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ΠΕΡΙΛΗΨΗ

Η συνεισφορά αυτής της διδακτορικής διατριβής έγκειται στην ανάδειξη, µελέτη και κατα-

νόηση ϕαινοµένων και συµπεριφορών σχετικών µε τη διάδοση και τη χρήση πληροφορίας

µέσα σε δικτυακά κατανεµηµένα αστικά περιβάλλοντα και ανταγωνιστικά πλαίσια λειτουρ-

γίας. Η µελέτη αφορά σε σύγχρονα περιβάλλοντα δικτύωσης εντός του αστικού ιστού στα

οποία η εµφάνιση ευφυών τεχνολογιών αισθητήρων και συστηµάτων επικοινωνίας ευνοεί την

παραγωγή και τη διάχυση τεράστιων ποσοτήτων πληροφορίας. Αυτή η πληροφορία παρέχει

ενηµέρωση για το περιβάλλον και τους πόρους του (εν γένει, ασύρµατα κανάλια επικοινωνί-

ας, οδικά τµήµατα, ϑέσεις στάθµευσης). Παράλληλα δηµιουργεί πολύτιµη γνώση για τους

διάφορους, ποικίλης ϕύσεως, δικτυακούς κόµβους, οι οποίοι καλούνται να αποφασίσουν µε

ποιον τρόπο να χρησιµοποιήσουν αυτούς τους πόρους για την καλύτερη εξυπηρέτησή τους.

Συγκεκριµένα, εξετάζονται περιπτώσεις στις οποίες οι κόµβοι επιδιώκουν να εξυπηρετηθούν

χρησιµοποιώντας κάποιο κοινό για όλους, πεπερασµένο σύνολο πόρων. Μέσα σε ένα τέ-

τοιο πλαίσιο, διερευνάται εάν και σε ποιο ϐαθµό η εµφάνιση του ανταγωνισµού µπορεί να

επηρεάσει το ϐαθµό συνεισφοράς των κατανεµηµένων κόµβων στη συλλογική προσπάθεια

πληροφόρησης/ενηµέρωσης αλλά και τις αποφάσεις των κόµβων που λαµβάνονται ϐάσει της

παρεχόµενης πληροφορίας/ενηµέρωσης. Συνεργατικές ή µη συµπεριφορές αλλά και πρα-

κτικές πλήρους ή περιορισµένης λογικής αναλύονται και προσοµοιώνονται αξιοποιώντας

αποτελέσµατα και µελέτες µέσα από ένα µεγάλο εύρος επιστηµονικών πεδίων που ξεκινούν

από ∆ίκτυα Επικοινωνιών και Θεωρία Αποφάσεων και ϕτάνουν σε Γνωσιακή Ψυχολογία και

Συµπεριφορική Χρηµατοοικονοµική. Συνολικά, παρέχονται κατευθύνσεις για την αποτε-

λεσµατική διαχείριση του ανταγωνισµού µέσα σε δικτυακά περιβάλλοντα, οι οποίες από τη

µία αµφισβητούν την ανάγκη για εξεζητηµένα συστήµατα πληροφόρησης και από την άλλη

αναδεικνύουν την αποτελεσµατικότητα των ϕυσικών µηχανισµών διαχείρισης πληροφορί-

ας και λήψης αποφάσεων που παρατηρούνται στον άνθρωπο, στην επίλυση καταστάσεων

συµφόρησης γνωστών µέσα από τον όρο «τραγωδία των κοινών».

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: ∆ίκτυα Επικοινωνιών

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : δικτύωση, Ευφυή Συστήµατα Μεταφορών, παίγνια επιλογής πόρων,

τραγωδία των κοινών, συµπεριφορική λήψη αποφάσεων





ABSTRACT

The focus of this thesis lies on demonstrating, investigating and understanding

decision-making in human-driven information and communication systems within au-

tonomous networking urban environments and competitive contexts. Indeed, the thesis

examines modern networks that integrate mobile communication devices with online so-

cial applications and different types of pervasive sensor platforms and hence, foster un-

precedented amounts of information. When shared, this information can enrich people’s

awareness about and enable more efficient management of a broad range of resources,

ranging from natural goods such as water and electricity, to human artefacts such as

urban space and transportation networks. Especially in environments where users’ wel-

fare is better satisfied by the same finite set of resources, it is important to understand

how the presence of competition shapes decisions and behaviors regarding the informa-

tion dissemination and building of collective awareness, on the one hand, and the way

collective awareness is exploited under different assumptions about the rationality levels

of decision-makers, on the other hand. The first of these very general and fundamental

questions amounts to deciding whether a networked entity will deviate from the expected

behavior (misbehavior) by hiding or falsifying resource or service availability information,

to reduce the competition to its advantage. The second amounts to deciding whether a

networked entity will compete or not compete for some limited resources. We investigate

these two questions by exploiting insights and results from different disciplines ranging

from Communication Networks and Decision Theory to Behavioral Economics and Cog-

nitive Science. Our results provide theoretical support for the practical management of

limited-capacity resources since they challenge the need for more elaborate information

mechanisms. They also reveal useful insights to the dynamics and benefits emerging

from human behavior in situations that expose “tragedy of commons” effects.

SUBJECT AREA: Communication Networks

KEYWORDS: networking, Intelligent Transportation Systems, resource selection games,

tragedy of the commons, behavioral decision-making
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Information dissemination and consumption in competitive networking urban environments

Chapter 1

Introduction

1.1 Fundamental aspects of decision-making in collec-

tive awareness environments

The tremendous increase of urbanization necessitates the efficient and environmen-

tally sustainable management of various urban processes and operations. Recent ad-

vances in wireless networking and sensing technologies can address this need by enabling

efficient monitoring mechanisms for these processes and higher flexibility to control them,

thus paving the way for the so-called Smart Cities.

With the dawn of Smart Cities, the emerging networking environment is centered

around powerful entities that (a) can produce services and content to be consumed by

others; (b) can act as networking elements transporting information; and (c) can act as

classical users or consumers of services or content. These nodes are typically self-owned

and managed, thus their behavior can be uncontrollable, unpredictable and driven by

self-oriented objectives that may well be in conflict with those of other elements.

This trend is further accentuated by the strong emergence of what is referred to

as a socio-tech dimension, concerning to the bi-directional coupling and dependencies

between the social dimension present in the human associated with a user-node and

the networking technologies and capabilities in and around the user-node. As a result

basic operations of the networked environment are strongly affected by human behaviors

and characteristics. In the opposite direction, human activities and behaviors are also
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affected by the offerings of the networked environment.

Indeed, Information and Communication Technologies (ICT) increasingly penetrate a

broad range of human activities, transforming the way these activities are carried out, al-

tering the human perception about the network and its services, but also shaping human

experiences and lifestyles. Intelligent networked sensor nodes (i.e., smart dust), placed

on buildings’ surfaces or mounted on vehicles, constitute pervasive monitoring platforms

that can measure environmental parameters such as pollution concentration, radiation

level, road traffic congestion or public transport and parking utilization. The integration

of sensing devices of various sizes, scope and capabilities with mobile communication

devices, on the one hand, and the wide proliferation of online social applications, on the

other, leverage the heterogeneity of users in terms of interests, preferences, and mobil-

ity, and enable the collection of huge amounts of information with very different spatial

and temporal context. These amounts of information can enrich dramatically people’s

awareness (and foster more efficient management) of their environment, whether this is

the natural environment or the physical space they move in while working, driving, or

entertaining themselves. In parallel, this knowledge provides them, at least potentially,

with the opportunity to make more informed/intelligent decisions about the way they

access and use the resources of their environment, which can range from natural goods

such as water and electricity, to human artefacts such as urban space and transportation

infrastructure.

If the disseminated information concerns the availability of some limited resource

or service, it is important to understand how the presence of competition shapes users’

decisions for information discovery, generation, replication and consumption processes.

With end-users having an active and increasing role in these operations, it gets compelling

to motivate their cooperation/participation and make these operations robust to attempts

to manipulate them for the individual benefit as well as steer individuals’ decision-making

towards more socially efficient actions.

In this thesis, we study scenarios where some finite resource is of interest to a pop-

ulation of distributed users with variable perceptions about the resource supply and

demand for it. The high-level question we address is how efficiently the competition about

the resources is resolved under different assumptions about the way the users make their
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decisions. We devise analytical and simulation models that describe the decision-making

process of users concerning the dissemination and consumption of information, when

faced with multiple choices. We instantiate this context in a concrete case that we can

study systematically, namely an urban environment in which parking space is the re-

source of interest to the users-drivers and whose availability is disseminated or becomes

accessible to the users to some extent. With this information, drivers can make more

informed search for parking, while municipal authorities can address more efficiently the

challenge to manage the available parking space and reduce the vehicle volumes that

cruise in search of it, in order to alleviate not only traffic congestion but also the related

environmental burden.

1.2 Outline of the thesis

The thesis is structured around eight chapters, separated into three parts. In the

sequel, we present a short summary and the main objectives of each chapter.

In Part I and Chapters 2, 3, 4 in particular, we introduce and describe fundamen-

tal concepts and principles in networking solutions for the upcoming smart city envi-

ronments and present socio-tech issues, trends and challenges that arise in various

application paradigms that have been developed through these networks and serve as

case-studies in the investigation presented in the following chapters.

Part II explores the effectiveness and side-issues of information within competitive

settings. The emergence of intelligent sensing and communication technologies fosters

the generation and dissemination of huge amounts of information that collectively en-

riches people’s awareness about their environment and its resources. With this informa-

tion at hand, users then decide how to access these resources to best serve their interests.

However, situations repeatedly emerge where the users’ welfare is better satisfied by the

same finite set of resources and the uncoordinated access to them gives rise to tragedy

of commons effects and serious congestion problems. Part II is structured around two

chapters with the first one (Chapter 5) addressing the impact of information dissemina-

tion and the second one (Chapter 6) addressing the impact of information consumption

on the competition and, ultimately, users’ welfare.
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In Chapter 5, in particular, we explore how the discovery of service can be facilitated

or not by utilizing service location information that is opportunistically disseminated

primarily by the consumers of the service themselves. We apply our study to the real-

world case of parking service in busy city areas which has attracted the interest of the

research community and the private sector in the context of the so-called “Smart City”

initiative. As the vehicles drive around the area, they opportunistically collect and share

with each other information on the location and status of each parking spot they en-

counter. The parking space scenario serves as an example of opportunistic networking

environments where the user-nodes can collectively gain from the sincere exchange of

(parking availability) information (i.e., cooperation), yet each one of them can only gain if

certain information is hidden from others (potential competitors); thus, an environment,

where the processes of information dissemination (benefiting service discovery) and com-

petition (reducing the service delivery prospects) are coupled and counter-acting. This

opportunistically-assisted search is compared against the “blind” non-assisted search

and a centralized approach, where the allocation of parking spots is managed by a central

server availing global knowledge about the parking space availability. This comparative

study concludes with the observation that the availability of information is not always

better than the lack of it in competitive environments, as the sharing of information as-

sists nodes by increasing their knowledge about parking space availability but, at the

same time, synchronizes nodes’ parking choices. This synchronization in turn increases

the effective competition and, ultimately, the congestion penalties experienced (e.g., long

car cruising when searching for cheap on-street parking spots in busy urban environ-

ments). Being aware of the competition, the nodes are motivated to defer from sharing

information or deliberately falsify information to divert others away from a particular area

of their own interest. The results show that as long as the portion of misbehaving nodes

is not very high, the overall performance does not deteriorate significantly, nor does the

misbehaving node enjoy any notable performance improvement. This observation sug-

gests that the spatial-temporal-interest diversity in large-scale distributed settings and

the dynamicity of the environment, which may render falsified data correct or lack of

outdated data advantageous, might confer robustness against misbehaviors.

In Chapter 6 it is investigated how the competition awareness affects the decision to
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compete or not for some limited-capacity resource set. In essence, we are concerned with

the comparison of the decision-making under full against bounded rationality conditions.

Fully rational users avail all the information they need to reach decisions and, most im-

portantly, are capable of exploiting all information they have at hand. The impact of per-

fect rationality is investigated by considering an environment in which the parking space

is the resource of interest to the users-drivers and whose availability is disseminated or

becomes accessible to some extent. Drivers decide whether to go for the inexpensive but

limited on-street public parking spots or the expensive yet over-dimensioned parking lots,

incurring an additional cruising cost when they decide for on-street parking spots but

fail to actually acquire one. The drivers are viewed as strategic agents who make ratio-

nal decisions while attempting to minimize the cost of the acquired parking spots. We

take a game-theoretic approach and analyze the uncoordinated parking space allocation

process as resource selection game instances. We derive their equilibria and compute the

related Price of Anarchy values. It is shown that, under typical pricing policies on the

two instances of parking facilities, drivers tend to over-compete for the on-street parking

space, giving rise to redundant cruising cost. To alleviate the congestion phenomena,

we propose auction-based systems for realizing centralized parking allocation schemes,

whereby drivers bid for public parking space and a central authority coordinates the

parking assignments and payments. These are compared against the conventional un-

coordinated parking search practice under fixed parking service cost, formulated as a

resource selection game instance. In line with intuition, the auctioning system increases

the revenue of the public parking operator exploiting the drivers’ differentiated interest

in parking. Less intuitively, the auction-based mechanism does not necessarily induce

higher cost for the drivers: by avoiding the uncoordinated search and thus, eliminating

the cruising cost, it turns out to be a preferable option for both the operator and the

drivers under various combinations of parking demand and pricing policies.

The assumption of perfect information can be relaxed by modeling the uncoordi-

nated users’ interaction in terms of Bayesian games where users have only probabilistic

information or are totally uncertain about the resource demand. Interestingly, counterin-

tuitive less-is-more effects emerge where more information does not necessarily improve

the efficiency of service delivery but, even worse, may hamstring users’ efforts to maxi-
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mize their benefit. Essentially, Game Theory and the Nash equilibrium concept capture

users’ best responses in terms of expected utility maximization. Nevertheless, several

experimental data have shown over time the limitations of the Expected Utility Theory

framework to consistently explain the way human decisions are made. At the same time,

they have revealed cognitive biases in the way people assess the alternatives they are

presented with. Thus, we exploit insights from Bayesian games, Behavioral Economics

and Cognitive Psychology (Prospect Theory, Quantal Response and Rosenthal equilibria,

heuristic reasoning) to model agents of bounded rationality who cannot exploit all the

available information due to time restrictions and computational limitations. We derive

the operational states in which the competing influences are balanced (i.e., equilibria)

and compare them against the Nash equilibria that emerge under full rationality and the

optimum resource assignment that could be determined by a centralized entity. From the

comparison between the equilibria under full versus bounded rationality conditions are

derived under which very simple heuristic reasoning yields near-optimal results. Overall,

our study provides useful insights to the dynamics emerging from the users’ behavior as

well as theoretical support for the better understanding of effective information dissemi-

nation mechanisms in emerging smart city environments.

Although these decision-making models are shown to predict and accommodate peo-

ple’s answers in various experimental data sets, they cannot describe the processes

(cognitive, neural, or hormonal) underlying people’s decisions. Yet, the efficient and

environmentally sustainable management of various urban processes calls for novel so-

lutions that account for behavioral decision-making in a transparent way that reflects

the internal reasoning mechanisms. Indeed, transportation engineers need to be able to

understand how drivers decide their route to effectively address the plethora of challenges

for alleviating the congestion phenomena in city areas. In Chapter 6, we model drivers’

decision-making with respect to the parking space search, which has been regarded as

one of the major causes of traffic congestion. We view the parking search as an instance of

sequential search problems and present a game-theoretic investigation of the efficiency of

heuristic parking search strategies to locate available parking spot at minimum walking

and driving overhead. The analytical study concludes by drawing similarities between

the parking game and well-known archetypal games that Game Theory examines.
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In the last part, that is Part III (Chapter 7), we seek to experimentally study some

fundamental properties of vehicular social applications that have been deployed to as-

sist in the parking search process. The awareness and incentive mechanisms that are

commonly incorporated in different instances of social parking applications are modeled

and simulation scenarios are considered to explore particular aspects of these applica-

tions. It is shown that application users experience improved performance due to the

increased efficiency they generate in the parking search process, without (substantially)

degrading the performance of non-users. This is extremely important since applications

managing common (public) goods should not provide benefits to their users by penalizing

or almost excluding non-users. The incentive mechanisms are effective in the sense that

they do provide preferential treatment to those fully cooperating but they induce rich-club

phenomena and difficulties to newcomers. Interestingly, those problems, that may be a

concern for all applications managing common (public) goods, seem to be alleviated by

free-riding phenomena and dynamic behaviors.

Finally, Chapter 8 presents collectively the major conclusions of the thesis and sug-

gests possible directions for future research.
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Part I

Background and Preliminary concepts
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Chapter 2

From Digital to Smart Cities

The rapid urbanization of world’s population over the twentieth century predomi-

nantly imposes significant changes in city forms and urban operations. According to the

United Nations “State of the World Population” 2007 report1, the number of people living

in cities has overtook the number of people living in the rural areas and this event was

recorded in the history as the “tipping point”. The urbanization of society continues to

increase: in 2009, the fraction of world population living in urban areas was above 50%

(more than 75% in developed countries). It is forecasted that another 10% of the world

population will move to metropolitan regions within the next 15 years, leading us into the

so-called “Urban Millennium”.

The scale and the pace that characterize the phenomenon of urbanization raise evi-

dent questions on sustainable management of urban processes and operations, calling for

urgent solutions to the growing problems. The recent advances, the pilot implementation

of solutions and the pioneering ideas from the area of Information and Communication

Technologies (ICT) present a response towards the urbanization problems, giving birth

to the so-called’ “Digital Cities”. This term refers to a connected community that com-

bines flexible, service-oriented computing infrastructure, broadband communication and

innovative services to meet the needs of governments and their employees, citizens and

businesses2.

However, urban performance currently depends not only on the city’s endowment of

1“UN State of the World Population”, United Nations Population Fund (UNFPA), 2007.
2http : //en.wikipedia.org/wiki/Digital_city
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hard infrastructure (“physical capital”), but also on the availability and quality of knowl-

edge communication and social infrastructure (“intellectual capital and social capital”).

The significance of the social and environmental asset and the need to integrating the

physical, social and digital dimensions of urban space pave the way to distinguish Dig-

ital Cities from their socio-tech counterparts, namely “Smart Cities” which represent a

next-generation advancement from Digital Cities [Caragliu et al., 2009]. As it will be clear

in the sequel, the critical difference is in the problem solving capability of Smart Cities,

while the ability of Digital Cities is in the provision of services via digital communication.

In a general rule, in services provision by local administrations, Digital Cities are placed

downstream between the public authority and the citizen as recipient of services (as dig-

ital marketplaces); while Smart Cities are placed upstream between the citizens and the

public authority, enabling co-creation and co-design of services (as Living lab).

Smart Cities bring together cities, industry and citizens to improve urban life through

more sustainable integrated solutions. In particular, Smart Cities can be identified along

six main dimensions: people, living, governance, environment, mobility, economy. These

six dimensions are integrated and connected with traditional regional and neoclassical

theories of urban growth and development in order to increase the efficiency, effective-

ness and resilience of the overall system, thus utilizing potentials for making social and

ecological improvements and positively impacting all aspects of metropolitan life [Giffin-

ger et al., 2007]. This includes the following objectives: improve the quality of life of

all citizens and their ability to take active part in society, allow citizens to participate

through transparent decision-making processes in the governance of their city, reduce

the use of finite resources and support the use of renewable resources, ensure and opti-

mize the long-term provision of public services, enhance the fitness for survival, ability to

adapt and general resilience of the settlement area, maintain or increase the competitive

strength of the local economy.

All the aforementioned issues are addressed by incorporating new technologies in

the area of mobile communications, multimedia services, data storage and ubiquitous

computing, and integrating all dimensions of human, collective, and artificial intelli-

gence available within a city [Komninos, 2006] [Komninos, 2008]. Leveraging advances

in sensor technologies, urban experiments and data analysis, new insights into creating a
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data-driven approach to urban design and planning can be provided so that more reliable

statistics can be built or rapid reactions can be triggered. For example, “urban sensing”

will enable a fine-grained yet pervasive monitoring of critical factors in large urban areas

such as the pollution level, road traffic status, public transport utilization, sudden danger

situations in buildings or on streets, and resource (e.g., energy, water, gas) usage. Smart

grids are envisioned to enhance the reliability, efficiency and safety of energy distribution

as well as its conservation, through integrated metering and data communication. 4G

cellular systems in urban areas will heavily rely on opportunistic offloading to deliver

high quality audio, video and data. Collective awareness platforms will combine online

social media, distributed knowledge creation and data from real environments (“Internet

of Things”) in order to create awareness of problems and possible solutions requesting

collective efforts and foster new forms of social innovation and participatory democratic

processes. Finally, Intelligent Transportation Systems (ITS) will revolutionize our experi-

ence in transportation, by reducing travel times, improving road safety and unleashing a

new generation of infotainment applications through networked vehicles.
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Chapter 3

Smart mobility: Intelligent

Transportation Systems and

Applications

The development of smart vehicles and transportation systems has emerged as one

of the most fundamental societal challenges of the next decade. Vehicles have turned

from mechanical systems into embedded software platforms on wheels, sometimes with

a supporting infrastructure. At the same time, automotive manufacturers are striving to

integrate mobile devices, vehicular communication networks, and information and com-

munication systems in order to provide innovative services relating to different modes of

transport and traffic management and enable various users to be better informed and

make safer, more coordinated, and smarter use of transport networks. This includes

developing innovative cooperative systems that enable road users and infrastructures to

exchange information in real time and in an autonomous manner, pervasive sensing to

monitor the vehicles’ operation and the status of surroundings, big middleware platforms

for information management and sharing, data analytics for the processing of the moni-

tored data, and appropriate interaction interfaces between drivers and vehicles. Current

market estimates suggest that vehicles equipped with these new technological capabilities

will top 1.5 billion worldwide by 2020.

To upgrade human mobility in urban areas towards a more sustainable and con-

nected future it is of paramount importance to address the technical, economical and
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regulatory challenges that arise from the integration of different socio-tech dimensions.

On the technical front, the various types of ITS rely on radio services for communication

and use specialized technologies encompassing vehicular networks, electrical engineer-

ing (sensors, instrumentation, wireless communications, etc.), mutlimedia and Internet

services to support road, rail, water and air transport (including navigation systems).

As a prospective ITS technology, vehicular networking have recently been attracting

an increasing attention from both research and industry communities. The Vehicular

Ad-hoc NETworks (VANETs) are a form of Mobile Ad-hoc NETworks (MANETs) that pro-

vide means for communication among vehicles (e.g., normal and dedicated) featuring the

vehicle to vehicle communication mode (V2V) and between vehicles and fixed road-side

infrastructure (e.g., traffic lights, bus stations or toll stations) being referred to as vehicle

to infrastructure communication mode (V2I).

The V2V communication infrastructure assumes the presence of high bandwidth and

thus, provides low latency data dissemination among vehicles. The radios typically oper-

ate on unlicensed band making the spectrum free1. In particular, VANETs are expected to

implement wireless technologies such as dedicated short-range communications (DSRC)

which is a type of Wi-Fi, specifically designed for automotive use and road use mea-

surements, that works in 5.9GHz band with bandwidth of 75MHz allocated by FCC, or

30MHz allocated be ETSI and approximate range of 1000m. Intelligent vehicular ad-hoc

networks (InVANETs), which is another term for promoting vehicular networking, inte-

grates multiple networking technologies such as Wi-Fi IEEE 802.11p, WAVE IEEE 1609,

WiMAX IEEE 802.16, Bluetooth, IRA and ZigBee. In April 2014 it was reported that U.S.

regulators were close to approving V2V standards for the U.S. market, and that officials

were planning for the technology to become mandatory by 20172.

On the other hand, Infostations and 3G/4G mobile standards primarily support

the V2I communication mode [Frenkiel et al., 2000]. Infostations consist of wireless

access points deployed at specific locations in the road network. Infostations’ technology

envisions intermittent connectivity and can sustain high bandwidth (ultra-high-speed

radios of Mbps or even Gbps rates) with low latency. The use of wireless technologies

1http : //en.wikipedia.org/wiki/V ehicular_ad_hoc_network
2http : //www.voanews.com/content/vehicles − may − soon − be − talking − to − each − other −

/1886895.html
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that utilize unlicensed band makes Internet accesses through Infostation extremely low-

cost. For example, current generations of hardware use variants of the 802.11 standard.

Finally, the future cellular communication technology promises high data-rates with high

mobility support and smooth handoff across heterogeneous networks. Since the spectrum

under use in this case is a licensed band, there is an increased cost per bit and thus,

Internet access is more expensive than with Infostations.

In many ways VANETs are similar to MANETs. On the one hand, both networks are

multi-hop mobile networks having dynamic topology. On the other hand, unlike MANETS

the mobility pattern of VANET nodes is predictable, that is, vehicular nodes move on spe-

cific paths (roads) and not in random direction. They also differ on the storage capacity,

battery and processing power. Sufficient storage capacity and high processing power can

be easily made available in vehicles. Moreover vehicles also have enough battery power

to allow for long range communication. Another difference is the highly dynamic topology

of VANETs due to vehicles’ high velocities which makes the lifetime of communication

links between nodes quite short. Node density is also unpredictable; during rush hours

the roads are crowded with vehicles, whereas at other times lesser vehicles are there,

or similarly, some roads have more traffic than other roads. As a last difference from

typical MANETs, in VANETs the wired Internet infrastructure is omnipresent and readily

accessible via WiFi, DSRC, WiMAX, 3G, LTE, etc. [Gerla & Kleinrock, 2011].

The specific characteristics of vehicular networks favor the development and imple-

mentation of a myriad of attractive and challenging services and applications related to

vehicles, vehicle traffic, drivers, passengers and pedestrians. In fact BMW, Fiat, Renault

and other organizations have united to develop a vehicular communication consortium,

dedicated precisely to impose Vehicle to Vehicle (V2V) and Vehicle to infrastructure (V2I)

communication and develop safety related information and access location-based ser-

vices. In general, vehicular networking applications can be classified as (a) safety, (b) traf-

fic efficiency/assistance and (c) infotainment applications [Karagiannis et al., 2011] [Gerla

& Kleinrock, 2011] [Saira Gillani & Qayyum, 2008].
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Safety applications

Providing safety is the primary objective of vehicular communication networks. Safety

applications provide information and assistance to drivers to avoid accidents. This can

be accomplished by sharing information between vehicles and road-side units which is

then used to predict collisions. Such information can represent vehicle position, inter-

section position, speed and distance heading. For example, electronic sensors in each

car can detect abrupt changes in path or speed and send appropriate warnings. More-

over, information exchange between the vehicles and the road-side units is used to detect

hazardous locations on roads, such as slippery sections or potholes. In more advanced

systems, vehicles involved in a junction merging maneuver negotiate and cooperate with

each other and with road-side units to realize this maneuver and avoid collisions or notify

close vehicles about lane changes so that others can make better decisions. Likewise,

at intersections the system can decide which vehicle has the right to pass first and alert

all the drivers. Safety applications demand strict time delay bounds requiring messages

to be propagated to the target vehicles with very low latency (a few nano-seconds). Due

to intermittent connectivity in infrastructure-based communication, V2I cannot provide

delay guarantees in latency critical applications, while the widespread 3G based cellular

data access networks can provide continuous connectivity at low bandwidths which could

induce a delay up to a few seconds. On the other hand, V2V communication constitutes

one pivotal tool in improving the monitoring, distribution, and processing of traffic in-

formation for safety and efficiency since it can sustain the latency requirements for data

dissemination in such applications.

Traffic efficiency/assistance applications

Traffic efficiency and assistance applications focus on improving the vehicle traf-

fic flow, traffic coordination and traffic assistance and provide information of relevance

bounded in space and/or time. This class of applications includes (a) speed manage-

ment and (b) cooperative navigation. The first one aims at assisting the driver to avoid

unnecessary stopping and manage the speed of his vehicle for smooth driving. With the

second one, the navigation of vehicles is managed through cooperation among vehicles

and through cooperation between vehicles and road-side units. For example authori-
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ties may change traffic rules according to a specific situation (e.g., bad weather) or for

accommodating ambulances, fire trucks, and police cars. Also information about the

road congestions can be provided/displayed to reducing the congestion and improving

the capacity of roads. In a more advanced approach, congestion at road intersections can

be handled using intelligent traffic signals that can adjust themselves in response to the

traffic conditions. Some other applications can also be envisioned like automated call to

emergency services, en-route and pre-trip traffic assistance. These applications require

either intermittent or continuous Internet connectivity and hence, a tight integration of

V2V and V2I functionalities may respond to the emerging requirements.

Infotainment applications

As with many other communication networks, vehicular networks can be used to ob-

tain various content and services (not directly related to travelling). In this respect there

are two typical groups of infotainment applications: (a) cooperative local services and (b)

global Internet services. The first type focuses on infotainment that can be obtained from

locally based services such as point of interest notification, local electronic commerce

and media downloading, while the second type includes virtually every application that is

currently used in the Internet including peer-to-peer gaming, chatting, content sharing,

etc.. Commuters can enjoy the facility of Internet connectivity where other traditional

wireless Internet connectivity options (e.g., Wi-Fi, Wi-MAX etc.) are not available. With

VANETs, this possibility may be realized if a vehicular node connected to Internet share

its connectivity with others. In principle, delay-tolerant Internet-connectivity-based ap-

plications as well as the privacy and security concerns that are present in many of them

can be addressed through the V2I communication. Yet, as in traffic efficiency/assistance

applications, pure V2I-based solutions will not be sufficient to address the challenges

concerning latency and connectivity arisen for every case.

In this thesis we primarily interested in competitive networking contexts and hence,

apply our study in instances of parking assistance applications that expose features of

such environments. These applications lie at the intersection of traffic management and

infotainment applications. In the following chapter we outline research on the develop-

ment and modeling of parking assistance systems.
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Chapter 4

Parking assistance systems

The efficient use of urban space has always been both a requirement and a challenge

in the process of city planning. It calls for several interventions in the way cities are

organized, including the efficient management of the car volumes that daily visit the city

centre and other popular in-city destinations. Part of this task is the effective operation

of the sometimes minimal parking space. The reduction of time that vehicles spend

searching for parking places alleviates not only the traffic congestion problems but also

the environmental burden.

The real dimensions of the parking place search problem depend on several factors.

The existence of popular destinations, personal parking preferences, and the drivers’

unwillingness to park but only in close proximity to the destination, aggravate the prob-

lem. The general problem of parking space search has seen contributions from different

scientific disciplines such as economics, transportation, operations research, and com-

puter science. Academic research but also public and/or private initiatives have made

a remarkable effort in the past years to solve the problem through parking assistance

systems. Common feature of these systems is the exploitation of wireless communica-

tions and information sensing technologies to collect and share information about the

availability of parking space in the search area. This information can be then used to

steer the parking choices of drivers with the aim to reduce the effective competition over

the parking space and make the overall search process efficient.
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4.1 Centralized parking systems

On the assisted parking search front, initial work focused on centralized parking

(reservation) systems. The system in [Boehle et al., 2008] consists of four components:

an on-board device located in the vehicle, intelligent network enabled lampposts, a sensor

network that monitors the availability of parking places and a centralized parking spot

scheduling/reservation server. Likewise, in the architecture in [Wang & He, 2011], every

parking lot runs a reservation authority that collects parking requests via the Internet,

extracts real-time statistics about its parking availability and routes them to a centralized

management system that dynamically determines and broadcasts the parking fees, draw-

ing on the relationship between parking demand and supply. Both systems are shown to

better distribute the car traffic volume. Along the same line, Lu et al. in [Lu et al., 2009]

propose SPARK for reducing the parking search delay. SPARK consists of three distinct

services, i.e., real-time parking navigation, intelligent antitheft protection and friendly

parking information dissemination, all making use of roadside network infrastructure.

Finally, the authors in [Mathur et al., 2010] design, implement, and evaluate a system

that generates a real-time map of parking space availability. The map is constructed at a

central server out of aggregate data about parking space occupancy, collected by vehicles

circulating in the considered area. In a similar approach, the Parkomotivo system1 has

been launched to monitor through a dedicated wireless sensor network and analyze us-

ing a data mining engine, on-street parking patterns in the city of Lugano (Switzerland).

Drivers’ can be informed by the Parkomotivo’s tweet stream about the collected real-time

parking availability data.

4.2 Opportunistic parking systems

Work on opportunistic parking search assistance, where information about the lo-

cation and vacancy of parking spots is opportunistically disseminated among vehicles, is

rarer and more recent. In [Verroios et al., 2011] the vehicular nodes solve a variant of the

Time-Varying Travelling Salesman problem while dynamically planning the best feasible
1Parkomotivo: parking application for the city of Lugano, available online in http : //www.bmob −

park.com
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trip along all (reported to be) vacant parking spots. The solution attempts to minimize

the total transit cost of the travelled path taking account of the time needed to reach a

parking spot, the walking time from the spot to the actual destination and the probability

to find the spot available. Despite the interesting treatment of the parking problem, it

makes in advance the rather debatable assumption that vehicles’ trips follow necessarily

all reported spots. Moreover, the applied cost function may paradoxically prioritize a

parking spot of lower over another of higher availability, when they tie in all other criteria

(time to park, walking time). In [Caliskan et al., 2006], vehicles are allowed to exchange

aggregate parking information of variable - low - accuracy in order to limit the volume

of disseminated information for the sake of scalability. Simulation measurements and

conclusions are derived for the profile of nodes’ cache entities (i.e., information dissemi-

nation rates, freshness and spatial distribution of information in nodes’ cache) under full

or selective dissemination. On the other hand, the way the opportunistic exchange of in-

formation among vehicles may sharpen competition for parking space is treated in [Delot

et al., 2009]. The authors propose a distributed virtual parking space reservation mech-

anism, whereby vehicles vacating a parking spot selectively distribute this information

to their proximity. Hence, they mitigate the competition for the scarce parking spots by

opportunistically controlling the diffusion of the parking information among drivers.

4.3 Parking systems through vehicular social networks

The more recent approaches to the assisted parking search add a social media layer

over the vehicular network. These have a strong distributed flavor in that the mobile ap-

plications run on drivers’ smartphones (or could run on-board vehicles) and information

is collected opportunistically as these move around in the city. Yet, they are coupled by

a social networking front end that lets the information spread (and reservations happen)

almost instantaneously, in ways that resemble a centralized system. Almost all pro-

posed applications feature an incentive mechanism that rewards application users with

points each time they handover a parking spot to another application user. Under “Park-

ingDefenders” (Athens, Greece)2, high-score users enjoy higher chances to be chosen by
2ParkingDefenders: parking application for Athens (Greece), available online in http :

//www.parkingd.com
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a parking spot defender, whereas with “ParkShark” (New York)3 such users get informed

prior to others about vacant spots. On the other hand, in “PlaceLib” (Paris)4 and “Kurb”

(San Francisco)5 the subscribers announce when they leave a spot and hand their spot

to another driver who announced that he is looking for one. The offer is rewarded by an

amount of non-monetary credits that can be consumed to send a request for an offered

spot.

4.4 Modeling the parking spot selection problem

4.4.1 Operations research

The first formulations of the parking search problem appeared in the context of the

broader family of stopping problems. In [MacQueen & Miller, 1960] parking spots are

spread randomly with density λ over equal-size blocks that are adjacent to the driver’s

travel destination. The driver circles through them, crossing the destination every time

such a circle is over, and upon encountering a vacant spot he has to decide whether to take

it or skip it and seek for a better one. Ferguson in http : //www.math.ucla.edu/ tom/Stopping/

considers a simpler variant of the problem, whereby the driver’s destination lies in the

middle of an infinite-length straight line with parking spots that are occupied with prob-

ability p. In either case, the optimal policy for the drivers is shown to be of the threshold

type: they should occupy an available vacant parking spot whenever this lies within some

distance r = f(λ), resp. f(p), from their destination and continue searching otherwise.

4.4.2 Economics

Pricing and the more general economic dimensions of the parking allocation problem

are analyzed from a microeconomical point of view in [Anderson & de Palma, 2004]. An-

derson and de Palma view the parking spots as common property resource and question

whether free access or some pricing structure result in more efficient use of the parking

capacity. Working on a simple model of city and parking spot distribution, they show

3ParkShark: parking application for New York City, available online in http :
//www.parkshark.mobi/www/

4PlaceLib: parking application for Paris, available online in http : //www.placelib.com
5Kurb: parking application for San Francisco, available online in http : //www.kurbkarma.com
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that this use is more efficient (in fact, optimal) when the spots are charged with the fee

chosen in the monopolistically competitive equilibrium under private ownership; whereas

drivers are better off when access to the parking spots is free of charge. The degree of

importance of the parking pricing policy in resolving drivers’ quesswork of choosing park-

ing space, has inspired the developers of SFpark6 to establish and operate an advanced

parking assistance system that not only collects and distributes real-time information

about meter and garage parking space in San Francisco but, most importantly, it uses a

demand-responsive pricing mechanism to match the parking availability to the emergent

demand.

4.4.3 Game Theory

Subsequent research contributions have explicitly catered for strategic behavior and

the related game-theoretic dimensions of general parking applications. In [Arnott, 2006],

the games are played among parking facility providers and concern the location and

capacity of their parking facility as well as which pricing structure to adopt. Whereas,

in the two other works, the strategic players are the drivers. In [Arbatskaya et al.,

2007], which seeks to provide cues for optimal parking lot size dimensioning, the drivers

decide on the arriving time at the lot, accounting for their preferred time as well as their

desire to secure a space. In a work more relevant to ours, Ayala et al. in [Ayala et al.,

2011] define a game setting where drivers exploit (or not) information on the location of

others to occupy an available parking spot at the minimum possible travelled distance,

irrespective of the distance between the spot and driver’s actual travel destination. The

authors present distributed parking spot assignment algorithms to realize or approximate

the Nash equilibrium states.

6SFpark: parking application for San Francisco, available online in http : //sfpark.org/
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Part II

Effectiveness and side-issues of

competition awareness
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Advances in information and communication technologies (ICT) have dramatically

changed the role of users and resulted in unprecedented rates of information generation

and diffusion. On the one hand, many different types of sensors are being integrated

with mobile communication devices. On the other hand, online social applications are

proliferating. Together, these developments add to the heterogeneity of users in terms of

interests, preferences and mobility, and enable the collection and dissemination of huge

amounts of information with very different spatial and temporal contexts. This informa-

tion can be intelligently controlled by platforms that collectively enrich people’s awareness

about their environment and its resources and promote new forms of participatory pro-

cesses and approaches to managing them.

Aside from contributing to building collective awareness, users may actually exploit

awareness of their environment to meet their own needs or achieve certain individual ob-

jectives. Overall, users are actively involved in both the dissemination and consumption

of the information.

However, situations repeatedly emerge where the users’ welfare is better satisfied by

the same finite set of resources, ranging from natural goods such as water and electricity,

to human artefacts such as urban space and transportation networks. In these environ-

ments, competition naturally emerges among entities (both people and networked nodes)

desiring to use those resources. If the disseminated information concerns the availability

of some limited resource or service, it is important to understand how the presence of

competition shapes decisions taken by these entities regarding the specific way these

entities participate in disseminating information and creating collective awareness and

the way collective awareness is exploited if at all. The first of these very general and

fundamental questions amounts to deciding whether a networked entity will deviate from

the expected behavior (misbehave) by hiding or falsifying resource or service availability

information, to reduce the competition to its advantage. The second amounts to deciding

whether a networked entity will compete or not compete for some limited resources.
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Chapter 5

Information dissemination

In competitive autonomic networking environments, user nodes face a strategic

dilemma: on the one hand, they need to cooperate to support the networking infras-

tructure and information flow; on the other hand they are tempted not to do so, e.g., in

order to conserve own system resources or create an advantage for themselves. In various

mobile applications involving competition for scarce resources, networked entities (user

nodes) have to autonomously decide whether to dispose private information about the

resources. Information is essentially a kind of asset; sharing it, user nodes assist their

potential competitors, in anticipation of their support in due course.

Another feature of emerging network paradigms is the strong spatiotemporal di-

mension associated with both the demand and supply of the overwhelming (in volume)

content and services. The spatial dimension has emerged mainly due to the localized

nature of most sensing devices, the mobility of the user-nodes that inherently contains

the notion of location, the (limited-range) wireless communication medium, the need to

contain (locally) most of the low demand services/content to address scalability issues,

etc.. The temporal dimension has emerged mostly due to the spontaneous nature of the

services/content and the high dynamicity of the emerging networking environments due

to - among others - the user-node mobility.

Recent trends such as the smart city initiative [Caragliu et al., 2009] expose all these

dimensions and give rise to further settings, where truthful altruistic information sharing

is required but not guaranteed. We investigate a realistic scenario of city-level parking

assistance service that instantiates such emerging environments.
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5.1 Impact of perfect cooperation

5.1.1 Introduction

In this section we draw on a concrete parking space search application to explore

fundamental tradeoffs of wireless networking solutions to the provision of real-life ser-

vices. In particular, we consider a city area, wherein each vehicle (mobile user) moves

towards a chosen destination and seeks vacant parking space in its vicinity. Three main

approaches to the parking space search problem are investigated, each representing a

distinct paradigm of how wireless networking communications can assist the information

management process. In the first approach, the vehicles execute the currently common

“blind” sequential search for parking space by wandering around the destination. In the

second distributed approach, the vehicles, while moving around the area, opportunisti-

cally collect and share with each other information on the location and status of each

parking spot they encounter. Finally, with the third approach, the allocation of parking

spots is managed by a central server availing global knowledge about the parking space

availability.

We use both simulation and analysis to systematically compare the three radically

different paradigms for collection, sharing, and exploitation of service-related information.

Two scenarios drive our discussion. The first one involves vehicles seeking parking space

all over the city area (uniformly distributed destinations). The second scenario features a

single area that acts as an attraction pole for vehicles (hotspot). We assess the effective-

ness of the parking search process through user-oriented performance metrics, such as

the parking search time and route length, and the proximity of the found/assigned park-

ing spot to the user travel destination, but also through system-oriented performance

metrics, such as the average utilization of parking spots.

5.1.2 Approaches to parking space search

We summarize three basic approaches to the parking space search problem. Each

one represents a distinct paradigm for localizing and occupying vacant parking spots1.

1Note that current navigation systems can locate parking lots, yet they cannot provide information about
the availability of parking places therein.
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In the same time, they reflect existing or under development systems; some of them are

indicatively presented in Chapter 4. In all three cases, there is a fixed set of parking

spots P, with |P| = P , distributed across a city area A, and a finite population of vehicles

V, with |V| = V , moving therein. Vehicles drive towards their travel destinations and

enter the parking search process as soon as they approach them, i.e., enter the initial

parking search area (Ref. Figure 5.1). The main differentiation factor among the three

approaches is the way users ( i.e., vehicles) exploit, or do not exploit, information about the

availability of parking space within the search area. Each parking spot is equipped with

a sensor providing information about its occupancy status. Vehicles, properly equipped

with short-range wireless interfaces and adequate storage and processing capacity, may

collect information on the status of each parking spot they encounter. Moreover, they may

acquire and store additional global or partial, accurate or imprecise, knowledge about the

distribution of the free parking space throughout the area A via communicating with

other vehicles or a central server.

Figure 5.1: Section of city area A showing the vehicle’s path towards a parking spot close
to its travel destination.

Non-assisted parking search (NAPS)

According to the current common practice in search for parking space, drivers wander

around their travel destination and sequentially check the availability of encountered

parking spots. Typically, the search is initially carried out within an area around the

drivers’ travel destination (initial parking search area), whose size depends on the drivers’

attitude and sense of traffic load and parking demand thereby. The radius of the search
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area then grows progressively as parking search time increases until drivers find a vacant

parking spot and occupy it. This, essentially blind, search practice gives often rise to

congestion problems and results in fuel/time wastage, especially around popular travel

destinations such as shopping areas and business districts in big cities.

Opportunistically-assisted parking search (OAPS)

Information about the location and status of parking spots may become available to

vehicles with the opportunistically-assisted parking search (OAPS) scheme. Indeed, re-

cent advances in wireless communication, sensing and navigation technologies promise

to make the parking search process smarter and more efficient. One way to do this is by

equipping parking spots with sensors providing information about their occupancy sta-

tus (e.g., [Caliskan et al., 2006]) and vehicles with devices (e.g., PDAs supporting ad-hoc

communication mode) able to collect and share information about parking spots’ location

and status as they circulate around. Alternatively, sensors can be mounted onboard the

vehicles and actively monitor road-side parking availability (e.g., via ultrasonic rangefind-

ers, [Mathur et al., 2010]). However it is collected, this information can be further filtered

across time (aging) and space through use of timestamps and knowledge of the parking

spot coordinates (e.g., via GPS) and help vehicles make more informed decisions. Rather

than wandering randomly in the parking search area, a vehicle can now direct its search

towards selected parking spots that are listed in its cache as the closest vacant ones to

its travel destination. If the spot is actually vacant when it arrives at it, it occupies it;

otherwise, it repeats the spot selection process, being also prompt to occupy any vacant

spot it may find on its way to the candidate spot.

The opportunistic information dissemination mechanism of OAPS does not enforce

global common knowledge about the availability of parking space. As the status of parking

spots changes in time, stored data are potentially outdated after some time interval.

Therefore, the frequency of information updates is critical for the effective operation of the

scheme. The faster information circulates across the wireless networking environment,

the more accurate data will be stored in the caches of vehicles.

On the other hand, depending on the travel destinations of the users, the fast dis-

semination of information may synchronize the caches and, consequently, the movement
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patterns of individual vehicles and aggravate the effective competition for given parking

spots. As we show in Section 5.1.5, how this tradeoff is resolved for OAPS depends on

several factors such as the number of vehicles moving in the area A, their speed, travel

preferences (destinations), and the road grid structure.

Mobile storage node opportunistically-assisted parking search (msnOAPS)

The inflow of information to each vehicle may increase further through the use of

dedicated or normal vehicles Mobile Storage Nodes (MSNs), i.e., city taxicabs. The MSNs

are equipped with wireless interfaces that allow them to collect parking information and

share it with other mobile nodes, i.e., user-vehicles and MSNs. These nodes act as relays,

creating additional contact opportunities between vehicles and hence, space-time paths

for the flow of parking information.

Regarding the storage capability of these nodes, it is assumed that the MSNs can

handle data about all considered parking places. As the occupancy status of parking

places changes with time, the accuracy of their stored information tends to drop. There-

fore, the information they disseminate is not always useful.

Centrally assisted parking search (CAPS)

With CAPS, the full information processing and decision-making tasks lie with a

central processor (server). Vehicles and parking spot sensors are only responsible for

transmitting to the server parking requests and spot vacancy information, respectively.

The semi-real-time two-way communication of the server with the vehicles and the park-

ing spot sensors calls for heavier network infrastructure, both wired and wireless.

When submitting its parking request, each vehicle specifies its destination to the

centralized server. In a First-Come-First-Served (FCFS) manner2 the server queues the

requests and satisfies them, reserving for the vehicle that parking spot amongst the

vacant ones, which lies closest to its destination. The user is then notified about the

reservation, i.e., parking spot he should drive to. Therefore, and contrary to NAPS and

OAPS, the vehicle is directed towards a guaranteed vacant parking spot. While waiting
2Different scheduling disciplines are generally applicable when processing the parking requests. Herein,

we focus on the FCFS policy for exploring the relative performance of the centralized paradigm for sharing
and processing information and demonstrating the related tradeoffs.
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for the system assignment, the user keeps on moving towards random directions within

the area.

Two more remarks are worth making about the parking search approaches and

the way we investigate them in this work. Firstly, the structural difference between

distributed and centralized systems also differentiates their installation, operational and

maintenance costs. A fixed centralized infrastructure requires not only a large amount of

investment upfront but also an elaborated architectural design for maintenance purposes.

Furthermore, additional concerns are related to the system scalability with the number

of monitored parking places and the burden of potentially re-dimensioning of the sensing

web. On the contrary, vehicular networks emerge as a cost-effective networking platform

that exploits the powerful, in terms of energy and computational might, vehicular nodes

in favour of a wide range of applications. Ref. [Mathur et al., 2010] reports installation

and operating costs for fixed infrastructure, whereas [Carreras et al., 2005] [Mathur et al.,

2010] [Caliskan et al., 2006] highlight the savings of an infrastructure-free system.

Secondly, throughout Section 5.1 we assume that vehicular nodes are fully cooper-

ative. Partial or no cooperation of vehicles/drivers is a concern for both the CAPS and

OAPS approaches. Although the OAPS scheme has inherent diversity, selfish and/or

malicious behaviors can undermine its performance significantly. Thereby, the detection

and penalization of misbehaviors is really challenging. We extend this study to accommo-

date misbehavior instances in Section 5.2. On the other hand, considering that practical

implementation of the CAPS approach avail V2I communication infrastructure, super-

visory mechanisms can consist a separate level in the overall system architecture. For

instance, these mechanisms could vouch for system robustness through either imple-

menting barrier-controlled metered parking spaces or enforcing penalties in a pervasive

sensing road platform. In the same notion, the established fixed sensor network need to

function not only to monitor the parking space availability but also confirm the parking

events (and thus support billing).
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5.1.3 Performance evaluation methodology

Simulation environment

We have developed a simulation environment in the C programming language that

reproduces in adequate detail the three parking search approaches. We briefly summarize

it below:

Road grid: The simulator implements a grid of two-lane roads (one lane in each

direction) in a city environment; each road traverses the grid from the one side to the

other, as shown in Figure 5.2. Additionally, there are roundabouts in every intersection,

connecting up to four converging roads. Parking spots are uniformly distributed across

roads’ lanes of the grid.

Figure 5.2: Simulation environment: 1200× 1200m2 road grid with randomly distributed
parking places.

Vehicle movement: The vehicle mobility model comes under the broad category of

behavioral mobility models. Two levels of behavior can be identified: the global, deter-

mining how destinations are selected and the way the vehicles choose the route towards

them; and the local, addressing how the vehicles move within the roads comprising the

route.

At the global level, every time a vehicle frees a parking spot, it chooses a new desti-
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nation and drives towards it. Once it reaches adequately close to the destination (initial

parking search area), the parking search process is initiated. The initial parking search

area is circular; it is centered at the travel destination with radius equal to half the dis-

tance between two adjacent road intersections. Where the vehicle drives next depends on

the employed search strategy.

• Under the NAPS strategy, the vehicle will circulate randomly within its initial park-

ing search area. This random movement has been modelled by the selection of

random geographical coordinates that correspond to a point inside the cyclic park-

ing area.

• Under the OAPS strategy, the vehicle will consult with the information stored in

its memory. In particular, the stored records (parking spot, status, timestamp)

are filtered both temporally, to exclude information that is outdated (i.e., coupled

with a timestamp that is beyond a threshold value), and spatially, to retain as

candidates only spots in the current search area. Out of the remaining spots, the

nearest-to-destination available one is selected (Full use of Memory, FM ). If no record

survives the spatiotemporal filtering step, the driver chooses randomly one spot

within the parking search area and moves towards it (Random use of Memory, RM ).

In the absence of any information about parking spots within the current area of

interest, the vehicle circulates blindly/randomly within the area (No Memory, NoM ).

In all cases, vehicles move along shortest routes to their destinations (in Manhattan

distance terms) and occupy the first available parking spot on their way to them

rather than pursing closer-to-destination, yet non-guaranteed, parking options.

• Under CAPS, the user moves randomly within the parking search area till he is

directed by the system to drive to the reserved parking spot. The centralized server

queues the requests and processes them in a First-Come-First-Served order.

The above procedure defines where the user should drive next. Upon arrival to this

location, the user faces two possibilities: (a) the location corresponds to a vacant parking

spot. The user then occupies it for some time interval that may follow different probability

distributions. By the end of this interval, the vehicle vacates the spot and selects another
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destination; (b) the location does not correspond to a parking spot or, if it does, it is

occupied - both count as failed attempts. Upon a failed attempt, under NAPS/OAPS, it

will check anew its memory (if available), and repeat the search, whereas under CAPS,

it continues the random movement within the bounds of this city environment along the

horizontal and vertical roads (notice that the centralized system quarantees the reserva-

tions and hence, no vehicle is driven towards occupied spot). If the failed attempts in

the current parking search area exceed a threshold value, the range of the search area is

increased.

At the local level, the position of each vehicle by the next simulation time step depends

on its current position and velocity. More specifically, the vehicles adapt their speed

according to their distance from: (a) the front vehicles (they are not allowed to overtake

one another); (b) the next intersection; and (c) the nearest parking spot, assuming that

they decelerate when encountering parking spots to check their status. Their speed

is zeroed when they get stuck in traffic jam, enter a roundabout intersection, or park.

Finally, the vehicles are not allowed to stop or move in the reverse direction of the traffic

flow.

Simulation set-up

For the simulations we consider a two-lane road grid with dimensions 1200×1200m2,

as shown in Figure 5.2. The distance between two adjacent intersections in the grid is

300m and parking places are uniformly distributed alongside road lanes. The num-

bers of vehicles and parking spots vary to generate different vehicle and parking spot

densities. Guidance for the selection of the vehicle densities are provided by relevant

research efforts reported in literature. For instance, in [Caliskan et al., 2006] the au-

thors study a networking environment, where the vehicular nodes’ (not stable) density is

drawn near 33veh/km2. Similarly, [Carreras et al., 2005] explores the performance of a

V2V communication platform, assuming 50veh/km2 moving according to the Manhattan

Model. Motivated by these values, we end up with vehicle densities ranging from 3.5 to

45veh/km2.

The parking time of all vehicles are i.i.d. exponential RVs with means ranging from

300 to 3600s. We assume an exponentially increasing rate for the search area and an
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increment step fixed to the half of the distance between two adjacent intersections. The

duration of simulations is 105s, which is enough time to generate a significant number of

parking events in all runs. The maximum vehicle speed is set to vmax = 50km/h; note that

the actual instantaneous vehicle velocity may range anywhere in [0, vmax], as explained

in paragraph “Simulation environment” in this section. The vehicle-parking spot sensor

communication range is set to 15m, whereas the intra-vehicle communication range is

70m. In all graphs reported in Sections 5.1.5 and 5.1.6, we plot the averages of ten

simulation runs together with their 95% confidence intervals.

Performance metrics

1. Driver-level metrics: When someone moves towards a specific destination, he aims

for the shortest route and minimum travel time (these may not be necessarily com-

patible objectives). When he needs to park, on top of that, he prefers the nearest

to the destination-parking place (best parking place). In the ideal case, someone

will reach it travelling the shortest possible route from his initial location to that

parking place (best way). Therefore, the metrics we consider for comparing the three

approaches to parking search are:

(a) Parking search time, Tps: Once the driver enters the initial parking search

area (Ref. Figure 5.1), he will start seeking for a parking place. This time is

highly dependent on the parking space density in the considered area, traffic

congestion level, and competition for parking space around the destination.

(b) Parking search route length, Rps: It refers to the distance a driver travels till

he parks his vehicle, measured from the moment he enters the initial parking

search area. The parking space density and the demand for parking are the

two factors that primarily affect Rps for given city area and vehicle speeds.

Besides expressing user satisfaction, Rps and Tps also reflect social objectives in

that more travelling results in additional fuel consumption and environmental

burden.

(c) Destination-parking spot distance, Dp: It expresses the geographical distance

of the two points and, contrary to Tps and Rps, it is exclusively a measure of
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user satisfaction: the closest the parking spot lies to the destination, the more

attractive it is.

2. System-level metric: In order to capture the actual exploitation of the road parking

capacity, we employ the metric Availability time, Ta which measures the average

time each parking spot remains vacant.

5.1.4 Modeling the centralized approach

In this section, we present an analytical model for the centralized approach to parking

space search (CAPS) and use it to analytically derive its main performance measures. The

model is later validated in Section 5.1.5 against simulation results.

Anytime, the C vehicles may find themselves in one of three states: (a) travelling

towards their destination without yet having issued a parking request to the system; (b)

driving within the parking search area having issued a parking request and waiting for a

parking assignment; and (c) parked (or on the way to the parking spot that is reserved for

them by the system). The system can be modelled by a finite-source G/G/r queue with

r = P servers (parking spots).

G/G/r model input process. A vehicle enters the queueing system when it submits a

parking request, i.e., when it crosses the border of the initial parking search area. Under

uniform distribution of travel destinations and parking spots in the area A, the time Tt

that vehicles spend travelling, from the moment they release a parking spot till the time

they issue a new parking request, is a random variable (RV) written as

Tt = Dt/v (5.1)

In equation (5.1), v is the vehicle speed and Dt the random variable denoting the line

picking distance, whose probability distribution is known for various known geometries

such as circular, square, rectangular areas [Mathai, 1999]. For example, for square areas

of unit side length, fDt(x) is given by

fDt(x) =

{
2x(x2 − 4x+ π) for 0 ≤ x ≤ 1

2x[4
√
x2 − 1− (x2 + 2− π)− 4 tan−1

√
(x2 − 1)] for 1 ≤ x ≤

√
2
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so that the probability distribution function of the travelling time within a square

area of side length l can be written

fTt(t) = v · fDt(vt/l)/l (5.2)

and its expected value and variance are

Tt =

∫ √2l

0

tfTt(t)dt ≈ 0.52l/v = 1/λ

σ2
t =

∫ √2l

0

(t2 − Tt)fTt(t)dt ≈ 0.06l2/v2 (5.3)

where λ denotes the rate at which each vehicle submits parking requests to the

system.

G/G/r model service time. The vehicle (requests) may stay in the queue for variable

time Tq, before they are processed, depending on the request backlog and the order in

which requests are treated. The service time, Ts, starts when the vehicle is assigned

with a parking spot and directed to drive there, and consists of two components: the

parking time spent in the reserved parking spot, Tp, plus the travel time, Tf , spent on

driving towards the reserved parking spot, starting from its position at the moment the

assignment was communicated to it (final leg travel time).

Generally, the distribution of Tf depends on the proximity of the assigned parking

spot to the vehicle travel destination. Different policies may constrain this distance; for

instance, there may be an upper bound on how far from the travel destination a car may

park, beyond which vacant parking spots are not considered eligible for a vehicle. The

mean (1/µ) and variance of Ts are given by Tp + Tf , σ
2
p + σ2

f − 2Tp · Tf , respectively.

G/G/r performance measures. In assigning parking spots to vehicles, the server

effectively solves an instance of the machine interference problem (MIP), also referred to as

the machine repairman problem [Haque & Armstrong, 2007] [Iravani & Krishnamurthy,

2007], with partially cross-trained repairmen. In our problem, in particular, machines

correspond to vehicles and parking spots to cross-trained repairmen, who can serve

more than one machine but with variable efficiency, i.e., user satisfaction according to

the proximity of the spot to its travel destination. In the general case, the server has to

take two decisions: in what order will the requests be processed (sequencing decision)
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and which parking spot should be assigned to which vehicle (loading decision).

For the most common scheduling policy, i.e., First-Come-First-Served, the derivation

of the main performance measures can draw on the diffusion approximations of Wang and

Sivazlian in [Wang & Sivazlian, 1990]. The probability distribution function of the number

of vehicles, Cis that are “in-system”, i.e., either parked or travelling towards the reserved

parking space or having submitted a parking request to the system, is approximated by:

fCis(x) =

 K1 · g1(x) for 0 ≤ x ≤ P

K2 · g2(x) for P ≤ x ≤ C

where g1(x) and g2(x) are functions of the means and variances of the variables Tt

(λ, σt), and Ts (µ, σs), respectively, and the ratio ρ = λ \ µ:

g1(x) =

[
(C−x)ρλ2σ2

t+xµ2σ2
s

Cρλ2σ2
t

]β1
(C − x)ρλ2σ2

t + xµ2σ2
s

e
− 2(ρ+1)x

ρλ2σ2t−µ
2σ2s , β1 =

2Cρ
[
1 +

(ρ+1)λ2σ2
t

µ2σ2
s−ρλ2σ2

t

]
µ2σ2

s − ρλ2σ2
t

g2(x) =

[
(C−x)ρλ2σ2

t+Pµ2σ2
s

(C−P )ρλ2σ2
t+Pµ2σ2

s

]β2
(C − x)ρλ2σ2

t + Pµ2σ2
s

e
2(x−P )

λ2σ2t , β2 =
2P (1 +

λ2σ2
t

µ2σ2
s
)

ρλ2σ2
t

(5.4)

and K1, K2, constants given by the solution of the 2× 2 system of equations

K1 · g1(P )−K2 · g2(P ) = 0

K1

∫ P

0

g1(x)dx+K2

∫ C

P

g2(x)dx = 1 (5.5)

It is then possible to estimate the expected number Cis of vehicles that are being

served or wait for their parking requests to be served, and the expected number Ct of

travelling vehicles, respectively, as

Cis =

∫ C

0

xfCis(x)dx, Ct = C − Cis (5.6)

whereas, the expected number of vehicles already parked or on their final leg to a

reserved parking spot, Cs, is

Cs = P −
∫ P

0

(P − x)K1g1(x)dx (5.7)

The utilization of each parking spot, i.e., the percentage of time it is occupied (or

reserved) by a vehicle, is

Us = Cs/P (5.8)
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Finally, the mean time vehicles spend on parking search, Tps, is the sum of the

expected time they wait for a parking assignment, Tq, and the expected final leg travel

time, Tf ; or, equivalently, the difference of the mean total time they spend in the system,

Tis minus the mean parking time (Figure 5.3), the former being given by Little’s result

[Agnihothri, 1989].

Tps = Tq + Tf = Tis − Tp = Cis/λ(C − Cis)− Tp. (5.9)

Figure 5.3: The set of RVs relevant to the parking search process and their time depen-
dence.

G/M/r model approximation. The analysis simplifies considerably when the final leg

travel time is negligible compared to the vehicle parking time (Tf � Tp). In particular,

when Tp is exponentially distributed, the main performance measures of the centralized

parking space assignment system can be given by the detailed analysis of Sztrik for the

G/M/r system, and resemble those of the M/M/r system [Sztrik, 1985]. The (discrete)

probability distribution for the in-system number of vehicles is given by

pn =

{ (
C
n

)
ρnp0 for 1 ≤ n < P(

C
n

)
n!

P !Pn−P
ρnp0 for P ≤ n ≤ C

with p0 = (1+a1 + ...+aC)−1 where ai are coefficients multiplying p0 in pn expression.

The expected number of in-system vehicles and queued parking requests are

Cis =
C∑
i=1

i · pi, Cq =
C−P∑
i=1

i · pi+P (5.10)

respectively, the time the parking requests are queued is

Tq =
Cq

λ(C − Cis)
(5.11)
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and the expected parking search time is still given by equation (5.9).

5.1.5 Simulation results and analytical model validation

We show simulation results for all four metrics presented in Section 5.1.3; we also

use them to validate our analytical model. In all cases, the metric values are averaged

over all parking events and plotted against the number of vehicles, for fixed number of

parking spots.

Uniformly distributed destinations

General trends: Figure 5.4 compares the three approaches with respect to all three

metrics for a fixed number of parking spots, P = 25. Intuitively, and for all three ap-

proaches, the performance deteriorates with the number of vehicles moving in the city

area A. Even when the travel destinations of the vehicles are uniformly spread over this

area, their increase results in higher competition for individual parking spots. For NAPS

and OAPS, this means that the probability to encounter a vacant spot decreases. Table

5.1 lists the average number of unsuccessful decisions per vehicle, i.e., how many times

on average each vehicle encounters an occupied parking spot while wandering (NAPS) or

driving towards a parking spot he became aware of from other vehicles (OAPS). For CAPS,

there are no unsuccessful decisions; what increases is the average waiting time for the

assignment of a parking spot by the central server. Moreover, the higher competition does

not only increase the search/waiting time and the distances that vehicles travel till they

eventually park (Ref. Figure 5.4(a) and Figure 5.4(b)); it also results in the assignment of

“worse" parking spots, located further away from the actual user travel destinations.

NAPS vs. OAPS: The benefits from information sharing and exploitation become

obvious when comparing NAPS with OAPS: the opportunistic system consistently outper-

forms the non-assisted one for all three metrics, irrespective of the number of vehicles.

With NAPS, vehicles spend much of their time wandering “blindly" without even en-

countering a parking spot, whether vacant or occupied. Whereas with the opportunistic

system, the search is more directed and the parking spot encounters more frequent than

with NAPS. Increase of the vehicle population leads to: (a) higher dissemination rates of

information about parking spots amongst the vehicles. The vehicles can therefore make
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more informed choices as to where they should seek for (vacant) parking spots; (b) more

competition for the parking spots. Chances are now higher that not only the travel des-

tinations of two or more vehicles are in close proximity but also that vehicles share the

same information and, depending on their destinations, target the same parking spots.

Many of the travels towards these spots prove, in the end, to be useless due to belated

arrivals and only add to the total parking search time.

Looking at Figure 5.4(a) and Table 5.1, one can see that the tradeoff faster information

dissemination versus increased competition is resolved in favour of the opportunistic

scheme. With OAPS, the vehicles make much better use of time than with NAPS. Within

a given time window, they will discover more parking spots. Some of them will be occupied

and on average, as Table 5.1 suggests, they will end up failing more times than in NAPS.

Nevertheless, their persistent directed movement is compensated in that they manage to

find vacant parking spots faster than with NAPS.
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Figure 5.4: Comparison of the NAPS, OAPS and CAPS approaches: uniformly distributed
user destinations, Tp = 1800, P = 25.

CAPS: With the centralized approach, two distinct components comprise the overall
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parking search time: (i) the waiting time, Tq, and (ii) the final leg travel time, Tf (Ref.

Figure 5.3). When the vehicles are fewer than or in the order of the parking spots (∼ 30),

Tf dominates the overall parking search time since there are always one or more vacant

spots, where the user can be directed to. As the cars tend to outnumber parking spots,

the parking requests in the server’s queue start piling up and Tq dominates the overall

parking search time (Ref. Figure 5.7).

The second noteworthy remark about the CAPS approach is the tradeoff between the

achieved parking search time (route length) and attractiveness of the assigned parking

spots (Ref. Figure 5.4(c)). Leaving aside very small vehicle populations, the centralized

system consistently assigns parking spots that lie further away from the actual travel

destinations, when compared to NAPS and OAPS. For V > 35, all 25 parking spots are

constantly reserved. Each vehicle is assigned the first place that becomes vacant, which

may be located anywhere within the parking area A. Therefore, the average destination-

parking spot distance Dp eventually converges to the expected distance of two randomly

selected points within a square area; namely, the expected value of the square line picking

problem, which is known to equal 0.52×l = 624m, where l denotes the length of the square

sides [Mathai, 1999].

Table 5.1: Average unsuccessful parking attempts per vehicle for NAPS and OAPS, Tp =
1800, P = 25.

Parking search approach Scenario Vehicle number
5 15 25 35 45 55

NAPS Unif.Dis.Dest. 0.27 1.55 4.33 9.19 15.18 21.92
NAPS Hotspot 1.9 8.38 14.26 21.65 28.03 34.4
OAPS Unif.Dis.Dest. 0.39 2.39 6.04 15.03 26.85 40.22
OAPS Hotspot 5.6 18.74 31.71 42.46 51.51 63.4

CAPS vs. OAPS and NAPS: More interesting is the way the performance ranking

of the three schemes evolves. As Figure 5.4(a) and Figure 5.4(b) suggest, their relative

performance with respect to parking search time and route length changes twice. CAPS

outperforms the two for V < 40, then gets worse than the opportunistic scheme and for

even higher number of vehicles V > 55 loses to NAPS as well. The reason for this behavior

is the combination of the reservation mechanism of CAPS and the more random mobility

patterns of the vehicles in NAPS and OAPS.
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Figure 5.5: Average time each parking spot remains vacant: uniform distributed travel
destinations, Tp = 1800, P = 25.

More specifically, the better (more intensively) the systems manage to use the avail-

ability of parking spots, the better they score with respect to Tps and Rps. For the cen-

tralized system, Figure 5.5 suggests that there is a hard bound as to how efficiently this

can be done in the light of the reservation system. As the number of vehicles grows,

the parking space availability drops. Eventually, they are being reserved immediately

after they are released. However, a reserved spot does not necessarily accommodate a

stationary vehicle. The final leg travel time, during which the vehicle drives towards the

reserved parking spots, is effectively “wasted" for the system. Even worse, this time grows

together with the final leg length which converges to 0.52 × l for V > 35, as discussed

earlier. On the contrary, both the opportunistic and, for a higher number of vehicles, the

NAPS approach manage to benefit from their movement in the area and utilize almost

fully the parking space availability. In fact, the comparative performance of the systems

in this scenario is an argument in favour of self-organization, and rather cooperative

self-organization (OAPS).

Hotspot scenario

We consider exactly the same setting with paragraph “Uniformly distributed desti-

nations” in this section, only now the user travel destinations are concentrated within

a particular (hotspot) road rather than being distributed uniformly over the area A. In

other words, we impose higher correlation in the mobility patterns of individual vehicles

and dramatically increase the competition for certain parking spots (those located in the

proximity of the hotspot).
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General trends: Two are the general remarks that can directly be made when com-

paring the curves in Figure 5.6 with those in Figure 5.4. Firstly, the performance of

the non-assisted and opportunistic schemes deteriorates dramatically, whereas the cen-

tralized system experiences minimal degradation. Secondly, and closely related to the

first remark, the relative ranking of the schemes changes: contrary to what we had

when user travel destinations were uniformly distributed, CAPS outperforms NAPS and

OAPS throughout the vehicle population range. Moreover, the opportunistic scheme only

marginally outperforms the “blind" non-assisted scheme.
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Figure 5.6: Comparison of the NAPS, OAPS and CAPS approaches: spatially concentrated
user destinations (hotspot scenario), Tp = 1800, P = 25.

NAPS and OAPS: The correlation in the location of user travel destinations does not

affect all parking approaches in the same way. With NAPS, vehicles still wander “blindly",

only now this wandering is bounded within a given radius around the popular road. Since

the competition for a parking spot is much higher, they encounter more occupied parking

spots, as can be seen from the Table 5.1. Overall, the search time and the route length

increase and the vehicles need to compromise with more remote parking spots.
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The synchronization artefacts are worse for the opportunistic system. With all vehi-

cles moving in the same area, information about parking spots disseminates even faster

and all vehicles end up sharing similar information. And since practically they are all

interested in the same set of parking spots, the ranking of parking spots is common for

all of them. Therefore, they end up following similar trajectories within the search area

and often encounter occupied spots. Even worse, the information they now share is of

less “value". Consider one of those vehicles competing for a vacant parking spot in the

area around the popular road. The moment it finds one, it occupies it without commu-

nicating this to another vehicle. In other words, vehicles share information about where

relevant parking spots are but less frequently do they become aware of vacant parking

spots through information exchanges with other vehicles. Eventually, they may find a

parking spot without real help from the system.

The vehicle concentration around the hotspot under NAPS and OAPS also induces

congestion. As can be seen in Figure 5.6(a) and Figure 5.6(b),3 when the vehicles grow

more, the relationship between the parking search time and route length is no longer lin-

ear; vehicles break more often since they encounter more cars ahead of them (Ref. Section

5.1.3). Note that this is different than with uniformly distributed travel destinations, as

Figures 5.4(a) and 5.4(b) suggest.
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(a) Parking request waiting time
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Figure 5.7: Components of the overall parking search time under CAPS: Tp = 1800,
P = 25.

CAPS: The centralized approach emerges as the winning approach in the hotspot

scenario. The existence of popular destinations has a different impact on the two com-

3These findings for Tps and Rps are confirmed by the measurement of the average vehicle velocity under
both the first (v = 10m/s) and the second scenario (v = 9.5m/s).
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ponents of the overall parking search time (Ref. discussion in paragraph “Uniformly

distributed destinations” in this section). The waiting time in the system queue Tq for the

parking spot assignment remains practically the same. The central server sees a similar

load of parking requests, irrespective of their destinations. Contrary to the other two

approaches, having global view over the status of parking spots over the whole area A, it

can better resolve competition amongst vehicles and make faster parking space assign-

ments to them. Only this comes at a penalty: the assigned parking spots lie further away

from the popular road. This is why the final leg travel time, Tf , significantly exceeds its

counterpart under uniformly distributed travel destinations (Ref. Figure 5.7). Even if for

high vehicle numbers, the destination-parking spot distance converges to the same value,

i.e., the expected value of the square line picking problem. Higher destination-parking

spot distances emerge also for NAPS and OAPS, but the penalty is higher for the CAPS

system.

Validation of the analytical model for the CAPS scheme

In this paragraph, we compare the simulation results with the predictions of the

analytical model for the performance of the CAPS approach in Section 5.1.4. We do this

for various numbers of vehicles and different values of the expected parking time Tp,

for both scenarios for the parking space distribution-uniformly distributed and hotspot.

Figures 5.8(a)-5.8(d) plot the results for Ct, Cq, Cs, i.e., the expected numbers of vehicles

travelling towards their destination, waiting for a parking assignment and parked or

about-to-park (on their way to occupy a reserved parking spot), respectively; whereas,

Figures 5.8(e)-5.8(f) depict the expected parking search Tps. Lines correspond to the model

predictions in equations (5.3) and (5.9)-(5.11), and “x” marks stand for the simulation

results. Confidence intervals are also plotted, but in most cases they are too tight to be

visible in the plots.

In all cases, the simulation results are in excellent agreement with the model pre-

dictions suggesting that the model can give a much faster yet accurate estimation of the

centralized system performance. Since the existence of a popular road does not practi-

cally affect these performance measures for V > P (Ref. paragraph “Hotspot scenario" in

this section), the model can also predict the performance of CAPS for a broad range of
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parameters in the hotspot scenario.

5.1.6 Sensitivity Analysis

The additional simulation runs in this section let us study the impact of two param-

eters upon the performance of the parking search approaches, the mean parking time

and number of parking spots. Moreover, for the OAPS scheme only, we assess the possi-

ble performance benefits due to the introduction of additional Mobile Storage Nodes that

(a) Expected vs. average number of
vehicles in different states, Tp=600s

(b) Expected vs. average number of
vehicles in different states, Tp=600s

(c) Expected vs. average num-
ber of vehicles in different states,
Tp=1800s

(d) Expected vs. average num-
ber of vehicles in different states,
Tp=1800s

(e) Parking search time, Tps (f) Parking search time, Tps

Figure 5.8: Comparison of the model predictions with the simulation results for CAPS:
uniformly distributed user destinations (left) and hotspot scenario (right), P = 25.
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further leverage the information exchange among vehicles.

The impact of the average parking time on NAPS, OAPS and CAPS

As Figures 5.9(a), 5.9(c) and 5.9(e) suggest, the higher the average parking time

interval is, the more vehicles are found parked at each time instance. Vehicles spend

more time in search of a parking spot, since they encounter occupied parking spots

within their parking area of interest, more frequently.

In particular, the increase rate of the parking search time depends on the redundancy

of the available parking choices. For V < 25, there is always at least one vacant parking

spot so that the increase of the average parking time affects only the location of the

respective best parking spot (Ref. Section 5.1.3), for given destination coordinates. On

the contrary, when vehicles outnumber parking spots, any additional increase in the

average parking time decreases the parking capacity levels at any time instance; and

for high parking time values, the first encounter of an empty parking place will delay

significantly. Table 5.2 bears out the aforementioned assertion as it reveals the analogical

relation between average parking time and average unsuccessful attempts until parking.

Another noteworthy remark is the invariability of the performance ranking of all

three approaches (Ref. Figures 5.9(b), 5.9(d) and 5.9(f)). In particular, OAPS outperforms

NAPS irrespective of Tp. Indeed, the improvement factor gradually grows as the Tp de-

creases. However, the intersection point of the three corresponding curves shifts to the

left, since the centralized system deteriorates faster with the parking time. Specifically,

the increased parking time results in further increase of the first component of the overall

Table 5.2: Average unsuccessful parking attempts per vehicle for NAPS and OAPS: uni-
formly distributed travel destinations, P = 25.

Parking search approach Average parking time Vehicle number
5 15 25 35 45 55

NAPS 300 0.16 0.63 1.22 1.95 2.81 3.73
OAPS 300 0.21 0.84 1.78 3.10 4.73 6.71
NAPS 600 0.19 0.94 2.04 3.58 5.35 7.42
OAPS 600 0.28 1.30 2.89 5.67 9.32 13.53
NAPS 3600 0.30 1.96 6.77 16.85 29.79 43.76
OAPS 3600 0.40 3.68 9.55 28.37 52.76 78.21
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(a) Tp=300s: Average number of parked
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(b) Tp=300s: Parking search time
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(c) Tp=600s: Average number of parked
vehicles
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(d) Tp=600s: Parking search time
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(e) Tp=3600s: Average number of parked
vehicles
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(f) Tp=3600s: Parking search time

Figure 5.9: Comparison of the NAPS, OAPS and CAPS approaches on different average
parking time values: uniformly distributed user destinations, P = 25.

parking search time in CAPS, i.e., the waiting time, Tq which presides over CAPS’s dra-

matic parking search time deterioration. Specifically, any increase in the average parking

time, further delays the vacancy of the occupied parking spots and consequently the

serving of the parking requests in the server’s queue.

Finally, it is worth stressing that these results assume exhaustive parking search

attempts, i.e., attempts that are only terminated upon the detection of an empty park-

ing spot. Nevertheless, there is some evidence that the duration of the parking search

Evangelia A. Kokolaki 82



Information dissemination and consumption in competitive networking urban environments

process is upper bounded by some time limit Tup. For example, Ref. [le Fauconnier &

Gantelet, 2006] reports a Tup value equal to 15min; otherwise, the drivers resign from

their effort to park, e.g., they might stop looking for a (cheaper or free-of-cost) public

parking spot and decide to visit a much more expensive private parking lot. This would

practically correspond to a “parking failure event”. In our case, as Figure 5.9 suggests,

the Tup-min threshold would introduce several parking search failure events while re-

ducing the search delays for those users that are successfully “served”. More generally,

Tup introduces a tradeoff between number of parking search failures and average search

delays of successful parking searches.

The impact of Mobile Storage Nodes

Uniformly distributed destinations The introduction of MSNs increases the contact

opportunities between vehicles and thus the speed of information spread. These nodes

act as vehicles that travel constantly within the area A and are not interested in parking.

Consequently, the MSNs foster the information diffusion process without introducing

additional competition burden.

According to the plots in Figures 5.10(a)-5.10(b), even 5 MSNs improve the over-

all performance, as long as there is some flexibility in the parking assignment process

(e.g., low competition). In particular, for V < 25, the MSNs indicate potentially unknown

to the users alternative parking choices or update the already stored parking information.

Indeed, Figure 5.10(b) suggests that the exploitation of the data collected and transferred

by MSNs directs users to more attractive parking spots.

The growth of the MSNs’ population results in further increase of the frequency of

the user memory updates. However, the gain obtained from the increased MSN num-

ber proves to be important only when the contact/communication probability between

vehicles is low. In particular, starting from an improvement rate in the order of 20%,

the parking search time improvement is gradually minimized. Furthermore, the Figure

5.10 includes, additionally, a plot regarding an ideal real-time information scheme (plot

opt OAPS) that maximizes the speed of information spread and thus the memory up-

date frequency. It emerges that even a few service cars result in time and distance gain

comparable to that achieved in the optimal approach.

Evangelia A. Kokolaki 83



Information dissemination and consumption in competitive networking urban environments

0 10 20 30 40 50
50

100

150

200

250

300

Number of vehicles, V

P
a

rk
in

g
 s

e
a
rc

h
 t
im

e
, 
T

p
s
 (

s
)

 

 

OAPS

msnOAPS − 5 MSNs

msnOAPS − 15 MSNs

opt OAPS

(a) Parking search time

0 10 20 30 40 50
120

140

160

180

200

220

Number of vehicles, V

D
e
s
ti
n

a
ti
o
n
−

P
a
rk

in
g

 s
p
o

t 
d
is

ta
n
c
e
, 
D

p
 (

m
)

 

 

OAPS

msnOAPS − 5 MSNs

msnOAPS − 15 MSNs

opt OAPS

(b) Destination-parking spot distance

Figure 5.10: Study of the impact of the implementation of MSNs on the efficiency of OAPS:
uniformly distributed user destinations, Tp = 300s, P = 25.

Hotspot scenario As MSNs circulate constantly, monitoring all parking places within

the area considered, they feed users new information that they usually ignore due to their

persistent movement along specific roads. Unlike the uniformly distributed destination

case, the improvement factor of the MSN activity over the parking search time varies

around a particular ratio (∼ 8%) irrespective of the vehicle volume (Figure 5.11(a)). For

V < P , the intensive competition among users for a particular set of parking spots as

well as the different movement patterns of vehicles and MSNs diminish the value of the

enhanced information diffusion, against the previous scenario. However, for V > P , the

need for information is higher now, since vehicles recycle information about only a limited

subset of the parking spots, upon their encounters with each other. Finally, as Figure

5.11(b) suggests, any further increase in the update frequency of drivers’ memory does

not change the place they park.
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Figure 5.11: Study of the impact of the implementation of MSNs on the efficiency of OAPS:
spatially concentrated user destinations (hotspot scenario), Tp = 300s, P = 25.
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(b) Destination-parking spot distance

Figure 5.12: Adding Mobile Storage Nodes to the OAPS scheme: uniformly distributed
user destinations, Tp = 300s, P = 10.
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(b) Destination-parking spot distance

Figure 5.13: Adding Mobile Storage Nodes to the OAPS scheme: uniformly distributed
user destinations, Tp = 300s, P = 50.

Mobile Storage Nodes and number of parking places In general, the higher the park-

ing density is, the more alternatives exist for parking space assignment. Since users

can occupy an empty parking spot they encounter on their way, the increment in parking

places increases the encounter possibility of an empty one, and thus decreases the search

time needed (Figures 5.10(a), 5.12(a) and 5.13(a)). Moreover, since parking places and

user destinations follow the same uniform spatial distribution, it stands to reason that

the increase in the number of the alternative parking choices results in decrease of the

average destination-parking spot distance Dp (Figures 5.10(b), 5.12(b) and 5.13(b)). Fi-

nally, concerning the msnOAPS approach, the implementation of MSNs is justified when

many parking places are offered and the induced competition is less (due to either lower

number of parking seekers or less overlapping preferences of parking space).
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5.2 Impact of misbehaviors

5.2.1 Introduction

As introduced and described in Section 5.1, advanced parking assistance systems

fostered by recent advances in wireless networking, sensing and car navigation technolo-

gies, aim at helping drivers find vacant parking spots easier and faster by collecting and

sharing information about the location and status (occupied/vacant) of parking spots. In

centralized systems, a central server communicating with sensors at the parking spots

coordinates the parking spot assignment process: it receives the drivers’ requests for

parking space, reserves parking spots for them, and directs them thereto (e.g., [Wang

& He, 2011]). Whereas, in opportunistic systems, vehicles themselves serve as mobile

sensing platforms that collect and store information about the location and status of

parking spots and share it with each other through vehicle-to-vehicle (V2V) communica-

tion technologies (e.g., [Caliskan et al., 2006]). Opportunistic systems do not incur the

upfront infrastructure cost of centralized systems, thus presenting a lighter and more

scalable solution that leverages to-be-built-in vehicle equipment. On the other hand,

opportunistic systems lack central coordination and rely on the vehicular nodes’ willing-

ness to share collected information. This cannot be taken for granted since the sharing of

information assists nodes by increasing their knowledge about parking space availability

but, at the same time, synchronizes nodes’ parking choices. This synchronization in turn

increases the competition for the vacant parking spots, in particular when drivers’ travel

destinations overlap [Kokolaki et al., 2012].

The following sections present a study that questions the robustness of opportunistic

parking assistance systems to non-cooperative vehicular node behaviors, which deviate

from the purely altruistic norm of always and truthfully sharing the cached information

with encountered vehicles. Hence, we let nodes misbehave and study how this affects

fundamental performance indices such as the parking search time and the distance of

the acquired parking spots from the drivers’ travel destinations. The dual question from

the individual nodes’ viewpoint is whether they do have incentives to misbehave in that

misbehaving allows them to achieve better search times and/or parking spot-destination
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distances. Two intuitive misbehavior instances are considered. In the first one, nodes

defer from sharing parking information with other vehicles essentially acting as free riders.

In the second one, they deliberately falsify information about the parking spots’ status

(selfish liars), i.e., spots close to the misbehaving vehicle’s destination are advertised

as occupied whereas all others as vacant. The two misbehaviors essentially impair in

different manner the amount and accuracy of information that is disseminated across the

network.

5.2.2 Opportunistically-assisted parking search and imperfect coop-

eration

In Section 5.1.2 we describe the opportunistically-assisted parking search (OAPS)

scheme under which vehicles equipped with standard wireless interfaces such as 802.11x

in ad-hoc mode, share with each other information they acquire in the course of their

search about the location and status of parking spots they encounter.

Critical for the efficiency of this opportunistically-assisted parking search are the

amount and accuracy/timeliness of the information that is stored at the vehicles’ caches

and shared among them. Both are subject to strong spatiotemporal effects: vehicles

generally possess partial rather than global information about parking space availability

and as the status of parking spots changes over time stored data are potentially outdated

after some time interval. Moreover, vehicular nodes have good reasons to hide informa-

tion from other, potentially competitor, vehicles. Overall, the processes of information

dissemination (benefiting discovery of parking spots and their availability) and compe-

tition growth (reducing the chances to acquire a spot) are coupled and counter-acting.

Indeed, the faster information circulates across the wireless opportunistic networking

environment, the more similar (accurate or not) data are stored in the caches of vehicles.

Thus, depending on the travel destinations of users, the movement patterns of individual

vehicles get synchronized and sharpen the effective competition for given parking spots.

This additional level of competition, this time for information at the “service discovery”

level, motivates various deviations from the perfectly cooperative (altruistic) behavior.

In the following sections, we consider in detail two such deviations, hereafter called
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misbehaviors for the sake of brevity. In the first one, misbehaving nodes defer from shar-

ing their own information with other vehicles, while readily accepting such information

from other vehicles that make it available. These free riders reduce the amount of dis-

seminated information but also its accuracy since vehicles’ caches are less frequently

updated with fresh information about the spots’ occupancy status. On the contrary, the

second misbehavior instance involves the dissemination of falsified information about the

status of parking spots. Nodes do so in order to create zones free of competition around

their travel destinations by diverting encountered vehicles away from them. Compared

to the first misbehavior instance, this one affects only the accuracy of the disseminated

information.

Implementation-wise, the exchange and dissemination of parking information will be

managed by software agents onboard the vehicles and the described misbehaviors can

emerge in at least two ways, each one being better suited to one of the two misbehavior

instances described in Section 5.2. First, the software onboard the vehicles may allow

configuration/personalization features, the deferral from forwarding information being

one of them. Secondly, the software itself may be misbehaving (e.g., forge information) as

a default option to increase its competitiveness against commercial competitor software

products. The deliberate violation of normative behavior is anything but unusual in

commercial hardware/software products. For example, Bianchi et al. in [Bianchi et al.,

2007] report on such symptoms for various popular 802.11b wireless adapters.

Inferring a priori the impact of these rather common misbehaviors is not straightfor-

ward for two main reasons. The first one is the aforementioned spatiotemporal effect. For

example, misbehaving nodes that forge information may inadvertently correct outdated

information (i.e., turn the availability status of the advertised parking spots to their real

up-to-date value) and, thus, end up assisting the process. The second reason relates to

the cache synchronization effects that emerge as the frequency of information updates

rises. It may be argued that the two types of misbehaviors can serve as regulators for the

synchronization phenomena and the resulting competition. We explore these aspects in

detail in Section 5.2.4.
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Table 5.3: Simulation parameters

Parameters Values

Simulation grid 1200× 1200m2

Simulation time duration 105 sec

Number of uniformly distributed spots, P 25

Number of vehicles, V 5− 70

User maximum speed, umax 14m/s ∼ 50km/h

Vehicle - spot sensor commun. range 15m

Vehicle - Vehicle commun. range 70m

Exponential parking time with mean, 1/µ 1800sec

Distance between adjacent roundabouts 300m

Linear increase step of parking search area 150m

Radius of Interest, RoI 150, 350, 500m

Ratio of misbehaving nodes, p 0, 0.3, 0.5, 0.8, 1

5.2.3 Performance evaluation methodology

The simulation environment used for our study is described in Section 5.1.3 (Ref.

paragraph “Simulation environment”). In what follows, we outline those features that are

critical to this investigation.

Information exchange process: Upon an encounter between two vehicles, each

part merges its own list with the received information and deletes duplicate parking spot

records keeping only the latest one. The information that needs to be exchanged involves

a status vector with one bit per spot together with the related coordinates and timestamps,

and its transmission is assumed to be error-free. Hence, contact times between vehicles

suffice for exchange of this information (no partial transfer instances).

Cooperative vs. misbehaving vehicles: All vehicles inform their memory cache

every time they hit a parking spot sensor. Well-behaving (cooperative) vehicles share

truthfully stored information about the location and status of parking spots each time

they encounter other vehicles. On the other hand, misbehaving vehicles realize the two

misbehavior instances described in Section 5.2.2:

Information Denial: Upon encounters with other nodes, they suppress information

they store about the location and availability of parking space, whereas they update their

cached information with all the new knowledge offered. During their search, they use the
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cached information the same way as cooperative nodes.

Information Forgery: They advertise all parking spots within a specific distance from

their destinations (Radius of Interest, RoI ) as occupied, and all others as vacant, while

setting the relevant timestamps to fresh values. Being more suspicious about falsified

information, they persist more when searching around their destinations; namely, they

run additional random trips (in the RM or NoM mode) over the initial parking search area

before they decide to increase the range of their search.

Simulation set-up and performance metrics

Unless otherwise stated, the simulations are run with the parameter values (value

ranges) shown in Table 5.3. Following the methodology for the investigation of the impact

of perfect cooperation on information dissemination (Ref. Section 5.1), two scenarios

drive the study on the impact of misbehaviors as well: the first one involves vehicles

seeking parking space all over the city area (uniformly distributed destinations); the

second scenario features a single area that acts as an attraction pole for vehicles (hotspot).

The effectiveness of the parking search process is assessed through two main per-

formance metrics throughout our study: the average time spent for searching available

parking place (Parking search time, Tps) and the average geographical distance between

the vehicles’ travel destinations and the selected parking spots (Destination - Parking spot

distance, Dp). In addition, at a more microscopic level, we extract results for the amount

and the profile of the information that is stored in vehicles’ caches as well as the way

vehicles use it and benefit from it, by plotting statistics about the percentage of time

(i.e., total search attempts) the vehicles search in FM and RM mode.

5.2.4 Simulation results - analytical insights

All our plots compare the metric values under perfect vehicular nodes’ cooperation

against those under different misbehavior intensities for various levels of parking demand.

Each point in the plot results from averaging parking events over either the full set of

nodes, or, separately, cooperative (denoted by ‘C’) and non-cooperative (denoted by ‘NC’)

ones. Drivers are assumed to be persistent in their search. Alternatively, they could

abandon their search for on-street parking space and head for a more expensive parking
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Figure 5.14: Robustness of the opportunistically-assisted parking search to Information
Denial: uniformly distributed destinations.

lot, once the search time exceeds some deadline (maximum parking search time, Tmaxps ).

In this case, the delays experienced by the successful parking attempts would be lower

than those shown in the respective figures of this section, and definitely upper bounded

by Tmaxps . A red line in the plots corresponds to Tmaxps =1800 seconds. For a recent survey

on the distribution of Tmaxps , interested readers are referred to [IBM, 2011].

Uniformly distributed travel destinations

Information Denial The first remark out of Figure 5.14 is that the system exhibits re-

markable robustness to this misbehavior instance. Neither the average parking search

time (Figure 5.14(a)) nor the destination-spot distance (Figure 5.14(b)) are penalized even

when half the vehicular nodes defer from sharing information. An increase in parking

search time becomes visible when 80% of the nodes misbehave and evolves to a tradeoff

when all nodes misbehave; namely, if all vehicles defer from information sharing, they

end up acquiring spots closer to their destinations at the expense of higher search times4.

The reason for this can be traced in the combination of Figures 5.14(c) and 5.15(a). With-

out information sharing, the caches of nodes are primarily populated with records of

spots around their destination (initial parking search area), encountered during their

4It is important to notice that Figures 5.14(a) and 5.14(b) point to a tradeoff, depending on what each
one values more. In fact, if all vehicles defer from information sharing, the gain in distance is less that
60m and the respective decrease in search time is in the order of 250s, i.e., 4min. If one would like to
weigh the two metrics towards an aggregate one, the outcome would favor the - cooperative - opportunistic
system: walking 60m for an average driver takes less than 1min, which is clearly less than 4min. It would
be different though if someone wanted to minimize the walking distance due to some injury that renders
walking uneasy.
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Figure 5.15: Search mode and parking attempt success rates under Information Denial:
uniformly distributed destinations.

first search attempts. As these spots are occupied (for medium-to high demand), and

although vehicles gradually increase the range of their search, they still end up randomly

selecting one of these spots (RM mode) with high probability. Contrary to when even a

few nodes share information, their caches are not refreshed with records of more distant

spots communicated by other vehicles5 (Figure 5.14(c)). Instead they are only occasion-

ally enriched with some randomly encountered spot in the destination proximity, where

their search ends up being restricted. Reading the system robustness the other way

round, equally remarkable is the failure of selfishly misbehaving nodes to attain better

performance, when compared to what cooperative nodes achieve (Ref. to ingraphs in

Figures 5.14(a), 5.14(b)).

On the other hand, Figure5.15 gives clear insights into the fundamental inefficiency

5As the demand increases and larger amounts of information are circulated, the vehicles’ caches store
information about more spots. Eventually, for high inter-vehicle communication rates, caches store infor-
mation about all spots and the average distance between drivers’ destinations and stored parking spots
approximates the expected distance of two randomly selected points within the square area (square line
picking problem, [Mathai, 1999]), known to equal 0.52× l, where l denotes the square side length.
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of opportunistically-assisted search, the coupling of information sharing (about parking

spots) with the generated competition (for parking spots). The ratio of search attempts

in FM mode (Figure 5.15(b)) starts from low levels at small demand, where anyway it is

easier for a vehicle to find a spot, and decreases as the number of competing vehicles

grows, where more spots are occupied, more vehicles are parked, and the flow of infor-

mation is yet too slow to fill the vehicles’ caches with adequately fresh information about

vacant spots. When the demand grows even further and more vehicles end up cruising

around, the information flow (at least for low or moderate intensity of misbehavior) is

strengthened. Vehicles find fresh records about vacant spots in their caches, yet these

are only a few and the competition for them so sharp that this information rarely results

in a successful attempt (Figures 5.15(c), 5.15(d)). For higher intensity of misbehaviors,

both the frequency and success rate of search in FM mode decrease.

Analytical insights: To better anticipate the way the system operates, let Q be the

average number of parked vehicles and M the average number of spot records at their

caches. The information about these spots is either collected when the vehicles run across

them, primarily during their first random attempts, or obtained upon their communica-

tion with other cooperative vehicles. With uniform distributed interests and parking

opportunities and with even a small population of cooperative vehicles, all vehicles have

the potential to learn about any parking spot in the area.

After a vehicle populates its cache with the first entries, it visits them repeatedly

either in FM or RM mode and parks only when two conditions are met: (a) one of the

on-average M spots it is aware of is vacated; (b) it is the first among all other vehicles

to randomly choose to move to it among all vehicles also storing a record for this spot.

More formally, with M spots stored, events of type (a) are presented to the vehicle with

Poisson rate µM , if M < Q and µQ, otherwise. Upon each such epoch, the vehicle

“succeeds” (event of type (b)), with a probability that depends on how many of the V −Q

vehicles searching for parking space are aware of this particular spot. When M < Q,

the expected value of this probability, ps can be written as the sum of the probabilities of

k other vehicles also storing a record for this spot, times the probability of winning the

competition among the k + 1 informed vehicles, that is,
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ps,1 =

V−Q−1∑
k=0

1

k + 1
B

(
k;V −Q− 1,

M

Q

)
(5.12)

where B(k;V −Q− 1, M
Q

) is the Binomial distribution with parameters (V −Q− 1)

and M/Q for k vehicles being aware of the spot. When M ≥ Q, the probability ps can

be written as the probability of winning the competition among the other non-parked

vehicles, that is,

ps,1 =
1

V −Q
(5.13)

Hence, the number of attempts each vehicle makes before eventually parking points

to a Geometrical distribution Geom(ps) so that the mean parking search time can be

approximated as

T an,1ps =
1

ps,1µ ·min(M,Q)
≈
[
(V −Q− 1)min

(
M

Q
, 1

)
+ 1

]
1

µ ·min(M,Q)
(5.14)

In addition, and most commonly under low parking demand, many vehicles park

in vacant spots (known or not to them) that they encounter while travelling to other

places. Any vehicle can park at a randomly met vacant spot provided that it is the first

one that detects it within its parking search area. In fact, since every spot constitutes a

potential candidate parking place for all vehicles in search for parking, a tagged vehicle

competes for a particular spot against all other non-parked vehicles. In this case, the

effective probability of success and the resulting average parking search time can be

approximated by

ps,2 ≈
1

(V −Q− 1)/P + 1
(5.15)

T an,2ps =
t

ps,2
≈
[

(V −Q− 1)

P
+ 1

]
t (5.16)

where, t = 0.52 × l/u is the travel time at u = umax/2 average speed, between two

randomly selected points within the square area with l = 1200m size length (square line

picking problem, [Mathai, 1999]).

The total parking search time, T anps , is a function of both T an,1ps and T an,2ps . Since
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Figure 5.16: Information Denial, uniformly distributed destinations: Average parking
search time, lines correspond to simulation results, and “×” marks stand for the predic-
tions from Eq. (5.17).

parking events in randomly met spots occur with probability (P − Q)/P , the two values

are weighed as

T anps = (Q/P )T an,1ps + (1−Q/P )T an,2ps (5.17)

In Figure 5.16, we plot the simulation results against what equation (5.17) predicts.

The values of the input variables for equation (5.17) are drawn from Table 5.4.

Information Forgery Under Information Forgery, the vehicular nodes try to sponta-

neously generate competition-free zones around their travel destinations. For small RoI

values, these zones are narrow and disjoint. Since misbehaving nodes advertise parking

spots outside these zones as vacant and the drivers’ destinations are uniformly dis-

tributed, the (cooperative) nodes end up (incorrectly) listing spots around their own travel

destinations as vacant for most of the time. These spots emerge as top choices out of

the spatiotemporal filtering step (FM mode) and attract repeated parking attempts (Figure

Table 5.4: Average number of parked vehicles and stored records under Information
Denial: uniformly distributed destinations.

Number of vehicles, V
10 20 30 40 50 60

p = 0
M 4.4 11.2 23.1 24.5 24.8 24.9
Q 8.9 16.6 21.8 23.7 24.2 24.4

p = 1
M 3.5 4.1 4.8 5.1 5.4 5.7
Q 8.8 15.6 19.5 21.2 22.2 23

p = 0.8
M 3.3 5.2 9.7 16.6 21.8 23.5
Q 8.8 15.8 20.3 22.7 23.8 24.1
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Figure 5.17: Robustness of the opportunistically-assisted parking search to Information
Forgery: uniformly distributed destinations, p = 0.3.
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Figure 5.18: Robustness of the opportunistically-assisted parking search to Information
Forgery: uniformly distributed destinations, RoI = 150m.

5.17(c)). As a result, the vehicles park closer to the destination at the expense of higher

search times. As misbehaving nodes become more aggressive and the zones they try to

induce start to overlap (RoI = {350, 500}), most spots in the vehicles’ caches are reported

as occupied, the vehicles exercise more the RM mode, and a tradeoff emerges between

destination-spot distances and parking search times, as shown in Figures 5.17(a) and

5.17(b).

Contrary to the Information Denial misbehavior, under Information Forgery the mis-

behavior intensity and its impact do not only depend on the number of misbehaving nodes

but also on the population of cooperative nodes. The latter inadvertently propagate forged

information across the network once they get infected with it upon encounter with a mis-

behaving node. This has two direct consequences. First, the destination-spot distance

vs. parking search time tradeoff is now milder6, as shown in Figures 5.18(a) and 5.18(b);
6As in Figures 5.14(a) and 5.14(b), it should be noted that under Information Forgery the gain in distance
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for given RoI even a small ratio of misbehaving nodes suffices to populate the vehicles’

caches with supposedly vacant spots and steer their attempts to spots around their travel

destinations (Figure 5.18(c)). Secondly, with a small exception for low parking demand

levels (V < P ), misbehaving nodes cannot gain any substantial performance advantage

over cooperative nodes (Ref. to ingraphs in Figures 5.17(a), 5.17(b), 5.18(a), 5.18(b)) since

the manipulated information they generate, bounces back to them after one or more hops

over cooperative nodes.

Hotspot scenario

As we may recall from Section 5.1.5, under a fully cooperative setting, the spatial

concentration of vehicles’ travel destinations within a particular road segment, which is

called hotspot, has two direct consequences on the information stored in their caches.

First, as all vehicles cruise along the hotspot area and encounter each other more fre-

quently, they tend to synchronize their caches with records about the same set of spots.

Secondly, and most importantly, they rank these spots identically. Hence, at least as long

as drivers let the system direct their attempts, their trips get synchronized, competition

sharpens and parking search times increase substantially.

Information Denial In the hotspot setting, the Information Denial has a double-edged

effect. On the positive side, the system is shown to be resilient to the free rider behavior;

even when half the nodes defer from sharing information, the average parking search

times and spot-destination distances are almost intact, as shown in Figures 5.19(a) and

5.19(b), respectively. Furthermore, misbehaving nodes do not gain in both performance

indices by hiding information (Ref. to ingraphs in Figures 5.19(a) and 5.19(b)). On

the other hand, this misbehavior does not manage to break the inherent synchronization

effects and drive the system to a better-than-nominal performance level. When eventually,

with most nodes in the network misbehaving, differentiation is achieved at the vehicles’

caches, it is outweighed by a substantial decrease of disseminated information. Vehicles

do not get informed about and do not take advantage of vacant parking spots further

ranges between 20m to 130m for all values of number of vehicles that retain parking search time below
30min (red line). The respective decrease in search time is in the order of 250s, i.e., 4min. Again, far more
than the time an average driver needs to traverse 130m.
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Figure 5.19: Robustness of the opportunistically-assisted parking search to Information
Denial: hotspot road.

away from their common destinations (Figure 5.19(c)). They rather end up parking closer

to them, yet at the expense of unacceptable cruising times, even under moderate parking

demand levels.

Analytical insights: Consider a random (tagged) vehicle searching for a parking spot

under three different cases:

p=1: The vehicles do not exchange any information with each other. The stored

records at the vehicles’ caches are what vehicles discover by cruising in the parking

search area. In fact, these spots are those encountered by the vehicle during its first

attempts, while still not having any information at its cache for spots within its parking

search area and moving randomly. After the vehicle populates its cache with some entries,

and as long as no parking spot is recorded as vacant, it will be repeatedly making use of

its memory in RM mode (Figure 5.20), i.e., it will be randomly choosing one of the stored

spots and move towards it in the hope of finding it vacant. Therefore, since its cache is

Table 5.5: Average number of parked vehicles and stored records under Information
Denial: hotspot road.

Number of vehicles, V
10 20 30 40 50 60

p = 0
M 9.1 20.1 22.2 23.2 23.7 23.8
Q 7.3 12 14.6 16.3 17.7 18.4

p = 1
M 3.6 4.2 4.4 4.4 4.4 4.6
Q 6.2 8.1 9.2 9.7 10 10.5

p = 0.8
M 4.3 7.6 12.6 18.4 21.3 22.3
Q 6.4 9.5 11.9 15 17.3 18.3

Evangelia A. Kokolaki 98



Information dissemination and consumption in competitive networking urban environments

not refreshed with up-to-date information by other nodes, the vehicle will park only when

it is the first to randomly choose to move to a particular spot that is vacated, among all

vehicles also storing a record for this spot.

Thus, as in the scenario with uniformly distributed destinations, the expected value

of this probability, ps can be written

ps =

V−Q−1∑
k=0

1

k + 1
B

(
k;V −Q− 1,

M

Q

)
(5.18)

and the mean parking search time can be approximated as

T anps =
1

psµM
≈
(
M(V −Q− 1)

Q
+ 1

)
1

µM
(5.19)

p=0: This is the other extreme, whereby all vehicles exchange information with each

other, ending up knowing about more spots, on average, than there are occupied. Now,

the vacation of any currently occupied spot constitutes an opportunity for the tagged

vehicle, yet it competes for it with all V − Q − 1 vehicles searching for a vacant spot.

Hence,

ps =
1

V −Q
(5.20)

T anps =
1

psµQ
=

(V −Q)

µQ
(5.21)

0<p<1: In the intermediate cases, where cooperative and misbehaving nodes coexist,

the vehicles exchange information, albeit less aggressively than when p = 0. Depending

on the number of cooperative vehicles, we can distinguish two cases:

M ≥ Q: The vehicle releasing a spot may be a cooperative or misbehaving one with

probabilities 1-p and p, respectively. In the first case, all nodes are eventually informed

about the event and do compete for it. In the second case, no vehicle is informed about

the spot vacation and they continue using their memory in RM mode (Figure 5.20). In

either case, the probability of success for the tagged vehicle and the resulting average

parking search time are as in (5.20) and (5.21).

M < Q: If the vehicle releasing the spot is a cooperative one, the effective probability

of success ps is still given by (5.20). However, if it is a misbehaving one, then the vehicles
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Figure 5.20: Ratio of parking attempts in RM mode under Information Denial: hotspot
road.
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Figure 5.21: Information Denial, hotspot road: Average parking search time, lines corre-
spond to simulation results, and “×” marks stand for the predictions from Eqs. (5.19),
(5.21) and (5.23).

find themselves in a race similar to the one for p = 1, provided that, with probability

M/Q, they are aware of the particular spot’s location. Hence, the resulting average

parking search time can now be approximated by

ps =
1− p
V −Q

+
M

Q

V−Q−1∑
k=0

p

k + 1
B

(
k;V −Q− 1,

M

Q

)
(5.22)

T anps =
1

psµQ
(5.23)

The search times derived from simulation and the ones computed analytically, using

Table 5.5 for the average number of parked vehicles and stored records, are compared in

Figure 5.21.

Information Forgery In the hotspot scenario, the zones that misbehaving vehicles try to

clear from competition overlap and all spots beyond a distance equal to RoI are advertised

as vacant by misbehaving nodes. For small RoI, vehicles persistently direct their attempts
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Figure 5.22: Robustness of the opportunistically-assisted parking search to Information
Forgery: hotspot road, p = 0.3.

towards the few spots lying close to their common destinations so that their caches are not

enriched with information about vacant spots further away, as shown in Figure 5.22(c).

The synchronization/competition effect is stronger and vehicles waste even more time in

myopically searching for a parking spot around the hotspot road (Figure 5.22(a)). How-

ever, as a result of this search mode, the vehicles park closer to their destination (Figure

5.22(b)). Interestingly and rather counter to intuition, as misbehaving nodes become

more aggressive and try to clear from competition larger areas (i.e., RoI = {350, 500}),

the parking search times improve for all vehicles. The reason is that vehicles are steered

by the content of their caches to expand their search further away from the hotspot area

and have the chance to encounter and, potentially occupy, spots they were not aware

of. Essentially, the movement of vehicles in a broader area helps alleviate, though not

resolve, the synchronization effect. Again, as with uniformly distributed travel destina-

tions, misbehaving nodes cannot attain some performance advantage since the falsified

information returns back to them, this time even faster due to more frequent encounters

between vehicles (Ref. to ingraphs in Figures 5.22(a), 5.22(b)).

Mobile Storage Nodes for the hotspot scenario

As explained in Section 5.1.2, the Mobile Storage Nodes (MSNs) can be either ded-

icated or normal vehicles, e.g., city cabs, equipped with wireless interfaces that allow

them to collect parking information from the entire area and share it with other vehicles

and MSNs. By relaying information, MSNs accelerate the spread of information across

the networks. Yet, their efficiency as countermeasures for the two misbehavior instances
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is very different.

Information Denial In this case, even a very small number of MSNs restore the infor-

mation flows at the level (and even better) of the fully-cooperative system. The use of

MSNs renders both the average parking time and the spot-destination distance indepen-

dent of the number of free rider vehicles, as can be clearly seen in Figure 5.23. Even

when vehicles do not exchange information with each other at all, the achieved parking

search times are better than those under the fully cooperative system. The addition of

more MSNs (we experimented with up to 15 MSNs) does not bear visible changes to the

performance metrics; on the other hand, similar results are obtained with even one MSN.

In fact, a single encounter with MSN informs nodes about the location of all parking spots

in the area, helping them expand their search in a broader area around the hotspot road

and partly randomize their driving patterns. Yet, the synchronization phenomena due to

the vehicles’ overlapping travel destinations are not fully eliminated and retain the park-

ing search times at significantly higher levels than when the destinations are uniformly

distributed.

Analytical insights: Since the mobile non-competing storage nodes fill the nodes’

caches with almost all the available information, irrespective of the ratio of misbehaving

nodes, the resulting system comes under the pure Information Denial case in the hotspot

scenario when M ≥ Q. Thus, both the probability of success and the average parking

search time follow the expressions in (5.20) and (5.21), respectively. In Figure 5.24, we

plot the average parking search time as derived with simulations against the outcome

of equation (5.21), using Table 5.6 for the average number of parked vehicles in the

particular scenario.

Table 5.6: Average number of parked vehicles under Information Denial: hotspot road
with Mobile Storage Nodes.

Number of vehicles, V
10 20 30 40 50 60

p = 0 7.7 12.4 15.1 17 18.2 19
p = 1 7.7 12.3 15.1 16.9 18.2 19
p = 0.8 7.7 12.4 15.1 16.9 18.2 19.1
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Figure 5.23: Mobile Storage Nodes and Information Denial: hotspot road.
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Figure 5.24: Mobile Storage Nodes and Information Denial, hotspot road: Average park-
ing search time, lines correspond to simulation results, and “×” marks stand for the
predictions from Eq. (5.21).

Information Forgery When nodes misbehave this way, the MSNs are a far less efficient

solution. Although they collect and store up-to-date information about the actual status

of parking spots as they move randomly within the grid, this information is rewritten upon

encounters with misbehaving nodes but also cooperative nodes that have been polluted

with falsified information. Thus, the MSNs end up further fostering the diffusion of

falsified information. The synchronization effects at the vehicles’ caches get even stronger

and the the eventual decrease of search times thanks to additional fresh information is

marginal (Figure 5.25).

Analytical insights: The counter-efficiency of MSNs in coping with selfish liars can be

interpreted through a simple model of interacting objects. The model does not intend to

capture the exact interaction of vehicles in the hotspot scenario but rather the essence

of the emerging synchronization effects. Let S and C be the populations of two classes of

mobile network nodes, stubborn (i.e., selfish) and conciliatory (i.e., cooperative), respec-

tively, with S + C = N , and Z a physical location in the network, whose state at any
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point in time is a binary variable z ∈ {0, 1}. Assume also that pairwise node encounters

form uniform Poisson processes of rate λ and that all nodes hit Z with Poisson rate h.

Stubborn nodes persistently advertise that z is in state 0; whereas, conciliatory nodes

update their information about z upon two kinds of encounters. Whenever they meet a

stubborn node, they adopt its claim about z, i.e., z = 0. In parallel, they may themselves

hit Z and update their knowledge about its state. When nodes of the same type encounter

each other, they do not update their information but rather stick to what they know. If

x1(t), 0 ≤ x1(t) ≤ N − C denotes the number of nodes over time, whose information

about z is not in sync with what the S nodes propagate, then its evolution over time is

a stochastic process coming under the broader family of density-based Continuous Time

Markov processes. Drawing on the mean-field theoretic arguments in [Kurtz, 1970], the

evolution of E[x1(t)] for large N can be approximated by the deterministic solution of the

ordinary differential equation (ODE)

ẋ(t) = h(C − x(t))− λSx(t) (5.24)

This is a first-order linear ODE with initial condition x(0) = C = N − S and solution

x(t)
.
= E[x1(t)] =

N − S
h+ λS

[h+ λSe−(h+λS)t] (5.25)

Namely, the average number of nodes that maintain their own assessment of the status

of z reduces over time to (N−S)h
h+λS

.

Now, consider adding to the networkR “bona fide” storage nodes relaying information

about z. When a storage node encounters a stubborn node, it synchronizes with it,

and when it encounters a conciliatory node, it propagates its own information to it.

Essentially, the three types of nodes form a three-level hierarchy regarding their capacity

to impose their information, with conciliatory nodes at the bottom level and stubborn

ones at the top level. If x1(t), x2(t) denote the number of conciliatory and storage nodes,

respectively, that are not in sync with the stubborn nodes, their evolution over time

is a two-dimensional Markov process and, with similar arguments as before, it can be

approximated by the deterministic solution of the non-linear system of ODEs
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Figure 5.25: Mobile Storage Nodes and Information Forgery: hotspot road, p = 0.3.

ẋ(t) = (C − x(t))h− x(t)(R+ S)λ+ λCy(t) (5.26)

ẏ(t) = −y(t)(h+ λS) + hR (5.27)

with initial values x(0) = C and y(0) = R. Solving initially the first-order linear ODE

for y(t) and replacing to obtain another first-order linear ODE for x(t), we obtain:

x(t)
.
= E[x1(t)] =

N − S
h+ λS

[h+ λSe−(h+λS)t] (5.28)

y(t)
.
= E[x2(t)] =

R

h+ λS
[h+ λSe−(h+λS)t] (5.29)

The expression for E[x1(t)] coincides with that without storage nodes in (5.25).

Hence, the Mobile Storage Nodes do not really alter the dynamics, through which stub-

born (a.k.a. selfish) nodes synchronize the conciliatory (a.k.a. cooperative) nodes to their

(deliberately falsified) information.
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Chapter 6

Information consumption

The advances in the broader information and communication technologies (ICT) sec-

tor have dramatically changed the role of end users and resulted in unprecedented rates

of information generation and diffusion. Besides generating information, the end users

may be actively involved in its dissemination, as discussed and explored in Chapter 5,

and even make use of it for their own good and benefit. In the following sections, we study

scenarios, where some non-excludable finite resource is of interest to a population of dis-

tributed users and the information that is generated and may be shared concerns the

resource demand and supply. When the amount of resource is large and the interested

user population is small, users can readily opt for using it. When, however, the resource’s

supply cannot satisfy the demand for it, an inherent competition for the resource emerges

that should be factored by users in their decision to opt for accessing this resource or

not. The underlying assumption here is that the decision to opt for the finite resource

under high competition bears the risk of an excess cost in case of a failure (i.e., go for

the limited resource but find it unavailable). This cost captures the impact of congestion

phenomena that appear in various ICT sectors when distributed and uncoordinated high

volume demand appears for some limited service.

Indeed, in several instances of ICT systems and applications a number of selfish

agents compete over a limited-capacity and low-cost resource. In several studies, the way

the competition is resolved in different autonomic environments has been addressed in

game theoretic terms. Starting from a transportation paradigm in [Holzman & Lev-Tov,

2003], the drivers choose between a number of routes from a common-to-all origin to a
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common-to-all destination. The cost incurred by each user is a non-decreasing function

of the number of other users also follow the same trajectory. Likewise, in an instance of

the access-point association problem, a number of mobiles compete over a finite number

of access points where high access delays (low throughput) occur when many users

associate with the same wireless access point [Hasan et al., 2012]. In [Shi et al., 2012],

nodes’ access in a shared communication channel is regulated by the CSMA/CA protocol

whereby the backoff rates are determined in distributed manner by self-organized nodes

that either act selfishly (optimize their own throughput) or are willing to cooperate aiming

at a global optimal solution. In [Saad et al., 2012], the authors present the technical

challenges in design, control, and implementations of smart grids and propose game

theoretic frameworks to describe the interaction-competition between the loads over the

energy resources as well as between the sources over the supply of energy.

In such settings, various critical decisions need to be taken by the entities that are

involved in the production, dissemination and consumption of information. Indeed, the

decision to acquire and distribute the information or not, may account for own-interest

priorities, such as preserving own resources or hiding information from potential com-

petitors. In the following sections, we focus on the way the entities make use of the

accumulated knowledge. Essentially, the main dilemma faced by the end user possess-

ing resource information is whether to compete or not for using these resources. This

very fundamental question is investigated by factoring cognitive heuristics/biases in the

human-driven decision-making process. Overall, the high-level question that we address

is how efficiently the competition about the resources is resolved under different assump-

tions about the way the agents make their decisions. The efficiency depends not just on

the quality of the information about the resources that is provided to the users but also on

the way the provided information is used (“consumed”) by users. Therefore, information

may be precise and complete or imperfect and limited; whereas users may exhibit differ-

ent levels of rationality in the way they process the provided information and determine

their actions.

In essence, we are more concerned with the comparison of the decision-making

under full and bounded rationality conditions. The key assumption is that human activity

takes place within a fairly autonomic networking environment, where each agent runs a
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service resource selection task and seeks to maximize his benefit, driven by self-oriented

interests and biases. As the full rationality reference, we frame the case where the agents

(typically software engines) avail all the information they need to reach decisions and,

most importantly, are capable of exploiting all information they have at hand; whereas

users of bounded rationality either possess partial information about the resources or

they are totally aware of them but it might be too complex in time and computational

resources to exploit all the available information. Typically, decision-makers respond to

these complexity constraints by acting heuristically. At the same time, their behavior is

prone to case-sensitive biases that may lead to perceptual variations or distortions and

inaccurate/not rational judgments that shape their competitiveness.

In a different research direction, the competitive networking environment is ad-

dressed as a market field and centralized auction-based mechanisms are proposed to

alleviate congestion phenomena that result from the uncoordinated selfish behavior of

decision-makers.

6.1 Impact of perfect rationality

6.1.1 Introduction

The research questions as posed in the first paragraphs of Section 6 can be con-

cretized and most importantly find direct applicability to a daily routine activity for

many of us in urban environments, the search for parking space. As we thoroughly

present in previous chapters, academic research but also public and/or private initia-

tives have been primarily directed towards the design and deployment of parking assis-

tance systems. Common to these systems is the exploitation of wireless communications

and sensing technologies to collect and broadcast (in centralized systems, i.e., [Mathur

et al., 2010], [Wang & He, 2011]) or share (in distributed systems, i.e., [Caliskan et al.,

2006], [Delot et al., 2009]) information about the supply of (and demand for) parking

resources. This information ideally saves drivers from redundant cruising trips in search

of a parking spot and assists in the management of parking resources, with centralized

systems even implementing parking spot reservation. Parking assistance systems may
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also enable smart demand-responsive pricing schemes on the parking facilities, resulting

in higher parking availability in overused parking zones and preventing double-parking

and excessive cruising phenomena (i.e., in SFpark1).

In the following sections we seek to systematically explore the fundamental limits

on the efficiency of these assistance systems to alleviate the congestion effects, when

the parking resource allocation is not controlled by a centralized entity, e.g., through a

reservation mechanism. To this end, it is ideally assumed that drivers become completely

aware of the competition intensity, parking capacity and applied pricing policies on the

parking facilities. We take a game-theoretic approach and view the drivers as rational

strategic selfish agents that try to minimize the cost they pay for the acquired parking

space. More precisely, we assume that the decisions are made by automatic software

agent implementations on-board the vehicles rather than humans and the drivers’ ac-

tions fully comply with the agents’ suggestions. We formulate the uncoordinated parking

spot selection problem as an instance of resource selection games. The drivers choose

independently to either compete for the inexpensive but scarce on-street public parking

spots or head for the more expensive private parking lot(s)2. In the first case, they run the

risk of failing to get a spot and having to a posteriori take the more expensive alternative,

this time suffering the additional cruising cost in terms of time, fuel consumption (and

stress) of the failed attempt. Drivers make their decisions drawing on perfect information

about the number of drivers, the availability of parking spots and the pricing policy, which

is broadcast from the parking service operator. We derive the equilibrium behaviors of

the drivers and compare the induced social cost against the optimal one via the Price

of Anarchy metric. Most importantly, we show that the optimization of the equilibrium

social cost is feasible by properly choosing the pricing and location of the private parking

facilities.

1SFpark: parking application for San Francisco, available online in http : //sfpark.org/
2The terms public parking spots and private parking facilities denote on-street parking spots and parking

lots, respectively. Their context in this thesis should not be confused with that of public/private goods in
economics.
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6.1.2 Modeling the parking spot selection process

The traffic and environmental burden of the parking space search process depends

on several factors. The potential overlap in drivers’ travel destinations, personal parking

preferences, and the drivers’ unwillingness to park beyond the proximity of their desti-

nation have been identified as causes for major congestion problems. These are further

aggravated due to specific parking regulations-restrictions, which are often in place es-

pecially in center areas of big cities, e.g., business districts. Typically, parking in these

areas is completely forbidden or restricted in whole sets of road blocks so that the effective

curbside is scarce. Thus, drivers may have to settle for parking spots that hardly satisfy

personal search criteria (i.e., short walking distance to their destinations). More funda-

mentally, drivers are faced with a decision whether to compete for the low-cost but scarce

on-street parking space or directly head for the over-dimensioned but more expensive

parking lots.

In our model, drivers are faced with this dilemma, that is, whether to compete or not

for the scarce on-street parking space. Those who manage to park in curbside pay cosp,s

per-time cost units, whereas those heading directly for the safer parking lot option pay

cpl = β · cosp,s, β > 1, per-time cost units. However, drivers that decide first to search

for low-cost parking spots but fail to acquire one and finally resort to a parking lot, pay

cosp,f = γ · cosp,s, γ > β, per-time cost units. The excess cost δ · cosp,s, with δ = γ − β > 0,

reflects the actual cost of cruising and the “virtual” cost of wasted time till eventually

reaching the more expensive parking facility. Parking facilities of both types are managed

by a single operator, e.g., municipal authorities, and all parking facilities of the same type

are assumed to be of similar value to the drivers –we discuss this assumption further in

Chapter 8. Thus, the drivers’ decisions are essentially made on the two sets of parking

facilities, i.e., on-street parking space vs. parking lots, rather than individual set items,

i.e., parking spots.

Optimal centralized parking spot allocation: Under the optimal centralized parking-

spot-allocation scheme, the full information processing and decision-making tasks lie

with a central entity. Drivers issue their parking requests to a central server, which mon-

itors the parking space, possesses precise information about its availability, and assigns
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it so that the overall cost paid by drivers is minimized (typically, the case when the munic-

ipality runs centralized parking assistance services). Thus, in an urban environment with

R on-street parking spots, whereby such an ideal centralized system serves the parking

requests of N > R drivers, exactly R (N − R) drivers would be directed to the low-cost

(respectively, more expensive) facilities and no one would pay the excess cruising cost.

Uncoordinated parking spot selection: In the absence of central coordination,

each driver acts selfishly, aimed at minimizing the parking cost. However, the intuitive

tendency to head for the low-cost on-street parking space, combined with its scarcity in

urban center areas, give rise to tragedy of commons effects [Hardin, 1968] and highlight

the game-theoretic dynamics behind the parking spot selection task. Thus, the collective

decision-making on parking space selection can be formulated as an instance of resource

selection games, whereby N players (i.e., drivers/software agents) compete against each

other for a finite number R of common resources (i.e., curbside parking) [Ashlagi et al.,

2006]. In this game-theoretic view of the parking spot selection process, the agents

are assumed rational strategic players. They explicitly consider the presence of identical

counteractors that also make rational decisions, weight the costs related to every possible

action profile, and act as cost minimizers.

6.1.3 Parking spot selection under complete knowledge of parking

demand

In addition to the number of parking spots and the parking fees, which are assumed

to be known throughout this study, drivers are assumed to also possess perfect informa-

tion about the level of parking demand, i.e., the number of drivers searching for parking

space. Then, the one-shot parking spot selection game under complete information is

defined as follows:

Definition 6.1.1. A strategic Parking Spot Selection Game is a tuple

Γ(N) = (N ,R, (Ai)i∈N , (wj)j∈(osp,pl)), where:

• N = {1, ..., N}, N > 1 is the set of drivers who seek for parking space,

• R = Rosp ∪ Rpl is the set of parking spots; Rosp is the set of on-street spots, with

R = |Rosp| ≥ 1; Rpl is the set of spots in parking lot, with |Rpl| ≥ N ,
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• Ai = {osp, pl} is the action set for each driver i ∈ N , comprising of the actions

“on-street” (osp) and “parking lot” (pl),

• wosp(·) and wpl(·) are the cost functions of the two actions, respectively3.

The parking spot selection game falls under the broader family of congestion games.

The players’ payoffs (here: costs) are non-decreasing functions of the number of play-

ers competing for the parking capacity, rather than their identities, and common to all

players. More specifically, drivers who decide to compete for the curbside parking space

undergo the risk of not being among the R winner drivers to get a spot. In this case,

they have to eventually resort to a parking lot only after wasting extra time and fuel (plus

patience supply) on the failed attempt. The expected cost for a driver that plays the action

osp, wosp : A1 × ...× AN → R, is therefore a function of the number of drivers k taking it

and is given by

wosp(k) = min(1, R/k)cosp,s + [1−min(1, R/k)]cosp,f (6.1)

On the other hand, the cost for those that head directly to the parking lot facilities is

fixed

wpl(k) = cpl = β · cosp,s (6.2)

Figure 6.1 plots the cost functions against the number of drivers, for both parking

options, under different pricing schemes.

We denote an action profile by the vector a = (ai, a−i) ∈ ×Nk=1Ak, where a−i denotes

the actions of all other drivers, except for player i in profile a. In addition to the two

pure actions reflecting the pursuit of parking spots in curbside and in parking lots, the

drivers may also randomize over them. In particular, if ∆(Ai) is the set of probability

distributions over the action set of player i, a player’s mixed action corresponds to a

vector p = (posp, ppl) ∈ ∆(Ai), where posp and ppl are the probabilities of the two pure

actions, with posp + ppl = 1, while its cost is a weighted sum of the cost functions wosp(·)

and wpl(·) of the pure actions. We draw on concepts in [Koutsoupias & Papadimitriou,

3Note that the cost functions are defined over the action set of each user; in the original definition of
resource selection games in [Ashlagi et al., 2006], cost functions are defined over the resources, but the
resource set coincides with the action set.
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Figure 6.1: The cost functions for parking spots in curbside and in parking lots: R = 50,
cosp,s = 1.

2009] and theoretical results in [Ashlagi et al., 2006] and [Cheng et al., 2004] to derive

the equilibrium strategies for the game Γ(N) and assess their (in)efficiency.

Pure equilibrium strategies

Existence: The parking spot selection game constitutes a symmetric game, where

the action set is common to all players and consists of two possible actions, i.e., osp and

pl. Cheng et al. have shown in ([Cheng et al., 2004], Theorem 1) that every symmetric

congestion game with two strategies has an equilibrium in pure strategies.

Derivation: Due to the game’s symmetry, the full set of 2N different action profiles

maps into N + 1 different action meta-profiles. Each meta-profile a(m),m ∈ [0, N ], en-

compasses all
(
N
m

)
different action profiles that correspond to the same number of drivers

competing for on-street parking space. The expected costs for these m drivers and for the

N −m drivers directly choosing the parking lot alternative are functions of a(m) rather

than the exact action profile. In general, the cost for driver i under the action profile

a = (ai, a−i) is

cNi (ai, a−i) =

 wosp(Nosp(a)), for ai = osp

wpl(N −Nosp(a)), for ai = pl
(6.3)

where Nosp(a) is the number of competing drivers for on-street parking under action

profile a. Equilibrium action profiles combine the players’ best responses to their oppo-

nents’ actions. Formally, an action profile a = (ai, a−i) is a pure Nash equilibrium (NE) if,

for all i ∈ N , it holds that ai ∈ arg mina′i∈Ai(c
N
i (a′i, a−i)), so that no player has anything to
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gain by changing his decision unilaterally. Therefore, to derive the equilibrium states, we

determine the conditions on Nosp that break the equilibrium definition and reverse them.

More specifically, given an action profile a with Nosp(a) competing drivers, a player gains

by changing his decision to play action ai in two circumstances, i.e., :

when ai = pl and wosp(Nosp(a) + 1) < cpl (6.4)

when ai = osp and wosp(Nosp(a)) > cpl (6.5)

Lemma 6.1.1. In Γ(N), a driver is motivated to change his action ai in the following

circumstances:
• ai = pl and (a) Nosp(a) < R ≤ N or

(b) R ≤ Nosp(a) < N0 − 1 ≤ N or

(c) Nosp(a) < N ≤ R (6.6)

• ai = osp and R < N0 < Nosp(a) ≤ N (6.7)

where N0 = R(γ−1)
δ ∈ R.

Proof. Conditions (6.6a) and (6.6c) are trivial. Since the current number of competing

vehicles is less than the on-street parking capacity, every driver having originally chosen

the parking lot option has the incentive to change his decision due to the price differential

between cosp,s and cpl. When Nosp(a) exceeds the curbside parking supply, a driver who

has decided to avoid competition, profits from switching his action when (6.4) holds,

which when combined with (6.1) yields (6.6b). Similarly, a driver that first decides to

compete profits by switching his action if (6.5) holds, which combined with (6.1) yields

(6.7).

Theorem 6.1.1. The game Γ(N) has the following

(a) for N ≤ N0, a unique NE profile a∗ with Nosp(a
∗) = NNE,1

osp = N ;

(b.1) for N > N0 and N0 ∈ (R,N)\N∗,
(
N
bN0c

)
NE profiles a′ with Nosp(a

′) = NNE,2
osp = bN0c;

(b.2) for N > N0 and N0 ∈ [R+ 1, N ]∩N∗,
(
N
N0

)
NE profiles a′ with Nosp(a

′) = NNE,2
osp = N0

and
(

N
N0−1

)
NE profiles a? with Nosp(a

?) = NNE,3
osp = N0 − 1.

Proof. Theorem 6.1.1 follows directly from Lemma 6.1.1. The equilibrium states satisfy

both the conditions Nosp ≥ N0 − 1 and Nosp ≤ N0. Thus, the game has two equilibrium
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states on Nosp for N > N0 with integer N0 (case b.2), or a unique state, otherwise (cases

a, b.1).

An alternative way to derive the equilibria of Γ(N) is via potential functions. The game

Γ(N) is a congestion game; thus, it accepts an exact potential function Φ(·) [Monderer

& Shapley, 1996]. As already explained, the 2N different action profiles of Γ(N) can be

grouped into N+1 different meta-profiles (m,N−m), 0 ≤ m ≤ N , where m is the number

of drivers that decide to compete for on-street parking. Therefore, the potential function

is effectively a function of m and can be written as

Φ(a) ∼ Φ(m) =
∑
j∈R

nj(a)∑
k=0

wj(k) (6.8)

where nj(a) the number of drivers using resource j under action profile a. Therefore,

for m ≤ R,

Φ(m) = (N −m)cpl +
m∑
k=1

cosp,s = cosp,s[βN − (β − 1)m] (6.9)

whereas, for m > R

Φ(m) = (N −m)cpl +
m∑
k=1

min

(
1,
R

k

)
cosp,s +

[
1−min

(
1,
R

k

)]
cosp,f

= cosp,s

[
βN + δm−R(γ − 1) +R(1− γ) ·

m∑
k=R+1

1

k

]
= cosp,s [βN + δm−R(γ − 1) +R(1− γ) · (Hm −HR+1)] (6.10)

Hn = γ+ log(n)+O(1/n) is the nth harmonic number; and γ the Euler constant. The

pure NE strategies coincide with the local minima of the potential function. For m ≤ R,

∂Φ(m)/∂m < 0 and the minimum is obtained at m, as derived in Theorem 6.1.1.

For m > R, demanding ∂Φ(m)/∂m = 0 we get δ + R(1−γ)
mNE

= 0, which yields mNE =

R(γ−1)
δ

= N0, i.e., the value we got through Lemma 6.1.1.

Efficiency: The efficiency of the equilibria is assessed through the broadly used

metric of the PoA [Koutsoupias & Papadimitriou, 2009]. It expresses the ratio of the social

cost in the worst-case equilibria over the optimal social cost under ideal coordination of

the drivers’ strategies.
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Proposition 6.1.1. In Γ(N), the pure PoA equals:

PoA =


γN−(γ−1) min(N,R)

min(N,R)+βmax(0,N−R)
, if N0 ≥ N

bN0cδ−R(γ−1)+βN
R+β(N−R)

, if N0 < N

Proof. The social cost under action profile a equals:

C(Nosp(a)) =

N∑
i=1

cNi (a) = cosp,s [Nβ −Nosp(a)(β − 1)] (6.11)

if Nosp(a) ≤ R and

C(Nosp(a)) =
N∑
i=1

cNi (a) = cosp,s [Nosp(a)δ −R(γ − 1) + βN ] (6.12)

if R < Nosp(a) ≤ N . The numerators of the two ratios are directly obtained by replacing

the first two NNE
osp values (a) and (b.1) (worst cases) computed in Theorem 6.1.1. On the

other hand, under the socially optimal action profile aopt, exactly R drivers pursue on-

street parking space, and, hence, no drivers have to pay the additional cruising cost. The

optimal social cost Copt is given by:

Copt =
N∑
i=1

cNi (aopt) = cosp,s[min(N,R) + β ·max(0, N −R)]

Proposition 6.1.2. In Γ(N), the pure PoA is upper-bounded by 1
1−R/N with N > R.

Proof. The condition is obtained directly from Proposition 6.1.1, when N > R.

Mixed-action equilibrium strategies

We consider symmetric mixed-action equilibria since these can be more helpful in

dictating practical strategies in real systems (asymmetric mixed-action equilibria are dis-

cussed at the end of the section).

Existence: In ([Ashlagi et al., 2006], Theorem 1) it is proven that a unique symmetric

mixed equilibrium exists for the broader family of resource selection games with more

than two players and increasing cost functions. This is easily shown to hold for the game
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Γ(N), with N > R and cost functions wosp(·) and wpl(·) that are non-decreasing functions

of the number of players.

Derivation: The expected costs of choosing parking spots in curbside and in parking

lot, when all other drivers play the mixed action p = (posp, ppl) are given by cNi (pl, p) = cpl

and

cNi (osp, p) =
N−1∑
Nosp=0

wosp(Nosp + 1)B(Nosp;N − 1, posp)

where B(Nosp;N − 1, posp) is the Binomial probability distribution with parameters

N − 1 and posp, for Nosp drivers choosing curbside parking. The cost of the symmetric

profile where everyone plays the mixed-action p is given by

cNi (p, p) = posp · cNi (osp, p) + ppl · cNi (pl, p) (6.13)

We can now postulate the following Theorem.

Theorem 6.1.2. The game Γ(N) has a unique symmetric mixed-action Nash equilibrium

pNE = (pNEosp , p
NE
pl ), where pNEosp = 1, if N ≤ N0 and pNEosp = N0

N
, if N > N0, with pNEosp +pNEpl =

1 and N0 ∈ R.

Proof. The symmetric equilibrium for N ≤ N0 corresponds to the pure NE we derived in

Theorem 6.1.1. To compute the equilibrium for N > N0 we invoke the condition that

equilibrium profiles must fulfil

cNi (osp, pNE) = cNi (pl, pNE) (6.14)

namely, the costs of each pure action belonging to the support of the equilibrium

mixed-action strategy are equal. Hence, from (6.13) and (6.14) the symmetric mixed-

action equilibrium pNE = (pNEosp , p
NE
pl ) solves the equation

f(p) = −β +

N−1∑
k=0

[
γ −min

(
1,

R

k + 1

)
· (γ − 1)

]
B(k;N − 1, p) = 0 (6.15)

A closed-form expression for the equilibrium pNEosp is not straightforward. However, it

holds that:

lim
p→0

f(p) = −β + 1 < 0 and lim
p→1

f(p) = δ(1− N0

N
) > 0 (6.16)
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and f(p) is a continuous and strictly increasing function in p since

f ′(p) =

N−1∑
k=0

[
γ −min

(
1,

R

k + 1

)
· (γ − 1)

]
B′(k;N − 1, p) >

N−1∑
k=0

B′(k;N − 1, p) = 0

Hence, f(p) has a single solution. It may be checked with replacement that f(N0/N) =

0.

Asymmetric mixed-action equilibria: In paragraph “Pure equilibrium strategies”

in this section, we showed that there may exist asymmetric pure equilibria, when the

number of drivers exceeds N0. In general, the derivation of results for asymmetric mixed-

action equilibria is much harder than for either their pure or their symmetric counterparts

since the search space is much larger. Moreover, asymmetric mixed-action equilibria have

two more undesirable properties: (a) they do not treat all players equally, i.e., different

players end up with a-priori worse chances to come up with an inexpensive parking

spot; (b) their realization in practical situations is much more difficult than that of their

symmetric counterparts. Therefore, we focus our analysis and discussion on symmetric

equilibria and their (in)efficiency.

6.1.4 Numerical results

The analysis in Section 6.1.3 suggests that the charging policy for on-street and pri-

vate parking space and their relative location, which determines the overhead parameter

δ of failed attempts for on-street parking space, affect to a large extent the (in)efficiency

of the game equilibrium profiles. In the following, we illustrate their impact on the game

outcome and discuss their implications for real systems.

For the numerical results we adopt per-time unit normalized values used in the

typical municipal parking systems in big European cities4. The parking fee for on-street

space is set to cosp,s = 1 unit whereas the cost of parking lot β ranges in (1, 16] units and

the excess cruising cost parameter δ varies within [1, 5] units.
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Figure 6.2: Price of Anarchy as a function of the parking demand and supply, under fixed
pricing scheme β = 5, δ = 1.
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Figure 6.3: Price of Anarchy as a function of the parking demand and supply, under
variable cruising cost δ and fixed parking fee β = 5.

Impact of parking demand and on-street parking supply

An optimal (centralized) mechanism would assign exactly min(N,R) on-street park-

ing spots to min(N,R) drivers. If N ≤ R, in the absence of (central) coordination, all

drivers go for the on-street parking space and, trivially, PoA = 1. Hereafter, we focus

on the more interesting case N > R, where a number of drivers end up paying the extra

cruising cost δcosp,s (Ref. Lemma 6.1.1, Theorem 6.1.1). Under a fixed pricing scheme, this

inefficiency depends on N and R. In Figure 6.2, we plot the PoA against N and R ranging

in [55, 195] and [10, 50], respectively. The following remarks suggest joint conditions on N

and R that result in more efficient parking search.

Varying N or R: For N ≤ N0 or, equivalently, for R ≥ Nδ
γ−1

, it holds that ϑPoA
ϑN

> 0

and ϑPoA
ϑR

< 0. Therefore, the PoA is strictly increasing in N and decreasing in R. On the

contrary, for N > N0 or R < Nδ
γ−1

, the PoA is strictly decreasing in N and increasing in

R, since ϑPoA
ϑN

< 0 and ϑPoA
ϑR

> 0.

4http : //www.city − parking − in− europe.eu/
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When all drivers choose to compete, that is, if N ≤ N0 or R ≥ Nδ
γ−1

, exactly R drivers

pay cosp,s, whereas the rest of them, i.e., N − R drivers, pay γcosp,s. Thus, under a fixed

pricing scheme, the social cost is optimized when the maximum charging cost (γcosp,s) is

incurred by the minimum possible set of drivers, namely when the parking demand is the

lowest possible one (N = R+ 1) or, equivalently, as R is increased so that only one driver

fails the competition for the low-cost parking spots. On the other hand, when N > N0 or

R < Nδ
γ−1

, R drivers pay cosp,s, N − N0 drivers pay βcosp,s and N0 − R drivers pay γcosp,s.

Under the optimal operation of the service, the latter two sets of drivers directly head for

space in parking lot. Thus, the efficiency of the uncoordinated parking search is improved

as the parking demand increases, making the total cost paid by the N − N0 drivers the

most critical factor for the overall social cost and hence minimizing the impact of the total

cost paid by the N0 − R drivers due to the lack of coordination. Equivalently, the set of

N0−R = R(β−1)
δ

drivers that fail the competition is minimized when the on-street parking

capacity becomes the lowest possible one, i.e., R = 1.

On the other hand, the extra cruising cost δ may change as the result of, for example,

an addition of a parking lot closer to the search area or a change in driving conditions.

Figure 6.3 displays the PoA against δ and suggests the following trends:

Varying δ: For N ≤ N0 or, equivalently, for δ ≤ R(β−1)
N−R , it holds that ϑPoA

ϑδ
> 0.

Therefore, the PoA is strictly increasing in δ. For δ > R(β−1)
N−R , we get ϑPoA

ϑδ
= 0. Hence, if δ

exceeds R(β−1)
N−R , PoA is insensitive to changes of the excess cost δ.

For given charging costs and on-street parking capacity, the construction of expen-

sive parking lots in the proximity of the on-street parking area does not work effectively,

when the competition is high (Ref. Figures 6.3(a) and 6.3(b) for high N values and Figures

6.3(c) and 6.3(d) for low R values). Otherwise, under medium or low competition, there

is a monotonic trend that suggests, if possible, to decrease the distance between the two

options to increase the efficiency of the parking search process. Overall, changes in this

distance and, hence, the cruising cost are meaningless for high δ values, over R(β−1)
N−R . In

this case, when N > N0, N0 − R = R(β−1)
δ

drivers pay the extra cruising cost and end

up in a parking lot together with the N − N0 drivers that head directly for this kind of

parking space. Thus, the increase of cruising cost has a double-edge effect. On the one

hand, drivers are discouraged from competing so that fewer end up paying the cruising
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overhead. On the other hand, failing the competition for on-street parking costs more. In

addition, the total number of drivers that incur the more (less) expensive parking fee is

N −R (R), irrespective of the exact δ value. As a result, changes in δ do not affect either

the total cost spent for space in the on-street or parking lot facilities, or the aggregate

cruising overhead. Thus, the social cost can be decreased by locating a parking lot in the

proximity of the on-street parking area so that the additional travel distance is reduced

to the point of bringing the excess cost δ below R(β−1)
N−R .

Although low PoA values denote high efficiency in the parking search process, they

are not always coupled with low absolute social costs. For instance, this may happen

under very intense competition, namely, under high parking demand for very low curbside

capacity (i.e., Ref. Figure 6.2 at N = 195, R = 10). In the following, we study the

sensitivity of the social cost to the parking demand and supply, and the prices charged

for the two types of parking facilities.

Impact of pricing scheme

Figure 6.4 plots the social costs C(Nosp) under pure (Eq. 6.11, 6.12) and C(posp)

under mixed-action strategies as a function of the number of competing drivers Nosp and

competition probability posp, respectively, where

C(p) = cosp,s

N∑
n=0

(
N

n

)
pn(1− p)N−n[min(n,R) +max(0, n−R)γ + (N − n)β] (6.17)

Figure 6.4 motivates two remarks. First, the social cost curves for pure and mixed-

action profiles have the same shape. This comes as no surprise since, for given N ,

any value for the expected number of competing players 0 ≤ Nosp ≤ N can be realized

through an appropriate choice of the symmetric mixed-action profile p. Second, the cost

is minimized when the number of competing drivers is equal to the number of on-street

parking spots. The cost rises when either the competition exceeds the available on-street

parking capacity or the drivers are overconservative in (and refrain more than they should

from) competing for on-street parking. In both cases, the drivers pay the penalty for the

lack of coordination in their decisions. The deviation from the optimal case grows faster

with increasing price differential between the on-street spots and the space in parking lot
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(i.e., β) or the distance between the on-street and parking lot facilities (i.e., δ).

IfN > R, in the worst-case equilibrium (i.e., the equilibrium state with the maximum

number of competing drivers and, hence, the maximum social cost among all equilibria),

the number of drivers that actually compete for on-street parking spots exceeds the real

curbside parking capacity by a factor which is a function of β and γ (equivalently, δ)

(Ref. Lemma 6.1.1 and Theorem 6.1.1). This inefficiency is captured in the PoA plots in

Figures 6.5(a) and 6.5(b) for β and δ ranging in [1.1, 16] and [1, 5], respectively. The plots

illustrate the following trends:

Varying β: For N ≤ N0 or, equivalently, for β ≥ δ(N−R)+R
R

, it holds that ϑPoA
ϑβ

< 0

and therefore, the PoA is strictly decreasing in β. On the contrary, for β < δ(N−R)+R
R

, the

PoA is strictly increasing in β, since ϑPoA
ϑβ

> 0.

Practically, the equilibrium strategy emerging from this kind of assisted parking

search behavior can approximate the optimal coordinated mechanism, provided that the

operation of parking lots properly accounts for the drivers’ preferences and estimates

of the typical parking demand and supply. More specifically, if, as part of the pricing

policy, the fee of parking lot is less than δ(N−R)+R
R

times the cost of on-street parking,

then the social cost in the equilibrium profile approximates the optimal social cost as the

price differential between on-street and parking lots decreases. This result is in line with

the statement in [Larson & Sasanuma, 2010], arguing that “price differentials between

on-street and off-street parking should be reduced in order to reduce traffic congestion”.

Note that the PoA metric also monotonically decreases for high values of the parking

lot fee, specifically when the parking operator desires to gain more than δ(N−R)+R
R

times
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Figure 6.4: Social cost for N = 500 drivers when Nosp drivers compete (a) or when all
drivers decide to compete with probability posp (b), for R = 50.
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Figure 6.5: Price of Anarchy for N = 500 and varying R, under different pricing schemes.

the cost of on-street parking, towards a bound that depends on the excess cost δ. Never-

theless, these operating points correspond to high absolute social cost, i.e., the minimum

achievable social cost is already unfavorable due to the high fee paid by the N−R drivers

that use space in parking lots (Ref. Figure 6.4, large β). However, there are instances,

as in the case of R = 50 (Ref. Figure 6.5(c)), where the value δ(N−R)+R
R

corresponds to a

non-realistic (too large) option for the cost of the space in parking lots, already for δ > 1.

Thus, in contrast with the previous case, the PoA only improves as the cost for parking

lot decreases.

6.1.5 Trading public parking space

In previous sections of Chapter 6, we have formulated and studied the game that

arises from the conventional parking search behavior under a fixed parking cost model.

In this section, we ask whether and how much can centralized parking assistance sys-

tems combined with more aggressive pricing schemes improve the outcome for both the

on-street parking space operator and the drivers. More specifically, we propose differ-

ent auction mechanisms for the assignment of on-street parking space. In fact, auction

mechanisms have been used under various concepts in different disciplines. In network

science, research efforts on node transactions devise auction-based schemes to address

the challenge of resource (energy, bandwidth and storage space) sharing among multiple

networking users [Iosifidis & Koutsopoulos, 2010]. The study presented in the follow-

ing sections approaches the process of parking space selection in urban environments

as a network resource allocation problem. Indeed, the auctioning of parking spots is
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a promising key-idea that has only recently started to gain interest5. The number of

available auctioned spots is announced to the drivers, who submit their bids for them,

expressing what they are willing to pay for a parking spot in that particular occasion with

complete information for the overall parking demand. As central mechanisms, auctions

determine who gets a parking spot and at what cost, saving the additional expenses of

cruising in the non-assisted, uncoordinated parking search, while unleashing the con-

ventional buying rules in public parking operation. Indeed, in the following sections we

show that, as expected, auctions always raise the revenue of the public parking oper-

ator since they adapt payments to what drivers are willing to pay for on-street parking

space. Nevertheless, this does not come necessarily at the expense of drivers, who save

the cruising cost and find the auctioning system less expensive on average, under various

combinations of parking demand and pricing policies.

6.1.6 The parking spot selection game

In previous sections we formulate the collective decision-making on parking space

selection as an instance of the strategic resource selection games, whereby N players

(i.e., drivers) compete against each other for a finite number of S on-street public parking

spots6. More specifically, drivers who decide to compete for the cheaper on-street public

parking space undergo the risk of not being among the S winner-drivers to get a public

spot. In this case, they have to eventually resort to private parking space (parking lot),

only after wasting extra time and fuel (plus patience supply) on the failed attempt.

Recall by Section 6.1.3 that the resulting aggregate drivers’ cost Cg under the equi-

librium states of the game amounts to

Cg ≡ C(N) = cosp,s [Nγ −min(N,S)(γ − 1)] , if N ≤ N0 and

Cg ≡ C(N0) = cosp,sβN , if N > N0 (6.18)

which, for N > S, exceeds the optimal cost value Cg,opt ≡ C(S) = cosp,s [S + β(N − S)],

the ratio Cg/Cg,opt expressing the “price of anarchy” of the game and quantifying the

penalty of lack of coordination across the drivers. On the other hand, the revenue Rg for
5https : //web.chapman.edu/parking/
6In previous sections the number of on-street public parking spots is denoted by R. Herein the notation

is changed to avoid misleading with other indices that are introduced in the following sections.

Evangelia A. Kokolaki 125



Information dissemination and consumption in competitive networking urban environments

the public parking space operator becomes

Rg ≡ R(N) = min(N,S)cosp,s, if N ≤ N0 and

Rg ≡ R(N0) = Scosp,s, if N > N0 (6.19)

6.1.7 The auction-based parking allocation

Parking assistance schemes can help overcome the inefficiencies that result from the

uncoordinated selfish behavior of drivers. These systems rely on wireless communication

systems for delegating the parking space assignment task to a central server, which: (a)

gets informed about the status of on-street public parking spots; (b) collects the requests

and bids of drivers for parking space; and (c) determines who is assigned a public parking

spot and at what cost, and notifies the drivers. In the sequel, we propose and analyze

an auction-based system for the management of the public parking space drawing on the

theory of multi-unit auctions with single-unit demand [Krishna, 2010].

In particular, N drivers (buyers) bid in a single auction for no more than one of S

spare on-street public parking spots (non-divisible, physically identical goods). Drivers

(bidders) are assumed to be symmetric: their valuations of parking spots are i.i.d RVs

continuously distributed in the same interval [vmin, vmax] and FV (), fV () are their cumu-

lative distribution and probability density functions, respectively. An appropriate choice

for this interval is [cosp,s, cpl]. In other words, the operator of the public parking resources

will typically impose a threshold on the selling price, i.e., a reserve price, that will be

no less than the on-street public parking spot price under fixed cost. Drivers, in turn,

will account for this lower bound in their bidding decisions, while they will not be will-

ing to pay more than what the private parking operator charges. Although each driver

is aware of the distribution of his competitors’ valuations, upon bidding, he can only

know the realization of his own RV (i.e., his bid). Bidders are also assumed to be risk-

neutral, i.e., they seek to maximize their expected profit from bidding, and free of budget

constraints [Krishna, 2010].

In general, if N = {1, ..., N} with N > 1 is the set of drivers who seek parking
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space, a selling auction mechanism consists of three components: the set of bids Bi
(increasing functions of valuations) for each driver i ∈ N ; an allocation rule π : B1 ×

... × BN → D(N ), where D is the set of probability distributions over N determining

who are awarded parking spots, and a payment rule p : B1 × ... × BN → RN for the

selling price of each allocated spot. Out of the variety of options, hereafter we consider

the three most thoroughly analyzed implementations, the uniform-price, discriminatory-

price and Vickrey auctions. All three auction formats are standard in that they assign

the parking spots to the users that submit the highest bids. Under single-unit demand

and symmetric risk-neutral bidders, all three auctions are also efficient in the sense that

they assign the parking spots to the users that value them most7. In other words, they

induce equilibrium states, whereby the top-bids are submitted by the drivers that value

the parking spots most. On the other hand, whereas all three auctioning mechanisms

follow the same allocation rule, they differ in the payment rule they apply.

• Under the uniform-price auction (upa) and the Vickrey auction (va), all parking spots

are sold at the same price, the “market-clearing price”, which is equal to the first

losing bid, i.e., the (S + 1)th highest over all drivers’ bids.

• Under the discriminatory-price auction (dpa), the winning drivers pay an amount

equal to their individual bids.

In the sequel, we first define the equilibrium bidding strategies when the drivers are

aware of the number of competitors; for instance, because the parking assistance system

provides them with this information. We then discuss their effectiveness from the bid-

ders’ and operator’s perspective, given that the auctioned parking spots do not suffice to

fulfil the entire parking demand. Otherwise, it is trivial to show that the centralized auc-

tion’s and the distributed practice’s outcomes (i.e., parking spot allocation and winners’

payments) coincide.

7In general, reserve prices introduce a positive probability that the auctioned object remains unsold
impacting on the efficiency of the mechanism. Herein, however, this event is excluded, since drivers’ bids
range in [cosp,s, cpl].
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Uniform-price and Vickrey auction

Both the single-unit demand uniform-price and Vickrey auction mechanisms come

under the broader category of incentive-compatible (truthful) mechanisms in that the

equilibrium strategy, β(v) for the drivers is to bid their real valuations v,

βupa(v) = βva(v) = v (6.20)

For N > S, the conditional expectation of the driver’s payment for a given valuation

v is

pupa(v) = pva(v) = Pr(V(N−S,N−1) < v)E{V(N−S,N−1)|V(N−S,N−1) < v}

=

∫ v

vmin

yfV(N−S,N−1)
(y)dy (6.21)

where E{·} is the expectation operator and V(k,n) is the kth order statistic of the n com-

peting valuations (i.e., the kth smallest out of n samples drawn from RVs V1, ..., Vn) with

probability density function fV(k,n)(y) = {B(k, n−k+1)}−1{FV (y)}k−1{1−FV (y)}n−kfV (y),

where B(·, ·) stands for the complete Beta function [Balakrishnan & Rao, 1998].

Therefore, the unconditional (ex ante) expectation of the driver’s payment is given by

pupa = pva =

∫ vmax

vmin

pupa(v)fV (v)dv

=
S

N
E{V(N−S,N)} (6.22)

while the expected revenue of the public parking operator becomes

Ra ≡ E{Rupa} = E{Rva} = Npva

= SE{V(N−S,N)} (6.23)

and is collected from the drivers with the top S bids.

On the other hand, drivers with the N − S lowest bids resort to private parking

facilities, all paying the fixed cost vmax = cpl. Thus, the expected aggregate drivers’ cost

turns out to be

Ca ≡ E{Cupa} = E{Cva} = SE{V(N−S,N)}+ (N − S)vmax (6.24)
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For N ≤ S, it is trivial to show that,

pupa = pva = vmin

Ra ≡ E{Rupa} = E{Rva} = Nvmin (6.25)

Ca ≡ E{Cupa} = E{Cva} = Nvmin (6.26)

Discriminatory-price auction

The discriminatory-price auction mechanism is the multi-unit counterpart of the

single-unit first-price auctions. Vickrey, already in [Vickrey, 1962], showed that the ex-

pected revenue for all multi-unit auctions with single-unit demand featuring the same

allocation rule is the same, a demonstration of the revenue equivalence principle. There-

fore,

pdpa(v) = pupa(v) = pva(v),

Ra = E{Rdpa} and Ca = E{Cdpa} (6.27)

For N > S, the equilibrium bidding strategy equals

βdpa(v) = E{V(N−S,N−1)|V(N−S,N−1) < v}

=
1

FV(N−S,N−1)
(v)

∫ v

vmin

y · fV(N−S,N−1)
(y)dy (6.28)

Otherwise,

βdpa(v) = vmin (6.29)

6.1.8 Numerical results

In Sections 6.1.6 and 6.1.7 we have outlined the analytical formulations of the two

main practices in managing on-street public parking space and derived the equilibrium

behaviors they induce. Under conventional uncoordinated search for on-street public

parking, drivers have the chance to pay a lower parking fee when they succeed in get-

ting a public parking spot. However, they run the risk of paying a normalized per-hour
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Figure 6.6: Probability density functions for drivers’ valuations of public parking spots,
cosp,s = 1, β = 4.

cruising cost δcosp,s, on top of the private more expensive parking fee, when they fail to

seize a public parking spot and, eventually, drive to a private parking lot. On the other

hand, the auctioning of public parking places exploits the diverse drivers’ personalities

and level of interest for parking and allows for higher payments for public parking space,

while saving the “price of anarchy” paid in the absence of coordination as under the afore-

mentioned game formulation. In this section, we explore how different pricing schemes

and the drivers’ personalities and interest in parking (as captured in their valuation dis-

tributions) affect (a) the revenue achievable by the public parking service operator; and

(b) the resulting per-driver expected cost of the parking service, under the two radically

different paradigms of parking space management.

For the pricing policy, we adopt values used in the municipal parking system in the

city of Athens8. In particular, cosp,s ≤ 2 e, and β ≤ 7, for 60-minute period. The cruising

cost parameter δ is allowed to range in (0, 10]. On the other hand, we consider three

alternatives for the distribution of the drivers’ valuations, fV (v). In all three of them,

V lies within an interval [vmin, vmax] = [cosp,s, βcosp,s], yet the mass of the distribution is

spread differently over this interval (Ref. Figure 6.6):

Doubly-truncated decay exponential valuations: This instance of valuation function

corresponds to scenarios, whereby drivers are not willing to pay high for a parking spot. It

could model driving in the center during leisure hours, where the acquisition of a parking

spot is less urgent. The moments of the (N − S)th order statistic can be computed

numerically through the recurrence relations derived by Joshi in [Joshi, 1979].

8http : //www.cityofathens.gr/en/city − athens−municipal − parking − system− 0
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Doubly-truncated growth exponential valuations: The mass in this valuation distri-

bution is concentrated towards the rightmost values of its support. Compared with the

doubly-truncated decay exponential distribution, this one can model driving in the city

center during busy hours for business purposes.

Uniform valuations: This is the intermediate scenario, where the valuation of parking

spots for individual drivers may lie anywhere in [vmin, vmax] equiprobably. In this case,

the expected value of the (N−S)th order statistic can be also computed through the mean

value of the generalized Beta distribution f(v;N − S, S + 1), for v ∈ [vmin, vmax], that is,

E{XN−S,N} = vmin +
N − S
N + 1

(vmax − vmin) (6.30)

We consider medium to high parking demand levels (up to 160 drivers) and limited

public parking supply (S = 20 spots) during the time window over which the parking

requests are issued.

Figures 6.8(a) and 6.8(b) plot the aggregate drivers’ cost as a function of the parking

demand intensity (i.e., number of drivers, N ), under the distributed parking spot selec-

tion game and centralized parking auctioning system, respectively. In line with intuition,

the aggregate drivers’ cost increases with the parking demand under both parking alloca-

tion approaches. Under the distributed game (Ref. Figure 6.8(a)), the aggregate drivers’

cost grows as the penalty cost for cruising between the public and private parking facil-

ities (i.e., δ) increases. Under the auctioning system (Ref. Figure 6.8(b)), the valuation

distribution induces the following ordering of the aggregate drivers’ costs

Cga ≥ Cua ≥ Cda (6.31)

where the superscripts g, u and d indicate quantities derived under growth exponential,

uniform and decay exponential valuations, respectively.

Indeed, we note that there are first-order stochastic dominance relationships between

the three cumulative distribution functions, that is

F gV (v) ≺ F uV (v) ≺ F dV (v) (6.32)

as can be readily seen in the following Figure.
In addition, the cumulative distribution function of the (N − S)th order statistic is
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written [Balakrishnan & Rao, 1998]

F(N−S,N)(v) =

∫ F (v)

0

N !

S!(N − S − 1)!
tN−S−1(1− t)Sdt (6.33)

Therefore, the first-order dominance relationships in the drivers’ valuations as given

in (6.32) is inherited by their (N − S)th order statistics. As a result it holds that,

F gV(N−S,N)
(v) ≺ F uV(N−S,N)

(v) ≺ F dV(N−S,N)
(v) (6.34)

Finally, the ordering in (6.31) emerges directly when relating the expected values

of the valuations to their cumulative distribution functions through a general relation

concerning non-negative RVs [Ross, 1998],

E{X(N−S,N)} =

∫ ∞
0

(
1− F(N−S,N)(x)

)
dx (6.35)

On the parking operator’s side, the revenue from auctioning the public parking spots

exceeds that under the fixed-cost distributed parking service provision (Ref. Figure 6.8(c)).

This is expected since the same number of drivers park in public space under both

practices and these drivers pay at least cosp,s in the first case, while they pay exactly

cosp,s in the latter case. The operator exploits the differentiated drivers’ interest in the

lower-cost public parking space and adapts the payments to what they are willing to pay

for it. Thus, the revenue under the three valuation distributions is strictly ordered, with

the growth exponential valuations inducing the highest revenue values and the decay

exponential valuations the lowest values.

On the drivers’ side, the picture is mixed as some drivers pay more and some pay
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Figure 6.8: Aggregate drivers’ costs and revenues as functions of the number of drivers,
cosp,s = 1, β = 4: (a) Aggregate drivers’ cost under the parking spot selection game (for δ ∈
{1, 2, 3}); (b) Aggregate drivers’ cost under the auctioning system (for the three valuation
distributions); (c) Operator’s revenue under the auctioning system and the parking spot
selection game; (d) Aggregate cost of the drivers parking in private parking space under
the auctioning system and the parking spot selection game.
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less for public parking space under the auctioning system. Specifically, on one hand, the

aggregate cost of the drivers parking in public space (i.e., operator’s revenue) under the

auctioning system exceeds that under the parking spot selection game, as Figure 6.8(c)

illustrates. On the other hand, the aggregate cost of the drivers parking in private space

under the auctioning system is lower than that under the parking spot selection game,

as shown in Figure 6.8(d). This is due to the fact that under the auctioning system all

bidders that are not awarded public parking spots enjoy the benefits from the coordination

of drivers’ parking spot selection, avoid the “price of anarchy” and end up paying the same

fixed cost cpl, irrespective of their valuations.

Overall, when the excess cost (in terms of fuel and time wasted on cruising) due

to the lack of coordination in the distributed parking game, exceeds the excess cost

from bidding over the fixed minimum cost cosp,s (collected by the operator), both the

drivers and the operator are doing better under the auctioning system. Otherwise, the

distributed parking spot selection represents a less expensive practice for the drivers.

In the remainder of this section, we compare the per-driver cost under the two parking

space management practices and explore the conditions on the number of drivers and

the cruising, public and private costs under which the aforementioned win-win situation

emerges in the auctioning practice.

Let ∆ denote the difference between the per-driver cost under the conventional dis-

tributed parking spot selection game, Cg/N , and its counterpart under the centralized

auction-based allocation, Ca/N , that is,

∆ =
1

N
(Cg − Ca) (6.36)

For ∆ > 0 (∆ < 0), this difference expresses the excess cost that drivers pay in

the parking spot selection game (auctioning system) compared to the auctioning system

(parking spot selection game). Drivers are indifferent over the two approaches for ∆ = 0.

Case N > N0: By equations (6.18) and (6.36) we have that

∆ =
1

N
(Nβcosp,s − Ca) (6.37)

=
1

N
[Nβcosp,s − [Ra + (N − S)βcosp,s]]

=
S

N
(βcosp,s − E{VN−S,N}) > 0

Evangelia A. Kokolaki 134



Information dissemination and consumption in competitive networking urban environments

40 60 80 100 120 140 160
0

2

4

6

8

10

Number of drivers, N

δ

 

 

Uniform

DT−Decay Exponential

DT−Growth Exponential

40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

1.5

2

Number of drivers, N

∆
u

 

 

δ=1

δ=2

δ=3

(a) β = 7, cosp,s = 1 (b) β = 4, cosp,s = 1

40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

1.5

2

Number of drivers, N

∆
u

 

 

δ=1

δ=2

δ=3

40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

1.5

2

Number of drivers, N

∆
u

 

 

δ=1

δ=2

δ=3

(c) β = 4, cosp,s = 2 (d) β = 7, cosp,s = 1

Figure 6.9: (a): Values of cruising cost that zero difference ∆ for different number of
drivers; (b), (c), (d): Difference ∆u as a function of the number of drivers, under various
pricing schemes.

since the per-spot expected payment E{VN−S,N} is strictly smaller than the cost of

private parking space. Therefore, for N > N0, with N0 = S(γ−1)
δ

, drivers are always better

off with the auctioning system. Consequently, if the demand is high enough, win-win

situations always emerge under the auctioning practice.

Case N ≤ N0: Unlike the first case, when N ≤ N0 (i.e., δ ≤ S(β−1)
N−S ) the picture is not

clear from the drivers’ perspective. By equations (6.18) and (6.36) we have that

∆ =
1

N
[cosp,s[Nγ − S(γ − 1)]− Ca] (6.38)

Therefore, the two parking assignment options can be equivalent or either of them

prevail. In particular, the two parking assignment options become equivalent when

δ =
1

N − S

[
Ca
cosp,s

+ S(β − 1)−Nβ
]

(6.39)

Evangelia A. Kokolaki 135



Information dissemination and consumption in competitive networking urban environments

The cruising cost that achieves equivalence is plotted in Figure 6.9(a) as a function of

the parking demand. By equation (6.39) and as shown in Figure 6.9(a), the equivalence

is possible by decreasing (increasing) the cruising cost as the parking demand increases

(decreases). In addition, the higher the drivers’ valuations are, the higher revenue the

operator gains, the higher the aggregate drivers’ cost the auctioning system induces and,

finally, the more the cruising between the area of public and private parking should cost

to counterbalance the higher payments of drivers under the auctioning system. This

causal relation between valuations and cruising cost parameter is clearly seen in Figure

6.9(a).

In order to proceed further and identify conditions under which the win-win situ-

ations emerge (i.e., ∆ > 0), we need a specific valuation distribution to consider. In

the sequel, we study the difference ∆u = 1
N

(Cg − Ca,u) between the induced per-driver

cost under the parking spot selection game and that under the auctioning system with

uniformly distributed drivers’ valuations. By equations (6.18), (6.24) and (6.30), with

[vmin, vmax] = [cosp,s, βcosp,s], the difference ∆u is

∆u =

cosp,s
(N−S)
N

[
δ − (β − 1) S

N+1

]
, if N ≤ N0

cosp,s(β − 1) S(S+1)
N(N+1) , if N > N0

(6.40)

As Figures 6.9(b), (c), (d) and equation (6.40) suggest, the shape of ∆u function is

primarily determined by the relation between the number of drivers N and the number

N0 = S(γ−1)
δ

. The turning point at N = N0 is shifted to the left as (a) the public parking

capacity, S, decreases; or (b) the cruising cost, δ, increases; or (c) the cost of private

parking space, β, drops.

Impact of number of drivers: For given public parking capacity and charging param-

eters and if N > N0, we have already shown that drivers always prefer the auctioning

system (i.e., ∆u > 0). However, as Figures 6.9(b), (c) and (d) also illustrate, ∆u ap-

proaches zero as the demand increases which suggests that the auctioning system will

have marginal advantage, irrespective of the applied charging scheme. Indeed, the differ-

ence ∆u is strictly decreasing with N since,

ϑ∆u

ϑN
= −cosp,s(β − 1)

S(S + 1)(2N + 1)

[N(N + 1)]2
< 0 (6.41)
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On the contrary, under lower parking demand (N ≤ N0), no scheme dominates.

Drivers end up paying less on average under the auctioning scheme only if S(β−1)
δ
− 1 <

N ≤ N0.

Impact of cruising, private and public parking costs: For given parking demand and

supply, ∆u increases with the cruising cost, δ, as shown in Figures 6.9(b), (c), (d) and

captured in equation (6.42),

ϑ∆u

ϑδ
=

 cosp,s
(N−S)
N > 0, if δ ≤ S(β−1)

N−S

0, if δ > S(β−1)
N−S

(6.42)

The dependance of ∆u from the private parking cost, β, can be analyzed from equa-

tion (6.43). Namely, ∆u increases with β under high parking demand (i.e., N > N0 or

equivalently β < 1 + δ(N−S)
S

), thus motivating more drivers to compete for the scarce on-

street parking space and increasing the “price of anarchy” of the uncoordinated parking

search. However, under low-to-medium parking demand (i.e., N ≤ N0 or equivalently

β ≥ 1 + δ(N−S)
S

), any increase in β raises the payments in the auctioning system and

hence, reduces the advantage of saving the cruising cost. This trend is also shown in

Figures 6.9(b), (d).

ϑ∆u

ϑβ
=

 cosp,s
−S(N−S)
N(N+1) < 0, if β ≥ 1 + δ(N−S)

S

cosp,s
S(S+1)
N(N+1) > 0, if β < 1 + δ(N−S)

S

(6.43)

Finally, by equation (6.44) we infer that ∆u increases as the public parking gets more

expensive (cheaper), while the distance between public and private parking is significant

(close). Namely, drivers benefit from the auctioning system if the cruising cost outweighs

the cost of bidding over a higher reserve price. This effect is also shown in Figures 6.9(b),

(c).

ϑ∆u

ϑcosp,s
=


(β − 1) S(S+1)

N(N+1) > 0, if δ > S(β−1)
N−S

(N−S)
N

[
δ − (β − 1) S

N+1

]
≥ 0, if S(β−1)N+1 ≤ δ ≤

S(β−1)
N−S

(N−S)
N

[
δ − (β − 1) S

N+1

]
< 0, otherwise

(6.44)

Evangelia A. Kokolaki 137



Information dissemination and consumption in competitive networking urban environments

6.2 Impact of bounded rationality

6.2.1 Introduction

In the emerging networking environments the behavior of the end-user node, ex-

pressed through his social interests and interaction with the environment, affects in a

great scale the performance of the network operations and services. On top of that, the

self-awareness of human agents that, in many cases, undertake the operation of the

networking nodes, impacts on the way some networking functionalities work. The self-

awareness refers to the ability to manage one’s own thoughts and behavior and to act

and respond to stimuli and depends on the innate human rationality constraints together

with cognitive biases.

Therefore it is of critical importance to assess how cognitive heuristics/biases in

human behavior and especially in the decision-making process, affect the performance of

ICT systems/applications. Following the analysis in Section 6.1, the prime assumption in

this assessment is that human activity takes place within a fairly autonomic networking

environment where each element runs a service resource selection task. User-nodes

are typically self-owned and managed and there is no central entity orchestrating them.

Therefore, their behavior and actions are not controllable and may well be in conflict with

those of others. Indeed, in general, users, driven by self-oriented interests and objectives,

act as benefit maximizers. In a second assumption, the resources are not adequate to

satisfy demand, raising competition effects between the users.

The maximization of user benefit under perfect and real-time information about the

dynamic characteristics of the environments, as described in Section 6.1, is a clearly

unrealistic assumption for individuals’ decision-making. In this section, we iterate on

several expressions of bounded rationality in decision-making. This is an umbrella term

for different deviations from the fully rational paradigm: incomplete information about en-

vironment and other people’s behavior, time, computational and processing constraints,

and cognitive biases in assessing/comparing alternatives. Experimental work shows that,

practically, people exhibit such bounded rationality symptoms and rely on simple rules of

thumb (heuristic cues) to reach their decisions in various occasions and tasks. Overall,
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we have identified the following instances of bounded rationality as worth exploring and

assessing in the context of the resource selection task:

Incomplete information about the demand - The most apparent deviation from

the perfect information norm relates to the amount of information agents have at their

disposal. As two distinct variations hereby, we consider probabilistic (stochastic) infor-

mation and full uncertainty.

The four-fold pattern of risk aversion - Particular experimental data show that

human decisions exhibit biases of different kinds, in comparing alternatives. For in-

stance, a huge volume of experimental evidence confirms the fourfold pattern of risk

attitudes, namely, people’s tendency to be risk-averse for alternatives that bring gains

and risk-prone for alternatives that cost losses, when these alternatives occur with high

probability; and the opposite risk attitudes for alternatives of low probability [Tversky &

Kahneman, 1992].

Own-payoff effects - This is another type of bias that was spotted in the context of

experimentation with even simple two-person games, such as the generalized matching

pennies game. Theoretically, in these matching pennies games, a change in a player’s

own payoff that comes with a particular strategy/choice, must not affect that player’s

choice probability. However, people’s interest for a particular strategy/choice is shown

to increase as the corresponding payoff gets higher values. This behavior makes choice

probabilities range continuously within 0 and 1 and not jump from 0 to 1 as soon as the

corresponding choice gives the highest payoff. This bias gives further credit to Simon’s

early arguments ([Simon, 1955], [Simon, 1956]) that humans are satisficers rather than

maximizers, i.e., that they are more likely to select better choices than worse choices, in

terms of the utility that comes with them, but do not necessarily succeed in selecting the

very best choice.

Heuristic reasoning - Cognitive science suggests that people draw inferences (i.e., pre-

dict probabilities of an uncertain event, assess the relevance or value of incoming infor-

mation etc.), exploiting simple heuristic principles.

In the following sections, all these effects are incorporated in distinct decision-making

analytical models. We account for symmetric scenarios whereby the entire population

exhibits the same instance of bounded rationality and the knowledge of this deviation
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from full rationality is common among individuals.

6.2.2 Deviations from full rationality

In this section we study the decision-making process under four levels of agents’ ra-

tionality which result in difference degrees of responsiveness to specific price differentials

between low-cost and expensive resources. In particular, we describe (qualitatively) four

elements of competitive networking resource selection settings, consisting in imperfect

information availability and behavioral biases, whereby end-users’ decisions are made

under bounded rationality conditions. We present how these four bounded rationality

expressions can be modelled in a way that enables their analysis and the quantitative

assessment of their impact on the efficiency of the resource selection task. In all cases,

we derive the agents’ choices in the stable operational conditions in which all competing

influences are balanced.

Bayesian and pre-Bayesian models

Practically, within a dynamic and complex environment, perfectly accurate informa-

tion about the resource demand is hard to obtain. For instance, the resource operator

may, depending on the network and information sensing infrastructure at his disposal,

provide the competing agents with different amounts of information about the demand

for resources; for example, historical statistical data about the utilization of the low-cost

resources. Thus, in this case, the information is impaired in accuracy since it contains

only some estimates on the parameters of the environment.

In the same vein, in this paragraph we assume a more realistic realization of the

resource selection task where decision-makers have only knowledge constraints, while

they satisfy all other criteria of full rationality, i.e., they are selfish agents who are capable

of defining their actions in order to minimize the cost of occupying a resource. That is,

no computational or time constraints deteriorate the quality of their decisions. However,

they either share common probabilistic information about the overall resource demand

or are totally uncertain about it. From a modeling point of view, we apply this general

concept to a particular case-study: the parking search assistance, whereby the drivers are

the selfish agents and the public on-street together with the private parking spots are the
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resources. We extend the game formulation for the full rationality case (Ref. Section 6.1)

to accommodate the two expressions of uncertainty. In particular, we formulate this type

of bounded rationality drawing on Bayesian and pre-Bayesian models and prescriptions

of classical Game Theory.

Probabilistic knowledge of parking demand

In the Bayesian model of the game, the drivers determine their actions on the basis of

private information, i.e., their types. The type in this game is a binary variable indicating

whether a driver is in search of parking space (active player) or not. Every driver knows

his own type along with the strategy space and the cost functions, and draws on common

prior probabilistic information about the types of other drivers to estimate the expected

cost of his actions. Formally, the Bayesian parking spot selection game is defined as

follows:

Definition 6.2.1. A Bayesian Parking Spot Selection Game is a tuple

ΓB(N) = (N ,R, (Ai)i∈N , (wj)j∈(osp,pl), (Θi)i∈N , fΘ), whereN andR are as defined for Γ(N)

(Ref. Section 6.1.3) and

• Ai = {osp, pl,�} is the set of potential actions for each driver i ∈ N ;

• Θi = {0, 1} is the set of types for each driver i ∈ N , where 1 (0) stands for active

(inactive) drivers;

• Si : Θi → Ai is the set of possible strategies for each driver i ∈ N ;

• cNBi (s(ϑ), ϑ) is the cost functions for each driver i ∈ N , for every type profile ϑ ∈

×Nk=1Θk and strategy profile s(ϑ) ∈ ×Nk=1Sk, that are functions of wosp(·) and wpl(·),

as defined for Γ(N), and also written as cNBi (s(ϑ), ϑ) = cNBi (si(ϑi), s−i(ϑ−i), ϑi, ϑ−i);

• pact is the probability for a driver to be active.

In ΓB(N), for all inactive drivers i, si(ϑi = 0) = �. For active players i, si(ϑi = 1) ∈

{osp, pl}, under pure-action strategy, or si(ϑi = 1) ∈ ∆({osp, pl}), when they randomize

over this subset of Ai under mixed-action strategy. The game is symmetric when, in

addition to the action set, drivers share the same activity probability pact and, hence, the
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same prior joint probability distribution of the drivers’ activity (types) fΘ. The number

of active players upon each time depends on their types and is given by nact =
∑

k ϑk.

The action profile is the effect of players’ strategies on their types and is noted as a =

(s(ϑ), ϑ) ∈ ×Nk=1Ak.

Equilibria: For the game ΓB(N), the strategy profile s′ ∈ ×Nk=1Sk(ϑk = 1) is a

Bayesian NE if, for all i ∈ N with ϑi = 1

si(ϑi) ∈ arg min
s′i∈Si

cNBi (si(ϑi), s−i(ϑ−i), ϑi, ϑ−i) or,

si(ϑi) ∈ arg min
s′i∈Si

∑
ϑ−i

fΘ(ϑ−i/ϑi)c
∑
k ϑk

i (s′i, s−i(ϑ−i), ϑi, ϑ−i)

where c
∑
k ϑk

i (s′i, s−i(ϑ−i), ϑi, ϑ−i), with sl(ϑl = 0) = pl, ∀l 6= i, is the cost cmi (s′i, s−i) of

driver i under profile s in the game Γ(m) with m =
∑

k ϑk drivers, and fΘ(ϑ−i/ϑi) the

posterior conditional probability of the active drivers given that user i is active, as derived

from the application of the Bayesian rule. Therefore, s′ minimizes the expected cost over

all possible combinations of the other drivers’ types and strategies so that no active player

can further lower its expected cost by unilaterally changing the strategy.

Theorem 6.2.1. The game ΓB(N) has unique symmetric equilibrium profiles pNEB =

(pNEBosp , pNEBpl ), with pNEBosp + pNEBpl = 1. More specifically, with N0 ∈ R, we have the fol-

lowing:

• a unique pure (Bayesian Nash) equilibrium with pNEBosp = 1, if pact <
N0

N
;

• a unique symmetric mixed-action Bayesian NE with pNEBosp = N0

Npact
, if pact ≥ min(N0

N
, 1).

Proof. Inline with the reasoning in the proof of Theorem 6.1.2, any symmetric mixed-

action equilibrium pNEB must fulfil

cNBi (osp, pNEB ) = cNBi (pl, pNEB ) (6.45)

Since cNBi (pl, p) = cpl and cNBi (osp, p) =
∑N−1

nact=0 c
nact+1
i (osp, p)B(nact;N − 1, pact), a

few algebraic manipulations suffice to derive that the symmetric mixed-action equilibrium

pNEB solves the equation
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h(p) = −β +
N−1∑
nact=0

B(nact;N − 1, pact) ·
nact∑
k=0

[
γ −min

(
R

k + 1
, 1

)
· (γ − 1)

]
B(k;nact, p) = 0

(6.46)

The function h(p) is continuous and strictly increasing in p for all pact ∈ [0, 1] since

h′(p) =

N−1∑
nact=0

B(nact;N − 1, pact) ·
nact∑
k=0

[
γ −min

(
R

k + 1
, 1

)
· (γ − 1)

]
B′(k;nact, p)

>
N−1∑
nact=0

B(nact;N − 1, pact)

nact∑
k=0

B′(k;nact, p)

=

N−1∑
nact=0

B(nact;N − 1, pact)

(
nact∑
k=0

B(k;nact, p)

)′
= 0

since the weights of the rightmost Binomial coefficients in the second line are not

smaller than one,
γ −min

(
R

k + 1
, 1

)
· (γ − 1) > 1, ∀k ∈ [0, N − 1]

Likewise, for pact ∈ [0, 1], its leftmost value is limp→0 h(p) = −β + 1 < 0 and its

rightmost value is

lim
p→1

h(p) = −β +
N−1∑
nact=0

B(nact;N − 1, pact)

[
γ −min

(
1,

R

nact + 1

)
· (γ − 1)

]
= f(pact) (6.47)

In the proof of Theorem 6.1.2 we showed that the function f(p) is strictly increasing in

p and has a single solution p = N0/N . Therefore, as long as pact ∈ [0, N0/N), limp→1 h(p) <

0, and cNBi (osp, p) < cNBi (pl, p) ∀p ∈ (0, 1); namely, it is a dominant strategy for all

drivers to compete for on-street parking. On the contrary, for pact ∈ [N0/N, 1], limp→1 h(p)

gets positive values and h(p) = 0 has a single solution p = N0

Npact
(can be checked with

replacement).

Strictly incomplete information about parking demand

The worst-case scenario with respect to the information possessed by the drivers is

represented by the pre-Bayesian game variant, under which the drivers are aware of only

the upper limit of the vehicles that are potential competitors for parking resources.
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Pre-Bayesian games do not necessarily have ex-post Nash equilibria, even in mixed

actions. The ex-post NE consists of strategies that, for every joint type profile, result

in actions that are in NE in the corresponding strategic game. On the other hand,

all quasi-concave pre-Bayesian games do have at least one mixed-strategy safety-level

equilibrium [Ashlagi et al., 2006]. In the safety-level equilibrium, every player minimizes

over his strategy set Si the worst-case (maximum) cost that he may suffer over all possible

types and actions of his competitors (S−i,Θ−i). The result of interest for our pre-Bayesian

variant of the parking spot selection model ΓpB(N) is the following proposition, due to

[Ashlagi et al., 2006], whose implications for the efficiency of the equilibrium behaviors

of the drivers are discussed in Section 6.2.3.

Proposition 6.2.1. An action profile a is the unique symmetric mixed-action safety-level

equilibrium of the pre-Bayesian parking spot selection game ΓpB(N) with non-decreasing

resource cost functions, iff a is the unique symmetric mixed-action equilibrium of the respec-

tive strategic game with deterministic knowledge of the number of players Γ(N).

In Table 6.1 we summarize the equilibrium strategies for the three variants of the

parking spot selection game.

For years, the main approaches to collective decision-making, whereby the decisions

of one agent affect the gain/cost experienced by others, draw on Expected Utility Theory

(EUT). Agents are considered as strategic and fully rational, namely, they can compute

the expected utility of all possible action profiles exploiting all available information about

their own and the others’ utilities (i.e., the expected utility of one’s action equals the

sum of his utilities for all possible opponents’ actions times the probabilities of their

occurrence). In such setting, the classical solution concept of the game is embodied

by the Nash Equilibrium (NE), the action profile that no agent would like to unilaterally

deviate from. Essentially, the NE captures the agents’ best responses in terms of expected

utility maximization.

However, experimental data suggest that human decisions reflect certain limitations,

that is, they exhibit biases of different kinds in comparing alternatives and maximizing

their welfare in terms of the expected utility that comes with an alternative. To ac-

commodate the empirical findings, researchers from economics, sociology and cognitive
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Table 6.1: Equilibrium strategies for the strategic, Bayesian and pre-Bayesian parking
spot selection game

strategic Parking Spot Selection Game, Γ(N)

Condition Equilibrium type Equilibrium expression

N ≤ N0, N0 ∈ R pure Nash Eq NNE
osp = N

N > N0, N0 ∈ (R,N)\N∗ pure Nash Eq NNE
osp = bN0c

N > N0, N0 ∈ [R+ 1, N ] ∩ N∗ pure Nash Eq NNE
osp = N0, NNE

osp = N0 − 1

N > N0, N0 ∈ R mixed-action Nash Eq pNEosp = N0
N

Bayesian Parking Spot Selection Game, ΓB(N)

Condition Equilibrium type Equilibrium expression

pact <
N0
N , N0 ∈ R pure Bayesian Nash Eq pNEBosp = 1

pact ≥ min(N0
N , 1), N0 ∈ R mixed-action Bayesian Nash Eq pNEBosp = N0

Npact

pre-Bayesian Parking Spot Selection Game, ΓpB(N)

Condition Equilibrium type Equilibrium expression

N ≤ N0, N0 ∈ R pure safety-level Eq p
NEpB
osp = 1

N > N0, N0 ∈ R mixed-action safety-level Eq p
NEpB
osp = N0

N

psychology, have tried either to expand/adapt the Expected Utility framework or com-

pletely depart from it and devise alternative theories as to how decision alternatives are

assessed and decisions are eventually taken.

In the following sections we first give the general analytical framework of the decision-

making model and then its application to the resource selection task as introduced in

Section 6.2.1. We apply the general competition concept to scenarios whereby the agents

make their decision independently within a particular time window over which they start

the resource selection task. In connection with the analysis presented in Section 6.1,

we consider settings where N agents are called to decide between two alternative sets of

resources. The first set consists of R low-cost resources while the second one is unlimited

but with more expensive items. Those who manage to use the low-cost resources pay cl,s

cost units, whereas those heading directly for the safer, but more expensive option pay

cu = β ·cl,s, β > 1, cost units. However, agents that first decide to compete for the low-cost

resources but fail to acquire one suffering the results of congestion, pay cl,f = γ ·cl,s, γ > β

cost units. The excess penalty cost δ · cl,s, with δ = γ − β > 0, reflects the “virtual” cost

of wasted time till eventually being served by the more expensive option.
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Cumulative Prospect Theory

Tversky and Kahneman in [Tversky & Kahneman, 1992] proposed the Cumulative

Prospect Theory (CPT) framework to explain, among others, why people buy lottery tickets

and insurance policies at the same time or the fourfold pattern of risk attitude (Ref.

Section 6.2.1). According to EUT, if X denotes the set of possible outcomes of a lottery,

its expected utility equals the sum of the outcomes’ utilities, U(x), x ∈ X, times the

probabilities of their occurrence, pr(x), that is, EU =
∑

x∈X pr(x)U(x). In CPT, the

desirability of the alternatives-lotteries (now termed prospects) is still given by a weighted

sum of prospect utilities, only now both components of the EUT (i.e., outcomes and

probabilities) are modified. However, agents are still maximizers, i.e., they try to maximize

the expected utilities of their prospects.

The CPT value for prospect X is given by

CPTX =

k∑
i=1

π−i u(xi) +

n∑
i=k+1

π+
i u(xi) (6.48)

where x1 ≤ ... ≤ xk are negative outcomes/losses and xk+1 ≤ ... ≤ xn positive

outcomes/gains.

In particular, the decision weights π−i , π
+
i are functions of the cumulative probabili-

ties of obtaining an outcome x or anything better (for positive outcomes) or worse (negative

outcomes) than x. They are defined as follows:

π−1 = w−(pr1)

π−i = w−(pr1 + ...+ pri)− w−(pr1 + ...+ pri−1), (6.49)

2 ≤ i ≤ k

π+
n = w+(prn)

π+
i = w+(pri + ...+ prn)− w+(pri+1 + ...+ prn), (6.50)

k + 1 ≤ i ≤ n− 1

In [Tversky & Kahneman, 1992], the authors propose concrete functions for both

weighting and utility functions,
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u(xi) =

 xai , if xi ≥ 0

−λ(−xi)b, if xi < 0
(6.51)

w+(p) = pc/ [pc + (1− p)c]1/c (6.52)

w−(p) = pd/
[
pd + (1− p)d

]1/d
(6.53)

w+(0) = w−(0) = 0 (6.54)

w+(1) = w−(1) = 1 (6.55)

Both functions are consistent with experimental evidence on risk preferences. In-

deed, empirical measurements reveal a particular pattern of behavior, termed as loss

aversion and diminishing sensitivity. Loss aversion refers to the fact that people tend to

be more sensitive to decreases than to increases in their wealth (i.e., a loss of 80 is felt

more that a gain of 80); whereas diminishing sensitivity (appeared in both the value and

the weighting function) argues that people are more sensitive to extreme outcomes and

less in intermediate ones.

The parameter λ ≥ 1 measures the degree of loss aversion, while the parameters

a, b ≤ 1 the degree of diminishing sensitivity. The curvature of the weighting function as

well as the point where it crosses the 45◦ line are modulated by the parameters c and d.

Tversky and Kahneman estimated the parametric values that best fit their experimental

data at λ = 2.25, a = b = 0.88, c = 0.61, d = 0.69.

Applying Cumulative Prospect Theory to the resource selection task In the uncoor-

dinated resource selection problem, the decisions are made on two alternatives/prospects:

the low-cost, limited-capacity resource set, on one side and the more expensive but un-

limited resource set, on the other side. In addition, both prospects consist only of negative

outcomes/costs.

The CPT value for the low-cost prospect is given by

CPTl =

N∑
n=1

π−n u(gl(n)) (6.56)
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where gl(k), with gl(1) ≤ ... ≤ gl(N), is the expected cost for an agent that plays the

action “low-cost/limited-capacity resource set”. It is a function of the number of agents

k taking this action, and is given by

gl(k) = min(1, R/k)cl,s + (1−min(1, R/k))cl,f (6.57)

The decision weights and utility functions are defined by equations (6.49)-(6.55). The

possible n ≤ N outcomes, for the number n of agents choosing the low-cost resources,

occur with probability prn that follows the Binomial probability distributionB(n;N, pCPTl ),

with parameters the total number of agents, N , and the probability to compete for the

low-cost resources, pCPTl .

The CPT value for the certain prospect “expensive/unlimited resource set” is given

by (6.51) and equals

CPTu = u(cu) (6.58)

It is possible to extend the equilibrium concept inline with the principles of CPT.

Namely, under an equilibrium state, no agent has the incentive to deviate from this

unilaterally because by changing his decision, he will only find himself with more ex-

pected cost. Thus, the symmetric mixed-action equilibrium strategy pCPT = (pCPTl , pCPTu ),

pCPTu = 1 − pCPTl , is derived when equalizing the CPT values of the two prospects,

CPTl = CPTu.

Rosenthal and Quantal Response Equilibria and their application to the resource

selection task

Both casual empiricism as well as experimental work suggested systematic devia-

tions from the prescriptions of EUT and hence, classical Game Theory (Nash Equilibrium

predictions). In Section 6.2.1 we briefly present the own-payoff effects that constitute the

most common pattern of deviations from Nash predictions in matching pennies games.

Triggered by this kind of observations, Rosenthal in [Rosenthal, 1989] and, later, McK-

elvey and Palfrey in [McKelvey & Palfrey, 1995], propose alternative solution concepts

to the Nash equilibrium. The underlying idea in both proposals is that “individuals are
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more likely to select better choices than worse choices, but do not necessarily succeed in

selecting the very best choice”. Rosenthal argued that “the difference in probabilities with

which two actions x and y are played is proportional to the difference of the correspond-

ing expected gains (costs)”. For the actions “low-cost/limited-capacity resource set” and

“expensive/unlimited resource set”, the Rosenthal equilibrium strategy pRE = (pREl , pREu ),

pREu = 1− pREl is given as a fixed-point solution of the equation

pREl − pREu = −t(c(l, pRE)− c(u, pRE)) (6.59)

where c(l, p) and c(u, p) are the expected costs for choosing “low-cost/limited-capacity

resource set” and “expensive/unlimited resource set”, when all other agents play the

mixed-action p = (pl, pu), namely,

c(l, p) =
N−1∑
n=0

gl(n+ 1)B(n;N − 1, pl) (6.60)

and

c(u, p) = cu (6.61)

The degree of freedom t ∈ [0,∞]9 quantifies the rationality of agents, here seen as

a synonym of the knowledge they possess and, primarily, their capacity to assess the

difference in the utilities between two outcomes. Thus, the model’s solution converges to

the Nash equilibrium as parameter t goes to infinity.

In a similar view of people’s rationality, McKelvey and Palfrey have shown that these

“own-payoff effects”, i.e., people’s inability to play always the strategy that maximizes

(minimizes) the expected utility (cost), can be explained by introducing some randomness

into the decision-making process. Actually, one can think this kind of randomness and,

ultimately, these inaccurate/not rational judgments with respect to cost minimization, as

reflecting the effects of estimation/computational errors, individual’s mood, perceptual

variations or cognitive biases. McKelvey and Palfrey implement these effects into a new

equilibrium concept, the Quantal Response equilibrium. For instance, if the randomness

9In the Rosenthal equilibrium the rationality parameter t is subject to the constraint that the resulting
probabilities range in [0,1].
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follows an exponential distribution (i.e., logistic errors, iid mistakes with an extreme value

distribution, smaller mistakes are more likely to occur than more serious ones), the

response function/probability to play the action “low-cost/limited-capacity resource set”

in this equilibrium state pQRE = (pQREl , pQREu ), pQREu = 1− pQREl is given using (6.60) and

(6.61) by,

pQREl =
e−tc(l,p

QRE)

e−tc(l,pQRE) + e−tc(u,pQRE)
(6.62)

Likewise, the free parameter t plays the same role, abstracting the rationality level.

Addressing human behavior in real-life choice problems by using alternative equilib-

rium solutions emerges as a typical approach for analytical investigations. In a similar

study in [Chen et al., 2012], a capacity-constrained supplier divides the limited supply

among prospective retailers. The latter are assigned quantities proportional to their or-

ders, so they have an incentive to inflate their orders to secure more favorable allocated

quantities (when facing capacity constraints). They choose their orders strategically but

not always perfectly rationally; the optimization of individual payoffs is prone to errors in

line with the quantal response model. Other studies, take explicitly into account simi-

lar deviations from perfect rationality in attackers’ behavior to improve security systems.

In [Yang et al., 2011], the defender has a limited number of resources to protect a set of

targets (i.e., flights) and selects the optimal mixed strategy, which describes the proba-

bility that each target will be protected by a resource. The attacker chooses a target to

attack after observing this mixed strategy. This context can be encountered in selective

checking applications where the (human) adversaries monitor and exploit the checking

patterns to launch an attack on a single target.

Heuristic decision-making and its application to the resource selection task

In a more radical approach, models that rely on heuristic rules reflect better Simon’s

early arguments in [Simon, 1955], [Simon, 1956] that humans are satisficers rather than

maximizers. These heuristics rely on related rules for search that have been suggested

from other domains (i.e., psychology, economics) and criteria that have been identified as

important for drivers such as the parking fee, parking time limits, distance from drivers’
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travel destination, accessibility and security level [Goot, 1982], [Golias et al., 2002].

In an effort to get the satisficing notion in our competitive resource selection set-

ting, we came up with a simple kind of heuristic rule arguing that instead of comput-

ing/comparing the expected costs of choices, individuals estimate the probability to get

one of the “popular” resources and play according to this. In essence, as common sense

suggests, agents appear overconfident under low demand for the scarce low-cost re-

sources and underconfident otherwise. Similar to equilibrium solutions in previous para-

graphs, we define the equilibrium heuristic strategy pHE = (pHEl , pHEu ), pHEu = 1 − pHEl ,

by the fixed-point equation

pHEl =
R−1∑
n=0

B(n;N − 1, pHEl ) (6.63)

where B(n;N−1, pHEl ) is the Binomial probability distribution with parametersN−1

and pHEl , for n agents competing for the low-cost resources.

6.2.3 Numerical results

In Section 6.2.2, we iterate on decision-making models for individuals that exhibit

systematically deviations from the full rational behavior and show how the agents resolve

in distributed manner the problem of coordinating, that is, which partition of agents

will gain the low-cost resources and which will pay the service more expensively. In

this section, we first discuss how the efficiency of the parking search process is affected

when it is executed under probabilistic information and uncertainty, considering the

game variant under complete information as a comparison reference for the efficiency

of the uncoordinated parking spot selection process. We then compare the Cumulative

Prospect Theory decision-making model, the Rosenthal and Quantal Response equilibria

as well as the heuristic reasoning against what the fully rational decision-making yields

(Ref. Theorem 6.1.2). In addition, we plot the different types of equilibria against the

optimal/ideal centralized resource allocation, where the full information processing and

decision-making tasks lie with a central entity. Agents issue their requests to a central

server, which monitors the limited-capacity resource set, possesses precise information

about its availability, and assigns it so that the overall cost paid by agents is minimized.
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Thus, in an environment with R low-cost resources, whereby such an ideal centralized

system serves the requests of N ≥ R agents, exactly R (N −R) agents would be directed

to the low-cost (respectively, more expensive) option and no one would pay the excess

penalty cost.

Bayesian and pre-Bayesian models

Looking at the mixed-action equilibria, Theorem 6.1.2 indicates that drivers’ intention

to compete for on-street parking resources is shaped by the pricing schemes, the number

of players, and the curbside parking capacity. Indeed, players start to withdraw from

competition as the competition intensity rises over the threshold N0 = R(γ−1)
δ

. For the

Bayesian implementation, the rationale behind the active players’ behavior is almost the

same. The only difference is that the players adjust their strategies based on estimations

for the demand level, as expressed in the commonly known probabilistic information of

competition. Therefore, the probability to compete decreases with the expected number

of competitors Npact if this number exceeds the threshold N0 of the strategic games

(Ref. Theorem 6.2.1). Furthermore, for both game formulations, players start to renege

from competition as the distance between on-street and parking lot facilities (i.e., δ) is

increased, the number of opportunities for curbside parking (i.e., R) decreases, or the

price for space reservation in parking lot (i.e., β) drops. Figure 6.10 shows the effect of

these parameters on the equilibrium mixed-action, for strategic (pact = 1) and Bayesian

(pact ∈ {0.5, 0.7}) games.

Less-is-more phenomena under uncertainty: Less intuitive are the game dynamics

in its pre-Bayesian variant, when users only possess an estimate of the maximum number

of drivers that are potentially interested in parking space. From Proposition 6.2.1, the

mixed-action safety-level equilibrium corresponds to the mixed-action equilibrium of the

strategic game Γ(N). However, we have seen that, when the players outnumber the on-

street parking capacity, the mixed-action equilibrium in the strategic game generates a

higher expected number of competitors than the optimal valueR (Ref. Theorem 6.1.2), the

social cost conditionally increases with the probability of competing (Ref. Figure 6.4(b),

for posp > R
N

), and the probability of competition decreases with N (Ref. Figure 6.10,

for N > N0). Therefore, at the safety-level equilibrium of the game, the drivers end up
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randomizing the pure action “on-street” with a lower probability than that corresponding

to the game that they actually play, with k ≤ N players. Hence, the resulting number of

competing vehicles is smaller, and cumulatively, they may end up paying less than they

would if they knew deterministically the competition they face.

One question that becomes relevant is for which (real) numberK of competing players

do the drivers end up paying the optimal cost. Practically, if pNEN = (pNEosp,N , p
NE
pl,N) denotes

the symmetric mixed-action equilibrium for Γ(N), we are looking for the value of K

satisfying the following:

Kposp,N = R⇒ K =
RN

N0
=

δ

γ − 1
N

That is, when δ
γ−1

N (rounded to the nearest integer) drivers are seeking parking space

under uncertainty conditions, in the induced equilibrium they end up paying the mini-

mum possible cost, which is better than what they would pay under complete information

about the parking demand.

In the remainder of this section, we consider the resource selection task described

in Section 6.2.2 and plot the derived bounded rational agents’ choices along with the

associated per-user costs incurred in the equilibrium states of the system, under different

charging schemes for the two resource sets. The average per-user cost in the symmetric

case where every agent performs the mixed-action p = (pl, pu) is given by (6.60) and (6.61),

as follows
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Figure 6.10: Probability of competing in equilibrium, for R = 50. Left: Strategic and
Bayesian games under fixed pricing scheme β = 5, γ = 7. Right: Strategic games under
various pricing schemes β ∈ {3, 6}, γ ∈ {4, 5, 7, 8}.
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Table 6.2: Sensitivity analysis of the CPT parameter b: N = 100, R = 50, β = 4, γ = 8

b value 0.616 0.704 0.792 0.88 0.968
(−30%) (−20%) (−10%) (0%) (+10%)

pCPTl 0.8837 0.8836 0.8835 0.8834 0.8834

Table 6.3: Sensitivity analysis of the CPT parameter d: N = 100, R = 50, β = 4, γ = 8

d value 0.552 0.621 0.69 0.7590 0.828
(−20%) (−10%) (0%) (+10%) (+20%)

pCPTl 0.8934 0.8876 0.8834 0.8805 0.8786

C(p) = plc(l, p) + puc(u, p) (6.64)

For the numerical results, usage of the limited resources costs cl,s = 1 unit whereas

the cost of the more expensive resources β and the excess penalty cost parameter δ range

in [3, 12] and [1, 16] units, respectively.

Cumulative Prospect Theory

Although the CPT model was originally suggested to rationalize empirical findings in

financial lottery experiments, it has been successfully exploited to accommodate data sets

for different decision-making models. In [Booĳ et al., 2010], the authors review empirical

estimates of prospect theory under different (parametric) assumptions, incentives, tasks

and samples. In a transportation paradigm more similar to our setting, Avineri et al. in

[Avineri & Prashker, 2004] first conduct a route-choice stated-preference experiment and

then explain the results parametrizing their route choice model with values similar to

the ones that Tversky and Kahneman found for their archetypal model in [Tversky &

Kahneman, 1992]. In the absence of proper experiment measurements on the particular

resource selection paradigm that could validate this theory, it is not suggested that the

parameter set b = 0.88, d = 0.69, λ = 2.25, as was introduced in Section 6.2.2, reflects

the actual agents’ choices. Thus, we use the default parametric values to explore the

existence (or not) of the same risk attitudes towards losses in the particular environment

(Ref. Section 6.2.2) and conduct a sensitivity analysis on the parameters b, d, λ in the end

of the section to address these concerns.
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Table 6.4: Sensitivity analysis of the CPT parameter λ: N = 100, R = 50, β = 4, γ = 8

λ value 1.8 2.025 2.25 2.475 2.7
(−20%) (−10%) (0%) (+10%) (+20%)

pCPTl 0.8834 0.8834 0.8834 0.8834 0.8834

Motivated by the simple experiments on preferences about positive and negative

prospects that, eventually, reveal the four-fold pattern of risk attitude [Tversky & Kah-

neman, 1992], we iterate on the most interesting case studies for the cost differentials

between the certain prospect (i.e., cu for the expensive/unlimited resource set) and the

best or worst outcome of the risky one (i.e., cl,s or cl,f for the low-cost/limited-capacity

resource set). As Figures 6.11(a), 6.11(b) suggest, when the agents have the opportu-

nity to experience a marginally or significantly lower charging cost at low or high risk,

respectively, their biased risk-seeking behavior turns to be full rational, and thus, min-

imizes the expected cost over others’ preferences. On the contrary, in the face of a

highly risky option reflected in significant extra penalty cost (Figure 6.11(c)), the risk

attitude under the two types of rationality starts to differ. For instance, when N = 100

agents compete for R = 50 low-cost resources, the expected utility maximization frame-

work results in the Nash equilibrium pNEl = R(γ−1)
δN

= 0.59, with expected cost values

c(l, pNE) = c(u, pNE) = cu whereas the CPT suggests playing with pCPTl = 0.61 that equal-

izes the relevant values CPTl = CPTu = −7.62. Under the prescriptions of CPT, at the

mixed-action pNE = (0.59, 0.41), the cumulative prospect values become CPTl = −6.74

and CPTu = −7.62 which leads to a risk-prone behavior, in line with the theory for

losses: an agent may decrease the prospect cost by switching his decision from the cer-

tain more expensive resource set to the risky low-cost one. On the other hand, at the

mixed-action pCPT the expected costs for the two options differ, namely, c(l, pCPT ) = 4.49

and c(u, pCPT ) = cu = 4.

Overall and as Figure 6.12 implies, both the full rational and the biased practice are

more risk-seeking than they should be, increasing the actual per-user cost (or equiva-

lently, the social cost) over the optimal levels. As a result, being prone to biased behaviors

cannot score better than acting full rationally.

The sensitivity of these results to the particular CPT parametric values b = 0.88, d =

0.69, λ = 2.25, can be drawn from Tables 6.2, 6.3 and 6.4, respectively. The CPT model
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(a) β = 3, γ = 4 (b) β = 12, γ = 20 (c) β = 4, γ = 20

Figure 6.11: Probability of competing in CPT equilibrium, for R = 50, under different
charging schemes.
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(a) β = 3, γ = 4 (b) β = 12, γ = 20 (c) β = 4, γ = 20

Figure 6.12: Per-user cost in CPT equilibrium, for R = 50, under different charging
schemes.

evolves to the expected utility maximization one that gives pNEl = 0.875, as the parameters

go to one. In general, although we admit that the ultimate validation of our analytical

results would come out of real, yet costly and difficult experimentation with in-field mea-

surements, the effect of the parameters is shown to be limited.

Rosenthal and Quantal Response Equilibria

Within the typical game-theoretic setting, the agents’ expected costs from different

strategies are determined by their beliefs about others’ preferences. Eventually, these

beliefs may generate choice probabilities according to a particular response function that

is not necessarily best, in line with the expected utility maximization norms. Yet under

this kind of response functions, such as those in the form of (6.59) or (6.62), the resulting

- Rosenthal and Quantal Response - equilibria impose the requirement that the beliefs
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match the equilibrium choice probabilities, as in the Nash equilibrium solutions.

Figures 6.13 and 6.14 plot these two alternative types of equilibrium strategies and

the resulting per-user costs when individuals cannot always choose the actions that

best satisfy their preferences, that is when the rationality parameter t is 3. First, the

implementation of bounded rationality increases randomness into agents’ choices and

hence, draws choice probabilities towards 0.5. As a result, when competition exceeds the

capacity of the low-cost resources, computational limitations lead to more conservative

actions comparing to the Nash equilibrium competing probabilities whenN < 2R(γ−1)
δ

and

less, otherwise. Second, the more different the - expected - costs of the two options are,

the less the Rosenthal and Quantal Response equilibrium differ from the Nash one, since

the identification of the best action becomes easier. Thus, we notice almost no or limited

difference when the risk to compete for a very small benefit is high due to the significant

extra penalty cost δ (Figure 6.14(a)) or the high demand for the resources (Figure 6.13(a),

N > 300). The same reason underlies the differences between the Rosenthal and the

Quantal Response equilibrium. Essentially, the three types of equilibrium form a three-

level hierarchy with respect to their capacity to identify the less costly resource option,

with the Quantal Response equilibrium at the bottom level and the Nash one at the top

level.

Since the per-user cost is minimized at lower competing probabilities, the inaccurate

but frugal computation of the best action saves not only time and computational resources

but also, usage cost when N < 2R(γ−1)
δ

(Figure 6.13(b)).

The impact of computational limitations becomes more sharp at even lower values of

the rationality parameter. In Figures 6.15 and 6.16, we plot the probability of competing

for the low-cost resources and the resulting per-user cost, when t = 0.2. Again higher

differences in behavior are observed in settings where it is not clear which of the two

resource options costs less. This is the case of Figure 6.15(a), where the choices are

decided almost randomly. On the other hand, when the risk is high when choosing the

limited resources, as in Figure 6.16(a), even that low rationality level generates decisions

similar to the full rational ones.

Interestingly, when β = 3, γ = 4 and N < 2R(γ−1)
δ

, the decrease in competing

probability that comes with imperfect rationality, draws the per-user cost to near-optimal
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Figure 6.13: Probability of competing in the Quantal Response and Rosenthal equilibria
and the resulting per-user cost, for R = 50, β = 3, γ = 4, t = 3.

levels (Figure 6.15(b)). However, when the penalty cost is high, any - limited - increase in

competitiveness due to inaccurate cost discrimination causes significant overhead (Figure

6.16(b)).

As a last note, Figure 6.17 illustrates the impact of the rationality parameter t on

the equilibrium choice probabilities. Starting with a difference δprob,t∼0 = pQRE,REl −

pNEl = 1/2− R(γ−1)
δN

under a pure stochastic decision-making model, the bounded rational

reasoning approximates the full rational practice, as t goes to infinity. When N ∼ (N−1),

as in our setting, this difference in competing probability can be translated in gains (less

cost) or losses (more cost) in the ultimate per-user cost, by (6.64), as follows:

δcost,t = C(pQRE,RE)− C(pNE)

≈ δprob,t · δcl,s, if R/((N − 1)(pNEl + δprob,t)) < 1

≈ cl,s(p
NE
l + δprob,t −R/(N − 1))− cl,f (pNEl −R/(N − 1))− δprob,tcpl, o/w

Heuristic decision-making

Typically, under time and processing limitations, the heuristic reasoning approach

emerges as the only solution. Within a highly competitive environment and in the face

of a penalty cost (δcl,s), the heuristic reasoning just estimates the competition levels

(i.e., according to (6.63)) and plays according to this. At equilibrium, the beliefs that

formulate the competition level match the actual choice probabilities, as in paragraph
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Figure 6.14: Probability of competing in the Quantal Response and Rosenthal equilibria
and the resulting per-user cost, for R = 50, β = 4, γ = 20, t = 3.
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Figure 6.15: Probability of competing in the Quantal Response and Rosenthal equilibria
and the resulting per-user cost, for R = 50, β = 3, γ = 4, t = 0.2.

“Rosenthal and Quantal Response Equilibria” in this section.

Interestingly, this trivial modeling approach leads to near-optimal results. Unlike

CPT or the alternative equilibrium solutions, it does not take into account the charging

costs. Yet, this reasoning mode expresses a pessimistic attitude that takes for granted

the failure in a possible competition with competitors that outnumber the resources. As

a result, it implicitly seeks to avoid the tragedy of common effects and hence, eventually,

yields a socially beneficial solution.

6.2.4 The parking search as a sequential search problem

As discussed in Section 6.2.2, the various analytic models of bounded rationality

coming from the areas of Cognitive Psychology and Behavioral Economics depart from

the norms of classical rationality as expressed in the Expected Utility Theory framework.

However, people do not seem to perform all these calculations, at least not under all

Evangelia A. Kokolaki 159



Information dissemination and consumption in competitive networking urban environments

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of agents, N

P
ro

ba
bi

lit
y 

of
 c

om
pe

tin
g,

 p
l

 

 

NE
OPT
QRE
RE

0 100 200 300 400 500
1

2

3

4

5

6

Number of agents, N

P
er

−
us

er
 c

os
t, 

C
(p

)

 

 

NE
OPT
QRE
RE

(a) (b)

Figure 6.16: Probability of competing in the Quantal Response and Rosenthal equilibria
and the resulting per-user cost, for R = 50, β = 4, γ = 20, t = 0.2.
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Figure 6.17: Difference between the probability of competing in the Quantal Response,
Rosenthal equilibria and that in Nash equilibrium (left) and the resulting per-user cost
difference (right), for R = 50, N = 180, under fixed charging scheme β = 3, γ = 4 and
t = [0.1, 100] (from imperfect to perfect rationality).

conditions and especially in situations where there is pressure to be “rational” (e.g., route

and parking spot selection). In other words, a criticism against these models is that they

no longer aim at describing the processes (cognitive, neural, or hormonal) underlying

a decision but just at predicting the final people’s choices for a large chunk of choice

problems. Furthermore, they give no insight as to how should the corresponding models

be parametrized each time.

On the other hand, the cognitive heuristics are fast, frugal, adaptive strategies that

allow humans (organisms, in general) to reduce complex decision tasks of predicting,

assessing, computing to simpler reasoning processes. In the salient of heuristic-based

decision theory, notions such as recognition, priority, availability, fluency, familiarity,

accessibility, representativeness and adjustment - and - anchoring stand out. One of the

simplest and well - studied heuristic is the recognition heuristic [Goldstein & Gigerenzer,

2002]. It is applied as follows: “If there are N alternatives, then rank all n recognized al-
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Figure 6.18: Probability of competing in heuristic equilibrium (left) and the resulting
per-user cost (right), for R = 50, under fixed charging scheme β = 3, γ = 4.

ternatives higher on the criterion under consideration than theN−n unrecognized ones”.

The order at which different reasons are examined to make a final decision is defined by

the priority heuristic [Brandstatter et al., 2006]. The availability heuristic is stated as “a

graded distinction among items in memory, measured by the order or speed with which

they come to mind or the number of instances of categories one can generate”. Cogni-

tive researchers have conceptualized a distinct version of availability heuristic, named as

fluency heuristic. In particular, the authors in [Schooler & Hertwig, 2005] give the defini-

tion: “a strategy that artfully probes memory for encapsulated frequency information that

can veridically reflect statistical regularities in the world”. What is more, “the degree of

knowledge a person has of a task or object” is termed as familiarity [Griggs & Cox, 1982].

The accessibility heuristic [Koriat, 1995] argues that “feeling - of - knowing judgments are

based on the amount and intensity of partial information that rememberers retrieve when

they cannot recall a target answer”. Following the representativeness heuristic, people

answer probabilistic questions by evaluating the degree to which a given event/object re-

sembles/is highly representative of another one. When people adjust a given initial value

to yield a numerical prediction, they devise the adjustment - and - anchoring heuristic.

Tversky and Kahneman in [Tversky & Kahneman, 1974] discuss biases to which some of

the abovementioned heuristics could lead, digging people’s responses that are in favor of

or against a specific set of alternative choices.

Models that rely on cognitive heuristics constitute more radical approaches to the

decision-making task that originate from the cognitive psychology domain and specify

the underlying cognitive processes while they make quantitative predictions. In fact,
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the cognitive heuristics operate as adaptive strategies that allow agents to turn complex

decision tasks of predicting others’ preferences, assessing corresponding utilities or costs,

determining best or better actions, to simpler decision-making tasks.

As such, one may argue that heuristics are more transparent than other approaches

and could be more acceptable to the consumers of transportation decision modeling

(e.g., policy-makers) [Katsikopoulos, 2011]. Indeed, to effectively alleviate congestion

phenomena in city areas caused by the circulation of large numbers of vehicles in search

for available parking space, transportation engineers need to be able to understand how

drivers make their decisions concerning route planning and parking spot choices. How-

ever, modeling the real-world interaction of drivers’ decisions in the emerging smart city

environments, admittedly, can be proved to be a very complicated task. On one side the

inherent challenging city planning, including the route and parking layout and, on the

other side, the uncertainty in the human attitude towards different routing/parking op-

tions, induce significant complexity in analytically evaluating the performance of different

strategies for route or parking spot selection.

We close Section 6.2 by considering a simplified structure of a city environment and

representative behavioral profiles that help overcome computational hindrances and re-

duce complexity. In particular, we consider the road topology that Hutchinson, Fanselow

and Todd introduce in [Todd. et al., 2012], that is, a long dead-end street, two one-

directional lanes leading to and away from a destination and a parking strip between the

two lanes, as shown in Figure 6.19.

As it will become clear in the next section, searching for an empty parking spot

in such parking lot arrangement amounts to a type of a sequential search. Typically,

empirical evidence shows that decision-makers respond to the complexity of sequential

search problems (e.g., mate choice, secretary problem, parking search) by acting heuris-

tically. Interestingly, albeit the human cognitive limitations, time constraints and lack

of full information in those reasoning contexts, simple rules of thumb can frequently

perform as well as more sophisticated search approaches by exploiting the structure of

the information in the environment (Ref. ecological rationality in [Goldstein & Gigerenzer,

2002]). In this investigation, the drivers employ a decision rule based on their distance

from the destination, namely the fixed-distance heuristic, which ignores all places until

Evangelia A. Kokolaki 162



Information dissemination and consumption in competitive networking urban environments

Figure 6.19: The structure of the parking environment.

the driver reaches a specific distance from the destination and then takes the first va-

cant one. Ultimately, we seek to systematically study the efficiency of the fixed-distance

heuristic within the sequential parking search context. It is important to notice that

this instance of heuristics incorporates two fundamental practices in behavioral decision

theory, one-at-a-time processing of pieces of information and the use of thresholds [Kat-

sikopoulos, 2011]. The fixed-distance heuristic decision strategy is considered in this

study by factoring in knowledge that the driver may or may not have about the status

(empty or occupied) of the next to the currently inspected parking spot in the direction to-

wards the destination. This knowledge leads to distinct behaviors and realizations of the

empty/occupied spots and thus, two distinct case-studies of the fixed-distance heuristic

decision-making: with view-ahead (w-VA) and without view ahead (w/o-VA).

6.2.5 Game setting

Implementing the basic assumptions introduced in Section 6.2.4, we consider a

parking lot of R parking spots arranged as shown in Figure 6.19 and N drivers that

seek available parking space within this lot. The drivers employ in their search the

fixed-distance heuristic decision rule which ignores all places until the driver reaches

as close as D places from the destination and then takes the first vacant one. The

collective decision-making on parking place selection can be formulated in the following

game setting:

Definition 6.2.2. A Heuristic-Strategy Parking Game is a tuple ΓH(N) = (N ,R,D, c(k), c′(k)),

where:

• N = {1, ..., N}, N > 1 is the set of drivers who seek parking space,

• R = {1, ..., R}, R ≥ N is the set of parking spots, with set items in increasing order with
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respect to their distance from the destination (i.e., the closest-to-destination spot is the first

set item),

• D = {1, ..., N}, (recall R ≥ N ), is the set of the fixed-distance heuristic strategies with set

items that denote at which distance from the destination the drivers initiate their search,

• c(k) and c′(k) are the cost functions for occupying the kth parking spot after travelling

across the approach lane only, or both lanes, respectively.

In particular, let a, b, d, e ≥ 0 be the cost weights (more precisely, cost per distance

unit, where a distance unit is defined to be the - assumed constant - distance between

two consecutive parking spots) for walking (a), driving through the approach lane (b),

driving through the return lane (e) and driving away from a particular parking spot (d)

(Ref. Figure 6.20). For example, a > b, d would mean “prefer driving a bit more rather

than walk for long” and e > b would imply “it hurts more if we reach the end of the street

and still have not found a spot, hence, have to take a turn and start”. Thus, the cost

incurred by a driver that parks at the kth parking spot while travelling in the approach

lane is

c(k) = b(R− k) + d(R− k) + 2ak, 1 ≤ k ≤ R (6.65)

whereas ending in the same parking spot while travelling in the return lane entails a

higher cost, that is

c′(k) = bR+ e(k − 1) + d(R− k) + 2ak, 1 ≤ k ≤ R (6.66)

Indeed, the order of a parking event together with the adopted heuristic strategies

determine the specific spot at which a driver parks (i.e., the ith parking event, with

1 ≤ i ≤ N , occurs at the kth parking spot) and whether this spot is reached through the

approach or the return lane.

In the following two sections, we derive the equilibrium states of the game and assess

their (in)efficiency under two distinct case-studies: parking search with and without view

of the availability status of the parking spots ahead. As in the original treatment of the

problem, we distinguish between the aspiration level (i.e., adopted distance threshold) of a

single “mutant” driver (Dm, Dm ∈ D) and the - assumed to be common - aspiration level of

the rest of the population (Dp, Dp ∈ D). Indeed, we seek symmetric equilibria10 whereby

10The derivation of asymmetric equilibria is much harder and their realization in practical situations is
much more difficult than that of their symmetric counterparts.
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Figure 6.20: Cost weights for walking and driving in the approach and return lane, when
the driver travels across only the approach lane (left) or both lanes (right) to reach his
parking spot.

the expected cost for the mutant driver is minimized at Dm = Dp. The efficiency of the

satisficing fixed-distance heuristic strategy is assessed by comparing the cost induced

by the equilibrium strategy profiles to that under the optimal parking spot allocation,

whereby no driver continues his search in the return lane and hence, the overall cost paid

by drivers is minimized. Typically, this is the case when the full information processing

and decision-making tasks lie with a centralized parking assistance service.

As last notes, it should be pointed out that the drivers are viewed as decision-makers

that, by repeated and varied attempts, adjust their strategy to minimize the incurred cost

and hence, they reach those equilibria. In addition, this study implies that all drivers

share the same chance of parking at a specific order and none leaves his parking place

before the last arrival. This assumption could correspond, for instance, to a scenario

where drivers arrive at the business district area in the morning within a given time

window, e.g., 8.30-9.00, park for the duration of the working day, and leave the spots in

the afternoon to go back home.

6.2.6 Fixed-distance heuristic parking strategy with view ahead

In this section we study the fixed-distance heuristic parking strategy in an environ-

ment whereby the drivers never occupy a place if the place right next to it is also vacant, on

their way to the destination. This is in accordance with the initial formulation in [Todd.

et al., 2012] and would correspond to a side-by-side arrangement of parking spots across

some street. In such environments the parking spot area fills sequentially, starting from

the destination dead-end. Hence, the ith parking event, with 1 ≤ i ≤ N , occurs at the ith

parking spot, irrespective of the employed Dm and Dp. However, the corresponding cost
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Figure 6.21: Parking w-VA: Cost of playing Dm = R/2 as a function of the order of
parking (left) and expected cost of the fixed-distance heuristic parking strategy (right),
N = R = 80, a = 2, b = d = e = 1.

does depend on the aspiration level of the driver associated with the ith parking event;

namely, the mutant driver pays c(i), if i ≤ Dm and c′(i) if i > Dm. Figure 6.21(a) plots

the cost incurred by the driver associated with the ith parking event as a function of i.

By invoking equations (6.65) and (6.66), the expected cost of playing Dm is given by

E[C] =
1

N

[
Dm∑
i=1

c(i) +

N∑
i=Dm+1

c′(i)

]

=
1

2N
Dm(1 +Dm)(2a− b− d) +R(b+ d) +

N −Dm

2N
[(1 +Dm +N)(2a+ e− d)− 2e](6.67)

Note that this cost is independent of Dp. Therefore, in symmetric equilibrium (where

all drivers adopt the same strategy) all drivers start their search for parking place once

they have reached a distance Dm that minimizes the expected cost function in equation

(6.67). Since dE[C]
dDm

< 0, the expected cost is minimized for the maximum value that Dm

may assume, which is N . Thus, starting the search for available parking space from

the very beginning, seems the most rational strategy to minimize the expected cost, irre-

spective of others’ preferences (e.g., Ref. Figure 6.21(b)). In terms of Game Theory, this

strategy is the best response for all players; namely the game has exactly one (symmetric)

equilibrium strategy Deq = N . The intuition is that having a view of the next parking

place’s status brings benefits to the drivers when this is possible (there are empty spots

ahead). Hence, by exercising this very simple heuristic strategy at the equilibrium aspira-

tion level Deq, drivers will never end up paying the extra penalty of e cost units of driving

in the return lane.
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6.2.7 Fixed-distance heuristic parking strategy without view ahead

In this section, the drivers take the first empty place they encounter within a distance

of at most D places from the destination, on their way to the destination. This would

correspond to a dispersed yet uniform arrangement of parking spots across a street, so

that the status of the next spot is not visible when the drivers reach the immediately

previous one. Unlike the case in Section 6.2.6, the expected cost for using a parking spot

depends on both realized strategies Dm and Dp. In order to systematically analyze the

consequences of a strategy profile (Dm, Dp), we explicitly discriminate between two cases,

featuring Dm > Dp and Dm ≤ Dp, respectively.

Strategy profiles with Dm > Dp

In this case, the following observations may be made for the parking patterns (Ref.

Figure 6.22(a)):

• drivers (other than the mutant driver) will first fill in all the spots in segment

< destination,Dp > while approaching the destination, and then start filling up the spots

in segment < Dp, Dm > while moving away from the destination. Hence, there is no

possibility that the mutant driver encounters an occupied spot in segment < Dp, Dm >

as long as there exists at least one empty spot in segment < destination,Dp >,

• the mutant driver parks at least Dm places away from the destination.

If the mutant driver is associated with the ith parking event, he will park at a distance

ofmax(Dm, i) spots away from the destination. The corresponding cost is c(Dm), if i ≤ Dm

and c′(i), if i > Dm. Thus, if Dm > Dp the expected cost becomes

E[C] =
Dm

N
c(Dm) +

1

N

N∑
i=Dm+1

c′(i)

=
N −Dm

2N
(1 +Dm +N)(2a+ e− d) +

Dm

N
[Dm(2a− d− b) + e] +R(b+ d)− e (6.68)

The analysis of this function gives that dE[C]
dDm

= 1
N

[
−Dm[2(b− a) + d+ e]− a+ d+e

2

]
and d2E[C]

dD2
m

= − 1
N

[2(b− a) + d+ e]. Hence, if 2(b− a) + d+ e ≥ 0, then E[C] is concave and

monotonically decreasing with Dm. Otherwise, E[C] is convex. Therefore, the expected

cost function assumes its minimum value at

Evangelia A. Kokolaki 167



Information dissemination and consumption in competitive networking urban environments

(a) Dm > Dp (b) Dm ≤ Dp

Figure 6.22: Parking w/o-VA: Available parking options for a driver with strategy Dm,
given the strategy Dp of the rest of the population.

Dmmin =

 N , if 2(b− a) + d+ e ≥ 0

d+e−2a
2[2(b−a)+d+e] , if 2(b− a) + d+ e < 0

(6.69)

Strategy profiles with Dm ≤ Dp

When the mutant driver exposes a more risky behavior comparing to others, the

following observations may be made for the parking patterns (Ref. Figure 6.22(b)):
• the drivers fill in sequentially all spots from the parking place Dp towards the

destination. Hence, there is no possibility that the mutant driver encounters an occupied

spot in segment < destination,Dm > as long as there exists at least one empty spot in

segment < Dm, Dp >,
• the mutant driver parks either at segment< destination,Dm > or at least Dp places

away from the destination.

If the mutant driver is associated with the ith parking event, it holds that: if i > Dp,

the mutant driver parks at the ith spot at a cost of c′(i) units; if Dp − Dm < i ≤ Dp, he

parks at the (Dp − i + 1)th spot at a cost of c(Dp − i + 1) units; and if i ≤ Dp −Dm, he

parks at the Dmth spot at a cost of c(Dm) units. Figure 6.23 plots the resulting cost of

parking events of particular order. Thus, if Dm ≤ Dp, the expected cost equals

E[C] =
1

N

N∑
i=Dp+1

c′(i) +
1

N

Dp∑
i=Dp−Dm+1

c(Dp − i+ 1) +
Dp −Dm

N
c(Dm)

=
N −Dp

2N
[(1 +Dp +N)(2a+ e− d)− 2e] +R(b+ d) +

Dm

2N
(Dm − 2Dp − 1) (b+ d− 2a) (6.70)

The analysis of the expected cost function for the monotonicity and concavity trends

gives that dE[C]
dDm

= 1
N

(b+d−2a)
(
Dm −Dp − 1

2

)
and d2E[C]

dD2
m

= 1
N

(b+d−2a). If b+d−2a > 0,

then E[C] is convex and monotonically decreasing withDm, whereas if b+d−2a < 0, then
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Figure 6.23: Parking w/o-VA: Cost of playing Dm = R/2 (left) and Dm = R/4 (right)
against a population who plays Dp = R/4 (left) and Dp = R/2 (right) as a function of the
order of parking, N = R = 80, a = 2, b = d = e = 1.

E[C] is concave and monotonically increasing with Dm. (Otherwise, E[C] is a constant

function and the driver experiences the same expected cost irrespective of his strategy of

preference.) Ultimately, if Dm ≤ Dp, the mutant driver minimizes his expected cost if he

starts his search for parking space from

Dmmin =

 Dp, if b+ d− 2a > 0

1, if b+ d− 2a < 0
(6.71)

Hence, the expected cost exhibits one of three possible minimum values11, depending

on specific conditions on the cost weights. More precisely, by (6.69) and (6.71), the

expected cost function for the parking search without view ahead assumes its minimum

value at

Dmmin


= N, if b+ d− 2a ≥ 0

∈ arg minDm
′∈{1, d+e−2a

2[2(b−a)+d+e]
}E[C/Dm = Dm

′], if 2(b− a) + d+ e < 0

∈ arg minDm
′∈{1,N}E[C/Dm = Dm

′], if 2(b− a) + d+ e ≥ 0 and b+ d− 2a < 0

(6.72)

Figure 6.24 depicts the expected cost for the mutant driver, when he exposes a risk-

seeking (Dm ≤ Dp) or risk-averse (Dm > Dp) attitude, given three different values of Dp.

As Figure 6.24 and equation (6.68) suggest, all three cases of Dp share the same cost

results when Dm > Dp. On the contrary, the curves differ on their left part, since the

expected cost for Dm ≤ Dp is a function of Dp (Ref. equation (6.70)). In all plots the

minimum expected costs satisfy the results in (6.72).

11By comparing the left end point E[C/Dm = Dp + 1] of the branch Dm > Dp, with the right end point
E[C/Dm = Dp] of the branchDm ≤ Dp, we have that E[C/Dm = Dp] > E[C/Dm = Dp+1] if b+d−2a ≥ 0
and E[C/Dm = Dp] < E[C/Dm = Dp + 1] if 2(b − a) + d + e < 0 and Dp > 1, or if 2(b − a) + d + e < −b
and Dp = 1.

Evangelia A. Kokolaki 169



Information dissemination and consumption in competitive networking urban environments

0 20 40 60 80
0

50

100

150

200

Dm

E
x
p

e
c
te

d
 C

o
s
t

 

 

Dp=10

Dp=40

Dp=70

0 20 40 60 80
100

200

300

400

500

Dm

E
x
p

e
c
te

d
 C

o
s
t

 

 

Dp=10

Dp=40

Dp=70

0 20 40 60 80
100

200

300

400

Dm

E
x
p

e
c
te

d
 C

o
s
t

 

 

Dp=10

Dp=40

Dp=70

(a) a = 0, b = 1, d = 1, e = 2 (b) a = 3, b = 1, d = 0, e = 2 (c) a = 2, b = 1, d = 0, e = 3

Figure 6.24: Expected cost for the fixed-distance heuristic parking strategy w/o-VA,
N = R = 80.

Overall, if we restrict our interest to only symmetric equilibria, the analysis of this

section concludes that there is always at most one symmetric equilibrium whereby the

drivers demonstrate either a fully conservative attitude, Deq = N , starting their search

from the beginning (when b+d−2a ≥ 0, e.g., Ref. Figure 6.24(a)) or a fully aggressive one,

Deq = 1, anticipating a vacancy adjacent to the destination (when 2(b− a) + b+ d+ e < 0,

e.g., Ref. Figure 6.24(b)). The intuition in the first equilibrium case is that drivers prefer

walking than driving and hence, by choosing Deq = N drivers park at the first available

parking spot on their way towards the destination, avoiding excess driving in the approach

or the return lane. In the second equilibrium case, drivers prefer driving than walking

and hence, they are drawn towards spots close to the destination, seeking to minimize

the walking overhead. Contrary to the first equilibrium case whereby the simple fixed-

distance heuristic rule minimizes the overall social cost, in the second case all but one

drivers end up paying the extra penalty of e cost units. In between the two extreme values

1 and N , there is no other symmetric equilibrium since there are no cost weights that -

satisfy both the conditions b+ d− 2a ≥ 0 (constant or decreasing E[C], for Dm ≤ Dp) and

2(b − a) + d + e < 0 (convex E[C], for Dm > Dp) and - allow the expected cost to exhibit

its minimum value at Dm = Dp, with 1 < Dp < N .

Finally, when 2(b−a)+d+e ≥ 0 and b+d−2a < 0, there is no symmetric equilibrium

since the value Dmmin decreases with Dp. In particular, the two possible minimum

expected costs that may appear are E[C/Dm = 1, Dm ≤ Dp] and E[C/Dm = N,Dm > Dp].

However, the strategy selected by the population, Dp, affects the minimum expected cost

of the mutant driver, only if he demonstrates a risk-seeking behavior, expressed in the
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strategy Dm = 1. Furthermore, if Dm = 1, the expected cost is a decreasing function of

Dp, since dE[C/Dm=1,Dm≤Dp]

dDp
< 0, while it holds that E[C/Dm = 1, Dp = 1] > E[C/Dm =

N,Dp = 1] and E[C/Dm = 1, Dp = N ] < E[C/Dm = N,Dp = N ]. The intuition behind

this result is that when the drivers do not have a clear preference over walking or driving

(i.e., 2(b − a) + d + e ≥ 0 and b + d − 2a < 0) the mutant driver profits from exhibiting

the opposite attitude with respect to what all the rest of the population do (Ref. Figure

6.24(c)). Namely, by choosing high (low)Dm values under low (high)Dp values, the driving

(walking) savings counterbalance the walking (driving) overhead.

6.2.8 The two-player game ΓH(2)

In this section we focus our attention on the interaction of exactly two drivers within

the reference parking area. Table 6.5 shows the resulting game matrix for the strategy

profiles.

Table 6.5: Game matrix for the parking game ΓH(2).

Dp = 1 Dp = 2

Dm = 1 A,A B,C

Dm = 2 C,B D,D

We arbitrarily consider the row player as the mutant driver and the column player

as the driver that constitutes the rest of the population. With A, B, C, D we denote the

expected costs for the row player (or the column player, as they are symmetric) when he

responds with Dm = 1 to the population strategy Dp = 1, or with Dm = 1 to Dp = 2, or

with Dm = 2 to Dp = 1, or finally, with Dm = 2 to Dp = 2, respectively. By (6.68) and

(6.70) the expressions for A, B, C and D are

A =

(
R− 1

2

)
(b+ d) + 3a− d+

1

2
e

B = (R− 1)(b+ d) + 2a

C = (R− 2)(b+ d) + 4a

D =

(
R− 3

2

)
(b+ d) + 3a

In order to determine the equilibrium states in the parking game, we compare the ex-
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pected costs that are induced by either strategy and, hence, define the best responses for

every player. Then, we draw similarities between the two-player parking game and well-

known archetypal games that present the same equilibria, under the same assumptions

for the dominance of the strategies. Thus, it is possible to expand our understanding of

the interaction of the drivers by exploiting known results from the theoretic investigation

of those classical games (e.g., results regarding the iterative versions of the games).

2(b − a) + d + e < −b: Given the particular condition for the costs, we derive that B <

D < A < C and hence, the equilibrium state is Dm = Dp = 1. This is an instance of the

Prisoner’s Dilemma. Therefore, the parking game converges to the “bad” (most expensive)

symmetric strategy profile.

b+d−2a > 0: This condition results in the ordering C < D < B < A, if 2a+b+e−d > 0

and C < D < A < B, if 2a+ b+ e− d < 0. This is an instance of the Deadlock Game and,

unlike the Prisoner’s Dilemma, the action Dm = Dp = 2 that is mutually most beneficial

(less expensive) is also dominant.

2(b − a) + d + e > −b and b + d − 2a < 0: These conditions result in B < D < C < A

and yield the two asymmetric equilibria Dm = 1, Dp = 2 and Dm = 2, Dp = 1. This is an

instance of the Chicken Game (or Hawk-Dove Game), whereby the players are called to

choose whether to back off or risk fighting, with one of the two symmetric strategy profiles

(fighting) being disastrous for both. The game, also, exhibits a symmetric mixed-strategy

equilibrium where both players randomize over their pure-strategy space.
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Part III

Effectiveness and side-issues in

managing public goods through

vehicular social applications
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Chapter 7

Social parking applications: turning

common goods to private goods?

More than ever before, information and communication technologies (ICT) help people

around the globe overcome the physical separation constraints and exchange information

while working or in their leisure. On the one hand stands the integration of sensing de-

vices of various sizes and capabilities with mobile communication devices. This enables

the generation and collection of huge amounts of information, of very different spatial

and temporal context, by leveraging the heterogeneity of users’ interests, preferences and

mobility. When sensing and radio communication technologies are mounted on vehicles,

in particular, they convert them into pervasive sensing platforms. These platforms can

then collect various types of information about the urban environment, ranging from nat-

ural environment status indices (humidity, temperature) to traffic conditions and parking

space availability.

On the other hand, online social networking applications provide a fast and easy way

to publish and share this information among their users. More importantly, they often

process it in various ways to generate knowledge, which can find use in various vehicular

network applications such as safety, traffic management, and infotainment applications.

At the same time, these social applications instantiate virtual spaces, over which their

users interact, communicate and collaborate with each other. Examples of such virtual

social communities are the drivers (commuters, in general) who follow similar trajectories

in their daily driving routines.
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In this section, we focus on an emerging generation of social parking applications

that seek to transform the way the search for parking space is carried out in busy urban

environments, where the demand for parking space may exceed its supply. Social park-

ing applications have been deployed over the last couple of years in different European

and North American cities, including Athens (“ParkingDefenders”1), Paris (“PlaceLib”2),

New York (“ParkShark”3), San Francisco (“Kurb”4). Several features are common across

them: they run on smartphones, support multiple operating systems, and enable drivers

to hand over parking spots to each other. Application users can offer their parking spot

to other users seeking one; or find a parking spot for themselves by claiming a spot

another user is offering. Most applications embed social comparison and gamification

mechanisms in their design to incentivize users. Users are rewarded for their offers with

non-monetary credits and their current credit-based ranking is monitored and published

by the application. High-credit users then enjoy higher chances to be chosen by a park-

ing spot sharer (defender) when they seek a parking spot (“ParkingDefenders”); or get

informed about a vacant spot prior to other seekers (“ParkShark”); or consume some of

their credits when they seek available space (“PlaceLib”)(“Kurb”).

Although some of these applications are currently in use, we are aware of no system-

atic study of their performance and scalability properties. Questions that arise in this

respect are:

• How is the advantage of the application users over non-user drivers affected by the

penetration rate?

• For given penetration levels, do the application users end up largely monopolizing

the parking resources so that non-user drivers are, in essence, almost excluded

from using public parking spots (goods)?

• Does the virtual credit incentive mechanism induce rich-club phenomena, whereby

a subset of users in a population of drivers with identical needs for parking space,

1ParkingDefenders: parking application for Athens (Greece), available online in http :
//www.parkingd.com

2PlaceLib: parking application for Paris, available online in http : //www.placelib.com
3ParkShark: parking application for New York City, available online in http :

//www.parkshark.mobi/www/
4Kurb: parking application for San Francisco, available online in http : //www.kurbkarma.com
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seizes the parking resources by handing over spots among them and hence, contin-

ually increasing their ranking?

To address these questions, we model the two fundamental elements that are en-

countered in different instances of social parking services: the awareness (i.e., informa-

tion) and the incentive (i.e., rankings) mechanisms. In the same section we present the

details of three different driver profiles: the application users that (have access to informa-

tion/services provided by the application and) share their parking spots (i.e., Defenders)

or simply seek parking space but do not share theirs (i.e., Seekers) and the traditional

drivers that do not subscribe to any such application. The model has taken into ac-

count data from recent surveys and statistics and has employed a queuing model that

approximates the size of the driver population for given parking demand levels.

Overall, we are interested in understanding the impact of the application operation

on both its users and the rest of the driver population, as well as identify key parameters,

such as the penetration rate or the parking supply and demand, that can affect these so-

cial applications’ efficiency. We set up focused scenarios that help us explore particular

aspects of these applications as the parking demand scales up and competition phenom-

ena emerge. The operation of these applications is shown to yield a significant advantage

for their users at the expense of only slight (or moderate, at high-penetration-rate en-

vironments) deterioration of traditional drivers. The incentive mechanism, especially, is

shown to operate efficiently, offering preferential treatment to those fully cooperating, yet

it induces rich-club phenomena. Those problems are mitigated as the number of parking

spot offers by application users drops. In a final scenario, drivers’ behavior is allowed

to alternate between the three different users’ profiles. In this dynamic environment, we

show that old and new application subscribers end up with similar probabilities to win

the competition for parking space, indicating that dynamicity creates the conditions for

a fair treatment of newcomers to such an application.

7.1 Modeling the social parking application

The primary objective in this study is to illuminate fundamental properties that are

common across the different social parking applications launched over the last couple
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of years. To this end, we have developed a discrete-event simulation environment that

abstracts the precise details of the individual applications and rather focuses on their two

critical components: the collective awareness layer they induce and the (pseudo)credit-

based mechanism they implement for motivating their users to cooperate in the handover

of spots.

Our environment is initialized with R parking spots and N driver nodes. Each driver

node alternates among four possible states, parkedos, parkedpl, search, idle. Its residence

time at the idle state is described by a Random Variable, ti, and is closely related to its

parking attempt rate. Upon a parking attempt, it enters the search state and stays there

for a maximum time of Tmaxs . If it succeeds in seizing an on-street parking spot within this

time, it jumps to the parkedos state; otherwise, it enters the parkedpl state (e.g., equivalent

to driving to a parking lot). In either case it remains parked for time tp, which follows the

parking time distribution, before returning to the idle state.

Three driver node profiles are implemented in this environment: (a) the traditional

driver, who seeks a parking spot without assistance from any application; (b) the parking

defender who uses the social parking application and facilitates other users of the appli-

cation by informing the system when leaving a parking spot and handing over its spot to

another application user who is looking for parking in the same area; and (c) the parking

seeker, who uses the application only for getting informed about vacant spots and park-

ing offers, but neither informs the application when he vacates a spot nor does he wait

to hand it over to another application user. The traditional driver profile represents the

traditional practice in searching for on-street parking space, while the other two profiles

are induced by the social parking applications, instantiating the favorable cooperative

norm and the annoying free-riding phenomenon, respectively. The aforementioned three

profiles are described in more detail below.

Defender profile: When an application user shares a parking spot5

1. locates his parking spot on the map and informs the application,

2. reviews the existing requests for the particular spot, accepts and replies to one

5In realized systems, user nodes that offer a parking place, may also indicate when they intend to free
the spot, wait until the time they declared when they made the offer ends and watch the selected vehicle
approaching before they leave the spot.
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based on some criterion (such as, the requesters’ rating and their distance from the

spot at the time of the request),

3. earns some rating in reward of his offer.

Seeker profile: When an application user seeks available parking spot6

1. submits a request of interest to every relevant offer available until the acceptance

of his request or until the detection of a vacant parking spot,

2. if the request is accepted, parks at the particular spot, rates the Defender driver

and remains parked for a time interval according to some probability distribution,

3. when the parking time ends, abstains from competition for a parking space for a

time interval according to some probability distribution, before initiating another

parking searching attempt.

Traditional driver profile: It refers to drivers that ignore the social parking appli-

cation and

1. abstain from competing for a parking spot for a time interval that follows some

probability distribution,

2. when the latter time interval expires, they start wandering randomly in search for

a parking spot,

3. park at the first encountered vacant parking spot for a time interval according to

some probability distribution.

Application users might exercise both profiles: they may operate as Defenders and

assist others in anticipation of non-monetary credits that will increase their rating, or

operate exclusively as Seekers hoping to benefit from the advantage that application

users have over the traditional drivers. In environments with mixed populations, when

no Seeker (or Defender) is interested in parking or when a traditional driver or Seeker

vacates a spot, all interested drivers have the same chance to be served.
6In realized systems, user nodes that seek a parking spot, define the search area for available parking

spots and choose one to send a request of interest. If the request is accepted, they are provided with driving
directions to the spot and if they end up parking at the particular spot, they rate the Defender driver.
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7.2 Model parametrization and performance metrics

To populate our simulator with meaningful numbers, we have drawn on real maps of

on-street parking space in the city of Athens, Greece. We consider one of the busiest areas

at the Athens city center featuring 140 controlled on-street parking spots. According to

the report in [INTERREG IIIC: City Parking in Europe, 2006], the average parking demand,

Lp, in these districts, as inferred by accounting for illegally parked vehicles, can be up to

150% of the on-street parking space supply. We simulate drivers who enter this area and

search for parking space once a day, on average, resulting in exponentially distributed

ti with mean equal to one day. The maximum search time before quitting search is set

to Tmaxs = 15min [le Fauconnier & Gantelet, 2006] [Polycarpou et al., 2013]. Finally,

parking times tp are assumed exponential with mean equal to one hour. The duration of

simulations is ten days, which is enough time to generate a significant number of parking

events for all drivers.

To compute the equivalent driver population N that yields a given over-demand ratio

Lp, we devise and solve (reverse engineering) a stochastic finite-source queuing model for

the parking search process. In particular, we formulate a 2D continuous-time Markov

chain with states (x, y), where x represents the number of drivers occupying an on-street

parking spot or in search for one (referring to as the active population) and y represents

the number of drivers that have quitted the search for an on-street spot and have ended

up in a parking lot (referring to as the inactive population). If λ, µ and γ denote the rates

E[ti]
−1, E[tp]

−1 and E[ts]
−1, respectively, there are four different types of transitions from

an initial state (i, j) to a next state (i′, j′) occurring at rate q(i,j;i′,j′).

Transitions that increase the size i of the active population

q(i,j;i+1,j) = (N − i− j)λ, 0 ≤ j ≤ N −R, 0 ≤ i < N − j

Transitions that decrease the size i of the active population

q(i,j;i−1,j) =

 iµ, 0 ≤ j ≤ N −R and 1 ≤ i < R

Rµ, 0 ≤ j ≤ N −R and R ≤ i ≤ N − j
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Transitions that decrease the size j of the inactive population

q(i,j;i,j−1) = jµ, 1 ≤ j ≤ N −R, 0 ≤ i ≤ N − j

Transitions due to a driver quitting his search for a parking spot

q(i,j;i−1,j+1) = (i−R)γ, 0 ≤ j < N −R,R < i ≤ N − j

In our scenarios, we generally account for mixed populations of users and non-users

of the application letting the application penetration rate, rp vary in [0, 100]%. Likewise,

the percentage of Seekers over the application users, rs, varies over {0, 30, 50, 70}%. User

rankings are initialized to values uniformly drawn from the intervals [0, 2] (default case)

or [0, 9] and each parking spot handover by a parking Defender to another application

user is thereafter rewarded by C credits (default value, C = 3) that do not age. A parking

Defender offers his parking spot to the requester with the highest ranking (accumulated

credit).

The impact of a social parking application on the drivers (both users and non-users)

is quantified through two metrics: the parking success rate, rsuc, measured as the per-

centage of a driver’s successful parking attempts; and, the time ts spent in search for a

parking spot till either capturing a parking spot or heading for a parking lot (ts = Tmaxs ).

7.3 Simulation results-experimentation

In this section we derive various simulation results under different mixtures of user

profiles, aiming at depicting (a) the extent to which on-street public parking resources

are hĳacked by the social parking application users at the expense of traditional drivers

and (b) the effectiveness and hidden fairness issues concerning the incentive mechanism

and whether newcomers to the application are well integrated and not unfairly treated

compared to existing application users.
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7.3.1 Effectiveness of the social parking application and impact on

traditional drivers’ performance

A number of smart mobile applications for efficient parking spot management have

recently been developed. The first version of the system “ParkShark” (New York) was

released in 2010. Two years later, the systems “PlaceLib” (Paris) (with 10.800 users and

5024 parking spots), “ParkingDefenders” (Athens, Greece) and “Kurb” (San Francisco)

started their operation. Albeit new and under-dimensioned, the systems have emerged as

breakthrough applications with strong potentials for large-scale development in the near

future [Polycarpou et al., 2013]. However, it is unlike that the entire driver population

will subscribe to such parking systems, independently of whether a fee will or will not

be charged for the provided parking assistance service. In the first case, the applied fee

might discourage possible clients, while in the second case, the requirement for acquiring

and operating advanced devices or even the lack of proper promotion of the services might

hinder their growth.

Two questions become relevant in this respect: (a) How the penetration rate affects

the advantage of application users over traditional drivers; and (b) whether the application

tends to exclude traditional drivers from utilizing public parking places. By addressing

these questions, we seek to comment on the boundaries that vouch high efficiency without

turning a rivalrous (i.e., occupation of a parking spot by one driver prevents simultaneous

occupation by other drivers) but non-excludable (i.e., drivers that have not subscribed

cannot be prevented from accessing parking spots) public good into an excludable one.

Figure 7.1 plots the ultimate parking success rates against the drivers’ rankings as

shaped by the end of the simulation time, for two scenarios that differ in the intensity of

the parking requests. Rankings of zero value in the plots correspond to traditional drivers,

while Seekers and Defenders end up with rankings 0−2 and above 2, respectively. Figures

7.2 and 7.3 plot the corresponding average parking success rates for different penetration

rates.

In line with intuition, the higher the penetration rate, the more frequent the han-

dovers of parking spots between application users and thus, the lower the parking op-

portunities for traditional drivers. A notable advantage of exploiting the parking service
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(a) rp = 10% (b) rp = 30% (c) rp = 50% (d) rp = 70% (e) rp = 90%

Figure 7.1: Impact of penetration rates rp ∈ [10, 90]% and parking request intensity
Lp ∈ {150 (first row), 165 (second row)}, on the final satisfaction of traditional drivers and
application users with Seekers’ ratio rs = 50%. The red line corresponds to the simple
linear regression model.

emerges, especially for the Defenders, even at low penetration rates and low intensity

of requests (i.e., Ref. first row of results in Figure 7.1). Under intense parking demand

(i.e., Ref. Figure 7.2 and second row of results in Figure 7.1), the abovementioned ad-

vantage emerges at even lower levels of penetration rate. Indeed, as the penetration

rate and/or the intensity of request increase, upon a parking spot offer by a Defender,

traditional drivers compete against at least one application user with high probability. In-

terestingly, this performance improvement of application users, both in terms of success

rate and the ultimate search time, comes at the expense of only slight deterioration of the

performance of traditional drivers, as depicted in Figure 7.2. Indeed, even in pure coop-

erative environments whereby the entire application user population participates in the

handover/credit-building processes, users’ improved performance is mostly due to the

increased efficiency they generate in the parking search process, rather than excluding

traditional drivers from the public parking resources (Ref. Figure 7.3).

7.3.2 Effectiveness of the incentive mechanism and some concerns

on its fairness

The incentive (for cooperation) mechanism is central to the operation of the social

parking application and the implementation of the Defender profile. On one hand, it is
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Figure 7.2: Average parking success rates and search times for Lp = 165, rs = 50%.
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Figure 7.3: Average parking success rates and search times for Lp = 165, rs = 0%.

expected that an effective such mechanism would result in rewarding and providing better

service to the most cooperative users. On the other hand, such a mechanism should not

discriminate against users with similar interests, needs and attitude towards cooperation,

or against newcomers to the application. Unfortunately, incentive mechanisms that are

based on the accumulation of credit occurring over time and at a rate that depends on

the frequency of interactions tend to yield some discrimination, as shown below.

First, we consider environments of various penetration rates and examine the degree

of correlation between ranking and satisfaction, in order to assess the effectiveness of the

incentive mechanism. Indeed, the plots in Figure 7.1 provide useful insights regarding

the effectiveness of the incentive mechanism and the resulting parking service provided to

the application users. In particular, plots referring to high-penetration-rate environments

(i.e., rp > 50%) show a strong relation between users’ rankings and induced success rate,

with (expected) higher success rates being coupled with higher rankings, suggesting that

the incentive mechanism is effective. Table 7.1 provides the values of the coefficient of

determination for the simple regression model that is drawn as a red line in the data

point sets of Figure 7.1. The coefficient values increase with the penetration rate. Hence,

the observed outcomes/rankings are better replicated by the regression model as the
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(a) rs = 30% (b) rs = 70%

Figure 7.4: Impact of the Seekers’ ratio, rs, on the final satisfaction of application users
and traditional drivers, under rp = 10% and Lp = 157.
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Figure 7.5: Impact of the Seekers’ ratio, rs, on the final satisfaction of application users
and traditional drivers, under rp = 80% and Lp = 157.

penetration rate increases. This relation seems to present non-linear characteristics for

very high penetration rates, which is a concern, due to the risk of having a few users,

achieving high ranking, almost monopolize the resources and discourage otherwise fully

cooperative users who happened to achieve lower ranking. Indeed, such concerns were

founded through observations during the simulations showing that once a user wins

in the initial competition round (whereby the differences in user rankings are limited

and hence, the success probabilities similar for all), he immediately starts enjoying a

competitive edge in the following rounds over other users with the same (Defender) profile,

through the continuous credit accumulation. This rich-get-richer effect sharpens as the

frequency at which drivers enter the parking search area increases, resulting in higher Lp

(i.e., Lp = 165) and, eventually, high probability for one to compete against higher-ranked

drivers.

The application users’ profile (i.e., mixture of Defenders and Seekers) also affects the

way the rankings and most importantly, drivers’ satisfaction are shaped. Environments
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whereby the parking spot handover process is less frequent (i.e., in the presence of a

good portion of Seekers) provide fewer opportunities for credit-building and emergence

of high rankings, thus preventing the monopolization of the parking resources by a few

Defenders. Instances of these environments are depicted in Figures 7.4(b) and 7.5(b),

where the majority of the users abstain from parking spot sharing (only 3% and 24% are

Defenders in these plots). Although the Defenders enjoy the benefits of the good ranking

and a higher success probability, application users might instead decide to follow the

Seeker profile for a number of reasons; for instance, they may not desire to wait for the

implementation of the parking spot handover process.

In view of the above discussions, it becomes clear that when the applications’ pen-

etration is high and a good portion of the application users follow the Defender profile,

Defenders with very low ranking are very difficult to compete against those with high

ranking and improve their success rate. Such very low-ranking Defenders would be

newcomers to the social parking application desiring to fully cooperate upon joining the

application. This could be an issue with the application as it would not encourage (or wel-

come) newcomers under the above (static) conditions. As application users are strongly

guided in their behavior by a strong social/behavioral layer, it is very likely that the

environment in which a social parking application will operate will be a dynamic one,

where users occasionally modify their profile. In real environments, traditional drivers

may subscribe to the application from time to time, while users may alternate between

the two application user profiles. In this context, we question whether traditional drivers

have the incentive to subscribe to the application. In particular, we simulate scenar-

ios with low initial penetration rate (rp = 30%) whereby traditional drivers stochastically

(with 10% probability) become application users, while users change profiles in response

to the success rate they experience. That is, Seekers that win less that one fifth of the

times they compete for an offered spot, start offering their place to others in anticipation

of their credits (i.e., assume the Defender profile). On the other hand, Defenders that

see their success rate rise over 40%, might feel that there is no need for extra credits

and hence, abstain from offering their place. Figure 7.6 illustrates the drivers’ final suc-

cess rates against their initial rankings without any profile transition (left plot) and with

profile transitions as described above (right plot). In the first case, zero rankings yield
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Figure 7.6: Final parking success rates in driver populations with static (left) and dynamic
(right) drivers’ profiles, under (initial rates) rp = 30%, rs = 50%, Lp = 165.

Table 7.1: Coefficient of determination, R2 for the simple regression models on the data
point sets in Figure 7.1.

rp

10% 30% 50% 70% 90%

Lp
150 4.2 · 10−4 0.09 0.15 0.19 0.28

165 0.043 0.29 0.35 0.45 0.44

lower success rates. On the other hand, when these profile transition rules are applied

(dynamic environment), initially traditional drivers are well integrated into the application

as inferred by the similar satisfaction scores they achieve (right plot).
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Chapter 8

Conclusions

In the last chapter, we present the main results of Parts II, III and introduce possible

extensions for future work.

In Part II, we investigate the effectiveness and side-issues in building and exploita-

tion of collective awareness in competitive environments. The part starts with Chapter 5

which explores information dissemination within competitive networking urban environ-

ments where networked vehicular user nodes have to autonomously decide whether to

dispose private information. Information is essentially a kind of asset; sharing it, user

nodes assist their potential competitors, in anticipation of their support in due course.

We consider realistic scenarios of an opportunistic parking assistance system that instan-

tiates such environments and systematically analyze its capacity to assist the provision

of a real-world service, i.e., the parking space search in city areas. In Section 5.1, the

opportunistically-assisted scheme is investigated under the assumption that the vehicu-

lar nodes are fully cooperative and reliable and compared against a centralized scheme

that has the sole responsibility for collecting information on parking space availabil-

ity and deciding on its allocation to vehicles; as well as the current-practice unassisted

scheme, where vehicles drive randomly around their travel destinations in search of park-

ing space. The three schemes represent distinct, sometimes even extreme, paradigms as

to how much they exploit spatially distributed and dynamically changing information to

assist the parking search task.

Our results suggest that no search practice solution can always serve optimally the

users’ expectations. On the contrary, the particular drivers’ preferences, e.g., travel des-
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tinations, and the density of traffic may dramatically modulate the relative performance

of the centralized and opportunistic approaches and give rise to tradeoffs that only the

user can resolve. Specifically, when users tend to travel towards destinations randomly

spread in space, the cooperative opportunistic scheme leverages the vehicle mobility and,

for moderate-to-high traffic density, can collect and disseminate fast information with

broad spatial scope. The benefits from the information diffusion across the vehicles

outweigh the increased competition due to overlapping interests in parking spots. On

the contrary, the performance of the centralized scheme deteriorates more quickly with

the traffic intensity and its reservation system appears to cancel the flexibility of more

self-organizing schemes to make use of the spatially distributed parking space resource.

This relative performance of the three parking strategies seems to be independent of the

average parking time.

When traffic concentrates in a smaller section of the area (e.g., a road), the central-

ized system consistently yields the minimum search times and travelled distances. With

global knowledge of parking space availability throughout the area, it can resolve better

the competition amongst the vehicles for the few parking places around the common

destinations. The user is faced with a hard tradeoff: either he goes for shorter parking

search times and routes and parks his vehicle further away from his travel destination

(centralized system); or he prefers to spend much more time and fuel in favor of a park-

ing spot closer to his travel destination (opportunistic scheme). Notably, what he gets

in the second case is marginally better than he would achieve by randomly wandering

around the area (road) of interest since the opportunistic system ends up recycling in-

formation that synchronizes the movement patterns of the vehicles and intensifies their

competition. Even for moderate number of vehicles, the opportunistic scheme effectively

“degenerates" to the non-assisted scheme. One way to strengthen the dissemination

performance of the system without further aggravating competition, is through the in-

troduction of Mobile Storage Nodes. At low competition burden, these dedicated nodes

further strengthen the information dissemination overlay and result in more favorable

parking space assignments. In this study, we also expand the simulation study and fur-

nish analytical arguments that support the credibility of the simulation findings and give

further insights to the problem dynamics. Indeed, we introduce an analytical model for
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the centralized parking assistance system to derive its main performance measures. The

validation of the model shows excellent agreement with simulation results.

Chapter 5 continues with Section 5.2 that has looked into the vulnerability of oppor-

tunistic parking assistance systems to drivers’ selfish behaviors. In this study drivers are

let behave as free riders that benefit from information other vehicles collect and share but

do not share theirs; and selfish liars that falsify information in their caches in order to

increase their chances to find a spot close to their destinations. The problem under con-

sideration features strong spatiotemporal dynamics that are not conducive to analytical

investigation.

Notably, the results do not lie always in line with intuition. In almost all cases mis-

behaving nodes fail to obtain distinctly better performance than cooperative nodes. Both

types of misbehavior, through different mechanisms, tend to reduce the destination-spot

distances and increase the parking search times for all vehicles, the latter increase be-

coming quickly prohibitive when drivers’ destinations overlap. This fate-sharing effect

essentially weakens vehicles’ incentives to misbehave and increases the system resilience

to selfishly-thinking drivers. On the other hand, neither of the two misbehaviors attenu-

ates the synchronization phenomena emerging at the cache contents, and subsequently,

the mobility patterns of vehicles when their destinations overlap. The introduction of

Mobile Storage Nodes in this case, which collect and share parking information with

parking-seeking vehicles, has a sharply different impact on the two misbehavior in-

stances. Whereas, in the presence of free riders, a few of them suffice to restore the

information flow at the levels of a cooperative system, they have negligible impact in the

presence of selfish liars: even a few misbehaving vehicles suffice to overwrite the fresh in-

formation Mobile Storage Nodes carry and convert them into relays of forged information.

To strengthen our confidence in the simulation results, we formulate simple analytical

arguments that capture surprising well the fundamental behavior of the opportunistic

system without accounting for the finer practical details of the context (i.e., vehicles,

parking spots), let alone for the finer details of the application (i.e., road grid and vehicle

movement patterns). Such a model would enable a more systematic investigation of the

tradeoff that arises between more informed search and increased competition.

The implementation of Mobile Storage Nodes is one, rather proactive countermea-
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sure, for the two types of misbehaviors. The online detection and penalization of misbe-

haviors would be the other apparent solution for enhancing the system resilience. Yet,

the misbehavior detection for the particular application is further complicated by the ag-

ing dynamics of disseminated information (a.k.a. change of parking spots’ status). For

example, misbehaving nodes that forge information may inadvertently correct outdated

information (i.e., turn the availability status of the advertised parking spots to their real

up-to-date values) and, hence, end up assisting the dissemination process. Furthermore,

the information hits a node after traversing several vehicular nodes, over which it may

be forged multiple times. Nodes would then need to: (a) become aware of (and maintain

state about) the space-time paths traversed by the information in the vehicular network;

and (b) make rather complex computations using historic data about the parking space

availability to draw inferences about the validity of transmitted information and the trust-

worthiness of each node. Despite the involved challenges (or precisely because of them),

the design of misbehavior detection and penalization mechanisms for these misbehaviors

is an interesting research direction out of this work.

An equally interesting direction for future work is the study of the opportunistic

parking assistance system as a dynamic system, where the populations of cooperative

and non-cooperative nodes evolve over time in response to their experienced levels of

satisfaction when adopting the one or the other behavior/strategy. This implies that the

software running onboard the vehicles avails learning mechanisms and the flexibility to

adapt its functionality over time. From a methodological point of view, a good starting

point for exploring the outcome of the vehicular nodes’ interactions over time would be

the solid framework provided by the Evolutionary Game Theory (e.g., [Smith, 1982]).

In the second and last chapter of Part II, i.e., Chapter 6, we investigate how competi-

tion awareness affects users’ decisions, that is, how users exploit awareness of their envi-

ronment to meet their own needs and achieve certain individual objectives. In essence, in

this chapter we are concerned with comparing decision-making under full versus bounded

rationality conditions in fairly autonomic networking environment where each networked

entity runs a service resource selection task. In particular, we consider environments

where tragedy of commons effects emerge on a limited-capacity set of inexpensive re-

sources. Agents choose independently to either compete for these resources running the
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risk of failing the competition and having to take an unlimited, yet more expensive option

after paying a penalty cost, or prefer from the beginning the more secure but expensive

option. In their decisions, they consult (or not) information about the competition level

(i.e., demand), the supply (i.e., capacity) and the employed pricing policy on the resources.

This content might be available through ad-hoc/opportunistic interaction or broadcast

from the resource operators, through information assistance systems.

In Section 6.1 we consider the ideal reference model of the perfectly rational decision-

making. Here the main assumption is that the decision-maker is a software engine that

in the absence of central coordination, acts as rational strategic agent that explicitly

considers the presence of identical counter-actors to make rational, yet selfish decisions

aiming at minimizing what he will pay for a single resource. They also avail themselves

of all the information they need to reach decisions and, most important, are capable of

exploiting all the information they have at hand. The intuitive tendency to head for the

low-cost resources, combined with their scarcity in the considered environments, give

rise to tragedy of commons effects and highlight the game-theoretic dynamics behind the

resource selection task.

Indeed, the collective full-rational decision-making can be formulated as an instance

of resource selection games, whereby a number of players compete against each other for a

finite number of common resources [Ashlagi et al., 2006]. We have analyzed the strategic

resource selection game in the context of parking search application whereby drivers

are faced with a decision as to whether to compete for the low-cost but scarce on-street

parking space or directly head for the typically over-dimensioned but more expensive

parking lots. An assistance service announces information of perfect accuracy about the

demand (number of users interested in the resources/parking spots), supply (number of

low-cost resources/on-street parking spots) and pricing policy, that eventually, manages

to steer drivers’ decisions. We derive the equilibrium behaviors of the drivers and compare

the costs paid at the equilibrium against those induced by the ideal centralized system

that optimally assigns the low-cost resources and minimizes the social cost. We quantify

the efficiency of the service using the Price of Anarchy (PoA) metric, computed as the ratio

of the two costs (i.e., worst-case equilibrium cost over optimal cost).

In general, we show that PoA deviates from one, implying that, at equilibrium, the
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number of user nodes choosing to compete for the low-cost resources exceeds their sup-

ply. The PoA can be reduced by properly manipulating the price differentials between

the two types of resources. Notably, our results are in line with earlier findings about

congestion pricing (i.e., imposition of a usage fee on a limited-capacity resource set during

times of high demand), in a work with different scope and modeling approach [Larson

& Sasanuma, 2010]. The results of this study serve as a benchmark for assessing the

impact of different rationality levels and cognitive biases on the efficiency of the resource

selection process, which is the focus of Section 6.2.

The formulation of the parking spot selection game assumes that drivers do not have

any preference order over the on-street parking spots. This could be the case when

these spots are quite close to each other, resulting in practically similar driving times to

them and walking times from them to the drivers’ ultimate destinations. When drivers

express preferences over different parking spots, we come up with an instance of the

stable marriage problem, potentially with indifference [Irving, 1994], whereby the option

of the more expensive parking lot would commonly rank as the last one for all drivers.

The problem objective is to derive a matching between drivers and parking spots/lots

such that no subset of the drivers could be better off if they exchanged their allocated

spots with each other. At a theoretical level, the search is for mechanisms that treat

all drivers fairly, are strategy-proof, i.e., the drivers are motivated to advertise their true

preference orders because they cannot gain by lying about them, and efficient in some

Pareto-optimality sense.

Section 6.1 closes with centralized parking assistance systems that are combined

with more aggressive schemes to improve the outcome of parking service for both the on-

street public parking space operator (i.e., increase revenue) and the drivers (i.e., resolve

competition and avoid “price of anarchy”). In particular, we propose auction-based mech-

anisms for allocation of public parking space and analyze their effectiveness in terms of

the induced drivers’ cost and achievable revenue by the public parking operator. These

mechanisms are compared against the conventional uncoordinated parking space search

with fixed parking service cost. While the operator profits from auctioning the public

parking resources, exploiting the diverse drivers’ personalities and interest in parking

(as captured by their valuation distributions), the comparative study reveals that drivers
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also benefit due to the savings of the “price of anarchy”. A detailed analytical study de-

termines the conditions under which such win-win situations emerge. It turns out that

this is always the case under high parking demand.

The efficiency of advanced (wireless) networking technologies that can improve cer-

tain processes and operations in urban environments ultimately depend not just on the

quality of the information they can provide but also on the way the provided information

is used (“consumed”) by end-users. Therefore, information may be precise and complete

or imperfect and limited; whereas users may exhibit different levels of rationality in the

way they process the provided information and determine their actions. In Section 6.2, we

explore four elements of real-life resource selection applications, consisting in imperfect

information availability and behavioral biases, whereby users’ decisions are made under

bounded rationality conditions.

Bayesian and pre-Bayesian variants of the strategic resource selection game are

investigated to express incompleteness in agents’ knowledge and provide normative pre-

scriptions for the impact of the information factor on agents’ decisions. Following the

investigation of Section 6.1, we apply our study to a real-life parking search scenario.

The study describes how different amounts of information for the parking demand steer

the equilibrium strategies, reduce the inefficiency of the parking search process, and

favor the social welfare. Actually, the dissemination of parking information constitutes

an instance of service provision within competitive networking environments, where more

information does not necessarily improve the efficiency of service delivery but, even worse,

may hamstring users’ efforts to maximize their benefit. This result has direct practical

implications since it challenges the need for more elaborate information mechanisms

and promotes certain policies for information dissemination on the service provider side.

On the other hand, people’s biased behavior within the competitive resource selection

environment is captured via the Cumulative Prospect Theory framework. We view the

resource alternatives as prospects and verify numerically the agents’ risk-prone attitude

under particular charging schemes on the resources. Alternative equilibria solutions

(Rosenthal and Quantal Response) model the impact of people’s time-processing limita-

tions on their decisions, in line with Simon’s argument that humans are satisficers rather

than maximizers. We tune the rationality parameter in the Rosenthal and Quantal Re-
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sponse equilibria, to model agents of different rationality levels and thus, different degrees

of responsiveness to various cost differentials between the two resource options, ranging

from pure guessing to perfectly rational reasoning (Nash equilibrium). We identify envi-

ronments where the impaired reasoning, as expressed by the two alternative equilibrium

concepts, leads to less costly choices compared to the Nash solutions. In the more radical

approach, the agents decide heuristically based on the estimated probability to win the

competition for the low-cost resources. Interestingly and unlike the other models, the

heuristic decision-making results in near-optimal per-user/social cost, albeit far from

what the perfect rationality yields.

A criticism against these decision-making models is that they no longer aim at de-

scribing the processes (cognitive, neural, or hormonal) underlying people’s decisions but

just at predicting them. In response to this, we draw inputs from Behavioral Decision

Theory in order to analytical investigate drivers’ decision-making concerning parking spot

selection in city environments. Hence, Part II, closes by addressing the parking search

problem within the framework of sequential search/optimal stopping problems, whereby

decision-makers devise simple heuristic strategies (rules of thumb) to overcome the com-

plexity of finding the optimal decision. In particular, we envisage that drivers use the

fixed-distance heuristic according to which drivers start searching for available park-

ing space after they reach as close as a specific distance from their travel destination.

Through a game-theoretic investigation, we show that when the drivers are risk-averse

(namely, they prefer walking than driving), the simple fixed-distance heuristic strategy

leads to optimal parking spot allocation (minimum social cost). Motivated by these re-

sults, our intention is to explore scenarios with a richer mix of drivers’ preferences for

walking and driving, factoring in dynamic scenarios as well, where the drivers leave their

parking spots while others still enter the parking area. We expect that this can yield

symmetric equilibrium strategies that depart from the fully risky or conservative attitude.

The ultimate evaluation of these results would come out of field experimentation, or in

a more convenient alternative, dynamic driving emulators that allow for generating the

appropriate scenarios and experimenting with real subjects.

With the emergence of social networking applications new opportunities arise for mo-

bile networking, that facilitate, furthermore, the information diffusion within urban envi-
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ronments. In the last part of the thesis, i.e., Part III, we explore the effectiveness and ap-

propriateness of competition awareness-driven, distributed, public resource management

applications with specific focus on the emerging challenge to protect public/common re-

sources/goods and secure their availability to users and non-users of such applications.

We have specifically looked into some key properties of a particular instance of vehicular

social applications with respect to the parking search process. In our study, we model

two fundamental elements that are commonly encountered in various realized parking

systems: the awareness-information and the incentive-ranking mechanisms, and inves-

tigate the induced effectiveness and fairness of service. The simulation results reveal a

high advantage for the application users over the traditional drivers. As the penetration

rate and/or the competition (parking demand) are intensified, the traditional drivers suf-

fer only slight to moderate service deterioration with respect to what they experience in

the absence of the application. In addition, it is shown that the incentive mechanisms

are effective in the sense that they do provide preferential treatment to those fully cooper-

ating, yet they induce rich-club phenomena whereby a subset of users with high ranking

seizes the parking resources. Different conditions (i.e., awareness/incentive mechanism,

selection criterion for parking spot handovers) might change these side-effects. This may

be a concern and an issue worth looking into more carefully in the future.

8.1 Directions for further investigation

In this thesis we described modeling approaches for the decision-making under full

and bounded rationality assumptions in competitive resource selection environments.

The models refer to symmetric scenarios whereby the entire population exhibits the same

instance of bounded rationality and the knowledge of this deviation from full rationality

is common among individuals. However, modern networking environments consist of

large-scale virtual worlds and communities that people with different socio-psychological

profile use as spaces to socialize. The formation and efficient operation of many of these

communities (e.g., collective awareness platforms, crowdsourcing, social applications for

decentralized management of urban operations) largely rely on the collaboration and con-

tributions of autonomous human entities, whose personalities and attitudes are shaped
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by real and virtual communities they participate in and combine different behavioral

paradigms in different mixtures: (pure) altruism, rational selfishness, socio-psychological

and cognitive biases.

From a methodological point of view, a natural direction for further investigation is to

explore scenarios with a richer mix of agents’ behaviors, catering for various expressions

of rationality that interact with each other. A good starting point for exploring asymmetric

scenarios would be the “cognitive hierarchy” framework provided by the Behavioral Game

Theory. This approach assumes a distribution of cognitive steps of iterated reasoning,

where the zero-step agents just randomize over their strategy space while higher-step

agents take account of the intelligence and complexity of others’ reasoning [Camerer &

Fehr, 2006].

Implementation-wise, it becomes compelling to address problems that stem from the

fact that the design of many ICT applications is mainly driven by technology and not the

knowledge of computer-mediated human communications and reactions. Examples of

such problems are the phenomena of many ICT applications which can in principle meet

common needs, be developed but never actually adopted or other applications that need

to overcome the concerns of end users (candidate contributors) about the privacy of their

data and locations. Overall, in order to design effective platforms for virtual interaction

and address issues as that of poor user involvement we need to implement mechanisms

that first, identify users’ characteristics (personalities and attitudes, socio-psychological

and cognitive biases) and second, personalize their experience in participating in such

virtual information communities. In this task, it is of paramount importance to revisit

some assumptions about the amount and nature of information that is generated and

presented to the users and, especially, investigate how the stimulus generated by the

ICT infrastructure can be diversifying to match it to the individuals and hence, stimulate

targeted reactions.
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