NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Rate-optimum Beamforming Transmission in MIMO
Rician Fading Channels

DIMITRIOS E. KONTAXIS

ATHENS

FEBRUARY 2014






EONIKO KAI KATMOAIZTPIAKO MNMANENIZTHMIO AOGHNQN

2XOAH OETIKQN EMIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNION

NMPOrPAMMA METANTYXIAKQN 2ZMOYAQN

AIAAKTOPIKH AIATPIBH

BéATioTn Ektroptri Beamforming og KavaAia MIMO pe
Kartavoun Rice

AHMHTPIOZ E. KONTA=ZHZ

AOHNA

®EBPOYAPIOZ 2014






PhD THESIS

Rate-Optimum Beamforming Transmission in MIMO Rician Fading Channels

Dimitrios E. Kontaxis

SUPERVISOR: Serafeim Karaboyas, Assistant Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Lazaros Merakos, Professor UoA
George Tsoulos, Associate Professor UoP
Serafeim Karaboyas, Assistant Professor UoA

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature) (Signature)
Lazaros Merakos, Georgios Tsoulos,
Professor Univ. of Athens Associate Professor Univ. of

Peloponnese

(Signature) (Signature)
Serafeim Karaboyas, Panagiotis Mathiopoulos,
Assistant Professor Univ. of Athens Professor Univ. of Athens
(Signature) (Signature)
Georgios Stefanou, Athanasios Kanatas,
Assistant Professor Univ. of Athens Professor Univ. of Piraeus
(Signature)

Eleftherios Kofidis,
Assistant Professor Univ. of Piraeus

Examination Date 14/02/2014






AIAAKTOPIKH AIATPIBH

BéATiotn Extroputrr) Beamforming oe Kavaiia MIMO pe Karavourj Rice

Anpnirpiog E. Kovragrg

ENIBAENQN KAOHIMHTHZ: Zepageip Kapaptroyidg, Etrikoupog KaBnynmig EKIMA

TPIMEAHZ ENITPOMNH NAPAKOAOYOHZHZX:
Aafapog Mepdkog, KaBnyntrg EKIMA
Fewpyiog ToouAog, AvattAnpwrthc Kadnyntig MNMAMEA
Zepaeip Kapaptroyidag, Etikoupog Kabnyntrig EKIMA

ENTAMEAHZ EEETAZTIKH ENITPOTH

(Ymroypaen) (Yroypaon)
/" "
Aafapog Mepdkog, Fewpylog ToouAog,
Kaényntrig EKIMA AvamrAnpwTiig Kabnyntiig NMAMEA

(YTroypa@s)

Tepaeip Kapaptroyidg, MavayiwTtn ‘Ma8i6TrouAoc,
Emikoupog Kadnynrig EKIMA Kabnyntrig EKIMA

Ae\vumﬁ“" Kd"\‘iamr")

Kaényntrig MATMEI

EAueé 06 Kopidncg,
‘ Emikoupog Kabnyntig MATMEI |

Hpepounvia sééraong £4.1.2.12014






ABSTRACT

In this doctoral thesis, the focus is on the capability of MIMO systems to increase
channel capacity: A MIMO system can achieve much higher capacity than a conventional
SISO system, and it can be proven that the achieved capacity increases linearly with
the number of transmit or receive antenna elements. However, the capacity achieved by
MIMO systems is closely related to the “channel knowledge” model which is assumed at
both ends of the MIMO link. Considering the case of MIMO complex Gaussian ergodic
channels, where the receiver has perfect Channel State Information (CSI) whereas the
transmitter has Channel Distribution Information (CDIT), the mutual information between
transmitter and receiver must be maximized statistically: maximization is achieved by an
optimum transmission strategy (spatial precoding) and the maximum value is referred to
as “ergodic capacity”. For the case of beamforming transmission, the maximum average
mutual information is achieved by the “optimum beamformer” and is referred to as “ergodic
beamforming capacity”. In this work the calculation of the optimum beamformer is studied

and the related problem is referred to as “optimum beamforming problem”.

The solution of the optimum beamforming problem has been addressed extensively in
the open literature for Gaussian CDIT models: for MIMO Rayleigh fading channels (CCI
model) and for spatially uncorrelated (with unit covariance matrix) MIMO Rician fading
channels (CMI model). For these two cases, closed-form solutions have been derived.
However, the corresponding solution for spatially correlated or uncorrelated with non-unit
covariance matrix MIMO Rician fading channels (combined CMI-CCI model) has received
less attention: for this channel distribution model, there is no closed-form expression for
the optimum beamformer and hence, the solution of the related optimization problem

remains very complex for real time applications.

In this work, first it is proven that the aforementioned complex, multi-dimensional, con-

vex constrained, (beamforming) optimization problem for the combined CMI-CCI model



can be reduced/transformed to an 1-D optimization problem, which can be solved very
fast using standard 1-D algorithms. The solution of the problem was based on geometrical
properties, basis transformations and the Karush-Kuhn-Tucker (KKT) conditions. Then,

simulations demonstrate that:

a. The proposed 1-D method has significantly lower computational complexity, com-

pared to multi-dimensional algorithms.

b. In some operational environments the ergodic beamforming capacity is very close
or equal to the ergodic capacity. The equality holds when a certain necessary and suffi-

cient condition is satisfied.

Additionally the 3GPP MIMO channel model was employed in order to study further
the performance of the optimum beamformer in practical operational scenarios. The
3GPP MIMO channel model was implemented in Matlab and is able to produce inde-
pendent channel realizations/samples that simulate different operational environments.

In this context, simulations were performed in order to:

a. Study the performance of the optimum beamformer in urban micro environments
with LOS for the combined CMI-CCI model. The analysis showed that the optimum beam-

former achieves ergodic capacity (with probability> 0.9) for a wide SNR range.

b. Study and compare the ergodic capacity and the performance of the optimum
beamformer in different operational environments (suburban and urban macro/micro-
cellular without LOS) for different channel information models. The analysis showed that
in the context of the CMI and CCI models the optimum beamformer achieves ergodic

capacity with probability > 0.5, in all operational environments and for a wide SNR range.

The aforementioned analysis, along with the fact that the optimum beamforming trans-
mission is characterized by lower cost, compared to higher rank transmission schemes,

justify the significance of the proposed solutions and the contribution of this work.
SUBJECT AREA : MIMO systems

KEYWORDS: MIMO channel, Capacity, Beamforming, Rician fading



NEPIAHWYH

H tapouca d16akTopIK) dIaTPIRA ETTIKEVIPWVETAI OTn dUVATOTNTA TTOU £XOUV T
ouoTtipata MoANGTmAwY Eicd6dwv TMoAAdTAwv EE6dwv (MIMO) va auédvouv Tn
XwpNTIKOTNTA Tou KavaAiou: ‘Eva ocuotnua MIMO ptropei va emtuxel uywnAoTepn
XwpNTIKOTNTA a1to éva cupPatikd cuotnua Movrg Eiocddou Movrg E€6dou (SISO) kai
UTTO OPIOUEVEG OUVOAKEG aTTOdEIKVUETAI OTI N XwpeNTIKOTNTA Twv cuoTnudtwyv MIMO
augaveTal YPauuIK& uE TO TTANBOG Twv OTOIXEIWV TNG KEPAIOG EKTTOUTIAG 1N AAWNG.
Ouwg n xwpenTiKATATA TTOU £TMITUYXAVOUV Ta cuoTApaTta MIMO oxetiCetal oTevd Pe TN
yvwon/TrTAnpo@opia Tnv oTroia £€XoUV 0 TTOPTTOG Kal 0 OEKTNG YIA TO KAVAAL. OewpwvTag
éva gpyodIkd kavaAl MIMO pe piyadikr) kavovikr) (Gaussian) katavour, 0TO OTToio 0
OEKTNG €xEl TTANPN yVWon Tou KavaAloU Kal O TTOUTTOC yvwpilel HOvo TNV KATAVOWN
auTtou, n apoifaia TTANpo@opia HPETAEU TTOUTTOU-OEKTN TIPETTEI VO  HUEYIOTOTTOINOEI
oTATIOTIKA (ONA. €MOIWKETAI N PEYIOTOTTIOINON TNG MEONG auolfaia TTANPOPOPIag): T
MEYIOTOTTOINON ETMITUYXAVEI IO BEATIOTN TTONITIKA EKTTOUTING KOl N ETTITUYXAVOPEVN
MEYIOTN TIMA QVAQEPETAlI WG «EPYODIKA XWPENTIKOTNTA». TNV TTEPITITWON EKTTOUTIAG
beamforming, Tn péyiotn péon apoifaia TTAnpo@opia PYETAEU TTOPTTOU-OEKTN ETTITUYXAVEI
0 «[BEATIOTOG beamformer» Kal n ETTITUYXAVOUEVN PEYIOTN TIUA QVAQEPETAl WG «EPYODIKN
beamforming xwpnTmikOTNTA». ZTA TTACQiCIO TNG TTApoUCaAg dIATPIRNG MEAETATAI O TPOTTOG
UTTOAOYIONOU Tou «BéATIOTOU beamformer» kai 10 TPOBANUa BeATIOTOTTOINONG TTOU
OXETICETOl PE TOV €V AOYW UTTOAOYIONO ava@épeTal ws TTPORANUA UTTOAOYIOUOU TNG

«BEATIOTNG eKTTOPTIAG beamforming».

H etriAuon Tou TTPORARUATOG UTTOAOYIOHOU TNG «BEATIOTNG EKTTOPTTAG beamforming»
Exel MEAETNOEI oTnVv BIBAIoypagia yia povTéAa kavaAiou pe katavour Gauss: yia KavaAia
MIMO pe katavopur Rayleigh (uovtého CCl) kai Xwplkwg acuoxETiota kavaiia MIMO ue
povadiaio Trivaka cuppeTaBoAng kai katavoun Rice (povréAo CMI). TNa 1i¢ dUo auTég
TTEPITITWOEIG KAVAAIOU u@ioTavTal POBNUOTIKEG EKPPAOEIG KAEIOTOU TUTTOU VIO TOV
«BéATIOTO beamformery». Aev cuppaivel WS TO D10 KAl yIO TNV TTEPITITWON XWPIKWG
OUOXETIOMEVWY 1| QOUCXETIOTWV ME HN-hovadiaio TTivaka CUPMETABOANG KavaAlwv

MIMO pe katavoury Rice (poviého combined CMI-CCI): yia autd 10 poviéAo Oev



emmiAuon €vog TETOIOU TTPOPRAAUATOG PBEATIOTOTTOINONG €ival OPKETA TTOAUTTAOKN Kal

XPOVORBOpa Kal dev EVOEIKVUTAI VIO EQAPPOYES TTPAYUATIKOU XPOVOU.

2TnVv Tmapouca d1aTpIRry apxIkKad atmodeIKvUETal OTI TO TTPpoavaPEPBEV TTOAUTTAOKO Kal
TToAUdIACoTaTO TTPORANUA UTTOAOYIGHOU TNG «BEATIOTNG €KTTOUTIAG beamforming» yia 10
TO &v AOyw povrého karavopng kavahiou (combined CMI-CCI) ptopei  va
MeTaoxNuaTioTei o€ éva povodidoTato (1-A) TpoBAnua BeATIOTOTTOINONG, TO OTIOIO
MTTOPEI Va €TTIAUBET TTOAU ypriyopa KAVOVTAG XPron KOIVWYV PJoVOdIAoTATWY aAyopiBuwv.
H amédeitn Tou avwTtépw HPETAOXNMOTIONOU POCiOTNKE O€ YEWMETPIKES 1010TNTEG, OF
KAatadAANAoug peTaoxnuaTiopgoug Baong kar oTig ouvlnkeg Karush-Kuhn-Tucker (KKT).

2T CUVEXEID UAOTTOINBNKAV TTPOCOPOIWOEIG Ol OTTOIEG avEDEIEavV Ta akOAouba:

a. H mpoteivépevn povodidotatn pEBOOOG UTTOAOYIOHOU €xel TTOAU XaunAdTEPN

TTOAUTTAOKOTNTA CUYKPITIKA PE avTioTOIXeG TTOAUdIAoTATEG HEBGOOUG.

B. 2& opiopéva kavaAia n «epyodikry beamforming xwpenTiKOTNTA» TTPOOCEYYICEl N
Io0OUTAI JE TNV €PYODIKA XWPNTIKOTNTA TOU KavaAlou. H 1céTnTa 1I0xUel dTaV IKAVOTTOIEITAI
MIa  avaykaia Kai ikavl ouvlnikn, n oToia  eKQPAZETAl PECW MIAG HABNUATIKAG

avioOTNTAG TTOU TTEPIAANPBAVEI TIC TTAPANETPOUG TNG KATAVOUAG TOU KavaAiou.

EmmpdoBeTa, ota mAaiola NG dIaTpIBAG, EQAPPOCTNKE TO HOVTEAO TTPOCONOIWONG
kavaAiou MIMO 1tn¢ 3GPP, pe OKOTTO ThV TTEPAITEPW MEAETN TNG aTTOdOONG TOU
«BéATIoOTOU beamformer» oe TTPAKTIKA AeiToupyik& oevdapla. To povriédo Tng 3GPP
uAhotroinBnke oe kwdika Matlab kai duvatal va TTapdyel avedptnTa deiypaTta KavaAiou
ME €mMOBUUNTA XAPOKTNPIOTIKA, (TTPOCOPOIWON €VOG NUIACTIKOU MAKPO-KUYWEAWTOU 1
QOTIKOU HIKPO/HAKPO-KUWEAWTOU TTEPIBAAAOVTOG). & auTd Ta TTAQiocla UAoTToIROnkav

TIPOCONOIWOEIG:

a. MNa 1N yeAéTn TN amoédoong Tou «BEATIOTOU beamformer» o€ éva QOTIKO Wikpo-
KUWEAWTO TTEPIBAANNOV PE ouviIoTwoa OTITIKNG £TTAPAG (kavahl MIMO pe katavopur Rice)
Kal yia 1o povréAo combined CMI-CCI. H peAétn €0¢€ige OT11, 0 «BEATIOTOG beamformery
MTTOPEI va €TMITUYXAVEI TNV €PYODIKN XWwPENTIKOTNTA hE uwnAnl moavétnTa (>0.9) kai o€

MEyAAo eUpog Tou Adyou ZnpaTtog-MNpog-Odpufo.

B. MNa T PeEAETN TNG €PYODIKNG XWPNTIKOTNTAG KAl TNG atrodoong Tou «BEATIOTOU
beamformer» o€ di1Gpopa AciToupyikd oevapia (NUIACTIKO 1 OOTIKO HPAKPO/MikpO-



KUWEAWTO KAVAAI XWPIG OUVIOTWOA OTITIKAG ETTAPNG) KAl OIAPOPETIKA JOVTEAD YVWOEWG
TOU KavaAIoU oTov TTOPTTO, (TTANPWS YyVwoTo KavaAl, dyvwoTto kavdAl, povréAha CMI kai
CClI). H peAétn €deige o6m, ota mAaiola Twv poviéAwv CMI kai CCl o «BEATIOTOG
beamformer» utTopEi va emTuyXavel TNV €pYOdIKr XwPeNTIKOTATA PE TBavotnTa >0.5, o€

OAa Ta AEITOUPYIKA OEvAPIa KAl O JEYAAO eUPOG Tou Adyou 2ApaTog-INpog-Oopufo.

H avwtépw avadAluon oe ouvduaoud Pe 10 yeyovog 0TI o «BEATIOTOG beamformery
OTTOTEAE IO TTONITIKI) EKTTOPTIAG XAUNAOTEPOU KOOTOUG O€ OXEON WE OTTOIOdNTTOTE
OXAMO EKTTOUTTAS UWNASTEPNG TAENG, OIKAIOAOYOUV TN ONUAVTIKOTNTA TNG TTPOTEIVOUEVNGS

AUONG Kal TN ouveIo@opa TNG TTapouoag dIaTPIPAG.
OEMATIKH NEPIOXH: Zuotpata MIMO

AEZEIZ KAEIAIA: Kavahl MIMO, Beamforming, XwpnTikotnTta, AlaAsiyeig Rice
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2YNOMNTIKH NAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

Ta cuotAuata MNoAAaTTAWV-EI06dwv TMoAAammAwv-EEGSdwyY (Multiple-Input Multiple-
Output n MIMO) atroteAoUV pia atmd TIG CNPAVTIKOTEPEG TEXVOAOYIKEG €CENIEEIC OTOV
TOMEQ TWV TNAETTIKOIVWVIWYV KAl XapakTnpifovTal atrd éva eupu ACHA £EQAPUOYWY, VIO
TIG OTTOIEG TA TEAEUTAIA XPOVIO £XEI AVATITUXOEI ONPAVTIKI £PEUVNTIKI dpacTNEIOTNTA KAl

ugioTaral geyaho TTANBo¢ dnuoacieloswyv oTn BIBAIOYypagia.

‘Eva ovotnua MIMO pe N kepaieg eKTTOUTING Kol M kepaie¢ ANWngG MTTOPEl va
ETTITUYXAVEI - EKMETOAAEUOUEVO TO «TTOAUODIKO Qaivopevo» (multipath effect) To otoio
avatrtuooeTal 010 (padio)kavaAl peTAdoong OedopEvwy - uywnAoTeEpn «apolfaia
TAnpo@opia» (mutual information) kavaAiou atmd auTtr TTou €TTITUYXAVEI €va CUUBATIKO
ovuotnua Movng-Eic6dou Movng-E€6dou (Single-Input Single-Output 1 SISO), evidg
Tou idlou KavoAloUu Kal yia Tnv idla 10U €KTTOPTIAG. YTTO OUYKEKPIUEVEC OUVOAKES
atrodEIKVUETAl OTI N apolfaia TTAnpogopia Twv cuoTnuatwyv MIMO augdvetal ypauuika
pe To min{N,M}.

H apoiBaia TAnpogopia trou emituyxdvouv Ta cuotiuara MIMO oxeTieTal oTevd Ue
N yvwon/TTAnpogopia Tnv oTroia €Xouv O TIONTIOC Kal O OEKTNG YIO TO KAVAAIL
OewpwvTtag OTI 0 JEKTNG EXEl TTAPN YVWON TOU KAVOAIOU (TO OTTOIO ETTITUYXAVETAI ME
Xpron akoAouBiwv Oedouévwy  «ekTTaideuong» (training data) kar  aAyopiBuwv

«EKTIMNONG KavaAIoU») O TTOUTTOG duvaTal va €XEL:

a. MAARpn yvwon Ttou KavaAiou, KaTOTTIV avatpo@odOoTHOEWS TNG TTANPoPopiag
TOU KavaAIOU atrd Tov OEKTN. 2TNV TTEPITITWON AUTH O TTOUTTOG PTTOPEI va UTToAOYidel ToV
TPOTTIO EKTTOUTIAG O OTIOIOG  MEYIOTOTIOIE TNV auolIfaia TTAnpo@opia PETAEU TTOPTTOU-
OEKTN, ETTITUYXAVOVTAG WE TOV TPOTTO QUTO TN «XwpeENnTIKOTNTA» Tou KavaAiou (channel
capacity) katrd Shannon. O BEATIOTOG TPOTTOG EKTTOUTING EYKEITAI OTNV EKTTOUTIN
avegapTnTwy akoAouBiwv Oedopévwy (data streams) «katd PAKOG»  KATAAANAwv,
opBoywVviwv PETAEU TOUG BIAVUOUATWY (TTI0 OUYKEKPIYEVA, TwV “right singular vectors”
TOU TTivaka KavaAiou) Kal e KATAAANAN katavopr TG O1a0£01ung 10XU0G TOU TTOUTTOU

METAEU auTtwv, Pdoel Tou aAyopiBuou “water-filling” (o ev Adyw aAyépiBuog atrodidel



uwnAoTEPO TUANA TNG d1aB£0IUNG 1I0XUOG oTa right singular vectors 1Tou avtioTolxouv o€

uwnAoTEPEG “singular values” Tou TTivaka KavaAiou).

B. Kapia yvwon yia TOo KOVAAL. 2TnV TIEPITITWON QUTH O TIOUTTOC EKTTEUTTEI
aveEdpTnTeG akoAouBieg dedopévwv atrd KABe aToixeEio TNG Kepaiag kal Pe ion 1oxu. H
ETMITUYXAVOUEVN apoIfaia  TTANpo@opia  avagEPETal WG  «XWPNTIKOTATA  AyVWOTOU

KAvaAIoU».

y. Fvwon tTng Katavoung Tou KavaAiou. Ztnv Tpagn n TéEAEIa/TTARPNG yvwon Tou
KavaAiou oTov TTOPTTO (TTEPITITWON . avwTEPW) Bewpeital Pn pealioTIKr, €€aiTiag TNG
MEYAANG KaBuoTépnong (MEYOAUTEPNG ATTO TOV XPOVO OUOXETIONG - coherence time -
TOU KAVOAIOU) TIOU WTTOPEI VO  UTTEICEPXETAI OTO KAVAAI  avaTpo@odoTnong, ME
ATTOTEAECUA TN KN £YKAIPN YVWOon Tou KavaAiou atrd Tov TTOUTTO Kal w¢g €K TOUTOU Thv
aduvayia/atroTuyia €mmiTeu{Ng TNG XwWPENTIKOTNTASG KavaAloUu. Katd ouveéTrela, n «JEPIKN
yvwaon» Tou KavaAiou Kal TTI0 OUYKEKPIPEVA N YVWOT TNG KATAVOMNG TOU aTTd TOV TTOUTTO
Bewpeital WG  €éva O  PEAMIOTIKO  POVTEAO,  (TTAPAUETPOI  TNG  KATAVOMNAG
avaTpo@odoTouvTal amd Tov  OEKTN), KABOOOV n KATAVOMN TOU KavoAloU €xel Tnv
1I010TNTA VA TTAPAUEVEI OTABEPH VIO XPOVO OEKADEC 1 EKATOVTADES POPESC TTOANATTAGCIO
TOU XPOVOU OUOXETIONG TOU KOVOAIOU. 2Ta TTAQiOId QUTOU TOU HOVTEAOU O TTOUTTIOG
duvatal va EeKTTEPTTEl PE  TPOTTO  (ONA. KOTA MAKOG  KATAAAAAwY  opBoywviwv
dlavuoudTwy, YE KATAAANAN KaTavour 10XU0G WETAEU QUTWYV) O OTTOIOG MEYIOTOTIOIEI TN
pMéon auoiBaia TTAnpoopia (average mutual information), Baoiléuevog otnv uttdBEON
NG €PYodIKOTNTAG TOU KavoAiou. H péyiotn péon auoifaia  TTAnpo@opia Trou
EMTUYXAVETAI avagépeTal oTn BiBAIoypagia wg «epyodikr XwpnTikoTNTa» (ergodic
capacity). H ekTTOUTT) TTOU ETTITUYXAVEI TNV «EPYODIKI XWPNTIKOTNTA» OXETICETAI APECA

ME TOV TUTTO KATAVOWMNG TOU KavaAioU Kail diag@opoTrolsital Bacel autou.

21N PBIBAIOypa®ia, Ol KATAVOUEG TTOU €XOUV UEAETNOEI OTa TTAQIOIO TOU HOVTEAOU

KMEPIKNG YVWONG» TOU KaVAAIOU (TTEPITITWON Y. aVWTEPW) gival O aKOAOUBEG:

1. KavdAia MIMO pe Rayleigh katavopur) TTAATOUG KOl XWPEIKI CUCXETION METAEU TWV

oToIXEiwv TNG Kepaiag Tou TTouTrou r)/kal Tou &€kTn, (MIMO Rayleigh fading channels).

H xWwpIKr ouox£Tion eKQPACeTal HEOW TOU TTiVAKA XWPIKNG OUPUETABOANG (channel
covariance matrix). To ev Adyw povtéAo kartavopng eival Mkaouolavd (Gaussian) pe

MNOEVIKA péon TIWA. Q¢ €k TOUTOU, O OEKTNG AVATPOPODOTEI OTOV TTOPTTO POVO TnV



TTANPOPOPIa TNG XWPIKNG CUOXETIONG KAl YI' AUTOV TO AOYO TO UTTOYWN POVTEANO «UEPIKAG
yvwong» avagépetal otn  BiBAloypagia Kal WG HPOVTEAO «yvwong TnG XWwPIKAS
oupeTaBoAng Tou kavaAioUu» (Channel Covariance Information i CCl model). O Trivakag
XWPIKAG OUPETABOARG uttoAoyileTal atrd Tov OEKTN OTA TTAQICIO PIOG PNOKPOTTPOBEOoUNGS
oTaTioTIKNG (long-term statistic) xpnoiyotmoiwvtag TMARBog deiyudtwy Tou KavaAiou. O
TTOUTTOC EMMITUYXAVEL TNV «EPYOOIKA XWPENTIKOTNTA» EKTTEUTTOVTOG KATA MAKOG Twv
1I0108IAVUCUATWY TOU TTIVAKO XWPEIKAG CUPETAROANG KAl KATAVEUOVTAG ME QPIBUNTIKEG
(MN-YPOMMIKEG) HEBGOOUC) TN BlaBEaIun 1I0XU TOou UETAEU auTwyv PE PEATIOTO TpoOTTO. H
AVWTEPW TTOAITIKI) EKTTOMTIAG €QAPUOleTal oTaBepd atmd TOV TTOPTIO YIA XPOVIKO
d1dotnua (TTOAAQTTAGCIO TOU XPOVOU CUCXETIONG TOU KOVOAIOU) TTOU EKTIHATAI OTI N
OTATIOTIKA/KATAVOU] TOU KavaAloUu TTou avaTpo@odotriBnke atmd Tov OEkTn (dnA. o
TTVaKAG  XWPIKAG CUPETAPBOAAG) TTapapével oTaBeph Kal WS K TOUTOU XAPAKTNPiCel TO
KavaAl. H TTONITIKR eKTTOUTIG Ba avatrpooappoleTal OTav n KATAVOMN TOu KavaAiou
TPOTTOTTOINOEI KAl O OEKTNG AVATPOQPODOTEI OTOV TTOUTTO €vav VEO TTivaKAa XWPIKAG

OUMETAPBOARG.

2. KavéAia MIMO pe Rician katavour TTAGTOUG Kal XWPIG XWPEIKI CUOXETION METALU
TWV OTOIXEIWV TNG KEPAIOg TOOO TOU TTOUTTOU 60O Kal Tou OEKTn, (uncorrelated MIMO

Rician fading channels).

To ev Adyw povtéNo katavoung cival Mkaouolavd (Gaussian) ye pn-pNdeviKA péon
TIUA EVW N ATTOUCIa XWPEIKAG CUOXETIONG EKQPACETAlI JEOW €VOG Povadiaiou TTivaka
XWPIKAG OUPETABOAAG. Q¢ ek TOUTOU, O OEKTNG avATPOPODOTEI OTOV TTOUTTO POVO TN
péon TIUA TOu KavoAioU Kal yI' auTév T0 AOYyO TO UTTOWN MOVTEAO «MUEPIKAG YVWONG»
ava@épeTal otn BIBAIoypagia Kal wg JOVTEAO «yvwong TNG PEoNG TIMAG TOU KavaAiou»
(Channel Mean Information ; CMI model). Z1a TTAaioia Tou pyovtéAou autoUu n péon TIUA
TOU KavaAioU €ival TTPAKTIKA N PEON TIUA TOU KAvaAIoU TTou uTtoAoyilel o OEKTN OTa
TAdioI0 plIog  pakpotrpoBeoung oTamioTikAg (long-term  statistic) xpnoipgotTroiwvTag
TTARBOG delyudTwyY TOU KAavaAioUu. OewpnTiKA, N UN-UNdevIKA péon TiuAR Ba atroTeAei Tn
OUVIOTWOO OTITIKAG €TTAQrS Tou KavaAiou - Line of Sight (LOS) multipath component.

2TNV TTEPITITWON AUTH £XOUME Eva «OKPOTTPOBeouo» povTéAo (long-term CMI model).

To id10 akpIBWG MOVTEAO PTTOPEI va TTPOKUTITEI KOI OTNV aKOAouBn TrepiTrTwon: étav

0 OEKTNG avaTpo@odoTEi deiyuaTta KavaAlol oTov TTOPTTO KAl O TTOUTTOC, £LAITiOg TNG



kaBuoTtépnong Tou KavaAiou avatpo@oddtnong, ETTIXEIPEI va ekTIUAOEl (yia KABe
AauBavéuevo deiyua) To TTPAYUATIKO KAVAAI (TTX. ME ekTipnon Tuttou MMSE) kai oTn
OUVEXEID VO €QAPPOoEl TN PBEATIOTN TIOMITIKA €EKTTOUTIAG N OTToia ETMITUYXAVEI Tn
XWPNTIKOTNTA TOU KavaAiou. H exTipnon opwg trepIAauBavel oQAAPa Kal wS €K TOUTOU N
BEATIOTN TTOMNITIKI) EKTTOPTIA METAOXNMATICETAI O€ €va TTPOBANPA HPEYIOTOTTOINONG TNG
péong apoifaiag TAnpo@opiag (dnA. ETTiTEUENG TNG «EPYODIKAG XwWPENTIKOTNTAGY)
BewpwvTag Eva epyodikd KavaAl katavoung Rice, e péon TIUA TO «EKTIMWHEVO» KAVAAI
Kal povadiaio Trivaka XwpPIKAG CUMETAROANG, O OTToi0G avTITTIPOCWTTEUE! TN SIACTTOPA TOU
OQAAPOTOG eKTiNONG (error covariance matrix). XTnv TTEPITITWON QUTA €XOUME €va

«BpaxutrpdBeopo» povtélo (short-term CMI model).

2€ KAOe TreEPITITWON, €iTE OTO «MOAKPOTTPOOECHO» €iTE OTO «PBPaxutTpOBeauo»
MOVTEANO, O TTOUTTOG KaAEiTal va eTTIAUCEI akpIBwG TO id10 TTPORBANKa BeATIOTOTTOINONG ME
TNV ak6Aoubn diagopd: ZTnV TTEPITITWAON TOU «UAKPOTTPOBETHOU» PHOVTEAOU, N BEATIOTN
TTONITIKI] EKTTOUTING €QAPUOCETAI YIA OAO TO XPOVIKO dIACTNUA TTOU 1 CUVICTWOA OTITIKAG
ema@ng (LOS component) Tou kavaAioU TTapapével oTaBepn (xpovikd dIdoTnua deKAdES
N €KATOVTAOEC QOPEC TTOAAGTTAGCIO TOU XPOVOU OUCYXETIONG TOU KavaAiou) Kai
avaTTpooapuoleTal KABE Popda TTOU O OEKTNG AVIXVEUEI KAl AVOTPOPODOTEI OTOV TTOUTTO
MIa VEQ/DIOQOPETIKA OUVIOTWOA OTITIKAG ETTAPNG. 2TO «PBPaxuttpdOeouo» POVTEAO n
BEATIOTN TTOAITIKF) EKTTOUTIAG UTTOAOYIZETAI KAl EQAPPOLETAI ETA TN AWn KABE deiyuaTog
KavaAloUu TToU avaTtpo@odoTEi 0 OEKTNG KAl TTAPAUEVEI O€ I0XU HOVO PEXP! TN Aqywn Tou
eTTOMEVOU deiypaTog (OnA. yia XpoVviKO dIAoTNNA CUYKPIOIUO TOU XPOVOU CUCXETIONG TOU
KavoAiou). To yeyovog autd KaBIoTd TO «BpaxutrpOBecuo» HPOVTEAO TTIO TTOAUTTAOKO

aTTo TO «MOKPOTTPOBECO» POVTEAO.

TOOO OTO «UAKPOTTPOBECHO» OCO0 Kal OTO «BPaXutTpOBecuO» POVTEAO, O TTOUTTOC
EMTUYXAVEI TNV «EPYODIKA XWPENTIKOTNTA» EKTTEUTTOVIAG KOTA WAKOG TOU KUPIOU
(dominant) “right singular vector” (Tou TTivaka) TG péong TIMAG TOU KavaAiou, KaBwg Kal
Katd pnkog N-1 Tuxaiwv diavuopdTwy, TTou OPwS 0To ouvoAo Toug Ta N diavuopata Ba
TIPETTEl va aTTOTEAOUV HIa opBokavovikh Baon. Etmiong n diaBéoiun 10xXU¢ Tou TTOUTTOU
KataveéueTal PETAgU Twv (N) dIaVUOPATWY EKTTOUTIAG ME BEATIOTO TPOTTO O OTI0IOG

utroAoyieTal apIOuNTIKA.



3. KavaAhia MIMO pe Rician katavopur TTAGTOUG Kal HE XWPIKH) CUOXETION METAEU TWV
OTOIXEIWV TNG Kepaiag Tou TTouTtroUu A/kal Tou O€KTn, (correlated MIMO Rician fading

channels).

2T0 MOVTEAO autd n KATavour Tou KavoAiou eivalr kavovik (Gaussian) pe un-
MNOEVIK) MEON TIUA, N OTToId AVTITIPOCWTTEUEI T OUVIOTWOO OTITIKAG ETTAPAG, EVW N
XWPIKA OUOXETION EKPPACETAI HEOW EVOG PN-Povadiaiou TTiVOKA XWPEIKAS CUUETABOAAG.
O dékTnG avatpo@odoTei oTOoV TTOUTTO TOOO TN MECN TIUR TOU KAvaAiou 60O Kal TOV
TTivaKa XWPEIKAS CUMETAROANG Kal yia Adyo auTtd TO UTTOWN MOVTEAO «MEPIKNG yvWong»
AVOQEPETAl KAl WG JOVTEAO «OUVOUAOPEVNG YVWONG TNG MEONG TIMAG KAl TNG OUOXETIONG
Tou KavaAiou» (combined CMI-CCI model). Etiong 1o povréAo autd duvartal va gival
«BpaxuttpdBeouoy», Katd Tov TPOTTO TTOU avaAubnke avwTépw yia Ta MIMO Rician
KavaAia Xwpi¢ XWwPEIKA ouoxETion, ME Tn diagopd OTI O TIVAKOG OCUMETAPBOAAG Tou
OQAAPOTOG €KTiUNONG (error covariance matrix) €ivar TTAéov  pn-povadiaiog. 2710
ouvOUaOTIKO auTO MOVTEAO, N TTONITIKA) EKTTOUTIAG TTOU ETTITUYXAVEI TNV «EPYODIKN
XWPNTIKOTNTO» OV EKPPACETAI HECW EEICWOEWV «KAEIOTOU TUTTOU» KAl WG €K TOUTOU,
T600 oI BEATIOTEC KATEUBUVOEIG-OIOVUOUATA EKTTOUTIAG OCO Kal O BEATIOTOG TPOTTOG

KATOVOWMNG 1I0XUOG O€ AUTEG Ba TTPETTEI va UTTOAOYIOTOUV apIBunTIKA.

2TNV TIEPITITWON €KTTOUTTAG beamforming 6An n diaBéoiun 10XUG TOU TTOUTTIOU
EKTTEUTTETAI KATA WAKOG MIAG KOl POVABIKAG KATEUBUvVONG/dlavUiouaTog, TO OTT0i0 OTN
BiBAloypagia avagépeTal  wg «dlavuopya beamforming» (beamforming vector).
OecwpwvTtag éva ouotnua MIMO uTtré TO0 HOVTEANO «UEPIKAG YVWONG» TOU KAVAAIOU OTOV
TTOUTTO KAl OTO OTI0I0 O TTOPTTOC £PAPPOCEl OTTOKAEIOTIKA eKTTOUTI) beamforming, To
dldvuopa beamforming 10 otroio peyioToTrOIEl TN PEON aApolfaia TTAnpo@opia PETAgU
TTOUTTOU Kal OEKTN ava@épeTal ws «BEATIOTO didvuopa beamforming» 1 «BEATIOTOC
beamformer» (optimum beamformer), evw n emTuyxavopevn PEYIOTN TIMA TNG PEONG
auolBaiag TTANPOQYOPIaG ava@EéPETal WG  «EPYODIKR  XwpNTIKOTNTA  beamforming»

(ergodic beamforming capacity).

Mia ekTTOPTI n oTroia ekPeTAAAeUEeTal Tov «BEéATIOTO beamformer» Bewpeital

ONMAVTIKN YIa TOUG akKOAOUBOoUG TpEIG BacIiKoug AOyoug:



a. ATToTeAEl pIa aTTAr] TEXVIKI €EKTTOMTIAG N OTTOid ATTAOUCTEUElI OTOV MIKPOTEPO
duvatd Babud TIg atraitioel UAIkou (hardware) evog ocuothparog MIMO kai katd

OUVETTEIO TO KOOTOG auToU.

B. Av Kal n €pyodIKr XwpeNTIKOTNTA ETTITUYXAVETAI €V YEVEI PE EKTTOUTTT) UWNAOGTEPNG
TAENG (ONA. EeKTTEUTTOVTAG TIPOG TTEPICOCOTEPEG ATTO MIO KOTEUBUVOEIG) Kal  gival
uwnAoTEPN aTmd TNV  «EPYODIKN XwpenTikOTNTa beamforming», atrodeikvueTal oI
uTTadpxouV AsiItoupyika TrepIBAAAovTa OTTou 0 «BEéATIOTOG beamformer» emiTuyxdvel Tnv
«€PYOdIKA XwpNTIKOTNTO» (BNA. N «gpyodIKA XwpenTIKOTATA beamforming» TautifeTal pe
TNV «EPYODIKA XWPNTIKOTNTA» TOU KaAvaAiou). Autd 1oxUel OTav N KaTavour €vog
KavaAloU IKAVOTTOIEl MIO  avayKkaia Kal IKavh Pabnuatiky ouvenkn, yvwoTh oTn
BiBAIoypagia w¢ «ouvlnkn BeATioTdéTnTag Tou beamfoming» (optimality of beamfoming

condition).

Y. Yogiotatar TMARB0G¢ KavaAiwv eviog Twv OTToiwv 0 «PBEATIOTOG beamformer»
TTapouoiddel TTOAU uwnArp ammédoon Kal N «EPYodIKA XwpnTikOTNTa beamforming»
TTpooeyyidel IKavoTroINTIKA TNV «EPYOOIKA XwpnTIKOTNTA» Tou KavaAiou. H e&v Adyw
a1red0o0n TTIOTOTTOINONKE KATOTTIV TTANBOUG TTPOCOUOIWCEWY TTOU UAOTTOINONKAV yia TO

povTéAdo combined CMI-CCI ota tTAgioia Tng Trapoucag diaTpifng.

21a povréAa CMI kai CCl o «BéATIoTog beamformer» TauTi(eTal PE TO KUPIO
181081AVUC A TOU TTiVAKAG AUTOOUOXETIONG Tou KavaAioU (channel correlation matrix) kai
TIPOKTIKA TauTi(eTal YE TO IAVUCHA TTOU WEYIOTOTTOIEI TO pHEoO AauBavouevo SNR, 1o
otroio avagEpetal wg “max SNR beamformer”. Opwg yia to combined CMI-CCI povtého
Oev ugioTaTal atTrAf HaBnuaTIKh ék@pacn yia Tov «BEATIOTo beamformer». 210 JovTéAO
autd o «PBéATIoToG beamformer» uttoAoyileTal apiBunTIK& Kal aTToTEAEl TN AUon €vog
TOAUDIGOTATOU, MN  YPAMMIKOU, convex TIpoBARpaTog  BeATioTotroinong: 1o
OUYKeKpIMEVA TTPETTEL va uTToAoyioToUuv Ta N piyadikd oToixeia Tou «BEATIOTOU
beamformer», onA. 2N TmpayuaTtikéG TTapdpeTpol. Q¢ €K TOUTOU, N ETTAUCN TOU
OUYKeKpPINEVOU  TTpoBAAPaTOG (e  xpron eupéog  dladedouévwy  TTOAUdIAOTATWY
aAyopiBuwyv, TTX. MHEBOdWV  «eOwTEPIKOU  onueiou»  (interior-point  methods))
xapakTtnpietal atrd uwnAfi TTOAUTTAOKOTNTA, N OTTOIA EiVal ATTAYOPEUTIKI] VIO EQAPUOYEG
ME QATTAITAOEIS TTPAYUATIKOU XPOVOU. 2TnV TIPAEN, O TTOUTIOC TTPETTEI va UTTOPEI va

uttoAoyiCel Tov «BEATIOTO beamformer» TTOAU ypnyopdTepa atrd TOV XPOVO WETAROANG



TNG OTATIOTIKNG TOU KAVOAIOU, O OTTOIOG €V YEVEI PTTOPEI va gival PIKPOG, 101aiTEPA O€

KAVAAIQ PE PJIKPO XPOVO CUOXETIONG.

OAa 1o avwTépw avaAvovtal Kai Treplypdeovtal oto  1° kar 2° KepdAaio Tng
d1aTpIBAG.

210 3° Kkai 4° KegdaAaio Tng diaTpiBrg ammodeikvueTal 0TI To TTPORANUA UTTOAOYIoUOU
Tou «BéATIOTOU beamformer» oTa TAqiola Tou poviéAou combined CMI-CCI ptropei va
METOOXNMOTIOTEL 0€ €va povodidoTato (1-A) TPORAnNuUa BeATIOTOTTOINONG KAl OTN
ouvéxela va emIAuBei TTOAU ypriyopa ue Xpron atrAwv aAyopiBpwyv (TTX. Ye TN HEBOSO
NG “XPUONAG TOMNG’). APXIKA n &v Adyw atrodeIgn TTapouciadeTal yia OuoThHUATA
MoAAaTmAwv-Elc6dwv Movng-EE6dou (Multiple-Input Single-Output 4 MISO) kai oTn
ouvéxela yevikeueTal yia cuoTthpata MIMO, yia To «uakpoTTpdBeouo» HovTéAo combined

CMI-CCI. EmmpbéoBeta, atrodeixbnkav kai Ta akdAouba:

e To umtéwn povodidoTato TIPORANPA  BEATIOTOTTOINONG OTTAOTTOIEITAI  AKOUN

TTEPICTOTEPO YIA TIG TTEPITITWOEIG ouoTNUATwy MISO 2x1, MISO 3%1 kai MIMO 2xM.

e 2710 cuoTiuata MISO n péon apoifaia TTANPOPOpIa OTNV TTEPITITWON EKTTOUTING
beamforming pmopei va uttoloyioTei péow pia ameipng  oelpdg  (infinite-series
representation), n otroia va cuykAivel TTOAU ypriyopa (dnA. pe pIKpd TTARBOG dpwv) aTnv
QVvTiOTOIXN TIMA TTOU TTPOKUTITEI JEOW OAOKANpwong Monte Carlo. H xprion 1Tng ocipdg
auTAg (avti TNG ueBGdou Monte Carlo) emmTaxuvel akOun TTEPICOOTEPO TOV UTTOAOYIOHO

Tou «BéATIOTOU beamformer».

Tnv avwtépw ammodeitn akoAoubnoe TARBOC TTpocouoIoEWY (yiIa TO HOVTEAO
combined CMI-CCIl kal opoIOUOPYES YPAPUIKEG OTOIXEIOKEPAIES), OTA TTAQIOIA TwV

OTTOIWV:

a. lMpayuatotroim@nke ouykpion TNG HPovodidoTaTng peBOdoU pe TTOAUBIAOTATOUG
aAyopIBuoUG: apxIKG HE aAyOpIBUO  «EOWTEPIKOU onueiou» (interior-point) pe
AoyapiBuiki ouvaptnon @paypatog (logarithmic barrier function) kai ev ouveyeia pe pia
QVOOPOMIKA AOUUTITWTIKA (KOl KATA CUVETTEIQ UTTO-BEATIOTN) PEBOOO uTTOAOYIOUOU, N
oTToia XapakTtnpEifetal ammd uywnAn Taxutnta oUykAiong otn BEATIOTN Auon (dnA. oTov

«BéATiIoTO beamformer»), kaBwg dev amaiteital oAokAApwon Monte Carlo. e kdbe



TEPITTTWON Ta atroTeAéopara €deigav 611 n  povodiaoTatn uEBOdOG eival TTEPITTOU HIa

TAEN peyEBoUG TaxuTEPN aTTd TIG AVTIOTOIXEG TTOAUDIACTATEG UEBODOUG.

B. 'Eyive oUYKpIOn TNG «EPYODIKNG XwpenTIKOTNTAG beamforming» TTou eTmITUYXAvEl O
«BéATIoOTOG beamformer», e TN péon auoifaia TTANpo@opia TTou €TTITUYXAvEl O “max
SNR beamformer”. H ouykpion £0€ige OTI TO KEPDOG TOU PUBPOU HETAdOONG TTOU
emMTUYXAVEl 0 «BEATIOTOG beamformer» €vavti Tou “max SNR beamformer” duvartail va

gival onuavTiko.

y. lMpayuatotroinbnke auykpion TNG «EPYODIKAG XwpPNTIKOTATAS beamforming» TTou

ETTITUYXAVEI O «BEATIOTOG beamformery, pe TNV «epyodiKA XwpenTIKOTNTA» KAl

e EmBefaiwdnke 6T o€ TTEPIBAANOVTA/KAVAAIQ TTOU IKAVOTTIOIEITAI N OUVOAKN
“optimality of beamfoming”, n «egpyodikfj XxwpntikdTNTa beamforming» 1couTal ge TNV
«EPYODIKNA XWPNTIKOTATOY.

e [lioTotrOINONKe OTI UPioTavTal TTEPIBAAAOVTA/KaVAAIQ TToU OEV IKAVOTTOIEITAI N
ouvOnkn “optimality of beamfoming”, dpwg o «BéATIoTOG beamformer» ptopei va
ETTITUYXAVEI «EPYODIKA XwpNTIKOTATA beamforming» TOAU Kovid oTnv «EPyodIKN

XWPNTIKOTNTO» (TNV OTTOIa ETTITUYXAVEI Hia EKTTOUTTA UWNASTEPNG TAENG, YEVIKA).

0. lMpayuatotroiOnke oTaTioTIKA PEAETN TNG ouvBnkng “optimality of beamfoming”
Kal TTPo0dIoPioTNKAV O TTAPAPETPOI KABWG KAl O TPOTTOG TTOU AUTEG ETTNPEACOUV TNV €V

AOYyW ouvenkn.

210 5° Kedhaio Tng SiatpIBrg £yive avatrtugn Aoyiopikou (oe kwdika Matlab), ue To
otroio  UAOTTOIRONKE TO HOVTEAO TIPocopoiwone kavahiwv MIMO Ttou 3GPP (3™
Generation Partnership Project). To poviéAo dUvaral va TTPOCOUOIWVEl DIAPOPETIKA
AeiToupyik@d  TTEpIBAAAOVTO  (QOTIKA 1 NUIOOTIKA) oTa  TTAdiola  évog  KuweAwTou
OUCTAMATOG KIVATWY ETTIKOIVWVIWV Kal va TTapdyel emOupntd TARBog (avetdptntwv
METAEU TOUG) OEIyMATWY TOu Trivaka KavaAioUu. ETmmTAéov, TO HOVTEAO MTTOPEl va
TIPOCOMOIWVEl KAl ETTITTPOCOETA XAPOAKTNPIOTIKA TTOU OUVATAI VA EVOWMATWVEL €va
KavaAl, OTTwg eival n ouvioTwoa omTikKAG etTars (LOS component), o1 pakpivoi
okedaoTéG (far scatterer clusters), 10 aoTikd «@apdyyl» (urban canyon) kKai Kepaieg

EKTTOPTTAG r)/kal Anwng pe TTéAwon (polarized antennas).



Aciypyata Tou TivaKa KAvaAioUu TToU TTapnixOnoav PeE TO AVWTEPW HOVTEAO

XPNOILOTTOINBNKAV OTN CUVEXEIA OE TIPOCOUOIWOEIG WG AKOAOUBWG:

a. lNa tn ouykpion Twv PHOVTEAWV «yVWOTO KAVAAI OTOV TTOUTTO», «AYVWOTO KAVAAI
oTov TTouTTé», CCl Kal «BpaxuttpdBeauo» CMI, wg TTPog TNV «EPYODIKA XWwPNTIKOTNTAY

TTOU QUTA €TTITUYXAvouv (wg ouvapTtnon Tou SNR) yia Ta akdAouBa kavaAia:

e OOTIKA POKPOKUWEAWTA (urban macrocellular) pe 8° 1 15° péon ywviakn

dlaoTropd (angular spread) otov oTaOPo6 BAong,
e aOTIKG pIkpoKUWeAwWTA (urban microcellular) ,
e NUIOOTIKA JOKPOKUWEAWTA (suburban macrocellular).

Ta ammoteAéopaTa TNG OUYKPIONG £0€IEaV OTI o€ OAA Ta KavAAIa 10XUEl N akdAouBn oeipd
@Bivouoag ammédoong yia Ta UTTO JEAETN POVTEAA: «yvwoTO KavaAl otov TTouTrdy, CCl,
«BpaxutrpdBeopo» CMI, «dyvwoTto kavaAl otov TouTrd». Emmmpoéobera, @aiverar Ot
OTA NUIACTIKA JAKPOKUWEAWTA KAl AOTIKA HOKPOKUWEAWTA pe péoo “angular spread” 8°
n ammoédoon Tou povréAou CCl Trpooeyyilel o€ peydho Babuod Tnv ammédoon Tou JOVTEAOU

«YVWOTO KAVAAI OTOV TTOUTTO».

B. Na Tn oTamnoTikl peAETN TNG ouvlnkng “optimality of beamforming”, yia 10

«BpaxuttpdBeapo» povreAo CMI kal Ta akoAouBa kavaAia:

e aOTIKG pakpokuweAwTd (urban macrocellular) ye yéoo “angular spread” oTov
oTaBuo Baong 8° 1 15°,

e aOTIKG pIkpoKUWeAwWTA (urban microcellular) ,

e NUIOOTIKA JOKPOKUWEAWTA (suburban macrocellular).

Ta ammoteAéopaTa £€deigav OTI n MOAvOTNTA VA IKAVOTTOIEITAI N UTTOWN OUVOAKN @Bivel ue
T0 SNR Kkal 10 TeEPIBAAOV WG AKOAOUBWG: aOTIKO POKPOKUWEAWTO péoou “angular
spread” 15°, aoTIkO PAKPOKUWEAWTO péoou “angular spread” 8°, nuIACTIKO
MOKPOKUWEAWTO (pe TmBavOTNTA TTOU  TTPOOEYYIfel ONUAVTIKA AUT TOU QOTIKOU

MOaKpOKUWeAWTOU péoou “angular spread” 8°) kal AOTIKO HIKPOKUWEAWTO.

y. Na 1n otamoTik PeAETn TNG ouvBnikng “optimality of beamforming”, yia T0

povTéAo CCl kal Ta akdAouBa kKavaAia:



e aOTIK& poakpokuweAwTA (urban macrocellular) ye yéoo “angular spread” oTov

oT1aBud Baong 8° i 15°,
e QOTIKG pIkKpokuWweAwTA (urban microcellular) ,
® NUIOOTIKA JOoKpOoKUWEAWTA (suburban macrocellular).

Ta ammoteAéopata £deigav OTI n MOAvATNTA VA IKAVOTTOIEITAI N UTTOWN OUVOAKN @Bivel e
T0 SNR kal 10 TEPIBAAOV WG AKOAOUBWG: NUIOOTIKO HPAKPOKUWEAWTO, QOTIKO
HOKPOKUWEAWTO péoou “angular spread” 8°, aoTiKO HPOKPOKUWEAWTO péoou “angular

spread” 15° Kal AOTIKO PIKPOKUWEAWTO.

0. Ma TN ouykpITIKA PEAETN TNG atTddoong Tou «PBEATIOTOU beamformer» wg TTPOG
Tov “max SNR beamformer”, (ektrouti beamforming pikpoTePNG TTOAUTTAOKOTNTAG OE
oxéon ME Tov UTToAoyIouo Tou «BéATIoOTOU beamformer» yia 10 poviéAo combined CMI-
CCI), kaBwg kai Tn oTaTIoOTIK MEAETN TNG Ouvlbnkng “optimality of beamforming” oe¢
QOTIKA MIKPOKUWEAWTA KAVAAIQ JE OUVIOTWOA OTITIKNG ETTAPNG, (VIO aTTdOTACN TTOUTTOU
0éktn <300m). TNa Ta ev AOyw KavAaAia, Ta OTToid TTIPOCOUOIWVOUV OTOV BEATIOTO duvaTd
Babuod 10 «pakpoTTpdBecuo» poviéAo combined CMI-CCI, mpoékuwav T1a akdAouba

arroteAéopara:

e H ouvlnkn “optimality of beamforming” Ikavotoigital e TTOAU uwnAn
mlavotnta (>0.99), yeyovdG TO OTTOI0O OUVETTAYETAI TNV QTTOKAEIOTIKA XPAON TOu
«BéATIOTOU beamformer» oT1O €v AOyw TTEPIBAAAOV yIia TNV ETTITEUEN TNG «EPYODIKNG

XWPNTIKOTNTAGY.

e To képdog Tou «PEATIOTOU beamformer» w¢ Tpog 1OV  “max SNR
beamformer” cival aocrjuavro oe peydAo eupog Tou SNR, (n «gpyodik xwpenTiKOTNTA
beamforming» oxeddév TauTieTal pe TN Péon apolfaia TTAnPoQopia TTou ETITUYXAVEI O
‘max SNR beamformer”). [lpokUTrTel AOITTOV TO OCUMPTTIEPACHO OTI O  AOTIKA
MIKPOKUWEAWTA KavaAia pe ouvioTwoa ommikAg emagns (LOS component) utropei va
XpnoigotroinBei wg BEATIOTN TTOMITIKA eKTTOUTIAG 0 “max SNR beamformer”, (o otroiog
ETMTUYXAVEI TNV  «EPYODIKA XwWPNTIKOTATO» PE  uywnA mBavétnTa, Bdoel Tng

TTpoNnyoUPEeVNG TTAPATAPNONG).

Téhog, oto 6° Ke@dhaio TTOpoucidlovial CUYKEVIPWTIKA TO  ONUAVTIKOTEPQ

oupTtrepdopaTa NG dIaTPIRAG.
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Rate-optimum beamforming transmission in MIMO Rician fading channels

Chapter 1

INTRODUCTION

1.1 From smart antennas to MIMO systems

Since the early nineties adaptive/smart antennas have been a technical breakthrough
in wireless communications. Smart antennas were used in RADAR and SONAR systems
during the 2"? World War, mainly for the “shaping” of the antenna radiation pattern. Van
Atta was the first who introduced in 1959 the term “adaptive antenna”, in order to describe
antennas able to transmit along the direction of reception [1]. Later on, in the sixties,
Howells [2]-[3], Applebaum [4] and Widrow [5]-[7] developed algorithms for the adaptive
mitigation of interference and Capon [8] for finding the direction of mobile stations, using
adaptive antennas. In the seventies and eighties there was a lot of research on algorithms
for adaptive antennas (optimum combining, direction finding [9], etc.). This technology
was heavily promoted in the European Union in the nineties by three collaborative R&D
programs (TSUNAMI) [10]-[11] with key players the universities of Bristol, Aalborg and
Catalonia, while the university of Stanford along with companies like Metawave, Nortel

Networks and Arraycomm [12] were the main proponents on the other side of the Atlantic.

Smart antennas used at the base stations of cellular systems can enhance the SNR
(Signal to Noise Ratio) or the SINR (Signal to Interference plus Noise Ratio) for both
links. Interference in cellular systems is considered to be the received signal from “un-
desired” mobile stations/users of the same cell (intracell interference) or different cells
(intercell interference) or other base stations. An increase in the SNR/SINR increases
the downlink/uplink channel capacity and/or reduces the bit-error-rate (BER), increases

the communication range or reduces the downlink and/or uplink transmit power.

The aforementioned benefits can be achieved by employing various techniques like

Space Division Multiple Access (SDMA) as shown in Figure 1.1 [13], Switched Beams
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Figure 1-1: Space Division Multiple Access (SDMA) [13].

Desired ;

Switched Beams

Figure 1-2: Switched Beams technique [13].

as shown in Figure 1.2 [13], and Spatial Filtering for Interference Reduction (SFIR) as
shown in Figure 1.3 [13]. For the SFIR technigque and the calculation of the optimum
steady-state solution for the weight vector of the adaptive/smart antenna, the following

performance measures can be employed, which were discussed and analyzed in [14]:
a. Mean Square Error (MSE) criterion.
b. Signal to Noise Ratio (SNR) criterion.
c. Maximum Likelihood (ML) criterion.

d. Minimum Variance (MV) criterion.
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Figure 1.3: Spatial Filtering for Interference Reduction (SFIR) technique
[13].

There are several examples of generic smart antenna systems reported in the open
literature, with one basic thing in common: the mobile station is equipped with a single-
element antenna (e.g. a dipole antenna). The idea of using antennas with multiple el-
ements also at the mobile station opened the way for the transition from smart/adaptive
antennas to multiple-input multiple-output (MIMO) systems, which are able to employ
more intelligent algorithms that further improve system performance (capacity, BER and

coverage) in “harsh” multipath environments, without the expense of additional bandwidth.

Itis true that the last few years we are witnessing an unprecedented growth in user de-
mand for high speed wireless communications and novel communication paradigms and
applications create an ever increasing volume of data traffic. The desired characteristics

of broadband wireless communication systems are:
¢ high spectral efficiency and data rates,
¢ high Quality Of Service (e.g. small bit-error-rate (BER)),
e wide coverage,
¢ low deployment, maintenance and operation costs.

However, in most cases, the wireless channel is very “hostile” and causes severe

fluctuations in the (received) signal level, due to multipath propagation (multipath fad-
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ing). Effects like path-loss (i.e. the signal power decrease with distance), shadowing (i.e.
the path-loss fluctuation at the same distance), noise and interference, all degrade the
performance of wireless communication systems. Moreover, the desired communication

bandwidth may not be always available.

MIMO systems employ multiple transmit and receive antennas to combat/exploit the
aforementioned “hostility” of the wireless channel: MIMO systems increase spectral ef-
ficiency, Quality of Service and coverage, whereas they are capable of mitigating inter-
ference. MIMO systems exploit multipath propagation to achieve these benefits, without
the expense of additional bandwidth. (These advantages make MIMO a very attractive
and promising option for future mobile communication systems especially when combined
with the benefits of orthogonal frequency-division multiplexing (OFDM)). The techniques
employed by MIMO systems in order to achieve the aforementioned benefits are the fol-

lowing (see also Figure 1.4):

W\ﬁple}(ing Gaip)

Svaﬁd Multiplex;, 0

()]
% o
c e, @V' %‘U
= &
?o_r/ “eog o \{551’
3
hd ue?

Figure 1-4: MIMO techniques.

a. Beamforming . Transmit and/or receive beamforming (i.e. transmission and/or
reception along a unique direction/vector) is mainly designed to offer array gain, i.e. in-

crease of the SNR, when the channel is known at both ends of the radio link, (at the trans-
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mitter/receiver for transmit/receive beamforming, respectively). However, beamforming
can also offer diversity gain. Both gains enhance system coverage and BER. Moreover,
SNR maximization through transmit beamforming may - under certain conditions (e.g. for
MISO systems with channel knowledge at the transmitter) - maximize system'’s spectral

efficiency, (i.e. achieve maximization of the mutual information).

b. Diversity . Transmit diversity techniques (for MISO and MIMO systems) - when
the channel is unknown to the transmitter - exploit transmission along Space and Time,
and for this reason the related transmission is referred to in the literature as Space-Time
Coding (STC) [15]-[22]. The Alamouti transmission scheme, Space-Time Block Codes
(STBC) and Space-Time Trellis Codes (STTC) are some examples of STC transmission.
Receive diversity techniques (for SIMO systems), like Maximum Ratio Combining (MRC)
[23]-[24], can also be employed. Transmit and receive diversity techniques offer both

diversity and array gain, enhancing in this manner system coverage and BER.

c. Spatial multiplexing . Spatial multiplexing techniques are transmission techniques
mainly designed to enhance spectral efficiency, i.e. maximize the mutual information
between transmitter and receiver, based on the available Channel State Information (CSI)
at both ends of the radio link, (e.g. full- or partial- or no-CSI at the transmitter combined

with full-CSI at the receiver are the most studied cases in the open literature).

It is important to note here, that in any of the aforementioned cases, where transmit
precoding is employed by the MIMO system (i.e. transmit beamforming, transmit diversity
and spatial multiplexing) the achieved diversity and array gain and hence, the achieved
throughput (i.e. effective data rate, which is related to the BER) depends also on the
detection method that is employed at the receiver (e.g. ZF, MMSE, ML etc.). Trade-offs

between diversity, array and multiplexing gain are discussed in [25]-[26].

1.2 Spectral efficiency of MIMO systems

As it was discussed in the previous section of this chapter, MIMO systems can be ex-

ploited to significantly increase channel capacity, through spatial multiplexing techniques.
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Pioneering works by Winters [27], Foschini [28] and Telatar [29] ignited much interest in
this area by predicting remarkable spectral efficiencies for wireless systems with multiple
antennas when the channel exhibits rich scattering and its variations can be accurately
tracked. This resulted in an explosion of research activity to characterize the theoretical

and practical issues associated with MIMO wireless channels [30].

Many MIMO technigues have been developed to capitalize on the theoretical capacity
gains predicted by Shannon theory. A major focus of such work is space-time coding [31].
Other techniques for MIMO systems include space-time modulation [32], [33], adaptive
modulation and coding [34], space-time equalization [35], [36], space-time signal pro-
cessing [37], space-time CDMA [38], [39], and space-time OFDM [40], [41], [42]. A good
overview in these areas and other practical techniques along with their performance can

be found in [43].

A MIMO system with N transmit and M receive antenna elements, can achieve (for
the same channel and transmit power), much higher capacity than a conventional Single-
Input Single-Output (SISO) system. It has been shown in [28]-[29] that under certain
conditions, the capacity achieved by MIMO systems increases linearly with the min{ X,
M}. For MIMO systems with perfect CSI at both ends of the link (transmitter/receiver),
the spatial pre-coding transmission scheme that achieves capacity was presented in [28]-
[29]. However, perfect CSI at the transmitter is practically unrealistic, mainly due to the
inevitable delay in the control channel which is used to feed back the CSI from the re-
ceiver [44] or due to the delay in the channel estimation algorithm employed at the trans-
mitter [45]. Instead, it is more realistic and practical to assume that the transmitter has
knowledge of the parameters of the MIMO channel distribution, since the channel statis-
tics usually remain invariant in a large time window, (tens to hundreds of times larger
than the coherence time [44]). This channel feedback information model is referred to
as “Transmitter Channel Distribution Information” or CDIT model [30]. In a CDIT model
the optimum transmission maximizes the average mutual information (between transmit-

ter and receiver) and the rate (in bps/Hz) achieved in this case is referred to as “ergodic
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capacity”.

The (optimum) spatial pre-coding transmission scheme that achieves ergodic capacity

has been addressed in the literature for the following complex Gaussian CDIT models:

a. Channel Covariance Information or CCl model. This model represents MIMO

Rayleigh fading channels and was studied in [46]-[48].

b. Channel Mean Information or CMI model. This model represents spatially uncor-
related MIMO Rician fading channels with unit covariance matrix (i.e. of the form «I) and

was studied in [46]-[47].

c. Combined CMI-CCI model. This model represents spatially correlated or uncorre-
lated with non-unit covariance matrix MIMO Rician fading channels and was studied in

[49] and [50].
Several modern wireless systems incorporate MIMO techniques [51]:

a. |[EEE 802.11n WiFi [52]-[53]. MIMO-OFDM wireless LAN products based on the
IEEE 802.11n WiFi (5GHz band) standard are available and achieve throughput up to
600 Mbps. The MIMO techniques adopted in this standard are open-loop (i.e. CSI at
the transmitter is not required) and include transmit beamforming, spatial multiplexing
(maximum 4 spatial streams in a 40MHz channel) and diversity techniques (STBC and

Cyclic Shift Diversity (CSD), and the conventional receive diversity technique MRC).

b. IEEE 802.16 WIMAX [54]-[56]. The IEEE 802.16 wireless MAN standard known
as WIMAX also includes MIMO features (used along with OFDM/OFDMA or TDM/TDMA
transmission). Fixed WIMAX services are being offered by operators worldwide. Mobile
WIMAX networks based on IEEE 802.16e are being deployed (2-6GHz band for mobile
applications and 2-11GHz band for fixed applications), while IEEE 802.16m is under de-
velopment (it enables interoperabilty between WIMAX and LTE, supports high mobility
up to 350 km/h and data rates up to 300 Mbps). WIMAX supports open and closed-
loop MIMO techniques. The open-loop techniques include spatial multiplexing (4 spatial

streams with a 4 x 4 MIMO configuration) and STC transmission based on the Alam-
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outi scheme. The closed-loop techniques include spatial multiplexing, STC, and adaptive

beamforming.

c. IEEE 802.20 MBWA [57]-[58]. IEEE 802.20 mobile broadband wireless access
(MBWA) standard (<3.5GHz) proposes a complete cellular structure and is designed
to support mobility including high-speed mobile users (250 km/h). The standard incor-
porates MIMO-OFDM/OFDMA and MIMO-CDMA transmission, (OFDM/OFDMA for the
downlink/uplink and CDMA for the uplink). For the single-user MIMO (SU-MIMO) trans-
mission, 802.20 supports spatial multiplexing and diversity techniques, utilizing up to 4
transmit antennas. The standard also supports multi-user MIMO (MU-MIMO) transmis-

sion, by employing Space Division Multiple Access (SDMA).

d. LTE [59]-[60]. The 3GPP Long Term Evolution (LTE) adopts MIMO transmission
(OFDM /OFDMA for the downlink and SC-FDMA for the uplink transmission), which in-
cludes spatial multiplexing, diversity and beamforming. LTE achieves typical throughputs
of 100 Mbps and 50 Mbps in the downlink and the uplink, respectively, in the 20MHz
channel (1.25, 2.5, 5, 10 and 20 MHz bandwidths are supported), and specifies full per-
formance in a 5 km radius (with slight degradation from 5-30 km, while operation up to
100 km may be possible). Moreover, it supports high-speed mobility (high performance
at speeds up to 120 km/h, while connectivity is maintained up to 350 km/h or up to 500
km/h).

1.3 Thesis outline

The present doctoral thesis discusses the capacity of MIMO systems for single-user
systems (i.e. SU-MIMO) and different channel information models. The main focus is on
the calculation of the (optimum) beamforming transmission that maximizes the average
mutual information (between transmitter and receiver) in spatially correlated MIMO Rician

flat fading channels (i.e. under the combined CMI-CCI model).
The doctoral thesis is organized as follows:

In Chapter 2, basic definitions and known results on the capacity of MIMO systems
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are provided. Moreover, the channel feedback information models considered throughout

the doctoral thesis are discussed.

In Chapters 3 and 4, the algorithm for the calculation of the optimum beamformer that
achieves ergodic beamforming capacity (i.e. maximizes the average mutual information
under the rank-1 transmission constraint) for spatially correlated or uncorrelated with non-
unit covariance matrix MIMO Rician flat fading channels (i.e. the combined CMI-CCI
model) is presented. Moreover, simulations are produced for the proposed algorithm and

the optimum beamformer as follows:

a. The computational complexity of the proposed algorithm is compared with the

corresponding complexity of other (currently employed) multi-dimensional algorithms.

b. The ergodic beamforming capacity achieved by the optimum beamformer is com-
pared with the ergodic capacity (achieved by higher rank transmission schemes) and the

corresponding average mutual information achieved by the max SNR beamformer.
c. The optimality of beamforming condition is studied.

In Chapter 5, the ergodic capacity, the ergodic beamforming capacity and the optimal-
ity of beamforming condition are studied via simulations for different channel feedback
information models and different operational scenarios, which are produced using the

MIMO channel simulation model of 3GPP.

Chapter 6 summarizes the most important conclusions of this doctoral thesis and dis-

cusses some ideas for future work.

1.4 Notation

Throughout this doctoral thesis the following notation is used: Vectors are denoted
with bold small letters and matrices with bold capital letters. All vectors are row vectors
and matrix eigenvectors are column vectors. ()7, (-)*, (-)! stand for transposition, com-
plex conjugation and complex conjugate transposition, respectively. Iy is the N x N unit

matrix. M,; / M, is the i"* column/row of matrix M, respectively. M,; is the i*" row and ;"
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column element of matrix M. x; is the i'* element of vector x. The i'* eigenvalue of matrix
M is denoted as \;(M) and \,,..(M) stands for the maximum eigenvalue of of matrix M.
HY, /HY is the set of positive definite/semi-definite Hermitian N x N matrices, respec-
tively. C /CM*¥ s the set of complex numbers / M x N complex matrices, respectively.
| - || stands for the Iy-norm on C'*V. || M||» stands for the Frobenius norm of matrix M.
f(x)|x=x, Stands for the value of f(x) at x = x,. &[] is the expectation operator. N (-, ")
denotes the complex normal distribution. ¢r{-} and rank{-} are the trace and rank of a
matrix, respectively. M > 0 denotes that matrix M is positive semi-definite. vec (M) is
the NM x 1 vector formed by sorting the N columns of matrix M € C**" one below the
other, forming a column vector. diag [x] is a diagonal matrix with the elements of vector x

in its diagonal.
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Chapter 2

CAPACITY OF MIMO CHANNELS

2.1 Introduction

Consider a MIMO N x M flat fading wireless channel, with N > 2 and M > 1 the
number of transmit and receive array antenna elements, respectively. The received signal

is a vector y € C**M expressed by the following equation:
yI =Hx" +nT (2.1)

where H € CM*V is the channel matrix, x € C¥ is the transmit signal vector and
n € C™M js the received noise vector (see Figure 2.1). Vectors x and n follow zero-mean,
circularly symmetric, complex Gaussian distributions with covariance matrices X = £[x x|

and &£[nn] = 021, respectively.

Transmitter Receiver
ny

v B,
[ X —p— L y1 1

Y| i

: : ‘'n

¥ Vi
L XN —» vy

Figure 2-1: N x M MIMO system.

The transmit covariance matrix X is constrained by the total transmitted power P as
follows:

tr(2) < P (2.2)
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The normalized transmit covariance matrix Q is expressed by the following equation:
Q==X (2.3)

Q is a Hermitian positive semi-definite matrix (Q = 0) with tr{Q} < 1.

In MIMO systems the mutual information between transmitter and receiver, when the

receiver has perfect CSl, is expressed by the following equation ([28]-[29]):
Z (SNR, Q, H) = log, det (I,; + SNRHQHY) (2.4)

where SNR = P/o?, (the mathematical background for the proof of (2.4) is omitted and
the mutual information Z is presented throughout this doctoral thesis as a function of the

parameters {SNR, Q, H}).

When both the transmitter and the receiver have perfect CSI, the mutual information

7 (SNR, Q, H) can be maximized with respect to Q (for a given channel matrix and SNR).
The maximum mutual information is the “channel capacity”:

C = log, det (I, + SNRHQH' 25

(g 82 40t (s + SNRHQHY) @9

In the context of this thesis only flat fading channels are studied. However, it must

be mentioned that in frequency selective channels the frequency band of interest can be

divided into L narrower flat sub-channels and the channel capacity can be expressed as

follows:

1
il T
T e85 log, det (Inz + SNR HRHT) (2.6)

Crs =
where:

a. His an ML x NL block diagonal matrix with the L sub-channels H; € CM**¥ (i =

1,..., L) as the block diagonal elements,

LUsually, it is assumed that the receiver is able to estimate the channel in the context of a data training
period and then it feeds back the channel to the transmitter via a low rate control channel.
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b. R is the transmit covariance matrix defined as R = £[SS'], where S = [sT,sI, ... sT]T

with s; € CV*! (i =1,..., L) the signal transmitted in each (flat) sub-channel.

As it was mentioned in the introduction of this chapter, the assumption for perfect
CSI at the transmitter is practically unrealistic (due to the delay in the control channel
which is used to feed back the CSI from the receiver) and it is more realistic to assume
a CDIT model. In a CDIT model, the transmitter cannot achieve capacity in the sense
discussed in the previous paragraphs. In this case, the mutual information is maximized
by the transmitter statistically with respect to Q. The achieved maximum average mutual
information is referred to as “ergodic capacity” and is defined as:

o =, i o o e (L + SNTHQH) @)

The expectation &g [-] in (2.7) is calculated using Monte Carlo integration over a set of

channel samples that follow the channel distribution.

The optimum transmit covariance matrix Q that achieves the Cgqg in (2.7) will be
denoted throughout this chapter as Q. The transmission of a MIMO system using
Qopt = VAo VT - with V and A,y the eigenvectors and eigenvalues matrices of Qopt,

respectively - is shown in Figure 2.2.

Moreover, Ceyq is the best knowledge that the transmitter can have for the “allowed”
achievable rate (bps/Hz) and is not “capacity” with the strict sense of the term, as defined
by and used in (2.5). For every channel realization H, C¢q Will be less than or equal to

the channel capacity defined by (2.5).

Finally, it is important to note again that equations (2.4)-(2.7) are valid only when the
receiver has perfect CSl. Any other case/model, where the receiver has not perfect CSl, is
out of the scope of the present doctoral thesis. In [61]-[63] the MIMO channel capacity is
studied when both the receiver and the transmitter have channel distribution information

(i.e. a CDIR-CDIT model is assumed).
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Figure 2-2: Transmission with Qq.

2.2 MIMO channels capacity

2.2.1 Perfect CSI at the receiver and the transmitter

It has been proven in [29] that when perfect CSI is assumed at both ends of the
MIMO link the channel capacity (expressed by (2.5)) is achieved by transmitting along the
right singular vectors of the MIMO channel matrix and allocating power optimally to the
(orthogonal) transmit directions. In this case the channel capacity is expressed by the

following equation:

C = max log, (1 + SNR~;\; 2.8
ZZ; g ( i\ (2.8)
with \; (i = 1,...,r) the non-zero eigenvalues of matrix HH' and ~; (i = 1,...,r) the

power allocated to each channel mode (i.e. );) and hence, to each of the r transmit
directions (i.e. the right singular vectors of the channel matrix H).

The maximization/optimization problem in (2.8) (with respect to ~; (i = 1,...,r)) is
solved using the Lagrange method, exploiting the concavity of (2.8) with respect to ~;.

The optimal power allocation (i.e. " (i = 1,...,r)) is determined through an iterative
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algorithm referred to as “water-pouring” (or “water-filling”), ([29], [64]-[66]) and satisfies:

1
opt B
Vi = (M SNR)\Z-)JF (2.9)

where 1 is a constant and (z), implies

z if >0
(@), - 2.10)

0 if <0
According to the water-pouring algorithm, power may not be allocated to all channel
modes, as shown in Figure 2.3. Moreover, the lower the SNR and/or the disparity between

the channel singular values (\; (: = 1,...,r)), the fewer the transmit directions that the

available power is allocated to.

unsed modes

I

used modes

RN

opt 1
opt . p—
o | T3 | |'snra,

"1 SNR,_,

u

SNRA, | *=°
SNR%,

SNRA,

Figure 2-3: Waterfilling algorithm.

The ergodic capacity can also be defined for this channel information model. For any
given channel distribution and assuming an ergodic channel (i.e. the channel realizations
are independent) the ergodic capacity of the channel is the ensemble average of (2.8)

over the channel distribution:
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COSIT — £y anlag_lzlo& 14 SNR,;\;) (2.11)

2.2.2 Perfect CSI at the receiver and unknown channel to the t ransmitter

When the channel is totally unknown to the transmitter, practically the transmitter can-
not maximize the mutual information and hence, achieve the channel capacity. In this
case, the best choice for the transmitter is to transmit independent signals with equal
power from its antenna elements, as it is shown in Figure 2.4. In this case the achieved
mutual information , (which is also referred to as “capacity” for simplicity reasons), is

expressed by the following equation:

d SNR
Cun = Y _ log, (1 + T/\i) (2.12)
i=1

where \; (i = 1,...,r) the eigenvalues of matrix HH'.

Transmitter
d1 —> 9
P/N
do —»®
P/N
+

P/N

Figure 2-4: Transmission for Unknown Channel to the transmitter.

The ergodic capacity can also be defined in this case. For any given channel distri-
bution and assuming an ergodic channel (i.e. the channel realizations are independent)
the ergodic capacity of the channel is the ensemble average of (2.12) over the channel
distribution:

Cerg = En (2.13)

Z:log2 (1 + SN—R)\)

Assuming a channel with complex Gaussian distribution vec (H) ~ (0,I,,x), (i.e. spa-
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tially uncorrelated Rayleigh distributed channel), it can be proven through simulations that
were presented in [66], that the ergodic capacity for unknown channel to the transmitter is
lower than the ergodic capacity for known channel to the transmitter (i.e. perfect CSl), for
any SNR. Moreover, in this case and when N = M the aforementioned ergodic capacities

converge for high SNR values.

Consider now a MIMO channel with complex Gaussian distribution vec (H) ~ (0, I,/x)

and N = M. According to the strong law of large numbers [67] we have:
1
MHHT — Iy, as M — oo (2.14)

Therefore, when M — oo and the channel is unknown to the transmitter, the capacity

expressed by (2.13) approaches:

Cun — M log, (1 + SNR) (2.15)

From (2.15) it can be observed that the capacity increases linearly with M for a fixed
SNR and consequently we have M times higher capacity than the capacity achieved by a
SISO system. Moreover, for a fixed M, for every 3dB increase in SNR we get M bps/Hz
in capacity for a MIMO channel, compared with 1 bps/Hz for a SISO channel [66].

2.2.3 Perfect Channel State Information (CSI) at the receiv  er and Channel Distri-
bution Information at the transmitter (CDIT)

Assuming a CDIT model, the solution of the optimization problem defined in (2.7), i.e.
the calculation of the optimum transmit covariance matrix Qqp, depends on the channel
distribution. In the following, the solution of the aforementioned problem is presented for

complex Gaussian channels.

Channel Covariance Information (CCI) model

This CDIT model describes MIMO Rayleigh fading channels. The (spatial) correlation

of the channel matrix is expressed by the N M x N M channel covariance matrix, defined
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as:

R=¢ [vec (H) vec (H)! ] (2.16)

R is positive semi-definite and Hermitian matrix. Therefore, the channel distribution is
expressed as vec (H) ~ A (0, R), where 0 is (in this case) a zero column vector with N M
elements. In this CDIT model, R is calculated by the receiver in the context of long-term
statistics (since the receiver has perfect CSl) and then it is fed back to the transmitter (i.e.

the transmitter is “informed” for the channel covariance).

The channel matrix realizations of this model can be produced by the following equa-
tion:

vec (H) = RY?vec (H,) (2.17)

where H,, € CM*¥ is a zero-mean complex Gaussian matrix, spatially uncorrelated and

its complex elements have independent real and imaginary parts, each with 1/2 variance.

Namely, it is vec(H,,) ~ N (0,Iy/n).

Moreover, R can also be expressed by the following equation:
R=R/®R, (2.18)

where R, and R, are the channel transmit and receive covariance matrices, which are
defined as R, = £ [H'H| and R, = £ [HH'].
Although the model described above by (2.17) is capable of capturing any correlation

effect between the elements of H, the following simpler model may be used:

H = R!/*H R, (2.19)

The model expressed by (2.19), although not completely general, it has been vali-
dated through field measurements as a sufficiently accurate representation of the fade
correlations seen in actual cellular systems [68]. This model will be assumed throughout

this doctoral thesis.
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For the CCIl model the solution of the optimization problem (2.7) is expressed by the

following theorem:

Theorem 2.1. Let R; = UtAtUI the eigen-decomposition of R;, where U, and A, stand
for the eigenvectors and eigenvalues matrices, respectively. The optimum transmit co-
variance matrix that achieves ergodic capacity is expressed as Qqpt = UtAothI , Where

Aopt is determined through numerical optimization techniques.

The proof of the above theorem was first presented for MISO systems in [46]. Then it
was extended in [47] for MIMO systems with R, = I, (i.e. it was assumed that there is
no correlation at the receive antenna) and finally, in [48] it was generalized to include any

R,. For the calculation of Ay the iterative algorithm proposed in [69] can be employed.

Channel Mean Information (CMI) model

This CDIT model describes spatially uncorrelated with unit covariance matrix MIMO
Rician fading channels. The CMI model was first introduced in [46] for MISO systems
as a “short-term feedback model”, where the receiver feeds back to the transmitter a
channel measurement (made at time ¢;) and then the transmitter, based on this channel
measurement, on long-term statistics and the MMSE estimation theory [70], estimates
the channel realization at time ¢, (with an estimation error). The reason for using this
estimation process is the feedback delay (s) of the channel measurement? (made by the
receiver at time t;). Theoretically, if there was no delay in the feedback control channel,
there would be no need for channel estimation and the model described in paragraph

2.3.1 would be employed (perfect CSI at the receiver and the transmitter).

According to the MMSE estimation theory and as referred to in [44], an estimation of
the channel H, at the transmit time s (which is practically the feedback delay) - denoted as
ﬁs - is based on the channel measurement H, at time ¢, and on the long-term statistics
H, R and R,, i.e. the channel mean, covariance and auto-covariance matrices, respec-

tively, calculated by the receiver by averaging instantaneous channel measurements over

2The channel measurement is fed back to the transmitter via a low-rate control channel
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tens of channel coherence times. R and R, are expressed by the following equations:
R=¢ [(vec (H) — vec (H)) (vec (H) — vec (ﬁ))q (2.20)

R,=¢& [vec (H,) vec (HS)T] (2.21)

Moreover, R is again expressed by (2.18), where the channel transmit and receive covari-
ance matrices are definedas R, = £ [(H — ﬁ)T (H- ﬁ)] andR, =& [(H —H) (H- ﬁ)f] ,

respectively.

The channel estimation IAL is expressed as follows:
h,=h+RIR" [h, - h] (2.22)

while the estimation error is expressed by the error covariance matrix R, :

R..=R+R/R'R, (2.23)
where:
ﬁs = vec <ﬁ5) (2.24)
h, = vec (Ho) (225)
h = vec (H) (2.26)

In the CMI model, the error covariance matrix R. ; is a white matrix with equal diagonal
elements, i.e. it is expressed as R., = al)/n, where a is referred to as the “estimation
error®. The transmitter exploits the (current) channel estimation H, and calculates the
optimum transmission Qg at time s, as the transmission scheme that achieves ergodic
capacity (i.e. it solves the optimization problem in (2.7)) assuming a channel distribution
vec(H) ~ N (vec(H,,), alyy), with H,, = H,. It can be observed that for the calculation

of Qopt (Whenever a channel measurement Hj, is fed back from the receiver) the channel

3This may be mathematically valid and occur for some values of R and R, (see (2.23)) or it can be an
assumption, i.e. the error correlation effects are ignored.
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that is assumed at the transmitter is always spatially uncorrelated (with unit covariance
matrix) and has a Rician distribution, (since H,,, = }AIS # 0). On the other hand, the long-
term distribution of the channel is not necessarily Rician, but it can also be a Rayleigh

distribution if H = 0.

Observe from (2.22) and (2.23) that when R, = 0 (i.e. there is no correlation between
channel realizations with time difference s), then it is always ﬂs = hand R., = R,
regardless of the channel measurement H,. Moreover, if it is also H # 0 and R = aly
(or, equivalently, R, = g.I,, and R; = S,.1y, with a = (,.5;), then we have a “long-term
feedback” CMI model, where the instantaneous channel measurements H, need not be
fed back by receiver. In this case only the long-term channel mean H is fed back by the
receiver and is exploited by the transmitter in order to calculate and employ Qg for the
time period that the statistic H is valid. A new feedback occurs only when H changes.
Obviously, if H = 0, then the long-term feedback CMI model becomes a CCI model (i.e.

vec(H) ~ N (0,aly y)), which is inherently a long-term feedback model.

The channel matrix realizations of the CMI model can be produced by the following

equation, for both the long and the short-term feedback models:
H=H,, +vaH, (2.27)

where H,,, = IA{S for the short-term feedback model and H,, = H for the long-term feed-

back model.

For the CMI model the solution of the optimization problem (2.7) is expressed by the

following theorem:

Theorem 2.2 . The optimum transmit covariance matrix Qo for the CMI model (described
by (2.27)) is decomposed as Qopt = UAonUT (U and Aqy Stand for the eigenvectors
and eigenvalues matrices, respectively), where the first column of U is the dominant
right singular vector of H,, and the rest of its columns are arbitrarily chosen (with the
restriction that U should be a unitary matrix). Furthermore, the eigenvalues matrix Aqp =

diag [A], A, ..., A& is determined through numerical optimization techniques, with \J =
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The proof of the above theorem was first presented for MISO systems in [46]. Then
it was extended in [47] for MIMO systems with rank{H,,} = 1 (i.e. for physical Rician
channels where H,, represents the Line of Sight (LOS) component) and finally, in [71] it

was generalized to include any H,,, matrix.

Combined CMI-CCI model

This CDIT model describes spatially correlated or uncorrelated with non-unit covari-
ance matrix MIMO Rician fading channels. For the combined CMI-CCI model there is no
closed-form expression for the optimum transmit directions and hence, both the eigenvec-
tors and the eigenvalues of the optimum transmit covariance matrix must be calculated

numerically.

The channel matrix samples of the combined CMI-CCI model can be produced by the
following equation:

vec (H) = vec (H,,) + R}/ *vec (H,,) (2.28)

(i.e. vec(H) ~ N (vec(H,,), Ry)) and assuming a (simplified) model with separable trans-

mit and receive correlations, (2.28) is written as:
H=H,, + R)/H,Ry/ (2.29)

where:

a.IfR, #0,then H,, = ﬁs, Ro, =R, Ro: = R! ,, with R, ﬁs previously defined in

e,s? e,s?

the discussion for the CMI model and
R., = (R.,) ©R!, (2.30)

R. ; is defined by (2.23). In this case we have a the short-term feedback model, namely,
H,, R}, and R}, are calculated dynamically by the transmitter for every channel mea-

surement (H,) which is fed back by the receiver. Moreover, with (2.30) it is implied that
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the error covariance matrix R. , may have a Kronecker structure®.

b. If R, = 0, then H,, = H, Ry, = R, and Ry; = R;, with H previously defined in
the discussion for the CMI model and R,/R; defined in (2.18). In this case we have a
long-term feedback model, namely, only the long-term channel statistics H and R. are fed
back by the receiver and are exploited by the transmitter in order to calculate and employ
Qopt for the time period that these statistics are valid. A new feedback occurs when H and
R change. Obviously, if H = 0, then the long-term feedback combined CMI-CCI model
becomes a CCI model and if {H # 0, R = al,,;x} then the long-term feedback combined

CMI-CCI model becomes a long-term feedback CMI model.

In [30] it was mentioned that the calculation of Qg for the combined CMI-CCI model
was an open problem. In [49] a solution was proposed, employing an interior barrier
point algorithm. However, the algorithm in [49] was characterized by high computational
complexity and hence, it is prohibitively complex for real-time applications. In [50] an
asymptotic approach was proposed for the solution of the aforementioned optimization
problem, where it was shown that it has very good performance (i.e. the achieved average
mutual information is close to the ergodic capacity achieved by the algorithm in [49])
and low complexity, compared with the algorithm in [49]. Moreover, in [44] closed-form
solutions for asymptotic SNR values were provided. More precisely, assuming that R, =

I,,, it was proven that:

a. When SNR — 0, the optimum transmission is along the dominant eigenvector of the
channel transmit correlation matrix £ [HTH} (this is a beamforming transmission referred

to also in the literature as “max SNR beamformer”).
b. When SNR — oo and for MIMO systems with N < M, itis Qopt = ~ In.

Figure 2.5 presents an overview of the aforementioned Gaussian CDIT models.

41f it is assumed that all scalar channels between the N transmit and M receive antennas have the same
temporal correlation factor p, (i.e. if homogeneous temporal correlation is assumed), then it is R; = psR
and from (2.23) it follows that R. ; = (1 — p2) R. From the last equation it can be concluded that R, ; may

have the Kronecker structure of (2.30) with R. , = \/(1 — p2)R; and R} , = /(1 — p?)R,.
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Figure 2-5: CDIT models.
2.3 Rate-Optimum beamforming transmission in MIMO channel S

When the transmit covariance matrix Q is restricted to be rank-1 then we have a
beamforming scenario where all the available power is allocated to a unique direction via

the beamforming vector, as it is shown in Figure 2.6. In this case, (2.3) becomes:
Q=—vlv (2.31)

where v € C'*¥ (with || v ||,= 1) is the beamforming vector/direction.

The corresponding mutual information for this transmission scheme is referred to
throughout this doctoral thesis as “beamforming mutual information” and will be denoted

as Zyt (SNR, v, H). Substituting (2.31) into (2.4), Z (SNR, v, H) is expressed as follows:

Zot (SNR, v, H) = log, det (I,; + SNRHv'vH') (2.32)

Moreover, in the context of CDIT models, the corresponding ergodic capacity for this
restricted case of transmission is referred to throughout this doctoral thesis as “ergodic

beamforming capacity” (the same terminology was also used in [72]), will be denoted as
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Figure 2-6: Beamforming transmission.

Chpt, and substituting (2.32) into (2.7), Cys is expressed by the following equation:

be = mlax EH [Ibf (SNR, Vv, H)] = m‘ax .’Z:bf’avg (SNR, V) =

[vl2=1 [[vl2=1

= max &y [log, det (I, + SNRHvIVHT)] (2.33)

[vll2=1

Note that in (2.33) it is defined €y [Zos (SNR, v, H)] = Zptag (SNR, v). The beamforming
vector that achieves ergodic beamforming capacity (i.e. is the solution of the optimization

problem in (2.33)) will be referred to as “optimum beamformer”, denoted as voy.

There are several reasons why it is important to consider the optimum beamforming

transmission in MIMO systems:

a. The complexity of the system and as a consequence the overall cost, are signifi-

cantly reduced.

b. Results presented in the following chapters of this doctoral thesis show that there
are operational scenarios where the ergodic beamforming capacity is very close to the

ergodic capacity, achieved by higher rank transmission schemes.

c. There are operational scenarios where the optimum beamformer achieves ergodic

capacity, namely it is Cpt = Cerg and Qqopt = %viptvopt. This is achieved when the following
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necessary and sufficient condition is satisfied [73]:
Amas ((IN — vl Vo) K(Ty — vgptvom)T> < vouKviy (2.34)
with K € HY expressed as:

K = & [HT(IM + SNRvamvoptHT)—lﬂ] (2.35)

Inequality (2.34), known in the literature as “optimality of beamforming condition” [30],
is valid for any CDIT model. In [47]-[48] more specific expressions of (2.34) were derived,

for the (complex Gaussian) CCl and CMI models:

a. CCl model. The necessary and sufficient condition for optimality of beamforming

can be expressed by the following inequality:

1 M

>
SNR s (Rt) 1— <m>Mexp <m> I (1 — M, m)

~1  (2.36)

where I' (k,z) = [ t*~e~'dt is the upper incomplete Gamma function.

b. CMI model . The necessary and sufficient condition for optimality of beamforming

can be expressed by the following inequality:

{ 1 }<1+SNR(1—M)

2.37
1+ SNRpw 14+ SNR (2.37)

where 1 is the non-zero (and unique) eigenvalue of H,, and w is a non-central chi-squared
distributed random variable with 2)/ degrees of freedom and non-centrality parameter
d = u%. It must be mentioned here that condition (2.37) is valid for the long-term feedback
CMI model, where H,, = H, rank{H,,} = 1 and H,, represents the LOS component of

the Rician channel.

As far as the solution of the optimization problem in (2.33) and the calculation of vq
is concerned, the optimum beamformer can be determined in closed-form for the CCI

and CMI models: in both cases v is the dominant eigenvector of the channel transmit
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correlation matrix £ [HTH} ([72], [74]), and consequently, it coincides with the max SNR
beamformer. For the combined CMI-CCI model there is no closed-form expression for
vopt- IN this case vop must be calculated numerically by solving a multi-dimensional op-
timization problem (see (2.33)), which is prohibitively complex for real-time systems and
applications [75]. In Chapters 3 and 4 of the present doctoral thesis, a solution for this
problem is proposed for MISO and MIMO channels, respectively, and it is proven that vy
can be calculated numerically in the context of a simple 1-D optimization problem, which

can be solved very fast by employing any standard 1-D search algorithm [76].
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Chapter 3

RATE-OPTIMUM BEAMFORMING TRANSMISSION IN MISO RICIAN
FADING CHANNELS

3.1 Introduction

In MIMO channels with perfect CSlI at the receiver (CSIR) and partial CSI at the trans-
mitter (CDIT), when the transmit covariance matrix is constrained to be a rank-1 matrix,
all the available power should be transmitted along a unique direction with the help of a
“beamforming vector”, and hence we have a beamforming scenario. The transmission
scheme that maximizes the average mutual information for this (constrained) scenario is
referred to as “optimum beamforming” and the relative beamforming vector is referred to
as “optimum beamformer”. The maximum average mutual information achieved by the
optimum beamformer is referred to as “ergodic beamforming capacity” and is defined by
(2.29). It must be noted that the ergodic beamforming capacity does not coincide with the
ergodic capacity of the channel generally, however, this is possible when the optimality
of beamforming condition (2.34) is satisfied. The reasons why it is important to consider

optimum beamforming transmission in MIMO systems were explained in Chapter 2.

As it was also mentioned in Chapter 2, for the CCl and CMI models the optimum
beamformer is the dominant eigenvector of the channel transmit correlation matrix [72].
However, for the combined CMI-CCI model, a closed-form expression for the optimum
beamformer has not been presented in the open literature until now. In this case, the
optimum beamformer must be determined numerically as the solution of a convex multi-
dimensional optimization problem, (the N complex elements of the optimum beamformer
must be calculated, i.e. 2N real parameters). As a result, the solution of this problem

(using standard algorithms?), which is referred to as “optimum beamforming problem”, is

le.g. interior-point methods [77].
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relatively slow and is characterized by high computational complexity, (it is stated in [75]
that the solution of this problem is “prohibitively complex”). Furthermore, the optimum
beamforming problem must be solved at the transmitter a lot faster than the channel
statistics change, which is a very strict constraint for channels with small coherence times.
For this reason, a faster and more efficient solution is required. Until now, a method for
the simplification of the aforementioned solution has not been presented in the open

literature.

Moreover, the algorithms that have been presented in [49]-[50] for the combined CMI-
CCI model, are not dedicated solutions to the optimum beamforming problem, since they
do not consider the rank-1 constraint for the transmit covariance matrix (i.e. beamform-
ing), and hence, they do not solve this problem. However, they are able to calculate
the optimum beamformer when the optimality of beamforming condition (2.34) is satis-
fied, but even in this case, the problem they solve is still multi-dimensional and hence,

computationally complex.

In this chapter a novel simple one-dimensional (1-D) method is addressed for the
straightforward and unconditional solution of the optimum beamforming problem (i.e. the
maximization of the average mutual information for the beamforming transmission sce-
nario) with MISO systems under the combined CMI-CCI model®. Moreover, in the context

of this work, it is demonstrated via simulations that:

a. The proposed method has significantly lower computational complexity compared
to other currently employed multi-dimensional algorithms, e.g. an interior-point method or
the asymptotic approach [50], which provide optimum and sub-optimum solution, respec-
tively, to the same problem under specific conditions (i.e. when the optimality condition

(2.34) is satisfied).

b. The ergodic beamforming capacity is always higher compared to the average mu-

tual information achieved by the beamforming transmission that maximizes the expected

2The proposed method will provide a solution regardless of whether the optimality condition (2.34) is
satisfied or not.
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received SNR (referred to as “max SNR beamformer”), and moreover, as already men-
tioned above, it is very close to the ergodic capacity® in many operational scenarios or

equal to the ergodic capacity when the optimality condition (2.34) is satisfied.

The rest of this chapter is organized as follows: In Section 3.2 the system model and
the optimum beamforming problem are introduced. In Section 3.3, a novel method for the
calculation of the optimum beamformer for MISO systems under the combined CMI-CCI
model is proven. Section 3.4 presents simulation results related to the computational
complexity of the proposed method and the capacity performance of the optimum beam-

former.

3.2 System model and problem statement

In a flat fading channel the received signal y of a MISO system with N transmit antenna
elements is expressed as:

=hx" +n (3.1)
Y

where x € C™*V is the transmitted signal, h € C*¥ is the channel vector and n is the
received noise. n is complex Gaussian random variable with zero-mean and variance
&[n?] = n,. x is complex Gaussian random vector with zero-mean and circularly symmet-

ric covariance matrix ¥ = £[x'x].

When beamforming is considered, X has rank-1 and is expressed as:
> =Pvlv (3.2)

where P is the (total) transmitted power and v € C"*¥ is the unit-norm beamforming

vector.

Assuming perfect CSI at the receiver and CDIT, the ergodic beamforming capacity is

3The algorithms in [49]-[50] can be used for the calculation of the ergodic capacity.
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expressed by (2.29):

Cht = rrllax En [Zos (SNR, v, h)] = max Zpag (SNR,v) =

[vll2=1 [vilz=1
= max &n [log, det (I, + SNRhvivh')] (3.3)
V0=
The optimum beamformer, vqy, is the beamforming vector that maximizes (3.3), and

is expressed as the solution of the following convex optimization problem:
Vopt = arg masx Toravg(SNR, v) (3.4)
ve
S ={v;veC"N |v|,=1} (3.5)

The solution of (3.4) depends on the distribution of h (i.e. the CDIT model) and - as
mentioned in Section 3.1 - closed-form solutions exist only for the CMI and CCI feedback
models. In the following section, the optimization problem in (3.4) is solved for MISO

systems under the combined CMI-CCI model [74], [78].

3.3 Optimum beamforming transmission in MISO Rician fading channels

Consider a frequency flat MISO channel, with CDIT h ~ N(u, R), where p € C>*V
(n # 0) is the channel mean and R € HY (R # Iy) is the channel transmit covariance
matrix, (u and R represent the long-term channel statistics). The same CDIT model
can also be used when the receiver feeds back to the transmitter instantaneous channel
measurements, which are subject to delay and distortion [44], [75]. In this case, u and R
do not represent the long-term channel statistics, but u is the estimated channel value and
R is the error covariance matrix. Moreover, in this case, the long-term channel statistics
are not necessarily a Rician distribution. In both aforementioned cases, the CDIT model
under consideration is the combined CMI-CCI model, (long and short-term, respectively),
and represents spatially correlated or uncorrelated with non-unit (transmit) covariance

matrix MISO Rician fading channels, (see discussion in Chapter 2).
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The channel samples are produced by the model expressed by (2.25):
h = u + h,RY? (3.6)

where h,, € C**¥ has i.i.d zero-mean complex Gaussian elements, with independent real

and imaginary parts, each with variance 0.5.

It is proven in the following that the optimization problem in (3.4) under the channel
model (3.6) can be reduced to only one dimension and subsequently solved using stan-

dard 1-D search algorithms [76].

Setting z = hv', (3.3) becomes:
Totavg(SNR, v) = &p;) [loga (14 SNR|z[?)] (3.7)

where z ~ N (uv', vRvT), and hence, |z| follows a Rician distribution:

2 2 2 2
|2] ~ —x](, < mvx) exp (_x i mv) (3.8)
Oy Oy Oy
with
my = v (3.9)
oy = VRv' (3.10)

Proposition 3.1 Zyayg(SNR, v) in (3.7) increases monotonically with m, and o,

Proof: The proof is given in [75]. Figure 3.1 demonstrates graphically the validity of the

proposition. [ |

Proposition 3.1 implies that Zy;avg(SNR, v) is a function of m, and o, and it can be
maximized with respect to these two parameters. However, in the context of the combined
CMI-CCI model, m, and o, cannot be maximized (simultaneously) for the same v € S,
and hence, the solution of the optimum beamforming problem is not trivial, (as for the CMI

and CCI models).

Using the definition of the angle between vectors in N-dimensional complex vector
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Figure 3-1: Tyt avg VS. my and oy.

spaces, (3.9) can be written as:

my = ||p]|2 cos O (3.11)

where 0 € [0, 7/2] is the (generalized) angle between p and v. All vectors v that belong
to S (as defined in (3.5)) and have an angle 6 with u, define a (non-convex) set Sy,
with Sy C S, (Figure 3.2). In Sy, m, has a fixed value (given by (3.11)) and hence,
Toiavg(SNR, v) is maximized with v, if and only if o, is maximized with v. The beamforming

vector that solves this optimization problem, restricted in Sy, is denoted as v, (Figure 3.2):
Vg = arg max o, = arg max vRv' (3.12)
vESy vESy

Solving (3.12) for all 6 € [0, 7/2], the following (non-convex) set of vectors is defined:

Sopt = {ve; 0 € [0, 7/2]} (3.13)

In the proposition that follows, it is proven that the search of the optimum beamformer

can be restricted in a subset of Sy, denoted as S, (Figure 3.2).

Proposition 3.2 The optimum beamformer v, belongs to S,, (a subset of Sy,;), which is

Dimitrios E. Kontaxis 72



Rate-optimum beamforming transmission in MIMO Rician fading channels

defined as:

Vopt € S, = {ve; 0 € [0, 9]} (3.14)
where:

a. ¢ is the angle between the normalized channel mean vector m = p/||pl|2 and
the complex conjugate transpose of the dominant eigenvector of the channel transmit

covariance matrix R, denoted as U, i.e.

¢ = cos ' (lmU,,|) (3.15)

b. vy is the solution of the optimization problem (3.12).

Proof: Assume an arbitrary v € S that has an angle 6 with p. Since v € Sy, itis:

ve

opt

measxl'bf,avg(SNR, v) < max Zptag(SNR, v) (3.16)

VGSgpt
where the last inequality results from the fact that v has been chosen arbitrarily in S.
However, since Sy, C S, (3.16) becomes a strict equality, which implies that vy € Sopt.
Now, for 6 = ¢ , the (beamforming) vector of the set S, that maximizes oy is v, = Uil,
with
Oylv=v, = max oy = A1 (R) (3.17)

From (3.11) and (3.17), it can be concluded that V0 > ¢, my |v=v, < My|y=v, and oy |y=y, <
ov|v=v, , respectively, and hence, since Zytavg(SNR, v) increases with m, and o, (Propo-

sition 3.1), it will be also:
Ibf,avg(SNR> V@) < Ibf,avg(SNRa V¢) (3.18)

Since (3.18) holds V@ > ¢, it can be concluded that the angle of the optimum beamformer
with respect to m, (denoted as opt(Vopt = Ve, )), Should be constrained as o < ¢. This

conclusion is equivalently expressed by (3.14). [ |
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Proposition 3.2 implies that the optimum beamformer belongs to a continuous trajec-
tory* that is defined by the vectors of S, (see (3.14)), which lies on the surface of the
unit-radius Euclidean ball, starts from m (for ¢ = 0) and ends to Uil (for 6 = ¢). This is

visualized in Figure 3.2.

Figure 3-2: Geometric interpretation of Proposition 3.2.

Using (3.14), the optimization problem (3.4) can be re-formulated as:

Vopt = arg max Toravg(SNR, v) (3.19)
S, = {vu: 0 € [0, 6]} (3.20)

where V6 € [0, ¢, vy is the solution of the optimization problem (3.12).

The optimization problem in (3.19) is 1-D with respect to the angle §. The simplicity
of (3.19) is now based on solving (3.12) and finding a convenient expression for vy, for

0 € [0, 9.

Theorems 3.1 and 3.2 below present the solution of the optimization problem (3.12),

and vy is expressed as a function of the CDIT parameters p and R.

Theorem 3.1 ([74], [78]) The optimum beamformer vy, for a MISO Rician flat fading

channel with N transmit antenna elements (N > 2), mean value p (up € C>*Y |y # 0)

4The continuity of this trajectory is discussed in the following.
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and transmit covariance matrix R (R € HY , R # Iy), can be calculated from the following

1-D optimization problem:
Vopt = arg max Toiavg(SNR, v) (3.21)
vES,

S, = {vo:0 € 0,4]} (3.22)

where ¢ is calculated with the help (3.15) and vy is expressed as:
vy = cosf [1 Z(rely_q1 — G)_l] wTut (3.23)

where:

a. U is the eigenvector matrix of R. and W is a complex N x N orthonormal matrix with
its first column defined as W,; = U'm” (m = p/||u||2), whereas the rest of its columns
(W.,;, i = 2,..., N) are arbitrarily chosen, with the restriction that WW = Iy. Moreover,

G and Z are defined as:

K22 e K2N

G=| : - (3.24)
KN2 KNN

Z - [KlQ K13 tt KlN] (325)

where K;,, is the [* row and m'* column element of matrix K, defined as:

N
K=> MR)W.LW;, (3.26)

i=1

b. ry is the maximum real root of the 2(N — 1)-degree polynomial:

P(z;0) = cos* 0 Z_: |Zg;|? [ 1__[ (x — )\Z-(G))2] — sin? 6 1__[ (z — \(G))? (3.27)

i=1

[N

=1

where g; € CIV-Dx1 js the ' eigenvector of matrix G.
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Proof: The optimization problem (3.12) can also be expressed as:

maximize oy = VRv' (3.28)
subject to vvi=1

[ |? = ||pll3 cos® 0 = vMVT = |[pu]|3 cos? 0

where M = ufu. The optimization problem in (3.28) is a nonconvex Quadratically Con-
strained Quadratic Program (QCQP) and it can be generally solved numerically using a
semidefinite relaxation (SDR) [79]. However, in this case where M is rank-1, (3.28) can
be solved analytically, as it is proven in the following. The solution of (3.28) is denoted as

Vyg.
Setting

v = xUf (3.29)

and recognizing that the [,-norms, the eigenvalues and the angles between vectors re-

main invariant under unitary transformations [80], (3.28) can be equivalently written:

maximize ox = xAx' (3.30)
subject to xx! =1

[, x'* = || ]2 cos 6

where p, = pU and A is the eigenvalue matrix of R.

The solution of (3.30) is denoted as x4. The constraints of (3.30) imply that x, must
be a unit-norm vector with an angle ¢ with u,. Hence, x4, € Xy, where X, represents
the set of all unit-norm vectors that have an angle 6 with p,. Let us now define the
matrix W = [W,; W,, ... W,y]|, with its first column defined as W,; = pl||u|~' and
the rest of its columns W,; € CV*!, (i = 2,..., N), arbitrarily chosen with the restriction

that WIW = I,. From the columns of matrix W we form the orthonormal basis By, =
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(WL WL . WI,]in C'*¥, The set 3, can be expressed with respect to this basis as:

3y = {[x|z,, = [¢/"* cos® ay as ... an];

N
a; €C(>i=2,...,N), > |a;]* =sin?0, u, € [0,27]} (3.31)
=2
If we set
p=layaz...ay (3.32)
then any vector x|z, € ¥y can be written as:
[X]5,, = [ej"z p} Dy (3.33)

where Dy is N x N diagonal matrix with Dy ;; = cosf and Dy ;; = 1,fori =2,..., N.

Expressing now [x|z, € 3, with respect to the normal basis B = [e; e, ... ey] we
have:
x = [x|s = [X|sy 8[I5y = [¢/* p] DgW ' (3.34)
where 5[I]5, = WT stands for the By, — B basis transformation.

From (3.34), the optimization problem (3.30) can be transformed into the following

equivalent optimization problem with respect to p € C*>*V—1:

mazimize op = [/ p| DyKDy [ p]' (3.35)

subject to ppl =sin%4

where K € HY, and is given by the following equation:
N

K=Y MR)WLW;, (3.36)

i=1

Now, partitioning K properly and setting for simplicity u, = 0 (u, does not affect the

solution of (3.35), due to the quadratic form of the objective function o}), (3.35) can be
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re-written as:

mazimize o, =pGp'+ cosb (pZ' + Zp') + cos® 6K, (3.37)

subject to pp! = sin?6

where G € HY, is the principal submatrix of K, i.e.

1{22 K2N
G=| : . (3.38)
KN2 KNN
and
Z =Ky Ky - Kyl (3.39)

The solution of (3.37) is denoted as py and can be calculated using the Lagrange multi-

pliers method. The Lagrangian of (3.37) is:
L(p) = pGp' + cos OpZ' + cos OZp' + cos® 0K, + & (sin®6 — ppT) (3.40)

where « is the Lagrange multiplier, (real number®). L(p) does not satisfy the Cauchy-
Riemann equations and is not complex differentiable. As a result the solution of (3.37)

must satisfy the following necessary conditions [81]:
Ve L(p) =0 (3.41)

pp! = sin?6 (3.42)

where V,-L(p) is the complex gradient vector of £(p), given by the complex conjugate

Wirtinger derivative [81]:

o odL(p) OL(p) & .OL(p)
Ve L(p*) =2 ap = TRp + 3Sp (3.43)

5The Lagrange multiplier « is a real number since the objective function o, and the constraint function
y(p) = pp' — sin? 4 are real-valued functions of the complex variable p [81].
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where p and Sp are the real and imaginary parts of p, respectively.

From (3.40), (3.41) and (3.43) we have:
p(kIy_1 — G) = cos0Z (3.44)
In order (3.37) to have a solution, it must be:
|[kIy_1 — G| #0 (3.45)
and hence, (3.44) becomes:
p =cosHZ (kIy_; — G)™ (3.46)
Substituting (3.46) into the objective function of (3.37) we have:

Op = cos? 0Z (kIy_, — G)_1 G (Z (kIn_1 — G)_I)T+2 cos? 0Z (kIy_y — G)_1 Z+cos? K
(3.47)

Matrix G can be written as follows:
G = Ugdiag MY AS ... 2§ ] UL (3.48)

where U the matrix of eigenvectors and \Y' (i = 1,..., N — 1) the eigenvalues of matrix

G. Using (3.48) it is:

(KIy_1 — G) ™' = ((kIy_ — G) ) = </§UGU2 — Ugdiag A A5 .. AG ] Ug)‘l -

1 1
k=X k=AY k=X,

= Ug diag { ] Ul (3.49)
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Using (3.48) and (3.49), (3.47) can be written as follows:

N-1 E

29|Z N1
p = COS 6’2 | gl 5 + 2 cos ezli_gz)\G—FCOSQQKH:
i=1

K—)\G

N\ Zgi |2 2|Zgi|?
COSQZ[ Zsl’ | 202l

+ cos? 0K, &

N-1
Z i2 )\GZ i
ap:2/§coszﬁz(‘i 26’2 ‘ g +Cos 0K,
=1

k— A\ )
where g; € CIV-Dx1 is the ** eigenvector of G.
Substituting (3.46) into (3.42), it is:

21”2‘

7g; .
pp! = cos? 6 E L‘G)Q:smzﬁ
From (3.50) and (3.51) it is finally:

)\G
—2/<;s1n 6 — cos QZ%-FCOS 0K,

= (k= A
Moreover, from (3.51) it is:
Q(k;0) = ||p||5 — sin?0 = Y (k;0) — sin?0 = 0
with

Sy |Ze? [TIL (k= M(G))?
Y (k;0) = cos 0 7

[T (5 = Ai(G))?
From (3.54) it can be shown that:

lim Y(k;0) =0

Kk—+oo

lim Y(k;0) =
H—})xi(G)

+ cos? 0Ky, &

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

From (3.55) and (3.56) it can be concluded that (3.53) has at least two real roots that
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satisfy (3.45): one below \y_;(G) and one above \;(G).

Observing (3.52), it can be easily concluded that it is maximized for the maximum
real root of (3.53) or, equivalently, of the 2(/NV — 1)-degree polynomial equation P(x;0) =0
(where P(x;0) is expressed by (3.27)). This root will be denoted as r, and py (the solution

of the optimization problem (3.37)) is obtained from (3.46) for x = r4:
po = cosOZ (rely_1 — G)_1 (3.57)
Substituting in (3.34) p = py, the solution of the optimization problem (3.30) is:
Xy = cos [1 Z(roly_1 — G)_l} wt (3.58)
Substituting (3.58) into (3.29), the solution of the initial optimization problem (3.28) is:
vg =cosf [1 Z (rly_1 — G) "] WIU! (3.59)

Note that any phase shift of v, is also a solution of (3.28).

For & = 0 or # = ¢ it is not necessary to follow the above methodology. From the
constraints of (3.28), it results that vo must be along the channel mean, i.e. vo = m.
Moreover, v, coincides with the dominant eigenvector of R, i.e. v, = Uil, (see (3.17)).

It can be observed from (3.23) that v, (and hence, Zyaq(SNR, v) in (3.21)), can be
expressed in closed-form (with respect to ) when the order of P(z;0) is < 4, i.e. for MISO
system with N = 2 or N = 3 transmit antenna elements, since, in this case, all roots of
P(z;0) - and hence r4 - can be expressed analytically. For N > 3, r, must be calculated
numerically using a root-finding algorithm and restricting the search area to z > \(G),

(where P(x;0) has its maximum real root).

Theorem 3.2 below provides an alternative geometrically-based approach, especially
for MISO systems with N = 2 transmit antenna elements. Moreover, as it is mentioned in

[78], Theorem 3.2 is also mathematically valid for the following special cases, with NV > 2:

81 Dimitrios E. Kontaxis



a. When p is a point in the hyperplane defined by Ui, and Ul,.

b. When the channel covariance matrix has two eigenvalues, A\;(R) and \»(R) (\1(R) >
X2(R)) with algebraic multiplicity one and N — 1, respectively, or it is rank deficient, with

rank{R} < 2.

Theorem 3.2 ([74]) For MISO systems with N = 2, v, can be expressed by the following

(closed-form) equation:

Ul m'm m* <mTUi1 - Uflm)

+ sin 6

Vg = COS QT—
HUolmeHQ ||1’l’l* <mTUi1 — Uf1m> ||2

(3.60)

Proof: A geometrical approach is employed for proving this Theorem: First the hyper-
plane formed by vectors U, and m = p| /|5 is defined, using the cross product tensor
for N-dimensional complex vector spaces. Then it is shown that the optimum beamformer

is a point in this hyperplane.

The cross product between Uﬁl and m can be represented by an antisymmetric N x N

second-rank tensor, denoted as N [82]:
N = [(Us)" = Upe| sl (3.61)

Proposition 3.3 Any vector Uil can be decomposed into a perpendicular and a par-

allel vector with respect to m:

Ul =u, +y (3.62)

where
we = Nl = w (UL )" = Uspl |l (3.63)
u = Ul m'm = Ul | ]| (3.64)

Proof. Firstitis proven that u, is perpendicular to pu:

() = wp = pt (UL )" = Ulp ullz?p =
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(uy,p) = [M*MTUEMT — u*Uflmﬂ] lplz? =0

Then we prove that u; has an angle ¢ = 7/2 — ¢ with respect to Uil, where ¢ is the angle

between p and U,

The angle £ between u; and Uil is defined as
cos € = [u, Uay|[Jus ;" =

cos € = |u* | (U )" = Ulp| Utz oz =
cos € = (|0 2 = l)llalz us " =

cos & = |([|l|3 cos® ¢ — [|l13) [ el Jurlly' =
cosé = sin2¢]|ul]|2_l

From the definition of u, in (3.58) it can be proven that ||u_ ||, = sin ¢ and hence:
cosé =sin?Plluy ||zt =sing = £ =7/2 — ¢
Now, starting from the right-hand side of (3.57) and using (3.58) and (3.59) we have:
uy = pf [(Uflu)T - Uflu} leelly? + ULt w5 =

w by = [(Un)" = U] lly® + ULl el =
* * T — *T T — —
w +uy=pt (Unp) uls? = w Ul plplls? + Ul et plpl,? =
* * T -2
u, +up=p" (Uyp) @ =

u; + :Uil

The normalized u; and u; are defined as:

wi =ug|ju]l;’ (3.65)
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wi = |y [l (3.66)

In the following, we set w; = w and w, = w, and we choose N — 1 vectors w; €
C™N, i = 3,..., N, arbitrarily, with the restriction that the basis By = [w;wy ... wy] is
orthonormal in C'*¥, The set S, of unit norm vectors that have with p an angle @ in the

interval [0, ¢] (¢ is the angle between Uil and m) can be expressed as:

Sy ={v= [ejul cos 0w, aswo asws . .. aNWN] :

N
a; €C(i=2,...,N),) |a;]* = sin’0, uy € [0,27]} (3.67)

=2
The set S, of unit-norm vectors that have with  an angle 6 in the interval [0, ¢] and belong

(at the same time) to the hyperplane defined by w; and w,, (i.e. they can be written as a

linear combination of w; and w») is expressed as:
S, = {v = /"' cos Ow + €/ sin Owo; uy, up € [0,27]} (3.68)

Obviously, S is a subset of Sy.

Proposition 3.4 If w is the angle between a vector v € S, and Uil, it then holds that
w = ¢ — 0, where ¢ is the angle between Uil and m, as defined by (3.15). Furthermore,

w takes the minimum value in Sy (i.e. wpi, = ¢ — 0) if and only if v € Sj, with u; = u,.

Proof: The angle w between v € Sy and Uil is defined as:

cosw = [vU,| (3.69)
As shown in the proof of Proposition 3.3:

a2 =sing (3.70)

Writing v as in (3.67), using (3.62), (3.65), (3.70) and after some simple mathematical

manipulations, equation (3.69) can be written as:
cosw = |’ cos f cos ¢ + |ay| sin @] (3.71)
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where v = u; — Zay and Za, is the phase of ay. Since ZL |a;|? = sin® 6 = |ay| < sinb,

and hence, from (3.71) it can be concluded that:
cosw < |cos(p—0)|=w=p—0 (3.72)
Moreover, if v € Sy and u; = us, then in (3.71) itis u = 0, |az| = sin @ and hence, (3.72)

becomes a strict equality. [ |

For MISO systems with N = 2 transmit antenna elements it is S; = S, and for an

arbitrary v € S}, equation (3.10) becomes:
N
oy = VRVl = Y "N(R) VUL = M (R) VU [* + D (R)|vU L[> =
=1

oy = M (R) cos® w + A (R) sin® w (3.73)
where w is the angle between v and Uil, as defined in (3.69).

It can be observed that (3.73) is maximized if and only if w is minimized. According to

Proposition 3.4, this is achieved when u; = u,. Hence, the solution of (3.12) is:
vy = cos 0w + sin fwy =

vy = cos 0w + sin Ow | (3.74)

Substituting (3.63)-(3.66) into (3.74), then (3.60) is obtained. Note also that any phase
shift of vy (given by (3.60)) is also a solution of (3.12). |

The process that is proposed by Theorem 3.1 for the calculation of v, is summarized
and visualized for convenience in Figure 3.3. Observe that W, U, G, Z, \;(R) do not de-
pend on # and as a result, the only numerical calculation involved with v, is the calculation

Tg.
Some further useful remarks for the above theorems are provided below:
Remark 1. For § =0 and ¢ = ¢, (3.23) becomes v = m and v, = Uil, respectively.

Remark 2. As stated in Theorem 3.1, the optimization problem expressed by (3.21) is
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Figure 3-3: Diagrammatic representation of the calculation of v, (equation
(3.23)) for Theorem 3.1 (EIG stands for eigen-decomposition).

1-D with respect to 6. Practically, since vq € S, the (1-D) objective function that has to
be maximized with respect to ¢ is obtained by substituting (3.23) (or (3.60) for the cases
of Theorem 3.2) into (3.3):

Totavg(?) = Zotavg(SNR, vg) (3.75)

Oopt = arg erél[(%] Tosavg(0) (3.76)

Solving (3.76), 6oy is determined simultaneously with the optimum beamformer. Vector
Vopt = Voo Lotavg(f) IS continuously differentiable, regardless of the values of the channel
parameters (u, R) and the SNR, due to the continuity and differentiability of v,°. Hence,
gradient based or direct search programming algorithms [76] can be employed for the

solution of (3.76), which generally can be solved very fast, (see results in Section 3.4).

For the solution of the optimization problem (3.21), the evaluation of Zyayg(0) is re-
quired in each iteration of the employed 1-D search algorithm. Z;,,4(#) can be evaluated

using Monte-Carlo integration or alternatively, by the following infinite series:

6In (3.23), 74 (and hence, vy) is a continuous and differentiable function of 6, due to the continuity and
differentiability of the coefficients of the polynomial P(z;8) with respect to §. The continuity of vy also
ensures the continuity of the trajectory expressed by the set S, on the Euclidean ball, (see discussion in
Section 3.2 and Figure 3.2).
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Proposition 3.5
1 — SNRm2 1 /m2\"
Foaval0) = Ttang (SN vo) = (1n2) exp( SNRoy );{_ (—)

k
(svw) * (4 )
2\ SNRo, SNRo,

where I'(-, -) is the upper incomplete Gamma function [74], [78].

Proof: Setting = = |z| in equation (3.7), Zpravg(SNR, v) can be expressed with the help of
(3.8) by the following integral:

i 2 2
Totavg(SNR, v) = / logs (1 + SNR2?) 24 (vax) exp (—x i mV) dx  (3.78)
0

UV v v

where [,(-) is the zero-order modified Bessel function of the first kind, and m, and o, are

given by (3.9) and (3.10), respectively. Setting y = 22, (3.78) is written as:

1 3 9 1/2 2
Totavg(SNR, V) = — / logs (1 + SNRy) I, < vy ) exp (—y il mV) dy  (3.79)
ag

v v v

o

Then, using the infinite-series representation ,(§) = >0, 22n(n, from [83], (3.79) be-

comes:

s o0 9 y 1/2 2n + 2

v v

1 m% o] 1 my on % N y
Ibf,avg(SNRa V) = (lnz) o exp (—U—v) . [(n'>2 (U—V) /ln (1 + SNRZ/) Yy exrp (_U_V) dY:|
0
(3.80)

Using the following identity from [84]:

[e.e]

1 <= (b\F b
—bx _ bfa_~ _ I _
/ln(l—i—aas) dz =nle T E (a) F( k,&) (3.81)

0 k=0
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and considering that « = SNR and b = i (3.80) is finally written as follows:

i | — SNRim?
Ibf,avg(SNRa V) = (ln2) 1 exrp (WO.TRV)

i ( oy )nkzi; (SN;{av)kr (_k’ SN%’»UV)

Setting in (3.82) v = vy, the infinite-series (3.77) is proven.

(3.82)

The convergence of (3.77) can be proven by truncating the series atthe n = I — 1

term and then showing that the remainder R;, defined as:

_ 1 —-SNRm2\ <= [1 /m2\"
A= w2 e (g ) S | (%)
v n=I . v

En: L\ L (3.83)
par SNRo,, "SNRo, B '
converges to zero for I — +oo (i.e. lim; ., Ry =0).
In (3.83), it follows from [85] that:
1 2\"
lim — <@) —0 (3.84)
n—+oon! \ oy

Hence, in order to show that lim; , ., R; = 0, it suffices to show that the following series

converges:

00 1 k i 1 _t
A—kZO(SNRav) F( SNRUV) Z / (SNRO—) e 't (3.85)

In the same manner, A will converge if its remainder R;, after truncation of Aatthe k =i—1

term, converges to zero for i — +oo, i.e.:

. o . —t o
zggéo B ZE-IIEXJZ / (SNRO’ ) 1 dt =0 (3.86)

k=11 /SNRoy
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But (3.86) holds, since for ¢ > g

k
I ! L o (3.87)
im = )
k—+oo \ SNRo,, / tkt1
5
4.5¢ -
4
3.5( — m=0.4,5=0.16 i
v \"
= — m=04,5=225 |
L 3 % %
3 ——m=15,0 =0.16
L 2.5 v v g
o m =1.5,0 =2.25
= v Vv
& 2 |
1.5f 1
1t |
0.5F :
O L L L L L
5 10 15 20 25 30 35

Number of terms

Figure 3-4: Convergence of the infinite-series (3.77), for different {m,, oy}
values and a MISO 4 x 1 system with SNR = 10dB.

Figure 3.4 demonstrates that (3.77) converges relatively fast (a few tens of terms are
required) to the capacity value calculated by the Monte-Carlo method with 10* channel
samples. Observe that the lower the m, and the higher the o, the faster convergence is

achieved. ]

3.4 Simulation results

3.4.1 Simulation model

In the following, a spatially correlated MISO Rician fading channel with N = 4 transmit
antenna elements is produced and subsequently used in simulations in order to validate
the theoretical analysis. The produced channel is for uniform (i.e. equi-spaced) linear

array (ULA) transmit antennas. The channel transmit covariance matrix R is produced by
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the two-path delay spread model proposed in [86] and has the following Toeplitz form:

1 pi2 pi3 pu

* 1 .
R=5 P12 P12 P13 (3.88)

pPis P12 1 pi2

Pia Pis Pz 1
where f is the channel variance and py;, k,1 = 1,...,4, is the correlation coefficient be-
tween the k" and the [ transmit antenna element. According to [86] the correlation co-
efficient is a function of the transmit antenna inter-element distance D (in wavelengths),
the angular spread A of multipath at the transmit antenna location, and the azimuth ¢ of
the receive antenna location with respect to the boresight of the transmit antenna, (see
Figure 3.5). The simulations presented in the following are for A = 10° (typical mean
value for urban macro-cellular environments, according to [87]) and ¢» = 0°. In this case,
pr are positive real numbers, (this is due to » = 0° [86]), and depend only on D, (since
A and 1 are assumed to be fixed). Hence, R is completely characterized by 5 and D, or,
equivalently, by 5 and the transmit antenna correlation coefficient (between two succes-
sive elements of the transmit array antenna) p = p;». Note that p;3 and p4 are uniquely

defined once p,, is determined for a value of D.

Based on the analysis presented in [86], the relation between p and D (expressed in

wavelengths \), when A = 10° and ¢ = (0°, is shown in Table 3.1:

Table 3.1: Relation between correlation coefficient p and interelement dis-
tance D

p|0102]|03|04|05 )06 |07 08|09
D|26|237(215|194 173|151 |13]|1.04|0.72

The channel distribution parameters that affect optimum beamforming are 3, p and
u, for the aforementioned model. The simulations that follow are with respect to these

parameters and the SNR.
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) Ix Antenna
-~ ) Boresight

l«—D— 2 BS 3 4

Figure 3-5: MISO 4 x 1 system, where the multipath from a user (MS), at an
angle v with respect to the transmit antenna boresight, arrives at the base
station (BS) with an angular spread A.

3.4.2 Calculation of the optimum beamformer

Under the channel simulation model described above, for most of the 3, p, u and SNR
values, the function Zyavg(#) (defined in (3.75)) is unimodal’ in [0, ¢], as shown in the
example in Figure 3.6(a). For these cases, if a starting point is required by the algorithm
employed for solving the 1-D optimization problem (3.71), it can be chosen arbitrarily in
[0, ¢]. However, a starting point/angle that ensures fast convergence is the angle 6, =
Osnr, Which is defined as the angle of the max SNR beamformer (see Section 3.4.4) with

p. The example in Figure 3.6(a) demonstrates that 6, is close to fsng.

Nevertheless, Zptag(f) is not always unimodal. For some (limited) p, p values®,
Thiavg(6) appears to have two local maxima in [0, ¢, as it is demonstrated in Figure 3.6(b).
In these cases, starting with 6, = 6syr, the convergence to the overall maximum is not
always successful, (as shown in Figure 3.6(b), the 1-D algorithm will possibly converge

to the lower local maximum, if 6, = 6sxgr). Hence, the convergence to f,y is ensured, if

"The unimodality of Tot.avg(¢) implies that this function has a unique maximum, 6o, and that v 6, 6, with
01 <02 < eopt or eopt <O <04, itis: Ibf,avg (91) < Ibf,avg (92) < Ibf,avg (eopt)-

8e.g. for ULAs and the two-path delay spread correlation model used in these simulations, this range of
values is p > 0.7 and all g with 1.1 < ||p]|2 < 1.4. that result in ¢ > 75°.
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the algorithm runs twice, from two different starting points®, e.g. 6,; ~ 0 and 6,, ~ ¢.
Algorithms that do not require a starting point (e.g. direct search methods [76]) must run
for multiple intervals in [0, ¢], where unique (local) maxima exist. Nevertheless, it has
been observed from extensive simulations that the two local maxima never appear to-

gether below or above ¢/2 and hence, [0, ¢|] can be split into just two intervals, ([0, ¢/2]

and [¢/2, ¢]).

Moreover, extensive simulations with thousands of random transmit covariance ma-
trices R show that the aforementioned behavior of the Zy;a.q(6) is also valid for random

array antenna geometries and correlation models.

3.4.3 Computational complexity assessment

The optimization problem (3.76) is solved using Theorem 3.1 with an 1-D direct search
algorithm, (a combination of parabolic interpolation and golden section search methods),
and its computational complexity is compared with algorithms which can be also em-

ployed to solve the same (optimum beamforming) problem, such as:

a. An interior-point multi-dimensional algorithm (with a logarithmic barrier function),
using as a starting point the max SNR beamformer. An interior-point method was also
employed in [49] for the calculation of the optimum transmit covariance matrix in spatially

correlated MIMO/MISO Rician fading channels.

b. The iterative algorithm proposed in [50]. As mentioned in Section 3.1, this algo-
rithm'© is an asymptotic approach that is used to calculate the overall optimum transmit
covariance matrix without rank constraints in spatially correlated MIMO/MISO Rician fad-
ing channels and hence, it is not dedicated to solving the optimum beamforming problem,
generally. Nevertheless, this algorithm can calculate the optimum beamformer when the

necessary and sufficient optimality condition (2.34) is satisfied.

9Parallel processing is recommended in this case, for reduction of the computational time.
10The algorithm proposed in [50] was shown to have significantly lower computational complexity than
the algorithm presented in [49], and it almost achieves ergodic capacity (for the same number of steps).
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The three algorithms are evaluated using the channel scenarios presented in Table
3.2. The first scenario does not satisfy the optimality condition (2.34)!!, whereas the
second and third scenarios satisfy (2.34). The algorithms are restricted to perform 10 it-
erations (enough for convergence to the Cys) using Matlab on the same computer (1.8GHz
processor). In Tables 3.3 and 3.4 we present the parameters of the 1-D and the multidi-
mensional (interior-point) algorithm, respectively, which have been used in the simulations
for the calculation of the optimum beamformer. Table 3.5 presents the parameters of the
algorithm employed for the solution of the 2 x 2 non-linear system of equations, which is

required in each iteration of the asymptotic approach [50].

Table 3.2: Simulation scenarios

| [ 3 [ »[lulz] ¢ [SNR]K [Condition (2.34) ]
Scenario#1 | ~0.1250 | 0.9 | ~0.7 | ~85° | 10dB | 1 Not satisfied
Scenario#2 | ~0.1250 | 0.5 | ~ 0.7 | ~85° | 10dB | 1 Satisfied

Scenario #3 | ~0.2273 1 09 | ~ 0.3 | ~85° | 10dB | 0.1 Satisfied

Table 3.3: Parameters of the 1-D algorithm for the calculation of the optimum

beamformer
| Parameter | Description or Value |
Matlab Function fminbnd
Algorithm Golden section and parabolic interpolation

MaxlIter 10
MaxFunEvals 200
TolFun 1040
TolX 1040

n this case the asymptotic approach in [50] does not calculate the optimum beamformer, but it calcu-
lates the optimum transmit covariance matrix Xopt, With rank{Zop} > 1.
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Table 3.4: Parameters of the multidimensional algorithm for the calculation
of the optimum beamformer

| Parameter | Description or Value |
Matlab Function fmincon
Algorithm Interior-point with logarithmic barrier function
Starting vector max SNR beamformer
MaxIter 10
MaxFunEvals 200
TolFun 10~
TolX 10~

Table 3.5: Parameters for the solution of the 2 x 2 (non-linear) system of
equations in [50]

| Parameter | Description or Value |
Matlab Function fsolve
Algorithm Trust-region-dogleg

Starting point [1,1]
MaxIter 10
MaxFunEvals 200
TolFun 107°

TolX 107°

For reasons of consistency, the same complexity assessment analysis that was per-
formed for the algorithms presented in [49]-[50], was also carried out here. The compu-

tational complexity is shown in terms of program runtime per iteration versus:
a. The number of channel samples in Figure 3.7(a).

b. The number of transmit antenna elements'? N for 2x 10* channel samples, in Figure

3.7(b).

12Note that scenarios #2 and #3 satisfy the condition (2.34) when N = 4. If N # 4 this may not be the
case and hence, the asymptotic approach may not calculate the optimum beamformer. Nevertheless, the
runtime with respect to N is indicative of the computational complexity of this algorithm.

95 Dimitrios E. Kontaxis



In Figure 3.7(a), the runtime scales almost linearly with the number of channel sam-
ples for both the interior-point method and the 1-D algorithm, while it is constant for the
asymptotic approach®3. Nevertheless, the runtime of the 1-D algorithm increases very
slowly, it is on average ~ 3.6 to 7.3 times faster than the interior-point method, and ~ 1.4
to 18 times faster than the asymptotic approach, (observe also that for a number of chan-
nel samples < 3 x 10* in scenarios #1 or #2 and < 2 x 10* in scenario #3, the interior-point
method is faster than the asymptotic approach). The same trends can be noticed not only
with the employed simulation model but also with any random antenna array geometry
and correlation model. This relative processing gain can be exploited to either reduce

cost by using devices with lower processing power or in order to:

a. Operate in environments with smaller coherence time (e.g. 3.6 to 7.3 times), and

hence, support operational scenarios with higher mobility (3.6 to 7.3 times higher speed).

b. Increase the available processing power required by the system for other supple-

mentary techniques.

In Figure 3.7(b), the runtime scales as N? for the interior-point method, whereas for
the 1-D algorithm scales linearly and with a low rate, (for N = 4/8 the 1-D algorithm is
approximately 5.2/9.3 times faster than the interior-point method, respectively). Moreover,
the asymptotic approach appears to scale almost as N? for the scenarios with higher
Rician factor (Table 3.2, scenarios #1 and #2) and almost linearly for the scenario with
the smaller Rician factor (Table 3.2, scenario #3). For N = 4/8 the 1-D algorithm is

approximately:
¢ 5.63/5.64 times faster than the asymptotic approach for scenarios #1 and #2.

e 10/12.7 times faster than the asymptotic approach for scenario #3.

13The asymptotic approach does not require Monte Carlo integration and hence, it is not affected by the
number the channel samples. However, it can be observed that the runtime of the asymptotic approach is
affected by the Rician factor K: compare in Figure 3.7(a) the curves for scenario #1 or #2 (K = 1) with
scenario #3 (K = 0.1). Moreover, the complexity of the algorithm is not affected by (2.34), e.g. the runtime
in scenario #1 ((2.34) is not satisfied) is the same with scenario #2 ((2.34) is satisfied).
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Figure 3-7: Runtime vs. the number of channel samples for a MISO 4 x 1
system (a), and the number of transmit antenna elements N (MISO N x 1)
with 2 x 10* channel samples (b).
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3.4.4 Simulation results for the ergodic beamforming capac ity

Comparison with the max SNR beamformer

The ergodic beamforming capacity achieved by the optimum beamformer (calculated
by Theorem 3.1) can be compared with the average mutual information achieved by the
max SNR beamformer, denoted as v,..sxe € CP*Y. The max SNR beamformer is the
beamforming transmision along the complex conjugate transpose dominant eigenvector
of the channel transmit correlation matrix &,[h'h], [75]. The max SNR beamformer is

currently the prevalent real-time beamforming transmission scheme [75].

In the following, results are produced for the mean information rate gain, which is
defined as:

S[Azbf,avg] = S[Ibf,avg (SNR, Vopt) - Ibf,avg (SNR, VmaXSNR)] (3-89)
(note that Zyf avg (SNR, Vopt) = Chy).

E[AZntavg] is calculated for 10* samples!* of u and fixed p, 3, SNR and || u||2, ¢, (i.e. all
samples of p have fixed norm and angle with respect to Uﬁl). In this manner, since p is
averaged out, it is E[AZptavg] = f(||1t]l2: p, B, ¢, SNR). Figure 3.8 shows an example where
E[AZytavg] is plotted versus ||u||; and p, for 5 = 1, ¢ = 85° and SNR = 10dB. Similar
simulations, performed over a wide range of ||u||2, p, 5, » and SNR values, lead to the

following conclusions:

a. The optimum beamformer is always better than or asymptotically equal to the max

SNR beamformer. The mean relative information rate gain of the optimum beamformer

with respect to the max SNR beamformer, which is defined as <€ [Z ATptavg ]) is
bf,avg(SNR,VmaxSNR)

less than 5% in most cases. However, there are operational scenarios where the optimum

beamformer achieves higher mean relative information rate gain: e.g. the peak value in

Figure 3.8 (~0.39bps/Hz for ||u||2 = 1.67, p = 0.9, ¢ = 85°, SNR = 10), corresponds to

a mean relative information rate gain ~ 8.5%. Generally, the mean or the instantaneous

¥The elements of u are produced by independent, zero-mean, unit variance complex Gaussian
distributions.
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Figure 3-8: £[ATZytavg) VS. |||z @and p, for a MISO 4 x 1 system with {N = 4,
B =1, ¢ =85° SNR = 10dB}.

relative information rate gain can reach 10%, but it can rarely exceed this value.

b. The mean information rate gain £[AZyayg| increases with the SNR, following a
concave curve, as shown in Figure 3.9. For high SNR values the gain converges asymp-
totically to a maximum value which depends on p, 3, ||¢||2 and ¢. The same figure shows
the mean relative information rate gain (with respect to the max SNR beamformer). It can
be observed that the best performance for the optimum beamformer in this operational
scenario is achieved for SNR = 6dB, which is ~ 8.8% better than the Zy 4,4 (SNR, Vinaxsnr),
(note that the best mean relative information rate gain does not correspond to the highest

mean information rate gain).

Comparison with the ergodic capacity

The ergodic beamforming capacity achieved by optimum beamformer is compared
with the ergodic capacity achieved by the asymptotic approach from [50] for different SNR
values and operational scenarios®®. In [50] it was shown that the therein proposed algo-

rithm achieves the same ergodic capacity with the algorithm in [49], (and hence, results

5These results are for a random p, p = 0.5, ¢ = 85° and different values of the Rician factor K (K =
0.5/0.1).
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system with {||u|l2 = 1.6, p = 0.9, ¢ = 85°%, § = 1}.

with respect to the algorithm from [49] are omitted). In the scenario of Figure 3.10(a),
condition (2.34) is satisfied for SNR < 20dB and hence, in this SNR region, the optimum
beamformer coincides with the asymptotic approach. For SNR > 20dB condition (2.34)
is not satisfied, however, the asymptotic approach does not show practical advantage
over the optimum beamformer. In the scenario of Figure 3.10(b), (2.34) is never satisfied
and hence, the asymptotic approach shows a gap (i.e. higher rate) with respect to the
optimum beamformer, especially for high SNR values (in the low SNR region the gap is
extremely small). However, this gap corresponds to < 4% relative information rate gain,
(defined as (Cgci;cbf)) The same behavior was also observed for other similar simulation
scenarios.

In Figure 3.11 are presented results using a channel sample from the channel distribu-
tion that was used in the simulations of [49] and [50]*¢. The channel transmit covariance
matrix used in this simulation example corresponds to a random array antenna geome-

try/configuration. The results are for Rician factors K = 0.1 and K = 1, and demonstrate

that the optimum beamformer has near-optimum performance in both cases, (practically,

®More precisely, the same transmit covariance matrix (R;) along with the first row of the channel mean
matrix (H,,,) have been used, (see Appendix of [49]).
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it achieves slightly better rate than the asymptotic approach (i.e. Cyt > Cerg), for the same

number of algorithmic steps).

Figures 3.10 and 3.11 indicate that there are channels where the optimum beamformer

may have near-optimum performance, i.e. Cpt = Cerg.
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Figure 3-10: Ergodic capacity Cegy and ergodic beamforming capacity Cly
achieved by the asymptotic approach from [50] and the optimum beam-
former, repectively, versus the SNR, for a MISO 4 x 1 system and different
fading scenarios: (a) {K = 0.5, p = 0.9, ¢ = 85°}, (b) {K = 0.1, p = 0.5,
¢ = 85°}.
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Chapter 4

RATE-OPTIMUM BEAMFORMING TRANSMISSION AND RESULTS
FOR THE OPTIMALITY OF BEAMFORMING CONDITION FOR MIMO
RICIAN FADING CHANNELS

4.1 Introduction

It was proven in the previous chapter for MISO systems, that the calculation of the
optimum beamformer for the combined CMI-CCI model is an 1-D optimization problem

which can be solved very fast and efficiently.

The present chapter extends the work presented in Chapter 3 to MIMO Rician fading
channels, and shows that a similar simple 1-D scheme can also be employed for the cal-
culation of the optimum beamformer. Furthermore, it demonstrates via simulations that
there are cases where the optimum beamformer has significant rate gains (e.g. approxi-
mately 0.83bps/Hz for a MIMO 4 x 4 channel at SNR = 10dB), compared to the max SNR
beamformer [75]. Finally, it shows that the proposed 1-D scheme has significantly bet-
ter computational complexity than other currently employed multi-dimensional algorithms
(e.g. interior-point methods), and hence, real time applications are feasible even when

devices use moderate processing power.

This chapter is organized as follows: In Section 4.2 the channel model and the op-
timum beamforming problem are introduced. The solution of the optimum beamforming
problem is presented in Section 4.3. In Section 4.4 simulations are provided that support

the theoretical analysis and Section 4.5 concludes the chapter.

4.2 System model and problem statement

Assume a MIMO system in a flat fading channel, with N transmit and M receive an-

tenna elements. The received signal y € C*™ is expressed by (2.1) and the channel
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matrix H follows the model expressed by (2.25). Equations (2.1) and (2.5) are repeated
here for convenience:

y = Hx? +n” 4.1)

H =H,, + R/?H,R;"” (4.2)

Throughout this chapter it is assumed that the channel mean matrix H,, € CM*¥ in
(4.2) represents the specular, i.e. the Line of Sight, component between the transmitter

and the receiver.

At this point it must be noted that rank{H,,} = 1, as referred to in [47] and explained
in the following: When the mobile station has a fixed position with respect to the base
station, H,, is the LOS component, which is expressed as H,, = ala;, where a,/a, are
the (row) vectors of the receive/transmit incident plane wave, respectively [47]. In this
case, since a, and a; do not change in time, H,, is deterministic and rank-1. When the
mobile station moves around the base station, then a, and a; change in time and H,, is
the mean LOS component, expressed as H,, = &[c(t)al(t)a;(t)], where c(t) is a scalar
(function of time) related to Doppler, (see also the model of 3GPP in [87]). Even in this
case, H,, is a rank-1 matrix, since a,(t) and a,(t) are practically independent variables,

(the orientation of the MS antenna is assumed to be random).

Since H,, represents the LOS component, the combined CMI-CCI model assumed
in this chapter is a long-term model, (see discussion in Chapter 2). However, in MIMO
systems, even in the long-term combined CMI-CCI model it is possible to have a non
rank-1 LOS (mean) matrix. This is possible in short-range communications (i.e. when the
distance between the transmit and receive antennas is comparable to the antenna size),
where the LOS component cannot be considered as a plane wave but as a spherical
wave [88]-[92]. In this case, as in the case of the short-term combined CMI-CCI model
for MIMO systems, the beamforming optimization problem is multi-dimensional, (and the

method presented hereafter cannot be employed for its solution).

In the context of our analysis it is assumed that the receiver has perfect CSl, whereas
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the transmitter is only aware of the channel long-term statistics H,,,, R; and R.., which are

calculated by the receiver and fed back to the transmitter via a low-rate control channel.
The covariance matrix X of the transmitted signal x is restricted to be rank-1 when

beamforming is considered, and hence:

> =Pvlv (4.3)

with P the transmitted power and v € C'*¥ the unit-norm beamforming vector. In this

case the ergodic beamforming capacity is expressed by (2.29):

be = mlax EH [Ibf (SNR, Vv, H)] = m‘ax Ibf’avg (SNR, V) =

[vl2=1 [[vl2=1

= max Eq [log, det (Iyy + SNRHvIVH')| (4.4)

[vi2=1

The beamforming vector that maximizes (4.4) is the solution of the following optimiza-
tion problem:

Vopt = arg max Totavg(SNR, V) (4.5)
S={v;ve C"N || v|.=1} (4.6)

Generally, (4.5) is a complex N-dimensional optimization problem. In the next section,
Theorem 4.1 proves that (4.5) can be transformed into a simple 1-D optimization problem,

which can be subsequently solved using any standard 1-D search algorithm.

4.3 Optimum beamforming transmission in MIMO Rician fading channels

Theorem 4.1 ([93]) Consider a flat fading Rician MIMO channel expressed by (4.2). The

optimum beamformer is the solution of the following 1-D optimization problem:
Vopt = arg max Toiavg(SNR, v) 4.7)
So = {V9 ; e [07 ¢]} (48)
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where ¢ € [0, 7/2] is defined as:

¢ = cos ™ (|qui) (4.9)

with q"eC™*¥ the right singular vector of H,, and u;, € CV*! the dominant eigenvector of

R;. Moreover, vy in (4.8) is defined as:
vy = cosO[1 Z(rely_1 — G)_l]WTUT (4.10)

where:

a. U is the eigenvector matrix of R; and W is a complex N x N matrix with its first
column defined as W,; = U”qf, whereas the rest of its columns (W,;, i = 2,..., N) are

arbitrarily chosen with the restriction that WiW = I. Moreover, it is:

K22 K2N

G=| : .. (4.11)
KN2 KNN

Z — [KlQ K13 st KlN] (412)

where K, is the [** row and m'* column element of matrix K, which is defined as:

N
> N(ROWLIWS, (4.13)

=1

K

b. ry is the maximum real root of the 2(N — 1)-degree polynomial:

N—-1 N—-1 N-—1
P(x;0) = cos”0 > |Zg;|” [ [[@- MG))?] —sin” 60 [ [ (z — X(G))? (4.14)
i=1 ;i =1

[N

where g; € CIV-Dx1 s the ** eigenvector of matrix G.

Proof: Using the identity |I,; + AB| = [Iy + BA| with A € C**¥ /B € C"*™ and setting
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z = Hv', itis:

M
Totavg(SNR, v) = &,[loga(1+SNR Y _ |z;[*)] (4.15)

=1
where z; is the " element of vector z. Using the channel model (4.2), z is expressed as

follows:

z = H,,vi + R/?H,R}*v! (4.16)

Hence, the mean and covariance of z can be calculated as:
m, = &£[z] = H,,v' (4.17)

¥, =£&[(z—m,)(z—m,)] = (VR,v)R, (4.18)

Using (4.17), (4.18), and setting 02 = vR,v', (4.16) can be written equivalently:
z =m, + o,R!/*h’ (4.19)

where h,, € C'*™ s a vector of i.i.d zero-mean and unit variance complex Gaussian
elements. Equation (4.19) is equivalent to (4.16) since both have exactly the same distri-

bution and hence, using them in (4.15) they produce the same ergodic capacity.

Using singular value decomposition (SVD) for the H,,,, (4.17) can be written as:
m, = (uqv’)p” (4.20)
where p” € CM*! and qf € CV*! are the left and right singular vectors of H,,,, respectively,

and y is its (unique) singular value, (H,, is rank-1 and hence is modeled as H,, = up’q).

In the following it is proven that (3.15) is an increasing function of the parameters o2

and |m,;| (i = 1,..., M), (m,; is the i element of vector m,):

First we define
My - MM

RYZ2=1| + . (4.21)

v oo TMM

109 Dimitrios E. Kontaxis



hy = [hy ho -+ hag)” (4.22)

From (4.19) and (4.21)-(4.22), the random variables z;, can be written as ([75]):

z; = |my ;| + 0wy + jo,wy (4.23)
where
M
wi =Y R{ra}R{h} — 3{ra}3{m} (4.24)
=1
M
wy = Y R{ra}3{h} — I{ra}R{h} (4.25)
=1

(M{-} and J{-} denote the real and imaginary parts). Substituting (4.23) into (4.15) and:

a. Differentiating (4.15) with respectto m,,|, i =1,..., M:

aIbf,avg
a | my, N ‘

|my ;| + owy;

1+ SNR Zf‘il [(|mzz\ + Uzwli)Q + (azwgi)ﬂ

= &, |2SNR (4.26)

Using the fact that wy; is symmetrically distributed around 0, from (4.26) it can be observed

that:

aIbfavg

— >0 4.27

olm, | @27
b. Differentiating (4.15) with respect to o,:

Zf\i wy; (|my | + owi;) + 0w,
a—tzébf,an — gz QSNR 1 |:M . 2] . (428)
Oz 1+ SNR Zi:l [(|mz,z‘ + azwli) + (Uzw2i) }

Using the fact that wy; and wy; are i.i.d zero-mean Gaussian distributed (real) random

variables, from (4.28) it can be observed that:

aIbf,avg

P> .
20 (4.29)

Hence, from (4.27) and (4.29) it becomes clear that Zys ayg increases monotonically with

|m, ;| and o,. Equivalently, it can be concluded that Z a4 increases monotonically with
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the parameters o2 and |qv'|, since the quantity |qv'| is common for all |m, ;| (see (4.20)).
This is also demonstrated graphically in Figure 4.1. As a result, vo, can be determined
by maximizing (4.15) with respect to vR;v' and |qv'|. This optimization problem can be
solved now using a similar method with that presented in Chapter 3 for MISO systems,
with the following modification: the normalized channel mean vector in the MISO case

(which was denoted in Chapter 3 as m € C'*V) is replaced by q, in the MIMO case. W

(bps/Hz)

bf,avg
»

|
!
o

lav ™|

(o)
z

Figure 4-1: Zysag VS. 0, and |qv'|, for {R, = I, p=1}.

For MIMO 2 x M systems and some special cases of N x M systems, equation (4.10)

of Theorem 4.1 can be further simplified, as shown with Theorem 4.2 below.

Theorem 4.2 ([93]) For MIMO systems with N = 2 or N > 3 and rank{R;} < 2, vy can

be expressed by the following (closed-form) equation:

Tt * (o TyaT g%
Vg = COS «9% + sin 6 q’(q uTl wia) (4.30)
| uiafq [l I a*(q"a; — ujq) ||
Proof: The proof of this Theorem is similar to the proof of Theorem 3.2. [

The 1-D function with respect to 0, f(0) = Zpsavg(SNR, vy) (See (4.7)-(4.8)), is continu-
ously differentiable (see Chapter 3) and hence, gradient-based or direct search algorithms

can be employed to solve the optimization problem (4.7). The optimum value 6, that
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maximizes f(¢), also determines the optimum beamformer through (4.10): vop = Vi,

4.4 Simulation results for the optimum beamformer

4.4.1 Simulation model

A spatially correlated MIMO 4 x 4 Rician channel (see (4.2)) is produced and used in
the simulations in order to demonstrate the theoretical analysis. The simulations are for
linear, equi-spaced Tx/Rx array antennas (i.e. ULAS). R; is produced using the two-path

delay spread correlation model [86] and has the following Toeplitz form?:

1 /)tlz Pt13 Pt14
(Pin)" 1 Py Pl
Rt — Bt , . (431)
(P13)* (:012)* 1 P12

(Pizx)* (/)tlg)* (/)tlz)* 1

where 3, is the channel transmit variance and p!;, | = 2, 3,4, is a function of the transmit
antenna array inter-element distance D, and angular spread A;, as well as of the azimuth
1 of the receive array antenna with respect to the boresight of the transmit array antenna.
In the same manner the parameters j,, pi,, D,, A, 1, are defined for the receiver. These

parameters are shown in Figure 4.2.

The simulations presented in the following are for A; = 10° (typical mean value for
urban macrocellular environments [87]) and for Tx/Rx antennas with aligned boresights,
ie. Y, = ¢, = 0° In this case, py are positive real numbers and R, is completely
characterized by §; and the transmit antenna correlation coefficient p;, = pl, = f(Dy),
(p13 and py4 are uniquely defined once p!, is determined for a value of D, since A; and
1y are fixed). From [86], for D, = 0.5\ (Rx antenna inter-element distance), A, = 68°
(typical mean angular spread value at the receiver/mobile station for many operational
environments [87]) and v, = 0°, the Rx antenna correlation coefficient p, has a fixed

value p, = —0.08. Moreover it is assumed that 5, = 5, = 5. Finally, the channel mean is

IR, is defined exactly in the same manner.
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Rx antenna
Rx antenna
/ boresight Tx antenna

boresight

Tx antenna

Figure 4-2: MIMO 4 x 4 system.

modeled as H,, = uq'q (i.e. qf = p7, since N = M). Therefore, the channel distribution

parameters that affect the optimum beamformer are p, 5, p;, q and obviously the SNR.

4.4.2 Computational complexity assessment

Setting =1, 8 =1, p, = 0.9, SNR = 10dB and choosing a random? q, the optimiza-
tion problem (4.7) is solved using Theorem 4.1 along with an 1-D algorithm, (a combina-
tion of parabolic interpolation and golden section search methods). The parameters of

the 1-D algorithm are described in Table 4.1.

Table 4.1: Parameters of the 1-D algorithm for the calculation of the optimum

beamformer
| Parameter | Description or Value |
Matlab Function fminbnd
Algorithm Golden section and parabolic interpolation
MaxIter 10
MaxFunEvals 103
TolFun 1040
TolX 1040

2q = [0.1947 + 0.0655;5 0.2898 — 0.6247j — 0.0521 + 0.68565 0.1041 + 0.00235]. This q results in ¢ = 85°
(see (9)), which is a computationally demanding case for the algorithm of Theorem 4.1, since it requires a
very wide search area.
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The same optimization problem is then solved using an interior-point (multi-dimensional)
algorithm, with starting point the max SNR beamformer (see subsection 4.4.3). The pa-

rameters of the multidimensional algorithm are described in Table 4.2.

Table 4.2: Parameters of the multidimensional algorithm for the calculation
of the optimum beamformer

| Parameter | Description or Value |
Matlab Function fmincon
Algorithm Interior-point with logarithmic barrier function
Starting vector max SNR beamformer
Maxlter 10
MaxFunEvals 103
TolFun 10~%
TolX 10~%

Both algorithms are limited to perform 10 iterations (enough for convergence to Ciy
with an error tolerance of 10~*) with the same computer (1.8GHz processor) using Matlab.
Figures 4.3 and 4.4 show the computational complexity in terms of program runtime per

iteration versus:
a. The number of channel samples, for N = M = 4 (Figures 4.3).

b. The number of Tx antenna elements® N, with M = 4 and 2 x 10* channel samples

(Figures 4.4).

Similar plots are shown in [49]-[50] for the complexity assessment of the algorithms

presented therein.

The runtime scales almost linearly with the number of channel samples for both algo-
rithms (Figure 4.3), however the increase rate of the 1-D algorithm is significantly lower,
(it is approximately 8.5 times faster than the interior-point method). Also, for N < 8 the

runtime scales as N? for the interior-point method, whereas for the 1-D algorithm scales

SWhen N # M, H,, is modeled as H,,, = up”'q (see Theorem 4.1). For these simulations, random p, q
vectors have been used.
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Figure 4-3: Runtime vs. the number of channel samples.

almost linearly, which is faster than the order of N? predicted by theory (a similar devi-
ation between theory and practice has also been observed in [49]), and with a low rate
(Figure 4.4), (for N = 4/8 the 1-D algorithm is ~ 8.3/13 times faster than the interior-point
method, respectively). Generally, from Figures 4.3 and 4.4, it can be concluded (as a rule
of thumb) that the 1-D algorithm is approximately an order of magnitude faster than the

interior-point method.

The theoretical computational complexity of the 1-D algorithm in Theorem 4.1 is proven

in the following proposition.

Proposition 4.1 The computational complexity of the 1-D algorithm for the calculation of

the optimum beamformer is O(N3 + M!).
Proof:
The following assumptions are made:

a. The number of digits of all real parameters is fixed, e.g. n digits. This means that
the operations of summation, subtraction and multiplication between real/complex scalars
(and as a result, the functions cos, sin, log) will not affect the computational complexity of

the algorithm, as long as n remains invariant, (e.g. summation and subtraction are O(n),
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Figure 4-4: Runtime vs. the number of transmit antenna elements (V).

multiplication is O(n?), etc.). Hence the only parameters that can affect the computational
complexity of the algorithm are the number of transmit (V) and receive (M) antenna

elements.

b. The 1-D search method used for the solution of the optimization problem (4.7) is
the golden section search method, described in [76]. The search is with respect to the
parameter 6. According to this method, (which is direct search), the convergence to o is
accomplished by successive calculations of Zya,4(SNR, vy) (see (4.4) and (4.10)) at the
(two) limits of an interval, which changes dynamically and becomes successively smaller
at each step of the search, converging to . Hence, the computational complexity of the
proposed 1-D algorithm coincides with the computational complexity of the calculation of

.’Z:bf’avg (SNR, V@) .

c. Itis assumed that the number of steps of the golden section search for convergence

to ot is Not affected by NV and M, as long as the search interval [0, ¢] remains invariant.
Complexity of vy:

e The complexity of the root 4 is O(N) : r4 is the maximum real root of the polynomial
P(z;0) and in Chapter 3 it was shown that this root is restricted in the interval z > A\, (G).

Hence, the Netwon-Raphson method can be employed in this interval for the calculation
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of ry (i.e. there is no need to employ the Horner method). The computational complexity
of the Netwon-Raphson method depends on the order of P(x;60) and is O(N).
e The complexity of r¢Iy_1 is O(N).
e The complexity of rgIy_ 1 — G is O(N).
e The complexity of (ryIxy_1 — G)™'is O(N? + N) = O(N?).
e The complexity of cos 0Z(rgly_1 — G)~'is O(N3 + N2 + N) = O(N?) .
e The complexity of vy = cos0[1 Z(rgIy_; — G)"yWTUT is O(N? + NM).
Setting (4.10) in (4.4), the complexity of Zya,4(SNR, vy) is as follows:
e The complexity of {/SNRv] is O(N® + NM + N) = O(N3 + NM).
e The calculation of H\/SNRv} is O(N® + NM).
e The complexity of I;; + SNRHvIvH' is O(N3 + M? + NM) = O(N?3 + M?).

e The complexity of det(I; + SNRHvIVHYT) is O(N3 + M2+ M!) = O(N? + M!), (since
M > M? for M > 3).
The complexity of Zy: avg(SNR, vy) is not further affected by log,(-) and the Monte Carlo

integration that must be employed for the calculation of the average mutual information

(€m [Zv]), when a fixed number of channel samples is used.

Hence the complexity of Zyt avq(SNR, v4) - and hence, of Theorem 4.1 - is finally O(N?*+
MY). [ |

4.4.3 Simulation results for the ergodic beamforming capac ity

In the following the ergodic beamforming capacity achieved by the optimum beam-
former is compared with the average mutual information achieved by the max SNR beam-
former, denoted as v,,..sxr € C*¥, and calculated as the complex conjugate transpose

dominant eigenvector of the channel transmit correlation matrix Eg[HH] [75].

In the following, results are produced for the mean information rate gain, which is
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Figure 4-5: E[AZtavg) VS. |12 and p,, for a MIMO 4 x 4 system with {¢ =
852, 5 = 0.2, SNR = 10dB}.

defined as:

g[AIbf,avg] = g[Ibf,avg (SNR, Vopt) - Z'bf,avg (SNR, VmaxSNR)] (4.32)

Note that Zntavg(SNR, vopt) = Chy, the mean is calculated over a set of 10* samples? of
q, holding fixed {x, 3, p:, SNR, ¢} (i.e. all samples are “forced” to have a fixed angle

with respect to u; (see (4.9)). In this manner, since q is averaged out, it is E[AZytag] =

f(lu’7 67 Pt ¢7 SNR)

Figure 4.5 demonstrates an example where E[AZy 4] is plotted versus ;. —p,, for {5 =
0.2, ¢ = 85°, SNR = 10dB}. Observe that the mean capacity gain is high, (0.83bps/Hz for
{p+ = 0.9, n = 0.4}). Simulations performed for a wide range of {y, 53, p:, », SNR} lead to

the following conclusions:

a. The optimum beamformer shows advantage over the max SNR beamformer (i.e. a

high £[AZyav]) for relatively small 5 — 1 and high p, — ¢ values.

b. £[AZysavg] increases monotonically with the SNR, (e.g. in the example of Figure 4.5,

the gain 0.83bps/Hz increases to 1bps/Hz when SNR = 15dB).

4The elements of q are produced by independent, zero-mean, unit variance complex Gaussian
distributions.
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4.5 Simulation results for the optimality of beamforming

This section presents simulations and results for ULAs and spatially correlated MIMO

Rician fading channels [94].

First, a MIMO 4 x 4 channel is simulated, with R; and R.. produced by the two-path de-
lay spread correlation model developed in [86]. For ULAs the R, /R, covariance matrices

have a Toeplitz form and are expressed as in (4.31).
Throughout the simulations the following assumptions are made:

a. The transmit/receive array antennas are aligned for maximum directional radiation

and reception at boresight, (v; = ¢, = 0°).
b. D, = D, = \/2.
c. A, = 68°, (typical mean value for many operational scenarios [87]).
d. 8 = 5,0, is referred to as “channel variance”.

Under the aforementioned assumptions and exploiting the analysis presented in sec-
tion 4.3 (see also [74], [93]), the calculation of v (1-D algorithm) is affected by the SNR,
the channel variance £, the transmit antenna correlation coefficient p; = pt, = f(4;), the
singular value p of H,,, the dominant eigenvector q of H,, (when N = M = 4, H,, is
modeled as H,, = uq'q, i.e. p” = q', where p and q were defined in Theorem 4.1) and
the angle ¢ = cos™! |qu, |, where u; € CV*! is the dominant eigenvector of R;. Note that
these parameters are all scalars except from q, which is a complex vector. In order to
show the effect of q on (2.34), the scalar parameters are fixed to different sets of values,
the validity of (2.34) is checked for 10* random q vectors (the elements of q are produced
by i.i.d zero-mean complex Gaussian distributions with unit variance), and the following
probability is calculated:

_ Number of times (2.34) is true
~ Number of times (2.34) is tested

Fof (4.33)
High Pry; for a set of values for the scalar parameters indicates that (2.34) has a high prob-
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Figure 4-6: Optimality region u — p;, for a MIMO 4 x 4 system and {SNR =
0/3dB, ¢ = 35°/65°, A, = 68°}.

ability to be satisfied in this operational scenario and hence, that v, has a high probability
to achieve ergodic capacity. Obviously, this is a very important piece of information, which

can be taken into account during a system design/deployment phase.

Subsequently, the most representative results are shown, produced from extensive
simulations. It must be mentioned here that the observations made from the presented
results were always confirmed by several complementary simulations with different values

for the considered set of parameters.

Figure 4.6 shows a set of curves on the i — p; plane (1 < 4, since u = 4 is the highest
possible value for MIMO 4 x 4), for different g values and { ¢ = 35°/65°, SNR = 0/3dB,
A, = 68°}.

As explained previously, each curve represents a bound: Any {u, p;} point above this
bound corresponds to an operational scenario where the optimum beamformer achieves
ergodic capacity, i.e. (2.34) is always satisfied (Pr,; = 1). On the other hand, any {u, p;}
point below this bound represents an operational scenario where Prys < 1. The p — p;
region where Pry; = 1 is referred to as “optimality region”. From Figure 4.6 Observations

1-5 can be made:
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Observation 1 . Beamforming becomes the optimum strategy as p (the singular value of
H,,) increases.

Observation 2 . Beamforming becomes the optimum strategy as 3 (the channel variance)

decreases.
Observation 3 . Beamforming becomes the optimum strategy as the SNR decreases.

From (4.31) and given that H,, = up”q, (4.2) can be re-written as follows:
H=\/p ( e (R)H, (R) ) = Vom,, (4.34)
Substituting (4.34) into (2.7), the ergodic capacity is expressed equivalently as:

Cog =, max  En [logg det(Ly + SNRequqQHZq)] (4.35)

where

SNR., = SNRj (4.36)
The Rician factor of the channel distribution is:

CELE 2
tr(R) MNp?

(4.37)

where R = R! @ R, (see (2.14)).

From (4.36) and (4.37) it can be seen that: An increase in y causes an increase in the
Rician factor K of the channel distribution and consequently, an increase in the disparity
between the singular values of any channel matrix realization. Moreover a decrease in 3

causes an increase in K but also a decrease in the SNR,,.

Observation 1 is consistent with results presented in [47] for spatially uncorrelated
MIMO Rician channels, while Observations 2 and 3 are consistent with results presented
in [47] for MIMO Rayleigh and spatially uncorrelated MIMO Rician channels. All three

observations are consistent with the notion of water-filling® over the channel eigenvalues:

5The widely known water-filling iterative algorithm [66] cannot be employed for CDIT models. The eigen-
values of the optimum input covariance are calculated numerically using methods of non-linear program-
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Figure 4-7: Pry vs. SNR, for a MIMO 4 x 4 system and {5 = 0.01, ¢ = 45°,
pw=14,p, =01, A, =68°}.

The lower the SNR and/or the higher disparity between the channel singular values (i.e.
high Rician factor K) the more power must be allocated to the dominant channel modes
and the transmission converges to beamforming. Figures 4.7 and 4.8 show how Pry;
varies with the SNR for {# = 0.01, ¢ = 45°, u = 1.4, p = 0.1} and {5 = 0.01, ¢ = 45°,

p= 1.4, p= 0.1}, respectively.

Comparing the corresponding curve in Figure 4.6 for {$ = 0.2, ¢ = 65°, SNR = 0dB}
with the corresponding curve for {5 = 0.2, ¢ = 35°, SNR = 0dB}, it can be seen that:

Observation 4 . Beamforming becomes the optimum strategy as ¢ decreases.

The angle ¢ between q and the dominant eigenvector u; of R; is a parameter pre-
sented here for the first time in simulations related to the optimality condition (2.34) and
appears only in MIMO Rician channels, (it does not exist in MIMO Rayleigh channels).
Figures 4.9 and 4.10 show again the effect of the decrease of ¢ on the optimality region,

for SNR = 0dB and different set of values 3, ¢ than those used in Figure 4.6.

Practically, a decrease in ¢ causes an effect similar to an increase in the disparity of

the two largest eigenvalues of R;, which favors the optimum beamformer and increases

ming [76]. However it seems that the general “rules” of water-filling are also valid for the complex Gaussian
CDIT models studied in this thesis.
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Figure 4-8: Pry vs. SNR, for a MIMO 4 x 4 system and {5 = 0.14, ¢ = 45°,
w=14,p; =0.1, A, = 68°}.
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Figure 4-10: Optimality region p — p;, for a MIMO 4 x 4 system and {SNR =
0dB, 8 =0.2, A, = 68°}.

the optimality region, as it was shown in [47] for MIMO Rayleigh channels:

Assuming for simplicity and without any loss of the generality that N = M, the rank-1

channel mean H,,, can be written as:

H,, = uq'q (4.38)

Using eigen-decomposition, R; can be written as:
N
R, =) Auul (4.39)
=1

where \;/u; are the eigenvalues/eigenvectors of R,, (note that u; € CV*1),

If = ¢, is the angle between qf and u;, then q' can be expressed as:

N
q = Z e cos g, (4.40)
i=1

with SV | cos? ¢; = 1, (since [|qt |2 = |||, = 1).

From (4.2), (4.38), (4.39), (4.40), eigen-decomposition of H,, and assuming that R, =

I,,, it can be proven (after some simple mathematical manipulations) that any channel
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realization H can also be expressed as:

N [N
H= Z [Z (,u cos? ¢; + )\1,1/2)\?]) vjv}] wu! (4.41)

J=1

where \V'/v; are the eigenvalues/eigenvectors of H,, (with v; € CV*1).
Setting a;; = pcos® ¢; + /\3/2/\;4’, the following can be observed:

¢ In MIMO Rayleigh channels the first summand in a;; does not exist, i.e. itis a;; =
Az.l/2>\§”. In these channels, an increase in the disparity between \; and )\, causes, equiva-
lently, an increase in the disparity of a;; and ay; (Vj), which leads the channel distribution

in the beamforming optimality region, as it was also shown in [47].

e In spatially correlated MIMO Rician channels a decrease in ¢ = ¢; (i.e. increase
of cos ¢;) causes a similar increase in the disparity of a;; and ay; (note that when ¢,
decreases, ¢, increases) and leads the channel distribution in the optimality region, as in

MIMO Rayleigh channels.

Observation 5 . Relatively low channel variance leads to abrupt increase of the optimality
region for relatively high p; values, (i.e. high disparity for the eigenvalues of R;). This can
be seen in Figure 4.6 from the curves for § = {0.14,0.08}. This also agrees with results
for MIMO Rayleigh fading channels from [47]. However, this effect seems to vanish for
higher 5 and/or ¢ values (see curves for g = {0.2,0.26}), which “resist” to the optimality
of beamforming, as explained in Observations 2 and 4. Moreover, in the low-p, regime,

the optimality region seems to be rather “insensitive” to an increase of the SNR, g and ¢.

In Figure 4.11, Pry is plotted versus M for three sets of values for {3, ¢, i, p} and
{N =4, SNR = 0dB, A, = 68°}.

It can be observed that Pry decreases with M. From (4.38), a decrease in M causes

an increase in the Rician factor K of the channel distribution.

Observation 6 . Beamforming becomes the optimum strategy as the number of receive

antenna elements (/) decreases.
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Figure 4-11: Pry; vs. M, for {N = 4, SNR = 0dB, A, = 68°}.

This observation also agrees with results in [47], for MIMO Rayleigh and spatially
uncorrelated MIMO Rician channels, and is consistent with the notion of water-pouring
over the channel modes. As a consequence, the optimality regions presented in Figure

4.6 (V 5, ¢ and SNR value) will further increase for M < 4.
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Chapter 5

CAPACITY AND OPTIMALITY OF BEAMFORMING FOR DIFFERENT
OPERATIONAL ENVIRONMENTS

5.1 Introduction

The nature of the wireless channel (e.g. statistical properties, correlation) plays a key
role to the study of its capacity. As a result, attention has turned to the development of
realistic channel models that will provide the basis for accurate capacity analysis. In this
chapter, a MIMO channel simulation model is developed, which is based on the Technical
Report [87] of the 3rd Generation Partnership Project (3GPP). This simulation model
is used to produce (thousands of) channel samples which simulate different operational
environments and then these samples are used to study the capacity performance and the

“probability of beamforming” achieved by different channel feedback information models.

5.2 MIMO channel simulation model

As explained in the preceding chapters, the impulse response of a MIMO channel
isan N x M matrix H(¢). Sample of the MIMO channel matrix H(¢) can be generated

according to the Techical Report of 3GPP [87], for the following operational environments:
a. Suburban macrocell,
b. Urban macrocell with mean angular spread £ [0 5] = 8° or £ [o45] = 15°,
c. Urban microcell.
Moreover the following optional features can be simulated:
a. Antenna Polarization (valid in all environments),

b. Far Scatterer Clusters (valid only in urban macrocell environments),
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c. Urban canyon (valid only in urban environments),
d. Line Of Sight multipath component (valid only in urban microcell environments),
e. Intercell interference (3-sector or 6-sector cellular systems can be simulated).

In order to generate many channel samples (i.e. realizations of matrix H(¢)), the time
axis is divided into Ng..,s drops and each drop into Ny,.,.s frames. During a drop, the
location and the orientation parameters of the Mobile Station (MS), the Angular Spread
(0as), the Delay Spread (ops) (at both the BS and MS) and the Shadow Fading (osx) do
not change. All these parameters change per drop and their values are chosen randomly
from distributions described in [87, page 17, Table 5.1], (these distributions are different

in each operational environment).

The Angles of Departure (AoD) (from the BS), the Angles of Arrival (AoA) (to the MS),
the path delays and the path powers of the F' dominant multipath components between
the BS and the MS change from frame to frame randomly, according to distributions de-
scribed in the Technical Report [87], (these distributions are different in each operational
environment). Each one of the F' multipath components is comprised of S sub-paths:
in [87] it is recommended, FF = 6 and S = 20. In each frame a three-dimensional
(M x N x F) MIMO Channel Matrix H(t) (3-D impulse response) is generated. The ele-
ments of this matrix, denoted as H,,, ,, ; (f"* multipath component between the m!" receive

and the »n'" transmit array antenna element), are expressed by the following equation:

s
Pio
H,, . r(t) =1/ fMSF Z (\/GMS(ef,s,AoA)GBS(ef,s,AoD)
s=1

X ea:p(x/—l [kdn sin(6f,s.400) + <I>f,5]> X exp <jk:dm sin(@Ls,AoD))

X ea:p(x/—_lkHng cos ((Hf,&AOA — Hv)t)>> (5.1)

where: Py is the power of the fth multipath component, ogr is the shadowing (bulk pa-
rameter, applied to all paths), 0 4.p and 6y, 4,4 is the AoD and AoA, respectively, for

the s' subpath of the f** multipath component, Gzs(6; s 40p) is the gain of each element
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of the BS array antennas along the azimuth angle 6 4,p and Gis(6y.5,404) is the gain of
each element of the MS array antenna along the azimuth angle 6 4,4. All elements of
the BS/MS array antenna are assumed to have the same antenna pattern, k = 27 /), d,
is the distance of the n'" transmit array antenna element with respect to the reference an-
tenna element, d,, is the distance of the m'* receive array antenna element with respect
to the reference antenna element, @, . is the phase of the s subpath of the f* multipath

component and ||v||» and 6, is the norm and angle of the MS velocity vector, respectively.

If only one path can be resolved in each frame, the 3-D channel matrix is degenerated

into a two-dimensional matrix:

2 s
H,, () = Z <\/ % Z <\/GMS(ef,&AoA)GBS(eﬁs,AoD)
s=1

F
f=1

X exp(x/—l [k;dn sin(f¢.s 40p) + q)f,s}) X exp(jk;dm sin(Gf,&AOD))

x exp(x/——lk:HUHQ c05 (0,1 104 — Qu)t)>>> (5.2)

The channel matrix calculated above is the with respect to the serving BS in a 2-tier
cellular system (i.e. 19 cells), as shown in Figure 5.1. The serving BS is characterized by
the highest received power, based on pathloss (according to the COST231 Hata model for
suburban/urban macrocell environments or the COST231 Walfish-lkegami NLOS/street
canyon model for the urban microcell environment [87]), shadowing (csx) and BS antenna
gain (for the simulations it is assumed that the BS array antenna has the pattern described

in [87, page 18]).

Practically, for the simulations the time parameter ¢ is multiples of the frame duration
Ttrame, (€. t = (JNrames + ©)Trames 7 = L1,oo oy, Naropss @ = 1,..., Nframes) and the el-
ements of the channel matrix at the i** frame and j** simulation drop are denoted as
H} .. In MISO systems, for simplicity, H, , is denoted as h/. An overview of the channel

simulation process is presented in Table 5.1 (at the end of this Chapter).

In the following, using Ny,ops = 10* @and N,umes = 10, 10° MISO 2 x 1 channels are pro-
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Figure 5-1: Two tier celular structure. s; is the sector numbering, with i =
1,...,3 for the 3-sector scenario ori = 1, ..., 6 for the 6-sector scenario.

duced (VN = 2, M = 1) for different operational environments (without optional simulation
features). Moreover, the following assumptions have been made: Ggs(0) = Gus(0) = 1
(V6 € [0,27]), the inter-element distance at the transmit antenna is \/2, the carrier fre-
quency is f. = 2GHz and the frame duration is 7,,,. = 10msec (power control period
for UMTS). In all environments it iS Tf,qme > € [ops]| (€ [ops] = 0.17/0.65/0.251microsec
for suburban/urban macro/urban micro), a fact that justifies the initial assumption for the
existence of only one resolvable path in each frame (and hence, the use of (5.2) instead

of (5.1) in the simulations).

Using the aforementioned 10° channels, Figure 5.2 demonstrates the Rayleigh distri-
bution that best fits to the |H, ,| (for n = 1,2). The distribution of the arg(H,,) can be
approximated by the uniform distribution U(—m, 7) (in all environments). In Figure 5.2 it
can be observed that the Rayleigh distribution of |H, ,| in an urban micro environment

presents the highest variance, followed by the variance of the urban macro € [o45] = 15°
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environment and the suburban macro/urban macro £ [o45] = 8° environment, (note that
the curves for the suburban macro and urban macro £ [o45] = 8° environments are very

close).

0.4 T T

Suburban macro (u=2.37 0=1.54)
0.35F Urban macro E[crAS]:8O deg (u=2.35 0=1.51)

Urban micro (u=3.05 0=2.98)

0.3 Urban macro E[c, []=15° (u=2.93 0=2.35) E

0.25

PDF
o
N

0 5 10 15
Channel Amplitude

Figure 5-2: Rayleigh distribution of |H, ,,|.

Table 5.2 presents the calculated mean and standard deviation (std) of the correlation
coefficient (which is assumed to be a random variable!) between the two transmit antenna

elements in all environments.

Table 5.2: Correlation cofficient statistics

Environment mean | std

Suburban macro 0.96 | 0.02

Urban macro € [o45] =8° | 0.92 | 0.11

Urban macro & [o45] = 15° | 0.79 | 0.17

Urban micro 0.59 | 0.17

in each drop the correlation coefficient is calculated along all frames (N,.qmes = 10) of the drop. Hence,
10* values for the correlation coefficient random variable are produced (since Ng,..,s = 10%) and then used
to calculate its statistics.
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From this table it can be observed that the correlation is inversely proportional to
& |oas] (as also predicted by theory [66]): a high correlation is observed in suburban/urban
macro environments with £ [045] = 5°/8°, while the urban macro/micro environments with

E [oas] = 15°/19° follow with lower correlations.

5.3 Simulations for MISO 2 x 1 Rayleigh fading channels

In this section we present simulation results for the maximum ergodic capacity and
the the optimality of beamforming in different operational environments (suburban macro,
urban macro, urban micro) - using the simulation model described in the previous section

- and for the following channel feedback information models [95]:
a. perfect CSI at the transmitter,
b. unknown channel to the transmitter,
c. Channel Mean Information model,
d. Channel Covariance Information model.
For the ergodic capacity simulations the following are considered:
e 3-sector cellular system,
® Nipops = 107,
® Nirames = 10,
® T'trame = 10msec,
e =06, 5 = 20,
e N=2 M=1(.e. aMISO 2 x 1 system),
o f. =2GHz,
e inter-element distance /2 and
e velocity of the mobile station ||v||; = 5km/h.

For the optimality of beamforming simulations the same values have been consid-
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ered, except from the following: Ng..,s = 10%. Moreover, it must be noted that in these
simulations, the optimality of beamforming is not studied with the condition (2.34), but

statistically, as discussed in the following subsection 5.3.2.

Moreover, the generated channel samples simulate Raleigh fading channels without

additional simulation features (e.g. LOS component, urban canyon, etc.).

For the simulations of the CMI and CCI models, the following issues must be dis-

cussed:
(1) CMI model

In the context of this model, the ergodic capacity achieved for every channel sam-
ple that is fed back to the transmitter by the receiver is calculated, i.e. for each of the
Narops X Nyrames = 10° channels. The CMI model, as it appears in the open literature and
discussed in Chapter 2, is a short-term model that achieves ergodic capacity based on
an estimation of the “real” channel (used as the “channel mean” information) and on the
assumption of a white error covariance matrix (with equal diagonal elements). If correla-
tion effects are also taken into account, then the channel error covariance matrix is not
white and the feedback information model in this case is not a “pure” CMI model but a

short-term combined CMI-CCI model.

However, in the 3GPP model, there is no temporal correlation between successive
channel realizations/samples (that simulate fast fading) in the context of the same drop,
(i.,e. R, = 0 (see (2.17))). Assuming a delay in the control channel equal to one frame
duration Ty,.m., the best estimation (made by the transmitter) for the (i + 1) (channel)
frame (i.e. the “real” channel), based on the i** frame (feedback information), is the

channel mean b/, [44], which is calculated over all frames of the j* drop:

Nframes
his (5.3)

i=1

[—
Nframes

Moreover, the channel error covariance (R.;, (see (2.19))) coincides with the channel
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covariance matrix X;, which is also calculated over all frames of the j* drop:

Nframes

B 1
Nframes

5, (hiﬂ' - HJ)T <h"j - Hj) (5.4)

Practically, we have a long-term feedback model where the long-term channel statis-
tics? b’ and 3; are used in order to achieve ergodic capacity. Therefore, it is not neces-
sary to feed back to the transmitter the frames of the j* drop, one by one. The channel
distribution during the ;' drop is h/ ~ (Hj,Ej), where h/ denotes any channel sam-
ple/realization in the ;™ drop. For this long-term model, the following cases can be sepa-

rated:

a. The channel mean is b’ # 0 and X, is a diagonal matrix with equal diagonal
elements. In this case the standard solution of the long-term CMI model (see Chapter 2)

can be employed, as also described in [46].

b. The channel mean is b’ # 0 and X, is not a diagonal matrix or it is a diagonal matrix
with unequal diagonal elements. This is a long-term combined CMI-CCI model and must

be solved numerically using the methods discussed in [49] or [50].

c. The channel mean is b’ = 0. In this case, regardless of the value of X¥;, we have
a (long-term) CCIl model (see also discussion below). However, in the context of the
simulation model proposed by 3GPP, assuming a finite and small number of frames, it is
really rare (practically impossible) to have a zero channel mean, even in environments

that simulate pure Rayleigh fading channels, (e.g suburban or urban macro).

Using the parameters described in the first paragraph of this section, simulations have
shown that case (b) described above (i.e. the long-term combined CMI-CCI model) dom-

inates in all drops.

However, in the context of the simulations presented hereafter, the following assump-

tions have been made:

2These are calculated at the beginning of each drop, in the context of a training period, by the receiver
and then are fed back to the transmitter. These statistics are valid during the whole drop.
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a. In each drop, the channel frames are fed back to the transmitter, one by one.

b. The feedback control channel has a time delay equal to the duration of one frame
(T'trame)- This means that when the ™" frame of the ;% simulation drop, denoted as h/ =
[h{,hy,... h¥], arrives at the transmitter, the “real” channel is the h(+17, j.e. in the next

frame.

c. Based on the channel feedback information h¥, the transmitter’'s estimation for the

“real” channel (h(+17) is expressed as follows:
h(+Di = b 4 1’ (5.5)
where Hi is the mean channel error calculated in each simulation drop as:
h! = &[h+Y7 — h] (5.6)

where the mean is calculated with respect to i (i.e. with respect to all frames of the ;"
drop). Obviously, the statistics of the channel error in the ;% drop, namely its mean HZ
and its covariance matrix R7 = cov;[h@+17 — h¥/], are long-term statistics, calculated by

the receiver at the beginning of each drop® and fed back to the transmitter.

d. After the feedback of the :** frame (in the j** drop) the channel distribution assumed
by the transmitter for the solution of the CMI model is h ~ A (h(+1i 4T, ), with a referred
to as “channel error variance”. Observe that in the CMI model a white channel error

covariance matrix is assumed?.
(2) CCIl model

In this long-term model the ergodic capacity is achieved by the transmitter, exploiting
only the feedback information of the channel covariance, which is calculated by the re-

ceiver at the beginning of each simulation drop. The transmission strategy that achieves

3e.g. in the context of a training period

4Practically, the channel error covariance matrix is not white. However, for the simulations, the off-
diagonal elements of the channel error covariance matrix are ignored (i.e. set to zero) and its maximum
diagonal element is considered to be the channel error variance a.
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ergodic capacity is applied to all frames of a drop. For MISO Rayleigh fading channels,
the channel transmit covariance matrix X; (in the ;) drop coincides with the channel

transmit correlation matrix C;, since it is ' =0,ie.
¥, = C; = &[(h¥)'h"] (5.7)

For the reason discussed in the previous paragraph (CMI model) the model of 3GPP
provides a non zero channel mean in each drop, i.e. n’ # 0, even though a Rayleigh
fading channel is simulated. However, in the simulations presented in the following it is
assumed that b’ = 0 Vj (i.e. the channel mean is ignored) and the channel correlation
matrix C; is considered by the transmitter as a covariance matrix, which is subsequently

used to employ the standard solution of the CCIl model [46].

5.3.1 Simulation results for the ergodic capacity

Figures 5.3-5.6 show the ergodic capacity vs. the SNR, for different channel feedback
information models. In all channel feedback information models the ergodic capacity is
calculated over all simulation drops and frames. In all figures (i.e. in all simulated en-
vironments) it can be observed that the “perfect CSI at the transmitter” (Perfect CSIT)
and the “unknown channel to the transmitter” (Unknown Channel) models are the upper
and the lower bounds, respectively, while the CCIl and CMI models are between these
bounds. The results show that the CCI model outperforms the CMI model in all environ-
ments. The CCI model is easier to employ than the CMI model, since it is a long-term
model and the transmission strategy is calculated once, at the beginning of each drop.
On the other hand, the CMI model is a short-term model and the transmission strategy
changes at each frame, (despite the fact that the mean and variance of the channel er-
ror are calculated as long-term statistics). Moreover, the performance of the CMI model
(according to the way that it is simulated herein) will further deteriorate if we assume very
large delays in the feedback control channel, equal to or greater than the drop duration

Tarop Tarop = Nyrames X Trrame)- In the latter case, the channel error mean and variance,
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Figure 5-3: Ergodic capacity vs. SNR, in a suburban environment.

that will be used by the CMI algorithm, are related to a previous drop and the transmission

scheme that we will be finally used does not achieve ergodic capacity.

Furthermore, in Figures 5.3 and 5.4 it can be observed that the CCI model achieves
high capacity, very close to the the capacity of the Perfect CSIT model, despite the fact
that a zero channel mean has been assumed. These results indicate that in suburban or
urban macro € [045] = 8° environments it is practically meaningless to solve the combined
CMI-CCI model, that is valid if we do not assume a zero channel mean. The latter model
is more complex ([49], [50]) and its relative capacity gain with respect to the CCI model

under the zero channel mean assumption is very small.

Finally, in all figures (Figures 5.3-5.6), it can be observed that the lower the corre-
lation between the transmit antenna elements (see Table 5.2) the lower is the capacity

performance of both the CMI and CCI models with respect to the Perfect CSIT model.
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Figure 5-4: Ergodic capacity vs. SNR, in an urban macro environment with
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Figure 5.5: Ergodic capacity vs. SNR, in an urban macro environment with
g[UAs] = 15°.
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Figure 5-6: Ergodic capacity vs. SNR, in an urban micro environment.

5.3.2 Simulation results for the optimality of beamforming
In the following, the optimality of beamforming is studied statistically, by introducing
the following probability Pry:

Number of times that power is allocated to only one beam
Number of times that power is allocated to more than one beams

Prys = (58)

The probability defined with (5.8) is generally similar to the probability defined with
equation (4.33) in Chapter 4, but with the following main difference: in (4.33), condition
(2.34) is used and tested in order to calculate Pry, whereas in (5.8) a more practical

method is employed.

Figures 5.7 and 5.8 present results for the Prys vs. the SNR for the CMI and CCI

models, respectively, and different operational environments.

It can be observed that Pry; decreases as the SNR increases in both models. This
result coincides with results reported in [46] and [96], for the CMI and the CCI model,

respectively. Moreover, Pry,; depends on the operational environment as follows:
(1) CMI model simulation results

In Figure 5.7 Pry is plotted versus the SNR for the CMI model and different opera-
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Figure 5-7: Propability of beamforming vs. SNR, for the CMI model.
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Figure 5-8: Propability of beamforming vs. SNR, for the CCIl model.
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tional channels. In this figure it can be observed that the curves for the suburban and
urban macro £ [045] = 8° environments almost coincide. The urban macro £ [o4s] = 15°
environment presents the highest and the urban micro environment the lowest Pry, re-
spectively. In [96] it is shown that the optimality of beamforming condition, for a given

. . . INGRY
SNR, is a function of the channel error variance a and the parameter 12~ 12

, referred to
as “feedback quality”™. In Table 5.3 we calculate the mean and standard deviation (std) of
the channel error variance a and the feedback quality M (these statistics have been
calculated over all simulation drops for the parameter a and over all simulation drops and
frames for the parameter w) We observe that the statistics (mean and variance) of
the feedback quality M are almost the same in all environments, and hence, these
statistics cannot be associated with the results in Figure 5.7. However, in Table 5.3 it
is clear that both the mean and the std of a increase as £ [045] increases. Hence, the
statistics of the channel error variance a can be associated with the results presented in
Figure 5.7: In the macro environments and for any fixed SNR value, Pry; increases as the
std of a increases (the mean of a remains almost the same in all macro environments)
or, equivalently, as the £ [045] increases. However, in the urban micro environment, Pryy
seems to deteriorate, due to the very high mean and std of a (compared to the macro

environments).

Table 5.3: Statistics of channel error variance and feedback quality

a h+D5 ) /a
Environment mean std mean | std
Suburban macro 9.2 31.6 1.7 1.6

Urban macro & [oa5] = 8° 9.8 46.2 1.7 |16

Urban macro € [oas] = 15° | 10.7 | 50.6 1.7 |16

Urban micro 16.9 | 141.7 1.7 1.5

5The higher this parameter is, the better “knowledge” the transmitter has for the channel.
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(2) CCI model simulation results

In Figure 5.8 Pry is plotted versus the SNR for the CCl model and different operational
channels. In this model, for any fixed SNR value, Pry is inversely proportional to the statis-
tics of a or, equivalently, to the £ [0 45], (practically, Pry; decreases with the following order,
with respect to the operational environment: suburban macro, urban macro € [o45] = 8°,
urban macro £ [o4s] = 15° urban micro). This result can also be explained as follows:
the correlation between the transmit antenna elements is inversely proportional to the
& [oas], as shown in Table 5.2. A high correlation, and hence, a small £ [0 45], increases
the disparity between the eigenvalues of 3;, a fact that causes an increase in Pry;. This
result agrees with the results presented in [47] for the CCl model and is consistent with

the notion of water-filling along the channel modes®.

5.4 Simulations for MISO 4 x 1 Rician fading channels

In the previous section Rayleigh fading MIMO channels were simulated and studied.
The combined CMI-CCI model can occur even with spatially correlated MIMO channels
with a Rayleigh long-term pdf, when a short-term feedback model is employed, (i.e. when
R, # 0, see discussion for the CMI model in Chapter 2). The fact that the combined CMI-
CCI model can also occur in spatially correlated MIMO Rayleigh fading channels when a
long-term feedback model is employed (i.e. when R, = 0) is just a weakness of the 3GPP
model and of the limited number of simulation drops and frames, (see discussion for the
CCI model in the previous section). However, in the simulations presented in the previ-
ous section, the combined CMI-CCI model was totally “ignored” and the “conventional”

CMI/CCI were used as short/long-term models, respectively.

Spatially correlated or uncorrelated with non-unit covariance matrix MIMO Rician fad-

ing channels and represented by the combined CMI-CCI model, both as a short and

6A stochastic water-filling algorithm is used to allocate the available power to the eigenvectors of X,
[69]. The higher the disparity between A;(3;) and X2(X;) the more power is allocated to the dominant
eigenvector of ;. Statistically, in some drops all power is allocated to the dominant eigenvector of X;
and hence, beamforming achieves ergodic capacity in these drops. The more often this happens (i.e. in
environments with higher correlation), the higher Pry is.
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long-term feedback model, when R, # 0 and R, = 0, respectively. According to the
spatial channel model of 3GGP, the operational environment that can simulate a Rician
channel and hence, fit to the combined CMI-CCI model, is the urban micro environment.
This is due to the fact that in urban micro environments there is a probability of exis-
tence of a Line of Sight (LOS) component, (in suburban or urban macro environments
this propability is zero). Especially for the long-term combined CMI-CCI feedback model,

the LOS component is the channel mean information.

In the following, using the MIMO channel simulation model of [87] (described in the
previous sections of this chapter), the ergodic beamforming capacity achieved by the
optimum beamformer and the optimality of beamforming condition are tested for the urban
micro environment with a LOS component (which is an optional simulation feature of the

3GPP model) and for the following simulation parameters [97]:
e 3-sector cellular system,
® Nyrops = 10%,
® Nirames = 102,
o F'=6,5 =20,
e N =4 M=1(i.e. MISO 4 x 1),
o . =2.4GHz,
e inter-element distance at the transmit array antenna \/2,
e velocity of the mobile station ||v||s = 20km/h

® Thame = 9.2ms, (this frame duration is equal to the channel coherence time T,
which results from the system operating frequency f. = 2.4GHz and the MS velocity

|v]]2 = 20km/h, [98]).
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Moreover, the MS is assumed to move around the main’ BS within a distance® d <

300m and is forced® to have LOS communication with the (main) BS.

The elements of the channel vector at the i** frame and j* drop are expressed by the

following equation ([87]):

hY = ogpy/ ﬁ%gggj (\/GMs(QMs)GBS(eBS)
X ea:p<\/——1[(n — 1)wsin(fps) + (IJLOS]>
X ea:p(x/—_lkHng coS ((QMS — Hv)t)>>

s
P:o
o (VP (et o

% exp<\/—_1[(n — 1)mwsin(ffs 40p) + (I)f’SD
X ea:p(x/—_lkHng coS ((Qﬁs,AOA — HU)t))>> —m, (5.9)

where n = 1,....4, 0ps/0)s are the AoD/A0A of the LOS component,respectively, and
®; 05 is the phase of the LOS component. Again it is assumed that all transmit/receive
antenna elements are omnidirectional in azimuth, with Ggs = G5 = 1. Moreover, m? is

the mean of the second summand in (5.9), calculated over all frames of the j** drop'°.

5.4.1 Simulation results for the ergodic beamforming capac ity

The ergodic beamforming capacity achieved by the optimum beamformer (see The-

orem 3.1 in Chapter 3) is compared with the average mutual information achieved by

’As “main” BS is described the BS in which the MS physically exists and moves (practically it is always
the first sector of the first cell, as shown in Figure 5.1). The “main” BS is different from the “serving” BS,
which is the BS with the strongest signal/power.

8According to 3GPP, the probability of existence of a LOS component is zero for distances greater than
300m.

9According to the simulation model, a MS with a distance less than 300m away from the main BS
does not have necessarily a LOS communication with the main BS. The probability of existence of a LOS
component is a function inversely proportional to distance, [87, page 26].

10This term is used in order to compensate for the non-zero mean of scattering, which is not exactly
Rayleigh distributed in each drop: this is due to the limited number of frames, paths and sub-paths, used
by the simulation model of 3GPP.
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the max SNR beamformer!?, in the context of both the short and long-term combined

CMI-CCI model:
(1) Short-term feedback model simulation results

In the short-term combined CMI-CCI model, at the j** drop the channel covariance
information 33, ,(which is calculated over all frames of the drop), is expressed by equation
(5.4). Moreover, each channel sample h¥ (i** frame, j* drop) that is fed back to the
transmitter represents the (dynamic) channel mean information*? which is used along with
33;, which represents the channel error covariance, in Theorem 3.1 (Chapter 3) in order

to calculate the optimum beamformer v . In this manner the optimum beamformer is

pt*
dynamically calculated in each frame. The corresponding max SNR beamformer, denoted

as v\ r, is the dominant eigenvector of the channel correlation matrix:
Cy =%, + (h¥) n¥ (5.10)

The ergodic beamforming capacity, calculated over all drops and frames, achieved by
the optimum beamformer in the short-term feedback model is expressed by the following

equation:

Nd'r'ops Nfra,'me.s

>y zog2<1+SNR\(hU +h;‘gz;/2)(vggt)w2) (5.11)

j=1  i=1

1

CRIISNR) =
Tops rames

The average mutual information, calculated over all drops and frames, achieved by the

max SNR beamformer in the short-term feedback model is expressed as follows:

IISIIaXSNR(SNR) =
Narops N frames
Nd Nf Z Z 092 <1 + SNR} (hZJ + hgzjl/2> (V;iaxSNR)Jr ‘2> (512)
rops rames g =1

1As shown in [75], the max SNR beamformer is a low-complexity near-optimum beamformer that coin-
cides with the dominant eigenvector of the channel transmit correlation matrix.

12|n these simulations we use the feedback samples as a channel mean information exactly when they
arrive from the receiver and we do not consider any estimation of the real channel (i.e. of the next frame),
as we did in the previous section with (5.5).
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Figure 5-9: AZ vs. SNR.

In both equations (5.11) and (5.12), hi/ € C**¥, v{i, j}, is a zero mean complex Gaussian

random vector with unit covariance matrix.

The information rate gain of the optimum beamformer with respect to the max SNR
beamformer, defined as AZy = Cgt — I3, .snr- 1S Plotted in Figure 5.9. In this figure it can
be observed that AZg; increases with the SNR, however, it is very small for all SNR values:

0.0119bps/Hz and 0.0193bps/Hz for SNR = 10dB and 20dB, respectively.
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(2) Long-term feedback model simulation results

At the ;¥ drop, the channel mean B’ and covariance 3, are expressed by equations
(5.3) and (5.4), respectively. Using 3, and B’ in Theorem 3.1 the optimum beamformer

during the j** drop, vﬁ,pt, can be calculated. Note that in this model the optimum beam-
former is calculated only once in each drop. The corresponding max SNR beamformer,

denoted as v/, .r. is the dominant eigenvector of the channel correlation matrix:

C, =%, + @)W (5.13)

The ergodic beamforming capacity, calculated over all drops and frames, achieved by the

optimum beamformer in the long-term feedback model is expressed as follows:

Ndrop.s ) )
CI(SNR) = dl Y & [zogz (1 + SNR| (B + hwz;/z)(vgm)w?ﬂ (5.14)
Tops =1

The average mutual information, calculated over all drops and frames, achieved by the

max SNR beamformer in the long-term feedback model is expressed as follows:

Narops '
> En |logs (14 SNR|(B +1,3)%) (Vi) '[)| (5:15)

J=1

1

:Z'.II’EIaXSNR(SNR) =

drops

In Figure 5.10 the information rate gain AZy = C}, —Z" . _<xr, is plotted versus the SNR.
Also for this feedback model the gain is very small for all SNR values (it does not exceed

the value 13.5 x 10~® even for SNR = 20dB).
(3) Comparison between the short and long-term channel feed back models

In Figure 5.11 C§}, C{t. and the relative capacity gain, calculated as (C5i—CL)/CHt x 100,

are plotted versus the SNR. It can be observed that:

a. The short-term model achieves higher ergodic beamforming capacity than the long-

term model for all SNR values.

b. The difference (C5t—Cl) increases with the SNR (for SNR = 0dB it is ~ 0.337bps/Hz

and for SNR = 20dB it becomes ~ 0.6bps/Hz), however, the relative capacity gain de-
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Figure 5-10: AZ; vs. SNR.

creases with the SNR and does not exceed 16% (for SNR = 0 — 20dB).

5.4.2 Simulation results for the optimality of beamforming

In the following, the optimality of beamforming condition (2.34), is tested for its validity,
for the short and long-term feedback models. For the short and long-term models, a
probability is defined, denoted as Prit and Pr(;, respectively, which are calculated with
(4.34), (Chapter 4), and are functions of the SNR:

Number of times condition (2.34) is satisfied

. — . A
Number of times condition (2.34) is tested (5.16)

Prif(SNR) =

For the short-term model the optimality condition (2.34) is tested for Ng,ops X Nframes =
10* times, whereas for the long-term model, condition (2.34) is tested for Ny,.,s = 102

times.

In the short-term model, it is Prg; > 0.99 for all SNR values (0-20dB), which indicates
that the optimum beamformer almost always achieves ergodic capacity, in the context of

this feedback model.

In the long-term model, it is Pr'tt,f = 1 for all SNR values (for SNR = 0 —20dB), indicating

that the optimum beamformer always achieves ergodic capacity.
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Table 5.1: Channel simulation process

Input parameters

Basic parameters
Environment (Urban micro/macro, Suburban)
Sectors (3 or 6)
Number of simulation drops (Ng,.ps) and frames (N qames)
Frame duration (7%,ame)
Number of transmit (/V) and receive (M) array antenna elements
Number of multipath components (F')
Number of sub-paths (S) per multipath component
Gain of BS array antenna elements Gg(0)
Gain of MS array antenna elements G ;5(0)
Velocity (km/h) of the MS
Inter-element distance at the Tx and Rx antennas
Optional channel features
Far scatterer clusters
Urban canyon
Polarization
Line-Of-Sight (LOS) component

Y

Generation of user parameters

At each drop: - Angle Spread o 45
- Delay Spread opg
- Shadowing o
- Orientation and distance of BS and MS
- Pathloss
At each frame: - Path delays
- Average path powers
- Angles of Departure (AoD)
- Angles of Arrival (AoA)

Y

| Generation of 3-D Channel Impulse Response  H,, ,, £(¢)
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Rate-optimum beamforming transmission in MISO and MIMO Rician fading
channels

In Chapters 3 and 4 of this doctoral thesis was studied the solution of the multi-
dimensional and hence, computationally complex optimum beamforming problem - i.e.
the beamforming transmission that maximizes the average mutual information between
transmitter and receiver and achieves ergodic beamforming capacity - in spatially corre-
lated or uncorrelated with non-unit covariance matrix MIMO Rician flat fading channels.

The importance of this solution is summarized below:

a. The optimum beamforming transmission reduces the complexity of the system and

as a consequence the overall cost.

b. The ergodic beamforming capacity achieved by the optimum beamformer is very
close to the ergodic capacity (which is achieved by higher rank transmission schemes) for

many operational scenarios/channels.

c. The optimum beamformer achieves ergodic capacity when the necessary and suf-

ficient optimality of beamforming condition is satisfied in a channel.

The aforementioned optimization problem was transformed into a simple 1-D optimiza-
tion problem which can be subsequently solved using standard 1-D search algorithms,
(gradient based or direct search methods). The proof of this transformation was based on
geometrical properties, basis transformations and the Karush-Kuhn-Tucker (KKT) condi-
tions. Especially for MIMO 2 x M systems or MIMO N x M systems with rank{R;} < 2,
it was proven that the aforementioned 1-D optimization problem can be further simpli-

fied. This proof was based on a geometric approach, where the definition of the external

151 Dimitrios E. Kontaxis



product between vectors in high-dimensional vector spaces was exploited.

The computational complexity of the proposed 1-D scheme (runtime in seconds per

iteration) was presented, via simulations, with respect to:

a. The number of channel samples, which are used for the calculation of the ergodic

beamforming capacity (using Monte Carlo integration).
b. The number of transmit antenna elements N.

The aforementioned complexity was compared with the corresponding complexity of

the following multi-dimensional algorithms:

a. An interior-point algorithm with logarithmic barrier function (the “fmincon” Matlab

function was employed), for MIMO and MISO systems.

b. An iterative asymptotic (and hence, sub-optimum) approach for MISO systems

(algorithm developed in [50]).

Results for Uniform Linear Array (ULA) array antennas, demonstrated that the 1-D

scheme has significantly lower computational complexity:

a. For the simulated scenarios related to MISO systems, the runtime of the 1-D algo-
rithm is on average ~5 to 7 times faster than the interior-point method and ~2 to 10 times

faster than the asymptotic approach.

b. For the simulated scenarios related to MIMO systems, the runtime of the 1-D algo-

rithm it is approximately 8.5 times faster than the interior-point method.

The reduced complexity can be exploited to either reduce cost by using devices with

lower processing power or in order to:

a. Operate in environments with smaller coherence time, proportional to the rela-
tive processing gain, and hence, support operational scenarios with higher mobility, (i.e.

higher speeds, proportional to the relative processing gain).

b. Increase the available processing power required by the system for other supple-

mentary techniques.
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Furthermore, the ergodic beamforming capacity achieved by the optimum beamformer,
for MIMO and MISO systems, was compared with the average mutual information achieved
by the max SNR beamformer. Simulations showed that the optimum beamformer always
achieves a higher information rate (in bps/Hz) than the max SNR beamformer. For the
simulation model and scenarios presented in this work, the (instantaneous) relative in-
formation rate gain can be up to 10%, however, the mean relative information rate gain
does not exceed 5%. Hence, for the simulation model and scenarios of this work?, the
max SNR beamformer can be used as an alternative beamforming scheme with near-

optimum information rate performance.

It is important to note that the solution of the optimum beamforming problem (as pre-
sented with Theorems 3.1, 3.2, 4.1 and 4.2) is not only important due to the reasons

referred to at the beginning of this section, but also due to the following two reasons:

a. In the context of the solution, an infinite-series expression was derived for the
calculation of the ergodic beamforming capacity, which converges very fast to the corre-

sponding Monte Carlo calculation, (a few tens of terms are required).

b. In the context of the solution, a closed-form expression was derived (as a function
of a unique parameter) for the vector set where the optimum beamformer belongs. This
set defines a continuous trajectory on the unit-radius Euclidean ball. This closed-form
expression may be exploited in the context of future work in order to provide an alternative
and less complex solution - compared to currently used interior-point and sub-optimum
methods - for the calculation of the transmission scheme (spatial precoding) that achieves

ergodic capacity, under the combined CMI-CCI model.

As referred to at the beginning of this section, the optimum beamformer achieves er-
godic capacity when the necessary and sufficient optimality of beamforming condition is
satisfied. This condition was studied in this doctoral thesis, for the long-term combined
CMI-CCI model with Kronecker structured covariance (i.e. separable transmit and receive

covariance matrices). The parameters that affect the optimality condition and hence, the

li.e. for ULAs and the “two-path delay spread” correlation model.
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optimality region were studied via simulations, leading to important observations. The
results showed that the CDIT model under consideration (long-term combined CMI-CCI)
incorporates and combines characteristics from both MIMO Rayleigh and spatially uncor-
related with unit covariance matrix MIMO Rician flat fading channels (i.e. the CCI and
CMI model, respectively). Moreover, the model appears to have some new and unique
characteristics with respect to ¢ (the angle between the dominant right singular vector of
the channel mean matrix and the dominant eigenvector of the channel transmit covari-
ance matrix) and p; (the transmit antenna correlation coefficient, for ULA antennas). The
presented analysis for the “production” of the optimality region can be valuable during the
system design and deployment phases: if information for the targeted operational scenar-
ios/channels is available, it can be used to produce the optimality regions and hence, de-
cide if optimum beamforming can be employed as the main transmission strategy, which
ultimately leads to reducing the system’s complexity and cost. The most important obser-
vations related to the study of the optimality of beamforming condition for the combined

CMI-CCI model are summarized below:

Observation 1 . Beamforming becomes the optimum strategy as the singular value of

the channel mean increases.

Observation 2 . Beamforming becomes the optimum strategy as the channel variance

[ decreases.
Observation 3 . Beamforming becomes the optimum strategy as the SNR decreases.
Observation 4 . Beamforming becomes the optimum strategy as ¢ decreases.

Observation 5 . Relatively low channel variance leads to abrupt increase of the op-
timality region for relatively high p, values, (i.e. high disparity for the eigenvalues of the
channel transmit covariance matrix). However, this effect seems to vanish for higher
and/or ¢ values, which “resist” to the optimality of beamforming, as referred to Observa-
tions 2 and 4 above. Moreover, in the low-p; regime, the optimality region seems to be

rather “insensitive” to an increase of the SNR, 5 and ¢.
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Observation 6 . Beamforming becomes the optimum strategy as the number of re-

ceive antenna elements (M) decreases.

6.2 Simulations for different operational environments

In Chapter 5 simulations were performed for MISO 2 x 1 Rayleigh fading channel and
different operational environments (urban micro/macrocellular, suburban macrocellular),
which were produced using the channel model proposed by 3GPP. The simulated chan-
nels were tested for different channel feedback information models: perfect CSI at the
transmitter (Perfect CSIT), unknown channel to the transmitter (Unknown Channel), CMI

and CClI.

The results showed that the CCI model outperforms the CMI model in all environ-
ments, whereas the ergodic capacity achieved by the Perfect CSIT and the Unknown
Channel models are the upper and lower information rate bounds, respectively, in all
cases. The ergodic capacity of the CCl model (for all SNR) is very close to the curves for
the Perfect CSIT model, for the suburban and the urban macrocellular £ [045] = 8° en-
vironments. Therefore, for these (two) environments, the solution of the computationally
complex optimization problem for the calculation of the trasmission strategy that achieves
ergodic capacity under the long-term combined CMI-CCI model is practically meaningless
and inefficient, (since the solution of the CCI model can be employed instead). On the
other hand, the solution of the aforementioned optimization problem may be meaningful
in urban micro and macrocellular £ [o45] = 15° environments, where the ergodic capac-
ity achieved by the CCIl model shows a higher gap with respect to the ergodic capacity

achieved by the Perfect CSIT model.

Moreover, simulations were performed for the probability of the optimality of beam-
forming, Pry, for MISO 2 x 1 systems and the CMI and CCI models. This probability de-
creases with the SNR in all environments, for both models (CMI and CCI). In both models,
the urban microcellular environment shows the lowest probability, which is logical due to

the wider angular spread and the multiple multipath clusters in such environments. Higher
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probability can be observed for macrocellular (suburban/urban) environments. From the
curves related to the CMI model it can be observed that in the SNR range 0-18dB it is

Pres > 0.5. For the CCI model it is:

a. The suburban environments and the urban macrocellular environments with £ [o45] =

8° have Pry > 0.6 in the SNR range 0-20dB.

b. The urban microcellular environments and macrocellular environments with £ [0 45] =

15° have Pry > 0.45 and Pry > 0.5, respectively, in the SNR range 0-15dB.

Moreover, simulation were performed for MISO 4 x 1 Rician fading channels. Again,
the 3GPP channel model was exploited in order to produce channel samples for urban
microcellular operational environments with a LOS component, which simulate best MISO
Rician flat fading channels and hence, the long-term combined CMI-CCI model. In the
context of these simulations the ergodic beamforming capacity achieved by the optimum
beamformer was compared with the average mutual information achieved by the max
SNR beamformer, for the short and the long-term combined CMI-CCI feedback infor-
mation model. Results, which were produced for ULA transmit antennas with \/2 inter-
element spacing, indicate that the max SNR beamformer performs very close to the op-
timum beamformer, for both feedback models. Comparing the two feedback models, the
short-term model shows higher optimum ergodic beamforming capacity (but not exceed-
ing 16% mean relative information rate gain), however, with increased complexity. More-
over, in both models, optimum beamforming achieves ergodic capacity in the SNR range
0-20dB. Generally, it can be concluded that the optimum beamformer used along with
the short-term feedback model is the best transmission strategy for urban microcellular
environments: it achieves ergodic capacity and is higher than the corresponding ergodic
capacity achieved by the optimum beamforrmer used along with the long-term feedback
model. However, if complexity issues are more important than the capacity performance
of a system, then the long-term model with the max SNR beamformer is the best com-
bination of feedback model and beamforming scheme to employ, respectively, since it

almost achieves (long-term) ergodic capacity with the least computational complexity and
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software/hardware cost.

6.3 Future work

Some ideas for future work are summarized below:

a. Study the ergodic capacity, the ergodic beamforming capacity and the optimality of
beamforming condition, for MIMO N x M systems under different feedback information
models (CMI, CCI, etc.), for different operational environments with measured data and

site specific deterministic ray tracing propagation models.

b. Use of the closed-form expression of the vector set where the optimum beam-
former belongs, in order to provide an alternative and less complex solution - compared
to currently used interior-point and sub-optimum methods - for the calculation of the trans-

mission strategy that achieves ergodic capacity, under the combined CMI-CCI model.

c. Study of the optimum beamforming problem and the optimality of beamforming con-
dition in channels with complex Gaussian Channel Distribution Information (CDI) models
(i.e. CCI, CMI, combined CMI-CCI) at both ends of the radio link (i.e. assumption of a
CDIR-CDIT model).

d. Study the performance of the presented optimum beamformer in the context of low

energy consumption Green systems.

e. Expand the analysis presented here to very large scale or massive MIMO scenar-

i0s.
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LIST OF ABBREVIATIONS

colr Channel Distribution Information

CDIR ... Channel Distribution Information at the Receiver
CDIT ... Channel Distribution Information at the Transmitter
CDMA ...l Code Division Multiple Access

CCl Channel Covariance Information

CMI Channel Mean Information

CsSD . Cyclic Shift Diversity

csSlI Channel State Information

CSIT ... Channel State Information at the Transmitter
d Independent identically distributed

LOS ... Line Of Sight

LTE ... Long Term Evolution

MBWA  ............. Mobile Broadband Wireless Access

MIMO  ............. Multiple Input Multiple Output

MISO  ............. Multiple Input Single Output

MRC ...l Maximum Ratio Combining

OFDM ... .......... Orthogonal Frequency Division Multiplexing
OFDMA ............. Orthogonal Frequency Division Multiple Access
SDMA  ............. Space Division Multiple Access

SFIR ... Spatial Filtering for Interference Reduction
SINR ... Signal to Interference plus Noise Ratio

SISO ... Single Input Single Output

SNR ... Signal to Noise Ratio

STBC ... Space-Time Block Codes
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STC ... ... Space-Time Coding

STTC ............. Space-Time Trellis Codes
DM .. Time Division Multiplexing
TDMA ............. Time Division Multiple Access
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