
 
 

 
 

 
 

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 

 

SCHOOL OF SCIENCE 

FACULTY OF INFORMATICS AND TELECOMMUNICATIONS 

 

 

 

 

BACHELOR THESIS 

 

 

Clustering and Classification in High Dimensional Sparse Data 

 

 

Ioannis M. Borektsioglou 

Konstantinos N. Patsourakos 

 

 

 

 

 

 

 

 

Supervisor: Ioannis Z. Emiris, Professor 

 

 

 

 

 

ATHENS 

 

MARCH 2016 

 



 
 

 
 

 
 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 
 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
 

 
 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 
 

Ομαδοποίηση και Κατηγοριοποίηση σε Πολυδιάστατα Αραιά Δεδομενα 
 
 
 

Ιωάννης Μ. Μπορεκτσίογλου 
Κωνσταντίνος Ν. Πατσουράκος 

 
 
 
 
 
 
 
 
 

Επιβλέπων: Ιωάννης Ζ. Εμίρης Καθηγητής 
 

 
 
 
 
 
 
 

ΑΘΗΝΑ 
ΜΑΡΤΙΟΣ 2016 

 



 
 

 
 

 

 

 

BACHELOR THESIS 

 

 

 

Clustering and Classification in High Dimensional Sparse Data 

 

 

Ioannis M. Borektsioglou 

Α.Μ.: 1115201000111 

 

Konstantinos N. Patsourakos 

Α.Μ.: 11152009000129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SUPERVISOR : Ioannis Z. Emiris, Professor 



 
 

 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 
 
 

Ομαδοποίηση και Κατηγοριοποίηση σε Πολυδιάστατα Αραιά Δεδομενα 
 

 

Ιωάννης Μ. Μπορεκτσίογλου 
Α.Μ.: 1115201000111 

 

Κωνσταντίνος Ν. Πατσουράκος 
Α.Μ.: 11152009000129 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ιωάννης Ζ. Εμίρης Καθηγητής 
 

  



 
 

 
 

ABSTRACT 

 

The main goal of this dissertation can be accumulated as the effort of classification of 

real high-dimensional sparse data in the area of homeopathy. In order to achieve these 

goals there have been gathered various methodologies from data mining area. Some 

suitable clustering algorithms were implemented until there was a good and useful 

result according to field experts. The biggest challenge was the absence of ground truth 

that would help lead the attempts to better understand the problem. For that reason, we 

had to rely on internal evaluation and experiment with different scoring functions.  

Specifically in order to attain the above mentioned goals, a partitional clustering 

algorithm was implemented. We started with k-medoids approach with k-medoids++ 

initialization, PAM assignment (Leonard Kaufman and Peter J. Rousseeuw, Finding 

Groups in Data: An Introduction to Cluster Analysis) and CLARANS update (Raymond 

T. Ng and Jiawei Han, "Efficient and Effective Clustering Methods for Spatial Data 

Mining”). Because of the hierarchical structure of data the above methods did not give 

useful results, according to internal evaluation, so a hierarchical algorithm known as 

connected compenents was implemented.  

Lastly, in order to make some conclusions about the words that appeared in data, we 

implemented hitting set algorithm. It was important to find the words that appeared the 

most independently of the others and we saw the problem as the known set covering 

problem. 
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ΠΕΡΙΛΗΨΗ 

 

Ο βασικός στόχος της συγκεκριμένης πτυχιακής είναι η κατηγοριοποίηση πραγματικών 

πολυδιάστατων δεδομένων στο τομέα της ομοιοπαθητηκής. Για να το πετύχουμε αυτό 

συγκεντρώσαμε αρκετές μεθοδολογίες από το χώρο της εξόρυξης δεδομένων. 

Υλοποιήθηκαν μερικοί ιδανικοί αλγόριθμοι ομαδοποιήσης μέχρι να υπάρξει ένα καλό και 

χρήσιμο αποτέλεσμα σύμφωνα με τους ειδικούς του τομέα. 

Πιο συγκεκριμένα, για να πετύχουμε αυτό το αποτέλεσμα, υλοποιήσαμε έναν διαιρετικό 

αλγόριθμο ομαδοποιησης. Ξεκινήσαμε με τη μέθοδο του k-medoids με αρχικοποιήση k-

medoids++, ανάθεση PAM και ανανέωση CLARANS. Επειδη τα δεδομένα 

ακολουθούσαν μμια ιεραρχική δομή οι παραπάνω μεθόδοι δεν έδωσαν ένα χρήσιμο 

αποτέλεσμα σύμφωνα με τις μεθοδους αξιολόγησης που χρησιμοποιήσαμε, έτσι 

υλοποιήσαμε ιεραρχικούς αλγορίθμους, ενας εκ των οποίων ο αλγόριθμος Connected 

components.  

Τελος, για να βγάλουμε κάποια συμπεράσματα για τις λέξεις που είχαμε στα δεδομένα, 

υλοποίησαμε τον αλγόριθμο hitting set. Ήταν σημαντικό να βούμε τις λέξεις που ήταν 

ανεξάρτητες από τις υπόλοιπες και για αυτό είδαμε το πρόβλημα σαν το γνωστό 

πρόβλημα set covering 

 

 

 

 

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εξόρυξη Δεδομένων. 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ομαδοποίηση, κατηγοριοποίηση, μεγάλα δεδομένα, αραιά, 

πολυδιάστατα. 

 

 

 



 
 

 
 

ACKNOWLEDGEMENT 

 

We would first like to thank our thesis supervisor Prof. Ioannis Z. Emiris. The door to his 

office was always open whenever we ran into a trouble spot or had a question about our 

research or writing. He consistently allowed this paper to be our own work, but steered 

us in the right direction whenever he thought we needed it. 

We would also like to thank Prof. Theodoros Lilas for sharing his experience in the 

application part of the thesis and giving us a lot of insight in the area of homeopathy as 

viewed from computer science. 

Finally, we would like to thank the researchers who were involved in the conduction of 

this thesis: Reasearcher Evangelos Anagnostopoulos and Senior Researcher Ioannis 

Avrithis. Without their passionate participation and input, the project could not have 

been successfully carried out. 

  



 
 

 
 

CONTENTS 

1. INTRODUCTION .................................................................................................... 20 

1.1. Outline .............................................................................................................. 20 

1.2. Trends .............................................................................................................. 21 

2. CLUSTER ANALYSIS ............................................................................................ 22 

2.1. Methods of Cluster Analysis ............................................................................. 23 

2.1.1. Partitional ................................................................................................... 24 

2.1.2. Hierarchical ................................................................................................ 24 

2.1.3. Exclusive ................................................................................................... 25 

2.1.4. Overlapping ............................................................................................... 25 

2.1.5. Fuzzy ......................................................................................................... 26 

2.2. Types of Cluster ............................................................................................... 27 

2.2.1. Well-Separated .......................................................................................... 27 

2.2.2. Center-Based ............................................................................................ 27 

2.2.3. Graph-Based ............................................................................................. 28 

2.2.4. Density-Based ........................................................................................... 29 

2.2.5. Shared-Property (Conceptual Clusters) ..................................................... 29 

2.3. Algorithms ........................................................................................................ 31 

2.4. Evaluation ........................................................................................................ 34 

2.4.1. External Evaluation .................................................................................... 34 

2.4.2. Internal Evaluation ..................................................................................... 35 

3. SCORING FUNCTIONS ......................................................................................... 43 

3.1. Weighted Sum .................................................................................................. 43 

3.2. Geometric Sum ................................................................................................ 44 

3.3. Harmonic Mean ................................................................................................ 44 

3.4. Simple Additive Weighting ............................................................................... 46 

4. SET COVERING .................................................................................................... 48 

4.1. The problem ..................................................................................................... 48 

4.2. Approximation/Greedy Algorithm ..................................................................... 49 

5. APPLICATIONS ..................................................................................................... 51 

REFERENCES ............................................................................................................. 52 



 
 

 
 

 LIST OF EQUATIONS 

Equation 1:Objective function FCM ....................................................................................................... 26 

Equation 2: Update uij and center cj FCM............................................................................................ 26 

Equation 3: RMSSTD .............................................................................................................................. 35 

Equation 4: RS .......................................................................................................................................... 35 

Equation 5: SS .......................................................................................................................................... 36 

Equation 6: Hulbert Γ statistic ................................................................................................................. 37 

Equation 7: WGSS ................................................................................................................................... 38 

Equation 8: BGSS .................................................................................................................................... 38 

Equation 9: Calinski-Harabasz ............................................................................................................... 38 

Equation 10: Dunn’s Index ...................................................................................................................... 39 

Equation 11: Silhouette Index part ........................................................................................................ 40 

Equation 12: Silhouette Index ................................................................................................................ 40 

Equation 13: Example R ......................................................................................................................... 41 

Equation 14: David-Bouldin index ......................................................................................................... 41 

Equation 15:Arithmetic Sum ................................................................................................................... 43 

Equation 16:Weighted Sum .................................................................................................................... 43 

Equation 17: Geometric Sum ................................................................................................................. 44 

Equation 18:Weighted Geometric Sum ................................................................................................ 44 

Equation 19:Harmonic Mean .................................................................................................................. 45 

Equation 20:Weighted Harmonic Mean ................................................................................................ 45 

Equation 21:Consistency Index (SAW) ................................................................................................. 46 

Equation 22:Consistency Ratio (SAW) ................................................................................................. 47 

Equation 23:Final Score (SAW) ............................................................................................................. 47 

 

  



 
 

 
 

LIST OF FIGURES 

Figure 1. Different types of cluster illustrated by two-dimensional points ....................................... 30 

  



 
 

 
 

LIST OF TABLES 

Table 1: Table with comparison of internal evaluation indexes ........................................................ 42 

Table 2: Example sets of values corresponding to different vectors applied to n=5 topics, and 

their calculated scores. The values in bold are the largest in each column. ................................... 45 

Table 3: AVERAGE RANDOM CONSISTENCY (RI) ......................................................................... 47 

 



Clustering and Classification in High Dimensional Sparse Data 
 

I.Borektsioglou  K.Patsourakos                                                                                                                                   20 
 

1. INTRODUCTION 

In recent years, data generation and data collection has seen a dramatic rise by a 

variety of sources, from physics to ads. It seems straightforward that in the future the 

amount of data available to us will increase, not only in volume from the current sources 

but also from new sources. 

Data mining is the procedure of naturally discovering valuable data in expansive 

information archives. The reason for applying data mining procedures is finding critical 

designs from datasets and furthermore giving capacities to anticipate the result of a 

future perception. For example, market basket analysis, implies that by utilizing 

"Association Rules" learning, the supermarket can figure out which items are as often 

as possible purchased together or to predict if the new client will spend more than 100 $ 

for shopping today at the store. With respect to the Wikipedia definition, data mining 

consists of six normal assignments: Anomaly Detection, Association rules learning, 

Classification, Clustering and Regression. In this report, we talked about for the most 

part on Clustering. 

Clustering is the most critical unsupervised-learning problem. The primary reason for 

existing is discovering a structure in a collection of unlabeled data. Absolutely, the 

clustering includes partitioning a given dataset into a few groups of data whose 

individuals are comparable somehow. The ease of use of cluster analysis has been 

used broadly as a part of data recovery, text and web mining, pattern recognition, image 

segmentation and software reverse engineering. 

 

1.1. Outline 

The content of this dissertation is the clustering of high-dimensional sparse data. It 

consists of five chapters, which we describe below. 

In the second chapter, clustering analysis and methods are presented. Particularly 

methods of clustering are described. It is also described a comparison between each 

method of cluster analysis and it is stated which is better for what purpose. Then, there 

is a description of the clusters that are formed from each type of algorithm (e.g. center-
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based, density-based etc.) In addition, they are described algorithms that were used on 

our data. The biggest challenge was the absence of ground truth; for that reason, we 

had to rely on internal evaluation. Functions of internal evaluations are described in this 

chapter. 

In the third chapter, we described a number of scoring functions, which were used in 

order to measure vectors with weighted dimensions. There is also a comparison 

between each scoring function. 

In the fourth chapter, it is described a technique named set covering. We used it to 

search over phrases with large but strict vocabulary. We had to see phrases as vector 

and words as its dimensions. 

In the final chapter, we present where we applied all these techniques. We present 

the medical problem that we had to deal with and the data set on which we worked. 

1.2. Trends 

Because it is an emerging discipline, many challenges remain in data mining. Due to 

the enormous volume of data acquired on an everyday basis, it becomes imperative to 

find an algorithm that determines which technique to select and what type of mining to 

do. Data sets are often inaccurate, incomplete, and have redundant or insufficient 

information. It would be desirable to have mining tools that can switch to multiple 

techniques and support multiple outcomes. Current data-mining tools operate on 

structured data, but most data are unstructured. For example, enormous quantities of 

data exist on the World Wide Web. This necessitates the development of tools to 

manage and mine data from the World Wide Web to extract only the useful information. 

There has not yet been a good tool developed to handle dynamic data, sparse data, 

incomplete or uncertain data, or to determine the best algorithm to use and on what 

data to operate  
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2. CLUSTER ANALYSIS 

Dividing objects in meaningful groups of objects or classes (cluster) taking into 

account basic characteristic, play an important role in how individuals analyze and 

depict the world. For example, every human being can rapidly label objects in a photo, 

such as structures, trees, and so on. 

In the field of understanding data, we can say that clusters are potential classes and 

cluster analysis is a technique to identify classes [1]. Before discussing about cluster 

analysis we need to provide a necessary description as a background for understanding 

the topic. First, we need to clarify the cluster analysis and the reasons behind its 

difficulties, and explain its relationship to other techniques of grouping data objects. In 

addition, we have to explain two subjects, different ways of grouping a set of objects 

into a set of clusters and cluster types 

Cluster analysis or Clustering is the process of partitioning data objects into 

subsets, called clusters, based on the information from which are described. The goal 

is to make the data of each cluster similar to one another and dissimilar to data objects 

of other clusters. This separation might be useful in order to understand the data and 

their physical structure. It is being connected with plenty of science disciplines and has 

been studied in numerous of research communities, for example, machine learning, 

statistic, optimization and computational geometry [2] 

 

Here are some examples: 

 Biology. Biologists when they quite a while prior made a scientific categorization 

(hierarchical classification) made a type of clustering as indicated by genus, 

family, species etc. But also, recently they have connected clustering to examine 

the heap measure of hereditary data, for example, a group of genes that has 

similar functions. 

 

 Information Retrieval. In Web Search, for example, a keyword may find a huge 

number of hits. Clustering helps the user to organize all this information into 

groups and present it to the user in an accessible way. 
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 Psychology and Medicine. Clustering techniques are utilized to break down 

continuous states of an ailment and distinguishing distinctive subcategories. 

Case in point, clustering is used to distinguish diverse sorts of depression, and 

cluster analysis is used to identify examples in the spread of an ailment. 

 

 Business. In this field there exists a lot of data on current and potential clients. 

Clustering aids to gathering client activities, as previously specified in detail. 

 

Because, clustering can organize data objects into clusters where all objects are 

similar to one another and dissimilar to objects in other clusters, we can treat a cluster 

as a class. In this sense, clustering can be called automatic classification. A 

substantial difference here is that clustering can automatically find the clusters. This is a 

unique advantage of cluster analysis. 

It is important to notice the difference between classification and clustering. 

Classification is a type of supervised learning algorithm, because class label is given 

to the algorithm. [1] Clustering is a type of unsupervised learning algorithm, because 

class label is not given. In data mining, efforts have been made to find effective and 

efficient algorithms for data analysis, in large databases and research has focused on 

the scalability of clustering methods, the effectiveness of methods for clustering, high-

dimensional techniques and much more. 

In this report, we describe various methods of clustering that we have implemented 

and some evaluation techniques which are very useful when an algorithm is used. We 

apply these methods on sparse and high-dimensional1 data.   

2.1. Methods of Cluster Analysis 

A common way to differentiate between clustering techniques is whether we want 

the result to contain nested clusters giving a hierarchical clustering or a partitional. The 

choice has to be taken depending on the underlying structure that the data might have. 

Another way is whether we want some object to be placed into two or more clusters and 

                                                           
1 Vectors with over 90% zero values and over 700 total values as dimensions 
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with a weight. We distinguish these methods into exclusive, overlapping and fuzzy 

clustering. In this report we talked about mostly for partitional and hierarchical 

algorithms. 

 

2.1.1. Partitional 

Partitional method is the most common method of separating Ndata objects into K 

non-overlapping clusters such that each object belongs to a single cluster. Most 

partitional algorithms start using an initial partition, following iterative steps in order to 

minimize or maximize an objective function.  There are two approaches, k-means, 

where the center of the cluster is the mean of its points, based on a distance function 

and k-medoids, where the center of the cluster is one of the points from the dataset. 

PAM [3] is a partitional algorithm which uses the k-medoids approach. PAM selects K 

objects as medoids to represent clusters and swaps with other objects until an objective 

function is optimized. PAM has slow processing time, 𝑂(𝐾(𝑁 − 𝐾)2)  because it 

compares each medoid with all objects of the data set. 

CLARA(Clustering LARge Applications) [3] applies PAM on a random, uniform sample 

of the data set, and finds the medoids of this sample. CLARANS (Clustering Large 

Applications based on RANdomizedSearch) was an improvement of CLARA [4]. This is 

the first method which applies clustering on large high-dimensional dataset and it has 

overcome most of the disadvantages of clustering techniques [5], but there are no 

guarantees for the quality of the results for very large data sets, because of its 

randomized approach.  

 

2.1.2. Hierarchical 

With this type of clustering method, we create a hierarchical structure which is 

represented as a dendrogram so it is used when we need a hierarchy or a classification. 

The set of objects is separated iteratively into nested groups based on the distances 

between each object. Every inner node that is created in dendrogram is a union 

between the groups and the leaves are the data. The advantage with this method is that 
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we can stop the procedure at the desired level in order to have a balanced structure. 

Also hierarchical algorithms do not need K as an input, which is a big advantage over 

partitional algorithms. On the other hand, hierarchical method has a slow processing 

time,𝑂(𝑁3) and needs too much space to store the structure. Moreover, during the 

connection of nodes, high-dimensional or noisy data may cause problems at the result. 

Finally, hierarchical clustering can be seen as a sequence of partitional clustering and a 

partiotional clustering can be obtained by taking any level of hierarchical clustering. 

There are two approaches of hierarchical method. The first is agglomerative, where 

we start with clusters with one object and finding the most similar object we merge 

clusters. The second one which is the opposite procedure, is called divisive, where 

following some iterative steps we separate the initial cluster in smaller clusters with one 

object. 

 

2.1.3. Exclusive 

Exclusive clustering is as the name suggests and stipulates that each data object can 

only exist in one cluster. This method of clustering although may be problematic, it is the 

most efficient.  

 

2.1.4. Overlapping 

In overlapping clustering, data objects are simultaneously assigned to more than one 

cluster, usually adjacent. This method of clustering is used in order to avoid arbitrary 

assignments to clusters by placing objects to all of the equally good clusters. For 

example, a person at a university might be enrolled as a student and as an employee at 

the university. Overlapping clustering might be also used when an object is between two 

clusters, and we want to place it in both clusters. 
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2.1.5. Fuzzy 

In this method of clustering we treat clusters as fuzzy sets2. We assign to every 

object a vector with weights between 0 and 1, which sum is equal to 1. This vector 

shows how much an object belongs to the specific cluster (0 means that absolutely 

does not belong, and 1 means that absolutely belongs). Similarly, probabilistic 

clustering techniques compute the probability with which each points belongs to each 

cluster and these probabilities must sum to 1. In practice fuzzy clustering can be 

converted to exclusive by assigning an object to a cluster with the maximum weight. 

The Fuzzy c-Means algorithm known as FCM [6] is the most known algorithm which 

performs fuzzy clustering. The FCM algorithms is applicable to a wide variety of 

statistical data analysis problems and pattern recognition. It is based on minimization of 

the following objective function: 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

𝐶

𝑗=1

𝑁

𝑖=1

2

 

Equation 1:Objective function FCM 

where m is any real number greater than 1, 𝑢𝑖𝑗 is the degree of membership of 𝑥𝑖 in the 

cluster j, 𝑥𝑖 is the i-th of d-dimensional measured data, 𝑐𝑗 is the d-dimension center of 

the cluster, and ||*|| is any norm expressing the similarity between any measured data 

and the center. Fuzzy partitioning is carried out through an iterative optimization of the 

objective function described above with the update of membership 𝑢𝑖𝑗 and the 

cluster 𝑐𝑗 by: 

 

𝑢𝑖𝑗 =  
1

∑
1

(
‖𝑥𝑖−𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2
𝑚−1

𝐶
𝑘=1

    𝑐𝑗 =  
∑ 𝑢𝑖𝑗

𝑚.  𝑥𝑗
𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

 

Equation 2: Update uij and center cj FCM 

                                                           
2 Mathematically fuzzy set is one whose objects belong to it with a weight between 0 and 1 
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This iteration will stop when max
𝑖𝑗

{‖𝑢𝑖𝑗
(𝑘+1)

− 𝑢𝑖𝑗
(𝑘)

‖}  <  𝜀 ,  where 𝜀  is a termination 

criterion between 0 and 1, whereas k are the iteration steps. This procedure converges 

to a local minimum or a saddle point of 𝐽𝑚. [7] 

 

2.2. Types of Cluster 

Cluster analysis aims to find useful groups of data objects for each application of data 

analysis. There are several notions for types of clusters. They are separated based on 

their structure and how they are separated. In order to visualize each type of cluster, we 

use two-dimensional points, as shown in Figure 1. 

 

2.2.1. Well-Separated 

Well-Separated cluster is a group of points where each point is closer to any other 

point in its cluster than any point that does not lie in the cluster. Sometimes we can 

specify a threshold in order to assure that all objects are sufficiently close in the group. 

Figure 1(a) gives an example of three well-separated clusters with two-dimensional 

points where every two point in different clusters have more distance than every two 

points in the same clusters. Well-Separated clusters can have any shape 

 

2.2.2. Center-Based 

Center-Based Cluster is a group of objects that are closer (or similar) to the center 

their cluster than to a center of any other cluster. For data with continuous attributes the 

center of the cluster is the centroid i.e. the average of all the points in the cluster. When 

the data has categorical attributes, centroid is not so meaningful and the center is often 

the medoid i.e. the most representative point of the cluster. The center of the cluster is 

commonly referred, as prototype and in such instances, center-based clusters can be 
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called prototype-based clusters. Center-Based clusters tend to be spherical. In Figure 

1(b) it is shown an example of center-based clustering.  

K-Means is a center-based, partional algorithm that attempts to find a user specified 

number of cluster (K), which are represented by their centroid. When we want to handle 

any distance metric we use k-medoids which uses centroids that belongs to the dataset.  

An acceleration of k-means was proposed by Elkan [8]. It is referred that although k-

mean is a fast algorithm, it is still slow because it requires 𝑘𝑛𝑒 distance computations, 

where 𝑘 is the number of clusters, 𝑛 the number of data points and 𝑒 the number of 

iterations. It was proposed that if a point is far away from the center it should not be 

assigned to that and the distance should not be calculated. In addition if a point is much 

close to a center, it should be assigned to that. In order to these conclusions be 

excluded triangular inequality is used to obtain these upper and lower bound between 

the points and the centroids. 

 

2.2.3. Graph-Based 

Let’s consider that the data is represented as a graph where its nodes are the objects 

and the links are the relationship among them. In that case we can define the cluster as 

a connected component3 [1]. An example of graph-based cluster is contiguity-based 

clusters. In this type of clusters, objects are connected only if they are within a 

specified distance with each other. We make the conclusion that object in this clusters is 

closer to some object in the cluster than to any point outside the cluster. Figure 1(iii) 

shows an example of such clusters in two dimensions. This definition of clusters may be 

useful when clusters are irregular, but can have problems when noise is present, as 

shown between the two circular clusters in Figure 1(iii) a small bridge merges two 

distinct clusters.  

 

                                                           
3 A group of objects that are connected to one another, but they have no connections to objects outside the group 
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2.2.4. Density-Based 

A cluster is a dense region of objects that is surrounded by regions of low density.  

This definition is at most used when the clusters are irregular and when noise and 

outliers are present. For example, Figure 1(iv) shows density-based clusters created by 

data of Figure 1(iii). The two circular clusters are not merged because the bridge 

between them is considered as noise. Likewise, the curve in Figure 1(iii) does not form 

a cluster because it is also considered as noise.  

 

2.2.5. Shared-Property (Conceptual Clusters)  

   In general, we can characterize a cluster as a set of objects that share some property. 

This definition envelops all the past meanings of a cluster; for example, objects in a 

center-based cluster share the property that they are all closest to the centroid or 

medoid. In any case, the shared-property approach incorporates new sorts of groups. 

Think about the clusters shown in Figure 1(v). Points with different shape or color are 

adjacent. In this case a clustering algorithm needs a specific concept of properties in 

order to successfully detect these clusters. This process is called conceptual 

clustering. However, too complex a notion of a cluster would take us into the area of 

pattern recognition. 
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(i)  Well-Separated Clusters: Each point is 

closer to every point in its cluster than to 

every point in other clusters 

 

(ii) Center-Based Clusters: Each point is closer to 

the center of its cluster(centroid)  

 

 

(iii)  Graph-Based Clusters: Each point is 

closer to at least one point in its cluster than 

to any point in other cluster 

(iv) Density-Based Clusters: Clusters are regions of 

high density separated by regions of low density 

 

(v) Conceptual Clusters: Points in a cluster share some general properties 

 

 

Figure 1. Different types of cluster illustrated by two-dimensional points 



Clustering and Classification in High Dimensional Sparse Data 
 

I.Borektsioglou  K.Patsourakos                                                                                                                                   31 
 

 

2.3. Algorithms 

 K-means 

K-means is a simple clustering algorithm [1].  

The algorithm is as follows: 

1. Select k random points as centroids  

2. Put each point to the cluster corresponding to the nearest centroid 

3. Reassign the centroid to the mean of the cluster 

4. Go to step 2 until all the centroids remain unchanged  

 

Usually with k-means we use a metric like the Euclidian distance or the cosine 

variance in order for the mean to make sense. 

 

The complexity of k-means is 𝑂(𝑘𝑛𝐼) where k is the number of clusters, n the 

number of points in the dataset and I the number of iterations. In practice we usually 

have a small k and we see that the algorithm converges in the first few repetitions 

therefor, we can consider ki as constant and we can think of k-means as being linear to 

the number of points in our dataset.  

 

Also it is common to relax the condition that halts the program no points 

changing cluster (which is equivalent to the condition in step 4) to only 1% of the points 

changing cluster. 

 

K-means is a fast and easy to understand algorithm that helps us gain some 

intuitions on the data that we are dealing with. It is important to note that k-means and 

all adjacent version of k-means, create convex clusters that may or may not, reflect the 

nature of our data. 

 

 K-medoid 

K-medoid is a variation of K-means with the intent to fix some of its drawbacks.  
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This variation improves k-medoid from the point of view of statistics since the 

median is not as sensitive to noise as the mean. For example, if we add to our dataset a 

single point that is far away from all the rest (an outlier), k-means is going to change the 

clusters drastically while k-medoid is going to ignore it.  

 

Another reason for choosing k-medoid is the ability to handle any distance 

matrix. Therefor it is the only one that can work in any space even if for our data it 

doesn’t make sense to talk about the mean of a set (e.g. molecules, the human face, 

etc)  

 

 

 PAM 

PAM or Partition Around Medoids is a K-medoid algorithm that is very closely related to 

k-means. 

The difference between PAM and k-means is that in the initialization face (step 1 of k-

means) we pick k random points from the dataset and not arbitrary points and at the 

reassignment (step 3 of k-means) we set the centroid, of the new cluster, to the median 

of the points in the cluster [9]. 

 

 Clarans 

Clarans or Clustering LARge Application based on RANdomized Search, is an algorithm 

that was designed with the indent to make a more efficient algorithm for high-

dimensional data. It produces a k-medoid clustering. 

  

There are a lot of variations but they are all based on the same idea of using random 

elements and samples in order to find a clustering around medoids. 

 

One of them is this algorithm that was in the original paper where tha algorithm was 

introduced [10]: 

 

1. Input parameters: numlocal and maxneighbor. Initialize i to 1, and mincost to a 

large number. 

2. Set current to an arbitrary node in the dataset. 
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3. Set j to 1. 

4. Consider a random neighbor S of current and based on objective function, 

calculate the cost differential of the two nodes. 

5. If S has a lower cost, set current to S, and go to Step 3. 

6. Otherwise, increment j by 1. If j < maxneighbor, go to Step 4. 

7. Otherwise, when j > maxneighbor, compare the cost of current with mincost. If 

the former is less than mincost, set mincost to the cost of current and set 

bestnode to current. 

8. Increment i by 1.  If i > numlocal, output bestnode and halt. Otherwise, go to Step 

2. 

 

 

 Hierarchical  

For the hierarchical clustering algorithm there are two methods for the production of the 

clustering, agglomerative and divisive. 

o Agglomerative 

This is a bottom-up approach. We begin with each point as its own cluster and 

we combine clusters to make the tree structure.  

o Divisive 

This is a top-down approach. We begin with a single cluster that contains the 

entire dataset and we split it until all clusters contain a single point. 

When compared to the k-means family of algorithm the hierarchical algorithm is of a 

higher complexity both in space and time, but we have a lot of advantages over them. 

For instance, the tree structure allows us to decide how good a “resolution” of the 

clustering is demanded for our application, meaning that we can decide, based on the 

nature of our data, when we should prune the tree. Also the hierarchical doesn’t 

constrain itself to convex clusters but allows for arbitrary shapes of each cluster. 

 

 Connected components  

Connected components are a way to find a agglomerative hierarchical clustering 

without the space and time complexity it demands. The algorithm works as follow: we 
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connect two clusters if their distance is smaller than a threshold. The distance between 

two clusters is the distance of the closest points in these clusters. 

 It is an easy but powerful idea. The clusters it produces are related by transitivity. 

The resulting cluster doesn’t have the tree structure the hierarchical demands but it is a 

cut of the tree to the threshold we set. 

 

 We should note that there is a risk our clusters are thin conic section that span a 

wide area. This might be a problem and we have to be careful about the threshold 

under which we consider two points connected. 

 

2.4. Evaluation 

Using methods for evaluating a clustering of our data is useful for many reasons. 

First due to the fact that all clustering algorithms will give a result even if there is no 

structure in the data set ( e.g. even if we have a uniformly distributed data-set ) we want 

to know if there is a structure that has been capture by the specific algorithm we used. 

Many clustering algorithms take as input the number of clusters that exist in the data but 

in a real-life example we may don't know the correct number of clusters so there are 

methods and techniques for assisting in our endeavor. Another useful result would be to 

compare to clusters and find either how similar they are or which is better depending on 

our application. In our attempts to use an evaluation technique it is very important to 

disambiguate between the use of external knowledge meaning some ground truth not 

given to the algorithm a priori so that we could test the output or evaluating the result 

internally by looking at the clusters structure. 

2.4.1. External Evaluation 

In External evaluation we have access to some ground truth which we can use to 

validate our clustering and verify that the algorithm we used gave the desired result. 

Some common methods for measuring how close our result is to the ground truth are 

the following: 

 Entropy 
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 Purity 

 Precision 

 Recall 

 F-mesure 

 Roc 

 K-fold Cross Validation 

2.4.2. Internal Evaluation 

 Root Mean Square Standard deviation 

RMSSTD [11] treats the points of our dataset as observed values of a random variable 

and for each cluster that represent the random variable we take the square root of the 

variance. It is calculated by 

𝑅𝑀𝑆𝑆𝑇𝐷 =  √
∑ ∑ ‖𝑥 − 𝑐𝑖‖2

𝑥∈𝐶𝑖𝑖

|𝐷| ∑ (𝑛𝑖 − 1)𝑖
 

Equation 3: RMSSTD 

 

RMSSTD quantifies the homogeneity of the clustering by resulting in a smaller value the 

smaller the variance of each cluster (meaning the closer the points are to the center of 

the cluster). Therefore the smaller the RMSSTD value the better cluster we have 

(assuming the desired cluster is structured by convex shapes)\ 

RMSSTD measures how compact the clusters are. 

 R-Squared 

RS [11] is closely related to RMSSTD. It was developed hand-in-hand with RMSSTD 

and instead of measuring the homogeneity of each cluster it measures the homogeneity 

between clusters. This means that RS can be consider as a measurement for 

dissimilarity between clusters. It is calculated by 

𝑅𝑆 =
𝑆𝑆𝑏

𝑆𝑆𝑡
=

𝑆𝑆𝑡 −  𝑆𝑆𝑤

𝑆𝑆𝑡
 

Equation 4: RS 
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Where SS (Sum of Squares) 

𝑆𝑆 =  ∑ (𝑋𝑖 − �̅�)2
𝑛

𝑖=1
 

Equation 5: SS 

 

 

And the subscript describes the set of points to be consider 

 𝑆𝑆𝑤 is the SS within groups 

𝑆𝑆𝑤 =  ∑ ∑ (𝑥 −  �̅�)2

𝑥∈𝐶𝐶
 

 𝑆𝑆𝑏 is the SS between groups 

𝑆𝑆𝑏 =  ∑ (𝑥 −  �̅�)2

𝑥∈𝐷
−  ∑ ∑ (𝑥 −  �̅�)2

𝑥∈𝐶𝐶
 

 𝑆𝑆𝑡 is the SS of the whole dataset 

𝑆𝑆𝑡 =  ∑ (𝑥 −  �̅�)2

𝑥∈𝐷
 

 

Where C is the set of clusters, D the set of all points in the dataset and �̅� the 

mean of each dimension. 

 

As we can see RS is the ratio of difference between groups relative to the 

difference of the whole dataset this explains our claim about RS measuring the 

homogeneity between clusters. RS ranges between 0 and 1 the higher the value 

of RS we have more distinct groups in our clustering thus having a better, more 

robust clustering. 

RS index measures how well separated the clusters are. 

 

 

 Modified Hubert Γ statistic [12] 

Hulbert Γ statistic was developed by Lawrence Hulbert and Phipps Arabie in [12] and it 

was described as a generalization of the rand index which is a natural way of 

statistically comparing two clustering. Rand index was developed by many researchers 
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independently with slight variations which as Hulbert et all show they are different ways 

of measuring the same thing (i.e. instead of taking the number of indices where the two 

clusters agree some researchers chose the number of indices where the two clusters 

disagree and some chose a linear combination of the two). The Hubert statistic 

measures the correlation of two matrices drawn independently. It is defined as  

𝛤 = (
1

𝑀
) ∑ ∑ 𝑋(𝑖, 𝑗)𝑌(𝑖, 𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

Equation 6: Hulbert Γ statistic 

 

Where X and Y are 𝑁 × 𝑁 matrices and 𝑀 =  (𝑁
2

) (the possible pairs)  

Using this index we can now define the modified Hubert statistic index. We set each 

point 𝑥𝑖𝑗 of the matrix X as the distance between the cluster of i and the cluster of j. We 

will denote matrix X as Q from now on. The matrix Y will be the proximity matrix (distance 

matrix) and will be denoted as P. From that we can see that when our clustering is a 

compact one the value of Γ will be high and we expect that high values of Γ is a strong 

indication for compact clustering. [13] It is useful to notice that Γ is a monotonic function 

over the number of clusters since it counts the only pairs in different clusters so it will 

count 
𝑘−1

𝑘
𝑛2 distances where k is the number of clusters 

Γ index measures how well separated the clusters are. 

In all internal evaluation indexes we have seen so far the function are monotonic as the 

number of clusters. So if we want to use this indexes to find the number of clusters that 

exist in a dataset we will have to look at the plot of their values relative to the number of 

clusters and find the knee that appears in the graph to find the number of clusters that 

exist in the dataset. 

 Calinski-Harabasz index 

 

Calinski and Harabazs crated an index [14] based on the idea that within a cluster the 

dispersion must be low – meaning that the points are close – and between clusters the 
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dispersion must be high - meaning that the clusters should be distinct and clearly 

separated. 

 

In order to compute such a metric we need a way to calculate the within, as well as, the 

between cluster dispersion. 

 

For WGSS (within cluster dispersion ) we will add the squares of the distance from its 

point to its centroid: 

 

𝑊𝐺𝑆𝑆 = ∑ ∑(𝑖 − 𝑐(𝑖))2

𝑖∈𝑘𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠

 

Equation 7: WGSS 

 

For BGSS (between cluster dispersion ), for a cluster G, we will add the weighted 

distance of the clusters with weight the number of points in the cluster, i.e.: 

 

𝐵𝐺𝑆𝑆 = ∑ 𝑁𝑘‖𝐶 − 𝐺‖

𝐶∈{𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠−𝐺}

 

Equation 8: BGSS 

 

 

Using this we can easily define Calinski-Harabasz index as follows: 

 

 

𝐶𝐻 =
𝐵𝐺𝑆𝑆 (𝐾 − 1)⁄

𝑊𝐺𝑆𝑆 (𝑁 − 𝐾)⁄
=

𝐵𝐺𝑆𝑆(𝑁 − 𝐾)

𝑊𝐺𝑆𝑆(𝐾 − 1)
 

Equation 9: Calinski-Harabasz 
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 Dunn's Index 

 

Dunn in his paper [15] suggested that a partitioning, in the case of convex clusters, that 

the distance between a point in a cluster and one in the clusters convex hall should be 

smaller than the distance of any point and a point in a convex hall of a different cluster. 

To simplify this, we can say that the minimum distance of two clusters divided by the 

maximum diameter of all of the clusters should be greater than one. 

 

 

 

We can use this idea and create an index with this definition: 

 

𝐷𝐼 =
𝑚𝑖𝑛

1≤𝑖<𝑗≤𝑘
‖𝐶𝑖 − 𝐶𝑗‖

𝑚𝑎𝑥
1≤𝑚≤𝑘

𝑑𝑖𝑎𝑚𝑘
 

Equation 10: Dunn's Index 

 

where k is the number of clusters and diam the diameter of kth cluster. 

 

 

 Silhouette index 

 

The silhouette coefficient [16] was designed as a graphical aid for representing the 

clusters quality. Silhouette combines the notions of cohesion and separation in an 

attempt to show which points lye well inside a cluster, which cluster are well formed, 

and also the overall quality of the particular clustering. 

 

It is most commonly used as an aid for determining the number of clusters in a data-set 

we want to partition. 

Silhouette is calculated by the following formula: 
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𝑠(𝑖) = {
1 − 𝑎 (𝑖) 𝑏⁄ (𝑖)

0
𝑏 (𝑖) 𝑎⁄ (𝑖) − 1

   

𝑖𝑓𝑎(𝑖) < 𝑏(𝑖)
𝑖𝑓𝑎(𝑖) = 𝑏(𝑖)
𝑖𝑓𝑎(𝑖) > 𝑏(𝑖)

⟩ 

Equation 11: Silhouette Index part 

 

or equivalently: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥[𝑎(𝑖), 𝑏(𝑖)]
 

Equation 12: Silhouette Index 

 

where a(i) is the average “dissimilarity” or distance to the point in its cluster and b(i) is 

the distance to the closest cluster after the one it belongs to. 

 

Note that 1 ≤ 𝑠(𝑖) ≤ 1, also  when s(i) is close to 1 we have a “perfect” clustering since 

we have the a(i) much smaller than b(i) and therefor every point clearly belongs to its 

cluster. When s(i) is close -1 we have the worst situation since every point is very close 

to some cluster different than the one they belong to. 

 

 David-Bouldin index 

 

David and Bouldin [17] argued that in order to have a good index for a clustering we 

need a similarity function for clusters. They proposed that this similarity function could 

depend on a clusters dispersion and the a distance between clusters making it of the 

form 𝑅𝑖𝑗(𝑆𝑖, 𝑆𝑗, 𝑀𝑖𝑗), where 𝑆𝑖is the dispersion of Cluster i and 𝑀𝑖𝑗is the distance between 

clusters i and j. Based on experience and frequently used heuristics in the field, they 

added some restriction to R - namely: 

1. R is non-negative 

2. R is symmetric 

3. R is zero if both clusters are perfectly formed, meaning their dispersion is zero for 

both clusters 

4. For the function 𝑅𝑖𝑗(𝐶𝑜𝑛𝑠𝑡, 𝐶𝑜𝑛𝑠𝑡, 𝑥), as x increases, R decreases. 
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5. For the function 𝑅𝑖𝑗(𝐶𝑜𝑛𝑠𝑡, 𝑥, 𝐶𝑜𝑛𝑠𝑡), as x increases, R increases. 

 The idea behind number 4 is that if we move two clusters further away they are less 

similar, and for number 5 the idea is the less coherent ( or the worse formed) a cluster is 

the more similar it should be to other clusters. 

David and Bouldin suggested an R function that satisfied all these restrictions as: 

𝑅𝑖𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗
 

Equation 13: Example R 

 

if we set 𝐷𝑖 = 𝑚𝑎𝑥
𝑖≠𝑗

𝑅𝑖𝑗 

then David-Bouldin index is: 

𝐷𝐵 =
1

𝑁
∑ 𝑅𝑖

𝑁

𝑖=1

 

Equation 14: David-Bouldin index 

 

for the dispersion and the distance between clusters we must use measures that make 

sense for the given dataset and desired clustering i.e. for data in Euclidean space with 

convex clusters, we can use the euclidean distance between center and for the 

dispersion the standard deviation 
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Comparison of Internal evaluation techniques 

We will now show a comparison of internal evaluation techniques. We will leave 

out of the conversation the monotonic indexes and focus on the ones that their results 

depend exclusively their output (rather than the elbow that a researcher is responsible 

for identifying). The comparison for these indexes and a few more are done in [18] and 

we present a short summarize of their result. 

 
 

Noise Variable Density Existence of 
sub-Clusters 

complexity 

Calinski-Harabasz index NO YES YES 𝑂(𝑁) 

Dunn's Index NO YES NO 𝑂(𝑁) 

Silhouette index YES YES NO 𝑂(𝑁2) 

David-Bouldin index YES YES NO 𝑂(𝑁) 
Table 1: Table with comparison of internal evaluation indexes 

As far as the rest of the indexes (Root Mean Square Standard deviation, 

Modified Hubert Γ statistic and R-Squared) rely on the researcher to choose the optimal 

number of clusters as well as what each output means (why does such a curve occur? 

Is it due to actual clusters in the dataset or some degenerate case has occurred?). It is 

hard to define all the possible routes and give the intuition of what we should do but 

there is a very good and analysis on the heuristics in [1]. 
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3. SCORING FUNCTIONS 

Measurement is an essential precursor of all attempts to improve, information 

retrieval system, effectiveness. Comparative evaluations of a system are based on a 

number of key premises, including that systems can be sensibly compared depending 

on aggregate performance over a selected topic. Scoring functions are deployed to 

satisfy the needs of comparison. We can see each problem from a geometric 

perspective and according to the set of observations we use the particular function. The 

most common use of scoring functions is to compare high dimensional vectors which 

have weights in each dimension. We will now describe some scoring techniques, and 

present a comparison between them on some test data. 

 

3.1. Weighted Sum 

If a set of observations describes a phenomenon, it is natural to seek for an 

aggregate statistic that summarizes those observations. The simplest of these 

tendencies is arithmetic sum.  It is a change of arithmetic mean without the division. We 

use this method of scoring because we have sparse vectors and when we have the 

same sum between two vectors, we need bigger score for the vector with more non-

zero values. For a set of observation, {𝑥𝑖 | i ∈ 1 … n} it is computed as:  

𝐴𝑆 =  ∑ 𝑥𝑖

𝑛

𝑖=0

 

Equation 15:Arithmetic Sum 

Some points count stronger than others, given weights for each vector. In this case 

weighted sum is needed. For a set of observation as mentioned above and for a set of 

weights {𝑤𝑖 | i ∈ 1 … n} weighted sum is computed as: 

𝑊𝑆 =  ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖=0

 

Equation 16:Weighted Sum 
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As example consider the four vectors with five observations in Table 1. The 

arithmetic sum of vectors 𝑉1 and 𝑉3  is equal, while arithmetic mean of 𝑉3 is largest even 

if it has less non- zero values. 

 

3.2. Geometric Sum 

One point worth noting in connection with arithmetic sum is that all of the values 

should be on the same scale. It is not possible to sum over inches and centimeters 

without converting them in the same framework. An scoring function to avoid these 

problems is geometric sum. It is a change of geometric mean used for the same 

reasons as mentioned for the arithmetic sum.  

Geometric sum is more stable than the arithmetic or weighted sum, in the sense of 

being less affected by outlying values. [19] However when any of values is set to zero 

geometric sum is also equals to zero. Because we have sparse data, we need to 

overcome this problem. So for observations {𝑥𝑖 ≠ 0 | i ∈ 1 … n } and for a set of weights 

{𝑤𝑖 | i ∈ 1 … n}, geometric sum is defined as: 

𝐺𝑆 =  ∏ 𝑥𝑖

𝑛

𝑖=0

 

Equation 17: Geometric Sum 

and when we have some weights for each vectors as mentioned above it is 

computed as: 

𝐺𝑆 =  ∏ 𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=0

 

Equation 18:Weighted Geometric Sum 

Further examples for geometric mean are shown in Table 1 

3.3. Harmonic Mean 

The harmonic mean is another central tendency that is typically used to combine 

rates, and can also be used as a method of score aggregation. The harmonic mean is 
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undefined if any of the set of values are zero. For that reason for a set of observations 

{𝑥𝑖 ≠ 0 | i ∈ 1 … n }  harmonic men is defined as the reciprocal of the average of the 

reciprocals, 

𝐻𝑀 =  
𝑛

∑ 1
𝑥𝑖

⁄𝑛
𝑖=1

  

Equation 19:Harmonic Mean 

Harmonic mean is closely related to arithmetic mean. It takes into account the 

largest sum of the values, the number of the observations and how uniform are the 

values allocated. For example, 𝑉4 has sum close to the largest one, but it has more 

observation than 𝑉1which has the largest sum, and it has uniform values. It is shown 

that 𝑉4has the best score. 

Sometimes we need to take into consideration some weights that are given for each 

vector. In these cases we need to compute another numeric aggregation, called 

weighted harmonic mean. For a set of weights {𝑤𝑖 | i ∈ 1 … n}, and the above set of 

observations it is defined as  

𝑊𝐻𝑀 =  
∑ 𝑤𝑖

𝑛
𝑖=1

∑
𝑤𝑖

𝑥𝑖

𝑛
𝑖=1

 

Equation 20:Weighted Harmonic Mean 

Vectors Values AS AM GS HM SAW 

𝑉1 4 4 2 1 0 4 4 19 3.17 512 2.4 10 

𝑉2 1 3 3 2 2 2 3 16 2.28 216 2 9.99 

𝑉3 4 2 2 4 2 4 1 19 2.71 512 2.15385 9.25 

𝑉4 2 2 3 2 3 3 3 18 2.57 648 2.47059 11.99 

Weights 3 1 3 2 1 3 1 - - - - - 

 

Table 2: Example sets of values corresponding to different vectors applied to n=5 topics, and their calculated 

scores. The values in bold are the largest in each column.  
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3.4. Simple Additive Weighting 

Simple Additive Weighting (SAW) which is also known as weighted linear 

combination is a simple and most often used multi criteria decision making technique. In 

this method, which is based on the weighted average, an evaluation score is calculated 

for each possible selection by multiplying the scaled value of each alternative with the 

weights of importance, followed by summing the products for all criteria. The advantage 

of this method is that it is a proportional linear transformation of the row data. [20] This 

means that the relative order of magnitude of the scores remains equal. Its process 

consists of the following steps: 

 

 

Step 1: 

 The first two stages of step 1 is to construct a comparison matrix for criteria and 

decide which of the two criteria is more important and assign a value. In our case 

is not obligatory because all the criteria have equal importance. Therefore they 

could have all 1 in the comparison matrix 

 Next we have to compute the Weighted Sum Matrix by multiplying the 

comparison matrix and the vector with weights 

 Divide all the elements of the weighted sum matrix by the respective weight 

vector element 

 Compute the average of this value to obtain 𝜆 

 Find the Consistency Index, CI as follows 

𝐶𝐼 =  
𝜆 − 𝑛

𝑛 − 1 
, 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 

Equation 21:Consistency Index (SAW) 

 Calculate the consistency ratio, CR as follows 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
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Equation 22:Consistency Ratio (SAW) 

 RI can be obtained by the Table 2. CR is acceptable if it lower than 0.10. If it 

exceeds the pair-wise matrix is inconsistent and it should be improved. 

 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.85 0.9 1.12 1.24 1.32 1.41 1.45 1.51 

Table 3: AVERAGE RANDOM CONSISTENCY (RI) 

 

Step 2: 

Construct a decision matrix (m x n) that includes m alternatives and n criteria. 

Calculate the normalized decision matrix for positive criteria: 

𝑛𝑖𝑗 =
𝑟𝑖𝑗 

𝑟𝑗𝑚𝑎𝑥
 𝑖 = 1, … 𝑚    𝑗 = 1, … 𝑛 

And for negative criteria: 

𝑛𝑖𝑗 =
𝑟𝑗𝑚𝑎𝑥 

𝑟𝑖𝑗
 𝑖 = 1, … 𝑚    𝑗 = 1, … 𝑛 

𝑟𝑗𝑚𝑎𝑥  is the maximum number and 𝑟𝑗𝑚𝑖𝑛  is the minimum number of r in the 

column of j 

 

Step 3: 

Evaluate each alternative, 𝐴𝑖 by the following folmula: 

𝐴𝑖 = ∑ 𝑤𝑗 ∗ 𝑛𝑖𝑗

𝑛

𝑗=1

 

Equation 23:Final Score (SAW) 

Where 𝑛𝑖𝑗  is the normalized score of the 𝑖𝑡ℎ  alternative with respect to the 𝑗𝑡ℎ 

criteria. 𝑤𝑗 is the weighted criteria. [20]  
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4. SET COVERING 

4.1. The problem 

We were tasked with providing search functionality over phrases with a large but 

strict vocabulary. We decided to see the problem from a geometric perspective, 

meaning that every phrase is a high-dimensional vector in a dimension of words. 

To simplify this, we can say that, if our vocabulary was {A, B, C, D, E, F} then the phrase 

“A E F” is represented by the vector <1, 0, 0, 0, 1, 1> 

 From this we decided that in order, for the user, to identify the desired phrase we 

had to present to him, as few words as possibly that represented the entire set of 

phrases. Therefor the problem we had to solve was translated to this: find the minimum 

number of words that if combined represent the dataset. And after each iteration (after 

the user chooses a word), we would take the Intersection of the current set with the set 

that contain the chosen word. 

The set cover Problem is defined as follows: 

Given 

Ground elements 𝑈 = {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛}, 

subsets  𝑆 = 𝑆1, 𝑆2, . . . , 𝑆𝑘 ⊂ 𝑈 and 

Costs   𝑐: 𝑆 → 𝑄+ 

Find a set 𝐼 ⊆ {1,2,3, . . . , 𝑚} to minimize ∑ 𝑐(𝑆𝑖)𝑖∈𝐼  with the property ∪ 𝑆𝑖𝑖∈𝐼 = 𝑈 

We cat set the 𝑢𝑖with the ith phrase, the 𝑆𝑖with the set of phrases that contain the 

ith word and We can leave 𝑐 = 1for all S. 

Set covering is a hard problem, it was one the first problems to be shown to be 

NP-complete from Karp[ ref Reducibility Among Combinatorial Problems 1972] it is very 

well studied and has many approximation algorithms that we can use to solve our 

version of it. 
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4.2. Approximation/Greedy Algorithm 

There many approaches to approximating the set cover problem [21] 

The most straightforward algorithm was presented by David Johnson [22]. At 

each iteration we choose the element that maximizes the number of elements we cover. 

To be more precise: 

1. SUB = ∅,𝑈𝑁𝐶𝑂𝑁𝑉 = 𝑈and𝑆𝐸𝑇(𝑖) = 𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑁 

2. if 𝑈𝑁𝐶𝑂𝑁𝑉 = ∅exit 

3. choose𝑗 ≤ 𝑁such that |𝑆𝐸𝑇(𝑖)|is maximized 

4. set SUB = SUB ∪ 𝑆𝐸𝑇(𝑗) , 𝑈𝑁𝐶𝑂𝑁𝑉 = 𝑈𝑁𝐶𝑂𝑁𝑉 − 𝑆𝐸𝑇(𝑗) and 𝑆𝐸𝑇(𝑖) = 𝑆𝐸𝑇(𝑖) −

𝑆𝐸𝑇(𝑗),1 ≤ 𝑖 ≤ 𝑁 

5. Go to 2 

The complexity of this algorithm is 𝑂(|𝑈|𝑁) 

 

Another approach is to use linear programming to solve this problem [23]. In 

order to do that we have to turn our problem to the canonical form. 

Minimize ∑ 𝑐(𝑆𝑖)𝑥𝑖𝑆𝑖∈𝑆  

subject to ∑ 𝑐(𝑆𝑖)𝑥𝑖𝑆𝑖:𝑒∈𝑆𝑖
≥ 1 for all 𝑒 ∈ 𝑈 and 

𝑥𝑖 ∈ {0,1} for all i 

in order to solve this efficiently we will solve the LP-relaxation which is 

Minimize ∑ 𝑐(𝑆𝑖)𝑥𝑖𝑆𝑖∈𝑆  

subject to ∑ 𝑐(𝑆𝑖)𝑥𝑖𝑆𝑖:𝑒∈𝑆𝑖
≥ 1 for all 𝑒 ∈ 𝑈and 
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𝑥𝑖 ≥ 0 for all I 

After that we can solve it by solving the dual and using standard linear 

programming techniques find a solution for the original. 
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5. APPLICATIONS 

 

We worked for a company (vithoulkascompass.com) that worked on creating an expert 

system for suggesting homeopathy remedies to patients with a particular set of 

symptoms. The machine learning problem arose from this endeavor. We had available 

a matrix of remedies and symptoms with the values in each cell being a number from 0 

to 4 measuring the effectiveness of each remedy to each symptom. It is important to 

note that the given matrix was sparse and there were many more symptoms than 

remedies. 

|𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠| ≫  |𝑟𝑒𝑚𝑒𝑑𝑖𝑒𝑠| 

 

We began by attempting to find some structure in the dataset with an unsupervised 

clustering algorithm. To do this we had two choices, we could see the data as many, 

low dimensional, vectors (by viewing each symptom as a vector in the space of 

remedies) or a few, high dimensional, vectors (by viewing each remedy as a vector in 

the space of symptoms). 

 

We analyzed the data in order to find a distance function that made sense for our data 

and then we analyzed the resulting space (from the combination of vectors and a 

distance function) to figure out which evaluation technique was the best fit to solve our 

instance of this problem. In order to assert our decisions, we talked with the experts 

(doctors) in order to clarify and verify our results. 

 

Another task we were asked to undertake was a search problem that was needed in 

order for a doctor or a patient to find the symptoms that correspond to each case. We 

developed a prototype that attempted to solve this for people that weren't necessarily 

aware of the field's terminology. 
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