NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Fault Detection Methodology for Caches in Reliable Modern
VLSI Microprocessors based on Instruction Set Architectures

Georgios A. Theodorou

ATHENS
SEPTEMBER 2012

EONIKO KAI KAMOAIZTPIAKO MNMANENIZTHMIO AOGHNQON

2XOAH OETIKQN EMIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNION

NMPOrPAMMA METANTYXIAKQN ZIMOYAQN

AIAAKTOPIKH AIATPIBH

MeBodoAoyia Avixveuong EAatTwpdaTwy Kpupwv Mvnuwyv
yia Ai16tTioToug ZUuyXpovoug VLSI MIKpoeTregepyaoTEG TTOU
BacifeTal oe ApXITEKTOVIKEG ZUVOAOU EvTOAWwv

Mlewpylog A. Osodwpou

AOHNA
2EMTEMBPIOZ 2012

PhD THESIS

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors
based on Instruction Set Architectures

Georgios A. Theodorou

SUPERVISOR: Antonios Paschalis, Professor NKUA

THREE-MEMBER ADVISORY COMMITTEE:

Antonios Paschalis, Professor NKUA
Dimitrios Gizopoulos, Associate Professor NKUA
Konstantinos Halatsis, Emeritus Professor NKUA

SEVEN-MEMBER EXAMINATION COMMITTEE

Antonios Paschalis,
Professor NKUA

Konstantinos Halatsis,
Emeritus Professor NKUA

Kiamal Pekmestzi,
Professor NTUA

Mihalis Psarakis,
Assistant Professor UNIPI

Dimitrios Gizopoulos,
Associate Professor NKUA

Aggeliki Arapoyanni,
Professor NKUA

Nectarios Koziris,
Associate Professor NTUA

Examination Date 3/09/2012

AIAAKTOPIKH AIATPIBH

MeBodoAoyia Avixveuong EAaTTwpdatwy Kpupwv Mvnuwv yia AGIOTTIOTOUG ZUYXPOVOUG
VLSI Mikpoetre€epyaoTég TToU BaacideTal o€ APXITEKTOVIKEG ZUuvOAou EvToAwy

Mlewpylog A. Osodwpou

EMIBAENQN KAOHIHTHZ: Avtwviog MNMaoxdAng, Kabnyntrg EKIA

TPIMEAHZ ENITPOMNH NAPAKOAOYOHZHZ:
AvTtwviog MaoxdaAng, Kabnyntmg EKMA
AnunTpiog Nki{émrouAog, Av. Kabnyntr¢ EKIA
KwvoTavrivog XaAdrong, Ou. KaBnyntig EKIMA

ENTAMEAHZ EZETAZTIKH ENITPOIMNH

AvTtwviog NMaoxdaAng, AnunTpiog Nki{éouAog,
Kaényntng EKIMA Av. KaBnyntig EKINA
KwvoTavtivog XaAdrtong, AyyeAikn Apatroyidvvn,
Opu. Kabnyntig EKIMA Kafnyitpia EKMA
KiapaA MekpeoTln, NekTdpiog Kolupng,
Kaényntig EMI Av. Kabnyntig EMI

MixdaAng Wapdakng,
Etr. Kadnyntig MANEI

Huepopunvia egétaong 3/09/2012

ABSTRACT

The present PhD thesis introduces a low cost fault detection methodology for small
embedded cache memories that is based on modern Instruction Set Architectures and
is applied with Software-Based Self-Test (SBST) routines. The proposed methodology
applies March tests through software to detect both storage faults when applied to
caches that comprise Static Random Access Memories (SRAM) only, e.g. L1 caches,
and comparison faults when applied to caches that apart from SRAM memories
comprise Content Addressable Memories (CAM) too, e.g. Translation Lookaside Buffers
(TLBs). The proposed methodology can be applied to all three cache associativity
organizations: direct mapped, set-associative and full-associative and it does not
depend on the cache write policy. The methodology leverages existing powerful
mechanisms of modern ISAs by utilizing instructions that we call in this PhD thesis
Direct Cache Access (DCA) instructions. Moreover, our methodology exploits the native
performance monitoring hardware and the trap handling mechanisms which are
available in modern microprocessors. By effectively combining these features of modern
microprocessors the proposed methodology applies March write and read operations
with lower cost (code size, execution time, system performance overhead) when
compared with other proposed solutions in the literature for fault detection in caches
through SBST. Moreover, the proposed Methodology applies March compare
operations when needed (for CAM arrays) and verifies the test result with a compact
response to comply with periodic on-line testing needs. Finally, a multithreaded
optimization of the proposed methodology that targets multithreaded, multicore
architectures is also presented in this thesis. The proposed multithreaded optimization
exploits the thread level parallelism of multithreaded, multicore architectures and the
low level multiple sub-bank organization of modern cache designs to speedup March

tests while preserving the March test quality.

The proposed methodology was applied to three processor benchmarks: a) OpenRISC
1200 b) LEON3 and c) OpenSPARC T1. In detail, the methodology was applied to the
L1 caches of all three processor benchmarks and to the TLBs of OpenSPARC T1
processor. The multithreaded optimization was demonstrated on the multithreaded,
multicore OpenSPARC T1. Experimental results both for the test code size and test
execution time of several March tests demonstrate the effectiveness of the proposed
methodology, its high adaptability and the significant improvements in terms of test time
(86% for instruction L1 cache, 87% for the data L1 cache, about 40% for D-TLB and

about 82% for I-TLB) and test code size (83% for instruction L1 cache, 86% for the data
L1 cache, 3% for D-TLB and 35% for I-TLB) when the methodology is applied to the
same benchmarks (LEONS3 for L1 caches and OpenSPARC T1 for TLBs) and such
DCA instructions are exploited compared to SBST solutions that don’t utilize these
types of instructions. Moreover, experimental results show a speedup of more than 1.7
(for two threads) and more than 3.7 (for four threads) in test time when the proposed

multithreaded optimization is applied to the L1 caches of OpenSPARC T1.

Finally, a test evaluation framework was implemented for several on-line periodic test
scenarios in order to evaluate the system performance overhead of the proposed
methodology under typical workloads (PARSEC benchmark suite). Simulation results
show a performance overhead of less than 11% in strict scenarios and less than 6% in
regular scenarios (e.g. periodic testing of L1 caches of all cores every one minute) for

multicore architectures.

SUBJECT AREA: Hardware and Computer Architecture

KEYWORDS: Microprocessor testing, Reliability, Software-based Self-test, On-line

testing, Memory testing, March tests

NEPIAHYH

H 1Tapouca O1dakTopIKA dIatpIfr] €l0dyel pia xapunAou kootoug upeBodoAoyia yia Tnv
QViXVEUON EAATTWHATWY OE WIKPEG EVOWUATWHEVEG KPUPEG PVAMEG TTOU BacieTal o€
ouyxpoveg ApXITEKTOVIKEG ZuvOhou EvrioAwv (Instruction Set Architectures - ISAs) kai
epapuoletal pue AoyiopikO auTtodokiung. H trpoteivopevn peBodoloyia epapuolel
aAyopiBuoug March péow AoyiopikOoU yia Tnv avixveuon TOCO €AATTWHATWV
ammobnkeuong Otav €QAPUOCETAl O€ KPUQPEG MVIMEG TTOU TTEPIEXOUV HOVO OTATIKEG
MVAMESG Tuxaiag TTpooTréAaong (Static Random Access Memories - SRAMS) 6TTwg yia
TTapddelyua Kpupeg uvnueg emtédou 1 (L1 caches), 600 kal eAATTWUATWY OUYKPIONG
OTav €£QAPUOLETAl O KPUPEG UVIMEG TTOU TTEPIEXOUV €KTOG attd SRAM pviueg Kal
MVAMES dleuBuvaolodoToupeveg péow TTepiexouévou (Content Addressable Memories -
CAMS), OTwg yia TTapadelyya TTANPWS CUOXETIOTIKEG KPUPEC MVAMES avalnTnong
MeTa@paong (Translation Lookaside Buffers - TLBs). H trpoteivouevn pebBodoloyia
EQPAPMUOLETAI KAl OTIG TPEIG OPYAVWOEIG CUOXETIOTIKOTNTAG KPUQPNG MVAUNG: AueEoNg
ATTEIKOVIONG, CUCXETIOTIKI] OUVOAOU Kal TTANPWGS CUCXETIOTIKN KAl €ival avegaptnTn mng
TTONITIKAG €YYPOYNG OTO €TTOMEVO €TTiTTEdO TNG lEpapxiag. H peBodoloyia aglotrolei
UTTAPXOVTEG I0XUPOUC WNXAVIOUOUG TwV HOVTEPVWY ISAs XpNnOoIYOTTOIWVTAG EIOIKEC
EVTOAEG, TTOU ovopddlovtal otnv Trapouca diaTpIBry EvioAég Aueong [lNpootréAaong
Kpuoric MvAung (Direct Cache Access Instructions - DCAs). EmimtAéov, n TTpoTeIivOuEvn
peBodoAoyia eKUETAAAEUETAI TOUG EPQUTOUG MNXAVIOPOUG KaTtaypa®ng atrdédoong
(performance monitoring hardware) kai Toug UnNXaviopoug XelpiIopou Trayidwv (trap
handlers) TTou cival Ol100£0IUOI OTOUG OUYXPOVOUG ETTEEEPYAOTEG. 2UVOUALOVTAG
ATTOOOTIKA QUTA TO XOPAKTNPIOTIKA TwV CUYXPOVWYV ETTECEPYACTWY, N TTPOTEIVOUEVN
peBodoAoyia epapudlel TIC AEITOUPYiEG YpaWiaTOG Kal dIaBAcuaTog Twv aAyopibuwv
March péow AOYIOHIKOU phE XAPNAOTEPO KOOTOG (MEYEBOG KWOIKA, XPOVOG EKTEAEONG,
eMPBApuvon TNG a1rddO0NG TOU CUCTAPATOG) O OXEON ME AANEG TTPOTEIVOUEVEG AUCEIG
oTnv BiBAloypagia yia Tnv avixveuon €AATTWHATWY KPUPWV HPVAPWY HE TN XPnon
AoyiopikoU auTtodokiung. EmmpdoBeta, n mpoTeivouevn pebodoloyia e@apudlel tnv
AeiToupyia ouykpiong Twv aAyopiBuwyv March étav autr atmraiteitar (yia pvipeg CAM)
KAl ETTAOANOEUEI TO ATTOTEAECHA TOU EAEYXOU PEOW OUVTOUNG ATTOKPIONG, WOTE va gival
oupBar) de TIC ATTAITACEIG TOU €AEyXou €viog Acitoupyiag. TEAog, oTn diaTpiBn
TTpoTeiveTal pia BeATioTotroinon TG peBodoAoyiag yia TTOAUVNUATIKEG, TTOAUTTUPNVEG
APXITEKTOVIKEG. H TTpoTEivOopevn BeATioTotroinon aglotrolei Tnv TrapaAAnAia emmTEdou

VAMOTOG TWV TTOAUVNUATIKWY, TTOAUTTUPNVWY APXITEKTOVIKWY Kal TNV TTapdAAnAn

opyavwaon XapnAou emmmédoU Twv OUYXPOVWY KPUPWYV WVNPWY O€ TTOAAQTTAEG
TPATTECEC PVANNG YIa va ETTITAXUVEI TNV EKTEAECT Twv aAyopiBuwv March diatnpwvTag

TTAOPAAANAQ TNV TTOIOTATA AViIXVEUONG EAATTWHATWV.

H trpoteivouevn peBodoAoyia epapudoTnKe o€ TpeIg eTTecepyaocTéG: a) OpenRISC 1200
B) LEON3 kai y) OpenSPARC T1. o ouykekpipéva, n uebodoAoyia eQapuooTnKe OTIG
L1 caches kai Twv TpiwVv emmeEepyacTwy Kal oTIG TLBs Tou emmegepyaotry OpenSPARC
T1. H rpoTteivopevn BeATIOTOTTOINON TNG TTAPAAANAIOG O€ ETTITTEDO VIUATOG EQAPPOOTNKE
otov TToAuvnuaTtiké, TroAuttupnvo emegepyaotry OpenSPARC T1. T[leipapatikd
atmmoTeAéoATA TOOO YIO TOV XPOVO €KTEAEONG, OCO Kal yia TO HEYEDOG TOU KWOIKA
olapopwv aAyopiBuwv March amodeikviouv TNV ATTOTEAECMATIKOTNTA TNG
TIPOTEIVOUEVNG PEBODOAOYIAG, TNV TTPOCAPHOCTIKOTNTA TNG KAl T ONPAVTIKI BEATIwonN
T600 OTO XpOvo ekTéAeong (86% yia tnv L1 cache evioAwv, 87% yia tnv L1 cache
oedopévwy, Trepitou 40% vyia tnv TLB dedopévwy Kkal Trepitrou 82% yia tnv TLB
EVTOAWV), 600 Kal aTo pEyeBOG Tou Kwdika (83% yia Tnv L1 cache evioAwyv, 86% yia Tnv
L1 cache dedopévwy, 3% yia Tnv TLB dedopévwy kal 35% yia tnv TLB evioAwv) otav n
peBodoAoyia epapudleTal oToug idloug eTTeCEpyaoTEG avagopds (LEON3 yia 1ig L1
caches kar OpenSPARC T1 yia 1i¢ TLBS) kai aglotrolouvtal T€ToiEG evioAég DCA o€
ouykpion Me GANec TTpoTeivOueveG AUcelc otnv BIBAloypagia yia Tnv avixveuon
EAATTWHUATWY KPUPWY PVNUWY TTOU £Qappolovtal ue AoyIOHIKO QUTOOOKIUNAG TToUu eV
aglotrolouv auTég TIG evioAég. EmmpdoBeta, Ta meipapatik@ atmmoteAéopaTta £9g1cav
emTayxuvon mavw amod 1.7 (yia duo vApara) kai 3.7 (yia TE0oEpa VAPATA) Tou XPOvou
EKTEAEONG, OTAV N TTPOTEIVOUEVN BEATIOTOTTOINON TNG TTAPAAANAiag o€ TTiITTEdO VIAPATOG

EQPAPPOOTNKE OTIC KPUPES pvueS eTITTEOOU 1 Tou OpenSPARC T1.

TéNog, ulotroiBnke €va TTAQICIO ATTOTIUNONG YIA JIAQOPETIKA OCEVApPIA TTEPIOOIKOU
eAEyxou €vTOG AeIToupyiag Tou ouoTAuaTog (on-line) pe 1O OTToio agIoAOYABNKE n
EMPBApuvon TNG avixveuong eAATTWPATWY oTnv amédoon Tou CUCTHPATOG UTTO Thv
TTapoudia TUTTIKOU @opTiou epyaciag (oouita peTpotTpoypapudtwy PARSEC). Ol
TIPOCOPOIWOEIG €BEIEAV ETTIBAPUVON aTTOd00NG HIKPOTEPN Tou 11% Ot auoTnpd oevapia
Kal MIKPOTEPN TOU 6% o€ ouvnOn oevdpia (TT.X. TTEPIOdIKOG EAeyX0g Twv L1 caches dAwv

TWV TTUPAVWY KABE £va AETTTO) yIa TTOAUTTUPNVES APXITEKTOVIKEG.
OEMATIKH NEPIOXH: YAIKO kai ApXITEKTOVIKH YTTOAOYIOTIKWY ZUCTNUATWV

AEZEIZ KAEIAIA: 'EAeyxog pIKpoeTTECEPYQOTWY, AIOTTIOTIA, AViXVEUOn €AATTWUATWY
TTOU EQAPMPOLETAl UE AOYIOMIKO auTOOOKIWNAG, 'EAcyxog eviog Acitoupyiag, 'EAeyxog
Mvnuwy, AAyopiBuol March

2TOUG YOVEIC Uou, TNV adeAQR UOU Kal OAES TIC QIAESC Kal TOUS QIAOUC OU TTOU UE
evlappuvav Kai ue othpiéav yia va 0AoKANpwow autd 1o SUCKOAO £pyo

To my parents, my sister and all my friends who encouraged and supported me to
complete this demanding task

ACKNOWLEDGEMENTS / EYXAPIZTIEZ

H ektrévnon tng O1I0AKTOPIKAG dIATPIBAG OTTOTEAEI YIa HOKPA, ETTITTOVN OAAG €CAIPETIKG
OnuIoupyIkA Kal euxdaploTtn dladikacoia, oTnv otroia TToAAoi CuVERAAav TTOIKIAOTPOTTWG,

Kal TOuG o1roioug Ba ABeAa va euxapioTAowW €k BaBous KapdIdg.

Katapxnyv, Tov EmBAETOVTA KABNynTH pou K. Avtwvn MaoxdAn, o otroiog utrApe TTNyn
EUTTVEUONG, NON atmd To TTPOTITUXIOKS ETTITTEDO OTTOUOWYV PEOW TWV PABNUATWY TTOU
OI0A0KEl, WOTE va aoXOAnNBw pe TNV TIEPIOX TNG AIOTTIOTIAG UTTOAOYIOTIKWV
OUCTNUATWY, TNG GPXITEKTOVIKNG ETTECEPYAOTWYV KAl TOU UAIKOU UTTOAOYIOTWYV YEVIKOTEPQ.
Tov guxapioTw Bepud yia TNV KaBodriynon Tou, g€ 6An Tnv dIdpKeIa TNG EKTTOVNONG TNG
dlaTpIBG, TNV OouveX Kal TTOAUTTAEUpn UTTOOTAPIEN TOU KAl TNV AuéPIOTn
OUPTTaPAcTacn OTIG KOAEG OAAG KUPIWG OTIG OUOKOAEG OTIYUEG TTOU ouvAvTNoa o€ OAa
QuUTA Ta XPOVIa TNG TTPOCTTABEING JOoU, TNV APECOTNTA KABWGS Kal TNV dIaBecIOTATA TOU

aKOua o€ TTEPIOOOUG HEYAAOU POPTOU EPYATIiag.

©a BeAa va guxaplioTiow, £triong Tov AvatmAnpwtr) Kadnynth k. Anuntpio Mki{61TouAo
yla TNV wonon Kal TIG TTOAUTINEG CUMPBOUAEG TOU Kal TNV CUPTTOPACTACN TOU TTOU
BoriBnoav onuavTikd otnv €miTuxy oAokARpwon NG diatpipng. Euxapiotw akdpa Tov
Ouomiyo KaBnynm k. Kwvotavrtivo XaAdton yia Tnv CUPHETOXA TOu oTnv TpPIYEAN

Emrpotm) NapakoAouBnong.

ETriong, Ba nBeAa va euxapiotiow Bepud 10 diddkTopa NekTdpio Kpavitn yia Th ouvexn
BonBeia kal cupuPBoAf Tou oTnv ekTovnon TnG O1IaTPIBAS Mou. O1 yVWOoEIG TToU [Hou
METEOWOE OTO apxikd oTadio TNG OIaTPIBAC MOU Kal Ol KaipIEG ETMIONUAVOEIC,
KATEUOUVOEIG KAl TTAPAIVEDEIG TOU, OAQ auTA Ta XPpOvId, ATTOTEAOUV TOV aKPOoywvIaio AiBo

TTAVW OTOV OTT0I0 OTNPIXTNKE N dIATPIRK HOou.

AKOuN guxaploTw TOV TTOAU KOAO pou @iho Kal O1dakTopa Avipéa Mepevrtitn, PE TOV
OTTOI0 MOIPACTAKAME MIO KOIVI) TTOPEId KOl OUVEPYOOTAKAME TTOANEG @QOpPEC aTTd TO
ETTITTEDO TWV TTPOTITUXIOKWY CTTOUBWYV PEXPI TO DIDAKTOPIKG KAl TNV TTOAU KA POU @iAn
d10akTopa EAévn MMartouvn. Toug euxapioTw Kal Toug duo Bepud yiati utipgav yia
Xpovia ouvodoITTopol oTnv TTPooTrddsia you. Méoa ammd uia dpiotn @IAia, atd Tov
TTPOTITUXIOKO KUKAO OTTOUDWYV OKOUA, MOIPACTAKAME EPEUVNTIKEG KOl TTPOCWTTIKEG

QAVNOUXieG yIa TNV ETTIAUCT BUOKOAIWYV Kal AvTIE0OTATWY aTTd KoIvou OAa auTd Ta Xpovia.

Emmpdobeta, euxapiotw Oepud TOoug 14 €pyodoTeg (TTpoioTduevol Tunuatwy TEI,
O1eubuvTég IEK, dieuBuvtéc KEK, d1euBuvTéEG @povTIoTNPIWY KATT.) yIa TOUG OTTOIOUG £XW

epyacTei OAa autd Ta YPOvia TTAPAAANAa pe TNV ekmmovnon TnG OIOAKTOPIKAG HOU

dIaTPIBAG TTOU HYE EUTTIOTEUTAKAV YIa va BIOAEW OTOUG OTTOUdAOTEG TOUuG TTAvw atrd 30
BewpnTIKA Kal epyacTtnpiakd padnuara, e¢ac@alifovrag Tov BIOTTOPICKO pou aAAd Kal

QTTOKOMICOVTOG HOVADIKEG EUTTEIPIEG OTOV XWPO TNG UETAAUKEIOKNG EKTTAIOEUONG.

BaBid euyvwpoolvn viwbw yia TNV OIKOYEVEID POU: A) TOUG Yoveig pou Apyupn Kal
AyYYEAIKN, Ol ApXEC Twv OTToiwV dIaUOPPWOaV TNV TTPOCWTTIKOTNTA POU Kal ol Buaigg
TOUG JoU £dwaoav TNV duvatoTnTa va OAOKANPWOW TIG TIPOTTTUXIOKES KOl METATTTUXIOKEG
MOU OTTOUBEG aTTPOOKOTITA XWPIG va pyaloual av Kal EpXOUEVOG aTTd TNV ETTAPXIA Kal
o@uPNAATNOaV TNV ATTOQACIOTIKOTNTA WOU yId TNV ETTITEUEN €vOG TOOO QATTAITNTIKOU
oTOXOoU OTTWG N oAokAfnpwaon TnG dIdakTopikNG diatpIfng, B) Tnv adeAgr) pou Kal

OUYKATOIKO Pou A€via yia TNV aUEPIOTN CUPTTAPAOTACN TNG, OAQ auTd Ta XPOVIA.

KAgivovTag, euxapioTw OAEG TIG QIAEG Kal TOUG QPIAOUG POU TTOU O€ Mia TOOO MEYAAN
dladpoun otddnkav dITTAa pou, PE OTAPICaV Kal hJe evBAppuvav APeca) EUUECT PE TO
OIKO TOUG TPOTTO dIAPOPPWVOVTAG Eva UYIEG PIAIKO TTEPIBAANOV Yéoa oTo oTToI0 Biwoa
XOPEG, AUTTEC, OUYKIVAOEIG, avTIBEDEIS Kal TTAvw atmd OAa AuBevTIKEG Kal POVADIKES

TIPOCWTTIKEG OTIYUEG.

MpwrTioTwg, euxapIoTw ToV @b TTou Pe Borbnoe va Eemepdow KABe avTigooTNTA.

Mewpylog A. ©Ocodwpou

ABnva, ZemrtéuBpiog 2012

TABLE OF CONTENTS

1. INTRODUCTION ...ocoiicirrsrserssrsssrssssssasssassssssssssssssssssssssssnsssnsssnssasssssssssssssasssassssssssnsssnsssasssasssnsens 29
1.1 Dependability and reliability in VLSI CIFCUItS...c...uiiiiiiieeieecceiiiieeeiieceeeeseseeneasseeeseseeeenssssesssseeennnsssssssssesenns 29
1.2 Manufacturing testing: Basic PrinCiples.........ccuiiiiiiiiiiiiiiiiiiiiiiiiinsrrsrressse e 31
1.3 On-Line testing: BasiC PrinCiPles. ... ciiiiiiiiiimiiiiiiiiieeieiccestteernnssssesesseesnssssssssssssesnnssssssssssssnnsssssssssssenne 36
1.4 On-Line testing of embedded memories in microprocessor designs........ccccccceeeeiririreenencecereeeeeennnceeesseeenns 37
1.5 Contribution of this thesiscciiieiiiiiiiiiiiiiiiiiiiii s rrrrssesse s s ssssssssssssnsessssssssssssseenns 39
2. MEMORY TESTING - MARCH TESTS.....cottcrrrmrmnmsrnssmsmnssssssssssssmsssssssssssssssssssssms snsssssssnssssnnes 43
2.1 SRAM MeEMOrY arChItECtUIE. ...cccvueeiiiiiiiiieiiiiiciiintrreeeiiestttesnaeessssssetsesnsssssssssessssssssssssssseesnssssssssssssesnnnsnes 43
0 00 R |V 1T ' To T V11 o Yo 1= £y SSPSSRNE 43
2.1.2 FUunctional SP SRAM MOELccoouiiiiiiiiie ettt e eete e e et e e e e ate e e e tbeeeesabaeeeeassesessseaeessreeasnnnes 44
2.13 Electrical SP SRAM MOUEIuuiiiiiieeeeeee ettt e st e e st e e e sbae e e sate e e esaaeeessnraeeesnareeesnanes 46
2.2 Space of Memory faults fOr SRAMSccciiieeeiiiiiiiiieiieeeirerernnnseseeeesseennssssesssssessnssssssssssessnnsssssssssssssnnnnnns 51
2.2.1 ConCept Of FAUIt PrIMITIVE ..ccceiii ettt e et e e e et e e e et e e e e abeeeeesaeeeeaseaeeaateeeennnes 51
2.2.2 Classification of fault Primitives..........cooeiiiiiiii e s s s 53
2.2.3 Single versus lINKEA fAUILS ...cccuuii ettt ee s e e et e e s e e e st eeesasae e e snaeeeennreeeennnns 54
2.2.4 Static versus dynNamiC faUlLS........cccciii it e et e e e rtte e e e e et te e e e e tae e e sabeeeenaraeeennnns 54
2.2.5 Single-port versus MuUlti-port fAUILSeoiciiii et ee e e et e e e e tae e e eab e e e e sabeeeeennes 55
2.2.6 Single-cell versus MUIti-CEIl faUILSc.uiii i e e s e e e et e e enanes 56
2.3 Single-port faults fOr SRAIVIScuuuiiiiiiiiiiieeietireeennnseesseeesnnsssssssesssesnnssssssssssessnssssssssssessnnsssssssssssssnnnnnes 56
2.3.1 SiNgle-Cell faUIt PrimMItIVES ...ccceiii ettt eete e e e et e e e e etb e e e etbeeeesabeeeeeasaeeeesseaeensteeeeannes 57
2.3.2 Single-cell functional fault MOdElS.......cc.cooiiiiiiiiie e s 58
2.3.3 TWO-CEll faUlt PrimitiVES....ceeieiiie ettt e e e e e e e e ate e e sre e e e eseteeeeensaeeesanseeeennsenesnnnns 60
2.3.4 Two-cell functional fault MOAEIS........ccuuiii et e et e e e e tre e e eat e e e esabeeeeennes 61
2.4 March tests fOr SRAIM MEMOKIESeeueeeeeemueenmeennmmmmmmmmmssmmssesssmsssssssssssssssssssssssss s s 64
D 55 RV =Y ol o T8 Y] T Y =1 o L3RS 64
2.4.2 March test for SiNgIe POrt fAUILSeii et e e e e et e e e e tae e e snbeeeesataeeeennes 64
2.5 CAM MEBIMOTIES...cuuuireeeeireeenereennerrensseerenssessensssssennsssseensssseenssessenssssssnsssssesnssssennssssennssssssnssassensssssennssssennns 67
251 CAM MEMOFIES AFCNITECEUIE ... utiiieiiieeeeiee ettt e e et e s e e e see e e et e e e s bteeesaaeeeessteeeessteessnsseeeesnseneenns 67

2.5.2 FAUILS FOr CAM MEBMIOTIES .ccoeeiireeiiee ettt eeeebt e e e e e e e e e e e e et e e e e e e esesababaeeeeeesessbbareseeesessssbaaereeeas 68

2.6 MArch tests fOr CAM MEIMOKIES. c...iiieeeririeeeierrneeierereeesrerssseseesssessenssesssnssssssnsssssessssssenssssssssssesssassssesnssssesnns 70

2.6.1 The concurrent alGOrithm: CDAo et e e et e e e e e e e saeta e e e e e e eesaabaaeeeaeeesastsaeeaaeas 70
2.6.2 The non-concurrent algorithm: NCDAcoiiiiiieeteee ettt ettt saee s sbe e e saeesneas 73
2.7 Memory Built-In Self-Test (MBIST)ccciiiiiiieeieiiieeiieeianecerseeeeennssssseeseeennnssssssssssesnnsssssssssessnnnssssssssssesnnnnns 75
3. MICROPROCESSOR SOFTWARE-BASED SELF-TESTcoorrimsemssssnssesssssssssmssssssassns 85
3.1 At-speed fuNCtiONAl tESEINGccveeeeueiiiiiiiiiirecceeerreciereee s s e reeeans e seeeseeennasssessseeeesnnsssssssseeesnnnssssssasanesnnnnen 87
3.2 Software-based self-testing for MiCroProCESSOrsS......cccuiiiiiiiiiieeiiiiiiiiieniiisiiiireeseiesstresssssssssssssesnnsens 89
I 2% N SV o Tt o Ta = BT 2 R =T o] o] o =1 1= 90
3.2.2 Structural SBST @PPrOaChESuviieiieee ettt et eete e e e st e e e e eab e e e e aba e e e e ba e e e e abeeeeaaaaeaeabaeaaans 92
3.2.3 Hybrid SBST @pPPrOaChescei ittt ettt ettt ettt st e s bt s e s b s b e s ree e 96
3.2.4 Recent trends in SBST QPPrOACRESccciuiiiiieiie et tes e tte et e e e st e e et e e e s e e e e ente e e ennsneeesanaeaanns 99
3.3 Software-based Self-Test for embedded cache testing.......c..cceeeeueeciiiiiiiiiniiiiiiiinerrcce e s e eenaeens 99
4. SBST METHODOLOGY FOR CACHEScrrrssrcrssssscsssssssssmssssssnssmssssssmssssssssssssssssasans 103
4.1 Cache arrays testability Challenges.......cccceeeeeeeiiiiiiiic s rrrecea e e e e e e e e s enns s e e e sesesnnsssssssasseennnns 103
4.1.1 Cache OrganizatioNs OVEIVIEWcccciiieieiiieeiieieeeiieeeseiee e e stteessseteeessaaaeeesseeeeansseeesesseeeessseeesassesssnnsnes 103
4.1.2 Cache arrays testability ChallENGES......ccccuiii i e et e e are e e e aaeeas 105
4.2 DCA instructions in MOdErn ISAScciiiiiieeuiiiiiiiiiiiniiiiiiirresssistrrressassssssstresssssssssssssrsssssssssssssssssnnes 107
4.3 March test NOLAtIONSuiiiiiiiiiiiiiiiiiiiiiriiieeiirerrasiestrressasssssssetsrsssssssssssstesssssssssssssseessssssssssnsssssnnes 112
4.4 SBST March test developmentccoiiiiiiieiiiiiiiiiiiniiiiireeeeeisesesseesnsessesssnssssssssssssssseesnsssssssssssassnnes 112
o R O -1 = I N A o= Yo o1 T OO PPOTUPOPPTPR 114
442 Ta T (VT o o T 1 =T o 1T P SSPPRRRRNt 116
o N 1 1O P OO P OPPTOPRO 120
4.5 Multithreaded optimization for multi-bank L1 cachescccceeeeeiiiiiiiiiiiiicciiiineerenccccnreeernnsssesesseesnnes 123
5. CASE STUDIES. ... itimisiensesssnssnssnssssssssssssssssassnssnssnssnssnssnssassnsns 127
5.1 Benchmark 1 - LEONS.........coiiiiiiiimmnniiiiiiiiesaesiisiiiiiesssssssiesiimmsmsssssssssstmesssssssssssssmmssssssssssssssssssssssssssssssnes 127
5.2 Benchmark 2 — OpenRISC 1200.......c.cccceiiiiiiirmmnniiiiiiiniemnmsssiesiimmssssssisstimesssssssssstsssssssssssssssssssssssssssssssssnnes 130
5.3 Benchmark 3 — OpenSPARC T1....cccciiiiiiiiiirmmnniiiiieiineennnssiesimmesnssssssssssssssnsssssssssssssnnssssssssssssnnsssssssssssssnnns 133

5.4 Performance overhead @ValUationc.ccciiiieeeiiiiieeiiiieeiiiieeeiiiiesesireenssiesensseessssssssessssssesnssesssnssesssnsssses 140

6. COMPARISONS.....co o s s 145

7. CONCLUSIONS & FUTURE RESEARCH........ccommmmmmmmmmmmmssssssssssssssssssssssssssssssssssssssnns 149
2 00 20 4 153
APPENDIX I - FAULT COVERAGE STATISTICS.......ccisimmmnnnmmnnssmnssmsssssssssssssssssssssssssns 155
APPENDIX II - SBST ROUTINES CODE SNIPPETScccocnsnnmmmnmnmssnnmsssnssssssssssssns 165

REFERENCES ... s s sssss s sa s ssssssssssssssassssssnsasas s 179

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11

Figure 12

Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

Figure 22

LIST OF FIGURES

BathtubD CUIVE ... 30
Basic testing approachooo i 32
Memory models and levels of abstraction ..., 43
Functional model of & SP MEMOIY........ccoooiieiiieiieeeeee 45
Generalized SRAM cell, and various configurations of SRAM cells 46
StAtIC FOW HECOUBIS ...ttt 48
DYNamIC rOW GECOUEIS ... 49
COlUMN AECOUEIS ...ttt 49
MEMOIY WILE CIFCUITIIES ..evveviiiiie e e e ee e e e e e e e e e e e e e e e e e e eeenes 50
: Voltage mode sense amplifierscoooovviiiiiiii 50
: Current mode sense amplifiers........oooooo oo 50
: Summary of fault primitive classification.............cccoeeveeeee, 54
ClassifiCation Of LPFSccooiiiiiiiiiiiee et 57
CAM memory block diagramcooeiiiiiiiiiiii e 67
SRAM-based CAM cell: a) 2-port configuration b) uniport configuration 68
Concurrent Detection Algorithm (CDA) for CAM memories..........cccccvveveeeen. 71
Non concurrent detection algorithm (NCDA) for CAM memories 74
Generic Memory BIST architeCtureccooevvviiiiiiiiie e 76
Distributed MBIST arChiteCture...........ooooeeeieeeeeeeee e 81
Memory BIST for bus-connected Memoriescooovveeeeeeeieeeeeeeeeeeeeeeeeeeeen 82
Software-Based Self-Test conceptual outline.............ccoovvvviiiiiii e, 86
: Traditional at-speed functional testingcccoiiiiiiiiiiii i, 88

Figure 23: Cache organizations: a) Direct mapped b) Set-associative c) Fully

BISSOCIALIVE ...tttk e s 104
Figure 24: Ideal DCA instruction for 2-way set associative L1 cache 109
Figure 25: Ideal DCA INStruction for TLBcoooiiiiiiiii e 109

Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:

Figure 40:

SBST Methodology for a) L1 caches b) TLBS.........coovciiiiiiieiieeeieeee, 113
SBST routine for March SS test for data L1 cachesccccoooeiiiiieeennnn. 115
SBST routine for March SS test for instruction L1 caches......................... 119
SBST routine for March NCDA for instruction TLBS ..., 122
Cache multibank physical organization (S-NUCA)........cceeeeviiviiiiiiiiieeeeen, 124
Example UCA cache — March ClUustering..........coouviviiiiiiiiiieeiiiiie e 125
Code snippet for LEON3’s IL1-Data arraycccceeeevvvviiineeeeeeeeeiiiiinneeeeen 128
Code snippet for OpenRISC’s 1200 DL1-Tag array.......ccccceeeeeveevvvnnnnnenenn 131
Code snippet for OpenSPARC T1 L1 Data cachec.oecevvvveiiiicinnennnn. 134
Code snippet for OpenSPARC T1 L1 Instruction cacheccccceeeeeee. 135
Code snippet for OpenSPARC T1 D-TLB......ccoooiiiiiiieeeeeeeeee, 135
Code snippet for OpenSPARC TL I-TLB ..coooiiiieieeeeeeeee 136
Performance overhead for PARSEC workload (1core/4threads)............... 142
Performance overhead for PARSEC workload (4cores/16threads)........... 143
SBST routines performance overhead..............ccooooiii 143

file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831684
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831685
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831686
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831689
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831690
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831691
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831692
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831693
file:///D:/Didaktoriko/Diatrivi/Diatrivi/Gthe_PhD_Thesis_pre-examination%20print%20ready2.doc%23_Toc333831694

LIST OF TABLES

Table 1: Complete Set Of LFPLS ... 58
Table 2: List Of @ll IFPLS FEMS ... 59
Table 3: The complete set of 1PF2 FPS X €{0,1} ...oovvrriiiiiiiiiieeeecee e 61
Table 4: List of IPF2 FFMS X, €{0,1}..unniiiiii e 61
Table 5: March SS Fault COVEIagecooeeuiiiiiiieiee e 66
Table 6: Application stages of SBST and corresponding requirements..............coeeeen... 87
Table 7: Cache arrays testability challengescoovvvviiiiiiii e, 105
Table 8: LEON3 Data L1 Cache: SBST routines statiStiCscooeveeeeeeiieeiieeeeeeen 129
Table 9: LEONS3 Instruction L1 Cache: SBST routines statisticScoeeeeeeeeeeennn. 129
Table 10: OpenRISC 1200 Data L1 Cache: SBST routines statistiCS..................uvvenn. 132
Table 11: OpenRISC 1200 Instruction L1 Cache: SBST routines statistics................. 132
Table 12: OpenSPARC T1 data L1 cache: SBST routines statistiCSccevvveeens 138
Table 13: OpenSPARC T1 instruction L1 cache (IL1-Tag): SBST routines statistics ..138

Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:

Table 20:

Table 21:

Table 23:

faults

Table 24:

OpenSPARC T1 instruction L1 cache (IL1-Data): SBST routines statistics.139
OpenSPARC T1 TLBs: SBST routines statistiCSccccoeeeeeeeeveiiviiiiieeeeennn. 139
Statistics comparison for D-Cache (March C-)ccooviiviiiiiiiiiiciiieeeeee, 146
Statistics comparison for I-Cache (March SS) ..., 147
Statistics comparison for D-TLB (March SS) ..., 148
Statistics comparison for I-TLB (March SS)........ccoovvviiiiiiiiieieeeeeeeeee e, 148
LEON3 DL1-Tag SRAM array, Size: 64x29 (x2 banks), 1-cell single faults 156

LEON3 DL1-Tag SRAM array, Size: 64x29 (x2 banks), 2-cell coupling faults

LEON3 IL1-Tag SRAM array, Size: 64x29 (x2 banks), 1-cell single faults..157

Table 25: LEONS3 IL1-Tag SRAM array, Size: 64x29 (x2 banks), 2-cell coupling faults

Table 28: OpenRISC 1200 DL1-Tag SRAM array, Size: 256x20, 1-cell single faults 158

Table 29: OpenRISC 1200 DL1-Tag SRAM array, Size: 256x20, 2-cell coupling faults

Table 32: OpenRISC 1200 IL1-Tag SRAM array, Size: 256x20, 1-cell single faults.. 159

Table 33: OpenRISC 1200 IL1-Tag SRAM array, Size: 256x20, 2-cell coupling faults

Table 34: OpenRISC 1200 IL1-Data SRAM array, Size: 1024x32, 1-cell single faults160

Table 35: OpenRISC 1200 IL1-Data SRAM array, Size: 1024x32, 2-cell coupling faults

Table 36: OpenSPARC T1 DL1-Tag SRAM array, Size: 64x132 (x2 banks), 1-cell
SINGIE TAUITS ...ttt nnes 160

Table 37: OpenSPARC T1 DL1-Tag SRAM array, Size: 64x132 (x2 banks), 2-cell
(oTo 10T o] [T o N =1 U 1| £ 160

Table 38: OpenSPARC T1 DL1-Data SRAM array, Size: 128x288 (x2 banks), 1-cell
SINGIE TAUITS ...ttt s e nnes 161

Table 39: OpenSPARC T1 DL1-Data SRAM array, Size: 128x288 (x2 banks), 2-cell
(oTo 10T o [T o N =1 U 1| €SS 161

Table 40: OpenSPARC T1 IL1-Tag SRAM array, Size: 64x132 (x2 banks), 1-cell single
FAUITS ...t e e 161

Table 41: OpenSPARC T1 IL1-Tag SRAM array, Size: 64x132 (x2 banks), 2-cell
(o0 10T o] 1o N = 10 1 PP 161

Table 42: OpenSPARC T1 IL1-Data SRAM array, Size: 128x272 (x4 banks), 1-cell
SINGIE TAUITS...... 162

Table 43: OpenSPARC T1 DL1-Data SRAM array, Size: 128x272 (x4 banks), 2-cell
COUPIING TAUIS ..o e e e e e e e 162

Table 44: OpenSPARC T1 DTLB-Tag CAM array, Size: 64x132 (x2 banks), 1-cell
SINGIE TAUITS...... 162

Table 45: OpenSPARC T1 DTLB —-Tag CAM array, Size: 64x132 (x2 banks), 2-cell
COUPIING TAUITS ..o e e e e e e e e e s 162

Table 46: OpenSPARC T1 DTLB -Tag CAM array, Size: 64x132 (x2 banks),
(O] 101 0= 1g1ST0] g1 1= 10 |1 TSP 163

Table 47: OpenSPARC T1 DTLB-Data SRAM array, Size: 128x288 (x2 banks), 1-cell
SINGIE TAUITS ..o e e e e e e e e e aaes 163

Table 48: OpenSPARC T1 DTLB-Data SRAM array, Size: 128x288 (x2 banks), 2-cell
(o0 18 o] 118 To N = T | 5 163

Table 49: OpenSPARC T1 ITLB-Tag CAM array, Size: 64x132 (x2 banks), 1-cell single
122 10 LSOO 163

Table 50: OpenSPARC T1 ITLB -Tag CAM array, Size: 64x132 (x2 banks), 2-cell
COUPIING FAUITS ...t nnnnees 164

Table 51: OpenSPARC T1 ITLB -Tag CAM array, Size: 64x132 (x2 banks),

ComMPAriSON fAUILS........ueiii e e e e e e e e 164

Table 52: OpenSPARC T1 ITLB-Data SRAM array, Size: 128x272 (x4 banks), 1-cell
SINGIE TAUITS...... 164

Table 53: OpenSPARC T1 ITLB-Data SRAM array, Size: 128x272 (x4 banks), 2-cell
(oo 10 o] 1o N = 10 1 PP 164

FOREWORD / MPOAOIOz

This thesis took place in Department of Informatics & Telecommunications in National &
Kapodistrian University of Athens and was supervised by the professor Antonis
Paschalis.

H didakTopikr dlaTpIBry ektrovhBnke oto TurRua NMANPo@opIknS Kal TNAETTIKOIVWVIWY TOU
EBvikou kai KatrodioTtpiakou lMNavetmiotnuiou ABnvwy utrd tTnv €TifAsewn Tou KaBnyntn
K. Avtwvn MNaoxdaAn.

H ouyypan Twv KeaAaiwv TnNG dIOAKTOPIKNG dIaTpIBRS (KepaAlaia 1 Ewg 7) €yive oTnv
ayyAIk) yYAwooa woTe va atrodoBei ye TN geyaAuTepn duvaTth akpiBeia n amapaitnTn
TEXVIKA opoAoyia. KpiBnke onuavTiko, Ta epeuvnTIKA ATTOTEAEOUATA TTOU TTAPOUCIAdovTal
oTnv TTapouca dIdAKTopIKY dIaTpIPr], Ta oTToia £X0oUV dNUOCIEUTEI 0€ dIEBVR) CUVEDPIQ KAl
TTEPIOBIKA OTNV ayyAIKA) YAWOOQ, va unv JETAQPAcTOUV aAAG va peTa@epBouv auTouaoia
oTnV ayyAIKn YAwooa pe 01dX0, apevOg Tn dIaTipnaon Tou TTEPIEXOPEVOU Kal TG dOUNG
KAl QQETEPOU, TNV £LacPAAIon TNG avayvwaoluotntag tg OIBAKTOPIKAG dIaTPIBAG aTTo
"EAANNVEG Kal EEVOUG ETTIOTAMOVEG.

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures
1. INTRODUCTION
1.1 Dependability and reliability in VLSI circuits

Dependability is defined as the ability to deliver service that can justifiably be trusted.
This definition stresses the need for justification of trust. The alternate definition that
provides the criterion for deciding if the service is dependable or not, is: the
dependability of a system is its ability to avoid service failures that are more frequent

and more severe than is acceptable [1].

It is usual to say that the dependability of a system should suffice for the dependence
being placed on that system. The dependence of system A on system B, thus,
represents the extent to which system A’s dependability is (or would be) affected by that
of system B. The concept of dependence leads to that of trust, which can very

conveniently be defined as accepted dependence.

As developed over the past three decades, dependability is an integrating concept that
encompasses the following attributes:

¢ availability: readiness for correct service.

e reliability: continuity of correct service.

¢ safety: absence of catastrophic consequences on user(s) and the environment.
e integrity: absence of improper system alteration.

e maintainability: ability to undergo modifications and repairs.

Over the course of the past 50 years many means have been developed to attain the
various attributes of dependability. Those means can be grouped into four major

categories:
¢ Fault prevention means to prevent the occurrence or introduction of faults.
¢ Fault tolerance means to avoid service failures in the presence of faults.
e Fault removal means to reduce the number and severity of faults.

¢ Fault forecasting means to estimate the present number, the future incidence and

the likely consequences of faults.

Fault prevention and fault tolerance aim to provide the ability to deliver a service that

can be trusted, while fault removal and fault forecasting aim to reach confidence in that

Georgios A. Theodorou 29

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

ability by justifying that the functional and the dependability and security specifications
are adequate and that the system is likely to meet them.

Reliability is one of the attributes of dependability and is defined as the probability that a
system will deliver its required services for a stated period of time. This definition of
reliability highlights its statistical nature. Long term reliability of Very Large Scale
Integrated (VLSI) circuits is becoming an important issue as the densities of VLSI
circuits increase with shrink design rules. The assessment and improvement of
reliability on the circuit level for VLSI circuits is a critical issue during the design flow and
should be based on the understanding of the physical failure mechanisms observed in
VLSI circuits, their modeling and the detection techniques of these failures.

Moreover, in case of VLSI circuits most of the schemes that aim to increase system’s
dependability by attaining any of the abovementioned four categories (fault prevention,
fault removal, fault tolerance and fault forecasting) require fault detection techniques
that can be implemented through VLSI testing approaches. Therefore, fault detection
through VLSI testing techniques is an essential process for any scheme that aims to

add dependability features to a VLSI circuit.

Reliability specialists often describe the failure probability distribution function of VLSI
chips during lifetime using a graphical representation called the bathtub curve. The
bathtub curve consists of three periods: an infant mortality period with a decreasing
failure rate followed by a normal life period (also known as "grace period") with a low,
relatively constant failure rate and concluding with a wear-out period that exhibits an

increasing failure rate.

Future silicon |
process technologies /

[P, S ———

Failure Rate

Graceful
Degradation

I I

; : Time
Infant | Grace | Breakdown
Period Period ! Period

Figure 1: Bathtub curve

Georgios A. Theodorou 30

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

e Infant mortality period. The beginning of the product’s lifetime is characterized by an
initial high rate of device failures. These high failure rates are due to latent
manufacturing defects that escape the manufacturing testing. These failures surface
quickly when the manufacture-impaired devices are stressed as the products get
into operation. However, the initial high failure rate declines rapidly as the remaining

devices that pass the initial operating stress are more robust and less likely to fail.

e Grace Period. When early device failures are eliminated, the failure rate falls to a
constant value where device failures occur sporadically due to the occasional
break-down of weak transistors or interconnect that may be caused by either
transient faults or single event effects. It is highly desirable that the grace period will
dominate a product’s lifetime since this is the period where the product exhibits the

lowest failure rates and the highest reliability.

e Breakdown Period. After the grace period, device failures start to occur with
increasing frequency over time due to age-related wearout. Many devices will enter
this phase at roughly the same time, creating an avalanche effect and a quick rise in
device failure rates. However, since not all devices will fail at once, it is likely that a
short graceful degradation period exists over which a few initial device failures begin
to signal the onset of the device breakdown period.

In deep submicron technology, the bathtub curve of the chips that are fabricated with
these silicon process technologies is expected to shrink and exhibit higher failure rates.
This will lead to products with shorter expected lifetimes. Furthermore, during their
grace period, these products would be characterized by more frequent device failures

caused by new operation faults.

1.2 Manufacturing testing: Basic principles

VLSI circuits are an integral part of any modern electronic system. Nowadays, such
circuits contain millions or even billions of transistors, diodes and other components
such as capacitors and resistors, together with inter-connections, within a very small
area. The manufacturing process of such circuits is a complicated and time consuming
process and the appearance of physical defects in VLSI circuits is inevitable. Such
defects may be due to several deficiencies in the original silicon and in the
manufacturing process. Examples of the former are impurities and dislocations, and
examples of the latter are temperature fluctuations during wafer processing, open

interconnections, open circuits, short circuits, and extra or missing transistors. The

Georgios A. Theodorou 31

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

complexity of VLSI technology has reached the point where chips already contain over
1 billion transistors (on average 10 billion transistors per chip by 2015) on a single chip,
with on-chip clock frequencies of over 3GHz according to 2011 ITRS Roadmap [2].
These trends have a profound effect on the cost and difficulty of chip testing. From the
point of view of economics, it has been shown that the cost of detecting a faulty
component is lower before the component is packaged and becomes part of a VLSI
system. Therefore, testing is a very important aspect of any VLS| manufacturing

process.

VLSI circuits can be classified into combinational circuits and sequential circuits.
Therefore, a distinction can be made between testing each one of the two classes.
Testing combinational circuits is much easier, since for each fault, one or two test
vectors have to be applied; while the detection of faults in sequential circuits may
require first to bring the circuit into a state in which the fault may be sensitized and
observed.

Testing typically consists of applying a set of test stimuli to the inputs of the circuit under
test (CUT) while analyzing the output responses, as illustrated in Figure 2. Circuits that
produce the correct output responses for all input stimuli pass the test and are
considered to be fault-free. Those circuits that fail to produce a correct response at any

point during the test sequence are assumed to be faulty.

Inputy N Cufput,
Input - Circuit ol Cutput | passiFail
Test - Under #| Hesponse ————*
stimuli | "PY 8l Test(cuT) | OYPUIm el Anaiysis

Figure 2: Basic testing approach

Testing is usually performed at various stages in the lifecycle of a VLSI device, including
during the VLSI development process, the electronic system manufacturing process,

and, in some cases, system-level operation.

There are two aspects of VLSI testing: fault detection and fault diagnosis. The testing
process involves the application of test patterns to the circuit and comparing the
response of the circuit with a precomputed expected response. If a chip is designed,
fabricated, and tested, and fails the test, then there must be a certain cause for the
failure [3]. Either (a) the test was wrong, (b) the fabrication process was faulty, (c) the

design was incorrect, or (d) the specification had a problem; anything can go wrong.

Georgios A. Theodorou 32

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The role of fault detection is to detect whether something went wrong, while the role of

fault diagnosis is to determine exactly what went wrong and where the process needs to

be altered.

VLSI testing can be classified into four types depending on the purpose it accomplishes

[4]: characterization, production, burn-in, and incoming inspection.

Characterization: also known as design debug or verification testing. This form of
testing is performed on any new design before it is sent to production. It has to
verify that the design is correct and meets the specifications; it also has to
determine the exact limits of the device operating values. Functional tests are run
during that phase, and comprehensive AC and DC parametric measurements are
made. Tests are generally applied for the worst case, because they are easier to
evaluate than average cases and devices passing these tests will work for any other
conditions. Probing of the internal nodes of the chip may also be required during the

design debug.

Production: every fabricated chip is subjected to production tests, which must
enforce the relevant quality requirements by determining whether the device meets
the specifications; they are less comprehensive than characterization tests. The test
may not cover all possible functions; however, they must have high fault coverage
for the modeled faults. Fault diagnosis is not attempted and only a pass/fail decision

is made.

Burn-in: this ensures the reliability of devices, which pass production tests, by
testing either continuously or periodically over a long period of time at elevated
voltage and temperature [5]. Burn-in causes bad devices to actually fail. Two types
of failures are isolated by burn-in: infant mortality and freak failures. Infant
mortalities are screened out by a short term burn-in, typically 10-30 hours; they are
often caused by a combination of sensitive design and process variation. Freak
failures are devices having the same failure mechanisms as the reliable devices,
but requiring long burn-in time, typically 100-1000 hours. During burn-in, production
tests are applied at high temperatures and with an over-voltage power supply.

Incoming inspection: incoming inspection is performed on purchased devices,
before integrating them into a system. The most important purpose of incoming
inspection tests is to avoid placing a defective device in a system, where the cost of

diagnosis may far exceed the cost of incoming inspection.

Georgios A. Theodorou 33

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Another classification for VLSI testing can be made depending on the type of targeted

faults; either parametric or functional.

Parametric testing is necessary to verify whether the chip meets DC and AC
specifications. The DC parametric tests include maximum current, leakage, output
drive current, thresholds levels, etc.; while the AC parametric tests include
propagation delay, setup and hold times, functional speed, access time, and various

rise and fall times.

Functional testing determines whether the internal logic function of the chip behaves
as intended; it checks for a proper operation of the design. Such test has to
guarantee very high fault coverage of the modeled faults. Fault modeling of physical
faults is a very important aspect in functional testing, since it turns the problem of
test generation into a technology-independent problem. In addition, tests designed
for modeled faults may be useful for detecting physical faults whose effect on circuit

behavior is not well understood and/or too complex to be analyzed otherwise.

In the design hierarchy, a higher level description has fewer implementation details but

more explicit functional information than a lower level description. The various levels of

abstraction include behavioral (architecture), register-transfer, logical (gate), and

physical (transistor) levels. The hierarchical design process lends itself to hierarchical

test development, but the several fault models are more appropriate for particular levels

of abstraction. Further down, we discuss test generation and the use of fault models at

these various levels of abstraction.

Register-Transfer Level and Behavioral Level. The methodology in common
practice today is to design, simulate, and synthesize application-specific integrated
circuits (ASICs) of millions of gates at the RTL. So-called “black boxes” or
intellectual property (IP) cores are often incorporated in VLSI design, especially in
SOC design, for which there may be very little, if any, structural information.
Traditional automatic test pattern generation (ATPG) tools cannot effectively handle
designs employing blocks for which the implementation detail is either unknown or
subject to change; however, several approaches to test pattern generation at the
RTL have been proposed. Most of these approaches are able to generate test
patterns of good quality, sometimes comparable to gate-level ATPG tools. It is the
lack of general applicability that prevents these approaches from being widely

accepted. Although some experimental results have shown that RTL fault coverage

Georgios A. Theodorou 34

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

can be quite close to fault coverage achieved at the gate level when designs are
completed and mapped to a technology library, it is unrealistic to expect that stuck-

at fault coverage at the RTL will be as high as at the gate level [6].

e Gate level. For decades, traditional IC test generation has been at the gate level
based on the gate-level netlist. The stuck-at fault model can easily be applied for
which many ATPG and fault simulation tools are commercially available. Very often
the stuck- at fault model is also employed to evaluate the effectiveness of the input
stimuli used for simulation-based design verification. As a result, the design
verification stimuli are often also used for fault detection during manufacturing
testing. In addition to the stuck-at fault model, delay fault models and delay testing
have been traditionally based on the gate-level description. While bridging faults
can be modeled at the gate level, practical selection of potential bridging fault sites
requires physical design information. The gate-level description has advantages of
functionality and tractability because it lies between the RTL and physical levels;
however, it is now widely believed that test development at the gate level is not

sufficient for deep submicron designs.

e Switch level. For standard cell-based VLSI implementations, transistor fault models
(stuck-open and stuck-short) can be applied and evaluated based on the gate-level
netlist. When the switch-level model for each gate in the netlist is substituted, we
obtain an accurate abstraction of the netlist used for physical layout. In addition,
transmission gate and tristate buffer faults can also be tested at the switch level. For
example, it may be necessary to place buffers in parallel for improved drive
capabilities. In most gate-level models, these buffers will appear as a single buffer,
but it is possible to model a fault on any of the multiple buffers at the switch level.
Furthermore, a defect-based test methodology can be more effective with a switch-
level model of the circuit as it contains more detailed structural information than a
gate-level abstraction and will yield a more accurate defect coverage analysis. Of
course, the switch-level description is more complicated than the gate-level

description for both ATPG and fault simulation.

e Physical level. The physical level of abstraction is the most important for VLSI
testing because it provides the actual layout and routing information for the
fabricated device and, hence, the most accurate information for delay faults,
crosstalk effects, and bridging faults. For deep submicron IC chips, in order to
characterize electrical properties of interconnections, a distributed resistance-

Georgios A. Theodorou 35

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

inductance-capacitance (RIC) model is based on the physical layout. This is then
used to analyze and test for potential crosstalk problems. Furthermore, interconnect
delays can be incorporated for more accurate delay fault analysis. One solution to
the problem of determining likely bridging fault sites is to extract the capacitance
between the wires from the physical design after layout and routing. This provides
an accurate determination of those wires that are adjacent and, therefore, likely to

sustain bridging faults.

1.3 On-Line testing: Basic principles

Various industrial sectors such as satellites, avionics, telecommunications, auto

motives, medical electronics etc. have rapidly increasing needs for on-line testing during

their system’s lifetime. After manufacturing testing, VLSI chips are integrated in such

systems and are placed in their natural environment, where operational faults may

appear.

Such operational faults that may occur during lifetime in deep submicron technology are

classified into the following three categories:

Permanent operational faults that are infinitely active at the same location and

reflect irreversible physical changes.

Intermittent operational faults that appear repeatedly at the same location and
cause errors in bursts only when they are active. These faults are induced by
unstable or marginal hardware due to process variations and manufacturing
residuals and are activated by environmental changes. In many cases, intermittent

faults precede the occurrence of permanent faults.

Transient operational faults appear irregularly at various locations and last short
time. These faults are induced by neutron and alpha particles, power supply and

interconnect noise, electromagnetic interference and electrostatic discharge.

On-line testing aims at detecting and/or correcting these operational faults by means of

concurrent and non-concurrent test strategies [7].

Concurrent on-line test strategies are used to detect all kinds of operational faults,
while keeping the system in normal operation and are classified into the following
four categories. Hardware redundancy strategies like duplication and comparison
for fault detection and triple modular redundancy for error correction. Information

redundancy strategies based on various coding schemes and self-checking design.

Georgios A. Theodorou 36

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Both hardware and information-redundancy strategies have low fault-detection
latency, but impose large to huge hardware overhead [8]. However, when a large
increase in silicon area is not acceptable, the other two categories of concurrent on-
line test strategies are used. Time redundancy strategies based either on
recomputing using shifted/swapped operands or recomputing using duplication and
comparison. Software redundancy strategies like N-version programming and
software signature monitoring [9]. Both time and software redundancy strategies
have higher fault-detection latency (compared to the first two strategies) and impose
large to huge performance overhead. All concurrent on-line test strategies are high-
cost solutions with hardware overhead, performance overhead but very low fault-

detection latency.

e Non-concurrent test strategies such as on-line periodic testing are test strategies
that trades off between fault-detection latency and performance overhead. In non-
safety critical low-cost applications of embedded systems, there is no need for
immediate detection of errors and, thus, no need for hardware, information,
software, or time-redundancy mechanisms that increase significantly the system
cost. In such embedded systems, detection of intermittent operational faults that
cause errors in bursts only when they are active and may precede the occurrence of
permanent faults, is much more important than detection of transient operational
faults that appear once and last a short time. Therefore, on-line periodic testing is
well suited to such embedded systems since it detects at low cost, not only
permanent faults, but intermittent faults with very high probability. After fault
detection, the system may reapply periodic testing several times to ensure that the

fault is permanent or simply the system is restarted.

1.4 On-Line testing of embedded memories in microprocessor designs

During the past 30 years the semiconductor industry has been characterized by a
steady path of constantly shrinking transistor geometries and increasing chip size.
However, this technology achievement leads to new reliability challenges for modern
systems that have not been considered in the past. Such reliability threats are either
latent hardware defects that have not been detected by manufacturing tests or
hardware defects that may occur during system operation by the increased soft error
rate or by aging degradation effects. On-line testing schemes aim to detect such faults
both in logic and memory modules of modern chips during their lifetime. Nowadays, in

modern processors the relative chip area occupation of embedded cache memories is

Georgios A. Theodorou 37

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

up to 90%. For example, UltraSPARC T1 [10] contains more than 170 large and small
embedded cache memories. Thus, high quality cache memory on-line testing in modern

processors is essential.

In manufacturing testing, Memory Build-in Self-Test (MBIST) is the industry standard for
embedded memory testing. These MBIST schemes target the detection of memory
functional faults [11] that are caused by cell spot defects. To achieve this, a large set of
March tests is applied under different stress combinations to ensure detecting all
possible faults in the caches of microprocessors. This set is not optimal and takes
excessively long test time to be applied. For example in [12], a maximal test set of more
than 50 March tests have been selected to kick off the process of constructing an

optimal industrial cache test.

In on-line testing, parity and Error Correction Code (ECC) schemes are widely used to
enhance embedded memory reliability and they are also utilized in embedded cache
memories. These schemes are used to protect the memory arrays from soft errors. ECC
schemes have two weaknesses i.e. fault accumulation effect and limited detect
capability of memory functional faults [13]. Combined on-line MBIST schemes and ECC

schemes can be used to overcome these weaknesses.

Programmable MBIST schemes [14], which have been integrated for manufacturing
testing purposes, are reusable for on-line testing, but only a subset of the
abovementioned March tests can be applied due to performance overhead limitations.
The programmable MBIST schemes provide the flexibility to apply different March tests,
as well as, future March tests for new memory fault models which is a critical feature for
on-line testing. However, the reuse of MBIST schemes during on-line testing imposes

much higher power density [15] that affects system’s reliability.

Besides, small memory arrays that have size in the order of Kbytes (such as register
files, FIFOs, small caches, cache tag arrays etc.) may not justify the cost of adding
programmable MBIST schemes because of its impact on chip area and performance.
Semiconductor industry has acknowledged this problem and industrial solutions have
been proposed as a low-cost alternative to MBIST. For example, in [16], Macrotest, a
scan-based technique was proposed to test a number of small embedded memories
(including L1 caches) on the AMD Athlon™ processor during manufacturing testing.
Moreover, in UltraSPARC T1 architecture a large number of small memory arrays lack

an embedded MBIST scheme and are tested through Macrotest.

Georgios A. Theodorou 38

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Level 1 (L1) cache Static Random Access Memory (SRAM) arrays and Translation
Lookaside Buffers (TLBs) SRAM and Content Addressable Memory (CAM) arrays
belong to this category of small memory arrays, since L1 cache sizes are up to
32Kbytes and TLBs are up to 128 entries in most of the modern processors. L1 cache
arrays due to their size may totally or partially lack programmable MBIST circuitry (e.qg.
MBIST circuitry is not included in the tag array) whereas TLBs usually totally lack a
MBIST scheme. Hardware defects in L1 cache arrays and TLB arrays during lifetime
may cause either erroneous L1 cache and TLB misses that degrade the system’s
performance (defects in the tag array), or unpredicted system behaviour (defects in the
data array). Hence, on-line testing for these arrays is essential to avoid system’s

performance degradation and erroneous behaviour.

1.5 Contribution of this thesis

Nowadays, on-line testing is essential for modern microprocessors to detect latent
defects that either escape manufacturing testing or appear during system operation.
Small memories, such as L1 caches and Translation Lookaside Buffers (TLBs) are not
usually equipped with Memory Built-In Self-Test (MBIST) hardware. Software-Based
Self-Test (SBST) is a flexible and low-cost solution for on-line March test application
and error detection in such small memories. Although, L1 caches and TLBs are small
components, their reliable operation is crucial for the system performance due to the

large penalties caused when L1 cache or TLB misses occur.

The present PhD thesis introduces a low cost fault detection methodology for small
embedded cache memories that is based on modern Instruction Set Architectures and
is applied with SBST routines. The proposed methodology applies March tests through
software to detect both storage faults [11] when applied to caches that comprise SRAM
memories only, e.g. L1 caches, and comparison faults [17] when applied to caches that
apart from SRAM memories comprise CAM memories too, e.g. TLBs. The proposed
methodology can be applied to all three cache associativity organizations: direct
mapped, set-associative and full-associative and it does not depend on the cache write
policy. The methodology leverages existing powerful mechanisms of modern ISAs by
utilizing instructions that we call in this PhD thesis Direct Cache Access (DCA)
instructions. Moreover, our methodology exploits the native performance monitoring
hardware and the trap handling mechanisms which are available in modern
microprocessors. By effectively combining these features of modern microprocessors

the proposed methodology applies March write and read operations with lower cost

Georgios A. Theodorou 39

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

(code size, execution time, system performance overhead) when compared with other
proposed solutions in the literature for fault detection in caches through SBST.
Moreover, the proposed methodology applies March compare operations when needed
(for CAM arrays) and verifies the test result with a compact response to comply with
periodic on-line testing needs. Finally, a multithreaded optimization of the proposed
methodology that targets multithreaded, multicore architectures is also presented in this
thesis. The proposed multithreaded optimization exploits the thread level parallelism of
multithreaded, multicore architectures and the low level multiple sub-bank organization
of modern cache designs to speedup March tests while preserving the March test
guality. Hence, in case of multithreaded, multicore architectures that can adopt the
proposed multithreaded optimization, test time is further lowered and such SBST
routines can be effectively executed periodically during the system’s lifetime with an

acceptable performance overhead.

The proposed methodology was applied to three processor benchmarks: a) OpenRISC
1200 b) LEON3 and c) OpenSPARC T1. In detail, the methodology was applied to the
L1 caches of all three processor benchmarks and to the TLBs of OpenSPARC T1
processor. The multithreaded optimization was demonstrated on the multithreaded,
multicore OpenSPARC T1. Experimental results both for the test code size and test
execution time of several March tests demonstrate the effectiveness of the proposed
methodology, its high adaptability and the significant improvements in terms of test time
and test code size when compared with other proposed solutions in the literature for
fault detection in caches through SBST that do not exploit DCA instructions [75] [79].

Finally, a test evaluation framework was implemented in this thesis for several on-line
periodic test scenarios in order to evaluate the system performance overhead of the
proposed methodology. Simulation results indicate that the proposed March test
implementation through SBST slightly influences the system’s performance, even in

intensive test scenarios with high test frequency requirements.
The thesis is organized as follows:

Chapter 2 overviews the fundamental concepts of memory testing and March test
algorithms both for single port SRAM and CAM memories. Firstly, the SRAM memory
architecture is presented and the functional and electrical abstraction models that are
mostly utilized in memory testing are described. Afterwards, the complete space of the
memory faults for single-port memories is defined by exploiting the concept of fault
primitives and functional fault models. Then, the faults in single port SRAMs are

Georgios A. Theodorou 40

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

classified and the March tests that are suitable to detect these faults for single port
SRAM faults are presented. Furthermore, the CAM memory architecture and the
additional comparison faults that should be also considered in case of CAM memories
are described along with the March tests that are suitable for detecting these additional
comparison faults for CAM memories. Finally, a brief overview of the most common

MBIST schemes that are utilized to apply these March tests is presented.

Chapter 3 briefly presents the features of Software-Based Self-Test approaches.
Afterwards, the basic concept of how SBST is applied during manufacturing and on-line
testing flow is presented. Additionally, the different application stages of SBST and the
different requirements of each stage in terms of self-test code and data size, application
time and power consumption are presented. Finally, several different SBST strategies
that target processors and embedded memories proposed in the research literature are
briefly discussed showing the evolution of SBST and experimental data sourcing from
successful applications of the SBST approach are provided wherever available.

Chapter 4 introduces the proposed low cost fault detection methodology for small
embedded cache memories that implements low cost March test operation for both L1
caches and TLBs by exploiting special debug-diagnostic DCA instructions. Firstly, it
overviews all three cache organizations (direct mapped, set associative and fully
associative), defines the cache arrays and presents the cache arrays testability
challenges that occur when SBST approaches are utilized. Afterwards, it introduces the
Direct Cache Access (DCA) instructions that are implemented in modern ISAs and are
exploited to implement low cost March operations. The instruction fields, that an ideal
DCA instruction should contain to gain direct access to all the cache arrays for applying
any March operations either for SRAM or CAM memories, are defined and such ideal
DCA instructions are composed both for L1 caches and TLBs. Moreover, existing DCA
instructions that are close to ideal DCAs when combined are presented for RISC
architectures, such as MIPS, ARM and SPARC architectures and for CISC architectures
such as x86 architectures. Then, the main features of the proposed methodology are
presented and a detailed description of the way that the proposed methodology
implements every March operation is presented for data L1 cache, instruction L1 cache
and TLBs respectively. Representative code snippets, that describe the way that March
tests are implemented, are included for both data and instruction L1 caches and TLBs.
Finally, the multithreaded optimization of our methodology is presented. The proposed
optimization elaborates the low level multiple bank organization of modern cache

Georgios A. Theodorou 41

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

designs to exploit the thread level parallelism of modern multithreaded, multicore
processors and speedup March test execution time.

Chapter 5 presents the case study results that demonstrate the effectiveness of the
proposed SBST program development methodology. The methodology has been
applied to three processor benchmarks: a) OpenRISC 1200, b) LEON3 and c)
OpenSPARC T1. A detailed description of the way that every March operation is
implemented is presented for every processor benchmark. Moreover, statistical results
for both test execution time and test code size are provided for every March test that
has been implemented by utilizing the proposed methodology in all three benchmarks
along with test coverage statistics for all cache arrays. Finally, the evaluation framework
that was utilized to estimate the performance overhead of the proposed SBST routines
Is presented. Several on-line periodic testing scenarios are implemented and detailed
statistics of the performance overhead introduced in a typical workload (PARSEC
benchmark suite) under these test scenarios are presented.

Chapter 6 presents the comparison results of the proposed SBST methodology that
exploits DCA instructions towards other SBST approaches in the literature that target
small caches. Firstly, theoretical comparisons between the proposed SBST
methodology and other SBST approaches are presented. These comparisons focus on
the solutions that each SBST approach proposes to overcome the testability challenges
of cache arrays. Afterwards, numerical statistical results are compared both for L1
caches and TLBs to demonstrate the effectiveness of the proposed methodology in
terms of test execution time when applied to the same benchmarks with previous SBST

approaches.

Finally, chapter 7 concludes the thesis and presents possible future research work to
extend the proposed SBST methodology to other implicitly accessed memories such as
L2 caches, SOC scratchpad memories etc. and to further optimize the implemented

SBST routines under power constraints.

Georgios A. Theodorou 42

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

2. MEMORY TESTING — MARCH TESTS
2.1 SRAM memory architecture

A single-port (SP) SRAM memory is one which can only be read or written via a single
circuit path at the time. In this thesis, only single port memories will be considered, since
cache arrays are single port memory architectures. A multi-port (MP) SRAM memory is
a memory that has multiple ports that are to be used to access memory cells

simultaneously and independently of each other.

2.1.1 Memory models

A system may be described at a number of different levels of abstraction (Figure 3).
Each level of abstraction is called a model of the system. Models help to simplify the
explanation and treatment of systems by explicitly presenting information relevant only
to the discussion about the system at that level, while hiding irrelevant information.

Behavior Functional Logical Electrical Layout
model model model maodel model

Figure 3: Memory models and levels of abstraction

The layout model is the one most closely related to the actual physical system; it
assumes complete knowledge of the layout of the chip. As we move from right to left in
Figure 3, the models become less representative of the physical world and more related
to the way the system behaves, or in other words, less material and more abstract. A
higher level of abstraction contains more explicit information about the way a system is
expected to function and less about its buildup. It is possible to have a model that
contains components from different levels of abstraction; this approach is called mixed-
level modeling. With mixed-level modeling, one may focus on low- level details only in
the area of interest in the system, while maintaining high-level models for the rest of the

system.
The presented modeling levels in Figure 3 are explained as follows [18] [19]:

e The behavioral model: This is the highest modeling level and is based on the
system specifications. At this level, the only information given is the relation
between input and output signals while treating the system as a black box. A model

at this level usually makes use of timing diagrams to convey information.

e The functional model: This model distinguishes functions that the system needs to

fulfill in order to operate properly. At this level, the system is divided into several

Georgios A. Theodorou 43

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

interacting subsystems each with a specific function. Each subsystem is basically a
black box called a functional block with its own behavioral model. The collective
operation of the functional blocks results in the proper operation of the system as a

whole.

e The logical model: This model is based on the logic gate representation of the
system. At this level, simple Boolean relations are used to establish the desired
system functionality. It is not the custom to model memories exclusively using logic
gates, whereas logic gates are sometimes present in models of a higher or lower

level of abstraction to serve special purposes.

e The electrical model: This model is based on the basic electrical components that
build up the system. In semiconductor memories, the components are mostly
transistors, resistors and capacitors. At this level, we are not only concerned with
the logical interpretation of an electrical signal but also the actual electrical values of
it.

e The layout model: This is the lowest modeling level available. It is directly related to
the actual physical implementation of the system. At this level, all aspects of the
system are taken into consideration, even the geometrical configuration, such as
distances and thickness of lines, matters. For this reason, this model is also called
the geometrical model. The data representing this model are rarely reported in the

literature.

Paying a closer attention to the behavioral and the functional models reveals that there
Is a strong correspondence between the two. In fact, the behavioral model can be
treated as a special case of the functional model, with the condition that only one
function is presented, namely the function of the system itself. Therefore, some authors
prefer to classify both modeling schemes as special cases of a more general model
called the structural model. The structural model describes a system as a number of
interconnected functional blocks. According to this definition, a behavioral model is a
structural model with only one function, while a functional model is a structural model

with more than one interconnected function.

2.1.2 Functional SP SRAM model

A typical SP memory consists of a memory cell array, two address decoders, read/write

circuits, data flow and control circuits (Figure 4). The memory chip is connected to other

Georgios A. Theodorou 44

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

devices through address lines, data lines, and control lines (i.e., read/write line, chip

enable line, and power lines).

Row address_ Memory cell array

S18p098p Moy

Dataword in | Read/Write circuits | Dataword out
and data registers

Data flow and
control circuits

Columnn address

Column decoders

B

I 18 T
» O O Data-out
(=3 =) Q

s Bz

P53

[av]

w

Figure 4: Functional model of a SP memory

The memory cell array is the most basic part of the memory. It consists of n cells, which
are organized as an array of R rows and C columns. The number of rows can be any
integer, but the number of columns is restricted: there is always an integer number of
memory words in one row (i.e., C mod B = 0). Note that the memory cell array has a

capacity of R x C bits.

The addresses are divided into high- and low-order bits. The high-order bits are
connected to the row decoder which selects an appropriate row (Word Line) in the
memory cell array, while the low-order bits are connected to the column decoder which
selects the required columns (Bit Lines). The number of columns selected is B, which

determines how many bits can be accessed during a read or a write operation.

To read the desired memory cells, appropriate row and column select lines must be
activated. The content of the selected cells are amplified by the read circuits, loaded
into the data registers and presented on the data-out lines. Conversely, during a write
operation, the data on the data-in lines is loaded into the data registers and written into
the selected cells through the write circuits. Usually the data-in and data-out lines are
combined to form bidirectional data lines, thus reducing the number of pins of the chip.

Georgios A. Theodorou 45

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

2.1.3 Electrical SP SRAM model

The blocks of the functional model for SP memories presented in Figure 4 will be
opened such that the electrical properties will become visible. This will be done for
memory cells, the address decoders, and the read/write circuits.

Memory cells

The memory cell is the most basic part of the memory. Its design depends on various
factors, such as the memory application and the implementation style. For a SP SRAM,
the memory cell is a bistable circuit, being driven into one of two states. After removing
the driving stimulus, the circuit retains its state. An SRAM cell can have several
configurations. Figure 5 shows the generalized SRAM cell, and three possible

configurations.

BL Vdd BL BL BL

R1Z
b3

%HE

WL WL

(b) Four transistor cell with resistor load

e

L Vdd
Tib— T2
P R
| o |
"Vas
WL

(c) Six transistor cell with NMOS depletion load (d) Six transistor full CMOS cell

BL Vdd BL B BL

WL

Figure 5: Generalized SRAM cell, and various configurations of SRAM cells

As shown in Figure 5(a), the SRAM cell consists of two load elements (L and Lg), two
storage elements (St and Sg), and two pass transistors (Pt and Pg). Transistor St forms
an inverter together with the load element Ly. This inverter is cross-coupled with the
inverter formed by the transistor Sg and the load element Lg; therefore, forming a latch.
This latch can be accessed for read and write operations, via the pass transistors Py

and Pe.

Data can be written into the cell by driving the lines BL and BL with data with

complementary values, and thereafter driving the word line (WL) high. The cell will be

forced to the state presented on BL and BL, since the two lines are driven with more

force than the force with which the cell retains its information. To read data from a cell,

Georgios A. Theodorou 46

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

generally, first both lines BL and BLare precharged to a high level, after which the
desired WL is driven high. At that time the data in the cell will pull one of the two bit lines

low. This difference signal on the BL and BL lines is amplified by the read circuit, and
read out through the data register. It should be noted that reading an SRAM cell is a
non-destructive process; i.e., after the read operation the logic state of the cell remains

the same.

The load devices may consist of polysilicon resistors, either enhancement or depletion
mode transistors, or PMOS transistors. Figure 5 (b) shows the SRAM cell with
polysilicon load devices. This cell requires less silicon area than the two other
configurations. However, it has a higher current when it is not being accessed, since a
small amount of current always flows through the resistor. When the load element is a
PMOS transistor (Figure 5 (d)), then the resulting CMOS cell has essentially no current
drain through the cell, except when it is switching because either the NMOS or the
PMOS transistor is always off. The disadvantage of the CMOS cell is that it requires
more processing steps because of the presence of NMOS and PMOS transistors.
Figure 5 (c) shows a six-device SRAM cell using depletion mode load transistors. It
should be noted that the depletion mode transistor can also be replaced with an
enhancement mode transistor, but the depletion load is normally used since it has better
switching performance, higher impedance, and is relatively insensitive to power supply

variations.
Address decoders

Address decoders are used to access particular cells in the memory cell array. In order
to reduce the size of the decoders and the length of the word and bit lines, two
dimensional addressing schemes are used within the chip, demanding a row decoder
for the word lines and a column decoder for the bit lines.

Georgios A. Theodorou 47

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Vdd Vdd
T
Vss
WL WL
Ag— Buffer A— Buffer
A — A —
1 1
1 1
i i
A # Ak—1 #
Vas Vss
(a) PMOS-load decoder (b) CMOS decoder

Figure 6: Static row decoders

A row decoder is needed to select one row out of the set of rows in the memory array.
Figure 6 shows two basic static row decoders, namely a PMOS-load decoder [20] and a
CMOS decoder. The inputs of the decoders are the address bits Ap through Ay.1 or their
complements, while the output is the word line. When the row decoder selects a word
line, all cells along that word line are active and put their data on the bit lines. Note that
the address lines are connected only to the NMOS transistors in a PMOS-load decoder;
while they are connected to both PMOS and NMOS transistors in a CMOS decoder.
Therefore, the address load capacitance caused by the gates in a PMOS-load decoder
is almost half of that in a CMOS decoder. This implies that a smaller delay time can be
obtained by using a PMOS-load decoder. The CMOS decoder has the advantage of
drawing no static current, but as it requires an equal number of PMOS and NMOS

transistors, it occupies a larger area.

Dynamic or clocked decoders are also used to decode word lines. Figure 7 shows two
dynamic row decoders. Generally, such decoders combine compact layout with zero
static current consumption; power is dissipated in the selected decoder only during the
brief period of an address transition. The decoder of Figure 7 operates as follows: in the
precharge phase, the transistor Q1 is turned on to precharge the common line
connected to the address decoding transistors. If all the address bits, Ao through Ay.; are
zeros, transistor Q6 drives the WL line to “1°. The signal EN enables the transmission
gate such that the decoder selects the word line only after all address lines are stable. A
column decoder selects B bit line(s) (or bit line pairs) out of the set of bit lines (or bit line

pairs) of the selected row.

Georgios A. Theodorou 48

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Vi Vdd

dd
i
-— i
Precharge y iy Qg 404 —d[06
WL
Ag—| Buffer
i F% W# F% -
Acq

ﬂjﬂ
=

Ag A, a5 a7
Ac—
Precharge Qo
|
Vas Vas
(a) Simple decode (b) Modified CMOS decoder

Figure 7: Dynamic row decoders

Depending on the memory application, different column decoders are designed. Figure
8(a) shows a tree decoder, which is desirable for single ended memories; i.e., memories
which use only a single bit line for read and write operations. This circuit has the
advantage of being simple, however it operates slowly. Figure 8(b) shows another
column decoder, which is based on the PMOS-load decoder of Figure 2.7. The output of
the decoder goes to an inverter, where the output signal is amplified, after which it

moves on to the column switch MOS transistors. This circuit has the advantage of being

compact.
Data Vdd
Select column
Ek—14|
A I Ay —
Aq— |
Aq ﬁ t I A —
A ”_’J—‘ \r"b_‘ II_—I |
T T T
Ag \ i i | AL _f'
1T -
BLE BL7 BL& Bl \'

L5 BL4 BL3 BL2 BL1
Figure 8: Column decoders
Read/Write circuitry

Once a particular single or pair of bit lines have been selected, depending on the SP
memory cell structure, a circuitry is required to write or to read the cells. Typical write
circuits are shown in Figure 9. Circuit (a) consists of a pair of inverters and a pass gate

with a write control input signal; while circuit (b) consists of a pair of NAND gates. The

data to be written on ‘data in’ line is presented on BL and BL.

Georgios A. Theodorou 49

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Data~in *DH Data-in ____
|]

Write {
=
BL BL BL BL

(a) Circuit based on invertors (b) Gircuit based on NAND gates

Wirite

Figure 9: Memory write circuitries

The read circuitry is more complex than the write circuitry and depends on the type of
the memory cells to be read, namely single ended or differential. In addition, it can be
based on a voltage mode or a current mode signal transporting technique. Figure 10
shows two voltage mode sense amplifiers, namely a single ended PMOS differential
sense amplifier, and a double-ended PMOS cross-coupled amplifier. In circuit (a), when
the data on BL is ’'1’, the transistor M1 turns on, and the transistor Q2 drives the Out line

to '1’ while when the data on BL is ’0’, transistor M2 turns on, and drives the Out line to

'0’. In circuit (b), the voltages of the Out and Out lines control the gates of the PMOS

transistors Q1 and Q2 such that the output voltage transitions are accelerated.

Vdd Vdd
Q1 b——d[Q2 oilp d[Q2
Out Out | Out
BL M1 M2]—— BL
Column switch I:l Column switch
YVss "Vas
(a) Single-ended sense amplifer (b) Double-ended sense amplifier

Figure 10: Voltage mode sense amplifiers

BL BL
BL Vdd
8L Bias voltage generatar
Vda : Pi|b— —d[P2
F’1):-—‘—4P2 P3|»J—<1 " b—3G8 _[>°ﬂ
M1 M2 MT M4 | i
| ! Glock
| vad |
Column switch i !
L i i
out Vss Out :___“\{:i:,:_““": Vs
(EI] Double-ended current mirrar ampliﬂer (b] Hybrid current sense amplifier

Figure 11: Current mode sense amplifiers

Georgios A. Theodorou 50

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Current mode sense amplifiers operate generally faster than voltage mode ones. Figure
11 shows two current mode sense amplifies: a double-ended current-mirror amplifier

and a hybrid current sense amplifier.

The double-ended current-mirror amplifier uses a bias voltage generator to provide an
appropriate voltage to the PMOS transistors P1 though P4 so that they operate near the
saturation region (Figure 11(a)). When no cell is selected, the current (say lp) that flows
from each bit line to the amplifier is the same. Therefore the current that flows through
transistors P1-P4 in the amplifier is also the same (1o/2). When a cell is selected, a small
amount of current Al flows from one bit line to the cell. For example, Al flows from BL to
the cell, the current flowing from BL to the amplifier will be reduced to Ip - Al, while the
current flowing from BL will remain to lp. Consequently, the current flowing through PI
and P3 will be reduced to (lp - Al)/2, while that flowing through P2 and P4 remains at
lo/2. The current which flows through M1 is Io/2 because the current flowing through P2
and M2 is the same, and M1 is the current mirror of M2. Therefore the load capacitance
of output line Out will be discharged by M1, which draws more current than P1 provides.
In almost the same manner, the load capacitance of Out will be charged up by PI. In this

way, the voltage of Cﬂdrops while the voltage of Out rises, and the voltage swing is

obtained between the two data output lines.

The hybrid current sense amplifier (Figure 11 (b)) operates in two phases: equalization
and sensing phase. During the equalization phase, the clock signal is high to precharge
the output nodes to equal potentials. During the sensing phase, a particular memory cell
is selected and the cell’'s node with low level draws a current from the corresponding bit
line. The differential current signal then appears at BL and Out. Once the clock signal is
low, the differential current flows through M1 and M2, and charging the small equivalent
capacitances at the drains of M1 and M2. A small differential voltage will appear across
the two drains and be amplified to a CMOS level voltage by the positive feedback effect
of the cross coupled circuit.

2.2 Space of memory faults for SRAMs

2.2.1 Concept of fault primitive

Intuitively, a functional fault model is defined as a description of the failure of the
memory to fulfill its functional specifications. This definition of a fault model is not a
precise one since it does not indicate which functional specifications should be taken

into account. Still, the definition specifies the intuitive meaning of a fault model and the

Georgios A. Theodorou 51

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

way it should be viewed. The term ’functional specifications’ should be understood in a
rather general sense. It should be detailed enough to describe the contents of individual

memory cells.

By performing a number of memory operations and observing the behavior of any
component functionally modeled in the memory, functional faults can be defined as the
deviation of the observed behavior from the specified one under the performed

operation(s). Therefore, the two basic ingredients to any fault model are:
1. A list of performed memory operations.

2. A list of corresponding deviations in the observed behavior from the expected

one.

Any list of performed operations on the memory is called an operation sequence. An
operation sequence that results in a difference between the observed and the expected
memory behavior is called a sensitizing operation sequence (SOS). The observed
memory behavior that deviates from the expected one is called a faulty behavior. When
inspecting the memory for possible faulty behavior, not all the functional specifications
are taken into account and compared with the actual memory behavior. Rather, a very
limited subset of functional parameters is selected as most relevant to describe the
faulty behavior of the memory. Throughout the 1980s and during the first half of the
1990s, the only functional parameter considered relevant to the faulty behavior was the
stored logic value in the cell. Recently, another functional parameter, the output value of
a read operation, was also considered to be relevant to describe the faulty behavior.

Thus in order to specify a certain fault, one has to specify the SOS, together with the
corresponding faulty behavior. This combination for a single fault behavior is called a
Fault Primitive (FP) [21], and is denoted as < S/F/R >. S describes the SOS that
sensitizes the fault, F describes the value or the behavior of the faulty cell (e.g., the cell

flips from 0 to 1), while R describes the logic output level of a read operation (e.g., 0).

The concept of a FP allows for establishing a complete framework of all memory faults,
since for all allowed operation sequences in the memory, one can derive all possible
faulty behaviors. In addition, the concept of a FP makes it possible to give a precise
definition of a functional fault model (FFM) as it has to be understood for memory
devices [21]:

A functional fault model is a non-empty set of fault primitives

Georgios A. Theodorou 52

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

This definition of a FFM still depends on the selected functional parameters to be
observed in the FPs. Yet, this dependence is now precisely known once the FPs are
defined. Since a fault model is defined as a set of FPs, it is expected that FFMs would
inherit the properties of FPs. For example, if a FFM is defined as a collection of single
cell FPs, then the FFM is a single cell fault. If a FFM is defined as a collection of 2-
operation (i.e., the SOS consist of two sequential operations) FPs, then the FFM is also

called a 2-operation fault.

The situation becomes more complicated if a FFM consists of FPs classified into
inconsistent classes (e.g., single cell and two-cell FPs). In this case, the FFM is not
described by a single term but by the classes of its constituent FPs. Therefore, a FFM
that consists of single cell and two-cell FPs, for example, is described as a single and
two-cell FFM.

2.2.2 Classification of fault primitives

Figure 12 shows the different classifications of the FPs. They can be classified based
on:

1. The ways the FPs manifest themselves, into simple and linked faults.

2. The number of sequential operations required in the SOS, into static and dy-

namic faults.

3. The number of simultaneous operations required in the SOS, into single-port

and multi-port faults.

4. The numbers of different cells the FPs do involve, into single-cell and multi-cell

faults.

It is important to note that the four ways of classifying fault primitives are independent
since their definition is based on independent factors of the SOS (Figure 12). As a
result, a dynamic fault primitive can be single-port or multi-port, single-cell or multi-cell.
The same is true for linked faults; they can be static or dynamic, and each of them can

be single-port or multi-port, single-cell or multi-cell.

Georgios A. Theodorou 53

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Faults considered P

for small caches :
- R

[Snglecet | [wwiticel [singie-cet | [mauicen | : ; ' i ‘ ; : :

)

Figure 12 : Summary of fault primitive classification

2.2.3Single versus linked faults

Depending on the way FPs manifests, they can be divided into simple faults and linked

faults.

e Simple faults: These are faults which cannot influence the behavior of each other.
That means that the behavior of a simple fault cannot change the behavior of another

one; therefore masking cannot occur.

e Linked faults: These are faults that do influence the behavior of each other. That
means that the behavior of a certain fault can change the behavior of another one
such that masking can occur [22]. Note that linked faults consist of two or more
simple faults. In order to get more insight into linked faults, the following example will
be given. Assume that the application of an operation to a cell c; will cause a fault in
a cell ¢, (i.e., the cell flips); and that the application of an operation to a cell ¢, will
cause a fault in the same cell c,, but with a fault effect opposite to that caused by cell
c1. If now first an operation is applied to cell c1, and thereafter to cell c,, then the net
result is that the fault effect of cell c; is masked by the fault effect of cell c;; i.e., no
fault effect is then visible in cell c,.

2.2.4 Static versus dynamic faults

Let #O be defined as the number of different operations performed sequentially in a
SOS. For example, if a single read operation applied to a certain cell causes the same
cell to flip, then #O = 1. Depending on #0O, FPs can be divided into static and dynamic

faults:

Georgios A. Theodorou 54

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

¢ Static faults: These are FPs sensitized by performing at the most one operation; that
is #O <= 1. For example, the state of the cell is always stuck at one (#O = 0), a read
operation to a certain cell causes the same cell to flip (#O = 1), etc.

e Dynamic faults: These are FPs that can only be sensitized by performing more than
one operation sequentially; that is #0 > 1. Depending on #0O, a further classification
can be made between 2-operation dynamic FPs whereby #O = 2, 3-operation

dynamic FPs whereby #0 = 3, etc.

2.2.5 Single-port versus multi-port faults

Let #P be defined as the number of ports required simultaneously to apply a SOS. For
example, if a single read operation applied to cell c; causes the same cell to flip, then
#P = 1; if two simultaneous read operations applied to the cell cause the same cell to
flip, then #P = 2. Depending on #P, FPs can be divided into single-port faults, and multi-
port faults.

e Single-port faults (1PFs): These are FPs that require at the most one port in order to
be sensitized; that is #P < 1. Note that single-port faults can be sensitized in single-

port memories as well as in multi-port memories.

e Multi-port faults (pPFs): These are FPs that can be only sensitized by performing two
or more simultaneous operations via the different ports. Depending on #P, the multi-
port faults can be further divided into:

o Two-port faults (2PFs): These are FPs that can be only sensitized by performing
two simultaneous operations via two different ports; that is #P = 2. Note that 2PFs
can be sensitized in any multi-port memory with p > 2 (p denotes the number of
ports).

o Three-port faults (3PFs): These are FPs that can only be sensitized by performing
three simultaneous operations via three different ports; that is #P = 3. Note that

3PFs can be sensitized in any multi-port memory with p > 3,
o etc.

In this thesis we will consider only single port faults, since cache arrays are single port

memories.

Georgios A. Theodorou 55

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

2.2.6 Single-cell versus multi-cell faults

Let #C be defined as the number of different cells accessed during a SOS. For ex-
ample, if the operation sequence consists only of a single read operation applied to a
single cell, then #C = 1, if the operation sequence consists of two single read operations
applied sequentially to two different cells, then #C = 2; etc. Depending on #C, FPs can

be divided into single cell faults and multi-cell faults (i.e., coupling faults).

¢ Single-cell faults: These are FPs involving only a single cell. They have the property
that the cell used for sensitizing the fault (by applying the SOS) is the same as where

the fault appears.

e Coupling faults: These are FPs that involve more than one cell; they have the
property that the cell(s) which sensitizes (or contribute for sensitizing) the fault (e.g.,
by applying the SOS) is different from the cell where the fault appears. Depending on
#C, this class can be further divided into two-coupling fault primitives whereby #C =
2, 3-coupling fault primitives whereby #C = 3, etc.

2.3 Single-port faults for SRAMs

Single-port faults occur in single-port memories such as cache memories and can be
divided into single-cell FPs and multi-cell FPs. Single-cell FPs are FPs involving a single
cell; while multi-cell FPs are FPs involving more than one cell. For multi-cell FPs, we will
restrict our analysis to two-cell FPs (i.e., two-coupling FPs), because they are

considered an important class in single-port SRAM faults.

Figure 13 shows the two classes considered for 1PFs. Single-port faults involving a
single cell (1PF1s) have the property that the cell used for sensitizing the fault is the
same cell as where the fault appears. On the other hand, single-port faults involving two
cells (1PF2) are divided into three types, depending on the cell to which the sensitizing

operation is applied.

e The 1PF2s: It has the property that the state of the aggressor cell (a-cell c,), rather
than an operation applied to c,, sensitizes a fault in the victim cell (v-cell c,). Note that
no operation is required in that case; the subscript ‘s’ in the notation 1PF2s stands for

‘state’.

e The 1PF2a: It has the property that the application of a single-port operation (solid

arrow in the figure) to the a-cell sensitizes a fault in the v-cell.

Georgios A. Theodorou 56

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

e The 1PF2v: It has the property that the application of a single-port operation to the v-
cell, with the a-cell in a certain state, sensitizes a fault in the v-cell.

1PFs
L ——

i -

1PF2H [1PF2 1PF2,,

[o ole @\@ &)

Figure 13: Classification of 1PFs

In the rest of this section, the domain of all possible 1PFs and 2PFs will be presented.
For each class, first the complete list of FPs is given; thereafter the list will be compiled
into FFMs.

2.3.1Single-cell fault primitives

Before listing the possible single-cell FPs (1PF1), a precise compact notation, which will

prevent ambiguities and misunderstandings, will be introduced.

e <S/F/R> (or <S/F/IR>,): denotes an FP involving a single-cell (i.e. 1PF1s); the cell ¢,

(victim cell) used to sensitize a fault is the same cell as where the fault appears.

e S describes the value/operation sensitizing the fault; S {0, 1, OwO0, 1w1, Owl, 1wO0,
r0, rl}, whereby 0(1) denotes a zero (one) value, OwO (1wl) denotes a write 0(1)
operation to a cell which contains a 0 (1), Owl (1w0) denotes an up (down) transition
write operation, and rO (rl) denotes a read 0(1) operation. If the fault effect of S

appears after a time T, then the sensitizing operation is given as S;.

e F describes the value of the faulty cell (v-cell); F € {0, 1, 1, |, ?} whereby 1(|)
denotes an up (down) transition due to a certain sensitizing operation; and ‘?’
denotes an undefined state of the cell (e.g., the voltage of the true and the false node

of the cell are almost the same).

¢ R describes the logical value which appears at the output of the SRAM if the sen-
sitizing operation applied to the v-cell is a read operation: R € {0, 1, ?, - } whereby ‘?’

denotes a random logic value. A random logic value can occur if the voltage

Georgios A. Theodorou 57

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

difference between the bit lines (used by the sense amplifier) is very small. A -’ in R
means that the output data is not applicable; e.g., if S = w0, then no data will appear
at the memory output, and for that reason R is replaced by a ‘-'. It is interesting to
note here that the word undefined is used for the state of the cell (for F =?), and
random is used for the read data value (for R =?); these words will be used later to

give names for the introduced FFMs.

Table 1: Complete set of 1FP1s

S F R <S/F/R> FFM | # S F R <S/F/R> FFM

T 1 <0/1/ > SF 20 <07/ > USF
31 0 <10/ = SE 1 <1/ > USEF
" 0wl WDE [6 0w UWE
7 1wl WDF |8 1wl UWE
9 0wl 0 IF 10 Owl UWE
11 1w0 1 [F 12 lwD UWE
13 0 0 1 IRF 1 00 RRF
15 70 0 DRDF | 16 70 1 RDF
17 -0 ' RRDF [18 0 7 0 URE
19 10 1 URE 200 10 ? URE
21 1l I 0 IRF 22 rl 1 7 /1, RRF
23 rl L0 /1, RDF 24 rl | 1 <rl/l/1> DRDE
25 rl I 7 <rl/ /7> RRDF | 26 -l 70 < rl/70 > URFE
27 rl 71 <rl/?f1l > URF 28 rl 77 <rlf?)? > URE

Since we have defined the S, F and R for 1PF1s, it is possible to list all FPs using this
notation. Table 1 lists all possible combinations of the values, in the <S/F/R > notation,
that result in FPs. The remaining combinations of the S, F and R values do not
represent a faulty behavior. For example, <1wO0/0/-> corresponds to a correct w0
operation after which the cell contains a 0, as expected. It is clear from Table 1 that the
write operations are capable of sensitizing 8 FPs, and the read operations are capable

of sensitizing 16 FPs. Note that in total there are 28 single-cell FPs.

2.3.2Single-cell functional fault models

The list of 28 possible single-cell FPs will be compiled into a set of FFMs. The FFMs are
given names, and each consists of a number of FPs. Selecting which FP should belong
to a given generic FFM is rather arbitrary and is mainly determined by historical

arguments; Table 3.2 summarizes the set of FFMs together with their FPs.

Georgios A. Theodorou 58

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 2: List of all 1FP1s FFMs

| I'I'M Fault primitives

RIED < 1/0/>. < 0/1/->

2 Tr < Qwl/0/->, < lwh/1/->

3 | WDE | <0whf 1 /—> <lwlf] /- >

4 | RDF <rlf 1 /1> <r1/] /0>

5 |DRDF | <r0/1/0>. <r1/] /1>

G | RRDE | <0/ 1 /7> <vl/ | /7>

7 |IRF < r0/0/1 >, < r1/1/0 =

8 |RRF | <r0/0/7 >. <rl/1/7 >

9 |USE | <1/7/ > <0/7/>

10 | UWF | < 7= >, < 0wl = >, < lub/7/= >, < lul/7/— >
11 | URDP - < reflfl s < re /)T >

12 | SAF | <¥/0/->. <¥/1/->

13 | NAF {< Owlf0/ >, < 1whfl/-> <rxjfc/? >}
14 | DRF <1/ /= <0/t /> <arfl)->

State Fault (SF): A cell is said to have a state fault if the logic value of the cell flips
before it is accessed, even if no operation is performed on it. This fault is special in the
sense that no operation is needed to sensitize it and, therefore, it only depends on the
initial stored value in the cell.

Transition Fault (TF): A cell is said to have a transition fault if it fails to undergo a
transition (‘0 to 1’ or ‘1 to 0') when it is written. This FFM is sensitized by a write
operation and depends on both the initial stored logic value and the type of the write

operation.

Write Destructive Fault (WDF): A cell is said to have a write destructive fault if a non-

transition write operation (Ow0 or 1w1l) causes a transition in the cell.

Read Destructive Fault (RDF): A cell is said to have a read destructive fault if a read
operation performed on the cell changes the data in the cell, and returns an incorrect

value on the output.

Deceptive Read Destructive Fault (DRDF): A cell is said to have a deceptive read
destructive fault if a read operation performed on the cell returns the correct logic value,
while it results in changing the contents of the cell.

Random Read Destructive Fault (RRDF): A cell is said to have a random read
destructive fault if a read operation performed on the cell returns the random logic
value, while it results in changing the contents of the cell.

Incorrect Read Fault (IRF): A cell is said to have an incorrect read fault if a read
operation performed on the cell returns the incorrect logic value while keeping the

correct stored value in the cell.

Georgios A. Theodorou 59

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Random Read Fault (RRF): A cell is said to have a random read fault if a read operation
performed on the cell returns a random data value on the output while the stored value

remains as it is.

Undefined State Fault (USF): A cell is said to have an undefined state fault if the logic
value of the cell flips to an undefined state before the cell is accessed, even if no
operation is performed on it. This fault is special in the sense that no operation is
needed to sensitize it and, therefore, it only depends on the initial stored value in the

cell.

Undefined Write Fault (UWF): A cell is said to have an undefined write fault if the cell is

brought in an undefined state by a write operation.

Undefined Read Fault (URF): A cell is said to have an undefined read fault if the cell is
brought in an undefined state by a read operation. The returned data value during this

read operation can be correct, wrong, or random.

Stuck-At Fault (SAF): A cell is said to have a stuck-at fault if it remains always stuck at a

given value for all performed operations.

No Access Fault (NAF): A cell is said to have a no access fault if the cell is not
accessible; i.e., the state of the cell cannot be changed with write operations, and any

read operation applied to the cell returns a random data value.

Data Retention Fault (DRF): A cell is said to have a data retention fault if the state of the
cell changes after a certain time T, and without accessing the cell. T should be longer
than the duration of the precharge cycle in SRAMs, because if the cell flips within the

precharge cycle then the sensitized fault would be a state fault.

2.3.3 Two-cell fault primitives

Single-port FPs involving two cells (1PF2s) are divided into three types (Figure 13).
Before listing the 1PF2s, a precise compact notation for 1PF2s, will be introduced.

< S5 SVFIR > (or < S,;SV/FIR >,,,) denotes an FP involving two cells; S, describes the
sensitizing operation or state of the aggressor cell (a-cell); while S, describes the
sensitizing operation or state of the victim cell (v-cell). The a-cell (cy) is the cell
sensitizing a fault in another cell called the v-cell (c,). The set Si is defined as: Si € {0,1,
owo, 1w1, Ow1l, 1w0, r0, r1} (i € {a, v}), F € {0,1, 1, |,?}, and R € {0,1,?,-

Georgios A. Theodorou 60

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 3: The complete set of 1PF2 FPs x €{0,1}

[# FFM | # FFM |
| 1 i] 1 CFs | 2 [i] |
[3 1 0 CFs [IE 1 |
a Ol | CFwd [Uawrt)
7 Ll | CFwd) Ll
] O 0 CFtr 1] Ul
11 Lusl) 1 CFtr 12 Lwrt)
1 ri 0 1 CFir 14 i [i]
13 ri | 0 CFdrd L ri I 1
17 il i CFrrd 1# i} ? 0
L9 - 1 CFur 20 i ?
21 rl 1 i CFir 22 l 1
23 1 1 il CFrd 24 w1 1. 1
25 1 1 ? CFrrd 26 vl ? il
27 ml T 1 CFur 28 rl T
20 Ol i} T s a0 Ot 1]
1 Lurl il T Fds 32 Lurd il
(i | il T Fds 34 (Ol il
] Lusl] i} T Fds a6 1wt il
T ri i T Fds 38 il il
1 rl 5l T Fds 41 1 1]
L1 Ol | i Feds 42 awrl) 1
13 Lurl 1 i Feds 44 Ll 1
15 s | i Feds 46 Ol |
LT Lusl) | i s 4% Lwrt) 1
10 ri 1 1 Fds an i |
al 1 1 1 Fds 1z 1 1

Table 3 lists all possible combinations of the values, in the < S,;S\/F/R > notation, that
result in FPs. The column 'FFM’ in the table shows the FFM each FP belongs to; such
FFMs will be discussed in more detail in the next section.

2.3.4 Two-cell functional fault models

The list of 80 possible 1PF2 FPs will be compiled intoa set of FFMs. Table 4
summarizes the set of FFMs together with their FPs; each of the FFM will be discussed
in detail. Remember that the 1PF2 FPs are divided into three types 1PF2;, 1PF2, and
1PF2,.

Table 4: List of 1PF2 FFMs x,y €{0,1}

|| | FFM Fault primitives ||
'Fst < 0:0/1/
‘Fus < 0oy

Fds | < awy; 0/ 1/

‘Fud < axwy: 07/ 17 >
Fid | < owlio/) < lw0; 1) L/
Fin | {<0wlof] > 71 >o< w1 |/ =)
‘Ftr < 00wl =, < LiOwl/0/ >, < 0 Lw0/1/ >, < 1 lwd/1/
< 000w/ T/ o< Li0wO/ T) o< 00 lwl) |/ =< Lilwl/ |/
rd <Orf Pl =0 Lie0) T L Dl L0 =< il) L0

< LirQ/ 4 /0 = < O :
< 1r0/ 1 /7
< 1 r0/0/1 -

o Lie0/0)7 0

10
11
12
13
14
15

< mwl /7y

v *
== == =~ ==~ ==~~~ =]~

< 071 =, <

Georgios A. Theodorou 61

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The 1PF2s FFMs

This type has the property that the state of the a-cell, rather than an operation applied to

the a-cell, sensitizes a fault in the v-cell; it consists of two FFMs:

State coupling fault (CFst): Two cells are said to have a state coupling fault if the v-cell
is forced into a given logic state only if the a-cell is in a given state, without performing
any operation on the v-cell or on the a-cell. This fault is special in the sense that no
operation is needed to sensitize it and, therefore, it only depends on the initial stored

values in the cells.

The 1PF2, FFMs

This type has the property that the application of a single-port operation to the a-cell
sensitizes a fault in the v-cell; it consists of the following FFMs:

Disturb coupling fault (CFds): Two cells are said to have a disturb coupling fault if an
operation (write or read) performed on the a-cell causes the v-cell to flip. Here, any
operation performed on the a-cell is accepted as a sensitizing operation for the fault, be

it a read, a transition write or a non-transition write operation.

Idempotent coupling fault (CFid): Two cells are said to have an idempotent coupling
fault if a transition write operation (Owl and 1wO0) on the a-cell causes the v-cell to flip.

This fault is sensitized by a transition write operation performed on the a-cell.

Inversion coupling fault (CFin): Two cells are said to have an inversion coupling fault if
the logic value of the v-cell is inverted in case a transition write operation is performed

on the a-cell.
The 1PF2, FFMs

This type has the property that the application of a single-port operation to the v-cell
(with the a-cell in certain state) sensitizes a fault in the v-cell. It consists of the following
FFMs:

Transition coupling fault (CFtr): Two cells are said to have a transition coupling fault if a
given logic value in the aggressor results in a faulty transition write operation performed
on the victim. This fault is sensitized by first setting the a-cell in a given state, and

thereafter applying a write operation on the v-cell.

Georgios A. Theodorou 62

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Write Destructive coupling fault (CFwd): Two cells are said to have a write destructive
coupling fault if a non-transition write operation performed on the v-cell results in a

transition when the a-cell is in a given logic state.

Read Destructive coupling fault (CFrd): Two cells are said to have a read destructive
coupling fault when a read operation performed on the v-cell changes the data in the v-

cell and returns an incorrect value on the output, if the a-cell is in a given state.

Deceptive Read Destructive coupling fault (CFdrd): Two cells are said to have a
deceptive read destructive coupling fault when a read operation performed on the v-cell
changes the data in the v-cell and returns a correct value on the output, if the a-cell is in

a given state.

Random Read Destructive coupling fault (CFrrd): Two cells are said to have a random
read destructive coupling fault when a read operation performed on the v-cell changes
the data in the cell and returns a random value on the output, if the a-cell is in a given

State.

Incorrect Read coupling fault (CFir): Two cells are said to have an incorrect read
coupling fault if a read operation performed on the v-cell returns the incorrect logic value

when the a-cell is in a given state. Note here that the state of the v-cell is not changed.

Random Read coupling fault (CFrr): Two cells are said to have a random read coupling
fault if a read operation performed on the v-cell changes the data in the v-cell and
returns a correct value on the output, when the a-cell is in a given state. Note that the

state of the v-cell is not impacted; it remains in its correct value.

Undefined Write coupling fault (CFuw): Two cells are said to have an undefined write
coupling fault if the v-cell is brought in an undefined state by a write operation

performed on the v-cell, when the a-cell is in a given state.

Undefined Read coupling fault (CFur): Two cells are said to have an undefined read
coupling fault if the v-cell is brought in an undefined state by a read operation performed

on the v-cell, when the a-cell is in a given state.

An analysis of the defined FFMs shows that all introduced FFMs are necessary except

the CFid and CFin. These two FFMs have been introduced for historical reasons.

Georgios A. Theodorou 63

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

2.4 March tests for SRAM memories
2.4.1 March test notations

A March test consists of a finite sequence of March elements [23]. A March element is a
finite sequence of operations applied to every cell in the memory before proceeding to
the next cell. The way one proceeds to the next cell is determined by the address order,
which can be an increasing address order (e.g., increasing address from the cell O to
the cell n-1), denoted by 1 symbol, or a decreasing address order, denoted by | symbol,
and which is the exact inverse of the 1 address order. When the address order is

irrelevant, the symbol] (i.e., 1 or |) will be used.
An operation can consist of:

e WO: write O into a cell.

e w1: write 1 into a cell.

¢ 10: read a cell with expected value O.

e rl: read a cell with expected value 1.

A complete March test is delimited by the bracket pair; while a March element is
delimited by the (...)" bracket pair. The March elements are separated by semicolons,
and the operations within a March element are separated by commas. For example, the
MATS+ March test {t(wO0);1(r0, w1);]/(r1,w0)} consists of the March elements 1(wO0),
1(r0, w1) and [(r1,w0). Note that all operations of a March element are performed at a

certain address, before proceeding to the next address.

2.4.2 March test for single port faults

March SS detects all the single-cell and the double cell FFMs that has been presented
in Section 3.3. March SS is shown below. It has a test length of 22N. Let M;; denote the
™ operation of March element M; ; e.g., M sdenotes the third operation (i.e., w0) of Mj.

T(Wo). T (Ro.Rg, Wo,Rg, Wy), T (R, Ry, Wy, Ry, Wo),
MO Ml MZ
4 (Ro:Rg, Wo, R, Wi). ¥ (Ry, Ry, Wy, Ry, Wy) 4 (Ry)
My M, Ms

MarchSS:

Georgios A. Theodorou 64

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

March SS detects all single-cell FFMs:

All SFs, RDFs and IRFs are detected since from each cella0 and a 1 is read.

All TFs are detected because each cell is read after an up and a down transition
write operation. The <Ow1/0/-> is sensitized by M; 5 (also by M35) and detected by
M2.1(M4.1); while the <1w0/0/-> is sensitized by M, s (also by Mss) and detected by
M3 1(Ms).

All WDFs are detected since each cell is read after a non-transition write operation;
this is done by M; and M; (also by M3z and M,).

All DRDFs are detected because two successive read operations are applied to
each cell; the first read operation sensitizes the fault while the second detects it.

March SS detects all two-cell FFMs:

The detection of CFst’s requires that four states of any two cells can be generated
and verified by a read operation. In March SS all states of any two cells ¢; and c;
(i.e., 00, 01, 11, 10) are generated and verified (it can be easily verified by using a

state diagram).

All CFds’s are detected; this include CFds’s based on read operations, on transition
write operations and on non-transition write operations. The first block of Table 5
shows by which March element (i.e., My through Ms) of March SS, each FP
belonging to each FFM is sensitized and detected. In the table, two cases have
been distinguished: a) the v-cell has a higher address than the a-cell (i.e., v > a),
and b) the v-cell has a lower address than the a-cell (u < a). In addition, in each
entry the notation Sensitization/Detection is used. E.g., the < r0;0/1/- > is sensitized
and detected by M3 ; when v > a; while < r0;1/1/- > is sensitized by Msz; and
detected by M4 1 when u > a.

Georgios A. Theodorou 65

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 5: March SS Fault coverage

| F’FIM | FP I v>a | v<a |
CFds < 1l []_-". 1 My /My Mo /Mo
< i] 1 _‘\-'JI,;_| .|'T\']| N "lr'J[| 1 .I'T\-']_J
<rl0/ T/ = My /M5 Mz | /M3,

< Dwlw/ T/ = My /My | Mg 5/M;,
< (il) '\-'JI;J J'T\']| 1 "\-‘J[| B ﬂ‘..‘]_J
ZTw00/ 1/ = || Mys/M; | Mao/Ms,
S Twll/ 1] = | Maa/M, ;| M, /M,
|]|||].|] 1 '\-'JI|;.|'T\1| N "v’[;;fM;
< (il L Ma /My My a/Ma
< lwl .|] 1 '\-'1|;.I'T\-1; "\-’I_Jj.lq\']j
<lwlil/ L}/ > My 2/Ms | My /My
Chwd | < i0w0/ T/ = M3 /M5 .

L | My a/My
< 1 |]|||] 1 _'\-'JI|__;.|'T\'1| 4 T'v’[_;,,;ﬂ'\-1,;_.|
< 1 Lw] - .'\"JIE___J,J'T\"]-_.I_,| 3'#'1_|._5.Iq\'1,|__|
< 1: 1w] L _'¥'JI.|__;.|'T\"].|_.| T‘v’[g,,;ﬂ'\-1g_.|

CFdrd < (I r'[]_-"' 1 _-"-lj] Ms /M3 2 My /My 2
< lirll) T /0 = M /M 2 Mz 1 /M3 2
< r] ¥] Mz | /M2 2 My /My 2
< lLirl/ L /1> My /My o | Mo /M2
CFtr < 00w/) = | My sy | My s/Ma
ST 0w0/ T = | M, My, | M, /M,
SO Twl/ 1 o | Mo/, | My./M;

< 11 lw] + '\-'1| & .I'T'l-']; "'r'J[_JJ .I'T\']j |

e All CFwd’s are detected. The detection of CFwd’s requires that each pair of cells
undergoes the four states (00, 01, 10, 11), the application of a non-transition op-
eration and thereafter a read operation. The second block of Table 5 shows by

which March element each FP of CFwd is sensitized and detected.

e All CFdrd’s, CFrd’s, CFir's are detected. The detection of CFrd’s and CFir’s require
that each pair of cells undergoes the four states (00, 01, 10, 11), and a read
operation has to be performed to each of the two cell; while the detection of CFdrd’s
requires, in addition, the application of another read operation. Therefore, any test
detecting CFdrd also detects CFrd and CFir. The third block of Table 5 shows by

which March element each FP of CFdrd is sensitized and detected.

e All CFtr's are detected. The detection of CFtr's requires that each pair of cells
undergoes the four states (00, 01, 10, 11), the application of a transition write op-
eration to sensitize the fault, and thereafter a read operation to detect it. The fourth
block of Table 5 shows by which March element each FP of CFtr is sensitized and
detected.

Georgios A. Theodorou 66

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures
2.5 CAM memories

2.5.1 CAM memories architecture

Content-addressable memories (CAMs) are a special type of memories used in high
speed searching applications, e.g., in computer networking devices, processor caches,
etc. The block diagram of a typical CAM is shown in Figure 14, where optional input—
output signals and functional blocks are drawn by dashed lines—they may or may not
be required, depending on the application.

Input Pattern
N\

Input-Pattern Register
RERERDEEN
:__{_1_':1??!‘.3&'3‘91_9!1'__ ;,_: Bi

Word v Lines
Lines . Word 0 EPU N S
Word 1 o= =
- Word 2 = aH ! March
| Addressing | : - |y - (H)
Address - - { Mechanism | | . . , | Signal L o
Generator
* CAM Array * *
(i) .
: Address
- WordN - 1 —- (E"‘m“')
R IR O N o
. Daﬁ.'ol.'tp.m Register | (Highest-Priority)
“y Address Output
Output Pattem

Figure 14: CAM memory block diagram

The implementation of some functional blocks, such as the address decoder and
encoder, also depends on the requirements of the system containing the CAM. The
searching (or matching) function of most CAM designs is performed by a compare
operation, by which an input pattern (the input data word) is compared with all words
stored in the CAM cell array simultaneously. There are only two possible comparison
results for each word: match or mismatch. A match between a word and the input
pattern means that all cells (bits) in the word are identical to the corresponding bits of
the input pattern; otherwise, a mismatch occurs. A CAM is composed of words; a word
is composed of cells; and a cell stores a single-bit value. A widely used SRAM-based
single-bit CAM cell is shown in Figure 15a. This cell is substantially different from a
traditional SRAM cell because it requires a larger number of transistors to perform the
additional function of compare (as well as write and read). A CAM cell uses different bit

lines for the read/write and compare operations and has a dual port structure, therefore,

Georgios A. Theodorou 67

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

the concurrent operation (read & compare) is possible. A different implementation uses
the same bit lines for read/write and compare (single or uni-port), as shown in Figure
15b; in this case, the concurrent operation (read & compare) is not possible (although
the traditional read, write, and compare operations are still possible). The difference in
functionality and the internal structure of the cell also affects the testing process of
these devices [24][25].

The cell of an SRAM-based CAM can be divided into two functional parts: the storage
part and the comparison part. The storage part (Figure 15) is the same as in a high
density SRAM cell. It consists of six transistors and can be read and written through the
read and write operations. The comparison part is unique to a CAM and consists of

three transistors (denoted as Mo, M1, and Mz).

BL/CBL Storage Part BL/CBL

WL |

ML |

Cumpar.i.s.én Part Cnmpal"l.u.un Part
Figure 15: SRAM-based CAM cell: a) 2-port configuration b) uniport configuration

2.5.2 Faults for CAM memories

The storage part of a CAM cell is similar to an SRAM cell. Therefore all the functional
fault models that were presented in section 2.3 are also mapped to the storage parts of
the CAM memories. We will now describe the faults in detail that are modeled for the

comparison part of the CAM memories.

The stuck-matched fault (SMF) is one that causes a CAM cell to always match its
corresponding input bit irrespective of the state of the CAM cell and the input pattern.
On the contrary, if there is a stuck-mismatched fault (SMMF) in a CAM cell, there will be
no match for the cell irrespective of the state of the CAM cell and the input pattern.

Sometimes a defect may result in incorrect compare operations without affecting the
normal write operations. For example, it is assumed that any write operation always
writes zero into a cell under the BL—-GND short. In such a case, the defect causes the
cell to have an SMF. However, if both BL lines are at logic O during a write-1 operation,

Georgios A. Theodorou 68

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

and the logic 0 on BL is weaker than that on BL, then the write-1 operation can write a 1
into the cell successfully, or the write-1 operation does not change the cell value if the
cell is already in the 1 state (maybe due to the power-on process). In other words, we
cannot guarantee that the cell always stores a logic O after the write-1 operations. Such
a defect will be mapped to another type of fault model, which will be discussed later in
this section. To determine which logic-O signal is stronger, the capability of the BL
drivers and the physical characteristics of the short must be considered.

A CAM cell with a conditional-match fault (CMF) will function correctly if a logic value x
has been written into it. However, the cell always provides an incorrect result for the
subsequent compare operations if x has been written into it. The CMF can be further
divided into the conditional-match-1 fault (CM1F) for x=1 and the conditional-match-0
fault (CMOF) for x=0.

If there is a partial-match fault (PMF), a CAM cell will be stuck-matched for all
subsequent compare operations when a logic value x is written into the cell, and it will
be stuck-mismatched when x is written into it. The PMF can be further classified as the
partial-match-1 fault (PM1F) for x=1 and the partial-match-0 fault (PMOF) for x=0.

There is a class of mismatch faults which we call the equivalence-mismatch fault
(EMMF) - the compare operation fails if the CAM cell stores a value x and is compared
with the same input value x. It is an equivalence-mismatch-1 fault (EMM1F) if x=1, and

an equivalence-mismatch-0 fault (EMMOF) if x=0.

Similar to EMMF, there is another class of faults which we call the inequivalence-match
fault (IMF) - the compare operation fails if the CAM cell stores a value x and is
compared with the complementary input value x. It is an inequivalence-match-1 fault
(IM1F) if x=1, and an inequivalence-match-0 fault (IMOF) if x=0.

A cross-match fault (XMF) or cross-mismatch fault (XMMF) is caused by a short
between two neighboring BL and BL lines, which respectively belong to two neighboring
cells in the same word. This defect will affect the match function of a word under certain
input patterns. Let the two affected cells be denoted as cell; and cell;+1, respectively. The
BL line of cell; is shorted to the BL line of cell:;. If (11) is the input combination to be
written into or compared with the two cells, both BL lines of the two cells are driven to
VDD and both BL lines are pulled down to ground. Due to the short, the the BL line of
cell+1 will be pulled up by the BL line of cell; to an intermediate voltage level between

VDD and ground. If (11) is about to be written into the two cells, and we assume that the

Georgios A. Theodorou 69

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

voltage difference between the bit lines of either cell is still large enough to force the cell
to change its internal value, then the write operation is not affected, except that more
power consumption and longer delay occurs during the write operation. On the other
hand, if (11) is to be compared with the cells, there will be two possible results. First, if
the intermediate voltage is high enough to turn MO on, the match node of celly; is
always low during the compare operation irrespective of the state of cell;;1. Thus, there
is an XMMF in cell;1. Second, if the intermediate voltage is not higher than the
threshold voltage of MO, there is always a match for cell; after the compare operation,

and the defect corresponds to an XMF.

When (00) is compared with the two cells, cell;;; always has a match under an XMMF,
or cell; always has a mismatch under an XMF. For both XMMF and XMF, comparing
(01) or (10) with the two involved cells will not cause malfunction.

2.6 March tests for CAM memories

To test a dual-port CAM, two different algorithms (concurrent and non-concurrent
versions) are developed to account for the common implementations (dual-port and uni-
port) [24].

2.6.1 The concurrent algorithm: CDA

In a concurrent March test algorithm that target CAM comparison faults, the concurrent
match operations must be arranged carefully such that the relationship between the
match input and the state of a cell can be fully characterized. Concurrent Detection
Algorithm (CDA) detects all the above described modeled faults in the SRAM-based
dual-port CAM of Figure 15a. The CDA algorithm is depicted in Figure 16.

If Passes 3 and 5 and all concurrent operations are removed, then CDA is reduced to
the original March C algorithm, thus meeting the objective of full compatibility with
existing test tools. As CDA is word-oriented, then all CAM cells in a single word are
tested simultaneously. As the match line behaves as a wiring-AND (namely, the match
lines will produce a mismatch output whenever at least a bit of the word is mismatched),
then the match lines will generate as output a match only when all bits of the word are

matched.

In CDA, Pass3 and Pass 5 utilize bit-based walking-0/1 patterns which are not
encountered in the original March C algorithm; these passes are employed to detect

some special faults, such as stuck-at-0 faults on compare bit lines. To detect stuck-at-0

Georgios A. Theodorou 70

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

faults in CBL/CBL, the test pattern must produce a mismatch as fault-free output and a
match as faulty output. Hence, the word-oriented data patterns (the all-O or all-1 data

patterns) used for cell states and comparison inputs cannot detect a stuck-at-O in
CBL/CBL, i.e., the original March C algorithm with the added concurrent match

operations in Passes 2, 4, 6, and 7 cannot detect the stuck-at-O faults at CBL/CBL.
Therefore, CDA must employ bit-based walking-0/1 test patterns in Pass 3 and 5 to

detect these faults. In Pass 3 or 5, only one bit of a word will be mismatched at a time

and all other bits of the word are matched. So, if a CBL/CBL of a word is stuck-at-0,

then the CAM will generate a match (instead of a mismatch) as output.

N—1
Pass 1 [I'I"'|::.f|.fr‘|1
addr=(}
) N=1
R,) L
I-*”I: ' . [.Ii ||'1|r|'rl'."-:I
l (C addr=()
L=1
=0

P (158

I

1 . =1
Pass 4 l (h:-JT";Jr) 1 [l'i"'|:.]rr.rf-3'] l
' addr=0
. +L—1
Pass 5 [(—F]
k=)
- o = 1 addr=MN—1
Puss 6 (!ie’_:idfh') (W ;I:II.'-'-II']
. . - “
- \ 7 | addr=N -1
RIL,.
Pass T (ﬂ;h J (W H.a .
L\ cr i
=1
o s o]
addir=1

Figure 16: Concurrent Detection Algorithm (CDA) for CAM memories

Equivalently, when the test patterns for detecting the stuck-at-1 fault at CBL/CBL are

applied, the expected fault-free output is a match, i.e., all bits in the word are matched.
So, if any CBL/CBL is stuck-at-1, then the output will be a mismatch; therefore, all
CBL/CBL stuck-at-1 faults are tested and detected in parallel. The features of CDA can

be described in detail as follows:

Georgios A. Theodorou 71

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Pass 1 initializes the state of all cells to 0.

Storage faults are detected by the read and write operations in Passes 2, 4, 6, 7,

and 8. The analysis is the same as in the original March C algorithm.

Stuck-at-0 faults at CBL are detected in Pass 5. As the cells in the CAM have a 0 as
data (written in Pass 4), so the walking-1 patterns at the comparison inputs detect
stuck-at-0 faults in CBL. If CBL is fault-free, then the CAM reports a mismatch;
otherwise, it reports the address of the faulty cell as the matched address.

CBL stuck-at-0 faults are detected in Pass3 (same as for stuck-at-0 faults at CBL).

Stuck-at-1 faults at CBL are detected in Pass 2 .If no CBL stuck-at-1 fault exists,
then the CAM reports the matched address (except the first match operation in
Pass 7). If a CBL stuck-at-1 fault occurs, then the CAM always reports that there is
no matched address. Pass 7 also detects this type of fault (by the same reasons as

previously described).
Passes 4 and 6 detect stuck-at-1 faults at CBL (by the same reasons as above).

Passes 2 and 4 detect ML stuck-at-0 and Mg stuck-on faults which cause the CAM
to report a wrong matched address.

Both Passes 3 and 5 detect ML stuck-at-1 and My stuck-open faults, which cause
the CAM to report a matched address (instead of a no matched address). The
difference between these two faults is that an ML stuck-at-1 fault causes the CAM
to always wrongly report a matched address at each pass, while the My stuck-open
fault causes the CAM to wrongly report a match in only one pass. Note that the first

match operation in Passes 4 and 6 can also detect ML stuck-at-1 faults.

If the conflict in data values at G behaves as a wiring-AND short, then Pass 3 will
detect M; stuck-on faults; otherwise (wiring-OR), these faults are detected by Pass
4.

If the floating point G is always low (or retains its previous voltage), then Pass 5
detects M; stuck-open faults. Else (i.e., G is always high), Pass 2 will detect them.
Usually, M; stuck-open faults are likely to cause the floating point G to be low or
retain its previous value. Under this assumption, G is more likely to be 0 when Pass

5 is applied because, when the state of a faulty cell is changed from 1 to O by write

in Pass 4, G is connected to CBL (which is in the nop state), i.e., state 0. Therefore,

Georgios A. Theodorou 72

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

G is more likely to be in state O after it is isolated by both the off transistors M; and
My

e |If the conflict in data values at G behaves as a wiring-AND short, then Pass 5 will

detect M, stuck-on faults; else (wiring-OR), these faults are detected in Pass 2.

e |If the floating point G is always low (or retains its previous state too), then Pass3
detects all M, stuck-open faults; else (i.e., G is always high), Pass 4 will detect
them. As in a previous case, M, stuck-open faults more likely will cause G to retain
its previous voltage. As the previous voltage of G before Pass 3 is 0, so Pass 3 will
detect all M2 stuck-open faults.

e If the bridge fault between word and match lines is a wiring-OR short, then the faulty
word line will always be high during the write operation of CDA. When write tries to
write new data (with valued) to an address, then the data at the faulty address is
also changed to the new data (i.e., d instead of d). This is detected by the read
operations in CDA. These faults are detected by CDA in Passes 2, 4, 6 and 7 . If the
bridge is a wiring-AND short, then the faults are detected by the first read
operations of Passes 6 and 7 because this fault causes the address not to be

accessed.

e Bridge faults between read/write and compare bit lines are detected in Passes 6
and 7. These faults cause the read operations in Passes 6 and 7 to always read d
as output pattern (instead of the expected pattern d). These faults also cause the

match operations in Passes 6 and 7 to report a wrong matched address.

As per the above analysis, CDA detects all modeled faults inclusive of storage faults,
comparison faults, and faults across the storage and comparison parts of the CAM.
CDA requires eight passes and (10N + 2 L) tests, where N is the number of words in the
CAM and L is the word width.

2.6.2 The non-concurrent algorithm: NCDA

When concurrent operations are not allowed in a CAM, CDA must be modified as a
non-concurrent algorithm while preserving the same testing capabilities and fault
coverage. The non-concurrent CAM detection algorithm (NCDA) is depicted in Figure
17.

Georgios A. Theodorou 73

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

N-1
" A7
Puass ! [”' |r:rflfrl ’[
.-.-.-.'r|'.l'_ll-_lh_ 1

FPass 2 [{H D)s (W rlm'.h-]H
A [lrl'l.rl'—i]
Pass 3 [EF 2k~ ']
L

r)”""""" 4 [I:. "I? lll."rh'l]: ,IF'H_’ :'Jll.l'a.'l'l] [

obi addr=10
Pass b [C?Fﬁ.]

E=I)

addr=N—1
Pass [I:R|:?rf|fr : l'rlH;Llrrl'nl'." }: “ﬂ L:II [

]
addr=~N—1

[“""rl-rfn-r}: (W)i (C }H

c N—1
Puass 8 R|" H

ddr
adalic =0

=1

Piiss
0

Figure 17: Non concurrent detection algorithm (NCDA) for CAM memories

NCDA differs from CDA in Passes 2, 4, 6, and 7; in particular, the following features

must be pointed out:

Pass 1 initializes the state of all cells to 0.

As previously, storage faults are detected by the read and write operations in
Passes 2, 4, 6, 7 and 8.

CBL stuck-at-0 faults are detected in Pass 5.

CBL stuck-at-0 faults are detected in Pass 3.

CBL stuck-at-1 faults are detected in Pass 7.

Pass 6 detects CBL stuck-at-1 faults.

Passes 6 and 7 detect ML stuck-at-O and Mg stuck-on faults.

Both Passes 3 and 5 detect ML stuck-at-1 and My stuck-open faults.

Pass 3 (6) detects M; stuck-on faults if the conflict in data values at G is a wiring-
AND (OR) short.

If G is always low (high) or retains its previous value, then Pass 5 (7) detects M,

stuck-open faults.

If the data conflict at G behaves as a wiring-AND (OR) short, then Pass 5 (7)

detects M, stuck-on faults.

Georgios A. Theodorou 74

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

e |If G is always low (high) (or retaining its previous value), then Pass 3 (6) detects M,
stuck-open faults.

e |If the bridge between word and match lines is a wiring-OR (AND) short, then the
fault is sensitized by the write operations and detected by the read (match)
operations of NCDA. Note that, for the wiring-AND short, detection occurs in Passes

6 and 7 because this fault causes the match line to be stuck-at-0.

e Bridge faults between read/write bit lines and compare bit lines are detected by the
read operations of NCDA.

It is easy to prove that NCDA is the non-concurrent version of CDA. Therefore, NCDA
detects all the modeled faults with 100% coverage; however, due to the absence of
concurrent operations, NCDA require (12N + 2 L) tests, i.e., an increase of 2N tests
compared with CDA.

2.7 Memory Built-In Self-Test (MBIST)

There are two main industrial approaches for testing embedded memories of SOCs and
microprocessors: external testing by direct access using automatic test equipment
(ATE) and internal testing using Memory BIST. On the one hand, direct access to the
embedded memory cores from the limited number of 1/O pins needs a high-
performance ATE, as well as very long testing time since tester channels are time-
shared by different memories under test. Thus, external testing becomes infeasible, in
particular for large VLSI devices where transistor to pin ratio is high. On the other hand,
Memory BIST provides at-speed and high-bandwidth access to the embedded
memories and it only needs a low cost ATE to initialize the test sessions during
manufacturing testing or a system call during on-line testing and a mechanism to
inspect the final results. However, although Memory BIST is state-of-the-art technology
and the industry standard for embedded memory testing, unless carefully designed, it
may induce excessive power, in addition to performance and area overhead, since
embedded memories nowadays dominates the silicon area in modern microprocessors
and SOCs.

Georgios A. Theodorou 75

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Control IAddress
Commands BAAL =y L
from uP or Ba;k?tround |
ATE atern > —p Address In _ ata Out
‘ Generator |] e l +
fr——— | | Data In
Decoder = Address | || = Embedded g ;
S— Generator| ‘ Memory _g Pass/Fail
— Y o =
Control — | Control)
|_Logic 1 | R 9
» FSM —» ‘
Y I ‘ ' ¢ |
\ > Correct Data
} | e - -
Controller Interconnect " Wrapper

Figure 18: Generic Memory BIST architecture

A typical embedded MBIST approach comprises an MBIST wrapper, an MBIST
controller and the interconnect between them, as shown in Figure 18. The MBIST
wrapper further includes an address generator to provide complete memory address
sequences (i.e., for n address lines all the 2n locations are visited in a complete
sequence); a background pattern generator to produce data backgrounds when testing
word-oriented memories; a comparator to check the memory output against the
expected correct data pattern; and a finite state machine (FSM) to generate proper test
control signals based on the commands received from the MBIST controller. The MBIST
controller pre-processes the commands received from upper-level controller (either on-
chip microprocessor or off-chip ATE) and then sends them to the MBIST wrapper. The
interconnect between the wrapper and the controller could be either serial (i.e., a single
command line is shared by all the wrappers) or parallel (i.e., dedicated multiple

command lines are linking different wrappers to the controller).

The increasing size and number of embedded memories and the rapid development in
VLSI process technologies lead to unique requirements for embedded memory BIST
schemes when compares with other BIST mechanisms (e.g Pseudorandom Logic
BIST):

e Support multiple test algorithms: The conventional MBIST approaches usually
implement a single March test algorithm. However, deep submicron process
technologies and design rules introduce physical defects that are not screened
when using the memory test algorithms developed for previous process
generations. Therefore MBIST architectures should be programmable to support
multiple memory test algorithms to increase the fault coverage and to find the most
suitable algorithms for the manufacturing process at hand.

Georgios A. Theodorou 76

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Diagnosis and repair support: Diagnosis support in MBIST architectures is
mandatory for manufacturing yield enhancement for new process technology and a
rapid transition from the vyield ramp phase to the volume production phase.
Furthermore, since embedded memories are subject to more aggressive design
rules, they are more prone to manufacturing defects (caused by process variations)
than logic in microprocessors and SOCs. For large embedded memories, the
manufacturing yield can be unacceptable low. Hence, to achieve a certain
manufacturing yield, in addition to diagnosis support, it is also beneficial to introduce

self-repair features comprising redundant memory cells.

Test heterogeneous memories: State-of-the-art microprocessors and SOCs include
many types of memory cores, such as, among others, SRAM, DRAM, flash and
ROM. Traditional MBIST approaches were designed to test only one type of
memory. However, to reduce area and routing overhead via hardware resource
sharing, as well as to decrease the testing time, it is advantageous to develop

MBIST architectures that support testing heterogeneous memories simultaneously.

Power dissipation constraints: For each memory the power dissipation will be
identical in both test mode and normal functional mode since memory testing is
functional testing. Therefore, if all memory blocks in a microprocessor or a SOC can
be activated simultaneously during functional mode, power dissipation will not
exceed the maximum power constraint during test. Hence, no test scheduling is
required in this case. However, to reduce the overall testing time, test scheduling is
still necessary for memory testing. On the one hand, for bus-connected memories
(BCMs) which are connected to a single-master bus architecture, only one BCM can
be accessed at any time during functional mode. If all BCMs are wrapped, then all
of them can be activated simultaneously during test. Consequently, the power
dissipation will be higher during test than during functional operation, and therefore,
test scheduling is necessary. On the other hand, memory testing is part of SOC
testing. Cores which use scan-based test methodology will consume more power
during test than during functional mode. If the testing time of these scan-based
cores is longer than that of memory cores, then by relaxing the power constraints
for scan-based core testing and carefully scheduling memory testing with tightened
power constraints, the overall testing time for the SOC can be reduced. Since test
scheduling under power constraints is highly interrelated to the resource sharing

mechanisms used in the MBIST architecture, it is essential to develop new power-

Georgios A. Theodorou 77

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

constrained test scheduling algorithms that will get the maximum usage of the

available hardware resources for embedded memory testing.

e Reuse the available on-chip processing/communication resources: Although all the
embedded memory cores can be tested by adding dedicated memory BIST
wrappers, the high area overhead of BIST circuitry, as well as the performance
penalty caused by intrusive Design for Testability (DFT) hardware may prove to be
the main drawback of this approach. Therefore, reusing the available on-chip
resources for testing the embedded memories can lower the area and performance
overhead associated with a high number of dedicated MBIST wrappers for BCMs.
Furthermore, by implementing non-time-critical tasks in software using a processor,

the complexity of the controller can also be reduced.

The objective of memory BIST approaches is to meet some or all of the above
requirements while reducing the cost of testing by targeting low area and performance
penalty and low testing time. The existing approaches have explored three main
directions to gain improvements: memory BIST architectures, test scheduling
algorithms, and special design implementations. Due to their interrelation, without a
good architectural support it is hardly possible to achieve any significant improvements
through test scheduling or special design techniques. Therefore, research approaches

in the literature mainly focus on introducing new MBIST architectures.

A memory BIST architecture is defined by the integration of its three components shown
in Figure 18 (controller, wrapper and interconnect). A standalone approach uses a
dedicated wrapper and controller for each memory core (or memory cluster with several
identical memory cores), while a distributed approach shares one controller to manage

some or all of the MBIST wrappers in a microprocessor of a SOC.

In a standalone MBIST architecture, the BIST controller and the wrapper are physically
close located, hence parallel interconnect between them can be used. The MBIST
approach of each memory is independent of the other memories' BIST approaches,

which makes the implementation of this approach straightforward.

MBIST approaches which support multiple March test algorithms are called
programmable MBIST architectures. To support multiple March test algorithms, one can
either implement all the March primitives or several March elements. Since there are
only four March primitives (r0, w0, rl, wl), by implementing all of them with different
combinations of background patterns and address sequences, any March algorithm can
be supported. One programmable MBIST approach using March primitives was

Georgios A. Theodorou 78

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

investigated in [26] and it includes an instruction memory to store the test instructions
and a decoding logic to process the test instructions. March element-based approaches
implement only several most commonly used March elements. Based on the
implemented March elements, only a limited number of March algorithms can be
supported. However, its main advantage lies in less area overhead (simpler decoding
logic and less test instructions) when compared to March primitive-based approaches.
In addition, by carefully selecting the March elements, new March test algorithms can
be generated to target memory faults in new process technologies. A programmable
FSM- based MBIST architecture with 7 March elements was researched in [26]. Another
March element-based approach, which supports 40 March algorithms, was presented in
[27]. However, both approaches use dedicated on-chip memory to store the test
instructions, thus leading to large test area overhead. Furthermore, dedicated control
signals are needed for each MBIST core, which may cause routing and test integration
problems when the SOC comprises hundreds of memory cores. To overcome the
control problem, a P1500-based [28] programmable MBIST architecture using March
elements was introduced in [29]. Using P1500 core wrappers, the test controller (ATE or
on-chip processing element) has the full controllability of all the wrapped memories and
can send different test instructions to each MBIST wrapper during the test, thus
eliminating also the need of an on-chip instruction memory. Note, however, if the SOC
consists of a high number of embedded memory cores, and all of them are wrapped
with fully-compliant P1500 wrappers, the main limitation is caused by the excessive

wrapper area overhead and unnecessary performance degradation.

Diagnosis support is another important feature of MBIST architectures. A built- in self-
diagnosis (BISD) scheme was introduced in [30]. It sends out faulty memory cell
information (such as faulty address, data, and test session number) for failure analysis.
To reduce the control complexity of this approach when testing numerous memory
cores, a P1500 MBIST approach with diagnosis enhancement was proposed in [31]. To
reduce the testing time in the diagnosis mode (caused by the serial scan-chain structure
required to shift out the diagnosis information), a test response compression method
was introduced in [32]. Using this method, less I/O pins can be used to send out the
faulty response data compared with the uncompressed parallel solution. Due to the
increased size of embedded memories, support for memory self-repair is becoming
necessary to increase the overall SOC yield. Using the detailed location and information
of faulty memory cells (provided by diagnosis support approaches discussed above),

one can perform memory redundancy allocation and use fuse-boxes or other methods

Georgios A. Theodorou 79

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

to repair the faulty memories. However, to collect enough information on fault locations
for various memory faults, more complex March test algorithms are required, which
implies longer testing time. An MBIST solution was introduced in [33] to test and repair
large embedded DRAMs using on-chip redundancy allocation. To reduce the testing
time, a memory BIST architecture was proposed in [34] with revised March test
algorithms. While most of the previously described MBIST approaches are focused on
testing single port SRAMs, as long as the test algorithms have the features of March
algorithms, they are suitable for testing other types of memories with minor
modifications. For example, a flash memory BIST architecture was proposed in [35]

using a March-like test algorithm.

In summary, with the exception of the P1500 memory BIST approaches, most of the
standalone MBIST architectures focus only on solving the test problems related to a
single memory core or a standalone memory chip. They do not account for the specific
requirements for integrating the design for test hardware for hundreds of embedded
memory cores. They also do not provide any support for test scheduling under power
dissipation constraints, which needs a flexible control mechanism for the memory BIST
hardware. Although P1500 memory BIST approaches can solve the control problem, a
fully-compliant P1500 wrapper and standalone MBIST hardware for all the embedded
cores will introduce excessive area overhead and unnecessary performance
degradation. To overcome these issues, a new system perspective for memory BIST
architectures for complex SOCs is needed. The result turns out to be the distributed

MBIST architecture and hardware/software co-testing solutions.

In a distributed MBIST architecture, each memory core still has a dedicated technology-
dependent wrapper. However, depending on the complexity of the SOC, there are only
one (or a few) BIST controllers used to direct the test of all the embedded memory
cores. Since hardware resource sharing is introduced, to reduce the routing congestion
and to facilitate rapid power-constrained testing, the interconnect between the wrappers

and the controller(s) must be carefully considered.

Distributed BIST architectures have been advocated for over a decade. In [36], Zorian
presented a distributed BIST control scheme to test the building blocks of a complex
VLSI circuit. Due to the increasing ratio of the memory area in a state-of-the-art SOC,
dedicated memory BIST architectures can be used to reduce the cost of memory
testing. Distributed MBIST architectures can further be divided into: hardware-centric,

software-centric, and hardware/software (HW/SW) co-testing.

Georgios A. Theodorou 80

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Instruction Memory| | Parallel Command

and Control Line
) 7
Wrapper
Memory BIST /
Processor / MEM MEM || MEM
i / 8Kx16 8Kx16 | |[8Kx16

| / 3

! r b

Wrapper Wrapper Wrapper Wrapper
MEM > MEM - MEM . MEM
1 2 3 n

Figure 19: Distributed MBIST architecture

e Hardware-centric MBIST architecture: A hardware-centric approach uses dedicated
hardware to test all the memory cores in a SOC or a microprocessor. It can achieve
the near optimum testing time as well as supports flexible test scheduling. However,
this approach also introduces large area overhead. A typical distributed hardware-
centric MBIST architecture was proposed in [37] and is shown in Figure 19. Each
memory (or memory cluster for several identical memories) has a dedicated
technology-dependent wrapper. By extracting some technology independent tasks
and the test instruction memory to a central controller, which controls all the
wrappers, the overall BIST area overhead is reduced. This architecture also
integrates several advanced features which have appeared previously in various
standalone MBIST approaches. For example, the wrapper can run separate March
primitive operations (e.g., rO or wl) received from the controller. This implies that
the hardware-centric MBIST architecture is programmable and supports multiple
March algorithms. Besides, the wrapper design also supports diagnosis by scanning
out the faulty addresses and background patterns. However, its main drawback lies
in the interconnect between controller and wrappers, which uses one parallel
command line to configure all the memory BIST wrappers to run the same test
commands (for example, March primitives in this approach). This implies that for
large SOCs, different types of memories (or memories requiring different test
algorithms) cannot be tested simultaneously using the same BIST controller, thus
increasing testing time as well as test control complexity. Moreover, using parallel

interconnects between the controller and the wrappers, the routing congestion may

Georgios A. Theodorou 81

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

become a potential problem when hundreds of embedded memory cores are
present. Furthermore, the testing time for each test session is dominated by the
largest memory, which may lead to prohibitively long testing time under power
dissipation constraints.

e Software-centric MBIST architecture: A software-centric approach reuses the
existing on-chip resources to test all the bus-connected memories. Since SOCs
usually contain one or more processing elements, which use on-chip commu-
nication architectures to transfer data to/from some of the embedded cores.
Reusing these resources for testing the bus-connected memories can lower the
area overhead and eliminate the performance penalty caused by the MBIST
wrappers. In [38], a methodology for testing SOCs using an on-chip microprocessor
was presented. However, this approach uses only software to generate, analyze
and apply the test algorithms for the bus-connected memories, which requires a
much longer testing time than the existing hardware-centric approaches. This is
because the hardware architecture can generate March algorithms more efficiently
than software. Furthermore, it is obvious that without additional hardware support,

the software-centric approaches can only test the bus-connected memories.

O -ﬂ- Addr
=
Embedded 2 —>{Eibedded
CPU m Memory
C ——» Contral
w
h- Data |

Figure 20: Memory BIST for bus-connected memories

e Hardware/Software co-testing MBIST architecture: This architecture takes ad-
vantage of both hardware-centric and software-centric approaches. By migrating all
the non-time-critical tasks from the MBIST controller to the processor, such as
fetching and decoding test instructions, one can reduce the area overhead with a
minor testing time penalty. A processor-programmable memory BIST solution was
proposed in [39], where a BIST circuit was inserted between the embedded central

processing unit (CPU) and the system bus (Figure 20). Although it reduces the

Georgios A. Theodorou 82

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

testing time problem associated with the software-centric approach, this solution
may affect the overall SOC performance, since the BIST circuitry introduces extra
multiplexers between the CPU and the bus, thus increasing the CPU access time to
the bus. Moreover, this approach can only test bus-connected memories (BCMs),

which is not a complete solution for SOC memory testing.

Georgios A. Theodorou 83

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Georgios A. Theodorou 84

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

3. MICROPROCESSOR SOFTWARE-BASED SELF-TEST

Software-based self-test (SBST), also called instruction-based self-test, is the process
of detecting physical defects (or faults that model them) in a processor or processor-
based system by executing processor instructions in its normal mode of operation.
Software-Based Self-Test (SBST) has recently emerged as an effective complementary
solution for microprocessor and embedded processor manufacturing [40], as well as,
periodic on-line testing [41] along with other components in Systems-on-Chip (SoCs).
Key microprocessor companies (Sun [42], Intel [43]) have recognized the potential of
SBST adopting it in their test flows. Recently, in [44], a taxonomy for different SBST
methodologies has been presented. SBST is a non-intrusive approach that embeds a
“software tester” with the form of a self-test program in the processor’s on-chip memory.
This way SBST imposes zero hardware and performance overhead during normal
operation, as well as, ordinary power density during on-line testing. It leverages the use
of low-speed, reduced pin-count external ATE providing high quality, at-speed testing
virtually without introducing any hardware or performance overheads. Moreover, SBST
can be easily reused in field for power up diagnostics or periodic on-line testing to add
dependability features.

An outline of the software-based self-test concept is shown in Figure 21. We provide an

elaboration on all recent approaches in this chapter.

Initially, the self-test program is loaded into the processor’s on-chip memory using a
low-speed, low-cost structural tester (Figure 2l1a). Secondly, during test application
(Figure 21b), the processor executes the self-test program from its on-chip memory at
its normal clock frequency, thus achieving full at-speed testing. During this phase, the
processor collects the test responses (possibly compressed in a test signature), and
stores them in its on-chip data memory (Figure 21c). Finally, the low-speed, low-cost
tester is used again to unload the test responses from the on-chip memory for further
external analysis (Figure 21d). Since modern microprocessors integrate large multilevel
caches on the same die, execution from on-chip cache is considered a further
advantage provided that a cache-loader mechanism exists to load the test program and

unload the test response(s).

SBST changes the role of the external ATE from actual test application to a simple
interface with the on-chip memory before and after the test execution. Therefore, SBST
achieves the goal of at-speed testing using low-speed ATE. In addition, since the

means for applying SBST programs are existing processor instructions, at-speed testing

Georgios A. Theodorou 85

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

is feasible without the risk of thermal damage due to excessive signal activity in special
test modes of circuit operation. Furthermore, by utilizing the processor’s Instruction Set
Architecture (ISA) and complying with all the restrictions enforced by both the ISA and
the designers’ decisions, SBST avoids overtesting (for faults that do not appear during

normal circuit operation) and saves valuable yield.

ATE low-speed CPU speed (at-speed)

Low-speed /

d) ATE

1
1
1
1
memory : memory
Self-test :::> Self-test
CPU rogram_|| : CPU program
1
1
1
1
1
1
a) Low-speed : b)
ATE I
1
1
1
1
memory : memory
Self-test ! Self-test
cPU progan <:—| cPU program
T
Test 1 .\F Test
response \ ' response
1
1
1
1
1
1

c)

Figure 21: Software-Based Self-Test conceptual outline

SBST is a scalable, portable, and reusable methodology for high quality testing at
virtually zero performance, power or circuit area overhead. SBST can be reused at
different stages of the microprocessor or microprocessor-based system life cycle. SBST
routines can be used during both first silicon debug and validation of early prototypes of
a chip and manufacturing testing when a chip moves to full production. Besides, SBST
can be used during the operation of the chip in the application field via periodic on-line
testing for the detection of failures that did not exist or did not manifest themselves
during manufacturing. In this case, SBST routines may be stored in on-chip ROM or
Flash memory. On-line periodic SBST can be applied to improve reliability of low-cost
systems based on embedded processors where hardware, software or time redundancy
cannot be applied due to their excessive cost in terms of silicon area and/or execution
time. Table 6 summarizes the different application stages of SBST and the different
requirements of each stage in terms of self-test code and data size, application time and

power consumption.

Georgios A. Theodorou 86

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 6: Application stages of SBST and corresponding requirements

Self-Test Test Test Test
Stage Code/Data Program Application | Power _
Stored in Size Time Consumption
First silicon Low-speed ATE Large to Long to Hiah
debug validation On-chip cache very large very long 9
Manufacturing Low-speed ATE Small to Short to Average to
testing On-chip cache medium medium high
On-line periodic ROM or flash
testing memory Small Short Low

In this chapter, several different SBST strategies proposed in the research literature are
briefly discussed showing the evolution of SBST and experimental data sourcing from
successful applications of the SBST approach are provided wherever available.

3.1 At-speed functional testing

Traditionally, processor testing resorted in functional testing approaches. Functional test
program development is based on either functional fault models or just the reuse of test

sequences developed originally for design verification.

The latter approach has been extensively used in industry over the last two decades.
Test programs generated by verification suites to verify the functionality of the processor
design, are reused for at-speed functional manufacturing testing in an ATE-based
setup. The drawback of verification-based functional testing is that it does not take
account of the actual structural testability requirements of the processor, which are
related to the physical defects and are formally described by fault models. Since the
development of verification-based test sequences does not target structural faults (for
instance single stuck-at faults) but rather processor functionality and compliance with
the processor’s ISA, when fault graded with respect to a structural fault model, the
resulting fault coverage does not usually meet the required test quality goals. To
increase the structural fault coverage, the functional-based test programs are usually
augmented with manually written code by engineers with substantial knowledge of the
processor architecture. Despite this additional test development effort, functional test
programs cannot achieve acceptable levels of fault coverage by themselves.

In functional testing, external ATE (also called functional testers) is used to supply test
patterns to the processor, mimicking the test program execution and the interaction
between the processor and the main memory, i.e. the processor’s functionality. First,
simulations with a processor model are performed to capture the trace at processor I/O

Georgios A. Theodorou 87

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

during the execution of test program. Afterwards, the simulation trace is translated into
ATE test language and stored in the ATE memory. Finally, during test application, the
ATE applies the test patterns to the processor input pins to mimic the execution of
instructions while at the same time it captures the test responses at the processor
output pins.

Simulation

Test CPU
program model

4

Simulation trace
at CPU I/O pins

Translation to :> High-cost CPU
ATE program ATE

Normal mode of operation
(at-speed)

Figure 22: Traditional at-speed functional testing

It has already been mentioned that at-speed testing is mandatory for achieving high test
quality in today’s deep-submicron manufacturing technologies. Thus, the ATE used for

at-speed functional testing of a processor must have the following characteristics:

e ability to supply test patterns at-speed (i.e. ATE technology needs to follow high-end

microprocessors technology);
e high pin count to drive all processor I/O pins;
e large memory to store the test patterns and test responses.

However, the increasing gap between ATE frequencies and processor or SoC operating
frequencies, the large test data volume, the difference between external and internal
bandwidth along with the limited access to deeply embedded processor cores in
complex SoCs, make external at- speed functional testing extremely costly and in many
cases almost infeasible. All these drawbacks including not acceptable fault coverage as
well, lead microprocessor industry to move slowly (when compared e.g. with ASIC

industry) towards more intrusive, structural DFT test approaches, such as scan-based

Georgios A. Theodorou 88

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

testing and BIST. However, such techniques usually have a non-trivial impact on a
circuit's performance, size and power consumption and are applied with serious

consideration and careful incorporation into the processor design.

The pioneer work of Thatte and Abraham [45], is considered a landmark paper in
processor functional testing. Based on the register transfer (RT) level description of the
processor the authors introduced a functional fault model and considered the processor
as a graph model. Since then, many processor functional testing methodologies were
proposed. Those approaches were either based on a functional fault model (the model
of [45] or other similar ones), or based on verification principles without assuming any
functional fault models at all. The functional testing work of [45] was complemented by
the work of Brahme and Abraham [46] which reduces the complexity of the generated
tests for the processor’s instruction sequencing and execution logic. A functional model
based on a reduced graph is used for the microprocessor and a classification of all
faults into three functional categories is given. Tests are first developed for the registers
read operations and then for all remaining processor instructions. The developed tests
are proposed for execution in a self-test mode by the processor itself.

These traditional functional test approaches are characterized by the required high level
of abstraction but need a large investment in manual test writing effort. Usually very little
fault grading was done on structural processor netlists while high fault coverage was not

guaranteed.

3.2 Software-based self-testing for microprocessors

In contrast to functional testing where an external ATE is used to drive the input test
patterns and capture the output responses, SBST embeds a “software tester’ with the
form of a self-test program in the processor’s on-chip memory. SBST is a non-intrusive
approach that leverages the use of low- speed external ATE providing high quality, at-

speed testing without introducing any hardware or performance overheads.

The various advantages of SBST make it a very attractive testing approach when
compared to traditional at-speed functional testing or structural DFT approaches, so it
comes as no surprise that numerous SBST methodologies have been proposed; a
comprehensive survey can be found in [44]. The SBST approaches presented so far in
the literature can be classified into three main categories. The first category includes the
SBST approaches [42], [43], [47] - [49] that have a high level of abstraction and are

functional in nature. A common characteristic of such SBST approaches is the almost

Georgios A. Theodorou 89

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

exclusive use of randomized instructions and/or operands. The second category
includes the SBST approaches [40], [41], [50] - [62] which are structural in nature and
require structural fault-driven test development. The third category includes the SBST
approaches [63]-[66] which combines the previous two categories such that randomized
instruction test programs are followed by test programs that apply ATPG deterministic
tests targeting hard-to-detect structural faults, thus constituting a “hybrid” SBST
approach that provides improved fault coverage. A comprehensive list of SBST
approaches from all three categories is briefly discussed in the following subsections.

3.2.1 Functional SBST approaches

The development of functional SBST programs, based on randomized instruction
sequences and random operands has a major advantage. Due to its high level of
abstraction, SBST development requires only basic knowledge of the processor
architecture, and therefore requires limited test development effort and cost. However,
in most cases, manual intervention is required to determine an efficient mix of
instruction sequences (possibly by defining and fine-tuning instruction frequency biases)
along with architecture expertise to increase fault coverage. Instruction sequences
characterized as corner cases are usually targeted by specific handwritten code.
Functional self-test code development does not consider any fault model and the test
programs are randomly generated; thus a long test program is typically required to
achieve an acceptable level of fault coverage. Despite the large number of instruction
sequences, saturating behavior in fault coverage is usually observed due to
pseudorandom operands used. Further increase of the random test program size is
usually proved ineffective in targeting the remaining hard-to-detect faults and manual

test development is a necessary supplement.

In [47], Shen and Abraham proposed a functional self-test methodology, which
generates a random sequence of instructions that enumerate all the combinations of the
processor operations and systematically selected operands. Test development is
performed at a high level of abstraction based on ISA. However, since test development
is not based on an a priori fault model, the generated tests - applicable for design
validation as well - cannot achieve high fault coverage without the use of large code
sequences and a considerable manual effort. When applied to the GL85 processor
(model of Intel’'s 8085) consisting of 6,300 gates and 244 FFs, a test program consisting

of 360,000 instructions was derived and the attained single stuck-at fault coverage was

Georgios A. Theodorou 90

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

90.2%. The fault coverage was reduced to 86.7% when the responses were

compressed in a signature.

In [48], Batcher and Papachristou proposed instruction randomization self-test (IRST)
for processor cores, a pseudorandom self-testing technique. Self-test is performed with
processor instructions that are randomized by a special circuit designed outside the
processor core. Randomization occurs at the operand level as well. IRST does not add
any performance overhead to the processor and the extra hardware is relatively small
compared to the processor size (3.1% hardware overhead is reported for a 27,860
gates DLX-like RISC processor core). The obtained fault coverage after an iterative
process considering different parameters for the processor core following the execution
of a random instructions sequence running for 50,000 instruction cycles is 92.5%, and
after the execution of 220,000 instruction cycles it is 94.8%.

In [43], Parvathala et al. proposed an automated functional self-test methodology called
functional random instruction testing at speed (FRITS) based on the generation of
random instruction sequences with pseudorandom data generated by software Linear
Feedback Shift Registers (LFSR); on-chip cache is used for application. Instruction-
based constraints are extracted and built into the generator to ensure generation of
valid instruction sequences also ensuring that no cache misses and bus access cycles
are produced during self-testing. The high-level functional nature of the proposed
approach requires a large amount of cycles to be applied that makes fault grading a
non-trivial task. The methodology achieved 70% fault coverage when applied to the Intel
Pentium® 4 processor in an industrial environment and helped to detect the defects that
escaped the normal test flow. Also, application of the approach to the integer and
floating point units of Intel Itanium™ processor led to 85% single stuck-at fault

coverage.

In [42], Bayraktaroglu et al. proposed the conversion of existing legacy tests, either
handwritten or randomly-generated to cache resident tests aiming to eliminate cache
misses. The basic objective of this work was to apply SBST fully avoiding the non-
determinism of memory accesses in high-end microprocessors with several cache
memory levels based on the use of low-cost ATE. They demonstrated their method,
called Load&Go, to an 8-core, 32-thread Sun UltraSPARC T1 processor model.

Finally in [49], the method proposed by Corno et al. uses information feedback to
improve test program quality. This approach is based on an evolutionary algorithm and

can evolve small test programs and capture tar-get corner cases for design validation.

Georgios A. Theodorou 91

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

An evolutionary algorithm is a population-based optimizer that attempts to mimic
Darwin’s theory of evolution to iteratively refine the population of individuals (or test
programs). The approach’s effectiveness is demonstrated by comparing it with a pure
instruction randomizer - with both systems working on an RTL description of the Leon2
processor. The proposed approach can seize three intricate corner cases that the
purely random method cannot while saturating the addressed code coverage metrics.
Additionally, the developed validation programs are not only more effective, but are

smaller as well.

3.2.2 Structural SBST approaches

The development of SBST programs targeting structural faults using a deterministic
approach clearly results in higher fault coverage when compared to functional SBST
approaches where no fault model is considered at test development phase. Although
SBST approaches targeting sequential fault models (such as the path delay fault model)
have been presented [60] - [62], the single stuck-at fault model dominates among the
SBST approaches since it reduces significantly the complexity; it is implementation
technology independent while test patterns for stuck-at faults are proved effective to
target most manufacturing defects. The structural SBST approaches that will be

discussed in the following paragraphs, target the single stuck-at fault model.

The contribution of the work presented by Chen and Dey in [50] is twofold. First, it
demonstrates the superiority of SBST for embedded processors over traditional DFT
approaches such as Full Scan design and hardware Logic BIST. This is shown by
applying Logic BIST to a very simple 8-bit accumulator-based processor (Parwan) and a
stack-based 32-bit soft processor core that implements the Java Virtual Machine
(picoJava). In both cases, Logic BIST adds more hardware overhead compared to full
scan, but is not able to obtain satisfactory structural fault coverage even when a very
high number of test patterns are applied. Secondly, an SBST methodology is proposed
which is structural in nature, targeting specific components and fine-tuning test
development to the low, gate-level details of the processor core. Initially, pseudorandom
pattern sequences are developed for each processor component in an iterative method
taking into consideration manually extracted constraints imposed by its instruction set.
Then, test sequences are encapsulated into self-test signatures that characterize each
component. Alternatively, component tests can be extracted by structural automatic test
pattern generation (ATPG) and downloaded directly in embedded memory by the tester.

The component self-test signatures are then expanded on-chip by a software-emulated

Georgios A. Theodorou 92

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

LFSR (test generation program) into pseudorandom test patterns, stored in embedded
memory and finally applied to the component by software test application programs.
Application to an accumulator-based CPU core, Parwan, consisting of 888 gates and 53
FFs, resulted in 91.4% fault coverage in 137,649 cycles using a test program of 1,129
bytes.

In [51], Chen et al. proposed a methodology that extends previous work [50] by
automating the complex constraint extraction phase, while emphasizing in ATPG-based
test development instead of pseudorandom. Statistical regression analysis is applied to
the RT-level simulation results using manually coded instruction templates, to derive a
model of the surrounding logic of the MUT. The learned model is converted into virtual
constrained circuit (VCC) followed by ATPG on the VCC-MUT in an iterative way.
Application of the methodology on the combinational logic in the execution stage of a
processor from Tensilica (Xtensa™) with 24,962 faults resulted in 288 ATPG test
patterns and 90.1% fault coverage after constrained ATPG. When the tests are applied
using processor instructions in a test program of 20,373 bytes, the fault coverage for the
targeted component is increased (due to collateral coverage) to 95.2% in 27,248 cycles.

In [52], Corno et al. proposed a partially automated test development approach. First, a
library of macros is generated manually by experienced assembly programmers from
the ISA, consisting of instruction sequences using operands as parameters. Then, a
greedy search and a genetic algorithm are used to optimize the process of random
macro selection among the macros set, along with selecting the most suitable macros
parameters to build a test program that maximizes the attained fault coverage when the
test program is applied and fine-tuned on the gate-level netlist of the processor. The
approach attained 85,2% fault coverage when applied to a 8051 8-bit microcontroller
design of 6,000 gates using 624 instructions.

In [53], Corno et al. proposed an automated test development approach based on
evolutionary theory techniques (MicroGP), that maximizes the attained fault coverage
when the evolved test program is applied to the gate-level netlist of the processor. It
utilizes a directed acyclic graph for representing the syntactical flow of an assembly
program and an instruction library for describing the assembly syntax of the processor
ISA. Manual effort is required for the enumeration of all available instructions and their
possible operands. Experiments on a 8051 8-bit microcontroller design of 12,000 gates,

resulted in 90% fault coverage.

Georgios A. Theodorou 93

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

In [54], Kambe et al. proposed a template generation methodology for hierarchical test
generation targeting structural faults. According to the methodology, gate-level test
generation is performed for each MUT, and a test program is generated to justify test
patterns from primary input (PI) to the MUT and propagates test responses at
instruction level. The proposed methodology enumerates possible templates
considering dependence of instructions each of which involves one or more data
transfers between registers. In order to justify value of MUT inputs, a concept of
adjacent registers of the MUT is introduced that makes it possible to consider input
spaces of the MUT determined by signals from other modules as well as signals directly
from registers. Templates are generated considering dependence of instructions each
of which invokes one or more data transfers between registers. The approach is
demonstrated on an accumulator-based 8-bit CPU core, Parwan. Out of 276 templates
generated for testing the ALU of Parwan, 12 templates contributed to the fault coverage,

and the fault coverage achieved for the ALU was 99.44%.

In [55], Kranitis et al. introduced a high-level structural SBST methodology, showing for
the first time that small deterministic test sets, applied by compact test routines provide
significant improvement when applied to the same simple accumulator-based processor
design, Parwan, which was used in [50]. Compared to [50], the methodology described
in [55] requires 20% smaller test program using 923 bytes, 75% smaller test data and
almost 90% smaller test application time using 16,667 cycles. Both methodologies
achieve single stuck-at fault coverage slightly higher than 91% for the simple

accumulator-based Parwan processor.

Despite the successful first application of the approach of [55], scaling from simple
accumulator-based processor architectures to more realistic ones in terms of complexity
like contemporary complex processors implementing commercially successful ISAs (i.e.
RISC), brings out several test challenges that remained unsolved. These challenges
arise when high-level test development is applied to complex processor architectures
that contain large functional components (i.e. fast parallel multipliers, barrel shifters,
etc.) and large register banks, while trying to keep the test-cost as low as possible. In
[40], Kranitis et al. addressed low-cost SBST challenges by defining different test
priorities for processor components, showing that high- level self-test code development
based on ISA and RT-level description of a processor can lead to low test cost without
sacrificing fault coverage independently of the gate-level implementation. The

methodology was applied to two processors: Plasma/MIPS with simple 3-stage pipeline

Georgios A. Theodorou 94

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

and MIPS R3000 application specific instruction set processor (ASIP) with 5-stage

pipeline designed using the ASIP/Meister design environment.

In [41], Paschalis and Gizopoulos identified the stringent characteristics of an SBST test
program to be suitable for on-line periodic testing of embedded processors. SBST for
on-line periodic testing can be applied to improve reliability of low-cost embedded
systems based on embedded processors where hardware, software or time redundancy
cannot be applied due to their excessive cost in terms of silicon area and execution
time. A new classification and test priority scheme more fine-grained than in [40] was
proposed. Both types of permanent and intermittent faults are detected by a small

embedded test program with test execution time much less than a quantum time cycle.

In [56], Sanchez et al. proposed an automatic methodology to transform a test set
originally developed for manufacturing test in a test set suitable for on-line testing. The
generated programs are suitable for non-concurrent periodic on-line testing as well as
for shutdown or startup testing. While the new test set is likely to contain a larger
number of programs, these programs are shorter and completely independent (i.e. they
can be executed at different times and do not rely each on the results of the previous
ones), and thus perfectly fit a non-concurrent on-line test scheme. The transformation of
the test set is performed in two phases: first the original programs are simulated with a
special instruction-set simulator that for each instruction generates a spore, i.e. a small
program able to fully replicate the processor behavior. Second, an evolutionary
algorithm is used to collapse the set of spores into a test set. The proposed approach is
able to guarantee the same fault coverage on all functional units. Experimental results
were provided targeting the ALU and Control Units of an 8-bit 8051 processor core. The
initial test set is compact in size but requires a long time to be executed and is usually
designed to be run without regarding sharing constraints. The final on-line test set is
larger in size, but composed of small and extremely fast programs that can be freely

scheduled. Both test sets guarantee the same fault coverage on the target units.

In [57] and [58], Gizopoulos et al. identified testability hotspots in processor pipeline
logic and proposed a generic SBST methodology that enhances existing SBST
programs [40], to target more effectively the pipeline logic of more sophisticated
pipelined processors. They first identify the testability hotspots of the pipelining logic,
applying existing SBST programs (generated according to the methodology by Kranitis
et al. and targeting the processor’s functional components) to two fully pipelined RISC

processor models: miniMIPS and OpenRISC 1200. The proposed automated

Georgios A. Theodorou 95

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

methodology complements any other SBST generation approach that targets functional
components. It analyzes the data dependencies of an existing SBST program and
considers the basic parameters of the pipelined architecture (number of stages,
forwarding paths, etc.) and the memory hierarchy system (virtual- and physical-memory
regions) to generate an enhanced SBST program that comprehensively tests the
pipelined logic. The experimental results on the two processors show that the enhanced
SBST program achieves significant fault coverage improvements for the pipelined logic
(19% improvement on average) and for the total processors (12% improvement on

average).

The contribution of the work presented by Kranitis et al. in [59] is twofold. First, a
reliability analysis and a cost function was introduced in order to minimize the test cost
incurred when selecting a periodic SBST strategy, and achieve high detection
probability. Reliability analysis was based on a two-state Markov model for the
probabilistic modelling of intermittent faults for optimal periodic testing is introduced.
Then, an SBST strategy for on-line SBST of pipelined embedded processors was
proposed that enhances SBST programs for manufacturing [40] and on-line testing [41].
The proposed strategy was demonstrated by applying it to a 5-stage fully pipelined
RISC embedded processor, Athena. Experimental results provided showed 8.2% fault
coverage improvement for the entire processor and fault coverage improvements of

26% for the pipeline logic.

3.2.3Hybrid SBST approaches

A common characteristic among these “hybrid” SBST approaches [63] - [66] is that
randomized instruction test programs are followed by test programs that apply ATPG

deterministic tests targeting hard-to-detect structural faults.

In [65], Wen et al. introduced an SBST methodology that employs random test program
generation (RTPG) as a baseline with deterministic target test program generation
(TTPG) as a supplement, in order to provide tests specifically targeting faults that are
hard-to-test for RTPG. The proposed TTPG method utilizes simulation results to
develop learned models for the surrounding modules of the block under test.
Simulation-based TTPG is performed similar to previous works; however, arithmetic and
Boolean learning techniques are used instead of statistical regression to develop
learned models for the surrounding logic of the MUT. These techniques offer the
advantage of being deterministic in nature, in contrast to regression that is a statistical

method. Additionally, Boolean learning can also handle logic-intensive modules in which

Georgios A. Theodorou 96

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

regression is not effective. Then, the learned models replace the surrounding modules
around the block in the actual test generation process. Because the learned models are
much simpler to handle, this method minimizes the cost of functional TPG. The
methodology is applied to the controller and ALU of the OpenRISC 1200 processor.
When RTPG is applied in the “controller” module fault coverage saturates around
62.14%, while on the other side, TTPG generates 134 valid test patterns and detects
4967 faults including all faults that RTPG can detect, for an overall fault coverage of
69.39%. For the ALU module, after application of 100K RTPG test patterns, TTPG is

applied and the combined fault coverage is 94.94%.

In [63], Gurumurthy et al. introduced a novel technique to map precomputed test
patterns, generated by commercial ATPG tools, into sequences of instructions, based
on the ISA of the processor under test. The technique applies at the RT-level source
code of the processor, at the module level. It uses bounded model checking in order to
produce automatically a counterexample which will contain an instruction sequence that
generates the pre-computed test pattern. First, a bound is defined for the bounded
model checker (BMC) for each step of the process, taking into consideration the
pipeline depth, the stall/reset mechanism of the processor, the forwarding mechanism
and the number of cycles of the instructions. Then, every test pattern for each module
should be manually transformed into linear temporal logic (LTL) property. LTL property
IS negated and passed to the BMC. Additionally, the instruction set of the processor is
passed to the BMC in order to constrain its input space. BMC checks partial correctness
of the property and generates a counter-example in case the property fails within the
bound. If a counter-example is not generated, pre-computed test patterns are
characterized as functionally infeasible, otherwise processor instruction sequence
containing test pattern is included in counter-example. The technique is applied to both
controllability and observability stages and results to a combination LTL property of both
stages. Although controllability is fully controlled in this technique, in observability stage
spurious counter-examples can be generated that do not ensure propagation of outputs
to observable points, thus they have to be refined entirely manually. Experiments were
performed on OpenRISC 1200. Initially, a random test program of 36,750 instructions
was generated in order to fault grade the processor. The fault coverage saturated
around 68% and the remaining hard-to-detect fault list was split based on modules and
passed through a commercial ATPG tool in order to obtain the pre-computed patterns.
Those pre-computed test patterns were applied to the presented technique. In a total of

22,633 test sequences, 6,765 were identified to be functionally infeasible uncontrollable

Georgios A. Theodorou 97

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

sequences. On the remaining, sequences of instructions were generated for some of
the patterns in ALU, Control and Operandmuxes modules of OpenRISC 1200 and

example instruction sequences were given.

In [64], Gurumurthy et al. proposed a new technique that fully automates the process of
functional test generation targeting specific faults. The technique supplements the
observability part of the automated mapping technique of pre-computed test patterns,
generated by commercial ATPG tools, into sequences of instructions proposed in [63]
that required manual effort for the propagation of test responses. The proposed tech-

nigque applies at the RT-level source code of the processor in module-level.

It uses Boolean difference, LTL and bounded model checking (BMC) in order to map
module-level test responses into instruction sequences. Experiments were performed
on OpenRISC 1200 processor as in [63]. Again, in order to focus on hard-to-detect
faults, a random test program of 36,750 instructions was generated and the processor
was fault-graded. The fault coverage saturated around 68% and the hard-to-detect fault
list formed the base list of the proposed technique. The base list was sorted based on
module-level and the overall technique was used for every module. Even though the
mapping efficiency of most of the modules is above 90%, the overall mapping efficiency
was 71% due to low efficiency of ALU and LSU modules. In a total of 17,319 test
sequences, 9,708 were found to be not mappable within the bound, thus no counter-
example was produced and were rejected. The remaining test sequences were

successfully mapped and increased the fault coverage of the processor to 82%.

Finally in [66], Kranitis et al. proposed a hybrid-SBST methodology for efficient testing of
commercial processor cores that effectively uses the advantages of various SBST
methodologies. Self-test programs based on deterministic structural SBST
methodologies (using high-level test development and gate-level-constrained ATPG test
development) combined with verification-based self-test code development and directed
RTPG constitute a very effective H-SBST test strategy. The proposed methodology
applies directed RTPG as a supplement to improve overall fault coverage results after
component-based self-test code development has been performed. An advantage of
this strategy is that it avoids the use of large RTPG programs that result in an excessive
number of cycles and prohibitive test application time during manufacturing test. A test
program following these principles has been developed and applied to a commercial,

fully pipelined benchmark, OpenRISC 1200. Experimental results showing test

Georgios A. Theodorou 98

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

coverage of more than 92% demonstrate the effectiveness of the proposed

methodology.

3.2.4Recent trends in SBST approaches

The most recent architectural advances dictate the integration of multiple cores and
hardware threads on a single die to deliver high computing power by exploiting thread-
level execution parallelism. Following these advances, a recent trend in SBST research

Is to scale SBST techniques in multiprocessor and multi-threading architectures.

Two recent approaches aim to reduce the test application time by exploiting core or
thread level parallelism. In [67], Apostolakis et al. have proposed porting an SBST
approach from the unicore case to a bus-based symmetric multiprocessor (SMP)
architecture. Their self-test scheduling algorithm at the core level significantly minimizes
the time overheads caused by data cache coherency invalidations and intense bus
contention among cores. They’'ve demonstrated their methodology in two, four, and
eight-core versions of a multiprocessor based on an Open-RISC 1200 core.
Experimental results show that the methodology achieves more than 91% total stuck-at
fault coverage for all multicores, while reducing test application time by more than 24%

compared to the fastest alternative.

In [68], Foutris et al. have presented a multithreaded software-based self-test (MT-
SBST) methodology that targets both the optimization of test execution time and the
improvement of the fault coverage of the thread-specific control logic. The proposed
methodology is based on a multithread scheduling algorithm that achieves a very
efficient balance between self-test program execution time and fault coverage of the
thread-specific control logic and is solely based on easy-to-obtain runtime statistics of
the single-threaded execution of the self-test programs. The methodology has been
applied to the chip-multithreading architecture of Sun’s OpenSPARC T1, which
integrates eight CPU cores, each supporting four hardware threads. The experimental
results have shown that the proposed multithread scheduling algorithm significantly
speeds up the execution time of test program at both the core-level (up to 3.6X) and the

processor-level (up to 6.0X) compared to the single-threaded execution.

3.3 Software-based Self-Test for embedded cache testing

In the case of on-line memory testing, SBST has increased flexibility to apply any kind
of March tests. Hence, SBST can face successfully the challenges of on-line testing of

small memory arrays that partially or totally lack programmable MBIST.

Georgios A. Theodorou 99

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Research community has acknowledged the potential of utilizing SBST techniques in

cache testing and several SBST approaches have been proposed [69] - [79].

In [69], the first systematic approach for transforming March B test algorithm for in-
system testing of Intel 860 processor cache is proposed, however instruction cache

testing is only outlined.

In [70], Sosnowski proposed a generalized and uniform March test transformation
methodology of designing user test programs for data and instruction caches of various
organizations. It covers instruction and data caches with different write and
replacement policies, multilevel and distributed caches. The methodology is proposed
for in-system testing of cache memories with various organizations by taking advantage
of features such as enable/disable or freeze, programmable cachability of memory
pages, deterministic line replacement algorithms (or selective enabling of cache
memory banks), etc. However, the proposed methodology has not been demonstrated

to any real processor benchmark.

In [71], Al-Harbi et al. proposed a methodology to transform March tests and use it to
obtain new versions of March B and March X tests for in-system testing of faults in the
tag parts of direct mapped caches. The key aspect of the proposed transformation is
that it leads to a test with a significantly lower complexity while preserving the fault
detection capability of the original test without necessarily recreating an identical
sequence of reads and writes. Furthermore, the resulting cache tests do not require the
hardware modification needed by the previously proposed cache test. The methodology

targets only the data cache memory tag without providing implementation details.

In [72], the methodology that is presented in [70] is enhanced to exploit
microprocessor’'s performance monitoring hardware and on-line hardware detectors to
improve test observability. However, the proposed enhancements are only outlined and

the methodology has not been applied to any benchmark.

In [73], Tuna et al. proposed an SBST approach to develop self-test programs relying
on March tests for the data array of both instruction and data caches. Experimental
results for traditional memory faults are provided for a MIPS R3000 processor model

using several March tests.

In [74], Alpe et al. proposed a methodology to translate generic March tests into
equivalent versions for in-system testing of both directory and data array of set-

associative caches with write-back or write-through policy. Among the different types of

Georgios A. Theodorou 100

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

replacement algorithms for set-associative caches the methodology focus on memories
implementing the Least Recently Used (LRU) replacement. The main goal is to propose
a translation methodology providing tests that preserve both the original fault coverage
and (wherever possible) the complexity of the original March test.

In [75], Lin et al. proposed a software-based methodology for testing memory arrays
and logic modules of a direct-mapped data cache. The proposed methodology is
applied to a direct-mapped data cache embedded in a Linux-verified ARM-compatible
processor and results in 100% fault coverage for six conventional RAM fault models and
98.03% fault coverage or 99.13% test efficiency for the collapsed single stuck-at faults

of the logic modules.

In [76], Perez et al. proposed a hybrid SBST approach to test data and instruction cache
controllers by combining instruction-based pattern generation and an I[-IP module
insertion for observability. Experimental results for the cache controllers of OpenRISC

1200 processor are provided.

In [77], Perez et al. presented an algorithmic-based strategy to test the replacement
logic in set-associative caches that implement a deterministic replacement policy. The
methodology is suitable for post-production testing, for incoming inspection, and for the
on-line testing of both stand-alone processors and processor cores embedded in SoCs.
The proposed algorithm can be tailored to different cache configurations, both in terms
of cache size and organization, and in terms of writing strategies (i.e., write-back and
write-through). The methodology is based on modeling the behavior of the replacement
mechanism of the cache as an FSM machine. To experimentally evaluate the real
performance of the proposed approach, a simulation scheme has been implemented in
assembly code and fault simulations results have been gathered for a pipelined
processor whose cache controller implements the LRU approach.

In [78], van de Goor et al. presented the capabilities and limitations of CPU-based at-
speed memory testing based on test routine examples for an ATMEL RISC

microcontroller. Such SBST routines can be also adopted for testing cache arrays.

Recently in [79], Di Carlo et al. proposed a methodology to exploit the ISA of a
processor to translate generic March tests into SBST programs for set-associative
cache memories. The proposed methodology concentrated on testing instruction
caches. The methodology applies state-of-the-art memory test algorithms to embedded

cache memories without introducing any hardware or performance over-heads. The

Georgios A. Theodorou 101

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

proposed methodology has been demonstrated on a test program for the instruction

cache of the LEON3 microprocessor.

Georgios A. Theodorou 102

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

4. SBST METHODOLOGY FOR CACHES
4.1 Cache arrays testability challenges

In this section, the testability challenges that occur when SBST approaches are utilized
to apply March test to the cache memory arrays, are introduced. But first, an overview

of the main characteristics of all the available cache organization schemes is presented.

4.1.1 Cache organizations overview

Cache stores chunks of data (called cache blocks or cache lines) that come from the
backing store. Because a cache is typically much smaller than the backing store, there
is a good possibility that any particular requested datum is not in the cache. Therefore,
some mechanisms must indicate whether any particular datum is present in the cache
or not. Cache tags fill this purpose [80]. Tags are valid address parts and comprise a list
of valid entries in the cache, with one tag per data line.

Cache typically divides its storage into sets and assign blocks to sets according to every
block ID, which typically is a specific part of the block address. There are three basic
cache organizations: direct mapped, fully associative and set associative. A direct
mapped cache has sets with only one block in its set, a fully associative cache has only
one set that encompasses all blocks in the cache, thus a Least-Recently Used (LRU)
algorithm is usually used to place data into cache and a set associative cache has more
than one set and each set in the cache incorporates more than one block that are
placed by LRU inside a set. In processor design, data and instruction L1 caches are
usually organized as direct mapped and set-associative caches whereas data and

instruction TLBs are always organized as fully associative caches.

A typical L1 cache organization comprises of at least two SRAM memory arrays (or two
SRAM arrays per set in set-associative organizations) - the data array and the tag array
- whereas a fully-associative TLB organization comprises of one SRAM array - the data
array - and one CAM array - the tag array. CAM is a special type of memory that
compares all the stored data in parallel with incoming data and is utilized in the tag part

of fully associative caches to speed up the tag comparison.

Figure 23 shows typical cache block diagrams for all three cache organizations: direct
mapped organization (a), set associative organization (b) and fully associative

organization (c).

Georgios A. Theodorou 103

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Effective address

Tag Index Offset
Tag Array Data Array
9
Cache Hit/
Miss?
Effective address
Tag \ Index | Offset |

Tag Array Data Array Tag Array Data Array

—>| 2-way

set

N 12
Cache
Hit/Miss? N
N +
Cache
Hit/Miss?
Effective address
Tag | Offset |

Tag Array Data Array

o =)

_/ +
Cache Hit/
Miss?

Figure 23: Cache organizations: a) Direct mapped b) Set-associative c) Fully associative

Index is the part of address that provides either the exact cache line location in direct
mapped caches or the set number that the cache line will be placed in set associative
caches, offset is the address part that access blocks (usually words) inside cache line

and the rest high part of address is stored as tag. Tag size is counter proportional to

Georgios A. Theodorou 104

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

cache size. In direct mapped cache each memory block can be stored in a unique
cache line according to the index value. In a k-way set associative cache topology each
block can be located in one of the k lines of a set that is defined by index. Inside the set,
a cache line is selected usually by the LRU replacement algorithm. In a fully associative
cache, a memory block can be stored in any cache line based on the LRU replacement
algorithm. To conclude, cache memories can be divided into two more categories,

based on their write policy:

e Write-through policy: The information is written both to the block in the cache and to

the block in the lower level of memory, providing simplicity and data coherency.

e Write-back policy: The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced thus

reducing memory traffic and increasing performance

4.1.2 Cache arrays testability challenges

In this section, the testability challenges for the cache arrays that have been described
above will be presented. Further down, those cache arrays will be denoted as DL1-
Data, DL1-Tag, IL1-Data and IL1-Tag for the data and instruction L1 cache whereas for
TLBs those arrays will be denoted as DTLB-Data, DTLB-Tag, ITLB-Data and ITLB-Tag
for the data and instruction TLB, respectively.

Table 7: Cache arrays testability challenges

Testability Challenges Cache arrays

DL1 | DL1 IL1 IL1 | DTLB | DTLB | ITLB ITLB

Data | Tag | Data | Tag | Data Tag Data Tag
Direct access from generic ISA x x x x x x x x
Indirect March write (controllability) v v x v x x x x
Indirect March read (observability) v x x x x x x x
Data Backgrounds (DBs) composition v x x x x x x x
Ascending Address Order v v v v x x x x
Descending Address Order v v x x x x x x
March Compare operation (Tags) - - - - - x - x

All these cache arrays (either for L1 caches or TLBs) are implicitly accessed because
they are not directly visible to the assembly programmer through the ISA. Hence,
applying test patterns and observing the test responses through a software test routine
is challenging. The challenges of accessing and thus testing those implicitly accessed

cache arrays are summarized in Table 7.

Georgios A. Theodorou 105

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

DL1-Data array can be easily accessed indirectly by using load/store generic
instructions. Data backgrounds (DBs) required by March tests can be easily composed
by initializing the main memory with the corresponding test vectors by using store
instructions and then by writing them to the DL1-Data array (March write operation)
either by a store instruction that misses (when write-allocate is supported) or by a load
instruction that misses and refills the cache lines. Generic load instructions can
afterwards read the test vectors to registers, hence March read operations can be
mapped to such instructions. Indirect access for implementing both March writes and

March reads to the rest of the cache arrays is challenging.

DBs can be written to DL1-Tag array by using a store/load instruction that misses and
refills a cache line, while DBs can be written to both IL1-Data and IL1-Tag array by
using a call instruction and the miss & refill mechanism of instruction cache. Indirect
March writes to all four DTLB arrays can be implemented by utilizing the miss & refill
mechanism of TLB through well-designed TLB misses for March writes. However,
applying March write operations in fully associative TLB arrays by utilizing LRU
replacement policy can be challenging in certain March test implementations (e.g. when
a write after read of the same DB is required in a memory cell) due to the lack of a

mechanism for selecting distinct TLB entries multiple times.

Contents of DL1-Tag, IL1-Data and IL1-Tag arrays and all four TLB arrays are not
directly readable by generic ISA instructions and thus mapping March read operations
to an ISA is challenging and can be only implicitly realized by detecting unexpected L1
cache or TLB misses. March reads to all these arrays can be implemented by utilizing
the miss & refill mechanism of both L1 caches and TLBs through well-designed cache
hits, since March reads always validate successful March write operations. Since, DL1-
Tag, IL1-Tag and all four TLB arrays store address information a successful March read
in these arrays will lead to a cache hit whereas an unsuccessful March read should
cause a cache miss. Those unpredicted cache misses should be monitored in order to
identify a faulty array. IL1-Data array stores actual instructions. In this case, an
unsuccessful March read will lead to unpredicted system behavior since a faulty

instruction will be fetched.

Every time a cache line is inserted into the DL1-Data or the IL1-Data array, a tag entry
is also introduced. Furthermore, every time a virtual address is generated either by a
store/load instruction (or an instruction fetch), its virtual page number is stored to the

DTLB-Tag (or ITLB-Tag) and its physical page number is issued to the DTLB-Data (or

Georgios A. Theodorou 106

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

ITLB-Data) array. As all these arrays store address information and page numbers, DBs
should be valid addresses and valid page numbers, respectively. Hence, DBs
composition is challenging for both L1 tag arrays and all four TLB arrays due to potential
limitations in accessing several memory segments. This testability challenge is further
exacerbated by the fact that in most L1 cache and TLB organizations a set of control
bits is also included in these arrays. These extra control bits have limitations when
accessed indirectly through an ISA; these limitations should be considered when
implementing March operations through an SBST routine. IL1-Data array encounters
serious limitations in March test DBs composition since DBs must be composed by valid
instructions. Hence, the limitations mainly due to opcode encoding have to be

encountered.

Implementation of ascending/descending address order as required in all March tests is
also challenging in most of the cache arrays. While the implementation of an ascending
address order is straightforward for L1 instruction cache arrays (IL1-Tag and IL1-Data),
the implementation of a descending address order is challenging, because instructions
are normally fetched in ascending address order during system operation. Moreover, for
all four TLB arrays (DTLB-Data, DTLB-Tag, ITLB-Data and ITLB-Tag), the
implementation of both ascending and descending address order is challenging due to

the fully associative organization and the LRU replacement policy.

Finally, TLB tag arrays (both DTLB-Tag and ITLB-Tag) are implemented with a CAM
memory and should be tested for both storage and comparison faults. In order to
implement a March test for comparison faults [17], an extra March compare operation
should be indirectly implemented through ISA. Such an operation cannot be
implemented through the native miss & refill mechanism. In order to implement a March
compare operation, a miss-no-refill mechanism is required which is not included in most

processors.

The methodology that is introduced in this thesis overcomes all these testability
challenges for all cache arrays of both L1 caches and TLBs and optimizes the SBST

routines in terms of test time and test code size by exploiting DCA instructions.

4.2 DCA instructions in modern ISAs

So far, previous SBST approaches cannot successfully overcome all the above
mentioned challenges by using generic instructions to access cache arrays both for

write and read operations. Fortunately, modern ISAs include dedicated instructions for

Georgios A. Theodorou 107

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

debug-diagnostic and performance purposes that provide direct controllability and
observability of cache arrays. These instructions are extremely suitable for cache and

TLB SBST; we use the term Direct Cache Access (DCA) instructions to refer to them.

In order to gain direct access to the cache arrays for all three cache organizations
(direct mapped, set-associative and fully-associative) and implement a software-based

March test, an ideal DCA instruction needs to contain the following fields:
Fields for selecting cache/TLB content:
e Way Selection (WS) field.
e Set Selection (SS) field.
¢ Line Word Selection (LWS) field.
Field for selecting internal cache array:
e Data/Tag Array Selection (AS) field.
Field for selecting March operation:
¢ Write/Read/Compare operation (WRC) field
Field for addressing register/memory for fetching DBs:
e From/To data Address (A) field

An ideal DCA instruction that contains all these fields gains direct access to any cache
array, hence it can apply March operations through ISA to these arrays in a very
effective way and overcome all the above described testability challenges. DCAs that
access direct mapped caches should contain only fields SS and LWS while DCAs for
accessing set associative L1 caches should contain all three WS, SS and LWS fields.
DCAs that access fully associative caches and TLBs should contain only WS and LWS
fields (fully associative caches contain 1 set with many ways) respectively. When the
cache organization imposes a uniform cache line (e.g. TLBs) LWS field is not required.
Finally, if the cache organization does not comprise a CAM memory (e.g. L1 caches),
the March operation selection field can be renamed to WR field (only write/read

operations, no compare).

Georgios A. Theodorou 108

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

L1 Cache
Tag 0 Data 0 Tag 1 Data 1 Selected
ceto Cache Line
Word
Setl /
Set 2
One 2-way
‘P! Setk ﬁ :| set
Set N-1
'- ()r-.. .. .0r- - - N
' DCA instruction :
e fws]| ss [wsT[.A | AS | WR| Opcode
L2 or Main Memory Z Register File

< -----

Figure 24: Ideal DCA instruction for 2-way set associative L1 cache

In Figure 24 and Figure 25, ideal DCA instructions and the way that every field is
utilized to access a 2-way set associative L1 cache and a TLB, are presented,
respectively.

TLB

Tag Array Data Array Selected
(CAM) (SRAM) TLB entry

==

DCA instruction
ws)\ WRC | AS \ A Opcode |

L2 or Main Memory Register File
or

Data(A)

Figure 25: Ideal DCA instruction for TLB

In detall, in L1 set-associative caches the data or tag array (selected by the AS field) is
accessed both for write and read operation (selected by the WR field). The selection of
a word inside a cache line is controlled in three steps. First, the SS field selects the set,

then, the WS field selects the cache way and finally the LWS field selects the word

Georgios A. Theodorou 109

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

inside the cache line. Furthermore, all DBs can be composed by initializing either a
general purpose register or a memory location that can be accessed by the A field. In
TLBs, the data or tag array of the TLBs can be accessed by controlling the AS field. The
March operation can be selected with the WRC field to write, read or compare a
selected TLB entry. Compare operation is valid only for tag array. TLBs are fully
associative arrays; hence the WS field is needed in the ideal DCA instruction in order to
gain direct access to every TLB entry. Note that, such an instruction has no limitation in

accessing a cache either in ascending or in descending order.

In practice, such an ideal DCA instruction does not exist in ISAs but it can be indirectly
implemented by combining a set of existing DCA instructions that together totally cover
all fields of the ideal instruction. Representative examples of such special purpose
instructions, which can be considered as DCASs, are present in RISC architectures, such
as MIPS, ARM and SPARC architectures [81]-[83] and in CISC architectures such as
x86 architectures [84] .

MIPS architectures implement special instructions for debug-diagnostic purposes that
can directly access both L1 cache and TLB data and tag arrays (CACHE instruction and
TLBWI, TLBR and TLBP instructions). These instructions are part of the system
coprocessor CPO instructions that are implemented in modern MIPS architectures (e.g.
MIPS R10000) and can write and read L1 cache and D-TLB contents with the content of
either a general purpose register (CACHE instruction) or the ReadHi or ReadlLo
registers (TLBWI and TLBR instructions), respectively without executing store/load
instructions. Moreover, TLBP instruction implements a compare operation for the TLB.
Hence, these instructions have similar fields with the ideal DCA instruction and can be

considered as DCAs that can effectively implement March operations.

ARM architecture implements system control coprocessor (CP15) debug operations
(MRC and MCR instructions) for accessing both the L1 cache and TLB arrays (by
utilizing register 15) for directly write, read (and compare for TLBS) the cache content.
These instructions are executed in secure privileged mode and provide great visibility of
the cache arrays by interrupting the program flow to execute them. They transfer the
array contents from/to system array debug data registers without executing store/load

instructions. Therefore, these instructions can be also considered as DCA instructions.

SPARC ISA implements alternate space identifier (ASI) store/load instructions (e.g.
sta/lda instructions in LEON3 and stxa/ldxa instructions in UltraSPARC T1). These

instructions are utilized to access embedded RAMs through a SPARC diagnostic

Georgios A. Theodorou 110

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

access bus that bridges these embedded RAMs with the main memory or the
processor’s register file. Every embedded RAM, including L1 cache arrays and TLB
arrays, can be accessed by using ASI store/load instructions in order to implement
write/read operations. Especially, for L1 cache arrays, dedicated ASls for all four cache
arrays (DL1-Data, DL1-Tag, IL1-Data and IL1-Tag) are defined to access cache in
hypervisor level. For TLB arrays, dedicated ASIs for all four TLB arrays are also defined
to access TLBs in hypervisor level. This way, the dedicated ASI field for each cache
array of the ASI store/load instructions maps to the AS field of the ideal DCA instruction.
Also, the ASI store/load instructions contain fields that map to WS, SS and LWS fields
of the ideal DCA instruction, respectively. Hence, these instructions, when combined,
cover all fields of the ideal DCA instruction and can be effectively used to implement
March operations.

CISC x86 architectures implement model specific registers (MSRs) that are used to
provide access to features that are tied to implementation aspects of x86 processors.
One of these features is to gain test access to physical structures such as L1 caches,
TLBs and branch target buffers. In Intel's ISA, WRMSR and RDMSR instructions are
implemented to access these MSR’s and activate these model specific additional
features. Therefore, these instructions (WRMSR and RDMSR) when exploited to
access cache arrays can be also considered as DCA instructions in order to implement

March operations.

Finally, instructions that implement the L1 cache prefetch mechanism can be
considered as DCA write-only instructions to achieve cache controllability. Prefetch
mechanisms are utilized to initialize cache contents in order to reduce cache miss ratio
of applications. Such prefetch mechanisms are present in all modern microprocessors
(e.g. dcbt instruction in IBM’s PowerPC, prefetchO in Intel’s Pentium, pld instruction in
ARM’s Cortex and Intel’'s Xscale). The instructions that implement these mechanisms
initialize cache sets with main memory blocks that are selected by an instruction field.
The prefetch instructions, when utilized, can access any L1 cache line, but not any word
inside the cache line for write operations. Prefetch instructions have to be combined

with generic instructions for cache observability.

Georgios A. Theodorou 111

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

4.3 March test notations

A March test consists of a sequence of March elements. Each March element consists
of a sequence of operations (writes and reads). The way the sequence proceeds to the
next step is determined by the addressing order and is denoted by the “4” and “|”
symbols for ascending or descending order, respectively. March operations are
symbolized as Wo, W1, Ro, R: for write and read operations. In word-oriented memories,
March write and read operations are applied to several runs for different values that are
called data backgrounds (DBs) [85] and are symbolized as Wbos, Wos, Ros, Rie,
respectively. In case of March tests for CAM comparison faults, an extra March
operation is needed, the compare operation and is symbolized as Cos, Coe. A word-
oriented March test that targets storage faults - March SS [11] - and a March test that

targets comparison faults - March NCDA [24] -, is shown below:

T (Wog). T (Roe:Ros Wos.Ros. Wisg) T (Rag:Raa Wag:Ros: Wos)

Mo M, M,

MarchSS:
v (RDB’RDB’WDB’RDB’Wﬁ)"L (R@'R@,W@,Rﬁ,woa),i (Rpg)
MS M4 M5
T (Wpg), T (RDB’Wﬁ)’T (Cwaiko) T (RD_B1WDB)’T (Cwake)
Mo M, M, M, M,
March NCDA:
¥ (RDB’WD_B’Cﬁ)"L (Rﬁ’WDB’CDB)’i (Rpg)
Ms Mg M;

4.4 SBST March test development

The methodology targets all cache arrays for both data and instructions (either L1
caches or TLBs) and is suitable for all three cache organizations with any write policy.
An SBST technique that targets L1 caches cannot be cache resident, since the actual
L1 cache is under test. However, this is not a limitation in case of on-line testing, since
the test routines can be stored and executed from either L2 cache or the chip’s main
memory that is available at test time. Moreover, when the SBST methodology targets
TLBs, the SBST routine should be placed in a non-pageable memory location that is not
cached to the instruction TLB since the actual TLB arrays are under test.

Georgios A. Theodorou 112

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures
Elaborate Elaborate
Cache Mechanism ‘ TLB Mechanism ‘

. Processor ISA
. Programmer’s manual
D/If:ail.mcr:ghe ¢ e Cache topology
D/I TLB features

 Processor ISA
o Programmer’s manual
o D/I TLB topology

Debug/Diagnostic

DCA in ISA Debug/Diagnostic Y
DCAin ISA
N
N
Prefetch Y e _
DCA in ISA? {March Write v \
B N N Load/Call instructions (TLB Miss & Refill) Debug/Diagnostic
(March write l | I + TLB Demap or RO function instructions
Load/Call instructions L1 Prefetch Diagnostic/Debug X
(missé&refill) instructions instructions

{March Read y
Debug/D

Load/Call instructions (TLB Hit) iagnostic
+ Perf. Counters instructions
erformanc Y
Monitoring
Hardware?
N
/March Compare i
/March Read i A
e — T TS Custom “miss-no-refill” Debug/Diagnostic
Data Inconsislenc.y setup | | Load/Call + Perf. Counter trap handler instructions

Y I

ol i |
G instructions
D-Cache: Load instructions [« Instructi

E I-Cache: Validate results] ('/ March AO 3 \\;
| Tl AC: Gener}ic = 11 AO: Generic ISA :
/March AO v) + RO function

‘ | AO: Generic ISA (I-Cache) ‘

1] AO: Generic ISA (D-Cache)
1 AO: Generic ISA (I-Cache)

D/I TLB
March test

D/I L1 Cache
March test

Figure 26: SBST Methodology for a) L1 caches b) TLBs

The proposed SBST methodology implements low cost SBST March tests that target

cache arrays by taking advantage of existing debug-diagnostic instructions in modern

ISAs, as described in Section 4.2. These instructions must cover in total the fields of the

ideal DCA instruction to overcome the testability challenges of the cache arrays. The

proposed SBST methodology is summarized in Figure 26 for L1 caches and TLBs

respectively. The main features of the proposed methodology are:

e Low cost March writes due to the high controllability of DCA write instructions.

Low cost March reads due to the high observability of DCA read instructions.

instructions.

hardware, if DCA read instructions do not exist in the ISA.

mechanism, if DCA compare instructions do not exist in the ISA.

e Test response compaction to comply with on-line testing requirements [41].

Georgios A. Theodorou 113

Low cost March comparisons due to the special features of DCA compare

Low cost March reads for tag arrays by exploiting performance monitoring

Low cost March comparisons for TLB tag arrays by exploiting the trap handler

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The methodology begins by extracting all available information about the cache
architecture (e.g. L1 cache organization, TLB organization, common or distinct D/I TLB,
size of the arrays, existence of control bits etc.), as well as, a thorough examination of
the implemented ISA. This information is provided by the microarchitecture manual and

the programmer’s manual of the microprocessor.

A detailed description of the way that the methodology implements March operations for

both data and instruction L1 cache and TLB arrays follows.

4.4.1Data Ll cache

The methodology implements March element operations for the data L1 cache arrays

as described in this section.

Write operations (Woe, Wos) are implemented by utilizing debug-diagnostic write
instructions when available in the ISA. As above mentioned such instructions access
both DL1-Tag and DL1-Data arrays and cover the desired fields (WS, SS, WLS and A
fields) to initialize any cache line word from the lower memory hierarchy level (or the
register file). This memory block (or register) must contain the test pattern to initialize
either the DL1-Data array or the DL1-Tag array. If debug-diagnostic instructions do not
exist in the ISA, L1 cache prefetch instruction is utilized for March write operation.
Prefetch instructions initialize cache lines with blocks from memory. Tag is initialized
with the high part of the addresses. Hence, a targeted selection of both the content and
the address of the memory block can initialize both arrays with the desired test patterns.
In case that DCA write instructions are not present in the ISA, generic load instructions
for cache load miss and refill can be utilized to implement March write operation as
proposed in [73] and [75].

Read operations (Ros,Roe) are implemented by utilizing debug-diagnostic read
instructions when available in the ISA. These instructions access both DL1-Tag and
DL1-Data arrays for read access in the same way that debug-diagnostic write
instructions do (through WS, SS, WLS and A fields) to copy any cache line word to a
memory location (or a register). Afterwards, the content of this memory location (or
register) can be easily verified to complete March read operation. If debug-diagnostic
instructions do not exist in the ISA, March read operations can be indirectly
implemented by generic load instructions. In a load instruction, the expected test pattern
in DL1-Data array (the one that was written by a March write operation) will be copied to

a register where it can be verified. Furthermore, the same load instruction should

Georgios A. Theodorou 114

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

produce a cache hit (or avoid a cache miss) if a successful March write operation in
DL1-Tag has been preceded. This hit can be concurrently monitored by a performance
counter with no extra cost, if available. In case that neither debug-diagnostic instructions
nor performance counters are available, data inconsistency should be set up to validate

March write operations for the D-Tag array as proposed in [73] and [75].

March addressing order (T,4) is implemented by utilizing generic ISA instructions. In
data L1 cache, the implementation of both ascending and descending address order is
straightforward. Generic instructions can be easily composed to implement a software
loop to March DL1-Data and DL1-Tag arrays both in ascending/descending address
order.

March SS for data L1 cache

Il set associative : Ny = # of sets direct mapped : Ny = # of lines
D = DBpara

B = D_BDATA

//IM1 element 1 (Ros, Ros, Woe, Ros, Wos)

for (i=0; i<Ng; i=i+1) I/l Access all sets/lines of cache

{
A= create_address (DBrac:i:B) //Address tag = DBrag
A= create_address (DBrac :i:B) //Address tag = DBrac

DD read (A,D) /l or m x Load (A) + Perf Counter
DD read (A,D) /I or m x Load (A) + Perf Counter
DD _write (A, D) /I or Prefetch_block (A)

DD read (A,D) /l or m x Load (A) + Perf Counter
DD _write (A,D) /I or Prefetch_block (A)

}

Figure 27: SBST routine for March SS test for data L1 caches

The proposed algorithmic notation of an SBST routine for both DL1-Data and DL1-Tag
arrays of a data cache is shown in Figure 27. Nq is the number of cache sets (cache

lines in case of a direct mapped organization) in a set-associative organization, B is the
offset part of address to access a word inside the cache line, (DBoara, DBoara) is the
DB pair for the DL1-Data array, (DBrac, DBrac) is the DB pair for the DL1-Tag array.

Addresses A and A are created by the concatenation of the tag DBs, the parameter |
(set/line index) and a value for B to access a word inside the cache line. Debug-
diagnostic (DD) instructions as DCA instructions are used both for write and read
operations when available. DD_write(A,D) instructions initialize a cache line/word in

Georgios A. Theodorou 115

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

address A with content D. DD_read(A,D) instructions read a cache line/word in address
A with content D. If such instructions do not exist in the ISA, a Prefetch (A) instruction is
utilized to initialize an L1 cache line with the memory block that is located in address A
and a sequence of m load instructions (Load (A)) is utilized to access all words in the
cache line (m is the number of words per line). In every load instruction, a performance
counter concurrently monitors for a miss to verify a successful March write on the DL1-
Tag array, if available. If the debug-diagnostic instructions cannot access every cache
way explicitly (lack of WS field), the routine is repeated k times for a k-way set-
associative cache with LRU replacement with k different DB sets to cover the cache

lines in every cache way.

The methodology can develop SBST routines for any March test. If debug-diagnostic
instructions are utilized, the methodology can apply any DB including the most common
ones that are used in the industry tests (solid, checkerboard, column stripes and row

stripes) to both DL1-Data and DL1-Tag arrays. Otherwise, if such instructions do not
exist, the DB pair (DBrac, DBrac) should be defined in a memory data segment that is

allowed by the virtual memory mechanism.

Finally, the proposed algorithmic notation can be easily simplified to test only the DL1-
Tag array, if the DL1-Data array test is not required (e.g. a programmable MBIST

scheme is present for the DL1-Data array).

4.4.2 Instruction L1 cache

Instruction L1 cache is used to store instructions fetched from lower levels of memory
hierarchy. Even though instruction L1 cache is similar in structure to data L1 cache, the
additional three testability challenges that have been described in Section 3 should be

addressed.

The first challenge is due to the fact that the SBST routines affect the instruction L1
cache testing since they are also placed in the same cache during test application.
Fetching the actual SBST routine in the instruction cache spoils the effectiveness of the
test as the test patterns are substituted by the SBST code. In order to overcome this
challenge, the SBST routine should be placed in a non-cacheable area of main
memory. Alternatively, if the architecture cannot define a non-cacheable area, the cache
enable/disable mechanisms can be used to isolate the SBST routine from cache. The
utilization of the cache enable/disable mechanism increases the test code size and test
time of the SBST routines. The rest of the challenges are overcome as described below.

Georgios A. Theodorou 116

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The methodology implements March operations for the IL1-Data and IL1-Tag arrays, as

follows:

Write operations (Wbs, Woe) are implemented by utilizing debug-diagnostic write
instructions when available in the ISA. The instructions initialize both IL1-Data and IL1-
Tag array similarly to data L1 cache arrays. Debug-diagnostic write instructions are not
limited to utilize valid instructions for IL1-Data initialization, since the cache content
must be invalidated when such instructions are executed. Hence, debug-diagnostic
instructions overcome the testability challenge of composing test patterns for the IL1-
Data array as they can initialize the IL1-Data array with any desired DB. If debug-
diagnostic instructions do not exist in the ISA, L1 cache prefetch instruction is utilized
for March write operation similarly to data L1 cache. When prefetch instructions are
utilized, the test patterns should be valid instructions and are composed by instructions
that have complementary opcode/fields. Every cache line should contain such valid
instructions and the combination of them will form the desired test pattern. One return
instruction should be included in every cache line to facilitate the return of the execution
flow back to the SBST routine. When DCA write instructions are not present in the ISA,
generic call instructions for L1 cache miss and refill can be utilized to implement March
write operation as proposed in [73] and [79].

Read operations (Ros,Ros) are implemented by utilizing debug-diagnostic read
instructions when available in the ISA. These instructions copy the content of any L1
cache line word (IL1-Data) or any tag entry (IL1-Tag) to a memory location (or a
register) by controlling the WS, SS, WLS and A fields, similarly to data L1 cache.
Afterwards, the memory content (or register) can be easily verified to complete March
read operation. The debug-diagnostic read instructions have high observability features
since they implement direct access to the instruction L1 cache arrays that is missing
through generic ISA instructions. If debug-diagnostic instructions do not exist in the ISA,
a call instruction that targets the desired cache line should be utilized to fetch and
execute all the instructions of the cache line. In order to verify successful March read
operations for the IL1-Data, the executed instructions that have been used in the March
write operation as test patterns should produce an unambiguous result that can be
easily verified for its correctness as proposed in [79]. In order to verify successful March
read operations for the IL1-Tag array, a call instruction should be executed to fetch
instructions that are placed in the memory in a segment that is dictated by the desired

test patterns (the high part of the addresses should compose the test pattern for the IL1-

Georgios A. Theodorou 117

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Tag array). If a successful March write operation in IL1-Tag has been preceded, this call
instruction will produce a cache hit (or avoid a cache miss) that can be directly
monitored by a performance counter, if available. Note that a successful test will leave
the performance counter’s value to zero (zero cache misses) at the end of the test. In
case that no performance monitoring hardware is available, data inconsistency should
be set up to validate successful March write operations for the IL1-Tag array as
described in [79].

March addressing order (T,d) is implemented by utilizing generic ISA instructions,
when feasible, similarly to data L1 cache arrays. While the implementation of an
ascending address order is straightforward, the implementation of a descending
address order is challenging, because instructions are fetched only in ascending
address order during normal system operation. When debug-diagnostic instructions are
utilized, the high controllability and observability of these instructions allow a software
routine to bypass the limitation of accessing cache lines in descending address order. A
descending address order can be implemented by controlling the WS, SS, WLS and A
fields to form a software loop. Moreover, when prefetch instructions are utilized and are
combined with performance counters, a descending address order can be implemented
for IL1-Tag by controlling the address A of the cache line to be accessed through a

software loop.

The algorithmic notation of an SBST routine for both I-Data and I-Tag arrays of an

instruction cache is shown in Figure 28. The symbol notations follow these of Figure 27.

Georgios A. Theodorou 118

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

March SS for instruction L1 cache

/] set-associative : Nd = # of sets, direct mapped : Nd =# of lines
= DBpata

|
| = DBpata

DC /[Disable cache (or placed in non-cacheable area)

/IM1 element 1 (Roe, Ros, Woe, Ros, Wos)

for (i=0; i<Nd ; i=i+1) /I Access all sets/lines of cache

{

A= create_address (Ul:i:B) // Address to access test patterns

A= create_address (U2:i:B) // Address to access test patterns

DD read (A1) /I or EC; Call (A); DC+Perf. Counter
DD read (A1) /I or EC; Call (A); DC + Perf. Counter
DD write (A, 1) /I or Prefetch_block (A)

DD read (A, I) /I or EC; Call (A); DC + Perf. Counter
DD _write (A, 1) /I or Prefetch_block (A)

}

Figure 28: SBST routine for March SS test for instruction L1 caches

When debug-diagnostic instructions are present in the ISA, this template is valid for
both IL1-Tag and IL1-Data. U1 and U2 upper parts of address are any valid memory
segments that are initialized with the test patterns. On the contrary, when prefetch and
call instructions are utilized, the selection of Ul and U2 memory blocks is more
challenging. In order to apply March write and read operations to the IL1-Data array,
these two memory blocks are initialized to contain cache lines with valid instructions that
comply with the chosen (DBoam, DBoara) pair. In this case, Ul and U2 can be any valid
memory segment in the cacheable instruction segment. Each block should contain
instructions that form the actual test pattern. One return instruction should be included

in every cache line to facilitate the next March test iteration [79].

The verification of March read operations is performed by validating the execution result
of the instruction sequence that forms the test patterns. If a (DBoara, DBoara) pair cannot
be defined in an ISA, two or more pairs of instructions with convenient formats (partially
complementary adjacent bits) can be utilized ([72], [73]). In order to apply March writes
and reads to the I-Tag array, Ul and U2 upper parts of address are the desired
(DBrac,DBrac) pair and must be selected carefully as in the majority of processor

architectures the virtual memory mechanism does not allow to map instruction

Georgios A. Theodorou 119

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

segments to any memory segment during on-line operation. The content of these blocks
is not of high importance. The sole requirement is that every cache line should contain

one return instruction in order to achieve continuous address order.

In the proposed template an enable/disable cache mechanism is utilized. Instruction
cache is only activated, through the enable cache (EC) operation, when the call
instruction is utilized in order to activate the performance counter's monitoring for the
IL1-Tag.

4.4.3TLBs

TLBs are small fully associative caches that store address related information in both
their data and tag arrays. When a virtual address is generated by a store/load
instruction it is stored to the DTLB-Tag array and its physical page number is issued to
the DTLB-Data array. Respectively, when a virtual address is generated by an
instruction fetch, it is stored to the ITLB-Tag array and its physical page number is
issued to the ITLB-Data array. As described in Section 4.1.2, TLB arrays have two
additional testability challenges: a) TLBs implement fully associative cache organization
b) Tag arrays comprise a CAM memory that has to be also tested for CAM comparison
faults. The methodology implements March operations (including March compare

operation) for the TLB data and tag arrays, as follows:

Write operations (Woes, W) are implemented by utilizing debug-diagnostic write
instructions when available in the ISA as described above for L1 caches. Such
instructions access both data and tag arrays of either D-TLB or I-TLB and cover the
desired fields (WS and A fields) to initialize any TLB entry from the register file or the
memory. This register (or memory block) must contain the desired DB to initialize either
the data array or the tag array of the TLB under test. If debug-diagnostic write
instructions do not exist in the ISA, March write operations can be implemented
indirectly by a well-advised TLB miss through a generic store/load instruction for D-TLB
or an instruction fetch for I-TLB on a preselected memory page for both data and tag
array. The preselected memory page should have a physical address that contains the
desired DB for the tag array and a virtual address that contains the desired DB for the
tag array. In case of I-TLB arrays, these preselected memory pages should be initialized
with one return instruction in order to facilitate the return of the execution flow back to
the SBST routine. When TLB miss & refill mechanism is utilized, both data and tag
arrays (DTLB-Data/DTLB-Tag or ITLB-Data/ITLB-Tag) can be written with the same
instruction. However, serious limitations may arise due to LRU replacement policy. For

Georgios A. Theodorou 120

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

example, in March SS algorithm in March element M,, a Wpg operation cannot be
directly applied after the Rpg through the miss and refill mechanism, as the desired TLB
entry is already in the TLB array. According to this March element, it should be
overwritten but it cannot be applied directly due to the LRU replacement policy. In order
to overcome these difficulties the methodology exploits demap MMU entry operation
when available in ISA or it utilizes an access reordering function (RO) - similar to the
one that was presented in [79]- to force the LRU to implement an ascending/desceding
address order.

Read operations (Ros,Rss) are implemented by utilizing debug-diagnostic read
instructions when available in the ISA. These instructions access both data and tag
arrays of either the D-TLB or the I-TLB for read access through WS, and A fields to
copy any TLB entry to a register (or a memory location). Afterwards, the content of this
register (or memory location) can be easily verified to complete March read operation. If
debug-diagnostic read instructions do not exist in the ISA, March read operations can
be indirectly implemented by a well-advised TLB hit in a similar way that the March write
operation was described above. TLB hits should be produced for every successful
March read operation (March reads always verify March writes). These TLB hits or the
total number of TLB misses - expected zero for a successful test - can be concurrently
monitored by a performance counter with no extra cost. In case that neither debug-
diagnostic instructions nor performance counters are available, March read validation
can be indirectly performed by monitoring the increase in test execution time, due to
unexpected D-TLB and I-TLB misses in case of defects in DTLB-Tag or ITLB-Tag
arrays. Finally, defects in DTLB-Data and ITLB-Data arrays activate the page fault trap
mechanism and validate the March test.

Compare operations (Coe,Coe) are implemented by utilizing debug-diagnostic
compare instructions when available in the ISA. These instructions access the tag array
and perform a CAM compare (also known as TLB entry match) operation. A register (or
a memory location) is updated for either a D-TLB hit or a D-TLB miss (e.g. matched
address or zero loads in Index register in MIPS R10000 when a TLBP instruction is
executed). Hence, successful March compare operation can be easily validated
afterwards. If debug-diagnostic compare instructions do not exist in the ISA, the
methodology exploits the trap handler mechanism to implement a March compare
operation. A custom “miss-no-refill” TLB trap handler can be defined to identify either a

D-TLB or an I-TLB miss based on the native trap handler that serves TLB misses (the

Georgios A. Theodorou 121

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

native trap handler performs a miss & refill operation). The custom trap handler should
not refill TLB entries and can be used to indirectly implement March compares.
Moreover, the handler routine should be programmed to count CAM misses to validate
the March test.

March addressing order (T,J) is implemented by utilizing generic ISA instructions to
control WS field when debug-diagnostic instructions are utilized as DCAs for March
write, read and compare operations. If the ISA lacks such instructions and the native
TLB miss & refill is utilized both ascending and descending address order are indirectly

implemented by a RO function [79].

The proposed algorithmic notation of an SBST routine for I-TLB (both ITLB-Data and
ITLB-Tag arrays) is shown in Figure 29. The symbol notations follow these of Figure 27
and Figure 28. March write and read operations are performed in a similar way with the
one that is presented for L1 caches with either write/read debug-diagnostic instructions
if present in ISA or with a well-advised Call instruction to produce a TLB miss/hit. DBs
for TLB data and tag should be valid physical and virtual addresses when the ISA lacks
debug-diagnostic instructions and the corresponding memory pages should contain a
return instruction. Pa2va represents a function that performs physical to virtual address
translation. In case of March compare operation, it is either implemented by a debug-

diagnostic compare instruction DD_compare (\TM) or by well advised Call instructions

to produce a I-TLB miss that leads to the “miss-no-refill” trap handler mechanism.

March NCDA for |-TLB
/IM5 element | (Ros, Wos, Cos)
for (i= Ng ; i>0; i=i-1) /I Ng =#1-TLB lines

{

PA = (DBparta, i) /I DBpaTa are physical addesses

PA= (DBoara, i)

VA = pa2va (PA) /| DBt are virtual addresses

VA = pa2va (PA)

DD _read (VA/PA,1) /lor Call (VA) + Perf. Counter

DD _write (Va/Pa, 1) /lor Call (VA)

DD compare (va,1) [lor Call(ﬁ)+“miss-no-refill” trap handler
}

Figure 29: SBST routine for March NCDA for instruction TLBs

Georgios A. Theodorou 122

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The methodology can develop SBST routines for any March test that targets the storage
faults and the CAM oriented March tests (for tag array) that target comparison faults,
excluding these March tests that utilize CAM masking [86], a CAM memory operation
that cannot be implemented through ISA. If debug-diagnostic instructions exist in the
ISA, the methodology can apply any DB and has no limitations for control bits that are
included in the arrays. Otherwise, the DB composition is constrained by limitations in
both the memory addressing schemes and the accessibility of control bits that lowers
the effectiveness of the applied March tests. Finally, if D-TLB and I-TLB are unified - a
common TLB architecture in modern processors - and the ISA lacks DCA instructions, it
is preferable to apply the proposed SBST methodology and implement March test
operations through load/store instructions (considering the unified TLB cache as a D-
TLB cache during testing).

4.5 Multithreaded optimization for multi-bank L1 caches

In this section, we introduce the multithreaded optimization of our methodology. The
proposed optimization elaborates the low level multiple bank organization of modern
cache designs to exploit the thread level parallelism of modern multithreaded, multicore

processors and speedup March test execution time.

In traditional cache designs, SRAM arrays are partitioned into multiple sub-banks to
save power or to tweak the cache dimensions to fit smoothly in the given silicon real
estate. These designs are called Uniform Cache Architectures (UCA). In modern cache
designs, multibank Non-Uniform Cache Architectures (NUCA) are preferred to minimize
internal wiring delay that are further divided in Static NUCA (S-NUCA) and Dynamic
NUCA (D-NUCA) based on the way that the mapping of data into cache banks is
achieved [87]. In this thesis, only UCA with multiple sub-bank organization and S-NUCA
architectures are considered for the L1 cache SRAM arrays. Note that D-NUCA

architectures are not used for L1 caches due to their small size.

In UCA and S-NUCA architectures, the mapping of data into cache banks and sub-
banks is predetermined based on the block index of the architecture and thus can
reside in only one bank of the cache. Several cache modeling tools (e.g. Cacti) enable
fast exploration of the cache design space by automatically choosing the optimal bank
and sub-bank count, size, and orientation of UCA and S-NUCA architectures. A typical
S-NUCA cache physical organization that is adopted in modern processors -also

considered by Cacti tool- is depicted in Figure 30.

Georgios A. Theodorou 123

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

T Sub-bank
ag array

Bank

L i Predecode

Sense amplifier yordiine driver
and decoder

Address bus

Figure 30: Cache multibank physical organization (S-NUCA)

The S-NUCA cache consists of multiple banks. Every bank is organized as a UCA with
multiple sub-banks. A central pre-decoder drives signals to the local decoders of the
sub-banks. Each sub-bank has a separate memory array, decoder, write drivers, and
sense amplifier. As described above, the mapping of data into the banks and sub-banks
is defined by the block index and is decided in the cache design process. Each cache
bank or sub-bank in the above described UCA and S-NUCA multibank architectures can
be considered as a separate SRAM array with a distinct functional fault set, since no
coupling faults can occur between memory cells of such different cache banks and sub-
banks. Therefore, an on-line testing strategy that considers every sub-bank as an
independent memory array can be developed since the memory mapping is known to

test engineers.

We propose the multithreaded optimization of our methodology that exploits the above
mentioned feature of multibank cache organization. The proposed optimization
considers exclusive fault sets for every L1 cache array sub-bank and proposes a fine-
tuned clustering of the applied March tests in smaller subroutines based on the
information provided for the physical implementation of a multibank cache (sub-bank
address mapping, address scrambling etc.). Every cluster targets a sub-bank of the
cache and the logical union of all clusters ends up to the initial March test for the whole
cache array under test. These March test clusters target separate cache array sub-
banks which can be executed concurrently without diminishing the March test
effectiveness. Such a clustering is well suited to multithreaded processors, where
concurrent execution can be achieved by assigning test clusters to different threads and
hence SBST March test execution time is divided by the factor of available number of
test threads. The test threads are dynamically scheduled software threads among the
other executed processes. These test threads should be isolated during on-line testing

Georgios A. Theodorou 124

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

in order to prevent the rest of the software processes to corrupt the March test
effectiveness. In case that the March tests clusters outnumber the available threads,
more than one March test clusters are assigned to every thread. Finally, the proposed
multithreaded optimization is suitable both for simultaneous multithreading and
interleaved multithreaded architectures, since it is independent of the way that the
threads are issued and it is compatible with any resource allocation policy (e.g. physical
register file size, register windows, register renaming e.t.c) that a multithreaded

processor can implement.

UCA Cache (4 sub-banks) 256 entries

. Sense amplifier

Cache Architecture

Sub-Bank Sub-Bank
0 1 i Logical Sub-Bank

Addresses Mapping

. 0-63 — Sub-Bank O

ll «—Predecoder K 64-127 —» Sub-Bank 1
| 128-191 —» Sub-Bank 3

192-255 —» Sub-Bank 2

Sub-Bank Sub-Bank
2 3
i . Clustered March Test
Multithreaded Optimization ~ Word driver | Cluster0 Cluster 1
and decoder 6 10 127 64
Threads March Test TO ,\LSS o ’\1/127

Thread 0 — Cluster 0

Thread 1 —» Cluster1 | . Cluster 3 Cluster 2
Thread 2 —> Cluster 2 T191 \lea TZSSa\Lm
Thread 3 — Cluster 3 128’ W'191 192" W 255

Figure 31: Example UCA cache — March Clustering

Example: Let us consider a processor that supports four threads per core. In Figure 31,
we depict a UCA cache with four sub-banks (4x64=256 entries in total). The cache
architecture determines the data mapping and every logical address can reside in only
one sub-bank of the cache. In this example, gray code addressing is utilized for sub-
bank allocation. Such an organization is very common to reduce switching activity in the
cache predecoders. However the proposed optimization can be applied to any sub-bank
addressing mode, since it is disclosed to test engineers. The sub-allocation addressing
is elaborated to form the four March test clusters. Each cluster corresponds to the
address subset of every sub-bank and both ascending/descending March address order
are defined to form the SBST March test clusters by applying the proposed SBST
March test development methodology. Afterwards, these four clusters are assigned to

Georgios A. Theodorou 125

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

the processor four threads in order to be executed concurrently. Hence, each March

test cluster is assigned to one thread, in order to achieve the maximum test time

speedup.

Georgios A. Theodorou 126

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

5. CASE STUDIES

We have applied the proposed SBST methodology to three processor benchmarks a)
LEON3, b) OpenRISC 1200 and c) OpenSPARC T1. We have also applied the
multithreaded optimization to the L1 caches of OpenSparc T1.

In order to evaluate the effectiveness of the self-test routines we have used RAMSES
memory fault simulator [88]. RAMSES consists of a simulation engine and numerous
fault descriptors. Fault coverage is determined by evaluating the fault descriptors for
predefined conditions. When coupling faults are concerned, the rest of the array cells
except from the aggressor cell are possible victim cells. We have extended RAMSES to
include fault descriptors on the basis of FPs [11] to include a) all the unlinked static
storage faults [11] and b) CAM comparison faults [17] and we have implemented a test
framework to bridge cache traces of Mentor Graphics’ ModelSim and Synopsys VCS
simulator with RAMSES to fault grade the cache arrays.

5.1 Benchmark 1 - LEON3

The first benchmark is LEON3, a publicly available processor designed by Aeroflex
Gaisler that implements a SPARC V8 compliant architecture. We have configured the
benchmark to include two 4KB 2-way set-associative L1 data and instruction caches
with 64 sets and 8 words per cache line. This configuration includes two 64x29 tag

arrays (D-Tag and I-Tag) and two 512x32 data arrays (D-Data and I-Data).

The SPARC V8 ISA, that LEON3 implements, includes privileged store/load
instructions, denoted as alternate load/store (lda/sta instructions). These instructions
can directly access cache arrays for diagnostic purposes by specifying alternate space
identifiers (ASIs) that are defined by the SPARC architecture for both write and read
access at supervisor level. These instructions have been used as DCA instructions for
March write/read operations to apply and read the test patterns in SBST routines. In
detail, alternate store (sta) instructions have been used to implement March write
operations and alternate load (Ida) instructions have been used to implement the March
read operations. These instructions access all the cache SRAM arrays by utilizing the
appropriate address indexing and the corresponding ASI. Note that when utilizing
diagnostic accesses to a cache array, the cache should be invalidated afterwards.
Hence, even in |-Data array, whose test patterns are formed by valid instructions, an
SBST routine that takes advantage of alternate load instructions can apply any data

Georgios A. Theodorou 127

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

background pair (DBoara, DBoata) with no limitation because the cache will be

invalidated after the test.

Element M1 of March SS: 1(r0, r0, w0, roO,w1) for testing IL1-Data
Il %rl = DB vector %r3 = 0x0 at the beginning of the test
/[Disable ICACHE during test

2: Ida [%r3] Oxd, %r5 /IR0, |-Data content stored in %r5
xor %r1, %r5, %r5 /[[Compare with DB
add %r7, %r5, %r7 //Store validation result

Ida [%r3] Oxd, %r5

xor %r1, %r5, %r5

add %r7, %r5, %r7

sta %r1, [%r3] Oxd /IWO, store %r1 to I-Data (%r3)
Ida [%r3] 0xd, %r5

xor %r1, %r5, %r5

add %r7, %r5, %r7

sta %r2, [%r3] Oxd

add %r3, 4, %r3
add %r4, 4, %r4
cmp %r3, 2048
bne 2b

Figure 32: Code snippet for LEON3’s IL1-Data array

An assembly code snippet for March element M1 of March SS test for way 0 of I-Data
array is shown in Figure 32. Instruction Ida [%r3] Oxd, %r5 fetches I-Data array contents
of the address provided by %r3 register (ASI Oxd is mapped to I-Data) to the general
purpose register %r5. Instruction sta %r1, [%r3] Oxd initializes a cache content line in a
similar way with a predefined value (the desired DB). Moreover, read validations are
performed in every read operation and the validation of the result is compacted in
register %r7. At the end of a successful test, the expected value of register %r7 is zero.
The same test with different address indexing targets way 1 of I-Data array. SBST
routines for the rest of the cache arrays (D-Tag, D-Data, I-Tag) are formed in a similar

way with different ASI values.

Georgios A. Theodorou 128

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 8: LEON3 Data L1 Cache: SBST routines statistics

DL1-Tag DL1-Data
March test Complexity Test size T_est Test size T_est
(n) (bytes) Duration (bytes) Duration
y (cycles) y (cycles)
March C- 10n 384 6,360 384 47,300
March U 13n 384 6,680 384 50,340
March MSS 18n 512 10,160 512 77,100
March SS 22n 608 13,040 608 91,540

Table 9: LEON3 Instruction L1 Cache: SBST routines statistics

IL1-Tag IL1-Data

March test Complexity Test size T_est Test size T_est
(n) (bytes) Duration (bytes) Duration

y (cycles) y (cycles)

March C- 10n 428 42,060 428 310,140
March U 13n 424 43,220 424 340,060
March MSS 18n 536 68,460 536 539,180
March SS 22n 632 72,380 632 575,620

We have applied a set of March tests with different test complexities to both data and
instruction caches. Solid data backgrounds (all-zero/all-ones) have been used to all
tests. The test program statistics for both caches are shown in Table 8 and Table 9. The
complexity of the March tests are expressed by their test lengths (n: number of bits of
the array). The test routines are very effective in terms of test code size and test

duration due to the utilization of the DCA instructions.

Finally, we evaluated test effectiveness of the test routines by utilizing RAMSES fault
simulator. The port activity of cache arrays has been monitored and captured using
ModelSim during the execution of SBST routines and then evaluated by RAMSES fault

Georgios A. Theodorou 129

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

simulator for all unlinked static faults' to provide the achieved fault coverage. The
coverage is complete (100%) for the fault models that every March test guarantees for
both LEON3’s data and instruction L1 cache SRAM arrays.

5.2 Benchmark 2 — OpenRISC 1200

The second benchmark is OpenRISC 1200, a publicly available processor core. The
processor has been parameterized to utilize 4KB direct mapped write-through L1
caches that include 256x20 tag arrays (D-Tag & I-Tag) and 1024x32 data arrays (D-
Data array & I-Data array). OpenRISC 1200 has been extended to include
programmable performance counters that monitor data and instruction cache misses

based on the specification of the designer’'s manual.

OpenRISC 1200 lacks debug-diagnostic instructions in its ISA to access the cache
arrays. However, it includes a cache prefetch mechanism for both data and instruction
L1 caches and maps prefetch operations to valid instructions. These instructions have
been utilized as DCA instructions for March write operations. For March read
operations, generic load and call instructions have been used. The observability of the

March tests has been improved by exploiting the performance counters.

The cache prefetch operation in OpenRISC 1200 is implemented through a special
purpose register (DCBPR register for data cache and ICBPR register for instruction
cache). Indirect access to cache array has been used to implement March read
operations by utilizing the load (l.lwz) instruction for the data cache and the jump and
link register (l.jalr) instruction for the instruction cache. An enable/disable cache
mechanism has been utilized since OpenRISC 1200 lacks the ability to define a non-
cacheable area. In D-Data array, read validation has been performed by comparing the
l.lwz instruction result with a golden value in every March test iteration. In I-Data array,
two instructions with complementary opcodes (a register vector addition lv.adds.h and
the immediate store |.sw) have been used to form the test patterns. At the end of every
cache line we have placed a jump register (l.jr) instruction. The March read operations
have been validated by elaborating the result of both Iv.adds.h and |.sw execution. We

lSingle Cell Faults: State (SF), Transition (TF), Write Destructive (WDF), Read Destructive (RDF), Deceptive Read Destructive
(DRDF), Incorrect Read (IRF)

Cell Coupling Faults (2-cell): State (CFst), Disturb (CFds), Transition (CFtr), Write Destructive (CFwd), Read Destructive (CFrd),
Deceptive Read Destructive (CFdr), Incorrect Read (CFir)

Georgios A. Theodorou 130

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

have executed twice the same routines for I-Data array. The first execution with the L.jr
instruction located at the last word of every cache line and the second one with the L.jr
instruction located to another word inside the cache line to detect the remaining faults
that are masked by the utilization of a jump instruction [79]. Cache misses monitored by
performance counters for D-Tag and I-Tag arrays verify March read operations at the
end of the test. An assembly code snippet for March SS M1 element for D-Tag array is

shown in Figure 33.

Element M1 of March SS: 1(r0, r0, w0, ro.w1) for DL1-Taq

/I (rl) = 0x00000000 at the beginning of the test

/I (r30) = OXFFFFF0O0O at the beginning of the test

I.mtspr r0,r11,SPR_PCMR(0) /[Enable performance counter

march_loop_m1:

l.lwz r5,0(r1) /IR0, if cache miss, counter ++
l.lwz r5,0(rl) /IR0, if cache miss, counter ++
I.mtspr r0,r1,SPR_DCBPR /IWO0, prefetch block

l.lwz r5,0(r1) /IR0, if cache miss, counter++
I.mtspr r0,r30,SPR_DCBPR /W1, prefetch block

l.addi r1,r1,16 /lloop control

l.sfeqi r30,4080

[.bnf march_loop_m1

l.addi r30,r30,16

I.mtspr r0,r12,SPR_PCMR(0) /[Disable performance counter

Figure 33: Code snippet for OpenRISC’s 1200 DL1-Tag array

We have implemented the same March tests that we presented for LEON3. The test
program statistics for both caches are shown in Table 10 and Table 11. As shown in
tables, test programs, are cost-effective both in terms of code size and test duration.
Routines for instruction cache have longer test duration as they have been executed
with the instruction cache disabled. Moreover, test duration is even longer for the I-Data

array because the test routines were executed twice.

Georgios A. Theodorou 131

Table 10: OpenRISC 1200 Data L1 Cache: SBST routines statistics

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

DL1-Tag DL1-Data
March test Complexity Test size T_est Test size T_est
(n) (bytes) Duration (bytes) Duration
y (cycles) y (cycles)
March C- 10n 280 16,667 1,016 58,217
March U 13n 288 18,000 1,436 81,060
March MSS 18n 344 22,666 1,496 95,023
March SS 22n 384 27,000 2,200 147,129

Table 11: OpenRISC 1200 Instruction L1 Cache: SBST routines statistics

IL1-Tag IL1-Data

lexi . .

March test Complexity Test size T_est Test size T?SI
(n) (bytes) Duration (bytes) Duration
y (cycles) y (cycles)
March C- 10n 744 658,334 800 1,585,836
March U 13n 780 770,666 832 1,811,222
March MSS 18n 893 970,420 1,120 2,540,104
March SS 22n 1,128 1,180,400 1,296 3,185,278

Finally, we have evaluated test effectiveness of the test routines by utilizing RAMSES
fault simulator in a similar way with the one that is presented for LEON3 processor. The
achieved fault coverage is complete (100%) for all the above mentioned fault models
that every March test guarantees for the OpenRISC’s data cache. For the OpenRISC’s
instruction cache, the fault coverage is complete (100%) for all single cell faults and
99% for the coupling faults. The fault coverage for the coupling faults is slightly lowered
due to the utilization of the enable/disable mechanism instead of a non-cacheable area
which is not supported. The l.jalr instruction (March read operation) is executed with the
instruction cache enabled to activate the performance counter. The corresponding
memory block that is fetched to the instruction cache corrupts a single test pattern and
slightly lowers the fault coverage. If complete fault coverage is required for coupling
faults, the March test can be fetched and partially executed again from another memory
segment to complete the missing fault coverage as a tradeoff to increased test code

size and test duration.

Georgios A. Theodorou 132

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

5.3 Benchmark 3 - OpenSPARC T1

The third benchmark is OpenSPARC T1 that includes both data and instruction L1
caches and fully functional TLBS. Therefore, the SBST methodology has been fully
applied to both the L1 cache and TLB arrays.

OpenSPARC T1 is a multithreaded chip multiprocessor with eight SPARC V9 processor
cores. Each SPARC core has hardware support for four hardware threads. T1 utilizes
thread level parallelism (TLP) in a fine grain multithreading mechanism. Each SPARC
core has separate data and instruction L1 caches: a 4-way set-associative 8 KB L1 data
cache and a 4-way set-associative 16 KB L1 instruction cache. The cache line size is 16
bytes for the data cache and 32 bytes for the instruction cache. The cache SRAM
arrays are organized as follows: the DL1-Data array is physically implemented as two
128x288 SRAM banks, the IL1-Data array is implemented as four 128x272 SRAM
banks. Both the DL1-Tag and IL1-Tag array are physically implemented as two 64x132
banks. The control bits for both data and instruction L1 caches are not part of the SRAM
arrays. They are implemented as a separate register array.

Additionally, each SPARC core has a separate D-TLB and I-TLB. Both D-TLB and I-TLB
consist of a 64-entry SRAM memory (data array) and a 64-entry fully associative CAM
memory (tag array). The data entries are 43 bits wide and the tag entries are 59 bits
wide. The Physical Page Number (PPN) width is 27 bits. The rest of the bits in data
array entries are control bits (16 bits). The Virtual Page Number (VPN) width is 35 bits.
Moreover, a 13-bit context field and a 3-bit partition field are included. The rest of the

bits in the tag array are control bits.

OpenSPARC T1 implements a SPARC V9 compliant ISA and includes privileged
store/load instructions, denoted as alternate load/store (ldxa/stxa instructions). These
instructions can directly access all cache arrays for debug/diagnostic purposes by
specifying alternate space identifiers (ASIs) that are defined by the SPARC architecture
for both write and read access at supervisor level. We have exploited these alternate
load/store instructions for March write/read operations to directly access all cache
arrays for both L1 caches and TLBs for March write and March read operations at low
cost by utilizing the appropriate ASI at the hypervisor level. Moreover, OpenSPARC T1
implements performance monitoring hardware (performance counters) that can be
configured to monitor for L1 cache and TLB misses. In order to further optimize the test
execution time we combined the utilization of performance counters for the both L1

cache tag arrays (DL1-Tag and IL1-Tag), even though DCA read instructions could be

Georgios A. Theodorou 133

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

utilized. By combining the DCA write instructions with performance counters for the
cache tag arrays we have achieved to validate the whole test for tag arrays with a single
step by verifying the performance counter’s value at the end of the test (expecting to be
zero). SPARC V9 ISA does not implement a debug/diagnostic compare instruction for
implementing the March compare operation. Therefore, a custom “miss-no-refill” trap
handler has been utilized to implement March compare operations to test DTLB-Tag

and ITLB-Tag CAM arrays for comparison faults.

Write/Read March operations DL1-Data array

11 %g2 contains a VA to access DL1-Data entries

wr 9%g0, ASI_DCACHE_DATA, %asi IIAS] = 0x46

stxa %g1, [%g2] %asi /IMarch Write, %g1 contains DB
stxa %g1, [%g2+8] %asi /I Second word in cache line

ldx [%g5], %I0 /IMarch Read, Data entry in %I0
ldx [%g5+8], %l1 /I Second word stored in %l1

Write/Read March operations DL1-Tag array

Il Initialize Perf. Counter for L1 data cache misses
set 0x33, %l0
wr %I0, 0, %pcr

I %Qg2 contains a VA to access DL1-Tag entries

wr %g0, ASI_DCACHE_TAG, %asi IIASI] = 0x47
stxa %g6, [%g2] %asi //March Write, %g1 contains DB
ldx [%g5], %I0 /IMarch Read, monitored by %pcr

Figure 34: Code snippet for OpenSPARC T1 L1 Data cache

Georgios A. Theodorou 134

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Write/Read March operations IL1-Data array

11 %g2 contains a VA to access IL1-Data entries

wr %g0, ASI_ICACHE_INST, %asi IIAS] = 0x66
11i=0,8,16,24,32,40, 48,56 executed for every word in cache line
stxa %g6, [%g2 +i] Yoasi /IMarch Write, %g1 contains DB
ldxa [%g2+i] Y%asi, %I0 //March Read, Data entry in %I0

Write/Read March operations IL1-Tag array

Il Initialize Perf. Counter for L1 instruction cache misses

set 0x23, %l1 /I Turn ON Perf.Counter

wr %I1, 0, %pcr

11 %g2 contains a VA to access DL1-Tag entries

wr %g0, ASI_ICACHE_TAG, %asi //ASI| = 0x67

stxa %g6, [%09g2] Y%asi /IMarch Write, %g6 contains DB
call %l6 /IMarch Read, monitored by %pcr

Figure 35: Code snippet for OpenSPARC T1 L1 Instruction cache

Write/Read March operations DTLB-Data array

11 9%g4 contains a VA to access D-TLB data entries

wr %g0, ASI_DMMU_DATA_ACCESS, %asi //ASI = 0x5d

stxa %g6, [%0g4] Y%asi /IMarch Write, %96 contains DB
Idxa [Y0g4] Y%asi, %g7 /IMarch Read, Data entry in %g7

Write/Read/Compare March operations DTLB-Tag array

I %g4 contains a VA to access D-TLB tag entries
wr %g0, ASI_DMMU_TAG_ACCESS %easi //ASI = 0x58

stxa %g2, [%g1] %asi /DB to Tag buffer from %g2
stxa %g2, [%g1+0x50] %asi /[Partition ID to PartID buffer
wr %g0, ASI_DMMU_DATA_ACCESS %easi

stxa %g6, [%0g4] Yasi /[IMarch Write

wr %g0, ASI_DMMU_TAG_READ,%asi //ASI = 0x5e

ldxa [%g5] %asi, %g7 //March Read, Tag in %g7

set 0x3f,%I6 /[Enable custom Trap handler
wr %90, ASI_REAL, %asi /IBypass VA->PA translation
stxa %g6, [%gl] Y%asi /IMarch compare, %RA in%g1l

Figure 36: Code snippet for OpenSPARC T1 D-TLB

Georgios A. Theodorou 135

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Write/Read March operations ITLB-Data array

11 %g4 contains a VA to access I-TLB data entries

wr %g0, ASI_IMMU_DATA_ACCESS, %asi //ASI = 0x55

stxa %g6, [%g4] %asi /IMarch Write, %g6 contains DB
ldxa [%g4] Y%asi, %g7 //March Read, Data entry in %g7

Write/Read/Compare March operations ITLB-Tag array

Il %g4 contains a VA to access I-TLB tag entries
wr %g0, ASI_IMMU_TAG_ACCESS %asi //ASI = 0x50

stxa %g2, [%g1l] Y%asi //DB to Tag buffer from %g2
stxa %g2, [%g1+0x50] %asi /[Partition ID to PartID buffer

wr %g0, ASI_IMMU_DATA_ACCESS %asi

stxa %g6, [%0g4] Y%asi /IMarch Write

wr %g0, ASI_IMMU_TAG_READ,%asi //ASI = 0x56

ldxa [%g5] %asi, %g7 /I March Read, Tag in %g7

wr %g0, ASI_LSU_CONTROL_REG, %asi

set OxB, %l6 //Bypass VA->PA translation
stxa %l6, [%g0] %asi [[for instruction fetch

set 0x3f,%I6 /[Enable custom Trap handler
jmpl %02, %04 /[IMarch compare,%RA in %02

Figure 37: Code snippet for OpenSPARC T1 I-TLB

Assembly code snippets that show how March operations are implemented for all cache
arrays (both L1 caches and TLBs) are shown in Figures 34-37. In detail, we have
utilized alternate store (stxa) instruction to implement March writes in all cache arrays
and utilized alternate load (ldxa) instructions to implement March reads for IL1-Data
array and all TLB arrays in order to overcome the testability challenges for implementing
March read operations. On both L1 cache tag arrays (DL1-Tag and IL1-Tag) we have
exploited the performance counters to monitor for cache misses for validation of March
read operations that are performed by load instructions in DL1-Tag array and call
instructions in IL1-tag array, respectively. Note that March write operation for TLB tag
arrays is implemented by utilizing three stxa instructions. Tag entry (VPN, context ID
and control bits) and Partition ID must firstly be placed in the Tag buffer and PartID
buffer, and then March write operation for tag array is applied. The trap handler that we
have programmed to implement March compare operation differs to the native one that

handles TLB misses in two aspects: a) It does not refill the TLB when a miss occurs, b)

Georgios A. Theodorou 136

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

It can access physical addresses beyond the 8GB limit (which is an OpenSPARC T1
convention for memory address space). This handler is enabled by utilizing a predefined
value in register %l6 and when either a generic store/load instruction occurs for DTLB-
Tag or instruction fetch for ITLB-Tag it detects hits and misses without refilling any TLB
entry. Real addresses were utilized for both DTLB-Tag and ITLB-Tag to avoid
generating page faults, for non-permitted physical address during testing. March
compare is implemented by the ldxa instruction for the DTLB-Tag and by the jmpl
instruction for the ITLB-Tag in order to cause a “miss-no-refill” to the D-TLB and I-TLB

respectively.

We have implemented the same set of contemporary March tests that we have
implemented for the LEON3 benchmark for storage faults [11]. March C, March MSS
and March SS are applied to all cache arrays (both for L1 caches and TLBs) to detect
storage faults. Moreover, we have implemented a set of contemporary March tests for
comparison faults [17]. The March test of [89] is applied to DTLB-Tag and ITLB-Tag
array only and detects both storage and comparison faults (March C- is included in this
test), while March CFT [90] is also applied to these arrays but targets comparison faults
only. The implemented SBST routines were stored and fetched from OpenSPARC T1’s

main memory.

We have also applied the multithread optimization to the March tests that target the four
SRAM arrays of both data and instruction L1 caches of a SPARC core. At first, every
March test has been executed by a single thread of the SPARC core and the
effectiveness of the test has been evaluated in terms of test code size and test
execution time. Afterwards, we elaborated the cache architecture and design (based on
the designer's manual) for optimizing the test execution time by splitting every
implemented March test to smaller clusters (based on sub-bank cache organization)
and assign each cluster to a processor thread based on the optimization methodology
that was described in Section 4.5. The DL1-Data, DL1-Tag and IL1-Tag cache arrays
are organized in two sub-banks and the test routines were split into two threads. The
IL1-Data array consists of four sub-banks and therefore the test routine was split to four

threads, respectively.

The statistics for both the L1 caches and TLBs are shown in Tables 12-15. The test
codes that target the L1 Data cache arrays and the D-TLB arrays have been unified to
further optimize the test execution time whereas the test codes that target the L1

instruction cache arrays and the I-TLB arrays have been executed separately. The

Georgios A. Theodorou 137

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

complexity of the March tests are expressed by their test lengths (n: total number of bits
of the array, L: number of bits of TLB tag line). Note that the test routines are very
effective in terms of test code size and test time due to the utilization of the DCA

instructions.

When the multithreaded optimization is applied, the test execution time speedup is
about 1.7 when executed in two threads (D-Tag, D-Data & I-Tag) and about 3.7 when
executed in four threads (I-Data only). The thread level parallelism of March tests has a
negative impact on test code size because the code has to be partially duplicated or

even quadruplicated to be executed by different threads.

Table 12: OpenSPARC T1 data L1 cache: SBST routines statistics

DL1-Tag & DL1-Data
1 thread 2 threads
Comple Tgst Test Time | Testsize | Test Time Speedup
Xity size (cycles) (bytes) (cycles)
(n) | (bytes)
March C- 10n 960 213,164 1,512 124,588 1.71
March U 13n 972 271,844 1,656 155,548 1.75
March MSS 18n 1,216 354,424 2,012 201,432 1.76
March SS 22n 1,344 387,932 2,264 222,976 1.74

Table 13: OpenSPARC T1 instruction L1 cache (IL1-Tag): SBST routines statistics

IL1-Tag
1 thread 2 threads
Comple Tgst Test Time | Testsize Test Time Speedup
xity size (cycles) (bytes) (cycles)
(n) (bytes)
March C- 10n 1,016 | 1,883,524 1,772 1,173,524 1.60
March U 13n 1,028 | 2,224,052 1,864 1,378,904 1.61
March MSS 18n 1,256 | 2,869,900 2,192 1,638,896 1.75
March SS 22n 1,536 | 3,335,784 2,472 1,924,392 1.73

Georgios A. Theodorou 138

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 14: OpenSPARC T1 instruction L1 cache (IL1-Data): SBST routines statistics

IL1-Data
1 thread 4 threads
Comple Tgst Test Time | Testsize Test Time Speedup
Xity size (cycles) (bytes) (cycles)
(n) | (bytes)
March C- 10n 1,392 | 3,065,184 4,140 817,696 3.75
March U 13n 1,508 | 3,633,048 4,764 973,928 3.73
March MSS 18n 2,048 | 5,067,132 6,700 1,358,012 3.73
March SS 22n 2,560 | 6,468,283 8,748 1,746,432 3.70
Table 15: OpenSPARC T1 TLBs: SBST routines statistics
DTLB ITLB
Comple Test Test
March test Xity | Test size es Test size es
() (bytes) Duration (bytes) Duration
(cycles) (cycles)
March C- 10n 424 26,412 768 49,784
March MSS 18n 520 33,972 956 66,948
March SS 22n 684 49,240 1,050 85,476
March of [89]0 14n+2L 712 42,984 1,160 60,164
March CFT [90] 5n+2L 556 22,764 636 36,608

Finally, we evaluated the test effectiveness of the SBST routines with the in-house
developed extended version of RAMSES fault simulator. The achieved fault coverage is
complete (100%) for all the storage faults that every March test guarantees for all four
L1 cache arrays (DL1-Data, DL1-Tag, IL1-Data and IL1-Tag) and all four TLB arrays
(DTLB-Data, DTLB-Tag, ITLB-Data and ITLB-Tag) when debug-diagnostic instructions
are exploited. For CAM comparison faults?, the fault coverage is slightly lowered to 91-

92% for both DTLB-Tag and ITLB-Tag arrays due to the lack of a debug-diagnostic

2 Comparison Faults: Stuck-Match (SMF), Stuck-MisMatch (SMMF), Conditional-Match (CMF), Partially-
Match (PMF), Equivalence-MisMatch (EMMF), Inequivalence-Match (IMF), Cross-Match (XMF), Cross-
Mismatch (XMMF)

Georgios A. Theodorou 139

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

compare instruction and the utilization of the custom trap handler that addresses

limitations in accessing the control bits.

5.4 Performance overhead evaluation

In this section, we present the evaluation framework that was utilized to estimate the
performance overhead of the proposed SBST routines. We have implemented several
on-line periodic testing scenarios and we will present detailed statistics of the
performance overhead introduced in a typical workload under these test scenarios.

We have utilized a SunFire T2000 server running a set of multithreaded programs -the
PARSEC benchmark suite- over Solaris 10 to evaluate the performance overhead of the
deployed SBST routines. Our server is powered by a quad-core UltraSPARC T1
processor. OpenSPARC T1 processor is the free version of UltraSPARC T1 that is
utilized in SunFire T2000 servers. Hence, the SBST routines that were developed
above for OpenSPARC T1 processor can be directly compiled to our server to evaluate

their performance overhead.

We have selected the optimized 2-thread March C- SBST routine that targets the data
L1 cache (both DL1-Tag and DL1-Data) to be utilized as our self-test routine in the
evaluation framework. The statistics of this test routine are shown in the 1% line of Table
12 and its test execution time has been measured about 1.2sec in our system. Any
other SBST routine (or a set of March tests) could have been selected. Since we do not
have access on the hypervisor level on the UltraSPARC T1 processor of a native
system, we have slightly altered the SBST test routines in order to comply with Solaris

OS limitations on executing hyper privileged instructions.

The modified SBST routines have the same memory footprint and test execution time
with the actual one that was presented in the previous subsection, thus the modified
self-test routine is sufficient for studying the performance impact of the proposed on-line

self-tests.

Here after, we will utilize the terms of Test Period (TP) and Test Latency (TL) as

described below:

e Test period (TP) and is the amount of time from the beginning of a self-test on a

core to the beginning of the next self-test on the same core.

e Test latency (TL) is the duration of an on-line self-test.

Georgios A. Theodorou 140

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

We have applied several on-line testing scenarios with a fixed TL (1.2sec) and several
short TPs (< 1min) that are suitable for detecting early-life failures on two different
framework configurations, a lcore/4thread setup and a 4core/l6thread setup as
described below in detalil.

e lcore/4dthreads setup, TL=1.2sec, TP=2, 15 and 60 sec

Firstly, Solaris capability of creating virtual processor sets has been exploited to isolate
a single SPARC core from OpenSPARC T1 and both PARSEC workload applications
and SBST routine have been set -by utilizing Light Weight Process (LWP) binding- to be
executed in this SPARC core.

Note that we have selected to isolate an idle core that does not execute any other OS
process in order to evaluate the real performance overhead due to the SBST routine’s
periodic execution only. The PARSEC suite has been configured to be executed by four
threads (the maximum number of threads in the core). These four threads share the
same L1 cache. Hence, both workload and March test application access the same
cache SRAM arrays. Afterwards, several TPs have been selected to represent different
test scenarios. For example a demanding testing scenario may require intensive test
period (e.g. TP=2sec) while a more relaxed test scenario may require less intensive test

periods (e.g. TP=60sec).
e A4cores/l6threads setup, TL=1.2sec, TP=10, 30 and 60 sec

In this configuration we have utilized all four available SPARC cores of our server.
Hence, apart from the PARSEC applications and the periodic execution of the SBST
routine, the OS processes were also executed in the background. The PARSEC suite
has been configured to be executed by all the available sixteen threads of our system
(four threads per SPARC core). A script has been composed to call the SBST routine
for every SPARC core in a round-robin way in every TP. Moreover, in each SBST
routine execution, the script forms a virtual processor set of the 4 threads that belong to
the core under test to ensure that the SBST routine will be executed only by the
selected core under test. This is a critical requirement to guarantee the test quality by
preventing the test patterns to be stored in L1 cache of other cores, apart from the core
under test. Several TPs have been selected to represent different test scenarios, in a
similar way that was presented for the 1core/4threads setup. The selected TPs were
longer in these case studies due to the need of executing the same SBST routine four
times (one for the L1 cache of each SPARC core).

Georgios A. Theodorou 141

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The system in both configuration setups was configured to execute all the 13
multithreaded programs of the PARSEC suite. All PARSEC programs have been
compiled to utilize the pthreads parallelization model and the native dataset was utilized
in all simulations. After estimating the workload execution time in both configuration
setups without test, the PARSEC programs were executed several times while the
SBST routine was scheduled to be executed in the background at a fixed TP in every

test scenario for both configurations.

In Figure 38 and Figure 39 we present the performance overhead of the PARSEC
applications caused by the periodic execution of the SBST March test in all the periodic
test scenarios that have been examined for both framework setups. Note that the
performance overhead for each PARSEC application differs significantly. Some of the
applications have long execution time (e.g. blackscholes and x264) with large input
datasets and their performance was severely degraded by the SBST periodic execution,
while other applications have shorter execution time (e.g. fregqmine and dedup) with

smaller data sets and their performance was slightly degraded.

1core/4threads
B TP=60sec MW TP=15sec TP=2sec

20%
°
©
@ 15%
2 10%
°
g 5% = _I i
g 0% “.LV‘.I_V‘-I_V‘.I_V‘-I_V_-I T T —™ |L-I_V_J_V—V_J_\
o 5 . . S S S S S AN < @
‘5 O\Q’ ,é’bo Q,")\é\ Q}&e 6'\\0 {b(' ;000 @’Z‘}' A\Q ~O’(° (\Q,’b Q’E}OQ oa)@/ &/b‘:’o
o & & S 9 S ¥ Y &

G \006 @ @& & o 6"’(\ I &8
‘O\'b) \\0\ a)ée

PARSEC multithreaded applications

Figure 38: Performance overhead for PARSEC workload (1core/dthreads)

Georgios A. Theodorou 142

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

4cores/16threads

B TP=60sec m TP=30sec Tp=10sec

20%
15%
10% -
5% -
0% -

Performance Overhead

PARSEC multithreaded applications

Figure 39: Performance overhead for PARSEC workload (4cores/16threads)

Average Performance Overhead

=@=71core/4threads =ll=4cores/16threads

- 12,00% - 10,40%

3 = 10,00% -

g 5 . 8,95%

gt 8,00% - 5,75%

o S 6,00% -

2 5

S £ 4,00% -

5 & 2,00% - 0,60%

K 0,00% ¢ : : :
TP=60 sec TP=30/15sec TP=10/2sec

Test Period

Figure 40: SBST routines performance overhead

The geometric mean of all the PARSEC applications in every test scenario is shown in
the last column (average) of both setup configurations and are also presented in Figure

40 for both configuration setups.

In both configuration setups, the performance overhead increases in smaller test
periods as the self-test routine is executed more frequently during the PARSEC suite

execution. Moreover, the performance overhead for the quad core setup is higher than

Georgios A. Theodorou 143

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

the one that occurs in the single core setup in all test scenarios because of the need to
test every L1 cache (every core has a dedicated L1 cache) for every core in every test
period. However, based on the experimental results, the performance overhead even in
the more demanding test scenario of a quad core processor does not exceed the 11%
of the performance of the system without test. Considering that this performance
penalty refers to a demanding on-line periodic self-test scenario that applies March C-
algorithm to both D-Tag and D-Data SRAM arrays for all four L1 caches (each data
cache has a size of 8KB in a SPARC core) of the quad core system every 10sec, such
performance degradation can be affordable when a high frequency test scenario is
required. In contrary, in a relaxed test scenario (e.g. not more than a test per minute),
the performance overhead is lower. For example, when the SBST routine is periodically
executed every minute in a single core system (e.g. a single core system can be an
embedded processor), the performance overhead is less than 1%, thus negligible.
Thus, the proposed SBST methodology can periodically apply March tests to L1 caches
effectively during the system’s lifetime with acceptable performance overhead in

workload execution.

Georgios A. Theodorou 144

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

6. COMPARISONS

In this section, we compare our methodology that exploits DCA instructions to
implement SBST March tests against previous approaches that provide pseudo-
instruction sequences ([72] and [75]) and experimental results of the March operations
([73], [75] and [79]) for cache arrays only. In order to directly compare the proposed
methodology that exploits debug-diagnostic instructions with other SBST approaches in
the literature we will utilize LEON3 processor as a benchmark for the L1 cache

comparisons that has been also utilized in previous SBST approaches.

In [72] and [75] four pseudo-instructions (a cache disable, a main memory write, a
cache enable and a load miss and refill) were used to apply the March write operations
for the tag arrays due to the need of setting up data inconsistency. A similar pseudo-
instruction sequence is utilized for March read operation. In the proposed methodology,
March writes and reads can be performed in a low cost way with a single DCA
instruction. Moreover in [72] and [73], pairs of instructions that complement partially in
some bits are utilized to overcome the DB composition challenge of IL1-Data array. The
entire algorithm should be repeated multiple times to cover all instruction bits. In [79], a
more effective approach was utilized that fills the cache lines with instructions with
complementary bits but also the whole test has to be repeated at least two times. Both
solutions have a negative effect on test time. The utilization of DCA instructions
overcomes this difficulty. Any DB can be utilized as the cache will be invalidated at the
end of the test.

Finally, in [72] and [79], two different solutions were proposed to implement a
descending address order in L1 instruction cache. In [72], the test execution is
performed in processor’'s trace mode, while in [79] a reordering function modifies the
access history of the cache lines. Indeed, both solutions overcome the abovementioned
difficulty but they excessively increase the test time. The proposed methodology
overcomes the challenge to implement a March descending address order in both L1
instruction cache and TLBs, by controlling the WS, SS and LWS fields of DCA

instructions to setup a cache access descending address order.

The same reasoning is also verified by comparing the statistical results with the different
SBST approaches when the proposed methodology is applied to the L1 caches of
LEONS3 processor. LEON3 is a publicly available processor designed by Aeroflex
Gaisler, which implements a SPARC V8 compliant architecture, supports reconfigurable

L1 data and instruction cache and includes DCA instruction in its ISA. For the sake of

Georgios A. Theodorou 145

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

comparisons, we have configured the processor to include 2KB 2-way set associative
data and instruction L1 caches in order to compare the proposed methodology with
other SBST approaches in the literature. The SPARC V8 ISA includes privileged
store/load instructions, denoted as alternate load/store (lda/sta instructions). These
instructions can directly access cache arrays for diagnostic purposes by specifying
alternate space identifiers (ASIs) that are defined by the SPARC architecture for both
write and read access at supervisor level. These instructions have been used as DCA
instructions to implement March write/read operations in a similar way that we have

used stxa/ldxa instructions in case of OpenSPARC T1.

Table 16: Statistics comparison for D-Cache (March C-)

DL1-Tag DL1-Data
Processor Array Test size | Test Time Array | Testsize | TestTime
Size (bytes) (cycles) Size (bytes) (cycles)
ARM-comp.
64x21 2,560 139,219 2K 686 187,453
[75]
LEONS3
2x 32x22 384 3,123 2K 384 23,729
(Proposed)
Improvement 85% 98% 88% 87%

In Table 16, two benchmarks with similar ISA for a given March test (March C-) are
compared. The experimental results in [75] for the data cache of an ARM-compatible
processor are compared with our experimental results for a same size (2K) data cache
of the LEON3 processor. Even though a direct numerical comparison is not feasible
between different benchmarks, the methodology favors to the one that is presented in
[75] since the test time is improved by 92.5% on average (for both arrays) for the same
size data caches and the same March test. Finally, the test code size was improved by
86.5%.

Georgios A. Theodorou 146

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 17: Statistics comparison for I-Cache (March SS)

IL1-Tag IL1-Data
Processor Array Test size | Test Time Array | Test size Test Time
Size (bytes) (cycles) Size (bytes) (cycles)

LEONS3

2x 32x22 3,608 413,243 2K 3,944 | 1,922,804
[79]
LEON3

2Xx 32x22 632 36,007 2K 632 288,073
(Proposed)
Improvement 82% 91% 84% 85%

In Table 17, a direct comparison on the same benchmark between the methodology of
[79] and our methodology is presented. Both methodologies apply the same March test
(March SS) to the same size instruction cache of LEON3 processor. Note that the
proposed methodology significantly improves both test code size and test time of March
SS application to LEON3'’s L1 instruction cache. The total test code size for both arrays
(IL1-Tag & IL1-Data) is improved by 83% on average, while the total test time is
improved by 88% on average (for both arrays). This improvement is achieved by

exploiting DCA instructions to effectively implement the March tests.

SBST approaches for applying March tests to TLB arrays have not been presented in
the literature. Therefore, in order to demonstrate the effectiveness of the proposed
SBST methodology to TLBs when DCAs are exploited, we have also implemented the
same March tests for OpenSPARC T1 by utilizing the miss & refill TLB mechanism.
March write, read and compare operations have been mapped to Idx instructions for the
D-TLB arrays whereas the same instructions have been mapped to jmpl instructions for
the I-TLB arrays. When the native TLB miss & refill mechanism is utilized, either MMU
demap operation or an access reordering function (RO) should be also utilized to
overcome the testability challenges. For the sake of comparison of all the available
implementation choices that are presented in the methodology, we have chosen to
exploit the OpenSPARC’s T1 demap operation along with the miss & refill mechanism
for March writes for the D-TLB arrays and the RO function [79] along with the miss &
refill mechanism for March writes for I-TLB arrays. The comparison results for all the
TLB arrays of the two SBST approaches (with and without the utilization of DCA
instructions) are presented in Table 18 and Table 19. It is clear that when DCA

instructions are exploited the test time is significantly improved. The improvement

Georgios A. Theodorou 147

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

compared to the approach that utilizes miss & refill TLB mechanism is 37% for the D-
TLB and 91% for the I-TLB. Note that in case of I-TLB the utilization of RO function for
March write implementation instead of the demap mechanism affects seriously the test
time. Finally, test code size was improved by 3% (on average for both arrays) for the D-
TLB and by 35% (on average for both arrays) for I-TLB.

Table 18: Statistics comparison for D-TLB (March SS)

DTLB-Tag DTLB-Data
Processor Array | Test size | Test Time Array | Testsize | TestTime
Size (bytes) (cycles) Size (bytes) (cycles)
OpenSPARC
(Miss&Refill 64x59 704 78,208 | 64x43 704 78,208
+Demap)
OpenSPARC
64x59 684 49,240 | 64x43 684 49,240
(DCA Instr.)
Improvement 3% 37% 3% 37%
Table 19: Statistics comparison for I-TLB (March SS)
ITLB-Tag ITLB-Data
Processor Array | Testsize | Test Time Array | Testsize | TestTime
Size (bytes) (cycles) Size (bytes) (cycles)
OpenSPARC
(Miss&Refill 64x59 808 469,400 | 64x43 808 469,400

+RO function)

OpenSPARC

64x59 590 51,532 | 64x43 460 33,944
(DCA Instr.)
Improvement 27% 89% 43% 93%

Georgios A. Theodorou 148

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

7. CONCLUSIONS & FUTURE RESEARCH

Modern processors are dominated by on-chip caches which occupy up to 90% of the
processor silicon area and are organized in multiple levels. Typically, "lower-level"
caches have smaller size, smaller blocks, and smaller associativity, while "higher-level"
caches have larger size, larger blocks and higher associativity. Most of the modern
processors have at least three low level small caches: an instruction L1 cache to speed
up instruction fetch (L1 I-Cache), a data L1 cache to speed up data loads and stores (L1
D-Cache) and a unified Translation Lookaside Buffer (TLB) that is used as a page table
cache to speed up virtual-to-physical address translation both for instructions and data.
Although L1 caches and TLBs are small caches, they are extremely critical for the
system performance because the system pays significant large penalties when L1
cache or TLB misses occur. Hardware defects in these low level cache arrays during
normal operation may cause either erroneous cache misses that degrade the system’s
performance, or unpredicted system behaviour. Thus, high quality on-line tests that

target small caches are essential for modern processors.

Despite the wide use of MBIST in on-chip memories, small memory arrays with typical
sizes in the order of Kbytes such as L1 caches, TLBs, register files, FIFOs etc. may not
justify the cost of adding programmable MBIST schemes because of its impact on chip
area and performance. SBST has increased flexibility to apply March tests and can
successfully deal with the challenges of on-line testing of such small memory arrays that
lack MBIST hardware.

The contribution of this thesis is to introduce an SBST program development
methodology for low cost on-line fault detection of processor small caches (L1 caches
and TLBs) based on state-of-the-art memory March test algorithms. The methodology
overcomes the testability challenges that are due to the implicit access of L1 cache and
TLB arrays and realizes March write, read and compare (in TLB tag arrays only)
operations by leveraging existing special purpose instructions that modern ISAs
implement for debug-diagnostic purposes. Moreover, it exploits performance monitoring
hardware and the processor’s trap handler mechanism. Finally, a multithreaded
optimization of the proposed methodology, that elaborates the low level multiple sub-
bank organization of modern cache designs to exploit the thread level parallelism of
chip multithreaded, multicore architectures in order to speedup SBST March test
execution while preserving the March test quality, was also presented.

Georgios A. Theodorou 149

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

The proposed methodology and its multithreaded optimization were applied to the L1
caches and TLBs of three processor benchmarks: a) OpenRISC 1200, b) LEON3 and c)
OpenSPARC T1 to demonstrate the effectiveness of the proposed methodology, its
high adaptability and the significant improvements in terms of SBST March test

execution time when applied.

Experimental results on the L1 cache arrays of LEON3 and the TLB arrays of
OpenSPARC T1 show a significant improvement in terms of test time (86% for
instruction L1 cache, 87% for the data L1 cache, about 40% for D-TLB and about 82%
for I-TLB) and test code size (83% for instruction L1 cache, 86% for the data L1 cache,
3% for D-TLB and 35% for I-TLB) when the methodology is applied to the same
benchmarks (LEON3 for L1 caches and OpenSPARC T1 for TLBs) and such DCA
instructions are exploited compared to SBST solutions that don’t utilize these types of
instructions. Moreover, experimental results show a speedup of more than 1.7 (for two
threads) and more than 3.7 (for four threads) in test time when the proposed

multithreaded optimization is applied for the L1 caches of OpenSPARC T1.

Finally, a test evaluation framework was implemented in this thesis for several on-line
periodic test scenarios in order to evaluate the system performance overhead of the
proposed methodology. Simulation results show a performance overhead of less than
11% in strict periodic test scenarios and less than 6% in regular periodic test scenarios

(e.g. testing all core L1 caches every one minute) for multicore architectures.

Possible future research topics that have not been covered by this thesis and can

further extend the proposed methodology are listed below:

e Extending the proposed methodology to apply March tests to L2 caches: L2 caches
are large memory arrays with sizes in the order of Mbytes. Therefore, SBST March
test implementation for such large arrays can be challenging since the test
execution time is significantly larger. Moreover, L2 caches are usually organized as
set associative caches with pseudorandom replacement police that makes SBST

March test implementation more challenging.

e Extending the proposed methodology to apply March tests to embedded cache
arrays with low power constraints: Energy requirements were only recently added to
the list of parameters defining the cost of SBST routines, together with more
traditional metrics like test program size and test execution time, especially for on-
line testing of microprocessors integrated in mobile devices, in order to maximize
battery life and to avoid long term reliability problems. Microprocessors in such

Georgios A. Theodorou 150

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

mobile devices also include embedded cache arrays (at least small size L1 caches
are present in all embedded processors). Therefore, the optimization of the
implemented software routines to apply low power March tests to embedded cache
arrays will further extend the importance of the proposed SBST methodology.

e Extending the proposed methodology to apply March tests to other SoC embedded
memories (Scratchpad memories e.t.c): SoC systems are dominated by a large
number of small and big embedded memories that are utilized for several purposes
in the chip. Extending the proposed methodology to apply SBST March test to these
off-processor embedded memories is challenging since these memories have
various levels of visibility to the processor's ISA based on their functionality and

their position in the interconnecting network of the SoC system.

Georgios A. Theodorou 151

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Georgios A. Theodorou 152

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

ACRONYMS
AC Alternating Current
ASIC Application-Specific Integrated Circuit
ATPG Automatic Test Pattern Generation
BCM Bus Connected Memories
BIST Built-In Self-Test
CAM Content Addressable Memory
CMOS Complementary Metal Oxide Semiconductor
CuUT Circuit Under Test
DC Direct Current
DCA Direct Cache Access
DFT Design For Testability
ECC Error Correction Code
FSM Finite State Machine
IP Intellectual Property
ISA Instruction Set Architecture
ITRS International Technology Roadmap for Semiconductors
LFSR Linear Feedback Shift Register
LRU Least Recently Used
MBIST Memory Built-In Self-Test
MIPS Microprocessor without Interlocked Pipeline Stages
Pl Primary Input
PO Primary Output
RAM Random Access Memory
RIC Resistance-Inductance-Capacitance
RISC Reduced Instruction Set Computers
RTL Register Transfer Level
RTPG Random Test Pattern Generation
SBST Software-Based Self-Test
SOC System On-Chip
SRAM Static Random Access Memory
TLB Translation Lookaside Buffer
TPG Test Pattern Generation
VLSI Very Large Scale Integration Systems

Georgios A. Theodorou

153

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Georgios A. Theodorou 154

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

APPENDIX | = FAULT COVERAGE STATISTICS

In order to evaluate the effectiveness of the self-test routines we have used RAMSES
memory fault simulator [88]. RAMSES consists of a simulation engine and numerous
fault descriptors. Fault coverage is determined by evaluating the fault descriptors for
predefined conditions. When coupling faults are concerned, the rest of the array cells
except from the aggressor cell are possible victim cells. We have extended RAMSES to
include fault descriptors on the basis of FPs [11] to include a) all the unlinked static
storage faults [11] and b) CAM comparison faults [17] and we have implemented a test
framework to bridge cache traces of Mentor Graphics’ ModelSim and Synopsys VCS
simulator with RAMSES to fault grade the cache arrays. RAMSES fault simulator
exhaustively injected faults in every cell for all unlinked static faults. We have fault
graded the embedded cache arrays (both data and tag array) for all L1 caches that are
included in our three benchmarks for all static unlinked single-cell storage faults and 2-
cell coupling storage faults. The considered functional fault models for the considered
storage faults are listed below, and the corresponding fault primitives that show the

faults behavior are described in Chapter 2.

Single Cell Faults
e State Faults (SF)
e Transition Faults (TF)
o Write Destructive Faults (WDF)
o Read Destructive Faults (RDF)
e Deceptive Read Destructive Faults (DRDF)
¢ Incorrect Read Faults (IRF)

Cell Coupling Faults (2-cell)
e Coupling State Faults (CFst),
e Coupling Disturb Faults (CFds)
e Coupling Transition Faults (CFtr)
e Coupling Write Destructive Faults (CFwd)
e Coupling Read Destructive Faults (CFrd)
e Coupling Deceptive Read Destructive Faults (CFdr)

e Coupling Incorrect Read Faults (CFir)

Georgios A. Theodorou 155

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

For OpenSPARC’s TLBs, that include CAM memories in tag arrays we have fault
graded the tag arrays with RAMSES fault simulator both for the abovementioned

storage faults and the comparison faults that are listed below:
Comparison faults
e Stuck-Match Faults (SMF)
e Stuck-MisMatch Faults (SMMF)
e Conditional-Match Faults (CMF)
e Partially-Match Faults (PMF)
¢ Equivalence-MisMatch Faults (EMMF)
¢ Inequivalence-Match Faults (IMF)
e Cross-Match Faults (XMF)
e Cross-Mismatch Faults (XMMF)

The achieved fault coverage for every SBST routine that was implemented by the
proposed methodology that exploits DCA instructions for every embedded cache arrays

that has been fault graded is listed below in Tables 20-53.

LEON3 - L1 Caches

Table 20: LEON3 DL1-Tag SRAM array, Size: 64x29 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% i 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 21: LEON3 DL1-Tag SRAM array, Size: 64x29 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- ; 100% | - | 100% i 100% | -
March U] 100% | - | 100% i 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 156

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 22: LEON3 DL1-Data SRAM array, Size: 512x32 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% ; 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 23: LEON3 DL1-Data SRAM array, Size: 512x32 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- i 100% | - | 100%] 100% | -
March U ; 100% | - | 100%] 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 24: LEON3 IL1-Tag SRAM array, Size: 64x29 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF AF
March C- 100% | 100% - 100% - 100% | 100%
March U 100% | 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 25: LEON3 IL1-Tag SRAM array, Size: 64x29 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFir | CFwd | CFrd | CFdrd | CFir
March C- i 100% | - | 100% @ - 100% | -
March U i 100% | - | 100% | - 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 157

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 26: LEON3 IL1-Data SRAM array, Size: 512x32 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% i 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 27: LEON3 IL1-Data SRAM array, Size: 512x32 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- ; 100% | - 100% i 100% | -
March U - 100% - 100% - 100% -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

OpenRISC 1200 - L1 Caches

Table 28: OpenRISC 1200 DL1-Tag SRAM array, Size: 256x20, 1-cell single faults

Fault Coverage

March test

SA TF WDF RDF DRDF IRF AF
March C- 100% 100% - 100% - 100% | 100%
March U 100% 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 29: OpenRISC 1200 DL1-Tag SRAM array, Size: 256x20, 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- ; 100% | - | 100% i 100% | -
March U ; 100% | - | 100% i 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 158

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 30: OpenRISC 1200 DL1-Data SRAM array, Size: 1024x32, 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% ; 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 31: OpenRISC 1200 DL1-Data SRAM array, Size: 1024x32, 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- i 100% | - | 100%] 100% | -
March U ; 100% | - | 100%] 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 32: OpenRISC 1200 IL1-Tag SRAM array, Size: 256x20, 1-cell single faults

Fault Coverage

March test

SA TF WDF RDF DRDF IRF AF
March C- 100% 100% - 100% - 100% 99%
March U 100% 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 33: OpenRISC 1200 IL1-Tag SRAM array, Size: 256x20, 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C-] 99% ; 99%] 99% i
March U] 99% ; 99%] 99% i

March MSS 99% 99% 99% 99% 99% 99% 99%

March SS 99% 99% 99% 99% 99% 99% 99%

Georgios A. Theodorou 159

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 34: OpenRISC 1200 IL1-Data SRAM array, Size: 1024x32, 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% i 100% | 99%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 35: OpenRISC 1200 IL1-Data SRAM array, Size: 1024x32, 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- - 99% - 99% - 99% -
March U - 99% - 99% - 99% -

March MSS 99% 99% 99% 99% 99% 99% 99%

March SS 99% 99% 99% 99% 99% 99% 99%

OpenSPARC T1 - L1 Caches

Table 36: OpenSPARC T1 DL1-Tag SRAM array, Size: 64x132 (x2 banks), 1-cell single faults

Fault Coverage

March test

SA TF WDF RDF DRDF IRF AF
March C- 100% 100% - 100% - 100% | 100%
March U 100% 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 37: OpenSPARC T1 DL1-Tag SRAM array, Size: 64x132 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CEst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C-] 100% | - | 100% | - 100% | -
March U] 100% | - | 100% | - 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 160

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 38: OpenSPARC T1 DL1-Data SRAM array, Size: 128x288 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% ; 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 39: OpenSPARC T1 DL1-Data SRAM array, Size: 128x288 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- i 100% | - | 100%] 100% | -
March U ; 100% | - | 100%] 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 40: OpenSPARC T1 IL1-Tag SRAM array, Size: 64x132 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF AF
March C- 100% | 100% - 100% - 100% | 100%
March U 100% | 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 41: OpenSPARC T1 IL1-Tag SRAM array, Size: 64x132 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFir | CFwd | CFrd | CFdrd | CFir
March C- i 100% | - | 100% @ - 100% | -
March U i 100% | - | 100% | - 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 161

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 42: OpenSPARC T1 IL1-Data SRAM array, Size: 128x272 (x4 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100% i 100% | 100%
March U 100% | 100% | - | 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 43: OpenSPARC T1 DL1-Data SRAM array, Size: 128x272 (x4 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- ; 100% | - 100% i 100% | -
March U - 100% - 100% - 100% -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

OpenSPARC T1 -TLBs

Table 44: OpenSPARC T1 DTLB-Tag CAM array, Size: 64x132 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF AE
March C- 100% | 100% ; 100% ; 100% | 100%
March U 100% | 100% ; 100% ; 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 45: OpenSPARC T1 DTLB —Tag CAM array, Size: 64x132 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C- ; 100% | - 100% ; 100% | -
March U ; 100% | - 100% ; 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 162

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 46: OpenSPARC T1 DTLB -Tag CAM array, Size: 64x132 (x2 banks), Comparison faults

March test Fault Coverage

SMF SMMF | CMF PMF | EMMF IMF XMF | XMMF
March of [89]0 92% 93% 92% 91% 91% 92% 88% 92%
March CFT [90] 92% 93% 92% 91% 91% 92% 88% 92%

Table 47: OpenSPARC T1 DTLB-Data SRAM array, Size: 128x288 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF | AF
March C- 100% | 100% | - | 100%] 100% | 100%
March U 100% | 100% | - | 100%] 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 48: OpenSPARC T1 DTLB-Data SRAM array, Size: 128x288 (x2 banks),
2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd CFrd | CFdrd | CFir
March C- - 100% - 100% - 100% -
March U - 100% - 100% - 100% -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 49: OpenSPARC T1 ITLB-Tag CAM array, Size: 64x132 (x2 banks), 1-cell single faults

Fault Coverage

March test SA TF | WDF | RDF | DRDF | IRF AF
March C- 100% | 100% - 100% - 100% | 100%
March U 100% | 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 163

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Table 50: OpenSPARC T1 ITLB —Tag CAM array, Size: 64x132 (x2 banks), 2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C-] 100% | - | 100% i 100% | -
March U] 100% | - | 100% i 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 51: OpenSPARC T1 ITLB -Tag CAM array, Size: 64x132 (x2 banks), Comparison faults

Fault Coverage

March test SMF | SMMF | CMF [PMF | EMMF | IMF | XMF [XMMF

March of [89][] 92% 93% 92% 91% 91% 92% 88% 92%

March CFT [90] 92% 93% 92% 91% 91% 92% 88% 92%

Table 52: OpenSPARC T1 ITLB-Data SRAM array, Size: 128x272 (x4 banks), 1-cell single faults

Fault Coverage

March test

SA TF WDF RDF DRDF IRF AF
March C- 100% 100% - 100% - 100% | 100%
March U 100% 100% - 100% - 100% | 100%

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Table 53: OpenSPARC T1 ITLB-Data SRAM array, Size: 128x272 (x4 banks),

2-cell coupling faults

Fault Coverage

March test CFst | CFds | CFtr | CFwd | CFrd | CFdrd | CFir
March C-] 100% | - | 100% i 100% | -
March U] 100% | - | 100% i 100% | -

March MSS 100% 100% | 100% | 100% | 100% | 100% | 100%

March SS 100% 100% | 100% | 100% | 100% | 100% | 100%

Georgios A. Theodorou 164

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

APPENDIX Il = SBST ROUTINES CODE SNIPPETS

LEONS3 — IL1-Data March SS

#include "testmod.h"
#include "leon3.h"
marchtest()
{
report_subtest(MARCH_TEST); //lcache data - MARCH MSS
/llcache size 2-way set assosiative (2*2kbytes)
/ISRAM size: 512 x 32 x 2(ways)

asm(

" text \n"
" align4 \n"
"test: \n"
" nop \n"
" nop \n"

" add %r0,0xfff, %rl \n"
" add %r0,0xfff, %r2 \n"
" add %r0,0xfff, %r3 \n"
" add %r0,0xfff, %r4 \n"

" add %r0,0xfff, %r5 \n" /lway 0 load reg
" add %r0,0xfff, %r6 \n" /lway 1 load reg
" add %r0,0xfff, %r7 \n" /ffinal result - golden model

" Ida [%r0] Ox2, %rl \n" //Disable ICACHE during test
" and %rl,0xfffffffc,%r1 \n"
" sta %rl, [%r0] Ox2 \n"

" set 0x00000000,%r1 \n" /I db
" set Oxffffffff,%r2 \n" // db_inv

" setO, %r3\n" // way O start

" set2048, %r4\n" //way 1 start

" setO, %r5\n" //way O load reg

" setO, %r6 \n" //way 1 load reg

" setO, %r7 \n" /ffinal result - golden model
" set OxfffffBff,%r8 \n" / db_inv

"1: sta %rl, [%r3] Oxd \n" /w0 >
" sta%rl, [%r4]Oxd \n"
" add %r3, 4, %r3 \n"
" add %r4, 4, %r4d \n"

" cmp %r3, 2048 \n"
" bne 1b \n"
" nop \n"
" setO, %r3 \n"

" set 2048, %r4 \n"

"2: Ida [%r3] Oxd, %r5 \n" //rO,rO,wl,wl >
" xor %rl, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" Ida[%r3] Oxd, %r5 \n"
" xor %rl, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" sta %r2, [%r3]0xd \n"
" sta %r2, [%r3]0xd \n"

" Ida [%r4] Oxd, %r6 \n"
" xor %rl, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"

Georgios A. Theodorou 165

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

" lda [%r4] Oxd, %r6 \n"
" xor %rl, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" sta%r2, [%r4]Oxd \n"
" sta%r2, [%r4]Oxd \n"
" add %r3, 4, %r3 \n"
" add %r4, 4, %r4 \n"
" cmp %r3, 2048 \n"
" bne 2b \n"
" nop \n"
" setO, %r3 \n"
" set 2048, %r4 \n"
"3: lda [%r3] Oxd, %r5 \n"
" xor %r2, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" Ida[%r3] Oxd, %r5 \n"
" xor %r2, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" sta%rl, [%r3]0xd \n"
" sta%rl, [%r3]0xd \n"
" Ida [%r4] Oxd, %r6 \n"
" xor %r2, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" lda[%r4] Oxd, %r6 \n"
" xor %r2, %r6, %ré6 \n"
" add %r7, %r6, %r7 \n"
" sta%rl, [%r4]Oxd \n"
" sta%rl, [%r4]Oxd \n"
" add %r3, 4, %r3 \n"
" add %r4, 4, %r4 \n"
" cmp %r3, 2048 \n"
" bne 3b \n"
" nop \n"
" set 2044, %r3

" set 4092, %r4 \n"
"4: lda [%r3] Oxd, %r5 \n"
" xor %rl, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" Ida [%r3] Oxd, %r5 \n"
" xor %rl, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" sta%r2, [%r3]0xd \n"
" sta%r2, [%r3]0xd \n"
" Ida [%r4] Oxd, %r6 \n"
" xor %rl, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" Ida [%r4] Oxd, %r6 \n"
" xor %rl, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" sta %r2, [%r4]Oxd \n"
" sta %r2, [%r4]Oxd \n"
" add %r3, -4, %r3 \n"
" add %r4, -4, %r4 \n"

cmp %r3, -4

/Ir1,r1,w0,w0 >

\n

/IrO,rO,wl,wl <

\n

Georgios A. Theodorou

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

" bne 4b \n"
" nop \n"
" set 2044, %r3 \n"

" set 4092, %r4 \n"

"5: Ida [%r3] Oxd, %r5 \n" //r1,r1,w0O,w0 <
" xor %r2, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" Ida[%r3] Oxd, %r5 \n"
" xor %r2, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" sta%rl, [%r3]Oxd \n"
" sta %rl, [%r3]0xd \n"

" Ida [%r4] Oxd, %r6 \n"
" Xxor %r2, %r6, %ré6 \n"
" add %r7, %r6, %r7 \n"
" Ida [%r4] Oxd, %r6 \n"
" xor %r2, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" sta%rl, [%r4]Oxd \n"
" sta%rl, [%r4] Oxd \n"

" add %r3, -4, %r3 \n"
" add %r4, -4, %r4d \n"

" cmp %r3, -4 \n"
" bne 5b \n"
" nop \n"
" setO, %r3 \n"

" set 2048, %r4 \n"

"6: Ida [%r3] Oxd, %r5 \n" //rO >
" Ida [%r4] Oxd, %r6 \n"
" xor %rl, %r5, %r5 \n"
" add %r7, %r5, %r7 \n"
" xor %rl, %r6, %r6 \n"
" add %r7, %r6, %r7 \n"
" add %r3, 4, %r3 \n"
" add %r4, 4, %r4d \n"

" cmp %r3, 2048 \n"
" bne 6b \n"
" nop \n"

" Ida [%r0] 0x2, %rl \n" //Enable ICACHE after test
" xor %r1,0x3, %rl \n"
" sta %rl, [%r0] 0x2 \n"

" nop \n"
" nop \n"
" nop \n"
" nop \n"
" nop \n"
" nop \n"

return(0);}

Georgios A. Theodorou 167

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

OpenRISC 1200 — DL1-Tag March SS

B R R R T R P B R B T T R
AUTHOR: gthe

FILE: DL1-Tag, Size of Cache 4k, Size of tag 256x20

VERSION: March SS (22n) all static linked faults!!!

B R R B B T R R B B B B T T R R

/* Basic instruction set test */
#include "../support/spr_defs.h"
#include "../support/board.h”

.global _main

.global _buserr_except
.global _dpf_except
.global _ipf_except
.global _Ipint_except
.global _align_except
.global _illegal_except
.global _hpint_except
.global _dtlbmiss_except
.global _itlbmiss_except
.global _range_except
.global _syscall_except
.global _res1_except
.global _trap_except
.global _res2_except

.section .stack
.Space 0x1000
_tmp_stack:

.section .text

_buserr_except:
_dpf_except:
_ipf_except:
_Ipint_except:
_align_except:
_illegal_except:
_hpint_except:
_dtlbmiss_except:
_itlbmiss_except:
_range_except:
_syscall_except:
_resl_except:
_trap_except:
_res2_except:

_main:

B R T R R
#Applying March C- algorithm to 256x21 data cache tag
#

#Steps:

1. Write 0 to all cells

2. From 0 to 255 read 0, read 0, write 0, read 0, write 1
3. From 0 to 255 read 1, read 1, write 1, read 1, write O
4. From 255 to O read 0, read 0, write 0, read 0, write 1
#5. From 255to O read 1, read 1, write 1, read 1, write O
6. Read 0 from all cells

Georgios A. Theodorou 168

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

Write 0 instruction |.mtspr r0,r1,SPR_DCBPR

Write 1 instruction |.mtspr r0,r30,SPR_DCBPR

Read instruction l.addi r5,r1,0x0 sta ports tou tag

Read detection MONO mesw cache hit sthn antistoixi dieythinsi!
HHHH B R

|.add r30,r0,r0
|.add r1,r0,r0

|.movhi r4,0xffff
l.ori r4,r4,0xf000

|.movhi r11,0x0000
l.ori r11,r11,0x81

|.movhi r12,0x0000
l.ori r12,r12,0x01

I.mtspr r0,r11,SPR_PCMR(0)
mats_loop_1:
[.mtspr r0,r1,SPR_DCBPR

l.addi r1,r1,16
I.sfeqi r30,4080
I.onf mats_loop 1
l.addi r30,r30,16

|.add r30,r0,r0
|.add r1,r0,r0

mats_loop_2:

l.nop

l.addi r5,r1,0x7000
I.lwz r5,0(r1)

l.nop

l.addi r5,r1,0x7000
I.lwz r5,0(r1)

I.mtspr rO0,r1,SPR_DCBPR
l.addi r5,r1,0x7000
l.lwz r5,0(r1)

I.mtspr r0,r30,SPR_DCBPR
l.nop

l.addi r1,r1,16
I.sfeqi r30,4080
I.onf mats_loop 2
l.addi r30,r30,16

|.add r30,r0,r0
|.add r1,r0,r0

l.nop

mats_loop_3:

Georgios A. Theodorou 169

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

l.nop

l.addi r5,r1,0x7000
l.add r6,r4,r1

l.lwz r5,0(r6)

l.nop

l.addi r5,r1,0x7000
l.add r6,r4,r1

l.lwz r5,0(r6)

[.mtspr r0,r30,SPR_DCBPR

l.addi r5,r1,0x7000
l.add r6,r4,r1
[.lwz r5,0(r6)

[.mtspr r0,r1,SPR_DCBPR
l.nop

l.addi r1,r1,16
l.sfeqi r30,4080
I.bnf mats_loop_ 3
l.addi r30,r30,16

l.addi r30,r0,4080
l.addi r1,r0,4080

mats_loop_4:

l.nop
l.addi r5,r1,0x7000
[.lwz r5,0(r1)

l.nop
l.addi r5,r1,0x7000
[.lwz r5,0(r1)

[.mtspr r0,r1,SPR_DCBPR
l.addi r5,r1,0x7000
l.lwz r5,0(r1)

I.mtspr r0,r30,SPR_DCBPR
l.nop

l.addi r1,r1,-16
l.sfeqi r30,0

I.bnf mats_loop_4
l.addi r30,r30,-16

l.addi r30,r0,4080
l.addi r1,r0,4080

mats_loop_5:

l.nop

l.addi r5,r1,0x7000
l.add r6,r4,r1

[.lwz r5,0(r6)

l.nop

l.addi r5,r1,0x7000
l.add r6,r4,r1

l.lwz r5,0(r6)

Georgios A. Theodorou 170

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

I.mtspr r0,r30,SPR_DCBPR

l.addi r5,r1,0x7000
l.add r6,r4,r1
I.lwz r5,0(r6)

|.mtspr r0,r1,SPR_DCBPR
l.nop

l.addi r1,r1,-16
I.sfeqi r30,0

I.bnf mats_loop_5
l.addi r30,r30,-16

|.add r30,r0,r0
l.add r1,r0,rO

mats_loop_6:

l.nop
l.addi r5,r1,0x7000
l.lwz r5,0(r1)

l.addi r1,r1,16
I.sfeqi r30,4080
I.bonf mats_loop_6
l.addi r30,r30,16

|.add r30,r0,r0
l.add r1,r0,rO

I.mtspr r0,r12,SPR_PCMR(0)

OpenSPARC T1 - IL1-Tag March SS

SECTION .SBST Text_ VA=SBST_TEXT_ADDR_VA
attr_text {
Name = .SBST,
VA= SBST_TEXT_ADDR_VA,
hypervisor

}

text
.global sbst
.global Verify_pic

sbst:

/lInitialize a performance counter to monitor instruction cache misses
set 0x21, %I0 // Turn OFF PIC
set 0x23, %I1 // Turn ON PIC

/**

%g1 = instruction to be written (retl)

%4g?2 = cache tag address

%g3 = way counting (0...3)

%g4 = tag address step in every iteration
%4g5 = tag to be written (all-1)

%4g6 = tag to be written (all-0)

%4q7 = Last cache address step

Georgios A. Theodorou 171

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

%I0 = turn PIC OFF

%I1 = turn PIC ON

%I2 = VA address step in every iteration

%I3 = VA address OFFSET for every way change
%I4 = tag offset for way change

%I5 = PIC read in every Read & Verify

%I6 = VA for tag access through CALL

%I7 = address OFFSET for way change

***/

/IMARCH SS w0 up

set 0x81c3e008, %g1l

set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

set 0x10000, %I7 /IOFFSET to change set in icache
set 0x1111111, %l4 /[different tag offset

setx 0x0000111111111000, %00, %I3

setx dbl, %l2, %Il6

all_sets1:
setx 0x0000000000000000, %00, %g2

setx 0x0000000400000000 ,%00, %g6 /I 7 1sb hex bits define the desired tag and bit (34)

defines the valid bit
setx dbl, %l2, %l6
add %g0, %g0, %g3
add %g0, %g4, %g2
add %l6, %l2, %6

way_writel:

wr %g0, ASI_ICACHE_TAG, %asi
stxa %96, [%6g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%g2+8] %asi

add %g2, %I7, %g2 Il switch way of cache

add %g6, %l4, %g6 Il switch tag

add %I6, %I3, %I6 !l switch VA to access a different way

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)

cmp %g3, 0x4

bl %xcc, way_writel
nop

nop

nop

add %I2, 0x20, %I2

add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7

bl %xcc, all_setsl

nop

nop

//IMARCH SS rOrOw0rOw1 up

set 0x81c3e008, %gl
set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

Georgios A. Theodorou 172

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

set 0x10000, %7 //OFFSET to change set in icache
set 0x1111111, %l4 /[different tag offset

setx 0x0000111111111000, %00, %I3

setx dbl, %00, %l6

all_sets2:
setx 0x0000000000000000, %00, %g2
setx 0x000000040fffffff ,%00, %g5
setx 0x0000000400000000 ,%00, %g6
setx dbl, %00, %I6
add %g0, %g0, %g3
add %g0, %g4, %g2
add %iI6, %I2, %Il6

way_write2:

wr %lI1, 0, %pcr
call %16

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %I1, 0, Y%pcr
call %l6

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %easi
stxa %g6, [%69g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%g2+8] %asi

wr %lI1, 0, %pcr
call %I|6

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %lI5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %g5, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%g2+8] %asi

add %g2, %I7, %g2 Il switch way of cache
sub %g5, %l4, %g5 Il switch tag
add %g6, %l4, %g6 Il switch tag

add %6, %I3, %I16 !! switch VA to access a different way

Georgios A. Theodorou 173

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)
cmp %g3, 0x4

bl %xcc, way_write2

nop

nop

nop

add %l2, 0x20, %I2

add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7

bl %xcc, all_sets2

nop

nop

/IMARCH SS r1rlwlrlwO up

set 0x81c3e008, %g1l

set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

set 0x10000, %l7 /IOFFSET to change set in icache
set 0x1111111, %l4 /ldifferent tag offset

setx 0x0000111111111000, %00, %I3

setx dbl, %l2, %Il6

all_sets3:
setx 0x0000000000000000, %00, %g2
setx 0x000000040fffffff ,%00, %g5
setx 0x0000000400000000 ,%00, %g6
setx db_inv1, %00, %I6
add %g0, %g0, %g3
add %g2, %g4, %g2
add %l6, %l2, %Il6

way_write3:

wr %l1, 0, %pcr
call %I6

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %lI5, 0, %pic

wr %l1, 0, %pcr
call %I6

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %lI5, 0, %pic

wr %90, ASI_ICACHE_TAG, %asi
stxa %g5, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi

stxa %g1, [%g2+8] %asi

wr %l1, 0, %pcr

call %I6

nop

Georgios A. Theodorou 174

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %g6, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %91, [%g2] %asi
stxa %g1, [%g2+8] %asi

add %g2, %7, %g2 Il switch way of cache

add %g6, %l4, %g6 Il switch tag

sub %g5, %l4, %g5

sub %I6, %I3, %I6 !l switch VA to access a different way

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)
cmp %g3, 0x4

bl %xcc, way_write3

nop

nop

nop

add %I2, 0x20, %2

add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7

bl %xcc, all_sets3

nop

nop

/IMARCH SS rOrOwOrOw1 down

set 0x81c3e008, %g1l

set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

set 0x10000, %7 //OFFSET to change set in icache
set 0x1111111, %l4 /[different tag offset

setx 0x0000111111111000, %00, %I3

setx dbl, %00, %Il6

add %l6, Oxfe0, %I6

all_sets4:

setx 0x0000000000001fc0, %00, %g2

setx 0x000000040fffffff ,%00, %g5 // 7 Isb hex bits define the desired tag and bit (34) defines
the valid bit

setx 0x0000000400000000 ,%00, %g6

setx db1l, %00, %I6

add %l6, 0xfe0, %I6

add %g0, %g0, %g3

sub %g2, %g4, %g2

sub %I6, %I2, %Il6

way_write4:

wr %l1, 0, %pcr
call %16

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %l5,-4,%I5
wr %l5, 0, %pic

Georgios A. Theodorou 175

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

wr %l1, 0, %pcr
call %l6

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %lI5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %96, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%g2+8] %asi

wr %l1, 0, %pcr
call %l6

nop

wr %I0, 0, %pcr
rd %pic, %lI5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %g5, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%0g2+8] %asi

add %g2, %7, %g2 Il switch way of cache

sub %g5, %l4, %g5 Il switch tag

add %g6, %l4, %g6 Il switch tag

add %lI6, %13, %Il6 !l switch VA to access a different way

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)

cmp %g3, 0x4
bl %xcc, way_write4
nop

add %l2, 0x20, %I2

add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7

bl %xcc, all_sets4

nop

//IMARCH SS r1rlwlrlwO down

set 0x81c3e008, %gl

set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

set 0x10000, %I7 /IOFFSET to change set in icache
set 0x1111111, %l4 /[different tag offset

setx 0x0000111111111000, %00, %I3

setx db_inv1, %00, %I6

add %I6, Oxfe0, %I6

all_sets5:
setx 0x0000000000001fc0, %00, %g2
setx 0x000000040fffffff ,%00, %g5

Georgios A. Theodorou 176

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

setx 0x0000000400000000 ,%00, %g6
setx db_inv1, %00, %Il6

add %I6, Oxfe0, %l6

add %g0, %g0, %g3

sub %g2, %g4, %g2

sub %l6, %I2, %6

way_write5:

wr %l1, 0, %pcr
call %16

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %lI1, 0, %pcr
call %16

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %iI5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %g5, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %91, [%g2+8] %asi

wr %l1, 0, %pcr
call %16

nop

wr %I0, 0, %pcr
rd %pic, %I5
add %I5,-4,%I5
wr %l5, 0, %pic

wr %g0, ASI_ICACHE_TAG, %asi
stxa %96, [%g2] %asi
nop

wr %g0, ASI_ICACHE_INST, %asi
stxa %g1, [%g2] %asi
stxa %g1, [%6g2+8] %asi

add %g2, %7, %g2 Il switch way of cache

add %g6, %l4, %g6 Il switch tag

sub %g5, %l4, %g5 Il switch tag

sub %I6, %I3, %I6 !l switch VA to access a different way

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)

cmp %g3, 0x4

bl %xcc, way_write5

nop

nop

add %I2, 0x20, %2

add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7

bl %xcc, all_sets5

nop

Georgios A. Theodorou 177

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

nop
//IMARCH SS r0 down

set 0x81c3e008, %gl

set 0x0, %g4

set 0x0, %I2

set 0x2000, %g7

set 0x10000, %l7 /IOFFSET to change set in icache
set 0x1111111, %l4 /[different tag offset

setx 0x0000111111111000, %00, %I3

setx dbl, %00, %6

add %lI6, Oxfe0, %I6

all_sets6:
setx 0x0000000000001fc0, %00, %g2
setx 0x000000040fffffff ,%00, %g5
setx dbl, %00, %I6
add %I6, Oxfe0, %I6
add %g0, %g0, %g3
sub %g2, %g4, %g2
sub %I6, %I2, %l6

way_write6:

wr %l1, 0, %pcr
call %Il6

nop

wr %I0, 0, %pcr
rd %pic, %lI5
add %I5,-4,%I5
wr %lI5, 0, %pic

add %g2, %7, %g2 Il switch way of cache

sub %g5, %l4, %g5 Il switch tag

add %I6, %I3, %I6 Il switch VA to access a different way

add %g3, 0x1, %g3 Il repeat the way writing 4 times (4-way cache)

cmp %g3, 0x4

bl %xcc, way_write6
nop

nop

nop

add %l2, 0x20, %I2
add %g4, 0x40, %g4 I Go to next address for all 4 ways
cmp %g4, %g7
bl %xcc, all_sets6
nop
Verify_pic:

rd %pic, %g1

and %g1, 0xOfff, %g1

cmp %g0, %gl /lcheck if pic.l is zero
bne diag_fail

nop

Georgios A. Theodorou 178

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

REFERENCES

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, "Basic concepts and taxonomy of dependable
and secure computing,” IEEE Transactions on Dependable and Secure Computing, Vol.1, no.1, pp.
11- 33, Jan.-March 2004

International Technology Roadmap for Semiconductors, Executive Summary, 2011 Edition,
http://www.itrs.net

M.L. Bushnell and V.D. Agrawal, “Essentials of Electronic Testing”, Kluwer Academic Publishers,
MA, USA, 2000.

A.K. Stevens, Introduction to Component Testing, Reading, Massachusetts, Addison-Wesley, 1986
F. Jensen and N.E. Peterson, Burn-in, Chichester, John Wiley h Sons, Inc., UK., 1982.

Y. Min, “Why RTL ATPG? “,Journal of Computer Science and Technology, Vol. 17, no. 2, pp. 113-
117, 2002.

H. Al-Assad, B. T. Murray, and J. P. Hayes, “Online BIST for embedded systems”, IEEE Design &
Test of Computers, Vol. 15, no. 4, pp. 17-24, 1998.

M. Nicolaidis and Y. Zorian, “On-line testing for VLSI—a compendium of approaches”, Journal of
Electronic Testing: Theory Applications, Vol. 12, no. 1-2, pp. 7-20, 1998.

N. Oh and E. J. McCluskey, “Error detection by selective procedure call duplication for low energy
consumption,” IEEE Transactions on Reliability, Vol. 51, no. 4, pp. 392-402, Dec. 2002.

P. J. Tan, T. Le; K.H. Ng, P. Mantri, J. Westfall, "Testing of UltraSPARC T1 Microprocessor and its
Challenges", in Proc. of IEEE International Test Conference (ITC), 2006, paper 16.1.

S. Hamdioui et al, “March SS: A Test for All Static Simple RAM Faults”, in Proc. of IEEE Int!l
Workshop Memory Technology, Design and Testing (MTDT), 2002, pp. 95-100.

Z. Al-Ars, S. Hamdioui, G. Gaydadjiev, S. Vassiliadis, "Test Set Development for Cache Memory in
Modern Microprocessors", IEEE Transactions on VLSI, Vol.16, no.6, June 2008, pp.725-732.
Jin-Fu Li, "Transparent-Test Methodologies for Random Access Memories Without/With ECC,",
IEEE Transactions on CAD, Vol.26, no.10, pp.1888-1893, Oct. 2007.

S. Boutobza, M. Nicolaidis, K.M. Lamara, A. Costa, "Programmable memory BIST", in Proc. of
IEEE International Test Conference (ITC), 2005, paper 45.2.

B.H. Fang, N. Nicolici, "Power-constrained embedded memory BIST architecture,” in Proc. of
Defect and Fault Tolerance in VLSI Systems (DFT), 2003, pp. 451- 458.

D.E. Ross, T. Wood, G. Giles, "Conversion of small functional test sets of nonscan blocks to scan
patterns”, in Proc. of IEEE International Test Conference (ITC), 2000, pp.691-700.

K.J. Lin, C.W. Wu, "Testing content-addressable memories using functional fault models and
march-like algorithms"”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol.19, no.5, pp.577-588, May 2000

A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons,
Chichester, U.K. 1991.

S. Mourad and Y. Zorian, “Principles of Testing Electronic Systems®, John Wiley & Sons,
Somerset, NJ, 2000.

K. Sasaki, et al., “A 15ns, 1Mbit CMOS SRAM”, IEEE Journal of Solid State Circuits, Vol. 23, No. 5,
pp. 1067-1072, 1988

Georgios A. Theodorou 179

http://www.itrs.net/

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]

(30]

(31]

[32]

(33]

(34]

[35]

(36]

[37]

A.J. van de Goor and Z. Al-Ars, “Functional Fault Models: A Formal Notation and Taxonomy”, in
Proc. of the IEEE VLSI Test Symposium (VTS), pp. 281-289, 2000

C.A. Papachristou and N.B. Saghal, “An Improved Method for Detecting Functional Faults in
Random Access Memories”, IEEE Transaction on Computers, Vol.31, no. 3, pp. 110-116, 1985.
D.S. Suk and S.M. Reddy, “A March Test for Functional Faults in Semiconductors Random-Access
Memories”, IEEE Transactions on Computers, Vol. 30, no. 12, pp. 982-985, 1981

J. Zhao, S. Irrinki, M. Puri, F. Lombardi, "Testing SRAM-based content addressable memories",
IEEE Transactions on Computers, Vol. 49, no. 10, pp. 1054-1063, Oct. 2000.

K.J. Lin, C.W. Wu, "Testing content-addressable memories using functional fault models and
march-like algorithms", IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol.19, no.5, pp.577-588, May 2000

K. Zarrineh and S. J. Upadhyaya, “On Programmable Memory Built-In Self-Test Architectures”, in
Proc. of the Design, Automation and Test in Europe Conference (DATE), pp. 708-713, 1999

W. L. Wang, K. J. Lee, and J. F. Wang, “An On-Chip March Pattern Generator for Testing
Embedded Memory Cores”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 9, no.5, pp. 730-735, October 2001

P1500 SECT Task Forces. IEEE P1500 Web Site. http://grouper.ieee.org/groups/1500.

S. Koranne, C. Wouters, T. Waayers, S. Kumar, R. Beurze, and G. S. Visweswaran, “A P1500

Compliant Programmable BistShell for Embedded Memories”, in Proc. |IEEE International
Workshop on Memory Technology, Design and Testing (MTDT), pp. 21-27, 2001

C. W. Wang, C. F. Wu, J. F. Li, C. W. Wu, T. Teng, K. Chiu, and H. P. Lin, “A Built-In Self-Test and
Self-Diagnosis Scheme for Embedded SRAM?”, in Proc. of IEEE Asian Test Symposium (ATS), pp.
45-50, 2000

D. Appello, F. Corno, M. Giovinetto, M. Rebaudengo, and M. S. Reorda, “A P1500 Compliant BIST-
Based Approach to Embedded RAM Diagnosis”, in Proc. of IEEE Asian Test Symposium (ATS),
pp. 97-102, 2001

J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling Embedded Memory Diagnosis
via Test Response Compression”, in Proc. of IEEE VLSI Test Symposium (VTS), pp. 292-298,
2001

J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-Based Built-In Self-Test for Embedded
DRAM”, Solid-State Circuits, Vol. 33, no.11, pp. 1731-1740, November 1998

Y. Zorian and S. Shoukourian, “Embedded-Memory Test and Repair: Infrastructure IP for SoC
Yield”, IEEE Design and Test of Computers, Vol. 20, no.3, pp. 58-66, May-June 2003

J. C. Yeh, C. F. Wu, K. L. Cheng, Y. F. Chou, C. T. Huang, and C. W. Wu, “Flash Memory Built-In
Self-Test Using March-Like Algorithms”, in Proc. of IEEE International Workshop on Electronic
Design, Test and Applications, pp. 137-141, 2002

Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI Devices”, in Proc. of IEEE VLSI
Test Symposium (VTS), pp. 4-9, 1993

M. L. Bodoni, A. Benso, S. Chiusano, S. D. Carlo, G. D. Natale, and P. Prinetto, “An Effective
Distributed BIST Architecture for RAMS”, in Proc. of IEEE European Test Workshop (ETW), pp.
119-124, 2000

Georgios A. Theodorou 180

http://grouper.ieee.org/groups/1500

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

R. Rajsuman, “Testing a System-on-a-Chip with Embedded Microprocessor”, in Proc. of IEEE
International Test Conference (ITC), pp. 499-508, 1999

C. H. Tsai, C. W. Wu, “Processor-Programmable Memory BIST for BUS- Connected Embedded
Memories”, in Proc. of Asia and South Pacific, Design Automation Conference (ASP-DAC), pp.
325-330, 2001

N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis, "Software-Based Self-Testing of Embedded
Processors," IEEE Transactions on Computers, Vol. 54, no. 4, pp. 461-475, 2005.

A. Paschalis, D. Gizopoulos, “Effective software-based self-test strategies for on-line periodic
testing of embedded processors”, IEEE Transactions on CAD, Vol. 24, no.1, pp.88 — 99, Jan. 2005.
I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache Resident Functional Microprocessor Testing:
Avoiding High Speed 10 Issues,” in Proc. of IEEE International Test Conference (ITC), 2006.

P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS — A Microprocessor Functional BIST Method”,
in Proc. of IEEE International Test Conference (ITC), 2002, pp.590-598.

M. Psarakis, D. Gizopoulos, E. Sanchez, M. Sonza Reorda, "Microprocessor Software-Based Self-
Testing", IEEE Design and Test of Computers, vol. 27, no. 3, pp. 4-19, May/June 2010.

S.M. Thatte, J.A. Abraham, “Test Generation for Microprocessors”, IEEE Transactions on
Computers, Vol. 29, no. 6, pp. 429-441, 1980

D. Brahme, J.A. Abraham, “Functional Testing of Microprocessors” IEEE Transactions on
Computers, Vol. 33, no. 6, pp. 475485, 1984

J. Shen and J.A. Abraham, “Native Mode Functional Test Generation for Processors with
Applications to Self-Test and Design Validation”, in Proc. of IEEE International Test Conference
(ITC), 1998, pp. 990-999

K. Batcher, C. Papachristou, “Instruction Randomization Self-Test for Processor Cores”, in Proc. of
VLSI Test Symposium (VTS), 1999, pp 34-40

F. Corno, E. Sanchez, M. Sonza Reorda, G. Squillero, “Automatic Test Program Generation: A
Case Study”, IEEE Design & Test, vol. 21, no. 2, pp. 102-109, 2004

L. Chen, S. Dey, “Software-Based Self-Testing Methodology for Processor Cores”, IEEE
Transactions on CAD of Integrated Circuits and Systems, Vol 20m no 3, pp. 369-380, 2001

L. Chen, S. Ravi, A. Raghunathan, S. Dey, “A Scalable Software-Based Self-Testing Methodology
for Programmable Processors”, In Proc. of Design Automation Conference, 2003, pp. 548-553

F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, “ On the Test of Microprocessor IP Cores”
In Proc. of Design Automation & Test in Europe (DATE), 2001, pp 209-213

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “Fully Automatic Test Program Generation
for Microprocessor Cores”, In Proc. of Design Automation & Test in Europe, 2003, pp 1006-1011

K. Kambe, M. Inoue, H. Fujiwara, “Efficient Template Generation for Instruction-Based Self-Test of
Processor Cores”, In Proc. of IEEE Asian Test Symposium (ATS), 2004, pp. 152-157

N. Kranitis, A. Paschalis, D. Gizopoulos, Y. Zorian, “Instruction-Based Self-Testing of Processor
Cores”, Journal of Electronic Testing: Theory and Applications, no 19, pp 103-112, 2003

E. Sanchez, M.S. Reorda, G. Squillero, “On the Transformation of Manufacturing Test Sets into
On-Line Test Sets for Microprocessors”, In Proc. of IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFTS), 2005, pp 494-502

Georgios A. Theodorou 181

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan, S. Ravi, “Systematic
Software-Based Self-Test for Pipelined Processors”, In Proc. of Design Automation Conference
(DAC), 2006, pp 393-398

D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis, A. Raghunathan, S. Ravi,
“Systematic Software-Based Self-Test for Pipelined Processors”, IEEE Trans. Very Large Scale
Integration (VLSI) Systems, Vol. 16, no. 11, pp. 1441-1453, 2008

N. Kranitis, A. Merentitis, N. Laoutaris, G. Theodorou, A. Paschalis, D. Gizopoulos, C. Halatsis,
“Optimal Periodic Testing of Intermittent Faults In Embedded Pipelined Processor Applications”, In
Proc. Design Automation & Test in Europe (DATE), 2006, pp 65—-70

WC. Lai, A. Krstic, KT. Cheng, “Functionally Testable Path Delay Faults on a Microprocessor”,
IEEE Design and Test of Computers, Vol. 17, no. 6, pp. 6—14, 2000

A. Krstic, L. Chen, WC. Lai, KT. Cheng, S. Dey, “Embedded Software-Based Self-Test for
Programmable Core-Based Designs”, IEEE Design and Test of Computers, Vol. 19, no. 4, pp. 18—
26, 2002

V. Singh, M. Inoue, KK. Saluja, H. Fujiwara, “Instruction-Based Self-Testing of Delay Faults in
Pipelined Processors”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.
14, no. 11, pp.1203-1215, 2006

S. Gurumurthy, S. Vasudevan, J.A. Abraham, “Automated Mapping of Pre-Computed Module-Level
Test Sequences to Processor Instructions”, In Proc. of IEEE International Test Conference (ITC),
2005, pp 294-303

S. Gurumurthy, S. Vasudevan, J.A. Abraham, “Automatic Generation of Instruction Sequences
Targeting Hard-to-Detect Structural Faults in a Processor”, In Proc. of IEEE International Test
Conference (ITC), 2006, paper 27.3

C.H.P. Wen, L.C. Wang, K.T Cheng, W.T. Liu, J.J. Chen, “Simulation-Based Target Test
Generation Techniques for Improving the Robustness of a Software-Based-Self-Test
Methodology”, In Proc. of IEEE International Test Conference (ITC), 2005, pp 936-945

N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, D. Gizopoulos, "Hybrid-SBST Methodology
for Efficient Testing of Processor Cores", IEEE Design & Test of Computers, Vol. 25, no. 1, pp.64-
75, 2008

A. Apostolakis, D. Gizopoulos, M. Psarakis, A. Paschalis, "Software-Based Self-Testing of
Symmetric Shared-Memory Multiprocessors,"”, IEEE Transactions on Computers, Vol.58, no.12,
pp.1682-1694, 2009

N. Foutris, M. Psarakis, D. Gizopoulos, A. Apostolakis, X. Vera, A. Gonzalez, "MT-SBST: Self-test
optimization in multithreaded multicore architectures,” in Proc. of IEEE International Test
Conference (ITC), 2010, pp.1-10

A.J. van de Goor, T.J.W Verhallen, "Functional testing of current microprocessors", in Proc. of
IEEE International Test Conference (ITC), 1992, pp.684-695.

J. Sosnowski, "In-system testing of cache memories”, in Proc. of IEEE International Test
Conference (ITC), 1995, pp.384-393.

S.M. Al-Harbi, S.K. Gupta, "A Methodology for Transforming Memory Tests for In-System Testing
of Direct Mapped Cache Tags", in Proc. of VLSI Test Symposium (VTS), 1998, pp.394-400.

Georgios A. Theodorou 182

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

[72]

[73]

[74]

[75]

[76]

[77]

(78]
[79]
(80]
(81]
(82]
(83]
(84]

(85]

(86]

(87]

(88]

(89]

[90]

(91]

[92]

J. Sosnowski, "Improving Software Based Self-Testing for Cache Memories," in Proc. of Design
and Test Workshop (DTW), 2007.

M. Tuna, O. Garcia, M. Benabdenbi, "Software-Based Self-Test Strategies for Memory Caches of
RISC Processor Cores", in Proc. of IEEE Latin-American Test Workshop, 2007, pp.124-130.

S. Alpe, S. Di Carlo, P. Prinetto, A. Savino, "Applying March Tests to K-Way Set-Associative Cache
Memories", in Proc. of the 13th European Test Symposium (ETS), 2008, pp.77-83.

Y.C. Lin, Y.Y. Tsai, K.J. Lee, C.W. Yen, C.H. Chen, "A Software-Based Test Methodology for
Direct Mapped Data Cache", in Proc. of Asian test Symposium, 2008, pp.363-368.

W.J. Perez, J. Velasco, D. Ravotto, E. Sanchez, M. Sonza Reorda, "A Hybrid Approach to the Test
of Cache Memory Controllers Embedded in SoCs", in Proc. of IEEE International On-Line Testing
Symposium (IOLTS), 2008, pp.143-148.

W.J. Perez, D. Ravotto, E. Sanchez, M. Sonza Reorda, A. Tonda, "On the Generation of Functional
Test Programs for the Cache Replacement Logic", in Proc. of IEEE Asian Test Symposium (ATS),
2009, pp.418-423.

A.J. van de Goor, G. Gaydadjiev, S. Hamdioui, "Memory testing with a RISC microcontroller", in
Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010, pp.214-219
S. Di Carlo, P. Prinetto, A. Savino, "Software-Based Self-Test of Set-Associative Cache
Memories," IEEE Transactions on Computers, Vol.60, no.7, pp.1030-1044, July 2011

B. Jacob, S.\W. Ng, D. T. Wang, "Memory Systems: Cache, DRAM, Disk", Burlington. USA :
Morgan Kaufmann, 2008

MIPS Architecture for programmers. Available online: www.mips.com

ARM Architecture reference manual. Available online: www.arm.com

SPARC Assembly reference manual. Available online: www.oracle.com

Intel® 64 and IA-32 Architectures Software Developer's Manual, Available online: www.intel.com
A.J. van de Goor, I.B.S. Tlili, "March Tests for Word-Oriented Memories" in Proc. of the Design,
Automation and Test in Europe (DATE), 1998, pp.501-508

H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, Y. Zorian, "Generic BIST
architecture for testing of content addressable memories," in Proc. of IEEE International On-Line
Testing Symposium (IOLTS), 2011, pp.86-91

C. Kim, D. Burger, S.W. Keckler, "Nonuniform cache architectures for wire-delay dominated on-
chip caches", IEEE Micro, vol.23, no.6, pp. 99- 107, Nov.-Dec. 2003

C.F. Wu et al, "RAMSES: a fast memory fault simulator”, in Proc. of the International Symposium
on Defect and Fault Tolerance in VLSI Systems, 1999, pp.165-173

M. Lin, Ch. Yunji, S. Menghao, Q. Zichu, Zh. Heng, H. Weiwu, "Testing Content Addressable
Memories Using Instructions and March-Like Algorithms", in Proc. of IEEE International
Conference on Electronics, Circuits and Systems (ICECS), 2008

P. Manikandan, B. B. Larsen, E. J. Aas, S. M. Reddy, "Test of Embedded Content Addressable
Memories", in Proc. of IEEE Int'l Symposium on Electronic System Design (ISED), 2010

Said Hamdioui, "Testing Static Random Access Memories: Defects, Fault Models and Test
Patterns”, Kluwer Academic Publishers, USA, Boston, 2004

Jari Nurmi, "Processor Design: System-On-Chip Computing for ASICs and FPGAs", Springer, The
Netherlands, 2010

Georgios A. Theodorou 183

http://www.mips.com/
http://www.arm.com/
http://www.oracle.com/
http://www.intel.com/

Fault Detection Methodology for Caches in Reliable Modern VLSI Microprocessors based on Instruction Set Architectures

[93] Laung-Terng Wang, Cheng-Wen Wu, Xiaoging Wen, "VLSI Test Principles and Architectures:
Design for Testability", Elsevier, Morgan Kaufmann Publishers, San Franscisco, USA, 2004

[94] Laung-Terng Wang, Charles E. Stroud, Nur A. touba "System-on-Chip Test Architectures:
Nanometer Design for Testability", Elsevier, Morgan Kaufmann Publishers, Burlington, USA, 2008

[95] David A. Patterson, John L. Hennessy, "Computer Organization and Design, Fourth Edition: The

Hardware/Software Interface", Elsevier, Morgan Kaufmann Publishers, Burlington, USA, 2009

Georgios A. Theodorou 184

