
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES

MASTER THESIS

Discovering Spatial and Temporal Links Among RDF Data

Panayiotis Smeros

Supervisor: Manolis Koubarakis, Professor UoA

ATHENS

December 2014



ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανακαλύπτοντας Χωρικούς και Χρονικούς Συνδέσμους
Μεταξύ RDF Δεδομένων

Παναγιώτης Σμέρος

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

Δεκέμβριος 2014



MASTER THESIS

Discovering Spatial and Temporal Links Among RDF Data

Panayiotis Smeros

R.N.: M1227

SUPERVISOR:
Manolis Koubarakis, Professor UoA

EXAMINATION COMMITEE:
Isambo Karali, Assistant Professor UoA

ATHENS
December 2014



ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανακαλύπτοντας Χωρικούς και Χρονικούς Συνδέσμους Μεταξύ RDF Δεδομένων

Παναγιώτης Σμέρος

A.M.: Μ1227

ΕΠΙΒΛΕΠΩΝ:
Μανόλης Κουμπαράκης, Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Ιζαμπώ Καράλη, Επίκουρη Καθηγήτρια ΕΚΠΑ

ΑΘΗΝΑ
Δεκέμβριος 2014



Abstract
Link Discovery is a new research area of the Semantic Web which studies the problem

of finding semantically related entities lying in different knowledge bases. This area has
become more crucial recently, as the volume of the available Linked Data on the web has
been increasing considerably. Although many link discovery tools have been developed,
most of them do not take into consideration the discovery of spatial and temporal relations,
leaving datasets with such characteristics weakly interlinked and therefore not allowing the
exploitation of the rich information they provide.

In this thesis, we propose new formalisms and accurate methods for Spatial and
Temporal Link Discovery and provide the first implementation that covers this area. This
implementation is based on the well-adapted framework Silk. Silk, enhanced with the
new features, allows data publishers to discover a wide variety of spatial and temporal
relations between their data and other Linked Open Data. We also experimentally
evaluate Silk by using it in a real-world scenario, and showcase that it can generate 100%
accurate links in a time efficient and scalable way.

SUBJECT AREA: Link Discovery
KEYWORDS: Spatial and Temporal Link Discovery, Semantic Web, Linked Data



Περίληψη
Η Ανακάλυψη Συνδέσμων είναι μια νέα ερευνητική περιοχή του Σημασιολογικού Ιστού

που μελετά το πρόβλημα της εύρεσης σημασιολογικά συσχετιζόμενων οντοτήτων οι
οποίες βρίσκονται σε διαφορετικές βάσεις γνώσης. Η περιοχή αυτή, τελευταία, γίνεται
όλο και πιο χρήσιμη, καθώς ο όγκος των διαθέσιμων Διασυνδεδεμένων Δεδομένων στο
διαδίκτυο αυξάνεται σημαντικά. Παρά το γεγονός ότι έχουν αναπτυχθεί πολλά εργαλεία για
Ανακάλυψη Συνδέσμων, τα περισσότερα από αυτά δεν λαμβάνουν υπ' όψιν την εύρεση
χωρικών και χρονικών σχέσεων, αφήνοντας δεδομένα με τέτοιου είδους χαρακτηριστικά
ασθενώς συνδεδεμένα και μη επιτρέποντας την εκμετάλλευση της πλούσιας πληροφορίας
που παρέχουν.

Σε αυτή την εργασία, προτείνουμε νέους φορμαλισμούς και ακριβείς μεθόδους για
Χωρική και Χρονική Ανακάλυψη Συνδέσμων και παρέχουμε την πρώτη υλοποίηση
που καλύπτει αυτή την περιοχή. Η υλοποίηση είναι βασισμένη στο γνωστό εργαλείο
Silk. Το Silk, εμπλουτισμένο με τις νέες επεκτάσεις που αναπτύξαμε, επιτρέπει στους
παρόχους δεδομένων να ανακαλύπτουν μεγάλη ποικιλία χωρικών και χρονικών σχέσεων
μεταξύ των δεδομένων τους και άλλων Ανοιχτών Διασυνδεδεμένων Δεδομένων. Επίσης,
αξιολογούμε πειραματικά το Silk, χρησιμοποιώντας το σε ένα σενάριο πραγματικού
κόσμου, αποδεικνύοντας ότι μπορεί να ανακαλύψει 100% ακριβείς συνδέσμους με ένας
χρονικά αποδοτικό και επεκτατό τρόπο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανακάλυψη Συνδέσμων
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Χωρική και Χρονική Ανακάλυψη Συνδέσμων, Σημασιολογικός Ιστός,
Διασυνδεδεμένα Δεδομένα
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Discovering Spatial and Temporal Links Among RDF Data

Chapter 1
Introduction

Linked data is a research area which studies how one can make RDF data available on
the Web, and interlink it with other data in order to increase its value for users [5]. The
goal of Linked Data is to allow people to share structured data on the web as easily as
they can do with documents today.

An important step for the evolution of the Web of documents to the Web of data is
the transformation of the data from any form that they exist into a common format, the
Resource Description Framework (RDF) so that it can be easily integrated with other data
already transformed in this format. All the data that is compatible with the Linked Data
Principles1 composes the Linked Open Data (LOD) cloud (Figure 1.1).

Figure 1.1: Recent state of the Linked Open Data cloud

Recently, spatial and temporal extensions to RDF have been proposed and imple-
mented. GeoSPARQL [28] is a recent OGC standard that allows representing and query-
ing geospatial data on the Semantic Web. Also, the data model stRDF accompanied by

1http://www.w3.org/DesignIssues/LinkedData.html
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(a) (b)

Figure 1.2: Distribution of (a) data by domain, (b) links by domain in the LOD Cloud

the query language stSPARQL [21] are extensions of the standard RDF and SPARQL
for representing and querying geospatial data that changes over time. Both of the above
extensions are implemented in the open source spatiotemporal RDF store Strabon [22].

Link Discovery is the fourth and the most important Linked Data Principle. Its main
objective is to establish semantic links between entities in order to enhance and enrich
the information that is known about them. Whilst the problem of Entity Resolution i.e., the
problem of finding entities which are equivalent, has been studied a lot in areas such as
Relational Databases and Information Retrieval, Link Discovery defines the more generic
problem of finding semantically related entities lying in different knowledge bases [2].

Although a lot of effort has been given in the representation and the querying of geospa-
tial and temporal RDF data, there are not many works in the respective area of Link Dis-
covery. In the context of Spatial Link Discovery, state of the art techniques are focus-
ing on finding only spatial equivalences between entities, leaving other kinds of relations
e.g., topological relations, undiscovered and the rich geospatial information lying in many
datasets unexploited (Figure 1.2). The situation regarding Temporal Link Discovery is
even more premature and thus, to the best of our knowledge, there are almost no datasets
with temporal information that are connected with each other with links that denote a tem-
poral relation.

Another common use of Link Discovery is for detecting internal links within a single

Panayiotis Smeros 13
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dataset. For example, by applying an Entity Resolution method on a dataset, we can
discover all the similar entities i.e., all the duplicates of it. Hence, with Spatial and Temporal
Link Discovery we can materialize all the spatial and temporal relations that hold between
the entities of a dataset. This operation is very useful in the areas of Qualitative Spatial
[32], Temporal [37, 25] and SpatioTemporal Reasoning [14, 31] where the large graphs
that are created based on the qualitative relations are given as input to corresponding
reasoners [12, 15] in order to extract useful information or verify the consistency of a
dataset.

The lack of research in the area Spatial and Temporal Link Discovery will be made
more notable when more datasets with such characteristics will be made available in the
LOD Cloud. Currently, a lot of initiatives are moving towards this direction by publishing
open geospatial data and metadata coming out of open government directives2 and open
Earth Observation (EO) data and metadata that is currently made available by space and
environment agencies (e.g., ESA, NASA and EEA)3. This data is usually measurements
produced by observations with fundamental geospatial and temporal aspects. Making all
this data available as linked data and interlinking themwith semantic connections will allow
the development of services with great environmental and commercial value.

Recently, EU projects such as LEO4 and MELODIES5, following the footsteps of
TELEIOS6, started exploiting this kind of datasets. In the context of these projects the
whole life cycle of EO data is being studied. This life cycle includes stages such as
Knowledge Extraction and Data Mining from EO data in raw form (e.g., satellite images),
Transformation into RDF, Interlinking, etc. and has been specified in detail in [19].

In this thesis, we focus on the Interlinking stage of this life cycle. Specifically, we ex-
amine state of the art techniques and tools in the area of Link Discovery and propose
new formalisms and accurate methods for Spatial and Temporal Link Discovery. Also, we
provide the first implementation that covers this area which is based on the well-adapted
framework Silk7. Silk, enhanced with the new features, allows data publishers to dis-
cover a wide variety of spatial and temporal relations between their data and other Linked
Open Data. We also experimentally evaluate Silk by using it in a real-world scenario with
datasets that contain very detailed and complex geometries, and showcase that it can
generate 100% accurate links in a time efficient and scalable way.

2http://www.linkedopendata.gr/
3http://datahub.io/organization/teleios and http://datahub.io/organization/leo
4http://www.linkedeodata.eu/
5http://www.melodiesproject.eu/
6http://www.earthobservatory.eu/
7http://silk.wbsg.de/
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The structure of the thesis is organized as follows. In Chapter 2 we provide the re-
lated work on the area of Link Discovery and in Chapter 3 some background knowledge
on the representation of geospatial and temporal information. In Chapter 4 we propose
new formalisms and accurate methods which cover the area of Spatial and Temporal Link
Discovery. In Chapter 5 we desrcibe the implementation of the above methods on the
Link Discovery Framework Silk and in Chapter 6 we present the experimental evaluation
of them. Finally, in Chapter 7 we provide an example of using Silk in project LEO and in
Chapter 8 we conclude the work by discussing future directions.

Panayiotis Smeros 15
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Chapter 2
Related Work

Up to now, little effort has been given in the research area of Spatial and Temporal Link
Discovery. Most of the approaches on generic Link Discovery do not exploit the rich spatial
and temporal information existing in some datasets, whereas domain specific approaches
on Spatial Link Discovery are able to discover only spatial similarities. Hence, to the best of
our knowledge, there are no approaches, either generic or domain specific, for discovering
spatial or temporal relations other than equivalences among RDF datasets.

In the area of generic Link Discovery, the surveys [11, 2] perform a detailed review on
state of the art algorithms and frameworks. Also, in [9, 10, 24, 6] the authors propose var-
ious methods that use Genetic Programming, Probabilistic, Logic Programming and Data
Analytics techniques respectively. Hence, data integration platforms such as WOO and
RDF-AI [3, 34], comprise components which also implement Link Discovery algorithms.

In the same area, the authors of [16] propose the declarative link specification language
LinQL, which is translated to standard SQL by the framework LinQuer, for discovering
semantic links over relational data.

Also, the LIMES framework [26] introduces a generic algorithm for Link Discovery
which reduces the number of comparisons that are needed during the interlinking phase
by utilizing the triangle inequality in metric spaces. For finding link specifications, LIMES
implements supervised and unsupervised machine learning algorithms.

Similarly to LIMES, Silk [18] is also a generic framework for discovering relationships
between data items within different Linked Data sources. Silk, which is the only open
source generic Link Discovery framework, features a declarative link specification lan-
guage for specifying which types of RDF links should be discovered between data sources
as well as which conditions entities must fulfill in order to be interlinked. These linkage
rules may combine various metrics and can take the graph around entities into account,
which is addressed using an RDF path language. Silk accesses the data sources that
should be interlinked via the SPARQL protocol and can thus be used against local as well
as remote SPARQL endpoints.

In the area of Spatial Link Discovery there are some domain specific approaches which

Panayiotis Smeros 16



Discovering Spatial and Temporal Links Among RDF Data

are able to discover only spatial equivalences among datasets. In order to achieve this,
they combine the geographic distance of the geometries of the entities with other kinds of
distances e.g., with the string distance of their labels. The supported geographic distances
can be applied either between any kind of spatial objects (e.g., Hausdorff distance), or
only between point objects (e.g., Orthodromic distance). Some of these approaches are
presented in [38, 35, 33].

From the generic frameworks, LIMES also addresses the problem of Spatial Link Dis-
covery in [27]. The computation of the distance between the spatial objects lies on a
combination of Hausdorff and Orthodromic metrics. On the other hand, Silk supports the
geographic distance only between point objects.

Panayiotis Smeros 17
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Chapter 3
Background

In this chapter we present in detail the background on which we were based in order to
design the new methods for Spatial and Temporal Link Discovery and implement them on
the Silk framework. Specifically, we present some preliminary knowledge on the repre-
sentation of geospatial and temporal information and focus on how this representation is
adopted in the RDF model.

3.1 Representation of Geospatial Information

The Open Geospatial Consortium1 (OGC) has developed well-known standards that focus
on solutions for geospatial data and services, GIS data processing and geospatial data
sharing.

In OGC terminology, a geographic feature is an abstraction of a real world phenomenon
and can have various attributes that describe its thematic and spatial characteristics. For
example, a feature can represent amunicipality. Thematic information about amunicipality
can include its name, its population, etc., while a spatial characteristic is its location on
Earth. The spatial characteristics of a feature are represented using geometries such as
points, lines, and polygons. Each geometry is associated with a coordinate reference
system which describes the coordinate space in which the geometry is defined.

3.1.1 Coordinate Reference System

A coordinate reference system defines how to relate the coordinates of a geometric ob-
ject to real locations on the surface of Earth. A geographic coordinate reference system
is a three-dimensional coordinate reference system that utilizes latitude, longitude, and
optionally altitude, to capture geographic locations on Earth [23]. In a geographic coordi-
nate reference system, the earth's three-dimensional ellipsoid is mapped using a series of
horizontal (longitude lines or parallels) and vertical (latitude lines or meridians) reference
lines. The World Geodetic System (WGS) is the most well-known geographic coordinate

1http://www.opengeospatial.org/

Panayiotis Smeros 18
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reference system and its latest revision is WGS842. WGS84 is the reference coordinate
system used by the Global Positioning System (GPS).

Although a geographic coordinate system such as WGS84 is a comprehensive way to
describe locations on Earth, some applications work on a projection of the Earth. In these
cases a projected geographic coordinate reference system is used that transforms the 3-
dimensional ellipsoid approximation of the Earth into a 2-dimensional surface. Individual
countries or states have their own projected coordinate reference systems that are more
precise for their geographic area (e.g., GGRS873 for Greece).

3.1.2 Well-Known Text

Well-Known Text (WKT) is a widely usedOGC standard for representing geometries. More
specifically, WKT can be used for the representation of vector geometry objects, on a
map, spatial reference systems, and transformations between spatial reference systems.
For example, POINT(10 20), is the WKT representation of the point with longitude 10
and latitude 20. The complete syntax of the representation is presented in detail in [17].
The interpretation of the coordinates of a geometry depends on the coordinate reference
system that is associated with the geometry, which, according to the WKT standard, is
never embedded in the object's representation, but is given separately using appropriate
notation.

3.1.3 Geography Markup Language

The Geography Markup Language (GML) [29] is the most common XML-based encoding
standard for the representation of geospatial data. GML was developed by OGC and it
is based on the OGC Abstract Specification. GML provides XML schemas for defining
a variety of concepts that are of use in Geography: geographic features, geometry, co-
ordinate reference systems, topology, time and units of measurement. Initially, the GML
abstract model was based on RDF and RDFS, but later the consortium decided to use
XML and XML Schema. The complete syntax of the GML representation of a geometry is
presented in [29].

2http://en.wikipedia.org/wiki/WGS84/
3http://spatialreference.org/ref/epsg/ggrs87-greek-grid/
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Figure 3.1: RCC-8 topological relations

3.1.4 Spatial Relations

Two well-know models for the representation of spatial relations are DE-9IM and RCC.

DE-9IM

The Dimensionally Extended 9-Intersection Model (DE-9IM) [7] is a well-known model
for representing topological relations between geometries. More specifically, this model
captures topological relations in R2, by considering the dimension of the intersections
involving the interior (I), the boundary (B) and the exterior (E) of the two geometries. The
intersection matrix of two geometries a and b is defined as follows:

DE-9IM(a,b) =

dim(I(a) ∩ I(b)) dim(I(a) ∩B(b)) dim(I(a) ∩ E(b))

dim(B(a) ∩ I(b)) dim(B(a) ∩B(b)) dim(B(a) ∩ E(b))

dim(E(a) ∩ I(b)) dim(E(a) ∩B(b)) dim(E(a) ∩ E(b))


Given the above table, for any two spatial objects a and b that can be points, lines

and/or polygonal areas, we can define relations derived from DE-9IM such as: Intersects,
Equals, Touches, Disjoint, Contains, Crosses, Covers, CoveredBy andWithin.

RCC

Another similar formalization that provides a sound and complete set of topological rela-
tions between two spatial regions is the Region Connection Calculus (RCC) [30]. RCC is
a first order language which is used to represent spatial regions and reason about topo-
logical relations. Spatial regions are non empty subsets of some topological space, in our
case R2, and may be associated by a topological relation, which is given as a constraint
between them and is based on one primitive relation C(a, b) which is true iff the closure of
region a is connected to the closure of region b, i.e., they share a common point. Regions
in general do not have to be internally connected, i.e., a region may consist of different
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disconnected parts. The domain of each spatial variable is the whole topological space
(R2). Of particular importance are the sets that form a set of jointly exhaustive and pair-
wise disjoint relations (JEPD). These relations are called basic or atomic, because exactly
one of them holds between any two regions.

Well known subsets of RCC are RCC-8 and RCC-5. RCC-8 (Figure 3.1.4), is based
on the eight topological relations:

DC, EC, EQ, PO, TPP, NTPP, TPPi, NTPPi

where DC stands for DisConnected, EC for Externally Connected, TPP for Tangential
Proper Part, NTPP, for Non Tangential Proper Part, and TPPi and NTPPi are the inverse
relations from TPP and NTPP. RCC-5 is a looser subset which consists of five basic topo-
logical relations:

DR, PO, EQ, PP, PPi

The difference between RCC-5 and RCC-8 is that in RCC-5 there is no distinction
between boundaries, and thus, DC and EC relations are merged into the relation DR and
TPP and NTPP into PP respectively.

3.1.5 GeoSPARQL

GeoSPARQL [28] is a recent OGC standard that allows representing and querying geospa-
tial data on the Semantic Web. It defines a vocabulary for representing geospatial data
in RDF, and an extension to the SPARQL query language for processing geospatial data.
The GeoSPARQL standard follows a modular design which is typical of OGC standards
and contains several components required for such a query language by providing vocab-
ulary (classes, properties and functions) that can be used in RDF graphs and SPARQL
queries to represent and query geospatial data.

GeoSPARQL uses literal values to encode geometries as a single unit, and introduces
two RDF datatypes, the geo:wktLiteral and geo:gmlLiteral for these literals. The rep-
resentation of the geometry is parameterized by the serialization standard of OGC to be
used for encoding geometry literals (WKT or GML) and the version of the relevant stan-
dard. Literals of type geo:wktLiteral consist of an optional URI identifying the coordinate
reference system followed by theWKT encoding of a geometry. An example of a geometry
in GeoSPARQL is given below:
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_:1 rdf:type geo:Geometry .
_:1 geo:hasGeometry
"<http://www.opengis.net/def/crs/EPSG/0/4326>

POINT(10 20)"^^geo:wktLiteral .

3.1.6 stRDF: The Spatial Dimension

The datamodel stRDF [21] is an extension of the standard RDF for representing geospatial
data. stRDF uses the well known OGC standards WKT and GML for the representation of
geospatial data and introduces two new literal datatypes, the stdf:WKT and strdf:GML for
the representation of geometries encoded in WKT and GML respectively. Moreover, the
datatype strdf:geometry is also introduced, which is defined as the union of the datatypes
stdf:WKT and strdf:GML. The syntax of a literal with datatype stdf:WKT consists of the
WKT encoding of the geometry followed by an optional URI indicating the coordinate ref-
erence system. An example of a geometry in stRDF is shown below:

_:1 rdf:type strdf:Geometry .
_:1 strdf:hasGeometry
"POINT(10 20);

<http://www.opengis.net/def/crs/EPSG/0/4326>"^^strdf:WKT .

3.1.7 W3C GEO

The W3C GEO representation is a basic RDF vocabulary for representing mapping/loca-
tion data in RDF. It provides the basic terminology for describing points using a namespace
for representing latitude, longitude and other information about spatially-located things,
using WGS 84 as a reference system. The simplicity of this representation lies on the fact
that it does not require expensive pre-coordination or changes to a centrally maintened
schema. Below, we give a basic, standalone example of W3C GEO vocabulary:

_:1 rdf:type wgs84geo:Point .
_:1 wgs84geo:lat "10"^^xsd:double.
_:1 wgs84geo:long "20"^^xsd:double.
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Relation Illustration
X before Y X
Y after X Y
X meets Y X
Y isMetBy X Y
X overlaps Y X
Y isOverlappedBy X Y
X starts Y X
Y isStartedBy X Y
X during Y X
Y contains X Y
X finishes Y X
Y isFinishedBy X Y

X equals Y
X
Y

Figure 3.2: Allen's temporal relations

3.2 Representation of Temporal Information

The introduction of time in data models and query languages has been the subject of
extensive research in the field of relational databases [36, 8]. Three distinct kinds of time
were introduced and studied: user-defined time which has no special semantics (e.g.,
January 1st, 1963 when John has his birthday), valid time which is the time a fact is
true in the application domain (e.g., the time 2000-2012 when John is a professor) and
transaction time which is the time when a fact is current in the database (e.g., the system
time that gives the exact period when the tuple representing that John is a professor from
2000 to 2012 is current in the database).

3.2.1 Temporal Relations

Awidely used algebra for temporal reasoning is Allen's interval calculus [1], which provides
the definition of possible relations between time intervals. It is based on the thirteen distinct
and exhaustive qualitative relations given in Figure 3.2.1. From these basic relations, one
can build new by taking combinations of their disjunctions. Using this calculus, one can
formalize given facts which can be used for automated reasoning.

3.2.2 stRDF: The Temporal Dimension

An approach for the representation of temporal information in RDF was introduced with
the temporal dimension of stRDF [4]. This approach assumes a discrete time line and
uses the value space of the datatype xsd:dateTime of XML-Schema to model time. Two
kinds of time primitives are supported: time instants and time periods. Time instants are
represented by literals of the xsd:dateTime datatype and time periods by literals of the
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datatype strdf:period. The values of the datatype strdf:period are used as objects of
a triple to represent user-defined time and as valid time of temporal triples.

A temporal triple is an expression of the form (s, p, o, t) where (s, p, o) is an
RDF triple and t is a time instant or a time period called the valid time of a triple. An stRDF
graph is a set of triples or temporal triples. In other words, some triples in an stRDF graph
might not be associated with a valid time.

3.3 Summary

In this chapter we gave an overview of vocabularies and data models that allow the repre-
sentation of geospatial and temporal information in RDF. We presented some preliminary
knowledge and terminology regarding how geometries and dates are represented, then
we described the theoretical work that has been conducted on the spatial and temporal
relations, and finally, the respective extensions on the RDF data model in order to allow
these representations on which lies our design and implementation of the new methods
for Spatial and Temporal Link Discovery.
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Chapter 4
Formalisms and Methods for Spatial and

Temporal Link Discovery

In this chapter we present the new formalisms and methods for Spatial and Temporal
Link Discovery. Specifically, we provide a generalized definition of Link Discovery, which
covers the area of Spatial and Temporal Link Discovery, we describe the new methods
that we introduce and we prove theoretically their soundness and completeness.

4.1 Generalized Definition of Link Discovery

The definition of classic Link Discovery does not suffice for the area of Spatial and Tem-
poral Link Discovery with respect to the spatial and temporal relations that we introduce.
These relations, which are discussed in Sections 3.1.4 and 3.2.1, are in nature Boolean
relations i.e., either they hold or they do not. Below we provide a generalized definition of
Link Discovery which covers the case of Boolean relations.

Definition Let S and T be two sets of entities, r a relation, RD and RB the sets of
distance-based and Boolean relations respectively, mr a metric function for the relation r

and θmr a threshold for the metric function mr.

Function mr and threshold θmr are defined as follows:

mr(S × T ) =

{
[0, 1] if r ∈ RD

{true, false} if r ∈ RB

θmr ∈ [0, 1]

The domain of the function mr is the Cartesian product of S and T . For the range, we
distinguish two cases:

• If r is a distance-based relation thenmr returns the distance between a pair from the
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Cartesian product normalized to the interval [0, 1].

• If r is a Boolean relation thenmr returns true or false depending on whether r holds
between a pair from the Cartesian product or not.

The domain of θmr is also normalized to the interval [0, 1].

Based on the above definitions, the set of discovered links DL can be defined as
follows:

DL =
{(s, r, t) | r ∈ RD ∧ s ∈ S ∧ t ∈ T ∧ mr(s, t) < θmr}∪
{(s, r, t) | r ∈ RB ∧ s ∈ S ∧ t ∈ T ∧ mr(s, t)}

DL contains triples which have as subject an entity from dataset S, as object an
entity from dataset T and as predicate the relation r. A triple belongs to DL if one of the
following holds:

• r is a distance-based relation and the metric functionmr applied to the entities of the
datasets S and T returns a distance that does not exceed the threshold θmr .

• r is a Boolean relation and the metric function mr applied to the entities of the
datasets S and T returns true i.e., the relation r between these entities holds.

4.2 Methods for Spatial and Temporal Link Discovery

In this section we describe the new methods that we introduce for Spatial and Temporal
Link Discovery. These methods are based on the background knowledge that we dis-
cussed in detail in Sections 3.1 and 3.2.

4.2.1 Spatial Relations

Spatial information lying in datasets is exploited by state of the art Link Discovery methods
only for finding equivalences between entities. For example, if we want to interlink a city
with its DBpedia entry, we first compute the distance of their coordinates, then the distance
of their labels and then, if these distances do not exceed the appropriate thresholds, we
consider them as the same.

In this thesis we introduce new methods for Spatial Link Discovery which are based on
the spatial relations described in Section 3.1.4. Since we adopt two well-known models
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for the representation of spatial relations, DE-9IM and RCC, we can interlink datasets that
contain points, lines and/or polygonal areas with relations such as: Intersects, Contains,
Crosses, etc.

Spatial relations Rs belong to the wider family of Boolean relations RB (Rs ⊂ RB) as
we have defined them above. A metric function mr for a spatial relation r ∈ Rs decides
whether r holds between two geometries or not.

4.2.2 Temporal Relations

Similarly to spatial relations, in this thesis we also introduce relations for Temporal Link
Discovery. These relations are based on the thirteen distinct and exhaustive qualitative
relations of Allen's interval calculus as described in section 3.2.1. Hence, one can discover
temporal relations between datasets such as: During, Meets, Starts, etc.

Temporal relations Rt belong to the family of Boolean relations RB as well (Rt ⊂ RB).
A metric function mr for a temporal relation r ∈ Rt decides whether r holds between two
time intervals or not.

4.2.3 Spatial and Temporal Distances

For the spatial distance between two geometries we follow the well-adapted approach
of the orthodromic distance1 between the closest points of these geometries. Similarly,
for the temporal distance between two time intervals we consider the difference between
these intervals expressed in a well-known time unit e.g., seconds.

4.2.4 Spatial and Temporal Transformations

As different datasets usually use different data formats, a common preprocessing tech-
nique in classic Link Discovery is to apply transformations to normalize the values prior
to comparison. For example, for string values with different case, a lowercase transfor-
mation can be applied in order to avoid false non-existing links that could occur after the
comparison.

Similarly to string transformations, in this thesis we also introduce a set of spatial and
temporal transformers that can be applied in the respective attributes of the entities.

1http://en.wikipedia.org/wiki/Great-circle_distance
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CRS Transformer. As discussed in Section 3.1.1, geometries can be expressed in dif-
ferent Coordinate Reference Systems. This transformer converts the CRS of a geometry
to WGS 84.

Serialization Transformer. In Sections 3.1.2 and 3.1.3 we describe the two main seri-
alizations of geometries in RDF: WKT and GML. This transformer converts geometries of
any serialization to WKT.

Geometry Literal Transformer. As we mention in Sections 3.1.5, 3.1.6 and 3.1.7, ge-
ometries can be expressed in different vocabularies. This transformer converts geometry
literals from GeoSPARQL, stRDF or W3C GEO vocabulary to pure WKT literal.

Simplification Transformer. Some datasets have very complex geometries, which
makes the computation of spatial relations inefficient. This transformer simplifies a geom-
etry according to a given distance tolerance, ensuring that the result is a valid geometry
having the same dimension and number of components as the input.

Envelope Transformer. This transformer computes the envelope (minimum bounding
rectangle) of a geometry and it is useful in cases that we want to compute approximately
spatial relations between two datasets.

Buffer Transformer. This transformer computes the buffer function of a geometry ac-
cording to a given distance.

Area Transformer. In some cases it is enough to compare just the areas of two geome-
tries to infer whether they are the same or not. This transformer computes the area of a
given geometry in square metres.

Points-To-Centroid Transformer. In crowdsourcing datasets like OpenStreetMap2,
multiple users can define the position of the same placemark. As a better approxima-
tion of the real position of this placemark we can compute the centroid of these positions.
This transformer computes the centroid of a cluster of points.

Time Zone Transformer. This transformer converts the time zone of a given time interval
to Coordinated Universal Time (UTC).

2http://www.openstreetmap.org
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4.3 Blocking Technique

Since the size of the datasets with spatial and temporal information has increased sig-
nificantly, approaches that perform exhaustive checks between datasets are considered
inefficient. Thus, there is a need for scalable, yet sound and complete techniques for de-
creasing the number of checks by dismissing definitive non-matches prior to the actual
check. The most well-known technique to achieve this is known as Blocking.

The Blocking technique partitions ``close'' entities into clusters by reducing the checks
only between entities of the same cluster. The partitioning is based on one or more at-
tributes of the entities. For example, suppose that we want to detect duplicates among
DBpedia cities. We can partition them by location, by label or by a combination of them.
The more attributes participating in the partitioning, the more dimensions a block has.
The dimensionality of a block is 2 when blocking by location (locations are defined by
their latitude and longitude coordinates), 1 when blocking by label and 3 when blocking
by the combination of them. The size of each dimension of a block is selected based
on the relevant threshold. In the same example, if we consider as duplicates cities with
distance lower than 0.5km, cities having at 90% the same label or cities with both of these
characteristics, then each block will have size 0.5×0.5, 0.9 and 0.5×0.5×0.9 respectively.

This technique has a trade-off between accuracy and time complexity. If we want to
guarantee that no false dismissals and thus no loss of recall will occur, we can create
accordingly overlapping blocks. If we are more aggressive, we can achieve orders of
magnitude decrease in the number of checks and consequently in the time complexity of
our algorithm, with the danger of not discovering a set of links.

The Blocking technique is more straightforward in distance-based relations (RD) where
we can compute the exact size of each block based on the relevant thresholds. In this
thesis we introduce a Blocking technique adapted for spatial (Rs) and temporal (Rt) rela-
tions.

4.3.1 Blocking technique for Spatial Relations

The coordinate reference system WGS 84 considers the surface of earth as spheroidal
with longitude range [−180◦, 180◦] and latitude range [−90◦, 90◦]. We choose this reference
system for our Blocking technique is because we prefer having highly accurate calcula-
tions rather than fast ones. If we consider the Earth as a plane, we can use Cartesian
mathematics to do common calculations such as areas, distances, lengths, intersections,
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(a) (b)

Figure 4.1: Blocking technique for (a) Spatial and (b) Temporal Relations

etc. For example, in this case, the shortest path between two points on the plane is just
a straight line. If we consider the Earth as a sphere, the above calculations require more
complicated mathematics. In the same example, the shortest path between two points on
the sphere is a circle arc. However, in the second case the calculations are more accurate
than the first one, because we consider a better approximation of the surface of the earth.

With the proposed Blocking technique we build blocks that divide the earth into curved
rectangles as depicted in Figure 4.1(a). The area of the blocks is measured in square
degrees and can be adjusted with a blocking factor bf . The formula for the computation
of the area is the following:

blockArea =
1

bf 2

◦2

The bigger the value of bf gets, the more and smaller blocks will be created. For
example, if we assign to bf the value 10, our Blocking technique will create 6, 480, 000

non-overlapping blocks with area 0.01◦
2 that cover the whole surface of the earth.

After the division of the space into blocks, we compute for each geometry the respective
set of blocks that it must be inserted into. In order to achieve this, we first compute the
minimum bounding box (MBB) that contains each geometry, and then we find, in both
dimensions, the blocks that thisMBB intersects with. Thus, in each block, we insert all the
geometries whose MBB intersects with it.

The described technique is used for the spatial relations Rs \ {Disjoint}. In Disjoint
relation we don't divide the space in blocks and thus we exhaustively check all the possible
pairs of entities from the datasets.
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4.3.2 Blocking technique for Temporal Relations

In the Blocking technique for temporal relations we follow a similar approach to the one
for spatial relations. Time is one-dimensional and thus the blocks are 1-d as well. Let us
suppose that all the time intervals of our data are included in the period from the epoch3

until the Present (Figure 4.1(b)). Following the same strategy as before, we divide the
time in blocks whose length can be adjusted with bf . The formula for the computation of
the length of the blocks is the following:

blockLength =
1

bf
time units

After the division of the time into blocks, we insert, in each block, all the time periods
or instances that temporally intersect with it.

The above technique is used for the temporal relations Rt \ {Before, After}. In Be-
fore and After relations, we exhaustively check all the possible pairs of entities from the
datasets.

4.3.3 Blocking technique for Spatial and Temporal Distances

In the Blocking technique for spatial and temporal distances we follow the same approach
as with the respective relations. The only difference is that in both spatial and temporal
distances, we enlarge the geometries and the time intervals respectively, in order to ensure
that each instance will be placed in the appropriate set of blocks. More specifically, in both
cases we extend each MBB and each time interval by half of the given distance. Hence,
two instances with distance less or equal to the given distance will be placed in the same
block.

4.3.4 Parallelization

With the described Blocking techniques, all the built blocks are completely independent
with each other. Thus, the check of a relation or the computation of a distance among the
geometries of a block can be performed in parallel with respect to the blocks.

3The epoch has been set to January 1, 1970, 00:00:00 GMT.
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4.4 Soundness and Completeness

In this section we discuss the soundness and completeness of the proposed methods
for Spatial and Temporal Link Discovery. We first prove that the methods are sound and
complete when performing an exhaustive check of all the possible pairs of entities (Carte-
sian product) and then that the Blocking technique that we propose does not affect the
accuracy of the discovered links.

Cartesian Product Technique In the methods for Spatial and Temporal Link Discovery
we are based on relations that are proven sound in [7], [30] and [1]. Also, by definition,
Cartesian product denotes that we perform an exhaustive (complete) check of all the pairs
of entities from the datasets. Hence, our methods are proved to be sound and complete.

Blocking Technique We prove that the application of the Blocking technique does not
affect the completeness of our methods for Spatial Link Discovery with reduction to absur-
dity. As we have mentioned before, the Blocking technique cannot be used for the Disjoint
relation and thus we exclude it from the proof.

Proof. Let two geometries lying in different blocks with a spatial relation r ∈ Rs\{Disjoint}
holding between them.

If r holds between two geometries then they intersect at least at one point. (from the
definition of the spatial relations)

If two geometries intersect at one point, so do theirMBBs. (from the definition ofMBB)

If the MBBs of two geometries intersect, then there is at least one block in which they
will be both inserted. (as described in Section 4.3)

This results in a contradiction because we assumed that the two geometries are lying
in different blocks.

Therefore the initial assumption must be false.

The above proves that if a relation other than Disjoint holds between two geometries,
then they will be placed in at least one common block and consequently the relation be-
tween them will be discovered.

With a similar proof for temporal relations and spatial and temporal distances we can
state that our methods for Spatial and Temporal Link Discovery remain complete, even
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after the application of the Blocking technique. Hence, commonmetrics for Link Discovery
such as precision, recall and F-measure are also proved to be equal to 100%. The latter is a
very useful theoretical outcome for the proposed methods because it guarantees absolute
accuracy of the discovered links.

4.5 Summary

In this chapter we provided a generalized definition of Link Discovery, which covers the
areas of Spatial and Temporal Link Discovery, we describe the new methods that we
introduce and we prove theoretically their soundness and completeness. In the following
chapter we describe the implementation of the proposed methods in Silk Link Discovery
Framework.
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Chapter 5
The Link Discovery framework Silk and its

Spatial and Temporal Extensions

All the proposedmethods for Spatial and Temporal Link Discovery have been implemented
as extensions on Silk framework1. As mentioned in Chapter 2 Silk is the only, to the best
of our knowledge, open-source generic framework for discovering relationships between
data items within different Linked Data sources.

5.1 The Link Discovery Engine of Silk

The Link Discovery Engine of Silk builds the core of the Silk Framework. It is responsible
for loading the entities from the data sources as well as generating the links based on
the user-provided link specifications. The workflow of the Engine can be separated in 5
discrete phases (Figure 5.1). For our implementation we extended only the Blocking and
Link Generation components of the respective phases2.

5.1.1 Blocking

Silk employs a blocking technique which maps entities to a multidimensional index. Af-
ter the mapping, the entities are divided into multidimensional and optionally overlapping
blocks. Blocking works on arbitrary link specifications and no separate configuration is
required. For our implementation we adapted the blocking technique that we introduced
in Section 4.3 to the one that Silk uses by utilizing a 2-dimensional index for the spatial
relations and a 1-dimensional for the temporal ones.

1The source code of the spatial and temporal extensions of Silk is publicly available (https://github.
com/psmeros/stSilk). We plan to collaborate with the main developers of Silk, in order to include these
extensions in the next release of the default version of Silk (https://github.com/silk-framework/silk).

2A full documentation of Silk can be found here: https://www.assembla.com/spaces/silk/wiki.
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Figure 5.1: Workflow of Silk Engine

5.1.2 Link Generation

In this phase, Silk reads the incoming entities and computes a distance or checks a relation
for each pair. As different datasets usually use different data formats, a transformation
operator can be applied to normalize the values. Then a comparison or check operator
evaluates two inputs and computes a distance or checks a relation between them. For our
implementation, we implemented as components for this phase the spatial and temporal
check, distance and transformation operators that we introduced in Sections 4.2.1-4.2.4
respectively.

5.2 Silk Variants

Silk is provided in two different variants: Silk Single Machine and Silk MapReduce.

5.2.1 Silk Single Machine

This variant is used to generate RDF links on a single machine. The datasets that should
be interlinked can either reside on the same machine or on remote machines which are
accessed via the SPARQL protocol. Silk Single Machine provides multithreading and
caching. In addition, the performance can be further enhanced using the optional blocking
feature.

5.2.2 Silk MapReduce

This variant is used to generate RDF links between data sets using a cluster of multiple
machines. Silk MapReduce is based on Hadoop3 and it can scale out to very big datasets
by distributing the link generation to multiple machines.

3http://hadoop.apache.org/
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5.3 Parallelization

In both of the above Silk variants our Blocking technique divides the source datasets into
blocks and then the transformation and the check operators run in parallel with respect to
the block. In Silk Single Machine we have multi-thread parallelization and in Silk MapRe-
duce multi-machine parallelization.

5.4 Summary

In this chapter we presented the Link Discovery Framework Silk with its new spatial and
temporal extensions that we developed. More details about Silk can be found in the ap-
pendix of this thesis.
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Chapter 6
Experimental Evaluation

In this chapter we experimentally evaluate the spatial extensions of Silk by using it in a
real-world scenario. The respective experiments for the temporal extensions are omitted
due to space limitations. The datasets and other useful information for reproducing the
experiments are publicly available1.

As we discussed in Section 2, to the best of our knowledge, there is no related frame-
work with which we can discover spatial and temporal relations other than equivalences
among RDF datasets. Hence, in the experiments that we conducted, we compared only
against variants of Silk and the state of the art, according to the relevant benchmark [13],
spatiotemporal RDF store Strabon [22]. Strabon is not considered as a Link Discovery
framework but since it supports the GeoSPARQL standard, NAMED GRAPHS and CON-
STRUCT queries it can be used for discovering spatial relations e.g., intersects, with a
query like the following:

CONSTRUCT {?s geo:intersects ?t .}
WHERE{
GRAPH ex:source{?s geo:hasGeometry/geo:asWKT ?sg.}
GRAPH ex:target{?t geo:hasGeometry/geo:asWKT ?tg.}

FILTER(geof:sfIntersects(?sg, ?tg))}

The only restriction that we face with Strabon is that both the source and the target
datasetsmust be stored locally, in different named graphs. On the other hand, with Silk, we
can interlink a local dataset with a remote one, that is published by another data publisher.
The only access that we need to it, is via a SPARQL endpoint.

6.1 Environment of Experiments

We conducted our experiments both in a single machine and a distributed environment.
For the single machine environment, we used a machine which is equipped with two Intel

1http://silk.linkeodata.eu/experiments

Panayiotis Smeros 37

http://silk.linkeodata.eu/experiments


Discovering Spatial and Temporal Links Among RDF Data

Dataset Instances Points of Geometries
GAG 325 979,929
CLCG 4,868 8,004,058
HG 37,048 148,192

Table 6.1: Characteristics of the Datasets

Xeon E5620 processors with 12MB L3 cache running at 2.4 GHz, 32 GB of RAM and
a RAID-5 disk array that consists of four disks. Each disk has 32 MB of cache and its
rotational speed is 7200 rpm. For the distributed environment we used a cluster provided
by the European Public Cloud Provider Interoute2. In this cluster we reserved 1 Master
Node with 2 CPUs, 4GB RAM and 10GB disk and 20 Slave Nodes with 2 CPUs, 4GB
RAM and 10GB disk.

We run our experiments using the latest version of Silk with the spatial and temporal
enhancements and the latest version of Strabon (v3.2.10) with accordingly tuned Post-
greSQL (v9.1.13) and PostGIS (v2.0) as proposed by the developers.

6.2 Scenario

In [20] the authors presented a real-time wildfire monitoring service that exploits satellite
images and linked geospatial data to detect and monitor the evolution of fire fronts. This
service is now operational at the National Observatory of Athens and is being used during
the summer season by emergency managers monitoring wildfires in Greece3.

A part of the processing chain of the service is to improve the thematic accuracy of the
detected fires (hotspots) by correlating them with auxiliary geospatial data. More specifi-
cally, the service finds the land cover of the area that a hotspot threatens in order to avoid
false alarms from fires detected in big agricultural plains, which are typically started by
farmers as part of their agricultural practices and they do not constitute an emergency
situation. Also, it finds the municipalities that a hotspot threatens and thus competent au-
thorities such as the Civil Protection Agency and the Fire Brigade are made aware about
the existence of a fire in their area of responsibility.

Below, we provide a sort description of the datasets of the scenario, whilst in Table 6.1
we present some quantitative characteristics of them. These datasets also constitute a
subset of the datasets used in the state of the art benchmark for Geospatial RDF Stores,
Geographica [13].

2http://www.interoute.com/
3http://bit.ly/FiresInGreece
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Hotspots of Greece (HG) The HG dataset contains the location of detected fires as
produced by the National Observatory of Athens after processing appropriate satellite
images. In our experiments we used a subset of the dataset that contains all the fires
detected during the fire season of 2007.

CORINE Land Cover of Greece (CLCG) The Corine Land Cover project is an activity of
the European Environment Agency that provides data regarding the land cover of Euro-
pean countries4. The CLCG is a subset of the whole dataset that contains all the available
information about Greece.

Greek Administrative Geography (GAG) The GAG dataset contains an ontology that
describes the administrative divisions of Greece (prefectures, municipalities, districts, etc.)
which has been populated with relevant data that are publicly available in the Greek open
government data portal5.

6.3 Using Silk in the Scenario

With Silk, the above scenario can be translated into two interlinking tasks between the
HG and the CLCG and the GAG datasets respectively. In these tasks, Silk will dis-
cover intersects relations between the geometries of the datasets. Hence, for exam-
ple, a hotspot that threatens a municipality will be interlinked with it with the property
geo:sfIntersects.

6.4 Experiment 1: Adjusting the Blocking Factor

In the first experiment we analyze the performance of the single machine implementation
of Silk with respect to different blocking factors (bfs). As we have discussed in Section 4.3,
bf adjusts the area of the blocks in which we divide the surface of the earth. The bigger
the value of bf gets, the more and smaller blocks are created. For this experiment we
used the full datasets of the scenario described above and we measured the computation
times for performing an interlinking task between HG-GAG and HG-CLCG respectively.

The graph of Figure 6.3 summarizes the results of this experiment. When bf takes
values close to 0, the blocks are spanning into big surfaces of the earth. Hence, most of

4http://www.eea.europa.eu/publications/COR0-landcover
5http://geodata.gov.gr
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Figure 6.1: Experiment 1

the geometries of the datasets are inserted in the same block, making the total number of
checks of a relation slightly smaller than the number of the pairs of the Cartesian product.

As bf gets bigger, Silk seems to perform better. However, this improvement contin-
ues until a certain value (value 20) and then, as the bf increases, the computation time
deteriorates. This is due to the fact that a big value for bf causes the division of space
into very small blocks and thus each geometry is inserted into a big number of them. If
two geometries are inserted into multiple blocks, then the check of the spatial relation is
performed independently in each block that they appear. Hence, in this case we have
redundant checks of the same relation that decrease the performance of Silk.

The optimal value of bf depends on the distribution and the size of the geometries
which are not known in advance in the case of our scenario. The value that gave the best
performance was 10 and thus it will be used in the second experiment.

Another useful outcome from this experiment is the comparison of the time consumed
for the link discovery task betweenHG-GAGandHG-CLCG. Figure 6.3 shows that the HG-
CLCG interlinking takes orders of magnitude more than the respective HG-GAG. Notice
in Table 6.1 that the CLCG dataset has more geometries than GAG, whereas GAG has
more complex ones. Hence, we can claim that in the cases of relations like intersects,
the bottleneck is the number and not the complexity of the geometries.

One final observation from this experiment is the number of the discovered links. This
number remains the same independently from the value of bf. This is expected, since we
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Figure 6.2: Experiment 2

have already proven in Section 4.4 that the Blocking technique that we propose does not
affect the accuracy of the discovered links.

6.5 Experiment 2: Adjusting the Instances per Dataset

In the second experiment we analyze the performance of three variants of Silk and Strabon
with respect to different number of instances per dataset. The datasets that we used in this
experiment are subsets of the datasets of the scenario and the measured time is the total
computation time for performing an interlinking task between HG-GAG and HG-CLCG.

The first variant (Silk (Baseline)), which we consider as baseline, computes the full
Cartesian product of the entities in order to check if a spatial relation between them holds.
For example, for the first measurement of the experiment, it makes 10× 10 checks of the
relation intersects between HG-GAG and HG-CLCG respectively. The second variant
(Silk (Best bf)), utilizes the Blocking technique with the best bf, as the latter occurred from
the previous experiment. The third (Silk (MR)), is the distributed variant of Silk, which also
utilizes the Blocking technique with the best bf. In the case of Strabon, the datasets are
stored locally and a CONSTRUCT query like the one we described above is performed.

We have experimented with several subsets of the datasets of the scenario and mea-
sured how this affects the performance. For the third measurement we have an exception
because GAG dataset contains less than 1000 instances (Table 6.1).
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The results of this experiment can be seen in Figure 6.4. As we can see from the graph,
Strabon seems to be faster for small number of instances per dataset whereas Silk (Best
bf) is faster when interlinking the full datasets. This happens because Silk fully utilizes the
cores of the running machine by assigning the workload of each block it creates into a new
thread. For big datasets, where the total workload is big enough, the Blocking approach
of Silk seems to be the most efficient.

This is more remarkable with the distributed variant of Silk (Silk (MR)). With Silk (MR)
the total workload is divided into different machines and in each machine it is divided into
different cores. We should mention at this point that the computation time of Hadoop for
small datasets is negligible with respect to the initialization time and the time consumed
to copy the data from the local file system to the distributed one and vice versa. Hence,
Silk (MR) outperforms the other Silk variants and Strabon only for the measurement with
the full datasets. Also, it seems to have the best scaling factor.

6.6 Summary

In this chapter we evaluated experimentally the spatial and temporal extensions of the
Link Discovery Framework Silk. In the next chapter we present a potential use of Silk in
the context of the project LEO.

Panayiotis Smeros 42



Discovering Spatial and Temporal Links Among RDF Data

Chapter 7
Using Silk in Project LEO

In this chapter we present an example of a potential use of Silk in the context of project
LEO. Specifically, we demonstrate the procedure that we follow in order to interlink an
open ecological dataset named Natura 20001 with a dataset containing precision farming
information for field structures. The latter is a product of the talkingfields project2, the
closest project to LEO. More details on the characteristics of the datasets that we interlink
are provided below.

7.1 Datasets

Natura 2000 The Natura 2000 dataset is an ecological network of protected areas in
the territory of the European Union. It comprises Special Areas of Conservation (SACs),
Special Protection Areas (SPAs), Marine Protected Areas (MPAs) and some special forms
that are defined on a national basis. The dataset is subject to a regular validation and
updating process. In the context of LEO, we use the subset of Natura 2000 that contains
the protected areas of Bavaria. This dataset comprises 5266 entities. An example data
item of Natura 2000 can been seen below:

natura:id/1
rdf:type natura:Natura2000Area;
natura:has_SITENAME "KUSTENGEBIETE"^^xsd:string;
geo:hasGeometry natura:Geometry/1 .

natura:Geometry/1
geo:asWKT "MULTIPOLYGON((...))"^^geo:wktLiteral .

Talking Fields (TF) The Talking Fields dataset contains products for precision farming
developed within the project talkingfields. This dataset contains information about the
fields of a farm, such as the crop type, the variety, the main crop/catch crop, the seeding

1http://natura2000.eea.europa.eu
2http://www.talkingfields.de
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Figure 7.1: Topological relations between Natura 2000 and Talking Fields datasets

date, etc. The sample dataset used comprises 114 entities. Below, we provide an example
data item of the Talking Fields dataset:

talkingFields:Field/id/1
rdf:type talkingFields:Field;
talkingFields:hasFieldName "9 Mitterweg re.b."^^xsd:string;
talkingFields:hasRasterCell talkingFields:RasterCell/3041 .
geo:hasGeometry talkingFields:Geometry/1 .

talkingFields:Geometry/1
geo:asWKT "MULTIPOLYGON((...))"^^geo:wktLiteral .

Given the above two datasets, it would be useful for the precision farming application,
developed in LEO, to combine them and discover links, such as the fields that are con-
tained in a Natura area or the fields that intersect with Natura areas, as it is depicted in
Figure 7.1.
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Figure 7.2: The discovered links as produced by Silk

7.2 Link Discovery Procedure

The procedure that we follow in Silk in order to find such topological relations between two
datasets is described in detail in Chapter 5. An overview of the steps of this procedure is
the following:

• First we select the data sources and retrieve specific entities from them e.g., entities
with type Field.

• Then we transform the geometric attribute of these entities in a common format.
Specifically, we transform the geometries in a common vocabulary and a common
coordinate reference system and then we keep only the well known text represen-
tation.

• Afterwards, we check if the given topological relation (in this case the Intersects
relation) holds between the geometries.

• Finally, we export the generated links in the given output file.

The link specification that was given as input in Silk in order to execute the described
procedure is presented in the Appendix of this thesis.
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Figure 7.2 shows the resulting pairs of entities, whose geometries intersect, as they are
produced by Silk. As we have discussed in Chapter 4, intersects is a boolean relation
and thus the score of all the generated links is 100% i.e., the relation between the entities
holds.

The overall number of links produced by Silk is 65. It is remarkable that even in a
small sample dataset of fields, the 57% of them are intersecting with a protected area.
This can be a very useful input for the presicion farming application, developed in LEO,
which providesmanagement decision support for plant protection and fertilization activities
regarding spatial and legal restrictions by taking into account the surrounding of the fields.

7.3 Summary

In this chapter we presented an example use case from project LEO that demonstrates
the usability of Silk. By this, we can combine datasets with geospatial information and
therefore increase their value.
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Chapter 8
Conclusions and Future Work

In this thesis, we proposed new formalisms and accurate methods for Spatial and Tem-
poral Link Discovery and provided the first implementation that covers this area. This im-
plementation is based on the well-adapted framework Silk. Silk, enhanced with the new
features, allows data publishers to discover a wide variety of spatial and temporal relations
between their data and other Linked Open Data. We also experimentally evaluated Silk
by using it in a real-world scenario with datasets that contain very detailed and complex
geometries, and showcase that it can generate 100% accurate links in a time efficient and
scalable way.

Future work concentrates on extending Silk with more spatial and temporal relations
(e.g., directional relations). These relations will be based on algebras and calculi that
appear frequently in the relevant bibliography and are useful for specific use cases.
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Appendix

Silk Link Specification Language

The Silk framework provides a declarative language for specifying which types of RDF
links should be discovered between data sources as well as which conditions data items
must fulfill in order to be interlinked. This section describes the language constructs of the
Silk Link Specification Language (Silk-LSL).

The Silk-LSL is expressed in XML as specified by a corresponding Silk XML Schema.
The root tag name is <Silk>. A valid document may contain the following types of top-level
statements beneath the root element:

<?xml version="1.0" encoding="utf-8" ?>
<Silk>

<Prefixes ... />
...

<DataSources ... />
...

[<Blocking />]
...

<Interlinks ... />
...

</Silk>

The prefix and data source definitions and the link specifications are mandatory state-
ments, while the blocking is optional. Let us now present each of these statements in
more detail.

Prefix Definitions

Prefix definitions are top-level statements that allow the binding of a prefix to a namespace:

<Prefixes>
<Prefix id="prefix id" namespace="namespace URI" />

</Prefixes>
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Data Source Definitions

Data source definitions are top-level statements that allow the specification of access pa-
rameters to local and remote SPARQL endpoints or RDF files. The defined data sources
may later be referred to and used by their ID within link specification statements.

<DataSources>
<DataSource id="data source ID" type="dataSource type">

<Param name="parameter name" value="parameter value" />
...

</DataSource>
</DataSources>

For SPARQL endpoint data sources the following parameters exist:

Parameter Description
endpointURI The URI of the SPARQL endpoint.
login Login required for authentication.
password Password required for authentication.
instanceList A list of instances to be retrieved. If not given, all instances will

be retrieved. Multiple instances can be separated by a space.
pageSize Limits each SPARQL query to a fixed amount of results. The

SPARQL data source implements a paging mechanism which
translates the pagesize parameter into SPARQL LIMIT and
OFFSET clauses.

graph Only retrieve instances from a specific graph.
pauseTime To allow rate-limiting of queries to public SPARQL severs, the

pauseTime statement specifies the number of milliseconds to
wait between subsequent queries.

retryCount To recover from intermittent SPARQL endpoint connection fail-
ures, the retryCount parameter specifies the number of times
to retry connecting.

retryPause Specifies how long to wait between retries.
queryParameters Additional parameters to be appended to every request.
parallel If multiple queries should be executed in parallel for faster re-

trieval.

Note that all parameters except the endpoint URI are optional and can be left out.
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For RDF files data sources the following parameters exist:

Parameter Description
file The location of the RDF file.
format The format of the RDF file. Allowed values: "RDF/XML", "N-

TRIPLE", "TURTLE", "TTL", "N3".

Blocking Data Items

<Blocking /> statement enables the blocking phase as described in Section 5.1. Addi-
tional configuration is not required as Silk will automatically generate a blocking function
from the link specification. If no <Blocking /> statement is supplied in a link specification,
the comparison will loop over all resource pairs (Cartesian Product).

Link Specifications

Link specification statements state that a link of a given type should be established be-
tween two data items if a specified condition is satisfied. This condition may contain dif-
ferent metrics, aggregation and transformation functions, thresholds and weights.

A Silk linking configuration may contain several link specifications if different types of
links should be generated. Link specifications are structured as follows:

<Interlinks>
<Interlink id="interlink id">

<LinkType>link type URI</LinkType>
<SourceDataset dataSource="dataSource id" var="name">

[<RestrictTo>SPARQL restriction</RestrictTo>]
</SourceDataset>
<TargetDataset dataSource="dataSource id" var="name">

[<RestrictTo>SPARQL restriction</RestrictTo>]
</TargetDataset>
<LinkageRule>

<Aggregate type="average|max|min|...">
<Compare metric="metric">

<Input path="RDF path" />
<TransformInput function="name">

<Input path="RDF path" />
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</TransformInput>
<Param name="name" value="value" />

</Compare>
<Compare ...>
</Compare>
...

</Aggregate>
</LinkageRule>

<Filter limit="limit" />

<Outputs>
<Output type="type" minConfidence="lower threshold"

maxConfidence="upper threshold">
<Param name="name" value="value" />
...

</Ouput>
</Outputs>

</Interlink>
<Interlink id="...">

...
</Interlink>
...

</Interlinks>

Let us now describe each of these statements in more detail.

LinkType

The LinkType directive defines the type of the generated links e.g., owl:sameAs links.

SourceDataset and TargetDataset

The SourceDataset and TargetDataset directives define the set of data items which are
to be compared. The entitites which are to be interlinked are selected by providing a
restriction for each data source. In its simplest form a restriction just selects all entities of
a specific type inside the data source. For instance, in order to interlink cities in DBpedia,
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a valid restriction may select all entities with the type dbpedia:City. For more complex
restrictions, arbitrary SPARQL triple patterns are allowed to be specified.

Linkage Rule

A linkage rule specifies how two data items are compared, in order to decide if a relation
between them holds. A linkage rule consists of four basic components:

Path Input. An input retrieves all values which are connected to the entities by a specific
path. Every path statement begins with a variable (as defined in the datasets), which may
be followed by a series of path elements. If a path cannot be resolved due to a missing
property or a too restrictive filter, an empty result set is returned. The following operators
can be used to traverse the graph:

Operator Name Use Description
/ forward operator <path

segment>/<property>
Moves forward from a
subject resource (set)
through a property
to its object resource
(set).

\ reverse operator <path
segment>\<property>

Moves backward
from an object re-
source (set) through
a property to its
subject resource
(set).

[ ] filter operator <path_segment>
[<property>
<comp_operator>
<value>]
or
<path_segment>
[@lang
<comp_operator>
<value>]

Reduces the cur-
rently selected set
of resources to the
ones matching the
filter expression.
comp_operator may
be one of >, <, >=,
<=, =, !=.
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Transformation. As different datasets usually use different data formats, a transforma-
tion can be used to normalize the values prior to comparison. Some of the transformation
functions that are available by default are the following:

Function and parameters Description
upperCase Convert a string to upper case.
regexReplace(string regex, string replace) Replace all occurrences of a regex

"regex" with "replace" in a string.
concat Concatenates strings from two inputs.

The new spatial transformation functions that were added in Silk and are described in
detail in Section 4 are the following:

Function and parameters Description
AreaTransformer Returns the Area of the input geometry.
BufferTransformer(double distance) Returns the buffered geometry of the in-

put geometry.
EnvelopeTransformer Returns the Envelope (Minimum Bound-

ing Rectangle) of the input geometry.
GeometryTransformer Trasforms a geometry expressed in

GeoSPARQL, stSPARQL or W3C Geo
vocabulary from any serialization (WKT
or GML) and any Coordinate Reference
System (CRS) to WKT and WGS 84
(latitude-longitude).

PointsToCentroidCTransformer Transforms a cluster of points ex-
pressed in W3C Geo vocabulary to their
centroid expressed inWKT andWGS 84
(latitude-longitude).

SimplifyTransformer(double distance-
Tolerance, boolean preserveTopology)

Simplifies a geometry according to a
given distance tolerance.

Comparison. A comparison operator evaluates two inputs and computes a distance or
checks a relation between them based on a user-defined measure and threshold. The
parameters of a comparison operator are the following:
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Parameter Description
required (optional) If required is true, the parent aggregation only yields a confi-

dence value if the given inputs have values for both instances.
weight (optional) Weight of this comparison. The weight is used by some aggre-

gation functions such as the weighted average aggregation.
threshold The maximum distance. For boolean measures e.g., spatial

relations, this parameter is optional.
distanceMeasure The used measure.
Inputs The 2 inputs for the comparison.

Silk supports a wide variety of distance measures. Some of these that are available
by default are the following:

Measure and parameters Description Type
levenshteinDistance Levenshtein distance. The min-

imum number of edits needed
to transform one string into the
other, with the allowable edit op-
erations being insertion, dele-
tion, or substitution of a single
character.

String Measure

num Computes the numeric differ-
ence between two numbers.

Numeric Measure

date Computes the distance between
two dates ("YYYY-MM-DD" for-
mat). Returns the difference in
days.

Date Measure

The new spatial measures and relations that were added in Silk and are described in
detail in Chapter 4 are the following:
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Measure and parameters Description Type
CentroidDistanceMetric Computes the distance between

the centroids of two geometries
in meters.

Spatial Distance

MinDistanceMetric Computes the minimum distance
between two geometries in me-
ters.

Spatial Distance

SContainsCheck Checks the relation "contains"
between two geometries.

Spatial Relation

CrossesCheck Checks the relation "crosses" be-
tween two geometries.

Spatial Relation

DisjointCheck Checks the relation "disjoint" be-
tween two geometries.

Spatial Relation

SEqualsCheck Checks the relation "equals" be-
tween two geometries.

Spatial Relation

IntersectsCheck Checks the relation "intersects"
between two geometries.

Spatial Relation

SOverlapsCheck Checks the relation "overlaps"
between two geometries.

Spatial Relation

TouchesCheck Checks the relation "touches" be-
tween two geometries.

Spatial Relation

WithinCheck Checks the relation "within" be-
tween two geometries.

Spatial Relation

RelateCheck(string relation) Checks every relation from DE-
9IM between two geometries.

Spatial Relation

The respective temporal measures and relations also described in Chapter 4 are the
following:

Measure and parameters Description Type
MillisecsDistanceMetric Computes the distance in mil-

liseconds between two time pe-
riods or instants.

Temporal Distance

SecsDistanceMetric Computes the distance in sec-
onds between two time periods
or instants.

Temporal Distance
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MinsDistanceMetric Computes the distance in minutes
between two time periods or in-
stants.

Temporal Distance

HoursDistanceMetric Computes the distance in hours be-
tween two time periods or instants.

Temporal Distance

DaysDistanceMetric Computes the distance in days be-
tween two time periods or instants.

Temporal Distance

MonthsDistanceMetric Computes the distance in months
between two time periods or in-
stants.

Temporal Distance

YearsDistanceMetric Computes the distance in years be-
tween two time periods or instants.

Temporal Distance

AfterCheck Checks the relation "after" between
two time periods or instants.

Temporal Relation

BeforeCheck Checks the relation "before" be-
tween two time periods or instants.

Temporal Relation

TContainsCheck Checks the relation "contains" be-
tween two time periods or instants.

Temporal Relation

DuringCheck Checks the relation "during" be-
tween two time periods or instants.

Temporal Relation

FinishesCheck Checks the relation "finishes" be-
tween two time periods or instants.

Temporal Relation

IsFinishedByCheck Checks the relation "isFinishedBy"
between two time periods or in-
stants.

Temporal Relation

MeetsCheck Checks the relation "meets" be-
tween two time periods or instants.

Temporal Relation

IsMetByCheck Checks the relation "isMetBy" be-
tween two time periods or instants.

Temporal Relation

TOverlapsCheck Checks the relation "overlaps" be-
tween two time periods or instants.

Temporal Relation

IsOverlappedByCheck Checks the relation "isOver-
lappedBy" between two time
periods or instants.

Temporal Relation

StartsCheck Checks the relation "starts" between
two time periods or instants.

Temporal Relation
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IsStartedByCheck Checks the relation "isStartedBy" be-
tween two time periods or instants.

Temporal Relation

TEqualsCheck Checks the relation "equals" between two
time periods or instants.

Temporal Relation

Aggregation. An aggregation combines multiple confidence values into a single value.
In order to determine if two entities are duplicates it is usually not sufficient to compare
a single property. For instance, when comparing geographic entities, we may aggregate
the similarities between the names of the entities and the distance between the locations
of the entities. The parameters of a aggregation operator are the following:

Parameter Description
required (optional) The required attribute can be set if the aggregation only should

generate a result if a specific sub-operator returns a value.
weight (optional) Some comparison operators might be more relevant for the

correct establishment of a link between two resources than
others. For example, depending on data formats/quality,
matching labels might be considered less important than
matching coordinates when linking cities. If this modifier is
not supplied, a default weight of 1 will be assumed. The
weight is only considered in the aggregation functions aver-
age, quadraticMean and geometricMean.

The aggregate functions that Silk supports are the following:

Function Description
AverageAggregator Evaluate the (weighted) average of confidence val-

ues.
MaximumAggregator Evaluate the highest confidence in the group.
MinimumAggregator Evaluate the lowest confidence in the group.
QuadraticMeanAggregator Apply Euclidean distance aggregation.
GeometricMeanAggregator Compute the (weighted) geometric mean of a group

of confidence values.

Link Filter

The Link Filter allows for filtering the generated links. It only has the parameter limit that
defines the number of links originating from a single data item. Only the n highest-rated
links per source data item will remain after the filtering. If no limit is provided, all links will
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be returned.

Running Silk

In this section we describe how we run the Single Machine and the MapReduce variant of
Silk.

Silk Single Machine

Silk Single Machine tool is distributed as a single jar file. In order to be able to run it,
users need to:

• Have installed Java Runtime Environment 71.

• Have SPARQL access to the datasets that should be interlinked.

• Have written a link specification as explained in the Appendix.

Then they have to execute the following command:

$ java -DconfigFile=<Silk-LSL configuration file> -jar silk.jar

After the execution users can open the output file that has been defined in the
configFile and review the generated links.

Silk MapReduce

Silk MapReduce tool is distributed as a single jar file as well and it has the same pre-
requisites as Silk Single Machine tool with the addition of the installation of the Hadoop
framework.

The linking workflow in this tool is divided into 2 phases. For the Load phase, users
have to execute the following command:

$ hadoop jar silkmr.jar load configFile ouputDir

The outputDir is the directory, where the instance cache will be written to. This will
be the inputDir of the Link Generation phase. For the Link Generation phase, users
have to execute the following command:

1http://java.com/en/
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$ hadoop jar silkmr.jar match inputDir ouputDir

The outputDir in this execution is the directory, where the generated links will be
written to.

Link Specification Example

<?xml version="1.0" encoding="utf-8" ?>
<Silk>

<Prefixes>
<Prefix namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" id="rdf"></Prefix>
<Prefix namespace="http://dbpedia.org/resource/" id="dbpedia"></Prefix>
<Prefix namespace="http://www.w3.org/2002/07/owl#" id="owl"></Prefix>
<Prefix namespace="http://schema.org/" id="schema"></Prefix>
<Prefix namespace="http://www.w3.org/2000/01/rdf-schema#" id="rdfs"></Prefix>
<Prefix namespace="http://dbpedia.org/ontology/" id="dbpediaowl"></Prefix>
<Prefix namespace="http://localhost:8080/natura/ontology#" id="natura"></Prefix>
<Prefix namespace="http://localhost:8080/tf/ontology#" id="talkingfields"></Prefix>
<Prefix namespace="http://www.opengis.net/ont/geosparql#" id="geo"></Prefix>

</Prefixes>

<DataSources>
<DataSource type="sparqlEndpoint" id="talkingfields">

<Param name="pageSize" value="1000"></Param>
<Param name="pauseTime" value="0"></Param>
<Param name="retryCount" value="3"></Param>
<Param name="retryPause" value="1000"></Param>
<Param name="endpointURI" value="http://localhost:8080/tf/Query"></Param>

</DataSource>
</DataSources>
<Blocking />
<Interlinks>

<Interlink id="talkingfields-natura">

<LinkType>geo:sfIntersects</LinkType>

<SourceDataset dataSource="talkingfields" var="s">
<RestrictTo> ?s rdf:type talkingfields:Field </RestrictTo>

</SourceDataset>

<TargetDataset dataSource="talkingfields" var="t">
<RestrictTo> ?t rdf:type natura:Natura2000Area </RestrictTo>

</TargetDataset>

<LinkageRule>
<Compare metric="IntersectsCheck" indexing="true">

<TransformInput function="GeometryTransformer">
<Input path="?s/geo:hasGeometry/geo:asWKT" />

</TransformInput>

<TransformInput function="GeometryTransformer">
<Input path="?t/geo:hasGeometry/geo:asWKT" />
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</TransformInput>
</Compare>

</LinkageRule>
<Filter />
<Outputs>

<Output type="file">
<Param name="file" value="TalkingfieldsNaturaLinks.nt" />
<Param name="format" value="ntriples" />

</Output>
</Outputs>

</Interlink>
</Interlinks>

</Silk>
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