NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM
"COMPUTER SYSTEMS TECHNOLOGY™"

MASTER’S THESIS

Managing OpenCL Services using Docker Containers

Pavlos Vinieratos

Supervisors: Alex Delis, Professor

ATHENS

MARCH 2016

EONIKO KAI KATMOAIZTPIAKO MNMANEMNIZTHMIO AOGHNQN

2XOAH OETIKQN ENMIZTHMQON
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNIQON

NMPOrPAMMA METANTYXIAKQN ZINMOYAQN
"TEXNOAOTIA ZYZTHMATQN YIMOAOTIZTQN"

AINAQMATIKH EPTAZIA

Alaxeipion Ymrnpeoiwv OpenCL xpnoipotroiwvrag Docker
Containers

MauAog Biviepdrog

EmBAéTTWYV: AAEENG AgAng, Kabnyntig

AOHNA

MAPTIOZ 2016

SUPERVISOR:

MASTER’S THESIS

Managing OpenCL Services using Docker Containers

Pavlos G. Vinieratos
A.M.: M1123

Alex Delis, Professor

MARCH 2016

AINAQMATIKH EPTAZIA

Alaxeipion Ymrnpeoiwv OpenCL xpnoipotroiwvtag Docker Containers

MauvAog I'. BiviepdTog
A.M.: M1123

ENIBAENQN: AAEENG AgAng, Kabnyntig

MapTiog 2016

ABSTRACT

Despite the proliferation of general-purpose computing facilities in the form of server
farms running on virtualized infrastructures, engineers and designers often find
themselves at disadvantage when it comes to efficiently executing their CPU-intensive
or renderings tasks. The wide-spread use of GPUs does offer help especially under the
OpenCL framework that allows for the synthesis of programs able to run on
heterogeneous platforms consisting of CPUs, GPUs, FPGAs and other specialized
hardware. The use of Docker can certainly ease the transition of running jobs from a
local machine to available clusters. Therefore, enabling OpenCL in Docker containers
that can run on GPU-equipped server farms would undoubtedly offer a significant
advantage for a wide range of clients. One key problem with setting up OpenCL in such
an environment is that individual GPU/hardware makers provide their own
implementation. In this paper, we propose an approach that can safely support GPU-
accelerated OpenCL computing inside the Docker containers used by clients. The
overall objective is to enable clients transparently use OpenCL in their Docker
containers. We offer a management tool that a server operator can use to effectively
schedule and log the GPU-enabled containers. Using our proposal, the operator can
setup the GPU and OpenCL implementations once and is subsequently capable of
facilitating service to jobs requiring GPU-computing. Clients will be able to run their
containers without imposing for specific scheduling requirements and without worrying
about installing OpenCL implementation drivers.

SUBJECT AREA: Cloud Computing

KEYWORDS: Docker, OpenCL, heterogeneous computing

NEPIAHWYH

2NpeEPa, n xpAon server farms yia ektéAeon virtualized e@apuoywyv gival og avonorn. O
KaBévag utropei va voikidoel €va instance oe éva server farm, pe TTEPICOOTEPOUG
TTOPOUG ATTO TOV TTPOCWTTIKO TOUG UTTOAOYIOTH, yia TTapddelyua, HEYOAUTEPO €UPOG
wvng yia va utrooTnpigel Tn @iAogevia evog dikTuakou TOTTOU. MnxaviKoi, ETTIOTANOVEG
Kal oI oXedIOOTEG PTTOPOUV va eKUETAAAEUTOUV TETOla instances yia TTo aTTodOTIKN
ektéAeon CPU-intensive 11 GPU-intensive e@appoywv. H eupegia xprion Kaptwv
YPOQIKWY PBonbd apketd, alotroiwvTiag 1o framework OpenCL, TTou €mTpETTEl TO
compilation kai TNV €KTEAECN TTPOYPANPATWY O E€TEPOYEVEG UMIOUIKO, ATTOTEAOUPEVO
amé CPU, GPU, FPGA kal aAAo specialized hardware. H xprion Tou Docker ptropei va
OIEUKOAUVEI TN METARBAON TNG EKTEAEONG EQPAPPOYWV OTTO TTPOCWTTIKO UTTOAOYIOTH O€
server farm. Emmouévwg, n duvardotnta ektéAeong OpenCL péoa oe Docker containers
TTou Tpéxouv o GPU-equipped server farms 6a Tpoo@épel avau@ifoAa éva onuavTiko
TTAEOVEKTNUA YIa €va eupU @Aacua TTeAatwy. ‘Eva Bacikd eutrddio otn dieukdAuvan auTh,
gival o1l N KABe eTaIpia TTApPAYWYAS KAPTWV ypa@IKwy TTpoo@épel To dIkO TG OpenCL
implementation. Ztnv €pyacia auTr}, TTPOTEIVOUUE MIO TTPOCEYYION TIOU MTTOPEI va
utrooTnpi¢el GPU-accelerated OpenCL computing péoa oe Docker containers TTou
xpnoigotrolouvTal atmd Ttoug TeAdTeg evog server farm. O Baocikdég oTdX0G €ival va
eMTPEYOUPE OTOUG TTEAATEG va Xpnolyotroiouv OpenCL o€ Docker containers.
Mpoo@époupe €va gpyaleio dlaxeipiong TTou €vag dlaxelpIoTAG server farm utropei va
XPNOIUOTTOINCEI, VIO QTTOTEAEOUATIKO TIPOYPAMMATIONO Kai KaTaypaer Twv GPU-
enabled containers. Xpnoigotmolwvtag Tnv TTPOTACH HOG, O OIAXEIPIOTAG WTTOPEI va
puBuioel Tnv kapTa ypagikwy kai To OpenCL implementation pia @opd, Kai 0Tn CuvEXEIa
va OleukoAuvBei n xprion containers yia e@apuoyég tou atraitouv GPU yia tnv
atmmoteAeopaTikn ekTéAeor] Toug. O1 TTeAdTeG Ba eival o Béon va TpEgouv Ta containers
TOUG, XWPIG €I0IKES ATTAITACEIC OTOV TTPOYPAUMATIONO TOUG KAl XWPIG TNV €yKaTtaoTaon
drivers kai OpenCL implementations.

OEMATIKH MNMEPIOXH: Cloud Computing

AEZEIZ KAEIAIA: Docker, OpenCL, etepoyevég UNIOUIKO

CONTENTS

1. INTRODUCTION ..cooiisimsmssssmsmssssmssssssssssssssssssssssss s s s ssssssssssssssssssssssssasssssssssnsasassnsassssnsasssnanans 9
2. RELATED WORK ... s sssssssss s sassssssssssssssssssassssssassnnns 10
3. MOTIVATION ..o s s ss s s ss s sssa s sassssnsassnsnsassnsasassnnasas 11
4. POSSIBLE SOLUTIONS AND COMPARISON.cccomnmmmmmmmmmmmssmss s ssssssssssssssssssssssnas 13
4.1 1Y T 1 11 1= PPN 13
4.2 ViIrtU@l GPUS ..cciiiiiiiiiiiiiiiiiniiinieieeeetttissseessisssssstreeeee e e e sessssssssssssssssssreeeeeeessessssssssssssssssssrsseeeeesssssssses 15
4.3 Managed Containers with Attached GPUccccviiiiiiimmmmtnniiiiiiiieeereeseececessssssesssssssssnes 15
5. SYSTEM DESIGN AND IMPLEMENTATION.......cconnmmmmmmsssssssssssssssssssssssssssssssssssans 18
6. EVALUATION.....ccosrnmssnnssssmns s s s s s s s ss s s ssss s sas s s sassssasassnsas s snsas s nnns 20
7. FUTURE WORK.....oivsiinsnmnnssmn s s s ssss s ssssssssssassssssassnsssassnnasas 21
L S 010\ 00 110 0 22
ABBREVIATIONS — ACRONYMS.....ccimmmmmmmmmmmssms s s s sssssssssssssssssassnsssassnsasas 23

REFERENCES....... o s s ss s s s sasss s sassssn s sssassssasassnnnns 24

LIST OF IMAGES

Figure 1: One master container per GPU..........ccooooi i

Figure 2: One virtual GPU per

Figure 3: Managed containers

(o70] 0] =11 0 1=] (PR OT TR

Managing OpenCL Services using Docker Containers

1. INTRODUCTION

Let's start by explaining some basics needed for this paper. Docker is a relatively new
project that allows packaging of an application with all its dependencies into a container.
That container wraps everything that is needed by the application, so you can deploy
that container on any machine and it will run the same. This way the developer doesn't
have to care about the machine's environment, e.g. the installed version of a library
being different from the one used in development or a different machine. Everything
needed is specified in a Dockerfile, which is the recipe for building that container. Once
the container is built, one can start running it, stop it, pause it etc. It works as a virtual
machine, but its smaller and faster, since it's using the machine's kernel and resources,
instead of having its own kernel and virtual resources. Docker makes it easy for
developer teams to have a standardized development environment, and for anyone
deploying applications or services on any server without having to worry about its
underlying libraries and kernel.

OpenCL is a framework for writing programs that take advantage of specialized
hardware, and can use different kinds of hardware. That kind of programming is called
heterogeneous programming. A GPU, for example, is one type of specialized hardware,
as it can do certain calculations much more efficiently than a CPU. By using small cores
in big numbers, that are tuned for specific calculations, a GPU can be more efficient in
some cases that a CPU. In contrast, a CPU is much more general. It is able to do a
great number of jobs with acceptable performance, but is not specialized for all of them.
Another type of specialized hardware is a custom FPGA (Field-Programmable Gate
Array) for deep learning [1] [3], or bitcoin mining [4].

In OpenCL there is the concept of kernels. Kernels are programs that are specialized for
running on the hardware that supports OpenCL. While the main application is running,
the kernels are compiled and optimized for the hardware they are going to run on. This
allows for better performance. Even more so, because they can also run in parallel.
OpenCL is very useful for developing and using applications for scientific research, data
mining, graphics rendering, medical diagnosis etc., because of the many calculations
that these applications entail. Using GPUs can speed up these applications by orders of
magnitude, therefore more work can be done.

P. Vinieratos 9

Managing OpenCL Services using Docker Containers

2. RELATED WORK

While researching for current solutions, we found one paper [15] that uses virtual GPU's
attached to virtual machines, and an API. They made a Linux driver for the virtual GPU,
and all the virtual machines could run at the same time, doing their requests through
their API. It's a good way to have high utilization of the GPU, but its very hard to keep it
updated. Also, it has to be adjusted and optimized for each GPU model. In this paper,
we will describe a more general solution.

Currently there is some research going on about sharing GPUs [7] by NVIDIA, but it's
about GPUs on desktop computers, and not servers. On the other hand, there is more
active research and development of APls mapping OpenCL to custom hardware [1] [3]
that could be combined with our proposal in this paper, to provide a widely available
heterogeneous computing experience to server farms, and the possibility of more
specialized server farms, that have specific hardware [4] attached to them.

P. Vinieratos 10

Managing OpenCL Services using Docker Containers

3. MOTIVATION

In order to use OpenCL, some setting up is needed. CUDA (NVIDIA) [10], AMDAPP
(AMD) [8] and Intel's own OpenCL [11], are the three most famous and used
implementations of the common OpenCL framework API. Depending on the GPU on a
machine, one has to install and setup the specific vendor's implementation and drivers.
After that, the API is the same and can be used transparently. When a researcher, for
example, wants to run his data mining program on his machine while developing, he
sets the machine up. When the same researcher wants to run the program on a
stronger machine than his own, let's say the university's server, he has to set OpenCL
up again. Of course this might need the presence or assistance of the server maintainer
and administrator. That would be required every time the OpenCL API or
implementation is updated. This whole process is not productive, and it can take up
valuable time from the researcher. That becomes even harder to do if he rents a GPU-
equipped server, because then he has the same OpenCL installation problem, plus the
problem of different libraries and his application's dependencies, that Docker tries to
solve.

Using Docker, a researcher can create a Dockerfile describing the dependencies of his
project, which usually are mathematical or rendering libraries, and then running some
simulations. A graphic designer can make a Dockerfile with some visual rendering
libraries and applications, and have it run to generate an HD video out of a raw video
plus the edits. A hospital can create Dockerfiles that use medical and simulation
libraries to run tests, helping diagnose a patient. Having the Dockerfile, one can build a
Docker container and run an application on a local machine, and just as easily, upload
the Dockerfile to a rented instance of a server farm and run the same application in an
identical way there too. Several companies nowadays, like Amazon [2], Tutum [6],
Orchard [5] allow people to submit their Dockerfiles, and build containers to run on their
server farms, while charging for usage time. The last few years, utilization of such
server farms has increased, and anyone can rent an instance. If someone needs a
powerful machine for a specific project, it's much cheaper to rent an instance in a
powerful server farm than to build or buy an equal machine resource-wise. A feature
that these instances have, thanks to Docker, is that they run in total isolation between
each other. This protects the host machine, and each instance from the others. If one
fails, it doesn't take the whole system down. If some connections are required between
instances of a client, then these are specified by the client, and during the instance
initialization, the needed local connections are made. Some server farms have GPUs
attached to them, therefore enabling people to use the GPUs for calculations,
renderings or any other job that can highly benefit from using them. One way to do that
is by running OpenCL inside Docker containers.

People have a hard time using OpenCL inside a Docker container, because of the setup
that is required up front. Even if someone moves a Dockerfile to a server farm instance,
they still have to setup OpenCL by finding info of the available GPU, searching if it
supports OpenCL and which version, download that OpenCL implementation from the
GPU's vendor website, install it, and make sure its set up correctly by running a few
testing and benchmarking applications. After that, they can finally upload the Dockerfile
and run as they do on a local machine. Of course, the installing step, might not even be
possible with some server farms, because the instance might not have root privileges,
so the client might need to call the server farm support and have them install it for them.
This whole process can range from being very hard and time-consuming, to nearly
impossible.

P. Vinieratos 11

Managing OpenCL Services using Docker Containers

We want to simplify this process. We want to keep the Dockerfile self-contained, and let
that same Dockerfile be the only requirement for someone to run their application on a
rented, GPU-equipped server farm instance, without having to worry about the setup
part of the process. Our proposal will allow anyone to upload their Dockerfile, and
simply tick a checkbox on the server farm's website if they would like to utilize the GPU
via OpenCL. We also provide the server farm owner with instructions on how to setup
OpenCL on the server farm, and lastly provide a management application, that builds,
schedules, runs and pauses containers of clients, and bills them for usage time. That
application can be easily adjusted and reworked to fit pre-existing management
application on existing server farms.

P. Vinieratos 12

Managing OpenCL Services using Docker Containers

4. POSSIBLE SOLUTIONS AND COMPARISON

Currently, when a server farm has GPUs available, it attaches them to an instance,
which is a virtual machine that sometimes has real hardware, or parts of it, attached.
Virtual hardware can also be attached to the instances. For example, a server farm that
has 4 CPUs with 8 cores each, can do many instance-hardware combinations. It could
host 4 instances with 1 real CPU each, or 8 instances with 1 virtual CPU that has 4 real
cores each. | could also even host 8 instances with 1 virtual CPU with 16 virtual cores
each. In that last case, the load of the virtual cores is split and shared across the real
cores of the host machine. The same can happen with GPUs, but GPU cores are not
split. There are some early projects by NVIDIA [7] that try to split the GPU, but it's
currently focused on desktop machines that need 2-3 virtual GPUs, and not servers that
would need hundreds or thousands.

It becomes apparent that the problem of sharing GPUs, on personal computers or
server farms, has no clear solution yet. The same problem exists for Docker containers
running on a server farm. For that reason, we need to do some scheduling of the
containers, so that only one container can get access to a GPU unit at a time.

There are three ways that could solve this problem. One way, is to have a master
Docker container with access to the GPUs, that is managed by the server administrator.
Another way, is to have one virtual GPU per client container. Lastly, a third way is to
attach a GPU to the containers that need it. In all three possible solutions, only one
container per GPU can run. So the number of available GPUs on a server farm, limits
the number of GPU-enabled Docker containers that can be running at the same time.
For example, on a server farm with 6 available GPUs, that limit would be 6. The rest of
the containers that need a GPU will be paused and have to wait to be scheduled.
Containers that don't need a GPU can run in any way the server farm owner wants.

4.1 Master Container

For this possible solution we would need one master container per GPU, with that GPU
attached to it. When a client container needs a GPU, then it would have to send a
message to a master container. After that, the master container would ask the client
container for the OpenCL kernel files, any executables, the inputs and the expected
output format (a file, a directory, no output, etc.). This method, illustrated in figure 1,
gives the server administrator power over which container runs and when, so there is a
billable unit (e.g. use of GPU for 1 hour).

P. Vinieratos 13

Managing OpenCL Services using Docker Containers

Docker
Container
Paused
<«| Input ____
Docker Master 1:1 | Real GPU
Container |-{OUtput | Container
Llnput____
Docker [* Master 1:1 | Real GPU
Container [-{O4PUt | Container
Running

Figure 1: One master container per GPU

One problem with this possible solution is that the clients will still have to use some kind
of APl to communicate with the master container, which most probably would change
from server farm to server farm, depending on the implementation. Different dev teams
will create different APIs and implementations, so we cannot be certain that one server
farm will provide the same usage as another. This would be a new problem that people
who want to run containers on server farms would have. It's better than the original
hassle, but not good enough. Also, another problem is that the server administrator
would have to design this API, implement it and enforce it. Lastly, the master container
would need to run executables that might need libraries it doesn't have installed, so the
container would have to have an even bigger API that allows for dependencies.

P. Vinieratos 14

Managing OpenCL Services using Docker Containers

4.2 Virtual GPUs

The possible solution of the virtual GPUs is that each client container would have a
vGPU attached that will act as the messenger between the host machine and the client
containers. For this solution, the server farm owner would need to design and
implement virtual GPU system device driver, which is not an easy task, because it's not
a one-size-fit-all solution. When an attached virtual GPU is asked to be used inside the
container, the host machine would be notified that the specific client container tried to
use the attached vGPU, and the host machine would immediately pause the client
container, detach the vGPU and attach a real GPU, and then resume the container.

Docker 1:1 m Virtual GPU
Container
Paused
Docker
Container 1:1 Real GPU
1:1
Docker Real GPU
Container
Running |

Figure 2: One virtual GPU per container

The problem with this approach, shown in figure 2 is the constant swapping that would
need to happen. Some operating systems do not support hot-swapping of hardware, so
if one of them runs inside that client container, it will crash, and the client would lose all
the progress made so far by that container. Maybe we could avoid the hot-swapping if
we could forward the requests made to the vGPU to our real GPU, but then the billing
logic will be inside the vGPU device driver. That is not ideal, since a system device
driver should not contain the company's billing logic.

4.3 Managed Containers with Attached GPU

This is the solution we chose to implement in this paper. When a client container needs
the GPU, the client has to specify it beforehand. That's a small and easy change. It can
be done through the server farm website by ticking a checkbox, or even inside the
Dockerfile of the container, by adding a certain commented line. When the server knows
that a specific container needs the GPU, it can automatically start it with a real GPU
attached. What this means is that more that one containers will have the same real
GPU attached. The benefit of this solution, as seen in figure 3, is the existence of a
management application deployed on the server farm by the administrator. With it, we
can make sure that only one container will run at any time, that will have full access to a

P. Vinieratos 15

Managing OpenCL Services using Docker Containers

real GPU, and the rest of the containers will be either paused, attached to another GPU,
or running without the need for a GPU.

R N Docker
i Container m-ui N:1
E 1141] Real GPU
| Docker
i Container
i--———— Docker |
| Container | N:1
| 1441] Real GPU
i Docker
i Container
i Need GPU|
e — fomming | Management
| Application
it Rt) Docker

Container

Docker

Container

Reqular

Figure 3: Managed containers

This way each server administrator can easily control the billing unit, and the containers
that need GPU will always have complete access to all the cores of the GPU. After the
billable unit of time has passed, the running container can be paused, and another
container can be chosen to resume, based on a scheduler that can be decided by the
server administrator. Notice that with this approach, if a container is marked as needs-
GPU, then the client is going to be billed regardless of the actual usage of the GPU.

P. Vinieratos 16

Managing OpenCL Services using Docker Containers

This means that it's great value for containers that render graphics or do other GPU-
intensive jobs. If a client needs to run some processes that require a GPU and also
some other processes that don't need a GPU (e.g. a web server), the best value for the
project would be to have multiple containers. Some containers will be used for the GPU-
related jobs, and others will be used for the jobs that don't explicitly need a GPU. All of
the containers will be able to communicate with each other, by taking advantage of the
way Docker connects containers, using local ports. This compartmentalization and
separation is exactly what Docker is built for.

P. Vinieratos 17

Managing OpenCL Services using Docker Containers

5. SYSTEM DESIGN AND IMPLEMENTATION

Starting this project, we had a computer with Linux installed, equipped with an AMD
GPU. That computer will play the role of a server farm. We first looked up the GPU
model, to find the OpenCL version that is compatible with it. Then downloaded and
installed AMDAPP (AMD's OpenCL implementation), with the GPU's drivers and
OpenCL headers, for the specific GPU model. We then verified that OpenCL programs
acknowledge the existence of the GPU as a calculation unit, and made sure we could
use it for actual calculations. After that, we created a simple Docker container, attached
the GPU to it, and ran the same OpenCL test programs. To attach a GPU to a Docker
container, we have to add the --device flag, pointing to the /dev file that points to the
GPU of the machine. After making sure that OpenCL works inside the container, we
wrote the management program that preprocesses the client Dockerfiles and checks if
they need the GPU. If they do, it keeps them in a list of GPU enabled containers. A
container is then chosen out of that list, and is allowed to run for a certain amount of
time, and then is paused. Then another container is chosen. This process goes on and
on.

This procedure can be done by a GPU-equipped server farm owner to provide clients
with easy access to the GPUs. The owner will have to find the GPU model, and check
which OpenCL version is compatible with it. The next step would be to download and
install the drivers and OpenCL implementation for that specific GPU model. In case of
many GPUs that are the same model, no change to the procedure is needed. If the
GPUs are different models or from different vendors, they would have to be attached to
another server of the server farm. Unfortunately, that's a limitation of the operating
systems. Afterwards, the owner should make sure OpenCL works by running OpenCL
tests and benchmarks. The next step is to run the same tests and benchmarks, but this
time inside a Docker container. After all that is done, the server farm is ready to be used
for GPU-intensive tasks inside Docker containers.

Another requirement for the owner is that they have to add the interface for selecting if a
Docker container needs a GPU to the client account website. This setting can be as
simple as a checkbox, and should be set per container. As we have it, this setting can
also be set by adding a commented line to the Dockerfile of a container, such as
#MGMT _NEEDS GPU 1 or with an environment variable ENV MGMT_NEEDS GPU 1.
This line can be parsed by the server when the client uploads the Dockerfile.

For a client, there is only one change that has to be done, to be able to run their
container on a server farm, and that is the needs-GPU setting we described above.
After that, they can use their Dockerfile to build their container on their local machine,
and then they can upload the Dockerfile to the server farm, and use it the exact same
way they would on their local machine. By adding the line on the Dockerfile, this
process of setting up becomes easier than ticking the checkbox on the server farm's
website. If it's a commented line, it will be disregarded by other machines or servers that
don't have the proposed setup. If it's an environment variable, it will not affect the
execution on other machines or servers since they will not use that variable.

Last but not least comes the management application. Currently, the server farms that
provide people the ability to run virtual machines or Docker containers as a service,
already have a way to schedule and calculate the billing for each of them. And that
depends on their business logic. We provide a management application that does the
scheduling of the Docker containers based on the round robin scheduler, and bills a
container one credit per unit of time, which is set to 10 seconds, for demonstrative

P. Vinieratos 18

Managing OpenCL Services using Docker Containers

purposes. A server farm owner can simply extract the part of our application that
determines if a container needs a GPU or not, and add it to their existing management
application. They will keep using their own schedulers and their own way of billing.

Our management application does the following. Initially, it scans a predefined directory
on the system that the clients Dockerfiles are in. For each Dockerfile, it checks if it
contains the special needs GPU line. After that, it builds a Docker container out of each
Dockerfile. It stores the names of all the containers in two lists, by separating the ones
that need a GPU from the ones that don't. Then the scheduling begins. Every 10
seconds, the application asks the scheduler, which is round robin, to tell us which
container is the next to run. So the first time the scheduler is asked, it will return the first
container. The second time, it will return the second container, etc. When all the
containers have run for 10 seconds, the scheduler will return the first container again,
like in the beginning. When the application knows which container is the next to run, it
has to check if it's already running. In that case, it lets it continue for the next 10
seconds, while also adding another billable unit to it. Otherwise, it will pause the
currently running container, and prepare the next in line. The preparation is to unpause
it, if it has previously run, or to initialize it if it hasn't. While this process is taking place, a
similar process for the non-GPU containers also takes place. The difference between
the two processes, is that we can have one GPU-enabled container running for each
GPU on the server, but we can have many CPU-bound containers mapped to each
CPU. In the end, when the application is signaled to end, it stops all running containers,
and does some cleanup.

P. Vinieratos 19

Managing OpenCL Services using Docker Containers

6. EVALUATION

As stated before, the changes that need to happen, from the users’ perspective, are
minimal. They just have to add a commented line or an environment variable to their
Dockerfile. That does not affect the execution of the Docker container in any way if it's
running on any other machine, but it most certainly helps when it's running on a GPU-
equipped server farm with the structure we proposed in this paper.

On the server farm's side, the setup of OpenCL implementation needs to be done
internally. This way the installation can be optimized, since the owner has total access
to the hardware, and can be used transparently by the clients, without them needing to
know any details about the implementation and installation. The owner, via the website,
would provide clients with the specs of the GPUs available to them, so they can roughly
compare the efficiency gains from running their containers on that server farm,
compared to their local machine. Of course, different GPU models can be available,
with different pricing.

We ran the management application and it shows that all containers can take
advantage of the available GPUs, one container per GPU at a time, for full access. The
setup for the management application can be easily adjusted and adapted to work with
an already existing management application for server farms. In our runs, the GPU was
utilized at 100%, since one GPU container was running after the other. In our runs, a
Docker container can be paused in 47ms and unpaused in 37ms. These numbers do
not change no matter how many containers are active on the server. So in roughly
85ms for every time unit, the previously running GPU-enabled container, and the next
one is unpaused and allowed to run.

Compared to the other research we found [13] [15], our proposal is more general, since
the server farm team is doing the low level work, that needs specialization and total
access to the hardware, and it's very approachable for people like medical experts,
researchers, designers etc. to take advantage of the powerful hardware on server
farms.

P. Vinieratos 20

Managing OpenCL Services using Docker Containers

7. FUTURE WORK

In the future we would like to experiment with different specialized hardware. The setup
would be the same, but the implementation details will be different. Custom FPGAs
could be attached, and after installing an OpenCL implementation that covers them,
they can also be used by Docker containers. This way, server farms can be more
specialized in specific areas of development and application execution, not necessarily
OpenCL, such as Internet of Things [12] applications. If a server farm has Arduino [9] or
Raspberry Pi [14] boards attached, Docker containers can use them for development
and testing of loT applications, before shipping to customers. We think this is an
interesting direction this project can take.

P. Vinieratos 21

Managing OpenCL Services using Docker Containers

8. CONCLUSION

This paper described how to setup the software and hardware of a server farm to
provide a better experience for clients who use GPU-enabled Docker containers on this
server farm. We suggest that instead of each client setting up his own containers to
work with the underlying hardware of the server farm, the server administrator is the one
who should set that up. This way the clients can easily run their containers on their local
machine or other server farms without readjusting their software and setup. The server
administrator will be able to do a better job setting the software up, since he has total
control over the software and hardware of the farm, and can use professional help for
optimization. Also, we provide a management application that can be adjusted and
retrofitted to the existing management application of any server farm, in order to make
the necessary connections between the hardware and the containers.

P. Vinieratos 22

Managing OpenCL Services using Docker Containers

ABBREVIATIONS — ACRONYMS

OpenCL Open Computing Language
CPU Central Processing Unit

GPU Graphics Processing Unit

vGPU Virtual Graphics Processing Unit
FPGA Field-Programmable Gate Array
API Application Program Interface
loT Internet of Things

P. Vinieratos

23

Managing OpenCL Services using Docker Containers

REFERENCES

[11 Docker, https://www.docker.com [[MpooTreAdoTnke 3/3/16]

[2] OpenCL, https://www.khronos.org/opencl [[MpocTtreAdoTtnke 3/3/16]

[3] Altera for OpenCL, https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.highResolutionDisplay.html [[MpootreAdoTnke 3/3/16]

[4] CUDA, https://developer.nvidia.com/accelerated-computing-resources [[pooteAdoTtnke 3/3/16]

[5] AMDAPP, http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-
processing-app-sdk [[MpooTtreAdoTtnke 3/3/16]

[6] Intel OpenCL, https://software.intel.com/en-us/intel-opencl [MpooTtreAdoTnke 3/3/16]

[7] Folding at Home, https://folding.stanford.edu/home [[MpooTtreAdoTnke 3/3/16]

[8] Altera for OpenCL, https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.highResolutionDisplay.html [[MpootreAdoTnke 3/3/16]

[9] Nervana, http://www.nervanasys.com [[MpooTtreAdoTnke 3/3/16]

[10]Open Source FPGA Bitcoin Miner, https://www.github.com/progranism/Open-Source-FPGA-Bitcoin-
Miner [MpooTtreAdoTtnke 3/3/16]

[11]Amazon EC2 Container Service, http://aws.amazon.com/documentation/ecs [[pootreAdoTnke 3/3/16]

[12] Tutum - Docker Hosting, https://www.tutum.co [[pooTreAdoTnke 3/3/16]

[13]Orchard - Instant Docker hosts in the cloud, https://www.orchardup.com [[pootreAdoTtnke 3/3/16]

[14]Virtual GPU Technology, http://www.nvidia.com/object/grid-technology.html [MpootreAdoTnke 3/3/16]

[15]Internet of Things Global Standards Initiative, http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
[MpooTtreAdoTnke 3/3/16]

[16] Arduino, https://www.arduino.cc [[pooTreAdoTnke 3/3/16]

[17]Raspberry Pi, https://www.raspberrypi.org [[MTpootreAdoTnke 3/3/16]

[18]NVIDIA Docker, https://www.github.com/NVIDIA/nvidia-docker [[MpooTtreAdoTnke 3/3/16]

[19] Tsan-Rong Tien and Yi-Ping You, “Enabling OpenCL support for GPGPU in Kernel-based Virtual
Machine", Software - Practice and Experience (44:483-510), 2014

[20]J. P. Walters et al., “GPU Passthrough Performance: A Comparison of KVM, Xen, VMWare ESXi,
and LXC for CUDA and OpenCL Applications", Cloud Computing (CLOUD) (636-643), 2014.

P. Vinieratos 24

