
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSC THESIS

Developing an Electronic Classroom Platform with Ruby on
Rails

Ioannis A. Efthymiou

Supervisors: Alex Delis, Professor NKUA
Panagiotis Liakos, PhD Candidate

ATHENS

MARCH 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αναπτύσσοντας μια Πλατφόρμα Ηλεκτρονικής Τάξης με Ruby
on Rails

Ιωάννης Α. Ευθυμίου

Επιβλέποντες: Αλέξης Δελής, Καθηγητής ΕΚΠΑ
Παναγιώτης Λιακός, Υποψήφιος Διδάκτορας

ΑΘΗΝΑ

ΜΑΡΤΙΟΣ 2016

BSC THESIS

Developing an Electronic Classroom Platform with Ruby on Rails

Ioannis A. Efthymiou
A.M.: 1115200600296

SUPERVISORS: Alex Delis, Professor NKUA
Panagiotis Liakos, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αναπτύσσοντας μια Πλατφόρμα Ηλεκτρονικής Τάξης με Ruby on Rails

Ιωάννης Α. Ευθυμίου
Α.Μ.: 1115200600296

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αλέξης Δελής, Καθηγητής ΕΚΠΑ
Παναγιώτης Λιακός, Υποψήφιος Διδάκτορας

ABSTRACT

Objective of my thesis is to develop an e-class platform, which is a web application aiming
to provide assistance to both faculty and students in managing the courses throughout
each academic year. Maximizing functionality and user experience were high-valued
design goals. As a result, the application feels simple, yet elegant to the end user.

SUBJECT AREA: Web Development

KEYWORDS: ruby on rails, web application, e-class, ajax, javascript

ΠΕΡΙΛΗΨΗ

Σκοπός της πτυχιακής μου εργασίας είναι η ανάπτυξη μιας πλατφόρμας ηλεκτρονικής
τάξης (e-class), το οποίο είναι μια εφαρμογή διαδικτύου. Ο στόχος της εφαρμογής είναι
βοηθήσει τους φοιτητές και το διδακτικό προσωπικό κατά την διάρκεια της ακαδημαϊκής
χρονιάς. Η καλύτερη δυνατή λειτουργικότητα και η εμπειρία χρήσης ήταν από τους σημα-
ντικότερους στόχους κατά την σχεδίαση. Ως αποτέλεσμα, η εφαρμογή είναι απλή, αλλά
εξαιρετικά λειτουργική για τον χρήστη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάπτυξη Εφαρμογής Διαδικτύου

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ruby on rails, εφαρμόγή διαδικτύου, ηλεκρονική τάξη, ajax,
javascript

Dedicated to my Lily, my friends and family.

ACKNOWLEDGEMENTS

I would like to thank my Lily, for everything.

My brother Makis, for always being next to me.

My mother Lalila, for raising me to be the man I am.

My father Antonis, for inspiring me to do what I love.

My brother Theseas, for reminding me what it is to be young and set high goals.

The rest of my family, for sharing my life and providing a loving family.

All of my friends, each of them unique and special in my life.

All the teachers and professors, from kindergarden through university, for their role in
shaping me to what I am.

Last but not least PhD candidate Panagiotis Liakos, for his amazing assistance in this
thesis, and Professor Alexis Delis for inspiring me to follow this path.

TABLE OF CONTENTS

PROLOGUE . 12

1. INTRODUCTION . 13

1.1 Challenges in Design . 13

1.2 Challenges in Development . 13

1.3 Tackling the Challenges . 14

1.4 Purpose of this Thesis . 15

2. THE ROLES AND FUNCTIONALITY OF E-CLASS 16

2.1 The Administrators . 16

2.2 Professors . 17

2.3 Undergraduate Students . 23

2.4 Shared Pages . 28

3. DEVELOPING THE APPLICATION . 29

3.1 The Models . 29
3.1.1 User . 29
3.1.2 Course . 31
3.1.3 StudentAttendsCourse . 32
3.1.4 Announcement . 33
3.1.5 Assignment . 33
3.1.6 Document . 34

3.2 The Controllers . 34
3.2.1 The Course Controller . 34
3.2.2 The Assignment Controller . 36

3.3 The Views and Helpers . 36
3.3.1 The Views . 37
3.3.2 The Helpers . 37

3.4 The Gems . 37

3.5 How it all ties together - A Workflow . 38

4. IN CONCLUSION . 42

ABBREVIATIONS AND ACRONYMS . 43

REFERENCES . 44

LIST OF FIGURES

Fig. 1: Admininstrator - User management 16

Fig. 2: Admininstrator - Create new course 16

Fig. 3: Admininstrator - Course index . 17

Fig. 4: Admininstrator - Edit course . 17

Fig. 5: Professor - Personalized courses 18

Fig. 6: Professor - Course index . 18

Fig. 7: Professor - Edit course description 19

Fig. 8: Professor - Create course announcement 19

Fig. 9: Professor - Edit course announcement title 20

Fig. 10: Professor - Edit course announcement message 20

Fig. 11: Professor - Create course assignment 21

Fig. 12: Professor - Edit course assignment - Description only 21

Fig. 13: Professor - Edit course assignment 22

Fig. 14: Professor - add and delete documents 22

Fig. 15: Professor - View homeworks . 23

Fig. 16: Professor - students attending course 23

Fig. 17: Student - My courses . 24

Fig. 18: Student - Courses . 24

Fig. 19: Student - Enroll from individual course 25

Fig. 20: Student - Course assignments overview 25

Fig. 21: Student - View assignment . 26

Fig. 22: Student - Assignment not expired, homework not submitted 26

Fig. 23: Student - Assignment not expired, homework submitted 27

Fig. 24: Student - Document download . 27

Fig. 25: Log-in page . 28

Fig. 26: Sign-up page . 28

Fig. 27: Administrator changing the role of a user. 38

PROLOGUE
The following waswritten in Athens, Greece, inMarch 2016. It documents the development
of a web application using RoR. It is distributed in hope of assisting others interested
in getting started with developing web applications using RoR. However, there are no
guarantees that the following will always be applicable, due to the everchanging nature of
web technologies. Consulting with the official documentation is always recommended.

Developing an Electronic Classroom Platform with Ruby on Rails

1. INTRODUCTION
Ever since the World Wide Web was made commercially available in the 1990s, it has
experienced an unprecedented growth in popularity, as well as itself as an industry. Today,
themajority of information we receive is online.Whether it is the news, communicating with
other people, or just using the social media, we spend a lot of time online.

It is a logical next step, to take advantage of this power and use it to further assist our
education. An electronic class platform (e-class) is a useful tool that makes keeping track
of the courses you attend easier.

As an administrator, you can have an overview of the platform, create new courses and
assign faculty members to be in charge of them.

Professors have a place where they can inform students about each of their courses,
provide updates for those who are attending, give out assignments and receive homework
by the students.

Students have the opportunity to find out about all the courses available, keep track of
courses they attend and effortlessly enroll and withdraw from them.

1.1 Challenges in Design

The design and development of such a platform offers some very interesting challenges.
Design challenges include, but are not limited to, the following.

Consistency: Each page has to be personalised according to the user viewing it, while
maintaining a consistent layout.

Intelligibility: A website should be intuitive to use. The users, regardless of their
experience or roles in the platform, should be able to easily navigate through the site
and accomplish their goals.

Usefulness: The application has to provide attractive alternatives to the status quo of
course management. For example, posting an assignment online is more efficient
than printing it out and handing it to students.

1.2 Challenges in Development

Once the hurdles of designing the application are overcome, the problems of developing
it arise. Again, here is an example of such challenges, but not a full list of them.

Proper Modeling: Creating a proper modelization for the design, that conforms with
the Model-View-Controller(MVC) pattern is vital for web applications, and ensures
proper modularity.

Ioannis A. Efthymiou 13

Developing an Electronic Classroom Platform with Ruby on Rails

Coding Efficiency: A web application like an e-class offers web pages with similar, but
different functionality. Depending on the user role, a page may offer different options
to the user. For example, a professor should have different options when viewing a
course he is in charge of, than when he is viewing one where he is not. This needs to
be achieved with the minumum amount of reduntant code, since duplicate code often
is a source of errors and also adds an unnecessary level of complexity to maintaining
and debugging the application.

Security: Security is always a concern for online applications. Whether the case is a
malicious user, or just a simple hiccup on the connection, both incoming and outgoing
data needs to be validated. Furthermore, users must be limited to what their role
gives them access to.

1.3 Tackling the Challenges

RoR is a framework built in Ruby for developing web appications, is a perfect candidate
for the task at hand. RoR is based on two pillar stones, as stated on the official RoR
website.[1]

• Don’t Repeat Yourself: DRY is a principle of software development which states
that “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.”. By not writing the same information over and over
again, the code is more maintainable, more extensible, and less buggy.

• Convention Over Configuration(CoC): Rails has opinions about the best way to do
many things in a web application, and defaults to this set of conventions, rather than
require that you specify every minutiae through endless configuration files.

RoR is built based on addressing the coding efficiency problem discussed earlier.
Additionally, RoR is by default a MVC framework, which makes proper modeling easier.
Moreover, it is a widely used, open source software, with a large community. This means
that there is already a ton of information out there, and someone, sometime, has already
asked the same question. In case that is not true, the rails community will provide a solution
soon enough. Which brings us to the next point. Like all programming languages, Ruby
— and consequently RoR — has its own libraries, called “Gems”.

Gems are extensively used, and quite often hold the solutions to problems that occur. In
case a particular feature is requested, it is advisable to first check whether a gem that
addresses it already exists, before attempting to implement a solution onelself. It is very
likely that others have already made the effort to address the problem, and the solution
awaits in the form of a gem. Gems can be found in Github[2], RubyGems[3] and The Ruby
Toolbox.[4]

Ioannis A. Efthymiou 14

Developing an Electronic Classroom Platform with Ruby on Rails

1.4 Purpose of this Thesis

In this thesis, we document the creation of an e-class platform by using RoR, how gems
can be used to assist in development, and also demostrate the use of other technologies,
to compliment what RoR offers. In the next part, it showcases the end result, and the
functionality the application offers. Following, it goes in to detail about the code, the gems
and how to properly use them.

Ioannis A. Efthymiou 15

Developing an Electronic Classroom Platform with Ruby on Rails

2. THE ROLES AND FUNCTIONALITY OF E-CLASS

2.1 The Administrators

Administrators have a crucial role in the application, although their functionality is fairly
limited. Administrators have the ability to:

Manage users: Have an overview of all users, and manage their roles. Since only
administrators can access the user management page, a master account exists,
whose role cannot be changed, to ensure there is always at least one administrator.

Fig. 1: Admininstrator - User management

Create Courses: Create new courses. Administrators must set the course’s name and
code, and assign a professor in charge of it. A drop-down menu with all professors
is provided for convenience and error avoidance.

Fig. 2: Admininstrator - Create new course

Edit and Delete Courses: Changes need to be made from time to time. A course might
need to have some attribute altered, or even be deleted. For that reason,

Ioannis A. Efthymiou 16

Developing an Electronic Classroom Platform with Ruby on Rails

administators have the option to edit or delete each course.

Fig. 3: Admininstrator - Course index

Fig. 4: Admininstrator - Edit course

2.2 Professors

Professors have a variety of tools available in order to manage their courses. These
include:

Edit Course Description: Access to an index page containing only the courses they
manage. Moreover, when viewing the main course index, a visual cue is in place to
indicate their courses.

Ioannis A. Efthymiou 17

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 5: Professor - Personalized courses

Fig. 6: Professor - Course index

Edit Course Description: The ability to edit the description of the courses they manage,
to better reflect the objective of each course. They can accomplish that by clicking
on the description while viewing the course.

Ioannis A. Efthymiou 18

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 7: Professor - Edit course description

Create New Announcements: Adding a new announcement for the students can be
done seamlessly, directly from the course page.

Fig. 8: Professor - Create course announcement

Edit Course Announcements: Announcements can be edited, just like descriptions. All
it takes is for the course professor to click on the announcement title or message,
and they can edit it in place.

Ioannis A. Efthymiou 19

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 9: Professor - Edit course announcement title

Fig. 10: Professor - Edit course announcement message

Create Course Assignment: Professors have the ability to create assignments for their
students, and the choice to add accompanying documents, available to download,
for assistance. Moreover, they set a deadline. Once the deadline is over, the students
can no longer upload their homework.

Ioannis A. Efthymiou 20

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 11: Professor - Create course assignment

Edit Course Assignment: Assignments can be edited in two ways. The description can
be edited in place in the assignment page, and documents can be added or deleted.
There is a dedicated edit page in order to change the title and deadline of the
assignment.

Fig. 12: Professor - Edit course assignment - Description only

Ioannis A. Efthymiou 21

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 13: Professor - Edit course assignment

Fig. 14: Professor - add and delete documents

View and Download Homeworks: Professors have access to a page where they can
download homeworks submitted by students. As shown in 12 and 14, the link is
only enabled if at least a homework has been submitted.

Ioannis A. Efthymiou 22

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 15: Professor - View homeworks

View Attending Students: Lastly, professors can have an overview of all users attending
each of their courses, their names and emails.

Fig. 16: Professor - students attending course

2.3 Undergraduate Students

Students differ from the other two categories, in the sense that they are mostly recepients
of information instead of providers. However, they do enjoy unique features, like:

An Index of Courses they Attend: Besides the index of all available courses, shared by
all roles, students also have a personalised page which includes only the courses
they are enrolled.

Ioannis A. Efthymiou 23

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 17: Student - My courses

Quick Enrolling and Withdrawing: Students have the ability to easily enroll to and
withdraw from courses, from every page associated with them. They can accomplish
that in the course index page, the personalised course page 17, as well as each
individual course page. 20

Fig. 18: Student - Courses

Ioannis A. Efthymiou 24

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 19: Student - Enroll from individual course

Visual Assignment Deadline Overview: Students can check their assignment
deadlines at a glance, both from the assignment index in the course page, and the
assignment page itself.

Fig. 20: Student - Course assignments overview

Ioannis A. Efthymiou 25

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 21: Student - View assignment

Homework Submission and Download: The interface is different depending on
whether the homework is submitted or not. A student is able to upload a different
file, overwriting the original, as well as download the one he has uploaded. Once the
deadline for the assignment is over, the student no longer has the ability to upload
files 24, but is still able to download a file he has submitted 21.

Fig. 22: Student - Assignment not expired, homework not submitted

Ioannis A. Efthymiou 26

Developing an Electronic Classroom Platform with Ruby on Rails

Fig. 23: Student - Assignment not expired, homework submitted

View and Download Assisting Files: Students are also able to view and download files
associated with assignments through the assignment page.

Fig. 24: Student - Document download

Ioannis A. Efthymiou 27

Developing an Electronic Classroom Platform with Ruby on Rails

2.4 Shared Pages

Pages demonstrated above are similar, but offer different features according to the role
of the user visiting them. Obviously, in some cases this is not needed, so pages like the
log-in screen or the sign-up page are shared.

Fig. 25: Log-in page

Fig. 26: Sign-up page

Ioannis A. Efthymiou 28

Developing an Electronic Classroom Platform with Ruby on Rails

3. DEVELOPING THE APPLICATION
Following the presentation of the application and its features, we now analyse the process
of developing it. By explaining how it came to be, a closer look is taken at RoR and what
it has to offer. RoR is by design a MVC framework, therefore the next logical step is to
examine the models, views and controllers, as well as the techniques, tools and gems
used to tie it all together.

3.1 The Models

RoR uses Active Record(AR) as an Object Relational Mapping(ORM) framework.[5] This,
in association with CoC, do most of the configuration automatically. Manual configuration
only needs to be done when the standard convention cannot be followed. A closer look
at the models of the application shall accentuate this point. Models that do not offer
functionality not already discussed will be omitted.

3.1.1 User

class User < ActiveRecord::Base
rolify
devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable

validates :name, :surname, presence: true

after_create :assign_default_role

has_many :homeworks, inverse_of: :user

has_many :courses_teaching, :class_name => :Course, inverse_of: :lecturer,
:foreign_key => ”lecturer_id”↪→

has_many :student_attends_courses, inverse_of: :student, :foreign_key => ”user_id”
has_many :courses_attending, :class_name => :Course, through:

:student_attends_courses, :foreign_key => ”user_id”↪→

def assign_default_role
add_role(:undergrad)
end

def is_master_acc?
self.id == User.first.id
end

end

Listing 1: The User Model

Ioannis A. Efthymiou 29

Developing an Electronic Classroom Platform with Ruby on Rails

This is the file for the User model. Dissecting it line by line provides a better understanding.

• class User < ActiveRecord::Base

This line contains the name of the model and shows the inheritance of the AR base.

• rolify
devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable

There are functions provided by gems, rolify [8] and devise[9], and will be discussed
in detail later on.

• validates :name, :surname, presence: true

With this simple function, it is ensured that every User record will contain a name
and a surname. E-mail and password are not present, since they are handled by
devise[9].

• after_create :assign_default_role

a f t e r _c rea t e sets callback functions to be executed on the object, immediately
after they are created. In this case, a role is assigned to the user as soon as they
sign up.

• has_many :homeworks, inverse_of: :user

By using has_many, model relationships are defined, specificaly a one-to-many
relationship. inverse_o f : is optional, but quite powerful. It offers bi-directional
access to models, omitting the need for an SQL query to do so.

• has_many :courses_teaching, :class_name => :Course, inverse_of: :lecturer,
:foreign_key => ”lecturer_id”↪→

This line of code is similar to the previous one. However, it offers 2 additional
parameters. Since the first argument of has_many is not the name of a model,
the model is provided by using : class_name. This enables us to use an alias,
which accomplishes 2 goals. Firstly, it allows us to have more than one relationships
between two models. In this case, the course has to belong to a single user, its
lecturer, but also have many users, the students who attend it. Additionally, it
increases code readability, since course . l e c t u r e r is more intuitive than
course . user. The last argument, : fo re ign_key , specifies the column in the
corresponding table, in this case the courses table, which includes the key to the
user model.

• has_many :student_attends_courses, inverse_of: :student, :foreign_key =>
”user_id”↪→

has_many :courses_attending, :class_name => :Course, through:
:student_attends_courses, :foreign_key => ”user_id”↪→

Ioannis A. Efthymiou 30

Developing an Electronic Classroom Platform with Ruby on Rails

Further highlighting the benefit of setting an alias, a second relationship between
users and courses is set. This time it is a many-to-many relationship. Usually, this
is accomplished by using has_and_belongs_to_many. Since it is not the only
relationship between the two tables, a third table needs to be introduced, by using
the through : argument. In order to increase the readability of the code, an alias is
again used. By adding a slight complexity, merely an extra line, two different kinds of
relationships can be set between the models, with an added bonus of “natural” code
readability.

• def assign_default_role
add_role(:undergrad)
end

def is_master_acc?
self.id == User.first.id
end

Two methods are defined for the User model. ass i gn_de fau l t _ ro l e is the
method called after a new instance of the model is created. All users are initially set
to be students, to prevent unexpected behaviour in case a role is not assigned. The
other function, is_master_acc? is used to verify that an administrator account will
always exist, as discussed earlier. 1

3.1.2 Course

class Course < ActiveRecord::Base
belongs_to :lecturer, :class_name => :User, inverse_of: :courses_teaching

has_many :student_attends_courses, inverse_of: :course, :foreign_key => ”course_id”
has_many :students, :class_name => :User, through: :student_attends_courses,

:foreign_key => ”course_id”↪→

has_many :announcements, inverse_of: :course, :dependent => :destroy
has_many :assignments, inverse_of: :course, :dependent => :destroy

validates :code, :name, :lecturer, presence: true
end

Listing 2: The Course Model

The course model. Examing it fills up the blanks left from the user model 1 and gives us
an overall understanding of relationships between models.

• belongs_to :lecturer, :class_name => :User, inverse_of: :courses_teaching

belongs_to compliments the has_many used by the user model. belongs_to

Ioannis A. Efthymiou 31

Developing an Electronic Classroom Platform with Ruby on Rails

is ambiguous, in the sense it is not clear whether it is a one-to-many or one-to-
one relationship. When inverse_o f : is set, the relationship is indicated by its
value. A singural word means it is one-to-one, and plural is one-to-many. However,
inverse_o f : is optional, so when it is not user, the relationship is determined by
the corresponding model — has_many means one-to-many, whereas has_one is
used for one-to-one. Regardless of the kind of the relationship, belongs_to means
that this model will hold the id of the object it belongs to. By conversion, this column
is named model_name_id, but since an alias is used, : class_name is set, and
: fo re ign_key is set to the corresponding model.

• has_many :student_attends_courses, inverse_of: :course, :foreign_key =>
”course_id”↪→

has_many :students, :class_name => :User, through: :student_attends_courses,
:foreign_key => ”course_id”↪→

These expressions mirror the ones in the user model 1.

• has_many :announcements, inverse_of: :course, :dependent => :destroy
has_many :assignments, inverse_of: :course, :dependent => :destroy

Through the above associations, it is clear that the course model has one-to-many
associations with the assignment and announcement models. It is safe to assume
that both of their models include belongs_to : course , inverse_o f : in them
and a course_id column in their tables.
The parameter dependent => : dest roy makes sure than once a course is
deleted, all announcements and assignments associated with it will be deleted as
well.

• validates :code, :name, :lecturer, presence: true

The validation has one noticable difference to the one found in User 1. It validates
the presence of : l e c t u r e r , although the attribute is named : l e c t u r e r _ i d . This
is actually crucial, because not only it validates that the field is not empty, but also
that the id belongs to an existing record.

3.1.3 StudentAttendsCourse

class StudentAttendsCourse < ActiveRecord::Base
belongs_to :courses_attending, :class_name => :Course, inverse_of:

:student_attends_courses, :foreign_key => ”course_id”↪→

belongs_to :student, :class_name => :User, inverse_of: :student_attends_courses,
:foreign_key => ”user_id”↪→

end

Listing 3: The StudentAttendsCourse Model

Ioannis A. Efthymiou 32

Developing an Electronic Classroom Platform with Ruby on Rails

The missing link to the many-to-many relationship between courses and the students who
attend them. This model belongs to both a student and a course, and through it the two
other models are connected. : class_name, : inverse_o f and : fo re ign_key are set
according to the values mentioned before. 1 2

3.1.4 Announcement

class Announcement < ActiveRecord::Base
belongs_to :course, inverse_of: :announcements
validates :title, :message, :course, presence: true
default_scope { order(’updated_at DESC’) }
end

Listing 4: The Announcement Model

The announcement model. The last function in the model, defau l t_scope[10]. This
method takes a block of code as an argument and adds a scope for all operations in
the model. In this example, it is used in conjuction with order (’ updated_at␣DESC ’)
, which orders announcements in descending order, according to their last update, thus
ensuring that the most recently updated announcements always appear first.

3.1.5 Assignment

class Assignment < ActiveRecord::Base
belongs_to :course, inverse_of: :assignments
has_many :documents, inverse_of: :assignment, :dependent => :destroy
has_many :homeworks, inverse_of: :assignment, :dependent => :destroy
accepts_nested_attributes_for :documents
validates :title, :description, :due_date, :course, presence: true
validates_associated :documents
end

Listing 5: The Assignment Model

The assignment model contains a set of methods related to models that belong to it.

• accepts_nested_attributes_for :documents

This function enables the management of the documents model through its parent
assignment. This is extremely useful because it allows the addition of documents to
the assignment directly when creating it, as well as updating documents through the
assignment.

• validates_associated :documents

This method acts like va l i da t es does, but for the associated object. It completes
the functionality of accep ts_nes ted_a t t r i bu tes_ fo r , by validating the
attributes of the associated record.

Ioannis A. Efthymiou 33

Developing an Electronic Classroom Platform with Ruby on Rails

3.1.6 Document

class Document < ActiveRecord::Base
belongs_to :assignment, inverse_of: :documents
mount_uploader :doc, DocumentUploader
validates :name, :doc, :assignment, presence: true
end

In the document uploader, the mount_uploader appears. This method is provided by
the carrierwave gem.[11]

3.2 The Controllers

Controllers are responsible for transferring data between the end user and the application.
The routing from each request to the appropriate controller is done in a single file,
“routes.rb”. Controllers in RoR prepare the information and make it available to for the
views, and ara capable on responding differently to different kinds of requests. Below,
selected bits and pieces from controllers are presented. Due to the CoC nature of RoR, a
significant part of the functionality is identical among controllers, so it makes little sense
to showcase them all.

3.2.1 The Course Controller

• class CoursesController < ApplicationController

All controllers in RoR inherit the ApplicationController[6], which in turn
inherits ActionController[7]. This allows for a centalised class to configure application
security.

• before_action :set_course, only: [:show, :edit, :update, :destroy, :description,
:attending_students]↪→

Like in the models, be fo re_ac t ion sets methods to be called before the actual
method is called. In this example, the method set_course is executed exclusively
— unless called directly of course — before the actions between the brackets.

def set_course
params[:id] = params[:course_id] if params[:id].nil?
@course = Course.find(params[:id])
end

This conforms with the DRY nature of RoR, since instead of having the code above,
or a call of the method, separately in all the methods in the bracket, the methods
requiring it are neatly congregated in the be fo re_ac t ion .

Ioannis A. Efthymiou 34

Developing an Electronic Classroom Platform with Ruby on Rails

• def create
@course = Course.new(course_params)

respond_to do |format|
if @course.save
format.html { redirect_to @course, notice: ’Course was successfully created.’
}↪→

format.json { render :show, status: :created, location: @course }
else
get_professors
format.html { render :new }
format.json { render json: @course.errors, status: :unprocessable_entity }
end
end
end

Examining the method to create a new course, leads to interesting findings. Right
away, another method, called course_params is passed as an argument in the
Course . new method.

def course_params
params.require(:course).permit(:code, :name, :lecturer_id, :description)
end

The course_params sanitizes the parameters passed by the request, and only
allows the proper ones to go through. The next step is to attempt to save the newly
created course. Depending on the outcome, one of two might happen. Either the
course is successfully saved, and the controller responds with the corresponding
format of the request, or it fails and the appropriate action is taken. In this specific
case, the function get_pro fessors is called, and then a proper response,
depending on the format is given.

def get_professors
professors = User.with_role :professor
@professors = []
professors.each do |a|
@professors << [”#{a.surname} #{a.name}”, a.id]
end
@professors.sort! { |a, b| a[0] <=> b[0]}
end

The get_pro fessors method is used to create an array which contains information
about all available professors. That array is used in the drop-down menu of the
course form, as displayed earlier. 4

Ioannis A. Efthymiou 35

Developing an Electronic Classroom Platform with Ruby on Rails

• def create
@course = Course.new(course_params)

respond_to do |format|
if @course.save
format.html { redirect_to @course, notice: ’Course was successfully created.’
}↪→

format.json { render :show, status: :created, location: @course }
else
get_professors
format.html { render :new }
format.json { render json: @course.errors, status: :unprocessable_entity }
end
end
end

This method is a good example of the aliases discussed in the models section 1.
The i s_p ro fesso r ? and is_undergrad? methods are provided by rolify[8].
Depending on the type of user making the request, the controller is able to get either
the courses the professor is teacher, or the ones the undergradute student attends.
Then, the paginate method, provided by the will_paginate gem[12], takes care of
the pagination in the view page, as showcased before 5 17. render method renders
the desired view. By conversion, Rails renders the view that shares the namewith the
controller. In case this is not the desired effect, it has to be instructed to do otherwise.

3.2.2 The Assignment Controller

def assignment_params
params.require(:assignment).permit(:title, :description, :due_date, :course_id,
documents_attributes: [:name, :doc, :_destroy])↪→

end

The assignment_params method is interesting, since it has already been established
that assignment may include documents when they are created 11.
The documents_at t r ibu tes array and its contents is what permits the attributes of the
documents to pass the sanitazation process, and be created.

3.3 The Views and Helpers

According to the MVC paradigm, views are used to present the information to the user.
However, in order to not break the paradigm, no logic should be implemented in the
views. To avoid convoluted code in views and controllers, or a version of the view for
every possible outcome, RoR uses helpers and partials. Helpers may contain logic and

Ioannis A. Efthymiou 36

Developing an Electronic Classroom Platform with Ruby on Rails

are called from the view, maintaining the MVC pattern and avoiding that obstacle. Views
mainly consist of the following parts, glued together by the helpers.

3.3.1 The Views

HTML Pages: Html pages are the main component of the views. However, they hardly
ever are plain html pages. RoR by default uses Embedded Ruby(ERB) pages. Other
options include HTML Abstraction Markup Language(HAML) [13] and Slim [14]. This
project uses ERB files, with the exception of the assignment form 11, which utilizes
the Cocoon gem [15]. The gem example was in HAML, so the form was created in
it as well for variety’s sake.

Partial Pages: As the name implies, those are not whole pages, but html snippets, fitting
like pieces of a puzzle where they are required. Besides not being able to stand
alone, partials are the same as the HTML pages described above. Their name is
required to start with an underscore(_).

<span style=”color: <%= color %>”>
<%= time_left %>

JavaScript Files: Not to be confused with JavaScript files used holding the usual
JavaScript functions — these are found in the assets/javascripts folder, and often
written in CoffeeScript [20]. The JavaScript files associated with views are mostly
rendered as a response, made by the controller, to an Asynchronous JavaScript
and XML(AJAX) request. JavaScript files can also contain ERB.

$(’<%= ”#course_#{@course.id}_att” %>’).html(’<%= ”#{@attending}” %>’);
$(’<%= ”#course_#{@course.id}” %>’).html(”<%= escape_javascript(render :partial

=> ’withdraw’, locals: {course: @course}) %>”)↪→

3.3.2 The Helpers

Helpers are ruby methods, used to implement logic for the views. Helpers might return a
result to the view, render a partial, maybe even do nothing. The following snippet is used
to determine whether it is the course professor viewing the assignment, so the edit and
delete buttons should be displayed, and render that partial if that is true.

def edit_and_delete_button(course, id)
render partial: ”edit_and_delete_assignment” if is_course_professor?(course, id)
end

3.4 The Gems

Gems, Ruby’s open-source, community-backed libraries, are extensively used in Rails.
It is highly likely that a problem that occurs or a feature that needs to be implemented

Ioannis A. Efthymiou 37

Developing an Electronic Classroom Platform with Ruby on Rails

already exist in a gem. Following is a sample of the gems used in this application.

Bootstrap-sass: Boostrap-sass provides a port of Bootstrap 3 for RoR. [16]

Devise: Devise offers out-of-the-box user authentication and management. [9]

Rolify: Rolify assists with role management and scoping. [8]

CarrierWave: CarrierWave is a classier solution for file uploading. [11]

Cocoon: Cocoon makes nested form handling seamless. [15]

Will Paginate: Will Paginate offers pagination with a single method. [12]

Best in Place: Best in Place offers a highly customizable option for editing records in
place by using JSON. [17]

jQuery Turbolinks: jQuery Turbolinks is used to address an issue to jQuery functions,
caused by turbolinks. [18]

Faker: Faker generates genuine-looking data. It is ideal for seeding the database tables,
which is perfect for developing an application. [19]

3.5 How it all ties together - A Workflow

In the previous sections, each component of the application was analysed in detail. To
fully understand how it all ties together, an example is in order. The example consists of
a step-by-step examination of an administrator changes the role of a user. In the image
below, the administrator is changing the role of the user from undergrad to professor.

Fig. 27: Administrator changing the role of a user.

Ioannis A. Efthymiou 38

Developing an Electronic Classroom Platform with Ruby on Rails

The HTML behind the “Professor” button

<form action=”/users/4/give_role?rol=professor” accept-charset=”UTF-8”
data-remote=”true” method=”post”>↪→

<input name=”commit” value=”Professor” class=”btn btn-block btn-warning”
type=”submit”>↪→

</form>

According to the routes file,

resources :users, only: [:index] do
post ”give_role”
end

that path is linked to the users controller, in the g i ve_ ro le method. The controller
contains two befo re_ac t ion methods.

before_action :set_user, only: [:give_role]
before_action :set_hashes

The set_hashes, which are instance variables, containing the three roles as well as the
colors associated with each.

def set_hashes
@colours = {
”admin” => ”danger”,
”professor” => ”warning”,
”undergrad” => ”info”
}

@drop_roles = [
”admin”,
”professor”,
”undergrad”
]
end

The set_user method retrieves the user whose roles is about to change, and it removes
the current role, unless it is the master account.

def set_user
@user = User.find(params[:user_id])
@user.roles = [] unless@user.is_master_acc?
@role = params[:rol]
end

Ioannis A. Efthymiou 39

Developing an Electronic Classroom Platform with Ruby on Rails

It checks that by calling the is_master_acc? method from the user model.

def is_master_acc?
self.id == User.first.id
end

Once both the be fo re_ac t ion methods are called, the g i ve_ ro le is executed. It calls
the add_role method provided by the rolify gem [8], again checking if it is the master
account.

def give_role
@user.add_role(@role) unless@user.is_master_acc?
respond_to do |format|
format.js
end
end

The method then responds to the .js format. This renders the .js file with the same name
as the controller method.

$(’<%= ”#user_#{@user.id}” %>’).empty();
$(’<%= ”#user_#{@user.id}” %>’).html(”<%= escape_javascript(render :partial => ’role’,

locals: {user: @user, role: @role}) %>”)↪→

In turn, that clears the div containing the dropdown menu, and renders the _role.html.erb
partial,

<div class=”btn-group btn-block”>
<button type=”button” class=’btn btn-<%= ”#{@colours[role]}” %> btn-block

dropdown-toggle’ data-toggle=”dropdown” aria-haspopup=”true”
aria-expanded=”false”>

↪→

↪→

<%= role.capitalize %>
</button>
<ul class=”dropdown-menu”>
<%@drop_roles.each do |r| %>
<%= render partial: ”give_role”, locals: {user: user, role: r} unless r
== role %>↪→

<% end %>

</div>

Ioannis A. Efthymiou 40

Developing an Electronic Classroom Platform with Ruby on Rails

which creates the drop down menu, and calls

<%= form_tag(user_give_role_path(user, :rol => role), remote: true) do %>
<%= submit_tag ”#{role.capitalize}”, class: ”btn btn-block btn-#{@colours[role]}”%>
<% end %>

on each role besides the newly assigned one, to create the proper buttons.

Ioannis A. Efthymiou 41

Developing an Electronic Classroom Platform with Ruby on Rails

4. IN CONCLUSION
In all crafting areas, it’s easier to accomplish something if you have the tools of the trade.
Developing web applications does not deviate from that course. This thesis aims to
establish the Ruby on Rails framework as one of the best choices when it comes to web
development, since it offers swift and agile development, exellent workflow and enjoys
amazing community support. Through its DRY and CoC philosophies, it takes away all
the chores from developing web applications, leaving programmers to focus on the fun
parts.

Ioannis A. Efthymiou 42

Developing an Electronic Classroom Platform with Ruby on Rails

ABBREVIATIONS AND ACRONYMS

MVC Model-View-Controller
RoR Ruby on Rails
DRY Don’t Repeat Yourself
CoC Convention Over Configuration
ORM Object Relational Mapping
AR Active Record
ERB Embedded Ruby
HAML HTML Abstraction Markup Language
AJAX Asynchronous JavaScript and XML

Ioannis A. Efthymiou 43

Developing an Electronic Classroom Platform with Ruby on Rails

REFERENCES
[1] “Ruby on Rails” Ruby on Rails [Online]. Available: http://rubyonrails.org. [Accessed: Mar 8, 2016]
[2] “GitHub” GitHub [Online]. Available: https://github.com. [Accessed: Mar 8, 2016]
[3] “Ruby Gems” Ruby Gems [Online]. Available: https://rubygems.org. [Accessed: Mar 8, 2016]
[4] “The Ruby Toolbox” The Ruby Toolbox [Online]. Available: https://www.ruby-toolbox.com. [Accessed:

Mar 8, 2016]
[5] “Active Record Basics” Active Record Basics [Online]. Available: http://guides.rubyonrails.org/active_

record_basics.html [Accessed: Mar 8, 2016]
[6] “Application Controller” Application Controller [Online]. Available: http://api.rubyonrails.org/classes/

ActionController/Base.html [Accessed: Mar 8, 2016]
[7] “Action Controller Base” Action Controller Base [Online]. Available: http://api.rubyonrails.org/classes/

ActionController/Base.html [Accessed: Mar 8, 2016]
[8] “Rolify” Role management library

with resource scoping [Online]. Available: https://github.com/RolifyCommunity/rolify [Accessed: Mar
8, 2016]

[9] “Devise” Flexible authentication solution for Rails with Warden [Online]. Available: https://github.com/
plataformatec/devise [Accessed: Mar 8, 2016]

[10] “Active Record Scoping Default Methods” Active Record Scoping Default Methods [Online]. Available:
http://api.rubyonrails.org/classes/ActiveRecord/Scoping/Default/ClassMethods.html [Accessed: Mar
9, 2016]

[11] “CarrierWave” Classier solution for file uploads for Rails, Sinatra and other Ruby web frameworks
[Online]. Available: https://github.com/carrierwaveuploader/carrierwave [Accessed: Mar 9, 2016]

[12] “https://github.com/mislav/will_paginate” Pagination library for Rails, Sinatra, Merb, DataMapper, and
more [Online]. Available: https://github.com/mislav/will_paginate [Accessed: Mar 9, 2016]

[13] “HAML”HTMLAbstractionMarkup Language [Online]. Available: http://www.haml.info [Accessed: Mar
9, 2016]

[14] “Slim” A fast, lightweight template engine for Ruby [Online]. Available: http://slim-lang.com [Accessed:
Mar 9, 2016]

[15] “Cocoon” Dynamic nested forms using jQuery made easy [Online]. Available: https://github.com/
nathanvda/cocoon [Accessed: Mar 9, 2016]

[16] “Bootstrap-sass” Official Sass port of Bootstrap 2 and 3 [Online]. Available: https://github.com/twbs/
bootstrap-sass [Accessed: Mar 9, 2016]

[17] “Best_in_place” A RESTful unobtrusive jQuery Inplace-Editor and a helper as a Rails Gem [Online].
Available: https://github.com/bernat/best_in_place [Accessed: Mar 9, 2016]

[18] “jQuery Turbolinks” jQuery plugin for drop-in fix binded events problem caused by Turbolinks [Online].
Available: https://github.com/kossnocorp/jquery.turbolinks [Accessed: Mar 9, 2016]

[19] “Faker” A library for generating fake data such as names, addresses, and phone numbers. [Online].
Available: https://github.com/stympy/faker [Accessed: Mar 9, 2016]

[20] “CoffeeScript” CoffeeScript is a little language that compiles into JavaScript. [Online]. Available: https:
//http://coffeescript.org [Accessed: Mar 9, 2016]

Ioannis A. Efthymiou 44

http://rubyonrails.org
https://github.com
https://rubygems.org
https://www.ruby-toolbox.com
http://guides.rubyonrails.org/active_record_basics.html
http://guides.rubyonrails.org/active_record_basics.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
https://github.com/RolifyCommunity/rolify
https://github.com/plataformatec/devise
https://github.com/plataformatec/devise
http://api.rubyonrails.org/classes/ActiveRecord/Scoping/Default/ClassMethods.html
https://github.com/carrierwaveuploader/carrierwave
https://github.com/mislav/will_paginate
http://www.haml.info
http://slim-lang.com
https://github.com/nathanvda/cocoon
https://github.com/nathanvda/cocoon
https://github.com/twbs/bootstrap-sass
https://github.com/twbs/bootstrap-sass
https://github.com/bernat/best_in_place
https://github.com/kossnocorp/jquery.turbolinks
https://github.com/stympy/faker
https://http://coffeescript.org
https://http://coffeescript.org

	Prologue
	Introduction
	Challenges in Design
	Challenges in Development
	Tackling the Challenges
	Purpose of this Thesis

	The Roles and Functionality of E-Class
	The Administrators
	Professors
	Undergraduate Students
	Shared Pages

	Developing the Application
	The Models
	User
	Course
	StudentAttendsCourse
	Announcement
	Assignment
	Document

	The Controllers
	The Course Controller
	The Assignment Controller

	The Views and Helpers
	The Views
	The Helpers

	The Gems
	How it all ties together - A Workflow

	In Conclusion
	Abbreviations and Acronyms
	References

