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ABSTRACT

In the contemporary unified information and knowledge presentation field of the World Wide Web,

there’s an emerging need to represent complex structures, comprising individual semantic entities

that can possibly act autonomously.

This work, introduces a generic and expressive model for information representation, which comprise

information objects and relationships as well as properties they may have. This way we are capable

of creating complex graph structures that can back the definition of modern, semantically rich,

content hierarchies. Additionally, a dynamic type system has been developed for defining classes

of information objects and relationships that determine, a common set of specifications to which,

instances of that type must automatically conform, in terms of the properties they can have,

relationships they are allowed to participate in and other uniform system-wide behaviour. The use

of types, further refines our model’As expressive power and promotes reusability. Its capability to

represent information is tested against reference use-case systems and the models they support.

We, furthermore, discuss the application of the aforementioned information model into a notional

storage architecture, that will contribute to the homogenisation of diverse storage infrastructures and

will enable the augmentation of current systems’ expressive power, to match that of the model of this

work. This functionality is exposed through a proposed general yet powerful programming interface

with which the user can handle information access and retrieval as well as data definition. Finally,

a brokerage mechanism is proposed, lying inside the architecture, which by exploiting the creation

of a common storage resource pool, can be used to, transparently, distribute the information to the

underlying infrastructure, based on user-defined factors, such as the cost, the available free resources

or the data replication policies.

SUBJECT AREA: information management, storage management

KEYWORDS: information model, type system, information object, meta-data manage-

ment, storage





ΠΕΡΙΛΗΨΗ

Στο σύγχρονο ενιαίο πεδίο προβολής πληροφοριών και γνώσης του Παγκόσµιου Ιστού, πυκνώνει

η ανάγκη αναπαράστασης σύνθετων δοµών, απαρτιζόµενων από επιµέρους οντότητες µε σηµασι-

ολογία και ενδεχοµένως αυτόνοµη υπόσταση.

Στην εργασία αυτή, παρουσιάζεται ένα γενικό και εκφραστικό µοντέλο αναπαράστασης πληρο-

ϕορίας, το οποίο αποτελείται από αντικείµενα πληροφορίας και σχέσεις καθώς επίσης και από τις

ιδιοτήτες που ενδεχοµένως έχουν. Με αυτό το τρόπο, καθίσταται δυνατή η δηµιουργία πολύπλοκων

δοµών γράφων, οι οποίοι µπορούν να υποστηρίξουν τη µοντελοποίηση σύγχρονων, σηµασιολογικά

πλούσιων, ιεραρχιών περιεχοµένου. Επιπρόσθετα, αναπτύσσεται ένα δυναµικό σύστηµα τύπων για

τον ορισµό κλάσεων αντικειµένων και σχέσεων, το χαρακτηριστικό των οποίων είναι ο καθορισµός

προδιαγραφών µε τις οποίες, αυτόµατα, ϑα πρέπει να συµµορφώνονται οι οντότητες όσον αφορά

τις ιδιότητές τους, τις σχέσεις στις οποίες µπορούν να παίρνουν µέρος και εν γένει τη συνολική

συµπεριφορά τους στο σύστηµα. Η χρήση τύπων ισχυροποιεί περαιτέρω το δοθέν µοντέλο αλλά και

προωθεί την επαναχρησιµοποίηση των δοµών του. Η ικανότητα του, τέλος, να αναπαριστά πληρο-

ϕορία δοκιµάζονται σε αντιπαράθεση µε περιπτώσεις υπαρχόντων συστηµάτων αναφοράς και των

µοντέλων που αυτά υποστηρίζουν.

Επιπλέον, συζητάµε την εφαρµογή του ανωτέρω µοντέλου πληροφορίας, σε µια ενδεικτική αρχιτεκ-

τονική αποθήκευσης, η οποία ϑα συµβάλει στην οµογενοποίηση ποικιλόµορφων υποδοµών αλλά και

ϑα δίνει τη δυνατότητα αναβάθµισης των δυνατοτήτων αποθήκευσης των υπαρχόντων συστηµάτων,

ώστε να ϕτάσουν την εκφραστική δεινότητα και ισχύ του µοντέλου της εργασίας αυτής. Η λει-

τουργικότητα εκτίθεται µέσω µιας προτεινόµενης γενικής αλλά ισχυρής προγραµµατιστικής διεπαφής

µε την οποία ο χρήστης ϑα διαχειρίζεται ϑέµατα πρόσβασης και ανάκτησης της πληροφορίας, αλλά

και ορισµού τύπων δεδοµένων. Τέλος προτείνεται και ένας µεσιτικός µηχανισµός, εντός της αρχιτεκ-

τονικής, ο οποίος εκµεταλλευόµενος την δηµιουργία ενός ενιαίου χώρου συγκέντρωσης αποθηκευ-

τικών πόρων µπορεί να χρησιµοποιηθεί για να διανέµει, διαφανώς, την πληροφορία στην υποκείµενη

υποδοµή σύµφωνα µε παράγοντες ορισµένους από το χρήστη, όπως για παράδειγµα το κόστος, οι

ελεύθεροι πόροι ή οι πολιτικές κατανεµηµένης αναπαραγωγής των δεδοµένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: διαχείριση πληροφορίας

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ: µοντέλο πληροφοριών, σύστηµα τύπων, αντικείµενο πληροφορίας, δι-

αχείριση µετα-δεδοµένων, αποθήκευση
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Chapter 1

Introduction

1.1 The Problem

The past few years the World Wide Web has witnessed an enormous explosion in digital content

creation rate. This skyrocketing growth is certain to continue going, as all traditional types of media

such as voice, tv, radio and print go from analog to digital; people continue to take pictures and

video, send e-mail and tweet; companies are still adding to their data warehouses; Governments

are still requiring more information be kept [24].

In 2009, besides the global recession, the digital content set a record, and grew by 60% in nearly

800 exabytes. Its growth continued, and 2010 the zettabyte (trillion of gigabytes) barrier has been

surmounted. In 2011 the amount of information created is estimated to exceed 1.8 zettabytes,

meaning that it is growing by a factor of 9 in the past five years [25]. By 2020, the digital universe

will be 50 times as big as it was in 2009, touching the inconceivable size of 35 zetabytes. This is

translated into bits that will realize over 25 quintillion information containers; that is packages, files,

images, records, signals e.t.c. On the other hand, the average size of these containers is getting

smaller due to proliferation of embedded systems (sensor networks, smart houses e.t.c). This means

that the manageable entities in the digital world are actually growing almost twice as fast as total

number of gigabytes [24].

Most disturbing though, for informatics engineers, is that, along the next decade that the amount of

digital information will be increasing 44-fold and the amount of digital containers 67-fold, the number

Μουστάκας Σ. Βασίλειος 1
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of IT professionals will be increasing by a slim factor of 1.4 [24]!

1.2 Importance of Research

Even though much progress has been made in the Web with search engines and semantic

technology, the same cannot be said for storage architectures that fail to efficiently address these

kind of challenges, often making it harder to find something on one’s hard drive than on the Web.

The above peculiar reality has a plausible explanation though. Hyperlinks among pages, convey

invaluable information that can be proven very useful for searching and presenting results [42]. On

the other hand, classic filesystems can realize relationships among files, only through the hierarchical

directory system.

Most of the information out there comprise unstructured data (e.g. images, voice packets). Adding

structure to this unstructured data enables as to look beyond bit-streams and catch valuable

information otherwise ignored by automated systems. For example, we can annotate the frames of

a video with information about the people appearing in it. In fact the fastest growing type of data

in the digital universe, described earlier, is metadata, or data-about-data [24]. It is, thus, absolutely

essential to deal with this information tsunami in new ways, others than simply building massive

storage systems and dumping streams. We have to (re)think the ways we deposit and retrieve all this

semantically enriched information.

1.3 Thesis Objectives

Our primary goal for this work was to design and implement a complete, yet generic, information

model for defining, representing and efficiently manipulating diverse kinds of semantically enriched

digital information.

Our secondary goal was the definition of a system architecture which would benefit from our

information model in order to deliver sophisticated content storage services that would expose the

following characteristics:

• effectively handle the ingestion of data information along side with extra description and

2 Μουστάκας Σ. Βασίλειος
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relationships between them

• leverage and homogenize diverse storage capacities and capabilities

• easily extended to support multiple storage models

The advantages of such an architecture are:

• augment the expressiveness of traditional persistency layers such such as file-systems,

• provide a unified storage resource pool independent of the specifics of the actual bit storage,

• cost effective resource aggregation since it will relay on currently available technologies,

• benefit from the maturity of the underlying storage technologies

1.4 Disposition

This report consist of five (5) Chapters and one (1) Appendix. Chapter 1 (this one) starts with a

small description of the problem and motivation for this work. Moreover, there is an enumeration of

the thesis objectives and a quick overview of its structure. Chapter 2 builds a momentum for the

thesis by introducing basic concepts and reviewing the state of the art in the field. In Chapter 3

our proposed information model is thoroughly discussed and supported. Chapter 4 introduces our

proposition for a reference storage architecture and elaborates on the features as well as added

value it will convey. This work concludes with Chapter 5 by summarizing the important contributions

and looking forward to future work. The Appendix A holds a discussion of a conceptual and practical

prototype implementation of the our proposed information model.

Μουστάκας Σ. Βασίλειος 3
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Chapter 2

State of the Art

2.1 Review

In this chapter, we review some very important, research as well as enterprise work that has been

conducted in the areas of content and storage management as well as digital preservation. Some

has resulted in very successful products that have proven all (or at least most) of what they advertise

they can do, in real world environments. Others, on the other hand, didn’t make it so good. In

any case, all have contributed in the area, and brought forward interesting new concepts and

solutions to problems. The discussion focuses, mainly, on the information models they utilize in order to

achieve their goals, since this is the basic topic for this thesis. However, whenever needed, additional

information is given to help creating a more comprehensible picture for the given topic.

We made a simple categorization of the systems and specifications at hand, to further help the

reader. We first look at the fundamental concepts and notions derived from the digital preservation

model which offers key vocabulary for our later discussion. We then present how object exchange

and reusability is promoted in the Semantic Web. Digital library systems play an important role in the

review as they are considered pioneers in the field while they still preserve their position in innovation,

handling the intellectual property of many, well known, institutes and universities around the world.

Finally we touch upon research that has been conducted in filesystems to enhance the every day

desktop experience.
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2.2 Generic Models

This section discusses a couple of generic models for representing information as entities as well as

collections of these entities. It may also be considered as a very good introductory point since we will

first be reviewing the digital preservation model which was the product of very important research

activity that introduced key concepts widely used today and will help in understanding the rest of

the material.

2.2.1 Digital Preservation Model

In an ever changing Information Society, digital information is not destined to survive, unless there

is some systematic process to preserve it, called digital preservation. This is contrary to real world

artifact objects, such as books or celluloid strips, which exist until someone or something actively

disposes them. One apparent reason of the ephemeral nature of data is their unreliable physical

storage, like the volatile main memory of the computer or the difficult ‘‘shelf life’’ of magnetic tapes,

hard-drives and optical disks. What is more important though, is the loss of data that is caused by the

obsolescence dictated by the rapid technological changes, mainly in software applications.

There has been large international effort to address these issues. These efforts aim to provide

standards for an exhaustive list of aspects for digital preservation in museums and libraries [57, 37, 29].

Contemporary repository systems [30, 53, 50], adhere to the now dominant international standard of

the OAIS Reference Model [19] and are an important component of modern digital preservation.

This part covers the fundumental concepts that revolve around the definition of an architecture

for building specialized automated information systems, called digital object architecture. The core

services of an implementation of such an architecture (the ‘‘System’’ from now on) are those that

provide identification, access and management of digital assets.

Digital Objects

The basic form in which the content is stored and managed within the architecture, is called

a digital object. The notion was introduced in [31] and has since been further developed and

evolved [14, 15, 43, 17]. Conceptually, digital objects are entities that provide [16]: i) encapsulation,
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ii) description, iii) unique identification, and iv) value-added access to content. The content is divided

into data and data-about-data or metadata. This way multiple bits of relevant information, create a

complex, multipart entity that acts and can be managed as a unity. If the data of a digital object is

a digital object itself, then the former is called composite; otherwise elemental.

Types of Digital Objects

Digital objects are described by an abstract typing mechanism that provides a high-level, self-

describing, type definition called data type [32] or content type [16]. Content types are technical

descriptions of a specific class of content that may also define intent-of-use based access to it. Thus,

a digital object is an instance of some data type that encapsulates content, metadata or even

access policies.

Saidis et.al [48, 49] propose an effective realization of Digital Object Prototypes (DOPs) which is

a digital object type definition that provides a detailed specification of its constituent parts and

behaviours. Its goal is to provide a mechanism that uniformly resolves digital object typing issues in

an automated manner.

Disseminations

A digital object architecture must carefully distinguish and enforce the subtle but important differences

between digital objects created by the owner of the data, digital objects stored in the System and

digital objects accessed by the user [14].

A dissemination is the result of a request to access a digital object. We identify two classes of

a disseminations: i) primitive disseminations, and ii) content type disseminations . The first are not

extensible and, access the content of the digital object in a raw fashion, much the same way as it

was deposited in the repository. Table 2.1 shows a basic set of primitive digital object disseminations.

Since digital objects are usually complex entities though, we may not need to handle the whole

object. It might be just some of its constituent parts defined for example either by the user’s current

needs (parameterising the request query) or by an access control policy. Such behaviour is achieved

by content type disseminations, which provide views of a digital object the way its (content type)

creator had imagined it to be accessed.
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Function Description

CreateDataStream() Assigns a data stream to the digital object.

GetDataStream() Returns the data stream from the digital object.

DeleteDataStream() Removes a data stream from the digital object.

ListDataStreams() Returns a list of data streams attached to the digital object.

GetDissemination() Invokes a content type dissemination on the digital object.

CreateDisseminator() Creates a content type disseminator.

DeleteDisseminator() Deletes a content type disseminator from the digital object.

ListDisseminators() Returns a list of content type disseminators for the digital

object.

Table 2.1: Primitive digital object disseminations.

Repositories

A repository is a network-accessible storage system in which digital objects can be stored for future

access or modification. There should be no limit on how many repositories can coexist in the

architecture. According to [16] repositories should themselves be digital objects in order to facilitate

additional functionality through disseminations.

The special user that owns the digital material is also part of the architecture and is called the

originator. His role is to create digital objects out of that material and put them in the System in

order to make them available to others. Such digital objects are called stored digital objects. If they

can be modified after being placed in the repository they are called mutable, while if they cannot

immutable.

A repository contains an attributes record for each of its stored digital objects. This record encapsulates

all the extra information for the object that is either invariant for it over repositories or repository

specific. Additionally, it may also have associated with it a transaction record, to record transactions

of the repository involving the digital object.

Repository access protocol (RAP)

The repository must provide mechanisms for: i) creation, ii) deletion, iii) modification, and iv) dissem-

ination of digital objects. This is accomplished through the implementation of a Repository Access
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Function Description

VerifyHandle() Confirm whether the given handle is a registered handle

AccessRepoMeta() Access the repository metadata

Verify_DO() Returns true the a digital object with the given handle is stored in the

repository

AccessMeta() Access the metadata for a specified digital object

Access_DO() Return a dissemination of the given digital object

Deposit_DO() Store a digital object in a repository

Delete_DO() Purge a digital object from a repository

MutateMeta() Edit the metadata for a digital object

Mutate_DO() Edit a digital object

Table 2.2: Basic RAP operations

Protocol (RAP). A simple set of service requests are shown in table 2.2 [16].

Handle infrastructure

A digital object is globally identified by a unique string, called a handle. Handles are produced by

a handle generator and are expected to be published to the System though well known handle

servers. Digital objects with published handles are identified as registered.

Architecture Layering

Arms et.al in [15] proposed a three component structure of a repository that comprise 2.1: i) a

persistent store which is the storage space (database, filesystem e.t.c.) used to hold the information,

ii) a repository shell which is the interface to the outside world (by implementing some RAP) and is

usually designed to work with a very wide range of persistent stores, and iii) an object management

component that implements the logic for mapping digital objects to a specific store.
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Search system

Workstation

Repository

Server

Handle system

Server

Figure 2.1: Major system components.

2.2.2 Open Archives Initiative - Object Reuse and Exchange (OAI-ORE)

Open Archives Initiative has detected a lack of a standardized way to identify the constituents

as well as the boundary of an aggregation of Web resources. Thus, a project was born, called

Object Reuse and Exchange [10, 35, 33] that gathered international experts from publishers to

e-Science communities to identify, profile and develop an extensible specification that would enable

repositories, agents, and services to interoperate in the context of use and reuse of compound digital

objects beyond the boundaries of their holding repositories. This interoperability [58] will yield more

efficient and effective: i) object discovery, ii) object (and ‘‘part-of’’) reference iii) view dissemination

iv) object aggregation (disaggregation), and v) agent-oriented processing .

OAI-ORE builds on top of the following foundations:

• WWW Architecture [28]

• Linked Data Effort and the Semantic Web [18]

• Resource Description Framework (RDF) [40, 39]
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OAI-ORE has been already positively welcomed from the research community, and early efforts

has been put on the adoption of the specification on top of already stable and mature digital

preservation architectures [56]. That way digital objects are decoupled from repository software used

to manage them. This way a set of low-level resources are introduced, which are then managed by

a series of independent services including repository software such as EPrints [6, 54, 52], Fedora [53].

OAI-ORE Data Model Entities

The primary feature of the OAI-ORE abstract data model is expressing relationships between Web

resources. In this part, we introduce the basic model entities.

Aggregation An Aggregation is a Resource that is a set of other Resources. The specification uses

URI-A to denote a URI of an Aggregation. Since an Aggregation is itself a Resource, it can be an

Aggregated Resource in another Aggregation resulting in nested Aggregations. Relationships

may be asserted between the Aggregation and/or constituent Aggregated Resources and

information external to the Aggregation. These external resources may be individual Resources

or Aggregations themselves (i.e. citations, translations).

Aggregated Resource An Aggregated Resource is a Resource that is a constituent part of one or

more Aggregations. In a respective manner, URI-ARs denote URIs that identify Aggregated Re-

sources. Relationships may be asserted between Aggregated Resources denoting for example

containment semantics of a Resource over another or that one is an alternative representation

of the other. Aggregated Resources may also have have types (e.g. bibliography or table of

contents) defined by various vocabularies.

Resource Map (ReM) A Resource Map is a Resource that: i) describes a single Aggregation,

ii) asserts the finite set of constituent Aggregated Resources, and iii) may express types and

relationships between the Aggregation and its Aggregated Resources. The specification uses

URI-R to denote URIs that point to Resource Maps and must be different from the URI-A of the

Aggregation it describes.

Proxy A Proxy is a Resource used optionally to ‘‘stand for’’ an Aggregated Resource in a specific,

to the respective Aggregation, way. Similarly, A Proxy is also described using a URI referred to

as URI-P. Sequencing is an example of what can be achieved via Proxies. In applications such

as scholarly communication there is a need for a stronger relationship, indicating lineage. This

is also achieved via Proxies.
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OAI-ORE Data Model Relationships

OAI-ORE standardises the description of the relationship between digital objects. A ReM asserts a

set of RDF triples expressing information about an Aggregation, its Aggregated Resources, metadata

about either the Aggregation, the Resource Map or both, as well as other Relationships. For example

a ReM must include a triple with an ore:describes predicate. The subject of this predicate

must be a URI-R for the ReM, while its object the URI-A of the Aggregation it describes. Other types

of relationships concern metadata about ReMs, As, Aggregated Resources, relationships between

an Aggregation and similar resources (or even other resources and types), nested Aggregations and

Proxies.

Representations

RDF/XML [39] is the most popular way for serializing OAI-ORE ReMs, though there are others, like

Atom/XML [26].

The essence of OAI-ORE is depicted in figure 2.2 and can be summarized as follows. An Aggregation is

introduced so that we can unambiguously refer to a collection of other Resources. It has a URI (just like

any Resource on the Web) and it does not have a Representation since it is a conceptual construct,

according to Semantic Web Resources. An additional Resource is introduced, that of a Resource

Map, which also has a URI and, in addition, a machine-readable Representation that i) expresses

which Aggregation it describes (ore:describes relationship in Figure 2.2), ii) lists the resources

that are part of the Aggregation (ore:aggregates relationship in Figure 2.2), and iii) express

relationships and properties pertaining to all these Resources, as well as metadata pertaining to the

Resource Map itself (dcterms:creator and dcterms:modified relationships in Figure 2.2)

.

2.3 Digital Repositories

Repositories are an important aspect of content management. They are alternatively referred to as

digital preservation systems or digital libraries1. Their basic characteristic, though, is that they conform

1Mainly because the first prototypes had libraries as their application domain.
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AR-2

AR-3

ore:describes ore:aggregatesA

ReM
ore:aggregates

Aggregation

 Representation

AR-1
ore:aggregates

Aggregated ResourcesResource Map

md

md

dc:modified

dc:created

Resource Map Metadata

Figure 2.2: The Aggregation A aggregates three Resources AR-1, AR-2, AR-3 and is described by Resource Map

ReM.

to the Consultative Committee for Space Data Systems’ Reference Model for an Open Archival

Information System (OAIS) [19].

Common challenges of these digital repositories are scalability, interoperability with other repositories,

and efficient work-flow support for ingestion of large numbers of digital objects. Some important

issues to be addressed in structuring information can be found in [15]. For example, digital objects

are frequently related to each other through relationships. It is also very likely that the same object

might be stored in several digital formats or, in other words, provide alternative representations. In

any case though, all data is given an explicit data type. Moreover, all metadata is encoded explicitly

and do not rely on any semantic information provided to interpret them. Versioning might be also

important in such systems as digital objects are, inherently, highly volatile entities. An other important

issue is that each digital information entity might need to be handled differently according to security

access permission attributes associated with it.

2.3.1 Flexible and Extensible Digital Object and Repository Architecture (FEDORA)

Flexible and Extensible Digital Object Repository Architecture (FEDORA) [53] is a modular architecture

built on the principles of interoperability and extensibility and implemented as a set of web services

(with WSDL described APIs). For this reason it can co-exist within a larger web-service framework
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providing access and management for digital preservation in a variety of multi-tiered environments.

This, significantly differentiates FEDORA from other existing vertical, all-in-one systems [50, 1, 6, 8].

Digital Object Model

Fedora uses a compound digital object abstraction to aggregate one or more data items into one

manageable entity [34, 59]. These data items can be stored in a local repository or in a remote one.

It comprises (see figure 2.3):

• a unique persistent identifier (PID),

• system properties for managing and tracking the object, and

• one or more datastreams

...

Datastreams

System Properties

Digital Object Identifier

RELS-EXT

RELS-INT

DC

AUDIT

CUSTOM n

CUSTOM 1

Figure 2.3: A depiction of the Fedora digital object model.

Datastreams aggregate data items. Each datastream is given a unique identifier within object’s

scope (along with a series of other datastream specific properties). FEDORA reserves four ids, namely:

• AUDIT : for maintaining auditing trails for the given object,

• DC: for storing metadata for it,
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• RELS-INT : for describing internal relationships among the object’s datastreams, and

• RELS-EXT : for external relationships with other digital objects

Content Model Architecture

Even though every Fedora digital object follows the aforementioned model, there are four distinct

kinds of objects that can be ingested in a Fedora repository:

Data object is the simplest, most common of all types of objects in Fedora. It is used to represent a

digital content entity as we have already defined it above.

Content model (CModel) object is a special control object which acts as the container for the

Content Model. This formal model characterizes a type of digital objects as well as specify

the kinds of relationships which are either mandatory, permitted or forbidden between digital

object groups. Thus all object types in Fedora, are organized into CModel object classes.

An object belonging to some class asserts the relation hasModel with the corresponding

CModel object. Inheritance from multiple CModel objects is supported and such a Data

object should conform to all of its Content Models, containing an aggregation of all the

datastreams defined in each of them. Fedora automatically assumes that all objects conform

to a system-defined Basic Content Model.

Service definition (SDef) object is a special control object that contains the model of a service. An

SDef defines just the interface for someone to interact with the object (but not exactly how

this is performed). SDefs are associated with Data objects, indirectly, through a hasService

relationship asserted by the Data object’s CModel object. A Data object (through its CModel

object) may support more than one Service by having multiple SDef relationships. The Fedora

repository defines the Basic Service Definition which are the Operations shared by all objects

(e.g. a function that provides direct access to the datastreams).

Service deployment (SDep) object is a special type of control object that describes how a specific

repository will deliver the Service Operations described in a Service Definition object for a class

of Data objects described in a Content Model object.
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SDef

SDep Data

CModel

hasModelisDeploymentOf isContractorOf

hasService

Figure 2.4: Fundamental content model architecture relationships.

Digital Object Relationships

Fedora digital objects can be related to each other in a variety of different ways. Digital object

relationship metadata is a way of asserting these various relationships. These metadata are encoded

in XML using the Resource Description Framework [40, 39] and stored in specially reserved datastreams

in an object. A default set of common, generic relationships for creating complex digital object

graphs is defined in the [7]. These relationships can be refined or extended as well as create whole

new arbitrary ontologies to encode relationships among Fedora digital objects tailored to specific

needs.

2.3.2 DSpace

DSpace [50] is an open-source software platform for capturing, storing, indexing, preserving, and

redistributing the digital assets of an organization. Its code-base is a joined effort by MIT and

Hewlett Packard for use on Windows and Unix/Linux platforms and is distributed under the BSD open

source license, which enables users to customize or extend the software as needed. It is written

in Java using an array of free open-source software such as PostgreSQL, JDBC, Lucene e.t.c. It

uses the CNRI Handle System [2] for assigning, managing, and resolving persistent identifiers for

digital objects, a qualified Dublin Core vocabulary derived from the Library Application Profile [5] for
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Source Target Source Target

Data CModel hasModel Identifies the class and, optionally, the object

containing a model of the essential characteris-

tics of the class.

CModel SDef hasService Identifies the object containing a model of the

functional characteristics of class members.

SDep SDef isDeploymentOf Identifies the object containing a model of the

functions being deployed.

SDep CModel isContractorOf Identifies the object containing a model of the

information being deployed.

Table 2.3: The supported relationships between fundamental object types in the CMA.

common description across all content types, the METS [9] standard for information packaging, and

a Harmony/ABC model-based mechanism for recording the history of changes within the system.

Data Model

DSpace’s information model [4] has been designed to easily adapt to the structure of the organization

on which it is deployed (see Figure 2.5 for depiction and Table 2.4 for an example). Each such site

is, thus, divided into communities and further divided into subcommunities. Communities contain

collections that can be thought of as groupings of related content. A collection may span into

several communities. Collections comprise of items that are considered the basic archival elements

of the archive. Each item is owned by one collection but may appear in others too. Items are further

subdivided into bundles of bitstreams. A bitstream is some data representation (usually ordinary

computer files). Closely related bitstreams are organized into bundles that may, optionally, have a

primary bitstream. Finally, each bitstream is associated with one bitstream format which is a consistent

way of referring to a particular file format.

Note that the model enables multiple inclusion at all levels, from communities to bitstreams.

Metadata

DSpace holds three kinds of metadata about archived content [55]:
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Community

Collection

Item

Bundle

Bitstream Bitstream Format

DC Record

Figure 2.5: The DSpace data model.

Descriptive DSpace is able to support any flat metadata schemas (e.g. Dublin Core’s Libraries

Working Group Application Profile, or other user defined schemas).

Administrative Includes preservation metadata, provenance and authorization policy data.

Structural Defines how to present either an item itself or bitstreams within an item, to an end-user,

and the relationships between constituent parts of the item.

Layer Example

Community Faculty of History and Archaeology (subcommu-

nity of UoA’s School of Philosophy)

Collection History Collection

Item Reports on Word war II

Bundle HTML Files, Digitized videos

Bitstreams a video clip

Bitstream Format H.264/MPEG4 Advanced Video Coding

Table 2.4: An illustrative example of the DSpace data model.
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Only three fields are required: title, language, and submission date, all other fields are optional. There

are additional fields for document abstracts, keywords, technical metadata and rights metadata,

among others. This metadata is displayed in the item record in DSpace, and is indexed for browsing

and searching the system (within a collection, across collections, or across communities).

2.3.3 D4Science

D4Science (the follow-up phase of Diligent) is a European e-Infrastructure project which continues

the vision of GÉANT and EGEE projects towards the realization of networked, grid-based, and data-

centric e-Infrastructures that accelerate multidisciplinary research by overcoming barriers related to

heterogeneity, sustainability and scalability [3]. This requires, among many others, the support of a

disciplinary repository that can effectively handle and preserve digital content. D4Science’s Content

and Storage Management services have to bear this weight and the following is a quick discussion

of the information model that supports them.

D4Science’s information model comprises two elementary constructs (see Figure 2.6 for an Entity-

Relationship model depiction):

• information objects, and

• object references

Reference 

Info-Object 

Property 
has 

references 

with 

Name 

has 

from 

to 

(0,n) 

(0,n) (1,1) (1,n) 

Value 

OID 

Type 

Name 

Primary 

role 

Secondary 

role 

(0,n) 

(0,n) 

(0,n) 

(0,n) 

content 

Position 

Figure 2.6: ER model for D4S’ information model.
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Information object model

The information object represents the elementary information unit. It is described by some key

properties, namely: i) object identification (OID), ii) name, and iii) type (document collection,

aggregate, metadata, external document e.t.c.) . It can be annotated by a number of additional

custom properties and can be associated with raw content. Complex metadata can be represented

as information objects that are associated with the object they describe via appropriate relationships.

Relationship Model

An object reference is a link that associates two information objects. It supports directed m − n

relationships. There is the ability to label object references with a two-level type attribute in terms of

primary role:secondary role. The secondary role is optional and is used for further type

specialisation. For example is-member-of type reference indicates that the source object is a

member of the collection target, or is-described-by indicates that the target takes the role of

metadata for the source object and therefore describes the source. As an example of a secondary

role is-described-by:is-annotated-by indicates that the target takes a more specific

role than before, that of an annotation, which has slightly different semantics from metadata in

D4Science (see figure 2.7).

Figure 2.7: The basic relationship model in D4S.

The dependency notion among relationships and sources (targets) means the existence of the later

depends on the existence of at least one target (source). Also a relationship is called exclusive if it

associates its source (target) to exactly one target (source), otherwise it is called repeatable.
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Document Model

A document is a compound information object. It consists of information objects linked together via

appropriate relationships (e.g. HTML page with its images). A document can exist only as a part of a

collection.

Collection Model

Collections are the basic data structure used to organize content inside the information organization

services of D4S, by aggregating documents. Members of a collection share enough similarities to

be homogeneously processed. It is described by a Collection identifier, for easy reference, and a

number of specific properties. Moreover, collections can be nested, which means complex networks

of interconnected information can be easily structured, static if objects are added and deleted

explicitly or virtual if current members are determined dynamically at access time through declarative

membership predicates.

Metadata Model

It is a type of relationship with primary role is-described-by. It gives to targets the semantics of

metadata about the corresponding sources. The source of such type of relationship is a metadata

object for the corresponding target. The model supports both metadata objects and metadata

collections. is-described-by relationships are exclusive for their targets (a metadata object

corresponds to one object) and repeatable for their sources (an object can have an arbitrary

number of metadata objects).

Annotation Model

A secondary role is-annotated-by is applied to the primary role of is-described-by,

which gives its targets the semantics of annotations for the corresponding sources. Expected targets

for such a relationship are documents, but it is not a requirement.
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2.4 File Systems

Traditional file-systems, such as ext3/4 and ntfs, store a file as a plain stream of bytes and have

limited information about the data inside those files. Such systems provide a predefined set of simple

object metadata, mostly maintained by the operating system and held in directories and file control

blocks (e.g. inodes). In these systems apart from assigning file names, users can effectively specify

metadata by: i) creating a directory hierarchy, ii) defining file extensions, iii) encoding metadata in

the filename, iv) putting metadata as comments in the file, or v) maintaining adjunct files related to

primary data files . This approach has obvious defects and limitation. For example, take the path

grad.dit/pms515/2010/s1/ass1/913/sync.c which assigns the following attributes to

the file sync.c:

• school > graduate at Department of Informatics and Telecommunication

• course > Advanced Operating Systems

• year > 2010

• semester > 1

• studentId > M913

• assignmentNum > 1

• filename > sync

• filetype > C source

The searching capability of the above is limited, for the attributes are stored hierarchically, and

accessed via a path specification. For instance we can easily locate all student assignment

submission for a specified course, while we are unable to find all course assignments that a particular

student has submitted within a given semester.

2.4.1 Extended Attributes

A better solution is to tag files with information that describes them. This information is known as

property metadata and it adds description to plain data. This allows files to be searched is new
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ways, not previously possible such as ‘‘finding pictures having person X’’. Property metadata can be

handled by the file system either by itself, in a native manner, or through some extension.

Experimental Metadata-Enriched File Systems

Some experimental file system implementations fall into the first category, which are self described as

inherently metadata-enriched storage systems. They maintain user-defined attributes as an intrinsic

part of the file data and are capable of associating relationships among files while in the same time

provide an advanced metadata querying scheme [11, 12, 13].

Linux Extended Attributes

More down to the ground approaches fall into the second category of filesystems handling extended

attributes through an extension. All widely known filesystems from the world of free/open source and

proprietary software have an implementation of such functionality. In Linux for example, the ext2,

ext3, ext4, JFS, ReiserFS, XFS, Btrfs and OCFS2 1.6 filesystems support extended attributes (abbreviated

xattr) if the kernel is compiled with the libattr feature enabled.

Extended attributes are not widely used in user-space Linux applications, even though they are

available since kernel version 2.62.

2.4.2 Forks

In a computer filesystem, a fork is byte stream associated with a file system object. Thus, every

non-empty file must have to be associated with at least one fork. Depending on the filesystem, a file

may have one or more other associated forks, which in turn may contain primary data integral to the

file, or just metadata. The difference between forks and extended attributes, is that forks can be of

arbitrary size, possibly even larger than the file’s primary data fork.

2Beagle and Dropbox are known to be using extended attributes, though.
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Alternate Data Streams (ADSs)

NTFS introduces the notion of Alternate Data Stream (ADS). This technology allows more than one data

streams to be associated with a filename. The namespace format is filename:streamname (i.e.

Bob_Dylan_-_Like_a_Rolling_Stone.mp3:lyrics). With Windows 2000, Microsoft

started the use of ADS in NTFS to store things like author names, document tiles and image

thumbnails. Windows NT versions include the ability to use forks in the API3, but mainly they are

ignored by most programs, including Windows Explorer and the DIR command. With Service Pack 2

for Windows XP, Microsoft introduced the Attachment Execution Service that uses alternate streams

to enhance security. Extra metadata stored in ADSs may be displayed in the Windows Explorer as

extra information columns, with the help of an Active-X component that is able to identify them.

Windows Explorer copies forks and warns when the target file system does not support them, but only

counts the main fork’s size and does not list a file or folder’s streams. The DIR command has been

updated in Vista to include a switch for listing the extra forks.

Resource Forks

File system forks are associated with Apple’s Hierarchical File System (HFS). Apple’s HFS, and the

original Apple Macintosh File System (MFS), allowed a file system object to have several kinds of forks.

Data fork The actual main data.

Resource fork Designed to store non-compiled data that would be used by a GUI (i.e. localisable

text strings. However the feature was so flexible that additional uses were found, such as

dividing a word processing document into content and presentation and then storing each

part in separate forks4.

Multiple named forks One of HFS Plus’ ambitious concepts which has gone largely unused until Mac

OS 10.4 which added a partial support implementation for Apple’s extended inline attributes.

3Some command line tools can be used to create and access forks.
4As compiled software code was also stored in a resource, often applications would consist of just a resource fork and

no data fork.
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Risks in Forks

When a file system supports different forks, the applications should be aware of them, or security risks

can arise:

• The user is not aware by the presence of alternate streams since they are not listed in the file

browser nor are included in the file’s size calculation.

• Malware software is known to be able to use alternate data streams to hide its code [38].

• Data can be lost when sending files using fork-unaware channels (e.g. via the e-mail service,

or copying between file systems with no fork support5.

2.4.3 MIME Types

Modern file systems are assisted by MIME types. This is achieved by embedding in the MIME type,

metadata for the content that is actually stored on the disk. For example the popular Nautilus file

manager of the GNOME desktop environment, uses MIME types to:

• open the file in an appropriate application

• display a string that describes the type of file

• display an appropriate icon to represent the file

• display a list of other applications that can open the file

2.4.4 Desktop Search and Related Technologies

Desktop search applications (i.e. Beagle, Spotlight) take the above concept even further by

extracting data, including attributes, from files (using a file-format-specific filters) and indexing it. This

enables searching based on both the file’s attributes and the data in it.

5In the case of the two file-systems being fork-aware, the same must occur for the software that performs the actual

copy, as well!
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Google Desktop is a desktop search software for Linux, Mac and Windows platforms. After installation

of the software, Google Desktop completes an indexing of all the files in the computer. After the

initial indexing is completed, the software continues to index files whenever this is necessary. Google

Desktop can inherently handle several types of data from e-mails to OpenDocument, Microsoft

Office documents and several multimedia formats. Additional file types can be supported through

the use of plug-ins. Google Desktop has received extensive critisism on several issues concerning

security and user privacy infringement.

Microsoft Search also referred to as Instant search is Microsoft’s approach on desktop search tools.

Upon installation, it builds a full-text index of the files on a user’s hard drive. Searches are performed

not only on file names, but also on the content of the file. The later is provided by implementing

the IFilter interface for the corresponding file types. Once an appropriate IFilter has been

installed for a particular file format, it is then used to extract the text from that kind of files. Windows

Search by default includes handlers for common filetypes such as Excel spreadsheets, PowerPoint

presentations, HTML documents, text files, MP3 and WMA music files, JPEG images, among others.

2.4.5 Advanced File Systems

However, this still lacks the ability to handle related data, as disparate items do not have any

associations defined. For example, it is impossible to search for ‘‘the skype names of all persons who

live in Athens and each have more than 100 appearances in my photo gallery and with whom I

have had e-mail within the last week’’.

In order to leverage the above problems engineers have come up with the idea of storing data

in filesystems as files and handling annotations, relationships and other metadata inside relational

database management systems. Filesystems’ ability to efficiently store large amounts of data

combined with databases’ quering superiority, resulted in an interesting hybrid solution.

Windows Future Storage (WinFS)

Windows Future Storage (WinFS) [41, 60] was the name of a canceled Microsoft project for a data

storage and content management system that was planed to integrate into Longhorn platform of

technologies. It was based on a file-ystem and relational databases hybrid schema and designed for
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persistence and management of structured, semi-structured (e.g. images, videos) and unstructured

data. Unfortunately WinFS had weaknesses itself, such as increased design complexity, reduced

performance, and difficult to retain consistency between its two components, leading to the project’s

discontinuation. Although WinFS was put into cryogenic freeze by Microsoft in 2006 [47], some of its

components found their way into other major Microsost projects such as ADO.NET’s Entities [21] and

SQL Server’s FileStream and FileTable [23].

Architecture Overview

From an engineering viewpoint, WinFS is made up of the following layers (bottom-up approach of

figure 2.8) [46]:

Core Implements the essential functionality someone would expect from a file system (e.g. Win32

access service, acl e.t.c.).

Data Model Leverages the functionality exposed by the core to provide added value item structur-

ing, relationships and others.

Schemas Backs the reuse of information across applications.

Services Further extent the system functionality with capabilities like advanced querying or network

synchronisation.

API Exposes, programatically, the advanced features of WinFS and even leaves it open for extension.

Core WinFS

Data Model

Services Schemas

API

Win32 file 

operations,

Handlers

...

Items

Relatonships

...

Contact

E-mail

...

Synchronisation

Rules

...

Figure 2.8: The WinFS architecture layering.
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WinFS allows the manipulation of any type of information, provided that a well defined schema of

that type has already been defined. Thus any application ‘‘knows’’ how to handle the data, making

it reusable system wide. Moreover relationships can be asserted between individual data items. This

can be achieved either in an automatic inference mechanism by the system (e.g. based on the

file system hierarchy, or a file’s access control list) or explicitly by the user. This enriched information

structure enables advanced searching and accessing capabilities.

Types

WinFS recognises the types of data it stores. It does not handle them just as arbitrary bit streams like

other filesystems do, but as instances of these data types. WinFS provides four base types, namely:

• Items,

• Relationships,

• ScalarTypes, and

• NestedTypes

The fundamental building block of types is the property. An Item can have properties that can

be either a ScalarType meaning the simplest possible information units available (e.g. Integer

or a Date), or a NestedType which defines a complex information unit consisting of two or more

ScalarTypes (i.e. E-mail) (see figure 2.9). The type system closely relates to the .NET framework’s

notions of class and inheritance. You are, thus, able to create new types to be handled by WinFS

by extending an already available one. WinFS promotes data reusability by making data types

accessible to any application as well as their schemas so that the later can ‘‘read’’ the structure and

be able to access the portions of the data they are interested in without the need of extra, ad-hoc

utility programs written by the programmer.

WinFS creates tables for all defined types [61]. The fields of the type are columns in the table and

instances of the type are rows6. The database back-end allows SQL-type queries, XPATH searches

[20] as well as the use of Microsoft’s OPATH, a query language designed for handling directed

acyclic graphs [45].

6For example, for semi-structured information, structured data are all filling the table in the relational store while

unstructured are kept to a traditional persistence store.
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Contact

Item

 Name

ScalarType 

Address
NestedType

Street Name

ScalarType

Street Number

ScalarType

City

ScalarType

Figure 2.9: An example of an Item in WinFS.

Relationships

Moreover, WinFS can relate data, say an E-mail and a Contact by a From relationship. This is

done once more with the use of properties. The E-mail will contain a From property and during

access the relationship will be traversed and the related data returned. WinFS supports one-to-one

relationships as well as one-to-many between items and data. Since many items can also relate to

other items, a web of information is actually formed, creating many-to-may relationships.

Relationships are realized by extra fields that refer to a row in a different table. The schema of the

relationship specifies which tables are involved and what is the kind and the name of the relationshp

[27]. WinFS specifies three different primitive relationship types from which the programmer can
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extend:

Holding relationship specifies ownership and lifetime of the target item. When the source is removed,

the target is also removed. Because the target item can be a target for more than one holding

relationship, it is removed when all the source items have been removed.

Reference relationship provides simple linkage between two items, but each item will continue to

be stored even without the other.

Embedding relationship expresses hierarchical relationship between a parent item and a child item.

Rules

WinFS includes a mechanism for handling automatically events that have to do with items and

relationships [22]. For example if a condition concerning the attributes of two items is met, a

relationship might have to be automatically created. Rules are exposed programmatically as .NET

objects like items and relationships and thus can be extended and augmented.

30 Μουστάκας Σ. Βασίλειος



Chapter 3

A Generic Information Model

3.1 Information Model

An information model is the conceptual foundation of any data manipulating system. It identifies the

basic entities and defines a set of rules among them in order to support, in a systematic way, the

representation of the information within a system, enforcing the functionality is meant to expose. It

must be relatively simple, in order to be easily applicable, but in the same time sufficiently expressive

to fully back the rationale of the given operational needs as well as open to extensions for future ones.

The benefits of conceptual modeling comes from creating and preserving stability. For example,

often contents change but the application remains the same. In other occasions, is the other way

around. So, it is obvious that the content needs to be separated from any kind of restrictive context

that obstruct its preservation and thus shortens its life span.

3.2 Instantiable Entities

Our model comprises the following primitive tools:

• Information Objects,

• Relationships, and
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• Property Values

Figure 3.1 shows the graphical representations of these tools, a convention that will be followed for the

rest of this chapter. Information objects are depicted as empty cycles (Figure 3.1(a)), relationships

among information objects as links (lines) between them (Figure 3.1(b)) and property values as

rectangles (Figure 3.1(c)) that enclose a set of such values and are sticked on the corresponding

entity.

(a) An informa-

tion object.

(b) A relationship.

 X

 Y

 Z

(c) A set of propertie

values.

Figure 3.1: The information model’s inhabitants.

With these model tools at hand, the system architect has to imagine everything in terms of information

objects, relationships and property values. This creates a rich information network like the one showing

in Figure 3.2. Graph-based models are known tools in the literature for having very strong semantic

expressiveness in impressing complex conceptual concepts ‘‘in a form that is logically precise,

humanly readable, and computationally tractable’’ [51].

3.2.1 Information Objects

An information object (IO) is the entity that represents any valuable data asset in the system’s

environment.

An information object can hold:

• property values that provide meta-data information for the artifact it represents,

• relationships that outline the associations of the information object with other ones, and

• the digital content that constitutes the object, either by encapsulating the raw data or simply

preserving its reference to the storage system.
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0000001000000

 0111011010000

 1000010100010

 1111111111101

 11111110010001

 00000001101110

Figure 3.2: A graph that corresponds to some data.

Examples of information objects include, but are not limited to, an Article, a Document, a

Book with Pages, an Image, a Song etc.

3.2.2 Relationships

A relationship (R) is the entity that implements an association between two objects.

A relationship can contain property values that further enhance its semantics.

With relationships, we are able to represent complex concepts, specified by means of part-of

(e.g. hierarchical) relationships between information objects, orassociative (e.g. non-hierarchical)

relationships between information objects. Examples of such instances could be, employs

connecting an Employer with an Employee, or compiles connecting a Music Album

with a Song in its track-list.
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3.2.3 Property Values

A property value (PV) represents a value of some descriptive, technical and/or administrative

meaning.

An information object may contain property values; a relationship may contain, as well. A property

value on the other hand, cannot be described by other property values.

Property values can be dynamic, if the value of the property they represent is computed just-in-time

to reflect a constantly updated facet of the system, or static if it must be assigned and/or updated

explicitly.

3.3 Type System

Remember figure 3.2? This is a pretty looking draw, with a lot of curly geometrical shapes all over,

creating some kind of graph. This would have been a description given from anyone that is clueless of

the real context in which this representation lives. It is obvious that it actually conveys little information

to anyone other than its creator. Even for the later, it will be very difficult to understand it after some

time.

In computer science, a type system can be described as "a tractable syntactic framework for

classifying phrases according to the kinds of values they compute" [44]. According to [36], the use

of type systems yields the following essential features:

1. Provide an efficient programming error detection mechanism before runtime.

2. Serve as a data structuring tool for design and modeling.

3. Provide a sound maintenance framework.

4. Give sufficient information for optimization purposes.

Even though the above are discussed in a programming language context, the ideas are applicable

anywhere we need such features. All programming languages have to define their safe and sound

object model themselves, after all.
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3.3.1 Thinking in Types

When we say that an object is of some type, we implicitly refer to a class of objects that are described

by a certain set of properties and expose certain kinds of behaviour when interacting with other

objects of the same or other type. Having already introduced the model’s basic citizens, now there

is a need to think a little bit about the notion of a type.

Creating a type system, allows us to take advantage of the semantics of these types in order to

implement logical constraints such as, which properties and of what value type an instance of a

specific class can or must carry, or which types of information objects, a specific relationship type, is

logically sound to link together.

A type can be thought of a set of properties. Each property comprise: i) a property name, and ii) a

property value type . The later defines the kind of values this property can hold. In order to define

types we need to answer a question like ‘‘what are the essential characteristics, say, of an image?’’.

Thus, type is used to classify objects, not contain real world data or values, like shown in Figure 3.3.

x int

y string

z string

...

Type
Property

Property Name

Property Value Type

Figure 3.3: A sketch of a type comprising some property value types.

On the other hand, an instances are created by supplying values to the properties defined in their

corresponding type.
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id int

name string

encoding string

...

Image type

123456

IMG0255

jpeg

...

615243

IMG611

raw

...

654321

IMG0433

gif

...

cr
ea

te

create

create

Image type instances

Property Value

Figure 3.4: Instantiation of an Image type in three information objects.

In an object-oriented design approach another part should be added here; that of the behaviour

of some type of entities. In this work, we leave behaviour outside the discussion, since we confront

the design of this information model, primarily from the perspective of a system, providing generic

storage that has some added value over traditional persistency technologies, rather than a full-

fledged content management system.

Let us now review the problem of figure 3.2, using a simplified real-world example. Suppose we

want to map the information in a website to our model. The easiest conceptual interpretation of a

website is a multistage ‘‘assembly’’ of elementary information entities. At a first stage, a Website

can be thought of as a collection of textttWebpages. Each Webpage is by itself a container of

any combination of Text, Image, Video or Audio. Figure 3.5 depicts the above interpretation

in terms of information objects that are related to each other through associations denoting that a

Website aggregates Webpages.
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website

webpage

webpage

aggregates

aggregates

webpage

webpage

aggregates

aggregates

.
.
.

 RelPath

 #items

 HasExternalLinks

 Url

 Description

 BasicCharEnc

 Order#

 isCached

(a) The Website aggregates Webpages.

contains

 Order#
webpage

text

image

video

containscontains

 Url

 Description

 BasicCharEnc

 IsCompressed

 Device

hires thumb

gr

en

has-representation

has-representation

has-representation

has-representation

(b) A Webpage close up.

Figure 3.5: A simplified website representation using our typed information model.
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Note how much more information is conveyed by this new graph. We can, now, easily distinguish

those information objects that are webpages and those that are videos or text. All webpage

information objects have property values that are not unknown sequences of bits any more. They

denote a relative path under the website or a boolean value that says if it contains links that point

outside of the webserver. Relationships are also differentiated. Aggregations for example do not have

an order number which means the order in which we aggregate information objects is insignificant.

Also being arrows, instead of simple lines, relationship depict the flow of association, specifying which

of the linked information objects is the source and which the target.

3.3.2 Information Object Types

An information object type (IOT) defines and describes classes of information objects with respect to

their attributes and interaction with other elements.

It can be be a subclass of one or more parent types, thus implementing a multiple inheritance

hierarchical information object type system.

We apply rules, namely:

• property rules, and

• relationship rules.

3.3.3 Relationship Types

A relationship type (RT) defines and describes classes of relationship objects with respect to their

attributes and the interaction they have with linking information objects.

A relationship type can be a subclass of one or more parent types, thus implementing a multiple

inheritance hierarchical relationship object type system.

Relationship types are called directed if they involve a semantically clear flow of information from

an explicitly defined source information object to an explicitly defined target information object. The
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part, that an information object type plays in a relationship (whether it is the source or the target), is

referred to as its role.

A relationship type can also be either loose or tight. In the first case, the relationship instance can

continue to exist if one of the connected objects is deleted. The second type is further subdivided

into cascaded-deletion and deny-deletion, where deletes are cascaded all the way down the

relationship chain or denied to be performed, respectively. For example an is-aggregated-by

relationship is tight with deny-deletion on its target in order to enforce the behaviour that an object

is deleted only if it is deleted from all the aggregations that it takes part. Further such behaviour, for

tight relationships, can be added in a system’s business logic if it is needed. For instance another tight

relationship could dictate that if it is established then none of the participants is allowed to change

(e.g. the relationship between an invoice and the corresponding bank transaction for its payment).

We define the following sets of rules:

• property rules,

• role rules, and

• multiplicity rules

3.3.4 Rules

Types, as we have already mentioned, are tools used to define a family of objects that share the

same properties and interactive behaviour with other objects inside the context of our system. For

example, to have a valid Image instance, there should be a mandatory property, named mime

storing the MIME type of the payload it conveys, or a Thumbnail Image should also have

some restriction in resolution. Moreover, we could need to ban objects from participating in specific

relationships, because for example a File cannot be the source of a contains relationship or

we could narrow the accepted types of participants in a relationship, because a Collection

object should aggregates 0..n other objects, or a JPEG Collection should aggregates

0..n other JPEG objects.

A rule is the mechanism we propose here in order to specify such policies and later enforce them

into the system. We define three kinds of rules, namely: i) property, ii) relationship, and iii) role rules.
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Property rules can be applied to either entity type (information object type or relationship type) and

define the set of properties the entity type can or must have and their corresponding property

value types.

pr 1. The entity can have the specified property name.

(i.e. an Image object can have a property application to be able to store the

application name with which the image has been created).

pr 2. The entity must have the specified property name.

pr 3. The entity must not have the specified property name.

pr 4. The entity has the specified property name which can have the specified property value

type.

pr 5. The entity has the specified property name which must have the specified property value

type.

pr 6. The entity has the specified property name which must not have the specified property

value type.

pr 7. The entity has the specified property name which can have the specified property value

type with the specified property value.

pr 8. The entity has the specified property name which must have the specified property value

type with the specified property value.

(A JPEG Image object has a property mime-type of string type and value

image/jpeg).

pr 9. The entity has the specified property name which must not have the specified property

value type with the specified property value.

pr 10. The entity can have a property name with the specified property value type.

pr 11. The entity must have a property name with the specified property value type.

pr 12. The entity must not have a property name with the specified property value type.

Relationship rules can be applied to any information object type to define in which relationship

types can it participate in. Its role is left to be determined using the role rules found within the

corresponding relationship types.

rer 1. The information object type can particite in the specified relationship type.

rer 2. The information object type must particite in the specified relationship type.

40 Μουστάκας Σ. Βασίλειος



Model for Digital Content Definition and Representation

rer 3. The information object type must not particite in the specified relationship type.

Role rules can be applied to any relationship type and define which information object types are

valid sources or targets for it1:

ror 1. The relationship type can link the specified information object type either as source or

target.

ror 2. The relationship type can link the specified information object type as a source.

ror 3. The relationship type can link the specified information object type as a target.

ror 4. The relationship type can link the specified information object type X as a source if the

target is of information object type Y.

ror 5. The relationship type can link the specified information object type X as a target if the

source is of information object type Y.

ror 6. The relationship type must link the specified information object type either as source or

target.

ror 7. The relationship type must link the specified information object type as a source.

ror 8. The relationship type must link the specified information object type as a target.

ror 9. The relationship type must link the specified information object type X as a source if the

target is of information object type Y.

ror 10. The relationship type must link the specified information object type X as a target if the

source is of information object type Y.

ror 11. The relationship type must not link the specified information object type either as source

or target.

ror 12. The relationship type must not link the specified information object type as a source.

ror 13. The relationship type must not link the specified information object type as a target.

ror 14. The relationship type must not link the specified information object type X as a source

if the target is of information object type Y.

ror 15. The relationship type must not link the specified information object type X as a target if

the source is of information object type Y.

Multiplicity rules can be applied to any relationship type:

1If we need to have a directed relationship type and thus explicitly define the source and the target.
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mr 1. (source, target) The relationship is exclusive on its source (target) and can be related to

exactly one target (source).

mr 2. (*, target) The relationship is repeatable on its target2.

mr 3. (source, *) The relationship is repeatable on its source.

mr 4. (*, *) The relationship is repeatable system-wide.

There is an obvious redundancy between relationship rules and role rules. It lies on the fact that we

define the same thing in two different places. In a relationship rule, for example, we can specify in

which relationship types the container information object type is allowed to participate while in a role

rule we specify which information object types act as source or target in the container relationship

type. This redundancy can be prone to conflicting relationship and role rules but allows ease of

definition and leaves the system architect free to decide for the resolving mechanism that will be

used3.

3.3.5 Property Value Types

Property values are not exactly an integral part of the object model we propose. It can be thought

of as ‘‘quick’’ meta-data for the system. No hierarchy is assumed in this model for Property Value

Types. They can be one of the following primitive types:

• boolean

• double

• float

• integer

• long

or of the non-primitive type

2An is-aggregated-by relationship is repeatable to its target if we assume that an object can be a member of

more than one aggregation.
3A resolving decision could be that role rules (since they are defined in the relationship type itself) are more important

so conflicting relationship rules are ignored.
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• string

Structures, introduce difficulties such as the unclear ordering semantics they provide. For example,

ordering a collection of arbitrarily sized images by their widthxheight pixel size properties, is actually

not a straightforward process.

Property assignment is a safe approach since storage properties are more static and not so volatile.

Such assignment will probably be hard-coded inside implementing classes.

3.4 Evaluating the Information Model

Here we quickly discuss, the ability of the information model we just proposed to map to other models

we review in Chapter 2. Thus, one representative from each category of approaches was taken in

order to show how its basic notions and structures can be replicated in order to be represented by

our model.

3.4.1 OAI-ORE

We chose OAI-ORE as the representative of generic models of Section 2.2 for its brevity, clear target

and its emerging influence among the the various Semantic Web technologies.

The mapping of OAI-ORE to our model is quite straight-forward. The notion of an aggregation is

similar to that of a collection so we can represent it as a complex information object that does not

encapsulate any content by itself. It collects other information objects that contain the content via

typed aggregates relationships.

These later objects are themselves a type of Resource in the OAI-ORE model. We can associate

them with content, either by encapsulation of raw content within the object or applying a specially

typed relationship.

Resource maps as well as Proxies are also special types of Resources in the ORE model, so we can

map them easily as specially typed information objects.
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Last, the relationship typing system we have introduced, is capable of creating any semantic

representation we need for relationships defined by the OAI-ORE system such as ore:describes

or ore:aggregates or any that is used by it such as dc:modified or dc:created.

3.4.2 D4Science

The D4Science’s gCube information model presented in Section 2.3 among other repository imple-

mentations is used here because it is very similar to our model and is collection-oriented as OAI-ORE

following the dictates of this Semantic Web for easy access of content and metadata.

The information object, document and collection models of GCube can be represented with our

tools as simple and compound information objects. Document and Collection can aggregate their

constituent data via appropriate relationships whose semantics and behaviour can be easily tailored

to the specific needs by implementing and extending types of relationships.

The Metadata model can be mapped either by creating information objects with assigned metadata

properties or applying is-described-by typed relationships between a primary information

object and a metadata information object. Using relationship type subtyping, relationships of

type is-annotated-by can be created be inheriting and then extending the semantics of

is-described-by typed relationships in order to enable the representation of the GCube’s

Annotation model through the use of our model.

3.4.3 A File System

In Section 2.4 we review the capabilities of contemporary file-systems that are exposed directly from

them or through some extended architecture on top. Here we first attempt to prove the capability

of our information model to map the basic file-system entities and structure and then how we could

extend them to handle more complex data.
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Strict aproach

The fundamental file system entities can be mapped easily with our model. Containers and File-system

Items are identified as the most basic among them, thus a set of predefined information objects can

be offered, such as:

• Disk

• Directory

• File

creating the hierarchy depicted in figure 3.6. These objects i) statically implement the semantics of

the basic file-system notions, and ii) convey straight-forward business logic (e.g. storage handling

embedded in the code)

Filesystem ItemContainer

Disk

Directory

File

-container

1

-fsitem

0..*

Figure 3.6: Mapping a file system on our information model.

A couple of examples for relationship types could be contains for container typed objects like

Disks and Directories in order to gather file system entities (see Table 3.1) and links for implementing

simbolic links.
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Source Target

container file

container container

Table 3.1: A relationship description for contains.

Loose/variable approach

We could extend the above schema in order to enrich the expressiveness of traditional file-systems.

According to a variable implementation, the file system could be used as the storage facility for raw

contant as well as for some of the basic properties it can handle itself. This could depend on the

capabilities of the underlying technology. Extra data of structured information could be stored either

on a small backing RDBMS or even serialized on the file-system in a fast and inteligent way in order

to be easily retrieved so that the system could deserialize the complex information object. Another

key issue is to store these metadata in a comprehensive way for other applications in order to enable

easy exchange of information independently of our API.
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Chapter 4

Meta S+0R3 A Reference Storage Architecture

4.1 Vision

The greater vision behind this thesis work, is to create a full system storage architecture that will

be based on the information model we propose and describe in Chapter 3, in order to achieve a

twofold purpose.

• Enable the homogenisation of the storage technologies available in underlying persistency

layers.

• Elevate the capabilities of underlying storage architectures to reach the expressive richness

our information model is capable to deliver.

We propose and describe here, in this Chapter, a reference system architecture for storage we call

Meta S+0R3 (read: meta store), yielding the above essential features, that target modern applications

which require full and efficient manipulation of complex information entities.
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4.2 Proof of Concept

Using traditional storage architectures, such as common disk arrays and other, more advanced, data

management systems, like relational database management systems, can yield some very important

positive effects. Their simple installation, straight forward configuration and relatively cheap cost

per gigabyte for storage hardware, all lead to very good capacity scaling. Subvened by modern

approaches in data modeling (i.e column stores) and processing (i.e. map-reduce) this vast number

of byte streams can efficiently be handled and manipulated according to each need. All these, with

the additional ensurance provided by the maturity of those systems, which are exhaustively tested in

diverse application domains and environments. Unfortunately, this maturity comes from the fact that

these technologies belong to an older generation, that has not been equipped with tools, to cope

with the needs created by the contemporary Information Society we currently live in. Thus, we find

poor handling of metadata enriched representation, ineffective data organisation and inefficient

search mechanisms.

On the other hand, recent approaches, particularly from the world of digital preservation, allowed

the world to store and retrieve enriched representations of previously plain data that conveyed

much more extensive semantic information than before and thus more accurately imitating the

complex intellectual endeavours of mankind. This way information retrieval has been made more

sophisticated and thus more efficient and accurate. However, many times, specific operational

environments and application domains have been targeted thus making them difficult to configure

for other application cases, if not unable at all. Moreover, license restrictions are also common to

such huge software applications meaning that they are closed platforms themselves or tied to some

proprietary software or hardware dependency (e.g the storage technology).

The pros and cons of the above paths look complementary. Why not try to fuse them together,

then? This way we could try to overcome each others’ negative aspects by using and enforcing their

positive elements and practices.

The rationale is to create an architectural layer that would

• homogenise several models,

• aggregate plain storages, data management and content management systems to provide

a unified resource pool,
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• be released from the shackles of specific underlying storage infrastructure,

• augment the expressiveness of traditional (robust and mature) persistency layers

• leverage and homogenize diverse storage capacities and capabilities

4.3 Architectural Description

The block diagram of the architecture is depicted in Figure 4.1. The Meta S+0R3 architecture consists

of three basic modules: i) a global reference point, ii) a management layer, and iii) an adapting

layer . Additionally, there is the the persistency layer, which is part of the architecture but outside its

main functinal modules

Following, is a top-down elaboration on each of the consistuents of the architecture.

4.3.1 Storage Pool

A very important observation on Figure 4.1 is that the actual storage layer, the storage pool, is outside

Meta S+0R3, depicting the intention to use the storage infrastructure as is, without performing any

kind of ad-hoc implementation at this level, or requiring anything to change to some proprietary or

specific technology. This way storage systems retain their autonomy by securing that data reach this

part with constructs that are understandable by the given persistence technology (e.g. a HDFS or a

Grid FTP). Additionally, this openness means that other applications, outside our system’s border, that

have a clear understanding of the semantics of the information persisted, are able to benefit from it

by using them on their own.

Several storage options can be available

• traditional file-systems

• relational database management systems

• other types of storages (repositories etc)
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4.3.2 Adapting Layer

We could just use the expressiveness of any storage technology available, but this does not give any

added value to a system. The need is to enable the storage of enriched information structures. The

adapting layer is a software layer on top of the storage that helps to achieve the basic goals of the

architecture, namely i) homogenizing storage technologies, and ii) extend their expressiveness.

Some storage systems are more expressive than others. Using the proposed typesystem, we can

leverage and homogenise diverse storage capacities and capabilities.

Any lacking functionality could be added explicitly by the corresponding adapter for the specific

underlying storage. To achieve this, the adapter can have

• its own storage space beside it (for example a RDBMS) in order to save any additional data the

system has to handle but cannot be directly stored with constructs offered by the underlying

layer, and

• a set of norms, that dictate how things are treated below the adapter.

The first is shown in Figure 4.1 as local x-data while the second as adapter ruleset. An example of a

local x-data entity could be an RDBMS. An adapter ruleset can contain rules dictating, for example,

that extra metadata are encoded in a XML file using a specific nomenclature and this file is put into

a hidden folder besides the raw content named .metadata.

Depending on the functionality that is given to us, inherently, by the underlying technology, as well

as the expressiveness we want to expose, this extra software layer can be either extensive, small or

be absent altogether.

The adapting layer should expose, at least, a basic local API that is able to handle the information

in the corresponding storage technology. In the background, the adapter will use the mechanisms

described earlier in order to ingest and then be able to expose enriched data without the caller

needing to know how the data were restated and then restructured to be returned.
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4.3.3 Management Layer

The model that is exposed by the adapting layer can be lifted even more with a management layer.

Since the system independently stores information regardless of the actual underlying persistency

technology, this layer could provide us with additional added value services. If we can ‘‘speak’’

the model of one of them, the homogenization feature actually enables us to to do it the same

way for all, transparently to the application requesting a content service. This creates a space that

connects the individual storage elements, all together. We can then map one to another. Can this

be done directly? If it cannot be done perfectly, is there a possible way to downgrade the content

somehow, to fit the target storage, in order to process the content and then bring it back again,

without losing any of the expressiveness needed by the application? These are questions answered

by the management layer.

The main component of this layer is the broker. The broker decides when and how to distribute

the data to the underlying adapting layer for specific storages. This could be a rules based broker

making decisions based on factors like:

• Capacities/capabilities with respect to our proposed information model

• Storage

• Co-location/proximity

• Performance constraints

• Application restrictions

• Replication needs

• Cost

The rules could be as simple as a routing norm. For example, an entity is due to go to a predefined

storage because of a specific metadata it carries (i.e. all documents authored by Vassilis should

be stored in a special storage entity). Or it could be more sophisticated ones, like replication and

operation in heterogeneous environments. This could be done based on the availability, the optimal

distribution of storage load or specific application restrictions. So it could, ultimately, transfer the

content to grid nodes, when they are ready to process it or transfer it along a multi-node Hadoop

cluster when mapping and reducing.

52 Μουστάκας Σ. Βασίλειος



Model for Digital Content Definition and Representation

The broker needs to have a clear view of the potential of the underlying capabilities and exploit

them, in order to make the right decisions. To do this, it needs to have some kind of resource model

in order to know what lies beneath it, and some implementation specific global extra data needed

to take advantage of the resource model in the best, most efficient way possible. For instance,

norms defining the steps and/or any transformations needed to be performed in order to go from

one storage to another. Thus, when a data entity arrives for storage, and is simple enough to be

digested by an ext4 file-system, then this is the destination the broker can choose. Otherwise, if the

information conveyed is more complex, then another storage is searched, either being inherently

capable of storing such complex data or is enabled by our adapter implementation.

Moreover, additional mechanisms could be added at this level, such as security or access policies

for the distribution of content across the storage pool.

4.3.4 Global Reference Point

The services of the Meta S+0R3 architecture are made available through a global reference point.

This component exposes an API similar to that exposed in the adapting layer augmented with

policies, which might be instructions for the management layer on how to treat a specific call. Also it

might have additional methods for the system’s introspection which are not significant to the model,

or the system’s definition. For example, registering extra repositories or defining brokerage rules etc.

The global reference point may also backed by other mechanisms such as security.

4.4 Basic API

In this section we propose a basic application programming interface for the Meta S+0R3 architecture.

It is, for the time being, a non-object-oriented API. Both API’s from the global reference point and the

adapter layer are similar. The extra functionality foung in the former is that it gets a set of additional

policies of how the call is to be treated by the management layer.
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4.4.1 Aceess and Retreive

This part of the API is to perform basic access and retrieve calls.

createInformationObject() creates an information object.

storeInformationObject() persists the Information Object to the storage.

locateInformationObjects() returns an array of object GUIDs by taking as input a set of

requirements (e.g. the type, properties carrying, name.

retrieveInformationObject() takes a GUID and returns an Information Ooject.

retrieveCompleteInformationObject() takes a GUID and a set of requirements (i.e.

relationship navigation termination rules) and returnes a complete graph of an Information

Object

removeInformationObject() takes a GUID and removes the corresponding Information

Object from the storage.

getInformationObjectProperties() takes the GUID of an Information Object and

returns an array with its assigned properties.

setInformationObjectPayload() takes the GUID of an Information Object along with a

pointer to raw content and the later is assigned to the former.

getInformationObjectPayload() takes a GUID and returns a pointer to raw content if

available.

getInformationObjectRelationships() takes the GUID of an Information Object and

returns an array of the Relationships it is associated with.

createRelationship() creates a new Relationship.

storeRelationship() persists the Relationship

retrieveRelationship() takes a GUID and returnes a Relationship.

removeRelationship() deleted the Relationship with the given GUID for the storage.
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getRelationshipProperties() takes the GUID of a Relationship and returns an array with

its assigned properties.

setProperty() takes the GUID of the entity and the property name and assigns the given value

to the property

unsetProperty() removes a property from the entity with the given GUID

retrieveProperty() takes the GUID of an entity and returns the value of the given property.

4.4.2 Data Defintion

A portion of the API is for creating and manipulating types. We call it a Data Definition Langueage

(DDL). Not every member of the adapting layer is obliged to conform or support it. On the contrary,

some adapter implementations could require that DDL is disabled, either completely, exposing a

‘‘read-only’’ model were you instantiate objects from a predefined set of types, or partially, if it is

allowed to create types only by extending this set.

loadTypes() loads the available system types.

createType() creates a new type.

storeType() stores a type.

retrieveType() gets a type.

destroyType() destroys an type.
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Chapter 5

Conclusion

5.1 Contribution and Future work

Management of data has never been a tougher challenge. Its volume and complexity might pose

great obstacles in securing its preservation and enabling its efficient manipulation. We live in the era

where the one with the real advantage is not he who just has access to the information but the one

capable of effectively search in it to find what he really wants.

In the introductory chapter of this thesis, we have set two main objectives for this work. One, to

define a generic yet sufficiently expressive information model for rich content representation and

two, propose the outline of a storage system architecture with the twofold purpose of enabling

the homogenisation of diverse storage technologies and elevating the capabilities of storage

architectures to reach the rich expressiveness of our proposed information model.

We started pursuing the above goals with a review of the work found in the respective literature,

where we observed, that in the last decade, a big change of focus is carried out in the world of

storage technologies. From a raw capacity hardware competition, to a more sophisticated software

information management systems that are able to handle enriched data representations.

During, this study, we were able to pinpoint the weaknesses and inabilities of the state of the art

to support our intended functionality. Thus, we proposed an information model for digital content

definition and representation. The model comprise information objects and relationships as well
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as property values. The backing of a type system, further refines our model’s capabilities and

promotes reusability. Types grant the definitions of a class of information objects or relationships,

comprised of a set of common specifications we called rules. Every instance of that type then, must

automatically conform to the type’s specifications such as i) contain similar metadata and digital

content, ii) participate in the same relationships, and iii) expose uniform behaviour .

We, then, proposed a reference architecture for storage that uses the aforementioned information

model to promote a system that homogenises several models, aggregates diverse storage capacities

and capabilities into a common resource pool and administers the distribution of the content

along underlying storage. The architecture’s most notable feature regarding the physical storage

requirements is that it can exploit already installed and configured infrastructures, as they are. This

is, obviously, cost effective, but also promotes openness for interoperability with applications and

systems outside our ecosystem. The proposed architectures comprises three layers. The adapting layer

that is bound to the underlying storage technology it serves and is responsible of mapping all or part

of our model using constructs available to the underlying storage. The management layer, exploits

the underlying adapting layer, to leverage the homogenisation of the diverse storages available. That

way, added value services could be implemented through some brokerage mechanism that could

route information along the storage pool, based on factors like cost, storage capabilities or even

application restrictions. Last but not least, the global reference point, that implements a generic but

powerful API, offering overlying client applications, transparent access to a unified storage resource

pool, capable of effective and efficient handling of user-defined, complex information structures.

For the future, there has to be a concrete implementation of the architecture since larger scale

application of our information model will, certainly, bring up weaknesses it may have, most probably

on resolving constraints for rules in a free of conflict manner. Additional difficulty in that part,

might also come from multiple inheritance as well. Another important point is to solve problems of

processing speed and browsing the model, which are analogous to problems of RDF processing.

As for the architecture services, we have not mentioned anything about lookup and retrieval.

Defining some quering scheme is a tough undertaking since it implicitly concerns other important

and sophisticated functionality such as indexing, content and metadata transformation, query

optimisation, caching, to name just a few of them.

As far as this thesis work is concerned, the objectives have been met. The fruitful discussion of the work

to be done proves nothing else but the fact that we achieved to begin a foundation of research

and development for a system that sets a common ground for interoperability of content, storage,
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data and information management systems that ultimately expose their content to other services. In

this manner, the work been done here can only act as a starting point for further observation and

contemplation and feel confident that the potential of the idea is to support both useful technical

skills and knowledge as well as produce high quality research matter.
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Appendix A

Model Implementation

A.1 Introduction

In Chapter 3 we introduced our information model; a model for defining and representing rich

information hierarchies. Here, we elaborate on a first prototype design and implementation of this

model. Our intention was to focus on some basic features that scribe a course for an efficient and

extensible software design. The implementation, for this reason, is neither thoroughly tested and

debugged nor complete feature-wise.

A.2 Code Structure

The code to be discussed in this Appendix, can be found in the optical disc that accompanies this

thesis report. It is written in Java and tested on a Java Runtime Environment version 1.6 (see Listing

A.1), though there should be no problem running on any version from 1.5 or later.

Listing A.1: The JRE used (output of java -version)

java version "1.6.0_22"

OpenJDK Runtime Environment (IcedTea6 1.10.2) (6b22-1.10.2-0ubuntu1

11.04.1)

OpenJDK Server VM (build 20.0-b11, mixed mode)
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The source files come organised in Java packages as shown in Listing A.2.

Listing A.2: The gr.uoa.di.madgik.content.model package organisation.)

gr.uoa.di.madgik.content.model

-- exceptions

-- instance

-- pvalue

-- type

-- util

A small description of the gr.uoa.di.madgik.content.model package and its underlying

hierarchy is summarised in the following.

gr.uoa.di.madgik.content.model is the root package. Additionally includes model-

wide basic classes.

gr.uoa.di.madgik.content.model.exceptions organises the model’s exception classes.

gr.uoa.di.madgik.content.model.instance holds the classes that represent the

model’s instantiable entities.

gr.uoa.di.madgik.content.model.pvalue includes classes implementing wrappers

for values of primitive Java types and their corresponding class equivalents.

gr.uoa.di.madgik.content.model.type organises the model’s type system implemen-

tation classes

gr.uoa.di.madgik.content.model.util includes a utility class.

For the reader’s convenience the code is extensively documented with both inline comments as well

as Javadoc. For easy access of the later, there is a generated Javadoc HTML hierarchy under the

doc folder in the optical disc which provides quick, hyperlinked access to class documentation, that

may prove useful companion for the rest of this Appendix.
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A.3 Types

Let us begin with the types. As already mentioned, a type system enhances our model’As capabilities

and promotes reusability, so it is a very important aspect of our information model. What types actually

do is grant the definitions of a class of similar entities. What defines these ‘‘minimum similarities’’,

in our world, is the metadata an information object or relationship can carry, the relationships in

which an information object can participate or the types of information objects a relationship can

link together.

As you can observe, there is a common part for both information object types and relationship types

as well as distinctive portions of what we called ‘‘similarity’’. Our first attempt was to find the greatest

common denominator for both, in order to extract an interface of behaviour that is mutual to any

kind of type. This resulted in a Type interface which, for example, defines access methods to a set

of allowed properties. What determines, an allowed property is the combination of a property name

and property value type (not the actual value). Additionally, any type might have zero, one, or more

types from which it inherits. This means the interface should expose additional methods for accessing

this array of supertypes as well as manipulating inherited behaviour1. Moreover a type can be either

final if we want to forbid other types from inheriting from it or abstract if we want to prohibit objects

from having it as a type unless it is extended by an other, non-abstract type.

For most of the Type’s methods, the implementation is common for both information objects and

relationships. For example how to define the set of properties they can carry and how they can

access or modify them is done exactly the same way. For this reason we created a class named

TypeDefinition to implement the Type interface. We made it abstract in order i) not to allow

direct use of this class, and ii) to free the class from the commitment of implementing the whole

interface .

The later focuses on the common behaviour part and leaves specialized implementation to

TypeDefinition subclasses. It is important to denote, that subclasses, also implement the

Type interface. In our types ‘‘realm’’, these subclasses are the InformationObjectType and

RelationshipType classes. These, implement information object and relationship specific parts

of the Type interface or additional behaviour they define on their own. In our implementation,

information object types hold a collection of allowed relationships and relationship types hold a

1At this point we have implemented a property inheritance mechanism which employs a naive conflict resolving

tactic where if a type’s property name is found on a parent as well, then the later is ignored whatsoever (which of course

can and should be enhanced in subsequent implementation efforts.
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collection of allowed source type - target type pairs.

Figure A.1 depicts the inheritance relationships among type classes, which we discussed earlier.

Note that even though we make InformationObjectTypes and RelationshipTypes

extend TypeDefinition we make them conform to the Type interface in order to preserve the

behaviour and later take advantage of subtyping semantics of Java.

©LQWHUIDFHª

Type

©LPSOHPHQWDWLRQ�FODVVª

TypeDefinition

©LPSOHPHQWDWLRQ�FODVVª

InformationObjectType
©LPSOHPHQWDWLRQ�FODVVª

RelationshipType

©H[WHQGVª ©H[WHQGVª

Figure A.1: Inheritance relationships among type classes.

Property value types do not provide any dynamic tools for type manipulation. There is a set of eleven

primitive value types which can be used as primitives, without changing them. This special type is

realised through an enumeration which is presented in Figure A.2.

+BooleanClass

+BooleanPrimitive

+DoubleClass

+DoublePrimitive

+FloatClass

+FloatPrimitive

+IntegerClass

+IntegerPrimitive

+LongClass

+LongPrimitive

+StringClass

©HQXPHUDWLRQª

PropertyValueType

Figure A.2: The property value type implementation.
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A.3.1 Type Serialisation

Information object types and relationship types are specifications of the structure and the behaviour

of a group of entities, information objects and relationships, respectively. Such specifications can be

expressed in XML format. The XML type definitions can then be loaded by the framework at system

start up, in order to be later used as type during runtime. The system then is able to treat an individual

object as being an instance of its type, automatically complying with that type’s specifications.

Example Scenario

For example, consider a paradigm with Music Albums that compile Audio as songs and Image

as coverart.:

• Audio objects are realised in terms of some property metadata along with two versions of

the audio stream; a version containing the full stream and a version with a sample. Moreover,

a relationship rule that denotes that it can participate in compiles typed relationships.

• Image objects similarly contain some properties along with three versions of the containing

digital image; a high quality for preserving the image, a web quality for publishing the image

on the Web and a thumbnail image for thumbnail usage. Moreover, a relationship rule denotes

• Music Albums, do not contain any digital content but hold some metadata and links to

Audio for the songs and a link to Image for coverart.

Listing A.3 contains an example of the definition of an Audio type.

Listing A.3: The serialization of an Audio IOT

<?xml version="1.0" encoding="UTF-8"?>

<iot id="audio" xmlns="http://www.example.org/iot">

<label>Audio IOT</label>

<description>This IOT defines the information objects that...</

description>

<properties>

<property name="encoder" valuetype="StringClass"/>
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<property name="bit-rate" valuetype="IntegerPrimitive"/>

<property name="sample-rate" valuetype="IntegerPrimitive"/>

</properties>

<digitalcontent>

<stream id="full">

<label>Full Audio</label>

<description>The full audio used for...</description>

<mime type="audio/wav"/>

<mime type="audio/x-flac"/>

<mime type="audio/x-mp3"/>

</stream>

<stream id="sample">

<label>Sample Audio</label>

<description>The sample audio used for...</description>

<mime type="audio/mpeg"/>

<mime type="audio/vorbis"/>

<mime type="audio/x-ms-wma"/>

</stream>

</digitalcontent>

</iot>

Listing A.4: The serialization of a Song IOT

<?xml version="1.0" encoding="UTF-8"?>

<iot id="song" xmlns="http://www.example.org/iot">

<label>Song IOT</label>

<description>This IOT defines the information objects that...</

description>

<inherits>

<iot id="audio"/>

</inherits>

<properties>

<property name="title" valuetype="StringClass"/>

</properties>

<relationships>

<relationship type="compiles" rule="allowed"/>

</relationships>
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</iot>

Listing A.5: The serialization of an Image IOT

<?xml version="1.0" encoding="UTF-8"?>

<iot id="image" xmlns="http://www.example.org/iot">

<label>Image IOT</label>

<description>This IOT defines the information objects that...</

description>

<properties>

<property name="device" valuetype="StringClass" mandatory="false"/>

<property name="date-taken" valuetype="LongPrimitive" mandatory="

false"/>

</properties>

<relationships>

<relationship type="has-coverart"/>

</relationships>

<digitalcontent>

<stream id="hq">

<label>Hi Quality Image</label>

<description>The hi quality imaged used for...</description>

<mime type="image/tiff"/>

<mime type="image/jpeg"/>

</stream>

<stream id="web">

<label>Web Quality Image</label>

<description>The Web quality image for...</description>

<mime type="image/jpeg"/>

<mime type="image/gif"/>

</stream>

<stream id="thumb">

<label>Thumbnail Image</label>

<description>The thumbnail image used for...</description>

<mime type="image/gif"/>

<mime type="image/png"/>

</stream>

</digitalcontent>

Μουστάκας Σ. Βασίλειος 67



Model for Digital Content Definition and Representation

</iot>

Listing A.6: The serialization of a Music Album IOT

<?xml version="1.0" encoding="UTF-8"?>

<iot id="music-album" xmlns="http://www.example.org/iot">

<label>Music Album IOT</label>

<description>This IOT defines the information objects that...</

description>

<properties>

<property name="title" valuetype="StringClass" mandatory="false"/>

<property name="artist" valuetype="StringClass" mandatory="false"/>

<property name="composer" valuetype="StringClass" mandatory="false

"/>

<property name="genre" valuetype="StringClass" mandatory="false"/>

<property name="year" valuetype="StringClass" mandatory="false"/>

</properties>

<relationships>

<relationship type="compiles"/>

<relationship type="has-coverart"

</relationships>

</iot>

Listing A.7: The serialization of a Compiles RT

<?xml version="1.0" encoding="UTF-8"?>

<rt id="compiles" xmlns="http://www.example.org/rt">

<label>Compiles RT</label>

<description>This RT defines the relatioships denoting the compilation

of of songs by a music album</description>

<properties>

<property name="is-single" valuetype="BooleanPrimitive" mandatory="

true"/>

<property name="track-no" valuetype="IntegerPrimitive" mandatory="

true"/>
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</properties>

<roles>

<link source="music-album" target="song" multiplicity="many"/>

</roles>

</rt>

Listing A.8: The serialization of a Has Coverart RT

<?xml version="1.0" encoding="UTF-8"?>

<rt id="has-coverart" xmlns="http://www.example.org/rt">

<label>Has Cover Art RT</label>

<description>This RT defines the relatioships that...</description>

<roles>

<link source="music-album" target="image" multiplicity="one"/>

</roles>

</rt>

Such a model for songs, coverart and music albums is not universal. Keep in mind that the power

of this dynamic nature of a type system is the fact that allows the definition of arbitrary types of

information objects and relationships. For this example the designer generated the above schema

to meet the specific requirements at hand. If things change then he is free and above all able to

structure the data however fits him best.

A.4 Instances

We call instances, all the classes that are being dynamically realised inside a system that exposes our

proposed information model. These are the building blocks of the representation of semantically rich

data hierarchies. This ‘‘realm’’ comprises information objects, relationships and property values. The

simple conceptual class diagram of these notions is shown in Figure A.3.

The basic outline of this static class diagram is that we have InformationObject and
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-Properties

*

Figure A.3: The basic conceptual class diagram of the information model.

Relationship classes. They are both composed by an number (zero, one or more) of property

values2. InformationObjects and Relationships can be associated with links. The former

can play the role of either the source or the target of the relationship. Moreover, it can be the source

or the target for other relationships too. On the other hand, relationships can have only one source

and one target information objects.

Similarly to how we have handled types in our implementation, the instances have a similar class

diagram, as it is depicted in Figure A.4.

A generic Instance interface provides the common abstract behaviour of all kinds of instances,

either information objects or relationships. For example it defines an abstract method, called

getType(), which every implementing class must implement in order to return its type (see Listing

A.9).

Listing A.9: Getter of the type of an instance

public abstract Type getType();

Also, the interface provides access and manipulation methods for a map of property values. Note

that instances have property values. In order to find out which is the type of this property value then

2Note that the precise semantic meaning of a property value is being given by its corresponding property value type.
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Figure A.4: Inheritance relationships among instance classes.

the property value types of the type of this instance should be traversed to retrieve the corresponding

entry.

InstanceDefinition is an abstract class implementing part of the Instance interface.

In our implementation, it sticks only with the property values manipulation. For accessing an

instance’s type, the implementation of the getType() is written in the InformationObject

and Relationship classes, seperately. These classes encapsulate the corresponding type

reference which is of course, an (InformationObjectType for InformationObjects or

a RelationshipType for Relationships). The code realisation is a great example of the

use of Java’s covariant return type mechanism where an implementing class can narrow the return

type of an abstract method3 (see Listings A.10 and A.11.

Listing A.10: Narrowing the return type from Type to InformationObjectType

@Override

public InformationObjectType getType() {

return type;

}

3Unfortunately, this feature is not applicable for abstract method parameters.
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and

Listing A.11: Narrowing the return type from Type to RelationshipType

@Override

public RelationshipType getType() {

return type;

}

Apart from its type, an InformationObject contains a collection of the relationships in which

it participates and, if available, its binary payload (or maybe a reference to it). Relationship

specific assets include a reference to the information object which plays the role of the source and

a reference to the information object which plays the role of the target.

A more conceptual approach would omit properties as a basic elements of the model, as these

are shown in Figure A.3), abstracting them as information objects themselves, associated with

other information objects using, for example an is-property-of-like relationship. Since our

principal target is storage systems, we observed that in filesystems for instance, entities are always

accompanied by a number of cardinal storage attributes, represented as simple key-type-value

associations. Properties, thus, are not considered objects themselves but a value of some kind of

primitive data type (integer, string, boolean e.t.c). A diagram depicting association and inheritance

relationships among the PropertyValue interface and its corresponding implementing classes,

like BooleanPrimitive, is shown in Figure A.5.

A.5 Overview

An overview of the discussion of the implementation of our proposed information model is pictured

in Figure A.6. It shows both instances and types as well as property values and their inheritance

and association relationships. The short story it tells can be summarised as follows. Every instance

in the model has exactly one type while a type may have multiple instances. This type can

have zero, one or more parent supertypes through its type definition. Additionally a type can

be a supertype for many other types. A property value has exactly one property value type,

while in the opposite direction, a property value type, many values. Also, qualified associations

are realised between InstanceDefinitions and PropertyValues as well as between

TypeDefinitions and PropertyValueTypes. To be more specific, for a given combination
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Figure A.5: Association and inheritance relationships for the PropertyValue interface.

of InstanceDefinition and (property) name there can be zero or one PropertyValue.

Similarly, for a given combination of TypeDefinition and (property) name there can be zero

or one PropertyValueTypes. Qualified associations are realised in Java through the use of

classes that implement the Map interface (e.g. Hashtable<K, V>).

Last, you may have noticed in the Java code, that both instances and types extend the Element

abstract class. This is achieved through the definition classes InstanceDefinition and

TypeDefinition. The static class diagram of Figure A.7 shows the corresponding extension

relationships.

An Element class is considered a basic, model-wide entity. It is implemented by an abstract
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Figure A.6: An overview of the model’s entities and their inheritance and association relationships.

class whose role is to attach some basic features to all model citizens4, namely assign a unique

identification to the entity as well as a name and a description.

4Except from property value types and property values which, as mentioned before, are considered primitive.
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Element
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Figure A.7: Both type and instance definitions inherit from Element.
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