
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ & ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΑΝΑΖΗΤΗΣΗ ΤΟΥ ΧΕΙΡΑΛΙΚΟΥ ΚΡΙΣΙΜΟΥ ΣΗΜΕΙΟΥ
ΤΗΣ ΑΔΡΟΝΙΚΗΣ ΥΛΗΣ ΣΤΙΣ ΣΧΕΤΙΚΙΣΤΙΚΕΣ

ΣΚΕΔΑΣΕΙΣ ΙΟΝΤΩΝ

ΝΙΚΟΛΑΟΣ Ν. ΔΑΒΗΣ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΑΘΗΝΑ 2015





UNIVERSITY OF ATHENS
FACULTY OF PHYSICS

DEPARTMENT OF NUCLEAR & PARTICLE PHYSICS

SEARCHING FOR THE CHIRAL CRITICAL POINT OF
QUARK MATTER IN RELATIVISTIC ION COLLISIONS

NIKOLAOS N. DAVIS

Ph.D. THESIS

ATHENS 2015





Στη μνήμη της μητέρας μου

Rien ne se perd,
rien ne se crée,

tout se transforme...





Ευχαριστίες

Αρχικά, θα ήθελα να εκφράσω τις θερμές ευχαριστίες μου προς τον επιβλέποντά
μου, αναπ. καθ. κ. Φώτη Διάκονο, ο οποίος με καθοδήγησε και με στήριξε καθ’ όλη την
πορεία της έρευνάς μου, όπως και πιο συγκεκριμένα κατά την εκπόνηση της παρούσας
διατριβής, παρέχοντάς μου ανεκτίμητες πληροφορίες καθώς και ηθική υποστήριξη.
Είμαι βαθύτατα ευγνώμων προς τον ομ. καθ. κ. Νικόλαο Αντωνίου, πρώτα και κύρια
διότι οι παροτρύνσεις του υπήρξαν το έναυσμα και η έμπνευση για να ασχοληθώ με
την αναζήτηση του κρισίμου σημείου της Χρωμοδυναμικής, καθώς και για την συνεχή
και σταθερή υποστήριξη και τις συμβουλές που μου παρείχε καθ’όλη την επίπονη
πορεία της έρευνάς μου, από τα πρώτα στάδια έως και την προσεκτική επιμέλεια της
παρούσας διατριβής. Η παρούσα εργασία δεν θα είχε ποτέ καταστεί δυνατή χωρίς
την συνεχή καθοδήγηση και την υποστήριξη και των δύο.

Θα ήθελα να ευχαριστήσω από καρδιάς τον Διευθυντή Ερευνών του ΕΚΕΦΕ “Δη-
μόκριτος”, Δρ. Κωνσταντίνο Παπαδόπουλο, καθώς και τον ομ. καθ. κ. Απόστολο Πα-
ναγιώτου, οι οποίοι μου έδωσαν την δυνατότητα και την ευκαιρία να εργαστώ στο
ερευνητικό περιβάλλον του CERN, και γενικά παρείχαν ουσιαστική αρωγή και συντο-
νισμό στο αμοιβαίο θεωρητικό και πειραματικό εγχείρημα που οδήγησε στην παρούσα
εργασία. Είμαι ευγνώμων προς την ομάδα του πειράματος NA61/NA49 γενικά, και
συγκεκριμένα στον Δρ. Peter Seyboth και τον καθ. Marek Gazdzicki, που με καλωσόρι-
σαν στους κόλπους του πειράματος NA61/SHINE και με καθοδήγησαν στην ανάλυση
των δεδομένων του πειράματος NA49, όπως επίσης και στην αναπ. καθ. Katarzyna
Grebieszkow η οποία με μεγάλη υπομονή με εκπαίδευσε και καθοδήγησε στη χρήση
του λογισμικού της ανάλυσης και παρείχε πολύτιμη τεχνογνωσία σχετικά με τον ανι-
χνευτή συγκρούσεων βαρέων ιόντων του πειράματος NA49.

Κατά τη διάρκεια της εκπόνησης της παρούσας διατριβής, πολλοί συνάδελφοι και
φίλοι με στήριξαν παρέχοντας επιστημονικές και τεχνικές συμβουλές. Θα ήθελα να ευ-
χαριστήσω πιο συγκεκριμένα τον Δρ. Σταύρο Δημητρακούδη και τον Δρ. Παναγιώτη
Καλοζούμη που μου παρείχαν υποστήριξη σε τεχνικά ζητήματα και θέματα παρου-
σίασης κατά τη συγγραφή της διατριβής και κατά την οργάνωση της βιβλιογραφίας.
Ευχαριστώ ακόμη θερμά τους συναδέλφους Θεοφάνη Γκούντρα και Λήλα Κουτσαντω-
νίου, και άλλους, υπερβολικά πολλούς για να αναφερθούν.

iii



iv

Τέλος, ένα μεγάλο ευχαριστώ στην οικογένεια μου, για την αμέριστη στήριξη και
την ενθάρρυνσή τους στη διάρκεια της έρευνάς μου.



Πρόλογος

Η παρούσα διδακτορική διατριβή πραγματεύεται τα χαρακτηριστικά της μετάβα-
σης φάσης, την οποία υφίσταται η ισχυρώς αλληλεπιδρώσα ύλη, καθώς ένα σύστημα
αδρονίων μεταβαίνει από συνθήκες χαμηλής θερμοκρασίας (T ) και βαρυοχημικού δυ-
ναμικού (µB) (βαρυονικής πυκνότητας) προς υψηλότερες θερμοκρασίες και/ή πυκνό-
τητες. Ένα φαινόμενο που παρουσιάζει ιδιαίτερο ενδιαφέρον σε ισχυρώς αλληλεπι-
δρώντα συστήματα είναι η (μερική) αποκατάσταση της χειραλικής συμμετρίας κατά
τη μετάβαση από την ψυχρή αδρονική ύλη στο πλάσμα κουάρκ και γλουονίων (quark-
gluon plasma, QGP). Με βάση υπολογισμούς από πρώτες αρχές (π.χ., επιχειρήματα
από συμμετρία), καθώς και υπολογισμούς πλέγματος της Κβαντικής Χρωμοδυναμικής
(ΚΧΔ), σε πεπερασμένη θερμοκρασία και βαρυονική πυκνότητα, υπάρχουν ισχυρές
ενδείξεις ότι το αντίστοιχο διάγραμμα φάσεων περιλαμβάνει μια γραμμή αλλαγών
φάσεως πρωτης τάξης σε χαμηλές θερμοκρασίες/υψηλές πυκνότητες, η οποία καταλή-
γει σε ένα κρίσιμο σημείο σε κάποια υψηλή θερμοκρασία και πεπερασμένη βαρυονική
πυκνότητα.

Το κρίσιμο σημείο της ΚΧΔ έχει αποτελέσει αντικείμενο εκτενούς θεωρητικού και
πειραματικού ενδιαφέροντος. Από θεωρητική σκοπιά, στην περιοχή συνθηκών του κρι-
σίμου σημείου, το σύστημα αναμένεται ότι υφίσταται μια μετάβαση φάσης δεύτερης
τάξης, συνοδευόμενη από απειρισμό του χαρακτηριστικού μήκους συσχέτισης, μηδε-
νισμό της αναμενόμενης τιμής της παραμέτρου τάξης (χειραλικό συμπύκνωμα), και
κλιμάκωση των μακροσκοπικών μεγεθών σύμφωνα με καθολικούς νόμους δύναμης.
Η προσέγγιση στο κρίσιμο σημείο συνδέεται επομένως με την εμφάνιση ενός συμπυ-
κνώματος άμαζων (ή σχεδόν άμαζων) βαθμωτών σ-μποζονίων, τα οποία φέρουν τους
χαρακτηριστικούς κβαντικούς αριθμούς του κενού. Πειραματικά, συνθήκες ικανές για
το σχηματισμό θερμής και πυκνής αδρονικής ύλης αναπαράγονται τεχνητά σε πειρά-
ματα σύγκρουσης βαρέων ιόντων σε υψηλές ενέργειες, σε επιταχυντές όπως ο SPS
του CERN, και ο εντοπισμός και η μελέτη του κρισίμου σημείου της ΚΧΔ είναι ένας
από τους στόχους παρόμοιων πειραμάτων (όπως π.χ. τα πειράματα NA49 και NA61
στο CERN). Είναι επομένως σημαντικό να εντοπιστεί η θέση του κρισίμου σημείου
στο διάγραμμα φάσεων της ΚΧΔ, καθώς και να αναζητηθούν πιθανά παρατηρήσιμα
ίχνη της προσέγγισης συγκρούσεων βαρέων ιόντων στο κρίσιμο σημείο σε μελλοντικά
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πειράματα.
Ανάμεσα στις κρίσιμες υπογραφές που έχουν προταθεί ως ενδείξεις προσέγγισης

στο κρίσιμο σημείο είναι και διακυμάνσεις στην πυκνότητα των παραγόμενων σω-
ματιδίων οι οποίες ακολουθούν νόμο δύναμης ως συνάρτηση της κλίμακας στο χώρο
των ορμών, ένα φαινόμενο γνωστό ως σποραδική συμπεριφορά ή σποραδικότητα. Η
παρούσα εργασία επικεντρώνεται πρωτίστως στη μελέτη των κρισίμων διακυμάνσεων
των βαρυονίων στο χώρο των εγκαρσίων ορμών.

Η διατριβή αποτελείται από έξι κεφάλαια, τα οποία δομούνται ως εξής:
Στο πρώτο κεφάλαιο, γίνεται μια σύντομη επισκόπηση της δομής και των συμ-

μετριών της ύλης κουάρκ, όπως περιγράφεται από την Κβαντική Χρωμοδυναμική.
Περιγράφουμε τα φαινόμενα του εγκλωβισμού και της ρήξης της χειραλικής συμμε-
τρίας που λαμβάνουν χώρα κατά τη μετάβαση από το πλάσμα κουάρκ και γλουονίων
σε υψηλές θερμοκρασίες στη συνήθη αδρονική ύλη στις χαμηλές θερμοκρασίες. Γίνεται
μια σύντομη αναφορά στον μηχανισμό Higgs, και οδηγούμαστε στο συμπέρασμα ότι
είναι υπεύθυνος για μικρό μόνο κλάσμα των μαζών των αδρονίων (μάζα ρεύματος).
Συζητείται ο ρόλος της χειραλικής μετάβασης φάσης στην ερμηνεία του φάσματος των
αδρονικών μαζών (μάζα συστατικού).

Στο δεύτερο κεφάλαιο, δίνεται μια εκτενέστερη περιγραφή του διαγράμματος φά-
σεων της ΚΧΔ, με ιδιαίτερη έμφαση στην περιοχή των σχετικά υψηλών θερμοκρασιών
και χαμηλού χημικού δυναμικού όπου αναμένεται να εντοπιστεί το κρίσιμο σημείο της
ΚΧΔ. Δίνεται μια σύνοψη των διαφόρων φάσεων και των συμμετριών τους, όπως προ-
βλέπονται από αναλυτικούς και πλεγματικούς υπολογισμούς, για διάφορες περιοχές
του φασικού διαγράμματος, και εξετάζονται τα διάφορα σενάρια που προκύπτουν
για διαφορετικές μάζες κουάρκ και αριθμό γεύσεων. Εξηγείται ο ρόλος της αυθόρ-
μητης ρήξης της χειραλικής συμμετρίας και συνδέεται με το χειραλικό συμπύκνωμα
ως παράμετρος τάξης της χειραλικής μετάβασης φάσεως. Δίνεται μια σύνοψη των
ενεργών θεωριών που περιγράφουν την φαινομενολογία του συμπυκνώματος κοντά
στο κρίσιμο σημείο, καθώς και των κλάσεων παγκοσμιότητας στις οποίες ανήκουν.
Τέλος, εξετάζουμε εν συντομία τις πλεγματικές θεωρίες που επιχειρούν να προσο-
μοιώσουν αριθμητικά την χειραλική μετάβαση φάσεως και συζητούμε τις σχετικές τε-
χνικές. Δίνονται προβλέψεις των πλεγματικών θεωριών για την κρίσιμη θερμοκρασία,
και συζητούνται οι προκλήσεις και οι περιορισμοί της επέκτασής τους σε πεπερασμένη
βαρυονική πυκνότητα.

Το τρίτο κεφάλαιο εξετάζει σε βάθος τα γεωμετρικά χαρακτηριστικά του χειρα-
λικού συμπυκνώματος. Δίνεται μια σύντομη επισκόπηση των χαρακτηριστικών των
αλλαγών φάσης δεύτερης τάξης και της θεωρίας των κρισίμων φαινομένων εν γένει.
Καταδεικνύεται ότι ένα σύστημα που υφίσταται μετάβαση φάσεως δεύτερης τάξης
παρουσιάζει στο κρίσιμο σημείο αναλλοιότητα κλίμακας και μορφοκλασματική αυτο-
ομοιότητα, λόγω συσχετίσεων μακράς εμβέλειας, και επομένως η συμπεριφορά του
μπορεί να περιγραφεί μέσω νόμων βάθμισης που χαρακτηρίζονται από λίγους κρί-



vii

σιμους εκθέτες, οι οποίοι καθορίζονται από την κλάση παγκοσμιότητας στην οποία
ανήκει η μετάβαση φάσης. Σκιαγραφείται η κατασκευή μιας ενεργού δράσης στην
περιοχή του κρισίμου σημείου, χρησιμοποιώντας το μοντέλο της μαγνήτισης ως χα-
ρακτηριστικό παράδειγμα, αποσαφηνίζεται ο ρόλος της ως γεννήτρια συνάρτηση των
συναρτήσεων συσχέτισης και γίνεται η σύνδεση ανάμεσα στους κρίσιμους εκθέτες και
την μορφοκλασματική διάσταση των συστάδων σωματιδίων που σχηματίζονται στο
κρίσιμο σημείο. Στη συνέχεια, μελετάται λεπτομερώς η χειραλική συμμετρία και πα-
ραμετροποιείται το χειραλικό συμπύκνωμα μέσω του βαθμωτού σ και του ψευδοβαθ-
μωτού πιονικού πεδίου. Συζητούνται ενεργές θεωρίες αυθόρμητης ρήξης χειραλικής
συμμετρίας 4ης και 6ης τάξης, και το κρίσιμο σημείο της ΚΧΔ, σε πεπερασμένη βαρυο-
νική πυκνότητα, συνδέεται με τη θεωρία του τρι-κρίσιμου σημείου 6ης τάξης. Τέλος,
καταδεικνύεται ότι λόγω της αποσύζευξης του σ-πεδίου από το πεδίο των πιονίων, η
αρμόζουσα κλάση παγκοσμιότητας του χειραλικού κρισίμου σημείου είναι εκείνη του
τρισδιάστατου μοντέλου Ising. Παρουσιάζεται η αντίστοιχη κλάση ενεργών δράσεων
και ο ισοθερμικός κρίσιμος εκθέτης αναδύεται ως η κύρια ποσότητα που συνδέεται
με την μορφοκλασματική γεωμετρία του συμπυκνώματος.

Το τέταρτο κεφάλαιο είναι μια εκτενής παρουσίαση των υπολογιστικών τεχνικών
μέσω των οποίων επιτυγχάνεται η προσομοίωση του χειραλικού συμπυκνώματος μέσω
στοχαστικών Monte-Carlo αλγορίθμων. Αρχικά, προσαρμόζουμε την ενεργό δράση του
τρισδιάστατου μοντέλου Ising του βαθμωτού σ-πεδίου στην τυπική κυλινδρική γεω-
μετρία μιας σύγκρουσης βαρέων ιόντων και δείχνουμε ότι, κάτω από συγκεκριμένες
προσεγγίσεις, μπορεί να επιμερισθεί σε ανεξάρτητες συνιστώσες στην ωκύτητα και
τον εγκάρσιο χώρο. Χρησιμοποιούμε την προσέγγιση σαγματικού σημείου για να εξά-
γουμε λύσεις για τις δύο συνιστώσες χωριστά, και καταδεικνύεται ότι το χειραλικό
συμπύκνωμα μπορεί να περιγραφεί ως συλλογή μορφοκλασματικών συστάδων στο
καρτεσιανό γινόμενο της ωκύτητας με τον εγκάρσιο χώρο. Στη συνέχεια, συνάγουμε
την αντίστοιχη μορφοκλασματική δομή στο χώρο των εγκαρσίων ορμών, και εισά-
γουμε την τεχνική των κανονικοποιημένων παραγοντικών ροπών (ανάλυση σποραδι-
κότητας), με σκοπό να εξάγουμε την συνάρτηση συσχέτισης και τη μορφοκλασματική
διάσταση του συστήματος στο χώρο των εγκαρσίων ορμών. Ακολούθως, παρουσιά-
ζουμε την τεχνική των τυχαίων περιπάτων Lévy η οποία επιτρέπει την προσομοίωση
μορφοκλασματικών συστάδων. Δίνεται μια λεπτομερής περιγραφή του αλγορίθμου
Critical Monte Carlo (CMC), που μας επιτρέπει να προσομοιώσουμε κρίσιμες συστά-
δες σ-σωματιδίων (στο χώρο των εγκαρσίων ορμών/ωκύτητας) με τα επιθυμητά γε-
ωμετρικά και φυσικά χαρακτηριστικά. Μια τροποποιημένη εκδοχή του αλγορίθμου
CMC μας επιτρέπει να παράξουμε κρίσιμες συστάδες βαρυονίων, τις παραγοντικές
ροπές των οποίων μπορούμε να συγκρίνουμε με εκείνες που προκύπτουν από την
ανάλυση πειραματικών δεδομένων (κεφ. 5). Μέσω της ανάλυσης παραγοντικών ρο-
πών, καθορίζουμε τη μορφοκλασματική διάσταση των συστάδων που παράγονται από
το CMC, αποδεικνύοντας την αυτοσυνέπεια της προσομοίωσης. Τέλος, αντιμετωπίζο-
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ντας το χειραλικό συμπύκνωμα ως παράδοξο ελκυστή με μορφοκλασματική διάσταση,
εφαρμόζουμε την ανάλυση σποραδικότητας σε υποσύνολα του (ντετερμινιστικού) ελ-
κυστή Ikeda, με σκοπό να εκτιμήσουμε κατά πόσον είναι εφικτή η ανακατασκευή ενός
ελκυστή παρουσία ελλιπών δεδομένων και, πιθανώς, θορύβου.

Στο πέμπτο κεφάλαιο, δίνεται μια σύντομη επισκόπηση του πειράματος σύγκρου-
σης βαρέων ιόντων NA49 (SPS, CERN). Δίνεται μια σύνοψη των συνόλων πειραματικών
δεδομένων που χρησιμοποιήσαμε στην ανάλυσή μας. Αφού δοθεί μια λεπτομερής πε-
ριγραφή των φίλτρων και των τεχνικών που χρησιμοποιήσαμε για να εξάγουμε τις
εγκάρσιες ορμές των σωματιδίων από τα αρχικά δεδομένα, καθώς και για την ταυτο-
ποίηση των πρωτονίων ανάμεσά τους, εξηγείται λεπτομερώς η μέθοδος της ανάλυσης
σποραδικότητας των παραγοντικών ροπών στο χώρο των εγκαρσίων ορμών, μαζί με
μια περιγραφή των τεχνικών που χρησιμοποιήθηκαν για την ενίσχυση του σήματος και
την αφαίρεση του υποβάθρου. Στη συνέχεια, πραγματοποιείται μια ανάλυση σπορα-
δικότητας των τελικών συνόλων δεδομένων, καθώς και μερικές Monte Carlo προσο-
μοιώσεις (συμπεριλαμβανομένου του CMC του κεφ.4) σχεδιασμένες να προσομοιάζουν
τις αντίστοιχες συγκρούσεις βαρέων ιόντων. Βασιζόμενοι στην πληροφορία που παρέ-
χουν οι προσομοιώσεις, αξιολογούμε τις ενδείξεις για προσέγγιση στο κρίσιμο σημείο
της ΚΧΔ και συζητούμε τα ζητήματα στατιστικών και συστηματικών σφαλμάτων που
υπεισέρχονται στην ανάλυση.

Τέλος, στο έκτο κεφάλαιο, συνοψίζουμε τα αποτελέσματα της ανάλυσης και συ-
ζητούμε πιθανές μελλοντικές προοπτικές για την αναζήτηση και τον εντοπισμό του
κρισίμου σημείου της ΚΧΔ σε μελλοντικά πειράματα σύγκρουσης βαρέων ιόντων.
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Abstract

The chiral critical point of QCD is characterized by a second order phase transition.
At its vicinity, the quark-antiquark chiral condensate vanishes and chiral symmetry
is partially restored. This phase transition is accompanied by a divergence of the
correlation length, which induces a self-similar fractal geometry in the condensate, and
results in macroscopic observables following well-defined power-law scaling dictated by
certain universality classes.

We use intermittency analysis of second scaled factorial moments (SSFMs) in trans-
verse momentum space in order to detect power-law (self-similar) fluctuations in the
density-density correlation function of baryons produced in relativistic ion collisions
at SPS, CERN. Based on the saddle-point approximation, we develop a model of the
effective actions describing the σ-condensate and baryon density at the vicinity of the
critical point, as well as Monte-Carlo simulations that implement these models on a
computer. We apply improved intermittency analysis to the simulated condensate as
well as experimental data sets in order to determine the possible location of the QCD
critical point on the T − µB phase diagram. Adapting existing statistical techniques to
intermittency analysis, we improve the quality of the signal and estimation of statistical
and systematic uncertainties. By juxtaposing simulations with experiment, we estimate
the level of contamination by non-critical components and the degree of approach of
the system to the critical point.

We find evidence of critical fluctuations of the proton density in “Si”+Si collisions at
the maximum energy of the NA49 experiment at CERN, SPS. Based on this evidence,
we estimate that the critical point is around the vicinity of the freeze-out of the “Si”+Si
system (T ∼ 165 MeV, µB ∼ 250 MeV). We propose further intermittency analysis in the
same neighborhood by future experiments probing the phase diagram of QCD, such as
NA61/SHINE.
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Preface

The present doctoral thesis is concerned with the study of the characteristics of the phase
transition undergone by strongly interacting matter, as a system of hadrons goes from
states of low temperature (T) and baryochemical potential (µ) (baryon density) towards
higher temperatures and/or densities. A phenomenon of particular interest in strongly
interacting systems is the (partial) restoration of chiral symmetry during the transition
from cold hadronic matter to the Quark Gluon Plasma (QGP). Based on calculations
from first principles (e.g. arguments from symmetry), as well as lattice calculations in
Quantum Chromodynamics (QCD), at finite temperatures and densities, it is strongly
suspected that the corresponding phase diagram exhibits a first order phase transition
line at low temperatures/high densities, which terminates at a critical point at some high
temperature and finite baryon density.

The critical point of QCD has been an object of much theoretical as well as ex-
perimental interest. From a theoretical viewpoint, at the vicinity of the critical point,
the system is expected to undergo a second order phase transition, accompanied by a
divergence of the characteristic correlation length scale, a vanishing expectation value
of the order parameter (chiral condensate), and the scaling of macroscopic quantities
according to universal power laws. Approach to the critical point is therefore linked
with the appearance of a condensate of massless (or almost massless) scalar σ-bosons
possessing the characteristic quantum numbers of vacuum. Experimentally, conditions
capable of producing hot and dense hadronic matter are artificially reproduced in high
energy heavy ion collision experiments in heavy ion colliders such as CERN SPS, and
the discovery and study of the QCD critical point is one of the objectives of such ex-
periments (e.g. the NA49 and NA61 experiments at CERN). It is therefore important
to determine the location of the critical point in the phase diagram of QCD, as well as
to search for possible observable traces of a collision’s approach to the critical point in
future experiments.

Among the critical signatures proposed as indicators of an approach to the criti-
cal point are fluctuations of the density of produced particles following a power-law
as a function of momentum scale, a phenomenon known as intermittent behaviour,
or intermittency. The present work is primarily concerned with the study of critical

3



4 PREFACE

fluctuations of baryons in transverse momentum space.
The thesis consists of six chapters, structured as follows:
In the first chapter, a brief overview is given of the structure and symmetries of

quark matter, as described by Quantum Chromodynamics. We describe the phenomena
of confinement and chiral symmetry breaking that take place during the transition
from quark gluon plasma at high temperatures to the common hadronic matter at
lower temperatures. A brief reference is given to the Higgs mechanism, leading to
the conclusion that it only accounts for a small fraction of hadron masses (the quark
“current” masses). The role of chiral phase transition in explaining hadron masses
(through quark “constituent” masses) is discussed.

In the second chapter, a more detailed description of the QCD phase diagram is
given, with particular emphasis to the region of relatively high temperature and low
chemical potential where the critical point of QCD is expected to lie. A summary is
given of the various phases, and their symmetries, predicted by analytical or lattice
calculations, for different regions of the phase diagram, and the different scenarios,
depending on the quark masses and number of flavors, are outlined. The role of chiral
symmetry breaking is explained and it is connected to the chiral condensate as an
order parameter of the chiral phase transition. A review is given of effective theories
describing the phenomenology of the condensate near the critical point, as well as the
universality classes to which they belong. Finally, we briefly examine lattice calculations
that attempt to numerically simulate the chiral phase transition and discuss the related
techniques. Lattice predictions of the critical temperature are given, and the challenges
and limitations of expanding them to finite baryon density are discussed.

The third chapter examines in more depth the geometric characteristics of the chiral
condensate. A brief overview is given of the characteristics of second order phase
transitions and the theory of critical phenomena in general. It is shown that a system
undergoing second order phase transition at the critical point exhibits scale invariance
and fractal self-similarity, due to long-range correlations, and its behaviour can therefore
be described through scaling laws characterized by a handful of critical exponents,
dictated by the universality class to which the phase transition belongs. Construction of
an effective action at the vicinity of the critical point is illustrated using the magnetization
model as an example, its role as the generating functional of correlation functions is
explained and a connection is made between critical exponents and the fractal dimension
of clusters formed at the critical point. Subsequently, the chiral symmetry is examined in
detail and the chiral condensate is parametrized through the scalar σ and pseudoscalar
pion fields. Effective 4th and 6th order models of spontaneous chiral symmetry breaking
are discussed, and the QCD critical point, at finite baryon density, is connected to 6th
order tricritical point theory. Finally, it is shown that, due to the decoupling of σ
from pion fields, the appropriate universality class of the chiral critical point is the 3D-
Ising universality class. The corresponding effective action class is presented, and the



PREFACE 5

isothermal critical exponent emerges as the main characteristic connected to the fractal
geometry of the condensate.

The fourth chapter is an extended discussion of computational techniques of simu-
lating the chiral condensate through stochastic Monte-Carlo algorithms. First, we adapt
the 3D-Ising effective action of the scalar σ-field to the typical cylindrical geometry of
a heavy ion collision, and show that, under specific approximations, it can be parti-
tioned into independent rapidity and transverse space components. The saddle point
approximation is used to derive corresponding solutions for each case, and it is shown
that the chiral condensate can be described by a collection of fractal clusters in rapidity
× transverse space. Consequently, we derive the corresponding fractal cluster struc-
ture in transverse momentum space, and introduce the technique of scaled factorial
moment (intermittency) analysis in order to probe the correlation function and fractal
dimension in transverse momentum space. Subsequently, the mathematical technique
of Lévy walks is introduced, which allows the simulation of fractal clusters. A detailed
description is given of the Critical Monte Carlo (CMC) algorithm, which enables us to
simulate critical clusters of σ particles (in transverse momentum/rapidity space) with
the desired physical and geometric properties. A modified version of the CMC algo-
rithm also allows us to produce critical baryon clusters, the factorial moments of which
we can compare to those of experimental data sets (chapter 5). Through scaled facto-
rial moment (SFM) analysis, we determine the fractal dimension of clusters produced
by the CMC, demonstrating the self-consistency of the simulation. Finally, viewing the
chiral condensate as a strange attractor with a fractal dimension, we apply intermittency
analysis to subsets of the (deterministic) Ikeda attractor in order to assess the feasibility
of attractor reconstruction from sparse and, possibly noisy, data.

In the fifth chapter, a brief overview is given of the NA49 heavy ion collision exper-
iment (SPS, CERN). A summary is presented of the experimental data sets used in this
analysis. Following a detailed description of the filters, cuts, and techniques used to ex-
tract transverse momenta from the raw data, as well as identify protons, the method of
intermittency analysis of factorial moments in transverse momentum space is explained
in detail, along with a description of the tools employed for signal enhancement and
background removal. An intermittency analysis is then performed on the resulting data
sets, as well as a number of Monte Carlo simulations (including the CMC model de-
tailed in Chapter 4) designed to model the corresponding ion collisions. Based on the
insights provided by the simulations, we assess the evidence of approach to the QCD
critical point and discuss the statistical and systematic uncertainties involved.

Finally, in the sixth chapter, we summarize the results of our analysis and discuss
future prospects for the search and detection of the QCD critical point in future heavy
ion collision experiments.





Chapter 1

INTRODUCTION

1.1 Quantum Chromodynamics: The Universe’s fundamental
building block theory.

Quantum Chromodynamics (QCD) is the theory that describes strong interactions, i.e.
the interactions among “color charges”, the fundamental building blocks of matter,
quarks, as well as the vector bosons that mediate that interaction, gluons. It therefore
holds the key to understanding the structure of nuclear matter as we know it, as well
as for the study of the primeval, extremely hot matter in the early Universe, and the
super-dense state of matter forming in regions of intense gravitational fields, such as in
the core of neutron stars.

From a theoretical viewpoint, QCD is a well-founded theory formulated within the
context of Quantum Field Theory, its fundamental equations having been derived with
extreme elegance and economy from a few general symmetry constraints, in particular
the constraint to be symmetric (invariant) under local gauge transformations. Neverthe-
less, solving its fundamental equations, as well as applying the theory to actual physical
systems occurring in nature, poses an extremely difficult open problem. The primary
cause of difficulty is the fact that QCD is a non-abelian theory, i.e. a theory the mediating
bosons (gluons) of which also carry charge, and therefore interact and entangle with
each other. Furthermore, despite the fact that the (classical) QCD Lagrangian exhibits a
multitude of symmetries, most of these symmetries are absent in the “real world”; they
appear to be broken.

The most evident discrepancy between theory and observation is that the funda-
mental particles predicted by QCD, quarks and gluons, do not occur free in nature,
but remain confined inside hadrons. Matter, in extreme conditions, organizes in color-
singlet resonances. This confinement of quarks is not yet fully understood theoretically;
nevertheless, it has been established by lattice calculations.

The main challenges posed by QCD are: reduction of the structure of nuclear matter
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to the fundamental interactions of their elementary constituents, quarks and gluons;
explanation of the observed spectrum of hadrons; and study of the behavior of QCD in
extreme conditions of temperature and pressure. The latter, as already mentioned, is of
the essence in the study of the early history of the Universe. Moreover, we have reasons
to expect that in such extreme conditions, many of the symmetries that are broken in
the normal conditions of nuclear matter are restored, which would result in significant
simplification of the calculations involved.

The aforementioned problems can be approached in a multitude of ways, including
the construction of analytical models, numerical approximation through lattice calcu-
lations, as well as the combination of analytical and numerical methods. Meanwhile,
there are planned – and ongoing – heavy ion collision experiments, through which
are reproduced the conditions of high temperature and baryon density that allow the
deconfinement of the fundamental QCD degrees of freedom, the results of which are
juxtaposed with the theoretical models. A multifaceted dialog with Nature is in progress.

1.2 Apparent and actual symmetries of QCD

The general, idealized form of the QCD Lagrangian density, for f distinct “flavors” of
quarks, is given by [Wilczek, 2000]:

L = − 1
4g2

tr GµνGµν +
f∑
j=1

ψ̄j(i /D)ψj (1.1)

where:

Gµν = ∂µAν −∂νAµ + i [Aµ,Aν]
Dµ = ∂µ + i Aµ

Aµ are 3× 3 Hermitian, traceless matrices. g is the dimensionless coupling constant of
QCD. Each spin-1/2 fermionic quark field ψj incorporates a 3-component color index
(aside from its spinorial 4-vector index, of course).

Eq.(1.1) is in a sense general enough, as it leaves room for any given number of
quark flavors f . At the same time, though, it is idealized, since all quarks are taken to
be massless. We will address the consequences of adding a quark mass term later on.

The structure of eq.(1.1) is uniquely determined by a few very general axioms. These
are the SU(3) gauge symmetry, along with the general principles of quantum field theory
– special relativity, quantum mechanics and locality – as well as the constraint that it
is renormalizable. Renormalizability forbids the presence of more complicated terms,
such as, for example, an anomalous gluomagnetic moment term ∝ q̄ σµνGµν q.
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The apparent symmetry of eq.(1.1) is:

Gapparent = SU (3)c × SU (f )L × SU (f )R ×U (1)B ×U (1)A ×R+
scale (1.2)

along with Poincare invariance and discrete C,P,T symmetries. The terms are, in order:
local color symmetry, freedom to rotate left-handed quarks among themselves by an
arbitrary angle, freedom to rotate right-handed quarks among themselves by an arbi-
trary angle, baryonic number conservation (= a common overall phase for all quark
fields), axial baryonic number conservation (= equal and opposite phases for all left-
and right- handed quark fields), and scale invariance.

The chiral symmetries, SU (f )L × SU (f )R, arise because the only quark interaction
terms, i.e. their minimal coupling to gluons, is common to all quark flavors and respects
(conserves) helicity. These chiral symmetries are broken by the introduction of quark
mass terms, since such terms couple different helicities. For quarks of nonzero, but equal
masses, all that remains is a diagonal (vector) symmetry SU (f )L+R, whereas if quark
flavors have unequal nonzero masses, the symmetry breaks into a product of U (1)S
symmetries. Therefore, the choice m = 0 is an axiom strengthening the symmetry.

Lastly, the term R+
scale implies that the only parameter in our theory, g , is dimen-

sionless (in units where ℏ = c = 1, as usual). Therefore, the classical theory is invariant
under variations of units of length, or equivalently, (inverse) mass units. Indeed, the
action

∫
d4xL is scale invariant:

xµ→ λxµ;A→ λ−1A;ψ→ λ−1ψ (1.3)

The actual symmetry, on the other hand, that QCD exhibits in reality, is rather
different than its apparent symmetry. It is as follows:

Gactual = SU (3)c × SU (f )L × SU (f )R ×Z
f
A ×U (1)B

(asymptotic freedom, chiral anomaly)
→ SU (3)c × SU (f )L+R ×U (1)B
(chiral condensate)

= SU (f )L+R ×U (1)B
(confinement)

(1.4)

At the first step of this escalating reduction of symmetries, we find the symmetries that
survive quantization. Scale invariance, R+

scale, of the classical Lagrangian totally vanishes,
while U (1)A symmetry (axial baryon number) is reduced to its discrete subgroup Z

f
A.

In both cases, the cause is the dynamical character of vacuum in quantum theory, and
the need to renormalize the theory with respect to its potential degrees of freedom.
Breakdown of scale invariance is related to the dependence of the coupling constant
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on the energy (equivalently, length) scale, asymptotic freedom and the dimensional
transmutation of the coupling constant. Axial baryon number breaking is related to the
triangular anomaly and instantons. Loss of these symmetries is ingrained in the very
structure of quantum field theory.

At the second step are recorded the symmetries of the quantized lagrangian that are
also symmetries of the ground state (the vacuum of the theory). These are reduced due
to spontaneous symmetry breaking. That is, stable solutions to the equations possess
fewer symmetries than the equations themselves. Chiral symmetry is lost, because of the
appearance in the ground state of a chiral condensate of quarks and antiquarks of opposite
helicities, which uniformly fills space. Thus, we are no longer free to independently
rotate left- and right-handed components, leaving the condensate invariant. The fact
that π-mesons (pions) have a much smaller mass compared to other mesons is due to
their role as the Goldstone bosons of this spontaneous symmetry breaking.

Finally, in the third step, we recognize the fact that the local color gauge symmetry,
which is the cornerstone in the construction of the QCD Lagrangian, is not immediately
apparent in any observable physical system. During the construction of the Hilbert
space of QCD, we restrict ourselves to gauge invariant states. Besides, we never observe
any long-range color interactions, and observed particles are organized in singlet, never
multiplet, color states. Quarks and gluons are “trapped” inside nuclear matter; this is
the essence of the phenomenon of confinement.

Consequently, we will briefly examine the phenomena of asymptotic freedom and
quark confinement, as well as the theoretical evidence for the existence and explanation
of these phenomena.

1.3 Asymptotic freedom

According to quantum field theory, empty space behaves as a dynamical medium; it
is filled with virtual particle-antiparticle pairs. Therefore, we expect to encounter, as
with every dynamical medium, the familiar effects of polarization, paramagnetism and
diamagnetism of the vacuum: a test charge polarizes its surrounding space, resulting in a
dependence of its field strength on the distance from it (charge screening); the value of the
observed charge is not the “bare” value appearing in the Lagrangian, but an “effective”
value that changes as we probe the charge at different distances, or equivalently, at
different energy scales. Thus, the coupling constant is not a true constant, but scales
with energy (running coupling constant).

Asymptotic freedom is a special case of running coupling, for which the effective
charge value, though finite at a given finite distance from it, weakens as we approach
it until it vanishes. This amounts to anti-screening, an intuitively unexpected effect,
since it is the exact opposite of electromagnetic charge-screening familiar to us. It can
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be justified, however, if we recall that QCD is a relativistic, non-abelian gauge theory.
Therefore:

• Being relativistic, magnetic terms are equally important to electric terms.

• Being a gauge theory, it incorporates vector bosons.

• Being non-abelian, these vector bosons carry charge, and their spins carry mag-
netic moments.

A spin’s response to an external magnetic field is paramagnetic; spins tend to align
with the field as to enhance it. In the case of QCD, this paramagnetic influence of
virtual gluons wins over the normal screening caused by quarks. Let us imagine quarks
surrounded by a “cloud” of virtual gluons. When we probe a quark at low energies
(large wavelength), the wavelength “covers” many spins (gluons), and the effective
charge is large. Conversely, at high energies (small wavelength), the wavelength covers
only a few gluons, and the effective charge is decreased.

When the effective coupling constant has decayed enough, one can calculate per-
turbatively the charge (anti-)screening. For QCD, we get the following result for the
running of the coupling constant:

dg(ϵ)
d lnϵ

= β0g
3 + β1g

5 + . . . (1.5)

where

β0 = −
1

16π2

(
11− 2

3
f
)

β1 =
( 1
16π2

)2 (
102− 38

3
f
)

where ϵ is the energy scale, or equivalently the inverse length scale, for which the
effective charge is defined. Therefore, for f ≤ 16 flavors, the effective coupling constant
decreases to zero as the probing energy tends to infinity. This phenomenon is called
asymptotic freedom. Taking only the first term, we see that the asymptotic behaviour can
be approximated by:

1
g(ϵ)2

=
1

g(1)2
− β0 lnϵ (1.6)

Asymptotic freedom facilitates calculations at higher energies; quarks then behave
almost like free particles, since their color charge decays (conversely, electromagnetic
charge is enhanced, thus revealing the presence of point-like sources of the electromag-
netic field). Taking advantage of asymptotic freedom, we can predict the cross-sections
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as well as the spatial topology of many processes, such as e.g. e+e− annihilation at high
energies. These predictions are confirmed by numerous experiments. Unfortunately,
these techniques limit us to the high energy region, while they are ineffectual where
lower energy scales are involved.

The running of the coupling constant breaks the classical scale symmetry R+
scale,

causing the so-called dimensionalization of the coupling constant: the coupling, which
is clasically a dimensionless, scale-invariant constant, in quantum theory becomes a
function of energy scale, i.e. it boils down to a characteristic length or energy scale.
Through eq.(1.5), we can indeed define a scale:

M = lim
ϵ→∞

ϵe
u
β0 u

β1
β20 (1.7)

where
u ≡ 1

g(ϵ)2

1.4 Confinement

One of the historical problems of QCD, which held back its acceptance, has been the
phenomenon of quark confinement, i.e. the fact that we don’t observe free quarks in
nature. Specifically, among the experimentally detectable resonances we observe nei-
ther flavor-singlet, massless particles with long-range interactions, nor does the observed
spectrum include SU(3) color singlets, nor, finally, do we see particles carrying the quan-
tum numbers of pure quarks and gluons. Confinement, therefore, is well-documented
in practice, but what can the theory tell us about it, and under what conditions can it
be lifted?

A first argument, due to Amati and Testa, results directly from the Lagrangian,
eq.(1.1). When the coefficient 1

g2 tends to zero, i.e. when the coupling is strong enough,
variation of the action with respect to the field Aµ leads to a nullifying of color current
and, therefore, the color density too; color has been confined, and with it, quarks.
Therefore, low-frequency modes (large coupling constant) are confined, while high-
frequency modes (small coupling constant) exhibit asymptotic freedom.

This model, however, is too crude: we have neglected higher-order derivative terms,
which dominate when variations are too abrupt. For this reason, more refined models
have been created, lattice gauge theories. In these models, we discretize space, taking
care to preserve gauge symmetry. Discretization introduces a minimum lattice distance,
in this way eliminating any ultraviolet divergences. This arbitrary cutoff needs to be
canceled out, so that it doesn’t affect resulting values. This is achieved through the
introduction of ever smaller lattice constants, while at the same time we integrate over
newly introduced degrees of freedom, in order to get a theory with the same physical
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meaning. This process, which leads to the redefinition of the parameters of the theory,
is called renormalization.

Leaving aside details, we note that perturbative calculations in lattice theory, in the
case of strong coupling, taking only gluons into account (pure glue) and expanding
the action in powers of 1/g2, where g is the (strong) coupling, lead to an estimate
of the form of quark-antiquark potential. To this end, we define the action of the
field Aµ in the lattice as the trace of the product of transfer matrices, and we integrate
over closed space-time paths (Wilson-Polyakov loops), at the spatial ends of which we
have “implanted” a heavy quark-antiquark pair. The resulting potential has the form
V (R) ∝ R, i.e. it increases linearly with distance R, which means it is impossible to
separate color charges indefinitely. Thus, the phenomenon of confinement is confirmed.

1.5 Chiral symmetry & chiral symmetry breaking

As was already mentioned, the classical QCD Lagrangian, eq.(1.1), is invariant under
the independent rotation of left- and right-handed components of the massless quark
fields:

qL =
1
2
(1−γ5)q ; qR =

1
2
(1+γ5)q ; γ5 ≡ i γ0γ1γ2γ3 (1.8)

Thus, the helicity (spin projection in the direction of particle momentum) of quarks is a
conserved quantity, and therefore the baryon numbers of both left- and right-handed
quarks are conserved – there are no transitions among the two helicities. We define:

B = BL +BR ; ∆B = BL −BR (1.9)

where BL, BR are the left and right baryon numbers. This independence of left- and
right-handed degrees of freedom is known as the chiral symmetry of QCD.

At low temperatures in nature, however, the chiral symmetry is apparently broken.
The reason is twofold:

• For massless quarks at low temperatures, quark-antiquark interaction leads to
the spontaneous formation of a chiral condensate that violates chiral symmetry. In
essence, the ground state (vacuum) of QCD does not respect the symmetry of the
Lagrangian; the quantum vacuum is unstable with regards to chiral condensate
formation:

⟨0 |q̄ q|0⟩ ≡ ⟨0 |q̄L qR + q̄R qL|0⟩ ,

Thus, only the total baryon number B = BL +BR is conserved, and we have quark
pairs with ∆B = ±2. This spontaneous symmetry breaking is completely analogous
to the spontaneous magnetization of a ferromagnet below the Curie temperature.
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• A non-zero mass term for quarks:

mf

(
q̄
f
L q

f
R + q̄

f
R q

f
L

)
couples left- and right-handed components, explicitly breaking chiral symmetry,
and allowing transitions between helicities, L↔ R, at a rate proportional to mf .
Thus, ∆B is no longer conserved.

Quark Q
e Constituent mass (MeV) Current mass (MeV)

d −1/3 ∼ 350 3.5→ 6.0
u +2/3 ∼ 350 1.5→ 3.3
s −1/3 ∼ 550 104± 30
c +2/3 ∼ 1800 1270± 100
b −1/3 ∼ 4200 4200± 100
t +2/3 ∼ 170× 103 (170± 2)× 103

Table 1.1: Constituent and current masses of quarks

Even first generation quarks have small, nonzero current masses. However, these
masses are only a fraction of the constituent masses they appear to have as parts of
hadrons (see Table 1.1). Therefore, the phenomenon of confinement, in combination
with spontaneous chiral symmetry breaking and condensate formation, account for most
of the mass of (at least the light) hadrons in nature.

It is interesting to compare the role of chiral symmetry breaking to the Higgs mech-
anism. The scalar Higgs field is responsible, within the Standard Model, for the masses
of the gauge vector bosons, W ± and Z , and through Yukawa couplings also for the
non-zero current masses of quarks. In fact, the Higgs mechanism is based on the in-
terplay of spontaneous symmetry breaking and gauge invariance, and thus has many
similarities to chiral symmetry breaking. But in the case of light u and d quarks, the
masses afforded through the Higgs mechanism are small enough that the chiral sym-
metry approximately holds. It is therefore only through spontaneous chiral symmetry
breaking that the nucleons acquire 99% of their observed masses!

Let us briefly review the mechanism underlying chiral symmetry breaking: at low
temperatures, and assuming for the moment zero u and d quark masses, the initial
chiral symmetry spontaneously breaks down to its diagonal vector subgroup,

SU (2)L × SU (2)R→ SU (2)L+R (1.10)

no longer allowing independent rotation of helicities. Thus, the chiral condensate is
formed, breaking the symmetry of QCD equations. Since the condensate has to choose
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an orientation, there is now a whole spectrum of rotationally equivalent ground states.
The Nambu-Goldstone bosons that correspond to this rotational degree of freedom
would be massless in the case of exactly zero quark masses. However, since u, d quarks
have small masses, we look for an SU (2)L+R isospin-triplet of light, scalar bosons, JP C =
0−+ – and these turn out to be exactly the π± and π0 pions. At the same time, the
excitational degrees of freedom define an isoscalar-scalar massive field, the σ-field:

σ (x) ∼ ⟨0 |q̄(x)q(x)|0⟩ (1.11)

which is identified with the chiral condensate and plays the role of the order parameter
of the chiral phase transition. In the following chapter, we explore in detail the nature
of this phase transition, and the QCD phase diagram in general.





Chapter 2

THE PHASE DIAGRAM OF QCD

2.1 Introduction

As we mentioned in Chapter 1, the fundamental symmetries of QCD are broken in
normal conditions of low temperature and pressure. On the other hand, evidence from
heavy ion collision experiments, as well as models of the early Universe and study
of astrophysical objects such as neutron stars, indicate that in extreme conditions of
temperature and pressure, the fundamental degrees of freedom of QCD are restored:
quarks are deconfined (asymptotic freedom), chiral symmetry is restored, and axial
baryon number symmetry becomes increasingly accurate.

More specifically, starting at zero baryon density nB and gradually increasing tem-
perature, we go from a state of hadron gas (HG) to a plasma of weakly interacting quarks
and gluons (quark-gluon plasma, QGP). On the other hand, if we increase baryon den-
sity at zero temperature, we first encounter nuclear matter and then superdense states,
such as found in the core of neutron stars.

We therefore have good reason to believe that there are one or more phase transition
lines separating the phases of QCD matter. Across those boundaries, QCD matter un-
dergoes a phase transition; the nature (order) and classification of such phase transitions
is the subject of much experimental, theoretical and computational study.

QCD in approximate thermal and chemical equilibrium is characterized by 2 exter-
nal parameters, the temperature T and the baryon number density nB. In the grand
canonical ensemble, the quark chemical potential µq = µB/3 may be introduced as a
conjugate variable to the quark number density nq = 3nB.) Since the intrinsic scale of
QCD is ΛQCD ∼ 200MeV, it would be conceivable that the QCD phase transition should
take place around T ∼ΛQCD ∼ O(1012)K or nB ∼Λ3

QCD ∼ 1 fm−3.
Heavy ion collision experiments worldwide allow us to produce hot and/or dense

QCD matter and probe its properties. In particular, the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) has conducted experiments to create

17
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hot QCD matter (quark-gluon plasma) by Au-Au collisions with the highest collision
energy √s

NN
= 200GeV [Stankus et al., 2009]. The Large Hadron Collider (LHC) at

CERN will continue experiments along the same line with higher energies [Stankus
et al., 2009; Abreu et al., 2007]. Exploration of a wider range of the QCD phase diagram
with nB up to several times of the normal nuclear matter density n0 ≃ 0.17 fm−3 may be
carried out by low-energy scans in HIC at RHIC as well as at the future facilities such
as the Facility for Antiproton and Ion Research (FAIR) at GSI, the Nuclotron-based Ion
Collider Facility (NICA) at JINR and the Japan Proton Accelerator Research Complex (J-
PARC) at JAERI. Also at CERN, SPS experiments, such as NA49 and its continuation, the
NA61 experiment, probe the relatively high-temperature and low (finite) baryochemical
potential µB in seach of the QCD Critical point.

Turning to nature itself, the core conditions of stellar objects such as neutron stars
would be ideal systems to probe for dense QCD matter at low temperature (see [Heisel-
berg and Hjorth-Jensen, 2000] for a review). For high enough baryon densities, weak
coupling QCD analyses indicate that the QCD ground state forms a condensation of
quark Cooper pairs, known as colour superconductivity (CSC). This is a much more
complex pattern than that electron Cooper pairs in metallic superconductors, since
quarks carry not just spin, but also the quantum numbers of color and flavor.

In this Chapter, we outline the current understanding of the QCD phase diagram, by
which we mean the qualitative and quantitative information of where the boundaries
(phase transition lines) that separate QCD matter phases lie, to what order they belong,
as well as the physical characteristics of the phases they delimit. Each phase must
be thought of as a system of strongly interacting matter at approximate chemical and
thermal equilibrium. In what follows, we focus primarily on the relatively low baryon
density and high temperature phase transition, and especially on the conjectured QCD
Critical Point.

2.2 QCD phase structure

2.2.1 Deconfinement and chiral restoration

A preliminary picture of the QCD phase diagram in T -nB plane can be found in [Cabibbo
and Parisi, 1975]. One can interpret Hagedorn’s limiting temperature in the Statistical
Bootstrap Model (SBM) [Hagedorn, 1965] as a critical temperature associated with a
second-order phase transition into a new state of matter. It has also been recognized
[Collins and Perry, 1975] that asymptotic freedom implies the existence of a phase of
weakly interacting quark matter at large nB.

Phase transitions of QCD matter are distinguished into deconfinement and chiral
restoration:
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• Deconfinement—An early model by [Hagedorn, 1985] uses a hadron resonance gas
at finite temperature. The density of hadronic states (mostly mesons), a function
of resonance mass m and the temperature TH ≃ 0.19GeV known from the Regge
slope parameter, has to be balanced against the Boltzmann factor exp(−m/T ) in the
partition function. When T > TH, the integration over m becomes singular, so that
TH plays a role of the limiting temperature (Hagedorn temperature) above which
the hadronic description breaks down. This argument is applied to estimate
the critical value of µB as well. The density of baryonic states is balanced by
the Boltzmann factor exp[−(mB − µB)/T ], leading to the limiting temperature T =
(1 − µB/mB)T

H
B . We see equivalently that the critical µB at T = 0 is given by

mB( >∼ 1GeV).
The simple Bag Model, in which valence quarks are free except for the confin-
ing pressure of the “bag” (boundary), allows us to picture deconfinement as a
gradual overlap of hadrons that leads to the dissolution of the bag at the Hage-
dorn temperature [Baym, 1979; Satz, 1998]. This naive image, however, needs
to be supplemented by a more careful field-theoretical definition of the quark-
deconfinement in QCD.

• Chiral restoration — As already mentioned in Chapter 1, QCD vacuum fluctuations
are responsible for the generation of the non-perturbative quark constituentmasses.
In hot and dense quark matter, we expect quarks to become asymptotically free,
acquiring their bare, current masses, and also restoring the chiral symmetry of
QCD. One therefore expects to see a chiral phase transition. The QCD phase di-
agram at finite T and µB has also been studied from the point of view of chiral
symmetry [Hatsuda and Kunihiro, 1985]. The order parameter corresponding to
the chiral phase transition is the chiral condensate, ⟨ψ̄ψ⟩ which takes a value about
−(0.24GeV)3 in the vacuum and sets a natural scale for the critical temperature
of chiral restoration. In the chiral perturbation theory (χPT), the chiral conden-
sate for two massless quark flavours at low temperature is known to behave as
⟨ψ̄ψ⟩T /⟨ψ̄ψ⟩ = 1−T 2/(8f 2π )−T 4/(384f 4π )− · · · , where fπ is the pion decay constant,
fπ ≃ 93MeV [Gerber and Leutwyler, 1989]. χPT only applies at low temperature;
however, this is good evidence for the dissolution of the chiral condensate at finite
temperature. At low baryon density, likewise, the chiral condensate decreases as
⟨ψ̄ψ⟩nB/⟨ψ̄ψ⟩ = 1 − σπN nB/(f 2πm2

π) − · · · [Drukarev and Levin, 1991; Cohen et al.,
1992; Hatsuda and Lee, 1992] where σπN ∼ 40MeV is the π-N sigma term.

2.2.2 An outline of the QCD phase diagram

Fig.2.1 shows our current understanding of the QCD phase diagram. Various phases
and features are shown, some more speculative than others. Our predictions can be said
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Figure 2.1: Conjectured QCD phase diagram with boundaries that define various states
of QCD matter based on SχB patterns. Figure by [Fukushima and Hatsuda, 2011]

to be fairly accurate at finite T with small baryon density (µB≪ T ) and at asymptotically
high density (µB ≫ ΛQCD). In what follows, we take a closer look at key features of
Fig.2.1.

Hadron-quark phase transition at µB = 0: The phase transition from hadron gas to
QGP at zero chemical potential has been studied through lattice numerical simulations.
Results depend on the number of flavors and colors, [Svetitsky and Yaffe, 1982; Pisarski
and Wilczek, 1984]. In the case of Nc = 3 and Nf = 0, a 1st order phase transition
is established through finite size lattice scaling [Fukugita et al., 1990], with a critical
temperature of Tc ≃ 270MeV. For Nf > 0 light flavors, analyses based on staggered
fermion and Wilson fermion predict a crossover from HG to QGP for realistic u, d
and s quark masses [Aoki et al., 2006a; DeTar and Heller, 2009]. The pseudo-critical
temperature Tpc, which characterizes the crossover location, is estimated to be within the
range 150MeV−200MeV. For temperatures above Tpc, one may find strong correlations
and pre-formed hadrons in QGP, at µB = 0 [Hatsuda and Kunihiro, 1985; Detar, 1985]
as well as at µB , 0 [Kitazawa et al., 2002; Abuki et al., 2002; Nishida and Abuki,
2005].
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Figure 2.2: Characteristic points on the QCD phase diagram. E represents the so-called
QCD critical point. F is another critical point induced by the quark-hadron continuity.
G is the critical point associated with the liquid-gas transition of nuclear matter. H
refers to a region which looks like an approximate triple point. Figure by [Fukushima
and Hatsuda, 2011].

QCD critical points: Beyond the region µB ∼ T , lattice calculations are unreliable.
However, effective chiral models suggest the existence of a QCD critical point at (µB =
µE,T = TE), with a 1st order (crossover) phase transition for µB > µE (µB < µE), for
realistic values of u, d and s quark masses [Asakawa and Yazaki, 1989; Barducci et al.,
1989; Wilczek, 1992; Berges and Rajagopal, 1999] (see the point E in Fig.2.2). In the
vicinity of the critical point, enhanced fluctuations are expected, which is why the search
for the QCD critical point is of great experimental interest [Stephanov et al., 1998, 1999].

It is also possible that another critical point F exists, Fig.2.2, at a location (µF,TF),
in the lower-T and higher-µB region. The existence and location of E and F depend
crucially on the relative magnitude of the strange quark mass ms and the typical values
of T and µB at the phase boundary.

Liquid-gas phase transition of nuclear matter: In the low T region of the plot, and
around µB = µNM ≃ 924MeV, a non-vanishing nuclear matter baryon density starts to
form. At the threshold µB = µNM, the density nB varies between zero and the normal
nuclear density n0 = 0.17 fm−3, as droplets of nuclear matter start to form, in the manner
of liquid-gas phase transition. This 1st order phase transition line ends up at a 2nd
order phase transition critical point G, located at (µG,TG), Fig.2.2. Low energy HIC
experiments indicate that µG ∼ µNM and TG = 15 ∼ 20MeV [Chomaz, 2004].

Quarkyonic matter: The Statistical Model, which assumes a thermally equilibrated
gas of non-interacting mesons, baryons and resonances, defines a chemical freeze-out
line. This line, although not a phase boundary, should lie close to the phase transition
line. Mesons dominate thermal degrees of freedom for µB ≪ mN , and baryons for
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higher values of µB. It is therefore likely that there is a point H, at (TH,µH), around
µH = 350 ∼ 400MeV and TH = 150 ∼ 160MeV, where the importance of baryons in
thermodynamics surpasses that of mesons.

In the Nc =∞ limit, a finite baryon density arises, a cold, dense matter known as
quarkyonic matter. For finite Nc, a remnant of a triple point remains, indicated by H in
Fig.2.2.

Colour superconductivity: For µB asymptotically large, µB≫ΛQCD, we can use weak-
coupling QCD methods in the analysis, and rely on knowledge of condensed matter
physics, substituting quarks for electrons. We then get the analog of Cooper electron
pairs, for low T , known as color superconductivity (CSC) [Rajagopal and Wilczek, 2000;
Alford et al., 2008; Huang, 2010; Schmitt, 2010; Barrois, 1977; Bailin and Love, 1984].

2.3 QCD phase transition order parameters

2.3.1 Polyakov loop and quark deconfinement

The Polyakov loop which characterizes the deconfinement transition in Euclidean space-
time is defined as [Polyakov, 1978; Susskind, 1979]

L(x) = P exp
[
−ig

∫ β

0
dx4A4(x,x4)

]
, (2.1)

which is an Nc ×Nc matrix in color space. Here β is the inverse temperature β = 1/T ,
and P represents the path ordering. We will use ℓ to represent the traced Polyakov
loop,

ℓ =
1
Nc
trL. (2.2)

Under the center transformation group, Z(Nc) of SU(Nc), the gauge field A4 receives a
constant shift, and the traced Polyakov loop transforms as ℓ→ zkℓ. Because Ak4 remains
periodic in x4, such a non-periodic gauge transformation still forms a symmetry of the
gauge action. This is called center symmetry [Svetitsky, 1986; Svetitsky and Yaffe, 1982].
The quark action explicitly breaks center symmetry, which only is an exact symmetry
in the pure gluonic theory where dynamical quarks are absent or quark masses are
infinitely heavy (mq→∞).

The expectation value of the Polyakov loop and its correlation in the pure gluonic
theory can be written as [McLerran and Svetitsky, 1981; Nadkarni, 1986b,a]

Φ = ⟨ℓ(x)⟩ = e−βfq , Φ̄ = ⟨ℓ†(x)⟩ = e−βfq̄ , (2.3)
⟨ℓ†(x)ℓ(y)⟩ = e−βfq̄q(x−y). (2.4)
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Confined (Disordered) Phase Deconfined (Ordered) Phase
Free Energy fq =∞ fq <∞

fq̄q ∼ σr fq̄q ∼ fq + fq̄ +α
e−mMr

r

Polyakov Loop ⟨ℓ⟩ = 0 ⟨ℓ⟩ , 0
(r→∞) ⟨ℓ†(r)ℓ(0)⟩ → 0 ⟨ℓ†(r)ℓ(0)⟩ → |⟨ℓ⟩|2 , 0

Table 2.1: Behaviour of the expectation value and the correlation of the Polyakov loop
in the confined and deconfined phases in the pure gluonic theory.

Here, the constant fq (fq̄) independent of x is an excess free energy for a static quark
(anti-quark) in a hot gluon medium. Also, fq̄q(x − y) is an excess free energy for an
anti-quark at x and a quark at y.

Table 2.1 summarizes the results of the Polyakov loop and its correlation for the
potential between a quark and an anti-quark in the confined and deconfined phases
(pure gluonic theory). In the confined phase, there can be no free quarks, and the
potential increases linearly at long distance, (fq̄q(r →∞)→ σr with r = |x − y|). In the
deconfined phase, on the other hand, the free energy of a single quark is finite, and
the quark-antiquark potential is of the Yukawa type at long distance with a magnetic
screening mass mM [Arnold and Yaffe, 1995; Hart et al., 2000; Maezawa et al., 2010],

fq̄q(r→∞)→ fq̄ + fq +α
e−mMr

r
, (2.5)

where α is a dimensionless constant.

2.3.2 Chiral condensate and dynamical breaking of chiral symmetry

In the QCD vacuum at T = µB = 0, chiral symmetry is spontaneously broken, which is
the source of hadron masses. The simplest choice of the order parameter for the chiral
symmetry breaking is a bilinear form called the chiral condensate,

⟨ψ̄ψ⟩ = ⟨ψ̄RψL + ψ̄LψR⟩, (2.6)

where summation of color and flavor indices of the quark fields is implied. If the value
of the chiral condensate is non-zero even after taking the limit of zero quark masses,
chiral symmetry is spontaneously broken according to the pattern G →H with

G = SU(Nf)L × SU(Nf)R ×U(1)B ×Z(2Nf)A (2.7)
H = SU(Nf)V ×U(1)B, (2.8)
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which leads to N2
f −1 massless Nambu-Goldstone bosons for Nf > 1. The U(1)A symme-

try in the classical level of the QCD Lagrangian is broken down explicitly to Z(2Nf)A in
the quantum level. Then, the U(1)A current is no longer conserved (U(1)A anomaly);

∂µj
µ
5 = −

g2Nf

32π2 ϵ
αβµνFaαβF

a
µν . (2.9)

The right-hand side of the above relation is nothing but the topological charge density.
Thus, gauge configurations with non-trivial topology are microscopically responsible
for the U(1)A anomaly. In other words, the U(1)A current could be approximately
conserved if the gauge configurations are dominated by topologically trivial sectors.

2.4 Chiral phase transition at finite temperature

The chiral phase transition at finite T with µB = 0 has been and is being extensively
studied by the renormalization group method near the critical point à la Ginzburg-
Landau-Wilson and by lattice-QCD simulations. Here, we give a brief overview of the
results of these studies.

2.4.1 Ginzburg-Landau-Wilson analysis

If the phase transition is of second order or of weak first order, the free-energy func-
tional, in terms of the order parameter field Φ , can be expanded as a power series in
Φ/Tc. Large fluctuations of Φ near the critical point are then handled by the renor-
malization group method. This is called the Ginzburg-Landau-Wilson approach. For
chiral phase transitions in QCD, a suitable order parameter field is a Nf ×Nf matrix
in flavor space, Φij ∼ ⟨ψ̄j(1− γ5)ψi⟩. Under the flavour chiral rotation U(Nf)L ×U(Nf)R,
Φ transforms as Φ → VLΦV

†
R . Then the Ginzburg-Landau free energy in three spatial

dimensions (D = 3) with full U(Nf)L ×U(Nf)R symmetry up to the quartic order in Φij
becomes [Pisarski and Wilczek, 1984; Wilczek, 1992];

Ωsym =
1
2
tr∇Φ†∇Φ +

a0
2
trΦ†Φ +

b1
4!

(
trΦ†Φ

)2
+
b2
4!
tr

(
Φ†Φ

)2
. (2.10)

Temperature T dependence enters through the parameters a0, b1 and b2. Note that
Ωsym is bounded from below as long as b1 + b2/Nf > 0 and b2 > 0 are satisfied. The
renormalization group analysis of (2.10) on the basis of the leading-order ϵ(= 4 −D)
expansion leads to the conclusion that there is no stable IR fixed point for Nf >

√
3

[Pisarski and Wilczek, 1984]. This implies that the thermal phase transition described
by (2.10) is of the fluctuation-induced first order for two or more flavors.

In QCD, however, there is U(1)A anomaly and the correct chiral symmetry is SU(Nf)L×
SU(Nf)R ×U(1)B × Z(2Nf)A for Nf massless quarks. The lowest dimensional operator
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Nf = 2 Nf ≥ 3

U(1)A symmetric (c0 = 0) Fluctuation-induced 1st order 1st order
U(1)A broken (c0 , 0) 2nd order [O(4) universality] 1st order

Table 2.2: Order of the chiral phase transition conjectured from the chiral effective
theory with massless Nf flavours with and without the U(1)A anomaly.

which breaks U(1)A symmetry explicitly while keeping the rest of chiral symmetry is the
Kobayashi–Maskawa–’t Hooft (KMT) term [Kobayashi and Maskawa, 1970; Kobayashi
et al., 1971; ’t Hooft, 1976b,a];

Ωanomaly = −
c0
2

(
detΦ +detΦ†

)
. (2.11)

The coefficient c0, which is T -dependent in general, dictates the strength of U(1)A
anomaly.

For Nf = 3 the KMT term becomes a cubic invariant in the order parameter. Hence,
Ω[Φ] =Ωsym+Ωanomaly leads to the chiral phase transition of first order. For Nf = 2, on
the other hand, the KMT term becomes a quadratic invariant. Also the chiral symmetry
in this case is SU(2)L × SU(2)R � SO(4). Such an effective theory with O(4) symmetry
has a Wilson-Fisher type IR fixed point as long as the coefficient of the quartic term
of Φ is positive. Therefore, if the chiral phase transition of massless Nf = 2 QCD is of
second order, its critical exponents would be the same as those in the 3D O(4) effective
theory according to the notion of universality. In Table 2.2 we summarize the Ginzburg-
Landau-Wilson analysis from the chiral effective theory [Pisarski and Wilczek, 1984].

In the real world, none of the quarks is exactly massless (see Table 1.1). It is
therefore useful to have a phase diagram where quark masses are treated as external
parameters, in analogy with an external magnetic field in a ferromagnet. Such a plot is
called the Columbia plot [Brown et al., 1990], as shown in Fig.2.3, where the isospin
degeneracy is assumed (mu =md ≡mud). The first-order chiral transition and the first-
order deconfinement transition at finite T are indicated by the left-bottom region and
the right-top region, respectively. The chiral and deconfinement critical lines, which
separate the first-order and crossover regions, belong to a universality class of the 3D
Z(2) Ising model except for special points at mud = 0 or ms = 0 [Gavin et al., 1994].

If the chiral transition is of second order for massless Nf = 2 case, the Z(2) chiral
critical line meets the mud = 0 axis at ms =mtri

s (tricritical point) and changes its univer-
sality to O(4) for ms > m

tri
s [Hatta and Ikeda, 2003]. The tricritical point at ms =mtri

s is
a Gaussian fixed point of the 3D ϕ6 model (that is, the critical dimension is not 4 but
3 at the tricritical point), so that the critical exponents take the classical (mean-field)
values [Riedel and Wegner, 1972], which is confirmed in numerical studies of the chiral
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Figure 2.3: Schematic figure of the Columbia phase diagram in 3-flavour QCD at µB = 0
on the plane with the light and heavy quark masses. The U(1)A symmetry restoration is
not taken into account. Near the left-bottom corner the chiral phase transition is of first
order and turns to smooth crossover as mud and/or ms increase. The right-top corner
indicates the deconfinement phase transition in the pure gluonic dynamics. Figure by
[Fukushima and Hatsuda, 2011]

model [Schaefer and Wambach, 2007].

2.4.2 Lattice QCD simulations

The critical properties arising from the analysis of section 2.4.1 are expected to be
robust and universal. However, specific values for the critical temperature and the
equation of state depend on the details of the microscopic theory. The only known
way to obtain reliable information about the behavior of the microscopic dynamics is
through simulations on a discretized lattice (lattice-QCD). In other words, we integrate
functionally over a lattice with spacing a, and over a finite volume V , by the method
of importance sampling. Consequently, in order to obtain physical results, independent
of the particular simulation parameters, we have to take the continuum limit (a→ 0),
and then also go to the thermodynamic limit (V →∞). Thus, adding to the inevitable
statistical error due to importance sampling, we also introduce a systematic error due
to the extrapolations in the limiting procedure.

There is also difficulty in reconciling lattice discretization with chiral symmetry for
nearly massless fermions: the standard way to define light quarks on the lattice has been
the Wilson fermion and the staggered fermion. More recently, the domain-wall fermion
and overlap fermion have been proposed, which although theoretically more solid, are
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Figure 2.4: Determination of the pseudo-critical temperature Tpc for thermal QCD
transition(s) from recent lattice QCD simulations. (1) 169(12)(4)MeV for 2 + 1 flavors
in the asqtad action with Nt up to 8 determined by χm/T 2 (where χm is the chiral
susceptibility) [Bernard et al., 2005]. (2) 192(7)(4)MeV for 2 + 1 flavors in the p4fat3
staggered action with Nt up to 6 determined by χm and χL (where χL is the Polyakov
loop susceptibility) [Cheng et al., 2006]. (3) 151(3)(3)MeV and 176(3)(4)MeV for 2+1
flavors in the stout-link improved staggered action with Nt up to 10 determined by
χm/T

4 and χL respectively [Aoki et al., 2006b]. (4) 172(7)MeV for 2 flavors in clover
improved Wilson action with Nt up to 6 determined by χL [Maezawa et al., 2007]. (5)
152(3)(3)MeV and 170(4)(3)MeV for 2+1 flavors in the stout-link improved staggered
action with Nt up to 12 determined by χm/T 2 and χL respectively [Aoki et al., 2009]. (6)
185–195MeV for 2+1 flavors in the asqtad and p4 actions with Nt up to 8 determined
by χm and χL [Bazavov et al., 2009]. (7) 174(3)(6)MeV for 2 flavors in the improved
Wilson action with Nt up to 12 determined by χm and χL [Bornyakov et al., 2010]. (8)
171(10)(17)MeV for 2+1 flavors in the domain-wall action with Nt = 8 determined by
χm/T

2 [Cheng et al., 2010]. (9) 147(2)(3)MeV and 165(5)(3)MeV for 2 + 1 flavors in
the stout-link improved staggered action with Nt up to 16 determined by χm/T 4 and
χs/T

2 (where χs is the strange-quark susceptibility) [Borsányi et al., 2010]. Figure by
[Fukushima and Hatsuda, 2011].
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computationally more expensive to simulate. For various applications of lattice-QCD
simulations to the system at finite T and µB, see a recent review by [DeTar and Heller,
2009]

Finally, we note that based on finite-size scaling analysis with staggered fermion by
[Aoki et al., 2006a], the thermal phase transition for realistic quark masses is likely a
crossover, as indicated by the red star in Fig.2.3, but this should be confirmed by other
fermion formalisms.

The (pseudo)-critical temperatures Tpc that result from different types of fermions
and with different lattice spacings are summarized in Fig.2.4. Based on these data and
their accompanying error bars, we adopt a conservative estimate at present; Tpc = 150–
200MeV. It has been clarified recently that improvement of the staggered action with
less taste-symmetry breaking favours a smaller value of Tpc ≲ 170MeV [Borsányi et al.,
2010; Bazavov and Petreczky, 2010].

2.5 Chiral phase transition at finite baryon density

We now take finite µB into account, adding a third axis to the Columbia plot of Fig.2.3.
As shown in Fig.2.5, there are two scenarios:
(i). In the standard scenario (left), the first order region expands for increasing µB,

so that a point that belongs in the crossover region for µB = 0 undergoes a first
order transition for all µB > µE, for some µE , 0, and therefore we have in the
µB–T plot, for some choice of mu,d and ms, a first order transition line ending up
at a critical point (µE,TE).

(ii). On the other hand, in the exotic scenario (right), the first order region shrinks
with increasing µB. In this case, if a physical point is in the crossover region for
µB = 0, it stays in the crossover region for finite µB, and there is no critical point
(at least for small µB), in the QCD µB–T phase diagram.

In general, more complicated forms of the surface in Fig.2.5 are possible, which
allow for multiple critical points.

2.5.1 Lattice QCD at low baryon density

The QCD partition function on the lattice, for µq , 0, is given by:

Z(T ,µ) =
∫

[dU ]det[F(µq)]exp
−βSYM(U ), (2.12)

where U is the matrix-valued gauge field defined at the lattice links, βSYM is the
Yang-Mills action, β = 2Nc/g2, and F(µq) =D(µq)+mq, where mq is the (positive) quark
mass and D(µq) is the Euclidean Dirac operator.
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mB=0

mB=0/

mud mud

Figure 2.5: Schematic evolution of the Columbia plot with increasing µB in the standard
scenario (left) and the exotic scenario (right). Figure by [Fukushima and Hatsuda,
2011].

For µq = 0, det[F(µq)] is positive definite, and importance sampling works to evaluate
(2.12). For µq , 0, however, det[F(µq)] is no longer real, and we need to do a careful
cancellation of positive and negative values; this is known as the sign problem, and its
difficulty grows exponentially with increasing volume V .

In the following, we briefly mention some of the approaches used in simulations at
finite µq. Detailed reviews can be found at [Muroya et al., 2003; Ejiri, 2008; Lombardo
et al., 2009].

• Multi-parameter reweighting method — Using reweighting, we can expand the ex-
pectation value of an operator ⟨O⟩µq , given at µq = 0, to µq , 0. The method only
works when µq and the volume V are small.

• Taylor expansion method — ⟨O⟩µq can be expanded in terms of µq/T , for small µq:

⟨O⟩µq =
∞∑
n=0

cn

(µq
T

)n
,

This only makes sense within a radius of convergence, up to the closest singularity
in the µq–T complex plane.

• Imaginary chemical potential method — For Imaginary µq, denoted as µ̃q, the sign
problem is gone, so we can perform calculations and go back to real µq by analytic
continuation. This method is only applicable within bounds set by singularities
of periodicity.

• Canonical ensemble method — In the thermodynamic limit, the canonical ensemble,
as a function of particle number Nq, is equivalent to the grand canonical ensemble,
as a function of the chemical potential µq. We can Fourier transform between the
two by means of imaginary µq. This only works for small volume V . Taking the
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thermodynamic limit, V →∞, with nq =Nq/V instead of Nq kept fixed, is a tricky
procedure, and the order of the resulting phase transition depends on the way we
approach this limit.

Demonstrating the existence or non-existence of the QCD critical point in the µB–
T plane by lattice QCD simulations would be a very important achievement. Various
attempts have been made, using the aforementioned approaches. One noteworthy ap-
proach is the idea to use the radius of convergence of a Taylor expansion in µq/T
(assuming convergence due to the singularity at the critical point) as an indication of
its location.

In any case, the validity of such methods at finite baryon density is limited in the
region µq/T < 1 at present, because of the sign problem. In conclusion, although some
of the lattice-QCD simulations suggest the existence of the QCD critical point in µB–T
plane, the results are to be taken with a grain of salt if it is predicted at large µq/T .



Chapter 3

GEOMETRIC CHARACTERISTICS OF THE
CHIRAL CONDENSATE

3.1 Introduction

In the previous chapter, we reviewed the evidence for the existence of a critical point
in the QCD phase diagram, as the endpoint of a first order phase transition line, which
separates the phases of Hadron Gas (HG) and Quark Gluon Plasma (QGP). The latter
phase is characterized by a restored chiral symmetry, which is apparently broken in
the hadron gas phase. We therefore concluded that the chiral phase transition can be
described by means of an order parameter, which attains a non-zero expectation value
in the broken symmetry phase, and is equal to zero in the symmetric phase. Such a
suitable order parameter of the chiral phase transition is the expectation value of the
chiral condensate.

In the vicinity of a second order transition critical point, the thermodynamics of the
system undergoing phase transition is greatly simplified. The only relevant thermody-
namic quantity is the order parameter. This is due to the divergence of the correlation
length at the critical point: only long-wavelength features of the system matter. The sys-
tem exhibits scale-invariance, which in turn means that all the relevant thermodynamic
functions follow scaling laws with respect to the distance from the critical point.

It is therefore possible to describe a wide variety of very different systems employing
only a handful of universality classes, since the critical exponents in the scaling laws
depend only on the symmetries present and the dimensionality of space. Furthermore,
the, in general, fractal geometry of a critical system can be quantitatively related to the
set of critical exponents of the corresponding universality class. In the present chapter,
we examine the universality class to which the QCD chiral phase transition belongs and
we discuss the effective action that governs the behaviour and geometric characteristics
of the chiral condensate in the vicinity of the QCD critical point.

31



32 GEOMETRIC CHARACTERISTICS OF THE CHIRAL CONDENSATE

3.2 First and second order phase transitions

We distinguish between two broad classes of phase transitions that exhibit rather differ-
ent characteristics near the transition point. First order phase transitions are character-
ized by finite discontinuities in the main thermodynamic quantities (except for the free
energy, which must be continuous across a phase transition line). In contrast, second
order phase transitions are characterized by continuous, but non-analytic behaviour of
thermodynamic quantities.

Near the transition point of a first order transition, the two phases are different
enough that they have to be described by different expressions of the free energy. For
a large, but finite volume, a first order phase transition is characterized by drastic and
abrupt transitions from one phase to another; phase boundaries are sharp, and they
give rise to hysteresis in the thermodynamic limit of infinite volume. In contrast, under
similar circumstances, a second order phase transition point exhibits no jumps, and the
partition function is analytic.

Non-analyticity arises only in the infinite volume limit. This suggests that, in order
for a second order phase transition to take place, there must be present fluctuations
of arbitrarily long-wavelength and low energy, since only such modes can survive and
give a non-trivial contribution in the infinite volume limit – otherwise, the free energy
is simply expressed as a sum of independent terms for small volumes. This means
that the correlation length must tend to infinity at the transition point. From a particle
physics viewpoint, this “translates” to massless particles, which are precisely the quanta
of the aforementioned modes.

Following Landau and Wilson, we conclude that the fact that massless modes dom-
inate the non-analytic part of thermodynamic functions near a second order phase
transition allows us to make specific and accurate predictions about the behaviour of
the system near the transition point, i.e. the critical behaviour of the system. The
main idea is, as we have already mentioned, that symmetry and the dimensionality of
space, along with the demand for massless modes, severely restrict the possible forms
of effective action we can formulate, so that we may be able to find a unique action to
fit our constraints. Thus, the divergent part of any given thermodynamic quantity at a
second order transition with given symmetry and dimensionality of space is uniquely
determined, regardless of microscopic theory details. This is the universality hypothesis.

Universality allows us to make predictions for the behaviour of complex systems,
such as QCD near the critical point, by examining much simpler system models.

As a characteristic example, let us examine the 3D-Ising model for magnetization.
We are interested in the divergent behaviour of thermodynamic quantities near a second
order phase transition, where the magnetization is continuously reduced to zero from
a non-zero value. As long as we focus on low-energy, long-wavelength modes, i.e. on
slowly varying spatial variations of average magnetization, we can use a coarse-grained
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description of the system. We therefore describe magnetization through a real valued,
scalar field ϕ(x) in three dimensions. We are interested in the singular behaviour of
the partition function arising from ϕ(x) fluctuations. In order to determine it, we must
construct a proper “universal” theory in terms of the field ϕ(x).

Since we want to describe long-wavelength fluctuations, we write a Lagrangian in-
cluding only lowest order ϕ(x) terms and their derivatives. First of all, we need a
quadratic term for the derivative of ϕ in order to have spatial variations. We do not
include a ϕ2 term, since it would dominate the derivative term for long wavelengths.
In other words, we assume a massless field. Due to the ϕ → −ϕ symmetry (no ex-
ternal field), the next allowed term is ϕ4. Therefore, our test “Lagrangian” (i.e., the
Hamiltonian in units of temperature, H/T , takes the form∫

d3xL =
∫
d3x

(
(∂ϕ)2 +λϕ4

)
(3.1)

By using simple dimensional analysis, we see that in order to have a dimensionless
Lagrangian the field ϕmust have a mass (inverse length) dimension of 1/2, and therefore
λ must have dimensions of 1. Solely from dimensional analysis, we see that we do not
get a scale invariant theory.

The problem is resolved through the process of renormalization: we define a cutoff
at a high enough energy, as well as a renormalized value of the coupling constant at
a finite energy scale, independent of the cutoff. Consequently, we let the cutoff go to
infinity, and by a proper procedure, we finally recover a dimensionless coupling constant
which is cutoff-independent. Another method consists of formulating the model in 4−ϵ
dimensions, for small ϵ, where the dimensionality of the coupling constant is small, and
then extrapolating to ϵ = 1, i.e. in three dimensions (dimensional regularization). We
can therefore obtain in the end a scale invariant theory. Although such calculations are
prohibitively difficult for QCD, thanks to universality we can obtain useful results by
using much simpler models.

We turn now to a model capable of describing a first order phase transition. For the
Ising model, we found that, in order to construct a scale invariant second order phase
transition theory, mass terms must be dropped. It is reasonable to assume that the
effective mass going into the Lagrangian is a function of the temperature, m2 = m2(T ),
and therefore it goes to zero at a given temperature. Thus, the Lagrangian (3.1) is a
special case of the more general∫

d3xL =
∫
d3x

(
(∂ϕ)2 +m2(T )ϕ2 +λϕ4

)
, (3.2)

which describes the fluctuations of magnetization not just at the critical transition tem-
perature, but also nearby. This is evident for another reason: when m2(T ) < 0, the
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field “favors” a configuration where ϕ has a non-zero expectation value, whereas when
m2(T ) > 0 the expectation value is zero.

If we further assume that the system is placed in an external magnetic field H , the
symmetry ϕ→ −ϕ is broken, allowing ϕ and ϕ3 terms. The ϕ term can be absorbed,
leaving the ϕ3 and mass terms; the latter still goes to zero at the critical temperature.
However, contrary to the previous model, this does not in general lead to a second
order phase transition, since the presence of the ϕ3 term causes the expectation value to
jump to a new minimum for a non-zero (positive) m2 value. The special case where the
cubic and square mass terms cancel out is only accessible if there is a second adjustable
parameter, besides temperature. A so-called tricritical point then appears. In the phase
plane, as we saw in the previous chapter, the tricritical point is the endpoint of a line
of gradually weaker first order phase transitions.

Even if the mean field theory allows a second order phase transition, this will not
occur unless there is a scale invariant theory representative of the universality class.
The problem with mean field theory is that it ignores fluctuations, which however are
vital. In order to recover in the end a scale invariant theory, the coupling constant must
transform smoothly under renormalization group transformations towards the infrared
(long-wavelength) limit. If this behaviour is absent, there will be no second order phase
transition. Physically, what this means is that fluctuations in such cases grow arbitrarily
large, leading to destructive rearrangements of the configuration, i.e. a first order phase
transition. This is known as a fluctuation-driven first order phase transition.

Because they are characterized by finite discontinuities, first order phase transitions
are robust against small perturbations. Thus, given a symmetry and an order parameter,
whose variation from a non-zero to a zero value induces a first order phase transition,
then according to the above, the phase transition will remain first order even if the
symmetry is explicitly broken to a small extent. There will be no well-defined order
parameter, and we therefore have to turn to a strictly symmetric variation of the theory
in order to derive the necessity of the transition.

3.3 Critical exponents and scaling laws

Universality in the critical behaviour of various systems is quantified through the crit-
ical exponents of the corresponding universality class, i.e. the exponents describing the
divergent component of measurable thermodynamic quantities near the critical temper-
ature Tc. In the magnetization model, there are two relevant thermodynamic parameters
describing the proximity of the system to the critical point: the reduced temperature,
t ≡ (T −Tc)/Tc, where Tc is the critical temperature, and the magnetizing field H . Critical
exponents are traditionally symbolized by the letters α,β,γ,δ,η and ν, and are defined
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as follows:

Specific Heat: C(T ) ∼ |t|−α (3.3a)
Order parameter: ⟨|ϕ|⟩ ∼ |t|β (for t < 0) (3.3b)

Susceptibility: χ ∼ |t|−γ (3.3c)
Equation of state (EoS): ⟨|ϕ|⟩(t = 0,H → 0) ∼H1/δ (3.3d)

(In the magnetization model, the role of order parameter is played by the magnetization
M , whereas in QCD by the chiral condensate). Susceptibility describes the sensitivity
of the order parameter to variations of the magnetizing field H . All of (3.3), except for
(3.3d), are defined for the H = 0 case.

The final two exponents refer to the correlation function, which expresses the spatial
fluctuations of the order parameter and quantifies the correlation between remote sites,
thus defining a characteristic “correlation length” ξ , which diverges at the critical point.
The correlation function is defined as follows:

Γ (r) ≡
⟨
ϕ(r)ϕ(0)

⟩
−
⟨
ϕ(r)

⟩⟨
ϕ(0)

⟩
⇒ r−p exp(−r/ξ), at large distances (3.4)

whereas the integrated correlation function gives the susceptibility:

χ =
1
kBT

∫
d3r Γ (r) (3.5)

The exponent ν relates the correlation length ξ to the temperature:

ξ ∼ |t|−ν (3.6)

Finally, the exponent η is related to the so-called anomalous dimension, via the power-
law p in the expression for the correlation function:

p = d − 2+ η, (3.7)

where d is the dimensionality of space.
The six critical exponents defined above are not independent; they are related to

each other through the following four scaling laws [Huang, 1987]:

Fisher: γ = ν(2− η)
Rushbrooke: α +2β +γ = 2

Widom: γ = β(δ − 1)
Josephson: νd = 2−α

(3.8)

Thus, determining the values of any two critical exponents, e.g. η and ν, and the
dimensionality d of space, uniquely determines the rest of the critical exponents too.
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Exponent TH EXPT MFT TRICR ISING2 ISING3 HEIS3

α 0− 0.14 0 1/2 0 0.12 −0.19± 0.06
β 0.32− 0.39 1/2 1/4 1/8 0.31 0.38± 0.01
γ 1.3− 1.4 1 1 7/4 1.25 1.44± 0.04
δ 4− 5 3 5 15 5 4.82± 0.05
ν 0.6− 0.7 1/2 1/2 1 0.64 0.73± 0.02
η 0.05 0 0 1/4 0.05 0.03± 0.01

α+2β +γ 2 2.00± 0.01 2 2 2 2 2
(βδ −γ)/β 1 0.93± 0.08 1 1 1 1
(2−η)ν/γ 1 1.02± 0.05 1 1 1 1 1
(2−α)/νd 1 4/d 3/d 1 1 1

Table 3.1: Critical exponents and scaling law values corresponding to various univer-
sality classes. TH: theoretical values (from scaling laws); EXPT: experimental values
(from a variety of systems); MFT: mean field theory; TRICR: tricritical point; ISINGd:
Ising model in d dimensions; HEIS3: classical Heisenberg model, d = 3 [Bagnuls et al.,
1987]. Adapted from [Huang, 1987]

3.4 The role of long-range correlations at the critical point

3.4.1 Correlation functions

Let us consider a general statistical system, for example the magnetization model. If
we are interested in a coarse-grained description of it (and near a critical point, that is
typically all we are interested in), its partition function can be given as a functional of
a slowly varying field χ(x):

Z =
∫
Dχe−S[χ], S[χ] = βH[χ] (3.9)

where β is the inverse temperature and H is the Hamiltonian corresponding to the
system. Typically, S[χ] is given by:

S =
∫
d3x

{1
2
|∇χ(x)|2 +Vef f [χ]

}
, (3.10)

where Vef f [χ] is some effective potential.
The field χ(x) is subject to thermal and quantum fluctuations. In order to quantify

them, we can define expectation values for χ(x), as well as for functions of χ(x) at
various points. These are computed as weighted integrals:

⟨χ(x)χ(y)⟩ = Z−1
∫
Dχχ(x)χ(y)e−S[χ] (3.11)
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If now we define an external field, H(x), linearly coupled to χ(x), we can generalize
Z to a functional Z[H] taking the form:

Z[H] =
∫
Dχ · exp

{
−S[χ] +

∫
d3xχ(x)H(x)

}
(3.12)

Eq.(3.12) allows us to define the functional W [H]:

W [H] ≡ lnZ[H], (3.13)

which is closely related to the thermodynamic free energy potential. Indeed, the functional
derivatives of W [H] with respect to the external field H are the connected correlation
functions:

δW
δH(x)

= ⟨χ(x)⟩ ≡ ϕ(x) (3.14)

δ2W
δH(x)δH(y)

= ⟨χ(x)χ(y)⟩ − ⟨χ(x)⟩⟨χ(y)⟩ (3.15)

with (3.14) giving the average density of the field at x, and (3.15) giving the density-
density correlation function, Γ (x − y), (eq.3.4).

Finally, the effective action, Γef f [ϕ], is defined in terms of the average density ϕ(x),
via a Legendre transformation of W [H]:

Γef f [ϕ] ≡ −W [H] +
∫
d3xϕ(x)H(x) (3.16)

Γef f [ϕ] is easier to handle than W [H], and we can extract the relevant physical observ-
ables from it. It is related to the free energy by the following formula:

F = T Γef f − T
∫
d3xϕeq(x)H(x), (3.17)

where ϕeq is the equilibrium value of the field, and H(x) is a function of ϕeq(x):

δΓef f
δϕ(x)

=H(x) (3.18)

3.4.2 Scale invariance. The relation of critical exponents and fractal di-
mensions.

At the critical point of a second order phase transition, the correlation length ξ →∞.
(3.4) then suggests that the correlation function follows a power-law, Γ (r) ∼ r−p. In
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other words, there is no characteristic length scale in the physical system; it exhibits
scale invariance, which means all physical quantities are invariant under a scale trans-
formation.

Scale-invariant mathematical functions are known as homogeneous functions:

f (bDqq) = bDf f (q) (3.19)

where b is the rescaling factor, x→ x/b. If in a critical system we define the free energy
density, g = G

kTV , as a function of reduced temperature t and reduced external field
h = H

kT , we expect to get a scaling form [Huang, 1987]:

g(h, t) = b−d g(bDhh,bDt t), (3.20)

where d is the dimensionality of space. This result – a generalized version of Widom’s
scaling form – stems from the fact that the free energy density has an energy (inverse
length) dimension of d. As we saw in the previous section, the free energy is the gener-
ating functional of the density-density correlation functions. Therefore, the power-law,
scale invariant form of the free energy is reflected in the behaviour of all thermodynamic
variables, which transform under scale transformations, each with a characteristic and
generally fractal dimension.

We can relate the fractal dimensions Dh, Dt to the set of critical exponents, (3.3).
Since the correlation length ξ is the only relevant length scale near the critical point,
we get from (3.6)

Dt = 1/ν (3.21)
Setting bDt t ∼ 1⇒ b ∼ t−1/Dt , we can express Widom’s scaling form as:

g(h, t) = |t|d/Dt G
(

h

|t|Dh/Dt

)
(3.22)

Differentiating (3.22) with respect to h and t, and using the definitions (3.3) of critical
exponents, we obtain:

Dh =
d · δ
δ+1

(3.23)

which relates the fractal dimension Dh to the isothermal critical exponent δ and the
dimensionality d of space. The rest of the critical exponents can also be related to
Dh, Dt via the scaling laws (3.8).

Eq.(3.23) is crucial for understanding the geometry of the chiral condensate. It
tells us that, at the critical temperature, the order parameter, i.e. the chiral condensate,
organizes in structures (clusters) that have a fractal dimension of Dh. If we can therefore
measure the fractal dimension of critical clusters in configuration or momentum space,
we can determine the isothermal critical exponent δ, and obtain information about the
universality class to which the chiral phase transition belongs.
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3.5 The chiral condensate as an order parameter

3.5.1 The chiral phase transition

As we have already seen, massless QCD possesses the chiral symmetry, which means
fermionic fields are invariant under independent rotation of their left and right com-
ponents. In particular, we can define the chiral transformation operator as U5 ≡
exp(−g5γ5 τiϵi

2 ), where τi are the isospin generators (Pauli matrices), ϵi are the rota-
tion angles and g5 is a coupling constant. The chiral transformation of a spinor is
then:

ψ′ =U5ψ (3.24)

whereas
ψ̄′ = ψ̄U5 (3.25)

Therefore, the kinetic term of the QCD Lagrangian is invariant under (3.24-3.25),
whereas the mass term is not:

mψ̄′ψ′ =mψ̄U5U5ψ ,mψ̄ψ (3.26)

It follows that high-temperature (T > Tc) deconfined QCD, where quarks are ap-
proximately massless, is almost chirally symmetric, whereas the acquisition of quark
mass that occurs in the chiral condensate ⟨q̄q⟩ breaks the chiral symmetry at T < Tc.

There is evidence [Pisarski and Wilczek, 1984; Wilczek, 1992] that the chiral phase
transition is a second order phase transition with an order parameter M i

j = ⟨q̄
i
LqRj⟩,

and that the pion corresponds to the Nambu-Goldstone (almost) massless boson related
to the spontaneous chiral symmetry breaking. However, this symmetry breaking also
predicts a massless Goldstone boson for baryon number symmetry, which is absent. We
can get around this problem, for two flavor QCD [Wilczek, 1992], by postulating that
the order parameter M transforms as:

M→ VMU+ (3.27)

where V ,U are unitary left and right transformation matrices with a positive determi-
nant and equal phases. We then get an SU (2) × SU (2) ≡ O(4) symmetry, where O(4)
is an isomorphic group. We therefore conclude that the chiral phase transition belongs
to the same universality class as an O(4) isotropic Heisenberg magnet in 3 dimensions.
Using the Pauli matrices τ, the order parameter can be written as:

M = σ + iπτ, (3.28)

where σ = ⟨q̄iqi⟩ is the scalar and π = ⟨q̄iγ5τqi⟩ is the isovector component. We can
therefore parametrize the order parameter of the chiral phase transition as a 4-vector
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ϕ = (σ,π), where the transformations (3.27) are simple O(4) rotations in the internal 4-
dimensional isospin space. The pattern of chiral symmetry breaking, SU (2)L×SU (2)R→
SU (2)L+R then translates to O(4)→O(3), in terms of the ϕ-field.

3.5.2 O(N ) symmetry and its spontaneous breaking

V

φ1

2φ

Figure 3.1: The typical form of the O(N) potential, illustrated for the O(2) case.

The O(4) symmetry group mentioned in the previous section is a special case of
the O(N ) group of rotations in N -dimensional real space. The elements R of O(N )
are N ×N orthogonal matrices. A model obeying this symmetry is the σ-linear model,
whose Lagrangian is [Peskin-Schroeder]:

L =
1
2
(∂µϕ

i)2 +
µ2

2
(ϕi)2 − λ

4
[(ϕi)2]2 (3.29)

where ϕi(x) are N real scalar fields, µ2, λ coupling constants, and i = 1, . . . ,N . L is
invariant under the transformation ϕi → Rijϕj , where Rij are the elements of the R
matrix. The constant fields ϕi0 that minimize the potential of (3.29) satisfy (ϕi0)

2 ≡ u =
µ2

λ . The values u are the vacuum expectation values of the ϕ(x) field. Fig.3.1 shows
the typical form of such a potential for N = 2.

We can now define a set of transformed fields:

ϕi(x) =
(
πk(x),u + σ (x)

)
,κ = 1, . . . ,N − 1 (3.30)
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Then, (3.29) can be written in terms of the ϕi(x) fields, (3.30), therefore:

L =
1
2
(∂µπ

κ)2 +
1
2
(∂µσ )

2 − 1
2
(2µ2)σ2 −

√
λµσ3 −

√
λµ(πk)2σ − λ

4
σ4

− λ
2
(πk)2σ2λ

4
[(πk)2]2

(3.31)

The Lagrangian (3.31) is not invariant under O(N ), to which we refer as spontaneous
symmetry breaking due to vacuum excitation. We see from (3.31) that the mass terms
for the π(x) field have vanished, whereas the σ (x) field has acquired a mass of

√
2µ.

This spontaneous symmetry breaking has given rise to N − 1 massless π(x) fields and
a massive σ (x) field. This is compatible with the Goldstone theorem, and we therefore
identify the π(x) fields as the Goldstone bosons.

Expanding the potential V (ϕ) around the minimum, we obtain:

V (ϕ) = V (ϕ0) +
1
2
(ϕ−ϕ0)

α(ϕ−ϕ0)
β

(
∂2

∂ϕα∂ϕβ
V

)
ϕ0

+ . . . (3.32)

where the first derivative vanishes at the minimum. The second term is thus a mass
term:

m2
ab =

(
∂2

∂ϕα∂ϕβ
V

)
ϕ0

(3.33)

where the elements mab in 3.33 are the mass matrix M elements. Given that non-zero
second partial derivatives in the potential occur along the radial direction (Fig.3.1), it
follows that the fields σ (x) oscillate in the radial direction. The same figure shows the
“rim” of the potential, where the azimuthal second derivatives vanish; the massless π(x)
fields oscillate along this direction.

Obviously, due to the degeneracy of minima along this (N −1)-dimensional line, the
O(N − 1) symmetry of these N − 1 massless fields still holds.

3.5.3 The σ-model of QCD for Nf = 2

The σ-model consists of an isodoublet, zero-mass fermion field, ψ, coupled to a triplet
of pseudoscalar pions π and a scalar σ field. The corresponding Lagrangian takes the
form [Itzykson and Zuber, 1985]:

L = Ls + cσ (3.34)

where

Ls = ψ̄
[
iγµ∂µ + g(σ + iπτγ5)

]
ψ +

1
2
[(∂π)2 + (∂σ )2]−

µ2

2
(σ2 +π2)− λ

4
(σ2 +π2)2 (3.35)
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and
c = −fπm2

π (3.36)
We will show that the Ls part is invariant under chiral transformation, represented

by SU (2)× SU (2) for Nf = 2. We have already mentioned the chiral invariance of the
kinetic term, ψ̄i∂µγµψ. Furthermore, we have:

ψ̄ (σ + iπτγ5)ψ = ψ̄L (σ + iπτ)ψR + ψ̄R (σ − iπτ)ψL (3.37)

where ψL = 1
2 (1−γ5)ψ and ψR = 1

2 (1 +γ5)ψ. Using (3.28), we obtain:

ψ̄ (σ + iπτγ5)ψ = ψ̄LMψR + ψ̄RM
+ψL (3.38)

Taking the U,V matrices and the transformation equations:

ψR→UψR, ψ̄R→ ψ̄RU
+

ψL→ VψL, ψ̄L→ ψ̄LV
+

as well as (3.27) and its conjugate, M+ =UM+V +, (3.38) gives:

ψ̄LMψR + ψ̄RM
+ψL→ ψ̄LV

+VMU+UψR + ψ̄RU
+UM+V +VψL

= ψ̄LMψR + ψ̄RM
+ψL

i.e. the coupling term ψ̄Mψ is chirally invariant.
The last three terms in Ls take the form:

1
2
∂M∂M+ −

µ2

2
MM+ − λ

4
(MM+)2 (3.39)

and are thus of the form (3.29) for N = 4, invariant under O(4), which as we have
mentioned is isomorphic to SU (2)× SU (2).

In summary, the σ-model couples the order parameter meson fields, M = (σ,π), to
a massless fermion field ψ in a chiral-invariant way.

However, the invariance of the total Lagrangian (3.34) is broken by the linear term,
fπm

2
πσ . Therefore, the pion’s mass breaks chiral symmetry, which is restored in the

limit of zero pion mass.
The linear symmetry breaking term induces a non-zero vacuum expectation value,

⟨0|σ |0⟩ = u , 0, for the quantum σ-field. Defining a perturbation field σ ′ around u,
where σ = u + σ ′ , L takes the form:

L = ψ̄
[
i∂µγµ + gu + g(σ

′ + iπτγ5)
]
ψ +

1
2

[
(∂π)2 + (∂σ ′)2

]
− 1
2
(µ2 +3λu2)σ ′2

− 1
2
(µ2 +λu2)π2 −λuσ ′(σ ′2 +π2)− λ

4
(σ ′2 +π2)2

+ σ ′(c −µ2u −λu3)

(3.40)

There are three noteworthy features in (3.40):
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1. The mass degeneracy of M is lifted, since its components acquire different masses:

m2
π = µ2 +λu2 (3.41a)

m2
σ = µ2 +3λu2 (3.41b)

2. Fermions also acquire mass:
mN = −gu (3.42)

3. A coupling appears, σ ′ππ.

If we demand that the vacuum excitation give a zero σ ′ expectation value, i.e.
⟨0|σ ′ |0⟩ = 0, then the linear term in (3.40) vanishes:

c −µ2u −λu3 = 0 (3.43)

Then, eqs. (3.36), (3.42) and (3.43) give:

mN = gfπ (3.44)

a result which is compatible with observation [Itzykson and Zuber, 1985].
Furthermore, in the limit c→ 0, it follows from (3.43) for µ2 < 0 that:

u2 = −
µ2

λ
(3.45)

which is in agreement with (σ,π) being a Goldstone mode vacuum excitation value.
On the other hand, (3.41a) and (3.45) give mπ = 0, i.e. we get the three massless
Nambu-Goldstone pions predicted by the O(4) symmetry breaking.

In summary, the σ-model incorporates 2-flavor QCD chiral phase transition within
the global Goldstone symmetry breaking mechanism through the vacuum excitation of
the scalar σ-field.

3.5.4 From O(4) to the 3D-Ising model

We now focus on the Landau-Ginzburg form of the free energy, in 3 dimensions, cor-
responding to the scalar meson part of the σ-model Lagrangian, (3.34), for massless
Nf = 2 QCD at zero chemical potential:

F =
∫
d3x

[
1
2
∂iϕ∂iϕ+

µ2

2
ϕ2 +

λ
4
ϕ4

]
(3.46)
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where ϕ is a 4-component scalar field. µ2 is the renormalized mass, and is a function of
temperature. Below the critical temperature, µ2 < 0, whereas above it µ2 > 0. Symmetry
breaking gives us ⟨σ⟩ , 0,⟨π⟩ = 0 below the critical temperature.

This model has been studied extensively for arbitrary number of components n and
spatial dimension d, and the existence of an infrared-stable renormalization group (RG)
solution has been established for n = 4 , d = 3 [Pisarski and Wilczek, 1984; Rajagopal
and Wilczek, 1993].

As we explained in section 3.3, in the vicinity of the critical temperature, the critical
exponents of the corresponding universality class can be calculated. In this case, the
universality class is the O(4) symmetry class of the Heisenberg magnetic (spin) model
for d = 3. Critical exponents have been calculated via perturbation theory [Bagnuls
et al., 1987]. The results are shown in the last column of Table 3.1.

We saw in the previous chapter that adjusting the mass ms of the strange quark
can turn a second order to a first order transition for µB = 0 (see the Columbia plot,
Fig.2.3). The tricritical point is defined as the point in the T −ms plot for which this
shift in phase transition order occurs.

Adding a third, massive quark influences the renormalization process of the coupling
constants µ2,λ. Shifting µ2 simply shifts the critical temperature Tc, however, if λ
becomes negative, the free energy (3.46) must be expanded beyond ϕ4-order and up
to ϕ6-order. For λ > 0 we still get a second order phase transition, but for λ < 0 the
transition turns into first order. The value of ms where λ = 0 represents the tricritical
point.

The tricritical point also belongs to a universality class, namely that of the Landau-
Ginzburg ϕ6-model, which is directly renormalizable in 3 dimensions. Its critical expo-
nents can therefore be extracted through mean field theory (MFT), and are shown in
Table 3.1 (TRICR column).

Therefore, for large enough ms values, the specific heat C(T ) is discontinuous,
whereas for T = Tc it is divergent.

If we ascribe small masses to the u,d quarks, the first order transition, being robust,
survives, whereas the second order transition turns into a smooth analytic continuation
(this is analogous to placing a ferromagnet in a small external magnetic field; the Curie
anomaly at the critical temperature is removed, and the magnetization varies smoothly
with temperature). A tricritical point remains in the T −ms phase diagram, however; it
belongs to the universality class of the 3D-Ising model.

Although it is not possible to vary the mass ms experimentally, we can equivalently
vary the baryochemical potential µB [Stephanov et al., 1998]. We can keep the physical
value of ms while varying the chemical potential µB, and the tricritical point reappears
in the T −µB phase diagram, with an effective ϕ6 potential of the general form:

Ωef f =Ω0(T ,µB) +
1
2
a(T ,µB)ϕ

2 +
1
4
b(T ,µB)ϕ

4 +
1
6
c(T ,µB)ϕ

6 − hϕ, c > 0 (3.47)
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where the coefficient h is proportional to the current quark mass [Berges and Rajagopal,
1999]. The coefficients a and b are both zero at the tricritical point, and are assumed
to be linear in (T − Tc) and (µ− µc). The phase diagram predicted by the tricritical ϕ6

model is shown in Fig.3.2. The second order phase transition line is given by a = 0,
b > 0, and the first order transition line by b2 = 16ca/3, b < 0.

a

b

Tricritical

point 

1/2

Line of 1st order

transitions

b = -4(ca/3) 

Line of

2nd order

transitions 

Crossover

region

b = (c|a|) 
1/2

∆φ = (3a/c) 1/4

Figure 3.2: A sketch of the phase diagram of the ϕ6 model in the mean field ap-
proximation. In the plot, a is the coefficient of ϕ2 and b the coefficient of ϕ4 in the
Landau effective potential Ωef f , (3.47). Also shown are the first order transition line
(solid line), and the crossover region (dashed line). The inset plots show the form of
the effective potential in different regions.

Once again, the effect of small quark masses on the T − µB phase diagram is to
replace the line of second order phase transitions with a smooth crossover, leaving only
the first order transition line, terminating at an ordinary critical point. At this critical
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point, one degree of freedom, associated with the magnitude of ϕ, becomes massless.
On the other hand, pions remain massive, since the chiral symmetry is explicitly broken.
The transition therefore belongs to the same universality class as the 3D-Ising model
[Berges and Rajagopal, 1999], and the order parameter is identified as the expectation
value of the scalar σ-field condensate.

3.5.5 The 3D-Ising model effective action

Let us consider the form of the microscopic action for a ϕ4-theory in 3 dimensions, for
a 3D-Ising model. In such a case, the order parameter is a scalar field with only one
component:

S =
∫
d3x

[1
2
|∇ϕ|2 + 1

2
m2ϕ2 +λϕ4

]
(3.48)

An effective action can be defined from (3.48), and more generally from microscopic
actions through renormalization group transformations, which consists of integrating out
all microscopic degrees of freedom, along with appropriate renormalization of the cou-
pling constants in order to retain physical meaning. The resulting effective action takes
the Ginzburg-Landau-Wilson form:

Sef f =
∫
d3x

[1
2
Z−1ϕ |∇ϕ|

2 +Vef f (ϕ)
]

(3.49)

In order to calculate Sef f for a theory, knowledge of the effective potential Vef f (ϕ), as
well as the field renormalization factor Zϕ, is required. Tsypin numerically simulated the
3D-Ising model on a 143 −583 cubic lattice with periodic boundary conditions [Tsypin,
1994]. He found that a Wilson-renormalized [Huang, 1987] test effective potential of
the form:

Vef f = rϕ
2 +uϕ4 (3.50)

cannot agree with the numerical simulation results. He therefore added a ϕ6-term,
resulting in an effective potential:

Vef f = rϕ
2 +uϕ4 +wϕ6 (3.51)

Therefore, the effective Lagrangian (3.49) takes the form:

Lef f =
1
2
Z−1ϕ |∇ϕ|

2 + rϕ2 +uϕ4 +wϕ6 (3.52)

The presence of a ϕ6 term is also justified by Wilson’s method for dimensions
d > 4, through the renormalization process [Huang, 1987]. The parameters r,u,w are
determined through a fitting procedure to the simulated distribution P (ϕ) of the mean
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ϕ-field on the lattice. The parameter Zϕ can be calculated by the value of the propagator
in momentum space:

G2(p) = ⟨ϕ(p)ϕ∗(p)⟩, ϕ(p) =
1
√
N

∑
x

ϕxe
ipx (3.53)

which, for small momentum p, behaves as:

G2(p)
−1 = Z−1ϕ p2 +2r (3.54)

The effective Lagrangian, (3.52), in terms of renormalized field:

ϕR = Z−1/2ϕ ϕ (3.55)

becomes
Lef f =

1
2
|∇ϕR|2 +

1
2
m2ϕ2

R +mg4ϕ
4
R + g6ϕ

6
R (3.56)

where

m =
√
2Zϕr , g4 =

Z2
ϕu√
2Zϕr

, g6 = Z
3
ϕw (3.57)

For the parameters g4, g6, the Monte Carlo simulation gives:

g4 = 0.97± 0.02
g6 = 2.05± 0.15

(3.58)

Therefore, by replacing Lef f by (3.52) into Sef f , we get

Sef f =
∫
d3x

[1
2
Z−1ϕ |∇ϕ|

2 + rϕ2 +uϕ4 +wϕ6
]

= Z−1ϕ

∫
d3x

[1
2
|∇ϕ|2 +Zϕ(rϕ2 +uϕ4 +wϕ6)

] (3.59)

At the critical point, where m→ 0, and therefore by (3.57) r = u = 0, the critical effective
action becomes:

Sef f ,cr = Z
−1
ϕ

∫
d3x

[1
2
|∇ϕ|2 + ŵϕ6

]
(3.60)

where
ŵ = Zϕw = Z−2ϕ g6 (3.61)

The appearance of a ϕ6 term in the effective potential makes the connection to the
theory of the tricritical point of phase transitions mentioned in the previous section,
thus allowing the description of various universality classes that predict tricritical points
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by effective actions of the form Sef f and Sef f ,cr . Apart from the 3D-Ising universality
class, the O(4) model at the critical QCD point with mu ≃md ≃ 0 and ms ≤m∗s is such a
theory. The most general form of the O(N ) symmetry, as shown in [Reuter et al., 1993],
predicts for its effective action a ϕ6 term, due to the small value of the anomalous
dimension (η ≃ 0.034).



Chapter 4

SIMULATING THE CHIRAL CONDENSATE

4.1 Introduction

We saw in the previous chapter that, according to the theory of critical phenomena,
a system undergoing a second order phase transition exhibits, exactly at the critical
temperature T = Tc, a divergent correlation length ξ; in other words, there appear fluc-
tuations of the order parameter with a scale invariant structure. This scale invariance
“overshadows” the microscopic dynamics of the system, allowing for an effective de-
scription of a variety of very diverse systems through simple, coarse-grained models
that belong to a few universality classes. In general, the symmetries and dimensionality
of the system suffice for it to be classified into a universality class.

As we explained in sections 3.5.4 and 3.5.5, there are arguments, based on perturba-
tive QCD as well as numerical simulations, that the QCD chiral critical point belongs to
the 3D Ising universality class; in that case, the order parameter of the transition is the
expectation value of the σ-field condensate. In a heavy ion collision, the σ-condensate
should form at the critical temperature and its modes, the σ-particles, remain massless
as long as the critical temperature endures. As the system expands and freezes out, the
σ mass should attain a small, non-zero value, at the vicinity of the critical point.

The fact that the fluctuations of the order parameter at the critical point are self-
similar implies the formation of fractal clusters in space [Mandelbrot, 1982; Stinchcombe,
1988]. Given the universality class (and the dimensionality of space), the fractal di-
mension of such clusters can be related to the critical exponents that characterize the
singular behavior of thermodynamic variables of the system, and in particular with the
isothermal critical exponent δ that characterizes the system’s EoS.

In this chapter, we model the expected geometry of the chiral σ condensate near the
QCD critical point, using a 3D Ising effective action, we discuss instanton-like solutions to
the model and finally, we present a Monte Carlo that simulates the chiral σ condensate.

49
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4.2 The 3D Ising model in the geometry of heavy ion colli-
sions

4.2.1 The Ising model of magnetization

The simplest scalar field model is the spin-1/2 Ising model of magnetization, which is
the standard “toy model” for formulating the effective action of single and multiple
component scalar fields. The described system consists of a collection of spins σi , each
of which can take one of two discrete values, +1, −1 (“up” and “down”, respectively),
and which are placed on the nodes i of a lattice in space. Spins interact with each other,
as well as with an external uniform magnetic field h, via the Hamiltonian:

H
kBT

= −
∑
⟨ij⟩

Jij σiσj − h
∑
i

σi , (4.1)

where the summation is over nearest neighbor pairs of spins, ⟨ij⟩, and h is a constant
external magnetic field (divided by the system temperature). Jij is usually a constant J
for nearest neighbor pairs, and zero for all other pairs. The system’s partition function
then becomes:

Z =
∑
{σi }

exp

J
∑
⟨ij⟩

σiσj + h
∑
i

σi

 , (4.2)

where the summation is over all possible configurations {σi} of spins. Since we are
interested in the behavior of the system near the critical point, it is enough to take into
account the slow, long-wavelength fluctuations. We can therefore replace the lattice of
spins with a slowly varying, scalar field ϕ(x) in space, and the system’s Hamiltonian
with an integral of the effective action over all space, which takes the form:

Sef f =
∫
d3x

{1
2
∂µϕ∂

µϕ+Vef f (ϕ)− h(x)ϕ(x)
}
,

Vef f = rϕ2 + (higher order terms), (4.3)

which is just the effective action (3.49) with an interaction term added. The fluctuations
of the field have been taken into account by the gradient terms, and the ϕ2 coefficient r
is a function of temperature. Once we have an expression for action as a field functional,
we can proceed with calculating the partition function, as follows:

Z =
∫
D[ϕ]e−Sef f [ϕ] , (4.4)

where D[ϕ] implies summation over all (coarse-grained) configurations of the field ϕ
in space. To calculate the action, and therefore the partition function, we need to know
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the form of the effective potential Vef f (ϕ). As we explained is section 3.5.5, Monte
Carlo calculations in the 3D Ising model have been conducted, and the most significant
order terms and coefficients have been determined. It turns out [Tsypin, 1994] that the
ϕ6 term plays the most crucial role at the critical point.

4.2.2 Adapting the 3D Ising model to the Bjorken cascade scenario of
colliding nuclei

Assuming that the freeze-out temperature of a system of colliding nuclei is not very
far from the critical, Tf ≃ Tc, the structure of the σ-condensate can be satisfactorily
described by the 3D Ising effective action for T = Tc:

Γc [σ ] = T
−1
c

∫
d3x

[1
2
(▽σ )2 + g T 4

c

(
T −1c σ

)δ+1]
, (4.5)

where δ is the isothermal critical exponent and g is a dimensionless coupling constant.
The σ field has dimensions [σ ] ∼ [length]−1. The parameters (g,δ) are universal and
express the equation of state (EoS) at the critical point: δΓc/δσ ∼ gσδ (see 3.18,3.3d).
For the 3D Ising universality class, the corresponding values are δ ≈ 5, due to the small
value of the anomalous dimension [Berges et al., 1996], and g ≈ 1.5−2.5 [Tsypin, 1994;
Berges et al., 1996].

Consequently, we must write the action 4.5 in a form that expresses the geometry of
a system of colliding nuclei. We adopt the Bjorken inside-outside cascade scenario for
the expansion of quark-gluon plasma: just after collision, a “central plateau” is formed,
containing quarks and gluons in (local) thermal equilibrium, Fig.4.1. This system is
considered to expand smoothly enough, so that it remains locally in equilibrium, and is
described by an ensemble of locally inertial observers in relative motion to each other,
following local plasma flow. All relevant thermodynamic quantities are functions of
proper time, τ. Dynamical evolution can be modeled by a succession of hyperboloid,
space-like surfaces in the t − z plane (where z is the axis of collision), and flat surfaces
in the transverse directions. This structure persists for about ∼ 10−20 fm/c, after which
time hadrons form (mostly pions).

In order to describe the above geometry, we switch from Cartesian to hyperbolic
“polar” coordinates of rapidity and proper time, (ξ,τ), so that the longitudinal coordi-
nate corresponding to a co-moving inertial observer becomes dx∥ = τdξ. To describe the
clusters that form at T = Tc, we must integrate the longitudinal coordinate across the
critical hyperbola τ = τc. We therefore obtain the following expression for the effective
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y=0, z=0,  = t

Figure 4.1: A sketch of the Bjorken inside-outside cascade scenario

action Γc [σ ] as we approach the critical temperature:

Γc [σ ] =
1
CA

∫
∆

dξ coshξ
∫
S⊥

d2x⊥

[
1

2cosh2ξ

(
∂σ
∂ξ

)2
+
τ2c
2
(▽⊥σ )2

+ g T 4
c C

2
A

(
T −1c σ

)δ+1 ]
,

(4.6)

where ∆ is the rapidity range, S⊥ is the transverse cross-section of the system and
CA = τc/βc.

Since we treat the system as an ensemble of local inertial observers, we can replace in
(4.6) the full range ∆ of rapidity with a thin slice ∆ξ around a local observer. Lorentz
invariance allows us to freely select the center ξ of this slice. For convenience, we set
ξ = 0 and ∆ξ ≪ 1, so that we can set coshξ ≈ 1.

The system’s geometry is cylindrical (3D → 1Dξ ⊗ 2DR⊥), with symmetry axis z,
the collision direction. We want to examine configurations of the field that follow this
geometry; we therefore separate the effective action, (4.6), by first projecting onto the
rapidity direction, obtaining:

Γ
(1)
c [σ̂ ] = g(1)1

∫
∆ξ

dξ

[
1
2

(
∂σ̂
∂ξ

)2
+ g(1)2 (σ̂2)

δ+1
2

]
, (4.7)

where we have defined, for clarity, the coefficients:

g
(1)
1 =

πR2
⊥

βcτc
, g

(1)
2 = gC2

A, (4.8)
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∆ξ is a slice of rapidity around a local observer at ξ = 0, and R⊥ is the transverse radius
of the system at T = Tc, while σ̂ indicates a dimensionless σ-field (σ̂ = T −1c σ).

Then, we project independently onto the transverse space directions, obtaining:

Γ
(2)
c [σ̂ ] = g(2)1

∫
⊥

d2x⊥

[
1
2
(▽⊥σ̂ )2 + g

(2)
2 (σ̂2)

δ+1
2

]
(4.9)

where now
g
(2)
1 = CA∆, g

(2)
2 = g (4.10)

and ∆ is the full range of rapidity. The full 3D cluster is constructed as a cartesian prod-
uct of the fractal clusters of rapidity & transverse configuration space, and is compatible
with the longitudinal expansion of the system.

4.3 Fractal clusters

4.3.1 Magnetic clusters and critical fractality

It is instructive to examine the characteristics of the configuration of magnetization
during the transition to the critical point, since it illustrates the relation between the
fractal dimension of a system and experimentally measurable critical exponents.

At the critical point T = Tc, the total magnetization of a (theoretically infinite) system
goes to zero, i.e., the difference between the volumes of areas of “up” and “down” spin,
divided by the total volume tends to zero. However, since the correlation length ξ→∞,
it follows from the correlation function, Γ (r) ∼ r−pe−r/ξ , that there should arise clusters
of opposite spin at arbitrarily large scales, that are also characterized by self-similarity
(they look the same at all scales). Due to this fact, in any finite region, however large,
the total magnetization is never strictly zero. Instead, the difference ∆ between “up”
and “down” regions will depend on the linear size L of the region, according to the
law:

∆(L) ∝ LdF (4.11)

where dF is the fractal dimension of the set defined by the difference of regions of
opposite spin.

In the case where the system is just below the critical temperature Tc, (4.11) is only
valid for scales below the correlation length (L < ξ), whereas for regions larger than the
correlation length, L > ξ , magnetization smoothly shifts into trivial scaling, following
the dimensionality d of embedding space.

We can use this transition to link, through a general theoretical argument, the fractal
dimension dF with the critical exponents of the magnetic system (and, owing to uni-
versality, with the critical exponents of any critical system) [Stinchcombe, 1988]. Let us
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assume that T is just below Tc, so that the correlation length ξ is large but finite. Then,
for a large enough system, i.e. L≫ ξ , the normalized magnetization will be given by

M ≡ ∆(L)/Ld ∝ tβ ∝ ξ−β/ν , (4.12)

according to eq.(3.3b) and (3.6). (4.12) ought to reproduce eq.(4.11) for L≪ ξ. A usual
form of transition law that links the two asymptotic regimes, L≫ ξ , L≪ ξ , through a
function of the dimensionless ratio L/ξ , is

∆(L) = LdF f (ξ/L), (4.13)

where f is a function with the property f (∞) = const. and f (x) ∼ xdF−d for small x.
Comparing eqs.(4.12) and (4.13), we are led to:

dF = d − β/ν. (4.14)

(4.14) links the fractal dimension of the magnetization clusters with the critical ex-
ponents. Using the four scaling laws, eqs.(3.8), that arise solely by virtue of scale
invariance of a critical system, we can recast (4.14) in a more useful form, as a function
of the isothermal critical exponent and dimensionality of space:

dF = d −
d

δ+1
=

δd
δ+1

(4.15)

Eq.(4.15) will show up again, when we examine saddle point solutions to the σ-field.
We had obtained the same result, through scale-invariance of the free energy, for the
dimension Dh connected with the external conjugate field h, in (3.23). It is therefore
not coincidental, but a consequence of the general theory of critical phenomena.

4.3.2 The saddle point approximation to the partition function of the σ-
field.

We saw in section 4.2.2 that the 3D Ising effective action can be partitioned into in-
dependent rapidity and transverse configurations ((4.7) and (4.9), respectively). The
partition function of the system¹:

Zc =
∫
D[σ ]e−Γc[σ ] (4.16)

is only meaningful if we determine which states contribute, at equilibrium, and assign
measures to them. We postulate a density matrix that is diagonal with respect to the

¹From here on, we omit the “hat” (σ̂) for brevity, and will simply write σ for the dimensionless sigma
field.
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coherent states that correspond to the eigenstates of the field operators σ (x), and are
composed of superpositions of all particle states. Then, the average multiplicity ⟨n⟩ of
σ in a volume V within the system is given by:

⟨n⟩ =
∫
D[σ ]


∫
V

d2x⊥dξ σ
2(x⊥,ξ)

e−Γc[σ ]
/∫
D[σ ]e−Γc[σ ] (4.17)

Next, we need to define statistical weights D[σ ] for summing over states in (4.17). To this
end, we note again that we are looking for solutions describing clusters, i.e. subsystems
of the total volume for which the order parameter is greater than or equal to a minimum
cutoff value. In our case, the order parameter is the total multiplicity of sigmas within
a volume, or the “mass” contained within a volume, as defined by the squared σ-field.
We work with open clusters, i.e., no boundary condition is imposed, which is a realistic
condition unless we are too close to the boundary of the entire system.

We first examine the simpler 1D-case (rapidity). For large values of the action:

g
(1)
1 =

πR2
⊥

βcτc
≫ 1, (4.18)

the sum over configurations in the partition function (4.16) is dominated by the so-called
saddle point configurations. Following the methodology detailed in [Antoniou et al., 1998],
we find the instanton-like solutions to the classical equations of motion:

σ̈ − (δ+1)g(1)2 σδ = 0 (4.19)

which are classified by their total energy,

E =
1
2
σ̇2 − g(1)2 |σ |

δ+1 (4.20)

and their central point ξ0.
It is evident that any given solution with energy E contributes a suppressive factor

e−E∆ξ to (4.16), and therefore the only significant contribution comes from solutions
with almost zero energy. We can then write down analytically this family of solutions,
in closed form

σ (ξ) =


√
2

(δ − 1)
√
g
(1)
2


2
δ−1

|ξ − ξ0|−
2
δ−1 . (4.21)

The effective action, as a function of the range ∆ξ , takes the form

Γc(∆ξ;ξ0) = 2g(1)1 g
(1)
2

∫
∆ξ

[σ (|ξ − ξ0|)]δ+1dξ. (4.22)



56 SIMULATING THE CHIRAL CONDENSATE

It is clear from the form of (4.21) that the field attains very large values near ξ0, and
therefore that the area close to ξ0 contributes almost nothing to the partition function.
We therefore impose the constraint ∆ξ ≪ ξ0 to the summed family of solutions, i.e. we
only include those solutions where the size of the instanton is much larger than the size
of the local system. As a result, the field is practically constant within the narrow slice
∆ξ:

σ ≈


√
2

ξ0

√
g
(1)
2 (δ − 1)


2
δ−1

. (4.23)

We now picture the critical system as an ensemble of such clusters, of all sizes ∆ξ.
The partition function results as a summation of all instanton-like solutions that corre-
spond to different ξ0, with the proper weight function for every ξ0. In order to define
the range of integration dξ0, we introduce an extensive variable M that characterizes
the configuration of the field within the cluster, whose average depends on the size of
the cluster. Specifically, we choose the quantity M =

∫ ∆ξ

0 [σ (x)]2dx, which, according to

(4.17) gives the multiplicity ⟨n(∆ξ)⟩ =
⟨∫ ∆ξ

0 [σ (x)]2dx
⟩
of σ within the cluster ∆ξ. In

the sum, we include those values of ξ0 that correspond to field configurations that give
average values of M larger than a minimum value µ. Based on (4.17) and (4.22), the
expectation value turns out to be:

⟨ ∆ξ∫
0

[σ (x)]2dx
⟩

=
A2

(
δ−1
δ−3

)
Z

(A2∆ξ/µ)
δ−1
4∫

∆ξ

dξ0ξ
− δ+1δ−1
0

[
ξ
δ−3
δ−1
0 − (ξ0 −∆ξ)

δ−3
δ−1

]
×exp

{
−G1

δ − 1
δ+3

[
(ξ0 −∆ξ)−

δ+3
δ−1 − ξ−

δ+3
δ−1

0

]}
, (4.24)

where G1 ≡ 2g(1)1 g
(1)
2 Aδ+1 and A =

[(
g
(1)
2 /2

)
(δ − 1)2

]− 1
δ−1
.

It can be shown analytically [Antoniou et al., 1998] that, for G1≫ 1, we can define
three different regions with respect to the behavior of the right-hand integral in (4.24):

∆ξ ≪ ∆d , ⟨n(∆ξ)⟩ ∼ const.,
∆d ≪ ∆ξ ≪ ∆u , ⟨n(∆ξ)⟩ ∼ (∆ξ)

δ−1
δ+1 ,

∆ξ ≫ ∆u , ⟨n(∆ξ)⟩ ∼ (∆ξ)
δ−5
δ−1 , (4.25)

where
∆d ≡ A−2

δ+1
δ−1 G

2
δ−1
1 µ

δ+1
δ−1 , ∆u ≡ G

δ−1
δ+3
1 (4.26)
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define lower (∆d) and upper (∆u) size bounds for a cluster centered at ξ = 0.
Therefore, a fractal structure of critical clusters is revealed, with a dimension

d
(1)
F =

δ − 1
δ+1

(4.27)

in the range ∆d ≪ ∆ξ ≪ ∆u. We note that, due to the self-similar structure of
the system, the behavior described arises either by examining the scaling of the σ
multiplicities as a function of varying distance from the cluster center or, equivalently,
by examining the multiplicities of clusters of different size ∆ξ , provided of course their
size remains within limits of the aforementioned range.

We now turn our attention to the transverse profile of the system, which is described
by (4.9). Quite analogously to (4.25), we find:

R≪ Rd , ⟨n⊥(R)⟩ ∼ const.,
Rd ≪ R≪ Ru , ⟨n⊥(R)⟩ ∼ R2 δ−1δ+1 ,

R≫ Ru , ⟨n⊥(R)⟩ ∼ R2− 4
δ−1 , (4.28)

where
Rd = βcG

1
2δ
2 A

− δ+12δ
2 µ

δ+1
2δ π−

δ+1
2δ , Ru = βcG

δ−1
4

2 (4.29)

with

G2 = 2πg(2)1 g
(2)
2 Aδ+12

(δ+3
4

)
and A2 = ((g(2)2 /4)(δ − 1)2(δ+1))−

1
δ−1 . (4.30)

And, similarly to (4.27), we conclude from (4.28) that fractal clusters form in transverse
space with dimension

d
(2)
F =

2(δ − 1)
δ+1

(4.31)

in the range Rd ≪ R≪ Ru.
The scaling laws, eqs.(4.25) and (4.28), can be generalized to other extensive vari-

ables: for example, if instead of averaging σ2 over a cluster, we take the field av-
erage,

⟨∫ R
0 σ (x⊥)dx⊥

⟩
, we obtain clusters in transverse space with fractal dimension

d′F = 2δ/(δ +1), for Rd ≪ R≪ R [Antoniou et al., 1998]. This is in agreement with our
earlier result for the scaling of magnetization at the critical point, eq.(4.15), for d = 2,
which we arrived at via general critical theory arguments. This is only to be expected,
as the field average over a region corresponds precisely to the total magnetization of
the region.
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4.3.3 The baryon-number density as an alternative order parameter

There are other possible order parameters of the critical phase transition besides the σ-
field average (and powers of it). In a finite-density medium, a coupling exists between
the σ-condensate and the net baryon number density, nB(x), which induces critical
fluctuations in the latter. Specifically, the critical fluctuations of the chiral condensate
are transferred to the net proton density, as well as the densities of protons and anti-
protons separately, through the coupling of protons with the isospin-zero σ-field [Hatta
and Stephanov, 2003].

In the vicinity of the QCD critical point, we can again employ an effective action be-
longing to the 3D-Ising universality class to describe the net baryon density fluctuations
[Antoniou et al., 2006]:

Γc[nB] = T
−5
c g2

∫
d3x

[1
2
|∇⊥nB|2 +Ggδ−1T 8

c

∣∣∣T −3c nB
∣∣∣δ+1] , (4.32)

where G is a universal, dimensionless coupling with a value G ≃ 1.5 − 2, g is a non-
universal dimensionless constant, and the the baryon number density nB(x) has dimen-
sion ∼ [Tc]3, resulting in a dimensionless action.

Again, taking into account the cylindrical geometry of a nuclear collision, we can
replace the longitudinal coordinate x∥ with the space-time rapidity y, therefore taking
the integration measure in rapidity, dx∥ = τc coshydy, where τc is the formation time of
the critical point. In a central rapidity region of size δy, we can assume boost-invariant
configurations nB(y,x⊥), defining the same 2-dimensional density ρB(x⊥) in transverse
configuration space,

nB(x⊥) =
ρB(x⊥)

2τc sinh(δy/2)
(4.33)

Integrating in rapidity, and rescaling x⊥ and ρB to dimensionless quantities:

x⊥→ Tc x⊥

ρB→ T −2c ρB,
(4.34)

We obtain from (4.32) the dimensionless effective action in transverse space:

Γc[ρB] = Cg
2
∫
d2x⊥

[1
2

∣∣∣∇⊥ρB∣∣∣2 +G(gC)δ−1ρδ+1B

]
, (4.35)

where C ≡ (Tcτeff)
−1 , τeff ≡ 2τc sinh(δy/2).

If we now define the order parameter of the system as the density ρB integrated over
the volume of a transverse space cluster of radius R, ⟨nB(R)⟩ ≡

∫
d2x⊥ρB(x), we obtain,

following saddle-point approximation, section 4.3.2:

⟨nB(R)⟩ ∼ Rd
(B)
F , R

(B)
d ≪ R≪ R

(B)
u (4.36)
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where d(B)F = 2δ
δ+1 is the fractal dimension in transverse configuration space, and R

(B)
d ,

R
(B)
u , are lower and upper size bounds for the clusters, whose values depend on the
coupling constants:

g
(B)
1 ≡ Cg

2

g
(B)
2 ≡ G(gC)

δ−1
(4.37)

Specifically, if we define, as in eq.(4.30), G(B)
2 and A(B)

2 in the same manner as G2 and
A2, we obtain for the lower and upper bounds:

R
(B)
d = βcG

(B)
2

1
2δ
A
(B)
2

− δ+12δ
µ
δ+1
2δ π−

δ+1
2δ , R

(B)
u = βcG

(B)
2

δ−1
4 (4.38)

4.4 Fractal structure of clusters in transverse momentum space

4.4.1 Transition to transverse momentum space: The density-density cor-
relation function

The fundamental measure quantifying correlations in a critical system is the density-
density correlation function (see eq.3.4). Let us consider a point x0, belonging to a fractal
set of dimension dF which is embedded in d-dimensional space. For the sake of sim-
plicity, and without loss of generality, let us set x0 = 0. Then, the density-density
correlation function is defined as the conditional probability, C(x|x0) ≡ C(x−x0) of find-
ing a fractal set point at x, given that x0 belongs to the set. For an isotropic fractal of
mass dimension dF , the number (“mass”) of points within a neighborhood of one of
its points x0 follows a power-law M(R) ∼ RdF , where R = |x − x0| is the distance from
x0. It can then be shown [Vicsek, 1989] that the density-density correlation function
at x0 follows a power-law C(x − x0) ∼ |x − x0|dF−d = RdF−d , where d is the embedding
space dimension. Thus, for a system of critical σ-clusters, based on the fractal struc-
ture, eqs.(4.25), (4.28), the density-density correlation function in configuration space
(rapidity ⊗ transverse space) follows a power law:

C(ξ,x⊥) =
⟨
ρ(ξ,x⊥)ρ(0,0)

⟩
∼ |ξ |−

2
δ+1

∣∣∣∣∣x⊥βc
∣∣∣∣∣− 4

δ+1

(4.39)

where, due to translational symmetry, the behaviour around any point of the set is the
same as for (0,0). Similarly, for critical baryon-number density clusters in transverse
space, we obtain:

CB(x⊥) =
⟨
ρB(x⊥)ρB(0)

⟩
∼

∣∣∣∣∣x⊥βc
∣∣∣∣∣− 2

δ+1

(4.40)
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The density-density correlation function in transverse space is a useful tool, because
the fluctuations of the σ-field in transverse configuration space, contrary to those in
rapidity space, are not directly observable. All we can observe are production rates
of particles in transverse momentum space. It is therefore necessary to translate our
description of the structure of critical clusters from transverse configuration to transverse
momentum space. In terms of the density-density correlation function, this is achieved,
as usual, through a Fourier transform.

Let us first understand how the one-particle density, i.e. the field, or a power of the
field, transforms to momentum space. The one-particle density, ρ(x), has a representa-
tion ρ̃(k) in momentum space, given in terms of creation/annihilation operators:

ρ̃(k) =
∫
ddx e−ikxρ(x) ; ρ̃(k) =

∑
p

a∗pap+k, (4.41)

where k is the momentum transfer in a process p→ p+ k, and ρ̃(k) is associated with
the amplitude of the process. For critical processes, only the limit k→ 0 is relevant,
and taking the average over events for multiparticle production, we get:

⟨
ρ̃(k = 0)

⟩
=

∫
ddx ⟨ρ(x)⟩ =

∑
p

⟨a∗pap⟩ =
∑
p

⟨np⟩ (4.42)

or ⟨
ρ̃(k = 0)

⟩
= ⟨n⟩

where np is the particle number operator, and ⟨n⟩ the average particle multiplicity
over the set of events. Using the representation (4.41), the density-density correlation
function has the following Fourier transform:

⟨ρ̃∗(k)ρ̃(k)⟩ =
∫
ddx e−ikx⟨ρ(x)ρ(0)⟩ (4.43)

and, in terms of creation/annihilation operators:

⟨ρ̃∗(k)ρ̃(k)⟩ =
∑
p,p′
⟨a∗p+kapa

∗
p′ap′+k⟩ (4.44)

When (4.44) is viewed as an operator acting on a multiparticle state of the system,
terms with p , p′ vanish in the summation, as a result of the successive action of
creation/annihilation operators. Therefore, we obtain for the Fourier transform of the
density-density correlation function:

⟨ρ̃∗(k)ρ̃(k)⟩ =
∑
p

⟨a∗p+kapa
∗
pap+k⟩ =

∑
p

⟨np+k(np − 1)⟩ (4.45)
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Eq.(4.45) shows that the Fourier transform of the density-density correlation function
measures the number of pairs of points in momentum space that differ by k in their
momenta. Therefore, in the infrared limit |k| → 0, it represents the divergent part of
the pair correlation function C̃(k) in momentum space:

lim
|k|→0
⟨ρ̃∗(k)ρ̃(k)⟩ = lim

|k|→0
C̃(k) ∼ |k|d̃F−d , (4.46)

where d̃F is the fractal dimension of the set of particles in momentum space. The
relationship between dF and d̃F can be extracted via the Fourier transform in (4.43).
By simple dimensional analysis, we conclude C̃(k) ∼ |k|−dF . Schematically, the transition
from configuration to momentum space is given by the chain:

dF
C(x,0)
−−−−−→ |x|dF−d Fourier−−−−−−−−→

transform
|k|−dF = |k|d̃F−d

C̃(k)
−−−−→ d̃F = d − dF (4.47)

Applying the transform for transverse momentum space (d = 2,k = pT ), we obtain:

C̃(pT ) ∼
∫
d2x⊥ e

ipT ·x⊥C(x⊥, 0) (4.48)

where C(x⊥, 0) is the density-density σ correlation function for the projection in trans-
verse configuration space of a critical cluster centered at x0 = 0, and C̃(pT ) is the corre-
sponding density-density correlation function in transverse momentum space. Setting
R = |x⊥|, and inserting

C(R,0) ∼ R−
2
κ (4.49)

in (4.48), where κ ≡ δ+1
2 , (δ+1) for σ (baryons) respectively, we obtain from Fourier-

transforming:

C̃(pT ) ∼
∫
d2x⊥ e

ipT ·x⊥C(x⊥, 0) =
∫
dR ·R ·R−

2
κ

∫
dθ eipT R cosθ (4.50)

and, by the variable substitution z ≡ pT ·R, we get

C̃(pT ) ∼ p
−2 κ−1κ
T

∫
dz · z · z−

2
κ

∫
dθei z cosθ (4.51)

we are thus led to the following power-laws for the density-density correlation functions
in transverse momentum space:

C̃(pT ) ∼ |pT |
−2 (κσ −1)

kσ = |pT |−2(δ−1)/(δ+1)

C̃B(pT ) ∼ |pT |
−2 (κB−1)

kB = |pT |−2δ/(δ+1) .
(4.52)
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4.4.2 Inclusive q-particle distributions. Intermittency and factorial mo-
ments in transverse momentum space.

In order to study the fractal distribution of particle multiplicities in transverse mo-
mentum space, we employ statistical tools used in heavy ion collisions to study the
many-particle states of strongly interacting particles produced. Such tools are the in-
clusive q-particle distributions: their integrated form, over phase space domains, provides
us with the expected multiplicities of particles, as well as their fluctuations.

Specifically, we define the (symmetrized) inclusive q-particle distribution ρq [De Wolf
et al., 1996]:

ρq = σ
−1
tot dσq(p1, . . . ,pq)

/ q∏
i=1

dpq, (4.53)

where σq(p1, . . . ,pq) is the inclusive cross-section for q particles possessing momenta
p1, . . . ,pq, regardless of the presence and exact position of any other produced particles
(i.e., we have integrated over all possible distributions of other particles). The variable
pi stands for the collection of all necessary parameters that determine the location of
the i-th particle in phase space. σtot is the total cross section of the process under study.

In the case of identical particles, integrating (4.53) in a domain Ω of momentum
phase space gives:

∫
Ω

dp1 . . .

∫
Ω

dpq ρq(p1, . . . ,pq) = ⟨n(n− 1) . . . (n− q+1)⟩ , (4.54)

where n is the multiplicity of identical particles in Ω for a given collision event, and
brackets denote averaging over the set of all events.

In order to extract statistically significant results given the limited statistics provided
by experiment, it is necessary to subdivide the phase space Ω into “cells” of volume
δΩ, and average (4.54) over cells. Important conclusions can be drawn by inspecting
how multiplicities scale as a function of the size (equivalently, the number) of cells in
momentum space.

Let us consider such a cell Ωm in phase space, having a volume of δΩ. The total
phase space, of volume Ω, is partitioned into MD non-overlapping cells of the same
volume δΩ. Evidently, Ω =MD δΩ, where D is the dimensionality of phase space. Let
nm be the multiplicity of particles in the m-th cell Ωm. We can then define several
different kinds of moments that average over cells.

The Scaled Factorial Moments (SFMs), also known as vertical moments, are defined as
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[Bialas and Peschanski, 1986, 1988]:

FVq (M) ≡ 1
MD

MD∑
m=1

⟨nm(nm − 1) . . . (nm − q+1)⟩
⟨nm⟩q

≡ 1
MD

MD∑
m=1

∫
δΩ
ρq(p1, . . . ,pq)

∏q
i=1dpi(∫

δΩ
ρ1(p)dp

)q
≡ 1
MD(δΩ)q

MD∑
m=1

∫
δΩ

ρq(p1, . . . ,pq)
∏q
i=1dpi

(ρ̄m)q
,

(4.55)

where all pi belong to the domain δΩ and ⟨nm⟩ ≡ ρ̄m δΩ ≡
∫
δΩ
ρ1(p)dp.

We can also define horizontal factorial moments [Bialas and Peschanski, 1986, 1988]:

FHq (M) =

⟨
1
MD

MD∑
m=1

nm(nm − 1) . . . (nm − q+1)
⟩

⟨
1
MD

MD∑
m=1

nm

⟩q , (4.56)

where we first average over phase space cells and subsequently over the collection of
events (denoted by angle brackets, ⟨. . .⟩). The horizontal and vertical moments coincide
in the case of a single phase space cell, M = 1. Vertical moments are locally normalized,
and are therefore sensitive only to fluctuations within each cell, and not to fluctuations
of the overall shape of the one-particle distribution. In contrast, horizontal moments are
sensitive to the form of the one-particle distribution and also depend on the correlations
between cells.

What form do factorial moments Fq(M) take as a function of size (number) of cells
δΩ (M)? That depends on the way points are distributed in phase space, and is
intimately related to the possible fractality of the set they form. If the set of points
possesses some characteristic length scale, we expect Fq(δΩ)→ const. as δΩ→ 0. If, on
the contrary, the set is characterized by scale invariance (as is typically the case for a
critical system), then the factorial moments will follow a scaling law, i.e. they will be
invariant under rescaling (change of cell size):

Fq(δ) = (∆/δ)ϕqFq(∆), ϕq > 0 (4.57)

where ∆,δ are two different cell size scales and the exponent ϕq is a function of the
fractal dimension of the set of points.

In the context of particle physics, intermittency is defined as self-similarity of the
many-particle states spectrum, when it is examined at different scales. As we have seen,
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this implies that the factorial moments Fq(δΩ) follow a power-law with regards to cell
size:

Fq(δΩ) ∝ (δΩ)−ϕq , δΩ→ 0. (4.58)

The exponent ϕq > 0 is a constant for given q and is called the intermittency index. The
form of (4.58) implies that the inclusive distributions ρq, as well as the density correla-
tion functions Cq, are divergent in the infinitesimal distance limit δΩ→ 0 in momentum
space. This is easier to understand if we recall that the density-density correlation func-
tion C2 merely expresses the conditional probability, defined in eqs.(4.39,4.40), that a
point is found at x given that 0 belongs to the set. Intermittency arises in a critical sys-
tem due to the fact that the density-density correlation function follows a power-law.
Indeed, according to the usual conditional probability law, we can express the 2-particle
density as:

ρ2(p1,p2) = C2(p1|p2) · ρ1(p2), (4.59)

where C2(p1|p2) = C2(|p1 − p2|) ∝ |p1 − p2|−f2 is the probability density of finding a set
point in the vicinity of p1, given that p2 belongs to the set, and the exponent f2 is
derived from the power-law the density-density correlation function follows. ρ1 is the
prior probability density of finding a set point in a volume δΩ, and is a constant for
homogeneous fractals, i.e. the probability is proportional to δΩ. Based on the above, as
well as the definitions of factorial moments, (4.56),(4.55), we can relate the exponent
f2 of the density-density correlation function to the intermittency index of the second
scaled factorial moments (SSFMs) F2(δΩ):

F2(δΩ) ∝ (δΩ) · (δΩ)
D−f2
D

(δΩ)2
∝ (δΩ)−

f2
D ∝ (M−D )−f2/D ∝Mf2 , (4.60)

where D is the dimensionality of embedding space. In the case of transverse momentum
space, we have D = 2, f2 = 2κ−1κ , eq.(4.52), and therefore:

F2(M) ∼
(
M2

) κ−1
κ (4.61)

where M2 is the number of cells in 2D space. It is M2 ∼ (δΩ)−1, and referring to (4.58)
we see that ϕ2 =

κ−1
κ .

It can be shown more generally [De Wolf et al., 1996], for a fractal or multi-fractal
set, that the intermittency index ϕq is related to the fractal dimension of the set as:

D ·ϕq = (q − 1) · dq, (4.62)

where dq is the anomalous dimension of the set, obtained by subtracting the Rényi dimension,
Dq, from the topological dimension D of embedding space:

dq =D −Dq (4.63)
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The Rényi dimension Dq generalizes the concepts of fractal “mass” dimension dF , in-
formation dimension and correlation dimension. In the case of a mono-fractal, we can
take Dq as identical to the “mass” dimension dF .

We therefore conclude that, when critical, the factorial moments Fq(M) follow inter-
mittent power-laws of the form:

Fq(M) ∝
(
MD

)(q−1)D−DqD (4.64)

with
ϕq = (q − 1)

D −Dq
D

(4.65)

4.5 Stochastic fractals and Lévy walks

4.5.1 Generating stochastic fractals through random walks

We now seek methods by which we can numerically simulate fractal clusters in trans-
verse configuration (or momentum) space. The problem reduces to that of numerically
producing a set of points, representing critical particles in momentum space, which
should exhibit self-similarity possessing the desired fractal dimensionality.

It is relatively simple to produce, via iterated algorithms, deterministic fractal sets
with self-similar structure; however, such sets are excessively regular and uniform,
and therefore cannot satisfactorily simulate a critical system, which only possesses self-
similarity in a statistical sense, i.e. in the distribution of fractal measures averaged
over a large number of generated configurations. We ought to use an algorithm that
produces stochastic (random) fractals, employing pseudorandom number generators
coupled with a proper iterative process. The produced fractal sets also need to be
(statistically) uniform and isotropic, i.e. to look the same, on average, from every point
and in every orientation.

This can be achieved through the technique of random walks: We start at some point
in space (for illustrative purposes, let us imagine we are working on the plane, D = 2,
and start at the origin, x0 = 0) and randomly select a direction, with uniform probability.
Next, we take a step in the direction chosen. The step length is also chosen at random
from a given probability (density) distribution. We thus reach a new point, x1. Iteration
of this process of consecutive steps produces a set of points xi , i = 1, . . . ,N on the plane.
Since every step is independent from the ones preceding it (such a series is called a
“Markov chain”), the process has no “memory”, and the set should look the same from
each of its points, in the limit N →∞. (Of course, for any finite number of steps, the
points near the initial and last step possess a privileged place, but for a large enough
set, or a large ensemble of such sets, the condition holds for the majority of points).
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Although such a set possesses translational and rotational symmetry, it is not nec-
essarily self-similar, i.e. it does not in general possess (non-trivial) scale invariance
with a fractal dimension DF < D , where D is the dimensionality of embedding space.
This feature of the set depends on the choice of the step probability distribution ρ(r),
which gives the probability density of taking a step with a length between r and r +dr ,
0 < r <∞.

In the matter of step distribution functions, the mathematical property of infinite
divisibility plays a crucial role. A probability distribution function (more precisely, a
family of functions) is said to be infinitely divisible when, for every random variable
X following the distribution and for every positive integer n, there exist n independent
identically distributed (i.i.d.) random variables, X1, . . . ,Xn, following identical distribu-
tions (not necessarily the same as X), such that their sum follows the distribution of X.
Intuitively, infinite divisibility means that we can indefinitely subdivide the steps of a
random walk, approaching the continuous time limit (“Brown motion”).

Infinite divisibility by itself is not sufficient for scale invariance. In order for that
to hold, the step distribution must also be stable. A distribution F is said to be stable
when, for every two i.i.d. random variables X1,X2 following F, and for every two
coefficients c1, c2, there exists a coefficient c and a random variable X3, also following
F, such that: c1X1 + c2X2 = cX3 [Shlesinger et al., 1995]. A stable distribution can
therefore be “rescaled”, subdivided in an arbitrary number of copies of itself.

Stable distributions belong to classes, characterized by the parametrization of the
characteristic functions of each distribution [Shlesinger et al., 1995]. The relevant pa-
rameter, α, takes values in the interval 0 < α ≤ 2² Notable examples of stable distributions
are the Gaussian (α = 2), Cauchy (α = 1), etc.

The importance of a distribution’s stability lies in the fact that it defines a simple
scaling law: if time (number of steps) is multiplied by a factor of λ, and length scale
by a factor of λ1/α , we get a rescaled copy of the original walk. It is easy to see from
this fact, that the parameter α, i.e. the class where the distribution belongs, controls the
dimensionality of the set produced by the random walk.

4.5.2 Distributions with finite and infinite variance. Lévy walks.

If the random walk step follows a distribution with finite variance, then the Central
Limit Theorem applies, and asserts that the total displacement (vector sum of steps)
after N steps follows, for large enough N , a Gaussian (normal) distribution, with a
mean of µ(N ) =N µ and a variance of σ2(N ) =N σ2, where µ,σ2 the mean and variance
of one step, respectively. Thus, the endpoint on a random walk at the N -th step is
found on average at a distance R(N ) ∼

√
N from the origin. Therefore, the average

²To be sure, classes require more parameters to be fully characterized. Here, we focus solely on α, since
it is intimately connected to the dimensionality of the fractal set produced by the random walk.
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number of points within a radius R centered at a point in the set scales as ⟨N (R)⟩ ∼ R2,
which means that a Gaussian random walk fills the plane in the limit N →∞ (“mass”
dimension d =D = 2).

A set produced by such a random walk possesses only trivial self-similarity. In order
to produce fractal sets with a dimensionality strictly less than their embedding space,
we must perform random walks the steps of which follow distributions with infinite
variance. If our distribution tends asymptotically to zero for large r as ρ(r) ∼ r−(1+γ),
0 < γ < 2, then the step variance is infinite. A generalized Central Limit Theorem then
asserts that, after a large number of steps, the distance from the origin will tend to a
Lévy distribution. The specific choice of Lévy distribution depends on the value of the
exponent γ. Since Lévy distributions also have infinite variance, the random walk set
of points will possess non-trivial self-similarity. We can picture that by realizing that
if, for example, we merge every 50 steps, we get a set of points with the exact same
characteristics as when we merge every 500, or any other number, of steps, in other
words we get the same structure at different scales.

Such a random walk is called a Lévy walk, or Lévy flight. The fractal dimension of
the set produced by it is DF ≃ γ. In order to obtain a well-defined, self-similar structure,
this fractal dimension needs to be strictly smaller than the embedding space dimension,
γ < D. Moreover, the demand that total probability be normalizable to unity introduces
the additional constraint γ > D − 1 (thus, on the plane we have 1 < γ < 2). In practice,
we perform a Lévy walk by setting up the step algorithm such that the probability of
selecting a step of length ∆r larger than ∆r0 is [Mandelbrot, 1982]:

P r(∆r > ∆r0) =


1, for ∆r0 < ∆rd
C∆r0

−DF , for ∆rd ≤ ∆r0 ≤ ∆ru
0, for ∆r0 > ∆ru

(4.66)

where ∆rd , ∆ru are cutoffs that define a lower and upper scale for the set, respectively,
and C is a normalization constant. The cutoffs define a range of scales within which the
set possesses fractal self-similarity, and they are imposed by practical considerations: a
computer can only produce (pseudo)random numbers within a finite range of values.
It is evident that while in theory the step size can lie in the range 0 < r <∞, in practice
the distribution has to be cut off at some value, so as to prevent overflow³.

Fig.4.2 shows the results of a random walk of 500,000 steps, with a fractal dimension
of DF = 1.5, at various scales. The development of clusters of points is apparent in
the picture. Most steps are very small, but due to the infinite step variance, some
steps are large, and the random walk leaps from one cluster to another (only the

³As is evident from the definition (4.66), a single C value cannot satisfy both cutoffs; there is necessarily
a discontinuity in P r(∆r > ∆r0), either at the lower cutoff, or the upper (or both). However, for small (large)
enough cutoff values, this discontinuity can be arbitrarily small.
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endpoints of steps are drawn, not the connecting segments). We notice, in the successive
magnifications of the walk, the self-similarity of the clusters.

Figure 4.2: A random Lévy walk of 500,000 steps, corresponding to a dimension of
DF = 1.5. The top left image shows the whole set produced by the walk. The top right
image is a magnification of a cluster within the set, and the bottom image is a further
magnification of a sub-cluster, at a zoom factor of about 200 : 1. The “grain size” of the
walk is only apparent in the final magnification.

Fig.4.3 is a plot of the correlation function C(R) versus the distance scale R. C(R) is
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Figure 4.3: The correlation function C(R) vs distance scale R, for a subset of 80,000
successive points belonging to the Lévy walk in Fig.4.2. In the central region, the
correlation dimension DC , estimated by fitting the log-log plot, is approximately equal
to the fractal exponent DF = γ used in the construction of the set. In scales smaller
than the lower cutoff of the Lévy step size, DC ≈D = 2, and the set fills the plane.
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a measure of the distribution of distances among points in the set, and is defined as:

C(R) =
2

N (N − 1)

∑
i, j
i < j

Θ(R− |xi − xj |), (4.67)

where Θ is the step function and |xi − xj | are all the sets of distances in the set, i, j =
1, . . . ,N . For a fractal set of points, C(R) is expected to scale as C(R) ∼ RDC , where DC
is the correlation dimension of the set. We expect DF ≃ DC [Grassberger and Procaccia,
1983].

As can be seen in Fig.4.3, the log-log plot of C(R) does not possess an exactly linear
form; however, its central area is well approximated by a straight line with a slope
around 1.5. At very long distances, we observe a saturation of C(R), since we reach
the borders of the set. Remarkably, at very small distances, smaller than the minimum
step size ∆rd , we get excellent linearity, but with a dimensionality corresponding to
that of embedding space. This behavior – two almost linear regimes connected by a
sharp transition at a “knee” – is reminiscent of the behavior of the instanton solutions
to the 3D-Ising effective action, eq.(4.28). The linearity of logC(R) can be enhanced,
if proper lower and upper cutoffs are selected, which is a matter of some empirical
experimentation. For the set depicted in Fig.4.2, we have set ∆rd = 1, ∆ru = 1× 104.

4.5.3 Cartesian products of Lévy walks.

We’ve seen that a random Lévy walk with a step distribution of P r(∆r > ∆r0) ∼ r
−γ
0 ,

1 < γ < 2, embedded in a space of dimension D ≥ 2, produces a stochastic fractal set of
dimension DF = γ. However, we sometimes need to produce fractal sets with DF < 1 on
the plane. In such cases, we resort to the following trick: we produce 2 independent
random walks, A and B, embedded in one dimensional spaces (D1 =D2 = 1), with:

(A) : P r(∆x > ∆x0) ∼ ∆x
−DF1
0 , DF1 < 1

(B) : P r(∆y > ∆y0) ∼ ∆y
−DF2
0 , DF2 < 1

Embedding in 1D space then leads to fractal sets with dimensions DF1 ,DF2 < 1. Conse-
quently, we form the cartesian product:

(A)DF1 ⊗ (B)DF2 : xi ⊗ yi → (xi , yi) ∈ E2,

i.e., we form pairs of coordinates using as elements the points of the 2 independent
walks. It can be proven that the resulting set of points in the plane has a dimensionality
equal to the sum of dimensions of the 1D Lévy walks, DFA⊗B =DF1 +DF2 .
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4.6 Critical Monte Carlo (CMC) implementation

4.6.1 The CMC algorithm

Let us now examine how the techniques of section 4.5 can be applied in the simulation
of the critical σ-condensate. First of all, the simulation is implemented in momentum
space. As we have seen is section 4.4.1, we can transport the properties of critical geom-
etry from configuration to momentum space via a Fourier transform in transverse space.
Our simulation is an adaptation of the Critical Monte Carlo (CMC) algorithm [Antoniou
et al., 2001], with a few modifications in input parameters. The code implementation,
in Fortran 90, can be found in Appendix B.

As was explained in section 4.2.2, the cluster geometry is cylindrical, i.e. it is
formed as a cartesian product in rapidity ⊗ transverse momentum space. In simulating
an event, the algorithm begins by determining the number and distribution, in phase
space, of the clusters corresponding to the σ-condensate. We recall that the number of
clusters is determined by the overall size of the critical system, whereas the multiplicity
of σ within each cluster depends on the values of the coupling constants appearing in
the free energy expression of the system at the critical point.

The input parameters to the algorithm determining the σ-distribution are:

• The transverse size of the system, R⊥

• The total rapidity range, ∆

• The proper timescale, τ

• The critical temperature, Tc

• The coupling constant g in the effective action for the 3D-Ising model, and

• The isothermal critical exponent δ.

Once we have determined the values of these parameters, we can calculate the size of a
cylindrical σ-cluster, i.e. its radius |∆p⊥| in transverse momentum space and its width
2∆u in rapidity. These are given by:

∆u = G
(δ−1)/(δ+3)
1

|∆p⊥| = (4πCA∆g)
− 1

10 β−1c
(4.68)

∆u derives from eq.(4.26). |∆p⊥| is determined by Rd , eq.(4.29), where we have used
the value δ = 5.
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The number of σ-clusters in transverse (configuration or momentum) space, as well
as the corresponding number of clusters in rapidity space, are given by:

N// =
∆

2∆u
=

2∆τ
√
πR⊥

(g
2

)1/4
N⊥ =

(
R⊥
Ru

)2
=

(
12
√
6gR⊥

π∆τ

)2 (4.69)

Finally, the multiplicity of σ within each cluster can be estimated as:

⟨ncl⟩ =
Γ
(

3
δ+1

)
Γ
(

1
δ+1

) ( V
V0

)(δ−1)/(δ+1)
, (4.70)

where V = 2πR2
u∆u and V0 = β2c

√
2gCA.

Consequently, cluster centers must be appropriately distributed in phase space. In
rapidity, we generate as already mentioned N// clusters, the center positions of which
are treated as random variables, uniformly distributed in the range [0,∆]. In transverse
momentum space, the centers of the N⊥ clusters follow an exponential distribution:

f (pT ) =
2

π⟨pT ⟩2
e−2pT /⟨pT ⟩, (4.71)

under the constraint that the total transverse momentum of cluster centers vanishes:
N⊥∑
i=1

pT ,i = 0. (4.72)

⟨pT ⟩ is the mean transverse momentum, which we approximate by ⟨pT ⟩ ≈ 2Tc.
After the cluster centers have been positioned, a number of σ particles are produced,

with the appropriate mean multiplicity per cluster. At this point, we implement the Lévy
walk technique described in section 4.5, with a suitable plug-in value for the dimension
dF . In rapidity, we stochastically produce the particles corresponding to a cluster using
a 1D Lévy walk with d(1)F = δ−1

δ+1 = 2/3, eq.(4.27). The resulting set does not, in general,
have the correct center and size. By exploiting the self-similarity of the system, we can
produce the desired set by rescaling the original set and positioning it around the correct
center. The resulting multiplicities within each cluster depend on the positions of the
neighboring cluster centers. Therefore, the distribution of cluster centers in rapidity
determines the total multiplicity Nσ of σ particles within an event.

Additionally, to each transverse momentum cluster there correspond Nσ /N⊥ σ-
particles, distributed according to the power-law in eq.(4.28). If we Fourier-transform
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eq.(4.31), this translates to a fractal dimension of d̃(2)F = 4
δ+1 = 2/3 < 1 in transverse

momentum space. In order to construct this set, we resort to the cartesian product
Lévy walk technique described earlier: we produce independent sets for the coordi-
nates px,py by implementing walks of dimension 1/3 embedded in 1D space, and then
we take their cartesian product.

We therefore obtain two sets of variables in phase space: a set ST of Nσ pairs
of transverse momenta,

{
(px1 ,py1), . . . , (pxNσ ,pyNσ )

}
, and a set Sξ of Nσ rapidity values,{

ξ1, . . . ,ξNσ
}
. The σ-particle content of a critical event following the underlying cylin-

drical geometry is then produced by a one-to-one, random combination of the elements
of ST with those of Sξ .

Finally, for every produced particle, we change variables from the triplet
{
pxi ,pyi ,ξi

}
to the corresponding

{
pxi ,pyi ,pzi

}
, where pz =

√
p2x + p2y ·sinhξ , where we have set mσ = 0,

since we assume T = Tc.

4.6.2 Input parameter values

Consequently, we must select realistic values for the input parameters of the CMC algo-
rithm. The following table summarizes the input parameters and their selected values:

Parameter Tc (MeV) R⊥ (fm) ∆ τ (fm) δ g

Value 163 8 6 11 5 2

Of these parameters, δ and g are fixed by the 3D-Ising universality class at δ ≈ 5 and
g ≈ 2, respectively. The rapidity range is selected to be compatible with SPS conditions
(Si+Si collisions, NA49 experiment). The aforementioned values for R⊥ and g lead to a
value of Ru ≈ 5 fm, which results in the formation of 2 clusters in transverse momentum
space. Taking into account the fact that ∆u ≃ 0.32, we obtain 9 clusters in the projection
in rapidity space. Therefore, we expect 18 critical clusters to form in total, based on the
cylindrical evolutionary scenario.

In Fig.4.4, we show the distribution of simulated σ particles in rapidity and trans-
verse momentum space, as well as the multiplicity distribution of σ . As expected, the
profiles in rapidity and azimuthal angle are approximately flat, while pT follows an
exponential distribution (in 2D). The one-particle joint distribution in {px,py} is shown
in Fig.4.5. Finally, the second scaled factorial moment, F2(M), as a function of bin size
M in transverse momentum space is shown in Fig.4.6 for a set of 150,000 events. The
resulting intermittency index, ϕ2 = 0.690(2), is within 5% of the theoretically expected
value of ϕ2,σ = 2/3, confirming the self-consistency of the CMC algorithm.
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Figure 4.4: The results of a 150,000 event run of CMC with typical input parameter
values. Top left: event multiplicity distribution of σ . Top right: rapidity distribution.
Bottom left: Transverse momentum (pT ) distribution. Bottom right: Azimuthal angle
(ϕ) distribution.
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Figure 4.5: ρ(px,py) one-particle distribution for 150,000 events generated by the CMC
algorithm.
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Figure 4.6: The SSFM F2(M) of transverse σ momenta and the corresponding (fitted)
intermittency index ϕ2 (M2 > 6000) for 150,000 events generated by the CMC algorithm.
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4.6.3 The CMC algorithm for baryons

We have seen how the CMC algorithm can simulate critical σ-clusters at the vicinity of
the chiral critical point, assuming that the order parameter of the system is the average
multiplicity of σ particles in a cluster, which is proportional to σ2(x). Similarly, we can
generate baryon clusters by adopting the net baryon number multiplicity, proportional
to ρB(x), as an order parameter. This, according to section 4.3.3, leads to the formation
of clusters where the net baryon multiplicity scales according to (4.36), with d(B)F = 2δ

δ+1
being the fractal dimension in transverse configuration space. By performing a Fourier
transform of the density-density correlation function, as detailed in section 4.4.1, we
obtain the corresponding fractal dimension in transverse momentum space,

d̃
(B)
F =

D
δ+1

=
1
3
, (4.73)

for D = 2,δ = 5.
We can adapt the CMC algorithm in order to simulate critical baryon clusters. Several

simplifying assumptions are made, compared to “vanilla” CMC:

• We simulate only transverse momentum space, ignoring rapidity.

• We concentrate on protons and ignore anti-protons. This is based on the ex-
pectation that proton and anti-proton densities, separately, follow the scaling law
(4.36), and that in the experimental data sets we study, anti-proton multiplicity
is much lower than proton multiplicity.

• Only one cluster per event is produced, as the Cartesian product of two Lévy
walks of d̃B,1F = 1/6, in transverse momentum space. The cluster center position
is randomized per event, following a uniform distribution with specified widths
in px,py (in later versions of the algorithm, an exponential distribution for cluster
centers was provisionally tried).

• The proton multiplicity per event is also a plug-in parameter, set to follow specified
average and variance values. Since the cluster is produced as the cartesian product
of two walks of equal length, the total event multiplicity is always the square of
a natural number. Therefore, to achieve the correct multiplicity distribution, we
adjust the probabilities for producing multiplicities Np = 1,4,9, . . . accordingly. A
typical proton multiplicity distribution is shown in Fig.4.7.

In summary, the modified CMC algorithm is governed by only 5, empirically adjusted
input parameters:

• The lower and upper bounds of 1D Lévy walks in momentum space, pmin and
pmax.
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• The average proton multiplicity ⟨p⟩, and the corresponding variance ∆⟨p⟩.

• A range ∆p0, so that cluster centers are produced uniformly in [−∆p0,∆p0].

The following table summarizes the typical values for the input parameters:

Parameter pmin (MeV) pmax (MeV) ⟨p⟩ ∆⟨p⟩ ∆p0 (MeV)

Value 0.5 500 3.1 1.6 800

The code implementation for CMC baryon, in Fortran 90, can be found in Ap-
pendix B.

The distributions in ϕ and pT for the proton CMC algorithm are shown in Fig.4.8a,b.
We observe that, due to the use of a cartesian product of 1D walks, the azimuthal angle
distribution is not uniform. The two-dimensional distribution ρ(px,py) is shown in
Fig.4.9. Clearly, the algorithm does a poor job of simulating the cylindrical geometry
of a heavy ion collision. However, the scaling properties of the power-law, eq.(4.36)
are adequately represented even in this crude adaptation of CMC. This is evident in
Fig.4.10, where we have plotted F2(M) of CMC-baryon for 150,000 events in transverse
momentum space. The estimated intermittency index ϕ2 = 0.836(1) is in excellent
agreement with the theoretically expected value ϕ2,B = 5/6.
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Figure 4.7: Proton multiplicity distribution for 150,000 events generated by the baryon-
CMC algorithm.
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Figure 4.9: ρ(px,py) one-particle distribution for 150,000 events generated by the
baryon-CMC algorithm.
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Figure 4.10: The SSFM F2(M) of transverse proton momenta and the corresponding
(fitted) intermittency index ϕ2 (M2 > 6000) for 150,000 events generated by the CMC-
baryon algorithm.

4.7 The Chiral Condensate as an attractor

The CMC algorithm presented in the previous sections simulates the geometry of σ
and baryon clusters that characterize the chiral condensate by means of random Lévy
walks. We have seen that the correlation dimension of a sufficiently long Lévy walk
can be numerically calculated, and that it is usually a good approximation to the fractal
dimension used to construct the walk. However, a typical event produced by the CMC
algorithm contains very little structure that is only statistically connected to the fractal
dimension of the underlying process. The same is true of any one heavy ion collision
event, especially if the multiplicity is low.

Most of the information about fractality lies in the collection of events as a whole;
in order to extract it, we must calculate a cumulative statistical quantity at various
scales. Such quantities are in fact the Scaled Factorial Moments (SFMs) introduced in
section 4.4.2, and in particular the Second Scaled Factorial Moment (SSFM), F2(M), as
a function of the number of cells M in transverse momentum space.

The underlying fractal structure of the chiral condensate can be viewed as a strange
attractor, and the points in individual events as sections of orbits that belong to it. In
order to illustrate how factorial moment analysis can reveal the structure of the chiral
condensate, let us attempt a similar reconstruction of a deterministic fractal of known
dimensionality: the Ikeda map.
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The Ikeda map is a two-dimensional non-linear map defined by the iterative equa-
tions

xn+1 = u(xn cos tn − yn sin tn) + 1

yn+1 = u(xn sin tn + yn cos tn)
(4.74)

where
tn = a−

b

1+ x2n + y2n
(4.75)

For u ≥ 0.6, the system possesses a chaotic attractor, i.e. a set of points to which all orbits
converge, provided they start in a (non-zero measure) region, the basin of attraction. For
our simulation, we choose the set of parameters:

a = 0.4 , b = 6.0 , u = 0.9

which are well within the chaotic regime. For the above set of parameters, the Ikeda
attractor has a fractal mass dimension of approximately:

dIF ≃ 1.7

Fig.4.11 shows a density plot of 500,000 points on the Ikeda attractor (after an initial
transient). In order to simulate the structure of a set of high energy collision events,
we follow a long orbit on the attractor and we collect the set of produced points into
events of a given average multiplicity, ⟨n⟩ = λ. Event multiplicities follow the poisson
distribution. We want to avoid immediate correlations between points within an event,
leaving only their correlation as parts of the overall structure of the attractor. To this
end, we take a random number of iterative steps between the points we record, which
we choose to be a random integer, uniform in the [10, 110] range. This minimum gap of
10 steps is sufficient for the points to “forget” their correlation as parts of a single orbit,
a conclusion supported by calculations of the correlation function of the time series of
points on an orbit.

We have tried two different groupings of points into events: in the first case, we
record 20,000 events of an average multiplicity λ = 50, whereas on the second case we
record 200,000 events with a lower average multiplicity λ = 3. The goal is to assess how
much information needs to be present in an individual event in order to reconstruct
the fractal structure of the attractor.

Consequently, we proceed to calculate the SSFMs F2(M) of the produced data sets, as
a function of cell size δΩ. According to the analysis of section 4.4.2, and in particular
eq.(4.65) with q = 2, D = 2, the intermittency index ϕI2 of the SSFMs on the Ikeda
attractor has an expected value of:

ϕI2 =
D − dIF
D

=
2− 1.7

2
≃ 0.15. (4.76)
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Figure 4.11: Density plot of 500,000 points on the Ikeda attractor. Color map illustrates
the density of points in various locations on the attractor. In an intermittency analysis,
we sample a long orbit and count the number of pairs of points in cells of a given size
δΩ.
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Fig.4.12 shows the results of the intermittency analysis on the Ikeda attractor. We
observe that in both cases the log-log plot shows excellent linearity. Statistical errors
are larger for the ⟨n⟩ = 3 set, although the statistics (number of events) is ten times
larger than in the ⟨n⟩ = 50 case. On the other hand, the small multiplicity set has an
intermittency index closer to the theoretically expected value of ϕI2 = 0.15.

Both sets give an intermittency index value within 10% of the theoretically expected.
We conclude that the reconstruction of a fractal attractor through factorial moment
analysis is feasible. By extension, the fractal geometry of the chiral condensate is
accessible by intermittency analysis, to the extent that it can be approximated by a
monofractal in transverse momentum space.





Chapter 5

ANALYSIS OF NA49 EXPERIMENT DATA SETS

5.1 Introduction

As we have already mentioned, the chiral condensate, ⟨q̄q⟩, is the order parameter of
the chiral phase transition. Therefore, finding suitable observables [Stephanov et al.,
1998, 1999; Stephanov, 2009; Fujii, 2003; Gazdzicki et al., 2011; Antoniou et al., 2001,
2005, 2006] that are connected to its fluctuations is essential in order to detect the
QCD critical point (CP) in heavy ion collision experiments. The quantum state carrying
the quantum numbers as well as the critical properties of the chiral condensate is the
isoscalar σ-field, σ (x). In a heavy ion collision experiment, it is possible for the vacuum
state fluctuations that lead to chiral condensate formation to occur, however the latter
is unstable and will decay mainly into pions, at time scales characteristic of the strong
interaction. The critical properties of the condensate are transferred to detectable pion
pairs, π+π−, with invariant mass just above their production threshold [Antoniou et al.,
2005].

In a finite-density medium, there is also a coupling between the chiral condensate
and the net baryon density, that induces critical fluctuations in the latter [Fukushima
and Hatsuda, 2011; Gavin, 1999; Antoniou et al., 2000, 2010; Hatta and Ikeda, 2003;
Stephanov, 2004, 2005]. Specifically, the critical fluctuations of the chiral condensate
are transferred to the net proton density, as well as the densities of protons and anti-
protons separately, through the coupling of protons with the isospin-zero σ-field [Hatta
and Stephanov, 2003]. Thus, detecting the QCD CP through observing fluctuations in
the proton density is a very promising strategy.

In the present chapter, we describe the data extraction and analysis of proton density
fluctuations in experimental data sets acquired in the NA49 heavy ion collision experi-
ment (CERN SPS). By the application of suitable cuts, we select the most central events
(low % centrality = small impact parameter), and subsequently we identify those tracks,
in momentum space, which to a high confidence level, belong to protons produced dur-

85
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ing collision. Special care is taken during the particle identification of protons among
other particles produced during the collision. Subsequently, we proceed to calculate
the factorial moments of selected tracks in transverse momentum space and check for
critical signatures in the results.

5.2 A brief overview of the NA49 experiment

Figure 5.1: A schematic representation of the hadronic detector of the NA49 experiment
(SPS CERN).

The NA49 experiment is a fixed-target, heavy ion collision experiment at CERN SPS,
focusing on the study of charged hadrons and neutral strange particles, in search for the
QCD deconfinement transition and the QCD critical point. A schematic representation
of its main hadronic detector is shown in Fig.(5.1).

The overall experimental setup of NA49 is shown in Fig.(5.2), along with the possi-
ble alternative arrangements for different beam and target definitions [Afanasiev et al.,
1999]. The main detectors are four large-volume time projection chambers (TPC’s).
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Figure 5.2: Set-up (not to scale) of NA49 experiment with different beam definitions
and target arrangements for (a) Pb+Pb, (b) p+p and (c) p+A collisions. The target
position is at the front face of the first Vertex Magnet (VTX-1). Figure by [Afanasiev
et al., 1999].
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Of these, the two vertex TPC’s (VTPC-1, VTPC-2) are located just behind the target T,
within the magnetic field of two superconducting dipole magnets, allowing for separa-
tion of positively and negatively charged tracks, as well as measuring particle momenta.
The two remaining TPC’s (MTPC-L, MTPC-R), positioned behind the magnets at ei-
ther side of the beam, are optimized for precise measurement of ionizing energy loss
dE/dx, used for particle identification. Additionally, four time of flight (TOF) scintil-
lator detector arrays are placed behind the MTPC’s in groups of two. These provide
supplementary information on particle mass, used for particle identification. The Ring
Calorimeter (RCAL), placed 18m behind the target, after the MTPC’s, was initially in-
stalled for the NA5 SPS experiment. It is used to measure neutral particle production
in the projectile hemisphere in p+p and p+A collisions. In Pb+Pb collisions, it pro-
vides information on transverse energy production rates and event anisotropy. The
veto calorimeter (VCAL) determines the centrality of collisions by measuring the en-
ergy deposited by projectile spectators. The calorimeter is placed behind a collimator
(COLL) which adjust the geometrical acceptance of VCAL so that only spectators reach
it. Finally, three beam position detectors (BPD-1, BPD-2, and BPD-3) are used to
measure the x and y coordinates of each beam particle at the target. Alternatively, the
primary vertex position can be reconstructed as the common point of intersection of
all reconstructed tracks. An extensive description of the NA49 experimental setup and
tracking software can be found in [Afanasiev et al., 1999].

5.3 The analysed data sets of the NA49 experiment

The analysed data sets were recorded during the NA49 heavy ion collision experi-
ment (A+A collisions). Most sets were acquired at the maximum CERN SPS energy,
of 158A GeV (√sNN = 17.3 GeV), with the exception of a Pb+Pb dataset at 40A GeV
(√sNN = 8.8 GeV). For the analysis we used the most central collisions (12%, 12%, 10%)
of carbon (“C”), silicon (“Si”) and lead (Pb) nuclei, on C (2.4% interaction length), Si
(4.4%) and Pb (1%) targets, respectively. The “C” beam as defined by the online trigger
and offline selection was a mixture of ions with charge Z = 6 and 7 (intensity ratio
69:31); the “Si” beam of ions with Z = 13, 14 and 15 (intensity ratio 35:41:24) [Anticic
et al., 2011a]. The event statistics amounted to 150k events for “C”+C, 166k events for
“Si”+Si, and 330k events for Pb+Pb (after appropriate cuts). We also analysed a 200k
Pb+Pb high-intensity dataset (158A GeV), subsequently rejected due to ambiguities in
the intermittency analysis, as well as 360k of the 12.5% most central Pb+Pb events at√
sNN = 8.8 GeV ¹. A summary of the analysed data sets is given in Table 5.1. A detailed
list of cuts if given in Appendix C.

¹In the case of the “C” and “Si” systems, statistics at √sNN = 8.8 GeV were insufficient for the purposes
of an intermittency analysis.
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5.3.1 Event & track selection cuts

Event and track selection cuts were based on the standard cuts used in the NA49
experiment, as detailed in Anticic et al. [2011b].

Specifically, event selection included cuts on the ion components of the beam (in the
case of “C” and “Si”). Each beam component provided us with a separate data set.
Throughout the analysis, we found little variation in the overall profiles of individual
components within each beam. In order to enhance statistics, we merged all components
in one final set per beam. Additionally, we applied cuts on the quality and position of
the reconstructed primary vertex of tracks in the selected events.

The final selection of tracks in each event also included quality checks: we required
a minimum number of reconstructed points on each track, as well as a maximum impact
parameter for each reconstructed track. It was also necessary to minimize the number
of possible split tracks that may contaminate the data: fragments of a track mistakenly
identified as two separate tracks of very similar momenta. In order to exclude such
tracks, we have only accepted tracks for which the ratio of number of measured points
to estimated maximum number of points in the TPCs exceeds 55%. It is nevertheless
possible that some split tracks remain after the cuts. In the following, we discuss
methods of dealing with such tracks.

We also applied a cut on the total momenta ptot of candidate protons (via a dE/dx
cut, detailed in the next section). Finally, we restricted our analysis in the mid-rapidity
region, since it is established that the density of the fireball formed during collision is
approximately constant in rapidity in this phase space region [Antoniou et al., 2006].

5.3.2 Proton identification via dE/dx

Proton identification [Anticic et al., 2011b] was performed via the measurement of
particle energy loss dE/dx in the gas of the time projection chambers. The inclusive
dE/dx distribution for positively charged particles in each reaction was fitted in 10 bands
of momentum p to a sum of contributions f α(dE/dx,p) from different particle species α
with α = π, K , p, e. The probability P for a track with energy loss xi and momentum
pi of being a proton is then given by:

P = f p(xi ,pi)/(f
π(xi ,pi) + f

K(xi ,pi) + f
p(xi ,pi) + f

e(xi ,pi)) (5.1)

The value of P for proton candidates had to exceed 80% for the “C”+C and “Si”+Si
systems and 90% for Pb+Pb, where event multiplicities are higher and permit higher
purity.



90 ANALYSIS OF NA49 EXPERIMENT DATA SETS

5.3.3 The qinv correlation function

In order to study the critical fluctuations of proton density in transverse momentum
space, it is first necessary to remove non-critical contributions to the proton-proton
density correlation function. These include: (a) a statistical background of dynamically
uncorrelated protons, (b) the possible presence of split or merged tracks, and (c) un-
wanted proton-proton correlations due to Coulomb repulsion and Fermi-Dirac statistics.
(a) is taken care of by the subtraction of mixed events. However, (b) and (c) require us
to study the distribution of the relative four-momenta of proton pairs:

qinv =
1
2

√
−(p1 − p2)2 (5.2)

where p1,p2 are all the possible combinations of proton 4-momenta in our final track &
event selection. The associated correlation function C(qinv) is the ratio of true to mixed
event pairs for all studied systems.

The qinv correlation function is expected from theoretical predictions [Koonin, 1977]
to develop a dip in the low qinv region due to Fermi-Dirac statistics and Coulomb repul-
sion, followed by a maximum around 20MeV/c which should become more pronounced
with decreasing size of the colliding nuclei.

In Fig.5.3 are shown the correlation functions C(qinv) for all studied systems, in the
range qinv ∈ [0,120]MeV /c. It is clear that, while the profiles of “C”+C, “Si”+Si and low-
intensity Pb+Pb sets agree with the theoretical predictions, the high-intensity Pb+Pb data
set exhibits an anomalous C(qinv) peak at very low qinv. This is an indication of possible
contamination of the set by merged/split tracks, which could seriously compromise the
intermittency analysis.

If the anomalous Pb+Pb peak is due to split/merged tracks, it can be treated by
application of a lower cutoff on the track pair distance at the mid-plane of the MTPC,
for both data and mixed event pairs, as described in [Appelshauser et al., 1999]. In
Fig.5.4, the C(qinv) distribution for high-intensity Pb+Pb is shown, before and after
a 2 cm cut in pair distance. The cut disposes of the anomalous peak. However,
information on track distance was not available for all studied datasets, and there could
be other possible causes of the anomalous peak in Pb+Pb. For this reason, we have
refrained from drawing definite conclusions from intermittency analysis of the high-
intensity Pb+Pb dataset, focusing instead on the low-intensity Pb+Pb dataset.

Furthermore, based on the profiles of Fig.5.3, we have imposed an additional qinv ≥
25MeV/c cutoff to all 3 data sets, throughout the intermittency analysis that follows.
This should have the effect of removing unwanted non-critical correlations. The uniform
application of the cutoff also allows us to better compare intermittency results in all
studied systems.
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Figure 5.3: The C(qinv) correlation function of proton pairs (ratio of pairs from real and
mixed events) at midrapidity (−0.75 < yCM < 0.75) for the most central collisions of (a)
“C”+C (centrality 12%), (b) “Si”+Si (centrality 12%), (c) low-intensity Pb+Pb (centrality
10%) and (d) high-intensity Pb+Pb (centrality 12%) at √sNN = 17.3 GeV.
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A “C”+C “Si”+Si Pb+Pb Pb+Pb Pb+Pb
(01I) (00B) (00W)

# Bootstrap Samples 1000
Rapidity range −0.75 ≤ yCM ≤ 0.75

# lattice positions 11 (2× 5 + central)
Lattice range (GeV) [−1.529,1.471] → [−1.471,1.529]

Beam Energy 158 A GeV 40 A GeV√
sNN 17.3 GeV 8.8 GeV

Centrality range 0→ 12% 0→ 10% 0→ 7%

# events 148 060 165 941 200 758 329 789 359 397
⟨pdata⟩ (after cuts) 1.6± 0.9 3.1± 1.7 10.8± 3.7 9.12± 3.15 12.0± 3.5

Table 5.1: Summary of the analysed data sets of the NA49 experiment. In the case of C
and Si, beams were a mixture of multiple constituent ions: “C” = C,N , “Si”+Si = Si,Al,P,
whereas we have merged components per beam in order to improve statistics, since we
have found little differentiation in their profiles. Average event multiplicities, ⟨pdata⟩,
refer to protons.
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Figure 5.4: The C(qinv) correlation function of proton pairs (ratio of pairs from real
and mixed events) at midrapidity (−0.75 < yCM < 0.75) for the most central collisions
of high-intensity Pb+Pb (centrality 12%) at √sNN = 17.3 GeV, (a) before and (b) after
applying a 2cm pair distance cut in the mid-plane of MTPC.
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5.3.4 The ∆pT correlation function

Before we proceed with the intermittency analysis of the NA49 experimental data sets,
it would be interesting to examine more evidence of the presence of significant corre-
lations among protons in transverse momentum space. The qinv distribution reveals
correlations between tracks in 4D-momentum space, which is not enough to guarantee
strong correlations in pT . We therefore look for strongly correlated pairs of protons in
the low relative pT region, i.e. for proton tracks that are close in transverse momentum
space. To this end, we calculate the distribution in ∆pT :

∆pT ≡
1
2

√
(pX1
− pX2

)2 + (pY1 − pY2)2, (5.3)

i.e. the difference in pT of protons in the pairs, as well as the associated correlation
function. The results of the calculation are shown in Fig.5.5, where we also plotted
the ∆pT distribution for a simulated CMC data set corresponding to a critical system
mixed with 99% random proton tracks (see section 5.5.2). We see from Fig.5.5 that
“C”+C and Pb+Pb data sets do not exhibit significant correlations in the low ∆pT region,
whereas “Si”+Si shows a peak at low ∆pT , which is comparable to the behaviour of
the simulated CMC dataset. The peak in low pT in “Si”+Si and CMC is evidence of a
singularity in pT → 0, which further strengthens the claim that the “Si”+Si freeze-out
occurs close to the chiral critical point in the QCD phase diagram.

5.4 Analysis of proton transverse momenta

5.4.1 Scaled factorial moments as a technique for probing the density-
density correlation function

We saw in 4.4.2 that the scaled factorial moments can provide us with valuable in-
formation about the presence of critical fluctuations in a data set. In particular, if the
density-density correlation function exhibits a power-law scaling, the corresponding fac-
torial moments will show intermittent behaviour, i.e. they will also follow a power-law
with regards to cell size δΩ; the power-law exponent, called the intermittency index, is
related to the fractal dimension of the set via eq.(4.65). Thus, intermittency provides
us with a “signature” of criticality.

Specifically, in our analysis we use the Second Scaled Factorial Moments (SSFMs) in
transverse momentum space, which give the distribution of pairs of particles at different
momentum scales. We work with horizontal factorial moments; therefore our method
is not sensitive to local fluctuations within a cell, since we average over cells, but only
to fluctuations of the one-particle distribution function, and to scaling. In the case of
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Figure 5.5: The C(∆pT ) correlation function of proton pairs (ratio of pairs from real
and mixed events) at midrapidity (0.75 < yCM < 0.75) for the most central collisions
of (a) “C”+C (centrality 12%), (b) low-intensity Pb+Pb (centrality 10%), (c) “Si”+Si
(centrality 12%), at √sNN = 17.3 GeV, as well as for (d) CMC simulated Si+Si events
(99% noise).
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limited statistics, however, and especially for low multiplicity events, arbitrary position-
ing of cell borders can distort the profile of correlations. In the following sections, we
describe in detail a method of coping with this issue.

If we set q = 2, D = 2 in (4.56), we get the SSFMs:

FH2 (M) =

⟨
1
M2

M2∑
m=1

nm(nm − 1)
⟩

⟨
1
M2

M2∑
m=1

nm

⟩2 (5.4)

If there is scale-invariance, as is the case for a critical system, then the factorial
moments F2(M) for M ≫ 1 should follow a power-law as a function of cell size:

F2(M) ∝
(
M2

)ϕ2 (5.5)

where the intermittency index ϕ2 is related to the power-law exponent of the density-
density correlation function via (4.61). In the case we examine, of baryonic fluctuations
in a critical system which freezes out exactly at the chiral critical point, κ = κB = δ+1 = 6,
and therefore ϕ2,cr =

5
6 , as determined by the universality class that governs the critical

properties of QCD [Antoniou, Diakonos, Kapoyannis, and Kousouris, 2006].

5.4.2 Background subtraction – Mixed events

Eq.(5.5) for F2(M) scaling is only valid in the case of a pure critical system. In an
actual experiment, however, even assuming the freeze-out of the system occurs right at
the critical point, events will always be contaminated by a background of non-critical
protons coming from various processes, alongside critical tracks, as well as, unavoidably,
particles falsely identified as protons. The presence of this background will result in
the distortion of the profile of factorial moments, leading to a modification of ϕ2 values
and/or deterioration of power-law behavior, (eq. 5.5) [Antoniou et al., 2005; Anticic
et al., 2010].

In order to recover the power-law behavior, we first of all make the assumption that
multiplicities in each cell can be divided into background and critical contributions,
n = nb +nc. We can then reformulate the numerator in eq.(5.4) as:

⟨n(n− 1)⟩ = ⟨nc(nc − 1)⟩+ ⟨nb(nb − 1)⟩+2⟨nbnc⟩ (5.6)

where the term ⟨nc(nc−1)⟩ corresponds to the average number of critical pairs, ⟨nb(nb−1)⟩
are the background pairs and ⟨nbnc⟩ is a mixed term. (For brevity, we omit the sum
over cells and the cell index – they are implied by the brackets, ⟨. . .⟩). The mixed term in
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eq.(5.6) vanishes when ⟨nb⟩ → 0 or ⟨nc⟩ → 0, since the corresponding joint probability
acquires a δ-function singularity in the limiting cases. We can thus quite generally
express the mixed term in eq.(5.6) as ⟨nbnc⟩ = ⟨nb⟩⟨nc⟩fbc, where fbc is a finite quantity.
In general, fbc cannot be further determined. Dividing both sides of eq.(5.6) by ⟨n⟩2

(which is proportional to
(
M2

)−2
for large M), we obtain:

∆F2(M) = F(d)2 (M)−λ(M)2F(b)2 (M)− 2λ(M) (1−λ(M))fbc (5.7)

The correlator, ∆F2(M) = ⟨nc(nc−1)⟩/⟨n⟩2 contains the critical contribution. The right
hand side of eq. (5.7), F(d)2 (M) is the SSFM of the original data set, λ(M) = ⟨nb⟩/⟨n⟩ is a
measure of contamination by non-critical protons and F(b)2 (M) = ⟨nb(nb−1)⟩/⟨nb⟩2 is the
SSFM of the background. Note that for M ≫ 1 the ratio λ becomes almost independent
of M and can be identified as the fraction of non-critical protons in the considered
ensemble. By construction, the correlator ∆F2(M) possesses the same M2 dependence
as the SSFM of the critical component (∆F2(M) ∼M2ϕ2,cr ) of the data for M ≫ 1, since
the background contribution to the two-particle correlations is removed.

Two special cases of Eq.(5.7) merit discussion:

1. When the background dominates, i.e. when λ ≲ 1, we can neglect the third
term in Eq.(5.7), which is equivalent to omitting the cross-term in Eq.(5.6). The
theoretical justification of this approach is non-trivial. It is however empirically
justified by simulations employing the CMC model, discussed in Chapter 4. In
section 5.5, where we compare CMC results for protons with experimental data,
the validity of this approach will be further clarified.

2. When the freeze-out of the considered system occurs very close to the chiral critical
point, one expects the background contribution to become very small, so that λ ≳ 0

for M ≫ 1 and the correlator ∆F2(M) practically coincides with F(d)2 (M).

By comparing the level F(d)2 (M) of the SSFM of the original data with that of CMC
simulated data which have been contaminated with random background at various
levels (see section 5.5), we conclude (as will become apparent) that λ ≥ 0.98, meaning
that the first of the above mentioned cases holds at a very good approximation – the
background dominates.

We can therefore apply the technique of producing mixed events from the original
data set in order to simulate the background and estimate F(b)2 (M) in Eq.(5.7), assuming
that the background consists of uncorrelated particles in transverse momentum space.

The mixed events technique consists in randomly combining tracks originating from
different events in the original data set. All tracks have equal probability of being se-
lected, the only constraint being that no two particles coming from the same original
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event can be placed in the same mixed event. Therefore, mixed events exclude by
construction all dynamical correlations between tracks, leaving only random correla-
tions (however, they make no distinction between critical and non-critical correlations).
By construction, mixed event multiplicities are identical to the initial set multiplicities,
⟨n⟩mixed = ⟨n⟩. Moreover, F

(m)
2 (M) ≃ F(b)2 (M), since we use scaled factorial moments.

In conclusion we approximate, from here on, the correlator as the difference of the
SSFMs of the original data set and the estimated SSFMs of the mixed events:

∆F
(e)
2 (M) ≃ F(d)2 (M)−F(m)

2 (M) (5.8)

Finally, we have found that in order to have a satisfactory statistical convergence in
the mixed event moments, we need far greater statistics (typically, 10-fold) compared
to the original data. This is a computationally intractable approach. For this reason,
we have developed a technique for analytically calculating an estimator of F(m)

2 (M)
from the one-particle p.d.f.s of transverse momenta in the original data set in phase
space cells (higher-order distributions, e.g. of pairs, are not needed in this calculation,
since we have eliminated correlations by construction in the mixed events). A detailed
working-out of the calculations is presented in Appendix A.

5.4.3 Statistical fluctuation handling – Lattice averaging and Bootstrapping

As we have already mentioned, the limited statistics of some of our data sets, as well
as the small event multiplicity and the presence of noise in the data encumber the
statistical analysis of factorial moments and make it error prone and vulnerable to
spurious correlations. It is therefore essential firstly, to have a reliable estimate of the
statistical fluctuations and errors involved in our calculations and secondly, to minimize
or eliminate if possible the various sources of systematic error.

We calculate the SSFMs of proton transverse momenta in a lattice of cells within a
domain D = [−px,max,px,max]⊗ [−py,max,py,max], where px,max = py,max = 1.5 GeV /c. The
plane (px,py) is perpendicular to the beam direction. This domain in momentum space
is partitioned in M = 1 . . .150 cells per pT direction. This upper (lower) bound in cell
number (size) is imposed by the experimental resolution δpT ≳ 5 MeV /c [Toy, 1997].
ForMmax = 150, minimum cell size is 20MeV /c, well above the experimental resolution.

In a typical intermittency analysis, the lattice position remains fixed, and the num-
ber of subdivisions (cells) is the only adjustable parameter. Cell boundary lines are
therefore arbitrary, which can result in the occasional splitting of pairs of points at dis-
tances smaller than the bin size. This can lead to artificial bin-to-bin fluctuations of the
distribution of pairs, a serious effect, especially when the mean multiplicity of events is
small (Fig. 5.6).
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event. Points at distances smaller than the bin size can be split apart or grouped
together, depending on the (arbitrary) lattice boundary positioning. Averaging over
several displaced lattice positions compensates for that effect.
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In order to compensate for this effect, we have developed the lattice averaging tech-
nique. Factorial moments are calculated for several, slightly displaced, positions of the
whole lattice, followed by averaging of SSFMs over all lattice positions; thus we obtain a
lattice averaged ∆F2(M) value. Maximum lattice displacement is ±30 MeV /c. This pro-
cess leads to significant smoothing of ∆F2(M). Moreover, the variance σ

(
∆F

(ℓ)
2 (M)

)
with

respect to lattice positions provides us with an estimate of the statistical uncertainties
of ∆F2(M).

The effect of lattice averaging on SSFM calculation is further illustrated in Fig.5.7,
where once again we use the Ikeda attractor as a gauging tool for intermittency analysis.
The SSFMs of 50,000 low-multiplicity events have been calculated with and without
the use of lattice averaging. It can be seen that lattice average has little effect on the
fitted intermittency index value ϕ2; its main effect lies in the smoothing of moments,
which in the lattice averaged set are more closely clustered around their mean value,
per M.

An additional source of fluctuations, qualitatively different from lattice position,
arises from statistical fluctuations of factorial moments between different data sets. In
a critical condensate simulation (see Ch.4), such fluctuations can be estimated via pro-
duction and analysis of multiple data sets, followed by calculating a suitable measure
of dispersion (standard deviation, confidence interval, etc.). Instead, in the analysis of
real experimental data, where we only have one data set at our disposal, our options
include:

1. Randomly partitioning the original data set into subsets and studying SSFM fluc-
tuations among them. This is a feasible method only when there is adequate
statistics (large enough number of events), which unfortunately is not the case
with most of the data sets we have studied.

2. Estimating SSFM fluctuations via the fluctuations of point and pair event-by-
event distributions in the original data set, using error propagation. This method
is generally applicable, even with low statistics. However, estimation of derived
quantity fluctuations, such as of the SSFMs, becomes computationally harder the
more complex those quantities get, and is laden with approximations due to error
propagation. We therefore run the risk of a biased error estimation.

3. Finally, using the method of statistical bootstrap, or resampling, [Efron, 1979;
Hesterberg, Moore, Monaghan, Clipson, and Epstein, 2005], which has the advan-
tage of being applicable at low statistics without giving biased results, contrary
to error propagation. Bootstrapping consists in constructing new data sets of the
same size as the original data set. This is achieved by randomly sampling, with
replacement, whole events from the original dataset (with uniform probability), so
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that in the new samples some events are of necessity duplicated, while others are
omitted. When a sufficient number of resampled events, Ns, has been produced
in this manner, we can proceed as we would in a simulation: we calculate the
variance σ

(
∆F

(s)
2 (M)

)
of SSFMs across bootstrap samples, which provides us with

an estimate of the statistical error [Metzger, 2004] of factorial moments. Further-
more, by fitting eq.(5.5) to ∆F

(s)
2 (M) separately for each bootstrap sample, we can

have an estimate of the probability distribution P (ϕ2) of the intermittency index
ϕ2.

In the present analysis, we chose bootstrapping as the most suitable method, whereas
we have experimented with partitioning into subsets whenever our statistics was large
enough to allow it. We have also calculated, for all analysed systems, the SSFM fluc-
tuations via error propagation, and have found them to be in good agreement with
bootstrapping. The main advantage of bootstrapping lies in that it allows effortless
and unbiased derivation of fluctuations of all kinds of derived quantities, such as the
distribution P (ϕ2) of the intermittency index. For this reason, it was our final choice in
this analysis.

5.5 Results

5.5.1 Intermittency analysis of NA49 datasets at maximum collision energy

By applying the methodology described in section 5.4, we calculated the factorial mo-
ments (eq.5.4) for the “C”+C, “Si”+Si and Pb+Pb datasets (Table 5.1), as well as for the
corresponding sets of mixed events. Results are shown in Fig. 5.8. We notice that in
the case of the “Si”+Si system, Fig. 5.8(b), factorial moments of data are clearly above
corresponding ones for mixed events for large values of M2. The difference between the
two is an increasing function of number of cells M2, a typical feature of intermittency.
This is evidence for considerable correlations among the protons produced. However,
due to low statistics in the case of “Si”+Si, F2(M) values for data, as estimated by boot-
strap, are accompanied by large statistical errors. In the case of the “C”+C and Pb+Pb
systems, Figs. 5.8(a),(c), respectively, both data and mixed event factorial moments sat-
urate (level out) for large M2, and they almost totally overlap, especially in the large
M2 region, a fact suggesting absence of intermittency in these systems.

Consequently, we can use eq.5.8 in order to estimate the correlator ∆F
(e)
2 (M) for

each of the aforementioned systems, by subtracting mixed event moments from data
moments. Results are shown in Fig. 5.9. In the case of “Si”+Si, Fig. 5.9(b), we observe
intermittent behavior for M2 > 6000. We have therefore used this value as a threshold
of M2 (M2

min) in all our fits. The intermittency index ϕ2 for each of the three examined
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systems is determined via a power-law fit² on the corresponding correlator ∆F(e)2 (M),

∆F
(e)
2 (M ; C,ϕ2) = e

C ·
(
M2

)ϕ2 (5.9)

where the parameter C corresponds to the power-law constant. The “C”+C and Pb+Pb
systems, Fig. 5.9(a), as we have already mentioned, do not exhibit intermittent behavior;
all the same, we calculate an intermittency index for all 3 systems for the sake of
completeness.

Table 5.2 summarizes the values and corresponding errors of ϕ2,P F resulting from
fitting the three analysed systems. A weighted fit was performed in each case to the
original data set, the weights calculated using the bootstrap error. However, this anal-
ysis cannot be considered statistically robust: the non-linear fit parameter error gives
a misleadingly small estimate for the ϕ2 variance, especially in the “Si”+Si system,
where ∆F

(e)
2 (M) errors are large. For this reason, we supplement our analysis with an

assessment of systematic and statistical uncertainties of ϕ2. Specifically:

1. As we have already mentioned (section 5.4.3), the statistical bootstrap method
allows us to calculate the distribution P (ϕ2) of ϕ2 in our bootstrap samples, by
performing a power-law fit for each sample. This provides us with an estimate of
ϕ2 statistical fluctuations due to event by event statistical fluctuation of factorial
moments.
Fig. 5.10 shows the P (ϕ2) distributions for all four systems. With the exception
of the Pb+Pb high-intensity system, we observe that they are highly asymmetric.
For this reason, the mean value and standard deviation of ϕ2 are not suitable
estimators of, correspondingly, central tendency and dispersion [Good and Hardin,
2012]. Instead, we choose the median as a measure of central tendency, and a
suitable confidence interval (C.I.) around the median as a measure of dispersion.
Specifically, we choose the interval bracketed by the 1/6 and 5/6 percentiles, as it
corresponds to a 67% confidence level, or approximately one standard deviation
(1σ) in the case of a normal distribution. Table 5.2 shows the values of ϕ2,B and
corresponding asymmetric errors δϕ2,B for all four systems.

2. The values of ∆F(e)2 (M) for different M are not independent; they are correlated
due to the fact that the same points in momentum space are used to calculate
factorial moments in all scales. It is reasonable to assume (and a direct calculation
of correlations confirms) that correlation between moments for two scales M and
N is a rapidly decreasing function of the “distance” |M − N | [Metzger, 2004].

²A linear fit to a log-log plot turns out to be unsuitable in this case, both because it distorts the form of
correlator errors, as well as due to the fact that negative values of the correlator appear in some samples,
due to the small differences between data and mixed event moments.
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Unfortunately, attempts to incorporate information about correlations in the fit
itself, by performing a correlated fit, fail due to instabilities in the convergence of
such fits to a solution [Michael, 1994].
We therefore approach this problem in a different way: firstly, the bootstrap
method described above, incorporates fluctuations of ϕ2 due to binning correla-
tions. This only provides indirect evidence, however, so we resort additionally
to the sparse binning (SB) technique. The latter consists in performing ∆F

(e)
2 (M)

fits only for non-consecutive M values, and subsequently studying the variation
in the value of ϕ2 as we increase the minimum distance δM used. Since correla-
tions weaken with increasing distance δM , uncorrelated fits become increasingly
better approximations, and we can estimate an average value, ϕ2,SB, as well as a
corresponding error δϕ2,SB, using the average value and the standard deviation of
sparse binning values, correspondingly. We use intervals of δM = 2→ 8, as well
as all possible shifts obtainable from the original set of M values for any given
δM interval. Results are presented in Table 5.2, and show that uncorrelated fits
are in good agreement with ϕ2,SB, and that systematic errors are relatively small,
with the exception of the low-intensity Pb+Pb dataset.

3. The threshold value, M2
min, above which ∆F

(e)
2 (M) is assumed to follow a power-

law, is not strictly defined; it emerges empirically based on inspection of the
behavior of Fdata2 (M) , Fmix2 (M), Fig. 5.8, as well as the quality of fits on ∆F

(e)
2 (M).

A sensible lower bound is practically dictated by the constraint that data and
mixed event moments don’t overlap for M above the threshold, a criterion that
is only met by the “Si”+Si dataset in the cases we have studied. We examine the
dependence of ϕ2 values on M2

min for all studied systems, by performing a scan of
ϕ2 values as M2

min varies in the [6000, 12000] interval, in steps of 1000. Table 5.2
shows the mean value ϕ2,M2 and the standard deviation δϕ2,M2 of the resulting
scan values.

4. The purity level of protons in our data sets. As we have mentioned in section
5.3.2, we can only identify particles as (candidate) protons at a certain confidence
level. This level corresponds to 90% purity for the Pb+Pb systems and 80%
purity for “C”+C and “Si”+Si systems, where proton multiplicities are significantly
lower. Unfortunately, it was not feasible to increase purity for the one system,
“Si”+Si, that exhibits intermittency, while at the same time maintaining sufficient
event multiplicity for an intermittency analysis. However, a weaker background
of particles is expected for the “C”+C and “Si”+Si systems compared to Pb+Pb,
which possibly compensates for the lower threshold of purity.

Going through Table 5.2, we firstly note that uncorrelated power-law fits are in fairly
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A M2
min = 6 000 M2

min scan
†

ϕ2,P F ϕ2,SB ϕ *
2,B ϕ *

2,Bw ϕ2,M2

“C”+C −2.70(70) −2.20(70) −0.9+1.1−4.1 0.12+0.32−0.47 −3.00(80)

“Si”+Si 0.95(05) 0.95(10) 0.96+0.38−0.25 0.85+0.22−0.17 0.84(12)

Pb+Pb (01I) 0.48(06) 0.47(15) 0.49+0.45−0.46 0.49+0.25−0.24 0.46(06)

Pb+Pb (00B) 2.1± 1.2 2.0± 0.8 1.1+1.5−0.6 0.74+0.31−0.33 0.2± 1.2
* 67% C.I. † M2

min ∈ [6 000 , 12 000]

Table 5.2: Summary of intermittency analysis results for the “C”+C, “Si”+Si and Pb+Pb
systems at √sNN = 17.3 GeV in mid-rapidity. Values of the intermittency index ϕ2 are
given for the case of uncorrelated fit to the original sample (ϕ2,P F), for sparse binning
(ϕ2,SB), and confidence intervals via the bootstrap method (ϕ2,B, ϕ2,Bw). Finally, the
range of values is shown for a threshold scan in M2.

good agreement with sparse binning values for all studied systems, a fact reinforcing
our confidence in simple power-law fits. The scan in M2

min, on the other hand, reveals
significant variability in intermittency index values ϕ2, especially in the case of “Si”+Si.
Although there is marginal overlap of ϕ2,M2 , ϕ2,P F and ϕ2,SB intervals, the mean ϕ2,M2

value is significantly displaced compared to the M2
min = 6000 threshold value.

By far the most significant contribution to the statistical variability of ϕ2 comes from
the bootstrap distributions, δϕ2,B. In the case of the high-intensity Pb+Pb system, the
distribution is almost symmetric, however the variance is large. On the contrary, in the
“Si”+Si case, the distribution is highly asymmetric, with a long tail extending far in the
large ϕ2 value region.

The long P (ϕ2) tails appearing in the “C”+C, “Si”+Si, as well as the low-intensity
Pb+Pb systems are to some extent an artifact of ill-defined ϕ2 values, due to the fact that
data and mixed event moments overlap to a significant extent, with the data moments
for some bootstrap samples sometimes even being below mixed event values, as can be
seen in Fig. 5.8. Thus, the correlator attains negative values, that throw the fit towards
extreme, unphysical intermittency index values, in order to accommodate such points
(eq.5.9 clearly shows that a power-law fit can never pass through a negative point).
The pathological case of extreme ϕ2 values is clearly illustrated in Fig. 5.11, where the
estimated δϕ2 fit errors are plotted against ϕ2 fit values. It can be seen that extremal
values are accompanied by much larger errors than values close to the median.

A much more accurate picture of bootstrap variation can be obtained via a weighted
distribution of ϕ2 sample values. Each sample fit is assigned a weight based on its fit
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Figure 5.8: SSFMs of proton density in transverse momentum space at midrapidity
(−0.75 < yCM < 0.75) for the most central collisions of (a) “C”+C, (b) “Si”+Si, (c) Pb+Pb
(low-intensity), and (d) Pb+Pb (high intensity) at √sNN = 17.3 GeV (158 A GeV). The
circles (crosses) represent SSFMs F2(M) of data (mixed events) respectively. A cutoff
of qinv ≥ 25MeV/c was applied to all data sets. Plotted values correspond to the lattice
average of F2(M). Error bars were obtained by the bootstrapping method.
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2 (M) corresponding to the moments of

Fig. 5.8, for the most central collisions of (a) “C”+C, (b) “Si”+Si, (c) Pb+Pb (low-
intensity), and (d) Pb+Pb (high intensity) at √sNN = 17.3 GeV (158 A GeV). Error bars
were obtained by the bootstrapping method.
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Figure 5.10: The distribution P (ϕ2) obtained applying the statistical bootstrap method
to the calculation of the intermittency index ϕ2 for the (a) “C”+C, (b) “Si”+Si, (c) low-
intensity Pb+Pb, and (d) high-intensity Pb+Pb systems. In each case, 1000 bootstrap
samples were used, at midrapidity (−0.75 < yCM < 0.75), at √sNN = 17.3 GeV.
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Figure 5.11: Estimated δϕ2 fit errors vs ϕ2 fit values, for NB = 1000 bootstrap samples,
in (a) “C”+C, (b) “Si”+Si, (c) low-intensity Pb+Pb, and (d) high-intensity Pb+Pb systems.



5.5. Results 109

0

0.4

0.8

1.2

1.6

-2 -1 0 1

P
D

F
w

(a) C+C

0

0.4

0.8

1.2

1.6

2

2.4

0.5 1 1.5 2

(b) Si+Si

0

0.4

0.8

1.2

1.6

0 1 2

P
D

F
w

φ2

(c) Pb+Pb (00B)

0

0.4

0.8

1.2

1.6

2

-0.5 0 0.5 1
φ2

(d) Pb+Pb (01I)

Figure 5.12: The distribution P (ϕ2) of bootstrap samples, weighted by their δϕ2 error,
in (a) “C”+C, (b) “Si”+Si, (c) low-intensity Pb+Pb, and (d) high-intensity Pb+Pb systems.
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error value, and we subsequently calculate the probability density function of weights
for each studied system. Assignment of weights is a somewhat arbitrary process; a
reasonable option, however, is to assign as weights the inverse products of the errors
of the two fit parameters, w = 1

δC δϕ2
. Weighted ϕ2 distributions are shown in Fig. 5.12,

whereas the corresponding confidence intervals δϕ2,Bw are given in Table 5.2.

5.5.2 Simulation of the “Si”+Si system via the CMC and EPOS Monte Carlos

It is evident from the preceding discussion that the “Si”+Si system at maximum energy is
the only candidate for critical behavior among the studied systems. Nevertheless, there
are substantial uncertainties involved in the estimated intermittency index of “Si”+Si,
and although the critical value ϕ2,cr = 5/6 is within the range of possible values, we
wish to understand the origin of the uncertainties, as well as examine the possibility of
non-critical processes giving a false positive intermittency signal.

To this end, we have used the CMC code, adapted for critical proton generation, as
described in Ch.4. The algorithm was set up to produce clusters of mass dimension
d̃F = 1/3 in transverse momentum space, leading to an intermittency index of ϕ2 = 5/6,
which is the theoretically expected value for critical protons. We produced 150k events,
similar to the statistics of the “Si”+Si system, simulating the observed event multiplicities
of the NA49 dataset. Consequently, we calculated the factorial moments F2(M) of the
produced dataset in the same manner as with the experimental datasets.

Results are shown in Fig.(5.13)(b) (open triangles). It can be seen that the SSFMs of
the pure critical system attain very large values for M2≫ 1, much larger than anything
observed in the experimental data sets. This is evidence that, if the “Si”+Si set contains
a critical component, it is contaminated by a dominant random background, as in the
case of λ ≲ 1 in Eq.(5.7), discussed in section (5.4.2). In order to simulate such behavior
within CMC, we substituted, in the simulated events, critical proton tracks with random
tracks following the one-particle distribution of transverse momenta observed in the
“Si”+Si dataset. Each critical track was replaced with probability λ, and the value
of λ was adjusted so that the baseline level of F2(M) in the “noisy” CMC dataset is
approximately equal to the observed level of F2(M) in “Si”+Si. In Fig.(5.13)(a), the
results for λ = 99% are shown, versus the “Si”+Si moments. The levels and behavior
for M2 ≫ 1 are very similar. Thus, our approximation to the correlator, eq.(5.8), is
justified in the case of “Si”+Si, since λ turns out to be very close to 1, the cross-term
in eq.(5.7) can be neglected, and the background can be well approximated by mixed
events. This is clearly illustrated in Fig.(5.13)(b): although the moments of the pure
(open triangles) and the contaminated CMC sets (filled triangles) differ by orders of
magnitude, the slopes of the power-law fits in the log-log plot are approximately equal,
meaning that the correlator ∆F(e)2 (M) of the contaminated system correctly captures the
critical behavior of the pure critical system, after subtraction of the mixed events.
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Figure 5.13: (a) SSFM of the proton density in transverse momentum space (filled
triangles) for 150k events generated by the baryon CMC code to simulate central colli-
sions of the “Si”+Si system at √sNN = 17.3 GeV. The critical system is contaminated with
probability λ = 99% with uncorrelated random tracks. For comparison, we also show
the corresponding result for the SSFM obtained from the “Si”+Si data (filled circles), (b)
The SSFM F2(M) of the 150k baryon CMC events without contamination (open trian-
gles) as well as the estimator ∆F(e)2 (M) for the contaminated ensemble (filled triangles)
and the “Si”+Si system (filled circles) in double logarithmic scale. Power-law lines of
slope ϕ2 = 0.84 are plotted as a visual guide. Only the region M2 > 1000 is displayed
in (b).
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A M2
min = 6 000 M2

min scan
†

ϕ2,P F ϕ2,SB ϕ *
2,B ϕ *

2,Bw ϕ2,M2

Pure CMC (“Si”+Si) 0.8382(6) 0.8382(6) 0.8382(6) 0.8382(6) 0.833(3)

Noisy CMC (“Si”+Si) 0.795(24) 0.79(05) 0.80+0.19−0.15 0.77+0.14−0.13 0.78(03)

* 67% C.I. † M2
min ∈ [6 000 , 12 000]

Table 5.3: Summary of intermittency analysis results for the Critical Monte Carlo
(CMC) proton simulation of “Si”+Si (2D – transverse momentum only). Values of the
intermittency index ϕ2 are given for the case of uncorrelated fit to the original sample
(ϕ2,P F), for sparse binning (ϕ2,SB) and confidence intervals via the bootstrap method
(ϕ2,B, ϕ2,Bw). Finally, the range of values is shown for a threshold scan in M2.

Table 5.3 summarizes the results of the CMC simulation for both the pure and
contaminated (“noisy”) critical systems. We see that, for pure CMC, all estimations of
ϕ2 are essentially concentrated in a narrow peak around ϕ2 = 0.835, which is very
close to the plug-in value of ϕ2 = 5/6. In contrast, we see in the noisy CMC results
the effects of omitting the cross-term, eq.(5.7). There is a small shift in the median
of ϕ2, but more importantly we see a spread of values and an increase in statistical
uncertainty comparable to that of the NA49 “Si”+Si dataset. We note that the distance
of the median from the expected value is much smaller than the spread of values, i.e.
the median is almost unbiased. We therefore conclude that the use of the estimator
(5.8) for the correlator allows us to determine with fair accuracy the intermittency index
ϕ2 in a noise dominated data set.

We also checked our experimental results against simulated events produced by
the EPOS event generator [Werner et al., 2006; Drescher et al., 2001], which includes
generating high-pT jets, in order to examine whether the presence of a small number
of protons in these jets can produce an intermittency effect. To this end, we configured
EPOS to generate a set of 630k events corresponding to a beam of Si nuclei on a Si target
(Z=14, A=28, for both beam and target), with a maximum impact parameter of b = 2.6
fm, corresponding to the centrality (12%) of the “Si”+Si experimental dataset. The center
of mass energy was set at √sNN = 17.3GeV, whereas pT , ptot and rapidity cuts were
applied exactly as in the NA49 data. Finally, we performed intermittency analysis of
transverse momenta of the protons in the simulated events, as well as the corresponding
mixed events. Figure (5.14) compares the correlator ∆F(e)2 (M) of the EPOS events with
that from the “Si”+Si data. It is evident that EPOS, including conventional sources of
correlation, for example jet production and resonance decays, cannot account for the
intermittency observed in “Si”+Si, since its correlator fluctuates around or below zero.
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5.5.3 Fluctuations at √sNN = 8.8 GeV (40A GeV)
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Figure 5.15: (a) The C(qinv) correlation function of proton pairs (ratio of pairs from
real and mixed events) at midrapidity (−0.65 < yCM < 0.65) for the 12.5% most central
collision of Pb+Pb at 40A GeV (√sNN = 8.8 GeV), (b) The SSFMs for protons in the
same dataset. A cutoff of qinv ≥ 20 MeV/c was applied. Plotted values correspond to
the lattice average of F2(M). Error bars were obtained by the bootstrapping method.

Finally, we have checked for critical fluctuation at lower collision energies, by ex-
tracting proton tracks from the NA49 Pb+Pb (00W) dataset at 40A GeV (√sNN = 8.8
GeV) (last column in Table 5.1). In Fig.5.15(a), we show the C(qinv) correlation func-
tion for proton pairs in Pb+Pb (00W); the expected peak around 20 MeV/c, as well as
the dip in low qinv , are present. In Fig.5.15(b), we have plotted the SSFMs for Pb+Pb
(00W) transverse proton momenta. It can be seen that the mixed event moments are
above the data moments, and therefore no intermittency is present at 40A GeV.

This result is consistent with the claim of the NA49 collaboration that the freeze-out
states in the phase diagram of Pb+Pb collisions at low energies (around 30A GeV) lie
close to the onset of deconfinement, as evidenced by the energy dependence of yields
of particles (e.g. K+/π+) [Alt et al., 2008]. In particular, non-monotonic fluctuation
measures, such as the relative strangeness Es ratio [Alt et al., 2008] exhibit a peak
around √sNN ∼ 7 − 9 GeV (the “horn”), a range which includes the 40A GeV Pb+Pb
set collision energy. The freeze-out of Pb+Pb 40A GeV is estimated to occur around
(T ∼ 140MeV, µB ∼ 380MeV) [Becattini et al., 2006]. However, the peak could be an
indication of a first order phase transition, as well as of a second order transition, and
therefore it is quite possible that it would lie at a distance from the critical point. Absence
of intermittency for the low-energy Pb+Pb set is indeed evidence that the freeze-out of
the collision occurs at a distance from the critical point, along the first order transition
line.



Chapter 6

CONCLUSIONS & FUTURE PROSPECTS

In the present work, we have attempted to shed some light on the large scale physical
characteristics of the chiral phase transition of strongly interacting hadronic matter at
the vicinity of the purported QCD critical point. Our approach has been a phenomeno-
logical one: we have used the predictions of the theory of critical phenomena to link
the critical exponents of the singular part of observable macroscopic quantities (in par-
ticular, the order parameter and the corresponding correlation function) to the fractal
structure of the chiral condensate. Specifically, the isothermal critical exponent δ is
linked to the fractal dimension of the chiral condensate clusters in transverse configu-
ration and momentum space. Such a direct connection is feasible due to universality,
which allows us to describe a critical system by means of an effective action belonging to
a certain universality class. Based on the results of analytic field theory calculations and
numerical lattice simulations, we have concluded that the QCD critical point belongs to
the 3D-Ising universality class, and that the only relevant field near the critical point is
the scalar σ-field, which becomes massless at the critical point. The net baryon density
is also an order parameter, equivalent to the σ-condensate.

We have demonstrated that it is possible to simulate the fractal geometry of critical
sigma and baryon clusters, using stochastic Lévy walks. We focus primarily on simulat-
ing transverse space in mid-rapidity, since it is a manifestly boost-invariant system. The
fractal dimension of sets of events produced by such simulations can be approximately
reconstructed by intermittency analysis employing scaled factorial moments, even in the
presence of small multiplicities and significant background, although statistical uncer-
tainties grow larger the more background is introduced, and the less structure is present
(small multiplicities). The technique of statistical bootstrap (resampling) can be used
to reliably estimate the statistical uncertainties in the value of the intermittency index.

Having gained insight through simulations of critical clusters, we applied our inter-
mittency analysis technique to experimental data sets of the NA49 experiment. The main
focus of the analysis were four datasets at the maximum collision energy of 158A GeV
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(√sNN = 17.3GeV), namely, the most central “C”+C, “Si”+Si, and low and high-intensity
Pb+Pb collisions, from which we extracted (candidate) proton tracks. A first indica-
tion of the presence of critical fluctuations in the protons of the “Si”+Si system was
furnished by the distribution of relative transverse momenta ∆pT exhibiting a strong
peak for ∆pT → 0 (see Fig.5.5), which is very similar to the behaviour of the corre-
sponding CMC simulation. Based on this initial indication, we calculated the second
scaled factorial moments of the proton density for all sets. Our analysis revealed the
presence of non-Poissonian fluctuations in the “Si”+Si system only, albeit accompanied
by significant statistical and systematic uncertainties. Such behaviour is consistent with
a power-law scaling of the the proton density in the freeze-out of the “Si”+Si system, an
indication of proximity to the chiral critical point. No traces of critical correlations were
found in the freeze-out states of “C”+C and low-intensity Pb+Pb interactions at the same
collision energy, whereas the intermittency found in the high-intensity Pb+Pb system
is suspect due to an anomalous peak found in its qinv distribution for low qinv. The
power-law exponent ϕ2 = 0.96+0.38−0.25 (stat.) ± 0.16(syst.) for the “Si”+Si system is within
15% of the QCD prediction, ϕ2,B = 5/6, and the theoretically predicted value is within a
67% confidence interval of the measured intermittency index; however, statistical and
systematic errors are fairly large.

An analogous intermittency effect was found recently Anticic et al. [2010] in central
“Si”+Si collisions at √sNN = 17.3GeV for π+π− pairs with invariant mass close to twice
the pion mass (the threshold for the decay of a σ into π+π−).Thus, we have evidence
from two independent channels in the same collision energy and system size, of sizeable
power-law fluctuations.

The large statistical errors in “Si”+Si do not allow a conclusive statement concerning
the location of the critical point. However, our intermittency analysis results favor the
neighborhood of the “Si”+Si freeze-out state, which can be estimated by particle yields
to be around (T ≈ 160 MeV, µB ≈ 250 MeV) [Braun-Munzinger and Stachel, 2007;
Becattini et al., 2006], for a further detailed search for the critical point.

Such a program is currently pursued by the NA61/SHINE (SPS Heavy Ion and
Neutrino Experiment), studying hadron production in hadron-hadron, hadron-nucleus
and nucleus-nucleus collisions with small and intermediate size nuclei at CERN SPS.
The NA61/SHINE physics goals include the search for the onset of deconfinement and
the critical point of strongly interacting matter [Abgrall et al., 2014]. The first physics
data with hadron beams (p+p) were recorded in 2009, and with ion beams in 2011
(Be+Be), and in 2015 (Ar+Sc). In 2017, data taking for Xe+La collisions is planned.
NA61/SHINE will thus probe a region of relatively light ions with energies in the range
13A – 158A GeV, which are likely to produce a system with freeze-out in the vicinity
of the critical point. Compared to its predecessor NA49, NA61/SHINE has considerably
lower background, which leads to better momentum resolution, particle identification
(performed through measurements of energy loss dE/dx, as well as of particle masses
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through time of flight (TOF) measurements), and better event statistics (number of
recorded events), all of which are essential for reducing the statistical and systematic
uncertainty of an intermittency analysis. Moreover, precise measurements of forward
energy and identification of beam particles reduces biases due to fluctuations of system
size.

In the event that the energy and system size scans performed by the NA61/SHINE
experiment approach the critical point of QCD, it is very likely that the critical fluc-
tuations induced in the proton density, as well as decay products of sigmas, such as
pions, will survive through the freeze-out and be detectable through an improved in-
termittency analysis. It is to be hoped that such an analysis will narrow down the
uncertainties of the estimated intermittency index, allowing a reliable comparison with
the theoretically expected critical intermittency index, ideally for both proton density
and σ-density. We will then possess an excellent signature of the approach to the crit-
ical point. The success of such an analysis will depend on the available statistics and
quality of data (purity of selected particle species).

Even so, many challenges remain for intermittency analysis as a tool for the detection
of critical fluctuations. In particular, subtraction of the uncorrelated background via the
correlator,

∆F
(e)
2 (M) = F(d)2 (M)−F(m)

2 (M) (6.1)

ignoring the cross-term, (5.7), is only realistic in the region λ ≃ 1 of very large back-
ground. The region λ ≃ 0 can also be handled by simply ignoring the background.
However, intermediate cases would require the full use of (5.7), which is not possible
due to the unknown value of the cross-term.

One possible approach in cases of suspected intermediate background would be to
perform many Monte Carlo runs with different λ values, attempting to closely reproduce
the shape F(d)2 (M) of the data moments, then calculate the CMC correlator for the closest
λ match (cross-term calculation is always possible in a simulation, where we know the
origin of particles). This method requires a good statistical test for the similarity of two
functions, (e.g., wavelets).

Another, more ambitious programme, would be to attempt to calculate the whole
multifractal spectrum of the set of momenta in transverse momentum space. The union
of critical tracks and uncorrelated background can be considered as a multifractal, i.e.
a set of interwoven fractals of different dimensionalities. The primary contributions
to the spectrum would be the critical dimension dF and the dimensionality of embed-
ding space. By calculating factorial moments of different orders q, eq.(4.65), we can
reproduce the spectrum of Rényi dimensions Dq. Presumably, the critical dimension
would show as a sharp peak in such a multifractal spectrum. However, this approach
requires extraordinarily good statistics, and the computationally intense calculation of a
dense set of (fractional) q-order scaled factorial moments, and there are possibly further
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unpredictable challenges in its practical application.
The search for the chiral critical point of strongly interacting matter is ongoing.

A close co-ordination of experimental probes of increasing resolution, intermittency
analysis of experimental results and Monte Carlo modeling is in our opinion the best
approach to its eventual detection and comprehension.



Appendix A

ANALYTICAL CALCULATION OF MIXED
EVENTS USING THE 1-PARTICLE
DISTRIBUTION OF TRANSVERSE MOMENTA

A.1 The Problem

Calculating the expectation value of the Horizontal Second Scaled Factorial Moments,
HSSFM:

FH2 (M) ≡

⟨
1
M2

M2∑
m=1

nm(nm − 1)
⟩

⟨
1
M2

M2∑
m=1

nm

⟩2 (A.1)

as a function of the number of cells M in 1-D, averaged over cells and events, in the
case of uncorrelated momenta.

A.2 Assumptions

1. Momentum tracks in an event are independent and identically distributed (i.i.d.) in
transverse momentum space (Fig.A.1). I.e., the probability of finding a pair of
points in a given cell is equal to the product of the probabilities of finding either
point of the pair inside the cell.

2. Multiplicities L of events follow a truncated Poisson distribution (i.e., zero multi-
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plicity events have been rejected):

Pmul{L = k} =
(
eℓ − 1

)−1 ℓk
k!
, (A.2)

where ℓ is the mean multiplicity of events.

3. The probability pi of finding a point in the i-th cell is independent of event
multiplicity.

4. The order in which we take the average ⟨ni(ni −1)⟩ over cells i and over events is
irrelevant to the result. In effect, this is equivalent to assuming that enough events
have been accumulated in order for the expectation values to have converged. This
allows us to take the average for pairs in a cell i, over many events, followed by
averaging over cells unrestricted by the total number of tracks.

Figure A.1: Probability distribution function of momenta over the lattice. Momenta are
independent and identically distributed, each having the same probability pi of being
found in the i-th cell.

A.3 Expectation point and pair values for cell-i, for constant
multiplicity L

Let all events have the same multiplicity, L, then the probability of finding k points in
the i-th cell (Fig.A.1) follows a binomial distribution:



A.4. Expectation point and pair values per cell, for constant L 121

P {k points in i-th cell} ≡ P {k, i ;L} =
(
L
k

)
pki (1− pi)

L−k

Therefore, expected number of points per event equals:

⟨ni⟩L =
L∑
k=0

P {k, i ;L}k = L · pi (A.3)

Likewise, expected number of pairs equals:

⟨ni(ni − 1)⟩L =
L∑
k=0

P {k, i ;L}k(k − 1) = L(L− 1) · p2i (A.4)

A.4 Expectation point and pair values per cell, for constant L

Averaging over cells, in the limit of infinite events, Nev →∞, we get:

⟨nM⟩L =
1
M2

M2∑
i=1

⟨ni⟩L =
L

M2

M2∑
i=1

pi =
L

M2 (A.5)

⟨nM(nM − 1)⟩L =
1
M2

M2∑
i=1

⟨ni(ni − 1)⟩L =
L(L− 1)
M2

M2∑
i=1

p2i (A.6)

A.5 Weighing over event multiplicity distribution

Using eq.(A.2), we weigh the average number of points, eq.(A.5) and pairs, eq.(A.6),
proportionally to event multiplicity frequencies. We find:

⟨nM⟩ =
∞∑
k=1

Pmul(k) · ⟨nM⟩k = ℓ
(
eℓ

eℓ − 1

)
1
M2 (A.7)

and:

⟨nM(nM − 1)⟩ =
∞∑
k=1

Pmul(k) · ⟨nM(nM − 1)⟩k = ℓ
2
(
eℓ

eℓ − 1

)
1
M2

M2∑
i=1

p2i (A.8)

Lastly, using eq.(A.1), the expected value F2(M) over cells and events is found to be:
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⟨
F2,th(M)

⟩
=
⟨nM(nM − 1)⟩
⟨nM⟩2

=
(
eℓ − 1
eℓ

)
·M2

M2∑
i=1

p2i︸     ︷︷     ︸
p.d.f. factor

(A.9)

More generally, in the case of a non-poissonian multiplicity distribution, eq.(A.9)
takes the form:

⟨
F2,th(M)

⟩
=
⟨nM(nM − 1)⟩
⟨nM⟩2

=
(
⟨ℓ(ℓ − 1)⟩
⟨ℓ⟩2

)
·M2

M2∑
i=1

p2i︸     ︷︷     ︸
p.d.f. factor

(A.10)

where ⟨ℓ⟩ is the mean event multiplicity.

A.6 General properties of
⟨
F2,th(M)

⟩
1. The 1-particle momentum distribution p.d.f. factor, eq.(A.9, A.10), fluctuates con-
siderably for large binnings (small M), while for large enough M , it approaches
asymptotically the limiting value:

(area)×
∫

(area)

ρ2(px,py)dpx dpy

where ρ(px,py) is the probability density function (p.d.f.) of points in transverse
momentum space.

2. When ρ(px,py) is a smooth function, the factorial moments for large M will always
tend to level out, regardless of the specific form of ρ(px,py).

3. The p.d.f. factor attains its minimum for a uniform p.d.f. ρ(px,py) = const, in which
case, it is equal to 1, while F2(M) are constant and equal to

( ⟨ℓ(ℓ−1)⟩
⟨ℓ⟩2

)
for all M.

A.7 Comparison of theoretical prediction to real mixed events

Using eq.(A.9), it is possible to estimate F2(M) for a set of events without mixing, by
simply plugging in the 1-particle momentum p.d.f., as well as the event multiplicity
distribution. In what follows, we test this theoretical prediction, by first comparing it
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to simulated mixed events drawn from a known p.d.f, and then to the actual mixed
events of the “Si”+Si set.

A.7.1 F2,th(M) of gaussian noise in px,py (disjoint)

Using the univariate distributions of px and py of the “Si”+Si dataset (after the rapidity
cut), we simulate proton tracks where the coordinates (px,py) follow i.i.d. gaussian
p.d.f’s, with:

µx = 1.173× 10−1GeV , σx = 5.121× 10−1GeV

µy = −4.21× 10−2GeV , σy = 4.024× 10−1GeV

while event multiplicities follow a poisson distribution with ℓ = 3.004. The resulting
2-D p.d.f. is shown in Fig.A.2.

Figure A.2: Probability density function of transverse momenta for stochastic, normally
distributed mixed events.

The moments F2(M) of gaussian mixed events are shown in Fig.A.3, alongside the
corresponding theoretical prediction. The data is in good agreement with the theoreti-
cally predicted values.
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Figure A.3: The SSFMs F2(M) of random (normally distributed) mixed events, com-
pared to the theoretical curve.
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A.7.2 F2,th(M) for the actual mixed events in the “Si”+Si system

Next, we turn our attention to mixed events in the “Si”+Si dataset. Multiplicity distribu-
tion and ρ(px,py) p.d.f. (Fig.A.4) are extracted via a statistical analysis of the original
“Si”+Si dataset.

Figure A.4: Probability density function of transverse momenta for the “Si”+Si dataset.

In Fig.A.5, we show the SSFMs, alongside the theoretical prediction, for mixed events
in the “Si”+Si system. We note that the level of mixed events is in good agreement with
the theoretical prediction.
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Figure A.5: The SSFMs F2(M) of mixed events in the “Si”+Si system, compared to the
theoretical curve.



Appendix B

CRITICAL MONTE CARLO CODE

B.1 CMC code for σ

The following code implements, in Fortran 90, the Critical Monte Carlo (CMC) algo-
rithm for the simulation of critical σ-clusters in transverse momentum/rapidity space,
presented in section 4.6.1¹.

The code takes the form of a module, mod_sigma, consisting of the following rou-
tines:

1. Routine set_sigma_params reads input parameters (section 4.6.2) from the
external fname file, and initializes the values of all derived parameters for the rest
of the simulation. It should be called once at the beginning of a run of events.

2. Routine get_sigma_event produces a single σ event, and stores the table of
3-momenta of produced σ-particles in the array sigtracks. Event multiplicity
is stored in integer variable mult.

3. Function randpt returns a random pT value following an exponential distribu-
tion. It takes an input parameter ptmean – the mean pT value.

4. Routine random_permut returns a random permutation of the range [1, . . . ,n].

¹The latest copy of the code and documentation can be found in lxplus:
/afs/cern.ch/user/n/ndavis49/public/cmc/

127
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module mod_sigma
USE nrtype ! Portable precision
USE nrutil, ONLY : assert
USE nr, ONLY : sort
implicit none
private ! unless declared public
public :: set_sigma_params, get_sigma_event

!************** global parameters ***************
REAL(SP), PARAMETER :: D_F = 2._sp/3._sp ! Fractal dimension (2/3)
REAL(SP), SAVE :: D, ptmean, pd, c, dc2
integer, SAVE :: nc_tr=1, nc_r=1, nt_cl=1, nt_tot=1, ntot=1
logical, SAVE :: read_params = .false. ! Has a parameter file

! ever been read?

contains

subroutine set_sigma_params(fname)
!*********************************
!** Reads an input file with **
!** initial parameters and **
!** calculates the simulation **
!** parameters, saved as module **
!** variables, until this sub **
!** is called again. **
!*********************************
character*(*), intent(in):: fname ! Input file name (parameters)
!************* local simulation parameters **************
integer :: n_c, mul_p
REAL(SP), parameter :: HBARC = 197.32858_sp ! hbar * c (MeV * fm)
REAL(SP) :: G, T_c, R_t, tau, &

b_c, c_a, rdt, p_o, &
g12, g16, V_o, V_c, &
d_c, r_c, xm_cl

integer :: funit ! Input file unit number
logical :: UNITOK, UNITOP ! inquire about file units

funit = 8 ! Safe starting unit number
do while (funit < 100)

inquire (unit=funit,exist=UNITOK,opened=UNITOP)
if (UNITOK .and. .not. UNITOP) exit
funit = funit + 1 ! Try next unit

end do
if (funit >= 100) stop ”Can’t find available file unit!”
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open(funit,file=fname,STATUS=”OLD”,action=”READ”,ERR=999)
read(funit,*,ERR=999) G,T_c ! coupling constant,

! Critical Temperature (T_c,MeV)
read(funit,*,ERR=999) R_t,D,tau ! Transverse cross section (R_t,fm),

! tot. rapidity interval (D),
! proper time (tau,fm),

read(funit,*,ERR=999) pd ! truncation parameter (pd, MeV)
! -- pd: 0.85, 1.0,...

close(funit)
!*** Calculate secondary parameters ***

ptmean=2.d0*T_c
b_c=(HBARC/T_c)
c_a=tau/b_c
rdt=(4.d0*PI*c_a*D*G)**(0.1d0)*b_c
p_o=HBARC/rdt

g12=gamma(0.5d0)
g16=gamma(1.d0/6.d0)
V_o=dsqrt(2.d0*G*c_a)*b_c**2
d_c=0.5d0*dsqrt(PI)*(0.5d0*G)**(-0.25d0)*(R_t/tau)
r_c=PI*tau*D/(12.d0*dsqrt(6.d0*G))
V_c=PI*r_c**2*d_c
dc2=0.5d0*d_c

! **** print results ****
write (*,*) ”radius of cluster in rap.=”, dc2
write (*,*) ”radius of cluster in tr. mom=”, p_o

c=1.d0-(pd/(pd+p_o))**D_F ! ** Random walk normalization

!************ number of clusters in tr. space *********
nc_tr=int((R_t/r_c)**2)

!************ multiplicity in one 3-D cluster *********
xm_cl=(g12/g16)*(V_c/V_o)**(2.d0/3.d0)

!******************************************************
!********** number of clusters in rapidity ************

nc_r=int((D/d_c))
!************ total number of clusters ****************

n_c=nc_tr*nc_r
!************ total multiplicity **********************

mul_p=int(xm_cl*dble(n_c))
!************ multiplicity per cluster ****************
!*************** in tr. mom. space *******************

nt_cl=int(dble(nc_r)*xm_cl)
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!********** total multiplicity in tr. space ***********
nt_tot=nc_tr*nt_cl

!************* maximum total multiplicity *************
ntot=nc_r*nt_tot

! **** print results ****
write (*,*) ”mult./cluster in tr. mom.=”, nt_cl
write (*,*) ”number of clusters in rap.=”, nc_r
write (*,*) ”number of clusters in tr. mom=”, nc_tr
write (*,*) ”total multiplicity=”, mul_p
! **** set input file flag to true ****
read_params = .true.
return
! **** there was an error in the input file, abort ****

999 write (*,*) ”Error reading params file! PARAMS NOT SET!”
return
end subroutine set_sigma_params

subroutine get_sigma_event(mult,sigtracks)
! ************* Parameters ***************
integer, intent(out) :: mult ! Sigma event multiplicity
REAL(SP), POINTER :: sigtracks(:,:) ! Sigma event tracks (OUT)
!******** Local variables ****************
REAL(SP) :: xoutr,outr,outr1,outr2, ptr,fi, &

meanpx,meanpy, xmean,ymean, &
rtole, dlim,ulim, scl,pl,dey, ymax

REAL(SP) :: xco, yco, zco ! 3-momenta of sigma track
integer :: mulef, & ! Sigma event

! multiplicity
mi,ni,ml,npc, & ! Loop counters
ipar,inear,nacl,mul_r,mulne

!integer :: ialloc ! Allocation error code
!******* Local array declarations ********
REAL(SP), DIMENSION(1:nc_tr) :: ctr_x,ctr_y

! List of cluster centers in pt
REAL(SP), DIMENSION(1:nt_cl) :: x_n, y_n

! List of particles in cluster
REAL(SP), DIMENSION(1:2*nt_cl) :: roxy, cxy

! Random vectors
REAL(SP), DIMENSION(1:nt_tot) :: partr_x, partr_y

! List of produced particles in pt
REAL(SP), DIMENSION(0:nc_r+1) :: crap

! Rapidity cluster centers
REAL(SP), DIMENSION(1:nc_r) :: rleft, rright, raplen, probra
REAL(SP), DIMENSION(1:ntot) :: rapi
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REAL(SP), DIMENSION(1:nt_tot) :: rapid
REAL(SP), DIMENSION(1:nc_r,1:nt_tot) :: yrapc
INTEGER, DIMENSION(1:nc_r) :: npacr
INTEGER, DIMENSION(1:nt_tot) :: nmul

if (.not. read_params) &
stop ”Simulation params not set! STOPPING”

!cccccccccccccccccccccccccccccccccccc
!ccccc production of particles cccccc
!ccccc in p_t cccccc
!cccccccccccccccccccccccccccccccccccc

!**********************************
!*** Produce nc_tr clusters in ***
!*** transverse momentum ***
!**********************************
do ni=1,nc_tr

ptr= randpt(ptmean) ! get random p_T value
call random_number(outr)
fi=2.d0*PI*dble(outr)
ctr_x(ni)= ptr * cos(fi)
ctr_y(ni)= ptr * sin(fi)

end do
! *** calculate mean momenta in x,y
meanpx = sum(ctr_x)/dble(nc_tr)
meanpy = sum(ctr_y)/dble(nc_tr)
! *** center clusters to 0 total momentum
ctr_x = ctr_x - meanpx
ctr_y = ctr_y - meanpy

ipar=0 ! Counter for total number of particles
do ni=1,nc_tr ! ** For every cluster...

!**************************************************
!*** Build random walks of D_F in x,y[nt_cl] ***
!**************************************************
call random_number(roxy) ! Random step sizes
roxy=pd*(1.d0-c*roxy)**(-1.d0/D_F)
call random_number(cxy) ! Random step directions
where (cxy < 0.5d0) ! (+/-1)

cxy = 1.d0
elsewhere

cxy = -1.d0
end where
roxy = cxy * roxy ! Steps with their sign
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! *** Accumulate steps to build x,y random walks
x_n(1) = roxy(1)
y_n(1) = roxy(nt_cl+1)
do mi=2,nt_cl

x_n(mi) = x_n(mi-1) + roxy(mi)
y_n(mi) = y_n(mi-1) + roxy(mi + nt_cl)

end do ! mi
! *** Calculate mean momenta in x,y
xmean= sum(x_n)/dble(nt_cl)
ymean= sum(y_n)/dble(nt_cl)
! *** center walks around clusters
x_n = x_n - xmean + ctr_x(ni)
y_n = y_n - ymean + ctr_y(ni)

do mi=1,nt_cl
! find cluster index ’inear’
! where {x_n(mi),y_n(mi)} is closer
inear = minloc( (x_n(mi) - ctr_x)**2 + &

(y_n(mi) - ctr_y)**2 , 1)
! if it’s closer to THIS cluster,
! put it in the list-- partr_x,y
if(inear == ni) then

ipar=ipar+1
partr_x(ipar)= x_n(mi)
partr_y(ipar)= y_n(mi)

end if
end do !mi

end do !ni

mulef=ipar ! Effective multiplicity

!ccccccccccccccccccccccccccccccccc
!cccccc Events in rapidity ccccccc
!ccccccccccccccccccccccccccccccccc
!*** Allocate random numbers [0,D) to crap
call random_number(crap)
crap = D*crap
crap(0)=0.d0 ! start at 0...
crap(nc_r+1)=D ! ...end at D
call sort(crap) ! sort in ascending order

!****** Calculate rapidity intervals
rleft(1) = min(dc2,crap(1)-crap(0))
rleft(2:nc_r) = min(dc2, 0.5d0*(crap(2:nc_r)-crap(1:nc_r-1)) )
rright(1:nc_r-1)= min(dc2, 0.5d0*(crap(2:nc_r)-crap(1:nc_r-1)) )



B.1. CMC code for σ 133

rright(nc_r) = min(dc2,crap(nc_r+1)-crap(nc_r))
raplen = rleft + rright
probra = raplen**D_F
rtole = sum(probra)
probra = probra/rtole

npacr = 0 ! Initialize npacr
do mul_r = 1,mulef

call random_number(xoutr)
dlim = 0.d0
do ni=1,nc_r

ulim = dlim + probra(ni)
if(xoutr >= dlim .and. xoutr < ulim) then

nacl = ni
exit

end if
dlim = dlim + probra(ni) ! update dlim

end do
scl = rleft(nacl)**D_F + rright(nacl)**D_F
pl = rleft(nacl)**D_F / scl
call random_number(outr1)
call random_number(outr2)
dey = dble(outr2)**(-1.d0/D_F)
if (dble(outr1) < pl) dey = -dey ! Flip sign
npacr(nacl) = npacr(nacl) + 1
yrapc(nacl,npacr(nacl)) = dey

end do ! mul_r

do ni=1,nc_r
ymax = maxval( abs(yrapc(ni,1:npacr(ni))) )

do npc=1,npacr(ni)
yrapc(ni,npc)=crap(ni)+yrapc(ni,npc)*dc2/ymax

end do
end do

mulne=0
do ni=1,nc_r

do npc=1,npacr(ni)
mulne=mulne+1
rapi(mulne)=yrapc(ni,npc)

end do
end do

call assert(mulne==mulef,’Error in rapidity clusters’)
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!cccccccccccccccccccccccccccccccccccc
!cccc Form the cartesian product cccc
!cccccccccccccccccccccccccccccccccccc
! * permute nmul = {1,2,...,mulef} *
call random_permut(nmul(1:mulef))
! * subtract D/2 from (permuted) *
! * rapi(1:mulef) *
rapi(nmul(1:mulef)) = rapi(nmul(1:mulef)) - 0.5_sp * D
rapid(1:mulef) = rapi(nmul(1:mulef))
! * Final rapidity vector *

!******* output sigma tracks ********
mult = mulef ! Output event multiplicity

if (associated(sigtracks)) deallocate(sigtracks)
allocate(sigtracks(1:mulef,1:3))

do ml=1,mulef
xco=partr_x(ml)
yco=partr_y(ml)
zco=dsqrt(xco**2+yco**2)*sinh(rapid(ml))
!**** Convert to GeV ****
xco = xco/1000.d0
yco = yco/1000.d0
zco = zco/1000.d0
!**** Fill sigma tracks ****
sigtracks(ml,:) = (/xco,yco,zco/)

end do

return
end subroutine get_sigma_event

function randpt(ptmean)
!*********************************
!** Gives random pt value **
!** following the distribution **
!** g(pt) ~ pt*exp(-2pt/ptmean) **
!*********************************
!USE nrtype
!implicit none
REAL(SP), intent(in) :: ptmean
REAL(SP) :: randpt
REAL(SP) :: r, r2(2)
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r = 0._sp
do while (r <= 0._sp .or. r > 1._sp)

call random_number(r2)
r = product(r2)

end do
randpt = -log(r) * ptmean/2._sp
end function randpt

subroutine random_permut(ind)
!*********************************
!** Fills vector ind (size n) **
!** with random permutation **
!** of the integers 1->n **
!*********************************
!USE nrtype
!implicit none
integer, intent(out) :: ind(:)
integer :: k, ns, ni, irnd, iswap
REAL(SP) :: xrand ! random number

ns = size(ind)
ind = (/ (k, k=1,ns) /) ! ind = {1->ns}
ni = ns
do k = 1, ns-1

call random_number(xrand) ! Random number [0,1)
irnd = int(REAL(ni,SP)*xrand) + 1 ! irnd: [1->ni]
irnd = max(1 , min(irnd,ni)) ! Just in case...
iswap = ind(k) ! Swap ind(k)
ind(k) = ind(k+irnd-1) ! with ind(k+irnd-1)
ind(k+irnd-1) = iswap
ni = ni-1 ! Decrease size left

end do !k

end subroutine random_permut

end module mod_sigma

B.2 CMC code for protons

Next follows the modified CMC code used for critical proton cluster simulation. The
function randpt from “vanilla” CMC code is re-used.
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program cmc_proton
USE nrtype
implicit none
integer, parameter :: nevmax = 150000
REAL(SP), parameter :: Tc = 163.0e-3_SP, ptmean = 2*Tc
REAL(SP), parameter :: dF = 1._SP / 6._SP
REAL(SP), parameter :: rdF = 1._SP / dF, &

lmin = 5.0e-4_SP, &
lmax = 5.0e-1_SP, &
smin = lmin**(-dF), &
smax = lmax**(-dF)

REAL(SP) :: ctr_x, ctr_y, ptr, fi
REAL(SP) :: outr, skew, cskew, sskew
REAL(SP) :: rmul1 = 1._SP/3._SP, rmul9 = 0.98
integer :: mul, nev
integer :: k,m
!
REAL(SP), target :: dir(3,2), step(3,2)
REAL(SP), pointer, dimension(:,:) :: pdir, pstep

call init_random_seed()
open (unit=10, file=”mcsisidf.dat”,&

status=”REPLACE”,action=”WRITE”)

do nev = 1, nevmax

!******************************************
!*** Put cluster center ***
!******************************************
ptr = randpt(ptmean) ! get random p_T value
call random_number(outr)
fi=2.d0*PI*dble(outr)
ctr_x = ptr * cos(fi)
ctr_y = ptr * sin(fi)

!******************************************
!*** Select multiplicity ***
!******************************************
call random_number(outr)
if (outr < rmul1) then

mul = 1
else if (outr > rmul9) then

mul = 3
else

mul = 2



B.2. CMC code for protons 137

end if

write (10,”(2(’\t’,I0))”) nev, mul**2

!******************************************
!*** Create random walk ***
!******************************************
pdir => dir(1:mul,1:2)
pstep => step(1:mul,1:2)
call random_number(pdir)
where (pdir < 0.5_SP)

pdir = 1._SP
elsewhere

pdir = -1._SP
end where
call random_number(pstep)
pstep=(smin*(1._SP-pstep)+smax*pstep)**(-rdF)
pstep = pdir * pstep
call tally(pstep(:,1))
call tally(pstep(:,2))

call random_number(skew)
skew=2.d0*PI*dble(skew)
cskew = cos(skew)
sskew = sin(skew)

!******************************************
!*** Write event to file ***
!******************************************
do k = 1, mul

do m = 1, mul
write (10,66) &
ctr_x + cskew * pstep(k,1) - &

sskew * pstep(m,2), &
ctr_y + sskew * pstep(k,1) + &

cskew * pstep(m,2)
66 format (2(’\t’,F0.4))

end do
end do

end do !nev

close (10)

contains
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subroutine tally(arr,off)
REAL(SP), intent(inout) :: arr(:)
REAL(SP), intent(in), optional :: off
integer :: n

do n = 2, size(arr)
arr(n) = arr(n-1) + arr(n)

end do
if (present(off)) arr = off + arr
return
end subroutine tally

SUBROUTINE init_random_seed()
INTEGER :: i, n, clock
INTEGER, DIMENSION(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = n)
ALLOCATE(seed(n))

CALL SYSTEM_CLOCK(COUNT=clock)

seed = clock + 37 * (/ (i - 1, i = 1, n) /)
CALL RANDOM_SEED(PUT = seed)

DEALLOCATE(seed)
END SUBROUTINE

end program cmc_proton

B.3 Numerical recipes auxiliary code

CMC code utilizes some auxiliary modules from Numerical Recipes for Fortran 90 [Press
et al., 1996]. Specifically:

1. nrtype defines portable floating point types, as well as basic mathematical con-
stants.

2. nrutil is a collection of common utilities for various tasks, i.e. swapping variables
and terminating execution with appropriate error messages.

3. nr is a list of routine interfaces.
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MODULE nrtype
!Symbolic names for kind types of 8-,4-, 2-, and 1-byte integers:

INTEGER, PARAMETER :: I8B = SELECTED_INT_KIND(15)
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)

!Symbolic names for kind types of single- and double-precision reals:
INTEGER, PARAMETER :: SP = KIND(1.0D0)
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(18,300)

!Symbolic names for kind types of single- and double-precision complex:
INTEGER, PARAMETER :: SPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: DPC = SELECTED_REAL_KIND(18,300)

!Symbolic name for kind type of default logical:
INTEGER, PARAMETER :: LGT = KIND(.true.)

!Frequently used mathematical constants (with precision to spare):
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp

! Derived data types for sparse matrices, single and double precision
! (see use in Chapter B2):

TYPE sprs2_sp
INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTERFACE swap

MODULE PROCEDURE swap_i,swap_r,swap_rv,swap_c, &
swap_cv,swap_cm,swap_z,swap_zv,swap_zm
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END INTERFACE

INTERFACE assert
MODULE PROCEDURE assert1,assert2,assert3,assert4,assert_v

END INTERFACE

SUBROUTINE nrerror(string)
! Report a message, then die.
CHARACTER(LEN=*), INTENT(IN) :: string
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’
END SUBROUTINE nrerror

SUBROUTINE assert1(n1,string)
! Report and die if any logical is false (used for arg range checking).
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1
if (.not. n1) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert1’
end if
END SUBROUTINE assert1

SUBROUTINE assert2(n1,n2,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2
if (.not. (n1 .and. n2)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert2’
end if
END SUBROUTINE assert2

SUBROUTINE assert3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3
if (.not. (n1 .and. n2 .and. n3)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert3’
end if
END SUBROUTINE assert3

SUBROUTINE assert4(n1,n2,n3,n4,string)
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CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3,n4
if (.not. (n1 .and. n2 .and. n3 .and. n4)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert4’
end if
END SUBROUTINE assert4

SUBROUTINE assert_v(n,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, DIMENSION(:), INTENT(IN) :: n
if (.not. all(n)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert_v’
end if
END SUBROUTINE assert_v

SUBROUTINE swap_i(a,b)
! Swap the contents of a and b.
INTEGER(I4B), INTENT(INOUT) :: a,b
INTEGER(I4B) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_i

SUBROUTINE swap_r(a,b)
REAL(SP), INTENT(INOUT) :: a,b
REAL(SP) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_r

SUBROUTINE swap_rv(a,b)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_rv

SUBROUTINE swap_c(a,b)
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COMPLEX(SPC), INTENT(INOUT) :: a,b
COMPLEX(SPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_c

SUBROUTINE swap_cv(a,b)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cv

SUBROUTINE swap_cm(a,b)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cm

SUBROUTINE swap_z(a,b)
COMPLEX(DPC), INTENT(INOUT) :: a,b
COMPLEX(DPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_z

SUBROUTINE swap_zv(a,b)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zv

SUBROUTINE swap_zm(a,b)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
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END SUBROUTINE swap_zm

END MODULE nrutil

MODULE nr
INTERFACE

SUBROUTINE sort(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort

END INTERFACE
END MODULE nr

SUBROUTINE sort(arr)
USE nrtype; USE nrutil, ONLY : swap,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50
! Sorts an array arr into ascending numerical order
! using the Quicksort algorithm. arr is replaced on
! output by its sorted rearrangement.
! Parameters: NN is the size of subarrays sorted by
! straight insertion and NSTACK is the
! required auxiliary storage.
REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=size(arr)
jstack=0
l=1
r=n
do

if (r-l < NN) then !Insertion sort when
do j=l+1,r !subarray small enough.

a=arr(j)
do i=j-1,l,-1

if (arr(i) <= a) exit
arr(i+1)=arr(i)

end do
arr(i+1)=a

end do
if (jstack == 0) RETURN
r=istack(jstack) !Pop stack and begin a
l=istack(jstack-1) !new round of partitioning.
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jstack=jstack-2
else !Choose median of left, center,

k=(l+r)/2 !and right elements as parti-
call swap(arr(k),arr(l+1)) !tioning element a. Also re-
call swap(arr(l),arr(r),arr(l)>arr(r)) !arrange so that
call swap(arr(l+1),arr(r),arr(l+1)>arr(r)) !a(l) ≤ a(l+1) ≤ a(r).
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1 !Initialize pointers for
j=r !partitioning.
a=arr(l+1) !Partitioning element.
do !Here is the meat.

do !Scan up to find element >= a.
i=i+1
if (arr(i) >= a) exit

end do
do !Scan down to find element <= a.

j=j-1
if (arr(j) <= a) exit

end do
if (j < i) exit !Pointers crossed. Exit
call swap(arr(i),arr(j)) !with partitioning complete.

end do !Exchange elements.
arr(l+1)=arr(j) !Insert partitioning element.
arr(j)=a
jstack=jstack+2

! Push pointers to larger subarray on stack;
! process smaller subarray immediately.

if (jstack > NSTACK) call nrerror(’sort: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
END SUBROUTINE sort



Appendix C

APPLIED CUTS FOR THE NA49 DATA SETS

C.1 “Si”+Si, 158A GeV

Event cuts

The primary event cuts imposed were removal of the tails in the distributions of vertex
positions (Vx,Vy ,Vz), as well as quality cuts (iflag, χ2, ntf/nto). Veto calorimeter energy
was used to select 12.5% most central events, i.e. the 1st and 2nd centrality bins:

• iflag = 1

• χ2 > 0

• −0.4cm ≤ Vx ≤ 0.4cm

• −0.5cm ≤ Vy ≤ 0.5cm

• −580.3cm ≤ Vz ≤ −578.7cm

• #Tracks fitted / #Tracks output (ntf/nto) ≥ 0.15

• Centrality ≤ 12.5% (1st, 2nd bin)

The “Si” beam is made up of Si, Al and P ions. During analysis, we extracted each
beam component separately, by gaussian-fitting the peaks in the beam energy profile:

• Al+Si → Beam Energy ∈ [1256,1344]

• Si+Si → Beam Energy ∈ [1350,1450]

• P+Si → Beam Energy ∈ [1460,1546]

Fig.C.1 shows a summary of the “Si”+Si dataset vertex cuts. Fig.C.2 shows the veto
energy distribution for each beam component, and the divide between centrality bins.

145
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Figure C.1: Summary of the “Si”+Si vertex cuts. Top row: vertex position distributions
(dotted red lines show selection cuts). Bottom row: Vertex quality cuts (left) and beam
component selection (right). See text for details.
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Track cuts

The primary track cuts were a restriction in the maximum impact parameter (Bx,By), a
cut on zFirst in order to ensure the track has points in the VTPCs, as well as requiring
a minimum number of reconstructed points on each track and a minimum ratio of
number of measured points to estimated maximum number of points (np/nmp):

• |Bx| < 2 cm

• |By | < 1 cm

• zFirst ≤ 200cm

• #Maximum number of points (nmp) > 30

• #Points / #Maximum number of points: np / nmp > 0.5

Particle ID, ptot cuts

Particle identification is performed via the particle energy loss dE/dx. In Fig.C.3, dE/dx
is plotted vs the total momentum ptot , along with the theoretical curves for each particle
species, and the proton selection bands. We select candidate protons with purity above
80%, as described in section 5.3.2. ptot is restricted to the region where the proton
curve does not overlap with other species curves, and therefore we impose an indirect
cut:

• 3 ≤ ptot ≤ 50 GeV/c

Rapidity distributions

In Fig.C.4, we show the rapidity distributions of protons for all beam components of
the “Si”+Si system. Our intermittency analysis is performed in the midrapidity region:

• |yCM | ≤ 0.75 ⇐⇒ 2.16 ≤ yLAB ≤ 3.66 (ybeam ≃ 2.91),

and therefore within the plateau of the rapidity distribution.

C.2 “C”+C, 158A GeV

The “C”+C set consists of a 3mm and a 10mm target thickness set, which we have
merged for the purposes of this analysis, in order to enhance event statistics.
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Figure C.3: dE/dx vs ptot distributions for positive and negative charged particles in the
“Si”+Si system. The dotted line contour delimits an 80% purity selection of candidate
proton tracks
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Figure C.4: Proton rapidity distributions for beam components in the “Si”+Si dataset
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Event cuts

Most event cuts are the same as in the “Si”+Si set. Vertex position cuts applied, in the
3mm target set, are:

• −0.5cm ≤ Vx ≤ 0.7cm

• −0.6cm ≤ Vy ≤ 0.6cm

• −581.0cm ≤ Vz ≤ −578.0cm

and, in the 10mm target set:

• −0.5cm ≤ Vx ≤ 0.7cm

• −0.6cm ≤ Vy ≤ 0.6cm

• −580.5cm ≤ Vz ≤ −577.5cm

The “C” beam is made up of C and N ions. During analysis, we extracted each beam
component separately, by gaussian-fitting the peaks in the beam energy profile:

• C+C → Beam Energy ∈ [570,670]

• C+N → Beam Energy ∈ [670,740]

Figs.C.5,C.6 show a summary of the “C”+C 3mm and 10mm dataset vertex cuts,
respectively. Fig.C.7 shows veto energy distributions and the divide between centrality
bins.

Track cuts

The same track cuts were applied as in the case of “Si”+Si.

Particle ID, ptot cuts

Particle identification was performed in an identical manner as with “Si”+Si. The ptot
cut effected by dE/dx cuts was:

• 3 ≤ ptot ≤ 56 GeV/c

Rapidity distributions

Rapidity distribution of candidate protons was very similar to that of “Si”+Si, and we
used the same midrapidity range, |yCM | ≤ 0.75.
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Figure C.5: Summary of the “C”+C 3mm vertex cuts
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Figure C.6: Summary of the “C”+C 10mm vertex cuts
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Figure C.7: Veto energy distributions for “C”+C

C.3 Pb+Pb low-intensity (00B), 158A GeV

Event cuts

• iflag = 1

• χ2 > 0

• −0.1cm ≤ Vx ≤ 0.04cm

• −0.1cm ≤ Vy ≤ 0.1cm

• −579.3cm ≤ Vz ≤ −578.6cm

• #Tracks fitted, ntf ≥ 400

• #Tracks output, nto ≤ 2800

• Centrality ≤ 10% (1st, 2nd bin)

Fig.C.8 shows the vertex cuts applied in Pb+Pb. The ntf/nto cut is shown in Fig.C.9.
Finally, the veto energy distribution and cut is shown in Fig.C.10.

Track cuts

In addition to the zFirst cut, a zLast cut was applied to the Pb+Pb tracks in order
to ensure there are measured points in the MTPCs. Furthermore, we demanded a
minimum number of points separately in the VTPCs and MTPCs.

Full list of cuts:

• |Bx| < 5 cm

• |By | < 2 cm
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Figure C.8: Summary of the Pb+Pb vertex cuts
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Figure C.9: Summary of the ntf-nto cuts in Pb+Pb
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Figure C.10: Veto energy distribution for Pb+Pb

• zFirst ≤ 200cm

• zLast ≥ 400cm

• At least 30 recorded points in the MTPCs

• At least 10 recorded points in VTPC1 or VTPC2

• #Maximum number of points in MTPCs > 0

• np/nmp in the MTPCs > 0.55

The effect of the various track cuts is illustrated in Figs.C.11-C.14.

Particle ID, ptot cuts

Particle identification is again performed via particle energy loss dE/dx. In Fig.C.15,
dE/dx is plotted vs the total momentum ptot , along with the theoretical curves for each
particle species, and the proton selection bands. We select candidate protons with purity
above 90%, as described in section 5.3.2. ptot is restricted by the dE/dx cut within the
range:

• 4.4 ≤ ptot ≤ 66 GeV/c
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Figure C.11: Impact parameter (Bx, By) cuts for Pb+Pb
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Figure C.12: Effect of the zFirst cut on track selection in the X-Z plane, for Pb+Pb



156 APPLIED CUTS FOR THE NA49 DATA SETS

zLast [cm]

-400 -200 0 200 400 600 800

x
L

a
s
t 

[c
m

]

-500

-400

-300

-200

-100

0

100

200

300

400

500
xzLast

Mean x 211.1

Mean y 105.5

RMS x 507.6

RMS y 99.49

Integral 1.814e+07

1

10

210

310

410

510

xzLast
Mean x 211.1

Mean y 105.5

RMS x 507.6

RMS y 99.49

Integral 1.814e+07

xLast vs zLast -- 00B

zLast [cm]

-400 -200 0 200 400 600 800
-500

-400

-300

-200

-100

0

100

200

300

400

500
xzLast

Mean x 714.9

Mean y 129.9

RMS x 35.22

RMS y 80.38

Integral 5.676e+06

1

10

210

310

410

510

xzLast
Mean x 714.9

Mean y 129.9

RMS x 35.22

RMS y 80.38

Integral 5.676e+06

xLast vs zLast -- 00B

Figure C.13: Effect of the zLast cut on track selection in the X-Z plane, for Pb+Pb
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Figure C.14: Effect of the cut on number of points in the TPCs, as a function of total
momentum ptot , for Pb+Pb
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Figure C.15: dE/dx vs ptot distribution, before and after cuts, for positive charged
particles in the Pb+Pb system. A 90% purity selection of candidate proton tracks is
effected.

C.4 Rapidity profiles and cuts for analyzed systems

In Fig.C.16, we plot the normalized rapidity distributions of protons for all analyzed
systems, along with our selection range, |yCM | < 0.75. We notice that, for the “C”+C
and “Si”+Si systems, the midrapidity range approximately coincides with the plateau
in dN/dyCM , whereas for Pb+Pb there is a very narrow plateau that is only partially
covered by the midrapidity selection. However, we are looking here at the rapidity
distribution after event and track cuts; it is strongly expected that the corrected rapidity
distribution, accounting for distortions due to the detector acceptance and cuts, would
give a plateau around midrapidity. In order to have a better comparable set of analyzed
systems, we chose to use the same midrapidity range for all analyzed systems.
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