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Abstract

The purpose of this thesis is to introduce three important notions of Complex-
ity, Cryptography and generally Pseudorandomness. We survey the notions
of Expander Graphs, Randomness Extractors and List Decodable Error Cor-
recting Codes. The former are graphs that on the one hand are very sparse,
namely they do not have many edges, yet on the other hand are very well
connected. Randomness Extractors are function that take as input a string
of imperfect randomness and output a (close to) uniformly random string.
List Decodable Error Correcting Codes have seemingly little relevance with
Pseudorandomness. They try to solve the problem of communication over
a network that introduces higher noise than can be tolerated by simple Er-
ror Correcting Codes. The decoding procedure does not uniquely decode a
codeword, but rather gives a list that includes the original message.

All three objects have their own body of research, each one with seemingly
irrelevant techniques. However, it can be shown that they can be expressed
in terms of the other. That is, Expander Graphs and Randomness Extractors
can be expressed in the language of List Decodable Error Correcting Codes.
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Chapter 1

Introduction

Pseudorandomness plays an extremely important role in the theory of Com-
putational Complexity and Cryptography. Randomized algorithms, namely
algorithms which expects as input a random string, are expected to have the
desired output with large probability over this random string. In many cases
however, the question is if we can derandomize these algorithms and make
them deterministic. The first step towards achieving that, is to reduce the
length of the random string as much as possible. On the other hand, ran-
domness is essential for Cryptography, without which Privacy and secrecy
are impossible. However, quality randomness is sometimes expensive and
difficult to be produced. To this end, reducing the amount of required per-
fect randomness is crucial. The field of Pseudorandomness focuses exactly
on this goal, to use a small amount of truly random bits and produce a larger
amount of bits, which behave almost as well as if they were truly random.

In this thesis we survey two important pseudorandom objects, i.e., Ex-
pander Graphs and Randomness Extractors together with List Decodable
Error Correcting Codes. The motivation of the latter, had initially little to
do with Pseudorandomness, however, there appears to be a surprising con-
nection between the former two and List Decodable Error Correcting Codes.
In particular, each such object can be described in the language of the other.
Indeed, this connection has facilitated the construction of one object, based
on previous constructions of the others.

For each case, we will survey important constructions. In the following
we describe each aforementioned object and mention what is included in the
main body of this thesis.
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1.1 Expander Graphs

Expanders are graphs that satisfy two properties which seam contradictive.
The first property, is that they are sparse, namely they have a small number
of edges (linear in the number of nodes). The other property is that they are
well connected. There are three ways to define the latter. The first, which is
called vertex expansion captures that starting from an arbitrary node, we can
reach any other node in only a few steps. Put it differently the diagonal of
such graph is small, logarithmic in the number of nodes. The second is called
spectral expansion and captures that a random walk mixes very quickly. The
third is called edge expansion and requires that the number of outgoing edges
of any set of nodes to nodes outside this set is large.

Expander graphs were first used for fault tolerant network design. How-
ever, they have numerous applications in Theoretical Computer Science.
Here we first show that such graphs do exist. More specifically, a random
regular graph is a good vertex expander with high probability. Then we give
the definition of a bipartite expander graph and show again via the proba-
bilistic method that a random regular bipartite graph has good expansion
with good probability. Then we formally define spectral expansion and show
the connection among the three expansion notions. That is, a graph that
has good expansion with respect to one notion, also has good expansion with
respect to the other notions. Then we present three explicit constructions of
expander graphs. The first two are given by Margulis and Lubotsky-Phillips-
Sarnak and the third one is the so called Zig-Zag Construction. The proof
of the first two relies on Fourier Analysis and deep number theoretic theo-
rems dealing with Ramanujan Graphs and therefore are omitted. The last
construction is purely combinatorial and we present a proof.

1.2 Randomness Extractors

A Randomness Extractor ideally takes as input imperfectly random bits and
outputs a shorter string that is uniformly random. It is easy to show that
it is impossible to have a construction that for any even slightly imperfectly
random string outputs a random string (even when we relax the requirement
and require an output of close to random string). However, if the extractor
is allowed to expect as input a (preferably) small random string (called seed
from now on), then we can bypass this impossibility result. Randomness
extractors are extremely important both in Computational Complexity and
in Cryptography. For the former, we ideally want an extractor that has a
seed of minimum length. For cryptography, extractors are important because
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they can guarantee privacy even in the presence of an adversary who can
read some random bits used by honest parties. Here we first show via the
probabilistic method that a random function with logarithmic seed length
is a good extractor. Then, we show an explicit construction that achieves
extraction with a squared logarithmic long seed.

1.3 List Decodable Error Correcting Codes

Error Correcting Codes have been developed to solve the problem of com-
munication over a noisy network. In particular suppose that a sender wants
to transmit a message to another party over a network that introduces arbi-
trary and unpredictable errors. An Error Correcting Code guarantees that
if the number of errors introduced is not too large, then the transmitted
encoded message, can be decoded to the original message. However, there
are cases where the noise introduced by the network is so large that perfect
error correction is impossible. However, in order to bypass this impossibility,
we can encode the message in such a way that the decoding outputs a list
of messages, with the guarantee that this list includes original message. In
such a way we can tolerate larger noise by the network.

Here, we first present the well known Reed-Solomon Codes. Then we
present the Berlekamp-Welch decoding algorithm. Then we show the list de-
coding properties of Reed-Solomon Codes. Then we present an improvement
over the list decoding version of Reed Solomon Codes, called the Parvaresh-
Vardy Codes. In the end we show that both Randomness Extractors and Ex-
pander Graphs, two seemingly irrelevant objects, can be expressed in terms
of List Decodable Error Correcting Codes and vice versa.
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Chapter 2

Expander Graphs

2.1 Definitions and Existence

Expander graphs are very important both in computers science and in math-
ematics. They have numerous applications and therefore they are studied a
lot. These graphs have the nice property, that despite being sparse (they do
not have many edges) they are very well connected. But how can we express
this property. Firstly, we can say that every set of nodes has a lot of nodes in
its neighborhood. Another way of expressing well-connectedness is requiring
that between any two complementary sets there are many edges connecting
them, in other words they have a large Min-Cut. We can also require that
random walks converge to uniform distribution very quickly.

We will see general definitions of the first two approaches and see for
what parameters these graphs are considered to be good expander. Then we
will see that these approaches are almost equivalent, that is a good expander
according to one definition is also a good expander according to the other
definitions.

Before defining Expander graphs let us see some useful definitions, which
we will use:

Definition 1. 1. A graph is d-regular, if all its vertices have degree d.

2. The neighborhood N(S) of a set of vertices of a graph G(V,E) is the
set {u|∃v ∈ Ss.t.(u, v) ∈ E}

3. N ′(S) = N(S) \ S

4. e(S, T ) = {(u, v) ∈ S × T |(u, v) ∈ E}
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Vertex Expansion In our definitions we allow multigraphs and vertices
with selfloops. Let us see the first definition of expansion:

Definition 2 (Vertex Expander). A graph G is called (K,A)- Vertex Ex-

pander, if for all sets S of at most K vertices |N(S)| ≥ A|̇S|.

A good expander, as we said, has to be sparse and therefore we would
like that the graph has vertices with constant degree. So a good expander is
a regular graph. Moreover, we would like the parameter K to be a fraction
of the number of vertices of the graph, namely K = Ω(N) and the parameter
A to be as close as possible to D.

Observe that a good expander graph, with A = 1 + Ω(1) has a small
diameter. It is easy to see that its diameter has logarithmic size with respect
to its vertices. Although we have defined good expander graphs we have not
shown even if there exist such graphs. The following theorem can be proven,
[Pin73, Bas81]:

Theorem 1. For all D ≥ 3 and for all sufficiently large even N , if we choose
a random D-regular graph with N vertices, then with probability at least
1/2 it is a (aN,D − 1.01)-vertex expander for some fixed constant a.

Here, we will prove a variant of this theorem using the probabilistic
method. We will show that there exist (1/2N, 1 + c) 3-regular vertex ex-
panders (for some fixed constant c and every sufficiently large N).

Proof. We will take three randomly selected perfect matchings of the com-
plete graph KN (a perfect matching is a set of edges, where no pair of edges
share the same vertex and every vertex of the graph can be found in one of
these edges) and view them as graphs G1, G2 and G3. Then we will merge
these tree graphs in the natural way. The resulting graph is obviously 3-
regular although it may be a multigraph. Then we will prove that this graph
has the desired properties with non zero probability (which proves the exis-
tence of this kind of Expander Graphs.

As we want to take perfect matchings we require the number of vertices
to be even. The probability of the complement event, namely the event that
there is a set V , with at most 1/2N vertices with |N ′(V )| < c|V |, can be
bounded (using the Union Bound ) as follows:∑

V :|V |≤1/2N

Pr[|N ′(V )| < c|V |]

and further as ∑
V :|V |≤1/2N

∑
V ′ : |V ′| = c|V |Pr[N ′(V ) ⊂ |V ′|]

8



We want to count the number of additions in the above formula. The
number of different sets of size i is

(
N
i

)
and given a specific set of i vertices

the number of sets we may take into consideration in the second sum is
(
N−i
ci

)
,

namely all the sets of vertices, which are disjoint with the first set. Due to
symmetry we may fix the sets V, V ′ and take some arbitrary disjoint sets
V0, V

′
0 , say V0 = {1, . . . , i} and V ′′0 = {i, . . . , i+ ci}. Thus we can bound the

previous with
N/2∑
i=1

(
N

i

)(
N − i
ci

)
Pr[N ′(V0) ⊂ |V ′′0 |]

This can also be bounded by

N/2∑
i=1

(
N

i

)(
N − i
ci

)
Pr[N(V0) ⊂ |V ′0 |, ]

where V ′0 = V0 ∪ V ′′0 . So it remains to bound Pr[N(V0) ⊂ |V ′0 |]. That is we
want to bound the probability, with which all vertices in V0 were matched
with vertices in V ′0 in every of the three matchings. This probability in a
single matching is at most

i+ ci− 1

N − 1

i+ ci− 3

N − 2
· · · i+ ci− i+ 1

N − i+ 1
=

i/2∏
j=1

i+ ic− 2j + 1

N − 2j + 1

and doing some math we have

i/2∏
j=1

i+ ic− 2j + 1

N − 2j + 1
<

i/2−1∏
j=0

i+ ic− 2j

N − 2j

=

∏i/2−1
j=0 (i+ ic)/2− j∏i/2−1

j=0 N/2− j

=

(
(i+ic)/2
i/2

)(
N/2
i/2

)
As the matchings were done independently we can take the cube of the

above and have the following bound of the probability we want:

N/2∑
i=1

(
N
i

)(
N−i
ci

)(
(i+ic)/2
i/2

)3(
N/2
i/2

)3
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Now we have to use the approximation of the binomial coefficients, which is(
n
an

)
≈ 2H

2(a)n, where H2(p) = p log 1/p + (1 − p) log 1/(1− p) the Shannon
Entropy of a random biased bit. So if we take the logarithm for some i, we
have

log

(
N
i

)(
N−i
ci

)(
(i+ic)/2
i/2

)3(
N/2
i/2

)3

≈ . . . = −(H(i/N)− 2H(ci/N))N/2 + 3H(1/(1 + c))
i+ ci

2

But for sufficiently small c > 0 and because 2i ≤ N , we have H(i/N) <
c log cH(ci/N) and H( 1

1+c
) ≈ H(c) ≈ c log 1/c, which gives in the summation

N/2∑
i=1

2−(1−c′)H(i/N)N/2+2c′i,

for c′ ≈ c log 1/c. In this form we can see that as c approaches to zero
and N to infinity, the summation approaches to zero, which means that there
is a constant c, such that for all sufficiently large N the probability that a
random 3-regular (multi)graph is a (1/2N, 1+c) vertex expanders is nonzero,
proving thee existence of such graphs.

Another definition, which we will consider in this thesis is the definition of
bipartite vertex expander graphs. In this case we want that the neighborhood
of every set of the left vertices to be large.

Definition 3. A bipartite graph G is called a (K,A)-vertex bipartite ex-
pander graph, if every set S of at most K left vertices has the property
N(S) ≥ A|S|.

There is a similar to the previous theorem about the existence of good
vertex bipartite expander graphs, which is also proven using the probabilistic
method.

Theorem 2. For all D ≥ 3 and for all sufficiently large N , if we choose a
random D-regular on the left bipartite graph with 2N vertices, then with
probability at least 1/2 it is a (aN,D − 2)-vertex expander for some fixed
constant a.

Of course we can prove a similar theorem, which is analogue to what we
proved previously. That is for all constants a < 1 and D > 2, there exists
a constant A such that for every sufficiently large N , if we take a random
D-regular on the left bipartite graph, then with high probability it is an
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(aN,A)-vertex bipartite expander graph. Moreover, we can prove that if

D > H(a)+H(aA)
H(a)−aAH(1/A)

, then a random D-regular graph with N vertices is as

(aN,A) vertex Expander with high probability.

Edge Expansion This measure of Expansion counts the edges which con-
nects two complementary sets of vertices. More formally:

Definition 4. A D-regular graph is called (K, ε)-edge Expander, if for all
sets S of size at most K, |e(S, S)| ≥ ε|S|D.

We can see that there is a connection between Vertex and Edge Expan-
sion. If A > 1, then a (K,A)-vertex D-regular expander graph is also a
(K, (A − 1)/D)-edge expander graph. However, this expansion measure is
also closely related to the next expansion measure.

Spectral Expansion In this definition of Expansion we want to capture
the idea that well connectedness for a graph means that the random walks
in this graph mix very quickly (converge to the stationary distribution very
fast). As we can see in the last section of this chapter, the mixing time
of a regular graph is closely connected with the second eigenvalue of the
normalized matrix.

Definition 5. Let λ2| denote the second biggest absolute eigenvalue of a
regular graph G. G is a λ-Spectral Expander if λ2 ≤ λ.

Quite often these graphs are characterized by the spectral gap γ = 1−λ.
Now we will see that the characterizations spectral expander and vertex
expander are almost equivalent.

Firstly we are going to see that a λ spectral expander is also a vertex
expander, where the smaller the spectral expansion is the better the vertex
expansion is, [Tan84, AM84].

Theorem 3. If G is a λ-spectral expander, then for all a, G is also a
(aN, 1

(1−a)λ2+a
) vertex expander.

To prove this theorem we are going to use the following definitions:

Definition 6. Let the N -dimensional vector π be a probability distribution.

1. CP (π) is the probability that two independent samples taken according
to π are equal, namely CP (π) =

∑
i π

2
i . (CP = collision probability)

2. The support of π is the set of indices of its nonzero entries, namely
Supp(π) = {i|πi > 0}
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The following lemma shows some properties of the above defined items.

Lemma 1. For every N -dimensional vector π, which is a probability distri-
bution we have

1. CP (π) = ||π||2 = ||π − u||2 + 1
N

2. CP (π) ≥ 1
Supp(π)

Proof. 1. The first equality holds because of the definitions. For the sec-
ond we calculate ||π − u||2 =

∑
i(πi − 1/N)2 =

∑
i π

2
i −

∑
i 2πi/N +∑

1/N2 = ||π||2 − 2/N + 1/N . This means ||x||2 = ||π − u||2 + 1
N

2. The second part can be derived from the Cauchy-Schwartz inequality,
namely

1 =
∑
i

πi ≤
√
|Supp(π)|

√∑
i

π2
i

The proof of the main theorem follows.

Proof. From what we have seen in the last section of this chapter we have
that for all probability distributions π, ||πM−u||||π−u|| ≤ λ. Using the fact that
πM is also a probability distribution and using the first part of the previous
lemma we have for every probability distribution π

||πM − u||
||π − u||

=
CP (πM)− 1/N

CP (πM)− 1/N
≤ λ.

Now let S be any set of at most aN vertices and π the uniform probability
over the vertices of S. Now we have that

CP (π) =
1

|S|
and

CP (πM) ≥ 1

|Supp(πM)|
=

1

|N(S)|
because of the second part of the lemma and the fact that Supp(πM) is the
set of all nodes reachable from S in one step. If we substitute in the above
inequality, we have

(
1

N(S)
− 1

N
) ≤ λ2(

1

|S|
− 1

N
)

1

N(S)
≤ λ2(

1

|S|
− 1

N
) +

1

N
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1

N(S)
≤ λ2(

1

|S|
− a

|S|
) +

1

N
because|N(S)| ≥ |S|/a

|N(S)| ≥ |S|
(1− a)λ2 + a

,

which means that G is a (aN, 1
(1−a)λ2+a

) vertex expander. 2

The next theorem shows the other direction. It shows what we can say
about the spectral expansion, when we have the vertex expansion.

Theorem 4. For every δ > 0 and D > 0, there exists a γ > 0 such that if G
is a D-regular (N/2, 1 + δ) vertex expander, then it is also a (1− γ) spectral
expander, with γ = Ω( δ

2

D
).

The next lemma shows that a good expander graph behaves very well
as a random graph. That is if we select two random sets of vertices, then
the number of edges connecting these two sets is very close to the expected
number of edges as if the graph was selected at random, [AC88].

Lemma 2 (Expander Mixing Lemma). If G is a D-regular, λ spectral ex-
pander with N vertices, then for all sets of vertices S, T , we have

| |e(S, T |
ND

− |S| · |T |
N2

| ≤ λ

√
|S| · |T |
N2

Proof. We denote by χS, χ the characteristic vectors of S, T respectively.
Observe that

|e(S, T )| = χS(DM)χ′,

where DM is the matrix of the random walk on G multiplied by D, namely
the adjacency matrix.Each entry of the vector χS(DM) counts the number of
neighbors of the corresponding vertex in the set S. The next multiplication
adds for each vertex in T the number of its neighbors in S, that is the number
of edges between S and T .

As we have seen, the eigenvectors of matrixM spanRN , which means that
the vectors χS, χ can be written as linear combination of u and another vector
orthogonal to u. Let χ⊥S , χ

⊥ denote these orthogonal vectors respectively.
The projection of χS on u is given (as we know from linear algebra) by χSu,
which means that the coefficient of u in the linear decomposition of χS into
u and χ⊥S is given by χSu

||u||2 . However, this coefficient is equal the cardinality
of S. As the same thins hold for T as well, we have

χS = |S|u+ χ⊥S andχT = |T |u+ χ⊥T .

13



Therefore we have

|e(S, T |
ND

=
1

N
(|S|u+ χ⊥S )M(|T |u+ χ⊥T )′

=
1

N
|S||T |uMu′ +

1

N
|S|uMχ⊥

′

T +
1

N
|T |χ⊥SMu′ +

1

N
χ⊥SMχ⊥

′

S

However, since u is an eigenvector we have uM = u, implying that Mu′ = u′

(M is symmetric) and uMχ⊥
′

T = uχ⊥
′

T = 0. Therefore, from the above we
have

|e(S,T )|
ND

= 1
N2 |S||T |+ 1

N
χ⊥SMχ⊥

′
S

= 1
N2 |S||T |+ 1

N
< χ⊥SM,χ⊥

′
S >

≤ 1
N2 |S||T |+ 1

N
||χ⊥SM || · ||χ⊥S || by the Cauchy-Schwartz

≤ 1
N2 |S||T |+ 1

N
λ||χ⊥S || · ||χ⊥S || by definition

≤ 1
N2 |S||T |+ 1

N
λ
√
|S||T |

≤ 1
N2 |S||T |+ λ

√
|S||T |
N2

From the first line we can see that |e(S,T |
ND

≥ 1
N2 |S||T | and therefore we can

conclude

| |e(S, T |
ND

− |S| · |T |
N2

| ≤ λ

√
|S| · |T |
N2

2

In fact the ’converse’ also holds, [BL06]:

Lemma 3 (Converse of Expander Mixing Lemma). If G is a D-regular graph

with the property that for all sets of vertices S, T we have | |e(S,T |
ND
− |S|·|T |

N2 | ≤

θ
√
|S|·|T |
N2 for a fixed θ, then G is a λ spectral expander, with λ = O(θ logD/θ).

This means that λ is the best, up to a logD factor, of what we can have
in the expander mixing lemma. The next theorem shows the connection
between spectral expansion and edge expansion.

Theorem 5. Let G be an (N
2
, ε)-edge expander, with ε the highest possible.

Then
1− λ

2
≤ ε ≤

√
2(1− λ).

We are going to prove the first part:

Proof. For any set of vertices let x be an n-dimensional vector such that

xi =

{
1
|S| if x ∈ S
− 1
|S| if x ∈ S

}

14



Note that u⊥x, since the sum of all entries is 0 and < x, x >= 1
|S| + 1

|S| .

Thus, we have

< Ax, x > =
∑
aijxixj∑

i,j∈S
2
D
xixj +

∑
i,j∈S

2
D
xixj +

∑
i∈S,j∈S

2
D
xixj

2
D|S|2

D|S|−e(S,S
2

+ 2
D|S|2

D|S|−e(S,S
2

− 2e(S,S)

D|S|SS|
( 1
|S| + 1

|S|)(1− e(S, S)( 1
|S| + 1

|S|))

However, since < Ax, x >≤ λ < x, x > we have

1− e(S, S)(
1

|S|
+

1

|S|
) ≤ λ

which implies
e(S, S)

D
≥ (1− λ)|S||S|

|S|+ |S|
≥ (1− λ)|S|

2
,

where the last inequality holds because |S| ≤ N/2.

2.2 Random Walks on Expander Graphs

We know (see the last section of this chapter) that the mixing time of a
random walk on a regular graph is O( logn

1−λ ). This is the number of steps we
have to do in order to end up to an almost uniform vertex. However, in the
case of expanders the spectrum λ is bounded by a constant, therefore the
mixing time in expander graphs is O(log n). This means that after O(log n)
steps the probability with which the random walk ends at vertex v is 1±0.01

N
,

very close to uniform distribution.
However, if we want to choose a random vertex we only require log n

random bits and if we choose a random vertex using a random walk then
we require O(D log n) and if D is constant then the number of random bits
required is optimal up to constant factor. So what do we gain in randomness
using expander graphs? In fact, we will see that not only the last vertex of
the random walk is close to uniform but also the sequence of vertices until
we reach the final vertex turn out to be very close to uniform independent
samples.We will see this property and see how can we use it to reduce the
number of random bits required in randomized algorithms of languages in
RP and BPP.

Theorem 6 (Expander Hitting Property, [Kah95]). Let G be a λ spectral

expander and B a set of its vertices, with density µ = |B|
|V | . Let (V1, . . . , Vt) be

the sequence of the vertices visited during a random walk of t steps starting
at V1 selected uniformly at random. Then the probability that the random
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walk never visited a vertex outside of B is

Pr[V1, . . . , Vt ∈ B] ≤ (µ+ λ(1− µ))t

Before we prove this theorem let us see some tools we are going to use.

Definition 7. For any N ×N matrix M its norm is defined to be

||M || = max
x∈RN

||xM ||
||x||

.

Lemma 4. If M is symmetric then ||M || = |λ1|, where λ1 its largest eigen-
value. If M is the normalized vector of the random walk on a graph then its
norm equals 1.

The proof of this lemma is very much alike with a proof concerning the
second largest eigenvalue given in the last section of this chapter. The next
lemma shows a general way of matrix decomposition.

Lemma 5. For every normalized matrix M with spectral expansion λ and
every vector v, there exist matrices J,E, such that

vM = v((1− λ)J + λ),

where J is a matrix which projects onto direction u and E has the property
||vE|| ≤ ||v||.

Proof. Every vector v can be written as v|| + v⊥, where v|| is collinear with
u and v⊥ orthogonal to u. Let J be the matrix which projects on u. Since u
is an eigenvector of M , we have

vM = v||M + v⊥M = v|| + v⊥M

= (1− λ)v|| + (λv|| + v⊥M) = (1− λ)vJ + λvE = v((1− λ)J + λE).

We take the norms

||vM || = ||(1− λ)vJ + λvE|| ≤ ||(1− λ)vJ ||+ ||λvE||,

using the triangular inequality. But since J is a projection matrix, we have
that ||vJ || ≤ ||v||. So if we divide above with ||v||, we get

||vM ||
||v||

≤ (1− λ) + λ
||vE||
||v||

.
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This holds for all v and as the second term of the right side is positive we
can take the maximum on both sides. Namely

||M || ≤ (1− λ) + λmax
v

||vE||
||v||

,

but ||M || = 1 as we can seen in the last section of this chapter. Thus,

λ ≤ λmax
v

||vE||
||v||

and the lemma follows.

Let us see now the proof of the theorem:

Proof. Let P be a diagonal matrix such that Pii = 1 iff i ∈ B and Pii = 0
otherwise. This matrix gives us an algebraical way of expressing that the
random walk does not go to a node outside of B. Observe that if a node
is chosen with distribution π, then the probability with which the node is
in B is given by ||πP ||1. This is because the nonzero entries of the vector
πP correspond to the vertices of B and give the probability of being chosen.
Thus if we add all these probabilities we have the probability of choosing a
vertex in B.

Generalizing the above observation we see that the probability that a
random walk does not leave B in any step is given by ||uP (MP )t−1||1. The
factor uP is a vector which assigns the probabilities to the vertices of B of
being chosen in the first step. If multiply by M , the resulting vector assigns
the probability to each vertex of being chosen in the second step, while in the
first step we chose a vertex in B. Multiplying by P , we zero out the vertices
outside of B. So for each consequent step we multiply with MP . The sum
of the resulting vector gives the desired probability.

Since P 2 = P , we can use ||uP (PMP )t||1. Therefore the probability of
never leaving B is

||uP (PMP )t||1 ≤
√
µN ||uP (PMP )t|| by Cauchy-Schwartz

≤
√
µN ||uP || · ||(PMP )||t by definition of matrix norm

≤
√
µN
√

µ
N
· ||PMP ||t

Thus we have to bound ||PMP || and here we are going to use the previous
lemma. We are going to prove that ||PMP || ≤ µ+ λ(1− µ). We have

||PMP || = ||P ((1− λ)J + λ)||
≤ (1− λ)||PJP ||+ λ||PEP || by triangular inequality
≤ (1− λ)||PJP ||+ λ
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The last step follows from the fact that P only erases some entries of a
vector and therefore never increases the norm of the vector and the previous
lemma. It remains to show that ||PJP || ≤ µ. We want to bound ||xPJP ||.
Let y = xP , we saw that ||y|| ≤ ||x||. As we said J is the matrix, which
projects a vector on u. That is yJ = <y,u>

||u||2 u and because B has µN vertices

yJ =
∑
i

yiu

and

||yJP || = ||
∑
i

yiuP || ≤
√
µN ||y||

√
µ

N
≤ µ||x||.

Now, if we substitute

||uP (PMP )t−1||1 ≤ µ(µ+ λ(1− λ))t−1 ≤ (µ+ λ(1− λ))t

The above theorem suggests that we can use expander graphs for error
reduction in RP algorithms without using too many random bits. An al-
gorithm is in RP if for any input which does not belong to the language
never accepts, but for an input which does belong to the language there is
a probability, say 1/2, over the random bits chosen, with which it errs. If
the number of random bits required is m then if we want to reduce the er-
ror probability to 2−k, we can repeat the algorithm k times and each time
we choose fresh random bits. That is we have to choose km random bits.
However, if we have a D-regular expander graph, with 2m vertices, we can
choose at random the first vertex, using m random bits and then performing
O(k) steps of the random walk, where each steps requires logD random bits.
The random bits we are going to use in each repetition of the algorithm are
given by the vertices of the random walk. The above theorem says that if λ
is small enough there exists a constant c such that ck steps are enough to
reduce the error to 2−k. The set B is the set with the bad choices. The next
theorem shows that we can also use expander graphs in BPP algorithms to
reduce the error probability, [Gil98, Hea08].

Theorem 7. Let G be a λ spectral expander with N vertices and f : [N ]→
[0, 1]. If V1, . . . , Vt is the sequence of a random walk on G with V1 chosen
uniformly at random, then for every ε > 0

Pr[|1
t

∑
i

Vi − E[f ]| > λ+ ε] ≤ 2e−Ω(ε2t).
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Proof. We are going to apply a Chernoff bound to prove this result. Let
Xi = f(Vi) and X =

∑
iXi. Like in the classic Chernoff Bounds we are

going to bound the probability with which erX =
∏

i e
rXi is larger than

erE[X] and use Markov’s inequality for a suitable choice of r. The problem
here is that Xi’s are not independent and therefore it is difficult to compute
E[erX ].

Let P be a diagonal matrix with Pii = erf(i). Now using the same ideas
as in the previous proof, we have

E[erX ] = |uP (MP )t−1|1 = |u(MP )t|1 =
√
N ||u|| · ||MP ||t = ||MP ||t

For the first equality the arguments are very similar to those in the previous
proof. The second equality simply exploits the fact that u is an eigenvector
of M . The first inequality holds because of the Cauchy-Schwartz inequal-
ity and the definition of the norm of a matrix. Now we apply the matrix
decomposition we saw in the previous lemma

||MP || = (1− λ)||JP ||+ λ||EP ||.

Now we are going to bound the two norms on the right side. However, J is
just a projection on u, reducing the norm of the projected vector. Therefore,

||JP ||2 ≤ ||uP ||2
||u||2

=
∑
i(e

rf(i)/N)2

1/N

= 1
N

(
∑

i(e
2rf(i))

≤ 1 + 2rE[f ] +O(r2)

for r ≤ 1 by the Taylor expansion. Therefore,

||JP || ≤ 1 + rE[f ] +O(r2).

For the other norm we have ||EP || ≤ ||P ||, because ||E|| ≤ 1, and as all the
entries of the diagonal of P are 1 or er

||vEP ||
||v||

≤ ||vP ||
||v||

≤ er||v||
||v||

= er = 1 + r +O(r2).

If we substitute in the decomposition we have

||MP || ≤ (1−λ)(1+2rE[f ]+O(r2))+λ(1+r+O(r2)) = 1+(λ+E[f ])r+O(r2)

and therefore

E[erX ] ≤ (1 + (λ+ E[f ])r +O(r2))t ≤ e([f ]+λ)rt+O(r2t)
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and if we set r = ε
c

for large enough c and apply Markov’s inequality

Pr[X ≥ ([f ] + λ+ ε)t] ≤ e−Ω(ε2t).

In the case of a BPP algorithm, we want to compute the mean value of
the algorithm, namely f is the algorithm. As we can see λ has to be quite
small to be able to use the random walk on the expander graph. If ε is a
constant then the number of steps of the random walk are O(k) to reduce
the error to 2k and thus the number of the random bits is again m+O(k).

2.3 Constructions of Expander Graphs

We have seen that expander graphs do exist, but the proof was non construc-
tive. So the next natural problem, which arises is how to construct a family
of good expander graphs explicitly. When we say explicitly we mean that
the construction must have the following properties:

1. The graph can be constructed in O(Nk) time, where N the number of
vertices and k a constant.

2. The i-th neighbor of any vertex can be computed in time polynomial
with respect to logN and logD.

3. Given vertices v, w, we can decide whether they are adjacent or not in
polynomial time with respect to logN .

The first two constructions are based on deep number theoretic theo-
rems and the proofs of their expansion properties are omitted. The third
construction is the so called zig-zag construction.

2.3.1 Margulis’ construction

These graphs are bipartite. Let [M ] be the set of integers between 1 and
M . The set of vertices is V = [M ]2 ∪ [M ]2 and the vertex (x, y) of the left
side is connected with the vertices (x, y), (x, x + y), (x, x + y + 1), (x + y, y)
and (x + y + 1, y) of the right side, where the arithmetic is done mod M .
It can be proven that this is a 5-regular expander graph and the expansion
property is proven using Fourier Analysis, [Mar73].
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2.3.2 Lubotsky-Phillips-Sarnak construction

Fix two distinct primes p, q such that q ≡ 1 (mod 4) and p ≡ 1 (mod q).
The vertices of the graph are the elements of GF (q)∪ {∞} and two vertices
z, z′ are connected with an edge if

z′ =
(a0 + ia1)z + (a2 + ia3)

(−a2 + ia3)z + (a0 − ia1

,

for all a0, a1, a2, a3 ∈ N such that a2
0 + a2

1 + a2
2 + a2

3 = p, with a0 > 0
and a1, a2, a3 and i2 = −1 mod q. As the number of integral solutions of
a2

0 + a2
1 + a2

2 + a2
3 = p is p + 1, the graph has degree D = p + 1 and can be

proven that the spectral expansion is at most λ ≤ 2
√
d− 1/D. The proof

of the spectral expansion of these graphs is based on deep number theoretic
results dealing with the Ramanujan Conjecture, [Lub94].

2.3.3 Zig-zag Construction

This construction, [RVW01, RTV06, RV05], uses a simple combinatorial
product. This product is called Zig-zag product and combines in some way
two graphs.

Zig-zag product Let G be a (N1, D1, λ1) expander graph. Each vertex has
D1 neighbors and assigns to each vertex a number between 1 and D1. Now
each vertex is going to be replaced by another graph H with D1 vertices. The
i-th vertex of graph H is connected with the i-th neighbor of the replaced
vertex of G. Graph H is a (D1, D2, λ2) expander graph. The resulting graph
has N1D1 vertices, is D2 regular, each vertex assigns a number between 1
and D2 to its neighbors and is denoted by G � H. However, this is not the
graph of the Zig-zag product. None of these edges is going to be used, but
they will help us to understand how the vertices of the Zig-zag product are
going to be connected. Therefore, from now on we will call the edges, which
are going to be removed in the end, pseudoedges. Every vertex in G � H
is denoted by (u, i) in a natural way, namely it is the i-th vertex of graph
H, which H replaced vertex u of graph G. This vertex is going to have D2

2

neighbors in the resulting graph and each neighbor is going to be assigned a
pair (a, b) ∈ D2 ×D2. To find the neighbor (a, b) of vertex (u, i) we proceed
as follows: take the a-th pseudoedge of i in H, which connects i, say, with i′,
this is vertex (u, i′) in G � H. Vertex (u, i′) is connected via a pseudoedge,
say, with a vertex (v, j), with u 6= v. Now take the b-th pseudoedge of j′ in
H, which is, say, j, this is vertex (v, j) and is the neighbor (a, b) of vertex
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(u, i) in the resulting graph. The resulting graph is denoted by GsH. More
formally,

Definition 8 (Zig-zag Product). Let G be a D1 regular graph with N1

vertices and G2 a D2 graph with D1 vertices. The graph GsH is called
Zig-zag product and its vertices are (u, i), with u ∈ V (G) and i ∈ V (H).
The (a, b)-neighbor of (u, i) is (v, j) and is computed as follows:

1. Let i′ be the a-th neighbor of i in H.

2. Let v be the i′-th neighbor of u in G

3. Let j′ be such that u is the j′-th neighbor of v in G.

4. Let j be the b-th neighbor of j′ in H.

The next theorem shows the expanding property of the Zig-zag product.

Theorem 8. Let G be a (N1, D1, λ1 = 1 − γ1) expander graph and H a
(D1, D2, λ2 = 1 − γ2) expander graph. GsH is a (N1D1, D

2
2, λ = 1 − γ1γ

2
2)

expander graph.

Proof. We want to construct the random walk matrix M of GsH. As we
can see, choosing the next step starting from a node (u, i) consists of three
steps. Firstly, we choose a random neighbor of i in H, then we go to vertex v
of G (this step is compulsory, we do not have the option to choose at random)
and, finally, we choose a random neighbor in H from a specified vertex of H.
Therefore, we can write the matrix M as a product of three matrices, the
two of which are identical. If B is the matrix of the random walk in H then
the matrix we are looking is B̃ = IN1 ⊗B. That is because from vertex (u, i)
we have to stay in u but take a neighbor of i. The matrix which corresponds
to the second step has to be a permutation, because here we do not have the
ability to choose. From vertex (u, i) we go to vertex (v, j) iff v is the i-th
neighbor of u and u is the j-th neighbor of v (in G). Thus Â(u,i),(v,j) = 1 iff
the above condition holds else zero. As the third step is the same as the first,
we have M = B̃ÂB̃.

Now we can apply the Matrix Decomposition we used before. Namely,
B = γ2J + (1− γ2)E. Applying the tensoring we have B̃ = γ2J̃ + (1− γ2)Ẽ,
with J̃ = IN1 ⊗ J and for Ẽ analogously. So we have

M = (γ2J̃ + (1− γ2)Ẽ)Â(γ2J̃ + (1− γ2)Ẽ),

which gives

M = γ2
2 J̃ÂJ̃ + (1− γ2)(γ2J̃ Ẫ+ γ2ẼÂJ̃ + (1− γ2)ẼÂẼ)
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However, since J is a projection matrix ||xJ || ≤ ||x||, Â a permutation
||xÂ|| = ||x|| and by matrix decomposition ||xE|| ≤ ||x||, we can see that
e.g.

||xEÂJ ||
||x||

≤ ||xEÂJ ||
||xE||

≤ ||xEÂJ ||
||xEÂ||

≤ ||xEÂ||
||xEÂ||

= 1.

Therefore, we have

||γ2J̃ Ẫ+ γ2ẼÂJ̃ + (1− γ2)ẼÂẼ|| ≤ 1 + γ2 using triangular inequality

For the other term we can see that J̃ÂJ̃ = A⊗ J . This is a bit complicated
to explain but take for instance the first line of J̃ . It has entries only in
coordinates corresponding to vertex, say u of G. This line is permuted by Â
and only coordinates which correspond to the neighbors of u have non zero
entry now. After multiplying by J̃ , we have entries in all coordinates which
correspond to neighbors of u and this happens to all the lines of J̃ , which
correspond to vertex u. As the entries in J are 1

D1
we can see the equality of

both sides. Thus, we have for a matrix F , with ||F || ≤ 1 that

M = γ2
2A⊗ J + (1− γ2

2)F.

Thus, we can bound the spectral expansion as follows (assuming x⊥u)

||xM ||
||x|| ≤ γ22 ||xA⊗J ||+(1−γ22)||xF ||

||x||
γ2

2(1− γ1) + (1− γ2
2)

1− γ1γ
2
2

The expander construction In this construction we are going to use
squaring, tensoring and the Zig-zag product we just saw. The construction
gives a family of expander graphs G1, G2 . . .. Let H be a (D8, D, λ) expander
graph. The family of graphs is:

G1 = H2

G2 = H ⊗H
Gt = (Gd t−1

2
e ⊗Gb t−1

2
c)

2sH

Proposition 1. For all t ≥ 0 we have that Gt is a (D8t, D2, λ+O(λ)).

Proof. It is easy to see that Gt has D8t vertices by induction. The base cases
hold and Gt has D8d t−1

2
e+8b t−1

2
cD8 = D8.

23



2.4 Random Walks and algebraic Properties

of Graphs

Let us see the following example. All card games require at least ones that
the players shuffle the cards, to put it in another way to take a random
ordering of the cards. However, there are 52! different orderings so it is not
practical to choose one of them randomly. Therefore, a player takes the deck
and shuffles it. We may assume that the shuffling is done as follows: the
player takes the first card and changes it position at random. In practice if
this is done a few times then the shuffling is almost unpredictably random.
Now this procedure can be viewed as follows: each ordering corresponds to a
vertex and there is a vertex going from one vertex to another if we can yield
the corresponding one ordering from the other in the way described above.
What a player does is that he begins from a specific vertex, then he chooses
one of his neighbors at random and repeats for a few steps. This procedure
is called random walk on a graph and as we can intuitively see it is useful
when we want to choose a random element from a very big sample space.
We can generalize it to every graph by choosing at the beginning a vertex
according to some distribution and then from every vertex choosing one of
its neighbors according to some other distribution. Here we will consider
undirected regular graphs.

For each graph with n nodes, we define a n×n matrix M , called the tran-
sition matrix, which gives the for every vertex i the probability of choosing
vertex j in random walk, that is Mij =’the probability of choosing vertex i
when being at vertex j’. A very common question is according to what dis-
tribution do we have to choose the first vertex such that the random walk on
the graph converges to some stationary distribution and to what distribution
it converges. When we say that a random walk converges to a distribution
π (an n-dimensional vector which assigns a probability to each vertex and
sums up to 1 ) we roughly mean that if we stop the random walk on this
graph according to a beginning distribution π0 and a transition matrix M
after an infinite number of steps, then it stops at vertex i with probability
given by π. It can be proven that if there exists a stationary distribution
π, then it must satisfy π = πM . The intuition is clear, if π is a stationary
distribution, then it should not change if we added an additional step. This
additional step of the random, starting with distribution π is easy seen to be
given by πM .

The adjacency matrix A of a graph G with n nodes, is a n × n matrix
where Aij = 1 iff there is an edge connecting vertices i and j and zero
otherwise. If G is a d-regular graph then its normalized matrix M is defined
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to be its adjacency matrix, where each non zero entry is divided by d. It is
easy to see that the sum of each column or row equals one. This is because
each node has exactly d neighbors, by assumption, and the i’th row has a
non zero entry iff the corresponding node is connected with i, namely d non
zero entries. A non zero entry has value 1/d and as there are d such entries,
the sum is 1. The same holds for columns as the graph is undirected and
consequently matrix A is symmetric.

Now let us take u = ( 1
n
, . . . , 1

n
) and multiply it with M . Then the result

is ( d
dn
, . . . , d

dn
) = ( 1

n
, . . . , 1

n
) = u, which means π = πM . In other words,

if the random has stationary distributions then one of them is the uniform
distribution. In fact this is the only stationary distribution, if G is con-
nected. Viewing the equality π = πM , we can see that π corresponds to an
eigenvector of M with eigenvalue 1.

Lemma 6. The multiplicity of eigenvalue 1 of the normalized matrix M
equals the number of connected components.

Proof. If the graph has a connected component with m < n vertices, then
we can isolate these vertices and because of the same reasons as before this
(sub)graph has an eigenvector ( 1

m
, . . . , 1

m
) with eigenvalue 1. Thus the n-

dimensional vector which has entries 1/m in the coordinates which corre-
spond to the vertices of this connected component is another eigenvector
with eigenvalue 1, adding 1 to the multiplicity of this eigenvalue.

On the other hand suppose that there is another eigenvector with eigen-
value one. Then take the vertex with the biggest value in the (normalized)
eigenvector. We can conclude that all his neighbors (which are d) must have
the same value in the eigenvector, because if one of them had a smaller value
then their sum divided by d would definitely be smaller than the biggest
value. Continuing with the same reasoning we conclude that all the neigh-
bors, of the neighbors, etc, (namely the vertices of the connected component)
must have the same value in the eigenvector. Thus, if the graph is connected
the eigenvector is the one which corresponds to the uniform distribution, it is
not different, contradiction. Continuing this way we can conclude that there
are as many eigenvectors as connecting components, in other words the mul-
tiplicity of the eigenvalue 1 equals the number of connected components.

Furthermore, it can be proven that any such random walk on an undi-
rected, connected graph converges to a stationary distribution. As the vector
of this stationary distribution must be the eigenvector of eigenvalue 1, we con-
clude that no matter which distribution we select to choose the first node,
the random walk will converge to the uniform distribution.
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The next very natural question, which we will consider here, is how fast
does a random walk converge to the stationary distribution. How many steps
of the random walk do we have to perform in order to end up to an almost
uniformly random vertex.

We have to define, what we mean by saying almost uniform. There are
many ways of defining the distance between two distributions. Let π be some
distribution and u = ( 1

n
, . . . , 1

n
) the uniform distribution.

Definition 9. Let v = (v1, . . . , vn) be a vector. Then

||v||1 =
n∑
i=1

|vi|,

||v||2 = ||v|| =

√√√√ n∑
i=1

v2
i ,

||v||∞ = max
i
|vi|

The following lemma gives a connection between these norms:

Lemma 7.
||v||∞ ≤ ||v|| ≤ ||v||1 ≤

√
n||v||

Proof. That ||v||∞ is the smallest norm is clear. The second inequality follows
from the fact that

∑
i v

2
i ≤ (

∑
i vi)

2. The last inequality follows from the
Cauchy-Schwartz inequality.

As distance measure we can use any of these norms, but here we will use
the l2-norm, namely the second of the three above norms. It may not be the
most natural measure, but it is the most convenient as we shall see. What we
want to bound is, if we begin with a probability distribution π and perform
k steps of the random walk, how far will be the distribution of last vertex
from the uniform distribution. More formally, we want to bound ||πMk−u||.

Definition 10. The smallest value such that

||πMk − u|| ≤ 1

2n

is called the Mixing Time

The following quantity gives us a measure of how much does the distance
decrease in every step of the random walk, no matter what initial distribution
we choose.
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Definition 11. For every regular graph G, we define

λ(G) = max
π

||πM − u||
||π − u||

The following lemma shows more clearly, why this definition captures the
quantity we want.

Lemma 8. For every initial distribution π and every k ∈ N we have

||πMk − u|| ≤ λ(G)k||π − u|| ≤ λ(G)k

Proof. From the definition of λ(G), we have that for every initial distribution
π

||πM − u|| ≤ λ(G)||π − u||.

Observe that πMk−1 is also a distribution. Therefore,

||πMk−u|| = ||πMk−1M −u|| =≤ λ(G)||πMk−1−u|| ≤ λ(G)2||πMk−2−u||,

and continuing in the same way

||πMk − u|| ≤ λ(G)k||π − u||.

The last part of the lemma follows from the fact that ||π − u|| ≤ 1. This
holds because we can show that the biggest value of ||π − u|| is when e.g.
π = (π1, . . . , πn) = (1, . . . , 0). Take all πi, with πi > 1/n and observe that
their sum is the same with the sum of all πi < 1/n. Using

∑
i a

2
i ≤ (

∑
i ai)

2

and (n−1)2

n2 + (n−1)
n2 < 1 the lemma (almost) follows.

The following lemma is also useful, which gives an alternative equivalent
definition of λ(G).

Lemma 9.

λ(G) = max
x⊥u

||xM ||
||x||

Proof. Let λ′(G) denote the above value. Observe that if π is a distribution
vector, then x = π − u is orthogonal to u, because the inner product of x
and u is the sum of the coordinates of x multiplied by 1/n and the sum
of the coordinates of x is 0 (it is equal the sum of coordinates of π plus
the sum of the coordinates of u, namely 1-1=0). So if we substitute x in

the above ratio we have ||(π−u)M ||
||π−u|| = ||πM−uM ||

||π−u|| , but we can easily check that

uM = u and consequently we have for all π ||πM−u||||π−u|| ≤ λ′(G), which implies
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λ(G) ≤ λ′(G). On the other hand for every x⊥u, we can find a sufficiently
small a such that π = u + ax is a probability distribution. Note that the
sum of the coordinates of x is zero, therefore the sum of the coordinates of
π is 1 for every a. Thus a is the absolute inverse of the biggest absolute
value of the coordinates of x (if it is bigger than 1, otherwise take 1) divided
by n. Therefore, if we substitute π in the ratio of the previous definition
we have ||πM−u||

||π−u|| = ||(u+ax)M−u||
||(u+ax)−u|| = ||axM+uM−u||

||ax|| and again as uM = u we

have ||axM ||
||ax|| = ||xM ||

||x|| . Namely, for all x⊥u ||xM ||
||x|| = ||πM−u||

||π−u|| ≤ λ(G) and

λ(G) = λ′(G).

Now we want to give an algebraic description of λ(G). We will see how is
this measure connected to the eigenvalues. The following theorem is known
from algebra, which we will not prove here.

Theorem 9. Let M be an n× n symmetric matrix and 1, . . . , k its distinct
eigenvalues. Then the subspaces of Rn, Wi = {x : x is an eigenvector with
eigenvalue i} are orthogonal and span Rn.

When we say that two spaces X, Y are orthogonal, we mean that if x ∈ X
and y ∈ Y , then x⊥y (equivalently their inner product is 0). Furthermore,
Wi span Rn means Rn = W1 + . . . + Wk, namely every point of Rn can be
written as a linear combination of the eigenvectors.

As we discussed before u is an eigenvector of M and π − u is orthogonal
to u for every probability distribution π. Therefore if v2, . . . , vn are the
other eigenvectors of M , π − u can be written as a linear combination of
these eigenvectors, namely there exist constants c2, . . . , cn such that π =
u + c2v2 + . . . + cnvn. Observe that viM = λivi, from the definition of the
eigenvectors, therefore

πMk = u+ λk2v2 + . . .+ λknvn.

The next lemma gives the algebraic characterization of λ(G) we want:

Lemma 10. Let M be the normalized matrix of a graph G. Then if λ2 is
the second largest absolute eigenvalue of M , we have λ(G) = |λ2|.

Proof. We will use the second definition of λ(G). Let v1 = u, v2, . . . , vn be the
eigenvectors of M with eigenvalues λ1, . . . , λn respectively. Then every vector
x which is orthogonal to u (x⊥u) can be written as a linear combination of
the eigenvectors v2, . . . , vn. Let x = c2v2 + . . .+ vn, then
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||xM ||2 = ||λ2c2v2 + . . .+ λncnvn||2
= λ2

2c
2
2||v2||2 + . . .+ λ2

nc
2
n||vn||2 (Pythagorean Theorem)

≤ λ2
2(c2

2||v2||2 + . . .+ c2
n||vn||2) by assumption

= λ2
2(||c2v2 + . . .+ cnvn||2) (Pythagorean Theorem)

= λ2
2||x||2

Moreover, equality is achieved if x = v2. Therefore, λ(G) = maxx⊥u
||xM ||
||x|| =

|λ2|.

Using this lemma we can bound the mixing time of a random walk, as
we know now, that each step of the random walk decrease the l2-distance on
the vertices to the uniform distance by a factor of at least λ = λ2. We want
λk < 1

2n
, namely k = O( logn

log 1
λ

). However, this is roughly O( logn
1−λ ).

Definition 12. The value γ(G) = 1− λ is called Spectral Gap.

As we can see the smaller the second eigenvalue, or equally the bigger the
spectral gap, the shorter the mixing time of the random walk. Now we are
going to give a bound of λ.

Theorem 10. The spectral gap of a non-bipartite, d-regular graph on n
vertices is at least 1

dn2 .

Proof. Here we will prove it only for the case where all eigenvalues are posi-
tive.We have seen in the previous proof that λ = maxx⊥u

||Ax||
||x|| = ||Av2||

||v2|| , where
v2 the eigenvector with eigenvalue λ2.

λ = max
x⊥u,||x||=1

||Ax||

= max
x⊥u,||x||=1

< Ax, x >

= max
x⊥u,||x||=1

1

2d

∑
(i,j)∈E

2xixj

= max
x⊥u,||x||=1

1

2d

∑
(i,j)∈E

(x2
i + x2

j − (xi − xj)2)

= max
x⊥u,||x||=1

1

2d
(
∑

(i,j)∈E

(x2
i + x2

j)−
∑

(i,j)∈E

(xi − xj)2)

= max
x⊥u,||x||=1

1

2d
(2d−

∑
(i,j)∈E

(xi − xj)2) because||x|| = 1

We know that ||x|| = 1, which means that there exists a xi with x2
i ≥ 1

n
and

as it is orthogonal to u there exists at least one xj with different sign to xi.
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In other words there exist i, j with |xi − xj| ≥ 1
sqrtn

. However, there exists a

path from vertex i to j of length at most D (the diameter of the graph). Call
this path i1, i2, . . . , iD = j Thus we can take from the triangular inequality

D−1∑
k=1

|xik − xik+1
| ≥ |xi − xj| ≥

1√
n

Now we have

1− λ = 1
d

∑
(i,j)∈E(xi − xj)2)

≥ 1
d

∑D−1
k=1 |xik − xik+1

|2
≥ 1

dD
(
∑D−1

k=1 |xik − xik+1
|)2

≥ 1
dDn

As the diameter is at most n the result follows.

Now we have a more explicit bound on the mixing time. Combining the
theorems we have proven we get:

Theorem 11. Let G be a d-regular, non bipartite, connected graph with n
vertices. The mixing time of a random walk in it is O(dn2 log n).

Lemma 11. A d-regular graph G is bipartite iff -1 is an eigenvalue of M

Proof. Let G be a bipartite graph. Then we can split its vertices into to
groups of left and right vertices. Then we can take a vector v, which has
entries 1 to the coordinates corresponding to the left vertices and -1 to the
other vertices. It is easy to see that if we multiply this vector with M then
the resulting vector equals −v. This means that -1 is an eigenvalue.

On the other hand let M have an eigenvalue equal -1 and let v be its cor-
responding eigenvector. Then v must have both positive and negative values.
Let us take the smallest negative entry of v. With similar arguments as in
a previous proof we can conclude that all the entries of v which correspond
to the neighbors of this entry must have the same value but with negative
sign. Thus, we can conclude, if we continue in the same way that all vertices,
which have the same sign in v do not share any edge and as there are vertices
with different signs the graph is bipartite.

2.4.1 Squaring and Tensoring

We are going to define two operators on graphs and see what spectral prop-
erties will the resulting graphs have.

30



Definition 13. Let G be a d-regular multi graph with n vertices, A its
adjacency matrix. The square of G is denoted by G2 and its adjacency
matrix is given by A2.

Proposition 2. If γ = 1− λ is the spectral gap of G then γ′ = 1− λ2 is the
spectral gap of G2.

The proof of the above proposition is easy, because the second largest
eigenvalue of A2 is λ2.

Definition 14. Let G1 be a d1-regular multi graph with n1 vertices and G2

a d2-regular multi graph with n2 vertices. Their tensor product, denoted by
G1 ⊗ G2, is a d1d2-regular graph with vertex set V1 × V2, where V1, V2 the
vertex sets of G1, G2 accordingly. The (i1, i2)-th neighbor of vertex (x1, x2)
is (y1, y2), where y1 is the i1-th neighbor of x1 and analogously for y2.

Let U, V be two matrices, then their tensor product is defined to be

U ⊗ V =

u11V u12V · · ·
u21V u22V

...
. . .

 .
We can see that if M1,M2 are the random walk matrices of G1, G2 accordingly
then the random walk matrix of G1 ⊗G2 is M1 ⊗M2. It can be shown that
the eigenvalues of M1 ⊗ M2 are the pairwise products of the eigenvalues
of M1,M2. Consequently, the largest eigenvalue of M1 ⊗ M2 is 1 and the
second largest is max{λ1, λ2}, where λ1, λ2 are the second largest eigenvalues
of M1,M2 accordingly.
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Chapter 3

Randomness Extractors

Randomness Extractors are functions, which take as input sequences of bits
of weak sources, namely sources which produce random but not necessarily
independent bits, and output another sequence of almost unbiased and inde-
pendent bits. The initial motivation was: given such Randomness Extractors
simulate randomized algorithms using weak sources.

The first attempt of obtaining unbiased and independent random bits
from a source which produces independent but biased bits, with unknown
bias, was made by von Neuman in [vN63]. The idea was simple: if the source
outputs 1 with probability p, then we can take every two bits and assign 1
if the outcome is 10 (which happens with probability p(1 − p) ) and assign
0 if the outcome is 01 (which happens with the same probability (1 − p)p).
Intuitively we can see that we cannot obtain as many truly random bits as
the output of the source. This is the price we pay for trying to convert
the bits of a weak source to truly random. In this survey we will see some
constructions, which try to optimize the number of truly random bits and
compare them with respect to some other parameters.

3.1 Definitions

First of all we need to characterize the weak sources in some way. The first
objective is to have a measure, which is general and is also useful for our
purpose. Such a measure is of course Shanon Entropy, however it is not very
convenient. Therefore another measure is used, called MinEntropy, [CG88],
defined below:

Definition 15. Let X be a random variable.

1. Shannon Entropy: Its Shannon Entropy is H(X) = E[log 1
Pr(X=x)

].
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2. Renyi Entropy: Its Renyi Entropy is H2(X) = log [ 1
E[Pr(X=x)]

] =

log 1
CP (X)

3. MinEntropy: Its MinEntropy is H∞(X) = minx log 1
Pr(X=x)

.

4. k-Source: X is a k-Source if H∞(X) ≥ k.

These Entropy measures satisfy

For all X H∞(X) ≤ H2(X) ≤ H(X)

To understand the difference between these measures of entropy note that
while Shanon Entropy roughly gives the number of independent bits we can
extract on average (having many samples of X), the MinEntropy gives the
smallest number of independent bits we can get from any sample. Suppose
we have a source X which outputs with probability 0.99 a sequence of n 1’s
and with probability 0.1 a sequence of n truly random bits (i.e. independent
and unbiased). Then H(X) ≥ 0.01n, while H∞(X) < 1, that is although
in average we can get 0.01n bits in most cases we cannot get not even one
truly random bit. Therefore, the stronger measure of MinEntropy is used.
Here we will focus on general sources, that is sources, for which the only
assumption is their MinEntropy and nothing else. The next definition shows
which sources we take into consideration:

Definition 16. X is called a k-source if H∞ ≥ k.

In other words a k-source is a source for which the most probable outcome
comes with probability at most 2−k, namely for all x, Pr[X = x] ≤ 2−k. The
parameter k typically is

1. k = polylog(n)

2. k = nc for an c ∈ [0, 1]

3. k = δn for a δ ∈ [0, 1]

4. k = n−O(1)

Two examples of k-sources are

1. Bit− fixing sources. These sources have n bits, where k of them are
completely random and independent.

2. Flat k-sources. A uniform distribution on a subset S ⊂ {0, 1}n, with
|S| = 2k
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The next lemma shows that we only have to consider flat k-sources,
[CG88].

Lemma 12. Every k-source X, with 2k ∈ N, is a convex combination of flat
k-sources.

This lemma says that if X is a k-source then we can find random variables
Xi, which are flat k-sources and a probability distribution π on these flat
sources, such that taking a sample from X is the same as if choosing an Xi

according to π and then taking a sample from the chosen Xi.

Proof. Every finite random variable X on N values can be written in the form
of an N dimensional vector, where each coordinate corresponds to a value of
X and the value of the vector in each coordinates is equal the probability,
which corresponds to this value of X. The vectors of all k-sources X have the
properties that X(i) ∈ [0, 1],

∑
iX(i) = 1 and X(i) ≤ 2−k. However, these

conditions are linear, therefore these vectors form a polytope, namely it is
the polytope of the intersection of the hypercube [0, 1]N and the hyperplane∑

iX(i) = 1. This is a convex polytope, therefore any point of this polytope
can be written as a convex combination of the vertices of the polytope. The
vertices of this polytope are exactly the k-flat sources.

Before we formally define Randomness Extractors we have to define what
their objective is. As we said their purpose is to output a sequence which is
almost uniformly random. This means that the statistical difference of the
output and a uniformly random variable of the same length is very small.

Definition 17 (Statistical Difference:). 1. Let X, Y be two random Vari-
ables taking values in S. Their Statistical Difference is defined to be

∆(X, Y ) = 1/2
∑
x∈S

|Pr(X = x)− Pr(Y = x)|

or equivalently (can be shown)

∆(X, Y ) = max
T⊆S
|Pr[X ∈ T ]− Pr[Y ∈ T ]|.

2. Let Un denote the random variable of n uniformly distributed unbiased
bits. If ∆(X,Un) ≤ ε then we say that X is ε-close to uniform.

There is one hurdle in constructing Extractors. One can easily show that
for every boolean function and for every k there is a k-source (of a random
variable with n > k bits) from which it is impossible to extract even a single
random bit.
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Theorem 12. For every function F : {0, 1}n → {0, 1}, there exists an (n−1)-
source X such that F (X) = b for every value of X, where b = 1 or 0.

Proof. Function F has outcome 0 or 1. One of these values, call it b, appears
at least for half of the inputs, namely for at least 2n−1 values. Call this set
A, then if X is a random variable uniformly distributed on A, then X is an
(n− 1)-source for which F (X) = b.

As we want to construct an Extractor, which works for every k-source we
have to allow to the Extractors to take as an additional input a uniformly
distributed variable, called the seed, [NZ96]. Now we are ready to formally
define Randomness Extractors.

Definition 18 ((k, ε)-Extractor:). The function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-Extractor if for every k-source X with n bits, the random
variable Ext(X,U2d is ε-close to U2m . If in addition (U2d , Ext(X,U2d) is
ε-close to U2(m+d) then this Extractor is called (k, ε)-strong Extractor.

3.2 Existence of Extractors

However, for every k-source, if we choose a random function then this func-
tion is a good extractor with high probability. This is shown by the following
theorem:

Theorem 13. For every n,m ∈ N and every k-source X, if we choose a
function F : {0, 1}n → {0, 1}m uniformly at random, with m = k − 2 log 1

ε
−

O(1), then F (X) is ε-close to Um, with probability at least 1 − 2−(ε2), with
K = 2k.

Proof. We are going to use a Chernoff bound and show that the outcome of
a random function cannot differ a lot from the mean value of all functions.
What we want to calculate is the probability with which for every subset S ⊆
[2m], the density of S in [1, 2m] does not differ more than ε from |{x∈X|F (x)∈S}|

2k
.

But the Chernoff bound gives that for each T the above condition holds with
probability at least 1 − 2−(ε2). Applying the union bound for all subsets T ,
which are 22m , this condition does not hold for at least one T , is at most
22m2−(ε2). However, if m = k − 2 log 1

ε
− O(1) this probability is less than

one.

The next theorem is a positive result on extractors and shows that if we
have a small seed, then there exist Extractors, which work for every k-source.
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Theorem 14. For every n, k ∈ N and every ε > 0, there exists a (k, ε)-
Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, with d = log (n− k) + 2 log 1

ε
+

O(1) and m = k + d− 2 log 1
ε
−O(1)

Proof. Using the same method as before we can prove that for any fixed
k-source the probability of failure of a uniformly random function is at most
2−(Dε2), with K = 2k,and D = 2d. This is because if X is a k-source, then
(X,Ud) is a (k + d)-source and m has the appropriate value. Now we are
applying the union bound over all k-sources and show that it is less than one
and thus prove the existence of the Extractor.

The k-sources (flat) are
(
N
K

)
, with N = 2n in total and since

(
N
K

)
≤ (Ne

K
)K ,

we have that the probability we want is at most (Ne
K

)K2−(Dε2). But, if Dε2 ≥
2 log Ne

K
= O(n − k), in other words if d = log (n− k) + 2 log 1

ε
+ O(1), the

above probability is less than 1 and the theorem follows.

In the same way we can prove the existence of strong Extractors, with
the same parameters. Now we are going to construct strong extractors using
pairwise independent hash functions. The parameters of this extractor are
not optimal, but it is the first the step towards constructing good extractors,
[BBR88, HILL99, IZ89].

Theorem 15 (Leftover Hash Lemma). Let H = {h : {0, 1}n 7→ {0, 1}m} be
a family of pairwise independent hash functions with m = k − 2 log 1

ε
. Then

Ext(x, h) = (h, h(x)) is a (k, ε
2
)-strong Extractor.

Proof. The proof is broken into three steps. We will see that the output of
Ext has low collision probability and use this fact to show that the extractor
is close to uniform in the l2 metric. Then we use a general inequality between
l2 and l1 to show that the extractor is close to uniform in statistical distance.

Let X be a fixed k-source in {0, 1}n and H the random variable of a
uniformly random function selected from H.

Let us now compute the collision probability of (H,H(X)). That is we
want to compute the probability that if we take two independent trials from
H,X, call them H,X and H ′, X ′, what is the probability of (H,H(X)) =
(H ′, H ′(X ′)). But this event happens iff H = H ′ and either X = X ′ or
H(X) = H ′(X ′).

CP [(H,H(X))] = CP (H)(CP (X) + Pr[H(X) = H ′(X ′)|X 6= X ′])

But,

CP (H) = Pr[H = H ′] =
1

2d

CP (X) = Pr[X = X ′] ≤ 1

2k
because H∞ ≥ k
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and

Pr[H(X) = H ′(X ′)|X 6= X ′] =
1

2m
because of the pairwise independence.

Therefore,

CP [(H,H(X))] ≤ 1

2d
(

1

2k
+

1

2m
).

Since m = k − 2 log 1
ε
, we have that 2m = ε22k and substituting above

CP [(H,H(X))] ≤ 1 + ε2

2k+d
.

We proceed to the next step and calculate the distance in l2 metric of
(H,H(X)) and Ud+m. That is

||(H,H(X))− Ud+m||2.

But this is equal to CP [(H,H(X))]− CP [Ud+m], because

||(H,H(X))− Ud+m||2 =∑
(a,b)

Pr[(H,H(X)) = (a, b)]2+
∑
x

2−2(d+m)−2·2d+m
∑
(a,b)

Pr[(H,H(X)) = (a, b)].

Since,
∑

(a,b) Pr[(H,H(X)) = (a, b)] = 1 and
∑

x 2−2(d+m) = 2−d−m, the
claim follows. Therefore,

||(H,H(X))− Ud+m||2 ≤
1 + ε2

2k+d
− 1

2k+d
=

ε2

2k+d
.

For the third and final step we use the first definition of statistical distance

∆((H,H(X)), Ud+m) = 1/2|(H,H(X))− Ud+m|1

and the Cauchy-Schwartz inequality according to which

|(H,H(X))− Ud+m|1 ≤
√

2m+d||(H,H(X))− Ud+m||.

Substituting we have that

∆((H,H(X)), Ud+m) ≤
√

2m+d

2

ε

2m+d
=
ε

2
.

This means that Ext(x, h) = (h, h(x)) is a (k, ε
2
)-strong Extractor.
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The use of the Leftover Hash Lemma for extracting has a very big dis-
advantage. As we can see, in order to choose a random function from the
family of the pairwise independent hash functions, requires O(n) random
bits. This means that the seed has length O(n), which is very big compared
to the optimal. An extractor with optimal seed length requires O(log n) ran-
dom bits. However, the output length is n + k − 2 log 1

ε
, which is optimal,

namely we extract all the MinEntropy of the source. This is the reason, why
the Leftover Hash Lemma is so important and therefore it is used in many
constructions.

3.3 Extractor Construction

The construction we will see here is due to [VV85, CG88, Zuc96, NZ96].
Before we proceed to the construction of an Extractor, let us see a general-
ization of k-sources, called Block Sources. These are sources, which can be
split into blocks of k-sources.

Definition 19 (Block Sources). 1. A random variable X = (X1, . . . , Xt)
is called a (k1, . . . kt)-block source, if for every i and every x1, . . . , xi
Xi|X1=x1,...,Xi=xi is a ki source.

2. If k1 = . . . = kt = k, then X is called a t× k-block source.

It is easy to see that a (k1, . . . kt)-block source is also a (k1 + . . . + kt)-
source, by simply adding the MinEntropy of every independent block. The
next lemma shows why block sources are convenient for Extractors. What we
do in the case of a two block source is we use an Extractor for the first block
and then we use the output of the extractor as seed for another extractor
which takes as input the second block.

Lemma 13. Let

1. Exti : {0, 1}ni×{0, 1}di → {0, 1}mi be an (ki, εi)-extractor, for i = 1, 2,
with m1 ≥ d2,

2. Ext′((x1, x2), y1) = (Ext2(x2, y), z), with (y, z) = Ext1(x1, y1),

3. X = (X1, X2) be a (k1, k2)-block source of length {0, 1}n1 × {0, 1}n2 ,

then Ext′(X,Ud1) is (ε1 + ε2)-close to Um1+m2−d2 .

Proof. We will use the triangle inequality. By assumption we know that
(Y, Z,X2) = (Ext1(X1, Ud1), X2) is ε1-close to (Um1−d2 , Ud2 , X2). This means
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that (Ext2(X2, Y ), Z) is also ε1-close to (Ext2(X2, Ud2), Um1−d2). But by as-
sumption again the latter, (Ext2(X2, Ud2), Um1−d2), is ε2-close to (Um2 , Um1−d2).
Since |A− C| ≤ |A−B|+ |B − C| we have that (Ext2(X2, Y ), Z) is ε1 + ε2
close to Um1+m2−d2 .

This lemma can obviously be extended to block sources of more blocks
in the obvious way. The importance of the above lemma is that if we are
interested in extracting Randomness from block sources we can use seed only
for the first block and then use the output of the first extracting for the second
extractor (which takes as input the second block) and continue in the same
way.

The following lemma shows us, how we can see a k-source as a block
source. Let l < k, then if we take the first l bits of a k-source, we can see
that these bits have MinEntropy at most l and the rest bits must have the
remaining k− l MinEntropy. The lemma shows that this happens with high
probability for a random prefix of fixed number of bits.

Lemma 14. Let (W,X) be a jointly distributed random variable of length
n and MinEntropy k. Let W have length at most l, then with probability
at least 1− ε over a random w, X|W=w is a (k − l − log 1

ε
)-source, for every

ε > 0.

As a consequence we have:

Corollary 1. Let X be a random variable of length n and MinEntropy n−∆.
Then, if X = (X1, X2), with Xi with length ni, for i = 1, 2, X is ε-close to a
(n1 −∆, n2 −∆− log 1

ε
)-source.

The next lemma shows that it is useful applying the same extractor, with
different seed, to the same output of a k-source. The motivation is that if
with one application we extract a fraction of the MinEntropy of the source,
then with the second application we extract some fraction of the remaining
MinEntropy of the source. This lemma will be used several times in our
construction.

Lemma 15. Let Ext1 : {0, 1}n×{0, 1}d1 7→ {0, 1}m1 be a (k1, ε1) strong ex-
tractor and Ext2 : {0, 1}n×{0, 1}d2 7→ {0, 1}m2 be a (k2, ε2) strong extractor.
Define Ext : {0, 1}n × {0, 1}d1+d2 7→ {0, 1}m1+m2 by

Ext(x, (y1, y2)) = Ext1(x, y1)||Ext2(x, y2).

Then Ext is a (k, ε1 + ε2) strong Extractor.
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Before we proceed to the Construction of the Extractor we are going to
define the most useful tool, the Condenser. Informally speaking, a Condenser
is a function that takes as input a source of low MinEntropy compared to
its length and outputs a random variable with higher rate MinEntropy over
length. We are not going to prove the existence of such functions now, but
this follows from the next Chapter by using Error Correcting Codes.

Definition 20 (Condenser, [RSW06]). A (k, k′, ε)-condenser is a function
Con : {0, 1}n × {0, 1}d 7→ {0, 1}m , such that for every distribution X of
length n with H∞(X) ≥ k, the distribution Con(X,Ud) is ε -close to a
distribution X ′ with H∞(X ′) ≥ k′.

Note that if m = k′, then the Condenser is actually an Extractor. The
next theorem shows the existence of good Condensers, but as we said will
not be proven now. However, it plays major role in the construction we are
going to see.

Theorem 16. For every a > 0, n ≥ k and ε > 0 there exists an explicit
(k, k+d, ε) Condenser Con : {0, 1}n×{0, 1}d 7→ {0, 1}m, with d = O(log n+
log 1

ε
) and m = (1 + a)k +O(log n

ε
).

Using this theorem we can easily construct an Extractor, which extract
half of the MinEntropy of the source and uses a seed with length an arbitrary
large constant factor smaller than the output length. That is

Lemma 16. For every constant t and integers n ≥ k, there is a (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m, with d = k

t
+O(log n

ε
).

Proof.

Now, we have all the tools we need to construct an explicit extractor
which uses a seed of logarithmic length and extracts any fraction of the
MinEntropy of the source.

For any n, ε we will see by induction on i how to construct an (k, εi)-
extractor for sources with MinEntropy k ≤ 2i8d. Our extractor Ext :
{0, 1}n × {0, 1}d 7→ {0, 1}m will have d = c log n

ε0
and ε0 = ε

nc
.

• For i = 0, namely k ≤ 8d, we can use the previous lemma. If we set
t = 9, then we can have an extractor with seed d = O(log n

ε0
), which

extracts half of the MinEntropy.

• Suppose that we can construct such an extractor for every i < j. We
are going to prove that we can also construct such an extractor for
i = j, namely for sources with MinEntropy k ≤ 2i8d. We apply the
following recursive procedure:
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1. We use the Condenser of the previous theorem to convert the
k-source X to a source that is ε0-close to a k source of length
(1+a)k+O(log n

ε0
) for sufficiently small a, which will be determines

later.

2. The output of the Condenser is split into two equally long halves
X ′ = (X1, X2). As we have seen X ′ is 2ε0-close to a 2 × k′ block
source, with k′ = k− 1

2
((1 + a)k+O(log n

ε0
)) = k

2
− ak

2
−O(log n

ε0
).

3. The selection of a, c must be such that k′ ≥ 2d, since we can
assume that k > 8d.

4. As k′ > 2d we can extract from the first block d bits using the
previous lemma, with t = 16.

5. Using the induction hypothesis we can use these d bits to extract
k′

2
bits from the second block.

To put everything together we have the following theorem:

Theorem 17. For every constant a > 0, all integers n ≥ k and every ε >
0, we can explicitly construct a (k, ε) Extractor Ext : {0, 1}n × {0, 1}d 7→
{0, 1}m, with d = O(log n

ε
) and m = (1− a)k

Moreover if we apply the above extractor several times with different seed
we can extract all the MinEntropy, that is k+ d−O(log 1

ε
). The total times

of extracting will be O(log k) and thus we have:

Theorem 18. For all integers n ≥ k and every ε > 0, we can explicitly
construct a (k, ε) Extractor Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m, with d =
O(log k log n

ε
) and m = k + d−O(log 1

ε
)
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Chapter 4

Error Correcting Codes

The purpose of Error Correcting codes, [Sha48, Ham50] is the secure trans-
mission of a message over a noisy channel. There is a sender who wants to
send a message to a receiver, but the problem is that the channel they want
to use for their communication has a non zero probability of changing the
message. What the sender can do is to add some redundancy to the message,
so that the receiver can use this redundancy to recover the original message.

For instance suppose that there is a binary channel, which flips the bit sent
by the sender with a probability at most p (say 1

8
, surely less than 1

2
). Then

suppose that the sender wants to send a bit. A very easy solution would
be that the sender sends the same message several times and the receiver
computes the majority of the received bits as the original message. Applying
a very simple Chernoff bound, we can see that if the sender sends the bit
n times then with a high probability (1− e−O(n)) the receiver computes the
correct message.

More generally the sender uses a function C : Σk 7→ Σn with n ≥ k to
encode a message x ∈ Σk. The receiver receives a y, which is possibly different
than C(x), because of the noisy channel and uses the decoding function D
to compute x.

Definition 21 (Hamming Distance). The Hamming Distance of two strings
a, b denoted by H(a, b) is the number of different entries of these strings.

For example H(10100, 00110) = 2, because these two strings differ in the
first and the fourth entry. Now let us see the definition of a code.

Definition 22. An [n, k, d]q code is a function C : Σk 7→ Σn such that

1. Σ is the alphabet of the messages, with |Σ| = q.

2. k the Block Length is the length of the messages to be encoded.
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3. n the Information Length is the length of the encoded messages, i.e. the
codewords.

4. For every x, x′ it holds that H(x, x′) ≥ d.

If we make the assumption that the noisy channel corrupts the message
at at most e entries, then the code admits an error correcting function if and
only if the errors are not too many, that is iff for every encoded message
with e corrupted entries there does not exist a different encoded message
with Hamming Distance less or equal than e. Thus we have the following
proposition:

Proposition 3. An [n, k, d]q code is an error correcting code if and only if
d ≥ 2e+ 1.

Of course we want to have explicit Error Correcting Codes, that is Codes,
where the encoding and decoding are made in polynomial time. However, we
are going to talk about such an Error correcting Code later. When construct-
ing Error Correcting Codes we want to optimize the following parameters:

1. Maximize the number of errors the Code is able to correct

2. Minimize the rate of the Information Length over the Block length.

3. Minimize the alphabet size |Σ| = q

4. Minimize the running time of Encoding and Decoding.

The next lemma, called Singleton Bound, shows an impossibility result
regarding k, d and n.

Lemma 17 (Singleton Bound). For every code C, [n, k, d]q, we have that

k ≤ n− d+ 1

Proof. Suppose we project the codewords to the first n− d+ 1 coordinates.
That is we take C ′ : Σk 7→ Σn−d+1 the projection of C : Σk 7→ Σn. Suppose
that C ′ is not injective, namely there exist x, x′, such that C ′(x) = C ′(x′).
Then C(x) and C(x′) can differ at most at d−1 coordinates, a contradiction.
Therefore, C ′ must be an injection and thus k ≤ n− d+ 1.

The next lemma, which uses the probabilistic method, shows that there
exists very good binary codes, [Gil52].
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Lemma 18 (Gilbert Bound). For every d ≤ n
2

there exists an [n, k, d]2 code
such that

k ≥ n(1−H2(
d

n
))− (log n)

Proof. To prove this lemma we are going to see that we can greedily construct
an [n, k, d]2 code with the above property. Let x1, . . . , x2k be an enumeration
of all the the words, which we want to encode. Let C(x1) be the string with
n zeros and then C(xi) is chosen to be the next string, according to the
lexicographic order, such that it has distance at least d from all codewords
C(x1), . . . , C(xi−1). It remains to show that we can always choose such a
codeword.

Suppose that c1, . . . , ci are random codewords. Let c be another codeword
chosen uniformly at random. Then the probability that this codeword has
Hamming distance less than d from cj is

Pr[H(c, cj) < d] =
1

2n

d−1∑
i=0

(
n

i

)
.

However, using the Strirling’s formula we can see that(
n

k

)
= (

√
n

k(n− k)
(
n

k
)k(

n

n− k
)n−k)

and if we take the logarithm

log

(
n

k

)
= nH(

k

n
) + (log n),

where the function H is the binary entropy. Now, if we apply this to the
above probability we have

Pr[H(c, cj) < d] ≤ 1

2n
2nH( k

n
)+(logn),

because d ≤ n
2
. Applying the union bound over all cj, we have

Pr[∃j : H(c, cj) < d] ≤ 1

2n
2k+nH( k

n
)+(logn)

which has to be smaller than 1 and the lemma follows.
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4.1 Reed-Solomon Codes

Now we are going to see a very popular construction of Error Correcting
Codes called Reed-Solomon codes, [RS60]. In this construction we are going
to use some properties of univariate polynomials over a finite field.

Given a prime number q and n ≤ q and k ≤ n, the Reed-Solomon Code
RSq,n,k is constructed as follows:

1. Generate the field Fq.

2. Choose n distinct elements (a1, . . . , an) of Fq.

3. The representation of the message to be encoded is a sequence of k
elements (a1, . . . , an) of Fq.

4. Define the polynomial

C(x) =
k−1∑
i=0

cjx
j.

5. The encoding of the message is the evaluation of C(x) at the n elements
of Fq,

< C(a1), . . . , C(an) >

The reason why n ≤ q must hold is that the elements chosen in the
second step must be all distinct. The properties of the Reed-Solomon Codes
are based on the following algebraic fact:

Theorem 19. Let p1, p2 be two polynomials of Fq[X] of degree at most k−1.
Then there exist at most k − 1 distinct elements a such that p1(a) = p2(a).

We are not going to prove this fact, as it needs many other facts of Alge-
bra, however the same holds for polynomials over the reals, so this theorem
goes along our intuition.

Theorem 20. The Reed-Solomon code RSq,n,k is an [n, k, n− k + 1]q code.

Proof. The first two parameters, Block length and information length, are
easily seen to be true because of the construction described above. For the
third parameter we can see that it is exact. By the Singleton bound we have
that d ≥ n−k+1. On the other hand suppose that we have two polynomials
p1, p2 of degree at most k− 1. Then in a previous theorem we saw that these
polynomials agree on at most k−1 points of Fq and thus disagree on at least
n− k + 1 points of a set of n points. It follows that the Reed-Solomon code
has distance n− k + 1.
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4.2 The Berlekamp-Welch Algorithm

Now we are going to see how we can run an Error Correcting algorithm for
the Reed-Solomon Algorithm, which is efficient, namely it runs in polyno-
mial time, with respect to n, [Pet60, Ber68]. This algorithm is called the
Berlekamp-Welch Algorithm, but is not the fastest known.

Our assumption is that there is a channel which corrupts at most e <
n−k+1

2
symbols of the transmitted message. The block length is k, the mes-

sage length n and the elements of Fq used for the polynomial evaluation are
(a1, . . . , an).

• Input: n elements (y1, . . . , yn) of Fq

• Output: A polynomial p of degree at most k−1 such that for at most
e distinct i p(ai) 6= yi.

1. If there is a polynomial p such that p(ai) = yi then output p

else

2. Find polynomials E(x), N(x) such that

(a) E(x) 6= 0

(b) E(x) has degree at most e and N(x) at most e+ k − 1

(c) N(ai) = E(ai)yi for every i ≤ n.

(d) Output N(x)
E(x)

.

Let I denote the set of the indices of the ”bad” yi, namely I = {i|p(xi) 6=
yi}. If I = ∅ then p can be found efficiently by interpolating. If I 6= ∅ then
we will see that we can compute p in time O(n3).

If we write E(x) =
∑e

i=0 bix
i and N(x) =

∑e+k−1
i=0 cix

i then taking the set
of equations N(ai) = E(ai)yi for every i ≤ n and supposing that there exists
a solution, then this solution can be found using Gauss elimination and in
time O(n3).

Let E(x) =
∏

i∈I(x − ai) and N(x) = E(x)p(x). We observe that E(x)
has degree at most e and N(x) at most e + k − 1 as required. We can see
that the condition N(ai) = E(ai)yi is satisfied for every i ≤ n, because

1. if i ∈ I then E(ai) = 0 and N(ai) = E(ai)p(ai) = 0 and

2. if i 6= I then p(ai) = yi and thus N(ai) = E(ai)p(ai) = E(ai)yi.
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So we can see that there exists a solution. But we have to prove that
if we find a solution then it is the same solution, which means that if N ′(x)

E′(x)

is the solution we found, then N ′(x)
E′(x)

= N(x)
E(x)

, i.e. N ′(x)E(x) = N(x)E ′(x).
However, for all i ≤ n we have

N ′(ai)E(ai) = yiE(ai)E
′(ai) = E(ai)N

′(ai)

and since both N ′(x)E(x) and N(x)E ′(x) have degree at most 2e+ k− 1
and by assumption e < n−k+1

2
we it suffices to check equality at the n points

a1, . . . , an. Thus the algorithm is correct.

4.3 List Decoding

The aspect of Error Correcting Codes, which is interesting for Pseudoran-
domness is List Decoding. The idea is that we would like to be able to decode
in case more corruptions take place during the transmission of the message,
[Eli57, Woz58]. As we have seen we are able to deterministically decode if
the number of corruptions are strictly less than half of the minimum of the
minimum distance between any two codewords. But what if the number of
corruptions are more than this threshold. What we can do is to output a
small list which includes all probable codewords. We also would like this
algorithm (which outputs the list) to run in polynomial time of course. The
problem is the following:

List Decoding

1. Input: A received word c and an error bound e.

2. Output: A list of all codewords c1, . . . , cm, whose hamming distance
from c is at most e.

Definition 23. An [n, k, d]q code is called (e, L)-error correcting if up to e
errors can be corrected with a list of size at most L.

Definition 24. Let LIST (r, ε) = {c|c agrees with r at a fraction of at least ε places }.

The next proposition is the analogue of the proposition for the error
Correcting codes.

Proposition 4. An [n, k, d]q code is an (e, L)-error correcting code iff for
every codeword c, |LIST (c, 1− e

n
)| ≤ L.

The following bound shows when we are sure that an [n, k, d]q Code is
List decodeable with a list of polynomial length, specifically linear, list size
with respect to the Information Length n.
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Theorem 21 (Johnson Bound:). An [n, k, d]q code is an (e, L)-error correct-
ing code provided that

e

n
≤ q − 1

q
(1−

√
1− q

q − 1

d

n
).

If q = 2, ε = e
n
, δ = d

n
then we have

ε ≤ 1

2
(1−

√
1− 2δ)

Proof. We are going to see the proof only for the case q = 2, i.e. of binary
codes.

4.3.1 List Decoding of Reed-Solomon Codes

Now we will see how can we list decode the Reed-Solomon Code in polynomial
time. The following theorem is proven by Sudan, [Sud97, GS99].

Theorem 22. The Reed-Solomon code RSq,n,k is an (e,
√

n
k
)-error correcting

code with a polynomial time decoding algorithm if t > 2
√
kn, where t = n−e.

Proof. • Input: n pair elements (a1, y1), . . . , (an, yn) of F2
q

• Output: A list of all polynomials p of degree at most k− 1, such that
p(ai) = yi for at least t values of i.

The algorithm consists of the following two steps:

1. Find a bivariate polynomial Q(x, y) such that

• Q has degree at most dx − 1 in x and dy − 1 in y.

• Q(ai, yi) = 0 for all i ≤ n.

• Q is not the zero polynomial.

2. Factor Q. For every factor of the form (y − p(x)) output p.

Note that the polynomial Q can be written as

Q(x, y) =
dx−1∑
i=0

∑
j=0

dy − 1cijx
iyj,

which means that Q is defined by its dxdy coefficients. Thus if yi are more
than dxdy, we can always find a non zero solution using Gauss Elimination.

48



This holds because each yi imposes a linear constraint on the coefficients of
Q.

Now, we are going to prove that for every polynomial p with degree at
most k − 1, which satisfies that for at least t distinct ai, it holds p(ai) = yi,
then Q(x, p(x)) = 0. However, Q(x, p(x)) is a univariate polynomial with
degree at most (dx − 1) + (k − 1)(dy − 1). Moreover, for each ai, with
p(ai) = yi, we have that Q(ai, p(ai)) = Q(ai, yi) = 0 by the construction of
Q, and there are at least t such ai by assumption. So, provided that t is
greater than the degree of Q we can argue that Q(x, p(x)) = 0, i.e. it must
hold that t > (dx − 1) + (k − 1)(dy − 1). To conclude, we know that if is a
root of a polynomial in x, then (x− ) divides this polynomial. Therefore, if
we view Q as a polynomial in y then (y − p(x)) must divide Q.

The parameters we have seen that must hold are the following:

1. dxdy > n

2. t > dx + kdy

Our parameters are optimized, while satisfying the above conditions if we
set dx =

√
kn and dy =

√
n
k
. Then t = 2

√
kn and there are at most

√
n
k

polynomials p, which are in the list. The theorem follows.

4.3.2 Parvaresh-Vardy Codes

Now we are going to see an improvement of the previous algorithm proposed
by Parvaresh and Vardy, [PV05]. The main idea is to generalize the previous
algorithm in some way. That is we let the polynomial Q be a multivariate
polynomial, not just bivariate. For example, let Q(x, z1, . . . , zm) be an (m+
1)-variate polynomial such that Q(ai, yi, . . . , yi) = 0 for all i ≤ n. We can
observe that before the degree of the bivariate Q should be roughly

√
q in

each variable, but if there are more variables the degree of each variable must
be roughly q

1
m .

The actual idea of Parvaresh and Vardy is to let Q be an (m+ 1)-variate
polynomial Q(x, z1, . . . , zm) of degree dx in x and dz = h− 1 in each zi, such
that Q(ai, y

h
i , y

h2

i , . . . , y
hm−1

i ) = 0 for all i ≤ n.
The Code is a little changed from the Reed-Solomon codes. The messages

are still viewed as polynomials of degree k − 1 over Fq. The two differences
are:

1. Σ = Fmq
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2. Let f be the message to be encoded, then its encoding is for every ai

[f0(ai), f1(ai), . . . , fm−1(ai)],

with fi(x) = fi(x)h
i

mod E(x), where E(x) is a fixed irreducible poly-
nomial of degree k over Fq.

Let r be the received message. The list decoding algorithm consists of
the following two steps:

1. Find an (m+ 1)-variate polynomial Q(x, z0, . . . , zm−1) such that

• Q has degree at most dx in x and h− 1 in each zi.

• Q(ai, r|i) = 0 for all i ≤ n. (r|i is the ’projection’ of r in the entry
corresponding to ai, which is an (m)-dimensional vector)

• Q is not the zero polynomial.

2. Factor Q∗(z) = Q(x, z, zh, . . . , zh
m−1

) mod E(x). For every factor of
the form (z − p(x)) output p.

Theorem 23. For appropriate parameters of h,m the Parvaresh-Vardy list

decoding algorithm that list-decodes up to distance δ = 1− 2
√

k
n
.

Proof. 1. In order to be able to find such a polynomial the number of
the coefficients of the variables must be greater than the constraints.
Namely, reasoning in the same way as before it must hold that

dxh
m > n.

Moreover we may assume that Q is not divisible by E(x) since we can
divide out all factors of E. Note that this will not affect our conditions
since E is irreducible and thus has no roots.

2. Reasoning in the same way as before we can see that each polynomial f ,
which belongs to the list is a solution ofQ, namelyQ(x, f0(x), . . . , fm−1(x)) =
0. However this is true provided that

t > dx + (h− 1)(k − 1)m.

Now if we take both sides modulo E(x) we have that

Q(x, fh
0

(x), . . . , fh
m−1

(x)) mod E(x) = 0.
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Thus we can define the polynomial

Q∗(x, z, zh, . . . , zm−1) mod E(x)

and argue that each f in the list is a root ofQ∗ over the field Fq[Y ]/E(Y ).
By factoring Q∗ we can take all the polynomials in the list.

The two conditions which must be satisfied are

dxh
m > n

and
t > dx + (h− 1)(k − 1)m.

If we set
dx = t− khm

and

ε >
1

hm
+
khm

q

then both conditions can be satisfied. If we set h = 2 and m = O(log 1
ε
) the

theorem follows.

4.4 Unified View

The next proposition shows, what we mentioned in the introduction, that
both Expander Graphs and Randomness Extractors can be expressed in the
language of List Decodable Error Correcting Codes.

Proposition 5. 1. Let K be a positive integer, then Γ : [N ]× [D] 7→ [M ]
is a (K,A) vertex N ×M bipartite expander if and only if for every set
T ⊂ [D]× [M ] of size at most KA it holds that |LISTΓ(T, 1)| < K.

2. Let Γ = Ext : [N ]× [D] 7→ [M ], K = 2k and 0 ≤ ε ≤ 1.

(a) Let Ext be a (k, ε) extractor. Then for every f : [M ] 7→ [0, 1] it
holds |ListΓ(f, µ(f) + ε)| < K.

(b) If for every T ⊂ [M ] it holds that |ListΓ(T, µ(T ) + ε)| ≤ K, then
Ext is a (k + log(1/ε), 2ε) extractor.

Proof. 1. Suppose that Γ is not a (K,A) expander. This happens iff there
exists set S ⊂ [N ] of size at least K and |N(S)| < KA. The latter
happens iff T ⊂ [M ] with |LIST (T, 1)| ≥ K and |T | < KA.
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2. (a) Suppose that |ListΓ(f, µ(f) + ε)| ≥ K and let X be the uniform
distribution over ListΓ(f, µ(f) + ε). Then X is a k source and
E[f(Ext(X,U[D]))] > µ(f) + ε = E[f(U[M ])] + ε. This contradicts
that Ext is a (k, ε) Extractor.

(b) LetX be a (k+log(1/ε))-source and T ⊂ [M ]. Then Pr[Ext(X,U[D]) ∈
T ] ≤ Pr[X ∈ LIST (T, µ(T ) + ε)] + Pr[Ext(X,U[D]) ∈ T |X /∈
LIST (T, µ(T ) + ε)]. However, the latter can be upper bounded
by |LIST (T, µ(T ) + ε)|2−k−log(1/ε) + µ(T ) + ε = µ(T ) + 2ε.
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