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ABSTRACT

As discussed in the preface, the center of the thesis , is the Random Fourier Features Technique, which in Chapter
3 is explained in more depth, and implemented in various problems. Initially, the project focuses to the problem
of online learning in RKHS, and the Kernel Least Mean Squares as well as the Kernel Recursive Least Squares
algorithms are presented. As mentioned in the preface, in the previous framework, as the number of input variables
increases, so does the complexity of the algorithm both in terms of space and time. Hence, we adopt a dictionary
so as to keep the complexity under reasonable limits. Also, we mention the problem that occurs when we are
working in time-varying environments, while the algorithm is not capable of discarding the obsolete elements held
in the dictionary, and thus we compare algorithms with different choices of dictionary through various experiments.

On the other hand, the Random Fourier Features technique defines a known mapping which takes the data held
in the input space and transfers them to a new finite dimensional Euclidean space, where the problem is linearly
separable and the inner product of the mapped data approximates the kernel function. Once the ”linear” task is
solved, a vector of fixed size is obtained, which defines a hyperplane in the new space, separating the data. Thus,
the algorithm provided is computationally more efficient and as will be shown in Chapter 3, converges at similar
speeds and to similar error floors. We have applied this algorithm to address non linear adaptive filtering tasks,
however it can be extended to classification tasks too, as it is an easy to understand and generalize technique.
The main reason for its simplicity, is the fact that the ”linear” algorithm solving the task in the new space, is
almost exactly the same with the conventional linear algorithms used to solve simple linear tasks in the initial
space, and the reason is that the features in the new space, are known, in contrast with the RKHS method,
where the solution is obtained using the kernel trick. We will present various experiments comparing the existing
adaptive filtering algorithm with the new ones, using the Random Fourier Features method. The technique’s broad
applications give us the capability to apply it, even in the problem of Kalman Filters, where we have to solve a
non-linear regression task, given the output of a system, and find the input data, knowing that the latter have a
linear recursive dependence.

SUBJECT AREA: Machine Learning
KEYWORDS: Random Fourier Feature,RKHS,KLMS,KRLS,Kalman Filter



ΠΕΡΙΛΗΨΗ

΄Οπως συζητήθηκε και στον πρόλογο, το επίκτεντρο αυτής της πτυχιακής είναι τα Random Fourier Features,
τα οποία συζητώνται στο κεϕάλαιο 3, αλλά και εϕαρμόζονται σε διάϕορα προβλήματα. Αρχικά, η εργασία
εστιάζει στο πρόβλημα της εκμάθησης σε πραγματικό χρόνο, σε χώρους Χιλμπερτ και παρουσιάζονται οι
αλγοριθμοι KRLS, KLMS. ΄Οπως ήδη αναϕέρθηκε και στον πρόλογο, στο προηγούμενο πρόβλημα, καθώς
αυξάνει ο αριθμός των μεταβλητών εισόδου, ανάλογα αυξάνει και η πολυπλοκότητα του αλγορίθμου, τόσο
από άποψη χώρου, όσο και χρόνου. Συνεπώς, χρειάζεται να υιοθετήσουμε ένα λεξικό, έτσι ώστε να κρατήσουμε
την πολυπλοκότητα σε χαμηλά επίπεδα. Επίσης, αναϕέρουμε το πρόβλημα το οποίο προκύπτει όταν δουλεύουμε
σε περιβάλλοντα που εξαρτώνται από τον χρόνο, όταν ο αλγόριθμος δεν μπορεί να αϕερεί αχρείαστα
στοιχεία από το λεξικό και έτσι συγκρίνουμε αλγορίθμους με διαϕορετικές επιλογές λεξικών μέσω διαϕόρων
πειραμάτων.

Από την άλλη πλευρά, η τεχνική των Random Fourier Features ορίζει μία γνωστή συνάρτηση η οποία
μετατρέπει τα δεδομένα του χώρου εισόδου σε σημεία ενώς νέου Ευκλείδιου χώρου πεπερασμένων διαστάσεων,
στον οποίο, το αρχικό μή γραμμικό πρόβλημα είναι γραμμικό, ενώ το εσωτερικό γινόμενο των νέων αυτών
σιμείων προσεγγίζει τη συνάρτηση πυρήνα. ΄Οταν το γραμμικό αυτό πρόβλημα λυθεί, ένα διάνυσμα σταθερού
μεγέθους επιστρέϕετε από τον αλγόριθμο, το οποίο αποτελεί τη λύση του προβλήματος. Επομένως, ο προκύπτων
αλγόριθμος είναι υπολογιστικά πιό αποδοτικός, και όπως θα δείξουμε στο κεϕάλαιο 3, συγκλίνει σε παρόμοιους
χρόνους επιτυγχάνοντας παρόμοια σϕάλματα με τους κλασσικούς αλγορίθμους πυρήνα. Εϕαρμόσαμε την
τεχνική αυτή σε διάϕορα προβλήματα παλινδρόμησης όμως μπορεί εύκολα κανείς να την επεκτείνει και σε
άλλα προβλήματα. Η απλότητα της τεχνικής αυτής έγκειται κυρίως στο γεγονός ότι ο αλγόριθμος επίλυσης
του γραμμικού προβλήματος στον νέο χώρο, είναι σχεδόν ίδιος με τους κλασσικούς γραμμικούς αλγόριθμους
που παρουσιάζονται στο κεϕάλαιο 1, και αυτό συμβαίνει γιατί τα σημεία στον καινούργιο χώρο είναι γνωστά,
σε αντίθεση με την τεχνική του πυρήνα, όπου η λύσει λαμβάνεται μέσω του Kernel Trick. Θα παρουσιάσουμε
διάϕορα πειράματα συγκρίνοντας τους υπάρχοντες αλγορίθμους επίλυσης προβλημάτων παλινδρόμησης με
τους αντίστοιχους που χρησιμοποιούν τα Random Fourier Features.Τέλος, θα επεκτείνουμε το πεδίο εϕαρμογής
αυτής της τεχνικής, υλοποιώντας την στο πρόβλημα των Kalman ϕίλτρων, όπου προσπαθούμε να λύσουμε
ένα μή γραμμικό πρόβλημα παλινδρόμησης, με δεδομένη την έξοδο του συστήματος, ψάχνοντας την είσοδο
που το πυροδώτησε, γνωρίζοντας ότι τα δεδομένα εισόδου έχουν μία αναδρομική εξάρτηση μεταξύ τους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ : Μηχανική Μάθηση
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ : Random Fourier Feature,RKHS,KLMS,KRLS,Kalman Filter
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PREFACE

In the framework of Machine Learning, various algorithms and techniques have been developed in order to con-
struct and set the principles of a general theory, whose goal is learning from the data. The problems as well as
the solutions vary, depending on the linearity or not of the task, the adopted approach, i.e. parametric or non-
parametric modelling, etc. It can readily be seen that most of the real-world problems can be modelled accurately
with non-linear schemes rather than linear ones, and as expected, the former are harder to solve than the latter.

One of the most significant tools employed in such tasks is that of Reproducing Kernel Hilbert Spaces(RKHS).
More specifically, one has to implicitly map the input data into a new space of greater dimension, such that the
originally non-linear task is transformed into a linear one in the RKHS. The linear task in the RKHS, can now be
solved just by performing inner product operations in a very efficient way (as we are taking into advantage the
structure of these spaces). As a result, the complexity is independent of the implicit dimensionality of the RKHS,
which it may be infinite.

Everything seems fine, until we face the problem of dealing with online learning in RKHS. In parametric modelling
in a Euclidean space, ℜl, the number of unknown parameters, remains fixed as time passes. This does not apply
for the case of a function lying in an RKHS, as the number of unknown parameters grows linearly with time. As a
consequence, complexity will eventually become unmanageable. There are various ways to solve this problem by
applying sparsification rules, with the most common being the adoption of a dictionary, where instead of using all
the training points up to time n, a subset of the most crucial ones is selected. However, such ad-hoc techniques
are difficult to be defined and manipulated in a scientific manner, that is, their implementation, heavily depends
on the application and is almost impossible to be generalized, as well as to be theoretically analysed.

In the context of this project, an alternative solution is discussed. Instead of employing a dictionary, we ap-
proximate the kernel function using a fixed-size randomly selected subset of its Fourier features. The advantage
of this rationale is that one can recast the problem as a linear one lying on ℜD where D are the number of
Fourier features used for the aforementioned approximation. The resulting algorithm does not require any form of
sparcification, as the solution’s size remains fixed and does not increase with time. In the sequel, this technique
will be implemented to solve various non-linear problems and will be tested against the ones solved in the RKHS,
such as the KLMS and the KRLS algorithms, as well as the non-linear Kalman Filter.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ΠΕΡΙΛΗΨΗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 General theory of Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Learning in Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. ADAPTIVE FILTERING ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 The Least Mean Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Quantized Kernel Least Mean Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The FOBOS Kernel Least Mean Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 The standard RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The Kernel RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. RANDOM FOURIER FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 General theory of Random Fourier Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Random Fourier Features LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 The RFF RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. KALMAN FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Linear Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Non-Linear Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Random Fourier Features Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF FIGURES

FOBOS-KLMS vs QKLMS dictionary size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FOBOS-KLMS vs QKLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
KRLS vs QKLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
KRLS vs QKLMS no:2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RFFLMS for different valus of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
RFFLMS vs QKLMS Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RFFLMS vs QKLMS Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RFFLMS vs FOBOS-KLMS and QKLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
RFFRLS vs KRLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
RFFRLS vs RFFLMS vs QKLMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
RFFKF Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
RFFKF Example 1 error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
RFFKF Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
RFFKF Example 2 error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



NOTATION

This section provides the details of the notation that will be adopted throughout the manuscript. That is:

1. Vectors are denoted with boldface letters, such as x

2. Matrices are denoted with capital letters, for example, A.

3. The identity matrix is denoted as I.

4. The trace of a matrix is denoted as trace{A}.

5. The vectors are assumed to be column-vectors. That is: x=


x(1)
x(2)
.
.
.

x(l)


6. The transpose of a vector is denoted as xT

7. Functions are denoted with lower case letters, e.g. f , or in terms of their arguments, e.g. f(x), or sometimes
as f(·), if no specific argument is used.



Random Fourier Features

1. INTRODUCTION

1.1 General theory of Reproducing Kernel Hilbert Spaces

As mentioned before, this manuscript focuses on methods for learning non-linear models. Most of the real-world
problems cannot be modelled accurately with linear tasks. For example, the problem of predicting a sequence of
camera movements from videos, where the orientations of the camera are continuous and non-Euclidean, and
are predicted from continuous video features, is a problem that cannot be solved with linear methods [4]. In this
section, solutions with the help of Reproducing Kernel Hilbert Spaces (RKHS) are going to be discussed, i.e. the
(implicit) mapping of the input data to a new space, such that the originally non-linear task, is transformed into
a linear one. But what exactly are these spaces? Why are the non-linear problems transformed into linear ones?
How one can apply this technique? And finally, what is the structure of these spaces that makes them so popular?

Firstly, it suffices to answer the second question, of why the non-linear problems are transformed into linear,
after the implicit mapping. The answer is provided by the Cover’s Theorem. Consider N vectors, x1, x2, ..., xN
ϵ ℜl. We say that these vectors are in general position, if there is no subset of l+1 of them lying on an (l-1)-
dimensional hyperplane. For example, in the two-dimensional space, any three vectors are not permitted to lie on
a straight line [1].
Theorem 1.1-Cover’s Theorem: The number of groupings, denoted as O(N,l), that can be formed by (l-1)-
dimensional hyperplanes to separate the N points in two classes, exploiting all possible combinations, is

O(N, l) = 2

l∑
i=0

(
N − 1
i

)
where : (

N − 1
i

)
=

(N − 1)!

(N − 1− i)!i!

The number of all possible combinations of N points in two groups is 2N . However, Cover’s Theorem, counts
only the possible linear dichotomies. For example, if we had 4 points lying in the 2-dimensional space, in a XOR
format, that is x1 = (−1, 0), x2 = (1, 0), x3 = (0, 1), x4 = (0,−1), the Cover’s theorem would count 14 group-
ings, without counting the following: [(x1, x2), (x3, x4)] as well as [(x3, x4), (x1, x2)], which are NOT linearly
separable.

In the case where, N ≤ l + 1 then O(N, l) = 2N , that is, all possible combinations in two groups are linearly
separable. So, what does that theorem says? Given N points in the l-dimensional space, the theorem computes
the probability of grouping these points in two linearly separable classes:

P l
N =

O(N, l)

2N
=

{ 1

2N−1

∑l
i=0

 N − 1
i

 N>l+1

1 N≤l+1

Thus, it is readily observable that for large values of l, and provided that N < 2(l + 1), the probability of
any grouping of the data into two classes to be linearly separable tends to unity.

Now lets use this theorem in practice. Given N feature vectors xn ϵ Rl, n = 1, ..., N ,perform a mapping
:

ϕ : xn ϵ Rl 7→ ϕ(xn) ϵ ℜK , K ≫ l

Then according to the previous theorem, the higher the value of K is, the higher the probability becomes for the
images of the mappings to be linearly separable in the new space. If we suppose that K is large enough, our task

Spyridon C. Pougkakiotis 11



Random Fourier Features

is transformed into a linear one in the new space, ℜK . Even after the mapping, the transformed vectors are still
lying in an l-dimensional surface held in the new space ℜK . However, it can readily be seen that mapping the data
into an arbitrarily large space increases the computational load and it may lead to overfitting solutions. Instead
we have to choose a space of a specific structure, that bypasses these problems. So it is now important to answer
the next questions: What are these spaces, what is their structure, and how can we construct them?

First of all, it is important to note that Hilbert spaces, are generalization of Euclidean spaces, allowing infi-
nite dimensions. It is an abstract vector space equipped with an inner product that allows length and angle to be
measured. In the following we will use the notation ⟨·, ·⟩ H for the inner product and the corresponding norm ∥ .
∥ H of a Hilbert space H.

Definition 1.1 [1]: A Hilbert space H is called reproducing kernel Hilbert space(RKHS), if there exists a function

κ : XxX 7→ ℜ

with the following properties:

•∀ x ϵ X , κ(·,x) belongs to H

•κ(·, ·) has the so− called reproducing property, that is :

f(x) = ⟨f , κ(·,x) ⟩ , ∀ f ϵ H , ∀ x ϵ X

It can easily be seen that if we set f(·) = κ(·,y), y ϵ X , then:

⟨κ(·,y), κ(·,x)⟩ = κ(x,y)

Definition 1.2 [1]: Let H be an RKHS, associated with a kernel function κ(·, ·), and X a set of elements.
Then, the mapping :

x ϵ X 7→ ϕ(x) := κ(·,x) ϵ H

is known as the feature map, and the space H as the feature space.

So, why do we choose these spaces? The vectors in the initial space e.g. x, are mapped in the feature space
and are denoted as ϕ(x). Let x,y ϵ X ⊆ ℜl. Then, the inner product of the respective mapping images is written
as:

⟨ϕ (x), ϕ(y) ⟩ = κ(x,y) : Kernel Trick

This is the so-called Kernel Trick. Now, if we manage to express our evaluation function in the format of inner
products, then by employing the kernel trick one does not have to know the form of the feature mapping ϕ(·) and
as a consequence the complexity becomes independent of the dimensionality of the Hilbert space, which may be
infinite. This is why the mapping of the vectors is not explicit but implicit, because in fact, we don’t even know
how to perform it.

Now, lets move forward and explain the theoretical way to perform this technique[1]:

1. Map (implicitly ) the input data to an RKHS.

xn 7→ ϕ(xn) ϵ H , n = 1, 2, ..., N

2. Solve a linear estimation task in H, using the images ϕ(xn), n=1,2,...,N.

Spyridon C. Pougkakiotis 12



Random Fourier Features

3. Cast the algorithm, in terms of inner products (this procedure will be explained in more depth in the next
subsection where the Representer’s Theorem as well as the technique using Lagrange Multipliers is ex-
plained), such that the only way the maps ϕ(·) are involved is as follows:

⟨ϕ(xi), ϕ(yj)⟩ , i, j = 1, 2, ..., N

4. Replace each inner product by a kernel evaluation, that is:

⟨ϕ(xi), ϕ(yj)⟩ = κ(xi,yj) : Kernel Trick

The form of κ(·, ·) does not concern the analysis, and our possible choices for the kernel function will be presented
later. Different choices of kernel function, lead to different results. One can use the cross validation technique to
converge to the right kernel decision.

In the sequel, we summarize some properties of the kernel functions[1], [5]. First of all, it is important to note
that we can write the kernel in a matrix form over the data samples x1,x2, ...,xn, such that its entries are given
by:

Kij = ⟨ϕ(xi), ϕ(xj)⟩ = κ(xi,xj)

It is known as the Gram matrix.

Lemma 1.1 [1]: The reproducing kernel, associated with an RKHS, H, is a positive definite kernel, i.e. :

aTKa ≥ 0 ∀a ∈ ℜN and x1, x2, . . . , xN ∈ ℜd

Also, given that a Hilbert space H, is produced by a kernel function κ(·, ·), then H, can be fully generated from
the knowledge of κ(·, ·). There are infinitely many possible selections of kernel functions, as we are also able to
construct our own ones, so that they satisfy the properties mentioned before. Now we present some of the most
common used kernel functions:

• The Gaussian kernel function(it is a shift-invariant kernel, used in the Random Fourier Features method):

κ(x, y) = exp(−∥ x− y ∥2

2σ2
)

with σ > 0 being a parameter. The dimension of the RKHS produced by this kernel is infinite.

• The homogeneous polynomial kernel:

κ(x, y) = (xTy)r

where r is a parameter.

• The inhomogeneous polynomial kernel:

κ(x, y) = (xTy + c)r

where c ≥ 0 and r are parameters. Polynomial kernels are associated with an RKHS of finite dimension.

• The Laplacian kernel(also a shift-invariant kernel):

κ(x, y) = exp(−t ∥ x− y ∥)

where t is a parameter. The associated RKHS is of infinite dimension

Generally, there are countless kernels for every different kind of application. As mentioned before, one can also
construct his/her own kernel. This is possible with the following properties:

If

κ1(x, y) : XxX 7→ ℜ
κ2(x, y) : XxX 7→ ℜ
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are kernels, then

κ(x, y) = κ1(x, y) + κ2(x, y)

κ(x, y) = aκ1(x, y) , a > 0

κ(x, y) = κ1(x, y)κ2(x, y)

are also kernels.

1.2 Learning in Reproducing Kernel Hilbert Spaces

Now that we covered the basic theory that underlies kernel spaces, we may proceed to more practical issues.
Remember the four steps mentioned before, concerning the procedure in order to solve a problem with the help
of RKHS.

1. Map (Implicitly) the input training data to an RKHS.

2. Solve the linear estimation task in this space, involving the images

3. Cast the algorithm that solves for the unknown parameters in terms of inner product operations

4. Replace the inner products by a kernel evaluation

In order to exploit the kernel trick, we first have to find a way of writing the algorithm, so that none of the images
ϕ(x) are involved as individuals, but only in terms of inner products. This step, is the most crucial in order for
the procedure to be accomplished and there are various ways of dealing with it. We will present the Representer
Theorem and the solution it provides in several problems. Another possible solution is the use of the Support
Vector Machine method, which is not presented in this project.

1.2.1 Representer Theorem

Intuitively, the Representer Theorem, allows a minimizer f∗ of a regularized empirical risk function defined over
an RKHS to be presented as a finite linear combination of kernel products evaluated on the input data.
Theorem 1.2 [1]: Let Ω[0,+∞] 7→ ℜ be an arbitary strictly monotonic increasing function. Let also L : ℜ2 7→
ℜ ∪∞ be an arbitary loss function. Then each minimizer, f ϵ H, of the regularized minimization task

minfϵHJ(f) :=
N∑

n=1

L(yn, f(xn)) + λΩ(∥ f ∥2)

admits a representation of the form:

f(·) =
N∑

n=1

θnκ(·,xn)

The necessity of the regularizer is obvious, since we are working in very high dimensional spaces, and without it
the solution would suffer from overfitting since we are using only a finite number of training data samples. It is
also common to use a bias term, which turns out to improve the performance. However, despite these obstacles,
we managed to minimize the cost function with respect to f , using a finite set of parameters. In [1] a theorem
that provides the representation of f while using a bias term is presented. We are now ready to give an example(a
non-linear task), where the Representer theorem is applied, and the whole procedure of working in the RKHS is
presented.

Spyridon C. Pougkakiotis 14



Random Fourier Features

1.2.2 Kernel Ridge Regression

Denote as f the estimate of the unknown g(·). Furthermore, assume that f lies in a space H associated with the
kernel:

κ : ℜlxℜl 7→ ℜ

Also, assume that the data are generated by the following scheme:

yn = g(xn) + vn , n = 1, 2, ..., N , (yn,xn) ϵ ℜxℜl,

where un is noise.
Using the Representer Theorem, it is easily observed that:

f(x) =
N∑

n=1

θnκ(x,xn)

Then the coefficients that we are looking for, are optimizing the following expression:

θ
′
= argminθJ(θ)

J(θ) :=

N∑
n=1

(
yn −

N∑
m=1

θmκ(xn, xm)

)2

+ C⟨f, f⟩,

where C is the regularizer. Now let K be the following matrix:

K =

 κ(x1, x1) ... κ(x1, xN )
... ... ...

κ(xN , x1) ... κ(xN , xN )


Then the cost function can be rewritten as:

J(θ) = (y −Kθ)T (y −Kθ) + CθTKTθ,

where y = [y1, ..., yN ]T and θ = [θ1, ..., θN ]T , which is completely specified by the training points and the kernel
function. Hence we are ready to perform the optimization by taking the gradient of J(θ) with respect to θ and
then equate it to 0, which leads to:

(K + CI)θ
′
= y

and since K is invertible, we are able to find θ. After that, since we now know the value of θ, we can use the
form of f given by the representer theorem in order to find the prediction value y

′
.
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2. ADAPTIVE FILTERING ALGORITHMS

2.1 The Least Mean Squares Algorithm

In this chapter, we are going to provide various algorithms that can learn the statistics, of linear or non-linear
tasks, iteratively via the training set. We are going to present some adaptive filtering algorithms, such as the Least
Mean Squares Algorithm (LMS), which is capable of solving various linear regression tasks. The LMS algorithm,
adjusts the filter coefficients to minimize the cost function. This gradient descent scheme, requires a step size,
which may be fixed or not, and in order for the algorithm to converge, has to satisfy to following properties:∑

n

µ2
n <∞,

∑
n

µn −→ ∞ Convergence Conditions

Once the algorithm converges, it produces the solution of the problem. Unfortunately, in case where the statistics
of the input data change, the algorithm is not capable of tracking these changes. This is because the error term
will significantly increase and since after convergence, µn is very small, the increased value of the error will not
lead to changes of the estimate at time instant n. However, if one chooses a fixed step size, µ, the latter is not a
problem anymore, and the algorithm will be able to track changes in the underlying statistics, and hence to change
the estimate in which it has converged. Since this holds, one has to study its performance both in stationary and
non-stationary environments.

Now, lets provide the LMS algorithm, which is a simple, online, gradient descent method.
Algorithm 2.1-The LMS algorithm [1]:

• Initialize

θ−1 = 0 ϵ ℜl

Select a value for the step size µ

• For n=0,1,..., Do

en = yn − θT
n−1xn

θn = θn−1 + µenxn

• End For

2.2 The Quantized Kernel Least Mean Squares Algorithm

In this section, we are going to present the elegant KLMS algorithm, used for online learning in an RKHS.
It is an extension of the previous algorithm, provided in section 2.1, capable of solving non-linear regression tasks.
Despite the ease and the power of this algorithm, the number of unknown parameters, grows linearly with time,
and hence, the complexity increases proportionally with time iterations until it becomes unmanageable both in
time and memory. This problem has been discussed multiple times in this manuscript, and now, we will present
some methods to overtake it, methods we called before as ad-hoc techniques.

As stated in Chapter 1, when we are working in an RKHS, we consider x ϵ ℜl and an implicit mapping:

x 7→ ϕ(x) = κ(·,x) ϵ H

The task is to estimate a function f ϵ H, such that the expected risk is minimized, that is [1]:

J(f) =
1

2
E[|y − ⟨f, ϕ(x)⟩|2] (3)

Since our variable here is a function, while the space H is a space of functions, in order to optimize equation
(3), we have to differentiate with respect to f . The latter is possible, if we adopt the Frechet derivatives, where:
∇f ⟨f, g⟩ = g, for f, g ϵ H. After differentiating, it turns out that:

∇fJ(f) = −E[ϕ(x)(y − ⟨f, ϕ(x)⟩)]
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However, in online learning, we can’t work with random variables, and hence we have to replace them with our
given observations, which increase in every time step. As a consequence, we have to adopt an error that is updated
in every time instant, as well as an estimate, that is:

en = yn − ⟨fn−1, ϕ(xn)⟩,

so that a stochastic gradient is adopted:

fn = fn−1 + µnenϕ(xn) = fn−1 + µnenκ(·,xn),

where (yn,xn), n=1,2,... are the received observations, and µ being a step size. If we set f0 = 0 as our initial
prediction for the value of f, and use a fixed step size, µn = µ, then it is readily observed that :

fn = µ
n∑

i=1

eiκ(·,xi),

and the prediction takes place with the help of the kernel trick, such that:

y′n = ⟨fn−1, κ(·,xn)⟩ = µ
n−1∑
i=1

eiκ(xn, xi).

As stated before, the memory grows unbounded, since in every time instant, in order to predict y′ as well as
evaluate f , we are using all the given training samples. So, a sparsification rule has to be adopted. In [1], various
solutions are proposed, that employ either regularization or a growing dictionary. In the latter, instead of using all
the training samples up to time n, one can select a sufficient subset of them. This subset as well as the properties
which a point has to satisfy in order to be included in it, forms a dictionary. There are various strategies used to
decide whether a point has to be included in the dictionary or not. We will present only two at this point, called
the Novelty Criterion and The Coherence Criterion respectively.

• Novelty Criterion
Denote Dn−1 as the current dictionary and Mn−1 as its cardinality, where uk, k=1,2,...,Mn−1, are its
elements. Once a new observation arrives, we have to decide whether it is informative or not, so we take
its distance from all the point held in the current dictionary, that is:

d(xn,Dn−1) = minukϵDn−1∥xn − uk∥

If this distance is smaller than a threshold δ1 then the point is ignored and the dictionary remains the same.
If not, an error is computed, such that:

en = yn − y′n = yn − µ

Mn−1∑
i=1

eiκ(xn, ui)

Now, if |en| < δs , where δs is a threshold, then again the point is ignored. If not the point is inserted in
the dictionary.

• The Coherence Criterion
In this case, a new input point xn is added to the dictionary if its coherence is above a given threshold ϵ0,
that is :

maxukϵDn−1{|κ(xn,uk)|} > ϵ0

It can be proven that, by following this rule, the cardinality of the dictionary, Dn remains fixed as n −→ ∞.

Both these techniques have a common drawback. Once a data point is inserted into the dictionary, it remains
there forever, something that affects the performance of the algorithm in the case of non- stationary environments.
The following algorithm, uses a different technique, which changes the respective weights of the points in the
dictionary, constructing the quantized KLMS algorithm. Now, lets present the algorithm, where the quantization
technique is used :
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Algorithm 2.2-The quantized kernel LMS [1]:

• Initialization:
D = ∅,M=0
choose µ and the quantization level δ.
d(x,∅) := ∆ > δ,∀ x

• For n=1,2,..

if n=1 then

y′n = 0

else

y′n = µ
∑M

i=1 eiκ(xn, ui)

End if

en = yn − y′n

d(xn,D) = minukϵD∥xn − uk∥
if d(xn,D) > δ then

θ = µen

M =M + 1

uM = xn

D = D ∪ {xM}
θ = [θ, θn], the dimension of θ is increased

else

θl0 = θl0 + µen, Update the weight of the nearest point

End if

• End for

The algorithm returns the vector θ as well as the dictionary.
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2.3 The FOBOS Kernel Least Mean Squares Algorithm

In the previous section, we presented the Quantized KLMS algorithm, that employs a dictionary whose ele-
ments are inserted by checking the Novelty criterion and their weights are changed, depending on the input data.
However, in many situations, the statistics of the input data vary over time. Hence, it seems a good idea to
update the dictionary in an online way, by discarding the obsolete elements and adding appropriate ones. Such
a solution, is presented and analysed in [6], where the FOBOS-KLMS algorithm is presented and tested against
other versions of the KLMS algorithm. Generally, most adaptive filtering techniques with kernels, comprise two
steps at each iteration: the update of the dictionary and a parameter update step. Most of the existing strategies
are only able to insert new elements to the dictionary and some of them to forget the old ones, using a forgetting
factor. Hence, they cannot discard obsolete kernel functions, which may be a serious drawback in the case of
time-varying environments. In [6], an analytical study of the convergence behavior of the Gaussian least-mean
square algorithm in the case where the statistics of the dictionary elements only partially match the statistics of
the input data is presented. The latter property is quite useful in the case of non-stationary environments, and
that is confirmed by various experiments held in paper [6].

Firstly, lets provide some general knowledge about forward backward splitting method[6] (the technique which
the FOBOS KLMS algorithm is using). Consider the following optimization problem:

a∗ = argminaϵℜN {Q(a) = J(a) + λΩ(a)}, (4)

where J(·) is a convex empirical loss function with Lipschitz continuous gradient and Lipschitz constant 1
η0
. Ω(·)

is a convex regularizer and λ is the regularization constant. Our goal is to minimize the quadratic approximation
Q(a) at a given point, iteratively, which since Q(a) ≤ Qη(a,an), is:

Qη(a,an) = J(an) +∇J(an)
T (a− an) +

1

2η
∥a− an∥22 + λΩ(a) (5)

As stated in [6], (5) admits a unique minimizer an+1, such that:

an+1 = argminaϵℜN

{
λΩ(a) +

1

2η
∥a− a′

n∥22
}

(6)

where a′
n = an− η∇J(an). Now, (6), is called the proximity operator for the regularizer Ω(·), and is denoted as

ProxληΩ(·)(·). This scheme, inserts exact sparsity at every time instant. We obtain a global minimum over the

last equation, if 1
η is a Lipschitz constant of the gradient ∇J(a)[6].

Forward-Backward splitting is an efficient method for optimization over convex cost functions, using a sparse
regularization. In the sequel, we will present FOBOS-KLMS, an algorithm using the method presented before,
for stochastic optimization. Lets transform the problem in order to apply this method for the KLMS algorithm.
Consider the following problem:

a∗ = argminaϵℜN {Q(a) = ∥d−Ka∥22 + λΩ(a)}, (7)

where K is the gram matrix. Problem (7), can be solved using the forward-backward splitting technique. In [6],
two regularization techniques are presented but it suffices to adopt only one here, that is, the l1- norm function,
Ω(a) =

∑
m |a(m)|. Its proximity operator, for each of its entries, can be expressed as:

(Proxλη∥·∥1
(a))(m) = sign{a(m)}max{|a(m)| − λη, 0} (8)

The latter regularization is known as soft thresholding operator. Also, recall the Coherence Criterion mentioned in
section 2.2, concerning the entrance of an element into a dictionary. In the following, the FOBOS KLMS algorithm
is given in details. The algorithm employs sparsity promoting regularization and in addition, it has the ability to
discard obsolete elements from the dictionary, while using the Coherence Criterion in order to insert useful ones.
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Algorithm 2.3-FOBOS-KLMS [6]:

• Initialization:
Select the step size η
Select the parameters of the kernel(e.g. Gaussian : select σ)
Insert κ(·,u1) ,into the dictionary
a1 = 0

• for n = 1, 2, ..., do

if (maxm=1,...,M |κ(un,uωm
)| > µ0) - Coherence Criterion

Compute : κω,n = [κ(un,uω1), ..., κ(un,uωM )]T

a′
n+1 = a′

n + ηenκω,n

else if (maxm=1,...,M |κ(un,uωm
)| ≤ µ0)

M = M + 1;

Insert κ(·,un) into the dictionary

Compute : κω,n = [κ(un,uω1), ..., κ(un,uωM )]T

a′
n+1 =

(
a′
n

0

)
+ ηenκω,n

end if

for i = 1, ...,M

Proxλη∥·∥1
(a)(m) = sign{a(m)}max{|a(m)| − λη, 0}

if (an(m) = 0 )

Remove κ(·,uωm) from the dictionary (M = M - 1)

end if

end for

The solution is given as:

ψ(un) =

M∑
m=1

amκ(un,uωm)

• end for

In the sequel, we are going to provide an example of chaotic series, where the variance of the input data is
changed throughout the learning phase! Then, we are going to compare the FOBOS-KLMS, and the QKLMS
algorithm, over the mentioned series. It is expected that both algorithms achieve similar error floors, while the
former maintains a smaller dictionary, without being affected by the change in the underlying statistics in the
input data. The following example was taken from [6], as well as the parameters of the FOBOS-KLMS algorithm.
The value of the variance of the Gaussian Kernel, is :σ = 0.02. Consider the following problem:
• Example 2.1:

y(n) =
y(n− 1)

1 + y2(n− 1)
+ u3(n− 1),

while,
d(n) = y(n) + z(n),

where the output signal y(n) is corrupted by a zero-mean i.i.d. Gaussian noise z(n), with variance σ2
z = 10−4. The

input sequence u(n) was randomly generated from a zero-mean Gaussian distribution with a standard deviation
equal to : σu = 0.15 for the first half samples, while σu = 0.35 for the rest (this is the change in the underlying
statistics of the input data). The length of the sequence was set to: N = 4000. The Gaussian kernel’s (which was
used in both algorithms) bandwidth, σ, was set to 0.02 for the FOBOS while 2 for the QKLMS. The parameters of
the FOBOS-KLMS were: step size η = 0.01 , coherence criterion threshold µ0 = 0.01, the regularization constant
λ = 0.000001. The parameters of the QKLMS were: step size µ = 1, quantization size q = 1. One can observe in
figure 2.1 that the obtained MSE of the QKLMS, is quite better than the one achieved by the Quantized-KLMS
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Figure 2.1:Simulations of the FOBOS-KLMS versus the Quantized-KLMS algorithm. The input data follow the Example 2.1. The
results are averaged over 200 runs.The horizontal line in the figure, represents the approximation of the steady-state MSE.

Figure 2.2:Simulations of the FOBOS-KLMS versus the Quantized-KLMS algorithm. The input data follow the Example 2.1. The
results are averaged over 200 runs. The horizontal line in the figure, represents the mean number of elements held in the dictionary
at the respective time instant.

algorithm. Concerning the convergence properties, both algorithms achieve similar scores. However, the most
interesting fact can be seen in figure 2.2, where the size of the dictionary of the respective algorithms is plotted,
and it is averaged over 200 runs. One can observe, that the FOBOS-KLMS has more elements in the dictionary
compared to the QKLMS, despite the fact that it discards the obsolete elements. Hence, it is readily observed
that the regularization taking place in the FOBOS is not that important.

2.4 The standard RLS algorithm

Since our discussion in this Chapter concerns the adaptive filtering algorithms, we will include one of the most
popular linear algorithms of this type, known as Recursive Least Squares Algorithm, which will be revisited in
Chapter 3, in order to transform it into a non-linear one, using the Random Fourier Features technique. This
algorithm minimizes a linear least squares cost function related to the input signal, and does not aim in reducing
the mean square error, such as in the LMS algorithm. It is worth mentioning that RLS exhibits extremely fast
convergence, however with high computational complexity.

• The Recursive Least-Squares Algorithm

The RLS is a recursive online algorithm. Its main goal is solving the LS problem in a more efficient way
than other general purpose solvers. This is possible, since the algorithm takes into advantage the special struc-
ture of its covariance matrix. The algorithm, is also able to deal with time varying environments, something
that will also be presented here. We will assume that time starts at instant n=0, and the received observa-
tions are (yn,xn), n = 0, 1, 2, .... So the input data can also be presented through an input matrix, that is:
XT = [x0,x1, ...,xn]. In order for the algorithm to be able to deal with time-varying environments, we have
to include a forgetting factor, 0 < β ≤ 1. The latter, makes it possible for the algorithm to slowly forget past
data samples, by reducing their weight, so that the algorithm is able to track changes in the underlying statistics.
Initially, where n < l−1, the input matrix is not invertible, since its rank is less that l. If n > l−1, it can become
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of full rank. All the arguments stated here, lead to the following least-squares scheme:

θn = arg minθ

( N∑
i=0

βn−1(yi − θTxi)
2 + λβn+1∥θ∥2

)
, (9)

where β is a user defined parameter. The regularization parameter is also time-varying, since for large values of
n, the ipnut matrix is invertible and hence no regularization is required.

By minimizing (9), with respect to θ we end up in [1]:

Φnθn = pn,

where

Φn =
n∑

i=0

βn−ixix
T
i + λβn+1I

and

pn =
n∑

i=0

βn−ixiyi

After some algebra, one reaches the following relations:

Φ−1
n = β−1Φ−1

n−1 − β−1Knx
T
nΦ

−1
n−1

Kn =
β−1Φ−1

n−1xn

1 + β−1xT
nΦ

−1
n−1xn

,

where Kn is known as the Kalman Gain. Let Pn = Φ−1
n , then after some operations provided in [1]:

Kn = Pnxn

Now the time updating of θn turns out to be:

θn = θn−1 +Knen,

where
en := yn − θn−1xn

We are now ready to present the algorithm:
Algorithm 2.4-The Standard RLS [1]:

• Initialization
θ−1 = 0
P−1 = λ−1I, where λ > 0 is a user -defined parameter
Choose β

• For n = 0, 1, 2...Do

en = yn − θT
n−1xn

zn = Pn−1xn

Kn = zn
β+xT

nzn

θn = θn−1 +Knen

Pn = β−1Pn−1 − β−1Knz
T
n

• End For

(A convergence analysis concerning the standard RLS can be found in [8])
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2.5 The Kernel RLS algorithm

Now lets perform the analysis held in the previous section, in the framework of the Reproducing Kernel Hilbert
Spaces, presented in Chapter 1. The standard RLS algorithm is used to train a linear regression model. Now in
the case of a non-linear one, we have to minimize the following cost function:

L(w) =
n∑

i=1

(
f ′(xi)− yi

)2

=∥ ΦT
nw − yn∥2, (10)

where yn = (y1, ..., yn)
T and Φn = (ϕ(x1), ..., ϕ(xn))

T , are the feature maps (in the RKHS) of the input data.
The first thought is to minimize (10) with respect to w, as we did in the case of the standard RLS, using the
pseudo-inverse of Φn, however the feature space may be of infinite dimension, making the matrix manipulation
prohibitive. Despite this difficulty, we are able to express w as a linear combination of some centres in the RKHS,
with the feature maps obtained from the training samples, that is:

wn =

n∑
i=1

aiϕ(xi) = Φna, (11)

where a = (a1, ..., an)
T . By substituting (11) in (10), one ends up in:

L(a) = ∥Kna− yn∥2

One could say that the latter can easily produce the minimizer, an = K−1
n yn, but in fact this is extremely difficult

for large datasets, due to the enormous time and space complexity of storing K, estimating a and evaluating the
obtained points. Also, overfitting is a possible problem, as well as K is numerically unstable [8]. Hence, as we
did in the case of the KLMS, a sparcification technique has to be adopted, in order for the algorithm to work
properly. The idea is the same as in the KLMS case, since we use a dictionary holding information from certain
training points and not all of them. Technically, we use the following property provided in [7]:

wn = Φnan ≈ Φ′
nA

T
nan = Φ′

na
′
n,

where a′
n = AT

nan is a vector of m ”reduced” coefficients. Then the loss function becomes:

L(a′) = ∥ΦT
nΦ

′
na

′ − yn∥2 = ∥AnK
′
na

′ − yn∥2

Now lets describe the use of the dictionary. First we have to use the user-defined parameter v. Then:

• If δn ≤ v then Dn = Dn−1, mn = mn−1(the cardinality of the dictionary) and K′
n = K′

n−1.

Update Equations In this case :Only the matrix A changes: AT
n = [An−1,an]

T . Defining Pn = (AT
nAn)

−1

we end up with[7]:

Pn = Pn−1 −
Pnana

T
nPn−1

1 + aT
nPn−1an

and the recursive update for a′ becomes:

a′
n = a′

n−1 + (K ′
n)

−1qn

(
yn − k′

n−1(xn)
Ta′

n−1

)
,

where qn = Pn−1an

1+aT
nPn−1an

.

• If δn > v, xn is added to the dictionary (Dn = Dn−1 ∪ {xn}).
Update Equations In this case:

K′
n =

(
K′

n−1 k′
n−1(xn)

k′
n−1(xn)

T knn

)
⇒

K′−1
n =

1

δn

(
δnK

′−1
n−1 + a′

na
′T
n −a′

n

−a′T
n 1

)
Also:

An =

(
An−1 0
0T 1

)
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and

Pn =

(
Pn−1 0
0T 1

)
Finally, the update rule for a′ will be:

a′
n =

(
a′
n−1 − a′

n

δn
(yn − k′

n−1(xn)
Ta′

n−1)
1
δn
(yn − kn−1(xn)

Ta′
n−1)

)
,

where a′T
n K′

n−1 = k′
n−1(xn)

T . We are now ready to present the KRLS algorithm. (For a more detailed
view in the latter, one can look at [7], where the analysis was taken from)

Algorithm 2.5-The Kernel RLS [7]:

• Initialization
K′

1 = k11,K
′−1
1 = [ 1

k11
]

a1 = y1

k11
,P1 = [1],m = 1

Choose parameter v

• For n = 2, 3, ... Do

Compute k′
n−1(xn)

an = K′−1
n−1k

′
n−1(xn)

δn = knn − k′
n−1(xn)

Tan

If (δn > v) -add xn to the dictionary

Dn = Dn−1 ∪ {xn}
Compute K′−1

n with a′
n = an

Compute Pn, an

m = m+ 1

else -dictionary unchanged

Dn = Dn−1

qn = Pn−1an

1+aT
nPn−1an

Compute Pn,an

• End For

The algorithm returns the vector an as well as the dictionary.

Example 2.2:
In this example, the following scheme is adopted (which is a non-linear regression task):

yn = wT
0 xn + 0.1(wT

1 xn)
2 + ηn,

where ηn are zero-mean i.i.d. Gaussian noise samples with σn = 0.05, and the coefficients of the vectors w0,w1

ϵ ℜ5 are i.i.d. samples drawn from N (0, 1). We are going to compare the results of the Engel Kernel RLS and
the Quantized KLMS. For the former, the following parameters were used: the sparsification parameter was set
to 0.0005, and the Gaussian Bandwidth σ was set to 5, while for the latter, the Gaussian Bandwidth was also set
to 5, while the quantization threshold q was set to 0.01. One can see in Figure 2.3, that KRLS achieves much
better MSE as well as faster convergence, however in the expense of a more complicated algorithm.
• Expample 2.3:
We adopt the following chaotic series model :

dn = un + 0.5un − 0.2dn−1 + 0.35dn−1

ϕ(dn) =

{ dn

3(0.1+0.9d2n)1/2
dn>0

−d2n(1−exp(0.7dn))

3 dn<0

yn = ϕ(dn) + ηn,

where ηn is zero mean i.i.d. Gaussian noise with σn = 0.001, un is also zero-mean i.i.d. Gaussian with σ2
u = 0.0156

and un = 0.5un + η′n, where η
′
n is also i.i.d Gaussian noise with σ2 = 0.0156. The kernel parameter σ was set to

0.05 for the QKLMS while 1 for the KRLS. The step size µ was set to 1. Finally the sparsification parameter for
the KRLS was set to 0.00001 while the quantization parameter for the QKLMS was set to q = 0.01. Figure 2.4
shows the MSE achieved by the algorithms over 100 runs. It is readily observable that the KRLS achieves better
MSE while both algorithms achieve similar convergence speed.
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Figure 2.3:Simulations of the KRLS versus the Quantized-KLMS algorithm. The input data follow the Example 2.2 over 15000
samples. The orthogonal line in the figure, represents the MSE. In this image, one can observe, that KRLS achieves much better error
floor as well as faster convergence, in the expense of a more complicated algorithm.

Figure 2.4:Simulations of the Engel’s Kernel RLS versus the Quantized-KLMS algorithm. The input data follow the Example 2.3 over
1000 samples. The orthogonal line in the figure, represents the MSE. In this image, one can observe, that KRLS achieves much better
error floor as well as similar convergence speed, in the expense of a more complicated algorithm.
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3. RANDOM FOURIER FEATURES

3.1 General theory of Random Fourier Features

In the previous discussion about the Reproducing Kernel Hilbert Spaces, we mentioned the computational obstacle
that occurs in real-time problems, where in every time instant, new input data are introduced to the algorithm
and hence, the complexity of the solution is constantly increasing. Various solutions to this problem have been
proposed, mainly comprising ad-hoc techniques. In this chapter, we are going to present an efficient and elegant
solution, which not only overtakes this problem, but it is also easy to understand and to extend to other situations.
But what exactly are the Random Fourier Features? Intuitively, the main idea behind this technique is that we map
the input data into a randomized low-dimensional feature space, in which the initial non-linear problem, is linear
and we can apply the existing fast linear methods [9]. But, what is the difference with the implicit mapping into
an RKHS? Well, in this case, we apply an explicit mapping to the new space, the new space is low-dimensional
and the randomized features are designed so that the inner products of the mapped data are approximately equal
to those in the feature space defined by a shift-invariant kernel. Finally, is the problem of the computational
complexity solved? In fact, the latter is true, because the new low-dimensional space, has a fixed, finite dimension.
Hence, the solution, has a fixed size, which is independent of the number of input data.

As mentioned before, methods that operate on the kernel matrix of the data scale poorly with the size of the
training dataset. On the contrary, algorithms for linear SVR’s operate on the covariance matrix rather than in the
kernel matrix of the training data, which produces a complexity proportional to the square of dimensionality of
the space in which we are working. The following method, combines the advantages both of non-linear and linear
approaches. This method competes with various state-of-the-art kernel-based classification and regression algo-
rithms[9]. More specifically, we apply an explicit mapping of the input data to a new low-dimensional Euclidean
inner-product space, using a randomized feature map: z : ℜd 7→ ℜD, so that the inner product between a pair of
mapped data points approximates their kernel evaluation, that is

κ(x, y) = ⟨ϕ(x), ϕ(y)⟩ ≈ z(x)T z(y)

The first question that has to be addressed, is the needed dimension of the new low-dimensional space, so that
the non-linear problem is transformed into a linear one. In [9], an analysis is provided showing that a feature space
that uniformly approximates popular shift-invariant kernels κ(x− y) to within ϵ has a dimension :

D = O(dϵ−2log(
1

ϵ2
)),

providing a good performance even with a lower dimension than the lower bound provided previously. Also, another
advantage of this method, is that it evaluates the machine in O(D ∗ d) operations. That holds true, because,
once we learn the hyperplane w, the linear machine can be evaluated simply by an inner product operation, that
is: f(x) =wT z(x), in contrast to the case of the RKHS, where one evaluates the machine, with the help of the

Representer Theorem and the kernel trick, i.e. f(x) =
∑N

i=1 ciκ(xi, x), which requires O(Nd) operations in the
case of non-sparse machines.

In [9], two randomized feature maps are provided for approximating shift invariant kernels. In this manuscript,
only the first one will be presented, which consists of sinusoids randomly drawn from the Fourier transform of the
kernel function we want to approximate.
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• The Random Fourier Features Method

The theorem in which this method relies follows:

Theorem 3.1-Bochner’s Theorem [9]: A continuous kernel κ(x, y) = κ(x − y) on ℜd is positive definite
if and only if κ(δ) is the Fourier transform of a non-negative measure.

What the previous theorem guarantees, is that if κ(δ) is properly scaled, its Fourier transform p(ω) is a proper
probability distribution.

The set of random features consists of random Fourier bases, cos(ωTx+ b), where ω ϵ ℜd and b ϵ ℜ. What we
are doing, is that we project data points into a random chosen line and then we pass the resulting scalar through
a sinusoidal function. Now we have to address each component of this projection. Lets start with ω. Assume a
given, shift invariant kernel, which we want to approximate, κ(x, y) = κ(x−y). Finally we have x,y ϵ ℜD. Now,
p(ω) is the Fourier transform of κ(δ), that is:

p(ω) =
1

2 ∗ πD

∫
ℜD

κ(δ)e−iωT δdδ : D − dimensional Fourier transform

and

κ(x− y) = k(δ) =

∫
ℜD

p(ω)eiω
T (x−y)dω : (12)Inverse D − dimensional Fourier transform

Now assume that, ζω(x) = eiω
Tx, then:

κ(x− y) = Eω[ζω(x)ζ
∗
ω(y)] (13) (since p(ω) is a probability distribution, )

where the random variable ω follows the pdf p(ω).
Since, κ(δ) and p(ω) are both real, the integral (12) converges when the complex exponentials are replaced with
cosines.Therefore , we expect to obtain a real-valued mapping that satisfies the condition (13). So, we set:

Zω(x) =
√
2cos(ωTx+ b),

where ω is drawn from p(ω) and b is drawn uniformly from [0, 2π]. Then,

κ(x− y) = Eω,b[Zω(x)Zω(y)]

Proof:

κ(x− y) =

∫
ℜD

p(ω)eiω
T (x−y)dω =

∫
ℜD

p(ω)cos(ωT (x− y))dω + i

∫
ℜD

p(ω)sin(ωT (x− y))dω

The second term of the last equation, is equal to zero for real kernels. Also:

Zω(x)Zω(y) = 2cos(ωTx+ b)cos(ωTy + b) = cos(ωT (x+ y) + 2b) + cos(ωT (x− y))

Hence,

Eω,b[Zω(x)Zω(y)] = Eω,b[cos(ω
T (x+ y) + 2b)] + Eω,b[cos(ω

T (x− y))] =

2π∫
0

∫
ℜD

1

2π
p(ω)cos(ωT (x+ y) + 2b)dωdb+ κ(x− y) =

=

2π∫
0

1

2π
p(ω)

∫
ℜD

cos(ωT (x+ y) + 2b)dωdb+ κ(x− y) = κ(x, y)

Spyridon C. Pougkakiotis 27



Random Fourier Features

Now that all the theoretical parts are given, we are ready to produce a method, which one has to apply, in order
to use this technique in various problems.

Method 3.1-Random Fourier Features:

• Select a shift invariant kernel (e.g. Gaussian Kernel) and the respective parameters.

• Calculate the Fourier transform p(ω) of κ(·, ·).

• Choose D random elements, ω1, ω2, ..., ωD from p(ω)

• Choose D random elements, b1, b2, ..., bD uniformly from [0, 2π]

• Map input data with the following mapping:

x 7→ Zω(x) =

√
2√
D


cos(ωT

1 x+ b1)
cos(ωT

2 x+ b2)
.
.
.

cos(ωT
Dx+ bD)


κ(x, y) ≈ Zω(x)Zω(y)

3.2 The Random Fourier Features LMS

In this section, we are going to provide a linearized from of the KLMS algorithm, based on the Random Fourier
Features method [10], given in section 3.1. Although the sparsification techniques mentioned in the previous
section, concerning the KLMS, KRLS, etc. algorithms reduce the size of the solution significantly, they require
many computational resources, since at every time instant, a sequential search over all the elements of the dic-
tionary has to take place, so that the new center xn is added or not to the latter. Hence, it makes the algorithm
slower, something that becomes a problem when the initial input space is of large dimension. Furthermore, as
indicated and before, such techniques are theoretically poor, as they are built around ad-hoc arguments, which
make the theoretical analysis difficult. Finally, another worth to be mentioned argument, is that distributed learn-
ing with the previous algorithm gets quite difficult as the dictionary has to be exchanged among the network nodes.

As mentioned in section 3.1, we first have to define the following mapping:

Zω : ℜd 7→ ℜD

, such that:

Zω =

√
2

D


cos(ωT

1 x+ b1)
cos(ωT

2 x+ b2)
.
.
.

cos(ωT
Dx+ bD)

 ,

where ω1, ω2, ..., ωD are drawn randomly from p(ω) and b1, b2, ..., bD are drawn uniformly from [0, 2π]. Also,
we will adopt the Gaussian kernel (which is a shift-invariant kernel), that is:

κ(x, y) = e−
∥x−y∥2

2σ2

The Fourier transform of the Gaussian kernel is:

p(ω) =

(
σ√
2π

)D

e−
σ2∥ω∥

2
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In fact, the RFFLMS, is like the linear LMS, but with different training data, i.e. {(Zω(xn),yn), n=1,2,...}. Once
we compute, the fixed sized hyperplane θ, the prediction is held easily just by a simple inner product operation,
that is:

y′n = θTZω(xn), ∀ xn,

with the error term being computed as :

en = yn − θT
n−1Zω(xn),

while the gradient scheme adopted is:
θn = θn−1 + µenZω(xn)

as in order to find θ ϵ ℜD, we have to minimize the MSE: Jn = E[e2n] at each time instant n. Since we have
described the Random Fourier Features in previous section, we are now ready to provide the algorithm:
Algorithm 3.1-The RFFLMS [10]:

• Initialization
Set θ = 0
Select the step size µ
Select the dimension of the new Euclidean space,D.
Select the kernel parameters(σ)
Draw D samples from p(ω) and D scalars uniformly for [0, 2π]

• For n=1,2,...

Zω(xn) =
√
( 2
D )cos(ωT xn + b)-Apply the explicit map

en = yn − θT
n−1Zω(xn)-Compute the error

θn = θn−1 + µenZω(xn)

• End For

It can easily be seen, that after n-1 steps, the algorithm will give a solution,

θ = µ
n−1∑
i=1

eiZω(xi)

which is approximately equal to the output of the standard KLMS, since

y′n = µ
n−1∑
i=1

eiZω(xi)Zω(xn) ≈ µ
n−1∑
i=1

eiκ(xi,xn)

As a consequence, in order to study the convergence properties, one has to assume that the data pairs are
generated as a linear combination of some kernel centres in the respective RKHS, that is:

yn =
M∑

m=1

amκ(cm,xn) + ηn,

where c1, ..., cM are fixed centres, xn are zero-mean i.i.d. samples drawn from a Gaussian with covariance matrix
σ2
xId, and ηn are i.i.d. noise samples from N (0, σ2

n)[10]. Then[10], it can be proved that the optimal solution is
given by:

θopt = argminE[e2n] = ZCa+R−1
zz E[η′

nZω(xn)],

where ZC = (Zω(c1), ..., Zω(cM ))T , a = (a1, ..., aM )T , Rzz = E[Zω(xn)Zω(xn)T ] and η′
n is the approximation

error between the noise-free component of yn and its approximation, using the Random Fourier Features. It is
worth mentioning that the latter error, can be made very small, if the value of D (the dimension of the new
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Figure 3.1:Graph taken from [10]. Simulations of the RFFLMS for various values of D, applied in data pairs generated by the
linear combination of some kernel centres. The results are averaged over 100 runs. The horizontal line in the figure, represents the
approximation of the steady-state MSE given in theorem 3.2.

Euclidean product space) is sufficiently large [9]. Now, lets provide a Lemma, giving the sufficient condition in
order for Rzz to be positive definite, and hence invertible. This analysis is provided in [10].

Lemma 3.1 [10]: Consider a selection of sammples, ω1, ..., ωD, drawn from the Fourier Transform of the
Gaussian Kernel, such that ωi ̸= ωj , for any i ̸= j. Then the matrix Rzz = E[Zω(xn)Zω(xn)

T ] is strictly
positive definite.

The eigenvalues of Rzz are very important in the convergence study of the algorithm. Since it is strictly positive
definite, its eigenvalues satisfy: 0 < λ1 ≤ ... ≤ λD. Applying an analysis similar to the one in the standard
LMS[10], the following theorem can be proved:

Theorem 3.2 [10]: For datasets generated by the linear combinations of some kernel centres, we have:

• If the step update parameter satisfies 0 < µ < 2
λD

, then RFFLMS converges in the mean, i.e. E[θn−θopt] →
0

• The optimal MSE (which is achieved when one replaces θn with θopt )is given by:

Jopt
n = σ2

n + E[η′
n]− E[η′

nZω(xn)]R
−1
zz E[η′

nZω(xn)
T ].

For large enough D, we have Jopt
n ≈ σ2

n

• The excess MSE is given by Jex
n = Jn − Jopt

n = trace(RzzAn), where An = E[(θn − θopt)(θn − θopt)
T ]

• If the step update parameter satisfies 0 < µ < 1
λD

, the An converges. For large enough n and D, we can

approximate An’s evolution as An+1 ≈ An − µ(RzzAn + AnRzz) + µ2σ2
nRzz. Using this model, we can

approximate the steady-state MSE

Now, recall the Quantized KLMS algorithm, given in section 2.2. We are going to present some examples
that compare the RFFLMS algorithm with the QKLMS as well as the FOBOS-KLMS, given that the same kernel
(Gaussian) is applied, with the same parameter (σ), as well as the same fixed step size µ. The q in the QKLMS
(which highly controls the achieved MSE) was chosen so that it has a value close to the optimal, in [10], while
the parameter D of RFFLMS, which is also highly correlated to the performance of the algorithm was chosen so
that the lowest steady-state MSE is achieved.

• Example 3.1:
The first example is illustrated in Figure 3.1, and it is worth mentioning that the attained MSE is close to the
approximation given in Theorem 3.2! The input vectors as well as the noise are i.i.d. Gaussian samples, drawn
from N (0, I) and N (0, 0.1I) respectively, so as the parameters of the expansion, which were drawn from N (0, 25).
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Figure 3.2: Graph taken from [10]. The specifics of the problem are presented in the Example 3.2. MSE (in Decibel) of the QKLMS
is denoted with the red colour, while RFFLMS’s with the blue. The results are averaged over 1000 runs.

Figure 3.3: Graph taken from [10]. The specifics of the problem are presented in the Example 3.3. MSE (in Decibel) of the QKLMS
is denoted with the red colour, while RFFLMS’s with the blue. The results are averaged over 1000 runs.

The kernel parameter was, σ = 5, while the step size was µ = 1. The Figure shows the evolution of the MSE for
100 realizations of the experiment.

• Example 3.2:
In the second example, the following scheme is adopted (which is a non-linear regression task):

yn = wT
0 xn + 0.1(wT

1 xn)
2 + ηn,

where ηn are zero-mean i.i.d. Gaussian noise samples with σn = 0.05, and the coefficients of the vectors w0,w1

ϵ ℜ5 are i.i.d. samples drawn from N (0, 1). The kernel parameters as well as the step size are the same as in
Example 3.1. The quantization parameters ϵ for the QKLMS is set to ϵ = 5 (average dictionary size M=100).
Finally the dimension of the new Euclidean product space used by the RFFLMS is D=300. Figure 3.2 shows the
evolution of the MSE for both QKLMS and RFFLMS running 1000 experiments over 15000 samples.

• Example 3.3:
Finally, we adopt the following chaotic series:

dn =
dn−1

1 + d2n−1

+ u3n−1, yn = dn + ηn,

with ηn and un being zero-mean i.i.d. Gaussian with σn = 0.01 and σu = 0.15 respectively. The kernel parameter
is set to σ = 0.05 while the step size is µ = 1. Initialization was d1 = 1. In Figure 3.3 the resulted MSE for
both QKLMS and RFFLMS is presented over 1000 experiments with 500 samples. The ϵ = 0.01 for the QKLMS,
while the dimension of the space used for the explicit mapping in the RFFLMS was set to D = 100 (number of
random Fourier coefficients).

As it is easily observed in the examples, the proposed algorithm exhibits similar convergence performance to
the standard QKLMS, as well as MSE, while as can be seen in Algorithm 3.1, it has a much easier implementa-
tion (due to its simplicity) while its ”linear” characteristics make its generalization, to other settings, quite easy.
Recall now the Example 2.1 provided in section 2.3. One can observe that the RFFLMS, exhibits better error
floors as well as convergence speed than the FOBOS-KLMS, while, it is way easier to implement, since it has a
fixed solution! Figure 3.4 compares FOBOS-KLMS,QKLMS and RFFLMS.

3.3 The RFF RLS algorithm
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Figure 3.4: The specifics of the problem are presented in the Example 2.1. MSE(in Decibel) of the FOBOS-KLMS is denoted with
the red colour, QKLMS’s with Cyan while RFFLMS’s with the blue. The results are averaged over 200 runs, while the input data
were 400.

We are now ready to extend the method of the Random Fourier Features to the online RLS algorithm. It can
readily be seen that the KRLS algorithm provided in section 2.5, is highly complex to implement while having the
same problem that occurs in the KLMS algorithm, when the input dataset is large. Due to the latter, as we saw
and before, a sparcification technique was introduced to the algorithm (e.g. a dictionary). One can compare the
the standard RLS algorithm with the KRLS one. The former is way much easier to understand and implement,
while its analysis is held with more simple arguments. Hence, it is now obvious why we present the ”linearized”
KRLS algorithm with the help of the Random Fourier Features, which takes into advantage the simplicity of the
standard RLS, as well as the strengths of the non-linear methods.

Once again, we are going to use the Method 3.1, provided in the section 3.1. So we have to define the following
mapping:

Zω : ℜd 7→ ℜD,

such that:

Zω =

√
2

D


cos(ωT

1 x+ b1)
cos(ωT

2 x+ b2)
.
.
.

cos(ωT
Dx+ bD)

 ,

where ω1, ...,ωD are drawn randomly from p(ω)(with p(ω) being the Fourier transform of the Kernel function
we chose) and b1, ..., bD are drawn uniformly from [0, 2π]. In our paradigm, we are going to use the Gaussian
Kernel, i.e.:

κ(x, y) = e−
∥x−y∥2

2σ2

Its Fourier Transform is:

p(ω) = (
σ√
2π

)De−
σ2∥ω∥

2

In this case, as it was in the case of the RFFLMS algorithm, the RFFRLS, is exactly like the linear RLS, but
with different training data, i.e. {(Zω(xn), yn), n = 1, 2...}. Once we compute the fixed sized hyperplane θ, the
prediction is once again held easily just by a simple inner product operation, that is:

y′n = θTZω(xn), ∀ xn

Now, recall the analysis of the standard RLS.As we stated before, the RFFRLS algorithm, is exactly the same,
but with different training data. So we can just apply the new dataset, into the already exported equations from
the analysis of the standard RLS. Then the error term is being computed as:

en = yn − θT
n−1Zω(xn)

while the Kalman Gain, is:

Kn =
zn

β + Zω(xn)T zn
,

where
zn = PnZω(xn)

Now the update of θ will become:
θn = θn−1 +Knen
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Figure 3.5: Simulations on data pairs generated as described in (14). The RFFRLS is denoted with the green colour, the KRLS
provided in [11], with black while the QKLMS with red. One can easily observe that the former converges after 2000 data samples,
while the KRLS after about 4000. The horizontal line in the figure, represents the approximation of the steady-state MSE.

while the update of Pn is:
Pn = β−1Pn−1 − β−1Knz

T
n

And, that’s all we had to do. Now we are ready to derive the algorithm !
Algorithm 3.2-The RFFRLS:

• Initialization
Set θ = 0
Select a value for the forgetting factor β-A good value is 0.999
Select a value for the regularization parameter λ-A good value is 0.0001
Select the dimension of the new Euclidean space, D
Select the kernel parameters(σ)
Draw D samples for p(ω) and D scalars uniformly from [0, 2π]
Set P0 to the zero matrix of appropriate dimensions

• For n=1,2,...

Zω(xn) =
√

2
D cos(ω

Txn + b)

en = (yn − θTZω(xn))

zn = Pn−1zn

Kn = zn
β+Zω(xn)T zn

θ = θ +Knen

Pn = β−1Pn−1 − β−1Knz
T
n

• End For

It is worth mentioning that the RFFRLS, is way much easier to understand than the KRLS provided in sec-
tion 2.5. The only thing we have to do, is to replace the input data, in the equations of the standard RLS, with
their Random Fourier Features. Now, recall the KRLS algorithm provided in [11]. We are going to present an
example, comparing the KRLS, the QKLMS and the RFFRLS algorithm, given the same kernel parameter (σ) as
well as the same kernel (Gaussian). The parameter v, for the sparsification in the KRLS was set to v = 0.0005
while concerning the RFFRLS: the forgetting factor β was set β = 0.9995, the dimension of the new Euclidean
product space D, was set to D = 300 while the regularization parameter λ was set to λ = 0.0001. As can be seen
in Figure 3.5, the RFFRLS performs as good as the original KRLS tested on samples generated by:

yn = wT
0 xn + 0.1(wT

1 xn)
2 + ηn (14)

however, it converges almost at half time!
• Expample 3.4:
Finally, we adopt the following chaotic series model [10].

dn = un + 0.5un − 0.2dn−1 + 0.35dn−1

ϕ(dn) =

{ dn

3(0.1+0.9d2n)1/2
dn>0

−d2n(1−exp(0.7dn))

3 dn<0

yn = ϕ(dn) + ηn,
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Figure 3.6: Simulations on data pairs generated as described in Example 3.4. It is observed that the RFFRLS exhibits better MSE
however it has slower convergence speed.

where ηn is zero mean i.i.d. Gaussian noise with σn = 0.001, un is also zero-mean i.i.d. Gaussian with σ2
u = 0.0156

and un = 0.5un + η′n, where η
′
n is also i.i.d Gaussian noise with σ2 = 0.0156. The kernel parameter σ was set to

0.05 for the RFFLMS and the QKLMS while 1 for the RFFRLS. The step size µ was set to 1, while the beta for
the RFFRLS was set to 0.9995. Finally the regularization parameter λ for the RFFRLS was set to 0.00001, the
quantization parameter for the QKLMS was set to q = 0.01, while the number of random fourier coefficients for
the RFFLMS and the RFFRLS was set to D=200. Figure 3.6 shows the MSE achieved by those three algorithms
over 100 runs.
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4. KALMAN FILTERS

4.1 Linear Kalman Filter

This chapter focuses on solving estimation tasks, given that the we are working in a time-varying environment, that
is, the statistical properties of the input random variables may change as time moves forward. Such problems, can
be solved with the help of the so-called Kalman Filters, proposed by Rudolf Kalman [1], and will be presented in
this Chapter. Firstly, it suffices to present the linear Kalman Filters. Then we will be able to extend this technique,
in order to solve non linear tasks of this type, using the Reproducing Kernel Hilbert Spaces(RKHS). Finally, we
will propose an algorithm, using the Random Fourier Features technique, solving a non-linear estimation task with
time-varying statistics. The latter, amplifies the argument that the Random Fourier Features technique, can be
easily extended to a wide variety of problems, making the solution easier to implement as well as to understand,
using both the advantages of the linear and the non-linear methods.

A Kalman Filter, is an online (and hence a recursive) optimal estimator, minimizing the mean square error
of the estimated parameters, given that all noise is Gaussian. If the noise is not Gaussian, the Kalman Filter is
the best linear estimator. In recent years, Kalman Filters gain more and more attention due to their optimality
in a wide variety of problems as well as their ease to be understood and implemented. Now, lets formulate the
problem. Given two known matrices Fn ϵ ℜlxl, Hn ϵ ℜkxk and the following system:

xn = Fnxn−1 + ηn State Equation (15)

yn = Hnxn + vn, Output Equation (16)

where ηn,xn ϵ ℜl and vn,yn ϵ ℜk, the task is to estimate the values of the states xn given the output vectors
of the system yn. Also, ηn,vn are noise vectors known as process noise and measurement noise, respectively. As
mentioned in the previous paragraphs, the problem has time-varying statistics, which can readily be observed in
the State Equation, which provides the information related to the time-varying dynamics [1] of the system. The
previous model is known as the state-space model of yn. In order to find a time varying estimator, x′

n, in the
framework presented before, we have to adopt the following assumptions [1]:

E[ηnη
T
n ] = Qn, E[ηnη

T
m] = O for n ̸= m

E[vnv
T
n ] = Rn, E[vnv

T
m] = O for n ̸= m

E[ηnv
T
m] = O, ∀ n,m

E[ηn] = E[vn] = O, ∀ n

where O is the matrix with zero elements. The latter indicates that the measurement and the process noise are
uncorrelated while noise vectors at different time instants are also uncorrelated. Finally, we assume that matrices
Rn, Qn are known. Now, define the prior estimator as:

x′
n|n−1

which is the estimate of the state variable, given the observations up to time instant n − 1. Also, define the
posterior estimator as:

x′
n|n

which is the update of the prior estimator, after the observation yn is obtained. Furthermore, define the respective
error covariance matrix, for each time instant, that is:

Pn−1|n−1 = E[en−1|n−1e
T
n−1|n−1],

where en−1|n−1 = xn−1 − x′
n−1|n−1.

•Step 1 : Predict x′
n|n−1

Now, recall the state equation (15), and exclude the noise. Then, at each time instant we can predict the prior
estimator, using the previous posterior one, that is:

x′
n|n−1 = Fnx

′
n−1|n−1 (17)
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•Step 2 : Estimate Pn|n−1

Now, obtain the respective error covariance matrix,

Pn|n−1 = E[(xn − x′
n|n−1)(xn − x′

n|n−1)
T ] (18)

It is obvious, that xn is not known, hence one can use (17) and (15) to overtake this problem, since:

en|n−1 := xn − x′
n|n−1 = Fnxn−1 + ηn − Fnx

′
n−1|n−1 = Fnen−1|n−1 + ηn (19)

Hence,

Pn|n−1 = E[Fnen−1|n−1e
T
n−1|n−1F

T
n ] + E[Fnen−1|n−1η

T
n ] + E[ηne

T
n−1|n−1F

T
n ] + E[ηnη

T
n ] ⇒

Pn|n−1 = FnPn−1|n−1F
T
n +Qn (20)

•Step 3 : Estimate x′
n|n

At this point, we will adopt the following recursion:

x′
n|n = x′

n|n−1 +Knen, (21)

where
en := yn −Hnx

′
n|n−1

while matrix Kn is known as the Kalman gain. The latter, controls the amount of correction and it is computed
so that:

J(Kn) = E[eTn|nen|n] = trace(Pn|n) = trace(E[en|ne
T
n|n])

is minimized. However,
en|n = xn − x′

n|n−1 = xn − x′
n−1|n−1 −Knen ⇒

en|n = en|n−1 −Knen (a)

Thus,

J(Kn) = trace(E[en|n−1e
T
n|n−1]− E[en|n−1e

T
nK

T
n ]− E[Knene

T
n|n−1] + E[Knene

T
nK

T
n ]) ⇒

J(Kn) = trace(Pn|n−1)− trace(E[en|n−1e
T
nK

T
n ])− trace(E[Knene

T
n|n−1]) + trace(E[Knene

T
nK

T
n ])

Now, we are taking the gradient with respect to matrix K:

∇KJ(Kn) = −E[ene
T
n|n−1]− E[ene

T
n|n−1] + E[(ene

T
n + ene

T
n)K

T
n ],

and equate it to zero:
∇KJ(Kn) = 0 ⇔ E[ene

T
n|n−1] = E[ene

T
n]K

T
n ⇒

KnE[ene
T
n] = E[en|n−1e

T
n] (b)

Furthermore,

en = yn −Hnx
′
n|n−1 = Hnxn + vn −Hnx

′
n|n−1 = Hn(xn − x′

n|n−1) + vn ⇒

en = Hnen|n−1 + vn (c)

Thus,

Sn = E[ene
T
n] = E[Hnen|n−1e

T
n|n−1H

T
n ] + E[Hnen|n−1v

T
n ] + E[vne

T
n|n−1H

T
n ] + E[vnv

T
n ]

Sn = HnPn|n−1H
T
n +Rn (d)

Finally,
E[en|n−1e

T
n = E[en|n−1e

T
n|n−1H

T
n ] + E[en|n−1v

T
n ] = Pn|n−1H

T
n

So, from (b) ⇒
Kn = E[en|n−1e

T
n](E[ene

T
n])

−1 ⇒

Kn = Pn|n−1H
T
n S

−1
n (22a)

where
Sn = HnPn|n−1H

T
n +Rn (22b)
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•Step 4 : Estimate Pn|n(will be used in the next iteration)

Pn|n = E[en|ne
T
n|n] =

(a) E[en|n−1e
T
n|n−1]− E[en|n−1e

T
nK

T
n ]− E[Knene

T
n|n−1] + E[Knene

T
nK

T
n ] ⇒

Pn|n = Pn|n−1 −KnHnP
T
n|n−1 (23)

Now that all the equations are exported, lets provide the algorithm. In [1], some initial conditions are provided
that will also be adopted here, that is:

x′
1|0 = E[x1]

P1|0 = E[(x1 − x′
1|0)(x1 − x′

1|0)
T ] = Π0,

for some initial guess Π0.
Algorithm 4.1-Linear Kalman Filtering:

• Initialization

x′
1|0 = E[x1]

P1|0 = Π0

• For n = 1, 2, ...,Do

Sn = HnPn|n−1H
T
n +Rn

Kn = Pn|n−1H
T
n S

−1
n

x′
n|n = x′

n|n−1 +Kn(yn −Hnx
′
n|n−1)

Pn|n = Pn|n−1 −KnHnPn|n−1

x′
n+1|n = Fn+1x

′
n|n

Pn+1|n = Fn+1Pn|nF
T
n+1 +Qn+1

• End For

It can be observed that the Kalman filtering is the generalization of the optimal mean-square linear filtering, and
it converges to the latter in its steady-state, if the involved processes are stationary.
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4.2 Non-Linear Kalman Filter

In the non-linear case of the Kalman filter, it is obvious that there exist various models that one can choose. For
example, one can assume that the transition function in the state equation is non-linear, or that the transition
function is linear, while the measurement function is not. Also, one could adopt the problem where both these
functions are non-linear, etc. In this manuscript, we deal with the problem where the transition function is linear
and known, while the measurement function is non-linear and may be known or not. Hence, we end up in the
following model:

xn+1 = Fnxn +wn (24a)

yn = hn(xn) + vn (24b),

where F is the known transition matrix, of appropriate dimensions, wn is the process noise, while vn is the
measurement noise. Finally, hn(·) is an unknown non-linear function lying in an RKHS. In this chapter we will
analyse the algorithm derived from [13], which solves the aforementioned problem. Once one maps the hidden
states xn into an RKHS H, model (24) is transformed as follows:

xn+1 = Fnxn +wn (25a)

yn = ⟨hn, ϕ(xn)⟩H + vn (25b),

where Fn is known, while the non-linear function hn(·) is unknown. The assumptions concerning the noise are
those adopted in the previous section. Recall the 4 steps mentioned in the analysis of the linear Kalman filter.
Since the state model in problem (25), is the same as the one in the linear Kalman filter, the only equations that
change concern the Kalman gain as well as the error covariance updates [13]. The following analysis, is provided
in [13] in more detail. Also, recall the KRLS algorithm, provided in section 2.5. Since function h(·) is not known,
in [13], a hybrid algorithm is adopted, which comprises the KRLS algorithm.
Now, lets provide the new equations of the Kalman filter. In [14] and [13], is given that:

Kn = E[xn+1e
T
n]R

−1
e,n, (26)

where en = yn − y′
n and Re,n = E[ene

T
n]. Then according to the orthogonality principle:

Re,n = E[ene
T
n] = E[(hn(xn)− hn(xn|n−1) + vn)(hn(xn)− hn(xn|n−1) + vn)

T ]

= E[(hn(xn)− hn(xn|n−1))(hn(xn)− hn(xn|n−1))
T ] + E[vnv

T
n ] =

E[(hn(xn)− hn(xn|n−1))(hn(xn)− hn(xn|n−1))
T ] +Rn (27)

Also,
E[xn+1e

T
n] = FnE[xne

T
n] + E[wne

T
n], (28)

where
E[xne

T
n] = E[(xn − xn|n−1 + xn|n−1)e

T
n] = E[(xn − xn|n−1)e

T
n]

= E[(xn − xn|n−1)(hn(xn)− hn(xn|n−1))
T ] (29)

since, (xn|n−1⊥eTn) and ((xn−xn|n−1)⊥vn). In addition, E[wne
T
n] = 0. Furthermore, we know that Pn|n−1 =

E[(xn − xn|n−1)(xn − xn|n−1)
T ]. By taking the Taylor approximation of hn(xn), around xn|n−1, that is:

hn(xn) = hn(xn|n−1 + (xn − xn|n−1)) ≈ hn(xn|n−1) +
∂hn

∂xn|n−1
(xn − xn|n−1) (30)

and perform some algebra using (26),(27),(28) and (29), one ends up in[13]:

Kn ≈ Pn|n−1H
′T
n [H ′

nPn|n−1H
′T
n +Rn]

−1, (31)

where H ′
n = ∂hn

∂xn|n−1
.

In every time instant, we use the KRLS algorithm (which is embedded in the this algorithm) in order to approxi-
mate hn(·), based on the predictions, i.e. x′

n. We are now ready to provide the algorithm:
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Algorithm 4.2-EKF-KRLS algorithm [13]:

• Initialization

Set x′
0 = 0,Φ0 = [κ(x′

0, ·)]
P0 = E[(x0 − E[x0])(x0 − E[x0])

T ]

Q(0) = (λ+ κ(x′
0,x

′
0)

−1),a(0) = 1T
d

• For n = 1, 2, ...

Computation for the Kalman Filter

xn|n−1 = Fn−1xn−1|n−1

y′
n = a(n− 1)TΦT

n−1ϕ(xn|n−1)

Pn|n−1 = Fn−1Pn−1F
T
n−1 + Sn−1

H ′
n =

(
∂Φn−1

∂xn|n−1
a(n− 1)

)T

Kn = Pn|n−1H
′T
n [H ′

nPn|n−1H
′T
n +Rn]

−1

xn|n = xn|n−1 +Kn(yn − y′
n)

Pn|n = (I −KnH
′
n)Pn|n−1

For the KRLS Filter

Φn = [ζΦn−1, κ(xn|n, ·)]
h(n) = ΦT

n−1ϕ(xn|n)

z(n) = Q(n− 1)h(n)

r(n) = λ+ κ(xn|n,xn|n)− z(n)Th(n)

Q(n) = r(n)−1

(
Q(n− 1)r(n) + z(n)z(n)T −z(n)

−z(n)T 1

)
e(n) = yn − a(n− 1)Th(n)

a(n) =

(
a(n− 1)− r(n)−1z(n)e(n)T

r(n)−1e(n)T

)
• End For
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4.3 Random Fourier Features Kalman Filter

Recall the problem discussed in section 4.2. We are going to present an algorithm, using the Random Fourier
Features technique solving the aforementioned problem. All the assumptions mentioned in section 4.2 hold here
too, as well as the assumption that the non linear function h(·) is known and is lying in an RKH space. It suffices
to solve this problem, since it can then easily be extended in the case where the function h(·) is not known. The
first step deals with the prediction of the prior estimate x′

n|n−1, using the posterior estimate x′
n−1|n−1. Then

it can easily be seen that:
x′
n|n−1 = Fnx

′
n−1|n−1 (32)

In the sequel, we want to estimate Pn|n−1.

Pn|n−1 = E[en|n−1e
T
n|n−1]

However
en|n−1 = xn − x′

n|n−1 = Fnxn−1 + ηn − Fnx
′
n−1|n−1 = Fn(en−1|n−1) + ηn ⇒

Pn|n−1 = E[Fnen−1|n−1e
T
n−1|n−1F

T
n ] + E[Fnen−1|n−1ηn] + E[ηne

T
n−1|n−1F

T
n ] + E[ηnη

T
n ] ⇒

Pn|n−1 = FnPn−1|n−1F
T
n +Qn (33)

Furthermore, we need to estimate x′
n|n. To do so, we have to adopt the following recursion:

x′
n|n = x′

n|n−1 +Knen,

where en = yn−WnZω(x
′
n|n−1). In this case, a Gaussian Kernel is used (which is a shift- invariant kernel) such

that:
K(x,y) = Zω(x)

TZω(y)

while

Zω(x) =

√
2√
N

 cos(ωT
1 x+ b1)
...

cos(ωT
Nx+ bN )

 ,

where ω1, ...ωN are drawn from P (ω), where P (ω) = 1
2πD

∫
ℜD K(δ)e−iωT δdδ, while b1, ...bN are uniformly

drawn from [0, 2π]. Also, as mentioned in previous chapters:

K(x− y) = Eω,b[Zω(x)Zω(y)]

Then, in our case, the known function h(·) takes the following form:

h⃗(x⃗n) =

 ...∑M
m=1K(c⃗m, x⃗n)

...

 ϵ ℜKxD,

as h⃗ ϵ HK and c⃗m are the given centers describing h⃗ in the Hilbert space. Hence, we are now able to define a
matrix W , such that:

W =

 a1Zω(c1)
...

aKZω(cK)


and

WnZω(x
′
n|n−1) = h(x′

n|n−1)

Now, since the hidden state model is the same, what needs to be considered is an alternative form of the Kalman
Gain as well as the error covariance, following the same logic as in section 4.2, that is:

Kn = E[xn+1e
T
n]R

−1
e,n (34),

where Re,n = E[ene
T
n]. Then:

Re,n = E[ene
T
n] = E[(hn(xn)− hn(x

′
n|n−1) + vn)(hn(xn)− hn(x

′
n|n−1) + vn)

T ] =

E[(hn(xn)− hn(x
′
n|n−1))(hn(xn)− hn(x

′
n|n−1))

T ] +Rn (35)
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Also,
E[xn+1e

T
n] = FnE[xnen] + E[ηne

T
n],

where E[ηne
T
n] = 0 and

E[xnen] = E[(xn − x′
n|n−1 + x′

n|n−1)e
T
n] =

E[(xn − x′
n|n−1)e

T
n] = E[(xn − x′

n|n−1)(hn(xn)− hn(x
′
n|n−1))

T ] (36)

Now, by using the Taylor approximation around x′
n|n−1, we approximate h(·) as follows:

hn(xn) = hn(x
′
n|n−1 + (xn − x′

n|n−1))

≈ hn(x
′
n|n−1) +

∂hn(x
′
n|n−1)

∂x′
n|n−1

(xn − x′
n|n−1)

At this stage, we define H ′
n =

∂hn(x
′
n|n−1)

∂x′
n|n−1

. By combining (34),(35) and (36) we end up in:

Kn = E[xn(hn(xn)− hn(x
′
n|n−1)

T ]R−1
e,n ⇒

Kn = E[(xn − x′
n|n−1)(hn(xn)− hn(x

′
n|n−1)

T ]R−1
e,n ⇒

Kn = E[(xn − x′
n|n−1)(

∂hn(x
′
n|n−1)

∂x′
n|n−1

(xn − x′
n|n−1))

T ]∗

∗(E[(
∂hn(x

′
n|n−1)

∂x′
n|n−1

(xn − x′
n|n−1))(

∂hn(x
′
n|n−1)

∂x′
n|n−1

(xn − x′
n|n−1))

T ] +Rn)
−1 ⇒

Kn = Pn|n−1H
′T
n [H ′

nPn|n−1H
′T
n +Rn]

−1 (37)

We finally, want to estimate Pn|n. That is,

Pn|n = E[en|ne
T
n|n] = E[(xn − x′

n|n−1)(xn − x′
n|n−1)

T ]−

−E[(xn − x′
n|n−1)(Knen)

T ]− E[(Knen)(xn − x′
n|n−1)

T ] + E[Knen(Knen)
T ] ⇒

Pn|n = Pn|n−1 −Kn(Pn|n−1H
′T
n )T ⇒

Pn|n = Pn|n−1 −KnH
′
nP

T
n|n−1 (38)

Now that all the equations are exported, the algorithm is going to be presented.
Algorithm 4.3-The RFFKF algorithm:

• Initialization

x1|0 = E[x1]

P1|0 = Π0

• For n = 1, 2, ... Do

Kn = Pn|n−1H
′T
n [H ′

nPn|n−1H
′T
n +Rn]

−1

x′
n|n = x′

n|n−1 +Kn(yn −WZω(x
′
n|n−1))

Pn|n = Pn|n−1 −KnH
′
nPn|n−1

x′
n+1|n = Fn+1x

′
n|n

Pn+1|n = Fn+1Pn|nF
T
n+1 +Qn+1

• End For

At this point, two examples of this algorithm are going to be presented.
• Example 4.1: In this example, the samples are generated by the following scheme:

yn = xT
nw0 + 0.1 ∗ (xT

nw1)
2 + ηn,

where, ηn are zero-mean i.i.d. Gaussian noise samples with ση = 0.05 and the coefficient vectors w0,w1 ϵ ℜ5,
are i.i.d. samples drawn for N (0, 1). The σ in the Gaussian kernel (used in the RFFRLS which provides the
known function h(·)) was chosen to be equal to 5, while the number of Fourier coefficients was chosen to be 25.
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Figure 4.1: Simulation of the RFFKF algorithm, over 500 samples generated by the equation given in Example 4.1. With the red
colour, the real values of x are denoted, while the predicted ones, are denoted with the black colour.

Figure 4.2: Simulation of the RFFKF algorithm, over 500 samples generated by the equation given in Example 4.1. The figure,
represents the error value at each time instant in Decibel.

Figure 4.3: Simulation of the RFFKF algorithm, over 500 samples generated by the equation given in Example 4.2. With the red
colour, the real values of x are denoted, while the predicted ones, are denoted with the black colour.

Figure 4.4: Simulation of the RFFKF algorithm, over 500 samples generated by the equation given in Example 4.2. The figure,
represents the error value at each time instant in Decibel.
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Also, concerning the RFFRLS, the regularization parameter is λ = 0.00001 while the user defined parameter is
β = 0.9995. Now given the values of y, the algorithm has to predict the values of x. In Figure 4.1 the real values
of x are plotted (with red), together with the predicted values provided by the algorithm. Also, in Figure 4.2,
the error in dB, at each time step is presented.

• Example 4.2: In this example, the samples are generated by the following chaotic series model:

dn = un + 0.5un − 0.2dn−1 + 0.35dn−1

ϕ(dn) =

{ dn

3(0.1+0.9d2n)1/2
dn>0

−d2n(1−exp(0.7dn))

3 dn<0

yn = ϕ(dn) + ηn,

where ηn is zero mean i.i.d. Gaussian noise with σn = 0.001, un is also zero-mean i.i.d. Gaussian with σ2
u = 0.0156

and un = 0.5un + η′n, where η
′
n is also i.i.d Gaussian noise with σ2 = 0.0156. The σ in the Gaussian kernel (used

in the RFFRLS which provides the known function h(·)) was chosen to be equal to 5, while the number of Fourier
coefficients was chosen to be 25. Also, concerning the RFFRLS, the regularization parameter is λ = 0.00001 while
the user defined parameter is β = 0.9995. Now given the values of y, the algorithm has to predict the values of
x. In Figure 4.3 the real values of x are plotted (with red), together with the predicted values provided by the
algorithm. Also, in Figure 4.4, the error in dB, at each time step is presented.
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5. CONCLUSIONS

At this point, a summary of the basic results of this manuscript will be presented. Firstly, some adaptive filtering
algorithms were explained, implemented and tested with each other. Concerning the second chapter combined
with the third, one can easily observe from the experiments, that the Random Fourier Features technique applied
in the case of the KRLS as well as the KLMS algorithm, not only provides better results in terms of the amplitude
of the error, but it also gives elegant and much simpler to understand and implement algorithms. The latter was
confirmed by various experiments. Also, from the theoretical perspective, it was confirmed that KLMS achieves
similar performance compared to the RFFLMS. Furthermore, a simple method for applying the Random Fourier
Features technique was provided, and was used later on, in the framework of the Kalman Filter, which comprises a
quite difficult problem in the field of Machine Learning. The latter, confirms the ease in the use of this technique,
and also shows its potential to be used in a wide variety of problems effectively.

Recall the theory provided in Chapter 1. A problem occurs when this theory is applied in real time problems
and is mentioned multiple times in this manuscript. The problem is that the number of coefficients of the solution
grows linearly with time, resulting in a unmanageable solution. With the help of the Random Fourier Features
technique, we did not only solve this problem, but also provided algorithms with much better performance, as
well as easier implementation. As mentioned in the previous paragraph, many experiments were held that confirm
this result, in various problems.

However, the Random Fourier Features technique does not fit everywhere and sometimes in order to apply it
effectively in some problems, one may need to face many difficulties. For example, in the framework of the
Kalman Filters, in the case where both the process and the transition functions are non linear, application of the
Random Fourier Features was ending up in some difficult open problems, which were not solved in this manuscript.
Also, recall the algorithm provided in section 4.3. This algorithm, uses a Taylor approximation in order to define
the process function H. The construction of an algorithm using a purely linear process function and the Random
Fourier Features, also faces some huge obstacles.

Nevertheless, it can readily be observed that the Random Fourier Features technique is a powerful tool that
can be used in a wide variety of problems, giving efficient algorithms capable of solving effectively many real time,
distributive, and other problems.
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