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Abstract

In this thesis we study techniques for combinatorial specification and asymptotic enumera-

tion in the context of analytic combinatorics. Our guide through this variety of techniques is

the enumeration of certain types of planar graphs, under subgraph exclusion constraints. In

particular, we examine outerplanar graphs where the constraint is the exclusion of cycles of

certain length. Our starting point is [1], where general outerplanar graphs were firstly spec-

ified and analysed asymptotically. We then build specifications for the 2-connected compo-

nents that exclude certain cycles in order to obtain asymptotics for the general constrainded

outerplanar class. The challenges here are combinatorial as well as computational, as the

specifications become more involved when the length of the excluded cycle grows and the

generating functions obtained are in implicit form. The combinatorial language that we use

is the so-called Symbolic Method that comes in hand with corresponding analytic techniques,

as was first suggested as a whole in [9]. Furthermore, we study certain parameters of general

outerplanar graphs, namely the number of triangles and quadrangles. We obtain Gaussian

limiting distibutions and extract explicit constants for the mean and variance.
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Chapter 1

Introduction

Analytic combinatorics is a relatively new field at its own right, whose major landmark was

the appearance of [9] in 2009. It has applications in many and diverse scientific areas, like

the analysis of algorithms, probability theory, statistical physics, logic, computational biology

and others. The body of this theory lies in the intersection of combinatorics and analysis: A

combinatorial class A can be encoded by a generating function∑
n≥0

anz
n

which constitutes an algebraic object, as well an analytic one. Allowing ourselves to view

generating functions as analytic objets provides rich information about the exact or asymp-

totic growth of the series’ coefficients, and thus about our combinatorial problem.

The first step of the analysis is typically the combinatorial modelling of the problem in terms

of what is called the symbolic method. The symbolic method that will be presented in the

following chapter relies on specifying a combinatorial class by using in a recursive way simpler

structures that bind together through familiar operations such as union, product, sequence,

cycle, etc and then translate to operations between generating functions.

The next step is the asymptotic analysis that comes in hand with a variety of techniques for

each category of generating functions and certain fundamental theorems called transfer theo-

rems that rely crucially on the existence and nature of the generating function’s singularities,

in order to extract information for their coefficients. It must be noted that we can also talk

about properties of a combinatorial class (for example the number of nodes of degree 2 on a

tree) and extract information about their mean, variance, and limiting behaviour as random

variables on the objects of size n, as n tends to infinity.

About this thesis

In this thesis we explore a part of these techniques in the context of enumeration of certain

planar graphs under constraints, namely outerplanar graphs with restricted cycles of some

length. We rely on the work done in [8] and [1], where dissections and general outerplanar

1



2 CHAPTER 1. INTRODUCTION

graphs were analysed respectively, in order to build our specifications. Our challenges are both

combinatorial and computational as our specifications are more involved and our generating

functions are in purely implicit form (except for the case of excluding triangles), as solutions

of polynomial systems. In particular, we build explicit specifications for the case of excluding

3, 4, 5 and 6−cycles and perform the corresponding asymptotic analysis. Our main tools are

the symbolic method, singularity analysis, and properties of algebraic functions, which we will

present in the next chapter. Furthermore, we obtain limiting laws for the number of triangles

and quadrangles in unristricted dissections, with explicit and computable to any degree of

accuracy constants. In more detail, the thesis has the following structure:

Chapter 1 consists of three sections and deals with all the necessary background and defini-

tions. In the first section the symbolic method is introduced for unlabelled as well as labelled

constructions and we also take notice of multivariate generating functions that correspond to

combinatorial structures with parameters. Elementary examples are given for each case.

In the second section we present the basic analytic techniques that are used. We first recall

basic results from complex analysis. Afterwards, we present the case of inverse functions and

algebraic functions, and highlight known results for their singular expansions. All this ends

up to basic theorems of singularity analysis that exploit this kind of expansions in order to

extract information for the asymptotic behaviour of the original series’ coefficients. In the

end, we state a version of the Quasi-Powers theorem that helps us obtain limit laws for pa-

rameters of combinatorial structures, under some assumptions.

The third section introduces the class of outerplanar graphs and illustrates with the necessary

detail the way they were specified combinatorially and analysed asymptotically in [1].

All the above are found usefull in chapter 2, where we specify the class of outerplanar graphs

excluding cycles of some length. The analysis is done for the cases of 3, 4, 5, and 6−cycles,

where we can find combinatorial and computational challenges that seperate them from the

general case that is presented in chapter 1. The specifications are more involved, as different

cases have to be taken in mind, while computations are not straightforward since we only

work with implicit representations of the generating functions. The asymptotics follow the

pattern g · n− 5
2 · ρ−n · n! and the explicit constants are computed as shown in the following

table, up to five digits of accuracy:

Class ρ g ρ2con g2con

3-cycles 0.20836 0.01578 0.29336 0.02330

4-cycles 0.18919 0.01462 0.26488 0.02177

5-cycles 0.18054 0.01804 0.25383 0.02217

6-cycles 0.17516 0.01870 0.24835 0.02321

Table 1.1: The computed constants for general restricted and 2-connected restricted outer-
planar graphs.

The first pair of columns demonstrates the constants for the general restricted outerplanar
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graphs, while the second pair demonstrates the constants for the 2-connected counterparts

that follow the schema g · n− 3
2 · ρ−n · n!.

Chapter 3 is directed to bivariate generating functions. A parameter is being introduced in

general outerplanar graphs, namely the number of 3 and 4−cycles. The singular expansions

of the univariate case are established to lift in a convenient way when the second variable is

introduced, which allows us to use the Quasi-powers theorem and obtain gaussian limit laws

with linear mean and variance. In particular, the constants are the ones demonstrated in

Table 1.2:

Parameter α β

triangles 0.34793 0.40737

quadrangles 0.33705 0.36145

Table 1.2: The constants for the mean and variance.
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Chapter 2

The main methods

2.1 The symbolic method

The symbolic approach to combinatorial enumeration constitutes an attempt to express com-

binatorial structures with some kind of recursive specification in a uniform way, starting from

elementary classes and constructions and building up more complex ones, in the spirit of a

formal language.1 The insentive for this kind of expressions is that, if they are based on

admissible constructions, then they translate immediately to generating functions. All the

struggle is thus suppressed to finding a proper specification for the combinatorial class that

is under examination.

Let A be a combinatorial class, meaning a set that is at most denumerable, along with a

size function | · | ∈ (A → Z≥0) such that the inverse image of any integer is finite. Then the

corresponding ordinary generating function (OGF) of A is defined, as2

A(z) =

∞∑
n=0

Anz
n =

∑
α∈A

z|α|.

Two elementary combinatorial classes are considered, namely the neutral class E and the

atomic class Z. The neutral class consists of a single object of zero size ε, called a neutral

object, and the atomic class consists of one object of size equal to one (represented by a circle

• or ◦), called an atom. Their generating functions are respectively E(z) = 1 and Z(z) = z,

and of course we may take as many discrete copies of these classes as needed each time, using

symbols such as ε1, ε2, ... for the first case, and •, ◦, ? etc for the second.

An m−ary construction Φ such that A = Φ[B(1), ...,B(m)] is called admissible if the counting

sequence An of A only depends on the counting sequences of the B(i), and thus corresponds to

a well defined operator Ψ such that A(z) = Ψ[B(1), ...,B(m)]. Table 1.1 summarizes the basic

admissible constructions, along with their respective operators in the realm of the generating

1The exposition in this chapter follows the 1st part of [9] and all the omitted proofs can be found there.
2Through this exposition, the symbol A will denote a combinatorial class, An the restriction of A to objects

of size n, and An their respective cardinalities.

5



6 CHAPTER 2. THE MAIN METHODS

The ordinary constructions 3

Sum: A = B ∪ C A(z) = B(z) + C(z)

Cartesian product: A = B × C A(z) = B(z) · C(z)

Sequence: A = SEQ(B) A(z) = 1
1−B(z)

Powerset: A = PSET (B) A(z) =


∏
n≥1(1 + zn)Bn

exp
(∑∞

k=1
(−1)k−1

k B(zk)
)

Multiset: A = MSET (B) A(z) =


∏
n≥1(1 + zn)−Bn

exp
(∑∞

k=1
1
kB(zk)

)
Cycle: A = CY C(B) A(z) =

∑∞
k=1

φ(k)
k log 1

1−B(zk)

Pointing: A = ΘB :=
∑
n≥0 Bn × {ε1, ...εn} A(z) = z∂zB(z)

Substitution: A = B ◦ C :=
∑
k≥0

∑
β∈B εβ × SEQk(C) A(z) = B(C(z))

Table 2.1: Here are the the basic admissible constructions for unlabelled structures, along
with their translation to generating functions.

functions, where for the sequence, powerset, multiset and cycle constructions it is assumed

that B0 6= ∅. Most of these classes have their obvious meaning: the sum of two classes cor-

responds to the disjoint sum of these classes with size being the induced one from the class

each object belongs. The cartesian product has the usual meaning, with size being the sum of

the components. Size is defined likewise for sequences, powersets, multsets and cycles, where

sequences of a class B comprise the elements of 1 ∪ B ∪ B2 ∪ B3 ∪ ..., multisets are sequences

taken up to any shift of the components, powersets are multisets that involve no repetitions,

and cycles are powersets taken up to circular shifts. Pointing to a class B means chosing for

each object of the class a particular atom (for example, we might consider rooted trees out of

unrooted ones), while substitution suggests that each atom of an object in B is being substi-

tuted by an object of the class C. It must be noted that the restricted counterparts of all these

constructions have similar translations (for example A = SEQk = Bk yields A(z) = B(z)k).

Here follow two elementary examples of the above, for the case of compositions and partitions.

Firstly, define the class I = {1, 2, 3, ...} ∼= {•, ••, • • •, ...} = SEQ≥1{•}. Then, in order to

deal with natural numbers we can use I with I(z) = z
1−z , which gives us:

C = SEQ(I)⇒ C(z) =
1

1− I(z)
=

1

1− 1
1−z

=
z

1− 2z
.

For partitions:

P = MSET (I)⇒ P (z) =

∞∏
m=1

1

1− zm
.

Now, there is also the possibility to define a combinatorial class implicitly (or recursively) We

3The function φ is the Euler totient function φ(k) = pa1−1
1 (p1 − 1) · · · par−1

r (pr − 1) for the prime number
decomposition k = pa11 · · · p

ar
r .



2.1. THE SYMBOLIC METHOD 7

call a specification for an r-tuple ~A = (A(1), ...,A(r)) of classes a collection of r equations

A(1) = Φ1(A(1), ...,A(r))

A(2) = Φ1(A(1), ...,A(r))

...

A(r) = Φ1(A(1), ...,A(r))

where each Φi denotes a term built from the A(j) using the constructions of disjoint union,

cartesian product, sequence, powerset, multiset, and cycle, as well as the intial neutral and

atomic classes. This kind of representation does not necessary lead to explicit generating

functions, but, even so, asymptotic results can be extracted for the coefficients using tech-

niques from analytic combinatorics (some of them are presented in 1.2).

An elementary example for the above, using only one equation, is the specification of general

plane trees4:

G = Z × SEQ(G). (2.1)

Note that, begining by setting as G the empty class and iterating in the above relation, we

can recreate the whole class of such trees, where on each iteration j all trees up to hight j

will be produced.

1st iteration

2nd iteration

3rd iteration

Figure 2.1: The structure of plane trees at each iteration.

Now, equation (2.1) translates to

G =
z

1−G
and G−G2 − z = 0,

which can be solved by the quadratic formula that gives in the end:

G(z) =
1−
√

1− 4z

2
.

Using Newton’s binomial expansion, we have then gn = 1
n

(
2n−2
n−1

)

4Plane meaning that the order by which the subtress are embedded under the root matters.
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The labelled constructions

Sum: A = B ∪ C A(z) = B(z) + C(z)

Labelled product: A = B ? C A(z) = B(z) · C(z)

Sequence: A = SEQ(B) A(z) = 1
1−B(z)

Set: A = SET (B) A(z) = exp(B(z))

Cycle: A = CY C(B) A(z) = log 1
1 −B(z)

Pointing: A = ΘB :=
∑
n≥0 Bn × {ε1, ...εn} A(z) = z∂zB(z)

Substitution: A = B ◦ C :=
∑
k≥0

∑
β∈B εβ × SETk(C) A(z) = B(C(z))

Table 2.2: Here are the the basic admissible constructions for labelled structures, along with
their translation to exponential generating functions.

Labelled structures

Labelled classes can also be handled, using exponential generating functions (EGFs). La-

belled classes are combinatorial classes where each object of size n bears n different labels on

its atoms from the set [n] = {1, 2, ..., n}.

We once again consider the neutral class E that consists of the neutral object ε with size 0

and bearing no label at all and the atomic class Z which is formed by a unique object of

size one and label 1. Now all the basic constructions from the unlabelled case (except for the

multiset) have their labelled counterparts (see table 2.2): Sum follows the same reasoning.

The cartesian product must be seen in a different way, since concantenating two objects from

different classes will create double labels. So we suppose that for an object of size n being

the concatenation of two different objects we can split the labels in all different ways and

then place them in an order-preserving way. This corresponds exactly to the product of two

exponential generating functions, and gives way to construct of the so-called labelled product,

A = B ? C. We can use the same reasoning for labelled sequences, sets and cycles (note that

multisets is the only constuction with no labelled counterpart, since then the labels would be

repeated). Pointing and substitution also have their labelled counterparts. Pointing translates

the same way as in the unlabelled case, while substitution is slightly different: for an object

in B we take a k−set of objects in C that is ordered naturally by the greatest labell of each

object. Then each object of rank j goes to the spot of the object in B that bears the label j.

Two characteristic elementary examples are the cases of surjections and set partitions: Sur-

jections of the form [k] → [n] correspond to a sequence of n non empty urns, filled with k

numbered balls. To create the class of all non-empty urns, we can take SET≥1(z). Then,

taking all possible sequences of non empty urns we have:

R ∼= SEQ(SET≥1(Z))⇒ R(z) =
1

2− ez
.
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The partitions are equivalent to taking sets of non-empty urns, which gives:

S ∼= SET (SET≥1(Z))⇒ S(z) = ee
z−1.

Multivariate generating functions

Given a combinatorial class A, we can consider a certain parameter χ : A → Z≥0 that we

would like to study. For example, if A is a graph class, then a parameter could be the number

of edges of the graph. This gives way to bivariate generating functions (BGFs) of the form

∑
n,k

an,kz
nuk for OGFs

∑
n,k

an,k
zn

n!
uk for EGFs

where an,k is the number of objects a ∈ An such that χ(a) = k. The definition can be gener-

alised for any number of parameters that are considered together as χ = (χ1, χ2, ..., χk) and

then there would be as many ui variables as the dimension of the parameter χ. Nevertheless,

in the present context the bivariate formulation is enough.

Considering the uniform probability distribution over each An, a parameter χ defines a dis-

crete random variable over them, as in PAn(χ = k) =
An,k
An

. Recalling the definition of a

probability generating function p(u) =
∑
k P(X = k)uk, we can directly express it in terms

of BGFs, as: ∑
k

PAn(χ = k)uk =
[zn]A(z, u)

[zn]A(z, 1)
.

Recall now the definition of the expectation of f(X) for a discete random variable X:

E(f(X)) =
∑
k

P(X = k)f(k).

It can be observed that

EAn(χ(χ− 1)...(χ− r + 1)) =
[zn]∂ruA(z, u)|u=1

[zn]A(z, 1)
,

and then we can recover all power moments E(Zr) as linear combinations of factorial moments

of the above type. In particular, for the usual expectation of χ, we can say that

EAn(χ) =
[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
,

and having also

EAn(χ2) =
[zn]∂2uA(z, u)|u=1

[zn]A(z, 1)
+

[zn]∂uA(z, u)|u=1

[zn]A(z, 1)

we can expresse the variance V(χ) = E(χ2)− E(χ)2 as well.

A last important thing about BGFs is the following: operations between combinatorial classes

A(j)(| · |, χ) that compose a new combinatorial class A(| · |, χ) can be translated into bivariate

generating functions with exactly the same way as in the previous cases, if the parameters
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obey two conditions: the parameters must be inherited and compatible:

If A = A(1)∪A(2), a parameter χ is inherited from χ1 and χ2 if its value is the same as

the one the object had in its original class A(i). Otherwise, if A = A(1) ×A(2), or A is

the SEQ, MSET, PSET, CY C of another combinatorial class, then the parameter is

inherited if it is the sum of the parameters of the object’s components. This definition

applies for labelled classes as well.

A parameter for labelled objects is called compatible if it is the same for all the rela-

bellings of the object.

In order to give a simple demonstration of the above, we can consider again the specification of

integer compositions, where the parameter is the number of components. Then each number

of I has one component and I(z, u) = zu
1−z , while because the parameter is inherited we can

say immediately that

C(z, u) =
1

1− I(z, u)
=

1

1− zu
1−z

=
1− z

1− z(u+ 1)
.

Then ∂uC(z, u)|u=1 = z(1−z)
(1−2z)2 and thus

E(χ) =
1

2n−1
[zn]

z(1− z)
(1− 2z)2

=
1

2
(n+ 1),

while the variance can be found to be 1
2

√
n− 1.
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2.2 Analytic techniques

Recall that a function f is called analytic at a point z0 if it is representable as a sum

f(z) =
∑
n

an(z − z0)n

in an open disk around some z0 ∈ Ω. Then f is analytic in a region5 Ω ∈ C if it is analytic for

every z0 ∈ Ω. We can then view the generating functions of section 1.1 as analytic functions

around zero (when they are convergent). It is a basic theorem of complex analysis that com-

plex analyticity is equivalent to differentiability of any degree and that the derivatives can be

obtained through term by term differentiation of the power series.

We say that a function defined in a region Ω is analytically continuable to a point z0 on its

boundary if there exists a function F analytic in a region Ω1 that contains z0, such that the

restriction of F in Ω∩Ω1 is equal to f . Analytic continuation in the complex field is unique in

the sense that if there is a third function F ′ that obeys the same premises as F , then F ′ = F

in the region Ω1 ∩ Ω2.

A point z0 is called a singularity of f , if f can’t be analytically continuable there. For

our domain of generating functions, Pringsheim’s theorem states that every function that is

analytic around zero with non-negative coefficients and radius of convergence ρ has a real

singularity on ρ. This comes very useful from the following reasoning: By the Cauchy-

Hadamard formula for the radius of convergence of a power series, we know that this is equal

to 1
lim sup |an|1/n

= ρ, and then: for any ε > 0, an exceeds (ρ−n + ε) for only a finite number

of values, while it exceeds (ρ−n − ε) for infinitely many of them. In other words, an has an

exponential growth of the order ρ−n. This is illustrated by the definition

an ./ ρ
−n iff lim sup |An|1/n = ρ−1,

and suggests the first principle for coefficient asymptotics, namely that

1. The location of singularities determines the exponential growth of the coefficients.

Now, the above discussion indicates that an = ρ−nθ(n) for some function θ, called the subex-

ponential factor, such that lim sup |θ(n)|1/n = 1. The second principle of coefficient asymp-

totics ammounts to the following:

2. The nature of the singularities determines the associate subexponential factor θ(n).

In our context, two types of singularities will be prominent: singularities emanating from

inversion and algebraic singularities, both of which will be presented shortly.

Inverse functions

Let us at first recall the Analytic Inversion theorem:

5A region is an open and connected set.
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Theorem 1. (Analytic Inversion). Let ψ(y) be analytic at y0, with ψ(y0) = z0. Assume

that ψ′(y0) 6= 0. Then, for z in some small neighbourhood Ω0 of z0, there exists an analytic

function y(z) that solves the equation ψ(y) = z and is such that y(z0) = y0.

In particular, a function can be analytically inverted if and only if the above holds: otherwise,

the point z0 consists a branch point, meaning there are multiple inverses, all of which can

only be defined in a slit neighbourhood of z0.

z0

0

r

Figure 2.2: A slit neighbourhood of z0 and a dented or ∆−domain on r.

For completeness, we will also state a generalization of the above, the implicit function theo-

rem:

Theorem 2. (Multivariate Implicit Functions). Let fi(x1, ..., xm; z1, ..., zp), with i = 1, ..,m,

be analytic functions in the neighbourhood of a point xj = αj , zk = ck. Assume that the

Jacobian determinant defined as

J := det
( ∂fi
∂xj

)
is non-zero at the point considered. Then the equations (in the xj) yi = fi(x1, ..., xm; z1, ..., zp),

i = 1, ...,m, admit a solution with the xj near to the aj , when the zk are sufficiently near to

the ck and the yi near to the bi := fi(a1, ..., am; c1, ..., cp) : one has

xj = gj(y1, ..., ym; z1, ..., zp),

where each gj is analytic in a neighbourhood of the point (b1, .., bm; c1, ..., cp).

Now consider the case where a generating function y(z) is defined by an equation of the form

y(z) = zφ(y(z))

for some nonlinear φ with non-negative coefficients, analytic on u = 0 and with φ(0) 6= 0. If

there is a τ > 0 within the radius of convergence of φ such that

φ(τ)− τφ′(τ) = 0,

then the Singular Inversion theorem applies:
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Theorem 3. (Singular Inversion). Let y(z) be the solution of an equation y(z) = zφ(y(z)).

If φ fulfills the above conditions, then the quantity ρ = τ/φ(τ) is the radius of convergence of

y(z) at 0, and the singular expansion of y(z) near ρ is of the form

y(z) = τ − d1
√

1− z/ρ+
∑
j≥2

(−1)jdj(1− z/ρ)j/2 with d1 :=

√
2φ(τ)

φ′′(τ)

and dj some computable constants.

Algebraic power series

A formal power series f(z) is called algebraic if there exists a polynomial p(z, x) such that

p(z, f(z)) = 0. In many cases, we can establish the existence and uniqueness of such a power

series given a bivariate polynomial through the implicit function theorem, a simple version of

which is stated below:

Theorem 4. (Analytic Implicit Functions). Let F be bivariate analytic near (0, 0). Assume

that F (0, 0) = 0 and F ′x(0, 0) 6= 0. Then there exists a unique function f(z) analytic in a

neighbourhood |z| < ρ of 0 such that f(0) = 0 and

F (z, f(z)) = 0, |z| < ρ.

Note that for any algebraic power series f(z) there is a unique monic irreducible polynomial

p(x, z) that vanishes for x = f(z), called its minimal polynomial (for more, see Ch.6 of [11]).

Let

p(x, z) = p0(z)xd + p1(z)xd−1 + ...+ pd(z) ∈ C(z)[x]. (2.2)

Now fix some z0 on the radius of convergence of f(z). Then the above polynomial in x has

usually d solutions, except for the case where there is a multiple solution or the coefficient

p0(z0) vanishes. If none of this happens on z0, then by the implicit function theorem there are

d distinct analytic solutions x1, ..., xd on each point (z0, xi) (called branches of the algebraic

curve p(z, x) = 0) and necessarily one of them constitutes an analytic continuation of f(z).

Noting that the problematic points z0 are finite, we can deduce that f(z) can be analytically

continuable on any non problematic point, since there can always be a path to get there.

We call the set of such problematic points the exceptional set of p and the singularities of

f definitely belong there. In order to compute exceptional set we can use the algebraic

construction of the resultant.

The resultant of two polynomials p(x) = p0x
d + p2x

d−1 + ...+ pd, q(x) = q0x
d′

+q2x
d′−1 + ...+ pd′ in C[x] is a polynomial on the coefficients pi, qi that vanishes

if and only if either the two polynomials have a common solution or p0 = q0 = 0.6

Returning to our quest for singularities, if on the fixed z0 there is a multiple root yi, then it is

a solution of ∂xp(z, x) as well. So, considering z as a parameter and computing the resultant

R(p, ∂xp, x), we have a polynomial on z that vanishes exactly at the critical points.7

6More details exist in [2] or [3] for the generalized construction.
7In fact, generally this is called the discriminant of a polynomial.
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Now we have to highlight the fact that generating functions in our context will indeed have

a finite singularity. An immediate explanation comes from the fact that our combinatorial

structures will have exponential growth and thus the first principle of coefficient asymptotics

can be applied.8 Hence, what is left for us to do is to figure out which of the points of the

exceptional set really are singularities of y(z). This can be accomplished by ad hoc arguments

in the simple cases or else there is a systematic numeric way in order to do it (see note VII.36

from [9]).

After the singularities are recognized, the following theorem can be applied:

Theorem 5. (Newton-Puiseux expansions at a singularity). Let f(z) be a branch of an

algebraic function P (z, f(z)) = 0. In a circular neighbourhood of a singularity ζ slit along a

ray emanating from ζ, f(z) admits a fractional series expansion (Puiseux expansion) that is

locally convergent and of the form

f(z) =
∑
k≥k0

ck(z − ζ)k/κ,

for a fixed determination of (z − ζ)1/κ, where k0 ∈ Z and κ is an integer ≥ 1, called the

branching type.

In the above representation it is noted that if the branching type is 2, then we say that there

is a square root type of singularity, a term that will be recurrent in our context. Also, the

first appearing non integer power is called the critical exponent.

In order to compute the Puiseux series, we first translate the algebraic curve in order to trans-

fer the singularity on (0, 0). Then, using the Newton polygon method we can find the first

exponent of the expansion, then apply indeterminate coefficients, and then iterate the same

procedure until we have as many terms of the expansion as wanted. In short, the Newton

polygon method consists of considering the exponents of the monomials as points in the plane,

and then taking all the inverse slopes of the leftmost convex envelope as possible candidates

for the exponents of the expansion.

An important detail about algebraic series is that they are still considered algebraic if they

are defined by a system of polynomial equations of the form
P1(z, x1, ..., xm) = 0
...

...
...

Pm(z, x1, ..., xm) = 0

The reason comes from the theory of algebraic elimination where, generically, we can elimi-

nate any m−2 of the above variables and end up with a defining equation of the form P (z, xi)

(see [2] and [3]).

8The reason here is nevertheless deaper, since it is a known fact from complex analysis that the only
algebraic and entire functions are polynomials.
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Figure 2.3: The plot of the real algebraic curve x3+x2y+x(−z2−z3)+z4, with a zoom in the
interval [−1, 1] next to it. The exceptional set in this case is comprised of z ≈ 0.2,−0.5, 8 and
z = 0. Above is the Newton diagram for its translation z ≈ 0.2− Z and x ≈ 0.11 +X, that
gives (with approximate constants) the equation X3 + 0.64X2 − X2Z + 0.60XZ − 0.15Z −
1.88XZ2 +XZ3 + 0.29Z2 − 1.05Z3 + Z4, leading to the critical exponent 1/2.

Now, under some assumptions, polynomial systems may be amenable to the more general

theorem 5 that will be stated shortly. In order to do so, we must first introduce the notion of

the dependency graph for a system of equations. Let S be a system of the form
y1 = F1(z, y1, ..., ym)
...

...
...

ym = Fm(z, y1, ..., ym)

The dependency graph of such a system is a graph with vertices y1, ..., yN and a directed edge

yi → yj if the function for yi depends in a non trivial way on yj . The graph is then strongly

connected if for every pair of vertices there is a directed path between them (see figure 2.4).

Theorem 6.9 Let F(z,y) = (F1(z,y), ..., FN (z,y)) be a non-linear system of functions ana-

lytic around z = 0, y = (y1, ..., yN ) = 0 whose Taylor coefficients are all non-negative, such

that F(0,y) = 0, F(z,0) 6= 0, Fz(z,y) 6= 0. Furthermore assume that the dependency graph

of F is strongly connected and that the system

y = F(z,y)

0 = det(I− Fy(z,y))

has solutions z0 and y0 that are real and positive. Then there exists ε > 0 such that yj(z)

admit a representation of the form

yj(z) = gj(z)− hj(z)
√

1− z/z0

9First presented in [5].
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for |z−z0| < ε and |arg(z−z0) 6= 0|, where gj(z) 6= 0 and hj(z) 6= 0 are analytic funtions with

gj(z0) = yj(z0) = (y0)j . Furthermore, if [zn]yj(z) > 0 for 1 ≤ j ≤ N and for sufficiently large

n ≥ n1, then there exists 0 < δ < ε such that yj(z) is analytic for |z−z0| ≥ ε but |z| ≤ |z0|+δ

(this condition guarantees that y(z) has a unique smallest singularity with |z| = z0).

The above suggests that we can a priori suppose a square root type of singularity, without

resorting to the Newton polygon method, for a wide variety of combinatorial classes including

the so-called irreducible context-free structures.

y1 = y2 + y3 + y4

y2 = z +
y51

1− y1
y3 = y22(1 + 2y2)

y4 = (y2 + y4)3

y1 y4

y3y2

Figure 2.4: A system of equations and its corresponding dependency graph

Singularity Analysis

The previous two sections have established certain expansions for specific types of functions,

in order to show here how they are analysed using singularity analysis. Just like with the

symbolic method, the spirit in the methods of analytic combinatorics here is the same: build-

ing theorems that serve as general black boxes and apply automatically to a wide variety of

combinatorial classes.

In particular, singularity analysis offers the tools and conditions in order to transfer error

terms near singularity expansions to coefficients, which is the ultimate goal. The notion of a

dented of ∆−domain on z = r is essential here (see figure 2.2). Formally, it is defined as

∆r(φ,R) = {z : |z| < R, z 6= r, |arg(z − r)| > φ}

for some R > r and 0 < φ < π
2 .

Theorem 7. (Singularity analysis, single singularity). Let f(z) be a function analytic at

z = 0, such that f(z) can be continued to a dented domain ∆ζ on ζ. Assume that there exist

two functions σ, τ, where σ is a finite linear combination of functions in the standard scale,

so that

f(z) = σ(z/ζ) +O(τ(z/ζ)) as z → ζ in ζ ·∆ζ .

Then, the coefficients of f(z) satisfy the asymptotic estimate

fn = ζ−nσn +O(ζ−nτn).
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Note that if f(z) = σ(z/ζ)+O(τ(z/ζ)), then [zn]f(z) = [zn]σ(z/ζ)+[zn]O(τ(z/ζ)), so indeed

an asymptotic transfer on the coefficients has been made, using scaled versions of σ, τ. These

are used in their scaled version, since the functions of the standard scale typically contain

functions with singularities at z = 1. Standard scale functions consist in this case the analytic

dictionary, i.e. they are a set of functions for which we know exactly the asymptotic expansion

of their coefficients. In our context, the case of σ(z) = (1 − z)−α for non-positive α will be

very useful:

[zn]σ(z) ∼ nα−1

Γ(α)
.

In order to connect this with the previous sections, it is enough to conclude from the above

that if

A(z) = a0 + a1(1− z/ρ)−α +O
(
(1− z/ρ)−α+1

)
,

for a non-positive α, then

[zn]A(z) = α1
nα−1

Γ(α)
ρ−n

(
1 +O

( 1

n

))
.

The above simplified version will be regularly referred to as the transfer theorem for singularity

analysis.10

Limit laws and the quasi-powers theorem

A random real variable Y is completely defined by its distribution function

F (x) = P[Y ≤ x].

An important distribution in our context is the Gaussian, or normal N (0, 1), whose distribu-

tion function is:

Φ(x) =
1√
2π

∫ x

−∞
e−w

2/2dw.

If Y is N (0, 1), then the variable Y ′ = µ + σY defines the normal distribution with mean µ

and standard deviation σ, denoted N (µ, σ).

Let Y be a continuous random variable with distribution function FY (x). A sequence of

random variables Yn with distribution functions FYn(x) is said to converge in distribution to

Y if pointwise for each x :

lim
n→∞

FYn(x) = FY (x).

Then one writes FYn ⇒ FY , and convergence is said to take place with speed εn if

sup
x∈R
|FYn(x)− FY (x)| ≤ εn.

In particular, it is a known fact that convergence of distribution functions to a continuous

limit is always uniform.

10Γ(α) is the Euler Gamma function, defined as Γ(α) :=
∫∞
0 e−ttα−1dt for Re(α) > 0, which coincides with

(α− 1)! when α is an integer.
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We will now turn again to bivariate generating functions and state the so-called Quasi-Powers

theorem, which provides details for the limiting distribution of the random variable defined

by the parameter χ when n→∞.

In our context, the important thing is that the analytic expansions obtained in the single

variable case are preserved in form and critical exponent when we add the second variable

u as a parameter in an infinitesimal neighbourhood of u = 1. In fact, while the critical

exponent remains still, the singularity ρ(u) moves smoothly with u. We can then apply the

Quasi-Powers theorem which can be stated as follows, in its simplified version for algebraic

singularities (Th.IX.12 from [9]):

Theorem 8. Let F (z, u) be a function that is bivariate analytic at (z, u) = (0, 0) and has

non-negative coefficients. Assume the following conditions:

(i) Analytic perturbation: there exist three functions A,B,C, analytic in a domain D =

{|z| ≤ r} × {|u − 1| < ε}, such that, for some r0 with 0 < r0 ≤ r, and ε > 0, the

following representation holds, with a 6∈ Z≤0,

F (z, u) = A(z, u) +B(z, u)C(z, u)−α;

futhermore, assume that, in |z| < r, there exists a unique root ρ of the equation C(z, 1) =

0, that this root is simple, and that B(ρ, 1) 6= 0.

(ii) Non-degeneracy: one has ∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence of a non-

constant ρ(u) analytic at u = 1, such that C(ρ(u), u) = 0 and ρ(1) = ρ.

(iii) Variability: one has

b
( ρ(1)

ρ(u)

)
= −ρ

′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+
(ρ′(1)

ρ(1)

)2
6= 0 (2.3)

Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges to a Gaussian variable with a speed of convergence that is O(n−1/2). The mean µn

and the variance σ2
n converge asymptotically to

m
( ρ(1)

ρ(u)

)
n and b

( ρ(1)

ρ(u)

)
n

where m
(
ρ(1)
ρ(u)

)
= −ρ

′(1)
ρ(1) and b

(
ρ(1)
ρ(u)

)
as in (2.3)
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2.3 Application: labelled outerplanar graphs

An outerplanar graph is a planar graph that can be embedded on the plane in such a

way that all the vertices lie on the outer face. A second definition: outerplanar graphs

are graphs that do not contain K4 or K2,3 as a minor11.

The two definitions are equivalent: If a graph contains K2,3 as a minor and is outerplanar,

then we can insert a vertex on the outer face, and attach it with the three suitable vertices

of K2,3 in order to obtain a planar embedding of K3,3 - impossible by Kuratowski’s theorem.

The same reasoning applies to the case of K4, building in this way a planar embedding of

K5 which is also impossible. Conversely: If a graph does not contain K2,3 as a minor or

K4, then we insert an extra vertex and connect it with all the existing vertices. This graph

cannot contain K5 or K3,3, since then the original graph would contain a K2,3 or K4, so we

can conclude it is planar. Then there is an embedding of it with the extra vertex on the

outer face. Since it is connected in a planar way with all the original vertices, removing it

will create an embedding for the original graph with all the vertices on the outer face.

Figure 2.5: The graphs K2,3 and K4 in a planar embedding

This section demonstrates and explains the way general, labelled outerplanar graphs were

specified and analysed asymptotically in [1].

The combinatorial structure

The process in order to reach a specification for our class is the following:

1. Find a specification for the biconnected outerplanar graphs, which corresponds to the

generating function D(z).

2. Place labels on them, and obtain B(z).

3. Attach graphs of the above class in a tree-like way, in order to obtain connected labelled

outeplanar graphs and the corresponding C(z).

4. Take sets of the above, in order to obtain general labelled outerplanar graphs and the

corresponding G(z).

For number 1: It is known that biconnected graphs can be constructed from a cycle by

successively adding G−paths to G graphs already constructed (see Pr.3.1.1 from [4]). Since

outerplanar graphs do not contain K2,3 or K4 as minors, the paths can be either non-crossing

11A graph H is a minor of G if it can be obtained from G by applying edge contactions and deletions, and
deletions of vertices.



20 CHAPTER 2. THE MAIN METHODS

chords, or paths attached on the ends of an existing edge. This way we can view 2-connected

outerplanar graphs as composed of a unique hamilton cycle with non-crossing chords, implying

that such n−graphs are isomorphic as a combinatorial structure to dissections of n−polygons.

We suppose on the starting n−cycle the regular {1, 2, ..., n}-clockwise numbering on the ver-

tices. Then, we can mark the edge e = (1, 2) at all dissections and divide them to dissections

where e lies alone, or on a triangle, on a quadrangle etc. If e lies on a k−gon (or, else said,

on a k−gon base) then we can identify each dissection with a sequence of k − 1 dissections

that are attached around it. Thus, letting z2 represent an edge, we have:

D = z2 +
D2

z
+
D3

z2
+ ...+

Dr

zr−1
+ ... (2.4)

⇒ D = z2 +
D2

z −D
⇒ 2D2 − z(1 + z)D + z3 = 0.

where the denominators erase the vertices that are double counted when attaching two neigh-

bouring dissections on the base.

e D

D

e D

DD

e

Figure 2.6: The construction of dissections D.

The last equation can be solved directly as a quadratic equation, and gives:

D(z) = z/4 + z2/4− z/4
√
z2 − 6 z + 1

since the other solution has negative coefficients.

For number 2: Now we must place labels on the dissections. All circular labellings without

orientation give a different graph (as they give a different Hamilton cycle), so for each dissec-

tion there are bn = dn
(n−1)!

2 biconnected labelled outerplanar graphs, except for the case of

n = 2 where b2 = 1. But B(z) is an exponential generating function, so, having

bn = dn
(n− 1)!

2
⇒ n

bn
n!

=
dn
2

for n ≥ 3

and b2 = 1, we can say that

zB′(z) =
D(z)

2
+
z2

2
⇒ B′(z) =

1
zD(z) + z

2
.
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For number 3: To pass to the connected outerplanar graphs, the following relation is used:

zC ′(z) = z exp(B′(zC ′(z))).

This depicts the fact that we can decompose a rooted connected outerplanar graph into its

rooted maximal biconnected components that lie on the main root, while each one of the

components is carrying other rooted connected outerplanar graphs on its nodes.

z

B’

B’

B’

zC’

zC’

zC’
zC’

zC’

zC’

zC’

zC’

zC’

Figure 2.7: The decomposition of a rooted connected outerplanar graph

In more detail, the left side suggests that a vertex is being pointed to, as a root, while the

right side suggests taking an atom z as a root, and then taking sets of rooted biconnected

outerplanar graphs attached to it. Note that the roots of the biconnected components have

no size, since they are attached to the atom z. Now, the substistution inside B shows that

each vertex of the attached biconnected components carries a rooted connected outerplanar

graph.

For number 4: The last equation is straightforward, since, in order to obtain general labelled

outerplanar graphs, we only have to take sets of labelled connected ones:

G(z) = exp(C(z)).

What is more, the equations for 3 and 4 can also be applied in the enumeration of general

planar graphs (see [10]), since any planar graph has a similar unique tree-like decomposition

into its maximal biconnected components, and any set of planar graphs consists a planar

graph as well. Notice that this decomposition is particular to planar graphs. In fact is does

not apply for graphs of higher genus.
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A specification for labelled outerplanar graphs

2-connected components D(z) = z/4 + z2/4− z/4
√
z2 − 6 z + 1

Labelled 2-connected B′(z) = 1
2zD(z) + z

2

Labelled connected zC ′(z) = z exp(B′(zC ′(z)))

General labelled G(z) = exp(C(z))

Table 2.3: The complete specification for labelled outerplanar graphs that is derived in [1].

Outline of the asymptotic analysis

The first equation of table 2.3 is algebraic, with a unique real and positive singularity r =

3− 2
√

2. It then admits a Puiseux expansion on r, with critical exponent 1/2 :

a0 + a1(1− z/r)1/2 + a2(1− z/r) + ... with a1 6= 0.

On the other hand, B′(z) inherts exactly the same singularities as A(z) and the same type of

expansion on r, since it suffices to consider the taylor expansion of B̃′(z) = u
2z + z

2 on r and

then substitute u with the singular expansion of A(z). Thus, B′ admits a singular expansion

of the form:

b0 + b1(1− z/r)1/2 + b2(1− z/r) + ... with b1 6= 0.

Let us now consider F (z) = zC ′(z). The inverse of F is ψ(u) = u exp(−B′(u)), and differ-

entiating we have ψ′(u) = exp(−B′(u))(1 − uB′′(u)). In the case where ψ′ becomes zero for

some z = τ , we know that ψ(τ) is a singularity for F , and for C as well. It can be argued

that there is such a τ and in fact it is smaller than r, which makes ρ = ψ(τ) its dominant

singularity: differentiating B′, we come up with a leading − 1
2 term in the expansion, so B′′

tends to infinity near r, while 1
u is decreasing, so there must be a point before r where the two

functions meet, let us call it τ . Then, by singular inversion, F admits a singular expansion

on ρ of the form:

F0 + F1

√
1− z/ρ+O(1− z/ρ) for F0 = τ, and F1 := −

√
2φ(τ)

φ′′(τ)
. (2.5)

Now, F and C have the same singularities, and thus ρ is the dominant singularity of C. This

gives C a singular expansion of critical exponent 3/2 on ρ, since it is the integral of F divided

by z. The singular expansion of F can be obtained from that of C by differentiating and

multiplying by z, and setting Z =
√

1− z/ρ⇒ z = ρ(1− Z2), we have

ρ(1− Z2)C ′(z) = ρ(1− Z2)
(
− C2

ρ
− 3C3

2ρ
Z +O(Z2)

)
= −C2 +

(1

2
C1 −

3

2
C3

)
Z +O(Z2),

and equating with (2.5) gives C2 = −F0 and C3 = − 2
3F1.

In order to find C0 we integrate F (s)
s , having:

C(z) =

∫ z

0

F (s)

s
ds = F (z) log z −

∫ z

0

F ′(s) log sds.
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Changing variables to t = F (s) so that s = ψ(t) = t exp(−B′(t)), the last integral becomes:

∫ F (z)

0

logψ(t)dt =

∫ F (z)

0

(log t−B′(t))dt = F (z) log(F (z))− F (z)−B(F (z)) +B(0).

Since B(0) = 0, we have

C(z) = F (z)(log z + 1− log(F (z)) +B(F (z)),

and taking in mind F (ρ) = τ leads to

C0 = τ(log(ρ) + 1− log(τ)) +B(τ). (2.6)

In the end, G(z) has the same singularities as C(z), since the exponential is an entire function,

and the singular expansion of G follows immediately:

G(z) = exp(C0 + C2Z
2 + C3Z

3 +O(Z4)) = exp(C0) exp(C2Z
2 + C3Z

3) +O(Z4)

⇒ G(z) = exp(C0)(1 + C2Z
2 + C3Z

3) +O(Z4). (2.7)

The analysis can be now completed by an application of the transfer theorem for singularity

analysis, and the final asymptotic result is of the form

gn ∼ g · n−5/2 · ρ−n · n!

where g = exp(C0) · C2.

In fact, the actual constants found in [1] are ρ ≈ 0.13659 and g ≈ 0.01821.
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Chapter 3

Outerplanar graphs with

forbidden cycles

The results from this point onwards are original results of this thesis. In the present chapter

we will build specifications for outerplanar graphs that avoid certain k−cycles, in the spirit

of section 2.3. The first step will be to build specifications for the biconnected components,

which is equivalent to building specifications for dissections d that avoid the same cycles,

considering at first d̂ = d/z in order to avoid the denominators and have clearer equations

(mainly in the more involved cases of 5 and 6 cycles). In combinatorial terms, this can

be seen as not counting one of the two atoms of the base edge e. Having accomplished the

specification for d, the equations to pass to labelled biconnected, to connected, and then to

general outerplanar graphs are the same as the ones in Table 2.3.

The appearing generating functions

Symbols Combinatorial structures

d dissections of a restricted kind

d̂ dissections in d/z

d̂2 dissections in d/z that exclude as a base all j-cycles for 3 ≤ j ≤ n− 1

d̂j for 3 ≤ j ≤ n− 1 dissections in d/z with a j-cycle base

B labelled biconnected outerplanar graphs of a restricted kind
C labelled connected outerplanar graphs of a restricted kind
G labelled general outerplanar graphs of a restricted kind

Table 3.1: The appearing combinatorial structures and their respective generating function
symbols

25
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3.1 The case of 3 and 4-cycles

3.1.1 When 3-cycles are excluded

At first, we will study the biconnected components. Excluding the case of a triangle base in

the original equation for general dissections (2.4) and dealing with d̂ = d/z, the dissections

with no triangles in d̂ are specified by the equation below:

d̂ = z + d̂3 + d̂4 + ... = z +
d̂3

1− d̂
⇒ d̂3 + d̂2 + d̂(−z − 1) + z = 0

Multiplying by z3, the equation becomes

d3 + d2z + d(−z2 − z3) + z4 = 0 (3.1)

and the above polynomial P (d, z) vanishes identically when substituting our generating func-

tion d(z) for d. The discriminant of P (d, z) with z as a parameter and d as the main variable

is equal to the resultant:

R

(
P,
∂P

∂d
, d

)
= −z6(4z3 − 32z2 − 8z + 5),

and the exceptional set Ξ consists of its solutions. Rounding the values up to 5 digits, we

have

Ξ = {0.29336, 8.22469,−0.51805, 0}.

There is a unique real root of minimum positive modulus r ≈ 0.29336, so r is d′s dominant

singularity.1 Our function d(z) is a branch of P so it admits a fractional Puiseux expansion

of the form

d(z) =
∑
k≥k0

ak

(
1− z

r

) k
κ

for some positive κ ∈ N

in a dented domain on r. In order to compute the expansion we use iteratively the Newton

polygon method along with undetermined coefficients, to obtain in the end the following

expansion (see also figure 2.3):

a0 + a1

√
1− z

r
+O

(
1− z

r

)
for a0 ≈ 0.11823, and a1 ≈ −0.08260.

Using the transfer theorem for singularity analysis, one has:

[zn]d(z) ∼ a1
r−nn−3/2

Γ(−12 )
= a · r−nn−3/2 for a ≈ 0.02330.

In order to pass to labelled dissections and then to labelled outerplanar graphs we will use

1The analysis here could also be done with the explicit form of d, but not in the next cases where the
degree of the defining polynomial equation becomes immediately much larger.
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the equations described in Section 2.3, namely

B′(z) =
1
zd(z) + z

2
zC ′(z) = z exp(B′(zC ′(z))) and G(z) = exp(C(z)). (3.2)

Now consider F (z) := z exp(B′(zC ′(z))) and its inverse ψ(u) = u exp(−B′(u)). Following the

same reasoning as in 2.3, we expect to find some τ < r as a root of ψ and thus a smaller

singularity for F and by extension for C.

The only remaining thing is to compute τ .

By differentiating (3.1) we find an expression of d′ in terms of d :

d′(z) = −−3dz2 + 4z3 + d2 − 2dz

−z3 + 3d2 + 2dz − z2
(3.3)

and then

ψ′(u) =
−18du3 + 9u4 + 3du2 − 6u3 + 3u5 − 9d2u2 + 9d3 + 27d2u

6z(−u3 + 3d2 + 2du− u2)
exp

(
−

d
u + u

2

)
, (3.4)

hence the zeros of ψ′ are the zeros of the above numerator. We solve the polynomial system of

(3.1) and the above using the computational program maple, which gives us only one suitable

pair of solutions: (d′, τ) ≈ (0.11010, 0.29118). It follows that the dominant singularity is on

ρ = ψ(τ) ≈ 0.20836. Then, by singular inversion, F admits a singular expansion on ρ of the

form:

F0 + F1

√
1− z

ρ
+O

(
1− z

ρ

)
for F0 = τ, and F1 := −

√
2φ(τ)

φ′′(τ)
≈ 0.05546. (3.5)

We know that C has the same dominant singularities, and a singular expansion of the form

C(z) = C0 + C2

(
1− z

ρ

)
+ C3

(
1− z

ρ

)3/2
+O

((
1− z

ρ

)2)
with C2 = −F0, C3 = − 2

3F1, and C0 = τ(log(ρ) − log(τ) + 1) + B(τ) ≈ 0.01982. It must be

noted that B(τ) was computed using the Taylor expansion of b from that of d, and is equal

to approximately 0.10232.

The singular expansion of G follows from G(z) = exp(C(z)):

G(z) = exp(C0)(1 + C2Z
2 + C3Z

3) +O(Z4).

Using the transfer theorem for singularity analysis it can be deduced that:

gn ∼
g · n− 5

2 · ρ−n · n!

Γ(− 3
2 )

≈ g′ · n− 5
2 · ρ−n · n!

for ρ = ψ(τ) ≈ 0.20836 and g′ = C3 · exp(C0) · Γ(− 3
2 )−1 ≈ 0.01578.
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3.1.2 When 4-cycles are excluded

In this case it is not enough to exclude the 4−bases or both the 3 and 4−bases, since the

3−bases are allowed if a triangle is not attached to them. So we seperate cases. There is the

case where the base is bigger than a 5−cycle, so anything from the class d can be attached

around it and the case where we have a triangle base, and then we can attach anything except

for d̂−elements bearing a triangle base. This justifies the specification below:

d̂ = d̂2 + d̂3

d̂2 = z + d̂4 + d̂5 + ... = z +
d̂4

1− d̂
d̂3 = (d̂− d̂3)2 = d̂22

Multiplying by z to the right power each time, the system becomes:

d = d2 + d3

d2z
3 = z5 +

zd4

z − d
d3z = d22

Eliminating the other variables, it is found that d satisfies identically the equation:

d2z8−2dz9+z10−2d5z4+2d4z5+d2z7−2dz8+z9+d8−d5z3+d4z4−d3z5+2d2z6−dz7 = 0.

(3.6)

The discriminant of P (d, z) with d as the main variable and z as a parameter is equal to

R

(
P,
∂P

∂d
, d

)
= z56(233280z9 − 3373191z8 + 4822712z7 + 46343900z6+

72539810z5 + 43394958z4 + 8355236z3 + 793033z2 + 1407918z − 908503).

We compute the exceptional set with maple and find only one real root with modulus smaller

than one, r ≈ 0.26488. By Pringsheim’s theorem we can deduce that this is one of the

dominant sigularities and, since all the other roots have larger modulus, it is the only one.

We can then compute the Puiseux expansion of P on a dented domain around r as in the

previous case, and find an expansion of the form:

a0 + a1

√
1− z

r
+O

(
1− z

r

)
for a0 ≈ 0.11156, a1 ≈ −0.07717.

Using the transfer theorem for singularity analysis, one has:

[zn]d(z) ∼ a1
r−nn−3/2

Γ(−12 )
= a · r−n · n−3/2 for a ≈ 0.02177.

The analysis required in order to pass from the 2-connected components to labelled outer-

planar graphs is done again using the equations in Section 2.3, and the same arguments for

the singular expansions of F,B′ and C as before. We can still express the derivative d′ in
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terms of d and then compute ψ′(u) in terms of d. In this way we find the value of τ by

solving the system of ψ′(u) and the defining equation for d, (3.6). We have τ ≈ 0.26280 and

ρ = ψ(τ) ≈ 0.18919. We compute B(τ) using the Taylor expansion of B from that of d and

it is found equal to approximately 0.03835. Through it we can compute C0 ≈ 0.00676, and

in the end we have:

gn ∼
g · n− 5

2 · ρ−n · n!

Γ(− 3
2 )

= g′ · n− 5
2 · ρ−n · n!

for ρ = ψ(τ) ≈ 0.18919 and g′ = C3 · exp(C0) · Γ(− 3
2 )−1 ≈ 0.01462.

3.2 The case of 5 and 6-cycles

In this section, instead of eliminating the extra variables di in order to get a single equation

with d, z, we will use immediately Theorem 5. The reason is that the defining polynomials

now become quickly too big to handle computationally with relative ease.

3.2.1 When 5-cycles are excluded

Here we divide the dissections d̂ with no 5−cycles into 3 categories according to their base:

• d̂2 denotes the dissections that have as a base a j−polygon with j ≥ 5. The base is

then big enough to attach anything around it.

• d̂3 denotes the dissections that have as a base a triangle. Then we can either attach

only members of d2, or attach one triangle on it (2 ways to do that) and then attach

members of d̂2.

• d̂4 denotes the dissections that have as a base a quadrangle, and the only thing to avoid

there is attaching a triangle.

Figure 3.1: The possible bases for d3.

The above are reflected in the following specification:

d̂ = d̂2 + d̂3 + d̂4

d̂2 = z + d̂5 + d̂6 + ... = z +
d̂5

1− d̂
d̂3 = d̂22 + 2(d̂− d̂3 − d̂4)3 = d̂22 + 2d̂32 = d̂22

(
1 + 2d̂2

)
d̂4 = (d̂− d̂3)3 = (d̂2 + d̂4)3

(3.7)
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Multiplying by z to the suitable power and simplifying, the system becomes:

d− d2 − d3 − d4 = 0

d5 − z5d+ z6 − z4d2 + z3dd2 = 0

2d32 + d22z − z2d3 = 0

z2d4 − (d2 + d4)3 = 0

(3.8)

Consider the right-hand side of (3.7) as a system of equations F on the variables z, d̂. The

equations of F are non-linear, analytic around zero with positive Taylor coefficients, and

with a strongly connected dependency graph (see Figure 2.4). We also have F(z,0) 6= 0 and

Fz(z, d̂) 6= 0, so if we also had F(0, d̂) = 0, then we could apply theorem 6. But in our

combinatorial context we know that all d̂i are of the form zd̂′i for some d′i, which leads to an

equivalent system that also fulfills F(0, d̂′) = 0. 2 Hence we can apply the theorem, and the

next step is find the solution (r, d̂1, ..., d̂5) of the characteristic system

d̂ = F(z, d̂)

0 = det(I− Fd̂(z,d)).

The result is r ≈ 0.25383 and then knowing that d has the same singularities and of the same

type as d̂, we can establish a singular expansion for d(z) of the form

d(z) = a0 + a1
√

1− z/r +O(1− z/r) for a0 ≈ 0.11255 and a1 ≈ −0.07861

in a dented domain around r. Via the transfer theorem for singularity analysis we obtain

[zn]d(z) ∼ a1
r−nn−3/2

Γ(−12 )
= a · r−n · n−3/2 for a ≈ 0.02217

The computation for a1 was done by substituting the singular expansions up to two terms for

all di in (3.8), and then solving the system for the unknown coefficients.

The rest of the analysis is done in the same way as before, using the Taylor expansion of

d (this time for the computation of τ as well), giving in the end that

gn ∼
g · n− 5

2 · ρ−n · n!

Γ(− 3
2 )

= g′ · n− 5
2 · ρ−n · n!

for ρ = ψ(τ) ≈ 0.18054 and g′ = C3 · exp(C0) · Γ(− 3
2 )−1 ≈ 0.01804.

2The systems are indeed equivalent, since d̂i and d̂′i have the same singularities and of the same type.
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3.2.2 When 6-cycles are excluded

The specification now gets a little more complex. Starting from the easier parts, the specifi-

cations for d̂, d̂2 follow the same reasoning as in the previous cases and thus

d̂ = d̂2 + d̂3 + d̂4 + d̂5, d̂2 = z + d̂6 + d̂7 + ... = z +
d̂6

1− d̂

For pentagon based dissections d̂5, the only thing to worry about is attaching a triangle-based

dissection, so we have

d̂5 = (d̂− d̂3)4.

For the quadrangle base case d̂4 we have the option either to attach only elements of d2 and

d5 which are too big to cause a problem, or attach some smaller polygons and deal with all

the new restrictions. The first option yields the (d̂2 + d̂5)3 summand, while the second one

leads to three other cases (see also Figure 3.2):

1. attach exactly one triangle around the base (3 ways for that). Then no 3,4-gons can be

placed on the quadrangle, and no 3,4,5-gons can be placed on the triangle. This gives

the (d̂− d̂3 − d̂4)2(d̂− d̂3 − d̂4 − d̂5)2 summand.

2. attach one triangle and one quadrangle upon it (6 ways for that). Then no 3,4,5-gons

can be placed on the triangle, and no 3,4-gons can be placed on the quadrangle. This

leads to the (d̂− d̂3 − d̂4 − d̂5)(d̂− d̂3 − d̂4)5 summand.

3. attach one triangle and then exactly two quadrangles (3 ways for that), which gives

(d̂− d̂3 − d̂4)8.

Written in full, we have the following for d̂4 :

d̂4 = (d̂2+d̂5)3+3(d̂−d̂3−d̂4)2(d̂−d̂3−d̂4−d̂5)2+6(d̂−d̂3−d̂4−d̂5)(d̂−d̂3−d̂4)5+3(d̂−d̂3−d̂4)8.

For the triangle base case we have the option either to attach only elements of d̂2, or at-

Figure 3.2: The possible bases for d4 (we can use only one dashed and one dotted shape,
while the coloured shapes are taken as whole)

tach smaller polygons and deal with all the new restricitons. The first option yields the d̂22

summand, while the second one leads to four other cases:

1. attach exactly one triangle on the triangle base (2 ways). Then no 3,4,5-gons are allowed

around them. This corrresponds to the (d̂− d̂3 − d̂4 − d̂5)3 summand.

2. attach exactly two triangles (5 ways for that). Then no 3,4,5-gons are allowed and that

gives (d̂− d̂3 − d̂4 − d̂5)4.
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3. attach exactly one quadrangle (2 ways). Then no 3,4,5-gons are allowed on the triangle

and no 4,5-gons are allowed on the quadrangle, leading to (d̂− d̂3− d̂4)3(d̂− d̂3− d̂4− d̂5).

4. attach two quadrangles (1 way). Then no 3,4-gons are allowed, and we have a (d̂− d̂3−
d̂4)6 summand.

The result for d̂3 is

d̂3 = d̂22+2(d̂−d̂3−d̂4−d̂5)3+5(d̂−d̂3−d̂4−d̂5)4+2(d̂−d̂3−d̂4)3(d̂−d̂3−d̂4−d̂5)+(d̂−d̂3−d̂4)6.

The complete specification is then:

Figure 3.3: The possible bases for d3 (the same rules apply as in Figure 2.1)

d̂ = d̂2 + d̂3 + d̂4 + d̂5

d̂2 = z + d̂6 + d̂7 + ... = z +
d̂6

1− d̂
d̂3 = d̂22 + 2(d̂− d̂3 − d̂4 − d̂5)3 + 5(d̂− d̂3 − d̂4 − d̂5)4 + 2(d̂− d̂3 − d̂4)3(d̂− d̂3 − d̂4 − d̂5)

+(d̂− d̂3 − d̂4)6

d̂4 = (d̂2 + d̂5)3 + 3(d̂− d̂3 − d̂4)2(d̂− d̂3 − d̂4 − d̂5)2 + 6(d̂− d̂3 − d̂4 − d̂5)(d̂− d̂3 − d̂4)5

+3(d̂− d̂3 − d̂4)8

d̂5 = (d̂− d̂3)4

equivalent to

d̂ = d̂2 + d̂3 + d̂4 + d̂5

d̂2 = z +
d̂6

1− d
d̂3 = d̂22 + 2d̂32 + 5d̂42 + 2(d̂2 + d̂5)3d̂2 + (d̂2 + d̂5)6

d̂4 = (d̂2 + d̂5)3 + 3(d̂2 + d̂5)2d̂22 + 6d̂2(d̂2 + d̂5)5 + 3(d̂2 + d̂5)8

d̂5 = (d̂2 + d̂4 + d̂5)4

(3.9)
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and, by multiplying with the right power of z each time and simplifying:

d− d2 − d3 − d4 − d5 = 0

d6 + z7 − z6d− d2z5 + dd2z
4 = 0

z4d22 + 2d32z
3 + 5d42z

2 + 2(d2 + d5)3d2z
2 + (d2 + d5)6 − d3z5 = 0

(d2 + d5)3z5 + 3z4(d2 + d5)2d22 + 6z2d2(d2 + d5)5 + 3(d2 + d5)8 − d4z7 = 0

(d2 + d4 + d5)4 − z3d5 = 0

(3.10)

Consider the system (3.9) as F. This satisfies the premises of theorem 5, and so the dominant

singularity of d̂ is the r from the solution (r, d1, ...d5) of the system

d̂ = F(z, d̂)

0 = det(I− Fd̂(z,d),

that is r ≈ 0.24835. But d has the same singularities and of the same type as d, and thus

admits a singular expansion of the form

d(z) = a0 + a1
√

1− z/r +O(1− z/r) for a0 ≈ 0.11620 and a1 ≈ −0.08227.

in a dented domain around r, which via the transfer theorem for singularity analyisis yields

[zn]d(z) ∼ a1
r−nn−3/2

Γ(−12 )
= a · r−n · n−3/2 for a ≈ 0.02321.

The computation for a1 is done as in the previous case, by substituting the cut singular ex-

pansions for all di in (3.10) and then solving the system for the unknown coefficients.

The rest of the analysis is done the same way as before, using the Taylor expansion for d,

giving in the end:

gn ∼
g · n− 5

2 · ρ−n · n!

Γ(− 3
2 )

= g′ · n− 5
2 · ρ−n · n!

for ρ = ψ(τ) ≈ 0.17516 and g′ = C3 · exp(C0) · Γ(− 3
2 )−1 ≈ 0.01870.

3.2.3 Synopsis

The type of asymptotic growth for all the cases mentioned in this chapter is of the form

g · n− 5
2 · ρ−n · n!,

while for their 2-connected counterparts it is of the form g2con · n−
3
2 · ρ−n2con · n!. We note that

the reason for this universal law of n−
5
2 lies in the fact that B′′ diverges on d′s singularity

r, which in turn comes from the fact that B′ admits a square-root type of singularity on r.
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In short, if we could argue sufficiently for such a specification for any excluded k−cycle, then

by theorem 6 we would have a square-root type of singularity, and thus this kind of law. In

fact, for any block-stable3 graph class we could argue for the same subexponential growth, if

B′′ diverges on B′s singularity (see [7]).

The constants computed in this chapter are summarized in the table below:

Class ρ g ρ2con g2con

3-cycles 0.20836 0.01578 0.29336 0.02330

4-cycles 0.18919 0.01462 0.26488 0.02177

5-cycles 0.18054 0.01804 0.25383 0.02217

6-cycles 0.17516 0.01870 0.24835 0.02321

Table 3.2: A summary of the constants for both general and 2-connected restricted outerplanar
graphs.

We note that in the Appendix one can find the first thirty terms of the countinig sequences

for all the combinatorial classes studied in this chapter.

3A block is a maximal 2-connected component and a block-stable class G is a class that contains the
edge-graph and G ∈ G if and only if each of its blocks belongs in G.



Chapter 4

Statistics and limit laws

In this chapter we study parameters of general outerplanar graphs, namely the number of

triangles and quadrangles. We will be able to extract gaussian limit laws for them with linear

mean and variance

µ ∼ αn, σ2 ∼ βn,

as well as compute explicitely1 the constants α and β. It is noted that recently, in [6], normality

is established in a general scenario for a wide class of graphs including outerplanar graphs and

their subgraph parameters, but unfortunately it does not give a way to compute the explicit

constants.

4.1 Triangles and quadrangles in outerplanar graphs

In this chapter we will use directly dissections of D instead of D̂, since the equations here

have a less complex look.

4.1.1 The case of triangles

The analysis begins once more with the 2-connected components.

A bivariate specification for general dissections with u denoting the number of triangles is the

following:

D = z2 + u
D2

z
+
D3

z2
+ ...+

Dr

zr−1
+ ... = z2 + u

D2

z
+

D3

z(z −D)
, (4.1)

since it is enough to add the triangles of a dissection’s components, and add one more when

the base is a triangle. This is simplified to

−uD3 + uD2z −Dz3 + z4 +D3 +D2z −Dz2 = 0

and the discriminant of the above polynomial P (D, z, u) equals

R

(
P,
∂P

∂D
, d

)
= −z6(u−1)(4u3z+8u2z2+4uz3−8u2z−44uz2−4z3−u2+20uz+32z2+2u+8z−5).

1up to five digits, but could be done in any degree of accuracy.

35
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We will focus on the last term of the resultant, let us call it res(u, z), in order to see how to

singularities move when we change the parameter u. Setting u = 1, the possible roots for z

are
{

3− 2
√

2, 3 + 2
√

2
}
≈ {0.17157, 5.82842} so the first one is the dominant singularity of

D(z, 1). We see that the derivative of res with respect to z does not vanish for u = 1, z =

3 − 2
√

2, hence the implicit function theorem applies. There is then a function r(u) such

that z = r(u), analytic in a domain around (1, 3 − 2
√

2). In our case this function gives the

dominant singularity for every fixed u. Via the Newton polygon method, the singularity is of

a square root type for every fixed u, so D admits a singular expansion of the form

a0(u) +
∑
k≥1

ak(u)

√
1− z

r(u)

k

where ak(u) is a rational function in u for every k, analytic in a neighbourhood of u = 1. The

above can be grouped as

∑
k≥0

a2k(u)
(

1− z

r(u)

)k
+

√
1− z

r(u)

∑
k≥0

a2k+1(u)
(

1− z

r(u)

)k
,

so in the end we can say that D admits a singular expansion of the form

A(z, u) +B(z, u)

√
1− z

r(u)
(4.2)

where A(z, u), B(z, u) are analytic in a region around |z| < r and |u−1| < r′ for positive r, r′.

But now the first two conditions of the Quasi-Power theorem are fullfilled (Theorem 7), and

we only have to compute the quantities:

m
( ρ(1)

ρ(u)

)
= −r

′(1)

r(1)
and b

( ρ(1)

ρ(u)

)
= −r

′′(1)

r(1)
− r′(1)

r(1)
+
(r′(1)

r(1)

)2
so as to implement it. In order to compute r′(1) we will set z ≡ r(u) in res, differentiate,

and then solve for r′(1). The result is equal to
√

2 − 3/2 ≈ −0.08578. Differentiating again

we can solve for r′′(u) and then r′′(1) ≈ 0.06066. The condition of variability is fullfiled, and

thus a Gaussian limit law holds for our random variable, and the mean and variance are

asymptotically linear in n. In particular,

µn ∼ m
( ρ(1)

ρ(u)

)
n and σ2

n ∼ b
( ρ(1)

ρ(u)

)
n.

with m
(
ρ(1)
ρ(u)

)
≈ 0.39644 and b

(
ρ(1)
ρ(u)

)
≈ 0.50000.

To pass to the connected and then general outerplanar graphs, the same three equations

apply as in part 2, only now D has a parameter u:

B′(z, u) =
1
zD(z, u) + z

2
, zC ′(z, u) = z exp(B′(zC ′(z), u)) and G(z, u) = exp(C(z, u)).
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Now, B′ has the same singularities as D, while C has the same as F (z, u) ≡ zC ′(z, u). But F is

the inverse of Ψ(z, u) = z exp(−B′(z, u)) so we have to check also for the zeroes of Ψ′. We have

Ψ′(z, u) = exp(−B′(z, u))(1− zB′′(z, u)) so it is enough to find the zeros of (1− zB′′(z, u)).

But B′′(z, u) depends on D′, which can be expressed in terms of D by differentiating its

defining relation (4.1) and solving for D′. Setting u = 1 and solving the system we have a

root τ(1) ≈ 0.17076, while D(τ(1), 1) ≈ 0.04709. Differentiating (1 − zB′′(z, u)) for z again

and substituting the latter values, we see that it does not become zero, so by the implicit

function theorem we can deduce that there is an analytic function τ(u) around u = 1 that

corresponds to the zeros of Ψ′u(z), considering u as a parameter. Then, for each fixed u,

the dominant singularity of F is ρ(u) = Ψ(τ(u)). The same applies to C and then to G

by the same reasoning as in section 2, while G inherits from F and C a singular expansion

with critical exponent a = − 3
2 . To apply again the Quasi-Power theorem we need the values

ρ(1), ρ′(1), ρ′′(1) and τ ′(1). The first is already found. Since ρ(u) = Ψ(τ(u), u), for the other

two we can say that

ρ′(u) =
∂Ψ

∂z
(τ(u), u)τ ′(u) +

∂Ψ

∂u
(τ(u), u) =

∂Ψ

∂u
(τ(u), u),

and

ρ′′(u) =
∂2Ψ

∂z∂u
(τ(u), u)τ ′(u) +

∂2Ψ

∂u2
(τ(u), u).

The computations can be done using

∂

∂u
D (z, u) = − D2 (D − z)

3uD2 − 2Duz + z3 − 3D2 − 2Dz + z2
and

∂

∂z
D (z, u) =

uD2 − 3Dz2 + 4 z3 +D2 − 2Dz

3uD2 − 2Duz + z3 − 3D2 − 2Dz + z2

With the above relations and τ(u)B′′(u) = 1 we can also find τ ′(1). The final computations

give ρ′(1) ≈ −0.05564, ρ′′(1) ≈ −37.94307 and τ ′(1) ≈ −0.08493. Then

µn ∼ m
( ρ(1)

ρ(u)

)
n and σ2

n ∼ b
( ρ(1)

ρ(u)

)
n

with m
(
ρ(1)
ρ(u)

)
≈ 0.34793 and b

(
ρ(1)
ρ(u)

)
≈ 0.40737.

4.1.2 The case of quadrangles

The specification here needs to augment the exponent of u each time a new quadrangle is

formed. We have to take care of two cases: when an empty quadrangle is added and when

a quadrangle is formed by two adjacent triangles. With this in mind, we now define D2 to

represent all the dissections without triangle base and D3 to represent all dissections with

triangle base. Of course then

D = D2 +D3.

Now, D2 is formed by taking all kinds of bases except for triangular ones and attaching on

them any object of D. In the meantime, when we take a quadrangle base, we have to raise
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the exponent of u by one. This corresponds to

D2 = z2 + u
D3

z
+
D4

z3
+
D5

z4
... = z2 + u

D3

z
+

D4

z2(z −D)
.

On the other hand, D3 is formed by attaching to a triangle base any object of D2 or D3 and

raise the exponent of u when an object of D3 is used. This leads to

D3 =
(D2 + uD3)2

z
.

As in the previous section, we use algebraic elimination and end up with an irreducible

polynomial that defines D(z, u) uniquely (look at the end of this section). Then, working

like in the previous case, we can say there is an analytic function r(u) near u = 1 which, for

each fixed u, gives the unique dominant singularity of D(z, u). Then, as before, a singular

expansion of D is granted, of the form

A(z, u) +B(z, u)

√
1− z

r(u)
, (4.3)

where A(z, u), B(z, u) are analytic in a domain around |z| < r and |u − 1| < r′ for positive

r, r′. The Quasi-Powers theorem can then be applied and we can argue that the number of

quadrangles in biconnected outerplanar graphs is asymptotically normal, with linear mean

and variance. The computations give

µn ∼ m
( ρ(1)

ρ(u)

)
n and σ2

n ∼ b
( ρ(1)

ρ(u)

)
n

with m
(
ρ(1)
ρ(u)

)
≈ 0.43933 and b

(
ρ(1)
ρ(u)

)
≈ 0.44710.

For the general labelled outerplanar case, we work again as before and establish the exis-

tence of an analytic function ρ(u) around u = 1, which gives the unique dominant sigularity

for fixed u and helps us deduce a singular expansion for F (note that for u = 1 the τ is the

same as in the previous case, since D(z, 1) is the same function). Then C and G have the

same singularities and inherit from F through integration a singular expansion with critical

exponent 3
2 . This allows us to implement again the Quasi-Power theorem, after computing

the quantities m
(
ρ(1)
ρ(u)

)
and b

(
ρ(1)
ρ(u)

)
. Thus, we can argue that the number of quadrangles Xn

is an asymptotically normal random variable, with linear mean and variance:

µn ∼ m
( ρ(1)

ρ(u)

)
n and σ2

n ∼ b
( ρ(1)

ρ(u)

)
n

for m
(
ρ(1)
ρ(u)

)
≈ 0.33705 and b

(
ρ(1)
ρ(u)

)
≈ 0.36145.

In order to give a feeling of the form and size such defining equations have, we state below

the defining equation for D(z, u) and highlight that it constitutes an irreducible polynomial
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in u, z, x1 that, when setting u = 1, gives a multiple by some power of z of the irreducible

polynomial derived in (2.3):

u4z2x1
6 − 2u4zx1

7 + u4x1
8 + 2u3z6x1

3 − 4u3z5x1
4 + 2u3z4x1

5+

u2z10 − 2u2z9x1 + u2z8x1
2 − 2u3z4x1

4 + 4u3z3x1
5 − 4u3z2x1

6 + 6u3zx1
7 − 4u3x1

8−

2u2z8x1 + 4u2z7x1
2 − 6u2z6x1

3 + 10u2z5x1
4 − 6u2z4x1

5 − 2uz10

+4uz9x1 − 2uz8x1
2 + u2z6x1

2 − 2u2z5x1
3 + 3u2z4x1

4 − 6u2z3x1
5+

5u2z2x1
6 − 6u2zx1

7 + 6u2x1
8 + 2uz8x1 − 4uz7x1

2 + 4uz6x1
3 − 8uz5x1

4 + 6uz4x1
5

+z10 − 2 z9x1 + z8x1
2 + uz5x1

3 − 2uz4x1
4 + 3uz3x1

5 − 2uz2x1
6+

2uzx1
7 − 4ux1

8 + z9 − 2 z8x1 + z7x1
2 + 2 z5x1

4 − 2 z4x1
5 − z7x1+

2 z6x1
2 − z5x13 + z4x1

4 − z3x15 + x1
8

4.1.3 Synopsis

The number of triangles and quadrangles in general outerplanar graphs is, as expected from

[6], asymptotically normal with linear mean and variance

µ ∼ αn, σ2 ∼ βn.

The constants α and β are computed explicitely with a 5−digit accuracy, and given in the

table 4.1 below. We have to highlight that the computations performed can be done in any

degree of accuracy, since all the constants are introduced by explicit analytic expressions.

Parameter α β

triangles 0.34793 0.40737

quadrangles 0.33705 0.36145

Table 4.1: The constants for the mean and variance.

One must also note that although the normality of the limiting distribution is expected from

[6], there is not a general way to compute the explicit constants for the mean and variance.

In fact, it is not the case that the Quasi-Power theorem always applies: an interesting case

is when the parameter is not additive in terms of the objects components (you can see an

example for the case of P2
2 in [6]).

2P2 denotes a path of length two.
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Chapter 5

Conclusions

In this thesis we explored the nature of the counting formulas for outerplanar graphs under

cycle constraints and obtained exact asymptotic expansions for the cases of excluded triangles,

quadrangles, pentagons, and hexagons (see Table 3.2). The asymptotics for all these cases

were of the form

g · n− 5
2 · ρ−n · n!,

which lies crucially to the algebraicity of the 2-connected components, as well as their concrete

Puiseux expansions. The algebraicity offers a square-root type of singularity to the derivative

of the 2-connected components’ generating function B that, in turn, leads B′′ to diverge there,

giving the particular subexponential growth n−
5
2 . This has been explored extensively in [7] for

general block-stable graph classes. In our context, this means that if a similar representation

was well established for general k−cycle exclusions, then we would provably be able to deduce

the universality of such a law in our constrained classes.

Another thing that would be an advance is finding systematic ways to compute the neces-

sary constants τ and B(τ) when there is no access at all to an explicit representation of d.

Moreover, maybe a systematic way to create all these specifications could be found and then

an efficient mechanical procedure to produce their asymptotics. This would certainly come

with a big advance in understanding the problem exposed here, and would encompass both

combinatorial and computational leaps.

In this thesis we also found limiting distributions for the parameters of 3 and 4-cycles in

general outerplanar graphs and computed explicitely the relevant constants (see Table 4.1).

It was mentioned that these limit laws are expected to be normal from the general result of

[6], which nevertheless provides no way to obtain the constants for the mean and variance.

In fact, what we explored here is the computational aspect of this result in the case of our

parameters. However, it’s certainly not the case that the Quasi-Power theorem, which we

used, is the rule when it comes to studying parameters in this general so-called subcritical

class of graphs. We note that a crucial condition for this to work is the 2-connectivity of the

subgraph that we have chosen as a parameter. Else, if the chosen subgraph has cut-vertices,

then we must have in mind not only what happens inside the 2-connected components, but
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also what happens when they are attached on a cut vertex. The parameter thus ceases to be

additive and the classical translation schemas do not apply. This was illlustrated as a case

study in [6] for the number of 2-paths in series-parallel graphs, where an infinite system of

generating functions was used, with an infinite number of variables in order to encompass all

the different cases. This could be endeavoured for outerplanar graphs as well.



Appendix

The counting sequences of the restricted outerplanar graphs

n 3-cycles 4-cycles 5-cycles 6-cycles

excluded excluded excluded excluded

2 1 1 1 1

3 0 1 1 1

4 1 0 3 3

5 1 1 0 11

6 4 7 4 0

7 8 22 8 15

8 25 49 65 37

9 64 130 229 85

10 191 468 946 651

11 540 1651 2850 2498

12 1616 5240 9367 10556

13 4785 16485 28068 46112

14 14512 55184 97408 167100

15 44084 190724 339694 621677

16 135545 652359 1276467 2215039

17 418609 2213044 4659990 7524303

18 1302340 7584939 17107629 26414280

19 4070124 26346522 61200635 92579458

20 12785859 91951596 220323189 332018450

21 40325828 321079035 792549890 1236600966

22 127689288 1124304217 2894544436 4661052146

23 405689020 3956244997 10636412377 17856973980

24 1293060464 13976729976 39402675095 68811536633

25 4133173256 49496496226 146035611491 264020825996

26 13246527139 175658247703 542050702586 1010795150433

27 42557271268 624958280698 2011105221340 3849919742470

28 137032656700 2229032360888 7476068631638 14606666124827

29 442158893833 7967018628527 27845071637132 55392530805786

30 1429468244788 28527676814989 104020601265688 210180466079635

31 4629713966452 102329475730993 389476031130949 799736665155904

32 15019870618329 367690587142491 1461344460329491 3054909064626511

Table 6.1: The first thirty terms of the counting sequences appearing in Chapter 3.
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