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Abstract

This thesis presents searches for supersymmetry in the single-lepton final state, in proton-proton

collisions at center of mass energies of 7 and 8 TeV, recorded by the CMS experiment at the LHC

(CERN). The searches are motivated by supersymmetric models involving strong-production pro-

cesses leading to large cascades of supersymetric particles. The single-lepton signature, accompanied

with multiple jets and E/T, provides a clean signature in the hadronic environment of the LHC, while

preserves large branching fraction for most of the supersymmetric models. No statistically signifi-

cant deviations from the yields expected by the standard model are observed. Therefore, the results

are interpreted in the context of various supersymmetric models with a pair production of gluinos,

tightening the current limits on the mass of the gluino and the neutralino.
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Chapter 1

The Standard Model of particle

physics

The theory that has come to be known as the “Standard Model” (SM) has been extremely successful

describing the particle physics phenomena. The central feature of this quantum field theory is local

gauge invariance under the symmetry group SU(3)C×SU(2)L×SU(1)Y, which defines the strong,

electromagnetic and weak interactions between particles via the exchange of spin-1 gauge bosons.

This chapter presents a short overview of the fundamental particles and forces, and highlights the

most important aspects of this theory [1–3].

1.1 Forces and particles

We believe that there are just four fundamental forces in nature: strong, electromagnetic, weak and

gravitational. The strong force, as the name implies, is the strongest of the four and acts at small

distances. It is responsible for binding quarks to form hadrons, and also protons and neutrons to

form nuclei. The electromagnetic force acts between electrically charged particles. It is around two

orders of magnitude weaker than the strong force and is responsible for the orbitals of the electrons

around nuclei to form the atoms. The weak force is many orders of magnitude weaker than the

strong and the electromagnetic forces. It is responsible for the transmutation of quarks (i.e. decay

of neutron to a proton). The gravitational force, is by far the weakest, around 36 orders of magnitude

weaker than the strong force, and responsible for the interaction between massive bodies.

1
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Each force is transmitted by specific elementary particles, with integer values of spin. The mediators

of the strong force are massless particles called gluons that carry a property unique to the strong force

called color. The electromagnetic force is propagated between electrically charged particles through

massless particles, the photons. The weak interaction is propagated by three massive particles, the

W± and Z0. Finally, the gravitational force is mediated by a massless spin-2 particle, the gravi-

ton. The mediators for all forces but the gravitational have been observed, even if indirectly. The

interactions of these force particles and the corresponding matter particles are described by gauge

theories, which will be discussed briefly in section 1.2. Table 1.1 summarizes the four fundamental

forces and the properties of their mediators.

Force mediator spin mass [GeV] el. charge

strong gluons (g) 1 0 0
electromagnetism photon (γ) 1 0 0

weak W±/Z0 1 81 / 92 ±1 / 0
gravitational graviton (G) 2 0 0

Table 1.1: Fundamental forces and their mediators.

Three generations of fundamental particles with spin 1/2 (fermions) have been discovered, and

based on their properties, they are divided into two categories, the leptons and the quarks. The

basic properties of the six leptons and the six quarks known up to now, are summarized in table 1.2.

In addition, for each one of the particles summarized in Table 1.2, exists a particle with the same

properties but opposite charge, called anti-particle. The huge majority of all objects in nature as

known today, consist only of first-generation particles.

particle mass [GeV] el. charge

L
ep

to
n

s e , νe 0.5 × 10−3 , ∼0 +1 , 0
µ , νµ 0.1 , ∼0 +1 , 0
τ , ντ 1.7 , ∼0 +1 , 0

Q
u

a
rk

s u , d 2.4 × 10−3 , 4 × 10−3 +2/3 , -1/3
c , s 1.3 , 0.1 +2/3 , -1/3
t , b 172.5 , 4.2 +2/3 , -1/3

Table 1.2: Basic properties of the leptons and quarks of the SM theory, grouped in three generations.
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The SM requires one more ingredient to be complete. This is the higgs boson, which will be discussed

later in this chapter. A particle with properties consistent with the higgs boson expected of the SM

was recently discovered at CERN [4, 5]. While its detailed properties are currently under study, it

has been established that the new particle is a higgs boson.

1.2 The gauge principle in the standard model

Vital property for every quantum field theory is to be free from any unphysical infinite contribution

that arise in such theories. The theory is then known to be renormalizable. Central feature of

the theory of standard model is local gauge invariance, since consistently eliminates these infinite

contributions. The dynamics of elementary particles are described by gauge theories. Quantum

electrodynamics (QED) is the theory describing phenomena stemming from electrically charged

particles. The strong interactions are described by Quantum chromodynamics (QCD). A unified

description of the electromagnetic and the weak interactions is achieved through a single gauge

theory, the Electroweak theory (EWK).

1.2.1 The QED Lagrangian

A gauge theory is that type of quantum filed theory in which the Lagrangian of the field is invariant

under some local transformations, called local gauge transformations. The Lagrangian of a spin =

1/2 particle of mass m is given by:

L = iψ̄γµ∂µψ −mψ̄ψ. (1.1)

A local gauge transformation, such as:

ψ −→ U(x)ψ (1.2)

where U(x) = e−ieα(x)Q, with e the unit electric charge and Q the charge operator, leads to a

Lagrangian which is not invariant under this transformation, since:

L −→ L+ (qψ̄γµψ)∂µα(x) (1.3)

The second term in (1.3) breaks the invariance under the transformation in (1.2). Hence, an extra

term needs to be added in (1.1) in order to restore the symmetry. The extra term should be a vector
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field, Aµ, which transforms under (1.2) as follows:

Aµ → Aµ +
1

q
∂µα(x), (1.4)

and is described by the Proca Lagrangian:

L = − 1

16π
FµνFµν +

1

8π
m2

AAµAµ. (1.5)

The first term in (1.5) is invariant under the same local gauge transformation in (1.2), since Fµν ≡

∂µAν−∂νAµ, but not the second. Thus, the mediator of the field must be massless to achieve gauge

invariance. Furthermore, to absorb the extra piece introduced in (1.4), we define the covariant

derivative, Dµ, as:

Dµ = ∂µ + ieAµQ. (1.6)

Substituting the partial derivative of equation (1.1) with the covariant derivative, the Lagrangian of

QED takes the form:

L = − 1

16π
FµνFµν + ψ̄(iγµDµ −m)ψ (1.7)

which is invariant under local gauge transformations. The vector field Aµ, contained in Fµν , is the

electromagnetic potential and the conserved current is Jµ = ψ̄γµQψ. Dirac (spin=1/2) particles

interact with Maxwell fields, mediated by the massless photons. Experimental data have verified

the validity of QED with extreme precision. Transformations described by (1.2) are expressed by

1x1 unitary matrices, that belong in the symmetry group U(1) of unitary transformations in one

dimension.

1.2.2 The Lagrangian of weak interactions

Local gauge transformations can be extended to larger degrees of freedom and hence, similarly

to QED, construct the Lagrangian of the weak and strong interactions. In weak interactions, the

charged leptons and the neutrinos of the same family are organized in a doublet, ψ, which is a vector

in the isospin space. This doublet is described by a two component field:

ψ =

(
ψν`
ψ`

)
(1.8)

and the free Lagrangian is:

L = ψ̄(iγµ∂µ −m)ψ (1.9)
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Requiring invariance under rotation in the 2-dimensional space of local gauge transformations, ψ

transforms as:

ψ −→ e−ig~a(x)·~Tψ (1.10)

where ~a(x) is a vector in the isospin space and ~T = (T1,T2,T3) is the isospin operator, whose

components are the generators of the 2-dimensional space. Similarly to QED, transformations of

(1.10) are expressed by 2× 2 unitary matrices which belong to the symmetry group SU(2), and are

known as “Pauli matrices”. The generators do not commute among themselves and the gauge group

is said to be non-abelian. In analogy to QED, the covariant derivative takes the form:

Dµ = ∂µ + ig ~Wµ · ~T (1.11)

where ~Wµ is the field introduced to restore local gauge invariance and g the coupling strength of

the field. In this case there are three fields (W1, W2 and W3) and thus, three massless spin-1 gauge

bosons, mediators of the force, are expected to exist. The Lagrangian takes the form:

L = −1

4
~Wµν

~W
µν

+ ψ̄(iγµDµ −m)ψ (1.12)

where ~Wµν is:

~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν (1.13)

A gauge field corresponds to each generator of the isospin space. The last term in equation (1.13)

introduces the self-couplings of the ~W fields. A mass term of the form m2 ~Wµ · ~Wµ is not present in

(1.12); similarly to QED, in order to keep the model invariant under local gauge transformations, the

mediators of the fields should be massless. Here, the conserved current is ~Jµ = ψ̄γµ~Tψ+ ~W
µν× ~Wνµ.

This model was proposed by Yang and Mills and would have been a good candidate to describe the

physics of weak interactions, since the three components of the field introduced could correspond

to the W± and Z0 bosons. There are, however, some caveats. The main one is that given the

short scale of the weak interaction, the mediators of the weak force must be very massive. This has

been proved experimentally and in order for the theory to be viable there should be a mass gaining

mechanism. Such a mechanism was proposed by Brout, Englert and Higgs and will be discussed

in the next section. Despite the caveats, Yang and Mills were the first to introduce a non-Abelian

gauge theory which has been proved to be very important for the strong interactions.

There are two types of weak interactions: the “charged-current” and the “neutral-current”, both
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of them confirmed experimentally. In charged-current interactions (CC), the weak force is medi-

ated through the exchange of the charged weak bosons, W±. It’s the only interaction that allows

flavor change of quarks and leptons. An important feature of CC interaction is the left-handed

structure. Extensive studies on β-decays have shown that it acts on particles with negative helicity

(left-handed) and antiparticles with positive helicity (right-handed). The absence of right-handed

particles and left-handed antiparticles is a clear indication of the violation of parity conservation.

The CC interaction is then known to have a V-A (Vector-Axial Vector) structure. The neutral-

current (NC) interaction is mediated by the exchange of the neutral weak boson, Z0. Unlike CC

interaction, in NC interaction the flavor is conserved. NC does not have a purely V-A structure

since right-handed particles are allowed, although suppressed. Neutrinos are considered to be only

left-handed. Therefore, left-handed particles are organized in doublets in the SU(2)L group and the

right-handed particles in singlets.

1.2.3 The QCD Lagrangian

The QCD Lagrangian is constructed in much the same way as that of the weak interaction. The

quark model requires each flavor of quarks to carry three colors and thus described by three spinors:

ψ =


ψb

ψg

ψr

 (1.14)

and the free Lagrangian has the form:

L = iψ̄γµ∂µψ −mψ̄ψ (1.15)

The Lagrangian is not invariant under SU(3) local gauge transformations. Following the same recipe

described previously for U(1) and SU(2), eight new gauge fields are introduced, forming the vector

~Gµ, and the covariant derivative takes the form:

Dµ = ∂µ + igs
~Gµ · ~λ (1.16)

where gs is the gauge coupling for the strong interaction, and ~λ are the 3 × 3 Gell-Mann matrices,

generators of the SU(3) group. These eight new gauge fields correspond to the eight massless gluons,

mediators of the strong force.
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1.2.4 The Electroweak model

Weak and electromagnetic interactions can be unified into a single gauge theory, the electroweak

model. The key point is the combination of the left-handed structure of the weak interaction, with

the electromagnetic interaction which couples both left- and right-handed particles. To achieve this,

in addition to SU(2)L, an independent U(1)Y gauge symmetry is introduced. Hence, the EWK

Lagrangian should be invariant under transformations from the combined SU(2)L×U(1)Y group.

The conserved quantum numbers are the “weak isospin” (T3) and the “weak hyperchange” (Y), for

SU(2)L and U(1)Y symmetries respectively. Both quantum numbers are related by the following

formula:

q = T3 +
1

2
Y, (1.17)

where q is the electric charge. In this combined SU(2)L×U(1)Y model, left-handed fermions trans-

form under both symmetries, while right-handed fermions only under U(1)Y. All fermions are still

considered massless to achieve gauge invariance. The triplet ~Wµ and the singlet Bµ are the massless

gauge bosons for SU(2)L and U(1)Y, respectively. The full Lagrangian of the model is:

L = −1

4
~W
µν ~Wµν −

1

4
BµνBµν + ψ̄iγµDµψ (1.18)

and the covariant derivative has the form:

Dµ = ∂µ + ig ~Wµ · ~T + i
g′

2
BµY (1.19)

where g and g
′
are the coupling strengths of ~Wµ and Bµ with the weak-isospin and weak-hypercharge

respectively. Expressing ~Wµ and ~T in terms of the corresponding lowering and raising operators,

(1.19) consists of two parts, the neutral and the charged. In order to unify the electromagnetic and

weak interactions, the term iqAµ of equation (1.6) should be identified in the neutral part of (1.19):

i(gW3µT3 + (g
′
/2)BµY). Hence, the neutral fields of the EWK model, W3µ and Bµ mix to form the

electromagnetic field Aµ and the neutral weak field, Z0. The connection between the fields takes the

form:  W3

Bµ

 =

 cos θW sin θW

− sin θW cos θW

 Zµ

Aµ

 (1.20)
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where θW is the electroweak mixing angle. The gauge couplings, g and g
′
, can be determined from

θW, with the following relations:

g =
q

sin θW
and g′ =

q

cos θW
(1.21)

With this, the unification of weak and electromagnetic interactions has been achieved. The model

is not complete though, since the weak gauge bosons and all fermions are considered massless to

retain local gauge invariance. The mechanism needed to let the massive particles gain their masses,

and simultaneously preserve the renormalizability of the theory, was proposed by the Brout-Englert-

Higgs, and is described in the next section.

1.3 The Brout-Englert-Higgs mechanism

It was shown that electromagnetic and strong interactions can be described by demanding invariance

under local gauge transformations. The gauge bosons, photons and gluons, are expected by theory

to be massless and confirmed by the experiment. However, the mediators of the weak interactions

are massive and this requirement destroys the gauge invariance. The technique to overcome this is

the Brout-Englert-Higgs mechanism, the main points of which are described in this section.

The Higgs mechanism relies on the idea of “spontaneous symmetry breaking”. Suppose the La-

grangian of a real scalar field:

L = T −V =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

1

4
λφ4

)
(1.22)

where T and V are the “kinematic” and “potential” terms respectively, and µ2 < 0 and λ > 0

constants. The second term is similar to a “mass” term and the third describes the interaction. The

ground state of the potential can occur either at < φmin >= 0, or at:

< φmin >= ± v = ±
√
−µ2/λ (1.23)

The Feynman calculus is formulated by perturbations around the ground state. The Lagrangian in

(1.22) is constructed by silently assuming perturbations around < φmin >= 0. For < φmin >= ± v,

a new field, η(x), is introduced, and φ(x) can be expressed as:

φ(x) = v + η(x). (1.24)
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Rewriting (1.22) in terms of η(x) = η, the Lagrangian takes the form:

L =
1

2
(∂µη)(∂µη)− µ2η2 ± µλη3 − 1

4
λ2η4 +

1

4
(µ2/λ)2. (1.25)

The second term corresponds to a mass term for the field η and the other higher-order in η terms

represent interactions. The mass of the field particle is, thus:

mη =
√
−2µ2 =

√
2λv2 (1.26)

The fact that the field η(x) is mediated by a massive field particle, while the field φ(x) not, is puzzling

since transformation of type (1.24) cannot change the physics. The answer lies in the choice of the

ground state. Expanding around the local-unstable minimum, < φmin >= 0, the perturbation series

do not converge, while selecting one of the global minima < φmin >= ± v it does. The reflection

symmetry (φ→ −φ) is conserved in the Lagrangian (1.22) but not in (1.25). Hence, the selection of

the correct ground state breaks the symmetry and reveals the mass of the field particle. We refer to

it as spontaneous symmetry breaking because no external action forced the selection of the ground

state.

Brout, Englert and Higgs applied the idea of spontaneous symmetry breaking in SU(2)L gauge

symmetry to reveal the masses of the weak bosons. First, the complex scalar field, φ, is introduced,

which is organized in an isospin doublet with Y = 1, as:

φ =

(
φ+

φ0

)
=

√
1

2

(
φ+

1 + iφ+
2

φ0
1 + iφ0

2

)
. (1.27)

The gauge invariant Lagrangian of SU(2)L×U(1)Y, is:

L =

∣∣∣∣(i∂µ − g~T · ~Wµ − g
′Y

2
Bµ

)
φ

∣∣∣∣2 −V(φ) (1.28)

where V(φ) is the higgs potential defined previously for µ2 < 0 and λ > 0. The minima of V(φ) are:

< φ†φmin >=
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −µ

2

2λ
(1.29)

where the appropriate choice for the vacuum expectation value is:

< φmin >=

√
1

2

(
0

v

)
(1.30)
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The choice of the isospin doublet with Y = 1 and the vacuum expectation value as in (1.30), is

essential for the correct creation of masses among the gauge bosons. As discussed in the previous

section, the mediators of the weak interaction should become massive, while the photon should

remain massless. To achieve this, < φmin > should break both the SU(2)L and U(1)Y symmetries

(massive W± and Z0 bosons), but remain invariant under U(1)em transformations (massless photon).

The generators of the three symmetry groups are related as in (1.17), and therefore, the selection

with T = 1/2, T3 = −1/2 and Y = 1, leaves < φmin > unchanged in rotations in U(1)em, since

q = 0. Hence,

|φ′min >
U(1)em

= |φmin >, |φ′min >= q|φmin >= eia(x)q|φmin >
q=0
= |φmin > (1.31)

The masses of the gauge bosons are estimated by substituting the expansion of φ around the mini-

mum in (1.30):

φ(x) =

√
1

2

(
0

v + h(x)

)
, (1.32)

in the Lagrangian (1.28). By the moment a minimum is selected, the SU(2)L×U(1)Y symmetry is

broken. Without going into the technical details, the Goldstone theorem [6, 7] states that whenever

a symmetry is spontaneously broken, the field particles that became massive are accompanied by

massless scalar particles, the Goldstone bosons. The Goldstone bosons correspond to unphysical

terms in the Lagrangian, thus never been detected experimentally, and are eliminated (from the

Lagrangian) by the appropriate gauge transformation. In practice, at the moment the W± and Z0

bosons become massive, they acquire also a longitudinal polarization component. Therefore, the

degrees of freedom from the three Goldstone bosons are converted to the longitudinal polarization

degrees of freedom needed for the three massive gauge bosons. Then the masses of the gauge bosons

are estimated by identifying the mass terms in the Lagrangian. The theoretical predictions for the

higgs boson and the four gauge bosons are listed in table 1.3. The Brout-Englert-Higgs mechanism

completes the SM and provides the ability to predict the masses of the gauge bosons from a single

parameter, the vacuum expectation value.

Fermions (leptons and quarks) may also acquire mass through coupling to the higgs. Until now

the fermion mass term, mf ψ̄ψ, had been excluded from the Lagrangian since it would break gauge-

invariance under SU(2)L×U(1)Y. With the same Higgs doublet used to generate masses for the

W± and Z0 bosons, an SU(2)L×U(1)Y gauge-invariant part is constructed, for each fermion, in the
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Boson predicted mass

Higgs
√

2λ2

W± (1/2)gv

Z0 (1/2)(g2 + g
′2v) = mW · cos θW

photon 0

Table 1.3: Theoretical predictions for the higgs boson and the four gauge bosons.

Lagrangian. As an example, the corresponding part for the electron case, is:

Le = −Ge

(
(ν̄e, ē)L

(
φ+

φ0

)
eR + ēR(φ−, φ0)

(
νe

e

)
L

)
(1.33)

where Ge is the Yukawa coupling between the electron (fermion) and the higgs boson. Substituting

the vacuum expectation value (1.32) in (1.33), and following the same procedure as for the case of

the gauge bosons, the corresponding Lagrangian takes the form:

Le = −Gev√
2

ēe − Ge√
2

ēeh (1.34)

The first term corresponds to the electron mass term, me = (Gev)/(
√

2), and the second term

corresponds to the interaction between the electron and the higgs field. In contrast to the case of

the gauge bosons, the fermion masses cannot be predicted since the constant G is arbitrary.

A boson with properties very similar to that of the standard model higgs boson was discovered at

CERN in 2012, coming to shield the theory of standard model. The current best mass determination

is mH = 125 GeV.

1.4 Discovery of the W and Z bosons

The discovery of the W and Z bosons in proton-antiproton (p-p̄) collisions at Super Proton Syn-

chrotron (SPS) accelerator [8] at CERN by UA1 and UA2 experiments [9, 10] was a major success

for SM. The W bosons were discovered first, through decays to an electron and a neutrino. The

amplitude of the W− −→ e− + ν̄e process is:

M = −i g√
2
ελµ(p)ū(`)γµ

1

2
(1− γ5)υ(k) (1.35)
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where g is the weak gauge coupling, ελµ(p) is the polarization vector and p, ` and k the 4-momenta

of the W−, e− and ν̄e respectively. The decay width for each of the leptonic modes is:

Γ(W −→ `ν`) =
GF√

2

m2
W

6π
(1.36)

where GF is the Fermi coupling constant.

The Z boson was discovered also in the leptonic process Z −→ e+e−. The amplitude for this mode

is:

M = −i gZ√
2
ελµ(p)ū(`)γµ(cV + cAγ5)υ(k) (1.37)

where gZ =
√

8GF√
2

m2
Z, and cV and cA are the vector and axial-vector couplings for the electron. The

decay width for each leptonic process is:

Γ(Z −→ `ν`) =
GFm3

Z√
12π
√

2
8(c2

V + c2
A) (1.38)

An interesting and important feature of the Z0-width is that depends on the number of different

kinds of neutrinos and hence, the decay widths of different modes can be expressed as function of

the Z-width decaying to neutrinos. Experimental data confirm that three spices of leptons exist,

another important confirmation of the standard model theory.

Table 1.4 summarizes the currently best estimation of the mass and decay width of the weak gauge

bosons.

particle charge mass [GeV] full width [GeV]

W± ±1 80.385 ± 0.015 2.085 ± 0.042
Z0 0 91.188 ± 0.002 2.495 ± 0.002

Table 1.4: Basic properties of the gauge bosons of the weak interactions.

1.4.1 The W boson at hadron colliders

Understanding and measuring the kinematic properties of W decays is of vital importance in searches

for physics beyond the standard model, since, along with processes involving production of top

quarks, consists one of the most important background.
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In proton-proton (p-p) collisions, W bosons with high transverse momenta are mainly produced

by quark-gluon (q-g) interactions. Due to the QCD nature of the interactions, the production can

be associated with hadrons. The inclusive and exclusive, in hadron multiplicities, cross sections

have been extensively studied and measured in p-p collisions [11–14] at the Large Hadron Collider

(LHC) [15].

In addition, the measurement of the polarization of W bosons is essential, since as it will be dis-

cussed in chapter 6, can be used as a handle to distinguish SM from potential signals stemming

from processes beyond SM. The q-g production, along with the V-A nature of the coupling of the

W boson to fermions, implies that at p-p collisions, W bosons with high transverse momenta are

expected to exhibit a sizable left-handed polarization. A significant asymmetry in the transverse mo-

mentum spectra of the neutrino and charged lepton from subsequent leptonic W decays is therefore

expected [16].

The polarization is measured using the polar angle (θ∗` ) of the charged lepton from the decay in the

W boson’s rest frame with respect to the flight direction of the W boson in the laboratory frame.

The dependence of the W boson cross-section on cos θ∗ is given by the following expressions:

dσ

d cos θ∗
`+

W+(θ∗`+) ∼ fL
(1− cos(θ∗`+))2

4
+ f0

sin2(θ∗`+)

2
+ fR

(1 + cos(θ∗`+))2

4
(1.39)

dσ

d cos θ∗
`−

W−(θ∗`−) ∼ fL
(1 + cos(θ∗`−))2

4
+ f0

sin2(θ∗`−)

2
+ fR

(1− cos(θ∗`−))2

4
(1.40)

where the three parameters fL, f0, fR determine the corresponding fraction of left-handed, longitudi-

nal and right-handed helicity respectively. The coefficients fL, fR and f0 are functions of both the

boson pT and rapidity. The fraction of the W boson momentum assigned to the charged lepton

is determined by cos θ∗` . Therefore, any asymmetry in cos θ∗` leads to an asymmetry between the

neutrino and charged-lepton momentum spectra. The polarization of W bosons is very specific in

SM, and hence may be utilized in searches for physics beyond the SM.
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Supersymmetry

Despite the remarkable success in describing very precisely all known particle physics phenomena,

the SM is not regarded as the complete theoretical framework of the fundamental interactions, but

only as an effective theory, valid at energy scales up to ∼ 1 TeV. The most obvious limitation is that

it does not include gravity along with the other three forces. Apart from this, the fact that the mass

of the recently discovered Higgs boson remains low, despite its sensitivity to large EWK radiative

corrections, is another important issue to be addressed. This is known as the “hierarchy problem”

and if nature has no mechanism that naturally explains the low mass of the Higgs, the Higgs mass

requires “fine tuning” from the EWK energy scale (∼ 1 TeV) to the Plank scale (∼ 1016 TeV) where

new physics is expected to appear. In addition, from several astrophysical observations there is

evidence for the existence of a new type of weakly-interacting matter, the so-called “dark matter”,

which is not included in SM. Several more outstanding questions (e.g. why three families) remain

to be addressed, and this enhances the belief that there exists physics beyond the standard model.

2.1 Motivation for supersymmetry

Supersymmetry (SUSY) [17–21] is one of the most appealing extensions of the SM, addressing some

of the open issues described above. SUSY is a new type of symmetry that transforms a bosonic

state into a fermionic state, or vice versa, by altering the spin by ∆S = ±1/2. Schematically, this

may be written as:

Q|boson >= |fermion >

Q|fermion >= |boson >
(2.1)

15
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where Q is the generator of the supersymmetry transformation.

There are various theoretical reasons to think that supersymmetry might appear at the ∼1TeV scale,

within the LHC energy regime. The main reason is that it provides a cure to the hierarchy problem,

mentioned in the prologue of this chapter. The higgs mass receives large quantum corrections from

every particle that couples with the higgs field, and these are different for fermions and bosons. The

one-loop correction from a fermion, f with mass mf , on m2
H is shown on Figure 2.1 (left). The term

in the Lagrangian describing the coupling of the higgs field to a fermion f is −λfhf̄f and yields a

correction:

∆m2
H = −|λf |2

8π2

[
Λ2 + 6m2

f ln(Λ/mf) + ...
]

(2.2)

where Λ is the momentum cut-off used to represent the scale up to which the SM remains valid.

If nothing new is found at lower energies, this Λ should be equal to the Plank scale, where gravity

becomes important and, by definition, the SM needs to be modified to include a fourth interaction.

A similar correction arises from a scalar boson particle S, with mass ms. Figure 2.1 (right) shows

the corresponding one-loop Feynman diagram and the correction on m2
H is:

∆m2
H =

λs

16π2

[
Λ2 − 2m2

s ln(Λ/ms) + ...
]

(2.3)

Figure 2.1: One-loop quantum corrections to m2
H due to fermions (left) and scalar bosons (right).

In both cases the corrections have contributions proportional to Λ2 and are thus huge when compared

to the physical mass of the higgs boson. Comparing equations 2.2 and 2.3, we see that these

contributions cancel if for each fermion loop there exists a boson loop, and vice versa, and in

addition the couplings with the higgs field satisfy the relation λs = 2|λf |2. This is exactly what

supersymmetry does.

The remaining residual corrections have only a logarithmic dependence with the mass of the par-

ticle and Λ. If the corrections to m2
H are to be kept naturally small (∆m2

H < m2
H), the bosonic

and fermionic partners should have small mass splittings, |m2
s − m2

f | . 1 TeV. This provides the

motivation of EWK-scale SUSY, up to ∼ TeV.
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A second motivation for SUSY is provided by dark matter. This new type of matter could be provided

by stable, neutral, weakly-interacting particles with masses less than ∼1 TeV. Supersymmetry

provides a very good candidate for dark matter, in the form of the neutralino χ̃0, which can be the

lightest supersymmetric particle (LSP). The main requirement on this particle is to be stable. In

SUSY, the baryon (B) and the lepton (L) quantum numbers are not conserved. Instead, a quantum

number, called R-parity, may be conserved leading to a stable χ̃0.

Another interesting feature of supersymmetry is that the couplings that characterize the three funda-

mental forces (electromagnetism, weak and strong) become equal at the same energy scale (∼ 1016

GeV), while in SM this is not feasible. Figure 2.2 displays the evolution of the gauge coupling

strengths as a function of the energy scale, for the three forces, in SM and SUSY [18]. Although

unification of forces is not essential for a theory to be valid, it is nevertheless intriguing that SUSY

favors it.

Figure 2.2: Evolution of the electromagnetic (α1), weak (α2) and strong (α3) coupling strengths as
a function of the energy scale, in SM (left) and SUSY (right) [18]. In SUSY the three forces evolve
to a unified value.

2.2 Structure of a supersymmetric theory

As mentioned earlier, SUSY relates bosons to fermions and vice versa. The generator Q which

performs the transformation in (2.1) has to carry spin 1/2 and must be an anticommuting, complex
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object. The properties of Q can be summarized as:

{Q,Q†} = Pµ

{Q,Q} = {Q†, Q†} = 0

[Pµ, Q] = [Pµ, Q†] = 0

(2.4)

where Pµ is the four-momentum generator of spacetime translations.

Single-particle states are organized into irreducible representations of the supersymmetry algebra,

called supermultiplets. Each supermultiplet consists of both fermions and bosons differing by 1/2

unit in spin, known as superpartners. In unbroken SUSY, all members of a supermultiplet have the

same mass and given that SUSY generators commute with the generators of gauge transformations,

the members of a supermultiplet have identical charge, weak isospin and colour. Therefore, the

number of bosonic and fermionic degrees of freedom in a supermultiplet, nB and nF, are equal.

The SM fermions are organized in chiral supermultiplets. Each chriral supermultiplet consists of

a Weyl spinor with two real components and two real scalar fields which are assembled into a

complex scalar field. Since the left- and right-handed fermions have different gauge transformation

properties, each helicity state corresponds to a separate two-component Weyl spinor. Each scalar

field (supersymmetric partner of the fermion) is associated with one helicity state, and has the same

name preceded by “s” and the index R or L to indicate the helicity state (i.e the supersymmetric

electron, the “selectron”, ẽL and ẽR are the SUSY partners of eL and eR, respectively). As an

example, the chiral supermultiplet of the first lepton family with left-handed helicity, consists of the

SU(2)L electron doublet, (eL, νe), partnered by the scalars (ẽL, ν̃e). The Higgs boson also reside in

chiral supermultiplets, since it has spin 0. The structure of SUSY requires the existence of two Higgs

supermultiplets, one to give mass to up-type quarks and one to the down-type quarks.

The SM gauge bosons are organized in vector supermultiplets and consist of the spin-1 gauge field

and its fermionic partner, a spin 1/2 Weyl fermion, called gaugino. Gauge bosons transform as

the adjoint representation of the gauge group and their fermion superpartners must be in the same

representation. Since the adjoint representation is its own conjugate, the left- and right-handed

components of these fermions must have the same gauge transformation properties.
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2.2.1 The supersymmetric Lagrangian

The aim of this section is to present the general structure of a field theory with supersymmetry,

without going into detailed derivations. The supersymmetric Lagrangian will contain the chiral and

vector multiplets as well as their interactions.

For a chiral supermultiplet the simplest action, taking into account only kinetic terms, can be written

as:

S =

∫
d4x (Lscalar + Lfermion) (2.5)

where Lscalar = ∂µφ∗∂µφ and Lfermion = iψ†σ̄µ∂µψ. The supersymmetry transformation turns the

scalar boson field φ into something involving the fermion field ψ. The simplest possible transforma-

tion is

δφ = εψ δφ∗ = ε†ψ† (2.6)

where ε is an infinitesimal, anticommuting, two-component Weyl fermion object to parameterize

the SUSY transformation. The action should be invariant under supersymmetric transformations,

which requires δLscalar = δLfermion. To achieve this, δψ should be linear in ε† and φ and also contain

one space-time derivative ∂µ, hence:

δψ = −i(σµε†)∂µφ and δψ† = i(εσµ)∂µφ
∗. (2.7)

The final step is to prove that this transformation corresponds to a supersymmetric transforma-

tion; which is to show that starting from a fermionic or a bosonic state and applying twice the

transformation (2.6) leads to another symmetry of the theory (the theory closes). Without going

into the details of the algebra, it can be seen that the symmetry algebra closes on-shell, but not

off-shell. To overcome this, a new complex scalar field, F, which does not have a kinetic term, is

introduced. Fields that are used only to allow the symmetry algebra to close are called “auxiliary

fields” and they do not propagate since they do not have a kinetic term. The free Lagrangian of a

chiral supermultiplet takes the form:

Lfree = Lscalar + Lfermion + LF (2.8)

Next, interactions between chiral multiplets should be included. The most general description of the

interaction is:

Lint = −1

2
Wij(φ, φ∗)ψiψj + Wi(φ, φ∗)Fi + c.c. (2.9)
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where Wij and Wi are polynomials of the scalar fields φ and φ∗. Requiring Lint to be invariant under

SUSY transformations, the superpotential W is introduced. The superpotential can be written as:

W = Liφi +
1

2
Mijφiφj +

1

6
yijkφiφjφk (2.10)

where Li are parameters with dimensions [mass]2, Mij is a symmetric mass matrix for the fermion

fields and yijk is the Yukawa coupling of a scalar and the fermion fields. The auxiliary field F can

be eliminated from the Lagrangian and instead the scalar potential, or else known as F-potential, is

used. The F-potential is defined as:

VF =

∣∣∣∣∂W

∂φi

∣∣∣∣2 = |Fi|2 (2.11)

The complete supersymmetric Lagrangian for interacting chiral supermultiplets takes the form:

L = − ∂µφ∗i∂µφi − V(φ, φ∗) + iψ†iσ̄µ∂µψi −
1

2
Mijψiψj −

1

2
M∗ijψ

†iψ†j

− 1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k
(2.12)

The vector supermultiplets are appropriate for the treatment of the SM gauge fields. Each one

includes a massless gauge boson, Aa
µ, and a massless Weyl fermion, the gaugino λa, where a runs

over the different generators of the gauge group. Using gauge invariance, the Lagrangian takes the

form:

Lgauge = −1

4
Fa
µνFµνa + iλ†aσ̄µ∇µλa +

1

2
DaDa (2.13)

The Yang-Mills field strength, F aµν , and the covariant derivative of the gaugino field, ∇µλa, are

defined in chapter 1. In order to go off-shell, in analogy with the F-term for chiral supermultiplets,

the auxiliary real scalar field, Da, is introduced. In the absence of any interactions with chiral

supermultiplets, the equation of motion for Da is Da = 0, since it does not have a kinetic term and

therefore does not propagate. However, this has to be modified given that gauge supermultiplets

couple to chiral supermultiplets. To add the interactions, the partial derivatives ∂µ in the definition

of Fa
µν and ∇µλa must be replaced by covariant derivatives Dµ, as for the SM in chapter 1. Then,

the equation of motion for the Da-field is:

Da = −g(φ∗Taφ) (2.14)
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where Ta is the generator of the group. Similarly to the auxiliary field F, Da can also be expressed

in terms of scalar fields. Replacing the auxiliary fields, the complete scalar potential is:

V(φ, φ∗) = F∗iFi +
1

2

∑
a

DaDa =

∣∣∣∣∂W

∂φ

∣∣∣∣2 +
1

2

∑
a

g2
a(φ∗Taφ)2 (2.15)

This potential is completely determined by the Yukawa couplings and fermion mass terms via the

F-term, and by the gauge interactions via the D-term. Another important point, useful for the

spontaneous breaking of the symmetry, is that since it is a sum of squares, it is always non negative.

The properties discussed here will be used in the next section to construct a supersymmetric exten-

sion to the SM while preserving its successful characteristics.

2.3 The minimal supersymmetric extension of the SM

The minimal supersymmetric extension of standard model (MSSM) is defined to be a supersym-

metrization of the SM and is “minimal” in the sense that it uses the smallest possible number of

superfields and interactions. The MSSM is a SU(3)C×SU(2)L×U(1)Y gauge theory with a general

set of soft supersymmetric-breaking terms. The fermion and gauge fields of the SM are promoted

to superfields in the MSSM.

Each SM particle, except the higgs boson, has a superpartner which is always of lower spin. The

superpartners of fermions are “sfermions” of spin 0. The superpartners of the gauge bosons are

“gauginos” of spin 1/2. Beside the new superpartners, two higgs doublets Hu and Hd are required in

the MSSM, compared to the single doublet, h, in the SM. These doublets couple at tree level with

the up- (I3 = 1/2) and down-type (I3 = −1/2) chiral fermions separately.

The superpotential of the MSSM is:

W = YuQUcHu + YdQDcHd + YeLEcHd + µHuHd (2.16)

where Q and L are the superfields containing the left-handed quarks and leptons respectively, and

Uc, Dc and Ec are the superfields containing the left-handed antiquarks and antileptons. After

electroweak symmetry breaking, the 3× 3 Yukawa matrices Y, will give mass to quarks and leptons.

The µHuHd term gives the suitable vacuum energy after symmetry breaking. The quantity µ has

dimensions of mass and from phenomenology it is required to be ∼1 TeV scale.
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The superpotential introduced above includes only the Yukawa interactions of the SM. Other terms

that are gauge invariant, Lorentz invariant and holomorphic in the chiral superfields, are not included

since they violate the baryonic and/or the leptonic quantum numbers. Violation of B and L has not

been observed experimentally and the most obvious experimental constraint comes from the unseen

decay of the proton. To avoid such terms in the superpotential, a new symmetry, which combines

B, L and the spin S, should be added to the MSSM. This symmetry is called R-parity (Rp) and is

defined as:

Rp = (−1)3(B−L)+2S. (2.17)

Rp is +1 for SM particles and -1 for SUSY particles. Conservation of Rp introduces additional

phenomenological constraints, such as that sparticles are produced in even numbers and that the

lightest supersymmetric particle (LSP) should be stable. The latter, if it is neutral and interacts

with matter only weakly, can be a very good candidate for dark matter. There are, nevertheless,

SUSY models that violate R-parity.

If supersymmetry exists in nature, it has to be a broken symmetry since no SUSY particles have

been observed so far; the usual interpretation of this non-observation is that superpartners are heavy.

Since the mechanism and the effective scale of its breaking are still unknown, an ad hoc strategy is

adopted by adding soft energy SUSY breaking terms in the Lagrangian. The general form of the

soft SUSY breaking Lagrangian, Lsoft, is:

Lsoft = −1

2
(maλ

aλa + h.c.) − m2
ijφ
∗
j φi +

(
1

2
bijφiφj +

1

6
aijkφiφjφk + h.c.

)
, (2.18)

where ma are the gaugino masses, m2
ij and bij are the scalar mass terms, and aijk the trilinear scalar

interactions (couplings).

To describe the SUSY breaking sector, one needs to introduce a large number of free parameters

(109) and in the case of the MSSM, Lsoft takes the form:

− Lsoft =
1

2
(m3g̃g̃ + m2W̃W̃ + m1B̃B̃ + h.c.)

+ Q̃†m2
QQ̃ + Ũ†m2

UŨ + D̃
†
m2

DD̃ + L̃†m2
LL̃ + Ẽ†m2

EẼ

+ (Ũ†aUQ̃Hu − D̃
†
aDQ̃Hd − Ẽ†aEL̃Hd + h.c.)

+ m2
Hu

H∗uHu + m2
Hd

H∗dHd + (bHuHd + h.c.).

(2.19)

The m3, m2 and m1 gaugino (majorana) masses are associated with the SU(3), SU(2) and U(1)

groups of the SM respectively. The quantities mQ, mU , mD, mL and mE are mass matrices for
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squarks and sleptons. The coefficients aU , aD and aE correspond to trilinear couplings between

higgs and sfermions. The scalar mass parameters m2
Hu

, m2
Hd

and b contribute to the higgs potential.

The two complex doublets of the higgs sector of the MSSM, are:

Hu =

(
H0

u

H−u

)
Hd =

(
H+

d

H0
d

)
, (2.20)

where Hu and Hd, satisfy Y=1 and Y=-1 respectively.

The effective scalar potential at tree level is:

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d|2 − b(H0
uH0

d + h.c.)

+
1

8
(g2

1 + g2
2)(|H0

u|2 − |H0
d|2)2.

(2.21)

The higgs sector of the MSSM consists of two neutrally charged, scalar bosons, h0 and H0, a pseudo-

scalar A0, and two charged higgs bosons, H±. The vacuum expectation value (vev) for each higgs

doublet is estimated following a similar approach as for the SM case. The relation between the vev

in SM, v, and the vev for Hu and Hd, vu and vd respectively, is:

v2 = v2
u + v2

d =
2m2

Z

g2
1 + g2

2

. (2.22)

Expanding the fields around their minima gives at tree level the following masses for the mass

eigenstates [18]:

m2
h0,H0 =

1

2

(
m2

A0 + m2
Z ∓

√
(m2

A0 −m2
Z)2 + 4m2

A0m2
Z sin2(2β)

)
m2

A0 =
2b

sin(2β)

m2
H± = m2

A0 + m2
W± .

(2.23)

It can be seen from (2.23) that the higgs sector can be described by two parameters, mA0 and β.

The angle β is related to the two vacuum expectation values as:

tanβ =
vu

vd
(2.24)

The mass of the h0 is bounded from above by:

mh0 < | cos(2β)|mZ (2.25)
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Loop corrections on the estimation of the mass are not negligible and must, thus, be included. The

dominant one is due to the top and top squark loops. The corrections depend on the masses of the

SUSY particles, so specific benchmark scenarios have to be chosen. For sparticles with ∼TeV mases,

the mass of the h0 is expected to be less than ∼130 GeV [22], i.e. it is consistent with the Higgs

boson discovered at CERN.

The masses (mass eigenstates) of the other sparticles are estimated by diagonalizing the correspond-

ing mass matrices. Following symmetry breaking, any two particles with different SU(2)L×U(1)Y

quantum numbers can mix, if they have the same SU(3)C×U(1)EM quantum numbers. Gluinos,

belong to SU(3)C symmetry group, and since the symmetry is left unbroken, they do not mix with

other sparticles. Therefore, at tree level, their mass is equal to the parameter m3.

The neutral higgsinos, H̃0
u and H̃0

d, and the neutral gauginos, γ̃ and Z̃, mix to create the experi-

mentally observable, neutrally charged mass eigenstates, referred to as neutralinos (χ̃0
1,2,3,4). The

corresponding mass term in the Lagrangian has the form:

Lχ̃0 = −1

2
(ψχ̃0)∗mχ̃0ψχ̃0 + h.c., (2.26)

where ψχ̃0 = ψχ̃0(γ̃,Z̃,H̃0
d,H̃0

u) and the mass (mixing) matrix, mχ̃0 is:

mχ̃0 =


m1 0 −mZ cosβ sin θW mZ sinβ sin θW

0 m2 mZ cosβ cos θW −mZ sinβ cos θW

−mZ cosβ sin θW mZ cosβ cos θW 0 −µ

mZ sinβ sin θW −mZ sinβ cos θW −µ 0

 (2.27)

The mass matrix is then diagonalized by a unitary matrix to obtain the four χ̃0 mass eigenstates,

which are ordered in increasing mass, as:

mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
(2.28)

In R-parity conserved models, the χ̃0
1 is assumed to be the LSP (and thus a great dark matter

candidate). In the limit where m2 → 0 the LSP would be approximately a photino, while for µ→ 0,

approximately a higgsino [23]. However, both of these extreme scenarios have been excluded by

LEP [23].

Charginos, χ̃±1,2, are the electrically charged analogues of χ̃0, and are formed by mixing the electrically

charged winos, W̃
±

, and higgsinos, H̃±. The corresponding mass term in the Lagrangian has the
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form:

Lχ̃± = −1

2
(ψχ̃±)∗mχ̃±ψχ̃± + h.c., (2.29)

where ψχ̃± = ψχ̃±(W̃
±

,H̃±) and the mixing matrix, mχ̃± is:

mχ̃± =

 m2

√
2mW sinβ

√
2mW cosβ µ

 . (2.30)

In the region where mW << m2 < µ, the mass eigenstates are mostly wino- and higgsino-like, with

m
χ̃±1
∼ m1,m2 (wino-like) and m

χ̃±2
∼ µ (higgsino-like). In the scenario where mW << µ < m2,

stands the opposite.

As discussed in section 2.2, for each helicity state of the charged fermions of the SM, fL,R, a sfermion

partner, f̃L,R is assigned. Sfermion mass eigenstates are created by mixing sleptons and squarks,

which corresponds to 21 fields. Therefore, an exact solution is very complicated. The calculation

can be simplified by neglecting inter-generational mixing contributions which have a negligible effect

on the actual mass. For each flavor the mixing matrix has the general form:

m2
f̃

=

m2
f̃LL

m2
f̃LR

m2
f̃LR

m2
f̃RR

 (2.31)

The diagonal terms are defined as:

m2
f̃LL(RR)

= m2
f + m

2 (D−term)

f̃L(R)
+ m2

f̃L(R)
, (2.32)

where the first term, m2
f , is the squared mass of the SM fermion, and the term m2

f̃L(R)
, is the soft SUSY

breaking squared mass seen in (2.18). The term m
2 (D−term)

f̃L(R)
, is due to the D-term contributions in

the scalar potential, and is defined as:

m
2 (D−term)

f̃L(R)
= m2

Z cos(2β)
(
I3 + sin2(θW)Q

)
, (2.33)

where the isospin (I3), takes values 0 and 1/2, for f̃R and f̃L, respectively. The off-diagonal terms

are defined as:

m2
f̃LR

=


mf (af + µ tanβ) , for f = e, µ, τ,d, s, b

mf (af + µ cotβ) , for f = u, c, t

. (2.34)

The two mass eigenstates of the sfermions, f̃1,2, are found by diagonalizing the mass matrix. Hence,
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the level of Left-Right (L-R) mixing depends on the contribution of the off-diagonal terms in (2.31),

which are proportional to the mass of the SM fermion (2.34). Therefore, this mixing is likely to be

important for the case of the top squark (t̃), and to a lesser extend for the sbottom quark (b̃) and the

stau lepton (τ̃) in scenarios with large tanβ. As a consequence, large mass splittings are expected

between t̃1 and t̃2, where the lightest of the two may well be the lightest of all squarks. Due to

small L-R mixing, the L and R states of the first and second generations of squarks and sleptons are

expected to have mass almost equal to the mass eigenstates (mf̃L,R ∼ mf̃1,2). Their mass spectrum

would then be degenerate.

2.4 Production of supersymmetric particles in p-p collisions

The dominant production mechanism of supersymmetric particles in hadronic colliders is strong

production of squarks and gluinos via gluon-gluon (g-g) and quark-gluon (q-g) fusion. These have

large cross sections since they are QCD processes. For SUSY models with R-parity conservation,

sparticles are produced in pairs. The squark and gluino pair-production processes considered are:

pp → q̃q̃, q̃q̃∗, q̃g̃, g̃g̃. (2.35)

In the above processes, q̃ does not include the top squark and q̃∗ corresponds to off-shell squarks.

The cross section for direct production of stop-quark pairs is much smaller. Slepton pair production

proceeds through a Drell−Yan interaction mediated by a Z∗, yielding ˜̀
L

˜̀
L, ˜̀

R
˜̀
R or ν̃ν̃, or by a W∗,

yielding ˜̀
Lν or `ν̃L. As these are electroweak processes, their cross sections are much smaller than

for those for the production of squarks and gluinos. The production cross section for different SUSY

processes at the LHC, for a center of mass energy
√

s = 7 TeV, calculated at Next to Leading Order

(NLO) accuracy, is illustrated on Figure 2.3 [24].

2.5 Signatures of supersymmetric signals

If SUSY is within the LHC energy regime, it will manifest itself by decays of the produced sparticles

to lighter SM particles. In Rp-conserving scenarios, which are the ones we consider in this thesis,

the sparticles are always produced in pairs and at the end of the decay chain, exist two stable LSP.

The decay patterns, and hence the signature of each process, depend on the sparticle.
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Figure 2.3: SUSY production cross sections at NLO for the different processes at the LHC for a
center of mass energy

√
s = 7 TeV [24].

2.5.1 Gluinos

Gluinos, depending on their mass, may decay to squarks, charginos or neutralinos. If the g̃ is heavier

than at least the lightest q̃, the decay proceeds by the two-body process:

g̃ → q̃ + q. (2.36)

This mode is expected to dominate due to the strong coupling between gluons and on-shell squarks

(QCD process). Since the third generation squarks are likely to be lighter than the first two gener-

ations, gluino decays to t̃ and b̃ are more probable. The decay of gluinos lighter than any squark,

would proceed through weak interactions, mediated by an off-shell squark, to charginos and neu-

tralinos, associated with a quark-pair or a gluon, as:

g̃ → χ̃±qq̄ , g̃ → χ̃0qq̄ , g̃ → χ̃0g. (2.37)
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2.5.2 Sleptons

Sleptons may decay into a lepton and a chargino or a neutralino, as follows:

˜̀± → `±χ̃0
i , ˜̀± → νχ̃±i

ν̃ → νχ̃0
i , ν̃ → `∓χ̃±i .

(2.38)

The decay properties depend on the hierarchy between m1, m2 and µ. If χ̃0
1 is bino-like, the right-

type sleptons would prefer the process, ˜̀
R → `χ̃0

1, with interaction strength proportional to the

U(1)Y coupling. In contrast, the left-type sleptons may prefer decays to χ̃±1 or χ̃0
2, if χ̃±1 and χ̃0

2 are

wino-like. The interaction strength of the latter is proportional to the SU(2)L coupling.

2.5.3 Squarks

Squarks have multiple decay modes, depending on the mass difference with the other SUSY particles.

If kinematically allowed, the dominant decay process would be via strong interaction:

q̃ → g̃ + q. (2.39)

In the case where gluinos are heavier than squarks, squarks would decay to a quark and a chargino

or neutralino, as:

q̃ → qχ̃0
i , q̃ → qχ̃±i . (2.40)

Right-type squarks would decay to χ̃0
1 (LSP), while those of left-type to χ̃±1 or χ̃0

2, with a relative

fraction ∼2:1, respectively. Other decay modes may contain also the weak bosons, or higgs particles

in the final state. Third-generation squarks (t̃, b̃) have more complicated decay modes, since Yukawa

couplings become also important. Especially for the t̃, the following weak decays may also occur:

t̃ → b + χ̃±1 , t̃ → t + χ̃0
1. (2.41)

Stop quarks may have such large levels of mixing, that t̃1 quark could be lighter than the t quark. In

this case the t̃ could decay through a flavor-suppressed process to a c quark, or to a pair of fermions

associated with a b quark and χ̃0, as:

t̃ → c + χ̃0
1 , t̃ → b + `+ + ν` + χ̃0

1. (2.42)
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Various other decay modes, with smaller branching ratios, could also be present.

2.5.4 Gauginos

Neutralinos and charginos contain an admixture of the gauginos γ̃, Z̃0 and W̃
±

, leading to couplings

of weak interaction strength. If the ˜̀and q̃ are sufficiently light, the dominant decay processes would

be to pairs of q̃ + q or ˜̀+ `. Neutralinos and charginos may also decay to lighter χ̃0 and χ̃±, in

association with a higgs scalar or an EWK gauge boson, as below:

χ̃0
i → `± + ˜̀∓, ν + ν̃, q + q̃, χ̃0

j + Z0 (h0), χ̃±j + W∓

χ̃±i → `± + ν̃, ν + ˜̀±, χ̃±1 + Z0 (h0), χ̃0
j + W±.

(2.43)

In addition, if χ̃0 and χ̃± have significant higgsino content and they are allowed to decay to t̃, they

would exhibit an enhanced branching fraction due to the contribution of the top quark Yukawa

coupling. If all the above processes are kinematically forbidden, χ̃0 and χ̃± would proceed via the

following three-body decays:

χ̃0
i → f + f̄ + χ̃0

j , f + f
′
+ χ̃±j

χ̃±i → f + f
′
+ χ̃0

j , f + f̄ + χ̃±j

(2.44)

where f and f
′

are fermions of different type and any of them could be an anti-fermion if appropriate.

2.5.5 Signatures

As discussed in the previous section, the dominant production of SUSY particles at the LHC would

be that of gluinos and squarks. Since their masses are high, certainly higher than a few 102 GeV,

they should have large transverse momentum (pT) and can decay to hadrons. In addition, if Rp is

conserved, the final state contains two neutralinos, which are neutral and weakly interacting and

hence escape the detector, resulting in large values of missing energy. In hadron colliders, since

the parallel to beam axis component of the missing energy cannot be measured, we consider the

missing transverse energy (E/T). Thus the most generic signature for supersymmetry consists of

many high-pT jets and E/T. Depending on the SUSY model, the final state may be rich in b quarks.

The signatures are further classified based on the multiplicity of leptons in the event.
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The “zero-lepton” final state consists of events with many high-pT jets, large values of E/T and no

energetic and isolated leptons. This topology is quite challenging due to the large cross section for SM

processes that have a similar signature, and thus constitute background for the searches. However,

in many scenarios, SUSY has the largest branching fraction in this final state. The dominant

backgrounds stem from QCD processes with many jets, which have very large cross section, but also

from the production of Z in association with jets and the subsequent decay of the Z boson in two

neutrinos, which create large values of E/T. To reduce the background from SM processes, a tight

selection on E/T is imposed.

The “single-lepton” final state is another competitive final state where, in addition to the large jet

multiplicities and E/T, an energetic, isolated lepton is required. The lepton in SUSY processes is

produced by various sources, such as the decay of a chargino (χ̃± →W±χ̃0 and W± → `±ν) or the

decay of gluinos to top and/or top squarks, where at the end of the cascade a lepton is produced. The

requirement of an isolated lepton suppresses the SM backgrounds from strong interaction processes

(QCD) considerably. Events with similar signature arise from SM processes mainly from decays of

the W boson, with large values of E/T from the undetected neutrinos produced in the decays.

SUSY signatures may also contain two or more leptons, depending on the decay chain. The increased

lepton multiplicity further reduces the SM backgrounds. An important signature consists in final

states with two leptons of the same charge. Since the gluino is a Majorana fermion, it has equal

branching ratios to `+ and `−, e.g. through chargino decays. In the SM, however, the production of

same-sign leptons is suppressed. The disadvantage of the signature is that the branching fraction of

this supersymmetric final state is quite small.

Supersymmetry may express itself in other final states as well, but further discussion on this goes

beyond the scope of this thesis. The searches for SUSY that are discussed in the current thesis are

based on the single-lepton signature.

2.6 Phenomenology of supersymmetry

The MSSM has over a hundred parameters and this renders the interpretation of the experimental

results very difficult. To obtain some guidance, the generic MSSM model is sometimes constrained

to a simplified model, e.g. the “Constrained MSSM” (CMSSM) [25, 26]. The development of the

CMSSM was based on the “minimal supergravity” (mSUGRA) framework [27, 28]. In the CMSSM,

universality at a certain scale before normalization is assumed. The main points are:
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• All gaugino masses are assumed to be equal at the grand unification (GUT) scale. This value

is denoted by m1/2.

• The scalar masses of the squarks and sleptons are assumed to be equal to the soft SUSY-

breaking contributions to the higgs masses at the same scale, where m2
Q = m2

Hu
= .. = m2

0

• Common scalar trilinear couplings, A0

Under these assumptions, in the CMSSM, the mass spectrum and its interaction strengths are

determined by the 18 SM parameters, the additional four parameters, m1/2, m0, A0, tanβ and the

sign of µ. The SUSY breaking mechanism is not known, but it is assumed that occurs in some large

energy scale, e.g. the GUT scale. Therefore, the soft SUSY-breaking parameters should undergo

a large evolution between this scale and the EWK scale. Renormalization group equations (RGE)

are used to derive the sparticle spectrum, decay branching ratios and production cross sections at

the EWK scale. Different benchmark models in CMSSM are produced to interpret the experimental

results. Table 2.1 summarizes the details of the soft SUSY-breaking parameters of the CMSSM

benchmark models, LM3, LM6 and LM9p [26], used for the design of the SUSY searches in this

thesis. The mass of the top quark (mt) is assumed to be 175 GeV. Figure 2.4 displays the evolution

of the soft SUSY-breaking parameters from the GUT scale down to the EWK scale, for a typical

SUSY model in the context of CMSSM [18]. The SUSY mass spectrum for the CMSSM benchmark

point SPS3 [29], with properties very similar to LM6, is illustrated in Figure 2.5.

LM3 LM6 LM9p

m0 [GeV] 330 85 1450
m1/2 [GeV] 240 400 230

tanβ 20 10 10
A0 0 0 0
sign µ + + +

Table 2.1: Details of the soft SUSY-breaking parameters of the three CMSSM benchmark models,
LM3, LM6 and LM9p [26], used for the design of the SUSY searches presented in this thesis.

The advantage of the CMSSM is that each benchmark model has a complete SUSY particle spectrum

and a well defined cross section for each production process. The disadvantage is that the results

obtained depend on this model and cannot be extrapolated to alternative SUSY models.

Another approach in interpreting the experimental results are the so-called “Simplified Models Spec-

tra” (SMS) [30–33]. In contrast to the full models like the CMSSM, the SMS are simple topologies
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Figure 2.4: Evolution of the soft SUSY-breaking parameters from the GUT scale down to the EWK
scale, for a typical SUSY model in the context of CMSSM [18].

Figure 2.5: SUSY mass spectrum for the CMSSM benchmark point SPS3 [29], with properties very
similar to LM6.

of new physics, involving relatively few particles and decay modes. An effective Lagrangian is used

to describe the particle content and interactions of each SMS topology. Each SMS topology includes

the production of a pair of primary sparticles. Then, each primary sparticle may decay directly to a

SM particle, or undergo a cascade decay through an intermediate sparticle. As already discussed, we

consider Rp-conserving models, hence each sparticle’s decay chain ends-up to an LSP. The particular

process under study is described by a minimal set of parameters like the particle masses and the

production cross section. An upper limit on the product of the cross section and branching fraction

is derived as a function of particle masses. With SMS models we can quantify the dependence of
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an experimental limit on the particle spectrum or a particular sequence of particle production and

decay, in a manner that is more general than the CMSSM. Furthermore, the results derived can

be compared to theoretical predictions from a SUSY or non-SUSY model to determine whether the

theory is compatible with data.

The results obtained in this thesis are interpreted in SMS models that give rise to a single-lepton

signature. Assuming that the first two generations of squarks are heavier than the gluinos, we con-

sider models with gluino-pair production. The models under consideration are denoted as: “T3w”,

“T1tttt”, “T5tttt” and “T1t1t”. Figure 2.6 illustrates the Feynman diagram for the T3w, T1tttt,

and T1t1t/T5tttt topologies.

In T3w, one gluino decays directly to a light-flavor quark-antiquark pair and a χ̃0
1. The other gluino

undergoes a cascade decay through an intermediate chargino which sequentially decays to a W boson

and a χ̃0
1. The parameters of the model are the mass of the gluino, mg̃, the mass of the χ̃0

1, mχ̃0
1
,

and the mass of the chargino, mχ̃± . The possible values of mχ̃± are determined as:

mχ̃± = x ·mg + (1− x) ·mχ̃0
1

(2.45)

where, for concrete interpretation, x takes indicative values of 0.25, 0.5 and 0.75. A lepton is

produced from the decay of the W boson. The presence of two χ̃0
1 and a neutrino in the final state

leads to significant E/T.

We have seen in (2.2) and (2.3) that the radiative corrections to the mass of the higgs depend on

the mass of the SM particle. Therefore, if SUSY is the theory to provide the mechanism to cancel

these corrections, only the third-generation squarks (t̃ and b̃) and gluinos are expected to be light (∼

TeV). The masses of the rest of the superpartners induce much smaller corrections and can be much

heavier. Such scenarios are referred to as “Natural SUSY” [34]. The SMS models T1tttt, T5tttt

and T1t1t are used to study Natural SUSY scenarios. In T1tttt, both gluinos decay to a tt̄ pair

and a neutralino via an off-shell top squark. Each top quark decays to a W boson and a b quark.

Due to the presence of four W bosons in the final state, the single lepton signature has the largest

branching ratio. The free parameters in this scenario are the masses of the gluino and the neutralino.

Two mass parameter points of the T1tttt model were used to design the search for gluino-induced

stop quark production, each one corresponding to a parameter space with different characteristics.

The first one, with (mg̃,mχ̃0
1
) = (1250, 1) GeV, leads to events with typically large E/T, due to the

large mass difference between g̃ and χ̃0
1. The second mass scenario, (mg̃,mχ̃0

1
) = (1000, 600) GeV, is
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characterized by a more compressed mass spectrum. Therefore, events stemming of such scenarios

have typically moderate values of E/T. Thus, the search is designed to be sensitive in both scenarios.

The T5tttt and T1t1t topologies are very similar to T1tttt. In contrast to T1tttt, in these models

gluinos decay through an on-shell top squark. In T5tttt, mχ̃0
1

is fixed to 50 GeV and the free

parameters are mg̃ and m
t̃
. Lastly, in T1t1t, mg̃ is fixed to 1 TeV and the model is parametrised

by mχ̃0
1

and m
t̃
.
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Figure 2.6: Examples of different SMS topologies: T3w (up), T1tttt (bottom-left) and T1t1t/T5tttt
(bottom-right).

The experimental results obtained in this thesis from the searches for supersymmetric signals at 7

and 8 TeV, are interpreted in the context of the CMSSM and several SMS models.
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The Compact Muon Solenoid detector

at the Large Hadron Collider

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [15], located at CERN laboratory near Geneva, Switzerland, is

the world’s newest and most powerful accelerator. It is designed to collide proton beams with a

center of mass energy up to 14 TeV and heavy-ion beams at an energy up to 2.8 TeV per nucleon.

3.1.1 LHC layout and performance

The LHC is a two-ring superconducting hadron accelerator and collider installed in the same tunnel

that was constructed between 1984 and 1989 for the CERN LEP machine [35]. The tunnel has a

perimeter of 26.7 km, a diameter of 3.7 m, and hosts the twin-bore magnets. The state of the art

superconducting magnets are cooled to a temperature below 2 K and operate at fields ∼8 T.

The LHC is designed to deliver proton-proton collisions with center of mass energy up to 14 TeV.

The number of interactions per second generated during LHC collisions is given by:

Nevent = L σevent (3.1)

where L is the instantaneous luminosity delivered by the LHC, and σevent is the cross section for

the process under study. The beam luminosity depends only on the beam parameters. Assuming a

35
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Gaussian distribution for the beam profile, the instantaneous luminosity is estimated as:

L =
N2

bnbfrevγr

4πεnβ∗
F, (3.2)

where Nb is the number of particles per bunch, nb the number of bunches per beam, frev the revolution

frequency, γr the relativistic gamma factor, εn the normalized transverse beam emittance, β∗ the

beta function at the collision point, and F the geometric luminosity reduction factor due to the

crossing angle at the interaction point (IP), defined as:

F =

[
1 +

(
θcσz

2σ∗

)2
]−1/2

(3.3)

where θc is the full crossing angle at the IP, σz the RMS bunch length, and σ∗ the transverse RMS

beam size at the IP. The LHC is designed to operate at a peak luminosity of L = 1034 cm−2s−1 in

proton-proton collisions, with a time difference of 25 ns between successive bunch crossings.

Beam loss between collisions is the main source of the luminosity degradation. Therefore, the

luminosity in the LHC is not constant over a physics run. In addition, electromagnetic interactions

between the protons in the beam and the conducting boundaries of the vacuum system can result

in collective beam instabilities. Other contributions to beam losses come from Toucheck scattering,

particle losses due to a slow emittance blow-up and synchrotron radiation damping. Taking into

account these effects, a net estimate of the luminosity lifetime is:

τL = 14.9 h. (3.4)

An important parameter in the operation of an accelerator is the turnaround time (time period

needed between the end of a run and the start of the new run). The mean turnaround time after

the first years of operation of the LHC is observed to be five to seven hours.

The LHC is designed for long-term operation. For an operation of 200 days per year, luminosity

lifetime of 15 hours and a turnaround time of 7 hours, operating at peak instantaneous luminosity,

is expected to deliver 80-120 fb−1 year.

Figure 3.1 displays the layout of the LHC, which consists of eight arcs and eight straight sections.

Each straight section is approximately 528 m long and can be used for the installation of a detec-

tor or other experimental equipment. The two general purpose experiments, the “A Toroidal LHC
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ApparatuS” (ATLAS) and the “Compact Muon Solenoid” (CMS), are located at diametrically oppo-

site straight sections; ATLAS is located at Point 1 and CMS at Point 5. Two smaller experiments,

ALICE and LHCb, are located at Point 2 and Point 8 respectively. The same straight sections

include also the injection systems for Beam 1 and Beam 2, respectively. The injection kick occurs

in the vertical plane with the two beams arriving at the LHC from below the LHC reference plane.

The beams cross from one magnet bore to the other at four locations, as highlighted in Figure 3.1.

Two collimation systems are installed at Points 3 and 4. The insertion at Point 4 also contains an

independent RF system for each LHC beam. The beam dump insertion is located at Point 6, where

each beam features an independent abort system.

Figure 3.1: Schematic layout of the LHC and the location of the four detectors (ATLAS, ALICE,
CMS and LHCb) currently installed in the four interaction points.

3.1.2 The accelerators complex

The beams that are injected into the LHC are accelerated by a series of systems that successively

increase the beam energy. The accelarator complex is shown on Figure 3.2 and incorporates accel-

erators built even at early days of CERN.
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The beam particles are generated in two linear accelerators (LINAC 2 and 3) at 50 MeV and are

then fed into the “Proton Synchrotron Booster” (PSB). In the PSB system, protons are accelerated

to 1.4 GeV and then injected to the “Proton Synchrotron” to reach an energy of 26 GeV. The final

stage before entering the LHC is the “Super Proton Synchrotron” (SPS) ring. The energy of the

beam particles is increased to 450 GeV before they are injected into LHC where they gradually

achieve the expected energy.

Figure 3.2: The LHC injector complex.

3.1.3 LHC operation with proton beams during RunI

For the physics measurements and searches, the energy, the delivered luminosity and the mean

number of soft p-p collisions that accompany any hard interaction, referred as pile-up interactions,

are of paramount important since they directly connect with the physics goals.
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The LHC started colliding proton beams for the first time in 2010 at a center of mass energy
√

s =7

TeV. The instantaneous luminosity increased with time, reaching the peak value of 2.1 × 1032

cm−2s−1 and the delivered integrated luminosity was ∼44.2 pb−1, for an average number of pile-up

interactions per bunch crossing around five.

In 2011 the LHC operated at the same center of mass energy but with increased instantaneous

luminosity, reaching a peak value of 3.7× 1033 cm−2s−1, beyond the expectations at the beginning

of the year. The total luminosity delivered by the LHC was ∼6.1 fb−1. The mean number of pile-up

interactions per bunch crossing was seven.

The 2012 run started with an increase in the center of mass energy to
√

s =8 TeV. The instantaneous

luminosity reached the peak value of 7.7×1033 cm−2s−1 during the year and the integrated luminosity

∼23.3 fb−1. The mean number of pile-up interactions increased to 21.

The integrated luminosity per year delivered to the CMS experiment by the LHC, is shown in Figure

3.3.
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Figure 3.3: Integrated luminosity delivered per year by the LHC at the CMS interaction point.
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3.2 The Compact Muon Solenoid Experiment

The CMS detector [36, 37] is a general purpose experiment designed to exploit the full set of physics

opportunities presented by the LHC in proton-proton and in heavy-ion collisions. The design goals

of CMS are:

• High efficiency in the identification of muons, with good momentum resolution and charge

determination over a wide range of momenta

• Good charged particle momentum resolution and reconstruction efficiency in the inner tracker

• Good electromagnetic energy resolution in a wide geometric coverage.

• Good hadronic energy resolution

The overall layout of CMS is shown in Figure 3.4. A key point in the design of the detector is the

choice of the magnetic field configuration. The central element of CMS is a 3.8 T superconducting

solenoid, 13 m in length and 6 m in diameter. CMS has a total length of 28.7 m, a diameter of 15

m and weight 14.000 t. The tracking volume and the electromagnetic and hadronic calorimeters are

located inside the magnetic field. The muon detectors are constructed outside the solenoid. The

main points of the design and the performance of the various sub-detectors will be discussed later

in the section. A detailed description of the various sub-detectors can be found in [36, 37].

3.2.1 The coordinate system

CMS uses a right-handed coordinate system. The origin is centered at the nominal collision point

in the center of the detector, the y-axis is pointing vertically upward, and the x-axis is pointing

radially inward toward the center of the LHC. Thus, the z-axis points along the beam direction

toward the Jura mountains from LHC Point 5. The azimuthal angle φ is measured from the x-axis

in the transverse plane. The polar angle θ is measured from the z-axis. The pseudorapidity is defined

as:

η = −lntan(θ/2) (3.5)

3.2.2 The Magnet

The choice of the magnet is essential for the good measurement of the momentum and the charge

of charged particles. In CMS, a large superconducting solenoid [36–38] is chosen, which produces
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Figure 3.4: The layout of CMS. The tracking volume and the electromagnetic and hadronic calorime-
ters are located inside the magnetic field. The muon detectors are constructed outside the solenoid.

a strong magnetic field of 3.8 T, and hence large bending power. The length/radius ratio has been

considered such as to ensure good momentum resolution also in the forward region.

The main features of the solenoid are the use a high-purity aluminium-stabilised conductor and

indirect cooling, together with full epoxy impregnation. The conductor is able to carry current

almost 20 kA.

3.2.3 The inner tracking system

The innermost subdetector of CMS is the inner tracking system [36, 37, 39], designed to provide

a precise and efficient measurement of the trajectories of the charged particles emerging from the

primary vertex, as well as a precise reconstruction of the secondary vertices.

It has a total length of 5.8 m and a diameter of 2.5 m, located inside the homogeneous magnetic

field of 3.8 T across the full volume of the tracker. To cope with the very demanding conditions

from the LHC collisions, advanced technology is used for the construction. The tracker is required
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to have a high granularity and fast response to reliable and accurately identify trajectories within

the particle flux. In addition, the amount of material should be kept as low as possible to reduce the

multiple scattering effect. Finally, the tracker material should be able to resist radiation damage in

order to operate for a 10-year period of time. To meet these requirements, the tracker uses entirely

silicon technology.

The CMS tracker consists of a pixel detector, closer to the beam pipe, and a silicon strip tracker

outside the pixel detector. The acceptance of the tracker extends up to a pseudorapidity of |η| <2.5,

making the CMS tracker the largest silicon tracker ever built. A schematic drawing of the CMS

tracker is shown in Figure 3.5, where the various tracking subsystems are displayed.

Figure 3.5: Schematic cross section through the CMS tracker. The pixel detector (PIXEL) is located
closer to the beam pipe. The silicon strip tracker is located outside the pixel detector, and consists
of two barrel subsystems (TOB and TIB), and two endcap subsystems (TID and TEC). Each line
represents a detector module. Double lines indicate back-to-back modules which deliver stereo hits.

Figure 3.6 depicts the material budget of the CMS tracker in units of radiation lengths (X0). It

increases from 0.4 X0 at η ∼0 to about 1.8 X0 at |η| ∼1.4, and it falls to about 1 X0 at |η| ∼2.5.

The tracker is designed to provide good momentum resolution over a wide range of momenta. In the

central part (|η| <1.6), a track with pT ∼100 GeV is measured with a resolution around 1-2%. For

larger |η| the resolution degrades due to the reduced lever arm of the bending. The contribution from

multiple scattering on the resolution is around 20% for a 100 GeV track and becomes the dominant

effect for lower transverse momenta. The spatial resolution on the estimation of the impact parameter

is 10 µm. The muon reconstruction efficiency is about 99% over the full acceptance.
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Figure 3.6: Material budget in units of radiation length (X0) as a function of pseudorapidity η,
for the different subdetectors (left panel) and broken down into the functional contributions (right
panel).

3.2.3.1 The pixel tracker

The pixel detector is composed by three barrel layers with two endcap disks on each side. The three

barrel layers are located at mean radii of 4.4 cm, 7.3 cm and 10.2 cm, with a total length of 53 cm.

The two endcap disks, with radius between 6 to 15 cm, are placed on each side at |z| = 34.5 cm and

46.5 cm. An almost square pixel shape of 100×150 µm2, in both the (r,φ) and the z coordinates,

was adopted to achieve optimal vertex position resolution. The barrel comprises 768 pixel modules

arranged into half-ladders of four identical modules each. The large Lorentz effect (Lorentz angle

∼23◦) improves the resolution in r-φ through charge sharing. The turbine-like geometry of the

endcap disks, with blades rotated by 20◦, also benefit from the Lorentz effect. The endcap disks

consist of 672 pixel modules with seven different modules in each blade.

3.2.3.2 The strip tracker

The strip tracker is located outside the pixel tracker and is divided into two barrel subsystems,

the Tracker Inner Barrel (TIB) and the Tracker Outer Barrel (TOB), and two endcap systems, the

Tracker End Cap (TEC) and the Tracker Inner Disks (TID).

The TIB is made of four detection layers, covering up to |z| <65 cm. In order to provide a mea-

surement in both r-φ and r-z coordinates, the first two layers are made with “stereo” modules. An
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excellent position resolution of 23 − 34 µm and 230 µm, in r-φ and z directions respectively, is

achieved. The TOB consists of six layers with half length of |z| <110 cm. Also here, the two first

layers provide a “stereo” measurement. The position resolution varies from 35−52 µm and 530 µm,

in r-φ and z directions respectively.

Each TEC comprises nine disks, covering the region 120 cm < |z| < 280 cm, and each TID comprises

three small disks, located between the TIB and the TEC. The TEC and TID modules are arranged

in rings, centered on the beam line, with strips pointing towards the beam line. The first two rings

of the TID and the innermost two rings and the fifth ring of the TEC also use “stereo” modules.

3.2.4 The electromagnetic calorimeter

The Electromagnetic Calorimeter (ECAL) [36, 37, 40] is a hermetic, homogeneous calorimeter, con-

sisting of a barrel and an endcap part. The ECAL Barrel part (EB) has an inner radius of 129 cm

and covers the pseudorapidity range up to |η| <1.479. The ECAL Endcap part (EE) is at distance

of 314 cm from the vertex and covers the pseudorapidity range 1.479 < |η| < 3. ECAL is composed

of 61200 lead tungstate (PbWO4) crystals in the central barrel part, closed by 7324 crystals in each

of the two endcaps. The layout of the calorimeter is displayed in Figure 3.7.

The design of this calorimeter is motivated by the search for the higgs boson in the di-photon final

state, for which excellent energy and position resolution is essential. Moreover, the material should

be radiation hard. CMS has chosen lead tungstate crystals for ECAL, which have short radiation

(X0 =0.89 cm) and Moliere (2.2 cm) lengths. The crystal produce relatively low light yield, hence

the use of photodetectors with intrinsic gain that can operate in a magnetic field, is essential. Silicon

avalanche photodiodes (APDs) are selected for the barrel and vacuum phototriods (VPTs) for the

endcaps. The usage of PbWO4 crystals allowed the design of a compact calorimeter, with fast

response, fine granularity, excellent energy resolution and radiation hardness, inside the magnetic

field.

The crystals have a tapered shape, which varies slightly with the position in η. The crystal cross

section corresponds to approximately 0.0174×0.0174 in η-φ or 22×22 mm2 at the front face of the

crystal, and 26×26 mm2 at the rear face, while their total length is 230 mm corresponding to 25.8

X0. The crystals are designed such that the core of the photon shower is included in a 2×2 crystal

area.
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Figure 3.7: Layout of the CMS electromagnetic calorimeter showing the arrangement of crystal
modules, supermodules and endcaps, with the preshower in front.

An important background to the higgs search in two photons, is the decay of neutral pions to

photons. To identify these neutral pions, the PreShower detector (PS) is installed in the EE within

a fiducial region 1.653< |η| <2.6. Moreover, PS may also help the identification of electrons against

minimum ionizing particles, and improves the position determination of electrons and photons with

high granularity. The PreShower is a sampling calorimeter with successive layers of lead radiators to

initiate electromagnetic showers from the incoming photons and electrons, and silicon strip sensors

to measure the deposited energy and the transverse shower profiles. PS has a total length of 20 cm.

The material budget at η =1.653, before reaching the first sensor plane, corresponds to 2 X0, and

an additional 1 X0 until the second plane. Thus, the vast majority of the incident photons start

showering before reaching the second sensor plane.

A very important and challenging aspect is the calibration of the electromagnetic calorimeter. The

calibration is divided into two steps, the calibration of the global component, responsible for the

absolute energy scale, and a channel-to-channel calibration, also known as inter-calibration. The

calibration is performed both in the laboratory and with cosmic-ray and collision events.
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A typical energy resolution for a 3×3 crystals configuration, is modeled by the following three term

function: (σ
E

)2
=

(
2.8%√

E

)2

+

(
0.12

E

)2

+ (0.3%)2 (3.6)

where the first term corresponds to the stochastic term, the second to the noise term and the last

term is the constant term. The main contributions to the stochastic term are due to event-by-

event fluctuations. The noise term is sensitive to the electronics and digitization noise, and pile-

up. Contributions that affect the constant term stem from non-uniformity of the light collection,

non perfect inter-calibration and leakage of the electromagnetic shower. The energy, E, of the

electromagnetic particle is in GeV.

3.2.5 The hadronic calorimeter

The design of the hadronic calorimeter (HCAL) [36, 37, 41] is driven by the magnet dimensions since

most of it is located inside the solenoid, surrounding the ECAL sub-detector. The HCAL is mainly

responsible for the measurement of the energy of the neutral hadrons. Thus, the important goals

of the HCAL are to minimize the non-Gaussian tails in the energy resolution, caused by leakage

of the hadronic shower outside the detector, and provide good hermeticity for a precise estimation

of E/T. It is a sampling calorimeter with successive layers of brass as absorber and scintillator as

active material. The photodetection readout is based on multi-channel hybrid photodiodes (HPDs).

Figure 3.8 illustrates the longitudinal view of CMS and the different subsystems of HCAL. HCAL

consists of four different subsystems.

3.2.5.1 The Hadron Barrel

The Hadron Barrel (HB) part of HCAL is located in the pseudorapidity region 0 < |η| < 1.3 and

consists of 36 azimuthal wedges which form the two half-barrels. Each wedge is segmented into

four azimuthal angle sectors (tiles). The granularity of HB is ∆η ×∆φ = 0.087×0.087. The total

absorber thickness is 5.82 interaction lengths (λI) at 90◦, which increases with the polar angle (θ),

resulting 10.6 λI at |η|=1.3. The ECAL in front of HB adds about 1.1 λI of material. The HB is

read out as a single longitudinal sampling.
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Figure 3.8: Longitudinal view of the CMS detector showing the different subsystems of the hadronic
calorimeter.

3.2.5.2 The Hadron Endcap

The Hadron Endcap (HE) covers the pseudorapidity range 1.3 < |η| < 3. Located in the forward

region, is designed to operate with high counting rates and have high radiation tolerance. In addition,

it has to be made by a non-magnetic material to avoid tensors due to the magnetic field. The selection

of brash as absorber fulfills the above requirements. The total length of the calorimeter, including

the electromagnetic crystals, corresponds to about 10 λI.

3.2.5.3 The Hadron Outer detector

The Hadron Outer (HO) detector covers the central pseudorapidity region (0 < |η| < 1.3) and is

designed to collect the energy that leaks from HB. It consists only of scintillators as active material

since it utilizes the iron yoke as additional material. The geometry of HO is such as to match the

segmentation of the muon system. The total depth of the calorimeter system is thus extended to a

minimum of 11.8 λI, improving the resolution in E/T.
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3.2.5.4 The Hadron Forward detector

The Hadron Forward calorimeter (HF) extends the hermicity of the CMS detector up to |η| = 5.

HF is located 11.2 m from the interaction point where very harsh conditions are expected. The

unprecedented particle flux and thus the large radiation in this region, drove the design and the

material selection. The HF is a sampling calorimeter with steel as absorber and quartz fibres as

active material, which produce Cherenkov light as signal. Cherenkov light is produced when particles

travel at a speed greater than the speed of light in the same material. The signal is then transmitted

to the photomultipliers by two different set of fibres. This type of signal is mainly sensitive to

electromagnetic showers and neutral pions, resulting to a very narrow shower profile.

The performance of the different components of HCAL, has been extensively studied with test beam

data. The energy resolution of the HCAL, including only the subsystems HB, HE and HO, is

parameterized as: (σ
E

)2
=

(
90%√

E

)2

+ (4.8%)2, (3.7)

whereas a degrade in energy resolution is expected for HF, parameterized as:

(σ
E

)2
=

(
198%√

E

)2

+ (9.0%)2 (3.8)

3.2.6 The Forward detectors

The CMS detector has two very forward detectors, CASTOR and ZDC [36, 37]. CASTOR is a

Cherenkov-based sampling EM/HAD calorimeter, consisting of successive layers of tungsten (ab-

sorber) and quartz plates (active material), and covers the pseudorapidity region 5.2 < |η| < 6.6.

Its physics motivation is to complement the nucleus-nucleus physics program, developed essentially

in the baryon-free mid-rapidity region, and also the diffractive and low-x physics in p-p collisions.

A set of two zero-degree calorimeters (ZDC), with pseudorapidity coverage of |η| > 8.3, are designed

to complement the CMS very forward region, especially for heavy ion and p-p diffractive studies. It

has a very similar design as CASTOR. Each ZDC has two independent parts: the electromagnetic

(EM) and hadronic (HAD) sections. Tungsten is used as absorber and the Cherenkov light is

produced by quartz fibres.

Both calorimeters show very good energy resolution to the electromagnetic and the hadronic showers,

and due to the emition of Cherenkov light, they are very compact.
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3.2.7 The Muon System

The detection of muons is of central importance in modern high energy physics experiments, since

they provide a clean signature of the physics process over the harsh conditions present in hadronic

colliders. Therefore, the excellent identification of muons has driven the design of CMS. The muon

system consists of three types of gaseous particle detectors, responsible for the identification of

muons, the measurement of their momentum and for triggering [36, 37, 42]. Drift Tubes and Resistive

Plate Chambers are used in the central part. The endcap region consists of Resistive Plate Chambers

and Cathode Strip Chambers. The total pseudorapidity coverage is 0 < |η| < 2.4, the layout of which

is shown in Figure 3.9.
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Figure 3.9: Layout of one quarter of the CMS muon system. Drift Tubes (DT) are used in the central
part (|η| < 1.2), whereas the forward region consists of Cathode Strip Chambers (CSC) covering
the region 0.9 < |η| < 2.4. Both DT and CSC are complemented by a system of Resistive Plate
Chambers (RPC) with coverage up to |η| <1.6.
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3.2.7.1 The Drift Tube system

The Drift Tubes (DT) are used in the central region where the particle rate is low. They consist of

four layers of chambers covering up to |η| < 1.2. Each DT consists of two (or three) super-layers

(SL), each made of four layers of rectangular drift cells staggered by half a cell. The SL is the

smallest independent unit of the design. Each cell consists of two electrode plates, the anode wire

and the cathode strips. It is filled with a gas mixture of 85% Ar and 15% CO2. The electrode

plates create the electric field needed to drift the electrons from the ionized atoms of the gas. The

transverse dimension of the drift cell was chosen to be 21 mm, with a gain of 105 and a drift time

of 380 nsec.

3.2.7.2 The Cathode Strip Chambers

The Cathode Strip Chambers (CSC) are used in the endcap disks where the magnetic field is uneven

and particle rates are high, with a pseudorapidity coverage of 0.9 < |η| < 2.4. The CSC are multiwire

proportional chambers comprised of six anode wire planes interleaved among seven cathode panels.

Wires run azimuthally and define a tracks radial coordinate. The estimation of the position in φ

is obtained by interpolating charges induced on strips. They are filled with a gas mixture of 40%

Ar, 50% CO2 and 10% CF4. The CO2 component is a non-flammable quencher needed to achieve

large gas gains, while the main functionality of CF4 is to prevent polymerisation on wires. The CSC

provide very precise estimation of the position and very good time resolution.

3.2.7.3 The Resistive Plate Chambers

The Resistive Plate Chambers (RPC) are very fast detectors that provide a muon trigger system

parallel with those of the DT and CSC and cover the pseudorapidity region up to |η| < 1.6. They

are able to tag an ionising particle in much shorter time scales than the time between two bunch

crossings (BX) (> 25 nsec). Therefore, they are used to identify unambiguously the relevant BX

to which a muon track is associated, even in the presence of the high rates. RPC consist of two

parallel plates, a positively-charged anode and a negatively-charged cathode, both made of a very

high resistivity plastic material and separated by a gas volume. The gas volume consists of a mixture

of three non-flammable gases, 96.2% R134a (C2H2F4), 3.5% iC4H10 and 0.3% SF6.
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3.2.8 The CMS Trigger and Data Acquisition

The CMS Trigger and Data Acquisition (DAQ) [36, 37, 43, 44] systems are designed to collect and

analyse the detector information at the LHC bunch crossing frequency of 40 MHz. This leads to

∼109 interactions/sec at design luminosity, but only a fraction of them (∼102 interactions/sec) can

be written to archival media and hence selected by the trigger system. The CMS trigger system

reduces the rate in two steps called the Level-1 Trigger (L1T) and the High-Level Trigger (HLT)

respectively. The DAQ system is designed to work under large number of readout channels with a

data-flow of ∼100 GByte/sec. After the L1 Trigger selection, DAQ is responsible to transfer the data

in the computer farm (Event Filter), where time-demanding processes will take place. Besides, it is

able to provide enough computing resources for the HLT. A schematic of the CMS DAQ architecture

is shown in Figure 3.10.

Figure 3.10: Architecture of the CMS DAQ system. The Builder Network is used to read the
Detector Front-Ends with a bandwidth of 100 GB/s. Events are already reconstructed after the
Level-1 Trigger and are fed to the Event Filtering Systems at a maximum rate of 100 kHz. The
Control and Monitor System configures and controls the online applications of the DAQ and the
Detector Control Systems.

3.2.8.1 The Level-1 trigger

The output rate limit for the Level-1 Trigger (L1T) is 100 kHz. The time allocated for the L1T to

reach a decision about each event is less than 1 µs, and the total latency including the transit of the
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signal, is 3.2 µs. During this time, the detector data are kept in buffers while the trigger data are

collected from the front-end electronics and a decision is reached.

To meet the imposed requirements, the L1T consists of custom-designed electronics. For reasons of

flexibility the L1T hardware is implemented in FPGA technology where possible, but ASICs and

programmable memory lookup tables (LUT) are also widely used where speed, density and radiation

resistance requirements are important. The configuration and operation of the trigger components

is controlled by a software system, called Trigger Supervisor.

The Level-1 triggers involve the calorimetry and muon systems. Information from those systems

is used to reconstruct physics objects (electrons, photons, muons, jets, the sum of ET and E/T) on

trigger level. These objects are called trigger primitives, since reduced granularity and resolution

are used to forming them due to the limited available time.

The Level-1 Trigger has local, regional and global components. Figure 3.11 illustrates the architec-

ture of the L1 Trigger. At the lowest level of the hierarchy are the Local Triggers, also known as

Trigger Primitive Generators (TPGs), which, as the name implies, are responsible for the generation

of the trigger primitives discussed above. The reconstruction of these objects is based on the energy

deposits on the calorimeter trigger towers and track segments or hit patterns in muon chambers. On

the next level are the Regional Triggers which combine the information produced from the previous

step and use a pattern logic to determine ranked and sorted trigger objects. The rank is determined

based on the energy or momentum of the object and the quality criteria that fulfill when recon-

structed by the TPGs. Then, the ranked objects are evaluated by the Global Calorimeter and Muon

Triggers and then transferred to the Global Trigger where the decision to reject the event or transfer

it to further evaluation to the HLT is made.

The Level-1 trigger decision is distributed to the detector front end as well as to off detector readout

systems. Builder networks using cross-point switches construct the event record from the event

fragments which come from different detector parts. The HLT (Filter System) receives and processes

complete events.

3.2.8.2 The High-Level Trigger

The events that pass the L1 Trigger are then transferred to front-end read out buffers, accessible by

the HLT. The HLT algorithms are implemented in software and run in a computer farm. The rate

after the HLT stage is further reduced to 100 Hz.
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Figure 3.11: Architecture of the Level-1 Trigger. The Level-1 Trigger receives information from the
calorimetry and the muon systems and produces a decision of whether to reject or transfer the event
to the High-Level Trigger (HLT) for further investigation.

The available time for the HLT to decide to reject or keep an event is much larger compared to

L1 Trigger and thus more sophisticated algorithms can be implemented. The principle of the HLT

design is to provide the possibility to perform a full event reconstruction online, if needed. The

HLT algorithms are organized in different logical levels, in order to reject events as soon as possible.

Therefore, objects are reconstructed only when needed and hence the processing time is reduced

significantly.
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Reconstruction of physics objects

Information collected from the different subdetectors is combined to reconstruct the physics objects

that will be used in the physics analysis. The physics objects are then imposed to identification

algorithms, the choice of which is mainly based on purity versus efficiency criteria.

4.1 Track reconstruction

Reliable reconstruction of charged particles is of paramount importance for the reconstruction of

most physics objects, as electrons, muons and taus, as well as hadrons and b quarks. It provides

a much more precise measurement of the pT of the object compared to that obtained using the

calorimeter, for transverse momenta up to several hundreds GeV. In addition, on average 60% of the

jet energy is carried out by charged hadrons. For those reasons and more, the track reconstruction

is essential for the global event reconstruction. The track reconstruction sequence [36, 45–49] is

decomposed in five logical steps: local reconstruction, seed generation, pattern recognition, final

track fit and track selection.

The starting point is the clustering into hits of the signals produced by charged particles in the

pixel and strip subdetectors. After estimating the position and the uncertainty of the hits, they are

used to generate the seeds for the pattern recognition. The minimal set of information needed to

construct a curvature is three hits or a pair of hits with an additional constraint from beam-spot

or vertex. To increase the reconstruction efficiency, seeds are generated in four different ways: pixel

triplets, pixel and strip pairs with beam-spot or vertex constraint, or strip-only pairs with beam-

spot constraint. The pattern recognition (track building) starts from the collection of seeds and

55
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proceeds by including successive detection layers. The estimation of the track parameters is based

on the Kalman filter method [50]. As soon as a new layer is included, the track parameters are

re-calculated leading to a more precise estimation of the trajectory. The procedure is repeated until

the last detection layer is reached or a stopping condition is satisfied. In each step, track candidates

are rejected based on quality criteria, like the normalized χ2 and the number of valid and invalid

hits. During the track reconstruction, the same tracks may be created multiple times starting from

different seeds or a given seed may develop into multiple track candidates. These ambiguities are

removed based on the fraction of shared hits and the normalized χ2. At the end, the track collection

consists of cleaned candidates that share no more than 50% of their hits. Once the hits from all

detector layers are evaluated, the hits of each track candidate are refitted using the Kalman filter

method and smoothed. During the final track fit, spurious hits are removed and the track is refitted.

Yet, the track collection consists of many fake tracks, that are significantly reduced by applying

appropriate selection on their quality criteria.

The track reconstruction should preserve high tracking efficiency while minimizing the fake rate.

In CMS, the idea of iterative tracking is adopted to achieve this. The track reconstruction is split

into different iterations based on the quality criteria applied on the seeding configuration and track

quality. The procedure starts by reconstructing tracks from seeds with very tight selection criteria

leading to very small fake rate and moderate efficiency. Then, to increase the efficiency, seeding and

track criteria are gradually relaxed. In parallel, to retain small fake rate, hits assigned to the tracks

found in the previous step are removed unambiguously to reduce the combinatorics. There are six

iterations in total, and before each iteration, a full track reconstruction and cleaning is performed.

The first iterations are used to reconstruct high pT tracks, while the other iterations are mainly

used to reconstruct low pT tracks which originate outside the pixel volume. The overall efficiency

in reconstructing muons is almost 100%, while the efficiency for charged hadrons is limited to 90%,

with dependence on the pT and η, due to their interactions with the tracker’s material.

4.2 Vertex reconstruction

The reconstructed tracks are assigned to interaction vertices. The vertex reconstruction consists of

two steps, the vertex finding and the vertex fitting. The vertex finding algorithms depend on the

physics case (primary or secondary vertex) and hence can be many. In this section we concentrate

in the primary vertex reconstruction.
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The vertex candidates [36, 49] are formed by group of tracks that are separated in z-axis by their

closest neighbor. The candidates are fitted by the adapted vertex fit technique to estimate their

vertex parameters. In the adaptive vertex fit technique, each track, i, is assigned a weight wi, based

on its compatibility with the common vertex. The weight varies from 0 to 1, with 1 assigned to

tracks consistent with the common vertex and vice versa. To estimate the compatibility of the tracks

with the common vertex, a χ2 test is used and the number of degrees of freedom, ndof , is defined as:

ndof = 2
nTracks∑

i=1

wi − 3 (4.1)

The vertex reconstruction efficiency depends on the number of tracks used in the fit and reaches

100% if more than two tracks, with pT > 0.5 GeV, are used. The spatial resolution on the estimation

of the vertex also depends strongly on the number of tracks and the pT of those tracks. Quality

criteria are imposed to the vertex candidates to form the final vertex collection. The vertex with the

largest sum of the squared transverse momenta of the assigned tracks is chosen to be the primary

vertex (PV) of the event.

4.3 Muon reconstruction and identification

In CMS, muons are reconstructed using information from the silicon tracker and the muon system,

leading to the following three reconstruction approaches [36, 51]:

• Tracker muon reconstruction

Tracks reconstructed by the silicon tracker (tracker tracks), with pT > 0.5 GeV and p > 2.5

GeV, are considered as muon candidates and are extrapolated to the muon system, while

taking into account effects from multiple scattering. If at least one compatible muon segment

is found, then the corresponding track is promoted to tracker muon. The momentum and

position assignment to tracker muons is estimated only from the inner track. This approach

is very efficient for relatively low pT muons, exploiting the excellent tracker performance.

• Standalone muon reconstruction

The standalone muon reconstruction uses information only from the muon system. Tracks in

the muon chambers are reconstructed following a very similar method as the one described

for the track reconstruction. The trajectories found are then propagated to the closest vertex

to reject reconstruction of cosmic ray muons. Hence, position and momentum are estimated
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using only the muon system. This approach is mainly used as input for the global muon

reconstruction.

• Global muon reconstruction

Global muons are reconstructed from standalone muons which are then matched to the most

compatible tracker track. The hits from both the tracker and the muon system are used to

perform a fit, using the Kalman filter technique, to create the global track. For transverse

momenta with pT < 200 GeV the momentum estimation is driven by the tracker resolution,

while for larger momenta the global muon fit can improve the estimation compared to the

tracker only estimation.

The vast majority of muons used in the physics analyses are reconstructed either as tracker muons,

global muons, or even by both. The combination of different algorithms provides a robust and

efficient muon reconstruction.

Muons reconstructed by the algorithms described above can be produced by different sources. Muons

can be produced from particle decays directly from the main interaction (like W and Z decays),

which, in what follows, would be referred to as prompt muons. Any other source of muons consists

background. Other sources are muons originating from decays of heavy flavor quarks (b/c) or from

light hadron decays, like π and K. Finally, particles other than muons may be wrongly reconstructed

as muons (fake muons). The CMS muon reconstruction algorithms provide additional information

for each muon, to further optimize the quality selection and identification criteria, based on the

characteristics of the physics analysis.

In searches for supersymmetry with a single lepton in the final state, we are interested in prompt

leptons. To suppress the other sources, tight selection to the various muon identification variables is

applied. Muons are reconstructed both as tracker and global muons. Fake muons and muons from

light hadron decays are suppressed by using the normalized χ2 of the global track and the number of

hits in the muon system. Moreover, to suppress muons from heavy quark decays, small transverse and

longitudinal distance between the track and the primary vertex, d0 and dz respectively, is required.

In what follows, the distance between the track and PV will be referred to as impact parameter.

By this selection, the background stemming from cosmic muons is also reduced. Muons from light

hadrons are further suppressed by requiring a large number of hits in the pixel. Finally, to improve

the measurement of the muon momentum, the muons should have more than one matched segment

in the muon system and hits in many tracker layers. The muon identification requirements in the



Chapter 4: Reconstruction of physics objects 59

“tight” and “loose” selections are presented in Table 4.1, for the 7 (2011) and 8 (2012) TeV analyses.

ID variable
√

s = 7 TeV (2011)
√

s = 8 TeV (2012)

“tight” selection

µ−reconstruction Tracker and Global Tracker and Global
pT > 20 GeV > 20 GeV
|η| < 2.1 < 2.1

Irel
comb = Isolation/pT(µ) < 0.10 < 0.12 (PF)
χ2/ndf ≤ 10 ≤ 10
Valid muon hits > 0 > 0
Matched stations > 1 > 1
Pixel hits > 0 > 0
Track layers with measurement > 10 > 5
Transverse distance from PV (d0) < 0.02 cm < 0.02 cm
Longitudinal distance from PV (dz) < 1.0 cm < 0.5 cm

“loose” selection

µ−reconstruction Tracker or Global Tracker or Global
pT > 15 GeV > 15 GeV
|η| < 2.5 < 2.5

Irel
comb = Isolation/pT(µ) < 0.2 < 0.2 (PF)

Transverse distance from PV (d0) < 0.15 cm < 0.20 cm
Longitudinal distance from PV (dz) < 1.0 cm < 0.5 cm

Table 4.1: Muon identification requirements in the “tight” and “loose” selections for the 7 and 8
TeV analyses. The isolation variable, Irelcomb, will be defined in section 4.5.3 and is listed here for
completeness.

The performance of the muon identification and reconstruction depends on the selection. For the

tight selection, the reconstruction efficiency is ∼ 95% and the momentum resolution better than 6%,

for muons with pT < 1 TeV.

4.4 Electron reconstruction and identification

Electrons are reconstructed using two algorithms depending on an initial seed. The first uses energy

deposits in ECAL as seed for the electron reconstruction, whereas the second starts from a track

seed to build the electron candidate.

The ECAL-driven algorithm [52, 53] has the advantage of increased purity compared to the track

driven approach, for a similar efficiency, for electrons with pT > 5 GeV. The algorithm starts
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by clustering deposits of energy in several clusters of the ECAL, to create ECAL clusters. The

clustering algorithm should account for the effects induced by the passage of electrons through

the tracker, since electrons traversing the tracker, interact with the material and radiate photons,

and hence the energy deposits on ECAL are spread in φ due to the magnetic field. This effect

is very important since electrons may radiate even 70% of their initial energy before reaching the

ECAL. These additional deposits are identified and summed with the ECAL clusters to form the

ECAL super-clusters. Super-clusters with ET > 4 GeV are matched with the most compatible track

seeds and then, using the Gaussian Sum Filter (GSF) algorithm [54], are fitted to reconstruct the

electron’s trajectory. Information of both the energy deposit in ECAL and the momentum of the

track is combined for the most precise momentum assignment to the electron.

The track-driven algorithm [55] is used mainly to reconstruct very low pT electrons, or electrons

inside jets, where the energy deposits on ECAL are very widely spread across φ, leading to mis-

measurement of the actual electron’s energy. The procedure starts from the reconstructed tracks

fitted by the GSF algorithm which is extrapolated from the outermost hit to the closest possible

ECAL cluster. If no compatible ECAL-seed is found, the track is not considered appropriate for

the electron reconstruction. Then again, important fraction of electron’s energy is carried out by

Bremsstrahlung photons due to interaction with the material. To account for this effect, for each hit

used to estimate the GSF track, a straight line tangent to the direction of the track is extrapolated

up to the ECAL entrance. If an ECAL cluster, which is not already linked to any track, is found,

the energy is added to the total electron energy. The final selection of electrons is based on the

output of a Boosted Decision Tree (BDT) [56] which combines information from several observables

related to the tracker and ECAL.

Additional selections are applied on the reconstructed electrons to suppress backgrounds originating

by electrons from converted photons or pions mis-identified as electrons. Electrons from photon

conversions are reconstructed by selecting two opposite sign tracks and estimating the conversion

vertex. In addition, an electron from a photon conversion is expected to have missing hits in the

pixel. Therefore, the distance from the primary vertex, the conversion vertex fit probability and

the number of missing hits in the pixel, are used to discriminate them. To increase the purity of

the electron collection, tight selection on the identification variables is applied. The most important

are: the energy-momentum match between the seed cluster and track, defined as Eseed/pin, the

transverse shower profile along the η direction, σiηiη, the spatial matching in η and φ between track

and super-cluster, ∆ηin and ∆φin, and the ratio of the energy deposit in HCAL and ECAL, defined

as H/E.
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The backgrounds in prompt electrons are significantly larger compared to muons and hence the

reconstructed efficiency is smaller and depends strongly on the identification algorithm. The details

of the electron identification requirements in the “tight” and “loose” selections are presented in

Table 4.2, for the
√

s = 7 TeV (2011) and
√

s = 8 TeV (2012) analyses. The electron reconstruction

efficiency in the tight and loose selections is ∼80% and ∼95% respectively.

ID variable
√

s = 7 TeV (2011)
√

s = 8 TeV (2012)

Barrel Endcap Barrel Endcap

“tight” selection

pT > 20 GeV > 20 GeV > 20 GeV > 20 GeV

Irel
comb = Isolation/pT(e) < 0.07 < 0.06 < 0.15 (PF) < 0.15 (PF)

H/E < 0.040 < 0.025 < 0.120 < 0.100
|∆φin| < 0.06 < 0.03 < 0.06 < 0.03
|∆ηin| < 0.004 < 0.007 < 0.004 < 0.007
|σiηiη| < 0.01 < 0.03 < 0.01 < 0.03
Missing hits ≤ 0 ≤ 1 ≤ 1 ≤ 1
Conversion rejection true true true true
Transverse distance from PV (d0) < 0.02 < 0.02 < 0.02 < 0.02
Longitudinal distance from PV (dz) < 0.1 < 0.1 < 0.1 < 0.1

“loose” selection

pT > 15 GeV > 15 GeV > 15 GeV > 15 GeV

Irel
comb = Isolation/pT(e) < 0.15 < 0.10 < 0.15 (PF) < 0.15 (PF)

H/E < 0.15 < 0.07 < 0.15 -
|∆φin| < 0.8 < 0.7 < 0.8 < 0.7
|∆ηin| < 0.007 < 0.01 < 0.007 < 0.01
|σiηiη| < 0.01 < 0.03 < 0.01 < 0.03
Transverse distance from PV (d0) < 0.1 cm < 0.1 cm < 0.04 < 0.04
Longitudinal distance from PV (dz) < 1 cm < 1 cm < 0.2 < 0.2

Table 4.2: Electron identification requirements in the “tight” and “loose” selections for the 7 and
8 TeV analyses. The isolation variable, Irelcomb, will be defined in section 4.5.3 and is listed here for
completeness.

4.5 Particle Flow reconstruction

The Particle Flow (PF) event reconstruction [57] aims to reconstruct and identify all stable particles

in the event (electrons, muons, photons, neutral and charged hadrons) by combining information

from all CMS subdetectors for optimal determination of their energy, direction and type. Higher-

level objects, like jets, τ -leptons and E/T, are built from the particles above. In a typical event in p-p

collisions, the stable particles carry a pT of the order of a few GeV, hence is essential to reconstruct



Chapter 4: Reconstruction of physics objects 62

as many as possible of the stable objects, even with very low pT values, with high efficiency and low

fake rate.

Therefore, advanced tracking and calorimeter clustering techniques have been developed. The track

reconstruction uses the iterative process described in section 4.1. The calorimeter clustering algo-

rithm is first important to reconstruct and identify the neutral stable particles, photons and neutral

hadrons, which cannot be measured by the tracker. Second, it is used to separate the energy deposits

between neutral and charged hadrons. Furthermore, it is important for the electron reconstruction

and identification as well as the accompanying Bremsstrahlung photons. Lastly, it is also essential for

a more precise determination of the energy of charged hadrons, when the track is not accurately de-

termined. The clustering algorithm is performed in each subdetector (ECAL barrel, ECAL endcap,

HCAL barrel, HCAL endcap, PS first layer and PS second layer) separately. In HF, no clustering is

performed, rather than each cell gives rise to a single cluster. The algorithm is performed in three

steps. The first step is to identify cluster seeds from local calorimeter cell energy maxima. Second,

topological clusters are created from cluster seeds, by adding them the energy of any neighboring

cells. To prevent including cells with energy stemming from the noise of the electronics, the energy

on the cell should exceed a given threshold: 80 MeV for ECAL barrel, 300 MeV for ECAL endcap

and 800 MeV in HCAL. Finally, the topological cluster gives rise to many particle flow clusters.

A single particle is expected to give rise to many particle flow elements in the various subdetectors,

which should be connected to each other to fully reconstruct each single particle, while in parallel

no element can be used twice. This is achieved by the particle flow linking algorithm. The linking

algorithm is performed for each pair of elements in the event and defines a distance between the two

linked elements to quantify the quality of the link. Blocks of elements are then produced using the

linked elements. The high granularity and the excellent performance of the CMS detector makes

plausible the reconstruction and identification of single particles even in very complex events.

The linking between the track of a charged particle and a calorimeter cluster starts by extrapolating

the track from its last measured tracker hit, first to the two layers of the PS, then to the ECAL at

a depth corresponding to the expected maximum of a typical longitudinal electron shower profile,

and lastly to HCAL, at a depth corresponding to one interaction length, typical of a hadron shower.

The track is linked to any given cluster (within the cluster boundaries) to the extrapolated position.

The distance between the cluster and extrapolated track position in η-φ corresponds to the link

distance, which defines the quality of the linking. The collection of the Bremsstrahlung photons

emitted by electrons are treated as described in section 4.4. Similarly, the linking between two
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calorimeter clusters, is established when the cluster between the more granular calorimeter (PS or

ECAL) is within the cluster envelope in the less granular (HCAL or ECAL). Finally, a link between

a tracker track and a track in the muon system is established when the global fit between the two

tracks satisfies some χ2 criteria. If there are multiple combinations, the one with the smallest χ2

defines the linking distance.

The reconstruction and identification of the particles in the event are performed by the particle

flow algorithm based on the block of elements produced in the previous steps. First, the particle

flow muons are reconstructed. Each global muon with momentum estimated from the global track

within three standard deviations with the tracker only measurement, is identified as a particle flow

muon. The corresponding track is removed from the block and the energy deposit on ECAL and

HCAL will be taken into account for the reconstruction of neutral particles and charged hadrons.

The particle flow electrons, with the accompanying Bremsstrahlung photons, are identified next,

following the procedure described in 4.4. The track and ECAL clusters used for the particle flow

electron reconstruction are removed from the block. The remaining tracks, in order to reduce the

fake rate, are required to have a measurement on the pT with relative uncertainty smaller than

then expected calorimetric resolution for this energy. If not, the energy will not be lost, rather

than measured by the calorimeters with better precision. The tracks are then connected to ECAL

and HCAL clusters. In the case where a single track can be linked with several ECAL or HCAL

clusters, the link to the closest cluster is kept. Calorimetric clusters not connected to tracks are used

for the reconstruction of neutral particles. Charged hadrons are reconstructed by comparing the

momentum of the tracks and the energy deposit on the corresponding calorimeter clusters. If the

calibrated energy gives compatible measurement with the track momentum, then the momentum is

re-defined using both measurements. If the energy measured in the calorimeter (ECAL and HCAL)

is larger than the expected resolution, the additional energy is assigned to neutral particles. If the

excess is larger than the total ECAL energy, a particle flow photon with the total ECAL energy,

and a neutral hadron with the remaining energy, are reconstructed, otherwise only a particle flow

photon is reconstructed. The precedence given in the ECAL to photons over neutral hadrons is

justified by the observation that in jets 25% of the total energy is carried out by photons and only

3% by neutral hadrons. It is very rare that calorimetric energy is much smaller than the total track

momentum. In such cases, the muon and track requirements are relaxed to test the hypothesis of

over-cleaning. Any remaining tracks are treated as charged pions.

The particle flow algorithm leads to an improved performance, especially in the reconstruction of

jets and E/T. In a jet, on average, 65% of each energy is carried out by charged particles and 25%
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from photons. Both can be measured very precisely by the particle flow algorithm, and only 10% of

the jet energy corresponds to neutral hadrons and hence relies on the poor performance of HCAL.

Therefore, the searches for supersymmetry that will be described later in this thesis are using jets

and E/T reconstructed by the particle flow algorithm.

4.5.1 Jet reconstruction

Efficient and precise reconstruction of jets is essential for the physics program at the LHC. Quarks

and gluons fragment and hadronize immediately after their production, leading to a collimated spray

of energetic hadrons, which are then clustered to form jets. Thus, jets are very important since they

carry information from the original parton. Jets are also important for the search of physics beyond

the standard model, like supersymmetry, where heavy particles decay to many partons and hence

large jet multiplicities could well be a good signature for the presence of these particles. The sum

of the 4-vectors of the objects of the event should be able to characterize the energy scale of this

particle.

The LHC is able to provide large center of mass energy leading to very boosted objects which may

decay in partons. Due to the large boost, those partons can be highly collimated and hence difficult

to be distinguished by the jet finding algorithm. In addition, due to the large number of pile-up

interactions, the jet multiplicity is expected to be large in LHC. Therefore, the jet finding algorithm

should be able to provide a good separation between neighboring jets and be robust to soft jets

from pile-up interactions or gluon radiation. The jet finding algorithm is then known to be infrared

and collinear (IRC) safe. The IRC safe property of an algorithm is important for the comparison

between the experimental results and theoretical calculations.

In CMS, particles are clustered into jets using the anti−kT algorithm [58, 59]. In the anti−kT

clustering algorithm, jet finding starts by defining the metric dij between two entities, i and j, and

the metric diB between the entity i and the beam, B, as:

dij = min(p−2
Ti , p

−2
Tj )

∆2
ij

R2

diB = p−2
Ti

(4.2)

where ∆ij = (ηi − ηj)
2 + (φi − φj)

2 and pTi, ηi and φi are respectively, the transverse momentum,

rapidity and azimuth of particle i. The parameter R is the clustering radius in the η-φ plane. The

clustering starts from the hardest entity and grows by clustering softer particles around it. The
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metrics are recalculated after each step and if dij < diB, the particle is added to the current jet,

otherwise a new jet is created. The procedure is repeated until no entities are left.

The metric dij between a hard and a soft entity is exclusively determined by the momentum of the

hard one and ∆ij, and typically has small values. For two soft entities dij is much larger. Hence,

the anti−kt algorithm leads to jet configurations with one hard particle at the center of a circle and

many other softer on the edge. If there is no other hard particle within 2R, the jet would have a

perfectly conical shape. If there is a second hard entity such that R < ∆ij < 2R, two hard jets will

be created, and the shape would depend on the momentum of each hard particle. Finally, if both

hard particles have ∆ij < R, they will cluster into a single jet.

In the current thesis the anti−kT algorithm, for R = 0.5, is used to cluster particles reconstructed

by the particle flow method. Another possibility is to use the traditional method of the calorimetric

energy deposits to create the elements needed for the clustering algorithm. The difference in the

performance is significant. As an example, Figure 4.1 displays the jet energy resolution as a function

of the jet pT, for jets reconstructed with the traditional calorimetry-based method and with the

particle flow method.
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Figure 4.1: Jet energy resolution as a function of the jet pT for jets reconstructed with the traditional
calorimetry-based method (Calo-Jets) (blue) and with the particle flow method (Particle-Flow Jets)
(red), in the barrel (left) and endcap (right). Fully corrected Calo-Jets are used in the compari-
son. Particle-Flow jets exhibit significantly better performance, especially in small jet transverse
momenta.

In principle, the energy of each jet measured is different from its actual energy, due to different

factors. To account for this difference, corrections are applied on the measured energy [60]. These

corrections are factorized in the following three categories:
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• Offset correction (L1 FastJet): The pile-up interactions, the underlying event and the

electronics noise are sources that cause an excess on the measured jet energy. This excess is

subtracted following the L1 FastJet offset correction. This approach relies on the fact that

to first order these effects are uniformly distributed and an average pT-density per unit area

can be defined to characterize the energy of these effects. The corresponding energy is then

subtracted from the measured jet energy.

• Relative correction (L2): The response of the calorimeter is not uniform in pseudorapidity,

and by using the di-jet pT-balancing technique, corrections are extracted to unify the response.

• Absolute correction (L3): Calorimeter’s response varies with the transverse momenta of

the jet. Corrections are extracted from γ/Z+jets events to remove these variations.

The total correction takes the form:

C = [L1FastJet] × [L2] × [L3] (4.3)

In the case of data, residual corrections as a function of pT and η (L2L3 residual) are applied to

account for small differences between data and simulation.

The details of the jet identification requirements are presented in Table 4.3. The same requirements

were used for both the the 7 and 8 TeV analyses.

ID variable Requirement

jet-reconstruction PF
pT > 40 GeV
|η| < 2.4
Jet Energy Corrections (JEC) L1FastJet, L2Relative, L3Absolute
PF candidates ≥ 2
Charged particles ≥ 1
ENeutralHadrons/Etotal < 0.99
EEM Charged/Etotal < 0.99
EChargedHadrons/Etotal > 0

Table 4.3: Jet identification requirements.
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4.5.1.1 Identification of b-quarks

Jets that arise from the hadronization of bottom quarks (b-jets) are present in many SM processes, as

well as in many scenarios for new physics. For example, the gluino-induced top squark production

described in chapter 2 has four b-jets in the final state. Efficient identification of those b-jets

suppresses significantly many SM processes.

There are various algorithms in CMS to identify b-jets based on the different properties of the bottom

quark compared to the other quarks. For the results obtained in this thesis the Combined Secondary

Vertex (CSV) b-tagging algorithm is used [61, 62]. In the current thesis, the reconstruction of b

quarks is based on the corrected PF jets discussed in the previous section. High quality tracks,

satisfying high-purity criteria with pT > 1 GeV, are selected. The track should have at least eight

hits, two of which should be in the pixel subdetector, and a good fit over the hits of the trajectory

leading to χ2/ndf < 5. A loose selection is applied on the impact parameters with respect to the

primary vertex (|d0| < 0.2 cm and |dz| < 17 cm). Tracks are associated to jets in a cone ∆R < 0.5

around the jet axis and tracks with distance larger than 700 µm from the jet axis (distance of closest

approach) are rejected. In addition, the spatial distance between the point of closest approach and

the primary vertex should be within 5 cm.

On top of the above selection, which is common for any b-tag identification algorithm in CMS, the

CSV algorithm utilizes secondary vertex properties and track-based lifetime information. Events are

classified into three categories based on the presence and the quality of a reconstructed secondary

vertex. The “RecoVertex” has at least one good reconstructed secondary vertex, while the “Pseu-

doVertex” category requires events with at least two tracks and impact parameter significance (σIP)

greater than two. Lastly, when even this is not possible, a third category of events is defined with-

out a reconstructed secondary vertex, “NoVertex”, and the identification is based only on tracking

variables. The variables that show significant discriminating power and low correlations are: the

vertex category, the flight distance significance in the transverse plane, the vertex mass, the number

of tracks at the vertex, the ratio of the energy carried by the tracks at the vertex with respect to all

tracks in the jet, the η of the tracks at the vertex with respect to all tracks in the jet, the σIP(2D)

of the first track with invariant mass above the charm quark mass, the track multiplicity in the jet

and the σIP(3D) of each track in the jet.

Two likelihood ratios are built from these variables, to discriminate between b and c quarks, and b

and light-parton jets. There are three different thresholds defined for these discriminators, leading

to the following operating points: “Loose” (L), “Medium” (M) and “Tight” (T). The results in this
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thesis are obtained using the Medium operating point (CSV-M b-tagging algorithm). The b-tag

efficiency and misidentification probability depend on the jet pT and η. On average, a b-tagging

efficiency close to 70% for a misidentification rate of 1% is expected.

4.5.2 E/T reconstruction

Particles invisible to the detector, such neutrinos or exotic particles from physics processes beyond

SM, are indirectly detected by calculating the missing transverse energy (E/T). In general, E/T

is computed as the negative vector sum of all objects in the event. There are many different

measurements for E/T. The simplest one is Calo-E/T which uses information only from calorimeters

with corrections for the jet energy scale and the presence of muons. In the searches that will be

presented later, we use E/T reconstructed by the particle flow algorithm (PF-E/T) [55, 57, 63, 64]. In

particle flow reconstruction, E/T is computed as the negative vector sum of all PF-candidates:

E/T = −
∑

PF cands

~pT (4.4)

Figure 4.2 depicts the superior performance of PF-E/T with respect to Calo-E/T, both in the magni-

tude and the direction.
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Figure 4.2: E/T performance based on calorimeter reconstruction (blue) and on particle flow re-
construction (red). Left: resolution versus the true (generated) E/T, Right: resolution in φ. E/T

reconstruction exhibits a significantly improved performance in particle flow.
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4.5.3 Lepton isolation

Isolation requirements are imposed to charged leptons (e and µ) as a handle to suppress the QCD

background and reduce leptons arising from heavy flavor decays and decays in flight. Two methods

are used to estimate the level of isolation of a given particle.

The more traditional method estimates the level of isolation based on the sum of the pT of the tracks

and the energy deposits in the calorimeters in a cone ∆R < 0.3 around the charged lepton. The

subdetector based isolation, Irel
comb(calo), is defined as:

Irel
comb(calo) =

∑
pT

tracker +
∑

ET
ECAL +

∑
ET

HCAL

pT
lep

(4.5)

where pT
lep is the transverse momentum of the electron or the muon.

A more advanced method is used to estimate the isolation variable using objects reconstructed by

particle flow. Similarly to the first method, the isolation is calculated in a cone ∆R <0.3 around

the charged lepton. In this case particle flow based isolation, Irel
comb(PF), is defined as:

Irel
comb(PF) =

∑
pT

ChargedHadrons +
∑

ET
photons +

∑
ET

NeutralHadrons

pT
lep

(4.6)

where the first term in the numerator is the sum of the pT of the charged hadrons, the second is the

sum of the ET of the photons and the last is the sum of the ET of the neutral hadrons. To reduce

contributions from electronics noise, photons and neutral hadrons are required to have ET > 0.5

GeV.

In parallel to the luminosity increase, the number of pile-up interactions increases as well, leading to a

degradation in the isolation efficiency. The contribution in the calculation of isolation from particles

originating from minimum bias interactions becomes significant and has to be reduced. Charged

particles are rejected by using the vertex information. For the neutral particles this approach is not

feasible and a specific correction, known as ∆β correction, is implemented [65]. The ∆β correction

relies on the fact that, on average, the relative fraction of the jet energy carried out by charged and

neutral particles is 2:1. The correction is calculated by estimating the isolation from all charged

particles that do not originate from the primary vertex, which are particles from pile-up interactions,

and then using the average “charge to neutral” energy fraction, the contribution of pile-up due to
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neutral particles is extracted. The ∆β corrected isolation, Irel
comb(∆β), takes the form:

Irel
comb(∆β) =

∑
pT

ChdHads + max(0., (
∑

ET
γ +

∑
ET

NeuHads − 0.5
∑

ET
ChHads
∆β ))

pT
lep

(4.7)

This method exhibits an improved performance and hence used for the analysis using the 8 TeV data.

For the 7 TeV analysis the traditional method, Irel
comb(calo), was used.



Chapter 5

Data and Monte Carlo samples

As discussed in section 2.5, SUSY signatures are primarily categorized based on the multiplicity of

leptons in the event. The searches for supersymmetric signals, that are presented later in this thesis,

are performed in the single-lepton final state. The data samples consist of proton-proton collisions

recorded with the CMS detector. The high rate of collisions delivered by the LHC makes the

application of an online selection on the events, necessary. The CMS detector and physics processes

important for the searches are simulated using the Monte Carlo (MC) method. The simulated

samples are used to motivate the search strategy, to validate the SM background estimation methods

and to derive corrections, where needed.

5.1 Data samples

The two data samples used in the analyses, correspond to p-p collisions at two center of mass energies,

7 TeV and 8 TeV. The data of relevance to this analysis are selected online using triggers based on

a charged lepton, the hadronic activity of the event and on missing transverse energy. The trigger

applies thresholds on the magnitude of the pT of the charged lepton, HT and E/T. The quantity HT

characterizes the overall hadronic activity of the event, and is defined as:

HT =

all jets∑
j=1

pTj, (5.1)

where pTj is the transverse momentum of the j-th jet in the event. The use of multiple objects in the

online selection is essential to maintain an acceptable trigger rate with moderately loose requirements

71
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on these three important observables. Depending on the number of objects used in the trigger path,

two sets of triggers are defined. Double-object triggers require the presence of a charged lepton

(electron or muon) above a certain pT, together with a selection in HT. Triple-object triggers, in

addition to the requirements on charged lepton’s pT and HT, introduce a moderate selection on E/T.

Combining information from both double- and triple-object triggers increases the acceptance to a

potential SUSY signal. The thresholds on the charged lepton pT, HT and E/T evolved during the

data collection period. For electron triggers, a loose selection on electron’s isolation and ID variables

was also applied to help control the rate.

To ensure that no bias is introduced between the online and offline selection, the offline analysis

requirements are more restrictive than those used in the trigger. The trigger object response curves

and efficiencies are measured in independently triggered control samples. Examples of the trigger

response curve and the efficiency at the plateau, as a function of HT and the electron transverse

momentum, in the 8 TeV data sample, are displayed in Figure 5.1.
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Figure 5.1: Example of the trigger response curves and efficiency at the plateau of HT (left) and
electron’s transverse momentum (right) in the 8 TeV data sample.

Table 5.1 summarizes the efficiency and the corresponding uncertainty of the hadronic and leptonic

components of the triggers in the plateau region, for the 7 and 8 TeV data samples. The (offline)

event selection is designed such to include events well within the trigger efficiency plateau region.

Lastly, the data samples consist only of “good quality” data recorded by CMS. Data are defined as

good quality, if all subdetectors, trigger and physics objects, pass strict quality criteria. The overall
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Trigger component Data sample
efficiency [%] 7 TeV (2011) 8 TeV (2012)

Hadronic 100 98 ± 0.3
Electron 99 ± 3 96 ± 5
Muon 97 ± 4 98 ± 3 (|η| <0.9), 86 ± 7 (|η| >0.9)

Table 5.1: Efficiencies of the hadronic and leptonic components of the triggers in the plateau region,
for the 7 and 8 TeV data samples.

data-recording efficiency of CMS was above 90%. The data samples at 7 and 8 TeV correspond to

an integrated luminosity of 4.98 and 19.3 fb−1respectively.

The selection of events offline uses the physics objects presented in chapter 4. The primary vertex

must satisfy a set of quality requirements including |dz| < 24 cm and |d0| < 2 cm, where dz and

d0 are the longitudinal and transverse distances of the primary vertex with respect to the nominal

CMS interaction point. In addition, the number of degrees of freedom for the estimation of the

primary vertex is required to be greater than four. The event selection requires the presence of a

single reconstructed lepton (e or µ), satisfying the “tight” selection criteria. Events with additional

“loose” leptons are vetoed, to suppress SM backgrounds with di-leptonic signature, but also to

reduce the statistical overlap with other SUSY searches in CMS, on different topologies. On top of

the lepton definition described in chapter 4, we require muons and electrons to be reconstructed also

as PF-muons and PF-electrons respectively. In addition, the absolute difference in the pT of the

lepton, between the standard reconstruction and the PF reconstruction, should be less than 5 and

10 GeV, for muons and electrons respectively. These requirements ensure a robust reconstruction

of the charged leptons. Moreover, we require events to consist of at least three jets passing the

selection defined in Table 4.3. In the particle flow algorithm, every object gives rise to a PF-jet.

Hence, to avoid using objects both as leptons and jets, a cleaning procedure is applied. Jets with

momentum direction within ∆R < 0.1 (0.3) of a “tight” muon (electron) are excluded. Depending

on the analysis strategy, additional topological requirements on the physics objects of the event are

applied to further suppress SM backgrounds.

5.2 Monte Carlo samples

A detailed simulation of the CMS detector and the physics processes are essential to exploit the full

span of CMS capabilities, as well as the design and optimization of the analyses.
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Two types of detector simulation are used in CMS: The GEANT4-based simulation [66], known as

“FullSim”, and the “FastSim” [67, 68]. In the FullSim, a detailed description of all subdetectors

and their performance, is performed. It has been extensively validated with test-beam and collision

data. The Fastim uses a detector model with simplified geometry, response evaluation and pattern

recognition to decrease the processing time per event. FastSim can be easily tuned to reproduce

the data, and at this point the agreement with FullSim is very good. Given its much smaller

processing times, FastSim is ideal for producing simulated samples with very large statistics. For

both simulations, the physics of the pp collisions are produced by event generators, which are used

as inputs for the FullSim or FastSim, and then propagated through the detector.

The simulation of physics processes is based on Monte Carlo (MC) methods [69–71]. These are

computational methods using random numbers to model stochastic properties, such as the decay

of a particle. The generation of physics events is factorized in steps. The procedure starts with

the simulation of the hard scattering process and the generation of the final-state particles. As

hard scattering, we refer to the interaction between the constituents of the colliding particles, which

interact at a high momentum scale to produce the outgoing particles, like quarks and leptons,

or hypothetical particles, like SUSY particles. The simulation of a specific process is based on

the calculation of the parameters of the corresponding physics model using perturbation theory.

The colored particles produced in the previous step radiate virtual gluons which then produce q-q̄

pairs or emit further gluons, generating showers of the outgoing partons, in the so-called parton

showering process. Due to color confinement, the colored partons produced after the showering

are transformed into a set of color-singlet primary hadrons, which may then subsequently decay

further. This is known as hadronization. In addition, color-singlet hadrons are also produced in

the interaction between the beam particles. Particles resulting from this interaction are referred to

as the “underlying event”, which is associated with the initial and final state radiation, ISR and

FSR respectively. The hadronization process and the production of the underlying event are of

non-perturbative nature and phenomenological models are used for their simulation. The effect of

pile-up is modeled with the generation of minimum-bias events, which are re-weighted accordingly

to match the pile-up observed in data.

A variety of MC generators (MADGRAPH [72], PYTHIA 6 [73] and POWHEG [74]) is used to

model the SM backgrounds and SUSY signals. In all cases, PYTHIA 6 MC generator provided

the showering and hadronization for all samples. The simulated samples used in the 7 and 8 TeV

analyses are summarized in Table 5.2.
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Sample Generator
√

s [TeV]

SM processes

QCD multijets PYTHIA 6 7
W, Z+jets MADGRAPH 7, 8
tt̄ MADGRAPH 7, 8
QCD multijets MADGRAPH 8
tt̄W tt̄Z MADGRAPH 8
single-top (s-channel, t-channel, tW) POWHEG 8

SUSY processes

CMSSM, SMS T3w PYTHIA 6 7
SMS T1tttt, T5tttt, T1t1t MADGRAPH 8

Table 5.2: List of simulated SM and SUSY samples used in the 7 and 8 TeV analyses.

Both SM and CMSSM simulated samples are generated using leading-order (LO) cross sections.

Therefore, in the analysis level, the expected yields are corrected using NLO or NNLO cross sections.

Especially for the CMSSM case, as already discussed in section 2.6, each model point has a complete

SUSY particle spectrum and a well defined cross section for the production of any final state which

typically involves several production mechanisms. Taking into account the production mechanisms

involved, the expected yield for each model is corrected following the NLO cross sections discussed

in [24].

Although the very sophisticated simulation of the CMS detector and the physics processes, residual

contributions may not be well modeled. Hence, both FullSim and FastSim have been validated

extensively against data and appropriate corrections are extracted.

The precise estimation of the charged lepton selection efficiency is essential for analyses, like the ones

described later in this thesis, that require of one or more charged leptons. Therefore, the overall

charged lepton selection efficiency in data and simulation has been calculated using the tag-and-

probe method [75]. The overall lepton efficiency is factorized into the various requirements, taking

the form:

ε` = εiso · εID · εtrack · εtrig (5.2)

where εiso, εID, εtrack and εtrig, are the efficiencies of the isolation, ID, track reconstruction and

trigger requirements respectively. Each component is estimated separately. The calculation of the

trigger efficiency was presented in the previous section. The isolation, ID and track reconstruction

efficiency are found to be in perfect agreement between data and FullSim at 8 TeV. We observe

a small difference in the identification efficiency of low-pT charged leptons for the 7 TeV FullSim
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samples. The effect is less than 10% for charged leptons with pT(`) ∼ 20 GeV and linearly vanishes

for charged leptons with pT(`) > 40 GeV. Example of the charged lepton identification efficiency as

a function of their transverse momentum, as measured in data and as expected in FullSim at 8 TeV,

is displayed on Figure 5.2. The identification requirements include selection on the isolation of the

charged lepton.

Figure 5.2: Example of the charged lepton identification efficiency as a function of their transverse
momentum, as measured in the data and as expected in FullSim at 8 TeV. Black markers correspond
to data, whereas the red markers to FullSim. The identification requirements include selection on
the isolation of the charged lepton. The difference between data and simulation is displayed with
green markers. The left pane corresponds to electrons and the right pane to muons.

Some difference has also been observed between data and FastSim for the 8 TeV simulated samples.

To account for this difference, we extract scaling factors from data to correct FastSim. Table 5.3

summarizes the scaling factors and the corresponding uncertainties were derived using the tag and

probe method, for each lepton flavor separately.

lepton flavor FastSim (8 TeV)

electron [%] 98 ± 3 (EB), 86 ± 7 (EE)
muon [%] 95 ± 3

Table 5.3: Comparison between lepton reconstruction in data and FastSim for the 8 TeV simulated
samples. Scaling factors and the corresponding uncertainties derived using the tag and probe method,
for each lepton flavor separately.
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5.3 Event Cleaning

Data samples are contaminated with spurious events due to instrumental effects and reconstruction

failures, which generally lead to mis-measurements, some of which may be severe, of the event

characteristics. One of the observables that is affected significantly is E/T. The majority of physics

models beyond the SM, imply the presence of E/T in the event. Therefore, we have performed

extensive studies to purify the data samples collected in pp collisions, from these pathological events.

From the beginning of the data collecting period in 2010, several sources that cause large values of

E/T have been identified. Appropriate filters have been developed to remove such events. These filters

have been studied in detail, in data and simulated samples, to achieve the best possible rejection

efficiency while, in parallel, preserving a negligible rejection rate of physics events.

During the 2010 LHC running period, the main sources of fake-E/T were due to particles striking

the sensors, the photomultipliers (PMT) and the light guides of the calorimeters, as well as dead

cells in the ECAL [76, 77]. During the next LHC running periods, in 2011 and 2012, we identified

several new types of anomalous events, populating large values of the E/T distribution. In addition,

the filters developed in 2010, were modified accordingly to account for the different data collecting

conditions.

An important source of artificial E/T stems from secondary particles produced from the interaction

of the beam particles with the residual gas inside the LHC or particles produced outside the CMS

cavern, mainly muons. This type of noise is referred to as “beam-halo”. Combining the timing

information from the trigger system and the activity in the CSC detectors leads to a very efficient

rejection of the beam-halo events (> 90%), while preserving the rejection rate of good physics events

smaller than 0.5%.

Large values of fake-E/T may also be caused by malfunctions in the operation of a component of the

detector or in part of the event reconstruction. Failures in track reconstruction produce artificially

large E/T. Events with significant energy deposits on the calorimeters and lack of reconstructed

tracks, or events with unexpectedly large track multiplicities are two examples of severe track mis-

reconstruction. In the first type of events, a large number of pixel clusters leads the track recon-

struction procedure to skip some of the iterations of the track finding algorithm. Another source is

when hard collisions occur in displaced position from the nominal interaction point in the center of

the CMS detector. Events of that type occur at a per mille level and are efficiently rejected by using

the transverse momentum of the tracks originating from the primary vertex and the total hadronic
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activity of the event. The silicon strip tracker can be affected by coherent noise, which causes the

presence of a few ten-thousand of pixel clusters with signal, widely distributed in the silicon detec-

tors. This results in the reconstruction of an enormous number of tracks with transverse momenta

of several GeV or even TeV. A significant fraction of these events is vetoed online by the L1 trigger.

However, a residual number of these events reach the read out and is reconstructed. These fake

tracks are then clustered to form jets with very high pT, leading to large fake-E/T. The identification

of those events is based on the cluster multiplicities in the silicon strip and pixel detectors.

A small fraction (∼ 1%) of noisy crystals in the ECAL are removed from event reconstruction

to preserve the accurate reconstruction of the event. Those masked crystals are referred to as

“dead crystals”. Nevertheless, single crystals in ECAL, other than the already identified dead

crystals, occasionally produce high amplitude pulses, due to instrumental failure. The rejection of

these events is performed by comparing the energy deposits in the crystals surrounding the faulty

crystal. Algorithms are developed to identify and recover such pathological events. Large values of

artificial E/T may also be caused when normal physics deposits are not taken into account in event

reconstruction, due to the presence of dead crystals. The almost entire recovery of such pathological

events is feasible by exploiting information from the trigger primitives and the energy depositions

in neighboring crystals.

Sources of anomalous noise, well above the expected noise from the electronics (pedestal), have been

identified in HCAL. The noise stems either from the hybrid-photodiods (HPDs) or from the readout

boxes (RBX). A set of algorithms was developed to efficiently reject this type of noise. Initially, the

rejection of such events was based on the comparison of the total electric charge measured in an RBX,

for different time intervals (time slices). During the constantly changing data-taking conditions, more

sophisticated algorithms have been developed, also exploiting the difference between the noisy and

nominal pulse shapes. Another source of HCAL-induced noise stems from misfiring of the HCAL

laser system. Events of that type have the characteristic signature of large energy deposits over

almost the entire HCAL. The associated filters utilize the hit occupancy observed in the channels

used for the readout. The filters are designed to efficiently (> 98%) identify noise stemming from

HCAL, with less than 0.5% of physics events rejected.

The effect of the application of event cleaning filters in the accurate reconstruction of the event is

significant, and therefore the application of these filters in every analysis in CMS using E/T is very

important. Figure 5.3 displays the PF-E/T distribution for events passing the di-jet selection, for the

main SM processes as obtained from simulation, and for data before and after applying the cleaning
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filters. The application of the event cleaning filters restores good agreement between data and

simulation. It is evident that the spurious events populate mainly the region of large values of E/T,

where signal of physics beyond the SM is expected to be present. Hence, the efficient identification

and rejection of pathological events, especially on the tails of the E/T distribution, is essential for

robust searches of new physics.
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Chapter 6

Search for supersymmetry in the

single lepton final state at
√
s = 7 TeV

This chapter presents a search for supersymmetric signals using a data sample of p-p collisions

at a center of mass energy of 7 TeV, corresponding to an integrated luminosity of 4.98 fb−1 [78].

The search focuses on the signature with a single lepton, multiple energetic jets and large E/T.

As discussed in section 2.5, the single-lepton signature is one of the most promising signatures to

discover SUSY, since it provides significance suppression of the SM backgrounds, while maintains

important signal efficiency for an early discovery. The presence of a charged lepton indicates a weak

decay from a particle, such as a W boson or a χ̃±. The presence of the two χ̃0
1 (LSPs) and the

neutrino from the weak decay, leads typically to large values of E/T. Complex decay chains of SUSY

particles produce multiple jets in the event. These are expected to be also energetic, much more

than in SM, since they would arise from the heavy SUSY particles.

6.1 Search strategy

Searches for SUSY particles are challenging due to the existence of SM processes with similar char-

acteristics with signal events. The requirement of a single isolated charged lepton (e or µ) suppresses

significantly QCD and Z+jets backgrounds. Thus the dominant SM backgrounds stem from W+jets

and tt̄ processes.

Decays of high-mass, pair-produced SUSY particles would lead to final states with multiple jets. On

the contrary, the production cross section for W+jets decreases strongly with the number of jets (Nj).
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Hence, the W+jets background can be suppressed by requiring events with large jet multiplicities.

In order to maintain an inclusive search, events with Nj ≥ 3 are selected.

Additionally, a typical SUSY event is characterized by a larger “energy scale”, compared to SM.

The overall activity in the hadronic sector of the event is measured by the quantity HT, defined in

chapter 5. Figure 6.1 displays the HT distribution in simulation for SM and SUSY events. Compared

to SUSY, SM events typically populate lower HT values.
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Figure 6.1: Distribution of HT in SM and SUSY as obtained from simulation. Left: main SM
processes and two SUSY benchmark points, LM3 and LM6. All distributions are normalized to the
integrated luminosity. Right: Distributions normalized to unity. “Total SM” contribution is the sum
of the individual SM processes illustrated in the left pane.

The scalar sum of the transverse momenta of the leptons (neutrino and charged lepton) in the event,

reflects the energy scale in the leptonic sector. This is defined as:

Slep
T = pT(`) + E/T (6.1)

SUSY events are expected to exhibit large values of E/T; larger than in SM events. In addition, due

to the presence of the two LSPs, the E/T and the charged lepton are less correlated, while in the SM,

large E/T implies soft charged leptons and vice versa.

Moreover, the decay of heavy sparticles often results in the production of highly-energetic (boosted)

particles with unique event characteristics. In contrast, particles stemming from SM processes,

mainly W bosons from W+jets or top decays, are less boosted. The transverse momentum of the
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W boson, pT(W), is obtained from the vector sum of pT(`) and E/T in the event, as:

~pT(W) = ~pT(`) + ~E/T (6.2)

In W decays, where the W boson has large transverse momentum, the charged lepton and the

neutrino are emmited at small angles. Therefore, Slep
T is very similar to pT(W). This will be proved

to be important in the design of the analysis. The Slep
T distribution for simulated SM and SUSY

events is displayed on Figure 6.2.
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Figure 6.2: Distribution of Slep
T in SM and SUSY as obtained from simulation. Left: main SM

processes and two SUSY benchmark points, LM3 and LM6. All distributions are normalized to the
integrated luminosity. Right: Distributions normalized to unity. “Total SM” contribution is the sum
of the individual SM processes illustrated in the left pane.

To ensure that the optimization of the search is not dependent on the unknown energy scale of a

potential SUSY signal, the search is carried out in regions of Slep
T and HT. Three regions are defined

in Slep
T : Slep

T ∈ (250− 350), (350− 450) and > 450 GeV, and three in HT: HT ∈ (500− 750), (750−

1000) and > 1000 GeV. Table 6.1 summarizes the definition of the signal sample.

In addition to the requirements imposed in HT and Slep
T , further kinematic variables are needed to

separate SM and SUSY. In SM processes, the charged lepton stems from: W+jets, tt̄+jets and some

rare SM processes, like diboson decays (WW and WZ) and single-top. The common feature of all

these processes is the leptonic decay of the W boson: W→ `ν. Therefore, the properties of W boson

decay can be used as an additional handle to separate SUSY events from SM events. As discussed in

section 1.4.1, the polarization of high-pT W bosons, either in W+jets or in tt̄ events, is very specific
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Quantity Requirement

N` = 1
Nj ≥ 3

Slep
T ∈ (250, 350), ∈ (350, 450), > 450 GeV

HT ∈ (500, 750), ∈ (750, 1000), > 1000 GeV

Table 6.1: Definition of the signal sample.

to SM. W+jets events exhibit a sizable left-handed polarization, leading to significant asymmetry

in the pT spectrum of the charged lepton and the neutrino. W bosons from tt̄ decays show a

smaller asymmetry since they are predominantly longitudinally polarized, with smaller left-handed

(right-handed) components for W+ (W−) [79].

The polarization is measured using the polar angle θ∗` . However, the total momentum of the W boson

cannot be reconstructed due to the unknown pz of the neutrino (i.e. the momentum of the neutrino

along the beam axis), and thus it is not possible to boost all momenta, e.g. the charged-lepton, to

the W rest frame. Therefore, we define the “Lepton Projection” variable, LP [16], which is highly

correlated to cos θ∗` , yet it is constructed using only transverse quantities:

LP =
~pT(`) · ~pT(W)

|~pT(W)|2
. (6.3)

In the limit of very high pT(W), and in the absence of mis-measurements, LP lies within the range

[0,1] and cos θ∗` → 2(LP − 1
2). The left-handed, right-handed and longitudinal W components have

been measured at the LHC [16, 80] and are in agreement with the theoretical expectations [81].

W+jets and tt̄ events populate a broad range of positive and large LP values, while SUSY events are

expected to cluster near LP ∼0, since configurations with large E/T and low-pT charged leptons are

often favored. It is important to highlight that in SUSY, due to the fact that the charged lepton and

E/T are less correlated compared to SM, LP may well exhibit negative values. Figure 6.3 displays

the LP distribution in simulated SM and SUSY events ; LP will be used as an additional handle to

further distinguish potential SUSY signals from SM.

At this point, it is important to shed light on the motivation behind the choice of Slep
T as one of

the discriminating variables. As already discussed, SUSY events are expected to have large values

of E/T and produce highly-energetic particles. Therefore, further suppression of the SM background

may be achieved by requiring tighter selection on E/T and pT(W). However, a selection on E/T
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Figure 6.3: Distribution of LP in SM and SUSY in simulation events. Left: main SM processes and
two SUSY benchmark points, LM3 and LM6. All distributions are normalized to the integrated
luminosity. Right: Distributions normalized to unity. “Total SM” contribution is the sum of the
individual SM processes illustrated in the left pane.

cannot be utilized since E/T and LP are highly correlated and thus, imposing a tighter selection on

it, introduces biases on the shape of LP. Large values of LP typically consist of events with small

values of E/T, hence a rejection of low-E/T events results to significant decrease on the statistics in the

high-LP region (which, as will be presented later, is used for the estimation of the SM background).

Figure 6.4 displays the correlation between E/T and LP in SM and SUSY events.

Figure 6.4: Correlation between E/T and LP in SM (left) and SUSY events (right).
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In contrast, Slep
T has moderate correlations with LP. Figure 6.5 depicts the correlation between

Slep
T and LP in SM and SUSY events.

Figure 6.5: Correlation between Slep
T and LP in SM (left) and SUSY events (right).

A natural choice would be to carry out the search in different regions of pT(W). However, we see

in equation (6.2), that the magnitude of pT(W) depends on the angle between the charged lepton

and E/T (∆φ(`, E/T)). In the boosted topologies that we perform the search, the decay products,

namely the charged lepton and the neutrino (E/T) of the leptonic decay of a W boson stemming from

SM processes, are emitted in small angles, whereas in SUSY events, due to the presence of the two

LSPs, charged lepton and E/T are less correlated, and hence ∆φ(`, E/T) covers a wide range. As a

consequence, in SUSY events, pT(W) may also exhibit small values. Therefore, the observable Slep
T ,

proves to be more powerful compared to pT(W) to distinguish SM and SUSY, since it is independent

of ∆φ(`, E/T), and in addition, it comes with the advantage to be similar to pT(W), for high-pT W

bosons. The correlation between Slep
T and pT(W) in SM and SUSY events is displayed in Figure 6.6.

Hence, a prerequisite to utilize LP as an additional search variable is the use of Slep
T .

The search is carried out in a region of LP where SM is suppressed, while the efficiency of potential

SUSY signal is kept considerably large. Performing an optimization using simulated samples, the

region with LP < 0.15 is used as signal region. Since instrumental backgrounds are different, the

search is performed in the muon and electron channel, separately. Table 6.2 lists the expected yields

from simulation, in the muon and electron channel in all signal regions, for the main SM processes

and one SUSY benchmark point (LM6). The dominant background stems from W+jets events with

large transverse momenta, in which the W boson decays leptonically. This background becomes
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Figure 6.6: Correlation between Slep
T and pT(W) in SM (left) and SUSY events (right).

even more dominant for large values of Slep
T , where the tt̄ background is reduced. This is explained

by the fact that W bosons from tt̄ decays have typically smaller transverse momentum compared to

W bosons directly from the hard scatter, due to the presence of the top quark. As discussed earlier,

Slep
T ' pT(W) and hence, W bosons from tt̄ decays do not have adequate transverse momentum to

satisfy the tighter Slep
T selection.

The second leading background is from tt̄ events. The majority of the tt̄ background arises from

the process where one of the W bosons decayed leptonically (semi-leptonic tt̄ decays, tt̄(`)). The

process where both W bosons decayed leptonically (fully-leptonic tt̄ decays, tt̄(``)), and one of the

two charged leptons is not reconstructed or not identified due to the detector acceptance, contributes

less than 10% of the total SM background. The requirement of an isolated lepton and large Slep
T

reduces the background from QCD events to be totally negligible in the muon channel and sig-

nificantly smaller than the other backgrounds in the electron channel. In what follows, the SM

backgrounds stemming from W+jets, tt̄(`) and tt̄(``) will collectively be referred to as electroweak

(EWK) background.

6.2 Estimation of the standard model background

The key ingredient in any search is the robust and reliable estimation of the SM background in the

signal region. As previously discussed, the dominant sources of background are the EWK processes,

with a much smaller contribution stemming from QCD multijet events. In the muon channel,
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LP < 0.15 Muons: Slep
T range [GeV] Electrons: Slep

T range [GeV]
(250-350) (350-450) > 450 (250-350) (350-450) > 450

500 < HT < 750 GeV

tt̄ (`) 36.0±0.7 10.1±0.4 2.1±0.2 27.2±0.7 7.3±0.3 1.8±0.2
tt̄ (``) 8.6±0.4 2.3±0.2 0.5±0.1 7.3±0.3 1.8±0.2 0.4±0.1
W+jets 47.8±1.6 25.1±1.2 14.8±0.9 35.6±1.4 17.3±1.0 11.6±0.8
Z+jets 1.3±0.8 0.4±0.4 0.0±0.0 1.4±0.8 0.0±0.0 0.0±0.0
QCD 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Total MC 93.7±2.0 37.9±1.3 17.5±0.9 71.4±1.8 26.5±1.0 13.8±0.8
LM6 3.2±0.1 4.4±0.1 7.2±0.2 2.6±0.1 3.3±0.1 5.9±0.2

750 < HT < 1000 GeV

tt̄ (`) 8.4±0.4 3.2±0.2 1.5±0.2 6.2±0.3 2.1±0.2 1.0±0.1
tt̄ (``) 2.2±0.2 1.0±0.1 0.3±0.1 1.6±0.2 0.6±0.1 0.2±0.1
W+jets 10.3±0.7 5.6±0.6 6.4±0.6 6.9±0.6 4.4±0.5 5.3±0.5
Z+jets 0.2±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
QCD 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Total MC 21.0±0.9 9.8±0.6 8.3±0.6 14.8±0.7 7.2±0.5 6.5±0.5
LM6 2.5±0.1 3.3±0.1 9.4±0.2 2.1±0.1 2.7±0.1 7.9±0.2

HT > 1000 GeV

tt̄ (`) 2.8±0.2 1.1±0.1 0.9±0.1 2.3±0.2 0.8±0.1 0.6±0.1
tt̄ (``) 0.6±0.1 0.4±0.1 0.2±0.1 0.7±0.1 0.3±0.1 0.1±0.0
W+jets 4.2±0.5 2.8±0.4 3.2±0.4 3.4±0.4 1.1±0.2 2.7±0.4
Z+jets 0.5±0.5 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
QCD 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Total MC 8.2±0.7 4.3±0.4 4.3±0.4 6.5±0.5 2.2±0.3 3.4±0.4
LM6 2.2±0.1 2.6±0.1 6.8±0.2 1.6±0.1 2.1±0.1 5.5±0.2

Table 6.2: Expected yields in the muon and electron channel in all signal regions, for the main
SM processes and one SUSY benchmark point (LM6), as obtained from simulation. All yields are
normalized to the integrated luminosity of 4.98 fb−1.



Chapter 6: Search for supersymmetry in the single lepton final state at
√

s=7 TeV 89

as indicated from simulation, QCD background is negligible and hence, setting an upper limit is

sufficient. In the electron channel, this background is more important (although still very small),

due to photon conversions and also due to the higher probability of a jet to be misreconstructed as an

electron than as a muon. Therefore, it will be evaluated separately. For both channels, control data

samples are used to estimate the QCD contribution, due to the large uncertainties of the simulation

of this background.

6.2.1 Estimation of the EWK background

The estimation of the number of SM events in the signal region is based on the use of control regions

and transfer factors. A control region should be dominated by SM processes, and exhibit similar

characteristics with the signal region. From studies performed with simulated samples, the region

with LP > 0.3 is used as control region. The use of disjoint control and signal regions is introduced

to reduce the effect of potential signal contamination on the background estimation. The number

of data events observed in the control region is related to the expected number of SM events in the

signal region, through a transfer factor, RCS, which is the ratio of the number of events from EWK

processes, NMC, in the signal and control regions:

RCS =
NMC (LP < 0.15)

NMC (LP > 0.3)
(6.4)

Two important aspects have been taken into consideration in the choice of RCS. Firstly, RCS should

be robust against uncertainties arising from imperfect detector simulation or theoretical predictions.

Secondly, it should be significantly smaller than one to reduce the statistical uncertainty on the

estimation of the SM background in the signal region. As will be shown later, both requirements

are met. For the EWK processes, RCS is obtained from simulation. A unique control region and

RCS are defined for each lepton flavor, and region in Slep
T and HT. In the muon channel, where the

contribution from QCD is negligible, the estimation of SM events in the signal region, is:

Npred
SM

(
Slep

T ,HT; LP < 0.15
)

= RCS(Slep
T ,HT) ·Ndata

(
Slep

T ,HT; LP > 0.3
)
. (6.5)

In the case of the electrons, due to the presence of events from QCD multijet processes, an in-

dependent evaluation of this background prior to the application of the transfer factor for EWK

processes, is necessary. Table 6.3 lists the expected yields in the muon and electron channel in all

control regions, for the main SM processes and one SUSY benchmark point (LM6), as obtained
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from simulation. The RCS factor for each region in Slep
T and HT can be extracted by combining the

information from Tables 6.2 and 6.3.

6.2.2 Estimation of the QCD background

Since the QCD multijet contribution in the muon channel is expected to be negligible, a conservative

upper bound for this background is sufficient. In the electron channel, a more intricate approach is

used.

6.2.2.1 QCD background in the muon channel

Fake muons from QCD multijet processes are accompanied with large hadronic activity, whereas

muons from SUSY decays are much more isolated. Therefore, a method based on the relative

combined isolation, Irel
comb, is used for the estimation of this background. Muons from QCD events

populate regions with large values of Irel
comb, while muons from SUSY decays exhibit much lower

values. The estimation uses a control data sample, consisting of events with E/T < 50 GeV, and

is thus enriched in QCD events. In addition, to further suppress the contamination of the EWK

background in the region of isolated leptons, Irel
comb < 0.1 (table 4.1), we also utilize the significance

of the vertex impact parameter, d0/σ(d0). Figure 6.7 displays the normalized distributions of Irel
comb

from simulated QCD events, in orthogonal regions of d0/σ(d0), in two different regions of E/T. The

shape of Irel
comb is independent of the selection in d0/σ(d0). With this, the QCD-enriched data sample

Figure 6.7: Distributions of Irelcomb from simulated QCD events, for d0/σ(d0) < 3 (solid lines) and
d0/σ(d0) > 3 (dashed lines), in two E/T regions, E/T < 20 GeV (left) and 20 < E/T < 150 GeV
(right). All distributions are normalized to unity.
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LP > 0.3 Muons: Slep
T range [GeV] Electrons: Slep

T range [GeV]
(250-350) (350-450) > 450 (250-350) (350-450) > 450

500 < HT < 750 GeV

tt̄(`) 172.6±1.6 44.8±0.8 9.8±0.4 151.2±1.5 40.7±0.8 9.2±0.4
tt̄(``) 12.4±0.4 3.2±0.2 1.0±0.1 11.7±0.4 2.8±0.2 0.7±0.1
W+jets 219.7±3.4 91.2±2.2 43.1±1.5 193.4±3.2 78.8±2.0 40.8±1.5
Z+jets 22.2±3.1 6.4±1.7 2.0±0.9 20.3±3.0 6.9±1.7 1.1±0.7
QCD 0.0±0.0 0.0±0.0 0.0±0.0 58.6±33.1 23.1±5.7 10.5±2.9
Total MC 427.0±4.9 145.7±2.9 55.8±1.8 435.4±33.4 152.2±6.4 62.4±3.3
LM6 0.8±0.1 0.8±0.1 1.3±0.1 0.8±0.1 0.6±0.1 1.1±0.1

750 < HT < 1000 GeV

tt̄(`) 34.1±0.7 10.7±0.4 5.8±0.3 29.6±0.7 10.4±0.4 4.8±0.3
tt̄(``) 3.1±0.2 1.4±0.1 0.4±0.1 2.1±0.2 1.0±0.1 0.4±0.1
W+jets 48.0±1.6 19.7±1.0 17.4±1.0 44.1±1.5 17.1±1.0 15.9±0.9
Z+jets 1.5±0.8 0.8±0.6 1.5±0.9 3.7±1.2 1.2±0.7 0.5±0.5
QCD 0.0±0.0 0.0±0.0 0.0±0.0 10.1±3.8 1.0±0.3 4.1±0.7
Total MC 86.7±1.9 32.6±1.3 25.2±1.3 89.7±4.4 30.7±1.3 25.8±1.3
LM6 0.6±0.1 0.7±0.1 1.2±0.1 0.5±0.0 0.6±0.1 1.4±0.1

HT > 1000 GeV

tt̄(`) 9.6±0.4 3.3±0.2 2.0±0.2 8.6±0.4 2.8±0.2 1.8±0.2
tt̄(``) 1.0±0.1 0.5±0.1 0.3±0.1 0.6±0.1 0.4±0.1 0.2±0.1
W+jets 19.9±1.0 6.5±0.6 8.9±0.7 18.1±1.0 5.9±0.6 6.5±0.6
Z+jets 0.5±0.5 0.0±0.0 0.0±0.0 2.3±1.1 0.6±0.5 0.5±0.5
QCD 0.0±0.0 0.0±0.0 0.0±0.0 0.5±0.2 0.6±0.3 1.1±0.2
Total MC 31.0±1.2 10.3±0.6 11.2±0.7 30.1±1.5 10.4±0.8 10.1±0.8
LM6 0.5±0.0 0.6±0.1 1.0±0.1 0.5±0.0 0.4±0.0 0.9±0.1

Table 6.3: Expected yields in the muon and electron channel in all control regions, for the main
SM processes and one SUSY benchmark point (LM6), as obtained from simulation. All yields are
normalized to the integrated luminosity of 4.98 fb−1.
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is defined by the requirements: d0/σ(d0) > 3 and E/T < 50 GeV.

Figure 6.8 displays a comparison of the distributions Irel
comb and d0/σ(d0), between data and simula-

tion using the entire data sample. In both cases, the simulation describes the data well.

Figure 6.8: Comparison between data and simulation of the distributions Irelcomb and d0/σ(d0), using
the entire data sample. The left pane corresponds to the Irelcomb distribution under the requirement
of d0/σ(d0) > 3. The right pane displays the distribution of d0/σ(d0).

The relative fraction of QCD events in the isolated region is estimated by the ratio IµQCD, defined

as:

IµQCD =
N(Irel

comb < 0.1)

N(0.5 < Irel
comb < 1.5)

, (6.6)

where, N, corresponds to the number of data events in each region of Irel
comb. The ratio measured

in data is: IµQCD = 0.030 ± 0.007. The QCD background in the muon final state is estimated by

multiplying the observed data in the QCD-enriched control sample with IµQCD. Table 6.4 summarizes

the upper bounds on the QCD estimation, for the different regions in Slep
T . This background is always

smaller than 1% of the total SM background, and is thus ignored in what follows. We note that

despite the E/T and d0/σ(d0) requirements, some EWK contamination is still present in Irel
comb < 0.1,

and this makes the extraction of IµQCD more conservative.
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Slep
T range [GeV] N(0.5 < Irel

comb < 1.5) upper bound on QCD

(250-350) 6 0.13
(350-450) 4 0.08
> 450 1 0.02

Table 6.4: Estimation of the upper bounds on the QCD background in the muon final state, as
derived by the relative isolation extrapolation method for the different Slep

T bins.

6.2.2.2 QCD background in the electron channel

The main sources of QCD background in the electron channel are photon conversions and misidenti-

fication of hadronic jets. The size of this background is expected to be larger than the corresponding

one in the muon samples. Given the limited statistics of the simulated QCD sample, as well as the

dependence of this background to details of the simulations, a data-driven method is used to estimate

it.

The method relies on the inversion of one or more of the electron identification requirements to obtain

a sample of events dominated by fake electrons. We found that the inversion of the requirements on

the spatial matching of the calorimeter cluster and the charged particle track in pseudorapidity and

azimuth, ∆ηin and ∆φin respectively, maintains the relative fraction of the different QCD sources

unchanged. The inversion of, at least, one of them is required to define the “anti-selected” sample.

We also found that even with a single inversion, the EWK contamination is negligible compared

to the QCD background. To increase the statistics of the “anti-selected” sample, the requirements

on d0 and dz are removed, whereas the isolation requirement is also relaxed, after confirming that

the effect of this relaxation on the LP shape in the data is negligible. Figure 6.9 displays the LP

distribution for simulated QCD events satisfying all selection requirements (“selected” sample) and

the one obtained by the ID inversion (“anti-selected” sample). The QCD shape obtained by the ID

inversion directly from the data, is used as a template to fit the LP data distribution. In this fit, the

shape of the LP distribution from EWK processes is taken from simulated events. This approach

was already applied and validated in the measurement of the W polarization [16] and provides a

nearly fully data-driven way of estimating the QCD contamination. The template fit is performed

in the control region (LP > 0.3), where the possible presence of signal is highly suppressed. The sum

of the predicted EWK and QCD events in the control region is constrained to be equal to the total

number of observed events (in the control region). The number of QCD and EWK events obtained
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Figure 6.9: The LP distribution for “selected” and “anti-selected” simulated QCD events at
√

s = 7
TeV.

by the fit are then used to estimate the total number of SM events in the signal region (LP < 0.15).

This method is applied in each region of Slep
T and HT.

The background estimation method is studied extensively using simulated samples. The extraction of

the QCD template from the “anti-selected” sample is validated against the true QCD shape, as well

as the ability of the fit to correctly distinguish EWK and QCD contributions. The demonstration

of the closure test in simulation is summarized in Table 6.5. The results are shown for two regions

in HT: HT > 500 GeV and HT > 1000 GeV, and obtained after 100 pseudo-experiments. The

table includes the results of the fit using the QCD template from “anti-selected” simulated events,

and the results obtained with the QCD template directly from “selected” simulated events, which

are compared to the “MC truth” values. The uncertainties quoted correspond to the statistical

uncertainty of the fit in the control region, while the uncertainty in the MC truth values stems from

the limited statistics of the simulated samples. Within the uncertainties, the yields obtained by the

fit agree well with the expected yields.

The fit quality is tested by plotting the “pull distribution”. The pull distribution is defined as:

p =
Nfit −Ntrue

efit
(6.7)

where, Nfit and Ntrue, are the yields of the corresponding background (EWK or QCD) as obtained
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Slep
T :

Estimation Control region (LP >0.3) Signal region (LP <0.15)
method: QCD EWK SM QCD EWK SM

HT > 500 GeV

15
0-

2
50 MC truth 2.70±0.57 70.6±2.2 73.3±2.3 0.19±0.17 14.2±1.1 14.4±1.1

Fit (“selected”) 155±32 1490±49 1645±41 1.49±0.31 232±8.0 234±8.0
Fit (“anti-selected”) 159±32 1503±49 1662±41 0.33±0.07 234±8 234±8

25
0-

3
50 MC truth 66.9±33.6 465±5.0 532±34 0.01±0.01 93.2±2.1 93.2±2.1

Fit (“selected”) 66.3±13.9 458±24 524±23 0.01±0.02 91.8±4.9 91.8±4.9
Fit (“anti-selected”) 66.0±14.2 467±25 533±23 0.12±0.03 93.7±4.9 93.8±4.8

35
0
-4

50 MC truth 22.3±5.4 163±3 185±6.0 < 0.01 34.2±1.3 34.2±1.3
Fit (“selected”) 22.8±7.6 161±14 184±14 < 0.01 34.0±2.9 34.0±2.9
Fit (“anti-selected”) 22.1±7.4 162±14 184± 14 0.01±0.01 34.0±2.9 34.0±2.9

>
45

0 MC truth 13.8±2.9 82.6±4.0 96.5±4.9 < 0.01 23.5±1.1 23.5±1.1
Fit (“selected”) 12.8±6.2 80.0±10.3 92.8±9.6 < 0.01 22.8±2.9 22.8±2.9
Fit (“anti-selected”) 13.6±5.9 80.7±10.1 94.3±9.7 < 0.01 23.0±2.9 23.0±2.9

HT > 1000 GeV

15
0-

25
0 MC truth 2.70±0.57 70.6±2.2 73.3±2.3 0.19±0.17 14.2±1.1 14.4±1.1

Fit (“selected”) 4.32±4.96 67.6±9.7 71.9±8.5 0.04±0.04 13.6±2.0 13.7±1.7
Fit (“anti-selected”) 3.09±3.82 66.6±9.3 69.7±8.3 0.01±0.01 13.4±1.9 13.4±1.8

25
0-

35
0 MC truth 0.42±0.17 26.9±1.5 27.4±1.5 0.01±0.01 6.35±0.51 6.36±0.51

Fit (“selected”) 1.39±2.95 25.3±5.4 26.7±5.6 < 0.01 5.97±1.28 5.97±1.28
Fit (“anti-selected”) 0.94±1.58 25.0±5.2 25.9±5.1 < 0.01 5.89±1.23 5.89±1.23

35
0
-4

50 MC truth 0.56±0.25 9.18±0.64 9.73±0.69 < 0.01 3.19±0.54 3.19±0.54
Fit (“selected”) 0.78±2.79 8.12±2.97 8.91±4.48 < 0.01 2.82±1.03 2.82±1.03
Fit (“anti-selected”) 0.35±3.17 8.52±3.04 8.87±4.7 < 0.01 2.96±1.06 2.96±1.06

>
45

0 MC truth 1.02±0.21 8.54±0.68 9.55±0.71 < 0.01 2.63±0.35 2.63±0.35
Fit (“selected”) 1.35±2.34 7.95±2.99 9.30±3.77 < 0.01 2.45±0.67 2.45±0.67
Fit (“anti-selected”) 1.22±1.43 7.45±2.90 8.67±2.98 < 0.01 2.29±0.89 2.29±0.89

Table 6.5: Demonstration of the background estimation in the electron channel with simulated
events. Results from the fit using the QCD template from “anti-selected” simulated events, and
results obtained with the QCD template from “selected” simulated events, which are compared with
the “MC truth” yields. The uncertainties quoted correspond to the statistical uncertainty of the
fit in the control region, while the uncertainty in MC truth stems from the limited statistics of the
simulated samples. Results are presented for two regions in HT: HT > 500 and HT > 1000 GeV.
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from the fit and as expected from simulation respectively. The quantity efit corresponds to the

statistical uncertainty of the fit. Each pseudo-experiment corresponds to one entry in the pull

distribution. The pull values follow a gaussian distribution with a mean value of zero and standard

deviation equal to one. Figure 6.10 shows an example of the pull distribution for the EWK and

QCD estimation. The results indicate an un-biased estimation.

Figure 6.10: Example of two pull distributions for events in the electron channel with 150 < Slep
T <

250 GeV and HT > 1000 GeV. Left: EWK estimation. Right: QCD estimation.

6.3 Establishing the method in a control sample

The method for estimating the SM background in the signal region is validated in two data control

samples that are dominated by SM processes. The first sample consists of events satisfying the

analysis selection, but restricted to lower values of Slep
T , namely: 150 < Slep

T < 250 GeV. The purpose

of this sample is mainly to test the complete background estimation method for both muons and

electrons, as well as the modeling of LP in tt̄(`) and tt̄(``) events. Figure 6.11 displays the fit results

in this control data sample, for events with HT > 500 GeV, in the muon and electron final states.

As described in the previous section, the fit is performed in the control region (LP > 0.3) and the

result is extrapolated in the signal region (LP < 0.15). The SM expectation agrees well with the

observed data in the signal region. The closure test for both channels is presented in Table 6.6.

The second control data sample is designed to validate the modeling of LP and charge asymmetry

in events with highly boosted W bosons. It is collected using a trigger without any requirements on
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Figure 6.11: Fit results in the control data sample, for events with 150 < Slep
T < 250 GeV and

HT > 500 GeV, in the muon (left) and electron (right) final states. The solid histograms correspond
to the main SM processes, the open markers to two indicative benchmark SUSY points, and the
black markers to the data. The fit is performed in the control region (LP > 0.3) and the result is
extrapolated in the signal region (LP < 0.15). The SM expectation agrees well with the observed
data in the signal region.

HT range Control region (LP >0.3) Signal region (LP <0.15)
[GeV] Data SM estimate Data

Muon channel

(500-750) 1297 261±7±24 258
(750-1000) 218 40.8±2.9±3.5 46
>1000 76 16.9±1.9±1.7 15

Electron channel

(500-750) 1306 179±7±18 204
(750-1000) 249 37.0±3.5±4.8 37
>1000 77 12.5±2.2±2.4 9

Table 6.6: Validation of the SM background estimation method in the control data sample consisting
of events satisfying 150 < Slep

T < 250 GeV. The first uncertainty listed for the SM estimate stems from
the limited statistics of the data in the control region, while the second includes all other uncertainties
(section 6.4). Results are presented for three regions in HT: 500 < HT < 750, 750 < HT < 1000 and
HT > 1000 GeV, in the muon and electron channel. The SM estimate agrees well with the observed
number of data in the signal regions.

HT and E/T, but tighter selection in the transverse momentum of the muon. Hence, the muon pT

threshold is raised to 35 GeV, the HT threshold is lowered to 200 GeV and the jet requirement is

reversed so as to now select only one- and two-jet events. For the electron channel, the respective

control sample could not be utilized due to lack of efficient and unbiased single electron trigger paths
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to record the corresponding events. The complete background estimation is carried out indepen-

dently in each region in Slep
T , and the results are summarized in Table 6.7. The SM estimates agree

well with the observed data in the signal region.

Slep
T range Control region (LP >0.3) Signal region (LP <0.15)

[GeV] Data SM estimate Data

(250-350) 1051 95.8±10.2±7.6 92
(350-450) 179 26.3±5.5±4.1 24
> 450 52 12.8±4.0±3.0 11

Table 6.7: Number of events observed in the control and signal region, and the number of events
expected from all SM processes in the signal region estimated from the background method, in all
Slep
T regions, in the control data sample consisting of one- and two-jet events in the muon channel.

The first uncertainty on the prediction is the statistical uncertainty of the data in the control region
and the second stems from the statistical uncertainty on the calculation of RCS due to the limited
MC statistics. The columns “Total MC” is for reference only. The SM estimates agree well with the
observed data in the signal region.

6.4 Systematic uncertainties

The estimation of the number of SM events in the signal region, Npred
SM (Slep

T ,HT; LP < 0.15), relies

on the use of a transfer factor, RCS, and the number of events in the control region (LP > 0.3).

Hence, there are two sources of uncertainty in this estimate: uncertainties in the number of events

from EWK processes in the control region and uncertainty in RCS. In the electron channel, given

the additional complexity of the QCD contamination, the uncertainty on N(LP > 0.3) is determined

by varying the EWK template that is used for the fit, according to the systematic effect under

study. This modified EWK template and the “anti-selected” QCD template, both obtained from

simulation, are used for the LP fit. The modified EWK template is rediced according to its statistical

uncertainties about 100 times and the fit is repeated for each of the toys. The average change of

the value of N(LP > 0.3) for EWK and QCD is used as uncertainty. The sources of systematic

uncertainties taken into account, are:

• Limited statistics of the control region (LP > 0.3) of the data:

The limited number of events in the control region leads to an uncertainty in the SM estimate

in the signal region.

• Limited statistics of the simulated samples:

The limited statistics of the simulated samples result in an uncertainty in the evaluation of RCS.
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In the muon channel, the calculation of this uncertainty is simply the statistical uncertainty of

the simulated samples on RCS. In the electron channel, the change in the shape of the EWK

template must also be taken into account as well. To evaluate this effect, the EWK template

is regenerated 100 times, according to the statistical uncertainties of the simulated samples.

Each time, the LP fit is repeated and the variance of the result is taken as the uncertainty

stemming from the change of the shape of the EWK template.

• Jet energy scale (JES) uncertainty:

The uncertainty in JES affects mostly the calculation of HT and E/T, and is likely to have

an effect on LP. The JES uncertainties are propagated by scaling the transverse momentum

of all jets satisfying pT > 10 GeV and |η| < 4.7, according to the pT- and η-dependent JES

uncertainty. The modified jets are used to calculate the “clustered”E/T (E/T
cluster). In addition,

we estimate effect of the JES uncertainty in the non-clustered component of E/T. We calculate

the non-cluster E/T (E/T
non−cluster), as:

~E/T

non−cluster
= ~E/T + ~pT(`) +

alljets∑
j

~pTj (6.8)

where, j, runs over all jets in the event satisfying pT > 10 GeV and |η| < 4.7. E/T
non−cluster

is varied by 10% coherently with the scaling of the jets. The “new” E/T is estimated by

the vector sum of E/T
cluster and E/T

non−cluster, and it is used to re-evaluate the results of the

analysis. The average effect on the prediction from the upward and downward variations is

taken as uncertainty.

• Hadronic recoil resolution:

The uncertainty on the resolution of the hadronic recoil system is measured in [76], where a

difference of ∼ 10% between the resolution in data and simulation is observed. The resolution

in simulation is increased accordingly to reflect the difference observed and the variation in

the SM estimation is taken as systematic uncertainty.

• Uncertainty in the cross section of tt̄ and W+jets:

The tt̄ and W+jets cross sections are varied by 30% and 10% respectively. We derive the

uncertainties using methods applied on data samples enriched in Z+jets and tt̄ events. The

relative changes in the SM estimation, from both sources, are added in quadrature.

• Muon-pT scale uncertainty: The bias on the measurement of the curvature of the muon track

has been measured in data using Z+jets events, and η and φ dependent corrections have been
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extracted. Previous studies [51] have shown that the bias between simulation and data is

similar. Hence, the bias observed in the data is used as a conservative upper limit on the

possible differences between simulation and data. The systematic uncertainty from this effect

is estimated by correcting the simulation with the bias measured in data and quantifying the

resulting change in the SM estimate. To take into account the uncertainty on the measurement

of the bias in data, we apply the corrections in the simulation by running pseudo-experiments,

each time varying the bias according to its uncertainty. The uncertainty quoted is estimated

from the average change in the SM estimation in the pseudo-experiments.

• W polarization in W+jets and tt̄ events:

The uncertainty in the W boson polarization in W+jets events is estimated following the

procedure described in [16]. According to the theoretical uncertainties given in [81] and the

relevant CMS measurement [16], the difference between left- and right-handed fractions, fL−fR,

is varied by 10% for both charges. In addition, based on the results obtained in [16] for each

charge individually, a 5% variation in fL−fR is considered. The W polarization uncertainty in

tt̄ events is considered to have the conservative value of 5% [79, 82]. The corresponding system-

atic uncertainties are estimated by re-weighting the simulated samples. Since the polarization

fractions depend on the transverse momentum and pseudorapidity, of the W bosons, pT(W)and

η(W ) respectively, the variations are applied in different regions of pT(W)and |η|(W), namely:

~pT(W) : (0, 100), (100, 300), (300, 500), > 500 GeV, and |η|(W) : (0, 1), (1, 2), (2, 5). The

variation yielding the largest uncertainty is quoted as systematic uncertainty.

• Fully leptonic tt̄ decays:

The relative fraction of tt̄ events decaying fully-leptonically is relatively small compared to

the total tt̄ background. Thus, it is obtained directly from simulation, and a conservative

uncertainty of 50% on the expected number of tt̄(``) events is assigned, motivated by the

uncertainty in the tt̄ cross section measured in data.

• Lepton efficiency vs. pT:

The effect of the uncertainty in the SM estimation from the difference in lepton reconstruction

and identification, between data and simulation, is also considered. Based on the studies

presented in chapter 5, the lepton efficiency is varied by 10% at pT(`) = 20 GeV, and linearly

decreased to 0% for pT(`) > 40 GeV. The change in the SM prediction is quoted as systematic

uncertainty.
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• Other sources of systematic uncertainties:

Uncertainties arising from the trigger efficiency, pile-up and theoretical uncertainties in the

parton distribution functions (PDF) are also studied and found to be negligible.

The relative change in the SM estimation, from each source of systematic uncertainty is listed in

Table 6.8. In the muon channel, this corresponds to the relative change in RCS. In the electron

channel, each systematic uncertainty affects both RCS and the LP shape of the EWK template. Both

effects are considered for the values listed. Therefore, we expect larger uncertainties in the electron

channel. Overall, the systematic uncertainties in the SM estimate are small compared to similar

searches. The reason is twofold. First, by construction, the use of a transfer factor (RCS) which

relates the events in the control and signal regions, leads to full or partial cancellation of the main

sources of systematic uncertainties (luminosity, process cross section, JES, lepton efficiency, etc.)

Second, the LP variable itself is found to be resilient against imperfect experimental or theoretical

predictions. The dominant uncertainty in large regions of Slep
T stems from the limited number of

data in the control region. The second largest uncertainty is due to the uncertainty on the JES.

The relative error from the JES is small compared to other SUSY searches or EWK analyses involving

energetic jets and large E/T. To gain a more detailed understanding of this effect, an analytical error

propagation is carried out. LP depends on pT(W), and under the assumption that the uncertainty

on pT(W), due to JES, is a constant factor, x, of pT(W), the expansion of LP around x (x� 1), is:

LP = LP + x · dLP

dx
= LP − x · pT(`) cos(W, `)

pT(W)(1 + x)2
' LP(1− x). (6.9)

From (6.9) it can be seen that the uncertainty grows linearly with LP. Hence, the JES uncertainty

would affect mainly large values of LP.

Figure 6.12 displays an example of the LP distribution before and after applying the variations due

to JES. JES variations have a significant effect on the absolute yields, whereas the shape of LP

is affected only weakly, and mainly at large values of LP. This demonstrates that, the LP-based

background estimation, is quite robust against JES variations.

6.5 Results

The observed data and the results from the SM fits of the LP distribution in the different search

regions, are displayed in Figures 6.13 and 6.14 for the muon and electron channel respectively.
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Slep
T range [GeV]: (150 - 250) (250 - 350) (350 - 450) > 450

[%] [%] [%] [%]

Channel µ e µ e µ e µ e

500 < HT < 750 GeV

Jet and E/T energy scale 6 6 4 5 5 9 9 9
Lepton efficiency 5 5 5 2 3 1 1 2
Lepton pT scale 0 - 1 - 1 - 2 -
σ(tt̄) and σ(W) 3 1 1 1 1 2 1 1
W polarization in tt̄ 0 1 1 1 1 1 1 2
W polarization in W+jets 2 1 2 1 2 3 3 4
E/T resolution 2 2 1 1 1 2 4 4
tt̄(``) 5 5 5 5 3 3 1 1
SM simulation statistics 1 1 2 2 4 5 6 7
Total systematic uncertainty 11 10 9 8 8 12 13 13

750 < HT < 1000 GeV

Jet and E/T energy scale 5 7 4 7 8 8 6 9
Lepton efficiency 4 5 2 2 0 4 1 4
Lepton pT scale 0 - 0 - 1 - 3 -
σ(tt̄) and σ(W) 3 1 2 1 1 2 1 1
W polarization in tt̄ 0 1 1 2 1 2 1 2
W polarization in W+jets 2 5 2 2 2 3 3 6
E/T resolution 1 2 5 2 4 5 5 2
tt̄(``) 4 4 5 5 5 4 2 2
SM simulation statistics 3 2 5 3 7 5 9 6
Total systematic uncertainty 9 12 10 11 13 13 12 13

HT > 1000 GeV

Jet and E/T energy scale 5 10 5 10 11 10 7 8
Lepton efficiency 3 2 2 3 1 4 4 2
Lepton pT scale 0 - 1 - 5 - 1 -
σ(tt̄) and σ(W) 2 1 4 1 1 1 1 2
W polarization in tt̄ 0 2 0 1 1 1 1 2
W polarization in W+jets 3 11 2 3 3 7 3 13
E/T resolution 2 1 1 6 8 4 6 1
tt̄(``) 3 4 5 2
SM simulation statistics 6 8 10 9 11 14 12 14
Total systematic uncertainty 10 15 13 15 20 18 16 20

Table 6.8: Sources of systematic uncertainties and their effect on the estimation of SM in the different
regions in Slep

T and HT, for the muon and electron channels. The total uncertainty is the individual
uncertainties summed in quadrature.
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Figure 6.12: The LP distribution for events satisfying Slep
T ∈ (150, 250), before and after applying the

variations due to JES. Black markers correspond to the nominal LP distribution, while red and blue
markers correspond to the LP distribution after applying the downward and upward JES variations,
respectively. Left: the distributions normalized to 0.1 fb−1. Right: the distributions are normalized
to unity.

The SM estimates and the observed data in the control and signal regions, for the muon channel

are summarized in Table 6.9. Table 6.10 lists the predictions of the EWK, the QCD and the total

SM background, as well as the data yields observed in the control and signal regions, in the electron

channel. The observed data in all search regions are compatible with the SM estimate.

The SM estimates, along with the number of events observed in the signal region are displayed in

Figure 6.15, for muons and electrons. The SM predictions in the various regions of Slep
T and HT are

consistent with the numbers of events observed in data.

6.6 Interpretation of the results

Since the SM background predictions are consistent with the number of events observed in the data,

we proceed to set exclusion limits on different SUSY models. All limits are computed using the

modified-frequentist CLs method with an one-sided profile likelihood test statistic. More details can

be found in Appendix A. The results are interpreted in two different sets of models, CMSSM and

SMS-T3w, discussed in section 2.6.
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Slep
T range Control region (LP >0.3) Signal region (LP <0.15)

[GeV] Total MC Data Total MC SM estimate Data

500 < HT < 750 GeV

(250-350) 452±5.2 383 99.3±2.1 84.1±4.2±7.3 78
(350-450) 154±3.1 128 40.2±1.4 33.3±3.0±2.6 23
> 450 59.2±1.8 50 18.6±1.0 15.7±2.2±2.0 16

750 < HT < 1000 GeV

(250-350) 91.9±2.1 88 22.3±0.9 21.3±2.3± 2.2 22
(350-450) 34.6±1.3 25 10.3±0.6 7.5±1.5±1.0 8
> 450 26.7±1.4 18 8.8±0.6 5.9±1.4±0.7 7

HT > 1000 GeV

(250-350) 32.9±1.3 31 8.7±0.8 8.2±1.5 ±1.0 8
(350-450) 10.9±0.7 7 4.6±0.4 2.9± 1.1 ± 0.6 1
> 450 11.9±0.8 12 4.6±0.5 4.6±1.4±0.7 2

Table 6.9: SM estimates and observed number of events in the data, in all regions of Slep
T and HT, in

the muon channel. The columns “Total MC” correspond to the SM expectation from simulation and
they are only for reference. The first uncertainty listed for the SM estimate stems from the limited
statistics of the data in the control region, while the second includes all other uncertainties.

Slep
T range Control region (LP >0.3) Signal region (LP <0.15)

[GeV] QCD EWK Data QCD EWK SM estimate Data

500 < HT < 750 GeV

(250-350) 66±15 334±22 400 2.1±0.5 63.3±4.1 65.3±4.3±5.9 71
(350-450) 26.6±7.6 93±11 120 0.3±0.1 19.2±2.3 19.4±2.4±2.9 29

450 17.1±5.1 33.9±6.6 51 0.2±0.0 9.0±1.8 9.2±1.9±1.7 11

750 < HT < 1000 GeV

(250-350) 5.8±5.5 59.2±9.1 65 0.2±0.2 11.0±1.7 11.2±2.0±1.8 13
(350-450) 0.0±0.0 26.0±5.1 26 0 6.3±1.2 6.3±1.2±1.5 5
> 450 8.7±3.4 22.3±5.0 31 0.1±0.0 6.7±1.5 6.8±1.6±1.5 5

HT > 1000 GeV

(250-350) 10.4±4.3 20.6±5.4 31 0.3±0.1 4.5±1.2 4.8±1.5±1.1 8
(350-450) 0.5±1.7 11.5±3.7 12 0.0±0. 2.6±0.8 2.6±1.2±0.9 1
> 450 4.4±2.5 6.6±2.9 11 0.0±0.0 2.5±1.1 2.6±1.3±0.9 1

Table 6.10: Predictions of the EWK, QCD and total SM background, and the data yields observed
in the control and signal regions, in the electron channel. The first uncertainty quoted in the SM
estimate corresponds to the statistical uncertainty of the fit in the control region, while the second
uncertainty to all other uncertainties.
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Figure 6.13: Data and fit results for the predictions for the LP distribution in the muon channel,
for the different regions in Slep

T and HT. From top to bottom the three different HT regions. Left:

250 < Slep
T < 350 GeV, center: 350 < Slep

T < 450 GeV, and right: Slep
T > 450 GeV.
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Figure 6.14: Data and fit results for the predictions for the LP distribution in the electron channel,
for the different regions in Slep

T and HT. From top to bottom the three different HT regions. Left:

250 < Slep
T < 350 GeV, center: 350 < Slep

T < 450 GeV, and right: Slep
T > 450 GeV.



Chapter 6: Search for supersymmetry in the single lepton final state at
√

s=7 TeV 107

 [GeV]
lep
TS

200 300 400 500

E
ve

n
ts

0

50

100

150

200

250

300

 = 7 TeVs             -14.98 fbCMS

Muons

(500,750) GeV∈TH

SM estimate
Data
LM3
LM6

 [GeV]
lep
TS

200 300 400 500

E
ve

n
ts

0

10

20

30

40

50

60

70

80
 = 7 TeVs             -14.98 fbCMS

Muons

(750,1000) GeV∈TH

SM estimate
Data
LM3
LM6

 [GeV]
lep
TS

200 300 400 500

E
ve

n
ts

0

5

10

15

20

25

30

35

40

45

 = 7 TeVs             -14.98 fbCMS

Muons

>1000 GeVTH

SM estimate
Data
LM3
LM6

 [GeV]
lep
TS

200 300 400 500

E
ve

n
ts

0

50

100

150

200

250

 = 7 TeVs             -14.98 fbCMS

Electrons

(500,750) GeV∈TH

SM estimate
Data
LM3
LM6

 [GeV]
lep
TS

200 300 400 500

E
ve

n
ts

0

10

20

30

40

50

60

 = 7 TeVs             -14.98 fbCMS

Electrons

(750,1000) GeV∈TH

SM estimate
Data
LM3
LM6

 [GeV]
lep
TS

200 300 400 500
E

ve
n

ts
0

5

10

15

20

25

 = 7 TeVs             -14.98 fbCMS

Electrons

>1000 GeVTH

SM estimate
Data
LM3
LM6

Figure 6.15: Comparison of the SM estimate and the number of events observed in the signal region,
in the different Slep

T regions, for muons (top) and electrons (bottom). Left: 500 < HT < 750 GeV;
Center: 750 < HT < 1000 GeV; Right: HT> 1000 GeV. The green band corresponds to the total
statistical and systematic uncertainty on the SM estimate. The open markers correspond to the
expected yields of two indicative SUSY benchmark points, LM3 and LM6.

The excluded regions are obtained by statistically combining the results from all regions in Slep
T and

HT. The systematic uncertainties assigned to the SM background estimation are listed in Table 6.8.

Systematic uncertainties are also assigned to the signal yields. The effect of JES and E/T resolution

in the signal efficiency is computed separately for each point in the SUSY parameter space, both

in the CMSSM and in SMS-T3w, following the procedure described in section 6.4. The magnitude

of each one of the two uncertainties ranges between 5-15%. The uncertainty on the luminosity is

measured to be 4.5% [83]. In the case of SMS-T3w, the uncertainty due to the limited statistics of

the simulated sample, is also taken into account. The effect of pile-up has also been studied and

found to be negligible. Lastly, the signal yields in the muon and electron channels are corrected to

match the trigger efficiency measured in data and listed in Table 5.1.
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6.6.1 The CMSSM parameter space

The CMSSM scenario (section 2.6) chosen for the interpretation of the experimental results, has

three parameters fixed, tanβ = 10, A0 = 0 GeV and µ > 0, whereas the two mass parameters, m0

and m1/2, are allowed to vary.

As already discussed throughout this thesis, signal events exhibit different characteristics that depend

on the model parameters. Thus, the search is designed so as to achieve competitive sensitivity across

the entire CMSSM parameter space. This is obtained by defining disjoint regions in Slep
T and HT.

Figure 6.16 displays the signal selection efficiency in the muon channel, for events with HT > 500

GeV, in two regions of Slep
T . The signal efficiency depends strongly on the CMSSM parameters.

Low-Slep
T regions contribute in the overall sensitivity when SUSY models with small mass splittings

are probed. This leads to an increased sensitivity at higher values of m0.

Figure 6.16: Signal selection efficiency in the CMSSM parameter space, in the muon channel, for
events with HT > 500 GeV, in two regions of Slep

T ; Slep
T ∈ (250, 350) (left) and Slep

T > 450 GeV (right).

Figure 6.17 displays the expected and observed excluded region in the m0-m1/2 plane. Theoretical

uncertainties on the signal yield, arising from the parton distribution functions (PDF), renormaliza-

tion and factorization scales, are also considered. They are determined by recomputing the expected

signal yield after modifying the cross section of each SUSY production mechanism for each model,

by one standard deviation, according to [24]. The excluded region lies below the plotted curves.
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Two additional searches for SUSY signals in the single-lepton final state, using the same data sample,

the “Lepton Spectrum method” (LS) and the “ANN method” (ANN) [78], have been developed in

CMS. The LS method uses the pT spectrum of the charged lepton observed in data, to predict the

E/T distribution of the SM background stemming from single-lepton processes. The ANN method

combines information from several kinematic variables into an artificial neural network discriminant.

The output of the discriminant is then used in conjunction with E/T to define the signal region.

Figure 6.18 displays the region in the CMSSM parameter space that is excluded by the three searches

in the single-lepton final state: LP, LS and ANN. The agreement between the three methods lends

confidence in the limits obtained. At low values of m0 (m0 < 600 GeV), we exclude gluinos with

masses up to 1.3 TeV. The sensitivity of the search gradually falls with increasing m0, and hence at

high values of m0 (m0 > 1200 GeV) gluinos with masses up to 700 GeV are excluded.

6.6.2 The Simplified Model Spectra (SMS) parameter space

The second approach in the interpretion of the results is to use the SMS models discussed in sec-

tion 2.6, which provide a more generic description of new physics signatures. A relevant topology for

the single-lepton signature is SMS-T3w presented in detail in 2.6. An example of the signal selection

efficiency for events residing in the muon channel, and meet the requirement of HT > 500GeV in two

regions of Slep
T , is displayed in Figure 6.19. The mass of the chargino is dictated by equation (2.45).

The region with mg̃ < mLSP is kinematically forbidden. Regions where mg̃ ' mLSP (but always

mg̃ > mLSP) are characterized by low values of E/T and HT, and therefore small signal efficiency.

This behavior is expected since only those events where the gluino-pair recoils against large values

of initial state radiation (ISR) pass the selection criteria. However, ISR is poorly modeled in these

simulated samples and thus, these regions are excluded from the limit calculation. Models with a

large mass difference between the gluino and the LSP, typically have large values of E/T, and are thus

easier to probe. From Figure 6.19, it can be seen that models with small mass splittings (typically

close to the diagonal) populate mainly lower regions of Slep
T .

Figure 6.20 displays the observed 95% upper limits on the production cross section in the SMS-

T3w model, for three different masses of the intermediate chargino, according to equation (2.45).

Fluctuations observed at low mg̃ are due to the low signal efficiency in this region. In addition, the

cross section limits are calculated as a function of mg̃ for a fixed LSP (χ̃0) mass at mLSP = 50 GeV,

and a chargino mass equal to mχ̃± = 0.5 · (mg̃ + mLSP). Figure 6.21 displays the expected and the

observed excluded cross section for the three methods described above.
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Figure 6.19: Signal selection efficiency in the T3w parameter space, for chargino masses estimated
from equation (2.45), for x = 0.75. Events belong in the muon channel, with HT > 500 GeV, in two

regions of Slep
T ; Slep

T ∈ (250, 350) (left) and Slep
T > 450 GeV (right).

Depending on the mass of the intermediate chargino, we are probing gluinos with masses up to 750

GeV, for a very light LSP. At low gluino masses (mg̃ < 500 GeV) we probe LSPs with masses up to

300 GeV.
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Figure 6.20: Observed 95% upper limits on the production cross section in the SMS-T3w model, for
three different masses of the intermediate chargino, according to equation (2.45): top-left: x=0.25,
top-right: x=0.5 and bottom: x=0.75. The black line corresponds to the observed limit in the
mg̃−mLSP parameter space, and the dashed lines to variations in the nominal cross section of gluino
production. The white region below the diagonal-dashed line is excluded from the calculation, for
the reasons discussed in the text. Fluctuations observed at low mg̃ are due to the low signal efficiency
in this region.
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single lepton final state at
√
s = 8 TeV

Extensive searches by the CMS and ATLAS experiments at the LHC have shown no evidence of

production of supersymmetric particles in p-p collisions at
√

s = 7 TeV. The results from these

searches were thus used to constrain the SUSY parameter space allowed. Figure 7.1 summarizes the

exclusion limits in the CMSSM, from several SUSY searches performed in CMS, using the 7 TeV

data. The allowed CMSSM parameter space is limited, yet not fully excluded.
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The analyses performed on the 7 TeV data have already excluded the existence of supersymmetric

partners of the first two generations of squarks, below ∼1.5 TeV, for a wide range of SUSY param-

eter space. Nevertheless, there is still strong motivation for the existence of SUSY. The dominant

correction to the Higgs mass arises from the coupling to the top quark, thus, if SUSY is responsible

for the stabilization of the Higgs mass, only top squarks are really required to be in the ∼TeV scale,

to effectively cancel these corrections. To a lesser extent, similar reasoning holds also for bottom

squarks, whereas the first two generations of squarks may well be above the ∼TeV scale. Gluinos

should be also light, ∼TeV scale, since they contribute in the mass of the Higgs, as well. Therefore,

a strong and viable SUSY scenario, with third generation squarks and gluons around the TeV scale,

exists.

Taking under consideration the results from the SUSY searches on the 7 TeV data and their impli-

cations for supersymmetry, we design a dedicated search for top squarks [84]. The analysis uses the

full sample of data collected at a center of mass energy of 8 TeV, corresponding to an integrated

luminosity of 19.3 fb−1. As discussed in chapter 2, stop quarks can be produced either in gluino

decays or directly. Each production mechanism leads to very different signatures. If kinematically

allowed, the gluino-induced stop quark production provides a more powerful search channel due to

the presence of the four top quarks in the decay chain, since such a process is very rare in SM.

A leptonic based search in this topology is well motivated by the fact that, due to the decay of

each top quark to a W boson and a b quark, there is large probability that, at least, one of the

W bosons decays leptonically. Particularly, the single-lepton final state has the largest branching

fraction (> 40%), motivating the design of a search in this topology. In the absence of g̃→ t̃t, stop

quarks are produced directly with significantly smaller cross section.

7.1 Search Strategy

The starting point in the design of the search is the analysis presented in chapter 6. However, to

exploit the characteristics of this new scenario, extensive optimization has been performed using the

SM and SUSY samples presented in chapter 5,

Based on arguments discussed in chapter 6, we utilize the Slep
T and HT variables also in this search.

We preserve the same definition of disjoint regions in Slep
T , and require events to satisfy HT > 500

GeV.
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The decay chain of this topology leads to events with large jet multiplicities. The Nj distribution of

the main SM processes (tt̄(`), tt̄(``), W+jets and DY+jets) and two indicative SUSY mass scenarios

of the T1tttt model, is shown on Figure 7.2. SUSY events populate larger values of Nj, and therefore

we impose a tight selection on Nj (Nj ≥ 6) to suppress the SM background.

jN
3 4 5 6 7 8 9 10

E
ve

nt
s 

/ b
in

-210

-110

1

10

210

310

410

510

610

(1250,1)

(1000,600)

2l→tt
1l→tt

W
DY

1

0χ∼t t→ g~,  g~g~ →pp 

CMS Simulation -1 19.3 fb  = 8 TeVs 

>450 GeVT
lep

S
>500 GeVTH

jN
3 4 5 6 7 8 9 10

a.
 u

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(1250,1)
(1000,600)

Total SM

1

0χ∼t t→ g~,  g~g~ →pp 

CMS Simulation  = 8 TeVs 

>450 GeVT
lep

S
>500 GeVTH

Figure 7.2: The Nj distribution of the main SM processes (tt̄(`), tt̄(``), W+jets and DY+jets) and

two indicative SUSY mass scenarios of the T1tttt model, in simulated events with Slep
T > 450 GeV and

HT > 500 GeV. Left: The distributions normalized to the integrated luminosity. Solid histograms
correspond to different SM processes, while the black and blue dashed lines to two SUSY mass points
of the T1tttt model. Right: The distributions normalized to unity. “Total SM” corresponds to the
sum of the SM contributions shown on the left.

In addition, the final state of signal events consists of four bottom quarks, whereas SM processes with

such large b quark multiplicities (Nb) are expected to be rare. Figure 7.3 displays the Nb distribution

in simulation, for SM and SUSY. The vast majority of the SM processes can produce up to two b

quarks, hence, SM events with Nb ≥ 3 involve, at least, one of the quarks to be mis-identified as

originating from the hadronization of a bottom quark. To account for the b-tagging inefficiency,

events with Nb ≥ 2 are selected. The tight selection on Nb suppresses significantly many SM

processes, like W+jets, while in parallel, a large fraction of the signal is preserved. To increase the

sensitivity, the search is carried out in two different regions in Nb, namely: Nb = 2 and Nb ≥ 3.

Table 7.1 summarizes the selection applied to the signal sample. Tight requirements on Nj and

Nb, lead to significant reduction on the W+jets background. The dominant background stems from

semi- and fully-leptonic tt̄ decays.
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Figure 7.3: The Nb distribution of the main SM processes and two indicative SUSY models, in
simulated events with Slep

T > 450 GeV and HT > 500 GeV. Left: The distributions normalized to
the integrated luminosity. Solid histograms correspond to different SM processes, while the black
and blue dashed lines to two SUSY mass scenarios of the T1tttt model. Right: The distributions
normalized to unity. “Total SM” corresponds to the sum of the SM contributions shown on the left.

Quantity Requirement

N` = 1
Nj ≥ 6
Nb = 2, ≥ 3

Slep
T ∈ (250, 350), ∈ (350, 450), > 450 GeV

HT ≥ 500 GeV

Table 7.1: The definition of the signal sample.

In addition to the requirements imposed on the various event-description variables, an additional

kinematic variable needs to be utilized to further distinguish SM and SUSY. The starting point is

the LP variable, which we factorize in two parts, as:

LP =
pT(`)

pT(W)
· cos(∆φ(W, `)).

The first part involves the transverse momenta of the charged lepton and the W boson, while the

second part includes the angle between them. The impact of each part on the sensitivity of the

search has been studied in detail and the conclusions are discussed below.
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In SM backgrounds stemming from single lepton processes, mainly W+jets and semi-leptonic tt̄ de-

cays, the azimuthal angle between the W boson and the charged lepton, ∆φ(W, `), is limited to

a maximum value which is dictated by the mass of the W and its momentum. Moreover, the re-

quirement of large values of Slep
T , favors those SM processes where the W boson is produced with

large transverse momenta. As a result, the charged lepton and the neutrino from the decay of the W

boson are emitted at small angles, close to the boson direction. Therefore, the ∆φ(W, `) distribution

becomes narrower for events with larger Slep
T , and concentrated at smaller values. In contrast, SUSY

events are not expected to have such a maximum (since charged lepton and E/T are less correlated)

and thus are almost uniformly distributed in ∆φ(W, `). The only SM process that populates the tail

of the ∆φ(W, `) distribution, stems from fully-leptonic tt̄ decays, where the second charged lepton

escapes detection or is outside the detector acceptance. The missed charged lepton leads to artificial

E/T, hence tt̄(``) events mimic the behavior of the signal.

Extensive studies with simulated events have shown that using only the angular part improves

significantly the sensitivity of the search. Therefore, the additional kinematic variable that will be

used is ∆φ(W, `). Figure 7.4 displays the ∆φ(W, `) distribution in SM and SUSY, as obtained from

simulation. As expected, SM events populate smaller values of ∆φ(W, `). The ∆φ(W, `) shape in

SUSY events has a small dependence on the mass difference between the t̃ and the χ̃0
1 (LSP). Based

on optimization studies performed in simulation, we define a signal region as consisting of all events

with ∆φ(W, `) > 1. The region of events with ∆φ(W, `) < 1 is used as control region, for the

estimation of the SM background in the signal region.

Tables 7.2 and 7.3 list the expected yields from simulation for the main SM processes and two SUSY

mass scenarios of the T1tttt model, in the muon and electron channel respectively. The expected

yields are split in three disjoint regions based on Nb. Columns “signal” and “control” correspond

to events with ∆φ(W, `) > 1 and ∆φ(W, `) < 1 respectively. The expected yields in the control

region and Nb = 1 are included for completeness and are discussed later in the chapter. The SM

background in the signal region is dominated by tt̄ events, mainly tt̄(``). Contributions from W+jets

and single-top processes are small, whereas the background from QCD multijet processes is negligible

and is thus not listed.
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Figure 7.4: The ∆φ(W, `) distribution in simulation, for the main SM processes and two indicative
SUSY mass scenarios of the T1tttt model, for events with Nj ≥ 6, Nb ≥ 3 and HT > 500 GeV. Left:

Slep
T ∈ (250, 350) GeV, middle: Slep

T ∈ (350, 450) GeV, and right: Slep
T > 450 GeV. All distributions

are normalized to the integrated luminosity. The SM processes are illustrated with solid histograms,
while the two SUSY mass points with black and blue dashed lines.
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Muon Slep
T range [GeV]:

Channel (250-350) (350-450) > 450
(Nj ≥ 6) signal control signal control signal control

Nb ≥ 3

tt̄(`) 0.4±0.1 23.4±1.3 < 0.07 5.7±0.7 <0.00 1.7±0.4
tt̄(``) 1.2±0.2 2.2±0.3 0.2±0.1 0.7±0.2 0.1±0.1 0.2±0.1
W+jets < 0.32 < 0.01 < 0.33 < 0.01 <0.29 0.3±0.3
Z+jets < 0.04 < 0.01 < 0.04 < 0.01 <0.06 < 0.01
Single-t 0.3±0.2 0.9±0.2 < 0.08 0.6±0.2 <0.08 0.2±0.1
Total MC 1.9±0.3 26.5±1.3 0.2±0.1 7.0±0.8 0.1±0.1 2.4±0.5
T1tttt (1250,1) 0.3±0.0 0.2±0.0 0.3±0.0 0.2±0.0 1.0±0.0 0.7±0.0
T1tttt (1000,600) 1.6±0.1 1.2±0.1 0.5±0.0 0.4±0.0 0.3±0.0 0.3±0.0

Nb = 2

tt̄(`) 1.5±0.3 131.7±3.1 0.1±0.1 32.3±1.5 <0.00 9.8±0.9
tt̄(``) 4.8±0.4 11.4±0.7 1.5±0.2 3.3±0.4 0.3±0.1 1.2±0.2
W+jets < 0.32 2.1±0.8 < 0.33 0.6±0.4 <0.29 1.4±0.7
Z+jets < 0.04 0.3±0.1 < 0.04 < 0.01 <0.06 < 0.01
Single-t 0.3±0.2 4.1±0.8 < 0.08 2.4±0.7 0.2±0.2 1.1±0.4
Total MC 6.6±0.5 149.6±3.3 1.6±0.3 38.7±1.7 0.4±0.2 13.5±1.2
T1tttt (1250,1) 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.9±0.0 0.6±0.0
T1tttt (1000,600) 1.7±0.1 1.2±0.1 0.6±0.0 0.6±0.0 0.3±0.0 0.3±0.0

Nb = 1

tt̄(`) 3.1±0.5 168.1±3.6 0.1±0.1 43.8±1.8 <0.00 12.0±1.0
tt̄(``) 6.0±0.5 14.7±0.8 1.0±0.2 3.9±0.4 0.6±0.1 1.6±0.2
W+jets 0.6±0.4 19.6±2.7 < 0.33 6.3±1.6 <0.29 5.0±1.3
Z+jets < 0.04 0.7±0.2 < 0.04 0.3±0.1 <0.06 < 0.01
Single-t 0.5±0.4 5.9±1.0 0.3±0.3 3.1±0.8 0.2±0.2 1.8±0.6
Total MC 10.2±0.9 209.1±4.7 1.5±0.4 57.4±2.6 0.7±0.2 20.5±1.8
T1tttt (1250,1) 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.5±0.0 0.4±0.0
T1tttt (1000,600) 0.9±0.1 0.7±0.1 0.3±0.0 0.3±0.0 0.2±0.0 0.2±0.0

Table 7.2: Expected yields in the muon channel, for the main SM processes and two SUSY mass
scenarios of the T1tttt model, as obtained from simulation. All yields are normalized to the integrated
luminosity of 19.3 fb−1. Columns “signal” and “control” correspond to events with ∆φ(W, `) > 1
and ∆φ(W, `) < 1 respectively.
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Electron Slep
T range [GeV]:

channel (250-350) (350-450) > 450
(Nj ≥ 6) signal control signal control signal control

Nb ≥ 3

tt̄(`) 0.4±0.2 19.7±1.2 0.1±0.1 5.9±0.7 <0.13 1.7±0.4
tt̄(``) 0.8±0.2 1.8±0.3 0.3±0.1 0.8±0.2 0.1±0.1 0.4±0.2
W+jets < 0.32 < 0.01 < 0.34 0.4±0.4 <0.33 < 0.01
Z+jets < 0.04 < 0.01 < 0.03 < 0.01 <0.03 < 0.01
Single-t 0.1±0.1 1.0±0.2 < 0.08 0.2±0.1 <0.08 0.2±0.1
Total MC 1.3±0.2 22.5±1.2 0.4±0.1 7.4±0.8 0.1±0.1 2.3±0.4
T1tttt (1250,1) 0.2±0.0 0.2±0.0 0.3±0.0 0.2±0.0 0.8±0.0 0.5±0.0
T1tttt (1000,600) 1.3±0.1 1.0±0.1 0.5±0.0 0.3±0.0 0.3±0.0 0.2±0.0

Nb = 2

tt̄(`) 1.4±0.3 115.6±2.9 0.1±0.1 26.4±1.4 <0.13 8.2±0.8
tt̄(``) 4.9±0.4 10.5±0.6 1.3±0.2 3.2±0.3 0.3±0.1 0.8±0.2
W+jets < 0.32 0.9±0.5 < 0.34 0.4±0.3 <0.33 < 0.01
Z+jets < 0.04 0.1±0.1 < 0.03 0.1±0.1 <0.03 < 0.01
Single-t 0.6±0.4 6.3±1.1 < 0.08 1.7±0.6 0.1±0.1 0.9±0.4
Total MC 6.8±0.7 133.3±3.2 1.3±0.2 31.9±1.5 0.4±0.1 10.0±0.9
T1tttt (1250,1) 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.7±0.0 0.4±0.0
T1tttt (1000,600) 1.4±0.1 0.9±0.1 0.5±0.0 0.5±0.0 0.3±0.0 0.2±0.0

Nb = 1

tt̄(`) 1.9±0.4 158.9±3.6 < 0.1 38.9±1.7 <0.13 12.8±1.0
tt̄(``) 6.5±0.5 13.5±0.7 1.6±0.3 4.5±0.4 0.5±0.1 1.6±0.3
W+jets 1.5±0.8 11.0±2.1 < 0.34 4.9±1.3 <0.33 4.7±1.3
Z+jets < 0.04 2.3±0.4 < 0.03 0.2±0.1 <0.03 0.1±0.1
Single-t 0.6±0.3 7.7±1.3 < 0.08 2.4±0.7 0.2±0.2 1.1±0.5
Total MC 10.4±1.1 193.4±4.4 1.6±0.3 50.8±2.3 0.7±0.3 20.3±1.7
T1tttt (1250,1) 0.1±0.0 0.1±0.0 0.1±0.0 < 0.01 0.3±0.0 0.2±0.0
T1tttt (1000,600) 0.6±0.0 0.6±0.0 0.4±0.0 0.3±0.0 0.2±0.0 0.2±0.0

Table 7.3: Expected yields in the electron channel, for the main SM processes and two SUSY mass
scenarios of T1tttt model, as obtained from simulation. All yields are normalized to the integrated
luminosity of 19.3 fb−1. Columns “signal” and “control” correspond to events with ∆φ(W, `) > 1
and ∆φ(W, `) < 1 respectively.
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7.2 Estimation of the standard model background

The estimation of the SM background in the signal region follows an approach similar to the one

discussed in chapter 6. The main background stems from leptonic decays of tt̄, and to a lesser

extend from W+jets and single-top. Tight requirements on the multiplicity of jets and b-tags in

the event suppress significantly backgrounds from QCD multijet processes. Nevertheless, since the

uncertainties in simulating QCD backgrounds can be significant, this background is estimated using

special control samples. The estimation of the total SM background relies on separate estimations

of the EWK and QCD contributions.

7.2.1 Estimation of the EWK background

The number of events in the signal region is estimated from the control region using a transfer factor,

defined as:

RCS =
Nsignal

Ncontrol
=

N(∆φ(W, `) > 1)

N(∆φ(W, `) < 1)
, (7.1)

which is the ratio of the number of events in the signal and control region. Under the assumption

that any contributions from QCD processes are negligible, the prediction of the background from

SM processes in the signal region, Npred
SM , takes the form:

Npred
SM

(
Slep

T ,Nb; ∆φ(W, `) > 1
)

= RCS

(
Slep

T ,Nb

)
·Ndata

(
Slep

T ,Nb; ∆φ(W, `) < 1
)
, (7.2)

where, Ndata(∆φ(W, `) < 1), is the number of data events observed in the control region. This

procedure is carried out independently in each region of Slep
T and Nb.

The transfer factor can be extracted, either from simulation with the appropriate systematic un-

certainties assigned, or using data. The fact that the SM background is dominated by a single

background (tt̄) makes a data-driven estimation plausible. An important observation for the design

of the background estimation strategy is that in a sample consisting of tt̄(`) and tt̄(``) events, RCS is

roughly independent on the b-jet multiplicity. Figure 7.5 displays RCS as a function of Nb in simu-

lated events. In the absence of signal, RCS, has a weak dependence on Nb, whereas potential presence

of signal has a drastic effect on RCSfor events with large b-jet multiplicities (Nb ≥ 2). Thus, RCS can

be extracted from a sample with fewer b-tags, and then applied to samples with more b-tags, where

the search is performed. In addition, the remaining backgrounds, namely W+jets and single-top,
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due to their smallness, can be also included in the extraction of RCS, without a noticeable effect on

the dependence of RCS across the different b-tag multiplicity regions.
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Figure 7.5: The transfer factor, RCS, as a function of Nb in simulated events with Nj ≥ 6, in the
muon (top) and electron (bottom) final states. The solid lines correspond to RCS estimated from
all SM processes, while the dashed lines correspond to RCS obtained from the sum of the total SM
and a SUSY mass scenario of T1tttt (Mg̃ = 1250 GeV, MLSP = 1 GeV). The plots correspond to

three different regions in Slep
T ; left: Slep

T ∈ (250, 350) GeV, middle: Slep
T ∈ (350, 450) GeV, and right:

Slep
T > 450 GeV.

Therefore, the strategy to estimate the SM background in the signal region is to measure RCS in

the SM background-dominated sample with Nb = 1, and then apply it to samples with higher b-tag

multiplicities, which are enriched in the presumed SUSY signal. Table 7.4 lists the data yields and

the corresponding RCS, for events with Nb = 1 in the signal sample.

To account for any residual dependence of the transfer factor on Nb, we introduce the correction

factor, κCS. The correction factor is obtained from the closure of the background estimation method

in simulation. Table 7.5 summarizes the values of κCS in the muon and electron channels, in different

regions of Nb and Slep
T . The column “Predicted” corresponds to the SM expectation following (in

simulation) the strategy described above, whereas the column “True” corresponds to the actual SM
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Slep
T [GeV] signal control RCS(Nb = 1,Slep

T )

N
b
=

1

µ

(250,350) 9 192 0.05 ± 0.02
(350,450) 2 55 0.04 ± 0.03
> 450 0 10 <0.1

e
(250,350) 6 169 0.04 ± 0.01
(350,450) 3 44 0.07 ± 0.04
> 450 0 17 <0.06

Table 7.4: Data yields and the corresponding RCS for events with Nb = 1 in the signal sample, in
the different Slep

T regions.

yields in simulation. The correction factor is the ratio between the “True” and the “Predicted” yields,

and depends on Nb and Slep
T . The κCS factor ranges from 0.91 to 1.69 with statistical uncertainties

up to 0.7.

Slep
T [GeV] Predicted True κCS(Slep

T ,Nb)

µ

N
b

=
2 (250, 350) 7.56±0.68 6.87±0.56 0.91±0.14

(350, 450) 1.03±0.29 1.63±0.26 1.57±0.51
> 450 0.51±0.18 0.46±0.21 0.89±0.51

N
b
≥

3 (250, 350) 1.34±0.15 1.96±0.35 1.46±0.30
(350, 450) 0.19±0.06 0.22±0.09 1.20±0.58
> 450 0.09±0.04 0.10±0.05 1.11±0.74

e

N
b

=
2 (250, 350) 7.78±0.83 7.37±0.72 0.95±0.14

(350, 450) 1.08±0.19 1.43±0.24 1.32±0.32
> 450 0.39±0.15 0.41±0.16 1.04±0.56

N
b
≥

3 (250, 350) 1.26±0.15 1.40±0.26 1.11±0.24
(350, 450) 0.25±0.05 0.42±0.15 1.69±0.68
> 450 0.09±0.04 0.12±0.07 1.38±0.94

Table 7.5: Closure of the background estimation method in simulation. The column “Predicted”
corresponds to the SM expectation following (in simulation) the strategy described above, whereas
the column “True” corresponds to the actual SM yields in simulation. The correction factor is the
ratio between the “True” and the “Predicted” yields, and depends on Nb and Slep

T .

Hence, the transfer factor defined in (7.2), has the form:

RCS

(
Slep

T ,Nb

)
= RCS

(
Slep

T ,Nb = 1
)
· κCS

(
Slep

T ,Nb

)
. (7.3)

The source of the residual dependence of RCS on Nb has been studied in detail. The first source is the

different relative composition of the background between Nb = 1 and higher Nb, since the W+jets
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contribution decreases as a function of Nb. Thus, extraction of RCS in the Nb = 1 sample leads

to small under-estimation of the total SM in higher b-tag multiplicities. In addition, the relative

fraction of tt̄(`) to tt̄(``) events has also a small dependence on Nb and Nj. The second source of

dependence of RCS on Nb is due to small differences in the RCS of each process (e.g. the tt̄(``)

process). It is found in simulation that there is a modest dependence between the kinematics of each

process and the probability of identifying a bottom quark. Any of these effects is small (∼10-20%),

reliably modeled in simulation, and is corrected using the κCS factor. Lastly, any of these effects has

a minimal impact on the sensitivity of the search, given that potential presence of a signal, results

in a very significant increase in RCS, typically by more than a factor of six.

7.2.2 Estimation of the QCD background

Simulation indicates that the QCD multijets background is significantly smaller than the other

backgrounds, both in the muon and electron channels. This was also confirmed by the data-driven

methods presented in chapter 6, where two of the three search variables were the same (Slep
T , HT) and

the third was similar (LP instead of ∆φ(W, `)). In this analysis, the QCD background is expected to

be even smaller due to the stricter requirements on Nj and Nb. Nevertheless, the QCD background

is estimated with data control samples, following an approach similar to the one in the 7 TeV

single-lepton search.

7.2.2.1 Upper bound on QCD in muon channel

The QCD background in the muon final state is estimated using a QCD-enriched control data sample.

The sample consists of muons with Irel
comb > 0.3, whereas the requirement on d0 is lifted. Events also

meet the requirement of HT > 500 GeV and Nb ≥ 1. The transfer factor for QCD multijets events,

RQCD
CS , is derived from simulation, for different jet multiplicities and regions of Slep

T (classes). Each

class is defined as:

• class 0: 3 ≤ Nj ≤ 5, 250 < Slep
T < 350 GeV

• class 1: 3 ≤ Nj ≤ 5, 350 < Slep
T < 450 GeV

• class 2: 3 ≤ Nj ≤ 5, Slep
T > 450 GeV

• class 3: Nj ≥ 6, 250 < Slep
T < 350 GeV
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• class 4: Nj ≥ 6, 350 < Slep
T < 450 GeV

• class 5: Nj ≥ 6, Slep
T > 450 GeV

The first three classes, with lower jet multiplicities, are designed to increase the statistical power of

the results. Figure 7.6 (left) displays RQCD
CS in each of the classes, which is found to be smaller than

0.05, in all cases. In what follows, and since it will turn out that this background is negligible, we

can afford using a conservative estimate. Therefore, we consider RQCD
CS = 0.05 across all the different

classes.

Using the same event classification, we estimate from simulation the ratio IµQCD, defined as:

IµQCD =
N
(
Irel
comb < 0.12

)
N
(
Irel
comb > 0.3

) , (7.4)

which is the ratio of the number of isolated muons to non-isolated ones. Figure 7.6 (right) displays

IµQCD in each of the classes. Isolated muons stemming from QCD multijet processes are at most 5%

with respect to the non-isolated. As before, we choose to consider the conservative value of 0.05.

Figure 7.6: Left: The transfer factor for QCD multijets events, RQCD
CS in simulation, for different jet

multiplicities and regions of Slep
T (classes). Right: the ratio of the number of isolated muons to the

non-isolated, IµQCD, in simulation, for different jet multiplicities and regions of Slep
T . The definition

of each class is described in the text.

Depending on the selection, the EWK contamination in the QCD-enriched sample can be significant.

Figure 7.7 displays the relative fraction of events stemming from QCD processes to the total number
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of SM events in simulation, in each of the different classes. Nevertheless, given the magnitude of the

QCD background, no correction is applied.

Figure 7.7: Relative fraction of events stemming from QCD processes to the total number of SM
events in simulation, in each of the the different classes.

The number of QCD events is computed from the following equations:

Nµ
QCD = IµQCD ·Ndata

(
Irel
comb > 0.3

)
(7.5)

Nµ
QCD (∆φ(W, `) > 0.1) = RCS

QCD · IµQCD ·Ndata

(
Irel
comb > 0.3

)
, (7.6)

where Ndata

(
Irel
comb > 0.3

)
corresponds to the number of events in the data with non-isolated muons.

The total number of QCD events, inclusively in ∆φ(W, `), and in the signal region (∆φ(W, `) > 1)

only, is estimated from (7.5) and (7.6), respectively. Figure 7.8 depicts the number of QCD events

predicted for the several classes in data. This background is smaller than 1% of the total SM

background, and hence neglected in what follows.

7.2.2.2 QCD estimation in electron channel

The background stemming from multijet events in the electron channel is larger compared to the

muon channel, but still significantly smaller than the other backgrounds. The estimation of this

background relies on a control sample in data, dominated by QCD events, with the same selection
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Figure 7.8: Predicted number of QCD events, inclusive in ∆φ(W, `) (black), and in the signal region
only (red), for the several classes in data.

criteria as presented in section 6.2.2.2. In what follows, the sample will be referred to as “anti-

selected” sample. Figure 7.9 displays the comparison of the LP and ∆φ(W, `) shapes, as obtained

from the “selected” and “anti-selected” samples in simulated QCD events. The shapes from the

“anti-selected” sample provide a good description of the actual shape of the QCD background

meeting all selection requirements, albeit within the large statistical uncertainty due to the limited

number of simulated events.

Figure 7.9: Comparison between the “selected” and “anti-selected” LP (left) and ∆φ(el,W) (right)

distributions in simulated QCD events in the electron channel with Slep
T > 250 GeV and HT > 500

GeV.
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The method employed relies on the method used for the QCD estimate in the 7 TeV single-lepton

search. The LP distribution in data is fit with a combination of a QCD template obtained from the

“anti-selected” data sample, and a EWK template obtained from simulation. This method works

well in low Nb, but yields statistically weak results in larger Nb. Therefore, the estimation is carried

out in a sample with significant statistics (Nb = 1), and the results are extrapolated to higher

Nb where the search is performed. To gain confidence in the estimation of this background, two

complementary approaches have been developed.

The first approach makes use of the actual number of “anti-selected” data for the estimation of the

QCD background, and relies on the fact that the relative fraction of QCD events in the “selected”

and “anti-selected” samples should depend only weakly, if at all, on Nb. The number of QCD events

in the “selected” sample, NQCD
S (Slep

T ,Nb = 1), is determined by performing the template fit in each

region of Slep
T , in the Nb = 1 sample. Example of such a fit is displayed in Figure 7.10. The fit result

describes the data points well. The number of “anti-selected” data events in each region of Slep
T ,

NQCD
AS (Slep

T ,Nb = 1), is then used to define the ratio FQCD
A (Slep

T ,Nb = 1), as:

FQCD
A (Slep

T ,Nb = 1) =
NQCD

S (Slep
T ,Nb = 1)

NQCD
AS (Slep

T ,Nb = 1)
. (7.7)

Studies in simulation have shown that the factor FQCD
A (Slep

T ,Nb = 1) is constant, within the statistical

uncertainties, as a function of Nb. Therefore, the number of QCD events is estimated by:

NQCD
pred (Slep

T ,Nb)(A) = FQCD
A (Slep

T ,Nb = 1) ·NQCD
AS (Slep

T ,Nb). (7.8)

Table 7.6 summarizes the values of FQCD
A (Slep

T ,Nb = 1) for events in the signal sample (Nj ≥ 6). The

QCD estimate in each of the search regions, NQCD
pred (A), is listed in Table 7.7. The column “Data”

corresponds to the data yields observed in the control region. The QCD background amounts less

than 5-7% of the total number of data events observed in the control region (∆φ(W, `) < 1).

Slep
T [GeV] FQCD

A (Slep
T ,Nb = 1) (Nj ≥ 6)

(250, 350) 0.33±0.1
(350, 350) 0.25±0.18
> 450 0.19±0.29

Table 7.6: Values of FQCD
A (Slep

T ,Nb = 1) for events in the signal sample (Nj ≥ 6).
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Figure 7.10: Fit result in data in the Nb = 1 sample for events with 250 <Slep
T <350 GeV (left) and

Slep
T >350 GeV (right).

The second approach is developed under the assumption that any dependence of the QCD multijet

background on Slep
T should be similar for different Nb. The limited statistics in regions with large

values of Nb and Slep
T prevent individual fits on LP. Therefore, we estimate the dependence of the

QCD background on Slep
T in the Nb = 1 sample, by performing a template fit on LP, first individually

in each region of Slep
T and then inclusively in Slep

T (Slep
T > 250 GeV). From the results of the fits we

calculate the factor FQCD
B (Slep

T ,Nb = 1), defined as:

FQCD
B (Slep

T ,Nb = 1) =
NQCD

fit (Slep
T ,Nb = 1)

NQCD
fit (Slep

T > 250,Nb = 1)
. (7.9)

We have seen in simulation that the factor FQCD
B (Slep

T ,Nb = 1) is roughly independent of Nb.

Hence, we perform inclusive fits on LP, in samples with higher Nb, and use the corresponding

FQCD
B (Slep

T ,Nb = 1) factor to estimate the QCD contribution in each region of Slep
T , for the given

Nb. To suppress potential signal contamination, the fit is performed only in the control region

(∆φ(W, `) < 1). The predicted events stemming from QCD processes are estimated by:

NQCD
pred (Slep

T ,Nb)(B) = FQCD
B (Slep

T ,Nb = 1) ·NQCD
fit (Slep

T > 250,Nb). (7.10)

The predictions obtained for the QCD background using the second approach, NQCD
pred (B), are summa-

rized in Table 7.7. The predictions from both approaches agree within the statistical uncertainties.

The first approach is considered as the primary method due to the smaller statistical uncertainties.
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An additional systematic uncertainty of 100%, which is the difference of the two methods, is assigned

to the QCD estimate.

Slep
T range Nb = 1 Nb = 2 Nb ≥ 3

[GeV] Data NQCD Data NQCD
pred (A) NQCD

pred (B) Data NQCD
pred (A) NQCD

pred (B)

(250, 350) 169 12.7±6 112 6.7±3.7 0.91±0.23 45 0.67±0.58 5.4±4.3
(350, 450) 44 3.8±2.5 28 0.25±0.31 0.27±0.69 7 0.25±0.31 1.6±1.5
> 450 17 0.76±1.08 9 0.57±0.92 0.05±0.15 0 0 0.32±0.5

Table 7.7: Estimation of the QCD background in the signal sample (Nj ≥ 6), in different regions of

Nb and Slep
T , using both background estimation methods.

The final step involves the estimation of the QCD contamination in the signal region. This is

performed by extracting the transfer factor for QCD multijet processes, RQCD
CS , from the “anti-

selected” sample in the data. Figure 7.11 displays the ∆φ(W, `) distribution as obtained in the

“anti-selected” sample, in different regions of Nb and Slep
T . QCD events populate small values of

∆φ(W, `). The transfer factor, RQCD
CS , is displayed in Figure 7.12, and it is found to be less than

2%. Therefore, the QCD contamination in the signal region (∆φ(W, `) > 1) is negligible and the

SM estimate in the electron channel is corrected only for the presence of QCD events in the control

region, taking the form:

Npred
SM

(
Slep

T ,Nb; ∆φ(W, `) > 1
)

=

RCS
EWK

(
Slep

T ,Nb

)
·
(

Ndata(∆φ(W, `) < 1)−Npred
QCD(∆φ(W, `) < 1)

)
,

(7.11)

where the transfer factor REWK
CS

(
Slep

T ,Nb

)
now carries the label “EWK” to stress the fact that it

includes all the SM processes but QCD multijets.

7.3 Establishing the method in a control sample

An important aspect of the search is the validation of the ingredients of the analysis and the SM

background estimation method using a control sample in data, prior the application to the signal

sample. A control sample should have significantly larger statistics and similar selection, compared

to the signal sample, and be dominated by SM events. In this dedicated search for gluino-induced top

squark production, where potential signal should populate large jet multiplicities, a control sample
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Figure 7.11: Distribution of ∆φ(W, `) in the “anti-selected” data sample, for different Nb, in different

regions of Slep
T ; left: Slep

T ∈ (250, 350) GeV, middle: Slep
T ∈ (350, 450) GeV, and right: Slep

T > 450
GeV.

Figure 7.12: Transfer factor of QCD, RQCD
CS , extracted from the “anti-selected” sample in data.

Values of RQCD
CS are smaller than 0.02, leading to a negligible contamination in the signal region.

with lower jet multiplicities (3 ≤ Nj ≤ 5), and otherwise the same selection as the signal sample, is

used to validate the method. The expected yields in simulation for the main SM processes and two

indicative SUSY mass scenarios of the T1tttt model are listed in Tables 7.8 and 7.9, for the muon

and electron channels respectively.

The dependence of RCS on Nb is studied in this control sample, and the results are displayed in

Figure 7.13. Weak dependence of RCS on Nb is observed, and appropriate κCS factors, which are Nb-

dependent, are calculated in simulation to correct any residual effects. Potential signal contamination

has a small impact on RCS. Following the strategy described in the previous section, we extract the

transfer factor, RCS, from the Nb = 1 sample, in the different regions of Slep
T .
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Muon Slep
T range [GeV]:

Channel (250-350) (350-450) > 450
(3 ≤ Nj ≤ 5) signal control signal control signal control

Nb ≥ 3

tt̄(`) 0.7±0.2 52.8±1.9 0.1±0.1 15.7±1.1 <0.00 2.0±0.4
tt̄(``) 3.2±0.4 6.5±0.5 0.8±0.2 1.9±0.3 0.1±0.1 0.3±0.1
W+jets < 0.32 2.1±0.9 < 0.33 < 0.01 <0.29 < 0.01
Z+jets < 0.04 0.1±0.1 < 0.04 < 0.01 <0.06 < 0.01
Single-t 0.3±0.1 5.0±0.5 < 0.08 2.2±0.3 <0.08 0.4±0.1
Total MC 4.2±0.4 66.5±2.3 0.9±0.2 19.8±1.1 0.1±0.1 2.7±0.4
T1tttt (1250,1) < 0.01 < 0.01 < 0.01 < 0.01 0.1±0.0 0.1±0.0
T1tttt (1000,600) 0.3±0.0 0.2±0.0 0.1±0.0 < 0.01 <0.01 < 0.01

Nb = 2

tt̄(`) 8.8±0.8 552.2±6.3 0.5±0.2 176.5±3.5 <0.00 11.6±0.9
tt̄(``) 33.4±1.1 74.3±1.7 9.7±0.6 23.0±1.0 0.9±0.2 2.0±0.3
W+jets < 0.32 26.9±3.1 < 0.33 10.6±2.0 <0.29 2.0±0.8
Z+jets < 0.04 2.3±0.3 < 0.04 0.7±0.2 <0.06 0.1±0.1
Single-t 3.2±0.7 55.2±3.0 0.5±0.2 23.7±2.0 0.1±0.1 3.4±0.8
Total MC 45.4±1.5 710.9±7.8 10.6±0.7 234.6±4.6 1.1±0.2 19.0±1.5
T1tttt (1250,1) < 0.01 0.1±0.0 0.1±0.0 < 0.01 0.2±0.0 0.2±0.0
T1tttt (1000,600) 0.4±0.0 0.3±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0

Nb = 1

tt̄(`) 13.7±1.0 912.0±8.3 0.9±0.3 312.9±4.8 <0.00 24.7±1.4
tt̄(``) 51.4±1.5 128.7±2.3 14.6±0.8 46.2±1.4 1.1±0.2 3.3±0.4
W+jets 5.5±1.4 310.1±10.8 0.8±0.6 123.8±7.0 <0.29 8.1±1.7
Z+jets 0.2±0.1 21.5±1.0 < 0.04 6.3±0.5 <0.06 0.2±0.1
Single-t 5.4±1.0 100.5±4.9 1.3±0.6 45.4±3.1 0.2±0.2 5.2±1.1
Total MC 76.2±2.5 1472.8±14.7 17.6±1.1 534.7±9.2 1.3±0.3 41.6±2.5
T1tttt (1250,1) < 0.01 < 0.01 0.1±0.0 < 0.01 0.2±0.0 0.1±0.0
T1tttt (1000,600) 0.3±0.0 0.3±0.0 0.1±0.0 0.1±0.0 <0.01 0.1±0.0

Table 7.8: Expected yields in the control sample (3 ≤ Nj ≤ 5), for the main SM processes and two
SUSY mass scenarios of T1tttt model, as obtained from simulation in the muon channel. All yields
are normalized to the integrated luminosity of 19.3 fb−1. Columns “signal” and “control” correspond
to events with ∆φ(W, `) > 1 and ∆φ(W, `) < 1 respectively.
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Electron Slep
T range [GeV]:

Channel (250-350) (350-450) > 450
(3 ≤ Nj ≤ 5) signal control signal control signal control

Nb ≥ 3

tt̄(`) 1.2±0.4 51.9±2.0 < 0.07 14.7±1.1 <0.13 1.4±0.3
tt̄(``) 2.6±0.3 5.2±0.5 0.8±0.2 1.6±0.3 <0.04 0.2±0.1
W+jets < 0.32 2.8±1.3 < 0.34 < 0.01 <0.33 < 0.01
Z+jets < 0.04 0.1±0.1 < 0.03 < 0.01 <0.03 < 0.01
Single-t 0.2±0.1 3.9±0.4 < 0.08 2.0±0.3 <0.08 0.4±0.2
Total MC 4.0±0.5 64.0±2.5 0.8±0.2 18.2±1.2 <0.05 2.1±0.4
T1tttt (1250,1) < 0.01 < 0.01 < 0.01 < 0.01 0.1±0.0 0.1±0.0
T1tttt (1000,600) 0.3±0.0 0.1±0.0 0.1±0.0 < 0.01 <0.01 < 0.01

Nb = 2

tt̄(`) 6.7±0.7 496.4±6.0 0.5±0.2 159.3±3.4 <0.13 11.8±0.9
tt̄(``) 34.0±1.1 70.0±1.6 9.3±0.6 20.7±0.9 0.7±0.2 1.6±0.3
W+jets 1.9±0.9 23.3±3.0 < 0.34 10.4±2.0 <0.33 0.6±0.4
Z+jets 0.2±0.1 2.1±0.3 < 0.03 0.9±0.2 <0.03 < 0.01
Single-t 2.4±0.7 47.3±2.8 0.6±0.3 22.2±2.0 <0.08 2.4±0.6
Total MC 45.1±1.7 639.0±7.5 10.4±0.7 213.5±4.5 0.7±0.2 16.4±1.2
T1tttt (1250,1) < 0.01 < 0.01 0.1±0.0 < 0.01 0.2±0.0 0.1±0.0
T1tttt (1000,600) 0.4±0.0 0.3±0.0 0.1±0.0 0.1±0.0 <0.01 < 0.01

Nb = 1

tt̄(`) 11.6±0.9 820.0±7.9 0.8±0.2 296.1±4.7 <0.13 24.2±1.4
tt̄(``) 49.3±1.4 118.0±2.2 15.2±0.8 42.2±1.3 1.4±0.2 3.0±0.3
W+jets 3.6±1.1 277.0±10.5 0.7±0.5 131.6±7.4 <0.33 9.7±1.9
Z+jets 0.5±0.1 26.5±1.1 < 0.03 8.0±0.6 <0.03 0.3±0.1
Single-t 4.4±1.0 95.2±4.6 1.0±0.4 43.0±3.1 0.2±0.2 4.2±1.0
Total MC 69.3±2.2 1336.7±14.2 17.7±1.0 520.8±9.4 1.5±0.3 41.4±2.6
T1tttt (1250,1) < 0.01 < 0.01 < 0.01 < 0.01 0.1±0.0 0.1±0.0
T1tttt (1000,600) 0.4±0.0 0.3±0.0 0.1±0.0 0.2±0.0 <0.01 0.1±0.0

Table 7.9: Expected yields in the control sample (3 ≤ Nj ≤ 5), for the main SM processes and
two SUSY mass scenarios of T1tttt model, as obtained from simulation in the electron channel. All
yields are normalized to the integrated luminosity of 19.3 fb−1. Columns “signal” and “control”
correspond to events with ∆φ(W, `) > 1 and ∆φ(W, `) < 1 respectively.
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Figure 7.13: The transfer factor, RCS, as a function of Nb, in simulated events in the muon (top)
and electron (bottom) final states, for events with 3 ≤ Nj ≤ 5. The solid lines correspond to
RCS estimated from all SM processes, while the dashed lines correspond to RCS obtained from the
sum of the total SM and a SUSY mass scenario of T1tttt (Mg̃ = 1250 GeV, MLSP = 1 GeV).

The plots are shown for the three different regions of Slep
T ; left: Slep

T ∈ (250, 350) GeV, middle:

Slep
T ∈ (350, 450) GeV, and right: Slep

T > 450 GeV.

We also perform the QCD estimation method, described in section 7.2.2, both in the muon and

electron channels. As expected, the QCD background in the muon channel is negligible. The QCD

estimate in the electron channel is listed in Table 7.10.

Slep
T range Nb = 1 Nb = 2 Nb ≥ 3

[GeV] Data NQCD Data NQCD
pred (A) NQCD

pred (B) Data NQCD
pred (A) NQCD

pred (B)

(250, 350) 1323 77±3.2 548 14±3.2 12 ±6.9 70 0.97±0.42 4±2.5
(350, 450) 470 32±8.8 174 4.3±1.4 5.1±3 12 0.13±0.14 1.6±1.1
> 450 210 12±5.2 61 2.2±1 2 ±1.3 4 0.28±0.2 0.65±0.47

Table 7.10: Estimation of the QCD background in the control sample (3 ≤ Nj ≤ 5), in different

regions of Nb and Slep
T , using both background estimation methods.

The full background estimation method is performed in this control sample using the entire data

collected at
√

s = 8 TeV. The predicted and observed event yields are listed in Table 7.11, individually
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in the muon and electron channels. Combining all search regions, the predicted number of events in

the signal region is 106.1± 8.4, and the observed data 119. The error on the prediction cited stems

from the statistics in the control regions. Adding the potential fluctuations around the prediction

(
√

106.1) the uncertainty increases to 13.3 events, thus the overall prediction and observation agree

within one standard deviation using only the statistical uncertainties. In the region where we expect

the highest sensitivity in SUSY signals (Nb ≥ 3), the prediction is 9.7 events, compared to the nine

events observed in the data. The predicted yields in all search regions agree well within statistical

uncertainties to the observation.

Slep
T [GeV] Control Prediction Observation

N
b

=
2 µ

(250, 350) 632 41.94± 5.63 59
(350, 450) 188 8.51± 2.39 11
> 450 71 2.46± 1.32 1

e

(250, 350) 548 32.14±5.00 30
(350, 450 174 4.96± 1.77 8
> 450 61 6.45±2.27 1

N
b
≥

3 µ

(250, 350) 59 3.88±0.81 5
(350, 450) 25 1.09±0.44 0
> 450 7 0.26±0.21 0

e

(250, 350) 70 3.69±0.87 2
(350, 450) 12 0.31±0.16 2
> 450 4 0.44±0.33 0

Table 7.11: Data yields in control region, predicted event yields and observed yields in the signal
region for events with 3 ≤ Nj ≤ 5. The integrated luminosity of the data is 19.3 fb−1. The
uncertainties shown do only reflect the statistical uncertainty stemming from the control region
event counts in data.

The estimation of the SM background, as described in section 7.2 and as demonstrated in the control

sample, is based to a large extent on data. Therefore, agreement between data and simulation is not

essential. However, good description of the data from simulation, in variables that are important

for the analysis, is reassuring. Figures 7.14 and 7.15 display the comparison of Slep
T , pT(W) and

∆φ(W, `) between simulation and data, in the muon and electron channels respectively. To avoid

contribution from potential SUSY signal, we utilize the Nb = 1 sample, whereas to increase the

statistical power of the comparison, all events with Nj ≥ 3 are considered. The overall agreement is

reasonable. In the highest Slep
T region, the normalization of the simulation tends to be higher than

the data. Nevertheless, as already mentioned, this has negligible impact on the estimation of the

SM background.
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Figure 7.14: Comparison of Slep
T , pT(W) and ∆φ(W, `) between data and raw-simulation in the muon

channel, for events with Nb = 1, Nj ≥ 3, in three regions of Slep
T ; top: Slep

T ∈ (250, 350) GeV, middle:

Slep
T ∈ (350, 450) GeV, and bottom: Slep

T > 450 GeV. Solid histograms correspond to simulated
SM processes, and black markers to data. The SM distributions are normalized to the integrated
luminosity of 19.3 fb−1. The plots are for reference only; The SM estimation in the signal region is
performed following the data-driven method described in the text.



Chapter 7: Search for supersymmetry in the single lepton final state at
√

s=8 TeV 139

Figure 7.15: Comparison of Slep
T , pT(W) and ∆φ(W, `) between data and raw-simulation between

data and raw-simulation in the electron channel, for events with Nb = 1, Nj ≥ 3, in three regions of

Slep
T ; top: Slep

T ∈ (250, 350) GeV, middle: Slep
T ∈ (350, 450) GeV, and bottom: Slep

T > 450 GeV. Solid
histograms correspond to simulated SM processes, and black markers to data. The SM distributions
are normalized to the integrated luminosity of 19.3 fb−1. The plots are for reference only; The SM
estimation in the signal region is performed following the data-driven method described in the text.
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7.4 Systematic uncertainties

The only ingredient of the SM background estimation method that relies on simulation is the cal-

culation of the correction factors, κCS. Most of the systematic uncertainties are expected to have a

minimal effect on κCS, since it reflects only residual corrections in the value of RCS. We estimate

the effect of each systematic source in the SM estimation by re-evaluating κCS for each case and

repeating the background estimation method. The difference observed in the prediction is considered

as systematic uncertainty.

However, the expected yields in several of the search regions are very small and the evaluation of the

systematic effects is dominated by the statistical uncertainty of the simulated samples. Especially

in events with Nb ≥ 3, the third or above b-tagged jet, in the vast majority of the SM processes,

originates from the mis-identification of a light or a charm quark. The mis-identification probability

in the CSV-M b-tagging algorithm is ∼ 1% (section 4.5.1.1), which translates to a rate of 10−4 for

an event with two mis-identified b quarks. Hence, the requirement of multiple b-tagged jets (true or

fake), in conjunction with the tight analysis selection, suppresses significantly the SM background.

Therefore, the available statistics in the simulated samples, even with a corresponding integrated

luminosity of ∼ 500 fb−1, are very poor. Given this, a reliable evaluation of the systematic effects

on κCS, is not feasible using the FullSim samples, as they are.

To increase the statistical power of the samples, an alternative method is deployed. We calculate the

probability each simulated event to occur with a given b-tag multiplicity, P(Nb), using the following

relations:

P(0) =
∏i=Nj

i=0 (1− εi)

P(1) =
∑i=Nj

i=1 P(0) · εi/(1− εi)

P(2) =
∑i=Nj

i=1

∑j=Nj
j=i+1 P(0) · εi/(1− εi) · εj/(1− εj),

(7.12)

where εi is the efficiency of the i-th jet to be tagged as originating from a b quark by the CSV-M

algorithm. The efficiency depends on the jet transverse momentum, pseudorapidity and flavor (light,

charm or bottom quark). Therefore, with this “re-weighting method”, every event in the simulated

sample contributes in each b-tag multiplicity, with a weight obtained from (7.12). Figure 7.16

displays the comparison of the ∆φ(W, µ) distribution between FullSim and after utilizing the re-

weighting method. The distributions are in very good agreement. Table 7.12 lists the comparison

of the statistical uncertainty on the calculation of κCS, before and after applying the re-weighting
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method. The statistical power of the samples increased by a factor of 2-3, and therefore, the re-

weighting method is used to evaluate the systematic uncertainties. However, the actual values of

κCS are calculated using FullSim, since it is more detailed and better established.
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Figure 7.16: Comparison of the ∆φ(W, µ) distribution between FullSim (solid lines) and after uti-
lizing the re-weighting method (dashed lines). The distributions are compared for different Nb, in

two regions of Slep
T ; Slep

T ∈ (250, 350) GeV (left) and Slep
T > 350 GeV (right). The comparison shows

very good agreement.

Slep
T region FullSim Re-weighting

[GeV] : [%] method [%]

3 ≤ Nj ≤ 5

(250, 350) 15 5
> 350 25 10

Nj ≥ 6

(250, 350) 20 10
> 350 40 20

Table 7.12: Comparison of the statistical uncertainty on the calculation of κCS, before and after
applying the re-weighting method, in the control and signal samples, for events with Nb ≥ 3, in two
regions of Slep

T : Slep
T ∈ (250, 350) GeV and Slep

T > 350 GeV. The statistical power of the samples
increased by a factor of 2-3 after applying the re-weighting method.
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The sources of systematic uncertainties considered and their effect on κCS in the signal sample

(Nj ≥ 6) are listed in Table 7.13. The effect is evaluated in all search regions in Slep
T and Nb. The

numbers quoted are for the muon and electron channels combined. This combination is driven by

the fact that the estimation of the background in the signal region is based on a ratio of events in

data, and that κCS mainly depends on Nb. Hence, dependence on the lepton flavor is not expected.

Nevertheless, the effect of each source of systematic uncertainty has been evaluated individually for

each lepton flavor, quoting consistent results.

The dominant systematic uncertainty stems from the limited statistics of the simulated samples.

Depending on the selection, the uncertainty on the value of κCS varies from 14-68%.

Uncertainties related to JES, W+jets cross section, and on the polarization of W bosons in W+jets

and tt̄ events, are estimated following the procedures described in section 6.4. JES uncertainties are

smaller than 7%, while the other sources have a negligible effect on the SM estimate.

The effect of the uncertainty on the b-tagging efficiency is evaluated by scaling the efficiency upwards

and downwards according to the uncertainties calculated in [61]. The identification efficiency of heavy

quarks, charm and bottom, is varied simultaneously. The identification efficiency of light quarks

is varied independently to the heavy quarks. The uncertainties from the upward and downward

variations are averaged, and the final uncertainty is estimated by adding in quadrature the individual

uncertainties corresponding to the heavy and light quarks.

The cross section of W+bb̄ process is varied upwards and downwards by the conservative value of

100%, based on the measurements described here [85, 86]. The average of the upward and downward

variations is taken as the final uncertainty. The effect on the prediction varies from 2-7% and is

much smaller than the uncertainty on the estimation of κCS, due to the limited statistics of the

simulated samples.

The single-top cross section is measured in [87]. Based on the results quoted, we evaluate the effect

on κCS by scaling up and down 50% the single-top cross section. The s-channel, t-channel and

tW processes are varied simultaneously, and the average of the upward and downward variations is

taken as the final uncertainty. The effect on the prediction could be as high as 11%, mainly due to

the limited statistics of the simulated samples. Nevertheless, it doesn’t affect the sensitivity of the

search.

As expected from the design of the SM background estimation method, the systematic uncertainties

on κCS are small. The limited statistics of the simulated samples have the largest impact on the
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calculation of κCS. It will be seen later in the chapter, that overall, the dominant uncertainty on

the SM estimate stems from the statistics of the data in the control regions used for the background

estimation, and therefore, the search is limited by statistical uncertainties.

∆κCS/κCS (%)

Source of systematic Region of Slep
T [GeV]:

uncertainty (250, 350) (350, 450) > 450

Nb = 2

SM simulation statistics 14 28 56
JES 1 2 6
εb(c,b) 0 0 1
εb(light) 1 0 0
W+jets cross section 2 2 6
W+bb̄ cross section 3 3 5
Single-top cross section 1 5 6

Total systematic uncertainty 15 29 57

Nb ≥ 3

SM simulation statistics 22 44 68
JES 3 7 6
εb(c,b) 0 0 0
εb(light) 0 2 2
W+jets cross section 2 3 6
W+bb̄ cross section 2 4 7
Single-top cross section 4 6 11

Total systematic uncertainty 23 45 70

Table 7.13: Sources of the systematic uncertainties considered on κCS, and their magnitude, in the
signal sample (Nj ≥ 6), combined for muon and electron channels. The effect is evaluated for the

three different regions in Slep
T (Slep

T ∈ (250, 350) GeV, Slep
T ∈ (350, 450) GeV, and Slep

T > 450 GeV) in
events with Nb = 2 (top) and Nb ≥ 3 (bottom).

7.5 Results

After successfully establishing the SM background estimation method in the control sample (3 ≤

Nj ≤ 5) using the data, we unblind the search regions in the signal sample. The SM estimate, as well

as the number of data observed in the control and signal regions, in the muon and electron final states,

are listed in table 7.14. The first uncertainty reflects the statistical uncertainty on the prediction

stemming from the limited statistics of the data in the control regions used for the background

estimation, whereas the second uncertainty corresponds to the total systematic uncertainty on the

prediction.
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Combining all search regions of the analysis, we predict 19.2±4.0 events and we observe 26 events in

data. Adding the statistical fluctuation around the predicted value (
√

19.2), the uncertainty on the

prediction is 5.9 events. Thus the observation is compatible to the SM estimate using only statistical

uncertainties. In the search regions with highest sensitivity to SUSY signals, Nb ≥ 3, we predict

5.3±1.5 SM events for an observation of four events. The observations are compatible to the SM

estimate in all search regions and no evidence of physics beyond SM is observed.

Slep
T [GeV] Control Prediction Observation

N
b

=
2 µ

(250,350) 141 6.0 ± 2.2 ± 0.9 9
(350,450) 24 1.4 ± 1.1 ± 0.4 2
> 450 9 0.0 ± 0.7 ± 0.2 0

e

(250,350) 112 3.8 ± 1.8 ± 0.6 9
(350,450) 28 2.7 ± 1.9 ± 0.8 2
> 450 9 0.0 ± 0.4 ± 0.2 0

N
b
≥

3 µ

(250,350) 28 1.9 ± 0.8 ± 0.4 0
(350,450) 13 0.6 ± 0.5 ± 0.3 0
> 450 2 0.0 ± 0.2 ± 0.1 0

e

(250,350) 45 1.9 ± 0.9 ± 0.4 4
(350,450) 7 0.9 ± 0.7 ± 0.4 0
> 450 0 0.0 ± 0.1 ± 0.03 0

Table 7.14: Event yields in 19.3 fb−1 of data with Njet ≥ 6: the columns list the numbers of events
observed in the control region, and the number of events expected and observed in the signal region.
The first uncertainty reflects the statistical uncertainty on the SM estimate stemming from the
limited statistics of the data in the control regions used for the background estimation, whereas the
second uncertainty corresponds to the total systematic uncertainty on the SM estimate.

7.6 Interpretation of the results

The data observed in the several search regions are consistent to the SM expectation, and therefore,

we proceed to set exclusion limits on different SUSY models, using the statistical method described in

Appendix A. The results obtained are interpreted in the three gluino-mediated top squark production

SMS models, discussed in section 2.6, namely: T1tttt, T5tttt, and T1t1t.

The excluded parameter space is obtained by simultaneously combining the results from all regions

in Slep
T and Nb. The systematic uncertainties assigned to the prediction of the total SM background

are listed in Table 7.13. Systematic uncertainties are also assigned to the signal yields. The effect

of JES and E/T resolution in the signal efficiency is computed separately for each mass scenario
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of the SUSY parameter space, following the procedure described in section 6.4. This yields to an

uncertainty of 5-10% on average.

The dominant uncertainty stems from the uncertainty on the calculation of the PDFs. PDF uncer-

tainties are estimated following the procedure described in [88]. In the T1tttt model, the magnitude

of the uncertainty ranges from 20% to 50%. In the T1t1t model, it can be as large as 45%. The

maximum values of these uncertainties are localized to large values of mg̃ and mχ̃0 , outside the

reach of the search. In the T5tttt model, the magnitude of the PDF uncertainty is ∼25%, constant

through the entire parameter space.

The signal acceptance may also consist of events that meet the selection requirements on HT and

Nj due to significant contribution from ISR. Therefore, the modeling of ISR in simulation has been

studied. Following the results of the studies presented in [89], the signal yields are scaled accordingly,

and the corresponding uncertainties are assigned. The effect of ISR becomes important in scenarios

with small mass difference between the gluino and the χ̃0
1 (LSP). In this case, the signal yields can

be scaled down up to 20%. In higher mg̃, the effect due to ISR has a negligible impact on the

sensitivity of the search.

Uncertainties related to the b-tagging scaling factors are also taken into account and estimated

individually for each mass scenario, following the procedure described in section 7.4. The effect from

this source is very small compared to the other uncertainties.

Moreover, the signal yields in the muon and electron channels are corrected to match the trigger

efficiency in the data, as well as the difference in the lepton reconstruction efficiency between data

and FastSim. The scaling factors and the corresponding uncertainties are presented in Tables 5.1

and 5.3, for the trigger and lepton reconstruction efficiency respectively. The effect of pile-up has

also been studied and found to be negligible. Lastly, the luminosity uncertainty is measured to be

2.6% [90].

Examples of the signal selection efficiency for each of the three SMS models are displayed in Fig-

ure 7.17. The utilization of the several search regions leads to an enhancement on the overall signal

efficiency. SUSY scenarios with compressed mass spectra, as well as scenarios with large mass

splittings are probed by the current search.

As in the 7 TeV single-lepton search, also at 8 TeV, two complementary SUSY searches in the same

final state, using the same data sample, have been developed. The LS method, already mentioned

briefly in section 6.6, and the “Missing transverse momentum template” (MT). The MT method is
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based on the same search variables as the LS method, but deploys a parametric description of the

E/T spectrum, based on fits in control regions with low HT.

Figure 7.18 (left) displays the observed and expected cross section and mass limits at 95% CL, for

the three models of gluino-induced top squark production, based on the results obtained by the

search presented in this chapter (∆φ search). The plots on the right display the comparison of the

observed limits between the three methods.

In the T1tttt model, gluinos with mass up to ∼ 1.25 TeV for an χ̃0 mass up to ∼ 200 GeV are

probed, whereas χ̃0 with mass as large as ∼ 580 GeV is probed for mg̃ ∼ 1.1 TeV. For small mg̃, the

sensitivity extends to a region of mχ̃0 > mg̃ − 2mt. Scenarios with small mass splitting between

the gluino and the χ̃0 are characterized by lower E/T values, thus the sensitivity of the search drops.

In the T5tttt model, the sensitivity increases as a function of mg̃, and top squarks with mass up

to 1.1 TeV are probed for large mg̃. For large mt̃, the limits are as expected, similar to the T1tttt

model. The sensitivity decreases in scenarios with lighter gluinos, where the signal has typically

lower E/T, and lower regions of Slep
T , with higher background, contribute more. Nevertheless, the

entire mt̃ range, for mg̃ < 1 TeV, is probed; this region is not yet entirely probed by direct top

squark searches.

Finally, in the T1t1t model the reach of the search is similar to the T1tttt model for large top-squark

masses, where an χ̃0 mass of 560 GeV is probed. For lower mt̃, the sensitivity drops.
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Figure 7.17: Examples of the signal selection efficiency for the three SMS models: T1tttt (top),
T5tttt (middle) and T1t1t (bottom). Events in the muon channel with HT > 500 GeV, are selected,

in two different regions of Slep
T ; Slep

T ∈ (250, 350) (left) and Slep
T > 450 GeV (right).
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Figure 7.18: Cross section and mass limits at 95% CL in the parameter space of the three SMS
models: T1tttt (top), T5tttt (middle) and T1t1t (bottom). Left column: Limits obtained using
the ∆φ method. Solid lines correspond to the observed limit and the one standard deviation of the
theoretical uncertainties in the production cross section; Dashed lines correspond to the expected
limit with the one standard deviation of the systematic uncertainties. Right column: Comparison of
the observed limit between the three methods: ∆φ (black), LS (blue) and MT (green).



Chapter 8

Discovery reach in the single-lepton

final state at
√
s = 14 TeV

Searches for supersymmetric signals in p-p collisions at center of mass energies at 7 and 8 TeV, at

the LHC, have shown no statistically significant evidence of its existence. For reasons described in

chapter 2, it is strongly believed that SUSY exists, and should manifest itself in an energy regime

accessible by the LHC. Therefore, the search for SUSY particles will continue to be a major task for

the experiments at the LHC, during the upcoming data-taking periods, especially since LHC will

operate at an increased center of mass energy. Figure 8.1 displays the production cross section of

three SUSY processes, g̃-g̃, t̃-̃t and χ̃±-χ̃0, at
√

s = 8 and
√

s = 14 TeV, as a function of the mass of

the pair produced SUSY particles [91–94]. The production cross sections have been calculated with

next-to-leading-order accuracy using PROSPINO [95]. The increase in center of mass energy comes

with a significant impact in the production of SUSY particles.

The search for gluino-mediated top squark production in the single-lepton final state is one of the

most promising signatures for discovering SUSY, or, in the absence of supersymmetric signal, ruling

out “natural” SUSY. It is therefore essential to study the discovery potential, and the interplay with

the currently planned detector upgrades, of a search in this final state [96]. The analysis that is

discussed in this chapter is based on the search presented in chapter 7.

149
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Figure 8.1: Production cross section of three SUSY processes, g̃g̃, t̃t̃ and χ̃±χ̃0, at
√

s = 8 and√
s = 14 TeV, as a function of the mass of the pair produced SUSY particles, calculated at the

next-to-leading-order accuracy using PROSPINO.

8.1 LHC and CMS upgrade plans

The LHC is currently in the first long shutdown period (LS1), preparing for the next data-collecting

period, scheduled to start in 2015. The initial center of mass energy is excepted to be at 13 TeV, and

then increase to the designed energy at 14 TeV. The time difference between two successive bunch

crossings is expected to decrease to 25 ns and operate with the designed instantaneous luminosity,

corresponding to 1034 cm−2s−1, with a mean number of pile-up interactions∼50. This data-collecting

period is referred to as “Phase 0” and the milestone is to reach an integrated luminosity of ∼100

fb−1. In 2018, a second long shutdown period (LS2) will take place in order to upgrade the LHC to

operate at an instantaneous luminosity, twice the design value with an average number of pile-up

interactions, 100. The restart of the LHC is scheduled for 2020, and in a two-year period is expected

to collect ∼300 fb−1 of collision data. This is the “Phase I” period. The third long shutdown period

(LS3), between 2022 and 2023, will be used to prepare LHC for the next operation program, the

“High Luminosity LHC” (HL-LHC). During LS3, the detectors will be upgraded to be able to operate

at an instantaneous luminosity of 5 × 1034 cm−2s−1, and an average of ∼140 pile-up interactions.

The “Phase II” period will last until 3000 fb−1 of data are collected. The LHC operating periods

and the milestones for each period, are summarized in Table 8.1.
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Period [years]
√

s [TeV] Int. Luminosity [fb−1] < pu >

2012 8 ∼25 ∼20
2015-2017 (Phase 0) 13-14 ∼100 ∼50
2020-2022 (Phase I) 14 ∼300 ∼100
2023-2030 (Phase II) 14 ∼3000 ∼140

Table 8.1: LHC operating periods and milestones for each period.

During the long shutdown periods, CMS will be upgraded as well, to deal with the harsh conditions

expected during the upcoming LHC and HL-LHC operations. Upgrades are not limited to those

required for an unhindered operation of CMS, but also to enhance its physics capabilities. The

upgrades planned to be installed during LS2 are referred to as “Phase I” upgrades, whereas those

scheduled for installation during LS3 are referred to as “Phase II” upgrades [97].

The primary list of CMS upgrades for Phase I is:

• Addition of a fourth layer in pixel detector, for an overall improvement in tracking, as well as

in b-tagging.

• Replacement of the current photodetectors in HCAL, with newly available using silicon technol-

ogy. Extensive upgrade in the front- and back-end electronics will also take place. In addition

to enhance HCAL’s performance, the updates will allow for longitudinal segmentation of the

calorimeter.

• L1 Trigger will be upgraded to exploit the full granularity of the calorimeters.

CMS subdetectors are designed to be resilient in radiation. Nevertheless, the inner tracker and the

forward detectors are able to achieve the expected performance until an integrated luminosity of

∼500 fb−1 is reached. Afterwards, their performance will significantly degrade due to severe damage

from radiation, and they should be replaced. The CMS upgrades planned for Phase II are:

• Replacement of the tracker, both in the barrel and the endcap. The new tracker will have

less material and would be able to provide track seed to L1T, in order to have an improved

performance in high pile-up conditions.

• Replacement of the electromagnetic endcap calorimeter, as well as the hadronic endcap calorime-

ter with novel solutions characterized by finer segmentation in φ.
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• Extension of the muon system to cover |η| < 2.4

This scenario would be referred to as “Phase II Conf 3”. Studies concerning the optimization of the

Phase II CMS detector are ongoing and thus, several proposals are thoroughly evaluated in simu-

lation. Another proposal under discussion is the extension of the tracking, muon and calorimetric

coverage up to |η| < 4. This would be referred to as “Phase II Conf 4”.

8.2 Simulated samples and event preselection

The analysis is performed using simulated event samples at a center of mass energy of 14 TeV.

The simulation of the physics processes, both for SM and SUSY, is performed using MADGRAPH,

whereas the simulation of the fragmentation and hadronization processes by PYTHIA. Different pile-

up scenarios are obtained from minimum-bias events simulated with PYTHIA. Cross sections for

SM and SUSY processes are estimated using next-to-leading order calculations [98, 99]. Additional

samples used for validation purposes are produced at a center of mass energy of 8 TeV.

The detector simulation is performed using the Delphes 3.0.10 simulation framework [98–100]. The

Delphes framework supports multiple pile-up scenarios and the detector performance is parameter-

ized based on FullSim. In Delphes, various detector configurations can be easily implemented. The

object performance is obtained from the data collected until present. The choice of the Delphes

framework is motivated by the need of simulating a huge number of events, for different CMS con-

figurations, in a very short time scale. Therefore, an approach involving full simulation of the CMS

detector is not feasible. The samples are generated for three different CMS detector configurations:

“Phase I Conf 0”, “Phase II Conf 3” and “Phase II Conf 4”, for two different pile-up scenarios,

< pu > = 0 and < pu > = 140.

As discussed in chapter 7, the relevant backgrounds for this search arise from tt̄+jets, W/Z+jets,

single-top quark and di-boson production. SM processes with small cross section, like tt̄W and

tt̄H, that might become important at 3000 fb−1, are also included. The SMS T1tttt model is used

to estimate the physics reach of the search. The event preselection follows the sample definition

presented in chapter 7. Since the object performance, in Delphes, is obtained from data, similar

reconstruction and identification efficiency with the 8 TeV search is expected. However, in the

current set of results, the effect of the increased pile-up has not been taken into account in the

object performance. Charged particles originated from pile-up, inside the tracker acceptance, are
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removed from jets, assuming an efficiency of 100%. Neutral particles or charged particles outside the

acceptance of the tracker, produced by minimum-bias interactions, are subtracted from jets following

the FastJet area method [101].

8.2.1 Comparison between Delphes and FullSim at
√
s = 8 TeV

The Delphes framework has been extensively validated against FullSim at 8 TeV. The comparison

performed with Delphes samples produced at a center of mass energy of 8 TeV. The pile-up scenario

in FullSim samples follows that of data (< pu > ∼ 20), whereas for the Delphes samples assumed

zero pile-up interactions.

Given that the dominant SM background stems from semi- and fully-leptonic tt̄ decays, the com-

parison between FullSim and Delphes performed only on those samples. In an effort to compensate

for low statistics, we relaxed the requirement on the number of jets down to at least three, and

events should pass Slep
T > 250 GeV. In addition, electron and muon channels are combined. Figures

8.2 - 8.4 display the comparison between the HT, pT(W), and ∆φ(W, `) distributions. In order to

validate the b-tagging identification efficiency and mis-tagging rate, we split the comparison in three

different regions in Nb; Nb = 0, Nb ∈ [1, 2], and Nb ≥ 3. Table 8.2 depicts the expected yields of

the Delphes and FullSim samples, in the control (CR) and signal (SR) regions, as they are defined

in chapter 7. We observed very good agreement in both shape and normalization.

Region Delphes (
√

s =8 TeV) FullSim (
√

s = 8 TeV)
of Nb: = 0 ∈ [1, 2] ≥ 3 = 0 ∈ [1, 2] ≥ 3

tt̄(`)

CR 1181±167 5480±360 307±85 1442±17 5109±33 213±6
SR 0 47±33 0 15±2 53±2 3±1

tt̄(``)

CR 163±17 666±35 27±7 189±5 680±9 24±2
SR 66±11 269±22 14±5 66±3 278±6 11±1

Table 8.2: Semi- and fully-leptonic tt̄ event yields of the Delphes (< pu > = 0) and FullSim
(< pu > ∼ 20) samples, at 8 TeV and 20 fb−1, for the combined electron and muon channels, as

expected from simulation. Events satisfy the requirements of Nj ≥ 3 and Slep
T > 250 GeV. The

uncertainties are statistical only.
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Figure 8.2: Comparison of the HT distribution between Delphes (< pu > = 0) and FullSim
(< pu > ∼ 20) samples at 8 TeV for the combined muon and electron channels. The yields are
normalized to an integrated luminosity of 20 fb−1. The uncertainties listed are statistical only.
Semi-leptonic tt̄ sample contribution at the top row, and fully-leptonic tt̄ at the bottom row. Left
is for Nb = 0, middle for Nb = 1 or 2, and right for Nb ≥ 3 [Black (solid): FullSim, red (dashed):
Delphes].

8.3 Dependence with pile-up and detector configuration

The future LHC and HL-LHC runs will operate in a center of mass energy of 14 TeV and much

higher instantaneous luminosity. Inevitably, a significant increase in the number of pile-up events

associated with each bunch crossing is expected. The upgrades of the detectors for these future runs

are designed to cope with such harsh environments, while improving performance all the same. In

this section, we study the effect of the increased pile-up scenario and the different detector upgrades,

in important, for the search, observables.

The effect of the increased pile-up is studied in detail using the Phase I detector description, for

two different pile-up scenarios, < pu > = 0 and < pu > = 140. Figure 8.5 displays the shape

comparison of the ∆φ(W, `) distribution for the two different pile-up scenarios. The increased pile-

up has a degrading effect on E/T resolution and hence the two shapes differ in the low region of Slep
T .
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Figure 8.3: Comparison of the pT(W) distribution between Delphes (< pu > = 0) and FullSim
(< pu > ∼ 20) samples at 8 TeV for the combined muon and electron channels. The yields are
normalized to an integrated luminosity of 20 fb−1. The uncertainties listed are statistical only.
Semi-leptonic tt̄ sample contribution at the top row, and fully-leptonic tt̄ at the bottom row. Left
is for Nb = 0, middle for Nb = 1 or 2, and right for Nb ≥ 3 [Black (solid): FullSim, red (dashed):
Delphes].

However, in higher regions of Slep
T , where typically events with higher E/T are selected, the shapes

are similar.

Moreover, the efficiency of the b-tagging algorithm shows a strong dependence on pile-up. Figure 8.6

illustrates the change in the relative fraction of standard model events between the two pile-up

scenarios, in different regions of Nb. The trend has a moderate dependence on Slep
T .

The dependence of the ∆φ(W, `) shape as a function of Nb, in high pile-up conditions, is also studied.

Figure 8.7 displays the shape comparison of the ∆φ(W, `) distribution in different Nb. We observe

only weak dependence on Nb, which implies that a similar background estimation strategy as the

one described in section 7.2 can be followed.

As discussed earlier, upgrades are designed not only to allow the detector to cope with the harsh

conditions at future LHC runs, but also to improve the physics performance. A detailed comparison



Chapter 9: Discovery reach in the single-lepton final state at
√

s = 14 TeV 156

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in

-110

1

10

210

310

-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

=0bN

(1l)tDelphes [8 TeV], t
(1l)tFullSim [8 TeV],  t

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in
1

10

210

310

410

-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

[1,2]∈bN

(1l)tDelphes [8 TeV], t
(1l)tFullSim [8 TeV],  t

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in

-110

1

10

210

310

-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

3≥bN

(1l)tDelphes [8 TeV], t
(1l)tFullSim [8 TeV],  t

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in

10

210

-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

=0bN

(2l)tDelphes [8 TeV], t
(2l)tFullSim [8 TeV],  t

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in

210

310

-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

[1,2]∈bN

(2l)tDelphes [8 TeV], t
(2l)tFullSim [8 TeV],  t

(W,l)|φ∆|
0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

 / 
b

in

1

10

210
-1CMS Simulation, L=20 fb

>250 GeV
lep
TS

3≥bN

(2l)tDelphes [8 TeV], t
(2l)tFullSim [8 TeV],  t

Figure 8.4: Comparison of the ∆φ(W, `) distribution between Delphes (< pu > = 0) and FullSim
(< pu > ∼ 20) samples at 8 TeV for the combined muon and electron channels. The yields are
normalized to an integrated luminosity of 20 fb−1. The uncertainties listed are statistical only.
Semi-leptonic tt̄ sample contribution at the top row, and fully-leptonic tt̄ at the bottom row. Left
is for Nb = 0, middle for Nb = 1 or 2, and right for Nb ≥ 3 [Black (solid): FullSim, red (dashed):
Delphes].

between the different detector configurations, for the high pile-up scenario, is performed. Overall,

the key observables of this analysis exhibit similar behavior between the different options. As an

example, we present on Figure 8.8 the comparison of the pT(W) and ∆φ(W, `) observables, for

different CMS configurations.

8.4 Search strategy and estimation of the SM background

The search strategy and the estimation of the SM background is based on the analysis presented in

chapter 7. However, the selection criteria have been optimized to account for the increased center

of mass energy and integrated luminosity. A simple and robust optimization strategy is applied, by

tightening the regions in Slep
T and Nb. The new search regions are defined as follows:

• Slep
T [GeV]: (450, 550), (550, 650), (650, 750), and > 750 GeV
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Figure 8.5: Shape comparison of the ∆φ(W, `) distributions for two different pile-up scenarios,

< pu > = 0 (dashed lines) and < pu > = 140 (solid lines), for events with Nb = 2 and Slep
T ∈

(250, 350) GeV (left) and Slep
T > 450 GeV (right). The increased pile-up has a degrading effect on

E/T resolution. The two shapes differ in the low region of Slep
T . However, in higher regions of Slep

T ,
where typically events with higher E/T are selected, the shapes are similar.
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Figure 8.8: Normalized distributions of pT(W) (left) and ∆φ(W, `) (right) for different detector

configurations, for events with Nb ≥ 1 and Slep
T > 250 GeV. The observables exhibit similar behavior,

independent of the CMS configuration. (black: Phase I Conf 0, red: Phase II Conf 3 and blue: Phase
II Conf 4).

• Nb: =3, ≥4

Table 8.3 lists the SM yields expected from simulation for the main SM processes and an indicative

mass scenario from the T1tttt model, for events passing the Nb ≥ 4 requirement. The results are

presented for the “Phase II, Conf 3” detector setup, but similar conclusions hold for the other setups.

Region of (450, 550) (550, 650) (650, 750) > 750

Slep
T [GeV]: signal control signal control signal control signal control

tt̄+jets 16.7±4.5 227.4±19.1 76.8±9.8 0.8±0.2 29.1±5.1 0.027 1.5±0.4 15.5±2.8
tt̄V 0.8±0.2 18.1±4.4 0.4±0.1 3.7±0.6 0.1±0.0 1.6±0.4 0.2±0.1 1.0±0.3
single-t 0.0±0.0 1.2±0.5 0.0±0.0 0.2±0.1 0.0±0.0 0.3±0.1 0.0±0.0 0.1±0.0
V+jets 0.0±0.0 0.0±0.0 0.0±0.0 1.6±1.6 0.0±0.0 0.0±0.0 0.0±0.0 2.5±1.6
SM all 17.5±4.5 246.7±19.6 4.8±1.4 82.3±9.9 0.9±0.2 31.1±5.1 1.6±0.4 19.1±3.3
T1tttt(2000,300) 6.3±1.0 3.3±0.7 5.1±0.9 3.8±0.8 7.3±1.1 3.9±0.8 31.6±2.2 17.6±1.6

Table 8.3: Event yields for the combined electron and muon channels, as expected from simulation
for events with Nj ≥ 6 and Nb ≥ 4, in the “Phase II, Conf 3” detector setup. The column “signal”
corresponds to events with ∆φ(W, `) > 1, whereas column “control” to events with ∆φ(W, `) < 1.
The yields for an example mass scenario of the T1tttt model (mg̃,mχ̃0

1
= (2000, 300) GeV) are listed

for comparison. The uncertainties are statistical only. Similar conclusions hold for the other CMS
configurations.
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An important ingredient of this analysis would be the extended use of data for the estimation

of the SM background in the signal region. The RCS of the total SM is roughly independent of

Nb (Figure 8.9). Therefore, a similar method as the one presented in chapter 7 is employed for the

estimation of the SM background in the signal region. Given the increased luminosity, the extraction

of RCS would be performed in the sample with Nb = 2. This adaptation comes with the advantage of

a much smaller W+jets contamination, when compared to RCS extraction in the Nb = 1 sample, and

has the added value of the kinematics being more similar to events with larger b-tag multiplicities.
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Figure 8.9: The transfer factor, RCS, of the total SM background as a function of Nb, in simulated
events with Nj ≥ 6, in different regions in Slep

T . RCS is roughly independent of n. The results are for
electron and muon channels combined.

To account for any residual dependencies on Nb, we assign correction factors (κCS), which are

obtained from the closure of the background estimation method in simulation. We compare the

predicted SM yields with the actual number of SM events in simulation, and extract the correction

factor from the ratio of the actual and the predicted yields. Table 8.4 lists the values of κCS in the

different search regions.

Hence, the only part of the search that would rely on simulation is the computation of κCS. It is

obvious from the analysis at 8 TeV, that the limited statistics of the simulated samples are expected

to dominate the uncertainty on the calculation of κCS. Thus, this is the only systematic uncertainty
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Region of Correction factor

Slep
T [GeV] (κCS)

Nb = 3 Nb ≥ 4

(450, 550) 0.947 ± 0.118 0.947 ± 0.258
(550, 650) 1.164 ± 0.178 0.881 ± 0.288
(650, 750) 0.910 ± 0.157 0.359 ± 0.334
> 750 1.076 ± 0.191 0.935 ± 0.304

Table 8.4: Correction factors, κCS, estimated from the closure of the background estimation method
in simulation, for the different search regions in Nb and Slep

T . The correction factors are computed
from the ratio of the predicted SM yields and the actual number of SM events expected from
simulation.

considered here. Table 8.5 summarizes the systematic uncertainty due to the limited statistics of

the Delphes samples.

Region of ∆κCS/κCS (%)

Slep
T [GeV]: (450, 550) (550, 650) (650, 750) > 750

Nb = 3 13 15 17 18
Nb ≥ 4 27 33 93 33

Table 8.5: Relative uncertainty on the calculation of κCS stemming from the limited statistics of the
simulated samples, in the different regions of Nb and Slep

T .

8.5 Results

The 5σ significance for gluino-induced top squark production, in the single-lepton final state, is

calculated using the modified-frequentist CLs method with a profile likelihood test statistics. The

results are obtained by statistically combining all regions in Nb and Slep
T . The discovery sensitivity

is evaluated for the different CMS detector configurations described earlier in this chapter. The

effect of pile-up in the physics reach of the search is estimated by considering two scenarios with

< pu > = 0 and < pu > = 140. The expected yields are normalized to two different values of

integrated luminosity, 300 and 3000 fb−1, corresponding roughly to the termination of the operating

period of the LHC and the HL-LHC respectively.

Figure 8.10 displays the 5σ discovery potential at a center of mass energy of 14 TeV, for the different

scenarios discussed above. The results based on the CMS configuration, “Phase II Conf 4” are not
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included in the plot, since, in this topology, SUSY manifests itself in the central part of the detector.

Therefore, extending the object acceptance up to |η| < 4, without additional modifications on the

design of the search, leads to reduced sensitivity. At the end of the HL-LHC operation, gluinos with

mass up to 2.3 TeV, for neutralinos (χ̃0
1) lighter than ∼1 TeV, can be discovered. The impact of

the increased luminosity, from 300 to 3000 fb−1, to the discovery of g̃and χ̃0
1, is ∼300 GeV for both.

The mass reach is mitigated due to pile-up by ∼100 GeV.
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Figure 8.10: The projected 5σ discovery reach in gluino-induced top squark production, for different
pile-up and luminosity scenarios, based on two CMS detector configurations. Gluinos with mass up
to 2.3 TeV, for χ̃0

1 lighter than ∼1 TeV, can be discovered with ∼3000 fb−1. The impact of the
increased luminosity, from 300 to 3000 fb−1, to the discovery of g̃and χ̃0

1, is ∼300 GeV for both. The
mass reach is mitigated due to pile-up by ∼100 GeV.

The results of this search, using the p-p collision data that will be collected during the upcoming

LHC runs, are expected to be very important for the future of SUSY as a viable extension of

SM. Especially if SUSY provides the mechanism to stabilize the mass of the higgs particle, and no

evidence of SUSY signals with gluino mass up to ∼2-2.5 TeV is found, then the “natural” SUSY

scenarios would be much disfavored [34].



Synopsis

The current thesis presents a complete search for supersymmetric signals in the final state with a

single isolated charged lepton, using the entire data collected with the CMS detector during the

2011 and 2012 LHC data-taking periods. In addition, a search for the upcoming p-p collisions at

the LHC at center of mass energy,
√

s = 14 TeV, has also been developed.

Searches for supersymmetric signals are probing regions at the tails of the distributions, which

are sensitive to imperfections in object reconstruction. Therefore, it is of paramount importance

a precise reconstruction of the physics objects, especially E/T, which is typically one of the most

powerful discriminating observables between SM and SUSY. Events with large values of E/T have been

studied in detail to identify sources of artificial E/T, stemming either from object mis-reconstruction

or detector noise. A large number of filters has been developed to identify these events, and, where

possible, correct them, leading to a purified data sample.

The search preformed in the data sample collected in p-p collision at
√

s = 7 TeV during 2011 is based

on the LP variable which relates the transverse momentum of the W boson and the charged lepton.

Events stemming from SM processes typically populate large values of LP, whereas SUSY events are

expected to populate much smaller values of LP. The sample corresponds to an integrated luminosity

of 5 fb−1 and no statistically significant excess over the SM prediction has been observed. The results

obtained were used to calculate exclusion limits on various SUSY models. In the CMSSM m1/2−m0

parameter space, models with m1/2 > 300 GeV are excluded in the large m0 region, whereas for

smaller m0, models with values of m1/2 up to 550 GeV are excluded. This translates to the exclusion

of gluinos with mass up to 1.3 TeV. In the SMS-T3w model, gluinos with mass up to 800 GeV,

for low χ̃0
1 (LSP) masses, are excluded. The search yielded the most competitive results in the

single-lepton final state.
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The results from the various SUSY searches in p-p collisions at
√

s = 7 TeV have constrained

significantly the allowed parameter space in the CMSSM scenarios. Therefore, searches for the so-

called “Natural-SUSY” were well motivated for the
√

s = 8 TeV run. A novel analysis, dedicated to

search for gluino-induced top squark production, has been carried out in p-p collision data, collected

at
√

s = 8 TeV. The search utilizes the azimuthal angle between the W boson and the charged

lepton, as the main discriminating variable between SM and SUSY. Additional handles have also

been employed to account for the unique characteristics of this topology. Due to the presence of

four W bosons in the decay cascade, the single-lepton final state has the largest branching fraction.

The results have shown no evidence of supersymmetric signals in the 19.3 fb−1 of analyzed data,

and have been used to further constrain the parameter space in this topology. Depending on the

SUSY model, gluinos lighter than 1.3 TeV, χ̃0
1 (LSPs) with masses up to 0.6 TeV and stop quarks

lighter than 1.1 TeV have been probed, leading to the tightest limits in this topology.

Despite the discouraging results obtained during the first runs of the LHC at
√

s = 7 and
√

s = 8

TeV, many SUSY scenarios are still viable. In addition, in the next years, LHC is designed to

operate at
√

s = 14 TeV. The increase in the center of mass energy has a significant impact in the

production cross section of the supersymmetric particles. It is, therefore, essential to continue the

search program for supersymmetric signals during the upcoming LHC runs. Based on the analysis

performed with the
√

s = 8 TeV data, a search for the future LHC data-taking periods, in p-p

collisions at
√

s = 14 TeV, has been developed. The purpose of the search was two-fold. First, to

evaluate the effect on the increased center of mass energy and the different integrated luminosity

scenarios in the sensitivity of the search. Secondly, to study the effect of the increased number of

pile-up interactions that will be present during the future LHC runs, as well as the impact of the

proposed CMS configuration in the performance of the search. The results have shown that the

search is robust under the harsh operating conditions of the LHC, leading to competitive results.

Gluino as heavy as 2.3 TeV can be discovered in a sample with an integrated luminosity of 3000

fb−1. This would be an important milestone for the future of the supersymmetric theories.



Appendix A

Statistical method to calculate limits

The searches performed using the 7 and 8 TeV data samples have shown no evidence of SUSY signals.

Therefore, results obtained are interpreted using a statistical methodology to further constrain the

parameter space of various SUSY models. The models considered in this thesis are in the context

of CMSSM and SMS, discussed in section 2.6.

The statistical methodology uses the modified-frequentist CLs method [102–104] with one-sided

profile likelihood test statistics, developed by the CMS and ATLAS collaborations. The parameter of

interest, µ, is defined and corresponds to the signal strength modifier of the cross section (arbitrary or

not) assigned to each SUSY model, or process. Predictions for both signal and background yields are

subject to multiple systematic uncertainties that are handled by introducing a nuisance parameter θi

for each one. The signal and background yields are functions of the nuisance parameters and denoted

as µ ·s(θi) and b(θi) respectively. Each systematic component is treated as 100% correlated across the

different regions of the search (i.e Slep
T -HT, or Slep

T -Nb). Different sources of systematic uncertainties

are treated as uncorrelated. Statistical uncertainties are modeled by Poisson probability density

functions (pdfs). Systematic uncertainties are modeled by log-normal pdfs, with the form, ρi(θ̃i|θi),

where ρi is the probability to measure a value θi for the i-th nuisance parameter, given the default

value θ̃i. The likelihood L , is then a function of the signal strength modifier µ, the full suite of the

nuisance parameters θ and the observed data, and has the form:

L (data|µ , θ) = P(data|µ · s(θ) + b(θ)) · ρ(θ̃|θ) (A.1)

165



Appendix A. Statistical method to calculate limits 166

where P (data|µ · s(θ) + b(θ)) is a product of the Poisson probabilities to observe ni events in the

i-th search region of the analysis, given by:

∏
i

(µ si + bi)
ni

ni!
e−µ(si+bi) (A.2)

In order to compare the compatibily of the data to the “signal+background” and the “background-

only” hypotheses, the test statistic, q̃µ , is constructed. The test statistic is a single number in-

cluding information on the observed data, the expected signal and background, and the uncertain-

ties associated with these expectations. In the absence of signal in the data, the observed value

of the test statistic is compared to its expected distribution under the “signal+background” and

“background-only” hypotheses. The expected test statistic distributions are constructed by generat-

ing Monte-Carlo pseudo-data from the P (data|µ · s(θ) + b(θ)) pdfs, assuming signal strength µ for

the “signal+background” hypothesis and µ = 0 for the “background only”. The values of nuisance

parameters θ used for generating pseudo-data are obtained by maximizing the likelihood L under

the “signal+background” or under the “background-only” hypothesis.

To test the absence of signal and set upper limits in the production cross-section of the different

SUSY models, a test statistics q̃µ is defined, as:

q̃µ = −2 ln
L (data|µ , θ̂µ )

L (data|µ̂ , θ̂)
(A.3)

where θ̂µ refers to the maximum likelihood estimators of θ, under the hypothesis of a signal of

strength µ , while µ̂ and θ̂ correspond to the global maximum of the likelihood. In order to force

one-sided limits on the cross section, µ̂ < µ is required. For the calculation of the excluded cross

sections the modified frequentist construction of CLs is used. Two tail probabilities, pµ for the

“signal+background” and pb for the “background-only” hypothesis, are associated with the observed

data and give the probability to obtain a value of for the test statistic, q̃µ , larger than the observed

value, q̃obs
µ :

CLb = P(q̃µ ≥ q̃obs
µ |b)

CLs+b = P(q̃µ ≥ q̃obs
µ |µ · s + b)

(A.4)

and obtain CLs from the ratio:

CLs =
CLs+b

CLb
(A.5)



Appendix A. Statistical method to calculate limits 167

For µ=1, if CLs ≤ α, the specific SUSY model is excluded at a 1-α confidence level.

In the context of CMSSM, since a well defined cross section is assigned to each model of the parameter

space, µ is force to be equal to one. Therefore, the expected signal yield for each model, is compared

to the estimation of the SM background and the observed data, to determine whether it is excluded

at a 95% confidence level (CL).

In the SMS case, instead of excluding a specific model, the calculation of an upper limit in the cross

section of a certain process is performed. The procedure to estimate the excluded SMS parameter

space is the following. First, for each mass point in the SMS parameter space, µ is adjusted until

CLs = 0.05. This corresponds to the the minimum cross section that can be excluded with 95%

CL. Then, this cross section is compared with the nominal cross section for gluino-gluino production

(for the given gluino mass), calculated using PROSPINO [24, 95]. If the minimum cross section is

smaller than the nominal production cross section, the mass point is excluded.

Lastly, the fact that the estimation of the SM background could be affected by potential signal

contamination in the control regions in data is also taken into account. For each model, the expected

contribution of signal contamination to the SM expectation is subtracted.
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