
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES PROGRAM

MASTER THESIS

Application Cost-aware Cloud Provisioning

Alexandros Antoniadis

Supervisor: Alex Delis, Professor NKUA

ATHENS

SEPTEMBER 2013

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ∆ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ∆ΩΝ

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Παροχή Εφαρµογών µε Περιορισµούς Κόστους

σε Υπολογιστικά Νέφη

Αλέξανδρος Αντωνιάδης

Επιβλέπων: Αλέξιος ∆ελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2013

MASTER THESIS

Application Cost-aware Cloud Provisioning

Alexandros Antoniadis

RN: 1097

SUPERVISOR:

Alex Delis, Professor NKUA

THESIS COMMITTEE:

Alex Delis, Professor NKUA

Mema Roussopoulos, Assistant Professor NKUA

September 2013

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Παροχή Εφαρµογών µε Περιορισµούς Κόστους

σε Υπολογιστικά Νέφη

Αλέξανδρος Αντωνιάδης

ΑΜ: 1097

ΕΠΙΒΛΕΠΩΝ

Αλέξιος ∆ελής, Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Αλέξιος ∆ελής, Καθηγητής ΕΚΠΑ

Μέµα Ρουσσοπούλου, Επίκουρη Καθηγήτρια ΕΚΠΑ

Σεπτέµβριος 2013

Περίληψη

Οι πλατφόρµες νέφους επιτρέπουν στους ιδιοκτήτες εφαρµογών την ενοικίαση πόρων, προκειµέ-

νου να επεκτείνουν δυναµικά τη συνολική υπολογιστική ισχύ των υποδοµών τους. Η ποικιλία

των χαρακτηριστικών των πόρων αυτών καθώς και της τιµής µίσθωσης τους είναι συνήθως

µεγάλη. Οι πάροχοι νέφους, επίσης, οφείλουν να διασφαλίζουν την ποιότητα της υπηρεσίας

(Quality of Service) µέσω εγγυήσεων (Service Layer Agreements) και είναι υποχρεωµένοι

να πληρώσουν ποινή κάθε ϕορά που µια τέτοια εγγύηση παραβιάζεται. Επιπλέον, οι περισ-

σότερες από τις εφαρµογές που ϐασίζονται στο νέφος προσφέρουν και αυτές τέτοιου είδους

εγγυήσεις στους χρήστες.

Σε ένα δυναµικό περιβάλλον, όπου ο χρήστης εκτελεί µια εφαρµογή στο ιδιωτικό νέφος

και µπορεί να προσθέσει ή να αφαιρέσει κόµβους από έναν πάροχο νέφους (δηµόσιο νέφος)

2 διαφορετικά είδη SLAs υπάρχουν (i) το SLA που προσφέρεται από την εφαρµογή στους

τελικούς χρήστες και (ii) το SLA που προσφέρεται από τους παρόχους νέφους στην εφαρµογή.

΄Ετσι, µια ποινή που καταβάλλεται για παραβίαση ενός SLA από την εφαρµογή στους τελικούς

χρήστες µπορεί να είναι χαµηλότερη αν ενας πάροχος δηµόσιου νέφους πληρώνει ποινή σε

περίπτωση που το SLA αυτό παραβιάζεται επίσης. Αυτή η ιδιότητα καθιστά τον υπολογισµό

του συνολικού κόστους λειτουργίας περίπλοκο αλλά επεκτείνει και το χώρο αναζήτησης των

διαφορετικών επιλογών που µπορεί να έχουν χαµηλότερο συνολικό κόστος.

Σε αυτήν τη διπλωµατική παρουσιάζουµε έναν αλγόριθµο παροχής πόρων για NoSQL

εφαρµογές, που στοχεύει στην ελαχιστοποίηση του συνολικού κόστους µιας εφαρµογής νέ-

ϕους λαµβάνοντας υπόψη τις ιδιότητες ελαστικότητας της εφαρµογής αυτής σε ένα ετερογενές

περιβάλλον και είναι ϐασισµένος σε ‘‘look-ahead’’ ϐελτιστοποίηση.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεµηµένα Συστήµατα

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : παροχή πόρων, πλατφόρµες νέφους, NoSQL–ϐασεις δεδοµένων, µοντέλο

απόδοσης, ελαχιστοποίηση κόστους

Abstract

Cloud computing platforms allow application owners to rent resources in order to expand

dynamically the overall computational power of their infrastructure. The variety of the

resources and their lease price is usually big. Moreover, cloud providers ensure the high

Quality of Service (QoS) through Service Layer Agreements (SLAs) and they are obligated

to pay a penalty each time these agreements are violated. In addition, most of the cloud-

based applications also offer an SLA to the users.

In a dynamic environment, where a user is running an application on her private cloud

and may add or remove nodes from a cloud provider (public cloud), 2 different types of

SLAs exist (i) the SLA offered by the application to the end users and (ii) the SLA offered

by the cloud providers to the application. Thus, a penalty that is paid for an SLA violation

from the application to the end users might be lower than the one stated, if a public cloud

provider pays back a penalty in case its SLA is also violated. This property makes the

calculation of the total operational cost complex, but also expands the search space of

different choices that may have lower total cost.

In this thesis we present an application-cost aware resource provisioning algorithm for

NoSQL applications that aims to minimize the total cost of a cloud application by taking

into account the elasticity properties of that application in a heterogeneous environment

and is based on look-ahead optimization.

SUBJECT AREA: Distributed Systems

KEYWORDS: resource provisioning, cloud platforms, NoSQL–databases, performance

model, cost minimization

I dedicate this thesis to my nephew Orestis Antoniadis.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Alex Delis for his

continuous cooperation, constant guidance, encouragement and help through this thesis.

I would also like to thank assistant Prof. Mema Roussopoulos for her useful comments,

suggestions and contribution to this thesis.

Contents

1 Introduction 13

2 Significant factors in provisioning 16

2.1 Opportunistic Use of Public Clouds . 16

2.2 Transitions . 16

2.3 Cluster Heterogeneity . 17

3 Performance model 18

3.1 Profiling Experiments . 19

3.2 Forecasting Models . 21

4 Look-Ahead Optimization 25

4.1 Receding Horizon Control (RHC) . 25

4.2 Selecting the Time-Window Period . 26

4.3 Resource Provisioning Algorithm . 27

5 Evaluation 31

5.1 Our Cost Model vs. SLA-Cost Minimization 31

5.2 The Effect of Transition Cost . 34

5.3 Long vs. Short Workload Spikes . 35

5.4 Time-Window Impact . 36

6 Related work 37

7 Conclusions 38

Acronyms 39

References 40

Figures

1.1 Provisioning Overview . 15

3.1 Throughput: Operations per second over VMs # and CPU–cores 18

3.2 Throughput: Operations per second over RAM 19

3.3 DROP over VMs # . 21

3.4 DROP over CPU–cores . 22

3.5 DROP over RAM . 23

5.1 RHC with our Cost Model . 32

5.2 RHC with SLA Cost Minimization . 33

5.3 Our Provisioning Approach with Lower Transition Cost 34

5.4 Long and Short Workload Spikes . 35

5.5 Execution Time of our RHC Provisioning Algorithm (log-scale) 36

Tables

3.1 Transition cost values . 24

5.1 VM specifications . 32

Algorithms

4.1 Provisioning Best-Plan . 27

4.2 Partial Cost . 29

4.3 Cluster Configuration Cost . 29

12

Application Cost-aware Cloud Provisioning

Chapter 1

Introduction

Cloud-Service Providers (CSPs) dynamically offer computational and storage resources so

that users can experience timely execution of their applications regardless of the load

and queued jobs the infrastructure has to handle [14, 24]. CSPs have the freedom to

calibrate both type and number of allotted resources at different points in time so that in-

coming workloads are handled with success. In such settings, QoS guarantees regarding

performance aspects such as response time, throughput, and service availability can be

provided to user applications through the use of SLAs. When SLA violations occur, mone-

tary penalties are accrued for the CSP directly affecting its revenue and more importantly,

its reputation [21].

Untimely provisioning by a CSP of its own internal (or private) resources can lead to

depressed leasing costs that ultimately prevent application QoS-requirements from being

met. Moreover, applications demonstrate widely varying and occasionally unpredictable

workloads that change over time [18]. Resources needed by an application might change

either periodically (i.e., high peak hours or days) or irregularly (i.e., flash crowds that

cause sudden, significant depletion of resources [22]). A CSP could address internal

resource shortages by soliciting additional resources that are available just-in-time from

external or public CSPs. Dynamic allocation/deallocation of cloud resources might help,

but frequent workload changes may lead to deployment thrashing as overheads incurred

by the additions/removals of resources may outweigh any short-term benefits gained. To

make matters more complicated, pricing for leasing equivalent resources from public CSPs

continuously fluctuates and must be taken into consideration to identify an allocation

with minimum cost. As a result of all of the above factors, resource allocation is not a

straightforward task and has thus attracted attention from the research community [6,

18,19].

In this thesis, we investigate the problem of provisioning a popular class of cloud

applications collectively known as NoSQL-databases [1, 2, 15]. Their key characteristic

is that they can scale their performance as they offer horizontal partitioning of data in

a shared-nothing fashion (e.g., sharding) [7]. This feature has propelled their use in

databases in computational settings that require on-demand resource allocation including

web-portals, big-data processing and CRM-systems [23,25].

NoSQL-databases are typically designed to provide availability and fault tolerance by

Alexandros Antoniadis 13

Application Cost-aware Cloud Provisioning

replicating their data multiple times on different nodes across a cluster. The notion of

cluster here is that of a set of network-connected machines possibly with different specifi-

cations. As nodes arrive at or depart from the cluster, (e.g., because of energy concerns),

replicas have to be respectively expanded or contracted so that availability remains intact.

Such ‘‘transitions’’ however expend computational, storage, and network resources and

thus, do not occur instantly. The latter is a key aspect that one has to consider when

it comes to NoSQL-database provisioning and possibly soliciting resources from public

CSPs.

We present a resource provisioning approach that exploits the pricing models of the

available resources as well as the cost imposed by potential movements of shards. We

aim to minimize the total cost of a cloud application by using look-ahead optimization for a

limited time-window. Fig. 1.1 depicts the key operating aspects of our suggested approach.

The private CSP delegates the selection of resources needed to run an application to the

look-ahead provisioning algorithm that oversees the minimization of the total cost. As a

result, parts of the application may be ‘‘tossed out’’ to public CSPs to expedite processing.

Our approach has two main phases. The first phase consists of profiling the applica-

tion so that a performance model for the execution of the application in specific sample

cluster configurations is built; a cluster configuration consists of a specific combination of

machines that form a cluster. Several executions of the application on different cluster

configurations are needed to stress the application and build a performance model for it.

The performance model is needed to estimate the behavior of the application on future

cluster configurations. Although the creation of a performance model is a costly task in

terms of time, it is required just once. The second phase requires the following pieces of

information (Fig. 1.1): i) the performance model, ii) the application SLAs, iii) the prediction

of the upcoming workload, and iv) the available resources from the private and/or public

CSPs. Using this information, the resource provisioning algorithm designates which of the

available resources should be added and which of the existing ones should be removed so

that the cost of the private CSP remains at a minimum.

In this thesis, we make the following three contributions:

1) We expose key provisioning factors: We present factors that should be considered in

provisioning as they affect the private CSP cost either directly or indirectly. We develop

a comprehensive cost model to account for all expenses involved. In our cost model, we

include penalties that have to be ‘‘paid back’’ by public CSPs should the last renege on

their own SLAs. We also introduce the transition cost needed to re-host a portion of an

application and examine how this affects the total cost. We ascertain the value of transition

costs through experimentation, outline the difficulties for building a performance model

for an application that runs on the cloud where there is large diversity in resources, and

Alexandros Antoniadis 14

Application Cost-aware Cloud Provisioning

Figure 1.1: Our approach considers application profiling, SLAs, and hints on upcoming

workload to potentially ‘‘toss out’’ portions of NoSQL-database(s) to resources from public
CSPs.

propose an approach to address this problem.

2) We formulate CSP cost optimization: We address the NoSQL-databases provisioning

problem from the perspective of the private CSP hosting the database. Using our com-

prehensive cost model, we achieve gains through a collaborative approach in which the

just-in-time use of resources from public CSPs is exploited. We focus on minimizing the

private CSP ’s cost and we benchmark our method against the conventional and widely

used approach of minimizing penalties due to SLA violations. Our evaluation shows ag-

gregate gains of approximately 29% for our approach in the conducted experiments.

3) We introduce a look-ahead optimization–based provisioning approach: We study the

benefits of using a look-ahead optimization approach on the specific resource provision-

ing problem compared to other approaches (e.g. [26]), such as thrashing avoidance [18].

We analyze the role the time-window parameter plays in the proposed algorithm, which

essentially designates the depth of the search space examined to find an optimal solution.

We experimentally evaluate the performance overheads for varying length time-windows

and demonstrate that although the complexity of our algorithm is exponential, the execu-

tion time is short for reasonably-sized time-windows.

Our thesis is organized as follows: In Section 2, we analyze the salient factors that

affect the provisioning problem. In Section 3, we describe profiling and the techniques we

use to create a predictive model for the cluster. In Section 4, we present our look-ahead

provisioning algorithm. In Section 5 we present a detailed, experimental evaluation of our

algorithm. In Section 6 we compare our work with prior related studies and in Section 7,

we conclude the thesis.

Alexandros Antoniadis 15

Application Cost-aware Cloud Provisioning

Chapter 2

Factors in Provisioning

In this section, we discuss the key factors that should be considered in the provisioning

of NoSQL-databases in a private/public CSP context.

2.1 Opportunistic Use of Public Clouds

When private CSPs rent additional machines from public CSPs to auto-scale NoSQL-

databases, they form ‘‘clusters’’ of virtual infrastructures that go beyond what they have

available locally. This may transparently offer substantial benefits to users as they see

their applications ‘‘grow’’ without necessitating the purchase of new machinery but only

the occasional leasing of resources. This leasing highly depends on i) the specification

of the machine(s) needed, and ii) the SLA that the public CSP offers for the request. Dif-

ferences between nodes that belong to public clouds from those in a private CSP include

the following: 1) public CSP nodes have a rental/lease cost while private nodes have an

operational cost that entails both energy and maintenance costs, and 2) a public cloud

has to compensate the private cloud in the form of monetary penalty or pay-back anytime

an SLA is violated. Imposed penalties on public CSPs indirectly affect the cost calculation

that a NoSQL-database host has to pay to a user should SLA violations be certified. Thus,

the entire amount of penalty is not exclusively paid out by the private CSP running an

application. This is a critical factor that should be taken into account when designing

a resource provisioning algorithm. When choosing a public cloud, the algorithm should

take into account not just the leasing cost but also the SLA offered by each public cloud.

2.2 Transitions

Every node addition to or removal from a NoSQL-database does not happen instantly.

The time it takes for a new node to become operational in a cluster or an operating node

to cease operation may range from a few milliseconds to several minutes or hours. A

newly instantiated node might need to deploy software artifacts, edit property files and/or

start groups of services. Also, in NoSQL-databases, a node addition means that data

will typically be shipped and replicated over the network. Apart from any requisite data

transfer, the cluster may need to update its own internal data structures and indices to

Alexandros Antoniadis 16

Application Cost-aware Cloud Provisioning

reflect the new state. For example, if record r is replicated from nodeA to nodeB, the cluster

has to be made aware that the record now also exists on nodeB as well.

The requisite operations described above for a new node to become operational in a

cluster or an operating node to cease operation may range from a few milliseconds to

several minutes or hours. These operations consume resources from both the new node

and the old nodes. In particular, simply replicating data implies heavy use and potentially

major overheads in terms of CPU-cycles, network bandwidth, memory and disk. If the

above operations are not carefully considered in the provisioning decision, they could

move the cluster into an unstable state; instability should be avoided at all costs. In our

work, we define the load that a possible transition will incur on the cluster as a set of

operations per time unit for a period (i.e., workload). In our experiments, we show that we

can model the transition cost as a workflow with certain duration and equal operations

per second throughout that duration.

2.3 Cluster Heterogeneity

Cloud infrastructure typically exhibits significant heterogeneity in terms of CPU, memory,

disk(s) and NICs of cloud infrastructure nodes [20,21]. This is due to private CSPs incre-

mentally upgrading their internal machinery as well as public CSPs competing against

each other and frequently changing their rental offerings to better match clients’ re-

quests [28]. An adaptive cloud-based application that aims to exploit the best out of

the available resources should leverage the heterogeneity of cloud machines accordingly.

For example, machines with fast CPUs should be preferred for computationally intensive

operations while less powerful machines can be used for applications with ample slack

time before they come close to violating their SLA(s). This implies that it is harder to

create a performance model to estimate future performance outcomes in a heterogeneous

environment. In our work, we handle this problem by profiling NoSQL-databases such as

the elasticsearch [1] under different cluster configurations. We use linear regression and

support vector regression to predict performance metrics of future deployment outcomes

such as estimated throughput and expected percentage of operations with latencies that

violate the SLA of the application.

Alexandros Antoniadis 17

Application Cost-aware Cloud Provisioning

Chapter 3

Building an Application Performance

Model

To effectively decide which nodes will be part of a cluster, we want to successfully estimate

the behavior of the purported configuration once provisioning takes place. We accomplish

this by creating a performance model for the NoSQL-database under deployment. In this

way, we can estimate the cost of a newly introduced configuration as SLA violations can

be traded off with leasing costs from public CSPs.

Predicting the performance of the NoSQL-databases with reasonable accuracy is key to

our provisioning method. As analytic models based on queueing theoretic techniques [9,

11] are unable to completely capture the operational behavior of applications, we resort

to an empirical modeling approach.

 2
 3

 4
 5

 6 2
 4

 6
 8

 10
 12

 14
 16

 10500

 11000

 11500

 12000

 12500

 13000

Operations/Time

VMs #

CPU cores

Operations/Time

 10500

 11000

 11500

 12000

 12500

 13000

 13500

Figure 3.1: Throughput: Operations per second over VMs # and CPU–cores

Our approach has two stages. It first carries out stress-tests on different cluster

configurations for the NoSQL-database at hand in a similar fashion to that of [17]. This

information collection is done offline and imposes no penalties at run time. It then creates

Alexandros Antoniadis 18

Application Cost-aware Cloud Provisioning

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 5 10 15 20

O
p
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 u

n
it

RAM (GB)

Operations per time unit

Figure 3.2: Throughput: Operations per second over RAM

a forecasting model to offer suggestions based on data collected and uses linear regression

and support vector regression to predict the performance of future cluster configurations

to determine whether tossing NoSQL-databases out to public CSPs is beneficial.

3.1 Profiling Experiments

We use a modified version of the Yahoo! Cloud Serving Benchmark (YCSB) [8] to profile

elasticsearch v0.20.6, a popular NoSQL-database that uses data sharding [7] to distribute

horizontal partitions of data to different VMs. elasticsearch v0.20.6 tends to distribute all

the shards equally to all of the nodes that participate in the cluster. Here, we vary the

number of CPU–cores, CPU–frequency, memory, and number of VMs.

In the standard YCSB edition, a client either creates or joins an existing cluster of

nodes. Hence, it is likely that at least a portion of the requested data may reside in

a shard located on the client’s VM. This is surely an unusual setting as in cloud envi-

ronments, the back-end components handling data are often separate from application

clients. elasticsearch features non-data nodes that can function as load-balancers. In

our modified YCSB, a client simply connects to a load-balancer node to access data in all

shards dispersed throughout the network. This layout better reflects pragmatic deploy-

ments of NoSQL-databases.

Alexandros Antoniadis 19

Application Cost-aware Cloud Provisioning

We perform a number of YCSB runs on elasticsearch with different targeted through-

put in clusters with up to 6 nodes and a single load-balancer node while varying the num-

ber of CPU–cores, CPU–frequency, memory, and number of VMs. We added 3,000,000

records in the elasticsearch database and then performed 500,000 GET operations fol-

lowing a uniform distribution based on the record ID. We measured the following:

- throughput of each cluster configuration,

- percentage of operations per time unit that violates SLAs; we term this as DROP:

delayed response operations percentage,

- transition cost and delay for data–node addition/removal.

We assume that a request completing in more that 5ms generates an SLA violation. For

brevity, we omit showing the profiling experiments for CPU–frequencies. In general, the

CPU–frequency profiling results follow similar trends with those of RAM. Below, we outline

the key findings from profiling the above YCSB database in a private CSP.

•Throughput: Fig. 3.1 shows that as VMs are added, throughput increases almost linearly.

The same behavior is observed for CPU–cores as more GET operations can be handled.

Similar trends are depicted in Fig. 3.2, as far as varying the size of RAM is concerned.

It is worth noting here that throughput is affected less by RAM and CPU–frequency as

GET operations scale out better (i.e., adding more VMs) than scaling up (i.e., increasing

memory and CPU–frequency).

•DROP: Results for requests missing their SLAs are not as clear cut as those of throughput.

Fig. 3.3 reveals that the resulting DROP maintains high margins between the average

value and the maximum and minimum values attained as we increase the number of

VMs. Similar observations hold for DROP rates while varying CPU–cores and RAM in

Figs. 3.4 and 3.5; they demonstrate behavior with no clear trends. Thus, the above three

profiling view-graphs cannot lead to any strong conclusions regarding DROP prediction.

•Transition Cost and Delay: We have performed experiments where we added or removed

data–nodes and monitored how the throughput of the cluster was affected. In these

profiling experiments, we ascertained that the transition cost (i.e., transporting shards) is

almost independent of the configuration of the nodes that participate in the cluster and

mostly depends on the network bandwidth.

Profiling experiments are applicable to both private and public CSPs and help us derive

effective forecasting models for resource provisioning.

Alexandros Antoniadis 20

Application Cost-aware Cloud Provisioning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6

d
e
la

y
e
d
-r

e
s
p
o
n
s
e
 o

p
e
ra

ti
o
n
s
 %

VMs #

Min delayed-response oper. %

Max delayed-response oper. %

Avg delayed-response oper. %

Figure 3.3: DROP over VMs #

3.2 Forecasting Models

Our forecasting model takes as input a set of VMs to be possibly incorporated into the

operational cluster along with a number of parameters that include: i) public CSPs from

which to lease the VMs, ii) CPU–cores, iii) CPU–frequency, iv) size of RAM, v) number

of VM nodes. The outcome of the forecasting model states how the re-aligned cluster

would perform should the additional VMs from the public CSPs be included as part of the

cluster. The output of the model consists of the following anticipated rates and/or values:

I) throughput rate, II) DROP rate, as well as III) transition cost, duration, and delay. Below,

we discuss how we deliver these three rates and costs.

The outcome of our black-box profiling yields selected measurements for specific coor-

dinate values in a multidimensional space. If we knew every possible value in this space,

we would be able to derive the best solution for a given provisioning. However, this is

infeasible, so we use approximate estimation methods to produce the output rates/values

of the model. More specifically, we use predictive techniques [10,12] to estimate expected

rates for throughput and DROP. These techniques need an adequate size of training data

to be well calibrated. Moreover, the training set has to consist of a representative sample

of cluster configurations to both accurately predict the future and successfully remove

outliers. We experimented using the RapidMiner [3] to ascertain the advantages and

Alexandros Antoniadis 21

Application Cost-aware Cloud Provisioning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d
e
la

y
e
d
-r

e
s
p
o
n
s
e
 o

p
e
ra

ti
o
n
s
 %

CPU cores

Min delayed-response oper. %

Max delayed-response oper. %

Avg delayed-response oper. %

Figure 3.4: DROP over CPU–cores

disadvantages of various predictive techniques and we have identified the following two

options to respectively estimate throughput and DROP rates:

I) Linear Regression for Throughput: Fig. 3.1 clearly shows that the cluster throughput

increases linearly with the number of VMs and/or CPU–cores. Consequently, using linear

regression to estimate throughput rates for cluster configurations that have not been

evaluated in the stress-test profiling phase is the apparent choice. In contrast, the addition

of RAM in the cluster leads to less discernible gains for throughput (Fig. 3.2). A similar

trend to that of RAM occurs with CPU–frequency as well. While using linear regression for

throughput estimation, we place less importance on the RAM and CPU–frequency values

than the number of VMs and CPU–cores used by using appropriate weights; the latter are

computed during the fitting process.

II) Support Vector Regression (SVR) for DROP Rate: Fig. ?? collectively reveals that

although the average DROP rate decreases as the values of input variables increase,

the minimum-to-maximum range for resulting DROP values remains large. There are

undoubtedly complex relationships between the five input variables and the expected

DROP rate that are impossible to capture using linear estimation techniques. The presence

of multidimensional variables along with their complex relationships makes the Support

Vector Regression (SVR) approach suitable for our case as it can more effectively predict

the DROP rate.

Alexandros Antoniadis 22

Application Cost-aware Cloud Provisioning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20 22

d
e
la

y
e
d
-r

e
s
p
o
n
s
e
 o

p
e
ra

ti
o
n
s
 %

RAM (GB)

Min delayed-response oper. %

Max delayed-response oper. %

Avg delayed-response oper. %

Figure 3.5: DROP over RAM

SVR maps data from their own original space into a higher–dimension feature space

and then computes an optimal regression function in this new feature space [27]. This

data transformation is carried out through the mapping: v → ϕ(v), where v = (v1, v2, . . . , vn)

is a vector of independent variables; in our case, v represents the n values of our input

variables1
making up a single data point. The mapping is assisted by kernels that essen-

tially bypass the explicit use of ϕ(.) to transform data to the new feature space. Kernels

are realized as the dot product of two vectors i and j in the feature space as follows:

k(vi, vj) = ϕ(vi) · ϕ(vj) Among popular non–linear kernels, we use the Gaussian Radial

Basis Function (RBF) as the DROP rate depicts non-linear behavior and RBF proves to be

the most accurate. The RBF kernel is: k(xi, xj) = ϕ(xi) · ϕ(xj) = e−γ‖xi−xj‖
2

, where γ is

an adjustable positive variable.

III) Using additional VM (s) from possibly different public CSPs involves a delay that is

required to ship a shard to the designated VM (s). This transition can be expressed as a

function over time as follows:

transition(t) =

0 t ∈ [0, delay]

tr_overhead t ∈ (delay, T]

1
In particular, five values corresponding to (i) public CSPs used, (ii) CPU-{cores, (iii) CPU-{frequency, (iv)

size of RAM and (v) number of VMs.

Alexandros Antoniadis 23

Application Cost-aware Cloud Provisioning

Table 3.1: Transition cost values

Variable Value

Dstartup 3 sec

Dshutdown 2 sec

overhead_per_shard 1200 oper/sec

duration_per_shard 1.5 sec

total_shards 10

where delay = Dstartup|shutdown, T = delay + tr_duration,

tr_duration = duration_per_shard * moved_shards,

tr_overhead = overhead_per_shard * moved_shards and

moved_shards = max(added_nodes * (total_shards / new_cc_nodes),

removed_nodes * (total_shards / cc_nodes)).

In the above, Dstartup|shutdown represents the fixed time that a VM takes to either start up or

shut down, moved_shards is the number of shards (horizontal partitions of the database)

to be moved when the cluster configuration changes, added_nodes and removed_nodes are

the number of the nodes added to or removed from the cluster configuration respectively,

new_cc_nodes and cc_nodes are the number of the nodes in the new and current cluster

configurations respectively, total_shards is the number of shards involved in the NoSQL-

database, duration_per_shard is the overhead, in seconds, that each moved shard adds

and duration_per_shard is the overhead in operations per second that each moved shard

generates.

Table 3.1 shows average values of key factors as generated during the exploratory pro-

filing process discussed in the previous section (i.e., Transition Cost and Delay). Multiple

experiments yield invariable values indicating constant overhead behavior.

Alexandros Antoniadis 24

Application Cost-aware Cloud Provisioning

Chapter 4

Look-Ahead Optimization for CSPs

Our main objective is to identify the least expensive combination of nodes that collectively

satisfies the constraints imposed by the cloud applications(s). These constraints can be

either strong (i.e., calling for SLA penalty minimization) or weak (i.e., seeking to lower the

CSP expenses). Either way, the selection of VMs and the identification of a ‘‘cluster’’ to be

used highly depend on the current configuration on which the application runs as well as

its anticipated workload characteristics. [20] showed that service provisioning is NP-hard

and suggested heuristics to prune the solution space by limiting either the depth of the

ensued search tree or the time period within which a viable solution is sought.

We employ Look-Ahead Optimization (LAO) because it helps identify a (sub)optimal

selection of a new cluster configuration by examining all possible paths that are feasible

at a specific point in time. Our approach uses the current state of affairs but also seeks to

optimize future states. This presents advantages as LAO takes a long-term approach that

better facilitates the optimization strategy in a dynamic CSP environment where factors

including cost-changes and application workload variations are the norm. Approaches

such as [19] and [26] address the provisioning problem by respectively following an integer

linear programming or a constraint satisfaction approach. In doing so, these approaches

do not consider valuable information emanating from application workload predictions.

As in [19], we assume an accurate predictor for workload characterization.

4.1 Receding Horizon Control (RHC)

Receding Horizon Control (RHC) is a LAO–method that iteratively solves an optimization

problem for a fixed time interval while taking into account current and future constraints;

it has been used for resource provisioning [18] and geographical load–balancing [16,29].

RHC functions in a recurrent fashion as follows:

S1) At time k, find an optimal solution for the specific and fixed–period [k, k + T] while

considering current allocations and forthcoming constraints.

S2) Apply only the first element of the above optimal sequence.

S3) Shift time t to k + 1 and repeat the process for the interval [k + 1, . . . , k + T + 1].

Should there be no (other) external factors that affect the cost computation of the solution

sought in step S1 above, the RHC finds the optimal solution for the given time-window T .

Alexandros Antoniadis 25

Application Cost-aware Cloud Provisioning

Let us assume that:

A1) J represents the sum of the operational/leasing cost of the VM resources placed in

a cluster from both private and public CSPs the costs of incurred SLA violations and

public CSP pay-backs, and the imposed transition cost for a unit of time,

A2) xt represents the state of cluster in terms of a set of allotted resources at time t,

A3) ut entails all feasible transitions to reach a new cluster configuration at time t; this

set of transitions involves additions or removals of VMs,

A4) {xt} is the sequence of all states generated in the period k. . . t,

A5) {ut} is the sequence of all transitions that have taken place within period k. . . t,

A6) xi+1 = f(xi, ui) for i = k, . . . , k + T , where f is the function that maps a state xt to

the next xt+1 according to ut input choices available at time t,

A7) cost({xi}, {ui}) =
∑i=k+T

i=k J(xi, ui) represents the cumulative cost incurred while

following the {xi} sequence with the corresponding {ui} sequence and J is the cost

function defined above in A1.

In step S1 of the RHC, we identify the optimal solution as the one that provides:

costopt = min cost({xt}, {ut}) (4.1)

The solution of the above optimization problem leads to a sequence of suggested cluster

configurations {xk, ..., xk+T} and a respective sequence of transitions {uk, ..., uk+T} that

eventually take place. The sequence {xk, ..., xk+T} corresponds to a path having the min-

imum cumulative cost in the time–window elapsed between k . . . k + T .

4.2 Selecting the Time-Window Period

The time-window is a fundamental RHC parameter as it designates the depth in which a

solution is to be searched and presents a number of trade-offs. On the one hand, a short

window might miss a number of good long-term changes if it cannot capture significant

future workload changes. On the other hand, a long time-window affects the execution

time of the algorithm as it may introduce exponential complexity. In general, a good choice

for time-window length should be able to capture at least a few complete transitions in the

make up of a cluster as well as pertinent overheads. Any benefits in the operation of a re-

aligned cluster will be reaped after the transition eventuates. Hence, it is also imperative

that the time-window be a function of the duration of the transitions. An application that

appears to have transitions with long durations requires lengthier time-windows than an

application that changes its configurations more rapidly. We experimentally assess the

impact of this time-window choice in Section 5.

Alexandros Antoniadis 26

Application Cost-aware Cloud Provisioning

4.3 Resource Provisioning Algorithm

In this section, we present our RHC-based resource provisioning approach. Algorithm 4.1

recursively determines the cost as well as the entire sequence of cluster configurations

generated within the time-window [start_time, end_time] that imposes minimum cost for

the private CSP (best_configs). Starting from the initial cluster configuration (cc), the

algorithm examines all possible configurations that can be reached while trying to identify

the next configuration possibly involving VMs from public CSPs as well. The invocation of

POSSIBLE_CLUSTER_CONFIGS() produces feasible configurations by taking into account the

replication factor of the NoSQL-database. The replication factor designates the number

of redundant copies of shards, and so, it limits the number of VMs that can be removed

from a cluster during a single transition.

Algorithm 4.1 Provisioning Best-Plan

procedure best_plan(cc, start_time, end_time, best_cost, best_config)

for all cl in possible_cluster_configs(cc) do

tr_delay, tr_duration, tr_overhead = transition(cc, cl)

time = start_time

if tr_delay + tr_duration + time > end_time then

cost = 0

tr_delay = 0

tr_duration = end_time - start_time

end if

cost = partial_cost(cc, cl, tr_duration, tr_delay, tr_overhead, start_time)

time += tr_delay + tr_duration

configs = []

if time < end_time then

p_cost, configs = best_plan(cl, time, end_time, best_cost, best_configs)

cost += p_cost

end if

if cost < best_cost then

best_cost = cost

best_configs = cl + configs

end if

end for

return (best_cost, best_configs)

end procedure

A possible change in cluster configuration implies transition costs for resource re-

alignment that may require non-negligible operations and takes a duration interval to

unfold. Moreover, the transition may have a latency, termed delay, before it actually

completes. TRANSITION() computes estimations for transition delay, duration and over-

head based on the suggested performance model of Section 3. These three values, along

with current and a feasible new cluster configuration, are furnished to Algorithm 4.2

(PARTIAL_COST) to assess the cost of a proposed transition; the latter is essentially the

factor J discussed in Section 4.1. Subsequently, Algorithm 4.1 shifts the start_time of the

time-window by as much as the time required to complete the suggested transition. The

Alexandros Antoniadis 27

Application Cost-aware Cloud Provisioning

algorithm then moves to compute the rest of the optimal cluster configuration sequence

in a recursive manner always using the first element of the remaining sequence as the

pivot for its exploration. In this regard, the recursive calls along with the loop over the

set produced by POSSIBLE_CLUSTER_CONFIGS(), build a tree with all feasible configuration

sequences within the sought time-window. As the recursive calls return, the tree is tra-

versed from the leaves to the root: at every intermediate node the loop keeps the partial

path with the minimum cost. As the process continues, the path with the optimal cost

from the root to the leafs is found, which is equivalent to the optimal cluster configuration

sequence.

Algorithm 4.2 realizes the operation of PARTIAL_COST() and computes the entire cost

including transitioning, violation of SLA, pay-backs from public CSPs, and operational

overheads, for a suggested new configuration. PARTIAL_COST() takes as input the current

configuration (old_cl_config), the proposed new configuration (cl_config), estimated tran-

sition overhead (tr_overhead), duration (tr_duration) and delay (tr_delay) and returns the

total cost of the transition period. The additional work that a private CSP has to under-

take to bring the cluster to its new suggested state is designated by the tr_delay interval.

The latter corresponds to the latency of the transition and through this period, the cluster

appears as operating its prior configuration (old_cl_config). When VMs are moved in and

out of a configuration, they remain idle during this process –no service is provided– and

tr_delay accounts for the effort required to accomplish this re-alignment of resources. As

soon as tr_delay is accounted for, the transition is in progress. In this transition phase,

the operating VMs of the cluster involve elements from both old and new configurations

as: 1) newly introduced VMs become fully functional after the completion of the transition,

and 2) VMs–to-be removed are released immediately after tr_delay.

For a specific point in time, CLUSTER_CONFIG_COST() computes the operational and

penalty costs incurred by possible SLA violations. Algorithm 4.3 takes as input the cluster

configuration (cl_config), the number of VMs currently allotted (op_cl_config), the expected

workload at this time instance (expressed in number of operations per time unit) and the

transition overhead (tr_overhead); CLUSTER_CONFIG_COST() returns the operational cost of

the cluster configuration during the time unit in question. To compute potential SLA viola-

tions, we use linear and support vector regression to gauge the maximum throughput of a

given cluster configuration and the DROP rate. The above is accomplished by respectively

invoking PREDICT_THROUGHPUT() and PREDICT_DROP(). The fraction of SLA violations ac-

corded to VMs coming off public CSPs yields pay-backs to the private CSP. OPER_CL_COST()

determines the sum of the rental/operational cost of each node within op_cl_config de-

pending on whether the VMs in question belong to either an public or the private CSP.

Alexandros Antoniadis 28

Application Cost-aware Cloud Provisioning

Algorithm 4.2 Partial Cost

procedure partial_cost(old_cl_config, cl_config, tr_duration, tr_delay, tr_overhead, start_time)

op_cl_config = union(cl_config, old_cl_config)

// the total nodes allocated during tr_delay

tr_cl_config = intersect(cl_config, old_cl_config)

// the fully functional cluster during the transition

cost = 0

time = start_time

tr_end_time = start_time + tr_delay + tr_duration

while time < tr_end_time do

wl = workload[time]

// workload is the array of predicted future workload (operations per time unit)

if time - start_time < transition_delay then

p_cost = cluster_config_cost(op_cl_config, old_cl_config, wl, 0)

else

p_cost = cluster_config_cost(cl_config, tr_cl_config, wl, tr_overhead)

end if

cost += p_cost

end while

return cost

end procedure

Algorithm 4.3 Cluster Configuration Cost

procedure cluster_config_cost(op_cl_config, cl_config, workload, tr_overhead)

total_workload = tr_overhead + workload

cluster_throughput = predict_throughput(cl_config)

handled_workload = min(cluster_throughput, total_workload)

drop = predict_drop(cluster_config)

violations = max(total_workload - handled_workload, 0)

// violations due to throughput

violations += handled_workload * drop

// violations due to drop

violations_per_node = violations / cl_config.nodes_no

payback = 0

for node in cl_config do

if node.belongs_to_public_csp then:

payback += node.sla.penalty * violations_per_node

end if

end for

total_penalty = app_sla_penalty * violations - payback

// app_sla_penalty is the penalty for each SLA violation in the application

return oper_cl_cost(op_cl_config) + total_penalty

end procedure

Alexandros Antoniadis 29

Application Cost-aware Cloud Provisioning

Although Algorithm 4.1 has exponential complexity, caching of intermediate results –

especially for Algorithms 4.2 and 4.3– leads to reduced execution time for our provisioning

approach.

Alexandros Antoniadis 30

Application Cost-aware Cloud Provisioning

Chapter 5

Evaluation

We present key evaluation results based on simulation experiments for our provisioning

approach using the models suggested in Section 3. Our simulation package is written in

Python v.2.7.5 and uses the scikit-learn library [4] to compute the SVR. Table 5.1 outlines

the main characteristics of the VMs we use in our experiments along with their costs and

SLA violation penalties as they are advertised by public CSPs. We set the penalty for each

SLA violation of the application running to 0.6 monetary units and set the time-window

size to 25 units. In the beginning of every experiment, a cluster consists of 1 VM from the

private CSP. For simplicity, we add/remove 1 VM during each transition. We investigate

the following:

• the cost model of our approach (A1 in Section 4.1) vs. that of the conventional

SLA-cost minimization approach,

• the effect that the transition cost has on provisioning,

• the behavior of our approach during short/long workload spikes, and

• the impact on performance of varying the length of the time-window in our approach.

The workload used was synthetically created using epochs demonstrating periodic behav-

ior; every epoch has length of 1,000 time units, displaying a mean of 9k GET operations

per unit and 0.6k operations standard deviation. Within an epoch, short and long spikes

occur with a 7:2 proportion and have mean lengths of 32 and 4 time units respectively.

Two categories of spikes exist: i) high–load spikes with 13.5k mean operations per time

unit and 0.45k standard deviation and ii) medium–load spikes with 11.25k mean opera-

tions per time unit and 0.6k standard deviation. The random generators used to produce

the workload follow normal distributions. Although, we run experiments for lengthy du-

rations (up to 100k time units), we mainly report results in a specific limited range of 200

time units for readability purposes.

5.1 Our Cost Model vs. SLA-Cost Minimization

We use RHC as the main framework for provisioning and we compare how the cost model

we introduced in Section 4.1 fares in comparison with the conventional and widely-used

approach of SLA-cost minimization [6,10]. Both techniques are deployed in a simulated

Alexandros Antoniadis 31

Application Cost-aware Cloud Provisioning

Table 5.1: VM specifications

CSP CPU CPU freq RAM Penalty Cost

cores (GHz) (GB) per SLA violation (per time unit)

(in monetary units)

prv 4 3.2 2 − 48
prv 2 3.0 2 − 40

pub1 2 2.4 6 0.3 56
pub1 1 2.4 2 0.1 28

pub2 3 2.4 4 0.3 52
pub2 4 2.4 4 0.3 64

private/public CSP infrastructure and we track the number of allocated VMs over time

for the execution of a synthetic workload; the latter calls for a diverse number of GET

operations for specific time units. We also monitor accrued costs including: 1) the penalty

cost of the SLA violations, 2) the operational cost of the private CSP 3) the lease cost of

VMs rented from a public CSP 4) the penalty payback and 5) the transition cost. The

SLA-cost minimization approach involves only the penalty cost due to SLA violations and

it does not include cluster operational costs, pay-backs from from public CSPs as well as

transition costs (i.e., tr_overhead is 0).

 7000

 9000

 11000

 13000

 15000

 0 20 40 60 80 100 120 140 160 180 200

 1

 2

 3

 4

 5

 6

O
pe

ra
tio

ns
 p

er
 ti

m
e

un
it

V
M

s
#

Time (time units)

Operations per time unit

VMs #

Figure 5.1: RHC with our Cost Model

Figs. 5.1 and 5.2 show the number of VMs used by our provisioning and the SLA-

-cost minimization approach respectively. Fig. 5.2 shows that the SLA-cost minimization

approach tends to allocate more VMs to handle the workload and to maximize QoS. The

Alexandros Antoniadis 32

Application Cost-aware Cloud Provisioning

conventional SLA-cost minimization approach does not take into account the operational

cost of the VMs in the cluster and thus, often chooses configurations with the highest

performance capacity. This approach appears to ‘‘encourage’’ changes in cluster config-

urations, as there is no consideration for transitional costs. For instance, this is what

occurs at time unit 77-78. In contrast, Fig. 5.1 shows that our approach requires fewer

 7000

 9000

 11000

 13000

 15000

 0 20 40 60 80 100 120 140 160 180 200

 1

 2

 3

 4

 5

 6

O
pe

ra
tio

ns
 p

er
 ti

m
e

un
it

V
M

s
#

Time (time units)

Operations per time unit

VMs #

Figure 5.2: RHC with SLA Cost Minimization

VMs for most of the time and releases them as soon as they are not needed to reduce

operational cost. The transition cost makes our approach more conservative to changes;

in our approach, there are only 12 encountered configuration changes compared to 24 in

the SLA-cost minimization method. By considering operational/transition costs as well as

pay-backs, our approach tries to balance performance capacity on the one hand, and the

investment in new cluster configurations with more/fewer resources on the other. This is

why our approach uses only 4 VMs to handle the workload in time units 30-45 while the

conventional SLA-cost minimization method exploits all available VMs in the experiment.

When it comes to costs, the SLA-cost minimization approach calls for an average of 9%

more than our suggested provisioning just for the limited 200 time units of observation

for Figs. 5.1 and 5.2. The corresponding result for the 100k time units experiment stands

at 28.6%. The above clearly point out that the penalty minimization of the SLA violations

does not lead to the minimization of the total cost. As our approach can better capture the

actual costs involved in the execution of workloads, it is of substantial value to NoSQL-

database owners. As applications grow and load increases, our RHC-based approach

helps the private CSP decide whether it is beneficial to either invest in QoS or limit its

user capacity.

Alexandros Antoniadis 33

Application Cost-aware Cloud Provisioning

5.2 The Effect of Transition Cost

 7000

 9000

 11000

 13000

 15000

 0 20 40 60 80 100 120 140 160 180 200

 1

 2

 3

 4

 5

 6

O
pe

ra
tio

ns
 p

er
 ti

m
e

un
it

V
M

s
#

Time (time units)

Operations per time unit

VMs #

Figure 5.3: Our Provisioning Approach with Lower Transition Cost

We now evaluate how transition cost affects the cluster configuration changes. When

a cluster that runs a NoSQL–database allocates or deallocates VMs, shards need to be

transported. The overhead of this process is the transition cost, which is a key factor for

provisioning since it indirectly affects the total cost of the private CSP. Fig. 5.3 shows the

simulation results of the same experiment as that of Fig. 5.1 but with lower transition

cost. More specifically, we set the tr_overhead and delay_per_shard of Table 3.1 at 66%

less than the corresponding values of the first experiment. We find that the number

of transitions increases from 12 (in Fig. 5.1) to 19 as transition costs decrease. In the

original experiment, high-transition configuration changes are not encouraged by our

approach, as the potential benefits are less than the incurred cost. With lower transition

costs, our RHC–based provisioning becomes more aggressive in tracking even rapidly

changing workload trends. For an effective transition to occur, the length of the time-

window used must be longer than the respective transition cost. The number of allocated

VMs is higher for Fig. 5.3 than in Fig. 5.1. For instance in the period 30-45, all 6 VMs

available are now allocated in comparison to 4 for the corresponding time interval of

Fig. 5.1. The same applies when it comes to resource deallocation. As transitions become

short and less expensive, the VMs can be allocated/deallocated faster and in a less costly

manner. In this context, abrupt workload changes can be more efficiently handled as

VMs can be supplied faster. As NoSQL-databases occasionally present varying transition

costs [1,5,15], systems with such high costs are less effective at handling rapidly changing

Alexandros Antoniadis 34

Application Cost-aware Cloud Provisioning

workloads. Hence, the transition cost is a key factor when using a NoSQL-database as it

is equally critical to throughput and DROP attained when the workload displays abrupt

variations.

5.3 Long vs. Short Workload Spikes

Web-based NoSQL-databases may experience significant workload variations for limited

periods of time. This is common in e-shop and CRM sites that try to overcome surges in

workload caused by the sudden announcement of attractive offers followed by numerous

user requests (i.e., flash crowds). In this experiment, we investigate how our RHC-based

approach compares with SLA-cost minimization when there are spikes in the workload.

Fig. 5.4 shows a workload featuring a long and a short spike at time intervals 40− 65

and 140− 144 respectively. The figure also depicts how our RHC-based provisioning and

the SLA-cost minimization approaches behave in both instances. Our approach handles

 7000

 9000

 11000

 13000

 15000

 0 20 40 60 80 100 120 140 160 180 200

 1

 2

 3

 4

 5

 6

O
pe

ra
tio

ns
 p

er
 ti

m
e

un
it

V
M

s
#

Time (time units)

Operations per time unit

RHC VMs #

SLA-aware VMs #

Figure 5.4: Long and Short Workload Spikes

the long spike by adding VMs while it essentially ignores the short spike. During the

short spike, the cluster does not move to another configuration to handle this short-lived

demand as the total cost for a possible transition does not out-benefit inaction. The

SLA-cost minimization method keeps adding VMs while the workload remains high (time

interval 40-65). At the end of this spike, the SLA-cost minimization method ends up having

all available VMs, which leads to a long deallocation period as deallocations are not instant.

Hence, unnecessary VMs continue to be allocated for some time after the spike ceases

which results in higher operational cost. During short spikes, the conventional SLA-cost

Alexandros Antoniadis 35

Application Cost-aware Cloud Provisioning

minimization method attempts to allocate additional resources being oblivious of what lies

ahead. In this specific instance (i.e., time interval 40-65), the transition costs involved are

of similar length to the spike in question. Thus, additional VMs become functional beyond

the time at which the spike ends yielding a resource thrashing situation. Our RHC-based

provisioning avoids such thrashing because it continually evaluates the total cost of every

feasible sequence of cluster configurations in a time-window and picks the best.

5.4 Time-Window Impact

In this experiment, we measure the effect that the choice of time-window has on the

execution time of our algorithm. We ran several simulation experiments with varying

time-window sizes on a machine with 2 GHz Intel Core 2 Duo processor and 4GB RAM on

MacOSX 10.8.5.

Fig. 5.5 shows that the execution time (logarithmic scale) of the algorithm grows expo-

nentially as the length of time-window increases. This growth becomes more pronounced

after the 8th time-unit; before this time unit, no opportunities for transition exist. As the

window becomes longer, the respective search tree of the approach increases rapidly. We

note that setting the time window to a value in the range of 15 to 25 presents a reasonable

selection for our experimentation, as the execution was consistently less than 10 seconds.

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Time-Window size

Execution time

Figure 5.5: Execution Time of our RHC Provisioning Algorithm (log-scale)

Alexandros Antoniadis 36

Application Cost-aware Cloud Provisioning

Chapter 6

Related Work

Resource provisioning for cloud-based systems has recently attracted much attention.

Efforts in [9,11] attempt to address the problem through the use of queueing theory and

respective model building. As cloud systems are inherently complex, involve parallel and

concurrent aspects and are built on heterogeneous environments, such queueing theory

models are difficult to extend and quickly become intractable. The extensive use of caching

and locking policies further exacerbates matters [5]. Sharma et al. [19] present a system

that statically searches for best allocation scenarios and then picks the one that minimizes

migration costs. The work also advocates for the adoption of performance model building

through profiling. Roy et al. [18] presented an RHC-based approach that minimizes the

operational cost of a host–cloud while satisfying all SLAs. However, price variation for

resources is not taken into account in the used price model.

In [13], a classification that designates cloud content as either active or passive based

on the frequency of the received read/write operations is proposed. This content model

is used to assist server selection strategies to achieve fast and efficient data transfers

and processing. A max–min algorithm is used to solve the allocation problem at hand.

Gourdasi et al. [11] outline an approach to minimize the total energy cost of a cloud

computing system while keeping the SLA-incurred costs low. They accomplish this by

using a heuristic algorithm based on convex optimization and dynamic programming.

Although this work appears to incorporate multiple costs into the minimization problem,

the use of queueing theory models entails issues similar to those mentioned above. Barker

et al. [6] presented a migration approach for multi-tenant databases that utilize a throttling

controller; the latter aims to dynamically vary the migration speed to avoid SLA violations

due to the transition cost imposed by a migration.

To the best of our knowledge there is no work that combines penalty pay-back from

public CSPs, a critical aspect from the private CSP ’s point of view, and only a few [6,18,19]

take into account the transition cost. Our work takes a holistic approach and addresses

resource provisioning through the occasional leasing of public resources in a way that

minimizes total cost for the private CSP.

Alexandros Antoniadis 37

Application Cost-aware Cloud Provisioning

Chapter 7

Conclusions & Future Work

In this thesis, we investigate how NoSQL-databases running on private Cloud-Service

Providers (CSPs) could be partially ‘‘tossed out’’ to opportunistically exploit resources

available from public CSP counterparts. Such collaborative auto-scaling helps both min-

imize total cost for the private CSP–hosted application and more flexibly address QoS-

requirements. We presented a resource provisioning approach based on look-ahead opti-

mization that leads to lower CSP costs for a limited time-window while considering how to

best transform the utilized virtual infrastructure over time. We identify key factors that

contribute to the CSP aggregate cost and propose a cost model that accounts for both

direct and indirect penalties to avoid SLA violations for the hosted-application(s). We for-

malize the transition cost and demonstrate its importance in resource provisioning. Our

evaluation demonstrates the benefits of our cost model over the conventional approach

of simply minimizing SLA cost with reported gains of up to 29% for the conducted exper-

iments. Moreover, we show the benefits of using a look-ahead optimization technique in

order to avoid resource allocation thrashing when the workload changes rapidly. We plan

to investigate the relaxation of the accuracy of the used predictor, examine the respective

ramifications and ascertain the role introduced errors may have in workload estimation.

We also plan to develop adaptive time-window provisioning algorithms based on historical

data.

Alexandros Antoniadis 38

Application Cost-aware Cloud Provisioning

Acronyms

Abbreviation Full Name

CSP Cloud Service Provider

DROP Delayed-responce operations percentage

LAO Look-ahead optimization

NP Non-deterministic polynomial time

QoS Quality of Service

RHC Receding Horizon Control

SLA Service Layer Agreement

VM Virtual Machine

Alexandros Antoniadis 39

Application Cost-aware Cloud Provisioning

References

[1] Elasticsearch. http://www.elasticsearch.org.

[2] Mongoddb. http://www.mongodb.org/.

[3] Rapidminer. http://rapidminer.com/.

[4] scikit-learn. http://scikit-learn.org/.

[5] Couchbase Server Under the Hood: An Architectural Overview. White Paper, 2013.

[6] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant Shenoy.

"Cut me Some Slack": Latency-aware Live Migration for Databases. In Proc. of the

15th Int. Conf. on EDBT, Berlin, Germany, March 2012.

[7] Rick Cattell. Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record, 39(4):12–

27, May 2011.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking Cloud Serving Systems with YCSB. In Proc. of the 1st ACM

Symp on Cloud Comp. (SoCC’10), Indianapolis, IN, June 2010.

[9] Ronald P. Doyle, Jeffrey S. Chase, Omer M. Asad, Wei Jin, and Amin M. Vahdat.

Model-based Resource Provisioning in a Web Service Utility. In Proc. of the 4th USENIX

Symp. on Internet Technologies and Systems (USITS’03), Seattle, WA, March 2003.

[10] Saurabh Kumar Garg, Srinivasa K. Gopalaiyengar, and Rajkumar Buyya. SLA-based

Resource Provisioning for Heterogeneous Workloads in a Virtualized Cloud Datacen-

ter. In Proc. of the 11th Int. Conf. on Algorithms and Architectures for Parallel Pro-

cessing (ICA3PP’11)-Vol. Part I, pages 371–384, Melbourne, Australia, October 2011.

Springer-Verlag.

[11] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. SLA-based Opti-

mization of Power and Migration Cost in Cloud Computing. In Proc. of the 12th

IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing (CCGrid’12), pages 172–

179, Ottawa, Canada, May 2012.

[12] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical Prediction Mod-

els for Adaptive Resource Provisioning in the Cloud. Future Gener. Comput. Syst.,

28(1):155–162, January 2012.

Alexandros Antoniadis 40

http://www.elasticsearch.org
http://www.mongodb.org/
http://rapidminer.com/
http://scikit-learn.org/

Application Cost-aware Cloud Provisioning

[13] Debessay Fesehaye Kassa and Klara Nahrstedt. SCDA: SLA-aware Cloud Datacenter

Architecture for Efficient Content Storage and Retrieval. In Proc. of the 22nd ACM Int.

Symp. on HPDC, New York, NY, June 2013.

[14] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose Fortes. Sky

Computing. IEEE Internet Computing, 13(5):45–51, September 2009.

[15] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured

Storage System. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[16] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online

Algorithms for Geographical Load Balancing. In Proc. of the 2012 Int. Green Computing

Conf. (IGCC), pages 1–10, Xiangtan, China, November 2012. IEEE Computer Society.

[17] Jennie Rogers, Olga Papaemmanouil, and Ugur Çetintemel. A Generic Auto-

provisioning Framework for Cloud Databases. In Workshops Proc. of the 26th IEEE

ICDE, pages 63–68, Long Beach, CA, March 2010. IEEE.

[18] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Autoscaling in the

Cloud Using Predictive Models for Workload Forecasting. In Proc. of the 4th IEEE Int.

Conf. on Cloud Computing (CLOUD’11), pages 500–507, Washington, DC, July 2011.

[19] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A Cost-Aware

Elasticity Provisioning System for the Cloud. In Proc. of the 31st IEEE Int. Conf. on

Distributed Computing Systems (ICDCS’11), pages 559–570, Minneapolis, MN, June

2011.

[20] Sebastian Stein, Nicholas R. Jennings, and Terry R. Payne. Provisioning Heteroge-

neous and Unreliable Providers for Service Workflows. In Proc. of the 6th ACM Int.

Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS’07), Honolulu, HI,

May 2007.

[21] Christopher Stewart, Terence Kelly, Alex Zhang, and Kai Shen. A Dollar from 15

Cents: Cross-platform Management for Internet Services. In USENIX 2008 Annual

Tech. Conf. (ATC’08), pages 199–212, Boston, MA, June 2008.

[22] Byung Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. To Move or not

to Move: the Economics of Cloud Computing. In Proc. of 3rd USENIX Conf. on Hot

Topics in Cloud Computing (HotCloud’11), Portland, OR, June 2011.

Alexandros Antoniadis 41

Application Cost-aware Cloud Provisioning

[23] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning

Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a Petabyte Scale

Data Warehouse Using Hadoop. In Proc. of the 26th Int. Conf. on Data Engineering

(ICDE’10), pages 996–1005, March 2010.

[24] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis. Nefeli: Hint-based Execution

of Workloads in Clouds . In Proc. of the 30th IEEE Int. Conf. on Distributed Computing

Sytems (ICDCS’10), Genoa, Italy, June 2010.

[25] Dimitrios Tsoumakos, Ioannis Konstantinou, Christina Boumpouka, Spyros Sioutas,

and Nectarios Koziris. Automated, Elastic Resource Provisioning for NoSQL Clusters

Using TIRAMOLA. In Proc. of the 13th IEEE/ACM Int. Symp. on Cluster, Cloud, and

Grid Computing (CCGrid’13), May 2013.

[26] Hien Nguyen Van, Frederic Dang Tran, and Jean-Marc Menaud. SLA-Aware Virtual

Resource Management for Cloud Infrastructures. In Proc. of the 9th IEEE Int. Conf. on

Computer and Information Technology (CIT’09)-vol. 2, pages 357–362, Xiamen, China,

October 2009.

[27] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin, Ger-

many, 1995.

[28] Matthew Wachs, Lianghong Xu, Arkady Kanevsky, and Gregory R. Ganger. Exertion-

based Billing for Cloud Storage Access. In Proc. of 3rd USENIX Conf. on Hot topics in

Cloud Computing (HotCloud’11), Portland, OR, June 2011.

[29] Linquan Zhang, Chuan Wu, Zongpeng Li, Chuanxiong Guo, Minghua Chen, and

Francis C. M. Lau. Moving Big Data to the Cloud. In Proc. of IEEE INFOCOM’13,

pages 405–409, Turin, Italy, April 2013. IEEE.

Alexandros Antoniadis 42

	Introduction
	Significant factors in provisioning
	Opportunistic Use of Public Clouds
	Transitions
	Cluster Heterogeneity

	Performance model
	Profiling Experiments
	Forecasting Models

	Look-Ahead Optimization
	Receding Horizon Control (RHC)
	Selecting the Time-Window Period
	Resource Provisioning Algorithm

	Evaluation
	Our Cost Model vs. SLA-Cost Minimization
	The Effect of Transition Cost
	Long vs. Short Workload Spikes
	Time-Window Impact

	Related work
	Conclusions
	Acronyms
	References

