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Forward

Let us assume two merchants meeting in the middle of a
desert, both bearing goods. Since their profession is to trade
they try to exchange these goods.

But there appears to be a problem. Both have differ-
ent valuations of their products’ prices relative to the other
trader’s goods. As a result, they both agree to do business in
an alternative way. They start with a number of products,
each product with a fixed quantity. Then, they choose one
of the products and trade simultaneously.

After the exchange both receive a reward (a measurement
of “happiness”) depending on their evaluations. If the game
is played only once, then they would both try to maximize
their one shot payoff. On the other hand, if the game con-
tinues for more rounds, then, their intention is to explore
their options and end up with as better products as possible.

The above two interactions are completely different. The
first one is a one-shot process and is described by Game
Theory, i.e., the interactions of rational agents. There, an
agent is looking to achieve a high score by implementing in
a game only once.

On the other hand, a repeated interaction needs a new
framework. In this case, merchants have an abundance of
time to try out choices and shoot for maximization of their
long-term payoff, thus forming a learning environment. For
the description of this environment, but also for the ways

v



vi FORWARD

agents learn and adapt, we will focus on two theories, the
Multi-armed Bandits and Evolutionary Game Theory.

Figure 1: Merchants in the Desert, source: Red Sea Goverment

Merchants in Telecommunications We can treat User Equip-
ment (UE) as merchants in an unknown telecom environ-
ment, where they strive for resources. More specifically,
we are interested in the k-user Interference Channel (k-IC),
figure 2, and how a UE can modify its actions in order to
achieve better outcomes, while keeping the overall resources
fairly distributed among the UEs.

The main interest in this network is the optimization of
the interactions, regarding any of the following quantities:

• Connectivity

http://redseagov.com/English%20Site/Protoctorates.htm
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Figure 2: The n-User MIMO Interference Channel
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This environment is extremely adversarial due to the co-
existence of other UEs and, also, noise. As a result, a user
has to overcome interference from other users along with
noise in order to deliver a message. In other words, if users
want to communicate messages x the messages received at
the receiver would be y according to the following equation

y = H · x + n, (1)
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where y is the resulting vector of messages of dimension
k×1, H is the interference matrix (k×k), x is the vector of the
initial messages (k× 1) and n is the noise at each receiver,
which is assumed to be white gaussian ni ∼ N (0, 1).

One action against interference would be to treat it as
noise. But, as the users grow, interference is growing along
and, so, this solution is infeasible. Also, there are cases
when, even 2 users cannot communicate due to strong in-
terference among them, [1].

Usual approaches to the interference channel optimiza-
tion problem are:

• Cooperation in order to achieve successful precoding

• or the introduction of a central authority that can man-
age the resources of the system, such as, power and
frequency.

Precoding can be applied if users know the interference
matrix H and, then, use this knowledge to transform the
transmitted messages as follows

x′ = H−1x (2)

Thus, the problem would degenerate to a noise removal
problem. The difficulty arises when one comes to calculate
these k2 parameters, which is a task that is not easy to do,
since it requires a lot of overhead, even for a small number
of users, [2]. On top of that, if one requires the optimization
to go further and split users into channels and after perform
encoding, the problem would be even more difficult.

The second approach is based on the way cellular sys-
tems operate. Although in some cases one could appoint a
moderator to the channel, there are multitude of scenarios
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where no such moderator could be found. For example ma-
chine to machine communications form an IC which cannot
be expected to have a moderator, due to the high mobility,
e.g. in car to car communications, or the low computing
resources of Internet of Things (IoT) devices.

Another example we can consider is in an urban environ-
ment with a dense configuration of wireless routers. Each
router has to find an appropriate frequency and to adjust
the power level so as to accommodate communications in-
side the coverage area, but, also, in a way that causes as
low interference as possible. In this scenario, none of these
devices has an overview of the entire network (as happens,
for example, in a cell) so as to manage resources.

Thesis Approach

The reason we want to model interactions in telecommuni-
cations through game theory is because

• UEs can be designed with a specific rationality, which
results in

• an expected behaviour, which leads to

• favourable results.

• Resource management takes the form of a decentralised
optimization problem, which game theory has the ability
to address.

Analyzing the above a bit further, the rationality is at-
tributed to the programmable nature of the UEs.

Further, the expected behaviour stems from the utility
function, which maps outcomes from actions to payoffs.
This part will not concern us, since it is the interest of
game theory.
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Finally, a UE has to know how to learn so as to reach
a favourable result, and has to do so in a decentralized
manner. The way UEs should be designed to learn, is what
this thesis is all about.

Specifically the motivation of this work, along with the
key points that are addressed are

• How can a player adapt in an unknown environment?

• How to reach a favourable outcome?

• How learning algorithms perform compared to one an-
other?

What we try to achieve is to present methods from two
different areas that are designed to attack the same prob-
lem, although from alternative perspectives. These areas are
Multi-armed Bandits and Evolutionary Game Theory.

The theory of Multi-armed Bandits (MAB) is presented in
Chapter 1. This theory deals with regret instead of equilib-
rium, meaning that an agent adjusts his behaviour in order
to regret as less as possible in the future.

The other is Evolutionary Game Theory (EGT) presented
in Chapter 2. Unlike MAB, in EGT the equilibrium is the
main concern of the dynamics, that is how an updating rule
evolves and what are the guarantees provided regarding the
equilibrium.

Applications of Game Theoretic Optimization in Wireless Telecom-
munications.

The use of game theory in telecommunications is extended
due to the rationality inputed in the UEs. Some examples
of these applications are the following
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Cognitive Radio One of the scenarios that models agents in
a telecommunication environment is that of Cognitive Ra-
dio (CR), where the problem of Spectrum Allocation comes
into question. Examples can be found in [3–7].

Load Balancing In a cellular environment the use of Het-
nets (Heterogeneous Networks) is gaining momentum. The
idea is to introduce femtocells, e.g. Wifi routers, that could
off-load the cellular network and, thus, increase capacity.
The main issue, relevant to our approach, is the ability to
group users either in the cellular, or the wifi network so as
to increase a variable of interest.

Game-theoretic solutions have been proposed for different
scenarios of optimization for these networks. For a survey
on the various solutions proposed for HetNets see [8]. For
proposed solutions involving game theory and HetNets see,
for example, [9–11].

ARQ and HARQ The protocols of Automatic Repeat Request
(ARQ) and its variant Hybrid ARQ (HARQ) are designed to
provide error control through the transport layer by sending
an appropriate feedback. In the original protocol (ARQ) the
messages available were

• Stop-and-Wait

• Go back N

• Selective Repeat

On the other hand, hybrid ARQ is building on top of ARQ
by adding error correction coding.

Examples of game theoretic ARQ mechanisms can be
found in [12–15], while for HARQ in [16, 17].
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The interested reader can consult the the following sources
for game theoretic applications for wireless optization prob-
lems, [18–21].

Thoughts

As with many theories the concern is to start from a basic
model and move to more complex ones. This basic model
in our situation is a two person game. At first, this problem
may seem easy to solve, but in reality there is not a solution
that is optimal, i.e., reaching an equilibrium with probability
close to one, for every type game¹. That can be evidenced
if one considers the difficulty of calculating all equilibria
of a bi-matrix game. It is known that the computation
of the equilibria is PPAD, even for a 2-person game, [22].
As a result, trying to compute equilibria in a decentralized
manner should require at least the time of a direct approach.

This last comment motivates us to choose the number
of actions to be small, i.e. K ≤ 10, so as the algorithms
presented would adapt faster.

¹Game theorists have split games in so many categories (and many times in subcat-
egories) that we will not be able to cover - and not interested to do so - here. Instead,
what we want to discuss, is the various learning schemes and how they compare to
each other
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Chapter 1

Multi-Armed Bandits

Bandits is yet another area of probabilities that was inspired
by gambling, where slot machines are referred to as “one-
armed Bandits”. The initial problem was that of distributing
funds among different slots, arms from now on, where each
one returns gains from a, possibly, different and unknown
distribution to the player.

This player has two ways to determine the best strategies,
the first is exploration and the other is exploitation. As the
terms suggest, exploration is a form of sampling the avail-
able actions and their payoffs. Since payoffs are stochastic,
the higher the exploration term the better. Furthermore, by
engaging in exploitation one specifically selects the actions
that are the most promising.

An algorithm that keeps the two above balanced is the
most successful, since it is easily seen that neither explo-
ration nor exploitation should act alone.

This chapter will focus on the opaque multi-arm bandit
problem, where only one reward is received at each round.
As we have seen in Forward, a single reward can provide
valuable feedback to the transmitter. On top of that, we are
interested in communications that need as little feedback as
possible.

1



2 CHAPTER 1. MULTI-ARMED BANDITS

First and foremost, this chapter introduces the notation,
part of which will be kept the same for the Evolutionary
Game Theory chapter. Moreover, we will describe the dif-
ferent kinds of bandits. Finally, the last two sections are
concerned with two things that are required in a bandit
problem. The first is the regret, which is a measure of ei-
ther success, or failure, of a strategy and the second is the
proposed learning algorithms, which are called policies.

Notation

In this section we will present the needed notation. A ban-
dit will be assumed to have K available arms, or actions,
and the time horizon is T , which is assumed to be finite.
Although, most policies presented here have an “any-time”
counterpart we will not present them here, but the interested
reader can consult the original publications.

Bandits may receive gains from an action, presented with
gi,t ∈ [0, 1], or losses, li,t ∈ [−1, 0]. Subscript i, t denotes that
the i-th arm has yielded a gain g or a loss l at time t. In
this thesis we will concern ourselves with using only the
gains. Also, the symbol It ∈ {1, ..., K}, denotes the choice
made from the user at time t. More, a symbol frequently
used is 1It=i, where,

1It=i =

{
1, It = i

0, else
(1.1)

In addition, when computing the probability vector one
makes use of estimators which are conditioned to the gains
received. These estimators are denoted as g̃i,t. A capital
Gi,t (or G̃i,t) denotes a summation of all g’s (g̃i,t) up to time
t. Also, a recurring variable is the learning rate which is
denoted by ηt.
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Finally, each arm has a probability to be drawn, which
is time-variable and is denoted by pi,t. The bold analog of
this, pt, is the vector containing all probabilities at time t,
i.e. pt = {p1,t, p2,t, ..., pK,t}.

1.1 Bandits Preliminaries

1.1.1 Types of Bandits

Adversarial Bandits

The first appearance of this type of problems was in [26] as
an extension to the original bandits problem. In this setting
the gains are chosen from the player and its adversary si-
multaneously. A way to imagine this is through the rigged
casino problem, where the player chooses which arm to play
but an opponent keeps track of those choices and acts for
his own self interest. It is important to note that zeroing all
gains is against that interest since no one would be inter-
ested in playing in this casino. This setting is more suitable
to describe individual agents under a game theoretic envi-
ronment where each one plays, then receives a payoff and,
accordingly, adjusts his strategy.

In the literature, one can find adversarial bandits to be
called non-stochastic due to their inherent difference. This
thesis will stick to the adversarial term, since, I believe,
describes better the underlying problem.

Since we are in a game-theoretic environment the interest
of this thesis is on the adversarial setting, i.e. how bandits
interact using various Policies.
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1.1.2 Other Bandits

Stochastic Bandits

The theory of bandits was initially developed for dealing
with the uncertainty of payoffs as a result of drawing from
a set of arms. The main premise was that each arm would
output a payoff which would be i.i.d from an unknown distri-
bution. This type of bandits would later be called stochastic.

Applications of Stochastic Bandits One of the interesting prob-
lems that bandit terminology was designed to address is that
of clinical trials¹. When presented with various patients the
problem is to provide them with the most appropriate med-
ication, which, of course is not known in advance.

An area where bandits have seen tremendous application
is internet content placement. In short, the problem is to
use the limited feedback received by users to display more
relevant content, such as advertisements in a website or
news in a newspaper’s website. This variant of stochastic
bandits is called Contextual and some approaches can be
found in [27–29]

As with the adversarial bandits, the stochastic case has
its own algorithmic family which is the Upper Confidence
Bound (UCB). There are many variants in this family which
provide bounds that are, in fact better than those in the ad-
versarial setting, i.e., the exp3 algorithms. Another popular
algorithm is the Thomson sampling.

¹Although the literature is lacking extended exploration of this subject, as well as
real world applications of it, as noted in [23]
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Markovian Bandits

As the name implies the gains in this setting are a result of
Markov processes. Each arm is associated with a Markov
chain and at each round the bandit selects an arm which
yields a gain drawn from its own Markov process.

By selecting an arm one gets a payoff and, only, that arm
changes state according to a state transition probability.

Applications of Markovian Bandits The applicability of this
bandit variant is found in problems that have many possi-
ble alternatives, and each alternative is driven by its own
Markov chain. An example from telecommunications is the
area of Cognitive radios where one wants to perform dis-
tributed time-division, see, e.g. [30–32].

As it is natural, the different nature of this variant from
stochastic and adversarial bandits requires algorithms tai-
lored to that specific nature. The most popular policy used
in this setting is called index policy, or Gittin’s Index, [33],
which provide better results compared to UCB variants, see
for example [34,35].

A Note on the difference between Stochastic and Adversarial Ban-
dits

At first sight, one could consider the two settings to be
equal, or, at least to produce the same results. The main
argument against is:

Acting in the adversarial case changes the way
the environment selects gains, while in the stochas-
tic case, gains are always tied to a distribution.

As a result, we will see that algorithms designed for the ad-
versarial setting have an exploration term, which increases
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the regret, in order to make sure that any changes in the
gains can be exploited.

For the stochastic case, the main algorithm that is used
is the UCB (Upper Confidence Bound) policy², while for the
adversarial case the exp3 (Exponential weights for Explo-
ration and Exploitation) policy. The best known bounds for
UCB applied to the stochastic problem is O(

∑
i:∆i>0

logT
∆i

),
[36], with ∆i = maxj=1,...,K µj − µi, while, by applying the
exp3 at the adversarial setting, one cannot do better than
O(

√
KT lnK), as proven in [37]. Taking all these in account

we can see that algorithms designed for the stochastic case
can only yield suboptimal results as opposed to the case of
algorithms designed for these environments.

Finally, in section (1.2.3), we will present an algorithm
that requires no assumption regarding the environment, but
ensures that if the environment is stochastic then the regret
will perform close to UCB and, if not, then the algorithm
will “switch” to an exp3 algorithm.

1.1.3 Regrets

The quantity that is used in the bandits’ literature to mea-
sure the effectiveness of a learning algorithm is the regret.
The regret quantifies how worse a policy performs compared
to the optimal gain either in each round or in expectation.

A quantity appearing in the following regrets is that of
the total reward given by

GA =
T∑
t=1

gIt(t), (1.2)

or, else, the sum of the rewards received at each round.
²To be exact, from the initial UCB have stemmed many variants, so that UCB

forms an algorithmic family
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Worst-case Regret

For any set J ⊂ {j1, j2, ..., jK}T the worst-case regret is noted
as follows

Rw = GJ −GA, (1.3)

where

GJ =
T∑
t=1

gJ(t), (1.4)

or, else, the sum of the rewards if the chosen action set
would be J .

Cumulative Regret

Using the quantity GJ from the previous regret, we could
come up with Cumulative Regret, by setting

GJmax
≡ max

j

T∑
t=1

gj(t), (1.5)

The main objective of a bandit is to maximize the sum
of gains received at each round, or, else to minimize

Rn = max
i=1,...,K

n∑
t=1

gi,t −
n∑
i,t

gIt,t. (1.6)

Expected Regret By taking the expectation in 1.6 we end up
with

IERn = IE
{

max
i=1,...,K

n∑
t=1

gi,t

}
− IE

n∑
t=1

gIt,t. (1.7)
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The goal, when dealing with a cumulative reward is to
minimize Rn and, as a result, try to achieve in each round
the maximum available gain.

Pseudo-Regret

By taking the expectation before the maximum, we end up
with pseudo-regret, which is

Rn = max
i=1,...,K

IE
n∑

t=1

gi,t − IE
n∑

t=1

gIt,t. (1.8)

Pseudo-regret can be seen as a more relaxed term, com-
pared to expected regret, since one does not compare against
the best strategies, but against the best in expectation. Hav-
ing said that, some of the results will be based on this
regret since its easier to manipulate, because one observes
only one strategy in each round.

1.2 How Adversarial Bandits Adapt - Poli-
cies

In this section we will study different ways that a player
can increase the regret while providing guarantees over the
expected loss. Most part of this section is devoted to exp3
and its variants. That is due to the fact that the results
of other algorithmic families, e.g. UCB (Upper Confidence
Bound), are tailored to deal with stochastic settings.

A bandits’ formula

Before delving further into the adversarial algorithms, I feel
the need to break down the way a policy works. The se-
quence of actions a player performs are:
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1. starts from a uniform distribution for the arms,

2. draws an arm randomly according to the current dis-
tribution pt,

3. receives a gain gIt,t and updates g̃i,t ∀i ∈ {1, 2, ..., K},

4. calculates pt+1 according to g̃i,t,

5. reiterates from step 2.

Examining the above, we can see that a policy is com-
prised of two things, an update rule and an estimator. By
changing those two one can have a unique algorithm. As
we will see later on, these two are the key points in the
design of algorithms for bandits. Moreover, in this thesis
we are concerned with a gain received from just one arm,
and specifically that which was played the previous round.
Although there are scenarios where one could receive dif-
ferent kinds of feedback, e.g., the highest payoff strategy,
of the payoff of each action, e.t.c., this thesis will not be
concerned with those.

.

1.2.1 Exp3 and Variants

The exp3 algorithm (EXPloration and EXPloitation with
EXPonential weights) was first introduced in [26]. The mo-
tivation of the authors was to solve a new bandit problem³,
which they named non-stochastic, and later became known
as adversarial (see section 1.1.1). In this paper, the authors,
along with the original exp3 algorithm, propose different
variants in order to bound the regret and/or take advantage

³Compared to the already known and studied stochastic MAB problem
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of more complex environments, e.g. updating rules that use
knowledge from experts.

As we will see in the Evolutionary Dynamics (Section
2.5.4), the exp3 algorithm degenerates to logit and popula-
tion dynamics in a full information environment.

Vanilla Exp3

The original exp3 algorithm was introduced in [26] and it
was the first attempt to tackle the adversarial problem. It’s
inspiration come by the Hedge algorithm introduced in [38].

1 Choose: a non-increasing sequence of ηt, t ∈ N.
2 Set: pi,1 = 1

K
and G̃i,1 = 0, ∀i ∈ {1, ..., K}

3 for t = 2 to n do
4 Draw arm It ∼ pt;
5 for i = 1 to K do
6

g̃i,t =
gi,t
pi,t

1It=i, Compute estimated gain (1.9)

G̃i,t = G̃i,t−1 + g̃i,t, update estimated cumulative gain.
(1.10)

7 end
8 Compute pt = {p1,t, ..., pK,t}

pi,t =
exp

(
ηtG̃i,t

)
∑K

j=1 exp
(
ηtG̃j,t

) (1.11)

9 end
Algorithm 1: Original Exp3

The estimator that is used in this algorithm is an unbi-
ased estimator, meaning that the expectation on the gains
on time t is equal to the actual gain received in step t,

IEIt∼p(t){g̃(t)} = gIt(t). (1.12)
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Although this property is extremely helpful so as to bound
the sum of regrets, it allows the variance of cumulative
regret to be arbitrarily large, i.e.,

IEIt∼p(t)
{
g̃2(t)

}
=
g2It(t)

pIt
(1.13)

and, as a result, this algorithm may yield unpredictable
regrets.

Exp3.P

The exp3.P variant is an alternative to the vanilla exp3
which was proposed in [26], in order to bound the regret
with high probability and solve the problem of variance.

1 Choose: γ, β ∈ (0, 1] and ηt : ηn ≤ ηn−1,∀n ∈ {0, ..., T}
2 Set: wi(1) = exp

(
αγ
3

√
T
K

)
, ∀i ∈ {1, ..., K}

3 Set: pi,t = 1
K
, ∀i ∈ {1, 2, ..., K}

4 for t = 2 to n do
5 Draw arm It ∼ pt;
6 for i = 1 to K do
7

g̃i,t =
gIt,t1It=i + β

pi,t
(1.14)

wi(t) = wi(t− 1) exp (ηtg̃i,t) (1.15)

8 end
9 Compute pt = {p1,t, ..., pK,t}

pi,t = (1− γ)
wi(t)∑K
j=1wj(t)

+
γ

K
(1.16)

10 end
Algorithm 2: Exp3.P

The differences between the original algorithm and exp3.P
is the introduction of parameters γ and β. Parameter γ helps
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the exploration, while β creates a skewed estimation of the
gains, i.e.,

g̃i(t) =
gIt(t)1i=It + β

pi(t)
(1.17)

which can be shown (see, [39]), that with probability at least
1− δ leads to an upper bound to the real gains

T∑
t=1

gi(t) ≤
T∑
t=1

g̃i(t) +
ln
(
δ−1
)

β
(1.18)

On the other hand, parameter γ is used to create a mix-
ture of the exponential weight distribution with that of a
uniform distribution, which further promotes exploration.

Using the following values for the exp3.P algorithm

β =

√
ln (Kδ−1)

TK
, η = 0.95

√
lnK
TK

, γ = 1.05

√
K lnK
T
(1.19)

leads to, with probability at least 1− δ, the bound

RT ≤ 5.15
√
TK ln (Kδ−1) +

√
TK

lnK. (1.20)

Lower Bound on Regrets A lower bound helps to ensure that
the upper bounds that have been calculated above cannot
be improved further. A proof for this bound can be found
in [39].

inf sup
(

max
1,2,...,K

IE
T∑
t=1

yi,t − IE
T∑
t=1

yIt,t

)
≥ 1

20

√
TK (1.21)
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Variables yi,1, yi,2, ... are assumed to be i.i.d. gains and
the supremum is taken over all possible distributions of
rewards. Also, the infimum is taken over all forecasters,
which means that the upper bounds are at least of order
O
(√

TK
)
.

The role of parameter γ In the adversarial setting, where
exp3.P was introduced, the role of γ was to retain explo-
ration as an option at all times. That was understandable,
since, when one deals with an adversary whose main goal is
to return the least possible gain, the player has to reevaluate
all arms in case the adversary’s strategy has changed.

On the other hand, in a game theoretic environment,
apart from the zero-sum game, players don’t have an in-
centive to “trick” each other, but to maximize individual
payoffs. That means that an exploration parameter could be
harmful since it can potentially force a game away from an
equilibrium.

Exp3.IX

In [40], the author proposes a new variant to the exp3 algo-
rithm that achieves to bound the real regret, instead of the
pseudo-regret as was the case in previous policies. The IX
stands for Implicit eXploration, due to the removal of the
exploration term which results in an exploration of Ω(

√
KT ).

Following the logic of previous works, the exp3.IX algo-
rithm is created in order to introduce a variance-reducing
effect, by calculating the estimator with

g̃t,i =
gt,i

pt,i + γ
1It=i, (1.22)

where γ > 0 is an appropriately chosen variable.



14 CHAPTER 1. MULTI-ARMED BANDITS

1 Choose: γ ∈ (0, 1), η > 0

2 Initialize: G̃i,0 = 0, wi(1) = 1 ∀i ∈ {1, ..., K}
3 Set: pi,1 = 1

K
, ∀i ∈ {1, ..., K}

4 for t = 1 to n do
5 Draw arm It ∼ pt;
6 for i = 1 to K do
7

g̃i,t =
gIt,t1It=i

pi,t + γ
(1.23)

G̃i,t = G̃i,t−1 + g̃i,t (1.24)

8 end
9 Compute pt+1 = {p1,t+1, ..., pK,t+1}

pi,t+1 =
exp

(
ηtG̃i,t

)
∑K

j=1 exp
(
ηtG̃j,t

) (1.25)

10 end
Algorithm 3: Exp3.IX

The proposed values for the parameters η, γ are

η = 2γ =

√
2 logK
KT

(1.26)

which result in a bound of

RT = 2
√
2KT logK +

√
2KT

logK log
(
2

δ

)
+ log

(
2

δ

)
(1.27)

A remark in the exponential weighted algorithmic family. As
we have already seen, when updating probabilities, there
appears the auxiliary variable w called weight. In the lit-
erature the proposed ways to weight updating, are, either
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sequentially or by recalculating them in each round, i.e.,

wi(t+ 1) = wi(t) exp (ηg̃i) or wi(t+ 1) = exp
(
ηG̃i(t)

)
.

(1.28)
These two are equal if we assume that η is constant, but

in the case where η is time-varying, then the two update
schemes are not the same, as it can easily be seen

wi(t+ 1) ∝ exp
(

t∑
j=1

ηj g̃i(j)

)
(1.29)

wi(t+ 1) ∝ exp
(
ηt

t∑
j=1

g̃j

)
(1.30)

Although this difference is not explicitly stated in the
literature, both these update schemes are used interchange-
ably, even for the same algorithms.

1.2.2 Implicitly Normalized Forecaster

A new family of policies for the Adversarial Bandit prob-
lem is the Implicitly Normalized Forecaster (INF), presented
in [41]. INF can be seen as a generalization of the exp3
forecaster by using a generic update rule.

The main idea is to exchange the exponential function,
exp(ηg)+ γ

K , with a continuously differentiable function ψ(g),
having the following properties

ψ : R⋆
− → R⋆

+

ψ′ > 0, lim
x→∞

ψ(x) <
1

K
, lim

x→0
ψ(x) ≥ 1

(1.31)

Another change that the INF approach brings is to the
form of the estimator, which is

g̃i(t) = −1

β
log
(
1− βgi(t)

pi(t)

)
. (1.32)
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The incentive behind the estimator is that in a first order
approximation is equal to the unbiased estimator, i.e.,

K∑
i=1

g̃i,t =
pIt,t
β

log
(
1− β · gIt,t

pIt,t

)
(1.33)

= gIt,t +O
(
β · gIt,t
pIt,t

)
(1.34)

In this paper, the authors used in the place of ψ function

ψ(x) =

(
η

−x

)q

+
γ

K
(1.35)

and the resulting policy is the poly INF algorithm. Finally,
a normalization function, C, needs to be computed in each
step, which cannot be derived analytically, thus the name
of the policy, such as C : RK → R

K∑
i=1

ψ (xi − C(x)) = 1, (1.36)

where x = {x1, x2, ..., xK}.
By using the poly INF algorithm, the two regret bounds

that can be achieved are

RT ≤ 8
√
KT (1.40)

IERT ≤ 9
√
KT ln(3K). (1.41)

A very important remark that this paper makes is that the
bound of the expected regret cannot be further improved in
the case of a non-oblivious adversary.

A remark on INF’s estimator

As we have seen in eq. 1.34, the expected value of the
estimator is the received gain plus smaller terms. But a
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1 Choose: Function ψ(x), with the properties of equations 1.31
2 Initialize: G̃i,0 = 0, ∀i ∈ {1, ..., K}
3 for t = 1 to n do
4 Draw arm It ∼ pt;
5 for i = 1 to K do
6

g̃i,t = −1

β
log
(
1− β · gIt,t

pIt,t

)
(1.37)

G̃i,t = G̃i,t−1 + g̃i,t (1.38)

7 end
8 Compute: Ct = C(G̃t)
9 Compute: pt = {p1,t, ..., pK,t}

pi,t = ψ
(
G̃i,t − Ct

)
(1.39)

10 end
Algorithm 4: Poly Implicit Normalized Forecaster

calculation of its variance would reveal the same problem
as the unbiased estimator of vanilla exp3 algorithm.

Another problem that arises from the use of this estima-
tor is that the term inside the logarithm should always be
positive. That can be achieved by selecting β < γ/K, which
is the normalizing term of the update rule and, subsequently,
the lowest value of any probability. As a result, this estima-
tor’s use is limited specifically to update rules which use the
explicit exploration term, i.e., using the uniform distribution
term.
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1.2.3 Other Policies for Adversarial Bandits

Stochastic and Adversarial Optimal (SAO)

An algorithm that is designed to deal with either one of
the Stochastic or the Adversarial setting is “Stochastic and
Adversarial Optimal”, presented in [42]. The goal of this
algorithm is to match a regret of O (

√
n) in the adversarial

case, while, if the gains appear to be stochastic the regret
will grow as polylog(n).

The algorithm uses the unbiased estimator, g̃i,t =
gIt,t1

pi,t
,

and is divided in three steps, which will, for sake of sim-
plicity, be analyzed for the case of K = 2 arms. Variables
that will be used are Ccrn = 12 lnT and H, which is the time
average of G, e.g. Ĥ = 1

t Ĝ, e.t.c.
Parameter Ccrn comes from bounding a probability using

a Chernoff Bound. The interested reader is referred to [42]
for a detailed explanation.

In order for the algorithm to decide under which setting
to optimize for, the following steps are being used:

• Exploration In each time instance, the two arms are
sampled with equal probability, i.e. (12 ,

1
2) and then, the

two ending conditions are checked:

t > Ω(12 lnT ) (1.42)

|H̃1,t − H̃2,t| < 24
Ccrn√
t
. (1.43)

If any of the two is met, then the algorithm moves
to the next phase. Else, a new sampling followed by
conditions checking round is performed.

• Exploitation The algorithm enters in this phase at time
t⋆ and let us assume that, without loss of generality,
arm 1 has greater, average payoff, meaning H̃1,t⋆ > H̃2,t⋆.
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Then, samples arms with P = (1− t⋆/2t, t⋆/2t). After
each step the following conditions are checked:

8
Ccrn√
t⋆

≤ H̃1,t − H̃2,t ≤ 40
Ccrn√
t⋆

(1.44){
|H̃1,t − Ĥ1,t| ≤ 6Ccrn/

√
t

|H̃2,t − Ĥ2,t| ≤ 6Ccrn/
√
t⋆,

(1.45)

and the exploitation step is iterated as long as the above
hold.

• Adversarial If the algorithm reaches this point, then
the algorithm has decided that it is the adversarial case,
so the computing of arms’ probabilities is continued
through the exp3.P algorithm (see Algorithm 2).
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Chapter 2

Evolutionary Dynamics

Introduction

This Chapter is dedicated to a branch of Game Theory called
Evolutionary Game Theory (EGT) which studies the ways
players can change their strategies through receiving payoffs
for their chosen actions and by observation of other players’
moves.

The development of EGT was primarily to describe the
evolution of populations through interactions with other
species, [43]. A famous example was the game of hawk
and dove. In this game, there are two infinite populations,
one consisting of doves and one of hawks and each member
is assigned one of the actions available. Then, each mem-
ber of the population would interact with a member of the
other population, picked at random. After that interaction,
all members receive a payoff and according to that they,
either change their belief (action) or not. By constantly in-
teracting, species change the distribution of their population
for all actions, in such a way that would result in higher
returns in the future.

21
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EGT and Telecommunications As we have seen, the contri-
bution of game theory in telecommunication problems is in
providing the appropriate tools to model users as rational
agents constantly maximizing a specific utility function. On
the other hand, EGT is the appropriate tool to analyze the
interactions of agents, or, to put it in another way, how
users can efficiently update their beliefs so as to receive
higher payoffs as time grows.

So, according to our previous analysis, each user is one
of the different and interacting species. Each user assigns a
probability distribution to the set of available actions, which
looks as if an infinite population is split in the available
actions. After a round of receiving payoffs the population
is redistributed according to the input (payoff or observation
of other players’ moves).

A requirement of our problem is the need for decentral-
ized and non-cooperative algorithms. These two require-
ments are 1) the result of an absence of a central authority
that has knowledge of what users want and can regulate
the interactions appropriately, and 2) due to the assump-
tion that there is no way for users to exchange information
with one another, i.e., they cannot “agree” on a solution.
The only tool available to our users is the limited feedback
received so as to update their beliefs.

Finally, we will focus on evolutionary algorithms that are
discrete in time, so as to model the interactions in a realis-
tic way. Although, most dynamics have been investigated,
mostly, under a continuous framework, there is significant
research on their discrete time analogs.

Structure of this Chapter The first part of this chapter is
dedicated to the necessary notation. After that, we will
explore some simple update rules and then move to the best
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response dynamics.
Finally, the last two sections contain analysis of Smoothed

best response and the replicator dynamics.

2.1 Notation

This section will provide the necessary notation for the re-
maining of this chapter. Although there are differences in
notation between EGT and MAB in the literature, we will
try to keep things fairly relevant between these two chapters.
As a result we will use most of the notation from the pre-
vious chapter and hope it won’t be confusing or annoying
to readers who, already, have a game theoretic background.

We assume that there are two players who interact. Each
one has a set of actions of cardinality K, which is kept
the same for both, for simplicity reasons. At each time
instance a player selects an action, It, randomly from his
current distribution, pt, over the set of actions, i.e. It ∼ pt.
The two symbols p, q denote, respectively, the probabilities
of the player we are talking about and his adversary.

A player has a matrix Ui of dimensions K ×K, which is
called utility matrix and maps all possible pairs of actions
to a payoff. Specifically, if It and Jt are the two actions
played at time t, then the players would receive Ui(It, Jt)
and Uj(Jt, It). A single payoff received will be denoted by
gIt,t. It is important to note that in each utility matrix the
column player is the one that the matrix refers to.

Finally, due to the matrix formulation of the problem, we
could write the expected payoff at time t as follows

IE{Ui(t)} = pT
t Uiqt (2.1)

In what follows, we will be using two terms, which refer
to the information provided to the users. The full informa-



24 CHAPTER 2. EVOLUTIONARY DYNAMICS

tion environment and the imperfect information. The first
one means that a player is up to date with all other players’
strategies, while under imperfect information users either
keep an empirical distribution or adapt depending on the
feedback received.

Infinite Games v. Bandits with finite horizon

As we have seen, the algorithms that were proposed when
we considered the bandits’ setting include a finite time hori-
zon. That choice was made in order to simplify the presen-
tation of the algorithms, since there are modifications for
the case of an infinite time environment.

On the other hand, when dealing with the EGT formula-
tion, we will stick to the model of infinite time. In an finite
time setting players can do a backwards induction and come
up with the perfect strategy to follow, which not only de-
feats the purpose of this chapter, but, also, requires complete
knowledge of the payoff matrix. Instead, our attention will
be focused on agents who are time-unaware and adapt their
strategies towards a maximization of their expected payoff.

2.2 Simple Update Rules

In this section we will present some algorithms with simple
structure and study their efficiency through simulations.

2.2.1 Cross’ Learning Process

A simple update rule is Cross’ Learning Process, presented
in [44]. It is shown to converge to the continuous time
replicator equation in [45], under the assumption of a finite
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time horizon. An important requirement of the algorithm is
for all payoffs to be in the interval [0, 1].

In the discrete case of interest, the update rule takes the
following form

pk,t+1 = gIt,t1It=k + (1− gIt,t) · pk,t. (2.2)

The main premise in order to achieve the continuous
limit of replicator dynamics, is that a player receives payoffs
during a time interval dt, which are stochastic and, due to
the law of large numbers, the result is close to the expected
value.

The power of this result lies in the easiness of the up-
dating rule and that the underlying continuous equation is
the replicator equation, see Section 2.5.

2.2.2 Linear Reward - Inaction

Another algorithm which resembles in simplicity the one
presented in section 2.2.1, and its appearance was in [46].
It is called Linear Reward -Inaction (LR-I) and it draws its
inspiration from automata. The updating rule is

pi,t+1 = pi,t + b · gIt,t (1It=t − pi,t) , (2.3)

where b is an appropriately chosen parameter, 0 < b < 1,
and the gains are bounded, i.e., g ∈ [0, 1].

For the case of a sufficiently small b, the ODE of the
system can be calculated, which is

dpi,t
dt = f(pi,t), (2.4)

where f(pi,t) = IE {gIt,t(1− pi,t)}. By analyzing the above
ODE the following can be proven

• All pure strategies are stationary points,
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• All Nash equilibria are stationary points,

• All stationary points that are not NE are unstable,

• All pure NE are asymptotically stable,

• if the algorithm converges then this point is a NE

Finally, the authors of [46] show that a sufficient condition
for convergence to an NE under the LR-I is

∂F

∂piq
(P ) = c · hiq(P ), (2.5)

where c > 0 is a constant, F is a bounded differential func-
tion and hiq is the expected payoff of player i under the
strategy profile q.

2.2.3 Simple Models Simulations

In order to see the efficiency of the update rules presented
in this section we will simulate interactions of two players
for the two players’ problem given by the following utility
matrices

U1 =

(
1 3
4 2

)
UT
2 =

(
4 1
2 3

)
. (2.6)

which has mixed NE

p =
1

4
·
(
1
3

)
q =

1

4
·
(
1
3

)
(2.7)

The reason this game is chosen is due to the easiness
of analyzing the equilibrium, while the small number of
actions should make it simpler to reach an equilibrium. By
simulating this game we have
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Figure 2.1: Cross’ Learning
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while for the case of LRI we get

Figure 2.2: Cross’ Learning
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By taking a look at the results, we can deduce that users
under those update rules, at first do respond well to the
other player’s moves, but they move too quickly to a “safe
choice”, or, else they make the transition from exploring to
exploiting fast. This results in convergence to pure action
profiles and consequently “missing the mark”.

Another remark about the above figures is that, since
players don’t have a complete picture of the game, but only
act under the feedback they receive, learning fast makes
them susceptible to exploiting the wrong action, even in the
case of existing pure NEs.
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2.3 Best Response Dynamics

Best Response (BR) dynamics is an update rule that is based
in the premise of maximizing every strategy given the past
feedback, i.e. other player’s strategy or empirical distribu-
tion. As such, BR dynamics can be considered as a system
of “local rationality” and the main interest is whether it can
reach an equilibrium, or, even, whether it can maximize ex-
pected payoffs.

Since there could be many strategies resulting in the same
received payoff (in expectation), conditioned on the other’s
strategy, usually, BR is a set of maximizing strategies, in-
stead of a specific strategy. That means that one has to care-
fully select the next strategy profile. The BR set is formed
as follows

BR(pt) ∈ argmax
p̃

p̃Uqt, (2.8)

In a full information environment, there are two issues
with BR dynamics. First of all, when considering the case
of having a few historical data, the NE is unstable, since a
new action results in a the system to leave the equilibrium.

Secondly, if the game has evolved to an equilibrium, af-
ter many plays, and we consider a change in payoffs (since
we are interested in a dynamic environment), that change
will not be easily detected, since all players best respond to
the other players’ strategies. So, this case has two problems,
first there is the matter that users are agnostic to the pay-
offs, and only care how other players strategize. The other
problem is that since all players keep historical data, then
best responding is in reality best responding mostly to old
actions, rather than new.

Concerning the case of pure NE, the BR dynamic is re-
silient to small perturbations and, thus, a pure NE is stable
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under BR dynamics.
On the other hand, when considering an incomplete in-

formation setup, the update rule degenerates in

pi,t+1 =

{
1, if argmaxi′ U(i′, Jt)qJt,t
0 else

(2.9)

which results in missing mixed NE, but sometimes to miss
even pure NE as we will see in the following examples.

Assume the following game,

U1 =

(
1 3
4 2

)
U2 =

(
4 1
2 3

)
. (2.10)

which has mixed NE

p =
1

4
·
(
1
3

)
q =

1

4
·
(
1
3

)
(2.11)

It is easy to see that if players best respond to each other
then, on average will spend a quarter of their time receiving
each of these payoffs, which is not a NE. Even in games
where a pure NE exists, BR dynamics may not converge, if
there isn’t a special underlying structure to the game, as is
analyzed in [47].

In the following example, there is a pure NE which BR
dynamics cannot reach if the initial conditions are any com-
bination of the second and third actions of both players.

U1 =


2 0 1 1
0 1 3 0
1 4 2 1
1 0 1 10

 U2 =


2 1 0 1
0 4 1 0
1 2 3 1
1 1 0 10

 . (2.12)
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Remarks on Best Response

The problems that arise from the use of BR dynamics can
be summarized in the following

• Considering a full information environment and both
players being in an equilibrium. Then, the BR set could
contain more than one strategy and as such there is no
guarantee that a player would choose the NE strategy
indefinitely.

• If only one of the players uses a BR dynamic, his ad-
versary could easily pick his actions to trick and out-
perform the first. That is the result of the deterministic
nature of the update rule.

• Limited information settings, which have more practi-
cal applications, are prone to be suboptimal contrary to
the expectation of the NE.

• In a limited information environment, one cannot hope
to make an accurate prediction of the actual distribu-
tion of their opponent. In fact, in [48], the authors
prove that there is no predictor, which uses past ob-
servations and is asymptotically consistent. Thus, BR
cannot reach an equilibrium in all settings.

2.4 Smoothed Best Response

Although BR is proven to be a suboptimal way to interact
with other agents, many dynamics have used it in a different
way thus giving birth to Smoothed Best Response dynamics.
The main premise is to calculate the best response but act
only partially according to it.
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We can view that as using the best response as a target
and not the actual next move. As such, smoothed BR move
towards that target while a BR strategy would be to adopt
the target at all times.

2.4.1 Logit Dynamics

Logit dynamics was introduced in [50] and belongs to the
category of smoothed best reply update rules. It is extend-
ing BR dynamics with the introduction of the parameter β,
which is called the rationality level of the player. The logit
rule is

pi,t =
1

Z(t)
eβg(i,t|s

−j), (2.13)

where Z(t) is a normalizing factor and g(i, t|s−j) is the payoff
for each action i given the strategy profiles of all other
players to be s−j . That means that, instead of applying the
BR rule, a player assigns probabilities in each action given
the best response but, also, how each action is performing
contrary to the whole action set.

Regarding the parameter β the two extremes are β = 0,
where a player would select uniformly all options regard-
less of the feedback and β → ∞, when the updating rule
degenerates to the BR rule.

Properties of Logit Dynamics

Some useful properties of Logit Dynamics, which are proven
in [47], are

• They form an ergodic Markov Chain,

• Invariance under utility translation, i.e., adding or sub-
tracting does not affect the result, but
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• rescaling of the utilities changes the dynamics, since a
rescaling by α changes β to β · α

That last property of Logit dynamics along with the need to
select the proper parameter β is what makes its behaviour
different in games that are seemingly the same, or, else, we
could say that the result of the learning rule is sensitive to
the parameter β.

Association of FP and exp3

If we consider a full information setting and a population
dynamic environment, then each player updates each action
proportionally to the received gain and the up to date strat-
egy profiles of other users. Then the update rule takes the
following form

pt+1 ∝ pt · exp {β · diag[Uqt]}
∝ pt−1 · exp {β · diag[U(qt + qt−1)]}
...

∝ p0 · exp
{
β · diag[U ·

t∑
k=0

qk]

}
, (2.14)

which, if compared with the the discrete-time replicator dy-
namics are the same, see 2.5.

2.4.2 Fictitious Play

Fictitious play (FP) first appeared on [52] as a way to com-
pute the NE of a game. This learning rule is among the first
proposed in tackling the learning problem. The update rule
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for the discrete case is

pt+1 =
tpt +BRt

t+ 1
(2.15)

As we have seen in the case of BR one makes jumps
from one BR point to the next. Contrary to that, fictitious
play can be seen as a rule that updates the strategy profile
by selecting a point that lies between the current strategy
and the best response. In the first steps, the rule almost best
responses and, as time goes by, the strategy barely changes.

The problem of learning NE through Fictitious Play

In [53], the author analyzes the reasons why learning through
FP is not a sufficient condition to reach an equilibrium. The
author characterizes the result of FP, as weak convergence,
meaning that each player reaches the empirical distribution
of an equilibrium, but ends up not playing according to that
distribution. Contrary to that, a learning rule converges
strongly if, not only the player learns the empirical of an
equilibrium but, also, implements it.

As an alternative, the author of [53] proposes the fol-
lowing learning rule which is similar to FP but converges
strongly to a NE

pt+1 ∈ BRt+1(q̂t)ρt + p̂t(1− ρt) (2.16)

where ρt is a variable which satisfies limt→∞ ρi,t = 0, and ŝ
is the empirical strategy profile of s ∈ {p, q}.

The incentive of this algorithm is for players to start
playing best responses to explore the state space and, as
time goes by, to converge to their empirical distribution.
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Missed Nash Equilibria with FP

The first evidence of a missed equilibrium came by Shapley
in [54]. Shapley introduced a 3 × 3 game which did not
converge to the NE, but, instead, to a limit cycle, for some
initial conditions.

As a continuation of that, one may assume that being
close enough to a mixed equilibrium should be a sufficient
condition of convergence. This is shown to not be true
in some cases, see [53], even if the mixed equilibrium is
unique.

2.5 Replicator Dynamics

Replicator dynamics is among the most popular learning
algorithms in Evolutionary Game Theory and was first pre-
sented in [60]. The attention received is probably due to
links between human & animal learning and the replicator
equation, [61,62].

This algorithm is associated with the exp3 algorithms of
Chapter 1 as we will see in Section 2.5.2 and is designed
as a population dynamics equation, while we have already
proven the connection of RD and FP in the full information
setting.

The continuous-time version of RD is
dpi,t
dt

= pi,t
[
(Uqt)i − pT

t Uqt

]
. (2.17)

In section 2.5.2 we will prove that one can derive a discrete
time dynamic¹, which is

pi,t+1 = pi,t
exp [(Uqt)i]∑
k exp [(Uqt)k]

(2.18)

¹More precisely we will transition from the discrete time RD to continuous-time
RD
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A first examination of the replicator equation shows how
probabilities of strategies change over time. If a strategy
yields a greater payoff than the average payoff, then this
strategy grows according to how much better it fared against
the other strategies. Also, for smaller than average payoffs
those strategies get shrunk. It is easy to see that strategies
that are strictly dominated will inevitably vanish.

2.5.1 Equilibria

Taking a closer look at eq. 2.17 and 2.18 it is easy to see that
a Nash Equilibrium is a rest point for this process. In [56],
the following regarding RD and NE, are proven

• All NE are rest points of the RD.

• Pure NE are asymptotically stable.

• Every stable rest point is a NE.
Having proven the above points and with the help of RD

equation, one can come to interesting results regarding the
equilibria of games. Specifically, the authors of [56] prove
that there is at least one NE in any game and that the
number of NE appearing in a game are odd.

Breaking down a Nash Equilibrium we have strategies
(Si) that are strictly dominated and, as such, yield lower
payoff, so we assume pi,t → 0, as t → ∞. The rest should
have the same payoff, which is equal to the average payoff.
Thus, dpi

dt = 0.
Moreover, rest points for this equation, are all pure strate-

gies and if there exists a pure Nash equilibrium, then, that
is asymptotically stable.

So, if agents in a game start from a Nash Equilibrium
then, under the replicator equation they will indefinitely stay
at that point.
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2.5.2 Discrete and Continuous Dynamics

In this section we will prove that, for the full information
setting and two players the Replicator Dynamics is equiv-
alent to the update rule of exp3 algorithm. We will start
from the discrete equation and end up in the continuous
equation.

ṗ = lim
τ→0

p(t+ τ)− p(t)
τ

(2.19)

= lim
τ→0

1

τ

(
exp

{
diag(IE(U)t)τ

}
p(t)

Z(τ)
− p(t)

)
(2.20)

where, Z(τ) is the normalization factor,

Z(τ) =
n∑

k=1

exp{IE{Uk}τ ]pk.

Since the limit produces a 0
0 we have to take the De

L’Hospital rule, so we need to compute
lim
τ→0

Z(τ) = 1

and
dZ(τ)

dτ

∣∣∣∣
τ=0

=
d

dτ

[
n∑

k=1

exp{IE{Uk}τ}pk

]
τ=0

=
n∑

k=1

IE{Uk}pk

= pTUq <∞.

Applying those to (2.20), we get
ṗ = diag{IE{U}(t)}p(t)− p(t)pT (t)IE{U(t)}
= diag[Uq(t)]p(t)− p(t)pT (t)Uq(t)
= p(t)(diag[Uq(t)]− pT (t)Uq(t)) (2.21)
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Properties of Discrete and Continuous Time Dynamics

Even though we have seen that the two dynamics can be
derived from each other, when applying those dynamics in
games we expect some differences.

In [64] one can found some key points of how differently
the dynamics are changing

• Both dynamics eliminate any strictly dominated strat-
egy

• The discrete-time RD may fail to eliminate a pure strat-
egy strictly dominated only by a mixed strategy

Other discrete-time RD

Although we picked the exponential weighted equation as
the discrete time replicator dynamics, there is a more gen-
eral structure for the discrete-time case of RD, which is of
the following form,

pi,t+1 =
α+ f(ui,t)

α + f(ū)
pi,t, (2.22)

where α is an appropriately chosen variable and f a func-
tion. In our case α = 0 and f(x) = exp(ηx). Other candi-
dates for the function are f(x) = x and the INF seen in 1.2.2,
i.e. f(x) =

(
η

−x

)q
+ γ

K . For an analysis on the equivalence of
eq. 2.22 and continuous RD see [65].

2.5.3 Stability of RD

The notion of stability under the RD is crucial. There are
two ways for a game played under the RD to be stable. The
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first one is for an ESS to exist. The other is for the RD to
be permanent.

Although we have not delved into the issue of stability
of the dynamics under time delay, for the case of RD the
interested reader can consult [67–70], which, in short, show
that RD are stable under time delays.

2.5.4 Replicator Dynamics in Action

As we have seen, Replicator dynamics is played in contin-
uous time. Since our interest lies in settings with single
feedback and discrete structure, we will modify the algo-
rithm to suit those needs.

As a result, in the simulations of Chapter 4 we will use
the discrete algorithm along with the estimators found in
1.2.1. Of course, this setting has no difference than the exp3
and its variants, but this shows how the areas of MAB and
EGT are overlapping when tackling problems of the same
nature.

As a reminder, the estimators used, along with their ap-
propriate parameters are

1. g̃i,t = gi,t
pi,t

1It=i

2. g̃i,t = gIt,t1It=i+β

pi,t

3. g̃i,t = gIt,t1It=i

pi,t+γ

2.6 Final Remarks

In this chapter we discussed decentralized algorithms that
could be used for learning in games. In conclusion, one
cannot expect to find algorithms that can reach an NE for
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all types of games. In part, this is due to the notion of Nash
Equilibrium. That is, a NE may arise naturally as a concept
of stability in static games, but in a dynamic environment
there is no argument if it can occur, [72].

As a result, other concepts of equilibria have emerged,
such as the Evolutionary Stable Strategy and the Correlated
Equilibirum, see Appendix A.

Designing Games In the designing of a game, the interest
lies in guaranteeing that a learning process will reach a
NE, or some other calculable quantity, and, of course these
points should have interesting properties relevant to the
problem. Towards this goal, when designing a game we
should either build it with a special structure, or make cer-
tain that an evolutionary stable strategy is existent.

One of the structures talked above, is Potential Games
first introduced by Shapley in [73]. A potential game is one
that admits a function ϕ such that

pUq − p′Uq = ϕ(p, q)− ϕ(p′, q), ∀p, p′, q, q′ (2.23)

The fact that these games have this property helps the
convergence, even in incomplete information games, even
when using simple update rules, see for example [74, 75].

In wireless telecommunications there are works that have
taken advantage of this structure to design games that can
converge easily to a desired equilibrium, see [76–78].

In Chapter 4 we will use the game of [77] to compare the
convergence but also the results to our proposed game.
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Chapter 3

Game-theoretic Feedback In
Telecom

As we have already seen, the game theoretic algorithms
are more suitable for a full information environment, while
multi-armed bandits provide an extension¹ for the case of
imperfect information. As a result we are keen to treat both
as one area.

In this chapter we want to address the various ways a
user can receive feedback and the significance of that feed-
back. Primarily, the quantity of feedback required is mostly
dependent on the form of the utility function. For example,
we can consider the following utility functions and check
their requirements,

1.
ui = Θ(SINRi − γ)− pi

Pmax
, (3.1)

with γ being the SINR threshold, Θ the step function
and Pmax the maximum power available.

2.
ui =

log(1 + SINRi)

1 + exp(−SINRi)

1

pi
− β · pi, (3.2)

¹Since we have seen the connections between update algorithms from GT and MAB

41
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with β an appropriately chosen parameter.

3.
ui = log(1 + SINRi)− γp2i , (3.3)

with γ being the SINR threshold.

In the first case, the feedback received can be as little as
one bit. Using that knowledge, the transmitter is able to
update the utility function. If the channel conditions allow
for a higher feedback rate, the receiver could communicate
more bits, specifically as much as ⌈logK⌉ bits are sufficient
in order to inform the transmitter about which action would
yield the highest payoff and, thus, forming a full information
environment.

Considering the second and third equations, at a first
glance the feedback needed seems to be infinite. But if,
transmitter and receiver have agreed upon a set of pre-
determined values, the feedback could take the form of a
Channel Quality Information (CQI) as done in cellular sys-
tems, [79–81], i.e. a limited feedback could be almost as
helpful as the analogue one. Due to the required informa-
tion to update the utility function, this game can be con-
sidered a full information setting, since all actions can be
updated, using this feedback.

3.1 Feedback Strategies

In what follows, we will list the various feedback strategies
and their uses in telecommunications.

Full information setting The first feedback we will consider
is to receive the full information vector, i.e. for all actions,
hence, called the full information setting. Taking advantage
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of this structure, one has the ability to compare all strate-
gies to the highest payoff, contrary to the expectation, as
is done in the limited information setting. The appropriate
telecommunication problem, is one that can provide enough
information as feedback so the user can update all the avail-
able actions. Examples range from the exact channel con-
ditions, something that is easily done in TDD [82], or, in
some cases, communicating the most appropriate choice can
provide enough information, e.g. the game presented above.

Incomplete Information Setting Although a full information
setting provides many benefits, feedback is hard to get and,
there is a possibility of delayed, erroneous or imperfect feed-
back. As a result, there is the possibility of absence of feed-
back. From the above examples, we have seen that simpler
utility functions are more reliable in low feedback settings.

If that is the case employing the help of the gain estima-
tors is necessary, see section 2.5.4.

Multiple Actions Feedback Another bandits’ setting is the
Combinatorial Bandits where, in each round, a subset of
the actions is chosen and is played. As a result, the limited
information combinatorial bandits problem provides payoffs
only for the actions played. The goal of the bandit is to
optimize the actions’ subset that is selected in each round.
This bandits problem is particularly useful for the case of a
MIMO setting, where one has multiple antennas and needs
to decide how to allocate resources among them. For a
review on combinatorial bandits see [84], while for applica-
tions in telecom problems see [85–88].
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Chapter 4

Simulating Power Control
Games

This chapter is dedicated to the comparison between the al-
gorithms/learning techniques that are found in the previous
chapters.

The main motivation is to see whether the algorithms
presented in this thesis can get close to the available equi-
libria, which, in turn, would be a strong indicator that using
NE for the analysis of games is a good choice.

To achieve the above, we will perform simulations for
the following two problems.

1. A power control game designed for sensor networks and
analyzed in [89]. The main focus is on achieving the
highest rate possible, while lowering the power levels.

2. A power control game with application to an adhoc en-
vironment. This game’s equilibria have been analyzed
in a previous work, for a two-player game. The re-
sults show either a pure NE, which is the optimal point
shown in figure 4.1. If that point is not in the achievable
region of Pmax, then there appears a mixed NE which
forces users to randomize in a way that balances the
time each one communicates.

45
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The first game has the following utility function

uk =
log2(1 + SINR)− log2(1 + γ)

pk
, (4.1)

while the other has the following

uk = Θ(SINR− γ)− pk
Pmax

(4.2)

Due to the form of the utilities we will call, from now
on, the first game as Rate Power Control (RPC game), while
the second as Connectivity Power Control (CPC game).

Figure 4.1: Points of Interest in a 2-user setting

Pmax

Pmax

p1

p2

SINR1 ≥ γ

SINR2 ≥ γ

Optimal Point

We can see that the two functions are inherently differ-
ent. The CPC is extremely simple and requires only 1-bit
feedback from the receiver, while RPC requires precise in-
formation regarding the SINR received. This difference will
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help us explore how feedback affects the outcome. In partic-
ular, when simulating the RPC game, the available feedback
at the transmitter (CSIT) will be limited to n-bits. Since
we don’t know the bounds of SINR, we will assume the
most easy to obtain, i.e. SINRmin = 0 and SINRmax = Pmax,
while the feedback received will provide a quantization of
the SINR received.

Moreover, both games will be illustrated in an interfer-
ence channel, for two or more users.

4.1 Methodology

In order to help our analysis, we will use - for a two user
setting - a figure similar to 4.1. As we can see, if the
optimal point is inside the Pmax region, then the desirable
property of any algorithm applied to the utility of CPC, is
the convergence to that point. On the other hand, the CPC
utility function should force users inside the cone that is
formed by the following equations

SINR1 ≥ γ (4.3)
SINR2 ≥ γ. (4.4)

This chapter will help in the comparison of the algorithms
presented in previous chapters, by using simulations. The
quantities that we will focus on are

• the empirical distributions of actions, given by

p̂i,T =
T∑
t=1

1It=i, ∀i (4.5)

• the strategy profiles of users,

• the average connectivity and power, and
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• the connectivity percentage of each user.

4.1.1 Simulating exp3

The algorithms that will be used are from the exp3 algo-
rithmic family. As a reminder, vanilla exp3 and exp3.IX
update strategies by, calculating the weights, while exp3.P
uses a mixture of weight-calculation comnined with a uni-
form distribution. The estimators for each case are

• Vanilla exp3 estimator

g̃i,t =
gi,t
pi,t

1It=i (4.6)

• exp3.P estimator

g̃i,t =
gIt,t1It=i + β

pi,t
(4.7)

• exp3.IX estimator

g̃i,t =
gIt,t1It=i

pi,t + γ
(4.8)

Some learning rules have been omitted from this chapter
for the following reasons. From the EGT chapter

• the simple algorithms, since we have shown that are
not capable of converging even in much simpler games¹

• the Best Response and the Smoothed BR, since, either
we have argued about specific problems that arise from
their use, or, because they need knowledge of the whole
game (utility matrix) in order to update the strategies.

¹The most simple games known are the 2× 2 games.
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• Additionally, the Logit dynamics and Replicator Dy-
namics can be seen as special cases of the exp3 with
the use of the above estimators.

Moreover, from the MAB chapter
• The INF (Implicit Normalized Forcaster) since the au-
thors of [37] don’t provide with the appropriate variables
that achieve those resutls, and most importantly due to
the peculiar logarithm in their estimator, which needs
extra care in selecting the above parameters.

Simulations

This section is dedicated to the presentation of the results
of the simulations. The first part is dedicated to the com-
parison between the learning methods, which we will apply
on the CPC utility function, in, both a pure NE setting and
in a mixed NE setting.

Then we will compare the two utility functions under
the same learning algorithm. Actually, this part is further
broken down to two parts the 2-user case and the many
user case. Since the two user case is more easily analyzed,
it will allow us to examine how the two utility functions
distribute the available resources. On the other hand, we
will also focus on the performance of the utility functions
in the case when the number of users is ∼ 10 and, as such,
the interference received is large.

4.2 Comparison of Learning Algorithms

4.2.1 The pure NE case

In this part we will compare side-by-side the learning algo-
rithms presented in this thesis. The utility function that will
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be used is the CPC, for which a thorough analysis has been
performed, and, thus, allowing for a good understanding of
what to expect.

Firstly, we will be concerned with the pure NE, and
specifically with the setting of fig 4.2. Ideally, one would
expect all algorithms to converge in some point inside the
cone (and, of course, inside the region given by the maxi-
mum available Power).

Figure 4.2: The SINR region for the 2-player game with a pure NE
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The connectivity achieved by users as a whole can be
seen in fig 4.3.

The first observation is that exp3.P achieves lower con-
nectivity than the other two algorithms. Regarding the per-
formance of the other two algorithms, we can see that, both
achieve high connectivity, close to the desired point.
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Figure 4.3: Connectivity for the game of figure 4.2

Figure 4.4: Vanilla Exp3
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Figure 4.5: exp3.P
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Figure 4.6: exp3.IX
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4.2.2 The case of mixed NE

This setting can be seen in figure 4.7. A characteristic of
this is that even though player 1 could choose P ≈ 0.9 and
always be connected, the CPC utility function should drive
both to randomize, as can be seen by our analysis. This
effect is due to player 2’s utility being negative and, thus,
forcing player 2 to change to P = 0 and, as a result player
1 would have a better option, i.e. less costly in terms of
power, while maintaining connectivity.

As such, we are interested in learning algorithms that
could reach this point and not just stick to P = (1, 0.9).

Figure 4.7: The SINR region for the 2-player game with mixed NE
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Figure 4.8: Empirical Distributions for the game of figure 4.7

Figure 4.9: Vanilla exp3

Figure 4.10: exp3.P

Figure 4.11: Exp3.IX

By examining the above results, a first observation, is
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that exp3.IX algorithm is yielding the exact opposite result
from what one wants, i.e., converging to a pure equilibrium.

In this example, we will employ the empirical distribu-
tions in order to get a picture of what players end up choos-
ing and compare that with the dynamics of the strategies of
the two players, fig 4.12. This result is extremely powerful,
since we observe that, although the strategies converge only
on average on the desired mixed NE, in reality, players end
up playing the mixed NE, with some small perturbation.

Moreover, For the case of vanilla exp3 there is a bigger
variation, compared to exp3.P. This is expected if one recalls
the analysis from MAB chapter regarding the variance of
these algorithms.

Figure 4.12: Actual Distributions of players for the mixed game of fig.
4.7. Algorithms vanilla exp3 and exp3.P
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From the above figures we can deduce that both vanilla
exp3 and exp3.P have the ability to converge on average in
a mixed NE, and, actually, engage in it, if we consider the
empirical distributions.

Figure 4.13: Overall Connectivity for Vanilla exp3 & exp3.P
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Figure 4.14: Overall Connectivity for exp3.IX
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4.3 Two Players - Comparison of Utility Func-
tions

As promised, this section is dedicated in comparing the two
utility functions in various settings and exploring what is
the part of the quantity of feedback in the convergence of
these algorithms.
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4.3.1 Pure Equilibrium

The setting of interest in this subsection can be seen in
figure 4.15, and is similar to the one in fig 4.2.

Having compared the various learning algorithms, in this
section we choose the original exp3 algorithm to perform the
comparison between the two utility functions, under various
scenarios. This selection is due to the performance of the
algorithm both in the pure and the mixed NE.

Figure 4.15: The SINR region for the 2-player game with a pure NE
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Figure 4.16: The two pairs of the above game in the plane
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From figures 4.17-4.22 we can see that as the quantity
of feedback grows, the final result converges faster to the
optimal point². Also, we can obserce that even with 1-bit
feedback, in the case of the CPC utility function, the NE
can be achieved, and that, actually, the 1-bit utility function
achieves lower power usage, something that is more easily
seen in the figures of the empirical distributions.

It can be easily assumed that feedback should be a func-
tion of Pmax, in the following sense,

FB(bits) = fb0 + log2 Pmax (4.9)
where fb0 is the quantity of reference in the case of P = 1,
which could be in the range 4− 7 bits. Of course this mod-
ification holds only for the two person game. Adding more
users should require higher precision in the SINR estima-
tion, although the correlation isn’t as straightforward. For

²The optimal point is easily detected, as it yields a connectivity of 1.
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that reason we will have to examine this relationship further
in the respective section, i.e. in the many players section.

Figure 4.17: Power & Connectivity for the game of figure 4.2 with the
vanilla exp3 algorithm

Figure 4.18: The “simple” power control problem with 1-bit feedback
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Figure 4.19: The 2-bit feedback power control
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Figure 4.20: The 4-bit feedback power control
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Figure 4.21: The 7-bit feedback power control
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Figure 4.22: The 10-bit feedback power control
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The following figures present the empirical distributions
of the players. One thing that we can observe is that about
4 bits would yield the same result to a more feedback rich
environment.

Figure 4.23: Empirical Distributions for the game of figure 4.15 with
the vanilla exp3 algorithm

Figure 4.24: Empirical Distributions for the 1-bit game

Figure 4.25: Empirical Distributions for the 2-bits game
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Figure 4.26: Empirical Distributions for the 4-bits game
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Figure 4.27: Empirical Distributions for the 7-bits game
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Figure 4.28: Empirical Distributions for the 10-bits game
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We can see from the empirical distributions that, even 4
bits are enough for the system of the second model to reach
the optimal point.

Figure 4.29: Overall connectivity using vanilla exp3 in the pure NE
game, 4.15

Figure 4.30: Overall Connectivity for the 1-bit game
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Figure 4.31: Overall Connectivity for the 2-bit & 4-bits games
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Figure 4.32: Overall Connectivity for the 7-bit & 10-bits games
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As expected, observing fig 4.39 we can deduce that both
algorithms can achieve high connectivity, and, also, that as
the quantity of feedback increases so does the performance
of the RPC utility function, i.e. reaching the optimal point
faster.

Finally, comparing the two utilities the CPC achieves the
same connectivity with the RPC, with the sole difference of
lower power.
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4.3.2 Mixed Equilibrium

Figure 4.33: The SINR region for the 2-player game with mixed NE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Given the above setting we are interested in how these two
players change their actions and adapt their strategies.

Figure 4.34: Connectivity using exp3.P in the mixed NE game, 4.2

Figure 4.35: Connectivity for the 1-bit game
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Figure 4.36: Connectivity for the 2-bit game
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Figure 4.37: Connectivity for the 4-bits game
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Figure 4.38: Connectivity for the 10-bits game
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Figure 4.39: Overall connectivity using vanilla exp3 in the pure NE
game, 4.2

Figure 4.40: Overall Connectivity for the 1-bit & 2-bits games
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Figure 4.41: Overall Connectivity for the 4-bits & 10-bits games
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From the overall connectivity we can see how the CPC
utility provides a more balanced connectivity between users,
while keeping the power in lower levels.

Contrary to that, using the RPC utility, we can see that
it drives both users to consume as much power as possible,
even though one of them cannot establish a stable link.

4.4 Many Players

This section is dedicated to a multi-player scenario. Even
though an analysis is performed in a two user setting, for
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the easiness of calculations, one cannot expect a two player
scenario to be the most common, or to be that adversarial
as to result in mixed NE.

Motivated by that, we use the setting presented in figure
4.42, having 9 pairs to draw some results on a more realistic
environment.

Figure 4.42: 9 Pairs in the plane
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This setting is of interest because we have all types of
users, ones with achievable pure NE, others that experience
mild interference and have to randomize their actions, and,
finally, others who experience high interference and, due to
the utility, shut down transmission.



68 CHAPTER 4. SIMULATING POWER CONTROL GAMES

Figure 4.43: Connectivity using vanilla exp3 in the many users scenario,
4.42

Figure 4.44: Connectivity for the 1-bit game
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Figure 4.45: Connectivity for the 2-bit game
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Figure 4.46: Connectivity for the 4-bit game
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Figure 4.47: Connectivity for the 7-bit game
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Figure 4.48: Connectivity for the 10-bit game
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Many interesting results can be drawn from the above
figures
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• The CPC game has as sole purpose to reduce power,
while maintaining, or even increasing the connectivity
of the system.

• The RPC utility focuses on increasing the rates, even if
that means reaching Pmax, which it does, rather quickly.

• An adequate quantity of feedback is ∼ 4-bits, even in
the case of many users.

• The RPC game provides power control only in the case
of a pure NE (optimal point). If that point is not achiev-
able, then power is maximized.

Figure 4.49: Overall Connectivity using vanilla exp3 in the many users
scenario, 4.42

Figure 4.50: Overall Connectivity for the 1-bit game
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Figure 4.51: Overall Connectivity for the 2-bit & 4-bit games
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Figure 4.52: Overall Connectivity for the 7-bit & 10-bit games
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Moreover, taking into account the overall connectivity,
one can see that the RPC utility function allows more users
to communicate, in the long run, although the average con-
nectivity stays the same.

4.5 Final Remarks on Learning

The purpose of this chapter was two-fold. On the one hand,
the focus was on exploring how the learning algorithms
of the previous chapters compare to one another. What
we have seen is that the two algorithms, vanilla exp3 and
exp3.P, have the most favourable results.

Another observation is that the above algorithms can
reach, not only a pure NE, but most importantly converge to
a mixed equilibrium. As a result, analysing a game through
Nash equilibria is an appropriate approach from a learning
theory perspective.

On the other hand, we compared the utility functions
and, specifically, the results under various scenarios. The
conclusions we can draw are that if a utility is a function
of SINR, then it needs a higher amount of feedback, which
is in the range of 4−7 bits. That quantity increases linearly
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to log2 Pmax, but remains unaffected by the increase of in-
terference. That means that a quantity of 4 − 7 bits (P= 1)
is adequate to describe the interference received.

Moreover, when comparing the two power control meth-
ods, we can see that, the CPC focuses on the power control
aspect more than the other. Also, the CPC function is more
appropriate for adversarial environments and when feed-
back is hard to get. If one has an environment that is
feedback-rich, while most users can communicate, then the
RPC utility drives the system to rate maximisation.

About the design of a utility function. When designing the
simulations a recurring problem that arose was the difficulty
of learning algorithms to adapt in utility functions that are
not restricted in the [0, 1] range. Also, if the values produced
by the utility are not distributed in a, somewhat, evenly
manner among those values the learning algorithms would
not be able to discern them. As an example, we can take a
look at the following utility, appearing in [90]

uk =
log2(1 + SINRk)

1 + exp(−SINRk)
· 1

pk
− pk (4.10)

When applying the learning methods to this function one
has to have clear bounds that are the same regardless of the
environment, something that is not easy to do, since SINR
could yield extreme values. If, for example, the environment
has high interference, it will yield utility values that are
close to each other and, as such it may take very long to
convergence.

Additionally, this function, when considered in a low in-
terference environment will produce values with big differ-
ences from each other which would result in jumps in the
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strategies. Since, the results are environment-dependent,
adjusting this utility to specific bounds is not a trivial task,
thus requiring modification of the utility.

Finally, one can compare that to the utility functions
we used, which, regardless of the environment, could be
bounded.
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Appendix A

A Short Review of Equilibria

This appendix is concerned with the analysis of the equilib-
ria that appeared in Chapter 2. Although there is a plethora
of equilibria appearing in the literature, this appendices goal
is to give a better insight in the ones that appear in the for-
mer problems.

A.1 Nash Equilibrium

The most famous equilibrium was introduced by Nash in
[91]. The notion of a NE is that given rational agents en-
gaged in a game, none would prefer to deviate from this
strategy, since the expected payoff would be smaller.

For a 2-player game, Nash equilibrium can be stated as

p⋆U1q⋆ ≥ pU1q⋆

q⋆U2p⋆ ≥ qU2p⋆ (A.1)

which is, for the pair of strategies p⋆, q⋆ none can be better
off by unilaterally changing his strategy.

75
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A.2 Correlated Equilibrium

Another refinement of Nash Equilibrium is the Correlated
equilibrium (CE), which was introduced in [92]. While each
NE in a game is a distribution over players’ available ac-
tions, which is called a strategy, a CE is a distribution over
strategies, which is called a correlated strategy. As such, a
NE is always a CE and, thus, every game has at least a NE.

Aumann, who proposed the use of CE instead of NE,
argues in [93] about some of the problems of NE. His basic
points are:

1. Although the notion of NE is consistent to itself, i.e., if
any player’s best response to all other players’ strategies
is equal to his current strategy then that is a NE, it
creates a chicken and egg situation, i.e., of which of
the two came first.

2. Assuming a game with only one equilibrium, one can-
not guarantee that all other players will strategize in
the same way and play the equilibrium.

3. When there are more than one equilibria in game, how
can a player know which one to play so as to align with
other players’ decisions?

4. A NE makes sense if a player knows other players’
strategies, which is rather difficult.

A.3 Evolutionary Stable Strategy

The ESS is a stricter concept than NE, it was introduced
in [43] and adds the restriction of stability to a Nash equi-
librium. To make the concept more easily understood, we
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will assume that a game is played by two populations, where
each population is extremely large and is divided among the
available actions of the player it belongs to. In each step
each member is interacting with the other population by
playing his particular action and receiving a payoff. Then,
a strategy is ES if

• The population of every action is constant (NE require-
ment)

• By inserting a small group (mutants) in the population
the system will, eventually move to the prior strategy

Formally on top of eq. A.1 there is,

((1− ϵ) · p⋆ + ϵ · p)U1q⋆ > p⋆U1q⋆

((1− ϵ) · q⋆ + ϵ · q)U2p⋆ > q⋆U2p⋆ (A.2)

In other words, there is a neighbourhood of an ESS which
is asymptotically stable.

A remark on Equilibria

Though there are different kinds of equilibria, one should
ask for which type of equilibrium one should design a game
and then how these can be achieved.

Although NE is an extremely important notion, on the
other hand it has been seen that other concepts of equilib-
ria can replace it depending on the application. For exam-
ple, we have seen that in EGT the concept of ESS is more
appropriate since a NE is always stable, but, not always
asymptotically stable.

On the other hand, there are arguments that since NE is
a PPAD problem, then one cannot expect the agents to be
always able to reach it.
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Finally, comparing CE and NE, we can say that even
though a NE appears to be natural and the idea of random-
ization among strategies may be odd, the results of learning
dynamics show that a CE occurs often.



Appendix B

Power Control’s Matlab Code

1 f unc t i on [ ]= powerControlSimulator ( )
2 %% th i s e n l i s t s many func t i on s f o r s imu la t i on
3 %% at t h i s po int the exp3 & i t s va r i an t s and l o g i t dynamics
4 c l c ; c l e a r a l l ; c l o s e a l l ;
5 g l oba l N g eta de l t a beta e s t imator
6 i f e x i s t ( ’ Conf igurat ionVfeedback.mat ’ , ’ f i l e ’ ) == 2
7 load ( ’ Conf igurat ionVfeedback ’ ) ;
8 di sp ( ’ Caution : Loaded Conf igurat ionVfeedback ’ ) ;
9 di sp ( ’ I f you want a new one , d e l e t e Conf igurat ionVfeedback.mat f i l e ’ ) ;
10 e l s e
11 %% point 1 o f v a r i ab l e d e c i s i o n s
12 N=9; % number o f p a i r s (Tx-Rx)
13 a=9; % ava i l a b l e a c t i on s ( he lp s to be l e s s than 10 , e l s e i n c r e a s e time )
14 Pmax=1; % maximum Power a v a i l a b l e
15 gamma=0.3 ; % gamma va r i ab l e - minimum conne c t i v i t y
16

17 %% va r i a b l e s o f not much important %% keep them as are
18 lambda=10;
19 s igmaFactor=1/9;
20 po s i t i o n s=po i s s rnd ( lambda , [ 2*N, 2 ] ) ;
21 f o r i =2:2:2*N
22 po s i t i o n s ( i , : )= po s i t i o n s ( i - 1 , : )+ normrnd (0 , lambda* sigmaFactor , [ 1 , 2 ] ) ;
23 end
24 %% determining H matrix
25 % not that good a model , but , i f you think about i t
26 % i t doesn ’ t r e a l l y matter
27 x=po s i t i o n s ;
28 h=ze ro s (N,N) ;
29 f o r k=1:N
30 f o r m=1:N
31 h(k ,m)=1/ sq r t ( ( x (2*k - 1 , 1 ) - x (2*m,1))^2+ (x (2*k - 1 , 2 ) - x (2*m,2 ) )^2 ) ;
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32 end
33 end
34 save ( ’ Conf igurat ionVfeedback ’ )
35 end
36 % i f ~ isempty ( p o s i t i o n s )
37

38 f i g u r e (100)
39 hold on
40 f o r i =1:N
41 p lo t ( p o s i t i o n s ( (2* i - 1 ) : 2 * i , 1 ) , p o s i t i o n s ( (2* i - 1 ) : 2 * i , 2 ) ) ;
42 p lo t ( p o s i t i o n s (2* i - 1 , 1 ) , p o s i t i o n s (2* i - 1 , 2 ) , ’+ ’ , ’ MarkerSize ’ ,20) ;
43 p lo t ( p o s i t i o n s (2* i , 1 ) , p o s i t i o n s (2* i , 2 ) , ’ o ’ , ’ MarkerSize ’ ,20) ;
44 end
45 drawnow
46 hold o f f
47 % end
48

49 %% Point 2 o f v a r i ab l e d e c i s i o n s ( F ina l )
50 %Modify these v a r i a b l e s to f i t your purpose
51 %keep in mind that these are independent from the model s to r ed in the f i l e !
52 tau=.1e5 ; %%% The w i s e s t counce lo r to a l l
53 %%% choose e s t imator w i s e l y
54 e s t imator =3; % s e l e c t est imator , 1 v a n i l l a exp3 , 2 exp3P , 3 exp3.IX
55 method=’ l o g i t ’ % opt ions : exp3 , l o g i t ( l o g i t uses an es t imator too )
56 % in case o f feedback %% also , o v e r r i d e s feedback o f loaded f i l e ! !
57 b i t s=10
58

59 %% I n i t i a l i z e
60 AvPow=ze ro s (1 ,N) ;
61 AvCon=ze ro s (1 ,N) ;
62 AvThr=ze ro s (1 ,N) ;
63 pr=1/a*ones ( a ,N) ; %p r obab i l i t y vec to r ( i n i t i a l l y uniform )
64 prT=ze ro s ( a ,N, tau ) ; %s t o r e p r o b a b i l i t i e s f o r a l l T
65 k=ze ro s (1 ,N) ; %act i on chosen f o r each p laye r
66 P=ze ro s (1 ,N) ; %power l e v e l chosen f o r each p laye r
67 kappa=ze ro s ( tau , 3 ) ; % Average Power , Average Connect iv i ty , Average Throughput
68 lambda=0;
69 kappa2=kappa ;
70 App=ze ro s ( a ,N, tau ) ; % Appearences o f an ac t i on
71 App( : , : , 1 )= ones ( a ,N) ;
72 cumCon=ze ro s ( tau , N) ;
73 s=ze ro s (N, 1 ) ; %%% s to r e ra t e f o r each user
74 Pow=l i n s p a c e (Pmax/20 ,Pmax, a ) ; % Power vec to r s t a r t i n g from Pmax/20
75 i f ( e s t imator==1 | | e s t imator==3)
76 eta=sq r t (2* log ( a )/ a/ tau ) ; g=sq r t ( l og ( a )/(2* a* tau ) ) ;
77 e l s e %exp3.P parameters ( e s t imator 2)
78 eta=0.95 * sq r t ( l og ( a )/ tau/a ) ; d e l t a=1e - 2 ;
79 g=1.05 * sq r t ( a* log ( a )/ tau ) ; beta=sq r t ( l og ( a/ de l t a )/ tau/a ) ;
80 end
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81 i f N==2
82 p l o tAr ch i t e c tu r e (N, gamma, h , Pmax)
83 di sp ( ’ I f happy with t h i s c on f i gu r a t i on pr e s s any key to s imulate ’ )
84 pause
85 end
86

87

88

89

90 %% main algor i thm
91 f o r t=2: tau
92 t ry
93 f o r i =1:N
94 k ( i )=mnrnd (1 , pr ( : , i ) , 1 ) * ( 1 : a ) ’ ;
95 P( i )=Pow(k ( i ) ) ;
96 App ( : , i , t )=App ( : , i , t - 1 ) ;
97 App(k ( i ) , i , t )=App(k ( i ) , i , t -1)+1; % cumulat ive sum of appearences
98 prT ( : , i , t )=pr ( : , i ) ; % a l l p r obab i l i t y ve c t o r s
99 end
100 catch %usua l l y only l o g i t could pre sent some problem with NaN
101 % i f so change es t imator
102 di sp ( ’An e r r o r occurred ’ ) ; d i sp ( ’ Execution w i l l c on t i nue . ’ ) ;
103 pr
104 sum( pr , 1 )
105 break ;
106 end
107 Con=0;
108 f o r j =1:N
109 % average s i n r f o r ra t e c a l c u l c a t i o n
110 d=s i n r (h( j , : ) ’ , P, j ) ; %i n s e r t channel , powers and p laye r
111 s ( j )=d+s ( j ) ; % towards the average
112 u=u t i l i t y (d , P( j ) , Pmax, b i t s , gamma, j ) ; % s e l f e xp l a i n ing
113

114 i f strcmp ( ’ exp3 ’ , method )
115 i f ( e s t imator==1 | | e s t imator==3)
116 pr ( : , j )=exp3 (a , k ( j ) , u , pr ( : , j ) , j , 1 ) ;
117 e l s e
118 pr ( : , j )=exp3 (a , k ( j ) , u , pr ( : , j ) , j , 0 ) ;
119 end
120 % i f NO uniform d i s t r i b u t i o n l a s t exp3 arg == 1
121 % e l s e whatever
122 e l s e i f strcmp ( ’ l o g i t ’ , method )
123 pr ( : , j )=otherFuncs ( k ( j ) , u , pr ( : , j ) , 4 ) ;
124 end
125

126 %% Update Av Power , Connect iv i ty
127 AvPow( j )=AvPow( j )+P( j ) ; % ac tua l power
128 AvCon( j )=AvCon( j )+(d>=gamma) ; % ac tua l c onne c t i v i t y
129 Con=Con+(d>=gamma) ; % t o t a l c onne c t i v i t y
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130 cumCon( t , j )=cumCon( t - 1 , j )+(d>=gamma) ;
131 AvThr( j )=AvThr( j )+ log (1+d ) ;
132 end
133 %% update Average Power , Average Connect iv i ty
134 lambda=lambda+1;
135 kappa ( lambda , : )= [ sum(AvPow/ t ) , sum(AvCon/ t ) , sum(AvThr)/ t ] ;
136 kappa2 ( lambda , : )= [ sum(P) , Con , sum(AvThr ) ] ;
137 end
138

139 f i g u r e (10)
140 bar (cumCon( end , : ) . /( tau* ones (1 ,N) ) )
141 p l o tAr ch i t e c tu r e (N, gamma, h , Pmax)
142

143 p lo tArch i t e c (N, prT , t , a , App ) ;
144 % er r o r s
145 p l o tRe su l t s ( kappa , kappa2 , N, t ) ;
146 end
147

148 f unc t i on [ u]= u t i l i t y ( s in r , p , Pmax, n , gamma, i )
149 % using n - b i t feedback f o r the SINR
150 %%% in case one needs a quant ized SINR due to l im i t ed feedback
151 s=nBitSINR( s in r , n , Pmax ) ;
152

153 %% then , wr i t e or choose the u t i l i t y func t i on
154

155 u=(( s in r>=gamma) -p/Pmax+1)/2; %%%% transformed to [ 0 , 1 )
156

157 % u=( log2 (1+s ) - log2 (1+gamma))/p ;
158

159

160

161 end
162

163 f unc t i on [ p]=exp3 (K, cho ice , reward , pr , i , j )
164 g l oba l eta e s t imator N g % K i s f o r arms ( a c t i on s )
165 p e r s i s t e n t weights ;
166 i f isempty ( weights )
167 weights=ones (K,N) ; %weights
168 wValue=1; %use to i n i t i a l i z e weights to wValue
169 weights=wValue*weights ;
170 end
171 gamma=g ;
172

173 rewards=updateWeights ( pr , reward , cho ice , est imator , K) ;
174

175 weights ( : , i )=weights ( : , i ) . *exp ( eta * rewards ) ;
176 i f j==1
177 p=weights ( : , i )/sum( weights ( : , i ) ) ;
178 e l s e p=(1 -gamma)* weights ( : , i ) . /sum( weights ( : , i ))+gamma/K;
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179 end
180

181 end
182

183 f unc t i on [ p]=otherFuncs ( choice , reward , pr , i )
184 g l oba l e s t imator
185 i f i==4 % l o g i t dynamics with e s t imato r s 1 ,3
186 beta=1. 5 ; % beta should be chosen i n i t i a l l y
187 % % need beta , est imator , pr , and payo f f
188 d=updateWeights ( pr , reward , cho ice , est imator , l ength ( pr ) ) ;
189 p=exp ( beta * (max(d ) -d) ) ; %r e gu l a r i z e d to avoid over f l ow
190 p=p/sum(p ) ;
191 e l s e
192 di sp ( ’ incomlpete Yet ’ ) ;
193 end
194

195 end
196

197 f unc t i on [ ]= p l o tAr ch i t e c tu r e (N, gamma, h , Pmax)
198 i f N==2
199 f i g u r e (1 )
200 P0=gamma. / [ h ( 1 , 1 ) , h ( 2 , 2 ) ] ;
201

202 P1=min ( [Pmax, Pmax ;
203 P0(1)*(1+h (1 ,2 )*Pmax) (Pmax-P0 ( 2 ) ) / (P0(2)*h ( 2 , 1 ) ) ] ) ;
204 P2=min ( [Pmax, Pmax ;
205 (Pmax-P0 ( 1 ) ) / (P0(1)*h ( 1 , 2 ) ) P0(2)*(1+h (2 ,1 )*Pmax ) ] ) ;
206 g r id on
207 hold on
208 p lo t ( [ P0 (1 ) ,P1 ( 1 ) ] , [ 0 , P2 ( 1 ) ] , ’ b ’ )
209 p lo t ( [ 0 , P1 ( 2 ) ] , [ P0 (2 ) ,P2 ( 2 ) ] , ’ b ’ )
210

211 p lo t ( [ 0 ,Pmax ] , [ Pmax,Pmax ] , ’ k ’ )
212 p lo t ( [ Pmax,Pmax ] , [ 0 ,Pmax ] , ’ k ’ )
213 end
214 end
215

216 f unc t i on [ ]= p lo tArch i t e c (N, prPrime , tau , a , App)
217 f o r j =1:N
218 f i g u r e (2 )
219 subplot ( c e i l ( s q r t (N) ) , c e i l ( s q r t (N) ) , j )
220 f o r i =1:a
221 hold a l l
222 pfds=squeeze ( prPrime ( i , j , 1 : tau ) ) ;
223 p lo t ( 1 : tau , p fds ) ;
224 end
225 i f N<=3
226 l egend ( ’ show ’ )
227 end
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228 end
229

230 f o r j =1:N
231 f i g u r e (3 )
232 subplot ( c e i l ( s q r t (N) ) , c e i l ( s q r t (N) ) , j )
233 f o r i =1:a
234 hold a l l
235 app=squeeze (App( i , j , 1 : tau ) . /sum(App ( : , j , 1 : tau ) ) ) ; % appearences
236 p lo t ( 1 : tau , app ) ;
237 end
238 i f N<=3
239 l egend ( ’ show ’ )
240 end
241 end
242 end
243

244 f unc t i on [ ]= p l o tRe su l t s ( kappa , kappa2 , N, tau )
245 f i g u r e (4 )
246 subplot ( 2 , 2 , 1 ) ;
247 [ ax1 , hLine1 , hLine2 ]=plotyy ( 1 : 1 : tau , kappa ( : , 1 ) /N, 1 : 1 : tau , kappa ( : , 2 ) /N) ;
248 hold on
249 p lo t ( 1 : 1 : tau , kappa ( : , 3 ) /N, ’ g ’ ) ;
250 hold o f f
251 y l ab e l ( ax1 (1 ) , ’ Average Power ’ ) ;
252 y l ab e l ( ax1 (2 ) , ’ Average Connect iv i ty ’ ) ;
253 s e t ( ax1 (2 ) , ’ yl im ’ , [ 0 1 . 1 ] ) ;
254 x l ab e l ( ’ \ bf {Time} ’ ) ;
255

256 subplot ( 2 , 2 , 2 ) ;
257 [ ax2 , hLine3 , hLine4 ]=plotyy ( 1 : 1 : tau , kappa2 ( : , 1 ) /N, 1 : 1 : tau , kappa2 ( : , 2 ) /N) ;
258 y l ab e l ( ax2 (1 ) , ’ Average Power ’ ) ;
259 y l ab e l ( ax2 (2 ) , ’ Connect iv i ty ’ ) ;
260 x l ab e l ( ’ \ bf {Time} ’ ) ;
261 s e t ( ax2 (2 ) , ’ yl im ’ , [ 0 1 . 1 ] ) ;
262

263 end
264

265 f unc t i on [ rewards ]=updateWeights ( pr , reward , cho ice , ru le , K)
266 %choose between update r u l e s / e s t imato r s
267 g l oba l beta g
268 i f r u l e==1 % exp3
269 rewards=ze ro s (K, 1 ) ;
270 rewards ( cho i c e )=reward/pr ( cho i c e ) ;
271 e l s e i f r u l e==2 % exp3P
272 rewards=be ta . /pr ;
273 rewards ( cho i c e )=rewards ( cho i c e )+reward/pr ( cho i c e ) ;
274 e l s e i f r u l e==3 %exp3.IX
275 rewards=ze ro s (K, 1 ) ;
276 rewards ( cho i c e )=reward /( pr ( cho i c e )+g ) ;
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277 e l s e i f r u l e==4 % imp l i c i t normal ized f o r e c a s t e r
278 % use only i f you i n s e r t the appropr ia t e v a r i a b l e s
279 rewards=ze ro s (K, 1 ) ;
280 rewards ( cho i c e )=- l og (1 - ( beta * reward/pr ( cho i c e ) ) ) / beta ;
281 e l s e d i sp ( ’Wrong ru l e ’ )
282 end
283 end
284

285 f unc t i on [ s ]= s i n r (H, P, i )
286 hi=H( i )*P( i ) ;
287 s=hi /(P*H- h i +1);
288 end
289

290 f unc t i on [ s_quant ]=nBitSINR( s , n , Pmax)
291

292 % l i n e a r quant i za t i on o f the s i n r
293 % fo r use in case o f l im i t ed feedback
294 d=1/2^n ;
295 x=s /(Pmax ) ;
296 s_quant=Pmax*min (max( ( f l o o r ( x/d)+1/2)*d , 0 ) , 1 ) ;
297 end



86 APPENDIX B. POWER CONTROL’S MATLAB CODE



Bibliography

[1] A. Dytso, “Survey of interference channel,”

[2] O. El Ayach, A. Lozano, and R. Heath, “On the over-
head of interference alignment: Training, feedback, and
cooperation,” Wireless Communications, IEEE Trans-
actions on, vol. 11, pp. 4192–4203, November 2012.

[3] Y. Ma, H. Chen, Z. Lin, B. Vucetic, and X. Li, “Spectrum
sharing in rf-powered cognitive radio networks using
game theory,” arXiv preprint arXiv:1510.02851, 2015.

[4] B. Wang, Y. Wu, and K. R. Liu, “Game theory for
cognitive radio networks: An overview,” Computer net-
works, vol. 54, no. 14, pp. 2537–2561, 2010.

[5] N. Nie and C. Comaniciu, “Adaptive channel allocation
spectrum etiquette for cognitive radio networks,” Mobile
networks and applications, vol. 11, no. 6, pp. 779–797,
2006.

[6] D. Niyato and E. Hossain, “Competitive spectrum shar-
ing in cognitive radio networks: a dynamic game ap-
proach,” Wireless Communications, IEEE Transactions
on, vol. 7, no. 7, pp. 2651–2660, 2008.

[7] J. Liu, R. Deng, S. Zhou, and Z. Niu, “Seeing the unob-
servable: Channel learning for wireless communication
networks,” CoRR, vol. abs/1508.01899, 2015.

87



88 BIBLIOGRAPHY

[8] J. Andrews, S. Singh, Q. Ye, X. Lin, and H. Dhillon,
“An overview of load balancing in hetnets: Old myths
and open problems,” Wireless Communications, IEEE,
vol. 21, no. 2, pp. 18–25, 2014.

[9] E. Aryafar, A. Keshavarz-Haddad, M. Wang, and
M. Chiang, “Rat selection games in hetnets,” in IN-
FOCOM, 2013 Proceedings IEEE, pp. 998–1006, IEEE,
2013.

[10] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Carama-
nis, and J. G. Andrews, “User association for load bal-
ancing in heterogeneous cellular networks,” Wireless
Communications, IEEE Transactions on, vol. 12, no. 6,
pp. 2706–2716, 2013.

[11] M. Bennis, M. Simsek, A. Czylwik, W. Saad,
S. Valentin, and M. Debbah, “When cellular meets wifi
in wireless small cell networks,” Communications Mag-
azine, IEEE, vol. 51, no. 6, pp. 44–50, 2013.

[12] F. Meshkati, A. J. Goldsmith, H. V. Poor, and
S. C. Schwartz, “A game-theoretic approach to energy-
efficient modulation in CDMA networks with delay qos
constraints,” CoRR, vol. abs/0705.1788, 2007.

[13] H. Shirani-Mehr, H. C. Papadopoulos, S. A. Ram-
prashad, and G. Caire, “Joint scheduling and ARQ for
MU-MIMO downlink in the presence of inter-cell inter-
ference,” CoRR, vol. abs/1001.1187, 2010.

[14] L. Song, Z. Han, Z. Zhang, and B. Jiao, “Non-
cooperative feedback-rate control game for channel
state information in wireless networks,” Selected Areas
in Communications, IEEE Journal on, vol. 30, no. 1,
pp. 188–197, 2012.



BIBLIOGRAPHY 89

[15] A. Antonopoulos, C. Verikoukis, C. Skianis, and O. B.
Akan, “Energy efficient network coding-based mac for
cooperative arq wireless networks,” Ad Hoc Networks,
vol. 11, no. 1, pp. 190–200, 2013.

[16] L. Mao, S. Xu, T. Fu, and Q. Huang, “Game theory
based power allocation algorithm in high-speed mo-
bile environment,” in Vehicular Technology Conference
(VTC Fall), 2012 IEEE, pp. 1–5, Sept 2012.

[17] L. Badia, M. Levorato, F. Librino, and M. Zorzi, “Co-
operation techniques for wireless systems from a net-
working perspective,” Wireless Communications, IEEE,
vol. 17, no. 2, pp. 89–96, 2010.

[18] Z. Han, Game theory in wireless and communication
networks: theory, models, and applications. Cambridge
University Press, 2012.

[19] K. R. Liu and B. Wang, Cognitive radio networking and
security: A game-theoretic view. Cambridge University
Press, 2010.

[20] T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor,
Mechanisms and games for dynamic spectrum alloca-
tion. Cambridge University Press, 2013.

[21] V. Srivastava, J. O. Neel, A. B. MacKenzie, R. Menon,
L. A. DaSilva, J. E. Hicks, J. H. Reed, R. P. Gilles,
et al., “Using game theory to analyze wireless ad hoc
networks.,” IEEE Communications Surveys and Tutori-
als, vol. 7, no. 1-4, pp. 46–56, 2005.

[22] X. Chen and X. Deng, “Settling the complexity of two-
player nash equilibrium.,” in FOCS, vol. 6, pp. 261–272,
2006.



90 BIBLIOGRAPHY

[23] V. Kuleshov and D. Precup, “Algorithms for
multi-armed bandit problems,” arXiv preprint
arXiv:1402.6028, 2014.

[24] A. Rakhlin, “Online bandit problems.” Lecture 26.

[25] C. Tekin and M. Liu, “Adaptive learning of uncontrolled
restless bandits with logarithmic regret,” in Communi-
cation, Control, and Computing (Allerton), 2011 49th
Annual Allerton Conference on, pp. 983–990, IEEE,
2011.

[26] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire, “The nonstochastic multiarmed bandit prob-
lem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–
77, 2002.

[27] F. Diaz, “Integration of news content into web results,”
in Proceedings of the Second ACM International Con-
ference on Web Search and Data Mining, pp. 182–191,
ACM, 2009.

[28] K. Hofmann, S. Whiteson, and M. de Rijke, “Contex-
tual bandits for information retrieval,” in NIPS 2011
Workshop on Bayesian Optimization, Experimental De-
sign, and Bandits, Granada, vol. 12, p. 2011, 2011.

[29] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and
R. E. Schapire, “Taming the monster: A fast and sim-
ple algorithm for contextual bandits,” arXiv preprint
arXiv:1402.0555, 2014.

[30] J. Unnikrishnan and V. V. Veeravalli, “Dynamic spec-
trum access with learning for cognitive radio,” in Sig-
nals, Systems and Computers, 2008 42nd Asilomar
Conference on, pp. 103–107, IEEE, 2008.



BIBLIOGRAPHY 91

[31] K. Liu and Q. Zhao, “Distributed learning in cognitive
radio networks: Multi-armed bandit with distributed
multiple players,” in Acoustics Speech and Signal Pro-
cessing (ICASSP), 2010 IEEE International Conference
on, pp. 3010–3013, IEEE, 2010.

[32] L. Lai, H. Jiang, and H. V. Poor, “Medium access in
cognitive radio networks: A competitive multi-armed
bandit framework,” in Signals, Systems and Computers,
2008 42nd Asilomar Conference on, pp. 98–102, IEEE,
2008.

[33] J. C. Gittins, “Bandit processes and dynamic allocation
indices,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 148–177, 1979.

[34] V. Anantharam, P. Varaiya, and J. Walrand, “Asymp-
totically efficient allocation rules for the multiarmed
bandit problem with multiple plays-part ii: Markovian
rewards,” Automatic Control, IEEE Transactions on,
vol. 32, pp. 977–982, Nov 1987.

[35] V. Anantharam, P. Varaiya, and J. Walrand, “Asymp-
totically efficient allocation rules for the multiarmed
bandit problem with multiple plays-part i: I.i.d. re-
wards,” Automatic Control, IEEE Transactions on,
vol. 32, pp. 968–976, Nov 1987.

[36] S. Bubeck, N. Cesa-Bianchi, and G. Lugosi, “Bandits
with heavy tail,” ArXiv e-prints, Sept. 2012.

[37] J.-Y. Audibert and S. Bubeck, “Regret bounds and min-
imax policies under partial monitoring,” The Journal
of Machine Learning Research, vol. 11, pp. 2785–2836,
2010.



92 BIBLIOGRAPHY

[38] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application
to boosting,” Journal of Computer and System Sciences,
vol. 55, no. 1, pp. 119 – 139, 1997.

[39] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems,” CoRR, vol. abs/1204.5721, 2012.

[40] G. Neu, “Explore no more: improved high-probability
regret bounds for non-stochastic bandits,” CoRR,
vol. abs/1506.03271, 2015.

[41] J.-y. Audibert and S. Bubeck, “Minimax policies for ban-
dits games,” in COLT, 2009.

[42] S. Bubeck and A. Slivkins, “The best of both worlds:
Stochastic and adversarial bandits,” in COLT 2012 -
The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pp. 42.1–42.23, 2012.

[43] J. M. Smith and G. Price, “lhe logic of animal conflict,”
Nature, vol. 246, p. 15, 1973.

[44] J. G. Cross, “A stochastic learning model of economic
behavior,” The Quarterly Journal of Economics, pp. 239–
266, 1973.

[45] T. Börgers and R. Sarin, “Learning through reinforce-
ment and replicator dynamics (mimeo),” 1995.

[46] P. Sastry, V. Phansalkar, and M. Thathachar, “De-
centralized learning of nash equilibria in multi-person
stochastic games with incomplete information,” Sys-
tems, Man and Cybernetics, IEEE Transactions on,
vol. 24, no. 5, pp. 769–777, 1994.



BIBLIOGRAPHY 93

[47] D. Ferraioli, “Logit dynamics for strategic games mixing
time and metastability,” 2012.

[48] D. Ryabko and B. Ryabko, “Predicting the outcomes
of every process for which an asymptotically accurate
stationary predictor exists is impossible,” in Information
Theory (ISIT), 2015 IEEE International Symposium on,
pp. 1204–1206, IEEE, 2015.

[49] C. Alós-Ferrer and N. Netzer, “The logit-response dy-
namics,” Games and Economic Behavior, vol. 68, no. 2,
pp. 413–427, 2010.

[50] L. E. Blume, “The statistical mechanics of strategic in-
teraction,” Games and economic behavior, vol. 5, no. 3,
pp. 387–424, 1993.

[51] G. Ostrovski and S. van Strien, “Payoff performance of
fictitious play,” CoRR, vol. abs/1308.4049, 2013.

[52] G. W. Brown, “Iterative solution of games by ficti-
tious play,” Activity analysis of production and alloca-
tion, vol. 13, no. 1, pp. 374–376, 1951.

[53] J. S. Jordan, “Three problems in learning mixed-strategy
nash equilibria,” Games and Economic Behavior, vol. 5,
no. 3, pp. 368–386, 1993.

[54] L. S. Shapley et al., “Some topics in two-person games,”
Advances in game theory, vol. 52, pp. 1–29, 1964.

[55] B. J. McGill and J. S. Brown, “Evolutionary game theory
and adaptive dynamics of continuous traits,” Annual
Review of Ecology, Evolution, and Systematics, pp. 403–
435, 2007.



94 BIBLIOGRAPHY

[56] J. Hofbauer and K. Sigmund, “Evolutionary game dy-
namics,” Bulletin of the American Mathematical Society,
vol. 40, no. 4, pp. 479–519, 2003.

[57] W. H. Sandholm, Population games and evolutionary
dynamics. MIT press, 2010.

[58] A. B. d. S. Rocha, A. Laruelle, and P. Zuazo Garín,
“Replicator dynamics and evolutionary stable strategies
in heterogeneous games,” 2011.

[59] P. Mertikopoulos and W. H. Sandholm, “Learning in
games via reinforcement and regularization,”

[60] P. D. Taylor and L. B. Jonker, “Evolutionary sta-
ble strategies and game dynamics,” Mathematical bio-
sciences, vol. 40, no. 1, pp. 145–156, 1978.

[61] Y. Sato, E. Akiyama, and J. D. Farmer, “Chaos in learn-
ing a simple two-person game,” Proceedings of the Na-
tional Academy of Sciences, vol. 99, no. 7, pp. 4748–4751,
2002.

[62] Y.-W. Cheung and D. Friedman, “A comparison of
learning and replicator dynamics using experimental
data,” Journal of Economic Behavior & Organization,
vol. 35, no. 3, pp. 263 – 280, 1998.

[63] J. Hofbauer, K. Sigmund, et al., “The theory of evolu-
tion and dynamical systems: mathematical aspects of
selection,” tech. rep., 1988.

[64] W. Albers, W. Güth, P. Hammerstein, B. Moldovanu,
and E. van Damme, Understanding Strategic Interac-
tion: Essays in Honor of Reinhard Selten. Springer
Berlin Heidelberg, 2012.



BIBLIOGRAPHY 95

[65] Z. AlSharawi, J. M. Cushing, and S. Elaydi, Theory
and Applications of Difference Equations and Discrete
Dynamical Systems: ICDEA, Muscat, Oman, May 26-
30, 2013, vol. 102. Springer, 2014.

[66] W. H. Sandholm, “Local stability under evolutionary
game dynamics,” Theoretical Economics, vol. 5, no. 1,
pp. 27–50, 2010.

[67] J. Alboszta, J. Mie, et al., “Stability of evolutionarily sta-
ble strategies in discrete replicator dynamics with time
delay,” Journal of theoretical biology, vol. 231, no. 2,
pp. 175–179, 2004.

[68] H. Tembine, E. Altman, and R. El-Azouzi, “Delayed
evolutionary game dynamics applied to medium access
control,” in Mobile Adhoc and Sensor Systems, 2007.
MASS 2007. IEEE International Conference on, pp. 1–
6, IEEE, 2007.

[69] J. Miekisz, R. Jankowski, and M. Matuszak, “Repli-
cator dynamics with strategy dependent time delays,”
preprint, 2014.

[70] J. Alboszta and J. Miekisz, “Stability of evolutionarily
stable strategies in discrete replicator dynamics with
time delay,” eprint arXiv:q-bio/0409024, Sept. 2004.

[71] J. P. Rabanal and D. Friedman, “Incomplete informa-
tion, dynamic stability and the evolution of prefer-
ences: Two examples,” Dynamic Games and Applica-
tions, vol. 4, no. 4, pp. 448–467, 2014.

[72] D. Fudenberg and J. Tirole, Game Theory. MIT Press,
1991.



96 BIBLIOGRAPHY

[73] D. Monderer and L. S. Shapley, “Potential games,”
Games and economic behavior, vol. 14, no. 1, pp. 124–
143, 1996.

[74] S. Grammatico, F. Parise, M. Colombino, and
J. Lygeros, “Decentralized convergence to nash equi-
libria in constrained mean field control,” CoRR,
vol. abs/1410.4421, 2014.

[75] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos,
“Convergence and approximation in potential games,”
in STACS 2006, pp. 349–360, Springer, 2006.

[76] S. Lasaulce, M. Debbah, and E. Altman, “Methodolo-
gies for analyzing equilibria in wireless games,” arXiv
preprint arXiv:0906.0447, 2009.

[77] G. Scutari, S. Barbarossa, and D. P. Palomar, “Potential
games: A framework for vector power control problems
with coupled constraints,” in Acoustics, Speech and Sig-
nal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, vol. 4, pp. IV–IV,
IEEE, 2006.

[78] K. Yamamoto, “A comprehensive survey of poten-
tial game approaches to wireless networks,” CoRR,
vol. abs/1506.07942, 2015.

[79] H.-S. Yu, H. Oh, H. Lee, G.-K. Choi, Y. Lim, and
Y. Moon, “Apparatus and method for transmitting/re-
ceiving channel quality information of subcarriers in
an orthogonal frequency division multiplexing system,”
Nov. 19 2004. US Patent App. 10/992,110.

[80] S. Sesia, I. Toufik, and M. Baker, LTE: the UMTS long
term evolution. Wiley Online Library, 2009.



BIBLIOGRAPHY 97

[81] F. Khan, “Methods of transmitting channel quality in-
formation and power allocation in wireless communica-
tion systems,” Mar. 14 2003. US Patent App. 10/387,866.

[82] D. J. Love, R. W. Heath Jr, V. K. Lau, D. Gesbert,
B. D. Rao, and M. Andrews, “An overview of limited
feedback in wireless communication systems,” Selected
Areas in Communications, IEEE Journal on, vol. 26,
no. 8, pp. 1341–1365, 2008.

[83] B. G. N. Nair, F. Fagnani, S. Zampieri, and R. J.
Evans, “Feedback control under data rate constraints:
An overview,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 108–137, 2007.

[84] N. Cesa-Bianchi and G. Lugosi, “Combinatorial ban-
dits,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1404–1422, 2012.

[85] Y. Gai, B. Krishnamachari, and R. Jain, “Learning mul-
tiuser channel allocations in cognitive radio networks:
A combinatorial multi-armed bandit formulation,” in
New Frontiers in Dynamic Spectrum, 2010 IEEE Sym-
posium on, pp. 1–9, IEEE, 2010.

[86] A. Mukherjee and A. Hottinen, “Learning algorithms
for energy-efficient mimo antenna subset selection:
Multi-armed bandit framework,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th
European, pp. 659–663, IEEE, 2012.

[87] X.-Y. Li, “Push the limit of wireless network capacity:
a tale of cognitive and coexistence,” in Proceedings of
the 1st ACM workshop on Cognitive radio architectures
for broadband, pp. 31–32, ACM, 2013.



98 BIBLIOGRAPHY

[88] N. Gulati and K. R. Dandekar, “Learning state selection
for reconfigurable antennas: A multi-armed bandit ap-
proach,” Antennas and Propagation, IEEE Transactions
on, vol. 62, no. 3, pp. 1027–1038, 2014.

[89] Z. Liu, Y. Wang, and C. Liang, “A game theory based
power control algorithm in wireless sensor network,”
Journal of Convergence Information Technology, vol. 8,
no. 9, p. 1119, 2013.

[90] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz,
“A game-theoretic approach to energy-efficient power
control in multicarrier cdma systems,” Selected Areas
in Communications, IEEE Journal on, vol. 24, no. 6,
pp. 1115–1129, 2006.

[91] J. Nash, “Non-cooperative games,” Annals of mathemat-
ics, pp. 286–295, 1951.

[92] R. J. Aumann, “Subjectivity and correlation in random-
ized strategies,” Journal of mathematical Economics,
vol. 1, no. 1, pp. 67–96, 1974.

[93] R. J. Aumann, “Correlated equilibrium as an expression
of bayesian rationality,” Econometrica: Journal of the
Econometric Society, pp. 1–18, 1987.


	Forward
	Multi-Armed Bandits
	Bandits Preliminaries
	Types of Bandits
	Other Bandits
	Regrets

	How Adversarial Bandits Adapt - Policies
	Exp3 and Variants
	Implicitly Normalized Forecaster
	Other Policies for Adversarial Bandits


	Evolutionary Dynamics
	Notation
	Simple Update Rules
	Cross' Learning Process
	Linear Reward - Inaction
	Simple Models Simulations

	Best Response Dynamics
	Smoothed Best Response
	Logit Dynamics
	Fictitious Play

	Replicator Dynamics
	Equilibria
	Discrete and Continuous Dynamics
	Stability of RD
	Replicator Dynamics in Action

	Final Remarks

	Game-theoretic Feedback In Telecom
	Feedback Strategies

	Simulating Power Control Games
	Methodology
	Simulating exp3

	Comparison of Learning Algorithms
	The pure NE case
	The case of mixed NE

	Two Players - Comparison of Utility Functions
	Pure Equilibrium
	Mixed Equilibrium

	Many Players
	Final Remarks on Learning

	Appendix A Short Review of Equilibria
	Nash Equilibrium
	Correlated Equilibrium
	Evolutionary Stable Strategy

	Appendix Power Control's Matlab Code

