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Περίληψη

Με το ενδιαφέρον για τις εφαρµογές του Σηµασιολογικού Ιστού να αυξάνεται ϱαγδαία, το µοντέλο
RDF και RDFS έχει γίνει ένα από τα πιο ευρέως χρησιµοποιούµενα µοντέλα δεδοµένων για την
αναπαράσταση και την ενσωµάτωση δοµηµένης πληροφορίας στον Ιστό. Κατά συνέπεια, το πλή-
ϑος των διαθέσιµων πηγών πληροφορίας RDF αυξάνεται συνεχώς µε αποτέλεσµα να υπάρχει µια
αναδυόµενη ανάγκη για τη διαχείριση RDF δεδοµένων. Σε αυτή τη διατριβή επικεντρωνόµαστε
στην κατανεµηµένη διαχείριση RDF δεδοµένων σε δίκτυα οµοτίµων κόµβων. Σχεδιάζουµε και
υλοποιούµε το σύστηµα Atlas, ένα πλήρως κατανεµηµένο σύστηµα για την αποθήκευση RDF
και RDFS δεδοµένων, την αποτίµηση και ϐελτιστοποίηση επερωτήσεων στη γλώσσα SPARQL και
τη συλλογιστική στο µοντέλο RDFS. Το σύστηµα Atlas χρησιµοποιεί κατανεµηµένους πίνακες
κατακερµατισµού, µια δηµοφιλή περίπτωση δικτύων οµότιµων κόµβων.

Αρχικά, αναλύουµε κατανεµηµένους αλγόριθµους για συλλογιστική RDFS χρησιµοποιώντας
κατανεµηµένους πίνακες κατακερµατισµού. Σχεδιάζουµε και ύλοποιούµε διάφορες παραλλα-
γές των αλγορίθµων προς τα εµπρός αλυσίδα εκτέλεσης (forward chaining) και προς τα πίσω
αλυσίδα εκτέλεσης (backward chaining) καθώς και έναν αλγόριθµο που χρησιµοποιεί την τεχνι-
κή µετασχηµατισµού κανόνων σε µαγικό σύνολο (magic sets transformation) χρησιµοποιώντας
κατανεµηµένους πίνακες κατακερµατισµού. Αποδεικνύουµε ϑεωρητικά την ορθότητα των αλγο-
ϱίθµων αυτών και προσφέρουµε µια συγκριτική µελέτη τόσο αναλυτικά όσο και πειραµατικά.

Παράλληλα, προτείνουµε αλγορίθµους και τεχνικές για την αποτίµηση και τη ϐελτιστοποίηση
επερωτήσεων στη γλώσσα SPARQL για RDF δεδοµένα που είναι αποθηκευµένα σε κατανεµη-
µένους πίνακες κατακερµατισµού. Για να ενισχύσουµε την απόδοση του συστήµατός µας όσο
αναφορά το χρόνο απόκρισης µιας επερώτησης, κάνουµε χρήση ενός κατανεµηµένου λεξικού
(mapping dictionary). Τέλος, προτείνουµε τεχνικές για τη ϐελτιστοποίηση SPARQL επερω-
τήσεων µε στόχο την ελαχιστοποίηση του χρόνου απόκρισης µιας επερώτησης καθώς και του
εύρους Ϲώνης που καταναλώνεται κατά την αποτίµηση της επερώτησης. Ο κατανεµηµένος ϐελ-
τιστοποιητής που υλοποιούµε έχει στόχο να ϐρεθεί το καλύτερο πλάνο αποτίµησης SPARQL
επερωτήσεων και χρησιµοποιεί τρεις άπληστους αλγορίθµους οι οποίοι ϐασίζονται σε εκτιµήσεις
επιλεκτικότητας. Στη διατριβή αυτή µελετάµε ποια στατιστικά είναι απαραίτητα για την εκτί-
µηση επιλεκτικότητας και χρησιµοποιούµε ιστογράµµατα για την περίληψη της κατανοµής των
δεδοµένων. Η πειραµατική µελέτη της διατριβής αυτής γίνεται στο PlanetLab και σε µια τοπική
συστάδα υπολογιστών.

ΠΕΡΙΟΧΗ: Σηµασιολογικός Ιστός
ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ: RDF/RDFS, επεξεργασία επερωτήσεων, συλλογισµός, δίκτυα οµότιµων κόµ-
ϐων, κατανεµηµένοι πίνακες κατακερµατισµού





Abstract

With the interest in Semantic Web applications rising rapidly, the Resource Description
Framework (RDF) and its accompanying vocabulary, RDF Schema (RDFS), have become one
of the most widely used data models for representing and integrating structured information
in the Web. With the vast amount of available RDF data sources on the Web increasing
rapidly, there is an urgent need for RDF data management. This thesis presents results
that advance the state-of-the- art in the research area of distributed RDF query processing
and reasoning in peer-to-peer (P2P) networks. We fully design and implement a P2P system,
called Atlas, for the distributed query processing and reasoning of RDF and RDFS data. Atlas
is built on top of distributed hash tables (DHTs), a popular case of P2P networks.

Initially, we study algorithms for distributed RDFS reasoning in peer-to-peer networks.
We design and develop distributed forward and backward chaining algorithms on top of a
DHT. Our backward chaining algorithm is the first distributed top-down algorithm proposed
for RDFS reasoning in a decentralized environment in general, while our forward chaining
algorithm is the first one that deals with an important case of generating redundant RDF
information. In addition, we present an algorithm which works in a bottom-up fashion
using the magic sets transformation technique, a technique that has not been studied in
the literature for distributed RDFS reasoning. We study theoretically the correctness of
our reasoning algorithms and prove that they are sound and complete. We also provide a
comparative study of our algorithms both analytically and experimentally.

Subsequently, we describe a query processing algorithm to answer SPARQL queries and
show how to benefit from a mapping dictionary to further enhance the efficiency of the query
processing algorithm. Although mapping dictionaries are by now standard in centralized
RDF stores, our work is the first that discusses how to implement one in a DHT environment.
Finally, we fully implement and evaluate a DHT-based optimizer. The goal of the optimizer
is to minimize the time for answering a query as well as the bandwidth consumed during
the query evaluation. We propose three greedy optimization algorithms which use selectivity
estimates to determine the chosen query plan and methods for estimating the selectivity of
RDF queries utilizing techniques from relational databases. In the experimental part of this
thesis, we obtain measurements in the realistic large-scale distributed environment of Plan-
etLab as well as in a local cluster.

AREA: Semantic Web
KEYWORDS: RDF/RDFS, query processing, reasoning, peer-to-peer networks, DHT
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Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

Chapter 1

Introduction

With the emergence of the World Wide Web, a vast amount of information is now available
online accommodating all aspects of human activities, knowledge and experiences. The
original vision for the Web by its inventor Tim Berners-Lee [20] was to enable the publication
and interconnection of documents through the Internet. With the number of documents
increasing constantly over the years, search engines were invented to aid users to discover
information that is relevant to their needs. Search engines crawl and index documents from
the Web and provide keyword-based searching to users. Using sophisticated algorithms, they
match the keywords given by the user with the text of the documents and return pointers
to the documents that match better the given keywords. However, search engines do not
take into consideration the meaning behind the text and the keywords, nor can answer more
complex questions and return more useful information than just a pointer to a web page. For
example, assume that a user wants to find out about the events happening in Chania during
the period of her vacation. How can the user do that with a keyword search? How much effort
does she have to spend browsing through websites until she finds an answer? Therefore, a
serious problem facing search engines is that they often deliver results of high recall but low
precision. This means that the results returned to a user contain a lot of relevant information
but are mixed up with a lot of useless information as well. In this way, users are forced to
manually browse through the returned results in order to find the right piece of information.

Apart from the constantly increasing number of documents on the Web, there is a current
trend to publish data on the Web and make it easily discoverable, accessible, and available
to people without any restriction. This Open Data movement has led to a plethora of data
sources becoming available on the Web from various domains, from government data to
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scientific datasets. Therefore, the Web is evolving to be not just a Web of documents but also
a Web of data. In a Web of data infrastructure, data should be interlinked and integrated to
enable the users to combine information from different data sources and extract composite
knowledge. Today Web data integration is performed by the users themselves. An automatic
process for the integration and interoperability of all available online data would simplify our
everyday lives.

The vision of the Semantic Web has been articulated to offer solutions to the above prob-
lems [21]:

‘‘The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in coopera-

tion."

The Semantic Web gives the opportunity to search engines to be able to answer effec-
tively queries such as the ones we discussed above, and takes the burden off the users by
automating many processes. The Semantic Web extends the current Web by introducing
machine-readable data and metadata of the documents and information of how they are in-
terconnected. It evolves the Web in order to accommodate intelligent, automatic processes
that perform tasks on behalf of the users.

In order to realize the Semantic Web, a standardized means of representing structured
and meaningful information on the Web has been envisioned by its advocates. Several data
models have been proposed for representing such information on the Web. The most promi-
nent one is the Resource Description Framework (RDF) [88]. RDF provides a simple and
abstract knowledge representation for resources on the Web which are uniquely identified
by Universal Resource Identifiers (URIs). Each statement in RDF can be encoded as an RDF
triple. In addition, ontologies are used to give meaning to resources, group them into con-
cepts and identify the relationships between these concepts. Two commonly used languages
for encoding ontologies are RDFS and OWL. RDF Schema (RDFS) [28] is the vocabulary lan-
guage of RDF. It defines the terms that will be used in RDF statements and gives specific
meaning to them. Web Ontology Language (OWL) [60] can also be used for conceptualization
and provides further expressivity in stating relationships among the resources. In order to be
able to explore and query structured information expressed in RDF, a query language is nec-
essary. During the past years, many query languages have been proposed for the RDF data
model. Since January 2008, SPARQL has been the official W3C recommendation language
for querying RDF data [119].
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More than just a vision nowadays, the Semantic Web has begun to be realized by the pub-
lication of large datasets according to the principles of the Linked Data initiative1. The Linked
Data initiative aims at connecting data sources on the Web and exposing real life data using
semantic technologies offering a new way of data integration and interoperability. The result
of this effort is a Web of Data, where URIs identify real life things, dereferencing URIs returns
RDF information about those things, and this RDF information contains related URIs which
are links to other resources enabling further exploration. The Linked Data community have
established a set of best practices for collaboratively publishing and interlinking structured
data on the Web [25, 10]. There are numerous sources that expose their data on the Web
in the form of Linked Data ranging from community-driven efforts to governmental bodies or
scientific groups. DBpedia2 [26], BBC music information [82], open government data3 are
only a few examples of the constantly increasing Linked Data cloud4.

In addition to these efforts, on the 2nd of June 2011, the three main search engines, i.e.,
Google, Yahoo! and Bing, announced an initiative to create and support a common vocabulary
that can be used by developers for marking up their web pages. In this way search engines
can crawl and process structured meaningful data from the web pages. This initiative, called
schema.org, provides a collection of open schemas for describing the content of the HTML
web pages using Microdata format [59], a data model similar to RDF. Although this effort is
still in its infancy, it is one of the many recent efforts towards realizing the Semantic Web
vision. For a recent look as to where we stand regarding this vision, the interested reader
might refer to the talk by Jim Hendler at ESWC 20115.

1.1 RDF Data Management

With the vast amount of available RDF data sources on the Web increasing rapidly, there is
an urgent need for RDF data management. RDF storage, query processing and reasoning
have been at the center of attention during the last years in the Semantic Web community
and more recently in other research fields as well. Many systems have been developed for
storing and querying RDF data. The first attempts were centralized approaches, such as
Jena [168], Sesame [30] and RSSDB [7]. However, managing the avalanche of available

1http://linkeddata.org/
2http://dbpedia.org
3http://www.data.gov/, http://data.gov.uk/
4http://www4.wiwiss.fu-berlin.de/lodcloud/state/
5http://videolectures.net/eswc2011_hendler_work/
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RDF data has become a challenge for such RDF stores. This has necessitated the careful
performance evaluation of existing RDF stores on appropriately designed benchmarks and
very big data sets [48, 131, 24, 38] and the development of novel implementations based on
efficient indexing techniques and relational-style statistics-based query optimization [108,
167, 109]. Performance results published very recently indicate that state-of-the-art systems
like RDF-3X [109] can execute complex join queries on RDF data sets containing close to a
billion triples in a few seconds.

Although some existing RDF stores have excellent performance, they can be overwhelmed
by user requests when used in wide-area network applications such as content-sharing, We-
b/Grid service registries, distributed digital libraries and social networks such as the ones
discussed in [36, 129, 75, 158, 148, 96]6. More generally, since centralized RDF stores are
lacking the reliability properties typically associated with large distributed systems, (e.g.,
fault-tolerance, load balancing, availability) [23], researchers have also studied parallel and
distributed solutions for RDF and RDFS query processing and reasoning. These include solu-
tions based on peer-to-peer (P2P) systems, distributed computing platforms built on powerful
clusters and, more recently, cloud computing platforms using the MapReduce framework
[37]. In this thesis we concentrate on RDF query processing and reasoning using P2P net-
works.

In a setting where several heterogeneous sources of data are geographically distributed,
P2P systems enable the aggregation and integration of these data sources in an efficient way.
P2P networks have gained much attention in the last ten years, given all the good features
they can provide to Internet-scale applications. There have been several proposals of P2P
architectures and amongst them distributed hash tables (DHTs) [12] are the most prominent
class. DHTs allow for full distribution, high-performance, scalability, resilience to failures,
robustness and adaptivity in applications such as distributed digital libraries and others we
mentioned above.

An RDF repository built on top of a DHT simplifies the integration of data from many
distributed heterogeneous data sources compared to other distributed approaches. Addi-
tionally, DHTs can be used to ensure efficient query answering from all these heterogeneous
sources. DHTs have been proposed for the storage and querying of RDF data at Internet
scale by several works [33, 89, 58, 16, 3]. This thesis also focuses on DHTs as the P2P
architecture of choice. Thus, the algorithms of this thesis can run on commodity machines

6Although RDF is the chosen metadata model for resource annotation only in [36, 75], we can easily see how
it could have been used in [129, 158, 148, 96].
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deployed all over the world, as it is the case with many other P2P applications. This is in
contrast to other distributed approaches that rely on distributed platforms built on powerful
clusters [112, 114, 55, 40] and cloud computing platforms using MapReduce [98, 163], which
typically demand high-end, locally deployed infrastructures whose cost can be very high in
many cases.

1.2 Challenges

When designing a DHT-based system for RDF data management, there are several challenges
that have to be faced. The first one is how to distribute the data among the nodes of the
network. DHTs utilize an efficient protocol for indexing data items in the network and thus,
an indexing scheme for RDF data that conforms with this protocol may be adopted. Another
issue that has to be faced is whether RDF data and RDFS ontologies should be handled
uniformly or RDFS ontologies should be globally known by all nodes.

The adopted storage scheme will help us deal with the second challenge: answering
SPARQL queries efficiently. A key aspect here is to design efficient query processing algo-
rithms which are able to combine RDF data distributed across different nodes of the network
to answer user queries. Another important need in Semantic Web applications is modeling
application knowledge and reasoning about this knowledge. Therefore, in the context of RDF,
we have to deal not only with a huge amount of distributed data, but also with a set of RDFS
ontologies that give meaning to this data. Naturally, SPARQL queries need to be answered
in a way that take into account both RDF data and RDFS ontologies, as well as the RDFS
entailment rules given in [56].

Another challenging issue for RDF data management in a DHT environment is query op-
timization. RDF query optimization techniques in a DHT-based system have to be carefully
considered given that data are distributed across all nodes of the network. Although query
optimization has been extensively studied in the database area and is widely used in mod-
ern DBMSs, RDF query optimization has been addressed only recently even in centralized
environments [108, 109, 145].

Therefore, the fundamental questions to which this thesis provides solutions can be sum-
marized as follows:

• How can a DHT-based system index RDF data and RDFS ontologies and answer SPARQL
queries efficiently?
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• What kinds of query optimization techniques are useful in a DHT environment to speed
up the query evaluation process?

• How can a DHT-based system provide reasoning mechanisms for the RDF and RDFS
data model?

This thesis provides answers to the above questions and presents original results that
advance the state-of-the-art in the research area of distributed RDF query processing and
reasoning in P2P networks but also in decentralized environments in general. Our algorithms
and techniques have been used to build the system Atlas. Atlas has been utilized in the
European project OntoGrid where it has been used for realizing a Semantic Grid service
registry [75, 87]. More recently, Atlas has also been extended with the capability to store
spatial metadata expressed in European project SemsorGrid4Env [44].

1.3 Contributions

The contributions of this thesis are the following:

• In this thesis we fully design and implement a DHT-based system for the distributed
query processing and reasoning of RDF and RDFS data. The indexing scheme we deploy
in our system is the triple indexing algorithm originally presented in [33] where each
RDF triple is indexed in the DHT three times. An important aspect of our indexing
scheme is that data and schema information is handled uniformly. Although other
distributed approaches such as [42, 163, 166] assume that each node keeps all RDF
schema information, we adopt a more generic approach where no global knowledge
about the schema is required. In this way, our system can also handle scenarios with
very big ontologies where other systems such as the above might not scale.

• With respect to RDFS reasoning, our contribution is the design and development of
distributed forward and backward chaining algorithms on top of a DHT. The forward
chaining approach has minimal requirements during query answering, but needs a sig-
nificant amount of storage for all the inferred data. In contrast, the backward chaining
approach has minimal storage requirements, at the cost of an increase in query re-
sponse time. There is a time-space trade-off between these two approaches [149], and
only by knowing the query and update workload of an application, we can determine
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which approach would suit it better. This trade-off has never been studied in detail in a
distributed Internet-scale scenario and this is a challenge we undertake. Our backward
chaining algorithm is the first distributed top-down algorithm proposed for RDFS rea-
soning in a decentralized environment in general. Current forward chaining approaches
in various distributed architectures demonstrate a big rate of redundant information
occurred from the inferred RDF triples [42, 163, 166]. Our forward chaining algorithm
is the first one that deals with an important case of generating redundant RDF informa-
tion. In addition, we present an algorithm which works in a bottom-up fashion using
the magic sets transformation technique [17], a technique that has not been studied in
the literature for distributed RDFS reasoning. We study theoretically the correctness
of our reasoning algorithms and prove that they are sound and complete. We also
provide a comparative study of our algorithms both analytically and experimentally. In
the experimental part of our study, we obtain measurements in the realistic large-scale
distributed environment of PlanetLab as well as in the more controlled environment of
a local cluster.

• We propose a query processing algorithm adapted to use a query graph model to rep-
resent SPARQL queries in order to avoid the computation of Cartesian products. In
addition, as URIs and literals may consist of long strings that are transferred in the
network and processed locally at the nodes, we show how to benefit from a mapping
dictionary to further enhance the efficiency of the query processing algorithm. Although
mapping dictionaries are by now standard in centralized RDF stores, our work is the
first that discusses how to implement one in a DHT environment. Our experiments
conducted in both PlanetLab and a local cluster showcase the importance of having a
distributed mapping dictionary in our system.

• In the context of query optimization, we fully implement and evaluate a DHT-based
optimizer. The goal of the optimizer is to minimize the time for answering a query
as well as the bandwidth consumed during the query evaluation. We propose three
greedy optimization algorithms for this purpose: two static and one dynamic. The
static query optimization is completely executed before the query evaluation begins,
while the dynamic query optimization take places during the query evaluation creating
query plans incrementally. These algorithms use selectivity estimates to determine the
chosen query plan. We propose methods for estimating the selectivity of RDF queries
utilizing techniques from relational databases. We discuss which statistics should be
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kept at each network node and use histograms for summarizing data distributions. We
demonstrate that it is sufficient for a node to create and maintain local statistics, i.e.,
statistics for its locally stored data. These local statistics are in fact global statistics
needed by the optimization algorithms and can be obtained by other nodes by sending
low cost messages. This is a very good property of the indexing scheme we adopt from
[32] that has not been pointed out in the literature before.

• Using the above techniques, we have implemented a P2P system, called Atlas, for dis-
tributed query processing and reasoning of RDF and RDFS data. Atlas is publicly
available as open source under the LGPL license7. Although our proposed algorithms
and techniques have been implemented in Atlas using the Bamboo DHT [122], they are
DHT-agnostic; they can be implemented on top of any DHT.

The results of this thesis have been published in major international conferences [74, 72]
of the Semantic Web community, workshops [70, 76] and journals [71, 75] or are under
review in major international journals [69].

1.4 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 sets the foundations on tech-
nologies that enable us to achieve our goals and surveys related work in the areas of RDF
data management in P2P networks, RDFS reasoning and RDF query optimization. In Chap-
ter 3 we present concepts, terminology and theoretical results that are used throughout the
thesis. Chapter 4 presents Atlas, a system that is able to support full-fledged management of
RDF data in a large-scale decentralized environment and some basic protocols that are used
in our algorithms described in the next chapters. In Chapter 5 we design and evaluate dis-
tributed RDFS reasoning techniques in a DHT environment. Chapter 6 presents a complete
query evaluation algorithm which is used to answer arbitrary queries for RDF and describes
a distributed mapping dictionary that increases the system’s performance. In Chapter 7 we
present the query optimization techniques we have developed in our system to increase its
performance. Finally, Chapter 8 summarizes the achievements of this thesis and indicates
directions for future research.

7http://atlas.di.uoa.gr
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Chapter 2

Background and Related Work

In this chapter we set the foundations on technologies that enable us to achieve our goals
and we survey related work in the areas most relevant to the thesis. We first introduce the
RDF and RDFS data model and the query language SPARQL. Then, we present a survey of
P2P networks emphasizing on structured overlays. In the related work, we start with P2P
database systems, and especially elaborate on PIER [63] which is closely related with our
work. Additionally, we present proposals for managing RDF data in P2P networks. Then, we
survey related work in the area of RDFS reasoning in centralized environments as well as
distributed ones of various architectures. Finally, we present optimization techniques that
have been proposed recently for RDF query optimization both in centralized and distributed
settings.

2.1 Resource Description Framework

In this section we introduce the Resource Description Framework (RDF) together with its
accompanying vocabulary RDFS. In addition, we present the corresponding standardized
query language, called SPARQL (SPARQL Protocol And RDF Query Language), for querying
RDF and RDFS data.

2.1.1 RDF

The Resource Description Framework (RDF) [88] is a framework for representing information
about Web resources. It consists of W3C1 recommendations that enable the encoding, ex-

1http://www.w3.org/
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http://cgi.di.uoa.gr/~zoi/foaf.rdf#me “Zoi Kaoudi”
http://xmlns.com/foaf/0.1/name

http://dbpedia.org/resource/Semantic_Web

http://xmlns.com/foaf/0.1/interest

Figure 2.1: An RDF graph

change and reuse of structured data, providing means for publishing both human-readable
and machine-processable vocabularies. Nowadays the current W3C recommendations for
RDF are used in a variety of application areas. The Linked Data initiative2, which aims at
connecting data sources on the Web, has already become very popular and has exposed
many datasets using RDF and RDFS. DBpedia3, BBC music information [82], government
datasets4 are only a few examples of the constantly increasing Linked Data cloud5.

The RDF data model offers the following basic concepts:

• Resources: In RDF, a resource is anything that we want to describe in the World Wide
Web. A resource may be a Web page, a book, an author, a paper or a computer file.
Every resource is uniquely identified by a Universal Resource Identifier (URI) [19].

• Properties: A property is a characteristic of a resource. For example, ‘‘hasName" may
be used for describing the name of an author. Properties are also identified by URIs.

• Literals: Literals are constant values of any property. For example, ‘‘Zoi Kaoudi" may
be the value of property ‘‘hasName".

• Statements: Statements are the constructs offered by RDF for representing information
about a domain. A statement has three parts: the resource the statement is about, the
property of the resource the statement refers to, and the value of that property. The
three parts of a statement are named, respectively, subject, predicate and object. The
object of a statement can be another resource or a literal.

Two possible representations of RDF data are labeled graphs or triple sets. In the first one,
a resource of a literal is depicted as a node and a property as an arc. In the triple sets repre-

2http://linkeddata.org/
3http://dbpedia.org
4http://www.data.gov/, http://data.gov.uk/
5http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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sentation, all statements are represented as ‘‘triples" in the form subject - predicate - object (re-
source, property, value). Figure 2.1 shows a simple RDF graph which states that the resource
http://cgi.di.uoa.gr/∼zoi/foaf.rdf#me has name "Zoi Kaoudi" and has in-
terest in a resource which is expressed by the URI http://dbpedia.org/resource/
Semantic_Web. We depict a resource with an oval circle and a literal with a rectangle. The
labeled arcs represent the properties of the RDF graph.

To avoid writing long strings of URIs, namespaces come into use. Namespaces substitute
the first part of a URI with a short prefix. Then, the full URI is abbreviated by the prefix ap-
pended with the last part of the URI. For example, for the property http://xmlns.com/foaf/
0.1/name, the URI http://xmlns.com/foaf/0.1/ can be abbreviated by the prefix
foaf and then the property can be written as foaf:name.

The same knowledge represented as a graph in Figure 2.1 can be represented by a set
of two triples. Using the namespace foaf as defined above and the namespace dbpedia

to abbreviate the URI http://dbpedia.org/resource/ these triples can be written as
follows:

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:name "Zoi Kaoudi" .

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:interest dbpedia:Semantic_Web .

Another feature used in RDF is blank nodes. Blank nodes are anonymous resources
which are not expressed by a URI but in the form of _:bnodeID. The purpose of blank
nodes is twofold. First, they can be used to encode n-ary relationships. Another purpose
of blank nodes is to make statements about resources that might not have URIs but can
be described in terms of their relationship with other resources. For example, imagine that
we want to encode the relationship between a resource which represents a person and the
address of this person which is composed by the street name, postal code and city. Then,
we can use a blank node to represent the notion of the address. This information can be
expressed in RDF triples as follows:

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:name "Zoi Kaoudi" .

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:address :_zoiaddress .

:_zoiaddress foaf:street "Panepistimiopolis" .

:_zoiaddress foaf:postalCode "15784" .

:_zoiaddress foaf:city "Athens" .
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In this case, :_zoiaddress denotes the blank node. Blank node identifiers are used to
differentiate one by another and may only appear as subjects or objects in triples but not as
predicates.

Although the conceptual model of RDF is a graph, RDF provides an XML syntax, called
RDF/XML, for writing and exchanging RDF graphs. For example, the RDF graph of Figure
2.1 can be encoded in RDF/XML as follows:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

<rdf:Description rdf:about="http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me">

<foaf:name>Zoi Kaoudi</foaf:name>

<foaf:interest rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>

<\rdf:RDF>

Apart from the RDF/XML serialization, there are other formats commonly used such as
N36, N-Triples7 and Turtle8.

2.1.2 RDF Schema (RDFS)

The RDF data model offers a simple way for describing interrelationships among resources
in terms of named properties and values, but does not provide mechanisms for declaring
these properties, nor does it provide any ways for defining the relationships between these
properties and other resources. This is the role of RDF Schema (RDFS) [27]. RDFS is like
a vocabulary of RDF; it provides the means to a user to define terms that will be used in
RDF statements and give specific meaning to them. RDFS defines not only the properties of
the resource (e.g., title, author, subject etc.) but also the kinds of resources being described
(people, paper, Web pages, books etc.). Resources having similar characteristics can be
divided into groups called RDFS classes. When we want to refer to both RDF and RDFS
information we will use the term RDF(S).

Figure 2.2 shows an RDF(S) graph. The upper part of the graph is the RDFS informa-
tion, while the lower part depicts the RDF data. The namespaces used are shown in the

6http://www.w3.org/DesignIssues/Notation3
7http://www.w3.org/TR/rdf-testcases/#ntriples
8http://www.w3.org/TeamSubmission/turtle/
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http://cgi.di.uoa.gr/~zoi/foaf.rdf#me “Zoi Kaoudi”
foaf:name

http://dbpedia.org/resource/Semantic_Web

foaf:interest

ex:Person

ex:GraduateStudent ex:UndergraduateStudent

ex:Student

rdf:type

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

RDF Schema

RDF data

foaf: http://xmlns.com/foaf/0.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs:http://www.w3.org/2000/01/rdf-schema#

ex: //http://www.example.org/

Figure 2.2: An RDF(S) graph

lower left of the figure. The RDFS of this example defines the relationships between the
classes. The property rdfs:subClassOf is a predefined property in RDFS and denotes
a specialization relationship between two classes. For example, ex:GraduateStudent is
a specialized type of ex:Student. Another predefined property in RDF commonly used
is rdf:type. This property defines the members of a certain class. For example, resource
http://cgi.di.uoa.gr/∼zoi/foaf.rdf#me is a member of class ex:GraduateStudent.
Then, if this class denotes all graduate students, resource http://cgi.di.uoa.gr/∼zoi/foaf.rdf#me
is a graduate student. The members of a class are also known as instances of the class.
Namespaces rdf and rdfs are the namespaces of the core RDF and RDFS vocabulary
defined by the URIs http://www.w3.org/1999/02/22-rdf-syntax-ns# and http:

//www.w3.org/2000/01/rdf-schema# respectively and will be used throughout the the-
sis.

Another feature of RDFS is that it also provides vocabulary for describing how properties
and classes are intended to be connected in an RDF(S) graph. The most important infor-
mation of this kind is supplied by using the RDF Schema properties rdfs:domain and
rdfs:range. The rdfs:domain property is used to indicate that a particular property
applies to a specific class. The rdfs:range property is used to indicate that the values of a
particular property are instances of a specific class or are types of specific literals. For exam-
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ple, in the RDFS of Figure 2.2 we could add the following triples for properties foaf:name
and foaf:interest:

foaf:name rdfs:domain ex:Person .

foaf:interest rdfs:domain ex:Student .

foaf:name rdfs:range string .

This means that the property foaf:name applies to instances of class ex:Person, while
the property foaf:interest applies to instances of class Student. In addition, the last
triple states that property foaf:name takes values that are strings.

The most important functionality of RDFS is the ability to make inferences using the RDFS
entailment rules [56]. For example, the RDFS property rdfs:subClassOf is defined as a
transitive property in the rdfs11 rule of the RDFS Semantics [56]:

uuu rdfs:subClassOf vvv,uuu rdfs:subClassOf xxx

vvv rdfs:subClassOf xxx

This rules means that if class uuu is a subclass of class vvv and class vvv is a subclass
of class xxx, then we infer that class uuu is a subclass of class xxx. Thus, in the example of
Figure 2.2, we can infer that class ex:GraduateStudent is a subclass of class ex:Person.
Then, using this inferred triple and some other rule of [56], we can derive extra knowledge
from this RDFS graph. For example, rule rdfs9 states the following:

uuu rdfs:subClassOf xxx,vvv rdf:type uuu

vvv rdf:type xxx

Therefore, we can infer that resource http://cgi.di.uoa.gr/∼zoi/foaf.rdf#me
in Figure 2.2 is also an instance of class ex:Person. The complete set of the RDFS entail-
ment rules can be found in [56]. In Chapter 3, we define the complete set of rules we use in
our work.

2.1.3 SPARQL

During the past years, many query languages have been proposed for the RDF data model.
Some of them include RQL [81], RDQL [133], SeRQL [29], and TRIPLE [141]. On 15 January
2008, SPARQL [119] became the official W3C recommendation language for querying RDF
data.

SPARQL [119] is a query language for RDF graphs and has the ability to extract infor-
mation about both the data and the schema. SPARQL is based on the concept of matching
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graph patterns. The simplest graph patterns are triple patterns, which are like an RDF triple
but with the possibility of a variable in any of the subject, predicate or object positions. A
query that contains a conjunction of triple patterns is called basic graph pattern. A basic
graph pattern matches a subgraph of the RDF data when RDF terms from the subgraph may
be substituted with the variables of the graph pattern.

The syntax of SPARQL follows an SQL-like select-from-where paradigm. The select
clause specifies the variables that should appear in the query results. Each variable in
SPARQL is prefixed with character ‘‘?". The from clause specifies the RDF(S) graph that
should be used for answering the query. If not used, the query runs over the whole RDF(S)
triples stored in the system. The graph patterns of the query are set in the where clause.
The following SPARQL query asks for all resources which have a name and an interest.

Listing 2.1: A simple SPARQL query
1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT *
3 WHERE {
4 ?x foaf:name ?y .
5 ?x foaf:interest ?z
6 }

Keyword PREFIX defines the namespaces used in the where clause of the query. The answer
of a SPARQL query with a select clause is variable bindings. If the above SPARQL query is
posed over the RDF graph of Figure 2.1, the variable bindings of the answer would be:

?x ?y ?z
http://cgi.di.uoa.gr/∼zoi/foaf.rdf#me"Zoi

Kaoudi"

http://dbpedia.org/resource/Semantic_Web

SPARQL also gives the capability for inserting constraints to the variables included in the
graph pattern using the FILTER keyword. In this way, answers are restricted to those which
result in evaluating the filter expression to true. For example, if we want to ask for the names
of those resources which have an interest in the Semantic Web, we can write the following
query:
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Listing 2.2: A simple SPARQL query with a filter expression
1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?y
3 WHERE {
4 ?x foaf:name ?y .
5 ?x foaf:interest ?z .
6 FILTER (?z=http://dbpedia.org/resource/Semantic_Web)
7 }

The answer to this query according to the RDF graph of Figure 2.1 would be {?y="Zoi
Kaoudi"}. Constraints in filter expressions may include mapping resources to variables
such as the above example, as well as arithmetic constraints to literals or string matching
using regular expressions.

Another feature of SPARQL is the optional functionality. This functionality provides us
with the ability to have patterns that might not match for every part in an RDF graph. In
this case, the optional part creates no bindings but does not eliminate the entire solution.
Keyword OPTIONAL is used with a graph pattern such as the ones in the WHERE clause.

For example, assume that we have an RDF graph composed by the following triples:

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:name "Zoi Kaoudi" .

http://cgi.di.uoa.gr/˜zoi/foaf.rdf#me foaf:interest dbpedia:Semantic_Web .

http://www.w3.org/People/Berners-Lee/card foaf:name "Tim Berners-Lee" .

The query displayed in Listing 2.3 below asks for the name of all resources and optionally
for their interest, it there exists one. If it does not, we still want to retrieve their name.

Listing 2.3: A simple SPARQL query with optional
1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?y ?z
3 WHERE {
4 ?x foaf:name ?y .
5 OPTIONAL {
6 ?x foaf:interest ?z .
7 }
8 }

The answer to this query would be the following variable bindings:

?y ?z

"Zoi Kaoudi" http://dbpedia.org/resource/Semantic_Web

"Tim Berners-Lee"
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The result set of a query varies according to the main query clause. Apart from the
SELECT clause, SPARQL also allows CONSTRUCT, DESCRIBE and ASK clauses. In the
case of a SELECT query, the result set is a set of variables and their possible bindings. On
the other hand, if we have a CONSTRUCT query, the result is an RDF graph constructed by
substituting variables in a set of triple templates. Finally, a DESCRIBE query returns an RDF
graph that describes the resources found and an ASK query returns yes or no depending on
whether a query pattern matches or not.

At this point, we should note that the current recommendation of SPARQL has a lot of
shortcomings. For instance, it does not support aggregates, updates, and more importantly,
it does not deal with the RDFS entailment. Therefore, RDFS entailment depends on the
implementation of each system. The next version of SPARQL, i.e., SPARQL 1.1, will introduce
several of these issues. One of these is RDFS regimes which define the evaluation of basic
graph patterns using semantic entailment relations instead of explicitly given RDF graphs.
This effort is still a W3C working group and will be soon a W3C recommendation. Apart from
the W3C working group, several extensions for SRARQL have been proposed in the literature
that capture the RDFS entailment semantics. One of them is nSPARQL, a navigational
language for RDF which provides the expressivity of RDFS semantics as well [115, 11].

2.2 Peer-to-Peer Systems

In P2P systems a very large number of autonomous computing nodes (the peers) pool together
their resources and rely on each other for data and services. P2P networks have emerged as a
natural way to share data. Popular systems such as Napster9 (now in a commercial service),
Gnutella10, Freenet11, Kazaa12, Morpheus13 and others have made this model of interaction
popular. Ideas from P2P computing can also be applied to other distributed applications
beyond data sharing such as Grid computation (e.g., SETIHome14 or DataSynapse15), collab-
oration networks (e.g., Groove16) and even new ways to design Internet infrastructure that

9http://www.napster.com
10There are various clients implementing the Gnutella protocol or variations. See for example, http://www.

limewire.com.
11http://freenet.sourceforge.net
12http://www.kazaa.com
13http://www.musiccity.com
14http://www.setiathome.ssl.berkeley.edu
15http://www.datasynapse.com
16http://www.groove.net
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supports sophisticated patterns of communication and mobility [146].
P2P networks are typically distinguished into three different classes according to their

topology: unstructured networks, structured networks and hierarchical networks. In un-
structured networks all peers are equal and form an overlay network with no restrictions
on topology and no centralized source of information. On the contrary, structured networks
have a regular topology, e.g., rings or hypercubes, and were devised as a remedy for the
routing and object location inefficiencies of unstructured networks. Distributed hash tables
(DHTs) are a prominent class of structured overlays that attempt to solve the object lookup
problem by offering some form of distributed hash table functionality: assuming that data
items can be identified using unique numeric keys, DHT nodes cooperate to store keys for
each other. Finally, hierarchical networks partition the nodes into two sets: super-peers and
clients. In a super-peer system, all super-peers are equal and have the same responsibilities.
Each super-peer serves a fraction of the clients and keeps indices on the resources of those
clients. In the rest of this section, we briefly survey some well-known DHTs which constitute
our chosen paradigm.

2.2.1 Distributed hash tables

The success of P2P protocols and applications such as Napster and Gnutella motivated re-
searchers from the distributed systems, networking and database communities to look more
closely into the core mechanisms of these systems and investigate how these could be sup-
ported in a principled way. This quest gave rise to a new wave of distributed protocols,
collectively called distributed hash tables (DHTs), that were aimed primarily at the develop-
ment of P2P applications [147, 121, 125, 2, 169, 95, 8]. DHTs are structured P2P systems.
DHTs attempt to solve the following lookup problem:

Let X be some data item stored at some distributed dynamic network of nodes.
Find data item X.

The core idea in all DHTs is to solve this lookup problem by offering some form of distributed
hash table functionality: assuming that data items can be identified using unique numeric

keys, DHT nodes cooperate to store keys in a way that can be easily found. Although the DHTs
available in the literature differ in their technical details, all of them address the following
central questions:

• How do we map keys to nodes? Keys and nodes are identified by a binary number.
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Keys are stored at one or more nodes with identifiers ‘‘close" to the key identifier in the
identifier space.

• How do we route queries for keys? Any node that receives a query for key k, returns
the data item X associated with k if it owns k, otherwise it forwards k to a node with
identifier ‘‘closer" to k using only local information.

• How do we deal with dynamicity? DHTs are able to adapt to node joins, leaves and
failures and update routing tables with little effort.

The answers to the above questions can give us a good high-level categorization of existing
DHTs [12, 9]. Most implementations of DHTs offer a very simple interface consisting of two
functions:

• Put(id, item): this operation inserts a data item with key id and value item in the DHT.

• Get(id): this operation retrieves the data item with key id from the DHT.

Both functions rely on the Lookup(id) operation, which returns a pointer to the DHT node
that is responsible for the key id.

In the rest of this section we focus on Chord [147] and Pastry [125], two early and influ-
ential DHTs. Finally, we present the Bamboo DHT [122] a Pastry-based DHT which manages
to handle churn more efficiently. Bamboo is our chosen DHT for the implementation of our
system. Other DHTs include CAN [121], P-Grid [2, 1], Tapestry [169], Kademlia [97], Viceroy
[95] and DKS [8]. The current study of P2P systems and DHTs represents only some of the
systems in the area. More detailed surveys include [99, 92, 12, 159].

2.2.1.1 Chord

Chord uses a variation of consistent hashing [77] to map keys to nodes. In the consistent
hashing scheme, each node and data item is assigned a m-bit identifier where m should
be large enough to avoid the possibility of different items hashing to the same identifier (a
cryptographic hashing function such as SHA-1 can be used). The identifier of a node can be
computed by hashing its IP address. For data items, we first have to decide a key and then
hash this key to obtain an identifier. For example, in a file-sharing application the name of
the file can be the key (this is an application-specific decision). Identifiers are ordered in an
identifier circle (ring) module 2m i.e., from 0 to 2m − 1. Figure 2.3 shows an example of an
identifier circle with 64 identifiers (m = 6) but only 10 nodes.
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N1

N8

N14

N21

N32

N38

N42

N48

N51

N59

Finger Table
--------------------
N14+1       N21
N14+2       N21
N14+4       N21
N14+8       N32
N14+16     N42
N14+32     N48

Figure 2.3: An example of a identifier circle with m=6 and 10 nodes

Keys are mapped to nodes in the identifier circle as follows. Let H be the consistent hash
function used. Key k is assigned to the the first node which is equal or follows H(k) in the
identifier space. For example, in the network shown in Figure 2.3, a key with identifier 8
would be stored at node N8. In other words, key k is assigned to the node whose identifier
is the first identifier clockwise in the identifier circle starting from H(k). This node is called
the successor node of identifier H(k) and is denoted by successor(H(k)). We will often say
that this node is responsible for key k. In our example, node N32 would be responsible for
all keys with identifiers in the interval (21, 32].

If each node knows its successor, a query for locating the node responsible for a key k
can always be answered in O(N) steps where N is the number of nodes in the network. To
improve this bound, Chord maintains at each node a routing table, called the finger table, with
at most m entries. Each entry i in the finger table of node n, points to the first node s on the
identifier circle that succeeds identifier H(n) + 2i−1. These nodes (i.e., successor(H(n) + 2i−1)

for 1 ≤ i ≤ m) are called the fingers of node n. Since fingers point at repeatedly doubling
distances away from n, they can speed-up search for locating the node responsible for a key
k. If the finger tables have size O(logN), then finding a successor of a node n can be done in
O(logN) steps with high probability [147].

To simplify joins and leaves, each node n maintains a pointer to its predecessor node i.e.,
the first node counter-clockwise in the identifier circle starting from n. When a node nwants to
join a Chord network, it finds a node n′ that is already in the network using some out-of-band
means, and then asks n′ to help n find its position in the network by discovering n’s successor
[147]. Every node runs a stabilization algorithm periodically to learn about nodes that have
recently joined the network. When n runs the stabilization algorithm, it asks its successor
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for the successor’s predecessor p. If p has recently joined the network then it might end-up
becoming n’s successor. Each node n periodically runs two additional algorithms to check
that its finger table and predecessor pointer is correct [147]. Stabilization operations may
affect queries by rendering them slower (because successor pointers are correct but finger
table entries are inaccurate) or even incorrect (when successor pointers are inaccurate).
However, assuming that successor pointers are correct and the time it takes to correct finger
tables is less than the time it takes for the network to double in size, one can prove that
queries can still be answered correctly in O(logN) steps with high probability [147].

To deal with node failures and increase robustness, each Chord node n maintains a
successor list of size r which contains n’s first r successors. This list is used when the
successor of n has failed. In practice, even small values of r are enough to achieve robustness
[147]. If a node chooses to leave a Chord network voluntarily then it can inform its successor
and predecessor so they can modify their pointers and, additionally, it can transfer its keys to
its successor. It can be shown that with high probability, any node joining or leaving a Chord
network can use O(log2N) messages to make all successor pointers, predecessor pointers
and finger tables correct [147].

2.2.1.2 Pastry

Nodes and data items in Pastry [125] are also mapped to a circular identifier space modulo 2m

using a hash function such as SHA-1. A node maintains local state in three data structures:
the leaf set, the routing table and the neighbourhood set. The leaf set of a node n is the set
of 2r nodes immediately preceding and following n in the circular identifier space. We will
use L = {Li,−r ≤ i ≤ r} to denote this set where L0 is node n. Pastry’s leaf set corresponds
to Chord’s set of successors. As in Chord, correctness of the leaf set is enough to guarantee
correct routing in Pastry (within O(N) steps where N be the number of nodes in a network).

Let us assume that node identifiers are treated as sequences of digits in base 2b. The
routing table of a node n in Pastry is organized as a two-dimensional table R with log2bN

rows and 2b − 1 columns. Let R[l, i] denote the element of the routing table in row l and
column i. Node n chooses entry R[l, i] in its routing table to be a node with an identifier that
matches n’s identifier in the first l digits and its (l + 1)-st digit is i. The choice among the
potentially many nodes with this property can be made using the proximity metric.

The neighbourhood set of a node n is a set of nodes that are close to n according to a
scalar proximity metric, e.g., number of IP routing hops or geographical distance. The use of
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Figure 2.4: Pastry lookup operation [122]

the neighbourhood set allows Pastry to achieve good locality properties [125].

Routing in Pastry proceeds as follows. If a node n wants to locate the node with key k
then it first checks whether k is included in his own leaf set. If this is the case, then n sends
a lookup message to the member of its leaf set with identifier numerically closer to k (modulo
2m). If that node is n, then the lookup process terminates. Otherwise, n computes the length
l of the largest common prefix of k and its own identifier, and uses its routing table to send
a lookup message to node R[l, k[l]]. If this is not possible because the entry R[l, k[l]] of the
routing table is empty, n sends a lookup message to the member of its leaf set with identifier
numerically closer to k. The node that receives the lookup message proceeds in the same way
so eventually we reach the node responsible for k. Figure 2.4 shows graphically how lookup
is performed in Pastry. To find the node closest to identifier 011, the node whose identifier
starts with 111 sends a lookup message to its neighbor whose first digit is 0. This node then
forwards the query to its neighbor whose first two digits are 01, and from there the node is
forwarded to the neighbour whose first three digits are 011.

We can show that this routing procedure converges in at most O(log2bN) steps assuming
accurate routing tables and no recent node failures [125]. The leaf sets are used when routing
tables are incomplete in exchange for potentially longer paths. But notice that leaf sets add
a great deal of resilience to Pastry. As shown in [46], if r = 16 and N = 65, 536, even after a
random 30% of the network links are broken, there are still connected paths between every
pair of nodes.

When a new node n with key x wants to join a Pastry network, it must first find a member
node n′ close to it in the proximity metric. Then, n asks n′ to route a message join to node
with key x. If n′′ is the destination node of the join message then n′, n′′ and all nodes in the
path from n′ to n′′ send their state tables to n. n uses these state tables to create a routing
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table, a leaf set and a neighbourhood set, and to inform other nodes of its presence. This
process is completed in O(log2

2bN) steps [125]. Pastry is able to deal with node failures or
silent departures (even concurrent ones) using appropriate protocols [125]. For example, if a
node n detects that node Li in its leaf set has failed, it contacts the live node with the largest
index on the side of the failed node (i.e., Lr if i > 0 and L−r if i > 0) and asks it for a copy
of its leaf set. This leaf set is then used by n for finding an appropriate node to substitute
for Li. Then n sends a message to all nodes in its leaf set informing them of the change.
Unless r nodes with adjacent identifiers fail concurrently, this procedure guarantees that
nodes lazily recover from failed nodes in their leaf set. Due to the diversity of nodes with
adjacent identifiers in Pastry, such failure is unlikely to take place even for small values of r
[125].

2.2.1.3 Bamboo

Bamboo is a DHT based on Pastry from where it takes the circular identifier space and the
routing algorithm [122]. Bamboo improves on Pastry by using more incremental algorithms
for node joins and neighbour management. This allows Bamboo to withstand very dynamic
changes in network membership i.e., it is resilient to churn. Churn is a term used to char-
acterize the continuous process of node arrival and departure that has been observed in
deployed P2P applications such as Napster, Gnutella and Kazaa [127, 135, 47]. [122] tested
an implementation of Chord (MIT Chord) and Pastry (Free Pastry v1.3 from Rice University)
and demonstrated that under high churn rates, these implementations may fail to complete
lookup requests and return inconsistent results for the same lookup launched from different
query nodes, or return consistent results but suffer major delays due to network latency.
[122] have shown using Bamboo that DHTs can handle high churn rates and identify the
following three factors affecting DHTs under churn.

The first factor is reactive vs. periodic recovery from failures. In reactive recovery, if a
node discovers that one of its leaf nodes has failed, it computes a new leaf set and then
informs all its members as discussed in 2.2.1.2. In low churn situations, this approach is
scalable and results in very low message costs. But as churn increases (as in the file sharing
scenarios of [127, 135, 47]), periodic recovery is a better strategy: a node periodically shares
its leaf set with each node in this set and this node responds in the same way. The second
factor is selection of message timeouts. Nodes must make sure that the timeout for a request
is judiciously selected. [122] shows that having fixed timeouts is not a good idea and more
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sophisticated timeout calculation is needed under churn. Finally, the last factor is proximity
neighbour selection. [122] propose to run periodically a maintenance algorithm that updates
routing tables for a node n to include neighbours that are closer to n in the proximity metric.
They show experimentally that global sampling using the lookup functionality of the DHT is
a technique that gives good results under churn.

2.3 Relational Data Management in P2P Networks

In the last decade, there has been an interest in data management in large-scale hetero-
geneous P2P systems using various data models such as relational, XML and RDF. In this
section, we focus on relational P2P database systems which were the first works on P2P query
processing, and more specifically, we focus on PIER [63]. In the next section we elaborate on
RDF data management in P2P networks.

The first papers that envisioned a P2P database setting are [45, 22]. Several research
directions were then investigated such as data models and architectures for P2P databases
in [136] and [43] respectively, and Peer Data Management Systems (PDMSs) were introduced.
Piazza [50] is a well-known PDMS that enables sharing and integration of heterogeneous data
using schema mappings for both relational and XML data. Hyperion [124] is a PDMS built on
top of its own unstructured P2P network, which supports SQL queries over heterogeneous
relational data. PeerDB [110] is built on a two layer hierarchical network that provides data
sharing without a shared schema and integrates mobile agents to assist in query processing.
One system that is closely related with our work is PIER [63], which is a query engine for
relational databases built on top of a DHT. In the following, we describe PIER in detail and
compare it with our work.

2.3.1 PIER

PIER17 is a distributed relational query engine built on top of a DHT and has been developed
at University of California, Berkeley [63, 62, 51]. The main role of PIER is to enable query
processing of relational data in an Internet-scale environment. It tries to apply database
techniques in a wide-area, non-structured environment such as the Internet. For this reason,
PIER uses ‘‘best-effort" semantics for query processing. The PIER architecture assumes that
data is located in its physical location, thus wrappers are needed to extract relational data

17http://pier.cs.berkeley.edu/
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from pre-existing sources. For example, a wrapper in a file-sharing application could extract
information such as file name, creation date and author, integrate it in a relational model
and store it in the DHT. Finally, PIER keeps no metadata catalogs and supports no schema
mappings but it assumes that schemas are known by all nodes.

PIER’s architecture is a 3-tier system. On the top level there are the applications which
interact with the query processor in the middle, which in turn utilizes the DHT. The query
processor is a dataflow engine that supports simultaneous execution of multiple operators for
selections, projections, distributed joins, grouping and aggregation. The user (programmer)
gives a physical query plan as an input to the PIER engine. The engine parses the query plan
and creates several operator graphs which can be executed independently. Each operator
graph that arrives at a node is evaluated by the local dataflow. The functionality of the
underlying DHT that is used by PIER is routing. A storage manager module is used for the
temporary storage of tuples. When a node fails, all data stored in memory of the node is lost.

Naming in PIER is done in the following manner. Each tuple in the DHT is identified by
three values, a namespace, a resource id and an instance id. The namespace corresponds
to the table (relation) name the tuple belongs to, the resource id corresponds to an attribute
value of the tuple (usually the value of the primary or any other attribute value) and the
instance id corresponds to the identifier of the application. The namespace defines a region
of space in the DHT and the multiple nodes that serve this range of keys. The namespace
together with the resource id define a single node that serves that key, and the combination
of the three defines a single object (tuple) in a single location.

One of the supported operators of PIER that is especially interesting to us is distributed
join. PIER supports two implementations of the join operator, symmetric hash join and fetch

matches [63]. In symmetric hash join, relations should be rehashed on the join attribute. To
accomplish this, both relations have to be scanned. Each node in the namespace of the two
relations performs a local scan and for each tuple a put is done using a unique namespace for
the result relation and the value of the join attribute. Then, each node in the new namespace
registers to receive a callback whenever new data is inserted in the local node. When a
tuple arrives, a get is performed to find matches in the specific namespace. Matches are
concatenated to generate output tuples. In the fetch matches algorithm, it is assumed that
one relation is already hashed on the join attribute. Then, the other relation is scanned
and for each tuple a get is issued for a tuple of the first relation. Once this tuple arrives,
predicates are applied, concatenation is performed and results are created.

At first sight one could think that PIER and our system have various things in common.
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Both systems use the Bamboo DHT as the underlying P2P infrastructure in their most recent
versions. However, there are a lot of differences as well. The main difference is that PIER
is only a query processor for widely distributed relational data while our work relies on a
full-fledged system for distributed storage and query processing especially built for RDF(S)
data. In our system, data are persistently stored and if a node fails at some point in time
and later on joins the network again, the node can provide the data again to the DHT. On
the other hand, PIER’s data is located in its physical place and relational information (i.e.,
tuples) is extracted and inserted in the DHT on demand. Tuples are temporarily stored in
memory hash tables at each PIER node. When a node fails those tuples are lost. Finally,
PIER requires as an input from the user a physical query plan instead of a SQL query since
it does not support any kind of optimization. In our work, we have fully implemented a query
optimizer that is responsible for transforming a SPARQL query to a query plan.

2.4 Distributed RDF Data Management

The combination of Semantic Web technologies (i.e., RDF, RDFS and ontologies) and P2P
systems can provide accurate data retrieval and efficient search in distributed application
scenarios, thus, it has been the focus of many research the past few years. A most compre-
hensive survey of this work can be found in [143]. In the following paragraphs, we present
some characteristic works in this research area which utilize either a structured overlay
network or some other kind of P2P architecture.

2.4.1 Structured overlay networks

[32, 33] study the problem of evaluating RDF queries over a scalable distributed RDF repos-
itory, named RDFPeers. RDFPeers is implemented on top of the self-organized MAAN pre-
sented in [31]. MAAN builds on DHT technology by extending the Chord DHT protocol [147]
to efficiently answer multi-attribute and range queries. RDFPeers is the first work to con-
sider RDF queries on top of a structured overlay network and has influenced significantly
our work.

In RDFPeers, each node uses the RDF data model to create descriptions of resources that
it wants to make available to the rest of the network nodes. Each RDF triple in RDF document
is indexed to three different networks nodes: it is stored once in the successor node of the
identifier that is computed by hashing the subject value of the triple, and two more times by
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using the predicate and object values of the triple. The SHA-1 hash function [137] is used if
the value is a string. If the value is a numeric one then an order preserving hash function is
used, which allows efficient evaluation of range queries. An RDFPeers node can pose atomic
triple queries, disjunctive and range queries and conjunctive multi-predicate queries. [32]
propose a series of algorithms for evaluating these types of queries for the one-time query
scenario. The general idea of these algorithms is that they use the constant parts of queries
so as to create identifiers that will lead to nodes that store relevant triples. Furthermore, a
simple replication algorithm is used to improve load distribution. Finally, [32] sketches some
ideas regarding publish/subscribe scenarios in RDFPeers.

GridVine [3] is a scalable semantic overlay network that supports the creation of local
schemas while providing global semantic interoperability. It follows the principle of data
independency and separates the logical from the physical layer. The logical layer consists
of the semantic overlay for managing and mapping data and metadata schemas, while the
physical layer consists of a structured P2P overlay network that efficiently routes messages.
The latter is used to implement various functions at the logical layer, like attribute-based
search, schema management and schema mapping management.

GridVine uses P-Grid [2], a structured overlay network based on the principles of DHTs.
Peers in GridVine are able to publish available resources by creating RDF triples (metadata).
An RDF triple is stored three times in the network using three different keys based on its
subject, predicate and object values, as in [32]. Thus, the kinds of queries studied in [32]
are also are supported by GridVine. In addition, prefix searches, e.g., on the beginning of a
string representing an object value, are easily supported using P-Grid routing mechanisms.

GridVine allows peers to derive new schemas from well-known base schemas (using
RDFS), providing schema inheritance. Each peer has also the possibility to create a mapping
between two schemas, in which case translation links among network peers are created (us-
ing OWL). In this way, queries are propagated from one semantic domain to another. There
are two approaches used for resolving translation links, the iterative and the recursive reso-
lution. With iterative resolution, the peer issuing an RDF query tries to find and process all
translation links by itself, while with recursive resolution more than one peers are involved
by delegating the query and its translations.

A more recent DHT-based system for managing RDF is BabelPeers [15, 58, 57]. In Ba-
belPeers, triples are indexed three times in the network as in [33]. The query evaluation
process of the system includes two phases. In the first phase, all candidate sets for all triples
and variables are retrieved from the various nodes of the network to the node that receives
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the query request. The second phase of the query evaluation, includes local processing of
the candidate sets to find the actual answer to the query. The disadvantage of this approach
is that the node that receives the query request has to do all the computation and suffers a
lot of query processing load. In addition, the candidate sets transferred through the network
might contain results that will never be used in the final answer of the query. This causes
unnecessary traffic to the network. The authors of [58, 57] propose some methods to remove
the amount of the useless information from the candidate sets using Bloom filters. The appli-
cation scenario proposed in BabelPeers is taken from the Semantic Grid research area, where
the problem of resource discovery is addressed [15]. Finally, [14] addresses the problem of
uneven load among the nodes of BabelPeers due to the skewness of the RDF datasets and
proposes several techniques for load balancing.

2.4.2 Other P2P-based architectures

[130] proposes a new graph topology for P2P systems, called HyperCup, that allows for effi-
cient broadcasting and searching. The authors describe a broadcast algorithm that exploits
the proposed topology to reach all nodes in the network by achieving the minimum number
of messages possible. Also, they show how a globally known taxonomy can be used to orga-
nize the peers in the graph topology, allowing for efficient search based on concepts of the
taxonomy.

The HyperCuP algorithm is able of organizing peers of a P2P network into a recursive
graph structure from the family of Cayley graphs, out of which the hypercube is the most
well-known topology. All participant peers are equal (there is no central server nor super-
peers) and are organized in a hypercube topology. Peers are able to join and leave the
self-organized network at any time. In case that some peers are ‘‘missing", some peers in
the network will occupy more than one positions in the hypercube so that the hypercube
topology is maintained. HyperCuP guarantees that non-redundant messages will be created
while broadcasting.

The authors of [130] make the observation that in the case of Semantic Web applications
additional knowledge is available that can be exploited to further improve the performance of
P2P networks. Thus, in [130] peers with identical or similar interests are grouped in concept
clusters, which are organized into a hypercube topology to enable routing to specific clusters
in the topology. Concept clusters are hypercubes or star graphs. A query is propagated to the
appropriate concept clusters (i.e., the ones that store relevant data according to the schema
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information) and queries are forwarded to all peers within the cluster.

An early and influential distributed RDF repository is the Edutella system [105, 106, 107].
Edutella provides a very general RDF-based metadata infrastructure for P2P applications.
[105, 106, 107] argue that a super-peer topology is the suitable topology for schema-based
P2P networks and thus such a topology is used in Edutella. In an Edutella network, there
are two kind of peers: the super-peers and the clients. The super-peers are organized under
the HyperCup topology, while clients are connected to super-peers in a star-like fashion.
Each client connects to one super-peer only. Super-peers are used to efficiently handle
all the requests of clients. On registration a client provides its super-peer with its metadata
information, i.e., a description of the metadata that has been created by this client (supported
schema, used values etc.). The actual metadata remains in the client peer. Each super-peer
stores information about metadata usage at each client that is directly connected to it. Also,
each super-peer stores schema information about its (direct) neighbour super-peers (i.e., this
is a description of the metadata used by their clients). This information is used to efficiently
route queries only to relevant super-peers and clients.

Edutella researchers have also concentrated on schema integration in super-peer based
P2P networks for RDF. The general idea is that super-peers are used as wrappers, i.e., they
maintain schema mapping information that they use while routing queries in the network
so as to translate queries. One application scenario of the Edutella system is Elena [140],
a mediation infrastructure for educational services that are announced and mediated by
electronic means. Elena is an EU/IST project that follows the vision of creating and testing
Smart Spaces for LearningTM , which are open environments where learners can choose
learning services from heterogeneous sources.

The authors of [155] are inspired by the success of ranking algorithms in Web search
engines and top-k retrieval algorithms in databases, and they propose a distributed top-k
evaluation algorithm for P2P networks that retrieves the k most relevant answers for each
query. This research can be very important even for scalability reasons since usually by
increasing the network size, also the number of answers in given queries will also be increased
since more data are available in the network.

The algorithm that is proposed in [155] delivers the k more relevant results without hav-
ing to rely on any centralized knowledge and without the need for a complete distributed
index. The architecture that is assumed for the P2P network is the super-peer architecture of
Edutella that we have already described above. The proposed algorithm allows the optimiza-
tion of query distribution and routing. It makes use of ranking methods in order to reduce the
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overall number of answers in the result set, and also to return close matches avoiding empty
result sets in case that no exact matches are found. Each peer computes local rankings for
a given query that it receives, and sends the results to the super-peer that it is connected
to. Each super-peer again merges results from local peers and from neighboring super-peers
and forwards only the ‘‘best" results towards the super-peer of the peer that posed the query.
Then the results are merged and ranked again at the super-peer (where the node that posed
the query is attached) and finally from there are routed back to the query originator. While re-
sults are routed through the super-peers, the algorithm maintains statistics regarding which
peers/super-peers returned the best results, and uses this information to distribute queries
(that have been already posed in the past) only to the most promising peers. The algorithm
minimizes the answer set size and thus the network traffic.

SQPeer [83, 84, 139] is a middleware for routing and planning complex queries in P2P
database systems, exploiting the schemas of peers. In SQPeer, each peer provides RDF(S)
descriptions about information resources that wants to make available in the network. Peers
that employ the same schema belong essentially to the same semantic overlay network (SON)
[157]. Queries in SQPeer are formulated in RQL [81] according to the RDF schema that
the requester peer supports. Also, each peer is able to advertise the content of its local
base (the actual data values or the actual schema of its base) using RVL view patterns [94].
The proposed query routing and query processing algorithm can find the relevant peers that
actually answer each query and generate query plans by taking into account statistics on data
distributions. SQPeer SONs can be implemented on two different architectural alternatives;
a hybrid P2P architecture or a structured P2P based on DHTs. However, no experimental
evaluation is presented.

The SWAP project18 has studied the combination of Semantic Web and P2P systems.
The vision of this project is to allow peers to maintain individual views of knowledge, while
they will also be able to share their knowledge with the rest of the network. In [39], the
authors consider a P2P topology where all peers are equal. They propose an RDFS-based
metadata model for encoding semantically rich information regarding peers and their knowl-
edge resources. The metadata model consists of two RDFS classes, the ‘‘Swabbi"-class and
the ‘‘Peer"-class, which contain several properties. The former is used for the annotation of
every piece of knowledge is the P2P system, while the latter is used for the description of the
peer that originates this knowledge. For example, the ‘‘Swabbi"-class contains information in
terms of the URI, the location and the label of the described knowledge. Also, it describes how

18http://swap.semanticweb.org/
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reliable a statement is and indicates its access control by the other peers. The ‘‘Peer"-class
provides characteristics like the id and the label of each peer, or how reliable a peer is.

Bibster [49] is a system implemented as an instance of the SWAP platform which is based
on JXTA19. It is a P2P system, for exchanging bibliographic data (BibTex entries). Bibster
allows search for bibliographic entries using keyword searches, as well as more advanced
semantic searches. It also provides the integration of a query’s results into a local knowl-
edge base for further use. Bibster exploits ontologies for importing data, formulating and
routing queries and processing answers. In particular, it uses the Semantic Web Research
Community ontology (SWRC20) and the ACM topic hierarchy21. Each peer manages a local
RDF repository with bibliographic data and uses the ACM topic hierarchy to advertise the
semantic description (termed expertise) of its repository in the P2P network. In addition, it is
able to pose queries in SeRQL [29]. During query processing, a peer first evaluates the query
against its local node repository and then decides where it should be forwarded. This deci-
sion is based on the subject of the query, namely an abstraction that specifies the required
expertise to answer the query, and therefore the peer forwards the query to the peer with the
appropriate expertise.

REMINDIN’ (Routing Enabled by Memorizing INformation about Distributed INformation)
[153] is an algorithm that exploits social metaphors to find the right peers in a semantic
peer-to-peer network to answer a given query. It has been implemented for using the SWAP
platform. In REMINDIN’, peers observe which queries are successfully answered by other
peers, memorize this information and use it when they want to forward future requests.
When a peer issues a query (using SeRQL), this query is evaluated locally and across the
network. The requester peer selects a set of peers that it is possible to be able to answer
its query. If it cannot select any peers to forward its query, it weakens the query conditions
(relaxes the query, e.g., it creates a more general query) and repeats the procedure. When
the selection of appropriate peers is over, then the original query is sent to the selected peers.
When a peer receives a query, it searches for answers. Any answers created are returned
directly to the requester peer. The latter stores the relevant answers in its local repository
and rates them. Those answers identify the set of the most knowledgeable peers, thus the
querying peer can use this information for further requests.

Another paper that studies the searching of the Semantic Web is [152]. [152] presents

19http://www.jxta.org
20http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml
21http://www.acm.org/class/1998/
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SERSE (Semantic Routing System), a multi-agent system appropriate for searching the Se-
mantic Web. This system combines different technologies from different areas such as P2P,
ontologies and multi-agent technology. In SERSE, the routing agents have the same capa-
bilities and responsibilities and communicate on a P2P basis. The available resources are
semantically annotated and agents are responsible to retrieve these based on their descrip-
tions (annotations). Semantic descriptions of resources determine a semantic overlay on the
P2P network, where each peer is able to communicate only with those peers that belong to
the same semantic neighborhood. There is no global knowledge of the network, namely each
peer knows just its immediate neighbours, and also agents cannot broadcast messages to
the whole network.

2.4.3 Other distributed architectures

Lately there is an emerging interest in the area of distributed SPARQL query processing in
general. However, none of the existing systems have become very popular yet. Although the
architecture of these systems is very different from the one offered by our system, we briefly
mention them in this section.

In [114], a clustered triple store for Jena is presented. Two types of nodes are required in
this setting; query coordinator nodes and data nodes. A query coordinator node is respon-
sible for receiving queries, transforming URIs and literals to identifiers, and controlling the
execution on the data nodes. A data node is responsible for storing the node relation and
triple indexes and performing operations such as sorts and joins. Hash partitioning is used
for distributing the identifiers index and the triple indexes.

In [55], YARS2 is presented, a federated repository for RDF data. The authors of [55]
study distributed indexing methods for graph-structured data and parallel query evaluation
methods on a cluster of computers using a hash-based placement. For joins they use index
nested loops join. In Virtuoso Cluster Edition [40], RDF data can be stored as RDF quads
using bitmap indices. Query evaluation is performed in a pipeline way. Each step of the
pipeline takes the input of the previous stage, partitions it and sends an appropriate message
to the cluster nodes involved. If intermediate sets are large, they are processed in consecutive
chunks. The execution of the pipeline steps may overlap in time and can be divided into
separate partitions.

Zoi Kaoudi 54



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

2.5 RDFS Reasoning

In order for an RDF(S) system to support the complete semantics and capabilities of RDF(S),
it also needs to support the RDFS entailment rules [56]. In this section, we survey related
work in the area of RDFS reasoning in both centralized environments as well as distributed
ones of various architectures. We compare these methods and architectures with our work
on distributed RDFS reasoning presented in Chapter 5.

2.5.1 Centralized systems

A representative centralized RDF store that supports a forward chaining approach is Sesame
[30]. Each time an RDF Schema is uploaded in Sesame, an inference module computes the
closure of a given dataset udner the RDFS entailment and asserts the inferred RDF state-
ments. So, every RDF statement, explicit or implicit, is stored in Sesame’s database. Jena
[168] has a generic reasoning module designed to allow the usage of any kind of reasoner.
Therefore, Jena can eventually support different approaches depending on the underlying
reasoner. RDFSuite22 and specifically RSSDB [7] follows a totally different approach in which
the taxonomies are stored using the underlying DBMS inheritance capabilities so that re-
trieval is more efficient. For example, if a class c is represented as a table (relation) R, a
subclass of c would be a subtable of R in the underlying DBMS. Nevertheless, this approach
is still an on demand approach and resembles the backward chaining evaluation algorithm.
3store [52] follows a hybrid approach in order to gain from the advantages of both approaches
and avoid their disadvantages. In [52], the authors have chosen which inference rules will
be evaluated a priori using forward chaining when new facts are asserted, and rules which
have greater storage load and lower query processing cost will be evaluated on demand with
backward chaining and query rewriting.

In the Oracle RDBMS [34], RDFS inference is done at query execution time using appro-
priate SQL queries to the underlying relations. However, if a rule is used frequently, then the
system can determine that inferencing can be done using forward chaining to pre-compute
the inferred triples and store them in a separate relation. Virtuoso23 also provides support for
RDF(S) reasoning [41]. Virtuoso’s SPARQL implementation supports inference at run time
by rewriting the query appropriately to retrieve all inferred answers. Finally, GiaBATA [64]
is a prototype system which uses logic programming approaches coupled with a persistent

22http://139.91.183.30:9090/RDF/
23http://virtuoso.openlinksw.com/
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relational database for implementing SPARQL with dynamic rule-based inference. In [65],
the authors of GiaBATA employ different optimization techniques like magic set rewriting in
an effort to stay competitive as they extend SPARQL to be able to use a custom ruleset for
specifying inferences.

2.5.2 Structured overlay networks

A DHT-based RDF store that is closely related with our work is BabelPeers [16] which was the
first system to support RDFS reasoning using DHTs. It is implemented on top of Pastry [125]
and only a forward chaining approach is supported. RDF(S) triples are distributed in the
network using the indexing scheme of [33]. The reasoning process runs in regular intervals
at each node and checks for new triples that have arrived to the node. Then, it exhaustively
generates new inferred triples based on the RDFS inference rules and sends them to be stored
in the network. [16] presents no experimental evaluation of the forward chaining algorithm.
However, the results of the experimental evaluation of our forward chaining algorithm show
how expensive such an approach is in terms of storage load, time and bandwidth and could
demonstrate a poor performance of the reasoning algorithm of [16].

In [42], the authors present a DHT system called DORS for distributed ontology reasoning.
All nodes share the same schema (TBox), while the instances of the data (ABox) are distributed
in the network using a DHT partitioning scheme. Each node uses a DL reasoner to infer the
complete subsumption relationships among classes and properties of the TBox. Although
TBox reasoning is taking place at each node independently, ABox reasoning is performed
in a distributed manner iteratively until no new inferences are produced, similarly with our
forward chaining approach. A prefetch procedure retrieves the required data before the rule
engine starts the reasoning process. Then, the inferred assertions are distributed according
to the DHT partitioning scheme until no new assertions are generated. The experiments
presented in [42] are performed in a network of up to only 32 nodes and for a small dataset.

Finally, a different research area that is related with our work is declarative networking.
In [90, 91], a variation of Datalog is used for expressing routing protocols in a simple and
compact way based on the observation that recursive query languages are very suitable for
expressing routing protocols. The implementation of the routing protocols in [90, 91] can then
be done by evaluating recursive queries in a distributed manner. In [90] a semi-naive bottom-
up algorithm is presented for finding paths in a physical network graph and an optimized
version of it based on the magic set rewriting techniques [13]. The notion of iteration in the
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semi-naive algorithm of [90] is kept local to each node.

2.5.3 Other distributed and parallel architectures

Apart from DHTs which were the first infrastructures proposed for distributed RDF(S) query
processing and reasoning, other distributed and parallel computing infrastructures have been
proposed lately. Such infrastructures are based on distributed computing platforms consist-
ing of powerful clusters and cloud computing platforms using the MapReduce framework
[37].

MaRVIN [113, 112] is a parallel and distributed platform for RDFS reasoning over large
amount of RDF(S) data. MaRVIN supports a forward chaining approach for RDFS reasoning
and runs on DAS-3 (Distributed ASCI Supercomputer24). The creators of MaRVIN point out
that a distribution of RDF(S) triples based on a DHT can suffer from load imbalances due to
the skewness of RDF data [85]. Therefore, they propose an approach of divide-conquer-swap

where triples are fairly partitioned to all peers, each peer performs the reasoning, repartitions
its triples and swaps it with another peer. Although this method produces sound results, it
is not complete. In [113], the authors present an analytical model to prove that their system
will eventually reach completeness over time. The swapping phase can be either random or
using another algorithm called SpeedDate in [113] which enables data clustering and thus
improves the chances of getting completeness earlier. However, the amount of time required
to reach completeness remains questionable. In addition, the system uses an in-memory
implementation at each peer which speeds up inferencing significantly but if a node fails all
triples are lost. Datasets used in the experiments of [113] contain up to 14.9 million triples.

In [163], a different forward chaining approach is proposed based on MapReduce [37].
The system is implemented on top of Hadoop25 and runs on the DAS-3 distributed super-
computer managing to scale to 865 millions of triples. The authors of [163] show that a naive
implementation is inefficient due to load-balancing problems and the generation of many du-
plicate triples and propose three optimizations to achieve an RDFS closure computation more
efficiently. Firstly, the RDFS triples are kept in memory since they are fewer than the RDF
data triples. Secondly, data is grouped in a way which prevents the generation of duplicate
triples and avoids load balancing problems. This is performed by using as keys more than
one part of the triples in some cases. Finally, the rules are executed in a specific order so that

24http://www.cs.vu.nl/das3/
25http://hadoop.apache.org/
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the number of iterations required is limited. Load-balancing issues are also handled by the
Hadoop framework which dynamically assigns tasks to optimize the workload of each node.
In [163], the authors also utilize a distributed dictionary encoding in MapReduce. However
the time required to encode the triples to dictionary identifiers is not taken into consideration
in the experiments presented.

[166] considers the problem of producing the full RDFS closure using parallel computing
techniques. The authors show that RDFS rules have certain properties that allow for an
embarrassingly parallel algorithm. This means that the RDFS reasoning task can be divided
into a number of completely independent tasks that can be executed in parallel by separate
processes. Similarly with [42], a distinction is made between triples that describe RDFS
information (referred as ontological triples) and triples that encode RDF data information
(referred as assertional triples). The partitioning scheme requires each process to have all
ontological triples, while assertional triples are split equally to the processes. Each process
iterates over the RDFS rules in the appropriate order until no more inferences are found.
The inferred triples produced from a processor are added to the the set of triples of the same
processor. The authors show that this algorithm is sound and complete with respect to the
RDFS rules supported. A disadvantage of this approach is that each process outputs the
set of triples to a separate file. This introduces the problem of having different processes
producing the same triples and thus the resulting data set contains many duplicate triples.
As one would expect, removing duplicates would require much time and would sacrifice the
scalability of the algorithm. Experiments were conducted in an Opteron blade cluster using
machines with 16GB memory each and the datasets used contained up to ∼ 346 million
triples from the LUBM benchmark.

In [126], the authors present the reasoning engine of 4store [53] which runs in a backward
chaining fashion. 4store is a clustered RDF store which uses the subject of each triple to
decide to which cluster node the triple should be stored. Then a query processing node is
responsible for retrieving the required data and compute the answer to a query. The reasoning
engine of 4store works in a backward chaining fashion but keeps all RDFS information at
one cluster node. The experiments presented in [126] were conducted in 5 Dell PowerEdge
R410 machines, each of them with 4 dual core processors at 2.27GHz, 48GB memory and 15k
rpm disks managing to scale to 500 million triples.

Other related approaches consider OWL reasoning in parallel platforms. One such ap-
proach is presented in [142], where two partitioning approaches are studied. The first one
partitions the data which are then processed independently. The second one partitions the
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rules and each process applies its rules to the complete data set. The authors of [163] go
one step further by using MapReduce to compute the closure of RDF graphs under the OWL
Horst semantics in [162]. In [103], a MapReduce algorithm is presented for classifying EL+

ontologies, following the paradigm of [163, 162] for RDFS ontologies.

2.6 RDF Query Optimization

RDF query optimization has received a lot of attention only recently. In this section we
survey query optimization techniques that have been proposed for RDF in both centralized
and distributed settings.

2.6.1 Centralized approaches

Recent attention has been given to SPARQL query optimization in centralized environments
[145, 108, 109]. The first proposal is [145], where the authors present a selectivity-based
framework for optimizing SPARQL BGP queries. The optimization algorithm proposed is
based on the minimum selectivity heuristic of [144]. The join selectivity is precomputed by
executing the actual SPARQL queries on every pair of predicates that is related through the
RDFS schema and keeping the size of all the result sets. In the absence of an RDFS schema
all combinations of distinct predicates should be considered, an approach that can become
very expensive. For that reason, the query optimizer can be set to either fully support the
estimation of the selectivity of both triple patterns and joined triple patterns or support the
estimation of the selectivity of triple patterns only.

RDF-3X [108] is a RISC-style RDF engine designed for the management and querying of
RDF data. RDF-3X exhaustively builds aggregated indexes on every combination of triple
components and uses compression techniques to decrease the size of these indexes. In
[108], the join ordering is determined using a bottom-up dynamic programming algorithm
[100]. For the selectivity estimation of joins of triple patterns the authors propose two kinds of
statistics. The first one uses specialized histograms which can handle both triple patterns and
joins by leveraging the aggregated indexes built. Since histograms assume the independence
between predicates, they also consider the computation of frequent join paths in the RDF
graphs. The exact join statistics of the most frequent paths are precomputed and kept in
main memory. During query optimization, the exact join statistics are used if available,
otherwise independence is assumed and the appropriate histograms are used. In [109], the
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authors of RDF-3X go one step further to propose more accurate selectivity estimations by
precomputing exact join cardinalities for all possible choices of one or two constants in a
triple pattern and materializing the results in additional indexes. Certainly a good estimation
of the join cardinality using exact statistics comes with the cost of a large amount of time for
precomputing these statistics and the occupation of a large amount of space. For example,
for a total database size of 41GB, the computation of the statistics took 30 minutes and they
occupied 3GB on disk.

In order to enable the query optimization process, the cardinality estimation of RDF graphs
is crucial. A method for the cardinality estimation of SPARQL queries using a probability
distribution is presented in [138]. The algorithm relies on the decomposition of queries into
query pattern paths, where each path produces a set of values for each variable within the
result form of the query. In order to estimate the total number of result set parameters for
each path, a set of statistics is created on the properties of the ontology. In [93] the authors
propose graph summaries for the estimation of the frequency of subgraph patterns using
techniques from graph databases. They propose two tree-based structures which encode the
frequency of a graph and the dependencies between parts of the graph.

2.6.2 Distributed approaches

Earlier works that consider SPARQL query processing on top of DHTs such as [32, 89, 70, 57]
lack optimization techniques resulting in handling very small datasets (only thousands of
triples). The only DHT-based work that deals with query optimization for a triple-based
model is Unistore [79, 80]. Unistore is built on top of P-Grid DHT [2] and supports a SPARQL-
like query language. Each query is transformed into a logical query plan which is in turn
transformed into a physical query plan using operators defined in [79]. In Unistore, a cost-
based optimizer is implemented which estimates the cost of physical operators in terms of
the number of hops and messages required for each operator. Query planning is performed
dynamically at each peer involved in the query evaluation. The experimental evaluation
presented in [79, 80] is conducted in PlanetLab and hence only small datasets are used. The
work of [79] is complementary to ours and the two approaches could actually be combined
by an appropriate cost model.

Earlier works that studied RDF query optimization in a distributed environment, although
not a DHT, include [150, 120, 84]. In [150], several RDF repositories are combined using a
mediator and can be accessed through a single SeRQL Parser. The authors of [150] address
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the problem of query optimization by defining a cost model which takes into consideration the
local query processing cost (i.e., the cost for the join operation) as well as the communication
cost. For determining the join order, the authors adopt randomized algorithms as proposed
in the database literature [144]. The join selectivity of two triple patterns is assumed to be
estimated but no such method is clearly proposed.

In [120], the authors present an engine for federated SPARQL databases and make use of
query rewriting and cost-based optimization techniques. The query rewriting technique lies
in the simple substitution of variables appearing in filter expressions with an equal operator
and in the widely used strategy from relational systems where selections are applied as early
as possible. For the cost-based optimization, they use an iterative dynamic programming
but fail to estimate the selectivity of conjunctions of triple patterns and set it to a fixed value
instead.

As mentioned in Section 2.4.2, SQPeer [84] is a P2P middleware for routing and planning
queries for RDF(S) data based on semantic overlay networks. SQPeer supports two kinds of
query optimization for query planning, i.e., compile-time and run-time optimization. Opti-
mization relies on heuristics as well as a cost-based model. Cost-based optimization utilizes
statistics about the communication cost between peers and the size of expected intermedi-
ate query results. These statistics can be used to decide which peer and in what order will
execute each query operator. In addition, local processing load of peers is also crucial and
can be kept in the statistics. Compile-time optimization uses heuristics and statistics to
determine at compile time between data, query or hybrid shipping execution strategies. On
the other hand, run-time optimization includes deciding at execution time on altering the
data or query shipping decision or discovering alternative peers for answering a certain part
of a query plan. However, in [84] the cost model about the expected size of the intermediate
results is not given and a detailed way of how to measure the communication cost between
the nodes is missing. Finally, [84] presents no experimental evaluation.

A more recent work on data summaries over Linked Data is presented in [54]. The
authors of [54] describe a distributed approach for answering SPARQL queries over Linked
Data sources. Their proposal is based on data summaries for finding quickly which are the
sources that contain relevant information to answer a query. For summarizing data sources
they use an index, called QTree, which combines histograms with R-trees.
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2.7 Summary

In this chapter we introduced the RDF and RDFS data model and the SPARQL query lan-
guage. In addition, we presented a brief survey of P2P networks focusing on the technology of
DHTs. We surveyed work most relevant to our work including P2P database systems and pro-
posals for managing RDF data in P2P networks. Then, we surveyed related work in the area
of RDFS reasoning in centralized and distributed environments of various architectures. Fi-
nally, we presented optimization techniques that have been proposed recently for RDF query
optimization both in centralized and distributed settings.

In the next chapters we present in detail the contributions of our work. We start by
introducing the data model and query language supported by our system.
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Chapter 3

Data Model and Query Language

In this chapter we present concepts, terminology and results that are used throughout the
thesis. We start with formal definitions for the RDF and RDFS data model. We choose to rely
on the minimal deductive system of [101] for our RDFS data model. Therefore, we present
useful results from [101] that we use for our theoretical results in Chapter 5. Finally, we
present the fragment of the SPARQL query language and its graph representation that we
use in our system.

3.1 RDF and RDFS Data Model

In our work we constantly make use of the notion of an RDF triple. More formally, we define
an RDF triple as follows.

Definition 3.1.1. Let U , L and B denote the sets of URIs, literals, and blank nodes, respec-

tively. These sets are pairwise disjoint. An RDF triple is a tuple (s, p, o) from (U ∪ B) × U ×
(U ∪ L ∪B), where s is the subject, p is the predicate and o is the object of the triple.

URIs, literals and blank nodes were introduced in Section 2.1. We will call a triple ground

if it contains no blank nodes.

RDF data as well as RDFS descriptions can be written as RDF triples of the above form.
We will call a set of RDF(S) triples an RDF(S) database or an RDF(S) graph. An RDF(S) graph
is ground if the set of triples of the graph contains only ground triples. In the theoretical part
of our work we deal with ground RDF(S) graphs. Blank nodes, however, do not affect our
implementation.
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Table 3.1: ρdf inference rules [101]

1 (simple) (a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

2 (subproperty) (a) (A,sp,B)(B,sp,C)
(A,sp,C) (b) (A,sp,B)(X,A,Y )

(A,B,Y )

3 (subclass) (a) (A,sc,B)(B,sc,C)
(A,sc,C) (b) (A,sc,B)(X,type,A)

(X,type,B)

4 (typing) (a) (A,dom,B)(X,A,Y )
(X,type,B) (b) (A,range,B)(X,A,Y )

(Y,type,B)

5 (implicit typing) (a) (A,dom,B)(C,sp,A)(X,C,Y )
(X,type,B) (b) (A,range,B)(C,sp,A)(X,C,Y )

(Y,type,B)

6 (subproprerty reflexivity) (a) (X,A,Y )
(A,sp,A) (b) (p,sp,p) for p ∈ ρdf

(c) (A,sp,B)
(A,sp,A)(B,sp,B) (d) (A,p,X)

(A,sp,A) for p ∈ {dom, range}

7 (subclass reflexivity) (a) (A,sc,B)
(A,sc,A)(B,sc,B) (b) (X,p,A)

(A,sc,A) for p ∈ {dom, range}

3.2 RDFS Entailment

As we have already discussed in Section 2.1, RDFS entailment plays an important role in
RDF(S) graphs. Inferences are made using the RDFS entailment rules of RDF Semantics [56].
In our work, we deal with a subset of the RDFS entailment rules of [56] and give a different
notation using Datalog. This subset of rules is also proposed in [101] as a minimal model for
RDFS and is proved to be sound and complete. First, we provide details about the minimal
deductive system for RDFS of [101] and then, we present our Datalog-like approach.

3.2.1 A minimal deductive system for RDFS

To support RDFS reasoning one could use the sound RDFS inference rules presented in RDF
Semantics [56] or their extension given in [154] which is also complete. We choose to base
our work on the minimal set of inference rules of [101] which we briefly present here. This
set of inference rules covers only the subset of the RDFS vocabulary which is truly useful for
modeling an application domain, and leaves out vocabulary and inferences that capture the
(possibly complicated) internals of RDF and RDFS.

In [101, 102], the authors start with a subset of RDF and RDFS vocabulary which they call
ρdf . The only RDFS predefined terms allowed in the ρdf vocabulary are rdfs:subPropertyOf,
rdfs:subClassOf, rdfs:domain, rdfs:range and rdf:type. [101, 102] give a de-
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ductive system over a minimal set of inference rules over ρdf and prove that it is sound and
complete. For ease of the reader, we present below some of the definitions and results of
[101] that we use throughout the thesis. Table 3.1 shows the inference rules used for the
ρdf fragment. The following abbreviations are used in Table 3.1 and the rest of the thesis:
sc for rdfs:subClassOf, sp for rdfs:subPropertyOf, type for rdf:type, dom for
rdfs:domain and range for rdfs:range.

In the following, we give the definition of a ρdf proof. First, let us define the concept of
a map. A map is a function µ : U ∪ B ∪ L → U ∪ B ∪ L preserving URIs and literals, i.e.,
µ(u) = u for all u ∈ U ∪ L. Given an RDF(S) graph G, µ(G) is defined as the set of all triples
(µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. In [101], the authors overload the meaning of a map
and speak of a map µ from G1 to G2 (µ : G1 → G2), if the map µ is such that µ(G1) is a
subgraph of G2.

Definition 3.2.1. Let G and H be RDFS graphs. We will say that there is a ρdf proof of H

from G (denoted by G `ρdf H ) if and only if there exists a sequence of graphs P0, P1, ..., Pk, with

P0 = G and Pk = H, and for each j (1 ≤ j ≤ k) one of the following cases hold:

• there exists a map µ : Pj → Pj−1 (rule (1a)),

• Pj ⊆ Pj−1 (rule (1b)),

• there is an instantiation R
R′

of one of the rules (2)-(7), such that R ⊆ Pj−1 and Pj =

Pj−1 ∪R′.

[101] constrain the ρdf subset further by disallowing ρdf vocabulary as subject or object
of a triple. The new subset of RDFS is called minimal RDFS and denoted by mrdf . This is the
subset of RDFS we use in our work. A minimal RDFS triple (mrdf-triple) is a ground ρdf triple
having no ρdf vocabulary as subject or object [101]. A mrdf-graph is a set of mrdf-triples.
Based on this notion and the Definition 3.2.1 of a ρdf proof, the authors of [101] define a
mrdf proof as follows.

Definition 3.2.2. Let G, H be mrdf-graphs. Then, G `mrdf H if and only if there is a ρdf proof

of H from G involving solely the rules (1b), (2), (3) and (4).

Each pair (Pj−1, Pj), 1 ≤ j ≤ k is called a mrdf step of the proof or mrdf proof step, which
is labeled by the respective instantiation of the rule applied. Whenever G `mrdf H, we can
also say that the graph H is derived from the graph G or H is mrdf-entailed from G.

Zoi Kaoudi 65



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

Table 3.2: RDFS Entailment Rules

Rule Head Body

1 (1b) newTriple(?X, ?P, ?Y) triple(?X, ?P, ?Y)

2 (2a) newTriple(?X, sp, ?Y) triple(?X, sp, ?Z), newTriple(?Z, sp, ?Y)

3 (2b) newTriple(?X, ?P, ?Y) triple(?X, ?P1, ?Y), newTriple(?P1, sp, ?P)

4 (3a) newTriple(?X, sc, ?Y) triple(?X, sc, ?Z), newTriple(?Z, sc, ?Y)

5 (3b) newTriple(?X, type, ?Y) triple(?X, type, ?Z), newTriple(?Z, sc, ?Y)

6 (4a) newTriple(?X, type, ?Y) newTriple(?X, ?P, ?Z), triple(?P, dom, ?Y)

7 (4b) newTriple(?X, type, ?Y) newTriple(?Z, ?P, ?X), triple(?P, range, ?Y)

Let |= be the RDFS entailment relation defined in RDF Semantics [56]. The following
result presented in [101] shows that the normative semantics of RDFS are preserved by the
deductive system `mrdf for those mrdf-graphs that do not contain triples of the form (x, sp, x)

or (x, sc, x) for x ∈ U ∪ L.

Theorem 1. Let G and H be mrdf-graphs. Assume that H does not contain triples of the form

(x, sp, x) nor (x, sc, x) for x ∈ U ∪ L. Then G |= H ⇔ G `mrdf H.

In Chapter 5, we use the deductive system for mrdf to prove that our RDFS reasoning
algorithms are sound and complete.

3.2.2 A data model for RDFS based on Datalog

We base our RDFS data model on the minimal RDFS fragment mrdf of [101]. Following
Theorem 1 and by assuming ground graphs, our algorithms focus on the ρdf inference rules
1(b) and (2)-(4) of Table 3.1. In addition, we do not consider reflexive triples such as (x, sc, x)

or (x, sp, x).
Following a datalog-like notation with the extensional database relation (edb) triple

and the intensional database relation (idb) newTriple, the RDFS entailment rules can be
written as shown in Table 3.2. Each rule is indexed by a number that we use to refer to
it. Rules are also indexed with their number on the deductive rules for the ρdf fragment for
co-reference reasons.

In our notation, arguments beginning with ‘‘?" (such as ?X and ?Y ) denote variables, and
arguments starting with a lowercase letter denote constants. Predicate names always start

Zoi Kaoudi 66



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

with a lowercase letter. To avoid confusion with the double meaning of the word predicate,
we will refer to the predicate p of an RDF triple (s, p, o) with the word property and to a term
of a datalog rule with the word predicate.

In comparison with the rules of the deductive system ρdf of [101], rule 1 is actually
rule (1b) (simple) and is responsible for inferencing all triples that are initially stored in the
network, rules 2 and 3 represent rules (2) (subproperty), rules 4 and 5 represent rules (3)
(subclass), and rules 6, 7 represent rules (4) (typing).

We note that all recursive rules above are linear and safe. Linear rules are rules with
at most one recursive predicate in their body. Safe rules are rules where all variables in
the head of the rule appear as an argument in the rule bodies. The order in which the
predicates appear in a rule body is not semantically important. However, as it is explained
later in Section 5.2, we have adopted a specific ordering pattern for the case of the backward
chaining algorithm.

3.3 Query Language

In this section we present the query language supported by our system. First, we introduce
some formal definitions and then we describe how we represent the queries internally in our
system.

3.3.1 Definitions

As already discussed in Section 2.1.3, the core construct of SPARQL is a basic graph pattern,
i.e., a conjunction of triple patterns. A triple pattern is a subject-predicate-object tuple where
the components can be either constants or variables. More formally, we define a triple pattern
as follows.

Definition 3.3.1. Let U , L and V denote the pairwise disjoint sets of URIs, literals and

variables respectively. A triple pattern is a tuple (s, p, o) from (U ∪V )× (U ∪V )× (U ∪L∪V ).

We find useful to represent a triple pattern query using a single idb relation newTriple.
A triple pattern (s, p, o) is then written as newTriple(s, p, o). We navigate freely
between these representations throughout the thesis.

A basic graph pattern (BGP) of a SPARQL query [119] is a conjunction of triple patterns
and we express it as follows:
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?x1, ..., ?xk : (s1, p1, o1) ∧ (s2, p2, o2) ∧ ... ∧ (sn, pn, on)

where ?x1, ..., ?xk ∈ V are variables and (si, pi, oi) is a triple pattern as defined above. Vari-
ables ?x1, . . . , ?xk are called answer variables and each variable ?xi appears in at least one
triple pattern. Alternatively, we could express a basic graph pattern query using the Datalog
form presented above as follows:

ans(?x1, ..., ?xk) :- newTriple(s1, p1, o1), newTriple(s2, p2, o2), ..., newTriple(sn, pn, on)

The following definition enables us to define the answer to a conjunctive triple pattern
query.

Definition 3.3.2. Let θ be a substitution {?x1/c1, ..., ?xk/ck} and φ a formula (s1, p1, o1)

∧(s2, p2, o2) ∧ ... ∧ (sn, pn, on). The application θ(φ) of θ to φ is the formula obtained by re-

placing each occurrence of the variable ?xi in the formula φ by the constant ci (i = 1, ..., k).

We formally define the answer to a SPARQL query of the above form as follows.

Definition 3.3.3. Let DB be an RDF(S) database and q a conjunctive query q1 ∧ ... ∧ qn
where qi is a triple pattern. The answer to q over database DB consists of all substitutions

{θ1, ..., θk} such that the application of any of these substitutions to the query q should result

in a conjunction of triples H that are mrdf-entailed from DB (i.e., DB `mrdf θj(q) for each

j = 1, ..., k).

We note that the above definition does not use mappings as in the standard semantics of
SPARQL [119, 116]. Since we do not deal with blank nodes in this thesis, the above simpler
definition is adequate.

3.3.2 Graph representation of SPARQL

In the following, we define an internal representation of a SPARQL query adopting and ex-
tending the graph-based approach used in [145, 108]. This representation aims at avoiding
the computation of Cartesian products during the query evaluation.

Definition 3.3.4. A query graph g is a tuple (N,H,E), where N is the set of nodes in g, H is

the set of hypernodes in g and E is the set of undirected edges in g. Each node in N denotes

a single triple pattern and each node in H denotes a conjunction of triple patterns. Two nodes

from N ∪H are connected with an edge in E if and only if the triple pattern or the conjunction

of triple patterns represented by these two nodes share at least one variable.
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Figure 3.1: Query graph examples for query Q9

Initially, the query graph of a query consists only of simple nodes. During query process-
ing, evaluated triple patterns are merged into hypernodes. In the rest of the thesis, we focus
only on connected graphs. The evaluation of unconnected graphs is straightforward since
each connected subgraph can be evaluated independently, and then the union of the results
can be created at the peer that posed the query.

Listing 3.1: SPARQL query Q9 of LUBM

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX ub:<http://www.lehigh.edu / zhp2/2004/0401/univ-bench.owl#>
3 SELECT ?x ?y ?z
4 WHERE {
5 ?x rdf:type ub:Student . (tp1)
6 ?y rdf:type ub:Faculty . (tp2)
7 ?z rdf:type ub:Course . (tp3)
8 ?x ub:advisor ?y. (tp4)
9 ?x ub:takesCourse ?z . (tp5)

10 ?y ub:teacherOf ?z . (tp6)
11 }

In Listing 3.1, we present a SPARQL query. The query is query Q9 from the LUBM
benchmark [48] and asks for the students who take courses taught by their advisor. The
initial query graph is shown in Figure 3.1(a). Figure 3.1(b) shows an intermediate query
graph where the hypernode H represents the conjunction of triple patterns tp1 ∧ tp4 ∧ tp5
(i.e., triple patterns tp1, tp4 and tp5 have already been evaluated).
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3.4 Summary

In this chapter we presented formal definitions for the RDF and RDFS data model and useful
results from [101] that we use for our theoretical results in Chapter 5. Additionally, we
described the part of the SPARQL query language we use in our system and a way to model
queries during query evaluation using a graph representation.

In the next chapter we give a full description of our system, Atlas. We describe its archi-
tecture, its API, as well as an application scenario that demonstrates its role.

Zoi Kaoudi 70



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

Chapter 4

A Peer-to-Peer System for RDF Data

Management

In this chapter we present a system that is able to support full-fledged management of
RDF data in a large-scale decentralized environment. We assume a setting where several
heterogeneous sources of data are geographically distributed and expose their contents in
RDF(S). Our system’s architecture relies on the P2P paradigm but uses a DHT to ensure
complete and efficient query answering from all these heterogeneous sources. The system is
able to store RDF(S) data and provides the ability to retrieve information using the standard
query language for RDF, i.e., SPARQL. In addition, RDFS reasoning is supported following
the RDFS rules given by our data model.

The envisioned architecture has been realized in a real system, called Atlas1. Atlas is a
full-blown open source P2P system for the distributed storage and querying of RDF(S) data.
We distinguish two kinds of users in our system architecture; resource/metadata providers

and resource/metadata consumers. Providers expose resource descriptions to the network
by inserting RDF(S) information to the system. Consumers want to discover resources by
submitting SPARQL queries to the system. Any node in the network can accept a request
from a provider or a consumer. All nodes in the system are equal and there is neither
centralized control nor global knowledge.

The implementation of Atlas started in project OntoGrid2 where it has been used for
implementing a Semantic Grid service registry [75, 87]. The Atlas prototype developed in
OntoGrid has been further refined in the Greek project ‘‘Peer- to-Peer Techniques for Semantic

1http://atlas.di.uoa.gr
2http://www.ontogrid.net
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Web Services’’. In this project Atlas formed the core of a distributed service matchmaker
developed for a subset of OWL-S [73]. Atlas was also used in project SemsorGrid4Env3 where
it was extended with the capability to store spatial metadata expressed in an appropriate
extension of RDF that our group has defined [86]. Atlas is publicly available as open source
under the LGPL license.

In the next sections we elaborate on the design of Atlas providing the architecture and API
of the system. Additionally, we present an application scenario in a distributed digital library
setting where the role of Atlas is demonstrated. Finally, we describe the basic protocols for
indexing and retrieving RDF(S) data which are used in the algorithms we describe in the next
chapters. Results of this chapter have been published in [71, 70].

4.1 The Atlas System

In this section we describe in detail Atlas, a P2P system for the distributed management of
RDF(S) data. More specifically, we present the general architecture of Atlas, the architectural
design of each Atlas node, the API supported by Atlas, and finally, an application scenario
that demonstrates how Atlas can be used as a distributed repository of RDF(S) data.

4.1.1 Atlas architecture

A high level view of the Atlas architecture is shown in Figure 4.1. Nodes in Atlas are organized
according to the Bamboo DHT [122] protocol. All nodes in the network are equal and there

3http://www.semsorgrid4env.eu/
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is neither centralized control nor global knowledge. Any node can accept either a request
for storing RDF(S) data in the system from a provider or a request for evaluating a SPARQL
query from a consumer.

The provider can insert both RDF data and RDFS ontologies in the form of RDF documents
which can be in an RDF/XML or N-Triple format. Each time a node receives a request for
storing an RDF(S) document, it first decomposes it in RDF triples and then stores the RDF
triples based on the indexing scheme we describe in Section 4.2.1. We should point out
that in our architecture we adopt a generic approach where no global knowledge about the
schema is required. We handle data and schema triples in a uniformly. In this way, our
system can also handle scenarios with very big ontologies as well as scenarios with many
different ontologies.

Alternatively, a user can be a consumer and pose a SPARQL query. Each time a node
receives a SPARQL query request, it transforms it to a query graph as we defined in Section
3.3 and then, all Atlas nodes cooperate to find RDF(S) data that form the answer to the query.
Query processing algorithms are described later in Chapter 6.

In the remainder of the thesis, we assume that the network is stable with no churn,
i.e., network nodes do not join, leave voluntarily or fail in order to have clear semantics for
the query processing results. Node failures and network dynamicity pose extra difficulties
and require additional recovery algorithms. Our chosen underlying DHT, Bamboo DHT, offers
many recovery mechanisms and can handle churn using various methods [122], but handling
churn is out of the scope of our work.

4.1.2 Atlas node architecture

A higher level view of each node’s architecture as implemented in Atlas is shown in Figure 4.2.
On the top layer of the architecture, the API enables a user to provide resource descriptions by
storing RDF(S) data in the network or to consume resource descriptions by posing a SPARQL
query. The basic components of Atlas are the store and query processors.

Upon receiving a store request, the store processor of the node is responsible for decom-
posing the document into RDF(S) triples and initiating the protocol that distributes the triples
in the network. The triples are indexed in various nodes of the network according to a spe-
cific indexing scheme explained later. If forward chaining is chosen as the reasoning scheme,
the RDFS engine is responsible for making the appropriate inferences according to the ρdf
inference rules. Then, the store processor distributes the inferred triples in the network as
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well. Every triple that arrives at the responsible node is stored in the local database of this
node.

When a node receives a query request, the SPARQL translator transforms the query to an
equivalent query graph. Then, the query evaluation engine is responsible for the distributed
evaluation of the query. If backward chaining is the chosen reasoning scheme, the RDFS
engine is also in charge of carrying out the distributed evaluation taking into account the ρdf
inference rules.

Each node has a local database where both RDF data and RDFS descriptions are stored
permanently on the disk. Both the store processor and the query processor are able to
communicate with the local database of each node. In earlier versions of Atlas, the Berkeley
DB [18] was used which is included in the Bamboo implementation and used by Bamboo for
various database tasks. However, we found that this implementation is inefficient and have
moved to SQLite4, a lightweight relational database instead. However, Atlas could use any
database as a permanent storage at each node as long as there is a jdbc driver to be able
port it to our implementation. At the lower levels of the architecture lies the Bamboo network

4http://www.sqlite.org/
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layer which is responsible for the communication among the nodes.

4.1.3 Atlas API

In this section we present the API offered by Atlas so that a user is able to communicate
with any node in an Atlas network to store RDF(S) data or pose SPARQL queries. A user can
communicate to any available node in the network using the following functions provided by
the Atlas API.

• store(file, format): stores an RDF file given in a specific format in the Atlas
network. The format of the file can be either RDF/XML or RDF/NTriple. Each RDF(S)
document is decomposed into a collection of RDF(S) triples and these triples are indexed
in various nodes of the Atlas network according to the storing protocol. When all triples
are successfully indexed in the network, a confirmation message is returned to the user.
Otherwise an error message is returned.

• store(url, format): stores RDF(S) data in the Atlas network specified by a URL.
Again the format of the data can be either RDF/XML or RDF/NTriple. When all triples
are successfully indexed in the network, a confirmation message is returned to the user.
Otherwise an error message is returned.

• query(q): poses a SPARQL query q to the Atlas network. Query q should be a well-
formed SPARQL query containing basic graph patterns as we defined in Chapter 3.
Otherwise, an exception error is returned to the user. Each time a node poses a query,
the network nodes cooperate to find RDF(S) data that form the answer to the query
using algorithms we describe in the next chapters.

4.1.4 Application scenario

We can think of several application scenarios which feature Atlas as a distributed repository
for storing and retrieving metadata describing resources: open linked data, content-sharing,
Web/Grid service registries, distributed digital libraries and social networks. To demonstrate
how Atlas can be used in such application scenarios, we consider the case of distributed
digital libraries (DDLs). The use of Atlas to implement a distributed Grid service registry in
the context of project OntoGrid has been discussed in [75]. In the distributed digital libraries
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scenario, a user poses a query (e.g., ‘‘I am interested in papers on the Semantic Web") and
the distributed digital library returns matching resources.

Figure 4.3 gives a use case of Atlas using a distributed digital library application scenario.
We assume a university with three geographically distributed campuses (e.g., Arts, Sciences
and Medicine) and a local digital library in each campus (only the Science DL is shown
graphically in the figure). Each local digital library is a provider in terms of our architecture.
Providers maintain an Atlas client which offers them an access point to the Atlas network.
Providers use this client to publish RDF metadata about the resources they hold in the
Atlas network. Consumers (e.g., users) can also deploy an Atlas client to pose queries about
available resources. Various interesting extensions to this basic setting are possible as shown
in Figure 4.3. For example, the university might be interested in making available to its
students and staff, in a timely way, the content provided by other publishers (e.g., CiteSeer,
ACM, Springer, Elsevier). Figure 4.3 shows how our architecture can be used to fulfill this
requirement. A client is used to publish in the overlay network metadata about resources
available in CiteSeer. The content of the ACM, Springer and Elsevier digital libraries is
similarly made available. In this case, an integration layer is used to unify different digital
libraries. We omit discussion of the relevant interoperability issues since they can be solved
at the level of providers with well-known integration techniques. We also leave open the
question of how to interoperate with other relevant P2P networks e.g., the DHT-based digital
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library OverCite [148].

The main components of the distributed digital library architecture shown in Figure 4.3
are: Atlas nodes, Atlas clients (denoted by C), providers and consumers. Providers own
information sources that are part of the DDL, while consumers are interested in the DDL
content. Atlas nodes form an overlay network that offers a robust, fault-tolerant and scalable
means for routing messages and managing DDL resource metadata encoded in RDF. Atlas
clients are software components that enable providers and consumers to communicate with
the Atlas network. Clients can connect to any Atlas node of the network through the Atlas
API described previously.

4.2 Basic Protocols for Storing and Retrieving RDF Data in

Atlas

In this section we describe the basic protocols for indexing and retrieving RDF data in a DHT
network. These protocols form the basis of our system and is the key to the completeness of
our algorithms. The algorithms that are based on these protocols are presented in the next
chapters (Chapters 5, 6 and 7).

4.2.1 Indexing protocol

Nodes of the network can insert both RDF data and RDF Schema information in the form of
RDF documents. Documents can be in an RDF/XML or N-Triple format. Whenever a node
receives a request to store RDF(S) data through the store function offered by the API, it
decomposes the document into RDF(S) triples and creates a request StoreRequest(triples).
We call this node store requester node. Then, the triples are indexed in various nodes of the
network.

In the following, we describe the basic protocol used for indexing RDF(S) triples in the
network. We have adopted the triple indexing algorithm originally presented in [33] where
each triple is indexed in the DHT three times. This algorithm is by now standard in DHT-
based systems for RDF(S) stores. The hash values of the subject, property and object of
each triple are used to compute the identifiers that indicate the nodes responsible for storing
the triple. Whenever a node receives a request to store a set of triples, i.e., a request Stor-

eRequest(triples), it sends three DHT Put(id, t) messages for each triple t ∈ triples, using as
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key the subject, property and object respectively, and the triple itself as the item. The store
requester node hashes each key using hash function SHA-1 [137] to create the identifier id
that leads to the responsible node where the triple is stored. We call that node the responsible

node for this key or identifier. Notice that when a node is responsible for a key which is an
RDFS class name C (responsible node for class C), it will have in its local database all triples
that contain class C either as a subject or as an object (class C cannot be a property).

Each node keeps its triples in its local database consisting of a single relation with four
columns (triple relation). The first three columns correspond to the three components of the
triples, i.e., subject, predicate, object, while the fourth column indicates which of the three
components is the key that led the triple to this node using a simple number.

Since an RDF(S) database is actually a graph, we exploit the fact that many of the triples
share a common key (i.e., they have the same subject, property or object) and end up to be
stored in the same node. So, instead of sending different Put messages for each triple, we
group them in several lists triplesi (1 ≤ i ≤ k) based on the k distinguished keys that exist in
the whole set of triples, hash these keys to obtain identifiers and send a multiPut(idi, triplesi)

message for each identifier. The node responsible for the identifier idi, which receives this
message, stores in its local database all triples included in the list triplesi.

We handle data and schema triples in a uniform way. While other approaches, such as
[42, 163, 166], require that every node in the system keeps all the RDFS triples, and in some
cases in main memory, in our system we adopt a more generic approach where no global
knowledge about the schema is required. RDFS triples are distributed in the same way that
RDF triples are and both are stored in the local SQLite database of the relevant node. In
this way, Atlas can also handle scenarios with very big ontologies as well as scenarios with
many different ontologies, where other systems such as the above might not scale since their
scalability will depend on the number of schema triples that can be stored locally at each
node’s main memory.

4.2.2 Querying protocol

In this section we describe the basic protocol used in Atlas to answer an atomic SPARQL
query consisting of a single triple pattern (s,p,o). Whenever a node receives a request for
a query through the query function offered by the API, it decomposes the query to a triple
pattern tp and creates a request QueryRequest(tp). We call this node query requester node.

When a node receives a query request for a triple pattern tp, i.e., a request QueryRe-

Zoi Kaoudi 78



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

quest(tp), it should decide to which node it should route the request to evaluate the query.
The query requester node chooses a key from the triple pattern tp and hashes it to create
the identifier that will lead to the appropriate node. The key is the constant part of the triple
pattern. When there is more than one constant parts, the query requester node selects the
keys in the order ‘‘subject, object, property" based on the fact that we prefer keys with lower
selectivity and the reasonable assumption that subjects or objects have more distinct values
than properties. This simple scheme suffices for the purposes of simplicity. In Chapter 7, we
study relevant issues in the context of conjunctive triple pattern queries using selectivities.
At the destination node, all triples that contain this key will be found in the local database
due to our indexing scheme. The triple pattern will be matched with these triples and the
bindings of the triple pattern’s variables will be returned to the query requester node. A
more detailed algorithm for evaluating more complex SPARQL queries as they were defined
in Section 3.3 is presented in Chapter 6.

Note that we do not deal with answering queries that are triple patterns with no constant
parts. The answer to such queries is the whole database of triples stored in all the nodes of
the network. These queries can be computed by a broadcasting algorithm but this is out of
the scope of this work.

4.3 Summary

In this chapter we presented the design of Atlas, a full-blown open source system for the
distributed storage and querying of RDF and RDFS data. We described the architecture of
the system as well as the architecture of each Atlas node and provided the offered API. We
demonstrated how Atlas can be used in a distributed digital library application scenario. In
addition, we provided the basic protocols for indexing and retrieving RDF(S) data which are
used to the algorithms we describe in the next chapters.

In the next chapters we describe the algorithms we have developed in Atlas for distributed
RDFS reasoning, SPARQL query processing and RDF query optimization. The next chapter
starts with the RDFS reasoning techniques we have developed in Atlas. We study both
theoretically and experimentally our algorithms and showcase the results.
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Chapter 5

Distributed RDFS Reasoning

With the Semantic Web brought into being the last couple of years, there is an urgent need
only for dealing with a huge amount of distributed data expressed in RDF, but also for being
able to reason with it. Reasoning algorithms have been widely studied in the past in the areas
of logic and artificial intelligence. Two important reasoning techniques are forward chaining

and backward chaining. Forward chaining works in a bottom-up fashion. It starts from a
given dataset and using the inference rules produces new data that is entailed by the given
dataset. Backward chaining works in a top-down manner. It starts from a goal and finds a
proof of this goal using the given dataset and the inference rules. In this chapter we study
such reasoning algorithms for RDFS.

Previous work on centralized RDF stores has considered forward chaining, backward
chaining and hybrid approaches to implement RDFS reasoning and query processing [30,
168, 7, 52]. In the forward chaining approach, new RDF statements are exhaustively gen-
erated from the asserted ones. In contrast, a backward chaining approach only evaluates
RDFS entailments on demand, i.e., at query execution time. Intuitively, we expect that a
forward chaining approach has minimal requirements during query answering, but needs a
significant amount of storage for all the inferred data. In contrast, the backward chaining ap-
proach has minimal storage requirements, at the cost of an increase in query response time.
There is a time-space trade-off between these two approaches [149], and only by knowing the
query and update workload of an application, we can determine which approach would suit it
better. This trade-off has never been studied in detail in a distributed Internet-scale scenario,
and this is one of the challenges that we undertake in this chapter using the technology of
DHTs.
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The organization of this chapter is as follows. In Section 5.1 we present how the forward
chaining algorithm can be implemented in a DHT and give formal proofs for the correctness of
the algorithm. In addition, in Sections 5.1.3 and 5.1.4 we discuss the issue of redundant RDF
triples generation in forward chaining algorithms and the role of the semi-naive evaluation
in the distributed environment of a DHT, respectively. Section 5.2 presents the backward
chaining algorithm with its correctness proofs, while Section 5.3 describes the algorithm
based on the magic sets transformation technique [17]. In Section 5.4, we give an analytical
cost model of our algorithms, while in Section 5.5 we present the results of our experimental
evaluation. Finally, Section 5.6 summarizes the chapter. Results of this chapter have been
published in [74] and are under review in [69].

5.1 Distributed Forward Chaining

In this section, we describe our forward chaining algorithm and its implementation in a DHT.
The general idea of forward chaining (FC) is that all inferred triples are precomputed and
stored in the network a priori. Each time a node receives a triple to be stored in its local
database, it computes all inferred triples and sends them to the network to be stored. The
algorithm uses the Datalog rules presented in Table 3.2.

5.1.1 Algorithm description

Let us now introduce the notation that will be used in the algorithms description. Keyword
event precedes every event handler for handling messages, while keyword procedure de-
clares a procedure. In both cases, the name of the handler or the procedure is prefixed by
the node identifier in which the handler or the procedure is executed. Local procedure calls
are not prefixed with the node identifier. Keywords sendto and receive declare the message
that we want to send to a node with known either its identifier (thus DHT routing will be
used) or the IP address (thus the node is immediately contacted), and the message we receive
from a node respectively.

Our forward chaining algorithm, called FC*, is activated every time an RDF(S) triple is
inserted in the network. As explained in Section 4.2.1, whenever a node receives a request
StoreRequest to store a set of triples G, it sends three DHT Put messages for each triple,
using as key the subject, property and object respectively, and the triple itself as the item.
In the case of FC*, instead of using a Put message, the store requester node sends a mes-
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Algorithm 1: FC*: Forward chaining algorithm
1 event n.StoreMsg(id, t, k, inf )
2 localTriples={t} ∪ getTriplesFromDB (t.key);
3 newtriples=Infer (localTriples);
4 forall the t’ of newtriples /∈ infTriples && /∈ localTriples do
5 id1 =Hash (t′.subject);
6 id2 =Hash (t′.property);
7 id3 =Hash (t′.object);
8 sendto id1.StoreMsg(id1, t′, 1, true);
9 sendto id2.StoreMsg(id2, t′, 2, true);

10 sendto id3.StoreMsg(id3, t′, 3, true);
11 infTriples.add(t′);
12 end
13 InsertToDB (t, inf);
14 end

sage StoreMsg and the algorithm is activated. Algorithm 1 shows in pseudocode how FC*
works. Suppose a StoreMsg(id, t, k, inf ) request arrives at node n which is responsible for
the identifier id and a new triple t should be stored in the local database of n. k is a byte that
indicates the key that led triple t to this node (we use k = 1 for subject, k = 2 for property
and k = 3 for object). Keeping the key in one byte variable reduces the size of the message;
the actual string value which can be found from the triple itself. inf is a boolean value that
indicates whether t is an inferred triple or not. First, node n retrieves from the local database
all triples that contain the key t.key of triple t either as a subject, property or object and
puts them in list localTriples together with t. Then, it computes the triples inferred from
this list according to the Datalog rules of Table 3.2 using local function Infer(localTriples).
Function Infer(localTriples) assigns the triples which have originated from the initial RDF(S)
graph to the edb relation triple and the triples which have been inferred from an inference
rule to the idb relation newTriple.1 It outputs the idb relation newTriple by matching
the triples with the antecedent of the rules of Table 3.2 in a data-driven manner. The new
facts of relation newTriple generated by function Infer form the inferred triples. Each node
holds a list infTriples with all inferred triples that it has computed, so that it can check
when it reaches a fixpoint where no new triples can be generated. For all newly inferred
triples, three identifiers are created based on the subject, property and object of each triple,
and three StoreMsg requests are sent to the network. The initial triple t is stored in node’s

1In the local database of each node there is information of whether a triple is inferred or not.

Zoi Kaoudi 83



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

artist

sculptor

flemish cubist

painter

sc

person

sc

sc sc

sc

Figure 5.1: Example RDF(S) class hierarchy

n local database using local function InsertToDB. The algorithm terminates when all nodes
have reached a fixpoint.

Invoking FC* every time new triples are stored in the network allows us to compute the
closure of the stored triples under the mrdf inference rules (we prove this formally below).
After FC* has terminated, query evaluation of one triple pattern can be performed exactly as
described in Section 4.2.2. The query request is routed to the node that is responsible for
the key of the triple pattern and all triples matching this triple pattern are found locally at
its database.

FC* runs in the same way when messages MultiPut are used to group triples. In-
stead of sending a message MultiPut, the store requester node creates a message Multi-

StoreMsg(id, triples, k, inf ) which takes as an input a list of triples. All triples in list triples
share the same key whose position is kept in variable k. The only difference is that k now
refers to the position of the key in the first triple of the list.

Figure 5.1 depicts a small RDFS class hierarchy of the cultural domain [81]. In Figure
5.2, we demonstrate an example of how FC* works based on this RDFS hierarchy. Triples
that are not in bold are initially inserted in the network. The key of each triple that led to
a specific node is underlined. Figure 5.2(a) shows the initial triples that are indexed in the
nodes of the network. The key of each triple that led to a specific node is underlined. Nodes n1

and n2 infer two triples each using rules 1 and 4 of Table 3.2 (Figure 5.2(b)). Inferred triples
are shown in bold. These triples are sent to be stored to the corresponding nodes of the
network. Then, node n2 will infer two more triples by considering the already inferred triple
(painter, sc, person) and the two initial triples stored in its local database using rule
4 of Table 3.2 (Figure 5.2(c)). These two triples are finally sent to be stored at nodes n4, n5

and n6. The final state of the nodes’ databases is depicted in Figure 5.2(d).
Suppose now that a user submits the query ‘‘Find all the subclasses of class artist" to a

node of the network. This query can be expressed as the triple pattern (?X, sc, artist)
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Figure 5.2: FC* in operation

and will be routed to node n1, which is responsible for the key artist. The answer will be
formed at this node since all triples will be found at its local database.

A simpler forward chaining algorithm. Initially, we had designed a simple forward chain-
ing algorithm, which we called FC and presented in [74]. The algorithm FC runs similarly
with FC*. It is activated every time an RDF(S) triple is indexed in a node of the network and
then, new triples are inferred from the RDFS rules and sent to the network. The difference
with FC* is that FC uses a slightly different set of rules, i.e., rules of Table 3.2 but without
any recursion. The body of all rules contain only the edb relation triple. Triples originated
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from the initial RDF(S) graph and inferred triples are not distinguished by any parameter
in the message StoreMsg. All triples that arrive at a node are assigned to the edb relation
triple. In this way, many redundant triples are generated in different nodes of the network.
Notice that, if FC was used in the previous example, node n1 would have also inferred the
same triples that node n2 produced in Figure 5.2(c), causing unnecessary traffic and more
processing load to nodes n4, n5 and n6. Experimental results in Section 5.5.2 showcase the
magnitude of this phenomenon.

5.1.2 Termination, soundness and completeness

First, we prove that FC* terminates.

Theorem 2 (Termination). Algorithm FC* terminates.

Sketch. Nodes in the network execute the for loop of lines 4-12 of FC* a finite number of
times. The loop is executed a finite number of times since there is a finite upper bound on
the number of triples entailed by a given finite graph G. The loop propagates inferred triples
in other nodes of the network hence FC* terminates.

In the following, we prove that algorithm FC* is sound and complete. At this point, we
make the following simplifying assumptions regarding the overlay network. We assume a
stable network with no churn, i.e., network nodes do not join, leave voluntarily or fail, where
messages are always delivered after a finite amount of time. Although the Bamboo DHT has
many recovery mechanisms and can handle churn using various methods [122], handling
churn is out of the scope of our work.

By sound we mean that if H is the RDF(S) graph produced by the FC* algorithm and
stored in the network, then G |= H where G is the initial graph. By complete we mean that
if G is the RDF(S) graph initially stored in the network, H any graph and G |= H, then all
triples of H will be stored in the network after the completion of FC*.

In the proofs of soundness for the forward and backward chaining algorithms, we use the
notion depth of an appropriate kind of finite tree that captures the relevant computation. We
define this notion as usual. The depth of a node in a tree is the length of the path from the
root to this node. The depth of a tree is the maximum depth of a node in the tree.

An execution of FC* on top of a DHT can be modeled using the following notion of com-
putation tree.

Definition 5.1.1. A computation tree is a finite tree with the following properties:
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Figure 5.3: Computation tree of the DHT node n1

(i) Every node is of the form ai : (H i
old, H

i
new) where ai is a DHT node and H i

old, H
i
new are

non-empty sets of triples.

(ii) For every node ai : (H i
old, H

i
new) we have the following:

• H i
old is a set of triples stored at the local database of node ai.

• H i
new is the set of triples computed at node ai during some step of FC* by applying

some ρdf rules in parallel.

(iii) For every child ai+1 : (H i+1
old , H

i+1
new) of node ai, we have that H i

new ∩H i+1
old is non-empty and

is the set of new triples produced at node ai during some step of FC* and sent to node ai+1

where FC* continues.

A computation tree offers a nice pictorial representation of the computation of FC*. Figure
5.3 shows the computation tree for the example shown in Figure 5.2. The root of the tree
corresponds to the activation of FC* when a message StoreMsg arrives at a DHT node. The
nodes of the tree at increasing depths allow us to understand FC* proceeding in rounds
although no such strong assumption is used by the algorithm.

Theorem 3 (Soundness). Let G be the initial graph stored in the network and H the set of

triples in the local databases of nodes after FC* has terminated. Then it holds that G |= H.

Proof. The proof is by induction on d, the depth of the computation tree representing the
execution of FC*.
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Base case: d = 1 (the root is d = 0). In this case, FC* runs at the network node represented
by the root of the tree, produces k new sets of triples and sends them to k nodes. FC* runs
again at these k nodes but no new triples are computed. A sequence of graphs (mrdf proof
according to Definition 3.2.2) that shows G `mrdf H can easily be constructed. The first
element of the sequence is G followed by k subsequences representing the k sets of triples
mentioned above (the order of the subsequences does not matter). Each of the k sets of triples
can be represented by as many proof steps as the number of triples it contains. Each step
is the result of the application of a ρdf rule to the set of triples produced in the immediately
previous proof step.

Inductive step: We assume that the theorem holds for executions of FC* with compu-
tation trees of depth d and we will show that the theorem holds for executions of FC* with
computation trees of depth d+ 1.

We take the computation tree T of depth d + 1 corresponding to the execution of FC* on
the stored graph G and prune all the nodes at depth d + 1. The resulting tree T ′ has depth
d and the theorem holds for the corresponding execution of FC*. Hence, if H ′ is the set of
triples in the local databases of the DHT nodes as represented by the tree T ′ then G `mrdf H ′.
Now we can continue the proof of H ′ from G by adding the steps corresponding to the nodes
we pruned from T to arrive at a proof H. This is done as in the base case.

Since we have proved G `mrdf H, Theorem 1 of Section 3.2.1 gives us that G |= H.

Theorem 4 (Completeness). LetG andH bemrdf graphs and graphG is stored in the network.

If G |= H, then the triples of graph H will be also stored in the network when algorithm FC*

terminates.

Proof. Using Theorem 1 and the fact that G |= H, we have that G `mrdf H. We will prove the
result using induction on k, the number of mrdf proof steps that show G `mrdf H. Using the
notation of Definition 3.2.1, we assume that P0 = G and Pk = H.

Base case (k = 1): H is derived from G by the application of a single rule r of the deductive
system of Table 3.1.

• If r is rule (1b) then H ⊆ G and thus, all triples of H will be stored in the network.

• If r is one of the rules (2)-(4), then there is an instantiation R
R′

of rule r such that R ⊆ G

andH = G∪R′. G is stored in the network and hence we need to show that triple R′ will
also be stored. The instantiation of r will happen at the node where triples which match
the antecedent of rules (2)-(4) (i.e., R) will meet. If we check Table 3.2, we observe that
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the antecedent triples of rules 2-7 always have a common element. Triples are indexed
three times based on three identifiers, namely the hash values of their subject, property
and object. Therefore, triples with a common element will meet at the node responsible
for the identifier of this common element where the antecedent R will be matched. Then
the triple R′ will be generated by FC* using local function Infer and will be stored in
the network. Thus, all triples included in H will be stored in the network.

Inductive step: We assume that the result holds for k− 1.We will show that it holds for k.
Let us consider G and H such that G `mrdf H in k proof steps. Using the notation

of Definition 3.2.1, H can be proved from Pk−1 by the application of a single rule r of the
deductive system of Table 3.1. The rest of the proof is similar to the one for the base case.

• If r is rule (1b), then H ⊆ Pk−1 and following the hypothesis of the induction all triples
of Pk−1 have been stored in the network. Consequently, all triples of H are stored in
the network.

• If r is one of the rules (2)-(4), there will be an instantiation R
R′

such that R ⊆ Pk−1 and
H = Pk−1 ∪ R′. According to the hypothesis of the induction all triples of Pk−1 and
therefore all triples of R were stored in the network according to our indexing scheme.
Hence, if the rule is one of the rules (2)-(4), the instantiation of the rule will happen at
the node where the triples of R will meet. Again since triples in the antecedent of rules
(2)-(4) always have a common element, these triples will meet at the node responsible
for this common element. Then, triple R′ will be generated using local procedure Infer

and will be stored in the network. Consequently, all triples of H will be stored in the
network.

5.1.3 Redundant triple generation in FC*

Several authors have pointed out recently the generation of many redundant triples in forward
chaining algorithms for RDFS reasoning, and especially in distributed ones [113, 166, 163].
The drawback of duplicate triple generation can be greater and more harmful in a distributed
system. Duplicate triples are generated at different nodes and sent through the network
causing an enormous amount of traffic as well as unnecessary load to the nodes. [113]
treats the reasoning process at each node as a black box and does not elaborate on the
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rule set used. However, the authors do observe a big rate of duplicate triples and offer
an elimination process to remove the duplicate triples that have been generated. In [166],
the authors present results showing that as the number of processes grows the number
of duplicate triples also increases and they especially refer to rule rdfs9 (i.e., rule (3b) of
Table 3.1) for generating duplicate triples. [163] also provides solutions in the MapReduce
framework to avoid duplicate triples and eliminate them if necessary. However, none of these
works elaborate on the cause of redundant triples.

An important source of redundant triples which, to the best of our knowledge, has not
been discussed in the literature before, is the recursive rules of Table 3.1. When the rules
of Table 3.1 are used as they are or, in our case, translated into Datalog in the obvious way,
they give rise to bilinear recursion. Bilinear rules are rules which have two occurrences of a
recursive idb relation in their body and hence contain double recursion. Rules with double
recursion can produce a large number of duplicate triples even in a centralized environment
[6]. Let us demonstrate this with two simple examples.

Example 5.1.1. Assume that our initial graph G contains three triples:

t1 =(a, sc, b)

t2 =(b, sc, c)

t3 =(c, sc, d)

These triples form a small RDFS class hierarchy. Using rule (3a) of the minimal deductive

system of [101], we infer the following triples:

t1, t2 ⇒ t4 =(a, sc, c)

t2, t3 ⇒ t5 =(b, sc, d)

t3, t4 ⇒ t6 =(a, sc, d)

t1, t5 ⇒ t6 =(a, sc, d)

Therefore, triple t6 is inferred twice.

In the following example, we show how the generation of duplicate triples can be prevented
if we use the linear rules we presented in Table 3.2.

Example 5.1.2. Assume that we have the same initial graph G of Example 5.1.1, but now we

use rules 1 and 4 of Table 3.2. From applying rule 1, we add 3 assertions with idb relation

newTriple:

t′1 =newTriple(a, sc, b)

t′2 =newTriple(b, sc, c)

t′3 =newTriple(c, sc, d)
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Figure 5.4: Redundancy in RDF(S) graphs

Using rule 4 of Table 3.2, we infer the following triples:

t1, t
′
2 ⇒ t′4 =newTriple(a, sc, c)

t2, t
′
3 ⇒ t′5 =newTriple(b, sc, d)

t1, t
′
5 ⇒ t′6 =newTriple(a, sc, d)

Notice that the pair of triples t3 and t′4 cannot satisfy any of the bodies of rules of Table 3.2 and

hence triple t′6 is inferred only once.

In one of our previous implementations of forward chaining, called FC in [74], we used
bilinear rules and made no distinction between explicit and inferred triples. Every time a new
triple t was generated, it was sent to be stored at the responsible nodes without specifying
that t is an inferred triple. The nodes that received t were producing new triples from all
triples stored locally without taking into consideration whether they were previously inferred
or not. For instance, in the example of Figure 5.2, if we had used our previous algorithm FC
[74], node n1 in Figure 5.2(c) would have also inferred the same triples that node n2 produced
causing unnecessary traffic and more processing load to nodes n4, n5 and n6.

Another source of triple generation redundancy is when RDF data is derived using different
entailment rules. In this case, techniques such as the above cannot prevent the generation
of redundant triples. For example, domain and range statements can interact with other
statements in many ways to produce redundant triples. The following example shows one
such case where a triple generation redundancy can occur.

Example 5.1.3. In the RDF(S) graph G of Figure 5.4, triple (a, type, c1) can be inferred

from triples (a, p, b), (p, dom, c1) using rules 1 and 6 of Table 3.2. The same triple

can also be derived from triples (a, type, c2), (c2, sc, c1) using rules 1 and 5.

5.1.4 Semi-naive evaluation in FC*

In centralized systems, semi-naive bottom-up evaluation [160] avoids inferring redundant
facts in recursive rule execution. This can be accomplished by computing new facts using as
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input only base facts and new facts derived in the last iteration. Base case rules such as rule
1 of Table 3.2 are used only at the first iteration of the semi-naive evaluation. We could easily
rewrite the rules of Table 3.2 so that semi-naive evaluation can be performed. For example,
rules 1 and 2 of Table 3.2 would be rewritten as follows:

∆newTriple1(?X, ?P, ?Y) :- triple(?X, ?P, ?Y).

∆newTriplei+1(?X, sp, ?Y) :- triple(?X, sp, ?Z), ∆newTriplei(?Z, sp, ?Y).

In this way, new triples generated in iteration i (∆newTriplei) are used as input together
with base triples to generate new triples in iteration i + 1 (∆newTriplei+1) which, in turn,
will be used in the next iteration. The rest of the rules can be rewritten similarly.

Our FC* algorithm can benefit from a semi-naive evaluation to avoid the inference of
redundant triples locally at each node. In addition, list infTriples in FC*, which holds all
inferred triples to avoid sending redundant triples in the network and to determine fixpoint,
is not required in this case. Local fixpoint can be reached when a node does not produce any
more triples using the rewritten rules. Therefore, a semi-naive evaluation in FC* can reduce
local processing load at each node.

In a distributed environment, checking completion of an iteration is a very difficult task
and can be realized by either the coordination among the nodes of the network or by keeping
a global iteration counter at one node and assume that nodes work in synchronization.
However, the first approach is very expensive in terms of communication, while the second
one violates the principle of P2P systems about global control. One solution followed in in
[90] is to make the notion of iteration local at each node.

Using this technique, distributed semi-naive evaluation in our case can be realized as
follows. Each inferred triple that arrives at a node is assumed to have been computed in the
previous round and is inserted in the idb relation ∆newTriplei. Therefore, rewritten rules
are applied by assigning the local triples which originate from the initial RDF(S) graph to the
edb relation triple, and inferred triples that arrive at the node to ∆newTriplei so that
they will be used at the next iteration. Rule 1 is applied only when a node receives a triple
that originates from the initial RDF(S) graph.

However, the above way of performing distributed semi-naive evaluation applies only when
bottom-up execution of the rules of Table 3.2 starts after all triples of the RDF(S) graph have
been stored in the system. This is typically the case when the computation of the RDFS
closure of a given set of triples is required. The way we defined FC* in Section 5.1 is more
flexible since the rules are fired and RDFS closure is computed every time a new triple is sent
to the network. Thus, if we introduce semi-naive evaluation in FC*, there is the possibility
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that some inferences are missed due to network delays. For example, assume that G is the
initial graph and the message that contains triple (a, sc, b)∈ G has been delayed and
arrives at the node responsible for key a after the inferred triple (i, type, a) 6∈ G. Then,
the node will retrieve from its local database the triples which have originated from the initial
RDF(S) graph to assign them to the edb relation triple. Hence, it will not consider the
inferred triple (i, type, a) and triple (i, type, b) will not be inferred. On the other
hand, the original FC* would have retrieved from its local database all triples that contain
value a regardless of whether they are inferred or not. We have implemented a version of FC*
that uses semi-naive evaluation and we discuss its performance in Section 7.6.

5.2 Distributed Backward Chaining

In this section we describe how a backward chaining algorithm can be implemented in the
distributed environment of a DHT. In contrast to the data driven nature of forward chaining,
backward chaining starts from the given query and tries to find rules that can be used to
derive answers.

5.2.1 Adorned rules

Given that we are using a Datalog version of the ρdf inference rules, the challenge here is to
construct an algorithm that can process recursive Datalog rules in a distributed environment
such as DHTs. To achieve this, it is helpful to transform the Datalog rules into a set of adorned

rules that indicate which variables are bound and which are free. This is useful for finding a
good order in which the predicates of the rule bodies should be evaluated. First, we rewrite
the Datalog rules of Table 3.2 as shown in Table 5.1. This allows us to compare our backward
chaining algorithm (BC) with the entailment algorithm presented in [101] (see Section 5.2.2
below). In addition, we will use this set of rules for the magic sets transformation technique
described later in Section 5.3. Using the rules of Table 3.2 would also be possible in BC
without changing the algorithm.

In Table 5.1 we use the edb relation triple and the idb relations subClass, subProperty,
type and newTriple. Edb relation triple denotes all triples that are locally stored, while
the idb relations denote the various kinds of triples that can be inferred. The difference
with Table 3.2 is that now newTriple is not the only idb relation used to store inferred
triples. When the property of a triple or triple pattern is equal to rdfs:subPropertyOf
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Table 5.1: ρdf inference rules in Datalog (2nd version)

Rule Head Body

1 subProperty(?X, ?Y) triple(?X, sp, ?Y)

2 subProperty(?X, ?Y) triple(?Z, sp, ?Y), subProperty(?X, ?Z)

3 newTriple(?X, ?P, ?Y) triple(?X, ?P, ?Y)

4 newTriple(?X, ?P, ?Y) triple(?X, ?P1, ?Y), subProperty(?P1, ?P)

5 subClass(?X, ?Y) triple(?X, sc, ?Y)

6 subClass(?X, ?Y) triple(?Z, sc, ?Y), subClass(?X, ?Z)

7 type(?X, ?Y) triple(?X, type, ?Y)

8 type(?X, ?Y) type(?X, ?Z), triple(?Z, sc, ?Y)

9 type(?X, ?Y) newTriple(?X, ?P, ?Z), triple(?P, dom, ?Y)

10 type(?X, ?Y) newTriple(?Z, ?P, ?X), triple(?P, range, ?Y)

then relation subProperty is used, when the property is equal to rdfs:subClassOf then
relation subClass is used, and when the property is equal to rdf:type then relation type

is used. In any other case, the predicate newTriple is used. Rules 1, 3, 5 and 7 assign the
triples found locally to the idb relations subProperty, newTriple, subClass and type

respectively depending on the property of the triple. These rules together are equivalent to
rule 1 of Table 3.2. Rules 2, 4 ,6, 8, 9, and 10 of Table 5.1 are equivalent with rules 2, 3, 4,
5, 6 and 7 of Table 3.2 respectively.

We extend the concept of rule adornment from Datalog query processing [161] in order
to exploit the distributed philosophy of DHTs. As already mentioned, in order to evaluate a
triple pattern, a key has to be computed and then hashed to create the identifier that will
lead to the responsible node. We compute this key by choosing a constant part of the triple
pattern in the order subject, object, property. Therefore, the corresponding predicate of the
triple pattern has an argument that not only is bound, but it is also the key that led to the
responsible node.

Definition 5.2.1. An adornment of a predicate p with n arguments is an ordered string a of

k’s, b’s and f ’s of length n, where k indicates a bound argument which is also a key, b indicates

a bound argument which is not the key, and f a free argument.

Following this definition, an adorned predicate pa indicates which argument of p is the
key, which ones are bound and which are free. Table 5.2 shows all possible adornments of
the rules presented in Table 5.1 based on the indexing scheme of a triple pattern explained

Zoi Kaoudi 94



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

Table 5.2: Adorned ρdf inference rules

Rule Head Body

1a subPropertykf(?X, ?Y) triplekbf(?X, sp, ?Y)

1b subPropertyfk(?X, ?Y) triplefbk(?X, sp, ?Y)

1c subPropertykb(?X, ?Y) triplekbb(?X, sp, ?Y)

1d subPropertyff(?X, ?Y) triplefbf(?X, sp, ?Y)

2a subPropertykf(?X, ?Y) triplekbf(?X, sp, ?Z), subPropertyff(?Z, ?Y)

2b subPropertyfk(?X, ?Y) subPropertyff(?X, ?Z), triplefbk(?Z, sp, ?Y)

2c subPropertykb(?X, ?Y) triplekbf(?X, sp, ?Z), subPropertybf(?Z, ?Y)

2d subPropertyff(?X, ?Y) subPropertyff(?X, ?Z), triplefbf(?Z, sp, ?Y)

3a newTriplekff(?X, ?P, ?Y) triplekff(?X, ?P, ?Y)

3b newTriplekbf(?X, ?P, ?Y) triplekbf(?X, ?P, ?Y)

3c newTriplekbb(?X, ?P, ?Y) triplekbb(?X, ?P, ?Y)

3d newTripleffk(?X, ?P, ?Y) tripleffk(?X, ?P, ?Y)

3e newTriplefbk(?X, ?P, ?Y) triplefbk(?X, ?P, ?Y)

3f newTriplefkf(?X, ?P, ?Y) triplefkf(?X, ?P, ?Y)

4a newTriplekff(?X, ?P, ?Y) triplekff(?X, ?P1, ?Y), subPropertyff(?P1, ?P)

4b newTriplekbf(?X, ?P, ?Y) triplekff(?X, ?P1, ?Y), subPropertyfb(?P1, ?P)

4c newTriplekbb(?X, ?P, ?Y) triplekfb(?X, ?P1, ?Y), subPropertyfb(?P1, ?P)

4d newTripleffk(?X, ?P, ?Y) tripleffk(?X, ?P1, ?Y), subPropertyff(?P1, ?P)

4e newTriplefbk(?X, ?P, ?Y) tripleffk(?X, ?P1, ?Y), subPropertyfb(?P1, ?P)

4f newTriplefkf(?X, ?P, ?Y) newTriplefff(?X, ?P1, ?Y), triplefbk(?P1, sp, ?P)

5a subClasskf(?X, ?Y) triplekbf(?X, sc, ?Y)

5b subClassfk(?X, ?Y) triplefbk(?X, sc, ?Y)

5c subClasskb(?X, ?Y) triplekbb(?X, sc, ?Y)

5d subClassff(?X, ?Y) triplefbf(?X, sc, ?Y)

6a subClasskf(?X, ?Y) triplekbf(?X, sc, ?Z), subClassff(?Z, ?Y)

6b subClassfk(?X, ?Y) subClassff(?X, ?Z), triplefbk(?Z, sc, ?Y)

6c subClasskb(?X, ?Y) triplekbf(?X, sc, ?Z), subClassbf(?Z, ?Y)

6d subClassff(?X, ?Y) subClassff(?X, ?Z), triplefbf(?Z, sc, ?Y)

7a typekf(?X, ?Y) triplekbf(?X, type, ?Y)

7b typefk(?X, ?Y) triplefbk(?X, type, ?Y)

7c typekb(?X, ?Y) triplekbb(?X, type, ?Y)

7d typeff(?X, ?Y) triplefbf(?X, type, ?Y)

8a typekf(?X, ?Y) triplekbf(?X, rdf:type, ?Z), subClassff(?Z, ?Y)

8b typefk(?X, ?Y) typeff(?X, ?Z), triplefbk(?Z, subClassOf, ?Y)

8c typekb(?X, ?Y) triplekbf(?X, rdf:type, ?Z), subClassfb(?Z, ?Y)

8d typeff(?X, ?Y) typeff(?X, ?Z), triplefbf(?Z, sc, ?Y)

9a typekf(?X, ?Y) newTriplekff(?X, ?P, ?Z), triplefbf(?P, dom, ?Y)

9b typefk(?X, ?Y) newTriplefff(?X, ?P, ?Z), triplefbk(?P, dom, ?Y)

9c typekb(?X, ?Y) newTriplekff(?X, ?P, ?Z), triplefbb(?P, dom, ?Y)

9d typeff(?X, ?Y) newTriplefff(?X, ?P, ?Z), triplefbf(?P, dom, ?Y)

10a typekf(?X, ?Y) newTripleffk(?Z, ?P, ?X), triplefbf(?P, range, ?Y)

10b typefk(?X, ?Y) newTriplefff(?Z, ?P, ?X), triplefbk(?P, range, ?Y)

10c typekb(?X, ?Y) newtripleffk(?Z, ?P, ?X), triplefbb(?P, range, ?Y)

10d typeff(?X, ?Y) newTriplefff(?Z, ?P, ?X), triplefbf(?P, range, ?Y)
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before.

Each adorned rule of Table 5.2 covers one possibility of using the corresponding rule of
Table 5.1 in our backward chaining algorithm by additionally encoding run-time information
about key, bound and free arguments. All possibilities that can actually take place are
covered in Table 5.2. Since we do not allow queries where the triple pattern does not contain
any constant values, note that there is no adorned predicate newTriplefff . In addition,
based on the order of the triple pattern’s terms which we choose to use as an identifier (i.e.,
subject, object, predicate), not all combinations of the adornments are required. For example,
the adorned predicate subPropertybk(?X, ?Y) will never appear in our algorithm, since
such a request would require to use as a key the object of the corresponding triple pattern
although the subject is also bound.

5.2.2 Algorithm description

Let us now describe our backward chaining algorithm BC which is shown in pseudocode
in Algorithm 2. The query requester node that receives request QueryRequest to pose a
query composes a QueryMsg(id, tp, k, rid) message and sends it to the network as described
in Section 4.2.2. id is the identifier obtained by hashing the key k of the triple pattern
tp. Suppose that a QueryMsg request with unique identifier rid arrives at node n which
is responsible for the identifier id. Node n firstly transforms the triple pattern tp to an
adorned predicate pa and calls local procedure BwdRDFS. Local procedure BwdRDFS takes
as an input the adorned predicate pa and the request identifier rid and outputs a relation
R which contains the tuples of the bindings of the free arguments (i.e., the variables) of the
predicate. These tuples of bindings form the answer to the query.

When BwdRDFS is called, the input predicate pa is checked against the head of the rules
of Table 5.2 using local function ApplyRule. Rules that can be applied to the predicate are
added to the list adornedRules. Each rule can have one or two predicates in its body. Rules
that have one predicate in their body (i.e., rules 1, 3, 5, 7) can always be evaluated locally
since this predicate is always the edb relation triple and one of its bound arguments is the
key that led to this node. In this case, node n calls local procedure MatchPredicate(pa) and
assigns to relation R the bindings of the predicate’s variables that match the triples locally
stored in its database.

For rules with two predicates in their body, we have to decide which predicate should be
evaluated first. We select to evaluate first the predicate that can be processed locally. There
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Algorithm 2: BC: Backward chaining algorithm
1 event n.QueryMsg (id, tp, k, rid) from m
2 Let pa be the adorned predicate of tp;
3 R=BwdRDFS(pa);
4 sendto m.QueryResp(R);
5 end

1 procedure n.BwdRDFS (pa, rid)
2 if rid+ pa ∈ processedRequests then return {} ;
3 add rid+ pa to processedRequests;
4 adornedRules =ApplyRule(pa);
5 forall the rules ∈ adornedRules do
6 r ← RemoveFirst(adornedRules);
7 if r.body has one predicate then
8 R=MatchPredicate (pa);
9 else

10 Let q1 be the adorned predicate of r.body with a k element in its adornment and q2 the other
predicate of r.body;

11 if q1 is edb relation triple then
12 R′ = MatchPredicate (pk);
13 else
14 R′ = BwdRDFS(q1, rid)
15 end
16 if R′ = ∅ then return R;
17 foreach value vi of the common variable ?Z in R′ do
18 idi =Hash (vi);
19 rewrite q2 to q′2;
20 sendto idi.BwdRDFSMsg(q′2);
21 receive BwdRDFSResp(Ri) from idi;
22 R = R ∪Ri;
23 end
24 end
25 end
26 return R;
27 end

1 event n.BwdRDFSMsg (pa, rid) from m
2 R=BwdRDFS(pa);
3 sendto m.BwdRDFSResp(R);
4 end
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is one such predicate always since one of the arguments of the head predicate is the key that
led to the specific node. Therefore, there will be a body predicate (let us call it q1) which has
an adornment containing the letter k (this is always possible as seen in Table 5.2) and can
be processed locally. If predicate q1 is the edb relation triple, it is checked against the
local database to find matching triples using local function MatchPredicate. The variable
bindings are returned in relation R′. In case predicate q1 is an idb relation, then procedure
BwdRDFS is called recursively with input the new adorned predicate. By evaluating the first
predicate locally, we have values that can be passed to the second predicate which is sent
to be evaluated remotely at different nodes. Notice in Table 5.2 that all rule bodies with two
predicates have a single common variable, let it be ?Z. Therefore, each tuple in relation
R′ will include a binding for this common variable ?Z. For each of these bindings (?Z/vi),
node n rewrites the second predicate q2 to a new predicate q′2 where it has substituted the
variable ?Z with its value vi and made the corresponding letter of the adornment equal to
k. Then, it sends a BwdRDFSMsg message to the node responsible for the hashed value of
key vi. This part of the procedure is executed in parallel for each value vi since the messages
are sent to different nodes. Node n sends |R′| number of messages (equal to the number
of bindings found) and receives the responses asynchronously. When node n has collected
all responses BwdRDFSResp(Ri), it adds the tuples of each Ri to relation R and returns R.
In case of a Boolean query, i.e., a query without any variables, relation R actually holds a
true or false answer. In this case, the union operator of line 26 is actually an OR operator
meaning that procedure BwdRDFS requires at least one answer to be true in order to return
true. Otherwise, it returns false.

This procedure is recursive in two ways. Recursion appears locally at a node when predi-
cate q1 is an idb predicate and among the nodes participating in the query evaluation when a
new BwdRDFSMsg message is sent. The procedure terminates when the node that received
the initial query has collected all responses. A recursion path ends when the predicate which
is evaluated first returns no bindings and therefore there are no values to pass to the second
predicate. Cyclic hierarchies are handled by keeping a list of all processed requests (lines 2-3
of BwdRDFS procedure) so that an infinite loop is avoided.

Let us now show how BC works using the example RDF(S) hierarchy of Figure 5.1. Sup-
pose that all triples of the RDF(S) hierarchy are stored in the network and a user poses the
query ‘‘Find all the subclasses of class artist" to a node in the network. Figure 5.5 shows how
the rules will be distributed in the various nodes of the network. The query is expressed as
the triple pattern (?X, sc, artist) and is routed to node n1, which is responsible for key
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Figure 5.5: Distribution of rules for backward chaining

artist. Node n1 transforms the triple pattern to the adorned predicate subClassfk(?X,
artist) which matches the head of rules 5b and 6b of Table 5.2. Using rule 5b, node n1

finds the local matches of the query, i.e., it retrieves all the immediate subclasses of class
artist (painter and sculptor). Using rule 6b, it finds matches locally for the predicate
triple and rewrites the second predicate subClass to other adorned predicates that are
sent to other nodes to be evaluated. More specifically, node n1 sends messages to nodes n2

and n3 to retrieve the subclasses of classes painter and sculptor, respectively. Node n3

finds no matches for class sculptor and returns an empty result to node n1. Node n2 finds
locally classes cubist and flemish using rule 5b and sends two other requests to nodes
n4 and n5 using rule 6b. Nodes n4, n5 find no matches and return an empty result to node
n2. Node n2 that collects the answers of nodes n4 and n5, adds to them the answers found
locally and returns the answer to node n1. Finally, as soon as node n1 has the answers of
both nodes n2, n3, it composes the final answer by adding its local answers with the answers
of these nodes and returns the result set to the node that posed the query.

Comparison with the entailment algorithm of [101]. It is interesting to examine how our
backward chaining algorithm is related with the entailment algorithm proposed in [101]. The
entailment algorithm of [101] checks whether a triple t=(a,p,b) is entailed from a graph
G. Comparing our algorithm with the entailment algorithm of [101], we observe certain
similarities. The algorithm of [101] takes certain actions depending on the property p of the
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triple. Similarly, we trigger a rule depending on the property of the triple. The first point of
the algorithm deals with the case where p is equal to dom or range. In this case, it just
checks if t exists inG. Similarly, BC would trigger rules 3c and 4c from Table 5.2 and since no
triple will be found to satisfy the first predicate of rule 4c, rule 3c will actually retrieve triples
locally stored and therefore, triples that are in G. The second step of the algorithm deals with
triples that have as property the sp value. In this case, the algorithm checks if there exists a
path from a to b in the graph through sp links. Similarly, BC triggers rules 1c and 2c which
traverse the transitive closure of the graph consisting of subProperty relations. The same
holds if p equals to sc. The 4th step of the algorithm, where property p does not belong to
the ρdf vocabulary, is actually covered in our case with rules 3c and 4c. The difference is
that the algorithm of [101] builds a graph to check if there is a path from a vertex marked
with (a,b) that reaches p in a bottom-up fashion. On the contrary, BC works in a top-down
fashion which searches if there is another property p’ in a triple (a,p’,b) and checks if
there is a path from p’ to p in the transitive closure of the subproperty relation. Finally,
the algorithm deals with the case where the property of t is equal to type. The difference
here, is that the algorithm of [101] needs to preprocess the whole graph G in order to mark
certain nodes that are relevant to the triple in question. This case is covered in BC by rules
7c, 8c, 9c, 10c, 11c, 12c and traverses only the part of graph that is relevant to the query in
a top-down manner.

5.2.3 Termination, soundness and completeness

First, we prove that BC terminates.

Theorem 5 (Termination). Algorithm BC terminates.

Sketch. BC is a recursive algorithm in two ways. First, recursion occurs for a query q when
one of the predicates of the body of a rule is an idb relation. If the predicate evaluated first is
the edb relation triple, the second predicate to be evaluated is an idb relation and recursion
occurs by sending a message BwdRDFSMsg to another node (line 30 of BC). A recursion path
starts from the query q and traverses the RDF(S) graph in a top-down fashion until there is no
other node to follow. In this case, the recursion path terminates since no tuples of bindings
are found at a node for the first predicate and therefore there are no values to pass to the
second predicate. In case the RDF(S) graph contain cycles an infinite loop can occur. To avoid
infinite loops caused by graphs with cycles, the unique query request identifier together with
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the adorned predicate is inserted in a list processedRequests. Each time procedure BwdRDFS
is called, the list of all processed requests is checked and if a request has been processed
already, BC terminates by returning an empty set of tuples (lines 7-8 of BC).

Second, if the predicate that should be evaluated first (predicate with k in its adornment)
is an idb relation, then we have local recursion at one node (line 19 of BC). This recursion
can happen only once since the only rules which contain an adorned predicate with k in its
adornment which is not the edb relation triple are rules 9a, 9c, 10a, and 10c of Table 5.2.
In this case, local procedure BwdRDFS is called again but this time the first predicate to be
evaluated is the edb relation triple which results to a recursion of the previous case.

In the following we prove that algorithm BC is sound and complete. By sound we mean
the following. Let G be a graph stored in the network and q be a query answered by BC. Let
R be the relation-answer to q which has as attributes the variables of q and as tuples the
tuples of bindings for these variables. If H is a set of triples obtained from q by replacing the
variables of q by all the corresponding values in R, then G |= H. By complete we mean that
if G is the graph stored in the network, H any graph and G |= H, then for each triple t in H,
BC will return true for the query q = t. We make the same assumptions as in FC* regarding
the network stability and message delivery.

We define the concept of a proof tree for BC, which models the execution of BC on top of
a DHT, as follows.

Definition 5.2.2. A proof tree is a finite tree with the following properties:

(i) Every node is of the form ai : (qi, Ri, LRi, RRi), where ai is a DHT node, qi is the query that

the node should evaluate, Ri, LRi are relations with tuples of bindings for the variables of

query qi and RRi = {RR1
i , RR

2
i , ..., RR

ki
i } is a set of relations with tuples of bindings for

the variables of query qi. Relations Ri and LRi as well as the set RRi can be empty.

(ii) For every node ai : (qi, Ri, LRi, RRi) we have the following:

• qi is the query (triple pattern) with a key for which the node is responsible.

• LRi is a relation that contains the tuples of bindings for qi found from the local

database of the node by applying one of the rules 1, 3, 5 or 7 depending on the

property of qi.
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Figure 5.6: Proof tree for backward chaining

• RRi = {RR1
i , RR

2
i , ..., RR

ki
i } is a set of relations that node ai received from its ki

children. If node ai does not have any children, then the set RRi is empty.

• If RRi is non-empty then Ri = LRi ∪
⋃k
j=1RR

j
i . Otherwise, Ri = LRi.

(iii) If node ai has ki children, then for each child aj : (qj, Rj, LRj, RRj = {RR1
j , RR

2
j , ..., RR

kj
j }),

we have that Rj = RRj
i (1 ≤ j ≤ ki).

Such a proof tree offers us a nice representation of the computation of BC. Figure 5.6
shows the proof tree as defined above for the example shown in Figure 5.5. The root of the
tree corresponds to the activation of BC when a message QueryMsg arrives at a DHT node.
The nodes of the tree at increasing depths also show the communication between the nodes
as BC proceeds. Each edge in the proof tree shows that a message BwdRDFSMsg was sent
from the parent node to the child and one BwdRDFSResp message was sent from the child
to its parent node.

Theorem 6 (Soundness). Let q be a query and R the relation produced by BC which has as

attributes the variables of q. If G is the set of triples stored in the network and H is the set

of triples obtained from q by replacing its variables by all their values in the relation R then

G `mrdf H and G |= H.

Proof. The proof is by induction on the depth d of the proof tree of BC.
Base case: d = 1 (the root is d = 0). In this case, BC starts at the DHT node n1 represented

by the root of the tree and transforms the query q to an idb relation. If the predicate of q is
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equal to sp then the corresponding predicate is subProperty and rules 1 and 2 of Table
5.2 are applied, depending on which arguments of the query are bound or not. Node n1

finds locally l tuples of bindings for the variables of q by applying rule 1, which has a single
predicate in its body i.e., the edb predicate triple, and assigns them to relation LR. Then,
the node applies rule 2, which has two predicates in its body. The predicate that is evaluated
first is the one that has k in its adornment (predicate triple in this case). Since the first
predicate is the edb predicate triple, k values are found locally and are passed to the
second predicate (idb predicate subProperty) forming k new queries that will be evaluated
at k different nodes. Therefore, node n1 sends k BwdRDFSMsg messages to its k nodes
(children nodes in the proof tree) for evaluating a query with predicate sp. BC runs again
at these k nodes and finds local results from rule 1. Since the depth of the tree is 1, rule 2
is not satisfied and no other messages are sent. Node n1 receives k BwdRDFSResp response
messages from the k nodes, each one containing a relation Rj (for 1 ≤ j ≤ k) with the data
the k nodes found locally. Then, n1 composes the answer to query q by assigning to relation
R the union of the tuples of all relations (i.e., R = LR ∪

⋃k
j=1R

j).

The sequence of graphs (mrdf proof according to Definition 3.2.2) that shows G `mrdf H
can easily be constructed. The first element of the sequence is G followed by k subsequences
representing the sets of triples obtained from replacing the variables of q by their values in
relations Rj for 1 ≤ j ≤ k (the order of the subsequences does not matter). Each of the k
sets of triples can be represented by as many proof steps as the number of tuples of bindings
contained in Rj. Each step is the result of the application of rule (2a) of the ρdf rules of Table
3.1 to the set of triples produced in the immediately previous proof step. Then, the sequence
of graphs continues with l subsequences representing the triples obtained from replacing the
variables of q by their values in relation LR. This can be done by applying rule (1b).

Similarly, if the property of the query is equal to sc, then rules 5 and 6 of Table 5.2 will
be fired. To compose a sequence of graphs, ρdf rules (3a) and (1b) of Table 3.1 will be used.
If the property of the query is anything but sp, sc and type, rules 3 and 4 of Table 5.2
will be fired and ρdf rules (2b) and (1b) would be used to construct a sequence of of graphs.
Finally, if the property of the query is equal to type, then rules 7, 8, 9 and 10 of Table 5.2
will be fired at the DHT nodes. In case of rules 9 and 10, the idb predicate newTriple is
the first predicate that will be evaluated. In this case, rules 3 and 4 will also be fired at node
n1. Messages are now sent to other nodes for the evaluation of the first predicate, while the
values returned are passed to the second predicate which is the edb relation triple and
will be evaluated locally. A mrdf proof for a query with property equal to type would then
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be constructed by rules (3b), (4), (2b) and (1b) of Table 3.1.
Inductive step: We assume the theorem holds for the execution of BC with a proof tree of

depth d. We will show the result for a proof tree T of depth d+ 1.
We take the proof tree T of depth d+ 1 and prune the root node. The resulting k subtrees

Tj (1 ≤ j ≤ k) have depth d and the theorem holds for the queries qj of their root nodes.
Hence, if H ′ is the union of the sets of triples obtained by replacing the variables of queries
qj by their value in the relations Rj, then G `mrdf H ′. Now we can continue the proof of H ′

from G by adding the steps corresponding to the root node of tree T to arrive at graph H.
This is done as in the base case.

Since we have proved G `mrdf H, Theorem 1 of Section 3.2.1 gives us that G |= H as
well.

Theorem 7 (Completeness). Let G, H be mrdf graphs with G the graph stored in the network.

If G |= H, then for each triple t ∈ H, BC will return true to the query q = t.

Proof. Using Theorem 1 and the fact that G |= H, we have that G `mrdf H. If G `mrdf H, we
will show that for each triple t ∈ H, BC will return true to query q = t. We will prove this
using induction on k, the number of mrdf proof steps required for H to be derived from G.

For a Boolean query q, let it be q = t =(a,p,c), the subject a is used as the identifier
of the triple pattern and algorithm BC is instantiated at node n1 which is responsible for
key a. As soon as node n1 receives a message QueryMsg, it transforms the triple pattern
(t in this case) to an adorned predicate pa depending on the property of the triple pattern
t (i.e., t is transformed to one of the adorned predicates subPropertykb, newTriplekbb,

subClasskb, typekb).
Base case (k = 1): All triples of H are derived from G in 1 proof step by the application of

a single rule r of the minimal deductive system of Table 3.1.

• If r is rule (1b) then H ⊆ G. In this case, all triples of H are stored in the network
according to our indexing scheme. At node n1, BC will fire one of the rules 1c, 3c, 5c,
7c of Table 5.2 depending on the property of q. These rules have one predicate in their
body which is the edb predicate triple. Local function MatchPredicate will retrieve
matching triples from the node’s local database. According to the indexing scheme, the
triple (a,p,c) will be located at node’s n1 local database and the answer for query q
will be true.

• If r is rule (2a), then there is an instantiation R
R′

of r such that R ⊆ G and H = G ∪ R′

and t = R′ =(a, sp, c). Let t ∈ H. R consists of two triples, t1 =(a, sp, b)
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and t2 =(b, sp, c). Since this is the first mrdf proof step, t1, t2 ∈ G. The property
of the triple t is equal to sp and hence the adorned predicate pa at node n1 is equal to
subPropertykb(a, c) and will be matched with the head of rules 1c and 2c of Table
5.2. If t ∈ G, then rule 1c will match with t and BC will return true. Otherwise, rule
2c will match locally predicate triple(a, sp, Z). Since all triples of G have been
stored using the triple indexing scheme and triple t1 shares the same subject with t,
triple t1 (which has subject a) will be located at node n1. Variable Z will be bound to
the object of triple t1, i.e., Z will be bound to value b. According to the algorithm, for
each value vi of the bindings the second predicate of rule 2c is rewritten into a new
one with a subProperty predicate without any variable. For the value b found from
triple t1, a new rewritten predicate will be subPropertykb(b, c) and a BwdRDFSMsg

message is sent to node n2 which is responsible for key b. Node n2 that receives this
message matches the predicate with rule 1c. Triple t2 has as subject the same value
with triple’s t1 object (i.e., b). Therefore, node n2 retrieves locally triple t2 =(b, sp,

c) and returns true to node n1. Then, node n1 returns true for query q.

• If r is one of the rules (2b),(3) or (4) then there is an instantiation R
R′

of r such that
R ⊆ G and H = G ∪R′. The proof is similar with the one for rule (2a).

Inductive step: We assume that the result holds for H that can be proved from G with
number of proof steps less than k. We will prove that it holds for H that can be proved from
G with number of proof steps equal to k.

So let us assume that G `mrdf H in k proof steps. Using the notation of Definition 3.2.1,
Pk = H. Let r be the rule of Table 3.1 that was used in the proof to go from Pk−1 to Pk.

• If r is rule (1b), then H ⊆ Pk−1 and for each triple t ∈ H, G `mrdf t in k−1 or less steps.
Then, from the induction hypothesis, BC returns true to query q = t.

• If r is rule (2a), there will be an instantiation R
R′

of r such that R ⊆ Pk−1 and H =

Pk−1∪R′. Let t ∈ H. If t ∈ Pk−1, then G `mrdf t in less than k proof steps, and therefore
BC returns true for the query q = t by the induction step. If t ∈ R′, then it is equal to
(a, sp, c). In BC, node n1 matches the adorned predicate subPropertykb(a, c)

with the head of rules 1c and 2c of Table 5.2.

• If r is one of the rules (2b),(3) or (4) then there is an instantiation R
R′

of r such that
R ⊆ Pk−1 and H = Pk−1 ∪R′. The proof is similar with the one for rule (2a).
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5.3 Forward Chaining for Magic Rules

Comparing a backward chaining algorithm with a forward chaining one is not always a fair
comparison since forward chaining always computes all possible inferences while backward
chaining focuses on a specific goal. In this section, we present a bottom-up method that
benefits from the top-down technique of backward chaining. This method is well-known
from the database literature as magic sets transformation technique [17]. The basic idea is
that, given a specific query, rules are rewritten using information from the query so that a
bottom-up evaluation is able to generate only the appropriate inferences. The benefit of using
the new ruleset in the bottom-up evaluation is that it focuses only on data which is associated
with the query and hence no unnecessary information is generated. In our case, we use the
same ideas and rewrite the Datalog version of the ρdf inference rules using the magic sets
transformation. When the rewritten rules are executed in a forward chaining fashion, only
triples that are related to the query are involved.

5.3.1 Magic rules

Imagine that we need to answer the query ‘‘Find all instances of class a". This query is a
very commonly used query which often requires RDFS inference so that derived instances of
a are also computed. In this section, we focus only on queries of the form (?X, type, a)

in order to show how the magic sets algorithm can be implemented on top of a DHT and to
compare the bottom-up approach of this algorithm with the top-down approach of backward
chaining. Although we rewrite the ρdf inference rules using the magic set transformation
technique based on this type of query, the algorithm we present in the following can be
applied for any type of query if the rules are rewritten accordingly.

In order to transform a set of rules using the magic sets technique, we require the unique

binding property [161]. This requirement means that each idb relation should appear with
a unique adornment when a backward chaining algorithm is used. The rules of Table 3.2
do not satisfy the unique binding property for this type of query [161]. The idb relation
newTriple appears with different adornments if we apply the rules using the backward
chaining algorithm. For example, consider the execution of query newTriple(?X, type,

a). Using rule 5, the idb relation newTriple appears with bound the second and third
argument, while using rules 6 or 7 and after passing values from the edb relation triple,
it appears with bound only the second argument. Hence, the rules cannot be transformed
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Table 5.3: Magic Rules

Rule Head Body

1 m_newTriple(?P) sup61(?P, ?Y)

2 m_newTriple(?P) sup71(?P, ?Y)

3 m_subProperty(?Z) sup21(?Z,?Y)

4 m_subProperty(?P) m_newTriple(?P)

5 m_subClass(?Z) sup41(?Z,?Y)

6 m_type(?Z) sup51(?Z,?Y)

7 sup21(?Z, ?Y) m_subProperty(?Y), triple(?Z, sp, ?Y)

8 sup31(?P1, ?P) m_newTriple(?P), subProperty(?P1, ?P)

9 sup41(?Z, ?Y) m_subClass (?Y), triple(?Z, sc, ?Y)

10 sup51(?Z, ?Y) m_type(?Y), triple(?Z, sc, ?Y)

11 sup61(?P, ?Y) m_type(?Y), triple(?P, dom, ?Y)

12 sup71(?P, ?Y) m_type(?Y), triple(?P, range, ?Y)

13 newTriple(?X, ?P ,?Y) m_newTriple(?P), triple(?X, ?P, ?Y)

14 subProperty(?X, ?Y) m_subProperty(?Y), triple(?X, sp, ?Y)

15 subProperty(?X, ?Y) sup21(?Z,?Y), subProperty(?X, ?Z)

16 newTriple(?X, ?P, ?Y) sup31(?P1,?P), triple(?X,?P1,?Y)

17 subClass(?X, ?Y) m_subClass(?Y), triple(?X, sc, ?Y)

18 subClass(?X, ?Y) sup41(?Z,?Y), subClass(?X, ?Z)

19 type(?X, ?Y) m_type(?Y), triple(?X, type, ?Y)

20 type(?X, ?Y) sup51(?Z, ?Y), type(?X, ?Z)

21 type(?X, ?Y) sup61(?P, ?Y), newTriple(?X, ?P, ?Z)

22 type(?X, ?Y) sup71(?P, ?Y), newTriple(?Z, ?P, ?X)

23 m_type(a)

into a set of magic rules, unless the predicate newTriple is split in two different predicates.
However, this would introduce twice the number of rules imposing unnecessary overhead.
For this reason, we prefer to use the ρdf inference rules as we presented them in Table 5.1.
We transform the above rules into a set of magic rules for the query q using the techniques
of [17]. The rules are shown in Table 5.3.

For each idb predicate p, we create a magic predicate m_p which has as arguments the
bound arguments of the unique binding appearing in p (i.e., the unique adornment). For
each rule we introduce a number of magic supplementary predicates associated with this
rule. A supplementary predicate supij denotes that it is the supplementary predicate for
rule i and the predicate j of the body of rule i with j = 0, .., n. For example, sup21 denotes
the supplementary predicate for predicate subProperty of the body of rule 2 in Table 5.1.
Rules 1-6 define the magic predicates, rules 7-12 show the supplementary predicates and
rules 13-22 show the initial rules modified to include the supplementary predicates. All these
rules together with the fact m_type(a) (rule 23), which is used as the initialization rule,
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Algorithm 3: MS: Magic sets algorithm
1 event n.MSReq (id, pred) from m
2 Magic(id, pred);
3 end

1 procedure n.Magic (id, pred)
2 localTriples = getTriplesFromDB (pred.argument1);
3 Infer (localTriples, pred);
4 forall the t’ of newtriples with t′ /∈ infTriples && t′ /∈ localTriples do
5 if t′.property ∈ ρdf then
6 id =Hash (t′.object);
7 sendto id.StoreMsg(id1, t′, 3, true);
8 else
9 id =Hash (t′.property);

10 sendto id.StoreMsg(id1, t′, 2, true);
11 end
12 infTriples.add(t′);
13 forall the pred′ ∈ supPredicates && /∈ infPreds do
14 id′ =Hash (pred′.argument1);
15 sendto id.MSReq(id′, pred′);
16 end
17 infPreds.add(pred′);
18 end
19 end

1 event n.StoreMsg (id, t, k, inf ) from m
2 if inf == true then Magic(id, pred);
3 InsertToDB (t, inf);
4 end

form the complete rule set after the magic set transformation.

This set of rules ensures that only inferences related with class a will be generated.
The role of magic predicates is that m_p(v) should be true if and only if in the top-down
evaluation value v is passed as a binding to predicate p. Similarly, supplementary predicates
represent the bound variables that have either been bound by the rule’s head or by predicates
evaluated at a previous step. Note here that we present an optimized version of the magic
set transformation where zeroth supplementary predicates have been replaced by the magic
predicates so that extra computations are avoided. For more information on the magic sets
transformation the interested reader might refer to [161].
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5.3.2 Algorithm description

Let us now describe how our new algorithm, which we call MS, works. Generally, MS works
as the forward chaining algorithm presented in Section 5.1 with the only difference that
more predicates are inferred from the rules. In MS, apart from the edb relation triple and
the idb relations subProperty, newTriple, subClass and type, we also have the idb
relations of the magic and the supplementary predicates. The relations of the supplementary
predicates are also indexed in the network based on the values of their arguments so that
appropriate values can be found locally at the corresponding nodes. Magic predicates are
not indexed since they can be reproduced by the supplementary predicates and rules 1-6 of
Table 5.3.

Assume that a node needs to find the instances of class a. It sends a message containing
the magic predicate m_type(a) to the node responsible for value a using the hash value of
a as an identifier. The node that receives the magic predicate m_type(a) starts a bottom-up
evaluation of the rules of Table 5.3 and sends the new inferred predicates to the network.
Each time a node receives a new predicate, it computes the closure locally according to the
rules of Table 5.3 and distributes the newly inferred facts in the network.

The pseudocode of the algorithm is presented in Algorithm 3. The node that receives the
query transforms it to the corresponding magic predicate pred. Then, it creates an identi-
fier id by hashing the value of the only argument of the magic predicate pred and sends a
MSReq(id, pred) message to the network. When a node n receives such a message it calls
local procedure Magic. This procedure works as FC* with two differences. First, newly in-
ferred triples are only indexed once in the network. For the idb predicates subProperty,
subClass and type, only the object of the corresponding triple is used for indexing the
triple. For the idb predicate newTriple, the property of the corresponding triple is used as
an identifier instead. This indexing scheme ensures that triples will be sent to the appropriate
nodes so that the reasoning process is complete. Second, inferred supplementary predicates
are also sent in the network to the corresponding nodes. For each newly inferred supplemen-
tary predicate pred′, an identifier id′ is created by hashing the value of the first argument of
pred′. Then a message MSReq(id, pred′) is sent to the responsible node in the network. We
only use the first argument of pred′ since we are already at the node responsible for the value
of the second argument and the required reasoning has been already completed. Procedure
Magic is called when a node receives either a newly inferred triple or a new supplementary
predicate value. The algorithm terminates when all nodes have reached a fixpoint and neither
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Figure 5.7: Example for MS algorithm

new triples nor new supplementary predicate values are generated.

The soundness and completeness of this algorithm follows from the equivalence of the
original rules to the rewritten ones given the query [161] and the soundness and completeness
results from FC*.

In Figure 5.7, we demonstrate an example of the algorithm MS using the computation
tree as defined in Section 5.1, where we have the edb and idb relations instead of triples.
We use the RDF(S) example of Figure 5.1 and we want to compute all instances of class
artist. Node n1 receives a MSReq message with the predicate m_type(artist). Using
the magic set rules of Table 5.3, the supplementary predicates shown in H1

new of node n1

are generated and sent to nodes n2 and n3 which are responsible for keys painter and
sculptor respectively. These nodes apply the magic sets rules using as input data the data
appearing in H2

old and generate new values for the idb relations. The procedure continues
until all nodes have reached a fixpoint (i.e., H i

new is empty). In this case, node n1 has received
all three instances of class artist. Then, the answer to the query can be found locally at
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node n1.

5.4 An Analytical Cost Model

In this section, we present an analytical cost model for algorithms FC, FC*, BC and MS
presented earlier. We show in the experimental evaluation of Section 5.5 that our implemen-
tation follows the predictions of this cost model. We focus on the frequently used query (?X,
type, a) which asks for all the instances of class a in an RDFS hierarchy. As we have
already seen, the algorithms are able to answer any type of queries considered in the thesis.
Our results for class hierarchies trivially hold for property hierarchies too.

We assume a complete tree-shaped RDFS class hierarchy of depth d and branching factor
b as our schema (i.e., (bd+1 − 1)/(b − 1) classes) with instances distributed under classes
following either a uniform or a Zipfian distribution. Some triples are of the form (ck, sc,

cl) (RDF Schema triples) while the rest are of the form (rj, type, ck) (RDF data triples).
In the analytical calculations presented below we start with an RDF(S) database. Then,
we apply the FC/FC* and BC algorithms in order to be able to answer a query of the type
mentioned above, and estimate its cost. We denote the number of triples of the form (rj,

type, ck) in our initial database by Td (i.e., also total number of instances). Similarly, we
use Ts to denote the number of triples of the form (ck, sc, cl) in the initial database. For
a uniform distribution, given the total number of instances (i.e., Td), the number of instances
under each class is Iu = (Td ∗ (b − 1))/(bd+1 − 1). Considering a Zipfian distribution of
instances with a skew parameter of 1, a class with rank r has Ir = Td/(r ∗h) instances where
h =

∑N
j=1 1/j for N classes (N = (bd+1 − 1)/(b− 1)). Leaf classes are given a lower rank.

In the following, we constantly use the result that the total number of subclasses of
class c including itself is (bd−`+1 − 1)/(b − 1) where ` is the level of the class. The proof is
straightforward and is omitted. Furthermore, we utilize the fact that the reasoning and query
answering algorithms for the type of queries and rules we consider are essentially transitive
closure computations [68].

5.4.1 Storage cost model

We first estimate analytically the costs associated with the storage of triples (given and in-
ferred triples) in all algorithms. These costs are captured by two parameters that we define
below: database storage load and number of store messages. Both parameters are measured

Zoi Kaoudi 111



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

using a uniform as well as a Zipfian distribution of instances under classes.

5.4.1.1 Storage load

We define as database storage load the total number of triples that are stored in the network.
In BC, the storage load (SLb) is three times the number of RDF(S) triples that were inserted
in the network based on our indexing scheme. In FC and FC*, triples initially inserted in
the network, as well as inferred triples, are stored three times. Therefore, it is sufficient to
compute the total number of triples that results from the transitive closure computations of
the hierarchy (triples initially in the database plus inferred ones). Then, the database storage
load incurred in FC and FC* is three times this total number of triples. Note that the database
storage load of FC and FC* is equal and hence we denote it with SLf .

Lemma 5.4.1. The total number of triples generated after the computation of the transitive

closure of the assumed RDFS class hierarchy (given triples plus inferred RDFS triples) is Ts +∑d
i=1 b

i × (i− 1).

Proof. For each level i of the tree, we have bi classes, and for each class we infer i− 1 triples
of the form (Ck, sc, Cl) for the upper levels of the tree.

Lemma 5.4.2. The total number of triples generated after the computation of the inferred

instances of the assumed RDFS class hierarchy (given triples plus inferred RDF triples) is

Td + Iu ×
∑d

i=1 b
i × i.

Proof. Each class has Iu direct instances. For each level i of the tree, we have bi classes, and
for each class we infer i triples of the form (rj, type, Ck) for its i superclasses.

Based on these two lemmas, the total number of triples stored in the nodes of the network
after FC/FC* has terminated is at most three times the sum of the formulas computed above.
Depending on the distribution of instances, the storage load of FC changes based on the
number of instances per class (i.e., Iu and Ir). For the Zipfian distribution we also made use
of the following proposition.

Proposition 5.4.1. Given a class with rank r in a Zipfian distribution of instances of a hierarchy

with depth d, the level of the class in the hierarchy is `r = blogb((b− 1)× [(bd+1 − 1)/(b− 1)−
r + 1])c.

The database storage load for the MS algorithm (SLm) depends on the level of the class
that is queried and the number of inferred instances for this class.
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Lemma 5.4.3. The total number of inferred instances of a class at level ` of an RDFS class

hierarchy is Iu ×
∑d−`

i=1 b
i × i.

Proof. We can think of a class hierarchy under a class at level ` as a complete class hierarchy
with depth d− `. Therefore, the result follows directly from Lemma 5.4.2.

Based on the above Lemma, the database storage load for MS for a uniform distribution
is 3× (Ts + Td) +

∑d−`
i=1 b

i × i. For a Zipfian distribution, we would have
∑N`

r=1 Ir × `r inferred
instances, where (N` = bd−`+1 − 1)/(b− 1).

Table 5.4 summarizes the database storage load of FC/FC*, BC and MS for both kinds of
instance distributions.

5.4.1.2 Store messages

We define as store messages the number of DHT messages sent for storing triples. In BC,
the number of store messages sent (SMb) is three times the number of triples stored and
therefore it is equal to the database storage load incurred, i.e., SMb = 3 ∗ (Ts + Td). It is also
independent from the instance distribution among the RDFS classes.

Because of the nature of the RDF(S) graph, where we have only triples of the form (rj,

type, ck) and (ck, sc, cl), FC* does not generate any redundant triples. Therefore, the
number of store messages sent by FC* is equal to the database storage load of FC*. However,
the total number of messages sent by FC (SMf ) is much larger than the database storage
load incurred. This is caused by the redundant triples that are sent in the network. Each
node responsible for a certain class c that is in the i level of the class hierarchy generates
for each instance i triples of the form (rj, type, ck), where ck is a superclass of class c,
and i− 1 triples of the form (c, sc, cl), where cl is an ancestor class of class c. Note that
messages are sent not only for each direct instance of each class but also for the instances
of its subclasses. The number of messages sent by FC is depicted in Table 5.4 for both kinds
of instance distribution. We do not depict the number of messages sent by FC* in the Table.

The number of messages sent by MS (SMm) is equal to the database load incurred and
depends on the level of the class whose the instances are asked.

5.4.2 Querying cost model

In this section, we calculate the cost of answering the query (?X, type, c) where class c
is at level ` of the hierarchy.
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Table 5.4: Storage cost summary table

Storage
cost

Uniform Zipfian

SLb 3× (Ts + Td) 3× (Ts + Td)

SLf 3× [Ts+Td+

d∑
i=1

bi(i− 1)+ Iu×

d∑
i=1

bi × i]

3×[Ts+Td+
d∑

i=1

bi(i−1)+
N∑
r=1

Ir×`r]

SLm 3× (Ts + Td) +

d−∑̀
i=1

bi × i 3× (Ts + Td) +

N∑̀
r=1

Ir × `r

SMb 3× (Ts + Td) 3× (Ts + Td)

SMf 3 × [Ts + Td +

d∑
i=1

bi(i − 1) ×

((bd−i+1 − 1)/(b − 1)) + Iu ×
d∑

i=1

bi×(i+1)×((bd−i+1−1)/(b−

1))]

3×[Ts+Td+
d∑

i=1

bi(i−1)×((bd−i+1−

1)/(b−1))+
N∑
r=1

Ir×`r×(`r+1)/(b−

1)]

SMm 3× (Ts + Td) +

d−∑̀
i=1

bi × i 3× (Ts + Td) +

N∑̀
r=1

Ir × `r

5.4.2.1 Query processing load

We define as query processing load of a node the number of triples that this node retrieves
from its local database in order to answer a query.

The FC/FC* and MS algorithms generates query processing load (QLf ) only at the node
that is responsible for class c. This load is equal to the total number of instances of class c:
QLf = ((bd−`+1−1)∗Iu)/(b−1). On the other hand, BC will generate load at (bd−`+1−1)/(b−1)

nodes, namely the nodes that are responsible for the subclasses of class c including c. The
load of each of these nodes (QLb) is simply Iu. Note that the total query load is the same for
both approaches.

For a Zipfian distribution, the number of instances of the class would be Ir = Td/(h ∗ r),
where the rank of the class is in the interval [(bd − 1)/(b− 1) + 1, (bd+1 − 1)/(b− 1)].
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5.4.2.2 Query messages

We define as query messages the messages sent while answering a query. The cases of
FC/FC* and MS is straightforward since just one message is sent to the node responsible
for class c. In BC, the number of messages sent (QMb) is as many as the number of the
subclasses of class c. Therefore, we have: QMb = [(bd−`+1 − 1)/(b− 1)]− 1. The distribution
of the instances does not affect the number of messages sent for the query answering.

5.5 Experimental Evaluation

We present a detailed experimental evaluation of the algorithms described in this chapter. All
algorithms have been implemented in our system Atlas, which is built on top of the Bamboo
DHT [122]. In our algorithms, we have also utilized the dictionary encoding implemented
in Atlas, where URIs and literals are mapped to integer identifiers. More details about the
implementation of a mapping dictionary in a DHT are given in Chapter 6. Our goal in this
section is to evaluate and compare the performance of the RDFS reasoning algorithms we
discussed before in a real distributed system.

5.5.1 Experimental setup and datasets

For our experiments, we first used as a testbed the PlanetLab network2. PlanetLab is a
global network used for testing in various research fields. At the time of our experiments,
it consisted of 1132 nodes at 513 sites worldwide. Resources of PlanetLab nodes (such as
memory, disk and bandwidth) can be very limited at the time of experiments since PlanetLab
nodes are used simultaneously by many users which share the nodes’ resources. This very
often results in overloaded nodes and bandwidth congestion. In this experimental evaluation,
we used about 210 nodes that were available at the time of the experiments.

Although PlanetLab offers real-world testing of distributed systems, due to its reliability
and performance issues3, we also tested our system in a local shared cluster4 so that we could
scale to bigger datasets. The cluster consisted of 41 commodity machines with two processors
at 2.6GHz and 4GB memory. We used 39 of these machines where we run multiple instances

2http://www.planet-lab.org/
3These issues are well-known in the PlanetLab community. They have been discussed by other researchers

as well e.g., by the group that implemented PIER [61].
4http://www.grid.tuc.gr/
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of Atlas on each machine (i.e., up to 4 Atlas nodes per machine). This allowed us to build
networks of up to 156 Atlas nodes in total. The experiments to be presented in Sections 5.5.2
and 5.5.3 were conducted in PlanetLab and thus use smaller datasets. In Sections 5.5.4 and
5.5.5, we demonstrate results from the local cluster where we were able to scale to bigger
datasets.

The datasets we used are taken from two different benchmarks. The first one is the
RBench generator5 [156] which produces RDF(S) data synthetically. The generator produces
binary-tree-shaped RDFS class hierarchies parameterized on three different aspects: the
depth of the tree, the total number of instances under the tree, and the distribution of the
instances under the nodes of the tree. The queries we measure are queries that ask for all
the transitive instances of the root class of the RDFS hierarchy. We used class hierarchies
of depth 2 − 6 (corresponding to 7 − 127 RDFS classes). We used both uniform and Zipfian
distribution of instances under the RDFS class hierarchy. In the Zipfian distribution, we
used a skew parameter of value 1. Leaf classes were given a lower rank and therefore more
instances of the lower level classes were generated.

The second benchmark is the Lehigh University benchmark (LUBM) [48] that provides
synthetic RDF datasets of arbitrary sizes. LUBM consists of a university domain ontology
modeling an academic setting and is widely used for testing RDF stores. Each dataset can be
defined by the number of universities generated and is described in RDF. For example, the
dataset LUBM-1 involves one university, while the dataset LUBM-10 involves 10 universities.
The more universities are generated the more triples are produced. Since our intention in this
chapter is to compare the reasoning algorithms, we did not want to use the LUBM queries and
involve algorithms for conjunctive queries. Therefore, we used as a query workload queries
that ask for instances of certain classes included in the LUBM ontology. In the next chapters
we discuss algorithms that can process conjunctive queries such as the ones provided by
LUBM.

5.5.2 Storing RDF(S) data

In this section, we compare the performance of the forward chaining algorithm (FC) with
the backward chaining algorithm (BC) when storing RDF(S) data in the network. Alongside
the results of the forward chaining algorithm we have presented in [74], we also present
results from the forward chaining algorithm described in Section 5.1 (FC*). For this set of

5http://athena.ics.forth.gr:9090/RDF/RBench/
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Figure 5.8: Network traffic

experiments, we have generated 10, 000 instances uniformly distributed under an RDFS class
hierarchy of varying depth using the RBench generator. We inserted the data in the network
together with the corresponding RDFS class hierarchy and measured the following metrics:
network traffic, the load incurred at the nodes and the time required for all triples to be stored
in the network (i.e., for backward chaining just the given triples and for forward chaining the
given and the inferred triples).

Initially, we present results concerning the network traffic that is generated by the system
measured in terms of both total number of messages sent in the network and bandwidth
usage. As shown in Figure 5.8(a), the number of messages sent by FC increases exponentially
with the tree-depth while it remains constant in BC. In this experiment, we use the multiPut

functionality described in Section 5.5.2 for both approaches, which groups triples, and thus
the number of messages measured in the experiment is less than the number of messages
computed by the analytical cost model for both algorithms (lines BC model and FC model

in the graph). multiPut decreases significantly the number of messages sent by FC. In the
same figure, we depict the number of messages sent by algorithm FC*. We observe that the
number of messages sent by FC is greater than the number of messages sent by FC* for every
tree depth and the difference becomes greater as the tree-depth of the class hierarchy grows.
This results from the fact that deeper RDFS class hierarchies cause more redundant triples
to be generated. The graph of Figure 5.8(b) shows the total bandwidth consumption of the
algorithms in MBytes. We observe that the bandwidth is increasing exponentially with the
tree-depth in FC while remaining constant in BC. As the number of messages sent affects the
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Figure 5.9: Storage load and time

bandwidth consumption in the network, FC consumes dramatically more bandwidth than
FC*.

Figure 5.9(a) shows the total load incurred at all nodes of the network when storing RDF(S)
data. We define as database storage load of a node n the number of triples that n stores
locally in its database. We also define as store message load of a node n the number of
triples that n receives to store in its local database. If the triples that are sent to node n
to be stored are not already stored in its local database, then the database storage load is
equal to the store message load. If at least one triple is already stored at n, then the store
message load is greater than the database storage load. The difference of these two metrics
allow us to estimate the redundant triples that are sent to node n. The total database storage
load (DB-SL) is the total number of triples stored in the network. The total store message
load (MSG-SL) is the sum of the store message load incurred at all nodes of the network.
Figure 5.9(a) shows DB-SL and MSG-SL for algorithms FC, FC*, and BC. DB-SL and MSG-
SL of BC are equal and we only depict them by the single bar BC. BC’s storage load is
significantly lower than FC and is independent of the tree-depth. Both FC and FC* cause
the same database storage load and therefore we depict it with bar FC DB-SL. However,
the message storage load of FC and FC* have a significant difference. While MSG-SL of FC
grows exponentially with the tree depth, MSG-SL of FC* increases more gently and is almost
equal with the database storage load incurred in the network. This means that FC* does
not produce the amount of redundant triples generated by FC. Figure 5.9(a) also shows that
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Figure 5.10: Network traffic for uniform and Zipfian distribution

our cost model regarding the database storage load (BC model and FC model in the graph)
precisely predicts the results obtained in the experiments.

In Figure 5.9(b), we show the time needed by each approach to complete the insertion of
RDF(S) data. In BC, this time represents the time needed until all given triples are stored at
the respective nodes. In FC and FC*, this time represents the time required for the algorithm
to terminate, i.e., to reach a fixpoint. Certainly, the time required by BC to store RDF(S)
data is independent of the tree depth. The time was about 30 seconds and thus the line is
very close to the x-axis. On the contrary, FC and FC* require a time proportional to the tree
depth. FC requires a larger amount of time to reach a fixpoint than FC*, a phenomenon that
is magnified as the tree depth grows. Generally, both forward chaining algorithms require
an enormous amount of time to complete which made the measurement of inserting more
than 10, 000 triples of the RBench dataset infeasible. Our experiment while inserting 100, 000

triples using FC* was active for 16 hours and still a fixpoint had not been reached.

In Figure 5.10, we show the number of messages and the bandwidth consumption when
having instances that follow a Zipfian distribution under RDFS class hierarchies of varying
tree depth. The distribution does not affect BC when storing RDF(S) data since the same
number of triples are sent to be stored in the network. On the contrary, the performance of
FC* deteriorates for a Zipfian distribution. In a Zipfian distribution, more instances belong to
low level classes and as a result more triples need to be sent to upper level classes generating
more network traffic. Therefore, both the number of messages sent and the bandwidth
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Figure 5.11: Database storage load distribution

consumption increase significantly for a Zipfian distribution.

We have also conducted some measurements concerning the distribution of the database
storage load for both algorithms. Figure 5.11 shows the storage load distribution among
network nodes using Lorenz curves as proposed in [117]. The purpose of Lorenz curves
is to show which percentage of the nodes hold which percentage of the total load. In the
ideal case where all nodes share the same load, the curve is a straight diagonal line. The
closer a Lorenz curve is to this diagonal, the better the load distribution is. In this figure,
we show the database storage load of backward and forward chaining for tree-depths 2 and
6. For readability reasons, we do not show the intermediate tree-depths. For example, for a
hierarchy with depth 2, we see that, in BC, around 72% nodes share less than 50% storage
load and the other 28% nodes have to deal with the other 50% load. In this graph, we observe
that the deeper the hierarchy tree is, the better the load distribution is for both backward
and forward chaining. This can be explained by the fact that the range of the object value of
the triples stored is limited to the number of classes of the hierarchy. For a class hierarchy
with depth 2, the number of distinct classes is 7 and nodes responsible for these classes are
overloaded. As the depth increases, the number of classes increases exponentially and more
nodes share the load resulting in a more balanced distribution. Furthermore, while both
algorithms have almost the same load distribution for a tree with depth 2, BC distributes the
load slightly better than forward chaining when the depth increases to 6. This is a result
of a characteristic property of FC, namely that classes of higher levels of the hierarchy have
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Figure 5.12: Storing LUBM-1

more instances than classes from lower levels (since each class keeps all the instances of its
subclasses). Therefore nodes that are responsible for classes of higher levels are more loaded
with triples than nodes responsible for classes of lower levels. However, both approaches
can take further improvements using well known load balancing techniques that distribute
storage load more evenly among nodes [78, 151, 170, 14]. Such solutions can be applied to
our algorithms but we consider this research area out of the scope of the thesis.

Let us now present our experiments using the LUBM dataset. For this set of experiments,
we stored an increasing number of triples from the LUBM-1 dataset which consists of 102, 737

triples. We compare the behaviour of BC, FC and FC*. Figure 5.12 shows results regarding
the store message load and the bandwidth consumption. The x-axis shows the number of
triples initially inserted in the network. The results of this experiment are similar regarding
the comparison of BC with FC and FC*. However, in this case, FC and FC* produce almost
the same number of messages resulting in similar bandwidth consumption and cause almost
the same load in the network, with FC* performance slightly better. The difference between
FC and FC* in this case is not so evident because of the nature of the LUBM schema. LUBM
schema includes only small RDFS class hierarchies whose depth is at most 2. Therefore, the
number of redundant triples generated from FC is very small.
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5.5.2.1 Semi-naive evaluation

We also performed some experiments to see the behaviour of a semi-naive evaluation as
discussed in Section 5.1.4. We used both the RBench and LUBM benchmark and discovered
that FC* outperformed the algorithm that uses semi-naive. For example, for the experiment
with the RBench dataset shown in Figure 5.9, FC* required 6.48 minutes to reach a fixpoint
while the algorithm that uses semi-naive required 9.76 minutes. This is caused by the fact
that FC* with semi-naive evaluation sends more messages of smaller size (i.e., with fewer
triples) which causes extra traffic to the network and puts extra processing load at the nodes
that receive these messages. On the other hand, FC* is able to infer more triples at each
inference step and hence sends bigger but fewer messages in the network. For the same
experiment, 54 messages were sent by FC*, while 102 messages were sent in semi-naive
evaluation.

5.5.3 Querying RDF(S) data

In this experiment, we present results while evaluating queries of the form ‘‘give me all
instances of the root class". We store 10, 000 instances for both uniform and Zipfian distribu-
tions under an RDFS class hierarchy of varying depth of the RBench generator and pose the
query. Measurements are averaged over 10 runs using the geometric mean which is more
resilient to outliers.

Figure 5.13(a) shows two metrics concerning the network traffic; bandwidth (left y-axis)
and messages sent (right y-axis). Since FC sends a single message regardless of the tree-
depth, we do not depict it in the graph. In BC, the number of messages sent in the network
is equal to the number of classes in the RDFS hierarchy since it sends one message for each
class. Therefore, as the hierarchy becomes deeper, the number of classes increases and the
total number of messages sent also increases. This was also shown by the analytical cost
model of Section 5.4.2.2 and is depicted in the graph as well. Figure 5.13(a) also shows
the bandwidth used in the network for both approaches and for both types of instance
distribution. FC bandwidth consumption is limited to the number of bytes sent for the
delivery of the results of the query and is independent of both the tree-depth and the instance
distribution. In comparison, the bandwidth of BC increases with the tree-depth as a result
of the increasing number of messages that are sent in the network. Furthermore, a skewed
instance distribution slightly affects the bandwidth used since more instances belong to lower
classes and need to be sent towards the root class.
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Figure 5.13: Querying the root class

We have also implemented a caching optimization technique for the BC algorithm. Since
there is a need to traverse the subclass hierarchy quite often, we could take advantage of
the first time it is traversed and cache useful routing information. Assuming that different
nodes are responsible for different classes in a hierarchy, we need to make d ∗ O(logn) hops
to reach from a node responsible for the root class of the hierarchy to the nodes responsible
for the leaf classes, where d is the depth of the hierarchy tree and n the number of the nodes
in the network. We can minimize this by adding extra routing information to each node x
which is responsible for a certain class c of the hierarchy. The first time a node x contacts
a node y which is responsible for a subclass of c, it keeps the IP address of y and uses it for
further communication. In this way, a direct subclass is found in just 1 hop and the whole
hierarchy is traversed in d hops. This technique reduces network traffic and decreases query
response time, while the overhead of maintaining such a table is not significant and it is only
kept in memory. Figure 5.13(b) shows the query response time. A query needs constant
time to be evaluated when FC takes place. This is reasonable, considering that only one
node participates in the query processing, although the query processing it needs to handle
is quite heavy. On the contrary, BC response time increases with the tree-depth but does
improve significantly when the caching technique is used.

In addition, we conducted experiments regarding the query load distribution. As already
shown in the analytical evaluation the total query load incurred is similar for both approaches
and only the distribution differs. While FC involves a single node in the query processing,
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Figure 5.14: Query load distribution

in BC the load is shared among the nodes that are responsible for the subclasses of the
root class. Figure 5.14 shows the query load distribution using Lorenz curves. FC loads
only one node in the network and shows the worst load distribution. We also depict in the
figure how BC distributes the load for varying tree depth. BC shares the query load more
evenly as the number of classes in the RDFS hierarchy increases. Similarly with the storage
load, the same techniques can be applied here for balancing the query load among the nodes
[78, 151, 170, 14] but this is out of the scope of our work.

5.5.4 Comparing backward chaining with magic sets

In this section, we compare the backward chaining algorithm (BC) with the algorithm using
the magic sets transformation (MS) using as a testbed the local shared cluster. In the following
set of experiments, we stored 1, 000, 000 instances of the RBench dataset for RDFS class
hierarchies of varying depth. Then, we send a request with the predicate m_type and
argument the root class for MS, while we run the query that asks for all instances of the
root class for BC.

Figure 5.15(a) shows the network traffic in terms of the number of triples transferred in
the network for MS and in terms of the number of bindings transferred for BC. The total
number of triples generated and sent from MS and the total number of bindings generated
from BC are equal. However, the amount of time required from MS to terminate is much
greater than the time required from BC to answer the corresponding query. Figure 5.15(b)
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Figure 5.15: Network traffic and completion time for BC and MS

depicts the time difference. Note that y-axis shows the time in seconds on a logarithmic scale.
We observe that BC outperforms MS by two orders of magnitude. The reasons for this are
explained below.

Firstly, the messages sent during MS contain whole triples, while the messages sent dur-
ing BC contain only bindings, i.e., only the object of the matching triples. This fact is depicted
in Figure 5.16(a) by the bandwidth consumption of the two algorithms. We observe that the
total bandwidth consumed by MS is about three times greater than the total bandwidth spent
by BC. In addition, Figure 5.16(b) shows the number of store messages (StoreMsg) sent by
MS containing the inferred triples and the number of response messages (BwdRDFSResp)
sent by BC containing the bindings of matching triples, as well as the predicted numbers of
messages of both algorithms computed by the analytical model. BC sends exactly the num-
ber of messages computed by the analytical model, while MS sends less messages compared
to the number of messages computed by analytical model due to the MultiPut functionality.
Although Figure 5.15(a) showed that the total number of values (i.e., triples or bindings) sent
by both algorithms is equal, Figure 5.16(b) shows that MS sends more messages than BC.
This results from the nature of the algorithms. In BC, a node sends a response back to its
parent node only if it has collected all answers from its children. On the contrary, in MS
whenever a node receives a MSReq, it sends a StoreMsg message if any new triples were
generated. As a consequence, the load incurred in the database of each node is affected.
In both algorithms, each time a node receives a message, it retrieves from its local database
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Figure 5.16: MS vs. BC for RBench dataset

matching triples. We define as DB load of a node the number of triples that the node retrieves
from its local database. Figure 5.16(c) shows the total DB load incurred in all the nodes of
the network for both algorithms. While BC incurs a constant DB load regardless from the
depth of the RDFS hierarchy, DB load in MS is increasing significantly with the depth of the
RDFS class hierarchy and is much greater than in BC. As a conclusion, BC outperforms MS
due to the DB load incurred and the bandwidth consumed by MS.

The RBench dataset involves only one RDFS class hierarchy and hence the outcome of
MS when computing all the instances of the root class is similar with the outcome of FC*. In
the next experiment, we use the LUBM dataset whose schema contains several independent
class hierarchies. We created a network of 156 nodes in the cluster and stored the complete
LUBM-20 dataset consisting of 2, 782, 435 triples. We want to retrieve the instances of the
following classes of the LUBM schema: ub:Student, ub:Faculty, ub:Organization,
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Figure 5.17: MS vs. BC for LUBM-20

ub:Publication, where ub is the appropriate namespace. For MS, we sent a request with
the predicate m_type and argument the class name, while for BC we run the query that asks
for all instances of the respective class. Figure 5.17 shows the bandwidth consumption, the
total DB load and the time required for each algorithm to terminate. In this experiment as
well, we observe that BC outperforms MS. Since we deal with a bigger dataset the advantage
of using BC is more evident, as shown in Figure 5.17(c).

5.5.5 Backward chaining performance in the cluster

Since we could not further examine the behaviour of a forward chaining approach for bigger
datasets, in this set of experiments, we explore the performance of the backward chaining
algorithm during query evaluation in the local cluster. First, we create a network of 156 nodes

Zoi Kaoudi 127



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

0

4

8

12

16

20

Student Faculty Organization Publication

Query

T
im

e
 (

s
e
c
)

No reasoning Reasoning with BC

(a) Query Response time

0

5

10

15

20

25

Student Faculty Organization Publication

Query

M
e
s
s
a
g

e
s

No reasoning

Reasoning with BC

(b) Messages sent

1

10

100

1000

10000

100000

1000000

10000000

100000000

Student Faculty Organization Publication
Query

B
a

n
d

w
id

th
 (

b
y

te
s

)

No reasoning Reasoning with BC

(c) Bandwidth consumption

Figure 5.18: BC performance in cluster for LUBM-50

and use the LUBM-50 dataset in two different cases. In the first case, we store the dataset
together with the inferred triples (9, 437, 221 triples in total) and then run the query without
any reasoning involved. In the second case, we store only the initial dataset (6, 890, 949

triples in total) and use backward chaining during query evaluation to return a complete
answer to the query. The queries we used ask for the instances of the following classes of
the LUBM schema: ub:Student, ub:Faculty, ub:Organization, ub:Publication.
Figure 5.18 depicts the results of different metrics for these queries.

In Figure 5.18(a), we depict the time required to answer each query, i.e., the time from
the moment a node receives the query request until the moment it receives all the answers.
Depending on the RDFS schema, BC sends a different number of messages to retrieve the
required inferences. On the contrary, just one message is sent during query evaluation
without reasoning to a single node which retrieves all results from its local database. The
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Figure 5.19: Increasing the number of triples stored

number of messages is depicted in Figure 5.18(b). For example, LUBM schema does not
contain many inferences for class ub:Student and thus for the query that asks for the
instances of class ub:Student the number of messages sent by BC is only 3. On the
other hand, for the query that asks for the instances of class ub:Faculty, BC sends 13
messages to retrieve all inferences. Certainly, this leads to a greater query response time
difference between the algorithm that uses backward chaining and the algorithm where no
reasoning is used, but still query response times of both approaches are in the same order
of magnitude. As a result of the number of messages sent, bandwidth consumption is also
greater when backward chaining is used. Figure 5.18(c) shows the bandwidth consumed
because of the partial answers that are transferred in the network. Another parameter that
affects query response time is the number of results that each query returns. We see that the
query response time for class ub:Student is greater than the query response time for class
ub:Faculty. This is because the number of results for query Student is 430, 114 while it
is 35, 973 for Faculty.

We have also experimented with different dataset sizes. In a network of 156 nodes, we
stored datasets from LUBM-1 to LUBM-50. Every time we measured the query response time
of queries that ask for the instances of ub:Student and ub:Faculty. Table 5.5 shows the
sizes of all the datasets used together with the number of results that each query returns.
Figure 5.19 shows the behavior of our system with and without the reasoning process as
the dataset stored in the network grows. In the graphs of Figure 5.19 we show that query
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Table 5.5: LUBM datasets and queries
Dataset Triples Inferred

triples
Answers
of query
ub:Student

Answers
of query
ub:Faculty

LUBM-1 103, 413 144, 819 6, 463 540
LUBM-5 646, 144 887, 461 40, 087 3, 373
LUBM-10 1, 317, 009 1, 806, 023 82, 507 6, 843
LUBM-20 2, 782, 435 3, 812, 865 174, 750 14, 457
LUBM-30 4, 109, 311 5, 629, 144 256, 919 21, 440
LUBM-50 6, 890, 949 9, 437, 221 430, 114 35, 973

response time scales in a linear fashion with the number of triples stored in the network.
This is a result of two factors. First, the local database of each node grows and as a result
local query processing becomes more time-consuming. Second, the size of the answer set
of the queries grows as the number of triples is increasing resulting in a greater bandwidth
consumption. As we mentioned before, BC performs close to the query evaluation without
any reasoning for the query that asks for the instances of ub:Student, while the difference
becomes more evident for the query that asks for the instances of class ub:Faculty. In all
cases, the increase of query response time of backward chaining remains linear with respect
to the triples stored.

5.6 Summary

In this chapter, we presented and evaluated both bottom-up and top-down algorithms for
RDFS reasoning on top of DHTs. We proved the correctness of our forward and backward
chaining algorithms utilizing the minimal deductive system mrdf presented in [101]. In
addition, we designed and implemented an algorithm which works in a bottom-up fashion
using the magic sets transformation technique [17]. We provided a comparative study of our
algorithms both analytically and experimentally. In the experimental evaluation, we deployed
our system both in PlanetLab and in a local cluster.

As a conclusion, the forward chaining approach improves the time for answering a query
but increases the storage load significantly by generating statements that might never be
required in a query. One might prefer to pay this storage cost if enough space is available
and quick answering is paramount. Naturally, this method is the preferred one if one wants
to compute the complete closure of a given dataset under RDFS entailment. Results from
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our experiments show that a simple forward chaining implementation such as FC presented
in [74] and also presented in BabelPeers [16] cannot scale to more than a few thousand
triples in a DHT environment, while the FC* algorithm we presented in this chapter improves
scalability to hundreds of thousands of triples. In contrast, the backward chaining approach
improves storage load and can scale to millions of triples. Certainly, this comes at the cost
of an increase in query response time. Yet, the query response time of backward chaining
remains in the same order of magnitude with the one of forward chaining and increases
linearly with the number of triples stored in the network. A magic sets algorithm tries to
exploit the advantages of both approaches and scores between the two.

As it has been proven recently, approaches that are based on distributed computing
platforms consisting of powerful clusters and cloud computing platforms using MapReduce,
such as [163, 166], can be very scalable for computing the closure of RDF(S) graphs and hence
should be preferred if appropriate infrastructures are available. However, these approaches
do not deal with the query answering problem, which is equally important.

In the next chapter we present a complete query processing algorithm which can be used to
answer more complex queries than the ones presented here. The algorithm can be used with
either a forward chaining reasoning process where all inferences have been precomputed, or
it can combined with the backward chaining algorithm and compute inferences at query run
time.
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Chapter 6

Distributed RDF Query Processing

In Chapter 5 we focused on RDFS reasoning and how atomic SPARQL queries consisting
of a single triple pattern can be evaluated on top of a DHT. In addition, in Section 4.2.2
we described the basic protocol used in Atlas to answer a query consisting of a single triple
pattern. In this chapter, we present a complete query evaluation process which is used to
answer arbitrary SPARQL queries of basic graph patterns in Atlas. The algorithm can be
implemented on top of any DHT network.

The query processing algorithm presented, called QC*, is described in Section 6.1. This
algorithm is concerned with RDF data only and does not deal with RDFS reasoning. If a
forward chaining reasoning algorithm has taken place as described in Section 5.1, then QC*
can retrieve all inferred information as well. For the case where inferences have not been
computed a priori in the network, we propose combining the backward chaining algorithm
of Section 5.2 with QC* to enable RDFS reasoning. The resulted algorithm is called QC*-
BC and is presented in Section 6.2. Furthermore, in Section 6.3 we describe a distributed
mapping dictionary we have designed and integrated in our algorithms to further increase
our system’s performance. Finally, Section 6.4 shows the experimental results of the query
processing algorithm and the distributed mapping dictionary.

6.1 Query Processing Algorithm

In this section, we describe the query processing algorithm of Atlas, called QC*. QC* is based
on algorithm QC presented in [75, 89] and extends it with the query graph representation
introduced in Section 3.3.2. Unlike QC which uses lists of triple patterns, QC* employs the
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Algorithm 4: QC*: Query evaluation algorithm

1 event p.QEval (id, g, interRes, vars, retIP ) from m

2 lR=Match (g.marked_node().triplepattern());
3 if interRes = ∅ then interRes = lR;
4 else
5 interRes′ = lR on interRes;
6 end
7 if interRes′ = ∅ then
8 sendto retIP .QResp(∅);
9 return;

10 end
11 g′ :=MERGE(g.hypernode(), g.marked_node());
12 if g′.nodes() = ∅ then

// all triplepatterns are evaluated
13 answer = πvars(interRes

′);
14 sendto retIP .QResp(answer);
15 return;
16 end
17 project out unnecessary vars from interRes′;
18 MarkNextNode(g′);
19 tp′ := g′.marked_node().triplepattern();
20 key′ = FindKey(tp′);
21 id′ = Hash(key′);
22 sendto id′.QEval(id′, g′, interRes′, vars, retIP );
23 end

query graph representation which ensures that no Cartesian product will be computed and
transferred through the network.

Query evaluation starts when peer x receives a request QueryRequest(q). The SPARQL
translator of peer x translates the query q to a set of query graphs G and delivers G to the
optimizer. For each graph g ∈ G, based on the query plan generated by the optimizer (details
of how this is done are explained in Chapter 7), the peer also marks the node of the query
graph which represents the triple pattern that should be evaluated first and sends a QEval

message to the peer that will start the query evaluation. If more than one query graphs
where created, peer x sends the relevant messages in parallel, gathers all the result sets and
produces the final answer by computing the Cartesian product of these result sets. Notice
that the Cartesian product is computed only at peer x and is not transmitted in the network.

As in Chapter 5, we use the following notation for the description of the algorithm. Key-
word event precedes every event handler for handling messages, while keyword procedure

declares a procedure. In both cases, the name of the handler or the procedure is prefixed by
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the node identifier in which the handler or the procedure is executed. Local procedure calls
are not prefixed with the node identifier. Keywords sendto and receive declare the message
that we want to send to a node with known either its identifier (thus DHT routing will be
used) or the IP address (thus the node is immediately contacted), and the message we receive
from a node respectively.

Algorithm 4 shows the pseudocode when a QEval message arrives at peer p. The message
contains the identifier id which led to peer p, the query graph g representing the query, the
intermediate results interRes so far (initially empty), the answer variables of the query vars
and the IP address retIP of the peer that received the request QueryRequest.

First, peer p evaluates the triple pattern which correspond to the marked node of query
graph g and forms a temporary relation lR by posing a selection query to its triple relation.
If relation interRes, which holds the intermediate results so far, is empty, peer p is the first
peer of the query evaluation and assigns lR to interRes′. Otherwise, p assigns to interRes′

the natural join of lR and interRes. If the result of the join is an empty relation, p returns an
empty set to the peer that posed the query (peer with IP address retIP ) and query evaluation
terminates. Otherwise, query evaluation continues and peer p merges the marked node with
the hypernode in g creating a new query graph g′. In case peer p is the first peer participating
in the query evaluation, p just transforms the marked node n into a hypernode. If the new
graph g′ consists only of a hypernode, all triple patterns have been evaluated and p computes
the projection of interRes′ on the answer variables vars and sends the answer to the peer with
IP address retIP . Otherwise, query evaluation continues and p projects out from interRes′

variables that neither appear in vars nor in the rest of the triple patterns. Then, a new node
in g′ is marked as the next triple pattern that should be evaluated and p sends a new QEval

message to the next peer. Local procedure MarkNextNode ensures that the chosen node is
connected with the hypernode of g′, so that no Cartesian product will be computed.

The general idea behind QC* is that the algorithm evaluates one triple pattern at a time
transferring the intermediate results from one peer to the other. Intermediate results are
joined at the peer responsible for finding matching triples for the next triple pattern. This
algorithm results in left-deep execution plans. As an example, assume the SPARQL query
shown below in Listing 6.1 which is part of the complete query Q9 of the LUBM benchmark
[48]. The query asks for the students that take courses taught by their advisors.
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Figure 6.1: Example of QC* algorithm

Listing 6.1: SPARQL query

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX ub:<http://www.lehigh.edu / zhp2/2004/0401/univ-bench.owl#>

3 SELECT ?x ?y ?z

4 WHERE {

5 ?x rdf:type ub:Student . (tp1)

6 ?x ub:takesCourse ?z . (tp2)

7 ?x ub:advisor ?y. (tp3)

8 ?y ub:teacherOf ?z . (tp4)

9 }

Figure 6.1 shows how this query can be evaluated in a network of DHT peers. For the
sake of simplicity, let us assume that the triple patterns will be evaluated at the given order.
Chapter 7 discusses optimization algorithms that choose an appropriate ordering. The peer
that receives the query request sends the query to the node that is responsible for evaluating
the first triple pattern of the query. In this case, it is node n1 which is responsible for the key
ub:Student. Node n1 finds values from its local database that match the first triple pattern
and sends them to node n2 which is responsible for evaluating the second triple pattern.
Node n2 finds matches for the second triple pattern and joins them with the intermediate
results from node n1. Similarly nodes n3 and n4 continue with the query evaluation and node
n4 which is the final node in the query chain sends the answer of the query to the node that
received the query request.
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Algorithm 5: QC*-BC: Query evaluation algorithm with backward chaining

1 event n.QEval (id, g, interRes, vars, retIP, rid) from m

2 tp := g.marked_node().triplepattern();
3 Let pa be the adorned atom of tp;
4 localR=BC-RDFS (pa, rid);
5 if interRes = ∅ then
6 interRes = localR;
7 else
8 interRes′ = localR on interRes;
9 end

10 if interRes′ = ∅ then
11 sendto retIP .QResp(∅);
12 return;
13 end
14 g′ :=MERGE(g.hypernode(), g.marked_node());
15 if g′.nodes() = ∅ then

// all triplepatterns are evaluated
16 answer = πvars(interRes′);
17 sendto retIP .QResp(answer);
18 return;
19 end
20 project out unnecessary vars from interRes′;
21 MarkNextNode(g′);
22 tp′ := g′.marked_node().triplepattern();
23 key′ = FindKey(tp′);
24 id′ = Hash(key′);
25 sendto id′.QEval(id′, g′, interRes′, vars, retIP );
26 end

1 procedure p.BC-RDFS (pa, rid)
2 if rid+ pa ∈ processedRequests then return ∅;
3 add rid+ pa to processedRequests;
4 adornedRules =ApplyRule(pa);
5 forall the rules in adornedRules do
6 r ← RemoveFirst(adornedRules);
7 if r has one predicate then
8 R=MatchPredicate (pa);
9 else

10 Let q1 be the adorned predicate of r.body with a k
element in its adornment and q2 the other predicate
of r.body;

11 if q1 is the edb triple then
12 R′ = MatchPredicate (q1);
13 else
14 R′ = BC −RDFS(q1, rid);
15 end
16 if R′ = ∅ then return R;
17 for each value vi of the shared variable Z in R′ do
18 idi =Hash (vi);
19 rewrite q2 to q′2;
20 sendto idi.BC-RDFSReq(q′2)
21 receive BC-RDFSResp(Ri) from idi
22 R = R ∪Ri;
23 end
24 end
25 end
26 return R ;
27 end

1 event n.BC-RDFSReq (pa, rid) from m
2 R=BC-RDFS (pa, rid);
3 sendto m.BC-RDFSResp(R)
4 end

6.2 Evaluating SPARQL Queries using Backward Chaining

In Section 5.2 we designed a backward chaining algorithm for RDFS entailment in the dis-
tributed environment of a DHT. We focused mainly on atomic SPARQL queries consisting
of one triple pattern. On the other hand, in the previous section we presented algorithm
QC* which can return complete answers with respect to the RDFS entailment rules only if
all the inferences have been computed a priori, i.e., in a forward chaining manner. In this
section, we bridge the gap between these two algorithms and present algorithm QC*-BC.
QC*-BC enables the evaluation of arbitrary SPARQL queries of basic graph patterns with
RDFS entailment using a backward chaining approach.

Algorithm 5 shows the pseudocode of algorithm QC*-BC. The main idea of this algorithm
is that each triple pattern of a query graph is evaluated at a (potentially) different peer. At
this peer a backward chaining process as described in Section 5.2 takes place for the triple

Zoi Kaoudi 137



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

pattern using the rules of Table 5.2. After the backward chaining process has terminated, the
results are joined with the intermediate results from previous triple patterns. The evaluation
of each triple pattern starts at the peer which is responsible for a key contained in the triple
pattern, as we described in Section 4.2.2.

The left part of Algorithm 5 shows the pseudocode when a QEval message arrives at
peer p. The message is similar with Algorithm 4 with an extra parameter rid which is a
unique identifier for the query request. The unique identifier can be created by a number
assigned by a local counter and the IP address of the peer that received the query request.
rid is useful for the backward chaining algorithm to handle cyclic hierarchies, as explained
in Section 5.2. Peer p firstly transforms the triple pattern that corresponds to the marked
node of graph g to the equivalent adorned datalog atom and calls local procedure BC-RDFS.
After the backward chaining process terminates, procedure BC-RDFS outputs a new relation
localR which contains all the bindings of the triple pattern’s variables including the inferred
ones.

The rest of the query evaluation process proceeds similarly with the QC* algorithm. The
right part of Algorithm 5 shows the pseudocode for the procedure BC-RDFS which illustrates
how the backward chaining algorithm works. This procedure is the same with the one we
introduced in Section 5.2 and is also shown here for completeness.

6.3 Mapping Dictionary

Mapping dictionaries have been recently used in many centralized RDF stores [108, 35]. As
URIs and literals may consist of long strings, they are mapped to integer values and then,
triple storage and query evaluation is performed using these integer values. This enhances
the system’s performance since operations with integers are more efficient than operations
with strings. We have adopted a similar mapping dictionary functionality carefully designed
for the distributed setting of a DHT. In this way, our algorithms work similarly using the
integer values.

The uniqueness of the integer values used in the mapping dictionary could be ensured in
various ways. The simplest way would be the use of some kind of global counter for assigning
constants with globally unique identifiers. This global counter could be maintained by a single
peer or a subset of the peers in the network. However, this approach would require extra
communication cost between the peers and would create a bottleneck and a single point of
failure. Therefore, we propose the following scheme which is fully distributed (thus scalable
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and fault tolerant) and does not require any kind of coordination among the peers. Each peer
keeps a local integer counter consisting of l bits which is initially set to 0. l is incremented
by 1 every time a new integer value needs to be generated. Each peer that joins the network
is assigned a unique m-bit identifier by hashing its IP address. We create an n-bit identifier
for a triple component by concatenating the m bits of the peer’s unique identifier with the
l bits of the current local counter. Depending on the network setting and the application
requirements, we can determine an appropriate value for m and l so that each n-bit identifier
is of reasonable space. For a maximum number of N peers in the network, where each peer
can insert up to L new components, log2(N ∗L) bits are required. For example, for a network
of 1000 peers, m should be equal to 12 bits (log2(1000) ' 10 plus 2 bits to avoid conflicts).
If then we choose the size of the counter l to be equal to 20 bits, each peer can insert up
to 220 ' 1M new components. Therefore, each peer creates identifiers of 32 bits and the
size of each identifier remains the same with the size of an integer value. In the worst case
scenario where a node runs out of unique integer values, it can forward the request to one of
its neighbors.

When a peer receives a store request, it transforms the given triples into new triples
containing integers. The peer, then, sends the new set of triples to be stored in the network
using multiSend. Together with the new triples, it also sends the mapping from strings
to integers that created these triples. Note that we use the string values of the triple’s
components as keys to create the identifiers and not their integer values. Each peer that
receives a multiSend message, stores in its triple relation the triples it is responsible for,
which now consist of integers. Each such peer also maintains a two-column relation which
serves as a local dictionary which holds the mappings for all the components of its local
triples (dictionary relation).

During query evaluation, each string appearing in the triple patterns of a query is trans-
formed into the corresponding unique integer. This transformation is performed during the
lookup operation of the query processing algorithm without adding any significant overhead.
Whenever peer s wants to send a QEval message for triple pattern tp, it first sends a Lookup

request to determine the peer responsible for this triple pattern (peer d). Peer d, which re-
ceives the Lookup request, retrieves the integers corresponding to the strings of tp from its
local dictionary relation and sends them to s together with its IP address. Then, peer s re-
places the strings of tp with the integers sent from peer d and continues query processing.
In case any of the strings has no assigned integer, the answer to the query is empty and
query processing terminates. Finally, the peer which computes the answer to the query is
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responsible for replacing integers in the triples of the answer set with their string values.
It contacts the least possible number of peers that have already participated in the query
evaluation and have the appropriate values in their dictionary relation. To achieve this, the
IP address of the peers participating in the query evaluation is appended within the QEval
message (using an extra parameter).

6.4 Experimental Evaluation

In this section, we present an experimental evaluation of our query processing algorithm
and the mapping dictionary. For our experiments, we used as a testbed both the PlanetLab
network and the local cluster. We used PlanetLab with 281 nodes across four continents
that were available and lightly loaded at the time of the experiments. The cluster consists of
41 computing nodes, each one being a server blade machine with two processors at 2.6GHz
and 4GB memory. We used 30 of these machines where we run up to 4 peers per machine,
i.e., 120 peers in total.

For our evaluation, we use the LUBM [48] benchmark, described in Section 5.5, that
provides synthetic RDF datasets of arbitrary sizes and 14 SPARQL queries. We mostly focus
on queries with more than 4 triple patterns so that the benefits of the proposed optimizations
can be clearly demonstrated. The SPARQL queries we used can be found in Appendix A.
For each experiment, we show our results using the most representative LUBM queries. All
measurements are averaged over 10 runs using the geometric mean which is more resilient
to outliers.

6.4.1 Analyzing query response time

This set of experiments were conducted in an earlier version of Atlas when the Berkeley DB
was used which was included in the Bamboo DHT implementation. The version of Berkeley
DB in the Bamboo implementation is not a relational or an object-oriented database (although
one could use it to build a relational database), and does not support any kind of high-level
query languages, such as SQL. However, it provides a simple API in order to store and retrieve
data efficiently. Data in the Berkeley DB are stored in records which are pairs in the form
of (key, value) pairs. The following operations on records are supported: insert a pair in a
table, delete a pair from a table, find a pair in a table by looking up its key and update a pair
that has already been found. For this reason, we have implemented in Java several operators

Zoi Kaoudi 140



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

0

10

20

30

40

50

60

70

80

90

With dictionary No dictionary

T
im

e
 (

s
e

c
)

decodingIDs

networktime

reasoningtime

jointime

databasetime

(a) Query Q4

0

100

200

300

400

500

600

With dictionary No dictionary

T
im

e
 (

s
e
c
)

decodingIDs

networktime

reasoningtime

jointime

databasetime

(b) Query Q8

Figure 6.2: Query response time breakdown

from relational algebra, e.g., join, select, project, on top of the Berkeley DB. As we will see
from the results below such an implementation has not been proved efficient and therefore
decided to move to a relational database instead.

First, we investigate our system performance in PlanetLab. We evaluate our query pro-
cessing algorithm QC*-BC in PlanetLab and clearly demonstrate the importance of having
a mapping dictionary. We analyze how the time for answering for a query is spent at the
different phases of the query evaluation algorithm.

The total query response time of a query consists of the sum of the local processing time
of each peer participating in the query processing plus the network time for transmitting the
intermediate and the final results. The local processing time at each peer consists of the
time for retrieving the triples matching a triple pattern from the local database using the
lookup operation provided by Berkeley DB, the time for joining the matching triples with the
intermediate results and the time needed for the RDFS reasoning using the adorned rules
of Table 5.2. In the case where the mapping dictionary is used, we should also take into
consideration the time for decoding the integer values to RDF components at the end of the
query evaluation. Figure 6.2 presents two stacked bar graphs that show the breakdown of
the total query response time with and without the mapping dictionary for the LUBM queries
Q4 and Q8 after having stored 68, 969 triples. We observe that the time spent by each process
of the query evaluation algorithm when the dictionary is used is smaller than the respective
one when no dictionary is used. Therefore, the time required to decode the integer values
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to the corresponding RDF components does not impose a time overhead to the total query
evaluation process. The same conclusion was drawn for the other LUBM queries as well.

Another important observation made from this set of experiments is that the most time-
consuming operation in the query evaluation is retrieving triples from the peers’ database
and joining them with the intermediate results so far. From our experiments, we found
that the time required to retrieve a single triple from a peer’s local database ranged from
0, 1ms to 128ms for the different peers in Q4 and from 0, 18ms to 2096ms in Q8 at the time
of the experiments. This phenomenon can be caused by the different sizes of the peers’
databases as well as the slow nodes in PlanetLab. As demonstrated in [123], slow nodes in
PlanetLab can cause such problems. In addition, our implementation of the join between the
matching triples and the intermediate results is also a bottleneck in the case of query Q8
which produces more intermediate results. For these reasons, we decided to use a relational
database and use SQL queries to perform these joins. From now on, we present experiments
where Atlas peers use SQLite as the database backend.

6.4.2 The mapping dictionary effect in PlanetLab

We compare the query processing algorithm QC*-BC with and without the mapping dictionary
functionality in PlanetLab. We measure the query response time and the bandwidth usage in
both cases as the number of triples stored in the network grows. Due to the performance of
the algorithm without the mapping dictionary, we show experiments with only up to 68, 969

triples, which correspond to part of the LUBM-1 dataset. The results for queries Q4 and Q8
is shown in Figure 6.3.

The query response time (QRT) for queries Q4 and Q8 is shown in the graphs of Figures
6.3(a) and 6.3(b). The x-axis shows the number of triples stored in the network. The blue
continuous line shows the total query response time, while the green dashed line denotes the
time required to answer the query without the time needed for decoding the RDF components
from the identifiers returned in the result set. We observe that the slope of the line With

dictionary is smaller than the slope of the No dictionary line. This means that the pace
with which the query response time grows when no mapping dictionary is used is increasing
more rapidly than when a mapping dictionary is used. As a result, the system becomes
more scalable with respect to the number of triples stored in the network when a mapping
dictionary is used. Another interesting result is that when less than about 10, 000 triples are
stored in the network the query response time without the mapping dictionary for query Q4
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Figure 6.3: Mapping dictionary effect in PlanetLab

is smaller than the query response time with the dictionary. This means that the overhead
imposed from encoding and decoding the RDF components is significant and results in a
worse system’s performance. However, this happens only for a very small amount of triples.

Figures 6.3(c) and 6.3(b) show the total bandwidth usage for both queries. The bandwidth
with the dictionary shown in the graphs is the total bandwidth spent and thus includes
the bandwidth spent for decoding the final results from integer values to the corresponding
RDF components. Q4 produces a constant number of results regardless of the number of
stored triples. This number is determined from the first join of the first two triple patterns
and hence, bandwidth consumption remains almost the same. Query Q8 also produces a
constant number of results regardless of the number of triples stored. However, the size of
the intermediate results of Q8 grows with the number of triples stored and hence bandwidth
usage is also increasing. In both queries, we observe that the query processing algorithm
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Figure 6.4: Cluster vs. PlanetLab performance

when using the mapping dictionary achieves a significantly lower bandwidth consumption
than when URIs and literals are used. In addition, the gain of transmitting integer values in
the network as intermediate results is greater than the overhead bandwidth imposed when
decoding the integer values to RDF components at the end of the query evaluation.

6.4.3 Comparing PlanetLab and cluster performance

In this set of experiments we investigate the role of the two different testbeds in the system’s
performance. PlanetLab offers offers more real-world testing, while the more controlled en-
vironment of the local cluster enable us to experiment with bigger datasets. To examine the
behaviour of these two testbeds we store the LUBM-1 dataset consisting of 144, 819 triples
(given triples plus the inferred ones) in both of them. Then, we run QC* algorithm in both
testbeds. Figure 6.4.3 demonstrates the difference in query response time between Planet-
Lab and the local cluster for various LUBM queries. All queries were executed using the
mapping dictionary. The y-axis shows the query response time in msec on a logarithmic
scale. As expected, the performance of the system in the cluster is substantially better than
in PlanetLab. For example, the query response time of query Q2, which consists of 6 triple
patterns, is 0.569 seconds in the cluster, while it is 33.9 seconds in PlanetLab. This results
from the higher availability of the cluster machines as well as the bandwidth provided by a
local cluster. The bad response times in PlanetLab are caused by the heavy load of PlanetLab
nodes, the lower bandwidth between nodes and the bandwidth congestion. PlanetLab nodes
are used simultaneously by many users which share the nodes’ resources. This very of-
ten results in overloaded nodes and bandwidth congestion. In addition, PlanetLab nodes are
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Figure 6.5: Mapping dictionary effect in cluster for LUBM-20

spread across four continents and hence bandwidth is significantly lower than the bandwidth
of a local cluster.

6.4.4 The mapping dictionary effect in the cluster

In this section, we investigate the performance of the mapping dictionary in the cluster using
bigger datasets than the ones we used in PlanetLab. Figure 6.5 shows the results of algorithm
QC* with and without the mapping dictionary after having stored the LUBM-20 dataset in
the network.

Figure 6.5(a) shows the query response time of the LUBM queries, while Figure 6.5(b)
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depicts the total time spent by the database at all peers participating in the query processing
(DBT ). DBT includes the time for joining the intermediate results with the locally found
matching triples as well as the time for accessing the database relation for encoding and
decoding the RDF components in case the dictionary is used. The x-axis in both graphs is
in msec on a logarithmic scale. We observe from the graph of Figure 6.5(a) that most queries
perform better when the mapping dictionary is used. Queries Q2 and Q9 have a greater
benefit from the use of the dictionary than the rest of the queries. In particular, Q2 improves
from 30 sec to 7 sec and Q9 from 332 sec to 15 sec. Queries Q2 and Q9 include 6 triple
patterns and require the computation of joins with large intermediate relations. Therefore,
the computation of joins between relations with integer values decreases the time significantly
for these two queries. This results in a database time one order of magnitude smaller when
the dictionary is used, as shown in Figure 6.5(b). The query response time for the rest of the
queries are quite close for both cases. Queries Q1, Q6, Q7, Q12, and Q14 perform slightly
better when the mapping dictionary is used. However, this is not the case for queries Q4
and Q8. The query response time as well as the database time is slightly smaller when
no mapping dictionary is used. Therefore, in these cases the mapping dictionary puts an
overhead to the overall query evaluation process. However, this overhead is relatively small
compared to the gain we have for more complex queries.

Figure 6.5(c) shows the total bandwidth spent for answering the queries, i.e., the messages
required for the query processing as well as the bandwidth for encoding RDF components to
integer values and vice versa. Again queries Q2 and Q9, which include more triple patterns
and create large intermediate relations, have a greater gain in bandwidth consumption when
the dictionary is used than the other queries. The rest of the queries consume almost the
same bandwidth in both cases. In Figure 6.5(d) we depict with a stacked bar the propor-
tion of the bandwidth that is consumed from the query processing algorithm (QP ) and the
bandwidth consumed by the mapping dictionary functionality (MD). The query processing
bandwidth includes messages which contain the intermediate relations encoded in integer
values. The mapping dictionary bandwidth includes the bandwidth consumed mostly to de-
code the integer values to the corresponding RDF components. We observe that for queries
Q2 and Q9 most of bandwidth is consumed by the query processing algorithm itself. Con-
trary to this, queries Q6 and Q14 which consist of one triple pattern actually spent most of
the bandwidth when returning the results to the peer that posed the query.

Figure 6.6 depicts the query response time of several queries as the triples stored in the
network increases. For queries Q2 and Q9 (Figures 6.6(a) and 6.6(b) respectively) we can
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Figure 6.6: Mapping dictionary as the dataset size increases

clearly see the advantage of using a mapping dictionary. The query response time increases
rapidly with the triples stored when no dictionary is used. On the contrary, with the mapping
dictionary the increase in query response time is sublinear with the number of triples stored
in the network. Such a feature makes the system more scalable in terms of the data stored
in the network. On the other hand, queries Q4 and Q8 (Figures 6.6(c) and 6.6(d) respectively)
do not indicate the same behaviour. Query Q4 performs better if no dictionary is used and
this is magnified as the dataset size grows. However, in both cases the increase in query
response time is linear. Query Q8 performs similarly for either case.

In order to further investigate when it is in one’s interest to use a mapping dictionary,
we run the same queries with re-ordering the triple patterns so that a different number of
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the total intermediate results produced occurs. Figure 6.7 shows how the gain from the
mapping dictionary is affected by the number of intermediate results produced during the
query evaluation. The x-axis shows in ascending order the total number of intermediate
results produced during the query evaluation of different queries. The y-axis shows the
query response time in msec on a logarithmic scale. Queries suffixed with the letter a in the
graph are the queries in the order given by the benchmark but without any Cartesian product.
Queries suffixed with the letter b were re-ordered to achieve smaller intermediate result sets.
We observe from the graph that the greatest benefit for using a mapping dictionary comes
from queries that produce more than 50, 000 intermediate results during query processing.
The query response time when using the dictionary can be one or more orders of magnitude
smaller in these cases. For the cases where the total number of intermediate results is less
than 50, 000 the mapping dictionary may cause an overhead to the query evaluation process.
But still this overhead is not significant compared to the gain we can have for the more
expensive queries. Certainly, such an observation depends on the testbed that the system
runs.

To conclude, it is worthwhile using a mapping dictionary because the gain in time and
bandwidth for complex queries is significant. In less complex queries whose intermediate
relations are small it might cause an overhead but this overhead is negligible. In addition,
we observed that in a DHT network where the bandwidth availability is lower than the one
offered by a local cluster, such as PlaneLab, the gain from using a mapping dictionary is
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evident from very small datasets and for queries with smaller intermediate relations.

6.5 Summary

In this chapter we presented an algorithm for the distributed query processing of SPARQL
queries of basic graph patterns. The algorithm can be used with either a forward or a
backward chaining reasoning process. In addition, we described how a distributed mapping
dictionary can be implemented on top of a DHT. We presented experimental results for the
query processing algorithm and the distributed mapping dictionary.

As a result of the usage the query processing algorithm of Atlas in various use cases, the
order in which the triple patterns are evaluated can affect the system’s performance signif-
icantly. For this reason, we study algorithms and techniques to optimize the performance
of the system in respect to the time required to answer the query and the bandwidth con-
sumed during query evaluation. The next chapter addresses the problem of SPARQL query
optimization in a DHT environment.
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Chapter 7

Distributed RDF Query Optimization

Query optimization has been at the center of attention in the field of databases for many years.
The research area of query optimization is very large and has been studied in a great variety of
contexts giving rise to several diverse solutions for each case. [66] describes some of the core
issues and the proposed solutions. Although query optimization has been extensively studied
in the database area and is widely used in modern DBMSs, SPARQL query optimization has
been addressed only recently even in centralized environments [108, 109, 145]. This is a
challenge we undertake in this chapter.

The chapter is organized as follows. In Section 7.1 we discuss the optimization issues in
Atlas and state that minimizing the size of the intermediate results produced during query
evaluation leads to a better system performance. Section 7.2 provides a cost model of our
query processing algorithm that supports our claim. In Section 7.3, we present three greedy
optimization algorithms which try to minimize the size of intermediate relations produced by
the query processing algorithm utilizing selectivity-based heuristics. We describe both static
and dynamic optimization algorithms. The static query optimization is completely executed
by the peer that receives the initial query request and outputs a fully specified query plan.
In the dynamic query optimization algorithm, optimization decisions take place at each step
of the query processing algorithm and the execution plan is gradually created at each step of
the query evaluation. Section 7.4 describes the methods we use to estimate the selectivity of
a triple pattern and a conjunction of triple patterns and Section 7.5 discusses the statistics
required to compute these selectivities. Finally, in Section 7.6 we present the experimental
evaluation of our optimization techniques. Results of this chapter have been published in
[72].
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7.1 Query Optimization in Atlas

The goal of query optimization is to find a query plan that optimizes the performance of a
system with respect to a metric of interest. In our system, we are interested in improving the
time required to answer a query (query response time) and the bandwidth consumed during
query evaluation (network bandwidth).

The query response time of our algorithm can be improved if the time spent for query
evaluation locally by each peer and the time required for network messages to reach relevant
peers is improved. One way to accomplish this is by minimizing the size of the intermediate
relations produced during query evaluation (interRes′ in QC*). In this case, we benefit in
two ways: first, we achieve lower bandwidth consumption and second, we accomplish the
computation of joins with smaller intermediate relations locally at peers. Lessons learned
from earlier versions of Atlas persuaded us to concentrate on optimizing these metrics to
improve the performance of our system.

As described in Chapter 6, the query processing algorithm QC* evaluates one triple pattern
at a time transferring the intermediate results from one peer to the other resulting in left-
deep execution plans. Therefore, we define a query plan for a SPARQL query q of basic graph
patterns as follows.

Definition 7.1.1. A query plan qg for a query q with a connected query graph g : (N,H,E) is

a total order of the nodes in N .

The query plan space of a query consists of all possible permutations of the triple patterns
of the query. The size of the query plan space of a query with query graph g : (N,H,E) is
equal to |N |!.

7.2 Analytical Cost Model

In the following, we present a cost model for our query processing algorithm QC* which
supports our intuition that minimizing the size of the intermediate relations leads to an
improved system performance. We denote a conjunction of k triple patterns tp1∧ tp2∧ ...∧ tpk
in the specified order with a hypernode Hk in the query graph g, the number of variables
appearing in Hk with vk, and the number of tuples with arity vk that match the conjunction
of triple patterns Hk with THk

. The network bandwidth consumption (NB) of a query plan qg
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for evaluating these k triple patterns can be expressed as follows:

NBqg =
k∑
i=1

(THi
× vi × Sb) (7.1)

where Hi is the conjunction of triple patterns tp1 ∧ tp2 ∧ ... ∧ tpi, THi
is the number of triples

that matchHi, (i.e., the number of tuples of relation interRes′ at peer i according to algorithm
QC*), vi is the number of variables in Hi (i.e., the number of attributes of relation interRes′

at peer i according to algorithm QC*) and Sb is the average size in bytes of one binding value
for the variables. Depending on the order in which the triple patterns are evaluated, the sum
of THi

varies and hence the network bandwidth consumption changes.

The query response time (QRT) of a query plan qg can be expressed in terms of the local
processing time at each peer i (LPTi) participating in the query evaluation and the time
for transmitting the intermediate results (TTi) from each peer i to peer i + 1. Then, query
response time can be computed as follows:

QRTqg =
k∑
i=1

(TTi−1 + LPTi) (7.2)

Let the peer that receives the query request be peer 0. We assume TT0 = 0 since the
transmission cost from the peer that received the query request to the first peer participating
in the query evaluation is considerably smaller than the time of transmitting intermediate
results. Let tb be the time for transmitting one binding value through the network (i.e.,
serialization time plus transmission time plus deserialization time). We assume a constant
time for transmitting a binding from one peer of the network to the other. Although this is
not true for general networks, it is true for clusters of peers. In the case, where this is not
true we take into consideration the worst case scenario for the communication between two
peers. Then, the transmission time TTi from peer i to peer i+ 1 is:

TTi = THi
× vi × tb (7.3)

The local processing time spent at peer i consists of the time for matching the triple pattern
with the local triples and form relation lRi and the time for joining lRi with the intermediate
results which correspond to hypernode Hi−1. Assume tsel to be the time for matching the
triples to form relation lR, tjoin the time for comparing two values, and TlR the number of
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tuples of relation lR. If a simple nested loops join is performed, then the local processing
time at peer i is given by the formula:

LPTi = tsel + (THi−1
× TlRi

× tjoin) (7.4)

When being at the first peer (i.e., i = 1) where the relation of the intermediate results is empty,
we have TH0 = 0 and hence only the selection process accounts for the local processing time.
Although we assumed a simple nested loops join, the cost of any join method depends on the
size of the joining relations.

In the formulas 7.3 and 7.4, the most significant parameter which affects the query pro-
cessing time and the network bandwidth is the sum of THi

which is the total number of
intermediate results produced by the query processing algorithm. All other parameters are
constants, e.g., the size of relations lRi. Therefore, both local processing time and trans-
mission time depend on the number of the intermediate results produced by a query plan
during the query evaluation. As a result, the goal of the optimization algorithms described
below is to choose a query plan that minimizes the number of intermediate results produced
during query evaluation. In the experimental evaluation presented in Section 7.6, the as-
sumption that query response time improves by minimizing the number of the intermediate
results is validated. Other methods could also be applied for the optimization of our system
performance such as compression techniques for the intermediate results transferred in the
network and different join implementations locally at each peer. Certainly, different local
database deployments at the peers would have different impact on the final query processing
time. However, such techniques and exploration with different local databases are out of the
scope of our work.

7.3 Query Optimization Algorithms

In the following, we present three greedy optimization algorithms which try to minimize the
size of intermediate relations produced by the query processing algorithm utilizing selectivity-
based heuristics. We describe both static and dynamic optimization algorithms. The two
static query optimization algorithms to be presented below are completely executed by the
peer that receives the initial query request and output a fully specified query plan. In the
dynamic query optimization algorithm, optimization decisions take place at each step of the
query processing algorithm and the execution plan is gradually created at each step of the
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Figure 7.1: Naive query optimization example

Algorithm 6: NA: Naive optimization algorithm

Output: ordered list of triple patterns tps
1 procedure NA(query graph g)

2 assignNodesSel ();
3 n0 := node with the minimum selectivity;
4 Mark the nodes in g that are joined with n0;
5 tps← g.remove(n0);
6 while g.markedNodes() 6= ∅ do
7 ni := node with the minimum selectivity from g.markedNodes();
8 Mark the nodes in g that are joined with ni;
9 tps← g.remove(ni);

10 end
11 end

query evaluation.

Our algorithms make use of the selectivity of a triple pattern as well as the selectivity
of a conjunctions of triple patterns. Using standard terminology from relational database
systems, the selectivity of a triple pattern tp, sel(tp), is the fraction of the total number of
triples in the network that match tp. Similarly, if H is a conjunction of triple patterns,
the selectivity of the conjunction of triple patterns, sel(H), is the fraction of total number of
triples in the network that match H. In Section 7.4, we propose methods for estimating the
selectivity of a triple pattern and the selectivity of a conjunction of triple patterns.
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7.3.1 Naive static algorithm

The naive algorithm (NA) orders triple patterns based on their selectivity. It chooses triple
patterns from the most selective to the least selective and in a fashion where a Cartesian
product computation will not be required. The algorithm runs at the peer that receives the
query request before the query evaluation begins.

The optimization algorithm works as follows. Using the initial query graph representation,
each node is assigned with the selectivity of the corresponding triple pattern. The algorithm
firstly selects the query graph node n0 with the minimum selectivity and adds it to the
query plan. Then, it marks the nodes that are connected with n0 and removes n0 from the
graph. The algorithm then continues by iteratively choosing the node nmin with the minimum
selectivity, selecting only from the marked ones, adds it to the query plan, marks the nodes
connected with nmin and removes nmin from the graph. When two nodes of the query graph
have the same selectivity, the one that precedes in the initial query is chosen. The algorithm
terminates when no nodes are left in the graph.

NA is based on the assumption that after joining two very selective triple patterns, the
joining result will also be selective. Certainly, this assumption is not always true, but the
algorithm often performs in a satisfactory way, as we will see in the experimental section.
The use of the query graph ensures that a Cartesian product computation will never occur.
Algorithm 6 shows the pseudocode of the query optimization algorithm.

Figure 7.1 depicts how NA works for the example query of Figure 3.1. Each query graph
node is assigned with the selectivity of the corresponding triple pattern. At each iteration,
the marked nodes (i.e., the nodes that are connected with the previously selected nodes) are
shown in grey circles. The selected triple pattern (i.e., the node with the minimum selectivity)
is shown with a double circle.

7.3.2 Semi-naive static algorithm

Similarly with the naive algorithm, the semi-naive algorithm (SNA) runs at the peer that
receives the query request before the query evaluation begins. SNA is a variation of the
minimum selectivity algorithm [144] and has also been used in [145]. SNA goes beyond NA
by taking into account the selectivity of pairs of triple patterns as well.

Besides assigning each node of the graph with the selectivity of its triple pattern, each edge

of the graph is also assigned with the selectivity of the conjunction of the connected triple
patterns. The algorithm begins by selecting the edge with the minimum selectivity, orders
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Algorithm 7: SNA: Semi-naive optimization algorithm

Output: ordered list of triple patterns tps
1 procedure SNA(query graph g)

2 assignNodesAndEdgesSel ();
3 e0 := edge with the minimum selectivity;
4 n0 := node of e0 with minimum selectivity;
5 n1 := node of e0 with maximum selectivity;
6 Mark the edges in g that are connected with n0 and n1;
7 tps← n0, n1;
8 remove e0 from g.markedEdges();
9 while g.markedEdges() 6= ∅ do

10 ei := edge with the minimum selectivity from g.markedEdges();
11 ni := node of ei that is not included in tps;
12 Mark the edges in g that are connected with ni;
13 tps← ni;
14 remove all edges from g.markedEdges() that have both nodes in tps;
15 end
16 end

its nodes based on their selectivity and adds them to the query plan. Then, SNA iteratively
chooses the edge that has the minimum selectivity, but also has one of its nodes in the query
plan, and adds the other node to it. SNA terminates when all nodes have been added to
the query plan. In case of a tie between the selectivities of two edges, the algorithm chooses
the one that has the node with the smaller selectivity. The difference of the above algorithm
and the original algorithm presented in [144] lies in that the semi-naive algorithm takes into
account only the selectivity of the conjunction of two triple patterns without considering the
intermediate results that might have occurred by joining more than two triple patterns.

Figure 7.2 shows how SNA works for the same example used in NA. Firstly, all nodes and
edges of the query graph are assigned with their corresponding selectivities. At each iteration
the algorithm chooses from the marked edges (shown in dashed lines) the one that has the
minimum selectivity (colored in red). It appends the node of this edge to the execution plan
and marks the edges which begin from this edge and have not been marked yet.

Note that both NA and SNA, which are executed by the peer that receives the query
request, actually output an ordered list of the triple patterns of the query. The triple patterns
can be then evaluated sequentially by the query evaluation algorithm and ensuring that
a Cartesian product computation will not occur. This is crucial for the performance of a
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Figure 7.2: Semi-naive query optimization example

distributed system where intermediate results are transmitted through the network.

7.3.3 Dynamic algorithm

Finally, we propose a dynamic optimization algorithm (DA) which seeks to construct query
plans that minimize the number of intermediate results during query evaluation. The dy-
namic optimization algorithm takes into consideration the selectivity of conjunctions of triple
patterns. The important difference with SNA is that the selectivity of more than two triple pat-
terns is considered and the join selectivity is estimated between the real intermediate results

and a triple pattern.

Initially, the peer that receives the query request, assigns all edges and nodes of the
query graph with the corresponding selectivities and chooses the first two triple patterns to
be evaluated as in SNA. The peer finds the edge with the minimum selectivity and sends
a QEval message to the peer responsible for evaluating the triple pattern which has the
minimum selectivity of the two nodes forming this edge. Then, the optimization step is
carried out at each peer p which receives a QEval message. After the new query graph g′

with the new hypernode H ′ has been created at peer p as shown in Algorithm 5, p should
select the triple pattern that should be evaluated next. The candidate triple patterns are the
triple patterns of the query graph nodes which are directly connected with the hypernode
H ′. In this way, the computation of a Cartesian product is avoided. Peer p estimates the
selectivity of the join between the intermediate results so far which correspond toH ′ and each
candidate triple pattern and assigns the corresponding edges. Then, peer p selects the node
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Figure 7.3: Dynamic query optimization example

which is connected to H ′ with the edge with the minimum selectivity. In case a tie between
the selectivities of two edges emerges, p chooses the node with the smaller selectivity. The
algorithm then outputs the triple pattern that corresponds to this node. Local procedure
markNextNode (line 21 of Algorithm 5) is responsible for conducting the query optimization
process and find the triple pattern that should be evaluated next.

Figure 7.3 shows an example execution of the dynamic optimization algorithm. The query
requestor peer assigns the edges and nodes of the query graph and chooses tp1 as the first
node. At each query processing step, each peer finds the edge with the minimum selectivity
from the set of edges connected to the hypernode and marks the corresponding node (shown
with a double circle). In the last step of the query processing algorithm, the query graph
consists only of the hypernode.

7.4 Selectivity Estimation

In this section, we propose methods for estimating the selectivity of a single triple pattern as
well as the selectivity of a conjunction of triple patterns. The computation of these selectivities
are required for the optimization algorithms we presented above.

7.4.1 Single triple patterns

We present two ways to estimate the selectivity of a single triple pattern; one based on a
simple heuristic and one based on an analytical estimation technique using the attribute
value independence assumption which is widely adopted in database systems [134].
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7.4.1.1 Bound-is-easier heuristic

We consider a simple variation of the standard bound-is-easier heuristic of relational and
datalog query processing [160, 161], and assume that the more bound components a triple
pattern has, the more selective it is. A similar heuristic was also used in [145]. We further
enrich this heuristic by considering the position of the bound components of a triple pattern, if
two triple patterns have the same number of bound components. In this case, we assume that
subjects are more selective than objects, which in turn are more selective than predicates.
More specifically, the heuristic regarding the selectivity ordering of triple patterns is the
following:

sel((s, p, o)) < sel((s, ?x, o)) < sel((s, p, ?x)) < sel((?x, p1, o)) < sel (?x,
rdf:type, o)< sel((s, ?x, ?y))< sel((?x, ?y, o))< sel((?x, p1, ?y)< sel((?x,
rdf:type, ?y))

where s, p, p1, o are constants, ?x and ?y are variables and p1 6= rdf:type. We
choose to differentiate the predicate rdf:type from other predicates because rdf:type is
a very popular built-in predicate used in RDF(S) databases and usually its occurrences are
much more frequent than any other predicate. This ordering is only a heuristic where we
consider to be accurate for the majority of the RDF(S) databases, even though there can be
RDF(S) databases for which it can be proved poor. Finally, we extend this heuristic a little
further by assuming that a triple pattern with a variable that will eventually be projected out
is preferable from a triple pattern of the same form containing an answer variable.

7.4.1.2 Analytical estimation

We use an analytical estimation for the selectivity of a single triple pattern. Given a triple
pattern tp = (s, p, o), where s, p, o are variables or constants, the selectivity of tp using the
attribute value independence assumption [134] is computed by the formula:

sel(tp) = sel(s)× sel(p)× sel(o) (7.5)

where sel(s), sel(p), sel(o) are the selectivities of the triple pattern’s subject, predicate, and
object, respectively. For the triple pattern components which are variables we assume a
selectivity of 1.0. In addition, we assume a selectivity of 1.0 for the predicate value rdf:type,
since it is is a very popular predicate in RDF(S) databases. The selectivity of the other
components depends on the frequency with which their value appears in the set of triples
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stored in the network. We use a different definition for the frequency of a value depending on
what component of the triple pattern the value is, i.e., if it is a subject, predicate or object.

Definition 7.4.1. The frequency of a triple component c with value v, denoted by freqc(v)

where c is subject, predicate, or object, is the total number of occurrences of value v as a triple

component c in the set of triples stored in the network.

For example, freqs(ub:zoi) is the number of occurrences of value ub:zoi as a subject,
while freqo(ub:zoi) denotes the number of occurrences of value ub:zoi as an object in
the set of triples stored in the network.

Using the above definition for the frequency, the selectivity of a triple pattern component
c with value v can now be computed by the formula:

selc(v) =
freqc(v)

T
(7.6)

where freqc(v) is the frequency of value v as a component c and T is the total number of
triples. Although in [145], the attribute value independence assumption is also used, their
method assumes a uniform distribution for subjects and requires a bound predicate for the
objects. In Section 7.5, we describe how freqc(v) can be computed in a DHT network. For
the computation of the total number of triples indexed in the network (T ), we use a broadcast
protocol for informing peers about the total number of triples indexed. More elegant solutions
for distributed counting in P2P environments are proposed in [111], but adopting such a
method is out of the scope of our work.

7.4.2 Conjunction of triple patterns

We first deal with the selectivity estimation of a conjunction of two triple patterns. Since we
allow for triple patterns that have at least one bound component, we deal with triple patterns
which share at least one and at most two variables. The selectivity of the conjunction of two

triple patterns tp1 and tp2 can be computed by the formula:

joinCard(tp1, tp2)

T 2
(7.7)

where joinCard is the number of tuples (cardinality) of the relation that results from joining
tp1 and tp2 and T is the number of triples stored in the network. We already discussed how T
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can be computed. Therefore, we focus on estimating the cardinality of the relation resulting
from the join of two triple patterns.

To compute the expression joinCard, we adopt a method proposed for relational systems
in [160, 161] which is as follows. Let R(A1, ..., Aj, B1, ...Bk) and S(B1, ..., Bk, C1, ..., Cm) be
two relations, and suppose that for each i = 1, 2, ..., k, either the domain of Bi in R is a subset
of the domain of Bi in S, or vice versa. Assume that each tuple in the product of the domains
of all the attributes of R is equally likely to be in R, and similarly for S. Then the expected
size of R ./ S is TR×TS

IB1×IB2×...×IBk

, where TR and TS is the number of tuples of relations R and
S respectively, and IBi

is the size of the domain Bi in R or S, whichever is a superset of the
other.

Assume now that we have two triple patterns tp1 and tp2 and the corresponding relations
R1 and R2 which contain all the tuples formed with values existing in the triples stored in
the network that satisfy tp1 and tp2. Relations R1 and R2 have as attributes the variables of
triple patterns tp1 and tp2, respectively. Since we deal with triple patterns that have at least
one constant component, two triple patterns can share at most two variables. The cardinality
of joining R1 with R2 if ?x1 is the only common variable is computed by the formula:

joinCard(R1, R2) =
TR1 × TR2

max(IR1(?x1), IR2(?x1))
(7.8)

If R1 and R2 share two variables, let them be ?x1, ?x2, then the cardinality is computed by
the formula:

joinCard(R1, R2) =
TR1 × TR2

max(IR1(?x1), IR2(?x1))×max(IR1(?x2), IR2(?x2))
(7.9)

where TR1 and TR2 are the number of tuples of R1 and R2 respectively, ?x1 and ?x2 are the
variables shared by tp1 and tp2, and IRi(?xj) is the size of the domain of attribute ?xj of relation
Ri. In other words, TRi

is the number of triples that match tpi, and IRi(?xj) is the number of
distinct values that variable ?xj has in the bindings of tpi.

We can easily determine the number of triples TR that match a triple pattern tp. If tp
has one bound component c with value v, then the number of triples that match tp is equal
to the number of occurrences of value v as a component c, i.e., TR = freqc(v). If a triple
pattern tp has two bound components, then we compute the number of triples that match tp
using the selectivity of the triple pattern as explained earlier, i.e., TR = sel(tp)× T , where T
is the total number of triples stored in the network. For the computation of the size of the
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domain of a variable ?x in a triple pattern tp, namely IR(?x), we distinguish two cases. If tp
has one variable, (i.e., two bound components), then IR(?x) is equal to the number of bindings
of variable ?x. Since no duplicate triples exist in the network and ?x is the only variable in
the triple pattern, each binding will be unique. In this case, we have IR(?x) = TR. In the case
where tp has two variables, (i.e., one bound component), the corresponding domain size for
the shared variable can be determined by statistics created by the query optimizer of each
peer. Details for the estimation of the size of the domain of a triple pattern’s variable are
given in Section 7.5.

7.4.3 Discussion

We now discuss the use of the above selectivity estimation techniques by the optimization
algorithms of Section 7.3. NA requires only the selectivity of single triple patterns and thus
both the bound-is-easier heuristic and the analytical estimation can be applied. SNA and DA
require also the selectivity of conjunctions of triple patterns and hence only the analytical
estimations for the single triple pattern selectivity and the conjunction of triple patterns will
be used. Especially in DA, the estimation of the selectivity of the join between the intermediate
results (R1) and one triple pattern (R2) is required. The formulas are the same as described
above with the exception that relation R1 is already formed. Therefore, the number of tuples
of R1 and the domain size of any variable in the attributes of R1 can be computed on the fly
by examining relation R1.

Although the approaches used above for the selectivity estimation use several assump-
tions about the uniformity and independence of triple components, other solutions in the
literature adopt an exhaustive computation of all join cardinalities. For example, the solu-
tion proposed in [145] to estimate the cardinality for the join between two triple patterns is
to gather statistics by running SPARQL queries for all pairs of related predicates. However,
in the absence of an ontology all combinations of distinct properties should be taken into
consideration which could be very time-consuming. In addition, this method does not allow
for joining triple patterns which have a variable in the predicate component. A similar ap-
proach is also adopted in [109], where the authors propose accurate selectivity estimations
by precomputing exact join cardinalities for all possible choices of one or two constants in a
triple pattern and materializing the results in additional indexes. However, in a distributed
setting such solutions can be very expensive in terms of both time and bandwidth usage.
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Figure 7.4: Statistics kept at each peer

7.5 Statistics for RDF

In this section, we present an efficient DHT-based scheme for creating and using statistics
that enable the estimation of the selectivities described in Section 7.4. These statistics are
the frequency of a triple component and the size of the domain of a variable in a triple pattern.

7.5.1 Creating and summarizing statistics

Let us first introduce some new notation which is useful for keeping statistics for the sizes
of the domain of the variables appearing in a query. We denote by dsc(v) (dpc(v) and doc(v),
respectively) the total number of distinct subject values (predicate and object, respectively)
that exist in the triples stored in the network which contain value v as component c. For
example, let tp be the triple pattern (?x,ub:advisor,?y). The size of the domain of
variable ?x of triple pattern tp is equal to the number of distinct subject values in the triples
with predicate ub:advisor, denoted by dsp(ub:advisor). The value of dsp(ub:advisor)

actually shows the number of students that have an advisor. Similarly, the size of the domain
of variable ?y is equal to the number of the distinct object values in the triples with predicate
ub:advisor, denoted by dop(ub:advisor). The value of dop(ub:advisor) shows the
number of professors that are advisors to some students. In addition, for any value v, we
have dss(v) = 1, dpp(v) = 1, doo(v) = 1.

The following proposition allows us to to determine how statistics should be kept in a DHT
environment.

Proposition 7.5.1. Let v be the value of a bound subject of a triple pattern and pv the peer

responsible for key v. Then, peer pv is capable of computing the exact frequency of v as a

subject, (freqs(v)), the exact number of the distinct predicate values with subject v (dps(v)), and

the exact number of the distinct object values with subject v (dos(v)) in the set of triples stored

in the network by looking only in its local database.
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Proof. Given that peer pv is responsible for key v, our indexing scheme forces all triples that
contain v either as a subject, predicate or object to be stored at peer pv. Therefore, peer pv
can retrieve from its local triple relation all triples that contain v as a subject and hence it can
compute the occurrences of v as a subject in the set of all triples stored in the network, i.e.,
freqs(v). In addition, peer pv can compute the number of the distinct predicate values and
object values for subject v by projecting the triples that contain v as subject on the predicate
and object attribute respectively.

The same result holds for a triple pattern’s bound predicate or object. Following that,
peers keep statistics only from their local data and specifically for the data values for which
they are responsible (i.e., values that are the keys that led a triple to a specific peer). These
turn out to be global statistics required by the optimization algorithms and can be obtained by
sending low cost messages to responsible peers. This is a very good property of our indexing
scheme and has not been pointed out in the literature before.

Statistics for the frequency and the number of distinct values are created for each triple
component. Thus, a peer keeps the statistics shown in Figure 7.4. As shown in the figure,
we differentiate between class objects, i.e., objects of triples of the form (s, rdf:type,

o) which are RDFS classes, and resource objects, i.e., objects of triples (s, p, o) with p

6= rdf:type. This differentiation is vital since resource objects follow a completely different
distribution from RDFS classes. We also confirmed experimentally that a more accurate
estimation for the statistics for the objects can be achieved in this way. In other words, in
order to create the required statistics four queries are performed to the local database of each
peer, one for each component.

A data structure which would keep the exact distribution of the required statistics for
each triple component would require excessive memory space for very large amount of data.
A commonly used method dating back from database systems is estimating the frequency
distribution of an attribute by creating histograms [118]. Given a space budget B for each
statistical structure, each peer decides if the exact distribution can be kept in memory or a
summary of the distribution is required by creating a histogram.

In our system, we use v-optimal-end-biased histograms [118] to summarize the required
statistics. Using terminology from [118], we use as a sort parameter the numerical values of
the hashed RDF URIs and literals and as a source parameter the frequency of the values or
the number of distinct values depending on the kind of the statistical structure we want to
summarize. End-biased histograms require that all but one of their buckets are singleton,
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i.e., they contain a single element. V-optimal-end-biased histograms are serial histograms in
which some of the highest frequencies and some of the lowest frequencies are placed in indi-
vidual buckets, while the remaining frequencies are all grouped in a single bucket. The opti-
mal of all possible histograms is the one that minimizes the weighted variance of the source
parameter. One of the advantages of the end-biased histograms is their storage efficiency
since singleton buckets occupy less space than buckets containing multiple attribute values.
The construction algorithm for this kind of histograms involves an exhaustive enumeration
of all end-biased histograms in slightly over linear time [67]. Although it is confirmed from
[67] that end-biased histograms are optimal for certain cases, we also found experimentally
that they are much more accurate for the RDF data than the equi-width histograms used in
[145].

At this point we should also note, that when the backward chaining algorithm is the
chosen inference mechanism, collected statistics have not considered inferred data. In this
case, the first time a query is evaluated maybe some of the statistics are not accurate and
hence query optimization might not achieve the optimal goal. But when a triple pattern of
a query is evaluated for the first time and new inferences are discovered, the corresponding
statistics are updated. Therefore, queries that are posed later on will make use of the updated
statistics. Updating the statistics does not affect the performance of the query evaluation
since it is performed at a peer that has already participated in the query evaluation and has
already forwarded the query to a different peer.

7.5.2 Retrieving statistics

Whenever the query optimizer of peer x needs statistics for the selectivity estimation of one
triple pattern or a conjunction of triple patterns, it sends a StatsReq(vi, ci) message for each
bound component with value vi appearing in the triple patterns specifying also the type ci of
the component value (i.e., if it is a subject, predicate, resource object or class object). The
message arrives to peer y responsible for key vi. Peer y retrieves the required statistics for
value vi from the corresponding statistical structure (depending on the value ci) and sends
them back to peer x. The time required to retrieve the statistics is negligible compared to the
time required for evaluating a query, as we will see in the experimental section. The cost of
sending these messages is very low since: (a) messages are small in size, (b) messages are
sent in parallel, (c) each message requires only O(logn) hops to reach the destination peer,
and (d) the statistics at the destination peer are kept in main memory.
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As an example, consider that peer p1 receives a query request and needs to retrieve statis-
tics for the triple pattern (?x, ub:advisor, ?y). It sends a StatsReq message to peer p2
which is responsible for key ub:advisor. The query optimizer of peer p2 receives the mes-
sage, retrieves the frequency of predicate ub:advisor (i.e., freqp(ub:advisor)), the num-
ber of the distinct subject values for predicate ub:advisor (i.e., dsp(ub:advisor)), and
the number of the distinct object values for predicate ub:advisor (i.e., dop(ub:advisor))
from its local statistics and sends them back to peer p1. Peer p1 sends similar messages for
all bound components of the triple patterns in the query. After collecting these statistics, it
computes the selectivities using the formulas we presented in Section 7.4 and runs one of
the optimization algorithms described in Section 7.3 to determine the order with which the
triple patterns of the query should be evaluated.

7.6 Experimental Evaluation

In this section, we present an experimental evaluation of our optimization techniques. All
algorithms have been implemented as an extension to our prototype system Atlas. For our
experiments, we used as a testbed both the PlanetLab network as well as the more controlled
environment of the local cluster (http://www.grid.tuc.gr/). Although we have exten-
sively tested our techniques on both testbeds, here we present results only from the cluster
where we achieve much better performance as we showed in Section 6.4.3. The cluster con-
sists of 41 computing nodes, each one being a server blade machine with two processors at
2.6GHz and 4GB memory. We used 30 of these machines where we run up to 4 peers per
machine, i.e., 120 peers in total.

For our evaluation, we use the synthetic LUBM benchmark [48]. In each experiment
we first infer all triples and then store them in the network. In these experiments we are
not concerned with RDFS reasoning and hence we first infer all triples and then store them
in the network. Table 5.5 in Section 5.5.5 shows the total number of inferred triples that
corresponds to the datasets we used in our experiments. Some of the LUBM queries contain
a significant number of triple patterns; for example, Q2 and Q9 contain 6 triple patterns. Q4
and Q8 contain 5 triple patterns, and Q7 contains 4 triple patterns. Q1, Q3, Q5, Q10, Q11,
and Q13 contain only two triple patterns while Q6 and Q14 contain a single triple pattern. We
mostly focus on queries with more than 4 triple patterns so that the benefits of the proposed
optimizations can be clearly demonstrated. We omit query Q12 since it always produces an
empty result set and does not exhibit any interesting results. The SPARQL queries can be
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Figure 7.5: Total query response time for LUBM-50

found in Appendix A. All measurements are averaged over 10 runs using the geometric mean
which is more resilient to outliers.

In addition, we use a real-world dataset which describes the US Congress vote results of
the 2004 bills voting process. The dataset has a size of 3.613 MB and contains 67, 392 triples.
We use a set of nine queries which where used in [164] and can be found in Appendix A.

In the following, QG denotes that the query graph is used to avoid Cartesian products but
no other optimization is utilized. The naive optimization algorithm using the bound-is-easier
heuristic is denoted by NA−, while the naive and semi-naive optimization algorithms using
the analytical estimation are denoted by NA and SNA, respectively. Finally, DA denotes
the dynamic optimization algorithm. Measurements without the query graph where triple
patterns were executed in the order given by the benchmark could not be conducted for some
queries which were formed in a way that required the computation of Cartesian products.
Query evaluation was not completed after 30 minutes and therefore such measurements are
not depicted in the graphs. In all experiments below, we assume the use of the mapping
dictionary as described in Section 6.3.

7.6.1 Comparing the optimization algorithms

In this section, we compare and evaluate the optimization algorithms described in Section
7.3. We achieve this by measuring the performance of the query processing algorithm QC*
we presented in Section 6.1 when the different optimization techniques are used. For this
set of experiments, we store all the inferred triples of the LUBM-50 dataset (9, 437, 221 triples)
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Figure 7.6: Bandwidth usage for LUBM-50

in a network of 120 peers. Then, using each optimization algorithm, we run the queries and
measure the metrics of interest.

In all graphs of this section, the x-axis shows the LUBM queries while the y-axis depicts
the metric of interest. Figure 7.5 shows the query response time (QRT) for the different LUBM
queries. The query response time is the total time required to answer a query and it also
includes the time required by the query optimizer for determining the query plan. Figure 7.6
shows the total bandwidth consumed during query evaluation of each query including any
message exchange required by the query optimizer. For readability reasons, we separated
the queries in two different graphs (Figures 7.6(a) and 7.6(b)). The y-axis of Figure 7.6(a) is
on logarithmic scale.

Query Q1 consists of two triple patterns which both have two bound components. The
first one has a predicate rdf:type and is not selective, while the second one is the one that
constrains the size of the result set. Therefore, QG, which evaluates triple patterns in the
given order, performs worse than the other optimization algorithms which choose the second
triple pattern to evaluate first. This can be also seen from Figure 7.6(a) where the bandwidth
consumption is depicted. Queries Q4, Q7 and Q8 have also two triple patterns with two
bound components and only one triple pattern does not have rdf:type as a predicate. Q4
is a star-shape query with all its triple patterns sharing the same subject variable, while only
the first two triple patterns have two bound components. Therefore, since these two triple
patterns are the more selective ones, all optimization algorithms choose the same query plan
and perform identically in terms of both QRT and bandwidth. The same holds for query Q7
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Figure 7.7: Optimization overhead

where QRT is significantly reduced when using either optimization technique compared to
QG. Q8 is a query similar to Q7 and all optimization methods choose the same query plan
and manage to reduce both the bandwidth consumption and the query response time.

Queries Q2 and Q9 are different from the previous queries. They consist of 6 triple
patterns which have either only their predicates bound or a predicate rdf:type. In both
queries, there exists a join among the last three triple patterns (in the order given by the
benchmark) and the combination of all three triple patterns is the one that yields a small
result set. DA finds a query plan that combines these three triple patterns earlier than
the other algorithms. This results in producing smaller intermediate result sets, as it is
also shown by the bandwidth consumption in Figure 7.6(b), and thus results in better QRT.
Although NA and SNA perform close to DA for query Q2, they fail to choose a good query
plan for Q9 affecting both the QRT and the bandwidth consumption. At this point, we should
note that QG and NA− depend on the initial order of a query’s triple patterns. For this
reason, both algorithms choose a better query plan than NA and SNA for query Q9 since
the order in which its triple patterns are given by the benchmark is a good one.

Figure 7.7 shows the overhead of the optimization process imposed by each algorithm.
Figures 7.7(a) and 7.7(b) depict the total optimization time and the bandwidth consumption
spent by the query optimizer, respectively. The optimization time contains the time for
retrieving the required statistics from the network, the time for the selectivity estimation and
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Figure 7.8: Total query response time for votes dataset

the time spent by the optimization algorithm. For QG and NA− the optimization overhead is
only the local time spent by the peer that receives the query request and is negligible compared
to the others. Thus it is not shown in the graph. The optimization time is shown in msec on a
logarithmic scale. As expected, DA spends more time than the other optimization algorithms
since it runs at each query processing step. However, the optimization time is still one order
of magnitude smaller than the time required by the query evaluation process. Therefore,
althoughDA requires more time than the other optimization algorithms, the system manages
to perform efficiently for all queries when DA is used. We observe similar results for the
bandwidth consumed by the query optimizer. NA and SNA consume ∼ 2KB depending
on the number of a query’s bound components, while DA consumes ∼ 7KB, which is still
orders of magnitude less than the bandwidth spent during query evaluation.

Figure 7.8 shows the query response time of the queries on the real dataset of the US
Congress voting process. In this figure, we observe the for most queries all optimization
algorithms choose the same query plan. This is caused because all queries contain triple
patterns with two bound components none of which is rdf:type and therefore even the
simple bound-is-easier heuristic manages to find a good query plan. The only exceptions are
queries Q3 and Q9, where the query processing algorithm for the optimization algorithms
QG and NA− (and NA for query Q9) could not proceed with the evaluation of the queries;
the intermediate relations produced were too large causing memory exceptions at one peer.
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Figure 7.9: Exploring the query plan space of Q2 for LUBM-10

7.6.2 Effectiveness of query optimization

In this section, we show how effective the optimization algorithms are, given the query pro-
cessing algorithm. To achieve this we need to explore the performance of the query processing
algorithm throughout the whole query plan space. The size of the query plan space of a query
consisting of N triple patterns is N !. Since query plans that involve Cartesian products are
very inefficient, even impossible, to evaluate in a distributed environment, we consider only
triple pattern permutations which do not produce any Cartesian product. In this experiment,
we store the LUBM-10 dataset in a network of 120 peers and run all possible query plans for
several LUBM queries (i.e., triple pattern permutations which do not involve any Cartesian
product).

Q2 consists of 6 triple patterns and therefore its query plan space includes 720 (i.e., 6!)
query plans. The query plans of Q2 which do not involve any Cartesian product are 335 in
total. In Figure 7.9(a), we depict the query response time of all possible query plans for query
Q2 in ascending order. The x-axis shows the query plans ordered from the query plan with
the minimum query response time to the query plan with the maximum query response time.
In the graph, we highlight the query plans chosen by the different optimization algorithms.
We observe that DA chooses one of the best query plans, while NA and SNA perform worse
choosing the 27th best query plan. NA− performs poorly choosing one the worst query plans.
The graph which corresponds to the bandwidth consumption of the query plan space of Q2
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Figure 7.10: Intermediate results for query plan space of Q2 for LUBM-10

is shown in Figure 7.9(b). Again, we observe that the the query plan chosen by the dynamic
optimization algorithm is the one that consumes less bandwidth during the query evaluation
process.

The graph in Figure 7.10 confirms the cost model presented in Section 7.2 and the as-
sumption made earlier in Section 7.1 that query response time improves by minimizing the
number of the intermediate results. For each query plan of the query plan space of Q2, we
also measured the total number of intermediate results produced at each peer. The x-axis of
the graph shows in ascending order the total number of the intermediate results produced by
each query plan, while the y-axis shows time in seconds. Apart from the query response time
(QRT) of each query plan, we also measured the total time spent by the database for joining
the intermediate results (DBT). Figure 7.10 shows how QRT and DBT change with respect to
the number of the intermediate results produced. Generally, we observe from the graph that
as the total number of the intermediate results increases both the QRT and the DBT of the
corresponding query plan deteriorates. The peaks shown in the graph are outliers caused
by the nodes of the cluster. We also observe in this graph that DBT dominates the QRT in a
cluster environment so it is very important to have an efficient local database at each peer.
However, this was not the focus of our work and hence we have chosen to use SQLite as a
simple and lightweight SQL database.

Similar results are observed for the other queries as well. In Figure 7.11, we list the query
response times for all queries of the best and the worst query plan together with the query
response time when the DA optimization algorithm is used. We observe that the QRT when
using DA is very close to the QRT of the optimal query plan for all queries. Note that without
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LUBM Query Min QRT Max QRT DA QRT

       Q2                 0.91 s           10.06 s            0.96 s

       Q4                 2.54 s           17.39 s            2.89 s

       Q7                 1.53 s           16.62 s            1.55 s

       Q8                 2.88 s           10.20 s            3.06 s

       Q9                 3.30 s           64.06 s            4.41 s

Figure 7.11: QRT of LUBM query plans
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Figure 7.12: Varying dataset size

the query plans that involve Cartesian products, the difference between the minimum and
the maximum query response time of all query plans for all queries is not very large. For
example, this difference is about 9 sec for Q2 and about 60 sec for Q9 which does not leave
room for much optimization. Certainly, this difference increases for bigger datasets but it is
still in the same order of magnitude.

7.6.3 Varying the dataset size

In this set of experiments, we study the performance of our system when varying the number
of triples stored in the network. We show results for queries Q2 and Q9 which involve a join
among three triple patterns. The optimization techniques for these queries perform differently
providing us a better comparison study. The behaviour of our system using each optimization
algorithm as the dataset stored in the network grows is depicted in Figure 7.12.
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In a network of 120 peers, we store datasets from LUBM-1 to LUBM-50. Every time we
measure the query response time of the queries using each optimization algorithm. Figure
7.12(a) shows the results for query Q2, while Figure 7.12(b) shows the results for query Q9.
As expected, the query response time increases as the number of triples stored in the network
grows in both cases. This is caused by two factors. Firstly, the local database of each peer
grows and as a result local query processing becomes more time-consuming. Secondly, since
queries Q2 and Q9 do not have a bound object or subject in a triple pattern (except for the
ones that that have predicate rdf:type), the size of their result sets increases as the dataset
stored grows. For example, in LUBM-1 the result set of query Q2 is empty, while in LUBM-50
the result set of Q2 contains 130 answers. Similarly, in LUBM-1 the size of result set of
query Q9 is equal to 134, while in LUBM-50 it is 8627. This results in transferring larger
intermediate result sets through the network which also affects the query response time of
the query.

This experiment also brings forth an interesting conclusion regarding the optimization
techniques. We observe in Figure 7.12(a) that query plans chosen by NA, SNA and DA

perform similarly up to approximately 1.8M triples stored (i.e., LUBM-10) and hence it makes
no difference on which optimization algorithm is chosen. But for bigger datasets the query
plan chosen by DA outperforms the others. This shows that the system becomes more
scalable with respect to the number of triples stored in the network when the dynamic
optimization algorithm is used. Similar results are observed in Figure 7.12(b) for query Q9
for datasets bigger than 3.8M triples (i.e., LUBM-20).

7.6.4 Varying the network size

In this set of experiments, we study the performance of our system when varying the number
of peers forming the network. We bootstrap networks of 5, 10, 30, 60, 90 and 120 peers and
store the LUBM-10 dataset. We then run the queries using all optimization techniques.

In Figure 7.13(a), we show the query response time for query Q2 as the network size
increases. We observe that QRT improves significantly as the network size grows up to 60,
while it remains almost the same for bigger network sizes. The decrease in QRT for smaller
networks is caused by the fact that more peers share the storage load in the network. The
more peers join the network the less triples are stored in each peer’s database and thus local
processing load during query evaluation is reduced. Since the dataset is relatively small,
this characteristic ceases to exist for network sizes of more than 60 peers. In this query, we
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Figure 7.13: Varying network size

Statistics Min size Max size Avg size

histograms (x6)        580 580        580

  predicate                        44                        448

       object-class                        44                        288

71.47

61.80

Total                 3568        4216 3613,27

Figure 7.14: Size of statistics per peer (bytes)

also observe that although NA, SNA choose different plans from DA their performance is
similar for network sizes up to 30 nodes. The fact that DA performs better than the other
two optimization algorithms emerges in networks consisting of more than 60 peers.

Figure 7.13(b) shows how the different queries perform as the number of peers in the
network increases and when the dynamic optimization algorithm is used. For all queries,
the query response time either improves or remains unaffected as the size of the network
increases. A good property of the DHT is observed here; although the number of peers
increases, query response time does not increase due to the logarithmic message routing.

7.6.5 RDF statistics

In this section, we study the efficiency and accuracy of the RDF statistics as well as the
overhead for creating and maintaining them in the network.

First, we present measurements concerning the size of the statistics kept by each peer. In
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Statistics time Min time Max time Avg time

database time        644 85895 29729.1

  histogram construction                 58 82352 19408.1

Total                 702 168247 49137.2

Figure 7.15: Time required for creating statistics (msec)

all our experiments, we set a space budget of 500 bytes per statistical structure per peer. This
resulted in keeping the exact statistics for the predicate and object-class values each peer.
This is typical of a large DHT network where a peer is responsible for very few predicate or
RDFS class values. All other statistics cannot fit within this space budget and are estimated
by v-optimal-end-biased histograms with 10 buckets each. Each statistical structure for the
subjects and objects is kept in a separate histogram resulting in a total of six histograms per
peer.

The table in Figure 7.14 shows the size of the generated statistics for each peer in a
network of 120 peers. Histograms always occupy the same amount of space, while the exact
statistics for predicate and object-class vary depending on the number of predicate and class
values the peer is responsible for. The total statistics kept at each peer result in a total
amount of memory of ∼ 4K which is negligible compared to the data stored at each peer’s
local database and compared to today’s powerful machines with main memory in the size of
GB.

At this point, we should note that the size of the statistics does not depend on the size
of the dataset stored in the network. The statistics for the predicate component and the
object-class component actually are affected by the RDF Schema. The RDF Schema of the
dataset actually determines an upper bound for the number of predicate values and class
values that will appear in the dataset. Therefore, as the dataset grows only the frequencies
of these values grows and not the number of values.

Figure 7.15 demonstrates the time required for creating the RDF statistics at each peer.
We present the minimum, maximum and average time from all 120 peers of the network
after having stored the LUBM-50 dataset. As we have already explained in Section 7.5,
creating statistics at each peer requires the retrieval of the statistics from the local database
and, if necessary, the construction of the corresponding histograms. In the table, we show
the time required to retrieve the statistics from the database and the total time required to
construct all the corresponding histograms. The database time depends on the number of
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Figure 7.16: Average absolute error of histograms

triples stored at each peer and thus, we observe a big deviation between the minimum and
maximum database time. In addition, the database time is more time-consuming than the
time required for the histograms construction, but still the total maximum time is in the
magnitude of 2-3 minutes.

In the following, we present measurements that justify the choice of the histograms we
used. Figure 7.16 depicts the average absolute error of three types of histograms for two
different datasets, the LUBM-1 dataset (Figure 7.16(a)) and the votes dataset (Figure 7.16(b)).
The x-axis shows each type of statistics that needs to be summarized with a histogram. For
every value vi appearing in the dataset as a component c, we have measured the real statistic
value (either frequency or distinct values) statc(vi) and the estimated statistic value ŝtatc(vi)
taken from the corresponding histogram. The absolute error of the statistic stat for value vi
appearing as a component c is equal to:

eabs(vi) = |statc(vi)− ŝtatc(vi)| (7.10)

where stat is one of {freq, ds, dp, do}. If N is the domain size of component c in the dataset,
the average absolute error is computed as:

1

N

N∑
i=1

eabs(vi) (7.11)
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The three histograms depicted in the figure are the equal width histogram (Equi-width),
the v-optimal-end-biased histogram using as a sort parameter the values of the dataset (V -
Optimal-Endbiased) and the v-optimal-end-biased histogram using as a sort parameter the
source parameter, i.e., either the frequency or the distinct values depending on the statistical
structure the histogram summarizes (V -Optimal-Endbiased-FF ). The graphs of Figure 7.16
indicate that for the subject statistics it is preferable to have an equi-width histogram. In
the the votes dataset the use of an equi-width histogram results in a smaller error while in
the LUBM-1 dataset the error is almost equal for all histograms. For collecting statistics
for the objects of the triples the v-optimal-end-biased-ff histogram summarizes better these
statistics and achieves a significantly smaller average absolute error for both datasets.

In the next set of experiments, we investigate how the size of the network affects the
summaries of the histograms. We compute the average absolute error as defined in equations
(7.10) and (7.11) for each histogram for different network sizes ranging from 1 to 120 peers
for LUBM-5. A network consisting of a single peer resembles a centralized system where a
global histogram is created from all data stored. Results for each statistical structure that
is estimated by a histogram are shown in Figure 7.17. We observe that as the number of
peers increases the error drops significantly. This shows that the more peers join the network
(i.e., more histograms created), the better the estimation becomes. As the size of the network
increases, the combination of the local estimated distributions resembles the real one. This is
caused by the fact that the overall size of the statistics in the network increases and therefore,
the estimated distributions become more precise.
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7.6.6 Discussion

We have also experimented with different datasets using the SP2B benchmark [132] as well
as a real world dataset of the US Congress vote results presented in [165]. The results were
similar to the ones observed using LUBM. For all datasets, DA consistently chooses a query
plan close to the optimal regardless of the query type or dataset stored and without posing a
significant overhead neither to the total time for answering the query nor to the bandwidth
consumed. On the contrary, the static optimization methods are dependent on the type of the
query and the dataset, which make them unsuitable in various cases (as shown earlier for
LUBM query Q9). In addition, we have also tested indexing all possible combinations of the
triples’ components, as proposed in [89]. In this case, we have used histograms at each peer
for combinations of triples’ components as well. However, we did not observe any difference in
the choice of the query plan and thus, showed results only with the triple indexing algorithm.
This results from the nature of the LUBM queries which mostly involve bound predicates
and object-classes for which we kept an exact distribution in both cases. Hence the type of
histograms used did not affect the choice of the query plans.

7.7 Summary

In this chapter we presented the query optimization techniques we have developed in Atlas.
We started by analyzing the cost of the query processing algorithm and proposed optimization
algorithms that try to minimize the size of the intermediate results produced during the query
evaluation. In this way, we achieved the optimization of our system’s performance in terms of
query response time and bandwidth consumption. We proposed techniques for the selectivity
estimation of SPARQL queries and the statistics required in a DHT environment to enable the
selectivity estimation techniques. We demonstrated that it is sufficient for a node to create
and maintain local statistics, i.e., statistics for its locally stored data. These local statistics
are in fact global statistics needed by the optimization algorithms and can be obtained by
other nodes by sending low cost messages. This is a very good property of the indexing
scheme we adopt from [32] that has not been pointed out in the literature before.

This chapter concludes the results of this thesis. In the next chapter, we highlight the
main achievements of our work and discuss open problems and possible directions for future
work.
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Chapter 8

Conclusions

In this thesis we designed and built a system for distributed RDF query processing and
reasoning in P2P networks. This chapter presents a short summary of our work and describes
our main contributions in the research field. We conclude this thesis with a discussion on
open problems and possible directions for future work.

8.1 Summary

We presented a system that is able to support full-fledged management of RDF data in a large-
scale decentralized environment. In particular, we fully designed and implemented a P2P
system, called Atlas, for the distributed query processing and reasoning of RDF and RDFS
data. In the architecture of Atlas, providers expose resource descriptions to the network
by inserting RDF(S) information to the system. Consumers want to discover resources by
submitting SPARQL queries to the system. Any node in the network can accept a request
from a provider or a consumer. All nodes in the system are equal and there is neither
centralized control nor global knowledge.

Apart from DHTs, other distributed and parallel computing platforms have been proposed
for the RDF query processing and reasoning more recently. These include distributed com-
puting platforms based on powerful clusters and cloud computing platforms using MapRe-
duce. However, these approaches demand high-end, locally deployed infrastructures whose
cost can be very high in many cases. Our work focused on a DHT-based architecture and
proposed algorithms which can be run on commodity machines deployed all over the world,
as it is the case with many other P2P applications. Our system is based on the DHT paradigm
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and uses the triple indexing scheme originally presented in [33] where each RDF triple is in-
dexed in the DHT three times, based on its subject, predicate, object. RDF data and RDFS
schemas are handled uniformly in our system, i.e., both RDF and RDFS triples are indexed
using the same scheme.

One of the main focus of our work was to enable Atlas to support RDFS reasoning. Two
well-known reasoning techniques we studied are forward chaining and backward chaining.
A forward chaining approach has minimal requirements during query answering, but needs
a significant amount of storage for all the inferred data. In contrast, the backward chaining
approach has minimal storage requirements, at the cost of an increase in query response
time. There is a time-space trade-off between these two approaches which has been studied
in centralized environments before. Our work was the first that investigated this trade-off in
detail in a distributed Internet-scale scenario.

We designed and implemented both forward and backward chaining algorithms for RDFS
reasoning in Atlas, as well as an algorithm which works in a bottom-up fashion using the
magic sets transformation technique. Our forward chaining algorithm was the first one that
dealt with an important case of generation of redundant RDF information, while our backward
chaining algorithm was the first distributed backward chaining algorithm proposed for RDFS
reasoning in a decentralized environment in general. Moreover, a magic sets transformation
technique for distributed RDFS reasoning has not been studied in the literature before. We
studied theoretically the correctness of our reasoning algorithms and proved that they are
sound and complete. We also provide a comparative study of our algorithms both analytically
and experimentally. In the experimental part of our study, we obtained measurements in the
realistic large-scale distributed environment of PlanetLab as well as in the more controlled
environment of a local cluster.

Furthermore, we presented a complete query evaluation process which is used to answer
arbitrary SPARQL queries of basic graph patterns in Atlas. The algorithm uses a query
graph for representing queries to avoid Cartesian products and is able to incorporate RDFS
reasoning with either a forward or a backward chaining manner. We have also enhanced
the query processing algorithm with a distributed mapping dictionary. As URIs and literals
may consist of long strings that are transferred in the network and processed locally at the
nodes, we can benefit from a mapping dictionary in reducing the local processing cost and the
transmission cost. Although mapping dictionaries are by now standard in centralized RDF
stores, our work was the first that discussed how to implement one in a DHT environment.

Finally, we addressed the problem of query optimization over RDF data stored on top of
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DHTs and fully implemented and evaluated a DHT-based optimizer. Although query opti-
mization has been extensively studied in the database area and is widely used in modern
DBMSs, RDF query optimization has been addressed only recently even in centralized envi-
ronments. Our optimization algorithms ranged from static to dynamic ones and focused on
minimizing the size of the intermediate results computed during query evaluation. In this
way, we achieved to decrease the time required for answering a query and the bandwidth con-
sumed during the query evaluation. Our algorithms utilized selectivity estimates to determine
a query plan that minimizes the size of the intermediate results. We also proposed methods
for estimating the selectivity of RDF queries utilizing techniques from relational databases.
We defined which statistics are required at each node of the network for the computation
of the selectivity estimates and used histograms for summarizing the distribution of these
statistics. We demonstrated that it is sufficient for a node to create and maintain local statis-
tics, i.e., statistics for its locally stored data. These local statistics are in fact global statistics
needed by the optimization algorithms and can be obtained by other nodes by sending low
cost messages. This is a very good property of the indexing scheme we adopted from [32] that
has not been pointed out in the literature before.

8.2 Future Directions

In this section we present a discussion on open problems related with our work and give
possible directions for future work. These directions are only suggestions and are not ex-
haustively discussed here.

8.2.1 Load balancing

DHTs can suffer from load imbalances [151]. Load imbalances can appear at the level of
the key distribution, i.e., keys are not evenly distributed among the nodes of the network,
and at the level of the item distribution, i.e., items are not evenly shared among the nodes.
The first phenomenon can be easily solved with a consistent hash function and by using
virtual nodes [78, 147]. The second problem occurs mainly due to data skewness. RDF
data are highly skewed since various values, and mostly properties such as rdf:type,
rdfs:label, appear very frequently in a dataset. Therefore, most DHT systems which use
the triple indexing scheme of [33] suffer from load imbalances concerning storage load. Such
a storage load imbalance can limit the scalability of the system [85].
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Load balancing methods can be distinguished to data replication and data relocation.
Applying data replication to a problem of data skewness does not usually comprise a solution,
rather it magnifies the problem by overloading more nodes than necessary. A relocation
method might be more suitable for the storage load balancing in such a setting. In [14]
the authors propose a method based on relocation and utilize overlay trees among nodes to
keep track of the relocated triples. However, many questions regarding the details and the
behavior of this algorithm remain open.

Orthogonally to the storage load, there is also the problem of overloaded nodes due to the
query processing algorithm (query load). Such a problem can occur in our system if a specific
triple pattern is very popular and is used in most queries, leading to overloading the same
node of the network. This could be solved by replicating triples to different nodes and share
the query requests among these nodes. The question that arises now is which is the right
balance between RDF data replication and relocation in a scenario where both storage and
query load requires balancing.

8.2.2 Distributed recursive queries using Datalog

Datalog has been revived recently and is used in many modern distributed applications.
In [90, 91], a variation of Datalog is used for expressing routing protocols in a simple and
compact way based on the observation that recursive query languages are very suitable for
expressing routing protocols. The implementation of the routing protocols in [90, 91] can
then be done by evaluating recursive queries in a distributed manner. In [4] a rule-based
language based on Datalog is proposed for the distributed management of Web data. The
architecture and scenario where this language can be used is introduced in [5]. One of
the main challenges the our reasoning algorithms cope with is recursive query processing
of RDF(S) data. Our proposed algorithms can be easily adapted and extended to fit in this
research field by enhancing our system to support arbitrary recursive rules.

8.2.3 RDF in the cloud

There has been an increasing interest in cloud computing techniques for many diverse do-
mains and applications lately. Cloud computing infrastructures promise to offer scalability
and reliability features more than P2P or database systems can deliver today. Our work
can form the basis for developing algorithms and techniques for RDF query processing and
reasoning in such environments. There are some recent proposals in the Semantic Web lit-
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erature which utilize the cloud computing paradigm for the management of RDF and OWL
data. As it has been proven, approaches that are based on distributed computing platforms
consisting of powerful clusters and cloud computing platforms using MapReduce, such as
[163, 166, 162], can be very scalable for computing the closure of RDF(S) graphs. However,
these approaches do not deal with the query answering problem, which is equally important.
Approaches that do deal with SPARQL query answering such as [98, 128, 104] can scale to
billions of triples, but exhibit poor performance with respect to the time required to answer
the query (i.e., query answering is in the order of hours). Thus, it is still an open question how
to achieve scalability and efficiency for SPARQL query answering as well as RDFS reasoning
using top-down approaches in such environments.
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Abbreviations

RDF Resource Description Framework
SPARQL SPARQL Protocol And RDF Query Language

P2P Peer-to-Peer
URI Universal Resource Identifier
OWL Web Ontology Language
SON Semantic Overlay Network
FC Forward Chaining
BC Backward Chaining
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Appendix A

SPARQL Queries

For completeness we include the SPARQL queries used in our experimental evaluation.

LUBM benchmark

The LUBM benchmark [48] provides synthetic datasets and a collection of 14 queries. Below,
we present the SPARQL queries we used in our experimental evaluation. A complete descrip-
tion of the benchmark can be found here http://swat.cse.lehigh.edu/projects/

lubm/.

Q1: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

PREFIX u0d0: <http://www.Department0.University0.edu/>

SELECT ?X

WHERE {

?X rdf:type ub:GraduateStudent .

?X ub:takesCourse u0d0:GraduateCourse0 .

}

Q2: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y ?Z

WHERE {

?X rdf:type ub:GraduateStudent.

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .
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?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y .

}

Q4: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y1 ?Y2 ?Y3

WHERE {

?X rdf:type ub:Professor .

?X ub:worksFor <http://www.Department0.University0.edu> .

?X ub:name ?Y1 .

?X ub:emailAddress ?Y2 .

?X ub:telephone ?Y3 .

}

Q7: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

PREFIX u0d0: <http://www.Department0.University0.edu/>

SELECT ?X ?Y

WHERE {

?X rdf:type ub:Student .

?Y rdf:type ub:Course .

?X ub:takesCourse ?Y .

u0d0:AssociateProfessor0 ub:teacherOf ?Y .

}

Q8: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y ?Z

WHERE {

?X rdf:type ub:Student .

?Y rdf:type ub:Department .

?X ub:memberOf ?Y .

?Y ub:subOrganizationOf <http://www.University0.edu> .

?X ub:emailAddress ?Z .

}

Q9: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y ?Z

WHERE {
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?X rdf:type ub:Student .

?Y rdf:type ub:Faculty.

?Z rdf:type ub:Course .

?X ub:advisor ?Y .

?X ub:takesCourse ?Z .

?Y ub:teacherOf ?Z .

}

Q12: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y

WHERE {

?X rdf:type ub:Chair .

?Y rdf:type ub:Department .

?X ub:worksFor ?Y .

?Y ub:subOrganizationOf <http://www.University0.edu> .

}

Votes dataset

The votes dataset is a real-world dataset which describes the US Congress vote results of the
2004 bills voting process (http://www.govtrack.us/data/rdf/). In our experimen-
tal evaluation, we used the following queries found here http://ldc.usb.ve/˜mvidal/
OneQL/datasets/queries/benchmark1.

Q1: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

PREFIX votes: <http://www.rdfabout.com/rdf/usgov/congress/108/senate/votes/>

SELECT ?A1 ?P1

WHERE {

?A1 vote:voter ?P1.

?A1 vote:option "NoVote".

votes:2004-69 vote:hasBallot ?A1 .

}

Q2: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

SELECT ?A1 ?P1 ?E1

WHERE {

?A1 vote:voter ?P1 .

?A1 vote:option "Aye".

?E1 vote:hasBallot ?A1 .
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}

Q3: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX people:<http://www.rdfabout.com/rdf/usgov/congress/people/>

SELECT ?E ?T ?I ?X ?J

WHERE {

?E vote:winner "Nay" .

?E dc:title ?T .

?E vote:hasBallot ?I .

?I vote:option ?X .

?J vote:option ?X .

?E vote:hasBallot ?J .

?J vote:voter people:L000174 .

}

Q4: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

SELECT ?A ?B ?C ?D

WHERE {

?A vote:voter ?B.

?A vote:option ?C.

?D vote:hasBallot ?A.

?D vote:winner ?C .

}

Q5: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

SELECT ?A1 ?P1 ?E

WHERE {

?A1 vote:voter ?P1.

?A1 vote:option "Aye".

?E vote:hasBallot ?A1.

?E vote:winner "Aye" .

}

Q6: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

PREFIX votes: <http://www.rdfabout.com/rdf/usgov/congress/108/senate/votes/>

SELECT ?P1 ?A1

WHERE {

?A1 vote:voter ?P1.

?A1 vote:option "Nay".

votes:2004-69 vote:hasBallot ?A1 .
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}

Q7: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

SELECT ?A ?B ?C

WHERE {

?A vote:voter ?B.

?A vote:option "Nay".

?C vote:hasBallot ?A .

}

Q8: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

SELECT ?A ?B ?C

WHERE {

?A vote:voter ?B.

?A vote:option "NoVote".

?C vote:hasBallot ?A .

}

Q9: PREFIX vote:<http://govshare.info/2005/rdf/vote/>

PREFIX people:<http://www.rdfabout.com/rdf/usgov/congress/people/>

SELECT ?A1 ?P1 ?A2 ?X ?E

WHERE {

?A1 vote:voter ?P1.

?A1 vote:option ?X.

?A2 vote:option ?X.

?A2 vote:voter people:L000174.

?E vote:hasBallot ?A1.

?E vote:hasBallot ?A2 .

}
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Richard Cyganiak, and Sebastian Hellmann. DBpedia - A Crystallization Point for
the Web of Data. Journal of Web Semantics: Science, Services and Agents on the World

Wide Web, 7:154–165, September 2009.

[27] Dan Brickley and Ramanathan V. Guha. Resource Description Framework (RDF)
Schema Specification 1.0. Technical report, W3C Recommendation, 2000.

Zoi Kaoudi 197

http://sleepycat.com/


Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

[28] Dan Brickley and Ramanathan V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. Technical report, W3C Recommendation, 2004.

[29] Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF Query and Transformation
Language. http://www.cs.vu.nl/ jbroeks/papers/SeRQL.pdf, 2004.

[30] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In Proceedings of the 1st

International Semantic Web Conference (ISWC 2002), Sardinia, Italy, 2002.

[31] Min Cai, Martin Frank, and Pedro Szekely. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. In Proceedings of the 4th International Workshop

on Grid Computing (Grid2003), Phoenix, Arizona, USA, 2003.

[32] Min Cai, Martin R. Frank, Baoshi Yan, and Robert M. MacGregor. A Subscribable
Peer-to-Peer RDF Repository for Distributed Metadata Management. Journal of Web

Semantics: Science, Services and Agents on the World Wide Web, 2(2):109–130, Decem-
ber 2004.

[33] Min Cai and Marting Frank. RDFPeers: A Scalable Distributed RDF Repository based
on A Structured Peer-to-Peer Network. In Proceedings of the 13th World Wide Web

Conference (WWW 2004), New York, USA, 2004.

[34] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An Efficient SQL-based RDF Querying
Scheme. In Proceedings of the 31st Very Large Data Bases Conference (VLDB 2005),
Trondheim, Norway, 2005.

[35] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan.
An Efficient SQL-based RDF Querying Scheme. In Proceedings of the 31st international

conference on Very large data bases (VLDB 2005), Trondheim, Norway, 2005.
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[101] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and Efficient Minimal RDFS.
Web Semantics: Science, Services and Agents on the World Wide Web, 7(3):220–234,
September 2009.

[102] Sergio Munoz, Jorge Perez, and Claudio Gutierrez. Minimal deductive systems for rdf.
In Proceedings of the 4th European Semantic Web Conferene (ESWC 2007), pages 53–67,
2007.

[103] Raghava Mutharaju, Frederick Maier, and Pascal Hitzler. A MapReduce Algorithm for
EL+. In Proceedings of the 23rd International Workshop on Description Logics (DL2010),
Waterloo, Canada, 2010.

[104] Jaeseok Myung, Jongheum Yeon, and Sang-goo Lee. SPARQL Basic Graph Pattern
Processing with Iterative MapReduce. In Proceedings of the 2010 Workshop on Massive

Data Analytics on the Cloud, MDAC ’10, pages 6:1–6:6, Raleigh, North Carolina, 2010.

[105] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. EDUTELLA: A P2P Networking
Infrastructure based on RDF. In Proceedings of the 11th World Wide World Conference

(WWW 2002), WWW ’02, pages 604–615, Honolulu, Hawaii, USA, 2002.

[106] Wolfgang Nejdl, Boris Wolf, Steffen Staab, and Julien Tane. In Semantic Web Workshop

2002, volume 55 of CEUR Workshop Proceedings, 2002.

[107] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz, Mario Schlosser,
Ingo Brunkhorst, and Alexander Loser. Super-Peer-Based Routing and Clustering
Strategies for RDF-Based Peer-To-Peer Networks. In Proceedings of the 12th WWW

Conference, Budapest, Hungary, May 2003.

[108] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF. In
Proceedings of 34th International Conference on Very Large Data Bases (VLDB 2008),
volume 1, pages 647–659, Auckland, New Zealand, 2008.

Zoi Kaoudi 206



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

[109] Thomas Neumann and Gerhard Weikum. Scalable Join Processing on Very Large RDF
Graphs. In Proceedings of the 35th SIGMOD international conference on Management of

data, pages 627–640, Providence, Rhode Island, USA, 2009.

[110] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. PeerDB: A P2P-based
System for Distributed Data Sharing. In Proceedings of the 19th International Confer-

ence on Data Engineering, Bangalore, India, March, 2003.

[111] Nikos Ntarmos, Peter Triantafillou, and Gerhard Weikum. Distributed Hash Sketches:
Scalable, Efficient, and Accurate Cardinality Estimation for Distributed Multisets. ACM

Transactions on Computer Systems (ACM TOCS), 27(1):1–53, 2009.

[112] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teĳe, and
Frank van Harmelen. MaRVIN: A platform for large-scale analysis of Semantic Web
data. In Proceedings of Web Science Conference, 2009.

[113] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teĳe, and
Frank van Harmelen. MaRVIN: Distributed Reasoning over Large-scale Semantic Web
Data. Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
7(4):305–316, 2009.

[114] Alisdair Owens, Andy Seaborne, Nick Gibbins, and mc schraefel. Clustered TDB: A
Clustered Triple Store for Jena. Technical Report (Unpublished), 2008.

[115] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. nSPARQL: A Navigational Lan-
guage for RDF. In Proceedings of the 7th International Conference on The Semantic Web

(ISWC 2008), Karlsruhe, Germany, 2008.

[116] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. ACM Transactions on Database Systems, 34:16:1–16:45, 2009.

[117] Theoni Pitoura and Peter Triantafillou. Load Distribution Fairness in P2P Data Manage-
ment Systems. In Proceedings of the 21st Interntational Conference on Data Engineering

(ICDE 2007), Tokyo, Japan, 2007.

[118] Viswanath Poosala, Yannis Ioannidis, Peter Haas, and Eugene Shekita. Improved
Histograms for Selectivity Estimation of Range Predicates. In ACM SIGMOD 1996,
1996.

Zoi Kaoudi 207



Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

[119] Eric Prud’hommeaux and Andy Seaborn. SPARQL Query Language for RDF. W3C
Recommendation http://www.w3.org/TR/rdf-sparql-query/, 2008.

[120] Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with SPARQL.
In Proceedings of the 5th Extended Semantic Web Conference (ESWC 2008), Tenerife,
Spain, 2008.

[121] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A Scalable Content-addressable Network. In Proceedings of the ACM SIGCOMM ’01

Conference, San Diego, California, August 2001.

[122] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in
a DHT. In USENIX Annual Technical Conference, 2004.

[123] Sean Rhea, Byung gon Chun, John Kubiatowicz, and Scott Shenker. Fixing the Em-
barrassing Slowness of OpenDHT on PlanetLab. In Proceedings of the 2nd conference on

Real, Large Distributed Systems (WORLDS’05), pages 25–30, San Francisco, CA, 2005.

[124] Patricia Rodrı́guez-Gianolli, Anastasios Kementsietsidis, Maddalena Garzetti, Iluju
Kiringa, Lei Jiang, Mehedi Masud, Renée J. Miller, and John Mylopoulos. Data shar-
ing in the Hyperion peer database system. In Proceedings of the 31st international

conference on Very large data bases, VLDB ’05, pages 1291–1294, Trondheim, Norway,
2005.

[125] Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object Location
and Routing for Large-Scale- Peer-to-Peer Storage Utility. In Proceedings of the 3rd

IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001),
Heidelberg, Germany, 2001.

[126] Manuel Salvadores, Gianluca Correndo, Tope Omitola, Nick Gibbins, Steve Harris, and
Nigel Shadbolt. 4s-reasoner: RDFS Backward Chained Reasoning Support in 4store.
In Web-scale Knowledge Representation, Retrieval, and Reasoning (Web-KR3), Toronto,
Canada, 2010.

[127] Stefan Saroiu, Krishna Gummadi, and Steven Gribble. A Measurement Study of Peer-
to-Peer File Sharing Systems. In Proceedings of Multimedia Conferencing and Network-

ing, San Jose, CA, January 2002.

Zoi Kaoudi 208

http://www.w3.org/TR/rdf-sparql-query/


Distributed RDF Query Processing and Reasoning in Peer-to-Peer Networks

[128] Alexander Schatzle, Martin Przyjaciel-Zablocki, and Georg Lausen. PigSPARQL: Map-
ping SPARQL to Pig Latin. In Proceedings of the International Workshop on Semantic

Web Information Management, SWIM ’11, pages 4:1–4:8, Athens, Greece, 2011.

[129] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Neĳdl. A Scalable and
Ontology-Based P2P Infrastructure for Semantic Web Services. In 2nd IEEE Interna-

tional Conference on Peer-to-Peer Computing, 2002.

[130] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. HyperCuP -
Hypercubes, Ontologies and Efficient Search on Peer-to-peer Networks. In Agents and

Peer-to-Peer Computing, volume 2530. Springer, May 2003.

[131] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg Lausen, and Christoph
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