NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Advance BPEL execution adaptation using QoS parameters
and collaborative filtering techniques

Dionisios D. Margaris

ATHENS

DECEMBER 2014

EONIKO KAI KATMOAIZTPIAKO MNMANENIZTHMIO AOGHNQN

2XOAH OETIKQN EMIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNION

NMPOrPAMMA METANTYXIAKQN 2MOYAQN

AIAAKTOPIKH AIATPIBH

Mponypéveg TEXVIKEG TTPOCAPHOYNG EKTEAEONG OEVAPIWY
BPEL pe xpnon TTapapETPWY TTOIOTIKWYVY XOPOAKTNPIOTIKWYV
KOl TEXVIKWYV CUVEPYATIKOU QIATPAPIOHATOG

Aiovuoiog A. Mdpyapng

AOHNA

AEKEMBPIOZ 2014

PhD THESIS

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering

techniques

Dionisios D. Margaris

SUPERVISOR: Panayiotis Georgiadis, Professor Emeritus NKUA

THREE-MEMBER ADVISING COMMITTEE:

Panayiotis Georgiadis, Professor Emeritus NKUA

Stathes Hadjiefthymiades, Associate Professor NKUA

Costas Vassilakis, Associate Professor University of Peloponnese

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature)

Panayiotis Georgiadis,
Professor Emeritus NKUA

(Signature)

Costas Vassilakis,
Associate Professor University of
Peloponnese

(Signature)

Georgios Doukidis,
Professor AUEB

(Signature)

Nikolaos Tselikas,
Assistant Professor University of
Peloponnese

(Signature)

Stathes Hadjiefthymiades,
Associate Professor NKUA

(Signature)

Stefanos Gritzalis,
Professor University of the Aegean

(Signature)

Panagiotis Stamatopoulos,
Assistant Professor NKUA

Examination Date __/_ /2014

AIAAKTOPIKH AIATPIBH

Mponyuéveg TEXVIKEG TTPOCAPHOYNG EKTEAEONG oevapiwv BPEL pe xprion TapapéTpwy
TTOIOTIKWYV XAPAKTNPIOTIKWY KAl TEXVIKWY CUVEPYATIKOU QIATPAPIOUATOG

Aiovuoiog A. Mdpyapng

EMIBAENQN KAOHIHTHZ: NMavayiwTtng Newpyiadng, Ouotiyog Kabnyntig EKMA

TPIMEAHZ ENITPOIMNH NAPAKOAOYOHZHZ:
MavayiwTtng Mewpyiadng, Opotipog Kabnyntig EKMA
EvoTtdfiog Xar{neuBupiadng, AvarmAnpwthc Kabnyntig EKMA
KwvoTavtivog BaolAdakng, AvamAnpwtn¢ Kadnyntig MNavemoThApio
MeAotTovvricou

ENTAMEAHZ EZETAZTIKH ENITPOIMNH

(Ymoypaen) (Ymoypaer)
NavayiwTng Newpy1adng, EuoTtdfiog Xar{neuBupiddng,
OpoéTipog Kadbnyntig EKIMA AvarrAnpwTtig Kabnyntiig EKMA

(Ymroypaen) (Ymroypaen)
KwvoTavtivog BaolAdkng, Zré@avog NkpitdaAng,
AvatrAnpwTtig Kabnyntig Kafnyntng MavetmioTnuiou Alyaiou

MavemoTtnuiou MeAotrovvoou

(Ymroypaen) (Ymroypaen)

Mewpylog Aoukidng, MavayiwTng ZTapaToToUAOoG,
Kafnyntng OMNA Etrikoupog Kadnyntrg EKIMA
(Ymoypaen)

Nik6Aaog ToeAikag,
Erikoupog Kabnynrtig Mavemortnuiou
MeAotTOVVRHOOU

Huepopnvia e&étaong __ /12014

ABSTRACT

Web Services are considered a dominant standard for distributed application
composition and communication over the Internet. Consumer applications can locate
and invoke complex functionality, through widespread XML-based protocols, without
any concern about technological decisions or implementation details on the side of the
service provider. Web Services Business Process Execution Language (WS-BPEL)
allows designers to orchestrate individual services so as to construct higher-level
business processes; the orchestration specification is expressed in an XML-based
language, and it is deployed in a BPEL execution engine, made thus available for

invocation by consumers.

WS-BPEL has been designed to model business processes that are fairly stable,
and thus involve the invocation of web services that are known beforehand. Therefore,
the BPEL scenario designer specifies, at the time the scenario is crafted, the exact
services to be invoked for the realization of the business process. This setting is
however considered inadequate in the context of the current web: many functionalities
offered by the services invoked within the scenario (e.g. checking for free rooms in a
hotel or booking an air flight) are typically offered by numerous providers (different
hotels and flight companies, respectively), and each provider offers its service under
different quality of service (QoS) parameters. In this environment, it would be highly
desirable for consumers to be able to tailor the WS-BPEL scenario execution according
to their QoS requirements. Indeed [2], lists governance for compliance with QoS and

policy requirements as an open issue for the SOA architecture.

To tackle this shortcoming, numerous approaches have been proposed, following
two main strategies: (i) horizontal adaptation, where the composition logic remains
intact and the main adaptation task is to select the service and invoke the service best
matching the client’s QoS requirements; the selected services are substituted for either
abstract tasks or concrete service invocations and (ii) vertical adaptation, where the
composition logic may be modified. The incorporation of run-time adaptation introduces
the need for service selection affinity maintenance: service selection affinity refers to
cases where a service selection in the context of adaptation implies the binding of
subsequent selections (e.g. selecting a hotel reservation from a travel agency dictates
that the payment will be made to the same travel agency), to cater for preserving the

transactional semantics that invocations to a specific service provider may bear.

QoS-based service selection, however, limits the adaptation criteria to aspects such
as cost, availability and performance, not being able to take into account the satisfaction
of service users “in the real world”; for instance, an airline company may offer low fares
and a short trip duration, but the actual traveling experience may be very poor, an
aspect not reflected in QoS attributes and therefore unavailable for the purposes of
adaptation. On the other hand, collaborative filtering combines the informed opinions of
humans (i.e. opinions taking into account the aspect of satisfaction), to make
personalized, accurate predictions and recommendations. In the context of collaborating
filtering, personalization is achieved by considering ratings of "similar users" (in our
case a user is considered to rate a service favorably if she actually uses it or explicitly
grades it with a high grade), under the collaborative filtering’s fundamental assumption
that if users X and Y have similar behaviors (e.g., buying, watching, listening — in our

case, selecting the same services) on some items, they will act on other items similarly.

Under this light, a prominent approach would be to combine QoS-based service
selection with collaborative filtering to perform adaptation based on both objective data
(QoS attributes) and subjective ratings (quality of experience). Similarly, the
combination of content-based filtering with collaborative filtering has been proposed in a

number of works.

An additional issue that needs to be taken into account is that in some cases, users
may desire to select the exact services to be invoked for some cases and ask for
recommendations on other services; for instance, in a holiday planning application, the
user may require that reservation is made in a particular hotel, while at the same time
asking for a recommendation about the airline. Once a user has made some explicit
service selections, the combined approach can be used to make recommendations on

the services that the user has not bound to specific providers.

Furthermore, the system may monitor the actual behavior of the services regarding their
QoS characteristics (e.g. response time and availability), as opposed to the ones
declared by their provider e.g. in an SLA statement, and collect feedback from the users
concerning the degree to which they were satisfied by the services proposed to them.
These data can be used as additional input to the adaptation process, penalizing
services exhibiting negative QoS deviations and/or leaving users dissatisfied, and
rewarding services favorably ranked by users and/or being consistent with their

declared QoS values (or even surpassing them).

In this thesis, frameworks for providing runtime adaptation for BPEL scenarios are
proposed. The adaptation is based on (a) quality of service parameters of available web
services (b) quality of service policies specified by users and (c) collaborative filtering
techniques, allowing clients to further refine the adaptation process by considering

service selections made by other clients.

Moreover, the final proposed framework includes mechanisms for monitoring the
behavior of the invoked services regarding their QoS aspects, collecting user
satisfaction feedback about the invoked services and taking these data into account
when formulating recommendations; it also caters for maintaining the transactional
semantics that invocations to multiple services offered by the same provider may bear.
Finally, performance, as well as qualitative, metrics for the proposed frameworks are

presented, which validate its applicability to operational environments.

SUBJECT AREA: Web Services

KEYWORDS: Adaptation; Equivalent web services; Exception handling; Collaborative

filtering; Performance evaluation; Quality of Service (QoS); User rating

NEPIAHWYH

O1 utnpeoieg d1adiKTUOU BewpouvTal KUpPIapXo TIPOTUTTO YIa TNV ETTIKOIVWVIA KAl
ouvBeon Kataveunuévwy e@apuoywyv Péow Tou dladikTuou. O epappoyég-
€EUTTNPETOUNEVOI PTTOPOUV EVTOTTIOOUV Kal va KOAEOOUV TTOAUTTAOKEG AEITOUPYIEG,
xpnoigotroiwvtag dladedopéva TTPpwTOKOAAa XML, xwpi¢ va ermmpedalovral amd Tig
TEXVOAOYIEG TTOU XPNOIKOTTOIOUVTAl OTNV TTAEUPA TOU TTAPOXOU TWV UTTNPECIWV 1 TIG
AetrTopépeieg uAotroinong Twv utnpeociwv. H yAwooa WS-BPEL (Web Services
Business Process Execution Language — [Awooa €KTEAEONG ETTIXEIPNOIOKWY
OI0dIKOOIWY PEOW UTINPEECIWV OIadIKTUOU) E€TITPETTEl OTOUG OXEDIOOTEG VA
EVOPXNOTPWVOUV UEUOVWHEVEG UTTNPECIEG, OUTWG WOTE VA CUVBECOUV ETTIXEIPNOIAKES
dladikaoieg uwnAdTepou emmmédou. H mrpodiaypa®ry TNG €VOPXNOTPWONG AUTAG
ekppaletal oe uia yAwooa Baoiopévn otnv XML kai n TTapaywyikrp TG Aeiroupyia
avaTtiBetal og pia pnyxavr) ektéAeong BPEL, étmou kai kaBiotarar diaB€oiun yia KAAon

aTTd TOUG KATAVOAWTEG.

H WS-BPEL £xel oxedlaoTei yia T HOVTEAOTTOINGN TWV ETTIXEIPNTIAKWY O1adIKACIWY TTOU
gival apkeTd oTaBePEG, KAl WG €K TOUTOU O UTTNPECieg O1adIKTUOU TTOU TIG OUVBETOUV
€ival YVWOTEG €K TwWV TTPOTEPWYV. Katd ouvétrela, o oxedlaoThg Tou oevapiou BPEL
KaBopilel, KaTG TOV XpOVO OUYYPA@NG TOU OEVAPIOU, TIG CUYKEKPIUEVEG UTTNPETIEG TTOU
Ba kAnBouv yia Tnv uAoTroinon Tng emxeipNolaknG dladikaoiag. AuTth n OIeuBEéTnon
BewpeiTal WOTOCO AVETTAPKAG OTO TTAQICIO TOU TPEXOVTOG BIadIKTUOU, KABWG TTOAAEG
AEITOUPYIKOTNTEG TTOU TTPOCPEPOVTAl ATTO TIG UTTNPECIEG TTOU KAAOUVTAI OTA TTAQiCIO TOU
BPEL oevapiou (11.X. £€AeyX0g yia dlaBéoiya dwPATIa o€ éva Eevodoxeio i KpATNON MIag
QEPOTTOPIKAG TITAONG) oOuvhRBwg Tpoc@EépovTal ammd TTOAUGPIBUOUG TTapdXOUg
(Sr1apopeTikG Eevodoxeia Kal agPOTTOPIKEG ETAIPIES, AVTIOTOIXA), KOl KABEVAG TTAPOXOS
TTPOCQEPEl TIG UTTNPECIEG TOU OF€ OIAPOPETIKEG TTAPANETPOUG TTOIOTNTAG UTINPECIWV
(Q0S). Ze autd 1o TEPIBAAAOV, Ba ATav 1BIAITEPA ETTIOBUUNTO YIA TOUG KATAVOAWTEG va
gival o€ Béon va TTpocapudoouy Tnv ekTéAeon Tou oevapiou WS-BPEL, cup@wva pe TIg
ATTAITACEIS TOUG O XAPAKTNPIOTIKA TTOIOTATAG UTINPEECIOG. ZNUEIWVETAlI OTI OTO [2], N
EMPOA OUPUOPPWONG ME ATTAITACEIG TTOIOTNTAG UTTNPECIOG KAl TTONITIKEG
OUYKOTOAEYETAI QVAPECO OTA AVOIKTA (NTAMATA TTOU QQOPOUV TNV UTINPECIOOTPEPN

apxitektovikn (SOA).

Ma TNV QVTIHETWTTION TOU avwTépw TTPORAAUATOG, €XOuv TTPOTOBEl TTOAAEC

TTPOOCEYYIOEIG, TTOU OKOAOUBOUV dUO KUpPIEG OTPATNYIKEG: (i) TNV opIdovTia TTpooapuoyn,

OTTOU N AoyIKN TNG oUvBeong Oev TPOTTOTTOIEITAI KAI N KUPIO EPYQCia TNG TTPOCAPHUOYNAS
gival va emmAECEl Kal va KOAEOEI TNV UTINPEECIa TTou Taipidlel KAAUTEPQ OTIC OTTAITHOEIG
TTOIOTNTAG UTINPECIAG TOU TIEAATN (01 ETTIAEYMEVEG UTTNPECIEG QAVTIKOBIOTOUV EiTE
APNPNMEVEG EITE CUYKEKPIMEVEG KANOEIG UTTNPECIWY TTOU UTTAPXOUV OTO OPXIKO OEVAPIO)
kai (i) TNV karaképuen mpooapuoyn, 0TTou n Aoyik TG ouvBeong eivar duvatd va
TpotToTroINGei. H evowpdTwon TG TTPOCAPUOYNS KATA ToV XPOVo eKTEAEONG YEVVA TNV
avaykn yia diatrpenon Tng Cuvdagelag oTnv €TMAOYA TWV UTTNPECIWYV: N dIaTHPNoN NG
OUVAQPEING AVOPEPETAl OTIG TTEPITITWOEIG OTTOU N TTPAYUATOTIOINCN MIOG ETTIAOYAG, OTA
TTAQioIa TNG TTPOCAPHOYNAG, €l0Gyel DECUEUOEIS AVOPOPIKA HE TIG UETETTEITA ETTIAOYEG
(1r.x. av €mMAeXOei n TTpayparotmoinon KpdTtnong dwpuatiou {evodoxeiou HECW UTTNPETIAg
EVOG OUYKEKPIUEVOU TALIDIWTIKOU ypaPeiou, Ba TTPETTEI KAI N YETETTEITA TTANPWHN VA YiVEl
OTNV QvTioToIXN UTInPecia Tou idlou TagIdIWTIKOU ypageiou), €101 WOTE va An@oOei
MEpIUvVA yia Tn dlaThPNOoN TNG AOYIKAG «EKTEAEONG BOCOANWIOG» TTOU UTTOVOOUVTAI OTTO
TOV TTPOCBIOPICHO TTOAAATTAWY KANOEWV UTTNPECIWY BIAdIKTUOU TTPOG TOV idI0 TTAPOXO

UTTNPECIWV.

H emAoyr pe BAon Ta XapakTnPIOTIKA TTOIOTATAG UTTNPECIAG, WOTOOO0, TTEPIOPICE!
Ta KPITHPIA TTPOCAPHOYNG OE TTAPANETPOUG OTTWG TO KOOTOG, TN dIABECINOTNTA KAl TNV
ammodoon kai dev gival oe B€on va AAGBel uttdYWn TNV IKAVOTTOINON TwV XPNOTWV TG
UTTNPECIAG "OTOV TTPAYHATIKO KOOHO". Ta TTapAdeIyua, Yo AgPOTTOPIKA ETAIPEIA UTTOPEI
Va TTPOCQEPEI XOUNAEG TIMEG KAl PIKPNG OIAPKEIAG TAgidIA, aAAG n TTPAYHATIKA EUTTEIpIA
TagIOI0U pTTOPEI va €ival TTOAU KaKr, MIO TITUXH TTOU OV AVTIKATOTITPICETAI OTA
XOPAKTNPIOTIKA TTOIOTNTAG UTTNPECIAG KAl WG €K TOUTOU dev gival dlaBéoiun oTa TTAdioia
NG TTPOCAPHOYNAG.
ATO TNV GAAn TTAEupd, TO OuvePyaTIKO QIATPApIoua OUVOUACLEl TIG EUTTEPIOTATWHEVEG
aTmoYEIS Twv avBpwTtwy (dnAadr atmowelig Tou Aaufdvouv uttdéwn TNV TITUXN TNG
IKAVOTTOINONG), TTPOKEIUEVOU VA TTPOREI 0€ EEATOUIKEUMEVES KAl aKPIBEIG TTPOBAEWEIS Kal
OUOTAOEIS. 2TO TIAQIOIO TOU OUuveEPYATIKOU QIATPOPIOPOTOG, N €EaTOMiKEUON
ETMTUYXAVETAI AQUBAvovTag uttown TIG agIOAOYAOEIG TwV "TTApOPOoIWY XpNoTwv" (0TNV
TEPITITWON PAG O XPNOoTNG Bewpeital TTwg PaBUOAOYNOE Wi UTTNPECIQ EUVOIKA av Tn
XPNOIMOTIOIEl OTNV TTPAYMATIKOTATA A av pnTwg Tn atmédwoe uwnAn Baduoloyia),
oUP@wWva JE Tn BepeAIdN apyr Tou ouvepyaTikoU QIATPAPICHATOG, OTI av o1 XproTeg X
Kal Y €Xouv TTOPOMOIEG CUUTTEPIPOPES (TT.X., OTIG AYOPEG, T BeduaTa 1} T AKOUOUATA
TOUG - OTNV TIEPITITWON MAG, OTNV €AY Twv idlwv UTINPECIWY) Yia OpIoPEVa

QVTIKEIPEVA, TOTE Ba OpouV PE TTaPOPOIO TPOTTO Kal 0€ AANG AVTIKEIYEVA.

Ymé 10 TIpioua autd, pia Tpdo@opn TTpocéyyion Ba ATav va ouvOuaoTEl n
emAoyry pE PBAon Ta XOPAKTNPEIOTIKA TTOIOTNTAG UTINEECIAC HME TO OUVEPYATIKO
QIATPAPIOUA, WOTE N TIPocapoyr va PBacietar T000 0€ AVTIKEIUEVIKA OeOOUEVA
(XapakTNPIOTIKA TTOIOTATOG UTTNPECIAG), 00O KOl UTTOKEIPEVIKEG AEIOAOYAOEIG (TTOIOTNTA
NG euTTEIpiag). lMapopoiwg, o pia oeIpd €PEUVNTIKWY Epyaciwy EXEl TTPOTABEI O
ouvOUuaouOG TOou QIATpapiopaTog peE PAon TO TIEPIEXOMEVO HE TO OUVEPYATIKO

QIATPpApIoHQ.

‘Eva mpdoBeto (ATNUa TToU TTPETTEl va €EeTa0BEl gival OTI, O€ OPIOUEVEG
TTEPITITWOEIG, Ol XPHOTEG UTTOPEI va €TTIOUPOUV TNV ETTIAOYI CUYKEKPIPMEVWVY UTTNPECIWV
TTPOG KAAON, EVW OE OPIOUEVEG AAANEG va {NTHOOUV OUCTACEIS VIO KATTOIEG UTTNPETIEG.
MNa Tapadeiyya, o€ MIA €Qapuoyry oxedlaopou OIOKOTTWY, O XPAOTNG MTTOPEi va
ATTAITAOEI N KPATNON VA YivEl 0 €va OUYKEKPIYEVO CEVODOXEID, €V TAUTOXPOvVA VO
(NTAoEI oUOTAON OXETIKA PE TNV AEPOTTOPIKA eTaIpEgia. MOAIG évag XpAOTNG KAVEI KATTOIEG
OUYKEKPIMEVEG ETTIAOYEG UTINPECIWY, N OUVOUAOMEVN TTPOCEYYION UTTOPEI va
XPNOIMOTIOINBEI yIa va dIOUOPPWOEI CUOTACEIG OXETIKA PE TIG UTTNPETIEG TTOU O XPNOTNG

OeV €XEI QVTIOTOIXIOEI 0E€ OUYKEKPIMEVOUG TTAPOXOUG.

Emimrpdo0BeTa, TO0 oUOTNUA PTTOPEI va TTAPAKOAOUBEI TNV TTPAYUATIKA CUUTTEPIPOPA TWV
UTTNPECIWV AVOQOPIKA PE TA XAPOKTNPIOTIKA TTOIOTNTAG UTTNPECIAG TTOU TTAPEXOUV (TT.X.
XPOVOG aTToKpIong Kal dlaBeaiudtnTa), o€ avTidlIaoTOAr PE autd TTou dnAwvovTal aTTd
TOUG TTAPOXOUG TOUG, TI.X. EVTOG HI0G dNAwong Zupgwviag Emimédou Ytnpeoiag (SLA).
Emiong, 10 ouotnua Ouvartal va OUAAEyEl avaTpo@odoTnon atmod Toug XPHOTEG
ava@opIKG pe Tov BaBud IKavoTToinor G TOug atro TIG UTTNPECIEG TTOU TOUG TTPOTABNKAV.
Ta dedouéva autd pTTopolv va atroTeAécouv TTPOoBeTn €icodo yia 1n diadikacia
TTPOCOAPUOYNG, N OToid Ba OTTOPEIWVEl TNV AgloAdynon KATaAANASGTNTAG via TIG
UTTNPECIEG TTOU ETTIBEIKVUOUV UTTOBABIOUEVN TTOIOTNTA UTTNPECIOG O€ OXEON ME TN
onAwBeioa r)/kar agiohoyouvTtal apvnTIKG atrd TOUG XPNOTES, EVW —AVTIOTPOPA- UTTOPEI
va emBpaBevel TIC uTnpecieg TTou €mMOEIKVUOUV OUVETT) (] KOl UTTEPTEPQ)
XOPAKTNPIOTIKA TTOIOTNTAG UTTNPECIag o€ oxéon ME Ta dnAwBEvTa ri/kal agloAoyouvral

BETIKA aTTd TOUG XPOTEG.

21NV TTapouca gpyacia, TTpoTeivovTal TTAaiola TTou TrepIAauBdavouy Tnv TTpocapuoyr TNG
ekTéAeong oevapiwv BPEL oe mpaypatikd xpovo. H mpooappoyry Baciletal (a) o€
XOPAKTNPIOTIKA TTOI0TNTOG UTTNPECIOG Twv OI0BECINWY TTAPEXOPEVWY UTTNPECIWV
O1adIKTUOU (B) o€ TTONITIKEG TTOIOTNTAG UTTNPETIag TTou KaBopilovtal atrd Toug XPROTES

Kal (y) O€ TEXVIKEG OUVEPYATIKOU QIATPAPIOPATOG, EMITPETTOVIAG OTOUG TTEAATEG VA

EKAETTTUVOUV TrepaITépw TR Oladikacia TTpocapuoyng, €EETACOVTAG TIG ETTIAOYEG

UTTNPECIWYV TTOU £yivav attd AAAOUG TTEAATEG OTO TTAPEABOV.

EmmAéov, Ta TTpoTEivVOUEVA TTAQiOIO PEPIMVOUV yia Tn dlaTpNoNn TnG onuacioloyiag
«EKTEAEONG OOCOANWIWYV» TIOU UTTOVOOUVTAl aTmd TOV TTPOCBIOPIOHO TTOAAATTAWYV
KANoEWV uTTNPEcIwV dIadIKTUoU TIPOG Tov idlIo TTAPOXO UTINPEECIWV. TO TEAIKO
TTPOTEIVOUEVO TTAQiOIO TTEPIAAPPBAVEI PnXaviIoOPoUG yia Tnv TTapakoAouBnon Tng
OUMPTTEPIPOPAG TWV KAAOUPEVWYV UTTNPECIWY, OO0V a®opd TIG TITUXEG TWV
XOPAKTNPIOTIKWY TTOIOTNTAG UTTNPECIAG TTOU ETTITUYXAVOUV, KaBWG Kal TR CUAAoyR Tou
EMTTEDOU TNG IKAVOTTOINONG TWV XPNOTWYV OXETIKA HE TIC KAAOEIG TwV UTTNPECIWY Kal

AauBavel autd Ta dedouéva UTTOWN KATA TN dnuIoupyia cUCTACEWV.

TéNog, TTapoucialovtal PETPIKEG €IOO0EWY, TOOO OO0V aPOPA TOV XPOVO €EKTEAEONG
000 Kal gTNV TToIOTNTA TWV CUVBECEWY TTOU SIAPOPPUVOVTAI KATA TNV TTPOCAPHOYH, VIO
Ta TTPOTEIVOUEVA TTAQICI, OI OTTOiEG KATAdEIKVUOUV TN duvaTOTNTA £QAPUOYNS TOUG OF

AEITOUPYIKA ETTIXEIPNOIAKA TTEPIBAAAOVTA.

OEMATIKH NEPIOXH: Ytnpeoieg AladikTUOU
AEZEIX KAEIAIA: Tlpooappoyr, looduvaueg utinpecieg OladIKTUOU, XEIPIOPOG
eCaipéoewy; ZuvepyaTikd @IATpdpioua, AgloAdynon amédoong, lMoidtnta utrnpeciag,

A&loAbynon xpnoTwy;

EYXAPIZTIEZ

OAokAnpwvovTag Tn d16aKTOPIKN Hou dlaTtpIfr, Ba ABeAa apxIKd va €uxapioTHOW TOUG

KaBnynTéG TTou TNV eTTERAEWAV.

MpwTta amd oAa, tov KaBnynt pou, Mavayiwtn Mewpyiddn, apxiKa yia TIG APETPNTES
OUVAVTAOEIG, WEXPI VO KATOAALOUUE OTO (evBIaQEPOV €PEUVNTIKA KAl TTPOOWTTIKA) BEua
autng TG dIatpIfAG Kal yia Tnv TTIARPN Katavonon Kal aveCAviAnTn apwyrh Tou,
ETTIOTNMOVIKH Kal avBpwTTivn, o€ OAa Ta TTPOBARUATA TTOU TTOPOUCIACTNKAV OTN dIGPKEIA
TNG OIOOKTOPIKNAG UOU TTOPEIaG. ATTOTEAET yIa PEVA TTPOTUTTO TTAVETTIOTNUIOKOU dAOKAAOU

Kal ailocBdvopual xapd kai iy Tou uttTApéa uabnTrg Tou.

Tov AvarmAnpwTth KaBnynt Tou Mavetmmotnuiou MeAotrovvricou KwoTta BaoiAdkn, Tou
QUOTUXWG BEV €ixa TNV TUXN VA TOV £XW KABNYNTH OTIG TIPOTITUXIOKEG KAl JETATTITUXIOKEG
Mou o1moudég. O Kog BAoIAGKNG PE TNV ETTIOTAPOVIKA EUTTEIPIA KAl Epyacia, aAAG cuvaua
QUECOTNTA KAl ATTOTEAEOUATIKOTNTA, UTTAPEE évag ammd TOoug PACIKOUG TTAPAYOVTEG

oAoKAPWONG AUTAG TNG £pyaciag.

Tov AvatmAnpwtr) KaBnyntr Tou lMavemoTtnuiou ABnvwy 21Gd0n Xat¢neuBuuiadn, Tou,
Tépav Twv AAAwv, ATaV O TTPWTOG TTOU Pou didate To evOIAPEPOV AVTIKEIMEVO TWV

Epapuoywv AiadikTuou, BePaTiKA TTEPIOXN OTNV OTToia EVTACOETAI N dIaTPIRH Hou.

‘Eva peydAo euxapioTw Kal otov agipyvnoto Kabnynti ApakoUuAn Maptdko, yia TIg
TTOAUWPESG oulnTNOEIG, ETTIOTNUOVIKEG KAl Un, TTOU WE £Uabe va OKEQTOPal Aiyo TTIo
EVOAAAGKTIKA O€ OIAQPOPEG TITUXEG TNG ETTIOTAMNG TNG TTANPOPOPIKAG KAl TNG KOIVWViag,
KOBWG Kal yla TNV €PTTIOTOOUVN TTOU HOU £0€IEE WG OUVEPYATN TOU O€ E€PEUVNTIKA

TTPOYPAUUATA KABWGS KAl O TTPOTTTUXIOKA KAl HETATTTUXIOKG JabripaTd Tou.

Oa nBeha va euxapiotiow kai Tov Xproto KapehiwTtn, 8I0AKTOPa TOU THAMATOG
MAnpo@opIkAG Kal TnA/Viwy, yiaTi gépog TnG dIaTPIBAG auTig BacioTnke TTAvw oTn OIKN
TOU QOUAEId, KUPIWG OO0V a®opd TOV OXEDIAOUO KAl UAOTTOINCT TOU CUCTHHATOG Kal TO

KOUMATI TOU XEIPIOPOU EEQIPETEWV.

TéNog, Ba ABeAa va €uxapIOTACW TOUG CUMQOITATEG Kal @iAoug pou, KaAAipdn
ApdartroyAou, MNapaokeur Priya, Xapd Zkoupa, Katepiva Apdoou kai MNdavvn M1rdéAapn,
yla Tn BoriBeia TTOU pou TTpocé@epav o€ auTth T dlaTpIfr, €iTe oTa TTAQicIa pIag

TITUXIOKNG-OITTAWMPATIKAG £pyaciag €iTe atrd atrAd evoIa@Epov.

3.1

3.2

33

3.4

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6

CONTENTS

INTRODUCTION ..couiiiiemsunsnssnsssssssssssssssssssasssssssssssssssssssssssssasssssssssssssssssssssssssssssssnssnsssssssssssssssssnas 45
WEB SERVICES EXECUTION AND ADAPTATIONcccinmmmmmsmmsmsmmsmsssssssssssssssssssssssssssssnnes 51
QOS CONCEPTS AND COLLABORATIVE FILTERING FOUNDATIONS.ccoimsmsunsnnans 59
QO0S concepts aNd defiNitioNS......ccceeueeiiiiiiiiiir i eeee e reren s eseeseeeesnassssssessseesnnsssssssseeesnnnnnssssssnnaes 59
Subsumption relation representationcccccceeiiiiiiiiiieciiiiii s s s s s s ssssssnaes 61
Designations on specific service Bindingscccuuciiiiiiiiiiiniiiiiiiiiiieresssesstnsssssssssssssseees 66
USage PAtterns rEPOSITOIYciiveeiiiiieiiiiieiiiiiniiiiieniiiienieiiesisiessistessisiesssssttssssssssssssssssssssssnssssssnsssssanns 67
QOS-BASED APPROACHcccccimimmsmmmsmmmsssmssssmsssssssssmssassnns 69
The Q0S-based AlGOritM ... e s e e e s e e e e aas e e s s s e e e s nnssssssssseeennnsssssssssneennanns 69
Proposed frameEWOrKeueeeeeemeeeemeemneeneeemmeemmeemmeememmmmeemmeensssssssssssssssssssnsssssssssssnsssnsssnsssnsssnnssnsssnnssnnsnnnnns 77
Specifying QoS information in the SCENAII0uiiiiiiiiiiicrccciiirrrrccce e reeesnaessessesesnnnsssssssssaees 77
Preprocessing the BPEL SCENAIIOccccuuuuciiiiieeieenciiiereeennnsseeesesseennnssssessseeennsssssssssseessnnsssssssssssnnnnssssssssaees 80
Executing the BPEL SCENAIIO........ciiveuuiiiiiiiiiiniiniiiiiiiiiesseiisiiiinrssssssssissiieesssssssssssssmesssssssssssssssssssssssssssnnns 81
EXPerimental analysiS.....ccccciiiiiiiiiiiiiiiiiiiiiiiiinniiiniineeneeiiiiiireessssssiesiieesssssssssstttessssssssssssssasnnssssssssaaes 85
COLLABORATIVE FILTERING APPROACH........ccunmmmmmmsssssssssssssssssssssssnnns 89
The service recommendation algorithmccoiiiiiiieiiiiiiiircrrrrrc e e e s sssssssennnnes 89
The collaborating filtering-based algorithm.........cccceeeneeiiiiiiiiccccrrr e e reas s e e e e s e e nnanes 90
The Execution Adaptation Archit@Cture..........ccciiiiiimiuuiiiiiiiiiiiiiiiiires s essasssssssssssesnanes 99
Preprocessing the BPEL SCENAMOcccuuiiiiiiiiiimnnniiiiiniiieemsmssiiiiiiiieesssssssssiissssssssssssssssssssssssssssssssssnsssssssses 102
EXecuting the BPEL SCENAII0......ccciveeeeeuiciiiiiiieiieeccieseeeennnsnsseseeseesnassssesssesesnnnsssssssssessnnnssssssssssssnnnnsssssnnes 103
Performance EValuationcoiieeeiiiieieiiiiiiiiniirciec e 105

6. HYBRID APPROACH......ccocmmmnmmsmsssmssssss s s ssssssssssssassssssssassssssasass 111

6.1 The service recommendation algorithme i e erees e e e s e e e e snnsssssssseeeens 111
6.2 The combination SEEP . .cccuuiiiiiiiiiiiiiiiiirrr e e s s s s s s s s e s s s s e s s s e s s sannsssssssnaens 115
6.3 The execution adaptation architeCtUre.......ccccceeiiiiiiiiiiieiiiiiiiiiiri s rresssesssesstnessassssssssssaaens 119
6.4 Specifying the QoS information in the SCeNArioccuueeiiiiiiiiiiiicciiccrrr s sseesseeens 121
6.5 Preprocessing the WS-BPEL SCENANIOccceeuuuciiiiiiiiinenieeieeereeennnsseesseeesnmnssssssssssesnnnssssssssesssnnssssssssnseens 123
6.6 Executing the WS-BPEL SCENAII0.....ccccceiiiiiiieimmniiiiiiiiiiennessiisiiitmmssssssssssimesssasns 125
6.7 Experimental @Valuationccoiieeeeeiiiiiiiiiiieiiiiiiiinineeiiessiseeesssesssssieesnnsssssssssssennnssssssssasssnnssssssssssaens 126

6.7.1 Determination Of CFWEISNToii ittt e e e st e e e e stbe e e e asaeeseabeeeesstaeesannes 129

6.7.2 EX@CULION BIMIB ettt e ettt e e e e ettt e e e e e e bttt e e e e s e s anbbeeeeeeaennnbeeeeeesan aeeaaan 130

6.7.3 EXECULION PIaN QOS....ci ittt ettt ettt e e st e st esa e e s ab e e bt e e aee e be e e neeeareeebeeeae s 133
7. MONITORING AND FEEDBACK DATAcciicmmimssmssessnsssssssssssssssssssssssssssssssssssssssasssssssssans 137
7.1 Prer@QUISITES cu.iiieeiiiieuiiiieniiiiieniisiiasiieitnnisitensiiessiotiessssssessssstessssstesssssssssssssssssssssssssssssnssssssnssssssnssssses 137
7.2 The service recommendation algorithmeiiiiiiiiecicrccccr e e erees e e e s e e e e s nnsssssssseeeens 138
7.3 The modified QoS-based adaptation algorithmcceceiiiiiiiiiiiiiiiiiiiii s eeens 139
7.4 The modified CF-based algorithm..........cccoiirmiiiiiiiiiirccrrrrrrccr s s s e esnassssssssssssnnsssssssssaaens 140
7.5 The comMbIiNation SEEP ..ccceeuuiiiiiiiiiiicccirrireeieccse e e e re e s ee e s e e e eennssssssesseesnansssssssssseennnssssssssessnnnsssssssnnnaenn 143
7.6 An example of the algorithm operation.........ccccceveiiiiiiiiiiiiiiiiiier s e s e e s s e s s sessseaens 143

7.6.1 Applying the Q0S-based algOrithmc.cooiiiiii e e 146

7.6.2 Applying the CF-based algorithmuoii e e e sbre e e s aae e e e 147

2 T @0 o1 o1 o 1T T=dh o o TSI T U] £ UURRPPP 151
7.7 The execution adaptation architeCture........cccccceiiiiiiiiiiiiiiiiiniiiin s rresseesssesssessssssssssssssaaens 152
7.8 Experimental @Valuationcccciieeeeeiiiiiiiiiiieiiiiiiiiieneiiessissesssseissssieesnnsssssssssssesnnssssssssssssnnssssssssssaens 154
8. CONCLUSION AND FUTURE WORK.cccintimnmmemssnmsemssnsnisssssnsssssssssssssssssssssssssssssasssssssssans 159

ABBREVIATIONS ... s sssssssssssssssssssssassssssasassssnsasasnns 161

REFERENCES

LIST OF FIGURES

Figure 1: Subsumption relations for the travel planning WS-BPEL scenario.................. 64
Figure 2: Activity diagram for the QoS-based algorithm ... 69
Figure 3: Pseudocode for the QoS-based algorithm..............oooovviiiiiieee 70
Figure 4: Proposed Framework Architecture ... 79
Figure 5: QoS specification in the BPEL SCENArioccccoveeeiiiiiiiiiiiiecee e 80
Figure 6: Optimization overhead..............ccoooo i 86
Figure 7: Service execution overhead ... 87
Figure 8: Exception resolution overhead ... 87
Figure 9: Activity diagram for the CF-based algorithm.............ccccoiiii 91
Figure 10: Pseudocode for the CF-based algorithm............ccccceeiiiiiiii e, 93
Figure 11: The Execution Adaptation Architecturecccoovmiiiiiiiiic 101
Figure 12: Information inserted in S€SSION MEMOIYcccoeeiiiiiiiiiiieee e 104

Figure 13: Recommendation and housekeping overhead for varying degrees of

(ol] o 1ol N[5 =] o [0} TP 106

Figure 14: Recommendation and housekeping overhead for varying number of

functionalities within the WS-BPEL scenario and qualifying usage patterns 107

Figure 15: Recommendation and housekeping overhead for varying number of

qualifying usage patterns and number of requested recommendations 108
Figure 16: Service execution overhead for varying degrees of concurrency 108
Figure 17: Activity diagram for overall algorithm operation.................cccoooiiiiiiiiieeee.... 113
Figure 18: Activity diagram for the combination step...........ccccoiiii 115

Figure 19: Mean absolute error for varying number of the recommenders’ table sparsity

.. 117
Figure 20: QoS and CF Weightsoooiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 117
Figure 21: The Execution Adaptation Architectureccccccvvviiiiiiiiiiiiiiiiiiiiiiieeeee, 120

Figure 22: The effect of the CFweight parameter on the on the formulation of the

solution and the solution’s qualityooouriiiiii i 130

Figure 23: Execution plan formulation and housekeeping overhead for varying degrees

OF CONCUITENCY ...ttt e et e e e e e e e e e e e e a s e e e e e eeeeeessnnas 131

Figure 24: Execution plan formulation overhead for varying number of functionalities
within the WS-BPEL scenario and qualifying usage patternscccccccuviiiiinnnnnnns 132

Figure 25: Recommendation overhead for varying number of qualifying usage patterns

and number of requested recommendationsoooiiiiiiiii e, 133

Figure 26: QoS of the execution plans proposed by different algorithms for ten trial

Lo7= 5] = S 134
Figure 27: Subsumption relationships tree used in the example..............cccccvvene.. 144
Figure 28: The execution adaptation architecture...............ccccoooiiii i 153

Figure 29: Execution plan formulation overhead for varying degrees of concurrency. 156
Figure 30: Per-service invocation overhead, for varying degrees of concurrency....... 156

Figure 31: QoS of solutions proposed by individual algorithms and the combined one

Figure 32: Improvement of response time due to the introduction of QoS monitoring and

O M A ON oo s 158

LIST OF TABLES

Table 1: Q0S Of COMPOSItE SEIVICESccooeeieiiieieeee e 60
Table 2: Sample repository CONTENTSccooeiiiieeeeeeeee e 61
Table 3: Example usage patterns repositoryooouvveiiiiiiiiiiiiiicc e 68

Table 4: Utility function values and IP problem solutions for services in QPA(AirTravel)

Table 5: Normalized SOIULION SCOIES... ... e 76

Table 6: Utility function values and CF problem solutions for services in QPA(AirTravel)

.. 98
Table 7: Normalized SOIULION SCOIES........ccooiiiieeeee e 99
Table 8: QoS attribute values for SErviCeScoooeeieiiieieeee 114
Table 9: Computing the WCombMNZ score for the solutions.............ccccooeeeiiiiiiiiinnnnnn. 118
Table 10: Example usage patterns repositoryouveeiiiiiiiiiieeiiccee e, 138
Table 11: QoS values for the services implementing the “Air travel” 145
Table 12: Usage patterns repository used in the example..........ccccceiiiiiiiiiiiiiiinnnn. 145
Table 13: Solutions proposed by the QoS-based algorithmccccccooiiiiiiiiiienn. 147

Table 14: Rows of the usage patterns repository delivering the functionality under

b= Lo F=T 0] =1 (0] o VR PPR 148
Table 15: Rows of table 6-6 satisfying the QoS boundsccoooviiiiiiiii, 148

Table 16: Solutions proposed by the CF-based algorithm.................coo 151

2YNOITIKH NAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

H diatpifry auTr) atTooKOTTEl 0T JIAUOPPWOT AAYOPIOUWY KAl TEXVIKWY YIO T QUVAUIKN
TTPocapuoyr TNG ekTéAeong Twv oevapiwv BPEL, AapBdvovrag utr owiv 1600 TO
XAPOKTNPIOTIKA TTOIOTNTAG UTTNPECIAG 000 Kal TNV IKAVOTToinon GAAWV XpnoTwy aTTro TNV
uTTNPEEDia auth. & OAn Tnv €KTaon TnNg akoAouBeital n TTpoctyyion TG opIfovTiag
TTPOCOPUOYNG, OTTou Ogv TPOTTOTTOIEITAI N AOYIK) TnNg oUvleong Kal n €oTiaon
TOTTOBETEITAl OTNV €mMAOYA Kal KAON TNG uTTnpEcdiag TTou Taiplidlel KaAUTEPO OTNV
TTONITIKI) TTOIOTNTAG UTTNPETIag TTou opilel 0 TTEAATNG, aAA& Kal TTou TTPoKpiveTal BAoel
TNG AOYIKIG TOU OUVEPYATIKOU QIATPAPIOUATOG, OTTOU aUTO XPpNOoldoTrolEiTal. H ekTTOvnon

TNG dIATPIRNG AUTAG opyavwinke o€ TTEVTE dIOKPITA OTAdIA.

270 TTPWTO OTAdIO, YEAETAONKE N dIEBVAG €mOTNUOVIKN BIBAIOypagia oTov Topéa
TWV UTTNPECIWV OIAdIKTUOU HE ETTIKEVTPO TOV TOMEA TNG QUVAMIKNAG TTPOCAPHUOYAS TNG
EKTEAEONG ETTIXEIPNOIAKWY OIadIKACIWY. ATTO TIG TTPOTEIVOUEVEG TTPOOEYYIOEIG, IDIQITEPN
éupaon 060nke otn d1dakTopIkA diaTpIRr ue TiTAO «EkTéAeon oevapiwv BPEL: Auvapuikn
TTPOCapUOYr Kal €mmiAuon egaipéoewv Pe BAon TTOIOTIKA XOPAKTNPEIOTIKA» Tou Ap.
Xpnotou KapehiwTtn, n otoia tepieAdupave 1600 TOV OXEOIOOWO, OCO KAl TNV
uAoTToinon evog TTAaIciou yia Tn QUVOUIKA TTPOCapUOoYr TNG eKTEAEONG oevapiwv BPEL.
2UykekpIpéva, ueAetnOnke To ASOB (Alternative Service. Operation Binding) Framework
([4], [73], [74] ka1 [75]), éva TTAQICIO TTOU ETTITPETTEI TNV TTPOCOAPUOYI O€ €va SUVAMIKO
TePIBGANOV, OTTWG auTd Tou dIAdIKTUOU, OTTOU VEEC UTTNPECIEC UTTOPOUV va gloaxbouv,
TTOAQIEG va AaTTOoUPBOUV 1) 01 UTTAPXOUOEG va AAAGEOUV TA TTOIOTIKA XAPAKTNPIOTIKA, TO
TTAdiolo ASOB emmTuyxdvel ekTéAeon Kal Trpoocappoyn diadikaociwv BPEL, AapBdavovTtag
UTT OYIV TA TTOIOTIKA XOPAKTNPIOTIKA TwVv uttnpeociwy (QoS-aware) Kai TIG TTapAPETPOUS
TNG TTONITIKAG TTPOCAPHOYNG TTou €xel B€oel o xpnotng. EmimmAéov, 10 TAaioio ASOB
AouBAvel PEPIPNVA YIA TOV XEIPIOPO EEAIPECEWV/OPAAPNATWY TTOU YTTOPOUV VA UTTAPEOUV
OTO KaTaveunuévo TrePIBAANOV TOu OIAdIKTUOU, ME TNV ETTIAOYR KAl €KTEAEON
NUIBEATIOTWY AUCEWY, Ol OTTOIEG OUWG AVTATTIOKPIVOVTAI OTIG TTAPAPETPOUG TNG TTONITIKAG
TTPOCOPUOYNG, TIPOKEIMEVOU va €mMTEUXOEi N OAOKARpwaon TngG ETTIXEIPNOIAKAG
dladikaoiag. EidIkOTEPQ, TO TTAQIOI0 AUTO aAvIXVEUEl Kal ETTIAUEI TO 0QAApaTa ETTITTEQOU
OUCTAPATOG (TT.X. KN SIaBECIUOTNTA INXAVANOTOG] KATATUNOT OIKTUOU, O€ aVTIOIAOTOAR
ME Ta o@aAuara emixEiPNoIaknS Aoyikng, TT.X. TTPOCTIABsIa avaAnwng atmmd Aoyaplacuo
ME QVETTAPKEG UTTOAOITTO) TTOU gu@avifovTal KaTtd TNV KAQON TwV UTINPECIWY, OEROUEVN

TOUG TTEPIOPIOUOUG TWV TTOIOTIKWY XOPAKTNPIOTIKWY TTOU KaBopifovtal atrd Tov TTEAATN

TNG emixeipnolakAg diadikaciag. TENog, oTo TTAaiclo ASOB egetdotnkav péBodol yia tnv
QVTIMETWTTION OUVTOKTIKWY OIa@Oopwy METALU AEITOUPYIKA 1000UVAUWY UTINPECIWY,

EMTUYXAVOVTAG €TOl T OlEUpPUVON TNG OMAdAG TwV OIABECINWY UTTNPECIWY Yia KABE
TTPOCAPHOYH.

O1rwg ava@épbnke, To TTAQICI0O QuUTO €MITPETTEI OTOUG XPMOTEG va KaBopioouv TIG
TTOIOTIKEG TTAPAPETPOUG TTOU OTTAITOUV YIA TNV €KTEAECN TWV UTINPEECIWV 1I0TOU TTOU
ouvIoTOUV pIa eTTIXEIpNOoIaKr Ol1adikacia Kal avoAapBavel TIG eVEPYEIEG OUVAMIKNG
avakAAuWng Kal KAAoONG Twv KATAAANAWY uTTNpECIwyY. TNV epyaoia [73], e¢eTdoTnkav
OUo OTpaTNYIKEG Vyia TNV €AoY TNG KATOAANAOTEPNG uTTNpPETiag, dIa AmAnoTn
orparnyikn (greedy strategy) kai pia oTpatnyikr €mMTTEOOU OUVOEONS OUVEPYATN

(partner-link level).

Mpokelyévou va emmTeuxOei N atrapaitnTn AEITOUPYIKOTNTA, TO TTPOTEIVOUEVO TTAQICIO
gloayel OUO TIPOOBETEG €vOTNTEG AOYIOMIKOU o€ €va Tutrotroinuévo (standard)
mepIBAAAov ekTéAeong BPEL. H mpwtn evotnta PBpioketar oto emiedo pecdlovra
(middleware layer) ka1 ovopaletar ASOB (Alternate Service Operation Binding —
20uvdeon EvaAAakTIKwVY AgIToupyiwv YTINEECIWYV), TO OTT0i0 avaAauBAavel TIG akOAouBeg

A€IToupyieg:

(a) TN duvauik €Upeon AEITOUPYIWV UTTNPECIWYV (Service operations) TTou TTapéxouv
OUYKEKPIMEVN AEITOUPYIKOTATA KAl IKAVOTTOIOUV — OEQOPEVOUG TTEPIOPIOHUOUG

AVOQOPIKA PE Ta XapakTnEIoTIKG QoS, Ta otroia kabopifovtal atrd Tov TTEAATN,

(B) TNV emAoyh TNG KATOAANASTEPNG ATTO QUTEG TIG AEITOUPYIEG, WE BAON TNV TTOAITIKNA

TTOU €XEI OpioEl O TTEAATNG,
(y) Tnv KAon Tng emAeyeiocag Asitoupyiag kai T GuAAoyr TG aTTAvTNOoNg,

(®) TNV epapuoyn Twv TUXOV ATTOPAITNTWY PETACKNUATIOYWY YIA TA JnvVUPATa €10000U
Kal Ta amoTeAéopata €¢O00uU, £TOI WOTE VA AVTIMETWTTIOTOUV Ol OUVTOKTIKEG
OIaQOPEG PETALU TWV ONUOCIOAOYIKA 1000UVAPWY OGAAG CUVTOKTIKA OIAQOPETIKWV

QIETTAPWV UTTNPECIWV KAl

(¢) Tn Olaxeipion egaip€oewy TTOU eppavifovral €¢ QITIOG OQAAUATWY ETTITTEOOU
OUCTAPATOG, OTTWG Ol OOTOXIEG KEVTPIKWVY UTTOAOYIOTWY A KaTATunon OIKTUoU
(network partitioning), kair Tng €TiAuChG TOug WE TNV KARON GAAWV 1000UVAUWY

AEITOUPYIWV UTTNPECIWV.

H deutepn evdTNTA TTOU €I0AYETAI €ival £vaG TTPOETTECEPYAOTAG (preprocessor), Y ToV

oTT0i0 peTaoynuatiCovral Ta oevapia BPEL 1Tou dnuioupyouvTal atmd Toug oXedIOOTEG

woTe va eivar duvatév va (a) ekTeAouvtal KANOEIG TTPOG TO €VOIANECO AOYIOUIKO
(middleware) ka1 (B) evowpuatwvovTal o€ KABe KAAoN OAEC OI aTTapaiTnTES TTANPOPOPIES
yla Tnv €mmAoyn TNG KAAUTEPNG AsIToupyiag TTou Taipiadel oTa XapakTnpioTiKA QoS 1Tou
emAéyovtal ammo Tov oxediaoTr) BPEL katd 1n @don oxediaong (BPEL designing phase)
KAl Twv OTToiwv ol TIuEG opidovtal atmmd Tov TTEAATN. To TTAEOVEKTNUA TNG XPHong
TTPOETTECEPYQOTH YIa TNV «TTPOETOINOCiay Twv oevapiwv BPEL yia tmrpooapuoyn mng
EKTEAEONG TOUG EYKEITAI OTO OTI PUE TOV TPOTTO AUTO N OUVAIKI) TTPOCAPUOYN Kal ETTIAUCT
eCalpéoewv pe BAon TTOIOTIKA XOAPAKTNPIOTIKA TTOPOUCIAlEl TIGC KATWOI €mOuunTég
1016TNTEG: (a) KABe pepovwuévn ekTéAeon BPEL Oiadikaciog TtrpoocapudleTal o€
OIOQOPETIKA TTOIOTIKA XOPAKTNPIOTIKA ekTéEAeoNnG (B) n TTONITIKA ekTéAeong (execution
policy) TiBeTal ammd Tov XpAoTn, BACEI TWV AVAYKWYVY KAl TTPOTIMACEWYV Tou, Kal Ox1 atTo
TOV OX€DIO0TH TOU oevapiou (y) PTTOPEi va e@apudlel TEXVIKEG dIATAPNONG CUVAPEING
KAT& TNV €mAoynf uttnpeoiwy d1adikTuou () PTTopEi va e@apudlel oTpatnyikh emITédOU
PartnerLink yia Tnv TTpocappoynf TNG EKTEAEONG, EVW XWPIG TNV TTPOETTEEEPYATia UTTOPET
Va EQAPPOOTEI HOVO N ATTANOTN (greedy) oTpatnyikr. O TTPOETTECEPYAOTAG TTAPAYEI OTNV
€€000 Tou £va oevaplo BPEL étoipo yia rpooapuoyn (adaptation ready) 1o otroio TiBeTal
oe Aemoupyia o€ pia ouviABn TAat@Opua ekTéAeong BPEL. Ta 1epioodTepeg
AETTTOMEPEIEG OXETIKA ME T A&ITOUPYiO TOU TTPOETTECEPYAOTH] KAl TOV OPIOCPO TNG
TTONITIKAG €KTEAEONG, O €VOIOPEPOUEVOS QVAYVWOTNG TTapatrEUTTETal oTo [45]. ‘Eva
ONMAVTIKO TTAEOVEKTNUA QUTAG TNG APXITEKTOVIKAG €ival OTI PTTOPEI va XPpNOIKOTTOoINBEi
atr’ eubeiog oe otoladrmote unxavy BPEL otnv omoia ekteAouvtal ouvABn oevapia

BPEL, 6Tmwg¢ akpIfwg autd £xouv dlauoppwoei atrd Toug OUYYPAPEIC TOUG.

e, i o ()5 r f‘;\ ASOB-aware Altemate Service Operation Binding
i -, - [e g -
@ 3 o $ ' ®¥ ¥ BPEL scenario (5) Query existing
ASOB = bindin Consumer (B)
BPEL Scenario | BERINNL TR Query equivalent
2 prepracessor 3
with QoS | (z)l— ; _
assignments Alternate services [-
@ locator @
(2 Web Services Web service | (8] List of equiv. operations|+ List
BPEL scenario Platform invocation | —Warameters +Qo0S speca‘r equiva
= - (service spec, — service
invocation + - Filtering and
3 parameters) + litening Qo
.\m WS-BPEL Orchestrator e ranking module
! &
| Consumer | (9) Filtered list of services, E 3
"\ /’*‘T -4 parameters =3 .
o (12 o - e,
Results or Reéulti or Service binder & | _ (
failure Exception or invoker XSLT
policy exception| i

(11) Results or system-related
exception or business logic exception

!
{10) Invocation ”’

Web Service | |

3 WS-1 ws2 | WS-n
Implementations

Tevinn Apyirextovien ASOB

Eikéva1l. Meviki Apxitektovikip ASOB

210 OegUTEPO OTAdIO, OGONKe PBaputnTa OTn OUVAMIKA €TTIAOYR) UTINPEECIWY TTou Ba
KANBoUV katd Tnv ekTéAeon oevapiwv BPEL Bdoel Twv TTOIOTIKWY TOUG XOPAKTNPIOTIKWY.
Mo ouykekpiyéva, oxedIAOTNKE Kal UAOTTOINONKE €va TTAQICIO TTOU €TTAUEAvEl TNV
ekTENEON oevapiwv BPEL pe emmekTdoelg yia (a) Tov KOBOPIOPO TwV ATTAITACEWY OE
TTOIOTIKA XAPOAKTNPIOTIKA YIa KAAOEIS TwV UTINPEECIWV dIadikTuou ot éva oevapio WS-
BPEL (B) Tnv mrpocapuoyn TnG ektéAeong tou oevapiou WS-BPEL, cup@wva pe TIg
QTTAITAOEIG TTOIOTIKWYV XAPOKTNPIOTIKWY, dIaTNPWVTAG TTAPAAANAQ TN ocuvageia TTIAOYNG
uTTNEEcIWY Kal (y) TV autopartn e€TmiAuon eaipéocwy emmTEdOU OuoTAPOTOG. H
QPXITEKTOVIKI] QuTOU TOU OUOCTAMATOG €ival oupPBarr pe 1o TpoTuTto SOA, evid OAEG OI
OUUTTANPWHATIKEG TTANPOQYOPIEG TTOU aATTAITOUVTAl YIa TOUG OKOTTOUG QUTAG NG
TIPOCOPHUOYNG (dNAadr o1 TTPOdIaYPAPEG TWV TIOIOTIKWY XOPAKTAPIOTIKWY YIA TIG
MEMOVWHEVEG KANOEIG UTTNPEECIWV OIadIKTUOU) EKPPAZOVTAl XPNOIUOTTOIWVTAG TO TUTTIKO
ouvTakTiKé TNG WS-BPEL. To mrpoteivéuevo TTAaiolo uttooTnpidel TOoO TIG OEIPIaKEG 600
Kal TIG TTapAAAnAeg dopég exTéAeoncg Tng WS-BPEL (eTikéteg <sequence> kai <flow>,
aVTIOTOIXQ), EMTPETTOVTAG TNV ETITUXA TTPOCApPUOYr Tou KABe oevapiou WS-BPEL. H
UTTOOTAPIEN TWV TTAPAAANAWY dOUWV EKTEAEONG ATTOTEAEI Wi KAIlvOTOWia, O OXéon ME
TNV epyaoia [74]. Z& autd TO OTAdIO, €XEl UIOBETNOEI N opIfOVTIO TTPOCEYYION OTNV
TTpooapuoyr, dedouévou OTI (a) €mBuUPoUUE n TTpocapPoyr va CEReTal TN AoyIKA
ouvBeong TTou eTTéAege o oxedlaoTig Tou oevapiou BPEL kal (B) pe Tov TpOTTO QUTO
kaBioTaral duvarr) n XPrnon Twv XEIpIoTWYV ecalpéocwy (exception handlers), TTou ptTopEi
va €Xouv oXedIaoTei Kal UAOTTOINOEI TTPOCEKTIKA aTTO TOV O0XEDIOOTA Tou oevapiou BPEL

Kal va €X0UV EVOWMOTWOEI 0TO apxIKO oevAaplo.

Ma Adyoug ouvtopiag kai Xwpic BAGBN TNG yevikOTNTAG, OTN Ouvéxela Ba eEETAOOUNE
MOVO Tpia TTOIOTIKA XAPOKTNPIOTIKA: TOV XpOVvo arrokpiong (response time, rt), 10 KGOTOG
(cost, c) kar TNV OlaBeoIudTNTA (availability, av). Z10 TTpOTEIVOMEVO TTAQICIO, OI
TTPOBIAYPAPES TTOIOTIKWYV XOPAKTAPIOTIKWY YIO YIO UTTNPECIa OTO TTAQICIO TOU OEvapiou
BPEL utropei va mrepiAaufdavouv Kal éva dvw @pdyua Kal éva KATw QPAyua yia KABe
TTOIOTIKO YVWPIoOUA, KaBwg Kal éva BApog, To OTToio KATAdEIKVUEI TTOCO ONUAVTIKO
BewpeiTal T0 KABe XAPAKTNPIOTIKO aTTO TO OXEDIAOTH OTO TTAQICIO TNG AQUTAG TNG
Aeiroupyiag. ‘ETol, o1 TTpodiaypa®EG TTOIOTIKWY XOPAKTNPIOTIKWY opifovTal YE Tn Hopen
TpIWV dlavuopdTwy, MAX = (rtmax, Cmax, @Vmax), MIN = (rtmin, Cmin, @Vmin) kal W = (rtw, Cw,

an).

Ta Bdapn pmopei va €ivar apvnTIKA yia va Oc€igouv OTI O PIKPOTEPEG TIUEG Eival

TIPOTIMOTEPEG EvVAVTI TWV PEYOAUTEPWY, KATI TTOU AVAMPEVETAI YIA XOPAKTNPIOTIKA OTTWG

T0 KOOTOG Kal 0 Xpbévog atrokpiong. MNa Adyoug eukoAiag, utroBéToupe OTI 6Aa Ta
TTOIOTIKA XAPOKTNPIOTIKA €ival kavovikoTroinuéva oto didotnua [0, 10]. O1 TiyéG Twv
XOPAKTNPIOTIKWYV TTOIOTNTAG YIA OUVOETEG UTTNPECIEG TTOU DIOUOPPUWVOVTAI JE OEIPIOKN i
TTAPAAANAN EKTEAEON TWV CUVIOTWOWVY UTTNPECIWV (S1, ..., Sn) UTTOAOYICOVTQI HECW TWV

TUTTWYV TTOU OivovTal oTov akOAoubo TTivaka.

Mivakag 1. YITOAoOyIOHOG XAPAKTNPICTIKWY TTOIOTNTAG UTTNPECIAG YIa OUVOETEG UTTNPETIES

XapakTNPIOTIKO TTOIOTNTAG UTTNPETIAG

responseTime cost availability
2 EIPIOKN) L L - av.
] Z rt, Z c; 1:1[i
ouvleon = p
MapdaAAnAn n n
max(rt,) c av,
ouvleon ! Z:ll 1:1[

To eutmAouTiopévo oevapio BPEL TreplAapBdvel kal pia KAon oTnv utrnpecia web
bpelScenariolnfo, n otroia TTapéxeTal amd 10 eTiTTEdO TTPocaApUoynS (middleware),
MEOW TOU OTTOIOU TO OEVAPIO PETAPEPEI OTO EVOIAUECO QUTO €TTITTEDO KAl TIG TIUEG OAWV
TWV OXETICOPEVWY TTOIOTIKWV TTapauéTpwy (QoSmax_, QoSmin_ kai QoSweight),

KaBwg Kal yia Tn dour Tou oevapiou.

To TTpoeTTeCepyaopEVO OEVAPIO TIOETAI O TTAPAYWYIKA AEIToupyia Pe TNV TOTTOBETNON
TOU €vTOG piag pnxavig ektéAeong BPEL kai étol kaBiotatal diaBéoipo yia KAfon atmo
TOug TTEAATEG. € KABE KAAoN, Tou oevapiou BPEL apxikd diaBipalovral oTo £TTiITTEdO
TTPOCAPHOYNS TTANPOPOPIEG TTOU aPopoUVv Tn doun Tou oevapiou (KAACEIC UTTNPECIWV
QIadIKTUOU TTOU XPNOIMOTIOIoUVTal Kal N O1apBpwon ekTEAEONG TOUG (TTAPAAANAEG Kal
OEIPIOKEG DOMEG)), KABWG KAl Ta OpIa XAPOKTNPIOTIKWY TTOIOTNTAG UTTNPECIAG yia KAOE
MeEpovwHEVN KANoN uttnpeaiag diadikTuou. KaTdtiv 1o TTiTTed0 TTPOCAPUOYNG TTpoRaivel
oTn dIapopPPWaOn Tou agevapiou eKTéEAEonS (execution plan) yia Tn cuykekpipévn KAAON
TOU OEVOPIoU, WG aKOAOUBWG:

1. yia kKGBe kAon utnpeciag OladIKTUOU OTO TTAdiolo Tou oevapiou WS-BPEL,

AVOKTWVTAlI atmd TN Pdaon dedouévwy (repository) o1 uTTnpeaieg TTou €ival AEITOUPYIKA

IOOQUVONEG TIPOG TNV KOAOUMEVN. 2nNMEIWVETAI OTI OTO OTAOIO QUTO YIiVETAI Kal

QIATPAPIoUA TWV I00OUVANWY UTTNPECIWY, £T01 WOTE VO avakTnOouv Pévo eKEVEG TTOU
IKOVOTTOIOUV TA OPId XAPAKTNPIOTIKWY TToI0TNTAG UTTNEECIAG TToU OpideTal yia Tnv
avrtioToixn kKAfon (M€ow Twv peTafAnTwyv QoSmax_ kai QoSmin_). Edv, yia kdtmoia
uttnpecia oto apxikd oevdapio WS-BPEL, dev uttdpxouv 1I000UVAUES UTTNPETIEG TTOU va
IKAVOTTOIOUV Ta OpIa TTOU opicOnkav, TOTE TO ETTITTEDO TTPOCAPUOYNG ETTIOTPEPEl Wia
e¢aipeon QoS_PolicyFault otn unxavh ektéAeong BPEL. O oxedlaoTrg Tou ogvapiou
WS-BPEL putmropei, T10T1E €ite va Tmayidevoel TV EUPAvION Tou O@AAPATOG
XPNOIMOTIOIWVTAG TOUG TUTTIKOUG pnxaviopoug WS-BPEL (eTikéta <catch>) kai va
TTPOOTTAONOoEl va TO €MIAUCEI, TT.X. KABIOTWVTAG TTI0 EAACTIKOUG TOUG TTEPIOPIOHUOUG KAl
ETTAVEKKIVWVTAG TO OEVAPIO, 1 ATTAWG VA EVNUEPWOElI TOV QITOUVTA TTEAATN yIA TNV

EMPAVION TOU OPAAUATOG.

? ’(
(J .. Enhanced
) L
z} |:> 7 gl' 3 BPEL scenario
\.
BF'EL Scenarm preprocessor I— s » Adaptation layer
with QoS (2).cepioyme (4) retrieve
specifications sessionid i
- Web Services - getSessionid WS Session
(5) information memory
BPEL scenario Platform about scenario
invocation + Etructure, service A
B Parameters WS-BPEL Orchestrator | | .5 and Gos /
SN———» p=! | bpelScenariolnfo WS |
Consumer | (6) /
_/ - weh service call
} (11 — ™| adaptWSinvocation WS |
Results (@) Result 7'y
.|| releaseSession WS
(10) Release
session (7} Invocation (8) Results or system-related
¥ |exception or business logic exception
Web Service [ws1 | [ws2] WSn
Implementations

Proposed Framework Architecture

Eikéva 2. ApXITEKTOVIKI TTPOTEIVOUEVOU TTAdICiOU

2. 710 €Titredo TTPOCAPPOYAG oxnuaTiCel OAa Ta utTowneia oxEdIa eKTEAEONG VIO TN
OUVYKEKPIPEVN ekTEAEON Tou oevapiou BPEL. YtoBétovrag 61 1o oevaplo TrepiExel N
KAAoeig {inv1, inve, ..., invn} Kol OTI yia KAGBe KAAROnN inv; uTTAPXEl €va OUVOAO ME
l00dUvapeg uttnpeoieg EQj = {sj1, Sj2, ..., Sjk}, TO YHEYIOTO OUVOAO UTTOYAPIWY OXEDIWV
ekTéAeong eival EQ1 x EQ2 x ... x EQNn. A6 autd 1O pEYIOTO GUVOAO a@aIpOoUvTal
otoixeia T1ou Trapafidfouv TNV apxf TG ouvagelag €mAoyng, Edv, katommv 1ng
aQaipeong, 1o ATTOPEVOV CUVOAO UTTOWN®IwY OXediwv €KTEAEONG €ival Kevo, TOTE
emoTpépeTal pia e€aipeon QoS _PolicyFault, n otroia ptTopei va TUXEl XEIPIOUOU, OTTWG

TTEPIYPAPNKE AVWTEPW.

3. Ta kéBe ox€DIO eKTEAEONG TTOU AVAKEI OTO OUVOAO UTTOWNQIWV OXEDiwV EKTEAEONG
TToU dlagopPwonke ato PrApa 2, utroAoyileTal pia ouvoAikr) BaBuoloyia. H diadikacia
uttoAoyIopoU BaBuoAoyiag ekTeAsiTal pe avodikd (bottom-up) TpOTTO: APXIKA, TO

uttoAoyieTal N BaBuoAoyia TwWV HEPOVWUEVWY KAACEWV XPNOILOTTOIWVTAG TOV TUTTO
sc(invi) = rti "Wt + Ci * We + avi * Way

OTTOU rti, Ci KOl avi €ival ol TIMEG TwWV XAPOKTNPIOTIKWY TTOIOTNTAG UTTNPECIAG yIa TNV
UTTNPECIa TTOU €ival UTTOWPN@IA VI AVTIKATAOTACN TNG iNVi OTO OXEDI0 EKTEAEONG, EVW) Wrt,
K.ATT. Ta Bdpn 1Tou Trpoodiopifovtal otn PeTaBAnt) QoS _weight yia tnv KAAoN invi.
Metd Tov uttoAoyiopd Twv Baduoloyiwv OAWV TWV PEUOVWUEVWY KANOEWYV, oI TUTTOI
TToU TTapouciddel o lNivakag 1 XpNOoIYOTTOIoUVTaAl YIA TOV UTTOAOYIONO TNG OUVOAIKNAG
BaBuoAoyia Tou utTownR@Iou oxediou ekTEAeONG. TEAOG, €TTIAEYETAI TTPOG EKTEAEON TO
TTPOYPAPUA YE TNV uwnAOTEPN BabuoAoyia, Kal o1 avTioToIXieG avAapeoa OTIGC APXIKES
KANOEIG KAl OTIG UTINPECIEG TTOU XPNOIUOTTOIOUVTAl OTO ETTIAEYUEVO OXEDIO EKTEAEONG
arrolnkevovTal 0Tn Uvnun ouvodou (session memory), o€ ouvOUaoud PE TO TPEXOV id
TNG ouvodou. O1 avTIoTOIXiEG onuelwvovTal WG un oOcoueuuéves (unbound) Ba

XpnoigotroinBouv yia etriduon e€aipéccwyv (exception resolution).

Znuelwveral ot givar duvatdv avTi va xpnoigotroindei e¢aviAnTik avalntnon, O0Twg
TTEPIYPAPNKE AVWTEPW, N dIAdIKOCIA EUPECNG TOU OXEDIOU EKTEAEONG YE TNV UYWNAOTEPN
BaBuoAloyia va diapopewbdei wg emiAuon evdég TTPORARUATOG AKEPAIOU
TTPOYPAPUATIONOU (integer programming), TTPOCEYYION N OTTOIA TTPOCQPEPEI KAAUTEPEG
emMOOCEIG, €10IKA UTTO TNV TTapouadia peydAou TTARBOUG UTTOWRPIWY CEVapiwY EKTEAEONG.
H diopdpewon Tou TPOBAANATOG AKEPAIOU TTPOYPANKATIONOU TTAPOUCIACETAl OTO

TETAPTO OTADIO TNG TTAPOUCAG dIATPIPRNAG.

2T0 TpiTo OTAdIO, OIOPOPPWONKE MIa TTPOCEYYION VIO TNV EVOWMATWON TEXVIKWY
OUVEPYATIKOU QIATPAPIOUATOG OTn dI1adIKAoia TTPOCAPHOYNS TNG EKTEAEONG OEvapiwv
WS-BPEL, mrapouoidlovtag 1600 £évav aAyopiBuo TTpooapuoyng 600 Kal £va OXETIKO
TTAdiolo ekTéAeong. O aAyOpIBUOG TTPOCOPUOYAS XPNOIKOTIOIEI TOCO TTPOdIaYPAPES
XOPAKTNPIOTIKWYV TTOIOTNTAG UTTNPETIAG, AAAG Kal onUACIOAOYIKEG TEXVIKEG OUVEPYATIKOU
QIANTPpapPioNATOC EEATONIKEUONG, TTPOKEIMEVOU VA ATTOQPACIOEI OXETIKA PE TO TTOIQ ATTO TIG
TTPOCPEPOPEVEG UTTNPECIEG TAIPIACEI KAOAUTEPA PE TO TTPOPIA TOU TTEAATN, VW TO TTAQICIO
ekTéAeong BPEL trepiAapBaver diatagelg yia (a) mTpoodIopIouo TwV OTTAITHOEWY TwWV
XOPAKTNPIOTIKWYV TTOIOTNTAG UTTNPECIAG YIa TIG KANOEIG TWV UTThPETIwY O1adIKTUOU Péoa

o€ é€va oevapio WS-BPEL (B) tTnv e€mAoy Twv UTTNPECIWV TTPOG KAon kai (y) Tnv

TTpooapuoyn TNG ekTéAeong Tou oevapiou WS-BPEL ocupgwva pe TiG¢ TTpOTACEIS TOU

aAyopiBuovu.

2¢€ Ooxéon ME TO ATTOBETAPIO 1I00OUVAUWY UTINPECIWY (OTO OTTOIO TTEPIAaUBAvovTal
KAl Ol TIUEG TWV XAPOKTNPIOTIKWY TToIOTNTAG UTTNPECIiag yia KABe diabéoiun uttnpeaia
O1adIKTUOU) TTOU XPNOIPOTTOINBNKE OTO TTPONYOUHEVO OTAdIO, OTO OTAdIO QUTO
xpnoigotrolouvTal duo emmiTTAéov dedouéva, Ta otroia cival (a) €va 1Epapxikd OEVTPO
uUTTNPEEoIWY (KABE KOPPOG avaTTapIoTA HIa KATnyopia 1 pia utnpecia), Otou ol
uTTNPEECieg dIadIKTUOU dIapBpwvovTal 0 HOPPH TALOVOUIaG, ME TIG TTIO YEVIKEG va gival
TOTTOBETNPEVEG TTPOG TN PICa Kal TIG TTIO £EEIBIKEUPEVES Va gival TOTTOBETNUEVES TTPOG T
QUANO (OTTOTE, O€ TEPITTTWONG aiTnONG TTPOTACNG YIO MIa uTtnpedia X, UTTOWNQIES
TIPOTEIVOUEVEG UTINPECIEG €ival Ol UTINPECIEG TTOU PpiokovTial o€ KOPBO atmd Tnv
utTnEeoia X Kal KATW — UTTOKATNYOPIEG), KAl £vag TTiVOKAG PE TTOPEABOUCEG EKTEAEDEIG
oevapiwv WS-BPEL atrd Toug xprioteg (MMivakag 2: o Trivakag autdg Kataypd@el av oTa
TTAQIOI0 PJIAG OUYKEKPIMEVNG EKTEAEONG £XEI KANOEI KATTOIO OUYKEKPIMEVN AEITOUPYIKOTNTA

-Kal av vai- TToIa).

|_>f£}\ Adaptation-ready
.7 BPEL scenario

preprocessar ' _ Adaptation layer
BPEL Scenario |2l cpieyment {4) retrieve
) v Session id_ -
ereL b | Web Services Platform m Session
invocation + about service memary
QoS bounds + binding nvocations, Qo 7y
requirements WS-BPEL Orchestrator bounds and _ T
———— bindings || PprepareAdaptation =
' N ul = WS (subsumption
kﬂonsumer) (6} relationships & QoS
- B web service call characteristics)
y {11} .-—=| adaptinvecation WS | ————
Results (59} Result -
o || releasaSession WS
(10) Release Us;g:sib
session (7} Invacation ' 8 Resulis g
omortons |] [ws2 |
Implementations

Eikéva 3. Mevik apXITEKTOVIKA TTAQICIOU UTTOOTAPIENG CUVEPYATIKOU QIATPAPICHATOG

Mivakag 2 :Mivakag pe rapeA@ouoeg ekTeAéoelg oevapiwv WS-BPEL

exec | Travel Hotel Event

1 OlympicAirways YouthHostel | ChampionsLeague
2 SwissAir Hilton GrandConcert

3 HighSpeedVessels | YouthHostel

4 LuxuryBuses EuroleagueFinals
5 Lufthansa YouthHostel | GrandConcert

6 AirFrance Hilton

7 SwissAir YouthHostel | ChampionslLeague

=) Ticket

- Air travel

----- # AirFrance

----- # |ufthansa

----- # ClympicAirways
----- 4 SwissAir

=}- Road Trawvel

----- # MagicBus

----- # LuxuryBuses
=} Sea travel

----- # AguaMarine

----- # HighSpeedyessels
----- # Sealines

= Hotel

— Luscury

L # GrandResort

— 1st class

Eikéva 4. TuRpa UTTAYWYRG TWV OXECEWV YIO TO CEVAPIO TIpOoYypapHaTiIopou Tagidiou WS-BPEL

ApPXIKA, TO oUOoTnPa OEXETAI WG €I0000 TA KATW KAl Avw @PEAYUATA yIa TA TTOIOTIKA
xapaktnpioTika (MIN kair MAX), 1iIg TTpodiaypa@éc Twv ouvdéoewv (bindings) Twv
AEITOUPYIWV O€ OUYKEKPINEVEG uTTNPEDieg B = (b1, b2, ..., bn) [bi == null av dev opileTal
OUYKEKPIPEVN ouvBeon, €IOAAWG To bi TiBeTal ic0 Pe TO id TNG UTINPEECIAG TTPOG TNV
OTTOIO OUVOEETAI N AVTIOTOIXN AEITOUPYIKOTNTA], TV TTPOBIAYPAPH) TOU TTOIEG AEITOUPYIES
dev Ba kKAnBouv O = (o1, 02, ..., On) [0i == true av dev KANBei n fi, aA\iwg false], Tnv
TTPOdIAYPAPI TOU YIa TTOIEG AEITOUPYIEG OTTOIEG {nTOUVTAI OUOTACEIG R = (r1, r2, ..., rn) [av
yia Tn AeiroupyikdtnTa fi {nTeital cuoTaon 10TE ri == KaTnyopia AgIToupyikoTNTag, aAAIWg
fi == null]. EmmA£ov, T0 oUoTnua €xel atroBnkeupévn T BevOPIKr dOUNA HE TIG OXETEIG
(UTTOKATNYOPIEG) TWV UTINPECIWY, CUMTTEPIAQUPBAVONEVWY KOl TIMWV TWV TTOIOTIKWV
XOPAKTNPIOTIKWY TWV uTThpeoiwv autwyv. OTtav évag xpnoTtng ¢ntd uia cuoTtacn yida
Katmola AsitoupyikOtTnTa A, UTTOPOUME VO XPNOIUOTTOINOOUME OTTOIGdATIOTE UTTNPECIa
TTOU TTPOCPEPEI TNV idIa (0 id10G 0 KOUPBOG A) 1l OTTOIAdNTTOTE TTEPICOOTEPO CUYKEKPIPEVN

AeiToupyia (KOUBOG Tou UTTOdEVOPOU Tou) aTro A.
Ta BAMaTa KATd TNV eKTEAEON Tou oevapiou BPEL cival Ta e€A¢:

i. dlapgopewveTal £va didvuopa AsitoupyikOTnTag €mTTédou oevapiou F = (f1, f2, ..., fn),
OTTou KABe fi avTIoTOIKEI O€ M1 AEITOUPYIKOTATA TTOU €ival Pépog Tou oevapiou WS-

BPEL. O1 miyég Twv oTtoixeiwyv fi kaBopifovTal wg €ENG: av n A&IToupyia TTOU AvTIOTOIXEI

oT1o oToixeio fi €xel avTioToIXNOEi aTTd TOV XPAOTN O€ MIA CUYKEKPIPEVN UTTNPETIA, TOTE
N TiuA NG fi BETETAN OTO AVAYVWPIOTIKO TNG UTTNPECIAG QUTAG, EVW O€ OAEG TIG AAAEG
TTEPITTTWOEIG (ONAadry, av n avrioToixn AsitoupyikOtnTa Ogv Ba KANBei OTn
OUYKeEKPIPEVN ekTéEAEON Tou oevapiou WS-BPEL i {nteital yia ouotaon yia auth), n
TIMA TG fi opiCeTal o€ null.

yla k&Be AeiroupyikotnTa functiirequest) yia tnv otoia {nreital yia ovuoTtaon, O
aAyopIBuog avaktd atro Tn PAaon Oedopévwy PE TTAPEABOUCEG EKTEAECEIC OEVAPIWY
TIC YPOAMUEG EKEIVEG Ol OTIOIEG TTEPIEXOUV E€ITE MIA KANON O€ KATTOIQ UTINPEECIa
OIadIKTUOU PE TaUTOONMUN f TTIO €EEIBIKEUUEVN AEITOUPYIKOTNTA. AUTEG €ival Ol JOVEG
YPAMMEG O OTTOIEG €ival XPNOIUES Yia T dnuioupyia Tng Tpéxouoag ouoTAONG,
OedopEvou OTI TTEPIAAPPBAVOUV UTINPECIEG TTOU TTPOCQPEPOUV TNV QITOUMPEVN
AeitoupyikoTNTa. AV yia TTapadeiyuya ¢ntnbei ouoTaon yia AsIToupyikoTnTa
AEPOTTOPIKOU TaEIBIOU, udvo o1 ypauués 1, 2, 5, 6 kai 7 Tou Trivaka TTapeABoucwv
eKTEAETEWV TTOU TTapOoUCIdlel o MNivakag Ba avaktnBouv, dedopévou OTI OAEC OI AAAES
YPOUMEG BeV TTEPIAAUPBAVOUV AEITOUPYIKOTNTA AEPOTTOPIKOU TagIdIoU. ETITTpooBETw,
éva diavuopa AsitoupyikdtnTag emmmeédou aithpaTtog F(functi(request)) dnuioupyeital,
avTikaBioTwvTag TNV TIuA null TTou avtioToixouoe oTtnv functi ye Tnv karnyopia otnv
oTroia avTioToIxei N AsitoupyikdTnTa auth. To véo autd didvuoua Ba XpnoIPoTToInBEi
yla TOV UTTOAOYIONO TNG OMOIOTNTAG TNG TPEXOUOAG QIiTNONG ME Ta TTPOTUTTIA XProng
oT1n Bdon dedopévwy (TTapeABouoeg ekTeAEoelg oevapiwv BPEL).

Ol YPOUMEG YIA TIG OTTOIEG OI TIMEG XOAPOKTNPIOTIKWY TTOIOTNTAG UTTNPECIAG yIa TNV
uttnpeoia functi(row) dev IkavoTtrolouv Ta Opla TTou TEBNKAV YECW TwV dIAVUOUATWY
MIN(functi) kai MAX(functi) atroppitrTovTal, PJIAG KAl QUTEG OI YPAPUES OEV UTTOPOUV
va xpnoigotroinBouv oT1n ouoTaon, €POCOV APOPOUV UTTNPECIEG TwV OTToIWV TA
TTOIOTIKG XAPOKTNEIOTIKA TOUG OEV TTANPOUV TIG ATTAITHOEIG TOU KATAVAAWTH.

MNa kd@Be ypauun 1Tou diatneribnke ammd 1o BAPa 3, uttoAoyifouue opoIdTNTA TNG WE
TNV TPEXOUOQ aiTnon, OTTwWG N aitnon auTtr} avatrapiotatal amd 10 diavuoua F(functi
(request)). H opoidTnTa UTTOAOYICeTOI PE PAon TO O&iKTn OpOIOTNTAG S@rensen
(EVOAAOKTIKA YVWOTOG Kal wg ouvteAeoTAG Tou Dice), oUpwva Pe Tov OTToia n

opoloTNTa dU0 cuvOAwy A = {a1, az, ..., an}, B = {b1, b, ..., bm}, €ivai ion ye S(4,B) =

2|ANB]| , P , , ,
AT 1Bl KATAAANAQ TTPOCAPPOOHEVN YIO va TAIPIACEl OE TTEPIOX) ME ONPOCIOAOYIKEG
opoloTNTEG. H TTpocappoyr) akoAoubBei Tnv TTpocéyyion TTOU XPNOIUOTIOIEITAlI OTO
aca@ég (fuzzy) ouvoAo uttoAoyiopoU Tou OEiKTn OpoIOTNTAG, OTTOU N TTANBIKOTNTA
(cardinality) Tng TOPNG TwWv dUO CUVOAWY (dNACdr 0 apIBUNTAG OTOV TUTTO TOU OEIKTN

opoIoTNTAG S@rensen) UTToOAOYICETal WG TO ABpPOIoHa TWV TTIBAVOTATWY OTI éva PEAOG

avhKel Kal oTa dUo oUvoAa. AvTioToixa, OTav UTTOAoyYi(oupE OpOIOTNTA CUVOAWYV, O
apIBuNTAG Tou KAGoPATOG avTtikaBioTaral amd 2 Y; sim(a;, b;), 61T0U Sim(ai, bi) €ivai
MIO METPIKA UTTOAOYIOPOU TNG opoioTnTag HETaEU ai kal bi, avdAoyn pe TIG
TIPOOEYYIOEIG TTOU €£XOUV UIOBETNBEI OTNV €UBUYPAUMION OVTOAOYIWV KAl QvTIOTOIXia
OVTOAOYIKWYV TOMEWV. Q¢ amdéoTaon opoIdTNTAG HETAEU BUO AEITOUPYIWV (UTTNPETIES i

KOTNYOPIEG), UIOBETIONKE N YETPIKNA:
sim (s1, s2) = C - Iw * PathLength — NumberOfDownDirection

otmrou C eival pia otabepd 1mou TiBeTal o€ 8, Iw gival To BA6og Tou eMITTEDOU yia KABE
dladpoun (path) oto dévrpo TnG Tagovopiag, PathLength cival To Prikog d1adpounGs (o
ApPIBUOG TWV OKPWY atrd Tnv s1 PEXPI TNV s2) kai NumberOfDownDirection gival o
apiBudg TwV AKPWVY PE KATelBuvon TTPOG To KATW MEPOG Tou dEvOpPOoU, aTTd TNV St
otnv s2. 210 TEAOG TOU PBAMATOG QUTOU, N METPIKA OpOIOTNTAG OdlaipeiTal e 8,

TTPOKEIMEVOU VA KAVOVIKOTTOINBEI 0TO €Upog [0, 1].

TéNOG, 0 aAydpiBuog dlatnpei POVO TOug K-KOVTIVOTEPOUS yeiToves (dnAadr Tig
YPOUMEG UE T UWNASTEPO OKOP OUOIOTNTAG), TIG OMABOTIOIEI WG TTPOG TNV UTINPECIA
TTOU UAoTrolei Tnv uttod €g€Taon AsitoupyikdtTnTa (T1.X. WG TTPOG TNV UTINPECIa TTOU
TTapéExel TN AsitoupyikdtnTa Travel) kal utroloyiel TO GBpoloPa Twv ETTINEPOUG
BaBuoAoyiwv oe kGBe opdda. H utrnpecia TTou QvTIOTOIXEI OTNV OMAdA HE TO
MEYOAUTEPO d&BpoIopa ETTIAEYETAl WG €KEIV TTOU Ba TTAPACXEl TN OUYKEKPIYEVN
AEITOUPYIKOTNTA OTO TTAQICIO TNG TPEXOUOAG EKTEAEONG. ZTNV £pyacia pag, BEcaue Tnv
TIMA TNG TTapapéTpou K (dnA. Tou TTABOUG TwV KOVTIVWV YEITOVWY TTOU dlaTnPEiTal) O€

10, n oTroia €ival PIa EUPEWG XPNOILOTTOIOUKEVN TIUA.

O1wg ava@épbnke, n Aoyl PE PAON TA XAPOKTNEIOTIKA TTOIOTNTAG UTTNPECIAG TWV
uTTNPECIWY OIadIKTUOU OTa TTAdioIa TNG TTpocapuoyns ekTéAeong oevapiwv BPEL,
TTEPIOPICEI TO KPITAPIA TTPOCAPHOYAG, apou dev eival oe B€on va AdBer utréyn tnv
IKQVOTTOINON TWV XPNOTWV TNG UTNPECciag "oTov TIpaydaTIKO KOOUO", evw TO
OUVEPYOTIKO QIATPAPIOPA OUVOUALEl TIG EUTTEPIOTATWHEVEG ATTOYEIS TWV AVOPWTTWV
(dnAadn atréwelg TTou AapBdavouv utTéwn TRV TITUXH TNG IKAVOTTOINONG), TTPOKEINEVOU va

KAVEI EEATONIKEUNEVES Kal aKPIBEIC TTPOBAEWEIC KAl CUOTATEIG.

Y16 10 Trpicpa autd, pia TTpOo@opn TTPootyyion Ba ATav va ouvouaoTei n Aoy JE
BAon Ta XOPAKTNPEIOTIKA TTOIOTNTAG UTTNPECIAG UE TO CUVEPYATIKO QIATPAPIOUA, WOTE N
TTPOCapUOoYr va BacifeTal TOOO 0€ AVTIKEIYEVIKA dedopéva (TTOIOTIKA XAPOKTNPIOTIKG),

000 Kal UTTOKEIPEVIKEG alohoynoelg (TToidtnTa TnG euTreIpiag). lMapopoiwg, o

ouvouaoudg Tou QIATpapiopatog BACEl TTEPIEXOUEVOU UE TO OUVEPYATIKO QIATPAPICUA

EXEI TTPOTOBEI 0€ pIa OEIPd EPEUVNTIKWY EPYATIWV.

210 TETAPTO OTAdIO TrOpPoUCIAoTNKE €va TTAdiolo 1Tou TrepIAapBavel TNV
TTpooapuoyn TNG ekTéAeons oevapiwv BPEL o€ TpayuaTtikoé xpdvo, 010 011oio TTAQicIo n
Tpooapuoynl Pacifetal a@’ evog OTA XAPOKTNEIOTIKA TTOIOTNTAG UTTNPECIOG TWV
O1aB£0IuWYV UTTNPECIWY BIAdIKTUOU, PE TO ETTIBUUNTO ETTITTEDO TTOIOTATAG TWV UTTNPECIWV
va KaBopideTal atrd Toug idIoUG TOUG XPAOTEG, KAl A’ ETEPOU OTIG TEXVIKEG OUVEPYATIKOU
QIATPAPIoUATOG, ETITPETTOVTAG TNV TTEPAITEPW BEATIWON TNG dIadikaoiag TTPOCAPUOYNS
MEOW TNG €EETAONG TWV ETTIAOYWV UTINPEECIWV TTOU £yivav aTtd AAAoug TTEAATEG OTO

TTapPeABOV.

Mpokeipyévou va emmiTeuxBei 0 ouvOUAOUOG TwV PEBOdWY TTOU TTAPOUCIACTNKAV OTA dUO
TTponyoupeva oTAdIA, TPOTTOTTOIEITAI O UTTOAOYIONOG TNG KATAAANAOTNTOG KAOE
MEMOVWHEVNG UTTOWNQIAG UTTNPECIAC Sj1 TTOU UAOTTOIET TN AEITOUpyIKOTNTA fi yia Xpron
OTO OX£DI0 EKTEAEONG TTOU APOPA OTNV CUYKEKPINEVN KANon Tou oevapiou WS-BPEL,

KaBwg Kal 0 TPOTTOG UTTOAOYICOU TOU TTPOCAPHOCHEVOU OEVAPIOU EKTEAEONG.

EidIkéTepa, o€ O,TI agopd Tnv TTpocappoyr ME BACN Ta XOPAKTNPIOTIKA TToIdTnTag
UTTNPEECIAG, O UTTOAOYIONOG TNG KATOAANASTNTAG KABE pEPOVWPEVNG UTTOWHQIAG
UTTNPECIag sj yiveTal JEoW TNG ouvapTnong opéAoug utmnpeaiag (concrete service utility

Qmax(j’k)—CIk(Sj,i)
Qnax! ()= Qi (k)

function), n omoia eivar U(s;;) = Yi-; * Wy, OTIOU Qk(Sj;i) €ival n Tiur Tou

K-00TOU XOPOKTNPIOTIKOU TIOIOTNTAG UTINEECIAG yia Tnv uTthpeoiag sji (T1.X. XPOvog
a1rOKPIONG, KOOTOG K.ATTL.), Wk TO BAPOg TTou €xel avaBéoel o XpnoTng OTO K-00TO

XOPOKTNPIOTIKO TTOIOTNTAG UTTNPEECIOS, Qmax(, k) = Erél}%,) qr(s) (dnAadn TN péyIoTn
s j

TIUA TOU XAPOKTNPIOTIKOU TIOIOTNTAG UTINPEECIAC K MPETAEU Twv TTBavwy avaBéoewy
UTTNPECIOG YIA TN AEITOUPYIKOTNTA j), KAI Q.4 (k) (avTioToIXa. Qi (k)) TNV OUVOAIKA
MEYaAUTEPN (avTioTolXa MIKPOTEPN) TIMK TOU XOPAKTNPIOTIKOU TTOIOTNTAG UTINEECIAC K

oTn Baon dedouEVwV.

Aedopévng TNG ouvapTNOoNG 0PEAOUG, O UTTOAOYIOUAS TwV M-KAAUTEPWY AUCEWV UTTOPEI
va opIoTEl WG éva TTPOPRANUA BEATIOTOTTOINONG AKEPAIOU TTPOYPAPMATIONOU, OTO OTTOI0
{nteital va eAaxioTotroinBei N TIWA TNG GUVOAIKAG ouvapTNOoNG oEAOUG TTou diveTal aTrd

ToV TUTIO OUVj05 = inlij.Sl) U(sji) * xj;, O0mou givar F 10 TARB0G Twv AgiToupyiwy
functk TTou xpeiddovtal TTpocappoyr, Kal KABE X TTaipvel €ite TV TIUR 1 av n utrnpeoia
Sji EMAEyeETAl yia TNV uAotroinon Tng AsimtoupyikdtnTag funct, evw tnv TiuR 0 av dev

emAEyeTal. AT Tn oTiyu Tou KABe AsiroupyikdTnTa functy Ba uAoTtroieital 01O TEAIKO

OX£€010 EKTEAEONG ATTO Wia AKPIBWG UTTNEETCIA, N EAaxIOTOTTOINCN TNG TIWAG TNG OUVOAIKNAG
ouvapTnong oPEAOUG UTTOKEITAI OTOV TTEPIOPIOHO Zfﬁ) xj; =1,1<j <F. Me Tov 1pOTIO
auTo TTapAyovTal Ta M-KAAUTEPA OXEDIA EKTEAEONG, KAl TO KABEVA aTTd auTtd OUVODEUETAI

aTtro TNV TIMA TNG OUVOAIKAG ouvapTnong oQEéAOUG.

2TN OUVEXEIQ, O TIMEG TNG OUVOAIKAG ouvapTnong O@EAOUG TTOU UTTOAOyioTnKav,
KavovikoTrolouvtal oto didotnua [0,1]. Na va emteuxBei autd TTPETTEI va UTTOAOYIOTEI N
eENAXIOTN KOl N MEYIOTN TIMA METAGU OAWV Twv UTTOWNQIWV AUCEWV TTou Bpédnkav
TTPONYOUMEVWG Kal va EQPAPUOOTEI 0 TUTTOG normedQoSscore; = 1 —

QoSscore;—minQoSscore

maxQoSscore—minQoSScore’

Ooov agopd TOV TPOTTO UTTOAOYIOHOU TWV TTIO TTPOCPOPWY CEVAPIWY EKTEAEONG ME
BAon TNV TEXVIKI) TOU OUVEPYATIKOU QIATPOPIOMOTOG, apXIKA UTToAoyiCeTal 0 PaBudg
KATOAANASTNTAG TNG KABE UTTOWNQIAG UTTNPECIAC YIa UAOTTOINCN TWV UTTO TTPOCAPUOYN
AeiIToupyikoTATWY, Bdoel Tou BaBUoU OPoIGTNTAG UTTOWNQPIWY CEVOPIWY EKTEAEONG HE TIG
TTaPEABOUCEC EKTEAEDEIG, OTTWG TTEPIYPAPNKE OTO TPITO OTADIO, KAl OTN OUVEXEID
dlauopPPWVETaI £va TTPORBANUA AKEPAIOU TTPOYPAUMATIONOU YIa TNV TTapaywyr] TTARpwv
oXediwv €KTEAEONG, ME TOV OUVOUAOHO TWV ETTI PEPOUG UTTOWNQIWV UTTNPECIWY. To

TTPOBANPO aKEPAIOU TTPOYPAUMATIONOU avdayeTal oTn PEATIOTOTTOINCN TNG TIMAG TNG

L

OUVOAIKAG ouvapTnong oQEAoUs OUVp = {lejfi CFS(si,j) * x; j, 0TToU CFS(sij) €ival o

BaBudg KATaAANAGTNTAG TNG UTTOWAQPIOG UTINPEECIAG Sij yia Tnv UAoTroinon Tng
AeiroupyikoTnTag i. MNa 1o TPOPANUa autd, utrohoyifovtar Ta 20 kaAUTepa oxédia
EKTEAEONG, UTTO TOV TTEPIOPIOUO OTOV TTEPIOPIOHUO Zl.Tz(’f xj; =1,1<j <F., Kol T0 KaBéva
a1Té AUTA CUVODBEUETAI ATTO TNV TIUR TNG OUVOAIKNG ouvAapTnong o@éAoug. TEAOG, N TIUEG

TNG OUVOAIKAG ouvdapTNoNnNg 0QEAOUG Yia TIG TTapaxOeioeg AUCEIC KAVOVIKOTTOIOUVTAl OTO

CF_Score;j—minCF_Score

didotnua [0,1] Baoel Tou TUTTOU normedCF _Score; = ,
maxCF_Score—minCF_Score

H teAeutaia @don o€ autd 10 oTAdIO €ival N ouvBeon Twv AUCEWYV TTOU €XOUV TTPOTOOEI
atmd Toug dUo aAyopiBuoug dnA. (a) Tov aAyopiBuo TTou BacileTal OTa XOPAKTNPIOTIKA
TToI0TNTAG UTInpPeoiag kal (B) Tov aAyopilBuo Trou Bacifetal OTO OUVEPYATIKO
QIATpdpiopa. H ouvBeon AauBdver utr dyiv Tov Babud BeBaidtntag TTou atTodidouue
oTnv TTPOTACN TOU aAyopIBuou TTou BacideTal OTO CUVEPYATIKO QIATPAPIOUA, O OTT0IOG
BaBudg eCaptdral amd 10 TMARBOG Twv Oedopévwyv aTTd TOv TTivaKa TTapeABoucwv
EKTEAECEWV TIOU €ival XPACIMO OTN OUYKEKPIPEVN TIPOCAPUOYH: MIKPO TTANB0G
OedOUEVWYV 00NYEl O€ PIKPN AgIOTTIOTIA, KAl OUVOKOAOUBA o€ EAATTWON TOU OUVTEAEOTA

ONUAvTIKOTATOG AUTAG TNG TTPOTACNG.

o 4‘ CFweight N .
QoSWeight (I—
H compute ity of determine weight for jpute matasearch score for all solutions %@

relevant rows in usage QoS-based and CF-based proposed by the two algorithms. Choose
pattern repository algorithm v the one with the highest score o

Eikova 5. Aidypaupa SpacTnpiotnTag yia To BApa cuvduaouou

MNa Tov ouvduaoud Twv EeTmPEPOUS Babuoloyiwy, XpNOoIYOTToIEiTal O aAyopiBuog
UTTOAOYIOHOU atToTEAEOUATWY peTa-avalntnong WCombMNZ, uag kal Trapouciadel Tnv
KaAUTEPN atrddoon avaueoa o€ AAAOUG avTioToixoug aAyopiBuoug. Mo ouykekpiuéva,

apXIKA Bewpouue TNV TTOCOTNTA TOU OTABUICUEVOU aBpOoioUaTOS Bapwyv

m;
WCombSUM; = z w; * NormalizedScore; ;

J=1

ommou 70 WCombSUM;: eival n TeAiki BaBpoloyia yia éva atmotéAeopa i, wj gival
TIPOKABOPIOPEVO PAPOG OXETIKO PE TOV TTPOTEIVOUEVO OAYOPIOPO j, mMi ival TO TTAB0G
TWV YN INOEVIKWYV TIMWV TOU aTTOTEAEOUATOS | (ONAadR TO TTARB0G Twv aAyopiBuwy TTOU
TTpoTeivouv autd 1o atroTéAeoua), kai NormalizedScoreij €ival n Kavovikotroinpévn
BaBuoAoyia Tou atTOTEAEOUATOG | TTOU TTAPAYETAl OTTO TOV OAyOpPIBuo j). AKoAouBwg,

UTTOAOYICOUNE TNV TTOCOTNTA
WCombMNZ; = WCombSUM; * m;
n otroia divel Kai Tnv TEAIKN BaBuoAoyia.

AauBdvovtag Ut OWIv Ta €PEUVNTIKA aTTOTEAEOUATA TTOU OTTOdEIKVUOUV OTI TO
OUVEPYOTIKO QIATPAPIOUO €ival ETTIPPETTEG OE TTAPAYWYH ATTOTEAECPATWY ME XAPNAR
akpipela otav €Xoupe uwnAn apaidtnTa (sparsity) dedouévwyv avag@opdg, Katd Tov
uttohoyiopd Tng ToodtnTag WCombSUM; xpnoiyotroloupe petaBAnTd Bdpn yia Toug
dUo aAyopiBuoug, XpNOIUOTTOIWVTAG TOV TUTTO TTOU TTPOTEIVETAI OTO [76]:

0,40, v sparsity<0.995

) 0,40 = (0,999 — sparsity) _
CFweight = 0004 , €v 0,995<sparsity<0,999
0, e&v sparsity > 0,999

QoSweight = 1-— CFweight

Mean Absolute Error

T 0.97 0.975 0.98 0.985 0.99 0.905 1
%% Sparsity

Eikéva 6. ETidpaon Tng apaidotnTag otnv akpifeia wpoRAsyng

Maparnpouue otnv €ikéva 6 OTI yia TIuA TNG apaidTnTag HIkpoTepn Tou 0,995 10 YEoO
atmOAUTO OQAAuQ gival OXETIKA PIKPO Kal EAEYXOMEVO, AUEAVETAI OXEDOV YPANMIKA Yia
TINEG peTagU Tou 0,995 kai 0,999, evw yia TP peyaAuTepn Tou 0,999 eival TTOAU peydAo

Kal Ba odnyrogl o€ avagioTToTa ATTOTEAETUATA.
To ox£d10 ekTEAEONG PE TNV peyaAuTepn Tiup WCombMNZi gival kal auTtd TTou €TTIAEYETAL.

MNa Tnv ekTéAeon oevapiwv pe PACN TOV avWTEPW AAYOPIOPO, £QAPPOCETAl N YEVIKN
QPXITEKTOVIK] TTOU €u@aiveTal oTnVv aKOAouBn €IkKOva, evw Ol QACEIC eKTEAEONG TOU
oevapiou gival TTAPOUOIEG UE QUTEG TTOU €XOUV TTEPIYPAPEI OTIC TTapaypAPoug TTou

a@opouUV OTO OEUTEPO KAl TO TPITO OTABIO EKTTOVNONG TNG dIATPIPNAG.

Adaptation-ready Adaptation layer

WS-BPEL scenario
4) retri i
preprocessor (se)sl’:‘i::\if; - getSessionld WS | N
WS-BPEL _|(2) deployment Sy
Scenario . prepareAdaptation WS) i
; - Qos- CF-)
3 Web Services Platform Session ;
BPEL(sc)enario (5) information based based s Semantlc =
invocation + about service algorithm || algorithm < service i
QoS bounds + bindin invocations, QoS 3 i (. repository L
requirements B WS-BPEL Orchestrator bounds & weights Combination [t [
- Y > and bindinge step v v (subsumption
| Consumer | L] ®) i relationships & QoS
9 /- P Ty web service call r characteristics)
(11)] h [> ‘ adaptinvocation WS ‘
Resuits i |: (9) Result l : y
= releaseSession WS
1 i I PT oy J
I—I (10) Release |
session (7) Invocation (8) Results
Y
Web Service | T I [s I o

Implementations
Eikéva 7. ApXITEKTOVIKH) ouvdudoTIKOU TTAaiciou

2T0 TTEUTITO OTAdIO, OTO TIPOTEIVOPEVO TTAQICIO €I0AyOvVTAl MNXQVIOWOI yia Tnv

TTAPAKOAOUONON TNG CUMTTEPIPOPAC TwV KAAOUHPEVWY UTTNPECIWY, 600V a@opd TIG

TITUXEG TWV XAPOKTNEIOTIKWY TTOIOTNTAG UTTNEECIAG TOUG KAl TN GUAAOYK TOU ETTITTEQOU
TNG IKAVOTTOINONG TWwV XPNOTWV OXETIKA HE TIG UTTNPECIEG TTOU XPNOIYOTTOINCAV.
MapaAAnAa, o1 aAyopiBuol ETTIAOYNG UTTNPECIWY ETTEKTEIVOVTAI WOTE va AapBdavouv utr
OWIvV auTd Ta dedopéva KaTd Tn dnuIoupyia CUCTACEWY, PEPIUVWVTAG Yia Tn dlaTipnon
TNG onuacioAoyiag «ekTéAeang O0COANWIWV» TTOU UTTOVOOUVTAI ATTd TOV TTPOCOIOPIGHO

TTOAATTAWY KAAOEWV UTTNPECIWYV OIAdIKTUOU TTPOG TOV idI0 TTAPOXO UTTNPECIWV.

2€ QUTAV TNV TTpocEyyion, N Baon dedopévwy Pe TTAPEABOUCEG EKTEAEOEIG TEVApPIWV
eTmekTeivETal WOTE VO CUMTTEPIAGREI ETTITTAEéOV OTAAEG, OI OTTOIEG OEiXVouv TNV agloAdynon
TNG TTPOTEIVOUEVNG UTTNPETiag atrd Tov idlo Tov xpriotn. O lMivakag 3 TTapouciddlel éva

TTAPADEIYUA ETTEKTETANEVOU TTiVAKA.

Mivakag 3. ETreKTeTAPEVOG TTiIVOKAG TTAPEABOUCWYV EKTEAECEWV CEVAPIWY, O OTTOI0G TTEPIAAUBAVEI
OTAAEG pE a§IOAOYNON TWV UTTNPECIWYV ATTO TOUG XPHOTES

#exec |Travel Rtravel |Hotel RHotel [Event REvent
1 |OlympicAirways 8 |YouthHostel 3 |ChampionslLeague 7
2 |HighSpeedVessels | null |YouthHostel | null
3 |LuxuryBuses 4 null |EuroleagueFinals 9
4 |AirFrance null |Hilton null

H dilapopd oe oxéon ME TNV TTPONYOUMEVN TTPOCEYYIoN €ival OTI OTO KOMUMATI TOu
OUVEPYOQTIKOU QIATPAPIOPATOG, XPNOIMOTIOIEITAI N ouvAPTNON OMOIOTNTAG CUVNUITOVOU
yia TNV OOIOTNTA MIAS YPOUMAG X Tou uTTdpxel 0Tn Paon (TTapeABouoa eKTEAEON) PE TO
TPEXOV OEVAPIO TOU XProTn Y. H METPIKA OPOIOTNTAG METAEU TWV X ki Y OloPOPPWVETAI

€101 O¢€

Py (R[] = VLK) = d(X (K], P kD))
X1 = Nyl

r(%,7) =
Kal n TpoPRAswn (BabuoAoyia) kGBe oevapiou Baong utroAoyiCeTal ammd Tov ouvrin TUTTo
TPOPRAeYNG agioAdynong

ZIVEratem(ﬁ[k])(ﬁ[k]) * T(ﬁ, ﬁ)
Zﬁeraters(ﬁ[k]) T(R, N)

p(ﬁ[k]) = mfnan(l_?)[m]) +

Na onpeiwBei 611 av KATToI0G XPAOTNG OEv €xEl AEIONOYAOEl TIG UTTNPECIEG TOU
oevapiou Tou KaAeoeg, Bewpoupe wg default iy 1o 8 (ion pe 10 80% TOU pEyIOTOU

ETMTPETTOPEVOU), OTTWG avapépeTal 0To [45] Kal gival TTAAPWS CUPPWVO PE TA EUPHUATA

Tou [70], cUhQWVa pE TO OTToi0 N TMBavOTNTa TTapoxns Babuoloyiag ammd kd&tolov

duoapeaTnuéVo XpnoTn ival TTOAU uwnAn (289%).

H duvatotnta agioAéynong atrd Toug XPNOoTeEG JOVO TWV UTTNPECIWV TTOU £XOUV
XPNOoIJoTIoINCEl, dIac@AAIfeTal Ye TNV ATTOOTOAR 0€ KABe xpAoTn TTou ¢NTd TTPOTACH,
META TNV eKTEAEON TOU OEVAPIOU, EVOG NAEKTPOVIKOU KOUTTOVIOU, HECW TOU OTTOIOU TOU
TTapéEXeTal TTPOCRACN OTO UTTOOUCTNUA TNG agloAdynong, Kal TO OTT0i0 KouTrévi
EMTPETTEI HOVO TNV AGIOAOYNON TWV UTTNPECIWY TTOU TO GUCTNPA TTPOCAPHOYAG YVWICE!
OTI 0 XPOTNG XPNOIKOTTOINOE.

TéNog, PBaoifouevol 01O [66], 0 Xpdvog atrdékpiong Kal n dIabecIuoTNTA TWV
uTTNPECIWYV Oev BewpeiTal BEBOUEVOGS Kal OTABEPOGS, I0OC UE AUTOV TTOU BNAWVETAI APXIKA
aT1TO TOUG TTAPOXOUG TWV UTTNPEECIWYV. AVTIOETA, TO OUCTNUA TTAOPAKOAOUBEI TIG ETTIOOCEIG
TWV UTTNPECIWV Ot O,TI aQopd TIC aVWTEPW TTAPAUETPOUG TTOIOTNTAG UTTNPECIAG, KOl
XPNOIMOTIOIEI TOUG TUTTOUG TTOU ava@épovTal ota [66] kai [68], yia va eKTINACEl TNV
MEAAOVTIKA CUUTTEPIPOPA TNG KABE uTTNPETiag. ZUPPwva PE autd, av ol TTapEABOVTEC
XPOVOoI a1ToKpIoNG akoAouBouv TTPOTUTTO OTABEPAG ouvapTnong (UE MIKPA atrokAion
METALU TOUG), O EKTINWHEVOG XPOVOG I00UTAI PE TOV PECO OpO Twv TTapeABOVTWY N
XPOvwyv atrokpiong. Av akoAouBouv mpdéTuTto PBaBuiaiag auf¢nong/peiwong, TOTE O
EKTIMWMPEVOG XPOVOG 1I00UTAlI UE TOV MEYIOTO/EAAXIOTO TWV QVTIOTOIXWV TTApeABOVTWY
XPOVWY, €V av TO TTPOTUTTO OV KATATAOOETAI OTIS TTAPATTIAVW OUO KATNYOPIESG, O
EKTIMWHPEVOG XPOVOGS 1Io0UTal PE TOV PJECO Opo Twv TTapeABOVTwY N xpdvwyv atrdékpiong.
Me Tov TpOTTO aQuUTO emTuyXavetal xpron Oecdouévwyv e HPeyaAUTEPN aKpiBela, HE

atmmoTéAeopa TNV avtioToixn BeATiwon oTnv TTOIOTATA TWV CUCTACEWV.

MNa Tnv ekTéAeon oevapiwv ue PACN Tov avwTEPw AAyOpIOPo, €PapuOleTal N YEVIKN
OPXITEKTOVIKI] TTOU EUPAIVETAI OTNV OKOAOUBN €IKOVA, evw Ol QACEIG EKTEAEONG TOU
ogvapiou €ival TTOPOUOIEG PE QUTEG TTOU €XOUV TTEPIYPOQPEI OTIG TTAPAYPAPOUG TTOU

a@opouVv 0TO OEUTEPO KAl TO TPITO OTAdIO EKTTOVNONG TNG dIATPIPNAG.

Adaptation layer

Execution plan formulation
(2) information QoS- CF- S
. about service based based
BPEL scenario lAebiseicastilationy invocations, QoS algorithm algorithm
invocation + bounds & weights
QoS bounds + binding and bindings
requirements WS-BPEL Orchestrator step (subsumption
(3) Evaluation relationships & QoS
Consumer token attributes)
(9) 4)
Results + web service call ,eg?cfion
evaluation > Web service P
& update
token (8) Result invocation redirection
(10) (5) Invocation l T (6) Results
Evaluation token + User (11)
ratings feedback Updates to | WS-1 | | WS-2 | 06
platform “sfe%zé’if;‘;m Web Service Implementations

Eikéva 8. ApXITEKTOVIKN TTAQICiOU TTOU TTEPIAAUBAVEI INXAVICHOUG avaTpo@odoTnong

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1. INTRODUCTION

Web Services are considered a dominant standard for distributed application
communication over the internet. Consumer applications can locate and invoke
complex functionality, through widespread XML-based protocols, without any
concern about technological decisions or implementation details on the side of
the service provider. Web Services Business Process Execution Language (WS-
BPEL) [1] allows designers to orchestrate individual services so as to construct
higher level business processes; the orchestration specification is expressed in
an XML-based language, and it is deployed in a BPEL execution engine, made

thus available for invocation by consumers.

WS-BPEL has been designed to model business processes that are fairly stable,
and thus involve the invocation of web services that are known beforehand.
Therefore, the BPEL scenario designer specifies, at the time the scenario is
crafted, the exact services to be invoked for the realization of the business
process. This setting is however considered inadequate in the context of the
current web: many functionalities offered by the services invoked within the
scenario (e.g. checking for free rooms in a hotel or booking an air flight) are
typically offered by numerous providers (different hotels and flight companies,
respectively), and each providers offers its service under different quality of
service (QoS) parameters. In this environment, it would be highly desirable for
consumers to be able to tailor the WS-BPEL scenario execution according to their
QoS requirements. Indeed, [2] lists governance for compliance with QoS and

policy requirements as an open issue for the SOA architecture.

To tackle this shortcoming, numerous approaches have been proposed, following
two main strategies: (i) horizontal adaptation, where the composition logic
remains intact and the main adaptation task is to select the service and invoke
the service best matching the client's QoS requirements; the selected services
are substituted for either abstract tasks (e.g. [3]) or concrete service invocations
(e.g. [4]) and (ii) vertical adaptation, where the composition logic may be
modified. The incorporation of run-time adaptation introduces the need for service
selection affinity maintenance [4]: service selection affinity refers to cases where

a service selection in the context of adaptation implies the binding of subsequent

Dionisios D. Margaris
45

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

selections (e.g. selecting a hotel reservation from a travel agency dictates that the
payment will be made to the same travel agency), to cater for preserving the

transactional semantics that invocations to a specific service provider may bear.

QoS-based service selection, however, limits the adaptation criteria to aspects
such as cost, availability and performance, not being able to take into account the
satisfaction of service users “in the real world”; for instance, an airline company
may offer low fares and a short trip duration, but the actual traveling experience
may be very poor, an aspect not reflected in QoS attributes and therefore
unavailable for the purposes of adaptation. On the other hand, collaborative
filtering combines the informed opinions of humans (i.e. opinions taking into
account the aspect of satisfaction), to make personalized, accurate predictions
and recommendations [5]. In the context of collaborating filtering, personalization
is achieved by considering ratings of "similar users" (in our case the a user is
considered to rate a service favorably if she actually uses it), under the
collaborative filtering’s fundamental assumption that if users X and Y have similar
behaviors (e.g., buying, watching, listening — in our case, selecting the same

services) on some items, they will act on other items similarly [6].

Under this light, a prominent approach would be to combine QoS-based service
selection with collaborative filtering to perform adaptation based on both objective
data (QoS attributes) and subjective ratings (quality of experience). Similarly, the
combination of content-based filtering with collaborative filtering has been

proposed in a number of works (e.g. [7][8]).

However, personalization and adaptation needs may extend beyond the
specification of QoS requirements. In some cases, users may desire to select the
exact services to be invoked for some cases and ask for recommendations on
other services; for instance, in a holiday planning application, the user may
require that reservation is made in a particular hotel, while at the same time
asking for a recommendation about the airline. Once a user has made some
explicit service selections, the combined approach can be used to make
recommendations on the services that the user has not bound to specific

providers.

Dionisios D. Margaris
46

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

In this dissertation a five step approach for adapting the execution of WS-BPEL
scenarios taking into account both QoS-based criteria and collaborative filtering
techniques is presented, introducing both an adaptation algorithm and an

associated execution framework.

Initially, the international scientific bibliography in the field of web services was
studied, focusing in the area of dynamic adaptation of business process
execution. From the proposed approaches, particular emphasis was given to Dr.
Christos Kareliotis’ doctoral dissertation, entitted “BPEL Scenario Execution:
Dynamic adaptation and exception resolution”, which included both the design
and implementation of a framework for dynamic adaptation of BPEL scenarios
execution. More specifically, the Alternative Service Operation Binding (ASOB)
framework was studied ([4], [73], [74] and [75]), a middleware-based framework
for system exception resolution, which undertakes the tasks of failure

interception, discovery of alternate services and their invocation, was studied.

At the second step, focus was given to QoS requirements, service selection
affinity, automatically resolution of system-level exceptions in a QoS requirement-
adhering manner, while consideration was given to sequential and parallel
execution structures of WS-BPEL (<sequence> and <flow> tags, respectively),
allowing for successful adaptation of any WS-BPEL scenario, while at the third
step, an approach for integrating semantic-based collaborative filtering
techniques into the WS-BPEL execution adaptation procedure with provisions for
specifying QoS requirements for invocations of web services within a WS-BPEL
scenario, selecting exact services to be invoked and adapting the WS-BPEL
scenario executions according to the recommendations of the algorithm, was

performed.

At step four, the combination of the two previous steps was performed, by

smoothly synthesizing the results given to produce a single result.

Finally, the last step extends the previous one by monitoring, in order to follow
the variations of QoS attribute values and by taking into account the users’

opinions regarding services they have used.

Each step presents the adaptation algorithm, a thorough example, the proposed
framework architecture, as well as a quantitative (in terms of performance)

evaluation of the proposed approach.

Dionisios D. Margaris
47

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

The final combined adaptation algorithm uses both QoS specifications and
semantic-based collaborative filtering personalization techniques to decide which
offered services best fit the client’s profile. To achieve this goal, the metasearch
algorithm paradigm [10] is followed, using two different candidate adaptation
ranking algorithms (step one and two), the first examining the QoS aspects only
and the second being based on collaborative filtering techniques. The adaptation
rankings produced by these two algorithms are combined to generate the overall
ranking, which then drives the adaptation. The combination of the results is
performed using a weighted metasearch score combination algorithm ([10][11]),
however varying weights are used to address issues associated with collaborative
filtering, such as cold start (i.e. few entries recorded in the rating database, thus
no good matches can be obtained) and gray sheep (i.e. unusual users, which
cannot be matched with other users even after the database has been adequately

populated) [9].

The adaptation is based on (a) quality of service parameters of available web
services (b) quality of service policies specified by users and (c) collaborative
filtering techniques, allowing clients to further refine the adaptation process by

considering service selections made by other clients.
The final combined proposed BPEL execution framework includes provisions for

(a) specifying QoS requirements for invocations of web services within a WS-

BPEL scenario

(b) specifying specific bindings for selecting services and designating which

services are subject to adaptation,

(c) adapting the WS-BPEL scenario execution according to the results of the

service selection algorithm,
(d) monitoring the behavior of the invoked services regarding their QoS aspects,

(e) collecting user satisfaction feedback about the invoked services and taking

these data into account when formulating recommendations and

(f) caters maintaining the transactional semantics that invocations to multiple

services offered by the same provider may bear.

Dionisios D. Margaris
48

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

This approach follows the horizontal adaptation paradigm since, as noted in [4],
horizontal adaptation preserves the execution flow which has been crafted by the
designer to reflect particularities of the business process, while it also allows the

exploitation of specialized exception handlers.

The rest of the dissertation is structured as follows: In chapter 2 web services
execution and adaptation related work is presented, while in chapter 3 QoS
concepts and collaborative filtering foundations are presented and analyzed.
Chapter 4, 5 and 6 present the QoS-based algorithm and framework, the
collaborative filtering-based algorithm and framework and the hybrid algorithm
and framework respectively, as well as performance evaluation and qualitative
metrics which validate its applicability to operational environments. Chapter 7
presents the final algorithm and framework with provisions for monitoring the QoS
parameters of the services and adjusting accordingly the values of the services’
QoS attributes, as well as accepting user ratings for the services they have used,
which are taken into account by the CF-based algorithm. Finally, chapter 8

concludes this dissertation and outlines future work.

Dionisios D. Margaris
49

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Dionisios D. Margaris
50

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

2. WEB Services Execution and Adaptation

As stated above, existing adaptation approaches follow either the horizontal or the
vertical adaptation approach. VieDAME [24] performs adaptation of BPEL scenario
execution considering QoS parameters; these parameters, as well as the selection
strategy are determined beforehand, through pluggable modules. It allows monitoring of
BPEL processes according to Quality of Service (QoS) attributes and replacement of
existing partner services based on various (pluggable) replacement strategies. The
chosen replacement services can be syntactically or semantically equivalent to the
BPEL interface. Services can be automatically replaced at runtime without any
downtime of the overall system. The solution is implemented with an aspect-oriented
approach by intercepting SOAP messages and allows services to be exchanged during
runtime with little performance penalty costs, making it suitable for high-availability
BPEL environments. In case of interface mismatches, a set of transformers can be
specified to handle these mismatches on a SOAP message level, as well. These
mechanisms allow a non-intrusive adaptation of partner services within a BPEL process
without any downtime of the overall system. VieDAME is also platform-dependent since

it relies on extensions of the ActiveBPEL engine.

[53] presents MOSES, a methodology and a software tool implementing it to support
QoS-driven adaptation of a service-oriented system. It works in a specific region of the
identified problem space, corresponding to the scenario where a service-oriented
system architected as a composite service needs to sustain a traffic of requests
generated by several users. MOSES integrates within a unified framework different
adaptation mechanisms. In this way it achieves a greater flexibility in facing various
operating environments and the possibly conflicting QoS requirements of several
concurrent users. The basic guideline followed in its definition has been to devise an
adaptation methodology that is flexible, to cope with QoS requirements that may come
from different classes of users, and (as much as possible) efficient, to make it suitable
for runtime operations. To achieve flexibility, a novel approach is presented which
allows to integrating within these framework different adaptation mechanisms (service
selection and coordination pattern selection) that can be simultaneously used to serve
the requests of different users, or even different requests from the same user. To
achieve efficiency, a per-flow granularity which also allowed us to formulate the optimal

adaptation problem as an LP problem has been considered. Because of the distributed

51 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

nature of the SOA environment, the QoS perceived by a user of the composite service
can be affected by the performance of the networking infrastructure used to access the
selected component services. MOSES, which performs web service selection by
formulating and solving a linear programming problem, considering different patterns
[par_or and par_and (i.e. concurrent execution of atomic services, with the construct
successfully concluding when either one or all service executions finish successfully,
respectively) etc.], and monitoring QoS execution during runtime. MOSES assumes that
business processes are written as abstract compositions (contrary to our approach
where business processes are specified through actual BPEL scenarios, enabling the
use of existing ones without any modification), while QoS requirements are stated
through an SLA, giving the average value of QoS attributes, not allowing distinct QoS

specifications per web service invocation.

[23] presents AgFlow, a QoS-aware middleware supporting quality driven Web service
composition, which revises the execution plan in order to conform the user's QoS
constraints. AgFlow may operate either using global planning, in which the execution
plan is revised in order to conform the user's QoS constraints, or using local
optimization, in which optimization is made on individual task basis, using the Simple
Additive technique Weighting [4] to select the optimal service for a given task. The main
features of the AgFlow system are a service quality model to evaluate overall quality of
Web services and alternative service selection approaches for executing composite
services. AgFlow has been implemented as a platform that provide tools for defining
service ontologies, specifying composite services using statecharts and assigning

services to the tasks of a composite service.

Several works exist which optimize business processes, but also implement exception

handling mechanisms, to provide solutions in volatile run-time environments.

[77] presents a framework which achieves dynamic service selection from statically
composed Web Services in a manner that considers the optimum execution path
regarding the QoS parameter: response time. It uses autonomic computing concepts to
formulate execution plans for business processes, taking into account QoS parameters,
monitoring QoS violations at runtime and also handling these violations and tries to
optimize existing Web Services composition structure with the help of the Controller

Agent Web Service.

Dionisios D. Margaris
52

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[45] performs horizontal QoS-based adaptation, taking into account the sequential and
parallel execution structures within the BPEL scenario. It presents a framework enabling
the WS-BPEL designers to specify the QoS requirements for the service invocations
included in the WS-BPEL scenarios and the subsequent adaptation of the scenarios’
execution to these specifications. The proposed framework also supports the automatic
resolution of system-level exceptions, while it also caters for the maintenance of service
selection affinity, ascertaining that transactional semantics of service invocations are
preserved. The proposed framework includes a scenario preprocessing step, before the
scenario is deployed and made available for invocations, and an adaptation layer, which
undertakes the tasks of optimizing the execution plan for the WS-BPEL scenario,

adapting the execution and resolving exceptions.

0 considers adaptation in the context of exception resolution (i.e. automatically
substituting a failed service by an equivalent one, in order to guarantee successful
completion of the business process) in BPEL scenarios by locating and invoking web
services having the same skills as the failed ones. The code for intercepting faults and
invoking alternate web services is automatically generated and injected into the BPEL
scenario by a preprocessor. ldentification of same skilled web services is based on both
functional and qualitative attributes, where functional attributes are required to be
equivalent, while the comparison between quantitative attributes is policy-driven. The
proposed approach exploits the exception handling mechanisms of BPEL and can thus

be used with any available BPEL orchestrator.

Work in 0 considers service selection in the presence of QoS constraints and aiming to
minimize an objective function for the entire orchestration employing both brute force
(OPTIM_S) and heuristic (OPTIM_HWEIGHT) algorithms. More specifically, QSSAC
algorithm is proposed to solve the problem of service selection which is based on
service clustering. Service clustering, which is able to cluster candidate atomic services
with similar functionality into classes, has a great effect on the efficiency and effect of
this algorithm. According to the clustering results recorded in the service clustering
information, QSSAC algorithm can reduce the number of atomic services of each task
by choosing the best services from each class at first. Moreover, characteristic of each
candidate can be obtained through the service clustering information. Then
improvement of the result of each step of combination can be seen, by choosing a
certain number of suitable services which are measured by utility values and

characteristics. Finally, it provides three strategies to re-select services for tolerating

Dionisios D. Margaris
53

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

service changes and failures. This work presents the service selection algorithms but
does not propose an architecture on top of which the adaptation can be realized, while it

additionally does not consider service selection affinity.

Regarding services’ functionality, some approaches need only record which services
are equivalent, such as [16] which proposes a multi-tier architecture, TailorBPEL, which
supports the tailoring of personalized BPEL-based workflow compositions, enabling
end-users to tailor personalized BPEL-based workflow compositions at runtime, while
others use more elaborate schemes, and such as the one described in [26] according to
which a service A may be related a service B through one of the following subsumption
relationships: exact (services have identical functionality, e.g. they both book a flight),
plugin (service A is more specific than B and can thus be used in its place; for instance,
if service A is “book a flight” and service B is “book transport”, then we can use A in the
place of B since A actually books a transport), subsume (service A is more general than
B and therefore cannot always be used in its place; e.g. if A books a transport and B
books a flight, we cannot always use A in the place of B since A may lead to booking a
trip by ship instead of a trip by plane) and fail (none of the exact, plugin and subsume
relationships holds). The subsumption relationships effectively broaden the pool of
services that can be used in the context of adaptation (a service A can be
unconditionally substituted by a service B if A exact B or A plugin B, as opposed to strict
equivalence where substitution is only possible when A exact B), providing thus more

flexibility in the formulation of the execution plan.

METEOR-S [43] is a suitable infrastructure for such service discovery activities,
employing ontologies where service inputs, outputs and QoS aspects are described.
Execution under the METEOR-S framework is also monitored to allow for updating of
QoS attributes such as response time and failure rate. METEOR-S can be used for
storing and querying both service functionalities and QoS characteristics. Since
METEOR-S adopts ontologies for representing information about services, it is powerful
enough to express both the service equivalence notions and the subsumption
relationships. Also, [43] presents a methodology and a set of algorithms for Web service
discovery based on three dimensions: syntax, operational metrics, and semantics. This
approach allows for web service discovery not only based on functional requirements,
but also on operational metrics. The development of mechanisms for the discovery of
web services is based on operational metrics allows organizations to translate their

vision into their business processes more efficiently, since e-workflows can be designed

Dionisios D. Margaris
54

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

according to QoS requirements, goals, and objectives. To facilitate the discovery and
posteriori integration of Web service into workflows, an approach based on the use of
ontologies to describe workflow tasks and Web service interfaces is proposed and an
algorithm has been devised and a prototype implemented to discover and facilitate the
resolution of structural and semantic differences during the integration process with an
e-workflow. The algorithm uses a feature-based model to find similarities across
workflow tasks and Web service interfaces and finally the system determines and

evaluates the best mapping between the outputs

WSMO [15] may provide the foundations for modeling, storing and reasoning on the
relevant web service functional and non-functional aspects. Its development process is
divided into three steps: (i) the creation of a Platform Independent Model (PIM),
expressed in UML; this model describes business rules and functionalities of the
application, and exhibits a high degree of platform independence; (ii) then, the
production of a Platform Specific Model (PSM), mapping the PIM into a specific
platform; (iii) finally, the application’s generation.

[16] presents WSMoD (Web Services MOdeling Design) a Web Service Modeling
Design methodology for quality of service (QoS)-based Web Services. The approach of
the methodology consists in considering non-functional aspects derived from business
requirements, as well as functional requirements, and incorporating and refining them
throughout the design process. WSMoD extends the model driven
architecture proposed by [15], in two directions. The first one, according to the well-
known software engineering principle “divide et impera”, adds in the definition of the
platform independent model a specific methodological step for the definition of the non-
functional requirements. Users and channels, which support the interaction between
web services and users, should be considered first-class concepts in the analysis and
design of new services. The second extension concerns the platform independent
model to represent quality aspects and the specific context related to user profile and
channel constraints. This kind of context is still independent from a specific deployment
platform, so that it can be adapted to different providers offering new web services. The
goal of this extension of Platform Independent Model is to improve the design of
software applications by avoiding modelling choices that are not deployable in real

provisioning environments.

Note that none of above approaches incorporates CF techniques to enhance the quality

of the adaptation. In the collaborative filtering domain, several methods have been

Dionisios D. Margaris
55

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

proposed, however their incorporation in the WS-BPEL execution adaptation process

has not been considered.

[29] surveys collaborative filtering, focusing on is use within the adaptive web.
Interestingly, [29] lists the basic properties of domains suitable for collaborative filtering
classified under three major categories (data distribution; underlying meaning; data
persistence) and all the listed properties hold for the context of WS-BPEL scenario

adaptation.

[46] presents an approach for integrating collaborative filtering techniques into the WS-
BPEL execution adaptation procedure, introducing both an adaptation algorithm and an
associated execution framework. The adaptation algorithm uses both QoS
specifications and semantic-based collaborative filtering personalization techniques to
decide on which offered services best fit the client’s profile, while the BPEL execution
framework includes provisions for specifying QoS requirements for invocations of web
services within a WS-BPEL scenario, selecting exact services to be invoked and
adapting the WS-BPEL scenario executions according to the recommendations of the
algorithm. This approach follows the horizontal adaptation paradigm, as well, while it
also allows the exploitation of specialized exception handlers. The novel features of this
proposal lie in the use of the collaborative filtering in the adaptation procedure, as well
as in the creation of the execution framework. However, [46] uses very limited QoS-
based criteria (only a lower and an upper bound for each QoS attribute), hence it runs
the risk of formulating solutions whose QoS is much inferior to the optimal composition
QoS that can be attained, especially in cases that CF has known issues (e.g. cold start

and gray sheep).

0 presents an evaluation of collaborative filtering algorithms. Collaborative filtering is in
many cases combined with another personalization technique, namely content based
filtering; [82] and [83] are examples of such approaches. However, content-based
filtering needs items with content to analyze [29], and in the context of WS-BPEL
scenario adaptation we cannot use the items’ content (responses of individual web
services) since the responses of equivalent web services are identical (apart from
invocation-specific data; this is mandatory or they would not be equivalent), hence they
are not useful for choosing between different service implementations. Moreover, the
responses contain personal data (and some of them sensitive data, e.g. credit card

numbers or health-related data), and therefore they cannot be retained. Thus, in this

Dionisios D. Margaris
56

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

work we use only the collaborative filtering approach, retaining only service usage

patterns, in an anonymized form.

In order to perform hybrid QoS/CF-based adaptation or exception resolution, [76]
presents an approach, which adapts the execution of WS-BPEL scenarios taking into
account both QoS-based criteria and collaborative filtering techniques, introducing both
an adaptation algorithm and an associated execution framework. The adaptation
algorithm uses both QoS specifications and semantic-based collaborative filtering
personalization techniques to decide on which offered services best fit the client’s
profile. To achieve this goal, the metasearch algorithm paradigm [10] is followed, using
two different candidate adaptation ranking algorithms, the first examining the QoS
aspects only and the second being based on collaborative filtering techniques. The
adaptation rankings produced by these two algorithms are combined to generate the
overall ranking, which then drives the adaptation. The combination of the results is
performed using a weighted metasearch score combination algorithm [10][11], however
varying weights are used to address issues associated with collaborative filtering, such
as cold start (i.e. few entries recorded in the rating database, thus no good matches can
be obtained) and gray sheep (i.e. unusual users, which cannot be matched with other

users even after the database has been adequately populated) [9].

As far as the combination of results deriving from different algorithms is concerned, [57]
and [58] outline the IBM ILOG CPLEX, a tool for solving linear optimization problems,
commonly referred to as Linear Programming (LP) problems (Maximize/Minimize -
subject to - with upper/lower bounds). ILOG CPLEX also can solve several extensions
to LP (a) Network Flow problems, a special case of LP that CPLEX can solve much
faster by exploiting the problem structure, (b) Quadratic Programming (QP) problems,
where the LP objective function is expanded to include quadratic terms and (c) Mixed
Integer Programming (MIP) problems, where any or all of the LP or QP variables are
further restricted to take integer values in the optimal solution and where MIP itself is
extended to include constructs like Special Ordered Sets (SOS) and semi-continuous

variables.

Finally, none of above approaches take into account an important aspect of QoS
attributes, that their values may vary, according to server load, network conditions or
other relevant factors. To this end, prediction models have been developed e.g. [66] and
[68], to allow a more accurate estimation of QoS attribute values; this increased
accuracy can be used in adaptation systems to improve the quality of the adaptation. In

Dionisios D. Margaris
57

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

order to perform adaptation and/or exception resolution, all approaches employ some
means to formally specify the necessary properties of the services and importantly (a)

their functionality and (b) their QoS attribute values.

Work in [67] includes mechanisms for monitoring the behavior of the invoked services
regarding their QoS aspects, collecting user satisfaction feedback about the invoked
services and taking these data into account when formulating recommendations. This
approach follows the horizontal adaptation paradigm, as well, while it also allows the
exploitation of specialized exception handlers. [67], also proposes a framework which
provides means for monitoring the QoS parameters of the services and adjusting
accordingly the values of the services’ QoS attributes, as well as accepting user ratings
for the services they have used, which are taken into account by the CF-based
algorithm. The proposed framework is complemented with an execution architecture for
enacting the adaptation, which adopts the middleware approach, with an adaptation
layer intervening between the BPEL execution platform and the web services and
arranging for redirecting service invocations to the services selected by the adaptation

algorithm.

Dionisios D. Margaris
58

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

3. QOS CONCEPTS AND COLLABORATIVE FILTERING
FOUNDATIONS

In the following subsections the concepts and underpinnings, from the areas of QoS

and collaborative filtering, which are used, are summarized.

3.1 QoS concepts and definitions

QoS may be defined in terms of attributes [12][13], while typical attributes considered
are cost, response time, availability, reputation, security etc. [14]. For conciseness
purposes, in this chapter we will consider only the attributes responseTime (rt), cost (c)
and availability (av), adopting their definitions from [15]. Extension of the framework to

include additional attributes is straightforward, thus we have no loss of generality.

In the proposed frameworks, the QoS specifications for a service within the BPEL
scenario may include an upper bound and a lower bound for each QoS attribute, i.e. for
service sj included in a WS-BPEL scenario, the designer formulates two vectors
MIN;j(minrj, mincj, Minavj) and MAXj(maxr,;, maxcj, Maxav). Additionally the designer
formulates a weight vector W = (rtw, cw, avw), indicating how important each QoS
attribute is considered by the designer in the context of the particular operation
invocation (effectively, weight element values are multiplied by the value of the
respective QoS dimension of the service composition, and these products are then
summed to produce a total score for the composition). The values of the QoS attributes
are assumed to be expressed in a “larger values are better” encoding, hence a service
having response time = 7 actually responds in less time than a service with response
time = 3 (better response time). Note that weights apply to the whole composition,
rather than to individual services, since they reflect the perceived importance of each

QoS attribute dimension on the process as a whole, and not its constituent parts [23].

For convenience reasons, we assume that all QoS attributes are normalized in the
range [0, 1]; value range normalization is a typical approach in works considering QoS-
based adaptation (e.g. [23][24]). Note that this implies that a total ordering relationship
is required in the range of the QoS attributes; this is always the case with attributes
such as response time and availability, however some QoS attributes are more
complex: for instance [25] identifies seven dimensions related to security, and some

security mechanism S1 may outperform some other security mechanism S2 in some

Dionisios D. Margaris
59

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

dimensions but lag behind S2 in other dimensions. This could be tackled by
decomposing the security QoS attribute in seven distinct attributes, one for each
dimension, ensuring thus the existence of the total ordering relationship in the range of
each attribute. In the rest of this chapter, we will only consider cases that the total

ordering relationship exists.

In order to compute the QoS of services composed through sequential or parallel
execution from constituent services s1, ..., sn having QoS attributes equal to (rt1, c1,
av1), ..., (rtn, cn, avn), respectively, the formulas given in Table 1 [16] can be used.
These computation formulas are in line with the Q-algebra operations introduced in [17]

and generalized in [18].

As we can see from Table1, the response time of a sequential composition is equal to
the sum of its components’ response time, while the response time of a parallel
composition is equal to the maximum value. This difference is important in the
adaptation process, since different search strategies should be employed to optimally
adapt the scenario to the client's QoS specification. Consider for example the case of a
BPEL scenario includes sequential invocations to A and B, which is invoked with the
setting W=(1, 1, 0) for both service invocations. If the repository of available services
were as listed in Table2, then the adaptation engine should select services (42, B2), with
this composition scoring 2 = (sum (rta2, rtg2)*1 +sum(caz, cs2)*1), a score higher than
any other composition. In a parallel composition however, the adaptation engine should
select (A2, B1), since these provide an overall score of 1.7 =(max(rtaz, rtg1)x1 +sum(caz,

cs1)*1), as opposed to 1.3 of (A2, Bz).
Table 1: QoS of composite services

QoS attribute

responseTime cost availability

n n
Sequential n Z H
¢ ay,;
zrti i=1 i=1
i

composition

Parallel n n
max(7t;) c. av,
composition i i1 i=1

Dionisios D. Margaris
60

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 2: Sample repository contents

Service responseTime cost availability
A1 0.6 0.5 0.8
Az 0.8 0.4 0.7
B1 0.2 0.5 0.9
B2 0.7 0.1 0.7

3.2 Subsumption relation representation

In order to perform adaptation, either QoS-based or collaborative filtering-based, which
services implement the same functionality must be represented, and are thus candidate
for invocation when this particular functionality is needed. In this work, subsumption
relations between services [18] to represent this information is used. In [26] the

following subsumption relations are defined:
A exact B, iff A provides the same functionality with B.

A plugin B, iff A provides more specific functionality than B. For instance B could
provide travel, whereas A could provide air travel; in this case A could be used
whenever the functionality of B is needed, since it delivers (a specialization of) the

functionality delivered by B.

A subsume B, iff A provides more generic functionality than B. In this case A cannot
unconditionally be used whenever the functionality of B is needed. For instance B could
provide air travel while A provides travel, and using a travel service (instead of an air
travel one) could result to transportation by car, which does not comply with the

functionality of B.
A fail B, in all other cases; in this case, A cannot be substituted for B.
The rationale for adopting the subsumption relations are as follows:

subsumption relations effectively broaden the pool of services that can be used in the
context of adaptation (a service A can be unconditionally substituted by a service B if A

exact B or A plugin B, as opposed to strict equivalence where substitution is only

61 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

possible when A exact B), providing thus more flexibility in the formulation of the

execution plan.

Subsumption relations are suitable for supporting the task of similarity metric

computation, which is essential for collaborative filtering-based adaptation.

[26] and [27] address the representation of subsumption relations between service
categories (or abstract tasks, in horizontal adaptation terminology) using trees, with
generic service categories being located towards the tree root and specific service
categories being placed towards the leafs (the references above apply this arrangement
also to concepts corresponding to service parameters). Since in this work we are
interested not only in service categories but in concrete services also (because these
will be actually invoked in the context of WS-BPEL scenario execution), the tree scheme
used in [26] and [27] is extended by considering not only is-a arcs in the tree
(general/specific categories) but also instance-of arcs: an arc is drawn in the tree
between service category C and concrete service S, if and only if S implements exactly
the functionality specified by category C. To illustrate this representation, let us consider
the case of a travel planning WS-BPEL scenario containing the following activities:
ticket booking, hotel booking, and event attendance. In this case the subsumption
relations, including categories and concrete services could be arranged as shown in
figure 1 (categories are denoted using a folder icon; concrete services are denoted

using a bullet mark).

Below, how the exact and plugin subsumption relations (the ones sufficient for
unconditional service substitution) can be computed using the tree representation, are
listed. Since the goal of the adaptation is to select the concrete services to be invoked in
place of an abstract task or a concrete service, only the rules for the cases where the
right-hand side operand is a concrete service are given. In the following, ¢ represents a

category, while s1 and s2 represent services:

e Rule Cext: ¢ exact s1 iff ¢ is the immediate parent of s1 (e.g. Air travel and
SwissAir in figure 4-1).

¢ Rule Cpig: ¢ plugin s1 iff ¢ is an ancestor of s1 (e.g. Ticket and SwissAir in figure 4-
1).

e Rule Sext: s1 exact s2 iff 3 ¢: ¢ is the immediate parent of s1 and c is the
immediate parent of s2 (e.g. AirFrance and SwissAir in figure 4-1).

e Rule Spig: s1 plugin s2 iff 3 ¢: ¢ is the immediate parent of s1 and ¢ plugin s2 (e.qg.
SportsTicketBooker and NBAFinals in figure 4-1).

Dionisios D. Margaris
62

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

In all other cases, unconditional substitution cannot occur hence a fail result for the
operands is computed. Listing 1 and Listing 2 illustrate the computation of the relevant
subsumption relation between a service category and a service or between two
services, respectively, given the tree representation suggested in [26] and [27]. The
representation of subsumption relations illustrated in figure 1 can be trivially extended to
accommodate the QoS attribute values of concrete services, by simply attaching to
each concrete service node s the vector QoSs=(rts, Cs, avs) corresponding to the

particular service’s QoS metrics.

Dionisios D. Margaris
63

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

-)4 Ticket

E} I» Road Travel

- . rdda
-4 YouthHostel
& Ju Event

Figure 1: Subsumption relations for the travel planning WS-BPEL scenario

Dionisios D. Margaris
ionisi gari 64

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

The exact subsumption relation is equivalent to contract equivalence [26]. Further [37]
uses the subcontract preorder concept, denoted as a <b, to denote that b offers “more
capabilities than a, and therefore b can be substituted for a”; the preorder concept is

therefore analogous to the plugin subsumption relation.

subsumptionRelCatSvc(ServiceCategory c, ConcreteService s, SubsumptionTree st) {

SubsumptionTreeNode categNode = findNodelnTree(c, st);
SubsumptionTreeNode svcNode = findNodelnTree(s, st);
if (svcNode.parent == categNode)

return exact;
end if
while (svcNode.parent # null)

svcNode = svcNode.parent;

if (svcNode == categNode)

return plugin;

end if

end while

return fail;

}

Listing 1: Computing the subsumption relation between a service category and a concrete service

subsumptionRelSvcSvc(ConcreteService s1, ConcreteService s2, SubsumptionTree st)
{

SubsumptionTreeNode svc1Node = findNodelnTree(s1, st);
SubsumptionTreeNode svc2Node = findNodelnTree(s2, st);
if (svc1Node.parent == svc2Node.parent)

return exact;

Dionisios D. Margaris
65

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

end if
while (svc2Node.parent # null)

svcNode = svcNode.parent;

if (sveNode2 == svc1Node.parent)
return plugin;
end if
end while
return fail;}

Listing 2 : Computing the subsumption relation between two concrete services

The information regarding the QoS data and the subsumption relations can be stored in
repository structures like the ones provided by OPUCE [37]. The population of the
repository with QoS values can be performed either by using existing web service QoS
datasets (e.g. the QWS dataset [38][39][40] or the WS-DREAM dataset [41][42]), or by
using the methodologies described in [38][39][41] to compute the QoS attribute values
for any desired set of target web services. In all cases, the execution framework can
monitor the actual quality of service delivered by the individual web services upon their
invocation, and update the QoS attribute values in the repository accordingly, as
described in [43].

3.3 Designations on specific service bindings

In the considered environment, the WS-BPEL consumer is allowed to make specific
service bindings, i.e. request that some particular operation is performed using a
designated service. For instance, in the travel planning WS-BPEL scenario discussed
above, the consumer may request that ticket reservation is performed through the
SwissAir service. The consumer may also designate that some functionality included in
the WS-BPEL scenario is not executed; for instance, a tourist may not want to attend
any event. Typically, the WS-BPEL code will examine input parameters and decide
using a conditional execution construct (<switch>) whether to invoke the functionality or

not.

Dionisios D. Margaris
66

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Finally, functionalities that are neither explicitly bound to a specific service
implementation, nor are designated as “not to be executed” are subject to adaptation,

using the algorithm described in section 3.

3.4 Usage patterns repository

In order to perform collaborative filtering, a system needs to record evaluations (ratings)
or choices (actions taken) made by users. This information is typically stored in a ratings
matrix [29], where each row corresponds to a user and each column corresponds to an
item, and the value of the (i, j) cell of this matrix indicates how user i has rated item j (or
whether user i has taken action j). Since our aim is to adapt WS-BPEL scenario
executions based on past user choices, each row of the ratings matrix in the proposed
system corresponds to a particular WS-BPEL scenario execution, while each column
corresponds to a concrete web service implementation. The value of a cell (i, j) is 1 if
the service corresponding to column j were executed in the i execution, and null
otherwise. We will call this matrix usage patterns repository. The execution framework
can maintain this usage patterns repository by recording in an appropriate store which

services were used in any particular execution of a BPEL scenario.

For notational convenience, in the rest of this dissertation the usage patterns repository
in @ more compact form will be represented: taking into account that each functionality
included in the WS-BPEL scenario will result to at most one invocation of some service
that implements it (it may result to zero invocations, if the consumer has designated that
this piece of functionality should not be executed. Note that the adaptation procedure
presented here does not take into account loops, an aspect which will be addressed as
part of our future work.), for each row, at most one of the columns corresponding to the
services implementing the functionality will have a value, while the other columns will be
null. Thus the information within the usage patterns repository using one column for
each distinct functionality of the WS-BPEL scenario can be equivalently denoted, with
the value of a cell (i, j) designating the service used to deliver the specific functionality if
the functionality corresponding to column j were delivered in the context of the ith
execution, and null otherwise. Table 3 illustrates a usage patterns repository for the
travel planning WS-BPEL scenario, using the compact notation. Note that the sparse
representation is used internally, as is the case with all collaborative filtering algorithms.
In executions 1, 2, 5 and 7 all functionalities were invoked, while in the remaining

executions some functionalities were omitted, as per user request.

Dionisios D. Margaris
67

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 3: Example usage patterns repository

exec Travel Hotel Event
1 OlympicAirways | YouthHostel ChampionsLeague
2 SwissAir Hilton GrandConcert

3 HighSpeedVessels | YouthHostel

4 LuxuryBuses EuroleagueFinals
5 Lufthansa YouthHostel GrandConcert

6 AirFrance Hilton

7 SwissAir YouthHostel ChampionsLeague

The usage patterns repository is populated by the execution adaptation architecture,
described in section 5-3. When the execution adaptation architecture formulates the
execution plan for a particular invocation (i.e. selects the concrete services to be
selected to deliver the requested functionalities), the corresponding row is inserted in

the usage patterns repository.

Dionisios D. Margaris
68

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

4. QOS-BASED APPROACH

In this chapter a framework that extends BPEL execution with provisions for (a)
specifying QoS requirements for invocations of web services within a WS-BPEL
scenario (b) adapting the WS-BPEL scenario execution according to the QoS
requirements while maintaining service selection affinity and (c) automatically resolving
system-level exceptions in a QoS requirement-adhering manner is presented. The
system architecture is compliant with the SOA paradigm, while all additional information
needed for adaptation purposes (i.e. the QoS specifications for individual web service
invocations) are expressed in standard WS-BPEL syntax. The proposed framework also
considers both sequential and parallel execution structures of WS-BPEL (<sequence>
and <flow> tags, respectively), allowing for successful adaptation of any WS-BPEL

scenario.

4.1 The QoS-based algorithm

The QoS-based algorithm initially identifies the services which are candidate to be used
for delivering functionalities in the context of the current WS-BPEL scenario, according
to their QoS attribute values, as well as the QoS bounds specified by the user for the
particular invocation, and subsequently computes a score for each candidate
composition. Figure 2 illustrates the steps of the QoS-based algorithm in the form of an
activity diagram and figure 3 describes the algorithm in pseudocode, while the following

paragraphs provide details on the actions taken within each step.

Loop: for each funct(i) for which a recommendation is 1
requested: find candidate services |

Integer programming I Solutions [sef of (candi ‘ [Solutions with
| jproblem ‘ composition, score) pairs] (normalized score
retrleve services implamenting O t—>»{ Formulate integer [———>{ Find k-best Normall >©
funct(l) satisfying QoS constraints | programming problem to solutions to integer solution scores
compute K-best service programming
\ assignments to functionalities problem

w.r.t service QoS &
user-specified weights

e

Figure 2: Activity diagram for the QoS-based algorithm

/* QoS-based adaptation algorithm pseudocode

Assumption:

Dionisios D. Margaris
69

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Scenario includes functionalities (i.e. invocations to services) f1, f2, ..., fa

Inputs:

MIN and MAX (lower and upper bounds for QoS attributes) and weights

Specification of bindings of functionalities to concrete services B=(b1, bz, ..., bn) [bi
== null if no binding provided, else id of service)

Specifications of functionalities not to be invoked O=(01, 02, ..., On) [0i == thrue if fi
should not be invoked, false otherwise]

Specifications of functionalities for which recommendations are requested R=(r1,
r2, ...,) [ri == category of functionality if a recommendation is requested for fi, null
otherwise]

Subsumption relation tree, including the QoS attribute value of services

Scenario structure (information about which functionalities are executed

sequentially and which in parallel)

Outputs:

*/

List of <execution plan, score> pairs, with “execution plan” binding services that

recommendation is asked for to concrete services

/* 1. For each functionality ri that a recommendation is requested for, compute the set of

services QPA(i) that deliver this functionality (as can be determined by the subsumption

relations) and satisfying QoS thresholds. */

for each fi € R, fi # null: QPA(i) = {s € serviceRepository: (fi exact s v fi plugin s) A MIN <
QoS(s) < MAX

[* 2. formulate and solve integer programming problem, obtaining the top-20 execution

plans, taking into account the QoS attribute values and the weights of the QoS

attributes */

ipp = formulatelntegerProgrammingProblem(QPA)

QoS _solutions = obtainTop20Solutions(ipp)

/* 3. Finally, normalize scores */

QoS _proposal = normaliseScores(QoS_solutions);

Dionisios D. Margaris

Figure 3: Pseudocode for the QoS-based algorithm

70

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1. For each distinct functionality functi within the WS-BPEL scenario which is subject
to adaptation (i.e. for each service invocation that the user (a) has not designated
an exact service binding and (b) has not designated that the functionality should
not be invoked), the service implementations that deliver this functionality are
retrieved from the repository. Recall that service functionalities are represented
using the subsumption relations tree, and in terms of this tree the retrieval of
services implementing a specific functionality is equivalent to retrieving services
satisfying either the Sext or the Splg rule (i.e. services with either identical or more
specific functionality, compared to the requested one). Equivalent services
retrieval is further constrained by the QoS thresholds specified in the respective
invocation. Thus, for each functionality functi, this step computes a set of possible
concrete service assignments QPA(i)={si1, si2, ..., Sit@i}. Formally, QPA() is
computed as follows:

QPA(i) = {s € Repository: (funct; exact s V funct; plugins) A [(min; < rtg
Smaxy ;) N (ming; < cg < max, ;) A (Minyg; < rely < max,q;;)]}
If, for some service that is subject to adaptation, no candidates satisfying the
thresholds are found (i.e. QPA(i)=9Y), then the algorithm terminates producing no
results, indicating thus that the constraints specified by the user cannot be
satisfied.

In our example, services Swiss Air, Olympic Airways, Air France and Lufthansa,
satisfy the Sext rule, however service Olympic Airways fails to meet the QoS
constraint regarding the maximum cost. Hence QPA(AirTravel)={Swiss Air, Air
France, Lufthansa}.

2. The algorithm computes the m-best solutions, with respect to the QoS value, with
each solution being a set of concrete service assignments to the functionalities for
which a recommendation has been requested. Since the service consumer’s QoS
bounds per functionality are an input to the adaptation algorithm, service selection
can proceed by exploiting these constraints, performing local selection so as to
efficiently compute the optimal concrete service assignments for the functionalities
under adaptation [47][37][48][49][50][51][52]. In this work, we adopt the concrete

service utility function used in [47][49], which is:

3 .
U(sj;) = Z Qmax U, k) — qic(s;,))
k=1

Qmax’(k) - Qmin’ (k) " W

71 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

here gk(s;,i) is the value of the ki QoS attribute of concrete service s, (the first QoS
attribute being response time, the second one being cost and the third one being
availability), wk being the weight assigned to the kth QoS attribute, Q,,..(j, k) =

&%’E) qx,(s) [i.e. the maximum value of QoS attribute k among possible concrete
s j

service assignments for functionality jl, and Q,,,4,’(k) [resp. Q,,’(k)] being the
overall maximum (resp. minimum) value of QoS attribute k within the repository.
Note that services with high QoS values have low utility function values. Given the
utility function, the computation of the m-best solutions can be formulated as an
integer programming optimization problem as follows: minimize the overall utility

value given by:

OUVgos = Nizq Z,T-Sl) U(sji) * xj;
where F is the number of functionalities functk requiring adaptation, and each x;ji is
a binary variable taking the value 1 if s;i is selected for delivering functionality
functj, and the value 0, otherwise. Since each functionality funct; is delivered in the
final execution plan by exactly one concrete service, the minimization of the overall

utility value is subject to the constraint
T(J)
Zx]-,l- = 1,1 S]SF

i=1
Note that in the above problem formulation an additive formula is used for all QoS
attributes, while the formulas listed in Table 1 for composite QoS service
computation are not all additive; in particular the availability attribute of a
composite service is shown in table 4-1 to be computed as a product, while the
response time of a parallel composition is computed as the maximum of the
constituent services’ response time. In order to transform the non-additive
formulas to additive ones, suitable for use in the context of an integer
programming problem, we have employed the following techniques:

e regarding the product functions used for computing the availability of a
composite service, we have adopted the approach used in [23][53][54],
according to which the logarithm of availability, rather than the availability
itself is used when writing expressions. Through the use of the logarithm,

the equality
log(l_[availability(i)) = Z log(availability(i))
i i

Dionisios D. Margaris
72

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

is exploited, and therefore the product function is transformed to a sum
function. Observe also that in the computation of the U(s;;) function listed
above, the literal value any QoS attribute (including availabiliity) is
normalized taking into account the minimum and maximum values of the
attribute, the range of the normalized attribute value used in the utility
function is always in the range [0, 1].

regarding the max function used in computing the response time of a
parallel composition, it is possible to follow the method described in [55] to
transform an objective minimization problem where the objective contains
the max function (termed a minimax objective) to an integer programming

problem. In brief, the transformation procedure of an objective function

max Y CpiX;
kek Z ki<

jej

involves the introduction of a new variable z representing the above term,

containing the term

and the introduction of the following extra constraints:

Z CjXj < z,Vk € K

Jj€J
A relevant example is given in [56]. It is however worth noting that the IBM
ILOG CPLEX optimizer 12.6.0.0 [57] used in the experiments, directly
supports the usage of the max operator within the objective function, even
in a recursive structure (i.e. the operands of a max operator may be max
operators themselves, as would be the case with nested flow constructs in a
BPEL scenario), hence there was no need to apply the transformation
described above; the transformations can be used, if the integer
programming optimization software used does not support the direct use of

the max operator in the objective function.

If service selection affinity needs to be maintained between functionalities funct

and functj, then an additional constraint is added to the problem as follows:

Let QPA(i)={si1, siz2, ..., SiL@} be the possible concrete service assignments for
functi and QPA(j)={sj.1, Sj2, --., SjL()} the possible concrete service assignments
for functj, computed in step 1, above. Without loss of generality, it is assumed
that the first k services in QPA(i) and QPA(j) are offered by the same service

provider (i.e. services for which the host part of their endpoint address [1] is

Dionisios D. Margaris
73

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

identical), while the remaining services are offered by different providers, or
more formally:

{provider(si,a) = provider(sj,a), 1<a<k

provider(s;) # 'provider(sj,y), 1<x<k1<y<kx=#y
In this case, implementing the functionalities (functi, functj) with any choice of
services (sia, Sja) for 1<a< k leads to maintenance of service selection affinity,
while any other choice (i.e. a > k, or implementing the functionalities with a
choice of services (six, Sjy) with x#y) leads to a failure in maintaining service

selection affinity.

. The constraints

Xiag—Xqa=01<ac<k
are added to the problem; under the presence of these constraints, a service Xia
implementing functionality functi and provided by service provider a will be
selected if and only if for the realization of functionality funct; the service xja
provided by the same provider is selected too. For optimization purposes, all
elements corresponding to services sip and ssp: b > k are removed from the

model, since they cannot be part of any feasible solution.

This procedure can be generalized for cases that service selection affinity needs

to be maintained between any number of functionalities: if service selection affinity

needs to be maintained between functionalities functi1, functi,..., functi, then the

constraints

Xita —Xi2a =01 <a < k

xil,a—xif’a :O,]. <a < k

Similarly to the case of maintaining service selection affinity between two

functionalities, it is assumed without loss of generality that

provider(sj; q) = provider(sl-z,a), 1<ac<k

provider(sj; q) = provider(sif’a), 1<ac<k
provider(s,,) # provider(s,,),1<p<f,1<q<fp#ql<x<kl<y<kx#y

Dionisios D. Margaris

74

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Subsequently, the integer programming problem is solved, and the k best
solutions are obtained. Obtaining the k best solutions can be achieved by solving
the problem once, and then adding a constraint rendering the obtained solution
infeasible (for the IBM ILOG CPLEX optimizer [57] used in the experiments, this
procedure is described in [58]). In this implementation, k was set to 20; the value
of 20 has proven to be sufficient even for applying metasearch techniques to web
search engines [59] (where the size of each individual list is considerably higher
than the number of alternatives in our case), i.e. further increasing the number of
solutions that each voting algorithm provides to the combination phase, does not
improve the quality of the result computed by the combination step.

In our example, a single functionality requires adaptation (AirTravel); the utility
function for this functionality is

3 .
Qmax (AirTravel, k) — qx (SAirTravel,i)

U(s4i i) = Y
(Aerravel,l) L Qmax' (k) — Quin' (k) k

Substituting the values for Qmax(k), Qmax(k), Qmin(k) and wk, the utility function can

be rewritten as:

5 —1t(Sy; i 8 — cost(Sy i 9 — av(sy; j
U(SAirTravel,i) (Sxﬁriravel,l) % 0.2 + COSg(iquravel,l) £ 0.5 + g iLrZravel,l) «023
runtime cost availability

The utility function values for services in QPA(AirTravel) are as shown in Table 4.
Since assignment is performed only for a single functionality, each possible
solution obviously consists of selecting one of the candidates in QPA(AirTravel) to
implement the AirTravel functionality. In terms of the integer programming problem
solution, the variable xairtravelj for this service will be equal to 1 and the variables
XairTravel k for the remaining services will be 0. The value of the overall utility function
for a solution, coincides with this of the sole service selected in this solution. All

possible solutions are kept, since their number is less than 20.

Dionisios D. Margaris
75

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 4: Utility function values and IP problem solutions for services in QPA(AirTravel)

IP problem solution Selected | U(sairTraveli) | OUVaos
SAirTravel,i
XAirTravel, SwissAir=1,XAirTravel AirFrance=0, Swiss Air 0.231 0.231

XAirTraveI,Lufthansa=0

Air

XAirTraveI,SwissAir=0, XAirTraveI,AirFrance=1 , 0.100 0.100
France

XAirTraveI,Lufthansa=0
Lufthan

XAirTravel, SwissAir=0, XAirTravel AirFrance=0, utthansa 0.657 0.657

XAirTraveI,Lufthansa=1

3. The scores of the solutions produced by step 2, above, are then normalized in the
range [0,1], to enable the combination step to function correctly. Normalization is
performed by first computing the minimum and the maximum execution plan
scores among all solutions formulated in step 3, above, and then applying the
formula

QoSscore; — minQoSs e

normedQoS. =1- -
Score; maxQoSg.ore — MinQoSScore

[37] (adapted from [11]; since the target of step 2 was to minimize the overall utility
function OUVCF, here the normalization formula suggested in [11] is subtracted
from 1, in order to assign the normalized score 1 to the best solution and the
normalized score 0 to the worst). The output of the algorithm is the set of
candidate execution plans, with each execution plan being tagged with the
relevant normalized score (QoS-score).

In this example, the normalized solution scores are as shown in table 5.

Table 5: Normalized solution scores

SAirTravel,i Normalized score

Swiss Air 0.764

Air France 1,000

Lufthansa 0.000

Dionisios D. Margaris
76

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

4.2 Proposed framework

The proposed framework extends the typical WS-BPEL execution scenario by
accommodating two additional modules, namely the BPEL scenario preprocessor and
an adaptation layer. The BPEL scenario preprocessor accepts as input the original
BPEL scenario and produces as output a transformed BPEL scenario, which has been
transformed to (i) transmit to the adaptation layer the QoS specifications and the
necessary information regarding the scenario structure (i.e. sequential and parallel
flows) to enable the adaptation of the scenario and (ii) redirect all service invocations to
the adaptation layer, where they will be appropriately redirected to the most suitable
service provider. The adaptation layer is deployed as a middleware, positioned between
the BPEL execution engine and the web service providers and arranges for redirecting
the web service invocations to the web service implementations best matching the
client’s QoS specifications, and intercepting and resolving system-level exceptions. The
adaptation layer also offers two utility web services, the first one assigning session
identifiers to BPEL scenario executions and the second one accepting the information
regarding QoS specifications and the scenario structure. Figure 4 presents the overall
architecture of the proposed framework; in the following section (a) the specification of
QoS parameters in the BPEL scenario (b) the operation of the preprocessor and (c) the

operation of the adaptation layer are elaborated.

4.3 Specifying QoS information in the scenario

The first step towards enabling the QoS-based adaptation is the specification of the
required QoS for service invocations. In order to provide this feature in a WS-BPEL

compliant fashion, the proposed framework adopts the following conventions:

1. the designer should include in each invoke construct in the WS-BPEL scenario the

optional attribute name, assigning distinct names to the invoke constructs.

2. for the invoke construct having name invX, the designer should use the WS-BPEL
variables QoSmax_invX, QoSmin_invX and QoSweight_invX, which define the
respective QoS specifications for the particular invocation. The BPEL designer

may set the values for these variables after inspecting input parameters to the

Dionisios D. Margaris
77

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

scenario (e.g. “choose=cheapest’), arranging thus for tailoring the QoS

specification to the invoking user’s preferences.

Figure 5 presents an excerpt of a BPEL scenario setting QoS specifications for an
invocation (named invoke1). Since variable QoSmin_invoke1 is not set, no lower
bounds will be considered for the QoS attribute values in the process of adapting the
particular web service invocation. Additionally, since the QoSmax_invoke1 does not
include a setting for the availability QoS attribute, no upper bound for this attribute value

will be considered.

Dionisios D. Margaris
78

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

specifications

_H"V ,.,. Enhanced
\ BPEL scenario
...&Jr-...\\\..
deployment | Adaptation layer
(4) retrieve
sessionid
] ——————————
(3) V\eb Services - _ persesslanisl S _|-' Session
(5) information M oy
BPEL scanario Platform WUWE mom:mjo "
invocation + structure, servicd
Pararmeters WS-BPEL Orchestrator | | 415 and QoS
R——— |'.,_ bpelSoemanolnfo WY
(6) V\
e web service call
(11)] _ adaptSinvocation WS _
il —————
Resuits (9) Result i
_ releaseSession WS _
—————————
{10} Release
session {7) Invocation (8) Results or systam-relatad
exception o business logic exception
b Sendce WYE-T i _ WE2 WS

Implementations

Figure 4: Proposed Framework Architecture

Dionisios D. Margaris

79

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

4.4 Preprocessing the BPEL scenario

As shown in figure 4, before the BPEL scenario is deployed on the web services
platform, it is processed by the BPEL preprocessor, which creates an enhanced BPEL
scenario as its output. The enhanced BPEL scenario differs from the original one in the

following aspects:

1. it includes as its first operation an invocation to the web service getSessionld
provided by the middleware; the result of the invocation is stored in a variable for

later perusal.

<assign>
<copy>
<from><literal>respTime:5;cost:3</literal></from>
<to variable="QoSmax_invoke1"/>
</copy>
<copy>
<from><literal>respTime:-1;cost:-2;availability: 1</literal></from>
<to variable="QoSweight_invoke1"/>
</copy>
</assign>
<invoke = name="invoke1" partnerLink="Ink1" portType="port1" operation="op1"

inputVariable="input1" outputVariable="output2"/>

Figure 5: QoS specification in the BPEL scenario

2. it includes an invocation to the bpelScenariolnfo web service provided by the
middleware, through which the BPEL scenario transfers to the adaptation middleware
(a) the current session identifier (b) the values of all QoS-related parameters
(QoSmax_, QoSmin_ and QoSweight) and (c) the information about the scenario
structure. The latter effectively is represented as a simplified XML representation of
the BPEL scenario including only the <sequence>, <flow> and <invoke> constructs
of the original BPEL scenario; for the <invoke> constructs in particular, only the

name, and operation attributes are transmitted, coupled with the service’s endpoint

Dionisios D. Margaris
80

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

address, extracted from the relevant WSDL file. This invocation is inserted before the
first <invoke> construct of the original WS-BPEL scenario, to ascertain that the
adaptation-related information have been transferred to the adaptation layer before

the first invocation is intercepted and adapted.

3. The preprocessor arranges that each web service invocation is complemented
with a header including the session identifier for the current scenario execution (the
value returned by the getSessionld WS) and the value of the name attribute of the
particular invoke construct. While header manipulation not a standard WS-BPEL
feature, most contemporary BPEL engines provide means to set request headers,
e.g. [17][19].

4. The BPEL scenario includes as its final operation an invocation to the

releaseSession web service provided by the middleware.

The enhanced BPEL scenario produced by the preprocessor is then deployed to the

web services platform and made available for execution.

4.5 Executing the BPEL scenario

When the BPEL scenario starts executing, it will retrieve the session identifier from the
adaptation layer and subsequently will transfer to the adaptation layer all information
described in the previous subsection. The adaptation layer at this stage proceeds to the

creation of the current session’s execution plan as follows:

1. for each web service invocation within the WS-BPEL scenario, its equivalent
services are retrieved from the service repository; note that the information retrieved
from the service repository includes the values for the equivalent services’ QoS
attributes. Only equivalent services that satisfy the QoS thresholds specified in the
respective invocations’ QoSmax_ and QoSmin__ are retrieved. If, for some service in
the initial WS-BPEL scenario, no candidates satisfying the thresholds are found, then
the adaptation layer returns a QoS_PolicyFault to the web services platform. The
WS-BPEL designer may intercept the fault using the standard WS-BPEL
mechanisms (<catch> construct) and attempt to resolve it, e.g. by relaxing the
constraints and restarting the scenario, or simply notify the requesting client of the

error condition.

81 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

2. the adaptation layer formulates all candidate execution plans for the particular
execution of the BPEL scenario. Assuming that the scenario contains N invocations
{inv1, invz, ..., invn} and that for each invocation inv; there is a set of equivalent
services EQj={sj1, sj2, ..., Sjk}, the maximal set of candidate execution plans is EQj x
EQ2 x ... x EQN. This set is however pruned by removing elements that violate the
service selection affinity principle, i.e. if invocations invi and inv; are directed to the
same service provider (i.e. services for which the host part of their endpoint address
is identical) in the original scenario, then all candidate execution plans in which
replacements to invi and invj; are not directed to the same service provider are
removed from the candidate set. If the pruning step results in an empty candidate

execution plan set, then a QoS_PolicyFault is returned to the web services platform.

3. for each execution plan within the candidate set formulated in step 2, an overall
score is computed. The score computation procedure proceeds in a bottom-up
fashion: initially, the score of individual invocations is computed using the formula
sc(inv,)=rt, *w where rti, ci and avi are the QoS attribute values

rt,i

+c,*w,, +av,*w

for the service replacing invi in the execution plan, while wri, wci, Wav,i are the weights
specified in the QoS_weight variable for invocation invi. After all individual
invocations’ scores have been computed, the formulas in table 1 are used to
compute the overall score of the execution plan. Finally, the execution plan with the
highest score is selected, and the correspondences between the original invocations
and the services used in the selected execution plan are stored in the session
memory (cf. figure 1), coupled with the current session id. The correspondences are

marked as unbound; this flag will be used for exception resolution (described below).

When an invoke construct is processed within the BPEL scenario, the outgoing request
is redirected to the adaptWSInvocation web service provided by the adaptation layer;
this can be accomplished either using a proxy setting in the web services platform or by
using a transparent redirection router (both techniques are detailed in [4]). When the

adaptWSiInvocation intercepts a request, it processes it as follows:

1. it extracts from the request headers the session identifier and name of the
invoke construct. Using these keys, it queries the session memory for the
correspondence between the invoke construct and the actual service endpoint,

selected in the execution plan formulation phase.
2. the request is forwarded to the endpoint retrieved in the previous step and the
reply is received. If the reply is a normal response or a business logic-level fault (cf.

Dionisios D. Margaris
82

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

0), then the reply is forwarded back to the web services platform. Additionally, the
host part of the endpoint to which the invocation was made (denoted as hinv in the
following) is extracted, and the session memory is updated setting the
correspondence between invoke construct names and endpoint address to bound,
for all invocations to endpoints offered by hinv. This update will prevent the exception

resolution process (described below) from breaking the service selection affinity.

3. if the reply received from the invocation is a system-level fault (e.g. “host
unreachable” or “connection refused”; for a full discussion the interested reader is
referred to [6]), then the adaptation layer will try to resolve the fault by invoking a
service equivalent to the failed one. Note however that such a resolution is possible
only if no prior successful invocation was made in the same session to a service
offered by hinv. This restriction is applied to maintain session affinity, since if a prior
invocation was made to host hinv and the current invocation is directed to another
host to resolve the system fault, then the service selection affinity will be broken.
Taking the above into account, the adaptation layer first queries the session memory
to determine if the current invocation has been marked as bound (recall from step 2
above that this will be performed if any prior invocation to services offered by hinv has
concluded successfully). If it has been marked as bound, then the fault cannot be
automatically resolved and is thus returned to the web services platform. If, however,
the current invocation is marked as unbound, then the adaptation layer first locates in
the current execution plan all services si1. sz, ..., sk offered by host hinv and then

retrieves from the repository all k-tuples (s’1. s’2, ..., s’k) such that:

a. si is equivalent to s’i, Vv i=1, 2, ..., k; this condition guarantees the functional

equivalence of the initial execution plan to the candidate exception resolution plan.

b. s’i satisfies the QoS thresholds specified in the respective invocations” QoSmax_
and QoSmin_ variables, V i=1, 2, ..., k; this condition guarantees that the candidate

exception resolution plan adheres to the restrictions specified by the client.

c. all services s'’i are offered by the same host, which must be different from hiny; this
condition guarantees that the candidate exception resolution plan maintains the

service selection affinity and that the failed host will not be retried.

Subsequently, for each k-tuple KTj, an overall score is computed using the formula

(rti, ci and avi denote the QoS attribute values

av,i

k
— * * *
sc(KT)) = E rLEw, e Tw, av e
i=1

Dionisios D. Margaris
83

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
for service s’i in KTj and while wr,i, wci, wavi are the weights specified in the
QoS_weight_ variable for the respective invocation). The k-tuple with the highest
score is then chosen and all invocations in the execution plan to services offered by
host hinv are replaced by the corresponding invocations to services of the chosen k-
tuple. Finally, the failed service invocation is restarted, being now directed to the
newly chosen endpoint. If a system-level exception occurs at this point, the next-best
k-tuple is selected, the execution plan is updated and the invocation is restarted
again; this is be repeated until either a request succeeds or an administrator-defined
limit is reached; in the latter case, the system-level exception is returned to the web

services platform.

Dionisios D. Margaris
84

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

4.6 Experimental analysis

In order to assess the performance of our approach and validate this approach, a set of
experiments, aiming to measure and quantify the overhead incurred due to the
introduction of the middleware has being conducted. In these experiments (a) the
overhead imposed by the use of the invocations to the getSessionld and
bpelScenariolnfo web services (invoked once per execution of a WS-BPEL scenario) (b)
the overhead imposed for each web service invocation within the BPEL scenario and (c)
the overhead imposed when the exception resolution mechanism is activated are
measured. The time taken by the preprocessor to transform the original WS-BPEL
scenario into its enhanced form is not assessed, since preprocessing takes place in an
offline fashion, not penalizing thus the production system performance. Finally, release
session time has been found to be negligible and metrics are not presented here due to
space limitations. Moreover, the “release session” invocation may be implemented as
an asynchronous web service call, having thus minimal impact on the WS-BPEL

scenario execution time.

For these experiments two machines were used: the first one (a workstation equipped
with one Pentium 4@2.8GHz CPU and 512MB of RAM) hosted the preprocessor and
the clients, while the second one (a workstation equipped with one Pentium i7@1.6
GHz and 4 GBytes of RAM) hosted the BPEL execution engine (a Glassfish application
server [20], the middleware and the target web services. The repository was
implemented as an HSQLDB server, which was hosted on the second workstation
([21]). The repository was populated with synthetic data with an overall size of 2.000

web services. The machines were connected through a 100Mbps local area network.

Dionisios D. Margaris
85

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

80

70 /
60 == 12 services

50 :
8 services
40 =
—d— 4 services
B /

20

Optimization Overhead (ms)

10

a

10 20 50 75 100
concarrent WS-BPEL scenario executions

Figure 6: Optimization overhead

Figure 6 presents the optimization overhead (i.e. the overhead imposed by the use of
the invocations to the getSessionld and bpelScenariolnfo web services) for varying
number invocations present in the WS-BPEL scenario and different number of
concurrent invocations (i.e. concurrent clients requesting the execution of the WS-BPEL
scenario). The overhead increase has been found to be steeper when the number of
concurrent invocations raises from 75 to 100 concurrent invocations; this is due to the
depletion of the second workstation’s resources at this load range; offloading specific
tasks from that machine (e.g. hosting the adaptation layer and/or the target web
services in a different machine than the WS-BPEL execution engine) is expected to

provide smoother performance scaling.

Figure 7 presents the overhead incurred for the execution of a service invocation within
the WS-BPEL scenario. This effectively accounts for (a) the two extra network
messages required to transfer the request to the adaptation layer and return the reply
from it and (b) the time taken to lookup in the session memory the correspondence
between the particular service invocation and the endpoint determined in the
optimization stage, and adjust the request message for forwarding to that endpoint.
Even for high concurrency levels, the overhead for service execution is small (21 msec).
Similarly to Figure 6, the overhead rises more steeply when the number of concurrent
executions rises from 75 to 100, which is again due to the depletion of the second

workstation’s resources.

Dionisios D. Margaris
86

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
21 /
19

17 4

15

13 /

11

Service execution overhead (ms)

10 20 50 75 100
concurrent WS-BPEL scenario execution

Figure 7: Service execution overhead

w
()]

-

.
/

w
o

N
[¢)]

N
o

Exception resolution overhead (ms)

—_
(&)

10 20 50 75 100
concurrent WS-BPEL scenario execution

—o— 1 exception —8— 2 exceptions —A— 3 exceptions

Figure 8: Exception resolution overhead

Finally, figure 8 presents the overhead incurred for resolving system level exceptions.
This overhead accounts only for the time needed by the adaptation layer to perform the
relevant tasks and does not include the time needed to invoke the failing services, since
the latter varies significantly with the root cause of the failure (e.g. a fault owing to a
network timeout leads to significantly higher delays than a fault owing to an invocation
to a service that has been withdrawn), and therefore no meaningful statistics can be

derived for the failing services’ invocation times. Note also that the overheads illustrated

Dionisios D. Margaris
87

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

in figure 8 refer to the resolution of an exception occurring in the invocation of a single
service; the “1 exception” data series refers to the case of the exception being resolved
by the first alternative service, while the data series “2 exceptions” refers to the case
that the first alternative service fails and the second one succeeds (similarly for the data
series “3 exceptions”). As described above, only the first attempt to resolve an
exception involves repository lookups and calculations of scores for alternative
solutions, while subsequent attempts simply move to the “next best” solutions computed
in the first attempt; this justifies the small time increments between the different data

series in figure 8.

Dionisios D. Margaris
88

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

5. COLLABORATIVE FILTERING APPROACH

In this chapter an approach for integrating collaborative filtering techniques into the WS-
BPEL execution adaptation procedure, introducing both an adaptation algorithm and an
associated execution framework is presented. The adaptation algorithm uses both QoS
specifications and semantic-based collaborative filtering personalization techniques to
decide on which offered services best fit the client’s profile, while the BPEL execution
framework includes provisions for (a) specifying QoS requirements for invocations of
web services within a WS-BPEL scenario (b) selecting exact services to be invoked and
(c) adapting the WS-BPEL scenario executions according to the recommendations of
the algorithm. This approach follows the horizontal adaptation paradigm, since
horizontal adaptation preserves the execution flow which has been crafted by the
designer to reflect particularities of the business process, while it also allows the

exploitation of specialized exception handlers.

5.1 The service recommendation algorithm

As stated above, the adaptation algorithm chooses the services to be invoked in the

context of the particular execution taking into account the following criteria:
i) The consumer’s QoS specifications.

i) Designations on which exact services should be invoked, if such bindings are

requested by the consumer.
iif) The QoS characteristics of the available service implementations.
iv) The service subsumption relationships.
v) The usage patterns of services recorded in past WS-BPEL scenario executions.

Items (i) and (ii) are provided per WS-BPEL scenario execution by the consumer,
while items (iii)-(v) are drawn from repositories maintained by the adaptation scheme. In
the following paragraphs, we briefly describe the QoS concepts and we elaborate on the
representation of the subsumption relationships and the usage patterns, as well as the

overall adaptation algorithm.

Dionisios D. Margaris
89

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

5.2 The collaborating filtering-based algorithm

The collaborating filtering-based algorithm, upon each invocation of a WS-BPEL
scenario, proposes sets of actual services that functionalities denoted as “to be
recommended” could be bound to. Each proposal is tagged with a CF-score, which is
determined through a collaborative filtering process. Figure 9 illustrates the steps of the
CF-based algorithm in the form of an activity diagram and figure 10 describes the
algorithm in pseudocode, while the following paragraphs provide details on the actions

taken within each step.

Dionisios D. Margaris
90

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Figure 9: Activity diagram for the CF-based algorithm

o1 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

/* CF-based adaptation algorithm pseudocode

Assumption:

Scenario includes functionalities (i.e. invocations to services) f1, f2, ..., fa

Inputs:

MIN and MAX (lower and upper bounds for QoS attributes)

Specification of bindings of functionalities to concrete services B=(b1, bz, ..., bn) [bi
== null if no binding provided, else id of service)

Specifications of functionalities not to be invoked O=(01, 02, ..., on) [0i == thrue if fi
should not be invoked, false otherwise]

Specifications of functionalities for which recommendations are requested R=(r1,
r2, ...,) [ri == category of functionality if a recommendation is requested for fi, null
otherwise]

Subsumption relation tree, including the QoS attribute value of services

Outputs:

*/

List of <execution plan, score> pairs, with “execution plan” binding services that

recommendation is asked for to concrete services

/* 1. Build scenario-level functionality vector */

for (i=1;i<=n;i++)

if (B[i] = null) then

F[i] = BJi]; /* set explicit binding information in the functionality vector */

Else

F[i] = null;

end if

end for

[* 2. For each functionality that a recommendation is requested for, fetch matching

scenario executions from the usage patterns repository */

for (i=1;i<=n;i++)

if (R[i] '= null) /* recommendation requested */

Dionisios D. Margaris

92

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

/* Fetch matching rows from the usage patterns repository */
matchingRows = selectFromUsageRepository row: R[i] exact row[i] v R[i] plugin
rowl[i];
[* Formulate FVI[fi], to be used as the similarity yardstick for functionality fi */
FV[f] = F;
FVI[filli] = RIi]
/* 3, 4 drop rows not in bounds and compute score for remaining ones */
for each (row in matchingRows)
if (notinBounds(row, MIN, MAX) then
removeElement(matchingRows, row);
else
scores[row] = computeSimilarity(row, FV[fi]);
end for
/* 5. Retain k-nearest scores and compute group scores */
qualifyingRows = top30_Scores(matchingRows, scores);

[* formulate groupScores, containing the candidate services for delivering

functionality fi and the respective scores */
groupedScores]fi] = groupRowScores(qualifyingRows, scores, fi);
end if /* recommendation requested */
end for

/* 6. formulate and solve integer programming problem, obtaining the top-20 execution

plans */

ipp = formulatelntegerProgrammingProblem(groupedScoresfi]: R[i] != null)
CF_solutions = obtainTop20Solutions(ipp)

[* 7. Finally, normalize scores */

CF_proposal = normaliseScores(CF_solutions);

Figure 10: Pseudocode for the CF-based algorithm

Dionisios D. Margaris
93

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1. it formulates a scenario-level functionality vector F=(f1, f2, ..., fn), where each fi
corresponds to a functionality that is part of the WS-BPEL scenario. The values of
the elements fi are determined as follows:

e if functionality corresponding to element fi is bound to a specific service,
then the value of fi is set to the identifier of this service.

e in all other cases (i.e. if the corresponding functionality is not invoked in the
context of the particular WS-BPEL scenario execution or a recommendation
is requested for it), the value of fi is set to null.

Regarding this example, the functionality vector would be set to F=(null,
GrandResort, NBA).

2. for each functionality functi(request) for which a recommendation is requested, the
algorithm retrieves from the usage patterns repository the rows for which
functi(request) exact functi(row) or functi(request) plugin functi(row)

i.e. those patterns containing either an invocation to some identical functionality or
a functionality to an invocation to a more specific one (figure 1). These are the only
rows that are useful for formulating a recommendation for functi(request), since
they involve services that deliver the requested functionality.

Additionally, a request-level functionality vector F(functi(request)) is formulated, by
replacing the null value corresponding to functi in vector F with the category
corresponding to functionality functi. The new functionality vector will be used to
calculate the similarity of the current request with the usage patterns in the
repository, as explained below.

In our example, rows 1, 2, 5, 6 and 7 of table 3 would be selected (rows 3 and 4
do not satisfy the subsumption relation criteria). The functionality being considered
is functi=AirTravel and it corresponds to the first element of functionality vector
F=(null, GrandResort, NBA) generated in step 1; hence, the functionality vector
F(AirTravel) will be formulated with F(AirTravel)=(AirTravel, GrandResort, NBA).

3. the rows for which the QoS characteristics of service functi(row) do not satisfy the
bounds set through vectors MIN(functi) and MAX(functi) are dropped; effectively,
these rows cannot be used in the recommendation, since they involve services
whose QoS characteristics do not satisfy the consumer’s requirements.

Regarding this example, row #1 would be dropped, since the OlympicAirways
service implementing the functionality AirTravel does not satisfy the bounds
related to the cost QoS attribute; therefore only rows 2, 5, 6 and 7 would be

retained.

Dionisios D. Margaris
94

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

4. for each row retained by step 3, the algorithm computes a similarity score,
indicating its similarity with the current request, as the latter is represented by the
F(functi(request)) functionality vector. The similarity score is calculated using the
Sarensen similarity index [60] (alternatively known as Dice's coefficient [61]),
according to which the similarity of two sets A={a1, a2, ..., an}, B={b1, b2, ..., bm}, is

2| ANB]
| A]+|B|

equal to §(4,B)= , properly modified to suit a domain with semantic

similarities. The modification follows the approach used in the fuzzy set similarity
index calculation, where the cardinality of the intersection of two sets (i.e. the
nominator in the Sgrensen similarity index formula) is computed as the sum of the
probabilities that a member belongs to both sets [62]. Correspondingly, when set
member similarity is considered, the nominator of the fraction is replaced by

2*2Sim(ai,bi), where sim(ai, bi) is a metric measuring the similarity between aij and

bi; analogous approaches are adopted in ontology alignment and ontology
matching domains, e.g. [31]. Effectively, the cardinality of the sets’ intersection (i.e.
the nominator of the fraction) used in cases that only the “equals” operator is
available, is replaced by the sum of similarities of the corresponding elements. As
a similarity metric between two functionalities (web services or categories), the
one proposed in [27] is adopted:
sim(s1,s2) = C—lw*PathLength — NumberOfDownDirection
where:

e Cis aconstant set to 8 [27][32].

lw is the level weight for each path in subsumption tree (cf. figure 1, chapter 3-2). The

value of lw depends on the depth of the subsumption tree and the level of the node in it.

subTreeDepth—(Iln—1)
subTreeDepth

To count the level weight lw, the formula lw = [27] is used, where

subTreeDepth is the depth of the subsumption tree, and In is the level of node sz in the
subsumption tree (the root node has a level equal to 1, its immediate children a level

equal to 2 and so forth).

e PathLength is the number of edges counted from functionality s1 to
functionality s2.

¢ NumberOfDownDirection is the number of edges counted in the directed path
between functionality s1 and s2 and whose direction is towards a lower level

in the subsumption tree.

Dionisios D. Margaris
95

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

This similarity metric dividing the result computed in the above formula by 8 is
further normalized; this way, the similarity metric is always in the range [0, 1] and so
is the value of the modified Sgrensen similarity index, consistently with its original
definition.
Regarding this example, the similarity measures between the F(AirTravel)
functionality vector and the rows retained by the third step of the algorithm are:

sim(F(AirTravel), row2) = (19/24, 19/24, 10.5/24)

sim(F(AirTravel), row5) = (19/24, 14/24, 10.5/24)

sim(F(AirTravel), row6) = (19/24, 19/24, 0)

sim(F(AirTravel), row7) = (19/24, 14/24, 15/24)
and consequently the modified Sgrensen similarity index values between
F(AirTravel) and these rows are:

S(F(AirTravel), row2) = 2*(19/24+19/24+10.5/24) / 6 = 0.674

S(F(AirTravel), rowb) = 2*(19/24 + 14/24 + 10.5/24) / 6 = 0.604

S(F(AirTravel), row6) = 2*(19/24+19/24+0) / 5 = 0.633

S(F(AirTravel), row7) = 2*(19/24+14/24+15/24) | 6 = 0.667

5. Finally, the algorithm retains only the K-nearest neighbors (i.e. the rows with the

highest similarity scores), groups the retained rows by the value of the service
implementing the functi(request) functionality and computes the sum of the scores
within each group. Services implementing the functi(request) functionality that are
associated with higher sums are deemed more suitable, in the sense of
collaborative filtering, for being used in order to deliver the functionality
functi(request). In this implementation, we have set K to 30. This value is higher
than the commonly used value of 10 [33] (the value of 10 is also used in the
original version of the algorithm [46]): the rationale behind choosing a higher value
is to produce a longer list of services that are proposed by the collaborating
filtering algorithm, providing thus step 6 that that follows with more options and
allowing it to make a choice best suiting the user’s request. Effectively, for
functionality functi(request) this step will compute a set of possible concrete
service assignments CFPA(i)={si1, Siz2, ..., SiLi}, with the cardinality of CFPA(i) =
L(i) = 30 (the number of proposed solutions may be less than 30, if less than 30
distinct services are recorded in the usage patterns repository to have been used
for delivering functi(request)). For each possible concrete service assignment sij,

the respective similarity score CFS(sij) has also been computed.

Dionisios D. Margaris
96

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
In this example, all rows would be retained, since only three rows exist. Since in
row 2 and row 7 the same service (SwissAir) is used to deliver the AirTravel
functionality, their individual scores would be summed up to formulate the solution
SwissAir with a score of 1.341. The AirFrance service is the second solution with a
score of 0.633 (only row 6 contributes to it) and the Lufthansa service is the third
solution with a score of 0.604 (only row 5 contributes to it).
Steps 2-5 are repeated for each functionality functi(request) for which a
recommendation is requested.

6. After the lists of candidates for each individual service that is subject to adaptation
have been computed, the algorithm selects the top-20 execution plans with
respect to their CF-score. The rationale behind choosing the value of 20 has been
discussed in Section 3-1, above. Given an execution plan containing services (s1,,
s2j, ..., SNk) with the similarity scores of the services computed in step 5 being
(CFS(s1.i), CFS(s2j), ..., CFS(snk)), then the CF-score of the execution plan is
equal to CFS(s1,)+CFS(s2j)+...+CFS(snk). Using the sum function to aggregate
the individual service scores into the execution plan CF-score ensures that the
final result reflects the matching scores of all involved services. Contrary, the use
of the max function would reflect the matching score of the best matching service
only and therefore would render the algorithm prone to selecting an execution plan
for which a single service has a very high score, but all other services have very
poor ones.

Producing the top-20 execution plans is modelled as a integer programming
optimization problem, which is formulated as follows: maximize the overall utility
value given by:

F L@

OUVCF = ZZ CFS(SL‘]) * xi‘j

i=1j=1
where F is the number of functionalities functk(request) requiring adaptation, and
each xij is a binary variable taking the value 1 if sij is selected for delivering
functionality functi(request), and the value 0, otherwise. Since each functionality
functi(request) is delivered in the final execution plan by exactly one concrete

service, the maximization of the utility value is subject to the constraint
L(D)

in’j:].,l <i<F

j=1

Dionisios D. Margaris
97

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

If service selection affinity needs to be maintained between functionalities
functi(request) and functj(request), then an additional constraint is added to the
problem, following the procedure described (step 2), above.
Subsequently, the integer programming problem is solved, and the k best
solutions are obtained. Obtaining the k best solutions can be achieved by solving
the problem once, and then adding a constraint rendering the obtained solution
infeasible (for the IBM ILOG CPLEX optimizer [57] used in our experiments, this
procedure is described in [58]). In this implementation, k was setequal to 20, as
explained above.

In our example, adaptation has been requested for a single functionality, for
which three possible solutions have been computed, therefore this step generates

three solutions, as shown in Table 6.

Table 6: Utility function values and CF problem solutions for services in QPA(AirTravel)

CF problem solution Selected CFS(sairTraveli) | OUVcr
SAirTravel,i
XAirTraveI,SwissAir=1 , XAirTraveI,AirFrance=0, Swiss Air 1.341 1.341

XAirTraveI,Lufthansa=0

XAirTravel,SwissAir=0, XAirTravel AirFrance=1, Air France 0.633 0.633

XAirTraveI,Lufthansa=0

XAirTraveI,SwissAir=0, XAirTraveI,AirFrance=0, Lufthansa 0.604 0.604

XAirTravel,Lufthansa= 1

7. The final step in this algorithm is to normalize the range of the solution’s CF-
scores, expressed through the respective values of the overall utility function, to
the range [0, 1], in order for the combination step to function correctly.

Normalization is again performed using the formula

CF _Score; — minCF _Score

dCF_S | =
MOTMeaLy SCoTe: = xCF _Score — minCF _Score

[37], where minCF_Score and maxCF_Score are the minimum and maximum
scores, respectively, of the solutions produced in step 6. The output of the
algorithm is the set of candidate execution plans, with each execution plan being

tagged with the relevant normalized score (CF-score) (Table 7).

Dionisios D. Margaris
98

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 7: Normalized solution scores

SAirTravel Normalized score
Swiss Air 1.000
Air France 0.039
Lufthansa 0.000

Note that the elimination of rows not satisfying the QoS bounds (step 3) is in this case
merely an optimization step: indeed, these rows could be normally processed having
their similarity scores computed, and would then be dropped in the combination step;
however, performing the filtering at this stage saves unnecessary work (and thus
improves performance), while it also facilitates the operation of the combination step,
since it will not need to check whether the solutions proposed by each algorithm are

conferment to the constraints set by the user.

5.3 The Execution Adaptation Architecture

The execution adaptation architecture adopts the middleware-based approach,
typically used in QoS-based adaptation frameworks (e.g. [4][24][34]). An adaptation layer
intervenes between the BPEL execution engine and the actual service providers,
selecting the services that will actually be invoked in the context of any single WS-BPEL
scenario execution using the algorithm described in section 5.2 and arranging for
redirecting the actual invocations to the selected services. Redirection is performed
through a specially crafted web service, namely adaptinvocation. The adaptation layer
implements three utility web services, namely getSessionld (assigning unique session
identifiers to individual WS-BPEL scenario executions), prepareAdatation (accepting
QoS bounds and service binding information, and executing the algorithm of section Il to
select services for the functionalities that adaptation is requested for) and
releaseSession (cleaning up the information regarding the WS-BPEL scenario execution,

upon its termination).

Dionisios D. Margaris
99

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Furthermore, the execution adaptation architecture includes a preprocessor module
which transforms “ordinary” (i.e. non-adaptive) WS-BPEL scenarios to a form that their
execution can be readily adapted by the middleware. The preprocessor module relieves
the burden of having to redesign the BPEL scenarios, limiting the necessary changes to
(a) allowing the user to specify the QoS requirements and the service bindings (including
requests for recommendation) at the front-end application (e.g. a web form) and (b)
preprocessing and redeploying the WS-BPEL scenarios. Using existing WS-BPEL
scenario, where functionality invocations are specified by means of concrete services,
allows for using standard WS-BPEL scenario editors, instead of specialized software that

would be required if functionalities were specified by means of abstract tasks.

Figure 11 presents the overall execution adaptation architecture. In the following, we
will elaborate on the operation of the preprocessor and the operation of the adaptation

layer.

Dionisios D. Margaris
100

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Adaptation-ready
BPEL scenario

preprocessor Adaptation layer
BPEL Scenario @U_Samz (4) retrieve

session id 7
3) : <P getSessionld WS v|v : .
BPEL scenaric | VVED Services Platform T4 co a0, Session Semantic -
invocation + about service y service
QoS bounds + binding invocations, QoS i repository L&
requirements WS-BPEL Orchestrator bounds and L —| u
bindings prepareAdaptation
> WS (subsumption
Consumer (6) relationships & QoS
-« ; .
web service call characteristics)
(11) , > 7 adaptlnvocation WS 7
Results (9) Result A
) 7 releaseSession WS W
(10) Release [
session (7) Invocation (8) Results
A
Web Service ws1 | [ws2 | WS-n
Implementations

Dionisios D. Margaris

101

Figure 11: The Execution Adaptation Architecture

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

5.4 Preprocessing the BPEL scenario

As stated above, the preprocessor accepts as input a WS-BPEL scenario and
transforms it into an “adaptation-ready” form. More specifically, the transformed scenario

differs from the original one into the following respects:

1. it includes, as its first operation an invocation to the web service getSessionld
provided by the middleware; the result of the invocation is stored in a variable and

used in subsequent operations.

2. it extracts from the incoming request the information regarding (a) the QoS bounds
for the functionalities and (b) the designations regarding which functionalities
should be bound to specific services, which will not be invoked and for which a
recommendation is requested. This information is then transmitted, together with
the result of the getSessionld invocation, to the adaptation layer, through an
invocation to the prepareAdaptation WS. For simplicity purposes, we will assume
that the QoS bounds for a functionality funct used in the WS-BPEL scenario are
represented using input parameters QOSMAXinvName and QOSMAXinvName,
where invName is the value of the name attribute in the <invoke> construct
realizing the functionality (<invoke name="invName" partnerLink="Ink1” ...>).
Similarly, the designations regarding functionality bindings are represented using
input parameters BINDINGinvName, whose value may be one of (i) the id of the
service to which the functionality should be bound, (ii) the literal SKIP if the
functionality should not be invoked and (iii) the literal RECOMMEND, if a

recommendation is requested for the specific functionality.

Regarding the example in section 5.2, we will assume that the names of the invoke
constructs corresponding to the ticket booking, hotel booking, and event
attendance functionalities are bookTicket, bookHotel and attendEvent, respectively.
Since the example invocation discussed in section Ill contained no QoS bounds, no
QOSMIN* and QOSMAX* input parameters need to be set; the settings of the
BINDING* variables will be BINDINGbookTicket=RECOMMEND,
BINDINGbookHOTEL=GrandResort, BINDINGattendEvent=NBAFinals.

The code realizing this functionality is injected immediately after the invocation to

getSessionld.

Dionisios D. Margaris
102

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

3. each service invocation is redirected to the adaptinvocation, complemented with a
header which includes the session id for the current WS-BPEL scenario execution
(the value returned by the getSessionld WS) and the value of the name attribute of
the particular invoke construct. Although header manipulation not a standard WS-
BPEL feature, most contemporary WS-BPEL orchestration engines provide means

to set request headers, e.g. [19][395]

4. an invocation to the releaseSession service of the adaptation layer is included as a

final operation in the transformed scenario.

The adaptation-ready WS-BPEL scenario, as produced by the preprocessor, is

deployed to the WS-BPEL orchestration engine and made available for execution.

5.5 Executing the BPEL scenario

When a WS-BPEL scenario commences execution, its first action will be to invoke the
getSessionld web service hosted in the adaptation layer, so as to retrieve a unique
session identifier. Afterwards, it invokes the prepareAdaptation web service of the
adaptation layer, transmitting to it (i) the session identifier (b) the information regarding
the QoS bounds for each functionality and (c) the functionality binding and the

recommendation request information.

At this point, the adaptation layer has all the information needed to execute the
algorithm described in Section 5.2, so as to produce any recommendations requested.
After the algorithm has been applied, all service bindings (both those specified by the
consumer and were provided as input to the prepareAdaptation web service, as well as
those produced as output of the recommendation algorithm) are stored into the session
memory, tagged with the session identifier. Effectively, the consumer session memory
stores, for each session, the mappings between functionality invocations within the
particular sessions and the concrete services that these invocations should be directed
to. In the example presented in Section 5.2, the information that would be inserted into
the session memory (assuming that the session identifier would be equal to s1) would be

as shown in figure 12.

Dionisios D. Margaris
103

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
(Session: s1;
Bindings: (bookTicket: Swissair;
bookHotel: GrandResort;
attendEvent: NBAFinals))

Figure 12: Information inserted in session memory

The prepareAdaptation web service finally stores the service bindings it received as
input parameters into the usage patterns repository, making thus the usage information

available for future recommendation formulations.

When the WS-BPEL orchestration engine executes an invoke construct, the
invocation is directed to the adaptinvocation service of the adaptation layer, due to the
transformations made by the preprocessor (cf. item 3 in subsection IV.A, above). Upon

reception of an incoming request, the adaptinvocation service proceeds as follows:

1. it extracts from the request headers the session identifier and name of the invoke

construct.

2. Using the session identifier it retrieves from the session memory the service bindings
pertinent to the particular session, and then it uses the name of the invoke construct

to extract the binding of the specific functionality.

3. The request is then forwarded to the service indicated by the binding, the result is
collected and finally it is returned to the WS-BPEL orchestration engine, as a reply to

the original invocation.

Finally, when the WS-BPEL scenario reaches its end, it invokes the releaseSession web
service, providing the session identifier as a parameter. The releaseSession service will

then remove from the session memory all information pertaining to this session.

Dionisios D. Margaris
104

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

5.6 Performance Evaluation

In order to assess the performance of our approach and validate its feasibility, a set of
experiments had being conducted, aiming to measure and quantify the overhead
incurred due to the introduction of the middleware, the semantic trees and the BPEL
scenarios stored in the database. The extent to which users are satisfied by the
recommendations generated by the proposed algorithm is also of importance, and it is

scheduled as part of future work.

In these experiments (a) the overhead imposed by the use of the invocations to the
getSessionld, prepareAdaptation and releaseSession web services (invoked once per
execution of a WS-BPEL scenario), (b) the overhead imposed for each web service
invocation due to the intervention of the adaptinvocation service are measured. In the

experiment the following parameters have been varied:
1. the number of concurrent invocations,
2. the size of the usage patterns repository,
3. the number of functionalities in the WS-BPEL scenario and
4. the number of recommendations requested per invocation.

The time needed by the preprocessor to transform the original WS-BPEL scenario
into its “adaptation-ready” form has not been evaluated, because the preprocessor
operates in an offline fashion, not imposing thus any overhead to the performance of the

production system.

For these experiments two machines were used: the first one (a workstation equipped
with one Intel Xeon E5-2620@2.0GHz / 6 cores CPU and 16 GB of RAM) hosted the
preprocessor and the clients, while the second one (a workstation with identical
configuration to the first, except for the memory which was 64GBytes) hosted the BPEL
orchestration engine (a Glassfish application server [20] using the Metro web service
stack [63]), the adaptation layer, the target web services, the service repository (which
included the tree representation of the subsumption relations and the services’ QoS
characteristics) and the usage patterns repository. The machines were connected
through a 100Mbps local area network. Both repositories (the semantic service
repository and the usage patterns repository) were implemented as in-memory hash-
based structures, which proved more efficient that using a separate, in-memory
database engine (e.g. HSQLDB [21] used in [45] and [46]). The new rows of the usage

Dionisios D. Margaris
105

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

patterns repository are written periodically to the disk to ensure persistence, while
provisions have been made to allow for reloading the semantic service repository in

case it changes (e.g. addition or deletion of services, or changes in the QoS values).

700

600 /

500
400

300 //
200 /

100 //

10

overhead (ms)

0 T T T T
0 100 150 200 250

LR

concurrent WS-BPEL scenario invocations

Figure 13: Recommendation and housekeping overhead for varying degrees of concurrency

Figure 13 presents the recommendation and housekeeping overhead, i.e. the
overhead imposed by the use of the invocations to the getSessionld, adaptinvocation
and releaseSession web services, for a varying degree of concurrent WS-BPEL
scenario invocation requests arriving to the WS-BPEL orchestration engine. In this
experiment, the size of the usage patterns repository was set to 1,000 qualifying entries
(i.e. the usage patterns repository contained 1,000 entries matching the functionality for
which a recommendation was requested; cf. step 2 in subsection 5-2), the number of
functionalities in the WS-BPEL scenario was set to 10 and one recommendation was
requested (i.e. 9 service bindings were fixed by the consumer). We can notice that the
overhead is increasing linearly with the number of concurrent invocations, while we can
also observe that even with 250 concurrent invocations the overhead is less than one
second.

Figure 14 illustrates the time needed to perform recommendation and housekeeping
tasks under a varying number of functionalities within the WS-BPEL scenario and for
different counts of qualifying records in the usage patterns repository (250, 500 and 1000
records). In all cases, the concurrency level was set to one (a single request was

submitted and processed) and one recommendation was requested. The recorded times

Dionisios D. Margaris
106

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

were found to increase by about 10%-12% when the number of functionalities increases
by one; this is owing to the time needed for the extra processing to compute the

semantic distances for the extra service.

In figure 14 we can also notice that the recommendation and housekeeping overhead
is increasing linearly with the number of qualifying usage patterns repository entries. This
was to be expected, since the current version of the algorithm considers and processes
all entries fetched from the repository. The pruning of unpromising entries, e.g. entries
whose cardinality is significantly greater than the cardinality of the functionality vector
(increasing thus the denominator in the Sarensen’s similarity index formula without a
prospective increase in the nominator, hence leading to a poorer score) could contribute
towards achieving better scalability with respect to the number of qualifying usage

patterns repository entries.

12
11 — 5
10 &

b
=

\
\

time (ms)

3O ~

functionalities in WS-BPEL scenario
usage patterns: —e— 2750 —8—500 —a— 1000

Figure 14: Recommendation and housekeping overhead for varying number of functionalities
within the WS-BPEL scenario and qualifying usage patterns

Additionally, maintaining pre-computed similarity metrics between all pairs of
functionalities in the subsumption relationship tree, would help achieve better absolute
times, trading off time for space, albeit it would not contribute towards improving

scalability.

Figure 15 illustrates the time needed to generate recommendations, with respect to
the number of qualifying records in the usage patterns repository and the number of
recommendations requested in a single WS-BPEL scenario invocation. In all cases, the

concurrency level was set to one (a single request was submitted and processed) and

Dionisios D. Margaris
107

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

the WS-BPEL scenario whose execution was requested contained five functionalities.
We can observe that the time needed for each recommendation is fairly stable, e.g. the
time needed for making two recommendations is approximately double the time needed
for making one recommendation, and similarly for making three recommendations. This
is to be expected, since each recommendation is made individually, by repeating the
same steps of the algorithm. The behavior regarding the number of qualifying usage

patterns is analogous to the one observed in figure 14.

: —
: i

e ?
e el
10 / —8— 500
8 x_—

6 V I | | | |}
1 2 3 4 2

recommendations requested

time (ms)

Figure 15: Recommendation and housekeping overhead for varying number of qualifying usage
patterns and number of requested recommendations

40
35 ~

E /
- P

20

15

10

Service execution overhead (ms)

10 50 100 150 200 250
concurrent WS-BPEL scenario invocations

Figure 16: Service execution overhead for varying degrees of concurrency

Dionisios D. Margaris
108

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Finally, figure 16 depicts the overhead imposed for each service execution. This
overhead corresponds to the two extra network messages required per service
invocation (four network messages are needed when the adaptation layer intervenes as
opposed to two messages only when services are directly invoked), plus the time
needed for the adaptation layer to access the session memory, retrieve the service
mappings and redirect the request appropriately. We can notice that the overhead is
increasing almost linearly with the number of concurrent invocations. The overhead is
small, therefore once the prepareAdaptation service has concluded, the WS-BPEL

scenario’s performance is only minimally affected.

Dionisios D. Margaris
109

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Dionisios D. Margaris
110

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6. HYBRID APPROACH

In this chapter, a framework which incorporates runtime adaptation for BPEL scenarios
is presented. The adaptation is based on (a) the quality of service parameters of
available services, allowing for tailoring their execution to the diverse needs of individual
users and (b) on collaborative filtering techniques, allowing clients to further refine the
adaptation process by considering service selections made by other clients, in the
context of the same business processes. The proposed framework also caters
maintaining the transactional semantics that invocations to multiple services offered by

the same provider may bear.

6.1 The service recommendation algorithm

As stated in sections 4.1 and 5.1, this approach follows the horizontal adaptation
algorithm, i.e. it leaves the composition logic intact and adapts the execution by
selecting which concrete service implementation will be used in each specific
invocation. In order to perform this task, the algorithm takes into account the following
criteria:

i) The consumer’s QoS specifications (bounds and weights).

ii) Designations on which exact services should be invoked, if such bindings are

requested by the consumer.

iii) Designations on which functionalities should not be invoked (e.g. in the example

within section 4-1, the user does not want to attend any event).

iv) The QoS characteristics of the available service implementations.

v) The service subsumption relations.

vi) The usage patterns of services recorded in past WS-BPEL scenario executions.

vii) Statistics on how well-populated the usage patterns repository is; these are

used to adjust the weights assigned to the results of the collaborative filtering-
based adaptation, considering the fact that a poorly populated usage patterns
repository is bound to produce results of poorer quality. To this end, the concept of

user-item sparsity [44] is exploited; details on this aspect are given below.

111 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Items (i)-(iii) are provided per WS-BPEL scenario execution by the consumer, while
items (iv)-(vii) are drawn from repositories maintained by the adaptation scheme. Note
that it is not necessary for the end-user to directly specify the QoS bounds or weights
for each individual service as an input parameter to the scenario: the user could specify
the bounds and weights in a more generic form (e.g. choose=cheapest), which would
then be mapped to specific bounds for the involved services’ QoS attributes through
code provided by either the WS-BPEL scenario designer or an intermediate entity (e.g.
the code behind a web page collecting the necessary data from the user, in order to

invoke the BPEL scenario).

Recall also that the approach adopted in this chapter incorporates two different
candidate service ranking algorithms, the first examining the QoS aspects only and the
second being based on collaborative filtering techniques. The algorithms run in parallel
to formulate their suggestions regarding the services that should be used in the adapted
execution, and subsequently their suggestions are combined, through a metasearch
score combination algorithm with varying weights. In the following subsections, the two
algorithms (the QoS-based and the collaborating filtering-based) as well as the
combination step will be described. Note that, for the metasearch score combination
algorithm to work properly, the scores produced by each individual algorithm should be
normalized [10][11][37]. To this end, the individual algorithms adopted from [45] and [46]
have been extended to include a score normalization step; additionally the algorithms
have been modified to allow them to function as “voters” in the metasearch process
adopted in this chapter. Figure 17 depicts the operation of the algorithm in the form of

an activity diagram.

Dionisios D. Margaris
112

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

—
A
]
-
\ls
W
- 0 1
1
—
V4 \
4 AY
4 3
I I
I I
I I
I I
‘.!.‘ ‘.!.‘
Al Al
v v
£ as =\ [/ 2. = A
I » L2 » kJ 1
I s m " A I
I = & = 7 I
I Yy or P N5 1
1 = M - A]
= w®m [~ 4 1]
- & - ¥ n
3 3 28 I

S9J0I5-4D Y
sue|d uopnoaxa
S9J00S-SO0D) YUM
sued uopnoaxe

Figure 17: Activity diagram for overall algorithm operation

113 Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

To illustrate the operation of the algorithms, an example execution request will be used:

TravelPlanner(bindings=(AirTravel(R), GrandResort, NBA), QoSLimits={MINairtravel(rt: 4,
cost: 3, av: 3), MAXairtravel(rt: 7, cost: null, av: null)}, QoSWeights={rt: 0.2, cost: 0.5, av:
0.3})

which can be effectively read as “l want to stay in Grand Resort, | want to watch an NBA
match and | want a recommendation for an air travel; response time for the AirTravel
service should be at least 4 and at most 7, cost should be at least 3 (recall that QoS
attribute values are expressed in a “larger values are better” encoding scheme,
therefore setting a lower bound for the cost excludes the most expensive services). It is
assumed that the values of the QoS attributes for the services implementing the

AirTravel functionality are as shown in table 8.

Table 8: QoS attribute values for services

AirTravel Company Response_Time Cost Availability
Swiss Air 5 7 8
Olympic Airways 4 1 6
Air France 5 8 9
Lufthansa 6 3 4

Dionisios D. Margaris
114

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
6.2 The combination step

The role of the combination step is to synthesize the results given by individual
algorithms to produce a single result. Recall from the previous two subsections that
each algorithm produces a set of candidate execution plans, with each execution plan
being tagged with the relevant normalized score (QoS-score or CF-score). Figure 18
presents the steps taken into the combination step in the form of an activity diagram,

while the following paragraphs provide details on the actions taken within each
individual step.

J0 Kysseds ondwod

oBesn u) smoJ JueAejos

[Kioysodos usayped

fysseds

!

Paseq-4) pue PasecrgoD
10} 1yBjom oujuojop

wypiobe

‘
ET)
ubiam40

omw<
)

04098 150YBJY O LhM OO
0800y ‘swipoBie om ey Aq pesodosd
SUOJIN|OS [[8 40} 04008 YIRaseiow ojnd

vogeidepy

Figure 18: Activity diagram for the combination step

Dionisios D. Margaris
115

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

In order to combine the scores, one could use any standard metasearch score
combination algorithms, such as CombMIN (minimum of individual scores), CombSUM
(sum of individual results)), CombMNZ (CombSUM, multiplied by the number of
individual algorithms actually suggesting a particular solution) and so forth, with
CombMNZ being identified as having the best performance [11]; He and Wu [37]
however suggest that CombSUM and CombMNZ are best suitable for combining results
from individual algorithms with relative similar performance. He and Wu [37] argue that
if the individual algorithms have diverse performance, it is best to specify a certain belief
about the quality of the recommendations from individual algorithms, proposing thus
WCombSUM and WCombMNZ, which extend the standard CombSUM and CombMNZ
schemes by introducing a weight for the individual ratings produced by the algorithms.

More specifically, WCombSUM = ij *Normalizedcore,

j=1
where WCombSUM; is the final score for a particular result i, wj is a predefined weight
associated with the proposing algorithm j, mi is the number of nonzero scores of result i
(i.e. number of algorithms proposing the particular result), and NormalizedScorei, is the

normalized score for result i produced by algorithm j. Also,
WCombMNZ, = WCombSUM, *m,

[44] assert that collaborating filtering is prone to producing results with low prediction
accuracy when the sparsity (i.e. the ratio of empty cells to the total number of cells) of
the rating matrix exceeds 99.5%. In more detail, [44] demonstrates that in the sparsity
range [99.5%, 99.9%] the mean absolute rate of collaborative filtering increases sharply
(and hence the recommendation quality drops) in a linear fashion, while beyond the
sparsity limit of 99.9% there is no point in taking into account the results of collaborative
filtering-based algorithms. For the sparsity range [0, 99.5%], figure 19, based on [44]
shows that collaborating filtering has inferior performance as compared to content-
based collaborating filtering, exhibiting a mean absolute error rate higher by 6%-9%,

with an average of 7.8%.

Dionisios D. Margaris
116

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1.3 1 T T 1 T
1.25 4
1.2 :
-E_ :l"’
o
@& 1.156
= /
2 /
é A
1.1
m
a ¥ =
=
1.06
1
0.95 = - S — = d
0.97 0.975 0.98 0.985 0.99 0.995 1

%% Sparsity

Figure 19: Mean absolute error for varying number of the recommenders’ table sparsity

Taking the above into account, we adopt a modified version of the WCombMNZ
metasearch score combination algorithm, in which the weight assigned to each of the
algorithms (the QoS-based one and the collaborating filtering-based one) varies
according to the sparsity of the rating matrix (i.e. the usage patterns repository). More

specifically, the weights are calculated as follows:

0.40, if sparsity <0.995

i ty=02

0-40%(0.999 - sparsity)) 995 < sparsity < 0.999
0.004

0, if sparsity >0.999

QoSweight =1— CFweight

Figure 20: QoS and CF weights

CFweight =

Note here that the sparsity metric is calculated against the rows of the usage patterns
repository that are retained by step (3) of the CF-based algorithm described in Section
5-2 therefore the weights are individualized for each distinct adaptation. For efficiency
purposes, the calculation of the sparsity is performed during the execution of the CF-
based algorithm described in Section 5-2, where the pertinent data are readily available,
and is forwarded to the combination step, along with the list of the execution plans.

In this weight assignment setting, the QoS-based algorithm is considered as a
counterpart of the content-based collaborating filtering algorithm examined in [44],
under the analogy that the QoS-based algorithm examines the values of item metadata

(QoS attribute value of services), instead of the item contents. The value of 0.40 for

Dionisios D. Margaris
117

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

CFweight in the range [0, 0.995] has been selected due to the fact that collaborating
filtering exhibits higher mean absolute error rate as compared to the content-based
collaborating filtering algorithm, and hence its weight should be set lower than 0.5,
according to the rationale of the WCombMNZ metasearch score combination algorithm.
On the other hand, the value of 0.4 is large enough to allow the collaborative filtering
algorithm to influence the final result. The appropriateness of value 0.4 has been also
experimentally verified, as described above.

After computing the WCombMNZ metasearch for all candidate execution plans, the
combination step selects the execution plan with the highest score, which will be used
to drive the adaptation process. If more than one candidate execution plans have the
same score, one of them is selected randomly.

In this example, the sparsity of the table consisting of rows 2, 5, 6 and 7 is equal to
0.891. This stems from the facts that (a) each row in the usage patterns repository has
23 columns, i.e. equal to the number of concrete services in the subsumption tree, (b)
rows 2 and 7 have 3 cells equal to “1” and (c) rows 5 and 6 have 2 cells equal to “17,
making thus a total of 10 cells having a value of “1” out of a total of 92, or, inversely,
82/92 cells are empty, leading to a sparsity of 0.891. Using the rules for computing
CFweight and QoSweight given above, we get CFweight=0.40 and QoSweight = 0.6.

Using these weights, we may now compute the WCombMNZ value for each solution,

as shown in table 9.

Table 9: Computing the WCombMNZ score for the solutions

Solution QoS-based | CF-based | WCombMNZ WCombMNZ
algorithm algorithm formula score
score score
Swiss Air 0.764 1.000 2% (0.6*0.764 + | 1117
0.4 * 1.000)
Air France | 1000 0.039 2% (0.6 * 1.000 + | 1231

0.4 * 0.039)

0.000 0.000

Lufthansa 2* (0.6 0.000+|0

0.5 * 0.000)

Dionisios D. Margaris
118

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6.3 The execution adaptation architecture

The execution adaptation architecture follows the middleware-based approach, which is
common in QoS-based adaptation frameworks (e.g. [4][24][34]). In this approach, an
adaptation layer intervenes between the BPEL execution engine and the actual service
providers, selecting the services that will actually be invoked in the context of any single
WS-BPEL scenario execution, using the algorithm described in the previous section and
arranging for redirecting the actual invocations to the selected services. Redirection is
performed through a specially crafted web service, namely adaptinvocation. The
adaptation layer implements three additional utility web services, namely getSessionld
(assigning unique session identifiers to individual WS-BPEL scenario executions),
prepareAdaptation (accepting information about the invocations that should be adapted,
QoS bounds and service binding information, and executing the algorithm of section 3
to determine the execution plan that should be followed in the particular WS-BPEL
scenario execution) and releaseSession (cleaning up the information regarding the WS-
BPEL scenario execution, upon its termination). Furthermore, the execution adaptation
architecture includes a preprocessor module which transforms “ordinary” (i.e.
nonadaptive) WS-BPEL scenarios to a form that their execution can be readily adapted
by the middleware. The preprocessor module relieves the burden of having to redesign
the BPEL scenarios, limiting the necessary changes to (a) allowing the user to specify
the QoS requirements and the service bindings (including requests for
recommendation) at the front-end application (e.g. a web form) and (b) preprocessing
and redeploying the WS-BPEL scenarios. Using existing WS-BPEL scenario, where
functionality invocations are specified by means of concrete services, allows for using
standard WS-BPEL scenario editors, instead of specialized software that would be

required if functionalities were specified by means of abstract tasks.

Figure 21 presents the overall execution adaptation architecture. In the following, the
operation of the preprocessor and the operation of the adaptation layer will be

elaborated.

Dionisios D. Margaris
119

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

A_m\mmv/, W!%W mbw H%/\%uﬂ / Adaptation-ready Adaptation layer

e +_> WS-BPEL scenario
Preprocessor (4) retrieve || getSessionld WS
WS-BPEL ’ C l_ (2) deployment session id W
Scenario ~ \ \ prepareAdaptation WS
3 Web Services Platform . . ool | e
BPEL scenario (5) information ase ase 3
ihvocation + about service algorithm || algorithm mmz_ﬁm
QoS bounds + binding [\nis BBEI Orchestrator invocations, QoS 4 ¥ \\ | repository
. requirements =T - Lrchestrator bounds & weight Combination
Ve N——— - L] and bindings step (subsumption
Consumer | _ ®) relationships & QoS
g e | A i web service call characteristics)
(11) . > 7 adaptinvocation WS _
Results (9) Result A
1 |) _ releaseSession WS “
] (10) Release
session (7) Invocation Y (8) Results
Web Servic
Web Ser vice _ Wt _ _ e _ .
Implementations ==

Figure 21: The Execution Adaptation Architecture
120

Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6.4 Specifying the QoS information in the scenario

The first step towards enabling the QoS-based adaptation is the specification of the
required QoS bounds for service invocations and the specification of the weights of
each QoS attribute. In order to provide this feature in a WS-BPEL compliant fashion, the

proposed framework adopts the following conventions:

1. the designer should use the WS-BPEL variable QoS_weights to designate the
weight vector W, i.e. the vector designating the weights of all QoS attributes (cf.
Section 3.1). The BPEL designer may set the value of these variables after
inspecting input parameters to the scenario (e.g. “choose=cheapest”), arranging
thus for tailoring the QoS specification to the invoking user’s preferences.

2. the designer should include in each invoke construct in the WS-BPEL scenario
the optional attribute name [1], assigning distinct names to the invoke constructs.

3. for the invoke construct having name invX, the designer should use the WS-
BPEL variables QoSmax_invX and QoSmin_invX, which define the respective
QoS specifications for the particular invocation. Similarly to the QoS_weights
variable, the designer may set the values of the QoSmax_invX and QoSmin_invX

variables after inspecting input parameters to the scenario.

Note that the setting above allows the designer to set different QoS bounds for each
distinct invocation. This provides more flexibility with the adaptation of the scenario, e.g.
in the travel planning scenario considered in Section 3.2, the bounds for the event
attendance functionality may be set to high values (e.g. min=0.8, max=1), while the
bounds for ticket booking and hotel booking may be set to low values, to indicate that
the client wants good seats for the event to be attended, but economy travel tickets and
an inexpensive hotel to limit the overall cost. On the other hand, the weights apply to the
whole composition, rather than to individual services, since they reflect the client’s
perceived importance of each QoS attribute dimension on the process as a whole, and

not its constituent parts [23].

Listing 4-2 presents an excerpt of a BPEL scenario setting QoS specifications for an
invocation (named invoke1). Since variable QoSmin_bookTicket does not include a
setting for respTime and cost, no lower bounds will be considered for these attribute
values in the process of adapting the service invocation bookTicket. Similarly, since the

QoSmax_bookTicket does not include a setting for the availability QoS attribute, no

Dionisios D. Margaris
121

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
upper bound for this attribute value will be considered in the process of adapting the

service invocation bookTicket.

<l-- assign global weights -->
<assign>
<copy>
<from><literal>respTime: 0.3; cost:-0.5; availability: 0.2</literal></from>
<to variable="QoSweights"/>
</copy>
</assign>
<!-- assign invocation-specific bounds for invocation “bookTicket’-->
<assign>
<copy>
<from><literal>respTime:0.5;cost:0.3</literal></from>
<to variable="QoSmax_bookTicket"/>
</copy>
<copy>
<from><literal> availability: 0.6</literal></from>
<to variable="QoSmin_bookTicket"/>
</copy>
</assign>
<invoke name="bookTicket" partnerLink="Ink1" portType="port1" operation="op1"

inputVariable="input1" outputVariable="output2"/>

Listing 4-2 QoS specification in the BPEL scenario

Dionisios D. Margaris
122

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6.5 Preprocessing the WS-BPEL scenario

As stated above, the preprocessor accepts as input a WS-BPEL scenario and
transforms it into an “adaptation-ready” form. More specifically, the transformed
scenario differs from the original one into the following respects:

1. it includes, as its first operation an invocation to the web service getSessionld
provided by the middleware; the result of the invocation is stored in a variable and
used in subsequent operations.

2. it collects the information regarding (a) the QoS bounds for the functionalities, (b)
the QoS attribute weights and (c) which functionalities should be bound to specific
services, which will not be invoked and for which a recommendation is requested.
This information is then transmitted, together with the result of the getSessionld
invocation, to the adaptation layer, through an invocation to the prepareAdaptation
WS.

As stated in Section 4.1, the QoS bounds for a functionality used in the WS-BPEL
scenario are represented using input parameters QoSmax_invName and
QOSmin_invName, where invName is the value of the name attribute in the
<invoke> construct realizing the functionality (<invoke name="invName"
partnerLink="Ink1” ...>), while the QoS attribute weights are stored in variable
QoSweights. Similarly, the designations regarding functionality bindings are
represented using variables BINDING invName, which will again be set by the
designer, probably after examining some input parameters. The value of a
BINDING_invName variable may be one of (i) the id of the service to which the
functionality should be bound, (ii) the literal SKIP if the functionality should not be
invoked and (iii) the literal RECOMMEND, if a recommendation is requested for
the specific functionality.

Regarding the example in section 5.2 (where a user wants to stay in Grand Resort
and attend the NBA Finals, and requests a recommendation for ticket booking), we
will assume that the names of the invoke constructs corresponding to the ticket
booking, hotel booking, and event attendance functionalities are bookTicket,
bookHotel and attendEvent, respectively. If the QoS attribute weights and QoS
bounds for the bookTicket service were as shown in Listing 4-2, the information
transmitted to the middleware through the prepareAdaptation WS would be as

follows:

Dionisios D. Margaris
123

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Sessionld=<as returned by getSessionld>
QoSweights=respTime: 0.3; cost:-0.5; availability: 0.2
QoSmax_bookTicket=respTime:0.5;cost:0.3
QoSmin_bookTicket=availability:0.6
BINDING_bookTicket=RECOMMEND
BINDING_bookHOTEL=GrandResort
BINDING_attendEvent=NBAFinals

This information, together with the data contained in the semantic service
repository and the usage patterns repository are adequate for the middleware
layer to execute the algorithm described in section 5 and determine the execution
plan to be used. The implementation arranges for executing the QoS-based and
the CF-based parts in parallel, so that the optimization step can benefit from the
presence of multiple processors and/or cores (a commodity in contemporary
hardware).

The invocation to the prepareAdaptation WS is inserted before the first <invoke>
construct of the original WS-BPEL scenario, to ascertain that the adaptation-
related information have been transferred to the adaptation layer (and processed
by it) before the first invocation is intercepted and adapted.

. each service invocation is redirected to the adaptinvocation service,
complemented with a header which includes the session id for the current WS-
BPEL scenario execution (the value returned by the getSessionld WS) and the
value of the name attribute of the particular invoke construct. Although header
manipulation not a standard WS-BPEL feature, contemporary WS-BPEL
orchestration engines provide means to set request headers, e.g. [19][35].

. an invocation to the releaseSession service of the adaptation layer is included as a

final operation in the transformed scenario.

The adaptation-ready WS-BPEL scenario, as produced by the preprocessor, is then

deployed to the WS-BPEL orchestration engine and made available for execution.

Dionisios D. Margaris
124

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6.6 Executing the WS-BPEL scenario

When a WS-BPEL scenario commences execution, its first action will be to invoke the
getSessionld web service hosted in the adaptation layer, so as to retrieve a unique
session identifier. Afterwards, it invokes the prepareAdaptation web service of the
adaptation layer, transmitting to it (i) the session identifier (b) the information regarding
the QoS bounds for each functionality, (c) the QoS weights and (d) the functionality
binding and the recommendation request information. At this point, the adaptation layer
has all the information needed to execute the algorithm described in Section 6.1, so as
to produce the execution plan to be followed in the current instance of the WS-BPEL
scenario. After the algorithm has been applied, all service bindings (both those specified
by the consumer and which were provided as input to the prepareAdaptation web
service, as well as those produced as output of the adaptation algorithm) are stored into
the session memory, tagged with the session identifier. Effectively, the consumer
session memory stores, for each session, the mappings between functionality
invocations within the particular session and the concrete services that these
invocations should be directed to. Assuming that in the example presented in Section 6.5
the algorithm would determine that the bookTicket functionality should be bound to the
Swissair service, the information that would be inserted into the session memory would

be as shown in figure 21.
(Session: <as returned by getSessionld>;
Bindings: (bookTicket: Swissair;
bookHotel: GrandResort;

attendEvent: NBAFinals))

Listing 4-3 Information inserted in session memory

The prepareAdaptation web service finally stores the service bindings it received as
input parameters into the usage patterns repository, making thus the usage information
available for future recommendation formulations.

When the WS-BPEL orchestration engine executes an invoke construct, the
invocation is directed to the adaptinvocation service of the adaptation layer, due to the
transformations made by the preprocessor (cf. item 3 in Section 6.5, above). Upon

reception of an incoming request, the adaptinvocation service proceeds as follows:

Dionisios D. Margaris
125

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1. it extracts from the request headers the session identifier and name of the invoke
construct.

2. Using the session identifier, it retrieves from the session memory the service
bindings pertinent to the particular session, and then it uses the name of the
invoke construct to extract the binding of the specific functionality.

3. The request is then forwarded to the service indicated by the binding, the result is
collected and finally it is returned to the WS-BPEL orchestration engine, as a reply
to the original invocation.

Finally, when the WS-BPEL scenario reaches its end, it invokes the releaseSession

web service, providing the session identifier as a parameter. The releaseSession
service will then remove from the session memory all information pertaining to this

session.

6.7 Experimental evaluation

In order to determine the optimal value for parameter CFweight and assess the
performance of our approach and the quality of the adaptations it produces, a set of
experiments have been conducted. The first experiment aimed to offer insight on the
effect of the CFweight parameter on the formulation of the solution chosen by the
algorithm and the solution’s quality. The performance-related experiments aim to
measure and quantify the overhead incurred due to the introduction of the middleware.
On the other hand, the experiments assessing the quality of the adaptations aim to
provide insight on how the QoS of the execution plan proposed by the algorithm in
Section 6.2 compares with the QoS of the execution plans proposed by the plain QoS-
based algorithm (which is optimal) and the plain CF-based algorithm. In this experiment
it is also included a “random” algorithm (i.e. randomly select a service fulfilling the QoS
constraints specified by the user), in order to determine whether how the QoS of the
execution plans formulated by the algorithm in Section 6.2 compares with the average
execution plan.

In more detail, in the performance-related experiments the overhead imposed due to
the following activities executed in the proposed scheme have been evaluated: (a)
execution plan formulation (invocation of the prepareAdaptation service) (b) invocation
redirection (the extra network messages to and from the middleware during each

service invocation and the querying of the session memory) and (c) housekeeping

Dionisios D. Margaris
126

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

activities (i.e. invocations to getSessionld and releaseSession services, as well as
update of the usage patterns repository). In these experiments the following parameters
have been varied:

1. the number of concurrent invocations,

2. the size of the usage patterns repository,

3. the number of functionalities in the WS-BPEL scenario and

4

. the number of recommendations requested per invocation.

The time needed by the preprocessor to transform the original WS-BPEL scenario
into its “adaptation-ready” form has not been included in this evaluation, because the
preprocessor operates in an offline fashion, not imposing thus any overhead to the
performance of the production system. In all experiments, the semantic service
repository was populated with synthetic data having an overall size of 2.000 web
services'. This arrangement reduced the number deployed services to 20, and does not
affect the adaptation algorithm operation, since endpoints are only considered in the
execution phase, after the adaptation is performed. Note also that in a real-world
setting, these services would be deployed on different machines (the alternative
providers’ machines)); these services account for 20 different functionalities, with each
functionality having 100 alternative providers. The QoS attribute values in this repository
were uniformly drawn from the domain [0, 1]. When conducting a test for a particular
number of functionalities, 20 BPEL scenarios were synthetically generated, randomly
drawing implementations of distinct functionalities from the repository, and the
performance evaluation tests were run for each of the generated scenarios. In the
scenario generation process, two consecutive functionality invocations were selected to

be executed sequentially (<sequence> construct) with a probability of 0.8 and in parallel

" since in this experiment a single' machine to host the target web services was used, and deploying
2,000 target web services on a single machine would degrade its performance, for the experiment
purposes it was arranged that within the semantic service repository all services delivering exactly the
same functionality were mapped to the same implementation on the machine hosting the services. DNS
aliases were used to make the service endpoints different at the repository level (e.g. a service
implementation svc? deployed on the second machine would appear in 100 entries in repository as
http://exp1.sdbs.uop.gr/svci1/endpoint ,..., http://exp100.sdbs.uop.gr/svc1/endpoint, with all addresses

exp1.testdom.uop.gr, ..., exp100.testdom.uop.gr resolving to the same IP address.

Dionisios D. Margaris
127

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

(<flow> construct), with a probability of 0.2. Therefore, in all cases, there existed BPEL
scenarios involving parallel invocations.

The differences observed, regarding the execution time, when the performance
evaluation tests were conducted on different BPEL scenarios involving the same
number of functionalities were negligible (less than 2% of the overall time). Some
differences were observed in the quality of the proposed solution, which depend on the
functionalities that were actually included in the services and the contents of the usage
patterns repository; this is to be expected, since the score computed by the
collaborative filtering algorithm . Each unique performance evaluation test was run 100
times, and the average value was computed and is shown in the following diagrams;
error bars are used in the diagrams to show the minimum and maximum values. The
lower QoS bounds for the functionalities were randomly drawn from the domain [0,0.4],
while the upper QoS bounds for the functionalities were randomly drawn from the
domain [0.6,1]. The weights of the QoS attributes were again randomly selected from
the domain [0,1]. In all cases, a uniform distribution was used.

For these experiments two machines were used: the first one (a workstation equipped
with one Intel Xeon E5-2620@2.0GHz / 6 cores CPU and 16 GB of RAM) hosted the
preprocessor and the clients, while the second one (a workstation with identical
configuration to the first, except for the memory which was 64GBytes) hosted the BPEL
orchestration engine (a Glassfish application server [20] using the Metro web service
stack [63]), the adaptation layer, the target web services, the service repository (which
included the tree representation of the subsumption relations and the services’ QoS
characteristics) and the usage patterns repository. The machines were connected
through a 100Mbps local area network. Both repositories (the semantic service
repository and the usage patterns repository) were implemented as in-memory hash-
based structures, which proved more efficient that using a separate, in-memory
database engine (e.g. HSQLDB [21] used in [45] and [46]). The new rows of the usage
patterns repository are written periodically to the disk to ensure persistence, while
provisions have been made to allow for reloading the semantic service repository in

case it changes (e.g. addition or deletion of services, or changes in the QoS values).

Dionisios D. Margaris
128

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

6.7.1 Determination of CFweight

In this experiment, 1,000 BPEL scenarios were randomly generated, and for each
scenario the adaptation algorithm varying the values of the CFweight parameter from
0% to 60% were run. In the scenario generation process, two consecutive functionality
invocations were selected to be executed sequentially (<sequence> construct) with a
probability of 0.8 and in parallel (<flow> construct), with a probability of 0.2. For each
value of the CFweight parameter, the following metrics were collected:

1. percentage of solutions affected by the CF-based dimension: this metric is
computed as the ratio of solutions where the final solution chosen was different
than the one proposed by the QoS-based algorithm to the number of examined
cases, and it is a measure of the effect that the CF-based component has on
the formulation of the final solution. Since the introduction of the CF-based
component aimed to allow for taking into account the users’ subjective ratings
(quality of experience), we would like to increase this effect.

2. Normalized quality of the solution: this metric is computed as the ratio of QoS-
based overall utility value (OUVaos) of the chosen solution to the maximum
QoS-based utility value computed by the QoS-based algorithm. Effectively, this
metric represents how close the finally chosen solution is to the optimal QoS.
Naturally, we would like this metric to be as high as possible.

Figure 22 presents the findings of our experiment. For values of CFweight < 20%, the
normalized quality of the solution is very close to the optimal (97.3% for
CFweight=20%), however only up to 18.7% of the solutions are affected by the CF-
based dimension (or, equivalently, the proposal of the QoS-based algorithm is adopted
in the 81.3% of the adaptations); this indicates that when the value of CFweight falls in
this range, the result of the CF-based algorithm is not adequately taken into account.

For values of CFweight = 50%, the majority of decisions is affected by the QoS-based
dimension (53.1% for CFweight=50% and 60. 3% for CFweight=60%) however the
normalized quality of the solution drops to 76.20% for CFweight=50% and to 67.47% for
CFweight=60%.

Dionisios D. Margaris
129

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% £
0% 10% 20% 30% 40% 50% 60%
CFweight

—A— % of solutions affected by the CF-based dimension =~ —B— Normalized quality of the solution

Figure 22: The effect of the CFweight parameter on the on the formulation of the solution and the
solution’s quality

Setting CFweight to one of the values (30%, 40%) appears to provide a good balance
between the goals of maximizing the effect of the CF-based dimension and maintaining
a high normalized quality of the solution. If a value of 30% is used, 28.1% of the
solutions are affected by the CF-based dimension and the normalized quality of the
solution is 93.07, while the respective numbers for CFweight=40% are 40.60% and
88.43% respectively. Considering that a value of 88.43% for the normalized quality is
acceptable, CFweight was set to 40%, in order to maximize the effect of the CF-based

dimension.

6.7.2 Execution time

Figure 23 presents the execution plan formulation and housekeeping overhead, i.e.
the overhead imposed by the use of the invocations to the getSessionld,
prepareAdaptation and releaseSession web services, for a varying degree of concurrent
WS-BPEL scenario invocation requests arriving to the WS-BPEL orchestration engine.
In this experiment, the usage patterns repository was set to include 1,000 qualifying
entries (i.e. the usage patterns repository contained 1,000 entries matching the
functionality for which a recommendation was requested), the number of functionalities
in the WS-BPEL scenario was set to 10 and one recommendation was requested (i.e. 9
service bindings were fixed by the consumer). We can notice that the overhead is

Dionisios D. Margaris
130

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

increasing linearly with the number of concurrent invocations, while we can also
observe that even with 250 concurrent invocations the overhead is less than one

second.

E /
= 600 /

(2]

2 200

o

>

o

O I I I T T
0 50 100 150 200 250

concurrent WS-BPEL scenario invocations

Figure 23: Execution plan formulation and housekeeping overhead for varying degrees of
concurrency

Figure 24 illustrates the time needed to perform the computation of the execution plan
and the housekeeping tasks under a varying number of functionalities within the WS-
BPEL scenario and for different counts of qualifying records in the usage patterns
repository (250, 500 and 1000 records). In all cases, the concurrency level was set to
one (a single request was submitted and processed) and one recommendation was
requested. The recorded times were found to increase between 8% and 14% when the
number of functionalities increases by one; this is owing to the time needed for the extra
processing to compute the similarity score for the extra service, since the integer
programming problems formulated in both cases are identical and therefore their
solution time is not affected. The time to compute the similarity score has been
optimized, by keeping the similarity metrics between all service/category pairs pre-
computed in a hash table and looking them up as needed, instead of computing them
on demand. The hash table is populated when the middleware bootstraps and when the

service repository is reloaded.

Dionisios D. Margaris
131

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

13
12 ’
11 , — °
10 — 2 /%
9 - F— t
8 —

7

time (ms)

(o))
N
oo

9
functionalities in WS-BPEL scenario
usage patterns: —e—250 —=—500 —a— 1000

Figure 24: Execution plan formulation overhead for varying number of functionalities within the
WS-BPEL scenario and qualifying usage patterns

In figure 24 we can also notice that the execution plan formulation overhead is
increasing at a slower rate with respect to the number of the qualifying usage patterns
(on average, an increase of 45.68% when the number of qualifying usage patterns
increases by 4). This indicates that the algorithm scales well with the size of the usage
patterns repository, however for large usage patterns repository sizes, techniques
reducing the execution time, such as the one proposed in [64] can be employed.

Finally, figure 25 illustrates the time needed to formulate the execution plan, with
respect to the number of qualifying records in the usage patterns repository and the
number of recommendations requested in a single WS-BPEL scenario invocation. In all
cases, the concurrency level was set to one (a single request was submitted and
processed) and the WS-BPEL scenario whose execution (and adaptation) was
requested contained 10 functionalities. We can observe that the time needed for each
recommendation is fairly stable, e.g. the time needed for making three
recommendations is approximately triple the time needed for making one
recommendation when the size of the usage patterns repository remains stable. This is
due to the fact that each recommendation in the CF-based is made individually by
repeating the same steps of the algorithm, and this extra time is merely added to the
overall algorithm execution time. The behavior regarding the number of qualifying usage
patterns is analogous to the one observed in figure 14. In summary, the
recommendation overhead increases linearly with respect to the number of

recommendations requested, hence the proposed approach is scalable.

Dionisios D. Margaris
132

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

37
34
. 31 }//A
2 28 A
= 25 e 4
E 2 o a— _%
= 19 /fK //ZE/
—o— 250
16 -
13 - —B8— 500
13 57. | —a— 1000 |
1 2 3 4 5

recommendations requested

Figure 25: Recommendation overhead for varying number of qualifying usage patterns and
number of requested recommendations

6.7.3 Execution plan QoS

Figure 26 depicts the QoS of the execution plan formulated by different algorithms for
a number of trial cases, aiming to provide insight on how the QoS of the execution plan
proposed by the algorithm in Section 6.2 compares with the QoS of the execution plans
proposed by the plain QoS-based algorithm described in [45] and the plain CF-based
algorithm described in [46]; as stated above, a “random” algorithm is also included in
order to determine whether how the QoS of the execution plans formulated by the

algorithm in Section 6.2 compares with the average execution plan.

Dionisios D. Margaris
133

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

10~

g L O]
8
7 - I
a
&)
S &
5 o
i : o F-N ==
i A

o 1 L ! I I 1 1 L L 1 I
Inst#1 Inst#2 Inst#3 Inst#4 Inst#S Inst#6 Inst#7 Inst#8 Inst#9 Inst#10 AVG

I O Qs @ HYBRID CF & RANDOM‘

Figure 26: QoS of the execution plans proposed by different algorithms for ten trial cases

The trial cases in this diagram correspond to the invocation of a WS-BPEL scenario
containing 10 functionalities in total and requesting 1 recommendation (the remaining 9
functionalities were bound to specific services). The lower QoS bounds for the
functionalities were randomly drawn from the domain [0,0.4], while the upper QoS
bounds for the functionalities were randomly drawn from the domain [0.6,1]. The
weights of the QoS attributes were again randomly selected from the domain [0,1]. In all
cases, a uniform distribution was used.

Note that since the QoS-based and the CF-based algorithms, as described in
Sections 4.1 and 5.2 respectively, formulate lists of execution plans, the QoS value
shown in the diagram for these algorithms is the one corresponding to the execution
plan that has attained the biggest score, i.e. the execution plan that would be selected
by each algorithm, if it were to decide on its own for the adaptation. Note also that since
the random algorithm is non-deterministic, each test case for this algorithm was run 100
times and the mean execution plan QoS was used in the diagram.

In the diagram we can notice that the combined algorithm chooses execution plans
whose QoS are very close to the optimal ones: the ratio (combinedQos / optimalQoS)
varies between 0.75 and 1, with an average of 0.92. This is considerably higher that the
corresponding ratio achieved by the CF-based algorithm (min: 0.34, max: 1, average:
0.65; this is in-line with the results presented in [44]) and the ratio attained by the
random algorithm (min: 0.62, max: 0.75, average: 0.65). In all cases, the combined
algorithm achieves a QoS equal or higher than pure CF-based one, indicating its ability

Dionisios D. Margaris
134

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

to tailor the execution considering the proposals of the CF-based algorithm and at the
same time maintain a high QoS.

Of particular interest in figure 26 are trials 2, 5 and 6, in which the deviation between
the QoS computed by the CF-based and the QoS-based algorithms is high, however
the QoS of the composition is equal to the one proposed by the QoS-based algorithm:
these cases correspond to occasions that the usage patterns repository sparsity is high,
and therefore the confidence to the proposal of the CF-based algorithm is low, leading
the combination step to practically disregard the CF-based algorithm’s proposals. In trial
3 sparsity was low, however the execution plan proposed by the QoS-based algorithm
was finally adopted: this is because the same execution plan was ranked third by the
CF-based algorithm, and hence it achieved the highest WCombMNZ score in the
combination step. Conversely in trial 8 the proposal of the CF-based algorithm was
adopted, being the fourth runner up in the QoS-based algorithm list and achieving the
highest WCombMNZ score in the combination step. In trial 4, both algorithms ranked
first the same execution plan, and hence it was selected. In all other trials, an execution

plan that was high in the list of both algorithms, but not first in either list, was selected.

Dionisios D. Margaris
135

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Dionisios D. Margaris
136

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

7. MONITORING AND FEEDBACK DATA

In this chapter, a framework which provides runtime adaptation for BPEL scenarios is
presented. The adaptation is based on (a) quality of service parameters of available
web services (b) quality of service policies specified by users (c) collaborative filtering
techniques, allowing clients to further refine the adaptation process by considering
service selections made by other clients, (d) monitoring, in order to follow the variations

of QoS attribute values and (e) on users’ opinions services they have used.

7.1 Prerequisites

As far as Qos Concepts and subsumption relationship representation is concerned, the
ones presented in chapter 3 are adopted. Furthermore, in order to perform CF-based
adaptation, a usage patterns repository with user ratings for services is required. In this
chapter, the representation used in [46] is adopted, where the ratings repository is
modelled as a table having a number of columns equal to the functionalities present in
the BPEL scenario, and one row for each BPEL scenario execution. Cell i,j is filled with
value S if during the i execution of the BPEL scenario, service S was used to
implement functionality j; cell (i, j) may be also blank, if during the i execution of the
BPEL scenario functionality j was omitted. In order to accommodate user ratings, we
extend this repository by adding one column per functionality. This column stores an
integer value from the domain [1, 10], corresponding to the rating given by the user that
executed the particular scenario instance, as described in [84]. For the cases that the
user has not provided a rating, a null value is stored and the CF-based algorithm uses a
default value, as explained in section 5.2. The BPEL scenario adaptation unit inserts
new records to the usage patterns repository, when the concrete services that will be
invoked in the context of a particular BPEL scenario execution are decided, while the
user evaluation collection module arranges for storing the user rankings in the relevant

columns.

Dionisios D. Margaris
137

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 10: Example usage patterns repository

#exec |Travel Riravel |Hotel RHotel [Event REvent
1 OlympicAirways 8 YouthHostel |3 ChampionsLeague |7

2 SwissAir 6 Hilton 9 GrandConcert 6

3 HighSpeedVessels |null |YouthHostel |null

4 LuxuryBuses 4 null |EuroleagueFinals |9

5 Lufthansa 7 GrandResort |8 OperaPerformance |6

6 AirFrance null |Hilton null

7 LuxuryBuses null |YouthHostel |null |ChampionsLeague |null

7.2 The service recommendation algorithm

As stated in sections 4.1, 5.1 and 6.1, this approach follows the horizontal adaptation
algorithm, i.e. it leaves the composition logic intact and adapts the execution by
selecting which concrete service implementation will be used in each specific
invocation. In order to perform this task, the algorithm takes into account the following

criteria:

e The consumer’s QoS specifications (bounds and weights).

e Designations on which exact services should be invoked, if such bindings are

requested by the consumer (e.g. a user wanting to travel using Air France).

e Designations on which functionalities should not be invoked (e.g. a user wanting to

book a trip without scheduling any event attendance).

e The QoS characteristics of the available service implementations, including

monitored values of the QoS attributes of the services.
¢ The service subsumption relationships.

e The usage patterns repository, including ratings entered by the users.

The approach proposed in this chapter incorporates two different candidate service
ranking algorithms, the first examining the QoS aspects only ([45]) and the second
being based on CF techniques ([46]). The algorithms run in parallel to formulate their
suggestions regarding the services that should be used in the adapted execution, and
subsequently their suggestions are combined, through a metasearch score combination

algorithm with varying weights, as described in [84].

Dionisios D. Margaris
138

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

7.3 The modified QoS-based adaptation algorithm

The QoS-based adaptation algorithm initially identifies the services which are candidate
to be used for delivering functionalities in the context of the current BPEL scenario,
respecting the QoS-bounds set by the user, and subsequently computes the k-best
service assignments to the functionalities requested for the particular scenario

execution. In more detail, the algorithm proceeds as follows:

e For each functionality fi for which adaptation has been requested, the algorithm
retrieves from the semantic service repository the concrete services that (a) deliver
this functionality and (b) respect the QoS bounds set by the users. These are the
candidates for implementing functionality fi. Formally, this is expressed as
C(fi) = {sij: (sij exact fi v sij plugin fi) A QoSmin(req, fi) < QoS(si;j) < QoSmax(req, fi)}

Note that in all steps of this algorithm, the QoS values for response time and
availability considered for each service are those returned by predictor methods [66]
and [68], respectively, as described in [84].

e Subsequently, the algorithm formulates an integer programming problem to compute
the k-best solutions regarding the assignment of concrete services sij to each
functionality fi. To express the integer programming optimization problem in this work
we adopt the concrete service utility function used in [47], which is

Qmax(irp)_q (Si)
U S: ;) = 3_ LA™ * W 1
(l.J) ZP—l Qax WP)—Q, . (D) P (1)

where qgp(si;) is the value of the pi QoS attribute of concrete service si; (the first QoS
attribute being response time, the second cost and the third one availability), wp

being the weight assigned to the p" QoS attribute,

Qmax(l; p) = sgé%zci) dp (s)

[i.,e. the maximum value of QoS attribute p among possible concrete service
assignments for functionality f], and @, (p) [resp. Q,,;, (p)] being the overall
maximum (resp. minimum) value of QoS attribute p within the service repository.
Using the utility function, the computation of the best solution is expressed as the

following integer programming problem: maximise the overall utility value given by

F 1C(fDI

OUVQOS = z Z U(Si']') * xi']-

i=1 j=1

Dionisios D. Margaris
139

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

where F is the number of functionalities fi requiring adaptation, and each x;; is a
binary variable taking the value 1 if ij; is selected for delivering functionality fi, and 0,
otherwise. Since each functionality fi is delivered in the final execution plan by exactly

one concrete service, the maximization of the utility value is subject to the constraint

lc(F))l

Z x;=LVi:1<i<F

j=1
This problem is then solved and the k-best solutions are obtained. Note that this
formulation employs the sum function to rate the availability of the composite service
taking into account the availability values of the constituent services, rather than the
product function, as denoted in Table 1. The transformation from the product function
to the sum function is achieved by applying the logarithmic function to the
computation of availability [54], since log(ITL,av;) =Y, log(av;). Through this
transformation, the problem can be expressed as an integer programming problem

and solved efficiently.

The solutions are saved, together with their overall utility score, for perusal in the
combination step. In order to solve the integer programming problem computing the k-
best solutions, the IBM ILOG CPLEX optimizer was used. In our implementations, we
have set k=20.

7.4 The modified CF-based algorithm

The CF-based algorithm employed in our proposal is an adaptation of the standard
GroupLens algorithm [69], modified to take into account the semantic distance of the
services realizing the same functionality, as described in [46]. For instance, rows 2 and
5 of table 2 are considered “semantically close”, since they both list air transport for
travel, a first class hotel for accommodation and classical music events; on the other
hand rows 2 and 7 of the same table are considered “semantically distant”, since all
three services correspond to diverse real world counterparts (air travel vs. bus, 1st class
hotel vs. 3rd class, concert vs. sports). Taking this into account, when a request arrives
asking for travel via AirFrance and accommodation in GrandResort and requesting a
recommendation for event attendance, the ratings in rows 2 and 7 must be taken more
strongly into account than those in row 7, since the former two rows are “closer” to the

one under adaptation.

Dionisios D. Margaris
140

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

To accommodate this adaptation, we extend the formula of cosine similarity between

two rows X, Y of the usage patterns repository as follows:

n_ (X[k] = Yk] = d(X[k], Y[K]))
X0+ 71

r(£,7) = 2)
We can observe in equation (2) that the standard cosine similarity metric has been

extended to accommodate the semantic distance between the services that realize the

same functionality in rows X and Y; this is accomplished by multiplying each term of the
sum in the nominator by a metric of the semantic distance between the two services,

which is denoted as d(s1, s2) and is computed using the formula introduced in [27]:
d(s1,s2) = C — Iw*PathLength — NumberOfDownDirection (3)

where C is a constant set to 8 [27], Iw is the level weight for each path in subsumption
tree (cf. Fig. 1), PathLength is the number of edges counted from functionality s1 to
functionality s2 and NumberOfDownDirection is the number of edges counted in the
directed path between functionality s1 and s2 and whose direction is towards a lower level
in the subsumption tree. For more details in the computation of the semantic distance,
the interested reader is referred to [27]. We further normalize this similarity metric in the
range [0, 1] by dividing the result computed in the above formula by 8; this way, the
multiplication by the normalized similarity metric in equation (2) reduces the correlation
coefficient between the two rows by a factor proportional to the semantic distance of the

services employed in these rows to realize the same functionality.

For items not explicitly rated, we follow the rationale of [46] according to which usage of
a service is an indication of preference, and we choose a rating equal to the 80% of the
maximum rating, as described in [84]. This is inline with the findings of [70], which
asserts that dissatisfied users will provide negative feedback with a very high probability
(289%). Rows that have not been rated at all (and therefore have a default value for all
ratings) are the reason behind choosing the cosine similarity against the Pearson
similarity, since the latter disregards rows whose ratings have no variance (i.e. are all

equal).
Using the modified cosine similarity, the CF-based algorithm operates as follows:

1. It retrieves from the usage patterns repository all rows that contain a service
implementing the functionality on which a recommendation is requested. For
example, if a recommendation on event attendance is requested, only rows 1, 2, 4, 5

and 7 of table 10 will be retrieved.

Dionisios D. Margaris
141

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

2. The rows retrieved from step 1 are filtered to retain only those that fulfil the QoS
criteria requested by the user.

3. The similarities between the request and each row are computed using the modified

cosine similarity metric. The request is represented here as a vector R, having a
rating equal to 10 for each functionality included in the scenario and a rating equal to
0 for each functionality designated as not to be executed.

4. For each distinct service implementing the requested functionality that is included in
the remaining rows, we compute its rating prediction using the standard rating

prediction formula

Zﬁeraters(ﬁ[k])(N[k]) * T(R' N)
Z:IVeraters(I_?)[k]) r(R,N)

p(ﬁ[k]) = msnan(}_?)[m]) +

[69] (we again do not subtract the mean N from F[k], so as not to render useless
the rows having only default values).
5. Finally, we retain the 20-best services for each functionality requiring adaptation, for

perusal in the combination step.

After the lists of candidates for each individual service that is subject to adaptation have
been computed, the algorithm selects the top-20 execution plans with respect to their
CF-score. Given an execution plan containing services (s1,, ..., SNnk) with the similarity
scores of the services computed in step 5 being (CFS(s1,), ..., CFS(sn,k)), then the CF-
score of the execution plan is equal to CFS(s1,)+...+CFS(snk). Computing the top-20
execution plans is modelled as an integer programming optimization problem,
formulated in a similar fashion to the one described in section 6.2. Full details on the

formulation of the integer programming optimization problem are given in [67].

The CF module has been implemented using Apache Mahout
(https://mahout.apache.org/), by subclassing the UncenteredCosineSimilarity class and
reimplementing in the subclass the UserSimilarity method, to accommodate the

semantic similarity metric described above.

Dionisios D. Margaris
142

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

7.5 The combination step

The combination step synthesizes the results given by individual algorithms to produce
to a single result. Recall from the previous two subsections that each algorithm
produces a set of candidate execution plans, with each execution plan being tagged
with the relevant normalized score (QoS-score or CF-score). In order to combine the
scores, we use the CombMNZ metasearch algorithm, since it has been found to have
the best performance [9] [the CombMNZ rating of a solution is computed by multiplying
the sum of the individual scores by the number of non-zero scores, i.e.

mj

CombMNZ; = m; * z (D)

j=1

where mi is the number of algorithms giving non-zero rating to item iand r(i) is the rating
given by algorithm j to item i]. After computing the CombMNZ metasearch for all
candidate execution plans, the combination step selects the execution plan with the
highest score, which will be used to drive the adaptation process.

7.6 An example of the algorithm operation

In this section, an illustrative example on the operation of the adaptation algorithm is

given. In this example, we consider the following:

a) The scenario to be adapted is the trip reservation application used in the
examples in section 6.2. The scenario includes mandatory invocations to a travel
reservation and a hotel reservation service, and an optional invocation to an even
attendance booking service.

b) The subsumption relationships that will be used in this scenario are as depicted

in figure 27.

Dionisios D. Margaris
143

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

=) J, Ticket
=} 1, Air travel
@ AirFrance
OlympicAirways
& SwissAir
=} 1, Road Travel
#® MagicBus
#® LuxuryBuses
=} |, Sea travel
#® AquaMarine
& HighSpeedVessels
Sealines
=) J, Hotel
= 4, Luxury
#® GrandResort
Hilton
=} |, 1stdass
Hotel 1a
B =
=} 1, 3rd dass
YouthHostel
=~ J, Event
=} |, Athletic
@ SportsTicketBooker
(=)~ |, Football
ChampionsLeague
#® EuropeanCup
#® WorldCup
(=) |, Basketball
EuroleageFinals
@ NBAFinals
., Culture
= 4y Music
GrandConcert
D o
., Painting
#® GoyaExhibition

0

M

Figure 27: Subsumption relationships tree used in the example

c) The QoS values for the services implementing the “Air travel” functionality are as
shown in table 11. The table lists only the QoS values for the service
implementing the “Air travel” functionality, since these are the only ones pertinent

in this example.

Dionisios D. Margaris
ionisi gari 144

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 11: QoS values for the services implementing the “Air travel”

Equivalent WS Cost Response Time Availability
AirFrance 8 10 7
Lufthansa 9 8 7

OlympicAirways 2 5 9
Swissair 7 7 8

d) The contents of the usage patterns repository are as shown in table 6-4.

Table 12: Usage patterns repository used in the example

Travel R(travel) Hotel R(Hotel) Event R(Event)
#exec
1 OlympicAirways 8 Hilton 3 GrandConcert 5
2 Lufthansa 9 YouthHostel 9 EuropalLeague 7
3 HighSpeedVessels YouthHostel
4 HighSpeedVessels 4 ChampionsLeague 9
5 AirFrance 7 GrandResort 8 OperaPerformance 6
6 SwissAir 6 Hilton
7 LuxuryBuses 9 YouthHostel 6 EuroleagueFinals 9
8 Lufthansa 9 YouthHostel 8 .
EuroleagueFinals

e) The user request to be adapted is: AirTravel(R), YouthHostel, ChampionsLeague

which effectively reads: “I want to stay in YouthHostel and attend the ChampionsLeague

event, and | want a recommendation regarding an AirTravel service”.

The user has set a QoS weight vector equal to W= (0.4, 0.3, 0.3), while the MIN and
MAX vectors, setting the lower and upper limits respectively for service QoS attributes,

are set as follows:

Dionisios D. Margaris
145

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

MINAirTravel=(4, null, 5) , MAXAirTravel=(null, null, null) i.e. a minimum of 4 and 5 is
set for the travel cost and availability respectively, while no lower limit is set for its

response time. Similarly, no upper bounds are imposed for any service.

f) We assume that the minimum and maximum values for the QoS attributes within

the repository are as follows (these are needed in the utility function U): MIN=(2, 1, 2)
MAX=(10, 10, 9)

7.6.1 Applying the QoS-based algorithm

1. First, we retrieve from the service repository (table 12) all rows implementing the
“air travel” functionality. All rows of the repository qualify (since the excerpt of the
repository depicted in table 12 consists exactly of these rows)

2. Subsequently, the rows not meeting the QoS bounds are filtered out. As a

consequence, row #1, corresponding to the OlympicAirways service, is rejected.

Subsequently, we compute the utility function U for each of the remaining
services. The values for the utility function are as follows (recall that the utility

function is defined as

3 ,
Qmax(l'p)_Qp(Si.j)) .
U(Sl’]) p=1 (Qmax! D) =Qpins () * Wp)

U(AirFrance) = (1 - ==) « 0.4+ (1 - 2=2) 5 03+ (1 - 22) 03 = 0.913
U(Lufthansa) = (1 - 22) 5 04+ (1 - 1—) + 03 + (1 — 1) + 0.3 = 0.888
U(SwissAin = (1 - =) « 0.4+ (1-2=) 03+ (1-22) + 03 = 0.788

Subsequently, we formulate the integer programming problem to maximize the overall

utility function

F 1C(fDI

subject to the constraint

Dionisios D. Margaris
146

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

L(D)

in_j= 1,1 <i<F

j=1
Since now F=1 (F is the number of functionalities for which adaptation is requested), we

have that the overall utility function is reduced to

|C(AirTravel)|

OUVQOS = Z U(SAirTravel,j) * XpirTravel,j =
j=1

U(AirFrance) * Xpirprance + U(Lufthansa) * X; rihansa + U(SWiSSAIr) * Xguwissair
subject to the constraint

XAirFrance + XLufthansa + XSwissAir — 1

The three possible solutions to this integer programming problem are as shown in table
13:

Table 13: Solutions proposed by the QoS-based algorithm

Solution QoS-score Normalized QoS-score
XAirFrance=1, XLufthansa=0, XswissAir=0 0.913 1.000
XairFrance=0, XLufthansa="1, XswissaAir=0 0.888 0.800
XairFrance=0, XLufthansa=0, XswissAir=1 0.788 0.000

We save these solutions for perusal in the combination step.

7.6.2 Applying the CF-based algorithm

According to the first step of the CF-based algorithm, we will retrieve from the usage
patterns repository (table 14) only those rows that involve the functionality requested for
adaptation. Since the functionality for which adaptation is requested is AirTravel, rows 3,
4 and 7 will be eliminated, since they involve other means of transportation (sea travel
for rows 3 and 4 and bus travel for row 7). Therefore, the rows depicted in table 6 will be

retrieved.

Dionisios D. Margaris
147

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Table 14: Rows of the usage patterns repository delivering the functionality under adaptation

1 OlympicAirways 8 Hilton 3 GrandConcert 5
2 Lufthansa 6 YouthHostel 9 EuropalLeague 6
5 AirFrance 7 GrandResort 8 OperaPerformance 6
6 . . 6 Hilton null

SwissAir
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals | null

The second step of the CF-based algorithm eliminates the rows for which the service
delivering the functionality under adaptation does not meet the QoS bounds set by the
client. Row 1 fails to satisfy them so it is eliminated, and the rows retained for further
processing are as shown in table 15. At this point, we fill the null value of row #6 and
row #8 with the default value (8).

Table 15: Rows of table 6-6 satisfying the QoS bounds

Lufthansa 6 YouthHostel 9 EuropalLeague 6
AirFrance 7 GrandResort 8 OperaPerformance
. . 6 Hilton 8
SwissAir
8 Lufthansa 9 YouthHostel 8 EuroleagueFinals 8

We now compute the similarity of each row to a request vector R = (10,10, 10), taking
into account the semantic distances between the services. The semantic distances

between the services pertinent to this adaptation are computed through the formula
d(s1,s2) = (8 — Iw*PathLength — NumberOfDownDirection) / 8

and their values are as follows:

d(AirTravel, Lufthansa) = (8 - 2/3*1 -1) /8 = (19/3) / 8 = 19/24
d(AirTravel, AirFrance) = (8 -2/3*1-1)/8 =(19/3) / 8 = 19/24
d(AirTravel, SwissAir) = (8-2/3*1-1)/8=(19/3)/8 = 19/24
d(YouthHostel, YouthHostel) = (8-1/3*0-0)/8=8/8 =1
d(YouthHostel, GrandResort) = (8 - 1/3 *4 —2) / 8 = (14/3) / 8 = 14/24

d(YouthHostel, Hilton) = (8 - 1/3 *4 —2) / 8 = (14/3) / 8 = 14/24

Dionisios D. Margaris
148

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

d(ChampionsLeague, EuropalLeague) = (8 - 1/4 *2 - 1)/ 8 = (26/4) /| 8 = 26/32
d(ChampionsLeague, EuroleagueFinals) = (8 - 1/4*4-2)/8 =(5)/ 8 = 5/8

d(ChampionsLeague, OperaPerformance) = (8 - 1/4 *6 — 3) / 8 = (14/4) / 8 = 14/32

The third step of the CF-based algorithm is to compute the similarity between the user
request vector R= (10,10,10) and the vectors corresponding to the raters of the
functionality for which adaptation is requested. Recall from section 6.3 that the similarity

is computed using the cosine similarity metric, using the formula

T MK IR+ d(RIK P IKD))
r(X,v) ==L

IX1 = NIyl

Therefore, the similarity metric r between the rows of table 15 and the user request

vector R = (10,10, 10) are as follows:

L Yo (RIK] « Tows k] * d(RIK], Tow; (kD))
(R rows) = =T~ Trowal -

(6*10*%

V62 +92 4+ 62 x+/102 + 102 + 102

26
)+(9*10*1)+(6*10*3_2):0.869

5 D (RIK] « Fows[k] « (R[] TOwSID) _
r(R rows) = IRI * [Fow; -

(7*10*%)+(8*10*%)+(6*10*%—§

V72 + 82 4+ 62 x4/102 + 102 + 102

= 0.607

5 D (RIK] + Towglk] « (R[] Towg D) _
(R rowe) = IRI * lFow; -

(6*10*%)+(8*10*%)

= 0.544
V62 + 82 x/102 + 102 + 102

> (RIK] = Towglk] = d(RIK], 7owg[k]))

IRIl = lIrow; |l

r(ﬁ, row8) =

19 5
(9510 % 57) + (9% 10+ 1) + (8 10 +3)

= 0.844
V9?2 4 82 + 82 % V102 + 102 4 102

Dionisios D. Margaris
149

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Subsequently, we compute each service’s rating prediction using, as discussed in

section 6.3, the rating prediction formula

Zﬁeraters(ﬁ[k])(N[k]) * T'(R, N)
ZIVEraters(ﬁ[k,]) T'(R, N)

p(R[k]) =

And therefore we obtain:
p(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 7.48
p(AirFrance) = 7* 0.607 / 0.607 = 7
p(SwissAir) = 6* 0.544 /0.544 = 6

These values are then normalized to the range [0,1] by dividing by the maximum

possible value of a rating, in our case 10:
pn(Lufthansa) = (6*0.869 + 0.844*9)/ (0.869+0.844) = 0.748
pn(AirFrance) = 7* 0.607 / 0.607 = 0.7

pn(SwissAir) = 6% 0.544 / 0.544 = 0.6

Since the number of possible solutions is less than 20, all solutions are retained.
Subsequently, similarly to the case of the QoS-based algorithm, we formulate the

integer programming problem, i.e. to maximize the overall utility function

F L

OUVep = (Z Z prediction(si,j) *x;j)/F

i=1 j=1
subject to the constraint

L(i)

le"j:l,l <i<F

j=1

Since the number of functionalities requiring adaptation F is equal to 1, the integer

optimization problem is reduced to

Dionisios D. Margaris
150

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

3
OUV¢rp = Z prediCtion(SAirTravel,j) * xAirTravel,j) =
j=1

prediction(AirFrance) * Xjrprance +
prediction(Lufthansa) * Xy ufthansa +
prediction(SwissAir) * Xgwissair
subject to the constraint

XAirFrance + XLufthansa + XSwissAir — 1

The three possible solutions to this problem are as shown in table 16.

Table 16: Solutions proposed by the CF-based algorithm

Solution CF-score Normalized CF-score
XAirFrance=1, XLufthansa=0, XswissAir=0 0.700 0.675
XAirFrance=0, XLufthansa="1, XswissAir=0 0.748 1.000
XairFrance=0, XLufthansa=0, XswissAir=1 0.600 0.000

7.6.3 Combining the results

Using the rules from section 6.2 for computing CFweight and QoSweight (we get
CFweight=0.40 and QoSweight = 0.6), we finally apply the CombMNZ metasearch
algorithm to the normalized scores to compute the final score of each solution. The
CombMNZ algorithm adds the individual weighted scores and multiplies the result by
the number of algorithms proposing each solution. In our case, all solutions are
proposed by both the QoS-based algorithm and the CF-based algorithm, hence the

results are as follows:

CombMNZairfrance = (1.000*0.6 + 0.675*0.4) * 2 = 1.740
CombMNZLufthansa = (0.800*0.6 + 1.000*0.4) * 2 = 1,760

CombMNZswissair = (0.000*0.6 + 0.000*0.4) * 2 = 0.916

Dionisios D. Margaris
151

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

We can observe that the CombMNZLufthansa score is the maximum among all scores,
hence the Lufthansa service will be chosen for the particular adaptation, so the user

scenario execution plan becomes «Lufthansa, YouthHostel, ChampionsLeague».

7.7 The execution adaptation architecture

The execution adaptation architecture, illustrated in figure 28, follows the middleware-
based approach, with an adaptation layer intercepting web service invocations and

appropriately directing them to the services decided by the adaptation algorithm.

Dionisios D. Margaris
152

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

Adaptation layer

Execution plan formulation
(2) information QoS- CF- SerilTmms
1 : about service Umm.ma _omm.ma :
BPEL Amﬂwmzm:_.o Web Services Platform invocations, QoS algorithm algorithm service
invocation + bounds & weights repository
QoS bounds + binding and bindings Combination
requirements WS-BPEL Orchestrator p P step (subsumption
(3) Evaluation relationships & QoS
Consumer token attributes)
— Resul “ Upotis| QoS
esults + web service call P o
evaluation — > Web service \4_ “Mﬂa_mﬁ%m MMMMM%QM_
token (8) Result invocation redirection P - :W\wv
(10) (5) Invocation i % (6) Results
Evaluation token + User (11)
platform cmw%wmmwws Web Service Implementations

Dionisios D. Margaris

Figure 28: The execution adaptation architecture
153

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

As shown in figure 28, the BPEL scenario execution initially passes to the adaptation
layer the information regarding service invocations that will be performed, QoS bounds
and weights as well as specific service bindings. When the adaptation layer receives
this information, it applies the adaptation algorithm to formulate the execution plan for
the particular scenario execution (i.e. decide the actual services that will be invoked to
deliver each functionality) and stores the execution plan for later perusal. Subsequently,
when a web service invocation is intercepted by the adaptation layer, the respective
execution plan is retrieved from the execution plan storage, the web service decided to
deliver the specific functionality is extracted and the invocation is routed accordingly to
that service. Note that steps (4)-(8) depicted in figure 28 are repeated multiple times
within each BPEL scenario execution, once per web service invocation performed.
When the invocation to a service implementation has concluded, the data regarding the
service’s response time and availability are passed to the QoS prediction and update
module, which computes the predicted values for the respective QoS parameters and

updates the corresponding elements in the semantic service repository.

Additionally, the BPEL scenario returns at the end of its execution, along with the result,
an evaluation token, which the consumer may use to enter the ratings for the services
s/he has used in the context of the BPEL scenario execution. The evaluation token is
returned in the response headers, to retain the response payload schema intact. To
accommodate this additional functionality (passing the necessary information to the
adaptation layer and returning the evaluation token), the BPEL scenario is
preprocessed as described in [46] before being deployed to the web services platform,
with the preprocessing step injecting the necessary invocations to the adaptation layer
into the scenario, and the result of the preprocessing step is then deployed and made

available for invocations.

7.8 Experimental evaluation

In this section, the experiments are reported aiming to substantiate the feasibility of the
proposed approach, both in terms of execution time (quantifying the introduced
overhead) and solution quality. For these experiments two machines were used: (a) a
workstation, equipped with one 6-core Intel Xeon E5-2620@2.0GHz CPU and 16 GB of

RAM, which hosted the preprocessor and the clients and (b) a workstation with identical

Dionisios D. Margaris
154

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

configuration to the first, except for the memory which was 64GBytes, that hosted the
BPEL orchestration engine, the adaptation layer, the target web services, the service
repository and the usage patterns repository. The machines were connected through a
1Gbps local area network. Both repositories (the semantic service repository and the
usage patterns repository) were implemented as in-memory hash-based structures,

which proved more efficient than using a separate (memory or disk-based) databases.

Regarding the execution time, the introduction of the adaptation layer imposes
overheads in two points: (a) when the BPEL scenario passes to the adaptation layer
information regarding the web services to be invoked, their QoS-bounds and weights as
well as the service bindings in order to formulate the execution plan and (b) when a
service is invoked, since two extra messages to/from the adaptation layer and some
processing therein are introduced. These overheads are quantified in [45] (a) and (b)
respectively, for varying degrees of concurrency. In this experiment, the usage patterns
repository was set to include 1,000 qualifying entries (i.e. the usage patterns repository
contained 1,000 entries matching the functionality for which a recommendation was
requested), the number of functionalities in the BPEL scenario was set to 10 and one

recommendation was requested (i.e. 9 service bindings were fixed by the consumer).

Figure 29 indicates that the overhead to formulate the execution plan is small per BPEL
scenario execution (approximately 4 msec) and scales linearly with the number of
concurrent executions. Clearly, having available more execution units in the machine
performing the adaptation, or offloading some tasks to other machines (e.g. execution of
web services, which in a real-world case would be hosted in the service providers’

computers) would result to smaller overheads in high degrees of concurrency.

Figure 30 indicates that the additional per-service execution overhead is small, ranging

from 3 to 8 msec, depending on the level of concurrency.

Dionisios D. Margaris
155

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

1200

1000

800

600

400 /
200 /

10 a0 100 150 200 250

overhead (ms)

concurrent WS-BPEL scenario invocations

Figure 29: Execution plan formulation overhead for varying degrees of concurrency

RN
o

oo

(o))

SN

Per-service execution
overhead (ms)
N

(@)

10 20 50 100

concurrent WS-BPEL scenario
invocations

Figure 30: Per-service invocation overhead, for varying degrees of concurrency

Figure 31 compares the QoS of the execution plan formulated for a number of trial
cases (10 cases) by (i) the QoS-based algorithm (ii) the CF-based algorithm and (iii) the
combined algorithm proposed in this chapter. The diagram shows that the combined
algorithm succeeds in maintaining a high solution QoS (93% of the QoS of the optimal
QoS that can be attained on average, and higher than the 80% of the optimal QoS in all

cases), while at the same time allows to consider the user ratings on the services. Each

Dionisios D. Margaris
156

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

trial case in this diagram corresponds to the invocation of a WS-BPEL scenario
containing 10 functionalities in total and requesting 1 recommendation (the remaining 9
functionalities were bound to specific services). The lower QoS bounds for the
functionalities were randomly drawn from the domain [0,0.4], while the upper QoS
bounds for the functionalities were randomly drawn from the domain [0.8,1]. The
weights of the QoS attributes were again randomly selected from the domain [0,1]. In all
cases, a uniform distribution was used. Finally figure 32 illustrates that the introduction
of QoS feedback and estimation on the response time leads to the formulation of more
efficient execution plans, when the services’ actual QoS deviates from the values
initially stored in the repository. In this experiment, a varying number of concurrent client
to request adaptation for a particular functionality has been used, setting a high weight
on the response time, which leads to the selection of services declared to have high
QoS values (e.g. low response times). In situations with high degrees of concurrency
these services are overloaded, hence the offered QoS drops. When QoS feedback and
estimation is used, the QoS degradation trend of these services is noticed and QoS
estimations are adjusted accordingly, therefore other services will then become the
ones with optimal values. Consequently, invocations are spread among different service
providers, resulting in smaller response times on average (shown in figure 32), and

hence recommendations of higher quality.

10
=
9
8
3 |
c 2]
2 7 1
8
2 6
©
® 5
kS
2 4
g
3 Y o
2
1 O QoS © CF = COMBINED
— o o < LN (o} N~ o0 (e)] o
= = B~ o = == B~ o = == —
(@] (®] (@] (@] (&) (] (@] (&) (@] I+
(Vp)) (Vp)] (Vp)) (Vp)] (Vp) (Vs) (Vp)] 8

Figure 31: QoS of solutions proposed by individual algorithms and the combined one

Dionisios D. Margaris
157

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

40
35
30
25
20
15

10 ‘O/()/O
A

5

10 50 100 500 1000
concurrent requests

avg. service response time (msec)

—O— No QoS monitoring —O— With QoS monitoring

Figure 32: Improvement of response time due to the introduction of QoS monitoring and
estimation

Dionisios D. Margaris
158

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

8. CONCLUSION AND FUTURE WORK

In this dissertation, frameworks for adapting the execution of BPEL scenarios are
presented. To perform the adaptation, the metasearch paradigm is followed, by
combining two candidate execution plan ranking algorithms. The first one examines the
execution plan QoS aspects only, while the second is based on CF techniques. The
framework provides means for monitoring the QoS parameters of the services and
adjusting accordingly the values of the services’ QoS attributes, as well as accepting
user ratings for the services they have used, which are taken into account by the CF-
based algorithm. The execution architecture includes a scenario preprocessing step,
which transforms existing WS-BPEL scenarios into an “adaptation ready” form, and an
adaptation layer (a middleware component intervening between the WS-BPEL
execution engine and the actual service implementation), which undertakes the tasks of

executing the adaptation algorithm and redirecting invocations to the selected services.

The proposed frameworks have been experimentally validated regarding (i) their
performance, (ii) the quality of execution plans generated and (iii) the effectiveness of
the QoS monitoring and estimation mechanisms. The proposed approaches have been
also found to be scalable, exhibiting a linear increase in the imposed overhead. The
overhead imposed for performing the adaptation has been found to be small
(approximately 4-5msec per concurrent user), while the execution architecture’s
scalability has also proven to be satisfactory, exhibiting a linear increase for all tested
factors (concurrent users, size of usage patterns repository, number of
recommendations requested per invocation and number of functionalities within the WS-
BPEL scenario). The final proposed algorithm has also been found to choose execution
plans whose QoS are very close to the optimal ones, while at the same time crafting the

execution plans taking into account the proposals of the CF-based algorithm.

Our future work will focus on the integration of QoS-adherence monitoring mechanisms,
such as those described in [24], as well as gathering and utilizing statistical information
from prior scenario executions as information sources to the adaptation process. This
statistical information will be used to quantify aspects regarding the execution of control
constructs in the scenario, e.g. the probability that a conditional branch is executed or
the distribution of the number of executions of a loop. These quantities will be then
taken into account by the adaptation algorithm. QoS-adherence monitoring mechanisms

could also provide feedback to the adaptation algorithm, by either changing the

Dionisios D. Margaris
159

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

services’ QoS parameters in the repository (e.g. increasing the value of a services’
response time QoS attribute if it consistently exhibits worse response time than the one
recorded in the repository) or by instructing the algorithm to refrain temporarily from
choosing a service (e.g. if the service has been recently invoked many times and its
degraded performance could thus be attributed to a temporary overload condition). We
also plan to examine how the algorithm can be extended to consider different
adaptation strategies [71], and to evaluate the performance of these strategies. Finally,
a user survey is planned to assess the degree to which users are satisfied by the plans
generated by the various adaptation algorithms; work in this direction will consider
recent results in the area of exploiting social networks for software evaluations, as
described in [72].

Dionisios D. Margaris
160

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

ABBREVIATIONS
ABBREVIATION DESCRIPTION
UDDI Universal Description, Discovery and
Integration
WSDL Web Service Description Language
SOAP Simple Object Access Protocol
W3C World-Wide Web Consortium
P2P Peer to Peer
HTTP HyperText Transfer Protocol
BPEL Business Process Execution Language
WS-BPEL Web Services - Business Process
Execution Language
SSL Secure Socket Layer
QoS Quality of Service
SOA Service Oriented Architecture
ASOB Alternate Service Operation Binding
XML Extensible Markup Language
API Application Programming Interface
B2B Business-to-Business
OWL Web Ontology Language
RDF Resource Description Framework

161

Dionisios D. Margaris

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

ABBREVIATION DESCRIPTION

BPMN Business Process Management Notation
WSMO Web Service Modeling Ontology

CF Collaborative Filtering

SLA Service Level Agreement

RT Response Time

Dionisios D. Margaris

162

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

REFERENCES

[1] OASIS WSBPEL TC. WS-BPEL 2.0. http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html.

[2] MP. Papazoglou, P. Traverso, F. Leymann, “Service-Oriented Computing: State of
the Art and Research Challenges”, IEEE Computer vol. 40, no 11, 2007, pp. 38-45.
[3]V. Cardellini, V. Di Valerio, V. Grassi, S. lannucci, F. Lo Presti, “A Performance
Comparison of QoS-Driven Service Selection Approaches”, Proceedings of
ServiceWave 2011, Abramowicz W et al. (Eds.): LNCS 6994, 2011, pp. 167-178.

[4] C. Kareliotis, C. Vassilakis, S. Rouvas, P. Georgiadis. “QoS-Driven Adaptation of
BPEL Scenario Execution”, Proceedings of ICWS 2009, E. Damiani, R. Chang, J.
Zhang (eds), 2009, pp. 271-278.

[5] M. Claypool, A. Gokhale, Y. Miranda, P. Murnikov, D. Netes, M. Sartin, “Combining
Content-Based and Collaborative Filters in an Online Newspaper”. SIGIR '99 Workshop
on Recommender Systems: Algorithms and Evaluation, I. Soboroff, C. Nicholas, M.
Pazzani (eds), Berkeley, California, 1999,

[6] CL. Hwang, K. Yoon, “Multiple Criteria Decision Making”, Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, 1981.

[7]1J. Basilico, T. Hofmann, “Unifying collaborative and content-based filtering”.
Proceedings of the twenty-first international conference on Machine learning (ICML 04),
C.E. Brodley (ed), 2004, pp. 9-16.

[8]1 B.M. Kim, Q. Li, C.S. Park, S.G. Kim, J.Y. Kim. “A new approach for combining
content-based and collaborative filters”. Journal of Intelligent Information Systems, July
2006, vol. 27, Issue 1, pp 79-91.

[9]J. FUrnkranz, Eyke Hullermeier (eds), “Preference Learning”. Springer; 2011 edition
(October 13, 2010), ISBN: 3642141242

[10] J. Aslam, M. Montague, “Models for metasearch”, Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information
retrieval, SIGIR 2001, W.B. Croft, D.J. Harper, D.H. Kraft, J. Zobel (eds), 2001, pp. 276-
284.

[11] M. Montague, J.A. Aslam, “Relevance Score Normalization for Metasearch”,
Proceedings of the tenth international conference on Information and knowledge
management, CIKM 2001, H. Paques, L. Liu, D. Grossman, C. Pu (eds), 2001, pp. 427-
433.

Dionisios D. Margaris
163

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[12] ISO. UNI EN ISO 8402 (Part of the ISO 9000 2002): Quality Vocabulary, 2002.

[13] ITU. Recommendation E.800 Quality of service and dependability vocabulary.

[14] Cardoso, J. Quality of Service and Semantic Composition of Workflows. PhD
thesis, Univ. of Georgia, 2002.

[15] O’Sullivan, J., Edmond, D., Ter Hofstede, A. What is a Service?: Towards Accurate
Description of Non-Functional Properties, Distributed and Parallel Databases, vol. 12,
2002.

[16] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L. An Approach for QoS-aware
Service Composition based on Genetic Algorithms. In Proceedings of the 2005
Conference on Genetic and evolutionary computation, pp. 1069-1075, 2005.

[17] Chothia, T., Kleijn, J. Q-Automata: Modelling the Resource Usage of Concurrent
Components. Electronic Notes in Theoretical Computer Science 175 (2007) 153-167.
[18] Barbosa, L., Meng, S. QoS-aware Component Composition. In Proceedings of
CISIS 2010, pp. 1008 — 1013.

[19] Apache ODE, Headers Handling. http://ode.apache.org/headers-handling.html

[20] GlassFish Community. http://glassfish.java.net/

[21] HSQLDB. http://hsqldb.org/

[22] US. Manikrao, TV. Prabhakar, “Dynamic Selection of Web Services with
Recommendation System” Proceedings of the International Conference on Next

Generation Web Services Practices, 2005, pp. 117-121.

[23] LB. Zeng, AHN. Benatallah, M. Dumas, J. Kalagnanam, H. Chang, “QoS-aware
middleware for web services composition”. IEEE Transactions on Software Engineering,
vol. 30, no 5, 2004.

[24] O. Moser, F. Rosenberg, S. Dustdar, “Non-Intrusive Monitoring and Service
Adaptation for WS-BPEL”, Proceedings of WWW 2008, Beijing, China, , 2008, pp. 815-
824.

[25] S. Ran, “A Model for Web Services Discovery With QoS”, ACM SIGecom
Exchanges, vol. 4(1), Spring, 2003, pp. 1-10.

[26] M. Paolucci, T. Kawamura, T. Payne, T. Sycara, “Semantic Matching of Web
Services Capabilities”, Proceedings of the International Semantic Web Conference,
Sardinia, 2002, pp. 333-347.

[27] A. Bramantoro, S. Krishnaswamy, M, Indrawan, “A semantic distance measure for
matching web services”, Proceeding of the 2005 international conference on Web

Information Systems Engineering, 2005, pp 217-226.

Dionisios D. Margaris
164

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[28] J. Yu, Q. Sheng, J. Han, Y. Wu, C. Liu, “A semantically enhanced service
repository for user-centric service discovery and management”, Data & Knowledge
Engineering, vol. 72, Feb 2012, pp. 202-218.

[29] JB. Schafer, D. Frankowski, J. Herlocker, S. Sen, “Collaborative Filtering
Recommender Systems”, in “The Adaptive Web”, Lecture Notes in Computer Science
Volume 4321, 2007, pp 291-324.

[30] LR. Dice, “Measures of the Amount of Ecologic Association Between Species”,
Ecology vol. 26, no 3, 1945, pp. 297-302, doi:10.2307/1932409

[31] V. Cross, X. Hu, “Using Semantic Similarity in Ontology Alignment”, Proceedings of
the The Sixth International Workshop on Ontology Matching (collocated with the 10th
International Semantic Web Conference ISWC-2011), 2011, pp. 61-72.

[32] G. Hirst, D. St-Onge, “Lexical Chains as Representations of Context for the
Detection and Correction of Malapropisms”, chapter in “WordNet: An Electronic Lexical
Database”, Christiane Fellbaum (ed), chapter 13, 1998, pp. 305-332, The MIT Press,
Cambridge, MA.

[33] T. Seidl, HP. Kriegel, “Optimal multi-step k-nearest neighbor search”, Proceedings
of the 1998 ACM SIGMOD international conference on Management of data, 1998, pp.
154-165.

[34] NB. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, V. Issarny, “QoS-aware
Service Composition in Dynamic Service Oriented Environments”, Proceedings of
Middleware 2009, LNCS vol. 5896, 2009, pp 123-142.

[35] Oracle, Manipulating SOAP Headers in BPEL.
http://docs.oracle.com/cd/E14571_01/integration.1111/e10224/bp_manipdoc.htm#CIHF
CBAD

[36] G. Castagna, N. Gesbert, L. Padovani, “A theory of contracts for Web services”,
ACM Transactions on Programming Languages and Systems, vol. 31, issue 5, June
2009, article no 19.

[37] D. He, D. Wu, “Toward a Robust Data Fusion for Document Retrieval”, IEEE 4"
International Conference on Natural Language Processing and Knowledge Engineering
- NLP-KE, 2008.

[38] E. Al-Masri, Q.H. Mahmoud, “Discovering the best web service”, (poster) 16th
International Conference on World Wide Web (WWW), P. Bouquet, H. Stoermer, G.
Tummarello, H. Halpin (Eds.) 2007, pp. 1257-1258.

Dionisios D. Margaris
165

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[39] E. Al-Masri, Q.H. Mahmoud, "QoS-based Discovery and Ranking of Web Services",
IEEE 16th International Conference on Computer Communications and Networks
(ICCCN), 2007, pp. 529-534.

[40] E. Al-Masri, Q.H. Mahmoud, “The QWS data set”,
http://www.uoguelph.ca/~gmahmoud/qws/

[41] Z. Zheng, M.R. Lyu, “Collaborative Reliability Prediction for Service-Oriented
Systems”, in Proceedings of the ACM/IEEE 32nd International Conference on Software
Engineering (ICSE2010), J. Kramer, J. Bishop, P. T. Devanbu, S. Uchitel (Eds.), Cape
Town, South Africa, May 2-8, 2010, pp. 35 — 44.

[42] Z. Zheng, M.R. Lyu, “WS-DREAM: Web Service QoS Datasets”,
http://www.wsdream.net/dataset.html

[43] J. Cardoso, A. Sheth, “Semantic e-Workflow Composition”, Journal of Intelligent
Information Systems, vol. 21 no 3, pp. 191-225, 2003.

[44] P. Melville, RJ. Mooney, R. Nagarajan, “Content boosted collaborative filtering for
improved recommendations”, Proceedings of the Eighteenth National Conference on
Artificial Intelligence, R. Dechter, R.S. Sutton (eds), Canada, 2002, pp. 187-192.

[45] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for QoS-based
adaptation and exception resolution in WS-BPEL scenarios”, Proceedings of the 28
ACM Symposium on Applied Computing, S.Y. Shin, J.C. Maldonado (eds), Coimbra,
Portugal, 2013, pp. 1900-1906.

[46] D. Margaris, C. Vassilakis, P. Georgiadis, “Adapting WS-BPEL scenario execution
using collaborative filtering techniques”, Proceedings of the IEEE 7th International
Conference on Research Challenges in Information Science, RCIS 2013, R. Wieringa,
S. Nurcan, C. Rolland, J-L. Cavarero (eds), Paris, France, 2013.

[47] M. Alrifai, T. Risse, “Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition”, Proceedings of the 18th international
conference on World wide web (WWW '09), Th. Karagiannis and M. Vojnovic (Eds.),
2009, pp. 881-890.

[48] F. Lécué, N. Mehandjiev, “Towards Scalability of Quality Driven SemanticWeb
Service Composition”, Proceedings of the IEEE International Conference on Web
Services (ICWS 2009), E. Damiani, R. Chang and J. Zhang (eds), 2009, pp. 469-476.
[49] M. Alrifai, T. Risse, “Efficient QoS-aware Service Composition”, In Emerging Web
Services Technology Volume Ill, W. Binder, S. Dustdar (eds), Birkhauser Basel, 2009.

Dionisios D. Margaris
166

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[50] W. Mayer, R. Thiagarajan, M. Stumptner, “Service Composition as Generative
Constraint Satisfaction”, IEEE International Conference on Web Services, 2009 (ICWS
2009), E. Damiani, R. Chang and J. Zhang (eds), 2009, pp. 888-895.

[51] L. Qi, X. Xia, J. Ni, Ch. Ma, Y. Luo, “A Decomposition-based Method for QoS-aware
Web Service Composition with Large-scale Composition Structure”, Proceedings of the
Fifth International Conferences on Advanced Service Computing, A. Koschel, J.L. Mauri
(eds), 27 May - 1 June, 2013, Valencia, Spain, pp. 81-86.

[52] A.B. Hassine, S. Matsubara, T. Ishida, “A Constraint-Based Approach to Horizontal
Web Service Composition”, Proceedings of the 5th International Semantic Web
Conference, ISWC 2006, I.F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P.
Mika, M. Uschold, L. Aroyo (Eds.) Athens, GA, USA, November 5-9, 2006, pp. 130-143.
[53] V. Cardellini, E. Casalicchio, V. Grassi, S. lannucci, F. Lo Presti, R. Mirandola,
“‘“MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented
Systems”, IEEE Transactions on Software Engineering, vol. 38, no. 5,
September/October 2012, pp. 1138-1159.

[54] T. Yu, K-J. Lin, “Service selection algorithms for Web services with end-to-end QoS
constraints”, Proceedings of IEEE International Conference on e-Commerce
Technology, 2004, pp. 129 - 136.

[55] J. Bisschop, “Linear Programming Tricks”, chapter in “AIMMS Optimization
Modeling”, ISBN: 9781847539120. The chapter is available at
http://www.aimms.com/aimms/download/manuals/aimms3om_linearprogrammingtricks.
pdf

[56] StackOverflow, “Using min/max *within* an Integer Linear Program”,
http://stackoverflow.com/questions/10792139/using-min-max-within-an-integer-linear-
program

[57] IBM, “IBM ILOG CPLEX Optimizer”, 2013,
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

[58] IBM, “Using CPLEX to examine alternate optimal solutions”, 2013,
http://www.ibm.com/support/docview.wss?uid=swg21399929

[59] Y. Yanbe, A. Jatowt, S. Nakamura, and K. Tanaka, “Towards Improving Web
Search by Utilizing Social Bookmarks”, In Web Engineering, LNCS vol. 4607, L. Baresi,
P. Fraternali, G.J. Houben (eds), 2007, pp 343-357.

[60] TA. Sorensen, “A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content, and its application to analyses of the

vegetation on Danish commons”, K dan Vidensk Selsk Biol Skr 5, 1948, pp. 1-34.

Dionisios D. Margaris
167

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[61] LR. Dice, “Measures of the Amount of Ecologic Association Between Species”,
Ecology vol. 26, no 3, 1945, pp. 297-302, doi:10.2307/1932409

[62] E. Hullermeier, M. Rifqi, S. Henzgen, R. Senge, “Comparing Fuzzy Partitions: A
Generalization of the Rand Index and Related Measures”, IEEE Transactions on Fuzzy
Systems, vol. 20, no 3, June 2012, pp. 546-556.

[63] Glassfish Community, “Metro”, 2013, https://metro.java.net/

[64] R. Salakhutdinov, A. Mnih, G. Hinton, “Restricted Boltzmann machines for
collaborative filtering”, Proceedings of the 24th international conference on Machine
learning (ICML 07), Z. Ghahramani (ed), 2007, pp. 791-798.

[65] R. Beier, B. Vocking, “Typical Properties of Winners and Losers in Discrete
Optimization”, Proceedings of the 36th ACM Symposium on Theory of Computing
(STOC 2004), June 13-15, 2004, Chicago, lllinois, USA.

[66] Shao, L., Guo, Y., Chen, X., He, Y.: Pattern-Discovery-Based Response Time
Prediction. In: Advances in Automation and Robotics, vol. 2 LNEE, vol. 123, 355-362
(2012)

[67] Margaris, D., Vassilakis, C., Georgiadis, P.: Combining Quality of Service-based
and Collaborative filtering-based techniques for BPEL scenario execution adaptation.
University of Peloponnese SDBS Technical report TR-14002, available at
http://sdbs.dit.uop.gr/?q=TR-14002

[68] Duan, Y., Huang, Y.: Research on availability prediction model of web service. In:
2011 International Conference on Computer Science and Service System, 1590-1594
(2011)

[69] Saric, A., Hadzikadic, M., Wilson, D: Alternative Formulas for Rating Prediction
Using Collaborative Filtering. In: Proceedings of the 18th International Symposium on
Foundations of Intelligent Systems, 301-310 (2009)

[70] Chelminski, P., Coulter, R.: An examination of consumer advocacy and complaining
behavior in the context of service failure. In: Journal of services marketing, vol. 25(5),
361-370 (2011)

[71] Zeginis, C., Plexousakis, D.: Web Service Adaptation: State of the art and
Research Challenges. Institute of Computer Science, FORTH-ICS, Tech. Rep. 410,
ICS-FORTH (2010)

[72] R. Ali, C. Solis, I. Omoronyia, M. Salehie, B. Nuseibeh, “Social Adaptation: When
Software Gives Users a Voice”, Proceedings of the 7th International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE 2012), J. Filipe, L.A.
Maciaszek (eds), 2012, pp. 75-84.

Dionisios D. Margaris
168

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques

[73] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas, Panayiotis Georgiadis,
“‘QoS-aware Exception Resolution for BPEL Processes: A Middleware-based
Framework and Performance Evaluation”, International Journal on Web and Grid
Services (IJWGS), 2009 - Vol. 5, No.3 pp. 284 - 320

[74] Kareliotis Christos, “BPEL Scenario Execution: Dynamic adaptation and exception
resolution”, Doctoral Dissertation, NKUA, 2010

[75] Kareliotis, C., Vassilakis, C., Rouvas, E., Georgiadis P.: |IQoS-aware exception
resolution for BPEL processes: a middleware-based framework and performance
evaluation. IJWGS 5(3), pp. 284-320, 2009

[76] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for adapting
WS-BPEL scenario execution using QoS and collaborative filtering techniques”, Science
of Computer Programming, Volume 98, Part 4, 1 February 2015, Pages 707-
734, http://www.sciencedirect.com/science/article/pii/S0167642314004778

[77] Arpaci, A.E., Bener, A.B.: Agent Based Dynamic Execution of BPEL documents. In:
ISCIS 2005, LNCS 3733, P. Yolum, et al. (eds.), 332 — 341 (2005)

[78] C. Kareliotis, C. Vassilakis, P. Georgiadis, “Enhancing BPEL scenarios with
dynamic relevance-based exception handling”, Proceedings of ICWSO07, Salt Lake City,
Utah, USA, 9-13 July 2013, pp.751-758.

[79] Xia, Y., Chen, P., Bao, L., Wang, M., Yang, J. A QoS-Aware Web Service Selection
Algorithm Based on Clustering. In Proceedings of ICWS11, 2011.

[80] Comerio, M., De Paoli, F., Grega, S., Maurino A., Batini, C. WSMoD: A
Methodology for QoS-Based Web Services Design. Web services research, Volume 4,
Issue 2, 2007

[81] JL. Herlocker, JA. Konstan, LG. Terveen, JT. Riedl, “Evaluating collaborative
filtering recommender systems”, ACM Transactions on Information Systems vol. 22, no
1, January 2004, pp. 5-53.

[82] M. Balabanovic, Y. Shoham. “Fab: content-based, collaborative recommendation”,
Communications of the ACM, vol. 40, issue 3, 1997, pp 66-72.

[83] MJ. Pazzani, “A Framework for Collaborative, Content-Based and Demographic

Filtering”, Artificial Intelligence Review, vol. 13, issue 5-6, December 1999, pp 393-408.

Dionisios D. Margaris
169

Advanced BPEL execution adaptation using QoS parameters and collaborative filtering techniques
[84] D. Margaris, C. Vassilakis, P. Georgiadis, “A hybrid framework for WS-BPEL
scenario execution adaptation, using monitoring and feedback data”, to appear in the

30" ACM Symposium on Applied Computing, Salamanca, Spain, 2015.

Dionisios D. Margaris
170

