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ABSTRACT

The advent of microarray technology has revolutionized our knowledge about the
underlying mechanisms of human diseases, based on the simultaneous hybridization of
thousands of genes. The analysis and mining in this immense amount of information
necessitate the development of sophisticated algorithms and effective computational
tools. The holy grail of those tools is to discern those maybe tens of genes among tens
of thousands of genes that appear to differentiate their expression values systematically
between two specific phenotypes. This endeavor is impeded by several factors
including the inherent “noise” from the microarray technology and the poly-parametric
nature of the diseases, which disguise the hunted patterns of differential gene
expression.

Therefore, feature selection methods oriented to microarray gene expression data is a
research topic that drawn scientific interest even from the late 90s. So far numerous
algorithmic approaches have been proposed trying to identify the significant genes per
dataset with the aspiration to be further characterized as marker genes relevant to the
inspected disease. Despite many successful applications of such methods in a variety
of datasets, no method considered as a gold standard yet regarding the discrimination
accuracy, the robustness, the number of significant genes and their biological
relevance.

In this dissertation we propose a new hybrid feature selection method (mAP-KL) based
on the hypothesis that among the statistically significant ranked genes in a gene list,
there should be clusters of genes that share similar biological functions related to the
investigated disease. Thus, instead of keeping N top ranked genes, it would be more
appropriate to define and keep a number of gene cluster exemplars. The mAP-KL
combines successfully multiple hypothesis testing and affinity propagation clustering
algorithm along with the Krzanowski & Lai cluster quality index, to select a small yet
informative subset of genes.

We subjected our method across a variety of validation tests on simulated microarray
data as well as on real microarray data. Regarding the real microarray data we
employed datasets of six neuromuscular diseases and four cancer datasets covering a
variety number of samples per phenotype. What is more, we engaged ten other feature
selection approaches on the same real microarray data and compared the classification
results according to several metrics, for example AUC. In addition to the classification
analysis we exploited the produced gene lists from a biological perspective as a further
assessment of our method in relation to the other approaches. The overall evaluation
results (AUC= 0.86) suggest that mAP-KL generates concise yet biologically relevant
and informative n-gene expression signatures, which can serve as a valuable
discrimination tool for diagnostic and prognostic purposes, by identifying potential
disease biomarkers in a broad range of diseases.

SUBJECT AREA: Feature Selection, Compuatational Intelligence on Genomic Data

KEYWORDS: microarrays, gene expression data, significance analysis, hybrid feature

selection, biomarkers






NEPIAHWH

H €éAeuon Tng TeXvoAoyiag Twv WIKpoouoToIxiwy, Baci{épevn oTnv Tautdxpovn
uBpidottoinon XIAIAdwYV yovidiwv £Qepe €TTAVACTAON OTIG PEXPI TOTE YVWOEIG HAG
OXETIKA PE TOUG PNXAVIOHUOUG TTou BIETTOUV TIG avBpwTTiveg aoBéveiec. H avaAuon kail n
€€opuen yvwong atrd €va TEToIo0 OYKO TTANPOQPOPIAG aTTAITE TNV AVATITUEN £CENIYUEVWV
OAYOPIBUWY Kal OTTOTEAECOUATIKWY UTTOAOYIOTIKWY EPYOAEIWV. ZKOTTOG aAUTWV TWV
epyaAeiwv gival va dIakpivouv PETOEU OEKAdWV XINIAOWY YOVIOiWV €KEIVEG TIG OEKADEG
iCWG YoVIOiwV TTOU EU@AVICOUV PIO GUCTNUIKY d1aQOPOTIoiNoN OTIG TIMEG TNG YOVIOIOKAG
TOUG €KQPAONG METALU OUO A TTEPICOOTEPWVY PaIVOTUTTWYV. H TTpooTrdBeia autry Opwg
TTaPEUTTOdICeTal aTTO  BIAPOPOUG TTAPAYOVTEG OTTWG, TOv eyyevry "B0pufo” Twv
MIKPOOUGTOIXIWV KABWG KAl A1t TNV TTOAU-TTOPAPETPIKA QUON TwWV aoBeVEIWY, Ta OTToia
OUYKOAUTTITOUV Ta TTPOG avalATnon PoTiBa autig TG dIaQOoPIKAG YOVIBIAKAG EKQPAONG.

Q¢ ek TOUTOU, N QvVATITUEN MEBOOWV ETTIAOYNG XAPAKTNPIOTIKWY (Yovidiwv) atro
O0edouéva yovIBIOKAG £K@PaoNnG eival éva epeuvnTIKO OEUa TTOU €XEl KEVTPIOEI TO
emoTnuovikd  evdlagépov  ammd  Ta TéEAn Tng Otkaetiag Tou '90  Otav  Kal
TTpwTogP@avioTnkav. Méxpl oTiyuAS TTOANEC OAYOPIBUIKES TTPOOEYYIOEIG £XOUV TTPOTOBEI,
Ol OTI0iEG TTPOOTTABOUV Vva EVTOTTIOOUV TA ONUAVTIKA €KEiva yovidia, avd ouvoAo
OclyudTwy, he TN @IAodogia KATTOIa ATTO QUTA VA XAPOKTNPIOTOUV WG yovidla oAuavong
yla Tnv e€etalouevn vooo. MNMapd TIC APKETEC ETTITUXNMEVEG EQAPPOYEC OE MHIa TTOIKIAIQ
YOVIOIaKWY OEDONEVWV EKPPAONG, Kaia HEBOOOG dev £xEl KATAPEPEI va DIAKPIBET EvavTi
TWV UTTOAOITTWV OCWV a@opd Tnv oTaBepd uwnAr diaxwpIoTIKA IKaveTNTA, TwV apIBuo
aAAG Kai TNV BIOAOYIKA oNUAVTIKOTNTA TWV ETTIAEYUEVWYV YOVIBiWV.

2€ autn TNV dIaTPIRR TTpoTEivouuE pia véa uBPIdIKA nEBODdO eTTIAOYNG yovidiwv (MAP-KL)
n otroia Baacidetal oTnv UTTGOE0N OTI HETAEU TWV OTATIOTIKA CAPAVTIKWY YOVIOiwvV € HIa
Tagivounuévn Aiota, Ba Tpétel va uttdpxouv ouddeg yovidiwv TTou  poipdlovTal
TTaPOMOIES BIOAOYIKEG AEITOUPYiEG O€ OXEON WE TNV UTTO digpeuvnon vooo. ‘ETol, avri va
emAéyoupe Ta N Kopu@aia yovidla piag Aiotag, Ba ATav OKOTINO va ETTIAEYOUE Ta
XOPAKTNPIOTIKOTEPQ yovidia atrd KaBe oudda yovidiwv. To mAP-KL cuvduddel eTTITUXWG
Mia pEBodOo TTOANATTAOU €AEyxXOU UTTOBECEWY HE HIa HEBODO €TTIAOYAG OUGOWYV YovIdiwv
KAl JE TNV XPron €vOg O€ikTn TToIOTATAG CUOTAdWY dedopévwy Twy Krzanowski & Lai yia
TNV TEAIKA €TTIAOYN £VOG HIKPOU OAAG XOPAKTNPIOTIKOU UTTOOUVOAOU YOVIDiWwV.

YtmoBadAapue TNV PEBODO pag o€ pia oelpd QOKIYWV ApXIKA O€ TTPOCOMPOIWUEVA
OedoPEVA PIKPOOUOTOIXIWY KAl OTN CUVEXEIQ O€ TTPAYMATIKA OEO0UEVA XPNOIUOTTIOIWVTOG
oUvOAa Oedopévwy aTro €€ VEUPOMUIKEG TTaBAOEIG KOBWG Kal atrd TECOEPIG TUTTOUG
KOpKivou, KOAUTITOVTOG £TO1I €va €upU QAoHa apiBuou delyuaTwy avd @aivoTuTro.
EmmAéov, epapudoape dwdeka AAANEG PEBODOUG ETTIAOYAG XAPAKTNPIOTIKWY OTA idla
TTpayuatiké dedopéva Kal OuyKpivape Ta atroTeAéoparta Tagivounong WE TNV Xpnon
OIGQOopPWY METPIKWY agloAdynong. EmmpooBéTwg, BeAjoaue va eAéyéouue kal va
OUYKPIVOUWE TIG TTapaxBeioeg yoviOIoKEC AiOTEG TNG MEBODOU pag aAAG Kal Twv AAAWV
MEBOBWV 0t ox€on Pe TNV BIOAOYIKA TOUG CUVAPEID WG TTPOG TNV £€eTalduevn vooo. Ta
OUVOAIKG aTtroteAéopaTta Twv aglohoynoswv (AUC = 0.86) dceixvouv 611 n mAP-KL
EMAEYEl €va UTTOOUVOAO aTTO N-yovidia Ta oTToia OxI HOVO dlaxwpEifouv IKaVOTToINTIKA
ayvwoTta dciypaTa, aAAd gival Kal BIOAOYIKWGS OXETICOMEVA. ZUVETTWG, N MAP-KL uTropei
va oTroTeAécEl €va TTOAUTIMO  epyaAgio  diaxwplopou  yia  diayvwoTIKOUG KOl
BepatreuTikOUG OKOTTOUG, ME Tnv avadeign tmlavwv Blodeiktwv e éva eupu QAcua
aoBevelwv.

OEMATIKH MNMEPIOXH: MéBodol EtriAoyrig XapakTnpIoTIKWV

AE=EIX KAEIAIA: uikpoouoToixieg, 0Oedopéva  yoviOIOKNG €KPpaong, avaAuon
OnNUavTIKOTATAG, UBPIOIKA HEBODOG ETTIAOYNG XAPAKTNPIOTIKWY, PIODEIKTEG
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EYXAPIZTIEZ

H ekmrdévnon tng TTapoucag dI16akTopiknG dIaTpIBAG TTpayuaTotroinénke oTo 16pupa
latpoBioloyikwv Epeuviov TnG Akadnpiag ABnvwyv (IIBEAA) utté mnv etTotrTeia kai Tnv
KaBodriynon Tou KaBnyntA Kupiou [ewpyliou ZTTUPOU, TOV OTTOI0 BEAW va euXapIoTAOW
1IB10iTEPA OXI MOVO yIa TNV EUTTIOTOOUVN TTOU €TTEDEIEE OTO TTPOCWTTO POU OAAG Kal OTn

auépIoTn UTTOOTHPIEN TOU KABOAN TNV SIGPKEID TOU EPEUVNTIKOU LOU £pYOU.

EmtrAéov Ba nBeAa va euxapiotiow Tnv AéoTtroiva 2avoudou, ETrikoupn kaBnynTpia
otnv latpikrp oxoArj ABnvwyv n kaBodriynon Tng oTroiag ATav atmmoAuTa Kpioiun yia tnv

ETTITUXA OAOKANPWON TNG £PEUVAG HOU.

TéNog, Ba nABeAa va ek@PAow TIG IDICITEPEG EUXAPIOTIEG MOU OTOV KUPIO ZEPYIO
Oeodwpidn, kaBnyntr Tou TPAMATOG MANPOPOPIKAG Kal TNAETTIKOIVWVIWY, TTOU HOU
€0WOE TNV EUKAIPIA VA EUTTAOKW KOl VA YVWPIoW TOV UTTEPOXO KOOWO TNG €PEUVAG, YIaTi

XWPIG TNV EUTTIOTOOUVN Kal a1TodoXr Tou, TiTToTa atrd OAa autd dev Ba gixav yivel.






2YNOITIKH NMAPOYZIAZH THZ AIAIAKTOPIKHZ AIATPIBHZ

EIZArQrH

H gpy@davion Tng TEXvoAoyiag Twv piIkpoouoToixiwv DNA €xel BeATILWOEI TIG dUvATOTATEG
MOG WG TTPOG TNV KAAUTEPN KATAVONON TWV PNXAVIOUWY TTOU BIETTOUV TIG AVOPWTTIVEG
aoB€veleg kal €xel Bonbroel otnv akpiBéoTtepn Tagivounon, didyvwaon Kal Tpdyvwaon.
NAOGyw TnNG uWnAAG diakivnong dedouEvwy TTOU TNV XapakTnpidouyv, €ival amapaitntn n
XPON UTTOAOYIOTIKWYV €PYOAEiwvV yia Tnv avdaAuon kal €g0puén Twv OedOPEVWY,
TTPOKEINEVOU Va BonBnBouv o1 EpeuVNTEG OTO VA PEYIOTOTTOINOOUV TNV £EQYONEVN YVWON
ATTO TA TTEIPAPATIKA ATTOTEAECHATA. 2TOV TOUED TNG DIAYVWONG, Ol TTIPOEPXOUEVOI ATTO TIG
MIKpoouaoTolxieg PiodeikTeg €xouv €EeAixBei oe €va TTOAUTIMO epyaAeio. Mapduoia pe
oTroladNTTOTE GAAN KAIVIKA) QOKIUr, O TTPWTAPXIKOG OTOXOG TWV HOPIOKWY OOKIUWY,
oupTTEPIAQUBAVOUEVWY TWV BOKIPWY PE UIKPOOUOTOIXIES, Eival N TTApoXH agIOTTIOTWY Kal
EYKQIPWY OTTOTEAECUATWY YIa TN BeATIwWoN TNG @povTidag Twv acBevwv. lMNpokeipévou va
MEYIOTOTTOINBEI N XPNOIUMOTNTA TWV PIKPOCUCTOIXIWVY OTNV dIdyvwaon / TTpoyvwan, givai
ONUAvTiKG va eAaxioTotroinBei 0 apiBudg Twv PIOOEIKTWY TTOU TTPETTEI va eAEyXOouv
WOTE Va EMTEUXOEI o akpIfrg diayvwon.

Qo1600, N €AY AQUTWY TWV PIOBEIKTWY, ATTOTEAEI pIa TTPOKANCN KATA TNV OTToia Ol
MEBODBOI TTIAOYAG XapAKTNPIOTIKWYV (FS) ptropouv va cupBdlouv onuavTtikd. Mpdayuari,
atro Ta TEAN TNG dekaeTiag Tou '90 pia TTANBwpPa PEBOBWYV EPPAVIOTNKE KAl EQAPUOOTNKE
OE QPKETEC MEAETEC PIKpoouaToIXiwy. Mapd TIC aAyopiOuIKES dIaPOPES TOUug, OAEG Ol
MEBODBOI €xouv TOug idIoug OTOXOUG: 1) TNV ATTOQUYN TNG UTTEPTTPOCAPHOYAG Kal Tn
BeAtiwon TnNg amodoong Twv TIPORAEWewv 2) va TTapdyouv ypnyopoTeEPa  Kal
atmodoTIKOTEPA  HOVTEAQ, Kal 3) va TPoo@EPouV pia BabuTtepn karavonon Twv
UTTOKEIMEVWY Blepyaoiwy. MMap 'OAa auTd, n TTIAOYH AUTWY TWV «ONUAVTIKWVY» YOVIOiwv
TTOU aTTodidouV TO 010 UWPNAS £TTiITTEDO TALIVOUNONG O€ dedOUEVA PIAG OUYKEKPIYEVNG
aoBgvelag dev gival akOua QIKTO Kal atroTeAEi Eva avoixTo ¢nTnua.

2YNAOEIZ EPEYNHTIKEZ NMPOZMAQGEIEZ

2TNV TTPAYMATIKOTNTA, KABE OUVOAO aTTO OEOOPEVA HIKPOCUOTOIXIWY WTTOPEI va 0dnyrnoEl
o€ TO0EG AioTEG OnUavTIKWYV yovidiwv 60eg kal ol FS péBodol Tou Ba epapuoaTouv.
AKOUN Kal OTIG TTEPITITWOEIG OTTou o1 pEBodol poipdlovtal Tnv idia @IAocoia ol
TTaPAYOUEVEG YOVIOIOKEG AioTeg eival mBavov va atmokAivouv. ZXeTikG pe TIG FS
MEBOBOUG TTOU poIpdlovTal KOIVEG apXEG, MTTOPOUME VO OPICOUNE TIG aKOAOUBEG eupeieg
OMAOEG: PIATPAPICUATOC, TTEPITUAIYUATOG KAl EVOWNATWHEVES. AUTEC eival o1 3 BaOIkEG
KATNYOPIEG, KABE pia Pe Ta avTioTOIXa TTAEOVEKTAUATA KAl PEIOVEKTAUATA. ETTITTAéoV aTTd
QUTEG TIG 3 KATNYOPIEG, £XEl ENPAVIOTEI Kal YIa véa Katnyopia FS peBddwyv, ol uPPIBIKES
MEBOoDBOI. AuTEG o1 uEBOBOI ouvdudlouv ueBGdOUG BIaPOPWY KATNYOPIWV PE OKOTTO TNV
aglotroinon  Twv  TTAEOVEKTNUATWY  TOUG  Kal  TTOPAAANAa  Tnv  GuBAuvon  Twv
MEIOVEKTANATWY TOUG TTPOG OPEANOG TNG ETTIAOYAG «OTNUAVTIKWYY YOVISIWV.

BeBaiwg, o ouvdouaoudc upeBOdwv artroTeAei pia eTToikodounTik dladikaoia TTou
BaoiCeTal TTAvTa O€ €MOTNUOVIKEG UTTOBECEIG, €iTE BIOAOYIKEG €ITE OTATIOTIKEG, KAl OXI O€
Katrola Tuxaia emAoyn. ETri TTapadeiypat, otnv yeAETN Twv Jaeger et al. ioxupioTnkav
OTI oI aAyopiBuol TagIivouNnonG/QIATPaPIoUATOS TTapAyouv AiCTEG yovidiwyv, OTToU Ta
Kopu@aia yovidla €xouv uwnAf cuoxETIon JETAEU TOUG, KUPIWG ETTEION AVAKOUV OTO idlo
BioAoyiké povotrar. Emong, o Hall otn diatpiBA Tou, digpelvnoe Tnv uttdBean OT1 "éva
KOAO UTTOOUVOAO XOPOKTNPEIOTIKWY (Yovidiwyv) €ival auTd TTOU TTEPIEXEI XOPAKTNPIOTIKA



UWNANG OUOXETIONG KE TNV KATNyopia, aAAG XapnANG ouoxETIoNG HETAEU TOUG». AUTEG Ol
TTETTOION0EIC £dwaoav To évauopa yia TTOAAEG UBPIBIKEG peEBGDOUG, KATTOIEG aTTO TIG
oTT0ieG ouvduaoav pia PHEBOdO QIATpapiopatog kal pia péBodo ouadoTtroinong yia va
KATtaAAEouv o€ pia AioTa «ONPAVTIKWVY» YOVISiwV.

EidikoTEPQ, 01 Jaeger et al. xpnoiyotroinoav évav fuzzy aAyépiBuo opadoTtroinong yia va
dlayxwpiocouv apxIKa Ta yovidia, OPJadOTIOIWVTAG T CUPPWVA PE Eva PJETPO OUOIOTNTAG.
2Tn OUVEXela, Pe Tn PorBeia evog oTaTIOTIKOU €AEyxou, OTTWG TO t-test ) To Wilcoxon
test, eTéAeav éva ) TTEPIOCOTEPA AVTITIPOCWTTEUTIKA yovidla atrd kKabe oudda yia Tov
OXNMATIOPO NiOTAG «ONUAVTIKWVY» AAAA KOl QOUCXETIOTWY PETALU TOUGYOVIDIWV. Z€ auUTh)
TN MEAETN, O akpIBeic apiBuOg Twv cuoTddwyv TTou Ba TTPETTEI va OXNMATIOTEN Kal O
apIBudG TWV AVTITTPOOWTTEUTIKWY YOVIQiwV ava ouoTada Trapéusivay TTpoBAAuaTa TTpog
Auon.

Mapouola pe Toug Jaeger et al., otn HEAETN Twv Hanczar et al. TTpoTtdOnke pia p€Bodog
OUO BNUATWY. ZUYKEKPIPEVA, MIO PN-ETTOTITEUOMEVN PEBODOG opadotroinong, k-mean,
OUVOUAOTNKE PE MIO JOBNUATIKA €vvola, TOU «TTPWTOTUTTOU YoVIdiou», TTPOCTTa8wWVTag
VO EVTOTTIOEl TA AVTITIPOCWTTEUTIKA yovidia TnG KABe oudadag. Avaloya TTpoBARuaTa e
auTd TNG MEAETNG Twv Jaeger et al. ep@avioTnkav Kal o€ AUtV TN MEAETN, Kal TA OTTOIa
XAPOKTNPIOTNKAV WG  MEANOVTIKOI OTOXOI aTrd TOugG epeuvnTéG. Mia  EVOAAOKTIKA
aAyopIBUIKA TTPOCEyyIon, OTTOU N KAtatagn Twv yovidiwv Trponyeital KAbe AAANG
MEBOBOU TTEPIYPAPETal 0TV MRMR péB0d0. ZuyKeKpPIUEVA, N APXIKH KATATAEN HEow t-
test 4 F- test ouvdudleTtal OTN OCUVEXEID PE MIa DIADOXIKN Kal eTTAVAAAUPBaAvOPEVN
oUyKpPIoN METALU TwV TAEIVOUNUEVWY (EUYWYV TWV YovIdiwy, TTPOKEINEVOU VA KATAAAEE
0¢ £€va UTTOOUVOAO «OnNUAvTIKWV» YovIdiwv, oUPQWVa HPE KATTOIO KPITAPIA, OTTWG TN
MEYIOTN ouvAQEIa KAl TOV EAAXIOTO TTAEOVAOPO. 'Eva onuavTikG PEIOVEKTAPA QUTAG TNG
TTPOCEYYIoNG €ival OTI TO KPITAPIO TOU TTAEOVOOUOU PTTOPEI va aTTOKAEIoEl yovidla TTou
BewpouvTtal onuavTikd atrd PIoAoyIKAS atrowns. Mia GAAn evdia@épouca TTPOCEYYION, N
HykGene, cival pia péBodog €1mAoyng yovidiwv TPV BNUATWY, N OTTOI0 EVOWUATWVEI
évav aAyopiOuo QIATpapiouaTog, JIa 1IEPAPXIKT MEBODO OpadOTTOINONG TWV KOPUPaiwv
Tagivounuévwy yovidiwv Kal, TEAoG, €vav aAyoplBuo odpwong YPauunig. Agou TTpwTa
TTPOCdIOPIOTOUV Ol OUCTAdEG aTrd Tnv IEpapXIK MEBODO, O aAydpiBuog ocdpwaong
YPOUMNG  €@apuOleTal  OTO  OevOpPOYypAPUA  TTPOKEINEVOU  va  €TTIAEEEl  €va
QAVTITTPOCWTTEUTIKO YOVidIo avd ouoTada.

AauBdavovtag uttéywn atrd Tn HIa Ta €TMITUXA ATTOTEAEOPATA KATATOENG TWV TTAPATTAVW
MEAETWYV, Kal atmrd TNV AGAAN TOUG TTEPIOPIOUOUC/TTPOBAAUOTA TWV HEBOdWYV aUTWV,
avaTrTuéaue pia véa uBpIdikn pEBodo, Tnv MAP-KL. ZTnv TTpoTEIvVOUEVN TTPOCEYYION, TA
yovidla TTpwTa  Katardooovtal  avadloya PE TNV OlAQOPIKA  TOUG  €KPPOON,
XPNOIUOTTOIWVTOG £va t- test TTOAATTAWV UTTOBECEWY, Kal 0T CUVEXEID, TO Kopugaia N
Tagivounuéva yovidla opadoTtrolouvTal pe TN PEBodO cucoTadotroinong - Affinity
Propagation (AP). Mpiv ammé Tnv AP g@apudletal €vag aAyopiOuog avayvwploEeig Tou
apiBud Twv ocuoTadwv PETALU Twv Kopu@aiwv-N-yovidiwv. To amoTéAeoua auTAg TNG
pEBGOOU eival €va UTTOOUVOAO TTou TTEPIAQUPBAVEI €va QVTITIPOOWTTEUTIKO Yyovidlio avd
ouoTada.

H MPOTEINOMENH YBPIAIKH MEOGOAOZ EMIAOIHz
XAPAKTHPIZTIKQN (mAP-KL)

Mia FS pébodog, yia dedouéva yovIOIOKAS EKPPAONSG aTTOd UIKPOOUCTOIXIEG, Ba TTPETTEI
va gival aveEdpTtntn a1rd Tov TUTTO TNG TTAATPOPHAG, ATTO TV VOOO Kal a1td TO YEYEBOG
TOU ouvOlou Twv Oedopévwy. H utrdéBeory pag eival OTI PETALU Twv OTATIOTIKA
ONUAvVTIKOG yovidiwv piag Tagivounuévng Aiotag, Ba mpémmel va uttdpxouv Ouddeg



yovidiwv Trou poipadovTal TTapouoleg PIOAOYIKEG AEITOUPYiEG O OXEONn ME TNV UTIO
dlgpeuvnon acbévela. ‘ETol, avti va kpatdue Ta kopu@aia N yovidla piag Tagivounuévng
Aiotag, 6a Arav OKOTPO va TIPOoCodIopiOUPE KAl va  KPaTdue €vav  apiBuod
QAVTITTIPOCWTTEUTIKWYV YoVIBiwv avé ouoTada. MauTtd 1o oKOTTd TTPOTEIVOUNE HIa UBPIBIKA
MéEBOBO FS (MAP-KL), n omoia ouvdudlel pia péEBOdO @IATpaApPIOHATOS MECW TNG
eQapuoyng TTOAAATTAOU eAEyXOU UTTOBECEWY, £vav aAyopIBuo ocuoTadoTroinong Kal évav
O€iKTn  TTOIOTNTOG  OUCTAdWYV, TIPOKEINEVOU va  €TIAECOUME  €va  PIKPO  OAAG
AVTITTPOCWTTEUTIKO UTTOOUVOAO YOVIDiwV.

H pé0odog @iATpapioparog

H 1rpoteivouevn pebodoAoyia ouvduddlel KaTdTragn/@IATpApIoUa Kal opadoTroinon yia va
ETMAEYEI VA PIKPO GUVOAO YOVISIWV PN CUCXETIOPEVWY PETAEU TOUG AAAG OUOXETIOUEVO
ME TNV uTTd digpelvnon acBévela. e oxéon PE TO OTAdIO TOU QIATPAPICHATOG, apXIKG
XpnolgoTrogiTal n ouvdptnon maxT yia va Tagivounoel Ta yovidla Tou GCuvoAou
ektraideuong. H atmdéaon pag yia 1o ToId PJéBodo QIATpapiouaToS Ba £QapUOCOUUE
TTPOEKUYE ATTO TA CUPTTEPACHATA HIOG MEAETNG TTOU TTPAYUATOTTOINCAUE €TTAVW O€ FS
MEBOBOUG. ZUyKeKpIEVA, agloAoyAoaue TNV ammodoon Tagivounong TTEVTE dIAQOPETIKWV
FS pebddwv oe dedopéva atmo OEKa OIOPOPETIKEG VEUPOUUIOTTAOEIEG. KaBe pEBodog
€dwoe pia dlaPopeTIK AioTa yovidiwv, atrd TNV OTToia OTnN CUVEXEID XPNOIYoTToIROnKav
Ao TTAVW TTPOG TA KATW Ta Tagivounuéva yovidla atrd Tnv TIYR Kartatagng 2 £éwg tnv
B8éon 400 pe povadiaio BAua, TTPOKEINEVOU KABE QOopda va cuvBETOUNE €va VEO OUVOAO
Tagivounong. H agloAdynon tTwv €moddoewyv Katatagng OAwv Twv cuvoAwv Tagivounong
ava FS péBodo arreikoviCetal otnv Eikéva 1, kai degixvel 0TI N maxT TTETuxe Péon
akpipela Tagivounong ion pe 95%, avaueoca oe vy dciypaTta kal dsiyuarta PeE TNV
uTTodIEPEUVNON VOOO.
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Eikéva 1: H ouvoAiki akpieia Tagivopunong mévre peB6dwV 1TIAOYRAG XAPAKTNPIOTIKWY CE SEKA
oUVvoAd dedopévwyv atrd veupopUoTrddeieg cUp@wWVa PE TECOEPIG AAYyOpIBpoUg Tagivopunong

O 5¢€ikTNG TOIOTNTAG OCUCTASWV

2T OUVEXEIQ, Kal TTPIV TO OTADIO TNG OMadOoTToiNoNG, ETTIXEIPOUME va TTPOCOIOPICOUNE
Tov apiBud Twv ouoTtddwyv, TOU OTnV oucia Ba e€ival Kal O apIBPNOS Twv



QVTITTIPOOWTTEUTIKWY YovIdiwv TTou Ba atroteAéoouv To UTTooUVOAO pag. H atmogaon
OXETIKA PE TO TToI6V EIKTN TTOI0TNTAG OUCTAdWY Ba XPNOIUOTTOINOOUUE, BacioTnke TG00
OTA ATTOTEAEOUATA PIOG OUYKPITIKAG MEAETNG TWV Tibshirani et al. 600 kai o€ £va TTAB80og
OOKIJWYV TTOU EKTEAECANE O€ TTPOCOUOIWMPEVA DEDOPEVA OPAdOTTOINONG OI OTTOIEG ETTIONG
KATEDEIEAV TNV QTTOTEAEOPATIKOTNTA TwV OEIKTWYV. ZUUPWVA ME TA TIPONyouuEva,
KataAnéape oTtnv €@apupoyr Toudeiktn Twv Krzanowski kalr Lai TTpokelyévou va
TTPOCdIOPICOUNE TOV APIBUO TwvV CUCTAdWV OTa deiyyata Tng vOOOU TOU OUVOAOU
ekTTaidoeuong. H e@apuoyr Tou yévo OTa deiyyaTa TnNG VOOOU ATTOTEAEI MIA ONUAVTIKA
AetrTopépela TNG peBodoAoyiag pag, dedouévou OTI €xel AUECO OTO TIANBOG TwV
OuoTAdWYV TTOU Ba avayvwpioToUuVv Kal KATA CUVETTEIOOTO TTANB0G Twv ETTIAEXBEVTWV
yovIdiwv.

QoT1600, apxIKG avTIUETWTTIOAUE TO diAnuua o€ ToId TUANA Twv dedopévwy Ba ATav
opB4TEPO VA €@apuOOOUPE TOV OEIKTN TTOIOTNTAG cUOoTAdwWV. H pia emAoyh nTav va
wa&oupe yia TNV doun Twv CUOTAdWYV ATTOKAEIOTIKA OTa OEiypaTa TTOU AVIKOUV OTO
@aIvOTUTTO €AEyXOU 1) uyIf OEiyuaTa, VW N ETTOPEVN EVAANQKTIKY ATAV VA DIEPEUVIIOOUUE
TN dounA TwVv cuoTAdwv oTa deiypaTa pe Tnv TTédBNon. Ev TéAel KataAnéaue 6T auTtd TTOU
TTPAYMATIKA £XEI ONPOCIA YIA TOV TTPOCBIOPICUO TWV CAPAVTIKWY YOVIOiWV wg TTPOS Hia
aocBévela, cival To TUAPA Twv dedopévwy TTou oxeTiCovtal PE TN vOoo, OI0TI OAEC Ol
TTANPOPOPIEG OXETIKA WE TO «EVAUOPO» TwV HOPIAKWY Oladikacolwy Egival oiyoupa
TTAPOUCEG OE AUTO TO UTTOOUVOAO.

O aAyo6pi8uog cuctadotroinong Affinity Propagation

To TeNIKO Brpa TNG peBodoAoyiag pag, TTepiAapBdvel Tnv avaAuon cuoTadwy Pe TRV AP
MEBOBO. O aAyopiBuog NG AP eugaviotnke oTta TEAN Tng Oekaetiag Tou 2000 Kai
OUPPWVA PE TO ATTOTEAECHUATA WIOG EKTETAMEVNG MEAETNG ME 15 AAAOUG aAyopiBuoug
opadoTroinong, 1.X. k-medians clustering, hierarchical agglomerative clustering KATT,
OloKpiBnke TTETUXQIVOVTAG Ta TTIO aKpPIBEi ammoTeAéopara opadotroinong. H eyyevig
Bewpnon NG ueBOdoU, OTI apXIkG OAa Ta onueia dedopévwy (yovidia) BewpouvTtal wg
moava «exemplarsy, KaBwg¢ Kal n aTroTEAECUATIK TNG OJAdOTTOINCN, MOG TTPOETPEYAV
OTO VA EVOWMATWOOUME TNV AP wg éva avatréoTraoTo PEPOG TNG PEBodOAOYIOG HaG.

2UVETTWG, opiCoupe otnv AP Tov apiBud twyv K ouotadwv OUMPWVA UE TO ATTOTEAECUO
Tou O¢ikTn Twv Krzanowski kai Lai kai otn ouvéxela agrivouue tTnv AP va avixveuon
autég TIC k ouoTadeg peETagUu  Twv  Kopugaiwv N yovidiwv (6tmou N évag
TTPoKaBopIoPEVOS aplBudg). O aAyopiBuog TIG TTEPICOOTEPEG QOPEC OUYKAIVEI OTOV
{nToUuuEvo apIBUG CUCTAdWYV Kal PaG TTAPEXEl MIa AioTa PE TA TTIO QVTITIPOCWITTEUTIKA
yovidia avd ouoTtdda, Ta emovoupalopeva «exemplars». Autd Ta n  «exemplars»
avapéveTal va oxnuatioouv €va Tagivounti o otoiog Ba dilaxwpilel €mMTUXWG T
Ociyyara peTagu dUo KAGOewv 0€ €va OUVOAO OOKIUNAG. Apou €£xoupe dlaBéoiya Ta
«exemplars» T XPNOIYOTIOIOUPE yia va OIQPMOPPUOOUUE TA QVTIOTOIX OUVOAQ
EKTTAi®EUONG KA, KAl 0T CUVEXEID TTPOXWPAUE 0Tn dladikagia Tagivounong.

H avamruén Tng mAP-KL o€ éva R-rakéto

Mpokelyévou va dwoouue Tn duvaTtoTnTa GTNV ETTICTNUOVIKA KOIVOTNTA VO eQapudoel TV
MEBOSS pag o€ o1ToIodATTOTE OUVOAO OeOOUEVWY YOVIBIOKNG £KPPAONG, AVATITUEAUE TNV
peBodoAoyia pag o€ éva R TTakéTo , avoixtou kwdika, To MAPKL 1o o11oio @IAogeveiTal
otnv d1Ebvry TTAaT@OpPa Bioconductor. 210 TTAKETO QUTO CUPTTEPIAGRBANE Kal ETTITTAEOV
AgIToupyieg OTTWG TNG delypaToAnyiag (dnuioupyia ocuvOAwy eKTTAIBEUONG Kal EAEYXOU)
TTpoetegepyaaiag, Tagivounong, avaiuong OIKTUwY, YOVIOIOKWY  TTANPOPOPIWY,
avaAuon BIOAOYIKWV HPOVOTTOTILOV  KOBWG Kal  Tnv  Trapaywyr] €kBeong Me Ta
arroTeAéopaTa  TwWV  TIPONYoUPevwyY  avaAuoswv. OAeg  autég o1 AsIToupyieg



utrooTnpiovTal atrd TévTe dIAKPITEG KAAOEIG, EikOva 2. H kevTpikr) 10€a Kata Tn didpKeia
OXeOIOOUOU TOU TTAKETOU ATAV VO EVOWMNOTWOOUUE AEITOUPYIEG TTOU VO PTTOPOUV EITE Va
odnyrfioouv O¢ MIa €KTeEVI] avaAuon e€ite va xpnolgotroinBouv autévoua. ETri
TTapadeiyuaT, €vag XprnoTng MTTOPEi va €lo0dyel €va OTTOIOONTIOTE OUVOAO DEQONEVWV
YOVIOIAKNG £KPPAONG KAl VO EKTEAECEI PHE Mia HOVO EVTOAR PEXPI KOl OKTW OIAPOPETIKES
MEBOBOUG TTPOETTECEPYATIOG. ZTN CUVEXEIA, UTTOPEI VO avaAUCEl TA TTPOETTECEPYATUEVA
oedopéva pe TN HEBodo MAP-KL kal va TTapagel AioTeg onuavTikwy yovidiwv. O xprnotng
MTTOPEl €TTIONG va eKTEAEDEI TAIVOUNON OclyudTwy, £EOPUEN OTOIXEIWV TWV YyovIdiwy,
avaAuon BIOAOYIKWY JOVOTTATIWY KOl XAPOKTNPIOTIKWY JIKTUOU. ATTO TNV AAAN TTAEupd,
€vag XpNnoTNG MUTTOPEI ETTIONG va XPNOIUOTIOINCEI OTTOIAONTIOTE ATTO TIG TTPONYOUMEVEG
AeiToupyieg autévoua OTTWG yia TTAPAdEIyUaA, TN ouvapTnon TnG dElyPdaToAnyiag yia va
dnuIoupynoel cUvoAa ekTTaideuong Kal agloAdynong.

DatalD
-trainObj : eSet
-valObj : eSet
+loadFiles() 1 mAPKLRes
+sampling() -
+preprocess() -rankedintens : matrix
-exemplTrain : eSet
-exemplTest : eSet
-statistic : numeric
-adjp : numeric
—— — -pVal : numeric —_——— =
| -fc : numeric I 1
Classify l -exemplars : numeric | NetAttr
~classL : matrix l -clusters : list | -edgelist : matrix
-valClassL : matrix L — >+mAPKL() <— - -degree : list
-predLbls : matrix ™ -closeness : list
-AUC : numeric jk I -betweenness : list
-Accuracy : numeric | -transitivity : list
-MCC : numeric +netwAttr()
-Specificity : numeric Annot yAN
-Sensitivity : numeric -results : list
+classification() -probe : character
+metrics() -symbol : character
A -entrezld : character
-ensemblid : character
-map : character
+annotate()
1 —
«utility»
Report

-mAPKLRes : object(idl)
-Classify : object(idl)
-Annot : object(idl)
-NetAttr

+regort§)

Eikéva 2: H UML oxnMaTiKi avatrapdoTaon TwV KAAOOEWYV Kol TwWV ouvapTRoewyv oto mAPKL

AMNOTEAEZMATA KAI ZXOAIAZMOz

YtoBd&AAaue Tn uEB0SS pag o€ pia oeipd dOKIWY apXIKA o€ dedoPEva TTPOCOHOIWONG
Kal 0Tn ouvéxela oe TTpaypatikd dedopéva. Ooov agopd Ta TTpayUaTIKG dedouéva,
XPNOoIhoTToINoauE OUVOAQ OedONEVWV aTTO £ VEUPOUUOTTABEIEC WG EKTTPOCWITTOUG TOU
MIKpOU TTANBUCPOU BEIYNATWY ava QaIVOTUTTO Kal dedouéva atrd TECOEPIG TUTTOUG
KAPKIVOU WG €EKTTPOCWTIOUC ToU MeydAou TTANBuCopoU deIyNdATwy avd @aivoTuTro.
2xedldoaue Kal ekTeAéoape éva TTAAPEG OUVOAO SOKINWY XpnolyoTtrolwvtag 5 Cross-
validation oto oUvoAo ektraideuaong kal otn ocuvéxela Hold-out validation og ave€dpTtnTo
OUVOAO €AEYXOU XPNOIUOTTOIWVTOG TPEIG BIAPOPETIKOUG TagivounTtég, RF - SVM - KNN.
2KOTTOG Pag ATaV va agloAOyHOOUNE TIG ETTIOOCEIS TNG PEBODOU pag TOOO0 o€ PIKPA 600



KAl o€ JEYAAQ OUVOAQ BElyUATWY KABWG Kal TNV oTaBepoTnTa TG atrédoong o€ oxEon
ME Toug Tagivountég. EmiTAéov, oTa idia ouvoAa dedopévwy epappooaue 12 dAAeg FS
MEBODOUG KAl OUYKPIVAPE TA ATTOTEAEOUATA TAGIVOUNONG XPNOIMOTIOIOVTAG 3  UETPIKEG
atmmodoong, 0TTwg Tig AUC, TNR, TPR. Ze oxéon pe Ti¢ FS peBodoug, XpnoIUoTToINCauE
€¢I povoTTapayoVvTIKEG HEBODOOUG QIATpapiouarog (eBayes, ODP, maxT, n SAM, SNR kai
t-00KIUAG), Mia TToAuTTapayovTik HEBODO @IATpapiouartog (cat) , TpeIG HEBODdOUG
peiwong Twv dlootdacsewv (BGA-COA, n PCA, PLS-CV), pia evowpatwuévn péBodo
(Random Forest), kai pia uppidiki uéBodo (HykGene).

H ammodoTtikdtnTa piog FS pebddou TTpokuTITeEl 61 HOVO ATTO TNV ATTOd0O0N TNG KATA TNV
Tagivounon, aAAd kal atrd TN PIOAOYIKA cuvageia TNG AioTAg TwV yovidiwv TNG PE TOUG
QAVTIOTOIXOUG @aIvOTUTTOUG. 1°'autd KI gpeic €mTTAéOV TOU €AEyxou atmodoong Twv
MEBOBWYV KaTA TNV TAgIVOUNON, EAEyEape €TTiIONG Kal TV BIOAOYIKN CUVAQEIA TWV AICTWV
WG TTPOG TNV €EETACOPEVN VOOO. 2UYKEKPIPEVA, AGIOAOYNOAUE TIG TTAPAYOUEVEG ANIOTEG
yovidiwv amdé tnv mAP-KL, TI¢ AioTeg Twv peBSdwv TTOU dlakpiBnkav Katd Tnv
Tagivéunon, (eBayes, PLS-CV, SAM, BGA-COA, RF-MDA), kaBwg £TTiong Kai TIG ANiOTEG
amdé TNV péEBodo maxT n otroia eival n péBodog katdragng tng MmAP-KL. Katd 1n
OIGPKEID AUTWYV TWV OgIOAOYNOEWY, TTPOCTIABNCAUE VA QWTHOOUNE TN «OnNUAcioAoyia»
TTiow a1md autég TIG AioTeG yovidiwv KaBWG Kal Tn oxéon TOUG HE TIG QVTIOTOIXES
Q0BEVEIEG.

Ta amroteAéoparta TagivOunong o€ TPAyHATIKA dedopéva

Ta ouvoAikd atroteAéopaTta, Baon Tou Tagivount) RF, émmwg ouvoyidovtal otnv Eikéva
3 Totro0eTOoUV TNV MAP-KL oTIg KOopu@aieg neBddoug petagu 12 GAAwv FS aAyopiOpwy.
Eidikétepa, n péBodog mMAP-KL Ttétuxe Tn Oeutepn KaAutepn péon AUC oTig
VEUPOUUOTTABEIEG, KOl OUYKEKPIMEVA 0.91, evwd OUVOAIKA Ot OAeG TIC OEKO QOBEVEIEC
TéTuxe péon Tyl AUC ion pe 0.86, To otroio atroTeAei TV TpiTn KaAUTEPN €TTidoon
EXOVTag NAAIOTA Kal TRV MIKPOTEPN TIUA TUTTIKNAG ATTOKAIONG O€ oxéon PE neEBOGdouUS TTou
TTETUXAV KAAUTEPEG €TIdOOEIG, TT.X. Tnv eBayes, mv PLS-CV. XZippwva pe T
ammoTeAéopara Tagivounong, MTTOPOUME va UTTOOTNpi§ouue OTI 0 OuVOUAOMOG uiag
MOVOTTaPAYOVTIKAG HEBODOU QIATpapiouatog Kal piag pebddou cuoTtadoTtroinong odnyei
oTnVv €AoY UTTOOUVOAWV YyovIdiwv UWnAAG dIaXwPIOTIKAG IKAVOTNTAG O€ AyvwoTad
Ociypara aveEapTATWS aoBEvelag Kal apiBuoU dEIYUATWV.

H BioAoyiKk} cuvaeia Twv eTTIAEXOEVTWYV yovISiwv

2uvnBwg, To apxikd Tpoidv uiag FS pebddou cival évag katdAoyog atmd probe ids, avri
OUPBOAWY yovidiwy, pIag Kal Ta Oedopéva YOVIDIOKAG £KQPOONG TTPOEPXOVTAl ATTO
microarray chips. Q¢ ek TOUTOU, PIO ATTAPAITNTN EVEPYEIQ TTOU EKTEAOUNE OUVABWCG €ivail
va Taipiagoupe Ta probe ids pe T avriotoixa oUPBoAa yovidiwv. ‘Eva evdiagEépov
XOPOKTNPIOTIKO TNG TEXVOAOYiag Twv chips eival 611 €va yovidio (oUPBoA0) gival TTOAU
mOAvVO va avTITTPOCWTTEUETAI OTTO TTEPICOOTEPA TOU £VOG probe ids. ‘ETol, éva onuavTiKa
UTTEPEKPPOACHEVO I UTTOEKPPACHUEVO YOVidIO PTTOPEI va gival TTapOv € pia Tagivounuévn
ANioTa TTEPIOOOTEPEG ATTO Hia QOopéC. Q¢ aTTOTEAEOUA, AUTEG OI TTOAAATTAEG EUQAVIOEIG
evog yovidiou TIPETTEl va agaipouvTal atmd TIG AIOTEC ME TA Kopu@aia yovidia
TTPOKEINEVOU VA KOTAARLouue o€ ANiOTEG pE povadika yovidia. Autd eival éva onuavTiko
Briua 6oov a@opd Tov ETTIKEIUEVO EAEYXO EUTTAOUTIONOU, MIAC KOI O€ WIa TAEIVOPNUEVN
Aiota 20 ) 50 probe ids ptropei yia TTapddelypa Ta JOvadIKG avTITTPOCWTTEUTIKA yovidia
va gival avriotoixa 14 4 35. EmtAéov, Ta chips mepiIAapBdvouv kal katroia probe ids
uTTEUBUVA YIa TOV €AEyXO TnNG TTOIOTNTAG TOU URPISICPOU TTou dev Ba TTPETTEl va
oupTtrepIAauBdavovtal oTnV Kopuer TagIVOPNUEVWY AIOTWV OTTOI0CONTIOTE OIAPOPIKAG
avaluong. lMNa 6Aoug autolg Toug Adyoug, o PBaBuog povadikétnrag ‘degree of



uniqueness’ (DoU) piag tagivounuévng Aiotag atmoTeAei €va TTpwTo PETPO agloAdynong
atro BloAoyikAG TTAEUPAG TOU EVOUVAUEI EUTTAOUTIONOU PIag AioTag.

[TeBayes PLS- SAM BGA- RF- mAP- cat Hyk maxt oDP SNR t-test PCA
cv coa MDA KL Gene MEAN
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Eikéva 3: Ta ouvoAikd atroteAéopara Ta§ivopnong (AUC) yia tov RF Ta§ivounTti

2TOUG aKOAouBoug TTivaKkeg, €xouue TTapabéoel Tov aplOud Twv probe ids kalr Tov
QAVTIOTOIXO APIOUO TWV YOVISIOKWY CUPBOAWY Toug avd uEBodo Kal oUVOAO BEBOUEVWV.
21NV TeAeuTaia 0TAAN, €xoupe uttoAoyioel TNV TIN DoU w¢ Tov HEco Opog Tou TTnAIKou
TWV CUUBOAWV Twv yovidiwv TTpog Ta probe ids. Oco 1o kovid otnv povada eival n
Tiul DoU 1600 Mo povadikn €ival n Aiota kararaéng. Ooov agopd Ta dedouéva aTrd
veupopuottaBeieg, Mivakag 1, n mAP-KL métuxe tnv uwnAotepn Pabuoloyia pe tnv
pEBOSO maxT va gival apkeTa KOVTA. 2 ox€on e Ta dedopéva atrd Kapkivoug, lMNMivakag
2, n HéBodOG eBayes EemEpace TIGC AAAEG PEBOBOUG, av Kal N TIUA TNG PacileTal o€ Tpia
Kal ox1 ot Téooepa ouUvoAa Oedopévwyv. H mAP-KL katéAape 1n 0eUtepn BO€on
deixvovTag TNV UWnAR «hovadikdTnTa» TTOU XapakTnpilel TIG TTapayOueVeS AioTeG TNG.

‘Eva de0tepo PETPO agloAdynong eival n ouvdgela Twv POVAadIKWY Yovidiwv MPE Ta
OXETIKA TTPOG TNV £¢eTalOuevn TAONON PBIOAOYIKA POVOTIATIA. € AQUTO TO onueio €ivail
onNuavtikdé va ava@epboupe o€ pia GAAN TTOPAPETPO TTPOTOU  TTEPIYPAWOUME Ta
ammoTeEAEOUATA QUTOU TOU €AEyXOU, N OTToid a@opd Ta yovidla TToU KWwOIKOTTOIoUV
Tpwreiveg (P-C-Gns) atmd pia AioTta Kardragng. 2tnv oucdia, 6Aa Ta yvwoTd yovidia dev
KWOIKOTTOIOUV TTPWTEIVEG KAl CUVETTWG OV €UTTAEKOVTAI OTNV HoplaKkh Aeitoupyia. H
avaAuon BIOAOYIKWY POVOTTATIWV TTPOCTIOBEI va ATTAOTTOINCEl TNV TTOAUTTAOKOTNTA OTO
KUTTOPIKO ETTITTESO YEOW TNG AVTITIPOCWTTEUCNS MIOG OEIPAG PBnudtwy OTTOU «TO KABE
BApa eival éva yeyovog TIOU METATPETTEI EI0EPYXOUEVEG (QUOIOANOYIKEG OVTOTNTEG OF



eCepXOMEVEG ovTOTNTEG". TETOIEG OVTOTNTEG PETAGU AAAWY TTAPAYOUEVWV HIKPWY HOPIWV
N cwpaTIdiwv €ival giyoupa ol TTapayOuEVES TTPWTEIVESG, , KAl WG €K ToUTOUu POvVo Ta
yovidla TTou KWAIKOTTOIOUV TIPWTEIVES €ival aTTapaiTnTa YIa TNV avAAUCT JOVOTTATIWV.

Mivakag 1: H 1ip DoU emrtd FS peBodwyv oe dedopéva amod veupoloTradeieg

ALS DMD JDM LGMD2A LGMD2B NM
FS DoU
Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns
MAP-KL 21 20 14 14 21 20 6 6 15 15 18 18 0.984
maxT 20 20 20 20 20 20 20 20 20 20 20 18 0.983

RF-MDA 20 20 20 20 20 20 20 19 20 20 20 18 0.975
SAM 20 14 20 20 20 18 20 16 20 16 20 20 0.867
eBayes' 20 17 20 20 20 18 20 16 20 15 - - 0.860
PLS-CV 20 13 20 20 20 19 20 18 20 16 20 17 0.858

BGA-

COA 20 15 20 17 20 18 20 14 20 17 20 17 0.817

'H eBayes a&ioAoyribnke o€ évre gUvoAa

Mivakag 2: H Tip; DoU emrtd FS peBodwyv oe dedopéva amod KapKivoug

Breast Colon Leukemia Prostate
FS DoU
Prbs Gns Prbs Gns Prbs Gns Prbs Gns

eBayes' - - 20 18 20 18 20 19 0.917

mAP-KL 6 4 20 16 5 5 12 12 0.867

PLS-CV 20 14 20 18 20 19 20 17 0.850

BGA-COA 20 12 20 18 20 19 20 18 0.838

SAM 20 11 20 18 20 18 20 19 0.825
maxT 20 11 20 16 20 17 20 20 0.800
RF-MDA 20 9 20 14 20 18 20 19 0.750

'H eBayes aglohoyRBnke o€ Tpia oUvoAa

Méoa atmd pia TANBwpa epyaAeiwv avaAuong BIOAOYIKWY povoTTaTiwy, €MAEEQUE TN
Baon dedopévwv «Reactome», n otroia TepIAauBavel emiueANUEVN Kal agloAoynuévn
TTANPo@opia yia Ta BIOAOYIK& POVOTTATIO KAl TIG £MOPACEIS OTNV avOpwTTivn BioAoyia.
EAEyEape TIC Kopugaieg AioTeg emAeypévwy FS peBodwv yia OAeC TIC aoBEéveleg Kal
aglohoynoaue Tov euTTAOUTIONS TOoug. Katd tnv a&ioAdynon, AdBaue uttdywn TNV TIPNA
DoU, tov apiBuéd Twv yovidiwv TTou KWdIKOTTOIOUV TTPWTEIVEG KABWG Kal To TTARB0G Twv
BIOAOYIKWY POVOTTATIWV CUPQWVA PE Ta ammoTeAéopata Tng Bdong Oedouévwy TNG
«Reactome». To TeAikd okop gptTAouTiopou povotratiwv (PE) yia kdBe FS (m) gival o
MEoOG 6po¢ Twv aBPOICHATWY TwV TNAIKwY Twv P-C-Gns T1Tpo¢ 10 TTANBOG Twv
povotraTiwy, TToAAatTAacialopevo pe TNV Tiul  DoU yia OAeg Tic aobBéveieg (d)

1 Protein - coding - genes
PE, =), 97 9% DoU.

d-1 Pathways,,



2uvoyioapue Ta ammoteAéopara, lMNivakag 3, katardooovTag TIG FS pebddoug o€ gpBivouoa
ocipd pe Baon Tov péEco O6po TNG PE TIUAG TOug Kal oUP@QWVA UE TNV avaAuon
povotratwy, n uEBodog maxT @aiveTal va eTITUYXAVEl TNV uwnAoTEPN BaBuoAoyia PE o€
OAeg TIG aoBéveiec. ANwOTE gival Kal N pEBodog pe Tnv deUTEPN UWNASTEPN TIW DoU
oplakd Tiow ammd tnv MAP-KL. QoT1dé00, autd TO OnUAVTIKO ATTOTEAECHA TNG maxT
évavtl Twv MAP-KL kai RF-MDA T1ou akoAouBouv, @aiveTal va OQEeiAETAI KUPIWG OTO
agloonueioto PE okop 1mou 1réTuXe N maxT oTov Kapkivo Tou TrpooTtaTtn (4.33), 61Tou
TTpoodiopioe Tpia (3) povotrdria pe 13 povadikd yovidla. Otmwg Kal va €xel, auTég ol
TPEIG PEBODOI PaiveETal VO CUYKPOTOUV HIa opada peBddwv pe PE okop kovtd oTtnv
povada, To oT1roio Ox1 MOVO €ival IKAvoTToINTIKO, aAAG Kal evOIA@EPWYV VIO TTEPETAIPW
avaAuon atrd BioAdyoug.

Mivakag 3: Ta ouvoAikd atroteAéopara avadAuong BIOAOYIKWY HOVOTTATIWV

Pathway Analysis

FS

ALS DMD JDM LGMD2A LGMD2B NM Breast Colon Leukemia Prostate | Mean | Stdev
maxT 1.00 1.08 1.08 0.43 1.36 1.01 0.47 0.80 0.79 4.33 1.24 112
mAP-KL 143 0.78 1.38 0.43 0.88 1.40 0.67 0.63 0.80 1.17 0.95 0.36
RF-MDA 0.75 110 140 0.74 0.63 1.80 0.54 0.63 0.80 1.03 0.94 0.40
eBayes’ 0.37 150 0.90 0.64 0.67 - - 1.08 1.26 0.86 0.91 0.36
PLS-CV 037 089 121 0.66 0.90 0.85 0.98 0.90 1.07 1.04 0.89 0.23
SAM 029 113 1.00 0.64 0.80 1.08 0.46 1.15 0.98 1.27 0.88 0.32

BGA-

COA 068 106 0.63 0.70 1.19 0.85 0.60 0.90 1.14 1.00 0.87 0.22

'H eBayes agloAoyrbnke og okTwW oUVOAa

2YMMNEPAZMATA

Mpoteivaue pia uBpidik FS pébodo (MAP-KL), n otroia Katadelkvuel ue oca@rveia TTO00
ATTOTEAEOUATIKOG €ival 0 CUVOUAOUOG pIag HeBSOOU eAEyXOU TTOANATTAWY UTTOBECEWY JE
évav aAyopiBuo opadoTtroinong yia Tnv €mAoy evog PIKPoU aAAd avTITTPOCWTTEUTIKOU
ouvOAou Yyovidiwv, oe Ouadikd TpoPAfuata Tagivounong. 2ZUYKEKPIUEVA, OE HIA
TANBWwpa acBevelwv Kal ouvOAwv Oedouévwy, N MAP-KL TTETUXE QvTAyWVIOTIKA
ammoTeAéopata KaTaragng o€ ouykpion pe GAAeg 12 FS pebddoug kal €1BIKOTEPA O€
oxéon pe TN uEBodo HykGene, n otroia akoAouBei TTapdpoia giAocogia, dnAadr apxIKa
KataTtagn kalr otn ouvéxela opadotroinon. Ta trAcovektiuata Tng mMAP-KL €vavt Tng
HykGene aAAG kai GAAwWvV TTapOuOIWV TTPOCEYYioEwv o@eilovial oe Tpia Bacikd
XOPAKTNPIOTIKG: oTnv KaBodnyoupevn ammd T1a dedopéva @uOon NG, 0TV Xpnon tng
pMEBOOOU cuaTadoTroinong AP, kal oTnv avegaptnaia TnG atrd Tagivountég. Mpdyuarti, n
xpnon evég ociktn TToI6TNTAG oUOTAdWY, Tou Krzanowski kai Lai, peiwvel oTToladATTOTE
acd@ela Kal TTapEXEl OTOV aAyOpIBUo cuaTadoTroinong évav avTITIPOOWTTEUTIKO apIBUO
moavwyv ocuoTadwyv. EmimAéov, otnv mAP-KL T1a dedopéva gival autd mmou kaBopilouv
TO MNAKOG TNG AiOTAG, GUYKEKPIPEVA N dOUA TWV OeBOUEVWY UTTAYOPEUEI TOV APIOPO Twv
OUoTAdWV Kal 0 aAyOpIBuog opadoTroinong aTToPacifel yia TOUG EKTTPOCWTTOUG aTTd TNV
KABe ouoTdda. e avrtiBeon pe GAAec peBOdOoUG, OTTWG yia TTapddelyua otn HykGene,
OTTOU XPNOIUOTIOIEITAI £vag TA&IVOUNTAG TTEPITUAIYUATOG, OTNV TTEPITITWOT] JAG KATA TNV
EMAOY TOU OUVOAOU OtV EUTTAEKETAIKAVEVAG TOEIVOUNTAG. AUTO TO HEBODOAOYIKO



XOPAKTNPIOTIKO £XEl HEYAAN ONUOCIA, MIAG KAl TO UTTOOUVOAA pag Oev eugaviCouv 1o
QAIVOUEVO TNG UTTEPTTPOCAPHOYNG TO OTTOI0 OXETICETAI PHE TNV EUTTAOKN TWV TALIVOUNTWYV
Kata TN d1adIKacia TTIAOYNG.

2XETIKA ME TOV TTPOCdIoPIoNd TwV OuoTAdwyv, n e@apuoyry Tou AP aAyépiBuou,
QVTIMETWTTICEI ETTITUXWG TO BEPA TWV AVTITTIPOCWTTEUTIKWY YOVIBiwv avd ocuoTada. AANAEG
TTAPOUOIEG TTpooeyYioelg ue TNV MAP-KL TTapadéxnkav Tnv duoKOoAia Toug wg TTpog TNV
ATTOTEAEOUATIKN) E€TTIAOYN €VOG 1) TTEPICCOTEPWY QAVTITIPOOWTTEUTIKWY YoVIdiwv avd
ouoT@da. Ektdég autou, n AP akoAouBei éva pnxaviopo «dSIKTUOU-YOVISIwWV» HE TNV
Bewpnon Ot apxikd OAa Ta yovidlav atroTeAoUV TTBavoUg KOUPBoUg evog OIKTUoU. Ta
eMAEXBEVTA «exemplars» gival Ta KeVTPIKA yovidla piag ouoTadag yovidiwy Kal Toavwg
ol Baoikoi kouBol o€ éva dikTuo yovidiwv. Q¢ €k TOUTOU, N £§0pUEN TWV «exemplars»
MTTOPEI Va BewpnBei wg TO TTPWTO Bripa TNG diadikaoiag eTTaywyng dIKTUOU Kal Ol JOVO
T0 atmotéAeopa piag FS tmpooéyyiong. 21a PHEAAOVTIKA pag oXEDIa, TTPOTIBéuEBa va
Kataokeudooupue diktua pe Bdon ta kopugaia N yovidia Tng pebBodoloyia pag kKal otn
OUVEXEID VO OIEPEUVIIOOUHE TA XOPOKTNPEIOTIKG BIKTUOU Twv «exemplarsy. Mia mTpwTn
TTPOOTIABEIO TTPOG AUTA TNV KateuBuvon eival ndn diabéoiun oto Tmakéto mAPKL, av kai
TTEPICOOTEPEG ETTAYWYIKEG PEBODOI OIKTUOU YIO TNV ETTOVAKATOOKEUR PUBUICTIKWY
OIKTUWV KaBWG Kal uéBodoI eAEyXou TOu eUTTAOUTIONOU Ba uloBeTNBOUV OTO ETTOUEVO
d1GoTNua.
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Computational Methods for the Identification of Statistically Significant Genes: Applications to
Gene Expression Data of Various Human Diseases

1. INTRODUCTION

The dawn of DNA microarray technology has improved our potential to comprehend the
underlying mechanisms of human diseases and to aid in more accurate classification,
diagnosis, and/or prognosis [1]. Because of its high throughput nature, computational
tools are essential in data analysis and mining in order to help biomedical researchers
to maximize the extracted knowledge from the experimental results [2].

In the area of diagnostics, microarray-derived markers are emerging as a valuable tool.
Similar to any other clinical test, the primary goal of molecular tests, including
microarray tests, is to provide reliable and timely results for improving patient care. In
order to maximize the usefulness of microarrays in the diagnostic/prognostic arena it is
important to minimize the number of biomarkers that need to be tested for an accurate
diagnosis to be reached. Two prime examples of successful identification of such
biomarkers and their effective transition to the clinic are the MammaPrint [3] and the
Oncotype [4] molecular tests for breast cancer with a 70-gene and a 21-gene molecular
signatures, respectively.

The selection of those biomarkers, however, is a challenging process in which feature
selection methods could make a significant contribution. Indeed, from the late 90s a
plethora of methods emerged and applied on several microarray studies. Despite
differences in their fundamental algorithms, they all share the same objectives: 1) to
avoid overfitting and improve prediction performance; 2) to make faster and cost
effective models; and 3) to offer a deeper insight into the underlying processes [5].
Nevertheless, selecting those “significant” genes that perform the same level of
classification in relation to a specific disease is far from feasible at the moment and still
an open issue.

In reality, every microarray dataset may result to as many significant gene lists to as
many feature selection methods we apply. Even in cases where methods share the
same principles the produced gene lists are bound to diverge. Speaking of methods that
share common principles, we may define the following broad groups of feature selection
methods. Filtering, wrapper and embedded feature selection methods are the key
categories in the field, each one with the respective advantages and disadvantages. In
addition to this classification, a new class of feature selection methods, hybrid methods,
has emerged. Hybrid methods’ combine methods of different categories aiming at taking
advantage of their pros while alleviating their cons of benefit to the “significant” gene list
selection.

Though, combining methods is a constructive decision making process based always
on scientific assumptions, either biological or statistical, rather than on pot luck. For
instance, Jaeger et al. [6] claimed that ranking algorithms produce lists of genes, where
the top ranked genes are highly correlated with each other, mainly because they belong
to the same pathway. Additionally, Hall in his thesis [7] investigated the hypothesis that
“A good feature subset is one that contains features highly correlated with the class, yet
uncorrelated with each other”. Those beliefs were the springboard for several hybrid
methods which combined a ranking (filtering) method and a clustering method to
conclude to a list of significant genes.

In particular, Jaeger et al. employed a fuzzy clustering algorithm to prefilter the genes
by grouping them according to their similarity. Then, with the aid of a statistical test like
t-test or Wilcoxon, selected one or more representative genes from each cluster to form
a list of “significant” yet uncorrelated genes. In this study, the number of clusters to be
formed and the number of representative genes remained unaddressed. Similar to
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Jaeger et al., Hanczar et al. [8] proposed a two step method where an unsupervised
clustering method, K-mean, combined with a mathematical notion, prototype gene, that
tries to identify the representative genes of each cluster. Analogous issues to Jaeger et
al. appeared in this study, and characterized as objectives for future work by the
researchers. An alternative algorithmic approach, where ranking of genes precedes any
other method is described in the mRMR [9] method. Particularly, the initial ranking
through t-test or F-test is then combined with a sequential iteration between pairs of the
ranked genes, to conclude to a subset of “significant” genes according to some criteria,
maximum relevance and minimum redundancy. One considerable drawback of this
approach is that the redundancy criterion may exclude genes that considered important
from a biological point of view. Another interesting approach, HykGene [10], proposed a
three step gene selection, which incorporates a filtering algorithm, a hierarchical
clustering on the top-ranked genes and finally a sweep-line algorithm that first identifies
the clusters from the dendrogram and then selects one representative gene per cluster
(for more details see section 3.1.5).

Taking into account the promising classification results of those combined methods as
well as their intrinsic limitations, we considered a new hybrid method, mAP-KL. In the
proposed approach, the genes are first ranked according to their differential expression
using a multiple hypothesis t-test, which controls successfully the Type | error. Then the
top N ranked genes are held and grouped to clusters with the Affinity Propagation (AP)
clustering algorithm [11]. Prior to AP a clustering index algorithm determines the
number of clusters among the top-N-genes. The output of this method is a subset of
genes, one exemplar per cluster that best describes the phenotypes’ characteristics.

We subjected our method to a series of evaluation tests on simulated microarray data in
the first part and real microarray data in the second. Regarding the real microarray data
we employed datasets of six neuromuscular diseases as representatives of small
cohorts and four cancer datasets with numerous samples per phenotype. Moreover, we
applied twelve other feature selection approaches on the same real microarray data
along with mAP-KL and compared the classification results using several metrics, for
example AUC, TNR, TPR. Apart from the classification analysis we investigated the
produced gene lists from a biological point of view to have a further assessment of our
method towards the other competitors. The overall evaluation results suggest that mAP-
KL is a feature selection method that delivers robust gene lists of biological relevance
that may assist biologists to gain valuable insights.

This dissertation is organized in eight chapters. Chapter 2 provides a basic yet
necessary introduction to microarray technology and particularly to Affymetrix gene
chips and how we should treat and analyze microarray data. In the last part we also
present the Next Generation Sequencing technology as a promising alternative in the
forthcoming years.

Chapter 3 provides a thorough representation on computational methods ranging from
feature selection to machine learning and clustering. In particular, we first introduce the
field of feature selection and representative methods per category in the context of
microarray data. The presented methods are also those applied and compared with our
method in the real microarray data. Moreover, we discuss the fundamentals of
clustering and introduce the Affinity Propagation method as a promising contemporary
method, which is also part of our hybrid method. In the final part of this chapter we shed
light on machine learning techniques and specifically on Support Vector Machines, KNN
and Random Forests since those algorithms utilized through the Weka environment to
classify the real microarray datasets according to the “significant” gene lists per method.
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In chapter 4 we elaborate on the proposed methodology by explaining the rationale
behind the method, the distinct parts as well as the relevant pipeline. Moreover, we
present the evaluation tests applied on simulated data that support the potential virtue
of the method.

Chapter 5 incorporates the evaluation tests and results applied on real microarray data.
In particular, we have included the comparative results among our method and twelve
other approaches presenting the achieved classification results in small and large
cohorts. Additionally, we review the classification results on the same large cohorts that
achieved during other studies.

In the following chapter we provide the biological analysis of the gene lists produced by
MAP-KL. The aim of this analysis is to inspect from a biological perspective the strength
of each method and particularly for the proposed methodology.

The software implementation of mAP-KL method is described in chapter 7. Specifically,
we discuss the classes and the functions included in the r-package named mAPKL that
is archived in the Bioconductor software project. Besides, we present a case study
scenario to demonstrate the functionality of the package.

Finally, in chapter 8 we summarize the evaluation results and discuss in more depth the
findings of this study trying to emerge the advantages of mAP-KL against other feature
selection methods in the context of microarray gene expression analysis. Not to mention
that we also pinpoint the shortcomings of our method and propose future directions that
may evolve the proposed algorithm.
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2. MEASURING GENE EXPRESSION

2.1. Microarrays

It was since 1995, when the genome of the bacterium Haemophilus influenzae
was completely sequenced. So far, the genomes of more than 4,100 organisms
have been sequenced [12], deluging us with billions of bases. However, this
huge amount of information is inadequate by itself to enlighten us about the
genes’ functionality and collaboration, the genes’ malfunctions that induce
diseases, the development of efficient drugs, or even the basic cell functions.
Therefore, genomic studies intend to understand biology instead of just providing
us with a list of genes and maybe their functionality. Towards this goal, there are
several tools and technologies among which are high-density arrays of
oligonucleotides or complementary DNAs (cDNAs) [13].

A variety of DNA microarray chip devices, fabricated on glass, silicon, or plastic
substrates, is commercially available. The underlying principle of microarrays is
the hybridization of an unknown sample to DNA molecules of known sequence,
attached at specific location on a surface. Generally, in each array there are
thousands of different DNA probe sequences arranged in a defined matrix. Unlike
conventional nucleic-acid hybridization methods, microarrays can identify
thousands of genes simultaneously thus, revolutionizing the gene expression
analysis in cells and tissues [14, 15].

2.1.1 Hybridization and gene expression

Oligonucleotide arrays take advantage of the nucleic acid strands capacity to
recognize or hybridize complementary sequences through base pairing.
Oligonucleotide probes are designed and synthesized based solely on sequence
information to serve as sensitive, unique, and sequence-specific detectors. A
given gene is represented by 15-20 different 25-mer oligonucleotides Figure 2.1,
which overlaps slightly only if necessary or inevitable [16]. In relation to eukaryotic
organisms, probes are chosen typically from the 3" end of the gene or transcript
(nearer to the poly(A) tail) to control the effect of a partially degraded messenger
RNA (mRNA). A further control element is the use of mismatch (MM) and perfect
match (PM) oligonucleotides, which are identical except for a single base in a
central position, Figure 2.2. In particular, the MM probes allow the discrimination
between ‘real’ and cross-hybridization signals. Non-specific or semi-specific
hybridization produces higher signal for the PM probes than for the MM probes
leading to consistent patterns that are highly unlikely to occur by chance. The
PM/MM pairs hybridization produces recognizable and quantitative fluorescent
patterns even for low RNA concentrations [17].

Gene expression (MRNA abundance) monitoring may produce quantitative
results for as many as 40,000 genes in a single hybridization. A central benefit of
representing the whole genome or a large chunk of different genes on an array is
a broader and unbiased analysis over the genes related to the inspected
condition. The collection of the expressed or transcribed genes, referred as the
expression profile or transcriptome, is the first step towards protein synthesis and
is responsible for both morphological and phenotypic differences. Besides, the
transcriptome is characterized by its rapid response to either environmental
perturbations or normal cellular events. As a consequence, it provides us with a
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valuable knowledge that propels us into understanding regulatory mechanisms,
cellular functions and biochemical pathways as well as into determining diseases’
causes, and efficient drug development [13].
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sample to a 25-mer oligonucleotides array.

(a) An Affymetrix single array of 1.28 x 1.28 cm
area. The square locations are called “features”
and each feature holds millions of identical DNA
strands called “probes”. Most arrays use 15-20
probe pairs per gene or per gene expressed
sequence tag (EST). (b) The process of
recognition, or hybridization, is a highly parallel
process since every sequence interrogates for a
matching partner simultaneously. The eventual
pairings of molecules on the surface follow the
molecular recognition rules. (c) The array is
washed with a fluorescent stain that sticks to the
hybridized strands. Then a laser causes tagged
strands to glow. The analysis of the DNA is
based on the matched probes [18].
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A successful example of how gene chips may shed light on the causes of a
disease and eventually become the platform of a clinical test is the arRP-I
sequencing array, Figure 2.3. In particular, scientists at the Kellogg Eye Center
(KEC) developed a rapid genetic test for the retinitis pigmentosa (RP) blinding
disease, to assist the diagnosis of physicians. This test screens simultaneously
for mutations, both previously known and novel, in multiple genes and up to now
more than 30 genes related to RP have been identified thus, allowing physicians
to develop and apply genetic therapies. From a disease classification viewpoint,
Golub et al. used a dataset of 34 samples, and monitored more than 6,000 genes
per array to conclude to a set of 50 genes that discriminate highly accurate
samples between individuals with and without acute leukaemia. This study
indicated that microarray experiments require a sufficient number of samples per
condition e.g. healthy vs tumor to account for possible tumor markers and also
that a set of significant genes rather than single genes is necessary for reliable
predictions. However, before integrate multiple samples into a single analysis, the
hybridization intensities have to undergone a preprocessing step to maintain high
standards of data quality [19].

Chips to Detect Mutations in Retinitis Pigmentosa Patients

"ATGCAGCCTCITGTC AG

Figure 2.3: The arRP-I sequencing array

2.2. Data analysis

The analysis of the microarray data is mainly divided into two levels: a low level
analysis and a high level analysis. The low level also called data preprocessing
includes image analysis, data transformation and normalization, whereas the high
level analysis incorporates inference and/or classification. Image analysis deals
with appropriate ways to quantify spots on microarrays. So far, many image
processing algorithms have been developed particularly for Affymetrix arrays,
where mainly all of them try to estimate the amount of RNA while minimizing the
extraneous sources of variation owing to array-specific physical defects. During
the normalization step we strive to control any technical variation included in the
data whilst maintaining the prospective biological variation [20]. These two types
of variation coexist within the intensity values, though the technical variation is
believed to predominate over biological. Non-biological sources of variation can
be introduced during sample preparation (e.g., dye effects), array manufacture
(e.g., probe concentration), hybridization (e.g., amount of sample) and in the
measurement process (e.g., scanner inaccuracies). Normalization methods can
be applied either within arrays, two-color case, or between arrays for single-
channel arrays (Affymetrix chips). In relation to data transformation, we usually
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imply any logarithmic transformations necessary to make our data more normal
like [21].

2.2.1 Low level analysis

The Affymetrix GeneChip Operating Software incorporates the MAS 5.0 (MAS5)
method. MASS5 is a single array method that can be applied on individual arrays
and carries out Global background correction, local background correction,
summarization, and normalization, Figure 2.4(a). At first an intensity quintile of
2% is defined as Global background and is subtracted from all probe intensities.
Then, during local background, an Ideal Mismatch intensity (IM) value is used to
restrict the negative values issue, since approximately the 30% of MM is greater
than PM. The IM is either equal to the MM when PM > MM or equal to a fraction
of the PM otherwise. The background corrected PM intensities of each probe set
are employed during the summarization step, and an expression index is
computed through the one-step Tukey biweight M-estimator. Finally, in the
normalization step each expression index is multiplied by a scaling factor (sf)
specific for the array. This factor arises as follows: a trimmed mean of the indexes
is computed excluding the 2% of the highest and the lowest values. Then this
trimmed mean value divides a target intensity (Sc) value, which by default in
MASS5 algorithm is 500, and the outcome is the array’s sf value [22].

Along with MASb5, the Robust Multichip Average (RMA) methods are the most
commonly employed preprocessing approaches for Affymetrix image analysis
chips, Figure 2.4(b). Contrary to MAS5, RMA is an academic alternative proposed
by Irizarry et al. in 2003, which takes into account information between arrays
after an initial background correction step. Apart from that, RMA utilizes only the
PM values and the normalization step precedes the summarization. In brief, the
RMA initially corrects arrays for background using a convolution model, where the
PM values are considered as the sum of background intensity and real signal
intensity. Then, the background corrected PM values are normalized through the
qguantile normalization algorithm based on normal distribution, and finally the
expression indexes for each probe-set are computed separately through a linear
model on a log2 scale [22].

In 2004 Wu et al. proposed the Gene Chip RMA (GCRMA), which is a
modification of the RMA applying a different background correction, Figure 2.4(c).
In GCRMA the background signal of both PM and MM probe pairs is divided into
optical noise and non-specific binding defined as PM = O + NPM + S and MM =
O + NMM, where O represents the optical noise and is a constant specific to
array, N stands for the non-specific binding and S is the actual -biological signal.
The background corrected PM values are computed either as a maximum
likelihood estimator or as a random through an empirical Bayes approach.
Overall, the GCRMA produces more accurate results for differential expression
analysis at the expense of lower precision in clustering because of the
introduction of artifacts [11]. Although plasmode data sets — real data with known
structure — are used to test and evaluate proposed analytical methods, it is still
unclear which method performs best in all cases [20].

In contrast to RMA and GCRMA, the MAS5 provides us with expression indexes
in exponential form. As a result, prior to any further analysis it is crucial to apply a
logarithmic transformation, usually logarithm with base two, Figures 2.5 and 2.6,
just like RMA and GCRMA. The first and most obvious reason is to make them
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more symmetric hence, obliged to the normality assumptions of many parametric
statistical tests e.g t-testt SAM, ANOVA etc. In addition, logarithmic
transformations cope successfully with random error minimization. Random error
describes inevitable uncertainties in all scientific measurements rather than
mistakes. For example, although the log ratio of a non differential expressed gene
across
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RMA, (c) GCRMA.

all arrays should be 1:1, the existence of random error as a stochastic model,
imposes deviations from this ratio. In raw intensity values, the random error is
roughly proportional to signal intensity, therefore even equivalent fold changes
are not equally reproducible [23].

In case of ratios between two conditions (normal:disease), the logarithmic
transformation is considered mandatory. As a paradigm consider the following
binary case (normal:disease), firstly with raw data values and secondly with log10
transformed values. Suppose we have three samples per condition N1=1.1,
N2=1.4, N3=5 and D1=2, D2=5, D3=15. The disease:normal ratios of those
samples have a mean=0.39, standard deviation=0.14 and coefficient of
variation=0.37. Now if we invert the ratios, normal:disease, the relevant values
are: mean=2.8, sd=0.9 and cv=0.32. In the second case, where the ratio is
logarithmically transformed (logl0(D1/N1), the relevant values for the
disease:normal case are mean=0.43, sd=0.15 and cv=0.35. Inverting the ratios to
normal:disease, the absolute values of the metrics are the same but with a
negative sign in front of the mean and the coefficient of variation, which reflects
that the numerator is smaller (=) than the denominator [23].
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2.2.2 High level analysis

During this state of gene expression analysis we turn our focus on statistical tests
aiming at detecting differential expressed genes in samples from two distinct
conditions (e.g normal and disease). Although in the preprocessing state we tried
to eliminate the non-biological variation among genes, such variation still exists
and it is the scope of statistical tests to detect those genes related only to
biological differentiation factors. Usually an alternative (research) hypothesis is
stated in positive terms (e.g whether a particular gene or group of genes is
related to the inspected disease) contrary to the statistical null hypothesis, which
is stated in negative terms (e.g. whether a particular gene or group of genes is
unrelated to the inspected disease). A threshold value (a) is necessary to
determine over the significance of the genes, in other words whether a gene
deviates from the null hypothesis simply by chance or because the alternative
hypothesis stands. The null and the alternative hypothesis of the mean values of
a population between two conditions can be stated as follows:

Ho * pisease — Hnormal = 0

(2.1)
H, : tpisease — HnormaL # 0

Although a zero difference is usually stated, a non-zero value can be stated too.
Besides, the hypotheses can be directional and as a result the = sign can be
replaced by = or by < and additionally the # sign by < or >, respectively [23].

Since a typical experiment involves n number of samples, between ten and a few
hundreds, and m number of genes, usually more than 10.000, the biological
guestion can be restated as a problem of multiple hypothesis testing. Indeed,
thousands of null hypotheses H; are tested simultaneously for each gene |j

trying to reject the potential association between the expression level X; and the
inspected condition Y. However, in any hypothesis testing, there is always a
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probability of incorrect inferences, committing two types of errors. A false positive,
or Type I error, when declaring that a gene is differentially expressed when it isn't,
and a false negative, or Type II error, when failing to identify a truly differentially
expressed gene. Behind the multiple comparisons problem, there are two aspects
to consider: firstly, a test statistic T, for each gene j have to be computed

through a statistical method (like t-test, ANOVA, e.t.c.), and secondly, a multiple
testing procedure should be applied such that on the one hand to determine
which hypothesis to reject while on the other to control the Type I error rate [24].

Taking into account the large number of genes in microarray experiments, it is of
great importance to successfully control the Type I error, since a false positive
rate of 1% results in 100 false calls when monitoring 10.000 genes. Usually for a
single statistical test we set beforehand an acceptable threshold value, for
example the P -value <0.05, to control the false-positive rate. “The P -value is the
smallest level of significance that results in rejection of the null hypothesis. The
smaller the P -value the stronger the evidence against the null hypothesis.”
Though in differential expression analysis, where numerous of tests are
conducted a P-value of 0.05 leads to 5% of differentially expressed genes even if
none of them are actually differentially expressed [23].

Hence, there is a need to adjust the P-value produced in simultaneous testing.
The Bonferroni adjustment procedure is widely applicable to simultaneous testing
situations, but lacks of power since its product, a new false positive rate, is more
stringent thus increases drastically the false-negative rate. In particular, given n
hypotheses, H,,H,,...,H, , and a nominal error rate of «, we test each individual

hypothesis H, at a reduced significance level ¢, such that Lo, =« and typically
a,=a/n. Let p, be the unadjusted P -value for H, hypothesis, then the H. is
rejected when np, <« and that is the Bonferroni adjusted P -value, pBonf [25].

Thus, in the previous example the Bonferroni procedure yields a new false
positive threshold of 0.000005 = 0.05/10000. This new threshold reduces the
probability to 0.05, which means that in the entire dataset the probability of
making at least one false positive error is 0.05. As a consequence, other methods
addressing this highly stringent threshold appeared, to provide a more balanced
control between sensitivity and specificity like the false discovery rate (FDR) [23]
and will be discussed in the feature selection chapter.

2.3. Interpretation of genomic results

Measurements of tens of arrays and thousands of genes found to conclude to
robust expression markers necessary to produce reliable and highly accurate
predictions relevant to phenotype discrimination. What's more, such broad
experiments are also equally important in understanding basic biological
processes or even understanding and treating complex human diseases like
cancer. Indeed, by identifying those genes that are upregulated in a tumor type
we may conclude to causative effects that transform cells from normal to
cancerous state and more interestingly to deduce potential therapeutic targets.
However, making biological meaningful assertions requires sophisticated systems
of knowledge representation, knowledge bases, which organize the data, facts,
observations, relationships and even hypotheses that outline the ground of our
current scientific insight. Furthermore, such knowledge bases no need to just
store the information but also to provide it to scientists in a structural and
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meaningful way to assist their understanding and interpretation of even complex
observations [13].

Taking full advantage of the abilities of such knowledge bases, entails a restricted
vocabulary and a well-defined semantic and grammar, which essentially
incorporates the facts, ideas, connections, and observations existing in the
scientific literature as well as in the scientists’ minds. Unluckily, the scientific
literature did not evolve this way and therefore a great deal of dedicated,
systematic human effort is required to convert all the stored info into a
systematic, organized, linked, visualized and searchable form. In accordance to
these prerequisites the Gene Ontology Consortium (GO) produced a
comprehensive controlled set of terms describing genes across organisms. The
GO project functions in conjunction with organism databases such as FlyBase,
Mouse Genome Informatics Database, the Saccharomyces Genome Database
(SGD), and utilizes terms that describe molecular function, cellular location and
biological processes [26]. Additionally, there are other knowledge databases like
the Munich Information Center for Protein Sequences (MIPS), WormBase, the
Kyoto Encyclopedia of Genes and Genomes (KEGG), the Encyclopedia of E. coli
Genes and Metabolism (EcoCyc) which also incorporate sequence, genetics,
gene expression, homology, regulation, function and phenotype information in a
structured and functional form. A step forward of these databases would be
biological ‘expert systems’ in which concepts and facts will be more fully
integrated and related, thus allowing connections between initially unrelated
observations and information to be made, as well as across organisms. As a
consequence, scientists would be eligible to state any insightful question and
receive the most meaningful interpretations from a biological perspective [13].

2.4. Next Generation Sequencing

A potential alternative to microarrays for high throughput studies is the RNA_Seq
and more recently the next generation sequencing (NGS) technologies. Whereas
microarrays are based on the simultaneous hybridization of thousands of genes,
the sequencing techniques allow for the complete sequencing of the whole
transcriptome of an organism without prior knowledge for any particular gene.
The need for such an holistic approach emerged from the intrinsic limitations of
microarray technology to control successfully the background levels of
hybridization, particularly in cases of transcripts with low abundance [27], as well
as to shed light on exon-level expression and alternative splicing. Alternative
splicing, i.e., the process where individual exons of a gene are spliced and
produce different isoforms of mMRNA, is responsible for proteins variability within
an organism and almost 50% of disease mutations in exons may originate to
MRNA defects. Hence, it was of vital importance the development of a
technology, which on the one hand measures the exon expression while on the
other identify isoforms of mMRNA [28].

It was since 1975 when the first automated sequence method developed by
Edward Sanger (the chain-termination method) and for almost two and a half
decades was regarded as the gold standard for nucleic acid sequencing. Indeed,
the Human Genome Project accomplished in 2003 based solely on Sanger
sequencing. However, the growing demand for faster and cheaper sequencing
forced the development of second-generation or next-generation sequencing
methods (NGS). Those new methods carry out massively parallel sequencing,
Figure 2.7, through which a complete genome may be sequenced within a single
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day [29]. So far a variety of NGS platforms are commercially available and
engaged in research and clinical labs such as those developed by 454 Life
Sciences (Roche) and lllumina (formerly Solexa sequencing). However, those
platforms are mainly employed to investigate genetic variation, transcription factor
binding sites, and DNA methylation rather than mRNA expression levels. Some
possible reasons have to do with the nature of expression studies where slight
guantitative differences among samples have to be recognized as well as due to
lack of proper experimental protocols. Nonetheless, compared to microarray
arrays are definitely more efficacious in detecting differentially expressed genes
[27].

A ID3131: MYH7 (p.Y162H) B ID3236: ILK (p.P70L)

ACCGATCAATCTAATCAACCGTCCCGATCA(AccceccTCCATCVCCCAGCCAGTCATGCA
ACGGATCAATGTAATGAACCGTGGGGATGACACCC
ACGGATCAATGTAATGAACCGTGGGGATGACACCC
ACGGATCAATGTAATGAACCGTGGGGATGACACCC
ACGGATCAATGTAATGAACCGTGGGGATGACAC
ACGGATCAATGTAATGAACCGTGGGGATGACACCCC
ACGGATCAATGTAATGAACCGTGGGGATGACACCCTCCT
ACGGATCAATGTAATGAACCGTGGGGATGACACCCTCCTG
ACGGATCAATGTAATGAACCGTGGGGATGACACCCTCCTG
ACGGATCAATGTAATGAACCGTGGGGATGACACCCTCCTGC
ACGGATCAATGTAATGAACCGTGGGGATGACACCCTCCTGCATCTGG
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Figure 2.7: Identification of novel potential disease mutations against (A) MYH7 and (B) ILK
genes [30]
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3. COMPUTATIONAL INTELLIGENCE METHODS TO ANALYZE AND
EXPLOIT GENE EXPRESSION MEASUREMENTS

3.1. Feature selection

Microarray data analysis is widely used for the identification of ‘informative’ genes.
However, due to the ‘curse’ of dimensionality, where the number of gene probes
represented on microarrays far exceeds the available number of cases (samples) as
well as the inherent noise in microarray data, feature selection (FS) approaches strive to
achieve this goal. Typically, informative genes are selected according to a two-sample
statistical test combined with multiple testing procedures to guard against Type 1 errors
[31]. This methodology generates gene lists, which then can be either ranked or filtered
according to certain statistical criteria, e.g. p-value, g-value etc. The selected subset of
genes is assumed to construct better classifiers, both in terms of accuracy and
efficiency. In particular, we expect improved classification performance and
generalization by avoiding over-fitting. Furthermore, the classifiers will be more efficient
in time and space because of the fewer features, and biologists’ insights will be
augmented [5].

An FS algorithm should perform efficiently and independently of the sample size and
yield its subset within a reasonable period, to enable numerous experiments. Moreover,
the subset’s length should be small, for instance, less than 50 genes, and the selected
genes should present biological relevance to the inspected disease so as to facilitate
further analysis. Despite the plethora of available FS methods, none of them has
managed to successfully deal with all the aforementioned issues playing the role of a
milestone. For instance, some methods are effective with small cohorts while others
with large ones [32]. Aside from this, there are methods that are developed and tested
for specific diseases, leaving their suitability for broader use unexplored [3].
Furthermore, some FS algorithms are so sophisticated that they either need specialized
and expensive hardware to operate or an impractically long run time [33].

A wide variety of FS algorithms has been proposed [34-36] and depending on how they
combine the feature selection search with the construction of the classification model,
they can be classified into 3 categories: filter, wrapper, and embedded [5], Figure 3.1.
Complementary to this categorization, hybrid approaches have drawn researchers’
interest. Specifically the benefits of usually two different techniques are combined
towards the identification of an improved gene subset selection, for example, a
univariate filter with a wrapper or an embedded method [6, 37-41]. Apart from FS
methods, there are also data reduction techniques such as principal component
analysis and partial least squares, which search for linear combinations of all genes to
provide us with a small subset of ‘metagenes’ [42].
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Figure 3.1: The categorization of feature selection techniques [5]

3.1.1 Filter methods

Filter techniques are fast and efficient considering the high dimensionality of most
microarray experiments, and that's the main reason for attracting most of the
researchers' attention. Those techniques calculate a feature (gene) relevance score
taking into account only the intrinsic properties of the data. Afterwards, the genes are
ranked according to this score and only the top genes, either through a numeric
threshold e.g. p-value or an arbitrary number of genes e.g top20 genes, are kept and
form the input of a classification algorithm. The calculation of the relevance score is
usually based on univariate methods, which are computationally simple and fast, and
the output is easy to understand and independent of the classification algorithm. So far,
there is a plethora of univariate gene ranking techniques ranging from the simple fold
change to parametric and model-free methods [5].

Regarding the parametric methods, they are based on the Gaussian distribution and
assumptions of the samples and the most widely used representatives are the two-
sample t-test and the ANOVA. Furthermore, modifications primarily in the variance's
estimation has resulted in a number of t-test like statistics and Bayesian frameworks
that better address the small sample size of the microarrays experiments as well as the
inherent noise of gene expression data. However, our inability to validate the true
underlying distributional assumptions due to small sample sizes, has given room to
nonparametric or model-free methods as an alternative to Gaussian stringent
distributional assumptions. The Wilcoxon rank-sum test, the rank products and the
between-within classes sum of squares (BSS/WSS) are among the non-parametric
methods engaged in gene expression studies. Those methods employ random
permutations of the data to estimate the reference distribution of the statistic, which
alleviates the small sample sizes problem and enhances the robustness against outliers
[3].

The main disadvantage of univariate methods is that during the assessment of gene's
significance the potential gene dependencies are ignored and that may affect the
classification performance as well as the following biological analysis. Therefore, a
number of multivariate filter techniques have emerged in order to incorporate genes
dependencies to some degree. Those methods ranges from simple bivariate
interactions to more sophisticated algorithms that try to explore higher order
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interactions, such as correlation based feature selection (CFS), several variants of the
Markov blanket filter method, The Minimum Redundancy - Maximum Relevance
(MRMR), and Uncorrelated Shrunken Centroid (USC) [5]. During our study we
employed seven univariate filter methods (maxT, ODP, eBayes, SAM, SNR and t-test),
and one multivariate filter algorithm (cat).

3.1.1.1 The single-step maxT adjusted p-values

The biological problem of identifying the differential expressed genes in a number of
MRNA samples can be restated as a multiple hypothesis testing problem. In particular,
let X, to be the expression value for gene j and Y the covariate of interest (e.g.

treatment/control). Multiple hypothesis testing entails the simultaneous null hypothesis
testing H,; for each gene | of no association between X; and Y. Typically, this

approach involves two phases: (1) computing a test statistic T, for each gene j, and

(2) applying a multiple testing procedure to decide upon the rejected hypotheses in
relation to a properly defined Type | error rate. Regarding the first aspect, there is a
plethora of univariate statistical methods and the decision depends on the experimental
design and the type of covariate. For instance, in the case of binary covariates either a
t-statistic or a Mann-Whitney statistic are acceptable choices [24].

As regards the multiple testing procedures, there are three types: single-step, step-
down, and step-up procedures. In single-step procedures the evaluation of each
hypothesis is based on a critical value equal for all hypotheses regardless of the results
of the other tests. This type of procedures lacks of power i.e. minimize a suitably
defined Type | error rate, which stepwise procedures try to encounter by taking into
account not only the total number of hypotheses but also their outcome. The step-down
and step-up procedures fall into this category of multiple testing procedures.
Specifically, in step-down procedures those hypotheses with either the smallest
unadjusted p-values or the largest absolute test score are examined sequentially. As
long as one hypothesis is accepted, the rest of the hypotheses are considered accepted
too. On the contrary, in step-up procedures the hypotheses with the least significant
scores are considered successively, and as soon as one hypothesis is rejected, the rest
of the hypotheses are rejected too [24].

The purpose of each of the above multiple testing procedures, is mainly to control the
Type | error rate i.e rejecting the null hypothesis when it actually is true. There are
several approaches dealing with Type | error control, though the following four are the
most standard [24].

i. Per-comparison error rate (PCER). The PCER is defined as the expected value of
(number of Type | errors/number of hypotheses), PCER=E(V)/m.

ii. Per-family error rate (PFER). The PFER is defined as the expected number of
Type | errors, PFER=E(V).

iii. Family-wise error rate (FWER). The FWER is defined as the probability of at least
one Type | error, FWER = pr(V >1).

iv. False discovery rate (FDR). The FDR of Benjamini & Hochberg is defined as the
expected proportion of Type | errors among the rejected hypotheses,

FDR = E(Q)where by definition @ = {I';"FR’ i;i z DD’ and R the number of
rejected hypotheses.

In order to have a strong control, of the FWER at a significance level «, the Bonferroni
procedure is the most widely engaged in multiple testing. At this point, we may notice
that the term strong control refers to control of the Type | error rate under any
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combination of true and false hypotheses, i.e., any value of m,. On the other hand,
weak control refers to control of the Type | error rate only when all the null hypotheses
are true m,=m. In the context of microarray experiments, it is very unlikely that no
genes are differentially expressed therefore, it is meaningful to have strong control of
the Type | error rate. Besides, due to the co-regulation among group of genes, the test
statistics and the resultant p-values of those genes are correlated too. Towards this
phenomenon, Westfall & Young proposed the use of adjusted p-values for less
conservative multiple testing procedures that take into consideration the dependence
structure among test statistics like the single-step minP adjusted p-values and the
single-step maxT adjusted p-values. During our experiment, we employed the single-
step maxT adjusted p-values since its p-values require fewer computations than those
in single-step minP and are defined as follows

p; = pr(max|T,| > |t;[IHy)(3.1)

1<l<m

where H¢ denotes the complete null hypothesis and the T, the test statistics of the |
hypothesis and t; the test statistic of gene j [24]. Regarding the permutation algorithm

that implements the single-step maxT adjusted p-values is included in the multtest r-
package and has as folows:

For the original data, order the observed test statistics such that
Gl = [t 2 0 2 [t [

For the bth permutation, b=1,...,B:
1.Permute the n columns of the data matrix X .
2.Compute test statistics t,, ,...,t,,  for each hypothesis (i.e. gene).

test statistics by

um,b =| tsm,b |
U, = Max (U, |ty 1) fori=m—1,...,1,
The above steps are repeated B times and the adjusted p-values are estimated by
o #Hbou 2t [}

si

[43].

fori=1,...,m with the monotonicity constraints enforced by setting

3.1.1.2 The ‘optimal discovery procedure’ (ODP)

In relation to single significance tests, the Neyman-Pearson proposed a procedure for
optimal testing given the null and alternatives distributions. This procedure is based on
the likelihood ratio

probability of data under alternative distribution

probability of data under null distribution

that rejects the null hypothesis if exceeds a predefined threshold. The strength of this
procedure stems from the comparison of the exact likelihoods between alternative
versus null hypothesis. In general, a single-hypothesis test involves a number of steps,
which in the case of multiple hypothesis tests abstractly can be fall into two major steps.
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i. determining the order in which the tests should be called significant and
ii. choosing an appropriate significance cut-off somewhere along this ordering [44].

The Neyman and Pearson notion is most relevant to the first step, but for a single
hypothesis perspective, whereas the domain of "multiple hypothesis testing" deals with
the second step. Typically, the main goal of a multiple-hypothesis testing approach is to
estimate a cut-off error rate based either on the familywise error rate or on the false
discovery rate in order to sort the tests according to their significance. However, the
ordering of the tests is accomplished solely on the p-values obtained from each
significance test rather than on information across tests, which ultimately affects the
quality of the entire procedure [44].

The ODP method copes with the first step, trying to incorporate an optimal testing, in
the area of multiple hypotheses, to provide a significance framework for the second
step. In particular, the objective is to maximize the expected number of true positive for
each fixed expected number of false positive results. This criterion directly relates to
optimality in terms of false discovery rates. The ODP approach implements the creation
of a statistic for each hypothesis test that engages the relevant information from all
other tests, similar to shrinkage estimators employed in simultaneous point estimation.
As a result, providing an improved way to order tests that should be called significant
also improves the performance of the forthcoming multiple-testing procedures [44].

The ODP procedure involves three components:

i. defining the optimality goal;
ii. properly constraining the set of procedures over which the optimality is to be
found;
iii. deriving the procedure that achieves this optimality.

Concerning the first component, the optimality goal is to maximize the expected number
of true positive results, ETP, for each fixed expected number of false positive results,
EFP. Regarding false discovery rates (FDR) the key observation is that it may be
interpreted and characterized in terms of EFP and ETP,

~— P (39
EFP+ETP

where the approximate equality it may turn into exact equality for large number of tests
with certain convergence properties [44].

FDR

As regards to the second component, defining and employing significance thresholding
functions has the advantage over critical functions that a positive score for each test is
produced which can be used to sort the tests from most significant to least. This
function is defined to be 5: R — [0,2) such that the null hypothesis is rejected if and
only ifS(x) > A for some Achosen to satisfy an acceptable level of significance. In the
case of multiple tests a ‘single thresholding procedure’ (STP) is defined to be a multiple-
testing procedure equivalent to applying a single significance thresholding function
S and cut-off Ato every test, where each test iis significant if and only if S(x,)> A for a

given Sand A. For example suppose that a standard two-sided t-test is applied to each

X, the statistic is S(x) = where X. is the sample mean and s, is the sample

X
s,/vn ‘
standard deviation of x, [44].

Finally, based on the previous components the ODP is defined to be the multiple-testing
procedure that maximizes ETP for each fixed EFP among all STPs
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gmo+1(x) + gm0+2(x) oot gm(X) (33)
f,()+ £,(X) +..+ f o (X)

S(ODP) (X) =

where m stands for significance tests performed on observed data sets x,X,,..., X,,, and

T RA

f, is the null density and g, is the alternative density of significance test i. Null

hypothesis i is rejected if and only if S(x;) > A for some 0< A1 <. For each fixed A this

procedure yields the maximum number of expected true positive results ETP among all
simultaneous thresholding procedures that have an equal or greater number of
expected false positive results EFP. Although it seems that the ODP requires the
knowledge of the true distribution of each significance test and that is not feasible in
practice, it can be estimated from the observed data for each test since. The data reflect
their true distribution either null or alternative thus, the ODP can be estimated effectively
regardless of any prior knowledge of the tests’ distributions [44].

3.1.1.3 The empirical Bayes moderated t-statistic (eBayes)

The eBayes ranks genes by testing whether all pairwise contrasts between different
outcome-classes are zero. It is applied to extract information across genes thus making
the final analyses more stable even for experiments with limited number of arrays.
Moderated t-statistics lead to p-values with increased degrees of freedom for the
individual variances hence, reflecting the greater reliability associated with the
smoothed standard errors [45].

This approach requires a design matrix and a contrast matrix to be specified. The
design matrix illustrates the different RNA targets that have been hybridized to the
arrays. The contrast matrix facilitates the combination of the coefficients defined by the
design matrix into contrasts of interest where each contrast corresponds to a
comparison of interest between the RNA targets. However, during simple experiments
the contrast matrix may not be explicitly specified [45].

The whole algorithm is implemented in three steps: During the first step, a linear model
is fitted to the data to estimate their variability. Each row of the resultant design matrix
corresponds to an array and each column corresponds to a coefficient. For one-channel
data, the number of coefficients equals to the number of distinct RNA sources. In the
second step, the contrast matrix allows the comparison of the fitted coefficients in as
many ways as the questions to be answered, regardless of the number of the
coefficients. Finally, in the third step the posterior odds are reformulated in terms of a
moderated t-statistic, where posterior residual standard deviations are utilized instead of
ordinary standard deviations. The moderated t-statistic as opposed to posterior odds
reduces the number of hyperparameters necessary for the hierarchical model.
Moreover, it follows a t-distribution with increased degrees of freedom, and may
accommodate tests for more than two contrasts with the aid of moderated F-srtatistics.
Linear Models for Microarray Data (Limma) is an r-package, which implements this
statistic [46].

From a mathematical point of view, we may describe the prior description as follows:
suppose that we have a set of n microarrays with a response vector of log-intensities
yg = (Y41:- ¥g) for the g th gene. The probes should be suitably normalized to produce

an expression summary, represented here asy,, for each gene on each array. We
assume a linear model E(y,)=Xa, where X is a design matrix and a, is a coefficient
vector, and estimated covariance matrices var(yg)=WgcsfJ whereW,is a known non-
negative definite weight matrix that may contain diagonal weights with zero value. Then,
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the contrasts of interest are given by Bg :Cng where C is the contrast matrix and
var(Bg):CTVngg are the estimated covariance matrices. The posterior values for the
foss + f;55
fo+ f;

freedom for the jth gene. The moderated t-statistic is

. By

t =—% (3.4)

Y]

Sq/Ug

that follows an approximate t-distribution on f, + f;, and u; is the jth diagonal element
of CTVgC [46].

residual variances are given by §§ = where f; is the residual degree of

3.1.1.4 The Significance Analysis of Microarrays (SAM)

The SAM approach based on the analysis of random fluctuations in gene expression
data. Specifically, the fluctuations of gene expression appear to be gene specific even
for a given expression level. To elucidate this observation SAM was developed to take
into account the ratio of change in gene expression to standard deviation in the data for

a specific gene. The “relative difference” of the gene expressions for a given gene is

d() =2 0-%0 (55
s(i)+s,
where X, (i) and X, (i) are the average expression levels of gene (i) in conditions | and
U. In addition, the “gene-specific scatter” s(i) is the standard deviation of repeated
measurements

si) = 2 [, [0 -% OF +X, [, 0-%, 0| @6

where Zm and Zn are summations of the expression measurements in conditions |

and U, and a=(@1/n+1/n,)/(n,+n,-2), where n and n, are the number of

measurements in the conditions | and U respectively. Moreover, to compare the
“relative difference” across all genes the distribution of d(i) should be independent of

gene expression values. Therefore, a small positive constant value s, was added to the
denominator of d(i) such that to minimize the coefficient of variation [47].

Furthermore, the engagement of balanced permutations among the available samples
was employed to alleviate potential confounding effects between the two conditions so
as to conclude to robust “relative difference” scores per gene. Then, the genes were
ranked according to their score d (i) in descending order. The expected relative
difference, d.(i) is defined as the average over the N balanced permutations as
de(()=%,d (()/N. Comparing the “relative difference” and the “expected relative
difference” per gene we may characterize a gene as significant if the subtraction of
those two values exceeds an adjustable threshold A (delta) [47].

In order to control the number of falsely detected significant genes, SAM employs
horizontal cutoffs representing the smallest d(i) among the significantly induced genes
and the least negative d(i) among the significantly repressed genes. The number of
genes that exceeds the horizontal cutoffs for induced and repressed genes per
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permutation corresponds to the falsely significant genes. Hence, the estimated number
of falsely significant genes is the average of the number of genes called falsely
significant from all permutations. Respectively, the FDR is the ratio of the falsely
significant genes to the significant genes for a given. As A decreases, the number of
genes called significant increases but at the cost of an increasing FDR. SAM was first
applied to analyze the transcriptional response of lymphoblastoid cells to ionizing
radiation (IR) [47].

3.1.1.5 Student t-test and Signal-to-Noise Ratio

In our univariate analysis we engaged two common statistical approaches, the student
t-test and the Signal-to-Noise Ratio. Both of these methods are included in the
Comparative Marker Selection suite [48], which in turn is part of the GenePattern
software [49]. This module is freely available and allows users to apply and compare
different methods of computing significance for each marker gene, for example p-value,
g-value, FDR, FWER, e.t.c, a viewer to assess the results, and a tool to create
derivative datasets and marker lists based on user-defined significance criteria. In our
analysis we engaged the “rank” estimate which derives from the value of the test
statistic.

Concerning the t-test, the default method is the two-paired test which assumes that
differentially expressed genes can be up-regulated in either class. It is calculated by the

formula t—test=—Ha—Hs_(37)
i, %6

n n

A B

where p is the mean value, o is the standard deviation, n is the number of samples,
and A is the one class and B is the second class in a binary case. The SNR statistic is
given as the subtraction of the class means divided by the sum of their standard

deviations SNR=Ha"Hs (3 gy,
GA +GB

3.1.1.6 Correlation-adjusted t’-scores (cat)

The aforementioned approaches disregard the potential correlations among genes,
which may have a negative influence on the gene ranking and the subsequent
classification results. In general, there are three possible strategies to follow when
dealing with the correlation among genes. During the first approach, the conventional t-
scores are computed and then the correlation structure is taken into account. In the
second strategy, the correlation structure model is generated, and the inferences about
genes’ significance are based on that. Finally, the third approach tries to combine t-
scores with the estimated correlations to form a new gene-wise statistic. The proposed
“correlation-adjusted t’-scores”, or for short “cat” scores are influenced by the third
strategy [50].

The cat scores bear in mind the close relationship between gene ranking and feature
selection for class discrimination. Therefore, it is exploited a close link between gene
ranking and two-class linear discriminant analysis (LDA). If there are two distinct class

labels, K =2, the difference A™*(x)=d, ™" (x)-d;**(x) between the discriminant scores
of the classes results in the following prediction rule:
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if A'®* >0then the assigned class label is 1, otherwise is 2. We may rewrite the A"**(x)
as A*(x) = ' 8(x) + log (EJ (3.9)

T,

where o is a weight vector o= P YA/ ¥?(u, —p,) (3.10)

and 3(x)is a vector-valued distance function 8(x) = P‘“\/‘W[x—%j (3.11), with P

are the correlations and V the variances of the diagonal matrix. The “cat” scores can be
defined as a vector proportional to the feature weight vector w as follows:

-12
9 = 1 + 1 ®
nl n2

12
_ 1 1
=P J/ZX{(n—‘l'n—JV} (Hl_uz)
1 2

=P
The vector t includes the gene-wise t-scores, and n, stands for the number of samples

in class k. To sum up, it would be quite accurate to state that the “cat” score is the
natural and intuitive extension of fold change and t-score, as illustrated in Figure 3.2.

Indeed, whilst the t-score represents the standardized mean difference p, —p, with

(3.12)

—1/2

1 . .

constant ¢ :£—+—j , the “cat” score is the standardized as well as the decorrelated
nl r]2

mean difference, with factor P2 responsible for the decorrelation [50].

. standardize decorrelate
fold change , t—score cat score

Ky — K2 c-V I’/?’(Mq — M) e~ P2y I’I.)(Hl — 1)

Figure 3.2: The relationship between fold change, t-score and cat score [50]

3.1.2 Wrapper methods

As opposed to filter methods, the wrapper methods select a good subset of genes in
conjunction with the classification model. In particular, there is a search procedure that
generates possible feature subsets, which then are evaluated by training and testing on
a specific classification model. In other words, we have a search algorithm “wrapped”
around a specific classification algorithm to determine a “good” subset of genes. Since
the number of inspected genes varies usually from tens to hundreds heuristic search
methods are employed to facilitate the search for an optimal subset. Those methods fall
into two categories: deterministic and randomized search algorithms. The main
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advantage of wrapper methods is their intrinsic ability to take into account gene
dependencies through the tailored relationship of a search algorithm to a specific
classification model. However, this notion has a higher risk of overfitting than filter
techniques and depending on the size of the feature space is computationally intensive

[5].
3.1.3 Embedded methods

Similar to wrapper techniques the embedded approaches are tailored to a specific
learning algorithm with the exception that the features algorithm is enclosed into the
classifier construction. Hence, this category of methods employs a combined space of
feature subsets and hypotheses, which incorporates the interaction with the
classification model. This common characteristic between embedded and wrapper
methods can be seen as an alternative way to carry out multivariate gene selection
analysis. Indeed, incorporating the classifier's bias into the gene selection process
enhance the construction of accurate classifiers. Compared to wrapper methods the
embedded algorithms are far less computationally intensive [5].

In relation to the available applications, the random forests algorithm is a distinctive
example of an embedded algorithm where a classifier combines several single decision
trees to calculate the importance of each gene. Other examples use the weights of each
feature in linear SVMs or logistic regression classifiers. These weights have been
computed through a multivariate analysis and reflect the relevance of each gene. Those
genes with small weights are filtered from the rest of the analysis. However, mainly the
wrapper and to a lesser degree the embedded methods have failed to draw the
attention in the domain because of being highly sophisticated compared to filter
methods. Nevertheless, a sensible tactic is to employ a univariate filter method to
reduce the features subspace prior to any wrapper or embedded analysis procedure,
something that restricts the computational time to reasonable levels [5].

3.1.4 Dimension reduction methods

Dimension reduction or feature extraction is an alternative to feature selection in relation
to the “curse” of dimensionality problem. Contrary to feature selection, those methods
utilize all the available genes and project them onto a low-dimensional space which also
facilitates visual representation. Besides, the resultant components of the projection
usually provide us with information of the intrinsic structure of the data. Though, a point
of criticism against those methods is the questionable interpretability particularly when
scientists are interested in specific genes [51].

Those methods are classified into linear and non-linear as well as supervised and
unsupervised. Employing a supervised method rather than an unsupervised is a
preferable choice since the construction of the projection components takes into
account the class information. On the other hand, non-linear methods are more
computationally expensive than linear methods and additionally lack of robustness,
therefore they are not adopted microarray classification studies. So far, the Partial Least
Squares (PLS) method is a supervised linear dimension reduction method, which
performs even if the number of genes far exceeds the number of available samples.
Another method that is in close relation to PLS is the between-group-analysis (BGA).
Finally, a well known dimension reduction method is the Principal Components Analysis
(PCA), which is an unsupervised linear method, thus not recommended for classification
problems [51].
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3.1.4.1 Partial Least Squares

Partial Least Squares is a multivariate regression method that originally developed for
the chemometrics field and it is particularly suitable to predict a univariate or multivariate
continuous response from a large number of continuous predictors. The principal notion
behind PLS is to find uncorrelated linear transformations of the original predictor
variables such that have high covariance with the response variables. In the sequel,
those linear transformations can be engaged as predictors in conventional linear
regression models to predict the response variables. The profound benefit of this idea is
the efficient performance of linear regression since the produced components are
always much smaller in number than the original variables pand irrespective of the

available observations [51].

In particular, suppose we have a train set L with known class labels and a test set T
with labels that have to be predicted. The corresponding data matrices are X, and X

and the class labels vector is Y, . We may formulate a classification method as a
function o, of X and Y and the vector of predictors x,, corresponding to the ith
observation of the test set:

Sois (L XY IRP = 1. K

new,i

(3.13)

Xoewi — Ops (X XY

new, i new,i !

where K is the dimension, and K =2 for binary problems [51].
This function involves two steps; dimension reduction and linear discriminant analysis
(LDA).
1.In the dimension reduction step, we find m appropriate linear transformations
Z,..,Z, of the vector of predictors x. However, the appropriate number of m is

user defined and there is no widely accepted method. A simple yet effective
approach based on cross validation is proposed by Boulesteix where only the
train set is used to determine the m PLS components. The classifier J, ¢ is build

using a percentage a% of the available observations and applied to the
remaining observations trying several values for m. The procedure is repeated

for N,, runs and an error rate is computed for each one. After the completion of
the N,,, runs, the mean error rate for each m value. The m value that minimizes
the error rate is denoted as m,, and is the one used to predict the class labels of

the test set. Then the SIMPLS algorithm is employed to determine the
pxlvectors «,,...,a, which are used to construct the linear transformations

Z,..,2.:
Z,=aXx,
= (3.14)
Z, =a X

Thus, if A denotes the pxm matrix containing the vectors «,...,a,, In its

columns, the matrix with the new components of the train set L is obtained as
Z =XA.
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2.In the second step, LDA, the new components Z,,...,Z, are employed as predictor
variables, and the test set matrix Z, of new components is computed
asZ, = X;A. The description of LDA in brief has as follows: for p predictor
variables the random vector x:(Xl,...,Xp)T is assumed to follow a multivariate
normal distribution within class k(k =1,...,K) with mean x and covariance
matrixX, . In LDA it is assumed that X, is the same for all k classes i.e. X, =X.
Therefore, using estimates /£, and 3 instead of 4, and X, the maximum-
likelihood discriminant rule assigns the ith new observation x to the
corresponding class through the following formula:

new, i

5(XneW,i) =arg mkin(xnew,i _:&k)i_l(xnew,i _:[lk)T (315)

The PLS method is performs gene selection by ranking genes according to the
BSS /WSS - statistic, where BSS stands for the between-group sum squares and WSS the
within-group sum of squares. Hence, for gene jthe BSS /WSS -statistic is computed as

$K
BSS, /WSS, = —~ -
Zk=lzi:Yi=k (Xij _:ujk)

Sy o Qi — 1)°
I.Yi:k(lujk /U,)Z (3.16)

where 4; is the sample mean of X;and g, is the sample mean of X, within class

k(k =1,...,K). The genes with the highest BSS /WSS - statistic value are ranked first and

considered as significant. Though, there is no well-established criterion to define the
number of significant genes to be chosen [51].

3.1.4.2 Between-Group Analysis

BGA is a multiple discriminant approach that can be applied irrespective of the number
of genes and available samples. The basic idea behind BGA is to ordinate groups of
samples rather than individual samples with the intention of separating them maximally
in some space. For N groups we find N —1leigenvectors or axes such that to maximize
the between group variances. Then with the aid of conventional ordination techniques
such as Correspondence Analysis (COA) or PCA the individual samples are projected
and plotted along those axes. Similarly, new samples are placed on those axes and
classified on an axis-by-axis basis or by proximity to the group centroids. The
combination of BGA with COA is quite effective since it allows us to inspect the
association between the genes that discriminate group of samples with the grouped
samples and it is the approach employed in our analysis [52].

Suppose we have a raw data table (N) of gene expression data with rows |
representing genes and columns J representing microarray samples, and elements n;.

The COA method requires non-negative elements (usually integers), therefore it is
obligatory to add a constant to all values if necessary. The row sums and column sums
of N are denoted as n, and n ; respectively. The sum of all elements is denoted as

n,.. With r, it is denoted the weight or the relative contribution of each gene i to the
total variation of the data set and is calculated as r,=n, /n, , whereas the relative
contribution of sample j is declared as c; and is calculated as ¢; =n,;/n,, . Likewise,

the relative contribution of each element of N to the total variation in the data set is
denoted as p; and is calculated as p; =n;/n,, . Those definitions produce two vectors
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R and C of length I and J and one matrix | xJ. All these are converted into a table
X of IxJ with x* values using the formula x; =(p; —ricj)/ rc; . This table X
incorporates the associations between genes and samples and is the one used to
produce the correspondence analysis. The overall association between all genes and
samples is given by the overall x* value for the data set (x,,) which is also the total

value of all elements of X . This overall x* value is then decomposed by COA into
components for each gene and sample along each of K eigenvectors, where K is
min(l —-1,J -1). Those eigenvectors are ranked by their eigenvalues where their sum

equals the overall x* value of the data set. In relation to the eigenvectors, the method
used to derive them is general singular value decomposition in which a matrix Bis
calculated with the formula B=DY*XD X'D'?. In this formula the D!? is a JxJ matrix
with the square roots of the elements of the C vector along the diagonal and zeros
elsewhere, the D, is a | x| matrix with the elements of the R vector along the diagonal
and zeros elsewhere, and B is a JxJ matrix which is diagonalized to produce J
eigenvalues (where at least one of which will be zero) and eigenvectors [52].

In the case of two groups, the results of the analysis will be a single vector with the
positions of all samples and genes. The most significant genes are those that separate
the groups and are located at the end of the axes i.e. have the most extreme co-
ordinates.

3.1.4.3 Principal Components Analysis

PCA is one of the oldest dimension reduction approaches where its main initiative is to
reduce the dimensions of a data set with a large number of interrelated variables, whilst
preserving the intrinsic variation in the data set to the best possible degree. This idea is
accomplished with the transformation of the original variables to a new set of variables,
the principal components, which are uncorrelated and ordered by the degree of
variation. In other words, the first few of the new components incorporate most of the
information related to the original variables [53].

Assume there is a vector xwith p random variables, and that the variances of the p

variables as well as the structure of the covariances or correlations between those
) ) . . 1
variables are of interest. Looking at the p variances and all of the Ep(p—l)

correlations or covariances it will not be very helpful, except the number of p variables
is not that large or the structure is straightforward. An intriguing approach is instead of
including all the p variables to an analysis to produce a few new variables (<< p) such

that preserve most of the intrinsic information given by these variances and correlations
or covariances. PCA’s focus is on variances rather than on covariances and correlations
[53].

The initial step is to search for a linear function « x of those elements of x with
maximum variance, where ¢, is a vector of p constants «,,,,...,a;,, SO that

' “1po

p
.
a4 X=X + X ot o X, :Zaiixj (3.17).
j=1

Similarly, a linear function ¢} x having maximum variance and been uncorrelated with
o x has to be found. This procedure continuous until a linear function «x with
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maximal variance and uncorrelated with the previous linear functions, &/ X,a; X, ..., a,_,X,

has been found, too. That final variable, ¢, x, represents the k th PC. Although k can be
equal to p, the Holy Grail is to conclude to m PCs, where m< p [53].

The second step involves the procedure used to find those PCs. Suppose that the
random vector x has a known covariance matrix ~ whose (i, j)th element reflects the
known covariance between the ith and jth elements of x when i j and the variance
of the jth element of x when i=j. Itis proved that for k=1,2,..., p, the kth PC is given

by z =a x where ¢, is an eigenvector of ¥ corresponding to its kth largest
eigenvalue 4,. Moreover, if @, has chosen to be of unit length (¢ o, =1), then the
variance of z, isvar(z,) =4, [53].

Finally, the form of the PCs has to be derived. Consider the ¢/ x linear function. The

vector o, maximizes var[e] X]=a/ 2. In order to maximize o Za, subjectto o o, =1,
the usual approach is to engage the technique of Lagrange multipliers such
thatvar[e) X] = o T, — A(ey o, —1), where Ais the Lagrange multiplier. Thus, the quantity

to be maximized is o 2o, =] A, = oy = A and therefore 1 must be the possibly
larger to determine which of the p eigenvectors maximize the variance of the ¢/ x. In
general, the kth PC of vector x is ¢, x and var(e X) = 4,, where 4, is the kth largest
eigenvalue of X, and ¢, is the corresponding eigenvector [53].

PCA has been extensively used in bioinformatics studies, because of its computational
simplicity and satisfactory statistical properties. Particularly in gene expression studies,
not only manages to reduce the dimensionality of high-throughput measurements but
also create subsets of genes, which in turn achieve satisfactory classification
performance [37].

3.1.5 Hybrid methods

3.1.5.1 Hybrid system for marker Gene selection

The Hybrid system for marker Gene selection (HykGene) is a hybrid approach that
combines gene ranking and cluster analysis. HykGene aims at selecting a limited
number of non-redundant though highly discriminative genes. For that scope, it follows
a three-step procedure: in the first step, a feature filtering algorithm is applied on a
training set, in the second step, hierarchical clustering is performed on the top-ranked
genes and a dendrogram is produced, whereas in the third step, a sweep-line
algorithms is utilized to discern clusters from the dendrogram from which marker genes,
one per cluster, are selected through clusters' collision. The method also includes a final
step where only the selected marker genes are used to classify a test set [10].

During the first step, the method employs a filtering technique that ranks genes
according to a calculated score. For this purpose, HykGene engaged Relief-F,
Information Gain, and x* statistic:

Relief-F: this algorithm first draws random instances, then computes their nearest
neighbors and finally adjusts a feature-weighting vector that augments those features

that best discriminate instances from neighbors of different classes. Particularly, the
weight assigned per gene f is calculated through the formula

w, = P(different value of f | different class) - P(different value of f | same class) (3.18).
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Information Gain: it measures the amount of information in bits relevant to class
prediction based on the value (discretized) of a feature. Suppose that {ci}i"l1 is the set of

classes, and V the set of possible values for feature f . Then, the Information Gain of a
feature f is given by the formula

G = _Zm; P(c,)log P(ci)+22mj P(f =0)P(c | f =v)logP(c; | f =v) (3.19).

veV i=l

x’-statistic: it tests the independence between two paired variables, in that case
between feature f and classc. The x*-statistic is estimated through the following type:

xz(f)=zzm:[p‘(f :Euzf_E‘()f =o)f (3.20), where A(f =v) is the number of instances
veV i=1 i\ =0

in class ¢, with f=v, E(f =v) is the expected value of A(f =v) and is calculated
with E,(f =v)=P(f =0)P(c,)N, and N is the total number of instances [10].

After the completion of the first step, the genes are ranked accordingly and a clustering
approach, hierarchical clustering (HC) is engaged in the second step. Specifically, the
top 50 or top 100 genes from the whole dataset are kept for clustering analysis through
HC in order to conclude to homogeneous clusters. Since the dedrogram representation
of HC clustering is far from definite regarding the exact number of clusters, the
engagement of a sweep-line algorithm on the training samples deals with this issue in
the third step. This method tries to discern representative genes from each cluster and
then collapse the clusters onto those genes. With the aid of a cross-validation
technique (LOOCYV), all possible ways to extract clusters from the dedrogram are
evaluated before concluding to the best possible number of clusters and consequently
to the minimum set of representative genes. The gene with the minimum sum of
squares of distances to all other genes within the cluster is characterized as
representative. In the final step, the discrimination power of those marker genes is
evaluated on the test set data. For this purpose, HykGene employs one of four possible
classifiers: k-nearest neighbor (k-NN), linear support vector machine (SVM), C4.5
decision tree, and Naive Bayes (NB) [10].

3.2. Clustering

Clustering, or else unsupervised learning due to lack of prior knowledge, is one of those
machine learning techniques that engaged widely to microarray analysis. The main
objective of cluster analysis is to classify objects in a data set into meaningful classes
according to a pre-specified similarity measure. This data summarization is solely based
on the internal structure of the data, a data driven approach, where the researcher is
free of making any data assumptions about sample size, data quality or experimental
design. Clustering has several applications in gene expression data analysis including
data reduction and visualization, inferring functions from clusters of genes, detecting
classes or sub-classes of diseases or even predicting the categorization of new
samples [20, 54, 55]. According to Milligan, cluster analysis entails seven critical steps:
1) Clustering element selection; 2) Clustering variable selection; 3) Variable
standardization; 4) Choosing a measure of association (dissimilarity/similarity measure;
5) Selection of clustering method; 6) Determining the number of clusters; 7)
Interpretation, validation and replication [55].
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3.2.1 Element selection

Clustering is a data-driven approach where the data set elements should represent the
underlying cluster structure. In order to conclude to distinct and reliable clusters, outliers

(data points ranging outside the general region) are better to be excluded unless they
form a single cluster [55].

3.2.2 Variable selection

Selecting an appropriate set of variables, enough and representative number of
variables to the underlying data structure, imposes a significant impact on the
subsequent cluster analysis. Indeed, suppose we generate four two-variate normal
distribution data with mean vectors s, =(0,0)", u,=(0,2)", #,=(20)", 1, =(22)

respectively, and the same covariance matrix X =1. Consequently, there are four
distinct clusters, Figure 3.3(a). In case we deliberately omit variable 2, we notice that
only two clusters rather than four can be distinguished, Figure 3.3(b). On the other
hand, including unnecessary variables, noise or masking variables, might also
dramatically deteriorate cluster discovery [55].

3.2.3 Variable standardization

The variable standardization usually involves the transformation of raw data into a more
normal-like distribution form. However, such an intervention will definitely alter the
relative distances between pairs of objects, hence modifying the underlying cluster
structure of the data. As a consequence, it is of great importance for the outcome of the
cluster analysis to retain the original structure by selecting an appropriate
standardization measure [55].
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Figure 3.3: The impact of feature selection in cluster analysis

3.2.4 Selecting a measure of association (similarity/dissimilarity)

In cluster analysis, objects are assigned to the same cluster according to a
similarity/dissimilarity measure. Such a metric should reflect the data characteristics
necessary to differentiate the present clusters. There are numerous of measures
relevant to the types of variables (e.g. interval-scaled variable, nominal variable, ordinal
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variable or mixed data). Gene expression data belong to the continuous data type, and
a commonly used dissimilarity measure is the Euclidean distance. During this measure
each gene is considered as a point in multidimensional space, where each axis
represents a separate biological sample and the coordinate on each axis is the amount
of gene expression in that sample. However, Euclidean distance is vulnerable to
unnormalized data and to negative gene associations, leading to missed correlation
measurements [55].

A further dissimilarity measure is the Pearson correlation coefficient which, measures
the linear dependence between two variables (genes) treated as vectors of
measurements. This metric is based on two assumptions that relatively stand in
microarray gene expression values. In particular, it assumes that genes’ intensities
follow the normal distribution, which is not the case even after applying normalization
methods. Microarray data is best characterized as following a normal-like distribution.
The other assumption states that genes interaction follows the underlying linear model.
Though in reality, a specific gene may regulate other genes even if it is not at its peak
expression values. An additional shortcoming for Pearson correlation is its sensitivity to
outliers. On the other hand, mutual information is another dissimilarity measure
calculated on discrete expression values (for example, gene values are discretized into
low’ and ‘high’ or ‘low’, ‘medium’, and ‘high’ states). This metric considers each
expression-level measurement equally, regardless of the actual intensity values, and is
therefore robust to outliers. By setting a threshold we may keep only the high mutual
information scores of gene-pairs, reflecting the non-random association. However, there
is always a possibility of noise high mutual information scores as well as of novel
hypotheses for lower mutual information scores [55].

3.2.5 Selection of clustering method

One of the most critical steps prior to cluster analysis is the selection of an appropriate
clustering method. Ideally, the successful candidate should fulfill four prerequisites.
First, it should be designed to recover the suspected clusters in the data. Second, the
method should effectively recover the structures for which it was designed. Third, it
should be robust against errors in data and finally, there should be the available
software package implementing the method [55].

3.2.6 Determining the number of clusters

Usually most of the clustering algorithms expect a predefined number of possible
clusters lying in the data structure. Thus, selecting the number of clusters or partitions
present in a dataset under analysis is an ordinary yet trivial task faced by any
researcher. Clustering algorithms provide either little information about the potential
number of clusters in the data, hierarchical methods, or no information, nonhierarchical
algorithms. So far, several approaches have been developed to address this
necessitate by determining an accurate as possible estimate of the number of clusters
in a data set. The closer the number to the true number of clusters the more efficient the
clustering result.

In relation to the hierarchical methods, where a number of possible solutions is provided
somehow ranging from n clusters to one cluster, those cluster determination techniques
when applied to hierarchical clustering results are referred to as stopping criteria. Apart
from the hierarchical methods, such criteria can be also applied to nonhierarchical
methods. However, engaging such a stopping criterion in a cluster analysis entails the
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possibility of incorrect assumptions about the actual number of clusters in the underlying
data set structure. Those incorrect assumptions can be either positive, meaning more
clusters than the actual number or negative when fewer clusters are indicated.
According to the area of the clustering problem under analysis the severity of those two
errors might be considered differently. However, determining fewer clusters than what
actually exists in a data set is generally considered a more serious error, since valuable
information is ignored through merging of clusters [56].

Therefore, numerous of strategies have been proposed towards the more accurate
estimation of the underlying structure. According to Tibshirani et al. indices comparison
survey, the index of Krzanowski and Lai achieved excellent discriminatory results, and
is the one selected to be part of our methodology [55]. In particular, we apply the index
of Krzanowski and Lai [57] as included in the ‘clusterSim’ package [58] to determine the
number of clusters. Krzanowski and Lai is defined by

DIFF (k) = (k _1)%Wk—l —k%’\Nk (3.22)
when choosing the number of clusters (k) to maximize the quantity

DIFF (k)

KL(k):‘m

‘ (3.22)

where W, denotes the within-cluster sum of squared errors.

3.2.7 Interpretation, validation and replication

The holy grail of cluster analysis is to produce interpretable classification results with
respect to a specific case study. Graphical representations may play a useful role in
interpreting the resultant cluster structure in conjunction with special knowledge and
expertise in the inspected area of study. Ideally, a clustering method is considered as
good if objects grouped in the same cluster are similar to each other and different from
objects in other clusters. There are several approaches, external or internal, that intend
to validate the performance of a cluster analysis. External criteria include the Rand
index, the adjusted Rand index, the Fowlkes and Mallows index and the Jaccard index.
In general, these approaches evaluate the clustering results based on external
classification information (as it might be with simulated data) independent of the
clustering procedure, by computing the goodness-of-fit between the data and the
partitioning result. Replication entails a further validation test where the clustering
results should be also found in replicated samples [55].

3.3 Clustering algorithms

Gene expression data can be clustered either based on genes or samples. The genes-
based clustering considers the genes as the objects and the samples as the features
contrary to the sample-based approach where the samples are treated as the objects
and the genes as the features. In the first approach we look for coexpressed genes that
imply coregulation and cofunction whereas in the second we anticipate to identify
particular phenotypes. In the current dissertation we are interested in identifying clusters
of genes therefore in the rest of this study we will discuss clustering from this
perspective. Regarding the field of gene expression analysis, two well known clustering
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algorithms have been widely used: the hierarchical clustering and the self-organizing
maps. Though, the advent of new algorithms with improved characteristics that promise
advance cluster discrimination has drawn our attention and as such we will present the
Affinity Propagation algorithm.

3.3.1 Hierarchical clustering

Hierarchical clustering is one of the most commonly used unsupervised methods that
iteratively groups genes with similar expression patterns to clusters. It is identified by
the graphical representation of a tree, called dendrogram, where leaves represent all
genes, Figure 3.4. Each branch of the tree may link two leaves (genes), two other
branches, or one leaf with another branch. Any new gene is added through a
connection to the branch that most resembles. Not to mention that branches are of
different lengths representing the degree of similarity. In particular, shorter branch
lengths represent increased similarity between genes or branches whereas longer
branch lengths indicate increased dissimilarity. As a result, a dendrogram is not always
symmetric. In relation to the number of nested clusters as described in a dendrogram, it
is specified by cutting the dendrogram at some level [59].

A B C D E F G

Figure 3.4: A single-link agglomerative clustering dendrogram [60]

The way that a dendrogram is formed specifies two subcategories in hierarchical
clustering; the agglomerative and the divisive. Regarding the agglomerative method, it
is considered as a bottom-up approach where initially each object is treated as an
individual cluster and iteratively the closest pairs of clusters are merged until one final
cluster. On the other hand, the divisive approach is a top-down technique meaning that
initially the method starts with all objects included in one cluster and then iteratively
concludes to one cluster per object [61].

Between those two approaches, the most preferred among many biologists during gene
expression analysis is the agglomerative approach and specifically the one as applied
by Eisen et al. called UPGMA (Unweighted Pair Group Method with Arithmetic Mean).
According to this method, each cell of a gene expression matrix is represented by a
color in accordance with the measured fluorescence ratio. Then the rows of the matix
are reordered following the hierarchical dendrogram structure and a defined node-
ordering rule. As a result, the gene expression matrix has been converted into a colored
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table where large adjacent patches of color represent clusters of genes that share
similar expression patterns across multiple conditions [61].

The key advantage of hierarchical clustering is the graphical representation of the
overall similarities in expression patterns for a whole data set, hence allowing the user
to have quickly a preliminary impression about the data distribution [59, 61]. Albeit
hierarchical clustering suffers from several drawbacks including, lack of robustness,
nonuniqueness and inversion problems that hinder interpretation of the hierarchy.
Moreover, due to the deterministic nature of hierarchical clustering some genes may be
erroneously grouped based on local decisions, without the ability to reevaluate the
clustering [62].

3.3.2 Self-Organizing Maps (SOMs)

Self-organizing maps is a clustering algorithm that likewise hierarchical clustering
produces a visual representation (typically two-dimensional) of gene expression
patterns of a data set. Though, SOMs not only are significantly different to hierarchical
clustering algorithm but also more suitable for clustering analysis of gene expression
data. Indeed, SOMs have been successfully applied on gene expression data studies in
comparison to hierarchical clustering and achieved notably clustering results for both
accuracy and robustness. Some of the key characteristics of SOMs include the ability of
someone to impose partial structure on the clusters contrary to the rigid structure of
hierarchical clustering that entails visualization simplicity and straightforward
interpretation. Moreover, their computational burden is lower than that of dendrograms
since SOMs do not require complete pairwise comparisons [59, 62].

Regarding the wunderlying algorithm itself, first the data samples define the
multidimensional space, each sample is considered a separate dimension, and then
genes are represented as points (nodes) in that multidimensional space using their
expression levels as coordinates, where the ith coordinate represents the expression
level in the ithsample. Therefore a SOM has a set of nodes with a two-dimensional
lattice topology, for example 3x2 in Figure 3.5, and a distance function d(N1,N2)on

the nodes. The initial lattice mapping f, of the nodes is arbitrary and then iteratively

adjusted. Then, a data point P is selected and the node closest to P is identified
(Np)with the aid of dissimilarity measures, typically Euclidean distance. The (N,)is

moved closest toP, whereas the other nodes are also moved closer to P but with
different amounts of distance following the rule f_ (N)= f,(N)+z(d(N,N;),i)(P- f,(N)),

where 7 is the learning rate that decreases depending on the distance between node
Nand N, and the iteration numberi until it becomes zero. The number of iterations

range between 20,000 and 50,000. Regarding the benchmark point P, it is determined
once by random ordering of the nnodes and recycled as needed [62].

Nevertheless, SOMs have also certain shortcomings that affect their overall
performance when cluster gene expression data. First and foremost, the arbitrary initial
mapping of the nodes (genes) makes the final mapping non- reproducible. Besides,
there is a difficulty in identifying negative associations between nodes. Even if we reach
to an accurate final mapping configuration, the centroids of each cluster are in the
centre, delineating the boundaries among clusters is hard without the engagement of
other techniques [59].
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Figure 3.5: Principle of SOMs [62]

3.3.3 Affinity Propagation

Partition or centroid algorithms, composes a family of clustering methods widely used in
expression-data analysis. These clustering techniques, for instance the k-means

method, start with a predefined number of kK data points utilized as multidimensional
center points, centroids, setting an initial group of clusters. After that randomly or
deliberately cluster initialization the algorithm iteratively assign samples to the nearest
centroid’s cluster and try to refine the centroids based on the optimization of the sum of
squared errors metric. However, these techniques are quite susceptible to the initial
cluster selection and the final cluster solution is directly related to the initial set up [11,
54].

On the contrary, Frey and Dueck proposed the Affinity Propagation (AP) clustering
method, which simultaneously considers all data points as potential centroids. In
particular, AP regards each data point as a network’s node and through the recursive
transmission of real-valued messages along the network’s edges, tries to minimize the
sum of squared errors between data points and their nearest centers, called
‘exemplars” when they reflect actual data points. Those messages represent the
magnitude of the current affinity between one data point and a potential exemplar and
are updated according to simple formulas that search for minima of an energy function
[11].

The input of AP is a similarity matrix s(i,k) which depicts whether data point with index

k is a potential exemplar for data point i. The dissimilarity measure used is the
negative squared error of Euclidean distance and the purpose is to minimize that error

such as s(i,k) =—|x, —xk||2 for two points x, and x,. This dissimilarity measure can be

loose enough and applied quite successfully to pairs of images, of microarray
measurements, of English sentences, or even pairs of cities. Rather than providing a
prespecified number of clusters, we may input a real number s(k,k) for each data
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pointk . The magnitude of the values influence whether a data point will be chosen as
exemplar and the list of those values referred to as “preferences.” However, during our
methodology pipeline we preferred to employ the Krzanowski and Lai index to
determine the number of potential clusters and then provide it to the AP algorithm.
Overall, the final number of the identified clusters is also influenced from the message-
passing procedure [11].

In relation to messages exchanged between data points, there are two different types
which can be viewed as log-probability ratios, the “responsibility” and the “availability”
messages, Figure 3.4. The responsibility r(i,k) messages sent from data point i to
data point k, try to assess the suitability of a data point k being an exemplar to data
point i while considering other potential exemplars, too. On the other hand, the
availability a(i,k) messages sent from candidate exemplar k to data point i, aim at
appraising the degree of availability for each candidate exemplar to be a cluster center
for the data point i. The responsibilities are computed through the formula:

r(i,k) < s(i, k)~ max {a(i,k)+s(i,k)} (3.23)

During the first iteration the availabilities are set to zero, a(i,k) =0, so the r(i,k) uses

the similarity value between point i and point k as its exemplar, minus the maximum
value of the similarities between point i and other candidate exemplars. Whereas the
responsibility update enables all candidate exemplars compete for ownership of a data
point, the availability update gathers evidence from data points as to whether each
candidate exemplar would make a good exemplar. The availability a(i,k) is set to the
“self-responsibility” r(k,k), which depicts a strong indication that point k is an

exemplar, plus the sum of the positive responsibilities candidate exemplar k receives
from other points [11].

a(i,k)<—min{0,r(k,k)+ >

i's.ti'e(i k}

max{0, r(i", k)}} (3.24)
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3.4 Classification

Contrary to clustering, the classification or else class prediction includes algorithms
designed to classify objects into prior defined groups. Usually, such methods are
applied onto a “training” data set and validated on an independent “test” data set, both
of which are already labeled to specific categories. The main idea behind those
techniques is to generalize from the training data to the testing data by identifying
correctly the labels of the test set samples. However, classification algorithms are
susceptible to the phenomenon of overfitting. The overfitting occurs when we have a
small training set (a limited number of samples) and many features (genes) to model.
As a consequence, we often achieve to minimize the training error while increasing the
validation error as shown in Figure 3.5. The holy grail in classification is to balance
between model complexity and prediction accuracy. In microarray experiments, we aim
at discriminate samples of patients related to either a disease or a disease subtype or
even the response to a treatment. The ultimate goal of classification applications may
be a better way to distinguish among similar-looking diseases or disease subtypes,
diagnostic, or it may be used to predict a clinical outcome in relation to a treatment, drug
discovery. So far no method is widely accepted as optimal among the plethora of
available algorithms. Therefore, we inclined to employ three well accepted in microarray
studies classification algorithms to validate the feature selection algorithms; support
vector machines (SVMs), k-nearest neighbor (KNN) and random forests (RF) [20, 54].
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Figure 3.5: The overfitting problem [20]

3.4.1 Support Vector Machines

Support vector machines try to separate training samples describing a binary
classification problem by drawing a hyperplane Hin n dimensional gene-expression
space. This is the main notion behind many classification algorithms in that we employ
non-linear methods to transformation the input features into a high dimensional space,
the feature space, where linear methods may be applied to separate the data points.
Each sample is a point in multidimensional space, with n dimensions representing the
number of genes and coordinates the expression levels of the genes. In case there is
no a separating hyperplane during the initial map of the samples, the SVMs re-map the
training samples into a higher-dimensional space where such a hyperplane exists. This
hyperplane is best if its margin is largest. As margin we mean the largest distance
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between the separating hyperplane H and two hyperplanes H,and H,parallel to H on

both sides, on which are lying the closest sample points the so called support vectors.
This final plane minimizes the overfitting problem because it has the largest possible
margins from the training samples thus, is more robust to minor errors in the
hyperplane’s direction. The overfitting problem in microarray classification problems,
has its origins in the fact that the number of genes far more exceeds the number of
samples, called the “curse of dimensionality” in statistics. Because of this characteristic,
a classification algorithm can discern training samples very accurately while being very
inaccurate with new samples [63, 64].

3.4.1.1 Linear separation

In particular, suppose we have a linear binary microarray classification problem of
I samples {(x;,V.),....(X,Y,)}called the training set, where x.is a vector of ncomponents

(genes) corresponding to the expression measurements of the i™ sample, and yis a

vector with the binary class labels for each sample, for instance 0 and 1, or -1 and +1.
The main goal is to estimate a linear function g(x) consisting of a weight vector wand a

threshold vectorw,, which assigns unknown samples into the correct classes based on
the training samples:

sign(g(%))=0—y, =+1 (3.25)
sign(g(x))<0—y, =-1 Vx (3.26)

A sample x is classified accurately if g(x)-y; >0 (3.27)
or else (%) =(Wx+wy)-y, >0, v x (3.28).

This condition controls the misclassification error on the training set, which is inversely
proportional to the number of samples fulfilling this criterion. Now taking into account the

margin, we change it to (w'x +w,)-y, >b which gives for all samples x; a solution with

a distance greater than%from the separating hyperplane H . Without affected the
w

generality, we may scale the values of b, w, w,; and still have the distance unchanged.

By setting=1, on the one hand we define the canonical hyperplanes

H, :w'x+w, =+1 (3.29)
H, :w'x+w,=-1 (3.30)
while on the other all training samples x; satisfy the criterion
w'x +w, >1fory, =+1 (3.31)
wW'x +w, <-1fory =-1 (3.32)
As a result, the separating hyperplane is defined as g(x) =w'x+w, =0 (3.33) and the

margin from the canonical hyperplanes asﬁ, Figure 3.6.
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Figure 3.6: The separating hyperplane and the relevant margins [64]

The learning problem of SVM is formulated as follows:

max(ﬁ]s.t.(wai +W,)-y; =1 i=1...,n (3.34)

which can be re-written as

min(%Wijs.t.(wai +W, )-y, 21i=1...,n (3.35)

to enable the Lagranze formalism, where the non-negativity constraints are multiplied by
positive multipliers a; where {a, :i=1,...,n;a, >0} and subtracted from the primal form of

the objective function L.

1 n
L, :EWTW—Z_:‘ai ((W'x +w,)-y,-1) (3.36)
Finding the values of w,w,anda, >0that minimize thel give us the solution to the
minimization problem. Therefore, we first differentiate L with regard to w,w,and then
substitute the derivatives

W= Zai Xy, (withrespecttow) (3.37)

i=1
D ay, =0 (withrespecttow,) (3.38)
i=1

into the primal objective function, which yields the dual form of the Lagrangian
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n 1 n n
L, =Ya-=> >aayyxx (3.39)

i=1 23 j=1
subjecttoa, >0 D ay, =0 (3.40)
i=1
After the computation of w,w, we may classify a query patternx,by simply finding the
sign of g(x, ) =w'x, +w, (3.41) [64].

3.4.1.2 Non-linear separation

However, most of the times, the data are not linearly separable and the minimization
problem as stated previously is infeasible. Thus, we have to incorporate into the
objective function an additional cost as a penalty

1 T n
~ww+C)>» €& (3.42
> 24 (342)

and the minimization problem is restated as:
- 1 T n T -
mm[EW W+Ciz_1:§ijs.t.(w X, +W0)~yi >1-& i=1...,n (3.43)

The regularization parameter C influences the penalty for ‘outliers’ and ‘softer’ margin.
There is no a gold rule for setting the C value, and usually we either use several values
randomly starting from 1 or employ a leave-one-out procedure on the training samples
to find the value with the lowest error.

In this case, the only difference in the dual form of the Lagrarian is the upper bound of

the o;, 0<a <C day, =0 [64].
i=1

3.4.1.3 Kernel functions

Instead of using every time the dot product of the input space x' X; inthe L, we may use
the dot product of the feature space supposing there is a kernel function that satisfies
the equation k(Xi,Xj)=(p(X)iT @(X;) . Indeed, using such a kernel function we just have to

calculate the dot product of two vectors in the feature space without having to compute
explicitly the ¢(x) transformation. As a result, the L, takes the following form:

L =282 Y aayye(x)] o) (349

i1 j=1

subjectto 0<a <C Zai y, =0. Feature mapping can simplify the classification task by
i=1

separating data that cannot be separated by a linear function in the input space, but can

be in the feature space [64], Figure 3.7.

The libsvm package that we engaged during the classification process of our
experiment includes four different kernels [65]:
o linear: K (x,x; ) =x'x,

e polynomial: K (xi,xj ) = (7/xiTXJ- + r)d,ﬂf >0
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« radial basis function (RBF): K (x,,x; ) =exp(-y || % —x; ), >0
* sigmoid: K (x;, X; ) =tanh(yx'x; +r).

After trying several classification tests with the linear and the RBF kernel, we proceed
with the linear since the results were better, the execution time was less and we had to
engage only one parameter, the ‘regularization’ factor C, hence lessening the overfitting

problem.

¢ (0)

d(0)

¢ (o)

Figure 3.7: A feature mapping from a two-dimensional input space to a two-dimensional feature
space [66]

3.4.2 Instance-based learning

Instance —based learning (IBL) algorithms originate from the nearest neighbor pattern
classifier, which produce classification predictions based only on keeping consistency
with an initial set of training instances without taking into account novel instances to
maximize classification performance. The IBL algorithms do not construct and store
explicit abstractions and generalizations based on the initial instances rather than
computing similarities at presentation time between a novel instance and their saved
instances. Due to this latency in model construction, the IBL algorithms are sometimes
mentioned as “lazy” learning methods. This “laziness” entails several advantages and
disadvantages. Regarding the advantages, the IBL methods are able to construct
different approximations per query instance, which can be also applied locally in the
neighborhood of the new query instance rather than over the entire instance space. On
the other hand, practically all computation occurs during the classification time hence,
classifying novel instances can be a time consuming process. Besides, IBL approaches
consider all features from the new instances and accordingly trying to retrieve similar
instances from memory. In case the truly most “similar” instances in memory depend on
less attributes than the new instances, may appear erroneously as relatively distant in
that n -attributes dimensional space, thus affecting the prediction accuracy [64, 67].

3.4.2.1 The k-Nearest Neighbor algorithm

The k-Nearest Neighbor (kNN) algorithm is the simplest instance-based algorithm. It
assumes that all instances are represented by a set of attributes and correspond to

points in the n-dimensional spaceR". It employees distance metrics, such as the
Euclidean measure to compute the distance between two instances. For example,
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suppose two instances x, andx; where x, =<x;,x’,...,x" >, andx/ denotes the value of
the r-th feature, then the distance between them is

d(x,x;)= fzn:(x{ —x})2 (3.45)

Suppose that we have a query sample x_; then the KNN algorithm assigns it to the class

where the maximum number of the k training samples are closer to it. If k=1 the
algorithm assigns the new sample to the class of the nearest training sample, whereas if
k =5 the class is determined by the majority of thek training samples closer to the new
sample, Figure 3.8. In this example, the training samples are represented as points in a
2-dimensional space and the target function has a boolean value “-“ or “+” respectively.
Hence, for k=1 the new sample x, is classified as negative whereas for k=5is

classified as positive [64].

Figure 3.8: The kNN algorithm for k=5

During this example it is apparent the problem of selecting an appropriate k, and
although there is no a particular rule for that, one common approach is to select several
possible k values and through cross validation on the training samples to keep the k
with the lowest error estimation.

3.4.3 Random Forests

Random Forests (RF) are a combination of tree-structured predictors where each of the
trees grows using a random process. In relation to decision trees’ semantics, the inner
nodes define a test of some features of the sample, the branches from that nodes
corresponds to the possible range of values for these features, whereas each leaf
corresponds to a class label. Finally, following a top-down approach from the root to
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some leaf nodes according to the branch conditions, the samples are classified through
a majority voting of the decision trees, Figure 3.9. On the one hand, each path from the
root to a particular leaf represents a conjunction of feature values, while on the other
hand, each tree comprises a disjunction of these conjunctions [64].

X

voting

Figure 3.9: The top-down ma/\jority voting procedure in RF
Most of the algorithms engaged in growing a decision tree employ a top-down greedy
construction, in which all features undergone through a statistical test to evaluate their
classification performance on the training samples, and then keep the best features as
tree nodes. Given a training set with N samples and M features, the N instances are
sampled at random (with replacement), so as to generate a random vector ® for each
tree. For the K, tree, there is a random vector ®, which is independent of the previous

random vectors, @,,...,0, ,, but with the same distribution for all trees in the forest.

Hence, every tree is grown using the training set and its random vector, resulting in a
classifier, which votes for the most popular class. Not to mention, that each tree grows
to the largest extent possible, and that this greedy construction never backtracks to
reconsider earlier choices [64].

Regarding the statistical measure engaged in selecting the best features, either initially
as root nodes or later as subtrees’ roots, the information gain (Gain) measure from
information theory is a potential candidate. This measure computes how well a given
feature (F) separates the training samples (S) according to their class labels, and it is

defined as follows:

Gain(s,F)=Entropy(s)- Y.

veValues(F) |S

Entropy(S,) (3.46)

where Values (F) is the set of all possible values for feature (F), andS, is the subset of
S consisting of samples for which F has the value v. Hence,Gain(S,F) is the

information provided (the reduction in entropy) about the target function value (the class
label), given the values of a particular F . Concerning the entropy measure, is defined as

C

Entropy(S) =) - p/log,p; (3.47)

i=1
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where ¢ is the number of different classes (labels), and p, is the proportion of S (the

group of samples) belonging to class i. In case where all members of S belong to the
same class, the entropy is 0 [64].

Alike to SVM learning algorithm, over-fitting is a significant problem to encounter in
decision tree learning, too. In general, there are several approaches that try to deal with
this phenomenon, and can be grouped into two classes. The first perception restricts
the trees’ growth before reaching their full potential, while the other let them fully grow
and then prune it. By the term “prune”, we mean the removal of a sub-tree rooted at a
node, thus making it a leaf node. Although each individual tree may severely overfit the
data, the final RF analysis is quite resistant to over-fitting because of averaging over
numerous different trees. In particular, when RF draws the training set for the current
tree by sampling with replacement, about one-third of the cases are left out of the
sample, and called out-of-bag data (OOB). This OOB data is used to get estimates of
variable importance. To measure the importance of variablex;, values of x; are

permuted in the OOB sample, and the class membership of the OOB samples are
predicted again from the tree. The number of correctly classified samples after
permutation is subtracted from the original count of correctly classified samples and
divided by the number of OOB samples for that tree, thus giving the decrease in
classification accuracy as a proportion of samples. This permutation procedure is
repeated for each tree in the forest, and the mean decrease in accuracy (MDA) is
defined as the average of these values over all trees in the forest (multiplied by 100 and
presented as a mean percentage decrease in accuracy) [64, 68]. In this experiment, a
random forest classifier with 1,000 trees is applied.

3.5 Measuring the classification performance

The main objective of a good classifier is to balance between over-fitting and
generalization error. In particular, a good classifier should achieve highly accurate
scores on training samples as well as on independent test samples. However, this
objective is far from being easily accomplished. In many cases, we conclude to complex
models, incorporating many parameters that achieve a highly accurate classification on
the training samples, but fail to distinguish validation samples. Therefore, it is welcomed
to accept a modest classification error during the training process on the benefit of the
validation phase. In order to evaluate the quality of the models produced from the
different feature selection methods that we employed during our experiment, we first
conducted a 5-fold cross-validation (5-CV) on training sets to assess the potential
classification strength of the models’ and then estimated its prediction power on
separate test sets.

3.5.1 Performance measures

Assessing the prediction power entails the use of several performance measures where
each of them provides different insights. In relation to binary classification problems, we
may characterize as positive and negative the two classes respectively. Based on this
notion we draw a table, which can be the basis for numerous metrics, Figure 3.10.
Specifically, we use four different abbreviations to represent the four different prediction
outcomes - TP (True Positive) for the correctly classified positive samples, FP (False
Positive) for the negative samples that classified as positive, TN (True Negative) for the
correctly classified negative samples and FN (False Negative) for the positive samples
that classified as negative. One of the widely used measures in classification problems
is accuracy (ACC), which is defined as the ratio of the number of correct predictions to
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the total number of samples. However, ACC ignores the difference between false
alarms (Type [ errors), measured by FP, and missed detections (Type /I errors),
measured by FN. Moreover, ACC is influenced by the class distribution, thus can be
quite misleading in unbalanced datasets. For instance, in a 90-10 class ratio, a model
can achieve 90% accuracy by just identifying correctly the dominant class samples [69].

Other metrics include the True Positive Rate (TPR), the False Positive Rate (FPR), the
specificity and the precision. The TPR which is also called as the hit rate, recall, or
sensitivity, is defined as the ratio of positives correctly classified to the actual number of
positives, whereas the FPR, also referred to as the false alarm rate, is the ratio of
negatives incorrectly classified to the actual number of negatives. Likewise, the ratio of
correctly classified negatives to the actual number of negatives defines the specificity
measure. We should take note that the sensitivity and specificity metrics are
independent since knowing one tell us nothing about the value of the other, contrary to
FPR and specificity, where their sum is equal to one thus , knowing one allows us to
calculate the other. Finally, precision is a further valuable measure that deals with the
positive samples and is defined as the ratio of correctly classified positives sample over
the total number of samples classified as positive [69, 70].

Actual
positive negative
i positive TP FP — Precision
Predicted pegative N N
) !
Recall Specificity
TP (or hit)

FP (or false alarm, Type | error)
FN (or miss, Type Il error)

ACC = (TP+TN)/(TP+FP+TN+FN)
TPR (recall/sensitivity/hitrate) = TP/(TP+FN) = TP/P

FPR (false alarm rate) = FP/(FP+TN) = FP/N
Specificity = TN/(FP+TN) = TN/N
Precision = TP/(TP+FP)

Figure 3.10: The performance metrics in binary classification [69]

An additional performance measure, which has been introduced as a better measure for
evaluating the predictive ability of machine learners than accuracy is the Area Under the
ROC Curve (AUC). The ROC curve is a two-dimensional plot between the TPR (Y-axis)
against the FPR (X-axis) of the predictions with their values ranging from zero to one.
Connecting the set of points (FPR, TPR) gives the ROC curve or space that facilitates
the comparison among different learners on a dataset. The closer the curve is to the Y-
axis (high true positives) and the further away it is from the X-axis (low false positives),
the more accurate the predictions are. An ROC curve similar to a 45 degrees straight
line stands for predictions made by random guessing referred to as the no-
discrimination line. During our experiment, we decided to employ the AUC metric as a
general performance measure and the TPR and TNR as two independent but
informative metrics related specifically to the negative and positive classes [70].
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4. mAP-KL: ANEW HYBRID METHOD FOR FEATURE (GENE)
SELECTION

4.1. Introduction

A feature selection method in microarray gene expression data should be independent
of platform, disease and dataset size. Our hypothesis is that among the statistically
significant ranked genes in a gene list, there should be clusters of genes that share
similar biological functions related to the investigated disease. Thus, instead of keeping
N top ranked genes, it would be more appropriate to define and keep a number of gene
cluster exemplars. We propose a hybrid FS method (mAP-KL), which combines multiple
hypothesis testing and affinity propagation clustering algorithm along with the
Krzanowski & Lai cluster quality index, to select a small yet informative subset of genes.

4.2. The general framework and implementation of our Methodology

4.2.1 The filtering method

The proposed methodology combines ranking-filtering and cluster analysis to select a
small set of non-redundant but still highly discriminative genes. In relation to the filtering
step, we first employ the maxT function (see 3.1.1.1) from the ‘multtest’ [71] r-package
to rank the genes of the training set and then we reserve the top N genes (N = 200) for
further exploitation. Our decision on which feature selection method to employ follows
the findings of an analysis that we carried on feature selection methods [72].
Specifically, we assessed the classification performance of five different feature
selection methods on data from ten different neuromuscular diseases. Each method
yielded a different ranked list of genes, which was then used iteratively from top to
bottom, in the range of 2 to 400 genes, to compose a new classification scheme in each
iteration. The evaluation of the classification performance of all the produced schemes
per feature selection method is depicted in Figure 4.1, and shows that the maxT
achieved an average discrimination accuracy of 95%, between normal and disease
samples.

In the same experiment, we also inspected the robustness of the classification
performance when differentiating the number of genes in the training set. According to
the accuracy graphs as depicted in Figure 4.2, we notice extreme top and bottom
values of the accuracy score in DEDS, and LIMMA methods and in a lesser degree in
RankProd method. This observation implies that biologically significant genes are
merged with statistically significant genes and the level of enrichment from each group
may affect the robustness of the classification procedure. Hence, the top ranked genes
are not necessarily biologically relevant in the context of the specific diseases. Besides,
some of the statistically significant genes may act as “noise” in the classification
procedure. The more unstable the performance of the classifier the more “noisy” is
considered to be the selected gene subset. Moreover, each classifier has its own inertia
regarding the influence of the corresponding parameters and as a result, the “noise” in
the classification is also affected from the characteristics of the classifier [72].

On the contrary, maxT and SAM appear to identify better those genes that play a
significant role toward the samples discrimination. Indeed, the respective classification
graphs from these two methods seem considerably stable when differentiating the
number of genes and additionally, no particular fluctuation appears between 200 and
400 genes. However, setting the N parameter arbitrarily does not guarantee robust and
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efficient classification results, so we decided to exploit several cases of top ranked
genes in a simulation scenario (see section 4.3.1) before coming to a decision.
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Figure 4.1: The overall classification accuracy of five feature selection methods on ten datasets of
neuromuscular disease data according to four classification algorithms
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Figure 4.2: The influence on the accuracy when differentiating the length of the training set
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4.2.2 The clustering quality index

In the sequel, prior to clustering analysis with AP we define the number of clusters,
which in essence will be the number of representative genes that finally will compose
our subset. The decision about which quality index to use, was based first on the results
of the Tibshirani et al. indices comparison survey, where the index of Krzanowski and
Lai excelled as well as on several trials on simulated clustering data that also proved
the efficiency of the index. Hence, we employed the index of Krzanowski and Lai as
included in the ‘ClusterSim’ package [58] to determine the number of clusters solely on
the disease samples of the training test set.

This is actually a very fine detail in our methodology, since it has a direct impact on the
clusters identification and consequently on the selected genes. There were two options
in which part of the data it would be the most proper and advantageous for the rest of
the analysis. The first option was to search for the clustering structure solely in the
samples belonging to the normal phenotype or in the control phenotype in generally.
The second alternative was to investigate the samples in the disease phenotype. We
finally reckoned that what actually is of interest for the identification of significant genes
relevant to a disease, is the disease part of the data because all the information about
the “triggered” molecular processes is definitely present in it.

4.2.3 The clustering algorithm

The final step of our methodology involves the cluster analysis through the AP
clustering method. AP algorithm appeared in the late 20s and according to a benchmark
analysis [73] across 15 other clustering algorithms, including k-means and k-medians
clustering, hierarchical agglomerative clustering e.t.c., excelled at finding the more
accurate clustering solution. Besides its intrinsic belief that initially all data points
(genes) are considered as potential exemplars and its efficient convergence to the final
clustering, urged us to adopt AP through the APCluster r-package [74] as indispensable
part of our methodology. Thus, we pass into AP the number of k clusters according to
the Krzanowski and Lai index and then let AP to detect those n clusters where
(n=k)clusters among the top N genes (a pre-defined number). The algorithm

converges to the requested number of clusters (most of the times) and provides us with
a list of the most representative genes of each cluster, the so called exemplars. These
n exemplars are expected to form a classifier that shall discriminate between the
normal and disease classes in a test set.

Finally, we formulate the updated train and test sets by keeping only those n genes,
and proceed with the classification process. The general flowchart of our methodology
appears in Figure 4.3. The mAP-KL pipeline is currently integrated into a software
package developed under the R environment (see chapter 7).
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Figure 4.3: The mAP-KL methodology flowchart
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4.3. Simulated data

Initially, we investigated mAP-KL’s performance on two synthetic datasets prior to any
real microarray data. We intentionally utilized two different simulation setups to examine
two different hypotheses. In the first hypothesis, we wanted to verify that mAP-KL
provides us with a small subset of representative features, at least one gene per cluster,
adequate for accurate classification. Therefore, we considered a binary classification
problem simulating a normal-disease case with six different scenarios, Table 4.1, in
relation to the number of differentially expressed genes (DEGSs) that are included in the
disease class samples. All simulated gene expression values follow the normal
distribution for the respective mean and variance values as presented in Table 4.1.

In particular, we started with 50 DEGs, Figure 4.4, belonging to five clusters of 10
‘genes’ and reached to 500 DEGs spreading in 25 clusters of 20 ‘genes’ per cluster,
trying to imitate pathways. It is obvious in the figure that there is a considerable overlap
among the data points per cluster, hence making the accurate discrimination a harsh
task. The normal and the disease classes have 1,200 samples of 10,000 ‘genes’ per
sample, where the first 200 samples from each class compose the train set and the rest
form the test set. The non-differentially expressed genes are independently drawn from
normal distribution with mean = 0 and variance = 0.5.

In the second hypothesis, we employed a subset of the publicly available ‘Golden Spike’
[75] Affymetrix case—control experiment, incorporated in the ‘st’ package [50, 76] under
the name ‘choedata’. In this scenario, it was intriguing to explore the number of the
known DEGs included in mAP-KL’s subset and whether they are capable of providing
us with accurate models. The ‘choedata’ describes a binary classification problem with
three replicates per class and 1,331 DEGs scattered randomly among 11,475 genes.
The number of DEGs is considered as adequate towards the accurate estimation of the
false-negative and false-positive rates at each fold-change level, Figure 4.5. Besides,
there are intensity values with low fold-changes of 1.2- fold trying to imitate subtle
biologically relevant differences that are frequently ignored or excluded during
microarray analysis [75].

Table 4.1: The statistical parameters under the simulated data

Simulated data parameters
DEGs

(Genes/
Cluster)  var mean

50 (10) 02 2 3 4 5 86
100200 02 2 3 4 5 6

200200 02 2 3 45 6 7 8 9 10 11

300200 02 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9

400(20) 02 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10 105 11 115

500200 02 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10 105 11 115 12 125 13 135 14

Non-DEGs 0.5 0
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Figure 4.5: The boxblots of the average log2 expression summary intensity as a function of
spiked-in fold change. The probe sets that were not spiked i.e fold change =1, are placed at zero fold
change to separate them from the probe sets which were spiked in at fold change = 1.
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4.3.1 The clusters setup

We applied the mAP-KL on training sets of 200 samples with 10.000 ‘genes’ and
diverse number of DEGs. Moreover, for each training set we differentiated the number
of the top ranked genes kept for clustering, Table 4.2. The purpose of this case study
was twofold. On the one hand, we wanted to investigate how many DEGs are included
in our final subset along with their cluster origin. Furthermore, we explored the influence
on the DEGs’ selection when differentiating the number of the top ranked genes. We
also employed three other FS methods, (eBayes, maxT and RF-MDA), keeping either
the top 20 ranked ‘genes’ (cases of 50 DEGs, 100 DEGs, 200 DEGs, 300 DEGs) or the
top 30 ranked ‘genes’ (cases of 400 DEGs and 500 DEGs) trying to keep their length
comparable with the subset’s length of mAP-KL.

As far as the identification of DEGs belonging to different clusters is concerned, the
mMAP-KL managed to compose subsets with at least one representative ‘gene’ from
each cluster. Besides, as shown in Table 4.2, in almost all cases the maximum subsets’
length does not exceed the actual number of clusters in the training set. In relation to
the other FS methods, only the RF-MDA method composed subsets of ‘genes’ with
satisfactory representation of the actual clusters and comparable to mAP-KL. The
eBayes and maxT methods demonstrated poor enrichment.

With respect to the effect of the number of top ranked ‘genes’ kept for clustering, it is
evident that the closer to the real number of DEGSs, the better the identification and
selection of representative genes, Figure 4.6. Specifically, in cases where the number of
DEGs is considerably lower than the number of N top ranked genes (e.g. 50 DEGs with
200 top ranked genes) the identified clusters are less than the actual. Similarly, when
the number of DEGs far exceeds the number of N top ranked genes the identified
clusters are fewer, for instance 500 DEGs with 200 top ranked genes parameter.
Nonetheless, during the real gene expression data experiment, we employed a
moderate value for the parameter N=200 top ranked genes.

As a final point, we formed the respective train-test sets for all methods and evaluated
their performance with the aid of three classifiers (SVM-linear, KNN, RF). All methods
performed accurately (ACC=100%) for all three classifiers.

Table 4.2: The number of clusters identified by mAP-KL for several top N ranked genes compared

to three other FS methods (the number of genes per subset is in parenthesis).

Identified Clusters
Top ranked genes (MAP-KL)

RF-

DEGs eBayes maxT MDA
50 100 150 200 250 300 350 400 450 500
50 5() 6(6) 4(4) 3(3) 3(3) 3(3) 2(2) 2(2) 2(2) 2(2) 2(20) 2(20)  5(20)
100 3(3) 5((B) 6(@®B) 6(14 5(5) 4 (4) 4 (4) 4 (4) 3(3) 3(3) 1(20) 2 (20) 5 (20)
200 3(3) 6(6) 8(8) 10(10) 11(11) 11(11) 8(@8) 5 (5) 5 (5) 5 (5) 1(20) 2(20) 10 (20)
300 3(3) 6(6) 8(8) 10(10) 13(13) 15(15) 11(11) 7(7) 7(7) 6 (6) 2(20)  4(20) 10 (20)
400 4(4) 6(6) 8() 11(11) 13(13) 15(15) 18(18) 20(20) 21(23) 10 (10) 3(30)  4(30) 16 (30)
500 4(4) 7@ 9(9 11(11) 13(13) 16(16) 18(18) 20(20) 23(23)  25(25) 3(30) 4(30) 19 (30)

A. D. Sakellariou 89



Computational Methods for the Identification of Statistically Significant Genes: Applications to
Gene Expression Data of Various Human Diseases

7 7

6 actual L, Gactual
+

6 + +
clusters clusters

m

&
*

wun
L 3
un
*

I

*»

& &
b

I
»

w
&
L 3
4
w
»
4
4

# 50 DEGs # 100 DEGs

]

[~
L 3
L 3
L
L
Numberof clusters

Numberof clusters

[y
[y

[=]
[=]

50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550

Top number of genes Top number of genes

(=]

=
=)

12
- 11 actual # 16 actual

10 . clusters * clusters

=
i

8 * >

[
[}

=]
*

L

* # 300 DEGs

L 3
4

# 200 DEGs

Number of clusters
o
L
Number of clusters

+*

(=T T - - ]

0 T T T T T T T T T T 1

0 50 100150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550

Top number of genes Top number of genes

25 30

# 21actual 25 _ 26actual

20 - -
clusters * clusters

20 *

15 *

15 L

10

*

# 400 DEGs &» #500DEGs

10

Numberof clusters
+
Numberof clusters

* 5 *

0 T T T T T T T T T T 1 0 T T T T T T T T T T 1
0 50 100 150 200 250 300 350 400 430 500 550 0 50 100 150 200 250 300 350 400 430 500 330

Top number of genes Top number of genes

Figure 4.6: The relationship between DEGs and top-ranked genes

4.3.2 The ‘choedata’ setup

In this setup, we were interested in exploring, the length of the mAP-KL's subset in
relation to the known DEGs included in it. Therefore, we applied on the ‘choedata’ the
mAP-KL, which produced a subset of 15 genes with eight DEGs in it, Table 4.3. We
then formed classification models with the three classifiers and concluded to accurate
classification results.

However, we were intriguing to examine the impact in the mAP-KL'’s subset quality i.e.
the number of DEGs, when using different statistical methods to rank the genes.
Indeed, engaging the parametric Welch-t test statistical method, led us to a subset of 16
genes with 13 DEGs included. On the contrary, the Wilcoxon’s subset includes 8 out of
15 DEGs. Despite this remarkable difference in the number of DEGs included in the two
subsets, the classification results were accurate in both cases. Nonetheless, including
more DEGs in a classifier is of benefit to the biological analysis if not to the classification
process itself.
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Table 4.3: The subsets of genes selected from the ‘choedata’ according to mAP-KL. We have
marked bold the DEGs.

Wilcoxon Welch-t
tun Rim
CG6904 CG14254
SH3PX1 Cyp4p?2
CG10283 CG10483

Tgt CG8193
CG17930 Gdh
CG8300 CG17600
b Gprk2
CG12213 kek3
RhoGEF2 CG5880
Imp CG3544
Dip2 CG4785
Spred CG32043
NA CG18125
NA CG7069
orb
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5. Feature selection with mAP-KL

5.1. Introduction

Following the development and successful testing in simulated data of mAP-KL, we
designed and executed an elaborate set of analytical experiments with 5-CV on the
training set and hold-out validation on a separate set using three different classifiers, RF
— SVM — KNN, to assess its performance across whole genome expression datasets
from both small and large patient cohorts. In relation to small cohorts, we employed
data from 6 neuromuscular diseases, while for large cohorts we utilized data from four
different types of cancer. On those microarray datasets, we also applied 12 other
feature selection/elimination approaches and compared the classification results. In
particular, we employed six univariate filter methods (eBayes, ODP, maxT, SAM, SNR
and t-test), one multivariate filter algorithm (cat), three dimension reduction approaches
(BGA-COA, PCA, PLS), one embedded method (Random Forest), and one hybrid
method (Hyk-Gene). We further assessed the mAP-KL’'s performance towards other
feature selection and/or classification studies, conducted on the same cancer datasets.

5.2. Microarray data

Apart from the synthetic data, we utilized real data, including neuromuscular and cancer
diseases data, to assess mAP-KL’s performance. Neuromuscular diseases are rare
among the general population, thus the available tissue samples and whole
transcriptome data are very limited. This characteristic is crucial since we intended to
develop a FS method that produces robust models even in studies with limited number
of samples. We therefore included data from Bakay et al. [77] related to ‘amyotrophic
lateral sclerosis’ (ALS), ‘Duchenne muscular dystrophy’ (DMD), ‘juvenile
dermatomyositis’ (JDM), ‘limb-girdle muscular dystrophy type 2A’ (LGMD2A), and ‘limb-
girdle muscular dystrophy type 2B’ (LGMD2B), as well as ‘nemaline myopathy’ (NM)
data from Sanoudou and Beggs [78] and Sanoudou et al. [79]. The gene expression
data for the first five diseases originate from Affymetrix HG_U133A gene chips and
share a set of 18 normal samples, whereas the NM data originate from Affymetrix
HG_U95A gene chips and have been compared to 21 normal samples. We divided the
data approximately in half, and kept the first half to build a balanced train sets and the
second half to validate the classification models (Table 6.1). Concerning the
preprocessing approach, all neuromuscular data underwent log2 transformation and
guantile normalization across samples.

Regarding the cancers datasets, we utilized microarray data from breast cancer, colon
cancer, leukemia, and prostate cancer, all of which are considered benchmark datasets
and have been widely used in gene expression classification studies. Van't Veer [3]
explored breast cancer patients’ clinical outcome following modified radical mastectomy
or breast-conserving treatment combined with radiotherapy. Patients with good and
poor 5-year prognosis following initial diagnosis were included. The breast cancer data
was already normalized so we omitted the preprocessing step. The colon datasets [80]
consisted of 62 samples of colon epithelial tissue taken from colon cancer patients.
Sample were obtained both from tumor tissue as well as adjacent, unaffected parts of
the colon of the same patients, and measured using high density oligonucleotide arrays.
For the analysis of the colon microarray data we followed the same pre-processing
approach as we did for the neuromuscular data i.e. we performed log2 transformation
and quantile normalization across samples. Datasets from acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML) [81], two distinct acute leukemias,
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were used for cancer subtype classification. The train set consisted of 27 ALL samples
and 11 AML samples. Finally, prostate cancer [82] training data consisted of 52 prostate
tumour tissue and 50 normal prostate tissue datasets, while the testing data consisted
of 25 tumour and 9 normal datasets [83]. In relation to the preprocessing of the
leukemia and the prostate data, we first set the Golub’s floor and ceiling values
(floor=100 and ceiling =16.000), though without filtering the genes, and then applied
logl0 transformation and quantile normalization across samples. For all cancers
datasets we kept the train and test sets as provided, see Table 5.1.

Table 5.1: The real microarray data divided in train and test sets

Datasets Attributes Train set samples  Test set samples
(nr of genes) (classl:class?2) (classl:class2)
Amyotrophic lateral sclerosis (ALS) 22,283 6:6 12:3
Duchenne muscular dystrophy (omD) 22,283 77 11:3
Juvenile dermatomyositis (Jom) 22,283 10:10 8:11
Limb-girdle muscular dystrophy type 2A (LGMD2A) 22,283 77 11:3
Limb-girdle muscular dystrophy type 2B (LGMD2B) 22,283 77 11:3
Nemaline myopathy (NM) 12,600 8:8 13:5
BREAST CANCER (4348)24,481 44:34 7:12
COLON CANCER 7,129 15:15 7:25
ALL/AML LEUKEMIA 7,129 27:11 20:14
PROSTATE CANCER 12,600 52:50 25:9

5.3. Neuromuscular disease data

The use of small cohorts in biomedical research is common in some types of studies
such as those of rare diseases. These small cohorts make feature selection algorithms
prone to overfitting and thus less reliable [59] compared to larger cohorts. It was
therefore intriguing to explore the robustness and generalization of mAP-KL on train
sets with length ranging from 12 to 20 samples and test sets with 15 to 19 samples
respectively. The majority of the methods in ALS and DMD validation achieved the
highest classification score (AUC =1.00) in RF and SVM classifiers (Tables 5.2, 5.3)
except for the HykGene in ALS and the PCA in DMD. In KNN classifier though, half of
the methods achieved scores lower than AUC=1.00, Table 5.4.
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Table 5.2: The classification results in ALS and DMD neuromuscular diseases according to RF

classifier
5-CV Hold-out Validation

FS methods
AUC TNR TPR AUC TNR TPR
MAP-KL 1.00 (0.00) 1.00 (0.00)  0.98 (0.14) 1.00 1.00 1.00
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00)  1.00 (0.00) ~ 1.00 (0.00) 1.00 1.00 1.00
ALS ODP 1.00 (0.00)  1.00 (0.00) ~ 1.00 (0.00) 1.00 1.00 1.00
PCA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00)  1.00 (0.00) ~ 1.00 (0.00) 1.00 1.00 1.00
RF-MDA 1.00 (0.00) 1.00 (0.00)  0.93 (0.25) 1.00 1.00 1.00
Rnd 1.00 (0.00)  1.00 (0.01)  1.00 (0.00) 0.99 0.92 0.97
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.64 0.42 0.67
mAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 0.91 1.00
BGA-COA 0.98 (0.14) 0.85(0.32) 1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 0.91 1.00
HykGene 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
DMD oDP 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  0.99 (0.07) 1.00 1.00 1.00
SAM 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
Rnd 1.00 (0.00) 0.99 (0.04)  1.00 (0.00) 0.99 0.96 0.93
PCA 0.48 (0.42) 0.48 (0.46) 0.41 (0.45) 0.61 0.55 0.67

A. D. Sakellariou 95



Computational Methods for the Identification of Statistically Significant Genes: Applications to
Gene Expression Data of Various Human Diseases

Table 5.3: The classification results in ALS and DMD neuromuscular diseases

according to SVM classifier

5-CV Hold-out Validation

FS methods
AUC TNR TPR AUC TNR TPR
mAP-KL 0.93(0.16) 1.00(0.00) 0.86 (0.32) 1.00 1.00 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
ALS maxT (200) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
ODP 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
RF-MDA 0.96 (0.04) 1.00 (0.00) 0.99 (0.07) 1.00 1.00 1.00
SAM 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
Rnd 0.97 (0.03) 1.00(0.00) 0.97 (0.06) 0.98 0.97 1.00
HykGene 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.79 0.58 1.00
PCA 0.85(0.24) 0.86(0.30) 0.83(0.36) 0.75 0.50 1.00
mAP-KL 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
HykGene 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
DMD ODP 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
RF-MDA 0.94 (0.14) 1.00 (0.00) 0.87 (0.28) 1.00 1.00 1.00
Rnd 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.95 0.91 1.00
PCA 0.49 (0.28) 0.51(0.45) 0.46 (0.48) 0.18 0.36 0.00
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Table 5.4: The classification results in ALS and DMD neuromuscular diseases
according to KNN classifier

ES methods 5-CV Hold-out Validation
AUC TNR TPR AUC TNR TPR

mAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
ALS ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 0.97 1.00
Rnd 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.98 0.95 1.00
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.96 0.92 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.96 0.92 1.00
PCA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.79 0.58 1.00
SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.79 0.58 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.75 0.50 1.00
HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.67 0.67 0.67
mAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
DMD ODP 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
RF-MDA 0.99 (0.05) 1.00 (0.00) 0.98 (0.10) 1.00 1.00 1.00
Rnd 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.95 0.91 1.00
PCA 0.73(0.27) 0.79 (0.37) 0.67 (0.44) 0.48 0.64 0.33

In JDM almost all of the methods achieved the highest AUC score (1.00)
during hold-out validation irrespective of the classifier, Tables 5.5, 5.6, 5.7,
though with RF the respective TNR score was 0.88 for the BGA-COA,
eBayes, ODP, SNR and cat methods. The mAP-KL had a marginal
performance deterioration with the SVM classifier (AUC=0.94). In 5-CV the
PCA was the only method that failed to distinguish correctly all samples in
all three classification schemes.

In relation to the LGMD2A, the RF classifier benefits the majority of the
methods to discriminate accurately all the samples during hold-out
validation, Table 5.5. In particular, ten methods achieved the highest AUC
value, though only BGA-COA, mAP-KL and maxT (200) achieved the
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highest TNR and TPR, too. The TNR score for PLS-CV was 0.91, for RF-
MDA, ODP and SNR was 0.73, while for HykGene was 0.45 and for eBayes
0.36. It is worth noticing that the TNR score of the maxT with the 20 genes
subset was considerably lower to that of maxT (200). Unlike RF, only two of
the methods managed to excel with the SVM (BGA-COA and maxT(200))
and KNN (BGA-COA and maxT(200)) classifiers, Tables 5.6, 5.7. mAP-KL
achieved the same high classification score in those two classifiers
(AUC=0.95). The rest of the methods had AUC score above 0.70 with the
exception of HykGene and PCA methods.

Table 5.5: The classification results in JDM and LGMD2A neuromuscular diseases
according to RF classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
mAP-KL 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
HykGene 1.00 (0.00) 1.00 (0.00) 0.95 (0.15) 1.00 1.00 1.00
maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
PCA 0.90 (0.19) 0.77 (0.31) 0.73(0.32) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
JDM SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00
eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00
ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00
SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00
cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00
Rnd 1.00 (0.00) 1.00 (0.00) 0.99 (0.03) 1.00 0.99 0.98
mAP-KL 1.00 (0.00) 0.87 (0.30) 1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00) 0.96 (0.17)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.91 1.00
ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.73 1.00
RF-MDA 1.00 (0.00) 0.98 (0.10)  1.00 (0.00) 1.00 0.73 1.00
SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00
LGMD2A cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00
t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00
eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.36 1.00
HykGene 1.00 (0.00) 0.97 (0.12) 0.98 (0.10) 0.94 0.45 1.00
maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 0.45 1.00
SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 0.73 1.00
Rnd 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.89 0.70 0.93
PCA 0.83(0.30) 0.61(0.43) 0.99 (0.03) 0.58 0.27 1.00
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Table 5.6: The classification results in JDM and LGMD2A neuromuscular diseases according to
SVM classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
JDM ODP 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PCA 0.62 (0.22) 0.73(0.29) 0.51 (0.34) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
RF-MDA 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
Rnd 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
MAP-KL 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.94 0.88 1.00
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.94 0.88 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
mMAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.95 0.91 1.00
maxT 1.00 (0.00) 1.00(0.00) 1.00 (0.00) 0.95 0.91 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.82 1.00
Rnd 1.00 (0.00) 1.00(0.00) 1.00 (0.00) 0.90 0.83 0.97
LGMD2a  OPP 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
t-test 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
cat 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
eBayes 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
HykGene 0.92(0.16) 0.85(0.32) 0.98 (0.10) 0.68 0.36 1.00
PCA 0.71(0.26) 0.81(0.35) 0.61 (0.44) 0.44 0.55 0.33
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Table 5.7: The classification results in JDM and LGMD2A neuromuscular diseases according to

KNN classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR

mAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
cat 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
HykGene 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
IDM maxT (200) 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
OoDP 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
PCA 0.53(0.23) 0.57(0.32) 0.48(0.32) 1.00 1.00 1.00
PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
t-test 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00
Rnd 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 0.99
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.94 0.88 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
maxT (200) 0.92 (0.16) 0.97 (0.12) 0.87(0.32) 1.00 1.00 1.00
MAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.95 0.91 1.00
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.95 0.91 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.82 1.00
Rnd 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.89 0.82 0.97
LoMD2a  SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.77 0.55 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.73 0.45 1.00
HykGene 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.65 0.64 0.67
PCA 0.80 (0.22) 0.95(0.18) 0.64 (0.42) 0.64 0.27 1.00

Unlike the previous datasets, in LGMD2B validation, the majority of the methods failed
to discriminate accurately the test samples. In particular, with the RF classifier only
three of the methods (RF-MDA, maxT (200) and PLS-CV) achieved the highest AUC
(2.00) but their TNR scores were 0.73, 0.64 and 0.55 respectively, Table 5.8. Although
many methods distinguish all disease samples correctly i.e. TPR = 1.00, all of them
failed to discern all normal samples i.e. TNR < 1.00. Approximately half of the methods
had a TNR below 0.50 (included, eBayes, SAM and mAP-KL) and no method had TNR
greater than 0.80. The RF-MDA was the only of the three previous methods that
achieved the highest AUC score with the SVM classifier with TNR and TPR equally high
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scores, Table 5.9. In the KNN though, it performed poorly with an AUC score of 0.77,
Table 5.10. The mAP-KL achieved its best score with the SVM classifier (AUC=0.91)
and underperformed with the RF classifier. Regarding the 5-CV classification, the

results were very promising since all methods but PCA achieved the highest score i.e.
1.00 for all metrics and classifiers.

Table 5.8: The classification results in LGMD2B and NM neuromuscular diseases according to RF

classifier
5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
RF-MDA 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 1.00 0.73 1.00
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 0.64 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 0.55 1.00
BGA-COA 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.98 0.73 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.64 1.00
Rnd 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.90 0.56 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.88 0.73 1.00
LGMD2B  HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.73 0.67
ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.73 0.45 1.00
mMAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.70 0.36 0.67
SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.52 0.27 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.48 0.27 0.67
cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.36 0.09 1.00
PCA 0.89 (0.25) 0.74(0.38) 0.61 (0.44) 0.21 0.09 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.90 0.77 1.00
t-test 1.00 (0.00) 0.98 (0.10)  1.00 (0.00) 0.89 0.77 0.80
HykGene 1.00 (0.00) 1.00 (0.00)  0.99 (0.07) 0.88 0.69 0.80
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.69 0.80
cat 1.00 (0.00) 1.00 (0.00)  0.99 (0.07) 0.78 0.46 1.00
MAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.74 0.69 0.60
Rnd 0.98 (0.03) 0.87 (0.09) 0.96 (0.06) 0.67 0.49 0.76
NM SAM 1.00 (0.00) 0.87 (0.28) 0.98 (0.10) 0.65 0.15 1.00
PCA 0.82(0.30) 0.77 (0.35) 0.73(0.39) 0.55 0.92 0.40
BGA-COA 0.96 (0.14) 0.87(0.28) 0.91 (0.19) 0.47 0.23 0.60
PLS-CV 0.97 (0.12) 0.87(0.28) 0.99 (0.07) 0.42 0.08 1.00
maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.37 0.38 0.40
ODP 1.00 (0.00) 0.92 (0.23)  1.00 (0.00) 0.25 0.38 0.20
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.22 0.15 0.60
eBayes - - - - -
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Table 5.9: The classification results in LGMD2B and NM neuromuscular diseases according to
SVM classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.95 0.91 1.00
mAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.82 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.82 1.00
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
LoMmD2s  maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
Rnd 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.75 0.53 0.97
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.73 0.45 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.68 0.36 1.00
ODP 1.00 (0.00) 1.00(0.00) 1.00 (0.00) 0.68 0.36 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.68 0.36 1.00
SNR 1.00 (0.00) 1.00(0.00) 1.00 (0.00) 0.55 0.09 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.55 0.09 1.00
PCA 0.48 (0.30) 0.58 (0.44) 0.37 (0.43) 0.26 0.18 0.33
SAM 0.94 (0.14) 0.88(0.28)  1.00 (0.00) 0.90 1.00 0.80
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.88 0.77 1.00
ODP 0.94 (0.14) 0.87(0.28)  1.00 (0.00) 0.86 0.92 0.80
PLS-CV 0.87 (0.16) 0.84(0.29)  0.90 (0.23) 0.85 0.69 1.00
t-test 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 0.81 0.62 1.00
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.77 0.54 1.00
NM Rnd 0.95(0.04) 0.94(0.08) 0.96 (0.05) 0.75 0.75 0.76
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.75 0.69 0.80
MAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.70 1.00 0.40
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.68 0.77 0.60
HykGene 0.95(0.14) 0.90 (0.27)  0.99 (0.07) 0.61 1.00 0.60
BGA-COA 0.94 (0.14) 0.88(0.28)  1.00 (0.00) 0.55 0.31 0.80
RF-MDA 0.99 (0.05) 1.00 (0.00)  0.98 (0.10) 0.47 0.54 0.40
PCA 0.51(0.28) 0.60 (0.40)  0.42 (0.44) 0.43 0.46 0.40
eBayes - - - - - -
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Table 5.10: The classification results in LGMD2B and NM neuromuscular diseases according to

KNN classifier

ES methods 5-CV Hold-out Validation
AUC TNR TPR AUC TNR TPR
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.91 0.82 1.00
mMAP-KL 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 0.86 0.73 1.00
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.86 0.73 1.00
PLS-CV 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 0.86 0.73 1.00
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.64 1.00
LGMD2B  MaxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.77 0.55 1.00
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.77 0.55 1.00
ODP 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.73 0.45 1.00
SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.73 0.45 1.00
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.73 0.45 1.00
Rnd 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.70 0.47 0.93
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.55 0.09 1.00
eBayes 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.55 0.09 1.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.55 0.09 1.00
PCA 0.76 (0.26) 0.84 (0.34) 0.68 (0.43) 0.23 0.45 0.00
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.90 1.00 0.80
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.88 0.77 1.00
SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.82 0.85 0.80
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.82 0.85 0.80
ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.76 0.92 0.60
HykGene 0.93(0.14) 0.85(0.27) 1.00 (0.00) 0.75 0.69 0.80
NM maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.75 0.69 0.80
Rnd 0.96 (0.04) 0.96 (0.05) 0.95 (0.05) 0.75 0.66 0.84
PLS-CV 0.88(0.17) 0.88(0.28) 0.88(0.26) 0.71 0.62 0.80
cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.63 0.46 0.80
MAP-KL 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.62 0.85 0.40
BGA-COA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.62 0.23 1.00
PCA 0.63(0.28) 0.66 (0.36) 0.59 (0.44) 0.57 0.54 0.60
RF-MDA 0.96 (0.11) 1.00(0.00) 0.91 (0.22) 0.52 0.23 0.80
eBayes - - - - - -

Likewise in NM validation, all of the methods faced considerable difficulties in
distinguishing disease and normal samples. In RF classifier only the SNR, the t-test and
the HykGene methods managed to reach an AUC score close to 0.90, Table 5.8. On
the other hand, the SAM method achieved an AUC score of 0.90 in SVM and KNN
classifiers with the same TNR and TPR scores of 1.00 and 0.80 respectively, Tables
5.9, 5.10. in this dataset the mAP-KL failed to achieve comparable results to the top
methods mainly due to the difficulty to discern the disease samples in the validation test
(TPR << 1.00). In contrast, during the 5-CV with the RF classifier ten methods achieved
AUC score of 1.00, but only mAP-KL, maxT, maxT (200), RF-MDA, and SNR achieved
the optimum score in TNR and TPR metrics. Though, with the SVM and KNN classifiers
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the majority of the methods excelled in all three metrics. The PLS-CV and BGA-COA
had the same TNR score (0.87) but different TPR (0.99 and 0.91) and AUC (0.97 and
0.96). The PCA method had the worst overall performance whereas the eBayes method
failed to produce a list of significant genes.

5.4. Cancer data

As far as the large patient cohorts is concerned, we utilized microarray data from four
different types of cancer (breast cancer, colon cancer, leukemia, and prostate cancer),
with train sets length ranging from 30 to 102 samples and test sets from 19 to 34. In
breast cancer hold-out validation with RF classifier, mAP-KL attained the optimum score
(2.00) in TNR metric and the best AUC score (0.87). Two methods, PLS-CV and RF-
MDA, achieved competitive TNR and AUC scores of 0.86 and 0.82 respectively.
However, all methods faced difficulties to distinguish the non-responsive samples, and
except the maxT (200) with a TPR score of 0.83, followed by the RF-MDA, the
HykGene and the SAM methods (0.75), Table 5.11. Though, taking into account the
classification results in the SVM and KNN classifiers, the methods with the most robust
performance were the maxt(200) and the SNR methods, Tables 5.12, 5.13. The rest of
the methods had a fluctuated performance, including the mAP-KL method. During the 5-
CV validation, PLSCV, RF-MDA, HykGene and cat had an AUC score of 0.91, which
was also the highest score attained with the RF classifier. The cat and HykGene
methods also achieved the highest AUC score (0.82) with SVM classifier, whereas cat
outperformed all other methods with the KNN classifier having an AUC score of 0.85.
Regarding the mAP-KL, it had average performance with RF and SVM classifiers (AUC
scores of 0.80 and 0.71 respectively) but failed during the KNN classification scheme.
The eBayes method similarly to NM dataset failed to fulfill the analysis task.

Table 5.11: The classification results in breast and colon cancers according to RF classifier

5-CV Hold-out Validation
FS method
AUC TNR TPR AUC TNR TPR
MAP-KL 0.80 (0.11) 0.79 (0.16) 0.73 (0.18) 0.87 1.00 0.50
maxT(200)  0.85 (0.11) 0.83 (0.13) 0.69 (0.17) 0.83 0.71 0.83
PLS-CV 0.91 (0.08) 0.85 (0.13) 0.77 (0.15) 0.82 0.86 0.42
RF-MDA 0.91 (0.07) 0.91 (0.11) 0.70 (0.16) 0.82 0.86 0.75
maxT 0.87 (0.10) 0.84 (0.13) 0.74 (0.18) 0.77 0.71 0.58
SAM 0.82 (0.11) 0.79 (0.15) 0.69 (0.19) 0.77 0.71 0.75
BREAST SNR 0.86 (0.10) 0.85 (0.14) 0.72 (0.20) 0.77 0.71 0.67
BGA-COA  0.83(0.10) 0.79 (0.15) 0.67 (0.15) 0.76 0.57 0.58
HykGene  0.91 (0.06) 0.86 (0.12) 0.76 (0.17) 0.76 0.71 0.75
Rnd 0.79 (0.01) 0.76 (0.03) 0.65 (0.03) 0.76 0.70 0.78
cat 0.91 (0.07) 0.86 (0.12) 0.78 (0.16) 0.75 0.71 0.50
PCA 0.72 (0.14) 0.66 (0.18) 0.56 (0.19) 0.75 0.43 0.67
ODP 0.83 (0.10) 0.80 (0.14) 0.69 (0.18) 0.74 0.71 0.58
t-test 0.82 (0.10) 0.81 (0.14) 0.69 (0.19) 0.73 0.71 0.58
eBayes
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MAP-KL 0.99 (0.03) 0.95 (0.12) 0.97 (0.09) 0.89 0.71 0.84
BGA-COA  0.98 (0.06) 0.89 (0.22) 0.87 (0.19) 0.87 0.71 0.80
Rnd 0.98 (0.02) 0.90 (0.06) 0.90 (0.03) 0.84 0.73 0.82
maxT(200)  1.00 (0.00) 0.94 (0.13) 0.94 (0.13) 0.83 0.71 0.88
PCA 0.79 (0.19) 0.80 (0.23) 0.72 (0.26) 0.83 0.43 0.84
ODP 0.99 (0.03) 0.97 (0.13) 0.93 (0.13) 0.82 0.71 0.80
HykGene  0.98 (0.06) 0.93 (0.14) 0.95 (0.12) 0.81 0.71 0.88
COLON RF-MDA  0.99 (0.03) 0.96 (0.11) 0.93 (0.13) 0.81 0.71 0.80
eBayes 0.99 (0.03) 0.97 (0.11) 0.93 (0.13) 0.80 0.71 0.80
SAM 1.00 (0.02) 0.99 (0.09) 0.93 (0.13) 0.80 0.71 0.80
cat 0.99 (0.04) 0.97 (0.14) 0.93 (0.13) 0.80 0.57 0.80
maxT 1.00 (0.02) 0.97 (0.10) 0.94 (0.13) 0.79 0.71 0.80
PLS-CV 1.00 (0.02) 0.94 (0.16) 0.94 (0.13) 0.79 0.71 0.80
SNR 0.99 (0.03) 1.00 (0.00) 0.93 (0.13) 0.79 0.71 0.80
t-test 0.99 (0.03) 0.99 (0.05) 0.93 (0.13) 0.79 0.71 0.80

In relation to colon cancer, the mAP-KL method excelled over the other methods in RF
and SVM classifiers with AUC scores of 0.89 and 0.87 respectively, Tables 5.11, 5.12.
Particularly, in SVM classifier the second best performance achieved by a bunch of
methods with AUC score of 0.80. During the classification with the KNN classifier, the
performance of almost all of the methods range from 0.78 to 0.80. Contrary to breast
cancer, the TPR scores were higher than the TNR scores and range from 0.80 to 0.92
for all methods but PCA with KNN classifier. The classification results in 5-CV were very
promising with AUC values above 0.90 for the majority of the methods with the
exception of PCA, which attained much lower AUC scores below 0.79.

Table 5.12: The classification results in breast and colon cancers according to SVM classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
maxT(200) 0.75(0.10) 0.79 (0.15) 0.72(0.17) 0.79 1.00 0.58
SNR 0.76 (0.11) 0.80 (0.15)  0.72 (0.20) 0.76 0.86 0.67
Rnd 0.69 (0.04) 0.74(0.04) 0.63 (0.05) 0.74 0.73 0.75
maxT 0.77 (0.08) 0.77 (0.14)  0.78 (0.14) 0.73 0.71 0.75
ODP 0.74(0.11) 0.76 (0.14) 0.72(0.21) 0.73 0.71 0.75
BREAST SAM 0.70 (0.12) 0.73(0.16) 0.67 (0.19) 0.73 0.71 0.75
cat 0.82 (0.10) 0.87(0.13) 0.77 (0.15) 0.72 0.86 0.58
t-test 0.76 (0.10) 0.76 (0.15)  0.76 (0.18) 0.69 0.71 0.67
RF-MDA 0.79 (0.09) 0.87(0.13) 0.70 (0.16) 0.66 0.57 0.75
MAP-KL 0.71(0.10) 0.75(0.14) 0.67 (0.15) 0.64 0.86 0.42
BGA-COA 0.64 (0.11) 0.71(0.16)  0.56 (0.20) 0.61 0.71 0.50
HykGene 0.82(0.08) 0.84(0.13) 0.80(0.13) 0.57 0.71 0.42
PCA 0.51(0.12) 0.60(0.20)  0.42 (0.20) 0.55 0.43 0.67
PLS-CV 0.77 (0.07) 0.77(0.13) 0.77 (0.13) 0.55 0.86 0.25
eBayes - - - - - -
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MAP-KL 0.94 (0.09) 0.95(0.12) 0.93 (0.13) 0.87 0.86 0.88
cat 0.98 (0.05) 0.96(0.11)  1.00 (0.00) 0.80 0.71 0.88
eBayes 0.99 (0.04) 0.98 (0.08)  1.00 (0.00) 0.80 0.71 0.88
HykGene 0.84(0.14) 0.75(0.25) 0.93 (0.14) 0.80 0.71 0.88
maxT 0.96 (0.07) 0.93(0.14) 0.99 (0.07) 0.80 0.71 0.88
maxT (200) 0.95(0.08) 0.94(0.13) 0.96 (0.11) 0.80 0.71 0.88
coLon  ©PP 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
PLS-CV 0.92 (0.11) 0.89(0.20) 0.95(0.12) 0.80 0.71 0.88
RF-MDA 0.93(0.10) 0.87(0.16) 0.99 (0.07) 0.80 0.71 0.88
SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
SNR 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
BGA-COA 0.99 (0.05) 1.00 (0.00)  0.97 (0.09) 0.78 0.71 0.84
Rnd 0.92 (0.04) 0.91(0.05) 0.93 (0.05) 0.77 0.67 0.85
PCA 0.70 (0.18) 0.71(0.27)  0.69 (0.24) 0.53 0.14 0.92

Table 5.13: The classification results in breast and colon cancers according to KNN classifier

5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
maxT (200) 0.74 (0.11) 0.79 (0.16) 0.69 (0.13) 0.76 0.86 0.67
RF-MDA 0.71(0.10) 0.74(0.13) 0.69 (0.15) 0.73 0.71 0.75
SNR 0.69 (0.11) 0.80(0.15) 0.58(0.19) 0.73 0.71 0.75
BGA-COA 0.62 (0.11) 0.76 (0.13) 0.48 (0.17) 0.72 0.86 0.58
ODP 0.73(0.12) 0.77(0.15) 0.70(0.17) 0.72 0.86 0.58
BREAST Rnd 0.66 (0.04) 0.71(0.04) 0.62 (0.07) 0.70 0.77 0.62
SAM 0.67 (0.12) 0.79(0.14) 0.54 (0.21) 0.69 0.71 0.67
cat 0.85(0.10) 0.88(0.10) 0.82 (0.16) 0.68 0.86 0.50
t-test 0.70 (0.11) 0.78 (0.15) 0.63 (0.17) 0.68 0.86 0.50
PLS-CV 0.68(0.10) 0.74 (0.15) 0.62 (0.16) 0.64 0.86 0.42
maxT 0.78 (0.10) 0.80(0.13) 0.76 (0.17) 0.61 0.71 0.50
PCA 0.60 (0.10) 0.56 (0.18) 0.63(0.14) 0.54 0.57 0.50
HykGene 0.73(0.08) 0.83(0.12) 0.63(0.16) 0.52 0.71 0.33
mAP-KL 0.57 (0.11) 0.53(0.14) 0.60 (0.19) 0.30 0.43 0.17
eBayes - - - - - -
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cat 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
eBayes 0.98 (0.05) 0.96(0.11)  1.00 (0.00) 0.80 0.71 0.88
HykGene 0.92 (0.10) 0.87(0.16) 0.96 (0.11) 0.80 0.71 0.88
maxT 0.97 (0.07) 0.93(0.13)  1.00 (0.00) 0.80 0.71 0.88
ODP 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
RF-MDA 0.96 (0.07) 0.93(0.13)  0.99 (0.05) 0.80 0.71 0.88
coLON SAM 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
SNR 1.00 (0.00)  1.00 (0.00)  0.99 (0.05) 0.80 0.71 0.88
t-test 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.80 0.71 0.88
Rnd 0.93(0.04) 0.92(0.06) 0.93 (0.03) 0.79 0.74 0.84
BGA-COA 0.99 (0.03) 0.99 (0.05)  0.99 (0.05) 0.78 0.71 0.84
mAP-KL 0.96 (0.07) 0.99 (0.07)  0.93 (0.13) 0.78 0.71 0.84
maxT (200) 0.95(0.08) 0.96(0.11) 0.94 (0.13) 0.78 0.71 0.84
PLS-CV 0.99 (0.03) 0.99 (0.07)  1.00 (0.00) 0.78 0.71 0.84
PCA 0.65(0.18) 0.59(0.24)  0.71(0.25) 0.59 0.43 0.76

Concerning the leukemia dataset, three methods, BGA-COA , maxT (200) and eBayes,
excelled in RF classifier while other four methods achieved an AUC score of 0.99. The
mMAP-KL, although achieving high classification scores in 5-CV, failed to predict correctly
all AML samples (TPR = 0.43), and as a results its overall performance was 0.71 during
the hold-out validation, Table 5.14. The cat method, was the method that overall
achieved the best performance across all classifiers, with an average AUC score close
to 1.00. Specifically in SVM and KNN classifiers had scores of 1.00 in AUC, TNR and
TPR metrics, Tables 5.15, 5.16. On the other hand, the mAP-KL method appeared the
same behavior with the RF classifier and had considerably low TPR scores that led to
low AUC scores. Interestingly, the PCA, SNR and t-test methods failed to predict any or
almost any of the 14 AML samples, although they identified all or almost all of the ALL
samples. Similarly, those three methods achieved poorly results during the 5-CV
compared to the other methods. Finally, the ODP algorithm failed to analyze the
leukemia dataset.

Finally, in prostate cancer, no method succeeded in discriminating the samples in both
types of validation, alike to NM in neuromuscular diseases section. Even more
importantly, during the hold-out validation, three of the methods (SNR, t-test,
maxT(200)) failed to identify even a single sample from the normal class across
classifiers, Tables 5.14, 5.15, 5.16, whereas others, like eBayes, SAM and maxT, failed
in two out of three classifiers i.e TNR=0.00. However, because of the normal/disease
ratio (9 normal and 25 disease samples), the AUC values of some methods e.g. eBayes
(0.86) and SAM (0.92) are deceptive. Conversely, the mAP-KL method achieved a
notable performance across all classifiers, with high AUC scores (080, 0.94, 0.90) and
non-zero TNR and TPR scores. The zero TNR score was also present in 5-CV by the
SNR and t-test methods. The rest of the classification results were either close to the
hold-out classification results or fairly optimistic. Besides, the ODP and cat algorithms,
failed to deal with the prostate data.
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Table 5.14: The classification results in leukemia and prostate cancers according to RF classifier

ES methods 5-CV Hold-out Validation
AUC TNR TPR AUC TNR TPR
BGA-COA 0.99 (0.04) 1.00 (0.00) 0.81 (0.27) 1.00 1.00 0.86
maxT(200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 0.86
eBayes 1.00 (0.00) 1.00 (0.00) 0.91 (0.19) 1.00 0.95 0.93
RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 1.00 0.86
PLS-CV 1.00 (0.00) 1.00 (0.00) 0.89 (0.25) 0.99 0.95 0.93
SAM 1.00 (0.00) 1.00 (0.00) 0.91 (0.19) 0.99 0.95 0.93
cat 1.00 (0.00) 1.00 (0.00) 0.95 (0.14) 0.99 0.95 0.93
LEYKEMIA HykGene 1.00 (0.00) 1.00 (0.00) 0.90 (0.20) 0.97 0.90 0.93
Rnd 0.99 (0.01) 0.98 (0.02) 0.86 (0.06) 0.97 0.99 0.75
maxT 1.00 (0.02) 0.98 (0.07) 0.85 (0.27) 0.96 1.00 0.64
mAP-KL 1.00 (0.00) 1.00 (0.00) 0.97 (0.17) 0.71 0.90 0.43
PCA 0.56 (0.16) 1.00 (0.00) 0.00 (0.00) 0.64 0.95 0.14
SNR 0.50 (0.00) 1.00 (0.00) 0.00 (0.00) 0.50 1.00 0.00
t-test 0.50 (0.00) 1.00 (0.00) 0.00 (0.00) 0.50 1.00 0.00
ODP - - - - - -
SAM 0.96 (0.04) 0.97 (0.05) 0.88 (0.10) 0.92 0.00 1.00
maxT(200) 0.95 (0.10) 0.95 (0.10) 0.89 (0.10) 0.88 0.00 1.00
PLS-CV 0.97 (0.03) 0.95 (0.08) 0.92 (0.07) 0.87 0.33 1.00
eBayes 0.96 (0.04) 0.98 (0.04) 0.89 (0.10) 0.86 0.00 1.00
RF-MDA 0.97 (0.04) 0.97 (0.06) 0.90 (0.09) 0.83 0.11 1.00
mMAP-KL 0.93 (0.06) 0.90 (0.09) 0.85 (0.11) 0.80 1.00 0.36
BGA-COA 0.95 (0.05) 0.91 (0.09) 0.89 (0.10) 0.73 0.22 0.88
PROSTATE Rnd 0.93 (0.02) 0.89 (0.04) 0.86 (0.03) 0.70 0.18 0.94
HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.69 0.89 0.24
maxT 0.89 (0.07) 0.88 (0.09) 0.79 (0.13) 0.50 0.00 1.00
PCA 0.84 (0.09) 0.77 (0.15) 0.75 (0.15) 0.50 0.00 1.00
SNR 0.50 (0.00) 0.08 (0.27) 0.92 (0.27) 0.50 0.00 1.00
t-test 0.50 (0.00) 0.08 (0.27) 0.92 (0.27) 0.50 0.00 1.00
ODP - - - - - -
cat - - - - - -
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Table 5.15: The classification results in leukemia and prostate cancers according to SVM

classifier
5-CV Hold-out Validation
FS methods
AUC TNR TPR AUC TNR TPR
cat 1.00 (0.04) 1.00 (0.00)  0.99 (0.07) 1.00 1.00 1.00
eBayes 0.99 (0.05) 1.00 (0.00)  0.98 (0.10) 0.96 1.00 0.93
HykGene 1.00 (0.04) 1.00 (0.00)  0.99 (0.07) 0.96 1.00 0.93
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.96 1.00 0.93
SAM 1.00 (0.04) 1.00 (0.00)  0.99 (0.07) 0.96 1.00 0.93
LEYKEM|A  BGA-COA 0.92 (0.11) 1.00 (0.00)  0.85 (0.23) 0.94 0.95 0.93
PLS-CV 0.92(0.14) 1.00(0.00) 0.84 (0.27) 0.94 0.95 0.93
RF-MDA 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.94 0.95 0.93
Rnd 0.95 (0.05) 0.97 (0.03)  0.92 (0.08) 0.90 0.97 0.84
maxT 0.97 (0.07) 0.99(0.04) 0.96 (0.13) 0.82 1.00 0.64
MAP-KL 0.98 (0.04) 0.96 (0.07)  1.00 (0.00) 0.75 1.00 0.50
PCA 0.50 (0.00) 1.00 (0.00)  0.00 (0.00) 0.50 1.00 0.00
SNR 0.50 (0.00) 1.00 (0.00)  0.00 (0.00) 0.50 1.00 0.00
t-test 0.50 (0.00) 1.00 (0.00)  0.00 (0.00) 0.50 1.00 0.00
ODP - - - - - -
BGA-COA 0.92 (0.06) 0.92(0.09) 0.92(0.08) 0.98 1.00 0.96
MAP-KL 0.88 (0.07) 0.89 (0.09) 0.86 (0.10) 0.94 0.89 1.00
PCA 0.77 (0.08) 0.82(0.14) 0.73(0.12) 0.90 1.00 0.80
maxT 0.82(0.07) 0.82(0.11) 0.82(0.11) 0.83 0.78 0.88
HykGene 0.86 (0.07) 0.84(0.12) 0.87 (0.09) 0.78 0.56 1.00
PLS-CV 0.95 (0.05) 0.94 (0.08) 0.95 (0.05) 0.56 0.11 1.00
PROSTATE Rnd 0.88 (0.02) 0.89(0.04) 0.88(0.03) 0.51 0.01 1.00
eBayes 0.94 (0.05) 0.98 (0.04)  0.90 (0.09) 0.50 0.00 1.00
maxT (200) 0.95 (0.04) 0.97 (0.05) 0.92 (0.07) 0.50 0.00 1.00
RF-MDA 0.95 (0.05) 0.95(0.07) 0.94 (0.07) 0.50 0.00 1.00
SAM 0.92 (0.05) 0.95(0.07) 0.88 (0.09) 0.50 0.00 1.00
SNR 0.50 (0.00) 0.00 (0.00)  1.00 (0.00) 0.50 0.00 1.00
t-test 0.50 (0.00) 0.00 (0.00)  1.00 (0.00) 0.50 0.00 1.00
cat - - - - - -
ODP - - - - - -
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Table 5.16: The classification results in leukemia and prostate cancers according to KNN

classifier
ES methods 5-CV Hold-out Validation
AUC TNR TPR AUC TNR TPR
cat 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 1.00 1.00
BGA-COA 0.96 (0.09) 1.00 (0.00) 0.92 (0.18) 0.96 1.00 0.93
eBayes 0.99 (0.08) 1.00 (0.00) 0.97 (0.16) 0.96 1.00 0.93
maxT (200) 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.96 1.00 0.93
PLS-CV 0.90 (0.14) 0.96 (0.07) 0.83(0.27) 0.94 0.95 0.93
LEYKEMIA  SAM 0.99 (0.08) 1.00 (0.00)  0.97 (0.16) 0.93 1.00 0.86
RF-MDA 0.96 (0.09) 1.00 (0.00)  0.91 (0.19) 0.90 0.95 0.86
HykGene 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.89 1.00 0.79
maxT 1.00 (0.00)  1.00 (0.00)  1.00 (0.00) 0.89 1.00 0.79
Rnd 0.96 (0.03) 0.96 (0.03)  0.96 (0.04) 0.87 0.93 0.82
MAP-KL 0.94 (0.09) 0.94 (0.09) 0.93(0.17) 0.66 0.90 0.43
PCA 0.57 (0.12) 1.00 (0.00)  0.00 (0.00) 0.53 0.95 0.14
SNR 0.50 (0.00) 1.00 (0.00)  0.00 (0.00) 0.50 1.00 0.00
t-test 0.50 (0.00) 1.00 (0.00)  0.00 (0.00) 0.50 1.00 0.00
ODP
MAP-KL 0.82(0.09) 0.82(0.13) 0.83(0.11) 0.90 1.00 0.80
SAM 0.86 (0.08) 0.84(0.12) 0.89(0.10) 0.89 0.78 1.00
eBayes 0.91 (0.07) 0.91(0.11) 0.91 (0.08) 0.87 0.78 0.96
PLS-CV 0.91 (0.06) 0.93(0.07) 0.90 (0.09) 0.85 0.78 0.92
RF-MDA 0.93 (0.05) 0.94 (0.07) 0.91 (0.08) 0.84 0.89 0.80
BGA-COA 0.87(0.07) 0.87(0.10) 0.87 (0.11) 0.67 0.33 1.00
PROSTATE Rnd 0.80 (0.05) 0.82(0.07) 0.77 (0.04) 0.63 0.29 0.97
HykGene 0.88 (0.06) 0.90 (0.09) 0.87 (0.11) 0.50 1.00 0.00
maxT 0.80 (0.09) 0.85(0.13) 0.75(0.14) 0.50 0.00 1.00
maxT (200) 0.82(0.09) 0.89(0.09) 0.76(0.13) 0.50 0.00 1.00
PCA 0.67 (0.11) 0.66 (0.15)  0.68 (0.15) 0.50 1.00 0.00
SNR 0.50 (0.00) 0.00 (0.00)  1.00 (0.00) 0.50 0.00 1.00
t-test 0.50 (0.00) 0.00 (0.00)  1.00 (0.00) 0.50 0.00 1.00
cat
ODP

5.5. Analysis of previous experiments

At a different level of assessment, we compared the mAP-KL’s classification results of
the specific cancer datasets, against those published in previous classification studies
of the same data. For the purposes of this comparison, we have cited the author’'s
name, the classification type, the number of the features used, and finally the achieved
accuracy (ACC). Since we utilized three different classifiers to build and test mAP-KL'’s
models, in this comparison we present all three results achieved.
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In relation to the van 't Veer et al. [23] breast cancer datasets, we present the
classification results from 9 different approaches stemming from 7 studies, see Table
5.17. Regarding the CV test, Hassan et.al [21] and Hu et al. [60] achieved ACC above
90.00%, higher than van 't Veer et al. and with less features. However, they utilized all
of the samples contrary to van 't Veer et al. Our method achieved moderate results
(ACC = 75.93%) as absolute numbers for the 78 samples but with only 6 features and
5-CV contrary to LOO-CV that engaged by the others. In the hold-out test, although the
ACC of mAP-KL is the lowest score, we did manage to identify correctly all responsive
samples. However, we should consider why we discern only half of the non-responsive
samples (type Il error).

Singh et al. [40] first employed the specific prostate cancer datasets and we have
included the results from three studies, Table 5.18. mAP-KL with the aid of SVM-linear
classifier, misclassified one sample in hold-out validation just like Liu et al. [67].
However, in CV we misclassified approximately eight samples more than Liu et al., but
with only 12 genes.

The ALL/AML discrimination in the leukemia datasets, Table 5.19, as first presented by
Golub et al. [6], is the one most often analyzed among the datasets considered. More
than 16 studies and 29 methods have based their evaluation on this set of data.
Comparing mAP-KL to Golub classification results, we notice that in CV we identify one
more sample, whereas in hold-out we misclassify two samples from Golub, though we
did that with only 5 genes. There are many methods that distinguish correctly all
samples in CV although only Hewett and Kijsanayothin [38] achieved an ACC of
98.61% with only two genes, but using all of the 72 samples. Regarding the hold-out
validation, several methods achieved high classification scores with ACC above
95.00%, though only Mukherjee et al. [70] reached the 100%, with only 40 genes. Liu et
al. [67] predict correctly all samples in both validation assessments, but we are unaware
of the subset’s length.

Finally, fourteen methods employed the Alon et al. [43] colon cancer datasets to assess
their classification performance, see Table 5.20. During the CV assessment we
achieved ACC = 96.00% with RF and KNN classifiers higher than the one achieved by
Tan and Gilbert [63] (95.16%). Regarding the hold-out validation, Li et al. [64], Nguyen
and Rocke [65] and Furey et al. [66] achieved ACC of 94.1%, 93.5% and 90.30%
respectively. We reached to 81.25% and 87.50% ACC with 20 genes contrary to
Nguyen and Rocke with 50 genes.
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Table 5.17: An overview of the published classification results in van 't Veer et al. breast cancer

data

Cross Validation Train-Test
Authors Features

Samples Accuracy (%) Samples Accuracy (%)

van 't Veer et al., 2002 [3] 65/78 83.3 17/19 89.5 70
Hassan et al., 2009 [42] - 92.13 - 91.67 3
Shen et al., 2006 [84] 60/78 76.90 15/19 78.9 231
Shen et al., 2006 - 76.20 15/19 78.9 231
Shen et al., 2006 62/78 81.40 17/19 89.5 44
Hu et al., 2006 [85] 88/97 90.7 - - 50
Moon et al., 2006 [86] 49/78 62.9 - - -
Tan and Gilbert, 2003 [87] - - 17/19 89.47 834
Hewett and Kijsanayothin, 2008 [69] 66/97 68.04 - - 8
mMAP-KL (RF) - 75.93 13/19 68.42 6
mAP-KL (KNN) - 56.35 5/19 26.32 6
mMAP-KL (SVM-linear) - 71.47 11/19 57.89 6

Table 5.18: An overview of the published classification results in Singh et al. prostate cancer data

Cross Validation Train-Test
Authors Features

Samples Accuracy (%) Samples Accuracy (%)

Liu et al., 2004 [88] 98/102 96.08 33/34 97.06 -
Tan and Gilbert, 2003 [87] - - 25/34 73.53 3071
Hewett and Kijsanayothin, 2008 [69] 124/136 91.18 - - 6
mAP-KL (RF) - 87.33 18/34 52.94 12
mAP-KL (KNN) - 82.22 29/34 85.29 12
mMAP-KL (SVM-linear) - 87.82 33/34 97.06 12
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Table 5.19: An overview of the published classification results in Golub et al. ALL/AML leukemia

data
Cross Validation Train-Test
Authors Features
Samples Accuracy (%) Samples Accuracy (%)
Golub et al., 1999 [81] 36/38 94.73 29/34 85.29 50
Liu et al., 2004 [88] 38/38 100.00 34/34 100 -
Liu et al., 2004 - - 33/34 97.06 -
Li et al., 2001 [89] - - - 94.1 -
Furey et al., 2000 [90] - - - 94.1 -
Ben-Dor et al., 2000 [91] - - - 91.6 -
Ben-Dor et al., 2000 - - - 94.4 -
Ben-Dor et al., 2000 - - - 95.8 -
Nguyen and Rocke, 2002 [92] - - - 94.17 50
Nguyen and Rocke, 2002 - - - 95.44 50
Nguyen and Rocke, 2002 - - - 95.94 50
Nguyen and Rocke, 2002 - - - 96.44 50
Mukherjee et al., 1999 [93] 38/38 100 31/34 91.17 7129
Mukherjee et al., 1999 38/38 100 34/34 100 999
Mukherjee et al., 1999 38/38 100 32/34 94.11 99
Mukherjee et al., 1999 38/38 100 30/34 88.23 49
Mukherjee et al., 1999 - - 34/34 100 40
Mukherjee et al., 1999 - - 32/34 94.11 5
Dudoit et al., 2002 [94] - - - 95.0~ -
Dudoit et al., 2002 - - - 95.0~ -
Dudoit et al., 2002 - - - 95.0~ -
Antonov et al., 2004 [95] 37/38 98 34/34 100 185
Liu and Chen, 2004 [96] 38/38 100 34/34 100 3800
Tibshirani et al., 2002 [97] 37/38 98 32/34 94.11 21
Moon et al., 2006 [86] 7172 98.6 - - -
Hewett and Kijsanayothin, 2008 [69] 7172 98.61 - - 2
Antoniadis et al., 2003 [98] 38/38 100 33/34 97.06 50
(DLDA) (DLDA)
Hu et al., 2006 [85] 38/38 100 - - 50
Tan and Gilbert, 2003 [87] - - 31/34 91.18 1038
mAP-KL (RF) - 98.93 24/34 70.59 5
mAP-KL (KNN) - 93.61 24/34 70.59 5
mMAP-KL (SVM-linear) - 97.36 27134 79.41 5
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Table 5.20: An overview of the published classification results in Alon et al. colon cancer data

Cross Validation Train-Test
Authors Features
Samples Accuracy (%) Samples Accuracy (%)
Liu et al., 2004 [88] 57162 91.94 - -
Liu et al., 2004 53/62 85.48 - -
Furey et al., 2000 [90] - - - 90.3 -
Li et al., 2001 [89] - - - 94.1~ -
Ben-Dor et al., 2000 [91] - - - 80.6 -
Ben-Dor et al., 2000 - - - 74.2 -
Ben-Dor et al., 2000 - - - 72.6 -
Nguyen and Rocke, 2002 [92] - - - 87.1 -
Nguyen and Rocke, 2002 - - - 87.1 -
Nguyen and Rocke, 2002 - - - 93.5 50
Nguyen and Rocke, 2002 - - - 91.9 1000
Antoniadis et al., 2003 [98] 52/62 83.87 - - 50
(MAVE-LD)

Hu et al., 2006 [85] 56/62 90.3 - - 50
Tan and Gilbert, 2003 [87] 59/62 95.16 - - 135
mAP-KL (RF) - 96.00 26/32 81.25 20
mAP-KL (KNN) - 96.00 26/32 81.25 20
mMAP-KL (SVM-linear) - 94.00 28/32 87.50 20

5.6. Summary

The overall results, based on the RF classifier, as summarized in Figure 5.1 places
mAP-KL at the top among twelve (12) other feature selection algorithms developed for
the mining of gene expression data. In particular, the mAP-KL method achieved the
second best mean AUC in neuromuscular diseases i.e. 0.91 and the sixth best in
cancer data. Eventually, the classification performance of mAP-KL across all ten
diseases reached the AUC score of 0.86, which is the third best AUC score with the
minimum standard deviation value compared to the methods with better classification
performance e.g. eBayes, PLS-CV. Hence, we may firmly state that the combination of
a univariate and a clustering method isolates subsets of genes that may discriminate
unknown samples from a variety of diseases and number of samples quite accurately.

Furthermore, the mAP-KL methodology selects the significant genes without any
classifier involment, thus our method is considered as classifier independent. Indeed,
the classification results across three classification algorithms,Figure 5.2, shows a
similar classification performance i.e. standard deviation < 0.1 in most of the cases, and
certainly no preference towards a particular classifier.
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eBayes PLS- SAM BGA- RF- mAP- cat Hyk maxT oDp SNR t-test PCA
v CoA KL Gene

Diseases with Small Sample Size available

0.77 0.73 0.75 0.78

BREAST

0.79 0.79 0.82

COLON

0.50 0.50 0.64 0.34

LEUKEMIA

0.0 0.50 0.50 0.70

Diseases with Large Sample Size available

PROSTATE

=

E 0.89 0.87 0.87 0.84 0.86 0.82 0.85 0.81 0.76 0.78 0.64 0.63 0.68
TOTAL
MEAN 0.89 0.89 0.87 0.87 0.87 0.86 0.85 0.84 0.81 0.81 0.80 0.79 0.67
TOTAL
STD 0.184 0.185 0173 0.179 0.242 0.127 0.214 0.129 0.223 0.259 0.191 0.197 0.240

<50 0.50-0.69 | 0.70-0.79 | 0.80-0.89 | 0.90-0.85 | 0.96-0.99 1.00

Figure 5.1: The overall classification results (AUC metric) with RF classifier
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5.2: The classification performance (AUC) of mAP-KL across diseases for three classifiers

A. D. Sakellariou 116



Computational Methods for the Identification of Statistically Significant Genes: Applications to
Gene Expression Data of Various Human Diseases

6. Biological relevance of discriminatory gene lists

6.1. Introduction

The power of the proposed FS approach is evident not only from its performance in the
statistical metrics, but also from the biological relevance of the selected genes either to
a broad range of different molecular pathways and biological processes or more
importantly to the respective pathological phenotypes. Therefore we engaged the
produced gene lists from our method and the methods that excelled in the classification
processs, (eBayes, PLS-CV, SAM, BGA-COA, RF-MDA), as well as the maxT method
which is the ranking method of mAP-KL, into a series of validations. During those
validations we tried to unravel the “semantics” behind those gene lists and its
association with the respective diseases.

6.2. The gene lists from a Systems Biology perspective

Usually the initial product of an FS method is a list of ids rather than gene symbols,
since the expression data stem from microarray chips technology. Therefore a
necessary action that we typically take is to match those probe ids with the relevant
gene symbols. Another interesting thing from chip technology is that one gene symbol is
regularly represented by more than one probe ids. Thus, an over or under expressed
gene may be present in a top ranked list more than one times according to the chip
specifications. As a result, those multiple instances of a gene shall be removed from
any top ranked list to conclude to a list of unique top genes. This is an essential step
regarding the anticipated gene enrichment since a top list of 20 or 50 probe ids may for
example represent 14 or 35 unique gene symbols. Furthermore, gene chips include
internal and external spiked in controls responsible for the hybridization quality that
should be not included in the top ranking of any differential analysis. For all those
reasons, the “degree of uniqueness” (DoU) of a top ranked list is a first validation
measure directly connected to the list’s potential from a biological standpoint.

In the following tables, Table 6.1 and 6.2, we have cited the number of probe ids and
the respective number of gene symbols per method and per dataset. In the last column
of the tables we have calculated the DoU value as the average of the division between
gene symbols and probe ids. The closest to the unit the more unique is the ranked list.
Regarding the neuromuscular data, our method achieved the highest score with the
maxT being quite close. In contrast, the BGA-COA had the most discrepancies between
ranked probe ids and their respective gene symbols. In relation to cancer data, the
eBayes method surpassed the other methods although its average quantity is based on
three rather than four datasets. The mAP-KL is placed second setting a direct inference
about the high “uniqueness” of the produced lists. On the contrary, the RF-MDA failed to
identify enough unigue gene symbols particularly in the breast cancer dataset and that
was the cause for taking the final place.
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Table 6.1: The DoU of seven FS methods across neuromuscular data

ES ALS DMD JDM LGMD2A LGMD2B NM Dol
Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns

mAP-KL 21 20 14 14 21 20 6 6 15 15 18 18 0.984

maxT 20 20 20 20 20 20 20 20 20 20 20 18 0.983
RF-MDA 20 20 20 20 20 20 20 19 20 20 20 18 0.975
SAM 20 14 20 20 20 18 20 16 20 16 20 20 0.867
eBayes * 20 17 20 20 20 18 20 16 20 15 - - 0.860

PLS-CV 20 13 20 20 20 19 20 18 20 16 20 17 0.858
BGA-COA 20 15 20 17 20 18 20 14 20 17 20 17 0.817

* The eBayes method evaluated in five datasets

Table 6.2: The DoU of seven FS methods across cancer data

Breast Colon Leukemia Prostate
FS DoU
Prbs Gns Prbs Gns Prbs Gns Prbs Gns
eBayes * - - 20 18 20 18 20 19 0.917
mAP-KL 6 4 20 16 5 5 12 12 0.867
PLS-CV 20 14 20 18 20 19 20 17 0.850
BGA-COA 20 12 20 18 20 19 20 18 0.838
SAM 20 11 20 18 20 18 20 19 0.825
maxT 20 11 20 16 20 17 20 20 0.800

RF-MDA 20 9 20 14 20 18 20 19 0.750

* The eBayes method evaluated in three datasets

A second validation criterion is the enrichment of the unique gene symbols in relation to
the associated pathways. Ideally a one-to-one relationship between genes and
pathways could embrace all the necessary information for further biological insights.
However, this relation is not only hard to achieve since most of the times we have either
one-to-many relationship or many-to-one relationships but also can be misleading
because one gene is usually involved in more than one pathways that are not
necessarily involved in the inspected disease. Hence, taking into consideration the other
two types of relationship the most desirable is the many-to-one. By having more than
one gene related to the same pathway it is far more certain that this pathway is indeed
active and related to the disease. Therefore a gene per pathway ratio between one and
two i.e. one or at least two genes per pathway satisfies adequately the concept of
genes’ enrichment.

At this point is crucial to refer to another parameter before mentioning the results of this
validation measure, which are the protein-coding-genes (P-C-Gns) in the ranked list. In
essence, not all of the known genes are protein coding and thus involved in molecular
functions. Pathway analysis tries to simplify the complexity at the cellular level through
the representation of a series of steps where “each step is an event that transforms
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input physical entities into output entities” [99]. Such entities are definitely the produced
proteins, among other small molecules or particles, and as a consequence only the
protein coding genes are requisite for a pathway analysis.

Through a plethora of pathway analysis tools, we utilized the “Reactome” pathway
database [99], which is a curated and peer reviewed database of pathways and
reactions in human biology. We uploaded the top lists of the selected FS methods for all
diseases and evaluated their pathway enrichment. During the pathway evaluation we
took into consideration the DoU and the number of protein-coding genes parameters as
well as the number of pathways according to the “Reactome” database. The final
pathway enrichment (PE) score for each FS (m) is the average of the summation of
pathways per protein-coding genes multiplied by the DoU for all diseases (d)

PE - 12(’: Protein - coding - genes,
"o Pathways,

x DoU . (6.1)

We formed detailed tables per method and disease, Table 6.3 and Table 6.4, to present
the outcome of “Reactome” analysis and finally we summarized the results into a graph
where the FS methods are in descending order based on their average PE score,
Figure 6.1. In accordance with the pathway analysis the maxT method appears to
achieve the highest PE score across all diseases. Besides is the method with the
second highest DoU score marginally behind mAP-KL. However, this significant
advantage over mAP-KL and RF-MDA that follow is mainly due to the PE score in
prostate cancer (4.33), where the maxT achieved to identify 3 pathways with 13 unique
genes. Otherwise those three methods appear to constitute a group with PE scores
close to unit, which is a satisfactory if not intriguing case for biologists. The rest of the
methods performed better in cancer data, four datasets, contrary to neuromuscular, six
datasets, and that explain their minor deviation from the first three methods.

An additional remark about this pathway analysis has to do with the commonality of the
pathways itself among the FS methods. In general, there is a small to moderate overlap
among the pathways per method, Table 6.5. However, we cannot state the point that
there are good and bad pathway lists having in mind the classification performance
because there are no strong evidences that this diversity is directly connected to the
classification process. Indeed, the PLS-CV and RF-MDA methods that achieved the
highest AUC score in LGMDAZ2B disease have four out of eight common pathways. On
the contrary, the eBayes pathway list owns three out of four of those common pathways
though its classification performance is the worst achieved, 0.48 AUC, among the seven
FS methods.
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Table 6.3: The pathway analysis results on neuromuscular data

ALS
FS Prbs Gns P-C-Gns Pathways Gns/Pathway DoU PE
mAP-KL 21 20 12 8 1.50 0.952 1.428
maxT 20 20 18 18 1.00 1.000 1.000
RF-MDA 20 20 6 8 0.75 1.000 0.750
BGA-COA 20 15 9 10 0.90 0.750 0.675
eBayes 20 17 7 16 0.44 0.850 0.372
PLS-CV 20 13 9 16 0.56 0.650 0.366
SAM 20 14 7 17 0.41 0.700 0.288

DMD
eBayes 20 20 9 6 1.50 1.000 1.500
SAM 20 20 9 8 1.13 1.000 1.125
RF-MDA 20 20 11 10 1.10 1.000 1.100
maxT 20 20 13 12 1.08 1.000 1.083
BGA-COA 20 17 5 4 1.25 0.850 1.063
PLS-CV 20 20 8 9 0.89 1.000 0.889
mAP-KL 14 14 7 9 0.78 1.000 0.778

JDM
RF-MDA 20 20 14 10 1.40 1.000 1.400
mAP-KL 21 20 13 9 1.44 0.952 1.376
PLS-CV 20 19 14 11 1.27 0.950 1.209
maxT 20 20 13 12 1.08 1.000 1.083
SAM 20 18 10 9 1.11 0.900 1.000
eBayes 20 18 9 9 1.00 0.900 0.900
BGA-COA 20 18 7 10 0.70 0.900 0.630

LGMD2A
maxT 20 20 13 12 1.08 1.000 1.083
RF-MDA 20 19 7 0.78 0.950 0.739
BGA-COA 20 14 5 5 1.00 0.700 0.700
PLS-CV 20 18 8 11 0.73 0.900 0.655
eBayes 20 16 8 10 0.80 0.800 0.640
SAM 20 16 8 10 0.80 0.800 0.640
mAP-KL 6 6 3 7 0.43 1.000 0.429
LGMD2B

maxT 20 20 15 11 1.36 1.000 1.364
BGA-COA 20 17 7 5 1.40 0.850 1.190
PLS-CV 20 16 9 8 1.13 0.800 0.900
mAP-KL 15 15 7 8 0.88 1.000 0.875
SAM 20 16 8 8 1.00 0.800 0.800
eBayes 20 15 8 9 0.89 0.750 0.667
RF-MDA 20 20 5 8 0.63 1.000 0.625
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NM
RF-MDA 20 18 8 4 2.00 0.900 1.800
mAP-KL 18 18 7 5 1.40 1.000 1.400
SAM 20 20 13 12 1.08 1.000 1.083
maxT 20 18 9 8 1.13 0.900 1.013
BGA-COA 20 17 11 11 1.00 0.850 0.850
PLS-CV 20 17 9 9 1.00 0.850 0.850

Table 6.4: The pathway analysis results on cancer data

Breast

FS Prbs Gns P-C-Gns Pathways Gns/Pathway DoU PE

PLS-CV 20 14 7 5 1.40 0.700 0.980
mAP-KL 6 4 1 1 1.00 0.667 0.667
BGA-COA 20 12 4 4 1.00 0.600 0.600
RF-MDA 20 9 6 5 1.20 0.450 0.540
maxT 20 11 6 7 0.86 0.550 0.471
SAM 20 11 5 6 0.83 0.550 0.458

Colon
SAM 20 18 14 11 1.27 0.900 1.145
eBayes 20 18 12 10 1.20 0.900 1.080
BGA-COA 20 18 14 14 1.00 0.900 0.900
PLS-CV 20 18 11 11 1.00 0.900 0.900
maxT 20 16 9 9 1.00 0.800 0.800
RF-MDA 20 14 9 10 0.90 0.700 0.630
mAP-KL 20 16 11 14 0.79 0.800 0.629
Leukemia
eBayes 20 18 14 10 1.40 0.900 1.260
BGA-COA 20 19 12 10 1.20 0.950 1.140
PLS-CV 20 19 9 8 1.13 0.950 1.069
RF-MDA 20 18 10 9 1.11 0.900 1.000
SAM 20 18 13 12 1.08 0.900 0.975
mAP-KL 5 5 4 5 0.80 1.000 0.800
maxT 20 17 12 13 0.92 0.850 0.785
Prostate

maxT 20 20 13 3 4.33 1.000 4.333
SAM 20 19 8 6 1.33 0.950 1.267
mAP-KL 12 12 7 6 1.17 1.000 1.167
PLS-CV 20 17 11 9 1.22 0.850 1.039
RF-MDA 20 19 13 12 1.08 0.950 1.029
BGA-COA 20 18 10 9 1.11 0.900 1.000
eBayes 20 19 9 10 0.90 0.950 0.855
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Figure 6.1: The overview of the PE scores
Table 6.5: The pathway lists in the LGMD2B disease
Pathways mAP-KL eBayes PLS-CV SAM BGA-COA RF-MDA maxT
Apoptosis X
Binding and Uptake of
Ligands by Scaveng X
Cell Cycle X X
Cell-Cell communication X
Circadian Clock X X
Developmental Biology X X
Disease X X K X K X
Extracellular matrix
organization K K
Gene Expression X X X X X
Hemostasis X X X X
Immune System X K X X K X
Metabolism X X X X X X
Metabolism of proteins X X
Muscle contraction X X X X X
Neuronal System X X
Signal Transduction X X K X K X
Transmembrane transport of
X X X X

small molecul

6.3. The gene lists from a disease point of view

During this final validation we explored the potential association of the gene lists with
the respective pathological phenotypes. For this purpose we utilized a “WEB-based
Gene SeT AnalLysis Toolkit” (WebGestalt) [100], to identify those genes from each list
that are either directly or closely related to the diseases under analysis. This tool
provides an integrated data mining analysis in several areas including “Disease
association analysis” with the aid of “Gene List Automatically Derived For You”
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(GLAD4U) [101] retrieval and prioritization tool, which exploits the PubMed literature.
The overall findings of this disease enrichment analysis are presented in Table 6.6,
thought we comment and refer only to mAP-KL'’s disease related genes.

Table 6.6: The disease enrichment per gene list

Relevant Genes

FS ALS DMD
mAP-KL FHL1 ALDOA COL3A1 SPARC
eBayes TTN MYH7 FHL1 ACTAl1 ALDOA -
PLS-CV TTN ATP2A1 NEB CKM ALDOA TNNC2 AQP4 MYH8 MYH3 FRZB COL1Al1
SAM TTN MYH7 FHL1 ACTAl ALDOA COL1A2 ASPN DMD MYH3
BGA-COA NEB CKM AQP4 MYH3
RF-MDA - -
maxT - -
JDM LGMD2A

mAP-KL I\G/I>B<é1CCL5 RGS1 COL6A3 ISG20 HIF1A ANXA5 PRKCQ
eBayes - SERPINE1 ANXA2
PLS-CV PSMB8 1SG20 MYH3 SERPINE1 BMP7 CHI3L1 MYH3
SAM - SERPINE1 BMP7 CHI3L1 MYH3
BGA-COA PSMB8 ISG20 CHI3L1 AQP4
RF-MDA TRIM21 TYMS IL1R1 MAP2K6 -
maxT TARDBP CCL5 S100A11 -

LGMD2B NM
mAP-KL RAX MYH3 E/ﬁ(ﬁ?PTAFR GNB2L1 CEACAM3 PTPRB
eBayes IGHMBP2 FUS -
PLS-CV AQP4 MYH3 BMP7 TNNI2 ACTN3 ATP2Al1 SLPI TGM2 CHI3L1
SAM IGHMBP2 FUS -
BGA-COA MTM1 AQP4 MYH3 PTPN2 -
RF-MDA - TGM2 GRIN2A
maxT GRN FUS TGM2 GRIN2A

Breast Colon
mAP-KL AGTR1 S100A8 MUC2 IL8 CD46 MAP2K2
eBayes - VIP IL8
PLS-CV SCGB2A2 PTHLH PIP IGFBP5 CA9 MUC2 TSPAN1 ALDH1A1 CEACAML1 IL8
SAM MMP9 CA9 MUC2 VIP IL8
BGA-COA SCGB2A2 PRAME CA9 CDH3 ALDH1Al1l CDK4 S100P
RF-MDA GLS ESM1 AGTR1 ESM1 CDH3 TSPAN1 S100A11 IL8
maxT MMP9 CA9 NPM1 HMGA1l TSPAN1 CEACAM1

Leukemia Prostate
mAP-KL - CLU GSTM1
eBayes ELANE TCF3 MYB CD33 CCND3 TARP GSTM1 HPN TSPAN1
PLS-CV IGH@ TCL1A CD79A ELANE IGK@ MPO PAGE4 GDF15 TARP HPN
SAM ELANE LYN CD33 CCND3 GDF15 TARP GSTM1 HPN
BGA-COA TCL1A CD79A ELANE MPO CD79B CD79A GDF15 CLU TARP HPN KLK2
RF-MDA ELANE STMN1 TARP GSTM1
maxT - -
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In ALS, representative examples include the FHL1 [102] gene that regulates skeletal
muscle mass and ALDOA [103] gene that found to discern successfully systemic
sclerosis patients through its increased concentration in plasma. Moreover, COL3Al
and SPARC genes are related to extracellular matrix formation and fibroblast growth,
biological processes consistent with the increased fibrosis that is observed in skeletal
muscles affected by DMD [104]. In NM and LGMD2B, the structure associated MYH?7,
MYH3 genes were depicted, in agreement with the reports of cytoskeletal
disorganization in the affected muscle fibers of these patients [79, 105], whereas in
LGMD2A the PRKCQ gene is considered as a valuable pharmacological target for both
immune cells and skeletal muscles [106]. As opposed to the other skeletal muscle
diseases included in this study, JDM is an inflammatory myopathy of presumed
autoimmune dysfunction. Consistently with the disease pathology, the short-listed
genes CCL5 and I1SG20 are related to interferon or to chemokine and cytokine
production, all key molecules of the immune system [107].

In relation to breast cancer, the AGTR1 have been found to be over-expressed across
multiple independent breast cancer cohorts [108], similarly to the S100A8 gene which is
also considered as a molecular marker [109]. With respect to colon cancer the IL8
products has been ascribed to angiogenesis promotion [110], the MAP2K2 appears to
suppresses the proliferation of colon carcinoma cell lines when silenced [111] and the
MUC2 in conjunction with Galectin-3 play a significant role in colon cancer metastasis
[112]. Finally, in prostate cancer the CLU is considered as a valid therapeutic target
when combined with androgen ablation [113] and the GSTM1polymorhisms are closely
related to mortality and are potential prognosis markers [114].

These findings jointly, demonstrate that despite their small size, the discriminatory ‘lists
of selected genes’ depicted by the proposed FS approach contain biologically relevant
genes, representative of the respective disease related molecular pathways.
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7. R-package implementation

7.1. Introduction

To provide the research community with the capability to apply mAP-KL in any given
gene expression dataset, we have implemented this methodology to an R package
accompanied with extra functionalities including data sampling preprocessing,
classification, network analysis, gene annotation analysis and reporting [115].
Concerning the data sampling functionality, a dataset of samples may be split into train
and test sets following a user-defined proportion. In relation to data preprocessing we
provide several normalization and transformation alternatives along with density plots
that provide the user with the necessary hints about the effect of the methods on the
input data. Regarding the classification performance of the selected genes, the user
may perform any cross-validation on the training data or even a hold out validation on a
separate test set with the aid of SVM and provides estimates of their discrimination
ability. As regards the network analysis, the user may compute several network
characteristics of the “exemplars” including degree of centrality, closeness, betweeness
and clustering coefficient as well as to construct the edge list table (Nodel — Node2 —
weight) based on the N top ranked genes. Finally, an html report summarizing the
results of all types of analysis is produced to assist user towards a structured and
archived analysis logbook.

7.2. Classes and functions of the mAPKL package

The mAPKL implemented in R as an S4 package that takes advantage of the rich
functionality of the "ExpressionSet" (eSet) class [116]. This type of class is designed to
accommodate a variety of information including expression data from microarray
experiments (assayData), “meta-data” describing samples in the experiment
(phenoData), annotations and meta-data about the features on the chip (featureData,
annotation), information about the protocol used for processing the samples
(protocolData), and a flexible structure to describe the experiment (experimentData). All
those different sources of information are handled by class-methods thus the proper
manipulation is guaranteed. Besides, using this class objects throughout this package
we make feasible any collaboration with other bioconductor packages hence, extending
the meta-analysis options.

The mAPKL includes four distinct functional modules and five classes, Figure 7.1. The
core function of this package is the mAPKL that implements the hybrid feature selection
methodology. It takes as input an eSet class object with the training data and several
predefined parameters necessary for the intrinsic statistical analysis and clustering
methods. It may also accept a validation eSet object to directly apply on it the results of
the mAP-KL analysis. This function returns an object of ‘mAPKLRes’ S4 class where its
slots embody the matrix of the top N ranked genes, the clusters and their respective
exemplars, the training and validation eSet objects of the exemplars, along with
statistical information such as p-value, adjusted p-value and fold-change for all genes.

The following functional module provides classification estimates for the selected genes.
In particular, it utilizes the exemplars’ eSet objects from the ‘mAPKLRes’ class to run an
SVM based cross-validation classification test to quantify the discrimination power of the
gene exemplars. The necessary parameters for running the SVM classifier are
computed dynamically with the tune.svm function of the ‘e1071’ R-package [117]. The
classification measures are calculated through a mAPKL’s function called metrics and
include the Area Under the Curve (AUC), the Matthews correlation coefficient (MCC),
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the accuracy (ACC), the true negative rate (TNR) or specificity and the true positive rate
(TPR) or sensitivity.

The next functional module exploits the microarray chip annotation file, if available, to
collect necessary genome oriented information so as to facilitate other types of genome
analysis such as pathway analysis. The ‘Annot’ S4 class provides slots for gene
‘symbol’, ‘entrezld’, ‘ensembleld’ and chromosomal location info of the exemplars. Thus,
the user not only has at hand a valid conversion mechanism between probes and genes
but also several additional meta-data for other types of analysis like pathway or Gene
Ontology.

The netwAttr function deals with the network characteristics of the top N ranked genes
but more importantly with the gene exemplars. Three different types of centralities
(degree, closeness, betweenness) and a measure for clustering coefficient called
transitivity are estimated with this function. The degree centrality of a node refers to the
number of connections or edges of that node to other nodes. The closeness centrality
describes the reciprocal accumulated shortest length distance from a node s to all other
connected nodes. The betweeness centrality depicts the number of times a node
intervenes along the shortest path of two other nodes. Transitivity measures the degree
of nodes to create clusters within a network. For all four network measures we provide
both global and local values. Moreover, the netwAttr provides a weighted edge list
(Nodel-Node2-weight) based on the top N ranked genes, as a front end to network and
graph packages for advance analysis and visualization.

Finally, the package incorporates functions that assist data importing from ‘txt’ files to
eSet class objects, preprocessing of the gene expression values and reporting.
Concerning the preprocessing functional unit, it supports log 2 transformation and four
different normalization methods including mean-centering, z-score, quantile and cyclic
loess. In particular, this function produces an S3 class object, a list, with maximum nine
available options, see section 7.3. Moreover, an efficient sampling method is available
that assist user to split any dataset into a train and a test sets to a user defined
percentage, while keeping a stratified analogy between the two classes of the samples.
With regard to the report function, the user may produce a summarized report in htmi
format that presents the results in all different stages of analysis. In the following section
we will present a case study to display thoroughly the functionality of our package using
the ‘mAPKLData’ experiment data package.
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DatalD
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+annotate()
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-mAPKLRes : object(idl)
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-Annot : object(idl)
-NetAttr
+report()

Figure 7.1: A UML schematic representation of the classes and functions of the mAPKL. The solid
rectangles with the three compartments represent classes. In the first compartment is the name of the
class, in the second compartment is the attributes of the class, and in the third is the methods/functions
relevant to the class. The ‘Report’ rectangular is a special type of class called utility that has static
attributes and methods and no instances. The dotted lines represent ‘dependencies’ between classes.
The lines with the arrowhead represent ‘generalizations’ and show the parts (static attributes) of the
‘Report’ class.

7.3. An analysis scenario with mAPKL package

For the purposes of the following case study we engaged the “mAPKLData”
bioconductor experiment data package that we built as a supplement to the “mAPKL”
package. It provides the GSE5764 dataset, which is available at the NCBI Gene
Expression Omnibus and includes gene expression data from a breast cancer study
published by Turashvili et al.[118] that contains 30 samples related to breast cancer (20
normal and 10 tumor samples), based on Affymetrix HG-U133 Plus_2 microarray
platform.

Initially, we load the two packages and then the breast cancer data. Then with the aid of
the “sampling” function we create a separate training and validation sets where 60% of
the samples will be used for training and the rest 40% of the samples will be used for
evaluation purposes. The selection of samples follows a random selection based on the
defined seed number hence, no bias is inserted. The resulted train set has twelve
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normal and six tumor samples, and the validation set eight normal and four disease
samples.

library (mAPKL)
library(mAPKLData)
data(mAPKLData)
varLabels (mAPKLData)

breast <- sampline{Data=mAPKLData. valPercent=40. classlLabels="tw

il Ldaoslalbie 1l s LWL

Figure 7.2: Loading the packages and sampling the data

Then we employ the “preprocess” function that produces an S3 class object, a list, with
maximum nine available options, Figure 7.3. In particular, the attributes of that list may
contain the following values:

the initial gene expression values (rawdata),

the values after “mean-centering” normalization (mc.normdata),
the values after “z-score” normalization (z.normdata),

the values after “quantile” normalization (g.normdata),

the values after “cyclic loess” normalization (cl.normdata),

o ok~ wbdE

the values after log2 transformation and “mean-centering” normalization
(mcL2.normdata),

7. the values after log2 transformation and “z-score” normalization (zL2.normdata),
8. the values after log2 transformation and “quantile” normalization (gL2.normdata),
9. the values after log2 transformation and “cyclic loess” normalization (clL2.normdata).

Besides density plots per method are produced and saved, Figure 7.4, to assist the user
upon which normalization approach to employ for the following mAP-KL analysis.
Though, this decision is not exclusive and the user may run a mAP-KL analysis multiple
times trying any of the available approaches and concluding to possible different
subsets of exemplars. Those subsets will form different classifiers and will be assessed
for their discrimination power with the aid of the “classification” function, Figure 7.5. This
function performs classification through the SVM algorithm and produces a classification
result either on the training set or on a validation set. The default SVM settings are:
"linear" kernel and 5-folds cross-validation although other options are feasible.

normTrainData <- preprocess(breast$trainData)
normTestData <- preprocess(breast§testData)
attributes(normTrainData)

## $names
## [1] "rawdata" "mc.normdata" "z.normdata" "q.normdata"

## [5] "cl.normdata" "mcL2.normdata" "zL2.normdata" "qL2.normdata"
## [9] "clL2.normdata"

Figure 7.3: The density plots per normalization method
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Figure 7.4: The density plots per normalization method

Indeed, we carried out eight different mAP-KL analyses and concluded to eight different
subsets of exemplars. Those subsets are bound to form different classifiers where all of
them will be assessed for their discrimination power with the aid of the classification
function, Table 7.1. This function performs classification through the SVM algorithm and
produces a classification result either on the training set or on a validation set. During
this analysis we assessed the performance on the validation set using the following
SVM parameters: ‘linear’ kernel and 5-folds cross-validation (although other options are
feasible). According to the classification results, the exemplars’ list produced after log2
transformation and cyclic loess normalization achieved the best discrimination results
and consequently will be further explored from a pathway and a network-topology
perspectives.
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# log2 transformation and cyclic loess normalization
exprs(breast$trainData) <- normTrainData$clL?.normdata
exprs(breast$testData) <- normTestData$clL2.normdata
out.clL2 <- mAPKL(trObj = breast$trainData, classLabels = "type",

valObj = breast$testData, dataType = 7)
# Hold-out classification
clasPred <- classification(out.clL2@exemplTrain, "type", out.clL2QexemplTest)
# log2 transformation and mean-centering mormalization
exprs(breast$trainData) <- normTrainData$mclL.?.normdata
exprs (breast$testData) <- normTestData$mcL2.normdata
out.mcL2 <- mAPKL(trObj = breast$trainData, classLabels = "type",

valObj = breast$testData, dataType = 7)
# Hold-out classification
clasPred <- classification(out.mcL2@exemplTrain, "type", out.mcL2Q@exemplTest)
# log2 transformation and quantile normalization
exprs(breast$trainData) <- normTrainData$qL2.normdata
exprs(breast$testData) <- normTestData$qlL2.normdata
out.qL2 <- mAPKL(trObj = breast$trainData, classLabels = "type",

valObj = breast$testData, dataType = 7)
# Hold-out classification
clasPred <- classification(out.qlL2@exemplTrain, "type", out.qL2@exemplTest)
# log2 transformation and z-score normalization
exprs(breast$trainData) <- normTrainData$zL2.normdata
exprs(breast$testData) <- normTestData$zL2.normdata
out.zL2 <- mAPKL(trObj = breast$trainData, classLabels = "type",

valObj = breast$testData, dataType = 7)
# Hold-out classificatzon
clasPred <- classification(out.zL2@exemplTrain, "type", out.zL2QexemplTest)

Figure 7.5: The density plots per normalization method

Table 7.1: Classification performance of gene exemplars per preprocessing method

Method Exemplars AUC MCC ACC TNR TPR
clL2 15 0.94 0.84 92.00 0.88 1.00
mcL2 40 0.88 0.82 92.00 1.00 0.75
gL2 40 0.88 0.82 92.00 1.00 0.75
z 17 0.81 0.62 83.0 0.88 0.75
mc 28 0.81 0.62 83.0 0.88 0.75
cl 17 0.75 0.63 83.0 1.00 0.50
o} 14 0.69 0.41 75.0 0.88 0.50
zL2 39 0.62 0.43 75.00 1.00 0.25
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Prior to pathway analysis we have to obtain relevant annotation info to the exemplars.
For this purpose we first run the “annotate” function with the argument “chip” equal to
"hgul133plus2.db” since this is the relevant microarray chip platform for that dataset. In
the sequel, we exploit the “ENTREZID” property to perform a pathway analysis utilizing
the “Reactome” pathway database [99].

gene.info <- annotate(out.clL2@exemplars, "hgul33plus2.db")
gene.info@results

#4# PROBEID SYMBOL ENTREZID ENSEMBEL MAP
## 1 215717_s_at FBN2 2201 ENSG00000138829 5q23-q31
## 2 1561358_at TXLNA 200081 ENSGO0000084652 1p356.1
## 3 222752_s_at TMEM206 55248 ENSGO0000065600 1932.3
## 4 233922_at <NA> <NA> <NA> <NA>
## 5 218871 _x_at CSGALNACT2 55454 ENSG00000169826 10q11.21
## 6 33323_r_at SFN 2810 ENSG00000175793 1p36.11
## 7 244311 _at <NA> <NA> <NA> <NA>
## 8 220932_at <NA> <NA> <NA> <NA>
## 9 205508_at SCN1B 6324 ENSG00000105711 19qi13.1
## 10 209596_at MXRAS 25878 ENSG00000101825 Xp22.33
##H 11 215180_at <NA> <NA> <NA> <NA>
## 12 1560638_a_at <NA> <NA> <NA> <NA>
## 13 201852_x_at COL3A1 1281 ENSGO0000168542 2q31
## 14 229947 _at PI15 51050 ENSGO0000137558 8q21.11
## 15 221731_x_at VCAN 1462 ENSGO0000038427 5q14.3

library("reactome.db")

# We first remove the 'NA' entries

genes <- gene.info@entrezId[!is.na(gene.info@entrezId)]

# Then we map the Entrez ID to Reactome pathway identifiers
qExtID2PathID <- mget(genes, reactomeEXTID2PATHID, ifnotfound = NA)
notNA.idx <- unlist(lapply(qExtID2PathID, function(i) '!all(is.mna(i))))
qExtID2PathID <- qExtID2PathID[notNA.idx]

pathID <- as.character(qExtID2PathID[[1]])

# Finally we map Reactome pathway identifiers to pathway

# names

pathName <- unlist(mget (pathID, reactomePATHID2NAME))

pathName

## 1474244
#H# "Homo sapiens: Extracellular matrix organization"
## 1566948
#H# "Homo sapiens: Elastic fibre formation"
## 2129379
## "Homo sapiens: Molecules associated with elastic fibres"
## 1474228

## "Homo sapiens: Degradation of the extracellular matrix"

Figure 7.6: Pathway analysis results

A. D. Sakellariou 131



Computational Methods for the Identification of Statistically Significant Genes: Applications to
Gene Expression Data of Various Human Diseases

A further functionality of this package is the computation of the exemplars’ network
characteristics, Figure 7.7. Particularly, the “netwAttr” function computes three different
types of centralities (degree, closeness, and betweenness) and a measure for clustering
coefficient called transitivity. The degree centrality of a node refers to the number of
connections or edges of that node to other nodes. The closeness centrality describes
the reciprocal accumulated shortest length distance from a node to all other connected
nodes. The betweeness centrality depicts the number of times a node intervenes along
the shortest path of two other nodes. The transitivity measures the degree of nodes to
create clusters within a network. For all four network attributes we provide both global
and local values. Based on the exemplars' network characteristics we may also identify
potential hubs, Figure 7.8.

net.attr <- netwAttr{out.clL2)
wDegreel <- net.attr@degree$Wdegreel [out.clL2@exemplars]
wClosenessL <- net.attr@closeness$WclosenessL[out.clL2@exemplars

wBetweenessL <- net.attr@betwcenness$WbetweennessL[out.clLQGGIQmpZar:]
wTransitivityL <- net.attrQ@transitivity$WtransitivityL[out.clL2@exemplars]
Global.val <- c(net.attr@degree$WdegreeG, net.attr@closeness$WclosenessG,
net.attr@betweenness$WbetweennessG, net.attrQ@transitivity$WtransitivityG)
Global.val <- round(Global.val, 2)
exempl.netattr <- rbind(wDegreelL, wClosenessL, wBetweenessL,
wTransitivityL)
netAttr <- cbind(Global.val, exempl.netattr)
netAttr <- t(netAttr)

netAttr

## wDegreel. wClosenessL wBetweenessL wTransitivityL
## Global.val 330.18 0.93 741.81 0.57
## 215717 _s_at 308.35 1.25 886.00 0.14
## 1561358_at 346.92 1.34 1141.00 0.14
## 222752 _s_at 327.89 0.65 0.00 0.14
## 233922_at 317.58 0.79 2.00 0.15
## 218871 _x_at 293.73 0.53 768.00 0.14
## 33323_r_at 338.19 0.27 0.00 0.13
## 244311 _at 294.80 0.63 0.00 0.15
## 220932 _at 359.10 0.66 0.00 0.14
## 205508_at 309.07 0.89 4.00 0.14
## 209596 _at 345.13 1.34 278.00 0.14
## 215180_at 333.37 1.37 1440.00 0.14
## 1560638_a_at  368.23 1.38 4615.00 0.14
## 201852_x_at 353.34 0.93 24.67 0.15
## 229947 _at 317.11 1.19 496.00 0.15
## 221731 _x_at 331.01 0.61 14.00 0.15

Figure 7.7: The exemplars’ network characteristics
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# For local degree > global + standard deviaiion
edev <- sd(net.attr@degrecfWdegreecl)

med <- mnet.attr@degrecefWdegreeG + sdev

hubs <- wDegreeL[which(wDegreel > msd)]

hubs

£% 220932_at 16560638_a_at
£% 359.10 368.23

Figure 7.8: The exemplars that are also network hubs

Furthermore, we compose an edge list (Nodel-Node2-weight) based on the top N
ranked genes (200 in this example) to interface with other network related packages.
Indeed, we may plot a network graph, Figure 7.9, for those nodes through packages like
igraph to present the relations-connections among the top N ranked genes. For both
significance and illustration purposes we have to set a rule that “their local weighted
degree is greater than Global weithed degree plus 2 times the standard deviation”.

sdev <- sd(net.attrQdegree$Wdegreel)

ms2d <- net.attrQ@degree$WdegreeG + 2 * sdev

net <- net.attrQdegree$WdegreeL[which(net.attrQdegree$Wdegreel >
ms2d) ]

idx <- which(net.attrQedgelist[, 1] %in), names(net))

new.edgeList <- net.attrQedgelist[idx, ]

dim(new.edgeList)

## [1] 604 3
require(igraph)

g = graph.data.frame(new.edgeList, directed = FALSE)
tkplot (g, layout = layout.fruchterman.reingold)

Figure 7.9: A network graph of the weighted local degree of centrality
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Finally, the overall analysis is summarized in an html report produced by the “report”
function, Figure 7.10. It covers the dataset representation depicting the samples' names
and their respective class labels, the exemplars section where statistical results and
network characteristics are included. The classification performance section illustrates
the performance metrics achieved in either cross-validation or hold-out validation. The
last section of this report presents annotation info relevant to the chip technology.

mAP-KL Analysis Report

Sat Dec 06 20:54:13 2014

Data Samples

GSMl}oSSa G‘MLASQI

GSM134690 0 GSM134588 0
GSM134693 0 GSM134688 0
GSM134696 0 GSM134694 0
GSM134586 0 GSM134697 0
GSM134589 0 GSM134700 0
GSM134699 0 GSM134687 0
GSM134702 0 34709 0
GSM134705 0 GSM134710 1
GSM134708 0 GSM134698 1
GSM134703 0 GSM134689 1
GSM134706 0 GSM134692 1
GSM134701 1

GSM134704 1

GSM134587 1

GSM134591 1

GSM134707 1

GSM134695 4

-
715717 _s_at 0.885 || 0.001 2.25. 308.35 1.25 D 14
1561358_at 0.928 || 0.001 1.24 346.92 1.34 1141 0.14
222752_s_at 0.947 || 0.001 0.88 327.89 0.65 0 0.14
233922_at 0.952 || 0.001 || -1.102 317.58 0.79 2 0.15
218871 _x_at 0.987 || 0.001 0.901 293.73 0.53 768 0.14
33323_r_at 0.997 || 0.001 || -0.701 338.19 0.27 0 0.13
244311 _at 0.999 [ 0.003 || -1.355 294.8 0.63 0 0.15
220932_at 0.999 || 0.002 || -1.069 359.1 0.66 0 0.14
205508_at 1 0.001 || 1.349 309.07 0.89 4 0.14
209596_at 1 0.002 1.662 345.13 1.34 278 0.14
215180_at 1 0.003 || -1.888 333.37 1.37 1440 0.14
1560638_a_at 1 0.001 || -2.336 368.23 1.38 4615 0.14
201852_x_at 1 0.002 2.239 353.34 0.93 24.67 0.15
229947_at 1 0.003 || -4.004 317.11 1.19 496 0.15
221731 _x_at 1 0.001 2.046 331.01 0.61 14 0.15

Classification Performance

(Hold-out Validation)

0.94 92.00 0.84 0.88 1.00
s> | s | owmew | osoeno | ]
715717 _s_at FBN2 2201 ENSG00000138829 5g23-q31
1561358_at TXLNA 200081 ENSG00000084652 1p35.1
222752_s_at TMEM206 55248 ENSG00000065600 1q32.3
233922_at NA NA NA NA
218871_x_at CSGALNACT2 55454 ENSG00000169826 10q11.21
33323_r_at SFN 2810 ENSG00000175793 1p36.11
244311 _at NA NA NA NA
220932_at NA NA NA NA
205508_at SCN1B 6324 ENSG00000105711 19q13.1
209596_at MXRAS 25878 ENSG00000101825 Xp22.33
215180_at NA NA NA NA
1560638_a_at NA NA NA NA
201852_x_at COL3A1 1281 ENSG00000168542 2q31
229947 _at PI15 51050 ENSG00000137558 8g21.11
221731_x_at VCAN 1462 ENSG00000038427 5q14.3

Figure 7.10: The summarized mAP-KL analysis report
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7.4. Availability and Future Directions

As part of the Bioconductor project, the mAPK package is freely available under the
GPL-2 or later license accompanied with detailed help pages per class and function.
Besides, an elaborate vignette introduces all available functionalities through a case
study scenario that is based on the ‘mAPKLData’ bioconductor experiment data
package. Thus, the user can see both illustrated codes and executed outputs and get
easily accustomed to the package. Moreover, the Bioconductor project guarantees the
easy implementation and platform independence, the versioning of the forthcoming
package releases and the obliged that the package will be maintained by the author,
which includes response to bug reports or queries from other users as well as checking
periodically the functionality of the package. The potential expansions of the mAPKL
package will include the adoption of methods for network reconstruction other than the
‘clr method [119] which is employed in the current version of the netwAttr function.
Besides, methods related to functional enrichment and advanced graphics designate
our subsequent directions.
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8. DISCUSSION, CONCLUSIONS AND FUTURE WORK

8.1. Discussion

Feature selection in microarray data based on the differential expression of genes
between two phenotypes, is a research topic which has drawn scientific interest from
the late 90s. Numerous algorithmic approaches have been proposed so far trying to
identify those significant genes that can be characterized as marker genes. Marker
genes are supposed to encompass both, discrimination ability and biological relevance.
The discrimination ability characteristic, envisages the accurate discrimination of
samples between two phenotypes (e.g. normal vs. disease) with a limited number of
genes. Although this criterion appears to have been accomplished, according to the
published classification results, in essence, this is not the case. The reason is a
complementary characteristic called generalization. Certainly, discriminating samples of
a specific disease for a particular dataset is not adequate. The ultimate goal is to
conclude to a set of genes that achieve accurate classification at any dataset relevant to
the disease and phenotypes.

As far as the biological relevance is concerned, the marker genes shall be related to the
disease. In reality the selected genes are not a priori associated with the specific
disease. The inherent noise in gene expression data, the diversity of microarray
platforms and normalization methods that at the end influence the measured intensities
and their variability across the dataset, are some of the reasons that some of the
differential expressed genes are from other causes rather than biological. On the other
hand, biologists ask for gene lists of a reasonable number of genes, approximately less
than 50 genes depending on the disease, which also include all or the majority of the in
vivo identified relevant genes.

So far no method has addressed those two goals to a widespread number of cases and
diseases to be considered as the gold standard. As a consequence a plethora of
methods have been developed trying to achieve the best possible compensation
between classification accuracy and biological relevance. Despite any differences
among those methods there are also some common key characteristics that enable
their classification into distinctive categories. The filter, wrapper and embedded are
three principal classes of feature selection methods with the respective advantages and
disadvantages. Methods belonging to one of those categories may be combined with
other computational intelligence methods, e.g. clustering, to provide new methods with
improved characteristics.

Those new offspring methods are generally called as “hybrid” methods and aspire to
capitalize the benefits of the parent methods to achieve significantly improved gene
selection. Therefore, the development of new approaches is actually an ongoing
process in the advent of either new biological notions, for instance about genes’
correlation, or computational hardware advances, for example multi-threading or parallel
computing, where all of which may bring a new era in the process of gene selection.

8.2. Conclusions and future directions

In this dissertation we proposed a hybrid method (mAP-KL), which clearly demonstrates
how effective the combination of a multiple hypothesis testing approach with a
clustering algorithm can be to select small yet informative subsets of genes in binary
classification problems. Particularly, across a variety of diseases and datasets, mAP-KL
achieved competitive classification results (Figure 5.1), compared to other FS methods
and specifically to HykGene method, which follows a similar philosophy i.e. first ranking
and then clustering. The advances of mAP-KL over HykGene or other similar
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approaches discussed during chapter 1 stem from three key characteristics; the data-
driven nature, the affinity propagation clustering, and the classifier independence.
Indeed, the engagement of a cluster quality index, the Krzanowski and Lai, diminishes
any fuzziness and provides the clustering algorithm with a representative number of
potential clusters, as clearly presented in the first simulation data setup. According to
the clustering results in the simulated data of six different datasets with variable number
of clusters, the mAP-KL managed to identify successfully the underlying cluster
distribution. Though, we have to emphasize that accurate cluster quality indexing is in
close relation to the size of data applied. Especially, by differentiating the number of
differential genes and the number of top N ranked genes, we concluded that the closer
to the DEGs is the number of the top N ranked genes the more accurate the
identification of the clusters is.

Following the identification of the number of clusters, the employment of AP clustering
algorithm, deals effectively with the issue of representative genes per cluster. Other
comparable approaches to mAP-KL admitted considerably difficulties on selecting
effectively one or more representative genes per cluster. For instance, in the Hanczar et
al. study a mathematical notion, the prototype gene, was formulated towards the
representative genes issue but considered as an attempt that needed further
improvement. On the other hand, according to AP the exemplars are the central genes
within a cluster of genes presenting a network oriented approach. This network driven
perspective of the association of genes during molecular processes has gain ground
lately through the systems biology field and it is a springboard for further improvements
in the mAP-KL’s methodology.

In relation to the exemplars, we assessed them from a classification as well from a
biological point of view. The main reason is that representative genes may considered
as marker genes if and only if are also related to the disease. Therefore, the
classification results are inadequate to characterize a set of genes as marker genes
unless they discriminate unknown samples of the relevant disease with a similar
accuracy, generalization property, and contain genes that are associated with the
disease. Actually, it is believed that the association is the reason for generalization and
not contrariwise. In other words, if a set generalizes during several datasets it is bound
that some of its genes are closely related to the disease.

Hence, in chapter 6 we conducted a biological relevance analysis on the selected gene
sets among the best FS methods, according to their classification results in the study,
including the mAP-KL. The disease association analysis, clearly demonstrates that the
existence of relevant genes influence the classification process. Indeed, the mAP-KL
achieved a 0.71 AUC score in leukemia, where none of the selected genes found to be
related to the disease. In LGMD2B the AUC score was 0.70 with two relevant genes
whereas in LGMD2A was 1.00 with two genes, too. This observation might be important
for the improvement of the method and further analysis is necessary to unveil the
intrinsic reasons for this outcome. However, in many other diseases the mAP-KL had
enough representatives including in its subset, considering that mAP-KL concluded
usually to a shorter list than the other FS with the fixed 20-genes length, reflecting the
positive classification performance.

So far, in mAP-KL the data determine the size of the subset i.e. the number of
clusters\features and the clustering algorithm decides on which informative genes are to
be included. Contrary to other methods, for example HykGene, where a classifier is
wrapped around its method, in our case no classifier takes part during the subset
construction. This methodological characteristic is of great importance since our subsets
lack of any overfitting phenomenon pertinent to classifiers. We verified this belief by
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applying a diverse of classification algorithms on our subsets. Particularly, we employed
the SVM with linear kernel classifier, the KNN and the Random Forest classifiers, all of
which follow a different algorithmic perspective. In most of the diseases the
classification performance is almost identical, Figure 5.2, although we used the same
parameters set up in each classifiers across all diseases.

Taking into account all the aforementioned issues, we may claim that the novelty and
strength of mAP-KL is the efficient sampling of the ranked gene list, selecting those
genes that are necessary for improved classification, rather than keeping just a
predefined number of top N ranked genes. A further advantage of the employment of
mMAP-KL is that the clustering correlation on the gene expression values may reflect
biological relevance of the selected genes with the respective disease, thus providing a
reasonable basis for discovering prognostic biomarkers.

In addition, the clustering nature within the mAP-KL methodology raises expectations
for potential expansions to gene-network-inference. Indeed, on the one hand the initial
ranking and on the other hand the subsequent clustering, confront to the general view of
functional units i.e. groups of genes with similar functions based on their expression
values [120]. Therefore, mining the “exemplars” it can be considered as the forefront of
a network inference process rather than just the outcome of a feature selection
approach. As such, we intent to construct networks based on the top N genes of our
methodology and then to exploit the network characteristics of the “exemplars” to
produce graphical representations of the cellular network topology, where genes  are
represented as vertices that are connected by edges representing potential direct
regulatory interactions. An initial attempt towards this expansion has already been
applied in the mAPKL r-package (see section 7.3). Though, more network inference
methods for the reconstruction of gene regulatory networks and tests for functional
enrichment designate our subsequent directions.
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