NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSC THESIS

Developing an Electronic Classroom Platform with Ruby on
Rails

loannis A. Efthymiou

Supervisors: Alex Delis, Professor NKUA
Panagiotis Liakos, PhD Candidate

ATHENS
MARCH 2016

EONIKO KAI KAMNOAIZTPIAKO NANENIZTHMIO AOHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NTYXIAKH EPTAZIA

Avatrroocoovrtag pia MNMAaredépua HAekTpovikAg Tagng pe Ruby
on Rails

lwdvvng A. EuBupiou

EmiBAémrovreg: AAEENg AeAng, Kabnyntrig EKIMA
Mavayiwtng Alakog, Yroyneiog AIBGKTopag

AOHNA
MAPTIOZ 2016

BSC THESIS

Developing an Electronic Classroom Platform with Ruby on Rails

loannis A. Efthymiou
A.M.: 1115200600296

SUPERVISORS: Alex Delis, Professor NKUA
Panagiotis Liakos, PhD Candidate

NTYXIAKH EPTAZIA

AvatrtuooovTtag pia MAateoépua HAekTpovikig Tagng ue Ruby on Rails

lwdvvng A. EuBupiou
A.M.: 1115200600296

EMIBAEMNONTEZ: AA£gng AeAng, Kabnyntg EKIA
Mavayiwrtng Alakog, Yrowneiog AIBAKTopag

ABSTRACT

Objective of my thesis is to develop an e-class platform, which is a web application aiming
to provide assistance to both faculty and students in managing the courses throughout
each academic year. Maximizing functionality and user experience were high-valued
design goals. As a result, the application feels simple, yet elegant to the end user.

SUBJECT AREA: Web Development

KEYWORDS: ruby on rails, web application, e-class, ajax, javascript

NEPIAHWYH

2KOTTOG TNG TITUXIOKAG MOU €pyaciag €ival n avdamTugn piag TTAATQOPPAS NAEKTPOVIKAG
Ta¢NG (e-class), 10 otroio €ival pia epappoyr d1adIkTuou. O OTOX0G TNG EQAPUOYNG Eival
BonBriael Toug PoITNTES Kal TO BIOAKTIKO TTPOCWTTIKO KATA TNV OIAPKEIQ TNG AKAdNUAIKAG
XPOoVIAG. H KaAuTepn duvartr) AEITOUPYIKOTATA KAl N EPTTEIPIA XPrONG ATAV ATTO TOUG ONUa-
VTIKOTEPOUG OTOXOUG KaTA TNV oxediaon. Q¢ atroTéEAeoHa, N eQapuoyn €ival atrAr, aAAd
ECAIPETIKA AEITOUPYIKN YIA TOV XPrOTN.

OEMATIKH NEPIOXH: Avarmtuén Eeappoyic Aiadiktuou

AEZEIZ KAEIAIA: ruby on rails, e@apuoyn O1adiktuou, nAekpoviky TéEN, ajax,
javascript

Dedicated to my Lily, my friends and family.

ACKNOWLEDGEMENTS

| would like to thank my Lily, for everything.

My brother Makis, for always being next to me.

My mother Lalila, for raising me to be the man | am.

My father Antonis, for inspiring me to do what | love.

My brother Theseas, for reminding me what it is to be young and set high goals.
The rest of my family, for sharing my life and providing a loving family.

All of my friends, each of them unique and special in my life.

All the teachers and professors, from kindergarden through university, for their role in
shaping me to what | am.

Last but not least PhD candidate Panagiotis Liakos, for his amazing assistance in this
thesis, and Professor Alexis Delis for inspiring me to follow this path.

TABLE OF CONTENTS

PROLOGUEt e 12
f. INTRODUCTION it i e 13
.1 ChallengesinDesign . . - - - & &« t v v it e e e e e e e e e e e e e e e e e e 13
H.2 ChallengesinDevelopmeni & & 4 & i i i i i h e e e e e e e e e e e e e 13
f.3 Tacklingthe Challendes & ¢« v v & vt 4 st e e e m e e e a e e e e 14
.4 PurposeofthisThesis v v v v v v it e e e e e e e e e e e e e e e e 15
2. THE ROLES AND FUNCTIONALITYOFE-CLASS 16
A TheAdministrators« « v v v v i e e e e e e e e e e e e e e e e e e 16
R.2 Professors i i i i i i e 17
2.3 Undergraduate Students it it ot e e e e e e e e e e e e e e 23
R4 SharedPages - - & & &t i i i e 28
B. DEVELOPING THE APPLICATION ot it e e e e e e e e e e e 29
BA TheModeld i i it e e e e e e e e e e e e e e e e e e 29
B.1.1 Usell . . . o 29
...................................... 31
B.1.3 StudentAttendsCoursd e e 32
B.1.4 Announcemeni 33
B.1.5 Assignmen] 33
B.1.6 Documeni e e 34
B.2 TheControllers & & & & vttt e 34
B.2.1 The Course Controllel o i i i e e e 34
B.2.2 The Assignment Controllell e 36
B.3 TheViewsandHelpers i i i i i it e e e e e e e e e e e e e 36
B.3.1 TheViews o o e 37
B.3.2 TheHelperd e e 37
B4 TheGemsS . . . v v v i ittt e 37
B.5 How itall ties together -AWOrkflow « & v v v i i i e e e e e e e e e e e e 38

4. INCONCLUSION e e e e e e e e e e e e e 42

ABBREVIATIONS AND ACRONYMS]ttt

REFERENCES

LIST OF FIGURES

Fig. 1: Admininstrator - User management 16
Fig. 2: Admininstrator - Create newcoursgl 16
Fig. 3: Admininstrator - Courseindex 17
Fig. 4: Admininstrator - Editcoursg 17
Fig. 5: Professor - Personalizedcourses 18
Fig. 6: Professor- CourseindeX 18
Fig. 7: Professor - Edit course description. 19
Fig. 8: Professor - Create course announcemen{ 19
Fig. 9: Professor - Edit course announcement title, 20
Fig. 10: Professor - Edit course announcement message 20
Fig. 11: Professor - Create course assignmenf 21
Fig. 12: Professor - Edit course assignment - Descriptiononlyf 21
Fig. 13: Professor - Edit course assignmen{ 22
Fig. 14: Professor - add and delete documenty 22
Fig. 15: Professor - View homeworks 23
Fig. 16: Professor - students attendingcourse 23
Fig. 17: Student-Mycourses 24
Fig. 18: Student-Courses 24
Fig. 19: Student - Enroll from individual coursg 25
Fig. 20: Student - Course assignments overview| 25
Fig. 21: Student - View assignmen{ 26
Fig. 22: Student - Assignment not expired, homework not submitted 26
Fig. 23: Student - Assignment not expired, homework submitted 27
Fig. 24: Student - Documentdownload 27

Fig. 25: LOG-IN PAGE v o e,
Fig. 26: SiIGN-UP PAGE . . « . o e e e
Fig. 27: Administrator changing the role ofawuser)

PROLOGUE

The following was written in Athens, Greece, in March 2016. It documents the development
of a web application using RoR. It is distributed in hope of assisting others interested
in getting started with developing web applications using RoR. However, there are no
guarantees that the following will always be applicable, due to the everchanging nature of
web technologies. Consulting with the official documentation is always recommended.

Developing an Electronic Classroom Platform with Ruby on Rails

1. INTRODUCTION

Ever since the World Wide Web was made commercially available in the 1990s, it has
experienced an unprecedented growth in popularity, as well as itself as an industry. Today,
the majority of information we receive is online. Whether it is the news, communicating with
other people, or just using the social media, we spend a lot of time online.

It is a logical next step, to take advantage of this power and use it to further assist our
education. An electronic class platform (e-class) is a useful tool that makes keeping track
of the courses you attend easier.

As an administrator, you can have an overview of the platform, create new courses and
assign faculty members to be in charge of them.

Professors have a place where they can inform students about each of their courses,
provide updates for those who are attending, give out assignments and receive homework
by the students.

Students have the opportunity to find out about all the courses available, keep track of
courses they attend and effortlessly enroll and withdraw from them.

1.1 Challenges in Design

The design and development of such a platform offers some very interesting challenges.
Design challenges include, but are not limited to, the following.

Consistency: Each page has to be personalised according to the user viewing it, while
maintaining a consistent layout.

Intelligibility: A website should be intuitive to use. The users, regardless of their
experience or roles in the platform, should be able to easily navigate through the site
and accomplish their goals.

Usefulness: The application has to provide attractive alternatives to the status quo of
course management. For example, posting an assignment online is more efficient
than printing it out and handing it to students.

1.2 Challenges in Development

Once the hurdles of designing the application are overcome, the problems of developing
it arise. Again, here is an example of such challenges, but not a full list of them.

Proper Modeling: Creating a proper modelization for the design, that conforms with
the Model-View-Controller(MVC) pattern is vital for web applications, and ensures
proper modularity.

loannis A. Efthymiou 13

Developing an Electronic Classroom Platform with Ruby on Rails

Coding Efficiency: A web application like an e-class offers web pages with similar, but
different functionality. Depending on the user role, a page may offer different options
to the user. For example, a professor should have different options when viewing a
course he is in charge of, than when he is viewing one where he is not. This needs to
be achieved with the minumum amount of reduntant code, since duplicate code often
is a source of errors and also adds an unnecessary level of complexity to maintaining
and debugging the application.

Security: Security is always a concern for online applications. Whether the case is a
malicious user, or just a simple hiccup on the connection, both incoming and outgoing
data needs to be validated. Furthermore, users must be limited to what their role
gives them access to.

1.3 Tackling the Challenges

RoR is a framework built in Ruby for developing web appications, is a perfect candidate
for the task at hand. RoR is based on two pillar stones, as stated on the official RoR
website.[1]

» Don’t Repeat Yourself: DRY is a principle of software development which states
that “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.”. By not writing the same information over and over
again, the code is more maintainable, more extensible, and less buggy.

» Convention Over Configuration(CoC): Rails has opinions about the best way to do
many things in a web application, and defaults to this set of conventions, rather than
require that you specify every minutiae through endless configuration files.

RoR is built based on addressing the coding efficiency problem discussed earlier.
Additionally, RoR is by default a MVC framework, which makes proper modeling easier.
Moreover, it is a widely used, open source software, with a large community. This means
that there is already a ton of information out there, and someone, sometime, has already
asked the same question. In case that is not true, the rails community will provide a solution
soon enough. Which brings us to the next point. Like all programming languages, Ruby
— and consequently RoR — has its own libraries, called “Gems”.

Gems are extensively used, and quite often hold the solutions to problems that occur. In
case a particular feature is requested, it is advisable to first check whether a gem that
addresses it already exists, before attempting to implement a solution onelself. It is very
likely that others have already made the effort to address the problem, and the solution
awaits in the form of a gem. Gems can be found in Github[2], RubyGems[3] and The Ruby
Toolbox.[4]

loannis A. Efthymiou 14

Developing an Electronic Classroom Platform with Ruby on Rails

1.4 Purpose of this Thesis

In this thesis, we document the creation of an e-class platform by using RoR, how gems
can be used to assist in development, and also demostrate the use of other technologies,
to compliment what RoR offers. In the next part, it showcases the end result, and the
functionality the application offers. Following, it goes in to detail about the code, the gems
and how to properly use them.

loannis A. Efthymiou 15

Developing an Electronic Classroom Platform with Ruby on Rails

2. THE ROLES AND FUNCTIONALITY OF E-CLASS
2.1 The Administrators

Administrators have a crucial role in the application, although their functionality is fairly
limited. Administrators have the ability to:

Manage users: Have an overview of all users, and manage their roles. Since only
administrators can access the user management page, a master account exists,
whose role cannot be changed, to ensure there is always at least one administrator.

ECLASS o e e ge Courses L

Manage Users

Fig. 1: Admininstrator - User management

Create Courses: Create new courses. Administrators must set the course’s name and

code, and assign a professor in charge of it. A drop-down menu with all professors
is provided for convenience and error avoidance.

ECLASS n a e g0

New Course

Fig. 2: Admininstrator - Create new course

Edit and Delete Courses: Changes need to be made from time to time. A course might
need to have some attribute altered, or even be deleted. For that reason,

loannis A. Efthymiou 16

Developing an Electronic Classroom Platform with Ruby on Rails

administators have the option to edit or delete each course.

ECLASS t

Manage Courses

Code Lecturer Students Atiending

Jakubowski Michale 10
Jakubowski Michale Y

Litte Hiam 9

Shanahan Hassie 19

Roberts Whitney 16

Conroy Nikki 12

Bashirian Ethelyn 12

Shanahan Hassie 16

Litte Hiam 13

2 H H H
H H H H

123 Next~

Fig. 3: Admininstrator - Course index

ECLASS e he e s e Course

Edit Course
Code co1
Name Introduction to Programming

Professor

ast

About - Contact

‘Shanahan Hassie

Fig. 4: Admininstrator - Edit course

2.2 Professors

Professors have a variety of tools available in order to manage their courses. These
include:

Edit Course Description: Access to an index page containing only the courses they
manage. Moreover, when viewing the main course index, a visual cue is in place to
indicate their courses.

loannis A. Efthymiou 17

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS P A

My Courses

Code

Fig. 5: Professor - Personalized courses

ECLASS H Hely Edit Pro u

View Courses

cote tame Lesurer

cot Auer Reag: 9 m

co4 Auer Reagan 10
H

Fig. 6: Professor - Course index

Edit Course Description: The ability to edit the description of the courses they manage,
to better reflect the objective of each course. They can accomplish that by clicking
on the description while viewing the course.

loannis A. Efthymiou 18

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS

< Back To Courses

CO1 - Introduction to Programming

Auer Reagan

Description

Fig. 7: Professor - Edit course description

Create New Announcements: Adding a new announcement for the students can be
done seamlessly, directly from the course page.

ECLASS

< Back To Courses

CO1 - Introduction to Programming

Auer Reagan

Show Attending Students

Description Announcements Assignments

Announcements

=
2 =l
4 £
8
3

Cancel

Dignissimos atque adipisci quis qua vel. 03092016

Ad consectetur fugiat eum est recusandae. 03092016

03092016

03092016

Fig. 8: Professor - Create course announcement

Edit Course Announcements: Announcements can be edited, just like descriptions. All
it takes is for the course professor to click on the announcement title or message,
and they can edit it in place.

loannis A. Efthymiou 19

Developing an Electronic Classroom Platform with Ruby on Rails

< Back To Courses

CO1 - Introduction to Programming

Auer Reagan
Descrpton Announcement Assignments
Announcements

| TR

Ipsum ad placeat molit

d et. Dolorum

Sed minima offca ab. Est quia impedit. Rerum eaque offcia quia commodi offic
ut. A'sunt velt. Non opto et aut numquam tenetur uo.

Ad consectetur fugiat eum est recusandae.

03092016
Dolores. Voluptate eius
Sequi autem at ullam asperiores. Optio st distincto accusamus fugiat. Sed porro
corrupti reiciendis veniam nisi. Velit quasi fugiat. Sint non eum earum consequuntur delent

Voluptatem

Quis et fugit amet id Unde ducimus voluptatem
Ad iste viae. Asst

P umenda ot
Vel autem quo reprehenderit. Omnis aut eos.

Voluptatem quae quam quas ipsa ad ftaque neque:

03092016

Aut reiciendis doloribus ducimus in dicta.

03092016

Fig. 9: Professor - Edit course announcement title

ECLASS

< Back To Courses

CO1 - Introduction to Programming

Auer Reagan

‘Show Attending Students

Description Announcements Assignments
Announcements
ignissimos ataue quae velt 03092016
Ad consecetur fugiat eum est recusandae 03092016
ol Voluptat Vel labore. o5, Quis ot fugh amet id i odi duimu
fugial. Sed porre nobis voluptalem accusamus molestiae. Ad nesciunt
prehenderit. Omnis aut
e
Voluptatem quae quam quas fpsa ad taque neque. 03002016
Aut reicendis dolorbus ducimus i dicta 03092016
Quam simiique est laudantum. 03092016

Fig. 10: Professor - Edit course announcement message

Create Course Assignment: Professors have the ability to create assignments for their

students, and the choice to add accompanying documents, available to download,

for assistance. Moreover, they set a deadline. Once the deadline is over, the students
can no longer upload their homework.

loannis A. Efthymiou

20

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS

< Back To Course

CO1 - Introduction to Programming

Create New Assignment

Title

Description

About Contact

Fig. 11: Professor - Create course assignment

Edit Course Assignment: Assignments can be edited in two ways. The description can
be edited in place in the assignment page, and documents can be added or deleted.
There is a dedicated edit page in order to change the title and deadline of the
assignment.

ECLASS

<Back To Introduction to Programming

Introduction to Programming - Quaerat aut et minus De,e.,

quibusdam voluptatem sequi inventore.
Due Date: 03 - 07 - 2016 (Expired)

Description

Dolore voluptatem e repollendus

Documents

First Document

Second Document

EClass -©2015-2016 About Contact

Fig. 12: Professor - Edit course assignment - Description only

loannis A. Efthymiou 21

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS

< Back To Course

CO1 - Introduction to Programming

Edit Assignment

Title Quaerat aut et minus quibusdam voluptatem sequi inventore.

Quos error ut consectetur et blandiis. Inventore veniam eum. Dolore voluptatem et repellendus.

Ducimus voluptatibus dignissimos. Tenetur distinctio accusamus nihil facere reprehenderit culpa ex. Et rerum aut animi

ad odit eos. Vel necessitatibus omnis excepturi. Magni dignissimos ea quo reiciendis deserunt impedit aliquam
Description Ut voluptatibus dolor voluptas inventore molestias explicabo harum. Eum inventore architecto ut qui consequatur

incidunt. Cum voluptates debitis eos doloremaue nihil harum quaerat.

Officia iure facere soluta perferendis laborum. Adipisci recusandae sint quas qui. Aut ea numauam quo sed. Modi

quisquam similique deserunt nostrum ut. Repellat qui aut maxime.

Due Date 2016 z|[March :|(7 =

EClass -©2015.-2016 About Contact

Fig. 13: Professor - Edit course assignment

ECLASS Home M o L

<Back To Introduction to Programming

Introduction to Programming - Sequi nesciunt perspiciatis - g
ipsum corporis nulla quae illum dolorum.
Due Date: 05 - 05 - 2016 (1 month, 26 days, 7 minutes, and 18 seconds)

View Submited Homeworks

Description

Neaue consequuntur eum ut molestiae explicabo. Nesciunt facilis qui volupt et. Delentt atq Maxime est placeat repellendus
quis corporis vero.

Corporis officia consequatur quis molestias. Inventore est aperiam aut tenetur. Ut deserunt possimus provident quaerat.

Dolorem minima non totam. Eum dignissimos laborum earum est quaerat. Enim perspiciatis in molestiae consequatur cupidiate. Fugiat tenetur aliquam.
Asperiores alias sint est lo sed.

Eigendi Excepturipl voluptates recusandae.

Document Name Browse... | Nofile selected.

o 0201520 About Contact

Fig. 14: Professor - add and delete documents

View and Download Homeworks: Professors have access to a page where they can
download homeworks submitted by students. As shown in I and [14, the link is
only enabled if at least a homework has been submitted.

loannis A. Efthymiou 22

Developing an Electronic Classroom Platform with Ruby on Rails

<Back To Sequi nesciunt perspiciatis ipsum corporis nulla quae illum dolorum.

Sequi nesciunt perspiciatis ipsum corporis nulla quae
illum dolorum.
Homework Submissions

2 54i0600296@dioa. g1 Terry Franco

Fig. 15: Professor - View homeworks

View Attending Students: Lastly, professors can have an overview of all users attending
each of their courses, their names and emails.

<Back To Introduction to Programming

Introduction to Programming - Students

i Name Email

2 Terry Franco 5ci0600296@di uoa.gr
4 Kiback Clare <a0600287@dloa.gr
7 Wilms Dayana 5ci0200151@diuoagr
12 Docly Ted 5ci0700154@3loa or

1 West Maida 5i0600156@diuoa.gr

5di0200157@diuoa.gr

Fig. 16: Professor - students attending course

2.3 Undergraduate Students

Students differ from the other two categories, in the sense that they are mostly recepients
of information instead of providers. However, they do enjoy unique features, like:

An Index of Courses they Attend: Besides the index of all available courses, shared by

all roles, students also have a personalised page which includes only the courses
they are enrolled.

loannis A. Efthymiou 23

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS A

My Courses

Code Name Lecturer

an p—
o A —
o st Emmanuste

1 2 Next -

About Contact

Fig. 17: Student - My courses

Quick Enrolling and Withdrawing: Students have the ability to easily enroll to and
withdraw from courses, from every page associated with them. They can accomplish
that in the course index page, the personalised course page [17, as well as each
individual course page.

ECLASS

All Courses

Code Name Lecturer Students Attending

cor Introduction to Programming Aver Reagan '
co2 Inoduction to Programming 2 Aver Reagan =
cos Shuster Emmanel : I
cos Aver Reagan o o |
cos Lubowtz Melyssa ' I
cos Aver Reagan g -]
co7 cruentus Bayer Cistal Sy o |
cos Haag Marco Sy o |
coo P Steuber Ao "
cto Green iz i e |

923 Next—

AboutContact

Fig. 18: Student - Courses

loannis A. Efthymiou 24

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS A f

< Back To Courses

CO04 - Curatio cernuus

Auer Reagan

Assignments
Quod aspernatur voluptatem aut et quidem
Erim eligendi cumque skt placeat quaerat kaque.

Est dolorem quia provident evenet.

Due Date: 04192016 (1 month, 10 days, 15 hours, 26 minutes, and 17 seconds)

Due Date: 03122/2016 (13 days, 15 hours, 26 minutes, and 17 seconds)

Due Date: 03/23/2016 (14 days, 15 hours, 26 minutes, and 17 seconds)

Fig. 19: Student - Enroll from individual course

Visual Assignment Deadline Overview: Students can check their assignment

deadlines at a glance, both from the assignment index in the course page, and the

assignment page itself.

ECLASS f

< Back To Courses

CO01 - Introduction to Programming
Auer Reagan

Assignments

Fig. 20: Student - Course assignments overview

loannis A. Efthymiou

Due Date: 03/07/2016 (Expired)

Due Date: 010112016 (Expired)

0300712016 (Expired)

Due Dae: 0312912016 (20 days. 15, and 4 seconds)

Due Date: 04/01/2016 (23 days, 15 hours,

25

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS A Prof

<Back To Introduction to Programming

Introduction to Programming - Sequi nesciunt
perspiciatis ipsum corporis nulla quae illum dolorum.
Due Date: 01 - 01 - 2016 (Expired)

Fig. 21: Student - View assignment

Homework Submission and Download: The interface is different depending on
whether the homework is submitted or not. A student is able to upload a different
file, overwriting the original, as well as download the one he has uploaded. Once the
deadline for the assignment is over, the student no longer has the ability to upload
files P4, but is still able to download a file he has submitted 1.

ECLASS Profi

< Back To Introduction to Programming

Introduction to Programming - Et non odit repudiandae.
Due Date: 03 - 29 - 2016 (20 days, 15 hours, 25 minutes, and 35 seconds)

to. Eos ut dolores. Impedit quia quibusdam accusantium debitis rerum et expedita. Quos offcia facilis qui

Submit your Assingment

Choose File | o ile chosen

Fig. 22: Student - Assignment not expired, homework not submitted

loannis A. Efthymiou 26

Developing an Electronic Classroom Platform with Ruby on Rails

ECLASS A f

<Back To Introduction to Programming

Introduction to Programming - Sequi nesciunt
perspiciatis ipsum corporis nulla quae illum dolorum.
Due Date: 05 - 05 - 2016 (1 month, 26 days, 15 hours, 24 minutes, and 31 seconds)

Description
Neque consequuniur eum ut molestiae explicabo. Nesciunt facils qui voluptatem exercitationem et. Delenit atque et debits. Maxime est placeat repellendus quis
corpors vero.

Corporis offcia consequatur quis molestias. Inventore est aperiam aut tenetur. Ut deserunt possimus provident quaerat

Dolorem minima non totarm. Eum dignissimos laborum earum est quaerat. Enim perspiciats in molestiae consequatur cupidiate. Fugiat enetur aliguan.
Asperiores alias sint est o sed.

Eligendi explicabo sequ delenit. Excepturi placeat al qui eos. Sunt magni quo voluptates recusandae.

Submit your Assingment

Ghoose File | No file chosen Youve already submitted this on 03/09/2016, 00:46. Submitting it again wil
overrie the previous submission.

About Contact

Fig. 23: Student - Assignment not expired, homework submitted

View and Download Assisting Files: Students are also able to view and download files
associated with assignments through the assignment page.

ECLASS H H EdtProfle L

< Back To Introduction to Programming

Introduction to Programming - Quaerat aut et minus
quibusdam voluptatem sequi inventore.
Due Date: 03 - 07 - 2016 (Expired)

Description

Quos error ut consectetur et blandits. Inventore veniam eum. Dolore voluptatem et repellendus.
Ducimus voluptatibus dignissimos. Tenetur distinctio accusamus niil facere reprehenderit culpa ex. Et rerum aut animi ad odit eos. Vel necessitatibus omnis
excepturi. Magni dignissimos ea quo reiciendis deserunt impedit aliquam.

Ut voluptatibus dolor voluptas inventore molestas explicabo harum. Eum inventore architecto ut qui consequatur incicunt. Cum voluptates debitis eos doloremaue
il harum quaerat.

Officia iure facere soluta perferendis laborum. Adipisci recusandae sint quas qui. At ea numaquam quo sed. Modi quisquam similique deserunt nostrum ut
Repellat qui aut maxime.

Your homework

. has expired, and work.

Documents

First Document

Second Document

About Contact

Fig. 24: Student - Document download

loannis A. Efthymiou 27

Developing an Electronic Classroom Platform with Ruby on Rails

2.4 Shared Pages

Pages demonstrated above are similar, but offer different features according to the role
of the user visiting them. Obviously, in some cases this is not needed, so pages like the
log-in screen or the sign-up page are shared.

ECLASS H Hi S
Login
Email
Password

Fig. 25: Log-in page

Sign Up

Name
Surname
Email
Password (8 characters minimum)

Password Confirmation

Fig. 26: Sign-up page

loannis A. Efthymiou 28

Developing an Electronic Classroom Platform with Ruby on Rails

3. DEVELOPING THE APPLICATION

Following the presentation of the application and its features, we now analyse the process
of developing it. By explaining how it came to be, a closer look is taken at RoR and what
it has to offer. RoR is by design a MVC framework, therefore the next logical step is to
examine the models, views and controllers, as well as the techniques, tools and gems
used to tie it all together.

3.1 The Models

RoR uses Active Record(AR) as an Object Relational Mapping(ORM) framework.[5] This,
in association with CoC, do most of the configuration automatically. Manual configuration
only needs to be done when the standard convention cannot be followed. A closer look
at the models of the application shall accentuate this point. Models that do not offer
functionality not already discussed will be omitted.

3.1.1 User

class User < ActiveRecord::Base
rolify
devise :database_authenticatable, :registerable,
:recoverable, :rememberable, :trackable, :validatable

validates :name, :surname, presence: true
after_create :assign_default_role
has_many :homeworks, inverse_of: :user

has_many :courses_teaching, :class_name => :Course, inverse_of: :lecturer,
- foreign_key => "lecturer_id”

has_many :student_attends_courses, inverse_of: :student, :foreign_key => "user _id”
has_many :courses_attending, :class_name => :Course, through:
- :student_attends_courses, :foreign_key => "user_id”

def assign_default_role
add_role(:undergrad)
end

def is_master_acc?
self.id == User first.id
end

end

Listing 1: The User Model

loannis A. Efthymiou 29

Developing an Electronic Classroom Platform with Ruby on Rails

This is the file for the User model. Dissecting it line by line provides a better understanding.

class User < ActiveRecord::Base
This line contains the name of the model and shows the inheritance of the AR base.

rolify
devise :database_authenticatable, :registerable,
:recoverable, :rememberable, :trackable, :validatable

There are functions provided by gems, rolify [8] and devise[9], and will be discussed
in detail later on.

validates :name, :surname, presence: true

With this simple function, it is ensured that every User record will contain a name
and a surname. E-mail and password are not present, since they are handled by
devise[9].

after_create :assign_default_role

after_create sets callback functions to be executed on the object, immediately
after they are created. In this case, a role is assigned to the user as soon as they
sign up.

has_many :homeworks, inverse_of: :user

By using has_many, model relationships are defined, specificaly a one-to-many
relationship. inverse of: is optional, but quite powerful. It offers bi-directional
access to models, omitting the need for an SQL query to do so.

has_many :courses_teaching, :class_name => :Course, inverse_of: :lecturer,

- foreign_key => "lecturer_id”
This line of code is similar to the previous one. However, it offers 2 additional
parameters. Since the first argument of has_many is not the name of a model,
the model is provided by using :class_name. This enables us to use an alias,
which accomplishes 2 goals. Firstly, it allows us to have more than one relationships
between two models. In this case, the course has to belong to a single user, its
lecturer, but also have many users, the students who attend it. Additionally, it
increases code readability, since course . lecturer is more intuitive than
course . user. The last argument, : foreign_key, specifies the column in the
corresponding table, in this case the courses table, which includes the key to the
user model.

has_many :student_attends_courses, inverse_of: :student, :foreign_key =>
< user_id”

has_many :courses_attending, :class_name => :Course, through:

- :student_attends_courses, :foreign_key => "user_id”

loannis A. Efthymiou 30

Developing an Electronic Classroom Platform with Ruby on Rails

Further highlighting the benefit of setting an alias, a second relationship between
users and courses is set. This time it is a many-to-many relationship. Usually, this
is accomplished by using has_and_belongs_to_many. Since it is not the only
relationship between the two tables, a third table needs to be introduced, by using
the through : argument. In order to increase the readability of the code, an alias is
again used. By adding a slight complexity, merely an extra line, two different kinds of
relationships can be set between the models, with an added bonus of “natural” code
readability.

» def assign_default_role
add_role(:undergrad)
end

def is_master_acc?
self.id == User first.id
end

Two methods are defined for the User model. assign_default_role is the
method called after a new instance of the model is created. All users are initially set
to be students, to prevent unexpected behaviour in case a role is not assigned. The
other function, is_master_acc? is used to verify that an administrator account will
always exist, as discussed earlier.

3.1.2 Course

class Course < ActiveRecord::Base
belongs_to :lecturer, :class_name => :User, inverse_of: :courses_teaching

has_many :student_attends_courses, inverse_of: :course, :foreign_key => "course_id”
has_many :students, :class_name => :User, through: :student_attends_courses,
- :foreign_key => "course_id”

has_many :announcements, inverse_of: :course, :dependent => :destroy
has_many :assignments, inverse_of: :course, :dependent => :destroy

validates :code, :name, :lecturer, presence: true
end

Listing 2: The Course Model

The course model. Examing it fills up the blanks left from the user model 1| and gives us
an overall understanding of relationships between models.

* belongs_to :lecturer, :class_name => :User, inverse_of: :courses_teaching

belongs to compliments the has_many used by the user model. belongs_to

loannis A. Efthymiou 31

Developing an Electronic Classroom Platform with Ruby on Rails

is ambiguous, in the sense it is not clear whether it is a one-to-many or one-to-
one relationship. When inverse of: is set, the relationship is indicated by its
value. A singural word means it is one-to-one, and plural is one-to-many. However,
inverse_of: is optional, so when it is not user, the relationship is determined by
the corresponding model — has_many means one-to-many, whereas has_one is
used for one-to-one. Regardless of the kind of the relationship, belongs_to means
that this model will hold the id of the object it belongs to. By conversion, this column
is named model_name_id, but since an alias is used, :class_name is set, and
:foreign_key is set to the corresponding model.

has_many :student_attends_courses, inverse_of: :course, :foreign_key =>

- course_id”

has_many :students, :class_name => :User, through: :student_attends_courses,
- foreign_key => "course_id”
These expressions mirror the ones in the user model {1.

has_many :announcements, inverse_of: :course, :dependent => :destroy
has_many :assignments, inverse_of: :course, :dependent => :destroy

Through the above associations, it is clear that the course model has one-to-many
associations with the assignment and announcement models. It is safe to assume
that both of their models include belongs_to :course, inverse_of: inthem
and a course_id column in their tables.

The parameter dependent => :destroy makes sure than once a course is
deleted, all announcements and assignments associated with it will be deleted as
well.

validates .code, :name, :lecturer, presence: true

The validation has one noticable difference to the one found in User [i. It validates
the presence of : lecturer, although the attribute is named : lecturer_id. This
is actually crucial, because not only it validates that the field is not empty, but also
that the id belongs to an existing record.

3.1.3 StudentAttendsCourse

class StudentAttendsCourse < ActiveRecord::Base
belongs_to :courses_attending, :class_name => :Course, inverse_of:

—

:student_attends_courses, :foreign_key => "course_id”

belongs_to :student, :class_name => :User, inverse_of: :student_attends_courses,

—

end

:foreign_key => "user_id”

Listing 3: The StudentAttendsCourse Model

loannis A. Efthymiou 32

Developing an Electronic Classroom Platform with Ruby on Rails

The missing link to the many-to-many relationship between courses and the students who
attend them. This model belongs to both a student and a course, and through it the two
other models are connected. : class_name, :inverse_of and : foreign_key are set
according to the values mentioned before. I &

3.1.4 Announcement

class Announcement < ActiveRecord::Base
belongs_to :course, inverse_of: :announcements
validates :title, :message, :course, presence: true
default_scope { order('updated_at DESC’) }

end

Listing 4: The Announcement Model

The announcement model. The last function in the model, default_scope[10]. This
method takes a block of code as an argument and adds a scope for all operations in
the model. In this example, it is used in conjuction with order ()
, Which orders announcements in descending order, according to their last update, thus
ensuring that the most recently updated announcements always appear first.

3.1.5 Assignment

class Assignment < ActiveRecord::Base
belongs_to :course, inverse_of: :assignments
has_many :documents, inverse_of: :assignment, :dependent => :destroy
has_many :homeworks, inverse_of: :assignment, :dependent => :destroy
accepts nested_attributes_for :documents
validates :title, :description, :due_date, :course, presence: true
validates_associated :documents

end

Listing 5: The Assignment Model

The assignment model contains a set of methods related to models that belong to it.
» accepts nested_attributes_for :documents

This function enables the management of the documents model through its parent
assignment. This is extremely useful because it allows the addition of documents to
the assignment directly when creating it, as well as updating documents through the
assignment.

» validates_associated :documents

This method acts like validates does, but for the associated object. It completes
the functionality of accepts _nested_ attributes_for, by validating the
attributes of the associated record.

loannis A. Efthymiou 33

Developing an Electronic Classroom Platform with Ruby on Rails

3.1.6 Document

class Document < ActiveRecord::Base
belongs_to :assignment, inverse_of: :documents
mount_uploader :doc, DocumentUploader
validates :name, :doc, :assignment, presence: true
end

In the document uploader, the mount_uploader appears. This method is provided by
the carrierwave gem.[11]

3.2 The Controllers

Controllers are responsible for transferring data between the end user and the application.
The routing from each request to the appropriate controller is done in a single file,
“routes.rb”. Controllers in RoR prepare the information and make it available to for the
views, and ara capable on responding differently to different kinds of requests. Below,
selected bits and pieces from controllers are presented. Due to the CoC nature of RoR, a
significant part of the functionality is identical among controllers, so it makes little sense
to showcase them all.

3.21 The Course Controller
» class CoursesController < ApplicationController

All controllers in RoR inherit the ApplicationController[6], which in turn
inherits ActionController[7]. This allows for a centalised class to configure application
security.

» before_action :set_course, only: [:show, :edit, :update, :destroy, :description,
— attending_students]
Like in the models, before _action sets methods to be called before the actual
method is called. In this example, the method set course is executed exclusively
— unless called directly of course — before the actions between the brackets.

def set_course
params|:id] = params[:course_id] if params[:id].nil?
@course = Course.find(paramsJ:id])

end

This conforms with the DRY nature of RoR, since instead of having the code above,
or a call of the method, separately in all the methods in the bracket, the methods
requiring it are neatly congregated in the before_action.

loannis A. Efthymiou 34

Developing an Electronic Classroom Platform with Ruby on Rails

» def create
@course = Course.new(course_params)

respond_to do |format|
if @course.save
format.html { redirect_to @course, notice: '‘Course was successfully created.’
=}
format.json { render :show, status: :created, location: @course }
else
get_professors
format.html { render :new }
format.json { render json: @course.errors, status: :unprocessable_entity }
end
end
end

Examining the method to create a new course, leads to interesting findings. Right
away, another method, called course_params is passed as an argument in the
Course .new method.

def course_params
params.require(:course).permit(:code, :name, :lecturer_id, :description)
end

The course_params sanitizes the parameters passed by the request, and only
allows the proper ones to go through. The next step is to attempt to save the newly
created course. Depending on the outcome, one of two might happen. Either the
course is successfully saved, and the controller responds with the corresponding
format of the request, or it fails and the appropriate action is taken. In this specific
case, the function get_professors is called, and then a proper response,
depending on the format is given.

def get_professors
professors = User.with_role :professor
@professors = []
professors.each do |a|
@professors << ["#{a.surname} #{a.name}”, a.id]
end
@professors.sort! { |a, b| a[0] <=> b[0]}
end

The get_professors method is used to create an array which contains information
about all available professors. That array is used in the drop-down menu of the
course form, as displayed earlier. 4

loannis A. Efthymiou 35

Developing an Electronic Classroom Platform with Ruby on Rails

» def create
@course = Course.new(course_params)

respond_to do |format|
if @course.save
format.html { redirect_to @course, notice: 'Course was successfully created.’
=}
format.json { render :show, status: :created, location: @course }
else
get_professors
format.html { render :new }
format.json { render json: @course.errors, status: :unprocessable_entity }
end
end
end

This method is a good example of the aliases discussed in the models section 1.
The is_professor?and is_undergrad? methods are provided by rolify[8].

Depending on the type of user making the request, the controller is able to get either
the courses the professor is teacher, or the ones the undergradute student attends.
Then, the paginate method, provided by the will_paginate gem[12], takes care of
the pagination in the view page, as showcased before f[17. render method renders
the desired view. By conversion, Rails renders the view that shares the name with the
controller. In case this is not the desired effect, it has to be instructed to do otherwise.

3.2.2 The Assignment Controller

def assignment_params
params.require(:assignment).permit(:title, :description, :due_date, :course_id,
- documents_attributes: [:name, :doc, :_destroy])
end

The assignment_params method is interesting, since it has already been established
that assignment may include documents when they are created [11.

The documents_attributes array and its contents is what permits the attributes of the
documents to pass the sanitazation process, and be created.

3.3 The Views and Helpers

According to the MVC paradigm, views are used to present the information to the user.
However, in order to not break the paradigm, no logic should be implemented in the
views. To avoid convoluted code in views and controllers, or a version of the view for
every possible outcome, RoR uses helpers and partials. Helpers may contain logic and

loannis A. Efthymiou 36

Developing an Electronic Classroom Platform with Ruby on Rails

are called from the view, maintaining the MVC pattern and avoiding that obstacle. Views
mainly consist of the following parts, glued together by the helpers.

3.3.1

The Views

HTML Pages: Html pages are the main component of the views. However, they hardly

ever are plain html pages. RoR by default uses Embedded Ruby(ERB) pages. Other
options include HTML Abstraction Markup Language(HAML) [13] and Slim [[14]. This
project uses ERB files, with the exception of the assignment form [11, which utilizes
the Cocoon gem [15]. The gem example was in HAML, so the form was created in
it as well for variety’s sake.

Partial Pages: As the name implies, those are not whole pages, but html snippets, fitting

like pieces of a puzzle where they are required. Besides not being able to stand
alone, partials are the same as the HTML pages described above. Their name is
required to start with an underscore(_).

<span style="color: <%= color %>">
<%= time_left %>

JavaScript Files: Not to be confused with JavaScript files used holding the usual

3.3.2

JavaScript functions — these are found in the assets/javascripts folder, and often
written in CoffeeScript [20]. The JavaScript files associated with views are mostly
rendered as a response, made by the controller, to an Asynchronous JavaScript
and XML(AJAX) request. JavaScript files can also contain ERB.

$(<%= "#course_#{@course.id} att” %>").html('<%="#{@attending}’ %>");
$(<%= "#course_#{@course.id}’ %>").html("<%= escape_javascript(render :partial
— =>’withdraw’, locals: {course: @course}) %>")

The Helpers

Helpers are ruby methods, used to implement logic for the views. Helpers might return a
result to the view, render a partial, maybe even do nothing. The following snippet is used

to determine whether it is the course professor viewing the assignment, so the edit and
delete buttons should be displayed, and render that partial if that is true.

def edit_and_delete_button(course, id)

render partial: "edit_and_delete_assignment” if is_course_professor?(course, id)

end

3.4 The Gems

Gems, Ruby’s open-source, community-backed libraries, are extensively used in Rails.
It is highly likely that a problem that occurs or a feature that needs to be implemented

loannis A. Efthymiou 37

Developing an Electronic Classroom Platform with Ruby on Rails

already exist in a gem. Following is a sample of the gems used in this application.
Bootstrap-sass: Boostrap-sass provides a port of Bootstrap 3 for RoR. [16]
Devise: Devise offers out-of-the-box user authentication and management. [9]
Rolify: Rolify assists with role management and scoping. [8]

CarrierWave: CarrierWave is a classier solution for file uploading. [11]

Cocoon: Cocoon makes nested form handling seamless. [15]

Will Paginate: Will Paginate offers pagination with a single method. [12]

Best in Place: Best in Place offers a highly customizable option for editing records in
place by using JSON. [17]

jQuery Turbolinks: jQuery Turbolinks is used to address an issue to jQuery functions,
caused by turbolinks. [18]

Faker: Faker generates genuine-looking data. It is ideal for seeding the database tables,
which is perfect for developing an application. [19]

3.5 How it all ties together - A Workflow

In the previous sections, each component of the application was analysed in detail. To
fully understand how it all ties together, an example is in order. The example consists of
a step-by-step examination of an administrator changes the role of a user. In the image
below, the administrator is changing the role of the user from undergrad to professor.

Manage Users

aster Account

Undergrad -

McKenzie Jean

x
<
P

nnnnnnnnnn

Fig. 27: Administrator changing the role of a user.

loannis A. Efthymiou 38

Developing an Electronic Classroom Platform with Ruby on Rails

The HTML behind the “Professor” button

<form action="/users/4/give_role?rol=professor” accept-charset="UTF-8"
— data-remote="true” method="post”>
<input name="commit” value="Professor” class="btn btn-block btn-warning”
<~ type="submit’>
</form>

According to the routes file,

resources :users, only: [:index] do
post "give_role”
end

that path is linked to the users controller, in the give role method. The controller
contains two before__action methods.

before _action :set_user, only: [:give_role]
before_action :set_hashes

The set_hashes, which are instance variables, containing the three roles as well as the
colors associated with each.

def set_hashes
@colours = {
"admin” => "danger”,
"professor” => "warning”,
"undergrad” => "info”

}

@drop_roles =
"admin”,
"professor”,
"undergrad”

]

end

The set_user method retrieves the user whose roles is about to change, and it removes
the current role, unless it is the master account.

def set_user
@user = User find(params|:user_id])
@user.roles = [| unless @user.is_master_acc?
@role = params]:rol]

end

loannis A. Efthymiou 39

Developing an Electronic Classroom Platform with Ruby on Rails

It checks that by calling the is_master_acc? method from the user model.

def is_master_acc?
self.id == User first.id
end

Once both the before action methods are called, the give role is executed. It calls
the add_role method provided by the rolify gem [8], again checking if it is the master
account.

def give_role
@user.add_role(@role) unless @user.is_master_acc?
respond_to do [format|
format.js
end
end

The method then responds to the .js format. This renders the .js file with the same name
as the controller method.

$(<%= "#user_#{@user.id}" %>’).empty();
$(<%= "#user_#{@user.id}" %>’).html("<%= escape_javascript(render :partial => role’,
- locals: {user: @user, role: @role}) %>")

In turn, that clears the div containing the dropdown menu, and renders the _role.html.erb
partial,

<div class="btn-group btn-block”>
<button type="button” class="btn btn-<%= "#{@colours|role]}" %> btn-block
- dropdown-toggle’ data-toggle="dropdown” aria-haspopup="true”
— aria-expanded="false”>
<%= role.capitalize %>
</button>
<ul class="dropdown-menu”>
<% @drop_roles.each do |r| %>
<%= render partial: "give_role”, locals: {user: user, role: r} unless r
— ==role %>
<% end %>

</div>

loannis A. Efthymiou 40

Developing an Electronic Classroom Platform with Ruby on Rails

which creates the drop down menu, and calls

<%= form_tag(user_give role_path(user, :rol => role), remote: true) do %>
<%= submit_tag "#{role.capitalize}”, class: "btn btn-block btn-#{@colours|[role]}" %>
<% end %>

on each role besides the newly assigned one, to create the proper buttons.

loannis A. Efthymiou

41

Developing an Electronic Classroom Platform with Ruby on Rails

4. IN CONCLUSION

In all crafting areas, it's easier to accomplish something if you have the tools of the trade.
Developing web applications does not deviate from that course. This thesis aims to
establish the Ruby on Rails framework as one of the best choices when it comes to web
development, since it offers swift and agile development, exellent workflow and enjoys
amazing community support. Through its DRY and CoC philosophies, it takes away all
the chores from developing web applications, leaving programmers to focus on the fun
parts.

loannis A. Efthymiou 42

Developing an Electronic Classroom Platform with Ruby on Rails

ABBREVIATIONS AND ACRONYMS

MVC Model-View-Controller

RoR Ruby on Rails

DRY Don’t Repeat Yourself

CoC Convention Over Configuration

ORM Object Relational Mapping

AR Active Record

ERB Embedded Ruby

HAML HTML Abstraction Markup Language
AJAX Asynchronous JavaScript and XML

loannis A. Efthymiou

43

Developing an Electronic Classroom Platform with Ruby on Rails

REFERENCES

[11 “Ruby on Rails” Ruby on Rails [Online]. Available: http://rubyonrails.org. [Accessed: Mar 8, 2016]
[2] “GitHub” GitHub [Online]. Available: https://github.com. [Accessed: Mar 8, 2016]
[3] “Ruby Gems” Ruby Gems [Online]. Available: https://rubygems.org. [Accessed: Mar 8, 2016]
[4] “The Ruby Toolbox” The Ruby Toolbox [Online]. Available: https://www.ruby-toolbox.com. [Accessed:
Mar 8, 2016]
[5] “Active Record Basics” Active Record Basics [Online]. Available: http://guides.rubyonrails.org/active
record basics.html| [Accessed: Mar 8, 2016]
[6] “Application Controller” Application Controller [Online]. Available: http://api.rubyonrails.org/classes/
ActionController/Base.html [Accessed: Mar 8, 2016]
[71 “Action Controller Base” Action Controller Base [Online]. Available: http://api.rubyonrails.org/classes/
ActionController/Base.html [Accessed: Mar 8, 2016]
[8] “Rolify” Role management library
with resource scoping [Online]. Available: https://github.com/RolifyCommunity/rolify [Accessed: Mar
8, 2016]
[9] “Devise” Flexible authentication solution for Rails with Warden [Online]. Available: https://github.com/
plataformatec/devise [Accessed: Mar 8, 2016]
[10] “Active Record Scoping Default Methods” Active Record Scoping Default Methods [Online]. Available:
http://api.rubyonrails.org/classes/ActiveRecord/Scoping/Default/ClassMethods.htm| [Accessed: Mar
9, 2016]
[11] “CarrierWave” Classier solution for file uploads for Rails, Sinatra and other Ruby web frameworks
[Online]. Available: https://github.com/carrierwaveuploader/carrierwave [Accessed: Mar 9, 2016]
[12] “https://github.com/mislav/will_paginate” Pagination library for Rails, Sinatra, Merb, DataMapper, and
more [Online]. Available: https://github.com/mislav/will paginate [Accessed: Mar 9, 2016]
[13] “HAML” HTML Abstraction Markup Language [Online]. Available: http://www.haml.info [Accessed: Mar
9, 2016]
[14] “Slim” A fast, lightweight template engine for Ruby [Online]. Available: http://slim-lang.com [Accessed:
Mar 9, 2016]
[15] “Cocoon” Dynamic nested forms using jQuery made easy [Online]. Available: https://github.com/
nathanvda/cocoon [Accessed: Mar 9, 2016]
[16] “Bootstrap-sass” Official Sass port of Bootstrap 2 and 3 [Online]. Available: https://github.com/twbs/
bootstrap-sass [Accessed: Mar 9, 2016]
[17] “Best_in_place” A RESTful unobtrusive jQuery Inplace-Editor and a helper as a Rails Gem [Online].
Available: https://github.com/bernat/best in place [Accessed: Mar 9, 2016]
[18] “jQuery Turbolinks” jQuery plugin for drop-in fix binded events problem caused by Turbolinks [Online].
Available: https://github.com/kossnocorp/jquery.turbolinks [Accessed: Mar 9, 2016]
[19] “Faker” A library for generating fake data such as names, addresses, and phone numbers. [Online].
Available: https://github.com/stympy/faker [Accessed: Mar 9, 2016]
[20] “CoffeeScript” CoffeeScript is a little language that compiles into JavaScript. [Online]. Available: https:
/Ihttp://coffeescript.org [Accessed: Mar 9, 2016]

loannis A. Efthymiou 44

http://rubyonrails.org
https://github.com
https://rubygems.org
https://www.ruby-toolbox.com
http://guides.rubyonrails.org/active_record_basics.html
http://guides.rubyonrails.org/active_record_basics.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html
https://github.com/RolifyCommunity/rolify
https://github.com/plataformatec/devise
https://github.com/plataformatec/devise
http://api.rubyonrails.org/classes/ActiveRecord/Scoping/Default/ClassMethods.html
https://github.com/carrierwaveuploader/carrierwave
https://github.com/mislav/will_paginate
http://www.haml.info
http://slim-lang.com
https://github.com/nathanvda/cocoon
https://github.com/nathanvda/cocoon
https://github.com/twbs/bootstrap-sass
https://github.com/twbs/bootstrap-sass
https://github.com/bernat/best_in_place
https://github.com/kossnocorp/jquery.turbolinks
https://github.com/stympy/faker
https://http://coffeescript.org
https://http://coffeescript.org

	Prologue
	Introduction
	Challenges in Design
	Challenges in Development
	Tackling the Challenges
	Purpose of this Thesis

	The Roles and Functionality of E-Class
	The Administrators
	Professors
	Undergraduate Students
	Shared Pages

	Developing the Application
	The Models
	User
	Course
	StudentAttendsCourse
	Announcement
	Assignment
	Document

	The Controllers
	The Course Controller
	The Assignment Controller

	The Views and Helpers
	The Views
	The Helpers

	The Gems
	How it all ties together - A Workflow

	In Conclusion
	Abbreviations and Acronyms
	References

