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ΠΕΡΙΛΗΨΗ 

Την τελευταία δεκαετία η εφαρμογή της φασματομετρίας μαζών υψηλής διακριτικής 

ικανότητας συζευγμένη με υγροχρωματογραφία (LC-HRMS) έχει αναπτυχθεί ραγδαία λόγω 

της ικανότητας της τεχνικής αυτής να ανιχνεύει και να ταυτοποιεί πιθανές ή ύποπτες και 

άγνωστες ενώσεις στα περιβαλλοντικά δείγματα. Προκειμένου να επιτευχθεί  αυτός ο 

σκοπός, πρέπει να αποκτηθούν οι πληροφορίες της ακριβούς μάζας και του ισοτοπικού 

προφίλ του ψευδομοριακού ιόντος, να πραγματοποιηθεί αξιολόγηση των φασμάτων 

MS/MS και ο χρόνος κατακράτησης να είναι ευλογοφανής έτσι, ώστε να επιτευχθεί η 

επιβεβαίωση της ταυτότητας μιας ένωσης. Στο πλαίσιο αυτό, αναπτύχθηκε μια 

υπολογιστική μεθοδολογία και τα αντίστοιχα μοντέλα πρόβλεψης για την κατανόηση της 

συμπεριφοράς του χρόνου ανάσχεσης ενός μεγάλου αριθμού αναλυτών που ανήκουν στην 

κατηγορία των αναδυόμενων ρύπων. Για το σκοπό αυτό χρησιμοποιήθηκε μια εκτεταμένη 

βάση δεδομένων που περιέχει την πληροφορία του χρόνου ανάσχεσης για 528 και 303 

αναλύτες σε θετικό και αρνητικό ιοντισμό, αντίστοιχα, έτσι ώστε να επιτευχθεί η ανάπτυξη 

μοντέλων πρόβλεψης χρόνου ανάσχεσης με τη μέγιστη δυνατή περιοχή εφαρμογής 

(applicability domain). Η βάση δεδομένων διαχωρίστηκε σε ομάδα εκπαίδευσης (training 

set) και ομάδα ελέγχου (test set) με την τεχνική της συσταδοποίησης των Κ-κοντινότερων 

γειτόνων έτσι, ώστε να δομηθούν και να επικυρωθούν τα μοντέλα όσο αφορά την 

προβλεπτική τους ικανότητα. Το καλύτερο υποσύνολο μοριακών περιγραφέων (molecular 

descriptors) επιλέχθηκε με τη χρήση γενετικών αλγόριθμων (genetic algorithms), οι οποίοι 

είναι βασισμένοι σε υπολογιστικά εξελικτικά μοντέλα και μπορούν να επιλέξουν τους πιο 

αντιπροσωπευτικούς μοριακούς περιγραφείς  για όλες τις ενώσεις σε σχέση με το υπό 

μοντελοποίηση πρόβλημα. Για τη μοντελοποίηση, χρησιμοποιήθηκαν οι εξής 

χημειομετρικές τεχνικές: πολλαπλή γραμμική παλινδρόμηση (MLR), νευρωνικά δίκτυα 

(ANNs) και η τεχνική Support Vector Machines (SVM) ώστε να συσχετιστούν τους, 

επιλεγμένους μοριακούς περιγραφείς   με τον πειραματικά προσδιοριζόμενο χρόνο 

ανάσχεσης. Χρησιμοποιήθηκαν πολλές τεχνικές επικύρωσης, συμπεριλαμβανομένων των 

ακολούθων: τα κριτήρια Golbraikh-Tropsha, το πεδίο εφαρμογής βασισμένο στην 

ευκλείδεια απόσταση, ο συντελεστής r2m, και ο συντελεστής συμφωνικήςσυσχέτισης 

(concordance correlation coefficient). Τα καλύτερα γραμμικά και μη γραμμικά μοντέλα για 

κάθε βάση δεδομένων που προέκυψαν χρησιμοποιήθηκαν στην πρόβλεψη του χρόνου 
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ανάσχεσης πιθανών/ύποπτων ενώσεων έτσι, ώστε να επιτευχθεί εξωτερική αξιολόγηση 

των μοντέλων. Γενικά, η προτεινόμενη πορεία είναι γρήγορη, αξιόπιστη, ελάχιστα 

δαπανηρή και μπορεί να εφαρμοστεί για τη μείωση των ψευδώς θετικών ευρημάτων κατά 

την εφαρμογή μεθόδων σάρωσης με LC-HRMS και την επιτυχή ανίχνευση και ταυτοποίηση 

άγνωστων ενώσεων σε περιβαλλοντικά δείγματα.  

 

Περιοχή έρευνας: Αναλυτική Χημεία, Χημειομετρία 

 

Λέξεις κλειδιά: χρόνος ανάσχεσης, σάρωση για ύποπτες ενώσεις, μη στοχευμένη 

ανάλυση, φασματομετρία μαζών υψηλής διακριτικής ικανότητας, μοριακοί περιγραφείς, 

τεχνική SVM  
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ABSTRACT 

Over the last decade, the application of liquid chromatography - high resolution mass 

spectroscopy (LC-HRMS) has been growing extensively due its ability to identify a wide 

range of suspect and unknown compounds in environmental samples. However, certain 

information such as mass accuracy and isotopic pattern of the precursor ion, MS/MS 

spectra evaluation and retention time plausibility are needed to confirm its identity. In this 

context, a comprehensive workflow based on computational tools was developed to 

understand the retention time behavior of a large number of compounds belonging to 

emerging contaminants. An extensive dataset was provided, containing information for the 

retention time of 528 and 303 compounds for positive and negative electrospray ionization 

mode, respectively, to expand the applicability domain of the developed models. Then, the 

dataset was split into training and test employing k-nearest neighborhood clustering, so as 

to build and validate the models’ internal and external prediction ability. The best subset of 

molecular descriptors was selected using genetic algorithms which is based on the 

evolutionary computations, and could result in representative selection of descriptors. 

Multiple Linear Regression, Artificial Neural Networks and Support Vector Machines were 

used to correlate the selected descriptors with the experimental retention times. Several 

validation techniques were used, including Golbraikh-Tropsha acceptable model criteria's, 

Euclidean based applicability domain, r2
m, concordance correlation coefficient values to 

measure the accuracy and precision of the models. The best linear and non-linear models 

for each dataset were derived and used to predict the retention time of suspect compounds 

in a wide-scope survey as the evaluation data set. Overall, the proposed workflow was fast, 

reliable, cost-effective and can be employed as an effective filtering tool for decreasing 

false positives of wide-scope HRMS screening of environmental samples.  

 

SUBJECT AREA: Analytical Chemistry, Chemometrics 

KEY WORDS: Retention Time, Suspect Screening, Non-target Screening, High Resolution 

Mass Spectrometry, Molecular Descriptors, Support Vector Machines. 
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CHAPTER 1 

QSRR AS SCREENING TOOLS 

1.1 Target, suspect and non-target screening in reversed phase liquid 

chromatography-high resolution mass spectroscopy (RP-LC-HRMS)  

Over the last decades, thousands of substances with potential risks for human and aquatic 

life are disposed in the environment. Their rapid and accurate identification is emerged as 

an important field in both analytical and environmental science. The evolution of high 

resolution mass spectroscopy coupled with liquid chromatography has opened up a new 

opportunity for the identification of polar compounds in complex environmental samples. 

With this technique, many compounds with a great variety of of functional groups and 

polarities, which are not well identified via gas chromatography (GC), can be detected 

effectively. Identification procedures in LC-HRMS were detailed into three categories 

including target analysis (with reference standards), suspect screening (with suspected 

substances based on prior information but no reference standards) and finally non-target 

screening (no prior information, no reference standards)[1].  

1.1.1 Target Analysis 

For a successful and full target analysis, a reference standard is required to determine the 

concentration of target in sample, and also comparing and matching the observed retention 

time (tR) and tandem mass spectrum (MS/MS). Target analysis is relied on purchase of 

reference standard for quantification and confirmation. The use of an isotopic labeled 

internal standard facilitates the analysis but it is not always available. Target analysis can 

be performed by following the procedure explained in figure 1.  

 

1.1.2 Suspect screening 

Suspect screening with LC-HRMS relies on accurate mass and isotope information for the 

precursor ion. Compounds that are expected to exist in the samples (suspects or 

suspected compounds), can be screened using the exact mass of their expected ions in 

negative ([M‒H]‒) or  positive ([M+H]+) electrospray ionization mode (ESI). Exact mass 

screening methods are computationally rapid and many masses can be screened in a 
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given sample, but the risk of false positive results is high. Additional information is needed 

to reach a tentative identification, apart from the mass accuracy and isotopic fit, such as 

evaluation of the MS/MS spectra and retention time plaucibility. However, gathering of 

evidence and conformation of the detected masses is still a time consuming task. 

Calculating the retention time for the suspects list and comparing it to the observed 

retention time for the observed peaks could be an efficient filtering tool over the 

confirmation or rejection of the suspected substances. The general procedure for 

performing suspect screening in LC-HRMS is shown in figure 1.  

 

1.1.3 Non-target screening 

Non-target screening involves m/z ratios (ions, usually called “features”) that are detected 

in the sample, and there is not any a priori information available for the observed peaks. It 

is often difficult to fully identify the unknown peaks with no guarantee of a successful 

outcome. The procedure for the non-target screening is shown in figure 1. First, automated 

peak detection is used by exact mass filtering from the chromatographic run. Next, 

elemental formula can be assigned to the exact mass of interest and finally searching the 

database for hits. Through the validated computational models based on quantitative 

structure retention time relationship (QSRR), their retention times can be calculated and 

those matched can be investigated further with MS/MS fragmentation to give the most 

possible substances.  
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Figure 1: Procedures for target analysis, suspect and non-target screening[1] 

 

1.2 Quantitative structure-retention time relationship (QSRR) 

In 1977, the first three publications were published with the aim of finding correlation 

between chemical structures and their chromatographic behavior which is now called 

QSRR. Since then, a large number of efforts were made to derive robust mathematical 

models that not only predict the retention time of compounds, but also explain the chemical 
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features affecting retention time values. Several good models previously were reported for 

gas-chromatographic (GC) retention based on chemical features derived from molecular 

graphs and quantum chemical energy-related[2-4]. Generally, QSRR results for liquid 

chromatographic (LC) retention data present lower statistical quality than those reported for 

GC and this is due to the effect of chromatographic conditions such as stationary phase, 

column type, separation conditions and elution mechanism at different molecular level over 

retention behavior of compounds[5].Beside the lack of ability for inclusion of these effects to 

QSRR based models, a certain workflow that enriches the applicability domain of models 

for application of different type of compounds was not proposed[6]. Use of a data set 

consisted of large chemical diversity (i.e. increasing the chromatographic effects over 

retention time values) would also unable the models to find the rational chemical features 

and thus insufficient interpretations[6]. By growth of chemometics and introduction of new 

type of molecular features for 3D structure of molecules, capabilities of models were 

increased to handle dataset with abnormal retention time. Recent advances in both 

chromatographic science and chemometics caused a revolutionary enhancement of 

identification and interpretation of results however modeling of retention time in LC-HRMS 

is still a challenging work due to complexity of chromatographic and instrumental system[7, 

8]. It is a need of computational tools such as QSRR to help the identification of unknown 

substances in the environment[1, 9]. Three major steps should be followed after the 

preparation of the initial dataset, for a correct modeling: 

 Geometry optimization of chemical structures and calculating molecular 

descriptors[10] 

 Molecular descriptors selection and their modeling[11, 12] 

 Defining the applicability domain with certain method of outlier detection 

techniques[13] 

These steps are explained further in more details in following sections. 

 

1.2.1 Chemical structures and their geometries 

A true knowledge of geometry of molecular structure can provide better interpretation of its 

stability, interactions with its environment, and several molecular properties such polar 

surface area, ionization, isomeric states and conformation of compounds can be derived 
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accurately. Since the development of 3D-based molecular descriptors, it is now so 

important to optimize a chemical structure before deriving the molecular descriptors so as 

to distinguish between similar compounds. Optimization of chemical structures can be done 

with four major methods including: 

 Molecular mechanics: Molecular mechanics force field (MM+) is an extension of 

MM2 force field developed by Allinger and co-workers [14, 15].  This method is 

designed for small organic molecules and also can be carried out for geometry 

optimization of peptides. Molecular mechanical force field uses the equations of 

classical mechanics to describe the potential energy surfaces and physical 

properties of molecules. One component of a force field is the energy that is 

originated from compression and stretching a bond. Unlike quantum mechanics, 

molecular mechanics does not treat electrons explicitly and thus it cannot explain 

bond formation and bond breaking. This method is also lack of accuracy for a 

system by which electronic delocalization or molecular orbital interactions plays a 

major role in determining geometry or properties.  

 Semi-empirical methods (AM1): They use a certain number of experimental data 

throughout the calculation. For example, bond lengths of a specific type will have a 

fixed value independently of the system (C=C bond will always be taken as 134 pm, 

for example). This dramatically speeds up computational time, but in general is not 

very accurate. Usually, semi-empirical methods are used for very big systems, since 

they can handle large amount of calculations. 

 Hartee-Fock (HF): Quantum mechanics calculations use either of two forms of the 

wave function: Restricted Hartree-Fock (RHF) or Unrestricted Hartree-Fock (UHF). 

The RHF wave function can be used for singlet electronic states, such as the ground 

states of stable organic molecules. The UHF wave function is most often used for 

multiplicities greater than singlets. Hartee-Fock can be performed based on various 

biases set (Configuration Interaction (CI), Møller-Plesset (MP) perturbation theory) to 

provide the UV spectra, energy of excited states, breaking of bonds and change of 

spin coupling. The electronic state of molecules and energy of ground and excited 

state can be obtained with high accuracy for large organic compounds with many 
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orbitals in a small energy range. However the major drawback of HF method is the 

exclusion of electron correlation. 

 Density functional theory (DFT): DFT methods are becoming more and more popular 

because the results obtained are comparable to the ones obtained using Hartree-

Fock method, however CPU time is drastically reduced. DFT differs from methods 

based on HF calculations in the way that it is the electron density that is used to 

calculate the energy instead of a wave function. DFT can optimize the geometry of 

large groups of compounds such as nanotubes, semiconductors, and complexes 

with high accuracy depending on the biases set (B3LYP, PW91, VWN, etc.) that is 

being used.  The application of above methods for different optimization purposes is 

listed in Table 1. 

 

Table 1: The general techniques for optimization of chemical structures 

Task Molecular 

mechanics 

Semi-

empirical 

Hartee-

Fock 

Density 

functional theory 

Geometry (organic)  C G G G 

Geometry (metals) - G P G 

Transition-state geometry - C G G 

conformation  G P G G 

Thermochemistry  - P C G 

G: Good; C: good with cautious application; P: Poor 

Polar surface area and energy of equilibrium geometry for a compound () based on above 

methods were calculated and shown in figure 2 to show how molecular geometry effects 

the properties of molecule.  
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Figure 2: Polar surface area and energy of equilibrium geometry based on different 

geometry optimization techniques. 

As it can be seen, use of quantum mechanics methods (HF, DFT) for obtaining the correct 

geometry of chemical structures would provide the lowest energy level and thus a stable 

form of compound rather than that of derived based on molecular mechanics. However, HF 

and DFT methods are very time consuming and should be used when there is a need for 

electronic state of molecules.  

 

1.2.2 Molecular descriptors for chromatographic retention 

Chemical structures and their properties can be used to get the retention time with 

acceptable accuracy. Effect of chromatographic conditions such as content of stationary 

phase and mobile phase over retention time of a compound could help in calculation of 

molecular descriptors more precisely. In normal phase silica as stationary phase, polar 

compounds will bond to the stationary phase and thus they will appear at higher retention 

time and thus in this case, polarizability of compounds should be calculated. Since pH 

affects the charge of the stationary phase and of the compounds in the first place, a 

molecular feature that incorporates the pH effects on logD should be considered. Figure 3 

shows the chemical structure of silica based stationary phase. For the reversed phase 

chromatography, since the stationary phase is neutral, charge type descriptors have less 

effect on interpretation of retention time; The major contribution of charge descriptors are  

over the ionization pattern of compounds and correspondingly the functional groups. They 
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are also affecting the LogD values indirectly as pka and pH are varying. However 

hydrophobicity has significant influence for retention time behavior of compounds. 

Considering these prior information about modeling of retention time, more chemical 

properties are required to perform successful retention time prediction. Therefore, Various 

molecular descriptors should be calculated, includingconstitutional descriptors, topological 

descriptors, walk and path counts, connectivity indices, information indices, 2D 

autocorrelation, edge adjacency indices, Burden eigenvalues, topological charge indices, 

eigenvalue-based indices, Randic molecular profiles, geometrical descriptors, Radial 

Distribution Function (RDF) descriptors, 3D-MoRSE (3D Molecular Representation of 

Structure based on Electron diffraction) descriptors, WHIM (Weighted Holistic Invariant 

Molecular) descriptors, GETAWAY (geometry, topology and atoms-weighted Assembly) 

descriptors, functional group counts, atom-centred fragments, charge descriptors, 

molecular properties, 2D binary fingerprints and 2D frequency fingerprints [16-19]. Among 

the above descriptors, the constitutional descriptors are referring to atomic or molecular 

properties and are independent of the overall molecular connectivity. These types of 

descriptors encode the size of molecules and chemical properties. Geometrical descriptors 

are presenting features of the molecular geometry e.g. distances between particular points 

on the molecular surface and distances between given chemical groups. Topological 

descriptors reflect the type and the connection of atoms in the 2D space [20]. 

 

Figure 3: The stationary phases in normal and reversed phase chromatography 
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1.2.2.1 2D-Molecular descriptors 

Several groups of molecular descriptors can be calculated based on 2D chemical 

structures which are independent to conformation of chemical structure. Some of the 

important descriptors belonged to the 2D-molecular descriptors are as follows: 

 Topological charge indices: topological charge indices were proposed to evaluate 

the charge transfer between pairs of atoms, and therefore the global charge transfer 

in the molecule [21]. 

 Connectivity indices: connectivity indices are among the most popular topological 

indices and are calculated from the vertex degree δ of the atoms in the H-depleted 

molecular graph. The Randic connectivity index was the first connectivity index 

proposed[22]; it is also called connectivity index or branching index which can 

describe the bond order, intermolecular accessibility[23] and molecular branching 

[24]. 

 Molecular properties: these descriptors are representing the properties of chemical 

structures such as hydrophobicity, molar refractivity, polar surface area, unsaturation 

index and octanol-water partition coefficient (logP). 

 Edge adjacency indices: These descriptors are derived from molecular graph and 

denoting the bond connectivity and matrix with their representative weighted 

properties in between graph edges[22].  

 Walk and path counts: Atomic path/walk indices are described for each atom as the 

ratio between atomic path count and atomic walk count for the same length. The 

number of paths in a molecule is bounded and determined by the molecule 

diameter, whereas the number of walks is unbounded. However, being interested 

only in quotients, the walk count is terminated when it exceeds the maximum 

allowed length of the corresponding path. Molecular path/walk indices are explained 

as the average sum of atomic path/walk indices of equal length [25]. As the 

path/walk count ratio is independent of molecular size, these descriptors can be 

considered as shape descriptors. 

 

1.2.2.1 3D-Molecular descriptors 
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In contrast to 2D-molecular descriptors, a method of optimization affects the results of 3D-

molecular descriptors significantly. Therefore, in case of high similarity and also isomers for 

group of compounds, it is important to derive the 3D-molecular descriptors for quantitative 

analysis purposes. Four major groups of descriptors that are largely being used are 

reported below: 

 WHIM descriptors: these are geometrical descriptors based on statistical indices 

calculated on the projections of the atoms along principal axes [22]. WHIM 

descriptors are built in such a way as to capture relevant molecular 3D information 

regarding molecular size, shape, symmetry, and atom distribution with respect to 

invariant reference frames. The algorithm consists in performing a Principal 

Components Analysis (PCA) on the centered Cartesian coordinates of a molecule by 

using a weighted covariance matrix obtained from different weighting schemes for 

the atoms: 

 

𝑠𝑗𝑘 =
∑ 𝑤𝑖

𝐴
𝑖=1 (𝑞𝑖𝑗 − �̅�𝑗)(𝑞𝑖𝑘 − �̅�𝑘)

∑ 𝑤𝑖
𝐴
𝑖=1

                                                                                       (𝐸𝑞. 1) 

where sjk is the weighted covariance between the jth and kth atomic coordinates, A is 

the number of atoms, wi the weight of the ith atom, qij and qik represent the jth and 

kth coordinate of the ith atom respectively, and�̅� the corresponding average value. 

 RDF descriptors: Radial distribution function in this form meets all the requirements 

for the 3D structure descriptors. It is independent of the atom number (i.e. the size of 

a molecule), and is unique regarding the three-dimensional arrangement of the 

atoms and is also invariant against the translation and rotation of the entire 

molecule. Additionally, the RDF descriptors can be restricted to specific atom types 

or distance ranges to represent specific information in a certain three-dimensional 

structure space (e.g. to describe the steric hindrance or the structure ⁄ activity 

properties of a molecule). 

 GETAWAY descriptors: these descriptors have recently been proposed as chemical 

structure descriptors derived from a new representation of molecular structure, the 

Molecular Influence Matrix (MIM), denoted by H and defined as follows: 

𝐻 = 𝑀 ∙ (𝑀𝑇 ∙ 𝑀)−1 ∙ 𝑀𝑇                                                                                                              (𝐸𝑞. 2) 
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where M is the molecular matrix consisting of the centered Cartesian coordinates of 

atoms of a compound in optimized geometry. T is refereeing to transposed matrix. 

For different types of GETAWAY, H values can be coupled with molecular properties 

as weight factor to show the effect of molecular properties in specific topological and 

geometrical region of molecular graph [26]. 

 3D-MoRSE descriptors: 3D-MoRSE (Molecular Representation of Structures based 

on Electronic diffraction) descriptors were introduced in 1996 by Schuur, Selzer and 

Gasteiger with the motivation for encoding 3D structure of a molecule by a fixed 

number of variables [27, 28]. Indeed, the most obvious way to present 3D structure 

is its representation within cartesian or internal coordinates. Simplifying the 

equations used in electron diffraction studies, the function was calculated as: 

𝐼(𝑆) = ∑ ∑ 𝐴𝑖

𝑖=1

𝑗=1

𝑁

𝑖=2

𝐴𝑗

sin𝑠𝑟𝑖𝑗

𝑠𝑟𝑖𝑗
                                                                                                         (𝐸𝑞. 3) 

where s is the scattering parameter, rij is the Euclidean distance between ith and jth 

atoms, N is the total number of atoms and Ai and Aj are different atomic properties 

used as weights. Each term of this function depends on distance and thus may be 

viewed as a radial basis function itself. Assigning to s integer values in the range of 

0–31 Å−1, 32 values of function 1 can be calculated[29].  

 

1.2.3 Dataset division 

1.2.3.1 Principle Components Analysis (PCA) 

Supposing x is set of compounds in raw and p is molecular descriptors; the aim of PCA is 

to derive the variances of the p or correlations between the variables of p. Unless p is 

small, or the structure is very simple, it will often not be very helpful to simply look at the p 

variances correlations or covariances. An alternative approach is to look for a few (<<p) 

derived variables which preserve most of the information given by these variances and 

correlations or covariances. The main idea about principle component analysis (PCA)[30]is 

to reduce the dimensionality of a data set in which there are a large number of interrelated 

variables, while retaining as much as possible of the variation present in the  data set. The 

reduction task could be achieved by transforming to a new set of variables termed principal 

components in which are uncorrelated, and ordered in a way that the first few retain most of 
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the variation present in all of the original variables. The distribution results of data points 

can be plotted to see how similar and scattered the chemical structures (score plot) and 

how the molecular descriptors distributed relative to the molecules (loading plot). 

1.2.3.2 K-nearest neighborhood (kNN) 

k-nearest neighborhood is a hierarchal clustering technique that separates data by putting 

them into clusters. In this method, the analysis begins with each case in its own separated 

cluster and then identical clusters combine each other, this continues until just one cluster 

left [31, 32]. In order to combine the cluster accurately in each time a measure of similarity 

between cases is required and this can be achieved by using an appropriate metric [33]. 

The most used similarity metrics is Euclidean distance[34] which is calculating as follows: 

𝑑𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖ = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑚

𝑘=1

                                                                                                     (𝐸𝑞. 4) 

dij is distance score between two different compounds (xi and xj). The results of hierarchical 

clustering are presented as a dendrogram which can be used to do data mining so 

accurately. 

1.2.4 Molecular descriptors selection 

Since there is less information about the parameters that would affect retention time 

behavior of compounds, there is a need to use variable selection tools for deriving these 

molecular features. 

 

1.2.4.1 Stepwise variable selection (SW) 

Stepwise selection technique was a well-known and simplest method for identifying the 

right number of variables in data matrix that the procedure includes a regression models for 

its selection base [35, 36]. The stepwise variable selection technique is performing by 

forward selection (figure 4) and back elimination rule, where the variable possessed the 

highest correlation value with response (experimental data) is being selected, and based 

on the regression model, its regression coefficient is being calculated. Each selected 

variable (here the molecular descriptor) is then tested using F-test [36-39] to see its 

significance and contribution to the model, where if it improves the model it is included in 
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the model. This procedure is called forward selection. However, if the selected variable 

does not contribute in improvement of the model is excluded from the set of significant 

variables and is eliminated from the model. This step is called backward elimination step 

[35, 38]. The two steps were continuing until no further improvement is observed by 

excluding or including the variables. The only disadvantage of this technique is over-fitting 

since the selection is based on data fitting. To prevent this problem, cross-validation should 

be employed to evaluate the predictive ability of the proposed model [37-39].  

 

 

Figure 4: The procedure of forward and backward variable selection for stepwise 

technique 

 

 

1.2.4.2 Genetic Algorithms (GAs) 

Apart from the stepwise variable selection algorithm, one of the most accomplished 

techniques for this purpose is genetic algorithms (GAs) [40, 41] which are inspired from 
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natural evolution concepts by which the fittest species have high chance of survival. The 

GA technique starts with binary coding of molecular descriptors values for each compound 

to permit the mathematical treatment of “chromosomes”. “Chromosomes” are randomly 

selected group of molecular descriptors that the descriptors inside these “chromosomes” 

are called “genes”. The total number of “chromosomes” is indicating the population 

(generally lies between 50 and 500) which is depending on the dimension of the problems. 

These “chromosomes” are evaluated based on the fitness function (here is the correlation 

coefficient-leave one out cross validation (𝑄𝐿𝑂𝑂
2 )), so that if chromosomes couldn’t meet the 

cut off criteria, they are being stopped from spreading for the next generations. Next, the 

survived “chromosomes” are reproducing new number of population, and the probability 

level of each “chromosome” is calculated based on its outcomes associated with the taken 

responses. The best number of “chromosomes” would be selected finally by their higher 

probability that results in better response. The cross-over technique is then being applied to 

these “chromosomes” to pair them in a new generation for deriving the most effective 

“genes” in “chromosomes”. Finally, mutation which causes to impose values that are not 

tried for each descriptor is being applied to newly derived generation [40]. The reproduction 

and mutation of “chromosomes” continue until the best number of descriptors in a 

“chromosome” is selected within the GAs iteration of generation. This process is shown in 

Figure 5.  
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Figure 5: Procedure of Genetic algorithms as variable selection tool 

 

1.2.5 Modeling techniques 

1.2.5.1 Multiple Linear Regressions (MLR) 

Multiple linear regressions (MLR) method is one of the most used linear models in 

QSRR. To derive a MLR model, the number of molecules in data set should be five times 

higher than the number of selected descriptors (the descriptors should be orthogonal). A 

low number of descriptors is of interest in order to minimize the information overlap in 

descriptors. In this work, to obtain the best linear model, the statistical parameters (R2 and 
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Q2 values) were considered. The MLR model provided a linear equation which is linking the 

structural features to the retention times of the compound: 

𝑅𝑡 = 𝑎0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑛𝑥𝑛                                                                                                                     (𝐸𝑞. 5) 

where  𝑎0 is the intercept and the 𝑏𝑖 is regression coefficients of the selected descriptors 𝑥𝑖 

.  

 

1.2.5.2 Artificial Neural Networks (ANN) 

Artificial neural networks are computational models inspired by the biological nervous 

system. The feed forward artificial neural network with back-propagation of error algorithm 

is the most known method to derive an ANN nonlinear model [42, 43]. The input for the 

model generation is the selected variables (descriptors) based on genetic algorithm’s 

selection. The initial weights were randomly chosen between 0 and 1 [44]. Optimization of 

the weights and biases is performed based on the resilient back-propagation algorithm[45]. 

The complex step in performing the ANN model is identifying the correct hidden layers to 

generate the QSRR model [44]. Generally, a three-layer network with a sigmoidal transfer 

function can be designed for simple modeling purposes[46]. To obtain the correct nodes in 

the hidden layers, RMSE values should be considered for both test and training sets, and 

the nodes with the lower RMSE can be selected as final output[44]. The high number of 

iterations (20000) would also decrease the error of models. However, in most cases, 

increasing the iterations would cause to increase the value of standard error of prediction 

set started and therefore, over-fitting occurs[3]. The increased numbers of iterations have 

several advantages: the architecture of the generated ANN is correctly designed, and the 

descriptors that appeared in the model have been effectively selected. In a sample usage, 

a data set should be divided into three groups using principle component analysis or 

clustering techniques, separately. In our particular problem, a training set, a validation set 

and a prediction set for negative and positive ESI with the proportional of 60%:20%:20%, 

respectively, should be produced. The training and validation sets are for building the 

predictive model and the prediction set is for evaluating the external prediction accuracy of 

the generated model [3]. For obtaining the best model, despite the control of RMSE, R2 and 

mean percentage deviation (MPD) values for the results of each node analysis, some 

external statistical analyses should be considered so as to select the number of nodes 
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correctly. The neural networks can be implemented using Neural Network Toolbox for 

MATLAB 6.5. 

 

1.2.5.3 Support Vector Machines (SVM)  

Support vector machines (SVM) [47] are non-linearly correlating the selected molecular 

descriptors with the observed retention time values. In SVM, the dataset consists of the 

molecular features are transferred to high dimensional space using Kernel function leading 

to handle the non-linear problem by using linear regressions in derived feature space [48]. 

The general advantages of SVM over conventional neural networks are its capability of 

avoiding the local minima and automatically derivation of network topology structure. The 

linear regression in feature space is given below: 

𝑓(𝑥) = 𝜔 ∙ 𝜙(𝑥) + 𝑏                                                                                                                                   (𝐸𝑞. 6) 

where 𝜔 and 𝑏 are the slope and the offset for the regression line, respectively. 𝑥 is the 

input dataset and 𝜙 is the mapping function (kernel) that can map the input dataset in 

higher dimension. To obtain regressions function (to calculate 𝜔 and 𝑏), the risk function (ε-

insensitive loss function) should be minimized so that the function could be as flat as 

possible: 

𝐽𝑆𝑉𝑀(𝐶) =
1

2
‖𝜔‖2 +  𝐶

1

2
∑ 𝐿𝜀(𝑑𝑖, 𝑦𝑖)

𝑛

𝑖

                                                                                                 (𝐸𝑞. 7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑡𝑜𝐿𝜀(𝑑, 𝑦) = {
|𝑑 − 𝑦| − 𝜀,    |𝑑 − 𝑦| ≥ 𝜀
     0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                             (𝐸𝑞. 8) 

where 𝐶
1

2
∑ 𝐿𝜀(𝑑𝑖, 𝑦𝑖)

𝑛
𝑖  is the empirical error and it is calculated from Eq.7, 

1

2
‖𝜔‖2 is termed 

regularized parameter and ε is the tube (or vector) size. Here, C is a regularization constant 

which is determining the trade-off between regularization parameter and empirical error. 

The positive slack variables (𝜉 and 𝜉∗) can be amended to Eq. 9as follows: 

𝐽𝑆𝑉𝑀(𝜔, 𝜉∗) =
1

2
‖𝜔‖2 +  𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖

                                                                                               (𝐸𝑞. 9) 

Finally, introduction of Largrange multipliers (𝑎𝑖) and (𝑎𝑖
∗) would result in modification of 

Eq. 9as below: 
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𝑓(𝑥, 𝑎𝑖
∗) = ∑(𝑎𝑖 − 𝑎𝑖

∗)𝐾(𝑥, 𝑥𝑖)

𝑛

𝑖=1

+ 𝑏                                                                                                    (𝐸𝑞. 10) 

here K is the kernel function that consisted of linear, polynomial, radial basis function and 

splines. Here, to develop a SVM model, Gaussian radial basis function (Eq.11) was 

employed: 

𝐾(𝑥�̅�, 𝑥�̅�) = exp (−𝛾‖𝑥�̅� − 𝑥�̅�‖
2

) , 𝑥�̅� 𝑎𝑛𝑑 𝑥𝑗̅̅ ̅ 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠                         (𝐸𝑞. 11) 

 

1.2.6 Validation of the models  

1.2.6.1 Internal validation criteria 

To evaluate the strengths and goodness of the model, the coefficient of multiple 

determinations was used. R2 value calculates the proportion of the variation in the 

response where obtained as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝐼

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝐼
𝑖=1

                                                                                                                        (𝐸𝑞. 12) 

where 𝑦𝑖 is the observed property/activity (here is the experimental retention time), �̅� is the 

mean value of the experimental data and �̂�𝑖is the calculated retention time. The 𝑅2 value 

higher than 0.5 and near 1.0 indicates the acceptable predictive ability of the model. 

Generally, the𝑅2 value can change (either increased or decreased values) by adding extra 

variables to the model. Therefore, this problem can be solved considering the adjusted 𝑅2 

values (𝑅𝑎𝑑𝑗
2 ): 

𝑅𝑎𝑑𝑗
2 = [1 − (𝐼 − 𝑅2) (

𝐼 − 1

𝐼 − 𝑛 − 1
)]

1
2⁄

                                                                                                (𝐸𝑞. 13) 

In this equation, the number of calibration objects is (I), and the number of the selected 

descriptors for model is (n). The statistical significance of the proposed model can also be 

given by null hypothesis where this implies that all the descriptors in the model beyond the 

constant value are required for modeling. To derive the given null hypothesis, comparison 

of the F-value can be used as follows: 

𝐹 =
(𝑛 − 𝑘 − 1) ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑘 ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

                                                                                                            (𝐸𝑞. 14) 
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where n is the number of the compounds in the dataset and k is the number of descriptors. 

The higher the F –value becomes, the greater the probability that the equation is 

significant. Therefore, procedure results in selection of appropriate and relevant descriptors 

if its null hypothesis rejected by having higher F values. Another important statistical 

parameter that is used in both linear and non-linear methods to validate the outcome of the 

derived models is the root mean square error (RMSE), where the lower RMSE value 

indicates the less error generated by built models, and thus, the model can be accepted for 

prediction purposes. The RMSE value is calculated as below: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
                                                                                                                      (𝐸𝑞. 15) 

The most important statistical parameter that is showing the validation of models in 

multiple linear regression modeling (linear regressions) is the cross-validation correlation 

coefficient which is calculated as leave-one-out compound principle. In every calculation 

process for obtaining 𝑄𝐿𝑂𝑂
2  value, one of the compounds in the dataset is being excluded 

from the model and its activity is calculating from the proposed model. This process is 

continued until all available compounds in the data matrix are excluded once, and their 

activities are being predicted by the model. Therefore, this technique is a good indicator of 

the strength of the derived models. A robust model should implement high𝑄𝐿𝑂𝑂
2  value. This 

value can be calculated as follows: 

𝑞𝐿𝑂𝑂
2 = 𝑟𝑐𝑣

2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝐼

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝐼
𝑖=1

                                                                                                         (𝐸𝑞. 16) 

 Further, the external predictive ability of the constructed model can be assessed by 

modified r2 value (Eq. 17) and the concordance correlation coefficient (Eq. 18) methods 

evaluating both accuracy and precise[49]. Concordance correlation coefficient (CCC) 

evaluates the degree to which pairs of observations fall on the 45° line through the origin: 

𝑟𝑚
2 = 𝑟2 (1 − |√𝑟2 − 𝑟𝑜

2|)                                                                                                                      (𝐸𝑞. 17) 

where 𝑟2 and 𝑟𝑜
2 are squared correlation coefficients between the observed and predicted 

retention time value of the test set compounds with and without intercept, namely.  

𝐶𝐶𝐶 = 𝜌𝐶𝑏                                                                                                                                                 (𝐸𝑞. 18) 
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where𝜌  is the Pearson correlation coefficient, and measures how far each observation 

deviates from the best-fit line. Thus, the 𝜌 value is a measure of the precision, and 𝐶𝑏is the 

bias correction factor which calculates how far the best-fit line deviates from the 45° line 

through the origin, and therefore, it is a measure of the accuracy. 

 

1.2.6.1 External validation criteria 

After the development of the models, it is highly needed to apply methods for evaluating the 

external predictive ability of the models. There are several external validation methods 

which can be used. However, there is an important work performed by Tropsha who 

discussed mainly the importance of the model validation [50]. As discussed, refereeing to 

Q2
LOO and R2 values for presenting the predictive ability of a built model is not enough in all 

cases, and the predictive power of a model can be investigated only based on the 

prediction results of the test set compounds. Therefore, an accurate and valid model can 

be established only based on model validation procedure consisted of compounds which 

were not included in the model development. Tropsha suggested that to simulate the use of 

QSAR/QSPR models, there should be another set of compounds with known 

activities/properties that are not included in either training or test sets. Then, by the 

proposed models, the activities of the built models are being predicted. In general, the size 

of the external validation set should be about 15%–20% of the entire dataset, and the 

remaining part of the dataset is called modeling set. Golbraikh and Tropsha acceptable 

model criteria's can also be a sufficient tool [51] to verify the predictive ability of the 

developed models. They introduced four conditions for accepting a model, as follows: 

 Q2
LOO value must be higher than 0.5 

 R2 value must be higher than 0.6 

 R0
2 − R0

′2/R2 < 0.1 and0.85 < 𝐾 ′ < 1.15  orR2 − R0
2/R2 < 0.1 or0.85 < K < 1.15 

 R0
2 − R0

′2 < 0.3 

where R is the correlation coefficient between the predicted and observed values; R0
2 is the 

coefficient of determination (correlation of predicted versus observed values with an 

intercept of zero), and R0′2 is the correlation between observed versus predicted values for 

regressions through the origin; K is the slope and K′ is the slope of the regression lines 

through the origin  [51].  
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1.2.7 Applicability domain 

Outlier detection and defining applicability domain is an important part of the QSRR [52]. It 

was suggested that in a case of QSRR, it is better to use manual outlier detection process 

by considering the information of both experimental and chemometrics tools [52]. 

Application of different automated outlier detection tools could also decrease the inaccurate 

outlier treatment and cause better data analysis for a large dataset.  

1.2.7.1 Williams plot 

Williams plot is a robust method, not only to measure the applicability domain of any 

proposed model, but also to detect the outliers presented in the model [53]. It is based on 

the leverage and standardized residual values. Leverages can be calculated from the 

molecular descriptors as follows: 

ℎ𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖𝑤ℎ𝑒𝑟𝑒ℎ∗ = 3(𝑝 + 1)/𝑛                                                                                        (𝐸𝑞. 19) 

where X is the molecular descriptors matrix, T is an indicator of the training set, 𝑥𝑖 is the 

descriptor vector for each molecule, n is the number of the compounds in the training set, p 

is the number of the molecular descriptors as modeling variables, and h* is the warning 

leverage value and it is a cut-off value to show that the chemical structures outside of this 

value are outliers due to their high dissimilarity of chemical structures [53]. The commonly 

used cut-off value for standardized residual is ±3δ where it covers 99% of normally 

distributed data. Compounds which locate outside of this cut-off value will be considered as 

outliers due to the abnormal response observed (here, wrong retention times).However, 

compounds outside of the leverage cut-off value but inside the standardized residual limits 

are considered as good leverages which can be included in the modeling results. 

1.2.7.2 Euclidean based applicability domain 

Euclidean distance can be measured for training and test set, and, then, the mean distance 

for the test set compounds, normalized on the mean distance of training set versus 

observed tR, can be obtained to show how the diversity of chemical structures behaves 

toward the tR[54]. Test set compound outside the cut-off value of 1.0 (calculated by 
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normalization of mean distance of training set), are considered to be outside of the 

applicability domain of the model, and the training set is not representative for this 

compound in the used test set. 
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CHAPTER 2 

LITERATURE REVIEW OF DEVELOPED MODELS FOR LC 

There are a few number of articles published to explain the retention time behavior of 

molecules in LC-HRMS. Table 2 presents a short review of the published articles on this 

topic. Former studies such as No 1 and 10 presented a QSRR model for predicting 

retention time of some forbidden and anti-doping substances based on optimized geometry 

of chemical structures. However, the studies are suffering from future applications due to 

narrow applicability domain as well as lack of outlier detection studies. Several previously 

reported studies such as No 2, 3, 4, 14 and 9 are also created based on molecular 

descriptors that were not selected by a validated procedure such as genetic algorithm and 

thus resulted in the lack of fitness both internally and externally for future applications. 

Although, the major issues that have been not discussed extensively so far are a 

quantitative approach for detecting outliers and criteria over the acceptance or rejection of 

prediction results, there are less number of publications addressing these important issues 

[52]. The choice of molecular descriptors is also important case but yet difficult task. 

Application of complex molecular descriptors or use of pKa or logKow limits the future of 

application of QSRR models for newly detected compounds by which the value of these 

descriptors are not clear (Table 2, No 2, 3 and 4). Apart from these specific points, there 

has been not any publication with large chemical diversity for prediction of retention time in 

polar compounds of concerns. In this study, all of these shortages were addressed for 

predicting retention time accurately. 
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CHAPTER 3 

PURPOSE OF THE STUDY 

From the literature review is evident that a wide-scope retention time prediction model is 

missing to support suspect and non-target LC-HRMS screening. Therefore, the main effort 

of this study was focused on the development of two widely applicable and acceptable 

models for negative and positive ionization mode in reversed phase liquid chromatography 

(RP-LC),meeting all validation criteria, to support the LC-HRMS suspect and non-target 

screening of environmental emerging contaminants.  

Fulfilling this task, k-Nearest Neighborhood (k-NN) and Principle Component Analysis 

(PCA) were used for dividing the dataset into training and test set to prevent any biases 

(i.e. chemical structure diversity and retention time distribution) in selection of data points. 

This is also to remove any information lost or presence of individuals in components of 

models. The most relevant descriptors, regarding the observed retention times, were 

selected; for this purpose stepwise (SW) and genetic algorithm (GA) were used.  

Multiple Linear Regression (MLR), Artificial Neural Networks (ANN), and Support Vector 

Machine (SVM) were used to correlate the selected molecular descriptors with the 

experimental retention times. The final models were evaluated internally and externally and 

the presence of possible outliers was studied carefully. Based on the statistical results, 

robust models were selected for the prediction of the retention time of suspect compounds 

in a LC-QTOFMS screening of a surface water sample (from Danube river as a part of a 

collaborative trial of the Joint Danube Survey), as external evaluation set. Extra protocols 

for the outlier detection and also the interpretation of the results were provided to result in 

accurate retention time prediction. A visualization software was developed (OTrAMS) to 

facilitate the detection of outliers and to understand the origin of failure. This was an 

important step in filtering of the screening results in order to reject the false positive results. 
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CHAPTER 4 

LABORATORY EQUIPMENT, INSTRUMENTS AND REAGENTS 

4.1. Chemicals 

The reference standards of the pesticides were donated to the laboratory by Bruker 

Daltonics, at a concentration of 1 mg/L in methanol. The rest of the compounds included in 

the study were all purchased from Sigma–Aldrich (Germany) and are presented in Table 

S1 in electronic material. Individual stock solutions of these compounds were prepared in 

methanol at a concentration of 1 g/L and stored at -20 °C. Then, working solutions were 

prepared in methanol at a concentration of 1 mg/L. Methanol, LC-MS grade, was 

purchased from Merck (Germany), whereas 2-propanol of LC-MS grade was from Fisher 

Scientific (Geel, Belgium). Sodium hydroxide monohydrate (NaOH) for trace analysis 

≥99.9995%, ammonium acetate, ammonium formate and formic acid, all LC-MS grade, 

were purchased from Fluka, Sigma–Aldrich (Germany). Distilled water used for LC–MS 

analysis was provided by a Milli-Q purification apparatus (Millipore Direct-Q UV, Bedford, 

MA, USA). Regenerated cellulose (RC) syringe filters (15 mm diameter, 0.22 μm pore size) 

were provided from Phenomenex (Torrance, CA, USA). 

4.2. Chromatographic system 

An ultrahigh-performance liquid chromatography (UHPLC) system with a LPG-3400 pump 

(DionexUltiMate 3000 RSLC, Thermo Fisher Scientific, Germany), interfaced to a QTOF 

mass spectrometer (Maxis Impact, Bruker Daltonics, Bremen, Germany) was used for the 

screening analysis. 

The chromatographic separation was performed on an Acclaim RSLC C18 column (2.1 × 

100 mm, 2.2 µm) from Thermo Fisher Scientific (Driesch, Germany) preceded by a guard 

column, ACQUITY UPLC BEH C18 1.7 μm, VanGuard Pre-Column, Waters (Ireland), 

thermostated at 30 ˚C. Mobile phase composition in positive ionization mode (PI) is (A) 

H2O: MeOH (90:10) with 5 mM ammonium formate and 0.01% formic acid and (B) MeOH 

with 5 mM ammonium formate and 0.01% formic acid. For the negative ionization mode 

(NI), the mobile phase is (A) H2O: MeOH (90:10) with 5 mM ammonium acetate and (B) 

MeOH with 5 mM ammonium acetate. 
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The gradient elution program was the same for the 2 ionization modes and the 

chromatogram lasts 15.5 min, with 5 min of re-equilibration of the column for the next 

injection. It starts with 1% B with a flow rate of 0.2 mL min-1 for 1 min. and it increases to 39 

% in 2 min (flow rate 0.2 mL min-1), and then to 99.9 % (flow rate 0.4 mLmin-1) in the 

following 11 min. Then it keeps constant for 2 min (flow rate 0.48 mL min-1) and then initial 

conditions were restored within 0.1 min and the flow rate decreased to 0.2 mL min-1. The 

injection volume was set up to 5 µL.  

The operating parameters of the electrospray ionization interface (ESI) are for PI mode: 

capillary voltage, 2500 V; end plate offset, 500 V; nebulizer, 2 bar; drying gas, 8 L min−1; 

dry temperature, 200 °C; and for NI mode: capillary voltage, 3500 V; end plate offset, 500 

V; nebulizer, 2 bar; drying gas, 8 L min−1; dry temperature, 200 °C. 

The QTOF MS system operates in broadband collision induced dissociation (bbCID) 

acquisition mode and records spectra over the range m/z 50−1000 with a scan rate of 2 Hz. 

The Bruker bbCID mode provides MS and MS/MS spectra at the same time, while it works 

at two different collision energies. At low collision energy (4 eV), MS spectra were acquired 

and at high collision energy (25 eV), fragmentation is taking place at the collision cell 

resulting in MS/MS spectra. 

A QTOF external calibration was daily performed with a sodium formate solution, and a 

segment (0.1−0.25 min) in every chromatogram was used for internal calibration, using a 

calibrant injection at the beginning of each run. The sodium formate calibration mixture 

consists of 10 mM sodium formate in a mixture of water/isopropanol (1:1). The theoretical 

exact masses of calibration ions with formulas Na(NaCOOH)1−14 in the range of 50−1000 

Da were used for calibration. The instrument provided a typical resolving power of 

36000−40000 during calibration (39274 at m/z 226.1593, 36923 at m/z 430.9137, and 

36274 at m/z 702.8636). Mass spectra acquisition and data analysis was processed with 

Data Analysis 4.1 and Target Analysis 1.3 (Bruker Daltonics, Bremen, Germany). 

 

4.3. Development of the dataset 

A very important step is the selection of the analytes to build the database and then find a 

representative subset to provide for the modeling of the retention time prediction. The list 

includes pesticides from different classes and modes of actions, like organophosphorous, 
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carbamates, neonicotinoids, pyrethroids, ureas and many more, and some other emerging 

contaminants, like pharmaceuticals, illicit drugs, sweeteners, anti-corrosion agents, and 

perfluorinated compounds. To begin, the selection of the list was based initially on the 

diversity of the compounds, in order to cover the whole range of physicochemical 

properties of possible emerging contaminants. Moreover, the ionization efficiency of the 

compounds was examined; both positively and negatively ionizable compounds were 

selected. There is a higher number of compounds in positive ionization mode than in 

negative, as that is the case in the screening database, as well. Finally, different functional 

groups were selected through the compounds, since they play an important role in the 

retention time of a compound. 

After the selection of the list of compounds that would be used to build the models, 

reference standard solutions of all the compounds at concentration 1 mg/L were injected at 

the chromatographic system in triplicate, in both polarities. Retention time of the 

compounds was recorded and was further evaluated for the models. 

 

4.4. Sample preparation 

The sample analyzed for this study was part of a collaborative trial organized by the 

NORMAN Association (www.normannetwork.net), where one of the main purposes was the 

comparison and harmonization of non-target screening methods [55].  

The sample used in the collaborative trial was collected from location JDS57, downstream 

of Ruse/Giurgiu (RO/BG; rkm 488; coordinates N43.890150, E26.017067) on September 

18, 2013 as a part of the Third Joint Danube Survey, organized by the International 

Commission for the Protection of the Danube River (ICPDR). The sample preparation 

included a large-volume solid-phase extraction (LVSPE) of 1000 litres of water. Briefly, the 

sampler cartridge was filled with 160 g of Macherey Nagel Chromabond® HR-X (neutral 

resin) and 100 g each of Chromabond® HR-XAW (anionic) and HR-XCW (cationic 

exchange resin). The retained compounds were extracted from the sorbents with 500 mL 

each of ethyl acetate and methanol (HR-X), 500 mL methanol with 2% 7 M ammonia in 

methanol (HR-XAW) or 500 mL methanol with 1% formic acid (HR-XCW). The extracts 

were then combined, neutralized, filtered (What man GF/F) and reduced to a final volume 

of 1 L using rotary evaporation. Aliquots of 1.5 mL, equivalent to 1.5 L of river water, were 
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transferred into vials and evaporated to dryness under nitrogen. These were sent to each 

participant along with a laboratory blank. The samples were reconstituted in MeOH:H20 

(50:50) in 1.5 mL and filtered through RC syringe filters prior to analysis [55].  

 

4.5. QSRR methodology 

All the chemical structures of the selected compounds were drawn in Hyperchem 7.03 [21] 

and then the initial geometry optimization calculations which employ energy minimization 

algorithms to locate the most stable structures were used. Here, all molecules were pre-

optimized by using molecular mechanics force field (MM+), and then, final optimization was 

carried out by using semi-empirical (AM1) method with root mean square gradient of 0.01 

kcal mol-1. Dragon program was employed to calculate molecular descriptors for each 

optimized molecule [22]. The descriptors were grouped in 22 different types, including: 

constitutional descriptors, topological descriptors, walk and path counts, connectivity 

indices, information indices, 2D autocorrelation, edge adjacency indices, Burden 

eigenvalues, topological charge indices, eigenvalue-based indices, Randic molecular 

profiles, geometrical descriptors, Radial Distribution Function (RDF) descriptors, 3D-

MoRSE (3D Molecular Representation of Structure based on Electron diffraction) 

descriptors, WHIM (Weighted Holistic Invariant Molecular) descriptors, GETAWAY 

(geometry, topology and atoms-weighted Assembly) descriptors, functional group counts, 

atom-centred fragments, charge descriptors, molecular properties, 2D binary fingerprints 

and 2D frequency fingerprints [23-26]. Among the above descriptors, the constitutional 

descriptors are referring to atomic or molecular properties and are independent of the 

overall molecular connectivity. These types of descriptors encode the size of molecules and 

chemical properties. Geometrical descriptors are presenting features of the molecular 

geometry, e.g. distances between particular points on the molecular surface and distances 

between given chemical groups. Topological descriptors reflect the type and the connection 

of atoms in the 2D space [27]. In addition to the above descriptors, since the compounds 

contained ionizable functional groups in relevant pH, Log D, which encodes the lipophilicity 

of a molecule in aqueous phase with different pH, was calculated for each compound (at 

pH=3.6 for positive ionization compounds and pH=6.2 for negative ionization compounds) 

by using ChemAxon package [28]. The calculated descriptors for molecules in both 
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ionizations were pre-treated in order to remove the constant and near constant descriptors. 

Moreover, the remained variables were checked for existence of collinearity, so as to 

decrease the redundancy of the descriptor data matrix [e.g. among the detected collinear 

descriptors (r>0.9), the one showing the highest correlation with the activity/property was 

retained, and the others were removed from the data matrix]. To build predictive models for 

predicting the retention time behavior of suspect compounds, datasets (separately for 

positive and negative ionization) were split into training and test set using K-nearest 

neighborhood and principle component analysis. To derive the most relevant descriptors 

that are correlating to the retention time, and present the less inter-correlation values, 

stepwise and genetic algorithms were used. Genetic algorithm and stepwise methods as 

selection tools were written in MATLAB 6.5 program [29]. The results of each variable 

selection technique were then used as input for several modeling techniques such as 

Multiple Linear Regressions (MLR), Support Vector Machines (SVM) and Artificial Neural 

Networks (ANN).The derived models were compared and the most reliable models for 

identification purposes were finally selected.  

4.6. OTrAMS 

A novel display was developed to visualize the correlation between the activities, similarity, 

and standard residuals to fully understand the origin of residuals between the experimental 

and predicted retention time. In this technique the following steps are performed for 

obtaining the visualization: 

 The dataset consists of three sub groups (train, test, suspect), expressed by their 

experimental retention time, standard residuals and normalized mean distances. 

 In the next step, a3D-plot is produced by 4 boxes for the given data set (training and 

test set) in which each box corresponds to the range of standardized residuals. Box 

1 is showing the range between ±1δ, box 2 denotes the range between ±1δ and 

±2δ, box 3 indicates the range between ±2δ and ±3δ and box 4 indicates beyond 

±3δ. Standardized residuals (δ) are raw residuals divided by their estimated 

standard deviation. The cut-off value for standardized residuals (±3δ) is set based 

on 99% confidence value of the modeling results. 

 Next, the percent and number of available molecules in each box are calculated and 

saved in output file to show the distribution of data set in each box (the code written 
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in MATLAB to derive this plot is available in electronic material (OTrAMS.p)). The 

large presence of compounds in box 1 represents the compounds with the less error 

made by the model. 

 Then, a visualization plot for box 3, which affects the model highly due to striking 

residuals, is demonstrated. In this plot, a compound in box 3 can be analyzed based 

on its distance from the mean value of the training set to understand the origin of the 

residual. The size of a bubble is proportional to leverage values and hence this plot 

can provide a quick analysis of outliers and their origins. 

This step is crucial for accepting whether the retention times of the suspect compounds are 

correct or not. Based on the calculation of step 4 for the suspect list, any outliers located in 

box 4 and box 3 can be identified. Therefore, a high similarity distance from the mean value 

(training set) indicates that the suspect molecule cannot be studied by the model due to its 

dissimilarity and its unique structure. If the similarity distance for a suspect compound is 

low but the observed retention time shows higher distance from the mean of the training 

set, it indicates that this suspect compound is not correct and the response cannot be 

related to the provided structure. This is a major filtering step of reducing the false positive 

results of a screening HRMS procedure. The results of all above steps are saved finally for 

further analyses purposes.  
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1. Developed model for negative Electrospray Ionization Mode ((-)ESI) 

5.1.1 PCA-SW-MLR 

The selection of the test set based on PCA method is shown in figure 6. For selection of 

test set, the distribution of data points in score plot and also their retention time were 

considered. 

 

Figure 6: PCA analysis for negative ionization compounds (sample test set for SW-

MLR) 

After classification of data set by PCA method into training and test set, the stepwise 

method was used to select the most respective variables to understand the correlation of 

molecular structures with retention time. Based on the stepwise method as explained in 

section 1.2.4.1, the most seven relevant descriptors were selected and then the linear 

regression model was built. The linear model, based on the selection of test set on the 

biases of PCA, has obtained as follows: 
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Rt = -0.4879 (±0.6701) - 0.5351(±0.1141) nR06 + 0.9952(±0.2119) ICR + 0.8935(±0.2514) 

ATS3p - 0.6955(±0.1018) EEig13d + 0.9912(±0.1543) R3e + 0.5276(±0.0767) ALOGP + 

0.7372(±0.06057) Log D(pH at 6.20)                                                                           (𝐸𝑞. 20) 

Ntrain=241, R2
train=0.854, RMSEtrain=1.053, R2

adj=0.850, Ftrain=195.523, Q2
LOO=0.844, 

Q2
LGO=0.777, Q2

BOOT=0.842, Ntest=59, R2
test=0.782, RMSEtest=1.367, Ftest=28.30, rm2

test 

=0.724, CCCtest=0.8791, CCCtrain=0.9216 

Where N is the number of compounds, R2 is the squared correlation coefficient, R2
adj is the 

adjusted R2, Q2
LOO, Q2

BOOT and Q2
LGO are the squared cross-validation coefficients for leave 

one out, bootstrapping and leave group out, respectively, RMSE is the root mean square 

error and F is the Fisher F statistic. As it can be seen, the obtained model shows the 

acceptable statistical parameters with higher square correlation coefficient (R2), Fisher F 

statistic (F) and concordance correlation coefficient for both sets with lower RMSE values. 

The predicted retention time values for the whole range of the compounds in training and 

test sets using equation 20 have been plotted against the observed retention time values in 

figure 7, and listed in Table S1(electronic material).  The corresponding VIF values and 

inter-correlation values of the selected seven descriptors are shown in Table 3.  
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Figure 7: The plot of predicted retention time against the observed retention time 

values based on PCA-SW-MLR 

Table 3: The correlation coefficient of selected descriptors and corresponding VIF 

values by PCA-SW-MLR 

Variables nR06 ICR ATS3p EEig13d R3e ALOGP Log D(6.20) VIFa 

 nR06 1 0 0 0 0 0 0 1.875 

 ICR 0.488 1 0 0 0 0 0 2.052 

 ATS3p 0.61 0.673 1 0 0 0 0 2.475 

 EEig13d 0.408 0.479 0.538 1 0 0 0 1.713 

 R3e -0.051 0.303 0.277 0.381 1 0 0 1.492 

 ALOGP 0.356 0.45 0.488 0.315 0.263 1 0 3.287 

 Log D(6.20) 0.428 0.46 0.496 0.308 0.118 0.81 1 3.335 

 a Variation inflation factor 
     

 
  

As can be seen from this Table, all variables have VIF values less than 5, indicating that 

the obtained model has appropriate selected variables. Also low R2 and Q2 values were 

obtained by Y-randomization test (Table 4).  

Table 4: The Q2
LOO and R2

training values after several Y-randomization tests for PCA-

SW-MLR 

No Q2 R2 

1 0.0047 0.0218 

2 0.0002 0.0411 

3 0.0071 0.0507 

4 0.0082 0.0209 

5 0.0004 0.038 

6 0.0182 0.0163 

7 0.0103 0.0201 

8 0.0444 0.0126 

9 0.0014 0.0251 

10 0.0093 0.0579 
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The robustness of the proposed model and its predictive ability was guaranteed by the high 

Q2
BOOT based on bootstrapping repeated 5000 times. Applicability domain was used and 

outliers were detected and removed; the final model was generated and showed two 

outliers that possessed residuals more than ±3δ (figure 8). These two compounds are 

belonged to the test set, and didn’t include in model development; therefore, their omission 

just benefits the outcome of test set (R2 from 0.782 to 0.818). Before interpreting the 

descriptors based on PCA-SW-MLR, genetic algorithms technique is also used to compare 

the two methods and their results. 

 

Figure 8: William plot of PCA-SW-MLR model (equation 9): h* warning leverage value 

is 0.09985. 
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parameters where chosen. The results of combinations of different couples of descriptors 

selected by GAs were listed in Table 5. 

Table 5: Comparison of statistical parameters for different selected descriptors by 

PCA-GA-MLR 

Linear model equations 

Model 1: Rt= 1.087(±1.116)  +0.59215(±0.0670) Log D(6.20) -0.369 (±0.0854) BLTA96 
+0.262(±0.0632) ALOGP -0.118 (±0.0630) nO +1.14073(±0.4086) BEHm4 +0.107 
(±0.0531) RBN +0.4603(±0.1773) CIC1 

Model 2: Rt= 2.730(±0.526)  +0.627 (±0.0616) Log D(6.20) -0.3601 (±0.0813) BLTA96 
+0.285(±0.0598) ALOGP -0.158(±0.0983) O-058 +0.1085(±0.0471) RBN -
0.00758(±0.00311) TPSA(Tot) +1.638 (±0.279) R2e 

Model 3: Rt= 2.472 (±0.532)  +0.575 (±0.0702) Log D(6.20) -0.386(±0.0904) BLTA96 +0.336 
(±0.0642) ALOGP -0.0737 (±0.0621) nO +0.804 (±0.493) BELm3 +0.262(±0.122) H3m 
+0.680 (±0.304) ICR 

Model 4 : Rt= 3.561 (±0.395)  +0.545 (±0.0727) Log D(6.20) -0.540 (±0.0873) BLTA96 +0.310 
(±0.0643) ALOGP -0.00015(±0.00249) TPSA(Tot) -0.258 (±0.2741) Mor23u -0.494 
(±0.170) O-057 +1.481 (±0.282) B06[C-C] 

Model 5: Rt= 1.581 (±1.461)  +0.657 (±0.0668) Log D(6.20) -0.378(±0.0951) BLTA96 +0.169 
(±0.0691) ALOGP -0.0101 (±0.00365) TPSA(Tot) -0.0934(±0.0506) HGM +1.64 
(±0.490) BEHm4 +0.358(±0.273) GATS1m 

Statistical Resuls 

 
r2

train RMSEtrain Ftrain r2
test RMSEtest Ftest Q2

LOO Q2
Boot rm2

test 

Model 1 0.799 1.24 132.81 0.784 1.363 27.05 0.768 0.767 0.742 

Model 2 0.821 1.171 153.27 0.766 1.45 25.76 0.798 0.797 0.687 

Model 3 0.792 1.263 126.91 0.79 1.353 28.96 0.763 0.761 0.731 

Model 4 0.806 1.219 138.76 0.765 1.45 25.59 0.761 0.764 0.688 

Model 5 0.789 1.27 125.1 0.788 1.36 27.49 0.755 0.754 0.743 

Main 
Model 0.812 1.201 143.94 0.786 1.379 28.08 0.789 0.788 0.721 

 

Rt = 1.789(±0.5342) + 0.6561(±0.06779) LogD(pH at 6.20) - 0.5386 (±0.08216) BLTA96 + 

0.3083(±0.06447) ALOGP + 0.1038(±0.1205) nROH + 0.5174 (±0.376) HATS6m + 

1.591(±0.29003) R2e - 0.2762 (±0.2209) Mor25e                                                       (𝐸𝑞. 21) 
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Ntrain=242, R2
train=0.812, RMSEtrain=1.201, R2

adj=0.806, Ftrain=143.94, Q2
LOO=0.789, 

Q2
LGO=0.700, Q2

BOOT=0.788, Ntest=59, R2
test=0.786, RMSEtest=1.379, Ftest=28.08, rm2

test 

=0.721, CCCtest=0.8775, CCCtrain=0.8960 

The obtained statistical parameters (high squared correlation coefficient, CCC, Q2
BOOT and 

Q2
LOO) show that genetic algorithms technique is better than stepwise method for selecting 

of descriptors as model variables. To find out that the selected descriptors are statistically 

meaningful, the Y-randomization test was used(Table 6). 

Table 6: The Q2
LOO and R2

training values after several Y-randomization tests for PCA-

GA-MLR 

No Q2 R2 

1 0.0006 0.0248 

2 0.0026 0.0417 

3 0.0286 0.0131 

4 0.0665 0.0034 

5 0.0053 0.0166 

6 3.30E-06 0.0282 

7 0.003 0.0235 

8 0.0027 0.0352 

9 0.0004 0.0286 

10 0.0388 0.0073 

 

 In this method, the properties for a group of compounds were shuffled, and then, a new 

model was built. The new QSPR models as outcome of this method should present low R2 

and Q2
LOO values so as to be confident that the models are directly in relation with the 

selected variables. The predicted retention time values for all the compounds in training 

and test sets, using the equation 21, plotted against the observed retention time values are 

shown in figure 9, and listed in Table S1.  
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Figure 9: The plot of predicted retention time against the observed retention time 

values based on PCA-GA-MLR 

The corresponding VIF values and inter-correlation values of the selected seven 

descriptors are listed in Table 7.  

Table 7: The correlation coefficient of selected descriptors and corresponding VIF 

values by PCA-GA-MLR 

Variables Log D(6.20) BLTA96 ALOGP nROH HATS6m R2e Mor25e VIFa 

Log D(6.20) 1 0 0 0 0 0 0 3.224 

BLTA96 -0.638 1 0 0 0 0 0 2.464 

ALOGP 0.712 -0.533 1 0 0 0 0 2.543 

nROH -0.243 0.0585 -0.0785 1 0 0 0 1.304 

HATS6m 0.0774 -0.157 0.256 0.0136 1 0 0 1.300 

R2e 0.228 -0.203 0.089 0.081 0.357 1 0 1.689 

Mor25e 0.424 -0.59 0.378 0.2603 0.246 0.552 1 2.472 

a Variation inflation factor 
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As can be seen from this Table, all variables have VIF values less than 5, indicating that 

the obtained model has excellent selected descriptors. Applicability domain was also 

obtained for the generated model and showed no outliers that possessed the residuals 

more than ±3δ (figure 10).  

 

Figure 10: William plot of PCA-GA-MLR model (equation 10): h* warning leverage 

value is 0.09917 

The PCA-GA-MLR model (eq 21) was obtained after the removal of compounds 

semduramicin and alitame, and the second built model did not show any outliers for the 

training set, so as to rebuild the model. Some other compounds were located outside the 

warning leverage value, however they did not show high (more than ±3δ) residuals, and 

therefore they did not treated as outliers. To understand the reason of these two outliers, 

the molecular descriptors which were selected by GAs can be used as input for Euclidean 

based applicability domain (figure 11), so as to explain the diversity of compounds based 

on the selected descriptors. As it can be seen, the origin of outliers are not derived from 

structural diversity, since they are within the capability of the model to be predicted, 

however the observed response did not match to the given structure. Therefore, the PCA-
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GA-MLR model can be accepted as an initial model for predicting purposes. This workflow 

can help to understand if the screened unknown and suspect compounds to be studied 

further are within the capability of the models or not, before predicting their retention times 

values. 

 

Figure 11: Euclidean based applicability domain of the compounds for PCA-GA-MLR 

5.1.3kNN-SW-MLR 

The same procedures were used for developing the linear and non-linear models; however 

the data set was spilt based on the results of a kNN dendrogram. The test compounds 

were marked in Table S1 and were shown in figure S1. Since the all interpretations of the 

results were explained above, therefore, here we are just presenting the obtained results 

for KNN-SW-MLR; the linear model was calculated as follows: 

Rt = -0.5622 (±0.6977) + 0.9148 (±0.2304) ATS3p + 1.657(±0.3289) GATS2m -

1.006(±0.1392) EEig14r +1.601 (±0.2167) R3u +0.4980(±0.07977) ALOGP -

0.7737(±0.1948) B02[C-S] +0.7197(±0.0623) LogD(pH at 6.20)          (𝐸𝑞. 22)  
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Ntrain=241, R2
train=0.842, RMSEtrain=1.107, R2

adj=0.837, Ftrain=176.95, Q2
LOO=0.829, 

Q2
LGO=0.752, Q2

BOOT=0.827, Ntest=60, R2
test=0.822, RMSEtest=1.209, Ftest=29.41, rm2

test 

=0.770, CCCtest=0.8941, CCCtrain=0.9140 

The Y-randomization test was also used, and the results indicated that the developed 

model is acceptable (Table 8).  

Table 8: The Q2
LOO and R2

training values after several Y-randomization tests for kNN-

SW-MLR 

No Q2 R2 

1 0.0076 0.0193 

2 0.0059 0.0224 

3 0.075 0.0089 

4 0.0015 0.0417 

5 0.0028 0.0259 

6 0.0335 0.0119 

7 0.0053 0.0197 

8 0.0005 0.0355 

9 0.0053 0.0214 

10 0.0023 0.0259 

 

William plot was also calculated to detect the possible outliers, however non-outliers were 

seen for the training set (figure 12), and only one molecule which belonged to the test set 

was detected as outlier, in which its omission will not benefit the model, since it was not 

included in the model construction. The predicted retention time values using the equation 

22 plotted against the observed retention time values are given in figure 13, and the results 

for the whole data set are listed in Table S1. 
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Figure 12: William plot of kNN-SW-MLR model (equation 11): h* warning leverage 

value is 0.099585 

 

Figure 13: The plot of predicted retention time against the observed retention time 

values based on kNN-SW-MLR 
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5.1.4 kNN-GA-MLR 

The obtained results for kNN-GA-MLR, as a general linear model, were calculated as 

follows: 

Rt = -0.4297(±1.012) + 0.6242(±0.06824) LogD(pH at 6.20) + 0.4649(±0.1027) ALOGP -

0.08647(±0.09383) BLTA96 - 0.6998(±0.1527) EEig14r + 0.7589(±0.1320) CIC1 + 

1.551(±0.3386) BEHm4 + 0.7907 (±0.3687) HATS6m                                                (𝐸𝑞. 23) 

Ntrain=241, R2
train=0.820, RMSEtrain=1.169, R2

adj=0.815, Ftrain=152.01 Q2
LOO=0.806, 

Q2
LGO=0.781, Q2

BOOT=0.803, Ntest=60, R2
test=0.835, RMSEtest=1.228, Ftest=27.74, rm2

test 

=0.745, CCCtest=0.8935, CCCtrain=0.9013 

The equation 23 was obtained after removal a compound which was detected as outlier. 

The different selected compounds as test set and training set caused better prediction 

which was compared with other methods in Table 13. The different combinations of 

molecular descriptors based on training and test set selected by kNN were listed in Table 9.  

Table 9: Statistical parameters comparison based on different selected descriptors 

by kNN-GA-MLR 

Linear model equations 

Model 1: Rt= 2.47 (±0.505)  +0.643 (±0.0696) Log D(6.20) +0.418(±0.105) ALOGP -0.223 
(±0.0938) BLTA96 -0.582 (±0.257) nPyridines +0.0822(±0.427) HATS6m +1.630 
(±0.278) R2e +0.288(±0.1146) Cl-089 

Model 2: Rt= 4.27 (±0.449)  +0.497(±0.0789) Log D(6.20) +0.451(±0.114) ALOGP -0.269 
(±0.106) BLTA96 +0.357 (±0.0890) TI2 -0.473 (±0.176) O-057 +1.374(±0.560) R3p -
0.0070(±0.0033) TPSA(Tot) 

Model 3: Rt= 3.361 (±0.464)  +0.586(±0.0666) Log D(6.20) +0.460(±0.0986) ALOGP -
0.0968(±0.1003) BLTA96 -1.147(±0.257) GATS1m +0.307(±0.148) CIC1 
+1.88(±0.297) R2e -0.0047(±0.0028) TPSA(Tot) 

Model 4 : Rt= 2.341(±0.461)  +0.598 (±0.0685) Log D(6.20) +0.398 (±0.106) ALOGP -0.231 
(±0.1011) BLTA96 +0.157(±0.0542) F03[C-Cl] +1.140(±0.278) R2e 
+0.0792(±0.0665) S3K +0.458 (±0.171) CIC1 

Model 5: Rt= 4.28 (±0.320)  +0.597 (±0.0788) Log D(6.20) +0.483 (±0.109) ALOGP -0.216 
(±0.0984) BLTA96 +0.603(±0.256) F04[Cl-Cl] +0.614 (±0.206) CIC1 -0.308(±0.363) 
Mor28u +0.0470(±0.148) nROH 
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Statistical Resuls 

 
r2

train RMSEtrain Ftrain r2
test RMSEtest Ftest Q2

LOO Q2
Boot rm2

test 

Model 1 0.811 1.12 142.74 0.807 1.30 26.22 0.796 0.795 0.751 

Model 2 0.796 1.245 130.01 0.790 1.355 25.58 0.775 0.773 0.753 

Model 3 0.821 1.167 152.72 0.766 1.420 22.25 0.807 0.805 0.733 

Model 4 0.812 1.198 143.30 0.820 1.265 28.61 0.796 0.795 0.761 

Model 5 0.792 1.258 126.88 0.824 1.255 28.62 0.774 0.772 0.757 

Main 
Model 

0.82 1.169 152.01 0.835 1.228 27.74 0.806 0.803 0.745 

 

The Y-randomization test was employed again, and the results were indicated that the 

developed model is acceptable (Table 10).  

Table 10: The Q2
LOO and R2

training values after several Y-randomization tests for KNN-

GA-MLR 

No Q2 R2 

1 5.12E-05 0.0273 

2 0.03087 0.0156 

3 0.00635 0.0493 

4 0.001 0.0302 

5 0.00551 0.021 

6 0.00764 0.0203 

7 0.13767 0.0026 

8 0.01656 0.0188 

9 0.01145 0.018 

10 0.03597 0.0117 

 

William plot was also calculated to detect the possible outliers for the final model; however 

non-outliers were observed (figure 14). The predicted retention time values using the 

equation 23 plotted versus the observed retention time values were shown in figure 15, and 

the results for the whole data set were listed in Table S1. 
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Figure 14: William plot of kNN-GA-MLR model (negative ionization): h* warning 
leverage value is 0.09914 

 

Figure 15: The plot of predicted retention time against the observed retention time 
values based on KNN-GA-MLR 
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5.1.5PCA-SW-SVM 

After successful linear modeling based on both stepwise and genetic algorithms 

techniques, support vector machine method was used as non-linear modeling technique on 

the same subsets of descriptors used in linear modeling. As explained before, SVM 

regression depends on the combination of different factors such as kernel function type, 

capacity parameter C, ԑ of ԑ-insensitive loss function, and its corresponding 

parameters[47]. For generating the SVM model, firstly, the Kernel function type should be 

declared in which determines the sample distribution in space. As said above, in this work 

the radial basis function (RBF) was used due to its good general performance [48]. 

Considering equation 6, the 𝛾 parameter can be provided. 𝛾 is in close relation with SVM 

performance (its training time) where controls the generalization ability of SVM. Generally, 

to get the optimum value for 𝛾, it is being measured from 0.1 to 5 with incremental steps of 

0.1. To get better insight about the optimized values, the root mean square errors (RMSE) 

of cross-validation were obtained in each step. Figure 16 represents the plot of γ versus 

RMSE on the leave one out cross-validation. Here the optimal value of 2.7 has been 

obtained forγ. 

 

Figure16: The gamma(γ) vs. RMSE for the training set based on PCA-SW-SVM 
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Parameter ε-insensitive prevents the entire training set meeting boundary conditions, and 

so allows for the possibility of sparsity in the dual formulation’s solution. The optimal value 

for ε depends on the type of noise present in the data, which is usually unknown. ε-

insensitive has an effect over smoothness of the response of SVM, and also influence the 

number of support vectors. An increase in ε-insensitive value reflects the reduction in 

requirements for the desired accuracy approximation. Therefore, if ε-insensitive is zero, 

there is an over-fitting issue, and if it presents larger values than the range of target values, 

the obtained results are not appropriate. The RMSEs of cross-validation for different ε 

values from 0.01 to 0.1 with incremental steps of 0.01 are shown by figure 17. The optimal 

value for ε-insensitive is 0.01. 

 

Figure 17: The epsilon (ε) vs. RMSE for the training set based on PCA-SW-SVM. 

The final parameter which should be optimized was C where is a regularization parameter 

that controlled the tradeoff between maximizing the margin and minimizing the training 

error. The small values for C parameter would increase the number of training errors, and a 

large value would cause hard-margin SVM behavior. The capacity parameter C was 

checked from 1 to 50 with incremental steps of 1 and is shown in figure 18. The optimal 

value for capacity parameter is 50. 

1.226

1.228

1.23

1.232

1.234

1.236

1.238

1.24

1.242

1.244

0 0.02 0.04 0.06 0.08 0.1 0.12

R
M

S
E

 c
ro

s
s
 v

a
li

d
a
ti

o
n

Epsilon Ԑ

Optimal Ԑ value= 0.01  



64 
 

 

Figure 18: The capacity parameter(C) vs. RMSE for the training set based on PCA-

SW-SVM 

The parameters of SVM model were optimized as C=50, ε=0.01, γ=2.7. The predicted 

values for retention time by SVM method were given in Table S1.Also, the predicted versus 
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model was implemented in figure 19.  
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Figure 19: The plot of predicted retention time against the observed retention time 

values based on PCA-SW-SVM 

The statistical parameters for PCA-SW-SVM model showed RMSE values with 0.486 for 

the training set, 1.25 for the test set, and the squared correlation coefficients (R2) of 0.970 

and 0.818 for training and test set, namely. Table 8 presents the statistical parameters of 

the results obtained from the studied models for the same set of compounds. For obtaining 

better results, the above workflow were performed for compounds of the test set and 

training set which were selected by K-nearest neighborhood clustering technique.  
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5.1.6PCA-GA-SVM 

The same procedure employed in PCA-SW-SVM model was performed in this part; 

however the non-linear model was built based on the selected descriptors using genetic 

algorithms as a selection tool. The test set compounds were marked in Table S1 which 

were the same used in generation of PCA-GA-MLR model. The parameters of SVM model 

were optimized as C=50, ε=0.01, γ=1.9. The result of each optimization was shown in 

figures 20-22. The predicted values for the retention time by PCA-GA-SVM method were 

given in Table S1, and then plotted versus the observed retention time and shown in figure 

23. The statistical results of PCA-GA-SVM were listed in Table 13. 

 

Figure20: PCA-GA-SVM optimized parameters for the gamma (γ) vs. RMSE 
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Figure 21: PCA-GA-SVM optimized parameters for the epsilon (ε) vs. RMSE 

 

Figure 22: PCA-GA-SVM optimized parameters for the capacity (C) vs. RMSE 
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Figure 23: The plot of predicted retention time against the observed retention time 

values based on PCA-GA-SVM 
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Figure 24: kNN-SW-SVM optimized parameters for the gamma (γ) vs. RMSE 

 

Figure 25: kNN-SW-SVM optimized parameters for the epsilon (ε) vs. RMSE 
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Figure 26: kNN-SW-SVM optimized parameters for the capacity (C) vs. RMSE 

 

Figure 27: The plot of predicted retention time against the observed retention time 
values based on kNN-SW-SVM 
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5.1.8 kNN-GA-SVM 

The non-linear model was built based on the same selected compounds as training set in 

kNN-GA-MLR, and the optimized parameters were calculated as C=45, ε=0.04, γ=2.0. The 

result of each optimization was shown in figures 28-30. The predicted values for retention 

time by kNN-GA-SVM method were given in Table S1, and then plotted versus the 

observed retention time and shown in figure 31.  

 

 
Figure 28: kNN-GA-SVM optimized parameters for the gamma (γ) vs. RMSE 
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Figure 29: kNN-GA-SVM optimized parameters for the epsilon (ε) vs. RMSE 

 

 

Figure 30: kNN-GA-SVM optimized parameters for the capacity (C) vs. RMSE 
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Figure 31: The plot of predicted retention time against the observed retention time 

values based on kNN-GA-SVM 

The statistical results of this model were listed in Table 8. The comparison of built models is 

suggesting that kNN-GA-SVM is the most appropriate non-linear model for the prediction 

purposes, however PCA-GA-SVM can also be employed. From the linear models, both 

kNN-GA-MLR and kNN-SW-MLR can be used. The final validations for these models were 

carried out using Golbraikh and Tropsha acceptable model criteria's. The results are shown 

in Table 11.  

Table 11:Golbraikh and Tropsha acceptable model criteria's for MLR and SVM 
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kNN-SW-MLR kNN-GA-MLR kNN-GA-SVM 

Condition I 0.822 0.806 0.833 

Condition II 0.829 0.835 0.772 

Condition III 

K=0.9959 

K′= 0.9877 

R2 − R0
2/R2   = 0.0048 

R0
2 − R0

′2/R2 = 0.0881 

K=0.9966 

K′= 0.9866 

R2 − R0
2/R2   = 0.0140 

R0
2 − R0

′2/R2 = 0.1202 

K=0.9858 

K′= 0.9979 

R2 − R0
2/R2   = 0.0077 

R0
2 − R0

′2/R2 = 0.0927 

Condition IV R0
2 − R0

′2= 0.06845 R0
2 − R0

′2= 0.08869 R0
2 − R0

′2= 0.07082 

Acceptance Passed Passed Passed 
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5.1.9 kNN-GA-ANN 

Since the models based on kNN and genetic algorithm showed appropriate internal and 

external results, the non-linear model based on ANN was developed based on kNN-genetic 

algorithm technique. It is accepted that for the generation of ANN models employing 

variable selection is not necessary, but it can be useful to get better results. Therefore, we 

used genetic algorithm for descriptors subset selection in ANN. The common problem with 

ANN, is to select the right node where in most literature the RMSE values are being 

considered for final model construction. Here, we reported and selected the ANN model 

based on the modified r2 value, CCC value, and RMSE. Therefore, considering the over-

fitting problem in higher nodes, the right nodes can be selected using their CCC values first 

that encodes the accuracy and precision, and then provided modified r2 value for test set to 

select the nodes. Finally, for the couple of nodes with acceptable results for the test set, the 

one which shows also less RMSE value for the training set can be selected as the final 

node for subsequent analysis. The results of this procedure are shown in Table 12. From 

Table 12, it can be seen that the model built based on node=7 shows the highest CCC 

value for both the test and  the training set, and the modified r2 value for test set is the 

highest one among the other nodes. Considering the RMSE value between node 5 and 7, 

consequently the model based on 7 nodes is being selected. The MPD values for training 

set were calculated for the all nodes and given in Table 12 as follows: 

𝑀𝑃𝐷 =
100

𝑁
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑁

𝑖=1

                                                                                                                       (𝐸𝑞. 24) 

where y
i
 is the observed retention time, and ŷ

i
 the calculated retention time and N denotes 

the number of data points. This formula measures the accuracy of the generated models 

based on each node and the lower value indicate the good fitted point. The predicted 

values based on kNN-GA-ANN are listed in Table S1 and their strength as prediction tool 

are compared in Table 13. The correlation plot of observed and predicted retention time is 

shown in figure 32. 
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Figure 32: The plot of predicted retention time against the observed retention time 

values based on kNN-GA-ANN 
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5.1.10Interpretation of Molecular descriptors 

The descriptors which were selected by the models are so important to be interrelated 

since each of them describes the molecular structure properties and its relationship with 

retention time. Therefore, by understanding their effect and definitions, the other 

compounds and their possible retention time can be provided. Here, since the model based 

on genetic algorithm-SVM showed appropriate results, the descriptors selected by genetic 

algorithms are being discussed. The relative importance of selected descriptors is shown in 

figure 37. 

 

Figure 33: The relative importance of selected molecular descriptors 

The first selected descriptor based on the genetic algorithms is LogD (pH at 6.20). By 

definition logP refers to neutral molecules. If a molecule contains basic or acidic groups, it 

can become ionized in the mobile phase and its distribution in octanol-water becomes pH-

dependent. The pH-dependent distribution coefficient is defined as logD and it is calculated 

from the following equation (equation 25): 

𝑙𝑜𝑔𝐷(𝑝𝐻) = 𝑙𝑜𝑔𝑃 − log(1 + 10(𝑝𝐻−𝑝𝐾𝑎)∆𝑖)                                                                                    (𝐸𝑞. 25) 

Where ∆𝑖= {1, −1}is for acids and bases, respectively. The distribution coefficient, D, is a 

pH dependant measure of the propensity of a molecule to differentially dissolve in two 

immiscible phases, taking into account all ionized and unionized forms (microspecies). In 

our work, to obtain the logD values for each compound, ChemAxon package was used at 
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pH=6.2, so as to enable the model for better predictions by considering the ionized status 

of a molecule which contains basic or acidic groups. Both logD and logP are two main 

factors for risk assessment, drug design and toxicity of compounds since their values would 

help us to understand any properties of molecule in different conditions. As it can be seen 

from the linear equation 23, LogD is in direct relationship with retention time, where the 

lower value of logD would cause decrease in retention time value, too. To understand its 

effect clearly, we can use the definition of LogS (solubility), where at the certain pH, the 

compounds with high solubility should indicate the lower LogD. Therefore, based on the 

molecular structures, its solubility and LogD, the effect of LogD on retention time can be 

easily interpreted. Some compounds were selected from Table S1 (among the compounds 

of negative ionization) to investigate this effect (Table 14). LogS values were calculated 

using ChemAxon package [56].It can be seen that compounds with the lower LogD (-6.03) 

has the higher solubility (LogS (pH=6.2) =3.99), and hence, it results to the decrease of the 

retention time. Therefore, it is expected that compounds with lower retention time, have 

more solubility. Some more examples were added to the Table 14. If we consider molecule 

M261, it can be seen that the observed value presents the lower LogS, and therefore, it is 

being expected to have retention time at higher retention time. 

 

Table 14: Effect of LogD and AlogP on retention time. 

Mol. Chemical Structure 
Exp.Rt 
(min) 

Log D Log S ALogP BLTA96 

M92 

 

1.18 -6.03 3.99 -2.28 1.72 

M64 

 

1.28 -3.74 1.74 -0.381 -1.17 



80 
 

Mol. Chemical Structure 
Exp.Rt 
(min) 

Log D Log S ALogP BLTA96 

M299 

 

1.76 1.07 -1.15 0.706 -1.21 

M261 

 

13.12 7.61 -7.24 6.73 -6.83 

M4 

 

 

 

14.74 5.94 -6.68 5.04 -3.43 

 

The second descriptor is ALogP (Ghose-Crippen octanol-water partition coefficient) which 

belongs to molecular properties descriptors, it is a measure of the lipophilicity of the 

molecule, and it is estimated using the Ghose–Crippen contribution method based on the 

hydrophobic atomic constants of atoms in the molecule [20, 57, 58]. Lipophilicity indicates 

the affinity of a molecule or a moiety for a lipophilic environment. The hydrophobicity 

represents the meaning of the association of non-polar groups or molecules in an aqueous 

environment which arises from the tendency of water to exclude non-polar molecules. In 

other words, the lipophilic character can affect the retention time significantly:  the higher 

ALogP is, the higher retention is observed in C18 columns. As it can be seen from Table 

14, LogD and ALogP have the same effect on the retention time, but since in ALogP the 

ionized effect of compounds is not being considered, the obtained values were less 

significant than LogD values. Therefore, compounds with high logP values have low 



81 
 

hydrophilicity, and since it is in direct relationship with the retention time: the higher AlogP 

would present higher retention time, as expected on a C18 column. 

The next descriptor is  BLTA96  (Verhaar Algae base-line toxicity from MLOGP (mmol/l)) in 

which is  actually  the  toxicity  index  of  given  compounds  against  algae[20].  In the 

aquatic environment[59], there are at least 19 different models for the determination of 

toxicity. The DRAGON software has implemented enumerating indicators:  toxicity in fish, 

daphnia and algae. In our model, it is a correlation between the retention times of the 

indicator of toxicity, expressed relative to the algae according to Verhaar Algae model [60].  

In numerous biological studies, it has been proven that algae in the aquatic environment 

act as detoxification device (a kind of a “green liver”).The paths of metabolism of 

xenobiotics in algae are close to the corresponding metabolic pathways in mammal body 

[60]. Apart from this reason, the used compounds (mostly pesticides) have also 

demonstrated the dominant toxicity where the selection of BLTA96 descriptor seems to be 

rational. This descriptor demonstrated the negative effect in linear equation and indicating 

that the increase of BLTA96 of compounds would results in lower retention time. In our 

dataset the value of this descriptor is ranged between -8.05 (most toxic compound) and 

1.72 (least toxic compound) suggesting that compound with less BLTA96 is more lipophilic 

and thus resulting in decrease of polarity and increase of retention time. The BLTA96 

values for some compounds were shown in Table 14, and, as it can be seen, M92 has the 

lowest retention time among the other compounds, and it presents the higher BLTA96 

value. 

The next selected descriptor is Eigenvalue 14 from edge adj. matrix weighted by resonance 

integrals (EEig14r) which belongs to the edge adjacency indices and encodes the 

connectivity between graph edges [20]. The edge adjacency matrix denoted as eA and 

shows the whole set of connections between pairs of atoms in which is calculating as 

follows: 

[𝐴]𝑖𝑗 = {
1 𝑖𝑓(𝑖, 𝑗) ∈ 𝐸(𝐺)

0 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
                                                                                                                      (𝐸𝑞. 26) 

where1 is showing that the atoms in i and j were bounded, while otherwise is zero. 

Resonance effect is a kind of energy stabilizing due to the delocalization of electrons in a 

bond network available in a compound. It can cause the mesomeric effect (i.e 



82 
 

delocalization of π electrons in its π orbital) and secondary mesomeric effect which is the 

repulsion of the π electrons by non-bonded electrons on solvent or special substituent. As it 

can be seen, this descriptor represented negative effect in the model. This means that 

increase of the EEig14r value would reduce retention time.  

The fifth descriptor is Complementary Information Content index (neighborhood symmetry 

of 1-order (CIC1). The information content index descriptors are calculated based on the 

pair wise equivalence atoms in a Hydrogen-filled molecule [20]. A pair of atoms are said to 

be equivalent at a particular level-r, if they are of the same element and their neighborhood 

is equivalent up to level-r. For the CICr, the r-th order measures the deviation of ICr from its 

maximum value. It corresponds to the vertex partition into equivalence classes that are 

including one element each. CICr is calculating based on the equation 27. 

CICr = log 2A − ICr                                                                                                                                 (𝐸𝑞. 27) 

where A is the atom number. ICr is defined below: 

ICr = − ∑
Ag

A

G

g=1

. log
2

Ag

A
= − ∑ Pg

G

g=1

. log
2
Pg                                                                                      (𝐸𝑞. 28) 

where g runs over the G equivalence classes, Ag is cardinality of the gth equivalence class, 

A is the total number of atoms, and pg is the probability of randomly selecting a vertex of 

the g th class. It represents a measure of structural complexity per vertex. This descriptor 

showed a positive effect on the retention time: the increase of this descriptor (presence of 

two or more vertices that topologically equivalent with the same coordinates) would cause 

an increase to the retention time. 

The sixth selected descriptor is BEHm4 (highest eigenvalue n.4 of Burden matrix / 

weighted by atomic masses). This descriptor is encoding the Burden eigenvalues 

descriptor and is calculated based  on  hydrogen included  molecular  graph  weighted  by  

atomic  masses[61]. The positive sign of this descriptor (see equation 23) suggests that the 

retention time values are directly related to this descriptor positively. Increasing the atomic 

mass by adding more hydrogen atoms in the molecular structure would result to the 

increase of the retention time. 

The last selected descriptor is leverage-weighted autocorrelation of lag 6/weighted by mass 

(HATS6m) and belongs to the GETAWAY H-indices descriptors family, and explains the 



83 
 

influence of  atomic mass over probability interaction of leverage[62]. The GETAWAY 

(Geometry, Topology, and Atom-Weights Assembly) descriptors have been proposed as 

chemical structure descriptors derived from a new representation of molecular structure, 

the Molecular Influence Matrix (MIM) [62]. Since the sign of this descriptor is positive in 

equation 23, the increase in its value by increasing the mass of compound would result in 

increase of retention time. 

 

5.1.11 Applicability domain study of kNN-GA-MLR model for suspects 

Some compounds (as suspect compounds) were used as evaluation set so as to predict 

their retention time based on the developed models. The results of prediction for these 

compounds along with their experimental determined retention time were listed in Table 15. 

Among the suspect compounds, some significant residuals were observed. The William 

plot and Euclidean based applicability domain were used to calculate the standard 

residuals and normalized mean distance values as inputs for generating the visualization of 

the outliers. This display would help to understand the origin of outliers more easily. Boxes 

based on the training and test set (figure 34) are presented, and then for the taken 

compounds as suspect list, the analysis was carried out. Results indicates that out of 63 as 

suspect compounds, 30 compounds were predicted very well and 33 compounds are 

belonged to box3 and box4. The results of the analyses were listed in Table 16. 

Considering these results and the visualization plot (figure 35), it can be concluded that out 

of 20 compounds in box4, six compounds (Oxadiazon, Carbuterol, Pivenfrine, Amoxecaine, 

Hexamidine, 4-Aminosalicylic acid) are within the applicability domain of models, but the 

suggested retention times are not matched with the structure and therefore, we can be sure 

that the suggested compound as suspect molecule cannot be correct. The compounds 

located in box 4 were shown in red color in figure 34. 

Table 15: Retention time predicted values of of suspect compounds in negative 

ionization as evaluation set by kNN-GA-SVM 

 suspectlist Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 
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The suggested 

structure can be 
accepted 

The suggested 
structure is 

rejected 

N1 metominostrobin 9.51 9.23 
 

N2 Carbofuran-3-hydroxy 6.22 7.38 
 

N3 Oxadiazon 1.38 
 

13.08 

N4 Carbaryl 7.21 9.05 
 

N5 Ancymidol 7.8 6.94 
 

N6 Citronellalhydrate 10.9 7.76 
 

N7 Linalylacetate 9.7 9.73 
 

N8 Crotethamide 4.8 
 

9.1 

N9 Diisopropyladipate 7.5 
 

10.56 

N10 Ethofumesate 5.4 
 

8.83 

N11 Carbuterol 12.6 
 

4.67 

N12 Etoxazene 5.3 
 

9.72 

N13 Furmecyclox 12.8 9.58 
 

N14 Pivenfrine 12.8 
 

6.25 

N15 Irone 13.3 11.15 
 

N16 Loxanast 13.2 12.46 
 

N17 Phenylacetylsalicylate 10.2 10.23 
 

N18 Menthylisovalerate 13.7 12.99 
 

N19 Mazindol 1.4 
 

11.2 

N20 Embelin 9.7 10.93 
 

N21 Amoxecaine 14.4 
 

7.46 

N22 Ipriflavone 13.5 10.72 
 

N23 Phenprocoumon 13.5 10.58 
 

N24 Dibenzylsuccinate 8.3 10.19 
 

N25 Metochalcone 8.3 10.44 
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suspectlist 
Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 

 
The suggested 

structure can be 
accepted 

The suggested 
structure is 

rejected 

N26 γ-Linolenicacid 14 13.73 
 

N27 Hexyldodecanoate 14.9 14.08 
 

N28 Stearicacid 14.9 13.95 
 

N29 Dodecylgallate 14.2 13.35 
 

N30 Piperonylbutoxide 14.2 
 

10.07 

N31 Hexamidine 13.4 
 

7.21 

N32 Neraminol 13.4 
 

7.84 

N33 Dehydroabieticacid 13.9 12.9 
 

N34 Isotretinoin 13.9 12.98 
 

N35 Metandienone 13.9 
 

10.76 

N36 Nordinone 13.9 
 

10.48 

N37 Norgesterone 13.9 
 

9.96 

N38 Norvinisterone 13.9 
 

10.26 

N39 Tretinoin 13.9 
 

7.72 

N40 Algestone 11.2 
 

7.72 

N41 Corticosterone 11.2 
 

7.5 

N42 Cortodoxone 11.2 
 

7.88 

N43 Doxaprost 15.5 
 

11.31 

N44 Canrenone 14.8 
 

9.32 

N45 Hydroxymethyleneprogesterone 14.8 
 

8.88 

N46 Norethindroneacetate 14.8 
 

10.47 

N47 Cloprostenol 14.1 
 

8.34 

N48 Etretinate 13.5 13.47 
 

N49 Melengestrol 13.5 
 

9.38 
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suspectlist 
Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 

 
The suggested 

structure can be 
accepted 

The suggested 
structure is 

rejected 

N50 Medrogestone 14.8 
 

11.09 

N51 Desmethylmoramide 5.8 
 

9.85 

N52 Doxapram 5.8 
 

9.5 

N53 Fenoctimine 15.1 13.1 
 

N54 Hydrocortamate 14.6 
 

8.94 

N55 Dotarizine 13.5 11.92 
 

N56 Picricacid 6.7 7.14 
 

N57 DNOC_ 2_4-Dinitro-o-kresol 6.4 7.7 
 

N58 4-Aminosalicylic acid 8.3 
 

3.51 

N59 Caprylicacid/ Octanoicacid 8 8.29 
 

N60 Benzylformate 6.1 6.75 
 

N61 8-Hydroxychinolin 6.8 6.59 
 

N62 Caffeicacid 4.9 4.69 
 

N63 4-Hydroxyphenyl-pyruvic acid 4.9 3.71 
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Figure 34: Visualization of data distribution 
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Figure 35: Origin of outliers for suspect compounds in negative ionization 

Table 16: The analysis of visualization of outliers for linear model (kNN-GA-MLR) 

Boxes Origin of outliers compounds 

Box 3 

The origin of residuals is mostly 
due to structural diversity. The 
model cannot predict their Rt 

Citronellal hydrate, Diisopropyl adipate, Furmecyclox, 
Ipriflavone, Phenprocoumon, Metandienone, 
Nordinone, Norgesterone, Norvinisterone, 
Corticosterone, Melengestrol 

The origin of residuals is mostly 
due to Response. The suspect 
compounds are rejected.  

Piperonyl butoxide, Medrogestone 

Box 4 

The origin of residuals is mostly 
due to structural diversity. The 
model cannot predict their Rt 

Crotethamide, Ethofumesate, Etoxazene, Mazindol , 
Neraminol , Tretinoin, Doxaprost, Canrenone, 
Hydroxymethyleneprogesterone, Norethindrone 
acetate, Cloprostenol, Desmethylmoramide, 
Doxapram ,Hydrocortamate 

The origin of residuals is mostly 
due to Response. The suspect 
compounds are rejected. 

Oxadiazon, Carbuterol , Pivenfrine, Amoxecaine, 
Hexamidine, 4-Aminosalicylic acid 
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5.2. Developed model for positive Electrospray Ionization Mode ((+)ESI) 

5.2.1 PCA-SW-MLR 

 

Figure 36: PCA analysis for the positive ionization compounds 

Since the workflow was the same as that employed in negative ionization, here the results 

of each step were discussed in less details. The linear models based on stepwise variable 

selection tool and selected test set compounds by PCA and kNN are calculated initially 

before performing the genetic algorithms technique. The selected test set compounds 

based on each splitting techniques were shown in Table S1 (positive ionization). The model 

based on the PCA-SW-MLR is as follows: 

Rt= 2.021 (±1.351) + 1.899(±1.897) Mv + 0.1021(±0.0291) RBN + 0.8486(±0.1384) CIC1 -

0.3978(±0.05838) C-025 + 0.0513(±0.01264) MLOGP2 + 1.685(±0.2639) B06[C-C] + 

1.097(±0.05665) LogD (3.6)                                                                                         (𝐸𝑞. 29) 

Ntrain=422, R2
train=0.846, RMSEtrain=1.061, R2

adj=0.843, Ftrain=324.49 Q2
LOO=0.840, 

Q2
LGO=0.478, Q2

BOOT=0.838, Ntest=105, R2
test=0.843, RMSEtest=1.127, Ftest=78.49, rm2

test 

=0.765, CCCtest=0.9127, CCCtrain=0.9165 
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The Y-randomization test was calculated, and the results were indicated that developed 

model is acceptable (Table 17).  

Table 17:The Q2
LOO and R2

training values after several Y-randomization tests for PCA-

SW-MLR. 

No Q2 R2 

1 0.0031 0.0286 

2 0.0059 0.033 

3 0.0153 0.0082 

4 0.0104 0.0076 

5 7.10E-06 0.0183 

6 0.0083 0.0115 

7 8.79E-05 0.0162 

8 0.0027 0.0119 

9 0.0047 0.0113 

10 0.0304 0.0052 

 

William plot detected 3 outliers (1 for training and 2 for test set) in model, and after removal 

of the detected outlier from the training set, the final predictive model obtained (figure 37).  
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Figure 37: William plot of PCA-SW-MLR model (equation 29): h* warning leverage 
value is 0.056872. 

VIF values for each selected descriptor along with correlation values between pair 

descriptors are listed in Table 18. The predicted retention time values using the equation 29 

plotted versus the observed retention time values are shown in figure 38. 
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Figure 38: The plot of predicted retention time against the observed retention time 
values based on PCA-SW-MLR 

 
Table 18: The correlation coefficient of selected descriptors and corresponding VIF 
values by PCA-SW-MLR 
 

Variables Mv RBN CIC1 C-025 MLOGP2 B06[C-C] LogD (3.6) VIFa 

Mv 1 0 0 0 0 0 0 3.137 

RBN -0.35 1 0 0 0 0 0 1.775 

CIC1 -0.57 0.536 1 0 0 0 0 2.547 

C-025 0.223 -0.03 0.051 1 0 0 0 1.242 

MLOGP2 0.363 0.151 0.168 0.417 1 0 0 2.22 

B06[C-C] 0.013 0.236 0.214 0.138 0.197 1 0 1.204 

LogD (3.6) 0.399 0.36 0.222 0.38 0.71 0.376 1 3.361 

a Variation inflation factor 
      

 
 
5.2.2 PCA-GA-MLR 

The linear model based on genetic algorithms was also developed to compare the results. 

The model based on the PCA-GA-MLR is as follows: 

Rt= 3.559(±0.3267) +0.9348(±0.06201) LogD(pH=3.6) -0.2956 (±0.0704) BLTA96 +0.1394 

(±0.02849) RBN +0.00408(±0.00926) ALOGP2 -0.2621(±0.0686) nHDon +0.5871 

(±0.1086) CIC1 +1.282(±0.2610) B06[C-C]                                                                 (𝐸𝑞. 30) 

Ntrain=421, R2
train=0.849, RMSEtrain=1.048, R2

adj=0.846, Ftrain=331.19 Q2
LOO=0.842, 

Q2
LGO=0.731, Q2

BOOT=0.841, Ntest=104, R2
test=0.816, RMSEtest=1.154, Ftest=59.00, rm2

test 

=0.814, CCCtest=0.8966, CCCtrain=0.9182 

The Y-randomization test and VIF values were given in Table 19 and 20, respectively.  

Table 19: The Q2
LOO and R2

training values after several Y-randomization tests for PCA-

GA-MLR  

No Q2 R2 

1 0.0069 0.0341 

2 0.0002 0.021 
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No Q2 R2 

3 6.79E-05 0.0179 

4 0.0121 0.0085 

5 0.0053 0.0123 

6 0.0002 0.0155 

7 0.0008 0.0147 

8 0.0003 0.022 

9 0.0027 0.0113 

10 0.0027 0.0244 

 

Table 20: The correlation coefficient of selected descriptors and corresponding VIF 

values by PCA-GA-MLR 

Variables LogD (3.6) BLTA96 RBN ALOGP2 nHDon CIC1 B06[C-C] VIFa 

LogD (3.6) 1 0 0 0 0 0 0 4.499 

BLTA96 -0.773 1 0 0 0 0 0 3.013 

RBN 0.36 -0.131 1 0 0 0 0 1.762 

ALOGP2 0.808 -0.722 0.307 1 0 0 0 3.470 

nHDon -0.37 0.297 -0.365 -0.222 1 0 0 1.276 

CIC1 0.224 -0.201 0.549 0.221 -0.327 1 0 1.480 

B06[C-C] 0.36 -0.343 0.230 0.204 -0.292 0.228 1 1.270 

a Variation inflation factor 
       

William plot detected 2 outliers (1 for training and 1 for test set) in model, and after removal 

of the detected outlier from the training set, the final predictive model obtained (figure 39). 

The predicted retention time values versus the observed retention time values for PCA-GA-

MLR model are presented in figure 40. 
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Figure 39: William plot of PCA-GA-MLR model (equation 30): h* warning leverage 
value is 0.057007. 

 

 
Figure 40: The plot of predicted retention time against the observed retention time 

values based on PCA-GA-MLR 
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5.2.3 kNN-SW-MLR 

The same procedures were done for the data set split by kNN technique. The dendrogram 

for positive ionization can be found in the electronic supplementary material (figure S2).The 

results for kNN-SW-MLR were derived as follows: 

Rt= 2.159(±1.367) +2.126(±1.9101) Mv +0.1228 (±0.0277) RBN +0.7832(±0.1381) CIC1 -

0.409 (±0.0575) C-025 +0.0500(±0.0128) MLOGP2 +1.501(±0.23142) B06[C-C] +1.0854 

(±0.0551) LogD(pH=3.6)                                                                                              (𝐸𝑞. 31) 

Ntrain=422, R2
train=0.847, RMSEtrain=1.051, R2

adj=0.844, Ftrain=327.20 Q2
LOO=0.841, 

Q2
LGO=0.744, Q2

BOOT=0.840, Ntest=105, R2
test=0.826, RMSEtest=1.162, Ftest=67.03, rm2

test 

=0.809, CCCtest=0.9050, CCCtrain=0.9171 

VIF values for each selected descriptor along with correlation values between pair 

descriptors are listed in Table 21. William plot detected two outliers for final kNN-SW-MLR 

model (2 compounds for test set) (figure 41). The predicted retention time versus the 

observed retention time values based on kNN-GA-MLR were shown in figure 42. 

Table 21: The correlation coefficient of selected descriptors and corresponding VIF 

values by kNN-SW-MLR 

Variables Mv RBN CIC1 C-025 MLOGP2 B06[C-C] LogD (3.6) VIFa 

Mv 1 0 0 0 0 0 0 3.137 

RBN -0.364 1 0 0 0 0 0 1.775 

CIC1 -0.602 0.53 1 0 0 0 0 2.547 

C-025 0.164 0.027 0.049 1 0 0 0 1.242 

MLOGP2 0.366 0.142 0.144 0.425 1 0 0 2.220 

B06[C-C] 0.007 0.244 0.175 0.169 0.225 1 0 1.204 

LogD (3.6) 0.368 0.36 0.212 0.369 0.72 0.376 1 3.361 

a Variation inflation factor 
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Figure 41: William plot of kNN-SW-MLR model: h* warning leverage value is 0.05687, 

namely. 

 

Figure 42: The plot of predicted retention time against the observed retention time 

values based on kNN-SW-MLR model 
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5.2.4 kNN-GA-MLR 

The results for kNN-GA-MLR were obtained as below: 

Rt= 3.442(±0.925) +0.8593(±0.0643) LogD(pH=3.6) -0.2826(±0.0715) BLTA96 

+1.448(±0.248) B06[C-C] +0.3711 (±0.295) BEHp2 +0.0104(±0.0099) ALOGP2 +0.260 

(±0.0250) RBN -0.0145(±0.00222) TPSA(NO)                                                            (𝐸𝑞. 32) 

Ntrain=422, R2
train=0.840, RMSEtrain=1.069, R2

adj=0.838, Ftrain=310.17 Q2
LOO=0.834, 

Q2
LGO=0.798, Q2

BOOT=0.832, Ntest=105, R2
test=0.846, RMSEtest=1.093, Ftest=72.96, rm2

test 

=0.838, CCCtest=0.9146, CCCtrain=0.9133 

For the linear generated model, it can be seen that, the external ability of the model is 

better than other linear models, and therefore, it can be employed as the best linear model 

to predict the retention time. Variation Inflation Factor (VIF) values of each chosen 

descriptor with its correlation values with other selected descriptors were listed in Table 22. 

Table 22: The correlation coefficient of selected descriptors and corresponding VIF 

values by kNN-GA-MLR 

Variables LogD (3.6) BLTA96 B06[C-C] BEHp2 ALOGP2 RBN TPSA(NO) VIFa 

LogD (3.6) 1 0 0 0 0 0 0 4.291 

BLTA96 -0.771 1 0 0 0 0 0 3.054 

B06[C-C] 0.377 -0.341 1 0 0 0 0 1.344 

BEHp2 0.551 -0.453 0.419 1 0 0 0 1.803 

ALOGP2 0.816 -0.73 0.229 0.452 1 0 0 3.315 

RBN 0.363 -0.13 0.244 0.38 0.319 1 0 1.348 

TPSA(NO) -0.165 0.222 0.061 0.138 -0.13 0.192 1 1.211 
a Variation inflation factor 

      
 

The Y-randomization test was calculated for kNN-GA-MLR model and the results indicated 

that the developed model is acceptable (Table 23).  

 

Table 23: The Q2
LOO and R2

training values after several Y-randomization tests for kNN-

SW-MLR and kNN-GA-MLR 
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  kNN-SW-MLR kNN-GA-MLR 

No Q2 R2 Q2 R2 

1 0.0121 0.0432 0.0008 0.0269 

2 0.0026 0.0132 0.0006 0.0241 

3 0.0895 0.0022 0.0034 0.0135 

4 1.50E-05 0.0192 0.0005 0.0159 

5 0.0003 0.0164 0.0057 0.0105 

6 0.0014 0.0154 0.0013 0.0136 

7 0.0051 0.0313 0.0392 0.0042 

8 0.0362 0.0057 0.0038 0.0313 

9 0.0056 0.0099 1.17E-06 0.0200 

10 0.0002 0.0184 0.0047 0.0104 

 

Williams plot detected non-outliers for the final kNN-GA-MLR (figure 43). The predicted 

retention time versus the observed retention time values based on kNN-GA-MLR were 

shown in figure 44. 

 

Figure 43: William plot of kNN-GA-MLR model (positive ionization): h* warning 
leverage value is 0.05714 
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Figure 44: The plot of predicted retention time against the observed retention time 

values based on kNN-GA-MLR model 

 

5.2.5 PCA-SW-SVM 

The used methodology for developing support vector machine discussed in negative 

ionization was employed here. The results of the optimization of parameters for each SVM 

model based on stepwise and genetic algorithms with different splitting technique were 

listed in Table 24 and PCA-SW-SVM results were shown in figures 45-47.  

Table 24: Optimized parameters values for SVM models 

Models Epsilon (ε) Gamma (γ) Capacity (C) 

PCA-SW-SVM 0.1 5 22 

PCA-GA-SVM 0.03 5 29 

kNN-SW-SVM 0.1 5 31 

kNN-GA-SVM 0.1 3.5 50 
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Figure 45: PCA-SW-SVM optimized parameters for the gamma (𝛾) vs. RMSE 

 

Figure 46: PCA-SW-SVM optimized parameters for the epsilon (ε) vs. RMSE 
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Figure 47: PCA-SW-SVM optimized parameters for the capacity (C) vs. RMSE 
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1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50

R
M

S
E

 C
ro

s
s
 V

a
li
d

a
ti

o
n

Capacity parameter C

Optimal C value= 22



102 
 

 

Figure 48: The plot of predicted retention time against the observed retention time 

values based on PCA-SW-SVM 

5.2.6 PCA-GA-SVM 

The optimum parameters of SVM for PCA-GA were derived as described above and shown 

in figures 49, 50 and 51.The plot of predicted retention time against the observed retention 

time values based on PCA-GA-SVM method was shown in figure52. 
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Figure 49: PCA-GA-SVM optimized parameters for the gamma (𝛾) vs. RMSE 

 

Figure 50: PCA-GA-SVM optimized parameters for the epsilon (ε) vs. RMSE 
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Figure 51: PCA-GA-SVM optimized parameters for the capacity (C) vs. RMSE 

 

Figure 52: The plot of predicted retention time against the observed retention time 

values based on PCA-GA-SVM 
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The optimum parameters of SVM for PCA-GA were derived as described above and shown 

in figures 53, 54 and 55.The plot of predicted retention time against the observed retention 

time values based on kNN-SW-SVM method was shown in figure56. 

 

Figure 53: kNN-SW-SVM optimized parameters for the gamma (𝛾) vs. RMSE 
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Figure 54: kNN-SW-SVM optimized parameters for the epsilon (ε) vs. RMSE 

 

Figure 55: kNN-SW-SVM optimized parameters for the capacity (C) vs. RMSE 

 

Figure 56: The plot of predicted retention time against the observed retention time 

values based on kNN-SW-SVM 
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5.2.8 kNN-GA-SVM 

The selected kNN-GA-SVM non-linear model was built based on the same selected 

compounds as training set in kNN-GA-MLR, and the optimized parameters were calculated 

as C=50, ε=0.1, γ=3.5. The result of each optimization was shown in Figures 57-59. The 

predicted values for retention time by KNN-GA-SVM method for positive ionization 

compounds were given in Table S1, and plotted versus the observed retention time and 

shown in figure 60. The comparison of the built models (Table 27) suggests that kNN-GA-

SVM is the most appropriate non-linear model for prediction purpose; however PCA-GA-

SVM can also be employed. From the linear models, kNN-GA-MLR can be used due to the 

satisfactory external results. The final validations for these two selected models were 

carried out using Golbraikh and Tropsha acceptable model criteria's. The results are shown 

in Table 25. 

Table 25: Golbraikh and Tropsha acceptable model criteria's for MLR and SVM 

 

 

 

 

 

 

 

 

 

 

 
kNN-GA-MLR kNN-GA-SVM 

Condition I 0.834 0.501 

Condition II 0.846 0.887 

Condition III 

K=1.00824 

K′= 0.98166 

R2 − R0
2/R2   = 0.00009 

R0
2 − R0

′2/R2 = 0.03518 

K=1.00898 

K′= 0.98359 

R2 − R0
2/R2   = 0.00092 

R0
2 − R0

′2/R2 =  0.02507 

Condition IV R0
2 − R0

′2= 0.02968 R0
2 − R0

′2= 0.02142 

Acceptance Passed Passed 
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Figure 57: kNN-GA-SVM optimized parameters for the gamma (𝛾) vs. RMSE 

 

Figure 58: kNN-GA-SVM optimized parameters for the epsilon (ε) vs. RMSE 
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Figure 59: kNN-GA-SVM optimized parameters for the capacity (C) vs. RMSE 

 

Figure 60: The plot of predicted retention time against the observed retention time 

values based on kNN-GA-SVM 
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Since the models based on kNN and genetic algorithm showed appropriate internal and 

external results, for the generation of non-linear model based on ANN, kNN-GA-ANN 

technique was developed. The selected compounds as valid and test set were marked in 

Table S1 (positive ionization). The same newly introduced technique for choosing the 

nodes in negative ionization compounds were used here to develop accurate models 

without the over-fitting problem. The results of this methodology are shown in Table 26. 

From Table 26, it can be seen that the model built based on node=6 shows the highest 

CCC value for both the test and the training set. Moreover, the calculated modified r2 value 

for test set is the highest one among the other nodes. Considering the RMSE value for 

node 3 and 6, consequently the model based on 6 nodes is being selected. The MPD 

values for training set with the different nodes were calculated using equation 13 and are 

given in Table 26. The obtained MPD value for node 3 and 6 indicates that the model 

based on 6 nodes represents an appropriate fitting. The predicted values based on kNN-

GA-ANN are listed in Table S1 and its strength as prediction tool is compared in Table 27. 

The predicted values for the retention time by kNN-GA-ANN method for the positive 

ionization compounds versus the observed retention time are shown in figure 61. 

 

Figure 61: The plot of predicted retention time against the observed retention time 

values based on kNN-GA-ANN  
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5.2.10 Interpretation of Molecular descriptors 

The descriptors which were selected based on the genetic algorithms showed to have 

striking effects and appropriate correlations with observed retention time. In the derived 

prediction analyses for positive ionization, some descriptors were presented as they were 

chosen in negative ionization, and therefore, it reflects that these three descriptors (LogD(at 

certain pH), ALOGP, and BLTA96 are more responsible for the chemical behavior in 

regards of the retention time. For the compounds in positive ionization, these three 

descriptors have the same impact on the retention time (equation 32), as in negative 

ionization compounds, since the sign of the correlation coefficients for LogD and ALOGP2 

is positive and the sign for BLTA96 is negative (equation 23). The relative importance of the 

selected descriptors is shown in figure 62. 

 

Figure 62: The relative importance of selected descriptors in positive ESI. 

ALOGP2 is squared Ghose-Crippen octanol-water partition coefficient which is belonged to 

molecular properties descriptors and is a measure of the lipophilicity of the molecule, the 

same as ALOGP. As it was discussed previously, the Ghose-Crippen contribution method 

[20, 57, 58] is based on the hydrophobic atomic constants ak that is measuring the lipophilic 

contribution of atoms in the molecule as follows: 
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Log𝑃 = ∑ ak. Nkk                                                                                                                                        (𝐸𝑞. 33) 

Where Nk is the occurrence of the k th atom type, and the hydrophobic constant have been 

evaluated for hydrogen atoms, carbon atoms and heteroatoms. 

In addition to the above descriptors, the linear model based on kNN-GA-MLR showed 

another descriptor, B06[C-C]. This descriptor is a type of 2D binary atom pairs of order 6 

descriptors and defines the presence/absence of C - C at topological distance 6. This kind 

of descriptor describes the pairs of atoms and bond types connecting them based on the 

topological representation of molecules. Two carbon atoms and inter atomic separation is 

defined as: 

AP = {[𝑖th atom description][separation][𝑗th atom description]}                                            (𝐸𝑞. 34) 

Therefore, the separation is the topological distance between these two carbon atoms. As it 

can be seen, this descriptor has positive sign in the linear equation, which encodes that the 

availability of such binary atom pairs in molecular structure would cause an increase to the 

retention time.  

The next selected descriptor is BEHp2 (highest eigenvalue n.2 of Burden matrix / weighted 

by atomic polarizability). As it was discussed in negative ionization, the Burden eigenvalue 

descriptors [63] represent the chemical structural diversity or similarity of a molecule based 

on the Burden approach [62]. Another useful benefit is associated with the eigenvectors, 

which can be used to determine the attribution of each atom to substructures upon 

disconnection of the main structure into distinct fragments. In this context, atomic 

polarizibility that is relevant to intermolecular interactions are supported and since its 

correlation coefficient has positive sign in equation 32, increasing the atomic polarizability 

relevant to intermolecular interactions would increase the retention time. To understand 

BEHp2 effects and also its relationship with the polar atoms (O,N S and P), LogD values as 

well as charges potential and also BEHp2 values for some compounds were studied and 

listed in Table 28. Polar surface area (PSA) and charges potential were calculated based 

on DFT study on the basis of B3LYP/6-31*G method. 
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Table 28: Relationship between BEHp2, Retention time, LogD and charges potential 

Name LogD Charges potential BEHp2 Rt  PSA (Å2) 

m12 -1.07 

 

2.319 1.38 56.095 

m489 -2.56 

 

2.633 1.34 97.207 

m219 -1.81 

 

2.911 2.19 55.698 

m7 -0.59 

 

3.134 4.66 56.169 

m125 4.38 

 

4.026 13.21 46.676 
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m145 3.93 

 

3.994 13.53 31.169 

m31 3.45 

 

3.975 11.66 61.812 

 

BEHp2 can be assumed to be measure of polarizibilities in substracture or fragments of a 

compound and thus lower value can represent the less number of fragments in molecular 

graph as well. For example, from Table 26, m12 (Amitrole) showed the lowest BEHp2 in 

contrast to whole data set suggesting that atomic prolazibility in substracture is so low. It is 

also a small substance which limits the fragmentation. Reported Rt as well as LogD are 

low. It seems that presence of Nitrogen in molecular graph decreases the BEHp2 values in 

contrast to presence of Oxygen, Sulfur and Phosphore. Comparing compound m12 with 

m219, it can be seen that addition of oxygen group inceased BEHp2 values but decreased 

LogD values suggesting that molecule is more polar, however as BEHp2 increasedin 

compound m125, the LogD is increased. Therefore, BEHp2 is not representing the atomic 

polarizibility of molecule but its fragments. There is also a masking effect of LogD which its 

effect is more dominant than BEHp2. Therefore, it can be concluded that if a molecule 

represents more fragmentations with less number of Nitrogen, the BEHp2 will be increased 

directly leading to increase of Rt while it is not representing the true effect of polarizibility of 

compound since its LogD might affect Rt inversely. It is also a good agreement between 

retention time and polar surface area calcualted by DFT study (B3LYP/6-31G*). 

The next descriptor is RBN (number of rotatable bonds) in which belongs to constitutional 

descriptors and encodes the number of bonds that have free rotation around themselves. It 

is defined in a single bond type which is not in a ring. In addition, bonds between amide (C-
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N) are excluded from this calculation due to the high rotational energy barrier. To 

understand this effect more deeply, some compounds were presented below: 

 

   RBN=1                                 RBN=2 

Apparently, the RBN value is more in alkyl chains than in its ring form. It seems that 

compounds with more RBN and in other words alkyl chain have good interaction with 

stationary phase alkyl groups and thus postponing the elution. Since this descriptor 

indicated positive sign in equation, increasing number of rotatable bond would results in an 

increase of the retention time. 

The last selected descriptor based on genetic algorithms is the topological polar surface 

area using N, O polar contributions (TPSA(NO)). This descriptor represents the influence of 

a particular functional group (especially based on the compounds with higher 

electronegativity atoms) [60]. Since this descriptor has a negative sign in the equation, the 

presence of N, O polar contributions in molecular structure would cause a decrease to the 

retention time. Therefore, compounds with higher TPSA(NO) value would show lower 

retention time, however in comparison to effects by other selected descriptors, the mean 

effect of this descriptor is lower. 

 
5.2.11 Applicability domain study of kNN-GA-MLR model for suspects 

Some compounds (as suspect compounds) were used to predict their retention time based 

on the developed models so as to figure it out whether the suggested compounds can be 

the correct candidates or not. The results of prediction for these compounds along with 

their experimental retention time were listed in Table 29.  

Table 29: Retention time prediced values of suspect compounds in positive 

ionization by KNN-GA-SVM 
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Suspectlist 
Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 

 

The suggested 

structure can be 

accepted 

The suggested 

structure is 

rejected 

P1 (1-Hydroxy-iso-propyl)acetophenone 6.34 
 

10.10 

P2 1,3,3-Trimethyl-2-methyleneindoline 13.49 
 

8.19 

P3 1.2.3.6-Tetrahydrophthalimide (cis-) 5.71 4.87 
 P4 17-alpha-Estradiol 12.98 11.22 
 P5 17-beta-Estradiol 13.16 11.22 
 

P6 

2-[2-[4-(1-1-3-3-

tetramethylbutyl)phenoxy]ethoxy]ethanol 

/ 4-Octylphenol di-ethoxylate 
12.44 12.98 

 
P7 

2-2-4-trimethylpentane-1-3-diol 
diisobutyrate 13.41 13.21 

 

P8 

2-3-Dihydro-1-methyl-1H-indol (1-

Methyl-2-oxindole) 
6.53 6.44 

 

P9 

2-6-Di-tert-butyl-4-hydroxy-4-methyl-2-5-

cyclohexadien-1-one 
11.71 10.28 

 P10 2-6-Di-tert-butylphenol 12.26 11.97 
 P11 2-Methyl-1-phenylpropan-2-ol 12.44 9.28 
 

P12 
3-5-Di-tert-butyl-4-
hydroxyacetophenone 10.16 11.52 

 P13 4-acetyl-amino-antipyrine (AAA) 5.29 6.87 
 P14 4-formyl-amino-antipyrine (FAA) 5.24 6.65 
 P15 4-iso-Propenylacetophenone 7.34 9.67 
 P16 4-tert-Butylphenol 12.44 

 
8.36 

P17 5 6-di-Me-Benzotriazole 5.69 7.10 
 P18 Amitraz 8.79 

 
11.28 

P19 Ancymidol 7.78 8.26 
 P20 Atrazine-desethyl 6.86 6.83 
 P21 Benefin 8.88 

 
12.69 

P22 Benzylbutylphthalate 12.78 13.31 
 P23 Bis-(2-ethylhexyl) phthalate 14.33 15.33 
 P24 Bisoprolol 11.81 8.94 
 P25 Butylbenzoate 7.34 

 
11.43 

P26 Butylmethoxydibenzoylmethane 14.86 13.04 
 P27 Camphor 11.88 

 
6.89 

P28 Cyclohexylisocyanate 6.13 6.57 
 P29 Desethylterbuthylazine 8.54 7.07 
 P30 Diisononylphthalate 12.76 15.18 
 P31 Di-iso-propylphenol 12.44 8.89 
 P32 Di-n-butylphthalate 12.84 13.42 
 P33 Dinex (2-Cyclohexyl-4.6-dinitrophenol) 8.63 9.69 
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Suspectlist 
Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 

 

The suggested 

structure can be 

accepted 

The suggested 

structure is 

rejected 

P34 Dinocap 10.09 
 

14.17 

P35 Di-n-octylphthalate 14.91 15.09 
 P36 d-Limonene 12.44 10.63 
 P37 Estriol 9.41 9.96 
 P38 Estrone 11.23 11.39 
 P39 Ethylenebrassylate 10.24 10.44 
 P40 Ethylhexylmethoxycinnamate 14.63 14.02 
 P41 g-Methylionone 12.26 11.11 
 P42 Hexa(methoxymethyl)melamine 8.71 10.24 
 P43 HydroxyIbuprofen 8.28 9.10 
 P44 Icaridin 9.46 8.09 
 P45 JWH-210 8.01 

 
14.75 

P46 Melamine 1.34 1.440 
 P47 Merphos 6.61 

 
14.38 

P48 Methylneodecanamide 12.19 11.91 
 

P49 
Methyl-iso-propylcyclohexenone- 
Carvone 12.44 9.74 

 P50 Methylphenobarbital 7.81 7.29 
 P51 Mutagen X 1.23 

 
4.9 

P52 N-Acetylmorpholine 6.21 
 

3.57 

P53 N-Methyl-2-pyrrolidone 3.71 3.51 
 P54 N-Methylphenacetine 3.84 

 
8.48 

P55 N-N'-Diethyl-N-N'-diphenylurea 11.88 11.33 
 P56 N-nitrosodiethylamine 1.23 

 
5.82 

P57 N-Nitrosopyrrolidine 1.23 3.47 
 P58 N-phenyl-naphthylamine 12.71 12.00 
 P59 Octocrylene 14.26 15.06 
 P60 Oxadine A / 4-4-dimethyloxazolidine 5.18 

 
2.15 

P61 Phenytoine 7.26 9.00 
 P62 Prometon 6.76 9.70 
 P63 Pyrimidifen 8.39 

 
13.48 

P64 Sebuthylazine 10.43 10.39 
 P65 Secbumeton 6.76 

 
9.79 

P66 Spectinomycin 8.19 
 

3.94 

P67 Styrene 12.44 
 

7.83 

P68 tert-Butylhydroquinone 8.56 8.17 
 P69 Tributylphosphate (TBP) 12.53 13.13 
 P70 Tributylacetylcitrate 13.53 12.95 
 P71 Triethylcitrate 6.59 8.50 
 P72 Trifluralin 8.88 

 
12.81 

P73 Triphenylphosphineoxide 9.96 12.04 
 P74 Tris(1-chloro-2-propanyl) phosphate 10.53 11.45 
 



120 
 

 

Suspectlist 
Exp. 
Rt 

KNN-GA-SVM 
Predicted Rt 

 

The suggested 

structure can be 

accepted 

The suggested 

structure is 

rejected 

P75 Tris(2-methylpropyl) phosphate 12.66 12.47 
 P76 Tris(methylphenyl) phosphate 13.34 14.10 
 P77 Viridine 8.56 9.25 
  

The workflow introduced in section 4.6 was employed to visualize the results and detect the 

possible outliers. Based on the training and test sets (figure 63), boxes are presented. For 

the compounds in suspect list, the same analysis was carried out, and results illustrated 

that out of 77 compounds as suspect compound, 47 compounds are predicted very well 

and 30 compounds are belonged to box3 and box4. The results are listed in Table 30. 

According to Table 30and visualization plot (figure 64), it can be concluded that out of 21 

compounds in box4, twelve compounds ((1-Hydroxy-iso-propyl) acetophenone, 1,3,3-

Trimethyl-2-methyleneindoline, 4-tert-Butylphenol, Benefin, Bis-(2-ethylhexyl) phthalate, 

Butyl benzoate, Camphor, N-Methylphenacetine, N-nitrosodiethylamine, N-

Nitrosopyrrolidine, Pyrimidifen, Trifluralin) are within the applicability domain of models, but 

the suggested retention times are not matched with the structure and therefore, we can be 

confident that the suggested compounds cannot be correct. The rest of the compounds 

showed high residuals due to the chemical structural diversity which is beyond the 

applicability domain of the generated models. Molecules belonged to box 4 (outliers) were 

shown in red color in figure 64.  

Table 30: The analysis of visualization of outliers for linear model (kNN-GA-MLR) 

Boxes Origin of outliers compounds 

Box 3 

The origin of residuals is 
mostly due to structural 
diversity. The model cannot 
predict their Rt. 

17-alpha-Estradiol 

The origin of residuals is 
mostly due to Response. The 
suspect compounds are 
rejected. 

2-Methyl-1-phenylpropan-2-ol, 4-iso-
Propenylacetophenone, Di-iso-propylphenol, 
Methyl-iso-propylcyclohexenone- Carvone, N-
Acetylmorpholine, Oxadine A / 4-4-
dimethyloxazolidine, Triphenylphosphine oxide 
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Box 4 

The origin of residuals is 
mostly due to structural 
diversity. The model cannot 
predict their Rt. 

Bisoprolol, Diisononyl phthalate, Dinocap, Di-n-
octyl phthalate, JWH-210, Merphos, Mutagen 
X, Spectinomycin, Styrene 

The origin of residuals is 
mostly due to Response. The 
suspect compounds are 
rejected. 

(1-Hydroxy-iso-propyl)acetophenone, 1,3,3-
Trimethyl-2-methyleneindoline, 4-tert-
Butylphenol, Benefin, Bis-(2-ethylhexyl) 
phthalate, Butyl benzoate, Camphor, N-
Methylphenacetine, N-nitrosodiethylamine, N-
Nitrosopyrrolidine, Pyrimidifen, Trifluralin 

 

 

Figure 63: Visualization of the data distribution for (+) ESI compounds 
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Figure 64: Origin of the outliers for the suspect compounds in positive ionization 
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CHAPTER 6 

CONCLUSIONS 

The obtained QSRR models for a large data set measured in two ionization modes by liquid 

chromatography–quadrupole – time of flight mass spectroscopy (LC-QTOF MS) supported 

the safe identification of suspect compounds. In this work, some novel methodologies were 

presented to understand the origin of miscalculation for suspect list compounds where it 

enabled the researchers for better understanding of rejection of a compound as suspect 

compound. Different models for both datasets in two ionization modes were provided and 

compared. The results indicated that the generated models using kNN for the appropriate 

division of data set, and employing of genetic algorithms as variable selection technique, 

would lead to strong models for the prediction purposes. MLR based on kNN-GA as a 

simple linear model for both datasets was validated by employing different validation 

techniques, and it proved to be applicable for prediction purposes, however among the 

non-linear models, SVM with same selection technique showed the highest statistical 

confidence and accuracy for the prediction of the retention time. The newly suggested 

remarks for ANN models generation reported in supplementary material file could also lead 

to better prediction in comparison to the MLR models, so that it could present better 

statistical results with acceptable criteria. However, its results were weak in comparison to 

SVM model. The provided large dataset could also make the application of models possible 

in different disciplines (environmental chemistry, pharmaceutical analysis, metabolomics, 

forensics and doping analysis). Consequently, the derived workflows for model generations 

and validations besides the visualization of outliers technique, showed great potential for 

the identification of suspect compounds.  
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APPENDIX A 

OTrAMS(ESI,save,PD) 
%%%%%%%%%%%About%%%%%%%%%%%%%%%% 
%This code is written by Reza Aalizadeh © 
%Laboratory of Analytical Chemistry,  
%Department of Chemistry,  
%National and Kapodistrian University of Athens,  
%Panepistimiopolis Zographou, 15771 Athens, Greece 
%Usage: 
%ESI is electrospray ionization mode: 'Negative' or 'Positive' 
%save is to export the outlier analysis to excel format: save=1, not save=0 
%PD is plotting options: for separated figures and 2D dimension >PD=1, for 3D  
%dimension and it’s criteria >PD=2   
% For Negative ESI, type the following command in MATLAB: OTrAMS('Negative',1,2) 
% For Positive ESI, type the following command in MATLAB: OTrAMS('Positive',1,2) 
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