

μ	μ	μ μ	μ	μ	h h	μ	2.

:		
μ	μ	,

,

,

,

μμ

20/01/2014

μ		₂ (cP	PLA ₂)		μ			
						μμ		
		μ			μ	μ		
h h	, μ	μ	μ					,
μ cPLA ₂					μ	μ	μ,	
μ		μ				μ		
μ.								
μμ	μ			,			μ	
μμ	μμ			074	μ	μ		
μ μ	(Induce	ed Fit).		074				
	2-	μ						
μ							μ	
μ.								
μμ,		μ		μ	μ	ŀ	I	
	μ				(Lię	gand-Ba	sed)	
		μ		μ	(Pha	armacop	hore-Bas	ed
Virtual Screening) µ		μ					«	
» (hits)						μ		
μμ	μ		μ	μ				

: μμμ .μ μμ. . _{2,}μμ,

μ,,,

ABSTRACT

The fundamental function of enzyme cytosolic phospholipase A₂ (cPLA₂) is to release arachidonic acid from the phospholipid membranes. Arachidonic acid is the precursor for the formation of lipid mediators of inflammation, including eicosanoids. Therefore, the enzyme is an interesting target for biochemical and structural studies which can lead to a deeper knowledge of the treatment of inflammation.

In the first part of this thesis, the creation of a complex of the enzyme and the inhibitor AX074 is described by the Induced Fit methodology. AX074 presents the strongest biological activity of the 2-oxoamide inhibitors that have been synthesized by the group of Professor George Kokotos in the Laboratory of Organic Chemistry of University of Athens.

In the second part of this thesis, a pharmacophore model has been created based on the Ligand-Based methodology and the process of «Pharmacophore-Based Virtual Screening (VS)» has been applied to commercially available compound libraries. For «hits» compounds that emerged from this process, molecular docking experiments have been performed in order to investigate their docking scoring.

SUBJECT ARE : In silico screening for known inhibitors and new inhibitors. Creation of pharmacophore model.

KEYWORDS: Human Cytosolic Phospholipases A₂, Induced Fit, Pharmacophore Model, Pharmacophore-Based Virtual Screening, Hits

μ, μ, μ, μ, μ, μ, μ, μ

!!!!!

, μ,,,, μ,,..., μ,,,..., μ,,,...,

μ μ.

μ.

μ

•

•

Dr. Thierry Langer μ LigandScout.

μ					19 29
1					33 35
				2 ••	
1.1				2	
1.2		2 (GROUP I	V cPLA ₂)		38
1.3 μ μ (human cP	μ LA ₂)				2 39
1.4	μ cPLA ₂				43
2					47
2.1					49
2.2 µ (Glide				50
2.3 µ	μ (Ind	uced Fit-IF)			56
3					59
3.1				-	μ
μ	μ				61
3.2	μ		μ	μ	μ
μ	-				65
3.3	μ		μ		h
3.4		μ	μ	μ	66
3.5	μ	h	ıµ Liga	ndScout	68
3.6 Zinc:	μ		μ	μ	μ
(Virtual Scr	μ eening)				70
3.6.1	μ		μ		72

		3.6.1.1	1				72	2
		3.6.1.2	2	μ	μ	-	73	3
	3.7	μ	Zinc				75	; ;
	3.8			ZIN	C		76	;
	3.9				: http:/	/www.r	molinspiration.com81	
	3.	9.1	μ	μ			81	
	3.	9.2	μ				82	
	3.	9.3			μ			1
	3.10				NCL			,
	3.11				Hitfi	nder		
	3.12				Pub	Chem-	National Center for Biotechnology Informatio	n
		(NCBI))
4							91	
5								

IN SILICO93

5.1		μ	Schrödinger			95
5.1.1	μ	(Pro	otein Preparation	n Wizard).		95
5.1.2	μ		μ			96
5.1.3		μ	μ	Glide		97
5.1.4 IF))	h	μ		μ	(Induced Fit- 98
5.1.5 We	orkflow)				(Viı	rtual Screening 98

5.2	2		μ	LigandS	cout				99
5	5.2.1 µ		μ	,			,		99
5	5.2.2	μ	μ		μ				100
5	5.2.3		μ						100
5	5.2.4		μZ	Zinc					101
5	5.2.5		μF	Pubcherr	۱				101
5	5.2.6		μH	litfinder.					103
5	5.2.7			Ν	ational C	ancer Inst	itute (NC	i)	103
5	5.2.8				μ		μ		103
6	074								105
6.1			h						107
6.2	μ			μ					107
6.3									108
6.4		μ							108
6.5		µ 				μ		074	110
6.	5.1	μ	μ						110
6.9	5.2 µ	μ		μ μ	0	, 74			μ, 110
	6.5.2.1	Cisoid	transo	id µ		074	ļ	H ₂ O	112
	6	5.5.2.1.1		μ					114

	6.5.2.1.2			μ		μ				
		1								115
	6.5.2	.2 Cisc	oid	transoid	μ		074	1	CHC	l ₃ 117
		6.5.2.2	2.1			•				118
	6.5.2	.3 Cisc	oid	transoid	μ		074	1		119
		6.5.2.3	3.1							119
		6.5.2.3	3.2	Cisoid	μ					121
			6.5	.2.3.2.1						122
6.5.	3	μ		074	1					124
6.6		μ								125
6.6	5.1		H ₂ C)						126
6.6	5.2		CH	Cl ₃						128
6.6	5.3									130
6.6	5.4		μ	μ						131
7							074			
									2	133
7.1		μ	μ							135
			2							135
7.2	μ	μ	μ μ	μ	ł	I -)	007 (μ - 135
7.3			μ	μ			074			
			A	A ₂		μ	μ		Surflex-	Dock136

7.4	μ		h h	J					
7 5									140
7.5		μ	μ		μ		μ	μ 	142
7.6		μ	μ			074			
				μ	μ	IF			143
7.7		μ	μ				IF μ	μ	μ
	μ	μ μ	Dook	μ			μμ	μ	μ
		µ Sumex-	DOCK						140
7.8		μ			0	74			μ 151
7.9					μ			μ	
μ									151
8									
							(human) 153
8.1									155
8.2		μ				μ		μ	
μ									155
8.3				μ		μ	μ		155
									100
8.4	μ	μ	ł	J					159
8.5									164
8.6			ZDD						165
8.6.	1		015428	395 µ	μ	cPLA ₂			166
	8.6.1	.1		μ	0154	2895			170

8.6.2	015	49362 µ	μ	cPLA ₂ .			171
8.6.2.1		μ	015493	62			175
8.6.3	015	32129 µ	μ	cPLA ₂ .			175
8.6.3.1			Vμ	μ	cPLA ₂		177
8.6.3.2			01532	2129			181
8.6.4	020	33841 µ	μ	cPLA ₂ .			
8.6.4.1			02033	3841			187
8.6.5	01846079	00001625	5				189
8.7			PubChe	em			190
8.8	Hitfi	nder					190
8.9	NCI						193
8.10	μ	μ					
					μ	μ	μ 196

	3
- –	9
21	1
	9
	5

μ	1.1:				μ	cPl	_A ₂ .		μ	μ	ł	C2 د
			μμ	l						μ		38
μ	1.2:											
						μ			μ	μ		
μ			μ		μ							
												39
μ	1.3:										2 -	sn-2
												40
μ	1.4:			μ	μ		cPLA	2 - .	μ	۲	J	
C2						μ			μ.			
		μ		μ			μ	-	(μ) µ
				μh	ı (ca	p regi	on)					
			μ (I	J).							μμ
				μ		μ		μ				
			μ				μ		μ			41
μ	1.5:					μ			μμ			
				(μ					– CBL	$= Ca^{2+}$
bindin	ig loops	s) µ	,				μ					42
μ	1.6:				μ		μ					43
μ	1.7:			cPL	A ₂							μ:
Ser22	28, Asp	549.		ł	J:Ar	rg200,	Gly19	7, GI	y198(μ		Gly197,
Gly19	8			μ	μ		μ	Ι,				
ł	J	μ-			μ).	μ					μ
μ			μ	Asp549	Tł	nr330.						43
μ	1.8:		μ				cPLA	A ₂ .		I	i :	
			μ:	μ			. Gly	197,	Gly198	3: «		
)	»,										
		Sei	r228. /	Arg200:						μ		
	•	:		•	HG:				C18:		18	μ
												· · · · · · · · · · · · · · · · · · ·
												44

μ	2.1:	μ	μ						μ
h	2.2: J GI	ide				h	h		μ 51
μ	2.3:		42010		NCI. C	C	µ Glide	μ	
	ŀ	I	μ		μ		μ		52
µ Workf	2.4: low (S	chrödiı	nger)					-Virtual	Screening
μ (Induc	2.5: ced Fit))	h h						μ 57
μ	2.6:	μ μ		μ μ IF				h	µ 58
μ μ	3.1:	μ	μ		μ	μ		μ	
cPLA ₂	<u>2</u> : 1)	074	(µ), 2)	ب 109 ()	3)	007 ().	μ
ł	μ						(),
	μ),	μ	(μ), 		μ		(62
h h	3.2: µ	μ	μ μ -	μ	μ (cPLA ₂ -	074).	μ	(30) µ µ
(),)	μ) H)	,	μ	Υ.
		μ							63
μ	3.3:			μ		μ	μ		μ 64
h h	3.4: J l	µ _igand	μ Scout.			μ :	μ μ	μ	x ,
		:	I	μ	,		: 		μ,
				μ	,		: µ		μ

	ł	l				ł	r				()		
		μ			μ	()							69
	μ	3.5:				: http	://zin	c.docl	king.o	org				76
	μ	3.6:		μ							,			:
http	o://z	zinc.doo	cking.c	org										78
	μ	3.7:		μ							μ		μ	
	μ	Z	inc (: htt	p://zin	c.doc	king.org)			79
	μ	3.8:							μμ	μ			Zinc (2560557
									μ					80
	μ	3.9:	μ											83
	μ	3.10:		μ						[48]				μ
μ				μ		μ		μ					μ	
		μ				ł	L	μ	-	μ				
			•••••										8	4, 85, 86
	μ	6.1:						074	(рН)				107
	μ	6.2:							074				μ	
	μ		ymol											107
	μ	6.3:	μ					μ						111
	μ	6.4:		t	ranso	oid				074				112
	μ	6.5:					(cisoid	μ		074			113
	μ	6.6:								cisoid	и		и	
	•		tra	nsoid	μ						·····			114
	μ	6.7:		:			μ				1	2.		
μ	•						μ.		μ					
2	,			μ				1 (1),
ł	r	μ								μ				
														114
	μ	6.8:			1		μ			ł	u 27,	16, 1	5, 28	. (μ
		= 1	5, 16	, µ			= 2	27, 28	8). (Maes	tro			μ
	μ		μ		, μ			μ		μ		,μ μ	l	μ
	μ		h	l		μ		μ)				115

μ	6.9:		μ	07	4		ł	ı		1	
H ₂ O						•••••					115
μ CH	6.10:	μ			μ				cis	soid µ	117
	6 1 1 .										
μ	CHC	3	μ				μ	μ			1 118
	6 1 2 .			07.	1						121
μ	0.12.		μ	07	-		μ	0.0		1	
μ	6.13:			μ	- 11			6.6,		2 •	µ 127
μ	0.4.4		μ		- μ				•		121
μ	6.14:)-2 55)	μ				μ		μ	
Ц			074	. μ		μ			μ		
۳ 	6 15.										
μ	0.15.	u	ц	μ	μ			IJ		U	
(RMS	D=1,14	۳ ا).	٣		μ	3		μ		٣	٣
·		, 						·			128
μ	6.16:			μ				6.7,		CHCl₃.	μ
μ			μ	l	- µ				-		129
μ	6.17	:			μ				6.8.	μ	μ
		μ		- µ							131
μ	7.1:	μ	μ	GIVA cl	PLA ₂ -	007					μ
	μ	-	μ				μ		μ	μ	μ
											136
μ	7.2:	μ	μ		07	4.	μ			μ	
	μ	Chem	draw								137
μ	7.3:	μ	μ	074-GI	VA cF	LA2					μ
Surfle	x-Dock										137
μ	7.4:	μ	μ	074-	GIVA	cPLA	2				μ
	μ			μ							139
μ	7.5:			, μ		μ		,	μ		
074	4		μc	PLA ₂							μ

μ				μμ		μ.			μ	
μ	μ	Gly	/1197,	Gly1198,	Ala1578, L	ys1588				143
μ	ı 7.6	6:		, μ	μ		, µ	μ	0	74
	μ	Ala	a578, S	er577, G	lu418					
										144
μ	ı 7.7	:			074		cl	PLA ₂ .		:
μ		μ		μ			,		: µ	μ
		μ			,		:	μ	μ	
			,		: µ	μ				
		: µ		μ			Ϊ,		μμ	:
μ			μ			μ.			074	
		μ		μ	Lou/21	Loup	02	μ	074	μ
		μμ		μ	Leu421	Leub	92.			2-
		:	Phe19	9. Pro26	' 3. Leu264.	Phe295. L	.eu298. I	le299. Al	a396. Pl	he397.
Leu4	-00, F	Phe401,	Val40	4, Met41	7, Leu421	Phe6	83.	μμ	μ	,
			μ	(μ)				μ	μ
Ala5 [.]	78.					μ				
			μ	μμ	μ					145
μ	ı 7.8	: µ	μ	007	()	074	()			146
U	ı 8.1	: u		u						2
F				F	074,					2
				μ	μ					
		(),		μ		(
),			μ		(),	μ	
	μ		("	").		μ	()
										161
μ	ı 8.2		μ	2-	μ		μ			μ,
				μ				sn	2	162
μ	ı 8.3	:		μ			074		μ	
	μ		μ		μ (μ 8.1) µ	μ		
			μ	μμ	cPLA ₂		μ		IF	[;] (µ
ł	J)									162

µ 8.4: . μ μ μ μ (1°): 074, 109, 007, GK165, μ μ μ (2°): 074, 016, 063, 073 109, 007, GK165, 016 μ μ , μ163 μ , μ 8.5: μ Zinc μ μ μ Chemdraw.....166 01542895. μ μ μ 8.6: 01542895 μ cPLA₂, μ μ IF. μ μ μμ μ μ . µ μμ167 μ μμ μ 8.7: ,μ μ , μ 01542895 μ Gly197, Arg200, Ser228, Asp549.....167 μ μ 8.8: μ , μ 01542895 u ,μ μ Asn555, Ala578, Thr680......169 01542895 cPLA₂. µ 8.9: : μ μ μ μ : µ μ , μ 2 μ μ : µ μ . , : : μ μμ μ , μ μ μ . μ μ μ .[69] µ μ μ -. Phe397 μ μμ μ 01542895 μ μ μμ Ala396, Phe397, Leu400, Met417, Leu421, Leu552 Ala578......170 μ μ 8.10: μ Zinc μ μ μ Chemdraw.....171 μ 01549362. μ μ μ 8.11: 01549362 μ cPLA₂, μ IF. μ μ μμ . µ μ μ μμ172 μ μμ

24

	μ	8.12:			,	μ	μ		,	μ	0154	49362 µ
μ		Gly19	7	Gly1	98							172
	μ	8.13:			,	μ	μ		,	μ	0154	49362 µ
μ		Arg20	00	Thr6	80							173
	μ	8.14:				μ	01	549362	2μ			cPLA ₂ .
								μ	μ	μ	μ	01549362
μ			μ	μ		μ	A	\la396,	Leu421	, Ala57	8 Leu	592.
		,							μ	μ		h
		(µ	μ			μ	μ:	1, 5, 6)				174
	μ	8.15:	μ	μ						_	μ	Zinc
	μ	015321	29.		μ		μ		μ	Che	mdraw	175
	μ	8.16:		015	53212	29				μ	. µ	
		μ				μ	Glide					176
	μ	8.17:	μ	ł	μ		V.	μ		μ		μ
Ch	emo	draw	•••••									177
	μ	8.18:					μ	V	μ	cPLA ₂ ,		
			IF.				μ		μ		μ	μ
		μ		μ								178
	μ	8.19:			,	μ	μ		,	μ	Vμ	μ
Arg	200) Ser	228									179
	μ	8.20:			,	μ	μ		,	μ	Vμ	μ
Glu	418	B Asn	555									180
	μ	8.21:				μ	Vμ				cPLA ₂ .	
						μ	μ	μ	μ	μ		μμ
	ł	J	Phe	199,	Pro2	263, I	Phe295,	Leu29	8, lle29	9, Ala3	896, Phe3	97, Leu400,
Phe	940	1, Val404	4, Me	t417,	, Leu ²	421	Phe68	83				181
	μ	8.22:	μ		μμ	I	μ				Zinc	μ
020)338	841										183
	μ	8.23:	μ	μ	μ	02	2033841	a	μ	μ		μ
Ch	emo	draw										184
		8.24:		020	3384	1 ^a					. U	
	м					•				۲	· P	

μ	8.25:			μ	02033	841 ^a				cPLA ₂ .
				μ		μ				μ
μ	Arg	200, Ala578,	Thr680)	μ					
μ	8.26:		ł	J 0	203384	1 ^a µ				cPLA ₂ .
				μ			μ			μμ
	μ	Phe199,	Trp232, P	ro263, L	.eu264,	Phe2	95, Lei	u298, I	IE299,	Leu303,
Ala39	96, Phe3	97, Leu400,	Pe401, \	/al404, N	/let417,	Leu4	21, Leu	u552, F	Phe681	Phe
683										187
μ	8.27:		006	6714						
μ	I			μμ		μ			μ	μ
Arg20	00, Se	er228	Asp549	(4,82	&4,62	Å,	3,35	Å		4,57 Å
)									192
μ	8.28:			0067	714 µ					
			cPLA	2.						
μ		μμ	μ				μĻ	1		μ
Ala39	96, Phe3	97, Leu400,	Met417, L	eu421, A	la578	Leu	592			192
μ	8.29:	42010			μ			μμ		μμ
μ	μ			μμ		μ				μ
Ser22	28 (3,21	Å), Asp549 (3,91 Å)	Arg200) (2,14 Å	\)				194
μ	8.30:		μ	42	2010 µ					
										μ
μ	μ	μ						μ		Ala396,
Phe3	97, Leu4	100, Met417,	Leu421	Ala578	3					195
μ	8.31:	μ	μ						[96].	μ
μ	l					μ		, μ		μ
	,		,	μ		μ		,		μ
										196
μ	8.32:		μ							
				[96] µ			μ		μ	
		,	,	h h	n h	I				
μ	8.33:	μ	μ		[96]			μ		μ

μ	8.34:	:	μ		[96]	μμ
μ						
	μ		μ	μ	μ	(
)	ł	ı		:	074
()		μ	μ	199

	1.1:									2.		37
	2.1:							μ		μ		
μ			μ	Gli	de (G	score) -	2.1)				53
	3.1:	μ	٢	I						074,	109,	007
	μ					μ			μ		μ	
			μ	3.1.								62
	3.2:	μμ					μ	Ligand	Scout			68
	3.3:				μ		Zinc.					71
	3.4:				μ	3.5						77
	3.5:		и	и								
		074										87
	5.1:	L	J						i	J		
	Ρι	ubchen	n									101
	6.1:	μ					μ					μ
μμ			H_2O		291	μ						
	μ											116
	6.2:	μ					μ					μ
μμ		41	0	μ								
μ					(CHCI	3					119
	6.3:	μ					μ					μ
μμ		201	μ								μ	
μ				tran	soid							120
	6.4:	μ					μ					μ
μμ					μ			μ				cisoid
												123
	6.5:									ł	ı	
		074						(H ₂ O,	CHCl ₃ ,).
				kJ n	nol⁻¹.			μ				
μ												124

	6.6 (2):	μ	μ			μ	RMS	SD,	μ			
μ			μ						kJ	mol ⁻¹			126
	6.7 (0	CHCl ₃):	μ	μ			μ	RMS	SD,	μ			
μ			μ						kJ	mol ⁻¹			129
	6.8 ():	μ	μ			μ	RMS	SD,	μ	
	μ			ł	J.						kJ r	nol ⁻¹	130
	7.1:				074-	-cPLA ₂	<u>2</u> ,	J		μ			,
				μ Su	urflex-D	ock							138
	7.2:				μ	μ		07	4-cP	LA₂ μ		μĻ	I
μ													139
	7.3:							074	4	μ	μ		
μ													142
	7.4:			μ	(074		μ	μ		μ		
μ		μ	μ		074		ŀ	l	μ		μ7.	2	144
	7.5:		μ	μ									
	μ												147
	7.6:	μ	μ						μ				
μ	μ			μ		II	=						149
	8.1:	μ	μ					μ				μ	
μ		μ								in vi	tro		
													156
	8.2:		٢	l									μ
	μ		٢	I	μ	•••							164
	8.3:						μ						
	μ		μ										165
	8.4:												ZDD
(Zinc)							•••••						165
	8.5:		μ	μ				ł	J	015	54289	95	μ
$cPLA_2$						IF							166

	8.6:							μ	8.7.	
μ	μ	0154	2895,	μμ	μ		μ	μ	8.5,	μμ
	μ		μ	μ		μ				168
	8.7:							μ	8.8.	
μ	μ	0154	2895,	μμ	μ		μ	μ	8.5,	μμ
	μ		μ	μ		μ				169
	8.8:		μ	μ				μ	01549362	μ
$cPLA_2$					IF					171
	8.9:							μa	3.12.	
μ	μ	0154	9362,	μμ	μ		μ	μ	8.10,	μμ
	μ		μ	μ		μ				173
	8.10:							μ	8.13.	
	μ	μ	0154	9362,	μμ		μ	μ	μ	8.10,
μμ			μ		μμ			μ		174
	8.11	:		μ	μ			μ	01532129-	- μ
										176
	8.12:		μ	μ			μ	V		
μ	cPLA ₂	μ μ	I	F						178
	8.13:							μ	8.19.	
	μ	μ '	V,	μμ	μ	μ	I	μ	8.17,	μμ
	μ		μ	μ		μ				179
	8.14:							μ	8.20.	
	μ	μ '	V,	μμ	μ	۲	I	μ	8.17,	μμ
	μ		μ	μ		μ				180
	8.15:				v	V				182
	8.16:						١	V		183
	8.17:		μ	μ			IF	μ	02033841	^a 185
	8 18 [.]								8 25	
	u	и	0203	3841 ^a .	цц		и	۹ u	μ	8.23,
μμ			μ		 μ μ		•	μ	· · · · ·	
	8.19:					02	20338	41 ^a		

8.20:				02033841 ^a			.189
8.21: Zinc	01846079	000016	25				.190
8.22:	μ	μ					
Hitfinde	er µ		μ Glide				.191
8.23:			006714	4 μ		IF	.191
8.24:						NCI	.193
8.25 :	μIF	μ	42010				.194
8.26:		μ	8.29.	μ	μ	μ	μ
	42010		μ NC				8.25
μ	μ		μ	Chemdraw			.195

μ

μ, μμ μ , 2012

μ

μ

2013.

1.1 ² μ μ 2 (PLA₂) 19 .

2.

μ, μ , μ μ μ

iPLA₂, PAF-AH, LPLA₂, AdPLA.

1.1:

2

: sPLA₂, cPLA₂,

μ

.

μ

	μ	μ	(kDa)	μ
	GI	A,B	13-15	
	GII	A,B,C,D,E,F	13-17	
	GIII		15-18	
	GV		14	
	GIX		14	His/Asp
SPLA ₂	GX		14	
	GXI	A,B	12-13	
	GXII	A,B	19	
	GXIII		<10	
	GXIV		13-19	
			/ (kDa)	
cPLA ₂	GIV	$\begin{array}{l} GIVA(cPLA_2 \),\\ GIVB(cPLA_2 \),\\ GIVC(cPLA_2 \),\\ GIVD(cPLA_2 \),\\ GIVD(cPLA_2 \),\\ GIVE(cPLA_2 \),\\ GIVF(cPLA_2 \) \end{array}$	749/85, 1012/100-114, 541/61, 818/91, 838/95, 849/95	Ser/Asp
	GVI	A(),B(),C(),D(),	84-90	Ser/Asp
iPLA ₂		E(),F()		

PAF-AH	GVII	A(Lp-PLA ₂), B(PAF-AH II)	40	0-45		Ser/His	s/Asp
	GVIII	A(1),B(2),		20	6-40			
LPLA ₂	GXV				45		Ser/His	s/Asp
AdPLA	GXVI		,		18		His/C	Cys
μ			μ		μ			
	,	μ					μ	
			μ	,				
							μ	
μ	μ	μ	,	,	μ			
		μι	J					,
		μ			μ	μ		
	μ					μ		
		μμ	·					
1.2			2 (G R	ROUP IV	cPLA ₂))		
1986,		CI	hristina	Leslie	Rut	h Kra	mer	
	μ	GIVA PLA _{2.}			1998-1	999		
GIVB F	PLA ₂ G	GIVC PLA ₂ ,		2004	-2005			
GIVD,GIVI	e, give	F PLA _{2.} [1]						
	,				μ		μ	μ
	GIVA PL	. A ₂ (μ	μ		μ		
	μ	- Pro	otein D	ata Bas	e - PD	B : 1	CJY,	μ
1.1.).[2]								
and		C						
μ 1.1:		μ	cPL/	A ₂ .	μ	μ.	μ	C2
•		мμ				ł	• •	

μ

Ca²⁺

μ

μ

μ 1 (C1P) (PIP₂).[3,4]

«Crystal Structure of Human Cytosolic Phospholipase A₂ Reveals a Novel Topology and Catalytic Mechanism», Cell, (1999), 97, 349-360 (μ 1.7 1.8).

Gly198			μ	μ	μ,	
μ	μ	-		μ).	μ
μ	μ		μ	Asp549	Thr33	0. [4]

μ 1.8: μ cPLA₂. μ: . μ: μ . Gly197, Gly198: « », Ser228. Arg200: μ

Ser228. Arg200: μ . : . . HG: . . C18: 18 μ .[4]

μ μ Ser228 Asp549. μ Ser228 μ 2,9 Å ₂ Asp549, μ μ μ .

μ Arg200 9 Å Ser228 μ μ μ /). (μ μ μ)

(

10 Å Ser228. μμμ Arg200 . Arg200 μμ Gly197, Gly198 μ « ». μ μ

 ». μ
 μ

 μ
 μ
 μ
 Thr680, Phe576

 Phe678,
 μ
 Arg200 μ
 Lys

(Pickard ,1996) µ μ μ cPLA_{2.} μ C2 μ μμ μ , μμ μ μ sn-2 μ Ser228. μ μ μ Arg200 , Arg200 Ser228 μμ μ μ μ . μ μ μ μ μ μ, Asp549 Ser228 sn-2 « μ. Gly197, Gly198 » μ μ sn-2 μ Asp549 μ μ • , μ μ μ μ μ μ μ μ $cPLA_2 \mu$ μ μ μ. μμ μ μ μ μ μ . μ μ μ μ . A. Dessen μ , μ « » μ (closed lid) » (open lid) μ « μ μ μ μ μ μ μ (interfacial activation)

45

.

,

,

,

1. μ μ μ μ -

2. μ

,

2.2 µ Glide

μ μ (hn cPLA₂). μ μ μ μ μ μ μ μ μ μ μ Glide

(μ . . .) µ μ μ μ ì Glide µ μ μ μ . μ μ : μ μ μ . μ , μ μ μ μ μ, μ μ μ , (ligand μ

pose).

GScore = 0.065*vdW + 0.130*Coul +	Lipo + Hbond + Metal + BuryP + RotB	+
Site	(2.1)	:

2.1:		μ	μ	
μ μ	Glide (Gscore	- 2.1).		
GScore			μ	·
vdW			Van de	r Waals
			Card	
Coul			Cour	omb.
Lipo				(
Hbond			μ	
Metal				uu .
		μ	μ	F F
		μ	μ	μ
BuryP			μ	(µ
		μ	μ).
RotB			μ	μ μ.
Site				μ

[8-10]

	Docking sco	ore	μ			μ	
μ	μ	Gli	deScore				
					μ	μ	
	μ	μ	Epik-		Scl	hrodinger-	,
	μ	μ	μ				
	μ			"Docking score". [11,12]			

Dock	ing score = Glide	Score –			μ μ
					(2.2)
			μ		
μ		μ	µ Gilde,		
		μ		ł	
•	Glide HTVS (H	ГVS=High-Thro	ughput Virtual S	Screening	g):
		μμ		μ	
	μ		μ	μ	μ
	U				3
	F				
•	Glide SP (SF	P=Standard P	recision):	и	u
	μ	μ	μ.	F	r
•	Glide XP (XP=E	Xtra Precision)	: U		
	р н н	,	- F		
	μ	μ.	μ,		μ
		μ		μ	
	(µ		μ	μ	
		μμ	μ		-desolvation
	effects).	μ			
		μ	μ		
		μ	,		
	[13 14]	μ	μ		-
	.[.0,]				
		u	μ		μ
	» (Virtual Sci		ow). u		u
	(, μ	F
	μ μ			•	μ
		,			
		μ		μ	

:

54

,

μ 2.4: -Virtual Screening Workflow (Schrödinger)

	,	,						μ			μ		
				μ									
							[14]						
		μ	282	2				μ	μ	μ			-
		μ	0	μ	C	Glide							
	μ					μ		μ	μ		I	μ	
		μ										1	Å
μ				μ								μ	
	2 Å.[9]												
		μ			μ								μ
	μ							μ		μ			μ
	3				μ								
		μ				μ							
	μ			,	μ				μ				
	μ			μ			μ			μ			
	μ				μ		μ						
μ	μ		μ										μ
			μ										
	μ	l	•							μ			μ
μ				μ	μ			Glide			μ		μ
	,		μ		μ			μ		μ		(Induc	ed Fit)
	Glide S	P & G	ilide >	<p.[14< td=""><td>1]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p.[14<>	1]								

2.3 μ μ (Induced Fit-IF)

μ	μ			
Schrödinger,		μ		

, μ " μ μ " (Induced Fit-IF).

μ

μ 2.5: μ μ (Induced Fit) [18]

Glide, μ μ , μ μ μ μ μ , μ μ μ 2.5), μ (μ μ IF. μ μ μ μ 21 μ -18 μ μ , μ μ μ μ μ F RMSD 1.8 Å. μ μ μ 1,8 Å, RMSD μ -. IF Glide, μ μ μ 2 Prime, μ μ μ , μμ ,μ μ μ μ Prime, μ , μ μ , μ ,

			μ	μ.						μ		, Glid	e &
Pri	me,		μ		IF								
	μ	μ			-µ	μ							
	μ			μ					μ	μ		:	
	μ		μ				= GlideS	Scoi	re + 0	.05*Pr	ime	Ener (2	gy .3)
					,					Glic	leSc	ore	
							μ		μ				•
Н								μ	μ				μ
		I	F		,						μ	2.6	
							:[19-21]						

10 BHMA	 Αρχική μοριακή πρόσδεση με σκοπό τη δημιουργία τουλάχιστον μίας απεικόνισης, απομακρύνοντας προσωρινά ευέλικτες πλευρικές αλυσίδες.
20 BHMA	 Για κάθε απεικόνιση που έχει δημιουργηθεί από το προηγούμενο βήμα, γίνεται πρόβλεψη της χαμηλότερης ενεργειακά διαμόρφωσης του υποδοχέα.
30 BHMA	•Δημιουργία χαμηλών ενεργειακά διαμορφώσεων του προσδέτη.
40 BHMA	 Μοριακή πρόσδεση και βαθμολόγηση των συμπλεγμάτων που προκύπτουν.

μ	2.6:	μ	μ				μ	μ
	μ		μ IF.					
μ		٢	l	μ	μ		μ	
				μ		μ		
μμ		(loop)		,			μ	
					٢	I		μ
μ							μ,	
		μ		μ			.[19]	

3.1 μ μ μ μ μ μ μ . 1909 μ μ Ehrlich, μ μ μ .[22] μ μ μ μ μ μ (International Union of Applied Chemistry-IUPAC). μ μ , μ μ μ μ .[23] μ : μ μ μ μ () μ μ μ μ (ligand-based). μ μ μ μ μ μ . μ μ , μ μ μ μ, CoMFA (Comparative Field Analysis) [24] CoMSIA (Comparative Molecular Similarity Indices Analysis) [25] μ μ . (3.1) μ μ μ μ μ μ μ μ μ μ 3.1 μ . μ μ μ μ

μ

•

61

()
$$\mu$$
 μ μ μ μ
 μ μ μ μ μ - (structure-

based).

[27,28]

3.2.		μ					μ	4	l
	μ	μ	-						
μ									
		-	μ		μ	-			
LigandSco	out		μ	μ				μ	
μ	μ		μ		μ		μ		μ
	μμ		μ		μ		μ		μ
μ	μ	μ	-					Pocket	v.2
GBPM.									

•

,

μ μ μ μ μ μ μ, μ μ μ μ μ μ , μ μ . , (Structure-Based μ μ μ SBP Pharmacophore) Discovery Studio μ μ μ (Accelrys Inc.).[27] LUDI (LUDI= μ)

μ μ μ , [29], μ μ μ μ Catalyst (Catalyst: μ), μ μ μ μ μ , μ .

μ μ μ μ , μ μ μ μ , μ μ μ μ μ μ μ • μ μ

μ , μ μ μ μ μ .[27] μ μ μ μ μ μ μ μ μ , ,

μ μ (. . / μ , . .). μ μ μ μ , μ μ , (lead compounds) μ μ .[30] μ μ μ μ μ μ , DN .[31] 3.3 μ μ μ μ μ μ μ μ (conformational space), μ μ μ . μ μ μ μ μ μ μ μ (training set) μ μ μ μ μ μ μ . .[27] μ μ μ μ μ μ μ μ μ μ , μ μ μ μ (decoys-).[32] " " μ μ μ .[33] μ μ μ HipHop, PHASE, MOE . . μ μ 3.4 μ μ μ μ μ μ μ , 3.2 3.3, μ μμ

,

	μ						μ	((compounds databases)					
					,					μ		«		
μ (V\$	S)».[3	64]		μ,			'pharr	nac	ophoi	re-ba:	sed	Virtual	Scr	eening'
•	μ	-	μ				«				» (hits).		
«			»,	μ						μ	·	,		,
				μ									μ	
	μ													
														и
									:					•
)		ш		п					п			п		
,		٣		٣					٣			٣		,
)						μ			μ	(phar	macopho	ore p	attern)
							μ							
						μ			μ			μ		
		".												
	μ				μ							μ		
		,			μ									
						,								
	μ						μ							
		μ	,			μ	μ		-	.[/	27]			
								:)		μ	Ligand	lScoι	ıt
	μ										,)		
			μ	Zinc	;		μ							
					«		μ»							
					(Nat	ional	Can	cer	Insti	itute-l	VCI)	Hi	tfinde	r
	μ											μ		
	μ													

3.5		μ		μμ Lig	jandScout
LigandSco	out		μ	l	nte:Ligand
μ		μ	μ	μ	μ
μ					μμ
(perspectives)					
				3.2	
h h	μ	LigandS	Scout		

3.2: μ μ μ LigandScout

•

		μμ							
	Stru Modeli) ()	h	μ				
,	Ligand- Pe	μ	I	h	μ				
	Alignm			μ	μ				
	Screeni	ing Perspe	ective			μ		μ	
l	μ	μ μ		μ ,			Ļ	I	LigandScout µ
μ	μ	μ	μ	,	μ,	μ			μ
	-	μ		μ μ	μ	·	2,2-3,8 /	Å.	μ 3.4
	μ	μ		μ					

μ μ.

• µ µ µ		μ		"Alignme	ent Pe	erspectiv	re":	μμ			
			μ		/	μ	l	/ µ			
•	μμ	μ		μ	"Scree	ning	Perspec	ctive":	μ		
ł	L		μ	μ		«	μ	μ		μ	
()			μ						»
«	μ		٢	I	μ					μ	
		μ	l		», µ		"µ		II		μμ
μ		Со	pyboa	ard Wi	dget					μ	
	μ										.[30]
3.6	Zir	nc:			μ			I	μ	μ	
			μ				μ				
					(Virtual	Scre	ening) [35,36]			
			μ							μ	
									ł	h	μ
μ							μ				
		ł	l	μ							μ
			μμ		(
	μ).							
		,		,	μμ			,			
		,					μ				,
		μ			,						
	μ				,						
				(h h	l),	μ		,	
	μ			(re	giochemic	al)					
	μ					,				μ	
	μ				μ		μ				
	μ		•								
					μ			μ		, μ	
μ		μ						(μ	,
		μ			μ		µ)		:		

• Accelrys Available Chemicals Directory (ACD), (http://accelrys.com/products/databases/sourcing/available-chemicalsdirectory.html)

- ChemNavigator database (http://www.chemnavigator.com)
- Ligand.Info database (http://Ligand.info)
- ChemBank project (http://chembank.med.harvard.edu)
- Chemspider (http://www.chemspider.com)

	building blo	cks			μ	μ	μ	
	screening comp	ounds						
	procurement a		μ	μ				
	make-on-dem	and						
	natural prod	uct						
	collabocule	es				μ	μ	
	annotated	Í			μ			
	boutique						μ	
2.		μμ						μ
μ	,		μ	logP,				μ

3. μ μ μ μ μ , , , , 3D μ . μ μ μ μμ μ μ -. 4. μ , μ , μ, μ , μ . 5. , , μ , μ μ , μ μ , . 3.6.1 μ μ 3.6.1.1 Zinc 134 μ μ μ μ μ (. .Drugbank, ChEMBL, PubChem). Zinc , μ μ. μ μ Zinc : μ (<700), μ 8 LogP (-4 <LogP< 6), 1 μ (<6) E.

■ μ (<11)
8 μ μ (<15). μ μ μ μ H,C,N,O,F,S,P,Si,Cl,Br,I µ • μ μ , Zinc μ μ μ, μ μ μ μ

μ MMFF94.[37] http://blaster.docking.org/filtering

μ μ Ζinc. Ζinc μ " "(standard) μ μ μ , , , " μ " (clean) μ μ

μ (benign).

3.6.1.2 μ μ -

μ μ 2D SDF μ SMILESμ μ μ OpenEye's OEChem. 70% μ μ μ μ μ μ

,

μ . μ μ μ μ μ μ μ μ μ μ μ C μ μ

п " (trial) Corina [38] μ μ μ μ Zinc п μ μ ... , pН 4 μ μ μ μ

μ Schrodinger's Epik version 2.1209 (μ μ). μ pH : . pH = 7,05, . pH = 6-8, . pH = 7-9,5, . pH = 4,5-6. pН μ μ . μ μ μ pН μ (6-8) μ pH. « » μ μ μ μ pH (8-9). μ μ μ μ μ, μ μ μ . OpenEye's Omega 3D µ μ μ AMSOL [39] μ μ μ μ , μ μ , , μ . 0 μ Zinc μ μ μ . , μ , logP, μ μ μ μ μ μ , , Molinspiration's mib. μ μ μ μ μ , (/) μμ μ μ μ μ . (desolvation) AMSOL (Wei). μ μ logP μ C , Zinc, Molinspiration, μ μ logΡ μ μ μ μ μ μ xLogP (Wang).[40] μ . 0 μ μ , , μ μ • ,

3.7 µ Zinc

μ μ μ , μ μ μ , μ μ μ , μ (download).

.

μ μ μ μ μ μ μ (ready-to-download compressed files).

μ http://zinc.docking.org 20 μμ μ μ μμ μ μ . " " " " μ μ .

μ *" (lead-like)* μ 150 - 350, logP < 4, μ μ 3, μ μ 6 μ μμ μ μ

" (fragment-like) μ -2 <logP< 3, μ 6 , μ μ μ , 250. μ μ μ " μ , " "μ ".

, Zinc μ Lipinski μ logP. μ μ μ.

SMILES, mol2,

SDF, DOCK flexible.

μ 3.5: : http://zinc.docking.org

μ3	.5
----	----

3.4 .

3.4: µ 3.5

Molecular Weight [g/mol]	
xlogP	-
Net Charge	
Rotatable Bonds	h h
Polar Surface Area	
Hydrogen Donors	μ
Hydrogen Acceptors	μ
Polar Desolvation [kcal/mol]	
Apolar Desolvation [kcal/mol]	,

() Catalogs Zinc. () μ μ μ (Targets). () Rings μ Combination . () . . , μ μ μ μ 3.6 • μ μ μ, , Zinc. μ μ μ

.

		,				
μ	μ	μ	,		μ	μ
	μ	,				
	μ	μ		μ		

μ.

3.9.1 μ μ

logP: μ μ μ • QSAR () μ μ μ μ μ μ μ . μ, μ , μ μ μ ,

μ μ μ logP.[41] miLogP: μ

http://www.molinspiration.com/μlogP.50,5%μlogP μμmiLogP

Molecular Polar Surface Area TPSA):
μ μ
. μ μ μ μ

. μ μμμ .[42]

,

Lipinski " 5"[43] : μ μ μ

μ logP 5, μ 500, μ 10, μ 5.

> μ μ μ.

3.9

(Number of Rotatable Bonds-nrotb): μ μ μ μ . (Molecular volume): μ μ μ μ , . [44-47] μ μ 3.9.2 μ (druglikeness) µ μ μ μ μ μ μ μ μ μ μ μ , μ μ μ . , μ μ , , , , μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ , , (metabolic stability). μ (μ) μ μμ μ « » μ μ μ μ μ Lipinski. logP, μ μ , .[43] μ Molinspiration μ μ μ μ 0 μ μ . Bayesian μ 0 μ • , μ μ μ μ μ μ (μ μ μ μ μ .

,

)

82

μ

μ 3.9

.

.[49]

µ 3.9: µ

+++

1.5.1

Πίνακας όπου

παρουσιάζονται τα θραύσματα και η συχνότητα εμφάνισής τους Άθροισμα συνεισφοράς των

θραυαμάτων

Σκορ βιοδραστικότητας

...

0=N(=0)c

Oc Innecc1

-80'000 8paiopara

1.43

-1.76

	(⁾ ² 074
	μμ
miLogP	7,278
TPSA	83,468
natoms	29,0
MW	409,611
nON	5
nOHNH	2
nviolations	1
nrotb	20
Molecular volume	436,201
μ	
GPCR (GPCR ligand)	0,19

μ - (Ion channel modulator)	0,02
(Kinase inhibitor)	-0,26
(Nuclear receptor ligand)	0,22
μ (Enzyme inhibitor)	0,35
(Protease inhibitor)	0,63

3.10		NC					
		Nationa	al Can	cer Institute (NC	i)		
	(3D)	μ			400,000	μ	
μ	μ	μ	Che	m-X,	μ	μ	
		μ				μ	,
http://dtp.r	nci.nih.gov/doc	s/3d_da	tabase	e/dis3d.html.			
μ				μ	μ		
	(μ	μ	-).[50-52]			

3.11	Hitfinder

Lipinski,

μ,	μ	(bioavailable),	μμ
(membrane-permeab	le).	μ	14,400.
[53,54]			

PubChem-National Center for Biotechnology

Information (NCBI)

PubChem μ μ μ

.[55]

) - µ 2 (cPLA2) µ

•

IN SILICO

5.1		μ			Schr	ödin	ger						
5.1.1	μ			(Pr	oteir	n Pre	epara	tior	n Wi	zard)		
μ	μ		,							p	odb,		
		μ					μ	ł	L				
	,						(he	avy	ato	ms)	μ		
μ	μ			μ			,	/	μ			,	/
μ							μ				μ		μ
(multim	eric),			ł	L								
μ			μ				μ	•			μ	I	
μ										μ			NH
О,						μ							
			,						"		μ	II	μ
	,		μ										
μ		μ						μ	•				
μ					μ					μ			μ
							cPL	.A ₂ ,		μ			
		μ				«Pro	otein	Pre	epara	ation	Wiza	ard	*
	Schrödin	ger.											
I.		ŀ	J		Ϊ	(P	DB:1	CJ	Y)				
	www	v.rcsb.c	o rg (Pr	otein I	Data	Ban	k-PD	В),					
II.			μ	μ	(1	CJY),						
III. F	Protein Pre	eparatio	n Wiza	ard:									
•			μ	(Ass	sign l	bond	lorde	ers),					
•						μ	(Add	hyc	lrog	ens),			
•	μ		μ					μ		μ			μ
(Create ze	ro bond	s to m	etals),									
•	μ				μ		μ					μ	
(Create dis	sulfide b	onds),		-								

- µ Prime (Fill in missing side chains using Prime),
- μ Prime (Fill in missing loops using Prime),
- μ μ μ 2- -μ -(MES:(2-(N-Morpholino)-EthaneSulfonic acid),
- µ (Refine H-bond assignments),
- μ
 μ
 μ
 μ
- 5.1.2 μ μ μ μ μ μ μ Maestro. "clean-up μ geometry" μ μ μ LigPrep µ μ μ pH, μ μ .[58] μ μ μ μ μ .[56,59,60] μ μ , μ μ μ
- PRCG, 1 μ μ OPLS_2005 (**OPLS_2005** μ μ μ μ, μ (Iterations)). : 3000 (E_{i+1}-E_i<0,05 kJ mol⁻¹).

.

, µ µ :

OPLS_2005, μ μ 2 Mixed MCMM/Low-Mode Conformational μ Search Methods (μ μ μ μ μ μ , .. μ μ), Torsion Sampling Options: Enhanced (μ μ).

- (Iterations): 1000.
- μ μ « μ μ 1, 074», "Applications" "Macromodel" "Coordinate Scan" μ (Project Table) μ μ μ μ μ μ
- μ μ μ
 « μ
 074» μ
 "Tools Ligand Filtering"
- μ "Tools Superposition".[61,62]
- **5.1.3 μ μ Glide** μμ μ μ Glide, μ μ:
- μ (Receptor
 Grid Generation).
 μ
 - рранарияния разровой страния и страния и среди разни среди и с разни среди и среди

•	μ	:	3	μ
	μ	μμ		μ
		μ,		μ Glide XP
	(XP = EXtra Pred	cision),	μ	
	.[10]			
5.1.4		μ	μ	μ
	(Induced Fit-IF)			
	μμ		μ	μ
	μ μ	, µ		μ :
•	μ			μ:
		μ	μ,	
		, µ		μ
	h h h	ι μ -	,	μ
	μμ			,
•	μ		3	
•	Protein Preparatio	n Constraine	d Refinement (
	Schrödinger 2010	-		u Schrodinger
	2012.			μ στη στη ger
	u ,	u	u u	
	μ	μ		Protein
	Preparation Wizar	μ.	, ,	Trim Side
	Chains: Automatic	based on B	-factor, Refine Re	sidues within 5 Å &
	Optimize side chair	ns, Glide	Redocking XP.[63]	
5.1.5				(Virtual
	Screening Workfl	ow)		
	μ	μ		
		μ	μ	(Workflows Virtual
Scree	ning Workflow).	μ		μ :

- μ μ μ μ μ LigPrep,
- μ (μ μ μ μ
 μ QikProp, μ μ
 Lipinski, μ
 μ
 ...),
- μ μ μ μ (Glide HTVS Glide SP Glide XP).[15]

5.2 μ LigandScout

- μμ 3.5 μ μ "Edit" μμ μ , "Preferences", μ μ μ μ μ . μ , μμ μ 5.2.1 μ , , μ pH~8, μ μ μ
- [58], μ μ Schrodinger (LigPrep). mol2 μ μ μ LigandScout μ (...μ).
- μ , μ μ LigandScout, , μ μ μ . , μμ «Ligand-Based

μ μ μ. "Apply BEST settings". ldb µ μ μ μ 5.2.2 μ μ μ μ μ μ μ μ μ μ μ μ "Structure-Based Modeling Perspective". μ pdb) «Create μ μ (Pharmacophore». μ (. .) μ "Structure-Based Modeling Settings". μ μ μ μ (ligand-based) μμ "Ligandμ Based Modeling Perspective". μ μ , μ (5.2.1)«Run μ Pharmacophore Ligand-Based Creation». "Screening μμ Perspective", μ μ μ μ μ , μ μ μ . μ μ μ , μ μ "Ligand-Based Modeling Settings". 5.2.3 μ μ μ " (μ μ (human cPLA₂)" μ μμ "Alignment Perspective" (Align / μ μ Features).

5.2.4 Zinc μ

		htt	p://zinc.docking	g.org/ :
Subsets	: Prope	erty : Spe	cial	
ZDD (ZINC Dr	ug Databas	e).		µ Zinc
μ		μ		μ
LigandScout	μ	μ		
	(µ	μμ), µ	
ldb	μ			μ
μ				
5.2.5	μΙ	Pubchem		
		http://pubche	m.ncbi.nlm.nih.	gov/
http://www.ncb	oi.nlm.nih.go	v/pccompound/		•
sdf (µ	-). ,		3
μ		μ	μ	
			μ	μ
				μ
μ				μ
μ	μ			,
	μ	μ LigandScout		μ,
μ	μ		pH (μ
μ),	μ μ		
μ,	,	ldb μ	μ	
5.1:	μ		μ	
Pubo	chem.			
60167560	57345781	57345767	57336518	53486298
46930987	46228468	44155856	42642645	42636535
42598643	25195294	25145656	25102847	25062766

25034599	25031915	24958200	24889392	24786555
24770514	24768261	24753719	23635314	23290919
22049997	21634109	21081761	18538483	16747683
16718576	16666708	16220172	16108977	16095342
11749858	11689883	11667240	11610526	11507802
11494970	11485656	11442891	11398092	11381449
11351021	11282283	11234052	11219835	10367662
10231331	10071819	10018576	9953769	9935767
9931205	914412	9911830	9888590	9874913
9846180	9814186	9810996	9809715	9808844
9804992	9549289	6918848	6918837	6918554
5995818	5329099	5289418	2776272	1549120
1515259	1367100	1366531	1366290	1364672
1363954	1363773	1363534	1363085	1359860
1359148	1358227	1358112	1357338	1356519
1355526	1355476	1355432	1355393	1355377
1355287	1355269	1355242	1355227	1355055
1355047	1354995	1354971	1354956	1352998
1352704	1352655	1351589	1349373	1336997
1334501	1255228	1255057	1252264	1251786

1249419	1237313	1237181	1227509	1180478
1169039	1163072	1151770	1150508	1110947
686287 638278		551369	542959	520488
449054	446541	445858	444795	444732
444305 441401		311434	300471	252682
222786 216326		216239	176167	150610
134018 132999		123964	104842	92409
72172	71360	65935	62451	53276
41969	21102	4996	3826	2703
2538	2516	2006		
5.2.6	u Hitfi	inder		
	P			
μ	P	μ (hh	-
μ ldb)	F	µ (hh hh	-
μ ldb) 5.2.7	F	μ (μ μ National Ca	μμ μ ncer Institute (f	-
μ ldb) 5.2.7 μ	μ	μ (μ μ National Ca	μμ μ ncer Institute (N	- ۱CΙ) μ
μ ldb) 5.2.7 μ	μ,	μ (μ μ National Ca μ μ	μμ μ ncer Institute (N	- NCI) µ
μ ldb) 5.2.7 μ μ	μ,	μ (μ μ National Ca μ μ (μμ	μμ μ ncer Institute (f	- νCI) μ ldb).
μ ldb) 5.2.7 μ μ 5.2.8	μ ,	μ (μ μ National Ca μ μ (μμ μ	μμ ncer Institute (Ν - μ	- νCI) μ Idb).
μ ldb) 5.2.7 μ μ 5.2.8	μ ,	μ (μ μ National Ca μ μ (μμ μ	μμ ncer Institute (f - μ	- νCI) μ Idb).
μ ldb) 5.2.7 μ μ 5.2.8 μ	μ , μ	μ (μ μ National Ca μ μ (μμ μ	μμ μ ncer Institute (f - μ Perspective".	- νCI) μ Idb).
μ ldb) 5.2.7 μ μ 5.2.8 μ μ	μ μ	μ (μ μ National Ca μ μ (μμ μ "Screening «Perform	μμ μ ncer Institute (f - μ Perspective". n Screening».	- νCI) μ Idb). μ

(µ µ µ

"Pharmacophore Fit").[30]

(μ 6.2).

μ

,

6.3

	μ	μ		μ	μ				
		μ	μ	μ					
				,		μ		μ	
		(minimization algorithms)							
			μ				٣	•	
•		μ							
			μ			Taylor	-		
	μ						Ļ	I	
					(Steepest Descents),			μ	
		(Conju	gated G	radient)	Pov	well.			
		u							
		r.							
			μ			I aylor			
	μ				•	μ		μ	
Ne	wton-	Raphso	n.						
6.4	4		μ						
	μ						(µ	μ,	
μ	•				μ		、 , ,	· · ·	
•)	μ		•	и	, L		
u		,	u '			•		u	
I.	, U			, . U .	u		u	L L	
	F	U	-	, F	T.	u	F	r U	
		P.			_	F		F.	
	u	П							
U	٣	٣	IJ		_		IJ		
٣		(٣		•)	٣		
	٣	ſ				/			
				м		•			
μ μ μ , μ μ μ μ μ μ , μ μ μ • , , μ μ μ μ , μ μ μ • μ μ μ • μ μ μ μ μ • • μ μ μ : μ . μ μ • μ μ μ μμ μ μ μ μ μ μ . μ . μ μ μ μ μ μ μ μ μ μ μμ . μ • μ μ μ μ

109

μ

.

μ

	μ	, μ	μ	μ	μ		μ
μ	μ				μ	μ	
		•	μ			μ	
					μ	μ	
	μ						μ
					μ		
μ			μ			(tra	ajectory)
						μ	(snapshots)
6.5		μ					μ
074		-					-
6.5.1	μ	μ					
Maestro					(gra	aphical u	ser interface)
		μ	μ		Schrödi	nger	μ
μ		-	Ļ	J	μ	-	-
	ł	u (b	uild toolbar)			,
		X		,			Build
(µ)			и	μ	μц		μ.
· · · ·			LiaPren	u.	r r		r ·
, U		Ц	gop	r"	U	IJ	۴ ۲
٣		۳ ۱۱	,		۲	۲	,
		μ.					

6.5.2 μ μ , 074 μ μ μ , μ μμ Macromodel μ 9.8. μμ μ μ μ , Schrödinger, μ μ μ μ μμ μ . μ 6.3 μ

μ μ :

μ μ Large Scale (µ μ) Low-Mode, μ μ μ μ μ μ . . μ μ). 4. 1 μ 3 (Mixed μ μ MCMM/Low-Mode Conformational Search Methods):

- рарания и страния и с и страния и с и страния и с и страния и с и страния и стр
- μ', μμ. μ μ 074
 - μ cPLA₂ Η₂Ο, CHCl₃ () , μ μ μ μ μ , μ .
- 6.5.2.1 *Cisoid transoid* μ 074 H₂O
 - μ *transoid* μ μ μ 6.4 :

6.7:

μ 27, 16, 15, 28. (μ μ 6.8: μ 1 = 15, 16, μ = 27, 28). (Maestro μ μ μ μ μ ,μ ,μ μ μ). μ μ μ μ

H₂O

		μ	μ		291	μ	
				μ		μ	μ
	1.						
	μ	μ					6.1 :
	6.1: µ			μ			
μ	μμ		H₂O	291 µ			

•

μ 1	μμ
(180,00) – (170,26)	114
(169,91) – (160,27)	44
(159,49) – (150,89)	22
(149,63) – (140,03)	32
(134,21) – (131,88)	3
(13,74)	1
(-133,67)	1
(-141,96) – (-146,29)	3
(-155,97) – (-159,23)	4
(-161,29) – (-169,97)	3
(-170,02) - (-179,98)	64

μμ

,

μ

μ

(99%).

6.5.2.2 Cisoid transoid μ 074 CHCl₃

, μ μ *transoid* μ LigPrep μ μ OPLS_2005 CHCl₃. μ -265,54 kJ

mol⁻¹. , μ 2580 μ μ PRCG E_{i+1}-E_i<0,05 kJ[·]mol⁻¹. μ

 μ -276,65 kJ mol⁻¹. , μ μ (1000 μ). 410 μ μ μ -287,87 kJ mol⁻¹ -266,94 kJ mol⁻¹.

μ μ.

μ cisoid μ. μμμ μ μ OPLS_2005 CHCl₃. μ -240,04 kJ mol⁻¹. μ μ 2000 μ μ PRCG

 E_{i+1} - E_i <0,05 kJ mol⁻¹. μ μ -276,32 kJ mol⁻¹. μ , μ , μ

 μ , μ transoid μ ,

μ 6.10.

CHCI_{3.}

6.2 :

μ

6.2: µ

μ

µµµ 410µ J CHCl₃.

μ

μ 1	μμ
(179,96) – (170,05)	62
(169,93) – (161,83)	5
(-160,05) – (-169,00)	5
(-170,05) – (-179,98)	338

μ

(100%).

6.5.2.3 Cisoid transoid μ 074

, *transoid* μ μ μ ΟPLS_2005 μ -49,99 kJ mol⁻¹. , μ μ 3260 μ μ PRCG Ei+1-Ei<0,05 kJ.mol⁻¹. μ

•

 μ -61,74 kJ mol⁻¹. , μ μ (1000 μ). 201 μ μ -91,61 kJ mol⁻¹ -70,72 kJ mol⁻¹.

6.5.2.3.1

μ μ μ μ 074 μ μ μ μ 074 μ τransoid . μ μ 6.3 :

6.3: µ

μ

μ

μ μμ 201 μ μ *transoid*

μ μ μ 1 (179, 18) - (170, 03)12 (169,28) - (161,32)10 (152,76), (159,80) 2 (137,01) 1 (-52,46), (-53,61) 2 (-63,81), (-66,94) 2 (-70,32) 1 (-107,70) - (-111,22) 3 (-122,28) - (-129,86) 16 (-130,33) - (-139,72) 73 (-140,01) - (-148,94) 40 (-150,73) - (-159,10) 12 (-160,57) - (-169,57) 21 (-173,90) - (-179,88) 6

193 µ

(96%).

	μ				cisoid	μ	μ	
	μ	OPLS	6_2005				μ	ı -31,85 kJ
mol⁻¹.		,	μ					
μ			1240		μ		μ PRC	CG
							Ei+1-Ei<(),05 kJ.mol ⁻
1		μ			μ	-60,57	′ kJ mol⁻¹.	μ
				μ		μ		1
μ - 44,9°.								

μ	μ		μ	
	μ	μ		074,

1.

,μμ

, , µ μ μ μ , μ μ μ 074 µ cisoid (1000 μ). μ , 308 µ µ , μ -87,83 kJ mol⁻¹ -66,84 kJ mol⁻¹. $(< -60,57 \text{ kJ mol}^{-1})$ μ μ μ μ μ μ *transoid* cisoid. μ μ μ μ *transoid cisoid*. μ

, μ μ μ *trans.* μ " "μ μ μ μ μ ..., μ μ μ ,

.

μ μ . 6.5.2.3.2.1

 $, \mu \mu \mu$ μ 074 $\mu \mu \mu$ 074 μ μ μ *cisoid* . μ μ 6.4 :

61.	
U. . .	۲ P

.

μ μμ

μ

μ

cisoid

μ 1	μμ
(-179,69) – (-170,28)	7
(-170,00) – (-160,43)	24
(-158,78) – (-150,19)	26
(-147,82) – (-140,20)	47
(-139,95) – (-130,26)	127
(-129,99) – (-120,34)	43
(-118,86) – (-106,48)	11
(-97,47)	1
(-54,65)	1
(43,22), (49,34)	2
(116,40)	1
(130,36), (138,10)	2
(140,07) – (146,34)	4
(158,42), (158,66)	2
(162,42), (164,06)	2
(173,29) – (179,61)	8

295 µ

1

(96%).

,

μ

μ.

,

074 μ μ trans.

6.5.3 μ 074

6.5 µ µ

074

6.5: 074 kJ mol⁻¹.

:

.

μ (H₂O, CHCI₃,). μ

μ

	H₂C)	CH	CHCl₃		
	CIS	TRANS	CIS	TRANS	CIS	TRANS
	-332,12	-349,18	-240,04	-265,54	-31,85	-49,99
μ	-352,12 <i>⇔trans</i> µ	-358,98	-276,32 ⇔trans μ	-276,65	-60,57	-61,74
		3,47		2,70		2,35
μ		19,28		18,27		18,23
		1,00		2,13		2,92
μ		0,04		0,11		0,11
VDW		0,69		4,22		3,15
		-83,12		-88,53		-88,50
μ		0,00		0,00		0,00
μ		0,00		0,00		0,00
		-300,35		-215,54		0,00

μ μ μ μ : 1. $CHCI_3$ μ μ • 074, μ μ μ . μ μ μ μ . μ μ 074 µ μ =1 μ μ. 2. μ 074 trans μ μμ transoid μ . 3. μ transoid cisoid μ μ . 6.6 μ μ μ μ μ μ μ (). μ μ μ μ μ . μ RMSD (Root Mean Square Deviation). μ RMSD μ μ μ. transoid μ () 074 , $CHCI_3$ μ μ μ μ .

μ		μ	074				
μ							
6.6.1	H ₂ O						
	μ	074					
	μ			μ		μ	
RMSD	μ μ	μ			μ		
	-374,8	35 kJ mol⁻¹.					
μ	1: RMSD : 0,00<=	=<1,00.	μ			μ	μ
μ	, μ						μ
μ	2: RMSD : 1,00<	=<2,00 . <i>(24)</i>	μ				
μ	3: RMSD : 2,00<	=<3,00 . <i>(89)</i>	μ				
μ	4: RMSD : 3,00<	=<4,00 . <i>(42)</i>	μ				
μ	5: RMSD : 4,00<	=<5,00 . <i>(</i> 25 <i>)</i>	μ				
μ	6: RMSD : 5,00<	=<6,00 . <i>(64)</i>	μ				
μ	7: RMSD : 6,00<	=<7,00 . <i>(43)</i>	μ				
μ	8: RMSD : 7,00<	=<8,00 . <i>(3)</i>	μ				
	6.6	µ µ			μ		
	μ.						
	6.6 (₂): μ	μ	μ RMSD	, µ			
μ	μ.			kJ mol⁻¹.			

1	2	3	4	5	6	7	8
-374,85	-365,57	-372,02	-373,73	-362,79	-365,65	-372,20	-360,53

, , μ 074 μ -371,79 kJ mol⁻¹ μ μ μ μ μ μ -368,27 kJ mol⁻¹ (RMSD=1,14) μ 6.15 :

- μ **4**: **RMSD** : **3,00**< =<**4,00**.(*121*) μ
- μ **5**: **RMSD** : **4,00**< =<**5,00**.(3) μ

μ 6: **RMSD : 5,00< =<6,00**.(*17*) μ

- μ 7: RMSD : 6,00< =<7,00.(2) μ
- μ 8: RMSD : 7,00< =<8,00.(0) μ

μ

.

μ

6.7 (CHCl₃): μ μ μ RMSD, μ

μ

1	2	3	4	5	6	7	8
-287,87	-284,24	-286,26	-282,97	-273,45	-274,78	-273,55	

kJ mol⁻¹.

.

4 H - H

					μ	
μ		•				
μ					μ	
	μ	μ.		μ	μμ	
		μ			ł	L
μ	RMS	SD	μ	•		
6.6.3						
μ		074				
μ			I	μ	μ	
RMSD	μ	μ			μ	-
91,61 kJ mol ⁻¹ .						
μ 1: RMSD	: 0,00<= =<	1,00 . <i>(12)</i>	μ			
μ 2: RMSD	: 1,00< =<2	,00 . <i>(55)</i>	μ			
μ 3 : RMSD	: 2,00< =<3	,00 . <i>(</i> 63)	μ			
μ 4 : RMSD	: 3,00< =<4	,00 . <i>(54)</i>	μ			
μ 5: RMSD	: 4,00< =<5	,00 . <i>(11)</i>	μ			
μ 6: RMSD	: 5,00< =<6	,00 . <i>(0)</i>	u			
μ 7 : RMSD	: 6,00< =<7	,00.(1)	u			
μ 8: RMSD	: 7,00< =<8	,00 . <i>(5)</i>	u			
	6.8 µ	μ		μ		
I	μ.					
6.8 (): ।	u h	μ	I RMSD,	μ	
μ	μ			kJ	l mol⁻¹.	

1	2	3	4	5	6	7	8
-91,61	-89,66	-84,40	-86,08	-80,67		-71,10	-72,46

130

μ

μ

μ 6.17: 6.8. μ μ μ μ μ _ μ (μ RMSD) (V). μ μ μ

all trans. μ μ μ μμ.

6.6.4 μ μ

μ	μ		μ
	μ		μ
	μ	μ	CHCl ₃
	RMSD	μ	μμ
_	-		

μ .[7,61,62,64]

7.1 μ μ 2 μ μ , μ cPLA₂. μ [65] [66] μ μ μ μ .[67] μ μ μ , 2 [68]. μ, μ 007. μ 007 μ μ μ μ μ μ μ μ μ μ 7.2 007 (μ μ μ μ μ) μ μ μ 7.1 GIVA cPLA₂- 007 μ μ μ μ μ .[68]. μ μμ μ μ μ μ μ μ μ μ μ μ Arg200. 2μ Phe199, Pro263, Leu264 Phe683 μ μ μ μ Asn555, Gly551 Leu552.[8] μ μ μ μ μ Ser228, μ μμ μ » (µ 1.8). μ « S-cis µ (μ μ 7,5 Å 7,0 Å : 51,7°) μ Ser228 µ μ Gly197.[69]

μ

μ

•

μ 7.1.

AX074	h hh h	()
o*	• Ser228 (-OH)	OH 1,80 OO 2,70
ONH	• Gly197 (-NH ₂)	OH 2,30 ON 3,00
NH *	• Asn555 (C=O)	HO 2,10 NO 3,00
0 –	• Arg200 (-NH ₂ , µ)	OH 1,90 ON 2,90
0 –	• Ser577 (-OH)	OH 2,30 OO 3,10

7.1: 074-cPLA₂, μ μ μ Surflex-Dock.

,

μ

2-Phe199, μ μ μ Trp232, Pro263, Leu264, Phe295, Leu298, Ile299, Phe397 Phe683, μ μ μ Asn555, Gly551 Leu552. μ 074-GIVA cPLA₂ μ μ μ μ μ Macromodel 9.7 μ μ Schrödinger 2009. μ μ

7.2: μ μ μ 074-cPLA₂ μ μ μ μ

AX074	μ
	• Ser228 •
O* NH	OH 1,80 OO 2,70 • :
	2,00
	2,00 ⇒

[8]

7.4 μ μ μ

μ μ • μ "apo" µ μ . , cPLA_{2,} Schrödinger μ ,[70] μ μ IF μ μ , • , μ μ μ 2 [71] . μ μ • Maestro 9.1 µ μ μ μ μ μ μ μ μ μ Prime. μ μ Schrodinger 8 μ μ μ μ μ μ μ μ μ. , 406-414, μ . , 10 Å. μ μ [19] μ μ μ μ μ μ μ glide μμ μ μ μ , μ μμ μµ, μ.[4,69] μ pH 8,5 2 µ .[4,58] μ μ • (μ μ μ pdb: 3021) [4,58,68] μ μ , Ser228. μ

	,		μ	μ 074				μ				
	μ	cPLA	2	074	μ					μ		
μμ		-	.[72]]								
7.5			μ			μ			μ	μ		
					μ							
	μ						μμ					
μ	μ			cPLA	λ₂ ¹ μ		μ					
μ	μ		μ		μ		μ					
			074			μ		μ		μ		μ
						μ	μ					μ
									μ	μ		
			μ	μ 7.2,			μ		μ		μ	
		μ.			7.3					μ		
		μ			٢	ı 7.	5					
μ		μ	ł	1 - L								
		μμ				μ	μ					
μ		cPL	A ₂ .									

7.3: 074 μ μ μ

	074	μ
Induced Fit (1CJY)	μ μ -371,789 kJ mol ⁻¹	-14,575
Induced Fit (1CJYB)	μ μ -371,789 kJ mol ⁻¹ * *: μ μ μμ μ μ	-9,336
pdb	2μμ μ, μ.[4]	μ ~4°-

μ 7.5: , μ μ , μ 074 μ cPLA₂ μ μ μμ μ. μ μ μ Gly1197, Gly1198, Ala1578, Lys1588.

1CJYA μμ μ μ μ μ μ μ μ 7.2. μμ μμ μ μ μ μ 7.6.

7.6 μ μ 074 μ

μ IF

μ

μ μ Gly197, Gly198, Arg200, Ser228, Trp232, Thr330, Phe397, Asp549, Asn555, Thr680, [4].

μ μμ 074 μμ μ.,μ μ , μμ μ.μ μ 7.6 7.4.

μ 7.6: , μ μ , μ μ 074 μ Ala578, Ser577, Glu418

7.4:		μ	074	μ	μ	μ	
μ	μ	μ	074	μ	μ	μ	7.2.
						(Å)	
		µ 13 - / OHI	Ala578 N		1,854		
		μ 10 - \$ Ο…Η(Ser577 O		1,805		
		μ 30 - 0 NH0	Glu418 D		2,005		

.

074 μ

μ	7.7:			074	1			cPLA ₂ .	
	: µ	μ			μ			,	:
μ	μ		μ			,		: µ	μ
			,			: µ	μ		
		:	μ		μ			Ì	,
	μμ	:	μ		μ			ł	ı.
						μ	μ		
	μ		074 μ			μμ	μ	Le	u421
Leu592	2.			2	2-				Ì
						:	Phe199,	Pro263,	Leu264,
Phe295	5, Leu298,	lle299,	Ala396,	Phe397,	Leu400,	Phe401,	Val404, M	et417, Le	eu421
Phe683	β. μ	μ	μ				μ	(μ))
			μ	μ	Ala578.				
μ							μ	μμ	
μ		•							

7.5: μ μ

μ

007- cPLA₂ (μ μ μ)	074-cPLA ₂ (IF)	074-cPLA ₂ (Surflex-Dock)
μ μ μ μ Arg200	$\mu \qquad (bad) \\ \mu \qquad \mu \\ \mu \qquad \mu \\ \mu \qquad \mu \qquad \mu \\ \mu \\$	μ μ : •Ser228 •Gly197 •Asn555 •Arg200 •Ser577

μ μ S-cis μ (: 51,7°) ~ 7,5 Å 7,0 Å μ Ser228 μ μ Gly197	μ μ μ μ : -89,7° 5,68 Å 5,66 Å μ Ser228. μ μ Gly197 4,99 Å 5,89 Å	μ μ μ μ Ser228
μ μ μ Asn555, Gly551 Leu552	μ μ μ 074 μ μμ μ Leu421 Leu592	μ μ μ μ Asn555, Gly551 Leu552
	2- ì	2- µµ
2- µ µ Phe199, Pro263, Leu264 Phe683	: Phe199, Pro263, Leu264, Phe295, Leu298, Ile299, Ala396, Phe397, Leu400, Phe401, Val404, Met417, Leu421 Phe683	μ Phe199, Trp232, Pro263, Leu264, Phe295, Leu298, Ile299, Phe397 Phe683

[8,68,69]

7.6: μ μ

μμ μ ΙϜ.

μ

A/A	Χημική δομή	Υψηλότερη βαθμολογία μοριακής πρόσδεσης Αλγόριθμος Glide	Υψηλότερη βαθμολογία μοριακής πρόσδεσης Αλγόριθμος ΙF	X ₁ (50)	<mark>Δεσμοί</mark> Η (Glide)	Δεσμοί Η (IF)
AX074		-12,386	-15,937	0.003	Glu418 Ser577 Ala578	Ala578 Thr630
AX109	Han a contract of the second s	-13,286	-15,391	0.005	Arg200 Glu418 Ser577	Arg200 Ala578
AX007	HA HA HA	-10,868	-14,664	0.009	Arg2C0 Glu418 Ser577	Arg200 Thr630
AX073	His de la come	-12,489	-12,941	0.018	Ala578 Glu418	Arg200 Ala578 Thr630
AX063	())) ()))	-13,045	-12,634	0.019	Arg200 Ser577 Glu418	Arg200 Ala578

AX013	H			-10,314	-13,229	0.021	Arg200 Glu418 Ser577 Ala578	Glu418
AX016	- ()			-12,938	-15,384	0.035	Glu418 Ser577 Ala578	Arg200 Ala578 Glu418
	~~			-11,184	-10,834	-	Glu418 Gly551 Ser577 Ala578	Arg200 Ala578 Lys588 Glu589
		μ				7.4,	μ	μ
	μ	μ	μ	IF				
	μ			μ	μ		μ	
	μ	(IF).	μ	μ				μ
cPLA ₂				μ				
	μ			[7]]				
		μ	μ	μ	μ			
μ	μ			μ			,	
		μ						
			μ				μ	•
			·					
μ		l		μ		μ		
	L	J	_					

7.8 074 μ μ μ cPLA_{2,} μ μ μ μ (pdb: 3021) .[4] μ μ μ , 074 μ , μ μ μ μ . 7.9 μ μ μ μ μ μ (« μ μ (training set) »), μ (test set) µ $cPLA_2 \mu$ Glide μ μ μ 074 μ μ IF. μ μ μ .[23] μ μ ,μ μ μ μ μ μ μ μ . μ μ , μ μ . μ , RCOCF_3 μ μ Ser228, [73] μ μ . μ μ μ

151

(human cPLA₂)

8.1

μ μ μ μ μ μ μ (lead compounds) μ μ .[6] -, , μ LigandScout μ μ 2, Inte:Ligand μ μ μ μ . 8.2 μ μ μ μ LigandScout μ μ μ μ μ μ μ μ μμ 3.1.[30] GIVA cPLA_{2,} μ μ μ μ μ μ , "apo" µ (PDB ID:1cjy).[2] , μ 074 (ligand based μ μ μ). μ 8.3 μ μ μ μ , μ μ 2 μ μ μ μ • in vitro , 8.1. μ μ μ [1,69,74-78]. μ

7	073		X _I (50) = 0.018
8			X _I (50) = 0.035+/- 0.014
9			X _I (50) = 0.061+/- 0.017
10			X _I (50) = 0.011+/- 0.003
11		$()_{13} \overset{O}{\underset{()}{\overset{()}}{\overset{()}}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{()}}{\overset{()}{\overset{()}}{\overset{()}}}}}}}}}}$	X _I (50) = 0.033+/- 0.018
12			X _I (50) = 0.017+/- 0.002

:IC₅₀: μ μ .[80] X_I(50): μ μ -50% μ μ GVIA PLA₂, IC₅₀, GIVA μ μ μ μ IC₅₀ μ μ . μ μ .[76] μ ,μ μ (1-7) (training set) μ μ μ μ μ μ μ μ . (8-15) (test set) (16-18) μ (decoys). μ μ μ μ μ μ , μ , [81]. μ 8.4 μ μ μ μ μ : μ μ , , () pH 8 μ cPLA₂. () μ μ • .[4,7,58] μ (1-7) μ μ μ μ , μ . " " μ , μ μ μ μ «LigandScout's clustering method». μ μ μ .[30] μμ μ μ μ , μ μ μ μ (μ 6) μ μ «merged feature pharmacophore» μ μ «shared feature pharmacophore». μ

μ μ μ μ μ μ μ X_I(50). μ μ μ , μ μ , , (2) μμ μ : (074 & 074 & 109 & 109), (μ 007 & GK165 & AX016) 007), (074 & 109 & μ LigandScout. μ μ , μ μ μ μ «merged feature pharmacophore». μ μ «shared feature pharmacophore» μ μ μ . μ μ μ μ , μ μ μ (training set) μ (test set) μ .[33] μ μ μ

μ 8.1 :

μ 8.2: μ 2- μ μ, μ sn-2 .[69]

μ μ μ μ LigandScout (µ 8.4). μ μ "Merge pharmacophores and interpolate overlapping features" μ μ μ μ μ μ, , μ , μ μ μ μ , (MD) μ μ μ μ 074, μ μ μ μ

IF, μ μ .[27]

μ							
			μ		μ		
		(10/15).		μ		μ	
μ							
		μ					
	(hits)	μ			μ	μ	μ
		μ				μ	
μ		μ				8.2:	
	8.2:	μ				μ	

	h h h h
AX074	71,71
AX109	69,21
AX007	73,22

μ

μ

8.5

μ

μ	μ			μ
	μ	μ	, µ	
	(hits),		μμ	
μ		μ	μ	cPLA ₂ .
μ				
8.3.				

8.3:		μ	
μ	μ		

μ	
ZDD (Zinc Drug Database)	8.198
HitFinder	14.397
NCI	246.354
μμ PubChem	163

μ

: 8.6 ZDD 'Ε μ μ μμ μ μ μ [6]. μ μ , μ μ μ μ (71.71), μ μ μ 074 μ , 8.4). (

8.4:

ZDD

(Zinc).

	Zinc
01542895	01532129
01549362	02033841
01846079	00001625

8.5: μ μ μ μ 01542895 μ cPLA₂ IF.

:	: 01542895	μ
	μ μ μ : (-704,621 kJ/mol)	
μ	μ μ : (-703,562 kJ/mol)	-17,137

μ Gly197, Arg200, Ser228, Asp549

8	8.6	:	

μ	μ	01542895,	μμ	μ	μ	μ 8.5,	μμ
	μ	μ	μ	μ			

: µ – µ µ	(Å)
μ 18 - Gly197: Ο…ΗΝ	1,978
μ 21 - Arg200: Ο…NH ₂ +	1,896
μ 22 - Arg200: Ο…NH₂	2,178
μ 26 - Ser228: ΟΗΟ	2,185
µ 23 24 25 - Asp549: ₃ +O	1,896

μ 8.8: , μ μ , μ 01542895 μ μ Asn555, Ala578, Thr680

	8.7:					μ 8.8.	
μ	μ	01542895,	μμ	μ	μ	μ 8.5,	μμ
	μ	μ	μ	μ			

μ	: - µ	μ	(Å)
μ	21 - Ala578: O…HN		2,093
μ	22 - Thr680: OHO		1,584
μ	19 - Asn555: D… H ₂ N		1,875

μ 8.9

:

μ

μ μ .[69] μ μ μ Phe397 - .

μ μ Phe397 - . μ μμ μ 01542895 μ μμ μ Ala396, Phe397, Leu400, Met417, Leu421, Leu552 Ala578.

8.6.1.1 μ 01542895

μ Zinc μ μ 01542895 Bestatin μ CAS 58970-76-6 & 65391-42-6.[83] μ Drugbank Bestatin μ μ DB03424 μ μ - : 4 (Leukotriene A-4 hydrolase)

(Bacterial leucyl aminopeptidase).[84]

8.6.2 01549362 μ μ cPLA₂

μ 8.10: μ μ μ Zinc μ 01549362. μ μ μ μ Chemdraw. (μ μ μ μ

μ

Glide μ μ μ Ser577, Ala578, Glu418 Ala396 µ μ μ 3,78 Å (-9,082) μ 21 μ IF Ser228. μ μ μ μ

. μ IF 8.8.

8.8:
μ
μ
01549362
μ

cPLA2
IF.
IF.</t

:	: 01549362	μ
μ	μ μ μ : (-1145,913 kJ/mol)	
	μ μ : (-1140,978 kJ/mol)	-14,531

μ 01549362 μ 8.11: μ cPLA₂, μ μ IF. μ μ μ μ μ . μ μμ μμ. 8.12 8.13 μ μ μ μ 01549362 μ cPLA₂.

μ 8.12: , μ μ , μ 01549362 μ μ Gly197 Gly198

	8.9:						μ	8.12	-	
	μ	μ	01549362	,	μμ	μ	μ		μ	8.10,
μμ			μ		μμ		μ	•		
				:					(Å)	
									(· ·)	

μ	– µ	μ	
	μ 23 - Gly197: ΟΗΝ		2,178
	μ 23 - Gly198: Ο…ΗΝ		2,229

μ 8.13: , μ μ , μ 01549362 μ μ Arg200 Thr680

	8.10:					μ	8.13.		
	μ	μ	01549362,	μμ	μ	μ		μ	8.10,
μμ			μ	μμ		μ	•		

μ	– µ	: µ	(Å)
	µ 21 - Arg20 O…HN	0:	1,823
	µ 21 - Thr68 O…HO	0:	1,861

μ 8.14

8.6.2.1 μ 01549362

175

8.11: μ μ μ 01532129– μ

8.6.3.1 V

μ cPLA₂

(8.12-8.14 μ 8.18-8.20):

177

8.12: μ μ μ V μ cPLA₂μ μ IF

:	v	μ
	μ μ μ : (-880,103 kJ/mol)	
μ μ	μ μ μ : (-877.256 k l/mol)	-15,873

μ 8.19: , μ μ , μ V μ μ Arg200 Ser228

8.13:	•					μ 8.19.	
μ	μ	ν,	μμ	μ	μ	μ 8.17,	μμ
μ		I	μμ		μ.		

	(Å)
μ 24 - Arg200: Ο…ΗΝ	1,974
μ 12 - Ser228: Ο…ΗΟ	2,291

μ 8.20: , μ μ , μ V μ μ Glu418 Asn555

8.14	4:					μ 8.20.	
μ	μ	V,	μμ	μ	μ	μ 8.17,	μμ
μ			μμ		μ.		

	(Å)
μ 19 - Glu418: NH…O	2,119
μ 20 21 22 - Glu418: NH…O	1,723
μ 20 21 22 - Asn555: NH… Ο	2,259

μ μ μ μ Phe199, Pro263, Phe295, Leu298, Ile299, Ala396, Phe397, Leu400, Phe401, Val404, Met417, Leu421 Phe683.

8.6.3.2

01532129

Zinc Aspartame µ CAS μ 22839-47-0 & 25548-16-7.[83] Drugbank μ μ ì DB00168 : TRPA1 μ μ μ -(Transient receptor potential cation channel subfamily V member 1-induder) 1 (Taste receptor type 1 member 2-agonist).[87]

μ [88]. 8.15 8.16 μ V (μ μ), μ

[89].

V [89]

8.6.4 02033841 μ μ cPLA₂

μ 8.22: μ μ μ μ 02033841 Zinc µ

μ	8.24:		02033841 ^a					μ	•	μ	
	μ		μ	I	Glic	le.					
					μ					μ	
	μ	μ				IF.	8	8.17			
	μ		μ		IF:						

8.17: μ μ IF μ 02033841^a

:	: 02033841ª	μ
IF	μ μ μ : (-395,793 kJ/mol)	40.000
	μ μ : (- 394,948 kJ/mol)	-16,823

μ 8.25: μ 02033841^a cPLA₂. μ μ μ μ μ Arg200, Ala578, Thr680 μ.

8.18	3:				μ 8.25.		
μ	μ	02033841 ^ª ,	μμ	μ	μ	μ	8.23,
μμ		μ	μμ		μ.		

	(Å)
μ 35 - Arg200: Ο…ΗΝ	1,846
μ 34 - Ala578: Ο…ΗΝ	1,992
μ 33 - Thr680: NH… O	2,069

μ Phe199, Trp232, Pro263, Leu264, Phe295, Leu298, IIE299, Leu303, Ala396, Phe397, Leu400, Pe401, Val404, Met417, Leu421, Leu552, Phe681 Phe 683.

8.6.4.1

μ	Zinc		Proglumide µ	CAS
6620-60-6, 9924	7-33-3.		[90]	
μμ-	:			-1
(Cholecystokinin-1	Receptor),			-2
(Cholecystokinin-2	Receptor)	μ	2	(Histamine H2
receptor).				
ł	L		μ	
				[91].
,				
			.[92,93]	8.19
8.20	μ			

02033841^a [89]

μ


```
8.20:
```

02033841^a [89]

8.21: Zinc 01846079 00001625

 8.7
 PubChem

 μ
 μ

 μ
 μ

 μ
 72172.

 μ
 2inc 01542895,

μμ 8.6.1. 8.8 Hitfinder

μ μ μ (71,71), μ μ μ μ 074 μ (8.22). Glide ,μ μ μ μ .

μ

μ

E 199

RG 200

μ

00171451.

8.9 NCI

μ μ (87) μ μ μ μ μ μ μ μ μ (Virtual Screening Workflow) μ Schrodinger. μ : 1. μ μ (ligands) μ 2. QikProp. μ μ μ μ μ Lipinski,

 3.
 μ
 μ
 μ
 Glide

 , HTVS, SP, XP.[16,94,95]

, μ 8.24:

8.24:

NCI.

μ 8.29: 42010. μ μμ μμ μμ μμ μ μ Ser228 (3,21 Å), Asp549 (3,91 Å) Arg200 (2,14 Å).

, μ μ μ 42010 μ μ Arg200 Asn555 (μ μ

μ		μ	[69	9]).				
	8.26:		μ	8.29.	μ	μ	μ	μ
μ		42010		μ	NCI			8.26
	μ	μ		μ	Chemdraw.			
						(Å)		
		μ 17 -	Ala578:		1.746			
		OH	IN					
		μ 18-	Thr680:			1 935		
		OF	łO			,		

μ

,

42010

(µ 8.30).

Pubchem: 237919.

8.10 μ μ

.

,

μ	8.31:	μ	μ					[96]. µ
μ						μ	, μ	μ
	,			,	μ	μ	,	μ

μ , μ *in vitr*o μ , μ

μ 8.32: μ [96] µ μ μ μ μ μ -• , µ 8.33 :) µ μ [96]) µ μ μ μ

•

.

(µ 8.34).

μ		μ	μ	μ	μ		μ
μ	,			μ	in silico) h	J.
						μ	μ
	μ						μ .[97]
μ		μ		μ	μ		μ
		μ	μ				
	ŀ	I			μ	μ	μ
μ				μ	μ	μ	
			μ		μ		

μ		
Protein Data Base	μ	
Human Cytosolic Phospholipase A ₂	2	
Knock-out	μ μ	μ
Platelet Aggregating Factor	μ	
Cap Region	hh	
Ca ²⁺ Binding Loop	μ	
Ceramide 1-Phosphate	μ 1	
Phosphatidylinositol		
4,5-Bisphosphate		
Closed Lid		
Open Lid	μ	
Interfacial Activation		
Molecular Docking		
Ligand Pose		
Core		
Rotamer Groups	μμ	
Grid		
Gscore-Docking Score	μ	
Desolvation Effects	μ	
Virtual Screening Workflow		
Ligand Preparation	μ	

Skin Permeability				μ					
Aqueous Solubility									
Induced Fit		μ			μ				
Root Mean Square Deviation							μ		
Loops									
International Union of Applied Chemistry					μ	μ		μ	
Ligand-based	μ	μ		μ		μ μ			
Structure-based	μ	h	-	μ		μ	μ		μ
Macromolecule (without ligand) based		μ				μ			
Complex	μ	μ							
Macromolecule-ligand-complex based	μ	μ μ	/		μ				
Virtual Screening									
Multitarget Drug Design		μ		μ		μ			
Computational Chemistry				μ					
Lead Compounds									
Conformational Space	μ								
Training Set			μ						
Decoys									
Compounds Databases			μ						
Pharmacophore-Based Virtual Screening	μ				ł	l			

Hits	
Pharmacophore pattern	μ
National Cancer Institute	
Perspectives	μμ
Regiochemical	μ
Standard	
Clean	μ
Benign	μ
Trial	μ
Desolvation	
Ready-to-download Compressed Files	μ μ μ μ
Lead-like	μ
Fragment-like	μ μμ μ μ
Text	μ
Structure	μ
Properties	
Targets	
Rings	
Combination	
Ligands	
Quantitative Structure Activity Relationship	μ
Molecular Polar Surface Area TPSA	
Number of Rotatable Bonds	μμμ

Molecular Volume						
Druglikeness	μ	μ		μ		
Metabolic Stability						
GPCR Ligand			GPCR			
Ion Channel Modulator	μ			-		
Kinase Inhibitor						
Nuclear Receptor Ligand						
Enzyme Inhibitor			ł	l		
Protease Inhibitor						
Three-Dimensional						
Bioavailable		ļ	μ			
Membrane-Permeable				μμ		
Protein Preparation Wizard			μ			
Heavy Atoms						
Multimeric	μ					
Assign Bond Orders				μ		
Add Hydrogens						μ
Create Zero Bonds to Metals		μ μ	μ		μ	
Create Disulfide Bonds	μ μ			μ		μ
Fill in Missing Side Chains Using Prime			Prime			μ
Fill in Missing Loops Using Prime	Prime			μ		
2-(N-Morpholino)-EthaneSulfonic Acid	2µ		-			
Refine H-Bond Assignments						μ

Impref Minimization	μμ
Iterations	
Project Table	μμ
Receptor Grid Generation	μ
Generate Conformations for Ligand- Set	h h
Create Pharmacophore	h h
Perform Screening	
Minimization Algorithms	μ
Steepest Descents	
Conjugated Gradient	μ
Trajectory	
Snapshots	μ
Graphical User Interface	
Build Toolbar	μ
Build	μ
Current energy	μ
Minimization	
Conformational Search	μ
Monte Carlo Multiple Minimum	Carlo
Systematic Pseudo-Monte Carlo	μ -Monte Carlo
Low-Mode Conformational Search Methods	h h

Mixed MCMM/Low-Mode Conformational Search Methods	μ μ 1 3
Bad	
Test Set	
Lead Compound	-
Clustering Method	μ
Pharmacophore Fit	р р
Leukotriene A-4 Hydrolase	4
Bacterial Leucyl Aminopeptidase	μ
Transient Receptor Potential Cation Channel Subfamily V Member 1- Induder	້ຳ TRPA1
Taste Receptor TYPE 1 Member 2- Agonist	1
Cholecystokinin-1 Receptor	-1
Cholecystokinin-2 Receptor	-2
Molecular Dynamics	μ

м	

PDB	Protein Data Base
cPLA ₂	Cytosolic Phospholipases A ₂
PAF	Platelet Aggregating Factor
CBL	Ca ²⁺ Binding Loop
	Mitogen Activated Protein
C1P	Ceramide-1-Phosphate
PIP ₂	Phosphatidylinositol 4,5-bisphosphate
COX-1	Cyclooxygenase-1
COX-2	Cyclooxygenase-2
sn	Systematic Name
Glide	Grid-Based Ligand Docking with Energetics
HTVS	High-Throughput Virtual Screening
SP	Standard Precision
ХР	Extra Precision
IF	Induced Fit
RMSD	Root Mean Square Deviation
IUPAC	International Union of Applied Chemistry
SBP	Structure-Based Pharmacophore
VS	Pharmacophore-Based Virtual Screening
NCI	National Cancer Institute
ACD	Accelrys Available Chemicals Directory
QSAR	Quantitative Structure Activity Relationship

_

_

3D	Three-Dimensional
nrotb	Number of Rotatable Bonds
GPCR	G Protein Coupled Receptors
MES	2-(N-Morpholino)-EthaneSulfonic acid
PRCG	Polak-Ribiere Conjugate Gradient
MCMM	Monte Carlo Multiple Minimum
SPMC	Systematic Pseudo-Monte Carlo
ZDD	Zinc Drug Database
MD	Molecular Dynamics
CAS	CAS Registry Number
	μ

http://www.molinspiration.com-

μ

(Nuclear receptor ligand)	0,13
μ (Enzyme inhibitor)	0,29
(Protease inhibitor)	0,48

	μμ
miLogP	5,28
TPSA	83,468
natoms	25,0
MW	355,519
nON	5
nOHNH	2
nviolations	1
nrotb	17
Molecular volume	375,181
μ	
GPCR (GPCR ligand)	0,18
μ - (Ion channel modulator)	-0,01
(Kinase inhibitor)	-0,31
(Nuclear receptor ligand)	0,16
μ (Enzyme inhibitor)	0,35
(Protease inhibitor)	0,58

4	
	μμ
miLogP	4,483
TPSA	92,702
natoms	29,0
MW	405,535
nON	6
nOHNH	2
nviolations	0
nrotb	17
Molecular volume	405,383
μ	
GPCR (GPCR ligand)	0,20
μ - (Ion channel modulator)	-0,02
(Kinase inhibitor)	-0.30
(Nuclear receptor ligand)	0,24
μ (Enzyme inhibitor)	0,33
(Protease inhibitor)	0,48

5	
	h h
miLogP	6,656
TPSA	83,468
natoms	31,0
MW	431,617
nON	5
nOHNH	2
nviolations	1
nrotb	19
Molecular volume	446,83
μ	
GPCR (GPCR ligand)	0,22
μ - (Ion channel modulator)	0,00
(Kinase inhibitor)	-0,25
(Nuclear receptor ligand)	0,16
μ (Enzyme inhibitor)	0,31
(Protease inhibitor)	0,56

()z 6	
	μμ
miLogP	7,608
TPSA	72,474
natoms	30,0
MW	425,654
nON	5
nOHNH	1
nviolations	1
nrotb	22
Molecular volume	459,916
μ	
GPCR (GPCR ligand)	0,04
μ - (Ion channel modulator)	-0,08
(Kinase inhibitor)	-0,31
(Nuclear receptor ligand)	-0,01
μ (Enzyme inhibitor)	0,19
(Protease inhibitor)	0,39
	7
--------------------------------	---------
	μμ
miLogP	7,895
TPSA	72,474
natoms	30,0
MW	423,638
nON	5
nOHNH	1
nviolations	1
nrotb	21
Molecular volume	453,729
μ	
GPCR (GPCR ligand)	0,07
μ - (Ion channel modulator)	-0.05
(Kinase inhibitor)	-0.32
(Nuclear receptor ligand)	0.07
μ (Enzyme inhibitor)	0,24
(Protease inhibitor)	0,54

	μμ
miLogP	4,953
TPSA	112,566
natoms	31,0
MW	440,625
nON	7
nOHNH	3
nviolations	0
nrotb	21
Molecular volume	456,972
μ	
GPCR (GPCR ligand)	0,16
μ - (Ion channel modulator)	-0,01
(Kinase inhibitor)	-0,27
(Nuclear receptor ligand)	0,13
μ (Enzyme inhibitor)	0,31
(Protease inhibitor)	0,61

	9
	μμ
miLogP	4,132
TPSA	112,566
natoms	30,0
MW	426,598
nON	7
nOHNH	3
nviolations	0
nrotb	19
Molecular volume	439,955
μ	
GPCR (GPCR ligand)	0,11
μ - (Ion channel modulator)	-0,09
(Kinase inhibitor)	-0,33
(Nuclear receptor ligand)	-0,01
μ (Enzyme inhibitor)	0,29
(Protease inhibitor)	0,66

	μμ
miLogP	6,4
TPSA	83,468
natoms	28,0
MW	395,584
nON	5
nOHNH	2
nviolations	1
nrotb	20
Molecular volume	419,614
μ	
GPCR (GPCR ligand)	0,19
μ - (Ion channel modulator)	0,00
(Kinase inhibitor)	-0,29
(Nuclear receptor ligand)	0,17
μ (Enzyme inhibitor)	0,36
(Protease inhibitor)	0,47

	11
	μμ
miLogP	8,787
TPSA	92,338
natoms	38,0
MW	550,85
nON	6
nOHNH	2
nviolations	2
nrotb	24
Molecular volume	563,992
μ	
GPCR (GPCR ligand)	0,03
μ - (Ion channel modulator)	-0,31
(Kinase inhibitor)	-0,32
(Nuclear receptor ligand)	-0,14
μ (Enzyme inhibitor)	0,10
(Protease inhibitor)	0,35

() ₁₃ Н он () ₂ Он	12
	μμ
miLogP	6,744
TPSA	92,702
natoms	30,0
MW	427,626
nON	6
nOHNH	2
nviolations	1
nrotb	22
Molecular volume	451,372
μ	
GPCR (GPCR ligand)	0,12
μ - (Ion channel modulator)	-0,14
(Kinase inhibitor)	-0,24
(Nuclear receptor ligand)	0,11
μ (Enzyme inhibitor)	0,28
(Protease inhibitor)	0,49

	-СН ₃ 13
	μμ
miLogP	6,832
TPSA	100,62
natoms	36,0
MW	522,752
nON	7
nOHNH	1
nviolations	2
nrotb	20
Molecular volume	516,124
μ	
GPCR (GPCR ligand)	-0,04
μ - (Ion channel modulator)	-0,28
(Kinase inhibitor)	-0,36
(Nuclear receptor ligand)	-0,17
μ (Enzyme inhibitor)	0.07
(Protease inhibitor)	0,29

	F F 14
	μμ
miLogP	6,01
TPSA	26,305
natoms	23,0
MW	330,39
nON	2
nOHNH	0
nviolations	1
nrotb	12
Molecular volume	311,086
μ	
GPCR (GPCR ligand)	-0,07
μ - (Ion channel modulator)	-0,18
(Kinase inhibitor)	-0,41
(Nuclear receptor ligand)	0,19
μ (Enzyme inhibitor)	0,17
(Protease inhibitor)	0,14

	F 15
	μμ
miLogP	6,689
TPSA	17,071
natoms	23,0
MW	330,434
nON	1
nOHNH	0
nviolations	1
nrotb	14
Molecular volume	329,745
μ	
GPCR (GPCR ligand)	0,05
μ - (Ion channel modulator)	-0,01
(Kinase inhibitor)	-0,36
(Nuclear receptor ligand)	0,20
μ (Enzyme inhibitor)	0,33
(Protease inhibitor)	0,15

	16
	μμ
miLogP	3,572
TPSA	121,8
natoms	28,0
MW	400,516
nON	8
nOHNH	3
nviolations	0
nrotb	18
Molecular volume	398,749
μ	
GPCR (GPCR ligand)	0,32
μ - (Ion channel modulator)	0,03
(Kinase inhibitor)	-0,20
(Nuclear receptor ligand)	0,26
μ (Enzyme inhibitor)	0,46
(Protease inhibitor)	0,79

	μμ
miLogP	3,572
TPSA	121,8
natoms	28,0
MW	400,516
nON	8
nOHNH	3
nviolations	0
nrotb	18
Molecular volume	398,749
μ	
GPCR (GPCR ligand)	0,32
μ - (Ion channel modulator)	0,03
(Kinase inhibitor)	-0,20
(Nuclear receptor ligand)	0,26
μ (Enzyme inhibitor)	0,46
(Protease inhibitor)	0,79

$()_{13} \square \square$	18
	μμ
miLogP	9,343
TPSA	84,501
natoms	37,0
MW	524,831
nON	6
nOHNH	2
nviolations	2
nrotb	28
Molecular volume	573,129
μ	
GPCR (GPCR ligand)	0,17
μ - (Ion channel modulator)	-0,05
(Kinase inhibitor)	-0,13
(Nuclear receptor ligand)	0,07
μ (Enzyme inhibitor)	0,27
(Protease inhibitor)	0,54

μ 2: μ 01549362 μ μ

μ4: μ 02033841 μ μ

1: μ μ

μ

μ

•

ΝCΙ μ

μ

45705	555	3143	3682	9972
12963	17795	29463	42010	42012
42014	43126	43657	45694	45700
45701	55781	64620	66426	72557
82232	85503	88494	88720	98047
105599	109186	131049	142791	156091
164694	169169	176158	186902	201707
203800	239369	255309	270907	281029
295562	303510	306121	306122	306123
306124	319666	333455	333743	333744
334194	334196	356554	372329	380458
401551	522230	522629	522630	522676
526509	608047	608048	608050	626995
626996	626997	627004	627210	627211
646356	648303	653950	674644	676456
694094	697588	702672	702684	709889
717767	722614	723272	723990	727676
608052				

μ 8:

LigandScout. μ μμ μ. μ

•

- 1 E.A. Dennis, J. Cao, Y.-H. Hsu, V. Magrioti, G. Kokotos, Phospholipase A₂ enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention, Chem.Rev., 111 (2011) 6130-6185.
- 2 : http://www.rcsb.org
- 3 A. Dessen, Structure and mechanism of human cytosolic phospholipase A₂, Biochimica et Biophysica Acta, 1488 (2000) 40-47.
- 4 A. Dessen, J. Tang, H. Schmidt, M. Stahl, J.D. Clark, J. Seehra, W.S. Somers, Crystal structure of human cytosolic phospholipase A₂ reveals a novel topology and catalytic mechanism, Cell, 97 (1999) 349-360.
- 5 S. Jaud, D. Tobias, J. Falke, S. White, Self-induced docking site of a deeply embedded peripheral membrane protein, Biophys. J., 92 (2007) 517-524.
- 6 μ μ μ μ μ , 2008.
- 7 μ μ μ μ μ μ , 2008. 8 μ , 2010.
- 9 R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J.Med.Chem., 47 (2004) 1739-1749.

...

- 10 Schrödinger, Glide User Manual, Schrödinger Press, 2010.
- 11 : http://www.schrodinger.com/kb/348

2,

12 : http://www.schrodinger.com/kb/27

- 13 : http://www.schrodinger.com/productpage/14/5/
- 14 R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J.Med.Chem., 49 (2006) 6177-6196.
- 15 Schrödinger, Virtual Screening Workflow, Schrödinger Suite 2012 Update 2, Schrödinger Press 2012.
- 16 : http://www.schrodinger.com/kb/1386
- 17 : http://www.schrodinger.com/productpage/14/17/
- 18 : http://commons.wikimedia.org/wiki/File:Induced_fit_diagram.png
- W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel procedure for modeling ligand/receptor induced fit effects, J.Med.Chem., 49 (2006) 534-553.
- 20 : http://www.schrodinger.com/productpage/14/6/
- 21 : http://www.schrodinger.com/productpage/14/14/
- P. Ehrlich, "Über den jetzigen Stand der Chemotherapie", Ber. Dtsch.Chem. Ges., 42 (1909) 17–47.
- 23 T. Langer, R.D. Hoffmann, Pharmacophores and pharmacophore searches, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.
- 24 Cramer R. D. III, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc. 110 (1988) 5959-5967.
- G. Klebe, Comparative Molecular Similarity Indices Analysis: CoMSIA, Perspect. Drug Discov. Des., 12 (1998) 87-104.
- 26 H. Finch, The conformational musings of a medicinal chemist, *Drug Discov. Today*, [Epub ahead of print] 2013.
- 27 S.-Y. Yang, Pharmacophore modeling and applications in drug discovery: challenges and recent advances, Drug Disc. Today, 15 (2010) 444-450.

- 28 E. Gregori-Puigjané, V. Setola, J. Hert, B.A. Crews, J.J. Irwin, E. Lounkine, L. Marnett, B.L. Roth, B.K. Shoichet, Identifying mechanism-of-action targets for drugs and probes, PNAS, 109 (2012) 11178-11183.
- 29 H.-J. Böhm, A novel computational tool for automated structure-based drug design, J. Mol. Recognit., 6 (1993) 131–137.

30 : http://www.inteligand.com/ligandscout/manual/

- 31 H.-J. Boehm, M. Boehringer, D. Bur, H. Gmuender, W. Huber, W. Klaus, D. Kostrewa, H. Kuehne, T. Luebbers, N. Meunier-Keller, F. Mueller, Novel inhibitors of DNA Gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening, J. Med. Chem., 43 (2000) 2664-2674.
- 32 J.H. Hsieh, X.S. Wang, D. Teotico, A. Golbraikh, A. Tropsha, Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening, *J. Comput. Aided Mol. Des.*, 22 (2008) 593-609.
- 33 http://www.inteligand.com/ligandscout3/downloads/ligandscout-tutorialcards.pdf
- 34 W.P. Walters, M.T. Stahl, M.A. Murcko, Virtual screening an overview, *Drug Discov. Today*, 3 (1998) 160-178.
- 35 J. Irwin, B. Shoichet, ZINC-A free database of commercially available compounds for virtual screening, J. Chem. Inf. Model., 45 (2005) 177-182.
- J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC:
 A free tool to discover chemistry for biology, J. Chem. Inf. Model., 52 (2012) 1757–1768.
- 37 : http://wiki.uoft.bkslab.org/index.php/ZINC_Database
 38 : http://www.molecular-networks.com/products/corina

237

- 39 : http://www.license.umn.edu/Products/AMSOL-71--Software-to-Calculate-Free-Energies-of-Solvation__Z05201.aspx
- 40 R. Wang, Y. Fu, L. Lai, A new atom-additive method for calculating partition coefficients, J. Chem. Inf. Comput. Sci., 37 (1997) 615-621.
- 41 Mannhold R. (2006) Calculation of Lipophilicity: A classification of Methods, In: Testa B, Kramer S.D., Wunderli-Allenspach H., Folkers G. (Eds). Pharmacokinetic Profiling in Drug Research, Wiley, VCH, Zurich, pp 333-352.
- 42 D. E Clark, What has polar surface area ever done for drug discovery?, Fut. Med Chem., 3 (2011) 3469-3484.
- 43 C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46 (2001) 3-26.
- A. Nicholls, G.B. McGaughey, R.P. Sheridan, A.C. Good, G. Warren, M. Mathieu, S.W. Muchmore, S.P. Brown, J.A. Grant, J.A. Haigh, N. Nevins, A.N. Jain, B. Kelley, Molecular shape and medicinal chemistry: a perspective, *J. Med. Chem.*, 53 (2010) 3862-3886.
- 45 : http://www.molinspiration.com/cgi-bin/properties
- 46

48

49

50

http://www.molins	piration.com/se	ervices/pro	perties.html
	p	0.000, p.0	

47 : http://www.molinspiration.com/services/volume.html

ŝ

http://www.molinspiration.com/docu/miscreen/druglikeness.html

http://www.molinspiration.com/docu/miscreen/virtualscreening.html

- http://dtp.nci.nih.gov/docs/3d_database/stats/trendv.html
- 51 : http://cactus.nci.nih.gov/download/nci/
- 52 : http://dtp.nci.nih.gov/docs/3d_database/dis3d.html

- 53 : http://www.maybridge.com/portal/alias__Rainbow/lang__en/tabID__229/ DesktopDefault.aspx
- 54 : http://htc.wustl.edu/collections.html
- 55 : http://en.wikipedia.org/wiki/PubChem
- 56 Schrödinger, Maestro 9.0 Tutorial, Schrödinger Press, 2009.
- 57 Schrödinger, Protein Preparation Guide, Schrödinger Suite 2009, Schrödinger Press.
- R.T. Pickard, X. Grace Chiou, B.A. Strifler, M.R. DeFelippis, P.A. Hyslop,
 A. Louise Tebbe, Y.K. Yee, L.J. Reynolds, E.A. Dennis, R.M. Kramer,
 J.D. Sharp, Identification of essential residues fo the catalytic function of
 85-kDa cytosolic phospholipase A₂, J.Biol.Chem., 271 (1996) 1922519231.
- 59 Schrödinger, LigPrep 2.4 User Manual, Schrödinger Press, 2010.
- 60 Y. Connolly Martin, Let's not forget tautomers, J. Comput. Aided Mol. Des., 23 (2009) 693–704.
- 61 Schrödinger, MacroModel 9.8 User Manual, Schrödinger Press, 2010.
- 62 Schrödinger, Maestro 9.1 User Manual, Schrödinger Press, 2010.
- 63 Schrödinger, Induced Fit Docking Schrödinger Suite 2010, Schrödinger Press, 2010.
- 64 . μ , . , , " μ ", .
- 65 J.C. McKew, F. Lovering, J.D. Clark, J. Bemis, Y. Xiang, M. Shen, W. Zhang, J.C. Alvarez, D. Joseph-McCarthy, Structure-activity relationships of indole cytosolic phospholipase A₂ inhibitors: substrate mimetics, Bioorg.Med.Chem.Lett., 13 (2003) 4501-4504.
- A. Gopalsamy, H. Yang, J.W. Ellingboe, J.C. McKew, S. Tam, D. Joseph-McCarthy, W. Zhang, M. Shen, J.D. Clark, 1,2,4-Oxadiazolidin-3,5-diones and 1,3,5-triazin-2,4,6-triones as cytosolic phospholipase A₂ inhibitors, Bioorg.Med.Chem.Lett., 16 (2006) 2978-2981.

- 67 V.D. Mouchlis, E. Barbayianni, T.M. Mavromoustakos, G. Kokotos, The application of rational design on phospholipase A₂ inhibitors, Current Medicinal Chemistry, 18 (2011) 2566-2582.
- 68 J.E. Burke, A. Babakhani, A.A. Gorfe, G. Kokotos, S. Li, V.L. Woods Jr., J. Andrew McCammon, E.A. Dennis, Location of inhibitors bound to group IVA phospholipase A₂ determined by molecular dynamics and deuterium exchange mass spectrometry, J. Am. Chem. Soc., 131 (2009) 8083–8091.
- 69 V.D. Mouchlis, V. Michopoulou, V. Constantinou-Kokotou, T. Mavromoustakos, E.A. Dennis, G. Kokotos, Binding conformation of 2-oxoamide inhibitors to group IVA cytosolic phospholipase A₂ determined by molecular docking combined with molecular dynamics, J. Chem. Inf. Model, 52 (2012) 243-254.

70 : http://www.schrodinger.com/kb/739

- 71 J.E. Burke, Y.-H. Hsu, R.A. Deems, S. Li, V.L. Woods Jr, E.A. Dennis, A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A₂, J.Biol. Chem., 283 (2008) 31227-31236.
- Y. Lin, R. Nielsen, D. Murray, W.L. Hubbell, C. Mailer, B.H. Robinson, M.H. Gelb, Docking phospholipase A₂ on membranes using electrostatic potential-modulated spin relaxation magnetic resonance, Science, 279 (1998) 1925-1929.
- 73 L.A. Trimble, I.P. Street, H. Perrier, N.M. Tremblay, P.K. Weech, M.A. Bernstein, NMR Structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A₂, Biochemistry, 32 (1993) 12560-12565.
- 74 E. Barbayianni, D. Stephens, A. Grkovich, V. Magrioti, Y.-H. Hsu, P. Dolatzas, D. Kalogiannidis, E.A. Dennis, G. Kokotos, 2-Oxoamide inhibitors of phospholipase A2 activity and cellular arachidonate release based on dipeptides and pseudodipeptides, Bioorg.Med.Chem., 17 (2009) 4833-4843.

- 75 C. Baskakis, V. Magrioti, N. Cotton, D. Stephens, V. Constantinou-Kokotou, E.A. Dennis, G. Kokotos, Synthesis of polyfluoro ketones for selective inhibition of human phospholipase A₂ enzymes, J.Med.Chem., 51 (2008) 8027-8037.
- 76 D. Stephens, E. Barbayianni, V. Constantinou-Kokotou, A. Peristeraki, D.A. Six, J. Cooper, R. Harkewicz, R.A. Deems, E.A. Dennis, G. Kokotos, Differential inhibition of group IVA and group VIA phospholipases A₂ by 2-Oxoamides, J.Med.Chem., 49 (2006) 2821-2828.
- G. Antonopoulou, V. Magrioti, D. Stephens, V. Constantinou-Kokotou,
 E. . Dennis, G. Kokotos, Synthesis of 2-oxoamides based on sulfonamide analogs of -amino acids and their activity on phospholipase A₂, J.Pept.Sci., 14 (2008) 1111-1120.
- 78 D. Six, E. Barbayianni, V. Loukas, V. Constantinou-Kokotou, D. Hadjipavlou-Litina, D. Stephens, A.C. Wong, V. Magrioti, P. Moutevelis-Minakakis, S.F. Baker, E.A. Dennis, G. Kokotos, Structure-activity relationship of 2-Oxoamide inhibition of group IVA cytosolic phospholipase A₂ and group V secreted phospholipase A₂, J.Med.Chem., 50 (2007) 4222-4235.
- 79 E. Amandi-Burgermeister, U. Tibes, B.M. Kaiser, W.G. Friebe, W.V. Scheuer, Suppression of cytokine synthesis, integrin expression and chronic inflammation by inhibitors of cytosolic phospholipase A₂, Eur. J. of Pharmacol., 326 (1997) 237-250.

80		,	μ	μ			",	μ	
		μ	μ		ht	l		«	
		μ		μ	μ	»,		· .,	
	2012.								

81 K.N. Sudha, M. Shakira, P. Prasanthi, N. Sarika, C.N. Kumar, P.A. Babu, Virtual screening for novel COX-2 inhibitors using the ZINC database, Bioinformation, 2 (2008) 325-329.

,

82 G. Kokotos, S. Kotsovolou, D.A. Six, V. Constantinou-Kokotou, C.C. Beltzner, E.A. Dennis, Novel 2-Oxoamide Inhibitors of human group IVA Phospholipase A₂, J. Med. Chem., 45 (2002) 2891-2893. 83 : http://zinc.docking.org/ 84 : http://www.drugbank.ca/drugs/DB03424 85 https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL2 103812 86 http://www.cancer.gov/drugdictionary?cdrid=617379 87 : http://www.drugbank.ca/drugs/DB00168 88 S. Pradhan, U.H. Shah, A.G. Mathur, S. Sharma, Aspartame: Sweetener with anti-inflammatory potential? J.Pharmacol.Pharmacother., 1 (2010) 113-114. 89 : http://www.molinspiration.com/ 90 : http://www.bindingdb.org/bind/index.jsp 91 D. Bermudez-Ocana, H. Aguilar-Mariscal, T. Ramon Frias, J.L. Ble-Castillo, F.J. Flores-Murrieta, J.C. Diaz-Zagoya, V. Granados-Soto, I.-E. Juarez-Rojop, Proglumide enhances the antinociceptive effect of cyclooxygenase inhibitors in diabetic rats in the formalin test, Eur. J.Pharmacol., 664 (2011) 8-13. 92 Z.P. Bernstein, S. Yucht, E. Battista, M. Lema, M.B. Spaulding, Proglumide as a morphine adjunct in cancer pain management, J. Pain Symptom Manage., 15 (1998) 314-320. 93 G.J. McCleane, The cholecystokinin antagonist proglumide enhances the analgesic efficacy of morphine in humans with chronic benign pain, Anesth Analg., 87 (1998) 1117-1120. 94 : http://www.schrodinger.com/kb/1382 95 : http://www.schrodinger.com/kb/616 S.M. Noha, B. Jazzar, S. Kuehnl, J.M. Rollinger, H. Stuppner, A.M. 96 Schaible, O. Werz, G. Wolber, D. Schuster, Pharmacophore-based

242

discovery of a novel cytosolic phospholipase A₂ inhibitor, Bioorg. Med. Chem. Lett., 22 (2012) 1202-1207.

97 R.D. Urniaz, K. Jo wiak, X ray Crystallographic Structures as a Source of Ligand Alignment in 3D-QSAR, J. Chem. Inf. Model., 53 (2013) 1406– 1414.