO TERS3EANOY GAwY TwVY SLa(o-

PETLXAY EpYAAELWY XAl TEOYPAUUET®Y TOU ATOLTOVVTAL YLol TN ouoyediaon VAol /hoylouxol

22

xotd Tt Swadwaota oyedlaorng evog SoC.

® Ynoothpllrn tepémou alvtadng pe TOV onolo Umopel Vo Teplypagel 1 AELTOUEYXOTNTU LOVAI®Y
uhxol oe younhé eninedo Register Transfer Level (RTL), adhhé xau oe udmié eninedo ue yprion
uebédwy oty Python ov onoleg mapdyouv autduata Tic anattoVueve Teplypa@es LALXOU ot

yidooa VHDL.

Y10 Yyfua X1.1 napouvoidlovue tov Tpoémo Ue TOv omolo yenousomorotue tnv Python yio va
ouVdEcoLUE ETOLOUS TUETVEG ENMeEepYaoT®OY Ue dhkeg wovddes. Me yprion ueboédwy atnv Python
Topdyeton autouata xdduxag VHDL nou neptypdget) Aettovpydtnta enelepyaotdy 8ol oxomol
xafdg xan Tig anapaltnteg povadeg Slacivdeorg ue Tov Tpoypauuatiléuevo eneéepyaoth. To SysPy
eniong mapdyel autéduata Ta anopaitnta Tcl scripts ta onola ewodyouv dha ta anapaitnTa apyela
neptypagic uhixot (HDL: Hardware Description Language) tou eneZepyaoty| xat extehoby oe ypouuh
eVTOAGY Ti¢ dladLxacieg Aoyxrc avvleon xal puowxic oyedlaong ue ypron Tov xatdhinhwy epyahelwy
FPGA. Ta nopayobueva script elvar ouuPatd ue to epyadelo ISE e Xilinx yu oyedlaon uiuxol
ue yenon povadwv FPGA. Enlong exteleltar avtduata 1 yetoayAdTTion twv tpoyeauudtov C tou
OTOLTOVVTAL VLol TOV TPOYPAUUOTIONS Tou enelepyaoth Ue 1 yeron xatdiiniov GCC [1] petayiot-

TLoTOY, Tou elval cuuPBatol ue Tig TepLocdTERES SLUDEGLUES APYLTEXTOVIXES ETEEERYATTAOY.

Tcl W

: Yroouotnpa eneepyaotn)

LLLLLLLLl 5
SDRAM @ @ UART | 4P
eeeeeeeaee.allITIIIIIIIIINIIIIIINLT o Muprivag =
. . - emeSepyaots) fm : E :
o | o TR O (om0 e p A
th : glue @ = epappoyn
Python |,. logic o @ doyopwov il

oe | [epipepelarr) @ L2 sLinux @
HDL “7"“ T Ethernet 4—-—-’

MetayAottion
Aoylopikou

Eyfuo X1.1: Aour) ouosthuatog SoC e npoypauuatillOUEVO ETELERYAOTH.

23

1.2.3 Xdyxplon pe dhha epyahela Pnpraxns oyedlaong

Ay xau undpyouv Hd1 Slabéoua epyakeia tov utoatnellouv oyedlaon YneLaxdy cueTNUITLY og UPNAS
eninedo, T TeploabTepa and autd dev utootnellouv T cuViTaEEY ot éva oYEBLO LOVABWY UALXOU XoL
ey tpoypauuatilouevey enelepyact®dy. Mia cwoth yebodoroyia oyedlaong npénel av uToGTN-
ellel mn yefion epyahelny avdnTtuing hoyiouxot xabdg enlong xal 11 6wo Ty Slaclvdeon eneepyaoTdY
o 6xomoU Ue TOV TEoYPaUUATILOUEVO ENEepYAOTY, TOU AMOTEAEL TOV XEVTPIXG EAEYXTY| TOU GU-
othuatoc. Ta nepocdtepa epyadela oyediaone yio FPGA [94], [87] aduvatoly va Sayetplotoly e
evialo tpémo TNV oyedlacT VAXOU xaL Aoyloulxol oy anonteltal Yia TV uhonoinom evog SoC. Eniong
ot etaplec FPGA unootneilouy v evowudtnon uévo eunopixdy nupivey eneiepyastdy ouuBaTey
uévo ue g povadeg FPGA nou rapdyouv.

Y Siebvn Bihoypapio undpyouy exiong avagopés xal oe dAAa U EUTORIXA EQYAAELX TTOU XEVOLY
xefon e Python yw) oyediaon dngraxdv cvetnudtov. To epyakelo PyHDL [39] unootnpllel
oyedlaot evog GUGTAUATOS UE Y pnoT Teplypap®Y dourg, 6mou doués e C++ yenoLULonoLoUvToL YL Vo
neptypddouy 1 hettovpyla gngraxdy wovidwy. To PHDL [63] enlong unootneilel neptypapéc Souric
oe Python xat topdyel xddua RTL yio vhonolner evég cuostiuatog oe FPGA. Melovéxtnua anotehel
N xphon ETowwy BBrobnxdy oyetxd anhdy Aoywdv Lovddwy m.y. Aoywéc mOAES, TOMUTAEXTES,
HATAYOPNTES K.

To PyMTL [58] yenowonotel tnv Python yw va mepiypdder dnpuaxée hertovpyles oe younhd
entnedo meptypapdy RTL ahhd xa o udmhé agnenuévo eninedo. Av xou unootnpllel Tnv uetatponty
TV TepLypapdy ot YAGooa Verilog, to PyMTL eotidlel neplocdtepo TNy npocouoiwon Ynelaxoy
CUGTNUATWY, OTOU 7 YeNHoTN UETAYAWTTLOTGOV C++ emtayVvel xatd TOAY TOV YpdVo TpOGOUOlnGTg
uta Teptypapnc udmhot emnédou Python. Ou nopaydueveg nepiypapéc ukixod oe Verilog Sev elval
ovuPatég yia vhonolnon oe FPGA A ASIC. Enlong ta povtéha npocouolneng nou yenoiuonolodviol
dev poviehornololy v xabuotépnon Siéhevong uéoa and Tic AoYIXES LOVADES TOU TUPAUTNEELTAL GTO
UAX6, 6neg utoatneiletal ota yovtéla Tou SysPy.

Alha epyahela 6nwe to MyHDL [23] [71] xav to PDSDL [97] urootneilouy hoyixéc meplypopés
dournc xaL mepLypaéc ouuneplpopdc oe Python xou uetatpont| oe yhdooa HDL. To MyHDL eniong
unoaTnellel TNy TRocoUolwsn INnPLaxdy LoVESKY Xat Tapéyel ATOTEAEGUATA G LOPPY XEWEVOL XL
oy ue yehon apyetwyv xvuatopoppny VCD érwg xdvouue oto SysPy. Erlong oto MyHDL dev
unootneiletal 1 oyedlaon ue ypron étowwy wovddwy oe VHDL % Verilog énwe vnootneiletatr oto
SysPy, xat 6hec oL hoyixég Aettoupyieg mpémel va meptypagoly ye) yerion tne Python.

Yuvoilovtag Tig SuvatéTNTES TOU EpYahelou Tou oyedldoaue o€ GUYXELOT) UE TU TEOAVAPEROUEVA

24

Yrootneildueves Suvatdryres
Python Hopaywyh ocuvbéoipwon Avvatétnta Yvoyediaon Xehon rupHvwy XehHon cpyareiwy
Epyalela oe RTL xBdduxa yio FPGA TpocoROlwOoNg VAwoV-AoyLouLxol enedepyaoTh Aoywxhg olvBeong Avagopéc
PyHDL X - - - - - [39]
PHDL X b - - - - [63]
MyHDL X B X , . _ (23]
PyMTL X X X - - - [58]
PDSDL X - - - - - [97]
SysPy X X X X X X [61]

ITivaxcag IT1.1: Xdyxpion yapaxtneloTixdy Twy epYaielny oyedlaonc.

epyahela, uoévo to SysPy urootneilel:

1. 11 oyedlaon processor-centric SoC xat Swayelplon Twv anapaltniwy epyalelwy avdntuing Ao-

7
YLoULX0V.

2. yphon rmapapetponoioweny uehddwy Python yio autduatn uetatponh) touc o€ meplypapEc

VHDL.

3. mpocouolnoy vPnhol emnédov ue yenon ueHddwy xal xAdoewv Python yia tny nepiypapr tne

Aettoupyla LOVESWY TOU LAXOU.
4. tautdypovy Tpocouoiwaon mepLYpaP®Y UAXOU udniol emnédou xoL hoylouixol o YAGaoa C
5. xatayOenomn xUUATOUoRPHY Tpocouoinans ot apyela Tomou VCD.

6. avtéuatn napaywyt) xoL yeriorn Tcl scripts yua) Sayelpion dhwv tov anapaltntoy epyaleiwy

vl T cuoyedlaoy vkixol/hoyiouxol oe yovadec FPGA.

Yoy Hivaxa I11.1 nogovoidlouye ula o0YxpLon ToY TeoavagepbUuevey epyalelny. 'Onng galvetal
Oha Ta gpyakela umopovy va mapdyouv xoduxa RTL anéd meprypagés Python, ahid uévo to SysPy
xat to PHDL vrootneilouy v mapaywyn xddwa cuuPatéd ue vionolfoeic FPGA. Enlong evé 1o
MyHDL éyev Suvatodtnieg npocouolBoels evog cuoThuatog 6Tto eninedo wag meplypagrc Python,
uévo 1o SysPy unootnpllel Ty napoustacn Twv anoteAeoudTwy Tpocouolwong Loviéiwy Python ue
yerion apyeiwy VCD, nou aroteholy xaL Tov 1o SLadedoUévo Tpdmo xataydenons apyelny ¢nelaxdy
XUUATOUORPOY xal elvar ouuPatd ue 6ha ta epyaheia Yngraxic tpocouolwong. Télog uévo to SysPy

unootnellel Ty cuoyediaon XL GUYTPOGOUOIWST) aToLYElWY UALXOU Xat AoyLouixol oe uYnhé eninedo,

25

divovtag T SuvaTéTNTA ToEGAANANG LOVTENOTIONGYS TOU AOYLoUIXOY EVOC EVOOUATWUEVOL ENEEERY O

ot pall e Tig dlaouvdedeuéveg Hovadeg LALOU.

1.3 Mebodohoyla cyedlaong

Ye autd 10 xe@dhowo meptypdgetar 1 uebodoroyia oyedlaong mou axoroubeitar oto SysPy. lle-
elypdpovtar enlong oL SuVATOHTNTES YL TNV TPOGOUOIKGT, cuoTnudtwy SoC ue tuphva enelepyaoth.
Avagépovtal emmAéoy Ta YopaxXTHELoTIXd exelva Tou LTOoTNRILOUY THY TEOGOUOIWET) LOVESWY UALXOU
xaL Aoylouxot xal Tov TeéTo UE Tov omolo ouvSUALovTaL TA ATOTEAECUATA TNG TROCOUOLOGNS O
xowd povtéha meptypagnc. Ilagovoidletal enlong xal 1 Suvatdmnra napaynyhc aplfuntxdy xou
UNPLaIXdY XVUATOUORPKOY, oL oToleg YproLdonololvTal Yo Tov xafoploud Bacixdy napauéteny evog

CUGTAHUITOC.

1.3.1 Mebodoroylag oyedlaong

H uefodohroyla oyedlaong napovoidletar oto Lyfua X1.2. Ou Suvatdtnteg tng xahintouy £EL xlpLa

YoeaxTNELoTLXd mou Bewpolue 6TL elvon anopaltyta yio T oyedlaoy evog processor-centric SoC:

1. Ilepiypagr) oe HDL povadwy ulixol, mou cuYSEovTaL ooy TEQLYERELUXES UOVAdES TOU Tuprva

enelepYaoTh.

2. Xpron oc €va oyédlo £Towwy Hovadnwy Ukxol and oyeTéc Bihobrxec ¥ vlonounuéves o

yAbooa Verilog ¥y VHDL.

3. llpocouolwaon neprypagpdy Python mou npodiaypdgouy 11 AettoupyxdtnTta Lovddmy Aol xal

Aoyiouuol mou exteheltal and tov enelepyaoTH.

4. Avutéuaty napay Y TpoYpauUdTeY script yio tny xAfon epyahelny avdntuén Aoylouixol, T.y.
xAhor ety AoTtiotdv C, apyixonolinon npoypduuatos Tou enelepyaaty] 6 UOVAdeS UvAUNG

(BRAM: Block RAM) oto FPGA.

3. Autéuatyn mapayeyh xau extéheon mpoypapudtey Tcl script yia Thv 0d%ynon tTwv epyaielny

hoyunric auvleong xat guowic ayedlaonc oe FPGA.

6. Topaywyr woviehwyv XML, yio v mepLypapn uovddwy vhixol, cuuPatd pe to npétuno IP-
XACT [15].

26

—
P

n T
10 ! z
9 3
3 4
53
p S

apxeia pubpong =
. . XPOVIKEG ITAPAHETPOL
N, N, ILX. Brjpa rpocopoieong,

o Sysfl?y Siapkela ripooopoiwong
. . conii;
S6ebopéva e10060u SysPy file 3
HoviEda rpocopoimong | Setup file ; .
apxeia eQpapoyng
41 & e Jovges
y VHDL
sedopva 4 netlist
£106600 povadeg e.g. CoreLib| W
nx. *.wav | Python |} N
A top-level 3rd party
: HDL
poviika design component
Aoylopikon - s, |e.g. Unisim
Python)\
(o u c/on
povitia il Keiein
UAkow ";p“v“s 4 |
, (l enegepyaori |
GTkWave. Modelsim, ... Fytio *
T N *. £QappoyEg xXprjotn
1 ; * C/C++
apxeio m anowAéopata S S YPAgHT) ‘- /
VCD 2 y avarapactaor) R
[—U—L onpatev pe to SciPy .
3 .
napayopeva apxeia A i J‘v/ M
Y * | M N
\ . AP T ,“W"l"
i o
. - KAT|01)

.

EDIF nvipn
nipoypap-
(BRAMS)

apxeia
(netlist) hatog VHDL

e oav/elelo]

< GCC,

oxediou SoC S HeTayA@Tuotg

@ . Y. . C/C++

IP-XACT S pos— Tel ﬂ extedéoo apxeio ¥ ﬂ
o script
poviéda §
IP-XACT | Aoyikr) ouvOeoT : SNAP:
"+, calls | puown oxebiaon |:> ooy oos tgear]
Yoo, > (epyadeia FPGA) FPGA Linux

Tyfua X1.2: Mebodohoyla oyedlaone SoC ue yprion muphvey enelepyaoTdy.

Yougwva ye v npotewvouevy ueodohoyla, n oyedlaon evog SoC Eexwvder pe tn dnutovpyia uo-
VTEALY mepLypagrc Tou ouothuatos. To yovtéha neptypdgouy e Python, ue tn woper Yeudoxddixa.
N Aettoupyia Tou hoyLouLxol Tou eneepYa Ty, eV Unopel Vo TEpLYpdpouV XaL TN Aettoupyia VALXOU,
v To omolar oxdua dev elvan apywd Swabéowun 1 repiypapy) toug ot eninedo RTL. To SysPy duwg
unootneilel xat nepiypagéc RTL oe eninedo Python, otic onoleg o yefjotne unopel va poviehonolioel
xau T mbavée ypovixéc xafuotephioeic mou Oa mapouctdlouv povades cuvduacTixhc Aoyixhc, T.).
aptBuntixés uovadeg, moiumAéxteg xTA. ‘Ooeg povddeg tou Vhixol meptypagoly ot eninedo RTL,
To epyahelo umopel va petagedoe. autéuata oe VHDL. To anapaitnta ofjuata ypoviouol enlong
umopolv vo uoviehomounfolyv 6to meplBdAiov npocouoiwong Tou SysPy, my. éva ofuo poloylol
20MHz, Slvovtag v duvatdtnta vo TEpLYpa(poly oUGTAUATA axolouBlaxhic hoYig Ue GOAVWOT
(pipelined datapath) 6mou 1 por TV dedopévwy eréyyetal and to Aoytouxd Tou enelepyaoth 1 and
UNYAVES XATAOTACEWY 6T0 UAXG. Mia tétola neplypapt| evog LoVTEAOU TPoGoUolwoTg avTixatonTeilet
N Aettovpylo TNg TAELOVOTNTIS TV YneLaxtdy cueTHUdTeY. XTo Nyhua X1.2 ta yxella BEAn delyvouy

To Prvata e Stadixactiog tpocouolnang, eved ta wadpa BEAn Selyvouy tn dtadixasia vlonolnerng Tou

27

ovoThuatog oty wovada FPGA.

H Suvatétnta nepiypagric mpocouolnong udniol emnédou, oe GuVOLAOUS Ue T BUVATOTNTA TRO-
oouolwong ouufBaty ue Tov ypovioud evéc cuothuatoc ot eninedo neprypaghc RTL (cycle-accurate
simulation) diver T SuvatédtnTa 6TOV YEHoTN Vo Tdpel amo@doels Yo xplowes mapauéTeous evog
SoC, mpwv Eexwvioel 11 dwadixaoia uhonoinong. Ot nupaydueves XUULATOUORPES TEOGOUOIWOTC SlVouY
TN duvatdéThTa Yol TV entAuoT TeoBANUATWY YPOVLOUOU TOU UTOPEl Vo TopouslaaToly, edd 6T
dLaoUVdeaT) TOU TRPOYEAUUATLLOUEVOU ETEEEQYAOTY) UE TLG TEPLPERELAXES TOU UOVADES XL TOUg eneep-
YaoTég eWxol oxomod. MTiC Topayped@oug Tou axorouboly Teplypdpovial auUTES oL SUVATOTNTES UE

UEYUAUTEQRT) ASTTOUEQPELAL.

lecc, petayAotuioteg C
............................. CEoNs

[EROFLEX SNAPﬂEﬂ :

$XILINX 7 IP-XACT &

ISE Design Suite Tcl scripting nieprypagég IP-XACT
(o) |
N | ——
@dkeAog eykataaTaong SysPy @akeAog epyaaiag (work dir)

o)) elay

sim VHDL Tcl Aoyiopikd IP-XACT

- o E E E O O E E E S S B O E E N E S S E N N N S S E E E E E om
N m omom om om OEm Om OE OB OE OE E E E E N EOE O E E E N N EE O E EE EE mom

Yyfuo X1.3: Eyxotdotaon xou yeron tou SysPy oe nepiSdhiov hettoupyixol cuothuatog

Linux.

To SysPy avantiylnxe xou 1 hettouvpyla Tou doxiudotnxe ue yYprion Tou AELTOURYXOY GUGTAUATOS

Debian Linux. Apyela eyxatdotaong (configuration files) ypnowuonotobvton yio vo oploet o ypfiotng

28

6houg Toug anapaltnToug PaxéAoug Tou €yel Yivel 1) EYXATAGTAGT TOU EPYAAELOU %o TOU AmopalTNTOU
hoyiouxod oL Tov gaxéhwy 6mou xatayweolvtar ta apyela oyedlaong (working directory). 'Oha ta
epyahela mou xahovvtol ueow tou SysPy xalde xat) dour twv paxéleny mou dnulovpyel To epyakeio

xatd Tt Sraduxaoia oyedlaong, ntapovsidlovtal 6to Xyfua X1.3.

Function Library Component Library
function0() component0()
function1(arg0) N component1(generic0)
function2(arg0, arg1, arg2) component2(genericO, generic1)

Function handlers Library
func_handler2(arg2)

\V4
Python
top-level

Instantiate
BRAMs with
"arg2.txt" content

Generate
"arg2.vhd" file

Execute "arg2.tcl" or
"arg2.py" script

Yyhuo X1.4: Audypouua UML v tyv anewxdvion tne yerione uebédwy Python (function
library »au function handlers library) ywr tny autéuatn apyixonoinon uovddwv ond Tic

BiBhobxec Tou SysPy (component library).

Y10 Eyfua X1.4 anewovileton ula aAinhovyia o yYAdooa UML ywa tnv napovaiaon tng yerong
TV BPBAoONXGY Tou SysPy xat tng autduatng nopauetponolnong novadny uhixod e yeron uehddny
Python. H ypron e udnrol emnédou napauétpou “arg2” otn cuvdptnon “function2” evepyomoiel
v xhion e aviiotolyne pedédov “func_handler2()”, érou 1 nopduetpog Unopel vor avtinpoomneveL
v ovouaoio evéc apyelou ASCII (VHDL, text, Tcl script) to onolo enelepydleton ¥ xohelton
QUTOUATA VLol VoL oy oTtotioeL T oyeTw| Lovdda ulwob. H yehon twv uebddwv atnv apyLxonoinoy
UOVASwY UAXOU oE mepLYpaéc Sounc xabloTd o GUVTOUES Xdl GLUURAYNS AuUTOU Tou eldoug Tig
nepLypagéc oe yYAdooa Python. H Biphobvxn “function_library” mepiéyer dnhdoeic ouvapthceny oL

oToleg ApPYLXOTOLOUY aUTOUTA TIg UoVAdeg ou TepLéyovtat ot Biiiobixn “component library”.

29

1.3.2 Avvatétnieg npocopolwong evog SoC

To SysPy uropel va yenouwsonownfel vy va tpocoupoudoet Ynplaxés uovadeg yéow neplypapody RTL
oe yAwooa Python. To mo evduagépov yapaxtnpiotind duwe elvatl 1 SuvatdTnTa TPOGOoUOlnGTg
oAy 0ROV TEPLYPAPAY GUUTEPLPORAS LAXOY Xal AOYLoULXOY, eWdxdTepa YLo Hovdades evég SoC
yw Tig onoleg mpénel va xafoprotel av elval anagaltnty 1 vlonolnor toug elte 6T0 VA6 elte Ue
Aoviouxd mou exteleltar and Tov emelepyaoth Tou cuoTtAuatog. Tao uwlpla yapaxtnoloTind Tou

unyavieuot mpocouolwong cuvodilovial ata axdrouvfa onuela:
e mpocouoiwon teptypapdy Python, uovddwy ulxot ot eninedo RTL.

® TpocoUOlwaY LOVABWY UAXOY oL hoyiouwxol, T.y. aptdunTtixéc Uovadeg, UOVABES EAEYXTMV
ETLOLVOYING .., YLO TG OTtoleg dev €yl URdpYEL TATENG TEELYPUQT TS AELTOVEYLXOTNTAS OTA

apyd otddio oyedlaong.

® OVATTU OYLOULXOY Yla TOV ENECEPYAGTH evOC cuoThuaTtoc o YAwooa C xal tpocouolws
&n hoy Y gepy \ YA C 2

Tou ot eninedo cuothuatog pall ue dhheg nepiypagéc Python viwos/hoyiouxoy.

® XUTUYGENOY TOV ATOTEAECUATWY TN Tpocouolwang ae apyeia YneLaxdy xuUaToUopYAOY THTOU
VCD xau ypfion toug Ue dnuo@uhy mpoyeduupato npocouoiwons, énwe to ModelSim xon to
GTkWave.

30

XPOVIKEG ITAPAMETPOL
.X. Brjpa npooopoimong,
dlapkela mpooopoinong n NN NS

Sebopéva

apxeila e@papoyrg

apxeia pubpiong

Hoviéda

. £10680u Aoytopikoy O
P \ %, mX. *.wav Python RN
SysPy topl—jlevei1 oo
config testbenc Aoyiopiko
R file enefeyaotr)
setup file W
ﬂ noviéda TIEPLYPAPESG
npocopoinong RTL
Aé th
i I P e i

KUPATOPOPPES .
petapAntov ‘

e xprjon tou SciPy ﬂ

GTkWave. Modelsim, ...

MPOCOHOIGOoT) apxeta l_|_,_‘_
onpatev tou SoC |:> VCD |:> 2
fmEmESsdfmmEis

Yyfuo £1.5: Aettoupyxdtnto Tou Unyaviouol Tpocouolwong.

EWwd yia tny yovtelonolnon oivlietny aplbuntixdy wovddwy, yivetal yeron g aplbuntixig
BBhobixne SciPy oty Python. Apbuntixol akydpibuol umopolv va mpocououwbolv xdvovtag
xeron étowny uehdduwy, ta anoteAéopata TV OTOlwY UToEoUY Vo ENEEERYACTOUY TEQULTERL ANd
Ghheg wovadeg uhLxoU, uéon NG Slaolvdeons nmou elval epuxtr 6To SysPy, uetall uovtéhwy ukixol
RTL xa povtéhwv cuunepipopds udmnhot emnédou. Me 0 yprion enlong tou SciPy elvar Suvaty 1
ToEAY &Y AplBUNTLXGY XUULATOUOROEY XUTA TNHY TEocouolwar evog alyoplBuou oe uYnhé entnedo, ..
enelepyaotia dedouévwy and Ymoraxd giktpa. O xuyoatouoppéc autés unopolv va yenoidonolnioiv
v Ty evbulon Twv napauéteeny vAoroinong evég alyopifuou, evéd apydtepa YeT TNV dnuLoupyia
novtéhwy oe eninedo RTL, ou gnoraxéc xupatouoppés Twv onudteny Uiag Hovadag TLeTonooby Thy
owoth) Aettoupyia Tou alyoplBuou oto VAG xau TNV aplBuntixy axplBela TwY vTohoyioudy. XT0

Eyfua X1.5 mapouvotdlovtal ta Buata nou urootnpilovtal xatd tn Siadixacio tpocouoinong evo
AN : P Tk ne 1 pooo| ne G

SoC.

31

1.3.2.1 Xuvrpocopoiwor vAtxol/hoylouxold ue teptypapés uPnhold entmédou

"Evag ané toug Bacixoic Aéyoug tng emhoyric g Python rrav xaw n Suvatétnta tne yAdooag va
xahel uefhédoug vhonowmuéves o dhhes YAGooeg hoyiouxod, omwg 1 C/C++. H xhfon pebddwy C
uéoo and uoviéha npocouolwong oe Python pall ye) yefion tou SciPy, yac divel tn Suvatdtnta
TAUTOYPOVNG TE0coUOlwoNg alyoplfuwy hoyLouwol ue Lovadeg uAxoy, 6mou 1 avdnTudn xalL TPOGo-
uolwon Tou hoyiouxol unopel va yiver ue yphomn: o) alyoplBuxdy neprypa@dy udmhod emnédou e
neptypagéc (Matlab-like) oto SciPy xou B) pe neprypagéc oe Yhdooo C, o onolec unopolv ebxola
UETA va yenoutonotnfoly Yl TOV TEOYRPAUUATIONS TOU ENEEEPYATTH EVOS CUGTAUATOS. JVUQWV UE
TN UEAETH TN umdpyoucag BiBAloypaglag auTtéd anotehel €va Amd TA TLO XALVOTOUN YOURAXTNELOTIX

Tou SysPy.

ouvduaotikf Aoyikf RTL @

@ co

testbench mpooopoiwong i
A o s nepypagn Aoywputouc
Q-X?E‘--quﬁy/— . import swig, smpy i /—\ ------------ .
5) i if (rising_ edg): é]]
aMyopiOpog data_buf=data¥e 5] 1é6060g
SciPy i if (control == "1} e] C
——data_out = SlmObj smpyFunc(d :
i elif (control ==1"): " . § ! O
data_qut = swlg_CFunc(data buf) : l
"""""" f SWIG
i : Sleragn
N ; Python/C

. |GTkWave. Modelsim, .\ ! \°c4
IP-XACT % apxeig gl etayAertriott
petaBntég/onpata povisha Ve s i i
e xprjon tou SciPy IP-XACT | @ Nenienl ¢
| +
C
binary
M : exec.
testben.

Yyfuo X1.6: Mebodohoyla npocouolwone ue yperion mneptypapody LAxol RTL xou

ahyoplOUxdY UOVTEADVY.

Yo Uyfua X1.6 napovoidlopat éva tumixd poviélo mpocouolwong, 6mou 1) yivetar yehon g
Python yw tny neplypagt| evée diathou dedopévwy (pipelined datapath) ii) neptypagéc Python ue
xerion Tou aplbuntixol naxétou SciPy yenowwonolotvtal Yo ahyopltBuixés neptypapéc Lovadny evog
oveTAUTOS Yo Tig ontoleg dev undpyel axdua vhonoinon oe vhd (HDL) 4 hoyiouxéd (C/C++),
iii) mepiypagéc hoytowxod oe C ypnowonotovvtal yia TV ulornolnon akyoplfumy twy onolwv Ty

extéheon Toug Oa avaldfel o enelepyaothc ToU oLOTALNTOS, EVE 1Vv) xaTd T SLdPXELX TNS TPOGO-

32

nolwong TAPdYOVTOL XUUATOUOPGES TOV YNQLax®y oNUdTeY Tou cuoTRUNTOC Uéow Tou SciPy aAld
xa oe Yoppn apyelwy tinou VCD, ouuPaty) ue dhha epyaiela npocouolwons. Méow tng ypriong tou
unyoviopol tpocouolnone tou SysPy, ou npoypapuatiotéc Aoylouxol unopoly o) va avartdZouy
ahyopBuwxd wovtéha e ™ yehon tou SciPy xat vo ehéyZouy TN 6woTH AELTOUpYXOTNTA TOUC UEoW
S OLVTIPOGoUOLlWENS e T Hovades Tou LAwoU. B) Mropoly enlong vo uetatpédouy Tig Teply papéc
royiouwot andé Python oe C xau ex véou va ehéyEouv 1 AettoupywdTnTa T0U¢ U€ow tou SysPy,

dteuxohivovtag €tol xon emtayvvovtag T dadixaota avdntuéng Tou hoyiouwxol oe unAo eninedo.

1.3.3 Ilopddeiypa npocopolwong

[ty xakdtepn xatavénon Tev SuvatoTtny Tpocouoiwons mou napéyel 1o SysPy nopoucidlouue
éva Topdderypa mpocouolwang evog aptiuntixod woviéhou yio Tov uToloyioud Tou aiyopibuou eb-
peoTC TOAUGVIUOL Yeauuxhe tapeuBorfic. O ahybplfiuog epapudletal mdvw oe dedouéva elgédou
nou mageyoviol oe popgt) apyelwy ASCIT xal unohoyiler Tic nopauétpous uiag yeauuxhs eélowong
mou expdlel ta ewoepydueva dedouéva. Ilpodiaypdpovtac tn olvleon tou ousThuatog, ywpelooue
Tig Aettovpyieg Tou ot axdhouleg tpelg Yovddes: o) Ty Hovdda mou extehel Toug apiunTtixoic
LTOAOYLOUOUS TOu ahyoplbuoy, B) LOVEDES UVAUNGS YL TNV XATAYOENOT) TWY JpYLXGY dEBOUEVLY oL
TWV ATOTENECUATWY TOL ahyoplBuou xat v) uovddec yia v Adn xat TV yetddoon dedouévov and
xat mpog TNy aplBuntued povdda. ‘Oleg ov aplbuntixéc ettoupyleg vhomolodvtal 6e LOVAdEC UALXOU
ue otéy0 TNV Yehyopen extéleon Tou alyopibuou. Mia unyoavr xatactdoewy 610 UALXG avohauBdvel
N Sayelpion Sraxivnong Tev Sedoutvey UEoa 6To GUGTNUA, XATK ATO TOV EAEYYO TOU AOYLOULXOY,
T0 omolo enlong avahauBdver TNV XATAYGENOT TWV AEYLXOY SESOUEVLY XAl TV ATOTEAECUATOY ENE-

Cepyaotag oe popgt) apyelwyv. H Sour tou cuothuatog tapouvotdletal oto Lyfjua $1.7.

33

SysPy testbench

anotedéopata

POCOHoINoNG
startRegression f \ N

L

bebopéval __J
£10060U

pnxavy
KATAOTACERDV

» »
>

dataCounter

aAyop1bpiog
YPARHIKIG b Q}—+—» slope '
napepfoAng B TAPAPETPOL
vpauum)?s
»b o » intercept napenpoli
100MHz _| .’l};_‘

orjpa poAoytlou

: SysPy RTL
) > aAyop1Bpikd povigdo SciPyl
] (WNV\/ VCD

YPAQPIKI) YneuaKkég
avarapdotaon KUPATOPOPQES
onpatev pe to SciPy onpatav

Yyfuo X1.7: Eynuoatixd Siéypouuo Tou UovTéAou Tpocouoinang Tou alyoplbuou ypouuic

TopeUSOAC.

[Aoyoug ouxovoulug y®eou xoL €xTaons Tou xewevou, mapalétouye avagopes oe napadely-
wata x@3xa, 6Twe autd tapouvctdlovial 6to Ayyhixd xeluevo. ¥to Code Example 3.1 dnidvovton
6ha ta ofuata ele6d0u/eE6d0u Tou cuoTAUATOS. XTig Ypapués 4-9 mapdyetol N xXuUATOUOR®Y TOU
Baowxol cuethuatoc pohoylol (100MHz, 50% duty cycle, dudpxela mpocoupoiwone 15us), evd otig
veauués 19-21 avatifevtal oL TLég TV oNUATOY ElG630U xaTtd TN Sdpxela TG TpocouoiwoNg, T.y.
otn yeauuh 19 opiletar 611 T0 oua rst evepyomolettar yio 5ns oty apyn g Tpocouolwong. o
unyavh xatactdoewy yivetoaw yerion neptypapdyv RTL oe Python, 6nwe nagouvoidaleton ota Code Ex-
amples 3.2 xou 3.3. O anapaitnteg PBAobrxeg xa 1 xhdor tou wovtéhou npocouoiwong xahodvtal
otig yeouués 1-4. H ouvdptnon otn yeaupy) 6 meptypdgel ouvduacsTXh Aoy Ue TN ypron Twv
ONUATWY ACGUYYPOVOU reset Xdl POAOYLOY TOU YENGLULOTOLOVUYTOL YL TNV 031 YNoT OA®Y TWV UOVAdwY
Tou ovothuatos. To apyelo mou mepiéyel ta dedouéva elgddou dnidvetal oty yeauur 19 xat o1
yeoupy 20 dnhdvetal 1 Lopeh avarapdotacns twv aptBucy tinou fixed-point (5 axépata dnela xar 3
dnpla oto dexadixd uépoc mou Oa yenouonotnholv atoug unohoyiouolc. H hettouvpyla tne unyavic
xataotdoewy Baotletor otic avepydueves axuéc Tou ofjuatog poroytol (yeouun 26). Egboov yivel
N avdyveorn tov dedouévov ewoddou (xatdotacn 1, ypauuth 38), exteleltar n xotdotaoy 2 émou

evepyonoteltal 1 extéheon tou ahyopifuou otny avilotolyn Lovdda, evd otny xatdotaoy 3 (Ypauuh

34

13) ta anoteréopata Tou akyoplfuou (noupduetpor ‘a’: slope xau P’: intercept) napoucidlovton

oTic avtloTolyeg e€6d0u Tou cuoTAUATOS. XNy xatdotaoy 4 evepyoroieital 6To SciPy 1 anewxdvion
TV dedouévwy elgdd0u XAl 0 TEOTOG UE TOV omolo 1) Yeauuwxy eglowor nou unohoyiotnxe, dnwg
Tapovsidletol 6To Lyrfuo X1.8, yenoluonotdvTog SLQopeTIXES LORPES OVITAPAGTAGNS VLo TOUS de-
xaduxolg aplfuote fixed-point. (¢ “original data” yoapaxtneilovtar ta Sedouéva eloddou and To

uouowd apyelo.

12 T T T

e o Original data
----- SciPy fit . |
10f| - = notation: fp(4.4) ,,f‘

notation: fp(5.3) EACH
. s
Bt
81 AT i
wre Lt
st
LTt e
ST
— (] et
= o Lute]
RO
S
SN
4r Lhe 1
° e
UG
0
2t n»‘,",‘%“‘ ° i
it
0 L L L L L L L L

0 1 2 3 4 5 6 7 8 9

Eyfuo X1.8: Tpouuwxyy nopeuBolr Odedouévwy ewoddou, Ue yYeNon SLUQopeTIXGY

avarapaotdoeny fixed-point.

Kotd tn Sudpxeta 1ng npocouolwons, oL xuuatouoppéc Ty onudtony etoddou /e£680u Tou cuothua-
To¢ xataywehnxay oto tapaybuevo apyelo VCD xaw to npbdypapua GTKWave [38] yenowtonouiinxe
YL TNV OVATARAOTAGT, TV XUUATOUORPAY. XTI XUUATOU0pYES TopouGLAleTal 1) GUUTEQLPORE TKV
PnpLaxody onudteny e oyéon ue To ofud poroylol xat extong hauBdvovtol unddy o hoyixég xafuote-
PNoELS TTOU TEOUGLELoVTaL 6TA 6T €E630V, OUUPOVA UE TOV TEOTO TOU JUTEG LOVTEAOTOLOVYTOL
oto Code Example 3.1 (ypouun 16, napduetpog “del”, opioude 1lns hoyuh xafBuotépnon yu ta
ofuata e€68ou “slope” xat “intercept”). Xto Lyfua £1.9 napouotdletat 1o ofjua pohoyioty 100MHz
(clk), 1o omnolo Snpeltan péow tne xatdAning hoywric ota 25MHz (c1kDiv). To olotnua ene-

Eepydletar 3o Twéc dedouévwv elo6dou xol Tapdyel Tig TopaUétpouc slope ol intercept Tng

35

Signals Waves

198 ns 297 ns

11ns xabuotépnon latched output
ML AN T RO T LT ﬁﬁ?””""fﬁ,’\‘lﬂl‘ﬁ”’“
Bl a2 85 a7 JEEN A \

a1 8z 8 AT}
—j16 N

- V16

—j10 —

18

Yyhua X1.9: Ungraxéc xUUATOUop@Ec oNuUdTeY ele6dou/eE680U ToU GUOTAUATOS EPaEUOYAC

Tou akyoplBuou yeauuxhc tapeuBoinc.

Yeauuwxng eglomwong mou tapeudier Ta dedouéva.

Me evxolo tpbéno unopel 0 YpRGTNG VO TPOTOTOLAGEL TLS GUYVOTNTES TWY ONUATOY pOAOYLOY, TIC
TWES TV ONUATOY EL66B0U XaL ToV Ypedvo Twv Aoyxey xabuctepfioewy, ue otéyo Tn diepetvnom
¢ owaThg Aettoupylog evog Ynglaxol custhuatos. Me tov tpdéno nou npoaeyyilovue 0 oyedloon
X0l TPOGOUOlKaT eVES Ynglaxol SoC, xdbe hoyux uovada avtiuetwniletor k¢ éva uadeo xoutt 61o
onolo o yphotng ahhdlovtag TiC TUWES TOY ONUATWY ELGABOU XL TIS YPOVXES TUPAUETEOUS Unopel
Vo SLEREUVATEL TN 0WOTH AELToupYdTNTa £V6C GLUGTHUATOS 68 ahyoplBuxd enlnedo ouunepLpopds
ahhd xau oe hoywxd eninedo RTL tng dmgaxnic vioroinong. Méow tou SysPy entorng elvon duvaty 1
xenon Tov ahyopliudy HovTEA®Y Tou avanTUeGEL 0 Yehotne ue) yefion e PBiobhixne SciPy
XOL 1) METATEOTY TOUg 0€ ouvapThoelg oe YAOooa C, 1 AELTOuRYWOTNTA TwV Oonolwy UTopel vo
Tpocouowlel 610 eninedo Twv teptypapdy Python. H Suvatdtnta auvth xplvetol Waltepa yerowun
eQ660Y Ta LYNAOY eTTESOL UOVTEAX TOU AOYLOWXOU UTopoVY elxola va petatpanovy and Python
oe YhGooa C xar vo yenoiuonotnfoly Yo Tny Tpocouole oy Tou AoYLoULXOY XAl TOV TPOYRUUUATIONG

Tou eneepYaoTXOY TUEHVA VS GUGTAUNTOC.

1.4 IMopadeiypata oyedlaocng SoCs

To SysPy yenowonouiinxe via) oyedlaor tpudv odvletov oyedlov SoC ue npoypoaupatilduevo
enelepyaoth. Ta mapadelyuoata oyedlaong vionowly SoC: o) enelepyaciog edvov, B) enelepya-
oloc Brohoyxdy dedouévewy xal v) enelepyaociog Ayou. Méow tng vhonolnong twv tpldy autdhvy
oyedlov tpoonabfiocaue va Bedtidoovue Ta yopaxtnetotixd Tou SysPy xou elduxdtepa tig uebodohoyleg

avdntuéng xo meptypagrs oe LYNAS exinedo, yenowonowdvtag v Python yia tnv mepiypagy tng

36

AettoupydTnTag evég Yngloxol ouothuatos. Erntong xoatd) Swoduacio avdntuing xdbe oyediou
xdvape ypron twv duvatotAtwy tou SysPy mou #tav xdbe @opd Siabéoweg, epdoov 1 e€éhin Tou
epyahelou Aray ua TapdAAnin Swaduxacio ue TNV avadnTudY TV TELOY GUGTHUATKY TOU YETCLUOTOL -
Onxay wg napaderyudtoy oyedlaong. Xtéyog enlong frav va extiufoovue Ty adlo Twv epyahelwy Tou
rapéyovtal uéow tou SysPy, xuplwg wg mpog v pelwon Tou ypdvou oyedlaong xal 0 duvaTéTnTA
yenons meplypa@dy LYol emnESoL Yl THY LVAOTOLNGT YNEPLaXGDY GUOTHUATOY UE TUEHVES TEOYEAU-

uotlouevoy enelepyaot®dy oe wovideg FPGA.

1.4.1 SoC eneiepyaciag exdvmy

To npdhto napddetyua mou vhonotoaue Yo va e€axplBdoouue Ty ophn Aettovpyla Tou SysPy xat va
exTiiooupe Tig duvaToTNTES TOU epyaielou Htav éva olotnua enelepyaoiog exbdvov [60], Baclouévo
otov uwpoeheyxth 8-bit AVR ATmegal28 [45]. Xuyxexpwéva ypnouwsonouicape tov muphva Tou
enelepyaoty oe neptypapr VHDL, Swbéoiuo and tnv otooehida tou OpenCores [76]. T tn oyedlaon
Tou cuoThuaTog xdvaue yeron tng uebodohoyiag mou unootnellete oto SysPy, Eexwvdvtag and vy
TepLypagn Tou cuothuatog ue yefon s Python, uéyel t yeron apyelov Tel yia tnv mapaywyr tou
apyelov npoypaupatiouot Tou FPGA. To SysPy yenoiwwonouiinxe yio vo tapdyel 6Aa T anattovueva,
ovuPatd pe ta epyohela hoyixig obvleong yia FPGA, apyelo VHDL. Ta apyela mepiypdgouy to
cvoTnua xoBdc xoL TN daolvdeor Tou enelepyaoTh X0y oxonol nou yenodonotiinxe ue tov
enelepyaoth AVR, evéd 1o SysPy Sayeiplotnxe enlong tny uetay A TTLON TOU anopaltnTou AOYLGULXOU
Tou enedepYaoTh xou TNV apytxomoinon g SlabéoLung UVAUNS TReOYeIUUATOS.

To obetnua mou ulorojoape epapudlel Tov alybplfuo Sobel [37] yia v avedpeon axudy oe
ula aompduaven exdva. O ahyobplluog napdyel Yo xdbe aonpduauer exédva dVo véeg exdvag 6Tou
aviyveler axués oe opllévtia xon xdbetn xatevbuvor. Yrmohoyilovtag tny Euxieldeio andotoom
uetall Ty avilotolywy ewovoostouyelov (pixel) o xdfe plo and tig dbo véeg edvag napdyetar wla
Teltn ewdva mou anotehel xouL TNV TEAXY) enedepyacuévy) ewdva 6mou evtonilovial OAES oL axUES TNG
apywehc. H aviyveuon axudy nodkéc gopéc anotehel 10 apynd o1ddio enclepyaoiag ulag ewxdvag o
Ghhoug ahyoplBuoug Tou YENGLLOTOLOUVTOL YLoL TNV OVIYVEUGT OVTLXEWEV®Y 1) TpOCOTOY XaL elong
Yo ouunieon exovLy.

H emhoyr tou ATmegal28, wg np@dtou nuphva enelepyaoty| mou evonuatoinxe oto SysPy éyuve
enewdn) o ev Aoy muphivag elvar oyetixd amhoc xou diébete apxeth uvhun mpoypduuatog (128kb)
xaL TOPTES ELoGB0U/EE6S0U YEVIXOY 6XOTOY TOU YENOLLOTOMCUUE YL T1) dlaoUvdeon Tou uéoa 610

FPGA. O eneepyaotic evonuatdvel yovdda oeplaxrc emtxolvwviag Universal Asynchronous Re-

37

ceiver Transmitter (UART'), uéow tng omolac ouvdéetar ue éva H/Y, o onolog anootéhhel Tic mpoc ene-
Eepyaola ewdvag 6to FPGA tng owoyévewag Virtex-5 tne Xilinx to onolo ypnowonotioape. Enilong
n apyrtextovixyy AVR elvar ulo and tic yenyopdtepeg apyttextovixeg 8-bit, 6nou oL neploodTepeg

EVTOAEC TOU eMeCepY AT anattoUy éva xUXAh0 OAOYLOU Yia TNV EXTEAEGY) TOUC.

nieptypaer) Python

povada VHDL

O

H/Y
. povada netlist
R L R R N L L R i
1 Python SoC gt Lt LELEELEEELELEL LD -
top-level

AVR uC

(Opencore) npoypappatog

1

1

1

1

1

1

! H

1 o o o _—'
' :

: i 100MHz

L Slapétng ___;_ ' | vépupa |
1 ouxvotntag H dedopévav
1 H
' E
1

1

1

1

1

1

1

.
1

1

1

1

N 1

«—> HvIpn 1
1

1

1

1

1

U

umoAoyopog
EPAyUIKIS pidag

pnxavi
- | katacraccov | 4P
25MHz Sobel

Yyfuo £1.10: Adypauua tou SoC enelepyaolog etxdvac.

Y10 Tyfua X1.10 delyvouue T Yovddeg mou SlacuvSEovTal yia TnV UAOTONGT TOU GUGTHUI-
Tog eneepyaoiag exdvag. Xto obotnua mepthauBdvovtal o enelepyaotic AVR xau o enelepyaotiic
ol oxomol mou anoteleltal and plo unyavrh xatactdoewy tou vhonotel Ta Briuata enegepyactog
Tou akyoplBuou xar ula aptBuntue) uovdda mou extelel Tov UToAOYLOUS TG TeTPayWVLXT pllag Yiol TNV
evpeon tng Buxkeldelag andotaone. O arydplbiuog tou Sobel egapudlet 300 glhtpa o€ Lop@r Tvdxwy
ueyéboug 3x3 yia Ty aviyveuorn v 0ptllovTiwy oL xdfeTwy axudy pLag ewdvog. ' tov utohoyiousé
TV ELXOVOCTOLYELDY TNE TeEAXTC enelepyaouévng ewmovag, yYivetal yerion tou ahyoplbuou COordinate
Rotation DIgital Computer (CORDIC) [91], [92], vt tov unohoytoud tng tetpaywviic pllag xat
Vv ebpeon e Euxheldelog andotaone petadl TV aviloTOOV ELXOVOGTOLYEIOY TOV EXOVOY TOU
dnutouvpyRinxay ue) yeron twv do eqapuolduevey @iktpny. H tehur euxdva anoctéhietal tov
H/Y yéow tne oeplantic olvdeorng.

H vionolnorn tou akyopibuou CORDIC yivetal ue) yefion €towung wovddag and tnv Bihiobrixn
CoreLib ¢ Xilinx [48]. 'Onwg galvetal xow oto Xyfua X1.10 n povéda tou alyoplBuou CORDIC

38

pall pe) unyovh xotaotdoewy tou extehel Tov ahyoplfuo tou Sobel emxolvwvoiy ue Tov enedep-
yvaoth AVR péow ulag yépupag Sedouévwy. H povada CORDIC yenowonoweital oe pnoppy) apyelou
netlist and ™ PiPhobfxn g Xilinx ot apyixonoleltol UEow NG EVOWUATOONS TNS LOVASAS 0TLS
oyetwée Bihobrxec Tou SysPy.

Yta Code Examples 6.1, 6.2 xou 6.3 napovoidleton n nepiypogt, o Python tou cuotiuatog
enelepyaotiag ewdvac. O enelepyacthic AVR ocuvdéeton ye T unbdhoines Uovadeg xdvovtag ypnor
TPLHY €L068wY/eE6Bwy Yevol oxonol (GPIO: General Purpose Input Output), ypnowuonowdvrag
v PORTE cav dlavko ehéyyou xar Tig PORTA xaw PORTB cav dtadioug dedouévwy. o v vhoroinoy
Tou ovoThUaTog xdvaue yefion e nthaxétac FPGA ML509 [25], tne Digilent, n onolo Stabéter tny
ueoalo ueyéboug yovdda FPGA Virtex-5 XC5VLX110T-1. Mia yovdda Siowpétn poroyiol ypnot-
uomoteltal ywr va mapdyel To Baocixd ofua poloviod twv 20MHz, and to ofua twv 100MHz nou
TapEyEL 1) YEVVATPLY pohoYlol oTny mhaxetd. To ofjua pohoyLol ypnoluomoleital yiol ToV Ypovioud
tou enedepyaoth AVR xau tng wovddag enelepyaoty edixod oxonod tou aiyopifuou Sobel.

Yty nepiypagt) Python avagépovtar enlong ta apyeta C mou yenousonolobvioL yia ToV TpoYeaU-
uatiou6 tou eneepyacth. Me ypron tou epyaielou avr-gee, mou xaheltol autduata and to SysPy,
yivetar n uetayhdTTion tou npoypduuatos xou to SysPy avtiypdgel tov dexaeladixéd (hex code)
TOu TROYPAUUATOS 6T oyeTés Uvihiung BRAM nou uhonololy tn uviun Tpoyeduuatos Tou Tuprva
AVR. "Oha 1o apyeta Python nou nepuypdgouv 1o abotnua, xafdg xau ta napaydéueva VHDL apyela,
UTdEYOUV OTNY LoTOoEADY [88] TOU LTAPYEL YL TNV TEPLYEAPT, TOVY SUVATOTATOY XAl YAEARTNELOTLXGDY

Tou SysPy.

39

Yyfua X1.11: Enelepyacuéves exdveg ueyéboug 64x64 etxovootolyeiwy.

Kotd ™ yeovur meplodo oyedilaong tou SoC Sev Arav axdua Siabéoiua ol duvatdTnTeg Tpoco-
uolwong uPmhol emnédou nou mapéyel To SysPy %ol cuveR®dg 1 TpocoUolwoT TOY AELTOURYLGY TOU
SoC, mpwv v vhornoinon touv oto FPGA, éywve uévo ue ypfon tov npocopowwtdv Modelsim [66]
xau Xilinx ISE (ISim) [50]. O ékeyyoc tng owothc hertovpylag éywve xou oto eninedo uhonolnorng
Tou ouothuatog ot mhaxéta tou FPGA, ue yprion exdvov peyeboug 64x64 euxovootoryelwy. H
ATOGTOAY, TOV eLXOVLV %o 1] AN TV enelepyaouévwy anOTEAECUATOY EYLVE UE Y 10N TROYEAUUO-
T0¢ denaphc mou avartiybnxe ue) Yhdooo Matlab xou exteleltar otov H/Y mou cuvdéeton ue v
mhaxéta FPGA. Xto Yyfua ¥1.11 napoustdlovtat Ta anotehécpata enclepyaociog exxdvoy ueyéboug
64x64 ewxovootolyelwy, 6mou €yel yivel aviyveuon Twv axudy e yprion tou SoC.

To anotehéoyata déoueuong tTwv nmépwv tou FPGA oand 1o olotnuo enelepyaciag exbdvwy
napouctdlovtal otov Ilivaxa IT11.2. TTa tny extéleon touv ahyoplbuou CORDIC xatahaufdvovton
oyt® DSP48 uovddeg, n onola nepthaufBdvel vhonoloelg tolaniaclactedy. Movddeg uviunc BRAM
xatahouBdvovTal Yl THY UAOToINeY TV UVHUGY Teoyeduuatog xal dedouévey Tou enelepyaoTh.
Suvohd Yl TV vAomoiner 6Aou Tou cuoTHUATOS Yenotdonothinxay 367 wovddec npoypoaupati{o-
uevn hoywhc (CLB: Configurable Logic Block). Kdfe CLB nepiéyet oyté) povddec Look Up Table
(LUT) tov €& ewoddwy, evd n wovadec BRAM éyouv péyefog 36kbit. Lluguva ye tic avagopés

oyedlaone uetd) puowh oyedlaon tou cuothuatoc (Placement and Routing), 1o olotnua unopel va

40

xeoviotel e cuyvétnta 190MHz. Xiugwva enlorng ue uetprioeg 6to FPGA ue) Borbeia tng povdda
logic analyzer ChipScope Pro [52] ¢ Xilinx, to cbotnua uropel va enelepyaotel 10 ewxdvec/sec.
ueyeboug 64x64 euxovootolyelny, 6mou o ypdvog eneepyaciog uetpRinxe and) oTiyur nou Eextvdel

7 anootol| e exévog and tov H/Y uéypt va xataywenbel enlong otov H/Y v tehud| enelepyoaouévn

ewovaL.
Components CLBs | BRAMs | DSP48
Sobel accelerator + sqrt 47 0 8
AVR Processor soft core | 267 48 0
Bridge 3 0 0
Clock divider 3 0 0

[Mivaxoc I11.2: Arnoteréopata déoueuong Aoyx®y tépwy otn uovdda FPGA Virtex-5 LX110T
(CLB: dvo slices, Slice: téooepa 6- eto6dwv LUTs, BRAM: 36Kb, DSP48: 25x18-bit).

Méow g oyedlaomng Tou cuothuatog eneepyaciag ouatog doxyudoaue Ti¢ faoixés Aettovpylieg
oyedlaong tou SysPy. Ilo ouyxexpuéva eléyEaue v 0phf Aettoupyia TV unyavioudy: o) yeta-
tponic meptypagdyv Python oe VHDL oe enilnedo nepiypaghc RTL, B) yefion nuphvev enelepyaotdy
xat dloUvdeon toug Ye hoyxés povadec eWldxol oxonol, Y) yehion Ynplaxdy uovidwy noAharAGy
uopeév (Python, VHDL, netlist) xow) yphion yéoo tou SysPy epyahelwy avdntuing hoylouxoy.
Metd v emtuy oyedlaon tou cuothuatog enelepyaciag eovag, 660V aQopd TNV avanTulr Tou
SysPy, mpoyweriooue oty evowudtnwor oto epyakelo tng duvatdtntag yerions enelepyacstdy 32-bit,
UE am®Tepo aTOY0 TN oyedlaoy mohumhoxdtepwy cuaTnudtoy. llpodiaypddaue enlong tic Suvatdy-
Te¢ Mpocouoiworg mou Béhaue va utootreilel To SysPy xat Tov tpéno uhonoinong Toug ue yehon Tng

Python.

1.4.2 SoC npocopolwong PLoroyxdy dxtimnY

H npdtn mpochfixn oto SysPy, uetd v avéntuin tou SoC enelepyactiag ewxdvag, ftav n yeron tou
nuphva eneepyaoty| 32-bit Leon3 xat twv epyadelwy avdntuéng hoylouxol nou vrootneilel. Me 1
xerion Tou Leon3 #rav Suvaty n extteudn taydtepng uetagopds dedouévwy uetalld tou enelepyaoaty
xaL GAA@V hoyedy povédwy oto FPGA. Erlornc uéow xatddinhwy npoypaupdteoy odiynonc (drivers)
xatéotn epueth o) 1 dtaotvdeon Tou enelepyaoth ue wovddec uviung tinov SDRAM Siabéoiuec otny
Thaxéto mou ypnowdonowicaue xat B) N enowveviag tou eneepyaoth) ve tov H/Y uéow duxtdou

Ethernet ye ypron tou xatdhinhou ekeyxth Sixtlou otny mhaxéta tou FPGA. T v entdelln twv

41

VEéwv Suvatothtey oyedlaong vhomouinxe éva SoC mou mpocouoldvel 6T0 UAXG UOVTERX SixTiwY
Boymuwxdy avudpdoewnv (biochemical reaction networks: BioModels [57], [17]). H emtdyuvon
NS TPOGOUOLKOTS TETOLWY UOVIEAWY 6T0 UAXS elvar TOAD yefiouun 6TOV TOUEN TNS UTOAOYLOTLXTG
Broloylac (computational biology), émou éwe tdhpa 1 npocouoiwey poviéloy yivetal oyeddv ano-
XAELOTIXE YE TN Yprion Aoyioulxoy.

O Leon3 elvan évag apxetd dnuoguhnc tuphvag enelepyaoty| 32-bit xon napéyetal oe neptypapn
VHDL ané v etatpela Aeroflex Gaisler. O ene€epyaotiic unootnpilel v apyttextovixry SPARC
V8, n vhonolnor tou e VHDL urootneilet yeydho Babud napauetponoinong eve mapéyetar palt
ue epyahela npocopolwone xal anoopahudtwone (debugger) hoyiouxot. O enelepyaothic anotehel
ruphvae g BBaobhixne GRLIB IP [33], otnv onola ouyxataréyeton nhifog mopoUeTponotiollomy
TUEHVLY, Tou uropoVy va cuvdeBolv otov Leon cav mepupepelanés Uovadeg, xAvovTag Yeror Tou
Tpwtox6hhov emxowvwviae Advanced Microcontroller Bus Architecture (AMBA) [13] tou vrootn-
ollel o enelepyaothic. O Leon3 éyer vionownlel oe apxetéc owoyéveleg FPGA (uetall autdv oe
FPGA tov etapeidv Altera xau Xilink) xafé¢ xow oe ohoxhnpouéva xuxhduata tinou ASIC. Mia
oY) vhomolnen tou enelepyaoth analtel neplnou 25k-30k Aoyuxég mohec. Ta xdpla yapaxtneLoTixd

Tou enedepyaoTr avagépovTal 61 AloTa Tou axohoubel:

o YoAveon dllou dedouévmy T-otadimy.
e Evowudtnon uovadwy Stopétn xol TOMATAAGLAGTH, UE ¥eNoT aVTLoTOLY Y EVIOAGY.
o Yrmoothpln apyrtextovixrc Harvard.

o Xpovioudg Aertovpyiog ota 125MHz xau ota 400MHz oe vhonoinen FPGA xav ASIC 0.13um

aviloTolya.
o YuuPatétnta ue 10 ntpwtéxoiro AMBA-2.0 AHB yia 1 00vdeomn neppepetaxdy Lovadmy.

o Auwibeon nihloug epyakeiwy yia Ty avdntuln Aoylouxol atov enelepyaotr|: UETAYAOTTIOTES,

TPOGOUOLWTES XAl EQYAUAELA YLl TNV ATOCPAAUATWCT AOYLOULXOU.

To anapaitnto hoylouxd yia tov Leon avantiylnxe oe yAdooa C, ue yerorn tou UeTayAWTTLOTH
sparc-elf-gcc. I'ia Ty uhomoinen Tou Soc €yive yphon g avantuiaxhs thaxétag ML509 tne Digilent.
Tt uviun mpoypduuatog xo T uviun dedouévwy €yive yeron tne Stabéowunc otny thaxéta 256MB
SDRAM DDR2 uviuns. Enione yenowonouilnxe o oyetinds eheyxthc otny mhaxéta YLo T oUvdeoT
tou enelepyaoth Ue H/Y péow duxtdou Ethernet ye taydtnra yetddoons dedopévwv ota 100Mbps.

H vrootfpiln and tov enelepyaoty Leon Suxtiworg Ethernet xav mpbofaong oe peydiou peyéboug

42

uviues tomouv SDRAM, uag €3woe) Suvatdtnta oyedlaong evég SoC to onolo elvar o Héom va
ouvdudoel éva enelepyaoTty yevxol xau évayv enelepyacty edixol oxomob ue 6téyo TV Yeryoen
enelepyaoia ueydhou byxou dedouévmy.

Yvothuota enedepyactag LYnhdv emddoewy Eyouv yenoiwonownlel tnv teheutala dexaetio o
TOANG emioTUOVLXd Tedla, EWLXd Yia TNV EMTAYUVOT TNS TEOGOUOIWOTE TOASTAOXWY PUGLXGY (PoL-
VOUEVWY T.Y. METE®POAOYLXE xat Brohoyixd wovtéha. H unohoyiotnd xal cuotnuwxr Brokoyla elvon
EMOTNUOVIXS Tedlo oy enw@eAfnxay and) ypron TV VE®Y UTOAOYLOTXGOY TEYVIXGY LYNAGY
emdboewy yio Ty enelepyacio dedouévwy and Brokoyxés Bdoeig Sedouévewy. H ouotnuiny Proloyia
€pELVA TN SUVIULXTH T®WY BLOAOYIXGY GUGTNUATOY GAY VA GUYONO ETLUEPOUS GLUGTNUATOY, eVTOTL oVTag
€toL Tic aAAnhemidpdioels YeTady TwV eMUEPOUS UOVAd®Y xal ThS autés xabopilovy Ta yopaxTnel-
oTd 0AOXANEOU Tou cuoTHUATOS. llpocouodvovtag Tig AAANAETLIPAGELS BLUPORETLXMY HOPLAXGDY
eWddv, unopel va pehetnlel n ouuneptpopd Touc in silico (ue T yphon utohoylotdv) xat va eZayBolv
CUUTERACUATA YLO TV CUUTERLPORA EVOS xUTTAEOU 1 eVvOS cuVOLou xuUTTdpwy. H oTtoyactixt| tpoco-
uolwon Broynuixedy dxtiwy avidpdoewy tou ovoudlovta Blokoywd yovtéha 1 Blopovtéra (BioMod-
els) [57], [17], unopel va 0dnyfoel oe cuunepdouota i e WETNTES EVHC PLOAOYLXOY GUOTAUATOC.
[v avanapdotaon twv yoviehwy yivetal yenon g yAoooag XML xat tou npotinou Systems
Biology Markup Language (SBML) [42].

H e&éh&n evog Proroyixod cuothuatog uropel va tpocouowniel yonowuonoidvtag ouviing Swago-
ewée eComoelc. H Adom duwe Slagopixdy elodoewy dev elvar o evdedelryuévog tpémog, edind 6tay
0L TOGOTNTES TV Yoplaxdy edGOY Tou euniéxovta elvon pxpés [69]. Xe auth v neplntwon elvon
Tohl dUoxoho va mpocouowlel 1 cuutepLpopd Tou GUGTALATOC XaL 1 YpovixY) EEEAEN TWY YNULXGOY
avidpdoeny. T Ty avtuetdrion autdy Ty TpofAnudteny, avil yio Siagopxés eglonhaoels, unopel
VoL YIVEL YpN0T] GTOYACTIXGY UOVIEAWY Yo TNV TROGoUolwar SixTiwy Bloynuixdy avidpdoewy. H
TPOGOUOLWGY UE YPHOT OTOYACTIXAY HOVIEA®Y UTopel va mepuypagel wg utag dradixaotia Markov
[36], 6mov 7 enbuevy xatdotaoy evéc ovoTHUATog EEupTATAL UOVO and TRV AUECHS TEONYOUUEY
xatdotoaoyn. O D. T. Gillespie npdteive évay Bektiwuévo ahyopliuo v tn 6Toyaotixr tpocouoiwon
Brohoyxdv wovtélwy, o onolog ovopdletar First Reaction Method (FRM) [35].

To clotnua to onolo oyedidooue déyetal apyela PlohoydY LOVTEA®Y cov dedoueva eL6630U
xaL ypnowonotel tov akyopluo FRM yua v mpocouolnon tov ynuxdy avidpdoemy mou nept-
vedgpovtar ota poviéha. To SoC vhomowel Ty mpwtapyixy vhonolnoyn Tou alyoplBuou FRM, éneg
auth dwtundinxe and tov Gillespie, ywpelc va yivetal ypron aplbuntixdy npoceyyloswy 610 UALXO,
x4t mou ouvnbiletal ot vhonolfoelg Tou ahyoplbuou oe hoylouwd xar UeLdVEL TNV axplfela Twy

ATOTEAECUATOY NG Tpocouolwong. 'Etol emitaylvetol onuavtixd 1 extéAeon oToyaoTxhg Tposo-

43

uolwong 6to L6, ue TN yehon Uebodwy mapdhining enelepyaciug, ywele va petdveta 1 axplBewa
TV AEHUNTIXAV ATOTEAECUATOLV.

Me 1 yefion Tou SysPy yuw tn oyedlaorn touv cuothuatog enelepyaoiag Ploioyxdy Sixtiny
TpooTafficaUe Vo EXTUWUNCOUUE TIS SUVATOTHTES TOU EQYUAELOL XAt Vo eUTAOUTIGOVUE Tig axdhoubeg

duVaTOTNTES OYEdlaoTC OV TaEYEL:

o qutéuaty mopaueTponolinon xar oUvdeon Lovddwy ulxol (enelepyaothc ewdxol oxonol Yl

v vhonoinoy tou aryoplfuov FRM).

o yeton Twv Suvatotitey g Python yua tny enelepyasio Tou mepeyouévou apyelwy xewwévou

tonouv ASCII (ene€epyaoio apyelov Biopoviéhwy XML).

o yphon tne Python yw v avéntuin hoywouxol denaghc H/Y ue v vhonoinon SoC ot
uovédo FPGA (avéntuin hoyiouwxol HAL: Hardware Abstraction Layer).

Xpnowonowdvtag i duvatdétnteg tou SyPy vhonowoaye éva oyédio SoC [61] 1o onolo cuvdudlel
Tov muphva Tou enelepyaoty) Leon3d ye tov enelepyacty edixol oxomol mou oyedidotnxe and TNy
epeuynTLer, pag oudda pac [40] xa vhornotel tov ahybplBuo FRM. Ou Suvatédtntes tou SysPy frav
Wraltepa yprowes otny apyxornolnoy xat 6Uvdeon tou enelepyaoth| eWdixol oxonol, eWdixd 6TV ene-
Cepyaotia tov apyelowv XML twv Blopovié oy oe woper SBML xou otny apyixonolnon tou uoviéhou
o7l dabéoiueg wovddeg uviung tou SoC.

H AMota twv Subéoiuny mapauétponv tou enelepyaoth FRM napousidletal otov Ilivaxa 111.3.
Yhonouiooue tpels dwapopetinéc exdooelc tou enelepyaoty, ve évav (FRM1X), 3% (FRM2X) xo
téooeplc (FRM4X) enelepyaotéc (PE: Processing Element) nou Aettoupyolv mapdhinha (N=1 %
2 4 4). O apfuds TV ynuxdy avidpdoeny m xat 0 TAfoc TV ynuxdy ewdov n eZdyoviol
autouaTa and To apyelo Tou Blouovtéhou, Ve oL UTOAOLTOS TAEAUETPOL TOU AVAPELOVTAL GTOV TLvaXa
napéyovtal and tov yehotr. T xdle erelepyacthi FRM anouteltar 1 apywonolnon tne tuyalag
yevvhtelag apliuot (rj) mou mepiéyouy xau yenoidonoteitar and tov akydpluo FRM. To elotnua
unopel va enelepyoaotel Propovtéla e dUo dlagopeTixols Tpdnoug: o) tpocouolwon m/N and xdbe
enelepyaoth eWxol oxorol (SSIP: Single Simulation In Parallel) xoau B) npocouolworn 6oy tov

avtdpdoewy m napdhhnha and 6houg Tou enelepyaotéc N (MSIP: Multiple Simulations In Parallel).

44

Parameter Name Range
m IIA#foc avtdpdoewny 2¢,e € [0,12]
n IIWBog ymuLxdy elddy 2¢,e € [0,12]
q IMRBoc avtdpdviwy (Babude avtidpaonc) [1—3]
Nyep IvBoc enavaripewy npocouoinens
RNGseed | Apyuée tuée tng yevwitptag tuyaiwy apliudy [0 — 255]
K Tpénoc hettovpyloc [0 =S8SIP,1 = MSIP]
Tsim Audpxelo npocouoiwong (sec.)

[Mivaxac I11.3: Tlapduetpor Tou eneepyonoty| eWdxol oxonol viomoinong tou akyoplBuou

FRM.

Y10 Yyruo X1.12 napousidlouue 11 Sour Tou enelepyaoty| ewdixol oxonol FRM ue téooepig ene-
Eepyaotéc (FRM4X). To BAuata enelepyaoias tou ahyopifuou ukonotolvtal and tny Hovéda eAéyyou
(CU: Control Unit). Xe ula oewpd and wovddes uvAuns xatoaywpolvial oL TopdUeTpoL Tou dxTiou
YNUXDY avTpdoewy, 6Tws autd Teplypdpetal 6To apyeio Tou Blopoviélou. Ouuovddeg uviung elvon
o wivaxag avidpdoewy (RT: Reaction Table), o nivaxag otouyetouetplag (VT: Stoichiometry Table),
o nivoxag ynuuxdyv elddv (ST: Species Table) xat o wivaxag ypovorpoypapuaTioUol TOU TEPLEYEL TIC
g dwapbpwy onudtwy eéyyou (FT: Flags Table). H uovéda Swayelpiong uviune (MMU: Memory

Management Unit) Siayerpiletor xar ouyypovilel v npdofBacy oe Gheg Tig UOVADES UVAUTS.

45

/FRM4X SSA core \

—>

: 'R
S| erag | S| PR
—
Fl"r (\ v
\A/ < | @ramg) | << | PE: \/_\
@ : o
VT
<:> <:> \ o //
1 /Ty@Ry
@-1- o) [

N RS PN

interface

A >\
A4
dual port

BRAM
(FIFO)

FIFO

interface
FSM

Yyfuo ¥1.12: Aour} tou enelepyaoty| edixol oxonol FRM ue téooepa enelepyaotind

otouyeta.

H enidoon tne enelepyaotinric Loyis tou eneepyacty FRM petpdtal o xixhoug npocouolwong
avd deutepdhento (RC: Reaction Cycles/sec.). Te xdbe xixho npocouoinong enelepydlovrar 10232—
bit = 320 — bit, evd unootnpilovtar Broyovtéha e péyioto apliud TeLdY avTdp®dvIwy oTolyelwy
xaL TévTe mapay@dyey aviidpaong. Me tn yeron tng Python yivetaw duvaty 7 enelepyacio twv
Bropoviéhwy oe poppt apyeloy XML xal 1 yeriorn 1oy Se80UEVmY Tou TEQLEYOUY LA TNHY dp)LxoTolnoT
HovVadwy UALXoY, dnwe auth Teplypdgetor xaL oto Nyruoa X1.4. H dwducascia eEoywyric mAnpogoptdy

and ta woviéha XML napouvoidletar xar 610 LyAua X1.13.

46

é
<

Blopoviédo

<XML>

LibSBML
avayveon
apxeiou XML

s....------—v

7o\

ﬂl\/ClKEg

pXSICl
ASCII

TMapapetporoinon

Tuptva ST, FT, VT
FRM-SSA kat RT
(BRAMs)

@ O,

apxeio Aoyikr) oUuvBeon

ripoy/opov K @uotKkn oxediaon <: !
e (epyadeia FPGA) oxebiou SoC

neptypagn

Yyfua X1.13: Eneepyooto flopoviéhwy SBML ue 0160 tny e€aywyn TANROQOpLOY YL TNV
apyxoroinon Tou Tuphva vhonolnorng Tou akyopifuov FRM.

H 3nuoveyia tng Sienaghc HAL, ue Aoyiouwd C va extereltar otov encéepyaoty) Leon oto SoC
T0 onolo emxowvwvel uéow otvdeornc Ethernet ue hoyiouud Python nou extedeitar otov H/Y, fray
amapoltnTy Yo o) va dwayetplleton) por Tov dedouévev and tov H/Y 6to SoC xaw aviiotpoga xou)
va ehéyyer Ty medoBoor tou SoC ot uviur SDRAM oty mhaxéta tou FPGA. To hoywouxéd HAL
dayelpliletar v aviadlayh Thnpogopldy ota xavdia dedouévey Ethernet (H/Y - SoC), GPIO
(Leon - eneepyaothic FRM eWluxol oxonol) xat 070 oelploxd xoavdhl ehéyyou uéown tou onolov

yeoviletal n extéhean Tou hoyiouxol HAL otov Leon xou otov H/Y.

47

H/Y FPGA Encgepyactis
E@appoyn ﬁ nupnvag Leon
LANnnnunnnil

L p—
Epappoyr Siertagpr) HAL _ : :
th PR
Hhen . . = | ap -
) . —> = |KOo1Kag <—> -
) - C —
A —> - - «— - o
L p—
L] 1 — - -
API . . - -
- —
KAdon ' ' FTrrrrrerrNni
Python ' ' f \GPIO
A} 1
sl)
- k4
~ - ’
p: process Enedepyaotng (Leon) (Aoyopiko C)

[Teprypapr) vAkoU oe Python
(e.g. apOunTKég povadeg, PNXAVEG KATAOTACEDV)

[l VHDL/netlist (povada uAikou)

Yyhuo X1.14: Bovdeorn tov H/Y pe tny mhaxéta FPGA xot 1o SoC eneepyaoto flohoyixdvy

dedouévov, uéow tne yprong Tou hoyiouxol HAL.

Yo Tyfua X1.14 napovordletar v obvdeon tou H/Y e tyv mhaxéta FPGA xat 1o SoC ene-
Cepyaotia Bloloyixdy dedouévwy, Uéow Tne yenong tou Aoviowxol HAL. Yto oyfua napovoidleton
o durywpeiouds tou HAL oty vlomolnen Python otov H/Y xou otnv vhornoinon C mou extehel o
enelepyaothic Leon. H vhonolnon tou HAL napéyer uehddoug yio tnv avtadloyy) dedouéveny xor ota
tpla Srabéoipa xavdha emtxowvwviag tou SoC (Ethernet, GPIO, serial connection). H extéheon tov
dtabéouwy uebodwy oty Python, éyel wg anotéheoua v extéleon twv avilotolywy uehddwy C
otov enelepyaoth. H avtahhayr twv dedouévey oto xavdie Ethernet yivetow ue ypron naxétwv
dedouévwy tinou MAC ye taydvtnta 100Mbps, evé ye ouyvédtnta Aettoupylag Tou eneepyaots| oTa
160MHz, n avtahhay?) dedouévwy oto xaviit GPIO yiveton ye tayvtnta 25Mbps.

Me v avdntuin tou Aoyiouwol HAL napousidoaue pia ohoxhnpouévy uehodoroyia yerong
ULAG OVTIXELUEVOOTRAQOUS YAOGGuS 6nws 1) Python yua tnv Swayelpion enelepyacioc dedouévay and
éva evowuatwuévo alotnua. Me 0 yeron xhdoewny xar uebédwy yivetal eguxth 1 déoueuon enclep-
YAOTLXGY OTOLYElDY XoL 1) déoueuon xavahidy emuxoveviag otny thaxéta tou FPGA. Ilpoondfela
XENONS AVTIXEWEVOGTRAPOUS YADOGUS YLo SEGUEVGT) TOPWY GE EVOWUATOUEVO 6UGTHUA EYEL YIVEL X0
oto mopeNdéy e) yerion e Yhdooas Java [82]. H avdrtuin tou HAL vy tig avdyxes yprhong
Tou SysPy, elvan 1 npd1n npoondfela va yenowwonowmnfel po euéhixtn xar SNUoQUATic YAOGGA 6K

n Python yix v Swayelpion e enelepyacioug dedouevoyv oe éva evonupatwuévo SoC. H yphon tng

48

Leon3 | Leon+FRMI1X | Leon+FRM2X | Leon+FRM4X
Slices 5436 (31%) | 9,244 (53%) 13,214 (76%) 16,594 (96%)
BRAMs 17 (11%) 56 (37%) 78 (52%) 132 (89%)
MULSs 0 (0%) 16 (25%) 26 (41%) 48 (75%)
Power (W) 0.6 4.1 48 5.9

[Tivaxac I11.4: Anoteléopota déoueuong hoyxdy tépwy otn uovado FPGA Virtex-5 LX110T
(CLB: dYo slices, Slice: téooepa 6- eLoé6dwv LUTs, BRAM: 36Kb, DSP48: 25x18-bit)

Python 8ivel suehillo oty dwayelpion twv Aettoupyidy evég SoC xau enlong Slver duvatédTnTa Yo

npoenelepyaoia TwV SESOUEVLDY TOU ATOGTEANOYTUL GTO EVOWUATWUEVO GUGTAUI XL YPOVIGUS TwV

Brudtwy enelepyaciag Toug otny mhaxéta Tou FPGA | ue yerion npoypauudtwy Python script otov

H/Y.

(FPGA h
Leon3
AMBA-AHB
RS-232
H/Y HNe—>» [UART] Etheme} [GPIOJ Es)%g:lc/ﬂ
D
100Mb
< ps 4 @ @

:I upnvag ﬁlsé.?;gzov 256MB

T e J

Yyfuo X1.15: Ydvdeon tou enelepyaoty Leon ue tov enelepyaoty FRM ewdixol oxomov.

Y10 Eyfua X1.15 rapouoidletar n tonoroyia tou SoC ue yeron tne mhaxéta FPGA ML509.

O eheyxthic Ethernet xav 1 uviun SDRAM ypoviCovtav ota 190MHz, evéd yio tov enelepyaoty

Leon £ywe ypron ofuatoc poroylol ota 160MHz.

49

Ta ofuata pohoylot noaphylncav ue yperion

Tou dwbéaiuou tahavieth twv 100MHz otny mhaxéta xat povddag dwayelpiong onudtwy pohoylol
(DCM: Digital Clock Manager) 6to FPGA. H 60vdeon tou H/Y xow tng mhaxétag FPGA éyuve yéoo
oelplaxol xahwdiou RS-232 xau xahwdlov Suxtiou Ethernet. Tw tov éheyyo tng Aettovpylag Tou ou-
oThUATOS EYLVE Yphiom evic Tohinhoxou Bropoviéhoy [78], To onolo neptypdpel Eva Broynuixd dixtuo
ue n = 93 eldn xow m = 136 avtdpdoeic. To cuyxexpuuévo LovTéLo TEQLYpdPEL TNY GUUTERLPORS
¢ npwtelvng A-cuvouxhelvng, n onola oyetiletal ye 1 véoo tou Ildpxiveov. To anoteiéouota
¢ déouevong népwy oto FPGA uetd tny vhonoinon tou SoC ue éva (FRM1X), d%o (FRM2X) xo
éooepa (FRM4X) eneepyaoctixd otouyela, napovoidlovtal otov Hivaxa [11.4. 'Oco auvdvetal n
rohurhoxdtnta evéc Plopoviédou (ueyahitepo TAffog otolyelwy xar avtdpdoewy) 1600 auvidvovtat
XOL OL ATOLTHOELS 0TO UAXS, eWdxd oe oyéon ue tov aplud 1wy dwbéowwwy yovidwy BRAM oo
FPGA. Hapatneotue enlone 6tL o enelepyaotric Leon Seouetel évav oyetind uxpd aptBud hoyuxodv
n6pwy (nepinou To 1/3 Ty hoywdy povdduwy xat to 11% twv uovédwy uviunc). Eniong o eneep-
yaoths xatavahdvel ubhic 10 10% tne ouvohixic LoyHog Tou xUXAOUATOS, EVG TNy ueyohltepn Loyl
AATAVAAGVOLY oL aplBunTixés novddeg xou oL uovadeg uviung. Xuvendg 1 Yerorn Tou enelepyaoTh,
Bonbder ndpa nohd otn déouevor xar ypRon pwovddwy emxowvmviag (Ethernet) xat povddwy uviung
(SDRMA), evéd Tautdypova xatahauBaver uxpd uépog Ty dtabéouwy tdépmv xal xatavakdvel eniong
uxpd uépog ng Loyvog evég FPGA.

Lo va extiufioouue Tig enelepyaotinés duvatétnteg Tou SoC, auyxplvaue to pubud enelepyaatog
X0l TPOGOUOLOOTS Sedouéveny Tou xataypddoue 610 UAXS Ue autdy Tou aviloTolya xataypddoue
%xqvovTog yehor SNUOPIAGY epyalelwy Aoylouxol npocouolwong SXTimy Bloynuixody avTidpdoeny.
To epyoahelo hoyiouwxol mou yenowonoioaue elvan to iBioSim [70] xat to StochPy [85] xau exteié-
OUUE TIPOCOUOLDOELS UE YPNoT oUYYeoVeY utohoyLoTixdy povédwy (64-bit PC, 6GB RAM, Intel i7,
2.6GHz, quad-core CPU). Extehdvtac nhifloc npocouoiboewy xataypddaue 0.35M Reactions/sec.
evbude mpocouolwong 6to VXS, anddoor Tou elvan mepimou 50 @opés ueyahltepn and Ty anddoor
Twv iBioSim xat StochPy. Extéc tou 61 1 vhonoinon oto FPGA enttaydvel dpauatind tny npocouol-
001 TV BLOUOVTEA®Y, Tapéyel enlong Ulo TAaT@PooUd TpocoUolwarg TOAD uxpdTepoy UeyEéfoug xol
UE TOAD YauNnAH xaTaVIAWoT Loy Y0g, 68 GUYXELoT UE VAOTOWGELS AOYLOMUIXOU TOU anoLToly TN Yehom

UEYEAOY UTOAOYLOTIXGDY LOVAdWY YL Vol emLTOYouY cuyxploloug pubuoic enelepyaatiag dedouevwy.

1.4.3 SoC enelepyaciag nyou

Me) yerior tou SysPy xat tou enelepyaot Leon xatagépaue va oyedidicovue éva apxetd tohbmioxo

SoC xon va avadel&ovye Tig SuvatdTNTES TOU ERYUAELOU OTY YPNOY) OE EVO EVEOUATWUEVO GUGTNUN EVOS

20

emelepyaoty 32-bit cav miAn emxovwviag pe dileg uovddeg oty mhaxéta tou FPGA alhd xou extog
authc. EWludtepa 1 yeron tou Leon pag enétpede va ouvdéoouue 1o SoC xar v mhaxéta FPGA
oe dixtwo Ethernet 6nou Aettoupyoloe oav ouvenelepyoothic tou H/Y mou emxowvwmvoioe uéow
dutbou. Xta mhalow g oyedlaorng evég SoC enelepyasio Myou, dYo onuavtixés tpoohixes éyLvay
oto SysPy. Avantdyfnxe o unyaviouds npocouolwong mou divel ™) SuvatéTnTa TEoGoUOlwoNg eVog
SoC e ypnhon neptypapody udhnhot emnédou. Eniong evowuatdinxe 1 yerion hettovpyxol cuethiuatog
Linux yw v avdntudn epapuoy oy ot YAwooa C otov encéepyaotr Leon. H ypfiomn tou Aettoupyixol
ovoThuatog dlver T duvatdtnta emxowvwviag Tou FPGA ue tov H/Y xow avtahhayrc Sedouévov oe
eninedo apyelwy, uéow Tou tpwToxGhhou uetagopds dedouévny File Transfer Protocol (FTP). Enione
dlvetar 1 Suvatdtnta ovvdeorng tou FPGA oto Suxtdou Ethernet ue yerion dievbuvong IP, divovtag
Tpbafacn ot wovada tou FPGA oe mhifog egapuoydy mou yenoudonolody tn cuyxexeulévn uéhodo
dtevbuvaroddtnong.

To dudypauua tou véou oyedlov SoC napovoidletar oto Lyfua ¥1.16. O enelepyaotic Leon
hettouvpyel wg FTP client, énou exteheltar eniong n egopuoyh tou yerhoty mou eneepydletal ta
uovowxd apyelo tov hauPdvovtar and tov H/Y. Me 11 ypfion Tou Aettoupytxol cUGTAUATOSC Ol EQup-
uoyvég tou yenotn uetayiottilovioar pall ye tov muphva Tou AettoupylxolU Snapgear Linux. O
0t6y0g e oyedloong Tou SoC elvar 1 Ta&vounon TOV LoLoWAOY apyElwy 68 dLUPOPETINES XAUTY-
vopleg, oluQwva Ue Tov Tov TUTO NG UoUoWhc Tou Teptéyouy (T.y. nAextpovixy, pox B xhacowxth
uovowdd). H talwvéunon yivetor obugpovo ue 10 ouyvotixd mepeyduevo 1wy apyelwy, 1o onolo
exTdton uéow tecodpwy {wvonepatdy (bandpass) ¢iktpwy ténou Finite Impulse Response (FIR),
Ta omola elvar ouvdedeuéva oav meppepetaxés Povddeg Tou enedepyaoth. Ta apyela xatayweolvion
otn uvhun SDRAM oty mhaxéta tou FPGA xon ané exel nponfolvral npog tic povddes 1oy @lhtpwmy
oL omoleg ouvdéovtal uéow Bupdv GPIO pe tov enelepyaoth. Tewpraxt| olvdeon yetalt tou H/Y xon
e thaxétag FPGA yenowonoteito yio va nopéyel tpdoBacy o1 YeuuUr) EVIOAGY ToU AELTOURYLX0U
ovothuatog Linux, and 6mou o ypRotng ehEyyeL TNV EXTEAEST) TNS EQAUPUOYTS TOU XAL TNV AVTAAAAYT
dedouévwy uéow Tou mpwtoxdihou FTP.

Sexwvhoaue 1 oYedlacT TOU GUGTALATOS UE TNV TEOSLIYPUGT LOVTEA®Y YL TNV TROGOUOLKGY TOU
oLGTAUATOS, GLUPATE UE TOV UNYavioud Tpocouoiwone mou avantliyOnxe oto SysPy xau ta yopa-
xTNELoTIXd Tou meplypdpovtal oto Kegdhaio . Xto Eyfua X1.16 napoucidlovial Ue SLaxexoUuéveg
Yeauues Ta otolyelo exelva Tou AoYLoUxoU xoL Tou UALoU Yia To omola SnuLoupyoaue UOVIEAN
npocouolnarc 6to SysPy. Ta arotehéouata tne npocouolwong oe uPnhé eninedo ue) yeron wovté-
AV Tou cuoThuatog oe YA®ooa Python, Borfnoay oto va ndpovue onuavitinéc anogdoelg oyetixd

UE TNV QPYLTEXTOVIXT| TOU OLUGTAUNTOS OTwe: a) Tig TapauéTpous Tov @ltpny, T.y. Babubds olltpwv,

ol

H/Y LELAL LAl

Ethernet

FTP
—>

256MB

RS-232 L _Xpriot i

Eyfuo X1.16: Adypauuo wovddwy tou SoC eneéepyaoiac fyov.

wop®t avanapdotaong aptbudy xTh., B) to uéyeboc twv uvnudyv FIFO (First In First Out) tpocwetviic
xatayGenons dedouévwy (data buffers) uetal Tou enelepyaoth) xow TV QIATpLY xau) TRV avdnTtuln
TOU AoYLoULXoU eAEYYOLY OV exTEAElTUL 6TOV EnelepYaoTH.

To pwovowd apyela elvar xataywpnuéva otov H/Y nou yenowonoweitar oay file server. O FTP
client oto Leon emkeyel ta apyela mov Ha otadody and tov H/Y oto FPGA xou 1o xatayweel ot
uviun SDRAM. Metd avohauBdvel tny Uetddoon 1oV Youoxdy Tuoy tov apyelwy ota glhtea,
uéon twv Bupdv GPIO, v tic onoleg avantilaue eWdind hoyiouwxd odfynone oe yhvooa C, Gote
To AeLToupyxd ovotnua va Tig Sayelplletal oav Tepupepelaxés Lovades TpooPdoiues and GuyXe-
xpuévee dteufivoele uviunc (memory mapped). Tty avdiuon Tou ouyYOTLXOU TEPLEYOUEVOU
TV apyelwy vlonooaue téooepa Lovonepatd (bandpass) gihtpa FIR 30 rnapouétpwy (30-taps) ue
Cdveg Siéhevong 0-1KHz, 1-3KHz, 3-5KHz xou 5-8KHz mou xoalintouv 1o yeyahltepo pépog Tou
ax0VGTIXOY PaoUaTog ouYVoThTwY. O Quktpaplouéves TWéS xataywpovvTal Tl oty uvhun RAM,
6mou 0 enelepyaoThc TLG AVOAUEL XOL ATOYALYETAL YL TOV THIOU Tou pouoixol apyelou (rock, pop,
xhaoowt 1 nhextpovixt wovowy)). Ou Ldveg Siéheuorne tov ¢lktpwv tapovctdlovtat oto Figure 8.3.
I Tov unoloyioud TV TapaUETEmY TwV PihTowy Xdvaue Ypror Tev Swhéouwy uebédwy oto SciPy,
6nwg entong xdvaue oL yeron Twv OYETXGY UeBOSWY YL TNV Yeaguxt| avanopdotacn tng eneéep-
yaolag povowdy apyelov ue) yehon twv glktpwv. Yto Lydua X1.17 tapousidlovue 0 ypovixt
andxplon (time response) twv t€66dpny Glhtpwy, 6nwe auth Tapdyetar autduate and to SciPy ue

v extéheon Ty Sbécwy woviélwy oto SysPy. Yoav elcodo Tou GUGTAUATOS YENOLULOTOLCUUE

92

éva apyelo pe 100 delyuata fyou xow cuyvotnta devypoatorndioc 16kHz (sampling frequency).

wav file

[slalslafslslalelalels]
T

FilterQ
[N
[¥)[=]V,

!

Q i

-9 l g]

] 2 3 4 5 6 7

= r]

[- .

3 % - 1

=]

%38 1 2 3 4 5 6 7

3 I -

5 1oof]

= 50 4

' l ,]

0] 2 3 4 2 6 7

" C]

e - 4

7] - _

= 1

0 1 2 3 4 5 6 7
Time(ms)

Eyfuo X1.17: Xpovixt| andxplon Twv UOVTEAOY TV Tea06dpwy @lATtenv, Ue yefior tou SciPy.

Méow tou SysPy unopéoaue eniong ue) yerion Peudoaryopibuny Python va mpodaypddouue
AettoupydTnTa Tou Aoyloulxol Tou Leon mou eléyyel) pory Twv dedouévey ato SoC. Yto Xyfua
¥1.18 nopouctdletar 1 cuURERLPOEd TV oNUdTLY ewe6dou/eZbdou Tou SoC. Me t yehorn nepiypa-
p&V vPnhol emnédou Python uropéoaue va nepiypddouue tn Aettovpyla Tou hoylouxol tou Leon,
onou oe olyxpion Ue ula vhomolnor o6to LAxS, umopel va undpyouy xabuotepioels oty extéleot
evog mpoypduuatos. ‘Etol oto Yyfua X1.18a 7 evepyomoinon tou ofuatog input_fifo_ready
yivetar ye tuyailo TeoTO, MEOGOUOLOVOVTAC TOV TEOTO UE TOV onolo o emelepYaotrhc ehEyyeL yio
v Umapdn véwy dedouévwy otig uviues FIFO, 6nou xataywpotvron ta anoteléouata encéepyaoiag
Twv Te00dpwy @iltpwy. Enlong ue) yprorn Tov yovtélev tpocouoiwang ftay evxoho va arrdlovue
T TOPAUETPOUS TV QPIATEOMVY XUl VA TUEATNEOUUE TNV OAAAYY) OTN GUUTERLPOEY TOLU GUOTHUATOC.
Y10 Eyfua X1.183 arhdlouvue tnv Ldvn SiEhevong Tou mpdhTou gilteou, and 0-1KHz oe 0-100Hz »on

TopaTEoUUE TNV ahhayr oTiC QLATpapLoUEVES TUES eE630V.

93

Signals Waves
P 83 ns 198 ns

Time

] I l = F— | =
| 1] I]]

. ‘
tuxaia kaBuotépnon

I

rabuotépnon 7ns — l — T —

] ::ia 'Z‘a !:E:;a]
xx+ 08088 eric CET {18318 {7720
xc+ 98088 {56168 {16568 {1A894 {1485C
xx+ 00089 [ponaa JEET [B1F78 [B2Fac
xx+ 00009 {1877C ERT jp2694 {1562C

il

(] . 7])11 7] Al 2 L ;2 AL

(@)

M

Signals Waves
93 ns 198 ns

rabuotépnon 15ns ‘ o
] e 2 B .---"""F @ il CCE
oo 80008 ——7ic "._Jaebac /15250 fa752C
x+ 08090 Jeat0g /10568 == - - . . .| e ..--- S19E5C
wox+ 00000 Jgooea /onaca jo1F7E {gzFac
xox+ 0000 [To77C /T8CES {52698 {1562C

(B)

Yyfua X1.18: UngLaxéc xuuatouop@éc onudtwy eto6dou/eE6dou Tou SoC enelepyaotug fyou.

Méow g yerone poviéhwv npocouoiworng Bo mpéner va nopéyetar wébodog yia v uetatpony
TOUG 68 XUTAAANAES TEpLYpapES Yia uhomoinon oto LA, Onoladrinote meptypapr VALXOY ot eninedo
RTL o Python uetatpénetar ané to SysPy oe aviiotouyn nepiypagr) VHDL, evd uébodor Python
xenowonoolvtal yia Ty tapayeyh Tou x@dwa VHDL tov ¢glitpev FIR. Y10 [lapdderyuo Kodduxa
7?7 1 uélodog func fir filt_s ypnowonoleitoan yia vo mapdyel tov xGdxa VHDL evéc gidtpou
FIR, olugpwva ye Ti¢ mopauéTeoug Tou uToloyloTnxay xatd TNy mpocouolnwsn. Xt ypauués 5-
6 mapéyovtal oL TapdUETPOL TOU @lATeou xau 1 aptbunTny woper avarapdotaorng fixed-point Twv
nopapétewy. Ol THpdUETEOL UETATRENOVTAL GE XATAAATAY Suadixr] Lop@n oL Ol TWWES TOUS dPYLXO-
nowlvton oty neptypagr VHDL mou napdyer to SysPy. To ofjuata etoédou/eEbdou tou glhtpou
TepLypdpovion oTig Yoauués 17-19.

Me tnv vhornoinoy tou SoC oto FPGA eneepyaotiixaue éva ueydio apliud pouoixdy apyelony yio
var EAEYEOLUE TN OUUTIERLPORE TOU GLOTHUATOS XaL Vo e€axplBdoouue To Babud TadTIoNG TV ATOTE-
Aeoudtwy g enelepyactog oe oyéon Ue Ta anoteléouata Tng Tpocouolwong. O enelepyaotic Leon
yeoviotnxe ota 160MHz, evé yio ta @lhtpa xau tig uviues FIFO yenowonoumnxe orjua poroyiod
ue ouyvétnta 100MHz. T va uetprioouvue TG emdOOEL TOU GUGTAUATOS YENOUIOTOLROUUE £Vl
uouowd apyelo ueyéboug 3,924,170x8-bit. Me tn yprion tou tpwtoxdéiiouv FPT o pubudg uetddoong

Tou opyelou uéow e ovvdeone Ethernet and tov H/Y otnv mhaxéta tou FPGA uetphifnxe ota

o4

21.9Mbps. H anédocn 6hou tou uoTALNTOC, 660V apopd TNy enelepyacia TV LOLOWXAY BELYUITWY
and ta glhtpa Hrav 15MMAC/sec. (MAC: Multiply Accumulate), evé 1 pof tov dedopévwy ota
T€o0epa GlATpa mOU AetToupyousay mapdihnia ueterdnxe ota 119.6Mbps. Ta anoteléopata ToV
emdboewY Tou ousThuatog tapoustdlovtatl otov Ilivaxa II11.5. Ou emdboeic tou SoC cuyxpivovion
ue to anotehéopata Lhonolnong oe hoyouxd otov enelepyaoth Leon (ywelc v ypfion wovddwv

vAwos), 6mou gaivetar 6Tt To SoC emttuyydvel téooepls Qopéc TayUtepy ETEEEPYATIA TV UOUOXGDY

apyelwy.
Leon
SoC (vhoroinon oto hoyiopixd)
14
Xpévog petddoons FTP (sec.) (21.9Mbps) -
31.5 132.3
Xpévog eneiepyaciog gidtpwy (sec.) (15.0 MMACs/sec) (3.6 MMACs/sec.)
PuBuds petddoong dedouévev (Mbps) 119.6 -

Hivoxog I11.5: Arnotedéouata vhomolnong xatd tn didpxewa tng enelepyaoiag UouoLxol

apyetov (3,924,170 samples x 8-bit).

Me 1) oyedlaon xow vhormoiney Tou SoC enelepyasiaug My ou nopouGLdcaUE TS SUVATOHTNTES TPOGO-
uolwong mou tapéyel 1o SysPy xat ndg autég ypnouuomotodvTaL Yo TNy TeoSLLY a1 TV TUPAUETEWY
evoc ouothuatog mply Cexwvioel 1 oyedlaor evog SoC. Méow tng yefone tou SciPy eotidooue
eWoTERO GTNY TEOdLYpaPT XaL Tpocouoiway apliuntxdy akyoplbuwy xal oty yehon Tev arote-
AeGuUdTwY Tpocouolwang 6Ty uhonoinon tou alyopibuou oto Lhixd. Acllaue enlong) ypnowbdTnTa
evog muphval Aettoupyxot cuothuatog Linux otov éheyyo xal tn Swaovvdeon evég SoC xon oTtny
uetagopd xau enelepyaoio dedouévwy ae uopen apyelny, x4t Wiatépws YeHoLO OE TEPLTTMOOELS TOU
éva SoC emuxovovel ue dhha uTtohoyloTixd ouothnata tou dwbétouy enlong Aettoupyd ovoTnua
n.y. H/Y ye olotnua Windows 7 Linux. Tlapovoidoaue enlone) duvatétnta tou SysPy va
TUPAUETEOTOLEL AUTOUATA XAl VO UETAYAWTTILEL TIG EQUPUOYES TOU YENHoTN TUEdAANAA UE TOV TURH VAL

TOU AELTOURYWOY GUGTAUATOS.

1.4.4 Extiynon yenotxodtnrog touv SysPy

Me o616y0 va €youue pla tocotny| extiunon twv duvatothtey Tou SysPy écov agopd Tt oyedlaoy

evée SoC, xdvaue yehon e mhatpdpouas aohéynone BDTi [46]. H uefodoroyla aiordynorne

%)

ameubivetol oe epyahela oyedlaong uhxol ae uPnAé entnedo xal avantiybnxe and 10 TAVEMGTAWULO TOU
Berkeley. H uefodohoyia BDTi yenoiuonoteitol xal wg medtuno yia Ty extiunoy Twv emdéceny ev-
COUATOUEVLY enelepyaotdy xat enelepyaotdy DSP. H avdntuén tng uebodoloylag yia v extiunon
epyarelov oyedlaong SoC oe udnhéd erninedo €ywve ye o160 TNV mepoltépw avdnTuln cpyohelwy
TETOLOV TUTOU oL auToUaTonoloUy TN oyedlacT Tohdmhoxwy SoC xau eneld?| ol epeuvntéc 610 Berke-
ley avayvopioay 6Tl ta epyadela oyedlaong mou undpyouv dev ouuPadilovy pe Tig SuvatéTrTES TOUL
TapEYouy o oY yeova cuoThuaTa eneiepyaciag, onws ol wovadeg FPGA.

Méow tng yerong tne pebodoroyiag BDTi xdvaue yeron tov Swubéoiuwy tapauétpmv xaL exTi-
ufoaue TN YeNoTXOTNTA oL Aettovpywdtnta Tou SysPy axohlouldvrac tn uebodohoyia oyediaong
mou vnootneilovue. T tn Swaduxactio allohdynong {nthoaue and teewg yprioteg Tou SysPy mou
ovupetelyav ot oyedlaong twv SoCs enelepyaactoug Hyou (Kepdhaio) xau enelepyaoiag Blooyndy
dedouévorv (Kepdharo) va Babuoroyhcouy to SysPy oluguva ue tic napauétpous allohdynong
mou mapéyovtal oto BDTi. Ta anotehéouata twv napauéteny mou allohoyrinxay and toug Teelg
oyediotég mapoustdlovtal atov Ilivaxa I11.6. Kdbe napduetpog tou nivaxa adiohoyRinxe ue ula
and tig axdiovlec Pabuoroyies: “Elaipetind”, “Tlohd xahd”, “Kohd”, “Métpra”, “Xounhd”. Stnv

axohouln AMota napéyeton Ul oUvTOUN TEPLYPAPT TWV TAPAUETEOY aELONGYNoTC:

e Out-of-Box Experience: Euxollo eyxatdotaons xau plbuione tou epyahelov oe mepPdiiov

Linux.
e Base of Use: Euxolla yphong tou epyakeiou.

e Completeness of Capabilities: Extlunorn tng endpxelag tov SuvatotiTwy Tou gpyaielou o1

oyedlaon SoC ue nuphva enelepyaoty.

e Quality of Documentation and Support: Extiunon tov odnyidv ypforne mou tapéyovTal e 1o

SysPy.
e Learning to Use the Tool: Extiunorn tng euxollag exudbnong yeriong tou epyaielou.

e First Compiling Version: Extiunon g npoondfeiac mou amorteitar yio tnv vhomolney tou

TpKhTOU AetToupyxol oyediou (initial functional design) evée ovothuatoc.

e Final Optimized Version: Extiunon tnc npoondfeiag mou amonteiton yia v vhomolnoyn tou

TeAxoU Aettoupynol oyedlou evég cuGTAUATOS.

e Platform Infrastructure Development: Extiunon tg euxoilag yerong touv SysPy moapdhinia

ue dhha epyahelor mou dieuxollvouy Ty telwt| vhomolnom evég cuothuatog (my. epyohela

26

Out-of-Box Completeness of Quality of
Experience Ease of Use Capabilities Documentation and Support
Kahd Xounhd Mépa Xopmhd
Metplo Kohd Ko)d Xopmhd,
Métpua Kohd Kard, Mépwa

Learning to Use

First Compiling

Final Optimized

Platform Infrastructure

the Tool Version Version Development
Mérpto Kod Ka)d TToAD %ahd:
Métpla Kod MétpLa Mépa
Métpra Métpa Métpio Koné

ITivaxac I11.6: Toapduetpot a&tordynone tou SysPy, cbugwva ue to npdturo BDTi, and tpeig

dLapopeTLIX0Ug YPNOTEC.

puowic oyedlaonc FPGA).

Yougova ye ta aroteréouata tou [livaxa II1.6 ol Suvatdtnteg mou napéyel o SysPy xplvovton
emapxelc Oote évag oyedlaothg va mpodlayeddel TV medTn Aettoupyxt| éxdoor evég SoC ue eme-
ZepyaoTh o eUNOYO YEOVIXO SLACTNUA, VO TNV TEOGOUOLOOEL xaL Yo emttiyer TNy ol Aettovpyla
Tou oe povdda FPGA. H nupduetpog “Platform Infrastructure Development” aliohoyrnxe Oetind,
epbéoov péow Tou SysPy moupdyoviol ula oelpd and mpoyeduuata scripts to omolo SLlEUXOAUVOUY
T dayelplon Twv epyarelny guowic oyedlaong oto FPGA, evd elduxd v to SoCs enelepya-
olag Bloroyx®dy dedouévemy xat fyou mapéyovtar 1 demapr) HAL xau 1 dienagy pue to hettoupyind
oVotnua Linux, ta onola Bonfodv oty yeron twv SoCs ot npayuatinés e@apuoyés pdoov Unopoly
elxoha va avtaAAdEouy dedouéva ue dAheg Saouvdedeuéveg wovadeg pe Tty mhaxéta tou FPGA.
Enlong ou oyediaotéc éxava yphon tov dwbéouwy mapadelyudtwy Gote oe eninedo npocouolnong
va suvdudoouv evxoha meptypagéc RTL ue ugnhod emmédou woviéha npocouoiwong oe Python. Ou
yeriotec Edwoay yaunit Babuodroyio oty xatnyopia “Ease of Use” xuplwe Moyw tng éhheldng mArpoug
eyyelpwdlou yeromne xatd tn yeovixr neplodo tng allohéynorng.

Yougwvo ye to anoteréopata tng alloAdynong Pehtudooue Tov Teomo oVVTUENS TOY UOVTE-
AV TpocouolnoNg, xuplng ToV Te6To SNAWONE TOY OHUATWY ELGOB0U XL TV AVTIGTOLYOY YEOVLY
xafuotépnone (input signal delay). Erlone Behtdoaue tn uyebodoroyio diacivdeons meplypapdy

RTL e yovtéla SciPy Swatnpdvtag ndvta tnv apy 6Tt 0 1p610¢ 6UVTIENS TWV TepLYpa@dV va elvol

57

ovuPatoc ue ta o xowd anodextd npdtuna olvtaing ot Python, dote to SysPy va unopgel edxoia
va yenowdonowmbel yio Ty mepLlypa Y| xol TRoGoUolwoT) LOVASwY VAU axdua xal and Unyavixoig

Aoyiouwol ue wxpet| euncipla otny dYnguoxt oyedlao.

1.5 Xvunepdopota

Méow Ttwv anotelecudtoy e dateBrc delfaue Toug Tednoug Ye Toug omoloug ULa SNUOPLAAS Xal
elyenotn YAOGoo Tpoypauuationol ugnhot emnédou 6nwg 1 Python, tou aneubivetal oyeddy aro-
XAELOTIXE OTNY avdnTun Aoyiouxoy, umopel va utootneilel) uebodoroyia cuoyediaong evég ev-
couatwuévou SoC ue muphva eneéepyaoth oe wovdda npoypauuatilouevne hoyuhic FPGA. Me
xefion entong Teldy ohoxAnpwuéveY Tapadelyudtwy oyedlaong SoC ue enelepyaotr dellaue Tov TpdT0O
ue tov onolo To SysPy amodotixd xai anoteAeouatixd unootnpllel 6ha Ta BAuato TOU amaLTOVVTOL
o1 ouoyedlaon vAxol/Noylouixol, axdua xaL yia ToAdThoxa ovothuata énou arnatteltal 1 yeron

Aettoupyxol ocuothratoc Linux vy tov éheyyo tne erclepvaotiac Twv dedouévmy.
[\ \

1.5.1 3vuveicpopd

Me tnyv napousiact tou SysPy avantilaue) uebodoroyia mou npodiayeddaue dote vo unootneilovue
NV LYNAOY eMTESOU aPYLTEXTOVLXT TEpLY AN Xl TEOGOUOlwaT EVES YnpLaxod GUGTAUNTOS UE TUpTvaL
emelepyaoty xat TV 0pfr viomolnoy Tou oe povdda mpoyeauuaTiléuevng hoyinic FPGA.

[Tapd to yeyovog 6TL undpyouv Swabéolua epyahela yovtehomoinong xal dmgraxric npocouolwong
oe UYNAo entinedo €3 xou TOAAG yedvia, énwe 1 SystemC, dev undpyet dtabéoruo éva ohoxhnpoUévo
nepBdAhoy to onolo umopel va ypnowonowmbel: o) yia povieronolnen xar GLUVIPOGOUOLWET UAXOU-
/hoyiouxol ouotnudtwy ue nupfiva enelepyaotd xa B) v Thy unooTthplEn 6Awy Twv Brudtwy Tou
aratTovyTaL Yl TNV ulornoinor evég cuothuatog oe wovada FPGA. Exiong 6ha ta epyaleia mou
undpyouv otny Bihoyeapla xar xdvouv yeron tng Python yia dmgaxy oyedlaon unootpellouy
uévo cuyxexplueva PAuata 6cov agopd TN oyedlaon xar vhonolnon evoc cuothuatoc oe FPGA.
ITwotebouue, olupwva xar ue to otolyela tou napovotdoaue otov Ilivaxa I11.1, 6t uévo n uebodoroyia
Tou avantiEaue xal vlomoufoaue ue Bdon to SysPy unootneilet éha ta BAuata oyedloong xou
vhonolnone oe pwovdda FPGA evic SoC pe nuphva enelepyaoth (rpocouolwon oe eninedo RTL #
oe uPNhé ahyopBuxd enlnedo - oyedlaon xau vhoroinon o HDL - avdntuin hoyiouixol - duayeipion
epyahelov Aoy odvleong xat guoixig oyedlaong oe FPGA - emxowvovio xor avtarhayr dedouévewy

ue o SoC uetd tnv vhonoinon oe FPGA). Agol yekethioaue tig uehddoug xau ta undpyovta epyaieta

o8

motebouue 6TL ananteltal mo eviaTixy €peuva GToV Touéd TNG AVATTUENG ERYUAELDY TOU XAVOLV
xerion dwpedy Slabéoiuwy TupHvey enedepYaoTdY xaL TUEéYouv T XaTdAAnies UeBddoug Yo T
yerion Toug xau N oyedlaon dngraxdy cuotnudtwy ye yerion FPGA. Ta epyakela autd Ou mpénel va
vnootnellouv uebddoug meplypaghc oe uPNAS eninedo, eldxd Yo TIg LOVEdES UALXOY Xal AOYLOULXOU
yia Tig omoleg dev umdipyel axdua vhonolnom ota apyixd otddia oyedlaong. Me 1 yprion tov puehddwy
neptypogric o oyedlaothc Oo elval oe Oéon vo ahhdlel eUXOAA TIC TALAUETEOUS TOY UOVTIEAWY AL VO
extelel mpocouolhoelg oe enlnedo cUGTAUATOS BOTE VA THREL TS GWOTES ANOPACELS GYETLXY UE TT|
AeLTouEYOTNT oL Tig enelepyaoTixés eMBOOELS TOU GUGTAUATOS.

Me 11 yerion < Python xatagépaue va avantifouue eva epyahelo mou €yel wg atdY0 TNV YeNoT
nepLypap®dy udmniod emnédou oe Yhdooo Python yix tnv mpocouoilwor, mepiypagr xal vhornoinoy
oe FPGA evowpoatouévey SoC. '‘Ola ta epyalelo mou noapéyel 1o SysPy xdvouv ypfion mepiypa-
p&Y Python ouuBatdy ye ta x0vd anodextd cuvTaxTiXd Xdl TEOYPUUUATIO T YALUXTNELOTIXA TN
YAGoGag, GoTe 1) yehon Tou va elval Tpoolth oe dtouo ue eAdyloTn B xau xabbéhou eumelpla 0T
oyedloon PneLaxody cueTNUATOY UE YAGGoeg Teplypaghc VAo, AAwote autdg frav xou e€ apy g
o Baowdg otdyog avdntuéne Tou SysPy, dnhadh n yeriorn Tou yia TV avanTun VALY amd unyavixoig
XA EPEVYNTES AAAWY EMLOTAUOVLXGY TEJLWY YL TNV EMTAYLYOT] TS EXTEAEGTC TOAITAOX®Y oY 0plBu®wY
enelepyactoug dedopévmy 61o uxd. Ta xlpla xou TpwTtonoplaxd yapuxtneleTxd Tou SysPy cuvodi-

Covtor axohovbnc:

o Yyedlaon evoouatouévny SoC ue ypron neptypapdy doufic Python (block-oriented design) ue
yerion nuehvey ot uoper RTL A oe uopen netlist xat uhonolnomn cuvduaotixic xal axoloubiaxrc

hoyuhg Yo T SacUvdeoT) Toug.

o Ilpocouolwomn Ynplaxdy cuotnudteny ue ypron woviéhwy Python ujniot emnédou 1| nepiypa-
pov C v Ty teptypapt) Soudv Aoy 1 Aoyiouxol tou exteheltol and Tov enelepyaoTr) evog

SoC.
o Autéuatn napaywyh ocuvbéoluny neptypapdy VHDL

o Tlapoyr epyahelny xar hoyiouwxol Sienagnc yio Ty emxolvovia tou SoC ue dikes Ynproxés

uovédec m.y. H/Y, dhhec povddec FPGA xTa.

o Autéuatn napaywyrh apyelwy script yio) Steuxdiuven yenong Tou xaATEAANAOU AOYLEULXOU

hoyuweric ovvlbeong xau puowic oyedlaorng oe wovada FPGA.

Méow tou SysPy yivetow dwayelpion xar yeron ulag oepde dAAY epyakelwy ToU amoltodvTal

v v oyedlaon evog SoC. "Oha ta epyahela, 6nwg apyela script Tel, apyela xvpatopoppdy VCD,

29

uetayAwttiotéc hoyouxot GCC x.a. anoterolv eupéwe dradedouéva epyarela 6To yodeo e Yn-
puaxtfic oyedlaong. Me autédy tov 1pém0 Uéow Tou SysPy xdvouue yprion mpaxtixdy xou epyarelwy
oyedlaong mou elvol anodextd and TNY XOLVOTNTA TOV UNYAVIXOY PngLaxnic oyedlaong.

Ta mpwtomopaxd yoapaxtnelotixd tou SysPy Soxwudotnxay enlong xar xotd) oyedlaoyn tov
Tapaderypdtwy SoC nou nopabécaue. [lo cuyxexpiuéva, to axdrovho TEmTOTORLAXE Y AEAXTHELGTIXE

tou SysPy yenowonoumlnxay otn oyedlaon xdbe SoC:
o SoC enelepyaciog exdVLY

— Avtéuaty yetayAdtTion hoyiouwxot C.
— Xprion wovddny ukixol oe Uop@r netlist yia nepiypagéc dourc.
— Xpron uebodwv Python yu t)v autduoty napauetponoinoy xal 6Gvdear uovidwy uiol
O TMEPLYPAPES doUnS.
e SoC otoyaoTtixhc Tpocouolwang BLoroyxdy SixTiwy
— Xphon dwdhou emxowvoviog Ethernet yia v emxowvovia e povédag FPGA pe H/Y,

oote 1 wovada FPGA va xabiotatal évag cuveneepyaothc mou xatayweetl o SiafBdlet

dedouéva and xo npoc tov H/Y.

— Xpton yeydhov eEwtepmdy yovadeny uvhung timou SDRAM extég tou FPGA vty
YeHYoen XaTayOenom xoL avAXANGT SESOUEVLY.

— Xprion dedouévwy and eEntepind apyela T.y. apyela YL THY TARAUETEOTONCT YUNPLaxdy

LOVABdLV.
— Xphon dienaghc Python/C (HAL: Hardware Abstraction Layer) yia tnv emxowvovia H/Y
xat FPGA.
o SoC eneepyaoiog Hyou
— AvanTudn e@apuoy®dy AoYLoUXOU UE YETOT EVOWUATWUEVOU AELTOVEYLXOU GUGTAUATOS
Linux.

— Avdntudn unyoviouol npocouoiwong ot entnedo neptypapdy RTL akhd xat e ahyoptuixd
eninedo yia 10V poodLoploud TwY TUpAUETEWY EVOS GLGTAUATOS TpLY TNV dtadixaatia oy e-
dlaomng.

— Yuvrpooouolnan ukixol /hoyiowxol ue napdhhnk yefon akyoptbudy tepypagpody (Matlab-
like) xav neprypagpdy C uall ye neprypagés uhixod RTL.

60

— Hapouctaon Twv anotehecudtwy g tpocouolnong ot vopey apyelwyv VCD, cuufath

xau ye dhha epyahela mpocopolwong (m.y. Modelsim).

Me o160) Behtiwon Tou epyaieiou xau 1 Sudbeon Tou o dAloug yprioTeg, Tapéyouue ehelbepa
6hov tov xGBuxa Python pall ye mapadelypata oyedlaone [89] uéow tou GitHub nou anotehel v
ueyoaritepn wotocelda naupoyhc dweedv Aoylouxol oto Swadixtvo. Méow tou GitHub to SysPy
€yel N avagopéc oe dAla avtiotolya epyaleia mou xdvouv yerion tng Python yio oyedlaon xou
TpOGOUOLKoT LoVadwY LhxoU, étwg To PyMTL [58], [59] nov avantiybnxe ato naveriothiuo Cornell.
Avagopd oto SysPy xat otig uebodoug mou yenoiuonowolual yivetor xar o€ Ula BeATLoUéVn €éxdoon Tou
epyaheiov MyHDL [54]. Erlone xddwoag tou SysPy yenowonoweitat otoy enelepyaoth MinSoC [29]
(éxdoon tou OpenRISC vy mhatgpdpues FPGA) v v apyweonolnen e uviung mpoypdupatog,
eved M oudda pag unheée 1 medTY Tou UAomolnoe Tov cuyxexplévo enelepyaotyh oe Lovada FPGA

Virtex-5. Xpfion tou SysPy yivetow enlome xau yio tn oyedlaon tou ouothuatos Aura SoC [14].

1.5.2 Ilpotewvdueveg BeEATLOOELS

EOUPOVA UE TA ATOTEAECUATA TWV TELOY TALUSELYUAT®Y OYeSAoTS TOU TUPOUCLICUUE, UTOPOUUE VA
ouvodloovye ot tpelg Paoixols dZoveg Ta nedla ota onola undpyel neplidpLo Behtinong 6cov agopd
¢ duvatéTnTeg Tou epyahelou: o) mpooBixy véwv SuvatothTev oyedlaong xa mpocopolwong evéc
SoC, B) npoohixn neplocdtepwy éTolmy Hovadwy npoc ypfion otic BPAobhxes tou epyahelou xou
Y) vhonolnon neploobtepwy Tapadelyudtoy oyedlaons mov Oa Aettoupyrioouy xat wg xivnteo Yo T
xeron Tou epyaielou and dAloug yeHoTEC.

Enuoavtued tpootixn B Hray 1 napaywyh xddxa VHDL xau 1 uvnootieln epyalelwy oyedlaong
ASIC xou 6y u6vo epyahreilwy oyedlaong pe povadec FPGA. H npoolrxn neprocdtepwy €tolumy
novadwy, ewwd oe eninedo mepiypapdy netlist xplvetar anapaltyty, otg PuBAtobixes tou SysPy,
ahhd xon 1 avdnTun Ty oyeTindy uehddwy Python nou Ba apyuonototy xon o cuvdéouy autduata
Tl véeg Uovddeg ot meplypagés dounc. Oo mpémer enlong va evoouatwbholy neplocdtepol TupVES
enelepyaot®dy oL onolol unootnellovior xau oe Lovddec FPGA dhlwv etatpetdy, extdc tne etonpelag
Xilinx, émwe m.y. o muphvag avorytod xdduxa LatticeMico32 and tnv etatpeia xataoxeuic FPGA
Lattice. Embuunth xplvetal 1 urnootipln Aettovpyxot cuothuatog Linux otoug veéoug mupriveg
emedepYUOTMY GOTE vau elval eUXOAY 1) UTOGTHELEY TEOYPUUUATWY 0BNYNONG TERLPERELUXDY UOVAdWY
Y. EAEYXTOV uviune x.o. xaBdg xat Stapdpwy TpwToxdA ey enowvoviag n.y. USB, Ethernet x.a.

Arnopattntn elvon xat 1 Sudbeon neprocdtepny tapadelyudtwy oyedlaong ue 1 yerion Tou SysPy.

EwWudtepa mapadelyuata oyedlaong nou anaitody aplbuntixy enelepyacio dedouévmy, 6mwg enelepya-

61

ola Blvteo 1) enelepyaocio Taxétov ot dixTtuo dedouévev, Ha avadel&ouv Tig SuvatdTnTeg Tou epyaheiou
otn oyedlaon SoC ue ypfon nuphvev enelepyaotdy oe ouVSUAoUS Ue T1 oUVdesn aplBunTXdy
Uovadwy w¢ enelepyYdoT®dY eLdxol oXonoU.

Méow ¢ wotocehidag tou SysPy oty mhatgépua GitHub [89] nupéyovtar mhnpogopies yia
xefon ahAd xoL Ty eyxatdotacT Tou epyalelou oe mepdhlov Aettoupywxot cuoTthuatog Linux.
ITinpogopies yia to SysPy undpyouv xar atny oyetixt] LoTocelida Tou teplypdpel Tig Aettoupyieg Tou
epyohelou xou v peBodoroylo avdntuine tou [88]. tdyoc tne dudfeorc tou SysPy wg epyalelo
avoly ol Aoyloulxoy, elvar 7 Swapxis BEATIWON TV YApaxTNPLOTIXGY TOU XL 1) Xp1hion Tou and vay
avavouevo aplBud yenotdv mou Bu extiunoer xol Ho allomotioel Tic duvaTOTNTES TOU TaEEYEL Yid

oyedlaomn evég SoC oe uPnhé eninedo nepiypagrhc ue) yenon g Python.

62

Contents

List of Figures.ot i i i it ittt et i e e etaenenenens 67
List Of Tables. ... i i e ittt it et i e e e tnenenenans 69
List of algorithms i i it it icicnene 71
1 Introduction.......coviuiiiiiininiieiieneenrnreosasnsssonsossnsossasnsns 75
1.1 Goalsand vision 75
1.2 Contributions 7
1.3 Thesis outline 78

2 Background and related work......... ... i i 81
2.1 Importance of processor-centric Systems-on-Chip 81
2.1.1 New capabilities of modern FPGA devices 82

2.2 Choosing Python for hardware design 84
2.2.1 Python’s features exploited for digital design 85

2.3 Related work 88
2.3.1 Popular Python tools for hardware and embedded design 88

2.3.2 Comparison to other existing tools 88

2.3.2.1 Comparing verification features of SysPy to SystemC 91

2.3.3 SysPy’s contribution to SoC FPGA design 93

3 High-level design/verification methods.................oiiiiiiiiit. 97
3.1 Thedesign flow 97
3.2 Hw/sw co-simulation features0 L. 100

63

3.3 Software simulation in a high-level verification model 103

3.3.1 SciPy for algorithmic software development 104
3.3.2 Using C tools in Python for hw/sw co-simulation 110
3.4 1I/O signal visualization L o 112
RTL descriptions using SysPy ...oiiiiiiiiiiiiiiiiiiiiiieienisrsnreenans 115
4.1 Python to HDL translator 115
4.1.1 Behavioral descriptions Lo Lo 116
4.1.2 Structural descriptions L 117
4.2 RTL verification modelso oo 123
4.2.1 VHDL testbench template, 123
4.2.2 IP-XACT models 125
Processor-centric SOC designs «.vvvveiiiiiereineenenrsnrsreosassssnsnans 127
5.1 Processor core instantiation o000 127
5.2 Processor interfaceo 130
5.3 Embedded software flowo 131
5.3.1 Using compilers for different processor architectures 131
5.4 FPGA design tools scripting o oo 134
Image processing SOC design Casecoiiiiiiiiiiiiiiieiinenenenennn 137
6.1 Design features for image processing 137
6.2 AVR core and features L L 138
6.3 Image processing SoC designo 140
6.3.1 Sobel’s algorithm o 141
6.3.2 Using SysPy to glue the AVR uC and the custom peripherals. 142
6.4 Performance and implementation results 148
Biomolecular interaction networks simulation SoC design case 151
7.1 Selection of a 32-bit processor soft core 151
7.1.1 OpenRISC core and features 152
7.1.2 Leon3 core and features 0oL 154
7.2 BioModel files L 156

64

7.3 Gillespie’s stochastic simulation algorithm 158

7.4 Biomolecular network SoC features 160
7.4.1 Scalable TP core for stochastic simulation 160
7.4.1.1 FRM SoC architecture 161

7.4.2 Custom core automatic parameterization 165
7.4.3 Leon3 interface and connection to the FRM-SSA core 167

7.5 Performance and implementation results 172

7.5.1 Comparison against software based tools for BioModel stochastic sim-

ulation 174

8 Audio processing SO0C design Caseoiviiiiiiiiiiiiiiiiiiiannen. 179
8.1 Audio SoC features 179
8.2 Audio processing SoC design 180
8.2.1 SoC verification using SysPy 0oL 180

8.2.2 Filter bank design using SysPy and SciPy 183

8.2.3 Processor interface using SysPyo 188

8.2.4 SoC simulation results o000 191

8.2.5 Mapping co-simulated design to hardware 193

8.3 Software development using an embedded Linux kernel 195
8.3.1 Software debuggingo 195

8.3.2 Software development flow 196

8.4 Implementation results L 197
8.5 Usability evaluation of SysPy 199

9 ConClUSIONS .+t vttt ittt it i ittt ittt ittt sattetaenentnsnensnsanns 203
9.1 Summary of contributions 203
9.2 Proposed future research L L 207
Appendix A Installing SysPy ..ottt i e it ei e 209
A.1 SysPy setup in Debian Linux 209
A.2 Synthesis options 211
A.3 Snapgear Linux kernel parameters 212

65

Appendix B Extended code examplescciiiiiiiiiiiiiiienenannanns 215

B.1 Python examples L 215
B.1.1 Arithmetic simulation model 215

B.2 Testbench example for the audio processing SoC 220
B.3 HDL examples. 226
B4 Tclexample o 227
List of abbreviations.iuiiiiiiiiiniiiieineieeneeenraeenraeeeananns 229
Bibliography e e i e e et e it e 233

66

List of Figures

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

5.2
9.3

6.1
6.2

Interconnection interface between a processor core and various peripheral

units in the FPGA fabric. 00 oL 83
Generic processor-centric SoC diagram.o 87
Comparison between SystemC and SysPy verification features. 92
Processor-centric SoC design flow using SysPy. 99

(a) SoC simulation flow, (b) Simulation models - RTL descriptions interface. 102

Top-level schematic of the linear regression SoC testbench example. 104
Linear regression fit plots using different fixed-point notations. 110
Simulation flow in SysPy using RTL and algorithmic models. 111
Digital I/O signal waveforms of the linear regression SoC. 113
Demo FSM pinout.o 120

UML sequence diagram depicting the usage of function handlers in Python
structural descriptions and the interaction among different modules of SysPy’s

Libraries. 122

Design flow adopted by FPGA tools, from RTL design down to the generation

of the FPGA bistream file. 129
Software compilation flow for the three supported processor architectures. . . 132
File hierarchy used in XST design project. 135
Block diagram of the AVR architecture (source: www.atmel.com). 139

Diagram of the Sobel edge detection SoC. The shading indicates the type of

each component. 143

67

6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

8.1
8.2

8.3
8.4
8.5
8.6
8.7

1.1

Processed 64x64 pixel images by the implemented SoC. 149

OpenRISC1200 block diagram (source: www.opencores.org). 153
MinSoC block diagram (source: www.opencores.org). 154
Structure of the Leon3 processor (source: www.gaisler.com). 155

Submission flow to the BioModels database (source: www.ebi.ac.uk/biomodels/).157

FRM-SSA core architecture with four Processing Elements (FRM4X). 164
Parsing SBML BioModel files using SysPy. 166
Hardware Abstraction Layer API for interfacing a typical processor-centric

SoC running on the FPGA. 169
SSA SoC. Connection of the SSA core to the Leon processor. 173
Top-level schematic of the audio SoC. 181

a) Abstract modeling of the SoC using SysPy and SciPy, b) diagrams of the

Python classes used in the SoC’s testbench. 182
Frequency and phase response of the four implemented filters. 187
Functional FIFO diagram (source: www.xilinx.com). 189
FIFO interface architecture in the audio SoC design example. 190
Filters time response plotted in SciPy. 191
Digital I/O signal waveforms of the audio processing SoC. 192
Design tools used by SysPy installed under Debian Linux. 210

68

List of Tables

2.1

6.1

7.1
7.2

7.3

7.4

8.1

8.2

8.3

1.1
1.2

Python digital hardware related tools comparison.

Synthesis results for the Sobel system. Utilized resources for the Virtex-5
LX110T device are presented (CLB: two slices, Slice: four 6- input LUTs,
BRAM: 36Kb, DSP48: 25x18-bit).

Generic parameters of the FRM-SSA core.
Throughput of the SSA cores at a clock frequency of 160MHz for a network
with m = 136 reactions and n = 93 molecular species.
Resource utilization for the Virtex-5 XC5VLX110T-1FF1136 FPGA device
(Slice: four 6-input LUTs, BRAM: 36Kb, MUL: 25x18-bit).

End-to-end performance comparison of FRM4X SoC to software simulators.

SoC timing results when processing a music file (3,924,170 samples x 8-bit)
compared to a C software implementation of the filtering algorithm running
on Leon. L
FPGA resources utilization used by the SoC’s implementation in the Virtex-
5 XC5VLX110T-1FF1136 device. (Slice: four 6-input LUTs, BRAM: 36Kb,
MUL: 25x18-bit) (implemented using multiplier/DSP slices or logic (LUTS)
slices). . . . L
Usability metrics, according to the BD'Ti benchmark, provided by three dif-

ferent designers.

Synthesis options and possible values.,

Snapgear Linux kernel compilation parameters and default values.

69

199

70

List of Algorithms

3.1
3.2
3.3

4.1

4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3

7.1

7.2

8.1

8.2

B.1

I/0O interface of the SoC performing the linear regression algorithm. 107
FSM description for controlling the linear regression arithmetic block (part 1). 108
FSM description for controlling the linear regression arithmetic block (part 2). 109

Typical FSM description in Python, using the supported HDL-like description

syntax in SysPy.o 118
Custom block declaration in SysPy’s component library. 119
Function handler for automatic instantiation of a predefined block. 121
VHDL testbench template of the “demo_FSM” block in Figure 4.1. 124
XML description of the “demo_FSM” block in Figure 4.1. 126
Processor core instantiation in the top-level description. 133
Top-level Python description of the image processing SoC (part 1). 146
Top-level Python description of the image processing SoC (part 2). 147
Top-level Python description of the image processing SoC (part 3). 148

Python description of the SSA SoC top-level design file, using port-map like
assignments. L oL L e e e 168

Creating a Python object to transmit/receive data over the GPIO channel. . . 171

Using SciPy for simulating the filter’s datapath and C function for hw/sw co-

simulation.o 185
Python function description used to instantiate an FIR filter block. 194
Linear regression class model (part 1). 215

71

B.2
B.3
B.4
B.5
B.6
B.7

B.8

B.9

Linear regression class model (part 2). 217

Linear regression class model (part 3). 219
Testbench for the audio processing SoC (part 1). 220
Testbench for the audio processing SoC (part 2). 222
Testbench for the audio processing SoC (part 3). 224

Auto-generated VHDL description for the Python description in Code Example
7 226
Auto-generated Tecl script used for synthesizing, placing/routing the design and
generating the FPGA programming file (part 1). 227
Auto generated Tcl script used for synthesizing, placing/routing the design and
generating the FPGA programming file (part 2). 228

72

Preface

This work has been supported by the Greek State Scholarships Foundation (IKY) under
grant 2008-5530.

Chapter 1

Introduction

Modern Field Programmable Gate Array (FPGA) devices can host very complex digital
designs. Most of the implemented System on Chips (SoCs) incorporate at least one pro-
grammable microprocessor (uP) unit. The processor’s Intellectual Property (IP) core is key
elements for the rapid prototyping of new digital systems, but on the other hand its usage
raises a lot of design challenges that have to be addressed in the design flow. In this chapter
we state the goals that we wanted to achieve by developing methods and tools for designing

processor-centric systems on chip implemented on FPGAs.

1.1 Goals and vision

The main goal of this dissertation was the development of methods and a design tool target-
ing the hardware /software co-design and verification, using hight-level abstract descriptions,
of processor-centric SoCs implemented using FPGAs. For the needs of the research, we
evaluated Python’s programming features and especially the combination of scripting ca-
pabilities in a Linux shell, combined with Object Oriented Programming (OOP) features.

These supported features could be used to:

e Implement high-level abstract models of blocks, e.g. arithmetic, memory and logic
blocks, connect them using structural Python descriptions and translate them auto-
matically to FPGA synthesizable Very high speed integrated circuit Hardware Descrip-
tion Language (VHDL), or use them to perform Register Transfer Level (RTL) bit-true

Evangelos Logaras 75

Using scripting languages for hardware/software co-design

simulation of a system. The integration of the SciPy library in Python provides a large

number of functions which can be used for modeling arithmetic blocks.

e Build a framework and a design tool that implements the end-to-end design flow of
a processor-centric system-on-chip, which invokes/calls other hardware and software

related tools, e.g. logic synthesizers, software compilers, simulation tools etc.

e Process the large number of text-based files generated during a hardware design flow.
Information extracted from generated text files is used many times as an input for the

next design step or can be transformed/parsed to a different format.

While designing a complex digital system cannot be done automatically at a press of a
button, we envisioned a design tool that would integrate the majority of the tools needed
for an FPGA implementation of an embedded SoC. The first and most difficult task was to
build the Python-to-VHDL parser. For this task we needed to define our supported coding
style/syntax for the hardware descriptions in Python. The syntax should support a level of
abstraction but on the other hand support features that are used in well established HDL
languages, like VHDL and Verilog. A lexical analyzer also needed [31] to recognize and
track, in the user supplied Python descriptions, the supported syntax and parse these parts
of Python code that later on would be mapped and translated to synthesizable VHDL.

Python also provides the data structures to easily handle the large number of param-
eters/constraints required to design modular SoCs and to constrain the synthesis and im-
plementation process. Some of these parameters either should be defined directly in the
design files, e.g. size of a data bus in bits, time resolution of a simulation testbench, or they
can be defined in text files read/parsed by SysPy during translating a design to VHDL or
simulating a design, e.g. timing constraints, placement constraints during floorplanning in
the FPGA, list of files to be synthesized etc. All these parameters could be stored efficiently
using Python key/value hash table structures, called dictionaries. Using dictionaries it be-
comes easy to store and recall information using user-defined keywords. Dictionaries have
been used not only to store design constraints, but also to store information about a given
Python description design, e.g. all the I/O signal names and their properties, clock and reset

signal names, sequential block names etc.

Evangelos Logaras 76

Using scripting languages for hardware/software co-design

The use of a good lexical analysis tool, combined with Python’s unique features to store
and manipulate text files used within our project as a very solid programming environment
for scanning and manipulating textual data. Using these features we could create the nec-
essary Python - to - VHDL parser and also generate all the Tool Control Language (TCL)
scripts needed for an FPGA implementation by the synthesis tools. Python in our tool also
handles all the calls to external software tools, like the C compilers used to develop the soft-
ware executed by the processor. The existence also of a good Matlab-like tool, like SciPy,
embedded into the Python environment triggered our interest on building a simulation tool,
especially targeting arithmetic hardware blocks. Algorithmic descriptions could be used to
describe numerical operations in fixed or floating point format. In this way a processing
datapath (arithmetic blocks plus registers) controlled by a state machine could be easily
simulated in an abstract, but bit-true format, while the Python code of the arithmetic and

control blocks (FSM) could be later translated to synthesizable VHDL.

1.2 Contributions

The main contribution of this dissertation is to show that a modern programming language
like Python can be used to design, simulate and implement processor-centric embedded SoCs,
using high-level, abstract descriptions. This is very useful especially early in the design flow
when control and processing logic of a system must be partitioned among software and
hardware implementation. Our research work also shows convincingly that Python is a
good candidate language to handle the large number of design tools needed to capture and
implement a SoC in an FPGA device, in terms of hardware and software development. It also
demonstrates Python’s capabilities to process text files and string variables, which is very
useful for text conversion and parsing and for auto-generating code, e.g. VHDL, Tcl scripts,
XML. SysPy facilitates architectural exploration and simulation. Python functions and
objects are treated like digital modules during simulation, while SysPy provides the timing
mechanism needed to perform a bit-true and cycle-accurate simulation. After simulation,
Python descriptions are parsed to synthesizable VHDL code for FPGA implementation and
the tool also generates all the necessary scripts to drive and support the Xilinx FPGA

synthesis tools.

Evangelos Logaras 77

Using scripting languages for hardware/software co-design

To our knowledge only SysPy:

1. supports hw/sw co-design and the use of high-level software models in Python or C

along with RLT-like hardware descriptions also in Python for hw/sw co-simulation.

2. uses a popular software language like Python as an Architectural Description Language
(ADL) [68] to support abstract simulation of SoC designs and generation of Value
Change Dump (VCD) files for top-level I/O signal visualization.

3. supports the use of parameterized Python functions to automatically generate synthe-

sizable VHDL code.

4. supports the design of processor-centric SoCs implemented in FPGA devices using

freely available processor cores, like Leon and OpenRISC.

5. integrates with FPGA implementation tools and supports generation of Tcl scripts for
the Xilinx design tools to ease the required design steps down to the generation of the

bitstream files used for FPGA programming.

In this way we take advantage of Python’s best features and deliver a design tool that can
be used to describe the architecture of a SoC in an abstract or algorithmic way, especially
when arithmetic operations are involved and also supports most of the steps required in an

FPGA design flow to implement the design in silicon.

1.3 Thesis outline

In the thesis we tried to describe in enough detail the innovative features of SysPy and
also provide design examples to motivate the reader about the usefulness of the tool. We
present three large processor-centric design examples along with experimental implementa-
tion/performance results. In all design examples that we implemented the FPGA board was
connected to a host PC using a serial or/and Ethernet interface, in order to exchange data
and provide processing results to the PC for further processing and analysis. The FPGA
board in this way was used as an attached data co-processor, where the PC provided data
pre-processing functionality, e.g. split data in different files or in different network packets,

while the performance demanding processing tasks were accomplished by the FPGA device.

Evangelos Logaras 78

Using scripting languages for hardware/software co-design

The implementation of the design examples reflects the evolution of SysPy during time.
The utilized processors for the examples are the freely available, through OpenCores [73],
8-bit soft core of the widely used AVR ATmegal28 [76] and the popular 32-bit Leon3 soft TP
architecture [11] by Aeroflex Gaisler. The first design example is an image processing SoC
[60] built around the 8-bit AVR core. The second design is a high performance embedded
computing SoC used to accelerate stochastic simulations of large-scale biochemical reaction
networks for systems biology [61], [40], [41]. The third design is an audio signal processing
SoC implemented using the Leon3 core as the main system controller, where the software
executed by the processor is compiled along with a Linux Operating System (O/S) kernel
which handles efficiently all the I/O and memory communication in the SoC. Test examples
were also performed using the OpenRISC 32-bit core [29] also provided by OpenCores.

The chapters of the thesis are organized as follows:

e Chapter 2 describes in detail Python main features and how they are utilized by popular
hardware and software related projects. A description is provided of the architecture
of modern FPGA devices and the way they favor processor-centric designs. Related
work of academic/research projects using Python for digital hardware design is also

presented along with the tool’s contribution to embedded SoC design.

e Chapter 3 presents the design flow developed and also how the simulation features of

SysPy can be used for embedded SoC verification, early in the design phase.

e Chapter 4 presents methods to describe digital logic in behavioral or structural format
in Python and how SysPy translates the description to FPGA synthesizable VHDL

code.

e Chapter 5 presents in detail how SysPy can be used to instantiate a processor soft core
in a design and also the way it supports software development flow for bare-metal and

O/S-centric applications.

e Chapters 6, 7 and 8 provide details and description of the implemented SoC design
cases. The architectural specification of each design and the flow used to design and
verify the SoCs in SysPy are provided. The data processing algorithms ported in

hardware in each design are described as well as the process of sw/hw partitioning.

Evangelos Logaras 79

Using scripting languages for hardware/software co-design

Implementation results in terms of FPGA resources utilization and timing results are

provided.

Also for all the designs information is provided on the type of processed data, e.g.
image/audio data, biomolecular reactions XML-data. The host-PC interface used in
every design is also described as well as the procedure of exchanging data between the
FPGA board and the host PC. Chapter 8 also provides the results of an evaluation
method that we used to assess the usability of the features of our tool, where feedback

for the evaluation has been provided by users of SysPy.

e Chapter 9 presents the conclusions of SysPy’s development and of the design of the
various examples used to showcase the features of the tool. A number of future im-

provements and enhancements is also suggested.

e Appendix A provides tables with the synthesis parameters that can be used in Python
descriptions along with compilation parameters for the supported Snapgear Linux ker-

nel. A short installation guide of SysPy under Debian Linux is also provided.

e Appendix B presents extended code examples used to demonstrate the various design

and verification features of SysPy.

Evangelos Logaras 80

Chapter 2

Background and related work

Choosing the correct programming language for the job at hand is not an easy task. In
our case the chosen language is used for developing a design tool but also for describing
hardware and software running in an embedded processor. In this chapter we elaborate on
these features that Python has and make it suitable for developing a digital hardware design
tool. A brief introduction to the architecture of modern FPGA devices is presented. We also
provide details about other hardware and software related projects where Python has been
used, so the reader can have a better understanding about the applications that Python can
be used for. Emphasis is placed on digital hardware related tools developed using Python,

especially related work from academic/research projects.

2.1 Importance of processor-centric Systems-on-Chip

Most of the complex SoC designs implemented nowadays using FPGAs are processor-centric,
where the uP is used as a gateway, implementing in software different communication proto-
cols needed to exchange data with other logic devices on the same board or with a connected
PC/server. Software executed by the processor is also used to control and exchange data
with other custom blocks implemented in the FPGA fabric. Complex control and data pro-
cessing logic can now be easily partitioned between software and hardware inside the same
FPGA device.

The latest devices from FPGA vendors, such as the Virtex-7 device from Xilinx or the

Arria-V device from Altera, include fast embedded dual-core ARM processors which can

Evangelos Logaras 81

Using scripting languages for hardware/software co-design

communicate with the rest of the FPGA fabric using a very fast data and control bus. This
type of new devices are mentioned as programmable SoCs, where software executed in the
processor is tightly coupled with hardware-based processing and hardwired bus interface
protocols are used to exchange data and control signals between the processor and blocks
implemented in the FPGA fabric. The digital architecture adopted in the latest FPGA
devices introduces a block oriented way design flow of a SoC, where the designer connects
new peripheral devices to the processor, according to the data processing requirements of
the application. New designs can be efficiently prototyped within a few days, while the
performance and power consumption of a SoC in an FPGA device can be now compared
with that of an ASIC implementation. Of course for mass IC production the ASIC device
remains the only option, especially in terms of cost reduction.

The more ready-to-use logic will be “squeezed” inside an FPGA chip, the more popular
and attractive these devices will become, not only to hardware but also to software develop-
ers, which seek ways to accelerate software algorithmic implementations. Applications such
as audio, image and network data processing have already been mapped into FPGA devices,
taking advantage of the large number of hardwired arithmetic blocks, used to perform par-
allel fixed/floating point arithmetic operations. The key to success remains the efficiency of
the hardware/software co-design tools to combine, connect and program all the necessary

digital blocks inside an FPGA.

2.1.1 New capabilities of modern FPGA devices

Programmable Logic Devices (PLD) is a family of digital Integrated Circuits (IC) that has
seen tremendous growth over the past decade. Silicon complexity has increased dramati-
cally, compared to the devices that were available a decade ago. A large number of available
resources is now available inside an FPGA, ranging from Configurable Logic Blocks (CLBs)
and Block RAMs (BRAMs) to arithmetic/multiplier blocks and hardwired embedded pro-
cessor cores. Large devices can now be used to replace several digital Application Specific
Integrated Circuits (ASIC), minimizing in this way the size of Printed Circuit Boards (PCBs).

Incorporation of processor cores, in the form of hardwired or processor soft IP cores,

brought a new era to logic reconfigurability using PLDs. FPGA design tools must now

Evangelos Logaras 82

Using scripting languages for hardware/software co-design

efficiently handle processor IP cores and their software ecosystem as well as the integration
of the necessary glue logic around the processor. Also more complex design tools needed for
multiprocessor systems, where in many cases an O/S is needed to distribute the processing
tasks among the available processors.

One big challenge in latest devices is to efficiently utilize a fast interface between an
implemented soft or hardwired processor core and units implemented on the FPGA fabric.
Devices utilizing hardwired ARM processor cores contain also hardwired implementations of
such interface blocks. In case of softcore processors, the designer is responsible for building
this interconnection interface block on the FPGA fabric. The design of such a block is a
challenging task since FIFO memories must be implemented to ensure that data can be
exchanged in a safe way between the two different clock domains and also that the operation

of the faster domain is not stalled due to the data exchange with the slower domain.

available cells .
on the FPGA /'

/FPG A interconnection L \ s

interface S
[] <> | vART

> <+ | SDRAM
o
-

-)

Figure 2.1: Interconnection interface between a processor core and various peripheral units

in the FPGA fabric.

Among the latest features of modern FPGA devices is the existence on the FPGA fabric
of complex arithmetic units, which can implement in hardware a number of arithmetic

operations ofter required during execution of signal processing algorithms. Synthesis tools

Evangelos Logaras 83

Using scripting languages for hardware/software co-design

automatically configure and connect the required number of arithmetic blocks to appropriate
CLBs. The arithmetic blocks are placed in columns inside the FPGA (just like BRAMs) and
a large number of blocks can be automatically cascaded to handle arithmetic operands of
large bit size. In this way the existence of a processor core in conjunction with the arithmetic
blocks in an FPGA design can easily outperform the processing power of traditional DSP
processors. The main drawback for a good implementation remains the ability of an engineer
to combine software and hardware design skills to implement a good and well timed digital
design for his/her application. A typical diagram of the blocks found in a modern FPGA
devices is presented in Figure 2.1.

The latest trend on FPGA design is to use devices where the main block is not anymore
the programmable logic fabric, but one or more hardwired processors. Fast hardwired em-
bedded dual-core ARM processors along with a large number of hardwired MULs, which
are included in the latest devices from FPGA vendors (e.g Xilinx’s Virtex-7 and Zynq and
Altera’s Arria-V) can be configured to perform several fixed and floating point operations
commonly used in DSP applications e.g. FIR/IIR filters, FFT, CORDIC etc. Such kind
of devices are often called as All Programmable System-on-Chip (APSoC), since they fa-
vor software development in conjunction with the development of tightly coupled custom

hardware blocks to handle the process demanding parts of an algorithm.

2.2 Choosing Python for hardware design

Python [2] is a freely available, high-level, interpreted language developed by Guido van
Rossum. Python’s standard library is extensive and well-documented, while code documen-
tation and reusability are core principles of the language. Python gives to the user rapid
development and flexibility and can be combined with C/C++ which is the industry stan-
dard for fast algorithmic implementations. Python has become extremely popular in the
software community during the last decade mainly because of its clear syntax and of the
reduced time required to develop complex software. Python code with good and clear syn-
tax has close resemblance to the pseudocode, most of the times used to describe algorithms
before their development. Also C code can easily be called within a Python program, in

cases where access to C libraries is required. Python supports object oriented program-

Evangelos Logaras 84

Using scripting languages for hardware/software co-design

ming, where classes and objects can be used to encapsulate data and the related processing
functions/methods, required to process them, in the same programming structure.

Python is installed by default on all the major Linux distributions and in many cases it
is used as a replacement for shell scripting. Also a large number of ready-to-use libraries
exist for Python, targeting a wide range of programming applications. Some of the most
important freely available libraries are the following: i) NumPy and SciPy [62] are Matlab-
like libraries where Python is used for linear algebra and vector computations used in Digital
Signal Processing (DSP). ii) matplotlib [43] is a numerical plotting library, which can be easily
combined with SciPy. iii) Scrapy is a very useful tool in web programming for extracting
information and performing data mining on the web.

Keeping in mind the great programming features supported by Python and the popularity
of the language in the software community, we tried to support Python structures/syntax
across all design and simulation steps in our flow to describe the datapath of the SoC and

the related simulation models and avoid custom-defined syntax.

2.2.1 Python’s features exploited for digital design

For describing digital systems, choosing the proper language to develop the tool was of great
importance. The special features that are required in a design flow targeting processor-centric

designs and hw/sw co-design are:

e Integrate under the same scripting environment all the required tools for hardware/-

software co-development and co-simulation.

e Support clear and powerful syntax that could be used to describe hardware digital
designs using Hardware Description Language (HDL) like syntax or in an abstract

way, using functions to auto-generate HDL code.

Most hardware design tools are based on scripting tools, such as Perl and Tel [21]. Al-
though Perl is a powerful dynamic programming language, it is severely lacking in reusability.
Python’s standard library is more flexible and well-documented compared to Perl [30], while
code reusability is core principle of the language. Python is also rapidly gaining popularity

in scientific computing, where a lot of engineers already use SciPy for algorithmic coding.

Evangelos Logaras 85

Using scripting languages for hardware/software co-design

Python’s high level structures can be used to support abstraction in building a SoC in a
block oriented way. In most cases custom peripherals are described in HDL and connected
to the main data and control bus of the processor. Moreover, they facilitate the description
of glue logic among these blocks. The processor acts as a gateway in the FPGA board and
advanced communication features are available if an O/S is running in the processor.

Since a processor IP core is a fairly complex block, Tcl scripts have to be used in synthesis
tools to import all the necessary design and constraint files. Makefile scripts are also required
for compiling C software for the processors. Python’s text processing features are used in
SysPy to generate and modify the required synthesis and compilation scripts. The scripts
are generated according to user input parameters defined at the top level module of his/her
Python description in SysPy. These parameters define hardware related information, .e.g
FPGA device family, main clock frequency etc., and also software related information, e.g.
C file names, O/S name and type etc. Python functions are also used to generate all the
text-based simulation files containing the values of the VHDL signals during a simulation,
along with the related scripts used to start the simulation.

Figure 2.2 shows how we have used Python to handle the integration of ready-to-use
processor IP-core in a SoC design. FPGA synthesizable VHDL code is generated from
Python description for custom blocks along with data/control bus interface/glue logic. SysPy
generates Tcl scripts for each one of the supported processor IP cores, which executes along
with the FPGA synthesis tools in a command line, in order to incorporate the processor
subsystem in the design. The tool also compiles, using the GNU Compiler Collection (GCC)
[1] C tools, the processor’s control software along with any existing O/S kernel. FPGA
bitstream file along with the compiled software binary files are generated, since SysPy makes
all the necessary external tool calls (synthesizer, compiler), and can be used for FPGA
implementation.

We have also developed methods to simulate the processor’s software in a bit-true way
expressed in Python, along with the Python hardware descriptions of the connected periph-
eral blocks. VCD files are generated in simulation mode that can be used to generate VHDL
signals’ waveforms. In this way we use Python to handle the complete tool chain required

to verify/debug and implement a processor-centric SoC for an FPGA device.

Evangelos Logaras 86

Using scripting languages for hardware/software co-design

Tcl
script W

generation

...

LERRLRLLL @&_’

=] Processor [.
- core = ;
- - : 1/0 to
A :"""'t"'t"'ft'""-: D cro € »] oystems
th =8 custom softare:fm :
ien 1295 F :
- (temet) 4>
Software
compilation

Figure 2.2: Generic processor-centric SoC diagram.

One important tool based on the NumPy Python library is Biopython [20], which is used
for biological computations. The tool is used to parse and process a large number of different
file types used in bioinformatics, containing biological related data. Scrapy [8] is another tool
that uses Python text processing features to create internet crawlers and extract information
from webpages. By using Scrapy web-based data mining and monitoring tools can be easily
created to process the huge amount of information found today on the internet. Pandas
[64] is a Python project that performs data statistical analysis. Pandas can be used along
with NumPy to perform data analysis and extract information from large data sets. Pandas
can easily parse data from a large number of different file types, e.g. HTML, Excel, SQL
etc. and store them in Python arrays and dictionaries for further processing. OpenStack
[83] is another great tool developed using Python that is used as a framework deployed on
top of an O/S to control and distribute large numbers of storage and computing elements
in a cloud computing environment. It is this data parsing and raw text processing features
of Python, used in Pandas, that software developers like most about the language and the
way Python can be used to unify different programming and computing environments, as

utilized in OpenStack.

Evangelos Logaras 87

Using scripting languages for hardware/software co-design

2.3 Related work

2.3.1 Popular Python tools for hardware and embedded design

Python has been used for the development of commercial and widely used complex hard-
ware and especially software development tool projects, where the text manipulation and
generation features of the language are exercised in the best way. PyCells [22] are structures
written in Python resembling parameterized analog or digital cells for ASIC design. The tool
can be used for creating Universal OpenAccess PCells, which physically represents analog
circuits in a transistor level design. PyCell uses Python object-oriented features to define the
geometry of complex analog physical designs with more compact and smaller descriptions,
compared to the SKILL language used in PCells. The PyCell architecture has already been
adopted by leading EDA companies, like Cadence and Synopsys. Python language has also
been used in the VIPER project [90] for the development of a programming environment
targeting embedded system application. Several microcontroller (uC) board are supported,

like the Arduino boards [12], [18], for developing internet and cloud based applications.

2.3.2 Comparison to other existing tools

While there is a large repository of tools targeting hardware design, most tools cannot facili-
tate the integration of both dedicated hardware components and programmable uPs coexist-
ing in the same processor-centric SoC. The inclusion of processor cores requires the usage of
software development tools, while special-purpose hardware components (accelerators etc.)
must exchange data with the processor using dedicated data and control buses.

Most FPGA synthesizers [94] or high-level design tools [87], [93] lack the ability to handle
the software and the hardware aspects of a design in a unified manner. Processor cores are
handled by separated tool chains, while their connection and programming occurs during the
last design steps. FPGA vendor embedded processor tools, such as Embedded Development
Kit (EDK) by Xilinx, support processor-centric designs. EDK, however, handles hardware
and software as two parallel threads with no interaction between them and supports only
Xilinx proprietary processor cores, such as MicroBlaze and PowerPC.

The related hardware design efforts found in academia are the following;:

Evangelos Logaras 88

Using scripting languages for hardware/software co-design

PyHDL [39] is a tool for structural descriptions which tried to simplify system design with
the use of optimized hardware objects described in C+4. PyHDL extends the functionality
of PAM-Bloz [65] by creating a Python/C Application Programming Interface (API) so that
a designer can have access to the C++ libraries by using Python scripts. PAM-Blox has
been developed in times when the capacity of FPGA devices was very constrained, so it did
not find many practical uses.

PyMTL [58] is Python related tool targeting digital hardware design by unifying func-
tional, cycle-accurate and Register Transfer Level (RTL) hardware descriptions. PyMTL can
be used for behavioral and structural descriptions and also to verify the functionality of a
design. The tool also provides HDL generation features, by translating Python descriptions
to Verilog. PyMTL uses a Just-In-Time (JIT) compiler to convert Python testbenches to
C++ in order to significantly accelerate simulation execution in Python. As we do in SysPy,
PyMTL takes advantage of Python clear syntax and popularity and also of ready-to-use nu-
merical libraries to create abstract models of hardware. The tool generates from abstract and
RTL-like descriptions ready-to-synthesized Verilog code, targeting hardware implementation,
but without optimizing the generated files for ASIC or FPGA implementations. Emphasis
has been placed during the tool’s development on accelerating the functional and RTL sim-
ulation by using the JIT tool. On the other hand the tool does not generate any files, e.g.
Tecl scripts, folder hierarchy, to support implementation process by synthesis tools, as we
do in SysPy for FPGA implementation and also there is not support for hw/sw co-design
and processor-centric systems. Furthermore in the simulation models there is no support to
include timing and logic latency information, as we support in SysPy, where the generated
VCD files include all the logic and timing information of a digital block, as described by the
user in Python.

PyGen [77] is an add-on tool for Matlab/Simulink for hardware design. PyGen maps
Simulink’s hardware building blocks to Python classes. Simulink handles hardware DSP
blocks through System Generator [93], an add-on tool provided by Xilinx. A designer can
develop a structural description by instantiating objects from a Python library. PyGen
cannot be used to design custom logic, but provides a Python API that handles at a high-level
Xilinx proprietary cores. It can also be used to perform power and performance estimation

of a designed system.

Evangelos Logaras 89

Using scripting languages for hardware/software co-design

PHDL [63] uses Python to provide a higher abstraction level for hardware design. A
designer can structurally describe a system using components from a Python library supplied
with PHDL. Parameters’ selection can alter the size of a module, e.g. the bus width or a
global parameter can control the synthesis process of a design, e.g. FPGA device selection.
While PHDL supports FPGA implementations, the tool’s libraries provide access only to
basic RTL blocks e.g. registers, MUXs, adders etc.

Other tools use Python directly as an HDL to describe hardware. MyHDL [23], [71]
supports, as SysPy, the three basic design capture methods, i.e. behavioral, dataflow and
structural and it also has a behavioral simulation function, presenting text based simulation
results of a given design. MyHDL supports parsing Python descriptions to both VHDL and
Verilog. Unlike SysPy, MyHDL has no support using pre-designed HDL blocks, so all the
components of a system must be described in Python.

PDSDL [97] supports, as MyHDL, the translation of behavioral Python descriptions to
HDL. The tool also supports a simulation engine for behavioral descriptions. The supported
Python syntax for signal declaration and assignment is rather complex. Furthermore, the
authors do not provide sufficient design examples demonstrating the quality of the translated
HDL code.

In summary, all previously described efforts try to use Python’s high-level structures
to perform abstractions in hardware description. PyGen and PHDL map ready-to-use HDL
blocks and netlist files to Python functions and classes. In this way a Python script resembles
a structural HDL description, where function and class arguments act as generic parameters.
MyHDL and PDSDL use Python as a high-level HDL and support structural and behavioral
descriptions. MyHDL is suitable for designing and debugging a system at the Python level,
but there is no provision for handling processor IP cores and complete SoC systems.

Although MyHDL never evolved to a commercial tool, the way it uses Python’s data
structures to define HDL-like digital hardware descriptions inspired us in the way we could
take advantage of Python’s unique features in this work. In all Python related tools that
we found in the literature we identified the following major weaknesses: a) lack of support
of processing-centric systems and hw/sw co-design flow and b) lack of ability to handle the
complete design flow of a digital system, starting from a high level description down to the

generation of a bitstream file and FPGA programming.

Evangelos Logaras 90

Using scripting languages for hardware/software co-design

SysPy can also be compared with other SoC customization tools, like the Target IP De-
signer [32] from Synopsys. The tool can be used to specify the architecture of a custom
processor and also to provide code optimization for algorithms in software by the proces-
sor. While Target Compiler is a well tested commercial tool, it uses a vendor proprietary
language/syntax (nML) to describe a system’s architecture and also it is not possible to
simulate/verify the design’s datapath in the nML abstract description level, as it is the case
in SysPy. Introduction of a new language and style for hardware design was something that
we tried to avoid and on the other hand we wanted to stay consistent, from a high-level
point of view, to the typical design flow of a digital system. We used Python to express
the functionality of a SoC in an abstract way and connect all the required logic to build
a processor-centric system and also to automate the design and verification steps in the
adopted flow. Python is also used to “glue” together typical hardware and software design
tools, e.g. RTL synthesizer, C compilers, Tcl scripting etc. to ease FPGA implementation
of a SoC.

2.3.2.1 Comparing verification features of SysPy to SystemC

SystemC is an extension of the popular C++ object oriented language. The language stan-
dard [44] [9] provides a set of C++ classes and data types that support the development of
event-driven models and testbenches of digital systems.

We believe that with the addition of the event-driven mechanism in the simulation en-
vironment of SysPy, Python syntax can be really suitable to model and simulate a digital
system. Especially with the use of SciPy, arithmetic models and signal plots can easily be
used for system modeling and verification. The supported syntax and format of simulation
models in SysPy allow a testbench to easily merge with already existing RTL-like descrip-
tions, something which is not easy in SystemC, since the language requires some effort to
merge a model along with RTL descriptions. Also the native SystemC environment does not
support generation of VCD files for digital signal visualization. However tools supporting the
SystemC verification environment, like irun [19] simulator from Cadence extend the features
of the language by supporting VCD data dumping.

In Figure 2.3 we summarize the main features and differences between the supported

modeling environment in SystemC and SysPy. Also the main advantages in system verifica-

Evangelos Logaras 91

Using scripting languages for hardware/software co-design

SystemC
g 2 input data / sim. models

i time parameters = ‘~

C++ e.g. simulation step, éd P
3\ end time
Simulation input Python
testbench & data software
e.g. *.wav specification|.

HDL
interface
file

top-level top-level C/C++
testbench testbench processor
software

) J B ﬂ A H —
Modeling RTL
s @] signal/variable .+ " " SyS@ o
:] plots using SciPy A&
3 gl
b W
e ‘M\W“%WW

executable

Figure 2.3: Comparison between SystemC and SysPy verification features.

tion of SysPy are summarized in the following list:

e Integration into a single model of event-driven, RTL behavior along with abstract

algorithmic descriptions.

e Use of the Python integrated SciPy library to describe in Matlab-like style the behavior

of arithmetic blocks.
e Use of SciPy functions to plot arithmetic variable and signals during simulation.

e Automatic dumping in VCD format of digital signals for I/O signal visualization using

standard simulation tools, like ModelSim and GTKWave.

In Figure 2.3 it is shown that in order to interface a SystemC testbench with already
existing RTL code, an external HDL file is required that defines the I/O signals of the
Unit Under Test (UUT). In SysPy we adopted a more integrated solution, since the I/O
is described within a testbench. Also a single class is enough to describe the abstract
models that define digital behavior or even software sequences that will be executed by
a programmable processor. Also it is easy to merge the models’ description with RTL-
like descriptions and express the functionality of a system in a bit-true and cycle-accurate

manner.

Evangelos Logaras 92

Using scripting languages for hardware/software co-design

Although SystemC is a well-defined and popular digital verification methodology, we
believe that our approach is more unified, since it provides, using a single testbench file, more
options for system debugging and also a more clear syntax for expressing a system’s behavior.
In addition our tool supports the silicon implementation of processor-centric systems using
FPGA devices and ease the use of synthesis and software development tools. As described
also in Section 3.3.2, in SysPy we support the feature of developing and co-simulating C code
that can be later on ported and executed by the programmable processor of the designed
system. So the high-level algorithmic descriptions in SciPy can be used to easily express and
verify the functionality of an algorithm, while the code can be easily ported to C code and

used in the silicon implementation.

2.3.3 SysPy’s contribution to SoC FPGA design

In Table 2.1 a comparison of the Python related tools targeting digital hardware design is
presented. All of the tools support Python code translation to RTL code, but only SysPy
and PHDL support generation of FPGA synthesizable RTL code. Except from SysPy, only
MyHDL supports behavioral simulation of a designed system at the Python level, but no
Value Change Dump (VCD) file generation is supported, which is the industry’s standard

for storing simulation results. Except SysPy, none of the other tools support:
(a) processor-centric designs and related C compiler tools handling for software development.
(b) RTL code generation using parameterized Python functions.

(c) abstract simulation of a design by mapping hardware functionality to Python function

and classes.

(d) hw/sw co-design using high-level hardware descriptions along with software expressed

using C code
(e) simulation and generation of VCD files for top-level I/O signal visualization.
(f) automatic generation of Tcl scripts for FPGA synthesis tools.

Automatic generation of FPGA synthesizable HDL code in SysPy, combined with high-

level simulation capabilities of the tool provides all the means for the verification, description

Evangelos Logaras 93

Using scripting languages for hardware/software co-design

Support for
Python FPGA Behavioral Hw/Sw Processor-centric Synthesis tools
Tools to RTL synthesizable code simulation co-simulation design integration References
PyHDL X [39]
PHDL X X [63]
MyHDL b d X [23]
PyMTL X bd X [58]
PDSDL X [97]
SysPy X X X X X X [61]

Table 2.1: Python digital hardware related tools comparison.

and implementation in FPGA device of a SoC. With the approach that we used to develop
SysPy, most of the steps of a SoC FPGA design flow are supported. Combining RTL descrip-
tions with object oriented structures and arithmetic models gives the designer the ability to:
a) verify proper functionality of a hardware implemented algorithm and b) use complex data
form as simulation input e.g. audio/image files, XML and Comma Separated Values (CSV)
files. Taking into account the available simulation tools and the increasing complexity of
embedded systems (32-bit CPUs, arithmetic units, large data/program memories) high-level
simulation of a SoC is an innovative feature of SysPy and gives flexibility to decide about
key features of a system early in the design phase.

By developing SysPy we tried to demonstrate how a popular language like Python, can be
used with an abundance of freely available packages, to describe a SoC system in a high level
of abstraction, verify it and deliver RTL FPGA synthesizable code. Python’s key features

are also demonstrated through the way the language is used in SysPy:

(a) Easy to understand and read syntax by people that are not closely related to hardware

design e.g. software developers.

Use of Python’s core libraries (functions, classes, lists, dictionaries), and not any custom
tool-related code, so that it is easy for a Python programmer to understand and use the

supported design /verification flow.

(c) Use of a good lexical analysis tool, combined with Python’s unique features, to store

Evangelos Logaras 94

Using scripting languages for hardware/software co-design

and manipulate text files, provides a very solid programming environment for scanning

and manipulate textual data.

(d) The existence also of a good and freely available Matlab-like tool, such as SciPy, embed-
ded into the Python environment, triggered our interest on building a simulation tool,
especially targeting arithmetic hardware blocks, so that the designer can quickly acquire
bit-true numerical results, using Python-level abstract model descriptions, that match

his/her design specifications.

In all design and simulation steps of our design flow we use Python structures/syntax,
and not any custom-defined syntax, to describe the datapath of the SoC and the related sim-
ulation models. All supported hardware description and simulation programming structures
are compatible with the basic coding style used by the majority of Python programmers. In
this way we tried to ease modeling and implementation of a processor-centric SoC even by

software programmers with limited experience in hardware design.

Evangelos Logaras 95

Using scripting languages for hardware/software co-design

Evangelos Logaras 96

Chapter 3

High-level design/verification methods

The design and verification flow we have developed is presented in this chapter. A detailed
description is given for all the verification features targeting the simulation of a processor-
centric System-on-Chips. Details are also provided on how to build high-level algorithmic
simulation models, using the SciPy library and also on how generation of digital signal
and arithmetic plots are used for defining key parameters of a SoC. Using also external C
compiling tools, C functions can be developed and called, interchangeably with the SciPy
functions, to implement hw/sw co-simulation, where the developed C code can be used to

program the Leon3 processor during silicon implementation.

3.1 The design flow

Design flow of Figure 3.1 covers six major tasks related to the design of a processor-centric

SoC:

1. Functional simulation of Python code describing the behavior of the hardware blocks

and of the software executed by the processor in a cycle accurate manner.

2. Description (using Python or VHDL) of hardware components (modules) that are going

to be connected with a processor soft core.

3. Incorporation in a SoC design of ready-to-use components (Python, VHDL, netlist

format) and connection to a processor soft core.

Evangelos Logaras 97

Using scripting languages for hardware/software co-design

4. Automatic generation of scripts facilitating the software development flow for the pro-
cessor core, e.g. automated calls to C compiler tools, initialization of the processor’s

program memory in BRAMs etc.

5. Generation and execution of scripts to automate the processes involved in a SoC’s

design flow, e.g. Tcl scripts for FPGA synthesis tools etc.

6. Generation of meta-data XML description , compatible with the IP-XACT standard
[15] and VHDL testbench templates.

In SysPy, Python acts as the backbone of a set of tools for hardware description as well as
to incorporate other software tools. A normal design cycle starts by providing the simulation
models of the desired system and also the timing information, e.g. main clock frequency,
duration of the simulation, input data etc. The hardware description can have an HDL-
like syntax or a more abstract algorithmic-style syntax. The first syntax style can later be
translated automatically to synthesizable VHDL code, while the later one cannot be directly
translated to VHDL, but can help a designer to easily verify the functionality of a SoC.
Python classes can be used to simulate software modules of a system. The timing mechanism
can then be used to provide timing information for a software or hardware component,
treating in this way such a component as combinational logic that needs a specified execution
time to provide results on its outputs. Placing registers among the blocks of combinational
logic forms a pipelined synchronous datapath design, which is controlled either by software
running on the processor or by hardware implemented Finite State Machines (FSM). All
simulation tasks in Figure 3.1 are highlighted using arrows in gray color, while for hw/sw
design tasks black color arrows are used.

The supported level of abstraction during simulation, combined with the provision of
cycle-accurate digital waveform results, gives the ability to the designer to make decisions
for critical parameters of the system early in the design phase. Synchronization and timing
problems, especially found on the boundary of the processor/custom hardware interface,
can be observed during simulation, using Python modules to model software and hardware
blocks. Python can also be used to efficiently parse almost any kind of data format and use
them as input to the simulation. In this way music, image or raw text ASCII files can be

stored in Python arrays and processed during simulation.

Evangelos Logaras 98

Using scripting languages for hardware/software co-design

1t
AR,
. D
configuration files s
. time parameters
SysPy e.g. simulation step,
config end time
3 3 1 setﬁ; file file g g 3
input data / sim. models application files
n I = vioL |
fnpel netlist
N data Python ||| J3E0, :
e.g *.wav [I modules|} H Y
= - top-level 3rd party
H HDL
ol design componeny
software 3 . » e.g. Unisim
specification N) s
E— [u c/cH+
HDL processor’s
GTkWave. Modelsim, ... models 1 COrEdy = C/C++
T + user application
i o
text ©
vﬁ(ljiD 2 ,__’_‘_ | simulation Sys signal/variable
results plots using SciPy
L
A " M
SoC spec. generated files \] WW“' \
NEENgE— SRR A
S N : al i
EDIF progre ||| transiatea Yo e : ' s
(netlist) { (BRAMS) VHDL . .
i SoC design o
. . -~
. specification .. ©)@: ol
X ~
IPXACT % software WTCI binary exec. S
P { exec. script
models - FPGA SNAP
.. :> bitstream m
. file

Linux kernel

Figure 3.1: Processor-centric SoC design flow using SysPy.

All Python described hardware blocks used during simulation, e.g. combinational logic,
FSMs, arithmetic blocks etc. can be directly translated to synthesizable VHDL. The Python
abstract algorithmic-style hardware models, e.g. a complex arithmetic algorithm, must be
manually ported by the user either to a Python HDL or directly to a VHDL description.
Other components from a commercial library, such as Xilinx’s Unisim [47] or CoreLib [53],
can also be used along with components in pre-synthesized netlist format. All the ready-to-
use blocks are supported in SysPy’s libraries. The Python described processor software must
be ported to a C description before it could be executed. However, SysPy makes a call to
C compiler tools to automatically compile the software and generate the binary executable
files for the processor.

Hardware synthesis tools require a number of scripts to automate the required steps
needed to convert an RTL HDL description to a placed and routed design on an FPGA

device. Scripts are needed to combine the large number of design files with the required

Evangelos Logaras 99

Using scripting languages for hardware/software co-design

timing and placement constraints files. A set of constraints is required especially for designs
which implement ready-to-use blocks, like the processor core, where its implementation must
meet several timing constraints. Interface of the processor with communication and memory
related IC controllers on the FPGA board, e.g. SDRAM, Ethernet, USB et.c, requires the
definition of a number of timing and placement constraints, otherwise it is not possible
to achieve the required processing and communication performance. A set of constraints
already exists for the supported processors in SysPy and according to the design files, the
tool automatically includes the required script files and executes in command line all the

synthesis and implementation steps using Xilinx’s tools.

3.2 Hw/sw co-simulation features

SysPy can be used as an Architectural Description Language (ADL) [68] to verify the func-
tionality of a digital system using abstract algorithmic descriptions. This is very useful in
cases where a designer has to apply hw/sw partitioning and decide whether software imple-
mentation is sufficient for an algorithm or its function has to be mapped to dedicated hard-
ware blocks. SysPy supports simulation models using combinational and sequential module
descriptions, expressed in Python. The supported Python syntax for simulation is the same
as the one used for RTL Python descriptions automatically translated by the tool to VHDL
(see Chapter 4). The most challenging feature that we implemented in SysPy’s simulation
mechanism is the ability to simulate, along with the HDL-like descriptions, Python code
that describes in an abstract algorithmic way hardware blocks that are not yet implemented
at the RTL level.

The developed simulation mechanism can:

e simulate models of complex logic blocks, e.g. arithmetic units, communication con-

trollers etc., for which there is no available RTL description

e support development of processor software directly in C and execute it in Python to

prove its functionality in a system-level simulation

e simulate HDL-like Python RTL descriptions, e.g. logic gates, MUXs, state machines

etc.

Evangelos Logaras 100

Using scripting languages for hardware/software co-design

e save simulation results in VCD format and visualize them using already available sim-

ulation software, e.g. ModelSim, GTKWave etc.

By combining RTL and abstract algorithmic model descriptions, all blocks of a system can
be easily combined, while the models correspond to either hardware or software functionality.
Especially for modeling complex arithmetic operations, the SciPy library can be used through
SysPy. Ready-to-use arithmetic functions are available to simulate a numerical algorithm,
where the results can be further processed and stored by already described RTL blocks.
The arithmetic operation accuracy, in terms of the number of representation bits used in a
system, can be easily explored, since the results are bit accurate. The timing performance
and synchronization of a system can also be explored since the simulation results are also
cycle-accurate. The combination of asynchronous and synchronous signals can be simulated
along with the impact of delays introduced by combinational logic.

The VCD stored output data represent cycle and bit-accurate results. Inputs and outputs
of abstractly defined digital blocks can be synchronized /registered using the developed SysPy
timing mechanism and in this way simulate a digital pipelined datapath. The complexity of
not yet defined blocks is “hidden” inside Python classes which provide functions to control

the models’ functionality. Functions are used within classes to:
e Provide input data to a model
e Store processed data in arrays, files etc.

e Visualize processed data signals

Evangelos Logaras 101

Using scripting languages for hardware/software co-design

configuration files

e SysPy
config

o
e file

setup file

signal/variable

plots using SciPy £ * :

Python testbench

input data / sim. models

37

(2)

GTkWave. Modelsim, ...

| gty — [EEHREE
WWWMMW e bt o I T T
| 8 B == Bmas ==t

\
(abstract model) (timing info) (RTL description)
SysPy.simClass <:> SysPy.behSim <:> SysPy.toVHDL

+dataFilelO:file +simTime() +combLogic()
+dataArray][]:list +simRisingEdge() +stateMachine()
+init() VO +10SignalsDict{}
+dataProcess(string) +elockSignalList] +designAttributesDict{}
+dataPlot(list)
+dataReady()
+outputFifoCounter(string)

_/

Figure 3.2: (a) SoC simulation flow, (b) Simulation models - RTL descriptions interface.

In Figure 3.2a the flow for using a simulation testbench to verify the functionality of SoC
is presented. A mixed system description is provided in the top-level testbench, including
RTL descriptions combined with simulation models along with any related data files need to
be processed during simulation. The models can describe in an abstract/algorithmic level
either software or hardware functionality. Especially for Python algorithmic models that
will be later on mapped to software functionality running in a programmable processor,
SysPy supports the feature of executing software algorithms expressed in C within a Python
testbench. In this way Python objects or C software functions can be called interchangeably

to simulate software algorithms, while during implementation steps, the C code can, in an

102

FEvangelos Logaras

Using scripting languages for hardware/software co-design

effortless way, be compiled and used directly to program the processor of the system. More
information about developing, simulating and debugging C code in SysPy can be found in
Section 3.3.2.

Timing information is added to the testbench in the form of clock signal definition and
simulation step and stop time. Simulation results can be: a) text log files containing either
information about the simulated calculations, or about the value of each I/O and internal
signal during simulation, b) plots, using SciPy, of numerical results and ¢) VCD files where
all the I/0 signals’ activity has been dumped during simulation. The feature of reporting
numerical results in a text or plot format is very useful, since digital binary or hex values
can be converted to corresponding fixed or floating-point format, where the accuracy of
numerical calculations can be accessed.

In Figure 3.2b the interface in Python testbench between the abstract models and HDL-
like RTL descriptions is shown. The models are provided by the user in the form of a class,
containing functions that control processing of data objects by the model. In the Figure a
typical diagram of a class named simClass is presented that contains functions for: initial-
izing (init()) the class object, processing and plotting the available data (dataProcess()
and dataPlot ()) and for signaling the end of a processing cycle (dataReady()). Data struc-
tures are also included in the class, like the name of a file to be processed (dataFileIO) and
an array that is used to store intermediate processing results (dataArray[]1). The testbench
timing information is provided by SysPy’s behSim library, where functions included for: con-
trolling timing of sequential elements (simRisingEdge()), reporting/logging the simulation
time simTime()) and stopping the simulation at a desired time (endSimulation()). The
pattern of a clock signal (frequency, duty cycle) can be define using a provided by the library
list (clockSignalList). The required RTL logic can be described by using elements from
SysPy’s toVHDL () library.

3.3 Software simulation in a high-level verification model

To support the role of SysPy as hw/sw co-verification environment, we provide the tools to
support: a) development of bit-true and cycle-accurate algorithmic models in SciPy compat-

ible syntax, integrated with other digital hardware models and b) co-simulation of hardware

Evangelos Logaras 103

Using scripting languages for hardware/software co-design

models along with C software routines, that later on are compiled by SysPy and used to be
executed by the embedded processor of a system. In the following two subsections these two

innovative features of our tool are described and analyzed.

3.3.1 SciPy for algorithmic software development

An example of a testbench for a SoC design and the generated simulation results are pre-
sented in this section to provide an understanding of SysPy’s verification capabilities. The
system accepts data in the form of a text file and tries to perform a linear regression to calcu-
late the linear equation that fits better the data. The system can be divided into three main
functional blocks: a) the arithmetic co-processor that implements the regression algorithm,
b) parsing of the text data file and storing the numerical values to a dedicated memory and
¢) data I/O to and from the arithmetic co-processor. A state machine described in Python
is implemented in hardware, while parsing the data file can be easily handled in software.
The arithmetic block is better to be fully implemented in hardware, so that the regression
algorithm will be executed as fast as possible. A schematic of the SoC is presented in Figure

3.3.

SysPy testbench

startRegression N f \

data

- regr.
£ FSM i > resﬁlts
y dataCounter
J— linear —
. »iD >
. regression Q slope
> CLK
—»lE
clock [—_ L
100MHz | N div »D Q » intercept
input CIOCk interceptEnable \—/ | cLK
E
g =—

slopeEnable

: SysPy RTL
: : SciPy algorithmic model
; Wv‘\/ VCD

(signal plots) (digital signals)

Figure 3.3: Top-level schematic of the linear regression SoC testbench example.

Evangelos Logaras 104

Using scripting languages for hardware/software co-design

According to this partition we developed the testbench of the system in SysPy, where: a)
the arithmetic co-processor is described in an algorithmic way using functions from SciPy’s
libraries, b) parsing of the data file is done using Python’s core library functions and c) the
state machine is expressed using Python RTL description supported in SysPy. The main
clock input of the system is 100MHz, but a clock divider is used to reduce the frequency to
25MHz. The state machine exchanges data with the arithmetic block in an asynchronous
way. A data vector with a predefined number of elements is transmitted from the FSM
to the regression block, where the parameters of the linear equation fitting the data are
calculated. The FSM is the controller of the process and signals the beginning and the end
of the calculation procedure. The Python top-level module in SysPy is the wrapper of the
testbench and handles all the file I/O activities. The calculated parameters of the linear
equation are stored in a text file, while the slope and the intercept parameters of the
equation are also presented as registered output values of the system.

The I/0 interface of the SoC is presented in Code Example 3.1. Using associative arrays
data structures in Python, called dictionaries, every signal or variable within a hardware
RTL description can be fully characterized by specifying its name, size, type, direction and
possible initialization value. A signal’s dictionary, e.g. i_sigs0 (line 12), defines using the
related dictionary keys, concisely a group of signals of the same direction (‘D’: input), type
(“T’: binary) and size in bits (‘L’: 1-bit). In this example two internal signals are used as
data counter (dataCounter) and as counter for the clock divider (divCounter). An internal
signal is also used to store the states of the FSM. Extra keys are used to define parameters
of the I/O signals of a testbench.The main clock sequence is generated using a for loop (line
4) and then assigned as initialization value to the clock input (line 20). The start input is
used to trigger the processing procedure, after applying the global reset signal. The delay for
output signals, modeling the delay of a combinational logic path, can be defined using the
“del” key. An 11ns delay is used for the slope and the intercept output signals (line 16).
These output signals are also registered using a control signal coming from the FSM a control
signal of the arithmetic block. Input signal value sequences can be defined using the ‘V’ key,
using pairs of time and assigned value. In this way the rst signal is applied for 5ns (line
19), while the clock sequence with the desired frequency is assigned to the clock input (line

20). Using this set of five dictionary keys supported in SysPy (‘N’:Name, ‘D’: Direction, ‘T’

Evangelos Logaras 105

Using scripting languages for hardware/software co-design

Type, ‘L’: Length, ‘del’: delay and ‘V’: Value) a signal can be fully characterized in terms
of RTL description and simulation.

The description of the state machine is provided in Code Examples 3.2 and 3.3. The
required SysPy libraries, behSim and toVHDL are imported along with the user-provided
linearRegressionSimFunctions class of the simulation models used in this testbench (lines
1-4). A process is defined in (line 6) as a Python function, sensitive to the main system reset
and clock signals. All the related counters, state machine and output signals get a reset
value after the asynchronous rst signals has been triggered. Parameters of the simulation
model are also initialized during system reset. The name of the data file to be processed is
defined and also the fixed-point notation that is used for the signals (lines 19-20). A state
machine is triggered by a rising edged of the main system clock (line 26). Data processing
is enabled using the start signal (line 27) and when the signal divCounter has a value of
three (line 30). This counter implements the clock divider to generate the required 25MHz
clock. In state 1 (line 38) data elements are transmitted to the regression core, while the
state machine is reading an internal counter of the model (line 42) to identify the number
of data elements already transmitted. After ten elements have been transmitted the state
machine moves to state 2, in Code Example 3.3, where the regression algorithm is executed.
In state 3 the slope result (line 12) of the linear equation is presented on the related output
signal. In state 4 the intercept result (line 17) is assigned to the output and also a plot of
the linear curve fit and a file containing the regression’s results are generated (line 23).

The class model (linearRegressionSimFunctions) of the linear regression arithmetic
block is provided in Code Examples B.1, B.2 and B.3.

Using this testbench we were able to check the accuracy of the regression algorithm, by
applying different fixed-point accuracy notation for the operands. The standard error of the
linear fit was used as a criterion to choose the proper notation for the operands. In Figure 3.4
fit plots are presented using different fixed-point notations. Three fitting lines are presented
using SciPy floating point calculations, converting the operand to 8-bit fixed-point numbers
using an fp(4.4) notation and also using an fp(5.3) notation. It is clear from the plot that
the results are better when we used 4-bits for the decimal part of the fixed-point numbers.

The arithmetic results for each line fit are the following:

e SciPy fit - slope: 1.0147, interception: 1.3643, error: 0.9681

Evangelos Logaras 106

Using scripting languages for hardware/software co-design

Code Example 3.1: I/O interface of the SoC performing the linear regression algo-

rithm.

1# Create a 100MHz clock sequence for 15us, 50% duty cycle
2 clk_seq = []

3clk =0

4 for i in range(0, 15000, 10):

5 clk = not clk

6 if (clk = True):

7 clk_seq.append ([str (i), '1°])
8 else:

9 clk_seq .append ([str(i), ’0’])

10

11# 1/0 and internal signal declaration

12i_sigs0 = {’D’: ’i’, 'T’: ’b’, ’L’: 1, ’'N’: [”"rst”, "clk”, ”start”, ”clkDiv”]}

13 0_sigs0 = {’D’: ’intr’, ’del’: 12, T’: ’b’, 'L’: [0, 5], ’'N’: [”state”, ”dataCounter”,
14 ”divCounter”]}

15 0-sigsl = {'D’: ’o’, ’del’: 0, ’T'’: ’b’, 'L’: [0, 7], °N’: [”slope-d”, "intercept_-d”]}
16 intr_sigs0 = {’D’: ’intr’, ’del’: 11, ’T’: ’b’, ’L’: [0, 7], ’N’: [”slope”, ”intercept”]}
17

18# Define wvalues for the testbench input signals

19 sim_sigs0 = {’D’: ’sim’, T’: ’b’>, ’L’: 1, °N’: "rst”, °V’: [[’0’, ’1°], [’5’, ’0°]]}
20 sim_sigsl = {’D’: ’sim’, ’T’: ’b’, 'L’: 1, ’N’: ”clk”, V’: clk_seq}

21 sim_sigs2 = {’D’: ’sim’, ’T’: °b’, 'L’: [0, 7], ’N’: [”slope”, ”intercept”]}

Evangelos Logaras 107

Using scripting languages for hardware/software co-design

Code Example 3.2: FSM description for controlling the linear regression arithmetic

block (part 1).

1 import SysPy_setup

2 import _toVHDL

3import funcs._behSim

4from linearRegressionSimFunctions import *
5

6 def proc_1(clk):

7 # Signal’s reset

8 if (rst = 1):

9 state = 0

10 dataCounter = 0

11 divClk = 0

12 divCounter = 0

13 slope = 0

14 intercept = 0

15 slope-d = 0

16 intercept-d = 0

17

18 # Define the data filename and fp notation
19 SimObj.dataFileName = " data_file.txt”

20 SimObj. fpNotation = 75.3”

21

22 # Initialize the regression arithmetic model
23 SimObj.init ()

24

25 # State machine description

26 if (funcs._beh_sim.rising_edge(”clk”) = True):
27 if (start == 1):

28

29 # Clock divider counter (100MHz / 4 = 25MHz)
30 if (divCounter == 3):

31 divCounter = 0

32

33 divClk = not divClk

34

35 if (state = 0):

36 state = 1

37

38 elif (state == 1):

39

40 # Write data to the model

41 SimObj.writeData ()

42 dataCounter = SimObj.dataCounter

Evangelos Logaras 108

Using scripting languages for hardware/software co-design

Code Example 3.3: FSM description for controlling the linear regression arithmetic

block (part 2).

1 # Provide a vector with 10 data elements
2 if (SimObj.dataCounter =— 10):

3 state = 2

4 else:

5 state = 1

6

7 elif (state — 2):

8 # After loading the data start the regression algorithm
9 SimObj.startRegression ()

10 state = 3

11

12 elif (state =— 3):

13 # Slope output ready

14 slope = SimObj.returnSlope ()

15 state = 4

16

17 elif (state =— 4):

18 # Intercept output ready

19 intercept = SimObj.returnlntercept ()
20 state = 4

21

22 # Plot the fitted line over the data
23 SimObj. plotRegressionResults ()

24

25 # Terminate the simulation

26 funcs._beh_sim.endSimulation ()

27

28 else:

29 divCounter = divCounter + 1

Evangelos Logaras 109

Using scripting languages for hardware/software co-design

e fp(4.4) - slope: 1.0, interception: 1.375, error: 0.9706

e fp(5.3) - slope: 1.0, interception: 1.0, error: 1.0604

12 \ \ \
e e Original data
----- SciPy fit e
10r| - - notation: fp(4.4) ’/"
notation: fp(5.3) e
° v
s .0
8 e 7.
o
we e
LT e
RN
\“’—‘
= ® Rt
= 6f sl
Sl
\‘\,o‘
AL
Wt
Wl
R
4r el
) “-,‘"."
oY
5
W e
‘\‘/ P
Bid
2F T ®
v
N
Vo .
¢
0 L L L L L L L L
0 1 2 3 4 5 6 7 8 9

Figure 3.4: Linear regression fit plots using different fixed-point notations.

3.3.2 Using C tools in Python for hw/sw co-simulation

One of the reasons that we chose Python for the development of SysPy, except the language’s
clear syntax and powerful text processing features, is that Python scripts can be easily
combined with and call C/C++ functions. Developing and using C code within a Python
testbench in SysPy, provides a great advantage in terms of hw/sw co-simulation, since the
software can be directly used to program a processor in silicon. To the best of our knowledge,
SysPy is the only high-level digital verification tool that combines in the same simulation
model: a) software algorithmic development using Matlbab-like syntax (in SciPy) and b) C
functions that interact with the rest of the Python testbench (accept input arguments and
return data results) and simulate algorithms which with a minimal effort can be later on

mapped and executed by the embedded processor.

FEvangelos Logaras 110

Using scripting languages for hardware/software co-design

RTL sequential logic@

® ——— N

t simulation testbench !
SciPy algorithm C implementation

mmeeeteaeoee //_ . import swig, smpy i L T

SciPy data_buf = data. _____________ Cc
algorithm ' i if (control == "1~ { i func.
5 ———sdata_out = 9|mObj smpyFunc(da. bun !

elif (control ==0"):~
t= SWIg CFunc(data_| buf)

data_

SWIG
Python/C
interface

@@ pe VCD GTkWave. Modelsim,
IP-XACT %
sienal . p file TN Jj S S
gnal/variable IP-XACT N e EES pma RS
plots using SciPy models [| -
| : @ T

“ : E C
) = : binary
ﬁ VHDL : cxee

) testben.

Figure 3.5: Simulation flow in SysPy using RTL and algorithmic models.

Our goal is to use in a testbench, either Python, SciPy compatible, or C code in a trans-
parent way to express algorithmic behavior. The suggested simulation flow, starting from a
high level description in Python, would use SciPy syntax to quickly express software func-
tionality, as in Code Examples B.1, B.2 and B.3, and interface with hardware descriptions in
Python. For the software descriptions in SciPy to be useful and support hw/sw co-simulation
in SysPy, we also provide the mechanism for expressing the software algorithms in C and
call these C functions within the Python testbench.

A detailed flow of the C functions supported feature is presented in Figure 3.5. In the
presented code example control signal select the execution of the proper function that han-
dles processing of data contained in the data buf signal. If control=’0’ then the SciPy
implemented function is called, while if control=’1 the C implemented function is called.
Both function may accept as arguments digital I/O or internal signals (data buf), defined
in the top-level testbench using SysPy supported format (as shown in Code Example B.1)
and also return data in compatible format to other testbench variables (data-out). The
Simplified Wrapper and Interface Generator (SWIG) [86] is used within SysPy, to automati-

cally compile the C code, using GCC compiler in Linux and to generate the Python interface

FEvangelos Logaras 111

Using scripting languages for hardware/software co-design

function (import swig). A detailed example is provided in Code Example 8.1, on the way a
SciPy function or a C function can be used interchangeably first to simulate and algorithm in
Python and then to develop and co-simulate the application software in C. The interface also
of the C function (input arguments and return variables) can be the same as the simulation
models in SciPy, so it can be exchanged in place in the Python testbench with a minimal
effort.

In Figure 3.5, a typical testbench i) describes, using HDL-like syntax, the main elements
of a pipelined datapath. ii) Python code in SciPy is used to describe in an algorithmic
way functionality of hardware blocks not yet defined in HDL. iii) The same functionality
can be expressed using C code, in case the required SoC functions need to be ported to
software executed by a processor core. iv) Signals plots are generated during simulation in
SciPy to observe signals behavior and also SysPy generates VCD files to represent in binary
format the systems I/O signals. We tried to promote the concept how a scripting language
can be used to combine the algorithmic description features of SciPy, with the embedded
software development features of C. Calling different functions within the Python testbench
the user can: a) easily simulate the expected algorithmic behavior, using SciPy syntax,
where the results are synchronized (datapath) with sequential logic and b) also simulate
most algorithmic parts of the C implementation (using the SWIG Python/C interface and
GCC in Linux) of his/her algorithm in case a software implementation is decided. In this way
decisions about the timing performance can be made early before RTL implementation, while
the software developers can also test and debug their embedded C code in a cycle-accurate

high-level testbench, along with hardware behavior expressed in Python.

3.4 1/0 signal visualization

Timing results of the SoC can be observed using the digital waveforms dumped in the
automatically generated VCD file and visualized using the GTKWave [38] digital waveform
viewer. Other simulation tools like ModelSim [66] can also be used to visualize the content
of VCD files.

Using the provided clock signal information and also the assigned delays to specific output

and internal signals, the timing concept of a SoC can be captured in the top-level Python

FEvangelos Logaras 112

Using scripting languages for hardware/software co-design

description. Accurate timing simulation models can be acquired only when the physical
design of a system has been accomplished, but during the initial design or specification
steps it is very important to have description models where the timing information can be
expressed.

In Figure 3.6 the main 100MHz (c1k) and the divided 25MHz signal (c1kDiv) are pre-
sented. Two data values are transmitted to the regression module at the rising edge of the
divided clock and the value of the dataCounter is provided in the waveform along with the
state information of the FSM. New values are assigned to the slope and intercept output
after an 11ns delay during state 2, while the results are buffered to the SoC’s output during

state 3 and 4.

Signals Waves

Time 188 ns 287 ns

11ns delay latched output
II_II—II_IHI—II_II—II_II_II—II_II—II_II_II—II_II—II_I\KLHI_II—II_II_II—II_II—II_II_I\I—II—II—II_II_IFII—l
| ! | [| [i i] ! I i NI | =
Bl 82 /a5 07 fCEN oA \
Bl F] 2] \ ip4
16 &
* T
10 —
.':19'.

Figure 3.6: Digital 1/O signal waveforms of the linear regression SoC.

The testbench format supported in SysPy provides all the required parameters that need
to be explored from the designer. Simulation results can be taken into account to define
the system’s clocking frequency, the arithmetic calculation accuracy, the design of the state
machine and also the architecture of the arithmetic block. If a higher clocking frequency
is required then pipelining must be applied to the computational stages of the arithmetic
block, which is considered as a combinational path with a fixed delay in our simulation. The
Python environment also gives great flexibility in the way to define values patterns for the
input signals, like the way the for loop was used in Code Example 3.1 (line 4). In this way
the Design Under Test (DUT) is considered as a black box, where input data patterns are
applied to it and arithmetic and digital plots are generated to assess the computational and

timing accuracy of a system.

FEvangelos Logaras 113

Using scripting languages for hardware/software co-design

FEvangelos Logaras 114

Chapter 4

RTL descriptions using SysPy

In this chapter we discuss the HDL generation features of SysPy and the features provided
to ease the description of processor-centric systems. Behavioral and structural descriptions
are supported to define interface and glue logic around an instantiated processor core. Use
of Python functions to automatically instantiate hardware modules ease system integration
activities and support the use of a more compact structural description coding style. Au-
tomatic generation also of VHDL testbenches and XML-based IP-XACT models for every
module in a design support code re-use of RTL descriptions among a complete set of tools

developed by different vendors, targeting digital design and verification.

4.1 Python to HDL translator

The translation mechanism of Python descriptions to VHDL is the basis of the SysPy design
environment. It was very important right from the beginning to specify the subset of the
Python data and control structures that we would use to describe a digital system a) in an
HDL-like way especially for combinational glue and sequential control logic and also b) in an
abstract way for parameterizing and instantiating ready-to-use blocks, e.g. processor blocks
and also use Python algorithmic descriptions to auto-generate HDL code for arithmetic
blocks. Except from describing or instantiating digital blocks, a way to define the I/O
interface and block related parameters, e.g. size of a bus, was also required.

A lexical analyzer [28] is used to track the structures in the Python code that describe a

digital system. Process structures with sensitivity lists are supported in behavioral descrip-

FEvangelos Logaras 115

Using scripting languages for hardware/software co-design

tions, targeting the design of sequential circuits, e.g. Finite State Machine (FSM). All the
basic arithmetic and logical operations for binary, integer and array operands are supported.
It is also very important that user-defined Python components can be incorporated into the
same SoC design along with pre-existing user-defined or 3rd party components that can be
expressed in VHDL or in pre-synthesized netlists format. With the usage of Python dictio-
naries every signal or variable can be fully characterized by specifying its name, size, type,
direction and possible initialization value. Every signal, variable, or attribute is checked
against its declaration and the appropriate error messages are asserted as needed. Dic-
tionaries in Python are lists indexed by keys and they can be seen as associative arrays.
Dictionaries can be very useful in storing design or signal parameters, thus creating easy-to-

read hardware descriptions.

4.1.1 Behavioral descriptions

SysPy supports behavioral, dataflow and structural descriptions of hardware modules in
Python. In behavioral description, process structures with sensitivity lists are supported
targeting the design of sequential circuits (FSMs). Arrays of binary or integer signals are
modeled as RAM memories, implemented with Blocks RAMs (BRAMs) on FPGAs. Full
functional BRAMs can be used separately to form larger memory systems. All signals
and variables are declared as Python dictionary structures, while processes and port map
assignments are declared using function statements.

In Code Example 4.1 a typical FSM description in SysPy is provided. A set of dictionaries
is used to define the desired design attributes, generic parameters and signals. In this
example, four elements are included in the attributes dictionary (lines 29-30): The sign
element is used to specify that the design will handle signed signals. The FSM_STYLE and
the MULT_STYLE elements are attributes related to the Xilinx Synthesis Technology (XST)
tools. The former specifies the implementation style of FSMs (to be based on lookup tables)
while the latter specifies whether DSP48 [49] blocks (Virtex family) or block multipliers
(Spartan-3 family) will be used for the multiplication operations. The FPGA_DEV element
indicates the targeted FPGA family and is used for the correct instantiation of components

that are FPGA family (line 30) dependent, e.g. CoreLib netlists, BRAMs etc. A signal’s

FEvangelos Logaras 116

Using scripting languages for hardware/software co-design

dictionary, e.g. i0sigs0, defines concisely a group of signals of the same direction (D), type
(T) and size in bits (L). The bit size of signals may depend on a generic parameter (n in this
example). All signal names are provided after the N declaration and signals can be initialized
to a specific value using the V declaration. For example, iosigs1 defines an output signal
of type binary and length n named PORTA that is represented as binary array with elements
indexed (n-1) downto 0.

The state machine is described with one process block (line 5), which has the reset and the
state transition logic. The value of the buf signal is defined in every state according to the
value of the ctl control signal. Combinational assignments are handled outside the process,
which is driven by a gated clock signal. Clock gating is controlled by the “clkCtl” signal
(line 25) and the output results is presented in the “PORTA” signal, using a combinational
assignments (line 26). The “toVHDL()” function is called at the end (line 45) to generate
the VHDL design files. The function accepts as arguments the name of the top-level design
description file and the dictionaries of all the I/O and internal signals, as well as the generics

and the attributes dictionaries.

4.1.2 Structural descriptions

While behavioral descriptions can be used to define glue logic among the main digital blocks
of a design, SysPy also supports structural descriptions, where ready-to-use blocks can be
utilized. The blocks can be described in Python or HDL syntax or they can be in the
form of a synthesized netlist. Especially the netlist description format can be very useful,
since many FPGA design tools provide ready-to-use complex arithmetic and communication
blocks using this format. All components used in a top-level SoC description have to be
declared in a Python library file, called the component library. For every block used in a
structural description, the I/O information must be provided, along with any existing generic
parameters related to the instantiation of the block.

Code example 4.2 presents the declaration of a user supplied custom core in the com-
ponent library of SysPy. The I/O signals of the core are shown in Figure 4.1. The core is
declared as a Python parameterized function in the component library, where the supplied

argument (“bus_size”), declared in the “generics” list, is a generic parameter of the core. The

FEvangelos Logaras 117

Using scripting languages for hardware/software co-design

Code Example 4.1: Typical FSM description in Python, using the supported HDL-
like description syntax in SysPy.

1 from inspect import x

2 import SysPy_ver._toVHDL

3 def demo FSM ():

4 # Behavioral code (process)

5 def proc.0(gatedClk, rst):

6 if rst = ’1:

7 buf = ”00000000”

8 state_hrb = s0

9 elif rising_edge (gatedClk):
10 # FSM declaration

11 if state — s0:

12 if ctl = ’0:

13 buf = ”00000001”

14 else:

15 buf = ”00000010”

16 state = sl

17 elif state =— sl:

18 buf = buf % 700000011~
19 state = sl

20 else:

21 buf = 700000000”

22 state = s0

23

24 # combinational assignments

25 gatedClk = clk & clkCtl

26 PORTA = buf

27

28 # Design atrributes

29 attributes = {”sign”: ’+’, "FSM.STYLE”:”lut”,

30 "MULTSTYLE” : ”block”, "FPGADEV”: ”Virtex5”}
31

32# Generic parameters

33 generics = {’'n’: 8}

34

35# I/0 signals

36 i0sigs0 = {’D’: ’i’, 'T’: ’b’, 'L’: 1, 'N’: ["rst”, "clk”, "clkCtl”, "ct1”]}
37 iosigsl = {'D’: ’o’, *T’: ’b’, ’L’: [?(n—1)”, 0], ’N’: "PORTA”}

38

39# Internal signals

40 intrsigs0 = {’D’: ’intr’, °T’: ’s’, 'L’: 1, °N’: ”state”, "V’: [?s0”, "s1”]}
41 intrsigsl = {’'D’: ’intr’, ’T’: ’'b’, 'L’: [?”(n-1)", 0], 'N’: ”buf”}

42 intrsigs2 = {’'D’: ’intr’, ’T’: ’'b’, 'L’: 1, ’N’: ”gatedClk”}

43

44 # Calling "toVHDL” converter function

45 SysPy_ver._toVHDL .toVHDL (”demo.FSM” , attributes , generics, iosigs0, iosigsl,
46 intrsigs0, intrsigsl, intrsigs2)

FEvangelos Logaras 118

Using scripting languages for hardware/software co-design

Code Example 4.2: Custom block declaration in SysPy’s component library.

1 #Component library declaration of the ‘‘demo-FSM’’ block
2 def demo FSM(bus_size):

bl

3 CompLib="‘‘custom’

4 generics=[True, ‘‘bus_size’’]

5 signals=[{‘D’: “i’, “T’: ‘b’, ‘L’: 1, ‘N’: [“‘rst’’, “‘clk’’,*“clkCtl’>",
6 ‘hetl]},

7 {D’: f0’, “I’: ‘b’, ‘L’: [“‘(bus_size—1)"",0], ‘N’: [‘‘PORTA’’,
8 “‘PORIB’’]},

9 [CompLib, generics, ‘‘demo.FSM’’]]

10

11 return signals

12

13 #

14

15 #Function library declaration of the ‘‘demo-FSM’’ function associated with the
16 # ¢ ‘demo_FSM ’’ component
17 def demo_FSM ():

18 #Dictionary for the component association

19 func_info = {‘‘Comp-name’’: ‘‘demoFSM’’, ¢‘numGPIOPorts’’: 1}
20

21 return func_info

FEvangelos Logaras 119

Using scripting languages for hardware/software co-design

demo_FSM
e ~
—| clk PORTA((n-1:0] {—~—>
—{rst PORTB](n-1):0] |~
—P| ctl
—P| clkCtl
- .

Figure 4.1: Demo FSM pinout.

“True” flag (line 4) in the “generics” is used to define the existence of generic parameters in
the design. All the I/O signals are declared using Python dictionaries, in the same way as
it was described in In Code Example 4.1. All the signals’ dictionaries are merged together
in the “signals” list (line 5). The library of the core is declared as “custom” (“CompLib”
variable, line 3), since the core has been provided by the user in the form of a Python or
VHDL description. Other blocks in an RTL or netlist form from commercial libraries can
also be used, such as Xilinx’s Unisim or CoreLib library. Every block in the component
library is defined using a function and after the instantiation of the block in the top-module,
the function will return the signals, the generics and the CompLib lists which contain all the
required information for the block. Every time a block is connected in a structural descrip-
tion, its instantiation is checked against the information provided in the component library
and the appropriate errors are asserted if needed. A tool has been developed as part of the
SysPy project that parses component entity declarations in a VHDL package and generates
component declarations in Python syntax, compatible with the corresponding component
library format.

Since a module is defined as a function, it is possible in SysPy to hide some of the
low-level details, wherever it is possible and connect a module in a more abstract way. In
this way each module in the structural library can be associated with a Python function,
declared in SysPy’s function library using the format shown in Code example 4.2 (line 17).
The function’s body contains a dictionary (“func_info”) with the name of the associated
component (demo_FSM) and any other special attribute required by the function to instantiate
the associated block. A special argument is used in this example (numGPIQPorts) (line 19)
to define the number of I/O ports of the state machine. A function handler combines the

information of the modules’ declaration along with data provided in the associated function.

FEvangelos Logaras 120

Using scripting languages for hardware/software co-design

In this case the number of GPIO ports can have the value of 1 or 2, so either only PORTA
will be implemented or PORTA along with PORTB. The description of this function handler
is presented in Code Example 4.3. The function (demo_FSM_ports()) accepts as arguments
the number of the required GPIO ports and the signals’ dictionary list, as it was defined
in the components library. An if-else structure (line 10) is used to remove the declaration
of PORTB (line 14-15) if only one data ports is required. The usage of handlers to modify a
blocks’ connection and declaration in a structural description, shows how Python’s compact
and easy to read coding style can be used to write abstract hardware descriptions. A more
detailed and complex example is presented in Chapter 7, where a function is used to initialize

a block’s memory arrays with the content of an XML file (see Figure 7.6).

Code Example 4.3: Function handler for automatic instantiation of a predefined

block.

1 def demo_FSM_ports(IOPorts, numPorts):

9 rw»
3 FUNCTION: demo_-FSM_ports(a{}, b int)

4 a: dictionary containing function’s IO ports
5 b: integer number of implemented data ports

6

7 — Function handler for ”demo_FSM()”.

g

9

10 if (numPort == 1):

11 ## One data port implemented (PORTA)

12 for i in IOPorts:

13 ## Remove PORTB

14 if (i['N’] = "PORIB”):

15 IOPorts.remove (i)

16 else:

17 ## In any other case two ports are implemented
18 pass

19

20 return IOPorts

In Figure 4.2, a Unified Modeling Language (UML) sequence diagram shows the way
we combine the information about a hardware block from the function and the component
library, along with the way a block must be instantiated, described in the related function

handler. In Figure 4.2 a special argument such as “arg2” used in “function2”. While “arg0”

FEvangelos Logaras 121

Using scripting languages for hardware/software co-design

and “argl” represent the values of generic parameters of “component2”, “arg2” triggers the
execution of the handler, where “arg2” may represent the name of: a) a VHDL file that will
be generated, b) a text file that contains initialization values for BRAMs, ¢) a Tcl or Python
script file that can be used e.g. to generate design files or folders for other FPGA design
tools. The usage of functions favors compact abstract Python descriptions, while port-map
assignments give complete flexibility in terms of connectivity of a component, e.g. the user
can define internal or I/O signals to connect to the ports of a component. Every function
in the function library has a) a related block in the component library and can also have
b) a function handler which will process any special arguments related to a block, like the
“numPort” argument in Code Example 4.3.

Special arguments cannot be handled directly by an HDL language, like processing the
content of a text file (see Figure 7.6) and make decisions about the structure of a block,
e.g. increase the size of memory blocks or change the number of I/O ports). Using function
handlers in SysPy adds more flexibility in Python RTL descriptions, where Python is used
to auto-generate in a smart way the required RTL description, based on block information

defined in the component library.

Function Library Component Library
function0() component0()
function1(arg0) component1(generic0)
function2(arg0, arg1, arg2) component2(generic0, generic1)

Function handlers Library

Python
top-level

func_handler2(arg2)
> - —— > .

Instantiate
BRAMs with
"arg2.txt" content

Generate
"arg2.vhd" file

Execute "arg2.tcl" or
"arg2.py" script

Figure 4.2: UML sequence diagram depicting the usage of function handlers in Python

structural descriptions and the interaction among different modules of SysPy’s libraries.

While we support Python RTL-like descriptions we also provide the required level of

FEvangelos Logaras 122

Using scripting languages for hardware/software co-design

abstraction using Python’s programming and data structures. Functions in SysPy are used
in such a way to automate the insertion of ready-to-use digital blocks, while through the
use of dictionaries a structured way is also provided to declare I/O and parameterization

information of a digital module.

4.2 RTL verification models

Except the generated VHDL descriptions, SysPy automatically generates different models
and files of a Python described design. Python is used to extract the required information
from the user’s descriptions and generate different views of a design useful in the verifica-
tion flow of a system. VHDL testbench and TP-XACT model files are generated for each
Python described module, which can be used by third-party verification tools (Xilinx ISE
[50], Mentor Graphics ModelSim [66]) to simulate the generated RTL code. In this way
Python support not only the use of high-level verification models expressed in Python (see

Chapter 3), but also RTL functional simulations, especially useful for block-level verification.

4.2.1 VHDL testbench template

To ease verification procedure of automatically generated VHDL code, SysPy also gener-
ates VHDL testbench templates for each Python hardware module. Within the testbench
description the module-Unit Under Test (UUT) is instantiated, according to the I/O infor-
mation provided in the Python description. A clock process is also provided, where the use
has to define the frequency of the main system clock. The input stimuli can then be defined
by the user in respect to any existing clock signals in the design. The testbench files are
included along with the design VHDL files in the design project generated for the Xilinx
design tools. In Figure 4.4 the auto-generated testbench template of the “demo_FSM” block
in Figure 4.1 is presented.

In the beginning of a VHDL testbench some default libraries need to be used (lines 1-4),
while in the architecture block of the I/O signals are defined (lines 9-18). Definition of any
existing clock driver is assigned according to the proper clock frequency (line 21) and all the

/O signals are instantiated in testbench file (lines 23-30). Duty cycle is defined as a 50

FEvangelos Logaras 123

Using scripting languages for hardware/software co-design

Code Example 4.4: VHDL testbench template of the “demo_FSM” block in Figure
4.1.

1 library IEEE;

2use ieee.std_logic_1164.all;
3use ieee.std_logic_arith.allj;

4 use ieee.std_logic_unsigned. all;
5— FEntity declaration

6 entity demo_FSM_tb is

7end demo_FSM_tb;

8

9 architecture behavior of demo_FSM_tb is

10 — Component Declaration for the Unit Under Test (UUT)
11 component demo_FSM

12 port (

13 clk: in std_-logic;

14 rst: in std-logic;

15 clkCtl: in std_logic;

16 ctl: in std_logic;

17 PORTA: out std_logic-vector (7 downto 0);
18 end component;

19

20 — Clock period definition

21 constant clock_period: time := 1lns;
22 begin

23 uut: demoFSM port map (

24 clk = clk,

25 rst => rst,

26 dimem => dimem,

27 clkCtl => clkCtl,

28 ctl => ctl,

29 PORTA => PORTA

30)i

31

32 —— Clock process with 50% duty cycle
33 clock_process: process

34 begin

35 <clock_-name> <= ’0’

36 wait for clock_period / 2;
37 <clock_-name> <= ’1°

38 wait for clock_period / 2;
39 end process;

40

41 — Stimulus process

42 stimulus_process: process

43 begin

44 — FEnter your testbench stimulus here
45 end process;

46 end ;

FEvangelos Logaras 124

Using scripting languages for hardware/software co-design

4.2.2 IP-XACT models

Generation of RTL code from Python descriptions in SysPy is compatible with the IP-XACT
XML schema. Using meta-data information in XML format, the IP-XACT standard [15]
tries to ease, integration and IP-reuse of IP blocks among many different digital design and
verification tools. Using keys in XML format several properties of an IP core can be de-
scribed using the IP-XACT standard and different tools can parse information about a block
without reading the associated RTL description. This feature provides information about
the properties of a digital block in a higher, meta-data level. The IP-XACT XML schema
is an I[EEE standard, is managed by the SPIRIT consortium and is supported by major
companies in the semiconductor industry like Intel, ARM, AMD, NXP, Texas Instruments
and Synopsys.

SysPy automatically generates the IP-XACT descriptions during a Python to VHDL
translation. The description contains filepath information about the generated VHDL files
along with I/O information of the associated IP block. In Code Example 4.5 we present the
IP-XACT representation of the “demo_FSM” block in Figure 4.1. XML tags can be used to
provide general information about the block (lines 2-13) along with the I/O signal properties
(lines 14-46).

The IP-XACT generation feature in SysPy proves that Python can easily generate and
process many different views of an IP core in different syntax and languages [55]. The
IP-XACT standard promotes reuse of existing cores and standardizes the way information
about IP cores can be catalogued and also describes it in a format that can be processed
by system integration and verification tools. IP-XACT keys can also be used to describe
memory mapping of peripheral blocks and their interconnection properties on a data bus.
An example on how useful the standard can be in a system-level, Universal Verification
Methodology (UVM) [81] compatible, verification environment is the way CPU registers can
be easily mapped and converted to SystemVerilog models, by using the meta-data informa-
tion provided for the registers in IP-XACT format [26]. While SysPy already provides tools
for building and simulating a SoC, with the addition of the IP-XACT generation feature it
proves its ability to be compatible with all the industry standards related to digital hardware

design and verification.

FEvangelos Logaras 125

Using scripting languages for hardware/software co-design

Code Example 4.5: XML description of the “demo_FSM” block in Figure 4.1.

1<?xml version="1.0” encoding="UTF-8” 7>

2 <spirit:name>demo_FSM</spirit:name>

3 <spirit:description>Generated by SysPy, Author: Evangelos Logaras</spirit:description>
4 <spirit:fileSets>

5 <spirit:fileSet>

6 <spirit:name>fs—vhdlwrapper</spirit:name>

7 <spirit:file>

8 <spirit:name>/home/sim_test /SysPy/work/demo FSM.vhd</spirit:name>
9 <spirit:fileType>vhdlSource</spirit:fileType>

10 <spirit:logicalName>demo_FSM_lib</spirit:logicalName>

11 </spirit:file>

12 </spirit:fileSet>

13 </spirit:fileSets>

14 <spirit:model>

15 <spirit:views>

16 <spirit:view>

17 <spirit:name>vhdlwrapper</spirit:name>

18 <spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
19 <spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIdentifier>
20 <spirit:envIdentifier>:designcompiler.synopsys.com:</spirit:envldentifier>
21 <spirit:language>VHDI</spirit:language>

22 <spirit:modelName>demo_FSM</spirit:modelName>

23 <spirit:fileSetRef>

24 <spirit:localName>fs—vhdlwrapper</spirit:localName>

25 </spirit:fileSetRef>

26 </spirit:view>

27 </spirit:views>

28 <spirit:ports>

29 <spirit:port>

30 <spirit:name>clk</spirit:name>

31 <spirit:wire>

32 <spirit:direction>in</spirit:direction>

33 <spirit:wireTypeDefs>

34 <spirit:wireTypeDef/>

35 </spirit:wireTypeDefs>

36 </spirit:wire>

37 </spirit:port>

38 <spirit:port>

39 <spirit:name>ce2int</spirit:name>

40 <spirit:wire>

41 <spirit:direction>in</spirit:direction>

42 <spirit:wireTypeDefs>

43 <spirit:wireTypeDef/>

44 </spirit:wireTypeDefs>

45 </spirit:wire>

46 </spirit:port>

FEvangelos Logaras 126

Chapter 5

Processor-centric SoC designs

Utilizing a processor soft IP core in a SoC design is a challenging task in terms of: a)
handling implementation of the core by logic synthesis and physical design (placement and
layout) tools, b) handling software development flow and related tools and ¢) connecting
the processor with the rest of the design in a way that the processor does not decrease
computing performance of other blocks. The processor acts as a communication and control
gateway, since it is much easier to implement in software the layers of data transmission
protocols and control algorithms. In this chapter we present how the supported processor
cores are instantiated, using the supported syntax, in a Python top-level description. We also
present how the tool is used to ease development of bare metal and O/S-centric applications.
Software development for the processor core is also supported along with Tcl scripts to create

design projects and execute in an automated way the related Xilinx FPGA design tools.

5.1 Processor core instantiation

Structural and behavioral RTL descriptions in SysPy have been supported in such a way
to favor the instantiation of processor-cores in a design. Several parameters have to be set
related to the available resources that the core will utilize in the FPGA. Also dedicated
constraint files must be used during synthesis for every processor core, so that the design
will meet the desired timing and optimal placement requirements.

SysPy generates synthesizable VHDL code of the RTL description of the SoC and im-

ports in the design folders the appropriate timing and placement constraints of the utilized

FEvangelos Logaras 127

Using scripting languages for hardware/software co-design

processor core. The included constraint files in SysPy cover the usage of all three supported
processor cores for implementation in one of the three Xilinx FPGA families that we used:
Spartan3, Virtex2Pro and Virtex5. Constraints files for other FPGA families can be easily
added to SysPy’s libraries.

The steps of the implementation flow used by the FPGA tools, like XST from Xilinx,
is presented in Figure 5.1. The constraints files along with the RTL files generated by
SysPy or fetched from the tool’s libraries (ready-to-use blocks) are provided as input to
the synthesis tools. Synthesis tool transform the design into a flat netlist, where nets are
used to connect the main building blocks of a design, e.g. memories, adders, multiplexers,
gates etc. As a next step, the synthesizer maps all the building blocks and any associated
glue logic into technology-specific implementation. In the case of FPGAs, the synthesizer
infers and connects hardwired macro blocks, such as BRAMs, arithmetic units, clock and
I/O buffers etc. According to the provided timing constraints, in the case of a sequential
design, the synthesis tool selects the appropriate blocks to build the clock tree structure to
propagate the main clock signals through the design with the minimum latency. In the case
of an FPGA synthesizer, the generated netlist also contains the Look Up Tables (LUTs)
to program the inferred logic blocks (CLBs), which usually implement glue or control logic
around the utilized macro blocks. For example, in the case of an arithmetic unit design, the
arithmetic operations will be mapped in a hardwired macro adder/multiplier block, while
the data flow and data buffering control will be realized with CLBs implementing an FSM
and a number of shift registers.

In case of a processor core implementation, the clock tree must support the required
frequency that the processor must be clocked at. Also special memory structures, like the
register files and the cache memories are realized using BRAMs. Special high performance
peripheral units of the processor, like data, image or audio controllers, also have a set of
timing constraints that defines the relation of their clock signals with the clock signals of the
Central Processing Unit (CPU). The designer must manually edit the processor constraints
files already imported by SysPy, in case new timing constraints have to be added, reflecting
the behavior of added custom logic, e.g. new or modified peripheral controllers.

After all the technology-specific logic has been inferred by the synthesizer, the related

netlist file is generated and then the tool performs the floorplanning and the Place and Route

FEvangelos Logaras 128

Using scripting languages for hardware/software co-design

U

; timing RTL { placement
i constraints description i constraints ;

bitstream
file

Figure 5.1: Design flow adopted by FPGA tools, from RTL design down to the generation
of the FPGA bistream file.

(PR) steps. During these steps the tool does the physical design of the SoC, where it selects
the location of the blocks that are going to be utilized on the FPGA device and also the
paths through the available programmable switches to connect them. The location and the
paths are selected in such a way to map similar logic functions close together and reduce the
length of routing paths. Placement constraints can be used to lock the location of specific
utilized blocks and also to define the connection of the design to the FPGA I/O blocks and
pins, where other ICs are connected. In this case high speed I/O blocks can be used when

a fast connection is required, e.g. connection to an external memory IC, or slower, power

FEvangelos Logaras 129

Using scripting languages for hardware/software co-design

optimized blocks can be used when power consumption is the critical factor, e.g. connection
with a slow serial bus controller.

Finally all the information regarding the physical placement and routing of a design
is converted into a bitstream executable file which is downloaded to the memory of the
FPGA device. The content of the bitstream programs the LUTs in the CLBs and also the

programmable switches to form the desired signal paths.

5.2 Processor interface

One of the most challenging design task when adding a programmable controller, like a
processor, in hardware design, is the interface logic on the software/hardware boundary. The
specifications of this interface block defines the overall system performance. The processor
can easily handle in software all the interface tasks of a system, especially when data transfer
protocols must be used to communicate with other ICs on the FPGA board or even ICs on
different boards or a host PC connected to the FPGA board. On the other hand the custom
hardware blocks must be able to perform data processing operating at a high speed frequency
and exchange data with the processor in a time efficient way, so that the operation of these
blocks is not stalled by the slower operating frequency of the processor.

Fast local memory blocks have to be included in the design of the interface module to store
intermediate processing results. In order to have fast access, memory blocks that support
dual port access were designed, so that the processor and the custom hardware block could
perform read operations in parallel. The memories were used in a dual First In-First Out
(FIFO) configuration, while the size of the memories and the number of available data ports
were implemented as configurable generic parameters in the HDL description. The interface
block was described in VHDL and added to SysPy’s component and function library, so that
it can be instantiated in a design using a function call.

Two different types of interface blocks were implemented: one for the AVR core and
another one for the Leon3 and the OpenRisc processors. The first one was designed using
BRAMSs connected as a FIFO memories and an FSM was used to control data flow through
the memory. For the second implementation, a dedicated FIFO design was parameterized

and implemented using Xilinx Core Generator [53], which is a Graphical User Interface

Evangelos Logaras 130

Using scripting languages for hardware/software co-design

(GUI) for instantiating ready-to-use blocks from the Xilinx CoreLib library. More details
about the design of these interface blocks are provided in Chapters 6, 7 and 8, where the

design examples, where the blocks have been instantiated, are analyzed.

5.3 Embedded software flow

5.3.1 Using compilers for different processor architectures

Although emphasis of this work is not in software development, we wanted to be able to have
a single description in Python that could support the related hardware and also define the
software files executed by the processor. In this way the top-level description of a processor-
centric system is self-contained since a designer can easily figure out, by examining the
description, the processor core that is used, the surrounding glue logic and any custom
peripheral blocks and also the software executed by the processor.

In Figure 5.2 the envisioned software development process is presented. All three cur-
rently supported processor cores are supplied under a GPL license, while a C compiler under
the GCC project is also available for each one of them. The design flow automatically in-
vokes the required C compiler tools to compile software for the utilized processor core. SysPy
makes a system call to the appropriate compiler, which generates the binary executable file
from the user’'s C/C++ code file. In the case of OpenRisc and AVR processors, VHDL
files are generated containing BRAMs instantiations, initialized with the hexadecimal code
of the executable file. In the case of Leon processor only the executable file is generated
that can be used to program the processor’s external memory with the GRMON [10] debug
tool provided with the processor core. Especially for the openly available Leon3 processor
IP core, software development using an embedded 32-bit Linux O/S is supported, as SysPy
automatically compiles the user’s C application along with the Linux kernel. The supported
Linux distribution is the Snapgear Linux kernel [84]. In order to prepare the O/S kernel for
compilation, SysPy copies the user provided custom application files to the O/S folders and
registers the new application in the related configuration files. The tool also configures O/S’s
parameters, e.g. program/data memory size etc., related to the hardware implementation

of the processor. These parameters are provided by the user in the top-level description of

Evangelos Logaras 131

Using scripting languages for hardware/software co-design

the system. After compilation, the O/S executable file contains the user’s custom software
as system application, which can be executed by the serial terminal, provided through an

RS-232 connection.

C/C++ Linux
processor’s + kernel
software (optional)

bin.
exec.

init.
BRAM

init.
BRAM

AVR

LEON3
[EROFLEX

Figure 5.2: Software compilation flow for the three supported processor architectures.

In Code Example 5.1 the Leon processor core (struct_leon3mp) is instantiated in the de-
sign and connected to another custom block (struct_FSM). The attributes dictionary contains
the SYS_FREQ and the PROC_FREQ attributes which define respectively the system’s main clock
frequency and the processor’s frequency in MHz. This frequency configuration is valid only
for Leon’s implementation, since there is a parameter in its VHDL description that affects
the operation of a Digital Clock Manager (DCM) block connected to Leon. The processor’s
frequency can be defined using a 10MHz step (160MHz maximum frequency). The attributes
dictionary also contains the names of the C files (1inux kernel, usr_app.classification)
that are automatically compiled using the “Sparc GCC” compiler to create the binary ex-
ecutable file for the Leon processor and the family of the FPGA device that will be used
for implementation. A Tcl script is automatically generated and executed, to prepare the

complete hierarchy of files needed to form a project for Xilinx synthesis tools. Linux kernel

Evangelos Logaras 132

Using scripting languages for hardware/software co-design

parameters can be specified in a configuration file, e.g. RAM_SIZE, ETHERNET_EN, UART_EN
etc. Using a configuration file, SysPy can be used as a Python package-tool. In this file
(*.ini), the user can define all the appropriate system paths (e.g. SysPy directory, gce com-

piler directory etc.).

Code Example 5.1: Processor core instantiation in the top-level description.

1 import SysPy_ver._toVHDL

2

3 # Connecting the Leon3 core

4 def struct_leon3mp ():

5 sys_rst_in = sys_rst_in

6 clk_out = clk_int

7 clk_-100 = clk-100

8 clk_200_p = c¢lk_-200-p

9 clk_200_n = clk_-200-n

10 clk_33 = clk_33

11 sram_flash_addr = sram_flash_addr

12 sram_flash_data = sram_flash_data

13 PORTA_out = inputA

14 PORTB.out = inputB

15

16

17

18

19 # Connecting the a custom block to the Leon3 processor
20 def struct-FSM(¢‘32°’):

21 clk = clk_int

22 ce2int = ce2int

23 PORTA.n = inputA

24 PORTB.in = inputB

25

26

27

28

29# Leon’s software C file names

30 attributes = {¢‘SYSFREQ:’’ 100, ‘‘PROCFREQ’’: 160,
31 C“PROCSW’’: [“‘“linux_kernel’’,
32 ‘‘usr_app-classification’’,
33 C‘FPGADEV’’: ‘‘Virtex5’’}

Evangelos Logaras 133

Using scripting languages for hardware/software co-design

5.4 FPGA design tools scripting

Hundreds or some times thousands of files are required to be generated or edited during the
design cycle of a SoC on an FPGA device. In order to efficiently handle all the design steps
and also be able to rapidly “respin” and optimize the design, scripting tools are required to
automate as many design and implementation steps as possible.

A Tecl script ensures portability, since a design will be synthesized in the same way
independently of the host computer. The script also captures the desired design setup, so
that a design work can be shared among many designers. This feature can significantly ease
maintenance of a design and of the associated file hierarchy. Scripts can also be executed in
a command line mode, where the design steps are executed much faster than using a GUI
interface or entering the commands manually.

Except handling the large number of files related to the design, a Tcl script must also
control the synthesis and floorplanning activities. FPGA synthesis process is a fairly complex
task where many parameters have to be defined by the user. Especially for the implemen-
tation of processor soft cores, as mentioned in Section 5.1, many timing and placement
constraints have to be used.

SysPy automatically generates a Tcl script that can be used to run all the implementation
steps on the XST design tools, according to the processor used in a design and also to the
parameters defined by the user in the top-level Python description. The script can be
executed in command line and run all the required steps, from logic synthesis down to the
generation of the bitstream file to be used to program the FPGA. The top-level design file
name is also declared in the Tcl file, along with other HDL design file names generated from
Python descriptions or the names of blocks used for structural descriptions from the tool’s
libraries. In Figure 5.3 the file hierarchy used for a design project in XST is presented.

The synthesis options that can be set by the user in a Python description are the following:

e FPGA_DEV: defines the FPGA family used for implementation.

e FSM_STYLE: controls the way state machines are implemented, using BRAMs or
CLBs to store the states’ encoding.

e FSM_ENCODING: defines the state encoding style used by a state machine, e.g. one

Evangelos Logaras 134

Using scripting languages for hardware/software co-design

1
| S -l Design project l
VHDL/Verilog
glue logic

VHDL/Verilog
processor core

EDIF netlist

Timing
constraints

(_conmvaes]
(e
(e]
e)
(_enirter]

Placement
constraints

Tcl
scripts

------ Libraries

Unisim

Xilinx CoreLib

IP core
generator

Figure 5.3: File hierarchy used in XST design project.

hot, gray, johnson etc.

e MULT_STYLE: controls the way multiplier blocks are implemented, using hardwired
multiplier blocks or CLBs.

e RAM STYLE: controls the way memory blocks are implemented, using hardwired
BRAMSs or CLBs.

e RESOURCE_SHARING: defines if multiple arithmetic operations will share the same
logic block, if multiplication operations can be implemented in a pipelined way instead

of parallel execution.

All the values of the synthesis parameters defined by the user are parsed to the Tcl script.
Also SysPy generates the folders hierarchy required by XST, so that upon execution of the

Tecl script this hierarchy is recognized as an already existing project, ready to be synthesized

Evangelos Logaras 135

Using scripting languages for hardware/software co-design

by the tools. The full set of possible values for the synthesis options can be found in Table
1.1.

According to the diagram presented in Figure 5.3, SysPy delivers a ready to be synthe-
sized processor-centric design to the FPGA tools. Code reuse is exercised in SysPy, since
digital blocks in RTL or netlist description format can be utilized by the designer and com-
bined with custom defined logic. All the required hardware and software information is
provided along with the required Tecl scripts that “glue” all hw/sw design, logic synthesis

and physical implementation tools together.

Evangelos Logaras 136

Chapter 6

Image processing SoC design case

The first big design that we used to verify the processor-centric features of SysPy was an
image processing system built around the AVR 8-bit microcontroller (uC) core. It is the
first example that used the complete design flow, from top-level Python description down to
the generation of the binary FPGA programming file. The tool was used in his example to
generate all the VHDL synthesizable code for the image processing block and its connection
to the uC and also insert the uC core in the design and compile the required software

developed in C and assembly language.

6.1 Design features for image processing

With the design described in this chapter we proved that a full, real system could be designed
using Python abstract descriptions in SysPy and implemented using an FPGA device. While
custom logic can be described directly in Python and translated by the tool to VHDL, other
modules are utilized as ready-to-use blocks in RTL or synthesized netlist description. As a
summary, the following three basic design concepts adopted in SysPy were used and tested

during the development of the image processing SoC:

(a) Python as an HDL: Capability to describe hardware components in Python that the
tool automatically translates to VHDL.

(b) Modular SoC design - Components Reuse: Use of Python to build descriptions of SoCs

based on hardware components that are defined in Python, but may have a Python or

Evangelos Logaras 137

Using scripting languages for hardware/software co-design

VHDL or pre-synthesized netlist implementation in a library.

(c) Processor-centric SoC design: Support for IP cores of programmable processors. The
tool takes as input the user’s C code and implements all the steps necessary to produce
a synthesizable VHDL description of the corresponding program memory file for the

targeted FPGA device.

Some features of the system also triggered the development of new tool features during
design. Most important are the automatic generation of Tcl scripts and the use of modules
in a synthesized netlist format from the Xilinx CoreLib library. In SysPy we wanted to
minimize the effort of connecting a processor core in a design. A large number of HDL files
is used to describe even a small 8-bit processor core, like the AVR block. The automatic
generation of a Tcl script that could be used along with the FPGA synthesis tools, was
required to automate the processor instantiation in the design. We also wanted to take
advantage of the large number of complex IP cores that could be automatically generated
using the Xilinx Core Generator tool. The cores are provided in the form of a synthesized
netlist, so their HDL description could not be parameterized. We managed to synthesize a
number of useful arithmetic cores and store them in SysPy’s libraries. According to user
provided attributes in the top level Python description, the proper synthesized block was
selected and instantiated in the design.

All the previous features were developed and tested using the implemented image pro-
cessing core. We especially tested the way to connect together the processor core and the
custom connected arithmetic blocks to speed up the image processing task. A serial connec-
tion was used to interface the design through an interface software developed with Matlab
and trigger data transfers between a host PC and the Virtex-5 FPGA board that we had

available.

6.2 AVR core and features

The processor core that we used in this design is a compatible VHDL description of the
8-bit AVR ATmegal28 uC [45] from Atmel. The project for the AVR core is uploaded in
the OpenCores website [76]. The core has the following basic features:

Evangelos Logaras 138

Using scripting languages for hardware/software co-design

32x8-bit general purpose registers

supports up to 128kb of program and 64kb of data memory

e programmable UART block

Two 8-bit parallel ports

e Eight external interrupt sources

We selected the ATmegal28 as the first processor core to use within the tool because
it is a small core with sufficient program memory that would let us prove the concept of
processor-centric design using SysPy. We used its UART module to communicate with a
host PC and the two available GPIO ports to interface custom peripheral logic in the FPGA.
GCC compilers have been ported to all the popular processor architectures, so we used the
available avr-gce C compiler [3] to develop and compile the software for our application. A

block diagram of the AVR architecture is presented in Figure 6.1.

Data Bus 8-bit

Program Status
Flash " = <
Program Counter and Control
Memory *
l Interrupt
' 32x8 Unit
Instruction General
Reqister Purpose SP|
T * Registrers » Unit
Instruction Watchdog
Decoder * "
o = Timer
= &
["1] w
l # % P Analog
Control Lines B2 g Comparator
< =
B 8
£ 5
= £ < /0 Moduled
Data . . "
» SRAM - /0 Module 2
<—»| |/O Module n
EEFPROM =
IO Lines -

v

Figure 6.1: Block diagram of the AVR architecture (source: www.atmel.com).

Evangelos Logaras 139

Using scripting languages for hardware/software co-design

The AVR is one of the fastest 8-bit architectures available where most instructions require
just one clock cycle to be executed. The ATmegal28 core was one of the few free available
and well tested 8-bit processor cores, also compatible with GCC software development tools.
While the core is not a fast, high end processor, it was used in SysPy to prove the supported
automated flow of inserting a processor core in a design and connecting it to custom blocks.
For the first processor core that we used we wanted to support at least serial connectivity
with the host PC and provide data ports for interfacing custom peripheral devices. We
also wanted to prove the ability to have a self contained Python description file, where the
connection of a processor core along with the software to be executed are defined and the
related compilation tools (C compilers, RTL synthesizers) are invoked automatically.

All memories of the uC are mapped to BRAMs, e.g. register file, data and program
memory. Two GPIO ports are supported for connecting the uC to other blocks in the
FPGA. The size of the implemented ROM memory was enough to hold the software that
we implemented, while the size of the RAM memory was also enough to hold the images
transmitted from the host PC to the FPGA. Using the two GPIO ports we implemented the
data and control interface between the processor and the custom blocks created to perform
the required arithmetic operation of the image processing algorithm. Any analog related
blocks shown in Figure 6.1, like the analog comparator, are obviously not implemented in
the IP core that we used and are part of the ATmegal28 ASIC implementation.

The avr-gce library, also used within SysPy, is a stable and well tested environment
for software development for the AVR architecture. It supports a subset of the standard
C library. It also provides ready-to-use code for several common tasks used in the AVR
architecture related to memory and peripheral device accesses. The library also supports
almost all of the available AVR devices. In general we can say that the ATmegal28 core
along with its software development environment was a good candidate to initially test and

debug the processor-centric design flow that we implemented in SysPy.

6.3 Image processing SoC design

To demonstrate the capabilities of our tool, we have used SysPy to design a processor-centric

SoC system that applies Sobel edge detection [37] to grayscale images. The Sobel algorithm

FEvangelos Logaras 140

Using scripting languages for hardware/software co-design

detects vertical and horizontal edges of an image. The result of the filtering process is
two images representing the gradient of the original image in the horizontal and vertical
direction. By calculating the Fuclidean distance between corresponding pixels in these two
images, a third image is produced representing the magnitude of the gradient. Finding the
edge of various objects in an image can reveal important object properties which later can
be used for applying more complex image processing algorithms, like object detection, image

transformation/editing etc.

6.3.1 Sobel’s algorithm

The Sobel algorithm uses two convolution kernels to identify vertical and horizontal contrast

changes on an image.

N(z,y)= > > K@ kple—jy—k) (6.1)

k=—1j=—1

Equation 6.1 describes the convolution between a K group of pixels of the image and one
of the two kernels used by the Sobel operator. Two new images are generated after applying
the two convolution kernels showing the gradient approximation for horizontal and vertical
contrast changes respectively. Equations 6.2 and 6.3 describe the convolution between the

two 3x3 kernels and the original image.

-1 0 +1

Ge=1|—-2 0 42| *p (6.2)
—-1 0 +1
-1 -2 -1

Gy=10 0 0]=*p (6.3)
+1 +2 +1

By calculating the Euclidean distance between corresponding pixels in these two images,
a third image is produced representing the magnitude of the gradient. The G, and G,
magnitude vectors are the x and y components of the combined GG vector. The magnitude
and direction of the combined G vector can be calculated using Equations 6.4 and 6.5

respectively.

FEvangelos Logaras 141

Using scripting languages for hardware/software co-design

G=,/G2+G? (6.4)

§ = tan* (g—z) (6.5)

The magnitude of vector G represents the final processed image where the detected edges
information is included. By combining the G, and the G\, using the Euclidean distance
computation (Equation 6.4) vectors it becomes easy for the algorithm to track steep line
curves of an image and also detect edges among many complex objects that exist in an
image. Other formulas can be used to calculate the magnitude vectors to avoid the square
root computation in the Euclidean distance formula like the absolute squared distance or

the Manhattan distance.

6.3.2 Using SysPy to glue the AVR uC and the custom peripherals

In Figure 6.2 we show the type of components involved and their connections. The SoC
incorporates the AVR processor IP core, a special purpose processor which implements So-
bel’s operator and an arithmetic component from the CoreLib library used to implement
the square root function as needed for the Euclidean distance calculation. Sobel’s algorithm
apply two, horizontal and vertical, 3x3 kernels on the original image. So the image has to
be partitioned into blocks of 3x3 pixels every time one of the kernels is to be applied. A
64x64 image is transmitted through a serial connection from a PC to the AVR controller
and stored in its data memory. This FSM applies the two Sobel kernels to the received block
and two pixels are produced. Their values are squared and then added. The result of the
addition is sent to the CoreLib component that calculates its square root by applying the
COordinate Rotation DIgital Computer (CORDIC) algorithm [91], [92]. The result is sent
back to the AVR and then returned to the PC through the serial connection.

FEvangelos Logaras 142

Using scripting languages for hardware/software co-design

Python component

VHDL component
. Netlist component

N

.

1

1

1

1

AVR uC program |}

P:> (Opencore) — memory |1
x :
£ :
S g

--------------------- -

[2)
—
(=]
0
'
= =
N v 8 'i
=
&
i
a2 |4
[1[:]
[}
A

divider

Figure 6.2: Diagram of the Sobel edge detection SoC. The shading indicates the type of each

component.

For the computation of nontrivial algebraic functions, like square root computation,
trigonometric functions etc. the Taylor series can be used to approximate the desired result.
The required function is then calculated as a series of multiply and add operations. The
CORDIC algorithm provides a more efficient implementation for solving algebraic functions
which also favors hardware implementation. The algorithm is used in many applications
like calculators, adaptive filters, FE'T blocks, etc. The first implementation of the CORDIC
algorithm in FPGAs was introduced by Meyer-Base [67], realizing a multiplier free CORDIC
block for fast and accurate computation of trigonometric functions.

In our design the CORDIC block from the Xilinx CoreLib library [48] has been used to
implement the required square root computation of the Sobel algorithm. As presented in In
Figure 6.2 the CORDIC block along with an FSM to handle data flow forms a Sobel accel-
erator block attached through a data bridge to the processor’s I/O ports. Sobel’s algorithm
functions have been partitioned to the AVR which handles all memory management and data

manipulation and to the Sobel accelerator, along with the sqrt arithmetic component which

FEvangelos Logaras 143

Using scripting languages for hardware/software co-design

handles all the numerical calculations. The two processors (AVR and Sobel) communicate
through a bridge that manages the interaction and data exchange between them, so that
alternative processor implementations can be plugged in and out as long as they respect the
defined protocol of interactions. The Sobel accelerator processes data faster than the AVR
controller, so the bridge acts as a buffer and also produces all the control signals informing
the two components when they can send or receive data. The Sobel accelerator, the bridge
and a clock divider (needed to produce all the clock signals for the system) have been de-
scribed in Python. The bridge is a parameterized component, since its data buses can be
easily resized with the use of generic parameters declared in its Python description. The sqrt
CORDIC component is a pre-synthesized EDIF netlist taken from the CoreLib library. The
AVR processor third party soft core is provided in VHDL. The VHDL entity for its program
memory is produced by SysPy automatically based on the provided user C code.

In Code Examples 6.1, 6.2 and 6.3 the top-level description of the image processing SoC
is presented. In Code Example 6.1 in line 10 the AVR core is instantiated and connected to
the rest of the design. PORTE is used as a control port to exchange control signals with the
data bridge, while PORTA and PORTB are used as data ports. In Code Example 6.2 in line 2 the
Sobel accelerator is instantiated, interfacing with the rest of the design using the appropriate
reset, clock and control logic and the required data I/O ports. The accelerator block contains
the FSM block and the CORDIC block for the square root computation. The data bridge is
instantiated in line 13, where an argument is passed to the related function (struct_bridge)
defining the width of its data ports (n = 8). A clock divider is instantiated in line 29 to
generate the 25MHz clock signal (used to clock the AVR and the Sobel accelerator block).
In line 35 design attributes like the FSM implementation style, the FPGA device type and
a C file (sobel.c) representing the software executed by the processor, are defined in the
attributes[] dictionary. All the I/O signals are defined in line 39-41. In Code Example
6.3 all the internal signals are declared in lines 2-13, while the toVHDL() function is called
to generate the VHDL top-level description.

During the translation of the Python to VHDL description, the avr-gce compiler is auto-
matically invoked to compile the available C software, while SysPy initializes AVR’s program
memory with the generated hexadecimal code. The bridge and the Sobel accelerator blocks

are described in separate Python modules and they are translated to VHDL along with the

FEvangelos Logaras 144

Using scripting languages for hardware/software co-design

top-level description. After translation a new directory is created containing all the required
VHDL and software files ready to be used by FPGA synthesis tools for implementation. All
the Python description files as well as the resulting VHDL files produced by SysPy and used
for the FPGA implementation can be found in [88].

FEvangelos Logaras 145

Using scripting languages for hardware/software co-design

Code Example 6.1: Top-level Python description of the image processing SoC (part

).

1from inspect import x*

2 import SysPy_ver._toVHDL
3

4 def sobel_wrapper ():

5 gn="0"

6 gnb = others(’0’)

7 rst_int = 7 rst_buf

8

9 # AVR core instantiation

10 def struct_-avr_core ():

11 nrst = rst_int

12 clk = clk_div_.25MHz_int

13 porta = porta_avr

14 portb = portb_avr

15 portc = portc_avr

16 portd = portd_avr

17 porte[0] = porte_avr[0]

18 porte [1] = porte_avr[1]

19 porte [3] = pine_avr[1]

20 porte [2] = pine_avr[0]

21 porte[7] = porte_avr_unus|[7]
22 porte[6] = porte_avr_unus[6]
23 porte[5] = porte_avr_unus|[5]
24 porte[4] = porte_avr_unus[4]
25 ddrareg_out = ddrareg_out_int
26 ddrbreg_out = ddrbreg_out_int
27 ddrcreg_out = ddrcreg_out_int
28 ddrdreg_-out = ddrdreg_out_int
29 ddrereg_out = ddrereg_out_int
30 rxd = rxd_buf

31 txd = txd_buf

32 INTx = gnb

33 TMS = gn
34 TCK = gn

35 TDI = gn

36 TDO = ”open”

37 TRSTn = rst_int
38 man._rst = rst-int

FEvangelos Logaras 146

Using scripting languages for hardware/software co-design

Code Example 6.2: Top-level Python description of the image processing SoC (part
2).

Sobel accelerator instantiation
def struct_sobel ():

rst = rst_buf

clk = clk_div_25MHz_int

t-cts = t_cts_-int
t-dpr = t_dpr-int
t_write = t_write_int

t-read = t_read-int

© o N O Ot s W N =

data_in = t_data_-out_-int

10 data_-out = t_data_in_int

11

12 # Data bridge instantiation with 8—bit I/0
13 def struct_bridge(n = 8):

14 rst = rst_buf

15 clk = clk_buf

16 h_write = porte_int [0]

17 t_write = t_write_int

18 h_read = porte_int [1]

19 t_-read = t_read_int

20 h_cts = pine_int [0]

21 t_cts = t_cts_int

22 h_dpr = pine_int [1]

23 t_dpr = t_dpr-int

24 h_data_in = porta_int

25 t_-data-in = t_data-in_int
26 h_data-out = portb_int

27 t_data_out = t_data_out_int
28

29 def struct_clk_div ():

30 clk = clk_buf

31 rst = rst_buf

32 clk_div_25MHz = clk_div_-25MHz_int
33

34# Design atrributes
35 attributes = {”sign”: ’+’, "FSM.STYLE”: ”lut”, "MUXEXTRACI”: ”yes”,

36 "FPGADEV”: ”Virtex5”, "PROCSW”: [”sobel.c”]}

37

38# I/0 signals

39 i0sigs0 = {'D’: ’i’, 'T’: ’b’, "L’: 1, 'N’: [7clk”, "rst”, "rxd”]}

40 iosigsl = {’D’: ’o’, "T’: ’b’, 'L’: 1, ’N’: 7txd”}
41 iosigs2 = {'D’: 'o’, 'T’: ’b’, °L’: [7, 0], 'N’: "portc”}

FEvangelos Logaras 147

Using scripting languages for hardware/software co-design

Code Example 6.3: Top-level Python description of the image processing SoC (part

3).
1# Internal signals

2 intrsigs0 = {’D’: ’intr’, ’T’: ’b’, ’L’: 1, ’N’: [?clk_buf”, ”"clk_div_25MHz_int”,

3 ?clk_div_,50MHz_int”, ”clk_-div_100Hz_int”, ”rst_int”, "gn”]}

4intrsigsl = {'D’: ’intr’, °T’: °b’>, °L’: 1, ’N’: [?t_cts-int”, "t_dpr-int”,

5 ?t_write_-int”, "t_read-int”, ”"rst_buf”, "txd_-buf”, "rxd-buf”]}
6intrsigs2 = {’'D’: ’intr’, ’T’: ’b’, 'L’: [7, 0], ’N’: [”porta-int”, ”portb_int”,

7 »portc-int”, "portd_int”, "porta_avr”, "portb_avr”, "portc_avr”]}

8 intrsigs3 = {’D’: ’intr’, ’T’: ’b’, °L’: [7, 0], ’N’: [”portd_avr”, ”porte_avr_unus”,
9 ”ddrareg_out-int”, ”ddrbreg_out_-int”, ”ddrcreg_out_int”]}

10 intrsigs4 = {’D’: ’intr’, T’: ’b’>, ’L’: [7, 0], 'N’: [”ddrdreg_-out_-int”,

11 ?ddrereg_out-int” ,”t_data-in_int”, "t_data-out_-int”, "portc_buf”, ”"gnb”]}
12 intrsigs5 = {’D’: ’intr’, ’T’: ’b’, °L’: [1, 0], ’N’: [”porte_int”, ”pine_int”,

13 ”?porte_avr”, "pine_avr”]}

14
15# Calling the ”to.VHDL()” function to generate VHDL code
16 -toVHDL .toVHDL(” sobel_wrapper”, attributes , generics, iosigs0, iosigsl, iosigs2,

17 intrsigs0 , intrsigsl , intrsigs2, intrsigs3, intrsigs4 , intrsigs5)

6.4 Performance and implementation results

For the SoC implementation we used the ML509 FPGA board from Digilent [25] equipped
with the medium size Virtex-5 XC5VLX110T-1 FPGA device. For this initial SoC imple-
mentation using our tool the only requirements for the board were to a) have an FPGA
device equipped with DSP48 [49] blocks utilized by the CORDIC block and b) to have a
serial connection with a host PC, used to transmit JPEG images to the FPGA.

Correct functionality of the SoC, in terms of proper execution of the Sobel algorithm,
has been verified using the Modelsim [66] and the Xilinx ISE (ISim) [50] RTL functional
simulators before the FPGA implementation. After implementation we validated the design
in silicon by processing several images and comparing the results that we got in terms
of proper edge detection. In Figure 6.3 we present two processed 64x64 pixel processed
images, where the detected edges are the combination of the two applied kernels of the
Sobel algorithm. The initial image was transmitted to the FPGA board through a serial
interface developed in Matlab and executed on the host PC and the processed images are

also transmitted back to the PC and stored.

FEvangelos Logaras 148

Using scripting languages for hardware/software co-design

Figure 6.3: Processed 64x64 pixel images by the implemented SoC.

In Table 6.1 we summarize the synthesis results for each component used for the imple-
mentation of Sobel’s algorithm. Sobel’s FSM uses the sqrt component for the computation
of the Sobel gradient’s magnitude. The sqrt utilizes eight DSP48 slices for the multiplica-
tion operations. BRAMs are utilized only by the AVR processor for its data and program
memory implementation. Each CLB in the Virtex-5 family contains eight 6-input LUTSs,
while the BRAMs’ block size is 36Kbit. According to place and route results, the system
can be clocked as high as 190MHz and it utilizes 367 CLBs, covering 6% of the available
CLBs and 32% of the available BRAMs of the device. With the current clock frequency
setting we measured that ten 64x64 images/second can be processed by the system . Tim-
ing measurements have been performed in silicon, after system’s implementation, using the
provided by Xilinx ChipScope Pro [52] logic analyzer. The analyzer is configured as an IP
core in Xilinx ISE and connected to user defined signals in the design. After capturing the
desired signal values, data are transmitted to the host PC using the Joint Test Action Group
(JTAG) connection, used for FPGA system programming and debugging.

With the image processing SoC design we verified correct functionality of SysPy’s basic

FEvangelos Logaras 149

Using scripting languages for hardware/software co-design

Components CLBs | BRAMs | DSP48
Sobel accelerator + sqrt 47 0 8
AVR Processor soft core 267 48 0
Bridge 3 0 0
Clock divider 5 0 0

Table 6.1: Synthesis results for the Sobel system. Utilized resources for the Virtex-5 LX110T
device are presented (CLB: two slices, Slice: four 6- input LUTs, BRAM: 36Kb, DSP48:

25x18-bit).

features. During system design we verified proper: a) Python to VHDL translation, b)
use and insertion of processor soft cores and c¢) use of digital blocks in different description
format (Python, VHDL, netlist) and d) use of software developing tools. After successful
implementation of this design we moved on with the development of SysPy and planned the
use of 32-bit processor cores to test and use the tool with more elaborate applications. We

also specified the development of the hw/sw co-simulation mechanism to ease verification of

the designed SoCs.

FEvangelos Logaras

150

Chapter 7

Biomolecular interaction networks

simulation SoC design case

Based on the main tool features presented on Chapter 6 we extended SysPy features to
support the Leon3 32-bit processor soft core and its software development environment. By
using Leon3 we were able to implement a fast communication interface between the FPGA
board and the connected host PC and also have access to a large memory space on the board.
To support SoC design using the new processor core we also developed a new interface soft-
ware to ease data transfers between the FPGA board and the PC. To demonstrate SysPy’s
improved design flow and functionalities we designed and implemented a processor-centric
embedded SoC for computational systems biology. The SoC combines high performance
computing features of FPGAs along with the flexibility of a programmable processor core

to simulate efficiently the stochastic behavior of large size biomolecular reaction networks.

7.1 Selection of a 32-bit processor soft core

Moving forward with the development of SysPy and using the results we got from the
development of the image processing SoC presented in Chapter 6, we searched for new
32-bit processor cores that we could add to the tool. As a minimum set of features for the
new cores we defined that the processor must be able to establish a fast connection (the
transfer rate should be in the order of Mbps) with a host PC and also have access to a

large memory space (in the order of hundreds of MB). Also general I/O ports should be

Evangelos Logaras 151

Using scripting languages for hardware/software co-design

available to interface the processor with custom processing blocks in the FPGA. To meet
these required set of communication and memory features, the cores should support at least
an 100Mbps Ethernet controller and an SDRAM DDR memory controller. The physical
layer for these two controllers was already present on the ML509 board that we were using
and only the higher protocol layers had to be implemented by the processor peripherals. The
required peripheral controllers for the Ethernet and the SDRAM DDR memory connection
were available for both the Leon3 and the OpenRISC core, so we decided to include them
both to the SysPy processor repository.

7.1.1 OpenRISC core and features

Initial trials for the use of a 32-bit processor core in SysPy have been done using the Open-
RISC 32-bit processor soft core [56] and more specifically using the Minimal OpenRISC
System on Chip (MinSoC) [29] customized implementation of the processor, while the pro-
cessor model is provided as a Verilog description. The processor supports the Wishbone [74]
protocol which is a general purpose communication interface for data exchange between IP
core modules. Several IP cores that exist in the OpenCores repository are compatible with
the Wishbone specification and can be used as peripheral devices of OpenRISC. The basic

features of the processor are summarized in the following list:

e All major characteristics of the core can be set by the user.

High performance of 300 Dhrystone 2.1 MIPS at 300 MHz using 0.18u process.

WISHBONE SoC Interconnection Rev. B compliant interface.

Support of a CPU/DSP central block.

Debug unit and development interface.

The block diagram of the OpenRISC architecture is presented in Flgure 7.1.

Evangelos Logaras 152

Using scripting languages for hardware/software co-design

Figure 7.1: OpenRISC1200 block diagram (source: www.opencores.org).

Most integer instructions in OpenRISC can execute in one cycle, while a Multiply Ac-
cumulate (MAC) unit in the CPU executes DSP MAC operations. The implemented debug
unit also assists software developers to debug in real time code executed by the processor.
The MinSoC is a ready-to-use SoC that implements the OpenRISC1200 connected with var-
ious peripheral devices, like memory controllers, Ethernet, SPI and UART controller and
JTAG debug interface. The SoC also included specific code description for the memory, the
JTAG and clock management DCM blocks, for Xilinx and Altera FPGA devices, for easy
implementation using FPGA tools. The data and program memory is also easy resizable
using generic parameters in the HDL description. An overview of the MinSoC configuration

is presented in Figure 7.2.

Evangelos Logaras 153

Using scripting languages for hardware/software co-design

PC Workstation Software /

GDB Front-end minsoc A
(DDD, Eclipse)
JTAG Advanced
TAP Debug
Interface

or1200 I y
OpenRIsC | D

or1k_startup

i

Advanced JTAG
Bridge

SPI
EEPROM

SPI

JTAG Cable

osooswn-—3
Y

UART
Transceiver

ETH
start-up - Sl ™ PHY
Starter

. S

> UART

[[

i

N
[

Figure 7.2: MinSoC block diagram (source: www.opencores.org).

Several FPGA boards are supported for implementing the MinSoC design and our team
has been the first to port the SoC to the MLL509 Digilent board, as mentioned in the MinSoC
project related webpage [29] in the OpenCores website. Also Python scripts that have been
developed under SysPy for program memory initialization of the MinSoC core are publicly
available and have been included to the projects’ repository [75].

Although MinSoC’s architecture and performance is almost equivalent to the Leon3 core,
while testing the core on our ML509 board we did not manage to get the Ethernet connection
working between the processor in the FPGA and the host PC. While we managed to get the
memory DDR controller working, the lack of network connectivity was a major step back
on the use of MinSoC in SysPy. Although the MinSoC core was integrated and added to

SysPy’s component libraries, it was never used during the design flow of a complex system.

7.1.2 Leon3 core and features

Leon3 [11] is a popular, open source, 32-bit processor provided as a synthesizable VHDL
description by Aeroflex Gaisler. The core is compatible with the SPARC V8 architecture and
is highly configurable and distributed along with configuration, debugging and simulation
software. The Leon3 core is also part of the GRLIB IP library [33]. The library contains a

large number of configurable IP core peripheral devices that can be connected to Leon. The

Evangelos Logaras 154

Using scripting languages for hardware/software co-design

library has many data and memory controller devices which can be attached to Leon using
the supported Advanced Microcontroller Bus Architecture (AMBA) [13] peripheral interface
bus. The processor has been ported in all major FPGA platforms (Xilinx and Altera) and
also can be synthesized using ASIC synthesis tools (Cadence, Synopsys). Typical synthesis
results show that the core occupies 25k-30k gates when implemented.

The main features of the Leon3 processor core are the following:

e Advanced 7-stage pipeline

Hardware multiply, divide and MAC units

Separate instruction and data cache (Harvard architecture)

Up to 125 MHz in FPGA and 400 MHz on 0.13 um ASIC technologies

AMBA-2.0 AHB bus interface

e Large range of software tools: compilers, kernels, simulators and debug monitors

The structure of the processor along with the main peripheral units and features is

presented in Figure 7.3.

3-Port Register File

IEEE-754 FPU Trace Buffer

7-Stage
Integer pipeline

Co-Processor Debug port |¢=———p Debug support unit

HW MUL/DIV Interrupt port [@ep Interrupt controller
v v
Local IRAM |-Cache D-Cache Local DRAM
ITLB SRMMU DTLB
AHB IIF

!

AMBA AHB Master (32-bit)

Figure 7.3: Structure of the Leon3 processor (source: www.gaisler.com).

Evangelos Logaras 155

Using scripting languages for hardware/software co-design

All the tests with Leon have been accomplished using the integrated debug unit, con-
nected as a peripheral device to the processor. Using the GRMON debug tool [10], we were
able to use the provided debug interface, connect to the processor via Ethernet connection
and download the required software. Software debugging was also performed on silicon, since
using GRMON we were able to read/write to the entire memory space. Leon3 is highly con-
figurable using the provided GUI interface or by modifying manually the VHDL description
of the processor. A functional simulator, called Tsim, exists that can be used for software
and hardware debugging, before FPGA implementation. Using GRMON we could also in-
spect the processor configuration and mapping of peripheral devices in silicon, to check if it
matches the way the core was configured.

The sparc-elf-gcc was used to compile the C software developed for Leon and the gener-
ated binary file was used to program the processor. In the case of Leon, the code is down-
loaded directly to the connected 256 MB SDRAM DDR2 memory available on the ML509
board, which is used for mapping both the program and the data memory of the system.
The Ethernet PHY chip and the serial connection are also utilized on the FPGA board by
Leon. A large number of other peripheral devices, e.g. USB controllers, audio and video
drivers, hard disk controllers etc. also exist for Leon, that are compatible with the processor’s
AMBA interface. The data transmission of the Ethernet connection was 100Mbps, while a
commercial version of Leon3 also supports Gigabit Ethernet connection. The Leon3 core
was a good candidate for the 32-bit core that we wanted to integrate to SysPy, since all the
I/O connectivity (Ethernet, GPIO ports) and memory requirements (SDRAM controller)
were met according to the core’s supported features. The Leon3 core has been tested, using
SysPy to configure it, on the ML509 board as well as on the older Virtex-II Pro board [24]
from Digilent which we had at our disposal. Depending on the selection of the proper FPGA
device (FPGADEV design attribute, see Section 4.1.1 and Table 1.1), proper constraints files

are selected by the tool and used during logic synthesis.

7.2 BioModel files

Advanced high performance computational techniques have been used the last decade in

several scientific domains to ease and accelerate simulation of complex physical phenomena.

Evangelos Logaras 156

Using scripting languages for hardware/software co-design

Computational and systems biology is a rather new scientific field that takes advantage of
computing techniques to describe and simulate complex biological phenomena and extract
knowledge from biological databases. Systems biology studies the dynamics of cellular pro-
cesses, rather than the characteristics of their isolated parts and is an emerging field that
benefits from advanced simulation techniques. By simulating the chemical kinetics of the dif-
ferent molecular species interacting in a cell, or in a population of cells, emergent properties
of a biological system can be studied in silico (i.e. with the use of computers). Stochastic
simulations of biochemical reaction networks, called BioModels [57], [17] can be performed
to study the properties of these biological systems. A large number of BioModels, can be
found online in the BioModel’s database [27], [57]. The database remains the largest online
repository of dynamic models of biological processes and most models are validated and also

linked to external publications and original scientific data which used to create the model.

Annotation Publication

Curation

Non-curated Non-curated

Models

Consistency

—1

Figure 7.4: Submission flow to the BioModels database (source: www.ebi.ac.uk/biomodels/).

All models in the database are compliant with the Minimum Information Required In

The Annotation of Models (MIRIAM) standard [72]. Files in the database are divided to

Evangelos Logaras 157

Using scripting languages for hardware/software co-design

curated and to non-curated models, where curated models have been checked and validated
that they have the expected behavior during simulation, as it is described by the creators
of the model. Models can be stored in the database in SBML format [42] and can be later
downloaded in other formats too, like BioPAX, Octave, SciLab and PDF. The flow used for

submission and validation of models to the database is presented in Figure 7.4.

7.3 Gillespie’s stochastic simulation algorithm

In order to apply computational techniques in system biology, models should be used that
describe the chemical dynamics of a cell or of a set of cells. These chemical reactions can
be expressed using coupled Ordinary Differential Equations (ODE). Using ODEs to describe
a chemical reaction is not always the best option, especially if there is no prior knowledge
about the initial conditions of the molecular species in the system [69]. Then it becomes
very difficult to track the occurrence time of each reaction. Also it is very difficult to detect
stochastic behavior of a small number of reactant species in a chemical reaction. Instead
of ODEs, a Stochastic Chemical Kinetic (SCK) model can be used to describe a chemical
process. A specific rate constant, c;, is assigned to every reaction in the system. This
constant expresses the probability that a combination of reactant molecules of R; interact
in the next time interval [¢,¢ + dt]. Multiplying ¢; by the number of possible combinations
of reactant molecules for R; in state X yields the propensity function, a;(X), of reaction
channel R;.

A jump Markov process [36] is used within SCK models to describe evolution in time
of a reacting system. In such a process the next state of the model is only dependent on
the present state. An equation can be used to describe the evolution of reactions in time,
using a dt time step. Using a small dt step size to advance time and solve this equation,
where on each time step: a) the system performs a reactions and its state is updated or b)
nothing happens and the system state remains unchanged. If the step is too small, then in
most cases there will be no reaction in the system. Gillespie proposed a new method to solve
these kind of equations, which is a Stochastic Simulation Algorithm (SSA) and called the
Direct Method (DM). This method improves the chemical reactions simulation’s efficiency

by performing only the necessary time steps.

Evangelos Logaras 158

Using scripting languages for hardware/software co-design

D. T. Gillespie also proposed another method known as the First Reaction Method
(FRM) [35]. In this approach every reaction is described as a “reaction channel” R; and
a putative next reaction time is calculated for every channel. The algorithm detects the
reaction channel with the smallest reaction time and this reaction is “fired”. According to

these statements, Gillespie described the FRM algorithm as follows:
1. Initialize t = t; and X = X.
2. For every reaction channel R; evaluate propensity function «o;(X).

3. In addition determine the putative time 7; for each reaction channel R;:

1 1
=G -y

where 7; is a unit uniform random number.
4. Let R, be the winner reaction channel whose 7; is the smallest.

5. Determine the new state after firing reaction R,: t' := ¢+ 7, and X := X +v,,, where

v, is the stoichiometry change information.
6. If ¢’ is greater than the desired simulation time Tj;,, then halt.

7. Record (X, t) and go to step 2 to start a new reactions cycle.

The main idea of the design of our SoC was to accept as an input BioModel files and
simulate the chemical reactions of the described system using the FRM algorithm. We
designed our SoC in a way that implements the exact Gillespie FRM SSA which simulates
all reaction events and not anyone of its many approximations (such as tau leaping [80]
etc.). Approximations are used during simulation to avoid high computational cost, but on
the other hand they reduce results’ and calculations’ accuracy. Only hardware based SSA
implementations, such as our SoC, can be used to apply parallel computation techniques and
in this way avoid approximations introduced by the majority of software implementations.

By choosing to design a SoC using SysPy to speed up the simulation of biochemical
reaction networks, we wanted to explore the capabilities of SysPy and use Python to extend

and improve the features of our tools in order to:

Evangelos Logaras 159

Using scripting languages for hardware/software co-design

e automatically parameterize and instantiate the custom core, implementing the FRM

algorithm.

e use Python text processing features to parse BioModel files content and use it to

instantiate memory blocks in the SoC.

e use Python to develop a Hardware Abstraction Layer (HAL) for data exchange via
Ethernet connection between the SoC and the host PC.

Using this biomolecular SoC as a design example for SysPy we got feedback and new
ways to improve the tool. We also created a useful SoC which engineers from a different
scientific field and with no knowledge in digital hardware design could easily modify, using
the supported design scripts, and use to perform their experimental studies to analyze fast

a number of different BioModels.

7.4 Biomolecular network SoC features

7.4.1 Scalable IP core for stochastic simulation

An IP core (SSA core) implementing the FRM algorithm was already in place and designed in
our group before the availability of 32-bit processor cores in SysPy. The development of the
SSA core was done in parallel to the SysPy project and when it reached the desired maturity
as a standalone IP core we decided to include it to the SysPy component library. First version
of the SSA core was presented in [40]. The IP core implemented N Processing Elements
(PEs) working in parallel, for simulating in reasonable amount of time large-scale biochemical
reacting networks. The IP core was described in VHDL and it is parameterized by the
number of PEs (V) and the number of reactions in the BioModel (m). Other parameters of
the SSA core are also tunable in order to implement in an efficient way a parallelized version
of Gillespie’s FRM-SSA.

In particular, the DM requires summing up the propensity functions of the individual
reactions during the last step of a reaction cycle in order to find the next reaction to fire,
R,. The FRM-SSA allows parallel execution of the reaction channels R;, where the inner

for loop in steps 2 and 3 of the algorithms description in Section 7.3 computes the reaction

Evangelos Logaras 160

Using scripting languages for hardware/software co-design

propensities and putative times (7;. The processing cost in the SoC is distribute among the
available PEs of the design. If the FRM-SSA core has N PEs, each PE will compute m/N
propensities and putative reaction times (7;) and their minimum in a pipelined fashion. A
simple binary tree of loga N comparators which is part of the Minimum Time Unit (MTU)
block in the FRM-SSA design finds the global minimum time 7, of the next reaction to
“fire”, R,,.

Another option was to use the NRM Gibson and Bruck’s algorithm [34] which is faster
than the FRM-SSA implementation but much more difficult to implement and parallelize it
in hardware since it requires maintaining a shared data memory structure. The NRM-SSA
has been implemented in hardware using FPGA devices [95], [96] using an interconnection
network of MUXes. Implementation results reported in [96] prove that it is difficult to
implement the NRM-SSA using more than N = 4 PEs and this was one of the main reasons
for choosing to implement the FRM-SSA instead, since we were planning to scale our design,
using large FPGA devices, and implement up to N = 32 parallel PEs.

In this work we focus on how we can harness SysPy’s design capabilities to build a
flexible multi-processor SoC around the Leon3 processor utilizing an improved version of
this SSA TP core component as an accelerator for systems biology simulations. Proper
instantiation of the SSA core requires many, BioModel dependent, parameters. We present
how using SysPy’s design flow we can automatically parse a BioModel’s XML file in Systems
Biology Markup Language (SBML) format [42], extract automatically these parameters and
construct the memory structures and the top-level specification necessary for synthesizing

the SoC’s FPGA implementation in an effortless way.

7.4.1.1 FRM SoC architecture

Comparing the design of the FRM-SSA design presented in [40] to the later IP core design

presented in [61], we improved the core’s functionality so that it:

e Provides a high-level mechanism for configuring the SoC’s parameters based on the

BioModel’s parameters.

e Provides an easy to follow design flow for translating the SoC’s top-level description

into a hardware/software FPGA implementation for Gillespie’s FRM SSA.

Evangelos Logaras 161

Using scripting languages for hardware/software co-design

e Provides an easy-to-use interface allowing a user application running on the host PC
to harness the computational power of the system biology specific SoC residing in the

FPGA.

e Facilitates the rapid prototyping of SoCs to efficiently simulate any large-size biomolec-

ular reactions network using an appropriate size FPGA.

In [61] we presented a flexible multi-processor SoC around the Leon3 processor using the
improved version of the FRM-SSA IP core. In this new design we proved how using SysPy we
can automatically parse a BioModel file in SBML format, which uses XML syntax to define a
biochemical reaction network. All the model’s important parameters are extracted and used
to automatically construct the memory structures and the top-level specification necessary
for synthesizing the SoC’s FPGA design. With this design approach the SoC can be used
to process any BioModel of interest (captured in SBML) without any user intervention or
required expertise in FPGA design.

The supported list of generic parameters of the FRM-SSA IP core are presented in Table
7.1. Three different versions of the SSA core implementing the FRM algorithm have been
designed, using one (FRM1X), two (FRM2X) or four PEs (FRM4X) operating in parallel
(N=1 or 2 or 4). The number of reactions m and the number of species n are automatically
parsed from the BioModel SBML file, while the rest of the parameters mentioned in Table
7.1 are declared by the user. Each instantiated PE requires a different random seed which
is used by a random number generator to provide the unit random number r; used in step
3 of the FRM algorithm, presented in Section 7.3. Two different modes of operation are
supported in the design: each PE can either a) perform m/N reactions of a BioModel in a
pipelined fashion (in SSIP: Single Simulation In Parallel mode) or b) perform all m reactions

(in MSSTP: Multiple Simulations In Parallel mode), while all N PEs work in parallel.

Evangelos Logaras 162

Using scripting languages for hardware/software co-design

Parameter Name Range
m Number of reactions 2¢,e € [0,12]
n Number of species 2¢,e € [0,12]
q Number of reactants (reaction order) [1—3]
Nrep Number of simulation repetitions
RNGseed | Initial seed for the number generator [0 — 255]
K Mode of operation [0=SSIP,1=MSIP]
Tsim Simulation time in seconds

Table 7.1: Generic parameters of the FRM-SSA core.

A top-level architectural diagram of the FRM-SSA core is presented in Figure 7.5. The
processing procedure is handled by the Control Unit (CU) which is the main state machine
of the design. A number of memory tables hold information parameters about the reaction
network, which are parsed from the SBML file. The memory Tables are the Reactions Table
(RT), the Stoichiometry Table (VT), the Species Table (ST) which holds the species counts
and the Flags Table (FT) which stores binary flags controlling the operation of the PE’s
propensity function computation sub-module according to the order of the reaction channel
under evaluation. A Memory Management Unit (MMU) is required to address and combine

information included in the memory tables.

Evangelos Logaras 163

Using scripting languages for hardware/software co-design

/FRM4X SSA core \

—>
:)
S| erag | S| PR
—
F:T (\ v
\A/ < | @ramg) | << | PE: \’_\
C:) : / o
VT
- o [m] O
: — / nlr
m-1- =) [

interface
A >\
A4

dual port
BRAM
(FIFO)

N RS PN

FIFO

interface
FSM

Figure 7.5: FRM-SSA core architecture with four Processing Elements (FRM4X).

A tree of comparators is used to determine the reaction channel R, with the minimum
reaction time 7,, according to step 4 of the FRM algorithm. The comparator is included in
the Minimum Time Unit (MTU) and is divided into two stages, where the first stage finds
the minimum of the putative times for the reaction channels that are processed by each PE,
and the second stage compares these local minima to find the overall minimum 7, time of
the reaction to fire R,,.

The steps of the FRM algorithm in section 7.3 can be mapped to individual units on
the FRM-SSA IP core schematic in Figure 7.5. The PEs compute the propensity function
a;j(X) and determine the putative time 7; time of each reaction channel (steps 2 and 3).

The reaction channel R, with the smallest reaction time (step 4) is determined by the MTU,

Evangelos Logaras 164

Using scripting languages for hardware/software co-design

SSA core || Reaction Cycle time (us) | MReaction Cycles/sec.

FRM1X 1.356 0.737
FRM2X 0.93 1.075
FRM4X 0.73 1.37

Table 7.2: Throughput of the SSA cores at a clock frequency of 160MHz for a network with

m = 136 reactions and n = 93 molecular species.

while the TU calculates the new simulation time (step 5). The number of new species is
calculated by the SU (step 5) and the result is stored in the ST memory block.

The performance of the FRM-SSA IP core is measured in terms of Reaction Cycles
executed per second. One reaction cycle is required for the core to process all m reaction
channels of a BioModel and in the end the one with the minimum reaction time is selected
(steps 2-5). Processed information is presented at the end of a reaction cycle in the form
of a reaction packet containing 10x32-bit values. Using IEEE-754 single precision floating
point format the first eight values of the reaction packet represent the number of the species
involved in the reaction (three reactants and up to five products). The last two 32-bit values
represent the simulation time the reaction occurred (') and a pointer that specifies which
reaction of the BioModel has been selected (R,). The performance results of the three FRM-
SSA core design (N=1 or 2 or 4) are presented in Table 7.2 in terms of time per Reaction
Cycle and the number of Reaction Cycles that can be executed per second when the clock

frequency of the cores is 160MHz.

7.4.2 Custom core automatic parameterization

The three developed cores presented in Table 7.2 were used as third party IP cores and
added to SysPy’s component libraries. Python functions that automatically generated and
parameterize the HDL code of the FRM cores were developed and added to the tool’s function
library, as described in Section 4.1.2. Using Python, any text based file can be easily parsed
so that its content used to provided special generic parameters for IP core instantiation.

Function handlers are used to process the content of XML Biomodel files in SBML format,

Evangelos Logaras 165

Using scripting languages for hardware/software co-design

where the BioModel’s file name is used as a special function argument (see Figure 4.2).

N
&;

N

SBML
BioModel

LibSBML E)>_—]
(XMIL parsing) Sys ?

~ ‘
b e - -
text J X]
files)
Parametrized ST, FT, VT
FRM-SSA and RT
core tables
(BRAMS)

N
\«

FPGA SoC)
bitstream <: System Synthesis <:

file (FPGA tools)

SoC design
specification

Figure 7.6: Parsing SBML BioModel files using SysPy.

An external C library called LibSMBL [16] is called within SysPy to identify the SBML
related XML tags in the BioModel file and generate an intermediate raw text file. This
file is then processed further by the associated with the FRM core function handler and
used to initialize the memory block in the FRM-SSA core. The LibSBML library provides
several functions to manipulate SBML files which were easily embedded in SysPy. As shown
in Figure 7.5 all the memory tables, mapped to BRAMs, in the FRM core have to be
initialized with data based on information available in the BioModel’s file. In Figure 7.6
we show the steps of the parsing procedure of the BioModel file using SysPy. The Python
function is also used to initialize the values of the generic parameters of the SSA core. All
the values for the generic parameters in Table 7.1 are defined in a Python dictionary, while

the values of m and n are parsed from the SBML file. Complexity of a biomolecular reaction

Evangelos Logaras 166

Using scripting languages for hardware/software co-design

network is directly related to these two values.

7.4.3 Leon3 interface and connection to the FRM-SSA core

According to the processors already embedded to SysPy, Leon3 was the best candidate to
support a processor-centric SoC and handle communication issues between a fast custom
processor and a host PC. The FRM core is connected to the GPIO ports of the processor,
while an FSM is used as a data bridge between the GPIO ports and the custom core. The
processor handles data transfers on the Ethernet channel as well as data storage on the
buffers of the data bridge during data processing and on the attached to the processor
SDRAM memory, where initial and processed data sets are stored.

In Code example 7.1 we show the top-level Python description of the SSA SoC, where
the SSA core, the interface FSM and the Leon3 processor core are connected. The Python
function “Gillespie FRM4X” (line 5), as described in 7.4.2, is used to instantiate the core.
Call of the associated Python handler is done automatically by SysPy for parsing the SBML
BioModel file. The FSM block instantiation (“HAL_FSM”) is done using a port-map like
assignment (line 8) in Python and a generic parameter passed to the associated function
defines the size of its data ports. The Leon3 IP core is connected to the design using a port-
map like assignment (line 16), so the user can define her/his own internal or I/O signals
that are connected to Leon’s signals. Internal signals “inputA” and “inputB” (lines 25-26)
are used to connect the FSM to Leon. The internal signal “clk_int” is used to clock the SSA
core and the FSM at 160MHz (line 30). All internal and I/O signals of the generated VHDL
entity, must be declared at the end of the Python description, using dictionary statements.
A set of software files must be also provided by the user to program the processor. All the
files are automatically compiled using the “Sparc GCC” C compiler. For the biomolecular
SoC three C files were used and compiled (lines 31-32) to a single binary executable file:
the greth_api C library contains functions to access the Ethernet controller of the board
while the Python_intrf user and Python_intrf files contain the user application which
implements the interface with the host PC. The C files must be provided by the user under
his/her working directory, as shown in Figure 1.1. All the required arguments are passed in

the end to “to_-VHDL” function to generate all the HDL files and the folders hierarchy to be

Evangelos Logaras 167

Using scripting languages for hardware/software co-design

Code Example 7.1: Python description of the SSA SoC top-level design file, using

port-map like assignments.

1 import SysPy_ver._toVHDL

2 def FRM4XplusLeon ():

3 # Connecting the FRM/X SSA core
and passing as argument the name of the SBML file
func_-Gillespie_.FRM4X (‘ ‘Biomodel .xml’”)

def struct.HAL_FSM(‘¢32°7):

4
5
6
7 # Connecting the FSM as a compoment using port—map like statement
8
9 clk = clk_int

10 ce2int = ce2int
11 PORTA.in = inputA
12 PORTB.in = inputB
13

14

15 # Connecting the Leon3 core
16 def struct-leon3mp ():

17 sys_rst_in = sys_rst_in

18 clk_out = clk_int

19 clk-100 = clk_-100

20 clk_200_p = clk_-200_p

21 clk_200_n = clk_-200_-n

22 clk-33 = clk_-33

23 sram_flash_addr = sram_flash_addr

24 sram_flash_data = sram_flash_data

25 PORTA out = inputA

26 PORTB.out = inputB

27

28

29# Leon’s software C file names

30 attributes = {‘‘SYSFREQ:’’ 100, ‘‘PROCFREQ’’: 160,

31 C‘PROCSW’’: [““Python_intrf_user’’,‘‘Python_intrf’’,

32 ‘‘greth_api’’], ‘‘FPGADEV’’: ‘‘Virtex5’'’}

33

34# Generic argument for Python functions

35 generics = {‘‘Gillespie.FRM4X"’: {‘q’: 3:, ‘‘Nrep’’: 10, “‘Tsim’’: 50000, ‘K’: 0,
36 ‘‘RNGseedl1’’: 3, ‘‘RNGseed2’’: 34, ‘‘RNGseed3’’: 100, ‘‘RNGseed4’’: 180}}
37

38# I/O and internal signal declaration

39i.sigs0 = {D’: ‘i’, ‘T”: ‘b’, ‘L’: 1, ‘N’: [“‘“sys_rst_in’’, ‘‘ctrl’’, “‘clk_-100"",
40 ‘fcelk_int’’, “‘clk_-200_p’’, “‘clk-200_n’’, ‘‘clk_-33°’, ‘‘sram-_clk_fb’’,
41 ‘‘phy_tx_clk’’]}

42 i_sigsl = {‘D’: ‘intr’, ‘T’: ‘b’, ‘L’: [31, 0], ‘N’: [‘‘inputA’’, ‘‘inputB’’]}

43 .

44 # Calling the 7to-VHDL()” function to generate VHDL descriptions

45 SysPy_ver._toVHDL .toVHDL (‘ ‘FRM4XplusLeon’’, attributes , generics, i-sigsO,

46 i_sigsl ,...)

Evangelos Logaras 168

Using scripting languages for hardware/software co-design

used as input of the FPGA synthesis tools, as described in Chapter 3.

Host PC SoC on FPGA

Processor
Application P IP core (Leon)
Lialinininil
L p—
Python HAL interface — > : :
application PRLEN = =
l' ~‘ —p : APL > pl :
' ' = | C part =
<«—| serial 4“—> +— - =
1
. ' 5 L p—
. — p—
— —
+—+—>|Ethemnet [« —>jg«—— TTTTTTIITNIT
. ' /4 \GPIO
1
«—»| arI0 [6—> «——
,
! | [
. . e 4
p: process Processor (Leon) (software component)

Python hardware component
(e.g. arithmetic component, FSM)

[VHDL/netlist (hardware component)

Figure 7.7: Hardware Abstraction Layer API for interfacing a typical processor-centric SoC

running on the FPGA.

A piece of software was required on the PC side to handle: a) data flow from the PC down
to SSA core through Leon and also b) the memory transactions on the onboard SDRAM
memory. This interface software was implemented as a HAL API software for the Leon3
core. The interface supports one control channel and two fast data channels. The control
channel is implemented using the serial connection between the PC and the FPGA board.
The first data channel is based on the Ethernet 100Mbps connection and targets interfacing
of the SoC with other external digital systems. The second data channel is used for intra-
chip communication and is based on the GPIO channel connection between Leon and the
FRM core. Python was used to develop the HAL on the PC side, so that to create a unified
environment where Python is used to design and also interface a complex SoC design after
its FPGA implementation. Object oriented capabilities of Python also let us develop the
HAL as a class with associated functions for data handling.

In Figure 7.7 the HAL implementation and connection between the PC and the FPGA

board is presented. The API is partitioned into two parts: a) a Python part running on

Evangelos Logaras 169

Using scripting languages for hardware/software co-design

a host PC and b) a part developed in C running on Leon in the FPGA. Functions are
provided through the HAL to receive and transmit data on all three supported data and
control channels (serial, Ethernet and GPIO). Identical functions for data transmission and
control have been implemented in Python (Python API part) on the PC side and in C (C
API part) on the processor side on the FPGA. Communication parameters e.g. Ethernet
MAC address and serial port number, can also be set using the Python API class attributes.
Execution of a Python function triggers the execution of the corresponding mirror function
on the SoC’s processor. Data transmission on the GPIO channel is triggered using control
commands over the serial channel and is handled by the implemented interface FSM. With
Leon operating at 160MHz, a 25Mbps data rate is realized over the GPIO channel.

In Code example 7.2 we show how the Python HAL interface can be used on the host PC
side to create a HAL object and exchange data with the SSA core over the GPIO channel. An
object named Leon (line 4) inherits all its properties from the HAL_APT class. Communication
attributes are defined (lines 6-13) for the created object, such as the MAC address of the PC
and the FPGA board and the serial port number of the PC. Data sent from the SSA core
to the PC through the GPIO channel are stored in the gpio_rx_datal[] list after calling the
gpiorx() function (line 31). Data sent from the PC to the SSA core must be first stored
to Python lists and then pass them as arguments to the available functions gpio_tx() or
eth_tx() (line 26) functions. The first function can be used to transmit directly to the SSA
core or the latter one to sent data to the SDRAM memory of the FPGA board. All data are
transmitted using Ethernet MAC long packets of 1024 bytes. The Python and the C HAL
API slice data stored in Python or C lists before transmission.

By using an object oriented programming environment for managing the hardware re-
sources of an embedded system, it becomes easier to distinguish data and the control pro-
cesses for storing and transmitting. A very good feature of Python is the ability to support
text processing and scripting features with object oriented capabilities. While object orien-
tation was not used for SysPy’s hardware description features, object orientation was very
useful and handy for creating the HAL software. Object oriented languages have been used
in other projects to control functions of an embedded system. In [82] Java has been used
to develop a HAL software running on top of a Java Virtual Machine (JVM) running on

the programmable processor of a SoC. Java classes and functions are used for handling 1/O

Evangelos Logaras 170

Using scripting languages for hardware/software co-design

Code Example 7.2: Creating a Python object to transmit/receive data over the GPIO

channel.

1import _HAL_API

2

3# Creating object wusing the ‘‘HAL_API’’ class

4 Leon = _HAL_API.HAL_API()

5

6# PCs FEthernet card interface name

7Leon.ethernet_interface = r’\Device \NPF_{514ED014—A2E9—4E68—8C7D—9ADIFBA59S . . .
8# PC’s Ethernet MAC address

9 Leon .dest- MAC = ¢¢0:23:8b:37:8f:81""°
10 # FPGA board’s FEthernet MAC address
11 Leon .source_.MAC = “¢30:31:32:33:34:35’°

12# PC’s serial port address

13 Leon.serial_interface = ¢‘COM1’’

14

15# Lists’ declaration

16 gpio_-rx_data = []

17 gpio_tx_data = []

18

19# Initializing ‘‘gpio_tx_data’’ list

20 for i in range(2000):

21 gpio_tx_data.append (i)

22

23# Transmitting 0z7D0 (2,000) z 32—bit (list "gpio_-tz_data”)

24 # data to GPIO port C buffering them in SDRAM memory at address 0z0
25# gpio_tz (str port, int gpio_-data_tz[], str start_addr, str data_len)
26 Leon . gpio_tx(‘c’, gpio_tx_-data, <‘00000000°’, “‘000007DO0’’)
27

28#Receiving 0xC350 (50,000) x 32—bit data from GPIO port C
29#buffering them in SDRAM memory at address 0x0

30# gpio_rx(str port, str start_-addr, str data_len)

31 gpio-rx_-data = Leon.gpio_rx(‘c’, ¢‘00000000°’, “‘0000C350°")

Evangelos Logaras 171

Using scripting languages for hardware/software co-design

peripheral devices e.g. serial and Ethernet communication controllers.

Use of Python to create the HAL API software is the first attempt to use a scripting
language to control a SoC’s data processing tasks. Using a Python script on the host PC
side to initiate processing tasks on the FPGA gives flexibility to the user to pre-process data
and also schedule the processing and communication tasks in the SoC in a very structured

way.

7.5 Performance and implementation results

The ML509 Xilinx board equipped with a Virtex-5 XC5VLX110T-1 FPGA device was used
for the implementation of the biomolecular SoC. The available PHY Ethernet chip and
the 256 MB DDR2 SDRAM module clocked at 190MHz along with the FPGA device were
utilized from our design. The board was equipped with an 100MHz crystal oscillator and
with the use of the DCM block in the FPGA, we managed to generate all the required clock
signals in the design, especially the 160MHz signal used to clock the Leon3 processor and
the SSA core. The board was externally connected to the host PC using a serial RS-232 and
an Ethernet cable. The serial connection was used to trigger data execution on the board,
using a Python script which imports the HAL library, as the one presented in Code Example
7.2. A top level schematic of the SoC along with the connected peripheral devices on the
FPGA board is shown in Figure 7.8.

Evangelos Logaras 172

Using scripting languages for hardware/software co-design

Host PC

D<:>

[]

4 SoC on FPGA R
Leon3
AMBA-AHB
RS-232 SDRAM
M <—» | UART Ethernet GPIO controller
100Mb
W< e 4 { g

interface ,"_ ------ ‘:

core : DDR2 !
- @@ —

Figure 7.8: SSA SoC. Connection of the SSA core to the Leon processor.

A complex SBML BioModel [78] having n = 93 chemical species and m = 136 reactions
have been used to test the SoC on the FPGA. The memory tables of the FRM core (FT,
RT, ST and VT) have been initialized using the content of the BioModel SBML file. The
SoC has been synthesized and tested with all three different version of the FRM-SSA core
shown in Table 7.2, using Leon connected to an SSA core with either one (FRM1X), two
(FRM2X) or four (FRM4X) PEs. FPGA resource utilization and power consumption results
for all three implementations and also the Leon3 core alone are presented in Table 7.3. The
Virtex-5 device present on the board was able to support up to N = 4 PEs working in
parallel (FRM4X core). The maximum number of PEs that can be instantiated on a given
device depends on the complexity of the BioModel file in terms of m and n. A higher number
of species and reactions requires more BRAMs to hold the associated memory tables. Larger
SoCs of the same architecture but with N = 8 PEs have also been synthesized for larger
Virtex-5 LX155T and Virtex-6 LX240T FPGA devices.

The Leon3 core has a small footprint on the FPGA, since it utilizes 1/3 of the available
logic blocks and 11% of the BRAMs for the data and instruction cache memories. All the rest

of the occupied BRAMs were used for the implementation of the memory tables inside every

173

FEvangelos Logaras

Using scripting languages for hardware/software co-design

Leon3 | Leon+FRMI1X | Leon+FRM2X | Leon+FRM4X
Slices 5,436 (31%) | 9,244 (53%) 13,214 (76%) 16,594 (96%)
BRAMs 17 (11%) 56 (37%) 78 (52%) 132 (39%)
MULSs 0 (0%) 16 (25%) 26 (41%) 48 (75%)
Power (W) 0.6 4.1 48 5.9

Table 7.3: Resource utilization for the Virtex-5 XC5VLX110T-1FF1136 FPGA device (Slice:
four 6-input LUTs, BRAM: 36Kb, MUL: 25x18-bit).

PE, while the MUL blocks were utilized for the single precision floating point arithmetic
calculations of the FRM algorithm. Since FPGA devices are used to parallelize algorithms
using the large number of arithmetic and memory blocks, FPGA implementations do not
favor low power designs, compared to ASIC implementations. Despite that we can observe
that the Leon processor core consumes only 10% of the dissipated power. Power consumption
was estimated using Xilinx’s XPower Analyzer tool. Most of the power is dissipated on the
memory, multiplier and especially 1/O blocks, since a large number of external pins are used
to interconnect the FPGA with the Ethernet and memory peripheral ICs on the board.

7.5.1 Comparison against software based tools for BioModel stochas-

tic simulation

In order to validate our SoC implementation we performed measurements of critical control
and data signals using the Xilinx ChipScope Pro [52] logic analyzer. Several signals were
captured and analyzed to prove that all the required computations occur in the correct order
and that the computations have the required accuracy. BioModels simulation results were
transferred back to the host PC, where data returned from the HAL’s gpio_rx_datal] (Code
Example 7.2) are exported to text files for further processing. These results were compared to
the results generated while simulating curated models from the SBML BioModels Database
[27] using popular software simulators, like iBioSim [70] and StochPy [85]. We tested the

performance of the software simulators using a modern and fast PC configuration where

174

FEvangelos Logaras

Using scripting languages for hardware/software co-design

the latest version of the required Windows and Linux O/S were installed (Windows 7-
iBioSim/Ubuntu Linux 12.04-StochPy, 64-bit PC, 6GB RAM, Intel i7, 2.6GHz, quad-core
CPU). We used a complex BioModel for our tests [78] which forms a biomolecular network
with m = 136 reactions and n = 93 chemical species and models the role of the A-synuclein
(ASYN) protein on the homeostasis of dopaminergic neurons. Modeling this protein is of
great importance for understanding the pathogenesis of Parkinson’s Disease.

The FRM core was implemented with four PEs (FRM4X) working in parallel and pro-
cessed data in SSIP mode, where each PE simulated 1/4 of the available reactions. Simulation
process was initiated using the proper command sequence from the Python HAL interface.
Simulation times presented in Table include the following individual processing/data trans-

mission times:

e Command transmissions, using the serial channel, from the host PC to Leon, initiating

the simulation on the SSA core.

Simulation processing time of the FRM4X SSA core.

Data transmission from the SSA core to Leon using the GPIO channel.

Buffering data on the SDRAM memory on the FPGA board.

Data transmission from the FPGA to the PC using the Ethernet channel.

e Saving simulation results on the PC’s disk drive.

Six different simulation run were conducted using the FRM SoC, iBioSim and StochPy
and the results are presented in Table 7.4. Simulation experiments were performed for three
different simulation time values (T,), namely 50,000, 200,000 and 600,000 seconds (of lab
time) and conducting one (N, = 1) or ten repetitions (N,e, = 10) respectively, while
simulation performance was measured in MReactions/sec. The goal was to measure the
speed factor that the hardware implementation achieves compare to the software tools. As
presented in Table 7.4 the performance of the SoC design exceeds by 50 times or more that
of the software simulators. Also the parameter Tj;,,, which is the real lab time required
to perform the requested reaction cycles, does not affect the performance of the hardware

design and remains constant at about 0.35M Reactions/sec. When we performed multiple

Evangelos Logaras 175

Using scripting languages for hardware/software co-design

ASYN BioModel in SSIP mode (m = 136,n = 93)
Neep =1
Tsim FRM4X StochPy Speedup iBioSim Speedup
(sec.) factor factor
End-to-end Sim. proc. Sim. proc.
time (sec.) | MReact./sec. | time (sec.) | MReact./sec. time (sec.) | MReact./sec.
50k 1.06 0.353 58.2 0.0066 54.9 54.5 0.0069 51.4
200k 4.38 0.354 231.0 0.0071 52.7 223.0 0.0071 50.9
600k 12.6 0.354 623.0 0.0075 49.4 584.0 0.0078 46.3
Nyep = 10
Tsim FRM4X StochPy Speedup iBioSim Speedup
(sec.) factor factor
End-to-end Sim. proc. Sim. proc.
time (sec.) | MReact./sec. | time (sec.) | MReact./sec. time (sec.) | MReact./sec.
50k 10.6 0.353 615.7 0.0064 58.1 792.0 0.0049 74.7
200k 44.4 0.354 2425.0 0.0066 54.6 3952.0 0.0040 89.0
600k 127.0 0.354 7400.0 0.0061 58.3 14545.0 0.0031 114.5

Table 7.4: End-to-end performance comparison of FRM4X SoC to software simulators.

simulation runs (Nrep = 10) of we observed a non-linear increase on the required simulation
time T;,,, while using iBioSim. On the contrary the performance of StochPy remained almost
constant. When the number of repetitions was greater than two (Nrep > 2) we noticed that
iBioSim had a poor performance because it was executing a large number of disk accesses.
Comparison was also performed with biochemical reactions performed in a stochastic
way, where computer clusters were involved to apply distributed computing techniques. In
[79] a 20 nodes cluster (each node is a 2.4GHz AMD Opteron dual-core CPU) was used to
simulate BioModels behavior. Two BioModels, the logistic-growth with only two reactions

(m = 2) and the epidemiological metapopulation model (SIRS) applied to 100 “patches”

Evangelos Logaras 176

Using scripting languages for hardware/software co-design

having overall m = 4 % 100 = 400 reactions were simulated in SSIP mode in the cluster.
The performance achieved by [79] is 0.132E-3 MReactions/sec for the logistic-growth and
0.029 MReactions/sec for the SIRS model (estimated using the data reported in Table 1 of
[79]). The performance of our FPGA implementation is more than an order of magnitude
higher than the cluster’s performance. Nowadays a large number of PEs can be instantiated
and interconnected in a single large FPGA device, so it comes as no surprise that the
FPGA implementation outperforms a computer cluster implementation, where a lot of time
is wasted on data communication across many different circuit board and ICs interconnected
using many different transmission protocols. Furthermore the FPGA implementation offers
an order of magnitude more area and power efficient solution.

In this SoC design we demonstrated how SysPy can be used to combine a 32-bit pro-
grammable processor core along with a dedicated custom co-processor, targeting applica-
tions related to a real world, biologic related application. Using Python we also managed
to provide a unified development and testing environment, since Python controls the hard-
ware/software design related flow, but also interface application after the implementation of
the SoC in an FPGA device. The design has been tested thoroughly using real biological
models and has been developed in a way that is easy to be used and interfaced by users and

scientists with little or no experience in digital hardware design.

Evangelos Logaras 177

Using scripting languages for hardware/software co-design

Evangelos Logaras 178

Chapter 8

Audio processing SoC design case

In the current chapter we demonstrate the verification and O/S based software development
flow supported in SysPy, via the design of an audio signal processing SoC, implemented using
a Xilinx Virtex-5 FPGA device. We present how SysPy facilitates SoC development early
in the design phase where models of hardware components (not yet captured in HDL) and
software code to run in the processor core can be co-simulated using Python descriptions.
The design is based on the Leon3 core, running an embedded Linux O/S. In this way file-
oriented data processing is achieved, while the FPGA board acts as a data co-processor

attached as a network node in an Ethernet TCP/IP network.

8.1 Audio SoC features

In this design we use a bank of four FIR bandpass filters, which divide the audible spectrum
into four regions. According to the filtered audio signal strength in these four audio bands,
the processor in the design can classify a music file into one of four styles (rock, pop, classical,
electro). Several features of SysPy were exercised during the design of this SoC, like high-
level hw/sw co-verification, automatic generation of RTL code and software development
using an embedded Linux O/S kernel.

With this design example we tested SysPy’s high-level verification features by creating
a Python testbench when the specification of the system was available. With the testbench
we were able to define in advance key parameters of the system that would let us to analyze

accurately and fast the frequency content of the music files. The required data fixed-point

Evangelos Logaras 179

Using scripting languages for hardware/software co-design

representation was defined using the testbench, as well as the size of the memory buffers
between the processor and the filter bank. After defining the parameters of the system,
we used high-level Python descriptions for the instantiation of the processor IP core and of
the high-order digital filters (accelerators), which SysPy translated to synthesizable VHDL
code. The RTL code for the filter bank was auto-generated using Python parameterizable
functions.

On this design we wanted to use the Ethernet connection in a different way, compared to
the biomolecular SoC design where a bare-metal application was executed by Leon. Using
a standalone application it was hard to use all the layers of the Ethernet protocol. That is
why the HAL interface for the biomolecular SoC was implemented, exchanging data using
MAC packets. In the current design the software of the application is compiled along with
the Linux embedded O/S kernel and the application take advantage of the O/S: a) imple-
mented TCP/IP stack and b) installed, ready-to-use application, like an FPT client used to
transfer data between the FPGA board and a connected via Ethernet host PC. Decisions
were also taken about the control software that the processor would have to execute in order
to store the music files, broadcast data to the filters, collect and store the filtered results and
finally analyze the results to define the music genre of each file. Linux kernel parameters
were also specified using dedicated configuration files, while the kernel and the related C
application were compiled through SysPy, using the dedicated C compiler supporting the
Leon architecture. Using the top-level Python description, SysPy generates automatically:
RTL VHDL code, compiled software for the processor and all the script files necessary to

facilitate synthesis and physical implementation of the SoC.

8.2 Audio processing SoC design

8.2.1 SoC verification using SysPy

For the design of the SoC we used SysPy to create a Python testbench of the system early
in the design phase. The testbench was used to capture the complete system’s functionality
using Python and co-simulate its hardware and software. Simulation models were used to

describe the functionality of the filters and also Python code to define the control algorithm

Evangelos Logaras 180

Using scripting languages for hardware/software co-design

needed to be executed by the processor. The testbench was built in such a way so that
during the design phase it was easy to exchange the hardware simulation models by Python
functions that would generate the required RTL code and instantiate the blocks in the top-
level Python description.

A top-level schematic of the SoC is shown in Figure 8.1. Leon3 is running an FPT client,
along with the user custom application in the Snapgear Linux O/S.The custom application
uses the client to establish an FPT connection with an F'TP server running in the connected
PC. Upon reception of a music file, data is stored in the system’s RAM memory and the
custom application, implemented in C, copies the file content to an array. The filter bank
is connected to the GPIO ports of the processor, through a FIFO buffer, which is required
to store and synchronize data transmission between the two different clock domains of the
processor and the filter bank. The Universal Asynchronous Receiver Transmitter (UART)
serial connection is used to provide command line access to the O/S, where the user can

trigger execution of his application.

PC (IR RRNNN]
Ethernet = (Linux kernel) f=
FTP 4 M C
— s] M E | ow
.| to F RAM
=8 | USEr a =
Rs-232 4007 PP 3

@ GPIO ports

Figure 8.1: Top-level schematic of the audio SoC.

In Figure 8.1 dashed line boxes are used for the hardware and software modules that
we simulated in our testbench. By simulating the SoC’s functionality at a high-level using
Python models, we were able to make judicious decisions regarding the following key aspects

of the hardware /software design space: a) filter properties e.g. fixed-point notation, number

Evangelos Logaras 181

Using scripting languages for hardware/software co-design

of taps, value of the taps using SciPy according to the desired cutoff frequencies, b) size of the
data buffers and control signals needed to handle data flow between the processor core and
the filter bank and c) control software running on the processor, which was later developed
on top of the Linux kernel, that allows data to be handled in a file oriented manner.

In Figure 8.2a a more detailed block level schematic of the abstract simulation model of
the audio DSP SoC is presented. Software blocks are represented using dashed line boxes
inside the processor’s block, while the rest of the blocks correspond to hardware functionality.

(Python class) _input (Python lists)
[| LILLL -

............... FIFO | FIFO S mFuncti
Python file I/O) =l ¢ “ = ; ysPy.simFunctions
Y fa\ /O = i+ wav file I/OE N <::> out in 5
- o coooommmmt B : +musicFileName:string
7| =53 i Firo control t E NN :
; - -‘.“_“f?_l’:_r_ci‘; - ! output +filterDict:dict
.wav file] ~ _§ “s=zzzzzzzzIis : ini
- - : Y = fifo ready | +init()
- '?.If(}i?.c.l.a.s.s.l.f'.: e interface «-----: +ir(string)
= = FSM |&——7—7 |+ iforli
1:! T11151111 ; +1nputFlff).hS.t
TOCESSOr COT€ o spy RTL) 7 +outputFifo:list
+inputFifoReady/()
+outputFifoCounter(string)
. FIR FIR FIR FIR SysPy.behSim
(SysPy RTL + SciPy) filterO| (filterl| |filter2| |filter3
+simTime()
| +simRisingEdge()
+endSimulation()
(a) (b)

Figure 8.2: a) Abstract modeling of the SoC using SysPy and SciPy, b) diagrams of the
Python classes used in the SoC’s testbench.

Software on the processor handles music file I/O, transmits the audio samples to the input
FIFO and reads back the filtered samples. Finally the processor classifies the audio files by
analyzing the filtered samples from the four audio bands. Simulated hardware functionality
in the SoC involves the FIFO memories, the interface FSM that handles the data traffic from
and to the FIFO memories and the four FIR filters.

The text in parentheses in Figure 8.2a states the type of Python structure used to simulate
each block. Functions of the core classes of SysPy support the timing mechanism of the
cycle-accurate simulation, while user provided classes model the algorithmic behavior of
the SoC, especially of hardware blocks that have not yet been defined at the RTL level.

Diagrams of the Python classes used for the audio SoC simulation are shown in Figure

Evangelos Logaras 182

Using scripting languages for hardware/software co-design

8.2b. The three functions provided by SysPy’s behSim class handle timing information in
the testbench: simRisingEdge () to simulate a pipelined synchronous datapath, according
to the provided clock source, simTime () which makes the simulation time visible to the
testbench and endSimulation() which terminates the simulation when a desired condition
is met.

A number of data structures and functions are defined in the simFunctions class pro-
vided by the user. The inputFifo and outputFifo Python lists are used as data buffers
and simulate the behavior of the data transactions between the processor and the filter
bank. During system reset, function init () initializes the data buffers and calculates the
filter tap values, according to user supplied specifications (cutoff and sampling frequencies,
number of taps) provided for each filter in the filterDict dictionary. The processor and
the filters exchange data in an asynchronous way using control signals generated by the two
implemented buffers. Function inputFifoReady () is used to inform the processor that the
input buffer is ready to accept data, which the processor reads from the provided music file
(musicFileName). Function outputFifoCounter() returns the number of existing filtered
data in the output buffer and the simulation is terminated if the number of data has reached
a desired value. Function fir() is used to simulate, in a bit-true manner, the registered
datapath of the filters. The number of registers is defined by the number of the required taps
for each implemented filter. Control and storage functions can be described in an abstract
manner, using Python libraries.

The I/0O signals among the blocks in the testbench are pipelined using the timing sim-
ulation functions provided by SysPy. Signals’ values are also stored in VCD file format, so

that their behavior can be checked in respect to the clock and reset circuitry of the system.

8.2.2 Filter bank design using SysPy and SciPy

One of the main targets of the developed testbench for the audio SoC was to define and fine-
tune the parameters of the four implemented filters. Three different aspects of the filters

could be easily explored using the SysPy testbench:
e values of the filter coefficients to tune the filters to the desired frequencies

e number of taps of the filters

Evangelos Logaras 183

Using scripting languages for hardware/software co-design

e fixed-point notation and number of bits used to express the parameters

Calculation of the values of the parameters and the number of taps can be explored using
SciPy provided functions for digital filter calculations, used within the model developed in
SysPy. The accuracy of data processing is heavily affected from the chosen representation,
something that was easy to explore using SysPy provided functions for converting fixed-point
decimal numbers to binary format and vice versa.

In Code Example 8.1 a code snippet is presented with two functions used to simulate the
datapath of the FIR filters. In line 1 the SciPy library is imported, while in line 3 the SWIG
interface C function is imported. In line 4 the class simFuntions is defined to hold all the
required data and functions for modeling the FIR filters. Sampling and cutoff frequencies and
number of taps for each filter are stored in dictionaries (lines 8-12) and passed as arguments
to the SciPy firwin() function which calculates the coefficients. Alternatively a C function
can also be used to calculate the filter coefficients by passing the same arguments used with
the firwin() function. The hamming win in lines 19-20 is implemented as a C function using
SWIG and returns back to the testbench the desired set of coefficients according to the input
arguments (methodology on how to use C functions in Python is described in Section 3.3.2).
The SysPy provided function fp_sign_to_bin() in line 26 is used to convert the coefficients
to the corresponding fixed-point notation format. The fir () function in line 29 is used to
implement the register logic of the pipelined datapath in the filters. The registers chain
is created using the for loop in lines 30-32 and the Multiply Accumulate (MAC) operation
for each tap is implemented using the for loop in lines 38-40. One data element is pushed
to the datapath every time the fir() function is called. This function is called within the
testbench on the occurrence of a rising edge on the main system clock, simulating in this
way the clocking process of the datapath (Code Example B.5, lines 30-33). A described
also in Chapter 3, the C code implemented using SWIG and co-simulated in SysPy, can be

compiled and used directly to program the Leon3 processor.

Evangelos Logaras 184

Using scripting languages for hardware/software co-design

Code Example 8.1: Using SciPy for simulating the filter’s datapath and C function

for hw/sw co-simulation.

1from scipy import signal
2from _fp_sign_to_bin import
3 import swig

4 class SimFunctions:

5 # Filter0

6

7 # Calculate Filter0 coefficients wusing SciPy functions

8 coeffFilter0 = signal.firwin(self.FilterDict[”Filter0”]['N’],

9 [self.FilterDict ["Filter0”][”fc0”],

10 self . FilterDict [”Filter0”][”fc1”]],

11 nyqg = (0.5 % self.FilterDict[”Filter0”][”fs”]),
12 window = ’hamming’)

13 ## OR

14

15 ## Calculate coefficients in C

16 print ”C implementation”

17

18 for i in range(len(coeffFilter0)):

19 coeffFilter0[i] = swig.hamming win(self.FilterDict[” Filter0”][’N’], i,
20 self .FilterDict [” Filter0”][”fcl1”], self.FilterDict[”Filter0”][”fs”])
21 #

22

23 # Convert the coefficients to the required binary fized—point format
24 coeffFilter0Fp = []

25 for i in coeffFilter0:

26 coeffFilterOFp .append(int (fp-sign_to_-bin (i, self.fpNotation), 2))
27

28 # Simulate the FIR pipelined data path

29 def Fir(self, Signalln, FilterName):

30 for i in range((len(self.FilterDict[FilterName][”registerQueue”]) — 2), —1, —1):
31 self.FilterDict [FilterName][” registerQueue”][i + 1] =

32 self.FilterDict [FilterName][” registerQueue”][1]

33

34 self.FilterDict [FilterName][’ registerQueue”][0] =

35 int (self.MusicFileArray[self.FilterDict [FilterName][” Counter”]])

36

37 acc = 0

38 for i in range(len(self.FilterDict [FilterName][”registerQueue”])):

39 acc = acc + self.FilterDict [FilterName][” Coefficients” |[1] =*

40 self . FilterDict [FilterName |[”registerQueue” |[1i]

41

42 self.FilterDict [FilterName][” OutPort”] = acc

43 self.FilterDict [FilterName |[” Counter”] = self.FilterDict [FilterName |[” Counter”] + 1
44

45 self.outputFifo [FilterName].append(self.FilterDict [FilterName][” OutPort”])

46

47 return (self.FilterDict [FilterName |[” OutPort”])

FEvangelos Logaras 185

Using scripting languages for hardware/software co-design

The four designed filters had 30-tap each, covering the audible spectrum and their coef-
ficients were calculated using SciPy (0-1KHz, 1-3KHz, 3-5KHz, 5-8KHz). Filters with fewer
taps have also been tested, but the best classification results, also considering the available
resources on the FPGA, were obtained using 30-taps. The frequency and phase response of

the four implemented filters is presented in Figure 8.3.

Evangelos Logaras 186

Using scripting languages for hardware/software co-design

I ‘]

Eeeenee

o0 7000 a0
Frequaney ()

Magnituds (68)
s by

83888

T T T T

b |

- |

ol - 1

. Y SRS N
\\’ \I

ol d

e £ ES =

H
o

oo
Fraauercy (2)

(OkHz - 1kHz)

T T T T T

P S 3 =
€ . ik J
£ e 1
£
B
£ e 1
i o
e T |
S o+ R
Frequency (Hz)
(1kHz - 3kHz)
£
g - :
A
sk d
x T T T T T T T
| |
Im’\N\ |
£ ol g 4
- U il
L L 1 L L T i
" .

)
Freauarcy ()

(3kHz - 5kHz)

Magnitse (48)
a8
T
L

00
Freauerey (42)

(SkHz - 8kHz)

Figure 8.3: Frequency and phase response of the four implemented filters.

Evangelos Logaras 187

Using scripting languages for hardware/software co-design

The model of the filters is instantiated at the Python testbench and connected to a state
machine which controls data flow in the testbench from and to the processor. Using the
testbench it was easy to change on the fly the parameters of the filters, data input or the
state machine synchronization. The full testbench where the filters model is instantiated is

presented in Code Examples B.4, B.5 and B.6.

8.2.3 Processor interface using SysPy

As presented in Figure 8.1, using the FIFO buffers blocks we were able to partition the design
into two main clocking domains: a) the 160MHz domain where the processor is implemented
and the 100MHz domain, where the FIFO memories and the filter bank are implemented.
The clock frequency used for Leon is the highest that could be achieved on the Virtex-5
device. With this frequency a data rate of 25Mbps was measured on the connected GPIO
ports.

While the data rate performance of the processor is not, very high, the Leon core add soft-
ware programmability in the system which is very important for handling I/O and control
operations. Without the existence of the processor all the required drivers for the Ether-
net, GPIO and UART communication should be hardcoded using huge state machines to
implement all the layers of the related communication protocols. In order to decouple the
performance of the processor from the high data rate performance of the filter bank, we used
the FIFO generator tool provided in Xilinx ISE [51] to build a dual 64kx32-bit FIFO block.

The functional diagram of the FIFO block is presented in 8.4. According to the required
FIFO size, the generator cascades the required number of built-in FIFO blocks. These blocks
are physically implemented using BRAMs, distributed RAM (CLBs) or shift-registers. Two
clocking domains exist in the FIFO design, supporting concurrent read and write operation.
The generator tool also implements the FIFO interface logic, providing all the data I/O and

control signals.

Evangelos Logaras 188

Using scripting languages for hardware/software co-design

WRITE DOMAIN READ DOMAIN

PROG EULL Cascaded Built-in FIFO Primitives

- | PROG_EMPTY -
FULL EMPTY

- -
WH_EN | WE Built-In RE |- RO_EN
ol p-| DIN FIFO | pout DOUT g

' WR_ACK Logic For Logic For UNDERFLOW N
-~ Optional Flags: Optional Flags:
g ZVERFLOW | \rrite Domain Read Domain |—ALD o

Figure 8.4: Functional FIFO diagram (source: www.xilinx.com).

The block diagram of the interface unit is presented in 8.5. The interface unit consists of
two 64kx32-bit FIFO memories and four FSMs. When a new 8-bit data sample is received
from the GPIO, it is stored in the Tx FIFO and then broadcasted to the filter bank unit
consisting of four parallel filters. The interface unit and the filter bank are connected on
the same clock domain, running at 100MHz. A new filtered value appears at the output of
each filter after one clock cycle. The Rx FIFO collects the output from each filter (a 32-bit
value) and stores the four outputs in four different memory locations. The processor polls

the interface unit and fetches filtered results when available.

Evangelos Logaras 189

Using scripting languages for hardware/software co-design

Leond
full empt
GPIOO0 || GPIO1
data_in data_out
1
wr_en : rd_en
» (write) | , | (read) |«
64k | .| 64k
Tx |v]| Rx
. .|FIFO | |FIFO|
]
]
(read) : (write)
D= s
3|< ' = N
s 1)

Figure 8.5: FIFO interface architecture in the audio SoC design example.

The FIFO design has been inserted as a block into the structural library of SysPy, so
that it can be instantiated at a top-level Python description. The design has been generated
and synthesized in the Xilinx ISE design environment and the generated netlist (*.ngc file)
has been stored in SysPy’s libraries. SysPy automatically creates the ISE compatible folders
hierarchy and copies the required netlist files every time the FIFO block is used in a Python
description. A smaller FIFO design has also been generated using the FIFO generator tool
in SysPy. This design can be instantiated directly in the top-level module, using an HDL-like
description and connected to the GPIO ports of the processor. Although the FIFO blocks
have been synthesized for the Virtex-5 XC5VLX110T-1FF1136 device that we used, the
synthesizer is able to re-synthesize the block for other devices without the user having to
re-generate the block using the FIFO generator tool, if the FPGA device has the resources
to support the FIFO design, e.g. compatible dual-port BRAMs.

Evangelos Logaras 190

Using scripting languages for hardware/software co-design

8.2.4 SoC simulation results

A testbench setup was used to verify the SoC functionality using models for the software
algorithm needed and for the design of the filter bank. We used SciPy FIR functions to model
the filters data path behavior and also plots to observe the filters’ response. Combining the
filter models with abstract software descriptions in Python and also with the digital plot
results generated in VCD format we were able to configure the SoC’s arithmetic calculation
and timing parameters.

In SciPy we plotted the input music signal waveform and the output waveform from
Filters 0, 1, 2 and 3, as presented in Figure 8.6. A *.wav music file was used as an input to
the filter with a sampling frequency of 16kHz and the first 100 samples are presented in the
plot. Simulation results for the four filters was also stored in text files during simulation for

further analysis.

wayv file

FilterO
[T]

vou
o

Filterl
[o N FE YN

Filter2
=
vou
lslst=]

Filter3
NN N TS
ST
- 4=
+ -~
- —Hw
- <
s +Hn
o - -
TETATETINATE) AR R

Time(ms)

Figure 8.6: Filters time response plotted in SciPy.

Using the generated VCD file during simulation, digital waveforms can be observed using
the GTKWave tool. In Figure 8.7 the I/O signals of the SoC, including all the clock, reset,

control and data signals, are presented. The filter output results are presented after a delay

Evangelos Logaras 191

Using scripting languages for hardware/software co-design

that is user defined in the testbench (7ns) (Code Example B.6, line 14). In Figure 8.7a,
signal input_fifo_ready is generated in the testbench in a random way, simulating the way
the processor polls the control signals of the FIFO memory to provide new data samples to
the filter bank. Using the testbench it was was easy to experiment and fine-tune the various
parameters of the SoC. In Figure 8.7b, compared to Figure 8.7a, we changed the cutoff
frequency feo from 1kHz to 100Hz and also the output delay for Filter0 (signal £ilt_outO.
The filtered values are different in Figure 8.7b and the logic delay has been increased to
15ns.

signals Waves

Time 83 ns 198 ns

i LT) (5 e =
random delay

7ns delay — J— 1] =

a i1 8 2] 3 /8 4] 5

xx+ /00800 ie77c pscaa /18318 Br72C
xx+ 80866 JEERE] (19568 |1A594 J1485¢C
xx+/B0868 JEELEE] poaca B1F78 [B2FaC
xx+/BEE6 J1877C JIBCER /82694 J1562C

H
"
§
2
-
S
=
y
g
Il

Signals Waves
98 ns 188 ns

input_fifo_ready 15ns delay —1 F =l 1 1

ta_count 6 B] T B _.------ b ikl S NN
| | B TS CTEEE ———1e77C ‘. BBD3C /16290 \@

xx+ 00008 Jee103 18568 = " = = = @ w o . AABR4. . e mmm===-" 41650

xx+ 50080 {CEEEE] Jaeaca |B1F7s JB2Fac

xx+ 90080 J1877C |18CEs 82694 1562C
i 12 1 12 ¥)4 i1 2 T

(b)

Figure 8.7: Digital I/O signal waveforms of the audio processing SoC.

Using the developed testbench for the audio processing SoC, it was easier for us to define
the required set of tap parameters for the filters, the size of the FIFO memories, the clocking
frequency of the system and data transfers synchronization between the processor and the
filter bank. A prototype of the software executed by the processor has also been defined in

Python before starting software development.

Evangelos Logaras 192

Using scripting languages for hardware/software co-design

8.2.5 Mapping co-simulated design to hardware

It is highly desirable that any kind of models of a digital design must be easily adaptable to
synthesizable RTL code. SysPy provides the means to ease hardware and software mapping,
from Python hw/sw descriptions and behavioral models to synthesizable RTL and executable
software for the processor respectively.

The state machine description in our testbench and the I/O interface of the SoC can
be used within SysPy to automatically generate synthesizable RTL code. Moreover, for the
implementation of the FIR filters, a parameterized Python function is used to auto-generate
their synthesizable RTL description.

An example of the usage of Python functions to instantiate hardware blocks is shown
in Code Example 8.2. Function func fir filt_s is used to instantiate an FIR filter in a
VHDL RTL description. The function generates the RTL description of a filter with signed
coefficients. In lines 5 and 6 the coefficient of the filters and the required fixed-point notation
are provided as arguments in decimal format. The tap parameters of the filter are provided
as they have been previously estimated during the SoC’s simulation. SysPy will translate
and initialize the values of the taps in binary format while instantiating the block in VHDL.
In line 14 (8-bit + 1-bit for signed representation, 'n’: 9) the number of the input bits is
provided in the generics dictionary, while the fixed-point representation, the values and
the number of taps are function parameters and are handled in an automatic way by SysPy
during RTL code generation. I1/O signal names are defined in lines 17-19. If predefined names
are used (filt_in, filt out, clk and rst) then they are connected automatically to the
instantiated filter. The generated VHDL code for the filter can be found in Code Example
B.7.

Leon is connected to the FIFO interface unit using its GPIO ports. The Python algorithm
tested during simulation was used as a template for the development of the FIFO control and
classification C code. The user application for the SoC was compiled and built on top of the
Snapgear Linux kernel. The names of the O/S kernel and of the user C application file are de-
fined in the attributes dictionary (lines 10-11, linux_kernel, usr_app.classification).
SysPy makes an external call to the Sparc GCC compiler and one single binary executable

(image) file is generated after compilation. Several Linux parameters can be defined in

Evangelos Logaras 193

Using scripting languages for hardware/software co-design

SysPy’s configuration file, e.g. RAM_SIZE, ETHERNET_EN, UART_EN. For the SoC im-
plementation, a set of low level Linux GPIO drivers was developed in the user application.
The full set of parameters of the Snapgear O/S kernel that can be configured through SysPy
can be found in Table 1.2. The drivers for the ports were accessed by the application by
mapping them to the RAM memory of the system. The application also performed process-
ing of the filtered music values to find the genre of each music file. We defined four music
styles/groups and assigned to them, according to measurements, a vector with the average
values of the output for the four frequency bands of the implemented filters.

By using SysPy to describe the SoC, most of the system parameters, related either
to hardware or software implementation are visible and configurable within the Python,
self-contained, top-level description. Many system parameters also defined during system
simulation using SysPy can be directly used in the system’s Python description, like the
filters’” tap values, order of the filters fixed-point notation, SoC’s control logic implemented

in software and CPU and the SDRAM clock frequency.
Code Example 8.2: Python function description used to instantiate an FIR filter

block.

1 import SysPy_ver._toVHDL

2 def filt_-SoC ():

3 # 30—taps FIR filter with 1.7 fized—point notation for
4 # parameters’s binary representation

5 func_fir_filt_s([—0.0019, —0.0042, —0.0080, —0.0100,

6 —0.0028, 0.0648, 0.1203, ...,], "1.77)

7

8# Leon’s software C file names

9 attributes = {‘‘SYSFREQ:’’ 100, ‘‘PROCFREQ’’: 160,

10 C‘PROCSW’’: [‘“‘linux-kernel’’, ‘‘usr_app-classification’’,
11 “‘“FPGADEV’’: ¢‘Virtex5’’}

12

13# Generic argument for Python functions

14 generics = {” fir_filt_s”: {’n’:9}}

15

16# I/0 and internal signal declaration

17 filt-in = {'D’:’i’,’T’:’b’,’L’:[8, 0],’N’:”filt_in”}

18 clk_rst = {’D’:’i’,’T’:’b’,’L’:1, N’ :[”clk” ,” rst”]}

19 filt_out = {’'D’:’0’,’T’:’b’,’L’:[16, 0],'N’:”filt_out”}

20

21# Calling the 7to.VHDL()” function to generate VHDL code

22 SysPy_ver._toVHDL.toVHDL(” filt .SoC” , attributes , generics, filt_in , filt_out , clk_rst)

Evangelos Logaras 194

Using scripting languages for hardware/software co-design

8.3 Software development using an embedded Linux ker-

nel

8.3.1 Software debugging

Developing our software application on top of the Linux kernel, gave to the SoC access to
fast I/O interfaces and large memory space. All the complex software interface layers needed
to map the Ethernet and the SDRAM controllers were already implemented in the kernel.
Required software also needed to handle file-oriented operation was also included in the
kernel. The user control application used to handle data flow, storage and processing was
compiled along with the O/S kernel and utilized all of the ready-to-use features of Linux.

Although software debugging during development was possible in SysPy, since compila-
tion message appeared in Python’s command line during parsing of the top-level design, more
complex debugging techniques have to be used when compiling an O/S-centric application.
To support this requirement Leon3 was implemented using: a) the UART interface, b) the
Ethernet interface with TCP/IP support and ¢) the Debug Support Unit (DSU) interface.
Implementation of the DSU block enabled the usage of the GRMON [10] debugging tool,
supplied along with the Leon3 distribution.

To debug our software code, we configured GRMON to connect to the DSU through the

Ethernet connection. Using the debug tool we were able to:

e download to the processors program memory (SDRAM) the compiled executable im-

age, containing the Linux kernel along with the user applications

e verify hardware configuration of the processor (memory size, available peripheral units,

clock frequency etc.)
e read/write memory content

Using the debug tool, we implemented step-by-step the communication sequence between
the processor, the interface block and the filter bank. Having access to the entire memory
space of Leon gave us the ability to test in real time the implementation of the GPIO low-

level drivers and exchange data with the FIFO memories and the filters. Implementation of

Evangelos Logaras 195

Using scripting languages for hardware/software co-design

a programmable complex debug unit is another reason why the existence of a processor in a

SoC design is useful not only during functional mode but also during test mode of a design.

8.3.2 Software development flow

The flow that we used during software development, followed the path of data flow in our

system. A complete processing sequence in the audio SoC, implements the following steps:
(a) data transfer of an audio file from the host PC to the FPGA board

(b) save the file to the SDRAM memory

(c) open the file in embedded Linux and pre-process the audio samples

(d) send the audio samples to the filter bank

(e) receive and store the filtered samples

(f) analyze filtered samples and define the audio file genre

(g) send the filtered samples back to the PC using raw text file format

First thing was to setup the FTP connection between the host PC and Leon. An FTP
server was configured on the PC side, while an FTP client application was activated in the
Linux kernel on the FPGA side. A bash script was developed in Linux to setup the network
connection (IP address, subnet and gateway) and to start the FTP client. All the scripts
that we used were stored in a default directory of Snapgear Linux during development so
that they were included in the image of the kernel after compilation.

The compiled C application was implemented in the kernel and registered as an environ-
ment variable, so that can be called from any path location of the O/S. The standard output
of Linux was the serial terminal connection, where the bash script was executed. After hav-
ing the audio files stored in the SDRAM memory the processing application was executed
to start transmitting the audio samples to the filters and also receiving the filtered samples.
The application is also parameterizable and can be used to process only part of an audio file.
The audio samples were copied from the files to an array and then moved sequentially to the

FIFO memory. New filtered samples were stored in four different arrays, one for each filter.

Evangelos Logaras 196

Using scripting languages for hardware/software co-design

The software also used a moving time window to evaluate the mean value of the filtered
audio samples for each filter. At the end of the filtering process, a vector with four values,
representing the mean value of the filtered samples for each of the four frequency bands, was
created. According to the distance of the vector from each of the vectors representing the
available music groups, the audio file was categorized to one of these groups. The filtered
samples were also copied to four different files and sent back to the PC through the FTP
connection, while the assigned music group and the required processing time were presented
in Linux command line.

By using a compiled C application to control data flow in the SoC and also scripts running
in the O/S to handle file I/O operations, it became much easier to take advantage of the
memory and I/O peripherals on the FPGA board. Using the O/S in our processor-centric
SoC, it was also much easier to debug software and hardware issues. Also many different
scripts and application could be loaded at the same time on the processor, merged together
with the Linux image kernel. reducing in this way the time needed for software development

since different programs could be tested at once, without having to reprogram the processor

or the FPGA.

8.4 Implementation results

The ML509 Xilinx board from Digilent [25], equipped with the medium size Virtex-5 XC5VLX
110T-1 FPGA device, was used for system implementation. The board also includes a
256MB SDRAM DDR2 memory, clocked at 190MHz, which used as the main program and
data memory for Leon3. An Ethernet PHY and a UART RS-232 chip are also included on
the board and connected as peripheral devices to the processor.

During system development we managed to clock the processor at 160MHz, which is
the maximum frequency for the Leon3 core. It was very important to get the processor to
operate at the highest possible frequency since its performance is the bottleneck in the data
processing path. The filter bank was clocked in its own domain at 100MHz. To estimate the
processing throughput we had to measure the timing performance of the following individual

processing and data transferring tasks taking place in the system:

e data transfer speed over the F'TP connection

Evangelos Logaras 197

Using scripting languages for hardware/software co-design

e communication speed between Leon and the filter bank
e filter data path clocking frequency
e processing of filtered samples

A music file having 3,924,170x8-bit samples was used to perform the timing measure-
ments. The file transfer speed on the FTP connection, over an 100Mbps Ethernet connection,
was 21.9Mbps. A 15bMMAC /sec. performance has been achieved during the filtering of the
music file. The number of filtered samples returned to the processor was four times higher
(all the samples were processed in parallel from all filters). The data throughput processing
of the filter bank was calculated using the following formula: 3,924, 170samples x 8bit *
A filters x 30taps)/31.5 sec. = 119.6Mbps have been processed in parallel in the pipelined
path of the four FIR filters. This performance is four times higher than an all-software C
implementation running on Leon and processing the same data. The same performance was
obtained on average for many other music files. Timing performance results of the SoC are

presented in Table 8.1.

Leon
SoC (C implementation)
1.4
FTP transmission time (sec.) (21.9Mbps) -

315 132.3
Filter processing time (sec.) (15.0 MMACs/sec) (3.6 MMACs/sec.)

Data throughput (Mbps) 119.6 -

Table 8.1: SoC timing results when processing a music file (3,924,170 samples x 8-bit)

compared to a C software implementation of the filtering algorithm running on Leon.

Resource utilization results are presented in Table 8.2 for the processor core only and for
the entire SoC design for different number of filter taps. For 30-tap filters 120 multipliers
were utilized, using multiplier/DSP slices or logic (LUTSs) slices. While the processor core
utilized almost 1/3 of the available logic resources, on the other hand through the software
implementation of the embedded Linux kernel we managed to utilize the required memory

and communication resources available on the board.

Evangelos Logaras 198

Using scripting languages for hardware/software co-design

Leon3 15-taps 20-taps 30-taps
Slices 5,436 (31%) | 6,235 (36%) | 6,880 (40%) | 7,190 (42%))
BRAMs 17 (11%) 132 (89%) 133 (90%) 133 (90%)
MULs 0 60 80 120

Table 8.2: FPGA resources utilization used by the SoC’s implementation in the Virtex-5
XC5VLX110T-1FF1136 device. (Slice: four 6-input LUTs, BRAM: 36Kb, MUL: 25x18-bit)
(implemented using multiplier/DSP slices or logic (LUTSs) slices).

Implementing the audio SoC design we managed to use the complete design and verifi-
cation flow of SysPy. Using the supported hw/sw co-simulation environment it was possible
to build simulation models for software and hardware modules of the design and define crit-
ical parameters of the system before writing software or RTL code. Automatic compilation
of a Linux kernel, along with user-defined application, provided easy-to-use communication
solutions, such as the FTP protocol. The embedded O/S also facilitates the usage of system
scripts to control data I/O and processing tasks in the design, allowing the user to control

the SoC from the Linux command line.

8.5 Usability evaluation of SysPy

In order to establish a quantitative approach and assess how the developed methodology can
help a designer during the design flow of a SoC, we adopted the metrics used in the BDTi
evaluation methodology [46] for high-level synthesis tools developed by Berkeley Design
Technologies. The BDTi has been established as a benchmark to evaluate the performance
of embedded and DSP processors. Except the basic benchmark, other flavors exist for eval-
uating processors for special applications, like video and real-time data processing. Another
flavor of the benchmark, that is useful in our case, evaluates the capabilities of high-level syn-
thesis tools. In Berkeley Design Technologies they developed this specific testbench because
they recognized that development of design tools has not kept pace with the rapid growth of
the capacity of FPGAs. With the development of the testbench the Berkeley team wanted

to evaluate any existing FPGA high-level design tools and also trigger the development of

199

FEvangelos Logaras

Using scripting languages for hardware/software co-design

more tools that can be used and design complex SoC devices in an effortless way.

From the available BDTi high-level synthesis benchmark we made use of the available
metrics and evaluated our tool while using SysPy. We focused on the usability metrics and
input was provided by three designers who were involved in the design of the biomolecular
and the audio processing SoCs. The metrics results are presented in Table 8.3. Every metric
in the testbench is assessed using one of the following scores: “Excellent”, “Very Good”,
“Good”, “Fair”, “Poor”. The following list provides description about the evaluation metrics

that we used:

e Out-of-Box Experience: Ease of installing the tool in a Debian Linux O/S.

e Ease of Use: Assessment about how easy was to use the tool in terms of productivity

and bug-free operation.

e Completeness of Capabilities: Assessment to check if the features of the tool are ade-

quate to design a processor-centric SoC in FPGA.

e Quality of Documentation and Support: Evaluation of the documentation supplied

with SysPy.

e Learning to Use the Tool: Ease of learning to efficiently use the high-level synthesis

tool.

e First Compiling Version: Evaluate the effort required to design initial functional design

of a SoC.

e Final Optimized Version: Evaluate the effort required to design the final version of the

SoC.

e Platform Infrastructure Development: Assess any external tools supported by SysPy

(e.g. Xilinx physical integration tools) to ease physical implementation in silicon.

According to the results presented in Table 8.3 the supported features were well evaluated
and the designers can get in a descent amount of time an initial version of their design up
and running in the FPGA. Also the “Platform Infrastructure Development” was also well

evaluated, since a number of auto-generated scripts ease physical development of a SoC and

Evangelos Logaras 200

Using scripting languages for hardware/software co-design

Out-of-Box Completeness of Quality of
Experience Ease of Use Capabilities Documentation and Support
Good Poor Fair Poor
Fair Good Good Poor
Fair Good Good Fair

Learning to Use

First Compiling

Final Optimized

Platform Infrastructure

the Tool Version Version Development
Fair Good Good Very Good
Fair Good Fair Fair
Fair Fair Fair Good

Table 8.3: Usability metrics, according to the BDTi benchmark, provided by three different

designers.

also the supported HAL and Linux O/S based interfaces helped the designers to use their
SoCs in real world applications, where data could easily transferred from a host PC to the
FPGA board and vice versa. The designers easily learned how to create their own examples
and designs with the tool and also appreciated the way high-level descriptions and pure
RTL-like coding are used within SysPy, by utilizing and modifying the existing component
and function libraries and the function handlers to instantiate already existing blocks in an
effortless way (Figure 4.2). SysPy scored poor results in documentation, since at the time
when the SoCs were designed, there was no full documentation and code examples in place.
This is the reason why the tool also scored poor results in the “Ease of Use” metric, since
without full documentation it was some time hard for the designers to understand the syntax
and the design flow they should follow.

The feedback that we got from the preliminary usability evaluation was very useful and
helped us improve several aspects in the adopted design flow, especially in the simulation
flow. We applied improvements on the way an input signal sequence and timing delays are
declared. We also put a lot of effort to improve the way abstract algorithmic models are
connected in an RTL description (Figure 3.2 and Code Examples B.4, B.5 and B.6). We

also applied changes to the HAL interface and the way objects are initialized and used to

201

FEvangelos Logaras

Using scripting languages for hardware/software co-design

exchange data with the FPGA board over the Ethernet channel (Code Example 7.2). In
general during development we always tried to deliver a tool where the supported Python
syntax is compatible with the most common coding styles, so the hardware descriptions in
Python can be easily read by people with little experience in hardware design. On the other
hand the supported syntax should be powerful enough to used within SysPy to generate
RTL and functional testbenches and also deliver synthesizable VHDL RTL code.

The usability metrics results also reveal another aspect of conducting research in the area
of high-level hardware design tools. Although new methods have to be introduced in the
area of design abstraction so that complex SoCs can be designed in a block-oriented manner
and verified in an faster way, these new methods must remain consistent to the strict design
rules defined by the already existing ecosystem of digital design tools. Abstraction methods
must be introduced step by step and the final outcome must always be pure synthesizable
HDL code that can be used as an input to the FPGA logic synthesis and physical design
tools. The adopted methodologies must also be consistent to the design rules of synchronous
datapath designs and must use a syntax/language to express a design that is familiar to other
engineers. The new methodologies must also adopt and use any already existing and well
defined flow in digital design, as we do in SysPy, e.g. Tcl scripting, VCD files, Matlab-like
algorithmic coding, GCC compilers, IP-XACT models etc.

Evangelos Logaras 202

Chapter 9

Conclusions

In this dissertation we proved the thesis that a popular language, mainly used by the software
development community, can be used for the hw/sw co-design and verification of SoCs at
an early design phase. The presentation also of three complicated processor-centric design
examples show how the developed tool combines all the necessary steps to support a hw/sw

co-design flow, even for non-trivial SoCs where a Linux O/S is used to control data processing.

9.1 Summary of contributions

Although some well established platforms exist for high-level digital modeling and verifica-
tion, like SystemC, there is still not a single integrated environment that can be used: a)
to model and co-simulate the hw/sw architecture of a processor-centric SoC and b) perform
all the steps needed to implement the design using FPGA devices. Other tools that exploit
Python’s unique text processing features for digital design have been developed in academia.
None of them support the full design flow, from simulating and verifying a design down to
providing the means to handle FPGA synthesis tools. Some of them focus only on specific
steps of the design flow, like PyMTL [58] which supports a very fast RTL simulation engine.
To our knowledge, and according to the comparison performed against other related tools
(Table 2.1), SysPy is the first available tool that can handle the complete design flow of an
FPGA processor-centric design (RTL/functional or algorithmic/high-level simulation - HDL
implementation - software implementation - FPGA tools scripting - interface implemented

design in silicon) After reviewing the tools and the methods already available we believe

Evangelos Logaras 203

Using scripting languages for hardware/software co-design

that in the area of processor-centric design and verification flow more research is needed to
develop tools that can take advantage of at least freely available processor cores (in the form
of soft or hardwired cores) and provide suitable syntax and methods to help software and
hardware designers to design and implement a system using modern FPGA devices. The
required methods should provide a high-level of abstraction, especially for these software
or hardware modules of a system not yet specified, so that a designer can use hw/sw sw
models and easily alter system parameters in the hw/sw design space during simulation.
This will help a designer to make correct architectural choices regarding functionality and
timing performance of a system.

The usability metrics results that we performed for SysPy also revealed another aspect of
conducting research in the area of high-level hardware design tools. Although new methods
have to be introduced in the area of design abstraction so that complex SoCs can be designed
in a block-oriented manner and verified in an faster way, these new methods must remain
consistent to the strict design rules defined by the already existing ecosystem of digital design
tools. Abstraction methods must be introduced step by step and the final outcome must
always be pure synthesizable HDL code that can be used as an input to the FPGA logic
synthesis and physical design tools. The adopted methodologies must also be consistent to
the design rules of synchronous datapath designs and must use a syntax/language to express
a design that is familiar to other engineers. The new methodologies must also adopt and
use any already existing and well defined flow in digital design, as we do in SysPy, e.g. Tcl
scripting, VCD files, Matlab-like algorithmic coding, GCC compilers, [P-XACT models etc.

In the methodology developed we used a popular and easy to read and write language like
Python to address the area of processor-centric design and verification using FPGA devices.
Our main focus from the design point of view was to ease the integration of freely available
processor cores in a design, by providing all the necessary scripting and HDL generation
tools. From the verification point of view we utilized the SciPy powerful arithmetic package
available in Python and developed a way to combine arithmetic models along with digital
HDL-like descriptions for system-level verification. Across all design and simulation steps in
our flow we use Python structures/syntax, and not any custom-defined syntax, to describe
the datapath of the SoC and the related simulation models. This is very important since the

main target group of a high-level design tool are engineers and scientists who have little or

Evangelos Logaras 204

Using scripting languages for hardware/software co-design

no experience at all in digital hardware design. The goal in this case is to deliver a design

tool where a high-level interface can be used to:

e Design a SoC in a block-oriented way, using IP cores in RTL or netlist format and

apply minimum effort to include any required digital glue logic between the blocks.

e Support a high-level verification flow, where Python descriptions can be used along
with Matlab-like or C descriptions to simulate a digital block either at a functional/al-

gorithmic or in a cycle-accurate Register-Transfer-Level.
e Automated generation of FPGA synthesizable VHDL descriptions

e Provide tools to interface a SoC design after its implementation, in the form of software
components running in parallel on the processor-core in the SoC and in the host PC

connected to the SoC.

e Ease the use of digital synthesis and physical implementation tools for FPGAs, by

auto-generating synthesis and compilation scripts.

All five items in the previous list are critical for modern SoC designs. We believe that
the methods developed in this thesis and SysPy provide an integrated environment and uti-
lizes Python best programming practices like object oriented programming, text processing
features, associative lists and ready-to-use numerical libraries, in order to design, verify, im-
plement and test a processor-centric SoC. The tool supports the most common and basic
Python syntax and also any third-party tool or file format used or called within SysPy is
adopted by the EDA industry and the software community tools, like Tcl, VCD, Linux OS,
SciPy and gce compiler. In this way our tool was implemented on top of already existing,
popular and standard tools used in a hw/sw co-design flow and we do not introduce any
new, custom defined and “exotic” practices that would be uncommon.

Although the basic syntax for describing digital models in Python and all the required
lexical analysis tools were developed during the initial development steps of the thesis, many
other features have been developed or improved during the implementation of the SoC design
case studies that we presented in Chapters 6, 7 and 8. In the following list we summarize

the main innovative features of the tool developed and tested in each of the design examples:

Evangelos Logaras 205

Using scripting languages for hardware/software co-design

e Image processing SoC

— Automatic compilation of C software code.

— Use of pre-synthesized, netlist block in structural descriptions.

— Use of Python functions to parameterize, instantiate and connect a block in a
structural description.

e Biocomputing SoC

— Utilize fast data transmission Ethernet channel between the FPGA and the host
PC, so that the FPGA is used as a co-processor unit that stores and retrieve data

to and from the connected PC.

— Utilize large SDRAM memory resources connected to the FPGA for fast data

storage.

— Parse and use special arguments during a block’s instantiation that parameterize

an RTL design, e.g. XML files, using the implemented function handlers.

— Provide Hardware Abstraction Layer (HAL) to interface the implemented SoC

design.
e Audio processing SoC

— Develop of O/S-centric applications using Linux embedded O/S.

Simulation mechanism in RTL and functional /algorithmic level for specifying the

architecture of a SoC early in the design phase.

— Hw/sw co-simulation using algorithmic Matlab-like models and with C functions

along with RTL hardware descriptions.

— Provide simulation results in the form of VCD files, compatible with popular RTL

simulation tools (e.g. Modelsim).

Using a 32-bit CPU connected to custom hardwired co-processors, we proved with the re-
sults reported in Chapter 7 (Table 7.4) that using the processor-centric design flow adopted in
SysPy we easily outperformed the simulation performance of popular software tools used for

simulating biomolecular reaction networks. We also presented in Chapter 7 a very structured

Evangelos Logaras 206

Using scripting languages for hardware/software co-design

way for building an object oriented interface environment and easily parse and exchange,
between an FPGA board and a host PC, any kind of data files over an Ethernet connection.
In addition we demonstrated how contents of a data file can be used to parameterize and
instantiate an IP core in a higher-level compared to using only generic parameters in VHDL.
Python scripts parse these special parameters and re-arrange the structure of an IP core,
e.g. modify the number of memory blocks, change fixed-point number representation etc.
O/S software development features added to SysPy, by configuring and compiling a Linux
embedded O/S along with user application files, demonstrated the ability to easily design
a system capable to act as a co-processor attached to a host PC, connected in an Ethernet
network. Since the existence of the Linux O/S easily adds IP based Ethernet addressing,
the FPGA board could also act as a data processing F'TP client. Development also of the
simulation environment added value to SysPy’s FPGA SoC implementation features, since
a designer can get a first good timing estimation of a system’s data processing capabilities

and also easily explore different architectural options.

9.2 Proposed future research

According to the experience that we acquired through the design examples implemented
using SysPy and also from the user feedback we can summarize some points towards the
improvement and further enhancement of the design tool. We can divide these points into
three main categories of improvements: a) add new design and verification features, b)
enhance the tool’s already existing libraries with new digital blocks and models and c¢) use
the tool to provide more real world processor-centric SoC design examples.

A good design feature improvement would be to support ASIC implementations by gen-
erating HDL code compatible with popular ASIC synthesizers, like Cadence RTL Compiler
and Synopsys Design Compiler. In this case ready-to-use pre-synthesized netlist components
could be structurally connected in a top-level Python description, in the same way we are
using FPGA synthesized blocks. Also memory blocks should be mapped to RAM structures
design using standard cell libraries and not BRAMs as we use in FPGAs.

The tool’s function and component library can also be enhanced with more modules and

models. Especially the function library must be enhanced by also adding more function

Evangelos Logaras 207

Using scripting languages for hardware/software co-design

handlers and in this way automate instantiation of complex logic and arithmetic blocks, like
the function handler used in Figure 7.6. Good candidates blocks are DSP related modules
used in audio and video processing. More processor cores can also be supported in SysPy
supporting other than Xilinx FPGA devices, like the LatticeMico32 processor core by Lattice.
Although Xilinx is the largest FPGA provider, it would be a very good feature to support
FPGA families by different vendors. Candidate processor cores must support Linux or other
high-end O/S to ease handling of many different communication protocols and device drivers.

More designs must also be developed to present the capabilities of our methodology to
ease the design flow of processor-centric systems. The design of SoCs that require high
performance computing resources, like video and network processors, would emphasize on
SysPy’s features to couple together processor cores and custom arithmetic blocks in the
FPGA silicon. The way Python is used to parse any form of data files and use them
during simulation or implementation of a SoC can also be exercised in these new design
examples. Faster data communication channels can also be supported, like PCI Express or
Gigabit Ethernet, so data can be exchanged faster between host PCs and the FPGA board
or between different FPGA boards. Also better processor-custom block interface logic should
be implemented, to improve data throughput, provided that the processor is able to handle
and process these higher data throughputs.

In order to make the tool widely accessible and also to get feedback from users we provide
access to the tool’s source code through a public Git code repository. The repository is hosted
in GitHub [89], which is one of the largest online code repositories. Code examples are also
provided in the repository, along with information on how to setup the tool and run the
examples. SysPy is delivered as an open source design tool in order to continuously improve
its features and also increase the number of people that use it to design processor-centric

embedded SoCs for FPGAs based on Python component descriptions.

Evangelos Logaras 208

Appendix A

Installing SysPy

A.1 SysPy setup in Debian Linux

SysPy has been developed and tested under a Debian Linux operating system. In order to
resolve path installation issues for the various tools used within SysPy, we decided to use a
configuration file, where all the required system paths info is included.

The following tools must be already installed in a system prior to SysPy’s usage:

Python v2.6 or v2.7

— SciPy Python package v0.14.0

— matplotlib Python package v1.4.2

Tel v8.5 or greater

avr-gce C v1.8 compiler for the AVR architecture

sparc-elf-gcc compiler for the Leon3 architecture

orlk-gcc for the OpenRic architecture

Xilinz ISE v12 or greater

SciPy [7] and matplotlib [5] are Python packages which can automatically be down-
loaded and installed in Python. The two packages are required for SoC verification. The

Tcl compiler is available under all Linux distributions, while the avr-gece [3], the sparc-elf-gcc

Evangelos Logaras 209

Using scripting languages for hardware/software co-design

[4] and the orlk-gce [6] C cross-compilers have to be downloaded and installed in the Linux
environment. If an O/S based application has to be developed for the Leon3 architecture
the Snapgear embedded Linux [84] tool chain has to be installed. The Xilinz ISE FPGA
tools have to be installed by the user if auto-generated by SysPy Tecl scripts are going to be
used in command line to execute the FPGA implementation steps. Otherwise the user can
manually create a design project in ISE, using the generated HDL and constraints files from
the SysPy working directory. All required tools used by SysPy are also presented in Figure
1.1.

@ Python fg? C compilers
e, e

[EROFLEX SNAPﬂEﬂ :

N ‘ .
$7 XILINX @ IP-XACT
ISE Design Suite Tcl scripting IP-XACT descriptions

SysPy install dir work dir

ool el

sim VHDL Tcl software IP-XACT

- e o o E E O E O E E E S B B N N E S S E N N N N W S E E E E om
N m omomom o om Em OE OE OE OE OB E E E B N B E O E N N N N EE E E E E EEmom

Figure 1.1: Design tools used by SysPy installed under Debian Linux.

The working directory can be placed by the user in the desired path. A setup initialization
file (*.init) is used in SysPy, where the user can define the installation paths of the required
compilers. A setup script is run automatically by SysPy to resolve these paths and also

register the user-provided Python top-module to the main Python path, so that this modules

FEvangelos Logaras 210

Using scripting languages for hardware/software co-design

can be directly imported by SysPy. Under the work directory five subfolders are generated,
containing a) the VHDL generated files, b) the compiled executable software files, ¢) the
VCD simulation files, d) Tcl script files that can be used along with the ISE design tools and
e) IP-XACT [15] description of Python described blocks, which can be used along with the
generated VHDL files for easy integration and reuse in other digital design and verification
tools. With the use of the initialization file and of the setup script, SysPy is used as a
standalone Python package which references all the user-provided tools in order to compile
all the required software, simulate a SoC design, generate the related HDL files and execute

the required Tcl scripts for FPGA implementation.

A.2 Synthesis options

Synthesis options Possible values

FPGA_DEV spartand — virtex2p — virtexd

FSM_STYLE lut — bram

FSM_ENCODING auto — one-hot — compact — sequential — gray — johnson — speed
MULT_STYLE auto — block — lut — pipe_block

RAM_STYLE auto — block — distributed
RESOURCE_SHARING yes — no

Table 1.1: Synthesis options and possible values.

e FPGA_DEV: define one of the supported FPGA device families in SysPy

e FSM_STYLE: logic resources used for the implementation of state machines Faster

implementation can be obtained by using BRAMs, when available

FEvangelos Logaras 211

Using scripting languages for hardware/software co-design

FSM_ENCODING: state machine coding style

MULT_STYLE: defines the way multipliers block are implemented. DSP48 [49] macro

blocks can be used in Virtex-5 devices for fast multiplier implementations

RAM_STYLE: defines the way RAM memory will be implemented, either by using
BRAM blocks or in a distributed way using CLB block

RESOURCE_SHARING: resource sharing of arithmetic operators

A.3 Snapgear Linux kernel parameters

Kernel compilation parameters Default values
CPU_FREQ 100MHz(default)
ETHERNET_EN yes — no
FPU_EN yes — no
MUL_DIV_EN yes — no
SDRAM_FREQ 100MHz(default)
SDRAM_SIZE 256M B (default)
SERIAL_BAUDRATE 38400bps(default)
TCPIP_EN yes — no
UART_EN yes — no

Table 1.2: Snapgear Linux kernel compilation parameters and default values.

e CPU_FREQ: processor’s clock frequency in MHz

FEvangelos Logaras 212

Using scripting languages for hardware/software co-design

e ETHERNET_EN: include Ethernet controller driver

e FFPU_EN: enable floating-point libraries compilation

e MUL_DIV_EN: MUL and DIV operations hardware support

e SDRAM_FREQ: SDRAM memory clock frequency in MHz

e SDRAM _SIZE: SDRAM memory clock frequency in MB

e SERIAL_BAUDRATE: serial communication baud rate in bps
e TCPIP_EN: enable TCP/IP stack compilation

e UART _EN: include UART serial communication drivers

FEvangelos Logaras 213

Using scripting languages for hardware/software co-design

FEvangelos Logaras 214

Using scripting languages for hardware/software co-design

Appendix B

Extended code examples

B.1 Python examples

B.1.1 Arithmetic simulation model

Code Example B.1: Linear regression class model (part 1).

1 import math

2from _fp_sign_to_bin import x
3from scipy import signal, stats
4 from random import =*

5import matplotlib.pyplot as plt
6

7 class linearRegressionSimFunctions:
8 slopeOut = 0

9 interceptOut = 0

10 stdErrOut = 0

11 dataCounter = 0

12 # data input buffer

13 dataFileArray = []

14

15 # regression wvariables

16 slope =0

Il
o

17 intercept

18 r-value =

(=R)

19 p-value =
20 st_err = 0
21

22 # input FIFO of the arithmetic block
23 FIFOSize = 10

24 FIFOArray = FIFOSize % [0]

25 fpNotation = 7’

26 fpDecimalSize = 0

27 dataFileName = ’’

FEvangelos Logaras 215

Using scripting languages for hardware/software co-design

e line 2: import the SysPy provided function for converting fixed-point numbers to binary

format
e line 3: import the SciPy package
e line 5: import the matplotlib package required for creating data plots
e line 7: declare the class used to model the linear regression block
e line 13: create array to hold file data
e lines 16-20: initialize all the model related variables

e line 24: array to model the input FIFO buffer of the arithmetic block

FEvangelos Logaras 216

Using scripting languages for hardware/software co-design

Code Example B.2: Linear regression class model (part 2).

1 def init(self):

2 # Open the data file

3 dataFile = open(self.dataFileName, ’'r’)

4

5 # Read file data into an array

6 self.dataFileArray = dataFile.read()

7 self.dataFileArray = self.dataFileArray [:(len(self.dataFileArray) — 1)]
8 self.dataFileArray = self.dataFileArray.split(”\n”)

9 # FExtract decimal notation form fp mnotation

10 i = self.fpNotation.find(’.”)

11 self.fpDecimalSize = int(self.fpNotation[(i+1):].replace(’”’, 7))

12

13 def writeFIFO(self):

14 self .FIFOArray [self.dataCounter] = int (fp_sign_to_bin (

15 self.dataFileArray[self.dataCounter], self.fpNotation), 2)

16 # Store data wvalues to the arithmetic block input FIFO

17 if (self .FIFOArray|[self.dataCounter] < 255):

18 # Positive values

19 self .FIFOArray|[self.dataCounter| = float (self.FIFOArray|[self.dataCounter]) /
20 float (pow(2, self.fpDecimalSize))
21 else:

22 #Negative values

23 self .FIFOArray|[self.dataCounter] = —1.0 * float (512 —

24 self .FIFOArray|[self.dataCounter]) / float (pow(2, self.fpDecimalSize))
25 # Increase FIFO counter

26 self.dataCounter = self.dataCounter 4 1

27

28 def startRegression(self):

29 xAxe = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

30 # Calculate the regression algorithm

31 self.slope, self.intercept, self.r_value, self.p_value, self.st_err =
32 stats.linregress (xAxe, self.FIFOArray)

33 def plotRegressionResults(self):

34 # Open file to store regression results

35 simDataFile = open(”./sim/simData.txt”, ’w’)

36 # Convert the calculated slope parameter to the prowvided fp notation
37 slope = int (fp_sign_to_bin(self.slope, self.fpNotation), 2)

38 if (slope < 255):

39 slope = float(slope) / float (pow(2, self.fpDecimalSize))

40 else:

41 slope = —1.0 * float (512 — self.slope) / float(pow(2, self.fpDecimalSize))
42 # Convert the calculated intercept parameter to the provided fp mnotation
43 intercept = int(fp-sign_-to_bin(self.intercept, self.fpNotation), 2)

44 if (intercept < 255):

45 intercept = float (intercept) / float (pow(2, self.fpDecimalSize))

46 else:

47 intercept = —1.0 = float (512 — self.intercept) / float(pow(2, self.fpDecimalSize))

FEvangelos Logaras 217

Using scripting languages for hardware/software co-design

line 1: class initialization function

e line 3: open data file

e lines 6-8: copy file data into the dataFileArrayl[]

e lines 10-11: extract the number of decimal points from the supported notation

e line 13: function to store data into the FIFO memory of the arithmetic block

e line 14-15: converting decimal values to the corresponding fixed-point form (fp-sign_to_bin())
e lines 17-24: distinguish between positive and negative data values

e line 28: function to perform the linear regression algorithm

e line 33: function to plot regression results

e lines 37-47: convert the linear equation parameters (slope and intercept) to the defined

fixed-point notation

FEvangelos Logaras 218

Using scripting languages for hardware/software co-design

Code Example B.3: Linear regression class model (part 3).

1 # Convert the calculated standard error parameter to the provided fp notation

2 st_err = int(fp_sign_to_bin(self.st_err, self.fpNotation), 2)

3 if (st_err < 255):

4 st_err = float(st_err) / float(pow(2, self.fpDecimalSize))

5 else:

6 st_err = —1.0 % float (512 — st_err) / float (pow(2, self.fpDecimalSize))

7

8 # Write to file the regression results

9 simDataFile.write(”Slope: "+ str(slope) + ”\n”)

10 simDataFile.write(” Interception: "+ str(intercept) + ”\n”)

11 simDataFile.write (”Standard error: "+ str(st_err) + ”\n”)

12

13 simDataFile.close ()

14

15 FIFOArrayFloat = []

16 for i in self.FIFOArray:

17 FIFOArrayFloat .append (float (i))

18

19 FIFOArrayEstimatedHw = []

20 FIFOArrayEstimatedSw = []

21 for i in range(0, 10):

22 FIFOArrayEstimatedHw . append (slope = float (i) 4+ intercept)

23

24 # Plot the data points alogn with the claculated regression linear curve

25 plt.plot (range (0, 10), FIFOArrayFloat)

26 plt.plot(range (0, 10), FIFOArrayEstimatedHw, ’r’)

27

28 plt.show ()

29

30 # Return slope result to the testbench

31 def returnSlope(self):

32 return int(fp_sign_-to_bin(self.slope, self.fpNotation), 2)

33

34 # Return intercept result to the testbench

35 def returnIntercept(self):

36 return int(fp_sign_to_bin(self.intercept, self.fpNotation), 2)
e lines 1-36:

FEvangelos Logaras 219

Using scripting languages for hardware/software co-design

B.2 Testbench example for the audio processing SoC

Code Example B.4: Testbench for the audio processing SoC (part 1).

1import SysPy_setup
2 import _toVHDL
3import funcs._beh_sim
4from filterSimfunctions
5

6 def fir_sim ():

import x

7 numOfSamples = 100

8

9 def proc-1(clk, rst):

10 if (rst = 1):

11 state = 0

12 sim_time = funcs._beh_sim.simTime ()

13 output_fifo_ready = 0

14 data_counter = 0

15

16 # Read wvalues from *.wav file

17 SimObj . musicFileName = "music_file .wav”

18

19 # Define filter parameters (# of taps, sampling
20 # and cutoff freq. in Hz) Filter0

21 SimObj. FilterDict [" Filter0”]['N } = 30

22 SimObj. FilterDict [” Filter0”][”fs”] = 16000.0

23 SimObj . FilterDict [? Filter0”][”fc0”] = 250.0

24 SimObj . FilterDict [? Filter0”][”fc1”] = 1000.0

25

26 # Define filter parameters (# of taps, sampling
27 # and cutoff freq. in Hz) Filterl

28 SimObj. FilterDict [" Filter1”][°'N } = 30

29 SimObj . FilterDict [? Filter1” |[”fs”] = 16000.0

30 SimObj . FilterDict [? Filter1”][”fc0”] = 1600.0

31 SimObj. FilterDict [? Filter1”][”fcl1”] = 4800.0

32

33 # Define filter parameters (# of taps, sampling
34 # and cutoff freq. in Hz) Filter2

35 SimObj. FilterDict [" Filter2”][°'N } = 30

36 SimObj . FilterDict [? Filter2” |[”fs”] = 16000.0

37 SimObj . FilterDict [? Filter2” |[”fc0”] = 3000.0

38 SimObj. FilterDict [? Filter2” |[”fc1”] = 5000.0

39

40 # Define filter parameters (# of taps, sampling
41 # and cutoff freq. in Hz) Filter3

42 SimObj . FilterDict [” Filter3”]['N } = 30

43 SimObj . FilterDict [? Filter3” |[”fs”] = 16000.0

44 SimObj . FilterDict [? Filter3”][”fc0”] = 5000.0

45 SimObj. FilterDict [? Filter3”][”fcl1”] = 7999.0
FEvangelos Logaras 220

Using scripting languages for hardware/software co-design

e lines 3-4: import the filter simulation mode (filterSimfunctions) and SysPy’s timing

simulation library (_beh_sim)
e line 7: define the number of audio samples to be processed
e line 9: state transition, sequential part of the state machine

e lines 11-14: initialize state and output signals. sim_time is used to observe simulation

time
e line 17: open the audio file

e lines 19-45: define number of taps, sampling frequency and cutoff frequencies for the

four implemented filters

FEvangelos Logaras 221

Using scripting languages for hardware/software co-design

Code Example B.5: Testbench for the audio processing SoC (part 2).

1 # Initialize simulation object

2 SimObj. init ()

3

4 if (funcs._beh_sim.rising_edge2(”clk”) == True):
5 sim_time = funcs._beh_sim.simTime ()

6 if (start = 1):

7 if (state = 0):

8 state = 1

9 elif (state == 1):

10 input_fifo_ready = SimObj.inputFifoReady ()
11 if (input_fifo_ready == 1):

12 state = 2

13 else:

14 state = 1

15 elif (state == 2):

16 if (SimObj.outputFifoCounter(” Filter0”) == numOfSamples):
17 state = 3

18 else:

19 state = 1

20 elif (state == 3):

21 SimObj . printOutputFifoData ()

22 SimObj . plotSignalWaveforms ()

23 state = 3

24 funcs._beh_sim.endSimulation ()

25

26

27

28 def proc_2(state):

29 if (state == 2):

30 filt_out0 = SimObj.Fir(1, ?Filter0”)

31 filt_outl = SimObj.Fir(1, ?Filterl”)

32 filt_out2 = SimObj.Fir(1, ?Filter2”)

33 filt_out3 = SimObj.Fir (1, ”Filter3”)

34 data_counter = SimObj.outputFifoCounter(” Filter0”)
35 elif (state =— 3):

36 output_fifo_.ready =1

37 else:

38 filt_out0 = SimObj.PreserveState (” Filter0”)
39 filt_outl = SimObj.PreserveState (” Filterl”)
40 filt_out2 = SimObj.PreserveState (” Filter2”)
41 filt_out3 = SimObj.PreserveState (” Filter3”)
42

43 generics = {}
44 # Simulation parameters (50ms duration, Ins time step)

45 attributes = {”sign”: ’=’, ”simulation”: [5000000, 1, ”"ns”], "FPGADEV”: ”Virtex5”}

FEvangelos Logaras 222

Using scripting languages for hardware/software co-design

e line 2: initialize a simulation object using the provided class
e line 4: begin state transition section

e line 11: check if there is free space in the connected input FIFO memory. inputFifoReady ()
function models asynchronous communication between the processor and the filter

bank

e line 16: function outputFifoCounter() is used to provide the number of processed

audio samples existing in the output FIFO memory

e line 21: function printOutputFifoData() is called to generate a text file with the

values of the filtered samples

e line 22: function plotSignalWaveforms () is used to plot, using SciPy, the initial and

the filtered audio signals
e line 24: function endSimulation() is used to terminate the simulation
e line 28: combinational part of the state machine

e lines 30-33: function Fir () used for each of the filters to push one audio sample to the

filters’ datapath, simulating in this way one processing cycle

e line 36: output_fifo_ready signal is asserted in state 3 to indicate that the requested

number of audio samples have been filtered

e line 45: define simulation step and duration

FEvangelos Logaras 223

Using scripting languages for hardware/software co-design

Code Example B.6: Testbench for the audio processing SoC (part 3).

1# Create a 50MHz clock sequence for 50ms, 50% duty cycle
2 clk_seq = []

3clk =0

4 for i in range(8, 50000000, 20):

5 clk = not clk

6 if (clk = True):

7 clk_seq .append ([str (i), ’1’])

8 else:

9 clk_seq .append ([str (i), ’0’])

10

11# 1/0 and internal signal declaration

12 i_sigs0 = {’D’: ’i’, °T’: ’b’, °L’: 1, 'N’: [”rst”, ”clk”, ”"start”]}

13 o_sigs0 = {'D’: ’o’, ’del’: 0, I’: ’b’, ’L’: [0, 5], 'N’: ”state”}

14 o_sigsl = {'D’: ’o0’, ’del’: 7, I’: ’b’, ’L’: [0, 16], ’N’: [”filt_out3”, ”filt_outl”,
15 ?filt_out2”]}

16 o_sigs2 = {’'D’: ’o’, ’del’: 15, T”’: ’b’, ’L’: [0, 16], 'N’: ”filt_out0”}

17 o_sigs3 = {’D’: ’o’, ’del’: 0, T’: ’b’, ’L’: 1, °N’: ”input_fifo_ready”}

18 o_sigs4 = {’D’: ’o’, ’del’: 0, °T’: ’b’>, °L’: [0, 31], ’N’: ”sim_time”}

19 o_sigs5 = {'D’: ’o’, ’del’: 0, I’: ’b’, °L’: [0, 31], ’N’: ”data_counter”}

20 o_sigs6 = {'D’: ’o’, ’del’: 0, T’: ’b’, ’L’: 1, ’N’: "output-fifo_ready”}

21

22 # Define wvalues for input signals

23 sim_sigs0 = {’D’: ’sim’, ’T’: ’b’, ’L’: 1, °N’: ”rst”, °V’: [[’0°, "1’], [’5’, ’0’]]}
24 sim_sigsl = {’D’: ’sim’, ’T’: ’b’, ’L’>: 1, °N’: ”clk”, °V’: clk_seq}

25 sim_sigs2 = {’D’: ’sim’, ’T’: ’b’, ’L’: 1, °N’: ”start”, °V’: [[’0°, ’0’], [’67, "1°]]}
26

27 code = getsourcelines (fsm_sim)

28

29 toVHDL .toVHDL(” fir_sim”, attributes , generics, i_-sigs0 , o_sigs0O, o_sigsl, o_sigs2,

30 o-sigs3 , o_sigs4 , o_sigsb, o_sigs6, sim_sigs0O, sim-_sigsl, sim_sigs2, code)

line 4-9: create a 50ms clock sequence with a 50MHz frequency and 50% duty cycle

lines 12-20: define I/0O signals

line 14: define data path delay to 7ns for filters 1, 2 and 3

line 16: define data path delay to 15ns for filter 0

line 23: define rst signal input sequence (assert reset for the first 5ns)

line 24: assign the 50MHz clock sequence to the clk signal

line 25: define start signal input sequence (assert the signal after 6ns)

FEvangelos Logaras 224

Using scripting languages for hardware/software co-design

e line 29: call to_VHDL() to start simulation

FEvangelos Logaras 225

Using scripting languages for hardware/software co-design

B.3 HDL examples

Code Example B.7: Auto-generated VHDL description for the Python description
in Code Example 8.2.

1— filt_-SoC .vhd

2— Generated by SysPy

3— Mon Nov 17 15:29:42 2014

4

5library IEEE;

6 use ieee.std_logic_-1164.all;
7use ieee.std_logic_arith.allj;
8 library work;

9 entity filt_-SoC is

10 port (

11 clk: in std_-logic;

12 rst: in std_-logic;

13 filt_in: in std_logic_-vector (8 downto 0);
14 filt_out: out std-logic-vector (18 downto 0));
15end filt_SoC;

16

17 architecture filt_SoC_arch of filt_SoC is

18

19— Internal signals

20

21 signal filt_out_-int: std-logic-vector (18 downto 0);
22
23

24 component fir_filt_s_comp

25 generic (n ,m ,filt_param: integer);

26 Port (

27 clk: in std_-logic;

28 rst: in std-logic;

29 filt_in: in std_-logic_vector ((n — 1) downto 0);

30 filt_out: out std_logic_vector ((filt_acc-bus(n, m) — 1) downto 0));

31 end component;

32

33 begin

34

35 fir_filt_s_.comp_-U0: fir_filt_.s_.comp generic map(filt_param => 7111110011000011010”,
36 m=> 2, n => 8)
37 port map (

38 clk = clk,

39 rst => rst,

40 filt_in => filt_in ,

41 filt_out => filt_out);

42

43end filt_SoC_arch;

FEvangelos Logaras 226

Using scripting languages for hardware/software co-design

B.4 Tcl example

Code Example B.8: Auto-generated Tcl script used for synthesizing, placing/routing
the design and generating the FPGA programming file (part 1).

1# Define project directory

2set compile_directory Leon3SoCTest

3

4# Define all the custom related blocks and the top—level block of the processor
5set hdl_files [list \

6 ../../SysPy_ver/Leon3_comps/ahbrom.vhd \

7 ../../SysPy_ver/Leon3_comps/config.vhd \

8 ../../SysPy_ver/Leon3_comps/leon3mp.vhd \

9 ../../SysPy_ver/Leon3_comps/Leon3_wrapper.ucf \

10 /home/test /SysPy/work/top-level_wrapper.vhd \
11 /home/test /SysPy/work/demo_FSM.vhd \

12]

13

14 # Timing and placement constraints

15 set constraints_file ../../SysPy_ver/Leon3_comps/Leon3_wrapper.ucf \
16

17# Create project directory

18 if {![file isdirectory $compile_directory]} {
19 file mkdir $compile_directory

20 }

21

22# Define project mname

23 project new Leon3SoCTest

24

25# Define FPGA device and design attributes

26 project set family Virtex5)

27 project set device xcbvlx110t

28 project set package ff1136

29 project set speed —1

30 project set top-level_module_type "HDL”

31 project set synthesis_tool ”XST (VHDL/Verilog)”
32 project set simulator ”ISim (VHDL/Verilog)”
33 project set ”Preferred Language” ”VHDL”

34 project set ”Multiplier Style” Block

35 project set "FSM Style” lut

36

37# Copy design files to the project

38 foreach filename $hdl_files {

39 xfile add ../$filename —copy

40 puts ”Adding file $filename to the project.”
41}

42

43 # Set top—level module

44 project set top ”rtl” ”top-level_wrapper”

FEvangelos Logaras 227

Using scripting languages for hardware/software co-design

lines 6-8: define processor and cache memory cores description files

lines 10-11: include the top wrapper module and any custom peripheral modules
lines 10-11: include the top wrapper module and any custom peripheral modules
line 15: define timing and placement constraints file

lines 26-28: set FPGA device family and package

lines 31-35: set synthesis options

lines 38-40: create design project and copy all the HDL files

line 44: define top-level module

Code Example B.9: Auto generated Tcl script used for synthesizing, placing/routing

the design and generating the FPGA programming file (part 2).

1# Create processor related libraries

2 xfile
3 xfile
4 xfile
5 xfile
6 xfile
7 xfile
8 .
9.
10 .
11

add
add
add
add
add
add

e

N

/..

./SysPy_ver/Leon3_comps/libs /eth/core/grethc.vhd” —lib_vhdl eth
./SysPy_ver/Leon3_comps/libs/gaisler/jtag/ahbjtag_-bsd.vhd” —lib_vhdl gaisler

S~ TN T

/SysPy_ver/Leon3_comps/libs /eth/comp/ethcomp.vhd” —lib_vhdl eth

./SysPy_ver/Leon3_comps/libs /gaisler /misc/ahbram.vhd” —lib_vhdl gaisler
./SysPy_ver/Leon3_comps/libs/gaisler /uart/ahbuart.vhd” —lib_vhdl gaisler
./SysPy_ver/Leon3_comps/libs/gaisler /uart/apbuart.vhd” —lib_vhdl gaisler

12# Run synthesis, PR and generate the FPGA programming file

13 process run ”Synthesize — XST”

14

15 process run ” Generate Programming File”

e lines 2-7: add HDL files related to peripheral devices attached to the processor, e.g.

UART, Ethernet and memory controllers etc.

e lines 13-15: execute in command line mode synthesis and PR, processes and generate

FPGA programming file

FEvangelos Logaras

228

List of abbreviations

ADL (Architectural Description Language)

API (Application Programming Interface)

ASIC (Application Specific Integrated Circuits)
AMBA (Advanced Microcontroller Bus Architecture)
CLB (Configurable Logic Block)

CORDIC (COordinate Rotation DIgital Computer)
CPU (Central Processing Unit)

CSV (Comma Separated Value)

CU (Control Unit)

DCM (Digital Clock Manager)

DM (Direct Method)

DSP (Digital Signal Processing)

DSU (Debug Support Unit)

DUT (Design Under Test)

EDA (Electronic Design Automation)

FIFO (First In-First Out)

FPGA (Field Programmable Gate Array)

FRM (First Reaction Method)

FSM (Finite State Machine)

FEvangelos Logaras 229

Using scripting languages for hardware/software co-design

FT (Flags Table)

GCC (GNU Compiler Collection)

GUI (Graphical User Interface)

HAL (Hardware Abstraction Layer)
HDL (Hardware Description Language)
HLS (High-Level Synthesis)

IC (Integrated Circuit)

IP (Intellectual Property)

JTAG (Joint Test Action Group)

JVM (Java Virtual Machine)

LUT (Look Up Table)

MAC (Multiply Accumulate)

MB (Mega Bytes)

MIRIAM (Minimum Information Required In The Annotation of Models)
Mbps (Mega bits per second)

MinSoC (Minimal OpenRISC System on Chip)
MMU (Memory Management Unit)
MSIP (Multiple Simulations In Parallel)
MTU (Minimum Time Unit)

ODE (Ordinary Differential Equations)
OOP (Object Oriented Programming)
O/S (Operating System)

PE (Processing Element)

PLD (Programmable Logic Device)

PR (Place and Route)

Evangelos Logaras 230

Using scripting languages for hardware/software co-design

RT (Reactions Table)

RTL (Register Transfer Level)

SBML (Systems Biology Markup Language)

SSA (Stochastic Simulation Algorithm)

SoC (System on Chip)

SSIP (Single Simulation In Parallel)

ST (Species Table)

SWIG (Simplified Wrapper and Interface Generator)
TCL (Tool Control Language)

UART (Universal Asynchronous Receiver Transmitter)
UML (Unified Modeling Language)

uC (microcontroller)

uP (microprocessor)

UUT (Unit Under Test)

UVM (Universal Verification Methodology)

VCD (Value Change Dump)

VT (Stoichiometry Table)

VHDL (Very high speed integrated circuit Hardware Description Language)

XST (Xilinx Synthesis Technology)

Evangelos Logaras 231

Using scripting languages for hardware/software co-design

Evangelos Logaras 232

Bibliography

1]

7]

8]

[10]
[11]
[12]
[13]

[14]

GCC, the GNU Compiler Collection. http://gcc.gnu.org/.
Python Documentation (Python 2.7). http://www.python.org.
AVR GCC library. http://www.nongnu.org/avr-libc/, 2012,

Bare-C Cross-Compiler System for LEONS. http://www.gaisler.com/index.php/ down-
loads/compilers, 2013.

Matplotlib 1.4.2 User’s Guide. http://matplotlib.org/contents.html, 2014.

OpenRisc GNU tool chain. http://opencores.org/orlk/OpenRISC_GNU _tool_chain,
2014.

SciPy 0.14.0 Reference Guide. http://docs.scipy.org/doc/, 2014.
Scrapy documentation, 2014. http://scrapy.org.

Accelera System Initiative, http://www.accellera.org/downloads/standards/. SystemC
verification 2.0, 2014.

GRMON: Debug monitor for Leon, 2012. http://www.gaisler.com.
LEON3 Multiprocessing CPU Core, 2012. http://www.gaisler.com.
Arduino embedded platform, 2014. http://www.arduino.cc.

ARM. AMBA specification v2.0. http://www.arm.com, 1999.

Aura SoC, note = https://github.com/aurabindo/aura-soc, year = 2015.

Evangelos Logaras 233

Using scripting languages for hardware/software co-design

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Victor Berman. Standards: the P1685 IP-XACT IP metadata standard. Design & Test
of Computers, IEEFE, 23(4):316-317, 2006.

Benjamin J. Bornstein, Sarah M. Keating, Akiya Jouraku, and Michael Hucka. LibS-
BML: an API library for SBML. Bioinformatics, 24(6):880-881, March 2008.

Rainer Breitling, Robin A Donaldson, David R Gilbert, and Monika Heiner. Biomodel
engineering—from structure to behavior. In Transactions on Computational Systems

Biology X1I, pages 1-12. Springer, 2010.

J. Dean Brock, Rebecca F. Bruce, and Susan L. Reiser. Using Arduino for introductory

programming courses. J. Comput. Sci. Coll., 25(2):129-130, December 2009.
Cadence Design Systems Inc. Incisive Enterprise Simulator, 2012.

Brad Chapman and Jeffrey Chang. Biopython: Python tools for computational biology.
SIGBIO Newsl., 20(2):15-19, August 2000.

Pinhong Chen, D.A. Kirkpatrick, and K. Keutzer. Scripting for EDA tools: a case
study. In Quality Electronic Design, 2001 International Symposium on, pages 87 —93,
2001.

PyCell Studio, 2012. http://www.ciranova.com.

J. Decaluwe. MyHDL: a Python-based Hardware Description Language. Linuz Journal,
2004(127):5-9, November 2004.

Digilent Inc., http://www.digilent.com. Xilinz University Program Virtex-II Pro De-
velopment System, 2005.

Digilent Inc., http://www.digilent.com. Virtez-5 OpenSPARC Ewvaluation Platform
(ML509), 2014.

Rolf Drechsler, Christophe Chevallaz, Franco Fummi, Alan J Hu, Ronny Morad, Frank
Schirrmeister, and Alex Goryachev. Future SoC verification methodology: UVM evolu-
tion or revolution? In Proceedings of the conference on Design, Automation & Test in

Europe, page 372. European Design and Automation Association, 2014.

Evangelos Logaras 234

Using scripting languages for hardware/software co-design

[27] Biomodels database - a database of annotated published models, 2012.

http://www.ebi.ac.uk/biomodels-main /.

[28] Plex: A Lexical Analysis Module for Python, 2007.
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Plex.

[29] Raul Fajardo. Minimal OpenRISC System on Chip.
http://opencores.org/project,minsoc, 2012.

[30] Hans Fangohr. A comparison of C, MATLAB, and Python as teaching languages in
engineering. In Marian Bubak, Geert van Albada, Peter Sloot, and Jack Dongarra,
editors, Computational Science - ICCS 2004, volume 3039, pages 1210-1217. Springer
Berlin, 2004.

[31] Ewing G. Plex: A Lexical Analysis Module for Python, 2007.
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Plex.

[32] W. Geirts G. Goossens, D. Lanneer and J. Van Praet. Designing ASIPs in Multicore
SoCs). Synopsys Inc., 2014.

[33] Aeroflex Gaisler. GRLIB IP Library Userés Manual v1.3.7. http://www.gaisler.com,
2014.

[34] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. The Journal of Physical Chemistry A,

104(9):1876-1889, 2000.

[35] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,
58:35-55, 2007.

[36] Daniel T. Gillespie. Markov processes : an introduction for physical scientists. Academic

Press, Boston, San Diego, New York, 1992.

[37] R. C. Gonzalez and R. E. Woods (2nd Edition). Digital Image Processing, chapter
Image Enhancement in the Spatial Domain. Prentice-Hall, 2002.

[38] GTKWave waveform viewer, 2012. http://gtkwave.sourceforge.net.

Evangelos Logaras 235

Using scripting languages for hardware/software co-design

[39]

[41]

[42]

[47]

[48]
[49]
[50]

[51]

P. Haglund, O. Mencer, W. Luk, and B. Tai. PyHDL: Hardware scripting with Python.
In Proc. International Conference on Field Programmable Logic (FPL), pages 1040
1043, 2003.

O. G. Hazapis and E. S. Manolakos. Scalable FRM-SSA SoC design for the simulation
of networks with thousands of biochemical reactions in real time. In Proc. International

Conference on Field Programmable Logic and Applications (FPL), pages 459-463, 2011.

O.G. Hazapis, E. Logaras, and E.S. Manolakos. A soft IP core generating socs for the
efficient stochastic simulation of large Biomolecular Networks using FPGAs. In Proc.
IEEE International Conference on Electronics, Circuits and Systems (ICECS), pages
77-80, 2012.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, and H. Kitano. The
Systems Biology Markup Language (SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics, 19(4):524-531, 2003.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science € Engi-
neering, 9(3):90-95, 2007.

IEEE, https://standards.ieee.org. 1666-2011 - IEEE Standard for Standard SystemC

Language Reference Manual, 2011.
Atmel Inc. ATmega128 AVR 8-bit microcontroller. http://www.atmel.com/, 2011.

Berkeley Design Technology Inc. High-Level Synthesis Tools for Xilinz FPGAs.
http://www.bdti.com, 2010.

Xilinx Inc. Virtex-5 Libraries Guide for HDL Designs.
http://www xilinx.com/itp /xilinx9/books/docs/v5ldl/v5ldl.pdf.

Xilinx Inc. LogiCORE IP CORDIC v4.0. http://www.xilinx.com, 2011.
Xilinx Inc. LogiCore IP DSP/8 Macro. http://www.xilinx.com, 2011.
Xilinx Inc. ISim user guide. http://www.xilinx.com, 2012.

Xilinx Inc. LogiCORE IP FIFO Generator v9.3. http://www.xilinx.com, 2012.

Evangelos Logaras 236

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Using scripting languages for hardware/software co-design

Xilinx Inc. ChipScope Pro software and cores user guide. http://www.xilinx.com, 2014.

Xilinx Inc. Xilint CORE Generator System. http://www.xilinx.com/tools/coregen.htm,
2014.

Keerthan Jaic and Melissa C Smith. Enhancing Hardware Design Flows with My-
HDL. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 28-31. ACM, 2015.

Wido Kruijtzer, Pieter van der Wolf, Erwin de Kock, Jan Stuyt, Wolfgang Ecker, Al-
brecht Mayer, Serge Hustin, Christophe Amerijckx, Serge de Paoli, and Emmanuel
Vaumorin. Industrial IP integration flows based on IP-XACT standards. In Design,
Automation and Test in Europe, 2008. DATE’08, pages 32-37. IEEE, 2008.

Damjan Lampret. OpenRISC1200 IP core specification v0.7. http://opencores.org,
2001.

Chen Li, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri, Lukas Endler, Vijayalak-
shmi Chelliah, Lu Li, Enuo He, Arnaud Henry, Melanie I Stefan, et al. BioModels
Database: An enhanced, curated and annotated resource for published quantitative

kinetic models. BMC systems biology, 4(1):92, 2010.

Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL: A Unified Frame-
work for Vertically Integrated Computer Architecture Research. In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on, pages 280-292.
IEEE, 2014.

Derek Matthew Lockhart. Constructing Vertically Integrated Hardware Design Method-
ologies Using Embedded Domain-Specific Languages And Just-In-Time Optimization.
PhD thesis, Cornell University, 2015.

E. Logaras and E. S. Manolakos. SysPy: using Python for processor-centric SoC design.
In Proc. IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 762-765, 2010.

Evangelos Logaras 237

Using scripting languages for hardware/software co-design

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[70]

[71]

Evangelos Logaras, Orsalia G. Hazapis, and Elias S. Manolakos. Python to accelerate
embedded SoC design: A case study for systems biology. ACM Trans. Embed. Comput.
Syst., 13(4):84:1-84:25, March 2014.

K. Jarrod M. and M. Aivazis. Python for Scientists and Engineers. Computing in
Science Eng., 13(2):9 12, March 2011.

A. Mashtizadeh. PHDL: A Python hardware design framework. Master’s thesis, ECE
Dept. MIT, 2007.

Wes McKinney. Data structures for statistical computing in Python. In Proc. 9th
Python Sci. Conf, pages 51-56, 2010.

O. Mencer, M. Morf, and M. J. Flynn. PAM-Blox: High performance FPGA design
for adaptive computing. In Proc. IEEE Symposium on FPGAs for Custom Computing
Machines, pages 167-174, 1998.

ModelSim HDL simulator, 2012. http://model.com.

U. Meyer-Base, A. Meyer-Base, and W. Hilberg. COordinate Rotation DIgital Com-
puter (CORDIC) synthesis for FPGA. In ReinerW. Hartenstein and MichalZ. Servvt,
editors, Field-Programmable Logic Architectures, Synthesis and Applications, volume

849 of Lecture Notes in Computer Science, pages 397-408. Springer Berlin Heidelberg,
1994.

Prabhat Mishra and Nikil Dutt. Architecture description languages for programmable
embedded systems. IEE Proceedings-Computers and Digital Techniques, 152(3):285—
297, 2005.

Chris J. Myers. Engineering Genetic Circuits. Chapman and Hall/CRC mathematical
& computational biology series. CRC Press, 2009.

Chris J. Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen, and
Nam-Phuong D. Nguyen. iBioSim. Bioinformatics, 25(21):2848-2849, November 2009.

The MyHDL manual, 2015. ”http://www.myhdl.org.

Evangelos Logaras 238

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

Using scripting languages for hardware/software co-design

Nicolas Le Novere, Andrew Finney, Michael Hucka, Upinder S Bhalla, Fabien Cam-
pagne, Julio Collado-Vides, Edmund J Crampin, Matt Halstead, Edda Klipp, Pedro
Mendes, et al. Minimum information requested in the annotation of biochemical mod-

els (MIRIAM). Nature biotechnology, 23(12):1509-1515, 2005.
Open source hardware IP-cores. http://opencores.org.

OpenCores. WISHBONE B4 System-on-Chip (SoC)Interconnection Architecturefor
Portable IP Cores. http://opencores.org/project,minsoc, 2010.

OpenCores. MinSoC subversion repository, bin2init.py script.

http://opencores.org/websvn, listing?repname=minsoc, 2013.
Atmel Megal28 processor core, 2009. http://opencores.org/project,avr_core.

Jingzhao Ou and Viktor K. Prasanna. PyGen: A Matlab/Simulink based tool for
synthesizing parameterized and energy efficient designs using FPGAs. In Proc. In-

ternational Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 47-56, 2004.

Eleftherios Ouzounoglou, Dimitrios Kalamatianos, Evangelia Emmanouilidou, Maria
Xilouri, Leonidas Stefanis, Kostas Vekrellis, and Elias S Manolakos. In silico modeling

of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis.

BMC systems biology, 8(1):54, 2014.

Mario Pineda-Krch. GillespieSSA: Implementing the Gillespie Stochastic Simulation
Algorithm in R. Journal of Statistical Software, 25(12):1-18, 4 2008.

Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gillespie. Stiffness in
stochastic chemically reacting systems: The implicit tau-leaping method. The Journal

of Chemical Physics, 119(24):12784-12794, 2003.

Sharon Rosenberg and Kathleen Meade. A practical guide to adopting the Universal
Verification Methodology (UVM). Cadence Design Systems, 2013.

Evangelos Logaras 239

Using scripting languages for hardware/software co-design

[82]

[83]

[84]

[85]

[86]

[87]
88
[89]

[90]

[91]

[92]

[93]

[94]

[95]

Martin Schoeberl, Stephan Korsholm, Tomas Kalibera, and Anders P. Ravn. A Hard-
ware Abstraction Layer in Java. ACM Transactions on Embedded Computing Systems,

10(4):1-40, November 2011.

Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. OpenStack: toward an
open-source solution for cloud computing. International Journal of Computer Applica-

tions, 55(3):38-42, 2012.

Snapgear Linux for LEON, 2008. http://www.gaisler.com/anonftp/linux/linux-
2.6 /snapgear/snapgear-manual-1.0.37.pdf.

Stochastic modelling in Python, 2012. http://stompy.sourceforge.net/.

Simplified Wrapper and Interface Generator (SWIG), 2015.
https://github.com/swig/swig.

High Level Synthesis with Synphony C compiler, 2012. http://www.synopsys.com.
System Python, 2012. http://cgi.di.uoa.gr/~ evlog/syspy.html.

SysPy Git code repository, 2015. https://github.com/evlog/SysPy.

Viper: Python embedded real-time development, 2014.
http://http://viper.thingsoninternet.biz/.

Jack E. Volder. The CORDIC trigonometric computing technique. Electronic Comput-
ers, IRE Transactions on, EC-8(3):330-334, Sept 1959.

J. S. Walther. A unified algorithm for elementary functions. In Proceedings of the May
18-20, 1971, Spring Joint Computer Conference, AFIPS °71 (Spring), pages 379-385,
New York, NY, USA, 1971. ACM.

System Generator for DSP, UG640, 2009. http://www.xilinx.com.

Xilinx Synthesis Technology User Guide, UG627, 2009. http://www.xilinx.com.

M. Yoshimi, Y. Iwaoka, Yuri Nishikawa, T. Kojima, Y. Osana, A. Funahashi, N. Hiroi,

Y. Shibata, N. Iwanaga, H. Yamada, H. Kitano, and H. Amano. FPGA implementation

FEvangelos Logaras 240

Using scripting languages for hardware/software co-design

of a data-driven stochastic biochemical simulator with the Next Reaction Method. In
Field Programmable Logic and Applications, 2007. FPL 2007. International Conference
on, pages 254-259, 2007.

[96] M. Yoshimi, Y. Osana, Y. Iwaoka, Y. Nishikawa, T. Kojima, A. Funahashi, N. Hi-
roi, Y. Shibata, N. Iwanaga, H. Kitano, and H. Amano. An FPGA implementation
of high throughput stochastic simulator for large-scale biochemical systems. In Field

Programmable Logic and Applications, 2006. FPL ’06., pages 1 -6, aug. 2006.

[97] M. Zhang, S.L. Tu, and Z.L. Chai. PDSDL: A dynamic System Description Language.
In IEEE Int’l SoC Design Conference, volume 1, pages [-204-1-209, November 2008.

FEvangelos Logaras 241

