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ABSTRACT

In this doctoral thesis, the focus is on the capability of MIMO systems to increase

channel capacity: A MIMO system can achieve much higher capacity than a conventional

SISO system, and it can be proven that the achieved capacity increases linearly with

the number of transmit or receive antenna elements. However, the capacity achieved by

MIMO systems is closely related to the “channel knowledge” model which is assumed at

both ends of the MIMO link. Considering the case of MIMO complex Gaussian ergodic

channels, where the receiver has perfect Channel State Information (CSI) whereas the

transmitter has Channel Distribution Information (CDIT), the mutual information between

transmitter and receiver must be maximized statistically: maximization is achieved by an

optimum transmission strategy (spatial precoding) and the maximum value is referred to

as “ergodic capacity”. For the case of beamforming transmission, the maximum average

mutual information is achieved by the “optimum beamformer” and is referred to as “ergodic

beamforming capacity”. In this work the calculation of the optimum beamformer is studied

and the related problem is referred to as “optimum beamforming problem”.

The solution of the optimum beamforming problem has been addressed extensively in

the open literature for Gaussian CDIT models: for MIMO Rayleigh fading channels (CCI

model) and for spatially uncorrelated (with unit covariance matrix) MIMO Rician fading

channels (CMI model). For these two cases, closed-form solutions have been derived.

However, the corresponding solution for spatially correlated or uncorrelated with non-unit

covariance matrix MIMO Rician fading channels (combined CMI-CCI model) has received

less attention: for this channel distribution model, there is no closed-form expression for

the optimum beamformer and hence, the solution of the related optimization problem

remains very complex for real time applications.

In this work, first it is proven that the aforementioned complex, multi-dimensional, con-

vex constrained, (beamforming) optimization problem for the combined CMI-CCI model



can be reduced/transformed to an 1-D optimization problem, which can be solved very

fast using standard 1-D algorithms. The solution of the problem was based on geometrical

properties, basis transformations and the Karush-Kuhn-Tucker (KKT) conditions. Then,

simulations demonstrate that:

a. The proposed 1-D method has significantly lower computational complexity, com-

pared to multi-dimensional algorithms.

b. In some operational environments the ergodic beamforming capacity is very close

or equal to the ergodic capacity. The equality holds when a certain necessary and suffi-

cient condition is satisfied.

Additionally the 3GPP MIMO channel model was employed in order to study further

the performance of the optimum beamformer in practical operational scenarios. The

3GPP MIMO channel model was implemented in Matlab and is able to produce inde-

pendent channel realizations/samples that simulate different operational environments.

In this context, simulations were performed in order to:

a. Study the performance of the optimum beamformer in urban micro environments

with LOS for the combined CMI-CCI model. The analysis showed that the optimum beam-

former achieves ergodic capacity (with probability> 0.9) for a wide SNR range.

b. Study and compare the ergodic capacity and the performance of the optimum

beamformer in different operational environments (suburban and urban macro/micro-

cellular without LOS) for different channel information models. The analysis showed that

in the context of the CMI and CCI models the optimum beamformer achieves ergodic

capacity with probability > 0.5, in all operational environments and for a wide SNR range.

The aforementioned analysis, along with the fact that the optimum beamforming trans-

mission is characterized by lower cost, compared to higher rank transmission schemes,

justify the significance of the proposed solutions and the contribution of this work.

SUBJECT AREA : MIMO systems

KEYWORDS: MIMO channel, Capacity, Beamforming, Rician fading



ΠΕΡΙΛΗΨΗ 
 

Η παρούσα διδακτορική διατριβή επικεντρώνεται στη δυνατότητα που έχουν τα 

συστήματα Πολλάπλών Εισόδων Πολλάπλών Εξόδων (ΜΙΜΟ) να αυξάνουν τη 

χωρητικότητα του καναλιού: Ένα σύστημα ΜΙΜΟ μπορεί να επιτύχει υψηλότερη 

χωρητικότητα από ένα συμβατικό σύστημα Μονής Εισόδου Μονής Εξόδου (SISO) και 

υπό ορισμένες συνθήκες αποδεικνύεται ότι η χωρητικότητα των συστημάτων ΜΙΜΟ 

αυξάνεται γραμμικά με το πλήθος των στοιχείων της κεραίας εκπομπής ή λήψης.   

Όμως η χωρητικότητα που επιτυγχάνουν τα συστήματα MIMO σχετίζεται στενά με τη 

γνώση/πληροφορία την οποία έχουν ο πομπός και ο δέκτης για το κανάλι. Θεωρώντας 

ένα εργοδικό κανάλι ΜΙΜΟ με μιγαδική κανονική (Gaussian) κατανομή, στο οποίο ο 

δέκτης έχει πλήρη γνώση του καναλιού και ο πομπός γνωρίζει μόνο την κατανομή 

αυτού, η αμοιβαία πληροφορία μεταξύ πομπού-δέκτη πρέπει να μεγιστοποιηθεί 

στατιστικά (δηλ. επιδιώκεται η μεγιστοποίηση της μέσης αμοιβαία πληροφορίας): τη 

μεγιστοποίηση επιτυγχάνει μια βέλτιστη πολιτική εκπομπής και η επιτυγχανόμενη 

μέγιστη τιμή αναφέρεται ως «εργοδική χωρητικότητα». Στην περίπτωση εκπομπής 

beamforming, τη μέγιστη μέση αμοιβαία πληροφορία μεταξύ πομπού-δέκτη επιτυγχάνει 

ο «βέλτιστος beamformer» και η επιτυγχανόμενη μέγιστη τιμή αναφέρεται ως «εργοδική 

beamforming χωρητικότητα». Στα πλαίσια της παρούσας διατριβής μελετάται ο τρόπος 

υπολογισμού του «βέλτιστου beamformer» και το πρόβλημα βελτιστοποίησης που 

σχετίζεται με τον εν λόγω υπολογισμό αναφέρεται ως πρόβλημα υπολογισμού της 

«βέλτιστης εκπομπής beamforming». 

Η επίλυση του προβλήματος υπολογισμού της «βέλτιστης εκπομπής beamforming» 

έχει μελετηθεί στην βιβλιογραφία για μοντέλα καναλιού με κατανομή Gauss: για κανάλια 

ΜΙΜΟ με κατανομή Rayleigh (μοντέλο CCI) και χωρικώς ασυσχέτιστα κανάλια MIMO με 

μοναδιαίο πίνακα συμμεταβολής και κατανομή Rice (μοντέλο CMI). Για τις δύο αυτές 

περιπτώσεις καναλιού υφίστανται μαθηματικές εκφράσεις κλειστού τύπου για τον 

«βέλτιστο beamformer». Δεν συμβαίνει όμως το ίδιο και για την περίπτωση χωρικώς 

συσχετισμένων ή ασυσχέτιστων με μη-μοναδιαίο πίνακα συμμεταβολής καναλιών 

ΜΙΜΟ με κατανομή Rice (μοντέλο combined CMI-CCI): για αυτό το μοντέλο δεν 



επίλυση ενός τέτοιου προβλήματος βελτιστοποίησης είναι αρκετά πολύπλοκη και 

χρονοβόρα και δεν ενδείκνυται για εφαρμογές πραγματικού χρόνου. 

Στην παρούσα διατριβή αρχικά αποδεικνύεται ότι το προαναφερθέν πολύπλοκο και 

πολυδιάστατο πρόβλημα υπολογισμού της «βέλτιστης εκπομπής beamforming» για το 

το εν λόγω μοντέλο κατανομής καναλιού (combined CMI-CCI) μπορεί να 

μετασχηματιστεί σε ένα μονοδιάστατο (1-Δ) πρόβλημα βελτιστοποίησης, το οποίο 

μπορεί να επιλυθεί πολύ γρήγορα κάνοντας χρήση κοινών μονοδιάστατων αλγορίθμων. 

Η απόδειξη του ανωτέρω μετασχηματισμού βασίστηκε σε γεωμετρικές ιδιότητες, σε 

κατάλληλους μετασχηματισμούς βάσης και στις συνθήκες Karush-Kuhn-Tucker (KKT). 

Στη συνέχεια υλοποιήθηκαν προσομοιώσεις οι οποίες ανέδειξαν τα ακόλουθα: 

α. Η προτεινόμενη μονοδιάστατη μέθοδος υπολογισμού έχει πολύ χαμηλότερη 

πολυπλοκότητα συγκριτικά με αντίστοιχες πολυδιάστατες μεθόδους. 

β. Σε ορισμένα κανάλια η «εργοδική beamforming χωρητικότητα» προσεγγίζει ή 

ισούται με την εργοδική χωρητικότητα του καναλιού. Η ισότητα ισχύει όταν ικανοποιείται 

μια αναγκαία και ικανή συνθήκη, η οποία εκφράζεται μέσω μιας μαθηματικής 

ανισότητας που περιλαμβάνει τις παραμέτρους της κατανομής του καναλιού. 

Επιπρόσθετα, στα πλαίσια της διατριβής, εφαρμόστηκε το μοντέλο προσομοίωσης 

καναλιού ΜΙΜΟ της 3GPP, με σκοπό την περαιτέρω μελέτη της απόδοσης του 

«βέλτιστου beamformer» σε πρακτικά λειτουργικά σενάρια. Το μοντέλο της 3GPP 

υλοποιήθηκε σε κώδικα Matlab και δύναται να παράγει ανεξάρτητα δείγματα καναλιού 

με επιθυμητά χαρακτηριστικά, (προσομοίωση ενός ημιαστικού μάκρο-κυψελωτού ή 

αστικού μίκρο/μάκρο-κυψελωτού περιβάλλοντος). Σε αυτά τα πλαίσια υλοποιήθηκαν 

προσομοιώσεις: 

α. Για τη μελέτη της απόδοσης του «βέλτιστου beamformer» σε ένα αστικό μίκρο-

κυψελωτό περιβάλλον με συνιστώσα οπτικής επαφής (κανάλι MIMO με κατανομή Rice) 

και για το μοντέλο combined CMI-CCI. Η μελέτη έδειξε ότι, ο «βέλτιστος beamformer» 

μπορεί να επιτυγχάνει την εργοδική χωρητικότητα με υψηλή πιθανότητα (>0.9) και σε 

μεγάλο εύρος του λόγου Σήματος-Προς-Θόρυβο. 

β. Για τη μελέτη της εργοδικής χωρητικότητας και της απόδοσης του «βέλτιστου 

beamformer» σε διάφορα λειτουργικά σενάρια (ημιαστικό ή αστικό μάκρο/μίκρο-



κυψελωτό κανάλι χωρίς συνιστώσα οπτικής επαφής) και διαφορετικά μοντέλα γνώσεως 

του καναλιού στον πομπό, (πλήρως γνωστό κανάλι, άγνωστο κανάλι, μοντέλα CMI και 

CCI). Η μελέτη έδειξε ότι, στα πλαίσια των μοντέλων CMI και CCI ο «βέλτιστος 

beamformer» μπορεί να επιτυγχάνει την εργοδική χωρητικότητα με πιθανότητα >0.5, σε 

όλα τα  λειτουργικά σενάρια και σε μεγάλο εύρος του λόγου Σήματος-Προς-Θόρυβο. 

Η ανωτέρω ανάλυση σε συνδυασμό με το γεγονός ότι ο «βέλτιστος beamformer»  

αποτελεί μια πολιτική εκπομπής χαμηλότερου κόστους σε σχέση με οποιοδήποτε 

σχήμα εκπομπής υψηλότερης τάξης, δικαιολογούν τη σημαντικότητα της προτεινόμενης 

λύσης και τη συνεισφορά της παρούσας διατριβής. 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα ΜΙΜΟ  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κανάλι ΜΙΜΟ, Beamforming, Xωρητικότητα, Διαλείψεις Rice 
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤOΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ 
 

Τα συστήματα Πολλαπλών-Εισόδων Πολλαπλών-Εξόδων (Multiple-Input Multiple-

Output ή ΜΙΜΟ) αποτελούν μία από τις σημαντικότερες τεχνολογικές εξελίξεις στον 

τομέα των τηλεπικοινωνιών και χαρακτηρίζονται από ένα ευρύ φάσμα εφαρμογών, για 

τις οποίες τα τελευταία χρόνια έχει αναπτυχθεί σημαντική ερευνητική δραστηριότητα και 

υφίσταται μεγάλο πλήθος δημοσιεύσεων στη βιβλιογραφία. 

Ένα σύστημα MIMO με N κεραίες εκπομπής και M κεραίες λήψης μπορεί να 

επιτυγχάνει - εκμεταλλευόμενο το «πολυοδικό φαινόμενο» (multipath effect) το οποίο 

αναπτύσσεται στο (ραδιο)κανάλι μετάδοσης δεδομένων - υψηλότερη «αμοιβαία 

πληροφορία» (mutual information) καναλιού από αυτή που επιτυγχάνει ένα συμβατικό 

σύστημα Μονής-Εισόδου Μονής-Εξόδου (Single-Input Single-Output ή SISO), εντός 

του ίδιου καναλιού και για την ίδια ισχύ εκπομπής. Υπό συγκεκριμένες συνθήκες 

αποδεικνύεται ότι η αμοιβαία πληροφορία των συστημάτων ΜΙΜΟ αυξάνεται γραμμικά 

με το min{N,M}.  

Η αμοιβαία πληροφορία που επιτυγχάνουν τα συστήματα MIMO σχετίζεται στενά με 

τη γνώση/πληροφορία την οποία έχουν ο πομπός και ο δέκτης για το κανάλι. 

Θεωρώντας ότι ο δέκτης έχει πλήρη γνώση του καναλιού (το οποίο επιτυγχάνεται με 

χρήση ακολουθιών δεδομένων «εκπαίδευσης» (training data) και αλγορίθμων 

«εκτίμησης καναλιού») ο πομπός δύναται να έχει: 

α.  Πλήρη γνώση του καναλιού, κατόπιν ανατροφοδοτήσεως της πληροφορίας 

του καναλιού από τον δέκτη. Στην περίπτωση αυτή ο πομπός μπορεί να υπολογίζει τον 

τρόπο εκπομπής ο οποίος  μεγιστοποιεί την αμοιβαία πληροφορία μεταξύ πομπού-

δέκτη, επιτυγχάνοντας με τον τρόπο αυτό τη «χωρητικότητα» του καναλιού (channel 

capacity) κατά Shannon. Ο βέλτιστος τρόπος εκπομπής έγκειται στην εκπομπή 

ανεξάρτητων ακολουθιών δεδομένων (data streams) «κατά μήκος» κατάλληλων, 

ορθογώνιων μεταξύ τους διανυσμάτων (πιο συγκεκριμένα, των “right singular vectors” 

του πίνακα καναλιού) και με κατάλληλη κατανομή της διαθέσιμης ισχύος του πομπού 

μεταξύ αυτών,  βάσει του αλγορίθμου “water-filling” (ο εν λόγω αλγόριθμος αποδίδει 



υψηλότερο τμήμα της διαθέσιμης ισχύος στα right singular vectors που αντιστοιχούν σε 

υψηλότερες “singular values” του πίνακα καναλιού). 

β.  Καμία γνώση για το κανάλι. Στην περίπτωση αυτή ο πομπός εκπέμπει 

ανεξάρτητες ακολουθίες δεδομένων από κάθε στοιχείο της κεραίας και με ίση ισχύ. H 

επιτυγχανόμενη αμοιβαία πληροφορία αναφέρεται ως «χωρητικότητα αγνώστου 

καναλιού».  

γ.  Γνώση της κατανομής του καναλιού. Στην πράξη η τέλεια/πλήρης γνώση του 

καναλιού στον πομπό (περίπτωση α. ανωτέρω) θεωρείται μη ρεαλιστική, εξαιτίας της 

μεγάλης καθυστέρησης (μεγαλύτερης από τον χρόνο συσχέτισης - coherence time -  

του καναλιού) που μπορεί να υπεισέρχεται στο κανάλι ανατροφοδότησης, με 

αποτέλεσμα τη μη έγκαιρη γνώση του καναλιού από τον πομπό και ως εκ τούτου την 

αδυναμία/αποτυχία επίτευξης της χωρητικότητας καναλιού. Κατά συνέπεια, η «μερική 

γνώση» του καναλιού και πιο συγκεκριμένα η γνώση της κατανομής του από τον πομπό 

θεωρείται ως ένα πιο ρεαλιστικό μοντέλο, (παράμετροι της κατανομής 

ανατροφοδοτούνται από τον  δέκτη), καθόσον η κατανομή του καναλιού έχει την 

ιδιότητα να παραμένει σταθερή για χρόνο δεκάδες ή εκατοντάδες φορές πολλαπλάσιο 

του χρόνου συσχέτισης του καναλιού. Στα πλαίσια αυτού του μοντέλου ο πομπός 

δύναται να εκπέμπει με τρόπο (δηλ. κατά μήκος καταλλήλων ορθογώνιων 

διανυσμάτων, με κατάλληλη κατανομή ισχύος μεταξύ αυτών) ο οποίος μεγιστοποιεί τη 

μέση αμοιβαία πληροφορία (average mutual information), βασιζόμενος στην υπόθεση 

της εργοδικότητας του καναλιού. Η μέγιστη μέση αμοιβαία πληροφορία που 

επιτυγχάνεται αναφέρεται στη βιβλιογραφία ως «εργοδική χωρητικότητα» (ergodic 

capacity). Η εκπομπή που επιτυγχάνει την «εργοδική χωρητικότητα» σχετίζεται άμεσα 

με τον τύπο κατανομής του καναλιού και διαφοροποιείται βάσει αυτού.  

Στη βιβλιογραφία, οι κατανομές που έχουν μελετηθεί στα πλαίσια του μοντέλου 

«μερικής γνώσης» του καναλιού (περίπτωση γ. ανωτέρω) είναι οι ακόλουθες: 

1.  Κανάλια ΜΙΜΟ με Rayleigh κατανομή πλάτους και χωρική συσχέτιση μεταξύ των 

στοιχείων της κεραίας του πομπού ή/και του δέκτη, (MIMO Rayleigh fading channels).  

Η χωρική συσχέτιση εκφράζεται μέσω του πίνακα χωρικής συμμεταβολής (channel 

covariance matrix). Το εν λόγω μοντέλο κατανομής είναι Γκαουσιανό (Gaussian) με 

μηδενική μέση τιμή. Ως εκ τούτου, ο δέκτης ανατροφοδοτεί στον πομπό μόνο την 



πληροφορία της χωρικής συσχέτισης και γι’ αυτόν το λόγο το υπόψη μοντέλο «μερικής 

γνώσης» αναφέρεται στη βιβλιογραφία και ως μοντέλο «γνώσης της χωρικής 

συμεταβολής του καναλιού» (Channel Covariance Information ή CCI model). Ο πίνακας  

χωρικής συμεταβολής υπολογίζεται από τον δέκτη στα πλαίσια μιας μακροπρόθεσμης 

στατιστικής (long-term statistic) χρησιμοποιώντας πλήθος δειγμάτων του καναλιού. O 

πομπός επιτυγχάνει την «εργοδική χωρητικότητα» εκπέμποντας κατά μήκος των 

ιδιοδιανυσμάτων του πίνακα χωρικής συμεταβολής και κατανέμοντας με αριθμητικές 

(μη-γραμμικές) μεθόδους) τη διαθέσιμη ισχύ του μεταξύ αυτών με βέλτιστο τρόπο. Η 

ανωτέρω πολιτική εκπομπής εφαρμόζεται σταθερά από τον πομπό για χρονικό 

διάστημα (πολλαπλάσιο του χρόνου συσχέτισης του καναλιού) που εκτιμάται ότι η 

στατιστική/κατανομή του καναλιού που ανατροφοδοτήθηκε από τον δέκτη (δηλ. ο 

πίνακας  χωρικής συμεταβολής) παραμένει σταθερή και ως εκ τούτου χαρακτηρίζει το 

κανάλι. Η πολιτική εκπομπής θα αναπροσαρμόζεται όταν η κατανομή του καναλιού 

τροποποιηθεί και ο δέκτης ανατροφοδοτεί στον πομπό έναν νέο πίνακα χωρικής 

συμεταβολής. 

2.  Κανάλια ΜΙΜΟ με Rician κατανομή πλάτους και χωρίς χωρική συσχέτιση μεταξύ 

των στοιχείων της κεραίας τόσο του πομπού όσο και του δέκτη, (uncorrelated MIMO 

Rician fading channels).  

Το εν λόγω μοντέλο κατανομής είναι Γκαουσιανό (Gaussian) με μη-μηδενική μέση 

τιμή ενώ η απουσία χωρικής συσχέτισης εκφράζεται μέσω ενός μοναδιαίου πίνακα 

χωρικής συμεταβολής. Ως εκ τούτου, ο δέκτης ανατροφοδοτεί στον πομπό μόνο τη 

μέση τιμή του καναλιού και γι’ αυτόν το λόγο το υπόψη μοντέλο «μερικής γνώσης» 

αναφέρεται στη βιβλιογραφία και ως μοντέλο «γνώσης της μέσης τιμής του καναλιού» 

(Channel Mean Information ή CMI model). Στα πλαίσια του μοντέλου αυτού  η μέση τιμή 

του καναλιού είναι πρακτικά η μέση τιμή του καναλιού που υπολογίζει ο δέκτη στα 

πλαίσια μιας μακροπρόθεσμης στατιστικής (long-term statistic) χρησιμοποιώντας 

πλήθος δειγμάτων του καναλιού. Θεωρητικά, η μη-μηδενική μέση τιμή θα αποτελεί τη 

συνιστώσα οπτικής επαφής του καναλιού - Line of Sight (LOS) multipath component. 

Στην περίπτωση αυτή έχουμε ένα «μακροπρόθεσμο» μοντέλο (long-term CMI model).  

Το ίδιο ακριβώς μοντέλο μπορεί να προκύπτει και στην ακόλουθη περίπτωση: όταν 

ο  δέκτης ανατροφοδοτεί δείγματα καναλιού στον πομπό και ο πομπός, εξαιτίας της 



 

καθυστέρησης του καναλιού ανατροφοδότησης, επιχειρεί να εκτιμήσει (για κάθε 

λαμβανόμενο δείγμα) το πραγματικό κανάλι (πχ. με εκτίμηση τύπου MMSE) και στη 

συνέχεια να εφαρμόσει τη βέλτιστη πολιτική εκπομπής η οποία επιτυγχάνει τη 

χωρητικότητα του καναλιού. Η εκτίμηση όμως περιλαμβάνει σφάλμα και ως εκ τούτου η 

βέλτιστη πολιτική εκπομπή μετασχηματίζεται σε ένα πρόβλημα μεγιστοποίησης της 

μέσης αμοιβαίας πληροφορίας (δηλ. επίτευξης της «εργοδικής χωρητικότητας») 

θεωρώντας ένα εργοδικό κανάλι κατανομής Rice, με μέση τιμή το «εκτιμώμενο» κανάλι 

και μοναδιαίο πίνακα χωρικής συμεταβολής, ο οποίος αντιπροσωπεύει τη διασπορά του 

σφάλματος εκτίμησης (error covariance matrix). Στην περίπτωση αυτή έχουμε ένα 

«βραχυπρόθεσμο» μοντέλο (short-term CMI model).  

Σε κάθε περίπτωση, είτε στο «μακροπρόθεσμο» είτε στο «βραχυπρόθεσμο» 

μοντέλο, ο πομπός καλείται να επιλύσει ακριβώς το ίδιο πρόβλημα βελτιστοποίησης με 

την ακόλουθη διαφορά: Στην περίπτωση του «μακροπρόθεσμου» μοντέλου, η βέλτιστη 

πολιτική εκπομπής εφαρμόζεται για όλο το χρονικό διάστημα που η συνιστώσα οπτικής 

επαφής (LOS component) του καναλιού παραμένει σταθερή (χρονικό διάστημα δεκάδες 

ή εκατοντάδες φορές πολλαπλάσιο του χρόνου συσχέτισης του καναλιού) και 

αναπροσαρμόζεται κάθε φορά που ο δέκτης ανιχνεύει και ανατροφοδοτεί στον πομπό 

μια νέα/διαφορετική συνιστώσα οπτικής επαφής. Στο «βραχυπρόθεσμο» μοντέλο η 

βέλτιστη πολιτική εκπομπής υπολογίζεται και εφαρμόζεται μετά τη λήψη κάθε δείγματος 

καναλιού που ανατροφοδοτεί ο δέκτης και παραμένει σε ισχύ μόνο μέχρι τη λήψη του 

επόμενου δείγματος (δηλ. για χρονικό διάστημα συγκρίσιμο του χρόνου συσχέτισης του 

καναλιού). Το γεγονός αυτό καθιστά το «βραχυπρόθεσμο» μοντέλο πιο πολύπλοκο 

από το «μακροπρόθεσμο» μοντέλο.  

Τόσο στο «μακροπρόθεσμο» όσο και στο «βραχυπρόθεσμο» μοντέλο, ο πομπός 

επιτυγχάνει την «εργοδική χωρητικότητα» εκπέμποντας κατά μήκος του κύριου 

(dominant) “right singular vector” (του πίνακα) της μέσης τιμής του καναλιού, καθώς και 

κατά μήκος Ν-1 τυχαίων διανυσμάτων, που όμως στο συνολο τους τα Ν διανύσματα θα 

πρέπει να αποτελούν μια ορθοκανονική βάση. Επίσης η διαθέσιμη ισχύς του πομπού 

κατανέμεται μεταξύ των (Ν) διανυσμάτων εκπομπής με βέλτιστο τρόπο ο οποίος 

υπολογίζεται αριθμητικά.  

 



3.  Κανάλια ΜΙΜΟ με Rician κατανομή πλάτους και με χωρική συσχέτιση μεταξύ των 

στοιχείων της κεραίας του πομπού ή/και του δέκτη, (correlated MIMO Rician fading 

channels).  

Στο μοντέλο αυτό η κατανομή του καναλιού είναι κανονική (Gaussian) με μη-

μηδενική μέση τιμή, η οποία αντιπροσωπεύει τη συνιστώσα οπτικής επαφής, ενώ η 

χωρική συσχέτιση εκφράζεται μέσω ενός μη-μοναδιαίου πίνακα χωρικής συμεταβολής. 

Ο δέκτης ανατροφοδοτεί στον πομπό τόσο τη μέση τιμή του καναλιού όσο και τον 

πίνακα χωρικής συμεταβολής και για λόγο αυτό το υπόψη μοντέλο «μερικής γνώσης» 

αναφέρεται και ως μοντέλο «συνδυασμένης γνώσης της μέσης τιμής και της συσχέτισης 

του καναλιού» (combined CMI-CCI model). Επίσης το μοντέλο αυτό δύναται να είναι 

«βραχυπρόθεσμο», κατά τον τρόπο που αναλύθηκε ανωτέρω για τα ΜΙΜΟ Rician 

κανάλια χωρίς χωρική συσχέτιση, με τη διαφορά ότι ο πίνακας συμεταβολής του 

σφάλματος εκτίμησης (error covariance matrix) είναι πλέον μη-μοναδιαίος. Στο 

συνδυαστικό αυτό μοντέλο, η πολιτική εκπομπής που επιτυγχάνει την «εργοδική 

χωρητικότητα» δεν εκφράζεται μέσω εξισώσεων «κλειστού τύπου» και ως εκ τούτου, 

τόσο οι βέλτιστες κατευθύνσεις-διανύσματα εκπομπής όσο και ο βέλτιστος τρόπος 

κατανομής ισχύος σε αυτές θα πρέπει να υπολογιστούν αριθμητικά. 

Στην περίπτωση εκπομπής beamforming όλη η διαθέσιμη ισχύς του πομπού 

εκπέμπεται κατά μήκος μιας και μοναδικής κατεύθυνσης/διανύσματος, το οποίο στη 

βιβλιογραφία αναφέρεται ως  «διάνυσμα beamforming» (beamforming vector). 

Θεωρώντας ένα σύστημα ΜΙΜΟ υπό το μοντέλο «μερικής γνώσης» του καναλιού στον 

πομπό και στο οποίο ο πομπός εφαρμόζει αποκλειστικά εκπομπή beamforming, το 

διάνυσμα beamforming το οποίο μεγιστοποιεί τη μέση αμοιβαία πληροφορία μεταξύ 

πομπού και δέκτη αναφέρεται ως «βέλτιστο διάνυσμα beamforming» ή «βέλτιστος 

beamformer» (optimum beamformer), ενώ η επιτυγχανόμενη μέγιστη τιμή της μέσης 

αμοιβαίας πληροφορίας αναφέρεται ως «εργοδική χωρητικότητα beamforming» 

(ergodic beamforming capacity).  

Μια εκπομπή η οποία εκμεταλλεύεται τον «βέλτιστο beamformer» θεωρείται 

σημαντική για τους ακόλουθους τρεις βασικούς λόγους: 



 

α.  Αποτελεί μια απλή τεχνική εκπομπής η οποία απλουστεύει στον μικρότερο 

δυνατό βαθμό τις απαιτήσεις υλικού (hardware) ενός συστήματος ΜΙΜΟ και κατά 

συνέπεια το κόστος αυτού. 

β.  Αν και η εργοδική χωρητικότητα επιτυγχάνεται εν γένει με εκπομπή υψηλότερης 

τάξης (δηλ. εκπέμποντας προς περισσότερες από μια κατευθύνσεις) και είναι 

υψηλότερη από την «εργοδική χωρητικότητα beamforming», αποδεικνύεται ότι 

υπάρχουν λειτουργικά περιβάλλοντα όπου o «βέλτιστος beamformer» επιτυγχάνει την 

«εργοδική χωρητικότητα» (δηλ. η «εργοδική χωρητικότητα beamforming» ταυτίζεται με 

την «εργοδική χωρητικότητα» του καναλιού). Αυτό ισχύει όταν η  κατανομή ενός 

καναλιού ικανοποιεί μια αναγκαία και ικανή μαθηματική συνθήκη, γνωστή στη 

βιβλιογραφία ως «συνθήκη βελτιστότητας του beamfoming» (optimality of beamfoming 

condition).  

γ.  Υφίσταται πλήθος καναλιών εντός των οποίων ο «βέλτιστος beamformer» 

παρουσιάζει πολύ υψηλή απόδοση και η «εργοδική χωρητικότητα beamforming» 

προσεγγίζει ικανοποιητικά την «εργοδική χωρητικότητα» του καναλιού. Η εν λόγω 

απόδοση πιστοποιήθηκε κατόπιν πλήθους προσομοιώσεων που υλοποιήθηκαν για το 

μοντέλο combined CMI-CCI στα πλαίσια της παρούσας διατριβής.      

Στα μοντέλα CMI και CCI ο «βέλτιστος beamformer» ταυτίζεται με το κύριο 

ιδιοδιάνυσμα του πίνακας αυτοσυσχέτισης του καναλιού (channel correlation matrix) και 

πρακτικά ταυτίζεται με το διάνυσμα που μεγιστοποιεί το μέσο λαμβανόμενο SNR, το 

οποίο αναφέρεται ως “max SNR beamformer”. Όμως για το combined CMI-CCI μοντέλο 

δεν υφίσταται απλή μαθηματική έκφραση για τον «βέλτιστο beamformer». Στο μοντέλο 

αυτό ο «βέλτιστος beamformer» υπολογίζεται αριθμητικά και αποτελεί τη λύση ενός 

πολυδιάστατου, μη γραμμικού, convex προβλήματος βελτιστοποίησης: πιο 

συγκεκριμένα πρέπει να υπολογιστούν τα Ν μιγαδικά στοιχεία του «βέλτιστου 

beamformer», δηλ. 2Ν πραγματικές παράμετροι. Ως εκ τούτου, η επίλυση του 

συγκεκριμένου προβλήματος (με χρήση ευρέος διαδεδομένων πολυδιάστατων 

αλγορίθμων, πχ. μεθόδων «εσωτερικού σημείου» (interior-point methods)) 

χαρακτηρίζεται από υψηλή πολυπλοκότητα, η οποία είναι απαγορευτική για εφαρμογές 

με απαιτήσεις πραγματικού χρόνου. Στην πράξη, o πομπός πρέπει να μπορεί να 

υπολογίζει τον «βέλτιστο beamformer» πολύ γρηγορότερα από τον χρόνο μεταβολής 

 



της στατιστικής του καναλιού, ο οποίος εν γένει μπορεί να είναι μικρός, ιδιαίτερα σε 

κανάλια με μικρό χρόνο συσχέτισης. 

Όλα τα ανωτέρω αναλύονται και περιγράφονται στο  1ο και 2ο Κεφάλαιο της 

διατριβής. 

Στο 3ο και 4ο Κεφάλαιο της διατριβής αποδεικνύεται ότι το πρόβλημα υπολογισμού 

του «βέλτιστου beamformer» στα πλαίσια του μοντέλου combined CMI-CCI μπορεί να 

μετασχηματιστεί σε ένα μονοδιάστατο (1-Δ) πρόβλημα βελτιστοποίησης και στη 

συνέχεια να επιλυθεί πολύ γρήγορα με χρήση απλών αλγορίθμων (πχ. με τη μέθοδο 

της “χρυσής τομής”). Αρχικά η εν λόγω απόδειξη παρουσιάζεται για συστήματα 

Πολλαπλών-Εισόδων Μονής-Εξόδου (Multiple-Input Single-Output ή MISO) και στη 

συνέχεια γενικεύεται για συστήματα ΜΙΜΟ, για το «μακροπρόθεσμο» μοντέλο combined 

CMI-CCI. Επιπρόσθετα, αποδείχθηκαν και τα ακόλουθα: 

• Tο υπόψη μονοδιάστατο πρόβλημα βελτιστοποίησης απλοποιείται ακόμη 

περισσότερο για τις περιπτώσεις συστημάτων MISO 2×1, MISO 3×1 και ΜΙΜΟ 2×Μ. 

• Στα συστήματα MISO η μέση αμοιβαία πληροφορία στην περίπτωση εκπομπής 

beamforming μπορεί να υπολογιστεί μέσω μια άπειρης σειράς (infinite-series 

representation), η οποία να συγκλίνει πολύ γρήγορα (δηλ. με μικρό πλήθος όρων) στην 

αντίστοιχη τιμή που προκύπτει μέσω ολοκλήρωσης Monte Carlo. Η χρήση της σειράς 

αυτής (αντί της μεθόδου Monte Carlo) επιταχύνει ακόμη περισσότερο τον υπολογισμό 

του «βέλτιστου beamformer». 

 Την ανωτέρω απόδειξη ακολούθησε πλήθος προσομοιώσεων (για το μοντέλο 

combined CMI-CCI και ομοιόμορφες γραμμικές στοιχειοκεραίες), στα πλαίσια των 

οποίων: 

α. Πραγματοποιήθηκε σύγκριση της μονοδιάστατης μεθόδου με πολυδιάστατους 

αλγόριθμους: αρχικά με αλγόριθμο «εσωτερικού σημείου» (interior-point) με 

λογαριθμική συνάρτηση φράγματος (logarithmic barrier function) και εν συνεχεία με μια 

αναδρομική ασυμπτωτική (και κατά συνέπεια υπο-βέλτιστη) μέθοδο υπολογισμού, η 

οποία χαρακτηρίζεται από υψηλή ταχύτητα σύγκλισης στη βέλτιστη λύση (δηλ. στον 

«βέλτιστο beamformer»), καθώς δεν απαιτείται ολοκλήρωση Monte Carlo. Σε κάθε 



 

περίπτωση τα αποτελέσματα έδειξαν ότι η  μονοδιάστατη μέθοδος είναι περίπου μια 

τάξη μεγέθους ταχύτερη από τις αντίστοιχες πολυδιάστατες μεθόδους. 

β.  Έγινε σύγκριση της «εργοδικής χωρητικότητας beamforming» που επιτυγχάνει ο 

«βέλτιστος beamformer», με τη μέση αμοιβαία πληροφορία που επιτυγχάνει ο “max 

SNR beamformer”. Η σύγκριση έδειξε ότι το κέρδος του ρυθμού μετάδοσης που 

επιτυγχάνει ο  «βέλτιστος beamformer» έναντι του “max SNR beamformer” δύναται να 

είναι σημαντικό. 

γ.  Πραγματοποιήθηκε σύγκριση της «εργοδικής χωρητικότητας beamforming» που 

επιτυγχάνει ο «βέλτιστος beamformer», με την «εργοδική χωρητικότητα» και: 

• Επιβεβαιώθηκε ότι  σε περιβάλλοντα/κανάλια που ικανοποιείται η συνθήκη 

“optimality of beamfoming”, η «εργοδική χωρητικότητα beamforming» ισούται με την 

«εργοδική χωρητικότητα».  

• Πιστοποιήθηκε ότι υφίστανται περιβάλλοντα/κανάλια που δεν ικανοποιείται η 

συνθήκη “optimality of beamfoming”, όμως ο «βέλτιστος beamformer» μπορεί να 

επιτυγχάνει «εργοδική χωρητικότητα beamforming» πολύ κοντά στην «εργοδική 

χωρητικότητα» (την οποία επιτυγχάνει μία εκπομπή υψηλότερης τάξης, γενικά). 

δ. Πραγματοποιήθηκε στατιστική μελέτη της συνθήκης “optimality of beamfoming” 

και προσδιορίστηκαν οι παράμετροι καθώς και ο τρόπος που αυτές επηρεάζουν την εν 

λόγω συνθήκη. 

Στο 5ο Κεφάλαιο της διατριβής έγινε ανάπτυξη λογισμικού (σε κώδικα Matlab), με το 

οποίο υλοποιήθηκε το μοντέλο προσομοίωσης καναλιών ΜΙΜΟ του 3GPP (3rd 

Generation Partnership Project). Το μοντέλο δύναται να προσομοιώνει διαφορετικά 

λειτουργικά περιβάλλοντα (αστικά ή ημιαστικά) στα πλαίσια ένος κυψελωτού 

συστήματος κινητών επικοινωνιών και να παράγει επιθυμητό πλήθος (ανεξάρτητων 

μεταξύ τους) δειγμάτων του πίνακα καναλιού. Επιπλέον, το μοντέλο μπορεί να 

προσομοιώνει και επιπρόσθετα χαρακτηριστικά που δύναται να ενσωματώνει ένα 

κανάλι, όπως είναι η συνιστώσα οπτικής επαφής (LOS component), οι μακρινοί 

σκεδαστές (far scatterer clusters), το αστικό «φαράγγι» (urban canyon) και κεραίες 

εκπομπής ή/και λήψης με πόλωση (polarized antennas).  

 



Δείγματα του πίνακα καναλιού που παρήχθησαν με το ανωτέρω μοντέλο 

χρησιμοποιήθηκαν στη συνέχεια σε προσομοιώσεις ως ακολούθως:  

α.  Για τη σύγκριση των μοντέλων «γνωστό κανάλι στον πομπό», «άγνωστο κανάλι 

στον πομπό», CCI και «βραχυπρόθεσμο» CMI, ως προς την «εργοδική χωρητικότητα» 

που αυτά επιτυγχάνουν (ως συνάρτηση του SNR) για τα ακόλουθα κανάλια: 

• αστικά μακροκυψελωτά (urban macrocellular) με 8ο ή 15ο μέση γωνιακή 

διασπορά (angular spread) στον σταθμό βάσης, 

• αστικά μικροκυψελωτά (urban microcellular) , 

• ημιαστικά μακροκυψελωτά (suburban macrocellular).  

Τα αποτελέσματα της σύγκρισης έδειξαν ότι σε όλα τα κανάλια ισχύει η ακόλουθη σειρά 

φθίνουσας απόδοσης για τα υπό μελέτη μοντέλα: «γνωστό κανάλι στον πομπό», CCI, 

«βραχυπρόθεσμο» CMI, «άγνωστο κανάλι στον πομπό». Επιπρόσθετα, φαίνεται ότι 

στα ημιαστικά μακροκυψελωτά και αστικά μακροκυψελωτά με μέσο “angular spread” 8ο 

η απόδοση του μοντέλου CCI προσεγγίζει σε μεγάλο βαθμό την απόδοση του μοντέλου 

«γνωστό κανάλι στον πομπό». 

β. Για τη στατιστική μελέτη της συνθήκης “optimality of beamforming”, για το 

«βραχυπρόθεσμο» μοντέλο CMI και τα ακόλουθα κανάλια:  

• αστικά μακροκυψελωτά (urban macrocellular) με μέσο “angular spread” στον 

σταθμό βάσης 8ο ή 15ο, 

• αστικά μικροκυψελωτά (urban microcellular) , 

• ημιαστικά μακροκυψελωτά (suburban macrocellular).  

Τα αποτελέσματα έδειξαν ότι η πιθανότητα να ικανοποιείται η υπόψη συνθήκη φθίνει με 

το SNR και το περιβάλλον ως ακολούθως:  αστικό μακροκυψελωτό μέσου “angular 

spread” 15ο, αστικό μακροκυψελωτό μέσου “angular spread” 8ο, ημιαστικό 

μακροκυψελωτό (με πιθανότητα που προσεγγίζει σημαντικά αυτή του αστικού 

μακροκυψελωτού μέσου “angular spread” 8ο) και αστικό μικροκυψελωτό. 

γ. Για τη στατιστική μελέτη της συνθήκης “optimality of beamforming”, για το 

μοντέλο CCI και τα ακόλουθα κανάλια:  



 

• αστικά μακροκυψελωτά (urban macrocellular) με μέσο “angular spread” στον 

σταθμό βάσης 8ο ή 15ο, 

• αστικά μικροκυψελωτά (urban microcellular) , 

• ημιαστικά μακροκυψελωτά (suburban macrocellular).  

Τα αποτελέσματα έδειξαν ότι η πιθανότητα να ικανοποιείται η υπόψη συνθήκη φθίνει με 

το SNR και το περιβάλλον ως ακολούθως: ημιαστικό μακροκυψελωτό, αστικό 

μακροκυψελωτό μέσου “angular spread” 8ο, αστικό μακροκυψελωτό μέσου “angular 

spread” 15ο και αστικό μικροκυψελωτό. 

δ. Για τη συγκριτική μελέτη της απόδοσης του «βέλτιστου beamformer» ως προς 

τον  “max SNR beamformer”, (εκπομπή beamforming μικρότερης πολυπλοκότητας σε 

σχέση με τον υπολογισμό του «βέλτιστου beamformer» για το μοντέλο combined CMI-

CCI), καθώς και τη στατιστική μελέτη της συνθήκης “optimality of beamforming” σε 

αστικά μικροκυψελωτά κανάλια με συνιστώσα οπτικής επαφής, (για απόσταση πομπού 

δέκτη <300m).  Για τα εν λόγω κανάλια, τα οποία προσομοιώνουν στον βέλτιστο δυνατό 

βαθμό το «μακροπρόθεσμο» μοντέλο combined CMI-CCI, προέκυψαν τα ακόλουθα 

αποτελέσματα:  

• Η συνθήκη “optimality of beamforming” ικανοποιείται με πολύ υψηλή 

πιθανότητα (>0.99), γεγονός το οποίο συνεπάγεται την αποκλειστική χρήση του 

«βέλτιστου beamformer» στο εν λόγω περιβάλλον για την επίτευξη της «εργοδικής 

χωρητικότητας». 

• Το κέρδος του «βέλτιστου beamformer» ως προς τον  “max SNR 

beamformer” είναι ασήμαντο σε μεγάλο εύρος του SNR, (η «εργοδική χωρητικότητα 

beamforming» σχεδόν ταυτίζεται με τη μέση αμοιβαία πληροφορία που επιτυγχάνει ο 

“max SNR beamformer”). Προκύπτει λοιπόν το συμπέρασμα ότι σε αστικά 

μικροκυψελωτά κανάλια με συνιστώσα οπτικής επαφής (LOS component) μπορεί να 

χρησιμοποιηθεί ως βέλτιστη πολιτική εκπομπής ο “max SNR beamformer”, (ο οποίος 

επιτυγχάνει την «εργοδική χωρητικότητα» με υψηλή πιθανότητα, βάσει της 

προηγούμενης παρατήρησης). 

Τέλος, στο 6ο Κεφάλαιο παρουσιάζονται συγκεντρωτικά τα σημαντικότερα 

συμπεράσματα της διατριβής. 
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Rate-optimum beamforming transmission in MIMO Rician fading channels

Chapter 1

INTRODUCTION

1.1 From smart antennas to MIMO systems

Since the early nineties adaptive/smart antennas have been a technical breakthrough

in wireless communications. Smart antennas were used in RADAR and SONAR systems

during the 2nd World War, mainly for the “shaping” of the antenna radiation pattern. Van

Atta was the first who introduced in 1959 the term “adaptive antenna”, in order to describe

antennas able to transmit along the direction of reception [1]. Later on, in the sixties,

Howells [2]-[3], Applebaum [4] and Widrow [5]-[7] developed algorithms for the adaptive

mitigation of interference and Capon [8] for finding the direction of mobile stations, using

adaptive antennas. In the seventies and eighties there was a lot of research on algorithms

for adaptive antennas (optimum combining, direction finding [9], etc.). This technology

was heavily promoted in the European Union in the nineties by three collaborative R&D

programs (TSUNAMI) [10]-[11] with key players the universities of Bristol, Aalborg and

Catalonia, while the university of Stanford along with companies like Metawave, Nortel

Networks and Arraycomm [12] were the main proponents on the other side of the Atlantic.

Smart antennas used at the base stations of cellular systems can enhance the SNR

(Signal to Noise Ratio) or the SINR (Signal to Interference plus Noise Ratio) for both

links. Interference in cellular systems is considered to be the received signal from “un-

desired” mobile stations/users of the same cell (intracell interference) or different cells

(intercell interference) or other base stations. An increase in the SNR/SINR increases

the downlink/uplink channel capacity and/or reduces the bit-error-rate (BER), increases

the communication range or reduces the downlink and/or uplink transmit power.

The aforementioned benefits can be achieved by employing various techniques like

Space Division Multiple Access (SDMA) as shown in Figure 1.1 [13], Switched Beams
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Figure 1·1: Space Division Multiple Access (SDMA) [13].

Figure 1·2: Switched Beams technique [13].

as shown in Figure 1.2 [13], and Spatial Filtering for Interference Reduction (SFIR) as

shown in Figure 1.3 [13]. For the SFIR technique and the calculation of the optimum

steady-state solution for the weight vector of the adaptive/smart antenna, the following

performance measures can be employed, which were discussed and analyzed in [14]:

a. Mean Square Error (MSE) criterion.

b. Signal to Noise Ratio (SNR) criterion.

c. Maximum Likelihood (ML) criterion.

d. Minimum Variance (MV) criterion.
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Figure 1·3: Spatial Filtering for Interference Reduction (SFIR) technique
[13].

There are several examples of generic smart antenna systems reported in the open

literature, with one basic thing in common: the mobile station is equipped with a single-

element antenna (e.g. a dipole antenna). The idea of using antennas with multiple el-

ements also at the mobile station opened the way for the transition from smart/adaptive

antennas to multiple-input multiple-output (MIMO) systems, which are able to employ

more intelligent algorithms that further improve system performance (capacity, BER and

coverage) in “harsh” multipath environments, without the expense of additional bandwidth.

It is true that the last few years we are witnessing an unprecedented growth in user de-

mand for high speed wireless communications and novel communication paradigms and

applications create an ever increasing volume of data traffic. The desired characteristics

of broadband wireless communication systems are:

• high spectral efficiency and data rates,

• high Quality Of Service (e.g. small bit-error-rate (BER)),

• wide coverage,

• low deployment, maintenance and operation costs.

However, in most cases, the wireless channel is very “hostile” and causes severe

fluctuations in the (received) signal level, due to multipath propagation (multipath fad-
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ing). Effects like path-loss (i.e. the signal power decrease with distance), shadowing (i.e.

the path-loss fluctuation at the same distance), noise and interference, all degrade the

performance of wireless communication systems. Moreover, the desired communication

bandwidth may not be always available.

MIMO systems employ multiple transmit and receive antennas to combat/exploit the

aforementioned “hostility” of the wireless channel: MIMO systems increase spectral ef-

ficiency, Quality of Service and coverage, whereas they are capable of mitigating inter-

ference. MIMO systems exploit multipath propagation to achieve these benefits, without

the expense of additional bandwidth. (These advantages make MIMO a very attractive

and promising option for future mobile communication systems especially when combined

with the benefits of orthogonal frequency-division multiplexing (OFDM)). The techniques

employed by MIMO systems in order to achieve the aforementioned benefits are the fol-

lowing (see also Figure 1.4):

Figure 1·4: MIMO techniques.

a. Beamforming . Transmit and/or receive beamforming (i.e. transmission and/or

reception along a unique direction/vector) is mainly designed to offer array gain, i.e. in-

crease of the SNR, when the channel is known at both ends of the radio link, (at the trans-
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mitter/receiver for transmit/receive beamforming, respectively). However, beamforming

can also offer diversity gain. Both gains enhance system coverage and BER. Moreover,

SNR maximization through transmit beamforming may - under certain conditions (e.g. for

MISO systems with channel knowledge at the transmitter) - maximize system’s spectral

efficiency, (i.e. achieve maximization of the mutual information).

b. Diversity . Transmit diversity techniques (for MISO and MIMO systems) - when

the channel is unknown to the transmitter - exploit transmission along Space and Time,

and for this reason the related transmission is referred to in the literature as Space-Time

Coding (STC) [15]-[22]. The Alamouti transmission scheme, Space-Time Block Codes

(STBC) and Space-Time Trellis Codes (STTC) are some examples of STC transmission.

Receive diversity techniques (for SIMO systems), like Maximum Ratio Combining (MRC)

[23]-[24], can also be employed. Transmit and receive diversity techniques offer both

diversity and array gain, enhancing in this manner system coverage and BER.

c. Spatial multiplexing . Spatial multiplexing techniques are transmission techniques

mainly designed to enhance spectral efficiency, i.e. maximize the mutual information

between transmitter and receiver, based on the available Channel State Information (CSI)

at both ends of the radio link, (e.g. full- or partial- or no-CSI at the transmitter combined

with full-CSI at the receiver are the most studied cases in the open literature).

It is important to note here, that in any of the aforementioned cases, where transmit

precoding is employed by the MIMO system (i.e. transmit beamforming, transmit diversity

and spatial multiplexing) the achieved diversity and array gain and hence, the achieved

throughput (i.e. effective data rate, which is related to the BER) depends also on the

detection method that is employed at the receiver (e.g. ZF, MMSE, ML etc.). Trade-offs

between diversity, array and multiplexing gain are discussed in [25]-[26].

1.2 Spectral efficiency of MIMO systems

As it was discussed in the previous section of this chapter, MIMO systems can be ex-

ploited to significantly increase channel capacity, through spatial multiplexing techniques.
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Pioneering works by Winters [27], Foschini [28] and Telatar [29] ignited much interest in

this area by predicting remarkable spectral efficiencies for wireless systems with multiple

antennas when the channel exhibits rich scattering and its variations can be accurately

tracked. This resulted in an explosion of research activity to characterize the theoretical

and practical issues associated with MIMO wireless channels [30].

Many MIMO techniques have been developed to capitalize on the theoretical capacity

gains predicted by Shannon theory. A major focus of such work is space-time coding [31].

Other techniques for MIMO systems include space-time modulation [32], [33], adaptive

modulation and coding [34], space-time equalization [35], [36], space-time signal pro-

cessing [37], space-time CDMA [38], [39], and space-time OFDM [40], [41], [42]. A good

overview in these areas and other practical techniques along with their performance can

be found in [43].

A MIMO system with N transmit and M receive antenna elements, can achieve (for

the same channel and transmit power), much higher capacity than a conventional Single-

Input Single-Output (SISO) system. It has been shown in [28]-[29] that under certain

conditions, the capacity achieved by MIMO systems increases linearly with the min{N ,

M}. For MIMO systems with perfect CSI at both ends of the link (transmitter/receiver),

the spatial pre-coding transmission scheme that achieves capacity was presented in [28]-

[29]. However, perfect CSI at the transmitter is practically unrealistic, mainly due to the

inevitable delay in the control channel which is used to feed back the CSI from the re-

ceiver [44] or due to the delay in the channel estimation algorithm employed at the trans-

mitter [45]. Instead, it is more realistic and practical to assume that the transmitter has

knowledge of the parameters of the MIMO channel distribution, since the channel statis-

tics usually remain invariant in a large time window, (tens to hundreds of times larger

than the coherence time [44]). This channel feedback information model is referred to

as “Transmitter Channel Distribution Information” or CDIT model [30]. In a CDIT model

the optimum transmission maximizes the average mutual information (between transmit-

ter and receiver) and the rate (in bps/Hz) achieved in this case is referred to as “ergodic
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capacity”.

The (optimum) spatial pre-coding transmission scheme that achieves ergodic capacity

has been addressed in the literature for the following complex Gaussian CDIT models:

a. Channel Covariance Information or CCI model. This model represents MIMO

Rayleigh fading channels and was studied in [46]-[48].

b. Channel Mean Information or CMI model. This model represents spatially uncor-

related MIMO Rician fading channels with unit covariance matrix (i.e. of the form aI) and

was studied in [46]-[47].

c. Combined CMI-CCI model. This model represents spatially correlated or uncorre-

lated with non-unit covariance matrix MIMO Rician fading channels and was studied in

[49] and [50].

Several modern wireless systems incorporate MIMO techniques [51]:

a. IEEE 802.11n WiFi [52]-[53]. MIMO-OFDM wireless LAN products based on the

IEEE 802.11n WiFi (5GHz band) standard are available and achieve throughput up to

600 Mbps. The MIMO techniques adopted in this standard are open-loop (i.e. CSI at

the transmitter is not required) and include transmit beamforming, spatial multiplexing

(maximum 4 spatial streams in a 40MHz channel) and diversity techniques (STBC and

Cyclic Shift Diversity (CSD), and the conventional receive diversity technique MRC).

b. IEEE 802.16 WiMAX [54]-[56]. The IEEE 802.16 wireless MAN standard known

as WiMAX also includes MIMO features (used along with OFDM/OFDMA or TDM/TDMA

transmission). Fixed WiMAX services are being offered by operators worldwide. Mobile

WiMAX networks based on IEEE 802.16e are being deployed (2-6GHz band for mobile

applications and 2-11GHz band for fixed applications), while IEEE 802.16m is under de-

velopment (it enables interoperabilty between WiMAX and LTE, supports high mobility

up to 350 km/h and data rates up to 300 Mbps). WiMAX supports open and closed-

loop MIMO techniques. The open-loop techniques include spatial multiplexing (4 spatial

streams with a 4 × 4 MIMO configuration) and STC transmission based on the Alam-
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outi scheme. The closed-loop techniques include spatial multiplexing, STC, and adaptive

beamforming.

c. IEEE 802.20 MBWA [57]-[58]. IEEE 802.20 mobile broadband wireless access

(MBWA) standard (<3.5GHz) proposes a complete cellular structure and is designed

to support mobility including high-speed mobile users (250 km/h). The standard incor-

porates MIMO-OFDM/OFDMA and MIMO-CDMA transmission, (OFDM/OFDMA for the

downlink/uplink and CDMA for the uplink). For the single-user MIMO (SU-MIMO) trans-

mission, 802.20 supports spatial multiplexing and diversity techniques, utilizing up to 4

transmit antennas. The standard also supports multi-user MIMO (MU-MIMO) transmis-

sion, by employing Space Division Multiple Access (SDMA).

d. LTE [59]-[60]. The 3GPP Long Term Evolution (LTE) adopts MIMO transmission

(OFDM /OFDMA for the downlink and SC-FDMA for the uplink transmission), which in-

cludes spatial multiplexing, diversity and beamforming. LTE achieves typical throughputs

of 100 Mbps and 50 Mbps in the downlink and the uplink, respectively, in the 20MHz

channel (1.25, 2.5, 5, 10 and 20 MHz bandwidths are supported), and specifies full per-

formance in a 5 km radius (with slight degradation from 5-30 km, while operation up to

100 km may be possible). Moreover, it supports high-speed mobility (high performance

at speeds up to 120 km/h, while connectivity is maintained up to 350 km/h or up to 500

km/h).

1.3 Thesis outline

The present doctoral thesis discusses the capacity of MIMO systems for single-user

systems (i.e. SU-MIMO) and different channel information models. The main focus is on

the calculation of the (optimum) beamforming transmission that maximizes the average

mutual information (between transmitter and receiver) in spatially correlated MIMO Rician

flat fading channels (i.e. under the combined CMI-CCI model).

The doctoral thesis is organized as follows:

In Chapter 2, basic definitions and known results on the capacity of MIMO systems
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are provided. Moreover, the channel feedback information models considered throughout

the doctoral thesis are discussed.

In Chapters 3 and 4, the algorithm for the calculation of the optimum beamformer that

achieves ergodic beamforming capacity (i.e. maximizes the average mutual information

under the rank -1 transmission constraint) for spatially correlated or uncorrelated with non-

unit covariance matrix MIMO Rician flat fading channels (i.e. the combined CMI-CCI

model) is presented. Moreover, simulations are produced for the proposed algorithm and

the optimum beamformer as follows:

a. The computational complexity of the proposed algorithm is compared with the

corresponding complexity of other (currently employed) multi-dimensional algorithms.

b. The ergodic beamforming capacity achieved by the optimum beamformer is com-

pared with the ergodic capacity (achieved by higher rank transmission schemes) and the

corresponding average mutual information achieved by the max SNR beamformer.

c. The optimality of beamforming condition is studied.

In Chapter 5, the ergodic capacity, the ergodic beamforming capacity and the optimal-

ity of beamforming condition are studied via simulations for different channel feedback

information models and different operational scenarios, which are produced using the

MIMO channel simulation model of 3GPP.

Chapter 6 summarizes the most important conclusions of this doctoral thesis and dis-

cusses some ideas for future work.

1.4 Notation

Throughout this doctoral thesis the following notation is used: Vectors are denoted

with bold small letters and matrices with bold capital letters. All vectors are row vectors

and matrix eigenvectors are column vectors. (·)T , (·)∗, (·)† stand for transposition, com-

plex conjugation and complex conjugate transposition, respectively. IN is the N ×N unit

matrix. M•i /Mi• is the ith column/row of matrix M, respectively. Mij is the ith row and jth
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column element of matrix M. xi is the ith element of vector x. The ith eigenvalue of matrix

M is denoted as λi(M) and λmax(M) stands for the maximum eigenvalue of of matrix M.

HN
++ /H

N
+ is the set of positive definite/semi-definite Hermitian N × N matrices, respec-

tively. C /CM×N is the set of complex numbers / M × N complex matrices, respectively.

‖ · ‖2 stands for the l2-norm on C
1×N . ‖M‖F stands for the Frobenius norm of matrix M.

f(x)|x=xo
stands for the value of f(x) at x = xo. E [ · ] is the expectation operator. N (· , ·)

denotes the complex normal distribution. tr{·} and rank{·} are the trace and rank of a

matrix, respectively. M � 0 denotes that matrix M is positive semi-definite. vec (M) is

the NM × 1 vector formed by sorting the N columns of matrix M ∈ CM×N one below the

other, forming a column vector. diag [x] is a diagonal matrix with the elements of vector x

in its diagonal.
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Chapter 2

CAPACITY OF MIMO CHANNELS

2.1 Introduction

Consider a MIMO N ×M flat fading wireless channel, with N > 2 and M > 1 the

number of transmit and receive array antenna elements, respectively. The received signal

is a vector y ∈ C1×M expressed by the following equation:

yT = HxT + nT (2.1)

where H ∈ CM×N is the channel matrix, x ∈ C1×N is the transmit signal vector and

n ∈ C1×M is the received noise vector (see Figure 2.1). Vectors x and n follow zero-mean,

circularly symmetric, complex Gaussian distributions with covariance matrices Σ = E [x†x]

and E [n†n] = σ2IM , respectively.

Figure 2·1: N ×M MIMO system.

The transmit covariance matrix Σ is constrained by the total transmitted power P as

follows:

tr(Σ) 6 P (2.2)
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The normalized transmit covariance matrix Q is expressed by the following equation:

Q =
1

P
Σ (2.3)

Q is a Hermitian positive semi-definite matrix (Q � 0) with tr{Q} 6 1.

In MIMO systems the mutual information between transmitter and receiver, when the

receiver has perfect CSI, is expressed by the following equation ([28]-[29]):

I (SNR,Q,H) = log2 det
(
IM + SNRHQH†

)
(2.4)

where SNR = P/σ2, (the mathematical background for the proof of (2.4) is omitted and

the mutual information I is presented throughout this doctoral thesis as a function of the

parameters {SNR,Q,H}).

When both the transmitter and the receiver have perfect CSI1, the mutual information

I (SNR,Q,H) can be maximized with respect to Q (for a given channel matrix and SNR).

The maximum mutual information is the “channel capacity”:

C = max
tr{Q}61,Q�0

log2 det
(
IM + SNRHQH†

)
(2.5)

In the context of this thesis only flat fading channels are studied. However, it must

be mentioned that in frequency selective channels the frequency band of interest can be

divided into L narrower flat sub-channels and the channel capacity can be expressed as

follows:

CFS =
1

L
max

tr{R}6L,R�0
log2 det

(
IML + SNRHRH†

)
(2.6)

where:

a. H is an ML × NL block diagonal matrix with the L sub-channels Hi ∈ C
M×N (i =

1, . . . , L) as the block diagonal elements,

1Usually, it is assumed that the receiver is able to estimate the channel in the context of a data training
period and then it feeds back the channel to the transmitter via a low rate control channel.
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b. R is the transmit covariance matrix defined as R = E [SS†], where S = [sT1 , s
T
2 , . . . , s

T
L]

T ,

with si ∈ CN×1 (i = 1, . . . , L) the signal transmitted in each (flat) sub-channel.

As it was mentioned in the introduction of this chapter, the assumption for perfect

CSI at the transmitter is practically unrealistic (due to the delay in the control channel

which is used to feed back the CSI from the receiver) and it is more realistic to assume

a CDIT model. In a CDIT model, the transmitter cannot achieve capacity in the sense

discussed in the previous paragraphs. In this case, the mutual information is maximized

by the transmitter statistically with respect to Q. The achieved maximum average mutual

information is referred to as “ergodic capacity” and is defined as:

Cerg = max
tr{Q}61,Q�0

EH
[
log2 det

(
IM + SNRHQH†

)]
(2.7)

The expectation EH [·] in (2.7) is calculated using Monte Carlo integration over a set of

channel samples that follow the channel distribution.

The optimum transmit covariance matrix Q that achieves the Cerg in (2.7) will be

denoted throughout this chapter as Qopt. The transmission of a MIMO system using

Qopt = VΛoptV
† - with V and Λopt the eigenvectors and eigenvalues matrices of Qopt,

respectively - is shown in Figure 2.2.

Moreover, Cerg is the best knowledge that the transmitter can have for the “allowed”

achievable rate (bps/Hz) and is not “capacity” with the strict sense of the term, as defined

by and used in (2.5). For every channel realization H, Cerg will be less than or equal to

the channel capacity defined by (2.5).

Finally, it is important to note again that equations (2.4)-(2.7) are valid only when the

receiver has perfect CSI. Any other case/model, where the receiver has not perfect CSI, is

out of the scope of the present doctoral thesis. In [61]-[63] the MIMO channel capacity is

studied when both the receiver and the transmitter have channel distribution information

(i.e. a CDIR-CDIT model is assumed).
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Figure 2·2: Transmission with Qopt.

2.2 MIMO channels capacity

2.2.1 Perfect CSI at the receiver and the transmitter

It has been proven in [29] that when perfect CSI is assumed at both ends of the

MIMO link the channel capacity (expressed by (2.5)) is achieved by transmitting along the

right singular vectors of the MIMO channel matrix and allocating power optimally to the

(orthogonal) transmit directions. In this case the channel capacity is expressed by the

following equation:

C = max∑r
i=1 γi=1

r∑

i=1

log2 (1 + SNRγiλi) (2.8)

with λi (i = 1, . . . , r) the non-zero eigenvalues of matrix HH† and γi (i = 1, . . . , r) the

power allocated to each channel mode (i.e. λi) and hence, to each of the r transmit

directions (i.e. the right singular vectors of the channel matrix H).

The maximization/optimization problem in (2.8) (with respect to γi (i = 1, . . . , r)) is

solved using the Lagrange method, exploiting the concavity of (2.8) with respect to γi.

The optimal power allocation (i.e. γopt
i (i = 1, . . . , r)) is determined through an iterative
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algorithm referred to as “water-pouring” (or “water-filling”), ([29], [64]-[66]) and satisfies:

γopt
i =

(
µ− 1

SNRλi

)

+

(2.9)

where µ is a constant and (x)+ implies

(x)+ =





x if x > 0

0 if x < 0
(2.10)

According to the water-pouring algorithm, power may not be allocated to all channel

modes, as shown in Figure 2.3. Moreover, the lower the SNR and/or the disparity between

the channel singular values (λi (i = 1, . . . , r)), the fewer the transmit directions that the

available power is allocated to.

Figure 2·3: Waterfilling algorithm.

The ergodic capacity can also be defined for this channel information model. For any

given channel distribution and assuming an ergodic channel (i.e. the channel realizations

are independent) the ergodic capacity of the channel is the ensemble average of (2.8)

over the channel distribution:
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CCSIT
erg = EH

[
max∑r
i=1 γi=1

r∑

i=1

log2 (1 + SNRγiλi)

]
(2.11)

2.2.2 Perfect CSI at the receiver and unknown channel to the t ransmitter

When the channel is totally unknown to the transmitter, practically the transmitter can-

not maximize the mutual information and hence, achieve the channel capacity. In this

case, the best choice for the transmitter is to transmit independent signals with equal

power from its antenna elements, as it is shown in Figure 2.4. In this case the achieved

mutual information , (which is also referred to as “capacity” for simplicity reasons), is

expressed by the following equation:

Cun =
r∑

i=1

log2

(
1 +

SNR

N
λi

)
(2.12)

where λi (i = 1, . . . , r) the eigenvalues of matrix HH†.

Figure 2·4: Transmission for Unknown Channel to the transmitter.

The ergodic capacity can also be defined in this case. For any given channel distri-

bution and assuming an ergodic channel (i.e. the channel realizations are independent)

the ergodic capacity of the channel is the ensemble average of (2.12) over the channel

distribution:

Cun
erg = EH

[
r∑

i=1

log2

(
1 +

SNR

N
λi

)]
(2.13)

Assuming a channel with complex Gaussian distribution vec (H) ∼ (0, IMN), (i.e. spa-
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tially uncorrelated Rayleigh distributed channel), it can be proven through simulations that

were presented in [66], that the ergodic capacity for unknown channel to the transmitter is

lower than the ergodic capacity for known channel to the transmitter (i.e. perfect CSI), for

any SNR. Moreover, in this case and when N =M the aforementioned ergodic capacities

converge for high SNR values.

Consider now a MIMO channel with complex Gaussian distribution vec (H) ∼ (0, IMN)

and N =M . According to the strong law of large numbers [67] we have:

1

M
HH† → IM , as M → ∞ (2.14)

Therefore, when M → ∞ and the channel is unknown to the transmitter, the capacity

expressed by (2.13) approaches:

Cun →M log2 (1 + SNR) (2.15)

From (2.15) it can be observed that the capacity increases linearly with M for a fixed

SNR and consequently we have M times higher capacity than the capacity achieved by a

SISO system. Moreover, for a fixed M , for every 3dB increase in SNR we get M bps/Hz

in capacity for a MIMO channel, compared with 1 bps/Hz for a SISO channel [66].

2.2.3 Perfect Channel State Information (CSI) at the receiv er and Channel Distri-

bution Information at the transmitter (CDIT)

Assuming a CDIT model, the solution of the optimization problem defined in (2.7), i.e.

the calculation of the optimum transmit covariance matrix Qopt, depends on the channel

distribution. In the following, the solution of the aforementioned problem is presented for

complex Gaussian channels.

Channel Covariance Information (CCI) model

This CDIT model describes MIMO Rayleigh fading channels. The (spatial) correlation

of the channel matrix is expressed by the NM ×NM channel covariance matrix, defined
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as:

R = E
[
vec (H) vec (H)†

]
(2.16)

R is positive semi-definite and Hermitian matrix. Therefore, the channel distribution is

expressed as vec (H) ∼ N (0,R), where 0 is (in this case) a zero column vector with NM

elements. In this CDIT model, R is calculated by the receiver in the context of long-term

statistics (since the receiver has perfect CSI) and then it is fed back to the transmitter (i.e.

the transmitter is “informed” for the channel covariance).

The channel matrix realizations of this model can be produced by the following equa-

tion:

vec (H) = R1/2vec (Hw) (2.17)

where Hw ∈ CM×N is a zero-mean complex Gaussian matrix, spatially uncorrelated and

its complex elements have independent real and imaginary parts, each with 1/2 variance.

Namely, it is vec(Hw) ∼ N (0, IMN).

Moreover, R can also be expressed by the following equation:

R = RT
t ⊗Rr (2.18)

where Rt and Rr are the channel transmit and receive covariance matrices, which are

defined as Rt = E
[
H†H

]
and Rr = E

[
HH†

]
.

Although the model described above by (2.17) is capable of capturing any correlation

effect between the elements of H, the following simpler model may be used:

H = R1/2
r HwR

1/2
t (2.19)

The model expressed by (2.19), although not completely general, it has been vali-

dated through field measurements as a sufficiently accurate representation of the fade

correlations seen in actual cellular systems [68]. This model will be assumed throughout

this doctoral thesis.
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For the CCI model the solution of the optimization problem (2.7) is expressed by the

following theorem:

Theorem 2.1 . Let Rt = UtΛtU
†
t the eigen-decomposition of Rt, where Ut and Λt stand

for the eigenvectors and eigenvalues matrices, respectively. The optimum transmit co-

variance matrix that achieves ergodic capacity is expressed as Qopt = UtΛoptU
†
t , where

Λopt is determined through numerical optimization techniques.

The proof of the above theorem was first presented for MISO systems in [46]. Then it

was extended in [47] for MIMO systems with Rr = IM (i.e. it was assumed that there is

no correlation at the receive antenna) and finally, in [48] it was generalized to include any

Rr. For the calculation of Λopt the iterative algorithm proposed in [69] can be employed.

Channel Mean Information (CMI) model

This CDIT model describes spatially uncorrelated with unit covariance matrix MIMO

Rician fading channels. The CMI model was first introduced in [46] for MISO systems

as a “short-term feedback model”, where the receiver feeds back to the transmitter a

channel measurement (made at time t0) and then the transmitter, based on this channel

measurement, on long-term statistics and the MMSE estimation theory [70], estimates

the channel realization at time ts (with an estimation error). The reason for using this

estimation process is the feedback delay (s) of the channel measurement2 (made by the

receiver at time t0). Theoretically, if there was no delay in the feedback control channel,

there would be no need for channel estimation and the model described in paragraph

2.3.1 would be employed (perfect CSI at the receiver and the transmitter).

According to the MMSE estimation theory and as referred to in [44], an estimation of

the channel Hs at the transmit time s (which is practically the feedback delay) - denoted as

Ĥs - is based on the channel measurement H0 at time t0, and on the long-term statistics

H, R and Rs, i.e. the channel mean, covariance and auto-covariance matrices, respec-

tively, calculated by the receiver by averaging instantaneous channel measurements over

2The channel measurement is fed back to the transmitter via a low-rate control channel
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tens of channel coherence times. R and Rs are expressed by the following equations:

R = E
[(

vec (H)− vec
(
H
)) (

vec (H)− vec
(
H
))†]

(2.20)

Rs = E
[
vec (H0) vec (Hs)

†
]

(2.21)

Moreover, R is again expressed by (2.18), where the channel transmit and receive covari-

ance matrices are defined as Rt = E
[(
H−H

)† (
H−H

)]
and Rr = E

[(
H−H

) (
H−H

)†]
,

respectively.

The channel estimation Ĥs is expressed as follows:

ĥs = h+R†
sR

−1
[
h0 − h

]
(2.22)

while the estimation error is expressed by the error covariance matrix Re,s:

Re,s = R+R†
sR

−1Rs (2.23)

where:

ĥs = vec
(
Ĥs

)
(2.24)

h0 = vec (H0) (2.25)

h = vec
(
H
)

(2.26)

In the CMI model, the error covariance matrix Re,s is a white matrix with equal diagonal

elements, i.e. it is expressed as Re,s = aIMN , where a is referred to as the “estimation

error”3. The transmitter exploits the (current) channel estimation Ĥs and calculates the

optimum transmission Qopt at time s, as the transmission scheme that achieves ergodic

capacity (i.e. it solves the optimization problem in (2.7)) assuming a channel distribution

vec(H) ∼ N (vec(Hm), aIMN), with Hm = Ĥs. It can be observed that for the calculation

of Qopt (whenever a channel measurement H0 is fed back from the receiver) the channel

3This may be mathematically valid and occur for some values of R and Rs (see (2.23)) or it can be an
assumption, i.e. the error correlation effects are ignored.
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that is assumed at the transmitter is always spatially uncorrelated (with unit covariance

matrix) and has a Rician distribution, (since Hm = Ĥs 6= 0). On the other hand, the long-

term distribution of the channel is not necessarily Rician, but it can also be a Rayleigh

distribution if H = 0.

Observe from (2.22) and (2.23) that when Rs = 0 (i.e. there is no correlation between

channel realizations with time difference s), then it is always ĥs = h and Re,s = R,

regardless of the channel measurement H0. Moreover, if it is also H 6= 0 and R = aIMN

(or, equivalently, Rr = βrIM and Rt = βrIN , with a = βrβt), then we have a “long-term

feedback” CMI model, where the instantaneous channel measurements H0 need not be

fed back by receiver. In this case only the long-term channel mean H is fed back by the

receiver and is exploited by the transmitter in order to calculate and employ Qopt for the

time period that the statistic H is valid. A new feedback occurs only when H changes.

Obviously, if H = 0, then the long-term feedback CMI model becomes a CCI model (i.e.

vec(H) ∼ N (0, aIMN)), which is inherently a long-term feedback model.

The channel matrix realizations of the CMI model can be produced by the following

equation, for both the long and the short-term feedback models:

H = Hm +
√
aHw (2.27)

where Hm = Ĥs for the short-term feedback model and Hm = H for the long-term feed-

back model.

For the CMI model the solution of the optimization problem (2.7) is expressed by the

following theorem:

Theorem 2.2 . The optimum transmit covariance matrix Qopt for the CMI model (described

by (2.27)) is decomposed as Qopt = UΛoptU
† (U and Λopt stand for the eigenvectors

and eigenvalues matrices, respectively), where the first column of U is the dominant

right singular vector of Hm and the rest of its columns are arbitrarily chosen (with the

restriction that U should be a unitary matrix). Furthermore, the eigenvalues matrix Λopt =

diag [λo1, λ
o
2, . . . , λ

o
N ] is determined through numerical optimization techniques, with λo2 =
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. . . = λoN = λ and λ =
P−λo

1

N−1
.

The proof of the above theorem was first presented for MISO systems in [46]. Then

it was extended in [47] for MIMO systems with rank{Hm} = 1 (i.e. for physical Rician

channels where Hm represents the Line of Sight (LOS) component) and finally, in [71] it

was generalized to include any Hm matrix.

Combined CMI-CCI model

This CDIT model describes spatially correlated or uncorrelated with non-unit covari-

ance matrix MIMO Rician fading channels. For the combined CMI-CCI model there is no

closed-form expression for the optimum transmit directions and hence, both the eigenvec-

tors and the eigenvalues of the optimum transmit covariance matrix must be calculated

numerically.

The channel matrix samples of the combined CMI-CCI model can be produced by the

following equation:

vec (H) = vec (Hm) +R
1/2
0 vec (Hw) (2.28)

(i.e. vec(H) ∼ N (vec(Hm),R0)) and assuming a (simplified) model with separable trans-

mit and receive correlations, (2.28) is written as:

H = Hm +R
1/2
0,r HwR

1/2
0,t (2.29)

where:

a. If Rs 6= 0, then Hm = Ĥs, R0,r = Rr
e,s, R0,t = Rt

e,s, with Rs, Ĥs previously defined in

the discussion for the CMI model and

Re,s =
(
Rt

e,s

)T ⊗Rr
e,s (2.30)

Re,s is defined by (2.23). In this case we have a the short-term feedback model, namely,

Ĥs, Rr
e,s and Rt

e,s are calculated dynamically by the transmitter for every channel mea-

surement (H0) which is fed back by the receiver. Moreover, with (2.30) it is implied that
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the error covariance matrix Re,s may have a Kronecker structure4.

b. If Rs = 0, then Hm = H, R0,r = Rr and R0,t = Rt, with H previously defined in

the discussion for the CMI model and Rr/Rt defined in (2.18). In this case we have a

long-term feedback model, namely, only the long-term channel statistics H and R are fed

back by the receiver and are exploited by the transmitter in order to calculate and employ

Qopt for the time period that these statistics are valid. A new feedback occurs when H and

R change. Obviously, if H = 0, then the long-term feedback combined CMI-CCI model

becomes a CCI model and if {H 6= 0,R = aIMN} then the long-term feedback combined

CMI-CCI model becomes a long-term feedback CMI model.

In [30] it was mentioned that the calculation of Qopt for the combined CMI-CCI model

was an open problem. In [49] a solution was proposed, employing an interior barrier

point algorithm. However, the algorithm in [49] was characterized by high computational

complexity and hence, it is prohibitively complex for real-time applications. In [50] an

asymptotic approach was proposed for the solution of the aforementioned optimization

problem, where it was shown that it has very good performance (i.e. the achieved average

mutual information is close to the ergodic capacity achieved by the algorithm in [49])

and low complexity, compared with the algorithm in [49]. Moreover, in [44] closed-form

solutions for asymptotic SNR values were provided. More precisely, assuming that Rr =

IM , it was proven that:

a. When SNR → 0, the optimum transmission is along the dominant eigenvector of the

channel transmit correlation matrix E
[
H†H

]
, (this is a beamforming transmission referred

to also in the literature as “max SNR beamformer”).

b. When SNR → ∞ and for MIMO systems with N 6M , it is Qopt =
1
N
IN .

Figure 2.5 presents an overview of the aforementioned Gaussian CDIT models.

4If it is assumed that all scalar channels between the N transmit and M receive antennas have the same
temporal correlation factor ρs (i.e. if homogeneous temporal correlation is assumed), then it is Rs = ρsR
and from (2.23) it follows that Re,s =

(
1− ρ2s

)
R. From the last equation it can be concluded that Re,s may

have the Kronecker structure of (2.30) with Rt
e,s =

√
(1− ρ2s)Rt and Rr

e,s =
√
(1− ρ2s)Rr.
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Figure 2·5: CDIT models.

2.3 Rate-Optimum beamforming transmission in MIMO channel s

When the transmit covariance matrix Q is restricted to be rank -1 then we have a

beamforming scenario where all the available power is allocated to a unique direction via

the beamforming vector, as it is shown in Figure 2.6. In this case, (2.3) becomes:

Q =
1

P
v†v (2.31)

where v ∈ C1×N (with ‖ v ‖2= 1) is the beamforming vector/direction.

The corresponding mutual information for this transmission scheme is referred to

throughout this doctoral thesis as “beamforming mutual information” and will be denoted

as Ibf (SNR,v,H). Substituting (2.31) into (2.4), I (SNR,v,H) is expressed as follows:

Ibf (SNR,v,H) = log2 det
(
IM + SNRHv†vH†

)
(2.32)

Moreover, in the context of CDIT models, the corresponding ergodic capacity for this

restricted case of transmission is referred to throughout this doctoral thesis as “ergodic

beamforming capacity” (the same terminology was also used in [72]), will be denoted as
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Figure 2·6: Beamforming transmission.

Cbf, and substituting (2.32) into (2.7), Cbf is expressed by the following equation:

Cbf = max
‖v‖2=1

EH [Ibf (SNR,v,H)] = max
‖v‖2=1

Ibf,avg (SNR,v) =

= max
‖v‖2=1

EH
[
log2 det

(
IM + SNRHv†vH†

)]
(2.33)

Note that in (2.33) it is defined EH [Ibf (SNR,v,H)] = Ibf,avg (SNR,v). The beamforming

vector that achieves ergodic beamforming capacity (i.e. is the solution of the optimization

problem in (2.33)) will be referred to as “optimum beamformer”, denoted as vopt.

There are several reasons why it is important to consider the optimum beamforming

transmission in MIMO systems:

a. The complexity of the system and as a consequence the overall cost, are signifi-

cantly reduced.

b. Results presented in the following chapters of this doctoral thesis show that there

are operational scenarios where the ergodic beamforming capacity is very close to the

ergodic capacity, achieved by higher rank transmission schemes.

c. There are operational scenarios where the optimum beamformer achieves ergodic

capacity, namely it is Cbf = Cerg and Qopt =
1
P
v
†
optvopt. This is achieved when the following
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necessary and sufficient condition is satisfied [73]:

λmax

(
(IN − v

†
optvopt)K(IN − v

†
optvopt)

†
)
6 voptKv

†
opt (2.34)

with K ∈ H
N
+ expressed as:

K = EH
[
H†(IM + SNRHv

†
optvoptH

†)−1H
]

(2.35)

Inequality (2.34), known in the literature as “optimality of beamforming condition” [30],

is valid for any CDIT model. In [47]-[48] more specific expressions of (2.34) were derived,

for the (complex Gaussian) CCI and CMI models:

a. CCI model . The necessary and sufficient condition for optimality of beamforming

can be expressed by the following inequality:

1

SNRλ2 (Rt)
>

M

1−
(

1
SNRλ1(Rt)

)M
exp

(
1

SNRλ1(Rt)

)
Γ
(
1−M, 1

SNRλ1(Rt)

) − 1 (2.36)

where Γ (k, x) =
∫∞

x
tk−1e−tdt is the upper incomplete Gamma function.

b. CMI model . The necessary and sufficient condition for optimality of beamforming

can be expressed by the following inequality:

E
[

1

1 + SNRµw

]
6

1 + SNR (1−M)

1 + SNR
(2.37)

where µ is the non-zero (and unique) eigenvalue of Hm and w is a non-central chi-squared

distributed random variable with 2M degrees of freedom and non-centrality parameter

δ = µ2. It must be mentioned here that condition (2.37) is valid for the long-term feedback

CMI model, where Hm = H, rank{Hm} = 1 and Hm represents the LOS component of

the Rician channel.

As far as the solution of the optimization problem in (2.33) and the calculation of vopt

is concerned, the optimum beamformer can be determined in closed-form for the CCI

and CMI models: in both cases vopt is the dominant eigenvector of the channel transmit
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correlation matrix E
[
H†H

]
([72], [74]), and consequently, it coincides with the max SNR

beamformer. For the combined CMI-CCI model there is no closed-form expression for

vopt. In this case vopt must be calculated numerically by solving a multi-dimensional op-

timization problem (see (2.33)), which is prohibitively complex for real-time systems and

applications [75]. In Chapters 3 and 4 of the present doctoral thesis, a solution for this

problem is proposed for MISO and MIMO channels, respectively, and it is proven that vopt

can be calculated numerically in the context of a simple 1-D optimization problem, which

can be solved very fast by employing any standard 1-D search algorithm [76].

65 Dimitrios E. Kontaxis



Dimitrios E. Kontaxis 66



Rate-optimum beamforming transmission in MIMO Rician fading channels

Chapter 3

RATE-OPTIMUM BEAMFORMING TRANSMISSION IN MISO RICIAN

FADING CHANNELS

3.1 Introduction

In MIMO channels with perfect CSI at the receiver (CSIR) and partial CSI at the trans-

mitter (CDIT), when the transmit covariance matrix is constrained to be a rank -1 matrix,

all the available power should be transmitted along a unique direction with the help of a

“beamforming vector”, and hence we have a beamforming scenario. The transmission

scheme that maximizes the average mutual information for this (constrained) scenario is

referred to as “optimum beamforming” and the relative beamforming vector is referred to

as “optimum beamformer”. The maximum average mutual information achieved by the

optimum beamformer is referred to as “ergodic beamforming capacity” and is defined by

(2.29). It must be noted that the ergodic beamforming capacity does not coincide with the

ergodic capacity of the channel generally, however, this is possible when the optimality

of beamforming condition (2.34) is satisfied. The reasons why it is important to consider

optimum beamforming transmission in MIMO systems were explained in Chapter 2.

As it was also mentioned in Chapter 2, for the CCI and CMI models the optimum

beamformer is the dominant eigenvector of the channel transmit correlation matrix [72].

However, for the combined CMI-CCI model, a closed-form expression for the optimum

beamformer has not been presented in the open literature until now. In this case, the

optimum beamformer must be determined numerically as the solution of a convex multi-

dimensional optimization problem, (the N complex elements of the optimum beamformer

must be calculated, i.e. 2N real parameters). As a result, the solution of this problem

(using standard algorithms1), which is referred to as “optimum beamforming problem”, is

1e.g. interior-point methods [77].
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relatively slow and is characterized by high computational complexity, (it is stated in [75]

that the solution of this problem is “prohibitively complex”). Furthermore, the optimum

beamforming problem must be solved at the transmitter a lot faster than the channel

statistics change, which is a very strict constraint for channels with small coherence times.

For this reason, a faster and more efficient solution is required. Until now, a method for

the simplification of the aforementioned solution has not been presented in the open

literature.

Moreover, the algorithms that have been presented in [49]-[50] for the combined CMI-

CCI model, are not dedicated solutions to the optimum beamforming problem, since they

do not consider the rank -1 constraint for the transmit covariance matrix (i.e. beamform-

ing), and hence, they do not solve this problem. However, they are able to calculate

the optimum beamformer when the optimality of beamforming condition (2.34) is satis-

fied, but even in this case, the problem they solve is still multi-dimensional and hence,

computationally complex.

In this chapter a novel simple one-dimensional (1-D) method is addressed for the

straightforward and unconditional solution of the optimum beamforming problem (i.e. the

maximization of the average mutual information for the beamforming transmission sce-

nario) with MISO systems under the combined CMI-CCI model2. Moreover, in the context

of this work, it is demonstrated via simulations that:

a. The proposed method has significantly lower computational complexity compared

to other currently employed multi-dimensional algorithms, e.g. an interior-point method or

the asymptotic approach [50], which provide optimum and sub-optimum solution, respec-

tively, to the same problem under specific conditions (i.e. when the optimality condition

(2.34) is satisfied).

b. The ergodic beamforming capacity is always higher compared to the average mu-

tual information achieved by the beamforming transmission that maximizes the expected

2The proposed method will provide a solution regardless of whether the optimality condition (2.34) is
satisfied or not.
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received SNR (referred to as “max SNR beamformer”), and moreover, as already men-

tioned above, it is very close to the ergodic capacity3 in many operational scenarios or

equal to the ergodic capacity when the optimality condition (2.34) is satisfied.

The rest of this chapter is organized as follows: In Section 3.2 the system model and

the optimum beamforming problem are introduced. In Section 3.3, a novel method for the

calculation of the optimum beamformer for MISO systems under the combined CMI-CCI

model is proven. Section 3.4 presents simulation results related to the computational

complexity of the proposed method and the capacity performance of the optimum beam-

former.

3.2 System model and problem statement

In a flat fading channel the received signal y of a MISO system withN transmit antenna

elements is expressed as:

y = hxT + n (3.1)

where x ∈ C1×N is the transmitted signal, h ∈ C1×N is the channel vector and n is the

received noise. n is complex Gaussian random variable with zero-mean and variance

E [n2] = no. x is complex Gaussian random vector with zero-mean and circularly symmet-

ric covariance matrix Σ = E [x†x].

When beamforming is considered, Σ has rank -1 and is expressed as:

Σ = Pv†v (3.2)

where P is the (total) transmitted power and v ∈ C
1×N is the unit-norm beamforming

vector.

Assuming perfect CSI at the receiver and CDIT, the ergodic beamforming capacity is

3The algorithms in [49]-[50] can be used for the calculation of the ergodic capacity.
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expressed by (2.29):

Cbf = max
‖v‖2=1

Eh [Ibf (SNR,v,h)] = max
‖v‖2=1

Ibf,avg (SNR,v) =

= max
‖v‖2=1

Eh
[
log2 det

(
IM + SNRhv†vh†

)]
(3.3)

The optimum beamformer, vopt, is the beamforming vector that maximizes (3.3), and

is expressed as the solution of the following convex optimization problem:

vopt = arg max
v∈S

Ibf,avg(SNR,v) (3.4)

S = {v;v ∈ C
1×N , ‖v‖2 = 1} (3.5)

The solution of (3.4) depends on the distribution of h (i.e. the CDIT model) and - as

mentioned in Section 3.1 - closed-form solutions exist only for the CMI and CCI feedback

models. In the following section, the optimization problem in (3.4) is solved for MISO

systems under the combined CMI-CCI model [74], [78].

3.3 Optimum beamforming transmission in MISO Rician fading channels

Consider a frequency flat MISO channel, with CDIT h ∼ N (µ,R), where µ ∈ C1×N

(µ 6= 0) is the channel mean and R ∈ HN
+ (R 6= IN) is the channel transmit covariance

matrix, (µ and R represent the long-term channel statistics). The same CDIT model

can also be used when the receiver feeds back to the transmitter instantaneous channel

measurements, which are subject to delay and distortion [44], [75]. In this case, µ and R

do not represent the long-term channel statistics, but µ is the estimated channel value and

R is the error covariance matrix. Moreover, in this case, the long-term channel statistics

are not necessarily a Rician distribution. In both aforementioned cases, the CDIT model

under consideration is the combined CMI-CCI model, (long and short-term, respectively),

and represents spatially correlated or uncorrelated with non-unit (transmit) covariance

matrix MISO Rician fading channels, (see discussion in Chapter 2).
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The channel samples are produced by the model expressed by (2.25):

h = µ+ hwR
1/2 (3.6)

where hw ∈ C
1×N has i.i.d zero-mean complex Gaussian elements, with independent real

and imaginary parts, each with variance 0.5.

It is proven in the following that the optimization problem in (3.4) under the channel

model (3.6) can be reduced to only one dimension and subsequently solved using stan-

dard 1-D search algorithms [76].

Setting z = hv†, (3.3) becomes:

Ibf,avg(SNR,v) = E|z|
[
log2

(
1 + SNR |z|2

)]
(3.7)

where z ∼ N (µv† , vRv†), and hence, |z| follows a Rician distribution:

|z| ∼ 2x

σv
Io

(
2mvx

σv

)
exp

(
−x

2 +m2
v

σv

)
(3.8)

with

mv = |µv†| (3.9)

σv = vRv† (3.10)

Proposition 3.1 Ibf,avg(SNR,v) in (3.7) increases monotonically with mv and σv.

Proof: The proof is given in [75]. Figure 3.1 demonstrates graphically the validity of the

proposition.

Proposition 3.1 implies that Ibf,avg(SNR,v) is a function of mv and σv and it can be

maximized with respect to these two parameters. However, in the context of the combined

CMI-CCI model, mv and σv cannot be maximized (simultaneously) for the same v ∈ S,

and hence, the solution of the optimum beamforming problem is not trivial, (as for the CMI

and CCI models).

Using the definition of the angle between vectors in N-dimensional complex vector
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Figure 3·1: Ibf,avg vs. mv and σv.

spaces, (3.9) can be written as:

mv = ‖µ‖2 cos θ (3.11)

where θ ∈ [0, π/2] is the (generalized) angle between µ and v. All vectors v that belong

to S (as defined in (3.5)) and have an angle θ with µ, define a (non-convex) set Sθ,

with Sθ ⊂ S, (Figure 3.2). In Sθ, mv has a fixed value (given by (3.11)) and hence,

Ibf,avg(SNR,v) is maximized with v, if and only if σv is maximized with v. The beamforming

vector that solves this optimization problem, restricted in Sθ, is denoted as vθ (Figure 3.2):

vθ = arg max
v∈Sθ

σv = arg max
v∈Sθ

vRv† (3.12)

Solving (3.12) for all θ ∈ [0, π/2], the following (non-convex) set of vectors is defined:

Sopt = {vθ; θ ∈ [0, π/2]} (3.13)

In the proposition that follows, it is proven that the search of the optimum beamformer

can be restricted in a subset of Sopt, denoted as So (Figure 3.2).

Proposition 3.2 The optimum beamformer vopt belongs to So, (a subset of Sopt), which is
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defined as:

vopt ∈ So = {vθ; θ ∈ [0, φ]} (3.14)

where:

a. φ is the angle between the normalized channel mean vector m = µ/‖µ‖2 and

the complex conjugate transpose of the dominant eigenvector of the channel transmit

covariance matrix R, denoted as U
†
•1, i.e.

φ = cos−1 (|mU•1|) (3.15)

b. vθ is the solution of the optimization problem (3.12).

Proof: Assume an arbitrary v ∈ S that has an angle θ with µ. Since v ∈ Sθ, it is:

Ibf,avg(SNR,v) 6 Ibf,avg(SNR,vθ) 6 max
v∈Sopt

Ibf,avg(SNR,v) ⇒

max
v∈S

Ibf,avg(SNR,v) 6 max
v∈Sopt

Ibf,avg(SNR,v) (3.16)

where the last inequality results from the fact that v has been chosen arbitrarily in S.

However, since Sopt ⊂ S, (3.16) becomes a strict equality, which implies that vopt ∈ Sopt.

Now, for θ = φ , the (beamforming) vector of the set Sφ that maximizes σv is vφ = U
†
•1,

with

σv|v=vφ
= max

v∈S
σv = λ1(R) (3.17)

From (3.11) and (3.17), it can be concluded that ∀ θ > φ,mv|v=vθ
< mv|v=vφ

and σv|v=vθ
<

σv|v=vφ
, respectively, and hence, since Ibf,avg(SNR,v) increases with mv and σv (Propo-

sition 3.1), it will be also:

Ibf,avg(SNR,vθ) 6 Ibf,avg(SNR,vφ) (3.18)

Since (3.18) holds ∀ θ > φ, it can be concluded that the angle of the optimum beamformer

with respect to m, (denoted as θopt(vopt = vθopt)), should be constrained as θopt 6 φ. This

conclusion is equivalently expressed by (3.14).
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Proposition 3.2 implies that the optimum beamformer belongs to a continuous trajec-

tory4 that is defined by the vectors of So (see (3.14)), which lies on the surface of the

unit-radius Euclidean ball, starts from m (for θ = 0) and ends to U
†
•1 (for θ = φ). This is

visualized in Figure 3.2.

Figure 3·2: Geometric interpretation of Proposition 3.2.

Using (3.14), the optimization problem (3.4) can be re-formulated as:

vopt = arg max
v∈So

Ibf,avg(SNR,v) (3.19)

So = {vθ; θ ∈ [0, φ]} (3.20)

where ∀ θ ∈ [0, φ], vθ is the solution of the optimization problem (3.12).

The optimization problem in (3.19) is 1-D with respect to the angle θ. The simplicity

of (3.19) is now based on solving (3.12) and finding a convenient expression for vθ, for

θ ∈ [0, φ].

Theorems 3.1 and 3.2 below present the solution of the optimization problem (3.12),

and vθ is expressed as a function of the CDIT parameters µ and R.

Theorem 3.1 ([74], [78]) The optimum beamformer vopt, for a MISO Rician flat fading

channel with N transmit antenna elements (N > 2), mean value µ (µ ∈ C1×N , µ 6= 0)

4The continuity of this trajectory is discussed in the following.
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and transmit covariance matrix R (R ∈ HN
+ , R 6= IN), can be calculated from the following

1-D optimization problem:

vopt = arg max
v∈So

Ibf,avg(SNR,v) (3.21)

So = {vθ ; θ ∈ [0, φ]} (3.22)

where φ is calculated with the help (3.15) and vθ is expressed as:

vθ = cos θ
[
1 Z(rθIN−1 −G)−1

]
WTU† (3.23)

where:

a. U is the eigenvector matrix of R and W is a complex N×N orthonormal matrix with

its first column defined as W•1 = UTmT (m = µ/‖µ‖2), whereas the rest of its columns

(W•i, i = 2, ..., N) are arbitrarily chosen, with the restriction that W†W = IN . Moreover,

G and Z are defined as:

G =




K22 · · · K2N

...
. . .

...

KN2 · · · KNN


 (3.24)

Z = [K12 K13 · · · K1N ] (3.25)

where Klm is the lth row and mth column element of matrix K, defined as:

K =
N∑

i=1

λi(R)WT
i•W

∗
i• (3.26)

b. rθ is the maximum real root of the 2(N − 1)-degree polynomial:

P (x; θ) = cos2 θ

N−1∑

i=1

|Zgi|2
[

N−1∏

j=1
j 6=i

(x− λi(G))2

]
− sin2 θ

N−1∏

i=1

(x− λi(G))2 (3.27)

where gi ∈ C(N−1)×1 is the ith eigenvector of matrix G.
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Proof: The optimization problem (3.12) can also be expressed as:

maximize σv = vRv† (3.28)

subject to vv† = 1

|mv|2 = ‖µ‖22 cos2 θ ⇒ vMv† = ‖µ‖22 cos2 θ

where M = µ
†
µ. The optimization problem in (3.28) is a nonconvex Quadratically Con-

strained Quadratic Program (QCQP) and it can be generally solved numerically using a

semidefinite relaxation (SDR) [79]. However, in this case where M is rank -1, (3.28) can

be solved analytically, as it is proven in the following. The solution of (3.28) is denoted as

vθ.

Setting

v = xU† (3.29)

and recognizing that the l2-norms, the eigenvalues and the angles between vectors re-

main invariant under unitary transformations [80], (3.28) can be equivalently written:

maximize σx = xΛx† (3.30)

subject to xx† = 1

|µux
†|2 = ‖µ‖2 cos θ

where µu = µU and Λ is the eigenvalue matrix of R.

The solution of (3.30) is denoted as xθ. The constraints of (3.30) imply that xθ must

be a unit-norm vector with an angle θ with µu. Hence, xθ ∈ Σθ, where Σθ represents

the set of all unit-norm vectors that have an angle θ with µu. Let us now define the

matrix W = [W•1 W•2 . . .W•N ], with its first column defined as W•1 = µ
T
u‖µ‖−1 and

the rest of its columns W•i ∈ CN×1, (i = 2, . . . , N), arbitrarily chosen with the restriction

that W†W = IN . From the columns of matrix W we form the orthonormal basis BW =
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[WT
•1 W

T
•2 . . .W

T
•N ] in C1×N . The set Σθ can be expressed with respect to this basis as:

Σθ = {[x]BW
= [ejux cos θ a2 a3 . . . aN ];

ai ∈ C (i = 2, . . . , N),
N∑

i=2

|ai|2 = sin2 θ, ux ∈ [0, 2π]} (3.31)

If we set

p = [a2 a3 . . . aN ] (3.32)

then any vector [x]BW
∈ Σθ can be written as:

[x]BW
=
[
ejux p

]
Dθ (3.33)

where Dθ is N ×N diagonal matrix with Dθ,11 = cos θ and Dθ,ii = 1, for i = 2, . . . , N .

Expressing now [x]BW
∈ Σθ with respect to the normal basis B = [e1 e2 . . . eN ] we

have:

x = [x]B = [x]BW B[I]BW
=
[
ejux p

]
DθW

T (3.34)

where B[I]BW
= WT stands for the BW → B basis transformation.

From (3.34), the optimization problem (3.30) can be transformed into the following

equivalent optimization problem with respect to p ∈ C1×N−1:

maximize σp = [ejux p]DθKDθ [e
jux p]

† (3.35)

subject to pp† = sin2 θ

where K ∈ HN
++ and is given by the following equation:

K =
N∑

i=1

λi(R)WT
i•W

∗
i• (3.36)

Now, partitioning K properly and setting for simplicity ux = 0 (ux does not affect the

solution of (3.35), due to the quadratic form of the objective function σp), (3.35) can be
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re-written as:

maximize σp = pGp†+ cos θ
(
pZ† + Zp†

)
+ cos2 θK11 (3.37)

subject to pp† = sin2 θ

where G ∈ HN
++ is the principal submatrix of K, i.e.

G =




K22 · · · K2N

...
. . .

...

KN2 · · · KNN


 (3.38)

and

Z = [K12 K13 · · · K1N ] (3.39)

The solution of (3.37) is denoted as pθ and can be calculated using the Lagrange multi-

pliers method. The Lagrangian of (3.37) is:

L(p) = pGp† + cos θpZ† + cos θZp† + cos2 θK11 + κ
(
sin2 θ − pp†

)
(3.40)

where κ is the Lagrange multiplier, (real number5). L(p) does not satisfy the Cauchy-

Riemann equations and is not complex differentiable. As a result the solution of (3.37)

must satisfy the following necessary conditions [81]:

∇p∗L(p) = 0 (3.41)

pp† = sin2 θ (3.42)

where ∇p∗L(p) is the complex gradient vector of L(p), given by the complex conjugate

Wirtinger derivative [81]:

∇p∗L(p∗) = 2
dL(p)
dp

=
∂L(p)
∂ℜp + j

∂L(p)
∂ℑp (3.43)

5The Lagrange multiplier κ is a real number since the objective function σp and the constraint function
y(p) = pp† − sin2 θ are real-valued functions of the complex variable p [81].
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where ℜp and ℑp are the real and imaginary parts of p, respectively.

From (3.40), (3.41) and (3.43) we have:

p (κIN−1 −G) = cos θZ (3.44)

In order (3.37) to have a solution, it must be:

|κIN−1 −G| 6= 0 (3.45)

and hence, (3.44) becomes:

p = cos θZ (κIN−1 −G)−1 (3.46)

Substituting (3.46) into the objective function of (3.37) we have:

σp = cos2 θZ (κIN−1 −G)−1
G
(
Z (κIN−1 −G)−1)†+2 cos2 θZ (κIN−1 −G)−1

Z†+cos2 θK11

(3.47)

Matrix G can be written as follows:

G = UG diag
[
λG1 λ

G
2 . . . λGN−1

]
U

†
G (3.48)

where UG the matrix of eigenvectors and λGi (i = 1, . . . , N − 1) the eigenvalues of matrix

G. Using (3.48) it is:

(κIN−1 −G)−1 =
(
(κIN−1 −G)−1)† =

(
κUGU

†
G −UG diag

[
λG1 λ

G
2 . . . λGN−1

]
U

†
G

)−1

=

= UG diag

[
1

κ− λG1

1

κ− λG2
. . .

1

κ− λGN−1

]
U

†
G (3.49)
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Using (3.48) and (3.49), (3.47) can be written as follows:

σp = cos2 θ

N−1∑

i=1

λGi |Zgi|2
(κ− λGi )

2 + 2 cos2 θ

N−1∑

i=1

|Zgi|2
κ− λGi

+ cos2 θK11 =

cos2 θ
N−1∑

i=1

[
λGi |Zgi|2
(κ− λGi )

2 +
2|Zgi|2
κ− λGi

]
+ cos2 θK11 ⇔

σp = cos2 θ
N−1∑

i=1

|Zgi|2
(
2κ− λGi

)

(κ− λGi )
2 + cos2 θK11 ⇔

σp = 2κ cos2 θ

N−1∑

i=1

|Zgi|2
(κ− λGi )

2 − cos2 θ

N−1∑

i=1

λGi |Zgi|2
(κ− λGi )

2 + cos2 θK11 (3.50)

where gi ∈ C(N−1)×1 is the ith eigenvector of G.

Substituting (3.46) into (3.42), it is:

pp† = cos2 θ

N−1∑

i=1

|Zgi|2
(κ− λGi )

2 = sin2 θ (3.51)

From (3.50) and (3.51) it is finally:

σp = 2κ sin2 θ − cos2 θ

N−1∑

i=1

λGi |Zgi|2
(κ− λGi )

2 + cos2 θK11 (3.52)

Moreover, from (3.51) it is:

Ω(κ; θ) = ‖p‖22 − sin2 θ = Y (κ; θ)− sin2 θ = 0 (3.53)

with

Y (κ; θ) = cos2 θ

∑N−1
i=1 |Zgi|2

[∏N−1
i=1
j 6=i

(κ− λj(G))2
]

∏N−1
i=1 (κ− λi(G))2

(3.54)

From (3.54) it can be shown that:

lim
κ→±∞

Y (κ; θ) = 0 (3.55)

lim
κ→λi(G)

Y (κ; θ) = +∞ (3.56)

From (3.55) and (3.56) it can be concluded that (3.53) has at least two real roots that
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satisfy (3.45): one below λN−1(G) and one above λ1(G).

Observing (3.52), it can be easily concluded that it is maximized for the maximum

real root of (3.53) or, equivalently, of the 2(N − 1)-degree polynomial equation P (κ; θ) = 0

(where P (κ; θ) is expressed by (3.27)). This root will be denoted as rθ and pθ (the solution

of the optimization problem (3.37)) is obtained from (3.46) for κ = rθ:

pθ = cos θZ (rθIN−1 −G)−1 (3.57)

Substituting in (3.34) p = pθ, the solution of the optimization problem (3.30) is:

xθ = cos θ
[
1 Z (rθIN−1 −G)−1]

WT (3.58)

Substituting (3.58) into (3.29), the solution of the initial optimization problem (3.28) is:

vθ = cos θ
[
1 Z (rθIN−1 −G)−1]

WTU† (3.59)

Note that any phase shift of vθ is also a solution of (3.28).

For θ = 0 or θ = φ it is not necessary to follow the above methodology. From the

constraints of (3.28), it results that v0 must be along the channel mean, i.e. v0 = m.

Moreover, vφ coincides with the dominant eigenvector of R, i.e. vφ = U
†
•1, (see (3.17)).

It can be observed from (3.23) that vθ (and hence, Ibf,avg(SNR,v) in (3.21)), can be

expressed in closed-form (with respect to θ) when the order of P (x; θ) is 6 4, i.e. for MISO

system with N = 2 or N = 3 transmit antenna elements, since, in this case, all roots of

P (x; θ) - and hence rθ - can be expressed analytically. For N > 3, rθ must be calculated

numerically using a root-finding algorithm and restricting the search area to x > λ1(G),

(where P (x; θ) has its maximum real root).

Theorem 3.2 below provides an alternative geometrically-based approach, especially

for MISO systems with N = 2 transmit antenna elements. Moreover, as it is mentioned in

[78], Theorem 3.2 is also mathematically valid for the following special cases, with N > 2:
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a. When µ is a point in the hyperplane defined by U
†
•1 and U

†
•2.

b. When the channel covariance matrix has two eigenvalues, λ1(R) and λ2(R) (λ1(R) >

λ2(R)) with algebraic multiplicity one and N − 1, respectively, or it is rank deficient, with

rank{R} 6 2.

Theorem 3.2 ([74]) For MISO systems with N = 2, vθ can be expressed by the following

(closed-form) equation:

vθ = cos θ
U

†
•1m

†m

‖U†
•1m

†m‖2
+ sin θ

m∗
(
mTU

†
•1 −U∗

•1m
)

‖m∗
(
mTU

†
•1 −U∗

•1m
)
‖2

(3.60)

Proof: A geometrical approach is employed for proving this Theorem: First the hyper-

plane formed by vectors U
†
•1 and m = µ‖µ‖−1

2 is defined, using the cross product tensor

for N-dimensional complex vector spaces. Then it is shown that the optimum beamformer

is a point in this hyperplane.

The cross product between U
†
•1 and m can be represented by an antisymmetric N×N

second-rank tensor, denoted as N [82]:

N =
[
(U∗

•1µ)
T −U∗

•1µ

]
‖µ‖−1

2 (3.61)

Proposition 3.3 Any vector U†
•1 can be decomposed into a perpendicular and a par-

allel vector with respect to m:

U
†
•1 = u⊥ + u‖ (3.62)

where

u⊥ = µN‖µ‖−1
2 = µ

∗
[
(U∗

•1µ)
T −U∗

•1µ

]
‖µ‖−2

2 (3.63)

u‖ = U
†
•1m

†m = U
†
•1µ

†
µ‖µ‖−2

2 (3.64)

Proof: First it is proven that u⊥ is perpendicular to µ:

〈u⊥,µ〉 = u⊥µ
† = µ

∗
[
(U∗

•1µ)
T −U∗

•1µ

]
‖µ‖−2

2 µ
† ⇒
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〈u⊥,µ〉 =
[
µ

∗
µ

TU
†
•1µ

† − µ
∗U∗

•1µµ
†
]
‖µ‖−2

2 = 0

Then we prove that u⊥ has an angle ξ = π/2−φ with respect to U
†
•1, where φ is the angle

between µ and U
†
•1:

The angle ξ between u⊥ and U
†
•1 is defined as

cos ξ = |u⊥U•1|‖u⊥‖−1
2 ⇒

cos ξ = |µ∗
[
(U∗

•1µ)
T −U∗

•1µ

]
U•1‖µ‖−2

2 |‖u⊥‖−1
2 ⇒

cos ξ = |(|µU∗
•1|2 − ‖µ‖22)‖µ‖−2

2 |‖u⊥‖−1
2 ⇒

cos ξ = |(‖µ‖22 cos2 φ− ‖µ‖22)‖µ‖−2
2 |‖u⊥‖−1

2 ⇒

cos ξ = sin2 φ‖u⊥‖−1
2

From the definition of u⊥ in (3.58) it can be proven that ‖u⊥‖2 = sinφ and hence:

cos ξ = sin2 φ‖u⊥‖−1
2 = sin φ⇒ ξ = π/2− φ

Now, starting from the right-hand side of (3.57) and using (3.58) and (3.59) we have:

u⊥ + u‖ = µ
∗
[
(U∗

•1µ)
T −U∗

•1µ

]
‖µ‖−2

2 +U
†
•1µ

†
µ‖µ‖−2

2 ⇒

u⊥ + u‖ = µ
∗
[
(U∗

•1µ)
T −U∗

•1µ

]
‖µ‖−2

2 +U
†
•1µ

†
µ‖µ‖−2

2 ⇒

u⊥ + u‖ = µ
∗ (U∗

•1µ)
T ‖µ‖−2

2 − µ
∗U∗

•1µ‖µ‖−2
2 +U

†
•1µ

†
µ‖µ‖−2

2 ⇒

u⊥ + u‖ = µ
∗ (U∗

•1µ)
T ‖µ‖−2

2 ⇒

u⊥ + u‖ = U
†
•1

The normalized u⊥ and u‖ are defined as:

w⊥ = u⊥‖u⊥‖−1
2 (3.65)
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w‖ = u‖‖u‖‖−1
2 (3.66)

In the following, we set w1 = w‖ and w2 = w⊥ and we choose N − 1 vectors wi ∈
C1×N , i = 3, . . . , N , arbitrarily, with the restriction that the basis BW = [w1w2 . . . wN ] is

orthonormal in C1×N . The set Sθ of unit norm vectors that have with µ an angle θ in the

interval [0, φ] (φ is the angle between U
†
•1 and m) can be expressed as:

Sθ = {v =
[
eju1 cos θw1 a2w2 a3w3 . . . aNwN

]
;

ai ∈ C (i = 2, . . . , N),

N∑

i=2

|ai|2 = sin2 θ, u1 ∈ [0, 2π]} (3.67)

The set S′
θ of unit-norm vectors that have with µ an angle θ in the interval [0, φ] and belong

(at the same time) to the hyperplane defined by w1 and w2, (i.e. they can be written as a

linear combination of w1 and w2) is expressed as:

S′
θ = {v = eju1 cos θw1 + eju2 sin θw2; u1, u2 ∈ [0, 2π]} (3.68)

Obviously, S′
θ is a subset of Sθ.

Proposition 3.4 If ω is the angle between a vector v ∈ Sθ and U
†
•1, it then holds that

ω > φ − θ, where φ is the angle between U
†
•1 and m, as defined by (3.15). Furthermore,

ω takes the minimum value in Sθ (i.e. ωmin = φ− θ) if and only if v ∈ S′
θ with u1 = u2.

Proof: The angle ω between v ∈ Sθ and U
†
•1 is defined as:

cosω = |vU•1| (3.69)

As shown in the proof of Proposition 3.3:

‖u⊥‖2 = sin φ (3.70)

Writing v as in (3.67), using (3.62), (3.65), (3.70) and after some simple mathematical

manipulations, equation (3.69) can be written as:

cosω = |eju cos θ cosφ+ |a2| sinφ| (3.71)
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where u = u1 − ∠a2 and ∠a2 is the phase of a2. Since
∑N

i=2 |ai|2 = sin2 θ ⇒ |a2| 6 sin θ,

and hence, from (3.71) it can be concluded that:

cosω 6 | cos (φ− θ) | ⇒ ω > φ− θ (3.72)

Moreover, if v ∈ S′
θ and u1 = u2, then in (3.71) it is u = 0, |a2| = sin θ and hence, (3.72)

becomes a strict equality.

For MISO systems with N = 2 transmit antenna elements it is S′
θ ≡ Sθ and for an

arbitrary v ∈ S′
θ, equation (3.10) becomes:

σv = vRv† =

N∑

i=1

λi(R)|vU•i|2 = λ1(R)|vU•1|2 + λ2(R)|vU•2|2 ⇒

σv = λ1(R) cos2 ω + λ2(R) sin2 ω (3.73)

where ω is the angle between v and U
†
•1, as defined in (3.69).

It can be observed that (3.73) is maximized if and only if ω is minimized. According to

Proposition 3.4, this is achieved when u1 = u2. Hence, the solution of (3.12) is:

vθ = cos θw1 + sin θw2 ⇒

vθ = cos θw‖ + sin θw⊥ (3.74)

Substituting (3.63)-(3.66) into (3.74), then (3.60) is obtained. Note also that any phase

shift of vθ (given by (3.60)) is also a solution of (3.12).

The process that is proposed by Theorem 3.1 for the calculation of vθ is summarized

and visualized for convenience in Figure 3.3. Observe that W, U, G, Z, λi(R) do not de-

pend on θ and as a result, the only numerical calculation involved with vθ is the calculation

rθ.

Some further useful remarks for the above theorems are provided below:

Remark 1 . For θ = 0 and θ = φ, (3.23) becomes v0 = m and vφ = U
†
•1, respectively.

Remark 2 . As stated in Theorem 3.1, the optimization problem expressed by (3.21) is
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Figure 3·3: Diagrammatic representation of the calculation of vθ (equation
(3.23)) for Theorem 3.1 (EIG stands for eigen-decomposition).

1-D with respect to θ. Practically, since vopt ∈ So, the (1-D) objective function that has to

be maximized with respect to θ is obtained by substituting (3.23) (or (3.60) for the cases

of Theorem 3.2) into (3.3):

Ibf,avg(θ) = Ibf,avg(SNR,vθ) (3.75)

θopt = arg max
θ∈[0,φ]

Ibf,avg(θ) (3.76)

Solving (3.76), θopt is determined simultaneously with the optimum beamformer. Vector

vopt = vθopt. Ibf,avg(θ) is continuously differentiable, regardless of the values of the channel

parameters (µ,R) and the SNR, due to the continuity and differentiability of vθ
6. Hence,

gradient based or direct search programming algorithms [76] can be employed for the

solution of (3.76), which generally can be solved very fast, (see results in Section 3.4).

For the solution of the optimization problem (3.21), the evaluation of Ibf,avg(θ) is re-

quired in each iteration of the employed 1-D search algorithm. Ibf,avg(θ) can be evaluated

using Monte-Carlo integration or alternatively, by the following infinite series:

6In (3.23), rθ (and hence, vθ) is a continuous and differentiable function of θ, due to the continuity and
differentiability of the coefficients of the polynomial P (x; θ) with respect to θ. The continuity of vθ also
ensures the continuity of the trajectory expressed by the set So on the Euclidean ball, (see discussion in
Section 3.2 and Figure 3.2).
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Proposition 3.5

Ibf,avg(θ) = Ibf,avg(SNR,vθ) = (ln2)−1 exp

(
1− SNRm2

v

SNRσv

) ∞∑

n=0

[
1

n!

(
m2

v

σv

)n

n∑

k=0

(
1

SNR σv

)k

Γ

(
−k, 1

SNR σv

)] ∣∣∣∣∣
v=vθ

(3.77)

where Γ(· , ·) is the upper incomplete Gamma function [74], [78].

Proof: Setting x = |z| in equation (3.7), Ibf,avg(SNR,v) can be expressed with the help of

(3.8) by the following integral:

Ibf,avg(SNR,v) =

∞∫

0

log2
(
1 + SNRx2

) 2x
σv
Io

(
2mvx

σv

)
exp

(
−x

2 +m2
v

σv

)
dx (3.78)

where Io(·) is the zero-order modified Bessel function of the first kind, and mv and σv are

given by (3.9) and (3.10), respectively. Setting y = x2, (3.78) is written as:

Ibf,avg(SNR,v) =
1

σv

∞∫

0

log2 (1 + SNRy) Io

(
2mvy

1/2

σv

)
exp

(
−y +m2

v

σv

)
dy (3.79)

Then, using the infinite-series representation Io(ξ) =
∑∞

n=0
ξ2n

22n(n!)2
from [83], (3.79) be-

comes:

Ibf,avg(SNR,v) =
1

σv

∞∑

n=0


 1

22n (n!)2

∞∫

0

log2 (1 + SNRy)

(
2mvy

1/2

σv

)2n

exp

(
−y +m2

v

σv

)
dy


⇒

Ibf,avg(SNR,v) =
1

(ln2) σv
exp

(
−m

2
v

σv

) ∞∑

n=0


 1

(n!)2

(
mv

σv

)2n
∞∫

0

ln (1 + SNRy) ynexp

(
− y

σv

)
dy




(3.80)

Using the following identity from [84]:

∞∫

0

ln (1 + ax) xne−bxdx = n! eb/a
1

bn+1

n∑

k=0

(
b

a

)k

Γ

(
−k, b

a

)
(3.81)
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and considering that a = SNR and b = 1
σv

, (3.80) is finally written as follows:

Ibf,avg(SNR,v) = (ln2)−1 exp

(
1− SNRm2

v

SNRσv

)

∞∑

n=0

[
1

n!

(
m2

v

σv

)n n∑

k=0

(
1

SNRσv

)k

Γ

(
−k, 1

SNRσv

)]
(3.82)

Setting in (3.82) v = vθ, the infinite-series (3.77) is proven.

The convergence of (3.77) can be proven by truncating the series at the n = I − 1

term and then showing that the remainder RI , defined as:

RI = (ln2)−1 exp

(
1− SNRm2

v

SNRσv

) ∞∑

n=I

[
1

n!

(
m2

v

σv

)n

n∑

k=0

(
1

SNRσv

)k

Γ

(
−k, 1

SNRσv

)] ∣∣∣∣∣
v=vθ

(3.83)

converges to zero for I → +∞ (i.e. limI→+∞RI = 0 ).

In (3.83), it follows from [85] that:

lim
n→+∞

1

n!

(
m2

v

σv

)n

= 0 (3.84)

Hence, in order to show that limI→+∞RI = 0, it suffices to show that the following series

converges:

A =

∞∑

k=0

(
1

SNRσv

)k

Γ

(
−k, 1

SNRσv

)
=

∞∑

k=0

∞∫

1/SNRσv

(
1

SNRσv

)k
1

tk+1
e−tdt (3.85)

In the same manner, A will converge if its remainder Ri, after truncation of A at the k = i−1

term, converges to zero for i→ +∞, i.e.:

lim
i→+∞

Ri = lim
i→+∞

∞∑

k=i

∞∫

1/SNRσv

(
1

SNRσv

)k
1

tk+1
e−tdt = 0 (3.86)
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But (3.86) holds, since for t > 1
SNRσv

:

lim
k→+∞

(
1

SNRσv

)k
1

tk+1
= 0 (3.87)
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Figure 3·4: Convergence of the infinite-series (3.77), for different {mv, σv}
values and a MISO 4× 1 system with SNR = 10dB.

Figure 3.4 demonstrates that (3.77) converges relatively fast (a few tens of terms are

required) to the capacity value calculated by the Monte-Carlo method with 104 channel

samples. Observe that the lower the mv and the higher the σv, the faster convergence is

achieved.

3.4 Simulation results

3.4.1 Simulation model

In the following, a spatially correlated MISO Rician fading channel with N = 4 transmit

antenna elements is produced and subsequently used in simulations in order to validate

the theoretical analysis. The produced channel is for uniform (i.e. equi-spaced) linear

array (ULA) transmit antennas. The channel transmit covariance matrix R is produced by
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the two-path delay spread model proposed in [86] and has the following Toeplitz form:

R = β




1 ρ12 ρ13 ρ14

ρ∗12 1 ρ12 ρ13

ρ∗13 ρ∗12 1 ρ12

ρ∗14 ρ∗13 ρ∗12 1




(3.88)

where β is the channel variance and ρkl, k, l = 1, ..., 4, is the correlation coefficient be-

tween the kth and the lth transmit antenna element. According to [86] the correlation co-

efficient is a function of the transmit antenna inter-element distance D (in wavelengths),

the angular spread ∆ of multipath at the transmit antenna location, and the azimuth ψ of

the receive antenna location with respect to the boresight of the transmit antenna, (see

Figure 3.5). The simulations presented in the following are for ∆ = 10o (typical mean

value for urban macro-cellular environments, according to [87]) and ψ = 0o. In this case,

ρkl are positive real numbers, (this is due to ψ = 0o [86]), and depend only on D, (since

∆ and ψ are assumed to be fixed). Hence, R is completely characterized by β and D, or,

equivalently, by β and the transmit antenna correlation coefficient (between two succes-

sive elements of the transmit array antenna) ρ = ρ12. Note that ρ13 and ρ14 are uniquely

defined once ρ12 is determined for a value of D.

Based on the analysis presented in [86], the relation between ρ and D (expressed in

wavelengths λ), when ∆ = 10o and ψ = 0o, is shown in Table 3.1:

Table 3.1: Relation between correlation coefficient ρ and interelement dis-
tance D

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
D 2.6 2.37 2.15 1.94 1.73 1.51 1.3 1.04 0.72

The channel distribution parameters that affect optimum beamforming are β, ρ and

µ, for the aforementioned model. The simulations that follow are with respect to these

parameters and the SNR.
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Figure 3·5: MISO 4× 1 system, where the multipath from a user (MS), at an
angle ψ with respect to the transmit antenna boresight, arrives at the base
station (BS) with an angular spread ∆.

3.4.2 Calculation of the optimum beamformer

Under the channel simulation model described above, for most of the β, ρ, µ and SNR

values, the function Ibf,avg(θ) (defined in (3.75)) is unimodal7 in [0, φ], as shown in the

example in Figure 3.6(a). For these cases, if a starting point is required by the algorithm

employed for solving the 1-D optimization problem (3.71), it can be chosen arbitrarily in

[0, φ]. However, a starting point/angle that ensures fast convergence is the angle θo =

θSNR, which is defined as the angle of the max SNR beamformer (see Section 3.4.4) with

µ. The example in Figure 3.6(a) demonstrates that θopt is close to θSNR.

Nevertheless, Ibf,avg(θ) is not always unimodal. For some (limited) ρ, µ values8,

Ibf,avg(θ) appears to have two local maxima in [0, φ], as it is demonstrated in Figure 3.6(b).

In these cases, starting with θo = θSNR, the convergence to the overall maximum is not

always successful, (as shown in Figure 3.6(b), the 1-D algorithm will possibly converge

to the lower local maximum, if θo = θSNR). Hence, the convergence to θopt is ensured, if

7The unimodality of Ibf,avg(θ) implies that this function has a unique maximum, θopt, and that ∀ θ1, θ2 with
θ1 6 θ2 6 θopt or θopt 6 θ2 6 θ1, it is: Ibf,avg(θ1) 6 Ibf,avg(θ2) 6 Ibf,avg(θopt).

8e.g. for ULAs and the two-path delay spread correlation model used in these simulations, this range of
values is ρ > 0.7 and all µ with 1.1 6 ‖µ‖2 6 1.4. that result in φ > 75o.
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Figure 3·6: Unimodal (a), and non unimodal (b) cases of Ibf,avg(θ).

Dimitrios E. Kontaxis 92



Rate-optimum beamforming transmission in MIMO Rician fading channels

the algorithm runs twice, from two different starting points9, e.g. θo,1 ≈ 0 and θo,2 ≈ φ.

Algorithms that do not require a starting point (e.g. direct search methods [76]) must run

for multiple intervals in [0, φ], where unique (local) maxima exist. Nevertheless, it has

been observed from extensive simulations that the two local maxima never appear to-

gether below or above φ/2 and hence, [0, φ] can be split into just two intervals, ([0, φ/2]

and [φ/2, φ]).

Moreover, extensive simulations with thousands of random transmit covariance ma-

trices R show that the aforementioned behavior of the Ibf,avg(θ) is also valid for random

array antenna geometries and correlation models.

3.4.3 Computational complexity assessment

The optimization problem (3.76) is solved using Theorem 3.1 with an 1-D direct search

algorithm, (a combination of parabolic interpolation and golden section search methods),

and its computational complexity is compared with algorithms which can be also em-

ployed to solve the same (optimum beamforming) problem, such as:

a. An interior-point multi-dimensional algorithm (with a logarithmic barrier function),

using as a starting point the max SNR beamformer. An interior-point method was also

employed in [49] for the calculation of the optimum transmit covariance matrix in spatially

correlated MIMO/MISO Rician fading channels.

b. The iterative algorithm proposed in [50]. As mentioned in Section 3.1, this algo-

rithm10 is an asymptotic approach that is used to calculate the overall optimum transmit

covariance matrix without rank constraints in spatially correlated MIMO/MISO Rician fad-

ing channels and hence, it is not dedicated to solving the optimum beamforming problem,

generally. Nevertheless, this algorithm can calculate the optimum beamformer when the

necessary and sufficient optimality condition (2.34) is satisfied.

9Parallel processing is recommended in this case, for reduction of the computational time.
10The algorithm proposed in [50] was shown to have significantly lower computational complexity than

the algorithm presented in [49], and it almost achieves ergodic capacity (for the same number of steps).
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The three algorithms are evaluated using the channel scenarios presented in Table

3.2. The first scenario does not satisfy the optimality condition (2.34)11, whereas the

second and third scenarios satisfy (2.34). The algorithms are restricted to perform 10 it-

erations (enough for convergence to the Cbf) using Matlab on the same computer (1.8GHz

processor). In Tables 3.3 and 3.4 we present the parameters of the 1-D and the multidi-

mensional (interior-point) algorithm, respectively, which have been used in the simulations

for the calculation of the optimum beamformer. Table 3.5 presents the parameters of the

algorithm employed for the solution of the 2 × 2 non-linear system of equations, which is

required in each iteration of the asymptotic approach [50].

Table 3.2: Simulation scenarios

β ρ ‖µ‖2 φ SNR K Condition (2.34)
Scenario #1 ∼ 0.1250 0.9 ∼ 0.7 ∼ 85o 10dB 1 Not satisfied
Scenario #2 ∼ 0.1250 0.5 ∼ 0.7 ∼ 85o 10dB 1 Satisfied
Scenario #3 ∼ 0.2273 0.9 ∼ 0.3 ∼ 85o 10dB 0.1 Satisfied

Table 3.3: Parameters of the 1-D algorithm for the calculation of the optimum
beamformer

Parameter Description or Value
Matlab Function fminbnd

Algorithm Golden section and parabolic interpolation
MaxIter 10

MaxFunEvals 200
TolFun 10−40

TolX 10−40

11In this case the asymptotic approach in [50] does not calculate the optimum beamformer, but it calcu-
lates the optimum transmit covariance matrix Σopt, with rank{Σopt} > 1.
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Table 3.4: Parameters of the multidimensional algorithm for the calculation
of the optimum beamformer

Parameter Description or Value
Matlab Function fmincon

Algorithm Interior-point with logarithmic barrier function
Starting vector max SNR beamformer

MaxIter 10
MaxFunEvals 200

TolFun 10−40

TolX 10−40

Table 3.5: Parameters for the solution of the 2 × 2 (non-linear) system of
equations in [50]

Parameter Description or Value
Matlab Function fsolve

Algorithm Trust-region-dogleg
Starting point [1, 1]

MaxIter 10
MaxFunEvals 200

TolFun 10−5

TolX 10−5

For reasons of consistency, the same complexity assessment analysis that was per-

formed for the algorithms presented in [49]-[50], was also carried out here. The compu-

tational complexity is shown in terms of program runtime per iteration versus:

a. The number of channel samples in Figure 3.7(a).

b. The number of transmit antenna elements12 N for 2×104 channel samples, in Figure

3.7(b).

12Note that scenarios #2 and #3 satisfy the condition (2.34) when N = 4. If N 6= 4 this may not be the
case and hence, the asymptotic approach may not calculate the optimum beamformer. Nevertheless, the
runtime with respect to N is indicative of the computational complexity of this algorithm.
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In Figure 3.7(a), the runtime scales almost linearly with the number of channel sam-

ples for both the interior-point method and the 1-D algorithm, while it is constant for the

asymptotic approach13. Nevertheless, the runtime of the 1-D algorithm increases very

slowly, it is on average ∼3.6 to 7.3 times faster than the interior-point method, and ∼1.4

to 18 times faster than the asymptotic approach, (observe also that for a number of chan-

nel samples 6 3×104 in scenarios #1 or #2 and 6 2×104 in scenario #3, the interior-point

method is faster than the asymptotic approach). The same trends can be noticed not only

with the employed simulation model but also with any random antenna array geometry

and correlation model. This relative processing gain can be exploited to either reduce

cost by using devices with lower processing power or in order to:

a. Operate in environments with smaller coherence time (e.g. 3.6 to 7.3 times), and

hence, support operational scenarios with higher mobility (3.6 to 7.3 times higher speed).

b. Increase the available processing power required by the system for other supple-

mentary techniques.

In Figure 3.7(b), the runtime scales as N2 for the interior-point method, whereas for

the 1-D algorithm scales linearly and with a low rate, (for N = 4/8 the 1-D algorithm is

approximately 5.2/9.3 times faster than the interior-point method, respectively). Moreover,

the asymptotic approach appears to scale almost as N2 for the scenarios with higher

Rician factor (Table 3.2, scenarios #1 and #2) and almost linearly for the scenario with

the smaller Rician factor (Table 3.2, scenario #3). For N = 4/8 the 1-D algorithm is

approximately:

• 5.63/5.64 times faster than the asymptotic approach for scenarios #1 and #2.

• 10/12.7 times faster than the asymptotic approach for scenario #3.

13The asymptotic approach does not require Monte Carlo integration and hence, it is not affected by the
number the channel samples. However, it can be observed that the runtime of the asymptotic approach is
affected by the Rician factor K: compare in Figure 3.7(a) the curves for scenario #1 or #2 (K = 1) with
scenario #3 (K = 0.1). Moreover, the complexity of the algorithm is not affected by (2.34), e.g. the runtime
in scenario #1 ((2.34) is not satisfied) is the same with scenario #2 ((2.34) is satisfied).
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Figure 3·7: Runtime vs. the number of channel samples for a MISO 4 × 1
system (a), and the number of transmit antenna elements N (MISO N × 1)
with 2× 104 channel samples (b).
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3.4.4 Simulation results for the ergodic beamforming capac ity

Comparison with the max SNR beamformer

The ergodic beamforming capacity achieved by the optimum beamformer (calculated

by Theorem 3.1) can be compared with the average mutual information achieved by the

max SNR beamformer, denoted as vmaxSNR ∈ C1×N . The max SNR beamformer is the

beamforming transmision along the complex conjugate transpose dominant eigenvector

of the channel transmit correlation matrix Eh[h†h], [75]. The max SNR beamformer is

currently the prevalent real-time beamforming transmission scheme [75].

In the following, results are produced for the mean information rate gain, which is

defined as:

E [∆Ibf,avg] = E [Ibf,avg(SNR,vopt)− Ibf,avg(SNR,vmaxSNR)] (3.89)

(note that Ibf,avg(SNR,vopt) = Cbf).

E [∆Ibf,avg] is calculated for 104 samples14 of µ and fixed ρ, β, SNR and ‖µ‖2, φ, (i.e. all

samples of µ have fixed norm and angle with respect to U
†
•1). In this manner, since µ is

averaged out, it is E [∆Ibf,avg] = f(‖µ‖2, ρ, β, φ, SNR). Figure 3.8 shows an example where

E [∆Ibf,avg] is plotted versus ‖µ‖2 and ρ, for β = 1, φ = 85o and SNR = 10dB. Similar

simulations, performed over a wide range of ‖µ‖2, ρ, β, φ and SNR values, lead to the

following conclusions:

a. The optimum beamformer is always better than or asymptotically equal to the max

SNR beamformer. The mean relative information rate gain of the optimum beamformer

with respect to the max SNR beamformer, which is defined as
(
E
[

∆Ibf,avg

Ibf,avg(SNR,vmaxSNR)

])
, is

less than 5% in most cases. However, there are operational scenarios where the optimum

beamformer achieves higher mean relative information rate gain: e.g. the peak value in

Figure 3.8 (∼0.39bps/Hz for ‖µ‖2 = 1.67, ρ = 0.9, φ = 85o, SNR = 10), corresponds to

a mean relative information rate gain ∼8.5%. Generally, the mean or the instantaneous

14The elements of µ are produced by independent, zero-mean, unit variance complex Gaussian
distributions.
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Figure 3·8: E [∆Ibf,avg] vs. ‖µ‖2 and ρ, for a MISO 4× 1 system with {N = 4,
β = 1, φ = 85o, SNR = 10dB}.

relative information rate gain can reach 10%, but it can rarely exceed this value.

b. The mean information rate gain E [∆Ibf,avg] increases with the SNR, following a

concave curve, as shown in Figure 3.9. For high SNR values the gain converges asymp-

totically to a maximum value which depends on ρ, β, ‖µ‖2 and φ. The same figure shows

the mean relative information rate gain (with respect to the max SNR beamformer). It can

be observed that the best performance for the optimum beamformer in this operational

scenario is achieved for SNR = 6dB, which is ∼8.8% better than the Ibf,avg(SNR,vmaxSNR),

(note that the best mean relative information rate gain does not correspond to the highest

mean information rate gain).

Comparison with the ergodic capacity

The ergodic beamforming capacity achieved by optimum beamformer is compared

with the ergodic capacity achieved by the asymptotic approach from [50] for different SNR

values and operational scenarios15. In [50] it was shown that the therein proposed algo-

rithm achieves the same ergodic capacity with the algorithm in [49], (and hence, results

15These results are for a random µ, ρ = 0.5, φ = 85o and different values of the Rician factor K (K =
0.5/0.1).

99 Dimitrios E. Kontaxis



0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X: 0
Y: 0.1279

SNR (dB)

M
ea

n 
in

fo
rm

at
io

n 
ra

te
 g

ai
n 

(b
ps

/H
z)

X: 30
Y: 0.467

0 5 10 15 20 25 30
4

4.6

5.2

5.8

6.4

7

7.6

8.2

8.8

9.4

10

X: 6
Y: 8.816

M
ea

n 
re

la
tiv

e 
in

fo
rm

at
io

n 
ra

te
 g

ai
n 

(%
)

Figure 3·9: E [∆Ibf,avg] and E
[

∆Ibf,avg

Ibf,avg(SNR,vmaxSNR)

]
vs. the SNR, for a MISO 4×1

system with {‖µ‖2 = 1.6, ρ = 0.9, φ = 85o, β = 1}.

with respect to the algorithm from [49] are omitted). In the scenario of Figure 3.10(a),

condition (2.34) is satisfied for SNR 6 20dB and hence, in this SNR region, the optimum

beamformer coincides with the asymptotic approach. For SNR > 20dB condition (2.34)

is not satisfied, however, the asymptotic approach does not show practical advantage

over the optimum beamformer. In the scenario of Figure 3.10(b), (2.34) is never satisfied

and hence, the asymptotic approach shows a gap (i.e. higher rate) with respect to the

optimum beamformer, especially for high SNR values (in the low SNR region the gap is

extremely small). However, this gap corresponds to < 4% relative information rate gain,

(defined as
(

Cerg−Cbf
Cbf

)
). The same behavior was also observed for other similar simulation

scenarios.

In Figure 3.11 are presented results using a channel sample from the channel distribu-

tion that was used in the simulations of [49] and [50]16. The channel transmit covariance

matrix used in this simulation example corresponds to a random array antenna geome-

try/configuration. The results are for Rician factors K = 0.1 and K = 1, and demonstrate

that the optimum beamformer has near-optimum performance in both cases, (practically,

16More precisely, the same transmit covariance matrix (Rt) along with the first row of the channel mean
matrix (Hm) have been used, (see Appendix of [49]).
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it achieves slightly better rate than the asymptotic approach (i.e. Cbf > Cerg), for the same

number of algorithmic steps).

Figures 3.10 and 3.11 indicate that there are channels where the optimum beamformer

may have near-optimum performance, i.e. Cbf ≈ Cerg.
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Figure 3·10: Ergodic capacity Cerg and ergodic beamforming capacity Cbf

achieved by the asymptotic approach from [50] and the optimum beam-
former, repectively, versus the SNR, for a MISO 4 × 1 system and different
fading scenarios: (a) {K = 0.5, ρ = 0.9, φ = 85o}, (b) {K = 0.1, ρ = 0.5,
φ = 85o}.
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Figure 3·11: Ergodic capacity Cerg and ergodic beamforming capacity Cbf

achieved by the asymptotic approach from [50] and by the optimum beam-
former, respectively, vs. the SNR, for a MISO 4 × 1 system, the trans-
mit antenna array configuration used in [49] and different fading scenarios:
K = 0.1 and K = 1.
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Chapter 4

RATE-OPTIMUM BEAMFORMING TRANSMISSION AND RESULTS

FOR THE OPTIMALITY OF BEAMFORMING CONDITION FOR MIMO

RICIAN FADING CHANNELS

4.1 Introduction

It was proven in the previous chapter for MISO systems, that the calculation of the

optimum beamformer for the combined CMI-CCI model is an 1-D optimization problem

which can be solved very fast and efficiently.

The present chapter extends the work presented in Chapter 3 to MIMO Rician fading

channels, and shows that a similar simple 1-D scheme can also be employed for the cal-

culation of the optimum beamformer. Furthermore, it demonstrates via simulations that

there are cases where the optimum beamformer has significant rate gains (e.g. approxi-

mately 0.83bps/Hz for a MIMO 4× 4 channel at SNR = 10dB), compared to the max SNR

beamformer [75]. Finally, it shows that the proposed 1-D scheme has significantly bet-

ter computational complexity than other currently employed multi-dimensional algorithms

(e.g. interior-point methods), and hence, real time applications are feasible even when

devices use moderate processing power.

This chapter is organized as follows: In Section 4.2 the channel model and the op-

timum beamforming problem are introduced. The solution of the optimum beamforming

problem is presented in Section 4.3. In Section 4.4 simulations are provided that support

the theoretical analysis and Section 4.5 concludes the chapter.

4.2 System model and problem statement

Assume a MIMO system in a flat fading channel, with N transmit and M receive an-

tenna elements. The received signal y ∈ C1×M is expressed by (2.1) and the channel
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matrix H follows the model expressed by (2.25). Equations (2.1) and (2.5) are repeated

here for convenience:

y = HxT + nT (4.1)

H = Hm +R1/2
r HwR

1/2
t (4.2)

Throughout this chapter it is assumed that the channel mean matrix Hm ∈ CM×N in

(4.2) represents the specular, i.e. the Line of Sight, component between the transmitter

and the receiver.

At this point it must be noted that rank{Hm} = 1, as referred to in [47] and explained

in the following: When the mobile station has a fixed position with respect to the base

station, Hm is the LOS component, which is expressed as Hm = a†
rat, where ar/at are

the (row) vectors of the receive/transmit incident plane wave, respectively [47]. In this

case, since ar and at do not change in time, Hm is deterministic and rank -1. When the

mobile station moves around the base station, then ar and at change in time and Hm is

the mean LOS component, expressed as Hm = E [c(t)a†
r(t)at(t)], where c(t) is a scalar

(function of time) related to Doppler, (see also the model of 3GPP in [87]). Even in this

case, Hm is a rank -1 matrix, since ar(t) and at(t) are practically independent variables,

(the orientation of the MS antenna is assumed to be random).

Since Hm represents the LOS component, the combined CMI-CCI model assumed

in this chapter is a long-term model, (see discussion in Chapter 2). However, in MIMO

systems, even in the long-term combined CMI-CCI model it is possible to have a non

rank -1 LOS (mean) matrix. This is possible in short-range communications (i.e. when the

distance between the transmit and receive antennas is comparable to the antenna size),

where the LOS component cannot be considered as a plane wave but as a spherical

wave [88]-[92]. In this case, as in the case of the short-term combined CMI-CCI model

for MIMO systems, the beamforming optimization problem is multi-dimensional, (and the

method presented hereafter cannot be employed for its solution).

In the context of our analysis it is assumed that the receiver has perfect CSI, whereas
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the transmitter is only aware of the channel long-term statistics Hm, Rt and Rr, which are

calculated by the receiver and fed back to the transmitter via a low-rate control channel.

The covariance matrix Σ of the transmitted signal x is restricted to be rank -1 when

beamforming is considered, and hence:

Σ = Pv†v (4.3)

with P the transmitted power and v ∈ C1×N the unit-norm beamforming vector. In this

case the ergodic beamforming capacity is expressed by (2.29):

Cbf = max
‖v‖2=1

EH [Ibf (SNR,v,H)] = max
‖v‖2=1

Ibf,avg (SNR,v) =

= max
‖v‖2=1

EH
[
log2 det

(
IM + SNRHv†vH†

)]
(4.4)

The beamforming vector that maximizes (4.4) is the solution of the following optimiza-

tion problem:

vopt = arg max
v∈S

Ibf,avg(SNR,v) (4.5)

S = {v ;v ∈ C
1×N , ‖ v ‖2= 1} (4.6)

Generally, (4.5) is a complex N-dimensional optimization problem. In the next section,

Theorem 4.1 proves that (4.5) can be transformed into a simple 1-D optimization problem,

which can be subsequently solved using any standard 1-D search algorithm.

4.3 Optimum beamforming transmission in MIMO Rician fading channels

Theorem 4.1 ([93]) Consider a flat fading Rician MIMO channel expressed by (4.2). The

optimum beamformer is the solution of the following 1-D optimization problem:

vopt = arg max
v∈So

Ibf,avg(SNR,v) (4.7)

So = {vθ ; θ ∈ [0, φ]} (4.8)
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where φ ∈ [0, π/2] is defined as:

φ = cos−1(|qu1|) (4.9)

with q†∈C1×N the right singular vector of Hm and u1 ∈C
N×1 the dominant eigenvector of

Rt. Moreover, vθ in (4.8) is defined as:

vθ = cos θ[1 Z(rθIN−1 −G)−1]WTU† (4.10)

where:

a. U is the eigenvector matrix of Rt and W is a complex N × N matrix with its first

column defined as W•1 = UTq†, whereas the rest of its columns (W•i, i = 2, . . . , N) are

arbitrarily chosen with the restriction that W†W = IN . Moreover, it is:

G =




K22 · · · K2N

...
. . .

...

KN2 · · · KNN


 (4.11)

Z = [K12 K13 · · · K1N ] (4.12)

where Klm is the lth row and mth column element of matrix K, which is defined as:

K =
N∑

i=1

λi(Rt)W
T
i•W

∗
i• (4.13)

b. rθ is the maximum real root of the 2(N − 1)-degree polynomial:

P (x; θ) = cos2 θ

N−1∑

i=1

|Zgi|2
[

N−1∏

j=1
j 6=i

(x− λi(G))2

]
− sin2 θ

N−1∏

i=1

(x− λi(G))2 (4.14)

where gi ∈ C(N−1)×1 is the ith eigenvector of matrix G.

Proof: Using the identity |IM +AB| = |IN +BA| with A ∈ CM×N/B ∈ CN×M and setting
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z = Hv†, it is:

Ibf,avg(SNR,v) = Ez[log2(1 + SNR

M∑

i=1

|zi|2)] (4.15)

where zi is the ith element of vector z. Using the channel model (4.2), z is expressed as

follows:

z = Hmv
† +R1/2

r HwR
1/2
t v† (4.16)

Hence, the mean and covariance of z can be calculated as:

mz = E [z] = Hmv
† (4.17)

Σz = E [(z−mz)(z−mz)
†] = (vRtv

†)Rr (4.18)

Using (4.17), (4.18), and setting σ2
z = vRtv

†, (4.16) can be written equivalently:

z = mz + σzR
1/2
r hT

w (4.19)

where hw ∈ C1×M is a vector of i.i.d zero-mean and unit variance complex Gaussian

elements. Equation (4.19) is equivalent to (4.16) since both have exactly the same distri-

bution and hence, using them in (4.15) they produce the same ergodic capacity.

Using singular value decomposition (SVD) for the Hm, (4.17) can be written as:

mz = (µqv†)pT (4.20)

where pT ∈ CM×1 and q† ∈ CN×1 are the left and right singular vectors of Hm, respectively,

and µ is its (unique) singular value, (Hm is rank -1 and hence is modeled as Hm = µpTq).

In the following it is proven that (3.15) is an increasing function of the parameters σ2
z

and |mz,i| (i = 1, . . . ,M), (mz,i is the ith element of vector mz):

First we define

R1/2
r =




r11 · · · r1M
...

. . .
...

rM1 · · · rMM


 (4.21)
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hw = [h1 h2 · · · hM ]T (4.22)

From (4.19) and (4.21)-(4.22), the random variables zi, can be written as ([75]):

zi = |mz,i|+ σzw1i + jσzw2i (4.23)

where

w1i =

M∑

l=1

R{ril}R{hl} − I{ril}I{hl} (4.24)

w2i =
M∑

l=1

R{ril}I{hl} − I{ril}R{hl} (4.25)

(R{·} and I{·} denote the real and imaginary parts). Substituting (4.23) into (4.15) and:

a. Differentiating (4.15) with respect to |mz,i|, i = 1, . . . ,M :

∂Ibf,avg

∂|mz,i|
= Ez


2SNR |mz,i|+ σzw1i

1 + SNR
∑M

i=1

[
(|mz,i|+ σzw1i)

2 + (σzw2i)
2
]


 (4.26)

Using the fact that w1i is symmetrically distributed around 0, from (4.26) it can be observed

that:
∂Ibf,avg

∂|mz,i|
> 0 (4.27)

b. Differentiating (4.15) with respect to σz:

∂Ibf,avg

∂σz
= Ez


2SNR

∑M
i=1

[
w1i (|mz,i|+ σzw1i) + σzw

2
2i

]

1 + SNR
∑M

i=1

[
(|mz,i|+ σzw1i)

2 + (σzw2i)
2
]


 (4.28)

Using the fact that w1i and w2i are i.i.d zero-mean Gaussian distributed (real) random

variables, from (4.28) it can be observed that:

∂Ibf,avg

∂σz
> 0 (4.29)

Hence, from (4.27) and (4.29) it becomes clear that Ibf,avg increases monotonically with

|mz,i| and σz. Equivalently, it can be concluded that Ibf,avg increases monotonically with
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the parameters σ2
z and |qv†|, since the quantity |qv†| is common for all |mz,i| (see (4.20)).

This is also demonstrated graphically in Figure 4.1. As a result, vopt can be determined

by maximizing (4.15) with respect to vRtv
† and |qv†|. This optimization problem can be

solved now using a similar method with that presented in Chapter 3 for MISO systems,

with the following modification: the normalized channel mean vector in the MISO case

(which was denoted in Chapter 3 as m ∈ C1×N ) is replaced by q, in the MIMO case.
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Figure 4·1: Ibf,avg vs. σz and |qv†|, for {Rr = IM , µ = 1}.

For MIMO 2×M systems and some special cases of N ×M systems, equation (4.10)

of Theorem 4.1 can be further simplified, as shown with Theorem 4.2 below.

Theorem 4.2 ([93]) For MIMO systems with N = 2 or N > 3 and rank{Rt} 6 2, vθ can

be expressed by the following (closed-form) equation:

vθ = cos θ
u
†
1q

†q

‖ u
†
1q

†q ‖2
+ sin θ

q∗(qTu
†
1 − u∗

1q)

‖ q∗(qTu
†
1 − u∗

1q) ‖2
(4.30)

Proof: The proof of this Theorem is similar to the proof of Theorem 3.2.

The 1-D function with respect to θ, f(θ) = Ibf,avg(SNR,vθ) (see (4.7)-(4.8)), is continu-

ously differentiable (see Chapter 3) and hence, gradient-based or direct search algorithms

can be employed to solve the optimization problem (4.7). The optimum value θopt that
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maximizes f(θ), also determines the optimum beamformer through (4.10): vopt = vθopt.

4.4 Simulation results for the optimum beamformer

4.4.1 Simulation model

A spatially correlated MIMO 4 × 4 Rician channel (see (4.2)) is produced and used in

the simulations in order to demonstrate the theoretical analysis. The simulations are for

linear, equi-spaced Tx/Rx array antennas (i.e. ULAs). Rt is produced using the two-path

delay spread correlation model [86] and has the following Toeplitz form1:

Rt = βt




1 ρt12 ρt13 ρt14

(ρt12)
∗ 1 ρt12 ρt13

(ρt13)
∗ (ρt12)

∗ 1 ρ12

(ρt14)
∗ (ρt13)

∗ (ρt12)
∗ 1




(4.31)

where βt is the channel transmit variance and ρt1l, l = 2, 3, 4, is a function of the transmit

antenna array inter-element distance Dt and angular spread ∆t, as well as of the azimuth

ψt of the receive array antenna with respect to the boresight of the transmit array antenna.

In the same manner the parameters βr, ρr1l, Dr, ∆r ψr are defined for the receiver. These

parameters are shown in Figure 4.2.

The simulations presented in the following are for ∆t = 10o (typical mean value for

urban macrocellular environments [87]) and for Tx/Rx antennas with aligned boresights,

i.e. ψt = ψr = 0o. In this case, ρkl are positive real numbers and Rt is completely

characterized by βt and the transmit antenna correlation coefficient ρt = ρt12 = f(Dt),

(ρ13 and ρ14 are uniquely defined once ρt12 is determined for a value of Dt, since ∆t and

ψt are fixed). From [86], for Dr = 0.5λ (Rx antenna inter-element distance), ∆r = 68o

(typical mean angular spread value at the receiver/mobile station for many operational

environments [87]) and ψr = 0o, the Rx antenna correlation coefficient ρr has a fixed

value ρr = −0.08. Moreover it is assumed that βr = βt = β. Finally, the channel mean is

1Rr is defined exactly in the same manner.
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Figure 4·2: MIMO 4× 4 system.

modeled as Hm = µq†q (i.e. q† = pT , since N = M). Therefore, the channel distribution

parameters that affect the optimum beamformer are µ, β, ρt, q and obviously the SNR.

4.4.2 Computational complexity assessment

Setting µ = 1, β = 1, ρt = 0.9, SNR = 10dB and choosing a random2 q, the optimiza-

tion problem (4.7) is solved using Theorem 4.1 along with an 1-D algorithm, (a combina-

tion of parabolic interpolation and golden section search methods). The parameters of

the 1-D algorithm are described in Table 4.1.

Table 4.1: Parameters of the 1-D algorithm for the calculation of the optimum
beamformer

Parameter Description or Value
Matlab Function fminbnd

Algorithm Golden section and parabolic interpolation
MaxIter 10

MaxFunEvals 103

TolFun 10−40

TolX 10−40

2q = [0.1947 + 0.0655j 0.2898− 0.6247j − 0.0521 + 0.6856j 0.1041 + 0.0023j]. This q results in φ = 85o

(see (9)), which is a computationally demanding case for the algorithm of Theorem 4.1, since it requires a
very wide search area.
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The same optimization problem is then solved using an interior-point (multi-dimensional)

algorithm, with starting point the max SNR beamformer (see subsection 4.4.3). The pa-

rameters of the multidimensional algorithm are described in Table 4.2.

Table 4.2: Parameters of the multidimensional algorithm for the calculation
of the optimum beamformer

Parameter Description or Value
Matlab Function fmincon

Algorithm Interior-point with logarithmic barrier function
Starting vector max SNR beamformer

MaxIter 10
MaxFunEvals 103

TolFun 10−40

TolX 10−40

Both algorithms are limited to perform 10 iterations (enough for convergence to Cbf

with an error tolerance of 10−4) with the same computer (1.8GHz processor) using Matlab.

Figures 4.3 and 4.4 show the computational complexity in terms of program runtime per

iteration versus:

a. The number of channel samples, for N =M = 4 (Figures 4.3).

b. The number of Tx antenna elements3 N , with M = 4 and 2 × 104 channel samples

(Figures 4.4).

Similar plots are shown in [49]-[50] for the complexity assessment of the algorithms

presented therein.

The runtime scales almost linearly with the number of channel samples for both algo-

rithms (Figure 4.3), however the increase rate of the 1-D algorithm is significantly lower,

(it is approximately 8.5 times faster than the interior-point method). Also, for N 6 8 the

runtime scales as N2 for the interior-point method, whereas for the 1-D algorithm scales

3When N 6=M , Hm is modeled as Hm = µpTq (see Theorem 4.1). For these simulations, random p, q
vectors have been used.
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Figure 4·3: Runtime vs. the number of channel samples.

almost linearly, which is faster than the order of N3 predicted by theory (a similar devi-

ation between theory and practice has also been observed in [49]), and with a low rate

(Figure 4.4), (for N = 4/8 the 1-D algorithm is ∼8.3/13 times faster than the interior-point

method, respectively). Generally, from Figures 4.3 and 4.4, it can be concluded (as a rule

of thumb) that the 1-D algorithm is approximately an order of magnitude faster than the

interior-point method.

The theoretical computational complexity of the 1-D algorithm in Theorem 4.1 is proven

in the following proposition.

Proposition 4.1 The computational complexity of the 1-D algorithm for the calculation of

the optimum beamformer is O(N3 +M !).

Proof:

The following assumptions are made:

a. The number of digits of all real parameters is fixed, e.g. n digits. This means that

the operations of summation, subtraction and multiplication between real/complex scalars

(and as a result, the functions cos, sin, log) will not affect the computational complexity of

the algorithm, as long as n remains invariant, (e.g. summation and subtraction are O(n),
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Figure 4·4: Runtime vs. the number of transmit antenna elements (N).

multiplication is O(n2), etc.). Hence the only parameters that can affect the computational

complexity of the algorithm are the number of transmit (N) and receive (M) antenna

elements.

b. The 1-D search method used for the solution of the optimization problem (4.7) is

the golden section search method, described in [76]. The search is with respect to the

parameter θ. According to this method, (which is direct search), the convergence to θopt is

accomplished by successive calculations of Ibf,avg(SNR,vθ) (see (4.4) and (4.10)) at the

(two) limits of an interval, which changes dynamically and becomes successively smaller

at each step of the search, converging to θopt. Hence, the computational complexity of the

proposed 1-D algorithm coincides with the computational complexity of the calculation of

Ibf,avg(SNR,vθ).

c. It is assumed that the number of steps of the golden section search for convergence

to θopt is not affected by N and M , as long as the search interval [0, φ] remains invariant.

Complexity of vθ:

• The complexity of the root rθ is O(N) : rθ is the maximum real root of the polynomial

P (x; θ) and in Chapter 3 it was shown that this root is restricted in the interval x > λ1(G).

Hence, the Netwon-Raphson method can be employed in this interval for the calculation
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of rθ (i.e. there is no need to employ the Horner method). The computational complexity

of the Netwon-Raphson method depends on the order of P (x; θ) and is O(N).

• The complexity of rθIN−1 is O(N).

• The complexity of rθIN−1 −G is O(N).

• The complexity of (rθIN−1 −G)−1 is O(N3 +N) = O(N3).

• The complexity of cos θZ(rθIN−1 −G)−1 is O(N3 +N2 +N) = O(N3) .

• The complexity of vθ = cos θ[1 Z(rθIN−1 −G)−1]WTU† is O(N3 +NM).

Setting (4.10) in (4.4), the complexity of Ibf,avg(SNR,vθ) is as follows:

• The complexity of
√
SNRv†

θ is O(N3 +NM +N) = O(N3 +NM).

• The calculation of H
√
SNRv†

θ is O(N3 +NM).

• The complexity of IM + SNRHv†vH† is O(N3 +M2 +NM) = O(N3 +M2).

• The complexity of det(IM +SNRHv†vH†) is O(N3+M2+M !) = O(N3+M !), (since

M ! > M2 for M > 3).

The complexity of Ibf,avg(SNR,vθ) is not further affected by log2(·) and the Monte Carlo

integration that must be employed for the calculation of the average mutual information

(EH [Ibf ]), when a fixed number of channel samples is used.

Hence the complexity of Ibf,avg(SNR,vθ) - and hence, of Theorem 4.1 - is finally O(N3+

M !).

4.4.3 Simulation results for the ergodic beamforming capac ity

In the following the ergodic beamforming capacity achieved by the optimum beam-

former is compared with the average mutual information achieved by the max SNR beam-

former, denoted as vmaxSNR ∈ C1×N , and calculated as the complex conjugate transpose

dominant eigenvector of the channel transmit correlation matrix EH[H†H] [75].

In the following, results are produced for the mean information rate gain, which is
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Figure 4·5: E [∆Ibf,avg] vs. ‖µ‖2 and ρt, for a MIMO 4 × 4 system with {φ =
85o, β = 0.2, SNR = 10dB}.

defined as:

E [∆Ibf,avg] = E [Ibf,avg(SNR,vopt)− Ibf,avg(SNR,vmaxSNR)] (4.32)

Note that Ibf,avg(SNR,vopt) = Cbf, the mean is calculated over a set of 104 samples4 of

q, holding fixed {µ, β, ρt, SNR, φ} (i.e. all samples are “forced” to have a fixed angle

with respect to u1 (see (4.9)). In this manner, since q is averaged out, it is E [∆Ibf,avg] =

f(µ, β, ρt, φ, SNR).

Figure 4.5 demonstrates an example where E [∆Ibf,avg] is plotted versus µ−ρt, for {β =

0.2, φ = 85o, SNR = 10dB}. Observe that the mean capacity gain is high, (0.83bps/Hz for

{ρt = 0.9, µ = 0.4}). Simulations performed for a wide range of {µ, β, ρt, φ, SNR} lead to

the following conclusions:

a. The optimum beamformer shows advantage over the max SNR beamformer (i.e. a

high E [∆Ibf,avg]) for relatively small β − µ and high ρt − φ values.

b. E [∆Ibf,avg] increases monotonically with the SNR, (e.g. in the example of Figure 4.5,

the gain 0.83bps/Hz increases to 1bps/Hz when SNR = 15dB).

4The elements of q are produced by independent, zero-mean, unit variance complex Gaussian
distributions.
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4.5 Simulation results for the optimality of beamforming

This section presents simulations and results for ULAs and spatially correlated MIMO

Rician fading channels [94].

First, a MIMO 4×4 channel is simulated, with Rt and Rr produced by the two-path de-

lay spread correlation model developed in [86]. For ULAs the Rt/Rr covariance matrices

have a Toeplitz form and are expressed as in (4.31).

Throughout the simulations the following assumptions are made:

a. The transmit/receive array antennas are aligned for maximum directional radiation

and reception at boresight, (ψt = ψr = 0o).

b. Dt = Dr = λ/2.

c. ∆r = 68o, (typical mean value for many operational scenarios [87]).

d. β = βtβr is referred to as “channel variance”.

Under the aforementioned assumptions and exploiting the analysis presented in sec-

tion 4.3 (see also [74], [93]), the calculation of vopt (1-D algorithm) is affected by the SNR,

the channel variance β, the transmit antenna correlation coefficient ρt = ρt12 = f(∆t), the

singular value µ of Hm, the dominant eigenvector q of Hm (when N = M = 4, Hm is

modeled as Hm = µq†q, i.e. pT = q†, where p and q were defined in Theorem 4.1) and

the angle φ = cos−1 |qu1|, where u1 ∈ CN×1 is the dominant eigenvector of Rt. Note that

these parameters are all scalars except from q, which is a complex vector. In order to

show the effect of q on (2.34), the scalar parameters are fixed to different sets of values,

the validity of (2.34) is checked for 104 random q vectors (the elements of q are produced

by i.i.d zero-mean complex Gaussian distributions with unit variance), and the following

probability is calculated:

Prbf =
Number of times (2.34) is true

Number of times (2.34) is tested
(4.33)

High Prbf for a set of values for the scalar parameters indicates that (2.34) has a high prob-
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Figure 4·6: Optimality region µ − ρt, for a MIMO 4 × 4 system and {SNR =
0/3dB, φ = 35o/65o, ∆r = 68o}.

ability to be satisfied in this operational scenario and hence, that vopt has a high probability

to achieve ergodic capacity. Obviously, this is a very important piece of information, which

can be taken into account during a system design/deployment phase.

Subsequently, the most representative results are shown, produced from extensive

simulations. It must be mentioned here that the observations made from the presented

results were always confirmed by several complementary simulations with different values

for the considered set of parameters.

Figure 4.6 shows a set of curves on the µ− ρt plane (µ 6 4, since µ = 4 is the highest

possible value for MIMO 4 × 4), for different β values and { φ = 35o/65o, SNR = 0/3dB,

∆r = 68o}.

As explained previously, each curve represents a bound: Any {µ, ρt} point above this

bound corresponds to an operational scenario where the optimum beamformer achieves

ergodic capacity, i.e. (2.34) is always satisfied (Prbf = 1). On the other hand, any {µ, ρt}
point below this bound represents an operational scenario where Prbf < 1. The µ − ρt

region where Prbf = 1 is referred to as “optimality region”. From Figure 4.6 Observations

1-5 can be made:
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Observation 1 . Beamforming becomes the optimum strategy as µ (the singular value of

Hm) increases.

Observation 2 . Beamforming becomes the optimum strategy as β (the channel variance)

decreases.

Observation 3 . Beamforming becomes the optimum strategy as the SNR decreases.

From (4.31) and given that Hm = µpTq, (4.2) can be re-written as follows:

H =
√
β

(
µ√
β
pTq+

(
R

′

r

)1/2
Hw

(
R

′

t

)1/2)
=
√
βHeq (4.34)

Substituting (4.34) into (2.7), the ergodic capacity is expressed equivalently as:

Cerg = max
tr{Q}61,Q�0

EH
[
log2 det(IM + SNReqHeqQH†

eq)
]

(4.35)

where

SNReq = SNRβ (4.36)

The Rician factor of the channel distribution is:

K =
‖Hm‖2F
tr (R)

=
µ2

MNβ2
(4.37)

where R = RT
t ⊗Rr (see (2.14)).

From (4.36) and (4.37) it can be seen that: An increase in µ causes an increase in the

Rician factor K of the channel distribution and consequently, an increase in the disparity

between the singular values of any channel matrix realization. Moreover a decrease in β

causes an increase in K but also a decrease in the SNReq.

Observation 1 is consistent with results presented in [47] for spatially uncorrelated

MIMO Rician channels, while Observations 2 and 3 are consistent with results presented

in [47] for MIMO Rayleigh and spatially uncorrelated MIMO Rician channels. All three

observations are consistent with the notion of water-filling5 over the channel eigenvalues:

5The widely known water-filling iterative algorithm [66] cannot be employed for CDIT models. The eigen-
values of the optimum input covariance are calculated numerically using methods of non-linear program-

121 Dimitrios E. Kontaxis



27 27.2 27.4 27.6 27.8 28 28.2 28.4 28.6 28.8 29
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Pr
bf

Figure 4·7: Prbf vs. SNR, for a MIMO 4 × 4 system and {β = 0.01, φ = 45o,
µ = 1.4, ρt = 0.1, ∆r = 68o}.

The lower the SNR and/or the higher disparity between the channel singular values (i.e.

high Rician factor K) the more power must be allocated to the dominant channel modes

and the transmission converges to beamforming. Figures 4.7 and 4.8 show how Prbf

varies with the SNR for {β = 0.01, φ = 45o, µ = 1.4, ρ = 0.1} and {β = 0.01, φ = 45o,

µ = 1.4, ρ = 0.1}, respectively.

Comparing the corresponding curve in Figure 4.6 for {β = 0.2, φ = 65o, SNR = 0dB}
with the corresponding curve for {β = 0.2, φ = 35o, SNR = 0dB}, it can be seen that:

Observation 4 . Beamforming becomes the optimum strategy as φ decreases.

The angle φ between q and the dominant eigenvector u1 of Rt is a parameter pre-

sented here for the first time in simulations related to the optimality condition (2.34) and

appears only in MIMO Rician channels, (it does not exist in MIMO Rayleigh channels).

Figures 4.9 and 4.10 show again the effect of the decrease of φ on the optimality region,

for SNR = 0dB and different set of values β, φ than those used in Figure 4.6.

Practically, a decrease in φ causes an effect similar to an increase in the disparity of

the two largest eigenvalues of Rt, which favors the optimum beamformer and increases

ming [76]. However it seems that the general “rules” of water-filling are also valid for the complex Gaussian
CDIT models studied in this thesis.
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Figure 4·8: Prbf vs. SNR, for a MIMO 4 × 4 system and {β = 0.14, φ = 45o,
µ = 1.4, ρt = 0.1, ∆r = 68o}.
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Figure 4·9: Optimality region µ − ρt, for a MIMO 4 × 4 system and {SNR =
0dB, β = 0.1, ∆r = 68o}.
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Figure 4·10: Optimality region µ− ρt, for a MIMO 4× 4 system and {SNR =
0dB, β = 0.2, ∆r = 68o}.

the optimality region, as it was shown in [47] for MIMO Rayleigh channels:

Assuming for simplicity and without any loss of the generality that N = M , the rank -1

channel mean Hm can be written as:

Hm = µq†q (4.38)

Using eigen-decomposition, Rt can be written as:

Rt =

N∑

i=1

λiuiu
†
i (4.39)

where λi/ui are the eigenvalues/eigenvectors of Rt, (note that ui ∈ CN×1).

If φ = φ1 is the angle between q† and u1, then q† can be expressed as:

q† =

N∑

i=1

ejωi cos φiui (4.40)

with
∑N

i=1 cos
2 φi = 1, (since ‖q†‖2 = ‖ui‖2 = 1).

From (4.2), (4.38), (4.39), (4.40), eigen-decomposition of Hw and assuming that Rr =

IM , it can be proven (after some simple mathematical manipulations) that any channel
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realization H can also be expressed as:

H =

N∑

i=1

[
N∑

j=1

(
µ cos2 φi + λ

1/2
i λwj

)
vjv

†
j

]
uiu

†
i (4.41)

where λwj /vj are the eigenvalues/eigenvectors of Hw, (with vj ∈ CN×1).

Setting aij = µ cos2 φi + λ
1/2
i λwj , the following can be observed:

• In MIMO Rayleigh channels the first summand in aij does not exist, i.e. it is aij =

λ
1/2
i λwj . In these channels, an increase in the disparity between λ1 and λ2 causes, equiva-

lently, an increase in the disparity of a1j and a2j (∀j), which leads the channel distribution

in the beamforming optimality region, as it was also shown in [47].

• In spatially correlated MIMO Rician channels a decrease in φ = φ1 (i.e. increase

of cos φ1) causes a similar increase in the disparity of a1j and a2j (note that when φ1

decreases, φ2 increases) and leads the channel distribution in the optimality region, as in

MIMO Rayleigh channels.

Observation 5 . Relatively low channel variance leads to abrupt increase of the optimality

region for relatively high ρt values, (i.e. high disparity for the eigenvalues of Rt). This can

be seen in Figure 4.6 from the curves for β = {0.14, 0.08}. This also agrees with results

for MIMO Rayleigh fading channels from [47]. However, this effect seems to vanish for

higher β and/or φ values (see curves for β = {0.2, 0.26}), which “resist” to the optimality

of beamforming, as explained in Observations 2 and 4. Moreover, in the low-ρt regime,

the optimality region seems to be rather “insensitive” to an increase of the SNR, β and φ.

In Figure 4.11, Prbf is plotted versus M for three sets of values for {β, φ, µ, ρ} and

{N = 4, SNR = 0dB, ∆r = 68o}.

It can be observed that Prbf decreases with M . From (4.38), a decrease in M causes

an increase in the Rician factor K of the channel distribution.

Observation 6 . Beamforming becomes the optimum strategy as the number of receive

antenna elements (M) decreases.
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Figure 4·11: Prbf vs. M , for {N = 4, SNR = 0dB, ∆r = 68o}.

This observation also agrees with results in [47], for MIMO Rayleigh and spatially

uncorrelated MIMO Rician channels, and is consistent with the notion of water-pouring

over the channel modes. As a consequence, the optimality regions presented in Figure

4.6 (∀ β, φ and SNR value) will further increase for M < 4.
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Chapter 5

CAPACITY AND OPTIMALITY OF BEAMFORMING FOR DIFFERENT

OPERATIONAL ENVIRONMENTS

5.1 Introduction

The nature of the wireless channel (e.g. statistical properties, correlation) plays a key

role to the study of its capacity. As a result, attention has turned to the development of

realistic channel models that will provide the basis for accurate capacity analysis. In this

chapter, a MIMO channel simulation model is developed, which is based on the Technical

Report [87] of the 3rd Generation Partnership Project (3GPP). This simulation model

is used to produce (thousands of) channel samples which simulate different operational

environments and then these samples are used to study the capacity performance and the

“probability of beamforming” achieved by different channel feedback information models.

5.2 MIMO channel simulation model

As explained in the preceding chapters, the impulse response of a MIMO channel

is an N ×M matrix H(t). Sample of the MIMO channel matrix H(t) can be generated

according to the Techical Report of 3GPP [87], for the following operational environments:

a. Suburban macrocell,

b. Urban macrocell with mean angular spread E [σAS] = 8o or E [σAS] = 15o,

c. Urban microcell.

Moreover the following optional features can be simulated:

a. Antenna Polarization (valid in all environments),

b. Far Scatterer Clusters (valid only in urban macrocell environments),
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c. Urban canyon (valid only in urban environments),

d. Line Of Sight multipath component (valid only in urban microcell environments),

e. Intercell interference (3-sector or 6-sector cellular systems can be simulated).

In order to generate many channel samples (i.e. realizations of matrix H(t)), the time

axis is divided into Ndrops drops and each drop into Nframes frames. During a drop, the

location and the orientation parameters of the Mobile Station (MS), the Angular Spread

(σAS), the Delay Spread (σDS) (at both the BS and MS) and the Shadow Fading (σSF ) do

not change. All these parameters change per drop and their values are chosen randomly

from distributions described in [87, page 17, Table 5.1], (these distributions are different

in each operational environment).

The Angles of Departure (AoD) (from the BS), the Angles of Arrival (AoA) (to the MS),

the path delays and the path powers of the F dominant multipath components between

the BS and the MS change from frame to frame randomly, according to distributions de-

scribed in the Technical Report [87], (these distributions are different in each operational

environment). Each one of the F multipath components is comprised of S sub-paths:

in [87] it is recommended, F = 6 and S = 20. In each frame a three-dimensional

(M ×N × F ) MIMO Channel Matrix H(t) (3-D impulse response) is generated. The ele-

ments of this matrix, denoted as Hm,n,f (f th multipath component between themth receive

and the nth transmit array antenna element), are expressed by the following equation:

Hm,n,f(t) =

√
PfσSF
M

S∑

s=1

(√
GMS(θf,s,AoA)GBS(θf,s,AoD)

× exp
(√

−1
[
kdn sin(θf,s,AoD) + Φf,s

])
× exp

(
jkdm sin(θf,s,AoD)

)

× exp
(√

−1k‖v‖2 cos
(
(θf,s,AoA − θυ)t

))
)

(5.1)

where: Pf is the power of the f th multipath component, σSF is the shadowing (bulk pa-

rameter, applied to all paths), θf,s,AoD and θf,s,AoA is the AoD and AoA, respectively, for

the sth subpath of the f th multipath component, GBS(θf,s,AoD) is the gain of each element
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of the BS array antennas along the azimuth angle θf,s,AoD and GMS(θf,s,AoA) is the gain of

each element of the MS array antenna along the azimuth angle θf,s,AoA. All elements of

the BS/MS array antenna are assumed to have the same antenna pattern, k = 2π/λ, dn

is the distance of the nth transmit array antenna element with respect to the reference an-

tenna element, dm is the distance of the mth receive array antenna element with respect

to the reference antenna element, Φf,s is the phase of the sth subpath of the f th multipath

component and ‖v‖2 and θυ is the norm and angle of the MS velocity vector, respectively.

If only one path can be resolved in each frame, the 3-D channel matrix is degenerated

into a two-dimensional matrix:

Hm,n(t) =
F∑

f=1

(√
PfσSF
M

S∑

s=1

(√
GMS(θf,s,AoA)GBS(θf,s,AoD)

× exp
(√

−1
[
kdn sin(θf,s,AoD) + Φf,s

])
× exp

(
jkdm sin(θf,s,AoD)

)

× exp
(√

−1k‖v‖2 cos
(
(θf,s,AoA − θυ)t

))
))

(5.2)

The channel matrix calculated above is the with respect to the serving BS in a 2-tier

cellular system (i.e. 19 cells), as shown in Figure 5.1. The serving BS is characterized by

the highest received power, based on pathloss (according to the COST231 Hata model for

suburban/urban macrocell environments or the COST231 Walfish-Ikegami NLOS/street

canyon model for the urban microcell environment [87]), shadowing (σSF ) and BS antenna

gain (for the simulations it is assumed that the BS array antenna has the pattern described

in [87, page 18]).

Practically, for the simulations the time parameter t is multiples of the frame duration

Tframe, (i.e. t = (jNframes + i)Tframe, j = 1, . . . , Ndrops, i = 1, . . . , Nframes) and the el-

ements of the channel matrix at the ith frame and jth simulation drop are denoted as

Hij
m,n. In MISO systems, for simplicity, Hij

m,n is denoted as hij
n . An overview of the channel

simulation process is presented in Table 5.1 (at the end of this Chapter).

In the following, using Ndrops = 104 and Nframes = 10, 105 MISO 2×1 channels are pro-
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Figure 5·1: Two tier celular structure. si is the sector numbering, with i =
1, . . . , 3 for the 3-sector scenario or i = 1, . . . , 6 for the 6-sector scenario.

duced (N = 2, M = 1) for different operational environments (without optional simulation

features). Moreover, the following assumptions have been made: GBS(θ) = GMS(θ) = 1

(∀θ ∈ [0, 2π]), the inter-element distance at the transmit antenna is λ/2, the carrier fre-

quency is fc = 2GHz and the frame duration is Tframe = 10msec (power control period

for UMTS). In all environments it is Tframe ≫ E [σDS] (E [σDS] = 0.17/0.65/0.251microsec

for suburban/urban macro/urban micro), a fact that justifies the initial assumption for the

existence of only one resolvable path in each frame (and hence, the use of (5.2) instead

of (5.1) in the simulations).

Using the aforementioned 105 channels, Figure 5.2 demonstrates the Rayleigh distri-

bution that best fits to the |H1,n| (for n = 1, 2). The distribution of the arg(H1,n) can be

approximated by the uniform distribution U(−π, π) (in all environments). In Figure 5.2 it

can be observed that the Rayleigh distribution of |H1,n| in an urban micro environment

presents the highest variance, followed by the variance of the urban macro E [σAS] = 15o
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environment and the suburban macro/urban macro E [σAS] = 8o environment, (note that

the curves for the suburban macro and urban macro E [σAS] = 8o environments are very

close).
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Figure 5·2: Rayleigh distribution of |H1,n|.

Table 5.2 presents the calculated mean and standard deviation (std) of the correlation

coefficient (which is assumed to be a random variable1) between the two transmit antenna

elements in all environments.

Table 5.2: Correlation cofficient statistics

Environment mean std

Suburban macro 0.96 0.02

Urban macro E [σAS] = 8o 0.92 0.11

Urban macro E [σAS] = 15o 0.79 0.17

Urban micro 0.59 0.17

1In each drop the correlation coefficient is calculated along all frames (Nframes = 10) of the drop. Hence,
104 values for the correlation coefficient random variable are produced (since Ndrops = 104) and then used
to calculate its statistics.
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From this table it can be observed that the correlation is inversely proportional to

E [σAS] (as also predicted by theory [66]): a high correlation is observed in suburban/urban

macro environments with E [σAS] = 5o/8o, while the urban macro/micro environments with

E [σAS] = 15o/19o follow with lower correlations.

5.3 Simulations for MISO 2× 1 Rayleigh fading channels

In this section we present simulation results for the maximum ergodic capacity and

the the optimality of beamforming in different operational environments (suburban macro,

urban macro, urban micro) - using the simulation model described in the previous section

- and for the following channel feedback information models [95]:

a. perfect CSI at the transmitter,

b. unknown channel to the transmitter,

c. Channel Mean Information model,

d. Channel Covariance Information model.

For the ergodic capacity simulations the following are considered:

• 3-sector cellular system,

• Ndrops = 102,

• Nframes = 10,

• Tframe = 10msec,

• F = 6, S = 20,

• N = 2, M = 1 (i.e. a MISO 2× 1 system),

• fc = 2GHz,

• inter-element distance λ/2 and

• velocity of the mobile station ‖v‖2 = 5km/h.

For the optimality of beamforming simulations the same values have been consid-
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ered, except from the following: Ndrops = 104. Moreover, it must be noted that in these

simulations, the optimality of beamforming is not studied with the condition (2.34), but

statistically, as discussed in the following subsection 5.3.2.

Moreover, the generated channel samples simulate Raleigh fading channels without

additional simulation features (e.g. LOS component, urban canyon, etc.).

For the simulations of the CMI and CCI models, the following issues must be dis-

cussed:

(1) CMI model

In the context of this model, the ergodic capacity achieved for every channel sam-

ple that is fed back to the transmitter by the receiver is calculated, i.e. for each of the

Ndrops ×Nframes = 103 channels. The CMI model, as it appears in the open literature and

discussed in Chapter 2, is a short-term model that achieves ergodic capacity based on

an estimation of the “real” channel (used as the “channel mean” information) and on the

assumption of a white error covariance matrix (with equal diagonal elements). If correla-

tion effects are also taken into account, then the channel error covariance matrix is not

white and the feedback information model in this case is not a “pure” CMI model but a

short-term combined CMI-CCI model.

However, in the 3GPP model, there is no temporal correlation between successive

channel realizations/samples (that simulate fast fading) in the context of the same drop,

(i.e. Rs = 0 (see (2.17))). Assuming a delay in the control channel equal to one frame

duration Tframe, the best estimation (made by the transmitter) for the (i + 1)th (channel)

frame (i.e. the “real” channel), based on the ith frame (feedback information), is the

channel mean h̃j , [44], which is calculated over all frames of the jth drop:

h
j
=

1

Nframes

Nframes∑

i=1

hij (5.3)

Moreover, the channel error covariance (Re,s, (see (2.19))) coincides with the channel
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covariance matrix Σj , which is also calculated over all frames of the jth drop:

Σj =
1

Nframes

Nframes∑

i=1

(
hij − h

j
)† (

hij − h
j
)

(5.4)

Practically, we have a long-term feedback model where the long-term channel statis-

tics2 h
j

and Σj are used in order to achieve ergodic capacity. Therefore, it is not neces-

sary to feed back to the transmitter the frames of the jth drop, one by one. The channel

distribution during the jth drop is hj ∼ (h
j
,Σj), where hj denotes any channel sam-

ple/realization in the jth drop. For this long-term model, the following cases can be sepa-

rated:

a. The channel mean is h
j 6= 0 and Σj is a diagonal matrix with equal diagonal

elements. In this case the standard solution of the long-term CMI model (see Chapter 2)

can be employed, as also described in [46].

b. The channel mean is h
j 6= 0 and Σj is not a diagonal matrix or it is a diagonal matrix

with unequal diagonal elements. This is a long-term combined CMI-CCI model and must

be solved numerically using the methods discussed in [49] or [50].

c. The channel mean is h
j
= 0. In this case, regardless of the value of Σj , we have

a (long-term) CCI model (see also discussion below). However, in the context of the

simulation model proposed by 3GPP, assuming a finite and small number of frames, it is

really rare (practically impossible) to have a zero channel mean, even in environments

that simulate pure Rayleigh fading channels, (e.g suburban or urban macro).

Using the parameters described in the first paragraph of this section, simulations have

shown that case (b) described above (i.e. the long-term combined CMI-CCI model) dom-

inates in all drops.

However, in the context of the simulations presented hereafter, the following assump-

tions have been made:

2These are calculated at the beginning of each drop, in the context of a training period, by the receiver
and then are fed back to the transmitter. These statistics are valid during the whole drop.

Dimitrios E. Kontaxis 134



Rate-optimum beamforming transmission in MIMO Rician fading channels

a. In each drop, the channel frames are fed back to the transmitter, one by one.

b. The feedback control channel has a time delay equal to the duration of one frame

(Tframe). This means that when the ith frame of the jth simulation drop, denoted as hij =
[
h
ij
1 ,h

ij
2 , . . . ,h

ij
n

]
, arrives at the transmitter, the “real” channel is the h(i+1)j , i.e. in the next

frame.

c. Based on the channel feedback information hij , the transmitter’s estimation for the

“real” channel (h(i+1)j) is expressed as follows:

ĥ(i+1)j = hij + h
j

e (5.5)

where h
j

e is the mean channel error calculated in each simulation drop as:

h
j

e = Ei[h(i+1)j − hij ] (5.6)

where the mean is calculated with respect to i (i.e. with respect to all frames of the jth

drop). Obviously, the statistics of the channel error in the jth drop, namely its mean h
j

e

and its covariance matrix Rj
e = covi[h

(i+1)j − hij ], are long-term statistics, calculated by

the receiver at the beginning of each drop3 and fed back to the transmitter.

d. After the feedback of the ith frame (in the jth drop) the channel distribution assumed

by the transmitter for the solution of the CMI model is h ∼ N (ĥ(i+1)j , aIN), with a referred

to as “channel error variance”. Observe that in the CMI model a white channel error

covariance matrix is assumed4.

(2) CCI model

In this long-term model the ergodic capacity is achieved by the transmitter, exploiting

only the feedback information of the channel covariance, which is calculated by the re-

ceiver at the beginning of each simulation drop. The transmission strategy that achieves

3e.g. in the context of a training period
4Practically, the channel error covariance matrix is not white. However, for the simulations, the off-

diagonal elements of the channel error covariance matrix are ignored (i.e. set to zero) and its maximum
diagonal element is considered to be the channel error variance a.
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ergodic capacity is applied to all frames of a drop. For MISO Rayleigh fading channels,

the channel transmit covariance matrix Σj (in the jth) drop coincides with the channel

transmit correlation matrix Cj, since it is h
j
= 0, i.e.

Σj = Cj = Ei[(hij)†hij ] (5.7)

For the reason discussed in the previous paragraph (CMI model) the model of 3GPP

provides a non zero channel mean in each drop, i.e. h
j 6= 0, even though a Rayleigh

fading channel is simulated. However, in the simulations presented in the following it is

assumed that h
j
= 0 ∀j (i.e. the channel mean is ignored) and the channel correlation

matrix Cj is considered by the transmitter as a covariance matrix, which is subsequently

used to employ the standard solution of the CCI model [46].

5.3.1 Simulation results for the ergodic capacity

Figures 5.3-5.6 show the ergodic capacity vs. the SNR, for different channel feedback

information models. In all channel feedback information models the ergodic capacity is

calculated over all simulation drops and frames. In all figures (i.e. in all simulated en-

vironments) it can be observed that the “perfect CSI at the transmitter” (Perfect CSIT)

and the “unknown channel to the transmitter” (Unknown Channel) models are the upper

and the lower bounds, respectively, while the CCI and CMI models are between these

bounds. The results show that the CCI model outperforms the CMI model in all environ-

ments. The CCI model is easier to employ than the CMI model, since it is a long-term

model and the transmission strategy is calculated once, at the beginning of each drop.

On the other hand, the CMI model is a short-term model and the transmission strategy

changes at each frame, (despite the fact that the mean and variance of the channel er-

ror are calculated as long-term statistics). Moreover, the performance of the CMI model

(according to the way that it is simulated herein) will further deteriorate if we assume very

large delays in the feedback control channel, equal to or greater than the drop duration

Tdrop (Tdrop = Nframes × Tframe). In the latter case, the channel error mean and variance,
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Figure 5·3: Ergodic capacity vs. SNR, in a suburban environment.

that will be used by the CMI algorithm, are related to a previous drop and the transmission

scheme that we will be finally used does not achieve ergodic capacity.

Furthermore, in Figures 5.3 and 5.4 it can be observed that the CCI model achieves

high capacity, very close to the the capacity of the Perfect CSIT model, despite the fact

that a zero channel mean has been assumed. These results indicate that in suburban or

urban macro E [σAS] = 8o environments it is practically meaningless to solve the combined

CMI-CCI model, that is valid if we do not assume a zero channel mean. The latter model

is more complex ([49], [50]) and its relative capacity gain with respect to the CCI model

under the zero channel mean assumption is very small.

Finally, in all figures (Figures 5.3-5.6), it can be observed that the lower the corre-

lation between the transmit antenna elements (see Table 5.2) the lower is the capacity

performance of both the CMI and CCI models with respect to the Perfect CSIT model.
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Figure 5·4: Ergodic capacity vs. SNR, in an urban macro environment with
E [σAS] = 8o.
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Figure 5·5: Ergodic capacity vs. SNR, in an urban macro environment with
E [σAS] = 15o.

Dimitrios E. Kontaxis 138



Rate-optimum beamforming transmission in MIMO Rician fading channels

0 5 10 15 20
1

2

3

4

5

6

7

8

SNR(dB)

E
rg

od
ic

 C
ap

ac
ity

 (b
ps

/H
z)

Urban micro 1x2

Unknown Channel
Perfect CSIT
CCI
CMI

Figure 5·6: Ergodic capacity vs. SNR, in an urban micro environment.

5.3.2 Simulation results for the optimality of beamforming

In the following, the optimality of beamforming is studied statistically, by introducing

the following probability Prbf:

Prbf =
Number of times that power is allocated to only one beam

Number of times that power is allocated to more than one beams
(5.8)

The probability defined with (5.8) is generally similar to the probability defined with

equation (4.33) in Chapter 4, but with the following main difference: in (4.33), condition

(2.34) is used and tested in order to calculate Prbf, whereas in (5.8) a more practical

method is employed.

Figures 5.7 and 5.8 present results for the Prbf vs. the SNR for the CMI and CCI

models, respectively, and different operational environments.

It can be observed that Prbf decreases as the SNR increases in both models. This

result coincides with results reported in [46] and [96], for the CMI and the CCI model,

respectively. Moreover, Prbf depends on the operational environment as follows:

(1) CMI model simulation results

In Figure 5.7 Prbf is plotted versus the SNR for the CMI model and different opera-
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Figure 5·7: Propability of beamforming vs. SNR, for the CMI model.
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tional channels. In this figure it can be observed that the curves for the suburban and

urban macro E [σAS] = 8o environments almost coincide. The urban macro E [σAS] = 15o

environment presents the highest and the urban micro environment the lowest Prbf, re-

spectively. In [96] it is shown that the optimality of beamforming condition, for a given

SNR, is a function of the channel error variance a and the parameter ‖ĥ(i+1)j‖2
a

, referred to

as “feedback quality”5. In Table 5.3 we calculate the mean and standard deviation (std) of

the channel error variance a and the feedback quality ‖ĥ(i+1)j‖2
a

, (these statistics have been

calculated over all simulation drops for the parameter a and over all simulation drops and

frames for the parameter ‖ĥ(i+1)j‖2
a

). We observe that the statistics (mean and variance) of

the feedback quality ‖ĥ(i+1)j‖2
a

are almost the same in all environments, and hence, these

statistics cannot be associated with the results in Figure 5.7. However, in Table 5.3 it

is clear that both the mean and the std of a increase as E [σAS] increases. Hence, the

statistics of the channel error variance a can be associated with the results presented in

Figure 5.7: In the macro environments and for any fixed SNR value, Prbf increases as the

std of a increases (the mean of a remains almost the same in all macro environments)

or, equivalently, as the E [σAS] increases. However, in the urban micro environment, Prbf

seems to deteriorate, due to the very high mean and std of a (compared to the macro

environments).

Table 5.3: Statistics of channel error variance and feedback quality

a ‖ĥ(i+1)j‖2/a

Environment mean std mean std

Suburban macro 9.2 31.6 1.7 1.6

Urban macro E [σAS] = 8o 9.8 46.2 1.7 1.6

Urban macro E [σAS ] = 15o 10.7 50.6 1.7 1.6

Urban micro 16.9 141.7 1.7 1.5

5The higher this parameter is, the better “knowledge” the transmitter has for the channel.
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(2) CCI model simulation results

In Figure 5.8 Prbf is plotted versus the SNR for the CCI model and different operational

channels. In this model, for any fixed SNR value, Prbf is inversely proportional to the statis-

tics of a or, equivalently, to the E [σAS], (practically, Prbf decreases with the following order,

with respect to the operational environment: suburban macro, urban macro E [σAS] = 8o,

urban macro E [σAS] = 15o, urban micro). This result can also be explained as follows:

the correlation between the transmit antenna elements is inversely proportional to the

E [σAS], as shown in Table 5.2. A high correlation, and hence, a small E [σAS], increases

the disparity between the eigenvalues of Σj, a fact that causes an increase in Prbf. This

result agrees with the results presented in [47] for the CCI model and is consistent with

the notion of water-filling along the channel modes6.

5.4 Simulations for MISO 4× 1 Rician fading channels

In the previous section Rayleigh fading MIMO channels were simulated and studied.

The combined CMI-CCI model can occur even with spatially correlated MIMO channels

with a Rayleigh long-term pdf, when a short-term feedback model is employed, (i.e. when

Rs 6= 0, see discussion for the CMI model in Chapter 2). The fact that the combined CMI-

CCI model can also occur in spatially correlated MIMO Rayleigh fading channels when a

long-term feedback model is employed (i.e. when Rs = 0) is just a weakness of the 3GPP

model and of the limited number of simulation drops and frames, (see discussion for the

CCI model in the previous section). However, in the simulations presented in the previ-

ous section, the combined CMI-CCI model was totally “ignored” and the “conventional”

CMI/CCI were used as short/long-term models, respectively.

Spatially correlated or uncorrelated with non-unit covariance matrix MIMO Rician fad-

ing channels and represented by the combined CMI-CCI model, both as a short and

6A stochastic water-filling algorithm is used to allocate the available power to the eigenvectors of Σj

[69]. The higher the disparity between λ1(Σj) and λ2(Σj) the more power is allocated to the dominant
eigenvector of Σj . Statistically, in some drops all power is allocated to the dominant eigenvector of Σj

and hence, beamforming achieves ergodic capacity in these drops. The more often this happens (i.e. in
environments with higher correlation), the higher Prbf is.
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long-term feedback model, when Rs 6= 0 and Rs = 0, respectively. According to the

spatial channel model of 3GGP, the operational environment that can simulate a Rician

channel and hence, fit to the combined CMI-CCI model, is the urban micro environment.

This is due to the fact that in urban micro environments there is a probability of exis-

tence of a Line of Sight (LOS) component, (in suburban or urban macro environments

this propability is zero). Especially for the long-term combined CMI-CCI feedback model,

the LOS component is the channel mean information.

In the following, using the MIMO channel simulation model of [87] (described in the

previous sections of this chapter), the ergodic beamforming capacity achieved by the

optimum beamformer and the optimality of beamforming condition are tested for the urban

micro environment with a LOS component (which is an optional simulation feature of the

3GPP model) and for the following simulation parameters [97]:

• 3-sector cellular system,

• Ndrops = 102,

• Nframes = 102,

• F = 6, S = 20,

• N = 4, M = 1 (i.e. MISO 4× 1),

• fc = 2.4GHz,

• inter-element distance at the transmit array antenna λ/2,

• velocity of the mobile station ‖v‖2 = 20km/h

• Tframe = 9.2ms, (this frame duration is equal to the channel coherence time Tc,

which results from the system operating frequency fc = 2.4GHz and the MS velocity

‖v‖2 = 20km/h, [98]).
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Moreover, the MS is assumed to move around the main7 BS within a distance8 d <

300m and is forced9 to have LOS communication with the (main) BS.

The elements of the channel vector at the ith frame and jth drop are expressed by the

following equation ([87]):

hij
n = σSF

√
13− 0.03d

14− 0.03d

(
√
GMS(θMS)GBS(θBS)

× exp
(√

−1[(n− 1)π sin(θBS) + ΦLOS]
)

× exp
(√

−1k‖v‖2 cos
(
(θMS − θυ)t

))
)

+

√
1

14− 0.03d

F∑

f=1

(√
PfσSF
S

S∑

s=1

(√
GMS(θf,s,AoA)GBS(θf,s,AoD)

× exp
(√

−1[(n− 1)π sin(θf,s,AoD) + Φf,s]
)

× exp
(√

−1k‖v‖2 cos
(
(θf,s,AoA − θυ)t

))
))

−mj
n (5.9)

where n = 1, . . . , 4, θBS/θMS are the AoD/AoA of the LOS component,respectively, and

ΦLOS is the phase of the LOS component. Again it is assumed that all transmit/receive

antenna elements are omnidirectional in azimuth, with GBS = GMS = 1. Moreover, mj
n is

the mean of the second summand in (5.9), calculated over all frames of the jth drop10.

5.4.1 Simulation results for the ergodic beamforming capac ity

The ergodic beamforming capacity achieved by the optimum beamformer (see The-

orem 3.1 in Chapter 3) is compared with the average mutual information achieved by

7As “main” BS is described the BS in which the MS physically exists and moves (practically it is always
the first sector of the first cell, as shown in Figure 5.1). The “main” BS is different from the “serving” BS,
which is the BS with the strongest signal/power.

8According to 3GPP, the probability of existence of a LOS component is zero for distances greater than
300m.

9According to the simulation model, a MS with a distance less than 300m away from the main BS
does not have necessarily a LOS communication with the main BS. The probability of existence of a LOS
component is a function inversely proportional to distance, [87, page 26].

10This term is used in order to compensate for the non-zero mean of scattering, which is not exactly
Rayleigh distributed in each drop: this is due to the limited number of frames, paths and sub-paths, used
by the simulation model of 3GPP.
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the max SNR beamformer11, in the context of both the short and long-term combined

CMI-CCI model:

(1) Short-term feedback model simulation results

In the short-term combined CMI-CCI model, at the jth drop the channel covariance

information Σj ,(which is calculated over all frames of the drop), is expressed by equation

(5.4). Moreover, each channel sample hij (ith frame, jth drop) that is fed back to the

transmitter represents the (dynamic) channel mean information12 which is used along with

Σj , which represents the channel error covariance, in Theorem 3.1 (Chapter 3) in order

to calculate the optimum beamformer v
ij
opt. In this manner the optimum beamformer is

dynamically calculated in each frame. The corresponding max SNR beamformer, denoted

as v
ij
maxSNR, is the dominant eigenvector of the channel correlation matrix:

Cij = Σj +
(
hij
)†
hij (5.10)

The ergodic beamforming capacity, calculated over all drops and frames, achieved by

the optimum beamformer in the short-term feedback model is expressed by the following

equation:

Cst
bf(SNR) =

1

NdropsNframes

Ndrops∑

j=1

Nframes∑

i=1

log2

(
1 + SNR

∣∣(hij + hij
wΣ

1/2
j

)
(vij

opt)
†
∣∣2
)

(5.11)

The average mutual information, calculated over all drops and frames, achieved by the

max SNR beamformer in the short-term feedback model is expressed as follows:

Ist
maxSNR(SNR) =

1

NdropsNframes

Ndrops∑

j=1

Nframes∑

i=1

log2

(
1 + SNR

∣∣(hij + hij
wΣ

1/2
j

)
(vij

maxSNR)
†
∣∣2
)

(5.12)

11As shown in [75], the max SNR beamformer is a low-complexity near-optimum beamformer that coin-
cides with the dominant eigenvector of the channel transmit correlation matrix.

12In these simulations we use the feedback samples as a channel mean information exactly when they
arrive from the receiver and we do not consider any estimation of the real channel (i.e. of the next frame),
as we did in the previous section with (5.5).
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Figure 5·9: ∆Ist vs. SNR.

In both equations (5.11) and (5.12), hij
w ∈ C1×N , ∀{i, j}, is a zero mean complex Gaussian

random vector with unit covariance matrix.

The information rate gain of the optimum beamformer with respect to the max SNR

beamformer, defined as ∆Ist = Cst
bf − Ist

maxSNR, is plotted in Figure 5.9. In this figure it can

be observed that ∆Ist increases with the SNR, however, it is very small for all SNR values:

0.0119bps/Hz and 0.0193bps/Hz for SNR = 10dB and 20dB, respectively.
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(2) Long-term feedback model simulation results

At the jth drop, the channel mean h
j

and covariance Σj are expressed by equations

(5.3) and (5.4), respectively. Using Σj and h
j

in Theorem 3.1 the optimum beamformer

during the jth drop, vj
opt, can be calculated. Note that in this model the optimum beam-

former is calculated only once in each drop. The corresponding max SNR beamformer,

denoted as v
j
maxSNR, is the dominant eigenvector of the channel correlation matrix:

Cj = Σj + (h
j
)†h

j
(5.13)

The ergodic beamforming capacity, calculated over all drops and frames, achieved by the

optimum beamformer in the long-term feedback model is expressed as follows:

C lt
bf(SNR) =

1

Ndrops

Ndrops∑

j=1

Ehw

[
log2

(
1 + SNR

∣∣(hj
+ hwΣ

1/2
j

)
(vj

opt)
†
∣∣2
)]

(5.14)

The average mutual information, calculated over all drops and frames, achieved by the

max SNR beamformer in the long-term feedback model is expressed as follows:

I lt
maxSNR(SNR) =

1

Ndrops

Ndrops∑

j=1

Ehw

[
log2

(
1 + SNR

∣∣(hj
+ hwΣ

1/2
j

)
(vj

maxSNR)
†
∣∣2
)]

(5.15)

In Figure 5.10 the information rate gain ∆Ilt = C lt
bf−I lt

maxSNR, is plotted versus the SNR.

Also for this feedback model the gain is very small for all SNR values (it does not exceed

the value 13.5× 10−8 even for SNR = 20dB).

(3) Comparison between the short and long-term channel feed back models

In Figure 5.11 Cst
bf, C

lt
bf and the relative capacity gain, calculated as (Cst

bf−C lt
bf)/C

lt
bf×100,

are plotted versus the SNR. It can be observed that:

a. The short-term model achieves higher ergodic beamforming capacity than the long-

term model for all SNR values.

b. The difference (Cst
bf−C lt

bf) increases with the SNR (for SNR = 0dB it is ≃ 0.337bps/Hz

and for SNR = 20dB it becomes ≃ 0.6bps/Hz), however, the relative capacity gain de-
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Figure 5·10: ∆Ilt vs. SNR.

creases with the SNR and does not exceed 16% (for SNR = 0− 20dB).

5.4.2 Simulation results for the optimality of beamforming

In the following, the optimality of beamforming condition (2.34), is tested for its validity,

for the short and long-term feedback models. For the short and long-term models, a

probability is defined, denoted as Prst
bf and Prlt

bf, respectively, which are calculated with

(4.34), (Chapter 4), and are functions of the SNR:

Prst/lt
bf (SNR) =

Number of times condition (2.34) is satisfied
Number of times condition (2.34) is tested

(5.16)

For the short-term model the optimality condition (2.34) is tested for Ndrops×Nframes =

104 times, whereas for the long-term model, condition (2.34) is tested for Ndrops = 102

times.

In the short-term model, it is Prst
bf > 0.99 for all SNR values (0-20dB), which indicates

that the optimum beamformer almost always achieves ergodic capacity, in the context of

this feedback model.

In the long-term model, it is Prlt
bf = 1 for all SNR values (for SNR = 0−20dB), indicating

that the optimum beamformer always achieves ergodic capacity.
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Table 5.1: Channel simulation process

Input parameters
Basic parameters

• Environment (Urban micro/macro, Suburban)
• Sectors (3 or 6)
• Number of simulation drops (Ndrops) and frames (Nframes)
• Frame duration (Tframe)
• Number of transmit (N) and receive (M) array antenna elements
• Number of multipath components (F )
• Number of sub-paths (S) per multipath component
• Gain of BS array antenna elements GBS(θ)
• Gain of MS array antenna elements GMS(θ)
• Velocity (km/h) of the MS
• Inter-element distance at the Tx and Rx antennas

Optional channel features
• Far scatterer clusters
• Urban canyon
• Polarization
• Line-Of-Sight (LOS) component

⇓
Generation of user parameters

At each drop: - Angle Spread σAS

- Delay Spread σDS

- Shadowing σSF
- Orientation and distance of BS and MS
- Pathloss

At each frame: - Path delays
- Average path powers
- Angles of Departure (AoD)
- Angles of Arrival (AoA)

⇓
Generation of 3-D Channel Impulse Response Hm,n,f(t)
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Rate-optimum beamforming transmission in MISO and MIMO Rician fading

channels

In Chapters 3 and 4 of this doctoral thesis was studied the solution of the multi-

dimensional and hence, computationally complex optimum beamforming problem - i.e.

the beamforming transmission that maximizes the average mutual information between

transmitter and receiver and achieves ergodic beamforming capacity - in spatially corre-

lated or uncorrelated with non-unit covariance matrix MIMO Rician flat fading channels.

The importance of this solution is summarized below:

a. The optimum beamforming transmission reduces the complexity of the system and

as a consequence the overall cost.

b. The ergodic beamforming capacity achieved by the optimum beamformer is very

close to the ergodic capacity (which is achieved by higher rank transmission schemes) for

many operational scenarios/channels.

c. The optimum beamformer achieves ergodic capacity when the necessary and suf-

ficient optimality of beamforming condition is satisfied in a channel.

The aforementioned optimization problem was transformed into a simple 1-D optimiza-

tion problem which can be subsequently solved using standard 1-D search algorithms,

(gradient based or direct search methods). The proof of this transformation was based on

geometrical properties, basis transformations and the Karush-Kuhn-Tucker (KKT) condi-

tions. Especially for MIMO 2 ×M systems or MIMO N ×M systems with rank{Rt} 6 2,

it was proven that the aforementioned 1-D optimization problem can be further simpli-

fied. This proof was based on a geometric approach, where the definition of the external
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product between vectors in high-dimensional vector spaces was exploited.

The computational complexity of the proposed 1-D scheme (runtime in seconds per

iteration) was presented, via simulations, with respect to:

a. The number of channel samples, which are used for the calculation of the ergodic

beamforming capacity (using Monte Carlo integration).

b. The number of transmit antenna elements N .

The aforementioned complexity was compared with the corresponding complexity of

the following multi-dimensional algorithms:

a. An interior-point algorithm with logarithmic barrier function (the “fmincon” Matlab

function was employed), for MIMO and MISO systems.

b. An iterative asymptotic (and hence, sub-optimum) approach for MISO systems

(algorithm developed in [50]).

Results for Uniform Linear Array (ULA) array antennas, demonstrated that the 1-D

scheme has significantly lower computational complexity:

a. For the simulated scenarios related to MISO systems, the runtime of the 1-D algo-

rithm is on average ∼5 to 7 times faster than the interior-point method and ∼2 to 10 times

faster than the asymptotic approach.

b. For the simulated scenarios related to MIMO systems, the runtime of the 1-D algo-

rithm it is approximately 8.5 times faster than the interior-point method.

The reduced complexity can be exploited to either reduce cost by using devices with

lower processing power or in order to:

a. Operate in environments with smaller coherence time, proportional to the rela-

tive processing gain, and hence, support operational scenarios with higher mobility, (i.e.

higher speeds, proportional to the relative processing gain).

b. Increase the available processing power required by the system for other supple-

mentary techniques.
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Furthermore, the ergodic beamforming capacity achieved by the optimum beamformer,

for MIMO and MISO systems, was compared with the average mutual information achieved

by the max SNR beamformer. Simulations showed that the optimum beamformer always

achieves a higher information rate (in bps/Hz) than the max SNR beamformer. For the

simulation model and scenarios presented in this work, the (instantaneous) relative in-

formation rate gain can be up to 10%, however, the mean relative information rate gain

does not exceed 5%. Hence, for the simulation model and scenarios of this work1, the

max SNR beamformer can be used as an alternative beamforming scheme with near-

optimum information rate performance.

It is important to note that the solution of the optimum beamforming problem (as pre-

sented with Theorems 3.1, 3.2, 4.1 and 4.2) is not only important due to the reasons

referred to at the beginning of this section, but also due to the following two reasons:

a. In the context of the solution, an infinite-series expression was derived for the

calculation of the ergodic beamforming capacity, which converges very fast to the corre-

sponding Monte Carlo calculation, (a few tens of terms are required).

b. In the context of the solution, a closed-form expression was derived (as a function

of a unique parameter) for the vector set where the optimum beamformer belongs. This

set defines a continuous trajectory on the unit-radius Euclidean ball. This closed-form

expression may be exploited in the context of future work in order to provide an alternative

and less complex solution - compared to currently used interior-point and sub-optimum

methods - for the calculation of the transmission scheme (spatial precoding) that achieves

ergodic capacity, under the combined CMI-CCI model.

As referred to at the beginning of this section, the optimum beamformer achieves er-

godic capacity when the necessary and sufficient optimality of beamforming condition is

satisfied. This condition was studied in this doctoral thesis, for the long-term combined

CMI-CCI model with Kronecker structured covariance (i.e. separable transmit and receive

covariance matrices). The parameters that affect the optimality condition and hence, the

1i.e. for ULAs and the “two-path delay spread” correlation model.
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optimality region were studied via simulations, leading to important observations. The

results showed that the CDIT model under consideration (long-term combined CMI-CCI)

incorporates and combines characteristics from both MIMO Rayleigh and spatially uncor-

related with unit covariance matrix MIMO Rician flat fading channels (i.e. the CCI and

CMI model, respectively). Moreover, the model appears to have some new and unique

characteristics with respect to φ (the angle between the dominant right singular vector of

the channel mean matrix and the dominant eigenvector of the channel transmit covari-

ance matrix) and ρt (the transmit antenna correlation coefficient, for ULA antennas). The

presented analysis for the “production” of the optimality region can be valuable during the

system design and deployment phases: if information for the targeted operational scenar-

ios/channels is available, it can be used to produce the optimality regions and hence, de-

cide if optimum beamforming can be employed as the main transmission strategy, which

ultimately leads to reducing the system’s complexity and cost. The most important obser-

vations related to the study of the optimality of beamforming condition for the combined

CMI-CCI model are summarized below:

Observation 1 . Beamforming becomes the optimum strategy as the singular value of

the channel mean increases.

Observation 2 . Beamforming becomes the optimum strategy as the channel variance

β decreases.

Observation 3 . Beamforming becomes the optimum strategy as the SNR decreases.

Observation 4 . Beamforming becomes the optimum strategy as φ decreases.

Observation 5 . Relatively low channel variance leads to abrupt increase of the op-

timality region for relatively high ρt values, (i.e. high disparity for the eigenvalues of the

channel transmit covariance matrix). However, this effect seems to vanish for higher β

and/or φ values, which “resist” to the optimality of beamforming, as referred to Observa-

tions 2 and 4 above. Moreover, in the low-ρt regime, the optimality region seems to be

rather “insensitive” to an increase of the SNR, β and φ.
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Observation 6 . Beamforming becomes the optimum strategy as the number of re-

ceive antenna elements (M) decreases.

6.2 Simulations for different operational environments

In Chapter 5 simulations were performed for MISO 2× 1 Rayleigh fading channel and

different operational environments (urban micro/macrocellular, suburban macrocellular),

which were produced using the channel model proposed by 3GPP. The simulated chan-

nels were tested for different channel feedback information models: perfect CSI at the

transmitter (Perfect CSIT), unknown channel to the transmitter (Unknown Channel), CMI

and CCI.

The results showed that the CCI model outperforms the CMI model in all environ-

ments, whereas the ergodic capacity achieved by the Perfect CSIT and the Unknown

Channel models are the upper and lower information rate bounds, respectively, in all

cases. The ergodic capacity of the CCI model (for all SNR) is very close to the curves for

the Perfect CSIT model, for the suburban and the urban macrocellular E [σAS] = 8o en-

vironments. Therefore, for these (two) environments, the solution of the computationally

complex optimization problem for the calculation of the trasmission strategy that achieves

ergodic capacity under the long-term combined CMI-CCI model is practically meaningless

and inefficient, (since the solution of the CCI model can be employed instead). On the

other hand, the solution of the aforementioned optimization problem may be meaningful

in urban micro and macrocellular E [σAS] = 15o environments, where the ergodic capac-

ity achieved by the CCI model shows a higher gap with respect to the ergodic capacity

achieved by the Perfect CSIT model.

Moreover, simulations were performed for the probability of the optimality of beam-

forming, Prbf, for MISO 2 × 1 systems and the CMI and CCI models. This probability de-

creases with the SNR in all environments, for both models (CMI and CCI). In both models,

the urban microcellular environment shows the lowest probability, which is logical due to

the wider angular spread and the multiple multipath clusters in such environments. Higher
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probability can be observed for macrocellular (suburban/urban) environments. From the

curves related to the CMI model it can be observed that in the SNR range 0-18dB it is

Prbf > 0.5. For the CCI model it is:

a. The suburban environments and the urban macrocellular environments with E [σAS] =

8o have Prbf > 0.6 in the SNR range 0-20dB.

b. The urban microcellular environments and macrocellular environments with E [σAS ] =

15o have Prbf > 0.45 and Prbf > 0.5, respectively, in the SNR range 0-15dB.

Moreover, simulation were performed for MISO 4 × 1 Rician fading channels. Again,

the 3GPP channel model was exploited in order to produce channel samples for urban

microcellular operational environments with a LOS component, which simulate best MISO

Rician flat fading channels and hence, the long-term combined CMI-CCI model. In the

context of these simulations the ergodic beamforming capacity achieved by the optimum

beamformer was compared with the average mutual information achieved by the max

SNR beamformer, for the short and the long-term combined CMI-CCI feedback infor-

mation model. Results, which were produced for ULA transmit antennas with λ/2 inter-

element spacing, indicate that the max SNR beamformer performs very close to the op-

timum beamformer, for both feedback models. Comparing the two feedback models, the

short-term model shows higher optimum ergodic beamforming capacity (but not exceed-

ing 16% mean relative information rate gain), however, with increased complexity. More-

over, in both models, optimum beamforming achieves ergodic capacity in the SNR range

0-20dB. Generally, it can be concluded that the optimum beamformer used along with

the short-term feedback model is the best transmission strategy for urban microcellular

environments: it achieves ergodic capacity and is higher than the corresponding ergodic

capacity achieved by the optimum beamforrmer used along with the long-term feedback

model. However, if complexity issues are more important than the capacity performance

of a system, then the long-term model with the max SNR beamformer is the best com-

bination of feedback model and beamforming scheme to employ, respectively, since it

almost achieves (long-term) ergodic capacity with the least computational complexity and
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software/hardware cost.

6.3 Future work

Some ideas for future work are summarized below:

a. Study the ergodic capacity, the ergodic beamforming capacity and the optimality of

beamforming condition, for MIMO N ×M systems under different feedback information

models (CMI, CCI, etc.), for different operational environments with measured data and

site specific deterministic ray tracing propagation models.

b. Use of the closed-form expression of the vector set where the optimum beam-

former belongs, in order to provide an alternative and less complex solution - compared

to currently used interior-point and sub-optimum methods - for the calculation of the trans-

mission strategy that achieves ergodic capacity, under the combined CMI-CCI model.

c. Study of the optimum beamforming problem and the optimality of beamforming con-

dition in channels with complex Gaussian Channel Distribution Information (CDI) models

(i.e. CCI, CMI, combined CMI-CCI) at both ends of the radio link (i.e. assumption of a

CDIR-CDIT model).

d. Study the performance of the presented optimum beamformer in the context of low

energy consumption Green systems.

e. Expand the analysis presented here to very large scale or massive MIMO scenar-

ios.
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LIST OF ABBREVIATIONS

CDI . . . . . . . . . . . . . Channel Distribution Information

CDIR . . . . . . . . . . . . . Channel Distribution Information at the Receiver

CDIT . . . . . . . . . . . . . Channel Distribution Information at the Transmitter

CDMA . . . . . . . . . . . . . Code Division Multiple Access

CCI . . . . . . . . . . . . . Channel Covariance Information

CMI . . . . . . . . . . . . . Channel Mean Information

CSD . . . . . . . . . . . . . Cyclic Shift Diversity

CSI . . . . . . . . . . . . . Channel State Information

CSIT . . . . . . . . . . . . . Channel State Information at the Transmitter

i.i.d . . . . . . . . . . . . . Independent identically distributed

LOS . . . . . . . . . . . . . Line Of Sight

LTE . . . . . . . . . . . . . Long Term Evolution

MBWA . . . . . . . . . . . . . Mobile Broadband Wireless Access

MIMO . . . . . . . . . . . . . Multiple Input Multiple Output

MISO . . . . . . . . . . . . . Multiple Input Single Output

MRC . . . . . . . . . . . . . Maximum Ratio Combining

OFDM . . . . . . . . . . . . . Orthogonal Frequency Division Multiplexing

OFDMA . . . . . . . . . . . . . Orthogonal Frequency Division Multiple Access

SDMA . . . . . . . . . . . . . Space Division Multiple Access

SFIR . . . . . . . . . . . . . Spatial Filtering for Interference Reduction

SINR . . . . . . . . . . . . . Signal to Interference plus Noise Ratio

SISO . . . . . . . . . . . . . Single Input Single Output

SNR . . . . . . . . . . . . . Signal to Noise Ratio

STBC . . . . . . . . . . . . . Space-Time Block Codes
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STC . . . . . . . . . . . . . Space-Time Coding

STTC . . . . . . . . . . . . . Space-Time Trellis Codes

TDM . . . . . . . . . . . . . Time Division Multiplexing

TDMA . . . . . . . . . . . . . Time Division Multiple Access
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