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ABSTRACT

The main object of study in our dissertation is the representation change of the geometric ob-
jects from the parametric form to implicit. We compute the implicit equation interpolating the
unknown coefficients of the implicit polynomial given a superset of its monomials. The latter is
derived from the Newton polytope of the implicit equation obtained by the recently developed
method for support prediction. The support prediction method we use relies on sparse (or
toric) elimination: the implicit polytope is obtained from the Newton polytope of the sparse
resultant of the system in parametrization, represented as polynomials. The monomials that
correspond to the lattice points of the Newton polytope are suitably evaluated to build a nu-
meric matrix, ideally of corank 1. Its kernel contains their coefficients in the implicit equation.
We compute kernel of the matrix either symbolically, or numerically, applying singular value
decomposition (SVD). We propose techniques for handling the case of the multidimensional
kernel space, caused by the predicted support being a superset of the actual. This yields an
efficient, output-sensitive algorithm for computing the implicit equation. We compare different
approaches for constructing the matrix in Maple and SAGE software. In our experiments we
have used classical algebraic curves and surfaces as well as NURBS. Our method can be
applied to polynomial or rational parametrizations of planar curves or (hyper)surfaces of any
dimension including cases of parameterizations with base points which raise important issues
for other implicitization methods. The method has its limits: geometric objects have to be pre-
sented using monomial basis; in the case of trigonometric parametrizations they have to be
convertible to rational functions. Moreover, the proposed technique can be applied for non-
geometric problems such as the computation of the discriminant of a multivariate polynomial
or the resultant of a system of multivariate polynomials.

SUBJECT AREA: Computational Algebra
KEYWORDS: implicitization, interpolation, Newton polytope, sparse resultant,

linear algebra.





ΠΕΡΙΛΗΨΗ

Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης
γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή. Υπολο-
γίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές του πο-
λυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο υπολογίζεται
απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται από μια πρόσφατη
μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος πρόβλεψης του συνό-
λου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το πολύτοπο υπολογίζεται από
το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως
πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του New-
ton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο πυρήνα
του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους συντελεστές των
μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε συμβολικά
είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value decomposition (SVD). Προτεί-
νουμε τεχνικές για να διαχειριστούμε την περίπτωση ενός πολυδιάστατου πυρήνα το
οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο στήριξης είναι ένα υπερσύνολο του
πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο υπολογισμού
της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις κατασκευής του πί-
νακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας χρησιμοποιήθηκαν ρητές
καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε
πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών οποιασ-
δήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με παραμετροποίηση σε
σημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες μεθόδους αλγεβρικοποίησης.
Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να αναπαριστών-
ται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών παραμετροποιήσεων θα
πρέπει να μπορούν να μετασχηματιστούν σε ρητές συναρτήσεις. Επιπλέον η τεχνική που
προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο υπολογισμός
της διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της απαλοίφουσας ενός
συστήματος πολυωνύμων με πολλές μεταβλητές.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Αλγεβρα
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: αλγεβρικοποίηση, παρεμβολή, Newton πολύτοπο, αραιή

απαλοίφουσα, γραμμική άλγεβρα.
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Changing representation of curves and surfaces: exact and approximate methods

Chapter 1

Introduction

In this chapter we give an overview of the popular mathematical representations of the geo-
metrical objects, discuss the methods for the change of representation and describe several
classic approaches to implicitization. We concentrate our attention on the implicitization by
interpolation and the related previous works since the subject of our thesis belongs to this
category.

1.1 Representation of geometric objects

All the different areas of computing that involve geometry, and today that include Computer
Graphics, Computer-Aided Geometric Design, Scientific Visualization, Computational Geom-
etry, Robotics, Computer Vision and Image Processing, have specific requirements for the
mathematical representations of the geometric objects, depending on the nature of the ob-
jects and that operations that are performed on them. When the object is represented by the
Solid Modeling techniques, an emphasis is being put on the physical fidelity, while the Con-
formal Geometric Algebra provides a convenient way to manipulate symbolic representations
of geometric objects independently of their coordinates.

In Computer-Aided Geometric Design (CAGD) there are several popular ways to represent
curves and surfaces, each has its advantages. The Table 1.1 lists some of the most important
requirements for the surface representation in CAGD. It is common for the model to be an
approximation of some degree: complex shapes are usually approximated by simpler ones,
for instance, by a polygon mesh, moreover, using floating point arithmetics also sets a limit on
accuracy. However, it is essential for the model to be as accurate as possible for a number of
applications, be it high quality rendering or robotics. From the designer point of view, probably
the most important is that the representation provides an effective mechanism to determine
the shape of the surface interactively, i.e. enables quick visualization and gives an intuitive
understanding of the controls over the surface shape. In many applications it is necessary to
ensure smoothness of the constructed object, continuity of the blends between the primitives.
Continuity is defined for both the implicit and parametric representations, although the former
have been shown to have advantages when performing blending operations.

Parametric representations satisfy most of these requirements, see Table 1.1; their prop-
erties have made them dominant in computer graphics and modelling.

With parametrization it is easy to obtain points on the geometric object needed for vari-
ous visualization techniques such as tracing, rendering, or surface fitting. Currently Bézier
and non-uniform rational B-spline (NURBS) parametrizations are the most popular form of

19 T. Kalinka



Table 1.1: Features of the popular representations of surfaces

Property Polygon Implicit Parametric Subdivision
Mesh Surface Surface Surface

Accurate No Yes Yes Yes
Intuitive control No No Yes No
Continuity No Yes Yes Yes
Visualization Yes No Yes Yes
Intersection No Yes No No

representation used in CAGD systems. NURBS have become one of the industry standards
for representing geometric information. Bézier or NURBS curves and surfaces usually are
presented in the form of piecewise splines or surface patches, such representation allows to
understand intuitively and easily control the shape of the object.

Subdivision surfaces can be considered a generalization of NURBS: they are generated
by repeated refinement of control meshes based on a certain refinement scheme. Applying
the recursive refinement infinitely many times produces a smooth surface. The difference of
this way of representation from the NURBS is that it does not allow for intuitive shape editing;
instead it makes possible to represent surfaces of arbitrary topology.

Implicit curves and surfaces have an essential disadvantage: it is difficult to calculate
points on curves and surfaces in a predictable way. On the other hand, CAGD systems rely
heavily on the ability to check quickly if a given point is inside or outside a given object.
Queries of this nature, that enable many operations important in modelling, such as blend-
ing curves and surfaces or Boolean operations on solids, have simple solution for implicitly
defined objects.

The polygon mesh data structure is the oldest method for representing surfaces in com-
puter graphics and widely established standard in geometry processing. In recent years it
have become increasingly popular: polygon meshes find use in many different areas wher-
ever digitization of complex 3D objects is required. In CAGD triangle and polygon meshes
present an alternative to NURBS because of their conceptual simplicity, that allows for flexible
and highly efficient processing.

1.1.1 Parametric representation

Parametric form of the planar rational curve is defined by two functions

x =
a(t)
c(t) , y =

b(t)
c(t) (1.1)

and parametric surfaces are defined by three functions

x =
a(s, t)
d(s, t) , y =

b(s, t)
d(s, t) , z =

c(s, t)
d(s, t) . (1.2)

Generalizing, we define the rational parametrization as

x0 =
f0(t1, . . . , tn)
g0(t1, . . . , tn)

, x1 =
f1(t1, . . . , tn)
g1(t1, . . . , tn)

, . . . , xn =
fn(t1, . . . , tn)
gn(t1, . . . , tn)

. (1.3)

T. Kalinka 20



Changing representation of curves and surfaces: exact and approximate methods

where fi and gi, i = 0, . . . , n are polynomials in t1, . . . , tn.

Typically, the functions a, b, c,d are presented in a particular basis, for instance, in the
Bernstein for rational Bézier curves or B-spline basis for NURBS. Most of the algebraic meth-
ods, including representation change methods, use polynomials in the power (monomial)
basis: x(t) = c0 + c1t + . . . + cntn. In order to apply the algorithms, polynomials can be
converted from Bernstein basis to power basis, although some algebraic methods such as
resultants can be formulated using the Bernstein basis [65].

A parametric curve can be viewed as a map from a line to a curve in the (x, y)-plane, and
parametric surface as a map from a plane with points (s, t) to a surface in (x, y, z)-space.

While many curves and surfaces admit a global parametrization, others can only be locally
and piecewise parametrized [66].

Development of the Bézier curves and surfaces, made independently by De Casteljau and
Bézier, was the major breakthrough in CAGD.

A polynomial Bézier curve is given by

x(t) =
∑n

i=0
xi(t)Bn

i (t) (1.4)

where the t ∈ [0,1] and Bn
i are Bernstein polynomials, defined by

Bn
i (t) =

(
n
i

)
ti(1− t)n−i (1.5)

where the binomial coefficients are given by(
n
i

)
=

{
n!

i!(n−i)! if 0 ≤ i ≤ n;
0 otherwise.

Bézier curves have certain limitations: in order to generate a curve of complex shape,
Bézier representation have to be of a high degree. However, B-spline, which in essence is
a piecewise polynomial Bézier curve of guaranteed continuity between the pieces allows to
model such curves. Bézier curve. Another important generalization is rational Bézier curve:
it has weights introduced that adjust the influence each control point has on the curve.

Non-uniform rational basis spline (NURBS) are generalizations of both B-splines and ra-
tional Bézier curves and surfaces, the primary difference being the weighting of the control
points which makes NURBS curves rational.

Parametrizations, as mentioned before, have many features that made them the preferred
representations in CAGD systems: they provide the flexibility to design a large variety of
shapes, can be evaluated reasonably fast by numerically stable and accurate algorithms,
are invariant under affine as well as perspective transformations, ensure continuity of the
represented objects. The only drawback is that changing the topology of a parametric surface
and the spatial queries on parametric curves or surfaces are very expensive computationally.

1.1.2 Implicit representation

An implicit algebraic curve is given by an equation of the form

p(x, y) =
∑

i,j
ci,jxiyj = 0 (1.6)
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where p is a polynomial in x, y.
An implicit algebraic surface is given by an equation of the form

p(x, y, z) =
∑

i,j,k
ci,j,kxiyjzk = 0 (1.7)

where p is a polynomial in x, y, and z.

Generalizing, for the parametrization in (1.3) we have implicit equation

p(x0, . . . , xn) = 0 (1.8)

where p(x0, . . . , xn) is a polynomial in x0, . . . , xn.

While for any parametric curve given by (1.1) there exists an implicit representation (1.6),
and, likewise for any parametric surface given by (1.2) there exists an corresponding implicit
equation (1.7), opposite is not true. Therefore, the class of implicit geometric objects is larger
that the one of the parametric geometric objects. Moreover, class of implicit curves and sur-
faces is closed under many geometric operations of interest, while the class of parametric
representations is not. Some of these operations, in particular intersection, union and dif-
ference make implicit surfaces a valuable modelling tool. However, most natural application
for the implicit equations is point membership classification, i.e., checking if a given point is
inside, outside, or on the geometric object. Spatial queries simplify to function evaluations of
p and checking the sign of the resulting value. On the other hand, generating sample points
on an implicit surface is relatively difficult.

Recently implicit objects have gained an increasing importance in geometric modelling,
visualization, animation, and computer graphics. Modern graphic hardware allows to explore
some of their geometric properties which give them advantages over traditional modelling
methods. Implicit surfaces can easily be blended into smooth, complex and intricate shapes.
Despite the high computational cost, improvements in modern hardware allow visualization
of the implicit surfaces in real time. Indeed, several methods for visual representation of the
implicit surfaces, among them blob functions and moving least squares, have emerged [66].

Traditionally, Bernstein polynomials are used to define parametric objects. Recently in
CAGD the implicit curves and surfaces defined by Bernstein form polynomials started to ap-
pear. Indeed, similar to the power form polynomials, a planar implicit curve can be defined
as the zero set of a bivariate Bernstein form polynomial in R2 , while an implicit surface is
defined as the zero set of a trivariate Bernstein form polynomial in R3 [66]. However, in this
thesis we restrict our attention to algebraic curves and surfaces defined by power (monomial)
bases.

1.1.3 Polygon meshes

In contrast to the other popular in CAGDmethods for surface representation, polygonal meshes
do not provide accurate models. However, use of polygonal meshes for the representation of
highly complex geometric objects remains a standard in most computer graphics applications.

In particular, triangle meshes are preferred due to their algorithmic simplicity, numerical
robustness, and efficient display.

A triangle mesh is defined by a set of vertices

V = v1, . . . , vV
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and a set of triangular faces connecting them

F = f1, . . . , fF, fi ∈ V× V× V.

Sometimes edges are used to represent connectivity of a triangle mesh in terms

E = e1, ..., eE, ei ∈ V× V.

Relation between the numbers of vertices V , edges E, and faces F in a closed and con-
nected (but otherwise unstructured) mesh is stated by the Euler formula:

V− E+ F = 2(1− g),

where g is the genus of the surface.

There are several data structures for representing polygonal meshes. For instance, the
winged-edge data structure associates with each edge eight references: two vertices, two
faces and four incident edges. Face-based data structures are especially convenient for sub-
division. Here the basic structuring element is a face that contains pointers to its adjacent
vertices and faces and for each adjacent face the index of the adjacent edge.

Approximation error of a triangle mesh is inversely proportional to its number of faces.
Sufficient approximation is possible with just a moderate mesh complexity: the vertex density
has to be locally adapted to the surface curvature. Flat areas can be sparsely sampled, while
in curved regions the sampling density should be higher.

Popularity of both NURBS and polygon mesh representations in CAGD determines in-
terest in the methods for representations change between these two forms [80]. Most of the
commercial CAGD software packages have such operations implemented. A method for con-
structing interpolating or approximating implicit surfaces from the polygonmesh was proposed
in [106].

1.1.4 Subdivision surfaces

First introduced in publications of Catmull and Clark [20] and by Doo and Sabin [45] in 1978,
subdivision surfaces have become increasingly popular in recent years. Now they are widely
used inmany application areas, including computer graphics, solid modelling, computer game
software, film animation, and others because they provide a simple and efficient tool for con-
struction of smooth curves and surfaces.

As mentioned above, subdivision surfaces can be viewed as a generalization of B-spline
surfaces since they are also controlled by a control mesh, but in contrast to piecewise polyno-
mial representations like Bézier patches and NURBS, they can represent surfaces of arbitrary
topology and are not restricted by geometric constraints. However the shape of the subdivi-
sion surface can not be controlled as intuitively and easily as with NURBS.

Subdivision surfaces are generated by repeated refinement of control meshes: after each
refinement step the positions of the (old and new) vertices are adjusted based on a set of local
averaging rules. In the limit this process results in a surface of provable smoothness [93].

Inherent hierarchical structure of subdivision surfaces allows for highly efficient algorithms
(adaptive subdivision).
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One of the main advantages of subdivision surfaces, as compared to B-spline and NURBS
surfaces, is that the latter must be trimmed and pieced together in order to produce surfaces of
general form. In contrast, subdivision surfaces are intrinsically capable of assuming general
form. Other advantages of subdivision surfaces include scalability and good compatibility
with application areas where meshes are used [5].

1.2 Change of representation

The modern CAGD and CAM systems operate with several different representations of geo-
metric objects each of which is most suitable for some applications. Representation change
is often required: from the cloud of sampled points a mesh is generated, which in turn after
application of a subdivision algorithm gives a smooth subdivision surface. Representations
change may also occur as a step in some process, like the polar/spherical coordinate repre-
sentation in the algorithm for converting between parametric and implicit forms given in [113].

Parametric and implicit representations have complementary advantages with respect to
certain geometric operations. Moreover, there are some applications where it is necessary
that both representations are available. For example, finding surface-surface intersection is
easy when one of the surfaces is given in implicit form, and the other in parametric form.
Therefore one needs both the parametric representations and the implicit representations
depending on different applications and it is important to design algorithms for efficient con-
version from one to another. The process of converting parametric forms into implicit forms
is named implicitization, and the converse process is parametrization.

Both implicitization and parametrization are classic topics in algebraic geometry and there
are several different approaches to solve the implicitization and parametrization problems.
For implicitization, the most popular methods are multidimensional resultants and Gröbner
bases [101].

Parametrization presents a more difficult problem: through all the algebraic curves and
surfaces have implicit representation, not every can be parametrized by rational functions [70].
Although the implicit representation for a geometric object is unique, there exist infinitely many
different parametrizations of the same geometric object. The parametrization of lowest degree
in this family, such for that to each point, except for possibly a finite number of points, there
corresponds only one parameter value, is called proper parametrization. For curves there are
effective algorithms for computing proper parametrization [95, 101, 103] and for turning an
arbitrary parametrization into proper [3]. For surfaces the general parametrization algorithm is
an open problem, although there are partial algorithms for finding parametric representations
of particular classes of surfaces. The easiest class of surfaces to parametrize is those where
one variable can be written as an explicit function of the other variables, i.e. in the case where
z = f(x, y) we can parametrize the surface as x = u, y = v, z = f(u, v), with appropriate
bounds for the parameters u and v. Into this category fall planes that can be then used
for piecewise parametrization of cubes, tetrahedrons or other geometric objects popular in
in practical applications. Several algorithms exist for implicitization and parametrization of
quadratic and cubic surfaces [11, 23, 117, 118], there are parametrization methods for other
special cases of surfaces, such as canal surfaces [92] tubular surfaces [100] or conchoid
surfaces of spheres [91].

There are two different approaches to parametrization and implicitization problems: exact
and approximate. All the above mentioned methods produce exact representations. Applying
them in practice, one encounters several limitations: first, high computational cost when deal-
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ing with high degree curves and surfaces. In the case of parametrization, an exact rational
parametrization can be obtained only for a limited class of implicit curves and surfaces. Fi-
nally, in practice the curve or surface is usually given by floating point coefficients with limited
accuracy that makes recovering exact representation impossible.

Approximate methods can be used to generate local low degree approximations of high
degree geometrical objects and rational approximations of not parametrizable surfaces. They
are in general computationally less expensive than exact methods.

The first algorithms for the approximation of algebraic curves and surfaces by parametric
curves and surfaces have been proposed in [116, 7]. In [7], algebraic surfaces are approxi-
mately parametrized by splines using a combination of symbolic and numerical techniques.
E. Hartmann [68] introduced an algorithm for numerical parametrization that maps a parame-
ter or a pair of parameters to a point on the curve or surface. In [120] they present a method
for approximate rational parametrization of surfaces, based on numerical optimization tech-
niques. The method computes patches of maximal size on the surfaces that satisfy certain
quality constraints.

Approximate implicitization over floating-point numbers was first introduced by T. Dokken
[43]. Today, there are direct [121] and iterative techniques [2]. We stop to discuss these
methods in more detail later (1.3.4).

Next, we discuss several classical implicitization methods.

1.2.1 Implicitization by resultants

The first method, implicitization by resultants, involves the use of Elimination theory. The
problem of deriving implicit equation from parametrization and can be reformulated as an
elimination problem. Elimination theory studies methods and algorithms for eliminating vari-
ables from a set of polynomial equations.

Definition 1. Given a set of polynomials f0, . . . , fn, a resultant R is a polynomial expression
in the coefficients of f0, . . . , fn such that the vanishing of the resultant is a necessary and
sufficient condition for f0 = f1 = · · · = fn = 0 to have a common root.

Resultants play an important role in elimination theory providing a systematic approach for
finding polynomials in an ideal that do not contain as many variables as generic elements of
the ideal. First introduced in 19th century, resultants have been actively studied in the early
20th century [21, 111, 82]. The main idea behind the various formulations is to identify a set
of n linearly independent polynomials that generate the ideal and that contain n terms. Then
each term can be used as an unknown and the theory of linear system of equations can be
applied.

Sylvester's resultant is a simple method for eliminating a variable from two algebraic equa-
tions. Given two polynomials f(x) = anxn + . . .+ a0 and g(x) = bmxm + . . .+ b0 the Sylvester
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resultant is the determinant:

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 · · · a0 0 · · · 0
0 an · · · a1 a0 · · · 0
... . . . . . .
0 · · · 0 an an−1 · · · a0
bm bm−1 · · · b0 0 · · · 0
0 bm · · · b1 b0 · · · 0
... . . . . . .
0 · · · 0 bm bm−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
It can be shown that f and g have a common root if and only if the (n + n) × (m + n)

determinant is zero [31].
We have presented the resultant as a tool for determining whether two polynomials have

a common root. Now we show how to apply that tool to converting the parametric equation
of a curve given by (1.1) into an implicit equation of the form (1.6).

We proceed by forming two auxiliary polynomials:
g(x, t) = c(t)x− a(t), h(y, t) = c(t)y− b(t)

Let us view g(x, t) as a polynomial in t whose coefficients are linear in x, and h(y, t) as a
polynomial in t whose coefficients are linear in y. If we compute the resultant of g(x, t) and
h(y, t), the result is a polynomial p(x, y). Note that g(x, t) = h(y, t) = 0 only for values of x, y
and t which satisfy the relationships x = a(t)/c(t), y = b(t)/c(t). Clearly, for these values of
x, y and t, the resultant p(x, y) must vanish. Conversely, any (x, y) pair for which p(x, y) = 0,
causes the resultant of g and h to be zero. But, if the resultant is zero, then we know that there
exists a value of t for which g(x, t) = h(y, t) = 0. In other words, all (x, y) for which p(x, y) = 0
lie on the parametric curve and therefore p(x, y) = 0 is the implicit equation of that curve.

Another popular resultant formulation for two univariate polynomials is Bézout resultant.

R =

∣∣∣∣∣∣∣
c0,0 · · · c0,n−1
... ...

cn−1,0 · · · cn−1,n−1

∣∣∣∣∣∣∣
where the ci,j are defined by the formula:

ci,j =
∑

k≤min(i,j)
k+h=i+j+1

(akbh − ahbk)

and bm+1 = . . . = bn = 0.

It provides more compact matrix, compared with the Sylvester's, but has more complicated
entries. In general, the Bézout resultant has dimension n × n while the Sylvester’s resultant
has dimension (n+m)× (n+m).

Parametric surfaces could be implicitized by forming the equations
f(x, s, t) = d(s, t)x− a(s, t), g(y, s, t) = d(s, t)y− b(s, t), h(z, s, t) = d(s, t)z− c(s, t)

and eliminating first t, then s. Alternatively, Dixon’s resultant can be used for interpolation of
surfaces, because it is formulated for the case of three polynomials in two variables.
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Definition 2. Consider rational parametrization (1.3). Parameter values (t1, . . . , tn) for which
xi = gi = 0 for all i = 0, . . . , n are called base points of the parametrization.

Applying resultants to compute implicit equation has certain drawbacks. First, resultants
vanish in the presence of the base points. That is an important issue, since the geometric
objects with base points are common. For instance, any parametrization of a rational surface
whose algebraic degree is not a perfect square has base points.

Another issue is that the resulting expression often contains an extraneous factor. The
separation of these extraneous factors can be a time consuming task that involves multivariate
polynomial factorization.

1.2.2 Implicitization by Gröbner bases

Another method based on Elimination theory [31, Chapter 2, §8], the Gröbner bases algo-
rithms provide an alternative for implicitizing parametric forms without the introduction of ex-
traneous factors. Here we give a general outline of the method; there exist many performance
improving specializations.

A Gröbner basis of an ideal I is a set of polynomials g1, ..., gt such that the leading term of
any polynomial in I is divisible by the leading term of at least one of the polynomials g1, ..., gt.
A term order should be fixed: different term orders produce different Gröbner bases.

In order to use Gröbner basis method for implicitizing a rational parametric curve defined
by (1.1) with gcd(a, b, c) = 1 (otherwise, the common factor can be removed), we define the
ideal

I = 〈cx− a, cy− b〉 ⊂ R[x, y, t].

If p(x, y) = 0 is the implicit equation of (1.1), then p ∈ I ∩ R[x, y]. To guarantee that
p appears in the Gröbner basis, we order the variables t > x > y, and then construct the
Gröbner basis with the lexicographic ordering for the ideal I. Thus the Gröbner bases obtained
will contain the curve’s implicit form, i.e. an element which does not involve t, and an inversion,
an element which is linear in t.

Similarly as with the resultant method, presence of the base points affects performance
here. Moreover, computations get costly when applying the method to implicitize geometric
objects of high degree or dimension. In practice, Gröbner bases calculations require more
time and memory than resultant methods.

1.2.3 Implicitization by μ-bases

The concept of a μ-basis was first introduced in [33] to provide a compact representation for
the implicit equation of a planar rational curve. Since then several generalizations to rational
surfaces have appeared [25, 22].

The μ-basis of a rational curve consists of two polynomials p(x, y, t) and q(x, y, t) which
are linear in x, y and have degree μ(μ ≤ [n/2]) and n − μ in t respectively, where n is the
degree of the rational curve.

The resultant of p(x, y, t) and q(x, y, t) with respect to t gives the implicit equation of the
rational curve. Using a variant form of the Bézout resultant, the implicit equation of a rational
curve can be written as the determinant of an (n − μ) × (n − μ) matrix. Efficient algorithms
were also developed to compute the μ-basis of a rational curve [123, 24]
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The μ-basis of a rational curve or surface can recover the parametric equation as well as
derive the implicit equation. Thus it serves as a connection between the implicit form and the
parametric form of a curve or surface.

The method of implicitizing by the μ-bases is efficient, generally working even if the base
points are present. Overall it allows for the more compact matrix representations that the
traditional resultant methods.

1.3 Implicitization by interpolation

In this section we discuss implicitization methods based on interpolation, that befall in two
groups: the exact methods, that aim at computing the exact implicit equation by symbolic
means and the approximate, that employ numerical solving. However, in both cases per-
formance of the algorithm depends on the implicit degree bound, since it determines the
interpolation space.

1.3.1 Bound on the implicit degree

Definition 3. Consider rational parametrization given by (1.3).
We call the maximum of the total degrees of the polynomials (t1, . . . , tn), i = 0, . . . , n the

parametric degree.
We call implicit degree the maximum degree of the implicit equation (1.8).

It is known from classical algebraic geometry that any degree n polynomial or rational
parametric curve can be represented exactly using a degree n implicit equation [101]. How-
ever, in higher dimensions finding the implicit degree of the parametrization presents a more
challenging problem.

The implicit degree of a surface can be thought of as the number of times that the surface
is intersected by a generic straight line [69]. Consider a generic straight line as the intersection
of two distinct planes in general position a1x+a2y+a3z+a4 = 0 and b1x+b2y+b3z+b4 = 0.
The planes intersect the parametric surface (1.2) in curves

a1a(s, t) + a2b(s, t) + a3c(s, t) + a4d(s, t) = 0 (1.9)

and
b1a(s, t) + b2b(s, t) + b3c(s, t) + b4d(s, t) = 0 (1.10)

These curves are each degree n in s, t. By Bézout’s theorem, these two curves intersect
in n2 points, which must also be the number of times that the straight line common to the two
planes intersects the surface. Thus, the degree of the surface, and of its implicit equation, is
n2.

It is obvious, however, that there are plenty of surfaces with the implicit degrees that are
not exact squares. The reason is that the base points of the parametrization account for some
of the intersections, thus causing the degree decrease. If a base point exists, the intersection
curve of any plane with the surface contains the base point, therefore the above two curves
intersect at the base point and at n2 − 1 other points. Since the base point does not map
to a unique point on the surface, this does not represent a point at which the straight line
intersects the surface, and the degree of the surface is n2 − 1. Each additional simple base
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point diminishes the degree of the surface by one. If two general curves in the linear system
are tangent at a base point, they intersect twice at the base point and the degree of the surface
becomes n2 − 2. If two general curves in the linear system have a double point in common,
they intersect four times at that base point and the degree becomes n2 − 4. Thus, a general
degree formula is n2 − ρ where ρ is the total number of times that two general curves in the
linear system intersect at base points. This also assumes that the surface has a one-to-one
parametrization.

If the surface (1.2) is a tensor product surface, for instance, bicubic surface, of degree
ns and nt in s and t respectively, its parametric degree is n = ns + nt . But there exist two
base points at infinity, corresponding to s = ∞, t = ∞, counted at least n2s and n2t times
respectively [28]. Thus the implicit degree of a bi-degree ns,nt parametrized rational surface
is at most (ns + nt)2 − n2s − n2t = 2nsnt . For example, degree of a bicubic surface is 18 [101].

The ability to establish a bound on the implicit degree is useful for several reasons. The
complexity of many algebraic methods used for processing a geometric object depends on
its implicit degree. Bounding the implicit degree is an important first step in the process of
implicitization: this information may be used then either for creating specialized resultants or
for determining an interpolation space to be used in order to obtain the implicit form.

The problem of bounding the implicit degree of an algebraic variety has been addressed
in several studies. For instance, in [104] the authors analyze the implicit degree of algebraic
curves and in [105] provide formulae for the partial degrees of the plane curves.

The degrees of the offset curves have been studied in [60] and [102].
An upper bound for the degree of a rational surface is given in [99]. In [29] a method based

on the degree of rational maps and on the base points of the parametrization is presented.
In [14] degree bound is studied as applied to implicitization of rational surfaces with the base
points, here, as in [1], the degree of rational surfaces is computed by analyzing the base
points and by means of syzygies.

The space of interpolation determined by the implicit degree can be further decreased if
the partial degrees are known. Formulae that allow to compute partial degrees of a rational
surface given by means of a proper parametrization was presented in [90]. For the case when
the parametrization is not proper upper bounds on the partial degrees are given.

The bound on the degree of polygonal surface patches constructed from the triangular
rational Bézier surfaces is analyzed in [119].

Bounds on the implicit degree as well as on partial degrees can be formulated in terms of
Newton polytopes, see Proposition 6 [56].

Definition 4. Given a polynomial

∑
a∈Ai

ciata ∈ R[t1, . . . , tn], ta = ta11 · · · tann , a ∈ Nn, cia ∈ R− {0},

its support is the set Ai = {a ∈ Nn : cia 6= 0}.
Its Newton polytope is the convex hull of the support.

Further the support and the Newton polytope of the implicit equation are referred as implicit
support and implicit polytope, respectively.
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Figure 1.1: Newton polygons N(fi) of polynomials fi ∈ Z[x, y].

1.3.2 Computing implicit polytope

One of the first publications [109] proposed to exploit sparseness in the implicit polynomial
in context of computing the Newton polytope of a rational hypersurface for generic Laurent
polynomial parametrizations.

Algorithms based on tropical geometry have been offered in [40, 108, 110]. This method
computes the abstract tropical variety of a hypersurface parametrized by generic Laurent
polynomials in any number of variables, thus yielding its implicit support; it is implemented in
TrIm. For non-generic parametrizations of rational curves, the implicit polygon is predicted.
In higher dimensions, the following holds:

Proposition 1. [108, prop.5.3] Let f0, . . . , fn ∈ C[t±1
1 , . . . , t±1

n ] be any Laurent polynomials
whose ideal of algebraic relations is principal, say I = 〈g〉, and Pi ⊂ Rn the Newton polytope
of fi. Then, the polytope constructed combinatorially from P0, . . . ,Pn using tropical geometry
contains a translate of the Newton polytope of g.

The tropical approach was improved in [34] to yield the precise implicit polytope in R3 for
generic parametrizations of surfaces in 3-space. In [71], they describe efficient algorithms
implemented in the GFan library for the computation of Newton polytopes of specialized re-
sultants, which may then be applied to predict the implicit polytope. Sparse elimination has
been used for the same task [49],The latter, implemented in the ResPol software is faster on
dimensions relevant here, namely for projected polytopes in up to 5 dimensions. In 2.2.3 we
provide a detailed description of the software use for finding the Newton polytope.

The Newton polygon of a curve parametrized by rational functions, without any genericity
assumption, is determined in [38]. In a similar direction, an important connection with com-
binatorics was described in [59], as they showed that the Newton polytope of the projection
of a generic complete intersection is isomorphic to the mixed fiber polytope of the Newton
polytopes associated to the input data.

In [56] a method relying on sparse elimination for computing a superset of the generic
support from the resultant polytope is discussed, itself obtained as a (non orthogonal) pro-
jection of the secondary polytope. The latter was computed by calling Topcom [94]. This
approach was quite expensive and, hence, applicable only to small examples; in our work we
have used its refined and improved versions. For instance in [56] the benchmark example
of bicubic surface is given as an open problem. In this thesis we present the problem being
successfully resolved: we compute Newton polytope (Example 1) and implicit equation of the
bicubic surface (Example 12).
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In [55], sparse elimination is applied to determine the vertex representation of the implicit
polygon of planar curves. The method relies on the study of the Newton polytope of a re-
sultant. The tools used are mixed subdivisions of the input Newton polygons and regular
triangulations of point sets defined by the Cayley trick. It can be applied to polynomial and
rational parametrizations, where the latter may have the same or different denominators. The
method offers a set of rules that, applied to the supports of sufficiently generic rational para-
metric curves, specify the 4, 5, or 6 vertices of the implicit polygon. In case of non-generic
inputs, the predicted polygon is guaranteed to contain the Newton polygon of the implicit
equation. The method can be seen as a special case of the general approach based on
sparse elimination.

This algorithm (further referred as curves-only) has been used in our work to determine
implicit polygone for the planar curves and has been integrated in our Maple code.

1.3.3 Methods for exact implicitization

When talking of the interpolation as applied to CAGD, the techniques such as spline inter-
polation, for generating parametric representation from a discrete set of points, are that first
come to mind. In our case, interpolation is applied to the set of points generated from the
parametric equations, thus definitely belonging to the curve or surface in question, in order to
determine the coefficients of the implicit equation.

In general the implicitization algorithms that are based on interpolation have a wide range
of applicability, work in the presence of base points and can compute the implicit equation
both symbolically or numerically, depending on the interpolation method.

These are two main approaches, dense and sparse methods. The former require only
a bound on the total degree of the target polynomial, whereas the latter require a bound
on the number of its terms, thus exploiting any sparseness of the target polynomial. Apriori
knowledge of the support helps significantly, by essentially answering the first step of sparse
interpolation algorithms.

Most existing approaches employ total degree bounds on the implicit polynomial to com-
pute a superset of the implicit support, e.g. [42, 30].

Successful applications of them can be found in [86] where an interpolating implicitization
algorithm is presented. from the degrees of the parametrization allows to apply the interpo-
lation methods for computing the implicit equation.

Let S be (a superset of) the support of the implicit polynomial p(x0, . . . , xn) = 0; |S| bounds
the support cardinality.

Sparse interpolation is the problem of interpolating a multivariate polynomial when infor-
mation of its support is given [125]. This may simply be a bound on support cardinality, then
sparse interpolation is achieved in O(σ3δn logn + |S|3), where δ bounds the output degree
per variable, σ is the actual support cardinality, and n the number of variables [10, 74]. A
probabilistic approach runs in O(σ2δn) [124] and requires as input only δ.

For the sparse interpolation of resultants, the quasi-Toeplitz structure of the matrix allows
us to reduce complexity by one order of magnitude, when ignoring polylogarithmic factors,
and arrive at a quadratic complexity in matrix size [19]. This was extended to the case of
sparse resultant matrices [57].

Our matrices reveal what we call quasi-Vandermonde structure, since the matrix columns
are indexed by monomials and the rows by values on which the monomials are evaluated.

31 T. Kalinka



This reduces matrix-vector multiplication to multipoint evaluation of a multivariate polynomial.
It is unclear how to achieve this post-multiplication in time quasi-linear in the size of the polyno-
mial support when the evaluation points are arbitrary, as in our case. Existing work achieves
quasi-linear complexity for specific points [57, 88, 98, 114].

The most direct method to reduce implicitization to linear algebra is to construct a |S|× |S|
matrixM, indexed by monomials with exponents in S (columns) and |S| different values (rows)
at which all monomials get evaluated. Then, vector p is in the kernel of M. This idea was
used in [56, 87, 110]; it is the approach explored in our work, extended to an approximate
implicitization as well. It is also the premise of [54] which extends results of this work to
the case of high dimensional kernel space and applies these techniques to the problem of
computing the discriminant of a multivariate polynomial.

In [108], they propose evaluation at unitary τ ∈ (C∗)n, i.e., of modulus 1. This is one of
the evaluation strategies examined below. Another approach was described in [30], based
on integration of matrix M = SST, over each parameter t1, . . . , tn. Then, p is in the kernel of
M. In fact, the authors propose to consider successively larger supports in order to capture
sparseness. This method covers a wide class of parametrizations, including polynomial, ra-
tional, and trigonometric representations, but the size ofM is quite big and matrix entries take
big values, so it is difficult to control its numeric corank. In some cases, its corank is ≥ 2.
Thus, the accuracy, or quality, of the approximate implicit polynomial is unsatisfactory. The
resulting matrix has Henkel-like structure [78]. When it is computed over floating-point num-
bers, the resulting implicit polynomial does not necessarily have integer coefficients. In [30],
they discuss some post-processing to yield the integer relations among the coefficients, but
only for small examples.

1.3.4 Approximate implicitization

Approximate implicitization over floating-point numbers was introduced by T. Dokken and co-
workers in a series of papers. Today, there are direct [43] and iterative techniques [2]. In
practical applications of CAGD, precise implicitization often can be impossible or very ex-
pensive to obtain. Moreover, exact implicit equations usually are of high degree and contain
unwanted branches and singularities. Approximate implicitization over floating-point num-
bers appears to be an effective solution [43, 8]. We discuss approximate implicitization, in
the setting of sparse elimination. Approximate implicitization is one of the main motivations
for reducing implicitization to interpolation of the implicit coefficients.

We describe the basic direct method [43]: Given a parametric (spline) curve or surface
x(t), t ∈ Ω ⊂ Rn, the goal is to find polynomial q(x) such that q(x(t)+η(t)g(t)) = 0, where g(t)
is a continuous direction function with Euclidean norm ‖g(t)‖ = 1 and η(t) a continuous error
function with |η(t)| ≤ ε. Now, q(x(t)) = (Mp)Tα(t), where matrix M is built from monomials
in x. It may be constructed as we do, or it may contain a subset of the monomials of the
implicit support. Moreover, p is the vector of implicit coefficients, hence Mp = 0 returns the
exact solution, and α(t) is the basis of the space of polynomials which describes q(x(t)), and is
assumed to form a partition of unity and to be nonnegative over Ω: ∑i αi = 1, αi ≥ 0, ∀i, t ∈ Ω.
One may use the Bernstein-Bézier basis with respect to Ω, in the case of curves, or a triangle
which contains Ω, in the case of surfaces.

In [43, p.176] the authors propose to translate to the origin and scale the parametric ob-
ject, so as to lie in [−1,1]n, in order to improve the numerical stability of the linear algebra
operations. In our experiments, we have tried several ways of evaluation and found out that
for numerical solving using unitary complex values leads to better numerical stability. Since
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both our and their methods rely on SVD, our experiments confirm their findings.
The idea of the above methods is to interpolate the coefficients using successively larger

supports, starting with a quite small support and extending it so as to reach the exact one.
All existing approaches, e.g. [30], have used upper bounds on the total implicit degree, thus
ignoring any sparseness structure. This fails to take advantage of the sparseness of the input
in order to accelerate computation. Our methods provide a formal manner to examine different
supports, in addition to exploiting sparseness.

In the context of sparse elimination, the Newton polytope captures the notion of degree.
Given an implicit polytope we can naturally define candidates of smaller support, the equiv-
alent of lower degree in classical elimination, by an inner offset of the implicit polytope. The
operation of scaling down the polytope can be repeated, thus producing a list of implicit sup-
ports yielding smaller implicit equations with larger approximation error. See Examples 9
and 10 for when the predicted implicit polytope is much larger than the true one.

If S is a superset of the implicit support, then the most direct method to reduce implicitiza-
tion to linear algebra is to construct a |S|×|S|matrixM, indexed by monomials with exponents
in S (columns) and |S| different values (rows) at which all monomials get evaluated. Then the
vector ~p of coefficients of the implicit equation is in the kernel of M. This idea was used in
[53, 56, 87, 110]; it is also the starting point of our work. Here, moreover, we focus on sparse
elimination, characterize the non-exactness of the kernel computation and offer ways to rectify
it, and apply our software to computing discriminants.

A similar approach was based on integrating matrix M = SS>, over each parameter
t1, . . . , tn [30]. Then ~p is in the kernel of M. In fact, the authors propose to consider suc-
cessively larger supports in order to capture sparseness. This method covers polynomial,
rational, and trigonometric parameterizations, but the matrix entries take big values (e.g. up
to 1028), so it is difficult to control its numeric corank, i.e. the dimension of its nullspace. Thus,
the accuracy of the approximate implicit polynomial is unsatisfactory. When it is computed
over floating-point numbers, the implicit polynomial does not necessarily have integer coeffi-
cients. The authors discuss post-processing to yield integer relations among the coefficients,
but only in small examples.

1.4 Summary of the results

Let us summarize the main results of our work.
We take further the approach to implicitization by interpolation presented in [43]. The more

efficient method for computing the implicit Newton polytope, proposed in [49], allows us to
successfully apply the method to curves and surfaces of higher degree as well as hypersur-
faces.

In the general case, the implicit Newton polytope is derived from the support of a symbolic
sparse resultant related to the polynomials in the parametrization, whose Newton polytope is
projected to the space of the xi's [49]. The theoretical foundations of our approach are given
in Theorem 4, Lemma 12 and Corollary 13. Having reduced implicitization to interpolation,
we employ standard methods to determine the unknown coefficients by linear algebra.

We have explored several ways of constructing the interpolationmatrix using different ways
of evaluation. Our implicitization algorithm has proved to be an efficient, output-sensitive tool
for finding exact implicit equation, able to compete successfully with such popular methods as
Gröbner bases in the terms of computation time. Also, our method can be applied to param-
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eterizations with base points which raise important issues for other implicitization methods.
In some instances the polynomial computed using our algorithm contains an extraneous

factor. We have analyzed such cases the and propose techniques for handling them.
While approximate implicitization may be preferred for practical applications in CAGD sys-

tems, there are many areas outside geometry where exact implicitization may be applied. For
instance, computing an exact implicit equation can be used to solve such problems as the
computation of the discriminant of a multivariate polynomial or the resultant of a system of
multivariate polynomials.

Computing the kernel of the interpolation matrix numerically allows us to find an approx-
imate implicit equation. Our experiments with classic algebraic curves and surfaces, Bézier
curves and NURBS curves and surface patches have allowed us to find better ways of evalua-
tion when constructing the matrix in terms of accuracy and numerical stability. Our algorithm
was implemented using Maple and SAGE mathematics software systems; the former being
better suited for symbolic computations and the latter more suitable for numerical solving.

1.5 Thesis structure

In this chapter we have given a survey of the main representations of the geometric objects
and the methods to change the representation. An emphasis was put on the parametric and
implicit forms and the implicitization, since the latter is the main subject of our study.

The remainder of the thesis is organized as follows:
Chapter 2 offers a full description of our implicitization algorithm augmented by the pre-

dicted implicit polytope and the methods that compute the latter.
In the Section 2.2 we describe the method for computing the implicit polytope that are

used in our work. We show the backgrounds of the method, as we give an overview of the
sparse elimination theory. We demonstrate use of the latest implementation of the method in
practice.

The Section 2.3 contains a detailed description of our implicitization algorithm. We discuss
its complexity, different approaches to the construction of the matrix that allow us to exploit the
particular support prediction method's specifics and the importance of choosing suitable val-
ues for matrix evaluation. Here we also study the cases when the resulting equation contains
an extraneous factor and suggest possible solutions.

Chapter 3 is dedicated to practical implementation of our algorithm. We illustrate our
results by examples of rational curves, surfaces and hypersurfaces, provide a comparison
with the other prominent implicitization methods.

In the Section 3.1 we present our Maple implementation of the algorithm; give examples
of exact and approximate implicitization of the algebraic curves and surfaces of power or
Bernstein basis. Here we describe the measures we use to evaluate the accuracy of the ap-
proximate implicitization and compare our method with other popular implicitization methods

The Section 3.3 shows one of the non-geometric applications for our algorithm: computing
discriminants.

In Chapter 4 we summarize the results of our study (Section 4.1) and discuss possible
future directions for the research (Section 4.2).
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Chapter 2

Implicitization with support prediction

The first part of the chapter is dedicated to the methods we employ to compute implicit poly-
tope and present the software, implementation of the support predicting method. In the sec-
ond part we introduce our implicitization algorithm, illustrating its application with the relevant
examples.

2.1 Introduction

One reason for the interpolation of the implicit coefficients is the current increase of activity
around various approaches capable of predicting the implicit support. Recent support pre-
diction methods notably include tropical geometry methods, e.g. [34, 38, 71, 108, 110]; In
our work we explored the methods based on sparse elimination theory [49, 55, 56, 53]. In
the case of curves, the implicit support is directly determined for generic rational parametric
expressions [55]. Theorem 4 settles the general case by showing that this approach yields
a superset of the implicit support. We interface linear algebra interpolation with the implicit
support predictors of [49, 55].

The present work can use the implicit support predicted by any method. In fact, [110,
sec.4] states that ``Knowing the Newton polytopes reduces computing the [implicit] equation
to numerical linear algebra. The numerical mathematics of this problem is interesting and
challenging [...] "

We offer a publicly available Maple implementation and study its numerical stability and ef-
ficiency on several instances of curves and surfaces. One central question is how to evaluate
the computed monomials to obtain a suitable matrix. We compare results obtained by using
random integers, random complex unitary numbers and complex roots of unity. It appears
that complex unitary numbers offer the best tradeoff of efficiency and accuracy for numerical
computation, whereas random integers are preferred for exact kernel computation.

In the general case, the implicit support is provided by that of a symbolic sparse resultant
related to the polynomials in (2.10), whose Newton polytope is projected to the space of the
xi's [49]. The theoretical foundations of our approach are given in Theorem 4, Lemma 12 and
Corollary 13. Having reduced implicitization to interpolation, we employ standard methods to
determine the unknown coefficients by linear algebra.

Our research, first presented in [51], centers around the implicitization problem: we explore
possible applications of the recently developed method that allows to determine a superset
of the implicit equation's monomials. Knowing the potential monomials allows us to compute
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the implicit equation following the classical method of interpolating the unknown coefficients.
We have developed an implicitization algorithm that can be applied to curves, surfaces or
hypersurfaces of any dimension of polynomial (preferably), rational or trigonometric repre-
sentation. Our method works in the presence of base points, however it has its limits: geo-
metric objects have to be of co-dimension one and presented using monomial basis. In the
case of trigonometric parametrizations coordinate functions have to be convertible to rational
functions [53]. The method can be applied to geometric objects of Bernstein basis, however
such parametrizations have to be represented in monomial basis [52].

Implicitization has its applications outside the geometry, in areas as diverse as robotics
or statistics. We demonstrate some of the non-geometrical applications of our implicitization
method computing resultants and discriminants [54].

2.2 Support prediction

This section gives an overview of the methods for computing the implicit support, based on
the sparse resultant, used in our work. However, tropical geometry has not been the focus
of our work, indeed, developing our algorithm we have viewed support prediction as a black
box. We have tried three different methods for computing Newton polytope of the implicit
equation, making necessary adjustments to the implicitization algorithm, which can as easily
exploit results of any other support predicting tool.

2.2.1 Sparse elimination theory

Sparse, or toric, elimination subsumes classical, or dense, elimination in the sense that, when
Newton polytopes equal the corresponding simplices, the former bounds become those of the
classical theory [56, sec.3], [109, thm.2(2)].

Consider the polynomial system F̄0, . . . , F̄n as in expression (2.10), defining a hypersur-
face, and let Ai ⊂ Zn be the support of F̄i and Pi ⊂ Rn the corresponding Newton polytope.
The family A0, . . . ,An is essential if they jointly affinely span Zn and every subset of cardinal-
ity j,1 ≤ j < n, spans a space of dimension ≥ j. It is straightforward to check this property
algorithmically and, if it does not hold, to find an essential subset. In the sequel, the input
A0, . . . ,An ⊂ Zn is supposed to be essential.

For each F̄i, i = 0, . . . , n, we define a polynomial Fi ∈ K[t] with symbolic coefficients
cij algebraically independent over R, K = C(cij), and the same support Ai, i.e. a generic
polynomial with respect to Ai:

Fi =

|Ai|∑
j=1

cijtaij ∈ K[t], aij ∈ Ai, i = 0, . . . , n. (2.1)

Obviously, each Fi has also the same Newton polytope Pi as F̄i.
When discussing implicitization methods we have given general definition of the resultant.

Nowwe introduce our main tool, namely the sparse resultant of an overconstrained polynomial
system.
Definition 5. The sparse resultant of polynomial system in expression (2.1) is an irreducible
polynomial

R ∈ Z[cij : i = 0, . . . , n, j = 1, . . . , |Ai|],
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defined up to sign, vanishing if and only if F0 = F1 = · · · = Fn = 0 has a common root in the
torus (C∗)n.

The Newton polytope N(R) of the resultant polynomial is the resultant polytope. We call
any monomial which corresponds to a vertex of N(R) an extreme term of R.

Definition 6. The Minkowski sum A + B of convex polytopes A,B ⊂ Rn is the set A + B =
{a+ b | a ∈ A, b ∈ B} ⊂ Rn. A tight mixed subdivision of P = P0 + · · ·+ Pn, is a collection of
n-dimensional convex polytopes σ, called (Minkowski) cells.

They form a polyhedral complex that partitions P, and every cell σ is a Minkowski sum of
subsets σ i ⊂ Pi: σ = σ0 + · · ·+ σn, where dim(σ) = dim(σ0) + · · ·+ dim(σn) = n.

Definition 7. A cell σ is called vi-mixed if it is the Minkowski sum of n one-dimensional
segments Ej ⊂ Pj and one vertex vi ∈ Pi : σ = E0 + · · ·+ vi + · · ·+ En.

Definition 8. A mixed subdivision is called regular if it is obtained as the projection of the
lower hull of the Minkowski sum of lifted polytopes P̂i = {(pi,ω(pi)) |pi ∈ Pi}.

If the lifting function ω is sufficiently generic, then the induced mixed subdivision is tight.

Definition 9. Let K1,K2, ...,Kn be convex bodies (nonempty, compact, convex subsets) in Rn.
The mixed volume MV is the unique symmetric function

|λ1K1 + · · ·+ λmKm| =
∑

1≤i1,...,in≤m
λi1 · · · λinVM(Ki1 , . . . ,Kin)

for m ∈ N, λ1, . . . , λm ≥ 0.

The mixed volume of n polytopes in Rn equals the sum of the volumes of all the mixed
cells in a mixed subdivision of their Minkowski sum. We recall a surjection from the regular
tight mixed subdivisions to the vertices of the resultant polytope:

Theorem 2. [107] Given a polynomial system as in expression (2.1) and a regular tight mixed
subdivision of the Minkowski sum P = P0 + · · · + Pn of the Newton polytopes of the system
polynomials, an extreme term of the resultant R equals

c ·
n∏
i=0

∏
σ
cvol(σ)iσ i

where σ = σ0 + σ1 + · · ·+ σn ranges over all σ i-mixed cells, and c ∈ {−1,+1}.

Computing all regular tight mixed subdivisions reduces, due to the so-called Cayley trick,
to computing all regular triangulations of a point set of cardinality |A0|+ · · ·+ |An| in dimension
2n. Let the Cayley embedding of the Ai's be

A =
n∪
i=0

(Ai × {ei}) ⊂ Z2n, ei ∈ Nn,

where e0, . . . , en form an affine basis of Rn: e0 is the zero vector,
ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n.
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Proposition 3. [Cayley trick] [63] There exist bijections between: the regular tight mixed
subdivisions, the tight mixed subdivisions, or the mixed subdivisions of the convex hull of
A0+ · · ·+An and, respectively, the regular triangulations, the triangulations, or the polyhedral
subdivisions of A.

The set of all regular triangulations corresponds to the vertices of the secondary polytope
Σ(A) of A [63]. To compute the resultant polytope, one can enumerate all regular triangula-
tions of A: it is equivalent to enumerating all regular tight mixed subdivisions of the convex
hull of A0 + · · ·+ An. Each such subdivision yields a vertex of N(R).

Thus the first support prediction algorithm, applicable both to curves and (hyper)surfaces [48]
can be summarized as follows:
Input: Polynomial system F0,F1, . . . ,Fn.
Output: Resultant polytope N(R) of F0, . . . ,Fn.

• Step 1. Compute the supports A0, . . . ,An of the Fi's.

• Step 2. Compute the Cayley embedding of the Ai.

• Step 3. Enumerate all regular triangulations of the Cayley embedding: equivalent to
enumerating all regular fine mixed subdivisions of A0 + · · ·+ An.

• Step 4. Each set of such subdivision yields a vertex of N(R).

However, this method is inefficient even for medium sized inputs; the second support
prediction algorithm we have used that computes the implicit polytope proved to be much
more effective.

2.2.2 The implicit polytope

To predict the Newton polytope of the implicit equation, or implicit polytope we use the algo-
rithm in [49] for the computation of resultant polytopes and their orthogonal projections. Note
that the latter correspond to generic specializations of the resultant.

Given the supports Ai, i = 0, . . . , n of the polynomials in expression (2.1), the algorithm
in [49] computes the resultant polytope N(R) of their sparse resultant R without enumerating
all mixed subdivisions of the convex hull of A0 + · · ·+An. More precisely, it is an incremental
algorithm to compute N(R) by considering an equivalence relation on mixed subdivisions,
where two subdivisions are equivalent iff they specify the same resultant vertex. The class
representatives are vertices of the resultant polytope. The algorithm exactly computes vertex-
and halfspace-representations of the resultant polytope or its projection. It avoids computing
Σ(A), but uses the above relationships to define an oracle producing resultant vertices in a
given direction. It is output-sensitive as it computes one mixed subdivision per equivalence
class, and is the fastest today in dimension up to 5; in higher dimensions it is competitive with
the implementation of [71], relying on the GFan library. Moreover, there is an approximate
variant that computes polytopes whose volume differs by ≤ 10% from the true volume, with
a speedup of up to 25 times.

Let us formalize the way that the polytope N(R) is used in implicitization. Consider an
epimorphism of rings

φ : K→ K′ : cij 7→ c′ij, (2.2)
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yielding a generic specialization of the coefficients cij of the polynomial system in expres-
sion (2.1). We denote by F′

i = φ(Fi), i = 0, . . . , n, the images of Fi's under φ. Let R =
Res(F0, . . . ,Fn) be the resultant of polynomial system in (2.1) over K and H = Res(F′

0, . . . ,F′
n)

be the resultant of F′
0, . . . ,F′

n over K′. Then, the specialized sparse resultant φ(R) coincides
(up to a scalar multiple from K′) with the resultant H of the system of specialized polyno-
mials provided that H does not vanish, a certain genericity condition is satisfied, and the
parametrization is generically 1-1 [32],[109, thm.3]:

φ(R) = c · H, c ∈ K′. (2.3)

If the latter condition fails, then φ(R) is a power of H. When the genericity condition fails
for a specialization of the cij's, the support of the specialized resultant φ(R) is a superset of
the support of H modulo a translation, provided the sparse resultant does not vanish. This
follows from the fact that the method computes the same polytope as the tropical approach,
whereas the latter is characterized in Proposition 1. In particular, the resultant polytope is a
Minkowski summand of the fiber polytope Σπ(Δ,P), where polytope Δ is a product of sim-
plices, each corresponding to a support Ai, P =

∑n
i=0 Pi, and π is a projection from Δ onto

P. Then, Σ(Δ,P), is strongly isomorphic to the secondary polytope of the point set obtained
by the Cayley embedding of the Ai's, [107, sec.5]. The algorithm in [49] provides the Newton
polytope of φ(R).

When specialization φ yields the coefficients of the polynomials in (2.10), i.e. φ(Fi) = F̄i,
then H = Res(F̄0, . . . , F̄n) = p(x0, . . . , xn), where p(x0, . . . , xn) is the implicit equation of the
hypersurface defined by (2.10). Equation (2.3) reduces to

φ(R) = c · p(x0, . . . , xn), c ∈ C[x0, . . . , xn], (2.4)

hence [49] yields a superset of the vertices of the implicit polytope. The coefficients of the
polynomials in (2.1), which define the projection φ, are those who are specialized to linear
polynomials in the xi's.

The above discussion is summarized in the following result, which offers the theoretical
basis of our approach.

Theorem 4. Given a parametric hypersurface, we formulate implicitization as an elimination
problem, by defining the corresponding sparse resultant. The projection of the sparse resul-
tant's Newton polytope contains a translate of the Newton polytope of the implicit equation.

Let us now give two techniques for improving our approach. The following lemma is used
at preprocessing before support prediction, since it reduces the size of the input supports.

Lemma 5. [71, lem.3.20] If aij ∈ Ai corresponds to a specialized coefficient of Fi, and lies in the
convex hull of the other points in Ai corresponding to specialized coefficients, then removing
aij from Ai does not change the Newton polytope of the specialized resultant.

Furthermore, in order to eliminate some extraneous monomials predicted by our support
prediction method, we may apply the following well-known degree bounds, generalized in the
context of sparse elimination. For a proof, the reader may refer to [56].

Proposition 6. The total degree of the implicit polynomial of the hypersurface corresponding
to system (2.10) is bounded by n! times the volume of the convex hull of A0 ∪ · · · ∪ An. The
degree of the implicit polynomial in some xj, j ∈ {0, . . . , n} is bounded by the mixed volume
of the F̄i, i 6= j, seen as polynomials in t.
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The classical results for the dense case follow as corollaries. Take a surface parametrized
by polynomials of degree d, then the implicit polynomial is of degree d2. For tensor parametriza-
tions of bi-degree (d1,d2), the implicit degree is 2d1d2. We use these bounds to reduce the
predicted Newton polytope in certain cases, see also Corollary 14.

The resultant polytopeN(R) lies inR|A| but we shall see that it is of lower dimension. Let us
describe the hyperplanes in whose intersection lies N(R). For this, let A be the (2n+1)×|A|
matrix whose columns are the points in the Ai, where each a ∈ Ai is followed by the i-th unit
vector in Nn+1.

Proposition 7. [63] N(R) is of dimension |A| − 2n − 1. The inner product of any coordinate
vector of N(R) with row i of A is: constant, for i = 1, . . . , n, and equals the mixed volume of
F0, . . . ,Fj−1,Fj+1, . . . ,Fn, for j = i− (n+ 1), i = n+ 1, . . . , 2n+ 1.

The last n + 1 relations specify the fact that R is separately homogeneous in the coef-
ficients of each Fi. The proposition implies that one obtains an isomorphic polytope when
projecting N(R) along 2n+ 1 points in ∪iAi, which affinely span R2n; this is possible because
of the assumption that {A0, . . . ,An} is an essential family. Having computed the projection,
we obtain N(R) by computing the missing coordinates as the solution of a linear system:
we write the aforementioned inner products as A[XV]T = C, where C is a known matrix and
[XV]T is a transposed |A| × u matrix, expressing the partition of the coordinates to unknown
and known values, where u is the number of N(R) vertices. If the first 2n + 1 columns of
A correspond to specialized coefficients, A = [A1A2], where submatrix A1 is of dimension
2n+ 1 and invertible, hence X = A−1

1 (C−A2V).

2.2.3 Implementations of the method

In [49], they develop an incremental algorithm to compute the resultant polytope, or its or-
thogonal projection along a given direction. It is implemented in package ResPol1.

The algorithm exactly computes vertex- and halfspace-representations of the target poly-
tope and it is output-sensitive. It is very efficient for inputs relevant to implicitization: it com-
putes the polytope of surface equations within 1 sec, assuming < 100 terms in the parametric
polynomials, which includes all common instances in geometric modeling. This is the main
tool for support prediction used in this work, thus we illustrate its use in implicitization.

ResPol takes as input a text file with 3 lines:

• Dimension of the input supports (in our case, number of parametric variables).

• Cardinality of each support | support points defining the projection (in our case, the
exponents of monomials with coefficient xi). The part of the line starting with | is optional;
when absent the polytope is projected on the first coordinate per support.

• The supports of the polynomials defined by the parametric expressions.

Example 1. Consider the bicubic surface,

1http://sourceforge.net/projects/respol
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x0 = 3t1(t1 − 1)2 + (t2 − 1)3 + 3t2,
x1 = 3t2(t2 − 1)2 + t31 + 3t1, (2.5)
x2 = −3t2(t22 − 5t2 + 5)t31 − 3(t32 + 6t22 − 9t2 + 1)t21+

t1(6t32 + 9t22 − 18t2 + 3)− 3t2(t2 − 1).

and define the following in (R[xi])[t1, t2]:

F0 = x0 − 3t1(t1 − 1)2 − (t2 − 1)3 − 3t2,
F1 = x1 − 3t2(t2 − 1)2 − t31 − 3t1, (2.6)
F2 = x2 + 3t2(t22 − 5t2 + 5)t31 + 3(t32 + 6t22 − 9t2 + 1)t21−

t1(6t32 + 9t22 − 18t2 + 3) + 3t2(t2 − 1),

and prepare the input file for ResPol:
2
7 6 14
[[0, 0], [0,1], [1,0], [0,2], [2, 0], [0,3], [3,0], [0,0], [0, 1], [1, 0], [2,0], [0,3], [3, 0], [0, 0], [0,1],
[1, 0], [0,2], [1,1], [2,0], [1,2], [2, 1], [1, 3], [2, 2], [3, 1], [2,3], [3,2], [3,3]]

The first line is the dimension of the Newton polytopes of the input polynomials, the second
line the cardinalities of their supports, and the third contains the coordinates of the support
points. Alternatively, the second line we could explicitly specify the support points that define
the projection of N(R), by their order in the set of the third line: 7 6 14 | 0 7 13.
Notice that these correspond to the support points that are exponents of the terms of F0,F1,F2
whose coefficient contains the implicit variables x0, x1, x2. It takes ResPol 0.1 sec. to output
the implicit polytope’s vertices (0,0,0), (18, 0, 0), (0, 18,0), (0,0,9); this polytope contains
715 lattice points.

Example 2. Consider the rational parametric curve known as folium of Descartes:

x0 =
3t2

t3 + 1
, x1 =

3t
t3 + 1

. (2.7)

It is represented by the following polynomials in (R[xi])[t]:

F0 = −x0 + 3t2 − x0t3, F1 = −x1 + 3t− x1t3

The input to ResPol is a file with 3 lines:

0 1 30 1 3

Figure 2.1: Newton polytope and supports of F0 and F1 in Example 2.

1
3 3 | 0 2 3 5
[[0], [2], [3], [0], [1], [3]]

The first line gives the dimension, the second the support cardinalities and, then, the
indices (0,2,3,5) of the support points in the set of the third line, which are exponents of
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monomials whose coefficient contains an implicit variable x0 or x1. These define the projection
space of N(R). The third line gives the coordinates of the support points.

Given this input, ResPol outputs 7 vertices in 4-dimensional space: (0,0,2,1), (3, 0, 0,3),
(0, 3, 3, 0), (1,2,0,0), (1, 0, 0,1), (0,2,2, 0), (0, 0,2,1). The first 2 coordinates of these ver-
tices correspond to input coefficients containing x0, whereas the other two, to coefficients
containing x1. The implicit vertices are 2-dimensional: their coordinate corresponding to x0 is
the sum of the first two coordinates of the predicted vertices, and their coordinate correspond-
ing to x1, is the sum of the last two: (0,3), (3,3), (3, 0), (1,1), (2,2). This is used as input to
our implicitization code.

In practice, ResPol proves to be inefficient when the dimension of the projection space
exceeds 8. For polynomial parameterizations, this dimension is equal to the number of para-
metric equations, but for rational parameterizations, is equal to the number of monomials in
the denominators of the parametric equations. We can overcome this difficulty by introduc-
ing as many additional variables as the number of different denominators that appear in the
parametric equations. This raises the input dimension which has lesser effect to ResPol's
efficiency. This demonstrated below.

Example 3 (Cont'd from Example 2). We introduce new variable w expressing the common
denominator t3 + 1 and rewrite the system:

(2.7) as:
x0 =

3t2
w , x1 =

3t
w , w = t3 + 1.

This is represented by the following polynomials in t,w:

F0 = −x0w+ 3t2, F1 = −x1w+ 3t, F2 = 1− w+ t3.
The Newton polygons of the Fi’s are shown in Fig. 3. The input to ResPol contains 3 lines:

2

1

3

11

w

tt

ww

N(F ) N(F ) N(F )

1 t

1 20

Figure 2.2: Newton polytopes of F0,F1,F2 in Example 3.

2
2 2 3 | 0 2
[[0, 1], [2,0], [0, 1], [1,0], [0,0], [0, 1], [3,0]]

ResPol gives the vertices (0,3), (3, 0), (3,3), (1,1)which do not require any transformation
and are directly used in our implicitization routine.

2.3 Interpolation of the implicit equations

In this section we present our implicitization algorithm and give a detailed description of
our interpolation process. We discuss selecting sample points best suitable for the given
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parametrization and solving method and propose possible solutions to the problem of multi-
dimensional kernel space.

2.3.1 Problem of the implicitization

Given a set of parametric equations (1.3) the implicitization problem asks for the smallest
algebraic variety containing the closure of the image of the parametric map f : Rn → Rn+1 :
t 7→ f(t). This image is contained in the variety defined by the ideal of all polynomials p such
that p(f0(t), . . . , fn(t)) = 0, for all t in Ω.

Our goal is computing its defining polynomial

p(x0, . . . , xn) = 0, (2.8)

The variety in question can be regarded as the projection of the graph of map f to the
last n + 1 coordinates. If f is polynomial, implicitization is reduced to eliminating t from the
polynomial system

Fi := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,
seen as polynomials in t with coefficients which are functions of the xi. This is also the case
for rational parameterizations

xi = fi(t)/gi(t), i = 0, . . . , n, (2.9)

represented as polynomials in (R[x0, . . . , xn])[t, y]:

Fi := xigi(t)− fi(t), i = 0, . . . , n, (2.10)
Fn+1 := 1− yg0(t) · · · gn(t),

where y is a new variable and Fi+1 assures that gi(t) 6= 0.
In some cases of trigonometric parametrization, it can be converted to rational form by the

standard half-angle transformation

sin θ =
2 tan θ/2

1+ tan2 θ/2
, cos θ =

1− tan2 θ/2
1+ tan2 θ/2

,

where the parametric variable becomes t = tan θ/2.

2.3.2 Implicitization algorithm

The main steps of our algorithm are given below.
Input: Polynomial or rational parametrization xi = fi(t1, . . . , tn).
Output: Implicit polynomial p(xi) in the monomial basis in Nn+1.

• Step 1: Support prediction determines (a superset of) the implicit polytope vertices.

• Step 2: Compute all lattice points S ⊆ Nn+1 in the polytope.

• Step 3: Repeat ≥ |S| times: Select value τ for t, evaluate xi(t), i = 0, . . . , n, thus evalu-
ating each monomial with exponent in S. This yields a matrix M.
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• Step 4: Given matrix M, solve M~p = 0.

• Step 5: Let corank(M) ≥ 1, then return the kernel vector~pi corresponding to a polynomial
of the least total degree.

• Step 6: Return primitive part of polynomial corresponding to ~p> ·m, where m is the set
of monomials with exponent in S.

Comments:

1. Although in our work we use specific support prediction methods ([55, 49]), in principle
any other technique for computing the implicit polytope can be applied as well.

2. For 2-D, 3-D and 4-D cases our Maple implementation includes routines that compute
the lattice points in the implicit polytope; these utilize the Maple package convex [62].
Our SAGE implementation uses its build in functions for this task. For higher dimensions
we have employed the software package Normaliz2.7.

3. We build a rectangular overconstrained matrix M when solving numerically in order to
increase accuracy of solving.

4. An alternative approach for cases when corank(M) > 1 is to factor the polynomial,
corresponding to some ~pi or computing polynomial GCD. This approach is preferable in
the admittedly rare instances when all the potencial implicit polynomials are of the same
total degree.

Algorithm 1: Sparse Implicitization
Input : Polynomial or rational parametrization xi = fi(t), i = 0, . . . , n,

Predicted implicit polytope Q, if n ≥ 2
Output
:

Implicit polynomial p(x0, . . . , xn) in its monomial basis.

Nn+1 ⊇ S← lattice points in Q
foreach si ∈ S do mi ← xsi // x = (x0, . . . , xn)
~m← (m1, . . . ,m|S|) // vector of monomials in x
Initialize μ × |S| matrix M, μ ≥ |S|:
for i← 1 to μ do

select τ i ∈ Cn+1

for j← 1 to |S| do
Mij ← mj|t=τ i

{~v1, . . . , ~vk} ← Basis of Nullspace(M)
if k = 1 then p← g1
else

for i← 1 to k do gi ← primpart(~vi · ~m)// inner product
p← gcd(g1, . . . , gk)

return p

While we exploit classical approach to interpolation, our contribution is, first, exploration
of the overconstrained systems, and, second, handling of the cases when the kernel vector
space is multidimensional.
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2.3.3 Complexity

The complexity of the support prediction algorithm used in our work was given in [49, thm.10]:

Theorem 8. Let Π denote some orthogonal projection of N(R), |Π| and |ΠH| the number of
vertices and facets of Π, A a pointset, sA size of the largest triangulation of A, sΠ that of Π.

The time complexity of the algorithm for finding projections of resultant polytopes to com-
pute Π ⊂ Rm is O(m5|Π|s2Π + (|Π|+ |ΠH|)n5|A|s2A), which becomes O∗(|Π|s2Π) when |Π| �
|A|.

Here and further O∗(·) denotes asymptotic bounds when ignoring polylogarithmic factors
in the arguments.

The second part of the procedure is the computation of the lattice points contained in the
predicted polytope. It is a NP-hard problem to detect a lattice point in a polytope when the
dimension of the polytope is an input variable. When the dimension is fixed the algorithm
in [9] counts the number of lattice points in a polytope within polynomial time in the size of
the input. The software LattE [81] implements Barnivok's algorithm. The software package
Normaliz [12] computes lattice points in polytopes, and is very fast in practice; this is the one
interfaced to our software. Based on these algorithms, one can enumerate all lattice points
in output-sensitive manner, i.e. in polynomial time in the output size, which of course can be
exponential in the input size. The computation up to this point is essentially offline, because
it does not require knowledge of the specific coefficients.

Suppose that, for the predicted support S, the exponent of every monomial in the i-th
variable lies in [0, δ], for i = 1, 2, . . . , n.

Proposition 9. [57, lem.4.3] Consider a set S of monomials in n variables. Given n scalar
values p1,p2, . . . , pn, the algorithm of [57] evaluates all the monomials of S at these values in
O∗(|S|n+ n

√
δ) arithmetic operations and O(|S|n) space.

Now, we arrive at the complexity of constructing a μ× |S| matrix M, with columns indexed
by |S| monomials and rows indexed by μ values.

Corollary 10. Assume our algorithm builds a rectangular matrix μ × |S|, μ ≥ |S|. Then, all
μ |S| entries are computed in O∗(μ |S| n) operations.

Once the matrix is constructed, the kernel computation costs O(|S|2.376) arithmetic op-
erations on square matrices, which follows from the current record for matrix multiplication.
An improved probabilistic bound is O(σ2δ) following from Zippel's sparse interpolation algo-
rithm, supposing the number of variables n is constant, where δ bounds the implicit degree
per variable.

On μ×|S| rectangular matrices, the numeric kernel computation has complexityO(μ |S|2),
by linear algebra. Thus we arrive at the following.

Theorem 11. The overall complexity of our implicitization algorithm requires O(μ |S|2) arith-
metic operations.

Proof. This is a higher complexity than the case of square matrices (O(|S|2.376)). The first
phase of matrix construction with its cost O∗(μ |S|n) (Cor. 10) is clearly dominated. Hence
the overall complexity of the algorithm O(μ |S|2).
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The complexity of interpolating resultants is O∗(|S|2) where S is the set of lattice points in
the predicted resultant support, because the dominating stage is a kernel computation for a
structured matrix M. Using Weidemann's approach, the main oracle is post-multiplication of
M by a vector, which amounts to evaluating a (n+1)-variate polynomial at chosen points, and
this can be done in quasi-linear complexity in |S| [114, 88]. For certain classes of polynomial
systems, when one computes the resultant in one ormore parameters, this may be competitive
to current methods for resultant computation. The best such methods rely on developing
the determinant of a resultant matrix in these parameters [18, 37]. The matrix dimension is
in O∗(tn degR) [47], where degR is the total degree of R in all input coefficients, and t is
the scaling factor relating the input Newton polytopes, which is bounded by the maximum
degree of the input polynomials fi in any variable. Then, developing univariate resultants has
complexity in O∗(t3.5n(degR)3.5) [47, 57, 58]. Hence, our approach improves the complexity
when the predicted support is small compared to t and degR.

2.3.4 Building the matrix

We seek to construct the interpolation matrix M whose corank, or kernel space dimension,
equals 1, i.e. its rank is 1 less than its column dimension. To cope with numerical issues,
especially when computation is approximate, we construct a rectangular matrixM by choosing
μ ≥ |S| values of τ; this overconstrained system increases numerical stability.

In order to fully exploit the structure of the output provided by some of the support predicting
software we have been approaching constructing of the matrix in a different ways. While the
main and most often used matrix structure was the one indexed by the potential monomials,
as given in the Algorithm 1 here we would like to outline also its alternative.

We have tried a support prediction method that applies only to curves [55] and two support
prediction methods applicable to both planar curves and (hyper)surfaces: first, that computes
resultant polytope [48], and second, improved, that computes implicit polytope [49]. While
the curves-only and the second general methods provide us with a (super)set of the implicit
vertices, which leads to straightforwardmatrix construction, output of the first general is slightly
different. It returns a set of vertices of the polytope N(φ(R)) of the specialized resultant φ(R),
whereR is the resultant of the system of polynomials in (2.1). From here we can derive implicit
polytope vertices and construct thematrix as usual, or we can built amatrix indexed by vertices
of the resultant polytope.

Consider the polynomials Fi, i = 0, . . . , n in Equation (2.10), with symbolic coefficients cij:

Fi =

di∑
j=1

cijtaij ,

where di is the number of monomials in twith non-zero coefficient, i.e. the cardinality of support
Ai. Given supports Ai, the output is the set V of vertices of the Newton polytope of the resultant
of the Fi's. Each resultant vertex ai = (ai1, . . . , aid) ∈ V is a d-dimensional vector, where d =∑n

i=0 di, and corresponds to an extreme resultant monomial cai , where c is the d-dimensional
vector of the symbolic coefficients of all Fi's:

c =(c1, . . . , cd) =
(c01, . . . , c0d0 ,︸ ︷︷ ︸

from F0

c11, . . . , cid1 ,︸ ︷︷ ︸
from F1

. . . . . . , cn1, . . . , cndn)︸ ︷︷ ︸
from Fn

.
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Given the resultant polytope vertices, we compute the set S of all m lattice points in the
resultant polytope. We apply specialization φ to the set of monomials in cij's with exponents
in S to obtain a set of polynomials (products of linear polynomials) in xi's. We abuse notation
and denote this set also by φ(S), i.e. we identify each φ(c)ak with its exponent ak.

When we substitute the symbolic coefficients cij by the actual univariate polynomials in xi,
some of the vertices of the implicit polytope may map to identical expressions: ∃ak 6= al ∈ V
s.t. φ(c)ak = φ(c)al. By examination of the φ(c)ak, we remove duplicates. In the following we
assume that φ(S) has no multiple entries.

Matrix M is constructed in a following way. Let φ(S) = {a1, . . . , am} ⊂ Nd be the lat-
tice points, which form a superset of the resultant support. Each column contains a product
φ(c)ak = φ(cak11 · · · c

akd
d ) evaluated at various τk, for k = 1, . . . ,m. Thus, we define the follow-

ing m×m matrix, with columns indexed by the ak's:
(a11, . . . , a1d) . . . (am1, . . . , amd)

M =

 φ(ca111 · · · c
a1d
d )(τ1) · · · φ(cam1

1 · · · camd
d )(τ1)

... · · ·
...

φ(ca111 · · · c
a1d
d )(τm) · · · φ(cam1

1 · · · camd
d )(τm)

τ1...
τm

(2.11)

Each φ(c)ak ∈ φ(S) is a product of linear polynomials in xi. After expanding and simplify-
ing, we get a set of monomials in xi's.
Example 4. Let as illustrate matrix construction using simple classical curve ''witch of Agnesi''.
It has rational parametric representation x = at, y = a/(1+ t2).

y

x

Figure 2.3: Algebraic curve ''witch of Agnesi'' (Example 4).

We apply general support prediction method [49], providing as input coefficients in respect
to parameter t of the polynomials: c00 + c01t = 0, c10 + c11t2 = 0, namely c00 = −x, c01 =
a, c10 = a− y, c11 = −y, and corresponding supports {0,1}, {0,2}. The resultant polytope is
the segment [(0, 2, 1,0)(2,0,0,1)] which contains no internal points. These two vectors index
the columns of M and correspond to the monomials {c201c10, c200c11}, which are specialized to
{a2(a− y), (−x)2(−y)}, that index the 2× 2 matrix M. Thus,

M =

[
a3 − a2y0 −x02y0
a3 − a2y1 −x12y1

]
.

where x0, x1, y0, y1 are values of x(t), y(t) obtained by using random t. We solve M× ~p = 0 to
find ~p = [p0,p1], yielding the implicit polynomial

p0(a3 − a2y) + p1(−x2y),
hence a2y+ x2y− a3.

Alternatively, from the set {a2(a − y), (−x)2(−y)} we can obtain the implicit polytope
vertices, implicit support in x, y: {(0, 0), (0,1), (2,1)}. Its convex hull contains no internal
points, hence M′ is 3× 3.
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M′ =

 c y0 x20y0
c y1 x21y1
c y2 x22y2

 .

where x0, x1, y0, y1, x2, y2 are values of x(t), y(t) obtained by random t and c is a constant.

Notice that the matrix, indexed by cij's was smaller. Same is true for the larger examples,
as illustrated below.

Example 5. Consider rational parametric curve ''Folium of Descartes''.

x =
3at
1+ t3

, y =
3at2
1+ t3

.

y

x

Figure 2.4: Algebraic curve ''folium of Descartes''.

The curve support prediction yields polygon vertices (0, 0), (0, 3), (1, 1), (3,0), thus 10
lattice points totally. Solving the 10 × 10 matrix yields 3 nonzero coefficients, and implicit
polynomial x3 + y3 − 3axy.

General support prediction: The parametrization is represented by the polynomials 3at−
x−xt3, −yt3−y+3at2 with supports {0,1,3}, {0, 2,3}. Then, φ is defined as: c00 = −x, c01 =
3a, c02 = −x, c10 = −y, c11 = 3a, c12 = −y.

The method computes 6 vertices of the (symbolic) resultant polytope: (0,0, 3, 3, 0,0),
(0, 2, 1, 1,2,0), (0,3,0,1, 0, 2), (2, 0, 1,0,3,0), (2,1,0, 0, 1, 2), (3, 0,0,0,0,3), which contains
4 inside points.

The straightforward approach would be to form a 10 × 10 matrix M. In this case, ~p =
[1, p1, p1,−1−p3−p5, −p2−p4,p1,p2, p3, p4, p5], where pi ∈ N∗. We can safely reduce matrix
size by keeping only the distinct monomials in x, y, namely a4x1y1, x13a3, a3y13, x12a2y12,
x13y13.

So we get a 5× 5 matrix.

M =

 81a4x1y1 −27x13a3 −27a3y13 9x12a2y12 x13y13... ... ... ... ...
81a4x5y5 −27x53a3 −27a3y53 9x52a2y52 x53y53


where x1, . . . , x5, y1, . . . , y5 are values of x, y obtained by evaluating at (random) t1, . . . , t5.

Solving M · ~p = 0 gives 3 nonzero coefficients, and x3 + y3 − 3axy.

T. Kalinka 48



Changing representation of curves and surfaces: exact and approximate methods

Table 2.1: Comparing two matrix construction methods for the first general support prediction
method.

Curve Impl. Resultant Monomials
degree matrix nonzero matrix nonzero

Circle 2 4× 4 4 9× 9 3
Conchoid 4 6× 6 6 15× 15 6
Folium of Descartes 3 5× 5 3 11× 11 3
Witch of Agnesi 3 2× 2 2 4× 4 3
Surface
Infinite cylinder 2 4× 4 4 9× 9 3
Hyperbolic paraboloid 2 3× 3 3 7× 7 3
Infinite cone 4 8× 8 6 19× 19 3
Whitney umbrella 3 2× 2 2 4× 4 2
Monkey saddle 3 3× 3 3 8× 6 3
Handkerchief surface 3 2× 2 2 4× 4 2
Crossed surface 4 5× 5 5 10× 10 5
Quartoid 4 4× 4 4 16× 16 4
Peano surface 4 4× 4 4 10× 10 4
Swallowtail surface 5 12× 12 12 25× 25 6
Sine surface 6 87× 87 66 125× 125 7

When substituting cij by the corresponding univariate polynomials we get 5 distinct mono-
mials in x, y: x3y3, x2y2, xy, y3, x3. The convex hull of the supports of these monomials is
defined by the vertices: (3, 0), (0,3), (1, 1), (3,3). We find 11 lattice points and build 11× 11
matrix M.

Table 2.1 shows more examples comparing two matrix construction methods. However,
the support prediction method in question proved to be time consuming and suitable only for
very small examples. Its more effective alternative integrates projection from the resultant
polytope to the implisit polytope, its output vertices ofN(φ(R)).

We compute all lattice points sj contained in N(φ(R)) ⊂ Nn+1 to obtain the set S =
{s1, . . . , s|S|}; each sj = (sj0, . . . , sjn) is an exponent of a (potential) monomial mj = xsj =
xsj00 · · · x

sjn
n of the implicit polynomial, where xi is given in (2.9). We evaluate mj, j = 1, . . . , |S|

at some τk, k = 1, . . . , μ, μ ≥ |S|; we use μ > |S| evaluation points to improve the numerical
stability of our algorithm. Let mj|t=τk =

∏
i

(
fi(τk)
gi(τk)

)sji denote the evaluated j-th monomial mj at
τk. Thus, we construct an μ × |S| matrix M with rows indexed by τ1, . . . , τμ and columns by
m1, . . . ,m|S|:

M =

m1|t=τ1 · · · m|S||t=τ1
... · · · ...

m1|t=τμ · · · m|S||t=τμ


By construction of matrixM using sufficiently generic values τ, which thus correspond to well-
distributed points on the parametric hypersurface, we have the following:

Lemma 12. Any polynomial in the basis of monomials indexing M, with coefficient vector in
the kernel of M, is a multiple of the implicit polynomial.
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Corollary 13. Assume that the predicted polytope equals the actual one and that we construct
a μ × |S| matrix M, as above. Then, the vector of the implicit coefficients lies in the matrix
kernel, hence rank(M) < |S|. If the points x(τ i), i = 1, . . . , μ are sufficiently generic, then M
has corank 1, i.e. rank(M) = |S| − 1. Then, if we solve Mp = 0 for p, such that one of its
entries is set to 1, this yields the coefficients of the implicit equation in a unique fashion.

Note that the above result follows also from relation (2.4). In view of Lemma 12, we have
the following corollary of Proposition 6.

Corollary 14. Consider the irreducible factor of the polynomial obtained from any kernel vector
of matrix M, that corresponds to the implicit equation. Its Newton polytope is the implicit
polytope and it is bounded by the halfspaces defined in Proposition 6.

As a consequence, we cannot directly apply the degree bounds on the predicted polytope
since we do not know apriori its Minkowski summands; notice that the Newton polytopes of
the factors are Minkowski summands of the implicit polytopes. However, we can do so if
the intersection of the predicted polytope with the halfspaces defined by the degree bounds
contains (a translate) of the implicit polytope.

2.3.5 Matrix evaluation

The goal of our work is developing of the implicitization tool suitable for a wide specter of
parametric representations. However, different types of problems call for the different ap-
proaches; wherever we want to compute exact or approximate implicit equation adjustments
are needed in order to insure better performance. In particular, result is affected by the way
we pick values for evaluation when building a matrix.

First of all, we made sure to avoid values that make the denominators of the rational
parametric expressions close to 0.

We have experimented with both integer and complex values. In the former case, we have
used random integers (for parametrizations we discard values that makes some denominator
vanish). We also tried complex values for τ: roots of unity, and random complex numbers of
modulus equal to 1. It is important to pick sufficiently generic values τ, so that they correspond
to well-distributed points on the curve/(hyper)surface. When we operate with Bézier curves
or other geometric objects represented in Bernstein basis, it is essential to ensure that τ falls
into the region of interest of the parametric function [52].

Exact solving

Our experiments of computing exact implicit equation (functions LinearSolve, NullSpace in
Maple, kernel in SAGE) have lead us to conclusion that evaluation by random integers pro-
vides best results. Random rational values evaluated as floats may not be handled by the
aforementioned solvers well, for the lost presicion is interpreted as linear system being over-
constrained. Complex values used in evaluation introduce non-rational coefficients into the
resulting expression. In comparison, the only downside of using integers is that building large
matrizes their entries grow fast.

Comparing Maple solvers shows that LinearSolve is faster than NullSpace (see 2.2, 2.3).
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Curve Exact #impl.
NullSpace LinearSolve matrix size monom.

Descartes' Folium 0.016 0.012 5× 5 3
Tricuspoid 0.076 0.044 15× 15 8
Talbot's curve 1.625 0.324 28× 28 8
Nephroid 1.656 0.312 28× 28 10
Fifth heart 5.3 0.104 33× 33 43
Trifolium 19.7 0.26 45× 45 37
Ranunculoid 8414.8 1.376 91× 91 43

Table 2.2: Runtimes (sec), matrix size and number of terms in the resulting polynomial for
curves.

Surface Solving method Matrix # implicit
NullSpace LinearSolve size monomials

Quartoid 0.06 0.036 16× 16 4
Peano 0.028 0.024 10× 10 4
Swallowtail 0.24 0.108 25× 25 6
Sine 2224.5 1.164 125× 125 7
Bohemian dome 2150.23.4 1.181 125× 125 7
Enneper 310.14 0.766 103× 103 23
Bicubic surface > 4hours 42.059 715× 715 715

Table 2.3: Runtimes (sec), matrix size and number of terms in the resulting polynomial for for
surfaces.

Numeric solving

In order to compute approximate implicit equation we apply singular value decomposition
(SVD), known as an accurate and numerically stable method for computing an orthonormal
basis of a range or a null space.

Definition 10. A matrix M ∈ Rn×m, n, m ∈ Z can be written as

M = (UΣV>),

where Σ ∈ Rn×m is diagonal, U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. This factor-
ization of M is called singular value decomposition.

The diagonal entries σ1, . . . ,σr of matrix Σ are non-negative and in decreasing order σ1 ≥
σ2 ≥ . . . ≥ σr ≥ 0, where r = min(m,n). They are known as singular values. The columns
of the matrices U and V are called respectively left and right singular vectors. They are
orthogonal and have unit length.

A basis of null(M) consists of the last rows of V> corresponding to the zero singular values
of M. When corank(M) = 1, the last row of V> corresponds to ~p.

When examining approximate methods we used the ratio of the last two singular values
σm/σm−1, small ratio indicates that the matrixM is close to having corank 1. Also, we employ
the condition number of the matrix κ(M) = |σ1/σ|S||, to measure the sensitivity of the result
to small changes in the input data. Large condition number signifies that even small changes
in the input can result in a big change in the output, i.e. the matrix is ill-conditioned.
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Table 2.4 shows representative timings about these options, which we examined with our
implementation onMaple, optimized for the specific task. Our experiments show that runtimes
do not vary significantly in small examples but in larger ones, the best results are given by
random integers for the exact method, and unitary complexes and roots of unity evaluated
as floats for the numeric method, with the former having a slightly better overall performance
over the latter, both in terms of stability and speed.

implicit lattice SVD (σm/σm−1)
Curve degree points root of 1 unitary C rand.Z
Folium 3 5 0.032 (10−12) 0.012 (10−12) 0.012 (10−13)

Conchoid 4 10 0.112 (10−14) 0.144 (10−14) 0.072 (10−13)

Bean curve 4 13 0.352 (10−11) 0.4 (10−14) 0.116 (10−13)

Tricuspoid 4 15 0.356 (10−14) 0.028 (10−14) 0.168 (10−14)

Cardioid 4 15 0.28 (10−14) 0.29 (10−14) 0.2 (10−12)

Nephroid 6 28 0.248 (10−15) 0.17 (10−34) 0.192 (10−21)

Talbot's curve 6 28 0.416 (10−14) 0.132 (10−17) 0.196 (10−16)

Trifolium 4 45 0.284 (10−34) 0.188 (10−77) 0.876 (10−20)

Fifth heart 8 33 0.224 (10−37) 0.124 (10−56) 0.63 (10−26)

Ranunculoid 12 91 3.764 (10−359) 2.224 (10−58) 79.853 (10−2)

Table 2.4: Comparison of matrix evaluation methods. Runtimes on Maple (sec), whereas the
parenthesis contains σ|S|/σ|S|−1.

Geometric objects of Bernstein basis

Representation of the geometric objects which uses the Bernstein polynomials as basis is
a popular industrial standard. Usually it is impossible to apply symbolic-computation-based
implicitization for such parametrizations, however CAGD implementations of Bézier curves
and NURBS patches represented using floating point arithmetic present interesting examples
for numerical solving. With assistance from O. Barrowclough, SINTEF, we have tested our
method against industrial examples of Bernstein basis geometric objects.

Our experiments show that themost important is to ensure that evaluation values belong to
the region of interest of the parametrization. We have successfully tried evaluation by rational
numbers, random or uniform as well as complex numbers. It appears that evaluating by
rational values provides best results in the terms of speed and approximation quality. In fact,
uniform values of specific distribution, allow to minimize approximation error. In particular,
following [8] we have tried evaluation by Chebyshev nodes in the interval [0,1],

τ =
1
2 +

1
2 cos

(2i− 1
2n π

)
, i = 1, . . . , n.

2.4 Multidimensional kernel space

In general, by using correctly selected evaluation values τ we ensure that the matrix M has
corank = 1.
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Degree Matrix Random rational Chebyshev points Roots of 1
size runtime cond.num. runtime cond.num. runtime cond.num.

3 7× 7 0.04 104 0.04 104 0.04 104
3 10× 10 0.16 105 0.19 104 0.48 1010
4 15× 15 0.11 108 0.1 105 0.22 108
7 36× 36 0.43 104 0.41 104 0.93 109

Table 2.5: Comparison of matrix evaluation methods for rational Bézier curves. Runtimes on
Maple (sec).

Degree Matrix Random rational Chebyshev points Roots of 1
size runtime cond.num. runtime cond.num. runtime cond.num.

3 6× 6 0.08 10 0.06 10 0.07 10
6 22× 22 0.35 102 0.35 103 0.84 103
9 129× 129 6.93 106 6.28 1015 14.84 1014
14 139× 139 8.65 104 9.34 1013 21.58 109

Table 2.6: Comparison of matrix evaluationmethods for NURBS patches. Runtimes onMaple
(sec).

However, for some inputs we obtain a matrix of corank > 1 when the predicted polytope
Q is significantly larger than the actual one. We formalize this concept in Thm. 15 and its
corollaries. It can be explained by the nature of our method: we rely on a generic resultant to
express the implicit equation, whose symbolic coefficients are then specialized to the actual
coefficients of the parametric equations. If this specialization is not generic, then the resulting
implicit equation divides the specialized resultant.

We address such cases by computing the gcd of 2 or more polynomials gi obtained from
kernel vectors. There exist many algorithms for the exact [96, 97] or approximate gcd of
multivariate polynomials. The first approximate approach, given polynomials f, g and error
tolerance ε > 0, computes themaximum degree gcd of polynomials f̂, ĝwhere |f−f̂|, |g−ĝ| < ε
[50]. The second minimizes ε such that f̂, ĝ have gcd of at least a given degree r [75]. Another
approach is to consider a pair of univariate polynomials of degree n and let d,e be non-
negative integers. It is shown in [115] that allowing perturbations of (f0, f1) by addition of a
pair (u, v) of polynomials of degrees at most e then the problem of computing gcd(f+u, g+v)
of degree ≥ d, has at most one solution, and if one exists, it can be computed in polynomial
time. There exist similar techniques for several univariate polynomials [46]. Our software uses
Maple's command gcd for exact, and package ApaTools2 for approximate gcd computations.

Example 6 (Cont'd from Example 2). The method in [55] yields 3 implicit polytope vertices:
(1, 1), (0, 3), (3,0). This polygon contains 5 lattice points which yield the potential implicit
monomials y3, xy, xy2, x2y, x3 indexing the columns of matrix M in this order. The kernel of M
is spanned by vector [1,−3, 0, 0, 1]; the implicit equation is x3 − 3xy+ y3.

If we change the parametrization, substituting t by t2, we obtain

x0 =
3t4

t6 + 1
, x1 =

3t2
t6 + 1

,

2http://neiu.edu/∼zzeng/apatools.htm [122]
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then the algorithm in [55] predicts an implicit polytope with vertices: (2, 2), (0,6), (6,0), con-
taining 12 lattice points. We build a matrix M of size μ × 12 (μ ≥ 12); of corank 5. The
polynomials corresponding to its kernel vectors are: g1 = x2y4 − 3x3y2 + x5y, g2 = −y6 +
6xy4 − 9x2y2 + x6, g3 = xy5 − 3x2y3 + x4y2, g4 = xy4 − 3x2y2 + x4y, g5 = y6 − 3xy4 + x3y3.
Their gcd is the implicit equation.

Example 7 (Unit Sphere). Consider its parameterization:

x0 =
2s

1+ t2 + s2
, x1 =

2st
1+ t2 + s2

, x2 =
−1− t2 + s2
1+ t2 + s2

.

ResPol predicts an implicit polytope with vertices: (0, 0,0), (0, 0, 2), (0,0,4), (0, 2,0),
(0, 4, 0), (4, 0,0). Implicit equation of the sphere being quadratic, here implicit polytope
P ⊂ Q, where Q is predicted polytope. which contains the actual implicit polytope. It con-
tains 35 lattice points. We build M of size μ × 35 (μ ≥ 35) of corank 10. The polynomials
corresponding to the kernel vectors are:
g1 = −y2 + y2z2 + y4 + x2y2,
g2 = −z2 + z4 + y2z2 + x2z2,
g3 = −1+ z2 + x2 + y2,
g4 = −x+ xz2 + xy2 + x3,
g5 = −yz+ yz3 + y3z+ x2yz,
g6 = −y+ yz2 + y3 + x2y,
g7 = −xz+ xz3 + xy2z+ x3z,
g8 = −z+ z3 + y2z+ x2z,
g9 = −xy+ xyz2 + xy3 + x3y,
g10 = −1+ 2z2 − z4 + 2y2 − 2y2z2 − y4 + x4.

Computing the gcd of two randomly chosen polynomials yields, either the actual implicit
equation p = −1+ z2 + x2 + y2, or a multiple of p of degree 3.

Let us have a closer look at the numeric solving in the case of dim(kernel(M)) = 10.
Applying SVD in we obtain approximate results, i.e. polynomials with non-integer coefficients.
Computing the kernel of M approximately yields polynomials with real coefficients.

The approximate gcd of the first two is:
−0.9999998548199414+0.9999999857259533x2+1.000000000052092y2+1.000000000000000z2,

which is accurate to 7 decimal digits.

The following theorem establishes the relation between the dimension of the kernel space
of M and the accuracy of the predicted support. It remains valid even in the presence of base
points. In fact, it also accounts for them since then, Q is expected to be much smaller of P.
Theorem 15. Let P = N(p) be the Newton polytope of the implicit equation, and Q the pre-
dicted polytope. Then, assuming M has been built using sufficiently generic evaluation points,
the dimension of its kernel space equals #{m ∈ Zn : m+ P ⊆ Q} = #{m ∈ Zn : N(xm · p) ⊆
Q}.

Proof. By Lem. 12, the kernel space of M contains the coefficient vectors ~c of all polynomials
of the form fp, where N(fp) ⊂ Q, or, equivalently, N(f) + N(p) ⊂ Q.

Now, assume that there are r elements a1, . . . , ar ∈ Zn such that N(xai · p) ⊆ Q and let
gi = xaip, i = 1, . . . , r. Then the coefficient vector ~ci of gi lies in the kernel space of M
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because gi vanishes on all evaluation points mi(τ i), i = 1, . . . , k used for constructing M,
since p vanishes on these points. Moreover, the vectors ~ci in the set {~c1, . . . , ~cr} are linearly
independent. Obviously, every coefficient vector ~c of a polynomial of the form fp, where
N(fp) ⊂ Q, can be written as a linear combination of the vectors ~ci, hence corank(M) = r.

Let the P,Q be as in Thm. 15 and assume Q ⊇ P + R, where R contains r lattice points
and is maximal wrt the previous inclusion, i.e. if R′ ) R, then Q ( P+ R′; R can be a point.

Corollary 16. Consider the set of polynomials as an R-vector space in the monomial basis
and let I be the R-vector space generated by all polynomials of the form pf ∈ R[x0, . . . , xn],
such that NP(f) ⊆ R. Assuming generic values for τ's, then corank(M) = dimR(I).

Proof. I is generated, as an R-vector space, by polynomials xmip, i = 1, . . . , r, where mi ∈ Zn

are lattice points in R and dimR(I) = #{m ∈ Zn : NP(xm · p) ⊆ Q}. Therefore, corank(M) =
dimR(I).

Let Ai, i = 0, . . . , n + 1 be the supports of the polynomials Fi and consider the generic
polynomials

Corollary 17. Let M be the matrix from Alg. 1, built with sufficiently generic evaluation points,
and suppose the specialization of the polynomials in (2.1) to the parametric equations is suffi-
ciently generic. Let v1, . . . , vk be a basis of the kernel of M and g1, . . . , gk be the corresponding
polynomials (Step 4 of Alg. 1). Then the gcd of g1, . . . , gk equals the implicit equation.

Proof. This Corollary is deduced straight forward from Cor. 16.

Some examples where M is of corank > 1 are shown in the following tables; Table 2.7,
contains parametric and implicit representations of the classic algebraic curves and surfaces.
Table 2.8 shows: the number of the lattice points of the actual implicit polytope, the degree
and the number of monomials in the implicit equation, the number of its lattice points of the
predicted implicit polytope, the corank of matrixM, and the number of polynomials gi of a cer-
tain degree (in parenthesis) obtained from the kernel vectors. It is obvious, that as the degree
and the number of polynomials gi of that degree, grows large, then more gcd operations are
required to obtain the implicit equation or its multiple of lower degree.

Table 2.9 shows distribution of the polynomials corresponding to the kernel vectors in terms
of degree and number of monomials; number of instances, when the gcd of two polynomials
corresponding to kernel vector entries chosen randomly has certain degree and probability of
the gcd being actual implicit equation; number of instances and a probability of the gcd of the
result of the previous operation and a randomly chosen polynomial.

Consider tables 2.8 and 2.9. We see that almost in all the cases actual implicit expression
is present among the polynomials, corresponding to the kernel vectors. It is the polynomial
of the least degree. Notable exception here is the hypercone, where for all the 84 kernel
vectors polynomials have same degree. Such distribution calls for the following improvement
of our algorithm: computing gcd of the two polynomials of the least degree. In the case of
the numeric solving we propose filtering out terms with the coefficients that are close to zero,
sorting polynomials by degree then computing approximate gcd.

However, this measure is inefficient if the problem we are solving has similar characteris-
tics to that of the hypercone. In such a case our proposed solution would be to take a smaller
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Table 2.7: Parametric and implicit equations with matrix M of corank> 1.

Geometric object Parametric equations Implicit equation

Trifolium curve (−(−1+ t2)2(1− 14t2 + t4)/(1+ t2)4); y4 − 3xy2 + 2x2y2 + x3 + x4
2t(−1+ t2)(1− 14t2 + t4)/(1+ t2)4

Cayley sextic (4(1− t2)6 − 3(1− t2)4(1+ t2)2)/(1+ t2)6; 4(x2 + y2 − x)3 − 27(x2 + y2)2
(8(1− t2)5t− 2(1− t2)3t(1+ t2)2)/(1+ t2)6

Sphere 2s/(1+ t2 + s2); x2 + y2 + z2 − 1
2st/(1+ t2 + s2);
(−1− t2 + s2)/(1+ t2 + s2)

Double sphere (2(1− t2))s/((1+ t2)(1+ s2)); x2 + y2 + z2 − 1
2t(1− s2)/((1+ t2)(1+ s2));
(1− s2)/(1+ s2)

Eight surface (4(1− t2))s(1− s2)/((1+ t2)(1+ s2)2); x2 + y2 − 4z2 + 4z4
2t(1− 6s2 + s4)/((1+ t2)(1+ s2)2);
2s/(1+ s2)

Hypercone r(1− t2)(1− s2)/((1+ t2)(1+ s2)); x2 + y2 + z2 − w2

2r(1− t2)s/((1+ t2)(1+ s2));
2rt/(1+ t2);
r

''offset'' of the predicted Newton polytope. Size of the ''offset'' is desided by the rule of the
binary searchwe scale down by two, if there is no solutions, enlarge the ''offset'' by 0.5, and
so on.

As an illustration let us apply the ''offset'' taking to the curve ``trifolium'',

Example 8 (Trifolium). Trigonometric representation of the ``trifolium'' curve is:

x0 = −a cos(t) cos(3t), x1 = −a sin(t) cos(3t)

. Rational parametric representation:

x0 = −
(−1+ t2)2(1− 14t2 + t4)

(1+ t2)4
, x1 =

2t(−1+ t2)(1− 14t2 + t4)
(1+ t2)4

.

Implicit equation: x3 + x4 − 3xy2 + 2x2y2 + y4 = 0
Predicted support gives us Newton polygone Q with vertices (0, 0), (0,8), (8,0), while for

the Newton polygone P of actual implicit equation the vertices would be (1, 2), (0,3), (0,4),
(4, 0). See Figure 8.

If we proceed with the algorithm using Q for building matrix M, we need to evaluate 45
potential monomials (number of the lattice points contained in Q). Kernel space of M is 15-
dimensional.

However, if we scale down theQ by two, new polygoneQ′ with vertices (0,0), (0,4), (4,0)
has 15 lattice points and solving produces 1-dimensional kernel vector space.

Example 9 (Hypercone). We illustrate our method on a hypersurface of dimension 4, whose
trigonometric representation is x0 = t1 cos t2 cos t3, x1 = t1 cos t2 sin t3, x2 = t1 sin t2, x3 = t1.
Its rational parametric representation is:

x0 =
t3(1− t21)(1− t22)
(1+ t21)(1+ t22)

, x1 =
2t3(1− t21)t2

(1+ t21)(1+ t22)
, x2 =

2t3t1
1+ t21

, x3 = t3. (2.12)
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Table 2.8: The table shows the number of the lattice points of the actual implicit polytope, the
degree and number of monomials of the implicit equation, the number of the lattice points of
the predicted implicit polytope, and the corank of M.

Geometric Implicit Predicted
object lattice degree mono- lattice corank # gi's of

points mials points of M (degree)
Trifolium curve 8 4 5 43 15 1(4),2(5),3(6),4(7),5(8)
Cayley sextic 19 6 11 89 28 1(6),2(7),3(8),4(9),5(10),6(11),7(12)
Sphere 10 2 4 35 10 1(2),3(3),6(4)

Double 10 2 4 125 45 3(4),4(5),9(6),11(7),18(8)
sphere

Eight 10 4 4 171 62 1(4),3(5),5(6),5(7),6(8),6(9),6(10),
surface 6(11),6(12),6(13),6(14),4(15),2(16)

Hypercone 10 2 4 165 84 84(8)

This is an example where the resultant of the system (2.10) is a multiple of the implicit equa-
tion, hence it defines a variety strictly containing the image of the parametrization.

The ResPol predicts 4 implicit vertices: (8,0,0,0), (0,8,0,0), (0,0,8,0), (0,0,0,8). Propo-
sition 6, applied to the polynomials defined by the parametric expressions in (2.12), gives the
following degree bounds: total degree ≤ 24, degx0 ≤ 4, degx1 ≤ 4, degx2 ≤ 8, degx3 ≤ 16
which improve the predicted support.

The initial predicted polytope contains 165 lattice points while the improved one contains
125. The corresponding interpolationmatrices have corank 84 and 45 and it takes 485sec and
5.45sec, respectively, to compute their nullspace using LinearSolve and random integers.
The polynomials obtained from the nullvectors have total degree 8 and 7, respectively, being
multiples of the true implicit equation of the hypercone.

We apply scaling by one half to the initial predicted implicit polytope and try the new one
with vertices (4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0,4). This gives a matrixM of corank 10;
all calculations now take 0.264sec. Repeating the procedure we build a matrix whose corank
equals 1 for the polytope offset with vertices (2,0, 0, 0), (0, 2, 0,0), (0,0,2,0), (0, 0, 0, 2). With
this input data all calculations take 0.044sec. Thus we obtain the implicit equation x20 + x21 +
x22 − x23.

Example 10. We examine the hypersurface described in [79, 4.2].

x0 =
4

−2t22 − 1+ 2t3t22 + 2t3 + 2t3t21
,

x1 =
−2t22 + 1+ 2t3t22 − 2t3 + 2t3t21
−2t22 − 1+ 2t3t22 + 2t3 + 2t3t21

,

x2 =
4t2(−1+ t3)

−2t22 − 1+ 2t3t22 + 2t3 + 2t3t21
,

x3 =
4t3t1

−2t22 − 1+ 2t3t22 + 2t3 + 2t3t21
.

(2.13)

To facilitate the computation of the predicted support, we express the common denominator
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Table 2.9: Results for gcd of 2 and 3 polynomials corresponding to kernel vector entries
chosen randomly.

Geometric object kernel pols Degree gcd once gcd twice
# monomials # pols Instances Probability Instances Probability

Trifolium curve 5 1 4 54 0.51 993 0.73
5,7 2 5 30 306
5,7,9 3 6 15 63

5,7,9,11 4 7 6 3
5,7,9,11,13 5 8

Cayley sextic 11 1 6 153 0.4 5778 0.59
11,14 2 7 100 2625

11,14,17 3 8 62 1029
11,14,17,20 4 9 36 324

11,14,17,20,23 5 10 19 69
11,14,17,20,23,26 6 11 8 3

11,14,17,20,23,26,29 7 12
Sphere 4 1 2 30 0.67 333 0.93

4 3 3 15 27
4,7 6 4

Double sphere 2 218 0.22 17652 0.41
3 259 13590

4,6 3 4 242 7770
4,6 4 5 146 2835

4,6,7,10 9 6 95 693
4,6,7,8,10 11 7 30 30

4,6,7,8,10,11,15 18 8
Eight surface 4 1 4 233 0.12 26166 0.23

4 3 5 304 24987
4 5 6 287 19821
4 5 7 252 15084
4,7 6 8 225 11076
4,7 6 9 189 7608
4,7 6 10 161 5208
4,7 6 11 125 2496
4,7 6 12 73 819
4,7 6 13 27 162
4,6,7 6 14 13 33
4,7 4 15 2
4,7 2 16

Hypercone 2 307 0.09 81768 0.29
3 648 98997
4 901 68304
5 757 28890
6 603 7419
7 270 474

4,7,11,16 84 8

introducing a new variable w:

F0 = 4− x0w,
F1 = −2t22 + 1+ 2t3t22 − 2t3 + 2t3t21 − x1w,
F2 = 4t2(−1+ t3)− x2w, F3 = 4t3t1 − x3w,
F4 = −2t22 − 1+ 2t3t22 + 2t3 + 2t3t21 − w.

(2.14)

We compute the Newton polytope of this system's sparse resultant wrt s, t, u,w, projected to
the space of x0, x1, x2, x3, and obtain the predicted implicit polytope with vertices (0, 2, 0,4),
(6, 0, 0, 0), (2,4,0,0), (0,0,6, 0), (0, 0, 0,6), (2,0,0,0), (0,0,4, 0), (0, 0, 0,4), it contains 144
lattice points. Proposition 6, when applied to the polynomials defined from the parametric
expressions in (2.13), gives the following degree bounds: total degree ≤ 8, degxi ≤ 8,∀i =
0,1, 2, 3, which do not improve the predicted support. The matrix M has corank 8. Choos-
ing an arbitrary nullvector, the corresponding polynomial is a multiple of the actual implicit
equation.
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(0, 4)

(1, 2)

(4, 0)

(0, 8)

(8, 0)(0, 0) (3, 0)

Figure 2.5: Actual and predicted support for the algebraic curve ''trifolium'' (Example 8).

We try taking an ``offset'' of the predicted polytope. When scaled by 0.5, the system has
no solution. Scaling by 0.75, we get a polytope containing 48 lattice points and obtain a
polynomial of total degree 4. Factorizing it we get the implicit polynomial of degree 3

2x1 + 2x22 + 2x21 − 2x1x23 − 2+ 2x23 − x0x22 − 2x31 + (1/2)x20x1 + (1/2)x20 + x0x23 − 2x1x22,

equivalent to the one in [79, sec.4.2]. In Maple 13, our software with input the initial predicted
polytope takes 2.2 sec, while with the scaled down polytope by 0.75 takes 0.348 sec.
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Chapter 3

Implementation of the implicitization
method

In this chapter we give a detailed report on the implementation of our method in Maple illustrat-
ing it with the examples. We report on a comparison of our implementation against popular
implicitization methods, such as μ-bases and Gröbner bases. Then we show our method
used to compute A-discriminants: one of its possible applications outside the geometry. We
finish with the conclusions and some ideas for the future studies.

3.1 Exact and approximate solving

In this section we discuss the actual symbolic and numeric computations once the problem
has been reduced to a question in linear algebra. We start with the software for the matrix
operations, then present several detailed examples. Our algorithms are implemented inMaple
and SAGE.

3.1.1 Maple

Our algorithm is implemented in Maple 131, based on the software for computing implicit
polytopes [49], available as a C++ implementation2. The main functions are imgen (general
implicitization, applicable for 2D, 3D and 4D geometrical objects,) and imcurve (for curves
only, support prediction is part of the routine).

The functions take the following arguments:
- list of parametric expressions;
- only imgen: vertices of the predicted support;
- solving method parameter: ``l'' for LinearSolve, ``n'' for Nullspace, ``s'' for SVD;
- evaluation parameter: ``int'' for integers, ``unc'' for random complex numbers modulo 1,

``ruf'' for roots of unity evaluated as floating point numbers;
- ratio between number of rows and columns of the matrix (allows to construct over-

constrained systems improving accuracy of numeric solving).
1http://ergawiki.di.uoa.gr/index.php/Implicitization
2http://sourceforge.net/projects/respol/files/
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For exact kernel computation, we use function LinearSolve() from package LinearAlgebra,
or function Linear() from package SolveTools. Equivalently, we may compute null(M)
using the command NullSpace() of LinearAlgebra. SVD is implemented with command
SingularValues().

We have also implemented numerical versions of our algorithm in Matlab. The numerical
stability of matrix M is measured by comparing ratios of singular values of M. We employ the
condition number κ(M) = |σ1/σ|S||, as well as ratio |σ1/σ|S|−1|, where σ1 is the maximum sin-
gular value. By comparing these two numbers, we decide whether the matrix is of numerical
corank 1, otherwise we instantiate a new matrix using new values.

All experiments, unless otherwise stated, were performed on a Celeron 1.6 GHz linux
machine with 1 GB of memory.

In this set of experiments we show the size μ× |S|, μ > |S| of matrices used in numerical
computation; the corresponding matrices for exact computation are |S| × |S|.

A first conclusion is that SVD is expectedly faster than exact linear algebra, in most ex-
periments. The best timings for the latter are obtained using function LinearSolve which
sometimes outperforms SVD. This is partially due to the larger size of (rectangular) matrices
used in SVD. A second observation is that our approximate methods gave very satisfactory
results with respect to the accuracy of the computed implicit equation, see Section 3.1.4.
Overall, our results are encouraging and indicate that our algorithms are worth applying to
implicitization. However, as the matrix size grows, our current implementations show their
limitations.

3.1.2 Examples

In order to give a better understanding of our implicitization method demonstrate the results
of its application on a series of curves and surfaces, including the benchmark example of
Bicubic surface.

Curve SVD #impl.
time accuracy (a) matrix size monom.

Descartes' Folium 0.012 1.29 · 10−12 10× 5 3
Tricuspoid 0.028 6.05 · 10−6 30× 15 8
Talbot's curve 0.132 8.06 · 10−16 56× 28 8
Nephroid 0.17 2.31 · 10−21 56× 28 10
Fifth heart 0.124 1.09 · 10−5 66× 33 43
Trifolium 0.188 6.37 · 10−37 90× 45 37
Ranunculoid 2.224 7.71 · 10−6 182× 91 43

Table 3.1: Runtimes (sec) and accuracy of approximation for curves.

Example 11 (Folium of Descartes). Let us consider the following curve:

x0 = 3t2/(t3 + 1), x1 = 3t/(t3 + 1).

The algorithm in [55] yields 3 implicit polytope vertices: (1,1), (0, 3), (3,0). This polygon con-
tains 5 lattice points which yield the potential implicit monomials x31, x0x1, x0x21, x20x1, x30 indexing
the columns of matrixM in this order. To fill the rows of matrixM, we plug in to each monomial
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Surface SVD matrix # implicit
time accuracy (a) size monomials

Quartoid 0.036 9.72 · 10−14 16× 16 4
Peano 0.024 3.05 · 10−14 10× 10 4
Swallowtail 0.096 1.52 · 10−11 25× 25 6
Sine 0.3 1.03 · 10−5 125× 125 7
Bohemian dome 0.292 1.68 · 10−5 125× 125 7
Enneper 0.42 8.51 · 10−9 103× 103 23
Bicubic surface 74.63 5.69 · 10−5 715× 715 715

Table 3.2: Runtimes (sec) and accuracy of approximation for surfaces.

the parametric expressions and evaluate using 5 random integer τ 's: 19,17, 10, 6, 16. Then,

M =



1270238787
322828856000

61731
47059600

66854673
322828856000

3518667
322828856000

185193
322828856000

24137569
4394826072

4913
2683044

1419857
4394826072

83521
4394826072

4913
4394826072

27000000
1003003001

9000
1002001

2700000
1003003001

270000
1003003001

27000
1003003001

1259712
10218313

1944
47089

209952
10218313

34992
10218313

5832
10218313

452984832
68769820673

36864
16785409

28311552
68769820673

1769472
68769820673

110592
68769820673


The nullvector is [1,−3,0,0, 1]: its 3 nonzero entries correspond to monomials x31, x0x1, x30,
i.e. the actual monomials of the implicit equation. The latter turns out to be x30 − 3x0x1 + x31,
which equals the true implicit equation of the curve.

Example 12 (Bicubic surface). We consider the benchmark challenge of the bicubic surface
[67]:

x0 = 3t1(t1 − 1)2 + (t2 − 1)3 + 3t2, x1 = 3t2(t2 − 1)2 + t31 + 3t1,
x2 = −3t2(t22 − 5t2 + 5)t31 − 3(t32 + 6t22 − 9t2 + 1)t21 + t1(6t32 + 9t22 − 18t2 + 3)− 3t2(t2 − 1).

The implicit degree in x0, x1 is 18, and 9 in x2. The approach of [56] could not handle it because
it generates 737129 regular triangulations (by TOPCOM) in a file of 383MB; our method com-
putes the optimal support. The implicit polytope has vertices (0, 0, 0), (18,0,0), (0,18, 0), (0, 0, 9),
and 715 lattice points. The nullvector of matrix M, computed in 42sec, contains 715 non-zero
entries which correspond precisely to the actual implicit support.

Our last example concerns resultant computation. The support prediction software ac-
tually computes a resultant support so its straightforward application is to reduce resultant
computation to interpolation; this is also the premise of [35, 112]. The main difference with
interpolating the implicit equation is the absence of a parametric form of the resultant. But,
this is provided by the parametrization of the resultant hypersurface, known as Horn-Kapranov
parametrization [77], illustrated below.

Example 13. Let f0 = a2x2+a1x+a0, f1 = b1x2+b0, with supports A0 = {2, 1, 0},A1 = {1,0}.
Their (Sylvester) resultant is a polynomial in a2,a1,a0,b1,b0. The algorithm in [49] computes
its Newton polytope with vertices (0,2,0, 1, 1), (0,0, 2, 2, 0), (2, 0, 0, 0,2); it contains 4 points,
corresponding to 4 potential monomials a21b1b0, a20b21, a2a0b1b0, a22b20. The Horn-Kapranov
parametrization of the resultant yields: a2 = (2t1+t2)t23t4, a1 = (−2t1−2t2)t3t4, a0 = t2t4, b1 =
−t1t23t5, b0 = t1t5, where the ti's are parameters. We substitute these expressions to the
predicted monomials, evaluate at 4 sufficiently random ti's, and obtain a matrix whose kernel
vector (1, 1,−2, 1) yields R = a21b1b0 + a20b21 − 2a2a0b1b0 + a22b20.
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The complexity of interpolating resultants is O∗(|S|2) where S is the set of lattice points in
the predicted resultant support, because the dominating stage is a kernel computation for a
structured matrix M. Using Weidemann's approach, the main oracle is post-multiplication of
M by a vector, which amounts to evaluating a (n+1)-variate polynomial at chosen points, and
this can be done in quasi-linear complexity in |S| [114, 88]. For certain classes of polynomial
systems, when one computes the resultant in one ormore parameters, this may be competitive
to current methods for resultant computation. The best such methods rely on developing
the determinant of a resultant matrix in these parameters [18, 37]. The matrix dimension is
in O∗(tn degR) [47], where degR is the total degree of R in all input coefficients, and t is
the scaling factor relating the input Newton polytopes, which is bounded by the maximum
degree of the input polynomials fi in any variable. Then, developing univariate resultants has
complexity inO∗(t3.5n(degR)3.5) [47, 57]. Hence, our approach improves the complexity when
the predicted support is small compared to t and degR.

3.1.3 Curves and surfaces of Bernstein basis

Our approach to implicitization relies on the support prediction method that operates in the
monomial basis. However, parametric representations of Bernstein basis, such as NURBS
curves and surfaces are widely used in CAD systems. Being interested in exploring possibil-
ities for practical applications of our method, we have run series of experiments curves and
surfaces of Bernstein basis. Results are presented in Table 3.3.

We restricted our experiments to rational and non-rational Bézier curves defined in 1.4
and NURBS patches. However it is possible to apply the same method to planar splines or
surface patches, i.e. manifolds given by k parametric pieces. The resulting single implicit
equation will approximate the piecewise parametrization.

Two aspects that characterize application of our algorithm to NURBS curves and surfaces

• Parametrization has to be converted to monomial basis.

• When building matrixMwe have to ensure that the evaluation points lie within the region
of interest of the parametrization.

In our experiments we have used evaluation by rational numbers, random or uniform, and
complex roots of unity. Note, that that in case of trigonometric parametrizations the former
led to a loss of numerical stability. Here, random rational numbers in [0, 1] provide the fastest
results, which makes them our preferred evaluators. In Table 3.3 when not otherwise stated
we use them.

We have tried also evaluation with Chebyshev nodes in [0,1].
When solving numerically the latter allows to minimize the approximation error [8]. Using

complex roots of unity for evaluation appears to be the slowest mode; besides it introduces
complex coefficients into the resulting approximate implicit equation.

In the course of conversion from the Bernstein to monomial basis precision loss may occur.
Table 3.3 contains three such cases. The NURBS curves have been kindly provided by the
authors of [121] as a part of the package with industrial examples. NURBS curves are defined
by their order, and a knot vector, a set of weighted control points. The latter usually are
given in floating point numbers. When the parametrization represented in monomial bases
is evaluated, inaccuracy leads to the construction of a system that, being set to solving by
exact method (such as LinearSolve) has no solution: the kernel vector contains only zeros.
In order to remedy that, we apply filtering to the resulting ''raw'' parametric equations:
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• If possible, we try to represent float coefficients as quotients of integers.

• The rest of the instances occur by removing all monomials (usually of high degree) with
coefficients that are close to zero, whose absolute value is < 10−2.

The latter have smaller predicted implicit polytope than the ''raw'' instance.

Figure 3.1: Bézier curve: parametric form (left), exact implicit representation (right).

If an exact solution is impossible to attain, we apply numerical solving to compute an
approximate implicit equation.

Table 2.6 shows the results of our experiments with industrial examples presented in [121],
which are NURBS patches with floating point coefficients.

In the Table 2.6 there are some cases presentedrational ''float'' values (Simplesweep)
where LinearSolve does not produce a non-zero kernel; this example being obtained from
an industrial source. In other cases, rounding yields an implicit equation of smaller degree
than the actual one. This happens with Nested nodal and Simplesweep, which have implicit
degree equal to 6. We conclude that, for NURBS patches with floating point coefficients,
approximate implicitization is more reliable than exact implicitization.

3.1.4 Accuracy of the approximate implicitization

There are several possible sources for the errors when solving numerically. Errors can be in-
troduced by using not sufficiently generic values formatrix evaluation. Processing parametriza-
tions where coefficients are given in floating point numbers may result in mathematical trun-
cation and rounding errors. Therefore, it is important to estimate the numeric accuracy, or
quality, of the solution. In our work we have applied several measures to quantify the accu-
racy of approximate implicitization.

As mentioned before, we use the matrix condition number and the ratio between the two
smallest singular values to evaluate the error in the coefficient vector computed by SVD.

We employ two measures that provide a lower bound on the accuracy of approximate
implicitization:
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Table 3.3: Bézier and NURBS curves, results of implicitization. Runtimes are given in sec-
onds.

Curve Degree Exact SVD SVD SVD
solving Chebyshev roots of

nodes unity
Bézier curve 4 0.16 0.12 0.13 0.21
Bézier curve 5 0.29 0.16 0.19 0.33
Bézier curve 6 0.47 0.16 0.21 0.53
Bézier curve 8 5.84 0.46 0.49 1.1
NURBS curve 3 - 0.05 0.05 0.09
NURBS curve 4 - 0.09 0.1 0.22
NURBS curve 7 - 0.43 0.36 0.93

Experiments have been performed on an Intel©Core2 Duo CPU, 2.20GHz, 3Gb memory,
SAGE 5.4.

(a) Coefficient difference: measured as the Euclidean norm of the difference of the two
coefficient vectors Vexact,Vapp, obtained from exact and approximate implicitization, after
padding with zero the entries of each vector which do not appear in the other.

(b) Evaluation norm: measured by considering the maximum norm of the approximate im-
plicit equation when evaluated at a set of sampled points on the given parametric object.
This is a lower bound on how far from zero can such a value be.

When using numerical methods, the computed implicit equation is not a polynomial with
rational coefficients, hence we need to convert the computed real or complex kernel vector to
a rational vector. This is achieved by setting all coefficients smaller than a certain threshold,
defined by the problem's condition number, equal to zero. The result is not always equal to
the exact implicit equation, so its accuracy is quantified by two measures discussed later.
The overall process is computationally rather costly; it can be avoided whenever an implicit
equation with floating point coefficients is sufficient for a specific application.

We can actually improve the accuracy of approximation if we disregard all real or complex
entries of the coefficient vector with norm close to zero. This simple filtering, applied with a
threshold of 10−6, improves the accuracy under measure (a) by up to one order of magnitude.
All results shown in the tables concerning approximate implicitizationmake use of this filtering.

The approximate implicit equation in all experiments below is obtained using the command
SingularValues(), where the matrix is instantiated by unitary complex values τ, whereas
the exact one is obtained using command NullSpace() using random integers. We used
several parametric curves and surfaces in our experiments. The runtimes of approximate and
exact methods, and the accuracy of approximation using measure (a) above, are shown in
Table 3.1 and Table 3.2. These results confirm that SVD can give very good approximations
of the actual implicit equation on most inputs.

One of the main difficulties of approximating the implicit equation is to build the matrix M
so that its numeric corank is 1. Our experiments indicate, expectedly, that if the entries of
M take big absolute values, then computations with M are less stable. We improve stability
by avoiding values that make the denominators of the parametric polynomials evaluate close
to 0. These values are singular points so we choose a box containing each such point and
remove them when we pick different values. Moreover, we add more rows to M.
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We compare the runtimes for exact and approximate methods, and the accuracy of the
latter using bothmeasures: in Table 3.4. Bothmeasures give overall very encouraging results.

Surface Max norm of approximate implicit polynomial
Bohemian dome 7.21668 · 10−10

Quartoid 7.44845 · 10−16

Sine 1.25549 · 10−5

Swallowtail 1.98798 · 10−10

Table 3.4: Accuracy of approximation under measure (b) over 100 sampled points

One of the main difficulties of approximating the implicit equation is to build the matrix
M so that its numeric corank is 1. Our experiments indicate that if the entries of M take big
absolute values, then computations with M are less stable. We improve stability by avoiding
values that make the denominators of the parametric polynomials evaluate close to 0. These
values are singular points so we choose a box containing each such point and remove them
when we pick different values. Moreover, we construct rectangular matrix M adding more
rows. Experiments show that performing SVD on such an over-constrained system allows to
increase accuracy of the approximate implicitization.

Hausdorff distance

There is a relation between the measures of the approximate implicitization's accuracy pre-
sented above and the Hausdorff distance for measuring the distance between two hypersur-
faces. Here we discusse the latter presenting the outcome of our joint work with the Thang
Luu Ba.

Definition 11. Let the distance of a point x ∈ Rn+1 to a setV ⊂ Rn+1 beD(x,S) := infy∈SD(x, y),
where D denotes the metric distance in Rn+1. The Hausdorff distance of sets V1,V2 is

dH(V1,V2) := max{sup
x∈V1

D(x,V2), sup
x∈V2

D(x,V1)}.

If V1,V2 are algebraic hypersurfaces and compact, this becomes

dH(V1,V2) = max{max
P∈V1

min
Q∈V2

D(P,Q),max
Q∈V2

min
P∈V1

D(P,Q)}.

Suppose V1,V2 are parametrized by f(t) := (f0(t), . . . , fn(t)) and g(u) := (g0(u), . . . , gn(u)),
where t := (t1, . . . , tn),u := (u1, . . . , un) ∈ Ω, then the Hausdorff distance is

dH(V1,V2) = max{max
t∈Ω

min
u∈Ω

√
S(t,u),min

t∈Ω
max
u∈Ω

√
S(t,u)},

where S(t,u) is the inner product (f(t) − g(u)) · (f(t) − g(u)). In this case, the computation
reduces to solving a nonlinear system, which is quite hard [89]. In the case of curves, when
the nearest points are both inner points, the system becomes S′

t(t,u) = S′
u(t,u) = 0.

In [26, 27], the authors gave effective algorithms to compute the Hausdorff distance for
B-spline curves and Bézier curves. However, there is no effective algorithm for computing
Hausdorff distance in general.
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Suppose V1,V2 are two polynomials representing an implicit equation. Vi := {x ∈ Rn+1 :
pi(x) = 0,pi ∈ R[x], i = 1,2}. The computation of dH(V1,V2) appears to be difficult problem.
even if the Vi are implicit equations of curves.

In [73], the author bounds the Hausdorff distance of spline curves by cM, where c is con-
stant andM the maximum of absolute coefficients of the spline functions difference p1(x1, x2)−
p2(x1, x2).

There is no general connection betweenHausdorff distance and the coefficients of p(x1, x2),
though we expect that, if the latter are sufficiently small, then dH(C1,C2) is small.

Let V1 be parametrized by (f0(t), . . . , fn(t)), t ∈ Ω, and V2 = {x ∈ Rn+1 : p(x) = 0, p ∈
R[x]}. Then dH(V1,V2) is related to p(f0(t), . . . , fn(t)) by the Łojasiewicz inequality [72]. The Ło-
jasiewicz inequality asserts ∃ c,α > 0 : d(x,V2)

α ≤ c |p(x)|, for every x in a compact domain.
If p(x) ∈ R[x] is an approximate implicit equation of V1,

dH(V1,V2)
α ≤ cmax |p(f0(t), . . . , fn(t))|, t ∈ Ω.

In [73], if C1 is a B-spline and p(x) is a spline bivariate function, there is a bound of c
supposing C1 is close enough to C2.

Our second measure (b) for evaluating the quality of approximate implicitization has fol-
lowed this approach. Evaluating the exact maximal of |p(f0(t), . . . , fn(t))|, t ∈ Ω is complicated
so we approximate the distance by choosing a large sample for the parameters t and find
max |f(t)|.

The Fréchet distance is also a fundamental tool to compute the distance between two
parametric curves. Given two parametric curves C1 and C2 in parametrized form f,g : [0, 1]→
R2, it is

dF(C1,C2) := inf
ρ,σ

max
t∈[0,1]

D(f(ρ(t)), g(σ(t))),

where ρ,σ : [0, 1]→ [0, 1] range over all continuous and non-decreasing functions (reparame-
trizations) with ρ(0) = σ(0) = 0 and ρ(1) = σ(1) = 1. Obviously, dH(C1,C2) ≤ dF(C1,C2),
but the ratio dH/dF is not bounded. It is possible for two curves to have small Hausdorff
but large Fréchet distance. In [4], the authors showed that, for closed convex curves, the
Hausdorff equals the Fréchet distance, while the latter is≤ κ+1 times the Hausdorff distance
for κ-bounded curves. In [13], the authors studied the Fréchet distance for simple polygons
but it seems likely that the Fréchet distance between general surfaces is not computable.

Example 14. Consider a parametric curve C1:

x(t) = 3t+ 1, y(t) = t4 + 2t3 − t+ 1, t ∈ [0,1].

The implicit equation of this curve is : 103−81y−13x−12x2+2x3+x4. Its approximate implicit
equation is: p(x, y) := 103.000000000009 − 80.999999999993y − 13.0000000000138x −
11.9999999999934x2 + 1.99999999999878x3 + x4.

Let C2 be the curve with implicit equation p(x, y). The accuracy of approximation un-
der measures (a) and (b) is ≈ 2.075627 · 10−11 and ≈ 9.192 · 10−10, respectively. The
reparametrizations of C1,C2 are, respectively,

f(t) = (t, 103−13t−12t2+2t3+t4
81 ),

g(u) = (u, 103.000000000009−13.0000000000138u−11.9999999999934u2+1.99999999999878u3+u4
80.999999999993 )

We compute dH(C1,C2) by evaluating S(t, u) where (t,u) ∈ [1, 4] × [1, 4] and obtain
dH(C1,C2) ≤ 9.39 · 10−14.
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Example 15. Consider a parametric curve C1:

x(t) = t+ 2
t+ 1 , y(t) = t4 − 2t2 + 2t+ 1, t ∈ [0,1].

The implicit equation is: −5+ y− 2x− 4xy+ 14x2 + 6x2y− 10x3 − 4x3y+ 2x4 + x4y.
Its approximate equation is:
p(x, y) := −5.0000000307301+0.999999998287437y−1.99999993893286x−3.9999999956547xy+
13.9999999566394x2 + 5.99999999627234x2y − 9.99999998715587x3 − 3.99999999892032x3y +
1.99999999866029x4 + x4y.
Let C2 be the curve with implicit equation p(x, y). The accuracy of approximation under mea-
sures (a) and (b) is: ≈ 8.24533 · 10−8 and ≈ 1.3511 · 10−9, respectively. The reparametriza-
tions of C1,C2 are, respectively

f(t) = (t, −5−2t+14t2−10t3+2t4
−1+4t−6t2+4t3−t4 );

(u) = (u, −5.00000003073011−1.99999993893286u+13.9999999566394u2−9.99999998715587u3+1.99999999866029u4
−0.999999998287437+3.99999999565477u−5.99999999627234u2+3.99999999892032u3−u4 ).

We compute the Hausdorff distance dH(C1,C2) by evaluating the inner product (f(t)− g(u)) ·
(f(t)− g(u)), (t, u) ∈ [

3
2 ,2]

2. Thus we obtain dH(C1,C2) ≤ 1.5853 · 10−11.

Example 16. Consider a cylinder surface

S1 : x = t+ 1, y = t3 + 3t2 + 5t+ 3, z = s

where Ω := (t, s) ∈ [0, 1]× [0,1].
Its implicit equation is x3+2x−y and its approximate implicit equation (S2) is 4.18399 ·10−8−
y+ 2x+ x3.
The accuracy of approximation under measures (a) and (b) is ≈ 4.18399 · 10−8.

The Hausdorff distance dH(S1,S2) equals the Hausdorff distance of the two parametrized
planar curves C1 : (t, t3 + 2t) and C2 : (u, u3 + 2u + 4.183988732 · 10−8). Finding maximal
absolute values of the polynomial

S(t,u) = (t− u)2 + (−t3 − 2t+ u3 + 2u− 4.18399 · 10−8)2, (t, u) ∈ [1,2]× [1, 2],

we obtain dH(S1,S2) ≤ 1.87114 · 10−8.

Example 17. Consider Peano's surface

S1 : x = t, y = s+ 1, z = −s2 + s(3t2 − 2)− 1+ 3t2 − 2t4

where Ω := (t, s) ∈ [0, 1]× [0,1].
Its implicit equation is z + y2 − 3x2y + 2x4 and its approximate implicit equation (S2) is
−3.725155334 ·10−8+z−4.414233699 ·10−10y+y2−2.879451183 ·10−10x+1.830328567 ·
10−12xy+ 2.350959794 · 10−11x2 − 3x2y+ 5.645612348 · 10−14x3 + 2x4.
The accuracy of approximation under measures (a) and (b) are ≈ 3.725528887 · 10−8 and
≈ 2.983 · 10−9, respectively. The reparametrizations of S1 and S2 are:
f(t, s) = (t, s,−s2 + 3t2s − 2t4), and g(u, v) = (u, v,−3.725155334 · 10−8 + 4.414233699 ·
10−10v − v2 + 2.879451183 · 10−10u − 1.830328567 · 10−12uv − 2.350959794 · 10−11u2 +
3u2v− 5.645612348 · 10−14u3 − 2v4).
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To compute the Hausdorff distance dH(S1,S2), we need to evaluate the inner product

S(t, s; u, v) = (f(t, s)− g(u, v)) · (f(t, s)− g(u, v)), (t, s), (u, v) ∈ [0, 1]× [1,2].

We know that dH(S1,S2) ≤ max(t,s)∈[0,1]×[1,2]
√
S(t, s; t, s), thus we maximize S(t, s) and get

dH(S1,S2) ≤ 3.813440008 · 10−8.

Lack of the efficient algorithm for computing Hausdorff distance makes difficult it's use
in practice as a tool for measuring accuracy of the approximate implicitization. However as
demonstrated by the examples, measure (a), i. e. Euclidean norm, is close enough to the
Hausdorff measure to be used instead.

3.2 Comparison to other methods

We report on a comparison of our implementation against existing implicitization software,
namely implementation of the μ-bases implicitization method [33], applicable for rational
curves [16], and Maple function Implicitize(), which is based on integration of matrix M
over each parameter, see [30].

Table 3.5 summarizes the total time to implicitize a curve, given its parametrization. We
used the same algebraic curves as in other tables, grouped by degree; for each degree, the
table shows the average runtime. In our experiments, μ-bases yield the fastest runtimes,
whereas Implicitize() is the slowest of the three when run in exact mode or when the
parametrization is rational.

However, μ-bases rely on exact computation over rational numbers, and an approximate
computation would not offer good accuracy. Our algorithm removes this limitation and offers
high-quality approximations.

Curve degree Implicitize Implicitize Our μ-bases
exact numeric software

Trisectrix of Maclaurin 3 1.92 0.064 0.02 0.016
Folium of Descartes 3 9.3 0.08 0.012 0.024
Tricuspoid 4 1.92 0.064 0.044 0.016
Bean 4 129.7 0.12 0.036 0.028
Talbot's 6 18.98 0.252 0.324 0.072
Fifth heart 8 799.74 0.44 0.104 0.08
Ranunculoid 12 >3000 1.64 1.376 0.3

Table 3.5: Comparing runtimes (sec) of: Maple function Implicitize (exact and numeric),
our method (LinearSolve, random integers), and μ-bases.

Also we compare our method with the Gröbner bases implicitization.

Example 18. Consider the parametrized Enneper's surface:

f1 = t1/3− (1/9)t31 + t1t22/3, f2 = −t2/3+ (1/9)t32 − t21t2/3, f3 = t21/3− t22/3.

We compute a Gröbner basisG of ideal I = 〈x−f1, y−f2, z−f3〉with respect to the lexicographic
ordering t1 > t2 > x > y > z. The unique polynomial depending only on x, y, z is the implicit
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equation:
128z7 − 27y6 + 702x2y2z3 − 9x4z − 9y4z − 48x2z3 − 64z5 + 432x2z5 + 240x2z4 + 135y4z3 + 432y2z5 − 240y2z4 + 27x6 + 81x2y4 −

162y4z2 + 144x2z6 − 144y2z6 − 81x4y2 + 135x4z3 + 162x4z2 − 64z9 + 18x2zy2 − 48z3y2

We compared implicitization based on Gröbner bases implemented in Maple with our soft-
ware using LinearSolve and random integers, see Table 3.6. The results show that for low
degree curves (≤ 6) or surfaces (≤ 4), Gröbner bases outperform our software. The situation
is reversed for higher degree. In particular, the bicubic surface takes under 40 sec with our
method, it is infeasible using Gröbner bases on Maple, and takes 313 sec on Mathematica
8.0.

Curve / Surface degree Gröbner basis Our software
Double sphere 2 0.112 1.860
Moebius strip 3 6.184 9.520
Bohemian dome 4 0.776 1.181
Eight surface 4 0.196 3.668
Swallowtail surface 5 0.192 0.108
Sine surface 6 1.240 1.164
Enneper's surface 9 0.668 0.776
Bicubic surface 18 >4 hours 42.059
Trifolium 4 0.032 0.26
Talbot's curve 6 0.104 0.324
Ranunculoid 12 7.341 1.376

Table 3.6: Comparing runtimes (sec) of Gröbner bases method implemented in Maple and
our method (LinearSolve, random integers).

We compare our Maple implementation against Maple's native function Implicitize() which
employs integration of matrix M over each parameter [30], and implicitization using Gröbner
bases in Maple . Results are shown in Table 3.7.

The input consists of a family of classical algebraic surfaces, the so called Plücker's conoid
(Fig. 3.2): x0 = t, x1 = s, x2 = Re((t+I·s)a)

|(t+I·s)a| . The surfaces have a base point at t = s = 0. By
choosing appropriate values of parameter a = 2b we obtain rational parameterizations of
the surfaces with desired total degree. While implicitizing of the Plücker's conoid is a trivial
problem, this family of surfaces provides a good illustration of the algorithm performance in
relation to degree.

Figure 3.2: Plücker's conoid surfaces used in Table 3.7. Degree determines the number of
the folds.
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Table 3.7: Comparison of our method (exact and numerical) to Maple's function Implicitize()
and Gröbner bases.

Deg. Exact Gröbner Numerical Maple implicitize()(numerical)
runtime runtime runtime accuracy (a) accuracy (b) runtime accuracy (a) accuracy (b)

3 0.016 0.031 0.031 10−15 9.07 · 10−10 46.07 10−15 1.98 · 10−9

5 0.016 0.046 0.032 10−10 3.57 · 10−8 85.43 3.67 · 10−7 6.83 · 10−6

7 0.031 0.078 0.046 10−11 9.97 · 10−8 359.49 9.06 · 10−7 2.94 · 10−4

9 0.046 0.078 0.063 10−10 1.35 · 10−7 695.65 2.86 · 10−6 7.55 · 10−3

11 0.078 0.141 0.078 10−11 1.07 · 10−6 > 2000 - -

3.3 Computing discriminants

While our method shows the best performance when applied to computing symbolically exact
implicit equations, it is true that in the modern CAGD systems orientation to numerical solving
and approximations is preferred. However, besides geometry, there apparently exist many
areas where exact implicitization is in demand.

In this section we apply our method to computing the discriminant of a multivariate poly-
nomial, which characterizes the existence of multiple roots. It subsumes the resultant of an
overconstrained system.

Discriminants are fundamental tools in several geometric applications, since they charac-
terize the locus of discrete changes of a system; they also find their application in parametriza-
tion. The vanishing of the discriminant partitions coefficient space to cells of values for which
the underlying polynomial has a fixed number of real roots. For mechanical and robotics
systems expressed by polynomials, the discriminant variety partitions configuration space to
instances that are connected by continuous movement without singularities, e.g. [61].

It is well known fact that the condition for a univariate quadratic polynomial

f = at2 + bt+ c

to have a double root is that its discriminant D(f) = b2 − 4ac vanishes.

A univariate cubic polynomial has a double root if and only if its discriminant vanishes:

D(c0 + c1t+ c2t2 + c3t3) = c21c22 − 4c31c3 − 4c0c32 − 27c20c23 + 18c0c1c2c3.

More generally, consider a polynomial f(t1, . . . , tn) in n variables. A multiple root of f is a
point where f vanishes together with all its first derivatives ∂f/∂ti.

Definition 12. The discriminant D(f) is a polynomial function in the coefficients of f, which
vanishes whenever f has such a multiple root.

It can be shown that D(f) exists and is unique (up to sign) if we require it to be irreducible
and to have relatively prime integer coefficients.

We are interested in discriminants of polynomials with fixed support: given a set of m
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lattice points A ⊂ Zn, let
FA =

∑
a∈A

cata

denote the generic polynomial in variables t1, . . . , tn with exponents in A.

Definition 13. [64] A-discriminant is an irreducible polynomial DA = DA(c) with integer co-
efficients in the vector of coefficients c = (ca : a ∈ A), defined up to sign, which vanishes for
each choice of c for which FA and all ∂FA/∂ti have a common root in (C\{0})n.

Here, we consider roots with nonzero coordinates so as to be able to ignore trivial multiple
roots. A-discriminants describe the singularities of a class of functions, calledA-hypergeometric
functions, which are solutions of certain linear partial differential equations. TheA-discriminant
is an affine invariant, in the sense that any configuration of points affinely isomorphic to A has
the same discriminant.

A-discriminants include as special cases several fundamental algebraic objects.
If A = {(0,0), (1, 0), . . . , (m,0), (0, 1), (1, 1), . . . , (n,1)} ⊂ Z2, then we can write FA as

f(t1) + t2g(t1). Its A-discriminant is the resultant of f and g: It vanishes whenever f and g have
a common root. More generally, the resultant of f0, . . . , fk in k variables is the A-discriminant
of an auxiliary polynomial

f0(t1, . . . , tk) +
k∑

i=1
yifi(t1, . . . , tk)

.
Another important example occurs when FA consists of n2 monomials xiyj, i, j = 1, . . . , n,

i.e a bilinear form FA =
∑ cijxiyj then its A-discriminant is the determinant of the matrix (cij).

Moreover, DA is a factor of the unmixed A-resultant of FA and ∂FA/∂ti, i = 1, . . . , n.
The extraneous factors in this resultant are powers of face discriminants, i.e. discriminants

associated to the sub-configurations of A consisting of all points in a face of its convex hull.
Computing A-discriminants may be reduced to implicitization. Given A, we form the (n +

1)×m,m > n+ 1 integer matrix (also called A by abuse of notation) whose first row consists
of ones, and whose columns are given by the points (1,a) for all a ∈ A.

Let B = (bij) ∈ Zn×(m−n−1) be a matrix whose column vectors are a basis of the integer
kernel of matrix A. Then B is of full rank.

We assume that its maximal minors have unit gcd (i.e. the rows generate Zm−n−1). Since
the first row of A equals (1, . . . , 1), the column vectors of B add up to 0.

The A-discriminant DA is A-homogeneous, i.e it is quasi- homogenous relative to the
weight defined by any vector in the row span of A. Let d = m − n − 1. The Horn-Kapranov
parametrization [64, 76], is defined as:

xj =
m∏
i=1

(bi1y1 + · · ·+ bidyd)bij , j = 1, 2, . . . , d, (3.1)

where yi, i = 1, . . . , d are parameters.

The implicit equation of its image is a polynomial ΔB in x = (x1, . . . , xd) such that the
A-discriminant DA(x) is the product of ΔB(x) and a monomial. Put it differently, ΔA is the
dehomogenized version of DA. This reduces the computation of DA to implicitizing the para-
metric hypersurface (3.1).

T. Kalinka 72



Changing representation of curves and surfaces: exact and approximate methods

The complexity of our method, due to the nature of the support prediction approach we
use to determine the space of interpolation, depends on the number of lattice points in the
predicted polytope. The latter equals the Newton polytope of the discriminant or a superset,
which seems to be not much larger than the Newton polytope itself, in practice. Hence, our
method is output sensitive since it depends on the size of the target polynomial.

To illustrate our method, we focus on discriminants with with codimension 2 and 3 respec-
tively (i.e. n = m + 3 and n = m + 4 respectively) [15, 36, 41], although our algorithm may
compute discriminants for any d. In particular, we implicitize the parametric curve and surface
given respectively by

xj =
m∏
i=1

(bi1 + bi2s)bij , j = 1, 2,

and

xj =
m∏
i=1

(bi1 + bi2s+ bi3t)bij , j = 1, 2, 3.

In the following, we denote by li the inner product of the i-th row of B and the parameter
vector (1, s) or (1, s, t), i.e. li = bi1 + bi2s or li = bi1 + bi2s+ bi3t.

Let us present some examples of applying our method to computing discriminants of a
polynomial in several variables.

Discriminant of codimension 2

Example 19. Consider a generic polynomial of two variables of degree 3,

FA(t1, t2) = c1t1 + c2t2 + c3t1t2 + c4t21 + c5t31

where A = {[1,0], [0, 1], [1,1], [2,0], [3, 0]} ⊂ Z2.
We build the matrix A:

A =

 1 1 1 1 1
1 0 1 2 3
0 1 1 0 0


then the matrix B is as follows:

B =


−1 −1
1 2
−1 −2
1 0
0 1



Let l1 = −1− s, l2 = 1+ 2s, l3 = −1− 2s, l4 = 1, l5 = s, then we have the parametrization

f1 =
l2l4
l1l3

=
1+ 2s

(−1− 2s)(−1− s) , f2 =
l22l5
l1l23

=
(1+ 2s)2s

(−1− s)(−1− 2s)2
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Support prediction yields 4 Newton polygon vertices: [0,0], [2,0], [3, 0], [3,2]. The New-
ton polygon has 7 lattice points. Applying our method, we obtain implicit equation ΔB(x, y) =
x− y− 1.

We perform substitution following

ΔB(f1, f2) = DA

(
1, 1, 1, l2l4l1l3

,
l22l5
l1l23

)
,

which gives us A-discriminant of FA: DA(c) = c2c3c4 − c22c5 − c1c23

Example 20. Consider a generic polynomial of three variables of degree 3,

FA(t1, t2) = c1t1t2 + c2t1t3 + c3t2t3 + c4t21 + c5t32 + c6t33
where A = {[1,1,0], [1,0,1], [0, 1, 1], [2,0, 0], [0,3,0], [0, 0,3]} ⊂ Z3.

The matrix A is as follows

A =


1 1 1 1 1 1
1 1 0 2 0 0
1 0 1 0 3 0
0 1 1 0 0 3

 ,

then matrix B is

B =


3 −1
−3 −1
0 1
0 1
−1 0
1 0


By defining l1 = 3−s, l2 = −3−s, l3 = s, l4 = s, l5 = −1, l6 = 1, we have the parametrization

f1 =
l31l6
l32l5

=
(3− s)3
(3+ s)3 , f2 =

l3l4
l1l2

=
s2

(3− s)(3+ s)

Computed Newton polygon has 12 lattice points and the implicit equation obtained by our
method is ΔB(x, y) = 1 − 2x − 36xy − 96xy2 − 64xy3 + x2 , thus the A-discriminant of FA is
DA(c) = c62c25 − 2c31c6c32c5 − 36c21c6c3c4c22c5 − 96c1c6c23c24c2c5 − 64c6c5c33c34 + c61c26.

Let us try to compute this example approximately (matrix is evaluated by random unitary
complex points). We obtain:

1−2x−36.0001xy−96.0001xy2−64xy3+x2+1.3921 ·10−21I+(−2.1482 ·10−16+3.2297 ·10−15I)y+(2.3068 ·10−16−2.8561 ·
10−15I)y2+(−4.8344·10−17+1.9862·10−15I)y3−5.3777·10−19Ix−6.4659·10−15Ixy+−1.1053·10−13Ixy2−2.1119·10−13Ixy3+1.6829·
10−19Ix2 +(−2.1857 · 10−16 + 3.2281 · 10−15I)x2y+(2.0665 · 10−16 − 2.8528 · 10−15I)x2y2 +(−1.7033 · 10−16 + 1.8923 · 10−15I)x2y3.

If we filter out coefficients whose absolute value is smaller than 10−13, the result is the
approximate implicit polynomial

ΔB(x, y) = 1− 2x− 36.0001xy− 96.0001xy2 − 64xy3 + x2

and the approximate A-discriminant is
DA(c) = c62c25 − 2c31c6c32c5 − 36.0001c21c6c3c4c22c5 − 96.0001c1c6c23c24c2c5 − 64c6c5c33c34 + c61c26.

Note that the approximation is quite close, indeed, it is accurate up to 3 decimal digits.
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Discriminant of codimension 3

Example 21. [36] Consider the matrix

B =


1 −1 0
1 −1 1
1 −1 0
−1 2 0
−1 1 −2
−1 0 1


We have

f1 =
(1− s)2(1− s+ t)

(−1+ 2s)(−1+ s− 2t)(−1+ t) ,

f2 =
(−1+ 2s)2(−1+ s− 2t)

(1− s)2(1− s+ t) ,

f3 =
(1− s+ t)(−1+ t)
(−1+ s− 2t)2

For this parametrization our support predicting software ResPol gives Newton polytope

[0, 6, 7], [6,0,0], [0,6,0], [0, 0, 7], [0,0, 0], [6,6,4], [6, 0,4], [6, 6, 0], [0,6,7]

with 308 inside points.
Computing the implicit equation we get kernel space of dimension 8; the polynomial of the

least degree actual implicit equation:
ΔB(x, y, z) = 16x5y5z3 + 80x4y4z3 − 8x4y4z2 + 500x4y3z2 + 3125x4y2z2 + 160x3y3z3 − 32x3y3z2 + x3y3z+ 1000x3y2z2 − 225x3y2z+
160x2y2z3 − 48x2y2z2 + 3x2y2z+ 500x2yz2 − 225x2yz+ 27x2y+ 80xyz3 − 32xyz2 + 3xyz+ 16z3 − 8z2 + z.

After substitution according to l1 = 1 − s, l2 = 1 − s + t, l3 = 1 − s, l4 = −1 + 2s, l5 =
−1+ s− 2t, l6 = −1+ t and

ΔB(f1, f2, f3) = D
(
1,1, 1, l21l2

l4l5l6
,
l24l5
l1l2l3

,
l2l6
l25

)
,

the A-discriminant is as follows DA(c) = c45c36c53−8c2c25c46c53+16c22c56c53+3c45c26c43c1c4−32c2c25c36c43c1c4+80c22c46c43c1c4+
27c55c43c31 − 225c2c35c6c43c31 + 500c22c5c26c43c31 + 3c45c6c33c21c24 − 48c2c25c26c33c21c24 + 160c22c36c33c21c24 − 225c2c35c33c41c4 + 1000c22c5c6c33c41c4 +
c45c23c31c34 − 32c2c25c6c23c31c34 + 160c22c26c23c31c34 + 3125c32c33c61 + 500c22c5c23c51c24 − 8c2c25c3c41c44 + 80c22c6c3c41c44 + 16c22c51c54.

Example 22. Consider the matrix

B =


3 0 0
−1 −1 −1
−1 −1 0
0 −1 1
0 2 1
−1 1 −1


Let define

l1 = 3, l2 = −1− s− t, l3 = −1− s, l4 = −s+ t, l5 = 2s+ t, l6 = −1+ s− t,
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then we have the following parametrization

f1 =
l31

l2l3l6
=

27
(−1+ s− t)(−1− s− t)(−1− s) ,

f2 =
l25l6
l2l3l4

=
(2s+ t)2(−1+ s− t)

(−1− s− t)(−1− s)(−s+ t) ,

f3 =
l4l5
l2l6

=
(−s+ t)(2s+ t)

(−1+ s− t)(−1− s− t)

ResPol gives Newton polytope:
[6,4, 3], [6,0,0], [0, 6,0], [0, 0, 9], [0,0,0], [4,6,5], [6, 0, 3], [6,4, 0], [0,6,9], [4, 6, 0], [6,4, 3].
Applying our interpolation method we compute kernel vector space of dimension 6. It

appears, implicit polynomial of this parametrization, found as described above, has degree
10 and the A-discriminant is: ΔB(x, y, z) = −14348907y3 + 314928y2z8 + 43046721y3z− 239112xy4z5 + 451980xy4z4 +
731916xy4z3−1023516xy4z2+393660xy4z+62208x2yz5+93312x2yz4+23328xy2z7+7912566xy2z5+98415xy2z4−13994613xy2z3+
27103491xy2z2 + 1102248xyz6 + 17537553xyz4 + 1417176xyz5 + 414072xy3z6 − 125388xy3z5 − 1062882xy3z4 + 5334093xy3z3 −

1200663xy3z2 + 3011499xy3z − 729x2y4z4 + 2187x2y4z3 − 2187x2y4z2 + 729x2y4z + 25272x2y3z5 − 6804x2y3z4 − 657666x2y3z3 +

19683x2y3z2+104976x2y3z+432x2y2z6−864x2y2z5+1368576x2y2z4+1465776x2y2z3+2511405x2y2z2+432x3y3z4−864x3y3z3−
1512x3y3z2 + 1944x3y3z + 66816x3y2z3 + 86400x3y2z2 + 1024x3yz4 + 1024x4y2z2 + 314928y5z5 + 944784y5z3 − 944784y5z4 −

314928y5z2+944784y4z6+5196312y4z4−1889568y4z5+12754584y4z2−12754584y4z3−4251528y4z−944784y3z6+944784y3z7−
25509168y3z4 + 12754584y3z5 − 43046721y3z2 + 27103491y3z3 − 12754584y2z5 + 12754584y2z6 + 43046721y2z2 − 86093442y2z3 +
43046721y2z4 + 4251528yz7 + 43046721yz5 − 43046721yz4 − 729x3y3 − 59049x2y3 + 14348907z6 − 1594323xy3.

Example 23. [15] We compute discriminant of FA =
∑

a∈A cata where

A = {[0, 2, 0], [0,0, 6], [0,1,2], [1, 2,0], [1, 1, 3], [1,2,2], [1,1,2]} ⊂ Z3.

We build a matrix A

A =


1 1 1 1 1 1 1
0 0 0 1 1 1 1
2 0 1 2 1 2 1
0 6 2 0 3 2 2


An integer matrix B which forms a basis of kernel of A is

B =



1 0 1
0 1 1
−1 −1 −2
0 2 1
2 0 0
−1 −1 −1
−1 −1 0


Let l1 = 1+ t, l2 = s+ t, l3 = −1− s− 2t, l4 = 2s+ t, l5 = 2, l6 = −1− s− t, l7 = −1− s, then
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we have the following parametrization:

f1 =
l1l25
l3l6l7

=
4(1+ t)

(−1− s− 2t)(−1− s− t)(−1− s) ,

f2 =
l2l24
l3l6l7

=
(s+ t)(2s+ t)2

(−1− s− 2t)(−1− s− t)(−1− s) ,

f3 =
l1l2l4
l23l6

=
(1+ t)(s+ t)(2s+ t)

(−1− s− 2t)2(−1− s− t)

For this parametrization, computing Newton Polytope vertices results in

[0,3,9], [9, 0, 0], [0,9, 0], [0,0,9], [0, 0,0], [9, 0, 3], [0,9,3], [3,0,9], [0, 3, 9].

Kernel space that we compute has dimension 20; we obtain the implicit equation ΔB of
degree 9:
ΔB(x, y, z) = 512xyz3 − 576xyz5 − 1024xy2z2 + 3712xy2z3 + 320xy2z4 − 1664xy3z2 + 320xy3z3 − 64xy4z2 − 608x2yz3 + 368x2yz4 −
960x2yz5 + 1824x2y2z2 + 880x2y2z3 + 1088x2y2z4 − 64x2y2z5 − 1296x2y3z+ 64x2y3z2 − 64x2y3z3 + 64x2y3z4 − 16x2y4z+ 144x3yz3 −
640x3yz4−128x3yz5+108x3y2z+60x3y2z2+784x3y2z3+128x3y2z4−16x3y3z2+16x3y3z3−16x4yz3+64x4yz4−27x4y2z+128x4y2z2+
32x4y2z3 + 16x5yz3 + 2048y2z3 − 144x2z5 + 192x3z5 − 216x3y3 − 64x4z5

and the following A-discriminant:
DA(c) = 1024c52c64c31c27 + 4608c51c45c22c3c6c37 − 1476c31c45c2c43c26c27 + 15104c31c45c22c24c33c6c7 − 20224c41c45c22c4c23c6c27 + 108c1c45c73c36c7 +

2508c21c45c2c4c53c26c7 − 4960c1c25c22c34c53c26c7 + 54016c31c25c32c34c23c6c27 + 14528c21c25c22c24c43c26c27 − 576c25c2c24c73c36c7 + 768c1c25c2c4c63c36c27 −
82944c41c25c32c24c3c6c37 + 480c31c25c22c4c33c26c37 − 10800c41c25c22c23c26c47 + 64c21c25c2c53c36c37 − 11648c21c25c32c44c33c6c7 − 1408c41c65c2c33c6c7 +

46656c51c32c26c67−768c41c65c22c24c23−13824c42c34c41c6c47+3072c51c45c32c24c27−256c21c25c42c64c23+3072c41c25c42c44c27−768c31c45c32c44c23+1024c61c65c22c27−
256c51c85c2c23 − 1024c52c74c21c3c7 − 8704c22c24c1c53c36c37 − 1024c2c4c73c46c37 + 79488c32c24c31c23c26c47 + 23040c22c4c21c43c36c47 + 1024c2c1c63c46c47 −
108864c32c4c41c3c26c57 − 13824c22c31c33c36c57 − 4288c32c44c1c43c26c27 − 2272c21c45c22c34c43c6 − 108c45c4c83c36 − 128c1c25c32c54c43c6 − 16c25c22c44c63c26 +
41472c51c25c32c4c6c47−936c1c45c2c24c63c26+27c21c65c63c26+1312c31c65c2c4c43c6−12928c32c34c21c33c26c37−512c22c34c63c36c27−3072c31c25c42c54c3c7−
512c42c64c1c33c6c7 − 64c32c54c53c26c7 − 8704c42c54c21c23c6c27 + 23040c42c44c31c3c6c37 − 1024c51c65c22c4c3c7 − 3072c41c45c32c34c3c7.

3.4 Conclusions

Our implicitization algorithm was first implemented in Maple mathematics software system,
since it was well suited for symbolic computations and we had an emphasis on exact solving.
Later, when we started experimenting with the approximate implicitization and the need for a
numerical solving have arisen we have employed SAGE.

Experiments with the curves and surfaces of Bernstein bases have shown that while it is
always possible to compute an approximate implicit equation, the necessity of conversion to
the monomial basis leads to the loss of accuracy. We have employed several methods to
evaluate the accuracy of the approximation; some rely on knowing the exact implicit equation
and thus, while more reliable, not universally applicable.

We have compared the implementation of our algorithm with other methods, implemented
in the same software system, finding, that for the high dimensions, starting from surfaces, and
for the large degrees it shows better results than many others. For instance, our method have
proved to be competitive to the popular Gröbner bases method. However, when comparing
the methods specified for curves only we found out that the μ-bases method implemented in
Maple is to be faster than our imcurve.

Exploiting the fact that our implicitization tool is well suited for exact solving we have ap-
plied it to compute determinants and resultants. Analyzing complexity of the algorithms we
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conclude that in the case when the corresponding parametrization provides comparatively
small Newton polytope using our algorithm is preferable.
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Chapter 4

Conclusions and further remarks

In this chapter we give a summary of the results of our work and discuss the further research
directions.

4.1 Results

We have developed an algorithm for computing implicit equations that combines linear al-
gebra with the promising support prediction methods. The method applies to polynomial,
rational and trigonometric parametrizations of classical algebraic equations of curves and
(hyper)surfaces. The method is quite efficient; also it works for in the presence of the base
points.

Our implicitization algorithm is closely related to the interpolation-based method presented
in [43]. More efficient method for computing the implicit Newton polytope [49], used to deter-
mine the interpolation space, enabled us to implicitize curves and surfaces of high degree as
well as hypersurfaces, among them the bicubic surface proposed in [43] as an open problem.
Section 2.2 provides a detailed description of the support prediction method.

Our main contributions are the following:

• We have studied the cases where the resulting polynomial contains extraneous factors
and have proved the Theorem 15 that shows the dependence of the interpolation matrix
corank on the predicted Newton polytope. Hence one of the possible ways we offer that
allow to minimize an extraneous factor: reducing the predicted Newton polytope. The
results of our study of the multidimensional kernel space cases and related issues have
first appeared in [54]; in this thesis they are described in Section 2.4.

• The series of experiments where we compute the kernel vector of the interpolationmatrix
by symbolic methods show that for sufficiently generic parametrizations our algorithm
provides exact implicit equations. Being an effective tool for exact implicitization our
method can be used also for solving non-geometrical problems such as computing of
discriminant of a multivariate polynomial, as demonstrated in Section 3.3 or resultant of
a system of multivariate polynomials (see Example 13).

• Computing the kernel vector of the interpolation matrix numerically, by applying singu-
lar value decomposition, results in an approximate implicit equation. We have experi-
mented with curves and surfaces in monomial and Bernstein bases with an emphasis
on the approximation accuracy, computational time and the resulting polynomial degree
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seeking to find an optimal correlation of the three. We have discussed specifics of the
implicitization of the curves and surfaces in Bernstein bases by our method in Sections
2.3.5 and 3.1.3.

• We have implemented our algorithm in Maple and SAGE mathematics software systems.
Detailed description of our implementation was given in Section 3.1. The implemen-
tation features two main functions: imgen and imcurve, the former takes as an input
parametric equations and the vertices of the predicted implicit polytope while the latter,
customized for implicitization of curves, takes as an input only the parametrization. The
reason we have chosen Maple is its particular suitability of for symbolic computations.
The SAGE mathematics software system was used mainly for numerical computations,
such as implicitization of curves and surfaces in Bernstein basis.

Our implicitization method (see Algorithm 1) takes as an input polynomial or rational
parametrization xi = fi(t1, . . . , tn), i = 0, . . . , n and the implicit polytope (or a superset of it).
The output is the implicit polynomial p(xi) (in certain cases a multiple of p(xi)). The algorithm
operates in the following steps:

1. Compute all lattice points S ⊆ Nn+1 in the polytope.

2. Repeat μ ≥ |S| times: Select value τ for t, evaluate xi(τ), i = 0, . . . , n, then evaluate
each monomial in S.

3. Construct the μ × |S| matrix M with rows indexed by τ's and columns indexed by mj's

M =

m1|t=τ1 · · · m|S||t=τ1
... · · · ...

m1|t=τμ · · · m|S||t=τμ


4. Compute vector p in the kernel of M and return the primitive part of polynomial p>S.

It is important to choose sufficiently generic values τ when building the matrixM so that its
rows are linearly independent. In case of the rational parametrization the τ values where the
determinant vanishes should be avoided. We have addressed the issues related to select-
ing evaluation values in [2.3.5]. Our experiments have shown that random integers in range
−2|S| . . .2|S| provide the best results in terms of solving time and numerical stability for im-
plicitization of classical algebraic curves and surfaces. When the parametrization is defined
in Bernstein basis it is important when selecting τ values to ensure that they lie within the
region of interest of the parametrization.Random rational values and Chebyshev nodes have
provided satisfying results here.

We have addressed the problem of measuring the quality of the approximation when the
interpolation is done by numerical means in [3.1.4]. The condition number of the matrix M
allows us to estimate corank of the matrix. When the exact implicit equation is available, the
natural approach to evaluation of the accuracy is computing the distance between the two
coefficient vectors.

In Section 3.2 we have demonstrated how our implicitization method performs in compar-
ison with the others. Our algorithm has proved to be an efficient tool for finding exact implicit
equation, able to compete successfully with such popular methods as Gröbner bases in the
terms of computation time. An accuracy of the approximate implicit equations obtained by our
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method appears to be better that that of the Maple's native function Implicitize(). In general,
our method performs comparatively well for large degree and high dimension surfaces and
hypersurfaces. Besides, our method can be successfully applied to parameterizations with
base points which raise important issues for other implicitization methods.

We have evaluated the complexity of our algorithm in [2.3.3], proving the Theorem 11: the
overall complexity of our implicitization algorithm requires O(μ |S|2) arithmetic operations.

4.2 Future work

Here we us list several open problems that are out the scope of our main work yet present
interesting challenges.

Implicitizing space curves. Our implicitization algorithm was intended and applied in this
work to implicitize curves and surfaces of codimension 1 only. That does not mean that it
is inapplicable otherwise; indeed, provided sufficiently generic parametrization of the space
curve and the implicit support we can successfully perform interpolation. The dimension of the
resulting kernel vector space corresponds to the number of equations constituting the implicit
representation.

However, the support prediction method we use in our work cannot be applied to space
curves. Hence the need for alternative methods to compute a bound on the implicit degree.

Matrix-based representation. The output of our algorithm is an implicit equation, however,
for practical purposes such representation is often redundant.

When the curves and surfaces are of high degree the polynomials produced to compute
intersection points and curves become difficult to operate and require an enormous storage
space due to the large number and big size of the coefficients. An alternative is the so-called
“polynomial algebra by values” approach where the huge polynomial equations coming from
Elimination Theory are replaced by big structured and sparse numerical matrices. First the
technique was introduced in [83] where amatrix is used for representation of the surface to find
the intersection between a curve and a surface. Intersection problems between parametric
and implicit curves have been studied in [84, 85]: instead of the polynomial derived from the
matrix by computing its determinant a matrix pencil whose generalized eigenvalues are the
roots of the determinant is used.

Resent publications prove that the matrix-based representation can be effectively used for
solving such problems as membership, intersection, inversion, computation of singularities,
determining the topology [39]. New approaches applicable to planar and space curves [16]
and surfaces [17] have been proposed; here μ-basis of a parametrization is used to construct
the matrix-based representation.

It is possible that our algorithm can be adapted in a way that while bypassing actual equa-
tion construction effectively provides an answer if the point belongs to the the geometric ob-
ject. Our method represents an implicit (hyper)surface by a kernel vector. It is challenging
to devise suitable CAGD algorithms that exploit this representation, for instance to compute
surface-surface intersection, as in [43, 44].
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Evaluation by integers. As our experiments show, evaluation by the random integers ap-
pears to be optimal for exact implicitization of classical algebraic curves and surfaces. Study-
ing of the possible ways to reduce growth of the matrix entries when the degrees get higher
while maintaining evaluation values sufficiently general so that all the rows of the constructed
matrix remain linearly independent presents an interesting challenge.

Newton polytope in Bernstein basis. Our algorithm shows the best performance when
applied to exact implicitization. However, it can be used for approximate implicitization of
geometric objects represented in NURBS form after converting them to the power basis. The
need for the conversion presents a major drawback: in the NURBS format curves and sur-
faces are usually given by floating point coefficients and recalculating the parametrization in
power basis furthers the precision loss. As a result, approximate implicit representations of
the NURBS curves and surfaces obtained by interpolation are often inaccurate.

Currently our method is restricted by the support prediction operating solely on the power
basis. Hence another direction for improvement: our approach could be extended to inter-
polating the implicit polynomial in other bases, such as Bernstein or Lagrange. In fact, while
the algorithm for computing the resultant polytope to Bernstein basis has yet to appeared,
a method that allows to express the information necessary for dealing with the position and
intersection problems by formulation of the Bézout matrix in Lagrange basis have been pre-
sented in [6].

Approximate implicit equation of lower degree. We would like to note that in this work
when we refer to an implicit equation as approximate that meant it was computed by nu-
merical means. In general the bounds on the implicit degree in such a case are determined
by the predicted polytope, i.e. are the same as is for computing an exact implicit equation.
Consequently, the approximate equations here have the same degree as the corresponding
exact, if such exist, unless stated otherwise. However, one of the attractive features of the
approximate implicitization is the possibility to obtain lower degree equation.

Our method can be employed in computing approximate implicit equation of the reduced
degree: we use successively larger subsets of the predicted polytope, until the obtaining
satisfyingly accurate approximation or reaching the bound set by the implicit polytope. Such
low degree approximation and the means to ensure its optimal accuracy can be a subject for
further study.

Implicitizing piecewise parametrization. In our work we have addressed implicitization of
the Bézier curves and surface patches, however the fact is that in practice geometric objects
represented in Bernstein basis usually are piecewise parametrized.

We consider applying our method to implicitize curve or surface splines defined by k seg-
ments or patches, respectively. Assuming the k parametric representations yield polynomials
with the same Newton polytopes, one could use the implicit polytope defined by any of these
systems, the corresponding k implicit polytopes would be the same. Then, we can form a sin-
gle matrix M and evaluate it over points spanning all k segments or patches, thus expecting
a single (approximate) implicit polynomial. Similarly, it is possible to approximate kmanifolds
with a single implicit equation, by applying SVD on [M1 · · ·Mk]

>.
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Alternative numerical methods. In order to obtain an approximate solution we have em-
ployed the singular value decomposition; it would be interesting to compare the performance
of different numerical methods when applied to interpolation. We consider, for instance, the
method of least squares.

83 T. Kalinka



Index

A-discriminant, 72

base points, 27

condition number, 51

discriminant, 71

Gröbner basis, 27

Hausdorff distance, 66

implicit degree, 28
implicitization problem, 43

Minkowski cell, 37
Minkowski sum, 37
mixed cell, 37
mixed volume, 37
μ-basis, 27

Newton polytope, 29

parametric degree, 28

regular mixed subdivision, 37
representation, 19

change of, 24
implicit, 21
parametric, 20
polygon mesh, 22
edges, 23
Euler formula, 23
faces, 23
vertices, 22

subdivision surface, 23
ResPol, 40
resultant, 25

Bézout, 26
Sylvester's, 25

singular value decomposition (SVD), 51
singular values, 51
singular vectors, 51
sparse resultant, 36

support, 29

tight mixed subdivision, 37

T. Kalinka 84





Bibliography

[1] W. A. Adkins, J. W. Hoffman, and H. H. Wang. Equations of parametric surfaces with
base points via syzygies. J. Symb. Comput., 39(1):73--101, Jan. 2005.

[2] M. Aigner, A. Poteaux, and B. Jüttler. Approximate implicitization of space curves. In
U. Langer and P. Paule, editors, Symbolic and Numeric Computation. Springer, Vienna,
2012.

[3] C. Alonso, J. Gutierrez, and T. Recio. Reconsidering algorithms for real parametric
curves. Appl. Algebra Eng. Commun. Comput., 6(6):345--352, 1995.

[4] H. Alt, C. Knauer, and C. Wenk. Comparison of Distance measures for planar curves.
Algorithmica, 38:45--58, 2004.

[5] L.-E. Andersson and N. F. Stewart. Introduction to the Mathematics of Subdivision
Surfaces. SIAM, 2010.

[6] D. A. Aruliah, R. M. Corless, L. González-Vega, and A. Shakoori. Geometric applica-
tions of the bézout matrix in the lagrange basis. In Proceedings of the 2007 international
workshop on Symbolic-numeric computation, SNC '07, pages 55--64, New York, NY,
USA, 2007. ACM.

[7] C. L. Bajaj and G. Xu. Spline approximations of real algebraic surfaces. J. Symb.
Comput., 23(2/3):315--333, 1997.

[8] O. J. D. Barrowclough and T. Dokken. Approximate implicitization of triangular Bézier
surfaces. In Proceedings of the 26th Spring Conference on Computer Graphics, SCCG
'10, pages 133--140, New York, NY, USA, 2010.

[9] A. Barvinok and J. Pommersheim. An algorithmic theory of lattice points in polyhedra.
Complexity, 38:91--147, 1999.

[10] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation. pages 301--309. ACM Press, New York, 1988.

[11] T. G. Berry and R. R. Patterson. Implicitization and parametrization of nonsingular cubic
surfaces. Computer Aided Geometric Design, 18(8):723--738, 2001.

[12] W. Bruns, B. Ichim, and C. Söger. Normaliz. algorithms for rational cones and affine
monoids. Available from http://www.math.uos.de/normaliz.

[13] K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple
polygons. Comput. Geom., 41(1-2):2--20, 2008.

T. Kalinka 86



Changing representation of curves and surfaces: exact and approximate methods

[14] L. Busé, D. A. Cox, and C. D'Andrea. Implicitization of surfaces in the projective space
in the presence of base points. Journal of Algebra and Its Applications, 2(2):189--214,
2003.

[15] L. Busé, A. Dickenstein, and I. Z. Emiris. Discriminant with codimension 3, 2002.
Manuscript, INRIA Sophia-Antipolis.

[16] L. Busé and T. Luu Ba. Matrix-based implicit representations of algebraic curves and
applications. Computer Aided Geometric Design, 27(9):681--699, 2010.

[17] L. Busé and T. Luu Ba. The surface/surface intersection problem by means of matrix
based representations. Computer Aided Geometric Design, 29(8):579--598, 2012.

[18] J. F. Canny and I. Z. Emiris. A subdivision-based algorithm for the sparse resultant.
J. ACM, 47(3):417--451, May 2000.

[19] J. F. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial
equations faster. pages 121--128, 1989.

[20] E. Catmull and J. Clark. Seminal graphics. chapter Recursively generated B-spline
surfaces on arbitrary topological meshes, pages 183--188. ACM, New York, NY, USA,
1998.

[21] A. Cayley. On the theory of elimination. Dublin Math. J., II:116--120, 1848.

[22] F. Chen, D. A. Cox, and Y. Liu. The μ-basis and implicitization of a rational parametric
surface. J. Symb. Comput., 39(6):689--706, June 2005.

[23] F. Chen, L. Shen, and J. Deng. Implicitization and parametrization of quadratic and
cubic surfaces by μ-bases. Computing, 79(2):131--142, Apr. 2007.

[24] F. Chen and W. Wang. The μ-basis of a planar rational curve—properties and compu-
tation. Graphical Models, 64(6):368--381, 2002.

[25] F. Chen and W. Wang. Revisiting the μ-basis of a rational ruled surface. J. Symb.
Comput., 36(5):699--716, Nov. 2003.

[26] X.-D. Chen, L. Chen, Y. Wang, G. Xu, J.-H. Yong, and J.-C. Paul. Computing the min-
imum distance between two Bézier curves. J. Computational Applied Math, 229:294--
301, 2009.

[27] X.-D. Chen, W. Ma, G. Xu, and J.-C. Paul. Computing the Hausdorff distance between
two B-spline curves. Computer-Aided Design, 42:1197--1206, 2010.

[28] E.-W. Chionh. Base points, resultants, and the implicit representation of rational sur-
faces. PhD thesis, Waterloo, Ont., Canada, Canada, 1990. UMI Order No.

[29] E.-W. Chionh and R. N. Goldman. Degree, multiplicity, and inversion formulas for
rational surfaces using u-resultants. Computer Aided Geometric Design, 9(2):93--108,
1992.

[30] R. M. Corless, M. Giesbrecht, I. S. Kotsireas, and S. M. Watt. Numerical implicitization
of parametric hypersurfaces with linear algebra. In Proc. AISC, pages 174--183, 2000.

[31] D. A. Cox, J. B. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer, NY,
2nd edition, 1996.

87 T. Kalinka



[32] D. A. Cox, J. B. Little, and D. O'Shea. Using Algebraic Geometry, volume 185 of
Graduate Texts in Mathematics. Springer-Verlag, NY, 1998.

[33] D. A. Cox, T. W. Sederberg, and F. Chen. The moving line ideal basis of planar rational
curves. Comput. Aided Geom. Design, 15 (8):803--827, 1998.

[34] M. A. Cueto. Tropical Implicitization. PhD thesis, Dept Mathematics, UC Berkeley,
2010.

[35] M. A. Cueto and A. Dickenstein. Some results on inhomogeneous discriminants. In
Proc. XVI Latin Amer. Algebra Colloq., Bibl. Rev. Mat. Iberoamericana, pages 41--62,
2007. arXiv:math/0610031v2 [math.AG].

[36] M. A. Cueto and A. Dickenstein. Some results on inhomogeneous discriminants. In
Proc. XVI Latin Amer. Algebra Colloq., Bibl. Rev. Mat. Iberoamericana, pages 41--62,
2007. arXiv:math/0610031v2 [math.AG].

[37] C. D'Andrea. Macaulay-style formulas for the sparse resultant. Trans. of the AMS,
354:2595--2629, 2002.

[38] C. D'Andrea and M. Sombra. The Newton polygon of a rational plane curve. Math. in
Computer Science, 4(1):3--24, 2010.

[39] G. M. Diaz-Toca, M. Fioravanti, L. González-Vega, and A. Shakoori. Using implicit
equations of parametric curves and surfaces without computing them: Polynomial al-
gebra by values. Computer Aided Geometric Design, 30(1):116--139, 2013.

[40] A. Dickenstein, E. M. Feichtner, and B. Sturmfels. Tropical discriminants. J. AMS,
pages 1111--1133, 2007.

[41] A. Dickenstein and B. Sturmfels. Elimination theory in codimension 2. J . Symbolic
Computation, 34:119--135, 2002.

[42] T. Dokken. Approximate implicitization. In Mathematical Methods for Curves and Sur-
faces, pages 81--102. Vanderbilt Univ., Nashville, USA, 2001.

[43] T. Dokken and J. B. Thomassen. Overview of approximate implicitization. Topics in
algebraic geometry and geometric modeling, 334:169--184, 2003.

[44] T. Dokken and J. B. Thomassen. Weak approximate implicitization. In Proc. IEEE
Intern. Conf. Shape Modeling Appl., page 31, 2006.

[45] D. Doo and M. Sabin. Behaviour of recursive subdivision surfaces near extraordinary
points. Computer-Aided Design, 10:356--360, 1978.

[46] M. Elkadi, A. Galligo, and T. Luu Ba. Approximate gcd of several univariate polynomials
with small degree pertubations. J. Symbolic Comput, 47(4):410--421, 2012.

[47] I. Z. Emiris. On the complexity of sparse elimination. J. Complexity, 12:134--166, 1996.

[48] I. Z. Emiris, V. Fisikopoulos, and C. Konaxis. Regular triangularions and resultant poly-
topes. In Proc. European Workshop Comp. Geometry, pages 137--140, 2010.

[49] I. Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Peñaranda. An output-sensitive al-
gorithm for computing projections of resultant polytopes. In Proceedings of the 2012
symposuim on Computational Geometry, SoCG '12, pages 179--188, New York, NY,
USA, 2012. ACM. Final version to appear in IJCGA.

T. Kalinka 88



Changing representation of curves and surfaces: exact and approximate methods

[50] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDs. J.
Pure & Applied Algebra, Special Issue on Algorithms for Algebra, 117 & 118:229--251,
May 1997.

[51] I. Z. Emiris, T. Kalinka, and C. Konaxis. Implicitization of curves and surfaces using
predicted support. In Electr. Proc. Inter. Works. Symbolic-Numeric Computation, San
Jose, Calif., 2011.

[52] I. Z. Emiris, T. Kalinka, and C. Konaxis. Sparse implicitization via interpolation. To
appear in SAGA Volume (Springer), 2013.

[53] I. Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba. Implicitization of curves and (hy-
per)surfaces using predicted support. Theoretical Computer Science, 2012.

[54] I. Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba. Sparse implicitization by interpo-
lation: Characterizing non-exactness and an application to computing discriminants.
Computer-Aided Design, 45(2):252--261, 2013. Special Issue Conference on SPM.

[55] I. Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit
equation. Mathematics in Computer Science, Special Issue on Computational Geom-
etry and Computer-Aided Design, 4(1):25--44, 2010.

[56] I. Z. Emiris and I. S. Kotsireas. Implicit polynomial support optimized for sparseness. In
Proc. Intern. Conf. Computational science appl.: Part III, pages 397--406, Berlin, 2003.
Springer.

[57] I. Z. Emiris and V. Y. Pan. Symbolic and numeric methods for exploiting structure in
constructing resultant matrices. 33:393--413, 2002.

[58] I. Z. Emiris and V. Y. Pan. Improved algorithms for computing determinants and resul-
tants. J. Complexity, Special Issue, 21:43--71, 2005. Special Issue on FOCM-02.

[59] A. Esterov and A. Khovanskiǐ. Elimination theory and newton polytopes.
arXiv:0611107[math], 2006.

[60] R. T. Farouki and C. A. Neff. Algebraic properties of plane offset curves. Computer
Aided Geometric Design, 7(1-4):101--127, 1990.

[61] J.-C. Faugère, G. Moroz, F. Rouillier, and M. Safey El Din. Classification of the
perspective-three-point problem, discriminant variety and real solving polynomial sys-
tems of inequalities. In Proc. ACM ISSAC, pages 79--86, 2008.

[62] M. Franz. Convex: a maple package for convex geometry, version 1.1.3. Available at:
http://www-math.uwo.ca.

[63] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and
Multidimensional Determinants. Birkhäuser, Boston, 1994.

[64] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants & mul-
tidimensional determinants. Birkhauser, 2008.

[65] R. N. Goldman, T. W. Sederberg, and D. C. Anderson. Vector elimination: A tech-
nique for the implicitization, inversion, and intersection of planar parametric rational
polynomial curves. Computer Aided Geometric Design, 1(4):327--356, 1984.

89 T. Kalinka



[66] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit Curves and Sur-
faces: Mathematics, Data Structures and Algorithms. Springer Publishing Company,
Incorporated, 1st edition, 2009.

[67] L. González-Vega. Implicitization of parametric curves and surfaces by using multidi-
mensional Newton formulae. J. Symbolic Comput., 23(2-3):137--151, 1997. Parametric
algebraic curves and applications (Albuquerque, NM, 1995).

[68] E. Hartmann. Numerical parameterization of curves and surfaces. Computer Aided
Geometric Design, 17(3):251--266, 2000.

[69] R. Hartshorne. Algebraic geometry. Graduate texts in mathematics. Springer, New
York, 1977.

[70] C. M. Hoffmann. Conversion methods between parametric and implicit curves and
surfaces. Technical Report CSD-TR-975, Purdue University, CS Dept., West Lafayette,
IN 47907, USA, April 1990. 64 pages.

[71] A. N. Jensen and J. Yu. Computing tropical resultants. arXiv:1109.2368v1[math.AG],
2011.

[72] S. Ji, J. Kollár, and B. Shiffman. A global Łojasiewicz inequality for algebraic varieties.
Trans. Am. Math. Soc., 329(2):813--818, 1992.

[73] B. Jüttler. Bounding the Hausdorff distance of implicitly defined and/or parametric
curves. In T. Lyche and L. Schumaker, editors, Math. Methods in CAGD, pages 1--
10. 2000.

[74] E. Kaltofen and Y. Lakshman. Improved sparse multivariate polynomial interpolation
algorithms. In P. Gianni, editor, Proc. ACM Intern. Symp. on Symbolic & Algebraic
Comput. 1988, volume 358 of Lect. Notes in Comp. Science, pages 467--474. Springer-
Verlag, 1989.

[75] E. Kaltofen, Z. Yang, and L. Zhi. Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. In Proc.
ISSAC'06, pages 169--177, Genova, Italy, 2006.

[76] M. M. Kapranov. A characterization of a-discriminant hypersurfaces in term of the gauss
map. Math. Ann, 290:277--285, 1991.

[77] M. M. Kapranov. A characterization of A-discriminantal hypersurfaces in terms of the
logarithmic Gauss map. Mathematische Annalen, 290:277--285, 1991.

[78] I. S. Kotsireas and E. S. C. Lau. Implicitization of polynomial curves. In Proc. ASCM,
pages 217--226, Beijing, 2003.

[79] R. Krasauskas and C. Mäurer. Studying cyclides with Laguerre geometry. Comput.
Aided Geom. Des., 17(2):101--126, 2000.

[80] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes.
In Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, SIGGRAPH '96, pages 313--324, New York, NY, USA, 1996. ACM.

[81] J. A. D. Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer, and R. Yoshida.
A user's guide for latte v1.1. Software package LattE is available at
http://www.math.ucdavis.edu/˜latte/, 2003.

T. Kalinka 90



Changing representation of curves and surfaces: exact and approximate methods

[82] F. S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1(33):3--27,
1902.

[83] D. Manocha and J. F. Canny. A new approach for surface intersection. In Proceedings
of the first ACM symposium on Solid modeling foundations and CAD/CAM applications,
SMA '91, pages 209--219, New York, NY, USA, 1991. ACM.

[84] D. Manocha and J. Demmel. Algorithms for intersecting parametric and algebraic
curves i: simple intersections. ACM Trans. Graph., 13(1):73--100, 1994.

[85] D. Manocha and J. Demmel. Algorithms for intersecting parametric and algebraic
curves ii: Multiple intersections. CVGIP: Graphical Model and Image Processing,
57(2):81--100, 1995.

[86] A. Marco and J. J. Martínez. Using polynomial interpolation for implicitizing algebraic
curves. Computer Aided Geometric Design, 18(4):309--319, 2001.

[87] A. Marco and J. J. Martínez. Implicitization of rational surfaces by means of polynomial
interpolation. CAGD, 19:327--344, 2002.

[88] V. Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comp., 18:183--186,
1994.

[89] N. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design and
Manufacturing. Springer-Verlag, New York, 2001.

[90] S. Pérez-Díaz and J. R. Sendra. Partial degree formulae for rational algebraic surfaces.
In ISSAC, pages 301--308, 2005.

[91] M. Peternell, D. Gruber, and J. Sendra. Conchoid surfaces of spheres. Computer Aided
Geometric Design, 30(1):35--44, 2013.

[92] M. Peternell and H. Pottmann. Computing rational parametrizations of canal surfaces.
Journal of Symbolic Computation, 23:255--266, 1997.

[93] J. Peters and U. Reif. Subdivision Surfaces, volume 3 of Geometry and Computing.
Springer-Verlag, New York, 2008.

[94] J. Rambau. TOPCOM: Triangulations of point configurations and oriented matroids.
In A. M. Cohen, X.-S. Gao, and N. Takayama, editors, Intern. Conf. Math. Software,
pages 330--340. World Scientific, 2002.

[95] T. Recio and J. R. Sendra. Real reparametrizations of real curves. J. Symb. Comput.,
23(2/3):241--254, 1997.

[96] M. Sanuki and T. Sasaki. Computing approximate gcds in iii-conditioned cases. In
Proc. SNC 2007, pages 170--179, ACM, Ontario, Canada, 2007.

[97] T. Sasaki and M. Suzuki. Three new algorithms for multivariate polynomial gcd. J.
Symbolic computation, 13:395--411, 1992.

[98] T. Sauer. Lagrange interpolation on subgrids of tensor product grids. Math. of Comput.,
73:181--190, January 2004.

[99] J. Schicho. A Degree Bound for the Parameterization of a Rational Surface. Technical
Report 97-24, RISC Report Series, University of Linz, Austria, October 1997.

91 T. Kalinka



[100] J. Schicho. Rational parametrization of real algebraic surfaces. In ISSAC, pages 302-
-308, 1998.

[101] T. W. Sederberg and J. Zheng. Handbook of Computer Aided Geometric Design, chap-
ter Algebraic Methods for Computer Aided Geometric Design, pages 363--387. Else-
vier, 2002.

[102] F. S. Segundo and J. R. Sendra. Degree formulae for offset curves. J. Pure Appl.
Algebra, 195(3):301--335, Feb. 2005.

[103] J. R. Sendra and F. Winkler. Algorithms for rational real algebraic curves. Fund. Inform,
pages 211--228, 1999.

[104] J. R. Sendra and F. Winkler. Computation of the degree of rational maps between
curves. In Proceedings of the 2001 international symposium on Symbolic and algebraic
computation, ISSAC '01, pages 317--322, New York, NY, USA, 2001. ACM.

[105] J. R. Sendra and F. Winkler. Tracing index of rational curve parametrizations. Comput.
Aided Geom. Des., 18(8):771--795, Oct. 2001.

[106] C. Shen, J. F. O'Brien, and J. R. Shewchuk. Interpolating and approximating implicit
surfaces from polygon soup. ACM Trans. Graph., 23(3):896--904, Aug. 2004.

[107] B. Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin., 3:207--
236, 1994.

[108] B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of the implicit equation.
Moscow Math. J., 7(2), 2007.

[109] B. Sturmfels and J. Yu. Minimal polynomials and sparse resultants. In F. Orecchia and
L. Chiantini, editors, Proc. Zero-dimensional schemes (Ravello, 1992), pages 317--324.
De Gruyter, 1994.

[110] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes. In Software
for Algebraic Geometry, volume 148 of IMA Volumes in Math. & its Applic., pages 111-
-131. Springer, New York, 2008.

[111] J. Sylvester. On a Theory of the Syzygetic Relations of Two Rational Integral Functions,
Comprising an Application to the Theory of Sturm's Functions, and that of the Great-
est Algebraical Common Measure. Philosophical Transactions of the Royal Society of
London, 143, 1853.

[112] S. Tanabe. On Horn-Kapranov uniformisation of the discriminantal loci. Adv. Studies
Pure Math., 46:223--249, 2007.

[113] C. Ünsalan and A. Erçil. Conversions between parametric and implicit forms using po-
lar/spherical coordinate representations. Computer Vision and Image Understanding,
81(1):1--25, 2001.

[114] J. van der Hoeven and E. Schost. Multi-point evaluation in higher dimensions. Technical
Report 00477658, HAL, 2010.

[115] J. von zur Gathen, M. Mignotte, and I. E. Shparlinski. Approximate polynomial gcd:
small degree and small height pertubations. J . Symbolic Computation, 45(8):879--
886, 2010.

T. Kalinka 92



Changing representation of curves and surfaces: exact and approximate methods

[116] W. N. Waggenspack Jr. and D. C. Anderson. Piecewise parametric approximations for
algebraic curves. Computer Aided Geometric Design, 6(1):33--53, 1989.

[117] W. Wang. Handbook of Computer Aided Geometric Design, chapter Modeling and
processing with quadric surfaces., pages 777--795. Elsevier, 2002.

[118] X. Wang, F. Chen, and J. Deng. Implicitization and parametrization of quadratic sur-
faces with one simple base point. In Proceedings of the twenty-first international sym-
posium on Symbolic and algebraic computation, ISSAC '08, pages 31--38, New York,
NY, USA, 2008. ACM.

[119] J. Warren. A bound on the implicit degree of polygonal bézier surfaces. InMathematics
Department, City University of Hong, pages 513--525, 1990.

[120] E. Wurm, B. Jüttler, and M.-S. Kim. Approximate rational parameterization of implicitly
defined surfaces. In IMA Conference on the Mathematics of Surfaces, pages 434--447,
2005.

[121] E. Wurm, J. B. Thomassen, B. Jüttler, and T. Dokken. Comparative benchmarking of
methods for approximate implicitization. In M. Neamtu and M. Lucian, editors, Geomet-
ric Modeling and Computing, Seattle 2003, pages 537--548. Nashboro Press, 2004.

[122] Z. Zeng. Apatools: a software toolbox for approximate polynomial algebra. ACMComm.
Comput. Algebra, 42:177--179, 2009.

[123] J. Zheng and T. W. Sederberg. A direct approach to computing the μ-basis of planar
rational curves. J. Symbolic Comput, 31(5):619--629, 2001.

[124] R. Zippel. Interpolating polynomials from their values. 9:375--403, 1990.

[125] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston,
1993.

93 T. Kalinka


	Contents
	List of Figures
	List of Tables
	Introduction
	Representation of geometric objects
	Parametric representation
	Implicit representation
	Polygon meshes
	Subdivision surfaces

	Change of representation
	Implicitization by resultants
	Implicitization by Gröbner bases
	Implicitization by μ-bases

	Implicitization by interpolation
	Bound on the implicit degree
	Computing implicit polytope
	Methods for exact implicitization
	Approximate implicitization

	Summary of the results
	Thesis structure

	Implicitization with support prediction
	Introduction
	Support prediction
	Sparse elimination theory
	The implicit polytope
	Implementations of the method

	Interpolation of the implicit equations
	Problem of the implicitization
	Implicitization algorithm
	Complexity
	Building the matrix
	Matrix evaluation

	Multidimensional kernel space

	Implementation of the implicitization method
	Exact and approximate solving
	Maple
	Examples
	Curves and surfaces of Bernstein basis
	Accuracy of the approximate implicitization

	Comparison to other methods
	Computing discriminants
	Conclusions

	Conclusions and further remarks
	Results
	Future work

	Index
	Bibliography

