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Abstract

In this thesis, we study the one parameter point transformations which leave invariant the di¤erential equations.

In particular we study the Lie and the Noether point symmetries of second order di¤erential equations. We

establish a new geometric method which relates the point symmetries of the di¤erential equations with the

collineations of the underlying manifold where the motion occurs. This geometric method is applied in order

the two and three dimensional Newtonian dynamical systems to be classi�ed in relation to the point symmetries;

to generalize the Newtonian Kepler-Ermakov system in Riemannian spaces; to study the symmetries between

classical and quantum systems and to investigate the geometric origin of the Type II hidden symmetries for

the homogeneous heat equation and for the Laplace equation in Riemannian spaces. At last but not least, we

apply this geometric approach in order to determine the dark energy models by use the Noether symmetries as

a geometric criterion in modi�ed theories of gravity.
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Chapter 1

Introduction

1.1 Summary

In this thesis, we study the geometric properties of the Lie and the Noether point symmetries of second order

di¤erential equations. In particular, we �nd a connection between the point symmetries of some class of second

order di¤erential equations with the collineations of the underlying manifold where the "motion" occurs.

The novelty here is that we provide a geometrical method to determine the symmetries of dynamical systems.

The importance of Lie and Noether symmetries is that they o¤er invariant functions which can be used to �nd

analytic solutions of the dynamical system.

The above mentioned geometric method is applied in order the two and three dimensional Newtonian

dynamical systems to be classi�ed in relation to the point symmetries; to generalize the Newtonian Kepler-

Ermakov system in Riemannian spaces; to study the symmetries between classical and quantum systems and to

investigate the geometric origin of the Type II hidden symmetries for the homogeneous heat equation and for

the Laplace equation in Riemannian spaces. At last but not least, we apply this geometric approach in order to

determine the dark energy models by use the Noether symmetries as a geometric criterion in modi�ed theories

of gravity.

The plan of the thesis is as follows.

1.1.1 Summary of Part I: Introduction

In Part I we give the basic properties and de�nitions of one parameter point transformations.

In Chapter 2, we study the geometry of the one parameter point transformation, the properties of Lie

algebras and the invariant functions. Moreover, the Lie and the Noether symmetries of ordinary and partial

di¤erential equations are analyzed and two schemes for using Lie symmetries to construct solutions are presented.

3



4 CHAPTER 1. INTRODUCTION

Furthermore, we study the action of point transformation on linear di¤erential geometry object.

1.1.2 Summary of Part II: Symmetries of ODEs

In Part II we study the geometric origin of the Lie and the Noether point symmetries of second order ordinary

di¤erential equations.

In Chapter 3, we consider the set of autoparallels - not necessarily a¢ nely parameterized - of a symmetric

connection. We �nd that the major symmetry condition relates the Lie symmetries with the special projective

symmetries of the connection. We derive the Lie symmetry conditions for a general system of second order ODE

polynomial in the �rst derivatives and we apply these conditions in the special case of geodesic equations of

Riemannian spaces. Furthermore we give the generic Lie symmetry vector of the geodesic equations in terms of

the special projective collineations of the metric and their degenerates and the generic Noether symmetry vector

of the geodesic Lagrangian in terms of the homothetic algebra of the Riemannian space. Finally we apply the

results to various cases and eventually we give the Lie symmetries, the Noether symmetries and the associated

conserved quantities of Einstein spaces, the Gödel spacetime, the Taub spacetime and the Friedman Robertson

Walker spacetimes.

In Chapter 4, we generalize the results of the previous chapter in the case of the equations of motion of a

particle moving in a Riemannian space under the action of a general force F i. We apply these results in order

to determine all two dimensional and and all three dimensional Newtonian dynamical systems which admit

Lie and Noether point symmetries. We demonstrate the use of the results in two cases. The non-conservative

Kepler - Ermakov system and the case of the Hènon Heiles type potentials.

In Chapter 5, we generalize the two-dimensional autonomous Hamiltonian�Kepler�Ermakov dynamical sys-

tem to three dimensions using the sl(2; R) invariance of Noether symmetries and determine all three-dimensional

autonomous Hamiltonian�Kepler�Ermakov dynamical systems which are Liouville integrable via Noether sym-

metries. Subsequently, we generalize the autonomous Kepler�Ermakov system in a Riemannian space which

admits a gradient homothetic vector by the requirements (a) that it admits a �rst integral (the Riemannian Er-

makov invariant) and (b) it has sl(2; R) invariance. We consider both the non-Hamiltonian and the Hamiltonian

systems. In each case, we compute the Riemannian�Ermakov invariant and the equations de�ning the dynamical

system. We apply the results in general relativity and determine the autonomous Hamiltonian-Riemannian�

Kepler�Ermakov system in the spatially �at Friedman Robertson Walker spacetime. We consider a locally

rotational symmetric spacetime of class A and discuss two cosmological models. The �rst cosmological model

consists of a scalar �eld with an exponential potential and a perfect �uid with a sti¤ equation of state. The

second cosmological model is thef(R)-modi�ed gravity model of �bcCDM. It is shown that in both applications

the gravitational �eld equations reduce to those of the generalized autonomous Riemannian�Kepler�Ermakov

dynamical system which is Liouville integrable via Noether integrals.
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1.1.3 Summary of Part III: Symmetries of PDEs

In Part III we study the geometric origin of the Lie and the Noether point symmetries of second order ordinary

di¤erential equations.

In Chapter 6, we attempt to extend this correspondence of point symmetries and collineations of the space to

the case of second order partial di¤erential equations. We examine the PDE of the form Aijuij �F (xi; u; ui) =
0,where u = u

�
xi
�
and uij stands for the second partial derivative. We �nd that if the coe¢ cients Aij are

independent of u then the Lie point symmetries of the PDE form a subgroup of the conformal symmetries of

the metric de�ned by the coe¢ cients Aij . We specialize the study to linear forms of F (xi; u; ui) and write

the Lie symmetry conditions for this case. We apply this result to two cases. The Poisson/Yamabe equation

for which we derive the Lie symmetry vectors. Subsequently we consider the heat equation with a �ux in an

n-dimensional Riemannian space and show that the Lie symmetry algebra is a subalgebra of the homothetic

algebra of the space. We discuss this result in the case of de Sitter space time and in �at space.

In Chapter 7, we determine the Lie point symmetries of the Schrödinger and the Klein Gordon equations

in a general Riemannian space. It is shown that these symmetries are related with the homothetic and the

conformal algebra of the metric of the space respectively. We consider the kinematic metric de�ned by the

classical Lagrangian and show how the Lie point symmetries of the Schrödinger equation and the Klein Gordon

equation are related with the Noether point symmetries of this Lagrangian. The general results are applied to

two practical problems a. The classi�cation of all two and three dimensional potentials in a Euclidian space

for which the Schrödinger equation and the Klein Gordon equation admit Lie point symmetries and b. The

application of Lie point symmetries of the Klein Gordon equation in the exterior Schwarzschild spacetime and

the determination of the metric by means of conformally related Lagrangians.

In Chapter 8, we study the geometric origin of Type II hidden symmetries for the Laplace equation and for

the homogeneous heat equation in certain Riemannian spaces. As concerns the homogeneous heat equation, we

study the reduction of the heat equation in Riemannian spaces which admit a gradient Killing vector, a gradient

homothetic vector and in Petrov Type D, N, II and Type III spacetimes. In each reduction we identify the

source of the Type II hidden symmetries. More speci�cally we �nd that (a) if we reduce the heat equation by the

symmetries generated by the gradient KV the reduced equation is a linear heat equation in the nondecomposable

space. (b) If we reduce the heat equation via the symmetries generated by the gradient HV the reduced equation

is a Laplace equation for an appropriate metric. In this case the Type II hidden symmetries are generated from

the proper CKVs. (c) In the Petrov space�times the reduction of the heat equation by the symmetry generated

from the nongradient HV gives PDEs which inherit the Lie symmetries hence no Type II hidden symmetries

appear. For the reduction of the Laplace equation we consider Riemannian spaces which admit a gradient

Killing vector, a gradient Homothetic vector and a special Conformal Killing vector. In each reduction we
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identify the source of Type II hidden symmetries. We �nd that in general the Type II hidden symmetries of the

Laplace equation are directly related to the transition of the CKVs from the space where the original equation

is de�ned to the space where the reduced equation resides. In particular we consider the reduction of the

Laplace equation (i.e., the wave equation) in the Minkowski space and obtain the results of all previous studies

in a straightforward manner. We consider the reduction of Laplace equation in spaces which admit Lie point

symmetries generated from a non-gradient HV and a proper CKV and we show that the reduction with these

vectors does not produce Type II hidden symmetries. We apply the results to general relativity and consider

the reduction of Laplace equation in locally rotational symmetric space times (LRS) and in algebraically special

vacuum solutions of Einstein�s equations which admit a homothetic algebra acting simply transitively. In each

case we determine the Type II hidden symmetries. We apply the general results to cases in which the initial

metric is speci�ed.

1.1.4 Summary of Part IV: Noether symmetries and theories of gravity

In Part IV, we apply the Noether symmetry approach as a geometric criterion, in order to probe the nature of

dark energy in modi�ed theories of gravity.

In Chapter 9, we discuss the conformal equivalence of Lagrangians for scalar �elds in a Riemannian space

of dimension 4 and n respectively. In particular we enunciate a theorem which proves that the �eld equations

for a non-minimally coupled scalar �eld are the same at the conformal level with the �eld equations of the

minimally coupled scalar �eld. The necessity to preserve Einstein�s equations in the context of Friedmann

Robertson Walker spacetime leads us to apply, the current general analysis to the scalar �eld (quintessence

or phantom) in spatially �at FRW cosmologies. Furthermore, we apply the Noether symmetry approach in

non minimally coupled scalar �eld in a spatially �at FRW spacetime and by using the Noether invariants we

determine analytical solutions for the �eld equations. Moreover we apply the same procedure for a minimally

coupled scalar �eld in a spatially �at FRW spacetime and in Biachi Class A homogeneous spacetimes.

In Chapter 10, a detailed study of the modi�ed gravity, f(R) models is performed, using that the Noether

point symmetries of these models are geometric symmetries of the mini superspace of the theory. It is shown

that the requirement that the �eld equations admit Noether point symmetries selects de�nite models in a self-

consistent way. As an application in Cosmology we consider the Friedman -Robertson-Walker spacetime and

show that the only cosmological model which is integrable via Noether point symmetries is the �bcCDM model,

which generalizes the Lambda Cosmology. Furthermore using the corresponding Noether integrals we compute

the analytic form of the main cosmological functions.

In Chapter 11, we apply the Noether symmetry approach in the f (T )modi�ed theory of gravity in a spatially

�at FRW spacetime and in static spherically symmetric spacetime. First, we present a full set of Noether
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symmetries for some minisuperspace models and we �nd that only the f (T ) = Tn model admits extra Noether

symmetries. The existence of extra Noether integrals can be used in order to simplify the system of di¤erential

equations as well as to determine the integrability of the model. Then, we compute analytical solutions and

�nd that spherically symmetric solutions in f(T ) gravity can be recast in terms of Schwarzschild-like solutions

modi�ed by a distortion function depending on a characteristic radius.

Finally, in Chapter 12 we discuss our results.
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Chapter 2

Point transformations and Invariant

functions

2.1 Introduction

Lie symmetry of a di¤erential equation is a one parameter point transformation which leaves the di¤erential

equation invariant. Lie symmetries1 is the main tool to study nonlinear di¤erential equations. Indeed Lie

symmetries provide invariant functions which can be used to construct analytic solutions for a di¤erential

equation. These solutions we call invariant solutions. One such example is the solution u (x; y) = ek(t�x) of the

wave equation

uxx � utt = 0

which is found by applying the Lie symmetry X = @x + ku@u:

The structure of the chapter is as follows. In section 2.2, we study the geometry of the one parameter point

transformation, the properties of Lie algebras and the invariant functions. Invariant functions are functions

which remain unchanged under the action of a point transformation. In section 2.3, the Lie symmetries of

ordinary and partial di¤erential equations are analyzed and two schemes for using Lie symmetries to construct

solutions are presented. In section 2.6, Noether symmetries, a special class of Lie symmetries, are discussed.

Noether symmetries are admited only by systems whose equation of motion result from a variational principle.

Noether symmetries are important because they produce conservation laws and can be used to simplify the

di¤erential equations.

In section 2.7, the action of point transformation on linear di¤erential geometry object is examined. Collineations

are point transformations which do not leave necessary invariant a geometric object. In particular we study the

1 In the following sections, by Lie symmetry we mean point symmetry. There are also generalized Lie symmetries which are not

point symmetries.

9
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collineations of the metric (Conformal motions) and of the Christo¤el symbols (Projective collineations) of a

Riemannian space.

2.2 Point Transformations

Let M be a manifold of class Cp with p � 2 and let U be a neighborhood in M: Consider two points

P;Q 2 U with coordinates (xP ; yP ) and
�
x0Q; y

0
Q

�
respectively. A point transformation on U is a relation

among the coordinates of the points P;Q 2 U which is de�ned by the transformation equations

x0Q = x0 (xP ; yP ) ; y0Q = y0 (xP ; yP )

where the functions x0 (x; y) ; y0 (x; y) are Cp�1 and

det

����@ (x0; y0)@ (x; y)

���� 6= 0: (2.1)

Condition (2.1 ) means that the functions x0 (x; y) ; y0 (x; y) are independent. A special class of point transfor-

mations are the one parameter point transformations de�ned as follows [1].

De�nition 2.2.1 The one parameter point transformations are point transformations that depend on one ar-

bitrary parameter as follows

x0 = y0 (x; y; ") ; y0 = y0 (x; y; ") (2.2)

where " 2 R and the transformation satis�es the following conditions.
a) They are well de�ned, that is, that if

x0 (x1; y1; ") = x0 (x2; y2; ") ; y
0 (x1; y1; ") = y0 (x2; y2; ")

then x1 = y1 and y1 = y2:

b) They can be composed, that is, that if

x0 = y0 (x; y; ") ; y0 = y0 (x; y; ")

and

x00 = x00 (x0; y0; "0) ; y00 = y00 (x0; y0; "0)

are two successive one parameter point transformations, there is a one parameter point transformation parame-

trized by the real parameter "00 = ("; "0) so that x00 = x00 (x; y; "00) ; y00 = y00 (x; y; "00) :

c) They are invertible, that is, for each one parameter point transformation

x0 = y0 (x; y; ") ; y0 = y0 (x; y; ")
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there exists the inverse transformation

x00 (x0; y0; "inv) = x ; y00 (x0; y0; "inv) = y

d)There is the identity transformation de�ned by the value2 " = "0; that is

x0 (x; y; "0) = x ; y0 (x; y; "0) = y:

From the above it follows that the one parameter point transformations form a group. A group of one

parameter point transformation de�nes a family of curves inM; which are parametrized by the parameter " and

are called the orbits of the group of transformations. These curves may be viewed as the integral curves

of a di¤erentiable vector �eld X 2M:

2.2.1 In�nitesimal Transformations

Let �x (x; y; ") ; �y (x; y; ") be the parametric equations of a group orbit through the point P (x; y; 0). The tangent

vector at the point P = P (x; y; 0) is given by

XP =
@�x

@"
j"!0@xjP +

@�y

@"
j"!0@yjP :

The vector XP de�nes near the point P (x; y; 0) a point transformation

�x = x+ "�P ; �y = y + "�P (2.3)

where we have set

�P =
@�x

@"
j"!0 ; � =

@�y

@"
j"!0: (2.4)

The point transformation (2.3) is a one parameter a point transformation which is called an in�nitesimal

point transformation. The vector �eld XP is called the generator of the in�nitesimal transformation (2.3)

along the orbit through the point P . Evidently, the in�nitesimal transformation moves a point along the orbit

of the group through that point.

Example 2.2.2 Compute the generator of the in�nitesimal transformation for the one parameter point trans-

formation

�x = x cos "� y sin "

�y = x sin "+ y cos ":

Solution: We have

� (x; y) =
@�x

@"
j"!0 = � (x sin "+ y cos ") j"!0 = �y

� (x; y) =
@�y

@"
j"!0 = (x cos "� y sin ") j"!0 = x

from which follows that the generator of the in�nitesimal transformation is X = �y@x + x@y:
2Without abandoning generality, we can take "0 = 0.



12 CHAPTER 2. POINT TRANSFORMATIONS AND INVARIANT FUNCTIONS

It has been showed that a one parameter point transformation �xes an in�nitesimal generator up to a

constant depending on the parametrization of the group orbit. In the following section, it will be shown that

the converse holds true, that is, for an in�nitesimal generator there always exists a unique one parameter point

transformation.

Integral curves

Consider a di¤erentiable vector �eld X 2 M given by X = Xi@i. At each point of P 2 M , X determines a

smooth curve X ("; P ) = ciX ("; P ) @i, where " 2 J" and J" is an open intevral of R; as follows

dciX ("; P )

d"
= Xi

�
ciX ("; P )

�
; ciX (0; P ) = xi (P ) : (2.5)

The curve X (J"; P ) is called the integral curve of X through P .

Equation (2.5) de�nes an autonomous system of ordinary di¤erential equations (ODEs) with solutions

X (t; P ) subject to the initial conditions c
i
X (0; P ) = xi (P ). The existence and uniqueness of integral curves is

given by, the following theorem [2].

Theorem 2.2.3 Let 1 (J1; P ) and 2 (J2; P ) be two integral curves of the vector �eld X on M; with the same

initial condition xi (P ). Then 1 (J1; P ) and 2 (J2; P ) are equal on J1\J2, where J1; J2 are two open intervals
of R:

In the case where X (J"; P ) de�nes a one parameter point transformation, the system (2.5) de�nes the

generator of the in�nitesimal transformation. Due to the uniqueness of the solution there exists only one

parameter point transformation for each vector �eld X.

Example 2.2.4 Consider the space R2 with coordinates (x; y) and the vector �eld X = y@x + x@y. Find the

integral curve of X through the point P = (x0; y0) :

Solution: Let P (") = (x (") ; y (")) be the integral curve of X passing through P . The system of autonomous

�rst order equations de�ning the integral curves are

dx

d"
= y ;

dy

d"
= x

with the initial condition x (0) = x0 ; y (0) = y0. The solution of this system is

x (") = x0 cosh "+ y0 sinh " (2.6)

y (") = x0 sinh "+ y0 cosh ": (2.7)

Equations (2.6),(2.7) de�ne the rotation in the hyperbolic space.



2.2. POINT TRANSFORMATIONS 13

2.2.2 Invariant Functions

Let F (x; y) be a function in M . Under the one parameter point transformation

�x = �x (x; y; ") ; �y = �y (x; y; ")

the function becomes �F (�x; �y) :

De�nition 2.2.5 The function F is invariant under the one parameter point transformation if and only if
�F (�x; �y) = 0 when F (x; y) = 0 at all points where the one parameter point transformation acts. Equivalently,

the generator X of the point transformation is a symmetry of the function F if

X (F ) = 0 ; modF = 0 (2.8)

The symmetry condition (2.8) is equivalent to the �rst order partial di¤erential equation (PDE)

�
@F

@x
+ �

@F

@y
= 0: (2.9)

In order to determine all functions which are invariant under the in�nitesimal generator X one has to solve

the associated Lagrange system
dx

� (x; y)
=

dy

� (x; y)
:

The characteristic function or zero order invariant W of X is de�ned as follows

dW =
dx

� (x; y)
� dy

� (x; y)
: (2.10)

The zero order invariant is indeed invariant under the X; that is X (W ) = 0: Therefore, any function of the

form F = F (W ) ; where W is the zero order invariant satis�es (2.9) and it is invariant under the one parameter

point transformation with generator X:

2.2.3 Lie Algebras

In section 2.2 we considered the one parameter point transformation which depend on one parameter ". However

transformations can depend on more that one parameter, as follows

�x = �x (x; y;E) ; �y = �y (x; y;E) (2.11)

where E = "�@� ; is a vector �eld in the R�; � = 1:::� with the same properties of de�nition 2.2.1, is a multi

parameter point transformation,

For every parameter "� of the multi parameter point transformation (2.11) an in�nitesimal generator can

be de�ned

X� = �� (x; y) @x + �� (x; y) @y
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where

�� =
@�x

@"�
j"�!0 ; �� =

@�y

@"�
j"�!0:

Let F (x; y) be a function in M which is invariant under a multiparameter point transformation. Since the

multi parameter transformation can be described as m one parameter point transformations, F is invariant

under m in�nitesimal generators.

De�nition 2.2.6 A Lie algebra is a �nite dimensional linear space G; in which a binary operator, denoted [ ; ]

has been de�ned which has the following properties

i) [X;X] = 0 for all X 2 G
ii) [X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y ]] = 0 for all X;Y; Z 2 G.
iii)If XA; XB 2 G then [XA; XB ] = CCABXC , XC 2 G. The quantities CCAB are constants and are called the

structure constants of the Lie algebra.

The operator [ ; ] is called the commutator and it is de�ned by the following expression

[XA; XB ] = XAXB �XBXA = � [XB ; XN ] : (2.12)

From the de�nition of the commutator (2.12) and from the requirements of the Lie algebra, it follows that

the structure constants are antisymmetric in the two lower indices, i.e.

CCAB + C
C
BA = 0 (2.13)

and they have to satisfy the Jacobi identity

CEABC
C
DE + C

E
BDC

C
AE + C

E
DAC

C
BE = 0: (2.14)

The structure constants characterize the Lie algebra because every set of constants CCAB which satisfy (2.13)

and (2.14) de�nes locally a unique Lie group. An important property of the structure constants is that they do

not change under a coordinate transformation. The structure constants do change under a transformation of

the basis; this property is useful because it can be used to simplify the structure constants of the given group.

De�nition 2.2.7 Let G;H be closed Lie algebras with elements fXAg ; fYag respectively. If dimH � dimG
and Ya 2 G then H is called a Lie subalgebra of G:

Suppose that the vector �elds X;Y leave invariant a function F = F (x; y). If [X;Y ] = Z with Z 6= X;Y ,

i.e. the generators X;Y do not form a closed Lie algebra, then F is also invariant under the action of Z. This

process can be used to �nd extra symmetries.

Example 2.2.8 The vector �elds

X1 = sin �@� + cos � cot�@� ; X2 = cos �@� � sin � cot�@� ; X3 = @�
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span the so (3) Lie algebra with structure constants C312 = C231 = C123 = 1; i.e. the commutators are

[X1; X2] = X3 ; [X3; X1] = X2 ; [X2; X3] = X1

If the function F = F (�; �) is invariant under the in�nitesimal generators X1; X3, then it is also invariant

under the action of X2. In that case, it is easy to see that F = F0; where F0 is a constant.

2.3 Lie symmetries of di¤erential equations

Previously, we studied the case when a function F 2M is invariant under the action of a one parameter point

transformation. In the following we consider the case of di¤erential equations (DEs) which are invariant under

a group of one parameter point transformations.

2.3.1 Prolongation of point transformations

In order to study the action of a point transformation to a di¤erential equation H
�
x; y; y0; :::; y(n)

�
where y =

y (x), we have to prolong the point transformation to the derivatives y(n). The in�nitesimal transformation

(2.3) in the jet space BM =
�
x; y; y0; :::; y(n)

	
is

�x = x+ "�

�y = x+ "�

�y(1) = y(1) + "�[1]

:::

�y(n) = y(n) + "�[n]

where y(n) = dny
dxn ; �y

(n) = dn�y
d�xn and

�[1] =
@�y(1)

@"
; :::; �[n] =

@�y(n)

@"
:

That means that the variation equals the di¤erence of the derivatives before and after the action of the one

parameter transformation. For the �rst prolongation function �[1] we have

�[1] � lim
"!0

�
1

"

�
�y(1) � y(1)

��
=
d�

dx
� y(1) d�

dx
:

Similarly for �[n] we have the expression

�[n] =
d�n�1

dx
� y(n) d�

dx
=

dn

dxn

�
� � y(1)�

�
+ y(n+1)�: (2.15)

Finally, the extension of the in�nitesimal generator in the jet space BM is

X [n] = X + �[1]@y(1) + :::+ �
[n]@y[n] :
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The �eld X [n] 2 BM is called the nth prolongation of the generator X; where

X = � (x; y) @x + � (x; y) @y

is the in�nitesimal point generator in the space fx; yg.
It is possible to write the prolongation coe¢ cients in terms of the partial derivatives of the components

� (x; y) ; � (x; y). The �rst and the second prolongation are expressed as follows

X [1] = X +
h
�;x + y

(1)
�
�;y � �;x

�
� y(1)

2

�;y

i
@y(1)

X [2] = X [1] +

2664 �;xx + 2
�
�;xy � �;xx

�
y(1) +

�
�;yy � 2�;xy

�
y(1)

2

+

�y(1)3�;yy +
�
�;y � 2�;x � 3�;yy(1)

�
y(2)

3775 @y(2) (2.16)

where the comma "; " denotes partial derivative.

Some important observations [3] for the prolongation coe¢ cient �[n] are:

(a) �[n] is linear in y(n)

(b) �[n] is a polynomial in the derivatives y(1); :::; y(n) whose coe¢ cients are linear homogeneous in the

functions � (x; y) ; � (x; y) up to nth order partial derivatives.

Multiparameter prolongation

In the case the di¤erential equation H depends on n independent variables
�
xi : i = 1::n

	
and m dependent

variables
�
uA : A = 1:::m

	
, i.e. H = H

�
xi; uA; uA;i ; u

A
;ij ; ::

�
; we consider the one parameter point transformation

�xi = �i
�
xi; uA; "

�
; �uA = �A

�
xi; uA; "

�
:

In this case the generating vector is

X = �i
�
xk; uA

�
@i + �

A
�
xk; uA

�
@A (2.17)

where

�i
�
xk; uA

�
=
@�i

�
xi; uA; "

�
@"

j"!0 ; �A
�
xk; uA

�
=
@�
�
xi; uA; "

�
@"

j"!0:

To extend the generator vector in the jet space �B �M =
�
xi; uA; uA;i ; u

A
;ij ; ::; u

A
ij:::in

	
we apply the same proce-

dure as in section 2.3.1. Therefore the vector �eld X [n] 2 �B �M

X [n] = X + �Ai @ui + :::+ �
A
ij::in@uij::in

is de�ned as the nth prolongation of the generator (2.17), where3

�Ai = Di�
A � uA;jDi�

j (2.18)

3Where Di = @
@xi

+ uAi
@

@uA
+ uAij

@
@uAj

+ :::+ uAij::in
@

@uA
jk::in

:
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�Aij::in = Din�
A
ij::in�1 � uij::kDin�

k: (2.19)

In terms of the partial derivatives of the components �i
�
xk; uA

�
; �A

�
xk; uA

�
of the generator vector (2.17),

the �rst and the second prologations of (2.17) are expressed as follows

X [1] = X +
�
�A;i + u

B
;i �

A
;B � �

j
;iu

A
;j � uA;iuB;j�

j
;B

�
@uAi (2.20)

X [2] = X [1] +

2664 �A;ij + 2�
A
;B(iu

B
;j) � �

k
;iju

A
;k + �

A
;BCu

B
;iu

C
;j � 2�

k
;(ijBju

B
j)u

A
;k+

��k;BCuB;iuA;juA;k + �A;BuB;ij � 2�
k
;(ju

A
;i)k +��

k
;B

�
uA;ku

B
;ij + 2u

B
(;ju

A
;i)k

�
3775 @uij : (2.21)

2.3.2 Lie symmetries of ODEs

In the previous sections we analyzed the invariance of functions under the action of a point transformation. In

the following we de�ne the invariance of ordinary di¤erential equations (ODEs) under a one parameter point

transformation.

Consider the N�dimensional system of ODEs4

x(n)i = !i
�
t; xk; _xk; �xk; :::; x(n�1)i

�
(2.22)

where _xi = dxi

dt , x
(n) = dnx

dtn and the in�nitesimal point transformation with in�nitesimal generator X is

�t = t+ "�
�
t; xk

�
(2.23)

�xi = x+ "�i
�
t; xk

�
(2.24)

Theorem 2.3.1 Let

X = �
�
t; xk

�
@t + �

i
�
t; xk

�
@i (2.25)

be the in�nitesimal generator of point transformation (2.23)-(2.24) and

X [n] = X + �i[1]@ _xi + :::+ �
i
[n]@x(n)i

be the nth prolongation of X, where �i[n] is given by (2.19). We shall say that the N�dimensional system of

ODEs (2.22) is invariant under the point transformation (2.23), (2.24) if and only if there exists a function �

such as the following condition holds h
X [n]; A

i
= �A (2.26)

where5

A =
@

@t
+ _xi

@

@xi
+ :::+ !i

�
t; xk; _xk; �xk; :::; x(n�1)i

� @

@x(n)i
:

In that case we say that X is a Lie point symmetry of the N�dimensional system of ODEs (2.22).

4 In the following equations, t is the independent parameter and xi = xi (t) the dependent parameters.
5For Hamiltonian systems, the operator A is called Hamiltonian vector �eld.
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If f i is a solution of the system (2.22), i.e. Af i = 0; then condition (2.26) becomes X
�
Af i

�
= 0; that is,

�i[n] = X [n�1]!i
�
t; xk; _xk; �xk; :::; x(n�1)i

�
: (2.27)

Equations (2.27) are called the determining equations. The solution of the determining equations (2.27) gives

the in�nitesimal generators of the transformation (2.23)-(2.24).

In general, a function H
�
t; _xk; �xk; :::; x(n)k

�
= 0 is invariant under the transformation (2.23)-(2.24) if and

only if

X [n] (H) = �H ; modH = 0: (2.28)

where � is a function to be determined [4].

Below we give an example in which the Lie symmetries are calculated using the symmetry condition (2.27).

Example 2.3.2 Find the Lie symmetries of the ODE �x = 0:

Solution: Condition (2.27) gives �[2] = 0: From (2.16) the following condition is found

�;tt + 2
�
�;tx � �;tt

�
_x+

�
�;xx � 2�;tx

�
_x2 � _x3�;xx = 0 (2.29)

since �x = 0. Functions �; � are dependent only on the variables ft; xg, hence equation (2.29) is a polynomial of
_x: This polynomial must vanish identically hence the coe¢ cients of all powers of _x must vanish. Therefore, we

have the following determining equations

( _x)
0
: �;tt = 0

( _x)
1
: �;xy � �;tt = 0

( _x)
2
: �;xx � 2�;tx = 0

( _x)
3
: �;xx = 0:

whosw solution is

� (t; x) = a1 + a2t+ a3t
2 + a4x+ a5tx

� (t; x) = a6 + a7t+ a8x+ a3tx+ a5x
2:

We conclude that the second order ODE �x = 0 has eight Lie pont symmetries generated by the generic vector

�eld6

X =
�
a1 + a2t+ a3t

2 + a4x+ a5tx
�
@t +

�
a6 + a7t+ a8x+ a3tx+ a5x

2
�
@x: (2.30)

These vectors are the generators of the projective algebra sl (3; R) of the 2-d Euclidian plane. Furthermore, this

is the maximum number of symmetries that a single second order ODE (in one variable!) can have.

6As many as the unspeci�ed constants in the expression of the generic symmetric vector.
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Lie symmetries can be used to �nd invariants or to reduce the order of an ODE. Furthermore an ODE

is characterized by the admitted algabra of Lie symmetries. For second order ODEs we have the following

theorem.

Theorem 2.3.3 If a second order ODE admits as Lie point symmetries the eight of sl (3; R), then, there exists

a transformation which brings the equation to the form x�00 = 0 and vice versa.

For instance the equations

�x+
1

x
_x2 = 0

�x+ 3x _x+ x3 = 0

�x+ !20x+ sin t = 0�
4 + x2 + t2

�
�x� 2t _x3 + 2x _x2 � 2t _x+ 2x = 0

are equivalent to the equation of motion of a free particle [5, 6, 7], because they are invariant under the action of

the Lie algebra sl (3; R) : The transformation where the admitted sl (3; R) algebra is written in the form (2.30)

is a coordinate transformation on M : (t; x) ! (� ; y) which transforms the ODE to the form d2y
d�2 = 0: This

procedure is called linearization process (see [8, 9] and references therein).

Below we present two methods where the use of Lie symmetries reduces the order of an ODE.

Canonical coordinates

De�nition 2.3.4 Let X be a vector �eld with coordinates X = � (t; x) @t + � (t; x) @x. If under the coordinate

transformation ft; xg ! fr; sg holds that
Xr = 0 ; Xs = 1 (2.31)

then, we say that fr; sg are the canonical coordinates of X; i.e. X = @s.

Canonical coordinates can be used to reduce by one the order of an ODE. Consider the nth order ODE

(n � 2)
dns

dr2
= �!

�
r; s;

ds

dr
; :::;

dn�1s

drn�1

�
: (2.32)

LetXC = @s be a Lie symmetry of (2.32) written in canonical coordinates. The nth prolongation of the symmetry

vector is X [n]
C = XC ; so condition (2.27) sets the constraint

@

@s
�!

�
r; s;

ds

dr
; :::;

dn�1s

drn�1

�
= 0:

This implies that the function �! is independent of s; consequently (2.32) can be written in the form

dn�1S

drn�1
= �!

�
r; S;

dS

dr
; :::;

dn�2S

dr

�
(2.33)

which is a (n� 1) order ODE, where S is de�ned by S = ds
dr .
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Example 2.3.5 Use the canonical coordinates of the Lie symmetry X = x@x � t@t to reduce the order of the

ODE

�x+ x _x = 0 (2.34)

Solution: The canonical coordinates of X are

x = es ; t = re�s:

For the �rst and the second derivative of x (t) we compute

_x =
e2ss0

1� rs0

�x =
e3s

(1� rs0)3
��
2s02 + s00

�
(1� rs0) + s0 (s0 + rs00)

�
where s0 = ds

dr .

Replacing in 2.34, we �nd the reduced equation�
2S2 + S0

�
(1� rS) + S (S + rS0) + S (1� rS)2 = 0 (2.35)

where we have set S = s0. Equation (2.35) is an Abel equation of the �rst kind [10] invariant under X = d
ds :

Invariants

As in the case of functions in M (see section 2.2.2), condition (2.28) is equivalent to the following Lagrange

system
dt

�
=
dx

�
=

d _x

�[1]
= ::: =

dx(n)

�[n]
: (2.36)

The Lagrange system (2.36) provides us with characteristic functions

W [0] (t; x) ; W [1]i (t; x; _x) ; W [n]
�
t; x; _x; :::; _x(n)

�
where W [n] is called the nth order invariant of the Lie symmetry vector. If (2.25) is a Lie symmetry for the

ODE

x(n) = !
�
t; _x; �x; :::; x(n�1)

�
(2.37)

it follows that (2.37) can be written as a function of the characteristic functions W [1]; :::;W [n]; of (2.25).

Let u = W [0] ; v = W [1]; where W [0]; W [1] are the zero and the �rst order invariants of a Lie symmetry

repetitively. From the invariants u; v; we de�ne the di¤erential invariants

dv

du
; :::;

dn�1v

dun�1
: (2.38)

where
dv

du
=

@v
@t +

@v
@x _x+ :::+

@v
@ _x �x

@v
@t +

@v
@x _x

:
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The di¤erential invariants are functions of x(n), hence, it is feasible that (2.37) may be written in terms of

the di¤erential invariants (2.38), i.e.

dn�1v

dun�1
= 


�
u; v;

dv

du
; :::

dn�1v

dun�1

�
(2.39)

which is a (n� 1) order ODE.

Example 2.3.6 Use the �rst order invariants of the Lie symmetry X = x@x � nt@t to reduce the order of the

Lane-Emden equation

�x+
2

t
_x+ x2n+1 = 0

where n 6= � 1
2 ; 0. The Lane-Emden equation arises in the study of equilibrium con�gurations of a spherical gas

cloud acting under the mutual attractions of its molecules and subject to the laws of thermodynamics [11, 12].

Solution: The �rst prolongation of X is

X [1] = x@x � nt@t + (n+ 1) _x@ _x

hence, the corresponding Lagrange system is

dt

�nt =
dx

x
=

d _x

(n+ 1) _x
:

The zero and the �rst order invariants are found to be

u = xt
1
n ; v = _xt1+

1
n :

The di¤erential invariant is de�ned as
dv

du
=

�
1 + 1

n

�
_x+ t�x

1
n t
�1x+ _x

:

Substituting in the Lane-Emden equation we obtain the �rst order ODE

v0 (u+ nv)� (1� n) v + nu2n+1 = 0: (2.40)

where v0 = dv
du . Equation (2.40) is an Abel equation of the second kind [10].

An interesting application of the Lie invariants to the classical Kepler system can be found in [13] where the

authors derive the Runge-Lenz vector using the �rst order invariants of a point transformation.

It is possible an ODE to admit many symmetries which span a Lie algebra Gm of dimension m > 1. The

following theorem relates the Lie point symmetries of the reduced and of the original equation.

Theorem 2.3.7 Consider an ODE which admits the Lie point symmetries X1; X2 which are such that [X1; X2] =

C112X1: Then, the reduction by X1 leads to a reduced equation which admits X2 as a Lie symmetry whereas re-

duction of the ODE by X2 leads to a reduced equation, which does not admit X1 as a Lie symmetry.
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In case the generators X1; X2 form an Abelian Lie algebra, i.e. [X1; X2] = 0; then, the reduction preserves

the Lie symmetries. Theorem 2.3.7 is important because it gives a hint as to which generator the reduction of

an ODE must start in order to continue the reduction process with the reduced equation.

Since the reduced equation is di¤erent from the original equation, it is possible the reduced equation to

admit extra Lie symmetries, which are not Lie symmetries of the original equation. These new Lie symmetries

have been named Type II hidden symmetries. Type II hidden symmetries can be used to continue the

reduction process and - if it is feasible - to �nd a solution of the original equation [14].

There are other methods to apply Lie symmetries; a quite intriguing application of Lie symmetries is to

produce integrals or Lagrangian functions for a system of ODEs by the method of Jacobi�s last multiplier (see

[15, 16, 17] and references therein).

2.4 Lie symmetries of PDEs

A partial di¤erential equation (PDE) is a function H = H
�
xi; uA; uA;i ; u

A
;ij ; ::; u

A
ij:::in

�
in the jet space �B �M ; where

xi are the independent variables and uA are the dependent variables. As in the case of ODEs we de�ne the

invariance of a PDE under the in�nitesimal point transformation

�xi = xi + "�i
�
xk; uB

�
(2.41)

�uA = �uA + "�A
�
xk; uB

�
(2.42)

with generator X as follows.

De�nition 2.4.1 Let

X = �i
�
xk; uB

�
@t + �

A
�
xk; uB

�
@B (2.43)

be the generator of the in�nitesimal point transformation (2.41)-(2.42) and

X [n] = X + �A[i]@ _xi + :::+ �
A
[ij:::in]

@uij:::in

be the nth prolongation vector, where �A[ij:::in] is given from (2.19). Then, the transformation (2.41)-(2.42) leaves

invariant the PDE

H
�
xi; uA; uA;i ; u

A
;ij ; ::

�
= 0 (2.44)

if there exist a function � where the following condition holds,

X [n] (H) = �H ; modH = 0: (2.45)

The in�nitesimal generator X is called a Lie point symmetry of the PDE (2.44).

In case the PDE (2.44) can we written in solved form, i.e.

uAij:::in = hA
�
xi; uB ; uB;i ; u

B
;ij ; ::; u

B
ij:::in�1

�
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then the Lie condition (2.45) is equivalent to the following system of equations

�A[ij:::in] = X [n�1]hA
�
xi; uB ; uB;i ; u

B
;ij ; ::; u

B
ij:::in�1

�
: (2.46)

Consequently the family of all solutions of (2.44) is invariant under (2.41)-(2.42) if condition (2.45) holds.

In the example below we compute the Lie symmetries of the homogeneous heat equation.

Example 2.4.2 Find the Lie symmetries of the 1+1 heat equation

H (u;t; u;xx) : u;xx � u;t = 0: (2.47)

Solution: Let

X = �t (t; x; u) @t + �
x (t; x; u) @x + � (t; x; u) @u

be a Lie symmetry of (2.47). Then condition (2.46) gives

�[xx] � �[t] = 0:

Substituting �[t]; �[xx] from (2.20),(2.21) and collecting terms of derivatives of u (t; x) we �nd the following

determining equations

�t;u = 0 ; �t;x = 0 ; �x;u = 0 ; �t;ttt = 0

�x;t = �2�;xu ; �x;x =
1

2
�t;t ; �;uu = 0

�;xx = �;t ; 4�;tu + �;tt = 0:

The solution of the system of equations is

�t (t; x; u) = a1t
2 + 2a2t+ a3

�x (t; x; u) = a1tx+ a2x+ a4t+ a5

� (t; x; u) = �a1
2

�
t+

1

2
x2
�
u� a4

2
xu+ a6u+ b (t; x)

where b (t; x) is a solution of the heat equation. The generic vector of the in�nitesimal transformation which

leaves invariant the heat equation is

X =
�
a1t

2 + 2a2t+ a3
�
@t + (a1tx+ a2x+ a4t+ a5) @x +

+

�
�a1
2

�
t+

1

2
x2
�
u� a4

2
xu+ a6u+ b (t; x)

�
@u:
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Invariant solutions

In section 2.3.2, it has been explained how to use the canonical coordinates to reduce the order of an ODE. The

in�nitesimal generator X3 = @t is a Lie symmetry of the heat equation (2.47), written in canonical coordinates.

Nevertheless (2.47) cannot be reduced as it happened with the case of ODEs. However, one can calculate from

the Lie symmetry X3 the zero order invariants, which are y = x ; w = u. We select y to be the independent

variable and w = w (y) : Substituting the invariants in (2.47) we get the ODE wyy = 0: Then, the following

solution can be found easily

u (x) = c1x+ c2 (2.48)

which is independent on the variable t: That is, the use of the Lie symmetry X3 reduces by one the number of

independent variables but not the order of the PDE. The solution (2.48) is called an invariant solution.

De�nition 2.4.3 The function u = U
�
xi
�
is an invariant solution corresponding to the in�nitesimal generator

(2.43), if and only if U
�
xi
�
is an invariant of the in�nitesimal generator, i.e. X (U) = 0 and solves the

PDE (2.44).

By de�nition, a Lie symmetry maps a solution onto a solution. The action of the point transformation with

in�nitesimal generator X3 on a solution u of (2.47) is u (�t; �x) = u (t+ "; x), that is, X3�u = 0 or �u;t = 0, hence

the use of Lie point symmetries gives a constraint equation. However, if a solution of a PDE is already known

we can apply the point transformation to obtain a family of solutions. This new solutions will depend on at

most as many new parameters as there are in the symmetry transformation used.

Theorem 2.4.4 Assume that the PDE (2.44) admits a Lie point symmetry and let u = u
�
xi
�
be a solution

of (2.44) which is not invariant under this Lie symmetry. Then, under the transformation (2.41)-(2.42) the

solution u
�
xi
�
de�nes a family of solutions of the PDE.

For instance, the point transformation corresponding to the Lie symmetry

X1 = t2@t + tx@x �
1

2

�
t+

1

2
x2
�
u@u

of the heat equation (2.47) is

�t = t (1� "t)�1 ; �x = x (1� "t)�1

�u = u
p
1� "te�

"x2

4(1�"t) :

Then, if �uc = �uc (�t; �x) is a solution of (2.47), which is not an invariant solution, the function

uc (x; t) =
1p
1� "t

e
"x2

4(1�"t) �uc

�
x

1� "t ;
t

1� "t

�
is also a solution of (2.47).
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2.5 Lie Bäcklund symmetries

So far we have considered point transformations which depend on the variables of the base manifold only.

However there exist point transformations who are de�ned in the jet space and depend also on the derivatives.

The in�nitesimal transformation

�xi = xi + "�i
�
xi; u; u;i; u;ij :::

�
(2.49)

�u = u+ "�
�
xi; u; u;i; u;ij :::

�
(2.50)

is called Lie Bäcklund transformation. This point transformation does not concern the present work but

for the completeness we we give the basic de�nitions.

De�nition 2.5.1 The generator X = �
�
xi; u; u;i; u;ij :::

�
@i + �

�
xi; u; u;i; u;ij :::

�
@u generates a Lie Bäcklund

symmetry for the DE H
�
xi; u; u;i; u;ij :::

�
= 0; if and only if there exist a function �

�
xi; u; u;i; u;ij :::

�
such as

the following condition holds.

[X;H] = �H ; modH = 0:

It follows from the above de�nition that a Lie Bäcklund symmetry preserves the set of solutions u of the DE,

i.e. X (u) = Cu; where C is a constant. A special class of Lie Bäcklund symmetries are the contact symmetries.

Contact symmetry is a Lie Bäcklund symmetry where the generator depends only on the �rst derivative of

u;i, i.e. the generator of transformation (2.49)-(2.49) has the form X = �
�
xi; u; u;i

�
@i + �

�
xi; u; u;i

�
@u.

Proposition 2.5.2 The generator �X =
�
� � �ku;k

�
@u is the canonical form of the operator X = �@i + �@u:

The operator Di = @i+u;i@u+u;ij@ui+::: is always a Lie Bäcklund symmetry (the trivial one; since Di in the

canonical form is �Di = (u;i � u;i) @u + ::: = 0), hence f i
�
xi; u; u;i; u;ij :::

�
Di is also a Lie Bäcklund symmetry.

If X = �@i + �@u is a Lie Bäcklund symmetry, then the generator �X;

�X = X � fDi =
�
�k � fk

�
@k +

�
� � fku;k

�
@u + :::

is also a Lie Bäcklund symmetry. Since fk is an arbitrary function we set fk = �k and obtain

�X =
�
� � �ku;k

�
@u:

We can always absorb the term �kuk inside the � and have the �nal result that �X = Z
�
xi; u; u;i; u;ij :::

�
@u

is the generator of a Lie Bäcklund symmetry.

For a PDE the generator of a Lie point symmetry is

X = �
�
xi; u

�
@i + �

�
xi; u

�
@u

then in this case the vector �X can be written as

�X =
�
�
�
xi; u

�
� �k

�
xi; u

�
u;k

�
@u
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which is linear in the �rst derivative; that is, for PDEs, Lie symmetries are equivalent to contact symmetries

that are linear in the �rst derivative uk (that property does not hold for ODEs). For example, the Lie point

symmetry X = @
@x of a PDE is equivalent to the Lie Bäcklund symmetry

�X = �u;x @
@u .

2.6 Noether point symmetries

In the following sections we consider the Lie symmetries and the conservation laws of systems admitting a

Lagrangian function, i.e. systems whose equations of motion follow from a variational principle (e.g. Hamilton

principle).

2.6.1 Noether symmetries of ODEs

In Analytical Mechanics the Lagrangian L = L
�
t; xk; _xk

�
is a function describing the dynamics of a system.

The equations of motion of the dynamical system follow from the action of the Euler Lagrange vector Ei on the

Lagragian L, i.e.

Ei (L) = 0: (2.51)

where the Euler Lagrange vector

Ei =
d

dt

@

@ _xi
� @

@xi
(2.52)

If the Lagrangian is invariant under the action of the transformation (2.23)-(2.24), then, it is easy to observe

that the Euler Lagrange equations (2.51) are invariant under the transformation (2.23)-(2.24). E. Noether

proved that if the action of a one parameter point transformation leaves invariant the Euler Lagrange equations

(2.51) then there exists a conserved quantity corresponding to the point transformation.

Theorem 2.6.1 Let

X = �
�
t; xk

�
@t + �

i
�
t; xk

�
@i (2.53)

be the in�nitesimal generator of transformation (2.23)-(2.24) and

L = L
�
t; xk; _xk

�
(2.54)

be a Lagrangian describing the dynamical system (2.51). The action of the transformation (2.23)-(2.24) on

(2.54)7 leaves the Euler Lagrange equations (2.51) invariant, if and only if there exist a function f = f
�
t; xk

�
such that the following condition holds

X [1]L+ L
d�

dt
=
df

dt
(2.55)

where X [1] is the �rst prolongation of (2.53).

7For the application of Noether theorem in higher order Lagrangians see [18]
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If the generator (2.53) satis�es (2.55), the generator (2.53) is a Noether symmetry of the dynamical system

described by the Lagrangian (2.54). Noether symmetries form a Lie algebra called the Noether algebra. If

the dynamical system (2.51) admits Lie symmetries which span a Lie algebra Gm of dimension m � 1 then the
Noether symmetries of (2.51) form a Lie algebra Gh ; h � 0; which is a subalgebra of Gm; Gh � Gm.

Theorem 2.6.2 For any Noether point symmetry (2.53) of the Lagrangian (2.54) there corresponds a function

�
�
t; xk; _xk

�
� = �

�
_xi
@L

@ _xi
� L

�
� �i @L

@xi
+ f (2.56)

which is a �rst integral i.e. d�
dt = 0 of the equations of motion. The function (2.56) is called a Noether integral

(�rst integral) of (2.51).

Since a Noether symmetry leaves the DEs (2.51) invariant, it is also a Lie symmetry of (2.51) and from

(2.26) we can say that (2.56) satis�es the condition X (�) = 0, that is, Noether integrals are invariant functions

of the Noether symmetry vector X:

The existence and the number of Noether symmetries characterize a dynamical system. If a dynamical

system (2.51) on n degrees of freedom admits (at least) n linear independent �rst integrals8 �J ; J = 1:::n;

which are in involution, i.e.

f�J ; �Kg = 0 (2.57)

where f ; g is the Poisson bracket, then the solution of the dynamical system can be obtained by quadratures.

We calculate the Noether symmetries of the free particle and of the harmonic oscillator.

Example 2.6.3 Find the Noether symmetries of the Lagrangian L = 1
2 _x

2:

Solution: The Lagrangian corresponds to the equation of motion of the free particle �x = 0. In example 2.3.2,

the Lie symmetries of the free particle were calculated. The generic Lie symmetry vector is applied to condition

(2.55) and it is found that the generic Noether symmetry of the free particle is

X =
�
a1 + 2a4t+ a5t

2
�
@t + (a2 + a3t+ a4x+ a5tx) @x: (2.58)

From the generic vector (2.58) and (2.56), it is found that the corresponding Noether integral is

� = a1 _x
2 + a2 _x+ a3 (t _x� x) + a4

�
t _x2 � x _x

�
+ a5

�
t2 _x2 � 2tx _x+ x2

�
Example 2.6.4 Find the Noether symmetries of the one dimensional harmonic oscillator with Lagrangian

L =
1

2
_x2 � 1

2
x2: (2.59)

Solution: To derive the Noether symmetries of (2.59) we apply theorem 2.6.1. Let X = � (t; x) @t+� (t; x) @x

be the in�nitesimal generator. The �rst prolongation X [1] is

X [1] = �@t + �@x + �[1]@ _x:

8Not necessarilly Noether point integrals.
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where �[1] =
�
�;t + _x

�
�;x � �;t

�
� _x2�;x

�
: For the terms of (2.55) we have

df

dt
= f;t + _xf;x:

X [1]L = _x�;t + _x2
�
�;x � �;t

�
� _x3�;x � x�

L
d�

dt
=
1

2
_x2�;t �

1

2
x2�;t +

1

2
_x3�;x �

1

2
x2 _x�;x:

Replacing in (2.55) we �nd:

0 = �
�
x� +

1

2
x2�;t + f;t

�
+ _x

�
�;t �

1

2
x2�;x � f;x

�
+ _x2

�
�;x �

1

2
�;t

�
+ _x3

�
�;x
�

The determining equations are

�;x = 0 ; �;x �
1

2
�;t = 0 (2.60)

�;t �
1

2
x2�;x � f;x = 0 ; x� +

1

2
x2�;t + f;t = 0: (2.61)

The solution of the system of equations (2.60)-(2.61) gives the generic Noether symmetry [19]

X = (a1 + a4 cos 2t+ a5 sin 2t) @t +

+(a2 sin t+ a3 cos t� a4x sin 2t+ a5x cos 2t) @x (2.62)

with the corresponding gauge function

f (t; x) = a2x cos t� a3 sin t� a3x2 cos 2t� a5x2 sin 2t:

It should be underlined that the free particle and the harmonic oscillator have the same number of Noether

symmetries. It can be easily noticed that the Lie algebras (2.58) and (2.62) are the same Lie algebra in di¤erent

representations.

2.6.2 Noether point symmetries of PDEs

In case of PDEs

H
�
xi; u; ui; uij

�
= 0 (2.63)

which arise from a variational principle the following theorem holds.

Theorem 2.6.5 The action of the transformation (2.41)-(2.42) on the Lagrangian

LP = LP
�
xk; u; uk

�
(2.64)

leaves (2.63) invariant if there exists a vector �eld F i = F i
�
xi; u

�
such that

X [1]LP + LPDi�
i = DiF

i:
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The generator of the point transformation (2.41)-(2.42) is called Noether symmetry. The corresponding

Noether �ow is

�i = �k
�
uk
@L

@ui
� L

�
� � @L

@ui
+ F i (2.65)

and satis�es the condition Di�
i:

The implementation of Noether �ows in PDEs di¤ers from that in the ODEs. Conservation �ow (2.65) is

used to reduce the order of (2.63) by de�ning a new dependent variable v
�
xi
�
. It has been proved that the

solution of the system

v;i
�
xk
�
= �i

�
xk; u; uk

�
(2.66)

is also a solution of (2.63). Furthermore, it is feasible new symmetries to arise from the system (2.66) which are

not symmetries of (2.63). These new symmetries have been called potential symmetries [20].

2.7 Collineations of Riemannian manifolds

Previously, we studied the case when a function is invariant under a point transformation. In the following

subsections we consider the cases in which a function is invariant under a point transformation. In order to do

this we shall need the concept of the Lie derivative. In particular, the geometric objects which will be considered

the metric tensor gij and the connection coe¢ cients �ijk in a Riemannian space.

De�nition 2.7.1 Consider an n dimensional space An of class Cp. An object is called a geometric object

of class r (r � p) if it has the following properties :

i) In each coordinate system
�
xi
	
; it has a well determined set of components 
a

�
xk
�
.

ii) Under a coordinate transformation xi
0
= J i

�
xk
�
the new components 
a

0
of the object in the new

coordinates
n
xi

0
o
are represented as well determined functions of class r0 = p� r of the old components 
a in

the old coordinates
�
xi
	
, of the functions J i and of their sth derivatives (1 � s � p), that is, the new components


i
0
of the object can be represented by equations of the form


a
0
= �a

�

k; xk; xk

0
�
: (2.67)

iii) The functions �a have the group properties, that is, they satisfy the following relations

�a
�
�
�

; xk; xk

0
�
; xk; xk

0
�
= �a

�

; xk; xk

0
�

(2.68)

�a
�
F
�

; xk; xk

0
�
; xk

0
; xk
�
= 
a (2.69)

The coordinate transformation law �
�

; xk; xk

0
�
characterizes the geometric object. In case that the

function � contains only 
 and the partial derivatives of Jk with respect to xk; the geometric object is said to

be a di¤erential geometric object.
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Furthermore, we say that a geometric object is linear if for the transformation law �
�

; xk; xk

0
�
it holds

�a
�

; xk; xk

0
�
= Jab

�
xk; xk

0
�

b + C

�
xk; xk

0
�
: (2.70)

When the transformation law is

�a
�

; xk; xk

0
�
= Jab

�
xk; xk

0
�

b (2.71)

we say that the geometric object is a linear homogeneous geometric object. One important calss of linear

homogeneous geometric objects are the tensors.

2.7.1 Lie Derivative

Let 
 be a geometric object in An with transformation law (2.67) and consider the in�nitesimal transformation

�xi = xi + "�i
�
xk
�
: (2.72)

where � = �i
�
xk
�
are the components of the in�nitesimal generator. From the transformation law (2.67), the

geometric object in the coordinate system xi
0
= �xi is �

�

k; xk; xk

0
�
. The Lie derivative of the geometric object


 with respect to � is de�ned as follows

LX
 = lim
"!0

1

"

h
�
�

k; xk; xk

0
�
� 


i
: (2.73)

In order for the Lie derivative of a geometric object to be again a geometric object (not necessarily of the

same type) it is necessary and su¢ cient that the geometric object be linear [21].

By de�nition, the Lie derivative of a geometric object depends on the transformation law. The transformation

law (2.67) for functions is f 0
�
xi

0
�
= f

�
xi

0
�
, hence, under the point transformation (2.72) we have

f 0
�
xi

0
�
= f

�
xi + "�i

�
= f

�
xi
�
+ "f;i�

i +O
�
"2
�
:

From (2.73) the Lie derivative of functions f along the vector �eld � is computed to be

L�f = f;i�
i = � (f) :

The transformation law for a tensor �eld T of rank (r; s) is

T
i01:::i

0
r

j0i:::j
0
s
= J

i01
i1
:::J

i0r
ir
Jj1j01

:::J
j0s
js
T i1:::irji:::js

where J is the Jacobian of the transformation. Thus, from (2.73), the Lie derivative of T with respect to � is

L�T
i1:::ir
ji:::js

= �kT i1:::irji:::js;k
� Tm:::irji:::js

�i1;m � T i1m:::irji:::js
�i2m + :::

:::+ T i1:::irm:::js
�m;j1 + T

i1:::ir
jim:::js

�mj2 + :::: (2.74)
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In case of vector �elds X and 1-forms ! expression (2.74) gives

L�X = �kXi
;k �Xk�i;k = [�;X] (2.75)

L�! = �k!i;k � !k�k;i: (2.76)

For a second order tensor Tij , expression (2.74) becomes

L�Tij = Tij;k�
k + Tik�

k
;j + Tkj�

k
;i: (2.77)

The connection coe¢ cients �ijk are linear di¤erential geometric objects with transformation law

�i
0

j0k0 = J i
0

i J
j
j0J

k
k0�

i
jk +

@xi
0

@xr
@2xr

@xj0@xk0
: (2.78)

Connection coe¢ cients have di¤erent transformation law from tensor �elds, that is, the Lie derivative L��ijk
will be di¤erent from that of tensors. Applying (2.73),we �nd that the Lie derivative L��ijk is expressed as

follows

L��
i
jk = �i;jk + �

i
jk;r�

r � �i;r�rjk + �s;j�isk + �s;k�ijs: (2.79)

In case of symmetric connection �ijk = �
i
kj ; condition (2.79) can be written in the equivalent form

L��
i
jk = �i;jk �Rijkl�l (2.80)

where Rijkl is the curvature tensor and the semicolon "; " means covariant derivative.

Collineations

In section 2.2.2 we gave the conditions under which a function is invariant under a one parameter point trans-

formation. Similarly for linear (homogeneous) di¤erential geometric objects there is the following de�nition.

De�nition 2.7.2 A linear di¤erential geometric object 

�
xi
�
is invariant under a one parameter point trans-

formation

�xi = �xi
�
xk; "

�
(2.81)

if and only if �

�
�xi
�
= 


�
xi
�
at all points where the one parameter point transformation acts. Equivalently,

the Lie derivative of the geometric object 
 with respect to the in�nitesimal generator of (2.81) vanishes, that

is, L�
 = 0:

A direct result which arises from the de�nition of the Lie derivative and the transformation law of linear

di¤erential geometric objects is that if a linear di¤erential geometric object 
 is invariant under the transfor-

mation (2.81), then there exist a coordinate system with respect to which the components of 
 are independent

of one of the coordinates.
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One can generalize the concept of symmetry in the sense that one does not require the Lie derivative to be

equal to zero, but to another tensor. That is, the Lie derivative of the linear di¤erential geometric object 


with respect to the in�nitesimal generator � is

L�
 = 	

where 	 has the same numbers of components and symmetries of the indices with 
: In this case the in�nitesimal

generator � is said to be a collineation of 
; the type of collineations being de�ned by 	. Collineations are a

powerful tool in the study of the geometric properties of Riemannian manifolds.

In Riemannian geometry, the geometric object 
 can be the metric tensor gij or any other geometric object

de�ned from it (e.g. the connection coe¢ cients).

De�nition 2.7.3 All collineations involving geometric objects 
 derived from the metric gij of a Riemannian

space shall be called geometric collineations. In particular, the collineation de�ned by the metric L�gij

is called the generic collineation because any other geometric collineation can be written in terms of it.

Furthermore, the geometric collineations can be written in terms of the irreducible parts  ;Hij as follows

L�gij = 2 gij + 2Hij (2.82)

where the function  is called the conformal factor and Hij is a symmetric traceless tensor.

The role of the quantities  ; Hij is important because they can be used as the variables in terms of which

one can study any geometric collineation. To do that, one has to express the Lie derivative of any metric tensor

in terms of the generic symmetry variables  ; Hij and their derivatives.

In the following we shall be interested in geometric collineations, particularly in the collineations of the

metric and of the connection coe¢ cients of a Riemannian space.

2.7.2 Motions of Riemannian spaces

Consider an n dimensional Riemannian space V n with line element

ds2 = gijdx
idxj : (2.83)

where gij is the metric tensor.

De�nition 2.7.4 The point transformation (2.81) is called a motion of V n; if and only if the line element is

invariant under the action of (2.81). Equivalently, the Lie derivative of the metric tensor gij with respect to the

in�nitesimal generator � of (2.81) vanishes, i.e.

L�gij = 0: (2.84)
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The point transformations (2.81) which are motions of V n form a group named the group of motions.

Since gij is a metric, condition (2.84) can be written in the equivalent form

L�gij = 2�(i;j) = 0: (2.85)

This equation is known as Killing equation and � is called an isometry or Killing Vector (KV). The KVs

of a metric form a Lie algebra, which is called the Killing algebra.

Motions are important in physics. For instance, the Euclidian space admits as motions the group of transla-

tions and the group of rotations T (3)
so (3) and this implies the conservation of linear and angular momentum
respectively. As a second example in Cosmology the assumption that the universe is isotropic and homogeneous

about all points leads to the Friedmann Robertson Walker (FRW) spacetime.

The maximum dimension of the Killing algebra that V n can admit is given in the following theorem.

Theorem 2.7.5 If an n dimensional Riemannian space V n admits a Killing algebra GKV ; then, 0 � dimGKV �
1
2n (n+ 1) :

A Riemannian space which admits a Killing algebra of dimension 1
2n (n+ 1) is called a maximally sym-

metric space. For example, the Euclidian space E3 and the Minkowski spacetimeM4 are maximally symmetric

spaces.

A special class of KVs are the gradient KVs. A KV � is called gradient i¤ �i;j = 0, that is,

�(i;j) = 0 and �[i;j] = 0:

For every gradient KV �; there exists a function S so S;kgik = �i and S;ij = 0:

Theorem 2.7.6 If V n admits p gradient KVs (where p � n) then, V n is called a p decomposable space and

in this case there exists a coordinate system in which the line element (2.83) can be written in the form

ds2 =M��dz
�dz� + hAB

�
yA
�
dxAdxB

where �; � = 1; 2::; p, A;B = p+ 1; :::n and Ma� = diag (c1; c2; :::; cp), c1; c2; :::; cp are constants.

Example 2.7.7 Compute the KVs of the Euclidian sphere with line element

ds2 = d�2 + sin�2d�2: (2.86)

Solution: In order to �nd the KVs we solve the Killing equation (2.85). This leads to the system of equations

��;� = 0

2��;� + 2�
� sin � cos � = 0

��;� + �
�
;� � 2�

� cot � = 0:

whose solution are the elements of the so (3) Lie algebra (see example 2.2.8).

The 2D Euclidian sphere (2.86) admits a three dimensional Killing algebra, hence, it is a maximally sym-

metric space. Moreover, all spaces of constant curvature are maximally symmetric spaces.
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Conformal motions

When the point transformation (2.81) does not change the angle between two directions at a point, the trans-

formation (2.81) is called a conformal motion. Technically we have the following de�nition.

De�nition 2.7.8 The in�nitesimal generator � of the point transformation (2.81) is called Conformal Killing

Vector (CKV) if the Lie derivative of the metric gij with respect to � is a multiple of gij. That is if,

L�gij = 2 gij (2.87)

where  = 1
n�

k
;k. In the case where  ;ij = 0; � is a special CKV (sp.CKV)

9 and if  =constant, � is a Homothetic

Killing Vector (HV).

The CKVs of a metric form a Lie algebra, which is called the conformal algebra, GCV . Obviously the KVs

and the homothetic vector are elements of the conformal algebra GCV . If GHV is the algebra of HVs (including

the algebra GKV of KVs), then the following theorem applies.

Theorem 2.7.9 Let V n be an n dimensional Riemannian space, n � 2; which admits a conformal algebra

GCK , a homothetic algebra GHV and a Killing algebra GKV ; then

i) GKV � GHV � GCV .

ii) for arbitrary n, GH�K = GHV �GHV \GKV ; then 0 � dimGH�K � 1; that is, V n admits at most one
HV.

iii) V 2 admits an in�nite dimentional conformal algebra GCV ,

iv) for n > 2, 0 � dimGCV � 1
2 (n+ 1) (n+ 2) :

In the following by the term proper conformal algebra we mean the algebra of CKVs which are not HV/KVs.

A generalization of theorem 2.7.6 for spaces which admit a gradient CKV is the following.

Theorem 2.7.10 If V n admits a gradient CKV then there exists a coordinate system in which the line element

can be written as follows

ds2 = f2 (xn)
�
dxn + hAB

�
xA
�
dxAdxB

�
where A;B = 1; 2; :::n� 1. In these coordinates the CKV is XC = @xn with conformal factor  =

f;xn

f . In the

case in which f (xn) = exp (xn) ; then  = 1, hence, XC becomes HV and if f;xn = 0, XC becomes KV.

Two metrics gij ; �gij are conformally related if �gij = N2gij where the function N2 is the conformal

factor. If � is a CKV of the metric �gij so that L��gij = 2� �gij ; then � is also a CKV of the metric gij , that is

L�gij = 2 gij with conformal factor  
�
xk
�

 = � N2 �NN;i�i: (2.88)

9For the conformal factor of a sp.CKV holds  ;ij = 0; that is,  ;i is a gradient KV. A Riemannian space admits a sp.CKV if

and only if admits a gradient KV and a gradient HV [22].
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The last relation implies that two conformally related metrics have the same conformal algebra, but with dif-

ferent subalgebras; that is, a KV for one may be proper CKV for the other. This is an important observation

which shall be useful later. A special class of conformally related metrics are the conformally �at metrics. A

space V n is conformally �at if the metric gij of V n satis�es the relation gij = N2sij where sij is the metric of

a �at space which has the same signature with gij .

For conformally �at spaces the following proposition aplies.

Proposition 2.7.11 Let V n be an n-dimensional Riemannian space, n � 2;
i) If V n; n > 2 is conformally �at then V n admits a conformal algebra of dimension 1

2 (n+ 1) (n+ 2) .

ii) A three dimensional space is conformally �at if the Cotton-York tensor

Cij = 2"ikr
�
Rjk �

1

4
�jk

�
;r

vanishes.

iii) V n; n � 4 is conformally �at if the Weyl tensor

Rijkr = Cijkr +
2

n� 2
�
gi[kRr]j � gj[kRr]i

�
� 2

(n� 1) (n� 2)Rgi[kgr]j

vanishes.

iv) If V n; n > 3 is a maximally symmetric space then V n is conformally �at.

v) All two dimensional spaces are conformally �at .

A result which will be used in subsequent sections is the following.

Example 2.7.12 (The conformal algebra of the �at space.) Consider a �at space of dimension n > 2

with metric

ds2 = "dt2 + �ABdy
AdyB ; " = �1:

The conformal algebra of the space consists of the following vectors

n� gradient KVs,

K1
G = @t ; K

A
G = @A

n(n�1)
2 non gradient KVs (rotations).

X1A
R = yA@t � "t@A

XAB
R = yB@A � yA@B

one gradient HV

H = t@t +
X
A

yA@A
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n special CKVs

X1
C =

1

2

 
t2 � "

X
A

�
yA
�2!

@t + t
X
A

yA@A

XA
C = tyA@t +

1

2

0@"t2 + �yA�2 � X
B 6=A

�
yB
�21A @A + y

A
X
B 6=A

yB@B

where yA = 1:::n� 1 with conformal factor  1C = t and  AC = yA:

For n > 2 the �at space does not admit proper (non special) CKVs.

For n = 2 the vector �eld

X =
�
f1
�
t+ i

p
"x
�
� f2

�
t� i

p
"x
�
+ c0

�
@t + i

p
"
�
f1
�
t+ i

p
"x
�
+ f2

�
t� i

p
"x
��
@x

is the generic CKV, that is, it includes the KVs, the HV, and the CKVs.

2.7.3 Symmetries of the connection

Let � be the generator of an in�nitesimal transformation of (2.81). In a Riemannian space with metric gij we

have the identity

L��
i
jk = gir

h
(L�grk);j + (L�grj);k � (L�gjk);r

i
: (2.89)

If � is a HV or KV then from (2.89) follows that L��ijk vanishes, which implies that the �
i
jk are invariant

under the action of transformation (2.81).

De�nition 2.7.13 The in�nitesimal generator � of the point transformation (2.81) caries a geodesic into a

geodesic and also preserves the a¢ ne parameter i¤ the Lie derivative of connection coe¢ cients �ijk with respect

to � vanishes, that is i¤

L��
i
jk = 0 (2.90)

The in�nitesimal generator � is called an A¢ ne Killing vector or A¢ ne collineation (AC).

ACs of V n form a Lie algebra, which is called A¢ ne algebra, GAC . Obviously the homothetic algebra10

GHV ; is a subalgebra of GAC , GHV � GAC :We shall say that a spacetime admits proper ACs when dimGHV �
dimGAC .

For instance, in the case of �at space condition (2.90) becomes �i;jk = 0; therefore, the general solution

is �i = Aijx
j+Bi where Aij ; B

i are n (n+ 1) constants. Therefore the �at space admits a n (n+ 1) dimensional

A¢ ne algebra (including the KVs and the HV). We have the inverse result.

Theorem 2.7.14 If an n dimensional Riemannian space V n admits an A¢ ne algebra GAC and dimGAC =

n (n+ 1), then V n is a �at space.

10Note that the proper CKVs do not satisfy condition (2.90).
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A generalization of a¢ ne symmetry which is of interest is the Projective collineation.

De�nition 2.7.15 The in�nitesimal generator � of the point transformation (2.81) is called a Projective

Collineation (PC) if there exists a function11 �
�
xk
�
such that

L��
i
jk = �;j�

i
k + �;k�

i
j (2.91)

or equivalently

�(i;j);k = 2gij�;k + 2gk(i�;j):

The function � is called the projective function. If the projective function satis�es the condition �;ij = 0;

then we say that � is a special PC (sp.PC). Projective transformations transform the system of geodesics (auto

parallel curves) of V n into the same system but they do not preserve the a¢ ne parameter.

The PCs of V n form a Lie algebra which is called Projective algebra, GPC . The a¢ ne algebra GAC is a

subalgebra of GPC , GAC � GPC :

In �at space condition (2.91) gives the generic projective collineation

�i = Aijx
j +

�
Bjx

j
�
xi + Ci

where Aij ; Bj ,Ci are n (n+ 2) constants.

Theorem 2.7.16 If an n dimensional Riemannian space V n admits a projective algebra GPC ; then dimGPC �
n(n+ 2). In case dimGPC = n (n+ 2) then V n is a maximally symmetric space [23].

Some useful propositions for the existence of sp. PCs are the following [23, 24, 25].

Proposition 2.7.17 Let V n be an n dimensional Riemannian space, then

i) If V n admits a p � n dimensional Lie algebra of sp.PCs then also admits p gradient KVs and a gradient

HV and if p = n the space is �at (the reverse also holds true).

ii) A maximally symmetric space which admits a proper AC or a sp.PC is a �at space.

A Riemannian space is possible to admit more general collineations, e.g. Curvature collineations. A full

classi�cation of the collineations of a Riemannian space (with de�nite or inde�nite metric) can be found in [26].

A summary of the above de�nitiosn is given in Table 2.1.

We note that the Lie symmetries (sl (3; R)) of the free particle form the projective algebra of the two

dimensional Euclidian space. Therefore, the natural question which arises is the following:

Is there any connection between the Lie symmetries of di¤erential equations of second order and collineations?

In the following chapters this will be con�rmed and will be used to apply the Lie symmetries of DEs in

various areas of Geometry and Physics.
11 In general, � is PC if there exists a one form !i such that L��ijk = 2!(j�

i
k): In a Riemannian space, the one form !i is

necessarily closed, that is, there exist a function � such as !i = �;i:
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Table 2.1: Collineations of a Riemannian space

Collineation L�A = B A B

Killing Vector (KV) gij 0

Homothetic vector (HV) gij 2 gij ;  ;i = 0

Conformal Killing vector (CKV) gij 2 gij ;  ;i 6= 0

A¢ ne Collineation (AC) �ijk 0

Proj. Collineations (PC) �ijk 2�(;j�
i
k); �;i 6= 0

Sp. Proj. collineation (sp.PC) �ijk 2�(;j�
i
k); �;jk = 0



Part II

Symmetries of ODEs
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Chapter 3

Lie symmetries of geodesic equations

3.1 Introduction

In a Riemannian space the a¢ nely parameterized geodesics are determined uniquely by the metric. Therefore

one should expect a close relation between the geodesics as a set of homogeneous ordinary di¤erential equations

(ODEs) linear in the highest order term and quadratic non-linear in �rst order terms, and the metric as a second

order symmetric tensor. A system of such ODEs is characterized (perhaps not fully) by its Lie symmetries and

a metric by its collineations. Therefore it is reasonable to expect that the Lie symmetries of the system of

geodesics of a metric will be closely related with the collineations of the metric. That such a relation exists it is

easy to see by the following simple example. Consider on the Euclidian plane a family of straight lines parallel to

the x�axis. These curves can be considered either as the integral curves of the ODE d2y
dx2 = 0 or as the geodesics

of the Euclidian metric dx2+dy2. Subsequently consider a symmetry operation de�ned by a reshu ing of these

lines without preserving necessarily their parametrization. According to the �rst interpretation this symmetry

operation is a Lie symmetry of the ODE �y = 0 and according to the second interpretation it is a (special)

projective symmetry of the Euclidian two dimensional metric.

What has been said for a Riemannian space can be generalized to a space in which there is only a linear

connection. In this case the geodesics are called autoparallels (or paths) and they comprise again a system of

ODEs linear in the highest order term and quadratic non-linear in the �rst order terms. In this case one is

looking for relations between the Lie symmetries of the autoparallels and the projective or a¢ ne collineations

of the connection.

The above matters have been discussed extensively in a series of interesting papers. Classic is the work of

Katzin and Levin [27, 28, 29]. Important contributions have also been done by Aminova [30, 31, 32, 33, 34],

Prince and Crampin [35] and many others. More recent is the work of Feroze et al [36]. In [36] they have

considered the KVs of the metric and their relation to the Lie symmetries of the system of a¢ nely parameterized

41
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geodesics of maximally symmetric spaces of low dimension. In the same paper a conjecture is made, which

essentially says that the maximally symmetric spaces of non-vanishing curvature do not admit further Lie

symmetries.

In the following we consider the set of autoparallels - not necessarily a¢ nely parameterized - of a symmetric

connection. We �nd that the major symmetry condition relates the Lie symmetries with the special projective

symmetries of the connection. A similar result has been obtained by Prince and Crampin in [35] using the

bundle formulation of second order ODEs.

Furthermore, because the geodesic equations follow from the variation of the geodesic Lagrangian de�ned by

the metric and due to the fact that the Noether symmetries are a subgroup of the Lie group of Lie symmetries

of these equations, one should expect a relation / identi�cation of the Noether symmetries of this Lagrangian

with the projective collineations of the metric or with its degenerates. Recent work in this direction has been by

Bokhari et all [37, 38] in which the relation of the Noether symmetries with the KVs of some special spacetimes

is discussed.

In section 3.2 we derive the Lie symmetry conditions for a general system of second order ODE polynomial

in the �rst derivatives. In section 3.4 we apply these conditions in the special case of Riemannian spaces and

in Theorem 3.4.1 we give the Lie symmetry vectors in terms of the special projective collineations of the metric

and their degenerates. In section 3.4.1 we give the second result of this work, that is Theorem 3.4.2, which

relates the Noether symmetries of the geodesic Lagrangian de�ned by the metric with the homothetic algebra

of the metric and comment on the results obtained so far in the literature. Finally in section 3.5 we apply the

results to various cases and eventually we give the Lie symmetries, the Noether symmetries and the associated

conserved quantities of Einstein spaces, the Gödel spacetime, the Taub spacetime and the Friedman Robertson

Walker spacetimes.

3.2 The Lie symmetry conditions in an a¢ ne space

We consider the system of ODEs:

�xi + �ijk _x
j _xk +

nX
m=0

P ij1:::jm _x
j1 : : : _xjm = 0 (3.1)

where �ijk are the connection coe¢ cients of the space and P
i
j1:::jm

(t; xi) are smooth functions completely sym-

metric in the lower indices and derive the Lie point symmetry conditions in geometric form using the standard

approach. Equation (3.1) is quite general and covers most of the standard cases autonomous and non au-

tonomous equations. For instance for all P = 0 equation (3.1) becomes

�x+ �ijk _x
j _xk = 0 (3.2)

which are the geodesic equations. In case P i=F i and P ij1:::jm = 0 equation (3.1) becomes

�x+ �ijk _x
j _xk + F i

�
t; xi

�
= 0 (3.3)
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which are the equations of motions of a particle in a curved space under the action of the force F. Furthermore

because the �ijk�s are not assumed to be symmetric, the results are valid in a space with torsion. Obviously they

hold in a Riemannian space provided the connection coe¢ cients are given in terms of the Christofell symbols.

Following, the standard procedure (see e.g. [1, 3]) we �nd that the Lie symmetry conditions for the values

of m � 4 are1

L�P
i + 2�;t P

i + �P i;t+�
i;tt+�

j ;t P
i
:j = 0 (3.4)

L�P
i
j + �;t P

i
j + �P

i
j ;t+

�
�;k �

i
j + 2�;j �

i
k

�
P k + 2�i;tjj ��;tt �ik + 2�k;t P i:jk = 0 (3.5)

L�P
i
jk + L��

i
jk +

�
�;d �

i
(k + �;(k �

i
jdj

�
P d:j) + �P

i
:kj;t � 2�;t(j �ik) + 3�d;t P i:dkj = 0 (3.6)

L�P
i
:jkd � �;t P i:jkd + �;e �i(kP e:dj) + �P i:jkd;t + 4�e;t P i:jkde � �(;jjk�

i
d) = 0 (3.7)

and for ( _x)l ; l � 4

L�P
i
j1:::jm + P

i
j1:::jm ;t� + (2�m) �;tP ij1:::jm+

+ �;r (2� (m� 1))P ij1:::jm�1�
r
jm + (m+ 1)P

i
j1:::jm+1

�
jm+1

;t + �;jP
j
j1:::jm�1

�ijm = 0: (3.8)

From the above general relations it is possible to extract the Lie symmetry conditions for the various values

of functions P. For example the Lie symmetry conditions for the geodesic equations (3.2) are as follows.

�i;tt = 0 (3.9)

2�i;tjj ��;tt �ik = 0 (3.10)

L��
i
jk � 2�;t(j �ik) = 0 (3.11)

�(;jjk�
i
d) = 0: (3.12)

Moreover, the symmetry conditions for the system (3.3) are

L�F
i + 2�;t F

i + �F i;t+�
i;tt = 0 (3.13)�

�;k �
i
j + 2�;j �

i
k

�
F k + 2�i;tjj ��;tt �ik = 0 (3.14)

L��
i
jk � 2�;t(j �ik) = 0 (3.15)

�(;jjk�
i
d) = 0: (3.16)

In the same manner we work for more terms of P: We note the appearance of the term L��
i
jk in these

expressions.

1The detailed calculations are given in Appendix 3.A.
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3.3 Lie symmetries of autoparallel equation

Consider a Cp manifold M of dimension n, endowed with a �ijk symmetric
2 connection. In a local coordinate

system fxi : i = 1; : : : ; ng the connection �ijk@i = rj@k and the autoparallels of the connection are de�ned
by the requirement

�xi + �ijk _x
j _xk + � (t) _xi = 0 (3.17)

where t is a parameter along the paths. When � (t) vanishes, we say that the autoparallels are a¢ nely

parameterized and in this case t is called an a¢ ne parameter, that is one has (3.2). Consider the in�nitesimal

transformation

�t = t+ "�
�
t; xk

�
; �xi = xi + "�i

�
t; xk

�
(3.18)

with in�nitesimal generator

X = �
�
t; xk

�
@t + �

i
�
t; xk

�
@t: (3.19)

The autoparallels (3.17) are invariant under transformation (3.18) if

X [2]
�
�xi + �ijk _x

j _xk + � (t) _xi
�
= 0 (3.20)

where X [2] is the second prolongation of (3.19). For P ij1:::jm = 0 for m 6= 0 and P ij1 = � (t) ; �ijk
�
xk
�
+

P ijk
�
t; xk

�
= �ijk

�
t; xk

�
and from conditions (3.4)-(3.8) we have the Lie symmetry conditions for the autoparallel

equations (3.17)

�i;tt + �
i
;t� = 0 (3.21)

�;tt�
i
j � ��;t�ij � 2

h
�i;tj + �

k
;t�

i
(kj)

i
� ��;t�ij = 0 (3.22)

L��i(jk) = �2��(;j�
i
k) + ��

i
(kj);t + 2�;t(j�

i
k) (3.23)

�(;jjk�
i
d) = 0 : (3.24)

De�ne the quantity

� = �;t � ��: (3.25)

Then condition (3.23) is written (note that �;i= 0):

L��
i
(jk) = 2�(;j�

i
k) � ��i(kj);t: (3.26)

If we consider the vector �=�@t (which does not have components along @i) we compute

L��
i
(jk) = ��i(kj);t

2The coe¢ cients �ijk in general are not symmetric in the lower indices. In the autoparallel equation (3.17) the antisymmetric

part of �i
[jk]

(the torsion) does not play a role.
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hence (3.26) is written

LX�
i
(jk) = 2�(;j�

i
k): (3.27)

We observe that this condition is the condition for a projective collineation of the connection �i(jk) along

the symmetry vector X and with projecting function �. Concerning the other conditions we note that (3.22)

can be written in covariant form as follows:

�;t�
i
j � 2�i;tjj = 0 (3.28)

where �i;tjj = �i;tj + �k;t�
i
(kj) is the covariant derivative with respect to �

i
(kj) of the vector �

i
;t: Condition (3.24)

implies that �;i is a gradient KV of the metric of the space xi. Condition (3.21) is obviously in covariant form

with respect to the index i:

We arrive at the following conclusion.

a) The conditions for the Lie symmetries of the autoparallel equations (3.17) are covariant equations because

if we consider the connection in the augmented n+1 space fxi; tg, all components of � which contain an index
along the direction of t vanish, therefore the partial derivatives with respect to t can be replaced with covariant

derivatives with respect to t.

b) Equation (3.21) gives the functional dependence of �i on t and the non-a¢ ne parametrization function

�(t).

c) Equation (3.24) gives that the vector �;i is a gradient Killing vector of the n�dimensional space fxig.
d) Equation (3.22) relates the functional dependence of �i and � in terms of t.

e) Equation (3.23) is the most important equation for our purpose, because it states that the symmetry

vector (3.18) is an a¢ ne collineation in the jet space ft; xig because it preserves both the geodesics and their
a¢ ne parameter. In the space fxig the vectors �i(t,x)@xi are projective collineations because they preserve the
geodesics but not necessarily their parametrization.

In the following we restrict our considerations to the case of Riemannian connections that is the �ijk are

symmetric and the covariant derivative of the metric vanishes.

3.4 Lie and Noether symmetries of geodesic equations

We compute the Lie symmetry vectors of geodesics equations (3.2) with a¢ ne parametrization; that is, we

assume � = 0 and �ijk;t = 0: The later is a reasonable assumption because the �
i0
jk�s are computed in terms of

the metric which does not depend on the parameter t. Under these assumptions the symmetry conditions for

the geodesics equations (3.2) are (3.9)-(3.12). We proceed with the solution of this system of equations3 .

Equation (3.9) implies

�i(t; x) = Ai(x)t+Bi(x) (3.29)

3See also [35] Table II.



46 CHAPTER 3. LIE SYMMETRIES OF GEODESIC EQUATIONS

where Ai(x); Bi(x) are arbitrary di¤erentiable vector �elds.

The solution of equation (3.12) is

�(t; x) = CJ(t)S
J(x) +D(t) (3.30)

where CJ(t); D(t) are arbitrary functions of the a¢ ne parameter t and SJ(x) is a function whose gradient is a

gradient KV, i.e.

SJ(x)j(i;j) = 0: (3.31)

The index J runs through the number of gradient KVs of the metric. Condition (3.10) gives

2A(x)ijj =
�
CJ(t);tt S

J(x) +D(t);tt
�
�ij : (3.32)

Because the left hand side is a function of x only, we must have

D(t);tt =M ) D(t) =
1

2
Mt2 +Kt+ L where M;K;L constants (3.33)

CJ(t);tt = GJ = constant ) CJ(t) =
1

2
GJ t

2 + EJ t+ FJ where GJ ; EJ ; FJ constants. (3.34)

Replacing in (3.32) we �nd

2A(x)i;j =
�
GJS

J(x) +M
�
�ij ) A(x)i;j =

1

2

�
GJS

J(x) +M
�
gij (3.35)

where we have lowered the index because the connection is metric (i.e. gijjk = 0). The last equation implies

that the vector A(x)i is a conformal Killing vector with conformal factor  = 1
2 (GJS

J(x) + M). Because

A(x)[i;j] = 0 this vector is a gradient CKV.

We continue with condition (3.11) and replace �i(t; x) from (3.29)

LA�
i
jkt+ LB�

i
jk = 2�;t (;j�

i
k) = 2

�
(GJ t+ EJ)S

J(x) +Mt+K
�
j(j �

i
k) = 2 (GJ t+ EJ)S

J(x)j(j�
i
k) )

LA�
i
jk = 2GJS

J(x);(j�
i
k) (3.36)

LB�
i
jk = 2EJS

J(x);(j�
i
k): (3.37)

The last two equations imply that the vectors Ai(x); Bi(x) are special projective collineations or a¢ ne

collineations of the metric - or one of their specializations - with projective functions GJSJ(x) and EJSJ(x) or

zero respectively. Note that relations (3.36), (3.37) remain true if we add a KV to the vectors Ai(x); Bi(x) ,

therefore these vectors are determined up to a KV4 .

It is well known that in a Riemannian space a CKV Ki with conformal factor  (xi) satis�es the identity:

LK�
i
(jk) = gis

�
 ;jgks +  ;kgjs �  ;sgjk

�
: (3.38)

4Because Ai is a projective collineation and a CKV it must be a HV.



3.4. LIE AND NOETHER SYMMETRIES OF GEODESIC EQUATIONS 47

Applying this identity to the CKV Ai we �nd:

GJS
J(x);k = 0) GJS

J(x) = 2� = constant. (3.39)

This implies that Ai is a gradient HV (not necessarily proper) with homothetic factor �+ 1
2M . Furthermore

(3.35) implies:

2Ai = (2�+M)xi + 2Li )

Ai = (�+
1

2
M)xi + Li (3.40)

where Li is a non-gradient KV.

We continue with the special projective collineation vector Bi. For this vector we use the property that for

a symmetric connection the following identity, holds

LB�i(jk) = Bi;jk �RijklBl:

Replacing the left hand side from (3.37) we �nd

Bi;jk �RijklBl = 2EJSJ(x);(j�ik): (3.41)

Contracting the indices i; j we �nd �
Bi;i � (n+ 1)EJSJ(x)

�
;k
= 0 (3.42)

which implies

Bi;i = (n+ 1)EJS
J(x) + 2b (3.43)

where b =constant. In case this vector is an a¢ ne collineation then Bi;i = 2b: Using the above results we �nd

for �(t; x)

�(t; x) = CJ(t)S
J +D(t)

=

�
1

2
GJ t

2 + EJ t+ FJ

�
SJ +

1

2
Mt2 +Kt+ L

=
1

2
(GJS

J +M)t2 + (EJS
J +K)t+ FJS

J + L

We summarize the above results in the following Theorem.

Theorem 3.4.1 The Lie symmetry vector

X = �(t; x)@t + �
i(t; x)@xi

of the equation of geodesics (3.2) in a Riemannian space is generated from the elements of the special projective

algebra as follows.
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Case A. The metric admits gradient KVs. Then

a. The function

�(t; x) =
1

2

�
GJS

J +M
�
t2 +

�
EJS

J +K
�
t+ FJS

J + L; (3.44)

where GJ ;M; b;K; FJ and L are constants and the index J runs along the number of gradient KVs

b. The vector

�i(t; x) = Ai(x)t+Bi(x) +Di(x) (3.45)

where the vector Ai(x) is a gradient HV with conformal factor  = 1
2

�
GJS

J +M
�
(if it exists), Di(x) is a

non-gradient KV of the metric and Bi(x) is either a special projective collineation with projection function

EJS
J(x) or an AC and EJ = 0 in (3.44).

Case B. The metric does not admit gradient KVs. Then

a. The function

�(t; x) =
1

2
Mt2 +Kt+ L (3.46)

b. The vector

�i(t; x) = Ai(x)t+Bi(x) +Di(x); (3.47)

where Ai(x) is a gradient HV with conformal factor  = 1
2M; Di(x) is a non-gradient KV of the metric and

Bi(x) is an AC. If in addition the metric does not admit a gradient HV, then

�(t) = Kt+ L (3.48)

�i(x) = Bi(x) +Di(x): (3.49)

3.4.1 Noether symmetries and conservation laws

In a Riemannian space the equations of geodesics (3.2) are produced from the geodesic Lagrangian:

L =
1

2
gij _x

i _xj : (3.50)

The in�nitesimal generator

X = �
�
t; xk

�
@t + �

i
�
t; xk

�
@xi (3.51)

is a Noether symmetry of Lagrangian (3.50) if there exists a smooth function f(t; xi) such that

X [1]L+
d�

dt
L =

df

dt
(3.52)

where

X [1] = �
�
t; xk

�
@t + �

i
�
t; xk

�
@xi +

�
�i[1]

�
@ _xi

is the �rst prolongation of X: We compute

X [1]L =
1

2

�
�kgij;k _x

i _xj + 2
d�k

dt
gik _x

i � 2 _xi _xj d�
dt
gij

�
:
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Replacing the total derivatives in the rhs

d�

dt
= �;t + _xk�;k

d�i

dt
= �i;t + _xk�i;k

we �nd that

X [1]L =
1

2

0BB@ �kgij;k _x
i _xj + 2�i;tgij _x

j + �i;rgik _x
k _xr+

+�i;rgkj _x
k _xr � 2�;tgij _xi _xj � 2�;kgij _xi _xj _xk

1CCA :

The term
d�

dt
L =

1

2

�
�;t + _xk�;k

�
gij _x

i _xj :

Finally the Noether symmetry condition (3.52) is

�2f;t +
�
2�i;tgij � 2f;i

�
_xj � �;kgij _xi _xj _xk +

�
�kgij;k + �

k
;igik + �

k
;igkj � gij�;t

�
_xi _xj = 0:

This relation is an identity hence the coe¢ cient of each power of _xj must vanish. This results in the

equations:

�;k = 0 (3.53)

L�gij = 2

�
1

2
�;t

�
gij (3.54)

�;i;tgij = f;i (3.55)

f;t = 0 (3.56)

Condition (3.53) gives �;k = 0) � = � (t).

Condition (3.56) implies f
�
xk
�
and then condition (3.53) gives that �i is of the form:

�i = f;it+Ki(x
j): (3.57)

Then from (3.54) follows that �;t must be at most linear in t: Hence �(t) must be at most a function of t
2:

Furthermore from (3.54) follows that �i is at most a CKV with conformal factor  H =
1
2 (At+B); where A;B

are constants. We consider various cases.

Case 1: Suppose � =constant=C1. Then �i is a KV of the metric which is independent of t: This implies

that either f;i = 0 and f =constant = A = 0 or that f;i is a gradient KV. In this case the Noether symmetry

vector is:

Xi = C1@t + g
ij (f;jt+Kj(x

r)) ;

where Ki is a non-gradient KV of gij :
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Case 2: Suppose � = 2t: Then �i is a HV of the metric gij with homothetic factor 1. Then �i = Hi(x
j) ,

f;i = 0) f =constant= 0 where Hi is a HV of gij with homothetic factor  ; not necessarily a gradient HV. In

this case the Noether symmetry vector is:

Xi = 2 t@t +H
i(xr):

Case 3: �(t) = t2: Then �i is a HV of the metric gij (the variable t cancels) with homothetic factor 1: Again

f;i is a gradient HV with homothetic factor  and the Noether symmetry vector is

Xi =  t2@t + g
ijf;jt:

Therefore we have the result.

Theorem 3.4.2 The Noether Symmetries of the geodesic Lagrangian follow from the KVs and the HV of the

metric gij as follows:

X =
�
C3 t

2 + 2C2 t+ C1
�
@t +

+
�
CJS

J;i + CIKV
Ii + CIJ tS

J;i + C2H
i + C3t(GHV )

i
�
@i (3.58)

with corresponding gauge function

f(xk) = C1 + C2 + CI + CJ +
�
CIJS

J
�
+ C3 [GHV ] ; (3.59)

where SJ;i are the CJ gradient KVs, KV Ii are the CI non-gradient KVs, Hi is a HV not necessarily gradient

and (GHV )i is the gradient HV (if it exists) of the metric gij.

The importance of Theorems 3.4.1 and 3.4.2 are that one is able to compute the Lie symmetries and

the Noether symmetries of the geodesic equations in a Riemannian space by computing the corresponding

collineation vectors avoiding the cumbersome formulation of the Lie symmetry method. It is also possible to

use the inverse approach and prove that a space does not admit KVs, HVs, ACs and special PCs by using the

calculational approach of the Lie symmetry method (assisted with algebraic manipulation programmes) and

avoid the hard approach of Di¤erential Geometric methods. In Section 3.5 we demonstrate the use of the above

results.

Noether Integrals of geodesic equations

We know that, if the in�nitesimal generator (3.51) is a Noether symmetry with Noether function f; then the

quantity:

� = �

�
_xi
@L

@ _xi
� L

�
� �i @L

@ _xi
+ f (3.60)

is a First Integral of L which satis�es X�= 0; d�
dt = 0. For the Lagrangian de�ned by the metric gij ; i.e.

L = 1
2gij _x

i _xj ; we compute:

� =
1

2
�gij _x

i _xj � gij�i _xj + f: (3.61)
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In (3.58) we have computed the generic form of the Noether symmetry and the associated Noether function for

this Lagrangian. Substituting into (3.61) we �nd the following expression for the generic First Integral of the

geodesic equations:

� =
1

2

�
C3 t

2 + 2C2 t+ C1
�
gij _x

i _xj

+
�
CJS

J;i + CIKV
Ii + CIJ tS

J;i + C2H
i(xr) + C3t(GHV )

;i
�
gij _x

j

+ C1 + C2 + CI + CJ +
�
CIJS

J
�
+ C3 [GHV ] : (3.62)

From the generic expression we obtain the following �rst integrals5

CI 6= 0 : �CI = KV Ii _x
i � CI (3.63)

CJ 6= 0 : gijS
J;i _xj � CJ (3.64)

CIJ 6= 0 : tgijS
J;i _xj � SJ (3.65)

C1 6= 0 : �C1 =
1

2
gij _x

i _xj (3.66)

C2 6= 0 : �C2 = t gij _x
i _xj � gijHi _xj + C2 (3.67)

C3 6= 0 : �C3 =
1

2
t2 gij _x

i _xj � t(GHV );i _xi + [GHV ] : (3.68)

We conclude that the �rst Integrals of the Noether symmetry vectors of the geodesic equations are:

a) linear, the �I ; �J ; �IJ

b) quadratic, the �c1; �c2; �3:

These results are compatible with the corresponding results of Katzin and Levine [29].

In a number of recent papers [39, 40, 41], the authors study the relation between the Noether symmetries of

the geodesic Lagrangian. They also make a conjecture concerning the relation between the Noether symmetries

and the conformal algebra of spacetime and concentrate especially on conformally �at spacetimes. In [41] it is

also claimed that the author has found new conserved quantities for spaces of di¤erent curvatures, which seem

to be of non Noetherian character. Obviously due to the above results the conjecture/results in these papers

should be revised and the word �conformal�should be replaced with the word �homothetic�.

3.5 Applications

We apply the general Theorems 3.4.1 and 3.4.2 in various curved spaces where we determine the Lie and the

Noether symmetries of the corresponding geodesic equations.

5GHV stands for gradient HV
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3.5.1 The geodesic symmetries of Einstein spaces

Suppose Y is a projective collineation with projection function �(xk); such that

LY �
i
jk = �;j�

i
k + �;k�

i
j :

For a proper Einstein space (R 6= 0) we have Rab = R
n gab from which follows [42]

LY gab =
n(1� n)

R
�;ab � LY (lnR)gab: (3.69)

Using the contracted Bianchi identity �
Rij � 1

2
Rgij

�
;j

= 0

it follows that in an Einstein space of dimension6 n > 2 the curvature scalar R =constant and (3.69) reduces to

LY gab =
n(1� n)

R
�;ab:

It follows that if Y i generates either an a¢ ne or a special projective collineation, then �;ab = 0: Hence X
a

reduces to a KV. This means that proper Einstein spaces do not admit HV, ACs, special PCs and gradient KVs

([21, 23])

The above results and Theorem 3.4.1 lead to the following result.

Proposition 3.5.1 The Lie symmetries of the geodesic equations in a proper Einstein space with curvature

scalar R 6= 0 are given by the vectors

X = (Kt+ L) @t +D
i (x) @i

where Di(x) is a nongradient KV and K;L are constants

For the Noether symmetries of Einstein spaces we have the following

Proposition 3.5.2 The Noether symmetries of the geodesic equations in a proper Einstein space with curvature

scalar R 6= 0 are given by the vectors

X = L@t +D
i (x) @i ; f = constant

Proposition 3.5.1 extends and amends the conjecture of [36] to the more general case of Einstein spaces.

We apply the results to the maximally symmetric space of Euclidian 2d sphere.

6Recall that all two dimensional spaces are Einstein spaces.
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Euclidian 2d sphere

The geodesic Lagrangian of the Euclidian 2d sphere is

L
�
�; _�; �; _�

�
=
1

2
_�
2
+ sin2 � _�

2

and the geodesic equations are
��� 1

2
sin 2� _�

2
= 0

�� + cot� _� _� = 0

The Euclidian 2d sphere is an Einstein space with curvature scalar R = 2, therefore propositions (3.5.1) and

(3.5.2) apply. The KVs of the Euclidian 2d sphere are the elements of the so (3) Lie algebra (See example 2.7.7)

X1 = sin �@� + cos � cot�@� ; X2 = cos �@� � sin � cot�@� ; X3 = @�:

Consequently the Lie symmetries of geodesic equations are the elements of the so (3) plus the vectors @t; t@t.

Likewise the Noether symmetries are the elements of so (3) plus the vector @t. The corresponding Noether

integrals are

�1 =
_� sin2 �

�2 =
_� sin � +

1

2
_� sin 2� cos �

�3 =
_� cos � � 1

2
_� sin 2� sin �

and the Hamiltonian constant.

3.5.2 The geodesic symmetries of Gödel spacetime

The Gödel metric in Cartesian coordinates is

ds2 = �dt2 � 2eaxdtdy + dx2 � 1
2
e2axdy2 + dz2:

The geodesic Lagrangian is

L =
1

2

�
�t02 � 2eaxt0y0 + dx2 � 1

2
e2axy02 + z02

�
(3.70)

where 0 means d
ds where "s" is an a¢ ne parameter. The geodesic equations are

t00 + 2at0x0 + aeaxx0y0 = 0

x00 + aeaxt0y0 +
1

2
ae2axy02 = 0

y00 � 2ae�axt0x0 = 0

z00 = 0:
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Table 3.1: Lie algebra of the Gödel geodesic symmetries

[XI ; XJ ] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 X1 0 0 0 0 0 0 X8 0

X2 �X1 0 �X3 0 0 0 0 0 �X9 0

X3 0 X3 0 0 0 0 0 �X1 X10 �X2 �X3

X4 0 0 0 0 0 0 0 0 0 0

X5 0 0 0 0 0 X5 �X7 0 0 0

X6 0 0 0 0 �X5 0 aX7 0 0 0

X7 0 0 0 0 X7 �aX7 0 0 0 0

X8 0 0 X1 0 0 0 0 0 0 X8

X9 �X8 X9 X2 �X10 0 0 0 0 0 0 X9

X10 0 0 X3 0 0 0 0 �X8 �X19 0

The special projective algebra of the Gödel metric has as follows:

Y 1 = @z ; Y
3 = @x � ay@y ; Y 4 = @t ; Y

5 = @y ; Y
6 = z@z

Y 2 =

�
�2
a
e�ax

�
@t + y@x +

�
2e�2ar � a2y2

2a

�
@y

where Y 1 is a gradient KV (S1 = z), Y 2�5 are non gradient KVs and Y 6 is a proper AC. The Gödel spacetime

does not admit proper sp.PC [24].

Applying theorem (3.4.1) we �nd that, the Gödel spacetime admits ten Lie point symmetries as follows

X1 = @s ; X2 = s@s ; X3 = z@s ; X4 = Y 4

X5 = Y 2 ; X6 = Y 3 ; X7 = Y 5

X8 = Y 1 ; X9 = sY 1 ; X10 = Y 6

whose Lie algebra is given in Table 3.1.

There are two Lie subalgebras. One spanned by the vectors fX1; X4; X5; X6; X7; X8; X9g and a second
spanned by the vectors fX2; X3; X10g. It can be shown that the �rst subalgebra consists of the Noether sym-
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metries of the Lagrangian (3.70). The corresponding Noether integrals are

�8 = z0

�9 = sz0 � z

�4 = t0 + y0eax

�6 = x0 + ay�7

�7 = e�x
�
t0 +

1

2
y0eax

�
�5 =

2

a
e�axt0 +

3

a
y0 + 2yx0 + ay2�7:

The Noether constant corresponding to the Noether symmetry X1 = @s is the total energy i.e. the Hamiltonian.

3.5.3 The geodesic symmetries of Taub spacetime

Consider the Taub spacetime with line element

ds2 = x�
1
2

�
�dt2 + dx2

�
+ x

�
dy2 + dz2

�
: (3.71)

The geodesic Lagrangian is

L =
1

2

�
x�

1
2

�
�t02 + x02

�
+ x

�
y02 + z02

��
(3.72)

and the geodesic equations are

t00 � 1

2x
t0x0 = 0

y00 +
1

x
y0x0 = 0

z00 +
1

x
z0x0 = 0

�x� 1

4x

�
t02 + x02

�
� x

1
2

2

�
y02 + z02

�
= 0:

In order to �nd the Lie symmetries of the geodesic equations for the Taub spacetime (3.71) we need to

have the special projective algebra of (3.71). The spacetime (3.71) admits a �ve dimensional special projective

algebra7 which consists from four non gradient KVs Y 1�4 and a non gradient HV Y 5 [43].

Y1 = @t ; Y2 = z@y � y@z

Y3 = @y ; Y4 = @z

Y5 =
4

3
t@t +

4

3
x@x +

1

3
y@y +

1

3
z@z ;  = 1:

7The spacetime (3.71) does not admit proper AC or sp.PC.
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Table 3.2: Lie algebra of the Taub geodesic symmetries

[XI ; XJ ] X1 X2 X3 X4 X5 X6 X7

X1 0 X1 0 0 0 0 0

X2 �X1 0 0 0 0 0 0

X3 0 0 0 0 0 0 4
3X3

X4 0 0 0 0 X6 �X5 0

X5 0 0 0 �X6 0 0 1
3X5

X6 0 0 0 X5 0 0 1
3X6

X7 0 0 � 4
3X7 0 � 1

3X5 � 1
3X6 0

Applying theorem (3.4.1) we �nd that the geodesic equations of (3.71) admit seven Lie symmetries

X1 = @s ; X2 = s@s ; X3 = @t ; X4 = z@y � y@z

X5 = @y ; X6 = @z ; X7 =
4

3
t@t +

4

3
x@x +

1

3
y@y +

1

3
z@z

with Lie algebra is given in Table 3.1.

Similarly from Theorem 3.4.2 we have that the geodesic Lagrangian (3.72) admits a six dimensional Noether

algebra, with elements

X1; X3; X4 ; X5 ; X6 ; X8 = 2X2 +X7

and correspoding Noether integrals

�3 = x�
1
2 t0 ; �5 = xy0

�6 = xz0 ; �4 = x (zy0 � yz0)

�1 = x�
1
2

�
�t02 + x02

�
+ x

�
y02 + z02

�
�8 = s�1 �

1

3
x�

1
2

h
4xx0 + x

3
2 (yy0 + zz0)� 4tt0

i
:

3.5.4 The geodesic symmetries of a 1+3 decomposable spacetime metric

We consider next the metric which is a 1+3 decomposable, that is it has the form:

ds4 = �d�2 + U2���dx�dx� (3.73)
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Table 3.3: The conformal algebra of the 1+3 metric

K CKVs of ds23  3 # CKVs of ds21+3  1+3

1 H = xa@a  +(H) = U
�
1� 1

4
x�x�

�
1 H+

1 = � +(H) cos �@� +H sin �  +(H) sin �

1 H = xa@a  +(H) = U
�
1� 1

4
x�x�

�
1 H+

2 =  +(H) sin �@� +H cos �  +(H) cos �

1 C� =
�
�a� � 1

2
Ux�x

a
�
@�  +(C�) = �Ux� 3 Q+

� = � +(C�) cos �@� + C� sin �  +(C�) sin �

1 C� =
�
��� � 1

2
Ux�x

a
�
@�  +(C�) = �Ux� 3 Q+

�+3 =  +(C�) sin �@� + C� cos �  +(C�) cos �

�1 H = x�@�  �(H) = U
�
1 + 1

4
x�x�

�
1 H�

1 =  �(H) cosh �@� +H sinh �  �(H) sinh �

�1 H = x�@�  �(H) = U
�
1 + 1

4
x�x�

�
1 H�

2 =  �(H) sinh �@� +H cosh �  �(H) cosh �

�1 C� =
�
��� +

1
2
Ux�x

a
�
@�  �(C�) = Ux� 3 Q�

� =  �(C�) cosh �@� + C� sinh �  �(C�) sinh �

�1 C� =
�
��� +

1
2
Ux�x

a
�
@�  �(C�) = Ux� 3 Q�

�+3 =  �(C�) sinh �@� + C� cosh �  �(C�) cosh �

where Greek indices take the values 1; 2; 3: It is well known [44] that this metric admits 15 CKVs. Seven of these

vectors are KVs (the six nongradient KVs of the 3-metric r�� ; I� plus the gradient KV @� ) and nine proper

CKVs. The vectors of this conformal algebra are shown in Table 3.3.

According to Theorem 3.4.2 this metric admits the following Noether symmetries

@s ; s@� ; r�� ; I� ; @�

with �rst integrals

�s =
1

2
gijx

0ix0j

�� = � 0 ; ��+1 = s� 0 � �

�I = I
I
i x
0i ; �r = r(AB)ix

0j :

The Lie symmetries of the geodesic equations of (3.73) are the Noether symmetries plus the vectors s@s ; �@s.

3.5.5 The geodesic symmetries of the FRW metrics

In a recent paper Bokhari and Kara [38] studied the Lie symmetries of the conformally �at Friedman Robertson

Walker (FRW) metric with the view to understand how Noether symmetries compare with conformal Killing

vectors. More speci�cally they considered the conformally �at FRW metric8

8The second metric ds2 = �t�
4
3 dt2+dx2+dy2+dz2 they consider is the Minkowski metric whose Lie and Noether symmetries

are well known.
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Table 3.4: The conformal algebra of a �at 3d metric

CKV Components #  (�) Comment

PI @I 3 0 gradient KV

rAB 2�d[AxB]@d 3 0 nongradient KV

H xa@a 1 1 gradient HV

KI

h
2xIx

d � �dI(xaxa)
i
@d 3 2xI nongradient SCKV

ds2 = �dt2 + t 43
�
dx2 + dy2 + dz2

�
and found that the Noether symmetries are the seven vectors

@s; S
J ; rAB

where SJ are the gradient KVs @x@y; @z and rAB are the three nongradient KVs (generating so (3)) whereas the

vector @s counts for the gauge freedom in the a¢ ne parametrization of the geodesics. Therefore they con�rm

our Theorem 3.4.2 that the Noether vectors coincide with the KVs and the HV of the metric. Furthermore

their claim that �...the conformally transformed Friedman model admits additional conservation laws not given

by the Killing or conformal Killing vectors� is not correct.

In the following lines, we compute all the Noether point symmetries of the FRW spacetimes. To do that we

have to have the homothetic algebra of these models [45]. There are two cases to consider, the conformally �at

models (K = 0) and the non conformally �at models (K 6= 0).
In the following we need the conformal algebra of the �at metric, which in Cartesian coordinates (See

example 2.7.12) is given in Table 3.4.

Case A: K 6= 0
The metric is

ds = R2 (�)

"
�d�2 + 1�

1 + 1
4Kx

ixi
�2 �dx2 + dy2 + dz2�

#
: (3.74)

For a general R (�) this metric admits the nongradient KVs PI ; r�� (see Table 4) and does not admit a HV.

Therefore the Noether symmetries of the geodesic Lagrangian

L = �1
2
R2 (�) t02 +

1

2

R2 (�)�
1 + 1

4Kx
ixi
�2 �x02 + y02 + z02�

of the FRW metric (3.74) are:

@s ; PI ; r��
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Table 3.5: The special forms of the scale factor for |K|=1

K Proper CKV # Conformal Factor R(�) for KVs R(�) for HV

�1 P� = @� 1 (lnR (�));� c exp (�)

1 H+
1 1 -

 +(H)

R(�) (R (�) cos �) ;�
c

cos � @

1 H+
2 1

 +(H)

R(�) (R (�) sin �) ;�
c

sin � @

1 Q+
� 3 -

 +(C�)

R(�) (R (�) cos �) ;�
c

cos � @

1 Q+
�+3 3

 +(C�)

R(�) (R (�) sin �) ;�
c

sin � @

�1 H�
1 1

 �(H)

R(�) (R (�) cosh �) ;�
c

cosh � @

�1 H�
2 1

 �(H)

R(�) (R (�) sinh �) ;�
c

sinh � @

�1 Q�
� 3

 �(C�)

R(�) (R (�) cosh �) ;�
c

cosh � @

�1 Q�
�+3 3

 �(C�)

R(�) (R (�) sinh �) ;�
c

sinh � @

with Noether integrals

�s =
1

2
gijx

0ix0j ; �I = P
I
i x
0i ; �r = r(AB)ix

0j : (3.75)

Concerning the Lie symmetries we note that the FRW spacetimes do not admit ACs [46] and furthermore does

not admit gradient KVs. Therefore they do not admit special PCs. The Lie symmetries of these spacetimes are

then

@s; s@s; PI ; r�� :

For special functions R(�) it is possible to have more KVs and HV. In Table 3.5 we give the special forms

of the scale factor R(t) and the corresponding extra KVs and HV for K = �1.
From Table 3.5 we infer the following additional Noether symmetries of the FRW-like Lagrangian for special

forms of the scale factor

Case A(1): R (t) = c =constant, the space is the 1+3 decomposable.

Case A(2) K = 1; R (t) = exp (�) : In this case the space is �at and admits as Lie point symmetries the

sl (4 + 2; R) :

Case A(3a) K = 1; R (�) = c
cos � . In this case we have the additional non-gradient KVs H

+
1 ; Q

+
� : Therefore

the Noether symmetries are:

@s ; PI ; r�� ;H
+
1 ; Q

+
�
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with Noether Integrals

�s ; �I ; �r ; �H+
1
=
�
H+
1

�
i
x0i and �Q+

�
=
�
Q+�
�
i
x0i:

The Lie symmetries are

@s ; s@s ; PI ; r�� ;H
+
1 ; Q

+
�

Case A(3b) K = 1; R (�) = c
sin � : In this case we have the two nongradient KVs H

+
2 ; Q

+
�+3: The Noether

Symmetries are

@s ; PI ; r�� ;H
+
2 ; Q

+
�+3 : f = constant

with Noether Integrals

�s ; �I ; �r ; �H+
2
=
�
H+
2

�
i
x0i and �Q+

�+3
=
�
Q+�+3

�
i
x0i:

The Lie symmetries are

@s ; s@s ; PI ; r�� ;H
+
2 ; Q

+
�+3:

Case A(4a) K = �1; R (�) = c
cosh � . In this case we have the two additional nongradient KVs H

�
1 ; Q

_
� :

The Noether Symmetries are

@s ; PI ; r�� ;H
�
1 ; Q

_
�

with Noether Integrals

�s ; �I ; �r ; �H�
1
=
�
H�
1

�
i
x0i and �Q�

�
=
�
Q��
�
i
x0i:

The Lie symmetries are

@s ; s@s ; PI ; r�� ;H
�
1 ; Q

_
� :

Case A(4b) K = �1; R (�) = c
sin � ; we have the nongradient KV H�

2 ; Q
_
�+3. The Noether Symmetries are

@s ; PI ; r�� ;H
�
2 ; Q

_
�+3

with Noether Integrals

�s ; �I ; �r ; �H�
1
=
�
H�
2

�
i
x0i and �Q�

�+3
=
�
Q��+3

�
i
x0i:

The Lie symmetries are

@s ; s@s ; PI ; r�� ;H
�
2 ; Q

_
�+3:

Case B: K = 0

In this case the metric is

ds = R2 (t)
�
�dt2 + dx2 + dy2 + dz2

�
and admits three nongradient KVs PI and three nongradient KVs rAB . Therefore the Noether symmetries are

@s ;PI ; rAB : f = constant
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Table 3.6: The special forms of the scale factor for K=0

# Proper CKV Conformal Factor  R(�) for KVs R (�) for HV

1 P� = @� (lnR(�));� c exp (�)

3 M�� = x�@� + �@� x�(lnR(�));� c @

1 H = P� + x
a@a � (lnR(�)) + 1 c=� @

1 K� = 2�H+
�
xcxc � �2

�
@� �(lnR(�));�

�
��2 + r2

�
+ 2�� @ @

3 K� = 2x�H�
�
xcxc � �2

�
@� 2x� [�(lnR(�));� + 1] c=� @

with Noether Integrals

�s =
1

2
gijx

0ix0j ; �PI = P
I
i x
0i and �F = (rAB)i x

0i:

The Lie symmetries are

@s ; s@s ; PI ; rAB :

Again for special forms of the scale factor one obtains extra KVs and HV as shown in Table 3.6.

From Table 3.6 we have the following special cases.

Case B(1): R (t) = c =constant. Then the space is the Minkowski space and admits as Lie symmetries the

sl (4 + 2; R) :

Case B(2): R (t) = exp (�) : Then P� becomes a gradient HV
�
 = 1; gradient function 1

2 exp (2�)
�
: Hence

the Noether symmetries are

@s ;PI ; rAB ; 2s@s +P� ; s2@s + sP�

with Noether Integrals

�s ; �PI ; �F ; �P�
= sgijx

0ix0j � gij (P� )i x0j and �Y+1 =
1

2
s2gij _x

i _xj � s (P� )i x
0i +P� :

The Lie symmetries are

@s ; s@s ; PI ; rAB ; P� ; s
2@s + sP� :

Case B(3): R (t) = ��1 : Then we have four additional nongradient KVs, the H; and K�; and the Noether

symmetries are:

@s ; PI ; rAB ; H ; K�

with Noether Integrals

�s ; �PI ; �F ; � H = (H)i x
0i and �K�

= (K�)i x
0i:

The Lie symmetries are:

@s ; s@s ; PI ; rAB ; H ; K�:
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3.6 Conclusion

We derived the symmetry conditions for the admittance of a Lie point symmetry by the equations of autoparallels

(paths) in an a¢ ne space. The important conclusion is that the Lie symmetry vector is an A¢ ne Collineation

in the jet space ft; xig ( it preserves both the autoparallels and their parametrization) while in the space fxig
the vectors �i(t; x)@xi are projective collineations (they preserve the autoparallels but not necessarily their

parametrization).

The symmetry conditions are applied to the geodesics of a Riemannian space were they are solved and the

generic Lie symmetry vector is obtained in terms of the special projective algebra (and its degeneracies KVs,

HKV, ACs) of the metric. Furthermore we derived the Noether symmetries of the geodesic Lagrangian and it

was proved that Noether symmetries are generateted from the homothetic algebra of the metric. We applied

the results to the case of Einstein spaces and obtained the Lie symmetry vectors in terms of the KVs of the

metric, in agreement with the conjecture made in [36].

Finally, the Lie and the Noether symmetries of the geodesic equations were computed in the Gödel spacetime,

the Taub spacetime and the Friedman Robertson Walker spacetimes. In each case the Noether symmetries were

computed explicitly together with the corresponding �rst integrals.
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3.A The determining equations

Below we calculate the determining equations for the system (3.1). Let X = �
�
t; xk

�
@t + �i

�
t; xk

�
@t be the

in�nitesimal generator of a one parameter point transformation. X is a Lie symmetry of (3.1) if the following

condition, holds

�i[2] = �X [1]

 
�ijk _x

j _xk +
nX

m=0

P ij1:::jm _x
j1 : : : _xjm

!
(3.76)

where

X [2] = X + �i[1]@ _xi + �
i
[2]@ _xi

is the second prolongation of X and �i[1]; �
i
[2] are the prolongation functions

�i[1] =
�
�i;t
�
+
�
�i;k � �;t�ik

�
_xk �

�
�;j
�
_xi _xj

�i[2] =
�
�i;tt
�
+
�
2�i;tj � �;tt�ij

�
_xj +

�
�i;jk � 2�;tj�ik

�
_xj _xk +

�
�
�;jk

�
_xi _xj _xk +

�
�i;j � �;j _xi

�
�xj � 2�xi

�
�;j _x

j + �;t
�
:

Replacing �xi from (3.1) we �nd eventually

�i[2] =
�
�i;tt � �i;jP j + 2�;tP i

�
+

+
�
2�i;tr � �;tt � �i;jP jr + �;jP j�ir + 2�;rP i + 2�;tP ir

�
_xr +

+

0BB@ �i;rk � 2�;tr�
i
k � �i;jP

j
rk � �i;j�

j
rk+

+�;jP
j
r �
i
k + 2�;rP

i
k + 2�;t�

i
rk + 2�;tP

i
rk

1CCA _xr _xk

+

0BB@ ��;rk�is � �i;jP
j
rks + �;jP

j
rk�

i
s+

+3�;r�
i
ks + 2�;tP

i
rks + 2�;rP

i
j1j2

1CCA _xs _xr _xk

+

"
�
 
�i;j

nX
m=4

P jj1:::jm _x
j1 : : : _xjm

!
+ �;j _x

i
nX

m=3

P jj1:::jm _x
j1 : : : _xjm

#
+

+

"
2�;r _x

r
nX

m=3

P jj1:::jm _x
j1 : : : _xjm +

 
2�;t

nX
m=4

P jj1:::jm _x
j1 : : : _xjm

!#
We have computed the lhs of (3.76). It remains to compute the rhs

X [1]

 
�ijk _x

j _xk +
nX

m=0

P ij1:::jm _x
j1 : : : _xjm

!
= X [1]

�
�ijk _x

j _xk
�
+X [1]

 
nX

m=0

P ij1:::jm _x
j1 : : : _xjm

!
:

Analysis of the term X [1]
�
�ijk _x

j _xk
�
:

X [1]
�
�ijk _x

j _xk
�
= X

�
�ijk
�
_xj _xk + 2�ijk _x

j� _xk

=
�
��ijk;t + �

l�ijk;l
�
_xj _xk + 2�ijk _x

j�k[1]:
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hence

X [1]
�
�ijk _x

j _xk
�
= 2�irs�

s
;t _x

r � 2�irs�;r _xs _xr _xr +

+
�
��irk;t + �

l�irk;l + 2�
i
rs�

s
;k � 2�irs�;t�sk

�
_xr _xk:

Analysis of the term X [1]

�
nP

m=0
P ij1:::jm _x

j1 : : : _xjm
�
:

X [1]

 
nX

m=0

P ij1:::jm _x
j1 : : : _xjm

!
=

nX
m=0

�
XP ij1:::jm

�
_xj1 : : : _xjm +

nX
m=0

mP ij1:::jm _x
j1 : : :

�
�jm[1]

�
The �rst term becomes

nX
m=0

�
XP ij1:::jm

�
_xj1 : : : _xjm =

nX
m=0

�
P ij1:::jm ;t� + P

i
j1:::jm ;r�

r
�
_xj1 : : : _xjm

=
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i
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r
�
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i
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r
�
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+
�
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i
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r
�
_xk _xs +

�
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i
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_xk _xs _xl +
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�
P ij1:::jm ;t� + P

i
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r
�
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The second term
nX

m=0

mP ij1:::jm
�
� _xj1

�
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nX
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The term
nP

m=0
mP ij1:::jm _x

j1 : : : _xjm�1�jm;t can be written as

nX
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i
ks�

k
;t _x

s + 3P iksr�
k
;t _x

s _xr +
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�
nX
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!
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Finally we have
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Collecting terms and setting the coe¢ cient of each product of _xj1 equal to zero we obtain determining

equations (3.4)-(3.8).�
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:
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the rest terms gives
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+

nX
m=4

�
P ij1:::jm ;t�

�
_xj1 : : : _xjm +

+

 
2�;t

nX
m=4

P ij1:::jm _x
j1 : : : _xjm �

nX
m=4

mP ij1:::jm _x
j1 : : : _xjm

!
+

+�;r _x
r

 
2

nX
K=m�1

P ij1:::jK _x
j1 : : : _xjK �

nX
K=m�1

KP ij1:::jm _x
j1 : : : _xjK

!
+

+

 
nX

C=m+2

CP ij1:::jc�
j1
;t : : : _x

jc

!
+ �;j _x

i

 
nX

K=m�1
P jj1:::jK _x

j1 : : : _xjK

!
:



Chapter 4

Motion on a curved space

4.1 Introduction

The study of Lie point symmetries of a given system of ODEs consists of two steps: (a) the determination of the

conditions, which the components of the Lie symmetry vectors must satisfy and (b) the solution of the system

of these conditions. These conditions can be quite involved, but today it is possible to use algebraic computing

programs to derive them (for a review see [47]). Therefore the essential part of the work is the second step. For

a small number of equations (say up to three) one can possibly employ again computer algebra to look for a

solution of the system. However for a large number of equations such an attempt is prohibitive and one has to

go back to traditional methods to determine the solution.

In Chapter 3 the Lie and the Noether point symmetries of the geodesic equations were calculated in terms

of the special projective algebra of the space. The purpose of the present chapter is to extend the previous

results and to provide an alternative way to solve the system of Lie symmetry conditions for the second order

equations of the form

�xi + �ijk _x
j _xk = F i: (4.1)

Here �ijk(x
r) are general functions, a dot over a symbol indicates derivation with respect to the parameter t

along the solution curves and F i(xj) is a Cp vector �eld. This type of equations is important, because it contains

the equations of motion of a dynamical system in a Riemannian space, in which the functions �ijk(x
r) are the

connection coe¢ cients of the metric and t being an a¢ ne parameter along the trajectory. In the following we

assume this identi�cation of �ijk�s
1 .

The key idea, which is proposed here, is to express the system of Lie symmetry conditions of (4.1) in a

Riemannian space in terms of collineation (i.e. symmetry) conditions of the metric. If this is achieved, then the

1Of course it is possible to look for a metric for which a given set of �ijk are the connection coe¢ cients, or, even avoid the metric

altogether. However we shall not attempt this in the present work. For such an attempt see [9].

67



68 CHAPTER 4. MOTION ON A CURVED SPACE

Lie point symmetries of (4.1) will be related to the collineations of the metric, hence their determination will

be transferred to the geometric problem of determining the generators of a speci�c type of collineations of the

metric. One then can use of existing results of Di¤erential Geometry on collineations to produce the solution

of the Lie symmetry problem.

The natural question to ask is: If the Lie symmetries of the dynamical systems moving in a given Riemannian

space are from the same set of collineations of the space, how will one select the Lie symmetries of a speci�c

dynamical system? The answer is as follows. The left hand side of Equation (4.1) contains the metric and

its derivatives and it is common to all dynamical systems moving in the same Riemannian space. Therefore

geometry (i.e. collineations) enters in the left hand side of (4.1) only. A dynamical system is de�ned by the

force �eld F i; which enters into the right hand side of (4.1) only. We conclude that there must exist constraint

conditions, which will involve the components of the collineation vectors and the force �eld F i, which will select

the appropriate Lie symmetries for a speci�c dynamical system.

Indeed Theorem 4.2.2 (see section 4.2) relates the Lie symmetry generators of (4.1) with the elements of

the special projective Lie algebra of the space where motion occurs, and provides these necessary constraint

conditions.

What has been said for the Lie point symmetries of (4.1) applies also to Noether symmetries. The Noether

symmetries are Lie point symmetries which satisfy the constraint

X [1]L+ L
d�

dt
=
df

dt
: (4.2)

Theorem 4.3.2 (see section 4.3) relates the generators of Noether symmetries of (4.1) with the homothetic

algebra of the metric and provides the required constraint conditions.

In the following sections we apply Theorem 4.2.2 and Theorem 4.3.2 to determine all two dimensional (section

4.4) and all three dimensional (section 4.5) Newtonian dynamical systems moving under the action of a general

force F i; which admit Lie and Noether point symmetries. In section 4.6 we apply the results to determine the

conservative dynamical systems which move in a two-dimensional space of constant non-vanishing curvature

and admit Noether point symmetries. The case of a conservative force has been addressed previously for the

two dimensional case by Sen [48] and more recently by Damianou et al [49] and for the three dimensional by

[50]: As it will be shown both treatments are incomplete. We demonstrate the use of the results in two cases.

The non-conservative Kepler - Ermakov system [51, 52, 53] and the case of the Hènon Heiles type potentials

[54, 55]. In both cases we recover and complete the existing results.

4.2 Lie symmetries of a dynamical system in a Riemannian space

I section 3.2 the Lie symmetry conditions were calculated for a general system of ODEs polynomial in the

velocities, therefore the Lie symmetry conditions (determining equations) for equation (4.1) with F i = F i
�
t; xk

�
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are

L�F
i + 2�;t F

i + �F i;t + �
i;tt= 0 (4.3)�

�;k �
i
j + 2�;j �

i
k

�
F k + 2�i;tjj ��;tt �ij = 0 (4.4)

L��
i
(jk) = 2�;t(j �

i
k) (4.5)

�(;ijj�
k
r) = 0: (4.6)

Equation (4.5) means that �i is a projective collineation of the metric with projective function �;t. Further-

more, equation (4.6) means that �;j is a gradient KV of gij ; that is, �
i is a special projective collineation of the

metric. Equation (4.3) gives2�
L�g

ij
�
Fj + g

ijL�Fj + 2�;tg
ijFj + �g

ijFj;t + �
i
;tt = 0: (4.7)

This equation restricts �i further because it relates it directly to the metric symmetries. Finally equation (4.4)

gives

��ij�;tt +
�
�;j�

i
k + 2�

i
j�;k

�
F k + 2�i;tj + 2�

i
jk�

k
;t = 0: (4.8)

Equations (4.7),(4.8) are the constraint conditions which relate the components �; �i of the Lie point

symmetry vector with the vector F i.

Proposition 4.2.1 The Lie point symmetries of the dynamical system (4.1) where F i = F i
�
t; xk

�
; are gener-

ated from the special projective algebra of the space where the motion occurs.

In the case where the dynamical system (4.1) is autonomous and conservative, that is, F i = gijV;j
�
xk
�

and V;j is not a gradient KV of the metric, the solution of the determining equations is given by the following

theorem (for a proof see Appendix 4.A).

Theorem 4.2.2 The Lie point symmetries of the equations of motion of an autonomous conservative system

�xi + �ijk _x
j _xk = gijV;i (4.9)

in a general Riemannian space with metric gij ; are given in terms of the generators Y i of the special projective

Lie algebra of the metric gij as follows.

Case I Lie symmetries due to the a¢ ne algebra. The resulting Lie symmetries are

X =

�
1

2
d1a1t+ d2

�
@t + a1Y

i@i (4.10)

where a1 and d1 are constants, provided the potential satis�es the condition

LY V
;i + d1V

;i = 0: (4.11)

2Recall that L�Fj = F;jk�
k + �k;j F;k :
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Case IIa The Lie symmetries are generated by the gradient homothetic algebra and Y i 6= V ;i. The Lie

symmetries are

X = 2 

Z
T (t) dt@t + T (t)Y

i@i (4.12)

where the function T (t) is the solution of the equation T;tt = a1T provided the potential V (xi) satis�es the

condition

LYV
;i + 4 V ;i + a1Y

i = 0: (4.13)

Case IIb The Lie symmetries are generated by the gradient HV Y i = �V ;i; where � is a constant. In this case

the potential is the gradient HV of the metric and the Lie symmetry vectors are

X =

 
�c1

p
 k cos

 
2

r
 

k
t

!
+ c2

p
 k sin

 
2

r
 

k
t

!!
@t +

 
c1 sin

 
2

r
 

k
t

!
+ c2 cos

 
2

r
 

k
t

!!
H ;i@i:

(4.14)

Case IIIa The Lie symmetries due to the proper special projective algebra. In this case the Lie symmetry

vectors are (the index J counts the gradient KVs)

XJ = (C (t)SJ +D (t)) @t + T (t)Y
i@i (4.15)

where the functions C(t); T (t); D(t) are solutions of the system of simultaneous equations

D;t =
1

2
d1T ; T;tt = a1T ; T;t = c2C ; D;tt = dcC ; C;t = a0T (4.16)

and in addition the potential satis�es the conditions

LY V
;i + 2a0SV

;i + d1V
;i + a1Y

i = 0 (4.17)�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
c2 � dc�ij = 0: (4.18)

Case IIIb Lie symmetries due to the proper special projective algebra and Y iJ = �SJV
;i; where V ;i is a gradient

HV and S;iJ is a gradient KV. The Lie symmetry vectors are

XJ = (C (t)SJ + d1) @t + T (t)�SJV
;i@i (4.19)

where the functions C (t) and T (t) are computed from the relations

T;tt + 2C;t = �1T ; T;t = �2C ; C;t = a0T (4.20)

and the potential satis�es the conditions

LYJ
V ;i + �1SJV

;i = 0 (4.21)

C
�
�1SJ�

i
j + 2SJ ;j V

;i
�
+ �2

�
2�SJ;jV

:i + (2�SJ � a0SJ) �ij
�
= 0: (4.22)
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An immediate important application of Theorem 4.2.2 concerns the important case of spaces of constant

curvature. As we have seen already (see also [23]) the special projective algebra of a space of constant curvature

consists of non-gradient KVs only. Therefore we have the following corollary.

Corollary 4.2.3 The Lie point symmetries of the equations of motion of an autonomous conservative system

(4.9) in a space of constant curvature are elements of the non-gradient KVs algebra.

This implies that in spaces of constant curvature it is enough to consider Case I only.

If the system (4.1) is autonomous but not conservative moving under the action of the external force F i

the previous results remain valid except the cases IIb, IIIb which are not applicable. We emphasize that (with

appropriate adjustments) the results apply to a¢ ne spaces in which there exists a connection �ijk but not

necessarily a metric.

4.3 Noether symmetries of a dynamical system in a Riemannian

space

Consider a particle moving in a Riemannian space with metric gij under the in�uence of the potential V
�
t; xk

�
:

The Lagrangian describing the motion of the particle is

L =
1

2
gij _x

i _xj � V
�
t; xk

�
: (4.23)

A Lie symmetry vector X = �
�
t; xk

�
@t + �i

�
t; xk

�
@xi is a Noether symmetry of the Lagrangian if it satis�es

the condition

X[1]L+
d�

dt
L =

df

dt
(4.24)

where X[1] is the �rst prolongation of X: It can be shown that condition (4.24) is equivalent to the system of

equations:

V;k�
k + V �;t + �V;t = �f;t (4.25)

�i;tgij � �;jV = f;j (4.26)

L�gij = 2

�
1

2
�;t

�
gij (4.27)

�;k = 0: (4.28)

Equation (4.28) implies � = � (t), and then from (4.27) follows that �i is a HV. Therefore we have the

following result

Proposition 4.3.1 The Noether symmetries of the Lagrangian (4.23) are generated, from the homothetic al-

gebra of the metric gij of the space where motion occurs.
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In the case the potential is autonomous, that is V
�
t; xk

�
= V

�
xk
�
; the solution of (4.25)-(4.28) relates the

Noether symmetries of (4.23) with the elements of the homothetic algebra of the metric gij as follows.

Theorem 4.3.2 The Noether symmetries of an autonomous conservative dynamical system moving in a Rie-

mannian space with metric gij described by the Lagrangian (4.23) are generated from the homothetic Lie algebra

of the metric gij as follows.

Case I. The KVs and the HV satisfy the condition:

V;kY
k + 2 Y V + c1 = 0: (4.29)

The Noether symmetry vector is

X = 2 Y t@t + Y
i@i; f = c1t; (4.30)

where T (t) = a0 6= 0:
Case II. The metric admits the gradient KVs SJ , the gradient HV H ;i and the potential satis�es the condition

V;kY
;k + 2 Y V = c2Y + d: (4.31)

In this case the Noether symmetry vector and the Noether function are

X = 2 Y

Z
T (t) dt@t + T (t)S

;i
J @i ; f

�
t; xk

�
= T;tSJ

�
xk
�
+ d

Z
Tdt: (4.32)

and the functions T (t) and K (t) (T;t 6= 0) are computed from the relations

T;tt = c2T ; K;t = d

Z
Tdt+ constant (4.33)

where c2 is a constant.

In addition to the above there is also the standard Noether symmetry @t.

The �rst integrals for the Noether symmetry vectors have as follows.

Proposition 4.3.3 For the Noether vector @t the Noether integral is the Hamiltonian E. For the Noether vectors

of Case I and Case II the Noether integrals are respectively:

�I = 2 Y tE� gijY i _xj + c1t (4.34)

�II = 2 Y E
Z
Tdt � TgijHi _xj + T;tH + d

Z
Tdt: (4.35)

For the case of motion in spaces of constant curvature we have the following result.

Proposition 4.3.4 The Noether symmetry vectors of the Lagrangian (4.23) of an autonomous conservative

dynamical system moving in a space of constant curvature, are generated by the non-gradient KVs of the space:

Hence only Case I survives.

In the following sections, the autonomous non linear Newtonian systems which admit Lie and Noether point

symmetries are calculated with the use of Theorems 4.2.2 and 4.3.2.
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Table 4.1: Special projective algebra of the 2d Euclidian space

Collineation Gradient Non-gradient

Killing vectors @x ; @y y@x � x@y

Homothetic vector x@x + y@y

A¢ ne Collineation x@x ; y@y y@x ; x@y

Sp. Projective collineation x2@x + xy@y ; xy@x + y
2@y

4.4 2D autonomous systems which admit Lie/Noether point sym-

metries

In this section we apply Theorems 4.2.2 and 4.3.2 to determine all Newtonian dynamical systems with two

degrees of freedom which admit at least one Lie/Noether symmetry. The reason for considering this problem

is that a Lie/Noether symmetry lead to invariants/�rst integrals, which can be used in many ways in order to

study a given system of di¤erential equations e.g. to simplify, to determine the integrability of the system etc.

Because the Newtonian systems move in E2 we need to consider the generators of the special projective algebra

of E2 and then use the constraint conditions for each case to determine the functional form of the force �eld

F i:

We consider Cartesian coordinates so that the metric of the space is

ds2 = dx2 + dy2:

In Table 4.1 we give the elements of the projective Lie algebra of E2 in Cartesian coordinates. We note that

the special projective algebra of the two dimensional Lorentz space

ds2 = �dx2 + dy2

is the same with that of the space E2; with the di¤erence that the non gradient Killing vector is replaced

with y@x + x@y: We shall use this observation in later chapters where we study the Lie and the Noether point

symmetries in scalar �eld cosmology.

We examine the cases where the force F i (a) is non-conservative and (b) is conservative. In certain cases the

results are common to both cases, however for clarity it is better to consider the two cases separately. Finally

for economy of space, easy reference and convenience we present the results in the form of Tables.

In order to indicate how the results of the Tables are obtained we consider Case I & II of theorem 4.2.2.
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Table 4.2: Two dimensional Newtonian systems admit Lie symmetries (1/4)

Lie # F i ! Fx (x; y) =F
�
(r; �) Fy (x; y) =F

�
(r; �)

d
2 t@t + @x e�dxf (y) e�dxg (y)

d
2 t@t + @y e�dyf (x) e�dyg (x)

d
2 t@t + (y@x � x@y) f (r) e�d� g (r) e�d�

d
2 t@t + x@x + y@y x(1�d)f

�
y
x

�
x(1�d)g

�
y
x

�
d
2 t@t + x@x x(1�d)f (y) x�dg (y)

d
2 t@t + y@y y�df (x) y(1�d)g (x)

d
2 t@t + y@x

�
x
y g (y) + f (y)

�
e�d

x
y g (y) e�d

x
y

d
2 t@t + x@y f (x) e�d

y
x

�
y
xf (x) + g (x)

�
e�d

y
x

The Lie point symmetry vectors for Case I are given by (4.10) i.e.

X =

�
1

2
d1a1t+ d2

�
@t + a1Y

i@i; (4.36)

where a1 and d1 are constants and Y i is a vector of the a¢ ne algebra of E2: The force �eld must satisfy condition

(4.11) i.e.

LY F+ d1F = 0:

Writing

F = F x@x + F
y @y and Y = Y x@x + Y

y @y

we obtain a system of two di¤erential equations involving the unknown quantities F x; F y and the known

quantities Y x; Y y: For each vector Y we replace Y x; Y y from Table 4.1 and solve the system to compute

F x; F y: For example for the gradient KV @x we have Y x = 1; Y y = 0 and �nd the solution F x (x; y) = e�dxf (y) ;

F y (x; y) = e�dxg (y) where d is a constant and f (y) ; g (y) are arbitrary functions of their argument. Working

similarly we determine the form of the force �eld for all cases of Theorem 4.2.2. The results are given in Tables

4.2 and 4.3.

Case III: Y i is a special PC. There is only one dynamical system in this case, which is the forced oscillator,

acted upon the external force F i = (!x+ a) @x + (!y + b) @y, that is the system is conservative. As it can be

seen from Table 4.1 the Lie symmetry algebra of the forced oscillator is the sl (4; R) : This result agrees with

that of [6].



4.4. 2D AUTONOMOUS SYSTEMS WHICH ADMIT LIE/NOETHER POINT SYMMETRIES 75

Table 4.3: Two dimensional Newtonian systems admit Lie symmetries (2/4)

Lie # V ! Fx (x; y) Fy (x; y)

T (t) @x �mx+ f (y) g (y)

T (t) @y f (x) �my + g (x)

2
R
T (t) dt @t + T (t) (x@x + y@y) �m

4 x+ x
�3f

�
y
x

�
�m

4 y + y
�3g

�
y
x

�

Except the above three cases we have to consider the Lie point symmetries generated from linear combinations

of the vectors Y i: It is found that the only new cases are the ones given given in Tables 4.14 and 4.15

We assume now F i to be conservative with potential function V (x; y): In this case the results of the previous

Tables di¤erentiate. The results of the calculations are given in Tables 4.4, 4.16 and 4.17 .

As it was stated in section 4.1 the determination of all two dimensional potentials which admit a Lie point

symmetry has been addressed previously in [48] and [49]. Our results contain the results of both these papers

and additionally some cases missing, mainly in the linear combinations of the HV with the KVs.

4.4.1 2D autonomous Newtonian systems which admit Noether symmetries

Noether symmetries are associated with a Lagrangian. Therefore we consider only the case in which the force

F i is conservative. Furthermore Noether symmetries are special Lie symmetries, hence we look into the two

dimensional potentials which admit a Lie point symmetry. These potentials were determined in the previous

section. We apply Theorem 4.3.2 to these potentials and select the potentials which admit a Noether symmetry.

The calculations are similar to the ones for the Lie point symmetries and are omitted. The results are listed

in Tables 4.5 and 4.6. In the next section we apply the same method to determine the three dimensional

autonomous Newtonian systems which admit Lie and Noether symmetries.
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Table 4.4: Two dimensional conservative Newtonian systems admit Lie symmetries (1/3)

Lie # V ! d = 0 d 6= 0 d = 2

d
2 t@t + @x c1x+ f (y) f (y) e�dx f (y) e�2x

d
2 t@t + @y c1y + f (x) f (x) e�dy f (x) e�2y

d
2 t@t + (y@x � x@y) � + f (r) f (r) e�d� f (r) e�2�

d
2 t@t + (x@x + y@y) x2f

�
y
x

�
x2�df

�
y
x

�
c1 lnx + f

�
y
x

�
d
2 t@t + x@x c1x

2 + f (y) @ @

d
2 t@t + y@y c1y

2 + f (x) @ @

d
2 t@t + y@x x2 + y2 + c1x @ @

d
2 t@t + x@y x2 + y2 + c1y @ @

Lie # V ! T;tt=mT:

T (t) @x �mx2

2 + c1x+ f (y)

T (t) @y �my2

2 + c1y + f (x)

2
R
T (t) dt @t + T (t) (x@x + y@y) �m

8

�
x2 + y2

�
+ 1

x2 f
�
y
x

�
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Table 4.5: Two dimensional autonomous Newtonian systems admiting Noether symmetries (1/2)

Noether Symmetry V (x; y) Noether Symmetries V (x; y)

@x cx+ f (y) @x + b@y f (y � bx)� cx

@y cy + f (x) (a+ y) @x + (b� x) @y f
�
1
2

�
x2 + y2

�
+ ay � bx

�
y@x � x@y c� + f (r) 2t@t + (x+ ay) @x + (y � ax) @y r�2 f (� � a ln r)

2t@t + x@x + y@y x�2f
�
y
x

�
2t@t + (a+ x) @x + (b+ y) @y f

�
b+x
a+x

�
(a+ x)

�2 � c (a+ x)�2
�
1
2x

2 + ax
�

Table 4.6: Two dimensional autonomous Newtonian systems admiting Noether symmetries (2/2)

Noether # V ! T;tt=mT

T (t) @x f (y)� cx� m
2 x

2

T (t) @y f (x)� cy � m
2 y

2

2
R
T (t) dt @t + T (t) (x@x + y@y) x�2f

�
y
x

�
� m

8

�
x2 + y2

�

Noether # V ! T;tt=mT

T (t) @x + bT (t) @y �m
2

�
x2 + y2

�
� m

2 (y � bx)
2 + f (y � bx)� cx

2
R
T (t) dt @t + T (t) ((a+ x) @x + (b+ y) @y) f

�
b+x
a+x

�
(a+ x)

�2 � c
2 (a+ x)

�2
x (x+ 2a)

�xm(x+2a)

8(a+x)4

8>><>>:
�
(a+ x)

2
+ a2

�
y (y + 2b)+

+x (x+ 2a) (b+ (a+ x)) (�b+ (a+ x))

9>>=>>;

4.5 3D autonomous Newtonian systems admit Lie/Noether point

symmetries

In this section we determine all Newtonian systems with three degrees of freedom which admit at least one

Lie/Noether symmetry (except the obvious symmetry @t): In order to use Theorem 4.2.2 we need the special

projective algebra of the Euclidian 3D metric
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Table 4.7: Three dimensional autonomous Newtonian systems admit Lie symmetries (1/2)

Lie symmetry F� (x�; x� ; x�) F� (x�; x� ; x�) F� (x�; x� ; x�)

d
2 t@t + @� e�dx�f (x� ; x�) e�dx�g (x� ; x�) e�dx�h (x� ; x�)

d
2 t@t + @�(��) e�d�(��)f

�
r(��); x�

�
e�d�(��)g

�
r(��); x�

�
e�d�(��)h

�
r(��); x�

�
d
2 t@t +R@R x1�d� f

�
x�
x�
; x�x�

�
x1�d� g

�
x�
x�
; x�x�

�
x1�d� h

�
x�
x�
; x�x�

�
d
2 t@t + x�@� x1�d� f (x� ; x�) x1�d� g (x� ; x�) x1�d� h (x� ; x�)

d
2 t@t + x�@� e�d

x�
x�

h
x�
x�
g (x� ; x�) + f (x� ; x�)

i
e�d

x�
x� g (x� ; x�) e�d

x�
x� h (x� ; x�)

ds2E = dx2 + dy2 + dz2: (4.37)

This algebra consists of 15 vectors3 as follows: Six KVs @� ; x�@��x�@� one HV R@R; nine ACs x�@� ; x�@�
and three SPCs x2�@�+x�x�@� +x�x�@�; where

4 � 6= � 6= � , r2(��) = x2�+x
2
� ; �(��) = arctan

�
x�
x�

�
and R; �; �

are spherical coordinates:

In the computation of Lie symmetries we consider only the linearly independent vectors of the special

projective group. We do not consider their linear combinations because the resulting Lie symmetries are too

many; on the other hand they can be computed in the standard way.

4.5.1 3D autonomous Newtonian systems admit Lie point symmetries

In Tables 4.7 and 4.8 we list the Lie point symmetries and the functional dependence of the components of the

force for Case I and II of Theorem 4.2.2.

For the remaining Case III of Theorem 4.2.2, we have that the force F� admits Lie symmetries generated

from the proper sp. PCs if the force is the isotropic oscillator, that is, F� = (!x� + c�) @� where !; c�

are constants. From Tables 4.7 and 4.8 we infer that the isotropic oscillator admits 24 Lie point symmetries

generating the Sl (5; R), as many as the free particle [6].

In order to demonstrate the use of the above Tables let us require the equations of motion of a Newtonian

dynamical system which is invariant under the sl(2; R) algebra. We know [56] that sl(2; R) is generated by the

following Lie symmetries

@t ; 2t@t +R@R ; t2@t + tR@R:

3These vectors are not all linearly independent i.e. the HV and the rotations are linear combinations of the ACs
4 If x� = x; then fx� = y ; x� = zg or fx� = z ; x� = yg
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Table 4.8: Three dimensional autonomous Newtonian systems admit Lie symmetries (1/2)

Lie symmetry F� (x�; x� ; x�) F� (x�; x� ; x�) F� (x�; x� ; x�)

t@� f (x� ; x�) g (x� ; x�) h (x� ; x�)

t2@t + tR@R
1
x3�
f
�
x�
x�
; x�x�

�
1
x3�
g
�
x�
x�
; x�x�

�
1
x3�
h
�
x�
x�
; x�x�

�
e�t

p
m@� �mx� + f (x� ; x�) g (x� ; x�) h (x� ; x�)

1p
m
e�t

p
m@t � e�t

p
mR@R �m

4 x� +
1
x3�
f
�
x�
x�
; x�x�

�
�m

4 x� +
1
x3�
g
�
x�
x�
; x�x�

�
�m

4 x� +
1
x3�
h
�
x�
x�
; x�x�

�

From Table 4.7 and from Table 4.8 we have that the force must be of the form

F =

�
1

x3�
f

�
x�
x�
;
x�
x�

�
;
1

x3�
g

�
x�
x�
;
x�
x�

�
;
1

x3�
h

�
x�
x�
;
x�
x�

��
(4.38)

therefore, the equations of motion of this system in Cartesian coordinates are:

(�x; �y; �z) =

�
1

x3�
f

�
x�
x�
;
x�
x�

�
;
1

x3�
g

�
x�
x�
;
x�
x�

�
;
1

x3�
h

�
x�
x�
;
x�
x�

��
: (4.39)

Immediately we recognize that this dynamical system is the well known and important generalized Kepler

Ermakov system (see [56]). A di¤erent representation of sl(2; R) consists of the vectors

@t ;
1p
m
e�t

p
m@t � e�t

p
mR@R

For this representation from Table 4.8 we have

F 0 = �m
4
(x�; x� ; x�) +

�
1

x3�
f

�
x�
x�
;
x�
x�

�
;
1

x3�
g

�
x�
x�
;
x�
x�

�
;
1

x3�
h

�
x�
x�
;
x�
x�

��
(4.40)

which leads again to the autonomous Kepler Ermakov system. In a subsequent chapter, we shall apply the

results obtained here to study the integrability of the 3D Hamiltonian Kepler�Ermakov system and generalize

it in a Riemannian space.

In case the force is given by the potential V = V (x�), that is, that the system is conservative, we obtain

the results in Table 4.9.
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Table 4.9: Three dimensional conservative Newtonian systems admiting Lie symmetries

Lie /V(x,y,z) d = 0 d = 2 d 6= 0;2

d
2 t@t + @� c1x� + f (x� ; x�) e�2x�f (x� ; x�) e�dx�f (x� ; x�)

d
2 t@t + @�(��) c1�(��) + f

�
r(��); x�

�
e�2�(��)f

�
r(��); x�

�
e�d�(��)f

�
r(��); x�

�
d
2 t@t +R@R x2f

�
x�
x�
; x�x�

�
c1 ln (x�) + f

�
x�
x�
; x�x�

�
x2�df

�
x�
x�
; x�x�

�
d
2 t@t + x�@� c1x

2
� + f (x� ; x�) @ @

d
2 t@t + x�@� c1x� + c2

�
x2� + x

2
�

�
+ f (x�) @ @

Lie V (x; y; z) Lie V (x; y; z)

t@� c1x� + f (x� ; x�) e�t
p
m@� �m

2 x
2
� + c1x� + f (x� ; x�)

t2@t + tR@R
1
x2�
f
�
x�
x�
; x�x�

�
1p
m
e�t

p
m@t + e

�t
p
mR@R �m

8

�
x2� + x

2
� + x

2
�

�
+ 1

x2�
f
�
x�
x�
; x�x�

�

4.5.2 3D autonomous Newtonian systems which admit Noether point symmetries

In this section using theorem 4.3.2 we determine all autonomous Newtonian Hamiltonian systems with La-

grangian

L =
1

2

�
_x2 + _y2 + _z2

�
� V (x; y; z) (4.41)

which admit a non-trivial Noether point symmetry. This problem has been considered previously in [49, 50],

however as we shall show the results in these works are not complete. We note that the Lie symmetries of a

conservative system are not necessarily Noether symmetries. The inverse is of course true.

Before we continue we note that the homothetic algebra of the Euclidian 3d space E3 has dimension seven and

consists of three gradient KVs @� with gradient function x�, three non-gradient KVs x�@��x�@� generating the
rotational algebra so (3) ; and a gradient HV Hi = R@R with gradient function H = 1

2R
2 , where R2 = x�x�:

The Noether point symmetries generated from the homothetic algebra i.e. the non-gradient so(3) elements

included, are shown in Table 4.10. Moreover, the Noether symmetries generated from the gradient homothetic

algebra are listed in Table 4.11.

The corresponding Noether integrals are computed easily from proposition 4.3.3. In Tables 4.18, 4.19 and

4.20 (see Appendix 4.B) we give a complete list of the potentials resulting form the linear combinations of the
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Table 4.10: Three dimensional conservative Newtonian systems admit Noether symmetries (1/5)

Noether Symmetry V(x;y; z)

@� �px� + f (x� ; x�)

x�@� � x�@� �p�(��) + f
�
r(��); x

�
�

2t@t +R@R
1
R2 f (�; �) or 1

x2�
f
�
x�
x�
; x�x�

�

Table 4.11: Three dimensional conservative Newtonian systems admit Noether symmetries (2/5)

Noether Symmetry V(x;y; z) = T;tt=mT

T (t) @� �m
2 x

2
� � px� + f (x� ; x�)�

2
R
T (t) dt

�
@t + T (t)R@R �m

8 R
2 + 1

R2 f (�; �) or �m
8 R

2 + 1
x2�
f
�
x�
x�
; x�x�

�

elements of the homothetic algebra. From the Tables we infer that the isotropic linear forced oscillator admits

12 Noether point symmetries, as many as the free particle.

As it has been remarked above, the determination of the Noether point symmetries admitted by an au-

tonomous Newtonian Hamiltonian system has been considered previously in [50]. Our results extend the results

of [50] and coincide with them if we set the constant p = 0: For example in page 12 case 1 and page 15 case

6 of [50] the terms � p
ax� and p arctan (l (�; �)) are missing respectively. Furthermore the potential given in

page/line 12/1, 13/2, 13/3 of [50] admits Noether symmetries only when � = 0 and b1;2 (t) = const: This is

due to the fact that the vectors given in [50] are KVs and in order to have b;t 6= 0 they must be given by Case
II of theorem 4.3.2 above, that is, the KVs must be gradient. However the KVs used are linear combinations of

translations and rotations which are non-gradient.

It is possible that there exist integrable Newtonian dynamical systems for potentials not included in these

Tables, for example systems which admit only dynamical symmetries [57, 58] with integrals quadratic in mo-

menta [59]. However these systems are not integrable via Noether point symmetries.

We remark that from the above results we are also able to give, without any further calculations, the Lie

and the Noether point symmetries of a dynamical system �moving� in a three dimensional �at space whose

metric has Lorentzian signature simply by taking one of the coordinates to be complex, for example by setting

x1 = ix1:
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4.6 Motion on the two dimensional sphere

A �rst application of the results of section 4.5.2 is the determination of Lie and Noether point symmetries

admitted by the equations of motion of a Newtonian particle moving in a two dimensional space of constant

non-vanishing curvature.

Before we continue it is useful to recall some facts concerning spaces of constant curvature. Consider a n+1

dimensional �at space with fundamental form

ds2 =
X
a

ca(dz
a)2 a = 1; 2:::; n+ 1

where ca are real constants. The hypersurfaces de�ned byX
a

ca(dz
a)2 = eR20

where R0 is an arbitrary constant and e = �1 are called fundamental hyperquadrics of the space. When all
coe¢ cients ca are positive the space is Euclidian and e = +1. In this case there is one family of hyperquadrics

which is the hyperspheres. In all other cases (excluding the case when all ca �s are negative) there are two

families of hyperquadrics corresponding to the values e = +1 and e = �1: It has been shown that in all cases
the hyperquadrics are spaces of constant curvature (see [60] p202).

Consider an autonomous dynamical system moving in the two dimensional sphere (Euclidian (" = 1) or

Hyperbolic (" = �1)) with Lagrangian5 [61]

L
�
�; �; _�; _�

�
=
1

2

�
_�
2
+ Sinn2� _�

2
�
� V (�; �) (4.42)

where

Sinn� =

8>><>>:
sin� " = 1

sinh� " = �1
; Cosn� =

8>><>>:
cos� " = 1

cosh� " = �1:

The equations of motion are

��� Sinn� Cosn� _�2 + V;� = 0 (4.43)

�� + 2
Cosn�

Sinn�
_� _�+

1

Sinn2�
V;� = 0: (4.44)

For the Lagrangian (4.42) proposition 4.3.4 applies and we use it to �nd the potentials V (�; �) for which

additional Noether point symmetries, hence Noether integrals are admitted.

The homothetic algebra of a metric of spaces of constant curvature consists only of non-gradient KVs (hence

 = 0) as follows

5We use spherical coordinates which are natural in the case of spaces of constant curvature.
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(a) " = 1 (Euclidian case)

CK1
e = sin �@� + cos � cot�@�; CK

2
e = cos �@� � sin � cot�@�; CK3

e = @� (4.45)

(b) " = �1 (Hyperbolic case)

CK1
h = sin �@� + cos � coth�@�; CK

2 = cos �@� � sin � coth�@�; CK3 = @�: (4.46)

Therefore the Noether vectors and the Noether function are

X = CKi
e;h@i; f = pt (4.47)

provided the potential satis�es the condition

LCKV + p = 0: (4.48)

The �rst integrals given by proposition 4.3.3 are

�II = �giijCKi
e;h _x

j + pt (4.49)

and are time dependent if p 6= 0.

4.6.1 Noether Symmetries

We consider two cases, the case V (�; �) =constant which concerns the geodesics of the space, and the case

V (�; �) 6=constant.
For the case of geodesics it has been shown (see section 3.5) that the Noether point symmetries are the three

elements of so(3) with corresponding Noether integrals

ICK1
e;h

= _� sin � + _� cos � Sinn� Cosn� (4.50)

ICK2
e;h

= _� cos � � _� sin � Sinn� Cosn� (4.51)

ICK3
e;h

= _� Sinn2�: (4.52)

These integrals are in involution with the Hamiltonian hence the system is Liouville integrable.

In the case V (�; �) 6=constant we �nd the results of Table 4.12
The �rst integrals which correspond to each potential of Table 4.12 are in involution with the Hamiltonian

and independent. Hence the corresponding systems are integrable. From Table 4.12 we infer the following

result.

Proposition 4.6.1 A dynamical system with Lagrangian (4.42) has one, two or four Noether point symmetries

hence Noether integrals.
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Table 4.12: Noether symmetries/Integrals and potentials for the Lagrangian of the 2D sphere

Noether Symmetry V (�; �) Noether Integral

CK1
e;h F (cos � Sinn�) ICK1

e;h

CK2
e;h F (sin � Sinn�) ICK2

e;h

CK3
e;h F (�) ICK3

e;h

aCK1
e;h + bCK

2
e;h F

�
1+tan2 �

Sinn2� (a�b tan �)2

�
aICK1

e;h
+ bICK2

e;h

aCK1
e;h + bCK

3
e;h F (a cos �Sinn�� " b Cosn�) aICK1

e;h
+ bICK3

e;h

aCK2
e;h + bCK

3
e;h F (a sin �Sinn�� " b Cosn�) aICK2

e;h
+ bICK3

e;h

aCK1
e;h + bCK

2
e;h + cCK

3
e;h F ((a cos � � b sin �) Sinn�� " c Cosn�) aICK1

e;h
+ bICK2

e;h
+ cICK3

e;h

Proof. For the case of the free particle we have the maximum number of four Noether symmetries (the rotation

group so(3) plus the @t). In the case the potential is not constant the Noether symmetries are produced by the

non-gradient KVs with Lie algebra

[XA; XB ] = CCABXC

where C312 = C231 = C123 = 1 for " = 1 and �C321 =
�C123 =

�C231 = 1 for " = �1: Because the Noether point
symmetries form a Lie algebra and the Lie algebra of the KVs is semisimple the system will admit either none,

one or three Noether point symmetries generated by the KVs. The case of three is when V (�; �) = V0 that is

the case of geodesics, therefore the Noether point symmetries will be (including @t) either one, two or four.

We note that the two important potentials of Celestial Mechanics, that is V1 = �Cosn�
Sinn� ; V2 =

1
2
Sinn2�
Cosn2�

which

according to Bertrand �s Theorem [61, 62, 63] produce closed orbits on the sphere are included in Table 4.12.

Hence the dynamical systems they de�ne are Liouville integrable via Noether point symmetries CK3
e;h. The

potential V1 corresponds to the Newtonian Kepler potential and V2 is the analogue of the harmonic oscillator.

We also note that our results contain those of [61, 64]

We emphasize that the potentials listed in Table 4.12 concern dynamical systems with Lagrangian (4.42)

which are integrable via Noether point symmetries.

4.7 Applications

In this section we demonstrate the application of the results of section 4.4 in two cases. The �rst case is the

Kepler-Ermakov system, which (in general) is not a conservative dynamical system and the second is the Hènon

- Heiles type potential.
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4.7.1 Lie point symmetries of the Kepler-Ermakov system.

The Ermakov systems are time dependent dynamical systems, which contain an arbitrary function of time

(the frequency function) and two arbitrary homogeneous functions of dynamical variables. A central feature

of Ermakov systems is their property of always having a �rst integral. The Kepler-Ermakov system is an

autonomous Ermakov system de�ned by the equations [65]

�x+
x

r3
H (x; y)� 1

x3
f
�y
x

�
= 0 (4.53)

�y +
y

r3
H (x; y)� 1

y3
g
�y
x

�
= 0 (4.54)

where H; f; g are arbitrary functions. In [51] it has been shown that this system admits Lie point symmetries for

certain forms of the function H (x; y) : Furthermore it has been shown that for special classes of these equations

there exists a Lagrangian (see also [52]).

In the following we demonstrate the use of our results by �nding the Lie point symmetries simply by reading

the entries of the proper Tables. Looking at the Tables we �nd that equations (4.53), (4.54) admit a Lie point

symmetry for the following two cases.

Case 1. WhenH (x; y) =
h( yx )
x : Then from Tables 4.2 and 4.3 (m = 0) we have that the Lie point symmetries

are

X =
�
c1 + c22t+ c3t

2
�
@t + (c2x+ c3tx) @x + (c2y + c3ty) @y: (4.55)

Case 2. When H (x; y) = !2r3 +
h( yx )
x where m = �4!2 and m 6= 0. In this case Table 4.3 for m 6= 0

applies and the Lie point symmetry generator is

X =
�
c1 �

c2
!
cos (2!t) +

c3
!
sin (2!t)

�
@t + (c2 sin (2!t) + c3 cos (2!t))x@x + (c2 sin (2!t) + c3 cos (2!t)) y@y:

These symmetries coincide with the ones found in [51]. We note that in both cases the Lie symmetry vectors

come from the HV x@x + y@y of the Euclidean metric.

In a subsequent publication [52] it was shown that the Lagrangian considered in [51] was incorrect and that

the correct Lagrangian is:

L =
1

2

�
_r2 + r2 _�

2
�
� 1
2
!2r2 � �

2r2
� C (�)

2r2
(4.56)

where C(�) = sec2 �f(tan �) + csc2 �g(tan �) and the functions f; g satisfy two compatibility conditions (see

equation (5.2) of [52]).

We observe that the Lie symmetries are also Noether symmetries and that the Noether Integrals (in addition

to the Hamiltonian E) corresponding the these Noether symmetries are

I1 = 2tE � r _r (4.57)

I2 = t2E � tr _r + 1
2
r2 (4.58)
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for ! = 0. When ! 6= 0 the Noether integrals are

I 01 = � 1
!
cos (2!t)E � sin (2!t) r _r + ! cos (2!t) r2 (4.59)

I
0

2 =
1

!
sin (2!t)E � cos (2!t) r _r � ! sin (2!t) r2: (4.60)

In total we have three Noether integrals. Since we do not look for generalized symmetries, we do not expect

to �nd the Ermakov - Lewis invariant [53].

4.7.2 Point symmetries of the Hènon - Heiles potential

The Hènon - Heiles potential

V (x; y) =
1

2

�
x2 + y2

�
+ x2y � 1

3
y2

has been used as a model for the galactic cluster. Computer analysis has suggested that for su¢ ciently small

values of the energy, there exists a �rst integral independent of energy. In [54] it is proposed to study if there

exists a Lie point symmetry of the potential which could justify such a �rst integral. Working in a slightly more

general scenario, in [54] considered potentials of the form

V (x; y) =
1

2

�
x2 + y2

�
+Ax3 +Bx2y + Cxy2 +Dy3 (4.61)

where A;B;C;D are real parameters. The Hènon - Heiles potential is the special case for A = C = 0; B =

1; D = � 1
3 .

Using standard Lie analysis in [54] it is shown that only the potentials V1 (x; y) = 1
2

�
x2 + y2

�
+x3; V2 (x; y) =

1
2

�
x2 + y2

�
+ y3; V3 (x; y) =

1
2

�
x2 + y2

�
� (ay � x)3 ; V4 (x; y) =

1
2

�
x2 + y2

�
� (ay � x)3 admit Lie point

symmetries, hence the Hènon - Heiles potential does not admit a Lie point symmetry and the existence of a

�rst integral it is not justi�ed. We apply the results of sections 4.4, 4.4.1 to give the Lie point symmetries and

the Noether quantities of these potentials, simply by reading the relevant Tables.

The potential V1 (x; y) is of the form cy2+ f (x). Hence from Table 4.4 the Lie point symmetries admitted

by this potential are:

X = c0@t + c1 sin t@y + c2 cos t@y + c3y@y:

We note that the Lie symmetry y@y; which is due to the A¢ ne collineation, has not been found in [54].

The potential V2 (x; y) is obtained by V1 (x; y) with x; y interchanged. Therefore the Lie point symmetries

admitted by the potential V2 (x; y) are

X = c0@t + c1 sin t@x + c2 cos t@x + c3x@x

and again in [54] the Lie point symmetry y@y is missing.

The potential V3 (x; y) is of the form 1
2

�
x2 + y2

�
+f (x� ay). Hence from Tables 4.16 and 4.17 the admitted

Lie symmetries are

X = c0@t + (c1 cos t+ c2 sin t) (a@x � @y) + c3 (ax+ y) (a@x + @y) :
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Table 4.13: Noether symmetries of Hènon - Heiles potential

V (x; y) Noether Symmetry Noether Integral

1
2

�
x2 + y2

�
+ x3 sin t@y _y sin t� y cos t

cos t@y _y cos t+ y sin t

1
2

�
x2 + y2

�
+ y3 sin t@x _x sin t� x cos t

cos t@x _x cos t+ x sin t

1
2

�
x2 + y2

�
� (ay � x)3 sin t (�a@x + @y) (�a _x+ _y) sin t� (�ax+ y) cos t

cos t (�a@x + @y) (�a _x+ _y) cos t+ (�ax+ y) sin t

1
2

�
x2 + y2

�
� (ay � x)3 sin t (�a@x + @y) (�a _x+ _y) sin t� (�ax+ y) cos t

cos t (�a@x + @y) (�a _x+ _y) cos t+ (�ax+ y) sin t

The potential V4 (x; y) is of the same form as V3 (x; y) with x; y interchanged. Therefore the Lie point

symmetries are:

X = c0@t + a(c1 cos t+ c2 sin t) (a@x � @y) + c3 (ax+ y) (a@x + @y) :

We observe that in all four cases the Lie point symmetries depend on four free parameters (the c0; c1; c 2; c3):

The parameter c0 determines the vector c0@t and the rest c1; c 2; c3 the x� y part of the symmetry generators.
The Lie point symmetries which are possibly Noether symmetries are the ones generated by the KVs.

We check that the Lie point symmetries which are due to the gradient KVs are Noether Symmetries of the

potentials (plus the @ t whose Noether integral is the Hamiltonian). The Noether integrals and the Noether

functions corresponding to each of these symmetries are given in Table 4.13. The results coincide with those of

[54, 55].

4.8 Conclusion

We have shown in Theorem 4.2.2 and Theorem 4.3.2 that the Lie and the Noether point symmetries for

the general class of equations of motion (4.1) are generated from the special projective Lie algebra and the

homothetic Lie algebra respectively of the metric of the space where motion takes place. The speci�c subalgebra

is determined by a set of di¤erential conditions which involve the potential de�ning the dynamical system. The

results apply to both conservative and non conservative dynamical systems. They also apply to a¢ ne spaces

and they are independent of the signature of the metric and the dimension of the space.
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The essence of the above is that they reduce the problem of �nding the Lie and the Noether point symmetries

of second order systems of equations of the form (4.1) to the geometric requirement of �nding the special

projective algebra of the a metric (or more general of an a¢ ne) space. Because there is a plethora of results in

existing studies on the projective algebra of Riemannian spaces, it is possible that the problem of �nding the

Lie and the Noether point symmetries of an autonomous conservative dynamical is already solved! As it has

been shown, one such case is the case of spaces of constant curvature. The power of the geometric approach is

that it gives all the Lie and the Noether point symmetries without the use of computer programs.

An additional point, which could be of interest, is one to reverse the argument and use the computational

approach of the Lie symmetries of the geodesic equations of a space to compute the projective group, which

can be a formidable task in Di¤erential Geometry. Aminova [32, 33, 34] has shown that if one chooses the

Cartan parametrization of the geodesic equations then the Lie symmetries generate the projective algebra of

the underline metric. Because up to now there do not seem to exist either a general method or general theorems

which allow the computation of the projective algebra of a metric, this approach could be valuable.

We have applied these theorems to classify all two and three dimensional Newtonian dynamical systems

which admit at least one Lie symmetry, and in the case of conservative forces, all two and three dimensional

potentials V
�
xk
�
which admit a Lie symmetry and a Noether point symmetry. These results complete previous

results [48, 49, 50] concerning the Noether point symmetries of the two and three dimensional Newtonian

dynamical systems. We note that, due to the geometric derivation and the tabular presentation, the results

can be extended easily to higher dimensional �at spaces; however at the cost of convenience because the linear

combinations of the symmetry vectors increase dramatically.

We have demonstrated the application of the results in various important cases. We considered the Kepler-

Ermakov system, which is an autonomous, but in general not conservative dynamical system and we determined

the classes of this type of systems which admit Lie and Noether point symmetries; we also considered the case

of the Hènon Heiles type potentials and determined their Lie point symmetries and their Noether symmetries.

These results are compatible and complete previous results in the literature.

In the following chapter, we apply the results obtained here to study the Liouville integrability of the three

dimensional Hamiltonian Kepler-Ermakov system and generalize it in a Riemannian space.
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4.A Proof of main Theorem

Below, we give the proof of Theorem 4.2.2.

Equation (4.6) gives:

�
�
t; xi

�
= C (t)S

�
xi
�
+D (t) (4.62)

where S;i is a gradient KV. Replacing this in (4.5) we �nd

L��
i
(jk) = 2C;tS;(j�

i
k): (4.63)

Because �i(jk) is a function of x
i only and �i(t; xi) we must have

�i
�
t; xj

�
= T (t)Y i

�
xj
�

(4.64)

hence (4.63) becomes:

T (t)LY �
i
jk = 2C;tS;(j�

i
k) (4.65)

from which follows

C;t = a0T (4.66)

LY �
i
jk = 2�0S;(j�

i
k) (4.67)

where a0 = 0, when Y i is a KV,HKV,AC and a0 6= 0 if Y i is a special PC:
The remaining equations (4.3)-(4.4) are written (F i = gijV

;i(xi))

TLY V
;i + 2 (C;tS +D;t)V

;i + T;ttY
i = 0 (4.68)

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + 2T;tY

i
; j � (C;ttS +D;tt) �

i
j = 0 (4.69)

Equation (4.69) is written as

C(t)
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + 2T;tY

i
; j + (�C;tt)S�ij + (�D;tt) �

i
j = 0

which due to (4.66) is simpli�ed as follows

C(t)
�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
T;t + (�D;tt) �

i
j = 0: (4.70)

Collecting the results we have the system of equations

C;t = a0T (4.71)

LY �
i
jk = 2S;(j�

i
k) (4.72)

TLY V
;i + 2 (C;tS +D;t)V

;i + T;ttY
i = 0 (4.73)

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
T;t + (�D;tt) �

i
j = 0 (4.74)
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where a0 = 0, when Y i is a KV,HKV,AC and a0 6= 0 if Y i is a sp. PC: We consider various cases.
Case I. T (t) = 0: In this case (4.71) implies C;t = 0 and (4.73),(4.74) give

D;tV
;i = 0 (4.75)

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + (�D;tt) �

i
j = 0 (4.76)

From (4.75) follows D;t = 0 and consequently (4.76) implies

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k = 0: (4.77)

Because
�
S;k�

i
j + 2S;j �

i
k

�
V ;k 6= 0 it follows that C (t) = 0: Therefore in this case we have the Lie Symmetry

X = d1@t (4.78)

Case II. T (t) = a0 6= 0. Equation (4.71) implies C;t = a0a1. Then (4.73),(4.74) give:

a1LY V
;i + 2 (C;tS +D;t)V

;i = 0 (4.79)

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + (�D;tt) �

i
j = 0 (4.80)

It follows 2a0a1 = c1 ;
2D;t

a1
= d1 where

LY V
;i + (c1S + d1)V

;i = 0 (4.81)

Then (4.80) is written

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k = 0 (4.82)

from which we infer that C (t) = 0: This means a0 = 0 hence Y i can only be KV, HV or AC and furthermore

c1 = 0: We conclude that provided the potential satis�es the condition

LY V
;i + d1V

;i = 0 (4.83)

the symmetry vector is

X =

�
1

2
d1a1t+ d2

�
@t + a1Y

i@i (4.84)

where Y i is a KV, HV or AC.

Case III. T;t 6= 0. In this case we have the system of simultaneous equations

C;t = a0T (4.85)

TLY V
;i + 2 (C;tS +D;t)V

;i + T;ttY
i = 0 (4.86)

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
T;t + (�D;tt) �

i
j = 0 (4.87)
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Suppose that Y i is a non-gradient KV or non-gradient HV or AC. Then S =constant so that S;i = 0: Then

(4.87) becomes:

2T;tY i; j + (�a0T;tS �D;tt) gij = 0 (4.88)

and follows (by taking the antisymmetric part in the indices i; j) that T;t = 0 contrary to our assumption.

Therefore Y i must be a gradient KV, gradient HV or sp.PC: We consider various subcases.

Case III. a. Y i is a gradient KV/HKV and Y i 6= V ;i: Then we have a0 = 0 ; C (t) = c1 =constant and

equations (4.86),(4.87) are written as follows:

LY V
;i + 2

D;t

T
V ;i +

T;tt
T
Y i = 0 (4.89)

c1
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + (2 T;t �D;tt) �

i
j = 0: (4.90)

From (4.89) we infer

2
D;t

T
= d1 ;

T;tt
T
= a1 (4.91)

and

LY V
;i + d1V

;i + a1Y
i = 0: (4.92)

From (4.90) we �nd

2 T;t �D;tt = m (4.93)

that is:

c1
�
S;k�

i
j + 2S;j �

i
k

�
V ;k +m�ij = 0: (4.94)

The last relation is satis�ed only for c1 = 0 ; m = 0. Then (4.91),(4.93) give:

T;tt
T
= a1 ; D (t) =

1

2
d1

Z
T (t) dt ; d1 = 4 : (4.95)

We conclude that provided the potential satis�es equation (4.92) and d1 = 4 where  = 0 for a KV and  = 1

for a HV, we have the Lie symmetry vector

X =
1

2
d1

Z
T (t) dt@t + T (t)Y

i@i: (4.96)

Case III. b. Y i is a gradient HV and Y i = �V ;i: In this case we have a0 = 0 ; C (t) = c1 =constant and

the system of equations (4.86),(4.87) becomes:

LY V
;i +

�
2
D;t

T
+ �

T;tt
T

�
V ;i = 0 (4.97)

c1
�
S;k�

i
j + 2S;j �

i
k

�
V ;k + (2 T;t �D;tt) �

i
j = 0: (4.98)

From (4.98) follows c1 = 0 which implies the equation

2 T;t �D;tt = 0: (4.99)
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Because Y i = V ;i the LY V ;i = 0 and we have the second condition

2D;t + �T;tt = 0: (4.100)

We conclude that in this case the Lie symmetry vector is

X = D (t) @t + T (t)V
;i@i (4.101)

where the functions T (t) ; D (t) are solutions of the system of equations (4.98) and (4.98).

Case III. c. Y i is a special PC. In this case the system of symmetry conditions reads

C;t = a0T (4.102)

LY V
;i + 2

�
C;t
T
S +

D;t

T

�
V ;i +

T;tt
T
Y i = 0 (4.103)

�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

� T;t
C
+

�
�D;tt

C

�
�ij = 0: (4.104)

Using (4.102) we write (4.103) as

LY V
;i + 2a0SV

;i + 2
D;t

T
V ;i +

T;tt
T
Y i = 0 (4.105)

from which follows
D;t

T
=
1

2
d1 ;

T;tt
T
= a1 (4.106)

where

LY V
;i + 2a0SV

;i + d1V
;i + a1Y

i = 0 (4.107)

Then relation (4.104) implies the conditions

T;t
C
= c2 ;

D;tt

C
= dc (4.108)

and �
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
c2 � dc�ij = 0: (4.109)

We conclude that in this case provided the potential function satis�es (4.107), we have the Lie symmetry vector

X = (C (t)S +D (t)) @t + T (t)Y
i@i (4.110)

where the functions C (t) ; D (t) ; T (t) are computed form the equations (4.102), (4.106), (4.108).

Case III. d. Y i is a special PC of the form Y i = �SV ;i ; � =constant. and S;i is a gradient KV of the

metric.
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This case is possible only when the potential is such that the vector V ;i is the gradient HV of the metric (if

the metric admits one). Then it is easy to show that due to (4.85) equation (4.86) becomes:

LY V
;i + 2

D;t

T
V ;i +

�
2
C;t
T
+ �

T;tt
T

�
SV ;i = 0:

We compute

LY V
;i =

�
�SV ;r; V ;i

�
@r = ��S;jV ;jV ;i (4.111)

therefore

��S;jV ;jV ;i + 2
D;t

T
V ;i +

�
2
C;t
T
+ �

T;tt
T

�
SV ;i = 0: (4.112)

It follows

D;t = 0 (4.113)

2
C;t
T
+ �

T;tt
T

= �1 (4.114)

and the condition

��S;jV ;j + �1S = 0) �S;jV
;i = �1S: (4.115)

Condition (4.87) now reads

C
�
S;k�

i
j + 2S;j �

i
k

�
V ;k +

�
2Y i; j � a0S�ij

�
T;t = 0)

C
�
�1S�

i
j + 2S;j V

;i
�
+
�
2�S;jV

:i + (2�S � a0S) �ij
�
T;t = 0

from which follows T;tC = �2; that is,

C
�
�1SJ�

i
j + 2SJ ;j V

;i
�
+ �2

�
2�S;jV

:i + (2�S � a0S) �ij
�
= 0:

We conclude that in this case we have the Lie symmetry vector

X = C (t)S@i + T (t)SV
;i@i

where the functions C (t) ; T (t) are computed form the solution of the system of simultaneous equations

C;t = a0T ; T;t = �2C

2C;t + �T;tt = �1T:
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4.B Tables of Newtonian systems admit Lie and Noether symme-

tries

Table 4.14: Two dimensional Newtonian systems admiting Lie symmetries (3/4)

Lie # F i ! Fx (x; y) =F
r
(r; �) Fy (x; y) =F

�
(r; �)

d
2 t@t + @x + b@y f (y � bx) e�dx g (y � bx) e�dx

d
2 t@t + (a+ x) @x + (b+ y) @y f

�
b+y
a+x

�
(a+ x)

(1�d)
g
�
b+y
a+x

�
(a+ x)

(1�d)

d
2 t@t + (a+ x) @x + (b+ hy) @y f

��
b
h + y

�
(a+ bx)

�h
b

�
(a+ bx)

1� d
b g

��
b
h + y

�
(a+ bx)

�h
b

�
(a+ bx)

h�d
b

d
2 t@t + (x+ y) @x + (x+ y) @y

0BB@ f (y � x)x+

+g (y � x)

1CCA (y + x)� d
2

0BB@ f (y � x) y+

�g (y � x)

1CCA (y + x)� d
2

d
2 t@t +

�
a2x+ ay

�
@x + a (ax+ y)

� d
1+a2 � a2 (ax+ y)

� d
1+a2 �

+(ax+ y) @y �

0BB@ xa2f
�
y � x

a

�
+

+g
�
y � x

a

�
1CCA �

0BB@ af
�
y � x

a

�
+

�g
�
y � x

a

�
1CCA

d
2 t@t + (�ay + x) @x + (ax+ y) @y f (� � a ln r) r1�d g (� � a ln r) r1�d

Table 4.15: Two dimensional Newtonian systems admiting Lie symmetries (4/4)

Lie # F i ! Fx (x; y) Fy (x; y)

T (t) (@x + b@y) �mx+ f (y � bx) �mbx+ g (y � bx)

2
R
T (t) dt @t + T (t) [(a+ x) @x + (b+ y) @y] �m

4 (a+ x) + (a+ x)
�3
f
�
b+y
a+x

�
�m

4 (b+ y) + g
�
b+y
a+x

�
(a+ x)

�3

Table 4.16: Two dimensional conservative Newtonian systems admiting Lie symmetries (2/3)

Lie # V ! T;tt=mT

T (t) (a@x + b@y) �m
2 (x

2 + y2) + c1x+ f (ay � bx)

2
R
T (t) dt @t + T (t) [(a+ x) @x + (b+ y) @y] �m

8

�
x2 + y2 + 2ax+ 2by

�
+ (a+ x)

�2
f
�
b+y
a+x

�
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Table 4.17: Two dimensional conservative Newtonian systems admiting Lie symmetries (3/3)

Lie # V ! d = 0 d 6= 0

d
2 t@t + a@x + b@y f (ay � bx) [c1 + f (ay � bx)] e�d

x
a

d
2 t@t + (a+ x) @x + (b+ y) @y f

�
b+y
a+x

�
(a+ x)

2
f
�
b+y
a+x

�
(a+ x)

(2�d)

d
2 t@t + (x+ y) @x + (x+ y) @y f (y � x) + c1 (x+ y)2 (x+ y)(

2� d
2 )

d
2 t@t +

�
a2x+ ay

�
@x + (ax+ y) @y c1

�
x2 + y2

�
+ f (ay � x) c1 (ax+ y)

�
2� d

1+a2

�

d
2 t@t + (�ay + x) @x + (ax+ y) @y f (� � a ln r) r2 f (� � a ln r) r2�d

Lie # V ! d = 2 d = 1

d
2 t@t + @x + b@y [c1 + f (y � bx)] e�2

x
a [c1 + f (y � bx)] e�

x
a

d
2 t@t + (a+ x) @x + (b+ y) @y f

�
b+y
a+x

�
+ c1 ln (a+ x) f

�
b+y
a+x

�
(a+ x)

d
2 t@t + (x+ y) @x + (x+ y) @y (x+ y) (x+ y)

3
2

d
2 t@t +

�
a2x+ ay

�
@x + (ax+ y) @y ln (ax+ y)

�
d = 2

�
1 + a2

��
(ax+ y)

�
1+2a2

1+a2

�

d
2 t@t + (�ay + x) @x + (ax+ y) @y c1 ln r + f (� � a ln r) c1r + f (� � a ln r) r
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Table 4.18: Three dimensional conservative Newtonian systems admitingt Noether symmetries (3/5)

Noether Symmetry V(x;y; z)

a@� + b@� � p
ax� + f

�
x� � b

ax
�; x�

�
a@� + b (x�@� � x�@�) � p

jbj arctan
�

jbjx�
j(a+bx�)j

�
+ f

�
1
2r(��) +

a
bx

� ; x�
�

a@� + b (x�@� � x�@�) � p
jbj�(��) + f

�
r(��); x

� � a
b �(��)

�
a (x�@� � x�@�)+ p

a arctan
�
ax�+bx�
x�
p
a2+b2

�
+

+ b (x�@� � x�@�) + 1
af
�
x� � a

bx� ; x
2
�

�
1�

�
a
b

�2
+ 2b

a
x�
x�

�
+ x2�

�
2bt@t + a@� + bR@R �px�(2a+bx�)

2(a+bx2�)
+ 1

(a+bx2�)
f
�

x�
a+bx�

; x�
a+bx�

�
2bt@t + a�(��)@�(��) + bR@R

1
r2
(��)

f
�
�(��) � a

b ln r(��);
x�
r(��)

�

Table 4.19: Three dimensional conservative Newtonian systems admiting Noether symmetries (4/5)

Noether Symmetry V(x;y; z)

a@� + b@� + c@� � p
ax� + f

�
x� � b

ax
�; x� � c

ax
�
�

a@� + b@� + c (x�@� � x�@�) p
jcj arctan

�
(b�cx�)
j(a+cx�)j

�
+f
�
c
2r(��) � bx� + ax� ; x�

�
a@� + b@� + c (x�@� � x�@�) � p

jcj arctan
�

jcjx�
ja+cx�j

�
+ f

�
x� � 1

jcj arctan
�

jcjx�
ja+cx�j

�
; 12r(��) �

a
cx�

�
a@� + b (x�@� � x�@�)+ pp

b2+c2
arctan

�
(ab+b2x�+bcx�)
jbx�j

p
b2+c2

�
+

+ c (x�@� � x�@�) +f
�
x2� + x

2
�

�
1� c2

b2

�
+
�
2a
b +

2c
b x�

�
x� ; x� � c

bx�

�
so (3) linear combination p arctan (� (�; �))+

+ F (R; b tan � sin�+ c cos�� aM1)

2ct@t + a@� + b�(��)@�(��) + cR@R
1

r2
(��)

f
�
�(��) � b

c ln r(��);
a+cx�
cr(��)

�
2lt@t + (a@� + b@� + c@� + lR@R) �px(2a+cx�)

2(a+cx�)
2 +

1
(a+lx�)

2 f
�

b+lx�
l(a+lx�)

; c+lx�
l(a+lx�)

�
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Table 4.20: Three dimensional conservative Newtonian systems admiting Noether symmetries (5/5)

Noether Symmetry V(x;y; z) = T;tt=mT

T (t) (a@� + b@� + c@�) �m
2aR

2 + f
�
x� � b

ax
�; x� � c

ax
�
�

�
2l
R
T (t) dt

�
@t+

1
(a+lx�)

2 f
�

b+lx�
l(a+lx�)

; c+lx�
l(a+lx�)

�
+

+ T (t) (a@� + b@� + c@� + lR@R) � m
8

�
R2 + 2a

l x� +
2c
l x� +

2b
l x�

�

Where � (�; �) =
��
a2 + b2

�
cos�� bc tan � sin�+ cM1

�
�

�
�
M2

�
�b2M2

1 � 2b tan � sin�M1 � a2 sin2 � tan2 �
�	� 1

2

M1 =
1

cos �

q
sin2 � (2 cos2 � � 1) ;M2 =

p
a2 + b2 + c2
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Chapter 5

The autonomous Kepler Ermakov

system in a Riemannian space

5.1 Introduction

The Ermakov system has its roots in the study of the one dimensional time dependent harmonic oscillator

�x+ !2(t)x = 0: (5.1)

Ermakov [66] obtained a �rst integral J of this equation by introducing the auxiliary equation

��+ !2(t)� = ��3 (5.2)

eliminating the !2(t) term and multiplying with the integrating factor � _x� _�x

J =
1

2

�
(� _x� _�x)2 + (x=�)2

�
: (5.3)

The Ermakov system was rediscovered nearly a century after its introduction [67] and subsequently was

generalized beyond the harmonic oscillator to a two dimensional dynamical system which admits a �rst integral

[68]. In a series of papers the Lie, the Noether and the dynamical symmetries of this generalized system have

been studied. A short review of these studies and a detailed list of relevant references can be found in [69].

Earlier reviews of the Ermakov system and its numerous applications in divertive areas of Physics can be found

in [70, 71].

The general Ermakov system does not admit Lie point symmetries. The form of the most general Ermakov

system which admits Lie point symmetries has been determined in [72] and it is called the Kepler Ermakov

system [65, 56]. It is well known that these Lie point symmetries are a representation of the sl(2; R) algebra.

99
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In an attempt to generalize the Kepler Ermakov system to higher dimensions, Leach [56] used a transfor-

mation to remove the time dependent frequency term and then demanded that the autonomous �generalized�

Kepler Ermakov system will posses two properties: (a) a �rst integral, the Ermakov invariant and (b) sl(2; R)

invariance wrt to Lie symmetries. It has been shown, that the invariance group of the Ermakov invariant

is reacher than sl(2; R) [73]. The purpose of the present work is to use Leach�s proposal and generalize the

autonomous Kepler Ermakov system in two directions: (a) to higher dimensions using the sl(2; R) invariance

with respect to Noether symmetries (provided the system is Hamiltonian) and (b) in a Riemannian space which

admits a gradient homothetic vector (HV).

The generalization of the autonomous Kepler Ermakov system to three dimensions using Lie symmetries

has been done in [56]. In the following sections, we use the results of Chapter 4 to generalize the subset of

autonomous Hamiltonian Kepler Ermakov systems to three dimensions via Noether symmetries. We show, that

there is a family of three dimensional autonomous Hamiltonian Kepler Ermakov systems parametrized by an

arbitrary function f which admits the elements of sl(2; R) as Noether point symmetries. Each member of this

family admits two �rst integrals, the Hamiltonian and the Ermakov invariant.

We use this result in order to determine all three dimensional Hamiltonian Kepler Ermakov systems which

are Liouville integrable via Noether point symmetries. To do this we need to determine all members of the

family, that is, those functions f for which the corresponding system admits an additional Noether symmetry.

The results of Chapter 4 indicate that there are two cases to be considered, i.e. Noether point symmetries

resulting from linear combinations of (a) translations and (b) rotations (elements of the so (3) algebra). In each

case we determine the functions f and the required extra time independent �rst integral.

The above scenario can be generalized to an n dimensional Euclidian space as Leach indicates in [56], however

at the cost of major complexity and number of cases to be considered. Indeed as it can be seen by the results

of Chapter 4, the situation is complex enough even for the three dimensional case.

We continue with the generalization of the Kepler Ermakov system in a di¤erent and more drastic direction.

We note that the Ermakov systems considered so far are based on the Euclidian space, therefore we may call them

Euclidian Ermakov systems. Furthermore the sl(2; R) symmetry algebra of the autonomous Kepler Ermakov

system is generated by the trivial symmetry @t and the gradient HV of the Euclidian two dimensional space E2:

Using this observation we generalize the autonomous Kepler Ermakov system (not necessarily Hamiltonian) in

an n dimensional Riemannian space which admits a gradient HV using either Lie or Noether point symmetries.

The new dynamical system we call the Riemannian Kepler Ermakov system. This generalization makes possible

the application of the autonomous Kepler Ermakov system in General Relativity and in particular in Cosmology.

Concerning General Relativity, we determine the four dimensional autonomous Riemannian Kepler Ermakov

system and the associated Riemannian Ermakov invariant in the spatially �at Freedman - Robertson - Walker

(FRW) spacetime and we use previous results to calculate the extra Noether point symmetries. The applications

to cosmology concern two models for dark energy on a locally rotational symmetric (LRS) space time. The �rst
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model involves a scalar �eld with an exponential potential minimally interacting with a perfect �uid with a sti¤

equation of state. The second cosmological model is the f(R) modi�ed gravity model of �bcCDM . It is shown,

that, in both models the gravitational �eld equations de�ne an autonomous Riemannian Kepler Ermakov system

which is integrable via Noether integrals.

In section 5.2, we review the main features of the two dimensional autonomous Euclidian Kepler Ermakov

system. In section 5.3, we discuss the general scheme of generalization of the two dimensional autonomous

Euclidian Kepler Ermakov system to higher dimensions and to a Riemannian space which admits a gradient

HV. In section 5.4, we consider the generalization to the 3D autonomous Euclidian Hamiltonian Kepler Ermakov

system by Noether point symmetries and determine all such systems which are Liouville integrable. In section

5.6, we de�ne the autonomous Riemannian Kepler Ermakov system by the requirements that it will admit

(a) a �rst integral (the Ermakov invariant) and (b) posses sl(2; R) invariance. In section 5.6.1, we consider

the non-conservative autonomous Riemannian Kepler Ermakov system and derive the Riemannian Ermakov

invariant and in section 5.6.2 we repeat the same for the autonomous Hamiltonian Riemannian Kepler Ermakov

system. In the remaining sections we discuss the applications of the autonomous Hamiltonian Riemannian

Kepler Ermakov system in General Relativity and in Cosmology.

5.2 The two dimensional autonomous Kepler Ermakov system

In [72] Hass and Goedert considered the most general 2d Newtonian Ermakov system to be de�ned by the

equations:

�x+ !2(t; x; y; _x; _y)x =
1

yx2
f
�y
x

�
(5.4)

�y + !2(t; x; y; _x; _y)y =
1

xy2
g
�y
x

�
: (5.5)

This system admits the Ermakov �rst integral

I =
1

2
(x _y � y _x)2 +

Z y=x

f (�) d� +

Z y=x

g (�) d� : (5.6)

If one considers the transformation:


2 = !2 � 1

xy3
g
�y
x

�
F
�y
x

�
= f

�y
x

�
� x2

y2
g
�y
x

�
then equations (5.4)-(5.5) take the form

�x+
2(x; y; _x; _y)x =
1

x2y
F
�y
x

�
(5.7)

�y +
2(x; y; _x; _y)y = 0: (5.8)
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Due to the second equation, except for special cases, the new function 
 is independent of t; it depends

only on the dynamical variables x; y and possibly on their derivative. The Ermakov �rst integral in the new

variables is:

I =
1

2
(x _y � y _x)2 +

Z y=x

F (�) d�: (5.9)

The system of equations (5.7)-(5.8) de�nes the most general 2D Ermakov system and produces all its known

forms for special choices of the function 
: For example, the weak Kepler Ermakov system [56] is de�ned by

the equations [65]

�x+ !2(t)x+
x

r3
H (x; y)� 1

x3
f
�y
x

�
= 0 (5.10)

�y + !2(t)y +
y

r3
H (x; y)� 1

y3
g
�y
x

�
= 0 (5.11)

where H; f; g are arbitrary functions of their argument, 
 is of the form


2(x; y) = !2(t) +H (x; y) =r3 (5.12)

and the Ermakov �rst integral becomes

I =
1

2
(x _y � y _x)2 +

Z y
x �
�f (�)� ��3g (�)

�
d�: (5.13)

The weak Kepler Ermakov system does not admit Lie point symmetries. However, the property of having a �rst

integral prevails. The system of equations (5.10), (5.11) admits the sl (2; R) as Lie point symmetries [52] only

for H (x; y) = ��2r3 + h( yx )
x where � is either a real or a pure imaginary number. This is the Kepler Ermakov

system de�ned by the equations

�x+
�
!2(t)� �2

�
x+

1

r3
h
�y
x

�
� 1

x3
f
�y
x

�
= 0 (5.14)

�y +
�
!2(t)� �2

�
y +

1

r3
y

x
h
�y
x

�
� 1

y3
g
�y
x

�
= 0: (5.15)

It is well known (see [52]) that the oscillator term !2(t)��2 in (5.14)-(5.15) is removed if one considers new
variables T;X; Y de�ned by the relations:

T =

Z
��2dt;X = ��1x ; Y = ��1y (5.16)

where � is any smooth solution of the time dependent oscillator equation

��+
�
!2(t)� �2

�
� = 0: (5.17)

In [52] it is commented that "the e¤ect of �2 is to shift the time dependent frequency function". However

this is true as long as !(t) 6= 0: When !(t) = 0; one has the autonomous Kepler Ermakov system whose Lie

symmetries span the sl(2; R) algebra with di¤erent representations for � = 0 and � 6= 0:
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Before we justify the need for the consideration of the two cases � = 0 and � 6= 0, we note that by applying
the transformation

s =

Z
v�2dT ; �x = v�1X ; �y = v�1Y (5.18)

where � satis�es the Ermakov Pinney equation

d2v

dT 2
+
�2

v3
= 0 (5.19)

to the transformed equations

d2X

dT 2
+
1

R3
h

�
Y

X

�
� 1

X3
f

�
Y

X

�
= 0 (5.20)

d2Y

dT 2
+
1

R3
Y

X
h

�
Y

X

�
� 1

Y 3
g

�
Y

X

�
= 0 (5.21)

we retain the term �2 and obtain the autonomous Kepler Ermakov system of [53]

�x� �2x+ 1

r3
h
�y
x

�
� 1

x3
f
�y
x

�
= 0 (5.22)

�y � �2y + 1

r3
y

x
h
�y
x

�
� 1

y3
g
�y
x

�
= 0: (5.23)

The above transformations show that the consideration of the autonomous Kepler Ermakov system is not a

real restriction.

We discuss now the need for the consideration of the cases � = 0 and � 6= 0: In Section 4.7, we have

determined the Lie symmetries of the autonomous 2d Kepler Ermakov system and we have found two cases.

Case I concerns the autonomous Kepler Ermakov system with � = 0 and has the Lie symmetry vectors

X =
�
�c1 + �c22t+ �c3t

2
�
@t + (�c2 + �c3t) r@r ( � = 0) (5.24)

The second case, Case II, concerns the same system with � 6= 0 and has the Lie symmetry vectors

X =

�
c1 + c2

1

�
e2�t � c3

1

�
e�2�t

�
@t +

�
c2e

2�t + c3e
�2�t� r@r ( � 6= 0) (5.25)

where in both cases r@R = x@x + y@y is the gradient HV of the 2D Euclidian metric. Each set of vectors in

(5.25)-(5.24) is a representation of the sl(2; R) algebra and furthermore each set of vectors is constructed from

the vector @t and the gradient HV r@r of the Euclidian two dimensional space E2.

The essence of the di¤erence between the two representations is best seen in the corresponding �rst integrals.

If a Kepler Ermakov system is Hamiltonian then the Lie point symmetries are also Noether point symmetries

therefore in order to �nd these integrals we determine the Noether invariants. The Noether symmetries of the

Kepler Ermakov system have been determined in Section 4.7. For the convenience of the reader we repeat the

relevant material.

Equations (5.22), (5.23) follow from the Lagrangian [52]

L =
1

2

�
_r2 + r2 _�

2
�
� �2

2
r2 � C (�)

2r2
(5.26)
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where C(�) = c+ sec2 �f(tan �) + csc2 �g(tan �) provided the functions f; g satisfy the constraint:

sin2 �f 0 (tan �) + cos2 � g0 (tan �) = 0: (5.27)

The Ermakov invariant in this case is [52].

J = r4 _�
2
+ 2C (�) : (5.28)

Because the system is autonomous the �rst Noether integral is the Hamiltonian

E =
1

2

�
_r2 + r2 _�

2
�
+
1

2
�2r2 +

1

r2
F (�) (5.29)

In addition to the Hamiltonian, there exist two additional time dependent Noether integrals as follows:

� = 0

I1 = 2tE � r _r (5.30)

I2 = t2E � tr _r + 1
2
r2 (5.31)

� 6= 0

I 01 =

�
1

�
E � r _r + �r2

�
e2�t (5.32)

I 02 =

�
1

�
E + r _r + �r2

�
e�2�t: (5.33)

We note that the Noether integrals corresponding to the representation (5.24) are linear in t; whereas the ones

corresponding to the representation (5.25) are exponential. Therefore the consideration of the cases � = 0 and

� 6= 0 is not spurious otherwise we loose important information. This latter fact is best seen in the applications
of Noether symmetries to �eld theories where the main core of the theory is the Lagrangian. In these cases the

potential is given and, as it has been shown in Chapter 4, a given potential admits certain Noether symmetries

only; therefore one has to consider all possible cases. We shall come to this situation in section 5.8 where it will

be found that the potential selects the representation (5.25).

To complete this section, we mention that for a Hamiltonian Kepler Ermakov system the Ermakov invariant

(5.28) is constructed [53] from the Hamiltonian and the Noether invariants (5.32),(5.33) as follows:

J = E2 � I 01I
0
2:

Finally in [53], it is shown that the Ermakov invariant is generated by a dynamical Noether symmetry of

the Lagrangian (5.26), a result which is also con�rmed in [74].

5.3 Generalizing the autonomous Kepler Ermakov system

We consider the generalization of the two dimensional autonomous Kepler Ermakov system [56, 72, 75, 76, 77, 78]

using a geometric point of view. From the results presented so far we have the following:
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(i) Equations (5.4)-(5.5) which de�ne the Ermakov system employ coordinates in the Euclidian two dimen-

sional space, therefore the system is the Euclidian Ermakov system.

(ii) The autonomous 2D Euclidian Kepler Ermakov system is de�ned by equations (5.22) and (5.23)

(iii) The Lie symmetries of the Kepler Ermakov system span the sl(2; R) algebra. These symmetries are

constructed from the vector @t and the gradient HV of the space E2.

(iv) For the autonomous Hamiltonian Kepler Ermakov system the Lie symmetries reduce to Noether point

symmetries and the Ermakov invariant follows from a combination of the resulting three Noether integrals,

two of which are time dependent. Furthermore, the Ermakov invariant is the Noether integral of a dynamical

Noether symmetry.

The above observations imply that we may generalize the Kepler Ermakov system in two directions:

a. Increase the number of dimensions by de�ning the n dimensional Euclidian Kepler Ermakov system

and/or

b. Generalize the background Euclidian space to be a Riemannian space and obtain the Riemannian Kepler

Ermakov system.

Concerning the de�ning characteristics of the Kepler Ermakov system we distinguish three di¤erent proper-

ties of reduced generality: The property of having a �rst integral; the property of admitting Lie/Noether point

symmetries, the sl(2; R) invariance and the property of being Hamiltonian and admitting sl(2; R) invariance

via Noether point symmetries.

Following Leach [56] we generalize the autonomous Kepler Ermakov system to higher dimensions by the

requirement: The generalized autonomous (Euclidian) Kepler Ermakov system admits the sl(2; R) algebra as a

Lie symmetry algebra.

5.4 The three dimensional autonomous Euclidian Kepler Ermakov

system

The generalization of the autonomous Euclidian Kepler Ermakov system using sl(2; R) invariance of Lie sym-

metries has been done in [56, 77, 78]. In this section, using of the results of Chapter 4, we give the generalization

of the autonomous Euclidian Hamiltonian Kepler Ermakov system to three dimensions by demanding sl(2; R)

invariance with respect to Noether point symmetries. The reason for attempting this generalization is that

it leads to the potentials for which the corresponding extended systems are Liouville integrable. Furthermore

indicates the path to the n dimensional Riemannian Kepler Ermakov system.

Depending on the value � 6= 0 or � = 0; we consider the three dimensional Hamiltonian Kepler Ermakov

systems of type I and type II.
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5.4.1 The 3D autonomous Hamiltonian Kepler Ermakov system of type I (� 6= 0)

For � 6= 0; the admitted Noether symmetries are required to be (see (5.25))

X1 = @t; X� =
1

�
e�2�t@t � e�2�tR@R: (5.34)

From Table 4.11 and T (t) = 1
�e

�2�t of section 4.5.2, we �nd that for these vectors the potential is

V (R;�; �) = � �2

2
R2 +

1

R2
f (�; �)

hence, the Lagrangian is

L =
1

2

�
_R2 +R2 _�

2
+R2 sin2 � _�

2
�
+

�2

2
R2 � 1

R2
f (�; �) : (5.35)

The equations of motion, that is, the equations de�ning the generalized dynamical system are

�R�R _�2 �R sin2 � _�2 � �2R� 2

R3
f = 0 (5.36)

��+
2

R
_R _�� sin� cos� _�2 + 1

R4
f;� = 0 (5.37)

�� +
2

R
_R _� + cot� _� _�+

1

R4 sin2 �
f;� = 0: (5.38)

The Noether integrals corresponding to the Noether vectors are

E =
1

2

�
_R2 +R2 _�

2
+R2 sin2 � _�

2
�
� �2

2
R2 +

1

R2
f (�; �) (5.39)

I+ =
1

�
e2�tE � e2 �tR _R+ �e2�tR2 (5.40)

I� =
1

�
e�2�tE + e�2�tR _R+ �e�2�tR2 (5.41)

where E is the Hamiltonian. The Noether integrals I� are time dependent. Following [53] we de�ne the time

independent combined �rst integral

J = E2 � I+I� = R4 _�
2
+R4 sin2 � _�

2
+ 2f (�; �) : (5.42)

Using (5.42) the equation of motion (5.36) becomes

�R� �2R = J

R3
(5.43)

which is the autonomous Ermakov- Pinney equation [79]. Therefore J is the Ermakov invariant [56].

An alternative way to construct the Ermakov invariant (5.42) is to use dynamical Noether symmetries [58].

Indeed one can show that the Lagrangian (5.35) admits the dynamical Noether symmetry XD = Ki
j _x
j@i where

Kij is a Killing tensor of the second rank whose non-vanishing components are K�� = R4 ; K�� = R4 sin2 �: The

dynamical Noether symmetry vector is XD = R2
�
_�@� + _�@�

�
with gauge function 2f (�; �).
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5.4.2 The 3D autonomous Hamiltonian Kepler Ermakov system of type II (� = 0)

For � = 0; the Noether point symmetries are required to be (see (5.24)) [56]

X1 = @t ; X
2 = 2t@t +R@R ; X3 = t2@t + tR@R: (5.44)

From Table 4.10 and from Table 4.11 for T (t) = t of section 4.5.2, we �nd that the potential is

V (R;�; �) =
1

R2
f (�; �)

hence, the Lagrangian is

L0 =
1

2

�
_R2 +R2 _�

2
+R2 sin2 � _�

2
�
� 1

R2
f (�; �) : (5.45)

The equations of motion are (5.36) - (5.38) with � = 0. The Noether invariants of the Lagrangian (5.45) are

E =
1

2

�
_R2 +R2 _�

2
+R2 sin2 � _�

2
�
+
1

R2
f (�; �) (5.46)

I1 = 2tE0 �R _R (5.47)

I2 = t2E0 � tR _R+ 1
2
R2: (5.48)

We note that the time dependent �rst integrals I1;2 are linear in t whereas the corresponding integrals I�

of the case � 6= 0 are exponential. From I1;2 we de�ne the time independent �rst integral J = 4I2E0� I21 which
is calculated to be

J = R4 _�
2
+R4 sin2 � _�

2
+ 2f (�; �) : (5.49)

Using (5.49) the equation of motion for R (t) becomes �R � J0

R3 = 0 which is the one dimensional Ermakov-

Pinney equation, hence J 0 is the Ermakov invariant [56]. As it was the case with the three dimensional

Hamiltonian Kepler Ermakov system of type I, the Lagrangian (5.45) admits the dynamical Noether symmetry

XD = R2
�
_�@� + _�@�

�
whose integral is the (5.49).

5.5 Integrability of 3D autonomous Euclidian Kepler Ermakov sys-

tem

The 3d autonomous Hamiltonian Euclidian Kepler Ermakov systems need three independent �rst integrals in

involution in order to be Liouville integrable. As we have shown each system has the two Noether integrals

(E; J) , therefore, we need one more Noether symmetry. Such a symmetry exists only for special forms of the

arbitrary function f (�; �). From tables 4.10, 4.11, 4.18, 4.19 and 4.20 of Chapter 4 we �nd that extra Noether

symmetries are possible only1 for linear combinations of translations (i.e. vectors of the form
3P

A=1

aA@A where

aA are constants) and/or rotations (i.e. elements of so(3)).

1The linear combination of an element of so(3) with a translation does not give a potential, hence, an additional Noether

symmetry.
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5.5.1 Noether symmetries generated from the translation group

We determine the functions f (�; �) for which the 3D autonomous Hamiltonian Euclidian Kepler Ermakov

system admits extra Noether point symmetries for linear combinations of the translation group.

The Lagrangian (5.35)

In Cartesian coordinates the Lagrangian (5.35) is

L
�
xj ; _xj

�
=
1

2

�
_x2 + _y2 + _z2

�
+
�2

2

�
x2 + y2 + z2

�
� 1

x2
fI

�y
x
;
z

x

�
(5.50)

where fI =
�
1 + y2

x2 +
z2

x2

��1
: From Table 4.20 with m = ��2 ; p = 0 we �nd that the Lagrangian (5.50) admits

Noether symmetries, which are produced from a linear combination of translations, if the function fI
�
y
x ;

z
x

�
has the form

fI

�y
x
;
z

x

�
=

1�
1� a

b
y
x

�2F
 
b zx � c

y
x�

1� a
b
y
x

�! : (5.51)

In this case, the Lagrangian (5.50) admits at least the following two extra Noether symmetries

X� = e��t
3X

A=1

aA@A (5.52)

with corresponding Noether integrals

I� = e��t

 
3X

A=1

aA _xA

!
� �e��t

 
3X

A=1

aAxA

!
: (5.53)

We note that the �rst integrals I� are time dependent; however the �rst integral

J2 = I+I� = (a _x+ b _y + c _z)
2
+ �2 (ax+ by + cz)

2 (5.54)

is time independent. As it was the case with the Ermakov invariant (5.42) the integral J2 is possible to be

constructed directly from the dynamical Noether symmetry X 0
D = Ki

(2):j _x
i@i, where K(2)ij is a Killing tensor

of the second rank [58, 59], with non-vanishing components

K11 = a2 ; K22 = b2 ; K33 = c2

K(12) = 2ab ; K(13) = 2ac ; K(23) = 2bc

so that the dynamical symmetry vector is

X 0
D =

�
a2 + ab+ ac

�
_x@x +

�
b2 + ab+ bc

�
_y@y +

�
c2 + ac+ bc

�
_z@z: (5.55)

The Ermakov invariant J (see (5.42) ) in Cartesian coordinates is

J = 2E
�
x2 + y2 + z2

�
� (x _x+ y _y + z _z)2 : (5.56)
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The �rst integrals J; J2 are not in involution. Using the Poisson brackets we construct new �rst integrals

and at some stage one of them will be in involution. These new �rst integrals can also be constructed form

corresponding dynamical Noether symmetries.

An example of a known Lagrangian of the form (5.50) is the three body Calogero-Moser Lagrangian [80, 81,

82]

L =
1

2

�
_x2 + _y2 + _z2

�
� �2

2

�
x2 + y2 + z2

�
� 1

(x� y)2
� 1

(x� z)2
� 1

(y � z)2
: (5.57)

The extra Noether symmetries of this Lagrangian are produced by the vector (5.52) for aA = (1; 1; 1) :

The Lagrangian (5.45)

In Cartesian coordinates the Lagrangian (5.45) is

L
�
xj ; _xj

�
=
1

2

�
_x2 + _y2 + _z2

�
� 1

x2
fII

�y
x
;
z

x

�
: (5.58)

According to Tables 4.19 and 4.20 (with m = 0 ; p = 0), the Lagrangian (5.58) admits extra Noether point

symmetries for a linear combination of translations if the function f is of the form (5.51). In this case the

corresponding Noether integrals are

I 01 =

3X
A=1

aA _xA ; I 02 = t

3X
A=1

aA _xA �
3X

A=1

aAxA: (5.59)

Example of such a Lagrangian is the Calogero-Moser Lagrangian [80] (without the oscillator term)

L =
1

2

�
_x2 + _y2 + _z2

�
� 1

(x� y)2
� 1

(x� z)2
� 1

(y � z)2
: (5.60)

For the Lagrangian (5.60), we have the �rst integrals E; J; I 01; I
0
2. From the integrals J; I 01 we construct the

integral � = fI 01; fJ; I 01gg . It is easy to show that the integrals E; I 01;� are in involution hence the dynamical
system is Liouville integrable. We remark, that, the �rst integrals E; J; I 01; I

0
2 can also be computed by making

use of the Lax pair tensor [82].

5.5.2 Noether symmetries generated from so (3)

The elements of so (3) in spherical coordinates are the three vectors CK1;2;3

CK1 = sin �@� + cos � cot�@�; CK
2 = cos �@� � sin � cot�@�; CK3 = @� (5.61)

which are also KVs for the Euclidian sphere.

In this case, the symmetry condition becomes

LCK

�
1

R2
f (�; �)

�
+ p = 0 (5.62)
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or, equivalently
1

R2
�
R2gijCK

if ;j
�
+ p = 0) gijCK

i
(1;2;3)f

;j + p = 0 (5.63)

where gij is the metric of the Euclidian sphere, that is

ds2 = d�2 + sin2� d�2: (5.64)

We infer that the problem of determining the extra Noether point symmetries of Lagrangian (5.35) generated

from elements of the so (3) is equivalent to the determination of the Noether point symmetries for motion on

the 2D sphere.

It is easy to show, that, the integrals of Table 4.12 of section 4.6 are in involution with the Hamiltonian and

the Ermakov invariant, therefore, the system is Liouville integrable via Noether point symmetries.

The above results are extended to the case in which the system moves on the hyperbolic sphere that is, it

has Lagrangian

L =
1

2

�
_R2 +R2 _�

2
+R2 sinh2 � _�

2
�
+
�2

2
R2 � 1

R2
g (�; �) : (5.65)

We reach at the following conclusion.

Proposition 5.5.1 The three dimensional autonomous Hamiltonian Kepler Ermakov system with Lagrangian

(5.35) is Liouville Integrable via Noether point symmetries, which are generated from a linear combination

of the three elements of the so (3) algebra, if and only if the equivalent dynamical system in the fundamental

hyperquadrics of the three dimensional �at space is integrable.

We note that it is possible a three dimensional autonomous Kepler Ermakov system to admit more Noether

symmetries which are due to the rotation group and the translation group (but not to a linear combination of

elements from the two groups). For example, the 3D Kepler Ermakov system with Lagrangian [50]

L =
1

2

�
_x2 + _y2 + _z2

�
� 1

x2
�
1� y

x �
z
x

�2 (5.66)

has the following extra Noether point symmetries (in addition to the elements of sl (2; R))

Y 1 = @x + @y; Y
2 = @x + @z

Y 3 = t (@x + @y) ; Y
4 = t (@x + @z)

Y 5 = (y � z) @x � (x+ z) @y + (x+ y) @z:

The vectors Y 1;2 and Y 3;4 follow from (5.52) for aA1 = (1; 1; 0) and aA2 = (1; 0; 1) respectively, whereas Y
5 is a

linear combination of the three elements of so (3). The Noether integrals of the Noether symmetries Y 1�5 are
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respectively

IY1 = _x+ _y (5.67)

IY2 = _x+ _z (5.68)

IY3 = t ( _x+ _y)� (x+ y) (5.69)

IY4 = t ( _x+ _z )� (x+ z) (5.70)

IY5 = (y � z) _x� (x+ z) _y + (x+ y) _z: (5.71)

It is clear that in order to extend the Kepler Ermakov system to higher dimensions one needs to have the

type of results of Chapter 4; therefore, the remark made in [56], that the �notion is easily generalized to higher

dimensions�has to be understood as referring to the general scenario and not to the actual work.

5.6 The autonomous Riemannian Kepler Ermakov system

As it has been noted in section 5.2, the Kepler Ermakov systems considered so far in the literature are New-

tonian Kepler Ermakov systems. In this section we make a drastic step forward and introduce the autonomous

Riemannian Kepler Ermakov systems of dimension n: The generalization we consider is based on the following

de�nition

De�nition 5.6.1 The n dimensional autonomous Riemannian Kepler Ermakov system is an autonomous dy-

namical system which:

a. It is de�ned on a Riemannian space which admits a gradient HV

b. Admits a �rst integral, which we name the Riemannian Ermakov �rst integral and it is characterized by the

requirement that the corresponding equation of motion takes the form of the Ermakov Pinney equation.

c. It is invariant at least under the sl(2; R) algebra, which is generated by the vector @t and the gradient HV of

the space.

There are two types of n dimensional autonomous Riemannian Kepler Ermakov systems. The ones which

are not Hamiltonian and admit the sl(2; R) algebra as Lie point symmetries and the ones which are conservative

and admit the sl(2; R) algebra as Noether point symmetries.

5.6.1 The non Hamiltonian autonomous Riemannian Kepler Ermakov system

Consider an n dimensional Riemannian space which admits a gradient HV. It is well known, that the metric of

this space can always be written in the form [83, 84]

ds2 = du2 + u2hABdy
AdyB (5.72)
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where the Latin capital indices A;B; :: take the values 1; : : : ; n � 1 and hAB = hAB
�
yC
�
is the generic n � 1

metric. The gradient HV of the metric is the vector Hi = u@u ( = 1) generated from the function H = 1
2u

2.

We note the relation

hDA�
A
BC =

1

2
hDB;C (5.73)

where �ABC are the connection coe¢ cients of the (n� 1) metric hAB : In that space, we consider a particle
moving under the action of the force

F i = Fu(u; yC)
@

@u
+ FA(u; yC)

@

@yA
:

The equations of motion Dxi

Dt = F i when projected along the direction of u and in the (n� 1) space give
the equations

u00 � uhABy0Ay0B = Fu (5.74)

y00A +
2

u
u0y0A + �ABCy

0By0C = FA (5.75)

where u0 = du
ds and s is an a¢ ne parameter.

Because the system is autonomous admits the Lie point symmetry @t. Using the vector @t and the gradient

HV Hi = u@u we construct two representations of sl(2; R) by means of the sets of vectors (see (5.34) and (5.44))

@s; 2s@s + u@u; s
2@t + su@u when � = 0 (5.76)

@s;
1

�
e�2�s@s � e�2�su@u when � 6= 0 (5.77)

and require that the vectors in each set will be Lie point symmetries of the system of equations (5.74),(5.75).

In Appendix 5.A we show that the requirement of the invariance of the force under both representations (5.76),

(5.77) of sl(2; R) demands that the force be of the form

F i =

�
�2u+

1

u3
Gu
�
yC
��

@u +
1

u4
GA

�
yC
�
@A: (5.78)

Replacing F i in the system of equations (5.74),(5.75) we �nd

u00 � uhABy0Ay0B = �2u+
1

u3
Gu (5.79)

y00A +
2

u
u0y0A + �ABCy

0By0C =
1

u4
GA: (5.80)

Multiplying the second equation with 2u4hDAy0D and using (5.73) we have

u4
d

ds

�
hDBy

0Dy0B
�
+ 4u3hDAu

0y0Ay0D = 2GDy
0D (5.81)

from which follows
d

ds

�
u4hDBy

0Dy0B
�
= 2GDy

0D: (5.82)
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The rhs is a perfect di¤erential if GD = ��;D where �(yA) is a di¤erentiable function. If this is the case

we �nd the �rst integral

J = u4hDBy
0Dy0B + 2�

�
yC
�
: (5.83)

We note that J involves the arbitrary metric hAB and the function �(yA). Furthermore equations (5.79),

(5.80) become

u00 � uhABy0Ay0B = �2u+
1

u3
Gu
�
yC
�

(5.84)

y00A +
2

u
u0y0A + �ABCy

0By0C = � 1

u4
hAB�

�
yC
�
;B

: (5.85)

These are the equations de�ning the n dimensional autonomous Riemannian Kepler Ermakov system.

Using the �rst integral (5.83), the equation of motion (5.84) is written as follows

u00 = �2u+
�G
�
yC
�

u3
(5.86)

where �G = J + Gu
�
yC
�
� 2�

�
yC
�
: This is the Ermakov-Pinney equation; hence, we identify (5.83) as the

Riemannian Ermakov integral of the autonomous Riemannian Kepler Ermakov system.

5.6.2 The autonomous conservative Riemannian Kepler Ermakov system

In the following we assume that the force is derived from the potential V
�
u; yC

�
; that is, the dynamical system

is conservative so that the equations of motion follow from the Lagrangian

L =
1

2

�
u02 + u2hABy

0Ay0B
�
� V

�
u; yC

�
: (5.87)

The Hamiltonian is

E =
1

2

�
u02 + u2hABy

0Ay0B
�
+ V

�
u; yC

�
: (5.88)

The equations of motion, i.e. the Euler-Lagrange equations, are

u00 � uhABy0Ay0B + V;u = 0 (5.89)

y00A +
2

u
u0y0A + �ABCy

0By0C +
1

u2
hABV;B = 0: (5.90)

The demand that Lagrangian (5.87) admits Noether point symmetries which are generated from the gradient

HV leads to the following cases.

Case A: The Lagrangian (5.87) admits the Noether point symmetries (5.76) if the potential is of the form

V
�
u; yC

�
=
1

u2
V
�
yC
�
: (5.91)

The Noether integrals of these Noether point symmetries are

EA =
1

2

�
u02 + u2hABy

0Ay0B
�
+
1

u2
V
�
yC
�

(5.92)

I1 = 2sE � uu0 (5.93)

I2 = s2E � suu0 + 1
2
u2 (5.94)
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where EA is the Hamiltonian.

Case B: The Lagrangian (5.87) admits the Noether point symmetries (5.77) if the potential is of the form

V (u; yc) = ��
2

2
u2 +

1

u2
V 0
�
yC
�
: (5.95)

The Noether integrals of these Noether point symmetries are

EB =
1

2

�
u02 + u2hABy

0Ay0B
�
� �2

2
u2 +

1

u2
V 0
�
yC
�

(5.96)

I+ =
1

�
e2�sE � e2�suu0 + �e2�su2 (5.97)

I� =
1

�
e�2�sE + e�2�suu0 + �e�2�su2 (5.98)

where EB is the Hamiltonian.

Using the Noether integrals we construct the Riemannian Ermakov invariant JG, which is common for both

Case A and Case B, as follows

JG = u4hDBy
0Dy0C + 2V 0

�
yC
�
: (5.99)

This coincides with the invariant �rst integral de�ned in (5.83). We note that with the use of the �rst integral

(5.99) the Hamiltonians (5.92) and (5.96) take the form

E =
1

2
u02 � �2

2
u2 +

J

2u2
(5.100)

which is the Hamiltonian for the Ermakov Pinney equation.

As it was the case with the Euclidian case of section 5.2, it can be shown that the Riemannian Ermakov

invariant (5.99) is due to a dynamical Noether symmetry[58]. We collect the results in the following proposition.

Proposition 5.6.2 In a Riemannian space with metric gij which admits a gradient HV, the equations of motion

of a Hamiltonian system moving under the action of the potential (��C)

V (u; yc) = ��
2

2
u2 +

1

u2
V 0
�
yC
�

(5.101)

admit the sl(2; R) invariance and also an invariant �rst integral, the Riemannian Ermakov invariant. This

latter quantity is also possible to be identi�ed as the Noether integral of a dynamical Noether symmetry.

Without going into details we state the following general result.

Proposition 5.6.3 Consider an n dimensional Riemannian space with an r decomposable metric, which in

the Cartesian coordinates x1; : : : ; xr; has the general form

ds2 = p���dz
�dz� + hijdx

idxj ; i; j = r + 1; : : : ; n ; � = 1; : : : ; r (5.102)
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where ��� is a �at non degenerate metric (of arbitrary signature). If there exists a potential, so that the vectors

e��s
P
M

aM@M are Noether point symmetries, where aM are constants, with Noether integrals

I� = e��s
X
M

aMz0M � �e��s
X
M

aMzM (5.103)

the combined �rst integral I = I+I� is time independent and it is the result of a dynamical Noether symmetry.

In the remaining sections we consider applications of the autonomous Riemannian Kepler Ermakov system

in General Relativity and in Cosmology.

5.7 The autonomous Riemannian Kepler Ermakov system in Gen-

eral Relativity

Below, we study the integrability of the Riemannian Kepler Ermakov system via Noether point symmetries in

a conformally �at spacetime which admits a homothetic Lie algebra with a gradient (proper) HV.

5.7.1 The Riemannian Kepler Ermakov system on a 4D FRW spacetime

Consider the spatially �at FRW spacetime with metric

ds2 = du2 � u2
�
dx2 + dy2 + dz2

�
: (5.104)

This metric admits the gradient HV u@u and six non gradient KVs [45, 44] which are the KVs of E3.

We consider the autonomous Riemannian Kepler Ermakov system de�ned by the Lagrangian (see (5.101) )

(� 2 C )

L =
1

2

�
u02 � u2

�
x02 + y02 + z02

��
+
�2

2
u2 � 1

u2
V (x; y; z) : (5.105)

The Euler Lagrange equations are

u00 + u
�
x02 + y02 + z02

�
� �2u� 2V (x; y; z)

u3
= 0 (5.106)

x�00 +
2

u
u0x�0 � V ;� (x; y; z)

u4
= 0 (5.107)

where � = 1; 2; 3. The Lagrangian (5.105) has the form of the Lagrangian (5.87) for the potential V
�
u; yC

�
=

��2

2 u
2 + 1

u2V (x; y; z) hence according to proposition 5.6.2 possesses sl(2; R) invariance under Noether point

symmetries for both representations (5.76) and (5.77). The two time independent invariants are the Hamiltonian

and the Riemannian Ermakov invariant (proposition 5.6.2)

E =
1

2

�
u02 � u2

�
x02 + y02 + z02

��
� �2

2
u2 +

1

u2
V (x; y; z) (5.108)

JG4
= u4

�
x02 + y02 + z02

�
+ 2V (x; y; z) : (5.109)
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Table 5.1: Potentials for which the Kepler Ermakov in the 4D FRW space admit Noether symmetries

Noether Symmetry V(x;y; z) Noether Integral

a@� + b@� + c@� � p
ax� + f

�
x� � b

ax
�; x� � c

ax
�
�

IT3 = u2 (aI� + bI� + cI�)

a@� + b@� + c (x�@� � x�@�) p
jcj arctan

�
(b�cx�)
j(a+cx�)j

�
IT2Rr = u2

�
aI� + I� + IR��

�
+f
�
c
2r(��) � bx� + ax� ; x�

�
a@� + b@� + c (x�@� � x�@�) � p

jcj arctan
�

jcjx�
ja+cx�j

�
IT2R2 = u2 (aI� + I� + IR��)

+ f
�
x� � 1

jcj arctan
�

jcjx�
ja+cx�j

�
; 12r(��) �

a
cx�

�
a@� + b (x�@� � x�@�)+ pp

b2+c2
arctan

�
(ab+b2x�+bcx�)
jbx�j

p
b2+c2

�
+ IT1R3 = u2

�
aI� + IR�� + IR��

�
+ c (x�@� � x�@�) +f

�
x2� + x

2
�

�
1� c2

b2

�
+
�
2a
b +

2c
b x�

�
x� ; x� � c

bx�

�
so (3) linear combination F (b tan � sin�+ c cos�� aM1) IR3 = u2

�
IR��

+ IR��
+ IR��

�

Note that had we considered the representation (5.76) only (that is we had set � = 0) then we would have

lost all information concerning the system de�ned for � 6= 0! We emphasize that in applications to Physics the
major datum is the Lagrangian and not the equations of motion, therefore one should not make mathematical

assumptions which restrict the physical generality.

To assure Liouville integrability we need one more Noether symmetry whose Noether integral is in involution

with E; JG4 : This is possible for certain forms of the potential V (x; y; z) : Using the general results of section

4.5 where all 3D potentials are given which admit extra Noether symmetries we �nd the results of Table 5.1.

Proposition 5.7.1 The Lagrangian (5.105) admits an extra Noether symmetry if and only if the potential

V (x; y; z) has a form given in Table 5.12 .

For example if V (x; y; z) =
�
x2 + y2 + z2

�n
then the system admits three extra Noether symmetries which

are the elements of so (3). If V (x; y; z) = V0 then the system admits six extra Noether symmetries (the KVs of

the three dimensional Euclidian space).

5.7.2 The Riemannian Kepler Ermakov system on a 3D FRW spacetime

Consider the three dimensional Lorentzian metric

ds2 = du2 � u2
�
dx2 + dy2

�
(5.110)

2Where I� = ��� _x� and IR�� = ��[���]�x
� _x0�
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Table 5.2: Potentials for which the Kepler Ermakov in the 3D FRW space admit Noether symmetries

Noether Symmetry V (x; y) Noether Integral

@x f (y) Ix = u2x0

@y f (x) Iy = u2y0

y@x � x@y f
�
x2 + y2

�
Ixy = u2 (yx0 � xy0)

@x + b@y f (y � bx) Ixby = u2 (x0 + by0)

(a+ y) @x + (b� x) @y f
�
1
2

�
x2 + y2

�
+ ay � bx

�
Iabxy = (a+ y)u

2x0 + (b� x)u2y0

@x; @y ; y@x � x@y V0 Ix ; Iy ; Ixy

which admits the gradient HV u@u and the three KVs of the Euclidian metric E2: In that space consider the

Lagrangian

L0 =
1

2

�
u02 � u2

�
x02 + y02

��
+
�2

2
u2 � 1

u2
V (x; y) : (5.111)

According to proposition 5.6.2 this Lagrangian admits as Noether point symmetries the elements of sl (2; R) : Then

from proposition 5.6.2 we have that the Noether invariants of these symmetries are

E =
1

2

�
u02 � u2

�
x02 + y02

��
� �2

2
u2 +

1

u2
V (x; y) (5.112)

JG3
= u4

�
x02 + y02

�
+ 2V (x; y) : (5.113)

The requirement that the Lagrangian admits an additional Noether symmetry leads to the condition

LKV V (x; y) + p = 0; therefore in that case we have a 2D potential and we can use the results of Chapter

4. If we demand the new Noether integral to be time independent (p = 0) then the potential V (x; y) and the

new Noether integrals are given in Table 5.2.

Lagrangians with kinetic term TK =
1
2

�
u02 � u2

�
x02 + y02

��
appear in cosmological models. In the following

section we discuss such applications.

5.8 The Riemannian Kepler Ermakov system in cosmology

Below, we consider two cosmological models for dark energy, a scalar �eld cosmology and an f(R) cosmology

in a locally rotational symmetric (LRS) spacetime.
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5.8.1 The case of scalar �eld cosmology

Consider the Class A LRS spacetime

ds2 = �N2 (t) dt2 + a2 (t) e�2�(t)dx+ a2 (t) e�(t)
�
dy2 + dz2

�
(5.114)

which is assumed to contain a scalar �eld with exponential potential V (�) = V0e
�c� ; c 6=

p
6k and a perfect

�uid with a sti¤ equation of state p = �, where p is the pressure and � is the energy density of the �uid. The

conservation equation for the matter density gives

_�+ 6�
_a

a
= 0! � =

�0
a6
: (5.115)

Einstein �eld equations for the comoving observers ua = 1
N(t)@t ; u

aua = �1 follow from the autonomous

Lagrangian [85, 86]

L = �3 a
N
_a2 +

3

4

a3

N
_� +

k

2

a3

N
_�
2 �Nka3e�c� �N �0

a3
: (5.116)

We set N2 = ec� and the Lagrangian becomes

L = (�3 _a2 + 3
4
a2 _�

2
+
k

2
a2 _�

2
)ae�

c
2� � ka3V0e�

c
2� � �0

a3e
c
2�
: (5.117)

The Hamiltonian is

E = (�3 _a2 + 3
4
a2 _�

2
+
k

2
a2 _�

2
)ae�

c
2� + ka3V0e

� c
2� +

�0
a3e

c
2�
= 0 (5.118)

If we consider the transformation

a3 = ex+y ; � =
1

3

r
6

k
(x� y) (5.119)

where

x =
1

1� �c ln
�
j1� �cjp

2
uez
�
; y =

1

1 + �c
ln

�
1 + �cp
2
ue�z

�
; �c =

cp
6k
6= 1 (5.120)

the Lagrangian (5.117) becomes

L = �2
3
_u2 + u2

�
2

3
_z2 � 3

8kV0
_�
2
�
� �2

2
u2 +

kV0�0
�2

1

u2
; �2 = kV0

�
1� �c2

�
6= 0: (5.121)

We consider a 2D Riemannian space with metric de�ned by the kinematic terms of the Lagrangian, that is

ds2 =

�
�6da2 + 3

2
a2d�2 + ka2d�2

�
ae�

c
2� (5.122)

We show easily that this metric admits the gradient HV Hi = 4
6k�c2 (ka@a + c@�) with gradient func-

tion H = 8k"
c2�6kae

� c
2�: Therefore the Lagrangian (5.117) de�nes an autonomous Hamiltonian Riemannian

Kepler Ermakov system with potential (� 6= 0)

V (u; yA) = �1
2
�2u2 +

kV0�0
�2

1

u2
: (5.123)
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Because � 6= 0 this Lagrangian admits sl(2; R) invariance only for the representation (5.76) (an additional result
which shows the necessity for the consideration of the cases � = 0 and � 6= 0!):
Using proposition 5.6.2, we write the Ermakov invariant

J = u4
�
2

3
_z2 +

3

8kV0
_�
2
�
+
kV0�0
�2

1

u2
: (5.124)

The second invariant is the Hamiltonian

E = �2
3
_u2 + u2

�
2

3
_z2 +

3

8kV0
_�
2
�
+
�2

2
u2 � kV0�0

�2
1

u2
: (5.125)

We �nd that the Lagrangian admits three more Noether symmetries

@� ; @z ; z@� � �@z (5.126)

with corresponding integrals

I1 = u2 _� ; I2 = u2 _z ; I3 = u2
�

3

8kV0
z _� � 2

3
� _z

�
: (5.127)

It is easy to show that three of the integrals are in involution, therefore the system is Liouville integrable.

5.8.2 The case of f (R) Cosmology

Consider the modi�ed Einstein-Hilbert action

S =

Z
d4x

p
�gf (R) (5.128)

where f(R) is a smooth function of the curvature scalar R: The resulting �eld equations for this action in the

metric variational approach are [87]

f 0Rab �
1

2
fgab + gab�f 0 � f 0;ab = 0 (5.129)

where f 0 = df(R)
dR and f 00 6= 0: In the LRS spacetime (5.114), with N (t) = 1; these equations for comoving

observers are the Euler-Lagrange equations of the Lagrangian

L =

�
6af 0 _a2 + 6a2f 00 _a _R� 3

2
f 0a3 _�

2
�
+ a3 (f 0R� f) : (5.130)

The Hamiltonian is

E =

�
6af 0 _a2 + 6a2f 00 _a _R� 3

2
f 0a3 _�

2
�
� a3 (f 0R� f) = 0: (5.131)

Again we consider the 3d Riemannian space whose metric is de�ned by the kinematic part of the Lagrangian

(5.130)

ds2 = 12af 0da2 + 12a2f 00da dR� 3a3f 0d�2: (5.132)
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This metric admits the gradient HV

Hi =
1

2

�
a@a +

f 0

f 00
@R

�
(5.133)

with gradient function H = 3a3f 0:

In order to determine the function f(R) we demand the geometric condition that Lagrangian (5.130) admits

s(2; R) invariance via Noether symmetries. Then for each representation (5.76), (5.77) we have a di¤erent

function f(R) hence a di¤erent physical theory.

The representation (5.76) in the present context is:

@t ; 2t@t +
1

2

�
a@a +

f 0

f 00
@R

�
; t2@t +

t

2

�
a@a +

f 0

f 00
@R

�
: (5.134)

The Noether conditions become

�4a3f 0R+ 7
2
a3f + p = 0: (5.135)

These vectors are Noether symmetries if p = 0 and

f (R) = R
7
8 : (5.136)

However power law f (R) theories are not cosmologically viable [88].

The second representation (5.77) in the present context gives the vectors

@t ;
1

�
e�2�t@t �

1

2
e�2�t

�
a@a +

f 0

f 00
@R

�
: (5.137)

The Noether conditions give

�4a3f 0R+ 7
2
a3f + 3�2a3f 0 + p = 0: (5.138)

These vectors are Noether symmetries if the constant p = 0 and the function

f (R) = (R� 2�)
7
8 (5.139)

where 2� = 3�2: This model is the viable �bcCDM-like cosmological with b = 1; c = 7
8 . [89].

We note that if we had not considered the latter representation then we would loose this interesting result.

The importance of the result is due to the fact that it follows from a geometric assumption which is beyond and

above the physical considerations. Furthermore the assumption of Noether symmetries provides the Noether

integrals which allow for an analytic solution of the model.

For the function (5.139) the Lagrangian (5.130) becomes for both cases (if � = 0 we have the power-law

f (R) = R
7
8 )

L =
21

4
a (R� 2�)�

1
8 _a2 � 21

16
a2 (R� 2�)�

9
8 _a _R� 21

8
a3 (R� 2�)�

1
8 _�

2 � a3

8

(R� 16�)
(R� 2�)

1
8

: (5.140)

Furthermore there exist a coordinate transformation for which the metric (5.132) is written in the form of (5.87).
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We introduce new variables u; v; w with the relations

a =

�
21

4

�� 1
3 p

uev ; R = 2� +
e12v

u4
; � =

p
2w: (5.141)

In the new variables the Lagrangian (5.140) takes the form

L =
1

2
_u2 � 1

2
u2
�
_v2 + _w2

�
+
�2

2
u2 � 1

42

e12v

u2
: (5.142)

The Hamiltonian (5.131) in the new coordinates is

E =
1

2
_u2 � 1

2
u2
�
_v2 + _w2

�
� �2

2
u2 +

1

42

e12v

u2
: (5.143)

The Lagrangian (5.142) de�nes a Hamiltonian Riemannian Kepler Ermakov system with potential

V (u; v) = ��
2

2
u2 +

1

42

e12v

u2

from which follows the potential V (v) = 1
42e

12v: In addition to the Hamiltonian the dynamical system admits

the Riemannian Ermakov invariant

Jf = u4
�
_v2 + _w2

�
+
1

21
e12v: (5.144)

The Lagrangian (5.142) admits the extra Noether point symmetry @w with Noether integral Iw = u2 _w

(see Table 5.2). The three integrals E; Iw and Jf are in involution and independent, therefore the system is

integrable.

5.9 Conclusion

In this Chapter we have considered the generalization of the autonomous Kepler Ermakov dynamical system

in the spirit of Leach [56], that is using invariance with respect to the sl(2; R) Lie and Noether algebra.

We have generalized the autonomous Newtonian Hamiltonian Kepler Ermakov system to three dimensions

using Noether rather than Lie point symmetries and have determined all such systems which are Liouville

integrable via Noether point symmetries. We introduced the autonomous Riemannian Kepler Ermakov system

in a Riemannian space which admits a gradient HV. This system is the generalization of the autonomous

Euclidian Kepler Ermakov system and opens new �elds of applications for the autonomous Kepler Ermakov

system, especially in relativistic Physics. Indeed we have determined the autonomous Riemannian Kepler

Ermakov system in a spatially �at FRW spacetime which admits a gradient HV. As a further application we

have considered two types of cosmological models, which are described by the autonomous Riemannian Kepler

Ermakov system, the scalar �eld cosmology with exponential potential and f(R) gravity in an LRS spacetime.
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5.A Appendix

We require that the force admits two Lie symmetries which are due to the gradient HV H = u@u (if we require

the force to be invariant under three Lie symmetries which are due to the gradient HV then it is reduced to the

isotropic oscillator). From Theorem 4.2.2 of Chapter 4 we have the following cases.

(I) Case � = 0

In this case the Lie symmetries are

@s; 2s@s + u@u; s
2@s + su@u:

The condition which the force must satisfy is

LHF
i + dF i = 0:

Replacing components we �nd the equations�
@

@u
Fu
�
u+ (d� 1)Fu = 0�

@

@u
FA
�
u+ dFA = 0

from which follows

Fu =
1

u(d�1)
Fu ; FA =

1

ud
FA:

Because the HV is gradient, Case II of Theorem 4.2.2 applies and gives the condition

LHF
i + 4F i + a1H

i = 0

from which follows a1 = 0 and d = 4. Therefore

Fu =
1

u3
Gu
�
yC
�
; FA =

1

u4
GA

�
yC
�
:

(II) Case � 6= 0
In this case the Lie symmetries are

@s;
1

�
e�2�s@s � e�2�su@u

The condition which the force must satisfy is

LHF
i + 4F i + a1H

i = 0

We demand a1 6= 0 and obtain the system of equations:�
@

@u
Fu
�
u+ 3Fu + a1u = 0�

@

@u
FA
�
u+ 4FA = 0

whose solution is

Fu = �2u+
1

u3
Gu ; FA =

1

u4
GA

where we have set a1 = �4�2.
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Chapter 6

Lie symmetries of a general class of

PDEs

6.1 Introduction

In the previous chapters we studied the relation between point symmetries (Lie and Noether symmetries) of

second order ordinary di¤erential equations. Particularly, we considered the case of geodesic equations and the

equations of motion of a particle moving in a Riemannian space. We made clear that there exists a unique

relation between the point symmetries and the special projective Lie algebra of the underlying space in which

the motion occurs.

In subsequent sections, we will attempt to extend the relation between point symmetries and collineations of

the space to the case of second order partial di¤erential equations. Obviously, a global answer to this problem

is not possible. However, it will be shown that for many interesting PDEs, the Lie point symmetries are indeed

obtained from the collineations of the metric. Pioneering work in this direction is the work of Ibragimov [4].

Recently, Bozhkov et al. [90] have studied the Lie and the Noether point symmetries of the Poisson equation

and showed that the Lie symmetries of the Poisson PDE are generated from the conformal algebra of the metric.

In this chapter we show that for a general class of second order PDEs, there is a close relation between the

Lie symmetries and the conformal algebra of the underlying space. Subsequently, we apply these results to a

number of interesting PDEs and regain existing results in a uni�ed manner.

In Section 6.2 we examine the generic PDE of the form

Aijuij � F (xi; u; ui) = 0 (6.1)

and derive the Lie symmetry conditions. Furthermore, in case A is independent on u; i.e. A;u = 0, then the

Lie point symmetries of (6.1) are related to the Conformal vectors (CVs) of the linear homogeneous di¤erential
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geometric object A: In Section 6.3 we consider F (x; u; ui) to be linear in ui and determine the Lie point symmetry

conditions in geometric form. In sections 6.4 and 6.5, we apply the results of section 6.3 in order to determine

the Lie point symmetries of the Poisson equation, the Yamabe equation and the heat equation with �ux in

a n dimensional Riemannian space. It will be shown that the Lie symmetry vectors of the Poisson and the

Yamabe equation are obtained from the conformal algebra of the geometric object Aij [90] whereas the Lie

symmetries of the heat equations are obtained from the homothetic algebra of the metric. Furthermore, we

determine the Lie symmetries of Laplace equation, the Yamabe equation and the homogeneous heat equation

in various Riemannian spaces.

6.2 The case of the second order PDEs

Attempting to establish a general relation between the Lie symmetries of a second order PDE of the form (6.1)

and the collineations of a Riemannian space we derive the Lie symmetry conditions of (6.1) and relate them with

the collineations of the coe¢ cients Aij(x; u) which we consider to be the components of a metric. According to

the standard approach [1, 3, 4, 91] the symmetry condition is

X [2](H) = �H ; modH = 0 (6.2)

where �(xi; u; ui) is a function to be determined. X [2] is the second prolongation of the Lie symmetry vector

X = �i
�
xi; u

� @

@xi
+ �

�
xi; u

� @

@u
(6.3)

given by the expression

X [2] = �i
@

@xi
+ �

@

@u
+ �

[1]
i

@

@ui
+ �

[1]
ij

@

@uij
(6.4)

where1

�
[1]
i = �;i + ui�u � �

j
;iuj � uiuj�

j
;u

�
[2]
ij = �ij + (�uiuj + �ujui)� �k;ijuk + �uuuiuj � (�k:;uiuj + �k:;ujui)uk

+�uuij � (�k:;iujk + �a:;juik)� (uijuk + uiujk + uikuj) �k:;u � uiujuk�kuu:

The introduction of the function �(xi; u; ui) in (6.2) causes the variables xi; u; ui to be independent2 .

The symmetry condition (6.2) when applied to (6.1) gives:

Aij�
[2]
ij +

�
XAij

�
uij �X [1](F ) = �(Aijuij � F ) (6.5)

1See section 2.3.1.
2See Ibragimov [4] p. 115
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from which follows

0 = Aij�ij � �;igijF;uj �X(F ) + �F

+ 2Aij�uiuj �Aij�a;ijua � ui�ugijF;uj + �k;iukgijF;uj
+Aij�uuuiuj � 2Aij�k:;ujuiuk + uiuk�k;ugijF;uj
+Aij�uuij � 2Aij�k:;iujk + (�kA

ij
;k + �A

ij
;u)uij � �Aijuij

�Aij (uijua + uiuja + uiauj) �a:;u � uiujuaAij�auu: (6.6)

We note that we cannot deduce the symmetry conditions before we select a speci�c form for the function

F (xi; u; ui): However, we may determine the conditions which are due to the second derivative of u because in

these terms no F terms are involved. This observation signi�cantly reduces the complexity of the remaining

symmetry conditions. Following this, we have the condition

0 = Aij�uuij �Aij(�k:;iuja + �k:;juik) + (�kA
ij
;k + �A

ij
;u)uij � �Aijuij

�Aij (uijua + uiuja + uiauj) �a:;u � uiujuaAij�auu

from which the following system of equations results

Aij (uijuk + ujkui + uikuj) �
k
:;u = 0

Aij�uuij �Aij(�k:;iujk + �k:;juik) + (�kA
ij
;k + �A

ij
;u)uij � �Aijuij = 0

Aij�a;uu = 0:

The �rst equation is

Aij�k:;u +A
kj�i:;u +A

ik�j:;u = 0, A(ij�k):;u = 0: (6.7)

From the second equation we get

Aij�u + �A
ij
;u + �

kAij;k �A
kj�i:;k �Aik�

j
:;k � �A

ij = 0: (6.8)

and the last equation gives the constraint

Aij�k;uu = 0: (6.9)

It can be easily shown that condition (6.7) implies �k:;u = 0; which is a well known result
3 . From the analysis

so far, we obtain the �rst result

Proposition 6.2.1 For the in�nitesimal generator (6.3) for all second order PDEs of the form (6.1), holds

�i:;u = 0; that is, �
i = �i(xj): Furthermore, condition (6.9) is identically satis�ed.

3We give a simple proof for n = 2 in Appendix 6.A. A detailed and more general proof can be found in [92].
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There remains the third symmetry condition (6.8). We consider the following cases.

i; j 6= 0 :
We write (6.8) in an alternative form by considering Aij to be linear a homogeneous di¤erential geometric object

as follows:

L�A
ij = �Aij � (�Aij);u: (6.10)

Then it follows:

Proposition 6.2.2 For the in�nitesimal generator (6.3) for all second order PDEs of the form (6.1) for which

Aij ;u = 0; i.e. Aij = Aij(xi); the vector �i is a CKV of the linear homogeneous di¤erential geometric object

Aij with conformal factor (�� �u)(x):

Assuming4 Att = Ati = 0; we have

- for i = j = 0 nothing

- for i; j 6= 0 gives (6.10) and
- for i = 0; j 6= 0 (6.10) becomes

Atj�u + �A
tj
;u + �

kAtj;k �A
kj�t:;k �Atk�

j
:;k � �A

tj = 0)

Akj�t:;k = 0 (6.11)

which leads to the following general result.

Proposition 6.2.3 For all second order PDEs of the form Aijuij � F (xi; u; ui) = 0; for which Aij is nonde-

generate the �t:;k = 0, that is, �
t = �t(t) .

By using that �i;u = 0; the symmetry condition (6.6) is simpli�ed as follows

0 = Aij�ij � �;iAijF;uj �X(F ) + �F

+ 2Aij�uiuj �Aij�a;ijua � ui�uAijF;uj + �k;iukAijF;uj
+Aij�uuuiuj +A

ij�uuij � 2Aij�k:;iujk (6.12)

+ (�kAij;k + �A
ij
;u)uij � �Aijuij

which together with the condition (6.10) are the complete set of symmetry conditions for all second order PDEs

of the form Aijuij �F (xi; u; ui) = 0. This class of PDEs is quite general. This fact makes the above result very
useful..

In order to continue, we need to consider special forms for the function F (x; u; ui):

4The index t refers to the coordinate x0 whenever it is involved.
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6.3 The Lie symmetry conditions for a linear function F (x; u; ui)

Consider the function F (x; u; ui) to be linear in ui, that is, to be of the form

F (x; u; ui) = Bk(x; u)uk + f(x; u) (6.13)

where Bk(x; u) and f(x; u); are arbitrary functions of their arguments. In this case, the PDE (6.1) is of the

form

Aijuij �Bk(x; u)uk � f(x; u) = 0: (6.14)

The Lie symmetries of this type of PDEs have been studied previously by Ibragimov[4]. Assuming that at

least one of the components of A is Aij 6= 0 the Lie symmetry conditions are (6.12) and (6.10).
Replacing F (x; u; u1) in (6.12) we �nd5

0 = Aij�ij � �;igijBj � �kf;k � �f;u + �f

+ 2Aij�uiuj �Aij�a;ijua � ui�ugijBj + �k;iukgijBj + �Bkuk � �Bk;uuk � �lBk;luk

+Aik�uuuiuk (6.15)

+Aij�uuij � 2Akj�i:;kuji + (�kA
ij
;k + �A

ij
;u)uij � �Aijuij (6.16)

from which the subsequent equations follow

Aij�ij � �;iBi � �kf;k � �f;u + �f = 0 (6.17)

�2Aik�ui +Aij�k;ij + �uBk � �k;iBi + �iBk;i � �Bk + �Bk;u = 0 (6.18)

Aik�uu = 0: (6.19)

Equation (6.19) gives (because at least one Aik 6= 0)

� = a(xi)u+ b(xi): (6.20)

Equation (6.18) gives the constraint

�2Aika;i + aBk + auBk;u +Aij�k;ij � �k;iBi + �iBk;i � �Bk + bBk;u = 0:

We summarize the above results as follows.

Proposition 6.3.1 The determining equations (the Lie symmetry conditions) for the second order PDEs (6.14),

in which at least one of the Aij 6= 0; are

Aij(aiju+ bij)� (a;iu+ b;i)Bi � �kf;k � auf;u � bf;u + �f = 0 (6.21)

5We ignore the terms with uij because we have already used them to obtain condition (6.10). Indeed, it is clear that these terms

give Aij�u � 2Aij�k:;i + �kAij;k + �Aij;u � �Aij = 0; which is precisely condition (6.10).
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Aij�k;ij � 2Aika;i + aBk + auBk;u � �k;iBi + �iBk;i � �Bk + bBk;u = 0 (6.22)

L�i@iA
ij = (�� a)Aij � �Aij ;u (6.23)

� = a(xi)u+ b(xi) (6.24)

�k;u = 0, �k(xi): (6.25)

Pay paricular attention to the fact that for all second order PDEs of the form (6.14), for which, Aij;u = 0,

i.e Aij = Aij(xi); the �i(xj) is a CKV of the metric Aij : Also, in this case � = �(xi): This result establishes the

relation between the Lie symmetries of this type of PDEs with the collineations of the metric de�ned by the

coe¢ cients Aij :

Moreover, in case the coordinates are t; xi (where i = 1; :::; n) Att = Atx
i

= 0 and Aij is a nondegenerate

metric we have that

�t;i = 0, �t(t): (6.26)

These symmetry relations coincide with those given in [4]. Finally, note that equation (6.22) can be written

as

Aij�k;ij � 2Aika;i + [�;B]k + (a� �)Bk + (au+ b)Bk;u = 0: (6.27)

Having derived the Lie symmetry conditions for the type of PDEs (6.14) we continue with the computation of

the Lie symmetries of some important PDEs of this form. Before we proceed, we state two Lemmas which will

be used later (for details, see Appendix 6.B).

Lemma 6.3.2 For the Lie derivative of the connection coe¢ cients, the following properties hold.

a. In �at space (in which �ijk = 0) the following identity holds:

L��
k
ij = �k;ij : (6.28)

b. For a general metric gij satisfying the condition L�i@igij = �(�� a)gij the following relation holds:

gjkL��
i
:jk = gjk�i; jk + �

i
;l�
l � �i;l�l + (a� �)�i : (6.29)

Lemma 6.3.3 Assume that the vector �i is a CKV of the metric gij with conformal factor �(� � a) i.e.

L�i@igij = �(�� a)gij : Then, the following statement is true:

gjkL��
i
:jk =

2� n
2

(a� �);i (6.30)

where n = gjkgkj is the dimension of the space.

In the following sections, we study the Lie symmetries of two second order PDEs which are important in

physics. Particularly, we examine the relation between the Lie symmetries of the Poisson equation and the

Heat conduction equation in a Riemannian manifold with the conformal group of the space. We will show that

the Lie symmetries of the heat conduction equation relates to the homothetic group of the underlying space

whereas the Lie symmetries of the Poisson equation are associated to the conformal group of the metric that

de�nes the Laplace operator.
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6.4 Symmetries of the Poisson equation in a Riemannian space

The Lie symmetries of the Poisson equation

�u� f
�
xi; u

�
= 0: (6.31)

where � = 1p
jgj

@
@xi

�p
jgjgij @

@xj

�
is the Laplace operator of the metric gij ; for f = f (u) have been given in

[4, 90]. Here we generalize this result 6 for f = f
�
xi; u

�
.

Theorem 6.4.1 The Lie symmetries of the Poisson equation (6.31) are generated from the CKVs of the met-

ric gij de�ning the Laplace operator, as follows

a) for n > 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (6.32)

where �i
�
xk
�
is a CKV with conformal factor  

�
xk
�
and the following condition holds

2� n
2

� u+ gijbi;j � �kf;k �
2� n
2

 uf;u �
2 + n

2
 f � bf;u = 0: (6.33)

b) for n = 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
a0u+ b

�
xk
��
@u (6.34)

where �i
�
xk
�
is a CKV with conformal factor  

�
xk
�
and the following condition holds

gijb;ij � �kf;k � a0uf;u + (a0 � 2 ) f � bf;u = 0: (6.35)

In the following subsections, we apply Theorem 6.4.1 for special forms of the function f
�
xi; u

�
.

6.4.1 Lie symmetries of Laplace equation

The Laplace equation

�u = 0 (6.36)

follows from the Poison equation (6.31) if we consider f
�
xi; u

�
= 0: Therefore, Theorem 6.4.1 applies and we

have the following result [90].

Theorem 6.4.2 The Lie symmetries of Laplace equation (6.36) are generated from the CKVs of the metric gij

de�ning the Laplace operator as follows

a) for n > 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (6.37)

6The proof is given in Appendix 6.B.
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where �i is a CKV with conformal factor  
�
xk
�
, b
�
xk
�
is a solution of (6.36) and the following condition is

satis�ed

� = 0: (6.38)

b) for n = 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
a0u+ b

�
xk
��
@u (6.39)

where �i is a CKV with conformal factor  
�
xk
�
and b

�
xk
�
is a solution of (6.36).

6.4.2 Symmetries of conformal Poisson equation in a Riemannian space

If in the Poisson equation (6.31) we replace f
�
xi; u

�
with

f = �M0Ru+ �f
�
xi; u

�
(6.40)

where R is the Ricci scalar of the metric which de�nes the Laplace operator � and

M0 =
2� n
4 (n� 1) (6.41)

then, equation (6.31) becomes

�Lgu� �f
�
xi; u

�
= 0: (6.42)

where �Lg is the conformal Laplace or Yamabe operator acting on functions on V n de�ned by

�Lg = �+
n� 2
4 (n� 1)R: (6.43)

Equation (6.42) is called the conformal Poisson or Yamabe equation and plays a central role in the study

of a conformal class of metrics by means of the Yamabe invariant (see, e.g. [93]). In order to investigate the

Lie symmetries of (6.42), we make use of Theorem 6.4.1 and �nd the following result 7 .

Theorem 6.4.3 The Lie symmetries of the conformal Poisson equation (6.42) are generated from the CKVs

of the metric gij de�ning the conformal Laplace operator, as follows

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (6.44)

where �i
�
xk
�
is a CKV with conformal factor  

�
xk
�
and the following condition holds

��k �f;k �
2� n
2

 u �fk �
2 + n

2
 �f + gijbi;j � b

�
�M0R+ �fu

�
= 0: (6.45)

7The proof is given in Appendix 6.B.
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6.4.3 Lie symmetries of the conformal Laplace equation

The conformal Laplace equation
�Lgu = 0: (6.46)

is the conformal Poisson equation (6.42) for �f
�
xi; u

�
= 0: Therefore, Theorem 6.4.3 applies and we have the

following result.

Theorem 6.4.4 The Lie symmetries of the conformal Laplace equation (6.46) are generated from the CKVs of

the metric gij of the conformal Laplace operator as follows

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (6.47)

where �i is a CKV with conformal factor  
�
xk
�
and b

�
xk
�
is a solution of (6.46).

In order to compare the Lie symmetries of Laplace equation (6.36) and of the conformal Laplace equation

(6.46), we apply the results of the Theorems 6.4.2 and 6.4.4 in the case of the FRW spacetime with the following

line element

ds2 = R2 (�)
�
�d�2 + dx2 + dy2 + dz2

�
: (6.48)

The Laplace operator for the space with Line element (6.48) is

� =
1

R2
�ij@i@j � 2

R;�
R3

�i�@i

where �ij is the metric of the Minkowski spacetime.

According to Theorem 6.4.2, the Laplace equation

1

R2
�ijuij � 2

R;�
R3

�i�ui = 0 (6.49)

admits eight Lie point symmetries; six Lie symmetries are the KVs8 of (6.48) plus the two Lie symmetries�
a0u+ b

�
xk
��
@u because, for general R (�) ; the conformal factors of the CKVs of (6.48) do not satisfy (6.49).

On the contrary, according to Theorem (6.4.4), the conformal Laplace equation

1

R2
�ijuij � 2

R;�
R3

�i�ui �
R;��
R3

u = 0 (6.50)

admits seventeen Lie symmetries; �fteen are the CKVs of the metric (6.48) plus the two Lie symmetries�
a0u+ b

�
xk
��
@u:

For special functions R (�), the Laplace equation (6.49) admits extra Lie symmetries; however, the conformal

Laplace equation (6.50) does not admit extra Lie symmetries.

A direct result, which arises from Theorems 6.4.2 and 6.4.4, is that, if V n is an n dimensional Riemannian

space, n > 2, then, if the Laplace equation (6.36) in V n is invariant under a Lie groupGL; then, GL is a subgroup

8For the conformal algebra of the FRW spacetime see Chapter 3, [45].
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of �GLC , i.e. GL � �GLC where �GLC is a Lie group which leaves invariant the conformal Laplace equation (6.46).

The Lie algebras GL; �GLC are identical if the V n does not admit proper CKVs or if all the conformal factors of

the CKVs of V n are solutions of the Laplace equation (6.36). Moreover, if V n is a conformally �at spacetime

then, the conformal Laplace equation (6.46) admits a Lie algebra of 1
2 (n+ 1) (n+ 2) + 2 dimension. For

instance, the Laplace equation in the three dimensional sphere9 admits eight Lie point symmetries [94] while,

on the contrary, the Yamabe equation admits twelve Lie symmetries.

6.5 The heat conduction equation with a �ux in a Riemannian space

The heat equation with a �ux in an n dimensional Riemannian space with metric gij is

H (u) = q
�
t; xi; u

�
(6.51)

where

H (u) = �u� ut:

and � is the Laplace operator.

The term q
�
t; xi; u

�
indicates that the system exchanges energy with the environment. In this case, the Lie

symmetry vector is

X = �i
�
xj ; u

�
@i + �

�
xj ; u

�
@u

where a = t; i. For this equation, we have

Att = 0; Ati = 0; Aij = gij ; Bi = �i(t; xi); Bt = 1; f(x; u) = q
�
t; xk; u

�
:

For this PDE, the symmetry conditions (6.21) - (6.26) become

� = a(t; xi)u+ b(t; xi) (6.52)

�t = �t(t) (6.53)

gij(aiju+ bij)� (a;iu+ b;i)�i � (a;tu+ b;t) + �q = �tq;t + �
kq;k + �q;u (6.54)

gij�k;ij � 2gika;i + a�k � �k;i�i + �i�k;i � ��k = 0 (6.55)

L�i@igij = (a� �)gij : (6.56)

The solution of the symmetry conditions is summarized in Theorem 6.5.1 (for an sketch proof see Appendix

6.B).

9The three dimensional sphere is a conformally �at space and it is maximall symmetric [23].
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Theorem 6.5.1 The Lie symmetries of the heat equation with �ux i.e.

gijuij � �iui � ut = q (t; x; u) (6.57)

in a n dimensional Riemannian space with metric gij are constructed from the homothetic algebra of the metric

as follows:

a. Y i is a nongradient HV/KV.

The Lie symmetry is

X = (2c2 t+ c1) @t + c2Y
i@i + (a (t)u+ b (t; x)) @u (6.58)

where a(t); b
�
t; xk

�
; q
�
t; xk; u

�
must satisfy the constraint equation

�atu+H (b)� (au+ b) q;u + aq � (2 c2qt+ c1q)t � c2q;iY
i = 0: (6.59)

b. Y i = S;i is a gradient HV/KV.

The Lie symmetry is

X =

�
2 

Z
Tdt+ c1

�
@t + TS

;i@i +

��
�1
2
T;tS + F (t)

�
u+ b (t; x)

�
@u (6.60)

where F (t); T (t); b
�
t; xk

�
; q
�
t; xk; u

�
must satisfy the constraint equation

0 =

�
�1
2
T;t +

1

2
T;ttS � F;t

�
u+H (b)+

�
��
�1
2
T;tS + F

�
u+ b

�
q;u +

�
�1
2
T;tS + F

�
q �

�
2 q

Z
Tdt+ c1q

�
t

� Tq;iS;i: (6.61)

Below, we apply Theorem 6.5.1 for special forms of the function q (t; x; u).

6.5.1 The homogeneous heat equation

In the case q (t; x; u) = 0; i.e equation (6.51) is the homogeneous heat equation, we have the following result.

Theorem 6.5.2 The Lie symmetries of the homogeneous heat equation in an n�dimensional Riemannian space

gijuij � �iui � ut = 0 (6.62)

are constructed from the homothetic algebra of the metric gij as follows

a. If Y i is a nongradient HV/KV of the metric gij ; the Lie symmetry is

X = (2 c1t+ c2) @t + c1Y
i@i +

�
a0u+ b

�
t; xi

��
@u (6.63)

where c1; c2; ; a0 are constants and b
�
t; xi

�
is a solution of the homogeneous heat equation.

b. If Y i = S;i; that is, Y i is a gradient HV/KV of the metric gij ; the Lie symmetry is

X = (c3 t
2 + c4t+ c5)@t + (c3t+ c4)S

i@i +
�
�c3
2
S � c3

2
n t+ c5

�
u@u + b

�
t; xi

�
@u (6.64)

where c3; c4; c5 are constants and b
�
t; xi

�
is a solution of the homogeneous heat equation.
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In order to compare the above result with the existing results in the literature, we consider the heat equation

in a Euclidian space of dimension n: Then, in Cartesian coordinates gij = �ij and �i = 0, therefore, the

homogeneous heat equation is

�ijuij � ut = 0: (6.65)

The homothetic algebra of space consists of the n gradient KVs @i with generating functions xi; the
n(n�1)

2

nongradient KVs XIJ ; which are the rotations and a gradient HV Hi with gradient function H = R@R:

According to Theorem 6.5.2, the Lie symmetries of the heat equation in the Euclidian n dimensional space are

(we may take  = 1)

X =
�
c3 t

2 + (c4 + 2 c1)t+ c5 + c2
�
@t +

�
c1Y

i + (c3t+ c4)S
i
�
@i + (6.66)

+
h�
a0 +

c3
2
S +

c3
2
n t� c5

�
u+ b

�
t; xi

�i
@u:

This result is consistent with the results of [1] pg. 158.

Next, we consider the de Sitter spacetime (a four dimensional space of constant curvature and Lorentzian

character) whose metric is

ds2 =

�
�d�2 + dx2 + dy2 + dz2

��
1 + K

4 (��2 + x2 + y2 + z2)
�2 (6.67)

It is known that the homothetic algebra of this space consists of the ten KVs

X1 = (�x�) @� +
 �
��2 � x2 + y2 + z2

�
2

� 2

K

!
@x + (�yx) @y + (�zx) @x

X2 = (y�) @� + (yx) @x +

 �
�x2 � z2 + y2 + �2

�
2

+
2

K

!
@y + (yz) @x

X3 = (z�) @� + (zx) @x + (zy) @y +

 �
�x2 � y2 + z2 + �2

�
2

+
2

K

!
@x

X4 =

 �
x2 + y2 + z2 + �2

�
2

� 2

K

!
@� + (�x) @x + (�y) @y + (�z) @x

X5 = x@� + �@x ; X6 = y@� + �@y ; X7 = z@� + �@z ; X8 = y@x � x@y

X9 = z@x � x@z ; X10 = z@y � y@z

all of which are nongradient. According to Theorem 6.5.2, the Lie symmetries of the heat equation in de Sitter

space are

@t +
10X
A=1

cAXA + (a0u+ b (x; u))@u:

From Theorem 6.5.2 we have the following additional results.

Corollary 6.5.3 The one dimensional homogenous heat equation admits a maximum number of seven Lie point

symmetries (module a solution of the heat equation).
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Proof. The homothetic group of a one dimensional metric ds2 = g2 (x) dx2 consists of one gradient KV (the
1

g(x)@x) and one gradient HV ( 1
g(x)

R
g (x) dx @x). According to theorem 6.5.2, from the KV we have two Lie

symmetries and from the gradient HV another two Lie point symmetries. To these we need to add the two Lie

point symmetries X = a0u@u + b
�
t; xi

�
@u and the trivial Lie symmetry @t where b

�
t; xi

�
is a solution of the

heat equation.

Corollary 6.5.4 The homogeneous heat equation in a space of constant curvature of dimension n has at most

(n+ 3) + 1
2n (n� 1) Lie symmetries (modulo a solution of the heat equation).

Proof. A space of constant curvature of dimension n admits n + 1
2n (n� 1) nongradient KVs. To these we

need to add the Lie symmetries X = c@t + a0u@u + b
�
t; xi

�
@u:

Corollary 6.5.5 The heat conduction equation in a space of dimension n admits at most 1
2n (n+ 3) + 5 Lie

symmetries (modulo a solution of the heat equation) and if this is the case, the space is �at.

Proof. The space with the maximum homothetic algebra is the �at space which admits n gradient KVs,
1
2n (n� 1) nongradient KVs and one gradient HV. Therefore, from Case 1 of Theorem 6.5.2 we have (n+ 1) +
1
2n (n� 1) Lie symmetries. From Case 2 of Theorem 6.5.2, we have (n+ 1) Lie symmetries and to these we

have to add the Lie symmetries X = c1@t+a0u@u+ b
�
t; xi

�
@u where b

�
t; xi

�
is a solution of the heat equation.

The set of all these symmetries is 1 + 2n+ 1
2n (n� 1) + 2 + 1 + 1 =

1
2n (n+ 3) + 5 [4].

6.5.2 Case q (t; x; u) = q (u)

Let q (t; x; u) = q (u) ; then the heat conduction equation (6.51) becomes

gijuij � �iui � ut = q (u) : (6.68)

From Theorem 6.5.1, we have the following results.

Theorem 6.5.6 The Lie symmetries of the heat equation (6.68) in an n�dimensional Riemannian space with
metric gij are constructed form the homothetic algebra of the metric as follows.

a. Y i is a HV/KV. The Lie symmetry is

X = (2c t+ c1) @t + cY
i@i + (a (t)u+ b (t; x)) @u (6.69)

where the functions a (t) ; b (t; x) and q (u) satisfy the condition

�atu+H (b)� (au+ b) q;u + (a� 2 c) q = 0: (6.70)

b. Y i = S;i is a gradient HV/KV. The Lie symmetry is

X =

�
2 

Z
Tdt+ c1

�
@t + TS

;i@i +

��
�1
2
T;tS + F (t)

�
u+ b (t; x)

�
@u (6.71)
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Table 6.1: Functions of q(u) where the Heat equation admits Lie symmetries

Function q (u) Lie Symmetry vector

q (u) = q0u
�
 T0t

2 + 2c t+ c1
�
@t +

�
cY i + T0tS

;i
�
@i+

+
��
�2 cq0t+ a0 + T0

�
� 1
2S �  q0t

2 � 1
2 t
��
u+ b (t; x)

�
@u where H(b)� bq0 = 0

q (u) = q0u
n (2c t+ c1) @t + cY

i@i +
�
2 c
1�nu

�
@u

q (u) = u lnu c1@t +
�
Y i + T0e

�tK
;i
�
@i + (a0e

�tu) @u ; K
;i

q (u) = eu (2c t+ c1) @t + cY
i@i + (�2 c) @u

where b (t; x) is a solution of the homogeneous heat equation, the functions T (t); F (t) and the �ux q (u) satisfy

the equation:�
�1
2
T;t +

1

2
T;ttS � F;t

�
u+H (b)�

��
�1
2
T;tS + F

�
u+ b

�
q;u +

�
�1
2
T;tS + F

�
q � 2 qT = 0 (6.72)

For various cases of q (u) ; we obtain the results of Table10 6.1.

6.6 Conclusion

The main result of this chapter is Proposition 6.2.2, which states that the Lie symmetries of the PDEs of the

form (6.2) are obtained from the conformal vectors of the metric de�ned by the coe¢ cients Aij ; provided

Aij;u = 0: This result is quite general and covers many well known and important PDEs of Physics. The

geometrization of Lie point symmetries and their association with the collineations of the metric dissociates

their determination from the dimension of the space because the collineations of the metric depend (in general)

on the type of the metric and not on the dimensions of the space where the metric resides. Furthermore, this

association provides a wealth of results of Di¤erential Geometry on collineations, which is possible to be used

in the determination of Lie pont symmetries.

We have applied the above theoretical results to the Poisson equation, the conformal Poisson (Yamabe)

equation and the heat equation. We proved that the Lie symmetries of the Poisson equations (Laplace/Yamabe)

are generated from the elements of the conformal group of the metric that de�nes the Laplace/Yamabe operator.

For the heat conduction equation, we proved that the Lie symmetries are generated from the homothetic

group of the underlying metric. Furthermore, we specialized the equation to the homogeneous heat conduction

equation and regained the existing results for the Newtonian case.

10Where int Table 6.1 Y i is a HV/KV, S;i is a gradient HV/KV and K;i is a gradient KV.
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In the following chapter. we apply the theoretical results of this chapter to study the correlation of point

symmetries between Classical and Quantum systems.
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6.A Appendix A

We prove the statement for n = 2. The generalization to any n is straightforward. For a general proof, see [92].

We consider A as a matrix and assume that the inverse of this matrix exists. We denote the inverse matrix

with B and we get from (6.7)

BijA
ij�k:;u +BijA

kj�i:;u +BijA
ik�j:;u = 0

2�k:;u + �
k
i �
i
:;u + �

k
j �
j
:;u = 0)

�k:;u = 0: (6.73)

Now, assume that the tensor A does not have an inverse. Then, we consider n = 2 and write:

[A] =

2664 A11 A12

A12 A22

3775) detA = A11A22 � (A12)2 = 0

where at least one of the Aij 6= 0: Assume A11 6= 0: Then, equation (6.7) for i = j = k = 1 gives

3A11�1:;u = 0) �1:;u = 0:

The same equation for i = j = k = 2 gives

3A22�2:;u = 0

therefore, either �2:;u = 0 or A
22 = 0: If A22 = 0, then, from the condition detAij = 0; we have A12 = 0; hence,

Aij = 0; which we do not assume. Thus, �
2
:;u = 0:

We consider now equations i = j 6= k and �nd

Aii�k:;u +A
ki�i:;u +A

ik�i:;u = 0:

Because i 6= k; this gives Aii�k:;u = 0 and because we have assumed A
11 6= 0 it follows �2:;u: Therefore, we �nd

�k:;u = 0:

6.B Appendix B

Proof of Lemma 6.3.2. By using the formula

L��
i
:jk = �

i
:jk;l�

l + �i; jk � �i;l�l:jk + �s;j�i:sk + �s;k�i:sj

we have

gjkL��
i
:jk = �

i
;l�
l + gjk�i;;jk � g

jk
;l�
l�i:jk � �i;l�l + 2gjk�s;j�i:sk

= �i;l�
l + gjk�i; jk � �i;l�l

� [gjl�k;l + gkl�
j
;l � (�� a))g

jk]�i:jk + 2g
jk�s;j�

i
sk
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that is,

gjkL��
i
:jk == �

i
;l�
l + gjk�i; jk � �i;l�l + 2(gjl�k;j�ikl � glj�k;j�ikl)� (�� a)�i

Therefore,

gjkL��
i
:jk = gjk�i; jk + �

i
;l�
l � �i;l�l + (a� �)�i :

Proof of Lemma 6.3.3. By using the identity

L��
i
:jk =

1

2
gir [rkL�gjr +rjL�gkr �rrL�gkj ] (6.74)

and replacing L�gij = (a� �)gij because � is a CKV, we �nd

L��
i
:jk =

1

2
gir [(a� �);kgjr + (a� �);jgkr � (a� �);rgkj ]

=
1

2

�
(a� �);k�ij + (a� �);j�ik � gir(a� �);rgkj

�
:

By contracting with gjk it follows

gjkL��
i
:jk =

2� n
2

(a� �);i:

Proof of Theorem 6.4.1. The Lie symmetry conditions for the Poisson equation (6.31) are

gij(aiju+ bij)� (a;iu+ b;i)�i � �kf;k � auf;u � bf;u + �f = 0 (6.75)

gij�k;ij � 2gika;i + a�k � �k;i�i + �i�k;i � ��k = 0 (6.76)

L�i@igij = (a� �)gij (6.77)

� = a(xi)u+ b(xi) ; �k;u = 0 (6.78)

Equation (6.76) becomes (see [90])

gjkL��
i
:jk = 2g

ika;i (6.79)

From (6.77), �i is a CKV, then equations (6.79) give

2� n
2

(a� �);i = 2a;i ! (a� �)i = 4

2� na
;i:

We de�ne

 =
2

2� na+ a0 (6.80)

where  = 1
2 (a� �) is the conformal factor of �

i i.e. L�gij = 2 gij . Furthermore, we have

(2� n)�i = (2� n) ai � 4ai

(2� n)�i = � (n+ 2) ai
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Finally, from (6.75), we have the constraint

gijai;ju+ g
ijb;ij � �kf;k � auf;u + �f � bf;u = 0: (6.81)

For n = 2; holds that gjkL��
i
:jk = 0; this means that a;i = 0 ! a = a0: From (6.77), �i is a CKV with

conformal factor

2 = (a0 � �) (6.82)

and � = a0 � 2 : Finally, from (6.75), we have the constraint

gijb;ij � �kf;k � a0uf;u + (a0 � 2 ) f � bf;u = 0: (6.83)

Proof of Theorem 6.4.3. By replacing f
�
xk; u

�
= �M0R+ �f

�
xi; u

�
in (6.33) where M0 =

n�2
4(n�1) , we have

the symmetry condition

2� n
2

� u+ gijbi;j +M0�
kR;ku� �k �f;k + 2M0 uR�

2� n
2

 u �fk �
2 + n

2
 �f � b

�
�M0R+ �fu

�
= 0 (6.84)

But �i is a CKV with conformal factor  . That implies [95]

�kR;k = �2 R� 2 (n� 1)� (6.85)

and this implies for the terms in (6.84)

0 =

�
2� n
2

� +M0�
kR;k + 2M0 R

�
u:

Hence, condition become (6.84) �nally becomes

��k �f;k �
2� n
2

 u �fk �
2 + n

2
 �f + gijbi;j � b

�
�M0R+ �fu

�
= 0:

Proof of Theorem 6.5.1. Condition (6.56) means that �i is a CKV of the metric gij with conformal factor

a(t; xk)� �(t; xk): Condition (6.55) implies �k = T (t)Y k
�
xj
�
; where Y i is a HV with conformal factor  ; that

is, we have:

LY igij = 2 gij ,  =constant.

and

�t;t = a� �

from which follows

�t (t) = 2 

Z
Tdt: (6.86)

�2gika;i + T;tY k = 0: (6.87)
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Condition (6.54) becomes

H(a)u+H(b) + (a� �t;t)q = �tq;t + T (t)Y
kq;k + �q;u )

H(a)u+H(b)� (au+ b) q;u + aq � (�tq);t � T (t)Y kq;k = 0

H (a)u+H (b)� (au+ b) q;u + aq �
�
2 q

Z
Tdt

�
t

� Tq;iY i = 0: (6.88)

We consider the following cases:

Case 1: Y k is a HV/KV. From (6.87), we have that T;t = 0 ! T (t) = c2 and a;i = 0 ! a
�
t; xk

�
= a (t) :

Then, (6.88) becomes

�atu+H (b)� (au+ b) q;u + aq � (2 c2qt+ c1q)t � c2q;iY
i = 0 (6.89)

Case 2: Y k is a gradient HV/KV, that is Y k = S;k: From (6.87), we have

a
�
t; xk

�
= �1

2
T;tS + F (t) : (6.90)

By replacing in (6.88), we �nd the constraint equation

0 =

�
�1
2
T;t +

1

2
T;ttS � F;t

�
u+H (b)+

�
��
�1
2
T;tS + F

�
u+ b

�
q;u +

�
�1
2
T;tS + F

�
q �

�
2 q

Z
Tdt+ c1q

�
t

� Tq;iS;i: (6.91)
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Chapter 7

Point symmetries of Schrödinger and

the Klein Gordon equations

7.1 Introduction

The Schrödinger and the Klein Gordon equations are two important equations of Quantum Physics. Therefore,

it is important that we determine their Lie symmetries and use them either in order to �nd invariant solutions

using Lie symmetry methods [1]. In order to achieve this, we notice that the Schrödinger equation is a special

case of the heat conduction equation and the Klein Gordon equation is a special form of the Poisson equation.

The Lie symmetries of the heat equation and of the Poisson equation in a general Riemannian space were

determined in Chapter 6. Thus, we apply these results to �nd the Lie symmetries of the Schrödinger and the

Klein Gordon equation in a general Riemannian space.

An important element of the present study is the concept of conformally related Lagrangians, that is,

Lagrangians that under under a conformal transformation of the metric and the potential lead to the same

equations but for di¤erent dynamic variables. The condition for this is that the Hamiltonian vanishes. Because

the dynamic variables of these Lagrangians are not the standard ones in general the Hamiltonian is not relevant

to the energy of the system.

From each Lagrangian describing a dynamical system, we de�ne a metric called the kinematic metric, char-

acteristic to the dynamical system described by this Lagrangian. As it will be seen, the conformal symmetries

of this metric are in close relation to the Noether symmetries of the equations of motion. Furthermore, the

kinetic metric of the Lagrangian de�nes the Laplace operator; hence, consequently the Lie symmetries of the

corresponding Poisson equation are expressed in terms of the conformal symmetries of the kinematic metric.

We extend these results to the Yamabe operator and study the Lie symmetries of the conformal Klein Gordon

equation.

145
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In section 7.2, we consider the classical Lagrangian

L
�
xk; _xk

�
=
1

2
gij
�
xk
�
_xi _xj � V

�
xk
�

(7.1)

in a general Riemannian space and we show that the Noether point symmetries of two conformally related

Lagrangians are generated from the conformal algebra of the metric gij :

In section 7.3, we study the Lie point symmetries of Schrödinger and the Klein Gordon equation by using

the resutls of Chapter 6. Using the geometric character of the Noether symmetries for the Lagrangian (7.1) and

that of the Lie symmetries of the Schrödinger and of the Klein Gordon equation we establish the connection

between the two. More speci�cally, it will be shown that if an element of the homothetic group of the kinetic

metric generates a Noether point symmetry for the classical Lagrangian, then it also generates a Lie point

symmetry for the Schrödinger equation. Concerning the Klein Gordon we �nd that the Noether symmetry of

the Lagrangian (7.1) must have a constant Noether gauge function in order to be admitted.

In section 7.4, we examine the case of Noether symmetries whose Noether gauge functions are not constant.

We will consider the cases the kinematic metric admits a gradient Killing vector (KV) or a gradient homothetic

vector (HV) which produces Noether point symmetries for the Lagrangian (7.1) and show that the Lie symmetry

in both cases is indeed a non-local symmetry of the Klein Gordon equation. In section 7.5, we demonstrate the

use of the previous general results to various interesting practical situations.

To complete our analysis, in section 7.7, we examine the WKB approximation. In that case, the solution of

the Klein Gordon equation satis�es the null Hamilton Jacobi equation. We derive the symmetry condition of

the null Hamilton Jacobi equation and we prove that its Lie point symmetries are generated from the CKVs

of the underlying space. Furthermore, there exists a unique relation between the Lie point symmetries of the

Hamilton Jacobi and the Lie symmetries of the Euler-Lagrange equations of a classical particle; in particularly,

the Lie point symmetries of the Euler-Lagrange equations which are generated from the homothetic algebra

of the Riemannian space are generating point symmetries for the Hamilton Jacobi equation; that is, the Lie

symmetry algebra of the Hamilton Jacobi equation can be greater than the Noether algebra of the classical

Lagrangian (7.1).

7.2 Noether symmetries of Conformal Lagrangians

Consider the Lagrangian of a particle moving under the action of a potential V (xk) in a Riemannian space with

metric gij

L =
1

2
gij _x

i _xj � V
�
xk
�

(7.2)

where _x = dx
dt : The equations of motion follow from the action

S =

Z
dt
�
L
�
xk; _xk

��
=

Z
dt

�
1

2
gij _x

i _xj � V
�
xk
��

: (7.3)
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Consider the change of variable t! � de�ned by the requirement

d� = N2
�
xi
�
dt: (7.4)

In the new coordinates (� ; xi); the action becomes

S =

Z
d�

N2 (xk)

�
1

2
gijN

4
�
xk
�
x0ix0j � V

�
xk
��

(7.5)

where x0i = dx
d� and the Lagrangian is transformed to the new Lagrangian

�L
�
xk; x0k

�
=
1

2
N2
�
xk
�
gijx

0ix0j �
V
�
xk
�

N2 (xk)
: (7.6)

If we consider a conformal transformation (not a coordinate transformation!) of the metric �gij = N2
�
xk
�
gij

and a new potential function �V
�
xk
�
=

V (xk)
N2(xk)

then, the new Lagrangian �L
�
xk; x0k

�
in the new coordinates

� ; xk, takes the form,
�L
�
xk; x0k

�
=
1

2
�gijx

0ix0j � �V
�
xk
�

(7.7)

implying that equation (7.7) is of the same form as the Lagrangian L in equation (7.2). From now on, the

Lagrangian L
�
xk; _xk

�
of equation (7.2) and the Lagrangian �L

�
xk; x0k

�
of equation (7.7) will be called conformal.

In this framework, the action remains the same, i.e. it is invariant under the change of parameter and the

equations of motion in the new variables (� ; xi) will be the same with the equations of motion for the Lagrangian

L in the original coordinates (t; xk) .

In Chapter 4, it was shown that the Noether point symmetries of a Lagrangian of the form (7.2) follow from

the homothetic algebra of the metric gij (see Theorem 4.3.2). The same applies to the Lagrangian �L
�
xk; x0k

�
and the metric �gij : The conformal algebra of the metrics gij ; �gij (as a set) is the same; however, their closed

subgroups of HVs and KVs are generally di¤erent. Hence, the following Corollary holds.

Corollary 7.2.1 The Noether point symmetries of the conformally related Lagrangians (7.2), (7.7) are con-

tained in the common conformal algebra of the metrics gij ; �gij :

Now, we formulate and prove the following Lemma;

Lemma 7.2.2 The Euler-Lagrange equations for two conformal Lagrangians transform covariantly under the

conformal transformation relating the Lagrangians if and only if the Hamiltonian vanishes.

Proof. Consider the Lagrangian L = 1
2gij _x

i _xj � V
�
xk
�
whose Euler-Lagrange equations are:

�xi + �ijk _x
i _xj + V ;i = 0 (7.8)

where �ijk are the Christofell symbols. The corresponding Hamiltonian is given by

E =
1

2
gij _x

i _xj + V
�
xk
�
: (7.9)
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For the conformally related Lagrangian �L
�
xk; x0k

�
=

�
1
2N

2
�
xk
�
gijx

0ix0j � V (xk)
N2(xk)

�
where N;j 6= 0 the resulting

Euler Lagrange equations are

x00i + �̂ijkx
0jx0k +

1

N4
V ;i � 2V

N5
N ;i = 0 (7.10)

where

�̂ijk = �
i
jk + (lnN);k�

i
j + (lnN);j�

i
k � (lnN);igjk (7.11)

and the corresponding Hamiltonian is

�E =
1

2
N2
�
xk
�
gij _x

i _xj +
V
�
xk
�

N2 (xk)
: (7.12)

In order to show that the two equations of motion are conformally related we start from equation(7.10) and

apply the conformal transformation

x0i =
dxi

d�
=
dxi

dt

dt

d�
= _xi

1

N2

x
00i = �xi

1

N4
� 2 _xi _xj (lnN);j

1

N4
:

By replacing in equation(7.10). we �nd:

�xi
1

N4
� 2 _xi _xj (lnN);j

1

N4
+

1

N4
�̂ijk _x

j _xk +
1

N4
V ;i � 2V

N5
N ;i = 0

By replacing �̂ijk from equation(7.11), we have

�xi � 2 _xi _xj (lnN);j + �
i
jk _x

j _xk + 2(lnN);j _x
j _xi

�(lnN);igjk _xj _xk + V ;i � 2V (lnN);i = 0

from which follows

�xi + �ijk _x
j _xk + V ;i � (lnN);i

�
gjk _x

j _xk + 2V
�
= 0:

Obviously, the above Euler-Lagrange equations coincide with equations(7.8) if and only if gjk _xj _xk + 2V = 0,

which implies that the Hamiltonian of equation(7.9) vanishes. The steps are reversible; hence, the inverse is

also true.

The physical meaning of this result is that systems with vanishing energy are conformally invariant at the

level of the equations of motion.

7.3 Lie point symmetries of Schrödinger and the Klein Gordon equa-

tion

In this section we study the Lie point symmetries of Schrödinger and the Klein Gordon equation in a Riemannian

manifold. To do this, we use the results of Chapter 6. Furthermore, we will study the relation between Noether

pont symmetries of classical Lagrangians and Lie point symmetries of the Schrödinger and the Klein Gordon

equation with the same "kinetic" metric and the same potential.
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7.3.1 Symmetries of the Schrödinger equation

The Schrödinger equation1

gijuij � �iui � ut = V (x)u (7.13)

is a special form of the heat conduction equation (6.51) with q (t; x; u) = V (x)u: Therefore, it is possible to

study the Lie point symmetries of the Schrödinger equation using Theorem 6.5.1 which, in this case, takes the

following form.

Theorem 7.3.1 The Lie point symmetries of the Schrödinger equation (7.13) are generated from the elements

of the homothetic algebra of the metric gij as follows.

a. Y i is a non-gradient HV/KV. The Lie symmetry is

X = (2c t+ c1) @t + cY
i@i + (a0u+ b (t; x)) @u (7.14)

with constraint equations

H (b)� bV = 0 ; cLY V + 2 cV + a0 = 0: (7.15)

b Y i = H ;i is a gradient HV/KV. The Lie symmetry is

X =

�
2 

Z
Tdt+ c1

�
@t + TS

;i@i +

��
�1
2
T;tS + F (t)

�
u+ b (t; x)

�
@u

with constraint equations

H (b)� bV = 0 (7.16)

LHV + 2 V �
1

2
c2H + d = 0 (7.17)

and the functions T; F are computed from the relations

T;tt = c2T ;
1

2
T;t + F;t = dT: (7.18)

From the form of the symmetry vectors and the symmetry conditions for the Schrödinger and the Lagrangian

of the classical particle (7.2) we have the following result.

Proposition 7.3.2 If a KV/HV of the metric gij produces a Lie point symmetry for the Schrödinger equation

(7.13), then generates a Noether point symmetry for the Lagrangian (7.2) in the space with metric gij and

potential V
�
xk
�
: The reverse is also true.

1We have absorbed the constant } and the imaginary unit i, in the variables xk; t respectively
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7.3.2 Symmetries of the Klein Gordon equation

The Klein-Gordon equation

�u� V
�
xk
�
u = 0 (7.19)

follows from the Poisson equation (6.31) if we take f
�
xi; u

�
= V

�
xi
�
u: Therefore, Theorem 6.4.1 applies and

we have the following result

Theorem 7.3.3 The Lie point symmetries of the Klein Gordon equation (7.19) are generated from the CKVs

of the metric gij de�ning the Laplace operator, as follows

a) for n > 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (7.20)

where �i is a CKV with conformal factor  
�
xk
�
, b
�
xk
�
is a solution of (7.19) and the following condition is

satis�ed

�kV;k + 2 V �
2� n
2

� = 0: (7.21)

b) for n = 2; the Lie symmetry vector is

X = �i
�
xk
�
@i +

�
a0u+ b

�
xk
��
@u (7.22)

where �i is a CKV with conformal factor  
�
xk
�
, b
�
xk
�
is a solution of (7.19) and the following condition is

satis�ed

�kV;k + 2 V = 0: (7.23)

By comparing the symmetry condition of the Klein Gordon equation (7.19) and the classical Lagrangian

(7.2) and by taking into consideration that for a special CKV/HV/KV the conformal factor satis�es the

condition  ;ij = 0; we deduce the following result.

Proposition 7.3.4 For n > 2; the Lie point symmetries of the Klein Gordon equation for the metric gij which

de�nes the Laplace operator are related to the Noether point symmetries of the classical Lagrangian for the same

metric and the same potential as follows

a) If a KV or HV of the metric gij generates a Lie point symmetry of the Klein Gordon equation (7.19),

then it also produces a Noether point symmetry of the classical Lagrangian with gauge function a constant.

b) If a special CKV or a proper CKV satisfying the condition � = 0 of the metric gij generates a Lie

point symmetry of the Klein Gordon equation (7.19), then it also generates a Noether point symmetry of the

conformally related Lagrangian if there exists a conformal factor N
�
xk
�
; such that the CKV becomes a KV or

a HV.

For n = 2; the results are di¤erent and are given below.
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7.3.3 Symmetries of the Conformal Klein Gordon equation

The conformal Klein Gordon equation (or Yamabe Klein Gordon)

�Lgu� V
�
xk
�
u = 0: (7.24)

is the conformal Poisson equation (6.42) for �f
�
xi; u

�
= V

�
xk
�
u: Therefore, Theorem 6.4.3 is valid and we have

the result.

Theorem 7.3.5 The Lie point symmetries of the conformal Klein Gordon equation (7.24) are as follows

a) For n > 2; they are generated from the CKVs of the metric gij of the conformal Laplace operator, as

follows

X = �i
�
xk
�
@i +

�
2� n
2

 
�
xk
�
u+ a0u+ b

�
xk
��

@u (7.25)

where �i is a CKV with conformal factor  
�
xk
�
; and the following conditions are satis�ed

�kV;k + 2 V = 0 (7.26)

�Lgb� V b = 0: (7.27)

b) For n = 2, equation (7.24) is the Laplace Klein Gordon equation (7.19) and the results of theorem 7.3.3

apply.

Comparing the symmetry condition of the conformal Klein Gordon equation (7.24) and the classical La-

grangian (7.2) we have the following proposition.

Proposition 7.3.6 a) If a CKV of the metric gij (dim gij � 2), which de�nes the conformal Laplace operator,
produces a Lie point symmetry of the conformal Klein Gordon equation (7.24), then the same vector generates a

Noether point symmetry of the conformally related Lagrangian provided there exists a conformal factor N
�
xk
�

such that the CKV becomes a KV/HV of gij.

b) If a KV/HV of the metric gij generates a Lie point symmetry for the conformal Klein Gordon equation

(7.24) then the same vector generates a Noether point symmetry for the classical Lagrangian with gauge function

a constant.

7.4 sl (2; R) and the Klein Gordon equation

In the previous considerations, we have showed that the Lie point symmetries of the Klein Gordon equation

induce Noether point symmetries for the classical Lagrangian if the gauge function is a constant. In this section,

we investigate the case when the induced Noether symmetry has a gauge function which is not a constant. As

we shall show in this case, the induced Noether symmetry comes from a generalized Lie symmetry of the Klein

Gordon equation.
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It is clear that if a KV/HV produces a Noether point symmetry for the classical Lagrangian satisfying

conditions (4.29) with d 6= 0 or (4.31) with m 6= 0 (or d 6= 0) of Theorem 4.3.2, then it does not produce a

Lie symmetry for the Klein Gordon equation. However, a gradient KV/HV which generates a Noether point

symmetry for the classical Lagrangian satis�es only condition (4.31) with d = 0 and m 6= 0 and leads to two well
known dynamical systems, the oscillator and the Ermakov system. The Lie and the Noether point symmetries
of these dynamical systems have been considered previously in Chapter 5; however, we brie�y reproduce these

results in the current framework for competences.

7.4.1 The oscillator

First, we consider the case in which the metric admits a gradient KV which generates Lie point symmetries

of the classical Lagrangian, provided condition (4.31) is satis�ed. It is well known that if a metric admits a

gradient KV, then it is decomposable and can be written in the form

ds2 = dx2 + hABdy
AdyB (7.28)

where the gradient KV is S;i = @x (S = x) and hAB = hAB
�
yC
�
is the tensor projecting normal to the KV. In

these coordinates the Lagrangian takes the form

L =
1

2

�
_x2 + hAB _y

A _yB
�
� V

�
x; yC

�
: (7.29)

The Lie point symmetry condition for the gradient KV becomes

V;x + �
2x = 0

from which follows that the potential is

V
�
x; yC

�
= �1

2
�2x2 + F

�
yC
�
: (7.30)

The Noether point symmetries are the vectors e��t@x with respective gauge function f
�
t; x; yA

�
= �e�x.

The corresponding Noether integrals are

I� = e��t _x� �e��tx (7.31)

It can be easily shown that the combined Noether integral I0 = I+I� is time independent and equals

I0 = _x2 � �2x2: (7.32)

The Laplace Klein Gordon equation de�ned by the metric (7.28) and the potential (7.30) is

uxx + h
ABuAuB � �AuA � �2x2u� F

�
yC
�
u = 0: (7.33)

This equation does not admit a Lie point symmetry for general hab; F
�
yC
�
: However, it is separable with

respect to x in the sense that the solution can be written in the form u
�
x; yA

�
= w (x)S

�
yA
�
: This implies
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that the operator Î = DxDx � �2x2 � I0 satis�es Îu = 0; which means that the Klein Gordon equation (7.33)

possesses a Lie Bäcklund symmetry [96, 97] with generating vector �X =
�
uxx � �2x2

�
@u.

Concerning the conformal Klein Gordon equation

uxx + h
ABuAuB � �AuA +

n� 2
4 (n� 1)Ru� �

2x2u� 2 �F
�
yC
�
u = 0 (7.34)

because for a KV, say �a; we have L�R = 0 [95] hence R = R
�
yC
�
; equation (7.34) is written in the form of

the Laplace Klein Gordon equation with F
�
yC
�
= 2 �F

�
yC
�
� n�2

4(n�1)R
�
yC
�
and the previous result applies.

7.4.2 The Kepler Ermakov potential with an oscillator term

We assume now that there exists a gradient HV which produces a Noether point symmetry for the classical

Lagrangian under the constraint condition (4.31). It is well known [83, 98] that if a metric admits a gradient

HV, then there exists a coordinate system in which the metric has the form

ds2 = dr2 + r2hABdy
AdyB

where the HV is H ;i = r@r ;
�
 = 1 ; H = 1

2r
2
�
and hAB = hAB

�
yC
�
is the tensor projecting normal to H ;i:s

For these coordinates, the Lagrangian is

L =
1

2

�
_r2 + r2hAB _y

A _yB
�
� V

�
r; yC

�
(7.35)

and the gradient HV generates Lie point symmetries only for the Ermakov potential extended by the oscillator

term, that is,

V
�
r; yC

�
= �1

2
�2r2 +

F
�
yC
�

r2
: (7.36)

The admitted Noetheroint symmetries generated from the gradient HV H ;i are the vectors X� =
1
�e

�2�t@t �
e�2�tr@r with corresponding gauge functions f

�
t; r; yA

�
= �e�2�tr2 and corresponding Noether integrals (5.97)

and (5.98). From the Noether integrals (5.97),(5.98) and the Hamiltonian h of (7.35) we construct the time

independent �rst integral �0 = h2 � I+I�; which is

�0 = r4hDB _y
A _yB + 2F

�
yC
�
: (7.37)

This is the well known Ermakov invariant [67, 53].

The Laplace Klein Gordon equation de�ned by the metric (7.35) and the potential (7.36) is

urr +
1

r2
hABuAB +

n� 1
r

ur �
1

r2
�AuA + �

2r2 +
2

r2
F
�
yC
�
= 0: (7.38)

This equation does not admit a Lie point symmetry. However it is separable in the sense that u
�
r; yC

�
=

w (r)S
�
yC
�
: Then the operator

�̂ = hABDADB � �ADA + 2F
�
yC
�
� �0
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satis�es the equation �̂u = 0 which means that (7.38) admits the Bäcklund symmetry with generator �X =�
�̂u
�
@u [96, 97].

Concerning the conformal Klein Gordon equation, the Ricci scalar of the metric (7.35) and the HV satisfy

the condition LHR + 2R = 0 [95], that is R = 1
r2
�R
�
yC
�
: Then, as in the case of the gradient KV we absorb

the term �R
�
yC
�
into the potential and we obtain the same results with the Laplace Klein Gordon equation.

From the above, we conclude that, although in the two cases considered above the Lie symmetries do not

transfer from the classical to the "quantum" level the generalized symmetries do transfer.

7.5 Applications

We apply the previous general results in two practical cases. The �rst case concerns the Newtonian central

motion and the second the classi�cation of potentials in two and three dimensional �at spaces for which the

Schrödinger equation and the Klein Gordon equation admit Lie symmetries.

7.5.1 Euclidean central force

Consider the autonomous classical Lagrangian

L =
1

2
_r2 +

1

2
r2 _�

2 � Cr�(2m+2): (7.39)

It is well known that (7.39) admits as Noether point symmetries (a) the gradient KV @t ( autonomous) with

Noether integral the Hamiltonian and (b) the KV XN = @�, with constant gauge function and Noether integral

the angular momentum p� = r2 _� = I0. Lagrangian (7.39) admits extra Noether symmetries for the values

m = �1 (the free particle) and m = 0 (the Ermakov potential) [79]. In the following we assume m 6= �1; 0;
hence, we do not expect to �nd symmetries.

From the Lagrangian (7.39), we consider the kinematic metric and de�ne the Schrödinger equation

urr +
1

r2
u�� +

1

r
ur + Cr

�(2m+2)u� ut = 0 (7.40)

and the Klein Gordon equation (because the dimension of the kinematic metric is two, the Laplace and the

Yamabe operators coincide)

urr +
1

r2
u�� +

1

r
ur + Cr

�(2m+2)u = 0: (7.41)

The application of the results of the previous sections give the following

a. The Schrödinger equation (7.40) admits as Lie point symmetries the vectors

@t ; @� ; u@u
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b. The Klein Gordon equation (7.41) admits as Lie point symmetries the vectors

@� ; u@u ; b (r; �) @�

X1 = rm+1 cos (m�) @r + r
m sin (m�) @�

X2 = rm+1 sin (m�) @r � rm cos (m�) @�

It can be easily observed that X1; X2 are proper CKVs of the two dimensional �at kinematic metric.

Concerning the Schrödinger equation, it has the same Lie point symmetries as the Lagrangian (7.39) hence

there is nothing more to do. However, the Klein Gordon equation has the extra Lie symmetries X1; X2; hence

it is possible to apply the results of proposition 7.3.6 in order to �nd a conformally related Lagrangian which

will admit the pair of symmetries @t; X1 or @t; X2.

It is important to note that if we use the zero order invariants of the Lie symmetry @t to reduce the

Schrödinger equation (7.40), we �nd that the reduced equation is the Klein Gordon equation (7.41). Therefore,

the symmetries X1; X2 are Type II hidden symmetries [99, 14, 100] for the Schrödinger equation (7.40).

Let us consider the vector X1: It is easy to show, that the conformal metric

ds2 = N2 (r; �)
�
dr2 + r2d�2

�
where N (r; �) = r�(m+1)g

�
r�1 sin

1
m (m�)

�
and g is an arbitrary function of r�1 sin

1
m (m�) admits X1 as a

KV. This leads to the family of conformal Lagrangians

�L = r�2(m+1)g2
�
r�1 sin

1
m (m�)

��1
2
r02 +

1

2
r2�02

�
� C

g2
�
r�1 sin

1
m (m�)

� (7.42)

where "0" means derivative with respect to the conformal �time" � and the coordinate transformation is dt =

N�2 (r; �) d� . According to proposition 7.3.6, the vector �eld X1 generates a Noether point symmetry for the

Lagrangian (7.42).

Working similarly for the vector X2; we �nd another family of conformally related Lagrangians which admit

X2 as a Noether point symmetry.

The conformally related Lagrangians are possible to admit additional Noether point symmetries than the

sets @t; X1 or @t; X2: For example in the case of X1 we consider the conformally related Lagrangian de�ned by

the function g = 1; i.e.

�L = r�2(m+1)
�
1

2
r02 +

1

2
r2�02

�
� C

which, by means of the coordinate transformation r = R�
1
m ; becomes

�L =
1

2
R02 +

1

2
R2�02 � C: (7.43)

This is the Lagrangian of the free particle moving in the 2D �at space.
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Table 7.1: The 2D Klein Gordon admitting Lie symmetries from the homothetic group

Lie Symmetry V (x; y) Lie Symmetry V (x; y)

@x f (y) @x + b@y f (y � bx)

@y f (x) (a+ y) @x + (b� x) @y f
�
1
2

�
x2 + y2

�
+ ay � bx

�
y@x � x@y f (r) (x+ ay) @x + (y � ax) @y r�2 f (� � a ln r)

x@x + y@y x�2f
�
y
x

�
(a+ x) @x + (b+ y) @y f

�
b+x
a+x

�
(a+ x)

�2

7.5.2 Lie symmetry classi�cation of Schrödinger and the Klein Gordon equations

in Euclidian space

In Chapter 4, all two and three dimensional potentials for which the corresponding Newtonian dynamical

systems admit Lie and/or Noether point were determined. Using these results, we determine all Schrödinger

and Klein Gordon equations in Euclidian 2D and 3D space which admit Lie point symmetries.

The Schrödinger equation in Euclidian space is

�ijuij + V
�
xk
�
u = ut: (7.44)

From proposition 7.3.2, we have that the potentials for which the Schrödinger equation (7.44) admits Lie

symmetries are the same with the ones admitted by the classical Lagrangian. Therefore, the results of Chapter

4 apply directly and give all potentials for which the Schrödinger equation (7.44) admits at least one Lie

symmetry.

We consider the Klein Gordon equation in �at space;that is,

�ijuij + V
�
xk
�
u = 0: (7.45)

In this case, the conditions are di¤erent and we �nd that equation (7.45) admits a Lie point symmetry due to a

HV/KV for the following potentials taken from the corresponding Tables of Chapter 4. In Table 7.1 and Table

7.2 we provide the potentials where the 2D and 3D Klein Gordon equation (7.45) admits Lie point symmetries

generated from the elements of the homothetic group of the Euclidian space.

As we have seen in section 7.3.2, the Lie point symmetries of the Klein Gordon equation are generated from

the conformal group of the space; therefore, we have to consider the admitted CKVs in addition to the HV and

the KVs.
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Table 7.2: The 3D Klein Gordon admitting Lie symmetries from the homothetic group

Lie Symmetry V(x;y; z)

a@� + b@� + c@� f
�
x� � b

ax
�; x� � c

ax
�
�

a@� + b@� + c (x�@� � x�@�) +f
�
c
2r(��) � bx� + ax� ; x�

�
a@� + b@� + c (x�@� � x�@�) +f

�
x� � 1

jcj arctan
�

jcjx�
ja+cx�j

�
; 12r(��) �

a
cx�

�
a@� + b (x�@� � x�@�)+

+ c (x�@� � x�@�) +f
�
x2� + x

2
�

�
1� c2

b2

�
+
�
2a
b +

2c
b x�

�
x� ; x� � c

bx�

�
so (3) linear combination F (R; b tan � sin�+ c cos�� aM1)

a@� + b�(��)@�(��) + cR@R
1

r2
(��)

f
�
�(��) � b

c ln r(��);
a+cx�
cr(��)

�
(a@� + b@� + c@� + lR@R)

1
(a+lx�)

2 f
�

b+lx�
l(a+lx�)

; c+lx�
l(a+lx�)

�

The two dimensional case

We recall that the conformal algebra of a two dimensional space is in�nite dimensional [101] and in coordinates

with line element ds2 = 2dwdz are given by the vectors X = F (w) @w + G (z) @z; with conformal factor

 = 1
2 (F;w +G;z). In the coordinates (w; z) ; the 2D Klein Gordon Klein Gordon equation (7.45) is

uwz + V (w; z)u = 0:

The Lie symmetry condition (7.21) becomes

(FV );w + (GV );z = 0 (7.46)

from which follows that there are in�nite many potentials for which the 2D Klein Gordon equation admits Lie

point symmetries.

The three dimensional case

The 3D Euclidian space admits the three special CKVs

K�
C =

1

2

�
(x�)

2 �
�
(x�)

2
+ (x�)

2
��

@i + x
�x�@x + x

�x�@z ; �; �; � = 1; 2; 3

with corresponding conformal factor  C = x�.

From the symmetry condition (7.21) of theorem 7.3.3, it follows that a special CKV generates the Lie point
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symmetry X = K�
C � 1

2x
�u@u for the 3D Klein Gordon (7.45) only for the potential

V (x; y; z) =
1

(x�)
2F

�
x�

x�
;
���x

�x�

x�

�
:

One is possible to continue with the linear combinations and deduce all cases that the 3D Klein Gordon

equation admits a Lie symmetry. These results hold for both the Klein Gordon and the conformal Klein Gordon

equation. It particular one can show that the results remain still valid for the conformal Klein Gordon equation

provided the metric de�ning the conformal Laplacian is conformally �at.

7.6 The Klein Gordon equation in a spherically symmetric space-

time

In this section, we consider the Lie point symmetries of the Klein Gordon equation in a non-�at space and

in particular in the static spherically symmetric empty space-time; that is the exterior Schwarzschild solution

given by the metric (� is the radial coordinate)

ds2 = �a2 (�) dt2 + d�2 + b2 (�)
�
d�2 + sin2 �d�2

�
: (7.47)

The Lagrangian of Einstein �eld equations for this space-time is [102, 103]

L = 2ab02 + 4ba0b0 + 2a (7.48)

where "0" means derivative with respect to the radius � . If we see the Lagrangian (7.48) as a dynamical system

in the space of variables fa; bg, then this system is "autonomous"; hence, admits the Noether symmetry @� with
corresponding Noether integral the "Hamiltonian" h =constant. ( h is not the "energy" because the coordinate

is the radial distance not the time)

h = 2ab02 + 4ba0b0 � 2a:

It can be shown directly that h = 2
aG

1
1; where G

1
1 is the Einstein tensor. Because the space is empty, from

Einstein�s equations follows that h = 0: The Euler-Lagrange equations are

a00 � a

2b2
b02 +

1

b
a0b0 +

1

2

a

b2
= 0

b00 +
1

2b
b02 � 1

2b
= 0:

We end up with a system of three equations whose solution will give the functions a(�); b(�): It is found that

the solution of the system does not give these functions in the well known closed form. This is due to the

Lagrangian we have considered; Indeed we shall show below that it is possible to �nd the solution in closed

form by considering a Lagrangian conformally related to the Lagrangian (7.48).



7.6. THE KLEIN GORDON EQUATION IN A SPHERICALLY SYMMETRIC SPACE-TIME 159

Applying Theorem 4.3.2, we �nd that the Lagrangian (7.48) admits the Noether point symmetry

X1 = 2�@� +H

where H = �2a@a + 2b@b is a non-gradient homothetic vector of the two dimensional kinetic metric

d�s2 = 2adb2 + 4bdadb (7.49)

de�ned from the Lagrangian (7.48).

The Klein Gordon equation de�ned by the metric (7.49) with potential V (a; b) = 2a, is

� a

4b2
uaa +

1

2b
uab �

1

4b2
ua � 2au = 0 (7.50)

and admits as Lie symmetries the vectors [103]

u@u ; b (a; b) @u

H = �2a@a + 2b@b ; X2 =
1

ab
@a ; X3 =

a

2b
@a � @b

where the vectors X2; X3 are proper CKVs of the two dimensional metric (7.49).

It is possible to �nd solutions of the Klein Gordon equation (7.50) which are invariant with respect to one

of the admitted Lie symmetries.

For example, let us consider the Lie point symmetry Hu = H � 2cu@u: The zero order invariants of Hu are

w = ab ; u = ac� (w) : Replacing in the PDE we �nd the solution 2

u (a; b) = ac
h
c1I

B
c

�
2
p
2ab
�
+ c2K

B
c

�
2
p
2ab
�i

where IB ;KB are the Bessel modi�ed functions [103]. Working similarly for the Lie point symmetry H+eX2�
cu@u we �nd the solution

u (a; b) =
�
a2 � eb�1

� c
4

h
c1I� c

2

�
2
p
2b (a2b� e)

�
+ c2K

B
c
2

�
2
p
2b (a2b� e)

�i
:

One can �nd more solutions using linear combinations of the Lie symmetries.

Following proposition 7.3.6, we look for a conformal metric for which one of the CKVs X2; X3 becomes a

KV and write the corresponding conformally related Lagrangian which admits this CKV as a Noether point

symmetry.

We consider the vector X2 and the conformally related metric

ds2 = N2
�
4adb2 + 8bda db

�
(7.51)

2We have found this by making use of the library SADE [104] of MAPLE.
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where N (a; b) = g (b)
p
a and g (b) is an arbitrary function of its argument: It is easy to show that the vector

X2 is a KV of this metric hence a Noether symmetry for the family of conformally related Lagrangians

�L = N2

"
2a

�
db

dr

�2
+ 4b

�
da

dr

��
db

dr

�#
+
2a

N2
(7.52)

where we have considered the coordinate transformation d� = dr
N2(a;b) . The Noether function for this Noether

symmetry is the "Hamiltonian" of the Lagrangian (7.52). This constant and the two Lagrange equations for the

"generalized" coordinates a; b provide a system of di¤erential equations which will give the functions a(�); b(�):

We consider g (b) = g0 =constant, that is from the family of Lagrangians (7.52) we take the Lagrangian

L = g20

"
2a2

�
db

dr

�2
+ 4ab

�
da

dr

��
db

dr

�#
+
2

g20
: (7.53)

For this Lagrangian we have the following system of equations:

a. The "Hamiltonian" of the Lagrangian (7.53)

a2
�
db

dr

�2
+ 2b2

�
da

dr

��
db

dr

�
� V0 = 0 (7.54)

b. The Euler Lagrange equations of (7.53) with respect to the variables a; b

d2a

dr2
+
1

a2

�
da

dr

�2
+
2

b

�
da

dr

��
db

dr

�
= 0 (7.55)

d2b

dr2
= 0 (7.56)

where we have set V0 = g�40 . The solution of the system of equations (7.54)-(7.56) is

b (r) = b1r + b2 ; a2 (r) =
V0r + 2a1b1
2b1 (b1r + b2)

:

Under the linear transformation b1r = b1R � b2
b1
; and if we set V0 = 2 (b1)

2
; a1 = �2m + b2, we obtain the

exterior Schwarzschild solution in the standard coordinates

ds2 = �
�
1� 2m

R

�
dt2 +

�
1� 2m

R

��1
dR2 +R2

�
d�2 + sin2 �d�2

�
(7.57)

The choice of the function g (b) is essentially a choice of the coordinate system. Obviously the �nal solution

must always be the exterior Schwarzschild solution. In order to show this let us consider g (b) =
p
b so that

d� = (a (r) b (r))
�1
dr: Then, we get the Lagrangian

�L = 2a2b

�
db

dr

�2
+ 4ab2

�
da

dr

��
db

dr

�
+
2

b

and the system of equations
d2b

dr2
+
1

b

�
db

dr

�2
= 0
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2a2b

�
db

dr

�2
+ 4ab2

�
da

dr

��
db

dr

�
� 2
b
= 0

d2a

dr2
+
1

a

�
da

dr

�
+
2

b

�
da

dr

��
db

dr

�
� a

2b2

�
db

dr

�2
+

1

2ab4
= 0

The solution of the system is

b2 (r) = r ; a2 (r) =
�p
r
��1 �

4
p
r + a1

�
from which follows: d�2 = (4r +

p
ra1)

�1
dr2: Therefore, for this choice of Lagrangian, the metric is

ds2 = �
�
4
p
r + a1p
r

�
dt2 +

1

4r +
p
ra1

dr2 + r
�
d� + sin2 �d�2

�
: (7.58)

If we make the transformation r = R2 , dt ! 1
2dt and a1 = �8m; we retain the metric (7.58) in the standard

form (7.51).

Working similarly, we �nd that X3 becomes a KV for the conformal metric (7.51) if N3 (a; b) = f
�
a2b
�p

a

and generates a Noether point symmetry for the conformal Lagrangian (7.52) (with N3 in the place of N) and

continue as above.

7.7 WKB approximation

In WKB approximation, we search for solutions of the Klein Gordon equation of the form u = Ane
iS(xk); where

S
�
xk
�
has to satisfy the null Hamilton Jacobi equation [105, 106].

gijS;iS;j + �V
�
xk
�
= 0 (7.59)

where gij is the metric de�ning the Yamabe operator and �V (x) = n�2
4(n�1)R�V

�
xk
�
. We study the symmetries

of the PDE (7.59).

We search for Lie point symmetries of the form [1]

X = �i
�
xi; S

�
@i + �

�
xi; S

�
@S :

The symmetry condition is

X [1] (Hnull) = �
�
xk
�
(Hnull) ; mod [Hnull] = 0

where X [1] is the �rst prolongation and � = �
�
xi
�
. Replacing the �rst prolongation X [1] in the symmetry

condition and collecting terms of powers of S;i we �nd the following result.

Theorem 7.7.1 The Lie point symmetries of the null Hamilton Jacobi equation (7.59) are the vectors

X = �i
�
xk
�
@i + (a0S + b0) @S (7.60)

where �i
�
xk
�
is a CKV of the metric gij ; a0; b0 are constants and the following condition holds

Vk�
k + 2 V � a0V = 0: (7.61)
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Proof . The symmetry condition is

X [1] (Hnull) = � (Hnull) ; mod [Hnull] = 0

where X [1] is the �rst prolongation and we set � = �
�
xi
�
. Replacing X [1]; we �nd

X [1]Hnull =
1

2
gij;k�

kSiSj + g
ijSj�

[1]
i + Vk�

k

where

gijuj�
[1]
i = gijSj�;i + g

ijSjSi�s � grjSiSj�j;r � girSrSiSj�j;u:

We can easily show that �i;u = 0 so that the the symmetry conditions become:

gij;k�
k � 2gr(j�j);r + 2gij�S = �gij (7.62)

Vk�
k = �V (7.63)

�;i = 0: (7.64)

From (7.62) and (7.64) we have that � = a0S + b0. Then, the conditions (7.62),(7.63) become

L�gij = (a0 � �) gij (7.65)

Vk�
k = �V: (7.66)

Setting a0 � � = 2 or � = a0 � 2 ; we see that condition (7.65) implies that the Lie point symmetries of
the null Hamilton Jacobi equation (7.59) are generated from the CKVs of the the kinematic metric gij . Finally,

condition (7.66) becomes

Vk�
k + 2 V � a0V = 0:

Comparing the symmetry condition (7.61) of the null Hamilton Jacobi equation and the symmetry condition

(7.26) of the Yamabe Klein Gordon equation, we have

Proposition 7.7.2 If a CKV of the metric which de�nes the Yamabe operator generates a Lie point symmetry

for the Yamabe Klein Gordon equation (7.24), then the same vector generates a Lie point symmetry of the null

Hamilton Jacobi equation (7.59). The reverse holds if the CKV generating Lie symmetry for the null Hamilton

Jacobi equation (7.59) satis�es condition (7.61) with a0 = 0.

Proposition 7.7.2 relates the Lie point symmetries of the Hamilton Jacobi equation with the Lie point

symmetries of the Yamabe Klein Gordon when the constant a0 = 0. The question which arises is what happens

to the Lie symmetries when a0 6= 0. The answer is given in the following proposition
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Proposition 7.7.3 If a CKV generates Lie point symmetry for the null Hamilton Jacobi equation (7.59) sat-

isfying condition (7.61) with a0 6= 0, then this CKV produces a Lie point symmetry for the Euler-Lagrange

equations for a conformally related Lagrangian if there exist a conformal factor N
�
xk
�
for which the CKV

becomes KV or HV.

Proof . The Lie point symmetries of the autonomous system

�xi + �ijk _x
i _xj + V ;i = 0 (7.67)

are produced from the special projective algebra of the metric provided the potential satis�es the condition

L�V
;i + d0V

;i = 0 (7.68)

where d0 is a constant and L� denotes Lie derivative with respect to �i. Equation (7.67) remains the same for

the conformally related Lagrangian, that is, we have

x00i + ��ijkx
0ix0j + V 0;i = 0:

Therefore, the symmetry group will be again the special projective group of the conformal metric. The special

projective group is not preserved under a conformal transformation but the subgroups of KVs and the homothetic

group are preserved. Then these two subgroups are common for both metrics. Subsequetly, if the CKV of the

metric gij becomes a KV/HV of the conformal metric �gij = N2gij then it will be a Lie point symmetry of

the Euler Lagrange equations of the conformally related Lagrangian �L. This symmetry will not be a Noether

symmetry of �L except in the case that d0 = 2� 
�
� = 1 for HV and  = 0 for KV

�
:

7.8 Conclusion

We have determined the Lie point symmetries of Schrödinger equation and the Klein Gordon equation in a

general Riemannian space. It has been shown that these symmetries are related to the homothetic algebra and

the conformal algebra of the metric. Furthermore, these symmetries have been related to the Noether point

symmetries of the classical Lagrangian for which the metric gij is the kinematic metric. More precisely, for the

Schrödinger equation (7.13) it has been shown that if a KV/HV of the metric gij produces a Lie point symmetry

of the Schrödinger equation, then it produces a Noether point symmetry for the Classical Lagrangian in the

space with metric gij and potential V (xk). For the Klein Gordon equation the situation is di¤erent; the Lie

point symmetries of the Klein Gordon are generated by elements of the conformal group of the metric gij : The

KVs and the HV of this group produce a Noether symmetry of the classical Lagrangian with a constant gauge

function. However the proper CKVs produce a Noether point symmetry for the conformal Lagrangian if there

exists a conformal factor N
�
xk
�
such that the CKV becomes a KV/HV of gij .

We have applied these general results to three cases of practical interest: the motion in a central potential,

the classi�cation of all potentials in Euclidian 2D and 3D space for which the Schrödinger equation and the
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Klein Gordon equation admit a Lie point symmetry and �nally we have considered the Lie symmetries of

the Klein Gordon equations in the static, spherically symmetric empty spacetime. In the last case, we have

demonstrated the role of Lie symmetries and that of the conformal Lagrangians in the determination of the

closed form solution of Einstein equations.

Furthermore, we investigated the Lie symmetries of the null Hamilton Jacobi equation and we proved that if

a CKV generates a point symmetry for the Klein Gordon equation, then it also generates a Lie point symmetry

for the null Hamilton Jacobi equation.

The knowledge of the Lie symmetries of the Schrödinger equation and the Klein Gordon equation in a

general Riemannian space makes possible the determination of solutions of these equations which are invariant

under a given Lie symmetry. In addition, they can be used in Quantum Cosmology [107, 108, 109, 110, 105] to

determine the form of solutions of the Wheeler�DeWitt equation [111] in a given Riemannian space.



Chapter 8

The geometric origin of Type II hidden

symmetries

8.1 Introduction

Lie symmetries assist us in the simpli�cation of di¤erential equations (DEs) by means of reduction. As it

was indicated in Chapter 2, the reduction is di¤erent for ordinary di¤erential equations (ODEs) and partial

di¤erential equations (PDEs). In the case of ODEs, the use of a Lie symmetry reduces the order of ODE by

one while in the case of PDEs, the reduction by a Lie symmetry reduces by one the number of independent and

dependent variables, but not the order of the PDE. A common characteristic in the reduction of both cases is

that the Lie symmetry which is used for the reduction is not admitted as such by the reduced DE, it is "lost".

It has been found that the reduced equation is possible to admit more Lie symmetries than the original

equation. These new Lie symmetries have been termed Type II hidden symmetries. Also, if one works in the

reverse way and either increases the order of an ODE or increases the number of independent and dependent

variables of a PDE, then, it is possible that the new (the �augmented�) DE admits new point symmetries not

admitted by the original DE. This type of Lie symmetries are called Type I hidden symmetries.

The Type I and Type II hidden symmetries have studied extensively in the recent years by various authors

(see e.g. [112, 99, 14, 100, 113, 114, 115]). In the following sections, we consider mainly the Type II hidden

symmetries as they are the ones which could be used to reduce further the reduced DE.

The origin of Type II hidden symmetries is di¤erent for the ODEs and the PDEs, although it has been shown

recently that they are nearly the same [116]. For the case of ODEs, the inheritance or not of a Lie symmetry,

the X2 say, by the reduced ODE depends on the commutator of that symmetry with the symmetry used for the

reduction, the X1 say. For example, if only two Lie symmetries X1; X2 are admitted by the original equation

and the commutator [X1; X2] = cX2 where c may be zero, then reduction by X1 results in X2 being a nonlocal

165
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symmetry for the reduced ODE while reduction by X2 results in X1 being an inherited Lie symmetry of the

reduced ODE. In the reduction by X1; the symmetry X2 is a Type I hidden symmetry of the original equation

relative to the reduced equation. In the case of more than two Lie symmetries the situation is the same, if the

Lie bracket gives a third Lie symmetry, the X3 say. Then, the point like nature of a symmetry is preserved only

if reduction is performed using the normal subgroup and X3 has a certain expression [117].

The above scenario is transferred to PDEs as follows. The reduced PDE loses the symmetry used to reduce

the number of variables and it may lose other Lie symmetries depending on the structure of the associated Lie

algebra depending if the admitted subgroup is normal or not [117]. Similarly, if X1; X2 are Lie symmetries of

the original PDE with commutator [X1; X2] = cX2 where c may be zero, then reduction by X2 results in X1

being a symmetry of the reduced PDE while reduction by X1 results in an expression which has no relevance

for the PDE [117].

In addition to that scenario, B. Abraham - Shrauner and K.S. Govinder have proposed a new potential

source for the Type II hidden symmetries [118] based on the observation that di¤erent PDEs with the same

variables, which admit di¤erent Lie symmetry algebras, may be reduced to the same target PDE. Based on that

observation, they propose that the target PDE inherits Lie symmetries from all reduced PDEs, which explains

why some of the new symmetries are not admitted by the speci�c PDE used for the reduction. In this context

arises the problem of identifying the set of all PDEs which lead to the same reduced PDE after reduction by a

Lie symmetry. In a recent paper [116], it has been shown that this is also the case with the ODEs; that is, it is

shown that di¤erent di¤erential equations which can be reduced to the same equation provide point sources for

each of the Lie symmetries of the reduced equation even though any particular of the higher order equations

may not provide the full complement of Lie symmetries. Therefore, concerning the ODEs the Lie symmetries

of the reduced equation can be viewed as having two sources. Firstly, the point and nonlocal symmetries of a

given higher order equation and secondly, the point symmetries of a variety of higher order ODEs. Finally, in a

newer paper [118], it has been shown by a counter example that Type II hidden symmetries for PDEs can have

a nonpoint origin, i.e. they arise from contact symmetries or even nonlocal symmetries of the original equation.

Other approaches may be found in [119].

In the present Chapter we will study the reduction and the consequent existence of Type II hidden symmetries

of the homogeneous heat equation

�u� ut = 0 (8.1)

and the Laplace equation

�u = 0 (8.2)

in certain classes of Riemannian spaces, where

� =
1p
jgj

@

@xi

�p
jgjgij @

@xj

�
is the Laplace operator. In a general Riemannian space, the homogeneous heat equation (8.1) admits three
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Lie point symmetries and the Laplace equation (8.2) admits two Lie point symmetries, which are not useful

for reduction. This implies that if we wish to �nd �sound�reductions of equations (8.1) and (8.2), we have to

consider Riemannian spaces which admit some type of symmetry(ies) of the metric (these symmetries are not

Lie symmetries and are called collineations). Indeed, as it has been shown in Chapter 6, the Lie symmetries of

the homogeneous heat and the Laplace equation in a Riemannian space are generated from the elements of the

homothetic algebra and the conformal algebra of the space respectively. Thus, one expects that in spaces with

a nonvoid conformal algebra there will be Lie symmetry vectors which will allow for the reduction of equations

(8.1), (8.2) and the possibility of the existence of Type II hidden symmetries.

In section 8.3 we reduce the Laplace equation with the extra Lie symmetries existing in (a) a decomposable

space - that is a Riemannian space which admits a gradient Killing vector (KV) - (b) in a space which admits a

gradient Homothetic vector (HV) and (c) in a space which admits a special Conformal killing vector (sp.CKV).

In section 8.4, we apply the results of the previous section and �nd the Type II symmetries of the Laplace

equation in four and three dimensional Minkowski spacetimes. Also we fully recover previous results [100]. In

order to study the reduction of Laplace equation by a non-gradient HV and a proper CKV we consider two

further examples. In section 8.5, we consider the algebraically special vacuum solution of Einstein�s equations

known as Petrov type III [120] and we make the reduction using the Lie point symmetry generated by the

nongradient HV. Moreover we do the same in a conformally �at spacetime where the proper CKVs generate

Lie symmetries.

In section 8.6, we reduce the homogeneous heat equation (8.1) with the extra Lie symmetries existing (i)

in a space which admits a gradient KV and (ii) in a space which admits a gradient HV. In section 8.7, we

consider the special cases of the previous section, that is, a decomposable space whose nondecomposable part

is a maximally symmetric space of non-vanishing curvature and the spatially �at Friedmann Robertson Walker

(FRW) space time used in Cosmology. Finally in section 8.8 we consider the reduction of the homogeneous heat

equation in the Petrov type III spacetime using the Lie symmetry which is generated by the HV.

We emphasize that all results are derived in a purely geometric manner without the use of a computer

package. However, we have veri�ed them with the libraries PDEtools and SADE [121, 104] of Maple1 .

8.2 Lie symmetries of Laplace equation in certain Riemannian spaces

In a general Riemannian space, Laplace equation (8.2) admits the Lie symmetries

Xu = u@u ; Xb = b (t; x) @u

where b (t; x) is a solution of Laplace equation. These symmetries are too general to provide useful reductions

and lead to reduced PDEs which posses Type II hidden symmetries. However if we restrict our considerations

1www.maplesoft.com
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to spaces which admit a conformal algebra (proper or not) then we will have new Lie symmetries, hence new

reductions of Laplace equation eqn (8.2), which might lead to Type II hidden symmetries.

In the following sections, we consider spaces in which the metric gij can be written in a generic form. The

spaces we shall consider are: a. Spaces which admit a gradient KV (decomposable spaces) b. Spaces which

admit a gradient HV and c. Spaces which admit a sp.CKV.

The generic form of the metric for each type is as follows (A;B; : : : = 1; 2; : : : ; n):

a. If a 1+n�dimensional Riemannian space admits a gradient KV, the Si = @z (S = z) say, then the space

is decomposable along @z and the metric is written as (see e.g. [44])

ds2 = dz2 + hABy
AyB ; hAB = hAB

�
yC
�

b. If a 1 + n�dimensional Riemannian space admits a gradient HV, the Hi = r@r
�
H = 1

2r
2
�
;  H = 1 say,

then the metric can be written in the generic form [83]

ds2 = dr2 + r2hABdy
AdyB ; hAB = hAB

�
yC
�

c. If a 1 + n�dimensional Riemannian space admits a sp.CKV then admits a gradient KV and a gradient

HV [83, 22] and the metric can be written in the generic form

ds2 = �dz2 + dR2 +R2fAB
�
yC
�
dyAdyB

while the sp.CKV is CS = z2+R2

2 @z + zR@R with conformal factor  CS = z.

The Riemannian spaces which admit non-gradient proper HV do not have a generic form for their metric.

However, the spaces for which the HV acts simply transitively are a few and are given together with their

homothetic algebra in [120]. A special class of these spaces are the algebraically special vacuum space-times

known as Petrov type N, II , III, D. In section 8.5.1, we shall consider the reduction of Laplace equation in the

Petrov type III spacetime whose metric is

ds2 = 2d�dv +
3

2
xd�2 +

v2

x3
�
dx2 + dy2

�
with the symmetry generated by the non-gradient HV H = v@v + �@� ;  H = 1: The reduction of Laplace

equation in the rest of the Petrov types is similar both in the working method and results and there is no need

to consider them explicitly.

Finally we shall consider the conformally �at space

ds2 = e2t
�
dt2 � �AByAyB

�
which admits a proper CKV which produces a Lie symmetry2 and we reduce Laplace equation using this

symmetry.

In what follows all spaces are assumed to be of dimension n > 2.
2According to theorem 6.4.2, the condition for this is that the conformal factor satis�es Laplace equation
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8.3 Reduction of the Laplace equation in certain Riemannian spaces

As we have seen in Chapter 6, the Lie symmetries of Laplace equation (8.2) in a Riemannian space are generated

from the CKVs (not necessarily proper) whose conformal factor satis�es Laplace equation. This condition is

satis�ed trivially by the KVs ( = 0); the HV ( ;i = 0) and the sp.CKVs ( ;ij = 0): Therefore these vectors

(which span a subalgebra of the conformal group) are among the Lie symmetries of Laplace equation. Concerning

the proper CKVs it is not necessary that their conformal factor satis�es the Laplace equation, therefore they

may not produce Lie symmetries for Laplace equation.

8.3.1 Riemannian spaces admitting a gradient KV

Without loss of generality we assume the gradient KV to be the @z; so that the metric has the generic form

ds2 = dz2 + hABdy
AdyB ; hAB = hAB

�
yC
�

(8.3)

where hAB A;B;C = 1; :::; n is the metric of the n� dimensional space. For the metric (8.3) Laplace equation
(8.2) takes the form

uzz + h
ABuAB � �AuB = 0: (8.4)

and admits as extra Lie symmetry the gradient KV @z:

We reduce (8.4) by using the zeroth order invariants yA ; w = u of the extra Lie symmetry @z. Taking

these invariants as new coordinates, equation (8.4) reduces to

h�w = 0 (8.5)

which is Laplace equation in the n dimensional space with metric hAB : Now we recall the result that the

conformal algebra of the n metric hAB and the 1 + n metric (8.3) are related as follows [44]:

a. The KVs of the n metric are identical with those of the n+ 1 metric

b. The 1 + n metric admits a HV if and only if the n metric admits one and if nHA is the HV of the n

metric then the HV of the 1 + n metric is given by the expression

1+nH
� = z��z +n H

A��A � = x; 1; :::; n: (8.6)

d. The 1 + n metric admits CKVs if and only if the n metric hAB admits a gradient CKV (for details see

[44]).

Therefore Type II hidden symmetries for (8.2) exist if the nmetric hAB admits more symmetries. Speci�cally,

the sp.CKVs of the hAB metric as well as the proper CKVs whose conformal function is a solution of Laplace

equation (8.62) generate Type II hidden symmetries.
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8.3.2 Riemannian spaces admitting a gradient HV.

In Riemannian spaces which admit a gradient HV, H say, there exists a coordinate system in which the metric

is written in the form [83]

ds2 = dr2 + r2hAB
�
yC
�
dyAdyB (8.7)

and the gradient HV is H = r@r: In these coordinates the Laplacian (8.2) takes the form

urr +
1

r2
hABuAB +

(n� 1)
r

ur �
1

r2
�AuA = 0 (8.8)

and admits the extra Lie symmetry (see Theorem 6.4.2) H. We reduce (8.8) using H:

The zeroth order invariants of H are yA ; w
�
yA
�
and using them it follows easily that the reduced equation

is

h�u = 0 (8.9)

that is, the Laplacian de�ned by the metric hAB .

It is easy to establish the following results concerning the conformal algebras of the metrics (8.7) and hAB .

1. The KVs of hAB are also KVs of (8.7).

2. The HV of (8.7) is independent from that of hAB .

3. The metric (8.7) admits proper CKVs if and only if the n metric hAB admits gradient CKVs. This is because

(8.7) is conformally related with the decomposable metric

ds20 = dr2 + hAB
�
yC
�
dyAdyB : (8.10)

The above imply, that Type II hidden symmetries we shall have from the HV of the metric hAB ; the sp.CKVs

and �nally from the proper CKVs of hAB whose conformal factor is a solution of Laplace equation (8.9).

8.3.3 Riemannian spaces admitting a sp.CKV

It is known [22], that if an n = m+1 dimensional (n > 2) Riemannian space admits sp.CKVs then also admits

a gradient HV and as many gradient KVs as the number of sp.CKVs. In these spaces there exists always a

coordinate system in which the metric is written in the form [83]

ds2 = �dz2 + dR2 +R2fAB
�
yC
�
dyAdyB (8.11)

where @z is the gradient KV and z@z + R@R is the gradient HV. fAB
�
yC
�
; A;B;C; :: = 1; 2; ; :::m � 1 is an

m�1 dimensional metric. For a general m�1 dimensional metric fAB the n dimensional metric (8.11) admits
the following special Conformal group

KG = @z ; H = z@z +R@R

CS =
z2 +R2

2
@z + zR@R
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where KG is a gradient KV, H is a gradient HV and CS is a sp.CKV with conformal factor  CS = z. In these

coordinates Laplace equation (8.2) takes the form

�uzz + uRR +
1

R2
hABuAB +

(m� 1)
R

uR �
1

R2
�AuA = 0: (8.12)

From Theorem 6.4.2, we have that the extra Lie symmetries of (8.12) are the vectors

X1 = KG ; X2 = H

X3 = CS + 2pzu@u

where 2p = 1�m
2 and the non zero commutators are�

X1; X2
�
= X1 ;

�
X2; X3

�
= X3

�
X1; X3

�
= X2 + 2pXu:

We consider the reduction of (8.12) with each of the extra Lie symmetries.

Reduction with the gradient KV X1.

The �rst order invariants of X1 are R; yC , w
�
R; yC

�
and by using them we reduce the Laplacian (8.12) to (8.8)

which admits the Lie symmetry X2 generated by the HV. This result is expected because
�
X1; X2

�
= X1 [100]

hence the Lie symmetry X2 is inherited. Therefore, in this reduction the Type II symmetries are generated

from the CKVs of the metric (8.7). It is possible to continue the reduction by the gradient HV H and then we

�nd the results of section 8.3.2.

Reduction with the gradient HV X2.

The reduction with a gradient HV has been studied in section 8.3.2. To apply the results of section 8.3.2 in the

present case we have to bring the metric (8.11) to the form (8.7). For this we consider the transformation

z = r sinh � ; R = r cosh �

which brings (8.11) to

ds2 = dr2 + r2
�
�d�2 + cosh2 �fAByAyB

�
(8.13)

so that the metric hAB of (8.7) is

ds2h =
�
�d�2 + cosh2 �fAByAyB

�
: (8.14)

The reduced equation of (8.12) under the Lie symmetry generated by the gradient HV is Laplace equation

in the space (8.14). For this reduction we do not have inherited symmetries and there exist Type II hidden

symmetries as stated in section 8.3.2.
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Reduction with the sp.CKV X3.

Before we reduce (8.12) with the symmetry generated by the sp CKV X3, it is best to write the metric (8.11)

in new coordinates. We introduce the new variable x via the relation

z =

r
R (xR� 1)

x
: (8.15)

In the new variables the metric (8.11) becomes

ds2 = � R

4x3 (xR� 1)dx
2 � 2xR� 1

2x2 (xR� 1)dxdR�
1

4xR (xR� 1)dR
2 +R2fAB

�
yC
�
dyAdyB (8.16)

the Laplacian (8.12):

0 =
x2

R2
uxx � 2

x

R
(2xR� 1)uxR + uRR +

1

R2
fABuAB + (8.17)

+
(m� 1)

R
uR �

x

R2
(m� 1) (2xR� 1)ux �

1

R2
�AuA

and the Lie symmetry X3

X3 =

r
R (xR� 1)

x
R@R + 2p

r
R (xR� 1)

x
u@u:

The zeroth order invariants of X3 are x; yA ; w = uR�2p: We choose x; yA to be the independent variables and

w = w
�
x; yA

�
the dependent one. By replacing in (8.17) we �nd the reduced equation

x2wxx + f
ABwAB � �AwA � 2p (2p+ 1)w = 0 (8.18)

We consider cases.

The case m � 4:
If 2p+ 1 6= 0; m � 4 then (8.18) becomes

(m�4) ��w � 2p (2p+ 1)V (x)w = 0 (8.19)

where V (x) = x
2

2�m and (m�4) �� is the Laplace operator for the metric

d�s2(m�4) =
1

V (x)

�
1

x2
dx2 + fABdy

AdyB
�
: (8.20)

Equation (8.19) is the Klein Gordon equation in a space with potential V (x) = x
2

2�m and metric (8.20).

Considering the new transformation � =
R q

1
xV dx or x = (m� 2)2�m �m�2 the metric (8.20) is written

d�s2(m�4) = d�2 + �2 �fABdy
AdyB (8.21)

where �fAB = (m� 2)�2 fAB whereas the potential V (�) = (2�m)2
�2

which is the well known Ermakov potential

[69].



8.3. REDUCTION OF THE LAPLACE EQUATION IN CERTAIN RIEMANNIAN SPACES 173

This means that the gradient HV �@� ;  � = 1, is a Lie symmetry of (8.19) which is the Lie symmetry X
2:

Therefore, if the metric �fAB admits proper CKVs which satisfy the conditions of Theorem 7.3.3, then these

vectors generate Type II hidden symmetries of (8.12).

The case m = 3:

If 2p+ 1 = 0; then m = 3 and fAB is a two dimensional metric. In this case, equation (8.18) becomes

x2wxx + f
ABwAB � �AwA = 0 (8.22)

or, by multiplying with x2

(m=3)
��w = 0 (8.23)

which is the Laplacian in the three dimensional space with metric

d�s2(m=3) =
1

x4
dx2 +

1

x2
fABdy

AdyB : (8.24)

By making the new transformation x = 1
r ; (8.23) is of the form (8.7) and admits the gradient HV r@r which

gives an inherited symmetry. We conclude that Type II hidden symmetries of (8.24) will be generated from the

proper CKVs of the metric (8.24) which satisfy the condition of Theorem 6.4.2.

The case m = 2:

For m = 2; fAB is a one dimensional metric and (8.11) is

ds2 = �dz2 + dR2 +R2d�2 (8.25)

which is a �at metric3 . In this space, Laplace equation (8.12) admits ten Lie point symmetries, as many as the

elements of the Conformal algebra of the �at 3D space. Six of these vectors are KVs, one vector is a gradient

HV and three are sp.CKVs (see example 2.7.12). We reduce the Laplace equation with the symmetry X3 and

the reduced equation is (8.18) which for fAB = ��� becomes

x2wxx + w�� +
1

4
w = 0: (8.26)

Equation (8.26) is in the form of (6.13) (see Chapter 6) with Aij = diag
�
x2; 1

�
and Bi = 0: By replacing in

the symmetry conditions (6.21)-(6.25) we �nd the Lie symmetries

X = �i@i + (a0w + b) @w

where �i are the CKVs of the two dimensional space with metric Aij . In this case, all proper CKVs of the two

dimensional space Aij generate Type II Lie symmetries. Recall that the conformal algebra of a two dimensional

space is in�nite dimensional.

3The only three dimensional space who admits sp.CKV is the �at space, because in that case we also have a gradient HV and

a gradient KV.
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8.4 Type II hidden symmetries of the 3D and the 4D wave equation

In this section we apply the general results of the previous section to speci�c spaces where the metric is known.

8.4.1 Laplacian in M4

The Laplace equation in the four dimensional Minkowski spacetime M4

ds2 = �dt2 + dx2 + dy2 + dz2 (8.27)

is the wave equation [100] in E3

utt � uxx � uyy � uzz = 0: (8.28)

The conformal algebra of the metric (8.27) is generated by 15 vectors (see example 2.7.12). From theorem

6.4.2 we have that the extra Lie point symmetries of (8.28) are the vectors

K1
G ; KA

G ; X1A
R ; XAB

R ; H ; X1
C � tu@u ; XA

C � yAu@u (8.29)

where yA = (x; y; z) :

The nonzero commutators are

�
KI
G; X

IJ
R

�
= �KJ

G ;
�
KI
G; H

�
= KI

G�
KI
G; X

I
C

�
= H �Xu ;

�
KI
G; X

J
C

�
= XIJ

R�
H;XI

C

�
= XI

C ;
�
XIJ
R ; XI

C

�
= XJ

C :

Reduction with a gradient KV

We choose to make reduction of (8.28) with the gradient KV Kz
G = @z. The reduced equation is

wtt � wxx � wyy = 0 (8.30)

which is Laplace equation in the space M3: The extra Lie symmetries of (8.30) are

K1
G ; Kx

G ; Ky
G ; X1a

R ; Xab
R ; H (8.31)

and are inherited symmetries (see also the last commutators). The Type II symmetries are the vectors

�X1
C �

1

2
tu@u ; �X

x
C �

1

2
xu@u ; �X

y
C �

1

2
yu@u (8.32)

that is the Type II hidden symmetries are generated from the sp.CKVs of M3.
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Reduction with the gradient HV

In this case it is better to switch to hyperspherical coordinates (r; �; �; �):

In these coordinates the metric (8.27) is written

ds2 = dr2 � r2
�
d�2 + cosh2 �

�
d�2 + cosh2 �d�2

��
(8.33)

and the wave equation (8.28) becomes

urr �
1

r2

�
u�� +

u��

cosh2 �
+

u��

cosh2 � cosh�2

�
+
3

r
ur � 2

tanh �

r2
u� �

tanh�

r2 cosh2 �
u� = 0: (8.34)

According to the analysis of section 8.3.2 the reduced equation is (8.9) which is the Laplacian in the three

dimensional space of the variables (�; �; �) :

w�� +
w��

cosh2 �
+

w��

cosh2 � cosh�2
+ 2

tanh �

r2
w� +

tanh�

r2 cosh2 �
w� = 0: (8.35)

This space is a space of constant curvature. The conformal algebra4 of a 3D space of constant non-vanishing

curvature consists of 6 non-gradient KVs and 4 proper CKVs5 [23]. The conformal factors of the CKVs do not

satisfy the condition h� = 0 (see Theorem 6.4.2); hence, they do not generate Lie point symmetries for the

reduced equation (8.35) whereas for the same reason the KVs are Lie symmetries of (8.35). Therefore, all point

Lie point symmetries are inherited and we do not have Type II hidden symmetries.

We note that the proper CKVs in a space of constant non-vanishing curvature are gradient and their

conformal factor satis�es the relation [23]

 ;ab = C gab ! gab ;ab = nC !h � = nC 

which implies that they are Lie symmetries of the conformally invariant operator but not of the Laplace equation

(8.35).

Reduction with a sp.CKV

Following the steps of section 8.3.3, we consider the transformation to axi-symmetric coordinates (t; R; �; �) in

which (8.28) takes the form

utt � uRR �
1

R2

�
u�� +

u��

cosh2 �

�
� 2

R
ur �

tanh �

R2
u� = 0: (8.36)

Applying the transformation (8.15) t =
q

R(�R�1)
� we �nd (note that this is the case m = 3) that (8.36) is

written as (8.17) and the reduced equation is the Laplacian (m=3)�w for the 3D metric

ds2 =
1

�4
d�2 � 1

�2
�
d�2 + cosh2 �d�2

�
: (8.37)

4All spaces of constant curvature are conformally �at, hence, they admit the same conformal algebra with the �at space but not

the same subalgebras, i.e. the same conformal factors.
5The rotations and the sp.CKVs of the �at space are KVs for the space of constant curvature, the rest are proper gradient CKVs
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The metric (8.37) under the coordinate transformation � = 1
T is written

ds2 = dT 2 � T 2
�
d�2 + cosh2 �d�2

�
(8.38)

which is the �at 3D Lorentzian metric, which does not admit proper CKVs. This implies that the Lie symmetries

of the reduced equation are generated from the KVs/HV/sp.CKVs of the �at M3 metric and all are inherited.

Therefore we do not have Type II hidden symmetries for the reduction with a sp.CKV.

As we shall show in the next section this is not the case for the reduction of Laplace equation in M3:

8.4.2 Laplacian in M3

We consider the reduction of Laplace equation in the 3d Minkowski M3 spacetime [100], i.e. the wave equation

in E2

utt � uxx � uyy = 0: (8.39)

As we have seen in section 8.4.1 the extra Lie point symmetries of (8.39) are the ten vectors (8.31) and (8.32).

Reduction with a gradient KV

We choose the vector @y and the reduction gives the reduced equation

wtt � wxx = 0 (8.40)

which is the one dimensional wave equation. The 2d space (t; x) has an in�nite number of CKVs therefore (8.40)

has in�nite Lie point symmetries [1]. From these symmetries the KVs and the HV are inherited symmetries

and the CKVs are Type II symmetries.

Reduction with the gradient HV

In order to do the reduction with the gradient HV we introduce spherical coordinates (r; �; �) and �nd that

(8.39) becomes

urr �
1

r2

�
u�� +

u��

cosh2 �

�
+
2

r
ur �

tanh �

r2
u� = 0: (8.41)

According to the results of section 8.3.2 the reduced equation is equation (8.9) which is the Laplace equation

in the 2d space of the variables (�; �)

w�� +
w��

cosh2 �
+ tanh �w� = 0: (8.42)

By making the transformation � = ln
�
tan �2

�
equation (8.42) becomes

sin (x)
2
(w�� + w��) = 0 (8.43)

which is the wave equation (8.40) with t = � ; x = �i�.
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We obtain the results, concerning the Lie symmetries of (8.43) from section 8.4.2 with the di¤erence that

the Lie symmetry due to the HV of the two dimensional metric is not inherited but it is a Type II hidden

symmetry.

The reduction of the wave equation in the 4D and in 3D Minkowski space has been done previously by

Abraham-Shrauner et. all [100] and our results coincide with theirs. For example in the 3d case equation (17)

of [100] is our equation (8.42) in other variables. However there are two di¤erences (a) in the case of the 2D

space they do not obtain that the Lie symmetries are in�nite and (b) they use algebraic computing programs to

�nd the Lie symmetry generators whereas our approach is geometric and general and does not need algebraic

computing programs to �nd the complete answer.

The reduction with a sp.CKV has been considered in section 8.3.3.

8.5 The Laplace equation in the Petrov type III and in the FRW-like

spacetime

To complete our analysis, we have to reduce the Laplace equation using a non gradient homothetic vector and a

proper (i.e. non special) CKV. In order to do this, we consider the reduction of Laplace equation in the Petrov

type III spacetime and in the FRW-like spacetime.

8.5.1 The Laplace equation in the Petrov Type III spacetime

In this section we consider the reduction of Laplace equation in spaces which do not admit gradient KVs or

a gradient HV. As it has been mentioned in section 8.2 we shall consider the algebraically special solutions of

Einstein equations, that is the Petrov type D,N,II and III. In fact we restrict our discussion to Petrov Type III

because both the method of work and the results are the same for all Petrov types.

The metric of the Petrov type III space-time is

ds2 = 2d�dv +
3

2
xd�2 +

v2

x3
�
dx2 + dy2

�
(8.44)

with conformal algebra

K1 = @� ; K
2 = @y ; K

3 = v@v � �@� + 2x@x + 2y@y

H = v@v + �@� ;  = 1

where K1�4 are KVs and H is a non-gradient HV. (The space does not admit proper CKVs).

In this space-time Laplace equation (8.2) takes the form

�3
2
xuvv + 2uv� +

x3

v2
(uxx + uyy)� 3

x

v
uv +

2

v
u� = 0: (8.45)
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From Theorem 6.4.2 we have that the extra Lie point symmetries are the vectors

X1�3 = K1�3 ; X4 = H

with nonzero commutators:

[X2;; X3] = 2X2

[X3; X1] = X1 ; [X1; X4] = X1:

We use X4 to reduce the PDE because this is the Lie symmetry generated by the nongradient HV.
The zero order invariants of X4 are � =

�
v ; x; y; w. We choose �; x; y as the independent variables and

w = w (�; x; y) as the dependent variable and we �nd the reduced equation

��
�
3

2
x� + 2

�
w�� + x

3 (wxx + wyy) = 0: (8.46)

Equation (8.46) can be written

III�
�w �

�
3x�

2
+ 1

�
w� �

3x3�

2 (3x� + 4)
wx = 0 (8.47)

where III�� is the Laplacian for the metric

ds2 = � 1

�
�
3
2x� + 2

�d�2 + 1

x3
�
dx2 + dy2

�
: (8.48)

The Lie symmetries of (8.47) will be generated from the conformal algebra of (8.48) with some extra condi-

tions (see equations (6.21)-(6.25)). Finally, we �nd that equation (8.47) admits as Lie point symmetries the

vectors @y ; x@x + y@x � �@� which are inherited symmetries. Therefore we do not have Type II hidden

symmetries.

8.5.2 The Laplace equation in the n dimensional FRW-like spacetime.

We consider the n dimensional FRW-like space (n > 2) with metric

ds2 = e2t
�
dt2 �

�
�ABdy

AdyB
��

(8.49)

where �AB is the n � 1 dimensional Euclidian metric. The reduction of Laplace equation in this space (for
n = 4) has been studied previously in [122]. The metric (8.49) is conformally �at hence admits the same CKVs

with the �at space but with di¤erent subalgebras. More precisely the space admits

a. (n� 1) + (n�2)(n�3)
2 KVs the KA

G ; X
AB
R

b. 1 gradient HV the K1
G = @t

the rest vectors being proper CKVs [45]. In this space Laplace equation (8.2) becomes

e�2t
h
utt �

�
�ABuAB

�
+ (n� 2)ut

i
= 0 (8.50)
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and the extra Lie symmetries are

KA
G ; X

AB
R ; K1

G ; X1A
R � 2pY au@u

where 2p = 2�n
2 . The algebra of the Lie point symmetries is the same with that of section 7.55. We consider

the reduction with a proper CKV.

Reduction with a proper CKV

We may take any of the vectors X1A
R (because as one can see in the Appendix there is a symmetry between the

coordinates yA). We choose the vector

X1x
R = x@t + t@x + 2pxu@u:

whose zero order invariants are

R = t2 � x2 ; yC ; w = e�2ptu:

We take the dependent variable to be the w = w
�
R; yC

�
and �nd the reduced equation

4RwRR � �abwab + 4wR � 4p2w = 0 (8.51)

where a = 1; : : : ; n� 2. We consider cases.
Case n > 3:

For n > 3 equation (8.51) is

C�w � 4p2f (R)w = 0 (8.52)

where C� is the Laplace operator for the (n� 1) dimensional metric

ds2C =
1

f (R)

�
1

4R
dR2 � �abdyadyb

�
(8.53)

and f (R) = R�
1

n�3 . The metric (8.53) is conformally �at hence we know its conformal algebra. Application of

theorem 7.3.3 gives that the Lie point symmetries of (8.52) are the vectors

Xu = u@u ; Xb = b@u

Xa
K = @ya ; X

ab
R = yb@a � ya@b:

These are inherited symmetries (this result agrees with the commutators). We conclude that for this reduction

we do not have Type II hidden symmetries.

Case n = 3:

For n = 3 the reduced equation is a two dimensional equation (that is �AB = �yy)

4RwRR � wyy + 4wR �
1

4
w = 0 (8.54)
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and admits as Lie point symmetry the KV @y which is an inherited symmetry. Hence, we do not have Type II

hidden symmetries.

We conclude that the reduction of Laplace equation in an n dimensional FRW like space with the proper

CKV does not produce Type II hidden symmetries and in fact the inherited symmetries of the reduced equation

are the KVs of the �at metric.

Reduction with the gradient HV

The gradient HV K1
G = @t is a Lie symmetry of the Laplacian (8.50) hence we consider the reduction by this

vector. The zero order invariants are yA; w and lead to the reduced equation

�ABuAB = 0 (8.55)

which is Laplace equation in the �at space En�1. We consider again cases.

Case n > 3

In this case the Lie symmetries of (8.55) are given by the vectors

KA
G ; XAB

R ; n�1H ;XA
C � yAu@u: (8.56)

From these the KA
G ; X

AB
R are inherited symmetries and the rest - which are produced by the HV and the

sp.CKVs of the space En�1 - are Type II hidden symmetries.

If n = 3; the reduced equation (8.55) is the Laplacian in E2; hence, admits in�nite Lie symmetries. Type II

hidden symmetries are generated from the HV and the CKVs of E2.

In the following sections, we study the reduction of the homogeneous heat equation (8.1) in certain Rie-

mannian spaces.

8.6 Reduction of the homogeneous heat equation in certain Rie-

mannian spaces

In a general Riemannian space with metric gij the heat conduction equation with �ux is

�u� ut = q (8.57)

where � is the Laplace operator � = 1p
g
@
@xi

�p
ggij @

@xj

�
and q = q(t; x; u). Equation (8.57) can also be written

gijuij � �iui � ut = q (8.58)

where �i = �ijkg
jk and �ijk are the Christofell Symbols of the metric gij .
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For q = 0, equation (8.58) admits the Lie point symmetries

Xt = @t ; Xu = u@u ; Xb = b (t; x) @u (8.59)

where b (t; x) is a solution of the heat equation. These symmetries are too general to provide sound reductions

and consequently reduced PDEs which can give Type II hidden symmetries. However, in Chapter 6 it has been

shown that there is a close relation between the Lie point symmetries of the heat equation and the collineations

of the metric. Speci�cally it has been shown that the Lie point symmetries of the heat equation are generated

from the HV and the KVs of gij : This implies that if we want to have new Lie point symmetries which will

allow for sound reductions of the heat equation eqn (8.58) we have to restrict our considerations to spaces which

admit a homothetic algebra. Our intention is to keep the discussion as general as possible therefore we consider

spaces in which the metric gij can be written in generic form. The spaces we shall consider are:

a. Spaces which admit a gradient KV (8.3).

b. Spaces which admit a gradient HV (8.7).

c. Space which admits a nongradient HV acting simply transitive, i.e. Petrov Type III (8.44).

In what follows all spaces are of dimension n � 2. The case n = 1 although relatively trivial for our approach
in general it is not so and has been studied for example in [123, 124].

8.6.1 The heat equation in a space which admits a gradient KV

In the 1 + n decomposable space with line element (8.3) the heat equation (8.1) takes the form

uzz + h
ABuAB � �AuB � ut = 0: (8.60)

Application of Theorem 6.5.2 gives that (8.60) admits the following extra Lie point symmetries generated by

the gradient KV @x :

X1 = @z ; X2 = t@z �
1

2
zu@u

with nonvanishing commutators

[Xt; X2] = X1 ; [X2; X1] =
1

2
Xu: (8.61)

We reduce (8.60) using the zero order invariants of the extra Lie point symmetries X1; X2.

Reduction by X1

The zero order invariants of X1 are

� = t ; yA ; w = u:

Taking these invariants as new coordinates eqn (8.60) reduces to

h�w � wt = 0 (8.62)
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where h� is the Laplace operator in the n�dimensional space with metric hAB :

h�w = hABwAB � �AwB : (8.63)

Equation (8.62) is the homogeneous heat eqn (8.1) in the n dimensional space with metric hAB . According

to the Theorem 6.5.2 (see Chapter 6), the Lie symmetries of this equation are the homothetic algebra of hAB .

As it has been already mentioned the homothetic algebras of the n and the 1 + n metrics are related as follows

[44]:

a. The KVs of the n� metric are identical with those of the 1 + n metric.
b. The 1 + n metric admits a HV if the n metric admits one and if nHA is the HV of the n - metric then

the HV of the 1 + n metric is given by the expression

1+nH
� = x��z +n H

A��A � = z; 1; :::; n: (8.64)

The above imply that equation (8.62) inherits all symmetries which are generated from the KVs/HV of the

n�metric hAB : Hence we do not have Type II symmetries in this reduction.

Reduction by X2

The zero order invariants of X2 are

� = t ; yA ; w = ue
z2

4t :

Taking these invariants as new coordinates eqn (8.60) reduces to

hABwAB � �AwB � w� �
1

2�
w = 0 (8.65)

or

h�w � w� =
1

2�
w:

This is the nonhomogeneous heat equation with �ux q
�
� ; yA; w

�
= 1

2�w. Application of Theorem 6.5.1 gives

the following result6 .

Proposition 8.6.1 The Lie point symmetries of the heat equation (8.65) in an n�dimensional Riemannian
space with metric hAB are constructed form the homothetic algebra of the metric as follows:

a. Y i is a HV/KV.

The Lie symmetry is

X = (2c2 � + c1) @� + c2Y
i@i +

h�
� c1
2�
+ a0

�
w + b (� ; x)

i
@w (8.66)

6For details see Appendix 8.A.
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b. Y i = S;iJ is a gradient HV/KV (the index J counts gradient KVs).

The Lie symmetry is

X =
�
 T0�

2
�
@� + T0�S

;i
J @i �

�
1

2
T0SJ + T0 �

�
w@w (8.67)

where b (� ; x) is a solution of the heat equation (8.65).

We infer that for this reduction we have the Type II hidden symmetry @� � 1
2tw@w: The rest of the Lie

point symmetries are inherited.

8.6.2 The heat equation in a space which admits a gradient homothetic vector

For the spacetime with line element

ds2 = dr2 + r2hABdy
AdyB

the homogeneous heat equation becomes

urr +
1

r2
hABuAB +

(n� 1)
r

ur �
1

r2
�AuA � ut = 0 (8.68)

where �A = �ABCh
BC and �ABC are the connection coe¢ cients of the Riemannian metric hAB (A;B;C =

1; 2; :::; n): Application of Theorem 6.5.2 gives that the heat equation (8.68) admits the following extra Lie point

symmetries generated by the gradient homothetic vector

�X1 = 2t@t + r@r ; �X2 = t2@t + tr@r �
�
1

4
r2 +

n

2
t

�
u@u (8.69)

with nonzero commutators �
Xt; �X1

�
= 2Xt ;

�
�X1; �X2

�
= 2Xt�

Xt; �X2

�
= �X1 �

n

2
Xu:

We consider again the reduction of (8.68) using the zero order invariants of these extra Lie point symmetries.

Reduction by �X1

The zero order invariants of �X1 are

� =
rp
t
; w = u; yA:

We choose w = w
�
�; yA

�
as the dependent variable.

Replacing in (8.68) we �nd the reduced PDE

w�� +
1

�2
hABwAB +

(n� 1)
�

w� +
�

2
w� �

1

�2
�AwA = 0: (8.70)

Consider a nonvanishing function N2 (�) and divide (8.70) with N2 (�) to get:

1

N2
w�� +

1

�2N2
hABwAB +

(n� 1)
�N2

w� +
�

2N2
w� �

1

�2N2
�AwA = 0 (8.71)
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It follows that (for n > 2) equation (8.71) can be written as

�g�w = 0 (8.72)

where �g� is the Laplace operator if N2 (�) = exp
�

�2

2(n�2)

�
and �gij is the conformally related metric

d�s2 = exp

�
�2

2 (n� 2)

��
d�2 + �2hABdy

AdyB
�
: (8.73)

According to Theorem 6.4.2 the Lie point symmetries of (8.72) are the CKVs of the metric (8.73) whose

conformal factor satis�es the condition �g� = 0: Therefore, Type II hidden symmetries will be generated from

the proper CKVs. The existence and the number of these vectors depends mainly on the n metric hAB :

Reduction by �X2

For �X2 the zero order invariants are

� =
r

t
; w = ut

n
2 e

r2

4t ; yA:

We choose w = w
�
�; yA

�
as the dependent variable and we have the reduced equation

g�w = 0 (8.74)

where

g�w = w�� +
(n� 1)
�

w� +
1

�2
hABwAB �

1

�2
�AwA: (8.75)

Equation (8.74) is the Laplace equation in the space
�
�; yA

�
with metric

ds2 = d�2 + �2hABdy
AdyB : (8.76)

The Lie point symmetries of Laplace equation (8.74) are given in Theorem 6.4.2. As in the last case the

existence and the number of these vectors depends mainly on the n metric hAB :

We note that both vectors �X1; �X2 are generated form the gradient HV and in both cases the heat equation

is reduced to Laplace equation. This gives the following

Proposition 8.6.2 The reduction of the heat equation (8.1) in a space with metric (8.7) (n > 2) by means of

the Lie symmetries generated by the gradient HV leads to Laplace equation �u = 0, where � is the Laplace

operator for the metric (8.73) if the reduction is done by �X1 and for the metric (8.76) if the reduction is done

by �X2.

8.7 Applications of the reduction of the homogeneous heat equation

In this section, we consider applications of the general results of section 8.6 in various spacetimes.
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8.7.1 The heat equation in a 1 + n decomposable space

Consider the 1 + n decomposable space

ds2 = dx2 +N�2 �yC� �AByAyB (8.77)

where N
�
yC
�
=
�
1 + K

4 y
CyC

�
; that is, the n space is a space of constant non vanishing (K 6= 0) curvature.

The space (8.77) does not admit proper HV, however, admits n(n�1)2 + n nongradient KVs and 1 gradient KV

as follows [44]

1 gradient KV: @x

n nongradient KVs : KV =
1

N

�
(2N � 1) �iI +

K

2
NxIx

i

�
@i

n (n� 1)
2

nongradient KVs : XIJ = �j[I�
i
J]@i

In a space with metric (8.77), the homogeneous heat equation takes the form

uxx +N
2
�
yC
�
�ABuAB �

N

2
KyAuA � ut = 0 (8.78)

Applying Theorem 6.5.2 we �nd that equation (8.78) admits the extra Lie point symmetries

@x ; t@x �
1

2
xu@x ;KV ; XIJ : (8.79)

The Lie point symmetries which are generated by the gradient KV are7 @x ; t@x � 1
2xu@x.

Reduction of (8.78) by means of the gradient KV @x results in the special form of equation (8.62)

1

N2 (yC)
�ABuAB �

N

2
KyAuA � ut = 0: (8.80)

This is the homogeneous heat equation in an n- dimensional space of constant curvature. The Lie point

symmetries of this equation have been determined in section 6.5.1 and are inherited symmetries. Hence, in this

case, we do not have Type II hidden symmetries.

Reduction of (8.78) with the Lie symmetry t@x � 1
2xu@x gives that the reduced equation (8.65) is

N2
�
yC
�
�ABwAB �

N

2
KyAwA � w� =

1

2�
w ; w = ue

x2

4t (8.81)

which is the heat equation with �ux. By Proposition 8.6.1, the Lie point symmetries of (8.81) are:

X = c1@� + (KV +XIJ) +
h�
� c1
2�
+ a0

�
w + b

�
� ; yC

�i
@w (8.82)

where c1; a0 are constants. From section 8.6.1 we have that Type II hidden symmetry is the one de�ned by the

constant c1.
7Here the algebra is the one given in section 8.6.1 and a separate algebra is the algebra of the KVs of the space of constant

curvature. More speci�cally the KVs KV ; XIJ commute with all other symmetries but not between themselves
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8.7.2 FRW space-time with a gradient HV

Consider the spatially �at FRW metric

ds2 = d�2 � �2
�
dx2 + dy2 + dz2

�
(8.83)

This metric admits the gradient HV [45]

H = �@� ( H = 1)

and six nongradient KVs

X1�3 = @yA ; X4�6 = yB@A � yA@B :

where yA = (x; y; z) :

In this space the heat equation takes the form

u�� �
1

�2
(uxx + uyy + uzz) +

3

�
u� � ut = 0: (8.84)

The Lie point symmetries of (8.84) are

@t ; u@u ; b
�
� ; yA

�
@u ; X1�3 ; X4�6 ;

H1 = 2t@t + �@� ; H2 = t2@t + t�@� �
�
1

4
�2 + 2t

�
u@u :

The Lie point symmetries H1;H2 are produced by the gradient HV therefore we use them to reduce (8.84).

We note that this case is a special case of the one we considered in section 8.6.2 for hAB = �AB .

Reduction by H1 gives that (8.84) becomes:

w�� �
1

�2
(wxx + wyy + wzz) +

�
3

�
+
�

2

�
w� = 0 (8.85)

where � = rp
�
; w = u: This is a special form of (8.70).

Dividing with N2 (�) = exp
�
�2

4

�
we �nd that (8.85) is written as

�g�w = 0 (8.86)

where the metric �gij is the conformally related metric of (8.83):

d�s2 = e
�2

4

�
d�2 � �2

�
dx2 + dy2 + dz2

��
(8.87)

We have that the Lie symmetries of (8.86) are generated from elements of the conformal algebra of the space

whose conformal factors satisfy condition �g� = 0: The metric (8.86) is conformally �at therefore its conformal

group is the same with that of the �at space [44, 45], however with di¤erent subgroups. We �nd that these

vectors (i.e. the Lie symmetries) are the vectors

X1�3 ; X4�6 ; @t; w@w ; b0
�
�; yA

�
@w: (8.88)
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We conclude that there are no Type II symmetries for this reduction.

Using reduction by H2 we �nd that (8.84) reduces to :

w�� �
1

�2
(wxx + wyy + wzz) +

3

�
w� = 0 (8.89)

where � = �
� ; w = ut2e

�2

4t : This is a special form of (8.74) which is the Laplace equation. In this case the

results of [90] apply and we infer that the Lie point symmetries of (8.89) are:

X1�3 ; X4�6 ; w@w ; b1
�
�; yA

�
@w

X7 = �@� ; X8�10 = �yA@� + ln�@A � yAw@w: (8.90)

The vector X7 is the proper HV of the metric and the vectors X8�10 the proper CKVs which are not special

CKVs, therefore these vectors are Type II hidden symmetries. A further analysis of (8.89) can be found in

[122].

8.8 The Heat equation in Petrov type III spacetime

In this section we consider the special class of Petrov type III spacetime which admits a nongradient HV which

acts simply transitively.

The metric of the Petrov type III space-time is

ds2 = 2d�dv +
3

2
xd�2 +

v2

x3
�
dx2 + dy2

�
(8.91)

with Homothetic algebra

K1 = @� ; K
2 = @y ; K

3 = v@v � �@� + 2x@x + 2y@y

H = v@v + �@� ( H = 1)

where K1�4 are KVs and H is a nongradient HV.

In this space-time equation (8.1) takes the form:

�3
2
xuvv + 2uv� +

x3

v2
(uxx + uyy)� 3

x

v
uv +

2

v
u� � ut = 0: (8.92)

From Theorem 6.5.2 we have that the extra Lie point symmetries are the vectors

X1�3 = K1�3 ; X4 = 2t@t +H

with nonzero commutators:

[Xt; X4] = 2Xt ; [X2;; X3] = 2X2

[X3; X1] = X1 ; [X1; X4] = X1 :
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We use X4 for reduction because this is the Lie point symmetry generated by the HV.

The zero order invariants of X4 are

� =
vp
t
; � =

�p
t
;  = x ; � = y ; w = u:

We choose w = w (�; �; ; �) as the dependent variable and we �nd that the reduced PDE is

III�w +
�

2
w� +

�

2
w� = 0 (8.93)

where III� is the Laplace operator for metric (8.91).

It is clear that the second order PDE (8.93) admits only the Lie symmetries X2; X3: Therefore, we do not

have Type II hidden symmetries and the symmetries X1; X4 are Type I hidden symmetries.

8.9 Conclusion

Up to now in the literature the study of Type II hidden symmetries has been done by counter examples or

by considering very special PDEs and in low dimensional �at spaces. In this chapter we have improved this

scenario and have studied the problem of Type II hidden symmetries of second order PDEs from a geometric

of view in n dimensional Riemannian spaces. We have considered the reduction of the Laplace and of the

homogeneous heat equation and the consequent possibility of existence of Type II hidden symmetries in some

general classes of spaces which admit some kind of symmetry; hence, they admit nontrivial Lie symmetries .

For the Laplace equation, the conclusion of this study is that the Type II hidden symmetries are directly

related to the transition of the CKVs from the space where the original equation is de�ned to the space where

the reduced equation resides. In this sense, we related the Lie point symmetries of PDEs with the basic

collineations of the metric i.e. the CKVs. Concerning the general results of the reduction of Laplace equation

we can summarize them as follows:

� If we reduce the Laplace equation with a gradient KV the reduced equation is a Laplace equation in the
non-decomposable space. In this case, the Type II hidden symmetries are generated from the special and

the proper CKVs of the non-decomposable space.

� If we reduce the Laplace equation with a gradient HV the reduced equation is a Laplace equation for

an appropriate metric. In this case, the Type II hidden symmetries are generated from the HV and the

special/proper CKVs.

� If we reduce the Laplace equation with the symmetry generated by a sp.CKV, the reduced equation is the
Klein Gordon equation for an appropriate metric that inherits the Lie point symmetry generated by the

gradient HV. In this case, the Type II hidden symmetries are generated from the proper CKVs.
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We also considered the reduction of Laplace equation in some spaces of interest in which the metric does not

admit the symmetries of the previous cases. In this context, we showed that the reduction with the non-gradient

HV in the Petrov type III does not give any Type II hidden symmetries. Also, it is of interest the reduction of

Laplace equation (i.e. the wave equation) in Minkowski spacesM4 andM3 where we recover the results of [100]

in a straightforward manner without the need of computer software. Finally we considered an n�dimensional
�at FRW like space and showed that the reduction with the proper CKV does not produce Type II hidden

symmetries.

Moreover, we applied the zero order invariants of the Lie symmetries in order to reduce the number of

independent variables of the homogeneous heat equation in certain general classes of Riemannian spaces, which

admit some type of basic symmetry. For each reduction, we determined the origin of Type II hidden symmetries.

The spaces we considered are the spaces which admit a gradient KV, a gradient HV and �nally spacetimes which

admits a HV which acts simply and transitively. For the reduction of the homogeneous heat equation and the

existence of Type II hidden symmetries, we found the following general geometric results:

� If we reduce the homogeneous heat equation via the symmetries which are generated by a gradient KV
�
S;i
�

the reduced equation is a heat equation in the nondecomposable space. In this case we have the Type II

hidden symmetry @t � 1
2tw@w provided we reduce the heat equation with the symmetry tS

;i � 1
2Su@u.

� If we reduce the homogeneous heat equation via the symmetries which are generated by a gradient HV
the reduced equation is Laplace equation for an appropriate metric. In this case the Type II hidden

symmetries are generated from the proper CKVs.

� In Petrov type III spacetime, the reduction of the homogeneous heat equation via the symmetry generated
from the nongradient HV gives a PDE which inherits the Lie point symmetries, hence no Type II hidden

symmetries are admitted.

The above results can be used in many important space-times and help facilitate the solution of the heat

equation in these space-times.
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8.A Proof of Corollary

Proof of Corollary 8.6.1. Using Theorem 6.5.1 and replacing q we have

For case a)

�a�w +H (b)�
1

2�
(aw + b) +

a

2�
w �

�
 c2w +

1

2�
wc1

�
�

= 0: (8.94)

�a�w +H (b)�
1

2�
b+

1

2�2
wc1 = 0 (8.95)h

�a� +
c1
2�2

i
w +

�
H (b)� 1

2�
b

�
= 0 (8.96)

that is

a = � c1
2�
+ a0 ; H (b)� 1

2�
b = 0 (8.97)

For case b)

0 =

�
�1
2
T;� +

1

2
T;��S � F;�

�
w �

�
2 q

Z
Td�

�
�

� Tq;iS;i:

then

0 =

�
�1
2
T;� +

1

2
T;��S � F;�

�
w +

 

�2

Z
Td� w �  

�
Tw (8.98)

from here we have

T;�� = 0! T = T0� + T1 (8.99)

and

F = �T0 �:

8.B The homogeneous heat equation in the Petrov spacetimes

In the following subsections, we study the reduction of the homogeneous heat equation in the Petrov spacetimes

of type N,D and II.

8.B.1 Petrov type N

The metric of the Petrov type N space-time is

ds2 = dx2 + x2dy2 + 2d�dv + lnx2d�2 (8.100)

and has the homothetic algebra [120]

K1 = @� ; K
2 = @v ; K

3 = @y

H = x@x + �@� + (v � 2�) @v ( H = 1)
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where K1�3 are KVs and H is a nongradient HV.

The heat equation (8.1) in this space-time is

uxx +
1

x2
uyy + 2u�v � 2 lnx2 uvv +

1

x
ux � ut = 0: (8.101)

Application of Theorem 6.5.2 gives that the extra Lie point symmetries of (8.101) are

X1�3 = K1�3 ; X4 = 2t@t +H

with nonzero commutators

[Xt; X4] = 2Xt

[X1; X4] = X1 � 2X2 ; [X2; X4] = X2:

We use X4 to reduce the PDE because this is the Lie symmetry generated by the HV. The zero order

invariants of X4 are

� =
xp
t
; � =

�p
t
;  =

v + � ln (t)p
t

; � = y ; w = u: (8.102)

Choosing �; �; ; � as the independent variables and w = w (�; �; ; �) as the dependent variable we �nd that

the reduced PDE is

N�w +

�
1

2
�w� +

1

2
�w� +

�
1

2
 � �

�
w

�
= 0: (8.103)

where N� is the Laplace operator for the metric (8.100).

Equation (8.103) is of the form (6.14) with

Aij = gij
�
xk
�
; Bi

�
xk
�
= �i +

1

2
��i� +

1

2
��i� +

�
1

2
 � �

�
�i ; f

�
xk; u

�
= 0

where gij is the metric (8.100). Replacing in equations (6.21)-(6.25) we obtain the Lie symmetry conditions for

(8.103). Because Aij;u = 0 it follows from equation (6.23) that the Lie point symmetries are generated from

the CKVs of the metric (8.100). However taking into consideration the rest of the symmetry conditions we �nd

that the only Lie symmetry which remains is the one of the KV X3: We conclude that in this reduction we do

not have Type II hidden symmetries.

8.B.2 Petrov type D

The metric of the Petrov type D space-time is

ds2 = �dx2 + x� 2
3 dy2 � x 4

3

�
d�2 + dz2

�
(8.104)

with Homothetic algebra

K1 = @� ; K
2 = @z ; K

3 = @y ; K
4 = z@� � �@z

H = x@x +
4

3
y@y +

z

3
@z +

�

3
@� ( H = 1)
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where K1�4 are KVs and H is a nongradient HV.

In this space-time the heat equation (8.1) takes the form:

�uxx + x
2
3uyy � x�

4
3 (u�� + uzz)�

1

x
ux � ut = 0: (8.105)

From Theorem 6.5.2 we have that the extra Lie point symmetries are the vectors

X1�4 = K1�4 ; X5 = 2t@t +H:

with nonzero commutators:

[Xt; X5] = 2Xt

[X1; X5] =
1

3
X1 ; [X4; X1] = �X2

[X2; X4] = X1 ; [X2; X5] =
1

3
X2

[X3; X5] =
4

3
X3:

We use X5 to reduce the PDE because this is the Lie symmetry generated by the HV. The zero order

invariants of X5 are

� =
x

t
1
2

; � =
y

t
2
3

;  =
�

t
1
6

; � =
z

t
1
6

; w = u:

We choose �; �; ; � as the independent variables and w = w (�; �; ; �) as the dependent variable and we �nd

that the reduced PDE is

D�w +

�
1

2
aw� +

2

3
�w� +

1

6
w +

1

6
�w�

�
= 0 (8.106)

where D� is the Laplace operator with metric (8.104).

Working again with the Lie symmetry conditions (6.21)-(6.25) we �nd that equation (8.106) admits as Lie

point symmetry the vector X4 only which is an inherited symmetry. Hence we do not have Type II hidden

symmetries. Obviously the Lie point symmetries X1�4 are Type I hidden symmetries for equation (8.106) for

the reduction by X5:

8.B.3 Petrov type II

The metric of the Petrov type II space-time is

ds2 = ��
1
2

�
d�2 + dz2

�
� 2�dxdy + � ln � dy2 (8.107)

with homothetic algebra

K1 = @x ; K
2 = @y ; K

3 = @z

H =
1

3
(x+ 2y) @x +

1

3
y@y +

4

3
z@z +

4

3
�@� ( H = 1)
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where K1�4 are KVs and H is a nongradient HV.

In this space-time equation (8.1) takes the form:

�
1
2 (u�� + uzz)�

1

�
" ln �uxx �

2

�
uxy + �

� 1
2u� � ut = 0: (8.108)

From Theorem 6.5.2 we have that the extra Lie point symmetries are the vectors

X1�3 = K1�3 ; X4 = 2t@t +H

with nonzero commutators:

[Xt; X4] = 2Xt

[X1; X4] =
1

3
X1 ; [X3; X4] =

4

3
X3

[X2; X4] =
2

3
X1 +

1

3
X2:

We use X4 to reduce the PDE because this is the Lie symmetry generated by the HV. The zero order invariants

of X4 are

� =
�

t
2
3

; � =
z

t
2
3

;  =
x� 1

3y ln (t)

t
1
6

; � =
y

t
1
6

; w = u

We choose �; �; ; � as the independent variables and w = w (�; �; ; �) as the dependent variable and we �nd

that the reduced PDE is

II�w +
2

3
aw� +

2

3
�w� +

�
1

3
� � 1

6


�
w +

1

6
�w� = 0 (8.109)

where II� is the Laplace operator for metric (8.107).

From the Lie symmetry conditions (6.21)-(6.25) it follows that (8.109) does not admit any Lie point sym-

metries. Hence, we do not have Type II hidden symmetries in this case.
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Part IV

Noether symmetries and theories of

gravity

195





Chapter 9

Noether symmetries in Scalar �eld

Cosmology

9.1 Introduction

The detailed analysis of the cosmological data indicate that the Universe is spatially �at and has su¤ered two

acceleration phases. An early acceleration phase (in�ation), which occurred prior to the radiation-dominated

era, and a recently initiated accelerated expansion [125, 126, 127, 128, 129, 130, 131]. The source for the late

time cosmic acceleration has been attributed to an unidenti�ed type of matter, the dark energy. Dark energy

contrary to the ordinary baryonic matter has a negative pressure, i.e. a negative equation of state parameter,

which counteracts the gravitational force and leads to the observed accelerated expansion.

The simplest dark energy probe is the cosmological constant leading to the �CDM cosmology [132, 133, 134].

However, it has been shown that �CDM cosmology su¤ers from two major drawbacks known as the �ne tuning

problem and the coincidence problem [135]. Besides �CDM cosmology, many other candidates have been

proposed in the literature. Most are based either on the existence of new �elds (i.e. a scalar �eld) or in some

modi�cation of the Einstein Hilbert action (see [136]).

In addition to dark energy and the ordinary baryonic matter, it is believed that the Universe contains a

third type of matter, the dark matter. This type of matter is assumed to be pressureless (non-relativistic)

and interacts very weakly with the standard baryonic matter. Therefore, its presence is mainly inferred from

gravitational e¤ects on visible matter.

In the following, we consider scalar �eld cosmology (minimally coupled scalar �eld and non minimally coupled

scalar �eld) and we propose a geometric principle (�selection rule�) for specifying the potential V (�) and the

coupling function F (�) of the scalar �eld in order to solve analytically the system of the resulting �eld equations.

We propose that the scalar �eld model should be selected by the geometric requirement that the dynamical
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system of the �eld equations admits Noether point symmetries. The main reason for the consideration of this

hypothesis is that the Noether symmetries provide �rst integrals, which assist the integrability of the system.

Furthermore, as we saw in chapter 4 the Noether symmetries are generated from the elements of the homothetic

algebra of the kinetic metric of the Lagrangian of the theory. Therefore, with this assumption we let the theory

to select the potential, i.e. the dark energy model.

The idea to use Noether symmetries in cosmology, either on scalar �eld models and on modi�ed theories of

gravity is not new and indeed a lot of attention has been paid in the literature [137, 138, 107, 139, 140, 141, 142,

105, 86, 109, 102, 143, 144, 145, 146, 147, 148, 149]. However our approach is geometric and more fundamental.

The structure of the present chapter is as follows. In sections 9.2 and 9.3 we discuss the conformal equivalence

of Lagrangians for scalar �elds in a Riemannian space of dimension 4 and n respectively. In particular we

enunciate a theorem which proves that the �eld equations for a non-minimally coupled scalar �eld are the

same at the conformal level with the �eld equations of the minimally coupled scalar �eld. The necessity to

preserve Einstein�s equations in the context of Friedmann�Robertson�Walker (FRW) space-time leads us to

apply, in section 9.4, the current general analysis to the scalar �eld (quintessence or phantom) spatially �at

FRWcosmologies.

In section 9.5 we apply the Noether symmetry approach in non minimally coupled scalar �eld in a spatially

�at FRW spacetime and by using the Noether invariants we determine analytical solutions for the �eld equations.

Furthermore in sections 9.6 and 9.7 we apply the same procedure for a minimally coupled scalar �eld in a spatially

�at FRW spacetime and in Bianchi Class A homogeneous spacetimes.

9.2 Conformally equivalent Lagrangians and scalar �eld Cosmology

In this section we discuss the conformal equivalence of Lagrangians for scalar �elds in a general V 4 Riemannian

space. The �eld equations in the scalar �eld cosmology are derived from two di¤erent variational principles. In

the �rst case the scalar �eld � and the gravitational �eld are minimally coupled and the equations of motion

follow form the action

SM =

Z
d�dx3

p
�g
�
R+

1

2
gij�

;i�;j � V (�)
�
: (9.1)

In the second case the scalar �eld  (which is di¤erent from the minimally coupled scalar �eld �) interacts with

the gravitational �eld (non minimal coupling) and the �eld equations follow from the action

SNM =

Z
d�dx3

p
�g
�
F ( )R+

1

2
�gij 

;i ;j � �V ( )

�
(9.2)

where F ( ) is the coupling function between the gravitational and the scalar �eld  . Below we state the

following proposition.
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Proposition 9.2.1 The �eld equations for a non minimally coupled scalar �eld  with Lagrangian �L
�
� ; xk; _xk

�
and coupling function F ( ) in the gravitational �eld �gij are the same with the �eld equations of the minimally

coupled scalar �eld 	 for a conformal Lagrangian L
�
� ; xk; _xk

�
in the conformal metric gij = N�2�gij ; where

the conformal function N = 1p
�2F ( )

with F ( ) < 0: The inverse is also true, that is, to a minimally coupled

scalar �eld it can be associated a unique non minimally coupled scalar �eld in a conformal metric and with a

di¤erent potential function.

Proof. The action for the non minimally coupled Lagrangian �L
�
� ; xk; x0k

�
is:

SNM =

Z
d�dx3

p
��g
h
F ( ) �R+

"

2
�gij ;i ;j � �V ( )

i
(9.3)

where " = 1 for a real �eld and " = �1 for phantom �eld. Let gij be the conformally related metric (this is

not a coordinate transformation!):

gij = N�2�gij :

Then the action (9.3) becomes1 :

SNM =

Z
d�dx3N4p�g

h
F ( ) �R+

"

2
N�2gij ;i ;j � �V ( )

i
:

Replacing [150]
�R = N�2R� 2(n� 1)N�3�2N

where �2N = gijN
;ij we �nd:

SNM =

Z
d�dx3N4p�g

h
F ( )

�
N�2R� 6N�3�2N

�
+
"

2
N�2�1 � �V ( )

i
=

Z
d�dx3N4p�g

h
F ( )N�2R� 6F ( )N�3�2N +

"

2
N�2�1 � �V ( )

i
=

Z
d�dx3

p
�g
h
F ( )N2R� 6F ( )N�2N +

"

2
N2�1 �N4 �V ( )

i
:

De�ne the conformal function in terms of the coupling function F ( ) by the requirement (F ( ) < 0):

N =
1p

�2F ( )
: (9.5)

We compute

N;i =
F  ;i

(�2F )
3
2

: (9.6)

1We use the result tha if A = (aij) is a 4x4 matrix the

detA = "ijklaijakl

hence

�g = "ijkl�gij�gkl = N4g: (9.4)
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Then the �rst term in the integral becomes:Z
d�dx3

p
�gF ( )N2R =

Z
d�dx3

p
�g
�
�R
2

�
:

The second term gives after integration by parts:Z
d�dx3

p
�g (�6F ( )N�2N) =

Z
d�dx3

p
�g
�
�6 Fp

�2F
N;ijg

ij

�
=

Z
d�dx3

p
�g
�
�6 Fp

�2F
1p�g

�p
�ggijN;k

�
;j

�
=

Z
d�dx3

�
�6 Fp

�2F
�p
�ggijN;k

�
;j

�
=

Z
d�dx3

p
�g
�
3

F p
�2F

 ;jN;ig
ij

�
:

Replacing N;i from (9.6) we �nd:Z
d�dx3

p
�g (�6F ( )N�2N) =

Z
d�dx3

p
�g
 
3

F 2 

(�2F )2
 ;i ;jg

ij

!
:

The third term gives:
"

2
N2�1 =

"

4F
 ;i ;jg

ij

Collecting all the results we �nd:

SMN =

Z
d�dx3

p
�g
"
�R
2
+ 3

F 2 

(�2F )2
 ;i ;jg

ij � "

4F
 ;i ;jg

ij �
�V ( )

4F 2

#

=

Z
d�dx3

p
�g
"
�R
2
+ 3

F 2 
4F 2

 ;i ;jg
ij � "

4F
 ;i ;jg

ij �
�V ( )

4F 2

#
or

SMN =

Z
d�dx3

p
�g
"
�R
2
+
"

2

 
3"F 2 � F
2F 2

!
 ;i ;jg

ij �
�V ( )

4F 2

#
: (9.7)

We introduce the scalar �eld 	 with the requirement:

d	 =

vuut 3"F 2 � F
2F 2

!
d (9.8)

and the action becomes

SMN =

Z
d�dx3

p
�g
"
�R
2
+
"

2
	;i	;jg

ij �
�V (	)

4F (	)
2

#
: (9.9)

We conclude that the scalar �eld 	 is minimally coupled to the gravitational �eld. Therefore we have proved

that to every non minimally coupled scalar �eld we may associate a unique minimally coupled scalar �eld in

a conformally related space and an appropriate potential. Since all considerations are reversible, the result is

reversible.

In the following section we extend the above proposition to a general V n Riemannian space.
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9.3 Generalization to dimension n

Consider the non minimally coupled scalar �eld  whose �eld equations are obtained from the action:

SNM =

Z
dxnNnp�g

h
F ( ) �R+

"

2
N�2gij ;i ;j � �V ( )

i

=

Z
dxn

p
�g

2664 F ( )Nn�2R� 2(n� 1)F ( )Nn�3�2N+

�F ( )Nn(n� 1)(n� 4)�1N + "
2N

n�2gij ;i ;j �Nn �V ( )

3775
where we have substituted [150]

�R = N�2R� 2(n� 1)N�3�2N � (n� 1)(n� 4)�1N

and

�1N = gijN
;iN ;j

�2N = gijN
;ij :

De�ne the function N(xi) in terms of the coupling function F ( ) by the requirement:

Nn�2 =
1

�2F : ; F = �
N2�n

2
:

For each term of the action SNM we have the following:

The �rst term gives: Z
dxn

p
�g
�
F ( )Nn�2R

�
=

Z
dxn

p
�g
�
�R
2

�
:

The second term gives:Z
dxn

p
�g
�
�2(n� 1)F ( )Nn�3N;ijg

ij
�
=

Z
dxn

p
�g
�
(n� 1)N2�nNn�3N;ijg

ij
�

=

Z
dxn

p
�g
�
(n� 1)N�1 1p�g

�p
�ggijN;k

�
;j

�
=

Z
dxn

p
�g
�
(n� 1)N�1N;ijg

ij
�

=

Z
dxn

p
�g
�
�(n� 1)

�
N�1�

;j
N;ig

ij
�
:

Furthermore we compute

N =
1

(�2F )
1

n�2
! N�1 = (�2F )

1
n�2

N;iN
�1
;j = �

F 2 

(n� 2)2 F 2
 ;i ;j :
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Replacing we �nd for the second term:Z
dxn

p
�g
�
�2(n� 1)F ( )Nn�3N;ijg

ij
�
=

Z
dxn

p
�g
 
(n� 1)
(n� 2)2

F 2 
F 2

 ;i ;jg
ij

!
:

(note that this is the same with the previous expression for n = 4).

The third term gives:Z
dxn

p
�g (F ( )Nn(n� 1)(n� 4)�1N) =

Z
dxn

p
�g
�
�N

2�n

2
Nn(n� 1)(n� 4)�1N

�
=

Z
dxn

p
�g
�
�1
2
N2(n� 1)(n� 4)�1N

�
=

Z
dxn

p
�g
 
�1
2

(n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
 ;i ;jg

ij

!
:

Finally the the fourth term gives:Z
dxn

p
�g
�"
2
Nn�2gij ;i ;j

�
=

Z
dxn

p
�g
�
�"
4

1

F
gij ;i ;j

�
:

Collecting the results for the last three terms we �ndZ
dxn

p
�g
 
(n� 1)
(n� 2)2

F 2 
F 2

 ;i ;jg
ij � 1

2

(n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
 ;i ;jg

ij � " 1
4F

gij ;i ;j

!

=

Z
dxn

p
�g
 
(n� 1)
(n� 2)2

F 2 
F 2

� 1
2

(n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
� " 1

4F

!
 ;i ;jg

ij

=

Z
dxn

p
�g "
2

 
2"(n� 1)
(n� 2)2

F 2 
F 2

� " (n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
� 1

2F

!
 ;i ;jg

ij :

We de�ne the new scalar �eld 	 with the requirement

d	 =

 
2"(n� 1)
(n� 2)2

F 2 
F 2

� " (n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
� 1

2F

! 1
2

d :

In terms of 	 the action becomesZ
dxn

p
�g "
2

 
2"(n� 1)
(n� 2)2

F 2 
F 2

� " (n� 1)(n� 4)
(n� 2)2

F 2 

(�2F )
4

2�n F 2
� 1

2F

!
 ;i ;jg

ij :

=

Z
dxn

p
�g
�"
2
	;i	;jg

ij
�
:

Collecting the above we �nd the action SM of a minimally coupled scalar �eld

SM =

Z
dxn

p
�g
 
�R
2
+
"

2
	;i	;jg

ij �
�V (	)

(�2F )
n

n�2

!
:

We note that the new scalar �eld 	 is minimally coupled to the gravitational �eld gij and that the potential of

	 is
�V (	)

(�2F )
n

n�2
.

The above proof agrees with the one given in the paper of [151]. However it is obviously simpler, more direct

and clear.
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9.4 Conformal Lagrangians in scalar �eld cosmology

In this section we apply the conformal transformation in the Lagrangian of the �eld equations in a FRW spatially

�at spacetime.

We consider the �at FRW (K = 0) spacetime whose metric is

ds2 = �dt2 + a2 (t) �ijdxidxj (9.10)

where �ij is the 3-space metric in Cartesian coordinates. The Lagrangian of a scalar �eld � minimally coupled

to gravity in these coordinates is

LM

�
a; _a; �; _�

�
= �3a _a2 + "

2
a2 _�

2 � a3V (�) : (9.11)

The Lagrangian for a non minimally coupled scalar �eld  is

LNM

�
a; _a;  ; _ 

�
= 6F ( ) a _a2 + 6F ( ) a

2 _a _ +
"

2
a3 _ 

2 � a3V ( ) (9.12)

where F ( ) < 0 is the coupling function and " = �1 where " = 1 for real scalar �eld and " = �1 for phantom
�eld. The Hamiltonian for the Lagrangian (9.12) is

E = 6F ( ) a _a2 + 6F ( ) a
2 _a _ +

"

2
a3 _ 

2
+ a3V ( ) : (9.13)

We construct a conformal Lagrangian which corresponds to a minimally coupled scalar �eld.

To do that we consider �rst a change in the scale factor from a(t) ! A(t) de�ned by the formula (see

[152, 140])

A (t) =
p
�2Fa (t) (9.14)

Then the Lagrangian (9.12) takes the form:

LNM

�
A; _A; ; _ 

�
=

1p
�2F

"
�3A _A2 +

"

2

 
3"F 2 � F
2F 2

!
A3 _ 

2

#
� A3

(�2F )
3
2

V ( ) (9.15)

that is, the cross term _a _ disappears.

Next we consider the coordinate transformation:

d	 =

vuut 3"F 2 � F
2F 2

!
d (9.16)

and Lagrangian (9.15) becomes:

LNM (A;A
0;	;	0) =

1p
�2F

h
�3A _A2 +

"

2
A3 _	2

i
; �V ( ) =

V (	)

(�2F )
3
2

(9.17)

The form of the Lagrangian (9.17) is (9.11) hence the previous result applies and under the conformal

transformation

d� =
p
�2F ( )dt (9.18)
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the Lagrangian (9.17) becomes:

LM

�
A; _A;	;	0

�
= �3AA02 + "

2
A3	02 � A3

(�2F )
3
2

V (	) (9.19)

where a prime 0 indicates derivative wrt the new coordinate � :

We note that if in the new coordinates � ; xi we consider the metric

d�s2 = �d�2 +A2 (�) �ijdxidxj (9.20)

then the term 3AA02 equals the Ricci scalar �R of the conformally �at metric d�s2: Therefore the Lagrangian

(9.19) can be seen as the Lagrangian of a scalar �eld 	 of potential �V (	) minimally coupled to the gravitational

�led �gij in the space with metric d�s2: Replacing the coordinate � and the quantity A (�) from (9.14), (9.18), we

�nd:

d�s2 =
p
�2F (�dt2 + a2 (t) �ijdxidxj) =

p
�2Fds2 (9.21)

that is, the metric d�s2 is conformally related to the metric ds2 with conformal function
p
�2F : This means

that the non-minimally coupled scalar �eld in the gravitational �eld ds2 is equivalent to a minimally coupled

scalar �eld - with appropriate potential de�ned in terms of the conformal function - in the gravitational �eld d�s;

the resutl is reversible. Equivalently the Lagrangians LM ; LNM are conformally related and the �eld equations

(the Euler-Lagrange equations) are invariant under the conformal transformation if the Hamiltonian constrains

HM ; HNM vanish (see Lemma 7.2.2).

In the following sections we apply the Noether symmetry approach as a geometric selection rule in order to

determine the dark energy models; that is, we search for dark energy models by requiring the �eld equations to

admit Noether point symmetries.

9.5 Noether point symmetries of a non minimally coupled Scalar

�eld.

Consider a non-minimally coupled scalar �eld with action

SNM =

Z
d�dx3

p
�g
h
F ( )R+

"

2
�gij 

;i ;j � �V ( )
i
+

Z
Lmd�dx

3

in a �at FRW space-time, whose metric in Cartesian coordinates is

ds2 = �dt2 + a2 (t) �ijdxidxj

and Lm is the Lagrangian of dust matter of density �D (for commoving observers).

The Lagrangian of the �eld equations is (9.12) are the Hamiltonian (total energy density) (9.13) and the

Euler-Lagrange equations
d

dt

@LNM

@
�
_a; _ 
� � @L

@ (a;  )
= 0:
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If the Hamiltonian (9.13) is E 6= 0 then the space admits dust which, however does not interact with the

scalar �eld and has energy density �D = jEj
a3 :If E = 0 the space does not admit dust. In the following we

determine all potentials V ( ) for which this dynamical system admits Noether point symmetries beyond the

trivial one @t. Subsequently we use the resulting Noether integrals to �nd analytical solutions for the �eld

equations for each of these potentials.

In order to determine the Noether point symmetries of the Lagrangian (9.12) we shall follow the results

of chapter 4. That is we brake the Lagrangian in the kinematic part which de�nes the kinematic metric and

the remaining part which we consider to be the potential. Then we apply theorem 4.3.2 which states that

the Noether point symmetries of the Lagrangian follow form the homothetic algebra of the kinematic metric.

The kinematic metric admits a non-trivial homothetic (not necessarily proper homothetic) algebra if a given

condition is satis�ed which involves the symmetry vector and the potential. The solution of this relation provides

all the potentials for which extra Noether symmetries are admitted. We use the Noether integrals of these extra

Noether symmetries to �nd an analytic solution for each of the corresponding potentials..

From the Lagrangian (9.12) we de�ne the kinematic metric:

ds2KM = 12F ( ) a _a2 + 12F ( ) a
2 _a _ + "a3 _ 

2
: (9.22)

This is a two dimensional metric in the space (a;  ): Because the homothetic algebra of a 2 dimensional metric

is di¤erent for a �at and a non-�at (but conformally �at because all two dimensional spaces are conformally

�at) we consider the case the metric (9.22) is maximally symmetric2 .

The Ricci scalar of the metric (9.22) is computed to be:

R(KM) =
"

4a3

�
2F  F � F 2 

�
�
"F � 3F 2 

�2 (9.23)

Hence if the metric (9.22) is maximally symmetric then it follows that R(KM) = 0, that is, the kinetic metric

(9.22) must be �at.

9.5.1 Case A. RKM = 0

Condition RKM = 0 and (9.23) give:

2F  F � F 2 = 0 (9.24)

provided

"F � 3F 2 6= 0: (9.25)

The solution of (9.24) is

F ( ) = �F0"
12

( +  0)
2 (9.26)

2The Ricci scalar is R = K where K is a constant
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where " = �1 and F0" > 0. We note that this F ( ) satis�es condition (9.25) therefore it is acceptable.
In order to determine the homothetic algebra of the kinematic metric (9.22) we write it in a more familiar

form. We introduce the coordinates A;	 by the relations

A =
p
�2Fa (9.27)

d	 =

vuut 3"F 2 � F
2F 2

!
d : (9.28)

In the new coordinates A;	 the metric (9.22), the Lagrangian (9.12) and the non minimal coupling function

F (	) take the following form

For " = 1 and F0 > 0

ds2KM =
1p

�2F (	)

�
�3A _A2 +

1

2
A3 _	2

�
(9.29)

LM =
1p

�2F (	)

�
�3A _A2 +

1

2
A3 _	2

�
� A3

(�2F (	))
3
2

V (	) : (9.30)

F (	) = �F0
12
exp

 
�
p
6

3

r
F0

F0 + 1
	

!
; F0 > 0 (9.31)

For " = �1 and �1 < F0 < 0

ds2KM =
1p

�2F (	�)

�
�3A _A2 � 1

2
A3 _	2

�
(9.32)

LNM =
1p

�2F (	�)

�
�3A _A2 � 1

2
A3 _	2

�
� A3

(�2F (	))
3
2

V (	) (9.33)

F (	) = �jF0j
12

exp

 
�
p
6

3

s
jF0j

1� jF0j
	

!
; � 1 < F0 < 0 (9.34)

For " = �1 and F0 < �1 we introduce a new real �eld 	� = i	 and get the real �eld F (	�)

ds2KM =
1p

�2F (	�)

�
�3A _A2 +

1

2
A3 _	�2

�
(9.35)

LNM =
1p

�2F (	�)

�
�3A _A2 +

1

2
A3 _	�2

�
� A3

(�2F (	�))
3
2

V (	�) (9.36)

F (	�) = �jF0j
12

exp

 
�
p
6

3

s
jF0j

jF0j � 1
	�

!
; F0 < �1: (9.37)

We see that in the region �1 < F0 < �1 starting from a phantom �eld 	 we end up with a real scalar �eld

	�:

In order to consider the three Lagrangians (9.30),(9.33),(9.36) at the same time we consider the Lagrangian

L = N2 (	)
h
�3A _A2 +

"k
2
A3 _	2

i
�A3 �V (	) (9.38)
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where N2 (	) = 1p
�2F (	)

and �V (	) = V (	)

(�2F (	))
3
2
where F (	) < 0. The constant "k = �1 where the value +1

is for " = 1; F0 > 0 and " = �1 ; F0 < �1 and the value �1 is for " = �1 ; � 1 < F0 < 0: Then the new

kinematic metric is written as

ds2KM = N2 (	)
h
�3A _A2 +

"k
2
A3 _	2

i
: (9.39)

We simplify this metric by introducing new coordinates r; � de�ned by the transformation:

r =

r
8

3
A

3
2 ; � =

r
3"k
8
	 (9.40)

This step is necessary in order to deduce the homothetic algebra of the metric from well known previous results.

In the new coordinates the metric (9.39) takes the simple form:

ds2KM = N2 (�)
�
�dr2 + r2d�2

�
: (9.41)

that is, it is directly related to the �at 2d Lorentzian space with metric

ds2 = �dr2 + r2d�2

with conformal factor N2 (�) : In the new coordinates the curvature scalar is

RKM = � 2

r4N3 (�)

�
N;�� �

1

N (�)
(N;�)

2

�
(9.42)

hence the condition RKM = 0 gives the function N (�):

N (�) = N0e
k� ; k 2 C ; N0 2 R (9.43)

where k is a new constant.

Taking this into account we have that in the r; � coordinates the Lagrangian (9.38) becomes:

L = N2
0 e
2k�

�
�1
2
_r2 +

1

2
r2 _�

2
�
� r2 �V (�) : (9.44)

The constant k is related to the previous constant F0 via the function N(�). Using (9.40) we express N (�) in

terms of 	:

N (	) = N0e
k

q
3"k
8 	: (9.45)

Comparing with F (	) and eliminating N (	) we �nd:

F (	) = � 1

2N4
0

e�4k
p

3"
8 	: (9.46)

This is a second expression of F (	) in terms of the constant k: Comparing with the previous expression

(9.31),(9.34) and (9.37), which expresses F (	) in terms of F0 (and holds for all ranges of values of F0!); we

�nd:

�F0"
12

exp

 
�
p
6

3

r
"F0
F0 + 1

	

!
= � 1

2N4
0

e�4k
q

3"k
8 	: (9.47)
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This relation must hold identically which leads to the conditions

N0 =

�
6

"F0

�1=4
(9.48)

and

jkj = 1

3

r
"F0
F0 + 1

: (9.49)

In Appendix 9.A we give the relation between the various ranges of the constant F0 and the corresponding

ranges of the constant jkj :

Case jkj 6= 1.

For jkj 6= 1 the homothetic algebra consists of the gradient KVs vectors

K1 =
e(1�k)�rk

N2
0

�
�@r +

1

r
@�

�
(9.50)

K2 =
e�(1+k)�r�k

N2
0

�
@r +

1

r
@�

�
(9.51)

the non gradient KV

K3 = r@r �
1

k
@� (9.52)

and the gradient HV

Hi =
1

N2
0 (k

2 � 1) (�r@r + k@�) ; H (r; �) =
1

2

r2e2k�

k2 � 1 : (9.53)

Using the results of chapter 4 we �nd the following results

1. The gradient KV K1 produces Noether symmetries for the following potentials

a) For V (�) = V0e
2� we have the Noether symmetries K1; tK1 with Noether integrals

I1 =
d

dt

�
r1+ke(1+k)�

(k + 1)

�
; I2 = t

d

dt

�
r1+ke(1+k)�

(k + 1)

�
�
�
r1+ke(1+k)�

(k + 1)

�
(9.54)

b) For V (�) = V0e
2�� mN2

0

2(k2�1)e
2k� we have the Noether symmetries e�

p
mtK1 m =constant, with Noether

integrals

I 0� = e�
p
mt

�
d

dt

�
r1+ke(1+k)�

(k + 1)

�
�
p
m

�
r1+ke(1+k)�

(k + 1)

��
(9.55)

From the Noether integrals we construct the time independent �rst integral IK1 = I+I�:

2. The gradient KV K2 produces the following Noether symmetries for the following potentials

a) For V (�) = V0e
�2�,we have the Noether symmetries K1; tK1 with Noether integrals

J1 =
d

dt

�
r1�ke�(1�k)�

k � 1

�
; J2 = t

d

dt

�
r1�ke�(1�k)�

k � 1

�
� r1�ke�(1�k)�

k � 1 (9.56)
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b) For V (�) = V0e
�2� � mN2

0

2(k2�1)e
2k�, we have the Noether symmetries e�

p
mtK2 m =constant, with

Noether integrals

J
0

� = e�
p
mt

�
d

dt

�
r1�ke�(1�k)�

k � 1

�
�
p
m
r1�ke�(1�k)�

k � 1

�
(9.57)

From the Noether integrals we construct the time independent �rst integral JK2 = J 0+J
0
�:

3. The non gradient KV K3 produces a Noether symmetry for the potential V (�) = V0e
2k� with Noether

integral

I3 =
re2k�

k

�
k _r + r _�

�
: (9.58)

4. The gradient HV produces the following Noether symmetries for the following potentials

a) For V (�) = V0e
�2 (

k2�2)
k � , k2 � 2 6= 0 we have the Noether symmetries 2t@t + Hi ; t2@t + tHi with

Noether integrals

IH1
= 2tE � d

dt

�
1

2

r2e2k�

k2 � 1

�
; IH2

= t2E � t d
dt

�
1

2

r2e2k�

k2 � 1

�
+
1

2

r2e2k�

k2 � 1 : (9.59)

We note that in this case the system is the Ermakov-Pinney dynamical system (because it admits the

Noether symmetry algebra the sl(2; R); hence the Lie symmetry algebra is at least sl(2; R)) .

b) For V (�) = V0e
�2 (

k2�2)
k � � N2

0m
k2�1e

2k� , k2 � 2 6= 0 we have the Noether symmetries 2p
m
e�

p
mt@t �

e�
p
mtHi , m =constant with Noether integrals

I+;� = e�2
p
mt

�
1p
m
E � d

dt

�
1

2

r2e2k�

k2 � 1

�
+ 2
p
m

�
1

2

r2e2k�

k2 � 1

��
(9.60)

For this potential the Noether symmetries form the sl (2; R) Lie algebra, i.e the dynamical system is the

two dimensional Kepler-Ermakov system Therefore it admits the Ermakov - Pinney invariant which we

may construct with the use of the Noether symmetries or with the use of the corresponding Killing Tensor

(see Proposition 5.6.2)

5. The case V (�) = 0 corresponds the free particle (see chapter 2).

Case jkj = 1

We have to consider two cases i.e. k = 1 and k = �1:

Case k = 1 The KVs of the kinematic metric are the K1;2
k=1 of (9.50,9.51) and the vector

K3
k=1 = �r

�
ln
�
re��

�
� 1
�
@r + ln

�
re��

�
@�: (9.61)

The vectors K1;2
k=1 are gradient and K

3 is non-gradient. The HV is gradient and it is given by

Hi =
1

4
r
�
2 ln

�
re��

�
+ 3
�
@r �

1

2

�
ln
�
re��

�
+
1

2

�
@� (9.62)
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Case k = �1 The KVs of the kinematic metric are K1;2
k=�1 of (9.50,9.51) and the vector

�K3 = r
�
ln
�
re�
�
� 1
�
@r + ln

�
re�
�
@�: (9.63)

The vectors �K1;2 are gradient and �K3 is non-gradient. The gradient HV is given by

�Hi =
1

4
r
�
2 ln

�
re�
�
+ 3
�
@r +

1

2

�
ln
�
re�
�
+
1

2

�
@� (9.64)

In the following we consider only the case k = 1. The results for the case k = �1 are found if we make the
change �(k=�1) = ���.
Using theorem 4.3.2 and making simple calculations we �nd the following results

1. Noether symmetries generated by the KV K1.

a) If V (�) = V0e
2� then we have the extra Noether symmetries K1 ; tK1 with Noether integrals the (9.54)

with k = 1.

b) If V (�) =
�
V0e

2� � m
2 �e

2�
�
, then we have the Noether symmetries e�

p
mtK1 with Noether integrals

(9.55) with k = 1.

2. Noether symmetries generated by the KV K2.

a) If V (�) = V0e
�2� then we have the Noether symmetries K2 ; tK2 with Noether integrals

I 02 =
d

dt
(� � ln r) ; I 02 = t

�
d

dt
(� � ln r)

�
� (� � ln r) (9.65)

b) If V (�) = V0e
�2� � 1

4pe
2� then we have the Noether symmetries K2 ; tK2 with Noether integrals

I 01 =
d

dt
(� � ln r)� pt ; I 02 = t

�
d

dt
(� � ln r)

�
� (� � ln r)� 1

2
pt2 (9.66)

3. If V (�) = 0 then the system becomes the free particle and admits seven extra Noether symmetries.

As we have remarked the results for k = �1 are obtained directly from those for k = 1 if we make the

substitution �(k=�1) = ���. Therefore there is no need to state them explicitly.

In the next section using the Noether symmetries for the potentials we have found, we determine the analytic

solution for each case.

9.5.2 Case A: Analytic solutions for k = 1

We introduce new coordinates u; v by the relations

u = (� � ln r) ; v = 1

2
e2�r2 (9.67)
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with inverse relations:

r =
�
2ve�2u

� 1
4 ; � =

1

4
ln
�
2ve2u

�
: (9.68)

In the new coordinates u; v the Lagrangian (9.44) of the �eld equations becomes

L (u; v; _u; _v) =
N2
0

2
( _u _v)� U (u; v) (9.69)

and the �eld equations are

E =
N2
0

2
( _u _v) + U (u; v)

N2
0

2
�u+ U;v = 0

N2
0

2
�v + U;u = 0

where the potential U (u; v) is one of the potentials we have found in the last section. In the new coordinates

we have (p;m are constants; recall that in general U(r; �) = r2V (�)):

�

U(r; �) = V0r
2e�2� ! U (u; v) = V0e

�2u (9.70)

�

U(r; �) = V0r
2e2� ! U (u; v) = 2V0v (9.71)

�

U(r; �) = r2
�
V0e

�2� � 1
4
pe2�

�
! U (u; v) = V0e

�2u � p

2
v (9.72)

�

U(r; �) = r2
�
V0e

2� � m

2
�e2�

�
! U (u; v) = 2

�
V0 �m

ln 2

8

�
v � m

4
v ln v � m

2
uv (9.73)

�

U(r; �) = 0! U (u; v) = 0 (9.74)

The Hamiltonian equals

E =
N2
0

2
( _u _v) + U (u; v) : (9.75)

We write Lagrange equations for each potential and solve them taking into consideration the �rst integrals

for each Noether symmetry we have found and the constraint imposed by the Hamiltonian. For each of the

potentials above we �nd the corresponding analytic solution given below.
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� U (u; v) = V0e
�2u

u (t) = u1t+ u2; v (t) =
e�2u2

u21

V0
N2
0

e�2u1t + v1t+ v2 (9.76)

with Hamiltonian constraint

E =
u1v1
2N2

0

: (9.77)

� U (u; v) = 2V0v

u (t) = �2V0
N2
0

t2 + u1t+ u2; v (t) = v1t+ v2 (9.78)

with Hamiltonian constrain

E = 2V0v2 +N
2
0

u1v1
2

: (9.79)

� U (u; v) = V0e
�2u � p

2v

where

v1 =
2V0

p
�

p
3
2N0

exp

�
u21N

2
0

p
� 2u2

�
; v2 =

2V0
p
e�2u2 (9.80)

with Hamiltonian constraint

E = N2
0

v3u1
2

� v4p

2
: (9.81)

� U (u; v) = 2
�
V0 �m ln 2

8

�
v � m

4 v ln v �
m
2 uv

u (t) = u1e
1
N0

p
mt + u2e

� 1
N0

p
mt �

p
m

2N0
t+

4V0
m

� ln
�p
2
�
� 1
2
; (9.82)

v (t) = e
1
N0

p
mt ; E = �u2m (9.83)

u (t) = u1e
1
N0

p
mt + u2e

� 1
N0

p
mt +

p
m

2N0
t+

4V0
m

� ln
�p
2
�
� 1
2
; (9.84)

v (t) = e�
1
N0

p
mt ; E = �u1m: (9.85)

� U (u; v) = 0 (the free particle)

u (t) = u1t+ u2 ; v (t) = v1t+ v2 (9.86)

with Hamiltonian constraint

E =
N2
0

2
u1v1: (9.87)

9.5.3 Case A: Analytic solutions for jkj 6= 1

When jkj 6= 1 we have to consider two cases k2 > 1 and k2 < 1: Both cases it is convenient to be discussed if
we use as variables the functions S1 (r; �) ; S2 (r; �) which generate the Killing vectors (i.e. KI;i = S;iI I = 1; 2):

A standard calculation gives (see appendix B for details) :
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K1 =
e(1�k)�rk

N2
0

�
�@r +

1

r
@�

�
; S1 (r; �) =

r1+ke(1+k)�

(k + 1)
(9.88)

K2 =
e�(1+k)�r�k

N2
0

�
@r +

1

r
@�

�
; S2 (r; �) =

r1�ke�(1�k)�

k � 1 : (9.89)

Because the metric is �at the new variables S1 (r; �) ; S2 (r; �) are Cartesian and will be denoted with x; y: So

we write:

x =
r1+ke�(1+k)�

(k + 1)
; y =

r1�ke(�1+k)�

k � 1 : (9.90)

The inverse transformation is:

for k2 > 1

� =
1

2 (1� k2) ln
 �

k2 � 1
�1�k

(k � 1)2
x1�k

y1+k

!
(9.91)

r =
p
(k2 � 1)xy

 �
k2 � 1

�1�k
(k � 1)2

x1�k

y1+k

! k
2(k2�1)

(9.92)

and

for k2 < 1

� =
1

2 (1� k2) ln
 �
1� k2

�1�k
(1� k)2

�x1�k

�y1+k

!
(9.93)

r =
p
(1� k2) �x�y

 �
1� k2

�1�k
(1� k)2

�x1�k

�y1+k

! k
2(k2�1)

(9.94)

Note that in the second case we have written �x; �y while we have kept the x; y notation for the case k2 > 1:

The case k2 > 1

Before we look for analytic solutions we transform the Lagrangian in the canonical coordinates x; y: Using

the transformation relations (9.91), (9.92) we �nd that in the coordinates x; y the Lagrangian (9.42) takes the

form

L (x; y; _x; _y) =
N2
0

2
_x _y � U (x; y) (9.95)

where U (x; y) = r2V (�) where V (�) is one of the potentials computed above. In the coordinates x; y these

potentials are as follows:

�
U1 (x; y) = V0r

2e2k� = V0
�
k2 � 1

�
xy (9.96)

U2 (x; y) = V0r
2e+2� = V0 (k + 1)

2
1+k x

2

1+k (9.97)
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U3 (x; y) = V0r
2e�2� = V0 (k � 1)

2
1�k y

2
1�k (9.98)

�

U4 (x; y) = V0r
2e�2

(k2�2)
k � = V0

�
k2 � 1

� 2
k�1

(k � 1)
4
k

1

y2

�
x

y

� 2
k�1

:

To the potentials U2; U3; U4 we have to add three more which we obtain by the addition of the potential of

the harmonic oscillator. Therefore �nally we have 7 potentials. The extra potentials are

�

U5 (x; y) = V0r
2e+2� +mr2e2k� = �V0+ x

2

1+k + �mxy (9.99)

U6 (x; y) = r2e�2� +mr2e2k� = �V0�y
2

1�k + �mxy (9.100)

where �V0+ = V0 (k + 1)
2

1+k ; �V0� = (k � 1)
2

1�k ; �m = m
�
k2 � 1

�
�

U7 (x; y) = V0r
2e�2

(k2�2)
k � +mr2e2k� = �V0

1

y2

�
x

y

� 2
k�1

+ �mxy (9.101)

where �V0 = V0
(k2�1)

2
k
�1

(k�1)
4
k
.

� And the free particle potential

U8 (x; y) = 0 (9.102)

These expressions allow us to write for each potential the Lagrangian and the Hamiltonian constraint in

the coordinates x; y. This means that we obtain the corresponding �eld equations in the coordinates x; y to

determine their solution.

Analytic solutions The solution of the �eld equations for each potential is a formal and lengthy operation

which adds nothing but unnecessary material to the matter. What is interesting is of course the �nal answer

for each case and this is what we give below for each of the potentials above.

� U1 (x; y) = V0
�
k2 � 1

�
xy

x (t) = x1 sin (!t) + x2 cos (!t) (9.103)

y (t) = y1 sin (!t) + y2 cos (!t) (9.104)

where !2 =
2V0(k2�1)

N2
0

and the Hamiltonian is

E = V0
�
k2 � 1

�
(x1y1 + x2y2)
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� U2 (x; y) = V0 (k + 1)
2

1+k x
2

1+k

When k 6= �3

x (t) = x1t+ x2 (9.105)

y (t) = �2
�V (k + 1) (x1t+ x2)

(1+ 2
1+k )

x21 (3 + k)N
2
0

+ y1t+ y2 (9.106)

where �V = V0 (k + 1)
2

1+k ; and the Hamiltonian is

E =
y1x1N

2
0

2
:

When k = �3
y (t) = �2

�V

N2
0x

2
1

ln (x1t+ x2) + y1t+ y2: (9.107)

x(t); E being the same.

� U3 (x; y) = V0 (k � 1)
2

1�k y
2

1�k

When k 6= 3

x (t) =
2�V (k � 1) (y1t+ y2)1+

2
k�1

y21 (k � 3)N2
0

+ x1t+ x2 (9.108)

y (t) = y1t+ y2 (9.109)

where �V = V0 (k � 1)
2

1�k , k 6= 3and the Hamiltonian is

E =
y1x1N

2
0

2
:

When k = 3 ;

x (t) = � 2 �V

N2
0 y

2
1

ln (y1t+ y2) + x1t+ x2: (9.110)

y(t); E being the same

� U5 (x; y) = �V0+ x
2

1+k + �mxy

x (t) = x1 sin (!t+ !0) (9.111)

y (t) = cos (!t+ !0)

 
y1 + 2

!

�m

Z
y2 � x1 �V0+ sin (!t+ !0)

2
1+k

x1 (cos (!t+ !0) + 1)
dt

!
(9.112)

where !2 = 2 �m
N2
0
and E = y2:

� U6 (x; y) = r2e�2� +mr2e2k� = �V0�y
2

1�k + �mxy

x (t) = cos (!t+ !0)

 
x1 + 2

!

�m

Z
x2 � y1 �V0� sin (!t+ !0)

2
1�k

y1 (cos (!t+ !0) + 1)
dt

!
(9.113)

y (t) = y1 sin (!t+ !0) (9.114)

where !2 = 2 �m
N2
0
and E = x2:
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� U4;7 (x; y) = �V0
1
y2

�
x
y

� 2
k�1

+ �mxy. (U4 is for �m = 0)

This is the Ermakov Pinney system. To solve it, it is convenient to go to spherical coordinates. We

consider the coordinate transformation

x = zew ; y = ze�w (9.115)

and the Lagrangian takes the form

L (z; w; _z; _w) =
N2
0

2

�
_z2 � z2 _w2

�
�
�V0
z2
e
4
kw � �mz2 (9.116)

whereas the Hamiltonian becomes

E =
N2
0

2

�
_z2 � z2 _w2

�
+
�V0
z2
e
4
kw + �mz2: (9.117)

This system admits the Ermakov-Lewis invariant, which is

JEL = z4 _w2 � 2
�V0
N2
0

e
4
kw: (9.118)

Using the Ermakov invariant the Hamiltonian becomes

E =
N2
0

2
_z2 �N2

0

JEL
2z2

+ �mz2: (9.119)

This is the Hamiltonian of the Ermakov Pinney equation:

�z + 2 �mz +N2
0

JEL
z3

= 0 (9.120)

whose solution is

z (t) = (l0z1 (t) + l1z2 (t) + l3)
1
2 (9.121)

e
4
kw(t) =

N2
0JEL
2 �V0

�
tanh2

�
2
p
JEL
k

�Z
dt

z2 (t)
+ l4

��
� 1
�

(9.122)

where z1;2 (t) are solutions of the di¤erential equation �z + 2 �mz = 0 and l0�4 are constants.

� U8(x; y) = 0

This is the free particle whose solution is

x (t) = x1t+ x2 ; y (t) = y1t+ y2 (9.123)

E =
N2
0

2
x1y1 (9.124)
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The case k2 < 1

In this case the canonical coordinates are the �x; �y: Using the transformation equations (9.93), (9.94) we write

the Lagrangian (9.42) as follows:

L
�
�x; �y;

�
�x;
�
�y
�
= �N

2
0

2

�
�x
�
�y � �U (�x; �y) (9.125)

where U (�x; �y) = r2V (�) the potentials V (�) being as above. In the coordinates �x; �y the potentials U (�x; �y) are:

�
�U1 (�x; �y) = V0r

2e2k� = V0
�
1� k2

�
�x�y (9.126)

�U2 (�x; �y) = V0r
2e+2� = V0 (k + 1)

2
1+k �x

2

1+k (9.127)

�U3 (�x; �y) = V0r
2e�2� = V0 (1� k)

2
1�k �y

2
1�k (9.128)

�

�U4 (�x; �y) = V0r
2e�2

(k2�2)
k � = V0

�
1� k2

� 2
k�1

(1� k)
4
k

1

�y2

�
�x

�y

� 2
k�1

(9.129)

As before we have three more potentials

�

�U5 (�x; �y) = V0r
2e+2� = �V0+ �x

2

1+k + �m�x�y (9.130)

�U6 (�x; �y) = V0r
2e�2� = �V0��y

2
1�k + �m�x�y (9.131)

where �V0+ = V0 (k + 1)
2

1+k ; �V0� = (1� k)
2

1�k ; �m = m
�
1� k2

�
:

�

�U7 (�x; �y) = V0r
2e�2

(k2�2)
k � +mr2e2k� = �V0

1

�y2

�
�x

�y

� 2
k�1

+ �m�x�y (9.132)

where �V0 = V0
(1�k2)

2
k
�1

(1�k)
4
k
.

� and the free particle potential.
�U8 (�x; �y) = 0 (9.133)

Analytic solutions Working as in the case k2 > 1 we �nd the following analytic solutions and the associated

Hamiltonian constraint for each of the potentials above.
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� �U1 (�x; �y) = V0
�
1� k2

�
�x�y:

�x (t) = x1 cosh (!t) + x2 sinh (!t) (9.134)

�y (t) = y1 cosh (!t) + y2 sinh (!t) (9.135)

and the Hamiltonian E = V0m (x1y1 � x2y2) where !2 =
2V0(1�k2)

N2
0

.

� �U2 (�x; �y) = V0 (k + 1)
2

1+k �x
2

1+k

�x (t) = x1t+ x2 (9.136)

�y (t) =
2�V (k + 1) (x1t+ x2)

(1+ 2
1+k )

x21 (3 + k)N
2
0

+ y1t+ y2 (9.137)

where �V = V0 (k + 1)
2

1+k and the Hamiltonian E = �N2
0

2 x1y1.

� �U3 (�x; �y) = V0 (1� k)
2

1�k �y
2

1�k

�x (t) =
2�V (1� k) (y1t+ y2)1+

2
k�1

y21 (k � 3)N2
0

+ x1t+ x2 (9.138)

�y (t) = y1t+ y2 (9.139)

where �V = V0 (k + 1)
2

1+k and the Hamiltonian constrain E = �N2
0

2 x1y1.

� �U5 (�x; �y) = �V0+ �x
2

1+k + �m�x�y

�x (t) = �x1 sinh (!t+ !0)

�y (t) = cosh (!t+ !0)

 
�y1 �

2!

�m

Z
E � �x1 �V0+ sinh (!t+ !0)

2
1+k

�x1 (cosh (!t+ !0) + 1)

!

where !2 = 2 �m
N2
0

� �U6 (�x; �y) = �V0��y
2

1�k + �m�x�y

�x (t) = cosh (!t+ !0)

 
�x1 �

2!

�m

Z
E � �y1 �V0� sinh (!t+ !0)

2
1�k

�y1 (cosh (!t+ !0) + 1)

!
�y (t) = �y1 sinh (!t+ !0)

where !2 = 2 �m
N2
0

� �U4;7 (�x; �y) = �V0
1
�y2

�
�x
�y

� 2
k�1

+ �m�x�y.
�
�U4 is for �m = 0

�
.

This is again the Ermakov Piney potential. To solve it we go to spherical coordinates

�x = zew ; �y = ze�w (9.140)
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in which the Lagrangian takes the form

L (z; w; _z; _w) =
N2
0

2

�
� _z2 + z2 _w2

�
�
�V0
z2
e
4
kw � �mz2 (9.141)

and the Hamiltonian

E =
N2
0

2

�
� _z2 + z2 _w2

�
+
�V0
z2
e
4
kw + �mz2: (9.142)

The Ermakov-Lewis invariant is

JEL = z4 _w2 + 2
�V0
N2
0

e
4
kw (9.143)

which when replaced in the Hamiltonian gives

E = �N
2
0

2
_z2 +N2

0

JEL
2z2

+ �mz2: (9.144)

This is the Hamiltonian of the Ermakov Pinney equation:

�z � 2 �mz �N2
0

JEL
z3

= 0 (9.145)

whose solution is

z (t) = (l0z1 (t) + l1z2 (t) + l3)
1
2 (9.146)

e
4
kw(t) =

N2
0JEL
2 �V0

�
1� tanh2

�
2
p
JEL
k

�Z
dt

z2 (t)
+ l4

���
(9.147)

where z1;2 (t) are solutions of the ode �z � 2 �mz = 0 and l0�4 are constants.

� �U8 (�x; �y) = 0

� This is the free particle whose solution is

�x (t) = x1t+ x2 ; �y (t) = y1t+ y2 (9.148)

E = �N
2
0

2
x1y1: (9.149)

9.5.4 Case B: The 2d metric is conformally �at

In this case it is preferable to work with (9.39) which under the coordinate transformation (9.40) becomes:

L = N2 (�)

�
�1
2
_r2 +

1

2
r2 _�

2
�
� r2V (�) : (9.150)

The kinetic metric in this case is not �at (i.e. R(2) 6= 0) but of course it is conformally �at being a two

dimensional metric. Its conformal algebra is in�nity dimensional however it has a closed subalgebra consisting

of the following vectors (this is the special conformal algebra of M2):

X1 = cosh �@r �
1

r
sinh �@� ; X2 = sinh �@r �

1

r
cosh �@�

X3 = @� ; X4 = r@r ; X5 =
1

2
r2 cosh �@r +

1

2
r sinh �@�

X6 =
1

2
r2 sinh �@r +

1

2
r cosh �@� (9.151)
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Writing LXIgij = 2CI (r; �) gij we �nd the conformal factors of the CKVs XI I = 1; :::6 above in terms of

the the conformal function. The result is:

C1 (r; �) = �1
r
sinh (�)

N;�
N

; C2 (r; �) = �
1

r
cosh (�)

N;�
N

C3 (r; �) =
N;�
N

; C4 (r; �) = 1 ; C5 (r; �) =
r

2

�
2N cosh � + sinh �N�

N

�
C6 (r; �) =

r

2

�
2N sinh � + cosh �N�

N

�
(9.152)

The N (�) 6= ec�, otherwise the kinetic metric of the Lagrangian (9.150) is �at (the Ricci scalar vanishes) and

we return to the previous case A. This means that the vectors XI I = 1; :::6 except the I = 4 are proper CKVs

therefore they do not give (in general) a Noether symmetry. The vector X4 is a non-gradient HV which does not

also produce a Noether symmetry. Therefore according to theorem 4.3.2 only Killing vectors are possible to serve

as Noether symmetries. KVs do not exist but for special forms of the conformal function N(�). Each such form

of N(�) results in a potential V (�) hence to a scalar �eld potential which admits Noether point symmetries. In

the following we determine the possible N(�) which lead to a KV and give the corresponding Noether symmetry

and the corresponding Noether integral which will be used for the solution of the �eld equations.

1. If N (�) = N0

cosh(2�)�1 then X
5 is a non gradient KV and a Noether symmetry for the Lagrangian (9.150)

for the potential

V (�) =
V0

cosh (2�)� 1 or V (�) = 0 (9.153)

The corresponding Noether integral is

IX5 =
N2
0 r
2

(cosh (2�)� 1)2
�
r _� sinh � � _r cosh �

�
: (9.154)

2. If N (�) = N0

cosh(2�)+1 then X
6 is a non gradient KV, X6 and a Noether symmetry for the Lagrangian

(9.150) if

V (�) =
V0

cosh (2�) + 1
or V (�) = 0 (9.155)

The corresponding Noether integral is

IX6 =
N2
0 r
2

(cosh (2�) + 1)
2

�
r _� cosh � � _r sinh �

�
(9.156)

3. If N (�) = N0

cosh2(�+�0)
then the linear combination X56 = c1X

5 + c2X
6 where c1 = sinh (�0) and c2 =

cosh (�0). X56 is a Noether symmetry for the Lagrangian (9.150) if

V (�) =
V0

cosh2 (� + �0)
or V (�) = 0 (9.157)

with Noether integral

IX56 =
N2
0 r
2

cosh4 (� + �0)

�
r _� cosh (� + �0)� _r sinh (� + �0)

�
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Obviously case 3 is the most general and contains cases 1 and 2 (and the trivial case) as special cases.

Therefore in the following we look for analytic solutions for the vector X56only.

We recall that 1p
�2F (�)

= N2 (�) from which follows:

F (�) = � 1

2N4
0

cosh8 (� + �0) ; N0 2 R: (9.158)

We may consider �0 = 0 (e.g. by introducing the new variable � = � + �0):

For the potential (9.157) the Lagrangian (9.150) becomes

L =
N2
0

cosh4 �

�
�1
2
_r2 +

1

2
r2 _�

2
�
� r2 V0

cosh2 �
(9.159)

and the Hamiltonian

E =
N2
0

cosh4 �

�
�1
2
_r2 +

1

2
r2 _�

2
�
+ r2

V0

cosh2 �
: (9.160)

The equations of motion are:

�r + r _�
2 � 4 tanh � _r _� � 2 V0

N2
0

r cosh2 � = 0 (9.161)

�� � 2 tanh �
�
1

r2
_r2 + _�

2
�
+
2

r
_r _� � 2 V0

N2
0

cosh � sinh � = 0 (9.162)

and the Noether integral IX56 for �0 = 0 becomes:

IX56 =
N2
0 r
2

cosh4 (� + �0)

�
r _� cosh (�)� _r sinh (�)

�
: (9.163)

In order to proceed with the solution of the system of equations (9.161), (9.162) we change to the coordinates

x; y which we de�ne by the relations

r =
xp

1� x2y2
; � = arctanh (xy) : (9.164)

In the coordinates x; y the Lagrangian and the Hamiltonian become:

L =
N2
0

2

�
� _x2 + x4 _y

�
� V0x2 (9.165)

E =
N2
0

2

�
� _x2 + x4 _y2

�
+ V0x

2 (9.166)

and the Noether integral (we write I for IX56)

I = x4 _y: (9.167)

Let us assume that I 6= 0:In the new variables the Euler - Lagrange equations read:

�x+ 2x3 _y2 � 2V0x = 0 (9.168)

�y +
4

x
_x _y = 0: (9.169)
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From the Noether integral we have _y = I
x4 which upon substitution in the �eld equations gives the equation

�x� 2V0x+
2I2

x5
= 0 (9.170)

1

2

�
� _x2 + I2

x4

�
+ V0x

2 = E: (9.171)

from which we compute

_x =

r
I2

x4
+ 2V0x2 � 2E (9.172)

and �nally the analytic solution Z
dxq

I2

x4 + 2V0x
2 � 2E

= t� t0: (9.173)

From the Noether integral we �nd

y (t)� y0 =
Z

I

x4
dt: (9.174)

If I = 0 then the analytic solution is

x = x0 sinh
�p

2V0t+ x1

�
; y = y0 (9.175)

with Hamiltonian constrain E = �x20V0:
If V0 = 0 (i.e. free particle) and I = 0 the analytic solution is

x = x0t+ x1 ; y = y0 (9.176)

with Hamiltonian constrain E = � 1
2x

2
0:

9.6 Noether point symmetries of a minimally coupled Scalar �eld.

In this section we study the Noether point symmetries of a minimally coupled scalar �eld in a spatially �at

FRW spacetime. The action of the �eld equations is

SM =

Z
d�dx3

p
�g
�
R+

1

2
gij�

;i�;j � V (�)
�
+

Z
Lmd�dx

3: (9.177)

where Lm is the Lagrangian of the dust matter �uid. For a spatially �at FRW spacetime the Ricciscalar is

R = 6

�
�a

a
+
_a2

a2

�
hence, the Lagrangian of the �eld equation is (9.11) and the �eld equations are

E = �3a _a2 + "

2
a2 _�

2
+ a3V (�) (9.178)

�a+
1

2a
_a2 +

"

4
_�
2 � 1

2
aV = 0 (9.179)
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��+
3

a
_a _�+ "V;� = 0 (9.180)

From the kinetic term of (9.11) we de�ne the two dimensional metric

ds2 = �6a da2 + "a3d�2: (9.181)

We �nd that the curvature of the fa; �g space is R = 0 implying �atness (since all 2 dimensional spaces

are Einstein spaces hence R̂ = 0 implies that the space is �at). Also, the signature of the metric eq.(9.181) is

0, hence the space is the 2-d Minkowski space. In order to simplify the �eld equations we apply the following

coordinate transformation

r =

r
8

3
a3=2 � =

r
3k�

8
� ; (9.182)

in the new coordinates the two dimensional metric (9.181) is given by

dŝ2 = �dr2 + r2d�2 (9.183)

that is, (r; �) are hyperbolic spherical coordinates in the two dimensional Minkowski space fa; �g. Next we
introduce the new coordinates (x; y) with the transformation:

x = r cosh (�)

y = r sinh (�) (9.184)

which implies that the metric (9.183) becomes dŝ2 = �dx2 + dy2. We also point here that

r2 = x2 � y2 � = arctanh(y=x) : (9.185)

The scale factor (a(t) > 0) is now given by:

a =

�
3(x2 � y2)

8

�1=3
(9.186)

which means that the new variables have to satisfy the following inequality: x � jyj.
In the new coordinate system (x; y) the Lagrangian (9.11) and the Hamiltonian (9.178) are written:

L =
1

2

�
_y2 � _x2

�
� Veff (x; y) (9.187)

E =
1

2

�
_y2 � _x2

�
+ Veff (x; y) (9.188)

where

Veff (x; y) =
�
x2 � y2

�
~V
�y
x

�
: (9.189)

Note that we have used
~V (�) =

3k

8
V (�) : (9.190)

We now proceed in an attempt to provide the Noether point symmetries of the current dynamical problem

using the results of chapter 4.

Since the Lagrangian (9.187) is autonomous admits the Noether point symmetry @t with Noether integral

the Hamiltonian (9.188). Lagrangian (9.187) admits extra Noether point symmetries in the following cases.
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9.6.1 Hyperbolic - UDM Potential

Hyperbolic - UDM Potential: Generically, we use the following potential:

~V (�) =
!1 cosh

2 (�)� !2 sinh2 (�)
2

(9.191)

or

Veff (x; y) = r2 ~V (�) =
!1x

2 � !2y2
2

(9.192)

The corresponding Noether symmetries, Xn, are known (see for example [5]). These are:

Xn1 = @t ; Xn2 = sinh (
p
!1t) @x ; Xn3 = cosh (

p
!1t) @x

Xn4 = sinh (
p
!2t) @y ; Xn5 = cosh (

p
!2t) @y

The Noether integrals are the Hamiltonian and the quantities:

In2 = sinh (
p
!1t) _x�

p
!1 cosh (

p
!1t)x

In3 = cosh (
p
!1t) _x�

p
!1 sinh (

p
!1t)x

In4 = sinh (
p
!2t) _y �

p
!2 cosh (

p
!2t) y

In5 = cosh (
p
!2t) _y �

p
!2 sinh (

p
!2t) y

Obviously the UDM potential is a particular case of the current general hyperbolic potential. Indeed for

!1 = 2!2 and with the aid of eqs.(9.182), (9.190) we fully recover the UDM potential [153, 154, 155, 142]

V (�) = V0

�
1 + cosh2

�
3k�

8
�

��
(9.193)

where V0 = 4!2
3k modulus a constant.

9.6.2 Exponential Potential

Exponential Potential: The exponential potential

Veff (r; �) = r2 ~V (�) = r2e�d� :

admits the extra Noether symmetry

Xn = 2t@t +

�
x+

4

d
y

�
@x +

�
y +

4

d
x

�
@y : (9.194)

In general the Noether integral for the vector Xn = 2t@t + �
i@i is

I = 2tE +

�
x+

4

d
y

�
_x�

�
y +

4

d
x

�
_y (9.195)
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where E is the Hamiltonian. Using ~V = e�d� together with eq.(9.182) and eq.(9.190) we write the potential to

its nominal form [156] which is

V (�) = V0exp

 
�d
r
3k�

8
�

!
(9.196)

where V0 = 8
3k modulus a constant

3 .

We note that the analytic solutions of sections 9.5.3 and 9.5.4 are also solutions for the minimally coupled

Lagrangian (9.11) if and only if the space does not admit dust.

9.7 The Lie and Noether symmetries of Bianchi class A homoge-

neous cosmologies with a scalar �eld.

The class of Bianchi spatially homogeneous cosmologies contains many important cosmological models, including

the standard FRW model. In these models the spacetime manifold is foliated along the time axis, with three

dimensional homogeneous hypersurfaces. Bianchi has classi�ed all three dimensional real Lie algebras and has

shown that there are nine of them. This results in nine types (two of them being families of spacetimes) of

Bianchi spatially homogeneous spacetimes. The principal advantage of Bianchi cosmological models is that,

in these models the physical variables depend on the time only, reducing the Einstein and other governing

equations to ordinary di¤erential equations.

The Bianchi models are studied in the well known ADM decomposition ([157, 158]) according to which the

metric is written

ds2 = �N2(t)dt2 + g��!
� 
 !� (9.197)

where N(t) is the lapse function and f!ag is the canonical basis of 1-forms which satisfy the Lie algebra

d!i = Cijk!
j ^ !k: (9.198)

Cijk are the structure constants of the algebra. The spatial metric g�� splits so that

g�� = exp(2�) exp(�2�)�� (9.199)

where exp(2�) is the scale factor of the universe and ��� is a 3 � 3 symmetric, traceless matrix, which can
be written in a diagonal form with two independent quantities, the so called anisotropy parameters �+; ��, as

follows:

��� = diag

 
�+;�

1

2
�+ +

p
3

2
��;�

1

2
�+ �

p
3

2
��

!
: (9.200)

The Bianchi models are grouped in classes A and B by means of a vector a� and a symmetric 3�3 metric n��
which are constrainted by the condition n��a� = 0: Class A is de�ned by a� = 0 and Class B by a� 6= 0: Each

3 In the special case of d = 2, the system admits an additional Lie symmetry @x + @y , with Noether integral I = _x� _y:
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Class is divided into several types according to the rank and (the modulus of the) signature of n�� : Because of

the di¢ culty in formulating the class B Bianchi models in the ADM formalism, it is usually the case that one

con�nes attention to the class A models. Furthermore it is well known that for the class A models there is a

Lagrangian [159] whereas for the class B models, to the author�s knowledge, no such Lagrangian seems to exist.

Details on the structure and the Physics of the Bianchi models can be found e.g. in [157, 159].

Research in Physics on in�ationary models has shown the importance of scalar �elds in cosmology [160].

This has raised interest in the dynamics of Bianchi spacetimes �lled with a scalar �eld, with an arbitrary self

interaction potential, minimally coupled to the gravitational �eld [161]. The Lagrangian leading to the full

Bianchi scalar �eld dynamics is

L = e3�
�
R� + 6�� 3

2
( _�
2

1 +
_�
2

2)� _�
2
+ V (�)

�
(9.201)

where R� is the Ricci scalar of the 3 dimensional spatial hypersurfaces given by the expression:

R� = �1
2
e�2�

�
N2
1 e
4�1 + e�2�1

�
N2e

p
3�2 �N3e�

p
3�2

�2
� 2N1e�1

�
N2e

p
3�2 �N3e�

p
3�2

��
+
1

2
N1N2N3(1 +N1N2N3):

The constants N1; N2; and N3 are the components of the classi�cation vector n� and �1 = � 1
2�+ +

p
3
2 ��;

�2 = � 1
2�+ �

p
3
2 ��. It is important to note that the curvature scalar R

� does not depend on the derivatives

of the anisotropy parameters �+; �� , equivalently on �1; �2:

The Euler Lagrange equations due to the Lagrangian (9.201) are [86]:

��+
3

2
_�
2
+
3

8
( _�
2

1 +
_�
2

2) +
1

4
_�
2 � 1

12
e�3�

@

@�

�
e3�R�

�
� 1
2
V (�) = 0

��1 + 3
_� _�1 +

1

3

@R�

@�1
= 0

��2 + 3
_� _�2 +

1

3

@R�

@�2
= 0

��+ 3 _� _�+
@V

@�
= 0

where a dot over a symbol indicates derivative with respect to t:

In the following we apply Theorem 4.2.2 and Theorem 4.3.2 and compute the Lie and the Noether point

symmetries of class A Bianchi models. The Lie and the Noether point symmetries of Bianchi class A models

with a scalar �eld have also been computed in [86, 143, 139]. However, as it will be shown, these studies are not

complete, in the sense that they have not found all Noether symmetries. Furthermore our approach is entirely

di¤erent than the classical Lie approach employed in these works. Finally it is general and can be applied

without di¢ culty to Class B spacetimes.

We consider the four dimensional Riemannian space with coordinates xi = (�; �1; �2; �) and metric

ds2 = e3�
�
12d�2 � 3d�21 � 3d�22 � 2d�2

�
: (9.202)
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The metric (9.202) is the conformally �at FRW spacetime whose special projective algebra consists of the non

gradient KVs [46, 45]

Y 1 = @�1 ; Y
2 = @�2 ; Y

3 = @�; Y
4 = �2@�1 � �1@�2

Y 5 = �@�1 �
3

2
�1@�; Y

6 = �@�2 �
3

2
�2@�

and the gradient HV

Hi =
2

3
@� ;  = 1:

The Lagrangian (9.201) is written:

L = T � U(xi)

where T = 1
2gij _x

i _xi is the geodesic Lagrangian, U(xi) is the potential function

U(xi) = �e3� (V (�) +R�) (9.203)

and we have used the fact that the curvature scalar does not depend on the derivatives of the coordinates �1; �2:

Now we apply Theorem 4.2.2 and Theorem 4.3.2 to determine the Lie and the point Noether symmetries of the

dynamical system with Lagrangian (9.201).

In order to compute the potential U(xi) we need the expression of R� for each Bianchi type. We �nd for

the Class A models

Bianchi I: R� = 0

Bianchi II: R� = �e(2�1��)

Bianchi VI0: Class A. , R� = � 1
2e
�2�

�
e4�1 + e�2(�1�

p
3�2) + 2e�1+

p
3�2

�
Bianchi VII0: Class A., R� = � 1

2e
�2�

�
e4�1 + e�2(�1�

p
3�2) � 2e�1+

p
3�2

�
Bianchi VIII: R� = � 1

2e
�2�

�
e4�1 + e�2�1

�
e
p
3�2 + e�

p
3�2

�2
� 2e�1

�
e
p
3�2 � e�

p
3�2x

��
Bianchi IX: R� = � 1

2e
�2�

�
e4�1 + e�2�1

�
e
p
3�2 + e�

p
3�2

�2
� 2e�1

�
e
p
3�2 � e�

p
3�2x

��
+ 1.

We determine the Lie and the Noether point symmetries in the following cases:

Case 1. Vacuum. In this case � =constant and the metric (9.202) reduces to the three dimensional FRW

metric.

Case 2. Zero potential V (�) = 0; _� 6= 0
Case 3. Constant Potential V (�) =constant, _� 6= 0
Case 4. Arbitrary Potential V (�) ; _� 6= 0:

9.7.1 Bianchi I

Case 1.

In this case _� = 0, V (�) = 0 and the Lagrangian becomes L = e3�
h
6 _�

2 � 3
2

�
_�
2

1 +
_�
2

2

�i
hence the potential

U(x�) = 0 where x� = (�; �1; �2): The auxiliary metric is ds
2 = e3�

�
12d�2 � 3d�21 � 3d�22

�
: The special PCs
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of this metric are the non gradient KVs Y 1; Y 2; Y 4 and the gradient HV Hi .

From Theorem 4.2.2 we �nd that the Lie point symmetries are the vectors

@t; t@t; Y
1; Y 2; Y 4;Hi; t2@t + tH

i

which coincide with those found in [86]. From Theorem 4.3.2 we �nd that the Noether point symmetries are

@t; Y
1; Y 2; Y 4; 2t@t +H

i; t2@t + tH
i

i.e. we �nd two more Noether symmetries than [86].

Case 2. V (�) = 0 ; _� 6= 0
In this case the Lagrangian is L = e3�

h
6 _�

2 � 3
2

�
_�
2

1 +
_�
2

2

�
� _�

2
i
and the potential function U(xi) = 0: The

auxiliary metric is (9.202). From Theorem 4.2.2 we �nd that the Lie point symmetries are

@t; t@t; Y
1; Y 2; Y 3; Y 4; Y 5; Y 6; Hi; t2@t + tH

i

and coincide with those found in [86]. Application of Theorem 4.3.2 gives that the Noether point symmetries

are

@t; Y
1; Y 2; Y 3; Y 4; Y 5; Y 6; 2t@t +H

i; t2@t + tH
i

i.e. two more from the ones found in [86].

Case 3. V (�) = C0; _� 6= 0
The Lagrangian is L = e3�

h
6 _�

2 � 3
2

�
_�
2

1 +
_�
2

2

�
� _�

2
+ C0

i
hence the potential U(xi) = �C0e3�: Using

Theorem 4.2.2 we �nd that the Lie point symmetries are

@t; Y
1; Y 2; Y 3; Y 4; Y 5; Y 6; Hi;

1

C
e�Ct@t � e�CtHi

where C =
p
6C0
2 , and coincide with those found in [86]. Application of Theorem 4.3.2 gives the Noether point

symmetries

@t; Y
1; Y 2; Y 3; Y 4; Y 5; Y 6;

1

C
e�Ct@t � e�CtHi:

Again we �nd two more Noether symmetries than [86].

Case 4. V (�) =arbitrary _� 6= 0
In this case the Lagrangian is L = e3�

h
6 _�

2 � 3
2

�
_�
2

1 +
_�
2

2

�
� _�

2
+ V (�)

i
and the potential U(xi) = �e3�V (�).

Application of Theorem 4.2.2 gives the Lie point symmetries @t ; Y
1 ; Y 2 ; Y 4 ; Hi and application of

Theorem 4.3.2 gives the Noether symmetries @t ; Y 1 ; Y 2 ; Y 4:

Working in a similar manner we compute the Lie and the Noether point symmetries of all Bianchi class A

homogenous spacetimes. The results of the calculations are collected in the following Tables.
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Table 9.1: Lie and Noether Symmetries of Bianchi I scalar �eld

Bianchi I Noether Symmetries Lie Symmetries

Case 1 @t; Y
1; Y 2; Y 4 @t; t@t; Y

1; Y 2; Y 4; Hi

2t@t +H
i; t2@t + tH

i t2@t + tH
i

Case 2 @t; Y
1; Y 2; Y 3; Y 4; Y 5; Y 6 @t; t@t; Y

1; Y 2; Y 3; Y 4; Y 5; Y 6

2t@t +H
i; t2@t + tH

i Hi; t2@t + tH
i

Case 3 @t; Y
1; Y 2; Y 3; Y 4; Y ; Y 6 @t; Y

1; Y 2; Y 3; Y 4; Y 5; Y 6; Hi

1
C e

�Ct@t � e�CtHi 1
C e

�Ct@t � e�CtHi

Case 4 @t; Y
1; Y 2; Y 4 @t; Y

1; Y 2; Y 4 ; Hi

Table 9.2: Lie and Noether Symmetries of Bianchi II scalar �eld

Bianchi II Noether Symmetries Lie Symmetries

Case 1 @t; Y
2; 6t@t + 3H

i � 5Y 1 @t; Y
2; 1

3 t@t +H
i; t@t � Y 1

Case 2 @t; Y
2; Y 3; Y 6; 6t@t + 3H

i � 5Y 1 @t; Y
2; Y 3; Y 6; 1

3 t@t +H
i; t@t � Y 1

Case 3 @t; Y
2; Y 3; Y 6 @t; Y

2; Y 3; Y 6; 3Hi + Y 1

Case 4 @t; Y
2 @t; Y

2; 3Hi + Y 1

Table 9.3: Lie and Noether Symmetries of Bianchi VI/VII scalar �eld

Bianchi VI0 = VII0 Noether Symmetries Lie Symmetries

Case 1 @t; 6t@t + 3H
i � 2Y 1 � 2

p
3Y 2 @t; H

i + 1
3Y

1 +
p
3
3 Y

2; 2t@t � Y 1 �
p
3Y 2

Case 2 @t; Y
3; 6t@t + 3H

i � 2Y 1 � 2
p
3Y 2 @t; Y

3; Hi + 1
3Y

1 +
p
3
3 Y

2; 2t@t � Y 1 �
p
3Y 2

Case 3 @t; Y
3 @t; Y

3; Hi + 1
3Y

1 +
p
3
3 Y

2

Case 4 @t @t; H
i + 1

3Y
1 +

p
3
3 Y

2
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Table 9.4: Lie and Noether Symmetries of Bianchi VIII/IX scalar �eld

Bianchi VIII Noether Symmetries Lie Symmetries

Case 1 @t @t;
2
3 t@t +H

i

Case 2 @t; Y
3 @t; Y

3; 2
3 t@t +H

i

Case 3 @t; Y
3 @t; Y

3

Case 4 @t @t

Bianchi IX Noether Symmetries Lie Symmetries

Case 1 @t @t

Case 2 @t; Y
3 @t; Y

3

Case 3 @t; Y
3 @t; Y

3

Case 4 @t @t
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From the above tables we infer that the Lie point symmetries we found coincide with those of [86]. Some

di¤erences which appear are due to linear combinations of symmetries from the other set. The same does not

apply to the Noether symmetries, for which we found a larger number than in [86].

We note that in Case 1 the Noether symmetry 2t+H is a combination of two Lie point symmetries, which

is peculiar since the Noether point symmetries are considered to be a direct subset of Lie symmetries. This

is explained as follows. The addition of a Killing vector to a homothetic vector retains a homothetic vector.

Therefore a Lie symmetry due to a Killing vector and one due to a homothetic vector is possible to give a Lie

point symmetry due to a homothetic vector. Concerning [143] from the examination of the Tables 9.1-9.4 and

the results they present it can be seen that they loose the Noether symmetries which have a component along

@t direction.

The Bianchi I model with scalar �eld and exponential potential

We consider a scalar �eld described by an exponential potential V (�) = e�d� in a Bianchi class A spacetime.

For this potential all the models admit the extra Lie symmetry t@t+ 2
dY

3: Concerning the Noether symmetries

we have an extra Noether symmetry only for the types I. II, VI0; VII 0 as follows:

Type I

t@t +
1

2
Hi +

2

d
Y 3

Type II

t@t +
1

2
Hi � 5

6
Y 1 +

2

d
Y 3

Type VI0 = VII0

6t@t + 3H
i � 2Y 1 � 2

p
3Y 2 +

6

d
Y 3:

In the following we concentrate on the Bianchi I model and make use of the extra Noether integral to de�ne

a transformation [162] which allows the determination of the analytic form of the metric.

The Lagrangian describing a scalar �eld with exponential potential in an empty Bianchi I spacetime is

L = e3�
�
6 _�

2 � 3
2

�
_�
2

1 +
_�
2

2

�
� _�

2
+ V0e

�d�
�

(9.204)

and the corresponding Hamiltonian vanishes. The metric de�ned by this Lagrangian is (9.202).

Using the transformation � = 1
3 ln

�
a3

2

�
the Lagrangian becomes

L = 3a _a2 � 1
2
a3 _�� 3

4
a3
�
_�
2

1 +
_�
2

2

�
+
1

2
V0a

3e�d�:

We change variables by means of the transformation

u =

p
6

4
�+

1

2
ln
�
a3
�
; v = �

p
6

4
�+

1

2
ln
�
a3
�
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and the Lagrangian takes the form

L (u; v; _u; _v) = e(u+v)
�
8

3
_u _v � 3

2

�
_�
2

1 +
_�
2

2

�
+ V0e

�2K(u�v)
�
:

Next we change the time coordinate as follows

d�

dt
=

r
3V0
8
e�K(u�v):

We make one more change �1 =
q

9
16B1 ; �2 =

q
9
16B2 and in the coordinates � ; u; v; B1; B2 the Lagrangian is:

L (� ; u; v; B1; B2) = e(u+v)e�K(u�v)
�
u0v0 �

�
B021 +B

02
2

�
+ 1
�

(9.205)

where u0 = du
d� ; v

0 = dv
d� ; B

0
1;2 =

dB1;2

d� : The equations of motion are

u00 + (1�K)u02 + (1 +K)B
02
1 + (1 +K)B

02
2 � (1 +K) = 0 (9.206)

v00 + (1 +K) v02 + (1�K)B
02
1 + (1�K)B

02
2 � (1�K) = 0 (9.207)

B
00

1 + (1�K)B01u0 + (1 +K)B
0

1v
0 = 0 (9.208)

B
00

2 + (1�K)B
0

2u
0 + (1 +K)B02v

0 = 0 (9.209)

with constrain (the zero Hamiltonian) u0v0 �
�
B021 +B

02
2

�
� 1 = 0: These expressions are symmetric in B1; B2

therefore we set B1 = B2: =
1
2B and the system of equations of motion becomes

u00 + (1�K)u02 + (1 +K)B
02 � (1 +K) = 0 (9.210)

v00 + (1 +K) v02 + (1�K)B
02 � (1�K) = 0 (9.211)

B
00
+ (1�K)B0u0 + (1 +K)B

0
v0 = 0 (9.212)

with constraint

u0v0 �B02 � 1 = 0: (9.213)

We consider two cases K = 1 and K 6= 1.
For K = 1 the metric is ds2 = 2e2v

�
dudv � dB2

�
: The potential is the gradient KV V (u; v) = �e2v and

the solution of the system is

u (�) = �2 + 2c21 ln (� + c2) + 2tc2 (9.214)

v (�) =
1

2
ln (2� + c2) (9.215)

B (�) = c1 ln (� + c2) : (9.216)

For K 6= 1 we make use of the extra Noether integral e(u+v)e�K(u�v) _B = C and solve the system. We �nd
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that K = 1�C2

1+C2 and that the system has two solutions. The �rst is:

u (�) =
1

2 (1�K) ln
�
K � 1
1 +K

sin
�
2
p
K2 � 1�

��
(9.217)

v (�) =
1

2 (1 +K)
ln
�
sin
�
2
p
K2 � 1�

��
(9.218)

B (�) =
i

2
p
K2 � 1

arctanh
�
cos
�
2
p
K2 � 1�

��
(9.219)

and the second:

u (�) =
1

2 (1�K) ln
�
K � 1
1 +K

cos
�
2
p
K2 � 1�

��
(9.220)

v (�) =
1

2 (1 +K)
ln
�
cos
�
2
p
K2 � 1�

��
(9.221)

B (�) =
i

2
p
K2 � 1

arctanh

 
1

sin
�
2
p
K2 � 1�

�! : (9.222)

These solutions complement the results of [163]

9.8 Conclusion

In this chapter we have studied conformally related metrics and Lagrangians in the context of scalar�tensor

cosmology. We have found that to every non-minimally coupled scalar �eld we can associate a unique minimally

coupled scalar �eld in a conformally related space with an appropriate potential. The existence of such a

connection can be used in order to study the dynamical properties of the various cosmological models, since the

�eld equations of a non-minimally coupled scalar �eld are the same, at the conformal level, of the �eld equations

of the minimally coupled scalar �eld. The above propositions can be extended to general Riemannian spaces

in n-dimensions. Furthermore, we have identi�ed the Noether point symmetries and the analytic solutions of

the equations of motion in the context of a minimally coupled and a non minimally coupled scalar �eld in a

FRW spacetime and we have classi�ed the Noether symmetries of the �eld equations in Bianchi class A models

with a minimally coupled scalar �eld. We found that there is a rather large class of hyperbolic and exponential

potentials which admit extra (beyond the @t) Noether pont symmetries which lead to integrals of motions.

In general, the Noether point symmetries play an important role in physics because they can be used to

simplify a given system of di¤erential equations as well as to determine the integrability of the system. The

latter will provide the necessary platform in order to solve the equations of motion analytically and thus to

obtain the evolution of the physical quantities. In cosmology, such a method is extremely relevant in order to

compare cosmographic parameters, such as scale factor, Hubble expansion rate, deceleration parameter, density

parameters with observational constrains.

However, since the Noether point symmetries are generated from the kinetic metric of the Lagrangian, they

are not only a criterion for the integrability of the system and a method to determine analytical solutions of the



234 CHAPTER 9. NOETHER SYMMETRIES IN SCALAR FIELD COSMOLOGY

�eld equations, but they are also a geometric criterion since by demanding the existence of Noether symmetries

we let the geometry to select the dynamics, i.e. the dark energy model.

In the following chapters we study the Noether symmetries of the f (R) and the f (T ) theories of gravity.
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9.A Relating the ranges of the constants F0 and jkj

We consider the following ranges for the constants F0 and jkj
a. F0 > 0: In this case we have jkj = 1

3

q
F0
F0+1

from which follows

jkj2 < 1 ; F0 > 0

b. �1 < F0 < 0: In this case we havejkj = 1
3

q
jF0j
F0+1

from which follows.

jkj2 = 1 ; F0 = �
9

10
; jkj2 < 1; F0 > �

9

10
; jkj2 > 1 ; F0 2

�
�1;� 9

10

�

c. F0 < 1 : Then jkj = 1
3

q
jF0j
jF0j�1 from which follows

jkj2 = 1 ; F0 = �
9

8
; jkj2 < 1 ; F0 < �

9

8
; jkj2 > 1 ; F0 2

�
�9
8
;�1

�
:

The ranges of jkj are needed because they select di¤erent groups of Killing vectors of the metric (9.41).

9.B Computation of the gradient functions S1 (r; �) ; S2 (r; �)

The functions S1 (r; �) ; S2 (r; �) are the canonical coordinates x; y for the KVsK1;K2: The canonical coordinates

are de�ned with the requirement K1 = @
@x ;K

2 = @
@y and are computed as follows. We have the system of

di¤erential equations:

@

@y
=

e(1�k)�rk

N2
0

�
�@r +

1

r
@�

�
@

@x
=

e�(1+k)�r�k

N2
0

�
@r +

1

r
@�

�
:

To solve it we consider the associated Lagrange system and write:

dy

1
= �N2

0

dr

rke(1�k)�
= N2

0

d�

rk�1e(1�k)�

The �rst equation gives:

y = �N2
0 e
(�1+k)�

Z
dr

rk
= �N2

0 e
(�1+k)� r

1�k

1� k +�(�)

The second equation gives:

y = N2
0 r
�k+1

Z
d�

e(1�k)�
= N2

0

r1�k

�1 + k e
(1�k)� +�1(r)

hence we have (this is the S2 (r; �)):

y = N2
0

r1�k

k � 1e
�(1�k)�:
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For the other coordinate we have:

dx

1
= N2

0

dr

r�ke�(1+k)�
= N2

0

d�

r�k�1e�(1+k)�

The �rst equation gives:

x = N2
0 e
(1+k)�

Z
dr

r�k
= N2

0 e
(1+k)� 1

1 + k
r1+k +�(�)

and the second equation gives:

x = N2
0 r
1+k

Z
d�

e�(1+k)�
=

1

1 + k
N2
0 r
1+ke(1+k)� +�1(r)

hence (this is the S1 (r; �)):

x =
1

1 + k
N2
0 r
1+ke(1+k)�:

Therefore, we have the canonical coordinates

x =
r1+ke�(1+k)�

k + 1
; y =

r1�ke(�1+k)�

k � 1



Chapter 10

Using Noether point symmetries to

specify f (R) gravity

10.1 Introduction

In chapter 9 we used the Noether point symmetries of the scalar tensor theories in order to constrain the dark

energy models. Except the sclarar �eld cosmology there are other possibilities to explain the present accelerating

stage. For instance, one may consider that the dynamical e¤ects attributed to dark energy can be resembled

by the e¤ects of a nonstandard gravity theory. In other words, the present accelerating stage of the universe

can be driven only by cold dark matter, under a modi�cation of the nature of gravity. Such a reduction of the

so-called dark sector is naturally obtained in the f(R) gravity theories [87]. In the original nonstandard gravity

models, one modi�es the Einstein-Hilbert action with a general function f(R) of the Ricci scalar R. The f(R)

approach is a relatively simple but still a fundamental tool used to explain the accelerated expansion of the

universe. A pioneering fundamental approach was proposed long ago with f(R) = R +mR2 [164]. Later on,

the f(R) models were further explored from di¤erent points of view in [89, 88, 165] and indeed a large number

of functional forms of f(R) gravity is currently available in the literature [140, 166, 167, 168, 169].

In the following, we will use the Lie and the Noether point symmetries in order to specify the f (R) gravity

in a FRW spacetime and use the �rst integrals of these models to determine analytic solutions of their �eld

equations.

The structure of this chapter is as follows. The basic theoretical elements of the problem are presented in

section 10.2, where we also introduce the basic FRW cosmological equations in the framework of f(R) models.

The Noether point symmetries and their relevance to the f(R) models are discussed in section 10.4. In section

10.5 we provide analytical solutions for those f(R) models which are Liouville integrable via Noether point

symmetries. In section 10.6 we study the Noether point symmetries in spatially non-�at f(R) cosmological

237
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models. Finally, we draw our main conclusions in section 10.7.

10.2 Cosmology with a modi�ed gravity

Consider the modi�ed Einstein-Hilbert action:

S =

Z
d4x

p
�g
�
1

2k2
f (R) + Lm

�
(10.1)

where Lm is the Lagrangian of dust-like (pm = 0) matter and k2 = 8�G. Varying the action with respect to

the metric1 we arrive at

(1 + f 0)G�� � g��f
R; � ; � +

�
2�f 0 � (f �Rf 0)

2

�
��� = k2 T�� (10.2)

where the prime denotes derivative with respect to R, G�� is the Einstein tensor and T
�
� is the ordinary energy-

momentum tensor of matter. Based on the matter era we treat the expanding universe as a dust �uid which

includes only cold dark matter with comoving observers U� = ��0 . Thus the energy momentum tensor becomes

T�� = �mU�U� , where �m is the energy density of the cosmic �uid.

Now, in the context of a �at FRW model the metric is

ds2 = �dt2 + a2(t)(dx2 + dy2 + dz2): (10.3)

The components of the Einstein tensor are computed to be:

G00 = �3H2; Gab = ��ab
�
2 _H + 3H2

�
: (10.4)

Inserting (10.4) into the modi�ed Einstein�s �eld equations (10.2), for comoving observers, we derive the modi�ed

Friedman�s equation

3f
0
H2 = k2�m +

f
0
R� f
2

� 3Hf
00 _R (10.5)

2f
0 _H + 3f

0
H2 = �2Hf

00 _R�
�
f
000 _R2 + f

00 �R
�
� f �Rf 0

2
: (10.6)

The contraction of the Ricci tensor provides the Ricci scalar

R = g��R�� = 6

�
�a

a
+
_a2

a2

�
= 6(2H2 + _H) : (10.7)

The Bianchi identity 5� T�� = 0 leads to the matter conservation law:

_�m + 3H�m = 0 (10.8)

whose solution is

�m = �m0a
�3: (10.9)

1We use the metric i.e. the Hilbert variational approach.
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Note that the over-dot denotes derivative with respect to the cosmic time t and H � _a=a is the Hubble

parameter.

If we consider f(R) = R then the �eld equations (10.2) boil down to the Einstein�s equations. On the other

hand, the concordance � cosmology is fully recovered for f(R) = R� 2�.
From the current analysis it becomes clear that unlike the standard Friedman equations in Einstein�s GR, the

modi�ed equations of motion (10.5) and (10.6) are complicated and thus it is di¢ cult to solve them analytically.

We would like to stress here that within the context of the metric formalism the above f(R) cosmological

models must obey simultaneously some strong conditions [136]. These are: (i) f
0
> 0 for R � R0 > 0, where

R0 is the Ricci scalar at the present time. If the �nal attractor is a de Sitter point we need to have f
0
> 0 for

R � R1 > 0, where R1 is the Ricci scalar at the de Sitter point, (ii) f
00
> 0 for R � R0 > 0, (iii) f(R) � R� 2�

for R� R0 and �nally (iv) 0 <
Rf

00

f 0
(r) < 1 at r = �Rf

0

f = �2

10.3 Modi�ed gravity versus symmetries

In the last decade a large number of experiments have been proposed in order to constrain dark energy and

study its evolution. Naturally, in order to establish the evolution of the dark energy (DE) (�geometrical�in the

current work) equation of state parameter a realistic form of H(a) is required while the included free parameters

must be constrained through a combination of independent DE probes (for example SNIa, BAOs, CMB etc).

However, a weak point here is the fact that the majority of the f(R) models appeared in the literature are

plagued with no clear physical basis and/or many free parameters. Due to the large number of free parameters

many such models could �t the data. The proposed additional criterion of Noether point symmetry requirement

is a physically meaning-full geometric ansatz.

According to the theory of general relativity, the space-time Killing and homothetic symmetries via the

Einstein�s �eld equations, are also symmetries of the energy momentum tensor. Due to the fact that the f(R)

models provide a natural generalization of GR one would expect that the theories of modi�ed gravity must

inherit the symmetries of the space-time as the usual gravity (GR) does.

Furthermore, besides the geometric symmetries we have to consider the dynamical symmetries, which are

the symmetries of the �eld equations (Lie symmetries). If the �eld equations are derived from a Lagrangian

then there is the special class of Lie symmetries, the Noether symmetries, which lead to conserved currents or,

equivalently, to �rst integrals of the equations of motion. The Noether integrals are used to reduce the order

of the �eld equations or even to solve them. Therefore a sound requirement, which is possible to be made

in Lagrangian theories, is that they admit extra Noether symmetries. This assumption is model independent,

because it is imposed after the �eld equations have been derived, therefore it does not lead to con�ict with

the geometric symmetries while, at the same time, serves the original purpose of a selection rule. Of course,

it is possible that a di¤erent method could be assumed and select another subset of viable models. However,

symmetry has always played a dominant role in Physics and this gives an aesthetic and a physical priority to



240 CHAPTER 10. USING NOETHER POINT SYMMETRIES TO SPECIFY F (R) GRAVITY

our proposal.

In the Lagrangian context, the main �eld equations (10.5) and (10.6), described in section 10.2, can be

produced by the following Lagrangian:

L
�
a; _a;R; _R

�
= 6af

0
_a2 + 6a2f

00
_a _R+ a3

�
f
0
R� f

�
(10.10)

in the space of the variables fa;Rg. Using eq.(10.10) we obtain the Hamiltonian of the current dynamical
system

E = 6af
0
_a2 + 6a2f

00
_a _R� a3

�
f
0
R� f

�
(10.11)

or

E = 6a3
�
f
0
H2 � 1

6f 0

��
f
0
R� f

�
� 6 _RHf

00
��

: (10.12)

Combining the �rst equation of motion (10.5) with eq.(10.12) we �nd

�m =
E

2k2
a�3 : (10.13)

The latter equation together with �m = �m0a
�3 implies that

�m0 =
E

2k2
) 
m�cr;0 =

E

2k2
) E = 6
mH

2
0 (10.14)

where 
m = �m0=�cr;0, �cr;0 = 3H
2
0=k

2 is the critical density at the present time and H0 is the Hubble constant.

We note that the current Lagrangian eq.(10.10) is time independent implying that the dynamical system is

autonomous hence the Hamiltonian E is conserved.

10.4 Noether point symmetries of f (R) gravity

The Noether condition for the Lagrangian (10.10) is equivalent with the following system of eight equations

�;a = 0 (10.15)

�;R = 0 (10.16)

a2f 00�
(1)
;R = 0 (10.17)

f 0�(1) + af 00�(2) + 2af 0�(1);a + a
2f 00�(2);a �

1

2
af 0�;t = 0 (10.18)

2af 00�(1) + a2f 000�(2) + a2f 00�(1);a + 2af
0�
(1)
;R + a

2f 00�
(2)
;R �

1

2
a2f 00�;t = 0 (10.19)

�3a2Rf 0�(1) + 3a2f�(1) � a3Rf 00�(2) + a3
�
f � f

0
R
�
�;t + g;t = 0 (10.20)

12af 0�
(1)
;t + 6a

2f 00�
(2)
;t + a

3
�
f
0
R� f

�
�;a � g;a = 0 (10.21)
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6a2f 00�
(1)
;t + a

3
�
f
0
R� f

�
�;R � g;R = 0 (10.22)

The solution of the system (10.15)-(10.22) determines the Noether symmetries.

Since the Lagrangian (10.10) is in the form L = T
�
a; _a;R; _R

�
� V (a;R), the results of chapter 4 can be

used 2 . The kinematic term de�nes a two dimensional metric in the space of fa;Rg with line element

dŝ2 = 12af 0da2 + 12a2f 00da dR (10.23)

while the �potential�is

V (a;R) = �a3(f
0
R� f) : (10.24)

The Ricci scalar of the two dimensional metric (10.23) is computed to be R̂ = 0; therefore the space is a

�at space3 with a maximum homothetic algebra. The homothetic algebra of the metric (10.23) consists of the

vectors

K1 = a@a � 3
f 0

f 00
@R ; K2 =

1

a
@a �

1

a2
f 0

f 00
@R

K3 =
1

a

1

f 00
@R ; H =

a

2
@a +

1

2

f 0

f 00
@R

where K are Killing vectors (K2;3 are gradient) and H is a gradient Homothetic vector.

Therefore applying theorem 4.3.2 we have the following cases:

Case 1: If f (R) is arbitrary the dynamical system admits as Noether symmetry the X1 = @t with Noether

integral the Hamiltonian E.

Case 2: If f (R) = R
3
2 the dynamical system admits the extra Noether symmetries

X2 = K2; X3 = tK2 (10.25)

X4 = 2t@t +H+
5

6
K1: (10.26)

with corresponding Noether Integrals

I2 =
d

dt

�
a
p
R
�

(10.27)

I3 = t
d

dt

�
a
p
R
�
� a

p
R (10.28)

I4 = 2tE � 6a2 _a
p
R� 6 a

3

p
R
_R: (10.29)

the non vanishing commutators of the Noether algebra being

�
X1; X3

�
= X2

�
X1; X4

�
= 2X1

2Where T is the "kinetic" term and V is the "potential
3All two dimensional Riemannian spaces are Einstein spaces implying that if R̂ = const the space is maximally symmetric [23]

and if R̂ = 0; the space admit gradient homothetic vector, i.e. is �at.
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�
X2; X4

�
=
8

3
X2

�
X3; X4

�
=
2

3
X3

Case 3: If f (R) = R
7
8 the dynamical system admits the extra Noether symmetries

X5 = 2t@t +H ; X6 = t2@t + tH (10.30)

with corresponding Noether Integrals

I5 = 2tE �
21

8

d

dt

�
a3R�

1
8

�
(10.31)

I6 = t2E � 21
8
t
d

dt

�
a3R�

1
8

�
+
21

8
a3R�

1
8 : (10.32)

with non vanishing commutators�
X1; X5

�
= 2X1

�
X1; X6

�
= X5

�
X5; X6

�
= 2X6

From the time dependent integrals (10.31),(10.32) and the Hamiltonian we construct the Ermakov-Lewis in-

variant (see chapter 5)

� = 4I6E � I25 (10.33)

Case 4: If f (R) = (R� 2�)
3
2 the dynamical system admits the extra Noether symmetries

�X2 = e
p
mtK2 ; �X3 = e�

p
mtK2 (10.34)

with corresponding Noether Integrals

�I2 = e
p
mt

�
d

dt

�
a
p
R� 2L

�
� 9
p
ma
p
R� 2�

�
(10.35)

�I3 = e�
p
mt

�
d

dt

�
a
p
R� 2L

�
+ 9
p
ma
p
R� 2�

�
(10.36)

where m = 2
3�: The non vanishing commutators of the Noether algebra are�

X1; �X2
�
=
p
m �X2

�
�X3; X1

�
=
p
m �X3

From the time dependent integrals (10.35),(10.36) we construct the time independent integral �I23 = �I2 �I3:

Case 5: If f (R) = (R� 2�)
7
8 the dynamical system admits the extra Noether symmetries

�X5 =
1p
m
e2
p
mt@t + e

2
p
mt H (10.37)

�X6 = � 1p
m
e�2

p
mt@t + e

�2
p
mt H (10.38)

with corresponding Noether Integrals

�I5 = e2
p
mt

�
1p
m
E � 21

8

d

dt

�
a3 (R� 2�)�

1
8

�
+
21

4

p
ma3 (R� 2�)�

1
8

�
(10.39)
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�I6 = e�2
p
mt

�
1p
m
E +

21

8

d

dt

�
a3 (R� 2�)�

1
8

�
+
21

4

p
ma3 (R� 2�)�

1
8

�
(10.40)

and the non vanishing commutators of the Noether algebra are�
X1; �X5

�
= 2

p
m �X5

�
�X6; X1

�
= 2

p
m �X6

�
�X5; �X6

�
=

4p
m
X1

From the time dependent integrals (10.31),(10.32) and the Hamiltonian we construct the Ermakov-Lewis in-

variant.

� = E2 � �I5 �I6 (10.41)

Case 6: If f (R) = Rn (with n 6= 0; 1; 32 ;
7
8 ) the dynamical system admits the extra Noether symmetry

X7 = 2t@t +H+

�
4n

3
� 7
6

�
K1 (10.42)

with corresponding Noether Integral

I7 = 2tE � 8na2Rn�1 _a (2� n)� 4na3Rn�2 _R (2n� 1) (n� 1) : (10.43)

and the commutator of the Noether algebra is
�
X1; X7

�
= 2X1:

We note that the Noether subalgebra of case 2,
�
X1; X2; X3

	
and the algebra of case 4

�
X1; �X2; �X3

	
is

the same Lie algebra but in di¤erent representation. The same observation applies to the subalgebra of case

3
�
X1; X5; X6

	
and the algebra of case 5

�
X1; �X5; �X6

	
. This connection between the Lie groups is useful

because it reveals common features in the dynamic systems, as is the common transformation to the normal

coordinates of the systems.

For the cosmological viability of the models see [169, 136]

10.5 Analytic Solutions

Using the Noether symmetries and the associated Noether integrals we solve analytically the di¤erential eqs.(10.5),

(10.6) and (10.7) for the cases where the dynamical system is Liouville integrable, that is for cases 2-5. Case

6 (i.e. f (R) = Rn) is not Liouville integrable via Noether point symmetries, since the Noether integral (10.43)

is time dependent4 .

10.5.1 Power law model R� with � = 3
2

In this case the Lagrangian eq.(10.10) of the f(R) = R
3
2 model is written as

L = 9a
p
R _a2 +

9a2

2
p
R
_a _R+

a3

2
R

3
2 (10.44)

4 In the appendix 10.A we present special solutions for the f (R) = Rn model, using the zero order invariants.
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Changing the variables from (a;R) to (z; w) via the relations:

a =

�
9

2

�� 1
3 p

z R =
w2

z
(10.45)

the Lagrangian (10.44) and the Hamiltonian (9.178) become

L = _z _w + V0w
3 (10.46)

E = _z _w � V0w3 (10.47)

where V0 = 1
9 : The equations of motion in the new coordinate system are

�w = 0 (10.48)

�z � 3V0w2 = 0 (10.49)

The Noether integrals (10.27),(10.28) in the coordinate system fz; yg are

I
0

1 = _w ; I
0

2 = t _w � w (10.50)

The general solution of the system is:

y (t) = I 01t� I
0

2 (10.51)

z (t) =
1

36
�
I
0
1

�2 �I 01t� I 02�4 + z1t+ z0 (10.52)

The Hamiltonian constraint gives E = z1I
0

1 where z0;1 are constants and the singularity condition results in the

constraint
1

36
�
I
0
1

�2 �I 02�4 + z0 = 0: (10.53)

10.5.2 Power law model R� with � = 7
8

In this case the Lagrangian eq.(10.10) is written as

L =
21a

4R
1
8

_a2 � 21
16

a2

R
9
8

_a _R� 1
8
a3R

7
8 : (10.54)

Changing now the variables from (a;R) to (�; �) via the relations:

a =

�
21

4

�� 1
3 p

�e� R =
e12�

�4
: (10.55)

The Lagrangian (10.82) and the Hamiltonian (9.178) become

L =
1

2
_�2 � 1

2
�2 _�2 + V0

e12�

�2
(10.56)

E =
1

2
_�2 � 1

2
�2 _�2 � V0

e12�

�2
: (10.57)
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where V0 = � 1
42 : The Euler-Lagrange equations provide the following equations of motion:

��+ � _�2 + 2V0
e12�

�3
= 0 (10.58)

�� +
2

�
_� _�+ 12V0

e12�

�2
= 0: (10.59)

The Noether integrals (10.31), (10.32) and the Ermakov-Lewis invariant 10.33 in the coordinate system fu; vg
are

I
0

5 = 2tE � � _� (10.60)

I
0

6 = t2E � t� _�+ 1
2
�2: (10.61)

� = �4 _�2 + 4V0e
12�: (10.62)

Using the Ermakov-Lewis Invariant, the Hamiltonian (10.56) and equation (10.58) are written:

1

2
_�2 � 1

2

�

�2
= E (10.63)

��+
�

�3
= 0: (10.64)

And the analytical solution of the system is

� (t) =

0@�2t2 + �1t+
�
(�1)

2 � 4�
�

4�2

1A
1
2

(10.65)

exp (� (t)) =

(
21

2
�

"�
tanh

�
�0�2

p
�� 6 arctanh

�
2�2t+ �1
2
p
�

���2
� 1
#) 1

12

(10.66)

where B (t) =
�
1
2
2�2t+�1p

�

�
and �1;2 , �0 are constants with Hamiltonian constrain E = 1

2�2 . The singularity

constraint gives (�1)
2
= 4�

In the case � = 0 the analytical solution is

� (t) =

 
�2t

2 + �1t+
1

2

(�1)
2

�2

! 1
2

(10.67)

exp� (t) =

�
1

24
p
V0

(2�2t+ �1)

(4�0�22t+ 2�0�2�1 � 1)

� 1
6

(10.68)

The singularity constraint gives �1 = 0, then the solution is

a (t) =
a0t

7
6

(a2t� 1)
1
6

(10.69)

In contrast with the claim of [170] this model is analytically solvable and there exists models which admit

Noether integrals with time dependent gauge functions.
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10.5.3 �bcCDM model with (b; c) = (1; 3
2
)

Inserting f(R) = (R� 2�)3=2 into eq.(10.10) we obtain

L = 9a
p
R� 2�_a2 + 9a2

2
p
R� 2�

_a _R+
a3

2
(R+ 4�)

p
R� 2� (10.70)

Changing the variables from (a;R) to (x; y) via the relations:

a =

�
9

2

�� 1
3 p

x R = 2� +
y2

x
(10.71)

the Lagrangian (10.70) and the Hamiltonian (9.178) become

L = _x _y + V0
�
y3 + �mxy

�
(10.72)

E = _x _y � V0
�
y3 + �mxy

�
(10.73)

where V0 = 1
9 and �m = 6�.

The equations of motion, using the Euler-Lagrange equations, in the new coordinate system are

�x� 3V0y2 � �mV 0x = 0 (10.74)

�y � �mV0y = 0: (10.75)

The Noether integrals (10.35),(10.36) in the coordinate system fx; yg are

�I 01 = e!t _y � !e!ty (10.76)

�I 02 = e�!t _y + !e�!ty: (10.77)

where ! =
p
2�=3. From these we construct the time independent �rst integral

� = I1I2 = _y2 � !2y2: (10.78)

The constants of integration are further constrained by the condition that at the singularity (t = 0), the scale

factor has to be exactly zero, that is, x(0) = 0.

The general solution of the system (10.74)-(10.75) is:

y (t) =
I2
2!
e!t � I1

2!
e�!t (10.79)

x (t) = x1Ge
!t + x2Ge

�!t +
1

4 �m!2
�
I2e

!t + I1e
�!t�2 + �

�m!2
: (10.80)

The Hamiltonian constrain gives E = ! (x1GI1 � x2GI2) where x1G;2G are constants and the singularity condi-
tion results in the constrain

x1G + x2G +
1

4 �m!2
(I1 + I2)

2
+

�

�m!2
= 0: (10.81)

At late enough times the solution becomes a2(t) / e2!t
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10.5.4 �bcCDM model with (b; c) = (1; 7
8
)

In this case the Lagrangian eq.(10.10) of the f(R) = (R� 2�)7=8 model is written as

L =
21a

4 (R� 2�)
1
8

_a2 � 21
16

a2

(R� 2�)
9
8

_a _R� 1
8
a3
(R� 16�)
(R� 2�)

1
8

: (10.82)

Changing the variables from (a;R) to (u; v) via the relations:

a =

�
21

4

�� 1
3 p

uev R = 2� +
e12v

u4
: (10.83)

the Lagrangian (10.82) and the Hamiltonian (9.178) become

L =
1

2
_u2 � 1

2
u2 _v2 + V0

�m

4
u2 + V0

e12v

u2
(10.84)

E =
1

2
_u2 � 1

2
u2 _v2 � V0

�m

4
u2 � V0

e12v

u2
: (10.85)

where �m = �28� ; V0 = � 1
42 :

The Euler-Lagrange equations provide the following equations of motion:

�u+ u _v2 � V0 �m

2
u+ 2V0

e12v

u3
= 0 (10.86)

�v +
2

u
_u _v + 12V0

e12v

u4
= 0: (10.87)

The Noether integrals (10.39),(10.40) and the Ermakov-Lewis invariant (10.41) in the coordinate system fu; vg
are

I+ =
1

�
e2�tE � e2�tu _u+ �e2�tu2 (10.88)

I� =
1

�
e�2�tE � e�2�tu _u+ �e�2�tu2: (10.89)

� = u4 _v2 + 4V0e
12v: (10.90)

where � = 1
2

q
2
3�:

Using the Ermakov-Lewis Invariant (10.90), the Hamiltonian (10.85) and equation (10.86) are written:

1

2
_u2 � V0

m

8
u2 � 1

2

�

u2
= E (10.91)

�u� V0m

4
u+

�

u3
= 0: (10.92)

The solution of (10.92) has been given by Pinney [79] and it is the following:

u (t) =
�
u1e

2�t + u2e
�2�t + 2u3

� 1
2 (10.93)

where u1�3. From the Hamiltonian constraint (10.91) and the Noether Integrals (10.88),(10.89) we �nd

E = �2�u3 ; I+ = 2�u2 ; I� = 2�u1:
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Replacing (10.93) in the Ermakov-Lewis Invariant (10.90) and assuming � 6= 0 we �nd:

exp (v (t)) = 2
1
6�

1
12 e�A(t)

�
4V0 + e

�12A(t)
�� 1

6

(10.94)

where

A (t) = arctan

�
2�p
�

�
u1e

2�t + u3
��
+ 4�2u1

p
�: (10.95)

Then the solution is

a2 (t) = 2�
1
3�

1
12 e�A(t)

�
4V0 + e

�12A(t)
�� 1

6 �
u1e

2�t + u2e
�2�t + 2u3

� 1
2 (10.96)

where from the singularity condition x (0) = 0 we have the constrain u1 + u2 + 2u3 = 0 , or

2E � (I+ + I�) = 0: (10.97)

At late enough time we �nd A (t) ' A0, which implies a2(t) / e�t:

In the case where � = 0 equations (10.91),(10.92) describe the hyperbolic oscillator and the solution is

u (t) = sinh�t ; 2E = �2: (10.98)

From the Ermakov-Lewis Invariant we have

exp (v (t)) =

 
� sinh�t

�v1 sinh�t� 12
p
jV0je�2�t

! 1
6

(10.99)

where v1 is a constant. The analytic solution is

a2 (t) =

 
� sinh7 �t

�v1 sinh�t� 12
p
jV0je�2�t

! 1
6

(10.100)

10.6 Noether point symmetries in spatially non-�at f(R) models

In this section we study further the Noether point symmetries in non �at f(R) cosmological models. In the

context of a FRW spacetime the Lagrangian of the overall dynamical problem and the Ricci scalar are

L = 6f 0a _a2 + 6f 00 _Ra2 _a+ a3 (f 0R� f)� 6Kaf 0 (10.101)

R = 6

�
�a

a
+
_a2 +K

a2

�
(10.102)

where K is the spatial curvature. Note that the two dimensional metric is given by eq.(10.23) while the

�potential�in the Lagrangian takes the form

VK(a;R) = �a3(f 0R� f) +Kaf 0: (10.103)
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Based on the above equations and using the theoretical formulation presented in section 10.4, we �nd that

the f(R) models which admit non trivial Noether symmetries are the f(R) = (R � 2�)3=2, f(R) = R3=2 and

f(R) = R2. The Noether symmetries can be found in section 10.4.

In particular, inserting f(R) = (R � 2�)3=2 into the Lagrangian (10.101) and changing the variables from
(a;R) to (x; y) [see section 10.5.3] we �nd

L = _x _y + V0
�
y3 + �mxy

�
� �Ky (10.104)

E = _x _y � V0
�
y3 + �mxy

�
+ �Ky (10.105)

where �K = 3(61=3K). Therefore, the equations of motion are

�x� 3V0y2 � �mV0x+ �K = 0

�y � �mV0y = 0 :

The constant term �K appearing in the �rst equation of motion is not expected to a¤ect the Noether symmetries

(or the integrals of motion). Indeed we �nd that the corresponding Noether symmetries coincide with those of

the spatially �at f(R) = (R � 2�)3=2 model. However, in the case of K 6= 0 (or �K 6= 0) the analytic solution
for the x-variable is written as

xK(t) � x(t) +
�K

!2
(10.106)

where x(t) is the solution of the �at model K = 0 (see section 10.5.3). Note that the solution of the y-variable

remains unaltered.

Similarly, for the f(R) = R3=2 model the analytic solution is

zK (t) = z (t) + �K (10.107)

where z (t) is the solution of the spatially �at model (see section 10.5.1).

10.7 Conclusion

In the literature the functional forms of f(R) of the modi�ed f(R) gravity models are mainly de�ned on a

phenomenological basis. In this article we use the Noether symmetry approach to constrain these models with

the aim to utilize the existence of non-trivial Noether symmetries as a selection criterion that can distinguish

the f(R) models on a more fundamental level. Furthermore the resulting Noether integrals can be used to

provide analytic solutions.

In the context of f(R) models, the system of the modi�ed �eld equations is equivalent to a two dimensional

dynamical system moving in M2 (mini superspace) under the constraint �E =constant. Following the general

methodology of chapter 4, we require that the two dimensional system admits extra Noether point symmetries.

This requirement �xes the f (R) function and the corresponding analytic solutions are computed. It is interesting
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that two well known dynamical systems appear in cosmology: the anharmonic oscillator and the Ermakov-

Pinney system. We recall that the �eld equations of the ��cosmology is equivalent with that of the hyperbolic
oscillator.
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10.A Special solutions for the power law model Rn

The case f (R) = Rn is not Liouville integrable via Noether point symmetries. However the zero order invariant

will be used in order to �nd special solutions. Inserting f(R) = Rn
�
n 6= 0; 1; 32 ;

7
8

�
into eq.(10.10) we obtain

L
�
a; _a;R; _R

�
= 6naRn�1 _a2 + 6n (n� 1) a2Rn�2 _a _R+ (n� 1) a3Rn (10.108)

and this leads to the modi�ed �eld equations

�a+
1

a
_a2 � 1

6
aR = 0 (10.109)

�R+
n� 2
R

_R2 � 1

n� 1
R

a2
_a2 +

2

a
_a _R� (n� 3)

6n (n� 1)R
2 = 0 (10.110)

E = 6naRn�1 _a2 + 6n (n� 1) a2Rn�2 _a _R� (n� 1) a3Rn: (10.111)

The Noether point symmetry (10.42) is also and a Lie symmetry, hence we have the zero order invariants

a0 = at�N ; R0 = Rt�2: (10.112)

Applying the zero order invariants in the �eld equations (10.109)-(10.111) and in the Noether integral (10.43)

we have the following results.

The dynamical system admits a special solution of the form

a = a0t
N ; R = 6N (2N � 1) t�2 (10.113)

where the constants N; E and I7 are

N =
1

2
; E = 0 ; I7 = 0

or

N = � (2n� 1) (n� 1)
n� 2 ; E = 0 ; I7 = 0

or

N =
2

3
n ; E =

�
12n

9

�n
(4n� 3)n�1

�
13n� 8n2 � 3

�
a30 ; I7 = 0:

Another special solution is the deSitter solution for n = 2

a = a0e
H0t ; R = 12H2

0 (10.114)

where I7 = 0 and the spacetime is empty i.e. E = 0.
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Chapter 11

Noether symmetries in f (T ) gravity

11.1 Introduction

In this chapter we continue our analysis on the application of Noether point symmetries in alternative theories

of gravity and speci�cally the f (T ) modi�ed theory of gravity. f (T ) gravity it is based on the old formulation of

Teleparallel Equivalent of General Relativity (TEGR) [171, 172, 173, 174] which instead of the torsion-less Levi-

Civita connection uses the curvatureless Weitzenbock connection [175] in which the corresponding dynamical

�elds are the four linearly independent vierbeins. Therefore, all the information concerning the gravitational �eld

is included in the Weitzenbock tensor. Within this framework, considering invariance under general coordinate

transformations, global Lorentz-parity transformations, and requiring up to second order terms of the torsion

tensor, one can write down the corresponding Lagrangian density T by using some suitable contractions.

Furthermore f (T ) gravity which is based on the fact that we allow the Lagrangian to be a function of

T [176, 177, 178], inspired by the extension of f (R) Einstein-Hilbert action. However, f (T ) gravity does

not coincide with f (R) extension, but it rather consists of a di¤erent class of modi�ed gravity models. It

is interesting to mention that the torsion tensor includes only products of �rst derivatives of the vierbeins,

giving rise to second-order �eld di¤erential equations in contrast to the f (R) gravity that provides fourth-order

equations, which potentially may lead to some problems, for example in the well position and well formulation

of the Cauchy problem [179]. Moreover, as we showed in chapter 10 the Lagrangian of the �eld equations in

f (R) gravity described a regular dynamical system; however, in f (T ) the dynamical system is singular and the

T variable can be seen as a Lagrange multiplier.

In section 11.2 we discuss the role of unholonomic frames in the context of teleparallel gravity and its

straightforward extension. In section 11.3, we brie�y present f(T ) gravity, while in section 11.4 we construct

the corresponding generalized Lagrangian formulation. In section 11.5, we analyze the main properties of the

Noether Symmetry Approach for f(T ) gravity. Then, in section 11.6 and 11.7, we apply these results in the

253
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FRW and the static spherically symmetric spaces.

11.2 Unholonomic frames and Connection Coe¢ cient

In an n�dimensional manifold M consider a coordinate neighborhood U with a coordinate system fx�g: At
each point P�U we have the resulting holonomic frame f@�g: We de�ne in U a new frame fea(x�)g which is
related to the holonomic frame f@ag as follows:

ea(x
�) = h�a@� a; � = 1; 2; :::; n (11.1)

where the quantities h�a(x) are in general functions of the coordinates (i.e. depend on the point P ). Notice that

Latin indexes count vectors, while Greek indexes are tensor indices. We assume that deth�a 6= 0 which guaranties
that the vectors fea(x�)g form a set of linearly independent vectors. We de�ne the �inverse�quantities h�a by

means of the following �orthogonality�relations:

h�ah
a
� = ��� ; h

�
b h

c
� = �cb: (11.2)

The commutators of the vectors feag are not in general all zero. If they are, then there exists a new coordinate
system in U , the fybg say so that eb = @

@yb
i.e. the new frame is holonomic. If there are commutators

[ea; eb] 6= 0 then the new frame feag is called unholonomic and the vectors ea cannot be written in the form
eb = @b: The quantities which characterize an unholonomic frame are the objects of unholonomicity or Ricci

rotation coe¢ cients 
abc de�ned by the relation

[ea; eb] = 

c
abec: (11.3)

We compute:

[ea; eb] = [h
�
a@�; h

�
b@� ] =

�
h�ah

�
b;�h

c
� � h�bh�a;�hc�

�
ec

from which follows that the Ricci rotation coe¢ cients of the frame feag are:


abc = 2h
�
[bh

�
c];�h

a
� : (11.4)

The condition for feag to be a holonomic basis is 
abc = 0 at all points P�U: This is a set of linear partial

di¤erential equations whose solution de�nes all holonomic frames and all coordinate systems in U: One obvious

solution is hcb = �cb. The set of all coordinate systems in U equipped with the operation of composition of

transformations has the structure of an in�nite dimensional Lie group which is called the Manifold Mapping

Group [?].

We consider now the special unholonomic frames which satisfy Jacobi�s identity:

[[ea; eb]; ec] + [[eb; ec]; ea] + [[ec; ea]; eb] = 0: (11.5)
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These frames are the generators of a Lie Algebra, therefore they have an extra role to play. Replacing the

commutator in terms of the unholonomicity objects we �nd the following identity:


dab;c +

d
ba;a +


d
ca;b � 
lab
dcl � 
lbc
dal � 
lca
dbl = 0: (11.6)

Using the de�nition of the covariant derivative we write:

reiej = �kijek (11.7)

where �kij are the connection coe¢ cients in the frame feig: Let us compute these �kij assuming that

[ei; ej ] = Ck:ijek

from which follows

Ck:ij = 

k
:jk:

Consider three vector �elds X;Y; Z and the covariant derivative of the metric wrt X: Then we have:

rXg(Y; Z) = X(g(Y; Z))� g(rXY;Z)� g(Y;rY Z) (11.8)

and by interchanging the role of X;Y; Z :

rY g(Z;X) = Y (g(Z;X))� g(rY Z;X)� g(Z;rZX) (11.9)

rZg(X;Y ) = Z(g(X;Y ))� g(rZX;Y )� g(X;rXY ): (11.10)

Adding (11.8), (11.9) and subtracting (11.10) we obtain:

rXg(Y; Z) +rY g(Z;X)�rZg(X;Y ) = X(g(Y; Z)) + Y (g(Z;X))� Z(g(X;Y )) +

� [g(rXY; Z) + g(rY Z;X)� g(rZX;Y )] +

� [g(Y;rXZ) + g(Z;rYX)� g(X;rZY )]

then

rXg(Y;Z) +rY g(Z;X)�rZg(X;Y ) = X(g(Y;Z)) + Y (g(Z;X))� Z(g(X;Y )) +

� [g(rXY; Z) + g(Z;rYX)] +

� [g(rY Z;X)� g(X;rZY )] +

� [g(Y;rXZ)� g(rZX;Y )] =
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that is

rXg(Y;Z) +rY g(Z;X)�rZg(X;Y ) = X(g(Y;Z)) + Y (g(Z;X))� Z(g(X;Y )) +

� [g(Z;rXY +rYX) + g(X;rY Z �rZY ) + g(Y;rXZ �rZX)] :

The term

g(Z;rXY +rYX) = 2g (Z;rXY ) + g (Z;rYX �rXY ) :

Replacing in the last relation and solving for 2g (Z;rXY ) we �nd

2g (Z;rXY ) = [X(g(Y; Z)) + Y (g(Z;X))� Z(g(X;Y ))] +

� [rXg(Y;Z) +rY g(Z;X)�rZg(X;Y )] +

� [g (Z;rYX �rXY ) + g(X;rY Z �rZY ) + g(Y;rXZ �rZX)]

or

2g (Z;rXY ) = [X(g(Y; Z)) + Y (g(Z;X))� Z(g(X;Y ))] +

� [rXg(Y; Z) +rY g(Z;X)�rZg(X;Y )] +

� [g (Z;rYX �rXY � [Y;X]) + g(X;rY Z �rZY � [Y; Z]) + g(Y;rXZ �rZX � [X;Z])] +

� [g (Z; [Y;X]) + g (X; [Y; Z]) + g (Y; [X;Z])] :

De�ne the quantities

Tr(X;Y ) = rXY �rYX � [X;Y ]

Ar(X;Y; Z) = rXg(Y;Z)

The tensors Tr and Ar are called the torsion and the metricity of the connection r respectively. Last relation

in terms of the �elds Tr and Ar is written as follows:

2g (Z;rXY ) = [X(g(Y; Z)) + Y (g(Z;X))� Z(g(X;Y ))] +

� [Ar (X;Y; Z) +Ar (Y; Z;X)�Ar (Z;X; Y )] +

� [g (Z; Tr (Y;X)) + g (X;Tr (Y; Z)) + g (Y; Tr (X;Z))]

� [g (Z; [Y;X]) + g (X; [Y; Z]) + g (Y; [X;Z])] : (11.11)

Let X = el ; Y = ej and Z = ek: Contracting with 1
2g
il we have

2g (Z;rXY )! �ijk

[X(g(Y;Z)) + Y (g(Z;X))� Z(g(X;Y ))]!
�
i
jk

	
g (X;Tr (Y;Z))! Qi:kj
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g (Z; Tr (Y;X)) + g (Y; Tr (X;Z))! gil(gtjQ
t
kl + gtkQ

t
jl) = � �Si:kj

g (X; [Y; Z])! 1

2
Ci:jk

g (Z; [Y;X]) + g (Y; [X;Z]) =
1

2
gil(gtjC

t
lk + gtkC

t
jl) = �Si:kj

and

Ar (X;Y; Z) +Ar (Y;Z;X)�Ar (Z;X; Y )!
1

2
gil�jkl

Replacing in (11.11) we �nd the connection coe¢ cients in the frame feig

�ijk =
�
i
jk

	
+ �Si:kj + S

i
:kj �

1

2
gil�jkl +Q

i
jk �

1

2
Ci:jk (11.12)

where
n
i
jk

o
is the standard Levi Civita connection coe¢ cients (Christofell symbols). This is the most general

expression for the connection coe¢ cients in terms of the �elds
n
i
jk

o
; Tr; Ar and Cijk.

Concerning the symmetric and antisymmetric part we have:

�i:(jk) =
�
i
jk

	
+ �Si:jk + S

i
:jk �

1

2
gil�jkl (11.13)

�i:[jk] = Qi:jk �
1

2
Ci:jk: (11.14)

From the above we draw the following conclusions:

1. The connection coe¢ cients in a frame feig are determined from the metric, the torsion, the metricity

and the unholonomicity objects (equivalently the commutators) of the frame vectors

2. The symmetric part �i:(jk) of �
i
jk depends on all �elds. This means that the geodesics and the autoparallels

in a given frame depend on the geometric properties of the space (�elds gij ; Qi:kj ; gijjk) and the unholonomicity

of the frame (�eld Ci:jk)

3. The antisymmetric part �i:[jk] of �
i
jk depends only on the �elds Q

i
:kj and C

i
:jk:

4. The objects of unholonomicity Ci:jk behave in the same way as the components of the torsion. This means

that even in a Riemannian space where Qi:kj = 0; gijjk = 0 in an unholonomic basis the antisymmetric part

�i:[jk] = �
1
2C

i
:jk 6= 0: This result has lead to the misunderstanding that when one works in an unholonomic frame

then one has introduced torsion, which is not correct! This is the case with the TEGR. This misunderstanding

has important consequences because the e¤ects one will observe in an unholonomic frame will be frame dependent

e¤ects and not covariant e¤ects. Therefore all conclusions made in a speci�c unholonomic frame are restricted

to that frame only.

11.3 f(T )-gravity

Teleparallelism uses as dynamical objects special unholonomic frames in spacetime, called vierbeins, which are

de�ned by the requirement

g(ei; ej) = ei:ej = �ij (11.15)
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where �ij = diag(1;�1;�1;�1) is the Lorentz metric in canonical form. Obviously g��(x) = �ijh
i
�(x)h

j
�(x)

where ei(x) = hi�(x)dx
i is the dual basis. Di¤ering from GR, which uses the torsionless Levi-Civita connection,

Teleparallelism utilizes the curvatureless Weitzenböck connection [175], where Weitzenböck non-null torsion is

T ��� = �̂
�
�� � �̂��� = h�i (@�h

i
� � @�hi�) : (11.16)

Notice that we assume that the Ricci rotation coe¢ cients obey 
ijk = T ijk and encompass all the informa-

tion concerning the gravitational �eld. The TEGR Lagrangian for the gravitational �eld equations (Einstein

equations) is taken to be:

T = S��� T ��� (11.17)

where

S��� =
1

2
(K��

� + ���T
��
� � ���T

��
� ) (11.18)

and K��
� is the tensor

K��
� = �1

2
(T��� � T ��� � T��� ); (11.19)

which equals the di¤erence of the Levi Civita connection in the holonomic and the unholonomic frame.

In this work the gravitational �eld will be driven by a Lagrangian density which is a function of T . Therefore,

the corresponding action of f(T ) gravity reads as

A = 1

16�G

Z
d4xef(T ) (11.20)

where e = det(ei� � ei�) =
p�g and G is Newton�s constant. TEGR and thus General Relativity is restored

when f(T ) = T . First of all, in order to construct a realistic cosmology we have to incorporate the matter and

radiation sectors too. Therefore, the total action is written as

Stot = A+
1

16�G

Z
d4xe (Lm + Lr) ; (11.21)

If matter couples to the metric in the standard form then the variation of the action (11.21) with respect to the

vierbein leads to the equations [180]

e�1@�(eS
��
i )f

0(T )� h�i T
�
��S

��
� f 0(T )

+S��i @�(T )f
00(T ) +

1

4
h�i f(T ) = 4�Gh

�
i T

�
� (11.22)

where a prime denotes di¤erentiation with respect to T , Si
�� = hi

�S��� and T�� is the matter energy-momentum

tensor.

11.4 Generalized Lagrangian formulation of f(T ) gravity

In this section, we provide a generalized Lagrangian formulation in order to construct a theory of f(T ) gravity.

Speci�cally, the gravitational �eld is driven by the Lagrangian density f(T ) in (11.20), which can be generalized
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through the use of a Lagrange multiplier. In particular, we can write it as

L
�
xk; x0k; T

�
= 2fT �ij

�
xk
�
x0ix0j +M

�
xk
�
(f � TfT ) (11.23)

where x0 = dx
d� , M(x

k) is the Lagrange multiplier and �ij is a second rank tensor which is related to the frame

[one can use eT (xk; x0k)] of the background spacetime. In the same lines, the Hamiltonian of the system is

written as

H
�
xk; x0k; T

�
= 2fT �ij

�
xk
�
x0ix0j �M

�
xk
�
(f � TfT ) = 0 : (11.24)

In this case, the system is autonomous hence @� is a Noether symmetry with corresponding Noether integral

the Hamiltonian H.

In this framework, considering fxk; Tg as the canonical variables of the con�guration space, we can derive,
after some algebra, the general �eld equations of f(T ) gravity. Indeed, starting from the Lagrangian (11.23),

the Euler-Lagrange equations
@L

@T
= 0;

d

d�

�
@L

@x0k

�
� @L

@xk
= 0 (11.25)

give rise to

fTT
�
2�ijx

0ix0j �MT
�
= 0; (11.26)

xi00 + ��ijkx
j0xk0 +

fTT
fT

xi0T 0 �M ;i (f � TfT )
4fT

= Bim : (11.27)

The functions ��ijk are considered to be the Christo¤el symbols for the metric �ij . Therefore, the system

is determined by the two independent di¤erential equations (11.26),(11.27) and the Hamiltonian constraint

H = Cm where H is given by equation (11.24) and Cm; Bim are the components of the energy momentum

tensor T��:.

The point-like Lagragian (11.23) determines completely the related dynamical system in the minisuperspace

fxk; Tg, implying that one can easily recover some well known cases of cosmological interest. In brief, these are:

� The static spherically symmetric spacetime:

ds2 = �a2 (�) dt2 + 1

N2 (a (�) ; b (�))
d�2 + b2 (�)

�
d�2 + sin2 �d�2

�
(11.28)

arising from the diagonal vierbein 1

eAi =

�
a (�) ;

1

N (a (�) ; b (�))
; b (�) ; b (�) sin �

�
(11.29)

where a(�) and b(�) are functions which need to be determined. Therefore, the line element of �ij and

M
�
xk
�
are given by

ds2� = N
�
2b da db+ a db2

�
; M(a; b) =

ab2

N
: (11.30)

1Note that, in general, one can choose a non-diagonal vierbein, giving rise to the same metric through (11.15).
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� The �at FRW spacetime with Cartesian coordinates:

ds2 = �dt2 + a2 (t)
�
dx2 + dy2 + dz2

�
(11.31)

arising from the vierbein

eAi = (1; a (t) ; a (t) ; a (t)) (11.32)

where t is the cosmic time and a(t) is the scale factor of the universe. In this case we have

ds2� = 3a da
2 ; M(a) = a3(t): (11.33)

� The Bianchi type I spacetime:

ds2 = � 1

N2 (a (t) ; � (t))
dt2 + a2 (t)

h
e�2�(t)dx2 + e�(t)

�
dy2 + dz2

�i
(11.34)

arising from the vierbein

eAi =

�
1

N (a (t) ; � (t))
; a(t)e��(t); a(t)

�(t)
2 ; a(t)

�(t)
2

�
: (11.35)

In this case, we obtain

ds2� = N
�
�4ada2 + a3d�2

�
; M(a; �) =

a3(t)

N
: (11.36)

In the present work we will focus on the static spherically-symmetric metric deriving new spherically sym-

metric solutions for f(T ) gravity. In particular, we look for Noether symmetries in order to reveal the existence

of analytical solutions.

11.5 The Noether Symmetry Approach for f(T ) gravity

The aim is now to apply the Noether Symmetry Approach to a general class of f(T ) gravity models where

the corresponding Lagrangian of the �eld equations is given by equation (11.23). First of all, we perform the

analysis for arbitrary spacetimes, and then we focus on the spatially �at FRW spacetime and on the static

spherically-symmetric spacetime.

11.5.1 Searching for Noether point symmetries in general spacetimes

The Noether symmetry condition for Lagrangian (11.23) is given by

X [1]L+ L�0 = g0 ; g = g
�
� ; xi

�
: (11.37)

Notice that the Lagrangian (11.51) is a singular Lagrangian (the Hessian vanishes), hence the jet space is
�BM =

�
� ; xi; T; _xi

	
and thus the �rst prolongation of X in the jet space �BM is [103, 181, 182]

X [1] = �
�
� ; xk; T

�
@� + �

k
�
� ; xk; T

�
@i

+�
�
� ; xk; T

�
@T +

�
�0i � �0x0i

�
@x0i : (11.38)
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For each term of the Noether condition (11.37) for the Lagrangian (11.23) we obtain

X [1]L = 2fT �gij;k�
kx0ix0j +M;k�

k (f � TfT )

+2fTT��gijx
0ix0j �MfTT�

+4fT �gijx
0i
�
�j;� + �

j
;kx

0k + �j;TT
0

��;�x0j � �;kx0jx0k � �;Tx0jT 0
�
;

L�0 =
�
2fT �gijx

0ix0j +M
�
xi
�
(f � TfT )

� �
�;� + �;kx

0k + �;TT
0� ;

g0 = g;� + g;kx
0k + g;TT

0 :

Inserting these expressions into (11.37) we �nd the Noether symmetry conditions

�;k = 0 ; �;T = 0 ; g;T = 0 ; �;T = 0; (11.39)

4fT �ij�
k
;� = g;k; (11.40)

M;k�
k (f � TfT )�MTfTT�+ �;�M (f � TfT )� g;� = 0; (11.41)

2fT �ij;k�
k + 2fTT��ij + 4fT �ij�

j
;k � 2fT �ij�;� = 0 : (11.42)

Conditions �;T = g;T = 0 imply, through equation (11.40), that �k;� = g;k = 0. Also, equation (11.42) takes the

form

L��ij =

�
�;� �

fTT
fT

�

�
�ij ; (11.43)

where L��ij is the Lie derivative with respect to the vector �eld �
i(xk). Furthermore, from (11.43) we deduce

that �i is a CKV of the metric �ij , with conformal factor

2� 
�
xk
�
= �;� �

fTT
fT

� = �;� � S(� ; xk) : (11.44)

Finally, utilizing simultaneously equations (11.41), (11.43), (11.44) and the condition g;� = 0, we rewrite (11.41)

as

M;k�
k +

�
2� +

�
1� TfT

f � TfT

�
S

�
M = 0 : (11.45)

Considering that S = S(xk) and using the condition g;� = 0, we acquire �;� = 2� 0; � 0 2 R with S = 2(� 0� � ).
At this point, we have to deal with the following two situations:

Case 1. In the case of S = 0, the symmetry conditions are

L��ij = 2
� 0�ij

M;k�
k + 2� 0M = 0 (11.46)
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implying that the vector �i(xk) is a homothetic Vector of the metric �ij . The latter means that for arbitrary

f (T ) 6= Tn functional forms, the dynamical system could possibly admit extra (time independent) Noether

symmetries.

Case 2. If S 6= 0 then equation (11.45) leads to the di¤erential equation

TfT
f � TfT

= C (11.47)

which has the solution

f(T ) = Tn; C � n

1� n : (11.48)

In this context, �i(xk) is a CKV of �ij , and the symmetry conditions become

L��ij = 2
� �ij ;

M;k�
k +

�
2� + (1� C)S

�
= 0; (11.49)

with S = 2(� 0 � � ).
Collecting the above results we have the following result

Lemma 11.5.1 The general autonomous Lagrangian

L
�
xk; x0k; T

�
= 2fT �ij

�
xk
�
x0ix0j +M

�
xk
�
(f � TfT )

admits extra Noether point symmetries as follows

a) If f (T ) is an arbitrary function of T , then the symmetry vector is written as

X = (2 0� + c1) @� + �
i
�
xk
�
@i

where �i
�
xk
�
is a HV/KV of the metric �ij and the following condition holds

M;k�
k + 2� 0M = 0:

b) If f (T ) is a power law, i.e. f (T ) = Tn, then we have the extra symmetry vector

X =
�
2� 0�

�
@� + �

i
�
xk
�
@i +

2� 0 � 2� 
�
xk
�

C
T@T

where C = n
1�n , �

i
�
xk
�
is a CKV of the metric �ij with conformal factor � 

�
xk
�
and the following condition

holds

M;k�
k +

�
2� + (1� C)S

�
M = 0

where S = 2
�
� 0 � � 

�
.

In both cases the corresponding gauge function is a constant.

In the following we apply the above Lemma in the case of FRW cosmology and static spherical symmetric

spacetimes.
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11.6 Spatially �at FRW

The FRW in the holonomic (commoving) frame f@t; @x; @y; @zg has the form

ds2 = �dt2 + a2(t)(dx2 + dy2 + dz2)

where a(t) is the cosmological scale factor. In this spacetime we de�ne the vierbein (unholonomic frame) feig
with the requirement:

hi�(t) = diag(�1; a(t); a(t); a(t)): (11.50)

In order to derive the cosmological equations in a FRW metric, we need to deduce a point-like Lagrangian from

the action (11.20). As a consequence, the in�nite number of degrees of freedom of the original �eld theory will

be reduced to a �nite number. In this framework considering (a; T ) as canonical variables the corresponding

f(T ) Lagrangian becomes:

L = a3 [f(T )� Tf 0(T )]� 6 _a2af 0(T ) : (11.51)

Therefore the �eld equations are

T = �6
�
_a2

a2

�
= �6H2 (11.52)

12H2f 0(T ) + f(T ) = 16�G� (11.53)

48H2f 00(T ) _H � f 02 + 4 _H � f(T ) = 16�Gp (11.54)

where H is the Hubble parameter, � = �m + �r and p = pm + pr are the total energy density and (isotropic)

pressure respectively, which are measured in the unholonomic frame. It is interesting to mention that using the

conservation equation _�+ 3H(�+ p) = 0 one can rewrite equations (11.53) and (11.54) in the usual form

H2 =
8�G

3
(�+ �T ) (11.55)

2 _H + 3H2 = �8�G
3
(p+ pT ) (11.56)

where

�T =
1

16�G
[2Tf 0(T )� f(T )� T ] (11.57)

pT =
1

16�G
[2 _H(4Tf 00(T ) + 2f 0(T )� 1)]� �T : (11.58)

are the unholonomicity contributions to the energy density and pressure. Finally, a basic question here is the

following: under which circumstances f(T ) gravity can resemble that of the scalar �eld dark energy? In order

to address this crucial question we need to calculate the e¤ective equation-of-state parameter w(a) for the f(T )

cosmology. Indeed, utilizing equations (11.57) and (11.58), we can easily obtain the e¤ective unholonomicity

equation of state as

!T �
pT
�T

= �1 + 4
_H(4Tf 00(T ) + 2f 0(T )� 1)
4Tf 0(T )� 2f(T )� T : (11.59)
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11.6.1 Noether symmetries

From Lemma 11.5.1 for the Lagrangian (11.51) we �nd that for

� For arbitrary f (T ) the Lagrangian (11.51) admits only the Noether symmetry @t

� For f (T ) = f0T
n where f0 is the integration constant we have the following extra Noether symmetries:

- For n 6= 1
2 ;

3
2 the Noether point symmetry vector is

X1 =

�
3C

2n� 1 t
�
@t +

�
Ca+ c3a

1� 3
2n

�
@a +

+

�
1

n

�
(c�m)n+ 3c3a�

3
2n

�
+

3C

2n� 1 + c
�
T@T

with corresponding Noether integral

I1 =

�
3C

2n� 1 t
�
H� 12f0n

�
Ca2 + c3a

2� 3
2n

�
Tn�1 _a

where C = m(1�n)+nc
3 .

- For n = 3
2 ; the Noether point symmetry is

X2 =
1

5
(3c� 2m) t@t +

h� c
2
� m

6

�
a+ c4

i
@a +

+

�
(m+ 11c)� c4

a
+
2

5
(8c� 2m)

�
T@T (11.60)

with corresponding Noether integral

I2 =
1

5
(3c� 2m) tH� 18f0

h� c
2
� m

6

�
a2 + c4a

i
T

1
2 _a :

- For n = 1
2 the Noether point symmetry becomes

X3 = c1t@t +
�
�2c1 + c3a

1
4

�
@a +

�
4c1 + c2 +

3c3
2
a�

3
4

�
T@T

with Noether integral

I3 = c1tH� 6f0
�
�2c1a+ c3a

3
4

�
T�

1
2 _a:

We would like to stress that our results are in agreement with those of [147] but they are richer because

we have considered the term �@t in the generator which is not done in [147]. To this end it becomes evident

that f (T ) = f0T
n is the only form that admits extra Noether point symmetries implying the existence of exact

analytical solutions.
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11.6.2 Exact cosmological solutions

In this section we proceed in an attempt to analytically solve the basic cosmological equations of the f (T ) =

f0T
n gravity model. In particular from the Lagrangian (11.51) we obtain the main �eld equation

�a+
1

2a
_a2 +

f 00

f 0
_a _T � 1

4
a
f 0T � f
f 0

= 0 : (11.61)

Also di¤erentiating equation (11.52) we �nd

_T = 12

"�
_a

a

�3
� _a�a

a2

#
: (11.62)

Finally, inserting f (T ) = f0T
n, H = _a=a, equation (11.52) and equation(11.62) into equation(11.61) we derive

after some algebra that

(2n� 1)
�
�a� _a2

2a

(2n� 3)
n

�
= 0 (11.63)

a solution of which is

a(t) = a0t
2n=3 H(t) =

2n

3t
(11.64)

or

H = H0a
�3=2n = H0(1 + z)

3=2n (11.65)

where n 2 R?+ � f 12g, a(z) = (1 + z)�1 and H0 is the Hubble parameter. We note that the above analytic

solution con�rms that of [147].

From equation(11.64) it is evident that this cosmological models have no in�ection point (that is the deceler-

ation parameter does not change sign). Therefore, the main drawback of the f(T ) = f0T
n gravity model is that

the deceleration parameter preserves sign, and therefore the universe always accelerates or always decelerates

depending on the value of n. Indeed, if we consider n = 1 (TEGR) then the above solution boils down to the

Einstein de Sitter model as it should. On the other hand, the accelerated expansion of the universe (q < 0) is

recovered for n > 3
2 . The latter means that even if we admit n >

3
2 as a mere phenomenological possibility, we

would be also admitting that the universe has been accelerating forever, which is of course di¢ cult to accept.

11.6.3 Cosmological analogue to other models

In this section (assuming �atness) we present the cosmological equivalence at the background level between

the current f(T ) gravity with f(R) modi�ed gravity and dark energy, through a speci�c reconstruction of

the f(R) and vacuum energy density namely, f(R) = Rn and �(H) = 3H2. In particular, in the case of

f(R) = Rn it has been found (see chapter 10) that the corresponding scale factor obeys equation (11.64), where

n 2 R?+ � f2; 32 ;
7
8g.

2

2The Lagrangian here is LR = 6naRn�1 _a2 + 6n(n � 1)a2Rn�2 _a _R + (n � 1)a3Rn, where R is the Ricci scalar. For n = 1 the

solution of the Euler-Lagrange equations is the Einstein de-Sitter model [a(t) / t2=3] as it should. Note, that for n = 2 one can

�nd a de-Sitter solution [a(t) / eH0t, see chapter 10].
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On the other hand, considering a spatially �at FRW metric and in the context of GR the combination of

the Friedmann equations with the total (matter+vacuum) energy conservation in the matter dominated era,

provides (for more details see [183, 184])
_H +

3

2
H2 =

�

2
: (11.66)

Solving equation (11.66) for �(H) = 3H2 (see [185, 186, 187]) we end up with

H = H0a
�3(1�)=2 = H0(1 + z)

3(1�)=2 : (11.67)

Now, comparing equations (11.65), (11.67) and connecting the above coe¢ cients as n�1 = 1 � , we �nd that

the f(T ) = f0T
n and the �at �(H) = 3H2 models can be viewed as equivalent cosmologies as far as the

Hubble expansion is concerned, despite the fact that the time varying vacuum model is inside GR. However,

when the �(H) = 3H2 cosmological model is confronted with the current observations it provides a poor

�t [183, 184]. Because the current time varying vacuum model shares exactly the same Hubble parameter with

the f(T ) = f0T
n gravity model, it follows that the latter is also under observational pressure when compared

against the background cosmological data. The same observational situation holds also for the f(R) = Rn

modi�ed gravity.

11.7 Static spherically symmetric spacetimes

We apply now the results of the general Noether analysis of the previous subsection, to the speci�c case of

static spherically-symmetric geometry given by the metric (11.28), that is the vierbein (11.29). Armed with

the general expressions provided above, we can deduce the Noether algebra of the metric (11.28).

In this metric the Lagrangian (11.23) and the Hamiltonian (11.24) become

L = 2fTN
�
2ba0b0 + ab02

�
+M(a; b) (f � fTT ) (11.68)

H = 2fTN
�
2ba0b0 + ab02

�
�M(a; b) (f � fTT ) � 0 (11.69)

where M(a; b) is given by (11.30). As one can immediately deduce, TEGR and thus General Relativity is

restored when f(T ) = T , while if N = 1, � = r and ab = 1 we fully recover the standard Schwarzschild solution.

Applying Lemma 11.5.1 in the case of static spherically-symmetric geometry, we determine all the functional

forms of f(T ) for which the above dynamical system admits Noether point symmetries beyond the trivial one

@� : We summarize the results in Tables 11.1, 11.2 and 11.3. Furthermore, we can use the obtained Noether

integrals in order to classify the analytic solutions for each case.

In the case of f (T ) = Tn we have the additional extra Noether symmetries of Table 11.1

11.7.1 Exact Solutions

Using the Noether symmetries and the corresponding integral of motions obtained in the previous section, we

can extract all the static spherically-symmetric solutions of f(T ) gravity. Without loss of generality, we choose
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Table 11.1: Noether Symmetries and Noether Integrals for arbitary f(T)

N (a; b) Noether Symmetry Noether Integral

1
a3N1

�
a2b
�

X1 = � a
2b3 @a +

1
b2 @b I1 =

N1(a2b)
2a3b2 (2ba0 + ab0) fT

N2 (b
p
a) X2 = �2a@a + b@b I2 = N2 (b

p
a)
�
b2a0 � abb0

�
fT

aN3 (b) X3 =
1
ab@a I3 = N3 (b) b

0fT

Table 11.2: Extra Noether Symmetries and Noether Integrals for f(T ) = Tn

N (a; b) Noether Symmetry3 Noether Integral

arbitrary X4 = 2� 0� +
2� 0(C�1)
2C+1 a@a +

2� 0�2� 4
C T@T I4 = 2 0n

C�1
1+2C abN (a; b)T

n�1b0

arbitrary X5 = �2a@a + b@b � 2� 5
C T@T I5 = nN (a; b)Tn�1

�
b2a0 � abb0

�
arbitrary X6 = �a

2 b
� 3(1+2C)

4C @a + b
� 3+2C

4C @b � 2� 6
C T@T I6 =

n
2N (a; b)T

n�1
�
2b

2C�3
4C a0 + ab�

3+2C
4C b0

�
arbitrary X7 = a�

1
2C b�

1+2C
4C @a � 2� 7

C T@T I7 = N (a; b)na�
1
2C b�

1+2C
4C Tn�1b0

Table 11.3: Extra Noether Symmetries and Noether Integrals for f(T ) = T
1
2

N (a; b) Noether Symmetry Noether Integral

arbitrary �X4 = 2� 0� +
3� 0
2 a ln

�
a2b
�
@a +

2� 0�2� 
0
4

C T@T �I4 =
3
2 0N (a;B)T

� 1
2 ab ln

�
a2b
�
b0

arbitrary �X5 = b@b � 2� 5
C T@T �I5 =

1
2N (a; b)T

� 1
2

�
b2a0 + abb0

�
arbitrary �X6 = �a ln (ab) @a + b ln b@b � 2� 6

C T@T �I2 =
1
2N (a;B)T

� 1
2 b (b ln b a0 � a ln a b0)

arbitrary �X7 = a@a � 2� 7
C T@T �I3 =

1
2N (a; b)T

� 1
2 ab b0
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the conformal factor N(a; b) as N(a; b) = ab2 [or equivalently4 M(a; b) = 1]. In order to simplify the current

dynamical problem, we consider the coordinate transformation

b = (3y)
1
3 a =

s
2x

(3y)
1
3

: (11.70)

Substituting the above variables into the �eld equations (11.26), (11.27), (11.69) we immediately obtain

x00 +
fTT
fT

x0T 0 = 0 (11.71)

y00 +
fTT
fT

y0T 0 = 0 (11.72)

H = 4fTx
0y0 � (f � TfT ) (11.73)

while the torsion scalar is given by

T = 4x0y0 : (11.74)

Finally, the generalized Lagrangian (11.23) acquires the simple form

L = 4fTx
0y0 + (f � TfT ) : (11.75)

Since the analysis of the previous subsection revealed two classes of Noether symmetries, namely for arbitrary

f(T ), and f(T ) = Tn, in the following subsections we investigate them separately.

Arbitrary f(T )

In the case where f(T ) is arbitrary, a special solution of the system (11.71)-(11.74) is

x (�) = c1� + c2 (11.76)

y (�) = c3� + c4 (11.77)

and the Hamiltonian constraint (H = 0) reads

4c1c3
df

dT
jT=4c1c3 � f + T

df

dT
jT=4c1c3 = 0 (11.78)

where T = 4c1c3, and c1�4 are integration constants. Utilizing (11.70), (11.76) and (11.77), we get

b (�) = 3
1
3 (c3� + c4)

1
3

a (�) =

p
6

3
2
3

(c1� + c4)
1
2 (c3� + c4)

1
6 : (11.79)

For convenience, we can change variables from b (�) to r according to the transformation b (�) = r, where r

denotes the radial variable. Inserting this into the above equations, we conclude that the spacetime (11.28) in

4Since the space is empty, the �eld equations are conformally invariant, therefore the resutls are similar for an arbitrary function

N(a; b) (see chapter 9)
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the coordinates (t; r; �; �) can be written as

ds2 = �A (r) dt2 + 1

c23

1

A (r)
dr2 + r2

�
d�2 + sin2 �d�2

�
; (11.80)

with

A (r) =
2c1
3c3

r2 � 2c�
c3r

= �A(1�
r?
r
)R(r); (11.81)

and

R(r) =

�
r

r?

�2
+

r

r?
+ 1: (11.82)

In these expressions we have c� = c1c4�c2c3, �A =
�
8c1c

2
�

3c33

�1=3
and r? = (

3c�
c1
)1=3 = (3c3�A2c1

)1=2 is a characteristic

radius with the restriction c�c1 > 0.

We observe that if we select the constant c3 � 1 then we retain the Schwarzschild-like metric. On the

other hand, the function R(r) can be viewed as a distortion factor which quanti�es the smooth deviation from

the pure Schwarzschild solution. Thus, the f(T ) gravity on small spherical scales (r ! r+? ) tends to create a

Schwarzschild solution. In particular, the f(T ) spherical solution admits singularity only at r = r?, which is

also the case with the usual Schwarzschild solution.

Within this framework, for commoving observers, uiui = A2(r), it is easy to show that the Einstein�s tensor

becomes

Gij = diag

�
2c1c3 �

1

r2
; 2c1c3 �

1

r2
; 2c1c3; 2c1c3

�
:

Therefore, from the 1+3 decomposition of Gijwe de�ne the �uid physical parameters

�T =
1

(uiui)
Giju

iuj = 2c1c3 �
1

r2
(11.83)

pT =
1

3
hijGij = 2c1c3 �

1

3r2
(11.84)

qi = hijGjku
k = 0 (11.85)

��� = ��� = �
�rr
2
=

1

3r2
(11.86)

where

�ij = (h
r
ih
s
j �

1

3
hijh

rs)Grs (11.87)

is the anisotropic stress tensor and hij is the ui projection tensor de�ned by

hij = gij � 1

(uiui)
uiuj : (11.88)

Furthermore the �uid is also anisotropic (�ij 6= 0 ) but not heat conducting (qi = 0):
In order to apply the above considerations for speci�c f(T ) forms, we consider the following viable f(T )

models, motivated by cosmology5

5The f(T ) models of Refs.[188, 189] are consistent with the cosmological data.
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� Exponential f(T ) gravity [189]:
f(T ) = T + f0e

�f1T ;

where f0 and f1 are the two model parameters which are connected via (11.78)

f0 =
4c1c3

8f1c1c3 + 1
exp (4f1c1c3) :

� A sum of two di¤erent power law f(T ) gravity:

f(T ) = Tm + f0T
n

where from (11.78) we have

f0 =
1� 2m
2n� 1 (4c1c3)

m�n
:

Note that in the case of m = 1 we recover the f(T ) model by Bengochea & Ferraro [188].

f(T ) = Tn

In the f(T ) = Tn case, the �eld equations (11.26), (11.27), (11.69) and the torsion scalar (11.74) give rise to

the following dynamical system:

T = 4x0y0; (11.89)

4nTn�1x0y0 � (1� n)Tn = 0; (11.90)

x00 + (n� 1)x0T�1T 0 = 0; (11.91)

y00 + (n� 1) y0T�1T 0 = 0 : (11.92)

It is easy to show that combining equation (11.89) with the Hamiltonian (11.90), we can impose constraints on

the value of n, namely n = 1=2. Under this condition, solving the system of equations (11.91) and (11.92) we

arrive at the solutions

x(�) =
�(�)3

3
+ c� (11.93)

y(�) =
�(�)3

3
(11.94)

where c� is the integration constant. Now using (11.70) we derive a,b as

b(�) = �(�) (11.95)

a(�) =

s
2 [�3(�) + 3c�]

3�(�)
: (11.96)

Using the coordinate transformation �(�) = r, which implies � = F (r) [with F (�(�)) = � ], and using simulta-

neously (11.95), the spherical metric (11.28) can be written as

ds2 = �A(r)dt2 +B(r)dr2 + r2
�
d� + sin2 �d�2

�
(11.97)
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where

A(r) =
2

3
r2 +

2c

r
(11.98)

and

B(r) =
F 2;r

A(r)r4
: (11.99)

Furthermore, considering the commoving observers
�
uiui

�
= � 2(r3+3c�)

3r , we can write the Einstein tensor

components as

Gtt = � r

3F 3r

�
4rF;rr

�
r3 + 3c�

�
� 2F;r

�
7r3 + 12c�

�
+
3

r3
F 3;r

�
Grr =

2r4

F 2;r
� 1

r2

G�� = G�� = �
1

3

r

F 3;r

�
rF;rr

�
4r3 + 3c�

�
� F;r

�
14r3 + 6c�

��
where F;r = dF=dr and F;rr = d2F=dr2.

Similarly, based on the equalities (11.83)-(11.87), we compute the following �uid parameters

�T =
4r2F;rr
F 3;r

�
1

3
r3 + c�

�
� 2r

F 2;r

�
7

3
r3 � 4c�

�
+
1

r2
(11.100)

pT = �
2

3

r2F;rr
F 3;r

�
4

3
r3 + c�

�
+
2

3

r

F 2;r

�
17

3
r3 + 2c�

�
� 1

3r2
(11.101)

�r;r =
2

3

r3F;rr
F 2;r

�
4

3
r3 + c�

�
� 2
3

1

F 2;r

�
8

3
r3 + 2c�

�
� 2

3r2

��� = ��� = �
1

2
�rr

qi = 0

11.8 Conclusion

In this chapter we studied the Noether symmetries of f (T ) gravity. We proved that for some diagonal frames

the Lagrangian of the �eld equations admits Noether symmetries for arbitrary f (T ) function. However, in the

case of power law f (T ), i.e. f (T ) = Tn it is possible the Lagrangian to admits extra Noether symmetries. We

applied this results in order to classify the Noether symmetries of the �eld equations in a spatially �at FRW

spacetime and in a static spherical symmetric spacetime. For each background spacetime we found analytical

solutions of the �eld equations.
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Chapter 12

Discussion

12.1 Discussion

In this thesis we study the Lie point symmetries and the Noether point symmetries of second order di¤erential

equations usinng a geometric approach and we apply the results to systems which are relevant to relativistic

physics.

In particular, we have studied the point symmetries of the equations of motion of dynamical systems in a

Riemannian space with Lagrangian

L
�
xi; _xk

�
=
1

2
gij _x

i _xj � V
�
xk
�

(12.1)

where gij = gij
�
xk
�
is the metric of the space and we proved that the Lie point symmetries of the Euler-

Lagrange equations, i.e. Ei (L) = 0; of Lagrangian (12.1) are generated from the elements of the special

Projective algebra of the Riemannian manifold with metric gij whereas the Noether point symmetries are

generated from the homothetic algebra of the space with metric gij . Therefore we have transfer the problem of

determination of the Lie/Noether symmetries of di¤erential equations to the determination of the collineations

of the underlying manifold; hence, we are able to use the plethora of existing results of di¤erential geometry.

We have applied this geometric approach in many directions. In particular, we have classi�ed the Lie and

the Noether symmetries of the geodesic Lagrangian for some important spacetimes, such as the FRW spacetime,

the Gödel space, the Taub space and the 1+3 decomposable spacetimes. Moreover we proved that for Einstein

spaces the point symmetries of the geodesic equations are generated from the elements of the Killing algebra of

the metric.

Furthermore we have determined all the two and the three dimensional Newtonian systems which admit Lie

and Noether point symmetries. We note that, due to the geometric derivation and the tabular presentation, the

results can be extended easily to higher dimensional �at spaces. We applied these results in the study of the

symmetries of the Hènon - Heiles potential and of the Kepler-Ermakov potential in a two dimensional space.
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Moreover, we determined the potentials which admit Noether symmetries in a two dimensional sphere S2.

We proved that a dynamical system admits as Lie symmetries the sl (2; R) Lie algebra if and only if the

underlying manifold admits a gradient Homothetic vector. The Newtonian system which is invariant under

the Lie group sl (2; R) is the well known Kepler-Ermakov system. Therefore, the requirement for a dynamical

system with Lagrangian of the form of (12.1) to admit as Lie and Noether symmetries the generators of the

sl (2; R) Lie algebra leads us to the generalization of the Newotian Kepler-Ermakov system in a Riemannian

manifold; that is, we found that the general autonomous Kepler-Ermakov system follows from the Lagrangian

L
�
u; _u; yA; _yA

�
=
1

2

�
_u2 + _u2hAB _y

A _yB
�
+
�2

2
u2 +

1

u2
V
�
yC
�

(12.2)

In additionally, we studied the Liouville integrability of the three dimensional Newtonian Kepler-Ermakov

via Noether point symmetries and we investigated the application of Lagrangian (12.2) in dynamical systems

emerging from alternative theories of gravity. In particular we showed that the �eld equations in a Bianchi I

spacetime for an exponential scalar �eld and for f (R) gravity when f (R) = (R� 2�)
7
8 follow from Lagrangians

of the form of (12.2) and for these models we proved that the �eld equations are Liouville integrable.

Concerning the second order partial di¤erential equations we considered equations of the generic form

Aij
�
xk
�
uij �Bi(xk; u)ui � f(xk; u) = 0 (12.3)

and we proved a theorem which relates the Lie pont symmetries of equation (12.3) with the elements of the

Conformal Killing vectors of the second order tensor Aij
�
xk
�
(considered to be a metric). We have applied

this result in order to study the Lie point symmetries of the Heat equation and the Poisson equation. It has

been shown that the Lie symmetries of the Heat equation follow from the Killing and the homothetic algebras

of Aij
�
xk
�
; whereas the Lie symmetries of the Poisson equation follow from the Killing, the homothetic and

the conformal algebras of Aij
�
xk
�
: In each case we have determoned the form of the Lie symmetry vectors.

Furthermore, we have determined the Lie symmetries of the Schrödinger equation

�u� u;t = V
�
xk
�
u (12.4)

and the Klein Gordon equation

�u = V
�
xk
�
u (12.5)

in a general Riemannian space. It has been shown that these symmetries are related to the Noether symmetries

of the classical Lagrangian for which the metric gij is the kinematic metric. More precisely, for the Schrödinger

equation (12.4) it has been shown that if a KV or a HV of the metric gij produces a Lie symmetry for the

Schrödinger equation, then it produces a Noether symmetry for the Classical Lagrangian in the space with metric

gij and potential V (xk). For the Klein Gordon equation (12.5) the situation is di¤erent; the Lie symmetries of

the Klein Gordon are generated by the elements of the conformal group of the metric gij : The KVs and the HV

of this group produce a Noether symmetry of the classical Lagrangian with a constant gauge function. However
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the proper CKVs produce a Noether symmetry for the conformal Lagrangian if there exists a conformal factor

N
�
xk
�
such that the CKV becomes a KV/HV of gij .

We have applied these results to three cases of practical interest: the motion in a central potential, the

classi�cation of all potentials in two and three dimensional Euclidian spaces for which the Schrödinger equation

and the Klein Gordon equation admit a Lie symmetry and �nally we have considered the Lie symmetries of

the Klein Gordon equation in the static, spherically symmetric empty spacetime. In the last case, we have

demonstrated the role of the Lie symmetries and that of the conformal Lagrangians in the determination of

the closed form solution of Einstein equations. Furthermore, we investigated the Lie point symmetries of the

null Hamilton Jacobi equation and we proved that if a CKV generates a point symmetry for the Klein Gordon

equation, then it also generates a point symmetry for the null Hamilton Jacobi equation.

We also studied the problem of Type II hidden symmetries of second order partial di¤erential equations in n

dimensional Riemannian spaces from a geometric of view. We have considered the reduction of the Laplace and

of the homogeneous heat equation and the consequent possibility of existence of Type II hidden symmetries in

some general classes of spaces which admit some kind of symmetry; hence, they admit nontrivial Lie symmetries.

The Type II hidden symmetries of Laplace equation are directly related to the transition of the CKVs from

the space where the original equation is de�ned to the space where the reduced equation resides. In this sense,

we related the Lie symmetries of PDEs with the basic collineations of the metric i.e. the CKVs.

Concerning the Type II hidden symmetries of the homogeneous heat equation we considered the problem

in the spaces which admit a gradient KV or a gradient HV and �nally spacetime which admits a HV which

acts simply and transitively. For the reduction of the homogeneous heat equation and the existence of Type II

hidden symmetries, we found the following general geometric results: (a) If we reduce the homogeneous heat

equation via the symmetries which are generated by a gradient KV
�
S;i
�
the reduced equation is a heat equation

in the nondecomposable space. In this case we have the Type II hidden symmetry @t � 1
2tw@w provided if we

reduce the heat equation with the symmetry tS;i � 1
2Su@u. (b) If we reduce the homogeneous heat equation

via the symmetries which are generated by a gradient HV the reduced equation is Laplace equation for an

appropriate metric. In this case the Type II hidden symmetries are generated from the proper CKVs and (c)

in Petrov type III spacetime, the reduction of the homogeneous heat equation via the symmetry generated

from the nongradient HV gives PDE that inherit the Lie symmetries, hence no Type II hidden symmetries are

admitted.

Finally, we applied the point symmetries and especially the Noether point symmetries in modi�ed theories

of gravity in order to probe the nature of dark energy. We used the Noether symmetries as a geometric criterion

or "selection rule" in order to select the scalar �eld potential in scalar-tensor theories, and the functions f (R)

and f (T ) in the corresponding alternative theories of gravity.

In the context of scalar-tensor cosmology we have found that to every non-minimally coupled scalar �eld,

we can associate a unique minimally coupled scalar �eld in a conformally related space with an appropriate
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potential. This result can be used in order to study the dynamical properties of the various cosmological

models, since the �eld equations of a non-minimally coupled scalar �eld are the same, at the conformal level,

with the �eld equations of the minimally coupled scalar �eld. Furthermore, we have identi�ed the Noether point

symmetries and the analytic solutions of the equations of motion in the context of a minimally coupled and a non

minimally coupled scalar �eld in a FRW spacetime and we have classi�ed the Noether point symmetries of the

�eld equations in Bianchi class A models with a minimally coupled scalar �eld. We �nd that there is a rather

large class of hyperbolic and exponential potentials which admit extra (beyond the @t) Noether symmetries

which lead to integral of motions. For these potentials we used the corresponding Noether integrals in order to

solve analytically the �eld equations and �nd the functional form of the scalar factor.

Concerning the f (R) models we applied the Noether point symmetries with the aim to utilize the existence

of non-trivial Noether symmetries as a selection criterion that can distinguish the f(R) models on a more

fundamental level. We proved that in a spatially �at FRW background the f (R) theories which admit Noether

point symmetries are the Rn; R
7
8 ; (R� 2�)

7
8 ; R

3
2 and (R� 2�)

3
2 . The last two functional forms of the

f (R) function admit Noether point symmetries also in the case of a non spatially �at FRW background. It is

interesting to note that the 7
8 models are equivalent with the Newtonian Kepler-Ermakov system whereas the 3

2

models are equivalent with the anisotropic hyperbolic oscillator. For these functional forms we use the Noether

integrals in order to �nd exact solutions of the modi�ed �eld equations.

Furthermore, in f (T ) gravity we have proved a Lemma that for diagonal frames the only functional form of

f (T ) which admits extra Noether symmetries is the f (T ) = Tn. We applied this functional form in a spatially

�at FRW background and we determined the analytic solution of the �eld equations for each case. Finally,

we studied the �eld equations for the f (T ) = Tn model in a static spherically symmetric spacetime and we

determined a family of analytic solutions.

The geometric approach is a new method for studying the symmetries of di¤erential equations and has shown

that gives directly results by using only the results (usually existing) of diferential geometry without the need to

use of a computer library in order to detrmine the Lie or the Noether point symmetries. This approach implies

a better understanding of the nature of symmetries and of the conservation laws and can be used in order to

�nd analogues of classical Newtonian systems in relativistic physics. It is of interest that this method would

be extendented in other classes of di¤erential equations and in other transformations which are not necessary

point transformations. Concerning the applications in Cosmology, it is of interest the classi�cation of modi�ed

theories of gravity with geometric selection rules. In this thesis we studied some of the basic modi�ed theories

of gravity; however there are other more such theories which could be studied further either by means of point

symmetries or by some new geometric criteria.
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[177] Eric V. Linder. Einsteinâ¼AŹs other gravity and the acceleration of the universe. Phys. Rev. D, 81:127301,

Jun 2010.

[178] Shih-Hung Chen, James B. Dent, Sourish Dutta, and Emmanuel N. Saridakis. Cosmological perturbations

in f(t) gravity. Phys. Rev. D, 83:023508, Jan 2011.

[179] S. Capozziello and S. Vignolo. The cauchy problem for metric-a¢ ne f ( r ) gravity in the presence of

perfect-�uid matter. Classical and Quantum Gravity, 26(17):175013, 2009.

[180] Gabriel R. Bengochea and Rafael Ferraro. Dark torsion as the cosmic speed-up. Phys. Rev. D, 79:124019,

Jun 2009.

[181] M. Havelkova. Symmetries of a dynamical system represented by singular lagrangians. Communications

in Mathematics, 20:23, 2012.

[182] Zi-ping Li. Symmetry in phase space for a system with a singular higher-order lagrangian. Phys. Rev. E,

50:876�887, Aug 1994.

[183] Spyros Basilakos, Manolis Plionis, and Joan Solà. Hubble expansion and structure formation in time

varying vacuum models. Phys. Rev. D, 80:083511, Oct 2009.



BIBLIOGRAPHY 289

[184] Spyros Basilakos, Manolis Plionis, and Joan Solà. Spherical collapse model in time varying vacuum

cosmologies. Phys. Rev. D, 82:083512, Oct 2010.

[185] K. Freese, F.C. Adams, J.A. Frieman, and E. Mottola. Cosmology with decaying vacuum energy. Nuclear

Physics B, 287(0):797 �814, 1987.

[186] J. C. Carvalho, J. A. S. Lima, and I. Waga. Cosmological consequences of a time-dependent <span

class="aps-inline-formula"><math><mi>Î ·Z</mi></math></span> term. Phys. Rev. D, 46:2404�

2407, Sep 1992.

[187] R. C. Arcuri and I. Waga. Growth of density inhomogeneities in newtonian cosmological models with

variable Î ·Z. Phys. Rev. D, 50:2928�2931, Aug 1994.

[188] Gabriel R. Bengochea and Rafael Ferraro. Dark torsion as the cosmic speed-up. Phys. Rev. D, 79:124019,

Jun 2009.

[189] Eric V. Linder. Exponential gravity. Phys. Rev. D, 80:123528, Dec 2009.


