

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

FACULTY OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BACHELOR THESIS

An Android application for the trustees of a distributed, end-
to-end verifiable, internet voting system

Vasileios S. Poulimenos

Supervisors: Dimitra-Isidora Roussopoulou, Associate Professor
Nikolaos Chondros, PhD Candidate

ΑTHENS

OCTOBER 2015

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μια Android εφαρμογή για τους trustees ενός
κατανεμημένου, από-άκρο-σε-άκρο επαληθεύσιμου,

συστήματος ηλεκτρονικής ψηφοφορίας

Βασίλειος Σ. Πουλημένος

Επιβλέποντες: Δήμητρα-Ισιδώρα Ρουσσοπούλου, Αναπληρωτής Καθηγητής
Νικόλαος Χονδρός, Υποψήφιος Διδάκτορας

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2015

BACHELOR THESIS

An Android application for the trustees of a distributed, end-to-end verifiable, internet
voting system

Vasileios S. Poulimenos

Α.Μ.: 1115200900156

SUPERVISORS: Dimitra-Isidora Roussopoulou, Associate Professor
Nikolaos Chondros, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μια Android εφαρμογή για τους trustees ενός κατανεμημένου, από-άκρο-σε-άκρο
επαληθεύσιμου, συστήματος ηλεκτρονικής ψηφοφορίας

Βασίλειος Σ. Πουλημένος

Α.Μ.: 1115200900156

ΕΠΙΒΛΕΠΟΝΤΕΣ: Δήμητρα-Ισιδώρα Ρουσσοπούλου, Αναπληρωτής Καθηγητής
Νικόλαος Χονδρός, Υποψήφιος Διδάκτορας

ΠΕΡΙΛΗΨΗ

Τα συστήματα ηλεκτρονικής ψηφοφορίας αποτελούν μια ισχυρή τεχνολογία η οποία
βελτιώνει την εκλογική διαδικασία αυξάνοντας σημαντικά την ταχύτητα καταμέτρησης
ψήφων και μειώνοντας το κόστος διεξαγωγής εκλογών. Ηλεκτρονικής ψηφοφορίες οι
οποίες περιλαμβάνουν κάλπη, ενώ παρέχουν τα προαναφερόμενα πλεονεκτήματα,
απαιτούν τη φυσική παρουσία του ψηφοφόρου (γεγονός το οποίο πιθανώς επιφέρει
καθυστερήσεις και ενόχληση). Από την άλλη μεριά, τα διαδικτυακά συστήματα
ηλεκτρονικής ψηφοφορίας επιτρέπουν στους ψηφοφόρους να ψηφίζουν γρήγορα και
απομακρυσμένα, μέσω κινητών τηλεφώνων ή προσωπικών υπολογιστών (μια
διαδικασία η οποία ονομάζεται επίσης i-ψηφοφορία), προωθώντας δυνητικά τη
δημοκρατία μέσω της παροχής αρκετά βελτιωμένης προσβασιμότητας για άτομα με
σωματικά εμπόδια, αυξάνοντας, επομένως, τη συνολική συμμετοχή των ψηφοφόρων.
Επιπροσθέτως, υπάρχουν συστήματα ηλεκτρονικής ψηφοφορίας τα οποία επιτρέπουν
στους ψηφοφόρους να επαληθεύσουν άμεσα ολόκληρη την εκλογική διαδικασία,
επιβεβαιώνοντας, έτσι, ότι καμία οντότητα (ούτε και οι αρχές) δεν έχει αλλοιώσει το
εκλογικό αποτέλεσμα με κάποιο τρόπο.

Κατά τα τελευταία χρόνια, οι εξελίξεις στην κινητή τεχνολογία (και για τα δίκτυα και ειδικά
για τις συσκευές), οι οποίες έφεραν υψηλότερες ταχύτητες και χαμηλότερο κόστος,
έχουν οδηγήσει στη διαδεδομένη χρήση βολικών εφαρμογών διαδικτύου και κινητών. Η
παρούσα πτυχιακή εργασία περιγράφει το σχεδιασμό και την υλοποίηση μιας
εφαρμογής για το λειτουργικό σύστημα (ΛΣ) Android η οποία αυτοματοποιεί τη
διαδικασία που οι trustees ενός καινούριου, κατανεμημένου, από-άκρο-σε-άκρο
επαληθεύσιμου, ηλεκτρονικού συστήματος ψηφοφορίας πρέπει να ακολουθήσουν. Ο
ευρύτερος στόχος είναι η σκιαγράφηση της αρχιτεκτονικής και η παροχή μιας
αναφορικής υλοποίησης για μια αποδοτική, σταθερή και ασφαλή εφαρμογή Android
ηλεκτρονικής ψηφοφορίας, όχι μόνο για ένα trustee, αλλά πιθανώς για οποιαδήποτε
εκλογική οντότητα, δείχνοντας ότι οι σημερινές συνηθισμένες κινητές συσκευές είναι
αρκετά ισχυρές για να χρησιμοποιηθούν αποδοτικά για τέτοιες εργασίες.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ηλεκτρονικές ψηφοφορίες

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: η-ψηφοφορίες, κρυπτογραφία, trustee, κατανεμημένα συστήματα,

ανάπτυξη εφαρμογών Android

ABSTRACT

E-voting systems comprise a powerful technology that improves the election procedure
by significantly increasing tallying speed and reducing election costs. Kiosk-based e-
voting systems, while providing the aforementioned benefits, require the voter’s physical
presence (which probably introduces delays and inconvenience). On the other hand,
internet voting systems allow voters to cast their votes quickly and remotely, through
one’s mobile phone or personal computer (a process which is also called i-voting),
potentially promoting democracy by providing considerably improved accessibility for
individuals that are physically hindered, thus increasing overall voter participation. On
top of that, there exist internet voting systems that allow voters to directly verify the
entire election procedure, thereby confirming that absolutely no entities (even
authorities) have altered the election result in some way.

During the latest years, the advancements in mobile technology (for both networks and
especially devices), bringing higher speeds and lower costs, has led to the widespread
use of convenient web and mobile application. The present thesis describes the design
and implementation of an application for the Android operating system (OS) that
automates the procedure which the trustees of a new, distributed, end-to-end verifiable,
internet voting system have to follow. The broader goal is to outline the architecture and
provide a reference implementation for an efficient, robust and secure e-voting Android
application, not just for a trustee, but possibly for any voting entity in general, showing
that today’s ordinary mobile devices are powerful enough to effectively be used for such
tasks.

SUBJECT AREA: Electronic voting

KEYWORDS: e-voting, cryptography, trustee, distributed systems, Android

development

To my family.

ACKNOWLEDGEMENTS

For the completion of this thesis, I would like to thank my supervisors, associate
professor Mema Roussopoulou (Computer Systems and Applications Division,
Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens) and Nikos Chondros, for their supervision, help and guidance, as
well as for their general interest and trust they showed me by allowing me to participate
in their work.

ΕΥΧΑΡΙΣΤΙΕΣ

Για τη διεκπεραίωση της παρούσας Πτυχιακής Εργασίας, θα ήθελα να ευχαριστήσω
τους επιβλέποντες, αναπληρώτρια καθηγήτρια .Μέμα Ρουσσοπούλου (Τομέας
Υπολογιστικών Συστημάτων και Εφαρμογών, Τμήμα Πληροφορικής και
Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών) και Νίκο Χονδρό,
για την επίβλεψη, βοήθεια και καθοδήγησή τους, καθώς και για το γενικότερό τους
ενδιαφέρον τους και την εμπιστοσύνη που μου έδειξαν επιτρέποντας τη συμμετοχή μου
στο έργο τους.

TABLE OF CONTENTS

PREFACE ... 14

1. INTRODUCTION .. 15

1.1 What is electronic voting .. 15

1.2 What is DEMOS .. 15

1.3 What is Android ... 15

1.3.1 Why Android .. 15

2. THE DEMOS INTERNET VOTING SYSTEM ... 16

2.1 Background .. 16

2.2 Components of the DEMOS voting system .. 16

2.2.1 Election Authority .. 16

2.2.2 Bulletin Board .. 16

2.2.3 Trustees .. 17

2.2.4 Voters .. 17

3. THE ANDROID OPERATING SYSTEM ... 18

3.1 Fundamentals ... 18

3.1.1 Security ... 18

3.2 Processes and Threads .. 18

3.3 Components of the Android OS ... 19

3.3.1 Activities .. 19

3.3.2 Services... 22

3.3.3 Broadcast receivers .. 25

3.3.4 Content providers .. 25

3.4 Other Android Objects .. 25

3.4.1 Adapters .. 25

3.4.2 SQLite ... 25

3.4.3 Loaders ... 26

3.4.4 Android NDK / Java JNI .. 26

4. THE ARCHITECTURE OF THE TRUSTEE APPLICATION 27

4.1 Election phases.. 27

4.2 The recommended approach .. 27

4.2.1 Benefits of the recommended approach ... 28

4.3 SQLite ... 28

4.4 NDK / JNI ... 29

4.5 Google Protocol Buffers ... 29

5. BENCHMARKING.. 30

6. CONCLUSIONS ... 32

ABBREVIATIONS – INITIALISMS – ACRONYMS ... 33

APPENDIX Ι .. 34

APPENDIX II ... 44

REFERENCES .. 46

LIST OF DIAGRAMS

Diagram 1: The paths that an activity might take between its states 22

Diagram 2: The service lifecycle (we focus on unbounded services) 24

Diagram 3: One of the architectural patterns for an Android REST client application 27

Diagram 4: Elapsed time for election operations in the emulator 31

Diagram 5: Elapsed time for election operations on a real device 31

LIST OF FIGURES

Figure 1: A dialog to insert the data of a new election ... 34

Figure 2: The main activity with a list of all the elections in the app 35

Figure 3: Another activity displaying a detailed view of the selected election 36

Figure 4: An election during initialization with progress indicators 37

Figure 5: The user can navigate away from the app and monitor the progress 38

Figure 6: The user is notified when an operation has finished 39

Figure 7: When on mobile data, a dialog is displayed before verifying the election 40

Figure 8: A completed election .. 41

Figure 9: Elections are sorted according to their status, start time and ID 42

Figure 10: Erasing an election with an alert dialog preventing accidental deletion 43

LIST OF TABLES

Table 1: A summary of the activity lifecycle's callback methods 21

Table 2: Elapsed time for election operations in the emulator 30

Table 3: Elapsed time for election operations on a real device...................................... 30

PREFACE

The present work was written in the summer semester of 2015, Athens in the context of
my graduation thesis.

After Nikos Chondros and Mema Roussopoulou’s suggestion, I took part in an active
group of knowledgeable people who were currently developing an innovative e-voting
system that introduces new features and guarantees for such systems by combining the
ubiquitous field of cryptography with the blooming field of distributed systems.

Since the designed system is new and demands a considerable theoretical background,
the help of my supervisors and their willingness to answer all my questions was
valuable for the completion of this thesis.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 15

1. INTRODUCTION

1.1 What is electronic voting

Electronic voting (e-voting) is a type of voting which is performed through the utilization
of electronic means. Depending on the particular case, these means may vary from
optical scan voting systems and voting kiosks with self-contained direct-recording
electronic voting systems to private computing networks or full-function online voting
through ordinary Internet connected mobile or household devices. Similarly, they can
aid the election process by encompassing a range of services from ballot casting and
vote counting to complete automation that includes voter authentication, casting,
tallying, encryption, data transmission and verification.

1.2 What is DEMOS

DEMOS [1] is an innovative, distributed, end-to-end verifiable, internet voting system [2]
developed by a team of researchers at the Department of Informatics and
Telecommunications of the National and Kapodistrian University of Athens. It is the first
e-voting system whose operation is human verifiable, meaning that voters can verify its
proper operation without the assistance of special software or trusted devices. DEMOS
empowers voters by allowing them to verify the election tally as well as their vote
themselves.

1.3 What is Android

Android is an open source [3] mobile operating system, currently developed by Google.
[4][5] It is based on the Linux kernel and is designed primarily for mobile devices such
as smartphones and tablets. The kernel is modified to use libraries or drivers that
enable the efficient execution of the Android OS on mobile devices (which are
characterized by limited resources).

1.3.1 Why Android

Smartphones are quickly becoming a ubiquitous computing platform. Being open
source, Android has presented a tremendous increase in its market share and has
developed a large community of developers and enthusiasts, dominating Apple’s iOS or
Microsoft’s Windows Phone. In July 2013, Android surpassed the one million
applications in the Google Play store and the fifty billion application downloaded
milestones. [6] What is more, at Google I/O 2014, the company revealed that there were
over one billion active monthly Android users, up from 538 million in June 2013. [7]
Having such an immense user base, the Android OS makes an ideal platform for any
new application.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 16

2. THE DEMOS INTERNET VOTING SYSTEM

2.1 Background

There is a specific list of requirements that an ideal system would satisfy. The internet
voting system in discussion addresses some properties among the most challenging to
provide, which are the following: [2]

 End-to-end verifiability: All voters can verify that their votes were counted
towards the tally without being altered and any party can verify that the election
procedure was performed as intended.

 Privacy: It is impossible for a party to extract information about the voters’ ballots
without monitoring voters during the voting phase of the election.

 Receipt-freeness: It is impossible for a voter to prove what they voted to any party
which did not monitor them during the voting phase of the election (i.e. the system
does not facilitate vote-selling).

 Fault tolerance: The voting system should continue to operate correctly when up
to a specific number of its components are faulty.

2.2 Components of the DEMOS voting system

The voting community generally uses specific terminology and abstractions when
modeling and describing voting systems. A brief description of the ones related to the
system in discussion follows (as they are defined in the corresponding paper “A
distributed, end-to-end verifiable, internet voting system” [2]).

2.2.1 Election Authority

The Election Authority (EA) [2] is an entity that performs the initialization of the system.
For this system, the EA is modeled as a trusted and independent node that is
commissioned to set up an election. It generates and transmits all initialization data to
all the other components of the system and finally gets destroyed for privacy reasons. It
is assumed that for the aforementioned communications Out-Of-Band (OOB) channels
are used that are authenticated and private.

In order to generate all initialization data, the following inputs are given:

 The election question.

 The election timeframe.

 The list of options that the voter will chose from.

 The number of ballots to generate (equal to the number of eligible voters).

2.2.2 Bulletin Board

A Bulletin Board (BB) [2] is a publicly accessible repository of all voting-related
information, assisting in tasks such as vote collection, result tabulation and election
auditing. In contrast to a lot of previous works that present it as a trusted and centralized
component, the BB is modeled here as a distributed entity with the following two parts:

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 17

 Vote Collection: The Vote Collection (VC) is a separate subsystem that
implements the vote collection functionality of the BB. It comprises a set of
cooperating nodes, with authenticated private channels between them, that
collect the votes submitted by voters during election hours and post them to the
ABB (discussed next) after the election has ended.

 Audit Bulletin Board: The Audit Bulletin Board (ABB) is again a separate
subsystem that implements the remaining functionality of the BB. It consists of
multiple independent nodes, with each one being oblivious to the existence of
other ABB nodes. The ABB allows public read access and, also, authenticates all
write requests from VCs and trustees (discussed next).

2.2.3 Trustees

Trustees [2] are entities whose intervention is required for the election tally to be
produced and published. More specifically, they are individuals entrusted with the power
to unlock ABB information at will.

This entity is the main concern of this thesis, as the app that was developed automates
the procedure they perform.

2.2.4 Voters

Voters [2] have the freedom to vote from any device of their choice, whether trusted or
untrusted, without sacrificing their privacy, and still be assured their vote was cast as
intended, since it is assumed that the communication channel between them and any
VC node is unencrypted and unauthenticated. This means that voters may use the
system over the web, even when their client stack is potentially unsafe.

To achieve this degree of freedom, the voter is given a ballot with distinct vote codes
assigned to the election options. In addition, a short expected receipt is assigned to
each vote code. When a voter casts their vote (by casting the vote code that
corresponds to their voting preference) and the distributed BB accepts it, they receive a
receipt as a reply. This can optionally be used by the voter to visually match it with the
expected receipt in their ballot, thus allowing them to use any terminal for casting and
verify, nonetheless, the proper operation without the need of special software or trusted
devices that perform cryptographic operations.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 18

3. THE ANDROID OPERATING SYSTEM

3.1 Fundamentals

Since Android is an enormous framework that attempts to be a universal platform which
covers the needs of all mobile applications and their particular use cases while
supporting a wide range of devices with completely different capabilities, it is impossible
to succinctly describe it in its entirety. Instead, only an overview of its essential (for this
app) architectural components is provided in order to allow any reader to understand
the design that was selected for this app. Developers that are interested in the
implementation details and the specific Android APIs that were chosen, are referred to
the application’s source code [8].

Android apps are written in the Java programming language. The Android Software
Development Kit (SDK) tools compile your code - along with any data and resource files
- into an APK: an Android package, which is an archive file with an .apk suffix. One APK
file contains all the contents of an Android app and is the file that Android-powered
devices use to install the app. [9]

3.1.1 Security

Each Android app lives in its own security sandbox. By default, the Android operating
system assigns a unique Linux user ID to every app, so each one is actually a different
user. In addition, every app runs in its own Linux process by default and each process
has its own virtual machine (VM) that runs code in isolation from other apps. Moreover,
the system sets permissions for all files in an app, so that only it can access them.
Therefore, an application has access only to the components in needs to do its work
and no more (this is known as the principle of least privilege). [9][10]

3.2 Processes and Threads

When an application component starts and the application does not have any other
components running, the Android system starts a new Linux process for the application
with a single thread of execution. By default, all components of the same app run in the
same process and thread (called the "main" thread). If an application component starts
and there already exists a process for that app (because another component from the
app exists), then the component is started within that process and uses the same thread
of execution. [10]

Nevertheless, an application developer can (and usually does) create additional threads
for any process, in order to execute concurrent tasks, avoid blocking the UI or take
advantage of devices with multi-core processors. They may, also, arrange for different
application components to run in separate processes (even though most applications
should not change this). [10]

In order to provide the best user experience, the Android system tries to maintain an
application process in memory for as long as possible, so as to quickly resume it when
needed, but it eventually needs to remove older processes to reclaim memory for new
or more important ones. To make these decisions, the system creates an “importance
hierarchy” based on the state of the components running in each process, with
processes with the lowest importance being eliminated first. [10]

There are five levels in this importance hierarchy. These are the following, starting from
the most important: [10]

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 19

1. Foreground process: A process that is required for what the user is currently
doing.

2. Visible process: A process that doesn't have any foreground components, but
still can affect what the user sees on screen.

3. Service process: A process that is running a service and does not fall into either
of the two higher categories.

4. Background process: A process holding an activity that's not currently visible to
the user.

5. Empty process: A process that doesn't hold any active application components.

3.3 Components of the Android OS

App components are the essential building blocks of an Android app. Each component
is a different point through which the system can enter an app. Not all components are
actual entry points for the user and some depend on each other, but each one exists as
its own entity and plays a specific role – each one is a unique building block that helps
define the app's overall behavior. [9]

There are four different types of app components. Each type serves a distinct purpose
and has a distinct lifecycle that defines how the component is created and destroyed. [9]

3.3.1 Activities

An activity [9][11] is an application component that provides a single screen with which
a user can interact in order to do something, such as composing and email or making a
phone call. Each activity is given a window in which to draw its user interface. It
represents an activity – thus, the name – that the user can perform. Note that an activity
may include multiple actions, so the two terms are not used interchangeably. For
instance, a client app for a cloud file storage service might have one activity that shows
a list of all files and folders, another activity to create a new text file and another activity
for viewing the contents of a file. The activities of an app work together to create a
cohesive user experience. It is important, nevertheless, to understand that each one is
completely independent of the others. As a result, an app may permit all other apps to
start one of its activities (without prior negotiations). For example, a social networking
app may start the activity in a camera app that captures a photo, in order for the user to
share it with their friends.

As mentioned before, each activity can start another activity. When a new activity starts,
the previous one is stopped and preserved in a stack (that implements the known "last
in, first out" mechanism), while the new one is pushed onto the stack. When the user
returns to the previous activity (usually by pressing the Back button), the current activity
is popped from the stack, destroyed, and the previous activity is resumed.

It is now clear that an activity can exist in many states, depending on its interaction with
other activities and the user. These are essentially the following three states:

1) Resumed: The activity is running in the foreground and has user focus.

2) Paused: Another activity is in the foreground and has user focus, but the one in
discussion is still visible (because the activity in the foreground doesn’t cover the
entire screen or is partially transparent).

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 20

3) Stopped: The activity is completely hidden by another activity (and is now in the
“background”).

It is crucial to realize that the Android OS was designed for devices with limited
resources, so it is possible (and likely) that when the system finds itself in a low memory
situation, it will drop a paused or stopped activity from memory either by asking it to
finish or by simply killing its process. Consequently, it is essential to always consider
this fact when designing a robust app and managing the lifecycle of its activities. In
order to do so, the system provides the following fundamental callback methods (as
shown in the skeleton activity taken from [11]):

public class ExampleActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // The activity is being created.

 }

 @Override

 protected void onStart() {

 super.onStart();

 // The activity is about to become visible.

 }

 @Override

 protected void onResume() {

 super.onResume();

 // The activity has become visible (it is now "resumed").

 }

 @Override

 protected void onPause() {

 super.onPause();

 // Another activity is taking focus (this activity is about to be "paused").

 }

 @Override

 protected void onStop() {

 super.onStop();

 // The activity is no longer visible (it is now "stopped")

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 // The activity is about to be destroyed.

 }

}

The following table (reproduced from [12]) gives a more detailed description of each
callback method:

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html#onStart()
http://developer.android.com/reference/android/app/Activity.html#onResume()
http://developer.android.com/reference/android/app/Activity.html#onPause()
http://developer.android.com/reference/android/app/Activity.html#onStop()
http://developer.android.com/reference/android/app/Activity.html#onDestroy()

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 21

Table 1: A summary of the activity lifecycle's callback methods [12]

Finally, the following diagram (as taken from [11]) indicates the transitions in the activity
lifecycle:

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 22

Diagram 1: The paths that an activity might take between its states [11]

3.3.2 Services

A service [9][13] is an application component that does not provide a user interface but
runs in the background. It can be used to perform long-running operations or work for
remote processes. For instance, a service might play music in the background while the

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 23

user interacts with different apps, or it might fetch data over the network allowing the
user to freely interact with an activity. Services are usually started by an activity and
may run until either they stop themselves or another component (such as the activity
that initiated them) stops them, so they will continue to run in the background even if the
user switches to another application. Even though they do not display a user interface,
they may create status bar notifications to alert the user of events that require their
attention.

There are two types of services:

 Started: A “started” service is one that is launched by an app component, such
as an activity, and can run in the background indefinitely, even if the component
that started it is destroyed. It usually performs a single operation and stops itself
when the work is done.

 Bound: A “bound” service is one that has app components bound to it. It offers a
client-server interface that allows components to send requests to it and receive
results. A bound service runs as long as other components are bound to it
(whether one or many at the same time) and when all of them unbind, the service
is destroyed.

It should also be noted that a service can be both started and bound. Regardless of its
type, though, a service simply declares the need to execute work in the background. It
always runs in the main thread of its hosting process and it never creates threads on its
own. Such decisions are left to the application developer.

As with activities, it is possible that the system may decide to kill a service when it is low
on memory (but it will generally avoid doing so). Like an activity, a service has lifecycle
callback methods, which are demonstrated with the following example (that was taken
from [13]):

public class ExampleService extends Service {

 int mStartMode; // indicates how to behave if the service is killed

 IBinder mBinder; // interface for clients that bind

 boolean mAllowRebind; // indicates whether onRebind should be used

 @Override

 public void onCreate() {

 // The service is being created

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 // The service is starting, due to a call to startService()

 return mStartMode;

 }

 @Override

 public IBinder onBind(Intent intent) {

 // A client is binding to the service with bindService()

 return mBinder;

 }

 @Override

 public boolean onUnbind(Intent intent) {

 // All clients have unbound with unbindService()

 return mAllowRebind;

http://developer.android.com/reference/android/app/Service.html#onCreate()
http://developer.android.com/reference/android/app/Service.html#onStartCommand(android.content.Intent, int, int)
http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/app/Service.html#onBind(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
http://developer.android.com/reference/android/app/Service.html#onUnbind(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#unbindService(android.content.ServiceConnection)

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 24

 }

 @Override

 public void onRebind(Intent intent) {

 // A client is binding to the service with bindService(),

 // after onUnbind() has already been called

 }

 @Override

 public void onDestroy() {

 // The service is no longer used and is being destroyed

 }

}

In this thesis, we will only focus on started services, since these are the ones that are
used in our app. The following diagram (as taken from [13]) shows the transitions in the
service lifecycle:

Diagram 2: The service lifecycle (we focus on unbounded services) [13]

http://developer.android.com/reference/android/app/Service.html#onRebind(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
http://developer.android.com/reference/android/app/Service.html#onDestroy()

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 25

3.3.3 Broadcast receivers

A broadcast receiver [9][14] is a component that responds to (receives) system-wide
broadcast announcements. A broadcast may originate from the system (for instance, a
broadcast announcing that the battery is low) or from an app (for example, to let other
apps know that some data is available for them to use). Broadcast receivers are usually
used to do a very minimal amount of work, which is commonly to start another
application component, such as a service to perform some work based on the event.
Like services, these components do not display a user interface and they may, also,
create status bar notifications.

3.3.4 Content providers

A content provider [9][15] is a component that manages a shared set of app data. It
enables developers to store data in the file system, an SQLite database, the web or any
other persistent storage location that the app can access, while allowing other apps to
query or even modify the data (if permitted) through a uniform and standard set of APIs.
For example, the Android system provides a content provider that manages the user's
contact information. In contrast to the previous components, no content provider is
actually used in the current version of our app.

3.4 Other Android Objects

The four app components described more extensively in the previous sections provide
the skeleton of an android application. They are the major parts that can interact with
each other and define the basic behavior of an app. It is natural, however, for the
Android framework to provide a vast variety of objects and utilities that the major
components can use to provide greater flexibility and functionality. A very brief summary
of some of the most significant parts for our application is given below.

3.4.1 Adapters

Adapters [16][17] are objects that take data from an underlying source (commonly an
array or a database cursor) and covert them to a form (more accurately a view [18]) that
will be used in the UI. In addition, they allow the efficient manipulation and display of
large collections of data by recycling user interface components. Finally, they allow
observers to monitor the underlying data and update them when a change has
occurred, enabling, therefore, dynamic updates of the UI.

3.4.2 SQLite

SQLite [19] is an embedded, transactional, SQL database engine. SQLite provides an
elegant and efficient way of organizing and saving structured data in permanent
storage.

Android provides full support for SQLite databases [20], so this is an excellent choice to
store, process and query data that cannot (due to size) or should not (due to possible
loss) be stored in memory.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 26

3.4.3 Loaders

Loaders [21] are objects that perform asynchronous loading of data. Loaders define a
standard interface for performing longer-running operations (e.g. that load data from a
file or more commonly a database). Being asynchronous, they can monitor the source
of their data and deliver new results when the content changes or even offload the
loading task to a separate background thread, so that it does not block the application’s
UI.

3.4.4 Android NDK / Java JNI

The Android Native Development Kit (NDK) [22] is an extension of the Android SDK that
allows developers to implement parts of their app using native code, in languages such
as C, C++ or even assembly. It provides toolchains for compiling code for all
architectures that the Android OS currently supports (i.e. ARM, MIPS and Intel for 32
and 64bit systems).

The NDK is typically used for CPU-intensive applications – such as game engines,
physics simulation or cryptographic protocols – or for reusing existing code libraries
written in those languages.

The NDK makes use of the Java Native Interface (JNI). [23] JNI defines a way for
managed code (written in the Java programming) to interact with native code (written,
for example, in C/C++).

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 27

4. THE ARCHITECTURE OF THE TRUSTEE APPLICATION

4.1 Election phases

From the point of view of a trustee, there are the following phases that an election can
be in, in this specific order:

1. Initialized: The trustee has processed the initialization data that the EA has
generated for the election and awaits the end of the election in order to proceed
to its verification.

2. Verified: After the election has ended, the trustee has retrieved and verified the
results from the ABB.

3. Completed: The trustee has published the results to the ABB.

These phases are stored and used in the app to determine following actions (if any).

4.2 The recommended approach

The application follows the architecture that Android engineers recommend for such use
cases. An overview of the approach follows, as described in the Google I/O 2010
session by Virgil Dobjanschi (an, at the time of the session, software engineer at
Google). [24][25]

Diagram 3: One of the architectural patterns for an Android REST client application [24]

1. The REST method is an entity that prepares an HTTP URL (and HTTP request
body if needed), executes the HTTP transaction and processes the HTTP
response. The app has a few such entities, each one modeled as a task (a

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 28

Runnable) that is submitted for execution in a thread pool. In order to
communicate with the ABB, the trustee uses an HTTP server with a REST API.
The data are currently transmitted with a simple text format.

2. The Processor is an entity that mirrors the state of server resources in the app’s
local database. It also stores additional flags that indicate the status of an
operation and may perform caching so as not to continuously retrieve the same
data from the server. In our app, the processor is not a separate entity, but is
embedded in the previously mentioned tasks. In addition, instead of a content
provider, a raw SQLite database is used.

3. The Service (one of its four components that were described in the previous
chapter) is the major component of this architectural pattern. The service handles
operations in the background. In our app, it creates one or more worker threads in
a thread pool (in actuality, there is more than one pool so as to execute different
types of tasks), executes tasks according to the requests it receives, implements
a queue of such requests when there are not enough threads, sends updates to
the rest of the system (via local broadcast messages) and stops itself when there
is no more work to do.

4. The Service Helper is a singleton that provides a simple asynchronous API to be
used by the user interface and is implemented as such in the trustee app.

5. An Activity initiates requests to the service through the service helper and
registers callbacks in order to receive the results of those requests. Note that
instead of a cursor adapter, our app currently uses a custom adapter.

4.2.1 Benefits of the recommended approach

The design outlined solves all the problems that a wrong approach may encounter,
while remaining efficient. Its major advantages are (as mentioned less specifically in
[24]):

 The Android operating system was designed to work on devices with limited
memory, so it may shut down the application process. This pattern accounts for
that by storing data persistently in the local database.

 The pattern avoids wasting CPU resources and more significantly battery power or
network bandwidth, by caching data in the local database.

 The pattern makes sure that there is consistency between the app and the server.

 The user is able to navigate away from the app and use their phone however they
desire while a request is being processed.

4.3 SQLite

The app can manage multiple elections at the same time. For each election, it receives
a large amount of structured data from the EA. The bigger an election is (i.e. the more
eligible voters participating), the larger the dataset will be. As a result, it is generally
impossible or inappropriate to store the data in memory. Therefore, SQLite was chosen
to save the initialization data to disk. Apart from permanent storage, SQLite offers the
following guarantees and features that make its use valuable:

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 29

 Data integrity and transactions. Even when an application is killed by the OS or the
phone battery is suddenly depleted, SQLite guarantees that the database will
always be at a valid state.

 Performance. SQLite can use indexes for quickly retrieving or manipulating data.
This is especially useful during election verification, when the data retrieved from
the ABB are checked against the initialization data from the EA.

 The ease of use of the SQL language.

4.4 NDK / JNI

We utilize the NDK in order to use MIRACL. MIRACL (Multi-precision Integer and
Rational Arithmetic C Library) [26] is a cryptographic SDK that provides efficient
implementations for a wide range of cryptographic algorithms. It is written in the C
programming language, but also supports generation of optimal assembly language for
all common architectures (which include all architectures that the Android OS currently
supports).In addition, it is designed for highly constrained environments, including
mobile apps.

We use MIRACL in this app for performing the elliptic-curve cryptographic operations of
the e-voting system.

4.5 Google Protocol Buffers

Protocol buffers (also referred to as protobuf) [27] are an extensible, language and
platform neutral, mechanism created by Google for serializing structured data. They
provide a relatively simple declaration language for defining the structure of your data
and then generate code in the C++, Java or Python programming languages for reading
and writing from and to streams.

The initialization data generated from the Election Authority for a trustee are encoded
with protobuf in order to store and transmit them efficiently, so the app uses the same
format for initializing an election.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 30

5. BENCHMARKING

Some basic time measurements were performed for a single election (for both
initialization and verification) when using the Android Emulator [28] and a real device.

The Android emulator was running an x86 Android 5.1 Lollipop (API 22) system image
on an x86-64 Windows 7 desktop computer. Under this configuration, the emulator was
hardware accelerated (for both the CPU and GPU) with 1536 MBs of RAM available.
Since it lets us simulate various network transfer rates and latency levels [28], the
network speed and network delay were set to those of a GPRS network (in contrast to a
modern UMTS or HSDPA network), so as to test the application in an environment more
typical of the actual conditions in which it will run.

The Android device was an Archos 40 Titanium with an ARMv7-A Dual-core 1.3 GHz
Cortex-A7 CPU and 512 MBs of RAM, running Android 4.2.2 Jelly Bean (API 17). [29]
Note that it is not possible to throttle network traffic for a real device through the Android
development tools, so the results cannot be directly compared.

The measurements in discussion follow. It should be highlighted that these numbers are
given as a proof of concept, simply to show that a mobile device can handle the load of
such tasks and complete them in a reasonable amount of time, but are otherwise not
representative of other configurations. Since the Android OS supports a multitude of
devices (both phones and tablets), it is impossible to extrapolate the app’s exact
performance for other scenarios.

All results are for a release build of the app and were rounded to one decimal place.

Table 2: Elapsed time for election operations in the emulator

Ballots (10 options) Initialization Verification

1.000 4.0s 0.4s

10.000 45.0s 2.8s

50.000 227.5s (3m 47.5s) 11.8s

100.000 434.4s (7m 14.4s) 23.9s

Table 3: Elapsed time for election operations on a real device

Ballots (10 options) Initialization Verification

1.000 6.3s 0.6s

10.000 69.7s 4.2s

50.000 370.3s (6m 10.3s) 18.4s

100.000 735.1s (12m 15.1s) 37.8s

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 31

Diagram 4: Elapsed time for election operations in the emulator

Diagram 5: Elapsed time for election operations on a real device

Some further remarks:

 It was expected that verification would be faster, because only the vote codes
that are actually voted are processed (in contrast to initialization where all vote
codes – for all options for both parts – are processed).

 It is noted that for 100.000 ballots with 10 options on each part of the ballot, the
database uses around 225MB of data. Therefore, the main problem for such an
application is the available internal disk space on the device, rather than its
computing power.

0

50

100

150

200

250

300

350

400

450

500

1.000 10.000 50.000 100.000

Initialization

Verification

0

100

200

300

400

500

600

700

800

1.000 10.000 50.000 100.000

Initialization

Verification

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 32

6. CONCLUSIONS

In the present thesis, we gave a brief description of the entities of the distributed, end-
to-end verifiable, internet voting system and summarized the procedure that a trustee
has to follow. We also described the architecture that an Android application has to
implement in order to provide a pleasant user experience, while pointing out its benefits
and the problems it solves.

We made clear that, despite running on hardware with limited resources, such apps can
be robust and relatively fast, handling easily small, medium and even larger elections.
As a consequence, a trustee partaking in an election may use their mobile Android
device to automate the task at hand and generally take advantage of the conveniences
such devices offer.

Finally, it should be noted that the architecture outlined can be adjusted to meet the
needs of similar apps for other entities of the system. These may be most notably
voters, giving them, too, the power of a mobile device, therefore, increasing voter
participation even further and promoting democracy.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 33

ABBREVIATIONS – INITIALISMS – ACRONYMS

adb Android Debug Bridge

App Application

ABB Audit Bulletin Board

API Application Programming Interface

APK Android Package

AVD Android Virtual Device

BB Bulletin Board

CPU Central Processing Unit

EA Election Authority

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JDK Java Development Kit

JNI Java Native Interface

NDK Native Development Kit

OOB Out-Of-Band

OS Operating System

RAM Random Access Memory

REST Representational State Transfer

SDK Software Development Kit

SE Standard Edition

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

USB Universal Serial Bus

VC Vote Collection

VM Virtual Machine

ΛΣ Λειτουργικό Σύστημα

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 34

APPENDIX Ι

Screenshots from a device running on the Android emulator showing the app in action.

Figure 1: A dialog to insert the data of a new election

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 35

Figure 2: The main activity with a list of all the elections in the app

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 36

Figure 3: Another activity displaying a detailed view of the selected election

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 37

Figure 4: An election during initialization with progress indicators

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 38

Figure 5: The user can navigate away from the app and monitor the progress

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 39

Figure 6: The user is notified when an operation has finished

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 40

Figure 7: When on mobile data, a dialog is displayed before verifying the election

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 41

Figure 8: A completed election

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 42

Figure 9: Elections are sorted according to their status, start time and ID

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 43

Figure 10: Erasing an election with an alert dialog preventing accidental deletion

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 44

APPENDIX II

A concise list of instructions follows for installing all the necessary tools that were used
to develop and deploy the Android application. Since a detailed list of instructions for all
operating systems would be rather long, the reader is often referred to the relevant
online documentation.

1. Since Android applications are programmed in the Java programming language,
it is necessary to install the Java Development Kit (JDK) of Java Standard Edition
(SE), before installing all of the other tools. At least Java SE version 7 is
required. The JDK can be found in [30], whereas installation instructions can be
found in [31]. Note that the installation procedure may differ significantly between
operating systems. At the time of writing, the latest version was Java SE 8u66,
while Java SE 7 was no longer supported.

2. Android Studio [32] is the current official Android Integrated Development
Environment (IDE), – succeeding Eclipse with ADT – developed by Google and
JetBrains, and built on IntelliJ IDEA Community Edition, the popular Java IDE by
JetBrains [33]. It is the de facto IDE for developing Android applications. It can be
downloaded (along with the Android SDK) from [32]. At the time of writing, the
latest version of Android Studio was 1.4.1

3. The Android SDK [32] contains all the necessary command line tools for Android
development. It is bundled with Android Studio, for an easier download and
installation. If you do not intend to use the command line or build scripts (as was
done here), then this is the recommended approach. Otherwise, the stand-alone
SDK tools are also available in [32]. At the time of writing, the latest version was
24.4.1

4. After downloading Android Studio and the Android SDK, install them following the
instruction in [34]. Note that the installation procedure for these tools may also
differ significantly between operating systems.

5. By default, the Android SDK may not include everything you need to start
developing. Using the Android SDK Manager (as stated in [35],[36]), you should
check that the following few packages are installed and up to date: [35]

 The Android SDK Tools (as mentioned above).

 The Android SDK Platform-tools. At the time of writing, the latest version was
23.0.1.

 The Android SDK Build-tools (highest version). At the time of writing, the
latest version was 23.0.2.

 One or more Android System Images. This is needed only if you are going to
use an emulated device. For instance, you may choose the Android 5.1.1
(API 22) Intel x86 Atom System Image. At the time of writing, the latest
system images available were for Android 6.0 (API 23).

 The Android NDK. Its purpose and use was described in a previous section.
At the time of writing, the latest version was r103.

 The Android Support Repository and Android Support library. [37] The
Support Library package is a set of code libraries that provide backward-
compatible versions of the latest Android framework APIs (for devices
running versions as old as Android 1.6 (API level 4), as well as some extra

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 45

features. At the time of writing, the latest versions were 25 and 23.1.1
correspondingly.

 The Intel x86 Emulator Accelerator (HAXM installer). [38][39] This is needed
only if you want to use an emulated device. Without hardware acceleration,
the emulator is going to be very slow or even unusable, depending on the
configuration and the host machine. In such cases, it may be necessary to
use a real device or an emulator other than the one that the Android SDK
provides. Using a real device is discussed in more detail below. At the time of
writing, the latest version was 5.5.

 The Google USB Driver (required for windows only in order to perform adb
[40] debugging). [41] At the time of writing, the latest version was 11.

6. Install the OEM USB Driver for your device (usually required for windows only).
[42] This is needed only if you want to use a real device.

After installing all the above software, you will be ready to download, install and run the
application in a real or emulated device (phone or tablet).

1. Get the project from the online GitHub repository at [29].

2. Import the project to Android Studio using File > New > Import Project. If you
have Git installed on your computer and have correctly configured Android Studio
to use it, you may import the project directly from the online GitHub repository
using File > New > Project from Version Control > GitHub.

3. Choose where you want to deploy or test the application.

a. If you are going to use the emulator, then you need an Android Virtual Device
(AVD). If you are using one of the latest versions of Android Studio, then it
will have already offered to create an optimized AVD for your machine. If not,
then you have to create a new one with the AVD manager [43].

b. If you are going to use a real device, then connect it to your computer via
USB. Remember that, even though it is a good idea for testing, using a real
device is not necessary since you can try the app in an AVD with the
emulator. Before installing the app, you need to prepare the device for that,
as described in [44]. Note that the process depends on the Android version
and the OS of the development machine.

4. Click on the Run ‘app’ button on the toolbar at the top of the Android Studio
window. This will automatically build your app and then prompt you to select the
device (real or emulated) on which you want it to install and execute it. If no
device is connected and the emulator is not started, you will be prompted to
launch the emulator. In any case, select the device you want and click OK.

5. The app will be installed and start running on the selected device.

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 46

REFERENCES

[1] DEMOS, http://www-en.demos-voting.com/ [Retrieved 26/10/2015]
[2] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos, Stathis Maneas,

Christos Patsonakis, Alex Delis, Aggelos Kiayias, Mema Roussopoulos, “A distributed, end-to-end
verifiable, internet voting system”, http://arxiv.org/abs/1507.06812 [Retrieved 26/10/2015]

[3] Open Source Initiative, http://opensource.org/ [Retrieved 26/10/2015]
[4] Android, https://en.wikipedia.org/wiki/Android_(operating_system) [Retrieved 26/10/2015]
[5] The Android Source Code, http://source.android.com/source/index.html [Retrieved 26/10/2015]
[6] http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-

now-officially-largest_id45680 [Retrieved 27/10/2015]
[7] http://www.techspot.com/news/57228-google-shows-off-new-version-of-android-announces-1-billion-

active-monthly-users.html [Retrieved 27/10/2015]
[8] Trustee application GitHub repository, https://github.com/import-this/demos-trustee-android
[9] App fundamentals, http://developer.android.com/guide/components/fundamentals.html [Retrieved

28/10/2015]
[10] Processes and Threads, http://developer.android.com/guide/components/processes-and-threads.html

[Retrieved 28/10/2015]
[11] Activities, http://developer.android.com/guide/components/activities.html [Retrieved 28/10/2015]
[12] Activity class, http://developer.android.com/reference/android/app/Activity.html [Retrieved

30/10/2015]
[13] Services, http://developer.android.com/guide/components/services.html [Retrieved 28/10/2015]
[14] Broadcast Receiver class,

http://developer.android.com/reference/android/content/BroadcastReceiver.html [Retrieved
28/10/2015]

[15] Content providers, http://developer.android.com/guide/topics/providers/content-providers.html
[Retrieved 28/10/2015]

[16] Adapter class, http://developer.android.com/reference/android/widget/Adapter.html [Retrieved
28/10/2015]

[17] “Turbo-charge your UI: How to Make your Android UI Fast and Efficient”,
https://www.youtube.com/watch?v=N6YdwzAvwOA [Retrieved 28/10/2015]

[18] View class reference, http://developer.android.com/reference/android/view/View.html [Retrieved
28/10/2015]

[19] SQLite, https://www.sqlite.org/ [Retrieved 30/10/2015]
[20] Android SQLite package summary,

http://developer.android.com/reference/android/database/sqlite/package-summary.html [Retrieved
30/10/2015]

[21] Loaders, http://developer.android.com/guide/components/loaders.html [Retrieved 29/10/2015]
[22] Android NDK, http://developer.android.com/tools/sdk/ndk/index.html [Retrieved 28/10/2015]
[23] JNI, http://docs.oracle.com/javase/7/docs/technotes/guides/jni/ [Retrieved 29/10/2015]
[24] “Developing Android REST client applications”, https://www.youtube.com/watch?v=xHXn3Kg2IQE

[Retrieved 28/10/2015]
[25] “Developing Android REST client applications“ presentation,

https://dl.google.com/googleio/2010/android-developing-RESTful-android-apps.pdf [Retrieved
28/10/2015]

[26] MIRACL, https://www.certivox.com/miracl [Retrieved 28/10/2015]
[27] Google Protocol buffers, https://developers.google.com/protocol-buffers/ [Retrieved 28/10/2015]
[28] Android Emulator, http://developer.android.com/tools/devices/emulator.html [Retrieved 28/10/2015]
[29] Archos 40 Titanium specs, http://www.gsmarena.com/archos_40_titanium-6064.php [Retrieved

14/11/2015]
[30] Java SE JDK, http://www.oracle.com/technetwork/java/javase/downloads/index.html [Retrieved

10/11/2015]
[31] Java SE installation instructions,

http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html [Retrieved
10/11/2015]

[32] Android Studio and Android SDK downloads, https://developer.android.com/sdk/index.html [Retrieved
10/11/2015]

[33] IntelliJ IDEA, https://www.jetbrains.com/idea/ [Retrieved 10/11/2015]
[34] Android Studio and Android SDK installation instructions,

https://developer.android.com/sdk/installing/index.html [Retrieved 10/11/2015]
[35] Android SDK packages installation, https://developer.android.com/sdk/installing/adding-

packages.html [Retrieved 10/11/2015]

http://www-en.demos-voting.com/
http://arxiv.org/abs/1507.06812
http://opensource.org/
https://en.wikipedia.org/wiki/Android_(operating_system)
http://source.android.com/source/index.html
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.techspot.com/news/57228-google-shows-off-new-version-of-android-announces-1-billion-active-monthly-users.html
http://www.techspot.com/news/57228-google-shows-off-new-version-of-android-announces-1-billion-active-monthly-users.html
https://github.com/import-this/demos-trustee-android
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/reference/android/widget/Adapter.html
https://www.youtube.com/watch?v=N6YdwzAvwOA
http://developer.android.com/reference/android/view/View.html
https://www.sqlite.org/
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://developer.android.com/guide/components/loaders.html
http://developer.android.com/tools/sdk/ndk/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://www.youtube.com/watch?v=xHXn3Kg2IQE
https://dl.google.com/googleio/2010/android-developing-RESTful-android-apps.pdf
https://www.certivox.com/miracl
https://developers.google.com/protocol-buffers/
http://developer.android.com/tools/devices/emulator.html
http://www.gsmarena.com/archos_40_titanium-6064.php
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
https://developer.android.com/sdk/index.html
https://www.jetbrains.com/idea/
https://developer.android.com/sdk/installing/index.html
https://developer.android.com/sdk/installing/adding-packages.html
https://developer.android.com/sdk/installing/adding-packages.html

Αn Android application for the trustees of a distributed, end-to-end verifiable, internet voting system

V. Poulimenos 47

[36] Android SDK Manager, https://developer.android.com/tools/help/sdk-manager.html [Retrieved
11/11/2015]

[37] Android Support Library https://developer.android.com/tools/support-library/index.html [Retrieved
11/11/2015]

[38] Emulator Hardware Acceleration, http://developer.android.com/tools/devices/emulator.html#accel-vm
[Retrieved 11/11/2015]

[39] Intel Hardware Accelerated Execution Manager, https://software.intel.com/en-us/android/articles/intel-
hardware-accelerated-execution-manager [Retrieved 11/11/2015]

[40] Android Debug Bridge, http://developer.android.com/tools/help/adb.html [Retrieved 11/11/2015]
[41] Google USB Driver, http://developer.android.com/sdk/win-usb.html [Retrieved 14/11/2015]
[42] OEM USB Drivers, http://developer.android.com/tools/extras/oem-usb.html [Retrieved 14/11/2015]
[43] AVD Manager, http://developer.android.com/tools/devices/managing-avds.html [Retrieved

14/11/2015]
[44] Using Hardware Devices, http://developer.android.com/tools/device.html [Retrieved 14/11/2015]

https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/devices/emulator.html#accel-vm
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://developer.android.com/tools/help/adb.html
http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/devices/managing-avds.html
http://developer.android.com/tools/device.html

