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ABSTRACT

In this work, we target on analyzing data published in Social Media. Users of Social Media
networks post text, images or videos and annotate each one of them with a set of tags
describing their content. What we seek is to find an efficient way to compute the correla-
tions of co-occurring tags over time. The amount and pace of published posts makes it
necessary to parallelize the computations. Data is divided to multiple nodes making each
one of them responsible of computing correlations of its own share. What is challenging in
a setting like this is to ensure that each node will compute a subset of the coefficients and
the processing load will be evenly distributed across nodes. For this reason, a graph is
devised that can maintain all essential data. This graph is dynamically and continuously
partitioned across nodes. The proposed approach seeks to build an efficient model to
not only effectively calculate correlations, but also divide the load in a natural and self-
organizing way amongst peers. Finally, the scheme is prototyped in Java, using Apache
Storm Stream Processing platform, which effectively demonstrates that this approach is
feasible.

SUBJECT AREA: Data Stream Processing

KEYWORDS: graph, social media, tags, distributed systems, correlations



ΠΕΡΙΛΗΨΗ

Στην εργασία αυτή, στοχεύουμε στην ανάλυση των δεδομένων που δημοσιεύονται στα
μέσα κοινωνικής δικτύωσης. Οι χρήστες των κοινωνικών δικτύων καταχωρούν κείμενα,
εικόνες ή βίντεο και υποσημειώνουν το καθένα από αυτά με ένα σύνολο ετικετών που
περιγράφουν το περιεχόμενό τους. Βασική μας επιδίωξη είναι να βρούμε έναν αποτε-
λεσματικό τρόπο για τον υπολογισμό των συσχετισμών των συνυπαρχόντων ετικετών.
Ο τεράστιος όγκος και ο ρυθμός των δημοσιευόμενων μηνυμάτων καθιστά απαραίτητο
τον παραλληλισμό των υπολογισμών. Τα δεδομένα χωρίζονται σε πολλαπλούς κόμβους,
όπου ο καθένας από αυτούς είναι υπεύθυνος να υπολογίσει τις συσχετίσεις που του α-
ναλογούν. Στην εργασία αυτή, αποτελεί μια μεγάλη πρόκληση, η εξασφάλιση ότι κάθε
κόμβος θα υπολογίζει ένα υποσύνολο των συσχετίσεων και ότι το φορτίο επεξεργασίας
θα είναι κατανεμημένο ομοιόμορφα σε όλους τους κόμβους. Για το λόγο αυτό, επινοήθηκε
ένα γράφημα που μπορεί να διατηρήσει όλα τα απαραίτητα στοιχεία. Αυτό το γράφημα
δημιουργείται δυναμικά και διαιρείται συνεχώς ανάμεσα στους κόμβους. Η προτεινόμενη
προσέγγιση επιδιώκει να οικοδομήσει ένα αποτελεσματικό μοντέλο που όχι μόνο θα υπο-
λογίζει αποτελεσματικά τις συσχετίσεις, αλλά επίσης θα χωρίζει το φορτίο επεξεργασίας
με ένα φυσικό τρόπο ανάμεσα στους κόμβους. Τέλος, το μοντέλο υλοποιείται σε Java με
τη χρήση της πλατφόρμας Apache Storm Stream Processing, αποδεικνύοντας έτσι πως
η προσέγγιση μας ειναι εφικτή.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Ροών Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: γράφημα, κοινωνικά δίκτυα, ετικέτες, κατανεμημενα συστηματα,
συσχετίσεις
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1. INTRODUCTION
Social media users receive an endless flow of information, often at a rate far higher than
they are capable to process. It is impossible for them to comprehend all the amount of
information created on a daily basis. This could lead to information overload that would
simply get them tired and reduce their enjoyment and productivity.

User generated content in these sites is usually annotated with short descriptive text.
These are called hash-tags or simply tags. Our work focuses on finding a competent way
to compute the correlations between co-occurring tags that appear in messages and posts
published in social media. We aim to calculate these correlations in real time, thus, it is
essential to parallelize the work across different nodes in a computing cluster. We design
a graph that holds all information about the tags of parsed content. We then present a
model to partition it across nodes. The complicated part is on keeping the load of nodes
balanced, without hindering the performance in any way. At the end, we build a prototype
using the Java language and the Apache Storm Framework. This prototype is built upon
the principles outlined during the designing process.

One could then use these correlations in order to effectively detect popular-trending topics.
With this tool at hand, users could find the topics they are really interested in. They can,
therefore, spend less time searching and more time towards their end goal, ultimately
resulting in a greater web experience.

1.1 Outline

The chapters are organized in the following way.

• Chapter 2 outlines all the necessary background information for the user to be able
to follow the content of the next chapters.

• Chapter 3 examines the previous work related to the topic.

• Chapter 4 takes a closer look in the related work, detects what can be improved, and
proposes the general idea of an alternative design based on these observations.

• Chapter 5 presents a new model of how to keep and handle information about in-
coming data from Social Media, as well as dividing it to multiple parts.

• Chapter 6 presents the technical details of an application that was built following
the concepts of the previous chapter. It also displays a first test on the prototype
application.

• Chapter 7 is the conclusion where what was done and which were the results is
discussed.

• Chapter 8 is the last chapter where thoughts about possible future work are consid-
ered.

S. Fokeas 13
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2. BACKGROUND
This chapter acts as an overview of some basic ideas and methods that will allow readers
to better understand the work presented in the following chapters. These concepts are
used throughout the text with the assumption that readers are accustomed to them. For
more verbose presentations please refer to bibliography links.

2.1 Social Media

Social Media are a collective of online communications channels, where individual users
publish the majority if not all the content. It is based on the idea of sharing and interaction
between users. Popularity of Social Media is increasing with a high rate today, and is
evident that it is something that is here to stay. Their popularity is high in academia as
well. For example, you can refer to [8], [9] for research focusing on analyzing the content
or to [10], [11] for research in users’ interactions.

2.1.1 Twitter

Twitter is a good example of Social Media. Users of twitter communicate by publishing
short messages limited to 140 characters. Whenever a user posts a message it is broad-
casted across all other users that have subscribed to this user.

Posts in Twitter are called tweets and are public unless otherwise specified by their au-
thor. Tweets are annotated by a number of tags, assigned by the author, that describe its
content. From this point forward, we will can this set of tags, a tag-set. In Twitter, tags are
preceded by the special character # and for that they are called hashtags. The primary
goal of hashtags is to organize information in twitter. Anyone can make a hashtag at any
time, simply by typing a ”#” in front of a phrase in a tweet. For instance, ”#twitterIsAwe-
some”. After a hashtag has been created, other Twitter users can use that hashtag in
their own tweets to add to the larger conversation about that topic. Hashtags can be as
general or specific as the user desires. They are created and managed by Twitter users,
not Twitter itself.

Tweets can be posted by anyone having a tweeter account. Registered users can also
subscribe to receive tweets of other users. Moreover, users can interact with each other
by replying to tweets. Hence, a community is created by this network of users.

2.2 Stream Processing

A data stream is a sequence of packets of data used to transfer information. Each of these
packets contains a small amount of information.

Data Stream Processing is the method of processing these data streams. Data arrives
continuously and for each arriving packet an action is performed which, each time, de-
pends on the application. Various examples and applications of Stream Processing exist.

S. Fokeas 14
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For instance, [17] concerns Network monitoring, [20] sensor networks and [18], [19] web
applications.

2.2.1 Apache Storm Framework

Apache Storm is a popular Distributed Data Stream Processing framework. The term
Distributed Data Stream processing means that the Stream Processing is being performed
not by one, but by multiple machines (nodes). Storm makes it easy to reliably process
streams of data in real time. As in every distributed data stream processing setting multiple
nodes receive portions of the data stream. Each node processes the data it receives
locally using only its own resources, memory and CPU, and pushes the results to other
nodes. Storm uses tuples as its data model. A tuple is a named list of values, and a field
in a tuple can be an object of any type.

Topology

A Storm cluster is similar to a Hadoop cluster. Whereas on Hadoop you run ”MapReduce
jobs”, on Storm you run ”topologies”. One key difference is that a MapReduce job even-
tually finishes, whereas a topology runs forever. A topology is a graph of computation.
Each node in a topology contains processing logic, and links between nodes indicate how
data should be passed around between nodes. An example of a storm topology can be
seen in figure 1

spout
bolt

bolt

bolt

spout

bolt

Figure 1: An example topology

S. Fokeas 15
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Components

The basic primitives Storm provides for doing stream transformations are ”spouts” and
”bolts”. Spouts and bolts have interfaces that you implement to run your application-
specific logic.

A spout is a source of streams in a topology. Generally spouts will read tuples from an
external source and emit them into the topology. Spouts can either be reliable or unreli-
able. A reliable spout is capable of replaying a tuple if it failed to be processed by Storm,
whereas an unreliable spout forgets about the tuple as soon as it is emitted. Spouts can
emit more than one stream.

All processing in topologies is done in bolts. Bolts can do anything from filtering, functions,
aggregations, joins, talking to databases, and more. A bolt consumes any number of input
streams, does some processing, and possibly emits new streams.

Parallelism

Storm distinguishes between the following three main entities that are used to actually run
a topology in a Storm cluster:

1. Worker processes

2. Executors (threads)

3. Tasks

A machine in a Storm Cluster may run one or more worker processes for one or more
topologies. Each worker process runs executors for a specific topology. One or more
executors may run within a single worker process, with each executor being a thread
spawned by the worker process. Each executor runs one or more tasks of the same
component. A task performs the actual data processing. Tasks are instances of the com-
ponents (bolts and spouts). The picture 2 depicts a possible setting of what was described.

Figure 2: Parallelism in Storm

S. Fokeas 16
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Storm Streams

The stream is the core abstraction in Storm. A stream is an unbounded sequence of tuples
that is processed and created in parallel in a distributed fashion. Streams are defined with
a schema that names the fields in the stream’s tuples. Every stream is given an id when
declared.

Part of defining a topology is specifying for each bolt which streams it should receive as
input. A stream grouping defines how that stream should be partitioned among the bolt’s
tasks. The stream groupings that are most used are the following:

1. Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks in a way
such that each bolt is guaranteed to get an equal number of tuples.

2. Fields grouping: The stream is partitioned by the fields specified in the grouping.
For example, if the stream is grouped by the ”user-id” field, tuples with the same
”user-id” will always go to the same task, but tuples with different ”user-id”’s may go
to different tasks.

3. All grouping: The stream is replicated across all the bolt’s tasks.

4. Direct grouping: This is a special kind of grouping. A stream grouped this waymeans
that the producer of the tuple decides which task of the consumer will receive this
tuple. Direct groupings can only be declared on streams that have been declared as
direct streams.

Information for this chapter has been drawn out of Apache Storm Project’s homepage [5],
which you can visit to learn more about the framework. For a paper describing the use of
Storm at Twitter please see [12].

2.3 Similarity Measures

Similarity measures are used to determine the similarity between objects. Numerous
methods had been proposed to quantify similarity. In paper [6], Marie-Jeanne Lesot et
al. present some basic and more advanced similarity measures. Depending on whether
the objects in question are represented using a binary or a real vector, different similarity
measures are defined.

In this work, we will focus on binary objects. When objects are represented as binary
vectors, the similarity of them is measured by checking whether they have common ele-
ments or not. More specifically, the similarity between two binary objects X and Y can be
expressed as: The number of elements present in both X and Y (|X ∩ Y|) or the number
of attributes present in X but not in Y (|X−Y|) or the number of attributes present in Y but
not in X (|Y− X|) or the number of attributes absent from both X and Y (|X ∩ Y|) .

S. Fokeas 17
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2.3.1 Jaccard Coefficient

One of the most frequently used similarity measures for binary data is the Jaccard Coef-
ficient (JC). Jaccard Coefficient was first described in [7] by Paul Jaccard. It increases as
the number of elements present in both objects, increases and decreases as the number
of elements present in either of the objects, but not in both, decreases. Assuming that
there are two objects X and Y the Jaccard Coefficient between them is defined as:

J(X,Y) = |X ∩ Y|
|X ∪ Y|

The above formula can be extended to a general one, fitting to compute the similarity of
more than two objects. Thus, assuming that we have binary objects (X1,X2, . . . ,Xn), the
general formula would be:

J(X1,X2, . . . ,Xn) =
|
∩n

i=1 Xi|
|
∪n

i=1 Xi|

S. Fokeas 18
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3. RELATED WORK
In this chapter we present work related to our own. Works under this section can be proven
useful for a more spherical view of the work at hand. Apart from that, it can be a great
place to start if you want to extend this work. Jaccard Coefficient is widely used and a
lot of research has been published that uses this method of measuring similarity. Here
are a few applications that utilize the Jaccard Coefficient similarity measure to accomplish
some interesting goals.

Michihiro Kobayakawa et al. [15] uses Jaccard Coefficient to retrieve images based on
their similarity to a query image. They propose an algorithm and a data-structure and study
their theoretical aspects. The similarity measures how much overlapping is happening
between areas of the images. These images could have been taken from a different
angle or they could be zoomed in/out. Their algorithm detects that by comparing their
pixel composition using the Jaccard Coefficient. Finally they perform tests in thousands
of images and they show that their approach is many times faster than a naive algorithm.

An interesting example of Jaccard use is the one presented in [16] by Mustafizur Rahman
et al. Often, in Enterprise grids, the availability of the resources varies widely. Their
work focuses on finding a way to predict the availability of resources. To accomplish
that they utilize the Jaccard Coefficient. The availability is represented by a sequence of
zeros and ones, where zero represents unavailability and one represents availability. Their
algorithm takes as input a sequence like that, which contains historical data of availability.
They define a window of a number of elements, for which they will compute the Jaccard
Coefficient each time. They begin from the oldest data and slide to the most recent one.
Before each slide they try to make prediction of the next element. Finally, they use the
statistics they have amassed to make a prediction on future elements. In the end, they test
their method by comparing it with other established techniques. The experimental results
show that their approach achieves better prediction accuracy with reduced complexity.

Another related work is presented in [4] by Foteini Alvanaki et al. with enblogue. They
focus on blog posts and tweets published in social media. These posts are annotated with
tags that describe their content. What their approach does is to calculate statistics about
tags and tag-pairs that these documents are marked with. More specifically, the goal is
to measure tag Correlations. The formula they use to compute the correlation of a pair of
tags is C = |T1∩T2|

|T1∪T2|
+ |T1∩T2|

N . Where t1, t2 are tags, T1, T2 are sets of documents annotated
with these tags and N is the total number of documents. The basis of this formula is the
Jaccard Coefficient which is actually the first part of the equation. These statistics are then
used to identify unusual shifts in correlations. Emerging topics are then being identified
by ranking tag-pairs based on the strength and unpredictability of these shifts.

There is also work that tries to tackle the problem of computing Jaccard Coefficient in a
distributed fashion. Papers presented below are closer to what we are trying to accomplish
with our work.

S. Fokeas 19
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Again, Foteini Alvanaki and Sebastian Michel in another work [13] they utilize Jaccard
Coefficient to compute correlations between tags. This time, they extent their work to not
only tag-pairs, but to an arbitrary number of tags. More specifically, they consider a stream
of set-valued attributes Si = {a1,a2, a3..}, which they take as input. In the case of twitter,
Si would represent a set of tags or hashsets, as twitter users likes to call them. To perform
computations faster, they parallelize the work-flow across multiple nodes. They consider
two different stream processing platforms to accomplish this task . The first is the S4 [14]
and the second the Apache Storm [5]. The goal is to genarate K covers, as many as the
nodes of the distributed system, in order to partition the load to them with as little overlap
as possible. They devise an algorithm that creates these covers, while at the same time,
they make sure that nodes have enough information to compute the Jaccard Coefficients
of all sets of tags. Finally, they use Twitter’s streaming API to harness data from twitter to
test their application.

In [1] Foteini Alvanaki and Sebastian Michel expand their work further. They take as input
posts from Social Media like twitter and weblogs. These posts are annotated with a set of
tags. Each time, they focus on the most recent ones and compute the similarity of the tags
in any subset of co-occurring tags. In order to calculate these correlations they use the
Jaccard coefficient. Due to the vast amount of incoming data, they devise a distributed
model to distribute the computation of the Jaccard coefficients to multiple nodes. They
assign a set of tags in each node. Each node is then responsible to compute the Jaccard
coefficient for all sets of co-occurring tags in the power set of the set assigned to it. They
face many challenges while trying to effectively materialize this model. First, all Jaccard
Coefficients should be able to be computed, thus all co-occurring tags must be assigned to
some node. Secondly, in order to avoid duplicate computations, assignment of the same
tags to multiple nodes is to be kept minimum. Finally, the last challenge is to maintain
the load of nodes balanced and without much disparity. To overcome these challenges
they examine various partitioning algorithms, first from a theoretical perspective and then
from practical standpoint. To evaluate the partition algorithms and the application as a
whole, they implement their model using the Apache Storm Framework. They, then, put
this prototype to test and present the outcomes. The most important of these outcomes
is that their idea is proven doable even when working with high rate sources.
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4. PROPOSED SCHEME
As described in the Introduction Chapter (chapter 1) our end goal is to find an efficient
way to calculate correlations between co-occurring tags that appear in posts published in
Social Media, and especially twitter. In this chapter, we look at the related work in a more
critical way. First, we outline and explain some of the flaws of previous work. Next we
describe how and what we are trying to accomplish with this work. Finally, we take a look
at some challenges that we faced.

4.1 Drawbacks of previous work

After a thorough consideration of previous related work, the current work uses as its base
the model presented in [1]. Foteini et al efficiently compute the Jaccard Coefficient even
when the incoming rate is high (i.e. twitter). However, social media and especially twitter
are volatile in nature, therefore the repartitioning algorithm had to be run repetitively in a
very sort time period. This is far from ideal since repartitioning is a very laborious work.
The entire set of tag-sets that have arrived need to be analyzed again. This work is trying
to avoid that, making it faster and more adaptable.

4.2 A more flexible implementation

In the light of this setback, the problem has been approached in a more flexible and mod-
ular way. The proposition is to not repartition the whole input once a node has been over-
loaded, but instead make limited, yet targeted, changes one at a time. These changes
will move small chunks of load from one node to another. Naturally, the flow of these
changes will be from nodes with more load to nodes with less node. While these changes
take place, only the nodes involved are aware of them. All other nodes are oblivious of
them, hence, they continue to do their work like usual.

We aim more at creating a synergy between nodes, without them relying too much on a
central node. The plan is to have as less variety of nodes as possible, forming this way a
group of peers that do all calculations, while cooperating with each other.

The image 3 shows an example of such a schema. The organizer should perform orga-
nizational tasks that cannot be performed without global knowledge, but these should be
kept as minimum as possible. Therefore, a way must be devised for each node to maintain
all the necessary information to perform, at least, the basic operations. These operations
are to:

1. Calculate correlations.

2. Move load from one node to another.

Our thesis is that this is a more efficient way to distribute load and do calculations. In other
words, we believe that it is faster to make small adjustments in the distribution of the load
rather than redistribute it all again. In the following chapters, we present a more specific
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peer
organiser

peer

peer

peer

peer

Figure 3: General Schema

model based on that concept.

4.3 Challenges

The most obvious of the challenges is that the application must be built in a certain way as
to withstand streams of messages coming from high rate sources. This issue is tackled
by using the storm framework and distributing the load in a collection of machines. Yet,
this introduces the issues of load balancing and cooperation overhead. In fact, these
are the most difficult obstacles we had to overcome. However, dividing the load evenly
and minimizing redundant information optimizes resource use and maximizes throughput.
Therefore, they were the most important considerations we had, while we were designing
the application.
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5. DESIGN
With the flaws of previous work in mind and with a clear goal as to what we are trying to
accomplish we set forward to try to design a viable solution. The designing process is
divided in three parts. First is the designing of a graphical representation of all incoming
messages and the relations between them. Secondly, we define what similarity measures
will be used to compute correlations and how they fit to the whole picture. Finally, the
complex issue of parallelization is discussed at the end of the chapter.

5.1 The Graph

The application is built around the concept of a graph containing all data which is essential
for not only computing correlations, but distributing load as well. Apart from maintaining
data, graph’s structure helps performing all appropriate actions faster and efficient. In
order to accomplish that, it maintains one type of vertices and two types of undirected
edges. Consequently, one can say that it is effectively two graphs with the same vertices,
but different edges. For the sake of simplicity, though, it is considered as one graph for
the remaining of the thesis.

5.1.1 Vertices

Each vertex in the graph corresponds to a tag-set. Vertices are weighted and the weight
denotes how many documents (posts) have been seen annotated with the tag-set up until
now. It is important to note that one tag-set corresponds to only one vertex. In other words
there are no duplicates vertices.

At any time, the graph contains an arbitrary number of vertices/tag-sets. Some of these
tag-sets are subsets of other tag-sets in graph, while some others are not. Tag-sets for
which a superset does not exist in the graph are treated specially. We will call these
uppermost supersets as head tag-sets or simply heads for the rest of the text. Later in
this text, it will become clear why these are treated differently.

5.1.2 Edges

To relate tag-sets with each other, two kind of edges are used and sustained through-
out the lifetime of the graph. Both kind of edges are undirected and weightless and the
presence of one does not exclude the presence of the other.

Set Relation Edges

The first type of edges describes set relations between tag-sets of vertices. If a tag-set is
a subset of another existent tag-set in the graph and the two differ by only one tag, the
two of them are connected by an edge in order to mark this relationship. From now on
subset relations in figures and diagrams are signified by dashed lines. You can refer to
figure 4 to see an example of this edge type. As you can see in this figure, vertex {a,b,c,e}
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a,b,c,da,b,c,e

a,b,c
a,b,d

b,c

d,f

Figure 4: Set relations edges

is connected to the vertex {a,b,c}, but not to the vertex {b,c}. This is because {a,b,c,e} has
two more tags compared to {b,c}. Also, the vertex {d,f} does not have any relation to the
other ones, so it is not connected with any other vertex.

It is not uncommon for two tag-sets to have common subsets. Hence, any tag-set can
have an arbitrary number of connections with subsets and supersets. In figure 4 vertices
{a,b,c,d} and {a,b,c,e} tag-sets have two common subsets which are colored in purple.

Common Tags Edges

Two vertices are connected with a common tags edge if and only if they represent two
tag-sets that contain at least one common tag. Common tags connections are used not
only for computing correlations, but for other auxiliary operations as well, which will be
discussed later. In figure 5, one can see the same graph as in Figure 4, but now the
common tags edges have been included.

It is worth mentioning that the two types of edges are not mutually exclusive. In fact,
whenever two vertices are connected with a set relation edge, they are also connected
with a common tags edge. However, a common tag edge does not imply a set relation
edge. This might seem like an excess of information, yet set relation edges are necessary
to refer to subsets or supersets, instantly. If only common tag edges where there, we
would have to check whether a connected tag-set is also a subset/superset or not and
that would decrease performance.

In figure 6, we present what a complete graph looks like, based on the structure of figures
5 and 4.
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a,b,c,da,b,c,e

a,b,c
a,b,d

b,c

d,f

Figure 5: Common tags edges

5.2 Computing Jaccard Coefficient

In this paragraph, we are going to start with the general formula of Jaccard Coefficient
and convert it to a form which fits to the graph model presented in the previous paragraph.
The general formula for computing the Jaccard Coefficient is formula 1. You can refer to
background chapter ( 2.3.1 ) is you are not accustomed with the method.

J(X1,X2, ...,Xn) =
|∩n

i=1Xi|
|∪n

i=1Xi|
(1)

A vertex in the graph counts documents annotated with a specific tag-set, thus equations
in this chapter consider as vertex (v) the set of documents annotated with this tag-set.

vi = {d1,d2, ..., dn}

ti A single tag.
Ti The set of documents annotated with ti tag.
si A set of tags.
vi The set of documents annotated with si.
Ci The set of vertices connected with a Common Tags Edge to vi
wi The wight of vertex vi, i.e. the number of documents annotated with si.
Si The set of vertices that correspond to a tag-set which is a superset of si.

Each vertex is unique, there are no duplicate vertices and every tag-set corresponds only
to one vertex. Therefore vi = vj ⇔ si = sj.
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a,b,c,da,b,c,e

a,b,c
a,b,d

b,c

d,f

Figure 6: example graph with all edges

Two vertices are connected if their corresponding tag-sets have common tags.

vj ∈ Ci ⇔ sj ∩ si ̸= ∅, j ̸= i (2)

Based on formula 1, in order to calculate the Jaccard Coefficient of tag-set si = {t1, t2, ..., tn}
the formula 3 is used.

J(T1,T2, ...,Tn) =
|∩n

i=1Ti|
|∪n

i=1Ti|
(3)

The intersection ∩n
i=1Ti denotes all documents which are annotated with all of the tags in

si. In other words, all the documents that are annotated with either si or a superset of si.
Therefore, |∩n

i=1Ti| =
∑

vj∈Si
wj + wi

The Union ∪n
i=1Ti denotes all documents which are annotated with any of the tags in si. In

other words, all documents that are annotated with either si, or any tag-set having common
tags with si. Hence, |∪n

i=1Ti| =
∑

vj∈Ci
wj + wi

Finally, the JC of a tag-set si can be computed using the following formula:

J(T1,T2, ...,Tn) =

∑
vj∈Si

wj + wi∑
vj∈Ci

wj + wi
(4)
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(1) x
(10) w

(6) k, z

(5) l, m

(1) l(2) m

(8) k(1) z

Figure 7: Example of a graph of tag-sets

5.3 Parallelization

The general idea is to distribute the computations of the coefficients to multiple machines
(nodes). To accomplice that, each node must sustain part of the data and make part of
the calculations. First, we must find a viable solution to make this partitioning happen.
By doing so, however, we should be extra careful as to not create imbalances between
nodes. These are the concepts discussed in this chapter.

The model devised to comply to these constraints, is the following. Each node will hold a
segment of the whole graph and subsequently, receive only a share of all the documents.
To demonstrate how the partitioning works, we will begin from a complete graph. A simple
instance of a graph is seen in figure 7. Vertices belonging to different nodes are annotated
with different colors. Here the graph is pictured before the segmentation, as if only one
node was holding all data. Only common tag edges are shown in the graph. Numbers
inside parentheses represent the weights of the vertices i.e. how many documents have
been annotated with the corresponding tag-set so far.

If one was to compute the JC of tag-set {c,y}, they would need all tag-sets with at least one
common tag. Based on the example graph, formula 4 and assuming that w(v) symbolizes
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the weight of a vertex v, the JC of {c,y} would be the following:

.

JC({c, y}) =
w({c, y})

w({c, y}) + w({y}) + w({c}) + w({a, c})
=

10
10+ 2+ 4+ 3

=

0.526315789

Let us try to segment the graph of figure 7. If we naively, assign to each node the vertices of
a specific colour, then we would end up with what is pictured in figure 8. In this case green
node would be oblivious of vertices {a, c} and {c}. Therefore the JC it would computed
like:

JC({c, y}) = w({c, y})
w({c, y}) + w({y})

=
10

10+ 2
= 0, 833

In practice, graph segmentation, in some cases, leads to redundancy of data. This is a
direct consequence of Jacard Coefficient requiring all occurrences of all tag-sets which
have common tags. Figure 9 shows all vertices each node has to maintain after the seg-
mentation, based on the example of figure 7. On this occasion the duplicate vertices are
the {a}, {c, y}, {a, c}, {c}, which appear in more than one node.

5.3.1 Redundancy

We will now take a closer look in the phenomenon of redundancy in nodes. We start with
defining a way to quantify and measure it. Afterwards, we give a more detailed example.

As Redundancy between two nodes we define the number of the same documents that
they both hold. In other words, redundancy is the sum of the weights of the vertices they
both maintain. It is introduced whenever edges of the graph connect two or more vertices
that belong to different nodes. More formally, if V where the vertices of node 1 and V′

where the vertices belonging to node 2, then the redundancy R between these to nodes
would be:

R =
∑

vi∈(V∩V′)

w(vi) (5)

Take for instance the example of figure 9. In this context, redundancy between green
node and orange node, based on equation 5, would be:

R = w({c, y}) + w({c}) + w({a, c}) = 10+ 4+ 3 = 17
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(c) Green Node

Figure 8: Wrong Graph Segmentation

In the final analysis, one of our goals should be to reduce redundancy whenever possible.
Otherwise, it could lead to duplicate work being done across nodes, and thus, to decreased
performance. In a later chapter, we discuss what can be done about this issue.

5.3.2 Load Balancing

In every distributed system, the load is monitored closely. After all, decreased perfor-
mance and bottlenecks could appear if the majority of load is directed only to few nodes.
In this paragraph, we discuss how we avoid load disparities.

Load’s unit is defined as one document annotated with a tag-set. Hence, the total load
of a node is the total number of documents that are being forwarded to it. Now, we must
also define a way to balance load across nodes. This is done by defining a limit which any
node, at any time, must not exceed. This limit is dynamically calculated during execution,
although its parameters are predefined. These parameters can be set so that the load is
as much balanced as the user desires. At first, it might seem pointless to predefine how
much you want the load to be balanced between nodes, since the easy answer would be
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Figure 9: Correct Graph Segmentation
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as balanced as possible. However, as stated in paragraph 4.3 it is hard to keep the load
balanced while minimizing duplicate data at the same time.

Simply put, the more balanced the load is, the more overhead and data redundancy the
application suffers. To illustrate this, imagine that no constrains were imposed on how
much the load was balanced. In this case, each node could hold a segment of the graph
that was not connected to any other segment, despite the fact that some segments could
be substantially bigger than the others. This would effectively eliminate any redundancy.
On the other hand, if we would want to balance the load we would transfer vertices from
one node (or segment) to another, thus creating duplicate data across nodes.

With these concepts in mind, the formula to examine whether a node is overloaded or
not is now defined. In every case, the load of a node is compared with the load of other
nodes. The first step is to calculate the average load and then compare the load of each
node with it. If a node exceeds a predefined difference between its load and the average
load, it will then be considered as overloaded. The average load is computed by simply
dividing the total load by the number of nodes.

Formally, the formula used to determine if a node has become overloaded is the following:

average load =
total load

number of nodes

load threshold = average load+ overload factor× average load (6)

Where overload factor is a real number, smaller than one, which indicates the percentage
of tolerated variance from the average load. For instance, if total load = 3000, the number
of active nodes is 10 and the overload factor variable is 0, 20 then:

average load =
3000
10

= 300

load threshold = 300+ 0,20× 300 = 360

The optimal value of overload factor is tricky to be found and varies from implementation
to implementation. Some factors that could affect it, are the number of nodes, the con-
nectivity of the graph and so forth. The only way to really find a good value to set the
overload factor is by extensive testing.

In any case, however, when a node becomes overloaded, what should be done, is to
move some of its vertices to another node, thus reducing its load. Which vertices should
be moved and when is left to the implementation process.
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6. IMPLEMENTATION
A prototype system has been implemented with the purpose of testing our hypothesis. The
Design Chapter (Chapter 5) was used as a compass that guided the construction of an
application that efficiently computes the jaccard coefficients. At the beginning, we show
how the graph is represented by the application. Afterwards, we display the topology of
nodes and explain each node type. Then, we describe how nodes are communicating with
each other and also the sequence of actions performed in order to calculate the Jaccard
Coefficients. At the last section, we present technical informations of how we tested our
application.

6.1 Graph Representation

In order to implement the graph a new simple data-type has been created and it is called
Vertex. On the same lines as its theoretical counterpart, each vertex corresponds to only
one tag-set. Vertex types hold five crucial variables.

1. A counter which counts how many posts have been seen annotated with the tag-set
in question.

2. The node who is accountable for calculating the Jaccard Coefficient of it.

3. A list of tag-sets with which it is connected with a common tags edge.

4. A list of proper superset tag-sets that have only one more tag.

5. A list of proper subset tag-sets that have only one less tag.

Vertices together with a map which maps tag-sets to vertices are all that is needed to
model the graph. Additionally, there are a few more constrains imposed in the graph to
help organizing it a bit more. The first one is that if a tag-sets is on the graph then all its
subsets are on it as well. The second one is that subset tag-sets have the same owner as
their supersets, effectively making head tag-sets the ones that define where their whole
tree of subsets belongs to. These are rules that are kept throughout the execution of the
application.

6.2 Topology

The topology of nodes is a simple one, with only three different node types. One parser
node, one disseminator node and an arbitary number of plotter nodes. The bulk of com-
putations is performed by plotters which is the main node of the application. The simple
topology comprised mainly by plotters furthers supports the idea that the computations
are performed by equal peers that self-organize themselves.

Figure 10 displays the complete image of an example topology with three plotters. Arrows
signify with which other nodes, each node communicates and in which way.
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Figure 10: Storm Topology

6.2.1 Parser

Parser is the only spout node of the topology. It is responsible of parsing messages and
emit them into the topology in a proper format. Every time a document (e.g. tweet, post) is
produced by a media (twitter, on-line newspaper etc.), the parser strips the text and keeps
only the set of tags.

The tag-set is then reformed. Individual tags are modeled as strings and the whole tag-set
as sets of strings. For instance tag-set {#smoking, #health, #children} would be a set of
strings with values ”#smoking”, ”#health”, ”#children”.

6.2.2 Disseminator

The first bolt of the topology is the disseminator node. Disseminator is a node of great
importance, which handles all the organizational work that is not performed by the plotters
themselves. Its main responsibility is to forward tag-sets to the appropriate Plotters. To
manage that the disseminator consults an index that maps tags to plotters. when a tag-
set arrives the disseminator pushes a tuple containing the tag-set to all plotters the index
indicates. Furthermore, the disseminator is in charge of examining the load of plotters. If a
plotter has become overloaded, disseminator notifies the plotter, so it can take actions to
reduces its load. This is essential in order to keep the load of plotters balanced. Last but
not least, whenever a tag-set that has not been previously seen, arrives, the dessiminator
is the one responsible of deciding which plotter will be accountable for it from now on.

To successfully perform these tasks, disseminator sustains the following data-structures.

1. A collection of active tag-sets that are presently inside the graph.

2. An index from tags to lists of plotters, which is advised before forwarding tuples to
plotters
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3. A map from plotters to the number of tag-sets that they have received i.e. the load
of each plotter.

These data-structures are used by the disseminator to efficiently and accurately accom-
plish the tasks it is responsible for. The most important one is the index from tags to
plotters. A plotter is present on a list corresponding to a specific tag if and only if it is
responsible for a tag-set that contains this tag. If we take the example of figure 9c, the list
of plotters in the index, for tag ”a”, will not contain the green plotter. However, the green
node will be in the list for the ”c” tag. Hence, it will receive documents annotated with the
tag-set {a, c}, for instance.

6.2.3 Plotter

Plotter bolts realize the core functionality of the application. Each plotter maintains a seg-
ment of the whole graph. Therefore, Plotters are in charge of keeping information for only
a subgroup of all tag-sets, which then utilize to do all calculations needed.

Their main responsibility is to calculate and emit Jaccard Coefficients. At regular intervals
of time, they employ all data that they have gathered and compute the coefficients of the
tag-sets for which they are responsible. All the tag-sets that are necessary to make these
calculations are being forwarded to them by the dessiminator. It is their task to keep a
counter for every tag-set.

Moreover, plotters might need data that other plotters hold. Hence, another responsibility
of plotters is to provide information to whichever of their partners asks for it.

Plotters can also receive messages from disseminator, which notify them that they have
become overloaded. They are the ones in charge of deciding which vertices should be
moved to which plotters, in order to reduce their excessive load. Afterwards, they wrap
up all the necessary information and update all other plotters that are affected by these
changes.

Finally, moving vertices from one plotter to another, can potentially affect which tag-sets
should be forwarded to which plotters. Any such event is detected by the plotters im-
mediately. They then send messages to disseminator to alter its index. This way the
disseminator’s index is kept sound and updated at all times.

Plotters maintain the following data-structures to aid them accomplish their tasks.

1. An index from tag-sets to vertices.

2. An index from tags to tag-sets.

3. A list of head tag-sets.

The index from tag-sets to vertices is in the core of the implementation. It effectively
models the graph presented in the design chapter (section 5.1). From a theoretical per-
spective, it is actually an adjacency list that saves, for every vertex(tag-set), which other
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vertices are adjacent to them. One key difference is that it is backed up by a hash table
to make access faster. You can refer to section 6.1 for more information on vertex data
type.

Besides the tag-sets to vertices index there is another index. An index from tags to tag-sets
that maps tags to all tag-sets that contain that specific tag. This index helps connecting
new tag-sets with existing ones.

Finally, plotters keep a list of all head tag-sets inside their graph segment. As stated in 6.1,
subset tag-sets have the same owner as their supersets, therefore only head tag-sets are
considered for relocation to other plotters and their subsets follow them. For this reason
it is important to know which are the head tag-sets, at any time.

6.3 Processes

A process is a systematic series of actions directed to some end. In this chapter we
describe the processes performed towards accomplishing the final goal, which is of course
the computation of Jaccard Coefficients. Some of these actions are simple and somemore
complex. They could involve one or more nodes and one or more node types. Moreover,
more than one streams could be used to complete them.

In particular, the processes explained in this chapter are the following:

1. How the application treats incoming existing tag-sets.

2. How the application treats incoming new tag-sets.

3. How vertices are relocated from one node to another.

4. And finally, how the Jaccard Coefficients are calculated.

Before we go into further details about them, let us outline the streams utilized. Storm
uses streams in a specific way. You can refer back to background chapter 2.2.1 if you
find it difficult to comprehend the terminology used here.

The application uses many streams to transfer tuples from one node to another. The main
reason is because messages from different streams are processed differently by nodes.
Furthermore, different streams transfer tuples of different data-types and sizes, depending
on the action required. Table 1 outlines all streams and the stream groupings which are
used. Another table, table 2, displays the format of the messages transfered by each
stream.

Information in these tables might be difficult to comprehend for now. However, do not
worry if it is not clear yet how everything works. The paragraphs that follow will clarify the
ideas introduced here.
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Table 1: Streams and their groupings

Stream Name Source Subscribers Stream Grouping
tagset Parser Disseminator All grouping
tagset Disseminator All plotters Direct grouping

disseminator_new_tagset Disseminator All plotters Direct grouping
plotter_new_tagset All Plotters All Plotters Direct grouping

overloaded Disseminator All plotters Direct grouping
relocation All plotters All plotters Direct grouping

change_owner All plotters All plotters Direct grouping
index_update All plotters Disseminator All grouping

Table 2: Tuple formats of streams

Stream Name Tuple Format
tagset (tag-set)

disseminator_new_tagset (tag-set, plotter in charge)
plotter_new_tagset (heads, tag-sets)

overloaded (plotter loads, load threshold)
relocation (relocated head, connected heads, connected vertices)

change_owner (head, plotter)
index_update (operation, tag)

6.3.1 Existing Tag-sets

The simplest and easiest of all processes is when the application receives a document
which is marked with a tag-set which is already present in the graph. In this case, the
disseminator forwards the tag-set to the appropriate plotters, based on its index. Then
plotters increase their counter which corresponds to this tag-set by one. Figure 11 shows
an example of messages exchanged between nodes during this process.

6.3.2 New Tag-sets

At times, a post arrives, which is annotated with a new tag-set. A tag-set not contained in
the graph. Whenever that happens, the decision must be made as to which plotter will be
responsible for it.

Disseminator’s Side

New tag-sets should be assigned appropriately so as to minimize redundancy. An efficient
way of choosing, is to assign them to the plotter already receiving the most of the new tag-
set’s tags. This way, the plotter node will not have to pull a lot of (if any) vertices from other
plotters, because it will already have all vertices which are connected to the new tag-set. In
case the new tag-set contains only new tags, though, it is handled differently. If it contains
only tags never seen before, it means that it will not connect with any other vertex. Thus,
it can be assigned to any node and to any graph segment easily. For obvious reasons,
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Figure 11: Forwarding existing tag-sets

the node with the least load is chosen. In all cases, though, the node which makes these
decisions is the disseminator, with the aid of its index from tags to lists of plotters.

After the disseminator decides which will be the plotter in charge, it follows the standard
procedure of forwarding it to all appropriate plotters, much like when an existing tag-set
arrives. The difference is that now the destination plotters need to know which plotter
has been decided to be in charge of it. Therefore the tuples forwarded have the following
arrangement: (new tag-set, plotter in charge).

Please notice that subsets of the new tag-set are inserted into the graph as well, and thus,
a new tag-set can only be a superset of those already in. Therefore, the last step for the
disseminator is to produce all subsets and insert them, if not already there, into the active
tag-sets list. This is done in order to not misinterpret future subsets as new tag-sets.

Plotter’s Side

On the plotter’s side, the new tag-set is inserted using algorithm 1. What this does is to
insert the new tag-set together with its subsets (if not already in) and make all appropriate
edge connections. When a plotter receives a tuple regarding a new tag-set the actions
it takes differentiate slightly depending on whether or not it has been chosen to be the
plotter in charge of it.

If a plotter is not responsible for the new tag-set, then data should be sent to the plotter
which is responsible for it. The purpose behind this is because the latter might not have all
vertices that the new tag-set needs to connect to. Therefore, other plotters provide all the
connected vertices that they have in order for the graph to remain complete and sound.

Lets now examine the instance which a plotter takes a new tag-set tuple which is in charge
for. In this case, the plotter does not do something special. It applies algorithm 1 and then
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Algorithm 1: Add a new tag-set in the graph
input: new tag-set, plotter

1 initialize stack;
2 push new tag-set into stack;
3 while stack not empty do
4 pop ts from stack;
5 foreach s ⊂ ts and s.size = ts.size− 1 do
6 if s not in graph then
7 put s in graph;
8 connect s to tag-sets that have common tags;
9 end
10 set owner of s to plotter;
11 connect s as a subset of ts;
12 if s.size > 1 then
13 push s to stack;
14 end
15 end
16 end

waits for messages to arrive by other plotters. When such a message arrives, the plotter
makes the appropriate changes to its graph. A diagram about the messages exchanged,
during this process, can be seen in figure 12.

As discussed before, when a head tag-set belongs to a plotter, then all its subsets belong
to the same plotter as well. Therefore, when a new tag-set arrives there is the possibility
that subsets of it, that were previously head tag-sets themselves, will change owner.

A vertice changing owner is a form of relocation from one plotter to another. This may
lead to some vertices no longer needed. For the graph to be sound and calculations to be
performed faster these redundancies are removed. Hence, a clean up is performed that
deletes all unneeded vertices. Possible index updates are also sent to the disseminator.

The way plotters determine if an index update is needed is by examining the tag to tag-
sets index which they maintain. If the list of tag-sets regarding a specific tag contains only
tag-sets for which the plotter is not responsible for, then an index update should be sent
to the disseminator. Otherwise no action is taken.

A final aspect to be considered is that new tag-sets can cause a node to become over-
loaded quickly. This is because when a tag-set is assigned to a plotter, then the plotter
becomes in charge not only for the tag-set itself but for all its subsets as well. Issues arise
whenever subsets of the new tag-set, which other plotters are responsible for, are pulled
to the plotter, which is responsible for the new tag-set. With the way the plotter in charge
is chosen, however, this is rarely an issue.

The following example will demonstrate this. Assume that the new tag-set {a,b,c,d,e}
has just arrived. There are only three plotters: plotter1, plotter2 and plotter3. And the
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Figure 12: Forwarding new tag-sets

disseminator’s index from tags to plotters is the following:

a → plotter1, plotter2

b → plotter1

c → plotter1, plotter2, plotter3

d → plotter1, plotter3

e → plotter2, plotter3

The plotter that will be in charge of the new tag-set will be plotter1, since most of the tags
already point to it. What that means is that plotter1 already gets tag-sets annotated with
a, b, c, and d. Therefore, it already gets most of the tag-sets that will be connected to the
new tag-set. Plotter1’s load will not change much, even after {a,b,c,d,e} subsets change
owner to plotter1.

6.3.3 Relocating vertices

In order to have balanced load across plotters, whenever a plotter becomes overloaded, it
moves (relocates) one or more of its vertices to a plotter with less load. For this to happen,
synergy between disseminator and the overloaded plotter is required.

Disseminator’s Side

Disseminator node keeps a counter for each plotter that counts how many tag-sets have
been forwarded to it. This way the disseminator is aware of plotters’ load. After a specified
time interval, it examines whether any plotter has become overloaded. From here on, we
will call this interval as load check window, and use this term to refer to it. If any of the
plotters is overloaded disseminator notifies the plotter of its overloaded state. After that,
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the disseminator does not have to perform any more actions. The overloaded plotter is
responsible to reduce its load on its own. To determine if a plotter is overloaded the
formula 6 described in chapter 5.3.2 is applied.

Only one overloadedmessage is sent at a time, on the grounds that synchronization would
be extremely difficult otherwise. A lot of nodes trying to relocate vertices could cause data
loss and even graph inconsistencies. The Disseminator uses a separate stream to inform
the plotters that they are overloaded. The tuple messages that are sent contain only a
map from plotter ids to plotter loads. Whenever a plotter receives a message from the
overloaded stream, then it automatically knows that it is overloaded.

Plotter’s Side

After receiving this message, the overloaded plotter is responsible to relocate one or more
of its vertices to another plotter, as a means of reducing its load. The first thing it does is
to decide which vertex (or vertices) to relocate to which plotter(s). The decision is taken
on the basis of reducing the redundancy between plotters.

Let us take the example of figure 9. Assuming that the overloaded node was the green
one, it will choose to move tag-set {c,y} to orange node, rather than {l,m}. This way the
need for the green node to maintain data for tag-sets {a,c} and {c} is eliminated. Hence,
the redundancy is reduced. The Algorithm used to calculate, how much the redundancy
overhead will change if a move is made, is algorithm 2.

Every time a vertex is moved from an overloaded plotter to another plotter, the second plot-
ter is in danger of becoming overloaded too after the relocation. Hence, the overloaded
plotter should be careful not to overload other plotters, since this would only propagate
the problem. This is when the loads of other plotters sent by the Disseminator are proven
useful. After a possible relocation has been identified, a second check is performed on
destination plotter’s load and if the action will overload the plotter, then the action is can-
celed. Instead, the second best move is considered. if this action will again overload a
node then the third best option is considered and so on.

After every move, the disseminator is informed for any possible index updates. Plotters
connected, through their vertices, with the selected vertex are informed of the change
in ownership as well. Figure 13 displays the messages exchanged during the relocation
process.

Be aware that, if more than one vertex needs to be moved, the plotter does not consider
them as a group. In other words, they are chosen and moved one by one. If all groups
of vertices were considered as a whole before relocating them, the decision might be
different. However, that would require to test the relocations of all groups belonging to the
power set to the set of vertices a plotter has, thus, it would require a lot more computational
time to complete.
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Algorithm 2: Calculating overhead change
input : head tag-set to be moved, destination plotter
output: overhead change if head moves to destination

1 foreach tag-set s ⊂ head do
2 change owner to none;
3 end
4 overheadChange = 0;
5 foreach s ⊂ head do
6 if it is not connected to destination plotter then
7 overheadChange += counter of subset
8 end
9 if it is not connected to destination plotter then
10 overheadChange -= counter of subset
11 end
12 end
13 foreach s having common tags with head do
14 if it belongs to source plotter then
15 if it does not have any connection to destionation then
16 overheadChange += counter of s;
17 end
18 end
19 if it belongs to destination plotter then
20 if it does not have any connection to source plotter then
21 overheadChange -= counter of s;
22 end
23 end
24 end
25 foreach tag-set s ⊂ head do
26 change owner back to source;
27 end

6.3.4 Calculating Jaccard Coefficient

Despite all these processes, the end goal remains the same. The applicationmust emit the
Jaccard Coefficients (JC) of all tag-sets that documents were annotated with. Therefore,
once every a predefined period of time, plotters emit JC based on the information that they
have amassed inside that interval of time. We call this time interval JC window. In this
chapter we discuss the details of how and when JC are calculated.

The JC is calculated using pseudocode 3, which is a direct product of formula 3. Plotters
calculate the JC only for tag-sets they are responsible for. Pseudocode 3 is a high level
illustration of how plotters perform this process. In practice, supersets are found by fol-
lowing the supersets links in each vertex data-structure. Tag-sets with common tags are
easier to find, since all that is needed is to iterate through the list each vertex maintains for
this purpose. To find tag-sets quickly the tag-set to vertex index is used. Plotter maintains
this index sound and complete throughout execution.
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Figure 13: Tuples exchange on relocation

Extra care is required for JC and load check window not to end at the same time. Plotters
use the counters stored in vertices in order to determine which vertices will be relocated
and where. At the end of the JC window, counters are deleted and they start counting
from the beginning again. Hence, the windows should not end at the same time, because
plotters will not have enough information to determine which relocation is the best option.

Algorithm 3: Calculating Jaccard Coefficients
output: Jaccard Coefficient of every tag-set node is responsible for

1 foreach tag-set s of plotter do
2 SupSum = 0;
3 ConSum = 0;
4 foreach tag-set s′ ⊇ s do
5 SupSum = SupSum + s′ counter;
6 end
7 foreach tag-set s′′ having common tags with s do
8 ConSum = ConSum + s′′ counter;
9 end
10 emit SupSum/ConSum;
11 end

In general, JC is only computed once for every tag-set. Nevertheless, in some cases head
tag-sets that belong to different plotters have common subsets. Basically these subset
tag-sets are owned by more than one plotter, therefore the JC for them is calculated more
than once. However, there are not any discrepancies. Plotters emit the same JC for the
same tag-set.
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6.4 Testing

The proposed application has been implemented in Java 1.7 using the Apache Storm
0.9.3. Testing was performed in Local mode, hence instead of tasks running in a cluster
of computers, each task was a separate thread in the same machine . The specifications
of the machine are Intel(R) Core(TM)2 Quad CPU Q9300 @ 2.50GHz and 4GB RAM.

6.4.1 Data Source

Mining real data from twitter would be inefficient in this stage due to the volume and volatil-
ity of the data. Consequently, a new node has been created to produce controlled and
supervised data. This node is called Generator.

Generator’s one and only responsibility is to produce synthetic data and forward it to dis-
seminator. The synthetic data was crafted in order to resemble as closely as possible to
the data produced by twitter. Twitter documents are annotated with different tags. Most
of the times, however, these tags are not unrelated and belong to a general category. For
instance #enrollment, #thesis, #course, #college, #sophomore could belong to Academia
category. That means that they appear together (in one tweet) with a greater probabil-
ity. On the other hand, there are hash-tags that appear across many categories with the
same chance. For example, #stress could belong to any category that contains stressful
situations, such as Academia, Work, Financial Markets etc.

We model the above as follows: We have a predefined number of categories from which
tags can be drawn from. There is also a pool of general tags that can appear across
all categories. Tag-sets are of random size, up to a maximum. Moreover, each tag-set
produced follows the following rules:

1. Every tag-set is assigned to a random category.

2. Every tag of the tag-set has a chance of being a general tag.

3. If the tag is not a general tag, then it will always be of the category that was chosen
for the whole tag-set.

In the end, the synthetic data produced was suitable to test the application. The quality of
the data relies heavily on how the different parameters are set.

6.4.2 Execution Example

In this section you can find a complete example of a typical run of the application. First
we set the parameters, then we observe the messages different nodes exchange and at
the end, we see a sample of the results produced.

Synthetic Data Parameters

To get good quality data, as discussed previously, we set generator’s parameters to the
following values:
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1. The number of different categories is set equal to thirty.

2. We set the number of different generic tags to fifty.

3. We limit the maximum number of tags in a tag-set to five.

4. The probability for a tag to be a generic tag is set to five percent.

5. The number of different tags per category is set to one hundred.

Application Parameters

These parameters change the way the topology runs.

1. The number of plotters is set to five.

2. The overload factor ( paragraph 5.3.2 ) is set to twenty percent.

3. JC window is set to thirty seconds

4. Load Check window is set to thirty seconds as well, although with a fifteen seconds
head start, so it will not end at the same time with JC window.

Tuple Exchange

The box below displays the inner workings of the application. These logs demonstrate the
exchange of tuples between topology’s components. Whenever a component emits or
receives a tuple, it prints what was emitted or received accordingly. Since many threads
run at the same time, actions do not come in a linear, sequential manner. However, all the
kinds of messages, together with their tuple structure, are present. If you find it difficult
to comprehend these lines, take a closer look at tables 1, 2, which explain the tuples that
components exchange.
. . . . . . . . . . .
8221 [ Thread -10 - generator ] INFO backtype . storm . daemon . task - Emi t t i ng : generator tagse t [ [ #2 _48

] ]
8224 [ Thread -10 - generator ] INFO backtype . storm . daemon . task - Emi t t i ng : generator tagse t [ [#28_80

, #28_6 , #28_81 , #28_28 ] ]
8224 [ Thread -8 - d isseminator ] INFO backtype . storm . daemon . executor - Processing rece ived message

source : generator : 3 , stream : tagset , i d : { } , [ [ #19 _18 ] ]
8224 [ Thread -8 - d isseminator ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 8 ; d isseminator

disseminator_new_tagset [ [#19_18 ] , 8 ]
. . . . . . . . . . .
8301 [ Thread -8 - d isseminator ] INFO backtype . storm . daemon . executor - Processing rece ived message

source : generator : 3 , stream : tagset , i d : { } , [ [ #17_90 , #17_18 ] ]
8302 [ Thread -8 - d isseminator ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 6 ; d isseminator

disseminator_new_tagset [ [#17_90 , #17_18 ] , 6 ]
. . . . . . . . . . .
51156 [ Thread -18 - p l o t t e r ] INFO backtype . storm . daemon . executor - Processing rece ived message

source : d isseminator : 2 , stream : disseminator_new_tagset , i d : { } , [ [ #27_70 , #27_45 ] , 4 ]
51156 [ Thread -18 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 4 ; p l o t t e r

p lo t te r_new_tagse t [ [ [ # 2 7 _70 , #27_38 , #27_42 ] , [#27_70 , #27_47 , #27_4 , #27_31 ] ] , { [#27_70 ,
#27_38 ]=0 , . . . [#27_70 , #27_31 ] = 0 } ]

51156 [ Thread -18 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng : p l o t t e r index_update [
remove , #27_45 ]

. . . . . . . . . . .
20841 [ Thread -12 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 6 ; p l o t t e r

change_owner [ [ #7 _58 , #7_57 , #7_79 ] , 7 ]
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20842 [ Thread -12 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 7 ; p l o t t e r
r e l o ca t i o n [ [ #7 _58 , #7_57 , #7_79 ] , { [ #7 _31 , #7_90 , #7_2 , #7_79 ]=6 , . . . [#7_33 , #7_92 , #7_78 ,
#7_79 ]=4 } , { [ #7 _57 , #7_79 ]=0 , . . . . [#7_31 , #7_90 , #7_79 ]=0 , [#7_79 ] = 0 } ]

20842 [ Thread -12 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng : p l o t t e r index_update [
remove , #7_58 ]

20842 [ Thread -12 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng : p l o t t e r index_update [
remove , #7_57 ]

. . . . . . . . . . .
51639 [ Thread -18 - p l o t t e r ] INFO backtype . storm . daemon . executor - Processing rece ived message

source : p l o t t e r : 4 , stream : re l oca t i on , i d : { } , [ [ #7 _58 , #7_57 , #7_79 ] , { [ #7 _31 , #7_90 , #7_2 ,
#7_79 ]=6 , . . . [#7_33 , #7_92 , #7_78 , #7_79 ]=4 } , { [ #7 _57 , #7_79 ]=0 , . . . [#7_79 ] = 0 } ]

51639 [ Thread -8 - d isseminator ] INFO backtype . storm . daemon . task - Emi t t i ng d i r e c t : 8 ; d isseminator
disseminator_new_tagset [ [ #2 _90 , #2_30 , #2_50 , #2_97 ] , 4 ]

51639 [ Thread -18 - p l o t t e r ] INFO backtype . storm . daemon . task - Emi t t i ng : p l o t t e r index_update [ add ,
#7_58 ]

. . . . . . . . . . .

Results

After the end of JCwindow, the Jaccards Coefficients are emitted by the plotters. A sample
of the results is displayed in the box below.
. . . . . . . . . . .
JC f o r [#0_52 , #0_86 ] i s 0.1
JC f o r [#18_64 ] i s 1.0
JC f o r [#8_92 , #8_13 , #8_0 , #8_60 ] i s 0.05555555555555555
JC f o r [#9_25 , #9_10 , #9_77 , #9_78 ] i s 0.1
JC f o r [#23_51 , #23_24 , #23_55 ] i s 0.25
JC f o r [#14_38 , #14_9 ] i s 0.14285714285714285
JC f o r [#16_43 , #16_87 ] i s 0.25
JC f o r [#6_50 , #6_32 ] i s 0.2
JC f o r [#6_41 , #6_45 ] i s 0.25
JC f o r [#6_10 , #6_18 , #6_33 , #6_30 ] i s 0.0625
JC f o r [#7_75 , #16] i s 0.0625
JC f o r [#0_90 , #0_49 ] i s 0.125
JC f o r [#14_65 , #14_40 , #14_97 ] i s 0.0625
JC f o r [#1 , #16_29 , #16_51 , #16_56 ] i s 0.05263157894736842
JC f o r [#16_10 , #16_22 , #16_56 , #16_84 ] i s 0.05263157894736842
JC f o r [#13_19 , #13_58 , #8 , #13_7 ] i s 0.041666666666666664
JC f o r [#22_3 , #22_56 , #22_13 ] i s 0.1
. . . . . . . . . . .
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7. CONCLUSION
To summarize, what we did was to design a flexible system of communicating nodes, that
can calculate correlations without relying on a ’know it all’ node. Despite the challenges
faced, a viable solution was found. A graph was devised with all the theoretical aspects
deemed necessary to adequately tackle the issue. After that, the Jaccard formula was
transformed in a form well fitting to the features of the graph. At the next step of the
designing process an efficient way to parallelize the work-flow was found. Finally, all this
was successfully implemented in a prototype built using the Storm Framework.

In conclusion, what this work has shown is that it is possible to build a flexible topology
that can calculate the correlations between tags. Plotter nodes had no problem communi-
cating and cooperating with each other. The model has resulted in quite a modular build.
Modular, generally, means more extensible and more scalable. We hope that this would
be the beginning of an exciting path towards achieving something even greater.

S. Fokeas 46



Distributed tag-set correlation calculation using storm

8. FUTURE WORK
From here and onwards, there are a number of things that should be further investigated.
First and foremost the performance of the application should be tested. Secondly, inno-
vative ideas that could be imagined, would make organic changes in the structural com-
ponents of the application and decisively change it to the better.

In local mode, is not easy to test the application’s efficiency. The more plotters run si-
multaneously, the more threads are executed. The more threads Storm has to maintain
the more burdensome it was for the application. Therefore, in contrary to a real situation,
more plotters resulted in a slower performance.

If the application is to be used in real life situations, extensive testing should take place.
These tests should take place using a cluster of computers while harnessing real data
from a social media site. This will not only keep the incoming rate high, but also take
data from a real source. While synthetic data can be sufficient for the first tests, good
quality of synthetic data is difficult to produce. In the light of these tests, possible structural
improvements may be possible.

A possible structural improvement could be in the form of designing a better algorithm
for a process. For instance, the algorithm used by the plotter to decide which vertices to
move to another plotter is just a heuristic. As such, it can be replaced easily with another
one that will take into account different parameters.

Likewise, the storm topology and its components could be altered to increase perfor-
mance. Storm bolts should be designed to do as few processing as possible before
forwarding the results to the next bolt in line. Hence an alternative topology might ex-
ist, with more components, that can split the work-flow even more. However, I have to
warn you that this could be a dangerous path, if you are not careful. Due to the nature
of the problem, extensive communication between nodes is inevitable, therefore having
an abundance of nodes could result in slow performance. In the end, the possibilities are
unlimited. It remains to the reader’s imagination as to what could come next.
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ABBREVIATIONS, INITIALS AND ACRONYMS

JC Jaccard Coefficient
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